]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/sched/core.c
rcu: Ignore userspace extended quiescent state by default
[mirror_ubuntu-artful-kernel.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
1da177e4 75
96f951ed 76#include <asm/switch_to.h>
5517d86b 77#include <asm/tlb.h>
838225b4 78#include <asm/irq_regs.h>
db7e527d 79#include <asm/mutex.h>
e6e6685a
GC
80#ifdef CONFIG_PARAVIRT
81#include <asm/paravirt.h>
82#endif
1da177e4 83
029632fb 84#include "sched.h"
391e43da 85#include "../workqueue_sched.h"
29d5e047 86#include "../smpboot.h"
6e0534f2 87
a8d154b0 88#define CREATE_TRACE_POINTS
ad8d75ff 89#include <trace/events/sched.h>
a8d154b0 90
029632fb 91void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 92{
58088ad0
PT
93 unsigned long delta;
94 ktime_t soft, hard, now;
d0b27fa7 95
58088ad0
PT
96 for (;;) {
97 if (hrtimer_active(period_timer))
98 break;
99
100 now = hrtimer_cb_get_time(period_timer);
101 hrtimer_forward(period_timer, now, period);
d0b27fa7 102
58088ad0
PT
103 soft = hrtimer_get_softexpires(period_timer);
104 hard = hrtimer_get_expires(period_timer);
105 delta = ktime_to_ns(ktime_sub(hard, soft));
106 __hrtimer_start_range_ns(period_timer, soft, delta,
107 HRTIMER_MODE_ABS_PINNED, 0);
108 }
109}
110
029632fb
PZ
111DEFINE_MUTEX(sched_domains_mutex);
112DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 113
fe44d621 114static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 115
029632fb 116void update_rq_clock(struct rq *rq)
3e51f33f 117{
fe44d621 118 s64 delta;
305e6835 119
61eadef6 120 if (rq->skip_clock_update > 0)
f26f9aff 121 return;
aa483808 122
fe44d621
PZ
123 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
124 rq->clock += delta;
125 update_rq_clock_task(rq, delta);
3e51f33f
PZ
126}
127
bf5c91ba
IM
128/*
129 * Debugging: various feature bits
130 */
f00b45c1 131
f00b45c1
PZ
132#define SCHED_FEAT(name, enabled) \
133 (1UL << __SCHED_FEAT_##name) * enabled |
134
bf5c91ba 135const_debug unsigned int sysctl_sched_features =
391e43da 136#include "features.h"
f00b45c1
PZ
137 0;
138
139#undef SCHED_FEAT
140
141#ifdef CONFIG_SCHED_DEBUG
142#define SCHED_FEAT(name, enabled) \
143 #name ,
144
1292531f 145static const char * const sched_feat_names[] = {
391e43da 146#include "features.h"
f00b45c1
PZ
147};
148
149#undef SCHED_FEAT
150
34f3a814 151static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 152{
f00b45c1
PZ
153 int i;
154
f8b6d1cc 155 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
156 if (!(sysctl_sched_features & (1UL << i)))
157 seq_puts(m, "NO_");
158 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 159 }
34f3a814 160 seq_puts(m, "\n");
f00b45c1 161
34f3a814 162 return 0;
f00b45c1
PZ
163}
164
f8b6d1cc
PZ
165#ifdef HAVE_JUMP_LABEL
166
c5905afb
IM
167#define jump_label_key__true STATIC_KEY_INIT_TRUE
168#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
169
170#define SCHED_FEAT(name, enabled) \
171 jump_label_key__##enabled ,
172
c5905afb 173struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
174#include "features.h"
175};
176
177#undef SCHED_FEAT
178
179static void sched_feat_disable(int i)
180{
c5905afb
IM
181 if (static_key_enabled(&sched_feat_keys[i]))
182 static_key_slow_dec(&sched_feat_keys[i]);
f8b6d1cc
PZ
183}
184
185static void sched_feat_enable(int i)
186{
c5905afb
IM
187 if (!static_key_enabled(&sched_feat_keys[i]))
188 static_key_slow_inc(&sched_feat_keys[i]);
f8b6d1cc
PZ
189}
190#else
191static void sched_feat_disable(int i) { };
192static void sched_feat_enable(int i) { };
193#endif /* HAVE_JUMP_LABEL */
194
f00b45c1
PZ
195static ssize_t
196sched_feat_write(struct file *filp, const char __user *ubuf,
197 size_t cnt, loff_t *ppos)
198{
199 char buf[64];
7740191c 200 char *cmp;
f00b45c1
PZ
201 int neg = 0;
202 int i;
203
204 if (cnt > 63)
205 cnt = 63;
206
207 if (copy_from_user(&buf, ubuf, cnt))
208 return -EFAULT;
209
210 buf[cnt] = 0;
7740191c 211 cmp = strstrip(buf);
f00b45c1 212
524429c3 213 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
214 neg = 1;
215 cmp += 3;
216 }
217
f8b6d1cc 218 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 219 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 220 if (neg) {
f00b45c1 221 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
222 sched_feat_disable(i);
223 } else {
f00b45c1 224 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
225 sched_feat_enable(i);
226 }
f00b45c1
PZ
227 break;
228 }
229 }
230
f8b6d1cc 231 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
232 return -EINVAL;
233
42994724 234 *ppos += cnt;
f00b45c1
PZ
235
236 return cnt;
237}
238
34f3a814
LZ
239static int sched_feat_open(struct inode *inode, struct file *filp)
240{
241 return single_open(filp, sched_feat_show, NULL);
242}
243
828c0950 244static const struct file_operations sched_feat_fops = {
34f3a814
LZ
245 .open = sched_feat_open,
246 .write = sched_feat_write,
247 .read = seq_read,
248 .llseek = seq_lseek,
249 .release = single_release,
f00b45c1
PZ
250};
251
252static __init int sched_init_debug(void)
253{
f00b45c1
PZ
254 debugfs_create_file("sched_features", 0644, NULL, NULL,
255 &sched_feat_fops);
256
257 return 0;
258}
259late_initcall(sched_init_debug);
f8b6d1cc 260#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 261
b82d9fdd
PZ
262/*
263 * Number of tasks to iterate in a single balance run.
264 * Limited because this is done with IRQs disabled.
265 */
266const_debug unsigned int sysctl_sched_nr_migrate = 32;
267
e9e9250b
PZ
268/*
269 * period over which we average the RT time consumption, measured
270 * in ms.
271 *
272 * default: 1s
273 */
274const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
275
fa85ae24 276/*
9f0c1e56 277 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
278 * default: 1s
279 */
9f0c1e56 280unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 281
029632fb 282__read_mostly int scheduler_running;
6892b75e 283
9f0c1e56
PZ
284/*
285 * part of the period that we allow rt tasks to run in us.
286 * default: 0.95s
287 */
288int sysctl_sched_rt_runtime = 950000;
fa85ae24 289
fa85ae24 290
1da177e4 291
0970d299 292/*
0122ec5b 293 * __task_rq_lock - lock the rq @p resides on.
b29739f9 294 */
70b97a7f 295static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
296 __acquires(rq->lock)
297{
0970d299
PZ
298 struct rq *rq;
299
0122ec5b
PZ
300 lockdep_assert_held(&p->pi_lock);
301
3a5c359a 302 for (;;) {
0970d299 303 rq = task_rq(p);
05fa785c 304 raw_spin_lock(&rq->lock);
65cc8e48 305 if (likely(rq == task_rq(p)))
3a5c359a 306 return rq;
05fa785c 307 raw_spin_unlock(&rq->lock);
b29739f9 308 }
b29739f9
IM
309}
310
1da177e4 311/*
0122ec5b 312 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 313 */
70b97a7f 314static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 315 __acquires(p->pi_lock)
1da177e4
LT
316 __acquires(rq->lock)
317{
70b97a7f 318 struct rq *rq;
1da177e4 319
3a5c359a 320 for (;;) {
0122ec5b 321 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 322 rq = task_rq(p);
05fa785c 323 raw_spin_lock(&rq->lock);
65cc8e48 324 if (likely(rq == task_rq(p)))
3a5c359a 325 return rq;
0122ec5b
PZ
326 raw_spin_unlock(&rq->lock);
327 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4 328 }
1da177e4
LT
329}
330
a9957449 331static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
332 __releases(rq->lock)
333{
05fa785c 334 raw_spin_unlock(&rq->lock);
b29739f9
IM
335}
336
0122ec5b
PZ
337static inline void
338task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 339 __releases(rq->lock)
0122ec5b 340 __releases(p->pi_lock)
1da177e4 341{
0122ec5b
PZ
342 raw_spin_unlock(&rq->lock);
343 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
344}
345
1da177e4 346/*
cc2a73b5 347 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 348 */
a9957449 349static struct rq *this_rq_lock(void)
1da177e4
LT
350 __acquires(rq->lock)
351{
70b97a7f 352 struct rq *rq;
1da177e4
LT
353
354 local_irq_disable();
355 rq = this_rq();
05fa785c 356 raw_spin_lock(&rq->lock);
1da177e4
LT
357
358 return rq;
359}
360
8f4d37ec
PZ
361#ifdef CONFIG_SCHED_HRTICK
362/*
363 * Use HR-timers to deliver accurate preemption points.
364 *
365 * Its all a bit involved since we cannot program an hrt while holding the
366 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
367 * reschedule event.
368 *
369 * When we get rescheduled we reprogram the hrtick_timer outside of the
370 * rq->lock.
371 */
8f4d37ec 372
8f4d37ec
PZ
373static void hrtick_clear(struct rq *rq)
374{
375 if (hrtimer_active(&rq->hrtick_timer))
376 hrtimer_cancel(&rq->hrtick_timer);
377}
378
8f4d37ec
PZ
379/*
380 * High-resolution timer tick.
381 * Runs from hardirq context with interrupts disabled.
382 */
383static enum hrtimer_restart hrtick(struct hrtimer *timer)
384{
385 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
386
387 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
388
05fa785c 389 raw_spin_lock(&rq->lock);
3e51f33f 390 update_rq_clock(rq);
8f4d37ec 391 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 392 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
393
394 return HRTIMER_NORESTART;
395}
396
95e904c7 397#ifdef CONFIG_SMP
31656519
PZ
398/*
399 * called from hardirq (IPI) context
400 */
401static void __hrtick_start(void *arg)
b328ca18 402{
31656519 403 struct rq *rq = arg;
b328ca18 404
05fa785c 405 raw_spin_lock(&rq->lock);
31656519
PZ
406 hrtimer_restart(&rq->hrtick_timer);
407 rq->hrtick_csd_pending = 0;
05fa785c 408 raw_spin_unlock(&rq->lock);
b328ca18
PZ
409}
410
31656519
PZ
411/*
412 * Called to set the hrtick timer state.
413 *
414 * called with rq->lock held and irqs disabled
415 */
029632fb 416void hrtick_start(struct rq *rq, u64 delay)
b328ca18 417{
31656519
PZ
418 struct hrtimer *timer = &rq->hrtick_timer;
419 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 420
cc584b21 421 hrtimer_set_expires(timer, time);
31656519
PZ
422
423 if (rq == this_rq()) {
424 hrtimer_restart(timer);
425 } else if (!rq->hrtick_csd_pending) {
6e275637 426 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
427 rq->hrtick_csd_pending = 1;
428 }
b328ca18
PZ
429}
430
431static int
432hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
433{
434 int cpu = (int)(long)hcpu;
435
436 switch (action) {
437 case CPU_UP_CANCELED:
438 case CPU_UP_CANCELED_FROZEN:
439 case CPU_DOWN_PREPARE:
440 case CPU_DOWN_PREPARE_FROZEN:
441 case CPU_DEAD:
442 case CPU_DEAD_FROZEN:
31656519 443 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
444 return NOTIFY_OK;
445 }
446
447 return NOTIFY_DONE;
448}
449
fa748203 450static __init void init_hrtick(void)
b328ca18
PZ
451{
452 hotcpu_notifier(hotplug_hrtick, 0);
453}
31656519
PZ
454#else
455/*
456 * Called to set the hrtick timer state.
457 *
458 * called with rq->lock held and irqs disabled
459 */
029632fb 460void hrtick_start(struct rq *rq, u64 delay)
31656519 461{
7f1e2ca9 462 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 463 HRTIMER_MODE_REL_PINNED, 0);
31656519 464}
b328ca18 465
006c75f1 466static inline void init_hrtick(void)
8f4d37ec 467{
8f4d37ec 468}
31656519 469#endif /* CONFIG_SMP */
8f4d37ec 470
31656519 471static void init_rq_hrtick(struct rq *rq)
8f4d37ec 472{
31656519
PZ
473#ifdef CONFIG_SMP
474 rq->hrtick_csd_pending = 0;
8f4d37ec 475
31656519
PZ
476 rq->hrtick_csd.flags = 0;
477 rq->hrtick_csd.func = __hrtick_start;
478 rq->hrtick_csd.info = rq;
479#endif
8f4d37ec 480
31656519
PZ
481 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
482 rq->hrtick_timer.function = hrtick;
8f4d37ec 483}
006c75f1 484#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
485static inline void hrtick_clear(struct rq *rq)
486{
487}
488
8f4d37ec
PZ
489static inline void init_rq_hrtick(struct rq *rq)
490{
491}
492
b328ca18
PZ
493static inline void init_hrtick(void)
494{
495}
006c75f1 496#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 497
c24d20db
IM
498/*
499 * resched_task - mark a task 'to be rescheduled now'.
500 *
501 * On UP this means the setting of the need_resched flag, on SMP it
502 * might also involve a cross-CPU call to trigger the scheduler on
503 * the target CPU.
504 */
505#ifdef CONFIG_SMP
506
507#ifndef tsk_is_polling
508#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
509#endif
510
029632fb 511void resched_task(struct task_struct *p)
c24d20db
IM
512{
513 int cpu;
514
05fa785c 515 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 516
5ed0cec0 517 if (test_tsk_need_resched(p))
c24d20db
IM
518 return;
519
5ed0cec0 520 set_tsk_need_resched(p);
c24d20db
IM
521
522 cpu = task_cpu(p);
523 if (cpu == smp_processor_id())
524 return;
525
526 /* NEED_RESCHED must be visible before we test polling */
527 smp_mb();
528 if (!tsk_is_polling(p))
529 smp_send_reschedule(cpu);
530}
531
029632fb 532void resched_cpu(int cpu)
c24d20db
IM
533{
534 struct rq *rq = cpu_rq(cpu);
535 unsigned long flags;
536
05fa785c 537 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
538 return;
539 resched_task(cpu_curr(cpu));
05fa785c 540 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 541}
06d8308c
TG
542
543#ifdef CONFIG_NO_HZ
83cd4fe2
VP
544/*
545 * In the semi idle case, use the nearest busy cpu for migrating timers
546 * from an idle cpu. This is good for power-savings.
547 *
548 * We don't do similar optimization for completely idle system, as
549 * selecting an idle cpu will add more delays to the timers than intended
550 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
551 */
552int get_nohz_timer_target(void)
553{
554 int cpu = smp_processor_id();
555 int i;
556 struct sched_domain *sd;
557
057f3fad 558 rcu_read_lock();
83cd4fe2 559 for_each_domain(cpu, sd) {
057f3fad
PZ
560 for_each_cpu(i, sched_domain_span(sd)) {
561 if (!idle_cpu(i)) {
562 cpu = i;
563 goto unlock;
564 }
565 }
83cd4fe2 566 }
057f3fad
PZ
567unlock:
568 rcu_read_unlock();
83cd4fe2
VP
569 return cpu;
570}
06d8308c
TG
571/*
572 * When add_timer_on() enqueues a timer into the timer wheel of an
573 * idle CPU then this timer might expire before the next timer event
574 * which is scheduled to wake up that CPU. In case of a completely
575 * idle system the next event might even be infinite time into the
576 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
577 * leaves the inner idle loop so the newly added timer is taken into
578 * account when the CPU goes back to idle and evaluates the timer
579 * wheel for the next timer event.
580 */
581void wake_up_idle_cpu(int cpu)
582{
583 struct rq *rq = cpu_rq(cpu);
584
585 if (cpu == smp_processor_id())
586 return;
587
588 /*
589 * This is safe, as this function is called with the timer
590 * wheel base lock of (cpu) held. When the CPU is on the way
591 * to idle and has not yet set rq->curr to idle then it will
592 * be serialized on the timer wheel base lock and take the new
593 * timer into account automatically.
594 */
595 if (rq->curr != rq->idle)
596 return;
45bf76df 597
45bf76df 598 /*
06d8308c
TG
599 * We can set TIF_RESCHED on the idle task of the other CPU
600 * lockless. The worst case is that the other CPU runs the
601 * idle task through an additional NOOP schedule()
45bf76df 602 */
5ed0cec0 603 set_tsk_need_resched(rq->idle);
45bf76df 604
06d8308c
TG
605 /* NEED_RESCHED must be visible before we test polling */
606 smp_mb();
607 if (!tsk_is_polling(rq->idle))
608 smp_send_reschedule(cpu);
45bf76df
IM
609}
610
ca38062e 611static inline bool got_nohz_idle_kick(void)
45bf76df 612{
1c792db7
SS
613 int cpu = smp_processor_id();
614 return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
45bf76df
IM
615}
616
ca38062e 617#else /* CONFIG_NO_HZ */
45bf76df 618
ca38062e 619static inline bool got_nohz_idle_kick(void)
2069dd75 620{
ca38062e 621 return false;
2069dd75
PZ
622}
623
6d6bc0ad 624#endif /* CONFIG_NO_HZ */
d842de87 625
029632fb 626void sched_avg_update(struct rq *rq)
18d95a28 627{
e9e9250b
PZ
628 s64 period = sched_avg_period();
629
630 while ((s64)(rq->clock - rq->age_stamp) > period) {
0d98bb26
WD
631 /*
632 * Inline assembly required to prevent the compiler
633 * optimising this loop into a divmod call.
634 * See __iter_div_u64_rem() for another example of this.
635 */
636 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
637 rq->age_stamp += period;
638 rq->rt_avg /= 2;
639 }
18d95a28
PZ
640}
641
6d6bc0ad 642#else /* !CONFIG_SMP */
029632fb 643void resched_task(struct task_struct *p)
18d95a28 644{
05fa785c 645 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 646 set_tsk_need_resched(p);
18d95a28 647}
6d6bc0ad 648#endif /* CONFIG_SMP */
18d95a28 649
a790de99
PT
650#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
651 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 652/*
8277434e
PT
653 * Iterate task_group tree rooted at *from, calling @down when first entering a
654 * node and @up when leaving it for the final time.
655 *
656 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 657 */
029632fb 658int walk_tg_tree_from(struct task_group *from,
8277434e 659 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
660{
661 struct task_group *parent, *child;
eb755805 662 int ret;
c09595f6 663
8277434e
PT
664 parent = from;
665
c09595f6 666down:
eb755805
PZ
667 ret = (*down)(parent, data);
668 if (ret)
8277434e 669 goto out;
c09595f6
PZ
670 list_for_each_entry_rcu(child, &parent->children, siblings) {
671 parent = child;
672 goto down;
673
674up:
675 continue;
676 }
eb755805 677 ret = (*up)(parent, data);
8277434e
PT
678 if (ret || parent == from)
679 goto out;
c09595f6
PZ
680
681 child = parent;
682 parent = parent->parent;
683 if (parent)
684 goto up;
8277434e 685out:
eb755805 686 return ret;
c09595f6
PZ
687}
688
029632fb 689int tg_nop(struct task_group *tg, void *data)
eb755805 690{
e2b245f8 691 return 0;
eb755805 692}
18d95a28
PZ
693#endif
694
45bf76df
IM
695static void set_load_weight(struct task_struct *p)
696{
f05998d4
NR
697 int prio = p->static_prio - MAX_RT_PRIO;
698 struct load_weight *load = &p->se.load;
699
dd41f596
IM
700 /*
701 * SCHED_IDLE tasks get minimal weight:
702 */
703 if (p->policy == SCHED_IDLE) {
c8b28116 704 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 705 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
706 return;
707 }
71f8bd46 708
c8b28116 709 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 710 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
711}
712
371fd7e7 713static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 714{
a64692a3 715 update_rq_clock(rq);
dd41f596 716 sched_info_queued(p);
371fd7e7 717 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
718}
719
371fd7e7 720static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 721{
a64692a3 722 update_rq_clock(rq);
46ac22ba 723 sched_info_dequeued(p);
371fd7e7 724 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
725}
726
029632fb 727void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
728{
729 if (task_contributes_to_load(p))
730 rq->nr_uninterruptible--;
731
371fd7e7 732 enqueue_task(rq, p, flags);
1e3c88bd
PZ
733}
734
029632fb 735void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
736{
737 if (task_contributes_to_load(p))
738 rq->nr_uninterruptible++;
739
371fd7e7 740 dequeue_task(rq, p, flags);
1e3c88bd
PZ
741}
742
b52bfee4
VP
743#ifdef CONFIG_IRQ_TIME_ACCOUNTING
744
305e6835
VP
745/*
746 * There are no locks covering percpu hardirq/softirq time.
747 * They are only modified in account_system_vtime, on corresponding CPU
748 * with interrupts disabled. So, writes are safe.
749 * They are read and saved off onto struct rq in update_rq_clock().
750 * This may result in other CPU reading this CPU's irq time and can
751 * race with irq/account_system_vtime on this CPU. We would either get old
8e92c201
PZ
752 * or new value with a side effect of accounting a slice of irq time to wrong
753 * task when irq is in progress while we read rq->clock. That is a worthy
754 * compromise in place of having locks on each irq in account_system_time.
305e6835 755 */
b52bfee4
VP
756static DEFINE_PER_CPU(u64, cpu_hardirq_time);
757static DEFINE_PER_CPU(u64, cpu_softirq_time);
758
759static DEFINE_PER_CPU(u64, irq_start_time);
760static int sched_clock_irqtime;
761
762void enable_sched_clock_irqtime(void)
763{
764 sched_clock_irqtime = 1;
765}
766
767void disable_sched_clock_irqtime(void)
768{
769 sched_clock_irqtime = 0;
770}
771
8e92c201
PZ
772#ifndef CONFIG_64BIT
773static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
774
775static inline void irq_time_write_begin(void)
776{
777 __this_cpu_inc(irq_time_seq.sequence);
778 smp_wmb();
779}
780
781static inline void irq_time_write_end(void)
782{
783 smp_wmb();
784 __this_cpu_inc(irq_time_seq.sequence);
785}
786
787static inline u64 irq_time_read(int cpu)
788{
789 u64 irq_time;
790 unsigned seq;
791
792 do {
793 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
794 irq_time = per_cpu(cpu_softirq_time, cpu) +
795 per_cpu(cpu_hardirq_time, cpu);
796 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
797
798 return irq_time;
799}
800#else /* CONFIG_64BIT */
801static inline void irq_time_write_begin(void)
802{
803}
804
805static inline void irq_time_write_end(void)
806{
807}
808
809static inline u64 irq_time_read(int cpu)
305e6835 810{
305e6835
VP
811 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
812}
8e92c201 813#endif /* CONFIG_64BIT */
305e6835 814
fe44d621
PZ
815/*
816 * Called before incrementing preempt_count on {soft,}irq_enter
817 * and before decrementing preempt_count on {soft,}irq_exit.
818 */
b52bfee4
VP
819void account_system_vtime(struct task_struct *curr)
820{
821 unsigned long flags;
fe44d621 822 s64 delta;
b52bfee4 823 int cpu;
b52bfee4
VP
824
825 if (!sched_clock_irqtime)
826 return;
827
828 local_irq_save(flags);
829
b52bfee4 830 cpu = smp_processor_id();
fe44d621
PZ
831 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
832 __this_cpu_add(irq_start_time, delta);
833
8e92c201 834 irq_time_write_begin();
b52bfee4
VP
835 /*
836 * We do not account for softirq time from ksoftirqd here.
837 * We want to continue accounting softirq time to ksoftirqd thread
838 * in that case, so as not to confuse scheduler with a special task
839 * that do not consume any time, but still wants to run.
840 */
841 if (hardirq_count())
fe44d621 842 __this_cpu_add(cpu_hardirq_time, delta);
4dd53d89 843 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
fe44d621 844 __this_cpu_add(cpu_softirq_time, delta);
b52bfee4 845
8e92c201 846 irq_time_write_end();
b52bfee4
VP
847 local_irq_restore(flags);
848}
b7dadc38 849EXPORT_SYMBOL_GPL(account_system_vtime);
b52bfee4 850
e6e6685a
GC
851#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
852
853#ifdef CONFIG_PARAVIRT
854static inline u64 steal_ticks(u64 steal)
aa483808 855{
e6e6685a
GC
856 if (unlikely(steal > NSEC_PER_SEC))
857 return div_u64(steal, TICK_NSEC);
fe44d621 858
e6e6685a
GC
859 return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
860}
861#endif
862
fe44d621 863static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 864{
095c0aa8
GC
865/*
866 * In theory, the compile should just see 0 here, and optimize out the call
867 * to sched_rt_avg_update. But I don't trust it...
868 */
869#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
870 s64 steal = 0, irq_delta = 0;
871#endif
872#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 873 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
874
875 /*
876 * Since irq_time is only updated on {soft,}irq_exit, we might run into
877 * this case when a previous update_rq_clock() happened inside a
878 * {soft,}irq region.
879 *
880 * When this happens, we stop ->clock_task and only update the
881 * prev_irq_time stamp to account for the part that fit, so that a next
882 * update will consume the rest. This ensures ->clock_task is
883 * monotonic.
884 *
885 * It does however cause some slight miss-attribution of {soft,}irq
886 * time, a more accurate solution would be to update the irq_time using
887 * the current rq->clock timestamp, except that would require using
888 * atomic ops.
889 */
890 if (irq_delta > delta)
891 irq_delta = delta;
892
893 rq->prev_irq_time += irq_delta;
894 delta -= irq_delta;
095c0aa8
GC
895#endif
896#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 897 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
898 u64 st;
899
900 steal = paravirt_steal_clock(cpu_of(rq));
901 steal -= rq->prev_steal_time_rq;
902
903 if (unlikely(steal > delta))
904 steal = delta;
905
906 st = steal_ticks(steal);
907 steal = st * TICK_NSEC;
908
909 rq->prev_steal_time_rq += steal;
910
911 delta -= steal;
912 }
913#endif
914
fe44d621
PZ
915 rq->clock_task += delta;
916
095c0aa8
GC
917#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
918 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
919 sched_rt_avg_update(rq, irq_delta + steal);
920#endif
aa483808
VP
921}
922
095c0aa8 923#ifdef CONFIG_IRQ_TIME_ACCOUNTING
abb74cef
VP
924static int irqtime_account_hi_update(void)
925{
3292beb3 926 u64 *cpustat = kcpustat_this_cpu->cpustat;
abb74cef
VP
927 unsigned long flags;
928 u64 latest_ns;
929 int ret = 0;
930
931 local_irq_save(flags);
932 latest_ns = this_cpu_read(cpu_hardirq_time);
612ef28a 933 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
abb74cef
VP
934 ret = 1;
935 local_irq_restore(flags);
936 return ret;
937}
938
939static int irqtime_account_si_update(void)
940{
3292beb3 941 u64 *cpustat = kcpustat_this_cpu->cpustat;
abb74cef
VP
942 unsigned long flags;
943 u64 latest_ns;
944 int ret = 0;
945
946 local_irq_save(flags);
947 latest_ns = this_cpu_read(cpu_softirq_time);
612ef28a 948 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
abb74cef
VP
949 ret = 1;
950 local_irq_restore(flags);
951 return ret;
952}
953
fe44d621 954#else /* CONFIG_IRQ_TIME_ACCOUNTING */
305e6835 955
abb74cef
VP
956#define sched_clock_irqtime (0)
957
095c0aa8 958#endif
b52bfee4 959
34f971f6
PZ
960void sched_set_stop_task(int cpu, struct task_struct *stop)
961{
962 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
963 struct task_struct *old_stop = cpu_rq(cpu)->stop;
964
965 if (stop) {
966 /*
967 * Make it appear like a SCHED_FIFO task, its something
968 * userspace knows about and won't get confused about.
969 *
970 * Also, it will make PI more or less work without too
971 * much confusion -- but then, stop work should not
972 * rely on PI working anyway.
973 */
974 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
975
976 stop->sched_class = &stop_sched_class;
977 }
978
979 cpu_rq(cpu)->stop = stop;
980
981 if (old_stop) {
982 /*
983 * Reset it back to a normal scheduling class so that
984 * it can die in pieces.
985 */
986 old_stop->sched_class = &rt_sched_class;
987 }
988}
989
14531189 990/*
dd41f596 991 * __normal_prio - return the priority that is based on the static prio
14531189 992 */
14531189
IM
993static inline int __normal_prio(struct task_struct *p)
994{
dd41f596 995 return p->static_prio;
14531189
IM
996}
997
b29739f9
IM
998/*
999 * Calculate the expected normal priority: i.e. priority
1000 * without taking RT-inheritance into account. Might be
1001 * boosted by interactivity modifiers. Changes upon fork,
1002 * setprio syscalls, and whenever the interactivity
1003 * estimator recalculates.
1004 */
36c8b586 1005static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1006{
1007 int prio;
1008
e05606d3 1009 if (task_has_rt_policy(p))
b29739f9
IM
1010 prio = MAX_RT_PRIO-1 - p->rt_priority;
1011 else
1012 prio = __normal_prio(p);
1013 return prio;
1014}
1015
1016/*
1017 * Calculate the current priority, i.e. the priority
1018 * taken into account by the scheduler. This value might
1019 * be boosted by RT tasks, or might be boosted by
1020 * interactivity modifiers. Will be RT if the task got
1021 * RT-boosted. If not then it returns p->normal_prio.
1022 */
36c8b586 1023static int effective_prio(struct task_struct *p)
b29739f9
IM
1024{
1025 p->normal_prio = normal_prio(p);
1026 /*
1027 * If we are RT tasks or we were boosted to RT priority,
1028 * keep the priority unchanged. Otherwise, update priority
1029 * to the normal priority:
1030 */
1031 if (!rt_prio(p->prio))
1032 return p->normal_prio;
1033 return p->prio;
1034}
1035
1da177e4
LT
1036/**
1037 * task_curr - is this task currently executing on a CPU?
1038 * @p: the task in question.
1039 */
36c8b586 1040inline int task_curr(const struct task_struct *p)
1da177e4
LT
1041{
1042 return cpu_curr(task_cpu(p)) == p;
1043}
1044
cb469845
SR
1045static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1046 const struct sched_class *prev_class,
da7a735e 1047 int oldprio)
cb469845
SR
1048{
1049 if (prev_class != p->sched_class) {
1050 if (prev_class->switched_from)
da7a735e
PZ
1051 prev_class->switched_from(rq, p);
1052 p->sched_class->switched_to(rq, p);
1053 } else if (oldprio != p->prio)
1054 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
1055}
1056
029632fb 1057void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
1058{
1059 const struct sched_class *class;
1060
1061 if (p->sched_class == rq->curr->sched_class) {
1062 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1063 } else {
1064 for_each_class(class) {
1065 if (class == rq->curr->sched_class)
1066 break;
1067 if (class == p->sched_class) {
1068 resched_task(rq->curr);
1069 break;
1070 }
1071 }
1072 }
1073
1074 /*
1075 * A queue event has occurred, and we're going to schedule. In
1076 * this case, we can save a useless back to back clock update.
1077 */
fd2f4419 1078 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
1079 rq->skip_clock_update = 1;
1080}
1081
1da177e4 1082#ifdef CONFIG_SMP
dd41f596 1083void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1084{
e2912009
PZ
1085#ifdef CONFIG_SCHED_DEBUG
1086 /*
1087 * We should never call set_task_cpu() on a blocked task,
1088 * ttwu() will sort out the placement.
1089 */
077614ee
PZ
1090 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1091 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
0122ec5b
PZ
1092
1093#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1094 /*
1095 * The caller should hold either p->pi_lock or rq->lock, when changing
1096 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1097 *
1098 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1099 * see task_group().
6c6c54e1
PZ
1100 *
1101 * Furthermore, all task_rq users should acquire both locks, see
1102 * task_rq_lock().
1103 */
0122ec5b
PZ
1104 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1105 lockdep_is_held(&task_rq(p)->lock)));
1106#endif
e2912009
PZ
1107#endif
1108
de1d7286 1109 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1110
0c69774e
PZ
1111 if (task_cpu(p) != new_cpu) {
1112 p->se.nr_migrations++;
a8b0ca17 1113 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
0c69774e 1114 }
dd41f596
IM
1115
1116 __set_task_cpu(p, new_cpu);
c65cc870
IM
1117}
1118
969c7921 1119struct migration_arg {
36c8b586 1120 struct task_struct *task;
1da177e4 1121 int dest_cpu;
70b97a7f 1122};
1da177e4 1123
969c7921
TH
1124static int migration_cpu_stop(void *data);
1125
1da177e4
LT
1126/*
1127 * wait_task_inactive - wait for a thread to unschedule.
1128 *
85ba2d86
RM
1129 * If @match_state is nonzero, it's the @p->state value just checked and
1130 * not expected to change. If it changes, i.e. @p might have woken up,
1131 * then return zero. When we succeed in waiting for @p to be off its CPU,
1132 * we return a positive number (its total switch count). If a second call
1133 * a short while later returns the same number, the caller can be sure that
1134 * @p has remained unscheduled the whole time.
1135 *
1da177e4
LT
1136 * The caller must ensure that the task *will* unschedule sometime soon,
1137 * else this function might spin for a *long* time. This function can't
1138 * be called with interrupts off, or it may introduce deadlock with
1139 * smp_call_function() if an IPI is sent by the same process we are
1140 * waiting to become inactive.
1141 */
85ba2d86 1142unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1143{
1144 unsigned long flags;
dd41f596 1145 int running, on_rq;
85ba2d86 1146 unsigned long ncsw;
70b97a7f 1147 struct rq *rq;
1da177e4 1148
3a5c359a
AK
1149 for (;;) {
1150 /*
1151 * We do the initial early heuristics without holding
1152 * any task-queue locks at all. We'll only try to get
1153 * the runqueue lock when things look like they will
1154 * work out!
1155 */
1156 rq = task_rq(p);
fa490cfd 1157
3a5c359a
AK
1158 /*
1159 * If the task is actively running on another CPU
1160 * still, just relax and busy-wait without holding
1161 * any locks.
1162 *
1163 * NOTE! Since we don't hold any locks, it's not
1164 * even sure that "rq" stays as the right runqueue!
1165 * But we don't care, since "task_running()" will
1166 * return false if the runqueue has changed and p
1167 * is actually now running somewhere else!
1168 */
85ba2d86
RM
1169 while (task_running(rq, p)) {
1170 if (match_state && unlikely(p->state != match_state))
1171 return 0;
3a5c359a 1172 cpu_relax();
85ba2d86 1173 }
fa490cfd 1174
3a5c359a
AK
1175 /*
1176 * Ok, time to look more closely! We need the rq
1177 * lock now, to be *sure*. If we're wrong, we'll
1178 * just go back and repeat.
1179 */
1180 rq = task_rq_lock(p, &flags);
27a9da65 1181 trace_sched_wait_task(p);
3a5c359a 1182 running = task_running(rq, p);
fd2f4419 1183 on_rq = p->on_rq;
85ba2d86 1184 ncsw = 0;
f31e11d8 1185 if (!match_state || p->state == match_state)
93dcf55f 1186 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1187 task_rq_unlock(rq, p, &flags);
fa490cfd 1188
85ba2d86
RM
1189 /*
1190 * If it changed from the expected state, bail out now.
1191 */
1192 if (unlikely(!ncsw))
1193 break;
1194
3a5c359a
AK
1195 /*
1196 * Was it really running after all now that we
1197 * checked with the proper locks actually held?
1198 *
1199 * Oops. Go back and try again..
1200 */
1201 if (unlikely(running)) {
1202 cpu_relax();
1203 continue;
1204 }
fa490cfd 1205
3a5c359a
AK
1206 /*
1207 * It's not enough that it's not actively running,
1208 * it must be off the runqueue _entirely_, and not
1209 * preempted!
1210 *
80dd99b3 1211 * So if it was still runnable (but just not actively
3a5c359a
AK
1212 * running right now), it's preempted, and we should
1213 * yield - it could be a while.
1214 */
1215 if (unlikely(on_rq)) {
8eb90c30
TG
1216 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1217
1218 set_current_state(TASK_UNINTERRUPTIBLE);
1219 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1220 continue;
1221 }
fa490cfd 1222
3a5c359a
AK
1223 /*
1224 * Ahh, all good. It wasn't running, and it wasn't
1225 * runnable, which means that it will never become
1226 * running in the future either. We're all done!
1227 */
1228 break;
1229 }
85ba2d86
RM
1230
1231 return ncsw;
1da177e4
LT
1232}
1233
1234/***
1235 * kick_process - kick a running thread to enter/exit the kernel
1236 * @p: the to-be-kicked thread
1237 *
1238 * Cause a process which is running on another CPU to enter
1239 * kernel-mode, without any delay. (to get signals handled.)
1240 *
25985edc 1241 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1242 * because all it wants to ensure is that the remote task enters
1243 * the kernel. If the IPI races and the task has been migrated
1244 * to another CPU then no harm is done and the purpose has been
1245 * achieved as well.
1246 */
36c8b586 1247void kick_process(struct task_struct *p)
1da177e4
LT
1248{
1249 int cpu;
1250
1251 preempt_disable();
1252 cpu = task_cpu(p);
1253 if ((cpu != smp_processor_id()) && task_curr(p))
1254 smp_send_reschedule(cpu);
1255 preempt_enable();
1256}
b43e3521 1257EXPORT_SYMBOL_GPL(kick_process);
476d139c 1258#endif /* CONFIG_SMP */
1da177e4 1259
970b13ba 1260#ifdef CONFIG_SMP
30da688e 1261/*
013fdb80 1262 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1263 */
5da9a0fb
PZ
1264static int select_fallback_rq(int cpu, struct task_struct *p)
1265{
5da9a0fb 1266 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2baab4e9
PZ
1267 enum { cpuset, possible, fail } state = cpuset;
1268 int dest_cpu;
5da9a0fb
PZ
1269
1270 /* Look for allowed, online CPU in same node. */
e3831edd 1271 for_each_cpu(dest_cpu, nodemask) {
2baab4e9
PZ
1272 if (!cpu_online(dest_cpu))
1273 continue;
1274 if (!cpu_active(dest_cpu))
1275 continue;
fa17b507 1276 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
5da9a0fb 1277 return dest_cpu;
2baab4e9 1278 }
5da9a0fb 1279
2baab4e9
PZ
1280 for (;;) {
1281 /* Any allowed, online CPU? */
e3831edd 1282 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1283 if (!cpu_online(dest_cpu))
1284 continue;
1285 if (!cpu_active(dest_cpu))
1286 continue;
1287 goto out;
1288 }
5da9a0fb 1289
2baab4e9
PZ
1290 switch (state) {
1291 case cpuset:
1292 /* No more Mr. Nice Guy. */
1293 cpuset_cpus_allowed_fallback(p);
1294 state = possible;
1295 break;
1296
1297 case possible:
1298 do_set_cpus_allowed(p, cpu_possible_mask);
1299 state = fail;
1300 break;
1301
1302 case fail:
1303 BUG();
1304 break;
1305 }
1306 }
1307
1308out:
1309 if (state != cpuset) {
1310 /*
1311 * Don't tell them about moving exiting tasks or
1312 * kernel threads (both mm NULL), since they never
1313 * leave kernel.
1314 */
1315 if (p->mm && printk_ratelimit()) {
1316 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1317 task_pid_nr(p), p->comm, cpu);
1318 }
5da9a0fb
PZ
1319 }
1320
1321 return dest_cpu;
1322}
1323
e2912009 1324/*
013fdb80 1325 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1326 */
970b13ba 1327static inline
7608dec2 1328int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 1329{
7608dec2 1330 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
e2912009
PZ
1331
1332 /*
1333 * In order not to call set_task_cpu() on a blocking task we need
1334 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1335 * cpu.
1336 *
1337 * Since this is common to all placement strategies, this lives here.
1338 *
1339 * [ this allows ->select_task() to simply return task_cpu(p) and
1340 * not worry about this generic constraint ]
1341 */
fa17b507 1342 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1343 !cpu_online(cpu)))
5da9a0fb 1344 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1345
1346 return cpu;
970b13ba 1347}
09a40af5
MG
1348
1349static void update_avg(u64 *avg, u64 sample)
1350{
1351 s64 diff = sample - *avg;
1352 *avg += diff >> 3;
1353}
970b13ba
PZ
1354#endif
1355
d7c01d27 1356static void
b84cb5df 1357ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1358{
d7c01d27 1359#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1360 struct rq *rq = this_rq();
1361
d7c01d27
PZ
1362#ifdef CONFIG_SMP
1363 int this_cpu = smp_processor_id();
1364
1365 if (cpu == this_cpu) {
1366 schedstat_inc(rq, ttwu_local);
1367 schedstat_inc(p, se.statistics.nr_wakeups_local);
1368 } else {
1369 struct sched_domain *sd;
1370
1371 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1372 rcu_read_lock();
d7c01d27
PZ
1373 for_each_domain(this_cpu, sd) {
1374 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1375 schedstat_inc(sd, ttwu_wake_remote);
1376 break;
1377 }
1378 }
057f3fad 1379 rcu_read_unlock();
d7c01d27 1380 }
f339b9dc
PZ
1381
1382 if (wake_flags & WF_MIGRATED)
1383 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1384
d7c01d27
PZ
1385#endif /* CONFIG_SMP */
1386
1387 schedstat_inc(rq, ttwu_count);
9ed3811a 1388 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1389
1390 if (wake_flags & WF_SYNC)
9ed3811a 1391 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1392
d7c01d27
PZ
1393#endif /* CONFIG_SCHEDSTATS */
1394}
1395
1396static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1397{
9ed3811a 1398 activate_task(rq, p, en_flags);
fd2f4419 1399 p->on_rq = 1;
c2f7115e
PZ
1400
1401 /* if a worker is waking up, notify workqueue */
1402 if (p->flags & PF_WQ_WORKER)
1403 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1404}
1405
23f41eeb
PZ
1406/*
1407 * Mark the task runnable and perform wakeup-preemption.
1408 */
89363381 1409static void
23f41eeb 1410ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1411{
89363381 1412 trace_sched_wakeup(p, true);
9ed3811a
TH
1413 check_preempt_curr(rq, p, wake_flags);
1414
1415 p->state = TASK_RUNNING;
1416#ifdef CONFIG_SMP
1417 if (p->sched_class->task_woken)
1418 p->sched_class->task_woken(rq, p);
1419
e69c6341 1420 if (rq->idle_stamp) {
9ed3811a
TH
1421 u64 delta = rq->clock - rq->idle_stamp;
1422 u64 max = 2*sysctl_sched_migration_cost;
1423
1424 if (delta > max)
1425 rq->avg_idle = max;
1426 else
1427 update_avg(&rq->avg_idle, delta);
1428 rq->idle_stamp = 0;
1429 }
1430#endif
1431}
1432
c05fbafb
PZ
1433static void
1434ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1435{
1436#ifdef CONFIG_SMP
1437 if (p->sched_contributes_to_load)
1438 rq->nr_uninterruptible--;
1439#endif
1440
1441 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1442 ttwu_do_wakeup(rq, p, wake_flags);
1443}
1444
1445/*
1446 * Called in case the task @p isn't fully descheduled from its runqueue,
1447 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1448 * since all we need to do is flip p->state to TASK_RUNNING, since
1449 * the task is still ->on_rq.
1450 */
1451static int ttwu_remote(struct task_struct *p, int wake_flags)
1452{
1453 struct rq *rq;
1454 int ret = 0;
1455
1456 rq = __task_rq_lock(p);
1457 if (p->on_rq) {
1458 ttwu_do_wakeup(rq, p, wake_flags);
1459 ret = 1;
1460 }
1461 __task_rq_unlock(rq);
1462
1463 return ret;
1464}
1465
317f3941 1466#ifdef CONFIG_SMP
fa14ff4a 1467static void sched_ttwu_pending(void)
317f3941
PZ
1468{
1469 struct rq *rq = this_rq();
fa14ff4a
PZ
1470 struct llist_node *llist = llist_del_all(&rq->wake_list);
1471 struct task_struct *p;
317f3941
PZ
1472
1473 raw_spin_lock(&rq->lock);
1474
fa14ff4a
PZ
1475 while (llist) {
1476 p = llist_entry(llist, struct task_struct, wake_entry);
1477 llist = llist_next(llist);
317f3941
PZ
1478 ttwu_do_activate(rq, p, 0);
1479 }
1480
1481 raw_spin_unlock(&rq->lock);
1482}
1483
1484void scheduler_ipi(void)
1485{
ca38062e 1486 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1487 return;
1488
1489 /*
1490 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1491 * traditionally all their work was done from the interrupt return
1492 * path. Now that we actually do some work, we need to make sure
1493 * we do call them.
1494 *
1495 * Some archs already do call them, luckily irq_enter/exit nest
1496 * properly.
1497 *
1498 * Arguably we should visit all archs and update all handlers,
1499 * however a fair share of IPIs are still resched only so this would
1500 * somewhat pessimize the simple resched case.
1501 */
1502 irq_enter();
fa14ff4a 1503 sched_ttwu_pending();
ca38062e
SS
1504
1505 /*
1506 * Check if someone kicked us for doing the nohz idle load balance.
1507 */
6eb57e0d
SS
1508 if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1509 this_rq()->idle_balance = 1;
ca38062e 1510 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1511 }
c5d753a5 1512 irq_exit();
317f3941
PZ
1513}
1514
1515static void ttwu_queue_remote(struct task_struct *p, int cpu)
1516{
fa14ff4a 1517 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
317f3941
PZ
1518 smp_send_reschedule(cpu);
1519}
d6aa8f85
PZ
1520
1521#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1522static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
1523{
1524 struct rq *rq;
1525 int ret = 0;
1526
1527 rq = __task_rq_lock(p);
1528 if (p->on_cpu) {
1529 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1530 ttwu_do_wakeup(rq, p, wake_flags);
1531 ret = 1;
1532 }
1533 __task_rq_unlock(rq);
1534
1535 return ret;
1536
1537}
1538#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
518cd623 1539
39be3501 1540bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1541{
1542 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1543}
d6aa8f85 1544#endif /* CONFIG_SMP */
317f3941 1545
c05fbafb
PZ
1546static void ttwu_queue(struct task_struct *p, int cpu)
1547{
1548 struct rq *rq = cpu_rq(cpu);
1549
17d9f311 1550#if defined(CONFIG_SMP)
39be3501 1551 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1552 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1553 ttwu_queue_remote(p, cpu);
1554 return;
1555 }
1556#endif
1557
c05fbafb
PZ
1558 raw_spin_lock(&rq->lock);
1559 ttwu_do_activate(rq, p, 0);
1560 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1561}
1562
1563/**
1da177e4 1564 * try_to_wake_up - wake up a thread
9ed3811a 1565 * @p: the thread to be awakened
1da177e4 1566 * @state: the mask of task states that can be woken
9ed3811a 1567 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1568 *
1569 * Put it on the run-queue if it's not already there. The "current"
1570 * thread is always on the run-queue (except when the actual
1571 * re-schedule is in progress), and as such you're allowed to do
1572 * the simpler "current->state = TASK_RUNNING" to mark yourself
1573 * runnable without the overhead of this.
1574 *
9ed3811a
TH
1575 * Returns %true if @p was woken up, %false if it was already running
1576 * or @state didn't match @p's state.
1da177e4 1577 */
e4a52bcb
PZ
1578static int
1579try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1580{
1da177e4 1581 unsigned long flags;
c05fbafb 1582 int cpu, success = 0;
2398f2c6 1583
04e2f174 1584 smp_wmb();
013fdb80 1585 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1586 if (!(p->state & state))
1da177e4
LT
1587 goto out;
1588
c05fbafb 1589 success = 1; /* we're going to change ->state */
1da177e4 1590 cpu = task_cpu(p);
1da177e4 1591
c05fbafb
PZ
1592 if (p->on_rq && ttwu_remote(p, wake_flags))
1593 goto stat;
1da177e4 1594
1da177e4 1595#ifdef CONFIG_SMP
e9c84311 1596 /*
c05fbafb
PZ
1597 * If the owning (remote) cpu is still in the middle of schedule() with
1598 * this task as prev, wait until its done referencing the task.
e9c84311 1599 */
e4a52bcb
PZ
1600 while (p->on_cpu) {
1601#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1602 /*
d6aa8f85
PZ
1603 * In case the architecture enables interrupts in
1604 * context_switch(), we cannot busy wait, since that
1605 * would lead to deadlocks when an interrupt hits and
1606 * tries to wake up @prev. So bail and do a complete
1607 * remote wakeup.
e4a52bcb 1608 */
d6aa8f85 1609 if (ttwu_activate_remote(p, wake_flags))
c05fbafb 1610 goto stat;
d6aa8f85 1611#else
e4a52bcb 1612 cpu_relax();
d6aa8f85 1613#endif
371fd7e7 1614 }
0970d299 1615 /*
e4a52bcb 1616 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1617 */
e4a52bcb 1618 smp_rmb();
1da177e4 1619
a8e4f2ea 1620 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1621 p->state = TASK_WAKING;
e7693a36 1622
e4a52bcb 1623 if (p->sched_class->task_waking)
74f8e4b2 1624 p->sched_class->task_waking(p);
efbbd05a 1625
7608dec2 1626 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1627 if (task_cpu(p) != cpu) {
1628 wake_flags |= WF_MIGRATED;
e4a52bcb 1629 set_task_cpu(p, cpu);
f339b9dc 1630 }
1da177e4 1631#endif /* CONFIG_SMP */
1da177e4 1632
c05fbafb
PZ
1633 ttwu_queue(p, cpu);
1634stat:
b84cb5df 1635 ttwu_stat(p, cpu, wake_flags);
1da177e4 1636out:
013fdb80 1637 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1638
1639 return success;
1640}
1641
21aa9af0
TH
1642/**
1643 * try_to_wake_up_local - try to wake up a local task with rq lock held
1644 * @p: the thread to be awakened
1645 *
2acca55e 1646 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1647 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1648 * the current task.
21aa9af0
TH
1649 */
1650static void try_to_wake_up_local(struct task_struct *p)
1651{
1652 struct rq *rq = task_rq(p);
21aa9af0
TH
1653
1654 BUG_ON(rq != this_rq());
1655 BUG_ON(p == current);
1656 lockdep_assert_held(&rq->lock);
1657
2acca55e
PZ
1658 if (!raw_spin_trylock(&p->pi_lock)) {
1659 raw_spin_unlock(&rq->lock);
1660 raw_spin_lock(&p->pi_lock);
1661 raw_spin_lock(&rq->lock);
1662 }
1663
21aa9af0 1664 if (!(p->state & TASK_NORMAL))
2acca55e 1665 goto out;
21aa9af0 1666
fd2f4419 1667 if (!p->on_rq)
d7c01d27
PZ
1668 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1669
23f41eeb 1670 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1671 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1672out:
1673 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1674}
1675
50fa610a
DH
1676/**
1677 * wake_up_process - Wake up a specific process
1678 * @p: The process to be woken up.
1679 *
1680 * Attempt to wake up the nominated process and move it to the set of runnable
1681 * processes. Returns 1 if the process was woken up, 0 if it was already
1682 * running.
1683 *
1684 * It may be assumed that this function implies a write memory barrier before
1685 * changing the task state if and only if any tasks are woken up.
1686 */
7ad5b3a5 1687int wake_up_process(struct task_struct *p)
1da177e4 1688{
d9514f6c 1689 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 1690}
1da177e4
LT
1691EXPORT_SYMBOL(wake_up_process);
1692
7ad5b3a5 1693int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1694{
1695 return try_to_wake_up(p, state, 0);
1696}
1697
1da177e4
LT
1698/*
1699 * Perform scheduler related setup for a newly forked process p.
1700 * p is forked by current.
dd41f596
IM
1701 *
1702 * __sched_fork() is basic setup used by init_idle() too:
1703 */
1704static void __sched_fork(struct task_struct *p)
1705{
fd2f4419
PZ
1706 p->on_rq = 0;
1707
1708 p->se.on_rq = 0;
dd41f596
IM
1709 p->se.exec_start = 0;
1710 p->se.sum_exec_runtime = 0;
f6cf891c 1711 p->se.prev_sum_exec_runtime = 0;
6c594c21 1712 p->se.nr_migrations = 0;
da7a735e 1713 p->se.vruntime = 0;
fd2f4419 1714 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
1715
1716#ifdef CONFIG_SCHEDSTATS
41acab88 1717 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 1718#endif
476d139c 1719
fa717060 1720 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 1721
e107be36
AK
1722#ifdef CONFIG_PREEMPT_NOTIFIERS
1723 INIT_HLIST_HEAD(&p->preempt_notifiers);
1724#endif
dd41f596
IM
1725}
1726
1727/*
1728 * fork()/clone()-time setup:
1729 */
3e51e3ed 1730void sched_fork(struct task_struct *p)
dd41f596 1731{
0122ec5b 1732 unsigned long flags;
dd41f596
IM
1733 int cpu = get_cpu();
1734
1735 __sched_fork(p);
06b83b5f 1736 /*
0017d735 1737 * We mark the process as running here. This guarantees that
06b83b5f
PZ
1738 * nobody will actually run it, and a signal or other external
1739 * event cannot wake it up and insert it on the runqueue either.
1740 */
0017d735 1741 p->state = TASK_RUNNING;
dd41f596 1742
c350a04e
MG
1743 /*
1744 * Make sure we do not leak PI boosting priority to the child.
1745 */
1746 p->prio = current->normal_prio;
1747
b9dc29e7
MG
1748 /*
1749 * Revert to default priority/policy on fork if requested.
1750 */
1751 if (unlikely(p->sched_reset_on_fork)) {
c350a04e 1752 if (task_has_rt_policy(p)) {
b9dc29e7 1753 p->policy = SCHED_NORMAL;
6c697bdf 1754 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
1755 p->rt_priority = 0;
1756 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1757 p->static_prio = NICE_TO_PRIO(0);
1758
1759 p->prio = p->normal_prio = __normal_prio(p);
1760 set_load_weight(p);
6c697bdf 1761
b9dc29e7
MG
1762 /*
1763 * We don't need the reset flag anymore after the fork. It has
1764 * fulfilled its duty:
1765 */
1766 p->sched_reset_on_fork = 0;
1767 }
ca94c442 1768
2ddbf952
HS
1769 if (!rt_prio(p->prio))
1770 p->sched_class = &fair_sched_class;
b29739f9 1771
cd29fe6f
PZ
1772 if (p->sched_class->task_fork)
1773 p->sched_class->task_fork(p);
1774
86951599
PZ
1775 /*
1776 * The child is not yet in the pid-hash so no cgroup attach races,
1777 * and the cgroup is pinned to this child due to cgroup_fork()
1778 * is ran before sched_fork().
1779 *
1780 * Silence PROVE_RCU.
1781 */
0122ec5b 1782 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 1783 set_task_cpu(p, cpu);
0122ec5b 1784 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 1785
52f17b6c 1786#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1787 if (likely(sched_info_on()))
52f17b6c 1788 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1789#endif
3ca7a440
PZ
1790#if defined(CONFIG_SMP)
1791 p->on_cpu = 0;
4866cde0 1792#endif
bdd4e85d 1793#ifdef CONFIG_PREEMPT_COUNT
4866cde0 1794 /* Want to start with kernel preemption disabled. */
a1261f54 1795 task_thread_info(p)->preempt_count = 1;
1da177e4 1796#endif
806c09a7 1797#ifdef CONFIG_SMP
917b627d 1798 plist_node_init(&p->pushable_tasks, MAX_PRIO);
806c09a7 1799#endif
917b627d 1800
476d139c 1801 put_cpu();
1da177e4
LT
1802}
1803
1804/*
1805 * wake_up_new_task - wake up a newly created task for the first time.
1806 *
1807 * This function will do some initial scheduler statistics housekeeping
1808 * that must be done for every newly created context, then puts the task
1809 * on the runqueue and wakes it.
1810 */
3e51e3ed 1811void wake_up_new_task(struct task_struct *p)
1da177e4
LT
1812{
1813 unsigned long flags;
dd41f596 1814 struct rq *rq;
fabf318e 1815
ab2515c4 1816 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
1817#ifdef CONFIG_SMP
1818 /*
1819 * Fork balancing, do it here and not earlier because:
1820 * - cpus_allowed can change in the fork path
1821 * - any previously selected cpu might disappear through hotplug
fabf318e 1822 */
ab2515c4 1823 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
0017d735
PZ
1824#endif
1825
ab2515c4 1826 rq = __task_rq_lock(p);
cd29fe6f 1827 activate_task(rq, p, 0);
fd2f4419 1828 p->on_rq = 1;
89363381 1829 trace_sched_wakeup_new(p, true);
a7558e01 1830 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 1831#ifdef CONFIG_SMP
efbbd05a
PZ
1832 if (p->sched_class->task_woken)
1833 p->sched_class->task_woken(rq, p);
9a897c5a 1834#endif
0122ec5b 1835 task_rq_unlock(rq, p, &flags);
1da177e4
LT
1836}
1837
e107be36
AK
1838#ifdef CONFIG_PREEMPT_NOTIFIERS
1839
1840/**
80dd99b3 1841 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 1842 * @notifier: notifier struct to register
e107be36
AK
1843 */
1844void preempt_notifier_register(struct preempt_notifier *notifier)
1845{
1846 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1847}
1848EXPORT_SYMBOL_GPL(preempt_notifier_register);
1849
1850/**
1851 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 1852 * @notifier: notifier struct to unregister
e107be36
AK
1853 *
1854 * This is safe to call from within a preemption notifier.
1855 */
1856void preempt_notifier_unregister(struct preempt_notifier *notifier)
1857{
1858 hlist_del(&notifier->link);
1859}
1860EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1861
1862static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1863{
1864 struct preempt_notifier *notifier;
1865 struct hlist_node *node;
1866
1867 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1868 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1869}
1870
1871static void
1872fire_sched_out_preempt_notifiers(struct task_struct *curr,
1873 struct task_struct *next)
1874{
1875 struct preempt_notifier *notifier;
1876 struct hlist_node *node;
1877
1878 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1879 notifier->ops->sched_out(notifier, next);
1880}
1881
6d6bc0ad 1882#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
1883
1884static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1885{
1886}
1887
1888static void
1889fire_sched_out_preempt_notifiers(struct task_struct *curr,
1890 struct task_struct *next)
1891{
1892}
1893
6d6bc0ad 1894#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 1895
4866cde0
NP
1896/**
1897 * prepare_task_switch - prepare to switch tasks
1898 * @rq: the runqueue preparing to switch
421cee29 1899 * @prev: the current task that is being switched out
4866cde0
NP
1900 * @next: the task we are going to switch to.
1901 *
1902 * This is called with the rq lock held and interrupts off. It must
1903 * be paired with a subsequent finish_task_switch after the context
1904 * switch.
1905 *
1906 * prepare_task_switch sets up locking and calls architecture specific
1907 * hooks.
1908 */
e107be36
AK
1909static inline void
1910prepare_task_switch(struct rq *rq, struct task_struct *prev,
1911 struct task_struct *next)
4866cde0 1912{
895dd92c 1913 trace_sched_switch(prev, next);
fe4b04fa
PZ
1914 sched_info_switch(prev, next);
1915 perf_event_task_sched_out(prev, next);
e107be36 1916 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
1917 prepare_lock_switch(rq, next);
1918 prepare_arch_switch(next);
1919}
1920
1da177e4
LT
1921/**
1922 * finish_task_switch - clean up after a task-switch
344babaa 1923 * @rq: runqueue associated with task-switch
1da177e4
LT
1924 * @prev: the thread we just switched away from.
1925 *
4866cde0
NP
1926 * finish_task_switch must be called after the context switch, paired
1927 * with a prepare_task_switch call before the context switch.
1928 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1929 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1930 *
1931 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 1932 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
1933 * with the lock held can cause deadlocks; see schedule() for
1934 * details.)
1935 */
a9957449 1936static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1937 __releases(rq->lock)
1938{
1da177e4 1939 struct mm_struct *mm = rq->prev_mm;
55a101f8 1940 long prev_state;
1da177e4
LT
1941
1942 rq->prev_mm = NULL;
1943
1944 /*
1945 * A task struct has one reference for the use as "current".
c394cc9f 1946 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1947 * schedule one last time. The schedule call will never return, and
1948 * the scheduled task must drop that reference.
c394cc9f 1949 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1950 * still held, otherwise prev could be scheduled on another cpu, die
1951 * there before we look at prev->state, and then the reference would
1952 * be dropped twice.
1953 * Manfred Spraul <manfred@colorfullife.com>
1954 */
55a101f8 1955 prev_state = prev->state;
4866cde0 1956 finish_arch_switch(prev);
8381f65d
JI
1957#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1958 local_irq_disable();
1959#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
a8d757ef 1960 perf_event_task_sched_in(prev, current);
8381f65d
JI
1961#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1962 local_irq_enable();
1963#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
4866cde0 1964 finish_lock_switch(rq, prev);
01f23e16 1965 finish_arch_post_lock_switch();
e8fa1362 1966
e107be36 1967 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
1968 if (mm)
1969 mmdrop(mm);
c394cc9f 1970 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 1971 /*
1972 * Remove function-return probe instances associated with this
1973 * task and put them back on the free list.
9761eea8 1974 */
c6fd91f0 1975 kprobe_flush_task(prev);
1da177e4 1976 put_task_struct(prev);
c6fd91f0 1977 }
1da177e4
LT
1978}
1979
3f029d3c
GH
1980#ifdef CONFIG_SMP
1981
1982/* assumes rq->lock is held */
1983static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1984{
1985 if (prev->sched_class->pre_schedule)
1986 prev->sched_class->pre_schedule(rq, prev);
1987}
1988
1989/* rq->lock is NOT held, but preemption is disabled */
1990static inline void post_schedule(struct rq *rq)
1991{
1992 if (rq->post_schedule) {
1993 unsigned long flags;
1994
05fa785c 1995 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
1996 if (rq->curr->sched_class->post_schedule)
1997 rq->curr->sched_class->post_schedule(rq);
05fa785c 1998 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
1999
2000 rq->post_schedule = 0;
2001 }
2002}
2003
2004#else
da19ab51 2005
3f029d3c
GH
2006static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2007{
2008}
2009
2010static inline void post_schedule(struct rq *rq)
2011{
1da177e4
LT
2012}
2013
3f029d3c
GH
2014#endif
2015
1da177e4
LT
2016/**
2017 * schedule_tail - first thing a freshly forked thread must call.
2018 * @prev: the thread we just switched away from.
2019 */
36c8b586 2020asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2021 __releases(rq->lock)
2022{
70b97a7f
IM
2023 struct rq *rq = this_rq();
2024
4866cde0 2025 finish_task_switch(rq, prev);
da19ab51 2026
3f029d3c
GH
2027 /*
2028 * FIXME: do we need to worry about rq being invalidated by the
2029 * task_switch?
2030 */
2031 post_schedule(rq);
70b97a7f 2032
4866cde0
NP
2033#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2034 /* In this case, finish_task_switch does not reenable preemption */
2035 preempt_enable();
2036#endif
1da177e4 2037 if (current->set_child_tid)
b488893a 2038 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2039}
2040
2041/*
2042 * context_switch - switch to the new MM and the new
2043 * thread's register state.
2044 */
dd41f596 2045static inline void
70b97a7f 2046context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2047 struct task_struct *next)
1da177e4 2048{
dd41f596 2049 struct mm_struct *mm, *oldmm;
1da177e4 2050
e107be36 2051 prepare_task_switch(rq, prev, next);
fe4b04fa 2052
dd41f596
IM
2053 mm = next->mm;
2054 oldmm = prev->active_mm;
9226d125
ZA
2055 /*
2056 * For paravirt, this is coupled with an exit in switch_to to
2057 * combine the page table reload and the switch backend into
2058 * one hypercall.
2059 */
224101ed 2060 arch_start_context_switch(prev);
9226d125 2061
31915ab4 2062 if (!mm) {
1da177e4
LT
2063 next->active_mm = oldmm;
2064 atomic_inc(&oldmm->mm_count);
2065 enter_lazy_tlb(oldmm, next);
2066 } else
2067 switch_mm(oldmm, mm, next);
2068
31915ab4 2069 if (!prev->mm) {
1da177e4 2070 prev->active_mm = NULL;
1da177e4
LT
2071 rq->prev_mm = oldmm;
2072 }
3a5f5e48
IM
2073 /*
2074 * Since the runqueue lock will be released by the next
2075 * task (which is an invalid locking op but in the case
2076 * of the scheduler it's an obvious special-case), so we
2077 * do an early lockdep release here:
2078 */
2079#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2080 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2081#endif
1da177e4
LT
2082
2083 /* Here we just switch the register state and the stack. */
2084 switch_to(prev, next, prev);
2085
dd41f596
IM
2086 barrier();
2087 /*
2088 * this_rq must be evaluated again because prev may have moved
2089 * CPUs since it called schedule(), thus the 'rq' on its stack
2090 * frame will be invalid.
2091 */
2092 finish_task_switch(this_rq(), prev);
1da177e4
LT
2093}
2094
2095/*
2096 * nr_running, nr_uninterruptible and nr_context_switches:
2097 *
2098 * externally visible scheduler statistics: current number of runnable
2099 * threads, current number of uninterruptible-sleeping threads, total
2100 * number of context switches performed since bootup.
2101 */
2102unsigned long nr_running(void)
2103{
2104 unsigned long i, sum = 0;
2105
2106 for_each_online_cpu(i)
2107 sum += cpu_rq(i)->nr_running;
2108
2109 return sum;
f711f609 2110}
1da177e4
LT
2111
2112unsigned long nr_uninterruptible(void)
f711f609 2113{
1da177e4 2114 unsigned long i, sum = 0;
f711f609 2115
0a945022 2116 for_each_possible_cpu(i)
1da177e4 2117 sum += cpu_rq(i)->nr_uninterruptible;
f711f609
GS
2118
2119 /*
1da177e4
LT
2120 * Since we read the counters lockless, it might be slightly
2121 * inaccurate. Do not allow it to go below zero though:
f711f609 2122 */
1da177e4
LT
2123 if (unlikely((long)sum < 0))
2124 sum = 0;
f711f609 2125
1da177e4 2126 return sum;
f711f609 2127}
f711f609 2128
1da177e4 2129unsigned long long nr_context_switches(void)
46cb4b7c 2130{
cc94abfc
SR
2131 int i;
2132 unsigned long long sum = 0;
46cb4b7c 2133
0a945022 2134 for_each_possible_cpu(i)
1da177e4 2135 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2136
1da177e4
LT
2137 return sum;
2138}
483b4ee6 2139
1da177e4
LT
2140unsigned long nr_iowait(void)
2141{
2142 unsigned long i, sum = 0;
483b4ee6 2143
0a945022 2144 for_each_possible_cpu(i)
1da177e4 2145 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2146
1da177e4
LT
2147 return sum;
2148}
483b4ee6 2149
8c215bd3 2150unsigned long nr_iowait_cpu(int cpu)
69d25870 2151{
8c215bd3 2152 struct rq *this = cpu_rq(cpu);
69d25870
AV
2153 return atomic_read(&this->nr_iowait);
2154}
46cb4b7c 2155
69d25870
AV
2156unsigned long this_cpu_load(void)
2157{
2158 struct rq *this = this_rq();
2159 return this->cpu_load[0];
2160}
e790fb0b 2161
46cb4b7c 2162
5167e8d5
PZ
2163/*
2164 * Global load-average calculations
2165 *
2166 * We take a distributed and async approach to calculating the global load-avg
2167 * in order to minimize overhead.
2168 *
2169 * The global load average is an exponentially decaying average of nr_running +
2170 * nr_uninterruptible.
2171 *
2172 * Once every LOAD_FREQ:
2173 *
2174 * nr_active = 0;
2175 * for_each_possible_cpu(cpu)
2176 * nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
2177 *
2178 * avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
2179 *
2180 * Due to a number of reasons the above turns in the mess below:
2181 *
2182 * - for_each_possible_cpu() is prohibitively expensive on machines with
2183 * serious number of cpus, therefore we need to take a distributed approach
2184 * to calculating nr_active.
2185 *
2186 * \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
2187 * = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
2188 *
2189 * So assuming nr_active := 0 when we start out -- true per definition, we
2190 * can simply take per-cpu deltas and fold those into a global accumulate
2191 * to obtain the same result. See calc_load_fold_active().
2192 *
2193 * Furthermore, in order to avoid synchronizing all per-cpu delta folding
2194 * across the machine, we assume 10 ticks is sufficient time for every
2195 * cpu to have completed this task.
2196 *
2197 * This places an upper-bound on the IRQ-off latency of the machine. Then
2198 * again, being late doesn't loose the delta, just wrecks the sample.
2199 *
2200 * - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
2201 * this would add another cross-cpu cacheline miss and atomic operation
2202 * to the wakeup path. Instead we increment on whatever cpu the task ran
2203 * when it went into uninterruptible state and decrement on whatever cpu
2204 * did the wakeup. This means that only the sum of nr_uninterruptible over
2205 * all cpus yields the correct result.
2206 *
2207 * This covers the NO_HZ=n code, for extra head-aches, see the comment below.
2208 */
2209
dce48a84
TG
2210/* Variables and functions for calc_load */
2211static atomic_long_t calc_load_tasks;
2212static unsigned long calc_load_update;
2213unsigned long avenrun[3];
5167e8d5
PZ
2214EXPORT_SYMBOL(avenrun); /* should be removed */
2215
2216/**
2217 * get_avenrun - get the load average array
2218 * @loads: pointer to dest load array
2219 * @offset: offset to add
2220 * @shift: shift count to shift the result left
2221 *
2222 * These values are estimates at best, so no need for locking.
2223 */
2224void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2225{
2226 loads[0] = (avenrun[0] + offset) << shift;
2227 loads[1] = (avenrun[1] + offset) << shift;
2228 loads[2] = (avenrun[2] + offset) << shift;
2229}
46cb4b7c 2230
74f5187a
PZ
2231static long calc_load_fold_active(struct rq *this_rq)
2232{
2233 long nr_active, delta = 0;
2234
2235 nr_active = this_rq->nr_running;
2236 nr_active += (long) this_rq->nr_uninterruptible;
2237
2238 if (nr_active != this_rq->calc_load_active) {
2239 delta = nr_active - this_rq->calc_load_active;
2240 this_rq->calc_load_active = nr_active;
2241 }
2242
2243 return delta;
2244}
2245
5167e8d5
PZ
2246/*
2247 * a1 = a0 * e + a * (1 - e)
2248 */
0f004f5a
PZ
2249static unsigned long
2250calc_load(unsigned long load, unsigned long exp, unsigned long active)
2251{
2252 load *= exp;
2253 load += active * (FIXED_1 - exp);
2254 load += 1UL << (FSHIFT - 1);
2255 return load >> FSHIFT;
2256}
2257
74f5187a
PZ
2258#ifdef CONFIG_NO_HZ
2259/*
5167e8d5
PZ
2260 * Handle NO_HZ for the global load-average.
2261 *
2262 * Since the above described distributed algorithm to compute the global
2263 * load-average relies on per-cpu sampling from the tick, it is affected by
2264 * NO_HZ.
2265 *
2266 * The basic idea is to fold the nr_active delta into a global idle-delta upon
2267 * entering NO_HZ state such that we can include this as an 'extra' cpu delta
2268 * when we read the global state.
2269 *
2270 * Obviously reality has to ruin such a delightfully simple scheme:
2271 *
2272 * - When we go NO_HZ idle during the window, we can negate our sample
2273 * contribution, causing under-accounting.
2274 *
2275 * We avoid this by keeping two idle-delta counters and flipping them
2276 * when the window starts, thus separating old and new NO_HZ load.
2277 *
2278 * The only trick is the slight shift in index flip for read vs write.
2279 *
2280 * 0s 5s 10s 15s
2281 * +10 +10 +10 +10
2282 * |-|-----------|-|-----------|-|-----------|-|
2283 * r:0 0 1 1 0 0 1 1 0
2284 * w:0 1 1 0 0 1 1 0 0
2285 *
2286 * This ensures we'll fold the old idle contribution in this window while
2287 * accumlating the new one.
2288 *
2289 * - When we wake up from NO_HZ idle during the window, we push up our
2290 * contribution, since we effectively move our sample point to a known
2291 * busy state.
2292 *
2293 * This is solved by pushing the window forward, and thus skipping the
2294 * sample, for this cpu (effectively using the idle-delta for this cpu which
2295 * was in effect at the time the window opened). This also solves the issue
2296 * of having to deal with a cpu having been in NOHZ idle for multiple
2297 * LOAD_FREQ intervals.
74f5187a
PZ
2298 *
2299 * When making the ILB scale, we should try to pull this in as well.
2300 */
5167e8d5
PZ
2301static atomic_long_t calc_load_idle[2];
2302static int calc_load_idx;
74f5187a 2303
5167e8d5 2304static inline int calc_load_write_idx(void)
74f5187a 2305{
5167e8d5
PZ
2306 int idx = calc_load_idx;
2307
2308 /*
2309 * See calc_global_nohz(), if we observe the new index, we also
2310 * need to observe the new update time.
2311 */
2312 smp_rmb();
2313
2314 /*
2315 * If the folding window started, make sure we start writing in the
2316 * next idle-delta.
2317 */
2318 if (!time_before(jiffies, calc_load_update))
2319 idx++;
2320
2321 return idx & 1;
2322}
2323
2324static inline int calc_load_read_idx(void)
2325{
2326 return calc_load_idx & 1;
2327}
2328
2329void calc_load_enter_idle(void)
2330{
2331 struct rq *this_rq = this_rq();
74f5187a
PZ
2332 long delta;
2333
5167e8d5
PZ
2334 /*
2335 * We're going into NOHZ mode, if there's any pending delta, fold it
2336 * into the pending idle delta.
2337 */
74f5187a 2338 delta = calc_load_fold_active(this_rq);
5167e8d5
PZ
2339 if (delta) {
2340 int idx = calc_load_write_idx();
2341 atomic_long_add(delta, &calc_load_idle[idx]);
2342 }
74f5187a
PZ
2343}
2344
5167e8d5 2345void calc_load_exit_idle(void)
74f5187a 2346{
5167e8d5
PZ
2347 struct rq *this_rq = this_rq();
2348
2349 /*
2350 * If we're still before the sample window, we're done.
2351 */
2352 if (time_before(jiffies, this_rq->calc_load_update))
2353 return;
74f5187a
PZ
2354
2355 /*
5167e8d5
PZ
2356 * We woke inside or after the sample window, this means we're already
2357 * accounted through the nohz accounting, so skip the entire deal and
2358 * sync up for the next window.
74f5187a 2359 */
5167e8d5
PZ
2360 this_rq->calc_load_update = calc_load_update;
2361 if (time_before(jiffies, this_rq->calc_load_update + 10))
2362 this_rq->calc_load_update += LOAD_FREQ;
2363}
2364
2365static long calc_load_fold_idle(void)
2366{
2367 int idx = calc_load_read_idx();
2368 long delta = 0;
2369
2370 if (atomic_long_read(&calc_load_idle[idx]))
2371 delta = atomic_long_xchg(&calc_load_idle[idx], 0);
74f5187a
PZ
2372
2373 return delta;
2374}
0f004f5a
PZ
2375
2376/**
2377 * fixed_power_int - compute: x^n, in O(log n) time
2378 *
2379 * @x: base of the power
2380 * @frac_bits: fractional bits of @x
2381 * @n: power to raise @x to.
2382 *
2383 * By exploiting the relation between the definition of the natural power
2384 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2385 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2386 * (where: n_i \elem {0, 1}, the binary vector representing n),
2387 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2388 * of course trivially computable in O(log_2 n), the length of our binary
2389 * vector.
2390 */
2391static unsigned long
2392fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2393{
2394 unsigned long result = 1UL << frac_bits;
2395
2396 if (n) for (;;) {
2397 if (n & 1) {
2398 result *= x;
2399 result += 1UL << (frac_bits - 1);
2400 result >>= frac_bits;
2401 }
2402 n >>= 1;
2403 if (!n)
2404 break;
2405 x *= x;
2406 x += 1UL << (frac_bits - 1);
2407 x >>= frac_bits;
2408 }
2409
2410 return result;
2411}
2412
2413/*
2414 * a1 = a0 * e + a * (1 - e)
2415 *
2416 * a2 = a1 * e + a * (1 - e)
2417 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2418 * = a0 * e^2 + a * (1 - e) * (1 + e)
2419 *
2420 * a3 = a2 * e + a * (1 - e)
2421 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2422 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2423 *
2424 * ...
2425 *
2426 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2427 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2428 * = a0 * e^n + a * (1 - e^n)
2429 *
2430 * [1] application of the geometric series:
2431 *
2432 * n 1 - x^(n+1)
2433 * S_n := \Sum x^i = -------------
2434 * i=0 1 - x
2435 */
2436static unsigned long
2437calc_load_n(unsigned long load, unsigned long exp,
2438 unsigned long active, unsigned int n)
2439{
2440
2441 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2442}
2443
2444/*
2445 * NO_HZ can leave us missing all per-cpu ticks calling
2446 * calc_load_account_active(), but since an idle CPU folds its delta into
2447 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2448 * in the pending idle delta if our idle period crossed a load cycle boundary.
2449 *
2450 * Once we've updated the global active value, we need to apply the exponential
2451 * weights adjusted to the number of cycles missed.
2452 */
c308b56b 2453static void calc_global_nohz(void)
0f004f5a
PZ
2454{
2455 long delta, active, n;
2456
5167e8d5
PZ
2457 if (!time_before(jiffies, calc_load_update + 10)) {
2458 /*
2459 * Catch-up, fold however many we are behind still
2460 */
2461 delta = jiffies - calc_load_update - 10;
2462 n = 1 + (delta / LOAD_FREQ);
0f004f5a 2463
5167e8d5
PZ
2464 active = atomic_long_read(&calc_load_tasks);
2465 active = active > 0 ? active * FIXED_1 : 0;
0f004f5a 2466
5167e8d5
PZ
2467 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2468 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2469 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
0f004f5a 2470
5167e8d5
PZ
2471 calc_load_update += n * LOAD_FREQ;
2472 }
74f5187a 2473
5167e8d5
PZ
2474 /*
2475 * Flip the idle index...
2476 *
2477 * Make sure we first write the new time then flip the index, so that
2478 * calc_load_write_idx() will see the new time when it reads the new
2479 * index, this avoids a double flip messing things up.
2480 */
2481 smp_wmb();
2482 calc_load_idx++;
74f5187a 2483}
5167e8d5 2484#else /* !CONFIG_NO_HZ */
0f004f5a 2485
5167e8d5
PZ
2486static inline long calc_load_fold_idle(void) { return 0; }
2487static inline void calc_global_nohz(void) { }
74f5187a 2488
5167e8d5 2489#endif /* CONFIG_NO_HZ */
46cb4b7c 2490
46cb4b7c 2491/*
dce48a84
TG
2492 * calc_load - update the avenrun load estimates 10 ticks after the
2493 * CPUs have updated calc_load_tasks.
7835b98b 2494 */
0f004f5a 2495void calc_global_load(unsigned long ticks)
7835b98b 2496{
5167e8d5 2497 long active, delta;
1da177e4 2498
0f004f5a 2499 if (time_before(jiffies, calc_load_update + 10))
dce48a84 2500 return;
1da177e4 2501
5167e8d5
PZ
2502 /*
2503 * Fold the 'old' idle-delta to include all NO_HZ cpus.
2504 */
2505 delta = calc_load_fold_idle();
2506 if (delta)
2507 atomic_long_add(delta, &calc_load_tasks);
2508
dce48a84
TG
2509 active = atomic_long_read(&calc_load_tasks);
2510 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 2511
dce48a84
TG
2512 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2513 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2514 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 2515
dce48a84 2516 calc_load_update += LOAD_FREQ;
c308b56b
PZ
2517
2518 /*
5167e8d5 2519 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
c308b56b
PZ
2520 */
2521 calc_global_nohz();
dce48a84 2522}
1da177e4 2523
dce48a84 2524/*
74f5187a
PZ
2525 * Called from update_cpu_load() to periodically update this CPU's
2526 * active count.
dce48a84
TG
2527 */
2528static void calc_load_account_active(struct rq *this_rq)
2529{
74f5187a 2530 long delta;
08c183f3 2531
74f5187a
PZ
2532 if (time_before(jiffies, this_rq->calc_load_update))
2533 return;
783609c6 2534
74f5187a 2535 delta = calc_load_fold_active(this_rq);
74f5187a 2536 if (delta)
dce48a84 2537 atomic_long_add(delta, &calc_load_tasks);
74f5187a
PZ
2538
2539 this_rq->calc_load_update += LOAD_FREQ;
46cb4b7c
SS
2540}
2541
5167e8d5
PZ
2542/*
2543 * End of global load-average stuff
2544 */
2545
fdf3e95d
VP
2546/*
2547 * The exact cpuload at various idx values, calculated at every tick would be
2548 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2549 *
2550 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2551 * on nth tick when cpu may be busy, then we have:
2552 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2553 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2554 *
2555 * decay_load_missed() below does efficient calculation of
2556 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2557 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2558 *
2559 * The calculation is approximated on a 128 point scale.
2560 * degrade_zero_ticks is the number of ticks after which load at any
2561 * particular idx is approximated to be zero.
2562 * degrade_factor is a precomputed table, a row for each load idx.
2563 * Each column corresponds to degradation factor for a power of two ticks,
2564 * based on 128 point scale.
2565 * Example:
2566 * row 2, col 3 (=12) says that the degradation at load idx 2 after
2567 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2568 *
2569 * With this power of 2 load factors, we can degrade the load n times
2570 * by looking at 1 bits in n and doing as many mult/shift instead of
2571 * n mult/shifts needed by the exact degradation.
2572 */
2573#define DEGRADE_SHIFT 7
2574static const unsigned char
2575 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2576static const unsigned char
2577 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2578 {0, 0, 0, 0, 0, 0, 0, 0},
2579 {64, 32, 8, 0, 0, 0, 0, 0},
2580 {96, 72, 40, 12, 1, 0, 0},
2581 {112, 98, 75, 43, 15, 1, 0},
2582 {120, 112, 98, 76, 45, 16, 2} };
2583
2584/*
2585 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2586 * would be when CPU is idle and so we just decay the old load without
2587 * adding any new load.
2588 */
2589static unsigned long
2590decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2591{
2592 int j = 0;
2593
2594 if (!missed_updates)
2595 return load;
2596
2597 if (missed_updates >= degrade_zero_ticks[idx])
2598 return 0;
2599
2600 if (idx == 1)
2601 return load >> missed_updates;
2602
2603 while (missed_updates) {
2604 if (missed_updates % 2)
2605 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2606
2607 missed_updates >>= 1;
2608 j++;
2609 }
2610 return load;
2611}
2612
46cb4b7c 2613/*
dd41f596 2614 * Update rq->cpu_load[] statistics. This function is usually called every
fdf3e95d
VP
2615 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2616 * every tick. We fix it up based on jiffies.
46cb4b7c 2617 */
556061b0
PZ
2618static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
2619 unsigned long pending_updates)
46cb4b7c 2620{
dd41f596 2621 int i, scale;
46cb4b7c 2622
dd41f596 2623 this_rq->nr_load_updates++;
46cb4b7c 2624
dd41f596 2625 /* Update our load: */
fdf3e95d
VP
2626 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2627 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
dd41f596 2628 unsigned long old_load, new_load;
7d1e6a9b 2629
dd41f596 2630 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 2631
dd41f596 2632 old_load = this_rq->cpu_load[i];
fdf3e95d 2633 old_load = decay_load_missed(old_load, pending_updates - 1, i);
dd41f596 2634 new_load = this_load;
a25707f3
IM
2635 /*
2636 * Round up the averaging division if load is increasing. This
2637 * prevents us from getting stuck on 9 if the load is 10, for
2638 * example.
2639 */
2640 if (new_load > old_load)
fdf3e95d
VP
2641 new_load += scale - 1;
2642
2643 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
dd41f596 2644 }
da2b71ed
SS
2645
2646 sched_avg_update(this_rq);
fdf3e95d
VP
2647}
2648
5aaa0b7a
PZ
2649#ifdef CONFIG_NO_HZ
2650/*
2651 * There is no sane way to deal with nohz on smp when using jiffies because the
2652 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
2653 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
2654 *
2655 * Therefore we cannot use the delta approach from the regular tick since that
2656 * would seriously skew the load calculation. However we'll make do for those
2657 * updates happening while idle (nohz_idle_balance) or coming out of idle
2658 * (tick_nohz_idle_exit).
2659 *
2660 * This means we might still be one tick off for nohz periods.
2661 */
2662
556061b0
PZ
2663/*
2664 * Called from nohz_idle_balance() to update the load ratings before doing the
2665 * idle balance.
2666 */
2667void update_idle_cpu_load(struct rq *this_rq)
2668{
5aaa0b7a 2669 unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
556061b0
PZ
2670 unsigned long load = this_rq->load.weight;
2671 unsigned long pending_updates;
2672
2673 /*
5aaa0b7a 2674 * bail if there's load or we're actually up-to-date.
556061b0
PZ
2675 */
2676 if (load || curr_jiffies == this_rq->last_load_update_tick)
2677 return;
2678
2679 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2680 this_rq->last_load_update_tick = curr_jiffies;
2681
2682 __update_cpu_load(this_rq, load, pending_updates);
2683}
2684
5aaa0b7a
PZ
2685/*
2686 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
2687 */
2688void update_cpu_load_nohz(void)
2689{
2690 struct rq *this_rq = this_rq();
2691 unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2692 unsigned long pending_updates;
2693
2694 if (curr_jiffies == this_rq->last_load_update_tick)
2695 return;
2696
2697 raw_spin_lock(&this_rq->lock);
2698 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2699 if (pending_updates) {
2700 this_rq->last_load_update_tick = curr_jiffies;
2701 /*
2702 * We were idle, this means load 0, the current load might be
2703 * !0 due to remote wakeups and the sort.
2704 */
2705 __update_cpu_load(this_rq, 0, pending_updates);
2706 }
2707 raw_spin_unlock(&this_rq->lock);
2708}
2709#endif /* CONFIG_NO_HZ */
2710
556061b0
PZ
2711/*
2712 * Called from scheduler_tick()
2713 */
fdf3e95d
VP
2714static void update_cpu_load_active(struct rq *this_rq)
2715{
556061b0 2716 /*
5aaa0b7a 2717 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
556061b0
PZ
2718 */
2719 this_rq->last_load_update_tick = jiffies;
2720 __update_cpu_load(this_rq, this_rq->load.weight, 1);
46cb4b7c 2721
74f5187a 2722 calc_load_account_active(this_rq);
46cb4b7c
SS
2723}
2724
dd41f596 2725#ifdef CONFIG_SMP
8a0be9ef 2726
46cb4b7c 2727/*
38022906
PZ
2728 * sched_exec - execve() is a valuable balancing opportunity, because at
2729 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2730 */
38022906 2731void sched_exec(void)
46cb4b7c 2732{
38022906 2733 struct task_struct *p = current;
1da177e4 2734 unsigned long flags;
0017d735 2735 int dest_cpu;
46cb4b7c 2736
8f42ced9 2737 raw_spin_lock_irqsave(&p->pi_lock, flags);
7608dec2 2738 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
0017d735
PZ
2739 if (dest_cpu == smp_processor_id())
2740 goto unlock;
38022906 2741
8f42ced9 2742 if (likely(cpu_active(dest_cpu))) {
969c7921 2743 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2744
8f42ced9
PZ
2745 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2746 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2747 return;
2748 }
0017d735 2749unlock:
8f42ced9 2750 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2751}
dd41f596 2752
1da177e4
LT
2753#endif
2754
1da177e4 2755DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2756DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2757
2758EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2759EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4
LT
2760
2761/*
c5f8d995 2762 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 2763 * @p in case that task is currently running.
c5f8d995
HS
2764 *
2765 * Called with task_rq_lock() held on @rq.
1da177e4 2766 */
c5f8d995
HS
2767static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2768{
2769 u64 ns = 0;
2770
2771 if (task_current(rq, p)) {
2772 update_rq_clock(rq);
305e6835 2773 ns = rq->clock_task - p->se.exec_start;
c5f8d995
HS
2774 if ((s64)ns < 0)
2775 ns = 0;
2776 }
2777
2778 return ns;
2779}
2780
bb34d92f 2781unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 2782{
1da177e4 2783 unsigned long flags;
41b86e9c 2784 struct rq *rq;
bb34d92f 2785 u64 ns = 0;
48f24c4d 2786
41b86e9c 2787 rq = task_rq_lock(p, &flags);
c5f8d995 2788 ns = do_task_delta_exec(p, rq);
0122ec5b 2789 task_rq_unlock(rq, p, &flags);
1508487e 2790
c5f8d995
HS
2791 return ns;
2792}
f06febc9 2793
c5f8d995
HS
2794/*
2795 * Return accounted runtime for the task.
2796 * In case the task is currently running, return the runtime plus current's
2797 * pending runtime that have not been accounted yet.
2798 */
2799unsigned long long task_sched_runtime(struct task_struct *p)
2800{
2801 unsigned long flags;
2802 struct rq *rq;
2803 u64 ns = 0;
2804
2805 rq = task_rq_lock(p, &flags);
2806 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 2807 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2808
2809 return ns;
2810}
48f24c4d 2811
54c707e9
GC
2812#ifdef CONFIG_CGROUP_CPUACCT
2813struct cgroup_subsys cpuacct_subsys;
2814struct cpuacct root_cpuacct;
2815#endif
2816
be726ffd
GC
2817static inline void task_group_account_field(struct task_struct *p, int index,
2818 u64 tmp)
54c707e9
GC
2819{
2820#ifdef CONFIG_CGROUP_CPUACCT
2821 struct kernel_cpustat *kcpustat;
2822 struct cpuacct *ca;
2823#endif
2824 /*
2825 * Since all updates are sure to touch the root cgroup, we
2826 * get ourselves ahead and touch it first. If the root cgroup
2827 * is the only cgroup, then nothing else should be necessary.
2828 *
2829 */
2830 __get_cpu_var(kernel_cpustat).cpustat[index] += tmp;
2831
2832#ifdef CONFIG_CGROUP_CPUACCT
2833 if (unlikely(!cpuacct_subsys.active))
2834 return;
2835
2836 rcu_read_lock();
2837 ca = task_ca(p);
2838 while (ca && (ca != &root_cpuacct)) {
2839 kcpustat = this_cpu_ptr(ca->cpustat);
2840 kcpustat->cpustat[index] += tmp;
2841 ca = parent_ca(ca);
2842 }
2843 rcu_read_unlock();
2844#endif
2845}
2846
2847
1da177e4
LT
2848/*
2849 * Account user cpu time to a process.
2850 * @p: the process that the cpu time gets accounted to
1da177e4 2851 * @cputime: the cpu time spent in user space since the last update
457533a7 2852 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 2853 */
457533a7
MS
2854void account_user_time(struct task_struct *p, cputime_t cputime,
2855 cputime_t cputime_scaled)
1da177e4 2856{
3292beb3 2857 int index;
1da177e4 2858
457533a7 2859 /* Add user time to process. */
64861634
MS
2860 p->utime += cputime;
2861 p->utimescaled += cputime_scaled;
f06febc9 2862 account_group_user_time(p, cputime);
1da177e4 2863
3292beb3 2864 index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
ef12fefa 2865
1da177e4 2866 /* Add user time to cpustat. */
612ef28a 2867 task_group_account_field(p, index, (__force u64) cputime);
ef12fefa 2868
49b5cf34
JL
2869 /* Account for user time used */
2870 acct_update_integrals(p);
1da177e4
LT
2871}
2872
94886b84
LV
2873/*
2874 * Account guest cpu time to a process.
2875 * @p: the process that the cpu time gets accounted to
2876 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 2877 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 2878 */
457533a7
MS
2879static void account_guest_time(struct task_struct *p, cputime_t cputime,
2880 cputime_t cputime_scaled)
94886b84 2881{
3292beb3 2882 u64 *cpustat = kcpustat_this_cpu->cpustat;
94886b84 2883
457533a7 2884 /* Add guest time to process. */
64861634
MS
2885 p->utime += cputime;
2886 p->utimescaled += cputime_scaled;
f06febc9 2887 account_group_user_time(p, cputime);
64861634 2888 p->gtime += cputime;
94886b84 2889
457533a7 2890 /* Add guest time to cpustat. */
ce0e7b28 2891 if (TASK_NICE(p) > 0) {
612ef28a
MS
2892 cpustat[CPUTIME_NICE] += (__force u64) cputime;
2893 cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
ce0e7b28 2894 } else {
612ef28a
MS
2895 cpustat[CPUTIME_USER] += (__force u64) cputime;
2896 cpustat[CPUTIME_GUEST] += (__force u64) cputime;
ce0e7b28 2897 }
94886b84
LV
2898}
2899
70a89a66
VP
2900/*
2901 * Account system cpu time to a process and desired cpustat field
2902 * @p: the process that the cpu time gets accounted to
2903 * @cputime: the cpu time spent in kernel space since the last update
2904 * @cputime_scaled: cputime scaled by cpu frequency
2905 * @target_cputime64: pointer to cpustat field that has to be updated
2906 */
2907static inline
2908void __account_system_time(struct task_struct *p, cputime_t cputime,
3292beb3 2909 cputime_t cputime_scaled, int index)
70a89a66 2910{
70a89a66 2911 /* Add system time to process. */
64861634
MS
2912 p->stime += cputime;
2913 p->stimescaled += cputime_scaled;
70a89a66
VP
2914 account_group_system_time(p, cputime);
2915
2916 /* Add system time to cpustat. */
612ef28a 2917 task_group_account_field(p, index, (__force u64) cputime);
70a89a66
VP
2918
2919 /* Account for system time used */
2920 acct_update_integrals(p);
2921}
2922
1da177e4
LT
2923/*
2924 * Account system cpu time to a process.
2925 * @p: the process that the cpu time gets accounted to
2926 * @hardirq_offset: the offset to subtract from hardirq_count()
2927 * @cputime: the cpu time spent in kernel space since the last update
457533a7 2928 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
2929 */
2930void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 2931 cputime_t cputime, cputime_t cputime_scaled)
1da177e4 2932{
3292beb3 2933 int index;
1da177e4 2934
983ed7a6 2935 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 2936 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
2937 return;
2938 }
94886b84 2939
1da177e4 2940 if (hardirq_count() - hardirq_offset)
3292beb3 2941 index = CPUTIME_IRQ;
75e1056f 2942 else if (in_serving_softirq())
3292beb3 2943 index = CPUTIME_SOFTIRQ;
1da177e4 2944 else
3292beb3 2945 index = CPUTIME_SYSTEM;
ef12fefa 2946
3292beb3 2947 __account_system_time(p, cputime, cputime_scaled, index);
1da177e4
LT
2948}
2949
c66f08be 2950/*
1da177e4 2951 * Account for involuntary wait time.
544b4a1f 2952 * @cputime: the cpu time spent in involuntary wait
c66f08be 2953 */
79741dd3 2954void account_steal_time(cputime_t cputime)
c66f08be 2955{
3292beb3 2956 u64 *cpustat = kcpustat_this_cpu->cpustat;
79741dd3 2957
612ef28a 2958 cpustat[CPUTIME_STEAL] += (__force u64) cputime;
c66f08be
MN
2959}
2960
1da177e4 2961/*
79741dd3
MS
2962 * Account for idle time.
2963 * @cputime: the cpu time spent in idle wait
1da177e4 2964 */
79741dd3 2965void account_idle_time(cputime_t cputime)
1da177e4 2966{
3292beb3 2967 u64 *cpustat = kcpustat_this_cpu->cpustat;
70b97a7f 2968 struct rq *rq = this_rq();
1da177e4 2969
79741dd3 2970 if (atomic_read(&rq->nr_iowait) > 0)
612ef28a 2971 cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
79741dd3 2972 else
612ef28a 2973 cpustat[CPUTIME_IDLE] += (__force u64) cputime;
1da177e4
LT
2974}
2975
e6e6685a
GC
2976static __always_inline bool steal_account_process_tick(void)
2977{
2978#ifdef CONFIG_PARAVIRT
c5905afb 2979 if (static_key_false(&paravirt_steal_enabled)) {
e6e6685a
GC
2980 u64 steal, st = 0;
2981
2982 steal = paravirt_steal_clock(smp_processor_id());
2983 steal -= this_rq()->prev_steal_time;
2984
2985 st = steal_ticks(steal);
2986 this_rq()->prev_steal_time += st * TICK_NSEC;
2987
2988 account_steal_time(st);
2989 return st;
2990 }
2991#endif
2992 return false;
2993}
2994
79741dd3
MS
2995#ifndef CONFIG_VIRT_CPU_ACCOUNTING
2996
abb74cef
VP
2997#ifdef CONFIG_IRQ_TIME_ACCOUNTING
2998/*
2999 * Account a tick to a process and cpustat
3000 * @p: the process that the cpu time gets accounted to
3001 * @user_tick: is the tick from userspace
3002 * @rq: the pointer to rq
3003 *
3004 * Tick demultiplexing follows the order
3005 * - pending hardirq update
3006 * - pending softirq update
3007 * - user_time
3008 * - idle_time
3009 * - system time
3010 * - check for guest_time
3011 * - else account as system_time
3012 *
3013 * Check for hardirq is done both for system and user time as there is
3014 * no timer going off while we are on hardirq and hence we may never get an
3015 * opportunity to update it solely in system time.
3016 * p->stime and friends are only updated on system time and not on irq
3017 * softirq as those do not count in task exec_runtime any more.
3018 */
3019static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3020 struct rq *rq)
3021{
3022 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3292beb3 3023 u64 *cpustat = kcpustat_this_cpu->cpustat;
abb74cef 3024
e6e6685a
GC
3025 if (steal_account_process_tick())
3026 return;
3027
abb74cef 3028 if (irqtime_account_hi_update()) {
612ef28a 3029 cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy;
abb74cef 3030 } else if (irqtime_account_si_update()) {
612ef28a 3031 cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy;
414bee9b
VP
3032 } else if (this_cpu_ksoftirqd() == p) {
3033 /*
3034 * ksoftirqd time do not get accounted in cpu_softirq_time.
3035 * So, we have to handle it separately here.
3036 * Also, p->stime needs to be updated for ksoftirqd.
3037 */
3038 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3292beb3 3039 CPUTIME_SOFTIRQ);
abb74cef
VP
3040 } else if (user_tick) {
3041 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3042 } else if (p == rq->idle) {
3043 account_idle_time(cputime_one_jiffy);
3044 } else if (p->flags & PF_VCPU) { /* System time or guest time */
3045 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
3046 } else {
3047 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3292beb3 3048 CPUTIME_SYSTEM);
abb74cef
VP
3049 }
3050}
3051
3052static void irqtime_account_idle_ticks(int ticks)
3053{
3054 int i;
3055 struct rq *rq = this_rq();
3056
3057 for (i = 0; i < ticks; i++)
3058 irqtime_account_process_tick(current, 0, rq);
3059}
544b4a1f 3060#else /* CONFIG_IRQ_TIME_ACCOUNTING */
abb74cef
VP
3061static void irqtime_account_idle_ticks(int ticks) {}
3062static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3063 struct rq *rq) {}
544b4a1f 3064#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
79741dd3
MS
3065
3066/*
3067 * Account a single tick of cpu time.
3068 * @p: the process that the cpu time gets accounted to
3069 * @user_tick: indicates if the tick is a user or a system tick
3070 */
3071void account_process_tick(struct task_struct *p, int user_tick)
3072{
a42548a1 3073 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
3074 struct rq *rq = this_rq();
3075
abb74cef
VP
3076 if (sched_clock_irqtime) {
3077 irqtime_account_process_tick(p, user_tick, rq);
3078 return;
3079 }
3080
e6e6685a
GC
3081 if (steal_account_process_tick())
3082 return;
3083
79741dd3 3084 if (user_tick)
a42548a1 3085 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 3086 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 3087 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
3088 one_jiffy_scaled);
3089 else
a42548a1 3090 account_idle_time(cputime_one_jiffy);
79741dd3
MS
3091}
3092
3093/*
3094 * Account multiple ticks of steal time.
3095 * @p: the process from which the cpu time has been stolen
3096 * @ticks: number of stolen ticks
3097 */
3098void account_steal_ticks(unsigned long ticks)
3099{
3100 account_steal_time(jiffies_to_cputime(ticks));
3101}
3102
3103/*
3104 * Account multiple ticks of idle time.
3105 * @ticks: number of stolen ticks
3106 */
3107void account_idle_ticks(unsigned long ticks)
3108{
abb74cef
VP
3109
3110 if (sched_clock_irqtime) {
3111 irqtime_account_idle_ticks(ticks);
3112 return;
3113 }
3114
79741dd3 3115 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
3116}
3117
79741dd3
MS
3118#endif
3119
49048622
BS
3120/*
3121 * Use precise platform statistics if available:
3122 */
3123#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 3124void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3125{
d99ca3b9
HS
3126 *ut = p->utime;
3127 *st = p->stime;
49048622
BS
3128}
3129
0cf55e1e 3130void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3131{
0cf55e1e
HS
3132 struct task_cputime cputime;
3133
3134 thread_group_cputime(p, &cputime);
3135
3136 *ut = cputime.utime;
3137 *st = cputime.stime;
49048622
BS
3138}
3139#else
761b1d26
HS
3140
3141#ifndef nsecs_to_cputime
b7b20df9 3142# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
3143#endif
3144
bea6832c
SG
3145static cputime_t scale_utime(cputime_t utime, cputime_t rtime, cputime_t total)
3146{
3147 u64 temp = (__force u64) rtime;
3148
3149 temp *= (__force u64) utime;
3150
3151 if (sizeof(cputime_t) == 4)
3152 temp = div_u64(temp, (__force u32) total);
3153 else
3154 temp = div64_u64(temp, (__force u64) total);
3155
3156 return (__force cputime_t) temp;
3157}
3158
d180c5bc 3159void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3160{
64861634 3161 cputime_t rtime, utime = p->utime, total = utime + p->stime;
49048622
BS
3162
3163 /*
3164 * Use CFS's precise accounting:
3165 */
d180c5bc 3166 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622 3167
bea6832c
SG
3168 if (total)
3169 utime = scale_utime(utime, rtime, total);
3170 else
d180c5bc 3171 utime = rtime;
49048622 3172
d180c5bc
HS
3173 /*
3174 * Compare with previous values, to keep monotonicity:
3175 */
761b1d26 3176 p->prev_utime = max(p->prev_utime, utime);
64861634 3177 p->prev_stime = max(p->prev_stime, rtime - p->prev_utime);
49048622 3178
d99ca3b9
HS
3179 *ut = p->prev_utime;
3180 *st = p->prev_stime;
49048622
BS
3181}
3182
0cf55e1e
HS
3183/*
3184 * Must be called with siglock held.
3185 */
3186void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3187{
0cf55e1e
HS
3188 struct signal_struct *sig = p->signal;
3189 struct task_cputime cputime;
3190 cputime_t rtime, utime, total;
49048622 3191
0cf55e1e 3192 thread_group_cputime(p, &cputime);
49048622 3193
64861634 3194 total = cputime.utime + cputime.stime;
0cf55e1e 3195 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 3196
bea6832c
SG
3197 if (total)
3198 utime = scale_utime(cputime.utime, rtime, total);
3199 else
0cf55e1e
HS
3200 utime = rtime;
3201
3202 sig->prev_utime = max(sig->prev_utime, utime);
64861634 3203 sig->prev_stime = max(sig->prev_stime, rtime - sig->prev_utime);
0cf55e1e
HS
3204
3205 *ut = sig->prev_utime;
3206 *st = sig->prev_stime;
49048622 3207}
49048622 3208#endif
49048622 3209
7835b98b
CL
3210/*
3211 * This function gets called by the timer code, with HZ frequency.
3212 * We call it with interrupts disabled.
7835b98b
CL
3213 */
3214void scheduler_tick(void)
3215{
7835b98b
CL
3216 int cpu = smp_processor_id();
3217 struct rq *rq = cpu_rq(cpu);
dd41f596 3218 struct task_struct *curr = rq->curr;
3e51f33f
PZ
3219
3220 sched_clock_tick();
dd41f596 3221
05fa785c 3222 raw_spin_lock(&rq->lock);
3e51f33f 3223 update_rq_clock(rq);
fdf3e95d 3224 update_cpu_load_active(rq);
fa85ae24 3225 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 3226 raw_spin_unlock(&rq->lock);
7835b98b 3227
e9d2b064 3228 perf_event_task_tick();
e220d2dc 3229
e418e1c2 3230#ifdef CONFIG_SMP
6eb57e0d 3231 rq->idle_balance = idle_cpu(cpu);
dd41f596 3232 trigger_load_balance(rq, cpu);
e418e1c2 3233#endif
1da177e4
LT
3234}
3235
132380a0 3236notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
3237{
3238 if (in_lock_functions(addr)) {
3239 addr = CALLER_ADDR2;
3240 if (in_lock_functions(addr))
3241 addr = CALLER_ADDR3;
3242 }
3243 return addr;
3244}
1da177e4 3245
7e49fcce
SR
3246#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3247 defined(CONFIG_PREEMPT_TRACER))
3248
43627582 3249void __kprobes add_preempt_count(int val)
1da177e4 3250{
6cd8a4bb 3251#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3252 /*
3253 * Underflow?
3254 */
9a11b49a
IM
3255 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3256 return;
6cd8a4bb 3257#endif
1da177e4 3258 preempt_count() += val;
6cd8a4bb 3259#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3260 /*
3261 * Spinlock count overflowing soon?
3262 */
33859f7f
MOS
3263 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3264 PREEMPT_MASK - 10);
6cd8a4bb
SR
3265#endif
3266 if (preempt_count() == val)
3267 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3268}
3269EXPORT_SYMBOL(add_preempt_count);
3270
43627582 3271void __kprobes sub_preempt_count(int val)
1da177e4 3272{
6cd8a4bb 3273#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3274 /*
3275 * Underflow?
3276 */
01e3eb82 3277 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3278 return;
1da177e4
LT
3279 /*
3280 * Is the spinlock portion underflowing?
3281 */
9a11b49a
IM
3282 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3283 !(preempt_count() & PREEMPT_MASK)))
3284 return;
6cd8a4bb 3285#endif
9a11b49a 3286
6cd8a4bb
SR
3287 if (preempt_count() == val)
3288 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3289 preempt_count() -= val;
3290}
3291EXPORT_SYMBOL(sub_preempt_count);
3292
3293#endif
3294
3295/*
dd41f596 3296 * Print scheduling while atomic bug:
1da177e4 3297 */
dd41f596 3298static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3299{
664dfa65
DJ
3300 if (oops_in_progress)
3301 return;
3302
3df0fc5b
PZ
3303 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3304 prev->comm, prev->pid, preempt_count());
838225b4 3305
dd41f596 3306 debug_show_held_locks(prev);
e21f5b15 3307 print_modules();
dd41f596
IM
3308 if (irqs_disabled())
3309 print_irqtrace_events(prev);
6135fc1e 3310 dump_stack();
1c2927f1 3311 add_taint(TAINT_WARN);
dd41f596 3312}
1da177e4 3313
dd41f596
IM
3314/*
3315 * Various schedule()-time debugging checks and statistics:
3316 */
3317static inline void schedule_debug(struct task_struct *prev)
3318{
1da177e4 3319 /*
41a2d6cf 3320 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
3321 * schedule() atomically, we ignore that path for now.
3322 * Otherwise, whine if we are scheduling when we should not be.
3323 */
3f33a7ce 3324 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596 3325 __schedule_bug(prev);
b3fbab05 3326 rcu_sleep_check();
dd41f596 3327
1da177e4
LT
3328 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3329
2d72376b 3330 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
3331}
3332
6cecd084 3333static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 3334{
61eadef6 3335 if (prev->on_rq || rq->skip_clock_update < 0)
a64692a3 3336 update_rq_clock(rq);
6cecd084 3337 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
3338}
3339
dd41f596
IM
3340/*
3341 * Pick up the highest-prio task:
3342 */
3343static inline struct task_struct *
b67802ea 3344pick_next_task(struct rq *rq)
dd41f596 3345{
5522d5d5 3346 const struct sched_class *class;
dd41f596 3347 struct task_struct *p;
1da177e4
LT
3348
3349 /*
dd41f596
IM
3350 * Optimization: we know that if all tasks are in
3351 * the fair class we can call that function directly:
1da177e4 3352 */
953bfcd1 3353 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
fb8d4724 3354 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3355 if (likely(p))
3356 return p;
1da177e4
LT
3357 }
3358
34f971f6 3359 for_each_class(class) {
fb8d4724 3360 p = class->pick_next_task(rq);
dd41f596
IM
3361 if (p)
3362 return p;
dd41f596 3363 }
34f971f6
PZ
3364
3365 BUG(); /* the idle class will always have a runnable task */
dd41f596 3366}
1da177e4 3367
dd41f596 3368/*
c259e01a 3369 * __schedule() is the main scheduler function.
dd41f596 3370 */
c259e01a 3371static void __sched __schedule(void)
dd41f596
IM
3372{
3373 struct task_struct *prev, *next;
67ca7bde 3374 unsigned long *switch_count;
dd41f596 3375 struct rq *rq;
31656519 3376 int cpu;
dd41f596 3377
ff743345
PZ
3378need_resched:
3379 preempt_disable();
dd41f596
IM
3380 cpu = smp_processor_id();
3381 rq = cpu_rq(cpu);
25502a6c 3382 rcu_note_context_switch(cpu);
dd41f596 3383 prev = rq->curr;
dd41f596 3384
dd41f596 3385 schedule_debug(prev);
1da177e4 3386
31656519 3387 if (sched_feat(HRTICK))
f333fdc9 3388 hrtick_clear(rq);
8f4d37ec 3389
05fa785c 3390 raw_spin_lock_irq(&rq->lock);
1da177e4 3391
246d86b5 3392 switch_count = &prev->nivcsw;
1da177e4 3393 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 3394 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 3395 prev->state = TASK_RUNNING;
21aa9af0 3396 } else {
2acca55e
PZ
3397 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3398 prev->on_rq = 0;
3399
21aa9af0 3400 /*
2acca55e
PZ
3401 * If a worker went to sleep, notify and ask workqueue
3402 * whether it wants to wake up a task to maintain
3403 * concurrency.
21aa9af0
TH
3404 */
3405 if (prev->flags & PF_WQ_WORKER) {
3406 struct task_struct *to_wakeup;
3407
3408 to_wakeup = wq_worker_sleeping(prev, cpu);
3409 if (to_wakeup)
3410 try_to_wake_up_local(to_wakeup);
3411 }
21aa9af0 3412 }
dd41f596 3413 switch_count = &prev->nvcsw;
1da177e4
LT
3414 }
3415
3f029d3c 3416 pre_schedule(rq, prev);
f65eda4f 3417
dd41f596 3418 if (unlikely(!rq->nr_running))
1da177e4 3419 idle_balance(cpu, rq);
1da177e4 3420
df1c99d4 3421 put_prev_task(rq, prev);
b67802ea 3422 next = pick_next_task(rq);
f26f9aff
MG
3423 clear_tsk_need_resched(prev);
3424 rq->skip_clock_update = 0;
1da177e4 3425
1da177e4 3426 if (likely(prev != next)) {
1da177e4
LT
3427 rq->nr_switches++;
3428 rq->curr = next;
3429 ++*switch_count;
3430
dd41f596 3431 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 3432 /*
246d86b5
ON
3433 * The context switch have flipped the stack from under us
3434 * and restored the local variables which were saved when
3435 * this task called schedule() in the past. prev == current
3436 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
3437 */
3438 cpu = smp_processor_id();
3439 rq = cpu_rq(cpu);
1da177e4 3440 } else
05fa785c 3441 raw_spin_unlock_irq(&rq->lock);
1da177e4 3442
3f029d3c 3443 post_schedule(rq);
1da177e4 3444
ba74c144 3445 sched_preempt_enable_no_resched();
ff743345 3446 if (need_resched())
1da177e4
LT
3447 goto need_resched;
3448}
c259e01a 3449
9c40cef2
TG
3450static inline void sched_submit_work(struct task_struct *tsk)
3451{
3c7d5184 3452 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
3453 return;
3454 /*
3455 * If we are going to sleep and we have plugged IO queued,
3456 * make sure to submit it to avoid deadlocks.
3457 */
3458 if (blk_needs_flush_plug(tsk))
3459 blk_schedule_flush_plug(tsk);
3460}
3461
6ebbe7a0 3462asmlinkage void __sched schedule(void)
c259e01a 3463{
9c40cef2
TG
3464 struct task_struct *tsk = current;
3465
3466 sched_submit_work(tsk);
c259e01a
TG
3467 __schedule();
3468}
1da177e4
LT
3469EXPORT_SYMBOL(schedule);
3470
c5491ea7
TG
3471/**
3472 * schedule_preempt_disabled - called with preemption disabled
3473 *
3474 * Returns with preemption disabled. Note: preempt_count must be 1
3475 */
3476void __sched schedule_preempt_disabled(void)
3477{
ba74c144 3478 sched_preempt_enable_no_resched();
c5491ea7
TG
3479 schedule();
3480 preempt_disable();
3481}
3482
c08f7829 3483#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d 3484
c6eb3dda
PZ
3485static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
3486{
c6eb3dda 3487 if (lock->owner != owner)
307bf980 3488 return false;
0d66bf6d
PZ
3489
3490 /*
c6eb3dda
PZ
3491 * Ensure we emit the owner->on_cpu, dereference _after_ checking
3492 * lock->owner still matches owner, if that fails, owner might
3493 * point to free()d memory, if it still matches, the rcu_read_lock()
3494 * ensures the memory stays valid.
0d66bf6d 3495 */
c6eb3dda 3496 barrier();
0d66bf6d 3497
307bf980 3498 return owner->on_cpu;
c6eb3dda 3499}
0d66bf6d 3500
c6eb3dda
PZ
3501/*
3502 * Look out! "owner" is an entirely speculative pointer
3503 * access and not reliable.
3504 */
3505int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
3506{
3507 if (!sched_feat(OWNER_SPIN))
3508 return 0;
0d66bf6d 3509
307bf980 3510 rcu_read_lock();
c6eb3dda
PZ
3511 while (owner_running(lock, owner)) {
3512 if (need_resched())
307bf980 3513 break;
0d66bf6d 3514
335d7afb 3515 arch_mutex_cpu_relax();
0d66bf6d 3516 }
307bf980 3517 rcu_read_unlock();
4b402210 3518
c6eb3dda 3519 /*
307bf980
TG
3520 * We break out the loop above on need_resched() and when the
3521 * owner changed, which is a sign for heavy contention. Return
3522 * success only when lock->owner is NULL.
c6eb3dda 3523 */
307bf980 3524 return lock->owner == NULL;
0d66bf6d
PZ
3525}
3526#endif
3527
1da177e4
LT
3528#ifdef CONFIG_PREEMPT
3529/*
2ed6e34f 3530 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3531 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3532 * occur there and call schedule directly.
3533 */
d1f74e20 3534asmlinkage void __sched notrace preempt_schedule(void)
1da177e4
LT
3535{
3536 struct thread_info *ti = current_thread_info();
6478d880 3537
1da177e4
LT
3538 /*
3539 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3540 * we do not want to preempt the current task. Just return..
1da177e4 3541 */
beed33a8 3542 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3543 return;
3544
3a5c359a 3545 do {
d1f74e20 3546 add_preempt_count_notrace(PREEMPT_ACTIVE);
c259e01a 3547 __schedule();
d1f74e20 3548 sub_preempt_count_notrace(PREEMPT_ACTIVE);
1da177e4 3549
3a5c359a
AK
3550 /*
3551 * Check again in case we missed a preemption opportunity
3552 * between schedule and now.
3553 */
3554 barrier();
5ed0cec0 3555 } while (need_resched());
1da177e4 3556}
1da177e4
LT
3557EXPORT_SYMBOL(preempt_schedule);
3558
3559/*
2ed6e34f 3560 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3561 * off of irq context.
3562 * Note, that this is called and return with irqs disabled. This will
3563 * protect us against recursive calling from irq.
3564 */
3565asmlinkage void __sched preempt_schedule_irq(void)
3566{
3567 struct thread_info *ti = current_thread_info();
6478d880 3568
2ed6e34f 3569 /* Catch callers which need to be fixed */
1da177e4
LT
3570 BUG_ON(ti->preempt_count || !irqs_disabled());
3571
3a5c359a
AK
3572 do {
3573 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 3574 local_irq_enable();
c259e01a 3575 __schedule();
3a5c359a 3576 local_irq_disable();
3a5c359a 3577 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3578
3a5c359a
AK
3579 /*
3580 * Check again in case we missed a preemption opportunity
3581 * between schedule and now.
3582 */
3583 barrier();
5ed0cec0 3584 } while (need_resched());
1da177e4
LT
3585}
3586
3587#endif /* CONFIG_PREEMPT */
3588
63859d4f 3589int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3590 void *key)
1da177e4 3591{
63859d4f 3592 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3593}
1da177e4
LT
3594EXPORT_SYMBOL(default_wake_function);
3595
3596/*
41a2d6cf
IM
3597 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3598 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
3599 * number) then we wake all the non-exclusive tasks and one exclusive task.
3600 *
3601 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 3602 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
3603 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3604 */
78ddb08f 3605static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 3606 int nr_exclusive, int wake_flags, void *key)
1da177e4 3607{
2e45874c 3608 wait_queue_t *curr, *next;
1da177e4 3609
2e45874c 3610 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
3611 unsigned flags = curr->flags;
3612
63859d4f 3613 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 3614 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3615 break;
3616 }
3617}
3618
3619/**
3620 * __wake_up - wake up threads blocked on a waitqueue.
3621 * @q: the waitqueue
3622 * @mode: which threads
3623 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3624 * @key: is directly passed to the wakeup function
50fa610a
DH
3625 *
3626 * It may be assumed that this function implies a write memory barrier before
3627 * changing the task state if and only if any tasks are woken up.
1da177e4 3628 */
7ad5b3a5 3629void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3630 int nr_exclusive, void *key)
1da177e4
LT
3631{
3632 unsigned long flags;
3633
3634 spin_lock_irqsave(&q->lock, flags);
3635 __wake_up_common(q, mode, nr_exclusive, 0, key);
3636 spin_unlock_irqrestore(&q->lock, flags);
3637}
1da177e4
LT
3638EXPORT_SYMBOL(__wake_up);
3639
3640/*
3641 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3642 */
63b20011 3643void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
1da177e4 3644{
63b20011 3645 __wake_up_common(q, mode, nr, 0, NULL);
1da177e4 3646}
22c43c81 3647EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 3648
4ede816a
DL
3649void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3650{
3651 __wake_up_common(q, mode, 1, 0, key);
3652}
bf294b41 3653EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4ede816a 3654
1da177e4 3655/**
4ede816a 3656 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
3657 * @q: the waitqueue
3658 * @mode: which threads
3659 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 3660 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
3661 *
3662 * The sync wakeup differs that the waker knows that it will schedule
3663 * away soon, so while the target thread will be woken up, it will not
3664 * be migrated to another CPU - ie. the two threads are 'synchronized'
3665 * with each other. This can prevent needless bouncing between CPUs.
3666 *
3667 * On UP it can prevent extra preemption.
50fa610a
DH
3668 *
3669 * It may be assumed that this function implies a write memory barrier before
3670 * changing the task state if and only if any tasks are woken up.
1da177e4 3671 */
4ede816a
DL
3672void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3673 int nr_exclusive, void *key)
1da177e4
LT
3674{
3675 unsigned long flags;
7d478721 3676 int wake_flags = WF_SYNC;
1da177e4
LT
3677
3678 if (unlikely(!q))
3679 return;
3680
3681 if (unlikely(!nr_exclusive))
7d478721 3682 wake_flags = 0;
1da177e4
LT
3683
3684 spin_lock_irqsave(&q->lock, flags);
7d478721 3685 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
3686 spin_unlock_irqrestore(&q->lock, flags);
3687}
4ede816a
DL
3688EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3689
3690/*
3691 * __wake_up_sync - see __wake_up_sync_key()
3692 */
3693void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3694{
3695 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3696}
1da177e4
LT
3697EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3698
65eb3dc6
KD
3699/**
3700 * complete: - signals a single thread waiting on this completion
3701 * @x: holds the state of this particular completion
3702 *
3703 * This will wake up a single thread waiting on this completion. Threads will be
3704 * awakened in the same order in which they were queued.
3705 *
3706 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
3707 *
3708 * It may be assumed that this function implies a write memory barrier before
3709 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3710 */
b15136e9 3711void complete(struct completion *x)
1da177e4
LT
3712{
3713 unsigned long flags;
3714
3715 spin_lock_irqsave(&x->wait.lock, flags);
3716 x->done++;
d9514f6c 3717 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
3718 spin_unlock_irqrestore(&x->wait.lock, flags);
3719}
3720EXPORT_SYMBOL(complete);
3721
65eb3dc6
KD
3722/**
3723 * complete_all: - signals all threads waiting on this completion
3724 * @x: holds the state of this particular completion
3725 *
3726 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
3727 *
3728 * It may be assumed that this function implies a write memory barrier before
3729 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3730 */
b15136e9 3731void complete_all(struct completion *x)
1da177e4
LT
3732{
3733 unsigned long flags;
3734
3735 spin_lock_irqsave(&x->wait.lock, flags);
3736 x->done += UINT_MAX/2;
d9514f6c 3737 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
3738 spin_unlock_irqrestore(&x->wait.lock, flags);
3739}
3740EXPORT_SYMBOL(complete_all);
3741
8cbbe86d
AK
3742static inline long __sched
3743do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3744{
1da177e4
LT
3745 if (!x->done) {
3746 DECLARE_WAITQUEUE(wait, current);
3747
a93d2f17 3748 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 3749 do {
94d3d824 3750 if (signal_pending_state(state, current)) {
ea71a546
ON
3751 timeout = -ERESTARTSYS;
3752 break;
8cbbe86d
AK
3753 }
3754 __set_current_state(state);
1da177e4
LT
3755 spin_unlock_irq(&x->wait.lock);
3756 timeout = schedule_timeout(timeout);
3757 spin_lock_irq(&x->wait.lock);
ea71a546 3758 } while (!x->done && timeout);
1da177e4 3759 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
3760 if (!x->done)
3761 return timeout;
1da177e4
LT
3762 }
3763 x->done--;
ea71a546 3764 return timeout ?: 1;
1da177e4 3765}
1da177e4 3766
8cbbe86d
AK
3767static long __sched
3768wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3769{
1da177e4
LT
3770 might_sleep();
3771
3772 spin_lock_irq(&x->wait.lock);
8cbbe86d 3773 timeout = do_wait_for_common(x, timeout, state);
1da177e4 3774 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
3775 return timeout;
3776}
1da177e4 3777
65eb3dc6
KD
3778/**
3779 * wait_for_completion: - waits for completion of a task
3780 * @x: holds the state of this particular completion
3781 *
3782 * This waits to be signaled for completion of a specific task. It is NOT
3783 * interruptible and there is no timeout.
3784 *
3785 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3786 * and interrupt capability. Also see complete().
3787 */
b15136e9 3788void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
3789{
3790 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 3791}
8cbbe86d 3792EXPORT_SYMBOL(wait_for_completion);
1da177e4 3793
65eb3dc6
KD
3794/**
3795 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3796 * @x: holds the state of this particular completion
3797 * @timeout: timeout value in jiffies
3798 *
3799 * This waits for either a completion of a specific task to be signaled or for a
3800 * specified timeout to expire. The timeout is in jiffies. It is not
3801 * interruptible.
c6dc7f05
BF
3802 *
3803 * The return value is 0 if timed out, and positive (at least 1, or number of
3804 * jiffies left till timeout) if completed.
65eb3dc6 3805 */
b15136e9 3806unsigned long __sched
8cbbe86d 3807wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 3808{
8cbbe86d 3809 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 3810}
8cbbe86d 3811EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 3812
65eb3dc6
KD
3813/**
3814 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3815 * @x: holds the state of this particular completion
3816 *
3817 * This waits for completion of a specific task to be signaled. It is
3818 * interruptible.
c6dc7f05
BF
3819 *
3820 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
65eb3dc6 3821 */
8cbbe86d 3822int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 3823{
51e97990
AK
3824 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3825 if (t == -ERESTARTSYS)
3826 return t;
3827 return 0;
0fec171c 3828}
8cbbe86d 3829EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 3830
65eb3dc6
KD
3831/**
3832 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3833 * @x: holds the state of this particular completion
3834 * @timeout: timeout value in jiffies
3835 *
3836 * This waits for either a completion of a specific task to be signaled or for a
3837 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
c6dc7f05
BF
3838 *
3839 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3840 * positive (at least 1, or number of jiffies left till timeout) if completed.
65eb3dc6 3841 */
6bf41237 3842long __sched
8cbbe86d
AK
3843wait_for_completion_interruptible_timeout(struct completion *x,
3844 unsigned long timeout)
0fec171c 3845{
8cbbe86d 3846 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 3847}
8cbbe86d 3848EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 3849
65eb3dc6
KD
3850/**
3851 * wait_for_completion_killable: - waits for completion of a task (killable)
3852 * @x: holds the state of this particular completion
3853 *
3854 * This waits to be signaled for completion of a specific task. It can be
3855 * interrupted by a kill signal.
c6dc7f05
BF
3856 *
3857 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
65eb3dc6 3858 */
009e577e
MW
3859int __sched wait_for_completion_killable(struct completion *x)
3860{
3861 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3862 if (t == -ERESTARTSYS)
3863 return t;
3864 return 0;
3865}
3866EXPORT_SYMBOL(wait_for_completion_killable);
3867
0aa12fb4
SW
3868/**
3869 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3870 * @x: holds the state of this particular completion
3871 * @timeout: timeout value in jiffies
3872 *
3873 * This waits for either a completion of a specific task to be
3874 * signaled or for a specified timeout to expire. It can be
3875 * interrupted by a kill signal. The timeout is in jiffies.
c6dc7f05
BF
3876 *
3877 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3878 * positive (at least 1, or number of jiffies left till timeout) if completed.
0aa12fb4 3879 */
6bf41237 3880long __sched
0aa12fb4
SW
3881wait_for_completion_killable_timeout(struct completion *x,
3882 unsigned long timeout)
3883{
3884 return wait_for_common(x, timeout, TASK_KILLABLE);
3885}
3886EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3887
be4de352
DC
3888/**
3889 * try_wait_for_completion - try to decrement a completion without blocking
3890 * @x: completion structure
3891 *
3892 * Returns: 0 if a decrement cannot be done without blocking
3893 * 1 if a decrement succeeded.
3894 *
3895 * If a completion is being used as a counting completion,
3896 * attempt to decrement the counter without blocking. This
3897 * enables us to avoid waiting if the resource the completion
3898 * is protecting is not available.
3899 */
3900bool try_wait_for_completion(struct completion *x)
3901{
7539a3b3 3902 unsigned long flags;
be4de352
DC
3903 int ret = 1;
3904
7539a3b3 3905 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
3906 if (!x->done)
3907 ret = 0;
3908 else
3909 x->done--;
7539a3b3 3910 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
3911 return ret;
3912}
3913EXPORT_SYMBOL(try_wait_for_completion);
3914
3915/**
3916 * completion_done - Test to see if a completion has any waiters
3917 * @x: completion structure
3918 *
3919 * Returns: 0 if there are waiters (wait_for_completion() in progress)
3920 * 1 if there are no waiters.
3921 *
3922 */
3923bool completion_done(struct completion *x)
3924{
7539a3b3 3925 unsigned long flags;
be4de352
DC
3926 int ret = 1;
3927
7539a3b3 3928 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
3929 if (!x->done)
3930 ret = 0;
7539a3b3 3931 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
3932 return ret;
3933}
3934EXPORT_SYMBOL(completion_done);
3935
8cbbe86d
AK
3936static long __sched
3937sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 3938{
0fec171c
IM
3939 unsigned long flags;
3940 wait_queue_t wait;
3941
3942 init_waitqueue_entry(&wait, current);
1da177e4 3943
8cbbe86d 3944 __set_current_state(state);
1da177e4 3945
8cbbe86d
AK
3946 spin_lock_irqsave(&q->lock, flags);
3947 __add_wait_queue(q, &wait);
3948 spin_unlock(&q->lock);
3949 timeout = schedule_timeout(timeout);
3950 spin_lock_irq(&q->lock);
3951 __remove_wait_queue(q, &wait);
3952 spin_unlock_irqrestore(&q->lock, flags);
3953
3954 return timeout;
3955}
3956
3957void __sched interruptible_sleep_on(wait_queue_head_t *q)
3958{
3959 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3960}
1da177e4
LT
3961EXPORT_SYMBOL(interruptible_sleep_on);
3962
0fec171c 3963long __sched
95cdf3b7 3964interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3965{
8cbbe86d 3966 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 3967}
1da177e4
LT
3968EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3969
0fec171c 3970void __sched sleep_on(wait_queue_head_t *q)
1da177e4 3971{
8cbbe86d 3972 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3973}
1da177e4
LT
3974EXPORT_SYMBOL(sleep_on);
3975
0fec171c 3976long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3977{
8cbbe86d 3978 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 3979}
1da177e4
LT
3980EXPORT_SYMBOL(sleep_on_timeout);
3981
b29739f9
IM
3982#ifdef CONFIG_RT_MUTEXES
3983
3984/*
3985 * rt_mutex_setprio - set the current priority of a task
3986 * @p: task
3987 * @prio: prio value (kernel-internal form)
3988 *
3989 * This function changes the 'effective' priority of a task. It does
3990 * not touch ->normal_prio like __setscheduler().
3991 *
3992 * Used by the rt_mutex code to implement priority inheritance logic.
3993 */
36c8b586 3994void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3995{
83b699ed 3996 int oldprio, on_rq, running;
70b97a7f 3997 struct rq *rq;
83ab0aa0 3998 const struct sched_class *prev_class;
b29739f9
IM
3999
4000 BUG_ON(prio < 0 || prio > MAX_PRIO);
4001
0122ec5b 4002 rq = __task_rq_lock(p);
b29739f9 4003
1c4dd99b
TG
4004 /*
4005 * Idle task boosting is a nono in general. There is one
4006 * exception, when PREEMPT_RT and NOHZ is active:
4007 *
4008 * The idle task calls get_next_timer_interrupt() and holds
4009 * the timer wheel base->lock on the CPU and another CPU wants
4010 * to access the timer (probably to cancel it). We can safely
4011 * ignore the boosting request, as the idle CPU runs this code
4012 * with interrupts disabled and will complete the lock
4013 * protected section without being interrupted. So there is no
4014 * real need to boost.
4015 */
4016 if (unlikely(p == rq->idle)) {
4017 WARN_ON(p != rq->curr);
4018 WARN_ON(p->pi_blocked_on);
4019 goto out_unlock;
4020 }
4021
a8027073 4022 trace_sched_pi_setprio(p, prio);
d5f9f942 4023 oldprio = p->prio;
83ab0aa0 4024 prev_class = p->sched_class;
fd2f4419 4025 on_rq = p->on_rq;
051a1d1a 4026 running = task_current(rq, p);
0e1f3483 4027 if (on_rq)
69be72c1 4028 dequeue_task(rq, p, 0);
0e1f3483
HS
4029 if (running)
4030 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4031
4032 if (rt_prio(prio))
4033 p->sched_class = &rt_sched_class;
4034 else
4035 p->sched_class = &fair_sched_class;
4036
b29739f9
IM
4037 p->prio = prio;
4038
0e1f3483
HS
4039 if (running)
4040 p->sched_class->set_curr_task(rq);
da7a735e 4041 if (on_rq)
371fd7e7 4042 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845 4043
da7a735e 4044 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 4045out_unlock:
0122ec5b 4046 __task_rq_unlock(rq);
b29739f9 4047}
b29739f9 4048#endif
36c8b586 4049void set_user_nice(struct task_struct *p, long nice)
1da177e4 4050{
dd41f596 4051 int old_prio, delta, on_rq;
1da177e4 4052 unsigned long flags;
70b97a7f 4053 struct rq *rq;
1da177e4
LT
4054
4055 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4056 return;
4057 /*
4058 * We have to be careful, if called from sys_setpriority(),
4059 * the task might be in the middle of scheduling on another CPU.
4060 */
4061 rq = task_rq_lock(p, &flags);
4062 /*
4063 * The RT priorities are set via sched_setscheduler(), but we still
4064 * allow the 'normal' nice value to be set - but as expected
4065 * it wont have any effect on scheduling until the task is
dd41f596 4066 * SCHED_FIFO/SCHED_RR:
1da177e4 4067 */
e05606d3 4068 if (task_has_rt_policy(p)) {
1da177e4
LT
4069 p->static_prio = NICE_TO_PRIO(nice);
4070 goto out_unlock;
4071 }
fd2f4419 4072 on_rq = p->on_rq;
c09595f6 4073 if (on_rq)
69be72c1 4074 dequeue_task(rq, p, 0);
1da177e4 4075
1da177e4 4076 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4077 set_load_weight(p);
b29739f9
IM
4078 old_prio = p->prio;
4079 p->prio = effective_prio(p);
4080 delta = p->prio - old_prio;
1da177e4 4081
dd41f596 4082 if (on_rq) {
371fd7e7 4083 enqueue_task(rq, p, 0);
1da177e4 4084 /*
d5f9f942
AM
4085 * If the task increased its priority or is running and
4086 * lowered its priority, then reschedule its CPU:
1da177e4 4087 */
d5f9f942 4088 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4089 resched_task(rq->curr);
4090 }
4091out_unlock:
0122ec5b 4092 task_rq_unlock(rq, p, &flags);
1da177e4 4093}
1da177e4
LT
4094EXPORT_SYMBOL(set_user_nice);
4095
e43379f1
MM
4096/*
4097 * can_nice - check if a task can reduce its nice value
4098 * @p: task
4099 * @nice: nice value
4100 */
36c8b586 4101int can_nice(const struct task_struct *p, const int nice)
e43379f1 4102{
024f4747
MM
4103 /* convert nice value [19,-20] to rlimit style value [1,40] */
4104 int nice_rlim = 20 - nice;
48f24c4d 4105
78d7d407 4106 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
4107 capable(CAP_SYS_NICE));
4108}
4109
1da177e4
LT
4110#ifdef __ARCH_WANT_SYS_NICE
4111
4112/*
4113 * sys_nice - change the priority of the current process.
4114 * @increment: priority increment
4115 *
4116 * sys_setpriority is a more generic, but much slower function that
4117 * does similar things.
4118 */
5add95d4 4119SYSCALL_DEFINE1(nice, int, increment)
1da177e4 4120{
48f24c4d 4121 long nice, retval;
1da177e4
LT
4122
4123 /*
4124 * Setpriority might change our priority at the same moment.
4125 * We don't have to worry. Conceptually one call occurs first
4126 * and we have a single winner.
4127 */
e43379f1
MM
4128 if (increment < -40)
4129 increment = -40;
1da177e4
LT
4130 if (increment > 40)
4131 increment = 40;
4132
2b8f836f 4133 nice = TASK_NICE(current) + increment;
1da177e4
LT
4134 if (nice < -20)
4135 nice = -20;
4136 if (nice > 19)
4137 nice = 19;
4138
e43379f1
MM
4139 if (increment < 0 && !can_nice(current, nice))
4140 return -EPERM;
4141
1da177e4
LT
4142 retval = security_task_setnice(current, nice);
4143 if (retval)
4144 return retval;
4145
4146 set_user_nice(current, nice);
4147 return 0;
4148}
4149
4150#endif
4151
4152/**
4153 * task_prio - return the priority value of a given task.
4154 * @p: the task in question.
4155 *
4156 * This is the priority value as seen by users in /proc.
4157 * RT tasks are offset by -200. Normal tasks are centered
4158 * around 0, value goes from -16 to +15.
4159 */
36c8b586 4160int task_prio(const struct task_struct *p)
1da177e4
LT
4161{
4162 return p->prio - MAX_RT_PRIO;
4163}
4164
4165/**
4166 * task_nice - return the nice value of a given task.
4167 * @p: the task in question.
4168 */
36c8b586 4169int task_nice(const struct task_struct *p)
1da177e4
LT
4170{
4171 return TASK_NICE(p);
4172}
150d8bed 4173EXPORT_SYMBOL(task_nice);
1da177e4
LT
4174
4175/**
4176 * idle_cpu - is a given cpu idle currently?
4177 * @cpu: the processor in question.
4178 */
4179int idle_cpu(int cpu)
4180{
908a3283
TG
4181 struct rq *rq = cpu_rq(cpu);
4182
4183 if (rq->curr != rq->idle)
4184 return 0;
4185
4186 if (rq->nr_running)
4187 return 0;
4188
4189#ifdef CONFIG_SMP
4190 if (!llist_empty(&rq->wake_list))
4191 return 0;
4192#endif
4193
4194 return 1;
1da177e4
LT
4195}
4196
1da177e4
LT
4197/**
4198 * idle_task - return the idle task for a given cpu.
4199 * @cpu: the processor in question.
4200 */
36c8b586 4201struct task_struct *idle_task(int cpu)
1da177e4
LT
4202{
4203 return cpu_rq(cpu)->idle;
4204}
4205
4206/**
4207 * find_process_by_pid - find a process with a matching PID value.
4208 * @pid: the pid in question.
4209 */
a9957449 4210static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4211{
228ebcbe 4212 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4213}
4214
4215/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4216static void
4217__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4218{
1da177e4
LT
4219 p->policy = policy;
4220 p->rt_priority = prio;
b29739f9
IM
4221 p->normal_prio = normal_prio(p);
4222 /* we are holding p->pi_lock already */
4223 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
4224 if (rt_prio(p->prio))
4225 p->sched_class = &rt_sched_class;
4226 else
4227 p->sched_class = &fair_sched_class;
2dd73a4f 4228 set_load_weight(p);
1da177e4
LT
4229}
4230
c69e8d9c
DH
4231/*
4232 * check the target process has a UID that matches the current process's
4233 */
4234static bool check_same_owner(struct task_struct *p)
4235{
4236 const struct cred *cred = current_cred(), *pcred;
4237 bool match;
4238
4239 rcu_read_lock();
4240 pcred = __task_cred(p);
9c806aa0
EB
4241 match = (uid_eq(cred->euid, pcred->euid) ||
4242 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
4243 rcu_read_unlock();
4244 return match;
4245}
4246
961ccddd 4247static int __sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4248 const struct sched_param *param, bool user)
1da177e4 4249{
83b699ed 4250 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4251 unsigned long flags;
83ab0aa0 4252 const struct sched_class *prev_class;
70b97a7f 4253 struct rq *rq;
ca94c442 4254 int reset_on_fork;
1da177e4 4255
66e5393a
SR
4256 /* may grab non-irq protected spin_locks */
4257 BUG_ON(in_interrupt());
1da177e4
LT
4258recheck:
4259 /* double check policy once rq lock held */
ca94c442
LP
4260 if (policy < 0) {
4261 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4262 policy = oldpolicy = p->policy;
ca94c442
LP
4263 } else {
4264 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4265 policy &= ~SCHED_RESET_ON_FORK;
4266
4267 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4268 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4269 policy != SCHED_IDLE)
4270 return -EINVAL;
4271 }
4272
1da177e4
LT
4273 /*
4274 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4275 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4276 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4277 */
4278 if (param->sched_priority < 0 ||
95cdf3b7 4279 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4280 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4281 return -EINVAL;
e05606d3 4282 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4283 return -EINVAL;
4284
37e4ab3f
OC
4285 /*
4286 * Allow unprivileged RT tasks to decrease priority:
4287 */
961ccddd 4288 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 4289 if (rt_policy(policy)) {
a44702e8
ON
4290 unsigned long rlim_rtprio =
4291 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
4292
4293 /* can't set/change the rt policy */
4294 if (policy != p->policy && !rlim_rtprio)
4295 return -EPERM;
4296
4297 /* can't increase priority */
4298 if (param->sched_priority > p->rt_priority &&
4299 param->sched_priority > rlim_rtprio)
4300 return -EPERM;
4301 }
c02aa73b 4302
dd41f596 4303 /*
c02aa73b
DH
4304 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4305 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 4306 */
c02aa73b
DH
4307 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
4308 if (!can_nice(p, TASK_NICE(p)))
4309 return -EPERM;
4310 }
5fe1d75f 4311
37e4ab3f 4312 /* can't change other user's priorities */
c69e8d9c 4313 if (!check_same_owner(p))
37e4ab3f 4314 return -EPERM;
ca94c442
LP
4315
4316 /* Normal users shall not reset the sched_reset_on_fork flag */
4317 if (p->sched_reset_on_fork && !reset_on_fork)
4318 return -EPERM;
37e4ab3f 4319 }
1da177e4 4320
725aad24 4321 if (user) {
b0ae1981 4322 retval = security_task_setscheduler(p);
725aad24
JF
4323 if (retval)
4324 return retval;
4325 }
4326
b29739f9
IM
4327 /*
4328 * make sure no PI-waiters arrive (or leave) while we are
4329 * changing the priority of the task:
0122ec5b 4330 *
25985edc 4331 * To be able to change p->policy safely, the appropriate
1da177e4
LT
4332 * runqueue lock must be held.
4333 */
0122ec5b 4334 rq = task_rq_lock(p, &flags);
dc61b1d6 4335
34f971f6
PZ
4336 /*
4337 * Changing the policy of the stop threads its a very bad idea
4338 */
4339 if (p == rq->stop) {
0122ec5b 4340 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
4341 return -EINVAL;
4342 }
4343
a51e9198
DF
4344 /*
4345 * If not changing anything there's no need to proceed further:
4346 */
4347 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
4348 param->sched_priority == p->rt_priority))) {
45afb173 4349 task_rq_unlock(rq, p, &flags);
a51e9198
DF
4350 return 0;
4351 }
4352
dc61b1d6
PZ
4353#ifdef CONFIG_RT_GROUP_SCHED
4354 if (user) {
4355 /*
4356 * Do not allow realtime tasks into groups that have no runtime
4357 * assigned.
4358 */
4359 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
4360 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4361 !task_group_is_autogroup(task_group(p))) {
0122ec5b 4362 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
4363 return -EPERM;
4364 }
4365 }
4366#endif
4367
1da177e4
LT
4368 /* recheck policy now with rq lock held */
4369 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4370 policy = oldpolicy = -1;
0122ec5b 4371 task_rq_unlock(rq, p, &flags);
1da177e4
LT
4372 goto recheck;
4373 }
fd2f4419 4374 on_rq = p->on_rq;
051a1d1a 4375 running = task_current(rq, p);
0e1f3483 4376 if (on_rq)
4ca9b72b 4377 dequeue_task(rq, p, 0);
0e1f3483
HS
4378 if (running)
4379 p->sched_class->put_prev_task(rq, p);
f6b53205 4380
ca94c442
LP
4381 p->sched_reset_on_fork = reset_on_fork;
4382
1da177e4 4383 oldprio = p->prio;
83ab0aa0 4384 prev_class = p->sched_class;
dd41f596 4385 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4386
0e1f3483
HS
4387 if (running)
4388 p->sched_class->set_curr_task(rq);
da7a735e 4389 if (on_rq)
4ca9b72b 4390 enqueue_task(rq, p, 0);
cb469845 4391
da7a735e 4392 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 4393 task_rq_unlock(rq, p, &flags);
b29739f9 4394
95e02ca9
TG
4395 rt_mutex_adjust_pi(p);
4396
1da177e4
LT
4397 return 0;
4398}
961ccddd
RR
4399
4400/**
4401 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4402 * @p: the task in question.
4403 * @policy: new policy.
4404 * @param: structure containing the new RT priority.
4405 *
4406 * NOTE that the task may be already dead.
4407 */
4408int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4409 const struct sched_param *param)
961ccddd
RR
4410{
4411 return __sched_setscheduler(p, policy, param, true);
4412}
1da177e4
LT
4413EXPORT_SYMBOL_GPL(sched_setscheduler);
4414
961ccddd
RR
4415/**
4416 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4417 * @p: the task in question.
4418 * @policy: new policy.
4419 * @param: structure containing the new RT priority.
4420 *
4421 * Just like sched_setscheduler, only don't bother checking if the
4422 * current context has permission. For example, this is needed in
4423 * stop_machine(): we create temporary high priority worker threads,
4424 * but our caller might not have that capability.
4425 */
4426int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 4427 const struct sched_param *param)
961ccddd
RR
4428{
4429 return __sched_setscheduler(p, policy, param, false);
4430}
4431
95cdf3b7
IM
4432static int
4433do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4434{
1da177e4
LT
4435 struct sched_param lparam;
4436 struct task_struct *p;
36c8b586 4437 int retval;
1da177e4
LT
4438
4439 if (!param || pid < 0)
4440 return -EINVAL;
4441 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4442 return -EFAULT;
5fe1d75f
ON
4443
4444 rcu_read_lock();
4445 retval = -ESRCH;
1da177e4 4446 p = find_process_by_pid(pid);
5fe1d75f
ON
4447 if (p != NULL)
4448 retval = sched_setscheduler(p, policy, &lparam);
4449 rcu_read_unlock();
36c8b586 4450
1da177e4
LT
4451 return retval;
4452}
4453
4454/**
4455 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4456 * @pid: the pid in question.
4457 * @policy: new policy.
4458 * @param: structure containing the new RT priority.
4459 */
5add95d4
HC
4460SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4461 struct sched_param __user *, param)
1da177e4 4462{
c21761f1
JB
4463 /* negative values for policy are not valid */
4464 if (policy < 0)
4465 return -EINVAL;
4466
1da177e4
LT
4467 return do_sched_setscheduler(pid, policy, param);
4468}
4469
4470/**
4471 * sys_sched_setparam - set/change the RT priority of a thread
4472 * @pid: the pid in question.
4473 * @param: structure containing the new RT priority.
4474 */
5add95d4 4475SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4476{
4477 return do_sched_setscheduler(pid, -1, param);
4478}
4479
4480/**
4481 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4482 * @pid: the pid in question.
4483 */
5add95d4 4484SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4485{
36c8b586 4486 struct task_struct *p;
3a5c359a 4487 int retval;
1da177e4
LT
4488
4489 if (pid < 0)
3a5c359a 4490 return -EINVAL;
1da177e4
LT
4491
4492 retval = -ESRCH;
5fe85be0 4493 rcu_read_lock();
1da177e4
LT
4494 p = find_process_by_pid(pid);
4495 if (p) {
4496 retval = security_task_getscheduler(p);
4497 if (!retval)
ca94c442
LP
4498 retval = p->policy
4499 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4500 }
5fe85be0 4501 rcu_read_unlock();
1da177e4
LT
4502 return retval;
4503}
4504
4505/**
ca94c442 4506 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4507 * @pid: the pid in question.
4508 * @param: structure containing the RT priority.
4509 */
5add95d4 4510SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4511{
4512 struct sched_param lp;
36c8b586 4513 struct task_struct *p;
3a5c359a 4514 int retval;
1da177e4
LT
4515
4516 if (!param || pid < 0)
3a5c359a 4517 return -EINVAL;
1da177e4 4518
5fe85be0 4519 rcu_read_lock();
1da177e4
LT
4520 p = find_process_by_pid(pid);
4521 retval = -ESRCH;
4522 if (!p)
4523 goto out_unlock;
4524
4525 retval = security_task_getscheduler(p);
4526 if (retval)
4527 goto out_unlock;
4528
4529 lp.sched_priority = p->rt_priority;
5fe85be0 4530 rcu_read_unlock();
1da177e4
LT
4531
4532 /*
4533 * This one might sleep, we cannot do it with a spinlock held ...
4534 */
4535 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4536
1da177e4
LT
4537 return retval;
4538
4539out_unlock:
5fe85be0 4540 rcu_read_unlock();
1da177e4
LT
4541 return retval;
4542}
4543
96f874e2 4544long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4545{
5a16f3d3 4546 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4547 struct task_struct *p;
4548 int retval;
1da177e4 4549
95402b38 4550 get_online_cpus();
23f5d142 4551 rcu_read_lock();
1da177e4
LT
4552
4553 p = find_process_by_pid(pid);
4554 if (!p) {
23f5d142 4555 rcu_read_unlock();
95402b38 4556 put_online_cpus();
1da177e4
LT
4557 return -ESRCH;
4558 }
4559
23f5d142 4560 /* Prevent p going away */
1da177e4 4561 get_task_struct(p);
23f5d142 4562 rcu_read_unlock();
1da177e4 4563
5a16f3d3
RR
4564 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4565 retval = -ENOMEM;
4566 goto out_put_task;
4567 }
4568 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4569 retval = -ENOMEM;
4570 goto out_free_cpus_allowed;
4571 }
1da177e4 4572 retval = -EPERM;
f1c84dae 4573 if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE))
1da177e4
LT
4574 goto out_unlock;
4575
b0ae1981 4576 retval = security_task_setscheduler(p);
e7834f8f
DQ
4577 if (retval)
4578 goto out_unlock;
4579
5a16f3d3
RR
4580 cpuset_cpus_allowed(p, cpus_allowed);
4581 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 4582again:
5a16f3d3 4583 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 4584
8707d8b8 4585 if (!retval) {
5a16f3d3
RR
4586 cpuset_cpus_allowed(p, cpus_allowed);
4587 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4588 /*
4589 * We must have raced with a concurrent cpuset
4590 * update. Just reset the cpus_allowed to the
4591 * cpuset's cpus_allowed
4592 */
5a16f3d3 4593 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4594 goto again;
4595 }
4596 }
1da177e4 4597out_unlock:
5a16f3d3
RR
4598 free_cpumask_var(new_mask);
4599out_free_cpus_allowed:
4600 free_cpumask_var(cpus_allowed);
4601out_put_task:
1da177e4 4602 put_task_struct(p);
95402b38 4603 put_online_cpus();
1da177e4
LT
4604 return retval;
4605}
4606
4607static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4608 struct cpumask *new_mask)
1da177e4 4609{
96f874e2
RR
4610 if (len < cpumask_size())
4611 cpumask_clear(new_mask);
4612 else if (len > cpumask_size())
4613 len = cpumask_size();
4614
1da177e4
LT
4615 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4616}
4617
4618/**
4619 * sys_sched_setaffinity - set the cpu affinity of a process
4620 * @pid: pid of the process
4621 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4622 * @user_mask_ptr: user-space pointer to the new cpu mask
4623 */
5add95d4
HC
4624SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4625 unsigned long __user *, user_mask_ptr)
1da177e4 4626{
5a16f3d3 4627 cpumask_var_t new_mask;
1da177e4
LT
4628 int retval;
4629
5a16f3d3
RR
4630 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4631 return -ENOMEM;
1da177e4 4632
5a16f3d3
RR
4633 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4634 if (retval == 0)
4635 retval = sched_setaffinity(pid, new_mask);
4636 free_cpumask_var(new_mask);
4637 return retval;
1da177e4
LT
4638}
4639
96f874e2 4640long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4641{
36c8b586 4642 struct task_struct *p;
31605683 4643 unsigned long flags;
1da177e4 4644 int retval;
1da177e4 4645
95402b38 4646 get_online_cpus();
23f5d142 4647 rcu_read_lock();
1da177e4
LT
4648
4649 retval = -ESRCH;
4650 p = find_process_by_pid(pid);
4651 if (!p)
4652 goto out_unlock;
4653
e7834f8f
DQ
4654 retval = security_task_getscheduler(p);
4655 if (retval)
4656 goto out_unlock;
4657
013fdb80 4658 raw_spin_lock_irqsave(&p->pi_lock, flags);
96f874e2 4659 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
013fdb80 4660 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4661
4662out_unlock:
23f5d142 4663 rcu_read_unlock();
95402b38 4664 put_online_cpus();
1da177e4 4665
9531b62f 4666 return retval;
1da177e4
LT
4667}
4668
4669/**
4670 * sys_sched_getaffinity - get the cpu affinity of a process
4671 * @pid: pid of the process
4672 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4673 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4674 */
5add95d4
HC
4675SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4676 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4677{
4678 int ret;
f17c8607 4679 cpumask_var_t mask;
1da177e4 4680
84fba5ec 4681 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4682 return -EINVAL;
4683 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4684 return -EINVAL;
4685
f17c8607
RR
4686 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4687 return -ENOMEM;
1da177e4 4688
f17c8607
RR
4689 ret = sched_getaffinity(pid, mask);
4690 if (ret == 0) {
8bc037fb 4691 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4692
4693 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4694 ret = -EFAULT;
4695 else
cd3d8031 4696 ret = retlen;
f17c8607
RR
4697 }
4698 free_cpumask_var(mask);
1da177e4 4699
f17c8607 4700 return ret;
1da177e4
LT
4701}
4702
4703/**
4704 * sys_sched_yield - yield the current processor to other threads.
4705 *
dd41f596
IM
4706 * This function yields the current CPU to other tasks. If there are no
4707 * other threads running on this CPU then this function will return.
1da177e4 4708 */
5add95d4 4709SYSCALL_DEFINE0(sched_yield)
1da177e4 4710{
70b97a7f 4711 struct rq *rq = this_rq_lock();
1da177e4 4712
2d72376b 4713 schedstat_inc(rq, yld_count);
4530d7ab 4714 current->sched_class->yield_task(rq);
1da177e4
LT
4715
4716 /*
4717 * Since we are going to call schedule() anyway, there's
4718 * no need to preempt or enable interrupts:
4719 */
4720 __release(rq->lock);
8a25d5de 4721 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4722 do_raw_spin_unlock(&rq->lock);
ba74c144 4723 sched_preempt_enable_no_resched();
1da177e4
LT
4724
4725 schedule();
4726
4727 return 0;
4728}
4729
d86ee480
PZ
4730static inline int should_resched(void)
4731{
4732 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4733}
4734
e7b38404 4735static void __cond_resched(void)
1da177e4 4736{
e7aaaa69 4737 add_preempt_count(PREEMPT_ACTIVE);
c259e01a 4738 __schedule();
e7aaaa69 4739 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
4740}
4741
02b67cc3 4742int __sched _cond_resched(void)
1da177e4 4743{
d86ee480 4744 if (should_resched()) {
1da177e4
LT
4745 __cond_resched();
4746 return 1;
4747 }
4748 return 0;
4749}
02b67cc3 4750EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4751
4752/*
613afbf8 4753 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4754 * call schedule, and on return reacquire the lock.
4755 *
41a2d6cf 4756 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4757 * operations here to prevent schedule() from being called twice (once via
4758 * spin_unlock(), once by hand).
4759 */
613afbf8 4760int __cond_resched_lock(spinlock_t *lock)
1da177e4 4761{
d86ee480 4762 int resched = should_resched();
6df3cecb
JK
4763 int ret = 0;
4764
f607c668
PZ
4765 lockdep_assert_held(lock);
4766
95c354fe 4767 if (spin_needbreak(lock) || resched) {
1da177e4 4768 spin_unlock(lock);
d86ee480 4769 if (resched)
95c354fe
NP
4770 __cond_resched();
4771 else
4772 cpu_relax();
6df3cecb 4773 ret = 1;
1da177e4 4774 spin_lock(lock);
1da177e4 4775 }
6df3cecb 4776 return ret;
1da177e4 4777}
613afbf8 4778EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4779
613afbf8 4780int __sched __cond_resched_softirq(void)
1da177e4
LT
4781{
4782 BUG_ON(!in_softirq());
4783
d86ee480 4784 if (should_resched()) {
98d82567 4785 local_bh_enable();
1da177e4
LT
4786 __cond_resched();
4787 local_bh_disable();
4788 return 1;
4789 }
4790 return 0;
4791}
613afbf8 4792EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4793
1da177e4
LT
4794/**
4795 * yield - yield the current processor to other threads.
4796 *
8e3fabfd
PZ
4797 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4798 *
4799 * The scheduler is at all times free to pick the calling task as the most
4800 * eligible task to run, if removing the yield() call from your code breaks
4801 * it, its already broken.
4802 *
4803 * Typical broken usage is:
4804 *
4805 * while (!event)
4806 * yield();
4807 *
4808 * where one assumes that yield() will let 'the other' process run that will
4809 * make event true. If the current task is a SCHED_FIFO task that will never
4810 * happen. Never use yield() as a progress guarantee!!
4811 *
4812 * If you want to use yield() to wait for something, use wait_event().
4813 * If you want to use yield() to be 'nice' for others, use cond_resched().
4814 * If you still want to use yield(), do not!
1da177e4
LT
4815 */
4816void __sched yield(void)
4817{
4818 set_current_state(TASK_RUNNING);
4819 sys_sched_yield();
4820}
1da177e4
LT
4821EXPORT_SYMBOL(yield);
4822
d95f4122
MG
4823/**
4824 * yield_to - yield the current processor to another thread in
4825 * your thread group, or accelerate that thread toward the
4826 * processor it's on.
16addf95
RD
4827 * @p: target task
4828 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4829 *
4830 * It's the caller's job to ensure that the target task struct
4831 * can't go away on us before we can do any checks.
4832 *
4833 * Returns true if we indeed boosted the target task.
4834 */
4835bool __sched yield_to(struct task_struct *p, bool preempt)
4836{
4837 struct task_struct *curr = current;
4838 struct rq *rq, *p_rq;
4839 unsigned long flags;
4840 bool yielded = 0;
4841
4842 local_irq_save(flags);
4843 rq = this_rq();
4844
4845again:
4846 p_rq = task_rq(p);
4847 double_rq_lock(rq, p_rq);
4848 while (task_rq(p) != p_rq) {
4849 double_rq_unlock(rq, p_rq);
4850 goto again;
4851 }
4852
4853 if (!curr->sched_class->yield_to_task)
4854 goto out;
4855
4856 if (curr->sched_class != p->sched_class)
4857 goto out;
4858
4859 if (task_running(p_rq, p) || p->state)
4860 goto out;
4861
4862 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4863 if (yielded) {
d95f4122 4864 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4865 /*
4866 * Make p's CPU reschedule; pick_next_entity takes care of
4867 * fairness.
4868 */
4869 if (preempt && rq != p_rq)
4870 resched_task(p_rq->curr);
916671c0
MG
4871 } else {
4872 /*
4873 * We might have set it in task_yield_fair(), but are
4874 * not going to schedule(), so don't want to skip
4875 * the next update.
4876 */
4877 rq->skip_clock_update = 0;
6d1cafd8 4878 }
d95f4122
MG
4879
4880out:
4881 double_rq_unlock(rq, p_rq);
4882 local_irq_restore(flags);
4883
4884 if (yielded)
4885 schedule();
4886
4887 return yielded;
4888}
4889EXPORT_SYMBOL_GPL(yield_to);
4890
1da177e4 4891/*
41a2d6cf 4892 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4893 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
4894 */
4895void __sched io_schedule(void)
4896{
54d35f29 4897 struct rq *rq = raw_rq();
1da177e4 4898
0ff92245 4899 delayacct_blkio_start();
1da177e4 4900 atomic_inc(&rq->nr_iowait);
73c10101 4901 blk_flush_plug(current);
8f0dfc34 4902 current->in_iowait = 1;
1da177e4 4903 schedule();
8f0dfc34 4904 current->in_iowait = 0;
1da177e4 4905 atomic_dec(&rq->nr_iowait);
0ff92245 4906 delayacct_blkio_end();
1da177e4 4907}
1da177e4
LT
4908EXPORT_SYMBOL(io_schedule);
4909
4910long __sched io_schedule_timeout(long timeout)
4911{
54d35f29 4912 struct rq *rq = raw_rq();
1da177e4
LT
4913 long ret;
4914
0ff92245 4915 delayacct_blkio_start();
1da177e4 4916 atomic_inc(&rq->nr_iowait);
73c10101 4917 blk_flush_plug(current);
8f0dfc34 4918 current->in_iowait = 1;
1da177e4 4919 ret = schedule_timeout(timeout);
8f0dfc34 4920 current->in_iowait = 0;
1da177e4 4921 atomic_dec(&rq->nr_iowait);
0ff92245 4922 delayacct_blkio_end();
1da177e4
LT
4923 return ret;
4924}
4925
4926/**
4927 * sys_sched_get_priority_max - return maximum RT priority.
4928 * @policy: scheduling class.
4929 *
4930 * this syscall returns the maximum rt_priority that can be used
4931 * by a given scheduling class.
4932 */
5add95d4 4933SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4934{
4935 int ret = -EINVAL;
4936
4937 switch (policy) {
4938 case SCHED_FIFO:
4939 case SCHED_RR:
4940 ret = MAX_USER_RT_PRIO-1;
4941 break;
4942 case SCHED_NORMAL:
b0a9499c 4943 case SCHED_BATCH:
dd41f596 4944 case SCHED_IDLE:
1da177e4
LT
4945 ret = 0;
4946 break;
4947 }
4948 return ret;
4949}
4950
4951/**
4952 * sys_sched_get_priority_min - return minimum RT priority.
4953 * @policy: scheduling class.
4954 *
4955 * this syscall returns the minimum rt_priority that can be used
4956 * by a given scheduling class.
4957 */
5add95d4 4958SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4959{
4960 int ret = -EINVAL;
4961
4962 switch (policy) {
4963 case SCHED_FIFO:
4964 case SCHED_RR:
4965 ret = 1;
4966 break;
4967 case SCHED_NORMAL:
b0a9499c 4968 case SCHED_BATCH:
dd41f596 4969 case SCHED_IDLE:
1da177e4
LT
4970 ret = 0;
4971 }
4972 return ret;
4973}
4974
4975/**
4976 * sys_sched_rr_get_interval - return the default timeslice of a process.
4977 * @pid: pid of the process.
4978 * @interval: userspace pointer to the timeslice value.
4979 *
4980 * this syscall writes the default timeslice value of a given process
4981 * into the user-space timespec buffer. A value of '0' means infinity.
4982 */
17da2bd9 4983SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4984 struct timespec __user *, interval)
1da177e4 4985{
36c8b586 4986 struct task_struct *p;
a4ec24b4 4987 unsigned int time_slice;
dba091b9
TG
4988 unsigned long flags;
4989 struct rq *rq;
3a5c359a 4990 int retval;
1da177e4 4991 struct timespec t;
1da177e4
LT
4992
4993 if (pid < 0)
3a5c359a 4994 return -EINVAL;
1da177e4
LT
4995
4996 retval = -ESRCH;
1a551ae7 4997 rcu_read_lock();
1da177e4
LT
4998 p = find_process_by_pid(pid);
4999 if (!p)
5000 goto out_unlock;
5001
5002 retval = security_task_getscheduler(p);
5003 if (retval)
5004 goto out_unlock;
5005
dba091b9
TG
5006 rq = task_rq_lock(p, &flags);
5007 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 5008 task_rq_unlock(rq, p, &flags);
a4ec24b4 5009
1a551ae7 5010 rcu_read_unlock();
a4ec24b4 5011 jiffies_to_timespec(time_slice, &t);
1da177e4 5012 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5013 return retval;
3a5c359a 5014
1da177e4 5015out_unlock:
1a551ae7 5016 rcu_read_unlock();
1da177e4
LT
5017 return retval;
5018}
5019
7c731e0a 5020static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5021
82a1fcb9 5022void sched_show_task(struct task_struct *p)
1da177e4 5023{
1da177e4 5024 unsigned long free = 0;
36c8b586 5025 unsigned state;
1da177e4 5026
1da177e4 5027 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 5028 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 5029 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5030#if BITS_PER_LONG == 32
1da177e4 5031 if (state == TASK_RUNNING)
3df0fc5b 5032 printk(KERN_CONT " running ");
1da177e4 5033 else
3df0fc5b 5034 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5035#else
5036 if (state == TASK_RUNNING)
3df0fc5b 5037 printk(KERN_CONT " running task ");
1da177e4 5038 else
3df0fc5b 5039 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5040#endif
5041#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5042 free = stack_not_used(p);
1da177e4 5043#endif
3df0fc5b 5044 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
07cde260 5045 task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)),
aa47b7e0 5046 (unsigned long)task_thread_info(p)->flags);
1da177e4 5047
5fb5e6de 5048 show_stack(p, NULL);
1da177e4
LT
5049}
5050
e59e2ae2 5051void show_state_filter(unsigned long state_filter)
1da177e4 5052{
36c8b586 5053 struct task_struct *g, *p;
1da177e4 5054
4bd77321 5055#if BITS_PER_LONG == 32
3df0fc5b
PZ
5056 printk(KERN_INFO
5057 " task PC stack pid father\n");
1da177e4 5058#else
3df0fc5b
PZ
5059 printk(KERN_INFO
5060 " task PC stack pid father\n");
1da177e4 5061#endif
510f5acc 5062 rcu_read_lock();
1da177e4
LT
5063 do_each_thread(g, p) {
5064 /*
5065 * reset the NMI-timeout, listing all files on a slow
25985edc 5066 * console might take a lot of time:
1da177e4
LT
5067 */
5068 touch_nmi_watchdog();
39bc89fd 5069 if (!state_filter || (p->state & state_filter))
82a1fcb9 5070 sched_show_task(p);
1da177e4
LT
5071 } while_each_thread(g, p);
5072
04c9167f
JF
5073 touch_all_softlockup_watchdogs();
5074
dd41f596
IM
5075#ifdef CONFIG_SCHED_DEBUG
5076 sysrq_sched_debug_show();
5077#endif
510f5acc 5078 rcu_read_unlock();
e59e2ae2
IM
5079 /*
5080 * Only show locks if all tasks are dumped:
5081 */
93335a21 5082 if (!state_filter)
e59e2ae2 5083 debug_show_all_locks();
1da177e4
LT
5084}
5085
1df21055
IM
5086void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5087{
dd41f596 5088 idle->sched_class = &idle_sched_class;
1df21055
IM
5089}
5090
f340c0d1
IM
5091/**
5092 * init_idle - set up an idle thread for a given CPU
5093 * @idle: task in question
5094 * @cpu: cpu the idle task belongs to
5095 *
5096 * NOTE: this function does not set the idle thread's NEED_RESCHED
5097 * flag, to make booting more robust.
5098 */
5c1e1767 5099void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5100{
70b97a7f 5101 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5102 unsigned long flags;
5103
05fa785c 5104 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 5105
dd41f596 5106 __sched_fork(idle);
06b83b5f 5107 idle->state = TASK_RUNNING;
dd41f596
IM
5108 idle->se.exec_start = sched_clock();
5109
1e1b6c51 5110 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
5111 /*
5112 * We're having a chicken and egg problem, even though we are
5113 * holding rq->lock, the cpu isn't yet set to this cpu so the
5114 * lockdep check in task_group() will fail.
5115 *
5116 * Similar case to sched_fork(). / Alternatively we could
5117 * use task_rq_lock() here and obtain the other rq->lock.
5118 *
5119 * Silence PROVE_RCU
5120 */
5121 rcu_read_lock();
dd41f596 5122 __set_task_cpu(idle, cpu);
6506cf6c 5123 rcu_read_unlock();
1da177e4 5124
1da177e4 5125 rq->curr = rq->idle = idle;
3ca7a440
PZ
5126#if defined(CONFIG_SMP)
5127 idle->on_cpu = 1;
4866cde0 5128#endif
05fa785c 5129 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5130
5131 /* Set the preempt count _outside_ the spinlocks! */
a1261f54 5132 task_thread_info(idle)->preempt_count = 0;
55cd5340 5133
dd41f596
IM
5134 /*
5135 * The idle tasks have their own, simple scheduling class:
5136 */
5137 idle->sched_class = &idle_sched_class;
868baf07 5138 ftrace_graph_init_idle_task(idle, cpu);
f1c6f1a7
CE
5139#if defined(CONFIG_SMP)
5140 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5141#endif
19978ca6
IM
5142}
5143
1da177e4 5144#ifdef CONFIG_SMP
1e1b6c51
KM
5145void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
5146{
5147 if (p->sched_class && p->sched_class->set_cpus_allowed)
5148 p->sched_class->set_cpus_allowed(p, new_mask);
4939602a
PZ
5149
5150 cpumask_copy(&p->cpus_allowed, new_mask);
29baa747 5151 p->nr_cpus_allowed = cpumask_weight(new_mask);
1e1b6c51
KM
5152}
5153
1da177e4
LT
5154/*
5155 * This is how migration works:
5156 *
969c7921
TH
5157 * 1) we invoke migration_cpu_stop() on the target CPU using
5158 * stop_one_cpu().
5159 * 2) stopper starts to run (implicitly forcing the migrated thread
5160 * off the CPU)
5161 * 3) it checks whether the migrated task is still in the wrong runqueue.
5162 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 5163 * it and puts it into the right queue.
969c7921
TH
5164 * 5) stopper completes and stop_one_cpu() returns and the migration
5165 * is done.
1da177e4
LT
5166 */
5167
5168/*
5169 * Change a given task's CPU affinity. Migrate the thread to a
5170 * proper CPU and schedule it away if the CPU it's executing on
5171 * is removed from the allowed bitmask.
5172 *
5173 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5174 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5175 * call is not atomic; no spinlocks may be held.
5176 */
96f874e2 5177int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
5178{
5179 unsigned long flags;
70b97a7f 5180 struct rq *rq;
969c7921 5181 unsigned int dest_cpu;
48f24c4d 5182 int ret = 0;
1da177e4
LT
5183
5184 rq = task_rq_lock(p, &flags);
e2912009 5185
db44fc01
YZ
5186 if (cpumask_equal(&p->cpus_allowed, new_mask))
5187 goto out;
5188
6ad4c188 5189 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
5190 ret = -EINVAL;
5191 goto out;
5192 }
5193
db44fc01 5194 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
9985b0ba
DR
5195 ret = -EINVAL;
5196 goto out;
5197 }
5198
1e1b6c51 5199 do_set_cpus_allowed(p, new_mask);
73fe6aae 5200
1da177e4 5201 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 5202 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
5203 goto out;
5204
969c7921 5205 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
bd8e7dde 5206 if (p->on_rq) {
969c7921 5207 struct migration_arg arg = { p, dest_cpu };
1da177e4 5208 /* Need help from migration thread: drop lock and wait. */
0122ec5b 5209 task_rq_unlock(rq, p, &flags);
969c7921 5210 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
5211 tlb_migrate_finish(p->mm);
5212 return 0;
5213 }
5214out:
0122ec5b 5215 task_rq_unlock(rq, p, &flags);
48f24c4d 5216
1da177e4
LT
5217 return ret;
5218}
cd8ba7cd 5219EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5220
5221/*
41a2d6cf 5222 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5223 * this because either it can't run here any more (set_cpus_allowed()
5224 * away from this CPU, or CPU going down), or because we're
5225 * attempting to rebalance this task on exec (sched_exec).
5226 *
5227 * So we race with normal scheduler movements, but that's OK, as long
5228 * as the task is no longer on this CPU.
efc30814
KK
5229 *
5230 * Returns non-zero if task was successfully migrated.
1da177e4 5231 */
efc30814 5232static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5233{
70b97a7f 5234 struct rq *rq_dest, *rq_src;
e2912009 5235 int ret = 0;
1da177e4 5236
e761b772 5237 if (unlikely(!cpu_active(dest_cpu)))
efc30814 5238 return ret;
1da177e4
LT
5239
5240 rq_src = cpu_rq(src_cpu);
5241 rq_dest = cpu_rq(dest_cpu);
5242
0122ec5b 5243 raw_spin_lock(&p->pi_lock);
1da177e4
LT
5244 double_rq_lock(rq_src, rq_dest);
5245 /* Already moved. */
5246 if (task_cpu(p) != src_cpu)
b1e38734 5247 goto done;
1da177e4 5248 /* Affinity changed (again). */
fa17b507 5249 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
b1e38734 5250 goto fail;
1da177e4 5251
e2912009
PZ
5252 /*
5253 * If we're not on a rq, the next wake-up will ensure we're
5254 * placed properly.
5255 */
fd2f4419 5256 if (p->on_rq) {
4ca9b72b 5257 dequeue_task(rq_src, p, 0);
e2912009 5258 set_task_cpu(p, dest_cpu);
4ca9b72b 5259 enqueue_task(rq_dest, p, 0);
15afe09b 5260 check_preempt_curr(rq_dest, p, 0);
1da177e4 5261 }
b1e38734 5262done:
efc30814 5263 ret = 1;
b1e38734 5264fail:
1da177e4 5265 double_rq_unlock(rq_src, rq_dest);
0122ec5b 5266 raw_spin_unlock(&p->pi_lock);
efc30814 5267 return ret;
1da177e4
LT
5268}
5269
5270/*
969c7921
TH
5271 * migration_cpu_stop - this will be executed by a highprio stopper thread
5272 * and performs thread migration by bumping thread off CPU then
5273 * 'pushing' onto another runqueue.
1da177e4 5274 */
969c7921 5275static int migration_cpu_stop(void *data)
1da177e4 5276{
969c7921 5277 struct migration_arg *arg = data;
f7b4cddc 5278
969c7921
TH
5279 /*
5280 * The original target cpu might have gone down and we might
5281 * be on another cpu but it doesn't matter.
5282 */
f7b4cddc 5283 local_irq_disable();
969c7921 5284 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 5285 local_irq_enable();
1da177e4 5286 return 0;
f7b4cddc
ON
5287}
5288
1da177e4 5289#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 5290
054b9108 5291/*
48c5ccae
PZ
5292 * Ensures that the idle task is using init_mm right before its cpu goes
5293 * offline.
054b9108 5294 */
48c5ccae 5295void idle_task_exit(void)
1da177e4 5296{
48c5ccae 5297 struct mm_struct *mm = current->active_mm;
e76bd8d9 5298
48c5ccae 5299 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 5300
48c5ccae
PZ
5301 if (mm != &init_mm)
5302 switch_mm(mm, &init_mm, current);
5303 mmdrop(mm);
1da177e4
LT
5304}
5305
5306/*
5d180232
PZ
5307 * Since this CPU is going 'away' for a while, fold any nr_active delta
5308 * we might have. Assumes we're called after migrate_tasks() so that the
5309 * nr_active count is stable.
5310 *
5311 * Also see the comment "Global load-average calculations".
1da177e4 5312 */
5d180232 5313static void calc_load_migrate(struct rq *rq)
1da177e4 5314{
5d180232
PZ
5315 long delta = calc_load_fold_active(rq);
5316 if (delta)
5317 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
5318}
5319
48f24c4d 5320/*
48c5ccae
PZ
5321 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5322 * try_to_wake_up()->select_task_rq().
5323 *
5324 * Called with rq->lock held even though we'er in stop_machine() and
5325 * there's no concurrency possible, we hold the required locks anyway
5326 * because of lock validation efforts.
1da177e4 5327 */
48c5ccae 5328static void migrate_tasks(unsigned int dead_cpu)
1da177e4 5329{
70b97a7f 5330 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
5331 struct task_struct *next, *stop = rq->stop;
5332 int dest_cpu;
1da177e4
LT
5333
5334 /*
48c5ccae
PZ
5335 * Fudge the rq selection such that the below task selection loop
5336 * doesn't get stuck on the currently eligible stop task.
5337 *
5338 * We're currently inside stop_machine() and the rq is either stuck
5339 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5340 * either way we should never end up calling schedule() until we're
5341 * done here.
1da177e4 5342 */
48c5ccae 5343 rq->stop = NULL;
48f24c4d 5344
dd41f596 5345 for ( ; ; ) {
48c5ccae
PZ
5346 /*
5347 * There's this thread running, bail when that's the only
5348 * remaining thread.
5349 */
5350 if (rq->nr_running == 1)
dd41f596 5351 break;
48c5ccae 5352
b67802ea 5353 next = pick_next_task(rq);
48c5ccae 5354 BUG_ON(!next);
79c53799 5355 next->sched_class->put_prev_task(rq, next);
e692ab53 5356
48c5ccae
PZ
5357 /* Find suitable destination for @next, with force if needed. */
5358 dest_cpu = select_fallback_rq(dead_cpu, next);
5359 raw_spin_unlock(&rq->lock);
5360
5361 __migrate_task(next, dead_cpu, dest_cpu);
5362
5363 raw_spin_lock(&rq->lock);
1da177e4 5364 }
dce48a84 5365
48c5ccae 5366 rq->stop = stop;
dce48a84 5367}
48c5ccae 5368
1da177e4
LT
5369#endif /* CONFIG_HOTPLUG_CPU */
5370
e692ab53
NP
5371#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5372
5373static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5374 {
5375 .procname = "sched_domain",
c57baf1e 5376 .mode = 0555,
e0361851 5377 },
56992309 5378 {}
e692ab53
NP
5379};
5380
5381static struct ctl_table sd_ctl_root[] = {
e0361851
AD
5382 {
5383 .procname = "kernel",
c57baf1e 5384 .mode = 0555,
e0361851
AD
5385 .child = sd_ctl_dir,
5386 },
56992309 5387 {}
e692ab53
NP
5388};
5389
5390static struct ctl_table *sd_alloc_ctl_entry(int n)
5391{
5392 struct ctl_table *entry =
5cf9f062 5393 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5394
e692ab53
NP
5395 return entry;
5396}
5397
6382bc90
MM
5398static void sd_free_ctl_entry(struct ctl_table **tablep)
5399{
cd790076 5400 struct ctl_table *entry;
6382bc90 5401
cd790076
MM
5402 /*
5403 * In the intermediate directories, both the child directory and
5404 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5405 * will always be set. In the lowest directory the names are
cd790076
MM
5406 * static strings and all have proc handlers.
5407 */
5408 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5409 if (entry->child)
5410 sd_free_ctl_entry(&entry->child);
cd790076
MM
5411 if (entry->proc_handler == NULL)
5412 kfree(entry->procname);
5413 }
6382bc90
MM
5414
5415 kfree(*tablep);
5416 *tablep = NULL;
5417}
5418
e692ab53 5419static void
e0361851 5420set_table_entry(struct ctl_table *entry,
e692ab53 5421 const char *procname, void *data, int maxlen,
36fcb589 5422 umode_t mode, proc_handler *proc_handler)
e692ab53 5423{
e692ab53
NP
5424 entry->procname = procname;
5425 entry->data = data;
5426 entry->maxlen = maxlen;
5427 entry->mode = mode;
5428 entry->proc_handler = proc_handler;
5429}
5430
5431static struct ctl_table *
5432sd_alloc_ctl_domain_table(struct sched_domain *sd)
5433{
a5d8c348 5434 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 5435
ad1cdc1d
MM
5436 if (table == NULL)
5437 return NULL;
5438
e0361851 5439 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5440 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5441 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5442 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5443 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5444 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5445 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5446 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5447 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5448 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5449 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5450 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5451 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5452 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5453 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5454 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5455 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5456 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5457 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
5458 &sd->cache_nice_tries,
5459 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5460 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 5461 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
5462 set_table_entry(&table[11], "name", sd->name,
5463 CORENAME_MAX_SIZE, 0444, proc_dostring);
5464 /* &table[12] is terminator */
e692ab53
NP
5465
5466 return table;
5467}
5468
9a4e7159 5469static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5470{
5471 struct ctl_table *entry, *table;
5472 struct sched_domain *sd;
5473 int domain_num = 0, i;
5474 char buf[32];
5475
5476 for_each_domain(cpu, sd)
5477 domain_num++;
5478 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5479 if (table == NULL)
5480 return NULL;
e692ab53
NP
5481
5482 i = 0;
5483 for_each_domain(cpu, sd) {
5484 snprintf(buf, 32, "domain%d", i);
e692ab53 5485 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5486 entry->mode = 0555;
e692ab53
NP
5487 entry->child = sd_alloc_ctl_domain_table(sd);
5488 entry++;
5489 i++;
5490 }
5491 return table;
5492}
5493
5494static struct ctl_table_header *sd_sysctl_header;
6382bc90 5495static void register_sched_domain_sysctl(void)
e692ab53 5496{
6ad4c188 5497 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5498 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5499 char buf[32];
5500
7378547f
MM
5501 WARN_ON(sd_ctl_dir[0].child);
5502 sd_ctl_dir[0].child = entry;
5503
ad1cdc1d
MM
5504 if (entry == NULL)
5505 return;
5506
6ad4c188 5507 for_each_possible_cpu(i) {
e692ab53 5508 snprintf(buf, 32, "cpu%d", i);
e692ab53 5509 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5510 entry->mode = 0555;
e692ab53 5511 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5512 entry++;
e692ab53 5513 }
7378547f
MM
5514
5515 WARN_ON(sd_sysctl_header);
e692ab53
NP
5516 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5517}
6382bc90 5518
7378547f 5519/* may be called multiple times per register */
6382bc90
MM
5520static void unregister_sched_domain_sysctl(void)
5521{
7378547f
MM
5522 if (sd_sysctl_header)
5523 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5524 sd_sysctl_header = NULL;
7378547f
MM
5525 if (sd_ctl_dir[0].child)
5526 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5527}
e692ab53 5528#else
6382bc90
MM
5529static void register_sched_domain_sysctl(void)
5530{
5531}
5532static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5533{
5534}
5535#endif
5536
1f11eb6a
GH
5537static void set_rq_online(struct rq *rq)
5538{
5539 if (!rq->online) {
5540 const struct sched_class *class;
5541
c6c4927b 5542 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5543 rq->online = 1;
5544
5545 for_each_class(class) {
5546 if (class->rq_online)
5547 class->rq_online(rq);
5548 }
5549 }
5550}
5551
5552static void set_rq_offline(struct rq *rq)
5553{
5554 if (rq->online) {
5555 const struct sched_class *class;
5556
5557 for_each_class(class) {
5558 if (class->rq_offline)
5559 class->rq_offline(rq);
5560 }
5561
c6c4927b 5562 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5563 rq->online = 0;
5564 }
5565}
5566
1da177e4
LT
5567/*
5568 * migration_call - callback that gets triggered when a CPU is added.
5569 * Here we can start up the necessary migration thread for the new CPU.
5570 */
48f24c4d
IM
5571static int __cpuinit
5572migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5573{
48f24c4d 5574 int cpu = (long)hcpu;
1da177e4 5575 unsigned long flags;
969c7921 5576 struct rq *rq = cpu_rq(cpu);
1da177e4 5577
48c5ccae 5578 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 5579
1da177e4 5580 case CPU_UP_PREPARE:
a468d389 5581 rq->calc_load_update = calc_load_update;
1da177e4 5582 break;
48f24c4d 5583
1da177e4 5584 case CPU_ONLINE:
1f94ef59 5585 /* Update our root-domain */
05fa785c 5586 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5587 if (rq->rd) {
c6c4927b 5588 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5589
5590 set_rq_online(rq);
1f94ef59 5591 }
05fa785c 5592 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5593 break;
48f24c4d 5594
1da177e4 5595#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5596 case CPU_DYING:
317f3941 5597 sched_ttwu_pending();
57d885fe 5598 /* Update our root-domain */
05fa785c 5599 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5600 if (rq->rd) {
c6c4927b 5601 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5602 set_rq_offline(rq);
57d885fe 5603 }
48c5ccae
PZ
5604 migrate_tasks(cpu);
5605 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5606 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 5607 break;
48c5ccae 5608
5d180232 5609 case CPU_DEAD:
f319da0c 5610 calc_load_migrate(rq);
57d885fe 5611 break;
1da177e4
LT
5612#endif
5613 }
49c022e6
PZ
5614
5615 update_max_interval();
5616
1da177e4
LT
5617 return NOTIFY_OK;
5618}
5619
f38b0820
PM
5620/*
5621 * Register at high priority so that task migration (migrate_all_tasks)
5622 * happens before everything else. This has to be lower priority than
cdd6c482 5623 * the notifier in the perf_event subsystem, though.
1da177e4 5624 */
26c2143b 5625static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4 5626 .notifier_call = migration_call,
50a323b7 5627 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5628};
5629
3a101d05
TH
5630static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5631 unsigned long action, void *hcpu)
5632{
5633 switch (action & ~CPU_TASKS_FROZEN) {
5fbd036b 5634 case CPU_STARTING:
3a101d05
TH
5635 case CPU_DOWN_FAILED:
5636 set_cpu_active((long)hcpu, true);
5637 return NOTIFY_OK;
5638 default:
5639 return NOTIFY_DONE;
5640 }
5641}
5642
5643static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5644 unsigned long action, void *hcpu)
5645{
5646 switch (action & ~CPU_TASKS_FROZEN) {
5647 case CPU_DOWN_PREPARE:
5648 set_cpu_active((long)hcpu, false);
5649 return NOTIFY_OK;
5650 default:
5651 return NOTIFY_DONE;
5652 }
5653}
5654
7babe8db 5655static int __init migration_init(void)
1da177e4
LT
5656{
5657 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5658 int err;
48f24c4d 5659
3a101d05 5660 /* Initialize migration for the boot CPU */
07dccf33
AM
5661 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5662 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5663 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5664 register_cpu_notifier(&migration_notifier);
7babe8db 5665
3a101d05
TH
5666 /* Register cpu active notifiers */
5667 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5668 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5669
a004cd42 5670 return 0;
1da177e4 5671}
7babe8db 5672early_initcall(migration_init);
1da177e4
LT
5673#endif
5674
5675#ifdef CONFIG_SMP
476f3534 5676
4cb98839
PZ
5677static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5678
3e9830dc 5679#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5680
d039ac60 5681static __read_mostly int sched_debug_enabled;
f6630114 5682
d039ac60 5683static int __init sched_debug_setup(char *str)
f6630114 5684{
d039ac60 5685 sched_debug_enabled = 1;
f6630114
MT
5686
5687 return 0;
5688}
d039ac60
PZ
5689early_param("sched_debug", sched_debug_setup);
5690
5691static inline bool sched_debug(void)
5692{
5693 return sched_debug_enabled;
5694}
f6630114 5695
7c16ec58 5696static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5697 struct cpumask *groupmask)
1da177e4 5698{
4dcf6aff 5699 struct sched_group *group = sd->groups;
434d53b0 5700 char str[256];
1da177e4 5701
968ea6d8 5702 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 5703 cpumask_clear(groupmask);
4dcf6aff
IM
5704
5705 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5706
5707 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5708 printk("does not load-balance\n");
4dcf6aff 5709 if (sd->parent)
3df0fc5b
PZ
5710 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5711 " has parent");
4dcf6aff 5712 return -1;
41c7ce9a
NP
5713 }
5714
3df0fc5b 5715 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 5716
758b2cdc 5717 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5718 printk(KERN_ERR "ERROR: domain->span does not contain "
5719 "CPU%d\n", cpu);
4dcf6aff 5720 }
758b2cdc 5721 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5722 printk(KERN_ERR "ERROR: domain->groups does not contain"
5723 " CPU%d\n", cpu);
4dcf6aff 5724 }
1da177e4 5725
4dcf6aff 5726 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5727 do {
4dcf6aff 5728 if (!group) {
3df0fc5b
PZ
5729 printk("\n");
5730 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5731 break;
5732 }
5733
c3decf0d
PZ
5734 /*
5735 * Even though we initialize ->power to something semi-sane,
5736 * we leave power_orig unset. This allows us to detect if
5737 * domain iteration is still funny without causing /0 traps.
5738 */
5739 if (!group->sgp->power_orig) {
3df0fc5b
PZ
5740 printk(KERN_CONT "\n");
5741 printk(KERN_ERR "ERROR: domain->cpu_power not "
5742 "set\n");
4dcf6aff
IM
5743 break;
5744 }
1da177e4 5745
758b2cdc 5746 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5747 printk(KERN_CONT "\n");
5748 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5749 break;
5750 }
1da177e4 5751
cb83b629
PZ
5752 if (!(sd->flags & SD_OVERLAP) &&
5753 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5754 printk(KERN_CONT "\n");
5755 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5756 break;
5757 }
1da177e4 5758
758b2cdc 5759 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5760
968ea6d8 5761 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 5762
3df0fc5b 5763 printk(KERN_CONT " %s", str);
9c3f75cb 5764 if (group->sgp->power != SCHED_POWER_SCALE) {
3df0fc5b 5765 printk(KERN_CONT " (cpu_power = %d)",
9c3f75cb 5766 group->sgp->power);
381512cf 5767 }
1da177e4 5768
4dcf6aff
IM
5769 group = group->next;
5770 } while (group != sd->groups);
3df0fc5b 5771 printk(KERN_CONT "\n");
1da177e4 5772
758b2cdc 5773 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5774 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5775
758b2cdc
RR
5776 if (sd->parent &&
5777 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5778 printk(KERN_ERR "ERROR: parent span is not a superset "
5779 "of domain->span\n");
4dcf6aff
IM
5780 return 0;
5781}
1da177e4 5782
4dcf6aff
IM
5783static void sched_domain_debug(struct sched_domain *sd, int cpu)
5784{
5785 int level = 0;
1da177e4 5786
d039ac60 5787 if (!sched_debug_enabled)
f6630114
MT
5788 return;
5789
4dcf6aff
IM
5790 if (!sd) {
5791 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5792 return;
5793 }
1da177e4 5794
4dcf6aff
IM
5795 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5796
5797 for (;;) {
4cb98839 5798 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5799 break;
1da177e4
LT
5800 level++;
5801 sd = sd->parent;
33859f7f 5802 if (!sd)
4dcf6aff
IM
5803 break;
5804 }
1da177e4 5805}
6d6bc0ad 5806#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5807# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5808static inline bool sched_debug(void)
5809{
5810 return false;
5811}
6d6bc0ad 5812#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5813
1a20ff27 5814static int sd_degenerate(struct sched_domain *sd)
245af2c7 5815{
758b2cdc 5816 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5817 return 1;
5818
5819 /* Following flags need at least 2 groups */
5820 if (sd->flags & (SD_LOAD_BALANCE |
5821 SD_BALANCE_NEWIDLE |
5822 SD_BALANCE_FORK |
89c4710e
SS
5823 SD_BALANCE_EXEC |
5824 SD_SHARE_CPUPOWER |
5825 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5826 if (sd->groups != sd->groups->next)
5827 return 0;
5828 }
5829
5830 /* Following flags don't use groups */
c88d5910 5831 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5832 return 0;
5833
5834 return 1;
5835}
5836
48f24c4d
IM
5837static int
5838sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5839{
5840 unsigned long cflags = sd->flags, pflags = parent->flags;
5841
5842 if (sd_degenerate(parent))
5843 return 1;
5844
758b2cdc 5845 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5846 return 0;
5847
245af2c7
SS
5848 /* Flags needing groups don't count if only 1 group in parent */
5849 if (parent->groups == parent->groups->next) {
5850 pflags &= ~(SD_LOAD_BALANCE |
5851 SD_BALANCE_NEWIDLE |
5852 SD_BALANCE_FORK |
89c4710e
SS
5853 SD_BALANCE_EXEC |
5854 SD_SHARE_CPUPOWER |
5855 SD_SHARE_PKG_RESOURCES);
5436499e
KC
5856 if (nr_node_ids == 1)
5857 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5858 }
5859 if (~cflags & pflags)
5860 return 0;
5861
5862 return 1;
5863}
5864
dce840a0 5865static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5866{
dce840a0 5867 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5868
68e74568 5869 cpupri_cleanup(&rd->cpupri);
c6c4927b
RR
5870 free_cpumask_var(rd->rto_mask);
5871 free_cpumask_var(rd->online);
5872 free_cpumask_var(rd->span);
5873 kfree(rd);
5874}
5875
57d885fe
GH
5876static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5877{
a0490fa3 5878 struct root_domain *old_rd = NULL;
57d885fe 5879 unsigned long flags;
57d885fe 5880
05fa785c 5881 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5882
5883 if (rq->rd) {
a0490fa3 5884 old_rd = rq->rd;
57d885fe 5885
c6c4927b 5886 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5887 set_rq_offline(rq);
57d885fe 5888
c6c4927b 5889 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5890
a0490fa3
IM
5891 /*
5892 * If we dont want to free the old_rt yet then
5893 * set old_rd to NULL to skip the freeing later
5894 * in this function:
5895 */
5896 if (!atomic_dec_and_test(&old_rd->refcount))
5897 old_rd = NULL;
57d885fe
GH
5898 }
5899
5900 atomic_inc(&rd->refcount);
5901 rq->rd = rd;
5902
c6c4927b 5903 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5904 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5905 set_rq_online(rq);
57d885fe 5906
05fa785c 5907 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5908
5909 if (old_rd)
dce840a0 5910 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5911}
5912
68c38fc3 5913static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5914{
5915 memset(rd, 0, sizeof(*rd));
5916
68c38fc3 5917 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5918 goto out;
68c38fc3 5919 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5920 goto free_span;
68c38fc3 5921 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 5922 goto free_online;
6e0534f2 5923
68c38fc3 5924 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5925 goto free_rto_mask;
c6c4927b 5926 return 0;
6e0534f2 5927
68e74568
RR
5928free_rto_mask:
5929 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
5930free_online:
5931 free_cpumask_var(rd->online);
5932free_span:
5933 free_cpumask_var(rd->span);
0c910d28 5934out:
c6c4927b 5935 return -ENOMEM;
57d885fe
GH
5936}
5937
029632fb
PZ
5938/*
5939 * By default the system creates a single root-domain with all cpus as
5940 * members (mimicking the global state we have today).
5941 */
5942struct root_domain def_root_domain;
5943
57d885fe
GH
5944static void init_defrootdomain(void)
5945{
68c38fc3 5946 init_rootdomain(&def_root_domain);
c6c4927b 5947
57d885fe
GH
5948 atomic_set(&def_root_domain.refcount, 1);
5949}
5950
dc938520 5951static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5952{
5953 struct root_domain *rd;
5954
5955 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5956 if (!rd)
5957 return NULL;
5958
68c38fc3 5959 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5960 kfree(rd);
5961 return NULL;
5962 }
57d885fe
GH
5963
5964 return rd;
5965}
5966
e3589f6c
PZ
5967static void free_sched_groups(struct sched_group *sg, int free_sgp)
5968{
5969 struct sched_group *tmp, *first;
5970
5971 if (!sg)
5972 return;
5973
5974 first = sg;
5975 do {
5976 tmp = sg->next;
5977
5978 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5979 kfree(sg->sgp);
5980
5981 kfree(sg);
5982 sg = tmp;
5983 } while (sg != first);
5984}
5985
dce840a0
PZ
5986static void free_sched_domain(struct rcu_head *rcu)
5987{
5988 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5989
5990 /*
5991 * If its an overlapping domain it has private groups, iterate and
5992 * nuke them all.
5993 */
5994 if (sd->flags & SD_OVERLAP) {
5995 free_sched_groups(sd->groups, 1);
5996 } else if (atomic_dec_and_test(&sd->groups->ref)) {
9c3f75cb 5997 kfree(sd->groups->sgp);
dce840a0 5998 kfree(sd->groups);
9c3f75cb 5999 }
dce840a0
PZ
6000 kfree(sd);
6001}
6002
6003static void destroy_sched_domain(struct sched_domain *sd, int cpu)
6004{
6005 call_rcu(&sd->rcu, free_sched_domain);
6006}
6007
6008static void destroy_sched_domains(struct sched_domain *sd, int cpu)
6009{
6010 for (; sd; sd = sd->parent)
6011 destroy_sched_domain(sd, cpu);
6012}
6013
518cd623
PZ
6014/*
6015 * Keep a special pointer to the highest sched_domain that has
6016 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
6017 * allows us to avoid some pointer chasing select_idle_sibling().
6018 *
6019 * Also keep a unique ID per domain (we use the first cpu number in
6020 * the cpumask of the domain), this allows us to quickly tell if
39be3501 6021 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
6022 */
6023DEFINE_PER_CPU(struct sched_domain *, sd_llc);
6024DEFINE_PER_CPU(int, sd_llc_id);
6025
6026static void update_top_cache_domain(int cpu)
6027{
6028 struct sched_domain *sd;
6029 int id = cpu;
6030
6031 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
37407ea7 6032 if (sd)
518cd623
PZ
6033 id = cpumask_first(sched_domain_span(sd));
6034
6035 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
6036 per_cpu(sd_llc_id, cpu) = id;
6037}
6038
1da177e4 6039/*
0eab9146 6040 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6041 * hold the hotplug lock.
6042 */
0eab9146
IM
6043static void
6044cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6045{
70b97a7f 6046 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6047 struct sched_domain *tmp;
6048
6049 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6050 for (tmp = sd; tmp; ) {
245af2c7
SS
6051 struct sched_domain *parent = tmp->parent;
6052 if (!parent)
6053 break;
f29c9b1c 6054
1a848870 6055 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6056 tmp->parent = parent->parent;
1a848870
SS
6057 if (parent->parent)
6058 parent->parent->child = tmp;
dce840a0 6059 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
6060 } else
6061 tmp = tmp->parent;
245af2c7
SS
6062 }
6063
1a848870 6064 if (sd && sd_degenerate(sd)) {
dce840a0 6065 tmp = sd;
245af2c7 6066 sd = sd->parent;
dce840a0 6067 destroy_sched_domain(tmp, cpu);
1a848870
SS
6068 if (sd)
6069 sd->child = NULL;
6070 }
1da177e4 6071
4cb98839 6072 sched_domain_debug(sd, cpu);
1da177e4 6073
57d885fe 6074 rq_attach_root(rq, rd);
dce840a0 6075 tmp = rq->sd;
674311d5 6076 rcu_assign_pointer(rq->sd, sd);
dce840a0 6077 destroy_sched_domains(tmp, cpu);
518cd623
PZ
6078
6079 update_top_cache_domain(cpu);
1da177e4
LT
6080}
6081
6082/* cpus with isolated domains */
dcc30a35 6083static cpumask_var_t cpu_isolated_map;
1da177e4
LT
6084
6085/* Setup the mask of cpus configured for isolated domains */
6086static int __init isolated_cpu_setup(char *str)
6087{
bdddd296 6088 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 6089 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
6090 return 1;
6091}
6092
8927f494 6093__setup("isolcpus=", isolated_cpu_setup);
1da177e4 6094
d3081f52
PZ
6095static const struct cpumask *cpu_cpu_mask(int cpu)
6096{
6097 return cpumask_of_node(cpu_to_node(cpu));
6098}
6099
dce840a0
PZ
6100struct sd_data {
6101 struct sched_domain **__percpu sd;
6102 struct sched_group **__percpu sg;
9c3f75cb 6103 struct sched_group_power **__percpu sgp;
dce840a0
PZ
6104};
6105
49a02c51 6106struct s_data {
21d42ccf 6107 struct sched_domain ** __percpu sd;
49a02c51
AH
6108 struct root_domain *rd;
6109};
6110
2109b99e 6111enum s_alloc {
2109b99e 6112 sa_rootdomain,
21d42ccf 6113 sa_sd,
dce840a0 6114 sa_sd_storage,
2109b99e
AH
6115 sa_none,
6116};
6117
54ab4ff4
PZ
6118struct sched_domain_topology_level;
6119
6120typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
eb7a74e6
PZ
6121typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
6122
e3589f6c
PZ
6123#define SDTL_OVERLAP 0x01
6124
eb7a74e6 6125struct sched_domain_topology_level {
2c402dc3
PZ
6126 sched_domain_init_f init;
6127 sched_domain_mask_f mask;
e3589f6c 6128 int flags;
cb83b629 6129 int numa_level;
54ab4ff4 6130 struct sd_data data;
eb7a74e6
PZ
6131};
6132
c1174876
PZ
6133/*
6134 * Build an iteration mask that can exclude certain CPUs from the upwards
6135 * domain traversal.
6136 *
6137 * Asymmetric node setups can result in situations where the domain tree is of
6138 * unequal depth, make sure to skip domains that already cover the entire
6139 * range.
6140 *
6141 * In that case build_sched_domains() will have terminated the iteration early
6142 * and our sibling sd spans will be empty. Domains should always include the
6143 * cpu they're built on, so check that.
6144 *
6145 */
6146static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6147{
6148 const struct cpumask *span = sched_domain_span(sd);
6149 struct sd_data *sdd = sd->private;
6150 struct sched_domain *sibling;
6151 int i;
6152
6153 for_each_cpu(i, span) {
6154 sibling = *per_cpu_ptr(sdd->sd, i);
6155 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6156 continue;
6157
6158 cpumask_set_cpu(i, sched_group_mask(sg));
6159 }
6160}
6161
6162/*
6163 * Return the canonical balance cpu for this group, this is the first cpu
6164 * of this group that's also in the iteration mask.
6165 */
6166int group_balance_cpu(struct sched_group *sg)
6167{
6168 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6169}
6170
e3589f6c
PZ
6171static int
6172build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6173{
6174 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6175 const struct cpumask *span = sched_domain_span(sd);
6176 struct cpumask *covered = sched_domains_tmpmask;
6177 struct sd_data *sdd = sd->private;
6178 struct sched_domain *child;
6179 int i;
6180
6181 cpumask_clear(covered);
6182
6183 for_each_cpu(i, span) {
6184 struct cpumask *sg_span;
6185
6186 if (cpumask_test_cpu(i, covered))
6187 continue;
6188
c1174876
PZ
6189 child = *per_cpu_ptr(sdd->sd, i);
6190
6191 /* See the comment near build_group_mask(). */
6192 if (!cpumask_test_cpu(i, sched_domain_span(child)))
6193 continue;
6194
e3589f6c 6195 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 6196 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
6197
6198 if (!sg)
6199 goto fail;
6200
6201 sg_span = sched_group_cpus(sg);
e3589f6c
PZ
6202 if (child->child) {
6203 child = child->child;
6204 cpumask_copy(sg_span, sched_domain_span(child));
6205 } else
6206 cpumask_set_cpu(i, sg_span);
6207
6208 cpumask_or(covered, covered, sg_span);
6209
74a5ce20 6210 sg->sgp = *per_cpu_ptr(sdd->sgp, i);
c1174876
PZ
6211 if (atomic_inc_return(&sg->sgp->ref) == 1)
6212 build_group_mask(sd, sg);
6213
c3decf0d
PZ
6214 /*
6215 * Initialize sgp->power such that even if we mess up the
6216 * domains and no possible iteration will get us here, we won't
6217 * die on a /0 trap.
6218 */
6219 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
e3589f6c 6220
c1174876
PZ
6221 /*
6222 * Make sure the first group of this domain contains the
6223 * canonical balance cpu. Otherwise the sched_domain iteration
6224 * breaks. See update_sg_lb_stats().
6225 */
74a5ce20 6226 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 6227 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
6228 groups = sg;
6229
6230 if (!first)
6231 first = sg;
6232 if (last)
6233 last->next = sg;
6234 last = sg;
6235 last->next = first;
6236 }
6237 sd->groups = groups;
6238
6239 return 0;
6240
6241fail:
6242 free_sched_groups(first, 0);
6243
6244 return -ENOMEM;
6245}
6246
dce840a0 6247static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 6248{
dce840a0
PZ
6249 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6250 struct sched_domain *child = sd->child;
1da177e4 6251
dce840a0
PZ
6252 if (child)
6253 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 6254
9c3f75cb 6255 if (sg) {
dce840a0 6256 *sg = *per_cpu_ptr(sdd->sg, cpu);
9c3f75cb 6257 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
e3589f6c 6258 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
9c3f75cb 6259 }
dce840a0
PZ
6260
6261 return cpu;
1e9f28fa 6262}
1e9f28fa 6263
01a08546 6264/*
dce840a0
PZ
6265 * build_sched_groups will build a circular linked list of the groups
6266 * covered by the given span, and will set each group's ->cpumask correctly,
6267 * and ->cpu_power to 0.
e3589f6c
PZ
6268 *
6269 * Assumes the sched_domain tree is fully constructed
01a08546 6270 */
e3589f6c
PZ
6271static int
6272build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 6273{
dce840a0
PZ
6274 struct sched_group *first = NULL, *last = NULL;
6275 struct sd_data *sdd = sd->private;
6276 const struct cpumask *span = sched_domain_span(sd);
f96225fd 6277 struct cpumask *covered;
dce840a0 6278 int i;
9c1cfda2 6279
e3589f6c
PZ
6280 get_group(cpu, sdd, &sd->groups);
6281 atomic_inc(&sd->groups->ref);
6282
6283 if (cpu != cpumask_first(sched_domain_span(sd)))
6284 return 0;
6285
f96225fd
PZ
6286 lockdep_assert_held(&sched_domains_mutex);
6287 covered = sched_domains_tmpmask;
6288
dce840a0 6289 cpumask_clear(covered);
6711cab4 6290
dce840a0
PZ
6291 for_each_cpu(i, span) {
6292 struct sched_group *sg;
6293 int group = get_group(i, sdd, &sg);
6294 int j;
6711cab4 6295
dce840a0
PZ
6296 if (cpumask_test_cpu(i, covered))
6297 continue;
6711cab4 6298
dce840a0 6299 cpumask_clear(sched_group_cpus(sg));
9c3f75cb 6300 sg->sgp->power = 0;
c1174876 6301 cpumask_setall(sched_group_mask(sg));
0601a88d 6302
dce840a0
PZ
6303 for_each_cpu(j, span) {
6304 if (get_group(j, sdd, NULL) != group)
6305 continue;
0601a88d 6306
dce840a0
PZ
6307 cpumask_set_cpu(j, covered);
6308 cpumask_set_cpu(j, sched_group_cpus(sg));
6309 }
0601a88d 6310
dce840a0
PZ
6311 if (!first)
6312 first = sg;
6313 if (last)
6314 last->next = sg;
6315 last = sg;
6316 }
6317 last->next = first;
e3589f6c
PZ
6318
6319 return 0;
0601a88d 6320}
51888ca2 6321
89c4710e
SS
6322/*
6323 * Initialize sched groups cpu_power.
6324 *
6325 * cpu_power indicates the capacity of sched group, which is used while
6326 * distributing the load between different sched groups in a sched domain.
6327 * Typically cpu_power for all the groups in a sched domain will be same unless
6328 * there are asymmetries in the topology. If there are asymmetries, group
6329 * having more cpu_power will pickup more load compared to the group having
6330 * less cpu_power.
89c4710e
SS
6331 */
6332static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6333{
e3589f6c 6334 struct sched_group *sg = sd->groups;
89c4710e 6335
e3589f6c
PZ
6336 WARN_ON(!sd || !sg);
6337
6338 do {
6339 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6340 sg = sg->next;
6341 } while (sg != sd->groups);
89c4710e 6342
c1174876 6343 if (cpu != group_balance_cpu(sg))
e3589f6c 6344 return;
aae6d3dd 6345
d274cb30 6346 update_group_power(sd, cpu);
69e1e811 6347 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
89c4710e
SS
6348}
6349
029632fb
PZ
6350int __weak arch_sd_sibling_asym_packing(void)
6351{
6352 return 0*SD_ASYM_PACKING;
89c4710e
SS
6353}
6354
7c16ec58
MT
6355/*
6356 * Initializers for schedule domains
6357 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6358 */
6359
a5d8c348
IM
6360#ifdef CONFIG_SCHED_DEBUG
6361# define SD_INIT_NAME(sd, type) sd->name = #type
6362#else
6363# define SD_INIT_NAME(sd, type) do { } while (0)
6364#endif
6365
54ab4ff4
PZ
6366#define SD_INIT_FUNC(type) \
6367static noinline struct sched_domain * \
6368sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
6369{ \
6370 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
6371 *sd = SD_##type##_INIT; \
54ab4ff4
PZ
6372 SD_INIT_NAME(sd, type); \
6373 sd->private = &tl->data; \
6374 return sd; \
7c16ec58
MT
6375}
6376
6377SD_INIT_FUNC(CPU)
7c16ec58
MT
6378#ifdef CONFIG_SCHED_SMT
6379 SD_INIT_FUNC(SIBLING)
6380#endif
6381#ifdef CONFIG_SCHED_MC
6382 SD_INIT_FUNC(MC)
6383#endif
01a08546
HC
6384#ifdef CONFIG_SCHED_BOOK
6385 SD_INIT_FUNC(BOOK)
6386#endif
7c16ec58 6387
1d3504fc 6388static int default_relax_domain_level = -1;
60495e77 6389int sched_domain_level_max;
1d3504fc
HS
6390
6391static int __init setup_relax_domain_level(char *str)
6392{
a841f8ce
DS
6393 if (kstrtoint(str, 0, &default_relax_domain_level))
6394 pr_warn("Unable to set relax_domain_level\n");
30e0e178 6395
1d3504fc
HS
6396 return 1;
6397}
6398__setup("relax_domain_level=", setup_relax_domain_level);
6399
6400static void set_domain_attribute(struct sched_domain *sd,
6401 struct sched_domain_attr *attr)
6402{
6403 int request;
6404
6405 if (!attr || attr->relax_domain_level < 0) {
6406 if (default_relax_domain_level < 0)
6407 return;
6408 else
6409 request = default_relax_domain_level;
6410 } else
6411 request = attr->relax_domain_level;
6412 if (request < sd->level) {
6413 /* turn off idle balance on this domain */
c88d5910 6414 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6415 } else {
6416 /* turn on idle balance on this domain */
c88d5910 6417 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6418 }
6419}
6420
54ab4ff4
PZ
6421static void __sdt_free(const struct cpumask *cpu_map);
6422static int __sdt_alloc(const struct cpumask *cpu_map);
6423
2109b99e
AH
6424static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6425 const struct cpumask *cpu_map)
6426{
6427 switch (what) {
2109b99e 6428 case sa_rootdomain:
822ff793
PZ
6429 if (!atomic_read(&d->rd->refcount))
6430 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
6431 case sa_sd:
6432 free_percpu(d->sd); /* fall through */
dce840a0 6433 case sa_sd_storage:
54ab4ff4 6434 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
6435 case sa_none:
6436 break;
6437 }
6438}
3404c8d9 6439
2109b99e
AH
6440static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6441 const struct cpumask *cpu_map)
6442{
dce840a0
PZ
6443 memset(d, 0, sizeof(*d));
6444
54ab4ff4
PZ
6445 if (__sdt_alloc(cpu_map))
6446 return sa_sd_storage;
dce840a0
PZ
6447 d->sd = alloc_percpu(struct sched_domain *);
6448 if (!d->sd)
6449 return sa_sd_storage;
2109b99e 6450 d->rd = alloc_rootdomain();
dce840a0 6451 if (!d->rd)
21d42ccf 6452 return sa_sd;
2109b99e
AH
6453 return sa_rootdomain;
6454}
57d885fe 6455
dce840a0
PZ
6456/*
6457 * NULL the sd_data elements we've used to build the sched_domain and
6458 * sched_group structure so that the subsequent __free_domain_allocs()
6459 * will not free the data we're using.
6460 */
6461static void claim_allocations(int cpu, struct sched_domain *sd)
6462{
6463 struct sd_data *sdd = sd->private;
dce840a0
PZ
6464
6465 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6466 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6467
e3589f6c 6468 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 6469 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c
PZ
6470
6471 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
9c3f75cb 6472 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
dce840a0
PZ
6473}
6474
2c402dc3
PZ
6475#ifdef CONFIG_SCHED_SMT
6476static const struct cpumask *cpu_smt_mask(int cpu)
7f4588f3 6477{
2c402dc3 6478 return topology_thread_cpumask(cpu);
3bd65a80 6479}
2c402dc3 6480#endif
7f4588f3 6481
d069b916
PZ
6482/*
6483 * Topology list, bottom-up.
6484 */
2c402dc3 6485static struct sched_domain_topology_level default_topology[] = {
d069b916
PZ
6486#ifdef CONFIG_SCHED_SMT
6487 { sd_init_SIBLING, cpu_smt_mask, },
01a08546 6488#endif
1e9f28fa 6489#ifdef CONFIG_SCHED_MC
2c402dc3 6490 { sd_init_MC, cpu_coregroup_mask, },
1e9f28fa 6491#endif
d069b916
PZ
6492#ifdef CONFIG_SCHED_BOOK
6493 { sd_init_BOOK, cpu_book_mask, },
6494#endif
6495 { sd_init_CPU, cpu_cpu_mask, },
eb7a74e6
PZ
6496 { NULL, },
6497};
6498
6499static struct sched_domain_topology_level *sched_domain_topology = default_topology;
6500
cb83b629
PZ
6501#ifdef CONFIG_NUMA
6502
6503static int sched_domains_numa_levels;
cb83b629
PZ
6504static int *sched_domains_numa_distance;
6505static struct cpumask ***sched_domains_numa_masks;
6506static int sched_domains_curr_level;
6507
cb83b629
PZ
6508static inline int sd_local_flags(int level)
6509{
10717dcd 6510 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
cb83b629
PZ
6511 return 0;
6512
6513 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
6514}
6515
6516static struct sched_domain *
6517sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
6518{
6519 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6520 int level = tl->numa_level;
6521 int sd_weight = cpumask_weight(
6522 sched_domains_numa_masks[level][cpu_to_node(cpu)]);
6523
6524 *sd = (struct sched_domain){
6525 .min_interval = sd_weight,
6526 .max_interval = 2*sd_weight,
6527 .busy_factor = 32,
870a0bb5 6528 .imbalance_pct = 125,
cb83b629
PZ
6529 .cache_nice_tries = 2,
6530 .busy_idx = 3,
6531 .idle_idx = 2,
6532 .newidle_idx = 0,
6533 .wake_idx = 0,
6534 .forkexec_idx = 0,
6535
6536 .flags = 1*SD_LOAD_BALANCE
6537 | 1*SD_BALANCE_NEWIDLE
6538 | 0*SD_BALANCE_EXEC
6539 | 0*SD_BALANCE_FORK
6540 | 0*SD_BALANCE_WAKE
6541 | 0*SD_WAKE_AFFINE
6542 | 0*SD_PREFER_LOCAL
6543 | 0*SD_SHARE_CPUPOWER
cb83b629
PZ
6544 | 0*SD_SHARE_PKG_RESOURCES
6545 | 1*SD_SERIALIZE
6546 | 0*SD_PREFER_SIBLING
6547 | sd_local_flags(level)
6548 ,
6549 .last_balance = jiffies,
6550 .balance_interval = sd_weight,
6551 };
6552 SD_INIT_NAME(sd, NUMA);
6553 sd->private = &tl->data;
6554
6555 /*
6556 * Ugly hack to pass state to sd_numa_mask()...
6557 */
6558 sched_domains_curr_level = tl->numa_level;
6559
6560 return sd;
6561}
6562
6563static const struct cpumask *sd_numa_mask(int cpu)
6564{
6565 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6566}
6567
d039ac60
PZ
6568static void sched_numa_warn(const char *str)
6569{
6570 static int done = false;
6571 int i,j;
6572
6573 if (done)
6574 return;
6575
6576 done = true;
6577
6578 printk(KERN_WARNING "ERROR: %s\n\n", str);
6579
6580 for (i = 0; i < nr_node_ids; i++) {
6581 printk(KERN_WARNING " ");
6582 for (j = 0; j < nr_node_ids; j++)
6583 printk(KERN_CONT "%02d ", node_distance(i,j));
6584 printk(KERN_CONT "\n");
6585 }
6586 printk(KERN_WARNING "\n");
6587}
6588
6589static bool find_numa_distance(int distance)
6590{
6591 int i;
6592
6593 if (distance == node_distance(0, 0))
6594 return true;
6595
6596 for (i = 0; i < sched_domains_numa_levels; i++) {
6597 if (sched_domains_numa_distance[i] == distance)
6598 return true;
6599 }
6600
6601 return false;
6602}
6603
cb83b629
PZ
6604static void sched_init_numa(void)
6605{
6606 int next_distance, curr_distance = node_distance(0, 0);
6607 struct sched_domain_topology_level *tl;
6608 int level = 0;
6609 int i, j, k;
6610
cb83b629
PZ
6611 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6612 if (!sched_domains_numa_distance)
6613 return;
6614
6615 /*
6616 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6617 * unique distances in the node_distance() table.
6618 *
6619 * Assumes node_distance(0,j) includes all distances in
6620 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6621 */
6622 next_distance = curr_distance;
6623 for (i = 0; i < nr_node_ids; i++) {
6624 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6625 for (k = 0; k < nr_node_ids; k++) {
6626 int distance = node_distance(i, k);
6627
6628 if (distance > curr_distance &&
6629 (distance < next_distance ||
6630 next_distance == curr_distance))
6631 next_distance = distance;
6632
6633 /*
6634 * While not a strong assumption it would be nice to know
6635 * about cases where if node A is connected to B, B is not
6636 * equally connected to A.
6637 */
6638 if (sched_debug() && node_distance(k, i) != distance)
6639 sched_numa_warn("Node-distance not symmetric");
6640
6641 if (sched_debug() && i && !find_numa_distance(distance))
6642 sched_numa_warn("Node-0 not representative");
6643 }
6644 if (next_distance != curr_distance) {
6645 sched_domains_numa_distance[level++] = next_distance;
6646 sched_domains_numa_levels = level;
6647 curr_distance = next_distance;
6648 } else break;
cb83b629 6649 }
d039ac60
PZ
6650
6651 /*
6652 * In case of sched_debug() we verify the above assumption.
6653 */
6654 if (!sched_debug())
6655 break;
cb83b629
PZ
6656 }
6657 /*
6658 * 'level' contains the number of unique distances, excluding the
6659 * identity distance node_distance(i,i).
6660 *
6661 * The sched_domains_nume_distance[] array includes the actual distance
6662 * numbers.
6663 */
6664
6665 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6666 if (!sched_domains_numa_masks)
6667 return;
6668
6669 /*
6670 * Now for each level, construct a mask per node which contains all
6671 * cpus of nodes that are that many hops away from us.
6672 */
6673 for (i = 0; i < level; i++) {
6674 sched_domains_numa_masks[i] =
6675 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6676 if (!sched_domains_numa_masks[i])
6677 return;
6678
6679 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6680 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6681 if (!mask)
6682 return;
6683
6684 sched_domains_numa_masks[i][j] = mask;
6685
6686 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 6687 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6688 continue;
6689
6690 cpumask_or(mask, mask, cpumask_of_node(k));
6691 }
6692 }
6693 }
6694
6695 tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6696 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6697 if (!tl)
6698 return;
6699
6700 /*
6701 * Copy the default topology bits..
6702 */
6703 for (i = 0; default_topology[i].init; i++)
6704 tl[i] = default_topology[i];
6705
6706 /*
6707 * .. and append 'j' levels of NUMA goodness.
6708 */
6709 for (j = 0; j < level; i++, j++) {
6710 tl[i] = (struct sched_domain_topology_level){
6711 .init = sd_numa_init,
6712 .mask = sd_numa_mask,
6713 .flags = SDTL_OVERLAP,
6714 .numa_level = j,
6715 };
6716 }
6717
6718 sched_domain_topology = tl;
6719}
6720#else
6721static inline void sched_init_numa(void)
6722{
6723}
6724#endif /* CONFIG_NUMA */
6725
54ab4ff4
PZ
6726static int __sdt_alloc(const struct cpumask *cpu_map)
6727{
6728 struct sched_domain_topology_level *tl;
6729 int j;
6730
6731 for (tl = sched_domain_topology; tl->init; tl++) {
6732 struct sd_data *sdd = &tl->data;
6733
6734 sdd->sd = alloc_percpu(struct sched_domain *);
6735 if (!sdd->sd)
6736 return -ENOMEM;
6737
6738 sdd->sg = alloc_percpu(struct sched_group *);
6739 if (!sdd->sg)
6740 return -ENOMEM;
6741
9c3f75cb
PZ
6742 sdd->sgp = alloc_percpu(struct sched_group_power *);
6743 if (!sdd->sgp)
6744 return -ENOMEM;
6745
54ab4ff4
PZ
6746 for_each_cpu(j, cpu_map) {
6747 struct sched_domain *sd;
6748 struct sched_group *sg;
9c3f75cb 6749 struct sched_group_power *sgp;
54ab4ff4
PZ
6750
6751 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6752 GFP_KERNEL, cpu_to_node(j));
6753 if (!sd)
6754 return -ENOMEM;
6755
6756 *per_cpu_ptr(sdd->sd, j) = sd;
6757
6758 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6759 GFP_KERNEL, cpu_to_node(j));
6760 if (!sg)
6761 return -ENOMEM;
6762
30b4e9eb
IM
6763 sg->next = sg;
6764
54ab4ff4 6765 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6766
c1174876 6767 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
9c3f75cb
PZ
6768 GFP_KERNEL, cpu_to_node(j));
6769 if (!sgp)
6770 return -ENOMEM;
6771
6772 *per_cpu_ptr(sdd->sgp, j) = sgp;
54ab4ff4
PZ
6773 }
6774 }
6775
6776 return 0;
6777}
6778
6779static void __sdt_free(const struct cpumask *cpu_map)
6780{
6781 struct sched_domain_topology_level *tl;
6782 int j;
6783
6784 for (tl = sched_domain_topology; tl->init; tl++) {
6785 struct sd_data *sdd = &tl->data;
6786
6787 for_each_cpu(j, cpu_map) {
fb2cf2c6 6788 struct sched_domain *sd;
6789
6790 if (sdd->sd) {
6791 sd = *per_cpu_ptr(sdd->sd, j);
6792 if (sd && (sd->flags & SD_OVERLAP))
6793 free_sched_groups(sd->groups, 0);
6794 kfree(*per_cpu_ptr(sdd->sd, j));
6795 }
6796
6797 if (sdd->sg)
6798 kfree(*per_cpu_ptr(sdd->sg, j));
6799 if (sdd->sgp)
6800 kfree(*per_cpu_ptr(sdd->sgp, j));
54ab4ff4
PZ
6801 }
6802 free_percpu(sdd->sd);
fb2cf2c6 6803 sdd->sd = NULL;
54ab4ff4 6804 free_percpu(sdd->sg);
fb2cf2c6 6805 sdd->sg = NULL;
9c3f75cb 6806 free_percpu(sdd->sgp);
fb2cf2c6 6807 sdd->sgp = NULL;
54ab4ff4
PZ
6808 }
6809}
6810
2c402dc3
PZ
6811struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6812 struct s_data *d, const struct cpumask *cpu_map,
d069b916 6813 struct sched_domain_attr *attr, struct sched_domain *child,
2c402dc3
PZ
6814 int cpu)
6815{
54ab4ff4 6816 struct sched_domain *sd = tl->init(tl, cpu);
2c402dc3 6817 if (!sd)
d069b916 6818 return child;
2c402dc3 6819
2c402dc3 6820 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6821 if (child) {
6822 sd->level = child->level + 1;
6823 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6824 child->parent = sd;
60495e77 6825 }
d069b916 6826 sd->child = child;
a841f8ce 6827 set_domain_attribute(sd, attr);
2c402dc3
PZ
6828
6829 return sd;
6830}
6831
2109b99e
AH
6832/*
6833 * Build sched domains for a given set of cpus and attach the sched domains
6834 * to the individual cpus
6835 */
dce840a0
PZ
6836static int build_sched_domains(const struct cpumask *cpu_map,
6837 struct sched_domain_attr *attr)
2109b99e
AH
6838{
6839 enum s_alloc alloc_state = sa_none;
dce840a0 6840 struct sched_domain *sd;
2109b99e 6841 struct s_data d;
822ff793 6842 int i, ret = -ENOMEM;
9c1cfda2 6843
2109b99e
AH
6844 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6845 if (alloc_state != sa_rootdomain)
6846 goto error;
9c1cfda2 6847
dce840a0 6848 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6849 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6850 struct sched_domain_topology_level *tl;
6851
3bd65a80 6852 sd = NULL;
e3589f6c 6853 for (tl = sched_domain_topology; tl->init; tl++) {
2c402dc3 6854 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
e3589f6c
PZ
6855 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6856 sd->flags |= SD_OVERLAP;
d110235d
PZ
6857 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6858 break;
e3589f6c 6859 }
d274cb30 6860
d069b916
PZ
6861 while (sd->child)
6862 sd = sd->child;
6863
21d42ccf 6864 *per_cpu_ptr(d.sd, i) = sd;
dce840a0
PZ
6865 }
6866
6867 /* Build the groups for the domains */
6868 for_each_cpu(i, cpu_map) {
6869 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6870 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6871 if (sd->flags & SD_OVERLAP) {
6872 if (build_overlap_sched_groups(sd, i))
6873 goto error;
6874 } else {
6875 if (build_sched_groups(sd, i))
6876 goto error;
6877 }
1cf51902 6878 }
a06dadbe 6879 }
9c1cfda2 6880
1da177e4 6881 /* Calculate CPU power for physical packages and nodes */
a9c9a9b6
PZ
6882 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6883 if (!cpumask_test_cpu(i, cpu_map))
6884 continue;
9c1cfda2 6885
dce840a0
PZ
6886 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6887 claim_allocations(i, sd);
cd4ea6ae 6888 init_sched_groups_power(i, sd);
dce840a0 6889 }
f712c0c7 6890 }
9c1cfda2 6891
1da177e4 6892 /* Attach the domains */
dce840a0 6893 rcu_read_lock();
abcd083a 6894 for_each_cpu(i, cpu_map) {
21d42ccf 6895 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6896 cpu_attach_domain(sd, d.rd, i);
1da177e4 6897 }
dce840a0 6898 rcu_read_unlock();
51888ca2 6899
822ff793 6900 ret = 0;
51888ca2 6901error:
2109b99e 6902 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6903 return ret;
1da177e4 6904}
029190c5 6905
acc3f5d7 6906static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6907static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6908static struct sched_domain_attr *dattr_cur;
6909 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6910
6911/*
6912 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6913 * cpumask) fails, then fallback to a single sched domain,
6914 * as determined by the single cpumask fallback_doms.
029190c5 6915 */
4212823f 6916static cpumask_var_t fallback_doms;
029190c5 6917
ee79d1bd
HC
6918/*
6919 * arch_update_cpu_topology lets virtualized architectures update the
6920 * cpu core maps. It is supposed to return 1 if the topology changed
6921 * or 0 if it stayed the same.
6922 */
6923int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 6924{
ee79d1bd 6925 return 0;
22e52b07
HC
6926}
6927
acc3f5d7
RR
6928cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6929{
6930 int i;
6931 cpumask_var_t *doms;
6932
6933 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6934 if (!doms)
6935 return NULL;
6936 for (i = 0; i < ndoms; i++) {
6937 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6938 free_sched_domains(doms, i);
6939 return NULL;
6940 }
6941 }
6942 return doms;
6943}
6944
6945void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6946{
6947 unsigned int i;
6948 for (i = 0; i < ndoms; i++)
6949 free_cpumask_var(doms[i]);
6950 kfree(doms);
6951}
6952
1a20ff27 6953/*
41a2d6cf 6954 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6955 * For now this just excludes isolated cpus, but could be used to
6956 * exclude other special cases in the future.
1a20ff27 6957 */
c4a8849a 6958static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6959{
7378547f
MM
6960 int err;
6961
22e52b07 6962 arch_update_cpu_topology();
029190c5 6963 ndoms_cur = 1;
acc3f5d7 6964 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6965 if (!doms_cur)
acc3f5d7
RR
6966 doms_cur = &fallback_doms;
6967 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 6968 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6969 register_sched_domain_sysctl();
7378547f
MM
6970
6971 return err;
1a20ff27
DG
6972}
6973
1a20ff27
DG
6974/*
6975 * Detach sched domains from a group of cpus specified in cpu_map
6976 * These cpus will now be attached to the NULL domain
6977 */
96f874e2 6978static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6979{
6980 int i;
6981
dce840a0 6982 rcu_read_lock();
abcd083a 6983 for_each_cpu(i, cpu_map)
57d885fe 6984 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6985 rcu_read_unlock();
1a20ff27
DG
6986}
6987
1d3504fc
HS
6988/* handle null as "default" */
6989static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6990 struct sched_domain_attr *new, int idx_new)
6991{
6992 struct sched_domain_attr tmp;
6993
6994 /* fast path */
6995 if (!new && !cur)
6996 return 1;
6997
6998 tmp = SD_ATTR_INIT;
6999 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7000 new ? (new + idx_new) : &tmp,
7001 sizeof(struct sched_domain_attr));
7002}
7003
029190c5
PJ
7004/*
7005 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7006 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7007 * doms_new[] to the current sched domain partitioning, doms_cur[].
7008 * It destroys each deleted domain and builds each new domain.
7009 *
acc3f5d7 7010 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7011 * The masks don't intersect (don't overlap.) We should setup one
7012 * sched domain for each mask. CPUs not in any of the cpumasks will
7013 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7014 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7015 * it as it is.
7016 *
acc3f5d7
RR
7017 * The passed in 'doms_new' should be allocated using
7018 * alloc_sched_domains. This routine takes ownership of it and will
7019 * free_sched_domains it when done with it. If the caller failed the
7020 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7021 * and partition_sched_domains() will fallback to the single partition
7022 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7023 *
96f874e2 7024 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7025 * ndoms_new == 0 is a special case for destroying existing domains,
7026 * and it will not create the default domain.
dfb512ec 7027 *
029190c5
PJ
7028 * Call with hotplug lock held
7029 */
acc3f5d7 7030void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7031 struct sched_domain_attr *dattr_new)
029190c5 7032{
dfb512ec 7033 int i, j, n;
d65bd5ec 7034 int new_topology;
029190c5 7035
712555ee 7036 mutex_lock(&sched_domains_mutex);
a1835615 7037
7378547f
MM
7038 /* always unregister in case we don't destroy any domains */
7039 unregister_sched_domain_sysctl();
7040
d65bd5ec
HC
7041 /* Let architecture update cpu core mappings. */
7042 new_topology = arch_update_cpu_topology();
7043
dfb512ec 7044 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7045
7046 /* Destroy deleted domains */
7047 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7048 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7049 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7050 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7051 goto match1;
7052 }
7053 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7054 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7055match1:
7056 ;
7057 }
7058
e761b772
MK
7059 if (doms_new == NULL) {
7060 ndoms_cur = 0;
acc3f5d7 7061 doms_new = &fallback_doms;
6ad4c188 7062 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7063 WARN_ON_ONCE(dattr_new);
e761b772
MK
7064 }
7065
029190c5
PJ
7066 /* Build new domains */
7067 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 7068 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 7069 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7070 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7071 goto match2;
7072 }
7073 /* no match - add a new doms_new */
dce840a0 7074 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7075match2:
7076 ;
7077 }
7078
7079 /* Remember the new sched domains */
acc3f5d7
RR
7080 if (doms_cur != &fallback_doms)
7081 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7082 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7083 doms_cur = doms_new;
1d3504fc 7084 dattr_cur = dattr_new;
029190c5 7085 ndoms_cur = ndoms_new;
7378547f
MM
7086
7087 register_sched_domain_sysctl();
a1835615 7088
712555ee 7089 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7090}
7091
d35be8ba
SB
7092static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
7093
1da177e4 7094/*
3a101d05
TH
7095 * Update cpusets according to cpu_active mask. If cpusets are
7096 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7097 * around partition_sched_domains().
d35be8ba
SB
7098 *
7099 * If we come here as part of a suspend/resume, don't touch cpusets because we
7100 * want to restore it back to its original state upon resume anyway.
1da177e4 7101 */
0b2e918a
TH
7102static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7103 void *hcpu)
e761b772 7104{
d35be8ba
SB
7105 switch (action) {
7106 case CPU_ONLINE_FROZEN:
7107 case CPU_DOWN_FAILED_FROZEN:
7108
7109 /*
7110 * num_cpus_frozen tracks how many CPUs are involved in suspend
7111 * resume sequence. As long as this is not the last online
7112 * operation in the resume sequence, just build a single sched
7113 * domain, ignoring cpusets.
7114 */
7115 num_cpus_frozen--;
7116 if (likely(num_cpus_frozen)) {
7117 partition_sched_domains(1, NULL, NULL);
7118 break;
7119 }
7120
7121 /*
7122 * This is the last CPU online operation. So fall through and
7123 * restore the original sched domains by considering the
7124 * cpuset configurations.
7125 */
7126
e761b772 7127 case CPU_ONLINE:
6ad4c188 7128 case CPU_DOWN_FAILED:
7ddf96b0 7129 cpuset_update_active_cpus(true);
d35be8ba 7130 break;
3a101d05
TH
7131 default:
7132 return NOTIFY_DONE;
7133 }
d35be8ba 7134 return NOTIFY_OK;
3a101d05 7135}
e761b772 7136
0b2e918a
TH
7137static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7138 void *hcpu)
3a101d05 7139{
d35be8ba 7140 switch (action) {
3a101d05 7141 case CPU_DOWN_PREPARE:
7ddf96b0 7142 cpuset_update_active_cpus(false);
d35be8ba
SB
7143 break;
7144 case CPU_DOWN_PREPARE_FROZEN:
7145 num_cpus_frozen++;
7146 partition_sched_domains(1, NULL, NULL);
7147 break;
e761b772
MK
7148 default:
7149 return NOTIFY_DONE;
7150 }
d35be8ba 7151 return NOTIFY_OK;
e761b772 7152}
e761b772 7153
1da177e4
LT
7154void __init sched_init_smp(void)
7155{
dcc30a35
RR
7156 cpumask_var_t non_isolated_cpus;
7157
7158 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7159 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7160
cb83b629
PZ
7161 sched_init_numa();
7162
95402b38 7163 get_online_cpus();
712555ee 7164 mutex_lock(&sched_domains_mutex);
c4a8849a 7165 init_sched_domains(cpu_active_mask);
dcc30a35
RR
7166 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7167 if (cpumask_empty(non_isolated_cpus))
7168 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7169 mutex_unlock(&sched_domains_mutex);
95402b38 7170 put_online_cpus();
e761b772 7171
3a101d05
TH
7172 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7173 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772
MK
7174
7175 /* RT runtime code needs to handle some hotplug events */
7176 hotcpu_notifier(update_runtime, 0);
7177
b328ca18 7178 init_hrtick();
5c1e1767
NP
7179
7180 /* Move init over to a non-isolated CPU */
dcc30a35 7181 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7182 BUG();
19978ca6 7183 sched_init_granularity();
dcc30a35 7184 free_cpumask_var(non_isolated_cpus);
4212823f 7185
0e3900e6 7186 init_sched_rt_class();
1da177e4
LT
7187}
7188#else
7189void __init sched_init_smp(void)
7190{
19978ca6 7191 sched_init_granularity();
1da177e4
LT
7192}
7193#endif /* CONFIG_SMP */
7194
cd1bb94b
AB
7195const_debug unsigned int sysctl_timer_migration = 1;
7196
1da177e4
LT
7197int in_sched_functions(unsigned long addr)
7198{
1da177e4
LT
7199 return in_lock_functions(addr) ||
7200 (addr >= (unsigned long)__sched_text_start
7201 && addr < (unsigned long)__sched_text_end);
7202}
7203
029632fb
PZ
7204#ifdef CONFIG_CGROUP_SCHED
7205struct task_group root_task_group;
35cf4e50 7206LIST_HEAD(task_groups);
052f1dc7 7207#endif
6f505b16 7208
029632fb 7209DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
6f505b16 7210
1da177e4
LT
7211void __init sched_init(void)
7212{
dd41f596 7213 int i, j;
434d53b0
MT
7214 unsigned long alloc_size = 0, ptr;
7215
7216#ifdef CONFIG_FAIR_GROUP_SCHED
7217 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7218#endif
7219#ifdef CONFIG_RT_GROUP_SCHED
7220 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 7221#endif
df7c8e84 7222#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 7223 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 7224#endif
434d53b0 7225 if (alloc_size) {
36b7b6d4 7226 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7227
7228#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 7229 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
7230 ptr += nr_cpu_ids * sizeof(void **);
7231
07e06b01 7232 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 7233 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7234
6d6bc0ad 7235#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 7236#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7237 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
7238 ptr += nr_cpu_ids * sizeof(void **);
7239
07e06b01 7240 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7241 ptr += nr_cpu_ids * sizeof(void **);
7242
6d6bc0ad 7243#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
7244#ifdef CONFIG_CPUMASK_OFFSTACK
7245 for_each_possible_cpu(i) {
7246 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7247 ptr += cpumask_size();
7248 }
7249#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 7250 }
dd41f596 7251
57d885fe
GH
7252#ifdef CONFIG_SMP
7253 init_defrootdomain();
7254#endif
7255
d0b27fa7
PZ
7256 init_rt_bandwidth(&def_rt_bandwidth,
7257 global_rt_period(), global_rt_runtime());
7258
7259#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7260 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 7261 global_rt_period(), global_rt_runtime());
6d6bc0ad 7262#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7263
7c941438 7264#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
7265 list_add(&root_task_group.list, &task_groups);
7266 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 7267 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 7268 autogroup_init(&init_task);
54c707e9 7269
7c941438 7270#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7271
54c707e9
GC
7272#ifdef CONFIG_CGROUP_CPUACCT
7273 root_cpuacct.cpustat = &kernel_cpustat;
7274 root_cpuacct.cpuusage = alloc_percpu(u64);
7275 /* Too early, not expected to fail */
7276 BUG_ON(!root_cpuacct.cpuusage);
7277#endif
0a945022 7278 for_each_possible_cpu(i) {
70b97a7f 7279 struct rq *rq;
1da177e4
LT
7280
7281 rq = cpu_rq(i);
05fa785c 7282 raw_spin_lock_init(&rq->lock);
7897986b 7283 rq->nr_running = 0;
dce48a84
TG
7284 rq->calc_load_active = 0;
7285 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 7286 init_cfs_rq(&rq->cfs);
6f505b16 7287 init_rt_rq(&rq->rt, rq);
dd41f596 7288#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 7289 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 7290 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 7291 /*
07e06b01 7292 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
7293 *
7294 * In case of task-groups formed thr' the cgroup filesystem, it
7295 * gets 100% of the cpu resources in the system. This overall
7296 * system cpu resource is divided among the tasks of
07e06b01 7297 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
7298 * based on each entity's (task or task-group's) weight
7299 * (se->load.weight).
7300 *
07e06b01 7301 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
7302 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7303 * then A0's share of the cpu resource is:
7304 *
0d905bca 7305 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 7306 *
07e06b01
YZ
7307 * We achieve this by letting root_task_group's tasks sit
7308 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 7309 */
ab84d31e 7310 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 7311 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
7312#endif /* CONFIG_FAIR_GROUP_SCHED */
7313
7314 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7315#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7316 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
07e06b01 7317 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 7318#endif
1da177e4 7319
dd41f596
IM
7320 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7321 rq->cpu_load[j] = 0;
fdf3e95d
VP
7322
7323 rq->last_load_update_tick = jiffies;
7324
1da177e4 7325#ifdef CONFIG_SMP
41c7ce9a 7326 rq->sd = NULL;
57d885fe 7327 rq->rd = NULL;
1399fa78 7328 rq->cpu_power = SCHED_POWER_SCALE;
3f029d3c 7329 rq->post_schedule = 0;
1da177e4 7330 rq->active_balance = 0;
dd41f596 7331 rq->next_balance = jiffies;
1da177e4 7332 rq->push_cpu = 0;
0a2966b4 7333 rq->cpu = i;
1f11eb6a 7334 rq->online = 0;
eae0c9df
MG
7335 rq->idle_stamp = 0;
7336 rq->avg_idle = 2*sysctl_sched_migration_cost;
367456c7
PZ
7337
7338 INIT_LIST_HEAD(&rq->cfs_tasks);
7339
dc938520 7340 rq_attach_root(rq, &def_root_domain);
83cd4fe2 7341#ifdef CONFIG_NO_HZ
1c792db7 7342 rq->nohz_flags = 0;
83cd4fe2 7343#endif
1da177e4 7344#endif
8f4d37ec 7345 init_rq_hrtick(rq);
1da177e4 7346 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7347 }
7348
2dd73a4f 7349 set_load_weight(&init_task);
b50f60ce 7350
e107be36
AK
7351#ifdef CONFIG_PREEMPT_NOTIFIERS
7352 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7353#endif
7354
b50f60ce 7355#ifdef CONFIG_RT_MUTEXES
732375c6 7356 plist_head_init(&init_task.pi_waiters);
b50f60ce
HC
7357#endif
7358
1da177e4
LT
7359 /*
7360 * The boot idle thread does lazy MMU switching as well:
7361 */
7362 atomic_inc(&init_mm.mm_count);
7363 enter_lazy_tlb(&init_mm, current);
7364
7365 /*
7366 * Make us the idle thread. Technically, schedule() should not be
7367 * called from this thread, however somewhere below it might be,
7368 * but because we are the idle thread, we just pick up running again
7369 * when this runqueue becomes "idle".
7370 */
7371 init_idle(current, smp_processor_id());
dce48a84
TG
7372
7373 calc_load_update = jiffies + LOAD_FREQ;
7374
dd41f596
IM
7375 /*
7376 * During early bootup we pretend to be a normal task:
7377 */
7378 current->sched_class = &fair_sched_class;
6892b75e 7379
bf4d83f6 7380#ifdef CONFIG_SMP
4cb98839 7381 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
7382 /* May be allocated at isolcpus cmdline parse time */
7383 if (cpu_isolated_map == NULL)
7384 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 7385 idle_thread_set_boot_cpu();
029632fb
PZ
7386#endif
7387 init_sched_fair_class();
6a7b3dc3 7388
6892b75e 7389 scheduler_running = 1;
1da177e4
LT
7390}
7391
d902db1e 7392#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
7393static inline int preempt_count_equals(int preempt_offset)
7394{
234da7bc 7395 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 7396
4ba8216c 7397 return (nested == preempt_offset);
e4aafea2
FW
7398}
7399
d894837f 7400void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7401{
1da177e4
LT
7402 static unsigned long prev_jiffy; /* ratelimiting */
7403
b3fbab05 7404 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
e4aafea2
FW
7405 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7406 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7407 return;
7408 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7409 return;
7410 prev_jiffy = jiffies;
7411
3df0fc5b
PZ
7412 printk(KERN_ERR
7413 "BUG: sleeping function called from invalid context at %s:%d\n",
7414 file, line);
7415 printk(KERN_ERR
7416 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7417 in_atomic(), irqs_disabled(),
7418 current->pid, current->comm);
aef745fc
IM
7419
7420 debug_show_held_locks(current);
7421 if (irqs_disabled())
7422 print_irqtrace_events(current);
7423 dump_stack();
1da177e4
LT
7424}
7425EXPORT_SYMBOL(__might_sleep);
7426#endif
7427
7428#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7429static void normalize_task(struct rq *rq, struct task_struct *p)
7430{
da7a735e
PZ
7431 const struct sched_class *prev_class = p->sched_class;
7432 int old_prio = p->prio;
3a5e4dc1 7433 int on_rq;
3e51f33f 7434
fd2f4419 7435 on_rq = p->on_rq;
3a5e4dc1 7436 if (on_rq)
4ca9b72b 7437 dequeue_task(rq, p, 0);
3a5e4dc1
AK
7438 __setscheduler(rq, p, SCHED_NORMAL, 0);
7439 if (on_rq) {
4ca9b72b 7440 enqueue_task(rq, p, 0);
3a5e4dc1
AK
7441 resched_task(rq->curr);
7442 }
da7a735e
PZ
7443
7444 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
7445}
7446
1da177e4
LT
7447void normalize_rt_tasks(void)
7448{
a0f98a1c 7449 struct task_struct *g, *p;
1da177e4 7450 unsigned long flags;
70b97a7f 7451 struct rq *rq;
1da177e4 7452
4cf5d77a 7453 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 7454 do_each_thread(g, p) {
178be793
IM
7455 /*
7456 * Only normalize user tasks:
7457 */
7458 if (!p->mm)
7459 continue;
7460
6cfb0d5d 7461 p->se.exec_start = 0;
6cfb0d5d 7462#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7463 p->se.statistics.wait_start = 0;
7464 p->se.statistics.sleep_start = 0;
7465 p->se.statistics.block_start = 0;
6cfb0d5d 7466#endif
dd41f596
IM
7467
7468 if (!rt_task(p)) {
7469 /*
7470 * Renice negative nice level userspace
7471 * tasks back to 0:
7472 */
7473 if (TASK_NICE(p) < 0 && p->mm)
7474 set_user_nice(p, 0);
1da177e4 7475 continue;
dd41f596 7476 }
1da177e4 7477
1d615482 7478 raw_spin_lock(&p->pi_lock);
b29739f9 7479 rq = __task_rq_lock(p);
1da177e4 7480
178be793 7481 normalize_task(rq, p);
3a5e4dc1 7482
b29739f9 7483 __task_rq_unlock(rq);
1d615482 7484 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
7485 } while_each_thread(g, p);
7486
4cf5d77a 7487 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
7488}
7489
7490#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7491
67fc4e0c 7492#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7493/*
67fc4e0c 7494 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7495 *
7496 * They can only be called when the whole system has been
7497 * stopped - every CPU needs to be quiescent, and no scheduling
7498 * activity can take place. Using them for anything else would
7499 * be a serious bug, and as a result, they aren't even visible
7500 * under any other configuration.
7501 */
7502
7503/**
7504 * curr_task - return the current task for a given cpu.
7505 * @cpu: the processor in question.
7506 *
7507 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7508 */
36c8b586 7509struct task_struct *curr_task(int cpu)
1df5c10a
LT
7510{
7511 return cpu_curr(cpu);
7512}
7513
67fc4e0c
JW
7514#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7515
7516#ifdef CONFIG_IA64
1df5c10a
LT
7517/**
7518 * set_curr_task - set the current task for a given cpu.
7519 * @cpu: the processor in question.
7520 * @p: the task pointer to set.
7521 *
7522 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7523 * are serviced on a separate stack. It allows the architecture to switch the
7524 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7525 * must be called with all CPU's synchronized, and interrupts disabled, the
7526 * and caller must save the original value of the current task (see
7527 * curr_task() above) and restore that value before reenabling interrupts and
7528 * re-starting the system.
7529 *
7530 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7531 */
36c8b586 7532void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7533{
7534 cpu_curr(cpu) = p;
7535}
7536
7537#endif
29f59db3 7538
7c941438 7539#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7540/* task_group_lock serializes the addition/removal of task groups */
7541static DEFINE_SPINLOCK(task_group_lock);
7542
bccbe08a
PZ
7543static void free_sched_group(struct task_group *tg)
7544{
7545 free_fair_sched_group(tg);
7546 free_rt_sched_group(tg);
e9aa1dd1 7547 autogroup_free(tg);
bccbe08a
PZ
7548 kfree(tg);
7549}
7550
7551/* allocate runqueue etc for a new task group */
ec7dc8ac 7552struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7553{
7554 struct task_group *tg;
7555 unsigned long flags;
bccbe08a
PZ
7556
7557 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7558 if (!tg)
7559 return ERR_PTR(-ENOMEM);
7560
ec7dc8ac 7561 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7562 goto err;
7563
ec7dc8ac 7564 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7565 goto err;
7566
8ed36996 7567 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7568 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7569
7570 WARN_ON(!parent); /* root should already exist */
7571
7572 tg->parent = parent;
f473aa5e 7573 INIT_LIST_HEAD(&tg->children);
09f2724a 7574 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7575 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 7576
9b5b7751 7577 return tg;
29f59db3
SV
7578
7579err:
6f505b16 7580 free_sched_group(tg);
29f59db3
SV
7581 return ERR_PTR(-ENOMEM);
7582}
7583
9b5b7751 7584/* rcu callback to free various structures associated with a task group */
6f505b16 7585static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7586{
29f59db3 7587 /* now it should be safe to free those cfs_rqs */
6f505b16 7588 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7589}
7590
9b5b7751 7591/* Destroy runqueue etc associated with a task group */
4cf86d77 7592void sched_destroy_group(struct task_group *tg)
29f59db3 7593{
8ed36996 7594 unsigned long flags;
9b5b7751 7595 int i;
29f59db3 7596
3d4b47b4
PZ
7597 /* end participation in shares distribution */
7598 for_each_possible_cpu(i)
bccbe08a 7599 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
7600
7601 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7602 list_del_rcu(&tg->list);
f473aa5e 7603 list_del_rcu(&tg->siblings);
8ed36996 7604 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 7605
9b5b7751 7606 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 7607 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
7608}
7609
9b5b7751 7610/* change task's runqueue when it moves between groups.
3a252015
IM
7611 * The caller of this function should have put the task in its new group
7612 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7613 * reflect its new group.
9b5b7751
SV
7614 */
7615void sched_move_task(struct task_struct *tsk)
29f59db3 7616{
8323f26c 7617 struct task_group *tg;
29f59db3
SV
7618 int on_rq, running;
7619 unsigned long flags;
7620 struct rq *rq;
7621
7622 rq = task_rq_lock(tsk, &flags);
7623
051a1d1a 7624 running = task_current(rq, tsk);
fd2f4419 7625 on_rq = tsk->on_rq;
29f59db3 7626
0e1f3483 7627 if (on_rq)
29f59db3 7628 dequeue_task(rq, tsk, 0);
0e1f3483
HS
7629 if (unlikely(running))
7630 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 7631
8323f26c
PZ
7632 tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
7633 lockdep_is_held(&tsk->sighand->siglock)),
7634 struct task_group, css);
7635 tg = autogroup_task_group(tsk, tg);
7636 tsk->sched_task_group = tg;
7637
810b3817 7638#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
7639 if (tsk->sched_class->task_move_group)
7640 tsk->sched_class->task_move_group(tsk, on_rq);
7641 else
810b3817 7642#endif
b2b5ce02 7643 set_task_rq(tsk, task_cpu(tsk));
810b3817 7644
0e1f3483
HS
7645 if (unlikely(running))
7646 tsk->sched_class->set_curr_task(rq);
7647 if (on_rq)
371fd7e7 7648 enqueue_task(rq, tsk, 0);
29f59db3 7649
0122ec5b 7650 task_rq_unlock(rq, tsk, &flags);
29f59db3 7651}
7c941438 7652#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7653
a790de99 7654#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
9f0c1e56
PZ
7655static unsigned long to_ratio(u64 period, u64 runtime)
7656{
7657 if (runtime == RUNTIME_INF)
9a7e0b18 7658 return 1ULL << 20;
9f0c1e56 7659
9a7e0b18 7660 return div64_u64(runtime << 20, period);
9f0c1e56 7661}
a790de99
PT
7662#endif
7663
7664#ifdef CONFIG_RT_GROUP_SCHED
7665/*
7666 * Ensure that the real time constraints are schedulable.
7667 */
7668static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7669
9a7e0b18
PZ
7670/* Must be called with tasklist_lock held */
7671static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7672{
9a7e0b18 7673 struct task_struct *g, *p;
b40b2e8e 7674
9a7e0b18 7675 do_each_thread(g, p) {
029632fb 7676 if (rt_task(p) && task_rq(p)->rt.tg == tg)
9a7e0b18
PZ
7677 return 1;
7678 } while_each_thread(g, p);
b40b2e8e 7679
9a7e0b18
PZ
7680 return 0;
7681}
b40b2e8e 7682
9a7e0b18
PZ
7683struct rt_schedulable_data {
7684 struct task_group *tg;
7685 u64 rt_period;
7686 u64 rt_runtime;
7687};
b40b2e8e 7688
a790de99 7689static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7690{
7691 struct rt_schedulable_data *d = data;
7692 struct task_group *child;
7693 unsigned long total, sum = 0;
7694 u64 period, runtime;
b40b2e8e 7695
9a7e0b18
PZ
7696 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7697 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7698
9a7e0b18
PZ
7699 if (tg == d->tg) {
7700 period = d->rt_period;
7701 runtime = d->rt_runtime;
b40b2e8e 7702 }
b40b2e8e 7703
4653f803
PZ
7704 /*
7705 * Cannot have more runtime than the period.
7706 */
7707 if (runtime > period && runtime != RUNTIME_INF)
7708 return -EINVAL;
6f505b16 7709
4653f803
PZ
7710 /*
7711 * Ensure we don't starve existing RT tasks.
7712 */
9a7e0b18
PZ
7713 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7714 return -EBUSY;
6f505b16 7715
9a7e0b18 7716 total = to_ratio(period, runtime);
6f505b16 7717
4653f803
PZ
7718 /*
7719 * Nobody can have more than the global setting allows.
7720 */
7721 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7722 return -EINVAL;
6f505b16 7723
4653f803
PZ
7724 /*
7725 * The sum of our children's runtime should not exceed our own.
7726 */
9a7e0b18
PZ
7727 list_for_each_entry_rcu(child, &tg->children, siblings) {
7728 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7729 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7730
9a7e0b18
PZ
7731 if (child == d->tg) {
7732 period = d->rt_period;
7733 runtime = d->rt_runtime;
7734 }
6f505b16 7735
9a7e0b18 7736 sum += to_ratio(period, runtime);
9f0c1e56 7737 }
6f505b16 7738
9a7e0b18
PZ
7739 if (sum > total)
7740 return -EINVAL;
7741
7742 return 0;
6f505b16
PZ
7743}
7744
9a7e0b18 7745static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7746{
8277434e
PT
7747 int ret;
7748
9a7e0b18
PZ
7749 struct rt_schedulable_data data = {
7750 .tg = tg,
7751 .rt_period = period,
7752 .rt_runtime = runtime,
7753 };
7754
8277434e
PT
7755 rcu_read_lock();
7756 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7757 rcu_read_unlock();
7758
7759 return ret;
521f1a24
DG
7760}
7761
ab84d31e 7762static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7763 u64 rt_period, u64 rt_runtime)
6f505b16 7764{
ac086bc2 7765 int i, err = 0;
9f0c1e56 7766
9f0c1e56 7767 mutex_lock(&rt_constraints_mutex);
521f1a24 7768 read_lock(&tasklist_lock);
9a7e0b18
PZ
7769 err = __rt_schedulable(tg, rt_period, rt_runtime);
7770 if (err)
9f0c1e56 7771 goto unlock;
ac086bc2 7772
0986b11b 7773 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7774 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7775 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7776
7777 for_each_possible_cpu(i) {
7778 struct rt_rq *rt_rq = tg->rt_rq[i];
7779
0986b11b 7780 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7781 rt_rq->rt_runtime = rt_runtime;
0986b11b 7782 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7783 }
0986b11b 7784 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7785unlock:
521f1a24 7786 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7787 mutex_unlock(&rt_constraints_mutex);
7788
7789 return err;
6f505b16
PZ
7790}
7791
d0b27fa7
PZ
7792int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7793{
7794 u64 rt_runtime, rt_period;
7795
7796 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7797 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7798 if (rt_runtime_us < 0)
7799 rt_runtime = RUNTIME_INF;
7800
ab84d31e 7801 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7802}
7803
9f0c1e56
PZ
7804long sched_group_rt_runtime(struct task_group *tg)
7805{
7806 u64 rt_runtime_us;
7807
d0b27fa7 7808 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7809 return -1;
7810
d0b27fa7 7811 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7812 do_div(rt_runtime_us, NSEC_PER_USEC);
7813 return rt_runtime_us;
7814}
d0b27fa7
PZ
7815
7816int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7817{
7818 u64 rt_runtime, rt_period;
7819
7820 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7821 rt_runtime = tg->rt_bandwidth.rt_runtime;
7822
619b0488
R
7823 if (rt_period == 0)
7824 return -EINVAL;
7825
ab84d31e 7826 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7827}
7828
7829long sched_group_rt_period(struct task_group *tg)
7830{
7831 u64 rt_period_us;
7832
7833 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7834 do_div(rt_period_us, NSEC_PER_USEC);
7835 return rt_period_us;
7836}
7837
7838static int sched_rt_global_constraints(void)
7839{
4653f803 7840 u64 runtime, period;
d0b27fa7
PZ
7841 int ret = 0;
7842
ec5d4989
HS
7843 if (sysctl_sched_rt_period <= 0)
7844 return -EINVAL;
7845
4653f803
PZ
7846 runtime = global_rt_runtime();
7847 period = global_rt_period();
7848
7849 /*
7850 * Sanity check on the sysctl variables.
7851 */
7852 if (runtime > period && runtime != RUNTIME_INF)
7853 return -EINVAL;
10b612f4 7854
d0b27fa7 7855 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7856 read_lock(&tasklist_lock);
4653f803 7857 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7858 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7859 mutex_unlock(&rt_constraints_mutex);
7860
7861 return ret;
7862}
54e99124
DG
7863
7864int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7865{
7866 /* Don't accept realtime tasks when there is no way for them to run */
7867 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7868 return 0;
7869
7870 return 1;
7871}
7872
6d6bc0ad 7873#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7874static int sched_rt_global_constraints(void)
7875{
ac086bc2
PZ
7876 unsigned long flags;
7877 int i;
7878
ec5d4989
HS
7879 if (sysctl_sched_rt_period <= 0)
7880 return -EINVAL;
7881
60aa605d
PZ
7882 /*
7883 * There's always some RT tasks in the root group
7884 * -- migration, kstopmachine etc..
7885 */
7886 if (sysctl_sched_rt_runtime == 0)
7887 return -EBUSY;
7888
0986b11b 7889 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7890 for_each_possible_cpu(i) {
7891 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7892
0986b11b 7893 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7894 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7895 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7896 }
0986b11b 7897 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7898
d0b27fa7
PZ
7899 return 0;
7900}
6d6bc0ad 7901#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7902
7903int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7904 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7905 loff_t *ppos)
7906{
7907 int ret;
7908 int old_period, old_runtime;
7909 static DEFINE_MUTEX(mutex);
7910
7911 mutex_lock(&mutex);
7912 old_period = sysctl_sched_rt_period;
7913 old_runtime = sysctl_sched_rt_runtime;
7914
8d65af78 7915 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
7916
7917 if (!ret && write) {
7918 ret = sched_rt_global_constraints();
7919 if (ret) {
7920 sysctl_sched_rt_period = old_period;
7921 sysctl_sched_rt_runtime = old_runtime;
7922 } else {
7923 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7924 def_rt_bandwidth.rt_period =
7925 ns_to_ktime(global_rt_period());
7926 }
7927 }
7928 mutex_unlock(&mutex);
7929
7930 return ret;
7931}
68318b8e 7932
052f1dc7 7933#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
7934
7935/* return corresponding task_group object of a cgroup */
2b01dfe3 7936static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 7937{
2b01dfe3
PM
7938 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7939 struct task_group, css);
68318b8e
SV
7940}
7941
761b3ef5 7942static struct cgroup_subsys_state *cpu_cgroup_create(struct cgroup *cgrp)
68318b8e 7943{
ec7dc8ac 7944 struct task_group *tg, *parent;
68318b8e 7945
2b01dfe3 7946 if (!cgrp->parent) {
68318b8e 7947 /* This is early initialization for the top cgroup */
07e06b01 7948 return &root_task_group.css;
68318b8e
SV
7949 }
7950
ec7dc8ac
DG
7951 parent = cgroup_tg(cgrp->parent);
7952 tg = sched_create_group(parent);
68318b8e
SV
7953 if (IS_ERR(tg))
7954 return ERR_PTR(-ENOMEM);
7955
68318b8e
SV
7956 return &tg->css;
7957}
7958
761b3ef5 7959static void cpu_cgroup_destroy(struct cgroup *cgrp)
68318b8e 7960{
2b01dfe3 7961 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
7962
7963 sched_destroy_group(tg);
7964}
7965
761b3ef5 7966static int cpu_cgroup_can_attach(struct cgroup *cgrp,
bb9d97b6 7967 struct cgroup_taskset *tset)
68318b8e 7968{
bb9d97b6
TH
7969 struct task_struct *task;
7970
7971 cgroup_taskset_for_each(task, cgrp, tset) {
b68aa230 7972#ifdef CONFIG_RT_GROUP_SCHED
bb9d97b6
TH
7973 if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7974 return -EINVAL;
b68aa230 7975#else
bb9d97b6
TH
7976 /* We don't support RT-tasks being in separate groups */
7977 if (task->sched_class != &fair_sched_class)
7978 return -EINVAL;
b68aa230 7979#endif
bb9d97b6 7980 }
be367d09
BB
7981 return 0;
7982}
68318b8e 7983
761b3ef5 7984static void cpu_cgroup_attach(struct cgroup *cgrp,
bb9d97b6 7985 struct cgroup_taskset *tset)
68318b8e 7986{
bb9d97b6
TH
7987 struct task_struct *task;
7988
7989 cgroup_taskset_for_each(task, cgrp, tset)
7990 sched_move_task(task);
68318b8e
SV
7991}
7992
068c5cc5 7993static void
761b3ef5
LZ
7994cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7995 struct task_struct *task)
068c5cc5
PZ
7996{
7997 /*
7998 * cgroup_exit() is called in the copy_process() failure path.
7999 * Ignore this case since the task hasn't ran yet, this avoids
8000 * trying to poke a half freed task state from generic code.
8001 */
8002 if (!(task->flags & PF_EXITING))
8003 return;
8004
8005 sched_move_task(task);
8006}
8007
052f1dc7 8008#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 8009static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 8010 u64 shareval)
68318b8e 8011{
c8b28116 8012 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
68318b8e
SV
8013}
8014
f4c753b7 8015static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 8016{
2b01dfe3 8017 struct task_group *tg = cgroup_tg(cgrp);
68318b8e 8018
c8b28116 8019 return (u64) scale_load_down(tg->shares);
68318b8e 8020}
ab84d31e
PT
8021
8022#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
8023static DEFINE_MUTEX(cfs_constraints_mutex);
8024
ab84d31e
PT
8025const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8026const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8027
a790de99
PT
8028static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8029
ab84d31e
PT
8030static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8031{
56f570e5 8032 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 8033 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
8034
8035 if (tg == &root_task_group)
8036 return -EINVAL;
8037
8038 /*
8039 * Ensure we have at some amount of bandwidth every period. This is
8040 * to prevent reaching a state of large arrears when throttled via
8041 * entity_tick() resulting in prolonged exit starvation.
8042 */
8043 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8044 return -EINVAL;
8045
8046 /*
8047 * Likewise, bound things on the otherside by preventing insane quota
8048 * periods. This also allows us to normalize in computing quota
8049 * feasibility.
8050 */
8051 if (period > max_cfs_quota_period)
8052 return -EINVAL;
8053
a790de99
PT
8054 mutex_lock(&cfs_constraints_mutex);
8055 ret = __cfs_schedulable(tg, period, quota);
8056 if (ret)
8057 goto out_unlock;
8058
58088ad0 8059 runtime_enabled = quota != RUNTIME_INF;
56f570e5
PT
8060 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8061 account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
ab84d31e
PT
8062 raw_spin_lock_irq(&cfs_b->lock);
8063 cfs_b->period = ns_to_ktime(period);
8064 cfs_b->quota = quota;
58088ad0 8065
a9cf55b2 8066 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
8067 /* restart the period timer (if active) to handle new period expiry */
8068 if (runtime_enabled && cfs_b->timer_active) {
8069 /* force a reprogram */
8070 cfs_b->timer_active = 0;
8071 __start_cfs_bandwidth(cfs_b);
8072 }
ab84d31e
PT
8073 raw_spin_unlock_irq(&cfs_b->lock);
8074
8075 for_each_possible_cpu(i) {
8076 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 8077 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
8078
8079 raw_spin_lock_irq(&rq->lock);
58088ad0 8080 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 8081 cfs_rq->runtime_remaining = 0;
671fd9da 8082
029632fb 8083 if (cfs_rq->throttled)
671fd9da 8084 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
8085 raw_spin_unlock_irq(&rq->lock);
8086 }
a790de99
PT
8087out_unlock:
8088 mutex_unlock(&cfs_constraints_mutex);
ab84d31e 8089
a790de99 8090 return ret;
ab84d31e
PT
8091}
8092
8093int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8094{
8095 u64 quota, period;
8096
029632fb 8097 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8098 if (cfs_quota_us < 0)
8099 quota = RUNTIME_INF;
8100 else
8101 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8102
8103 return tg_set_cfs_bandwidth(tg, period, quota);
8104}
8105
8106long tg_get_cfs_quota(struct task_group *tg)
8107{
8108 u64 quota_us;
8109
029632fb 8110 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
8111 return -1;
8112
029632fb 8113 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
8114 do_div(quota_us, NSEC_PER_USEC);
8115
8116 return quota_us;
8117}
8118
8119int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8120{
8121 u64 quota, period;
8122
8123 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 8124 quota = tg->cfs_bandwidth.quota;
ab84d31e 8125
ab84d31e
PT
8126 return tg_set_cfs_bandwidth(tg, period, quota);
8127}
8128
8129long tg_get_cfs_period(struct task_group *tg)
8130{
8131 u64 cfs_period_us;
8132
029632fb 8133 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8134 do_div(cfs_period_us, NSEC_PER_USEC);
8135
8136 return cfs_period_us;
8137}
8138
8139static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
8140{
8141 return tg_get_cfs_quota(cgroup_tg(cgrp));
8142}
8143
8144static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
8145 s64 cfs_quota_us)
8146{
8147 return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
8148}
8149
8150static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
8151{
8152 return tg_get_cfs_period(cgroup_tg(cgrp));
8153}
8154
8155static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8156 u64 cfs_period_us)
8157{
8158 return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
8159}
8160
a790de99
PT
8161struct cfs_schedulable_data {
8162 struct task_group *tg;
8163 u64 period, quota;
8164};
8165
8166/*
8167 * normalize group quota/period to be quota/max_period
8168 * note: units are usecs
8169 */
8170static u64 normalize_cfs_quota(struct task_group *tg,
8171 struct cfs_schedulable_data *d)
8172{
8173 u64 quota, period;
8174
8175 if (tg == d->tg) {
8176 period = d->period;
8177 quota = d->quota;
8178 } else {
8179 period = tg_get_cfs_period(tg);
8180 quota = tg_get_cfs_quota(tg);
8181 }
8182
8183 /* note: these should typically be equivalent */
8184 if (quota == RUNTIME_INF || quota == -1)
8185 return RUNTIME_INF;
8186
8187 return to_ratio(period, quota);
8188}
8189
8190static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8191{
8192 struct cfs_schedulable_data *d = data;
029632fb 8193 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
8194 s64 quota = 0, parent_quota = -1;
8195
8196 if (!tg->parent) {
8197 quota = RUNTIME_INF;
8198 } else {
029632fb 8199 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
8200
8201 quota = normalize_cfs_quota(tg, d);
8202 parent_quota = parent_b->hierarchal_quota;
8203
8204 /*
8205 * ensure max(child_quota) <= parent_quota, inherit when no
8206 * limit is set
8207 */
8208 if (quota == RUNTIME_INF)
8209 quota = parent_quota;
8210 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8211 return -EINVAL;
8212 }
8213 cfs_b->hierarchal_quota = quota;
8214
8215 return 0;
8216}
8217
8218static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8219{
8277434e 8220 int ret;
a790de99
PT
8221 struct cfs_schedulable_data data = {
8222 .tg = tg,
8223 .period = period,
8224 .quota = quota,
8225 };
8226
8227 if (quota != RUNTIME_INF) {
8228 do_div(data.period, NSEC_PER_USEC);
8229 do_div(data.quota, NSEC_PER_USEC);
8230 }
8231
8277434e
PT
8232 rcu_read_lock();
8233 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8234 rcu_read_unlock();
8235
8236 return ret;
a790de99 8237}
e8da1b18
NR
8238
8239static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
8240 struct cgroup_map_cb *cb)
8241{
8242 struct task_group *tg = cgroup_tg(cgrp);
029632fb 8243 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18
NR
8244
8245 cb->fill(cb, "nr_periods", cfs_b->nr_periods);
8246 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
8247 cb->fill(cb, "throttled_time", cfs_b->throttled_time);
8248
8249 return 0;
8250}
ab84d31e 8251#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 8252#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8253
052f1dc7 8254#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 8255static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 8256 s64 val)
6f505b16 8257{
06ecb27c 8258 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
8259}
8260
06ecb27c 8261static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 8262{
06ecb27c 8263 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 8264}
d0b27fa7
PZ
8265
8266static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8267 u64 rt_period_us)
8268{
8269 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8270}
8271
8272static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8273{
8274 return sched_group_rt_period(cgroup_tg(cgrp));
8275}
6d6bc0ad 8276#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8277
fe5c7cc2 8278static struct cftype cpu_files[] = {
052f1dc7 8279#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8280 {
8281 .name = "shares",
f4c753b7
PM
8282 .read_u64 = cpu_shares_read_u64,
8283 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8284 },
052f1dc7 8285#endif
ab84d31e
PT
8286#ifdef CONFIG_CFS_BANDWIDTH
8287 {
8288 .name = "cfs_quota_us",
8289 .read_s64 = cpu_cfs_quota_read_s64,
8290 .write_s64 = cpu_cfs_quota_write_s64,
8291 },
8292 {
8293 .name = "cfs_period_us",
8294 .read_u64 = cpu_cfs_period_read_u64,
8295 .write_u64 = cpu_cfs_period_write_u64,
8296 },
e8da1b18
NR
8297 {
8298 .name = "stat",
8299 .read_map = cpu_stats_show,
8300 },
ab84d31e 8301#endif
052f1dc7 8302#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8303 {
9f0c1e56 8304 .name = "rt_runtime_us",
06ecb27c
PM
8305 .read_s64 = cpu_rt_runtime_read,
8306 .write_s64 = cpu_rt_runtime_write,
6f505b16 8307 },
d0b27fa7
PZ
8308 {
8309 .name = "rt_period_us",
f4c753b7
PM
8310 .read_u64 = cpu_rt_period_read_uint,
8311 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8312 },
052f1dc7 8313#endif
4baf6e33 8314 { } /* terminate */
68318b8e
SV
8315};
8316
68318b8e 8317struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
8318 .name = "cpu",
8319 .create = cpu_cgroup_create,
8320 .destroy = cpu_cgroup_destroy,
bb9d97b6
TH
8321 .can_attach = cpu_cgroup_can_attach,
8322 .attach = cpu_cgroup_attach,
068c5cc5 8323 .exit = cpu_cgroup_exit,
38605cae 8324 .subsys_id = cpu_cgroup_subsys_id,
4baf6e33 8325 .base_cftypes = cpu_files,
68318b8e
SV
8326 .early_init = 1,
8327};
8328
052f1dc7 8329#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
8330
8331#ifdef CONFIG_CGROUP_CPUACCT
8332
8333/*
8334 * CPU accounting code for task groups.
8335 *
8336 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8337 * (balbir@in.ibm.com).
8338 */
8339
d842de87 8340/* create a new cpu accounting group */
761b3ef5 8341static struct cgroup_subsys_state *cpuacct_create(struct cgroup *cgrp)
d842de87 8342{
54c707e9 8343 struct cpuacct *ca;
d842de87 8344
54c707e9
GC
8345 if (!cgrp->parent)
8346 return &root_cpuacct.css;
8347
8348 ca = kzalloc(sizeof(*ca), GFP_KERNEL);
d842de87 8349 if (!ca)
ef12fefa 8350 goto out;
d842de87
SV
8351
8352 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
8353 if (!ca->cpuusage)
8354 goto out_free_ca;
8355
54c707e9
GC
8356 ca->cpustat = alloc_percpu(struct kernel_cpustat);
8357 if (!ca->cpustat)
8358 goto out_free_cpuusage;
934352f2 8359
d842de87 8360 return &ca->css;
ef12fefa 8361
54c707e9 8362out_free_cpuusage:
ef12fefa
BR
8363 free_percpu(ca->cpuusage);
8364out_free_ca:
8365 kfree(ca);
8366out:
8367 return ERR_PTR(-ENOMEM);
d842de87
SV
8368}
8369
8370/* destroy an existing cpu accounting group */
761b3ef5 8371static void cpuacct_destroy(struct cgroup *cgrp)
d842de87 8372{
32cd756a 8373 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87 8374
54c707e9 8375 free_percpu(ca->cpustat);
d842de87
SV
8376 free_percpu(ca->cpuusage);
8377 kfree(ca);
8378}
8379
720f5498
KC
8380static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8381{
b36128c8 8382 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8383 u64 data;
8384
8385#ifndef CONFIG_64BIT
8386 /*
8387 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8388 */
05fa785c 8389 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8390 data = *cpuusage;
05fa785c 8391 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8392#else
8393 data = *cpuusage;
8394#endif
8395
8396 return data;
8397}
8398
8399static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8400{
b36128c8 8401 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8402
8403#ifndef CONFIG_64BIT
8404 /*
8405 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8406 */
05fa785c 8407 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8408 *cpuusage = val;
05fa785c 8409 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8410#else
8411 *cpuusage = val;
8412#endif
8413}
8414
d842de87 8415/* return total cpu usage (in nanoseconds) of a group */
32cd756a 8416static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 8417{
32cd756a 8418 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
8419 u64 totalcpuusage = 0;
8420 int i;
8421
720f5498
KC
8422 for_each_present_cpu(i)
8423 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
8424
8425 return totalcpuusage;
8426}
8427
0297b803
DG
8428static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8429 u64 reset)
8430{
8431 struct cpuacct *ca = cgroup_ca(cgrp);
8432 int err = 0;
8433 int i;
8434
8435 if (reset) {
8436 err = -EINVAL;
8437 goto out;
8438 }
8439
720f5498
KC
8440 for_each_present_cpu(i)
8441 cpuacct_cpuusage_write(ca, i, 0);
0297b803 8442
0297b803
DG
8443out:
8444 return err;
8445}
8446
e9515c3c
KC
8447static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8448 struct seq_file *m)
8449{
8450 struct cpuacct *ca = cgroup_ca(cgroup);
8451 u64 percpu;
8452 int i;
8453
8454 for_each_present_cpu(i) {
8455 percpu = cpuacct_cpuusage_read(ca, i);
8456 seq_printf(m, "%llu ", (unsigned long long) percpu);
8457 }
8458 seq_printf(m, "\n");
8459 return 0;
8460}
8461
ef12fefa
BR
8462static const char *cpuacct_stat_desc[] = {
8463 [CPUACCT_STAT_USER] = "user",
8464 [CPUACCT_STAT_SYSTEM] = "system",
8465};
8466
8467static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
54c707e9 8468 struct cgroup_map_cb *cb)
ef12fefa
BR
8469{
8470 struct cpuacct *ca = cgroup_ca(cgrp);
54c707e9
GC
8471 int cpu;
8472 s64 val = 0;
ef12fefa 8473
54c707e9
GC
8474 for_each_online_cpu(cpu) {
8475 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8476 val += kcpustat->cpustat[CPUTIME_USER];
8477 val += kcpustat->cpustat[CPUTIME_NICE];
ef12fefa 8478 }
54c707e9
GC
8479 val = cputime64_to_clock_t(val);
8480 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
ef12fefa 8481
54c707e9
GC
8482 val = 0;
8483 for_each_online_cpu(cpu) {
8484 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8485 val += kcpustat->cpustat[CPUTIME_SYSTEM];
8486 val += kcpustat->cpustat[CPUTIME_IRQ];
8487 val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
ef12fefa 8488 }
54c707e9
GC
8489
8490 val = cputime64_to_clock_t(val);
8491 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
8492
ef12fefa
BR
8493 return 0;
8494}
8495
d842de87
SV
8496static struct cftype files[] = {
8497 {
8498 .name = "usage",
f4c753b7
PM
8499 .read_u64 = cpuusage_read,
8500 .write_u64 = cpuusage_write,
d842de87 8501 },
e9515c3c
KC
8502 {
8503 .name = "usage_percpu",
8504 .read_seq_string = cpuacct_percpu_seq_read,
8505 },
ef12fefa
BR
8506 {
8507 .name = "stat",
8508 .read_map = cpuacct_stats_show,
8509 },
4baf6e33 8510 { } /* terminate */
d842de87
SV
8511};
8512
d842de87
SV
8513/*
8514 * charge this task's execution time to its accounting group.
8515 *
8516 * called with rq->lock held.
8517 */
029632fb 8518void cpuacct_charge(struct task_struct *tsk, u64 cputime)
d842de87
SV
8519{
8520 struct cpuacct *ca;
934352f2 8521 int cpu;
d842de87 8522
c40c6f85 8523 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
8524 return;
8525
934352f2 8526 cpu = task_cpu(tsk);
a18b83b7
BR
8527
8528 rcu_read_lock();
8529
d842de87 8530 ca = task_ca(tsk);
d842de87 8531
44252e42 8532 for (; ca; ca = parent_ca(ca)) {
b36128c8 8533 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
8534 *cpuusage += cputime;
8535 }
a18b83b7
BR
8536
8537 rcu_read_unlock();
d842de87
SV
8538}
8539
8540struct cgroup_subsys cpuacct_subsys = {
8541 .name = "cpuacct",
8542 .create = cpuacct_create,
8543 .destroy = cpuacct_destroy,
d842de87 8544 .subsys_id = cpuacct_subsys_id,
4baf6e33 8545 .base_cftypes = files,
d842de87
SV
8546};
8547#endif /* CONFIG_CGROUP_CPUACCT */