]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/sched/core.c
Merge branch 'sched/arch' into sched/urgent
[mirror_ubuntu-artful-kernel.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
1da177e4 74
5517d86b 75#include <asm/tlb.h>
838225b4 76#include <asm/irq_regs.h>
db7e527d 77#include <asm/mutex.h>
e6e6685a
GC
78#ifdef CONFIG_PARAVIRT
79#include <asm/paravirt.h>
80#endif
1da177e4 81
029632fb 82#include "sched.h"
391e43da 83#include "../workqueue_sched.h"
6e0534f2 84
a8d154b0 85#define CREATE_TRACE_POINTS
ad8d75ff 86#include <trace/events/sched.h>
a8d154b0 87
029632fb 88void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 89{
58088ad0
PT
90 unsigned long delta;
91 ktime_t soft, hard, now;
d0b27fa7 92
58088ad0
PT
93 for (;;) {
94 if (hrtimer_active(period_timer))
95 break;
96
97 now = hrtimer_cb_get_time(period_timer);
98 hrtimer_forward(period_timer, now, period);
d0b27fa7 99
58088ad0
PT
100 soft = hrtimer_get_softexpires(period_timer);
101 hard = hrtimer_get_expires(period_timer);
102 delta = ktime_to_ns(ktime_sub(hard, soft));
103 __hrtimer_start_range_ns(period_timer, soft, delta,
104 HRTIMER_MODE_ABS_PINNED, 0);
105 }
106}
107
029632fb
PZ
108DEFINE_MUTEX(sched_domains_mutex);
109DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 110
fe44d621 111static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 112
029632fb 113void update_rq_clock(struct rq *rq)
3e51f33f 114{
fe44d621 115 s64 delta;
305e6835 116
61eadef6 117 if (rq->skip_clock_update > 0)
f26f9aff 118 return;
aa483808 119
fe44d621
PZ
120 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
121 rq->clock += delta;
122 update_rq_clock_task(rq, delta);
3e51f33f
PZ
123}
124
bf5c91ba
IM
125/*
126 * Debugging: various feature bits
127 */
f00b45c1 128
f00b45c1
PZ
129#define SCHED_FEAT(name, enabled) \
130 (1UL << __SCHED_FEAT_##name) * enabled |
131
bf5c91ba 132const_debug unsigned int sysctl_sched_features =
391e43da 133#include "features.h"
f00b45c1
PZ
134 0;
135
136#undef SCHED_FEAT
137
138#ifdef CONFIG_SCHED_DEBUG
139#define SCHED_FEAT(name, enabled) \
140 #name ,
141
983ed7a6 142static __read_mostly char *sched_feat_names[] = {
391e43da 143#include "features.h"
f00b45c1
PZ
144 NULL
145};
146
147#undef SCHED_FEAT
148
34f3a814 149static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 150{
f00b45c1
PZ
151 int i;
152
f8b6d1cc 153 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
154 if (!(sysctl_sched_features & (1UL << i)))
155 seq_puts(m, "NO_");
156 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 157 }
34f3a814 158 seq_puts(m, "\n");
f00b45c1 159
34f3a814 160 return 0;
f00b45c1
PZ
161}
162
f8b6d1cc
PZ
163#ifdef HAVE_JUMP_LABEL
164
165#define jump_label_key__true jump_label_key_enabled
166#define jump_label_key__false jump_label_key_disabled
167
168#define SCHED_FEAT(name, enabled) \
169 jump_label_key__##enabled ,
170
171struct jump_label_key sched_feat_keys[__SCHED_FEAT_NR] = {
172#include "features.h"
173};
174
175#undef SCHED_FEAT
176
177static void sched_feat_disable(int i)
178{
179 if (jump_label_enabled(&sched_feat_keys[i]))
180 jump_label_dec(&sched_feat_keys[i]);
181}
182
183static void sched_feat_enable(int i)
184{
185 if (!jump_label_enabled(&sched_feat_keys[i]))
186 jump_label_inc(&sched_feat_keys[i]);
187}
188#else
189static void sched_feat_disable(int i) { };
190static void sched_feat_enable(int i) { };
191#endif /* HAVE_JUMP_LABEL */
192
f00b45c1
PZ
193static ssize_t
194sched_feat_write(struct file *filp, const char __user *ubuf,
195 size_t cnt, loff_t *ppos)
196{
197 char buf[64];
7740191c 198 char *cmp;
f00b45c1
PZ
199 int neg = 0;
200 int i;
201
202 if (cnt > 63)
203 cnt = 63;
204
205 if (copy_from_user(&buf, ubuf, cnt))
206 return -EFAULT;
207
208 buf[cnt] = 0;
7740191c 209 cmp = strstrip(buf);
f00b45c1 210
524429c3 211 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
212 neg = 1;
213 cmp += 3;
214 }
215
f8b6d1cc 216 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 217 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 218 if (neg) {
f00b45c1 219 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
220 sched_feat_disable(i);
221 } else {
f00b45c1 222 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
223 sched_feat_enable(i);
224 }
f00b45c1
PZ
225 break;
226 }
227 }
228
f8b6d1cc 229 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
230 return -EINVAL;
231
42994724 232 *ppos += cnt;
f00b45c1
PZ
233
234 return cnt;
235}
236
34f3a814
LZ
237static int sched_feat_open(struct inode *inode, struct file *filp)
238{
239 return single_open(filp, sched_feat_show, NULL);
240}
241
828c0950 242static const struct file_operations sched_feat_fops = {
34f3a814
LZ
243 .open = sched_feat_open,
244 .write = sched_feat_write,
245 .read = seq_read,
246 .llseek = seq_lseek,
247 .release = single_release,
f00b45c1
PZ
248};
249
250static __init int sched_init_debug(void)
251{
f00b45c1
PZ
252 debugfs_create_file("sched_features", 0644, NULL, NULL,
253 &sched_feat_fops);
254
255 return 0;
256}
257late_initcall(sched_init_debug);
f8b6d1cc 258#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 259
b82d9fdd
PZ
260/*
261 * Number of tasks to iterate in a single balance run.
262 * Limited because this is done with IRQs disabled.
263 */
264const_debug unsigned int sysctl_sched_nr_migrate = 32;
265
e9e9250b
PZ
266/*
267 * period over which we average the RT time consumption, measured
268 * in ms.
269 *
270 * default: 1s
271 */
272const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
273
fa85ae24 274/*
9f0c1e56 275 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
276 * default: 1s
277 */
9f0c1e56 278unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 279
029632fb 280__read_mostly int scheduler_running;
6892b75e 281
9f0c1e56
PZ
282/*
283 * part of the period that we allow rt tasks to run in us.
284 * default: 0.95s
285 */
286int sysctl_sched_rt_runtime = 950000;
fa85ae24 287
fa85ae24 288
1da177e4 289
0970d299 290/*
0122ec5b 291 * __task_rq_lock - lock the rq @p resides on.
b29739f9 292 */
70b97a7f 293static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
294 __acquires(rq->lock)
295{
0970d299
PZ
296 struct rq *rq;
297
0122ec5b
PZ
298 lockdep_assert_held(&p->pi_lock);
299
3a5c359a 300 for (;;) {
0970d299 301 rq = task_rq(p);
05fa785c 302 raw_spin_lock(&rq->lock);
65cc8e48 303 if (likely(rq == task_rq(p)))
3a5c359a 304 return rq;
05fa785c 305 raw_spin_unlock(&rq->lock);
b29739f9 306 }
b29739f9
IM
307}
308
1da177e4 309/*
0122ec5b 310 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 311 */
70b97a7f 312static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 313 __acquires(p->pi_lock)
1da177e4
LT
314 __acquires(rq->lock)
315{
70b97a7f 316 struct rq *rq;
1da177e4 317
3a5c359a 318 for (;;) {
0122ec5b 319 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 320 rq = task_rq(p);
05fa785c 321 raw_spin_lock(&rq->lock);
65cc8e48 322 if (likely(rq == task_rq(p)))
3a5c359a 323 return rq;
0122ec5b
PZ
324 raw_spin_unlock(&rq->lock);
325 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4 326 }
1da177e4
LT
327}
328
a9957449 329static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
330 __releases(rq->lock)
331{
05fa785c 332 raw_spin_unlock(&rq->lock);
b29739f9
IM
333}
334
0122ec5b
PZ
335static inline void
336task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 337 __releases(rq->lock)
0122ec5b 338 __releases(p->pi_lock)
1da177e4 339{
0122ec5b
PZ
340 raw_spin_unlock(&rq->lock);
341 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
342}
343
1da177e4 344/*
cc2a73b5 345 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 346 */
a9957449 347static struct rq *this_rq_lock(void)
1da177e4
LT
348 __acquires(rq->lock)
349{
70b97a7f 350 struct rq *rq;
1da177e4
LT
351
352 local_irq_disable();
353 rq = this_rq();
05fa785c 354 raw_spin_lock(&rq->lock);
1da177e4
LT
355
356 return rq;
357}
358
8f4d37ec
PZ
359#ifdef CONFIG_SCHED_HRTICK
360/*
361 * Use HR-timers to deliver accurate preemption points.
362 *
363 * Its all a bit involved since we cannot program an hrt while holding the
364 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
365 * reschedule event.
366 *
367 * When we get rescheduled we reprogram the hrtick_timer outside of the
368 * rq->lock.
369 */
8f4d37ec 370
8f4d37ec
PZ
371static void hrtick_clear(struct rq *rq)
372{
373 if (hrtimer_active(&rq->hrtick_timer))
374 hrtimer_cancel(&rq->hrtick_timer);
375}
376
8f4d37ec
PZ
377/*
378 * High-resolution timer tick.
379 * Runs from hardirq context with interrupts disabled.
380 */
381static enum hrtimer_restart hrtick(struct hrtimer *timer)
382{
383 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
384
385 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
386
05fa785c 387 raw_spin_lock(&rq->lock);
3e51f33f 388 update_rq_clock(rq);
8f4d37ec 389 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 390 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
391
392 return HRTIMER_NORESTART;
393}
394
95e904c7 395#ifdef CONFIG_SMP
31656519
PZ
396/*
397 * called from hardirq (IPI) context
398 */
399static void __hrtick_start(void *arg)
b328ca18 400{
31656519 401 struct rq *rq = arg;
b328ca18 402
05fa785c 403 raw_spin_lock(&rq->lock);
31656519
PZ
404 hrtimer_restart(&rq->hrtick_timer);
405 rq->hrtick_csd_pending = 0;
05fa785c 406 raw_spin_unlock(&rq->lock);
b328ca18
PZ
407}
408
31656519
PZ
409/*
410 * Called to set the hrtick timer state.
411 *
412 * called with rq->lock held and irqs disabled
413 */
029632fb 414void hrtick_start(struct rq *rq, u64 delay)
b328ca18 415{
31656519
PZ
416 struct hrtimer *timer = &rq->hrtick_timer;
417 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 418
cc584b21 419 hrtimer_set_expires(timer, time);
31656519
PZ
420
421 if (rq == this_rq()) {
422 hrtimer_restart(timer);
423 } else if (!rq->hrtick_csd_pending) {
6e275637 424 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
425 rq->hrtick_csd_pending = 1;
426 }
b328ca18
PZ
427}
428
429static int
430hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
431{
432 int cpu = (int)(long)hcpu;
433
434 switch (action) {
435 case CPU_UP_CANCELED:
436 case CPU_UP_CANCELED_FROZEN:
437 case CPU_DOWN_PREPARE:
438 case CPU_DOWN_PREPARE_FROZEN:
439 case CPU_DEAD:
440 case CPU_DEAD_FROZEN:
31656519 441 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
442 return NOTIFY_OK;
443 }
444
445 return NOTIFY_DONE;
446}
447
fa748203 448static __init void init_hrtick(void)
b328ca18
PZ
449{
450 hotcpu_notifier(hotplug_hrtick, 0);
451}
31656519
PZ
452#else
453/*
454 * Called to set the hrtick timer state.
455 *
456 * called with rq->lock held and irqs disabled
457 */
029632fb 458void hrtick_start(struct rq *rq, u64 delay)
31656519 459{
7f1e2ca9 460 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 461 HRTIMER_MODE_REL_PINNED, 0);
31656519 462}
b328ca18 463
006c75f1 464static inline void init_hrtick(void)
8f4d37ec 465{
8f4d37ec 466}
31656519 467#endif /* CONFIG_SMP */
8f4d37ec 468
31656519 469static void init_rq_hrtick(struct rq *rq)
8f4d37ec 470{
31656519
PZ
471#ifdef CONFIG_SMP
472 rq->hrtick_csd_pending = 0;
8f4d37ec 473
31656519
PZ
474 rq->hrtick_csd.flags = 0;
475 rq->hrtick_csd.func = __hrtick_start;
476 rq->hrtick_csd.info = rq;
477#endif
8f4d37ec 478
31656519
PZ
479 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
480 rq->hrtick_timer.function = hrtick;
8f4d37ec 481}
006c75f1 482#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
483static inline void hrtick_clear(struct rq *rq)
484{
485}
486
8f4d37ec
PZ
487static inline void init_rq_hrtick(struct rq *rq)
488{
489}
490
b328ca18
PZ
491static inline void init_hrtick(void)
492{
493}
006c75f1 494#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 495
c24d20db
IM
496/*
497 * resched_task - mark a task 'to be rescheduled now'.
498 *
499 * On UP this means the setting of the need_resched flag, on SMP it
500 * might also involve a cross-CPU call to trigger the scheduler on
501 * the target CPU.
502 */
503#ifdef CONFIG_SMP
504
505#ifndef tsk_is_polling
506#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
507#endif
508
029632fb 509void resched_task(struct task_struct *p)
c24d20db
IM
510{
511 int cpu;
512
05fa785c 513 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 514
5ed0cec0 515 if (test_tsk_need_resched(p))
c24d20db
IM
516 return;
517
5ed0cec0 518 set_tsk_need_resched(p);
c24d20db
IM
519
520 cpu = task_cpu(p);
521 if (cpu == smp_processor_id())
522 return;
523
524 /* NEED_RESCHED must be visible before we test polling */
525 smp_mb();
526 if (!tsk_is_polling(p))
527 smp_send_reschedule(cpu);
528}
529
029632fb 530void resched_cpu(int cpu)
c24d20db
IM
531{
532 struct rq *rq = cpu_rq(cpu);
533 unsigned long flags;
534
05fa785c 535 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
536 return;
537 resched_task(cpu_curr(cpu));
05fa785c 538 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 539}
06d8308c
TG
540
541#ifdef CONFIG_NO_HZ
83cd4fe2
VP
542/*
543 * In the semi idle case, use the nearest busy cpu for migrating timers
544 * from an idle cpu. This is good for power-savings.
545 *
546 * We don't do similar optimization for completely idle system, as
547 * selecting an idle cpu will add more delays to the timers than intended
548 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
549 */
550int get_nohz_timer_target(void)
551{
552 int cpu = smp_processor_id();
553 int i;
554 struct sched_domain *sd;
555
057f3fad 556 rcu_read_lock();
83cd4fe2 557 for_each_domain(cpu, sd) {
057f3fad
PZ
558 for_each_cpu(i, sched_domain_span(sd)) {
559 if (!idle_cpu(i)) {
560 cpu = i;
561 goto unlock;
562 }
563 }
83cd4fe2 564 }
057f3fad
PZ
565unlock:
566 rcu_read_unlock();
83cd4fe2
VP
567 return cpu;
568}
06d8308c
TG
569/*
570 * When add_timer_on() enqueues a timer into the timer wheel of an
571 * idle CPU then this timer might expire before the next timer event
572 * which is scheduled to wake up that CPU. In case of a completely
573 * idle system the next event might even be infinite time into the
574 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
575 * leaves the inner idle loop so the newly added timer is taken into
576 * account when the CPU goes back to idle and evaluates the timer
577 * wheel for the next timer event.
578 */
579void wake_up_idle_cpu(int cpu)
580{
581 struct rq *rq = cpu_rq(cpu);
582
583 if (cpu == smp_processor_id())
584 return;
585
586 /*
587 * This is safe, as this function is called with the timer
588 * wheel base lock of (cpu) held. When the CPU is on the way
589 * to idle and has not yet set rq->curr to idle then it will
590 * be serialized on the timer wheel base lock and take the new
591 * timer into account automatically.
592 */
593 if (rq->curr != rq->idle)
594 return;
45bf76df 595
45bf76df 596 /*
06d8308c
TG
597 * We can set TIF_RESCHED on the idle task of the other CPU
598 * lockless. The worst case is that the other CPU runs the
599 * idle task through an additional NOOP schedule()
45bf76df 600 */
5ed0cec0 601 set_tsk_need_resched(rq->idle);
45bf76df 602
06d8308c
TG
603 /* NEED_RESCHED must be visible before we test polling */
604 smp_mb();
605 if (!tsk_is_polling(rq->idle))
606 smp_send_reschedule(cpu);
45bf76df
IM
607}
608
ca38062e 609static inline bool got_nohz_idle_kick(void)
45bf76df 610{
1c792db7
SS
611 int cpu = smp_processor_id();
612 return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
45bf76df
IM
613}
614
ca38062e 615#else /* CONFIG_NO_HZ */
45bf76df 616
ca38062e 617static inline bool got_nohz_idle_kick(void)
2069dd75 618{
ca38062e 619 return false;
2069dd75
PZ
620}
621
6d6bc0ad 622#endif /* CONFIG_NO_HZ */
d842de87 623
029632fb 624void sched_avg_update(struct rq *rq)
18d95a28 625{
e9e9250b
PZ
626 s64 period = sched_avg_period();
627
628 while ((s64)(rq->clock - rq->age_stamp) > period) {
0d98bb26
WD
629 /*
630 * Inline assembly required to prevent the compiler
631 * optimising this loop into a divmod call.
632 * See __iter_div_u64_rem() for another example of this.
633 */
634 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
635 rq->age_stamp += period;
636 rq->rt_avg /= 2;
637 }
18d95a28
PZ
638}
639
6d6bc0ad 640#else /* !CONFIG_SMP */
029632fb 641void resched_task(struct task_struct *p)
18d95a28 642{
05fa785c 643 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 644 set_tsk_need_resched(p);
18d95a28 645}
6d6bc0ad 646#endif /* CONFIG_SMP */
18d95a28 647
a790de99
PT
648#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
649 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 650/*
8277434e
PT
651 * Iterate task_group tree rooted at *from, calling @down when first entering a
652 * node and @up when leaving it for the final time.
653 *
654 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 655 */
029632fb 656int walk_tg_tree_from(struct task_group *from,
8277434e 657 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
658{
659 struct task_group *parent, *child;
eb755805 660 int ret;
c09595f6 661
8277434e
PT
662 parent = from;
663
c09595f6 664down:
eb755805
PZ
665 ret = (*down)(parent, data);
666 if (ret)
8277434e 667 goto out;
c09595f6
PZ
668 list_for_each_entry_rcu(child, &parent->children, siblings) {
669 parent = child;
670 goto down;
671
672up:
673 continue;
674 }
eb755805 675 ret = (*up)(parent, data);
8277434e
PT
676 if (ret || parent == from)
677 goto out;
c09595f6
PZ
678
679 child = parent;
680 parent = parent->parent;
681 if (parent)
682 goto up;
8277434e 683out:
eb755805 684 return ret;
c09595f6
PZ
685}
686
029632fb 687int tg_nop(struct task_group *tg, void *data)
eb755805 688{
e2b245f8 689 return 0;
eb755805 690}
18d95a28
PZ
691#endif
692
029632fb 693void update_cpu_load(struct rq *this_rq);
9c217245 694
45bf76df
IM
695static void set_load_weight(struct task_struct *p)
696{
f05998d4
NR
697 int prio = p->static_prio - MAX_RT_PRIO;
698 struct load_weight *load = &p->se.load;
699
dd41f596
IM
700 /*
701 * SCHED_IDLE tasks get minimal weight:
702 */
703 if (p->policy == SCHED_IDLE) {
c8b28116 704 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 705 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
706 return;
707 }
71f8bd46 708
c8b28116 709 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 710 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
711}
712
371fd7e7 713static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 714{
a64692a3 715 update_rq_clock(rq);
dd41f596 716 sched_info_queued(p);
371fd7e7 717 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
718}
719
371fd7e7 720static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 721{
a64692a3 722 update_rq_clock(rq);
46ac22ba 723 sched_info_dequeued(p);
371fd7e7 724 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
725}
726
029632fb 727void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
728{
729 if (task_contributes_to_load(p))
730 rq->nr_uninterruptible--;
731
371fd7e7 732 enqueue_task(rq, p, flags);
1e3c88bd
PZ
733}
734
029632fb 735void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
736{
737 if (task_contributes_to_load(p))
738 rq->nr_uninterruptible++;
739
371fd7e7 740 dequeue_task(rq, p, flags);
1e3c88bd
PZ
741}
742
b52bfee4
VP
743#ifdef CONFIG_IRQ_TIME_ACCOUNTING
744
305e6835
VP
745/*
746 * There are no locks covering percpu hardirq/softirq time.
747 * They are only modified in account_system_vtime, on corresponding CPU
748 * with interrupts disabled. So, writes are safe.
749 * They are read and saved off onto struct rq in update_rq_clock().
750 * This may result in other CPU reading this CPU's irq time and can
751 * race with irq/account_system_vtime on this CPU. We would either get old
8e92c201
PZ
752 * or new value with a side effect of accounting a slice of irq time to wrong
753 * task when irq is in progress while we read rq->clock. That is a worthy
754 * compromise in place of having locks on each irq in account_system_time.
305e6835 755 */
b52bfee4
VP
756static DEFINE_PER_CPU(u64, cpu_hardirq_time);
757static DEFINE_PER_CPU(u64, cpu_softirq_time);
758
759static DEFINE_PER_CPU(u64, irq_start_time);
760static int sched_clock_irqtime;
761
762void enable_sched_clock_irqtime(void)
763{
764 sched_clock_irqtime = 1;
765}
766
767void disable_sched_clock_irqtime(void)
768{
769 sched_clock_irqtime = 0;
770}
771
8e92c201
PZ
772#ifndef CONFIG_64BIT
773static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
774
775static inline void irq_time_write_begin(void)
776{
777 __this_cpu_inc(irq_time_seq.sequence);
778 smp_wmb();
779}
780
781static inline void irq_time_write_end(void)
782{
783 smp_wmb();
784 __this_cpu_inc(irq_time_seq.sequence);
785}
786
787static inline u64 irq_time_read(int cpu)
788{
789 u64 irq_time;
790 unsigned seq;
791
792 do {
793 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
794 irq_time = per_cpu(cpu_softirq_time, cpu) +
795 per_cpu(cpu_hardirq_time, cpu);
796 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
797
798 return irq_time;
799}
800#else /* CONFIG_64BIT */
801static inline void irq_time_write_begin(void)
802{
803}
804
805static inline void irq_time_write_end(void)
806{
807}
808
809static inline u64 irq_time_read(int cpu)
305e6835 810{
305e6835
VP
811 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
812}
8e92c201 813#endif /* CONFIG_64BIT */
305e6835 814
fe44d621
PZ
815/*
816 * Called before incrementing preempt_count on {soft,}irq_enter
817 * and before decrementing preempt_count on {soft,}irq_exit.
818 */
b52bfee4
VP
819void account_system_vtime(struct task_struct *curr)
820{
821 unsigned long flags;
fe44d621 822 s64 delta;
b52bfee4 823 int cpu;
b52bfee4
VP
824
825 if (!sched_clock_irqtime)
826 return;
827
828 local_irq_save(flags);
829
b52bfee4 830 cpu = smp_processor_id();
fe44d621
PZ
831 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
832 __this_cpu_add(irq_start_time, delta);
833
8e92c201 834 irq_time_write_begin();
b52bfee4
VP
835 /*
836 * We do not account for softirq time from ksoftirqd here.
837 * We want to continue accounting softirq time to ksoftirqd thread
838 * in that case, so as not to confuse scheduler with a special task
839 * that do not consume any time, but still wants to run.
840 */
841 if (hardirq_count())
fe44d621 842 __this_cpu_add(cpu_hardirq_time, delta);
4dd53d89 843 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
fe44d621 844 __this_cpu_add(cpu_softirq_time, delta);
b52bfee4 845
8e92c201 846 irq_time_write_end();
b52bfee4
VP
847 local_irq_restore(flags);
848}
b7dadc38 849EXPORT_SYMBOL_GPL(account_system_vtime);
b52bfee4 850
e6e6685a
GC
851#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
852
853#ifdef CONFIG_PARAVIRT
854static inline u64 steal_ticks(u64 steal)
aa483808 855{
e6e6685a
GC
856 if (unlikely(steal > NSEC_PER_SEC))
857 return div_u64(steal, TICK_NSEC);
fe44d621 858
e6e6685a
GC
859 return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
860}
861#endif
862
fe44d621 863static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 864{
095c0aa8
GC
865/*
866 * In theory, the compile should just see 0 here, and optimize out the call
867 * to sched_rt_avg_update. But I don't trust it...
868 */
869#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
870 s64 steal = 0, irq_delta = 0;
871#endif
872#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 873 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
874
875 /*
876 * Since irq_time is only updated on {soft,}irq_exit, we might run into
877 * this case when a previous update_rq_clock() happened inside a
878 * {soft,}irq region.
879 *
880 * When this happens, we stop ->clock_task and only update the
881 * prev_irq_time stamp to account for the part that fit, so that a next
882 * update will consume the rest. This ensures ->clock_task is
883 * monotonic.
884 *
885 * It does however cause some slight miss-attribution of {soft,}irq
886 * time, a more accurate solution would be to update the irq_time using
887 * the current rq->clock timestamp, except that would require using
888 * atomic ops.
889 */
890 if (irq_delta > delta)
891 irq_delta = delta;
892
893 rq->prev_irq_time += irq_delta;
894 delta -= irq_delta;
095c0aa8
GC
895#endif
896#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
897 if (static_branch((&paravirt_steal_rq_enabled))) {
898 u64 st;
899
900 steal = paravirt_steal_clock(cpu_of(rq));
901 steal -= rq->prev_steal_time_rq;
902
903 if (unlikely(steal > delta))
904 steal = delta;
905
906 st = steal_ticks(steal);
907 steal = st * TICK_NSEC;
908
909 rq->prev_steal_time_rq += steal;
910
911 delta -= steal;
912 }
913#endif
914
fe44d621
PZ
915 rq->clock_task += delta;
916
095c0aa8
GC
917#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
918 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
919 sched_rt_avg_update(rq, irq_delta + steal);
920#endif
aa483808
VP
921}
922
095c0aa8 923#ifdef CONFIG_IRQ_TIME_ACCOUNTING
abb74cef
VP
924static int irqtime_account_hi_update(void)
925{
3292beb3 926 u64 *cpustat = kcpustat_this_cpu->cpustat;
abb74cef
VP
927 unsigned long flags;
928 u64 latest_ns;
929 int ret = 0;
930
931 local_irq_save(flags);
932 latest_ns = this_cpu_read(cpu_hardirq_time);
612ef28a 933 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
abb74cef
VP
934 ret = 1;
935 local_irq_restore(flags);
936 return ret;
937}
938
939static int irqtime_account_si_update(void)
940{
3292beb3 941 u64 *cpustat = kcpustat_this_cpu->cpustat;
abb74cef
VP
942 unsigned long flags;
943 u64 latest_ns;
944 int ret = 0;
945
946 local_irq_save(flags);
947 latest_ns = this_cpu_read(cpu_softirq_time);
612ef28a 948 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
abb74cef
VP
949 ret = 1;
950 local_irq_restore(flags);
951 return ret;
952}
953
fe44d621 954#else /* CONFIG_IRQ_TIME_ACCOUNTING */
305e6835 955
abb74cef
VP
956#define sched_clock_irqtime (0)
957
095c0aa8 958#endif
b52bfee4 959
34f971f6
PZ
960void sched_set_stop_task(int cpu, struct task_struct *stop)
961{
962 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
963 struct task_struct *old_stop = cpu_rq(cpu)->stop;
964
965 if (stop) {
966 /*
967 * Make it appear like a SCHED_FIFO task, its something
968 * userspace knows about and won't get confused about.
969 *
970 * Also, it will make PI more or less work without too
971 * much confusion -- but then, stop work should not
972 * rely on PI working anyway.
973 */
974 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
975
976 stop->sched_class = &stop_sched_class;
977 }
978
979 cpu_rq(cpu)->stop = stop;
980
981 if (old_stop) {
982 /*
983 * Reset it back to a normal scheduling class so that
984 * it can die in pieces.
985 */
986 old_stop->sched_class = &rt_sched_class;
987 }
988}
989
14531189 990/*
dd41f596 991 * __normal_prio - return the priority that is based on the static prio
14531189 992 */
14531189
IM
993static inline int __normal_prio(struct task_struct *p)
994{
dd41f596 995 return p->static_prio;
14531189
IM
996}
997
b29739f9
IM
998/*
999 * Calculate the expected normal priority: i.e. priority
1000 * without taking RT-inheritance into account. Might be
1001 * boosted by interactivity modifiers. Changes upon fork,
1002 * setprio syscalls, and whenever the interactivity
1003 * estimator recalculates.
1004 */
36c8b586 1005static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1006{
1007 int prio;
1008
e05606d3 1009 if (task_has_rt_policy(p))
b29739f9
IM
1010 prio = MAX_RT_PRIO-1 - p->rt_priority;
1011 else
1012 prio = __normal_prio(p);
1013 return prio;
1014}
1015
1016/*
1017 * Calculate the current priority, i.e. the priority
1018 * taken into account by the scheduler. This value might
1019 * be boosted by RT tasks, or might be boosted by
1020 * interactivity modifiers. Will be RT if the task got
1021 * RT-boosted. If not then it returns p->normal_prio.
1022 */
36c8b586 1023static int effective_prio(struct task_struct *p)
b29739f9
IM
1024{
1025 p->normal_prio = normal_prio(p);
1026 /*
1027 * If we are RT tasks or we were boosted to RT priority,
1028 * keep the priority unchanged. Otherwise, update priority
1029 * to the normal priority:
1030 */
1031 if (!rt_prio(p->prio))
1032 return p->normal_prio;
1033 return p->prio;
1034}
1035
1da177e4
LT
1036/**
1037 * task_curr - is this task currently executing on a CPU?
1038 * @p: the task in question.
1039 */
36c8b586 1040inline int task_curr(const struct task_struct *p)
1da177e4
LT
1041{
1042 return cpu_curr(task_cpu(p)) == p;
1043}
1044
cb469845
SR
1045static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1046 const struct sched_class *prev_class,
da7a735e 1047 int oldprio)
cb469845
SR
1048{
1049 if (prev_class != p->sched_class) {
1050 if (prev_class->switched_from)
da7a735e
PZ
1051 prev_class->switched_from(rq, p);
1052 p->sched_class->switched_to(rq, p);
1053 } else if (oldprio != p->prio)
1054 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
1055}
1056
029632fb 1057void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
1058{
1059 const struct sched_class *class;
1060
1061 if (p->sched_class == rq->curr->sched_class) {
1062 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1063 } else {
1064 for_each_class(class) {
1065 if (class == rq->curr->sched_class)
1066 break;
1067 if (class == p->sched_class) {
1068 resched_task(rq->curr);
1069 break;
1070 }
1071 }
1072 }
1073
1074 /*
1075 * A queue event has occurred, and we're going to schedule. In
1076 * this case, we can save a useless back to back clock update.
1077 */
fd2f4419 1078 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
1079 rq->skip_clock_update = 1;
1080}
1081
1da177e4 1082#ifdef CONFIG_SMP
dd41f596 1083void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1084{
e2912009
PZ
1085#ifdef CONFIG_SCHED_DEBUG
1086 /*
1087 * We should never call set_task_cpu() on a blocked task,
1088 * ttwu() will sort out the placement.
1089 */
077614ee
PZ
1090 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1091 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
0122ec5b
PZ
1092
1093#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1094 /*
1095 * The caller should hold either p->pi_lock or rq->lock, when changing
1096 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1097 *
1098 * sched_move_task() holds both and thus holding either pins the cgroup,
1099 * see set_task_rq().
1100 *
1101 * Furthermore, all task_rq users should acquire both locks, see
1102 * task_rq_lock().
1103 */
0122ec5b
PZ
1104 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1105 lockdep_is_held(&task_rq(p)->lock)));
1106#endif
e2912009
PZ
1107#endif
1108
de1d7286 1109 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1110
0c69774e
PZ
1111 if (task_cpu(p) != new_cpu) {
1112 p->se.nr_migrations++;
a8b0ca17 1113 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
0c69774e 1114 }
dd41f596
IM
1115
1116 __set_task_cpu(p, new_cpu);
c65cc870
IM
1117}
1118
969c7921 1119struct migration_arg {
36c8b586 1120 struct task_struct *task;
1da177e4 1121 int dest_cpu;
70b97a7f 1122};
1da177e4 1123
969c7921
TH
1124static int migration_cpu_stop(void *data);
1125
1da177e4
LT
1126/*
1127 * wait_task_inactive - wait for a thread to unschedule.
1128 *
85ba2d86
RM
1129 * If @match_state is nonzero, it's the @p->state value just checked and
1130 * not expected to change. If it changes, i.e. @p might have woken up,
1131 * then return zero. When we succeed in waiting for @p to be off its CPU,
1132 * we return a positive number (its total switch count). If a second call
1133 * a short while later returns the same number, the caller can be sure that
1134 * @p has remained unscheduled the whole time.
1135 *
1da177e4
LT
1136 * The caller must ensure that the task *will* unschedule sometime soon,
1137 * else this function might spin for a *long* time. This function can't
1138 * be called with interrupts off, or it may introduce deadlock with
1139 * smp_call_function() if an IPI is sent by the same process we are
1140 * waiting to become inactive.
1141 */
85ba2d86 1142unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1143{
1144 unsigned long flags;
dd41f596 1145 int running, on_rq;
85ba2d86 1146 unsigned long ncsw;
70b97a7f 1147 struct rq *rq;
1da177e4 1148
3a5c359a
AK
1149 for (;;) {
1150 /*
1151 * We do the initial early heuristics without holding
1152 * any task-queue locks at all. We'll only try to get
1153 * the runqueue lock when things look like they will
1154 * work out!
1155 */
1156 rq = task_rq(p);
fa490cfd 1157
3a5c359a
AK
1158 /*
1159 * If the task is actively running on another CPU
1160 * still, just relax and busy-wait without holding
1161 * any locks.
1162 *
1163 * NOTE! Since we don't hold any locks, it's not
1164 * even sure that "rq" stays as the right runqueue!
1165 * But we don't care, since "task_running()" will
1166 * return false if the runqueue has changed and p
1167 * is actually now running somewhere else!
1168 */
85ba2d86
RM
1169 while (task_running(rq, p)) {
1170 if (match_state && unlikely(p->state != match_state))
1171 return 0;
3a5c359a 1172 cpu_relax();
85ba2d86 1173 }
fa490cfd 1174
3a5c359a
AK
1175 /*
1176 * Ok, time to look more closely! We need the rq
1177 * lock now, to be *sure*. If we're wrong, we'll
1178 * just go back and repeat.
1179 */
1180 rq = task_rq_lock(p, &flags);
27a9da65 1181 trace_sched_wait_task(p);
3a5c359a 1182 running = task_running(rq, p);
fd2f4419 1183 on_rq = p->on_rq;
85ba2d86 1184 ncsw = 0;
f31e11d8 1185 if (!match_state || p->state == match_state)
93dcf55f 1186 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1187 task_rq_unlock(rq, p, &flags);
fa490cfd 1188
85ba2d86
RM
1189 /*
1190 * If it changed from the expected state, bail out now.
1191 */
1192 if (unlikely(!ncsw))
1193 break;
1194
3a5c359a
AK
1195 /*
1196 * Was it really running after all now that we
1197 * checked with the proper locks actually held?
1198 *
1199 * Oops. Go back and try again..
1200 */
1201 if (unlikely(running)) {
1202 cpu_relax();
1203 continue;
1204 }
fa490cfd 1205
3a5c359a
AK
1206 /*
1207 * It's not enough that it's not actively running,
1208 * it must be off the runqueue _entirely_, and not
1209 * preempted!
1210 *
80dd99b3 1211 * So if it was still runnable (but just not actively
3a5c359a
AK
1212 * running right now), it's preempted, and we should
1213 * yield - it could be a while.
1214 */
1215 if (unlikely(on_rq)) {
8eb90c30
TG
1216 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1217
1218 set_current_state(TASK_UNINTERRUPTIBLE);
1219 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1220 continue;
1221 }
fa490cfd 1222
3a5c359a
AK
1223 /*
1224 * Ahh, all good. It wasn't running, and it wasn't
1225 * runnable, which means that it will never become
1226 * running in the future either. We're all done!
1227 */
1228 break;
1229 }
85ba2d86
RM
1230
1231 return ncsw;
1da177e4
LT
1232}
1233
1234/***
1235 * kick_process - kick a running thread to enter/exit the kernel
1236 * @p: the to-be-kicked thread
1237 *
1238 * Cause a process which is running on another CPU to enter
1239 * kernel-mode, without any delay. (to get signals handled.)
1240 *
25985edc 1241 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1242 * because all it wants to ensure is that the remote task enters
1243 * the kernel. If the IPI races and the task has been migrated
1244 * to another CPU then no harm is done and the purpose has been
1245 * achieved as well.
1246 */
36c8b586 1247void kick_process(struct task_struct *p)
1da177e4
LT
1248{
1249 int cpu;
1250
1251 preempt_disable();
1252 cpu = task_cpu(p);
1253 if ((cpu != smp_processor_id()) && task_curr(p))
1254 smp_send_reschedule(cpu);
1255 preempt_enable();
1256}
b43e3521 1257EXPORT_SYMBOL_GPL(kick_process);
476d139c 1258#endif /* CONFIG_SMP */
1da177e4 1259
970b13ba 1260#ifdef CONFIG_SMP
30da688e 1261/*
013fdb80 1262 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1263 */
5da9a0fb
PZ
1264static int select_fallback_rq(int cpu, struct task_struct *p)
1265{
5da9a0fb 1266 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2baab4e9
PZ
1267 enum { cpuset, possible, fail } state = cpuset;
1268 int dest_cpu;
5da9a0fb
PZ
1269
1270 /* Look for allowed, online CPU in same node. */
2baab4e9
PZ
1271 for_each_cpu_mask(dest_cpu, *nodemask) {
1272 if (!cpu_online(dest_cpu))
1273 continue;
1274 if (!cpu_active(dest_cpu))
1275 continue;
fa17b507 1276 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
5da9a0fb 1277 return dest_cpu;
2baab4e9 1278 }
5da9a0fb 1279
2baab4e9
PZ
1280 for (;;) {
1281 /* Any allowed, online CPU? */
1282 for_each_cpu_mask(dest_cpu, *tsk_cpus_allowed(p)) {
1283 if (!cpu_online(dest_cpu))
1284 continue;
1285 if (!cpu_active(dest_cpu))
1286 continue;
1287 goto out;
1288 }
5da9a0fb 1289
2baab4e9
PZ
1290 switch (state) {
1291 case cpuset:
1292 /* No more Mr. Nice Guy. */
1293 cpuset_cpus_allowed_fallback(p);
1294 state = possible;
1295 break;
1296
1297 case possible:
1298 do_set_cpus_allowed(p, cpu_possible_mask);
1299 state = fail;
1300 break;
1301
1302 case fail:
1303 BUG();
1304 break;
1305 }
1306 }
1307
1308out:
1309 if (state != cpuset) {
1310 /*
1311 * Don't tell them about moving exiting tasks or
1312 * kernel threads (both mm NULL), since they never
1313 * leave kernel.
1314 */
1315 if (p->mm && printk_ratelimit()) {
1316 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1317 task_pid_nr(p), p->comm, cpu);
1318 }
5da9a0fb
PZ
1319 }
1320
1321 return dest_cpu;
1322}
1323
e2912009 1324/*
013fdb80 1325 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1326 */
970b13ba 1327static inline
7608dec2 1328int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 1329{
7608dec2 1330 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
e2912009
PZ
1331
1332 /*
1333 * In order not to call set_task_cpu() on a blocking task we need
1334 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1335 * cpu.
1336 *
1337 * Since this is common to all placement strategies, this lives here.
1338 *
1339 * [ this allows ->select_task() to simply return task_cpu(p) and
1340 * not worry about this generic constraint ]
1341 */
fa17b507 1342 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1343 !cpu_online(cpu)))
5da9a0fb 1344 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1345
1346 return cpu;
970b13ba 1347}
09a40af5
MG
1348
1349static void update_avg(u64 *avg, u64 sample)
1350{
1351 s64 diff = sample - *avg;
1352 *avg += diff >> 3;
1353}
970b13ba
PZ
1354#endif
1355
d7c01d27 1356static void
b84cb5df 1357ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1358{
d7c01d27 1359#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1360 struct rq *rq = this_rq();
1361
d7c01d27
PZ
1362#ifdef CONFIG_SMP
1363 int this_cpu = smp_processor_id();
1364
1365 if (cpu == this_cpu) {
1366 schedstat_inc(rq, ttwu_local);
1367 schedstat_inc(p, se.statistics.nr_wakeups_local);
1368 } else {
1369 struct sched_domain *sd;
1370
1371 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1372 rcu_read_lock();
d7c01d27
PZ
1373 for_each_domain(this_cpu, sd) {
1374 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1375 schedstat_inc(sd, ttwu_wake_remote);
1376 break;
1377 }
1378 }
057f3fad 1379 rcu_read_unlock();
d7c01d27 1380 }
f339b9dc
PZ
1381
1382 if (wake_flags & WF_MIGRATED)
1383 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1384
d7c01d27
PZ
1385#endif /* CONFIG_SMP */
1386
1387 schedstat_inc(rq, ttwu_count);
9ed3811a 1388 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1389
1390 if (wake_flags & WF_SYNC)
9ed3811a 1391 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1392
d7c01d27
PZ
1393#endif /* CONFIG_SCHEDSTATS */
1394}
1395
1396static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1397{
9ed3811a 1398 activate_task(rq, p, en_flags);
fd2f4419 1399 p->on_rq = 1;
c2f7115e
PZ
1400
1401 /* if a worker is waking up, notify workqueue */
1402 if (p->flags & PF_WQ_WORKER)
1403 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1404}
1405
23f41eeb
PZ
1406/*
1407 * Mark the task runnable and perform wakeup-preemption.
1408 */
89363381 1409static void
23f41eeb 1410ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1411{
89363381 1412 trace_sched_wakeup(p, true);
9ed3811a
TH
1413 check_preempt_curr(rq, p, wake_flags);
1414
1415 p->state = TASK_RUNNING;
1416#ifdef CONFIG_SMP
1417 if (p->sched_class->task_woken)
1418 p->sched_class->task_woken(rq, p);
1419
e69c6341 1420 if (rq->idle_stamp) {
9ed3811a
TH
1421 u64 delta = rq->clock - rq->idle_stamp;
1422 u64 max = 2*sysctl_sched_migration_cost;
1423
1424 if (delta > max)
1425 rq->avg_idle = max;
1426 else
1427 update_avg(&rq->avg_idle, delta);
1428 rq->idle_stamp = 0;
1429 }
1430#endif
1431}
1432
c05fbafb
PZ
1433static void
1434ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1435{
1436#ifdef CONFIG_SMP
1437 if (p->sched_contributes_to_load)
1438 rq->nr_uninterruptible--;
1439#endif
1440
1441 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1442 ttwu_do_wakeup(rq, p, wake_flags);
1443}
1444
1445/*
1446 * Called in case the task @p isn't fully descheduled from its runqueue,
1447 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1448 * since all we need to do is flip p->state to TASK_RUNNING, since
1449 * the task is still ->on_rq.
1450 */
1451static int ttwu_remote(struct task_struct *p, int wake_flags)
1452{
1453 struct rq *rq;
1454 int ret = 0;
1455
1456 rq = __task_rq_lock(p);
1457 if (p->on_rq) {
1458 ttwu_do_wakeup(rq, p, wake_flags);
1459 ret = 1;
1460 }
1461 __task_rq_unlock(rq);
1462
1463 return ret;
1464}
1465
317f3941 1466#ifdef CONFIG_SMP
fa14ff4a 1467static void sched_ttwu_pending(void)
317f3941
PZ
1468{
1469 struct rq *rq = this_rq();
fa14ff4a
PZ
1470 struct llist_node *llist = llist_del_all(&rq->wake_list);
1471 struct task_struct *p;
317f3941
PZ
1472
1473 raw_spin_lock(&rq->lock);
1474
fa14ff4a
PZ
1475 while (llist) {
1476 p = llist_entry(llist, struct task_struct, wake_entry);
1477 llist = llist_next(llist);
317f3941
PZ
1478 ttwu_do_activate(rq, p, 0);
1479 }
1480
1481 raw_spin_unlock(&rq->lock);
1482}
1483
1484void scheduler_ipi(void)
1485{
ca38062e 1486 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1487 return;
1488
1489 /*
1490 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1491 * traditionally all their work was done from the interrupt return
1492 * path. Now that we actually do some work, we need to make sure
1493 * we do call them.
1494 *
1495 * Some archs already do call them, luckily irq_enter/exit nest
1496 * properly.
1497 *
1498 * Arguably we should visit all archs and update all handlers,
1499 * however a fair share of IPIs are still resched only so this would
1500 * somewhat pessimize the simple resched case.
1501 */
1502 irq_enter();
fa14ff4a 1503 sched_ttwu_pending();
ca38062e
SS
1504
1505 /*
1506 * Check if someone kicked us for doing the nohz idle load balance.
1507 */
6eb57e0d
SS
1508 if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1509 this_rq()->idle_balance = 1;
ca38062e 1510 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1511 }
c5d753a5 1512 irq_exit();
317f3941
PZ
1513}
1514
1515static void ttwu_queue_remote(struct task_struct *p, int cpu)
1516{
fa14ff4a 1517 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
317f3941
PZ
1518 smp_send_reschedule(cpu);
1519}
d6aa8f85
PZ
1520
1521#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1522static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
1523{
1524 struct rq *rq;
1525 int ret = 0;
1526
1527 rq = __task_rq_lock(p);
1528 if (p->on_cpu) {
1529 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1530 ttwu_do_wakeup(rq, p, wake_flags);
1531 ret = 1;
1532 }
1533 __task_rq_unlock(rq);
1534
1535 return ret;
1536
1537}
1538#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
518cd623 1539
39be3501 1540bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1541{
1542 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1543}
d6aa8f85 1544#endif /* CONFIG_SMP */
317f3941 1545
c05fbafb
PZ
1546static void ttwu_queue(struct task_struct *p, int cpu)
1547{
1548 struct rq *rq = cpu_rq(cpu);
1549
17d9f311 1550#if defined(CONFIG_SMP)
39be3501 1551 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1552 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1553 ttwu_queue_remote(p, cpu);
1554 return;
1555 }
1556#endif
1557
c05fbafb
PZ
1558 raw_spin_lock(&rq->lock);
1559 ttwu_do_activate(rq, p, 0);
1560 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1561}
1562
1563/**
1da177e4 1564 * try_to_wake_up - wake up a thread
9ed3811a 1565 * @p: the thread to be awakened
1da177e4 1566 * @state: the mask of task states that can be woken
9ed3811a 1567 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1568 *
1569 * Put it on the run-queue if it's not already there. The "current"
1570 * thread is always on the run-queue (except when the actual
1571 * re-schedule is in progress), and as such you're allowed to do
1572 * the simpler "current->state = TASK_RUNNING" to mark yourself
1573 * runnable without the overhead of this.
1574 *
9ed3811a
TH
1575 * Returns %true if @p was woken up, %false if it was already running
1576 * or @state didn't match @p's state.
1da177e4 1577 */
e4a52bcb
PZ
1578static int
1579try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1580{
1da177e4 1581 unsigned long flags;
c05fbafb 1582 int cpu, success = 0;
2398f2c6 1583
04e2f174 1584 smp_wmb();
013fdb80 1585 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1586 if (!(p->state & state))
1da177e4
LT
1587 goto out;
1588
c05fbafb 1589 success = 1; /* we're going to change ->state */
1da177e4 1590 cpu = task_cpu(p);
1da177e4 1591
c05fbafb
PZ
1592 if (p->on_rq && ttwu_remote(p, wake_flags))
1593 goto stat;
1da177e4 1594
1da177e4 1595#ifdef CONFIG_SMP
e9c84311 1596 /*
c05fbafb
PZ
1597 * If the owning (remote) cpu is still in the middle of schedule() with
1598 * this task as prev, wait until its done referencing the task.
e9c84311 1599 */
e4a52bcb
PZ
1600 while (p->on_cpu) {
1601#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1602 /*
d6aa8f85
PZ
1603 * In case the architecture enables interrupts in
1604 * context_switch(), we cannot busy wait, since that
1605 * would lead to deadlocks when an interrupt hits and
1606 * tries to wake up @prev. So bail and do a complete
1607 * remote wakeup.
e4a52bcb 1608 */
d6aa8f85 1609 if (ttwu_activate_remote(p, wake_flags))
c05fbafb 1610 goto stat;
d6aa8f85 1611#else
e4a52bcb 1612 cpu_relax();
d6aa8f85 1613#endif
371fd7e7 1614 }
0970d299 1615 /*
e4a52bcb 1616 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1617 */
e4a52bcb 1618 smp_rmb();
1da177e4 1619
a8e4f2ea 1620 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1621 p->state = TASK_WAKING;
e7693a36 1622
e4a52bcb 1623 if (p->sched_class->task_waking)
74f8e4b2 1624 p->sched_class->task_waking(p);
efbbd05a 1625
7608dec2 1626 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1627 if (task_cpu(p) != cpu) {
1628 wake_flags |= WF_MIGRATED;
e4a52bcb 1629 set_task_cpu(p, cpu);
f339b9dc 1630 }
1da177e4 1631#endif /* CONFIG_SMP */
1da177e4 1632
c05fbafb
PZ
1633 ttwu_queue(p, cpu);
1634stat:
b84cb5df 1635 ttwu_stat(p, cpu, wake_flags);
1da177e4 1636out:
013fdb80 1637 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1638
1639 return success;
1640}
1641
21aa9af0
TH
1642/**
1643 * try_to_wake_up_local - try to wake up a local task with rq lock held
1644 * @p: the thread to be awakened
1645 *
2acca55e 1646 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1647 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1648 * the current task.
21aa9af0
TH
1649 */
1650static void try_to_wake_up_local(struct task_struct *p)
1651{
1652 struct rq *rq = task_rq(p);
21aa9af0
TH
1653
1654 BUG_ON(rq != this_rq());
1655 BUG_ON(p == current);
1656 lockdep_assert_held(&rq->lock);
1657
2acca55e
PZ
1658 if (!raw_spin_trylock(&p->pi_lock)) {
1659 raw_spin_unlock(&rq->lock);
1660 raw_spin_lock(&p->pi_lock);
1661 raw_spin_lock(&rq->lock);
1662 }
1663
21aa9af0 1664 if (!(p->state & TASK_NORMAL))
2acca55e 1665 goto out;
21aa9af0 1666
fd2f4419 1667 if (!p->on_rq)
d7c01d27
PZ
1668 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1669
23f41eeb 1670 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1671 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1672out:
1673 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1674}
1675
50fa610a
DH
1676/**
1677 * wake_up_process - Wake up a specific process
1678 * @p: The process to be woken up.
1679 *
1680 * Attempt to wake up the nominated process and move it to the set of runnable
1681 * processes. Returns 1 if the process was woken up, 0 if it was already
1682 * running.
1683 *
1684 * It may be assumed that this function implies a write memory barrier before
1685 * changing the task state if and only if any tasks are woken up.
1686 */
7ad5b3a5 1687int wake_up_process(struct task_struct *p)
1da177e4 1688{
d9514f6c 1689 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 1690}
1da177e4
LT
1691EXPORT_SYMBOL(wake_up_process);
1692
7ad5b3a5 1693int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1694{
1695 return try_to_wake_up(p, state, 0);
1696}
1697
1da177e4
LT
1698/*
1699 * Perform scheduler related setup for a newly forked process p.
1700 * p is forked by current.
dd41f596
IM
1701 *
1702 * __sched_fork() is basic setup used by init_idle() too:
1703 */
1704static void __sched_fork(struct task_struct *p)
1705{
fd2f4419
PZ
1706 p->on_rq = 0;
1707
1708 p->se.on_rq = 0;
dd41f596
IM
1709 p->se.exec_start = 0;
1710 p->se.sum_exec_runtime = 0;
f6cf891c 1711 p->se.prev_sum_exec_runtime = 0;
6c594c21 1712 p->se.nr_migrations = 0;
da7a735e 1713 p->se.vruntime = 0;
fd2f4419 1714 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
1715
1716#ifdef CONFIG_SCHEDSTATS
41acab88 1717 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 1718#endif
476d139c 1719
fa717060 1720 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 1721
e107be36
AK
1722#ifdef CONFIG_PREEMPT_NOTIFIERS
1723 INIT_HLIST_HEAD(&p->preempt_notifiers);
1724#endif
dd41f596
IM
1725}
1726
1727/*
1728 * fork()/clone()-time setup:
1729 */
3e51e3ed 1730void sched_fork(struct task_struct *p)
dd41f596 1731{
0122ec5b 1732 unsigned long flags;
dd41f596
IM
1733 int cpu = get_cpu();
1734
1735 __sched_fork(p);
06b83b5f 1736 /*
0017d735 1737 * We mark the process as running here. This guarantees that
06b83b5f
PZ
1738 * nobody will actually run it, and a signal or other external
1739 * event cannot wake it up and insert it on the runqueue either.
1740 */
0017d735 1741 p->state = TASK_RUNNING;
dd41f596 1742
c350a04e
MG
1743 /*
1744 * Make sure we do not leak PI boosting priority to the child.
1745 */
1746 p->prio = current->normal_prio;
1747
b9dc29e7
MG
1748 /*
1749 * Revert to default priority/policy on fork if requested.
1750 */
1751 if (unlikely(p->sched_reset_on_fork)) {
c350a04e 1752 if (task_has_rt_policy(p)) {
b9dc29e7 1753 p->policy = SCHED_NORMAL;
6c697bdf 1754 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
1755 p->rt_priority = 0;
1756 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1757 p->static_prio = NICE_TO_PRIO(0);
1758
1759 p->prio = p->normal_prio = __normal_prio(p);
1760 set_load_weight(p);
6c697bdf 1761
b9dc29e7
MG
1762 /*
1763 * We don't need the reset flag anymore after the fork. It has
1764 * fulfilled its duty:
1765 */
1766 p->sched_reset_on_fork = 0;
1767 }
ca94c442 1768
2ddbf952
HS
1769 if (!rt_prio(p->prio))
1770 p->sched_class = &fair_sched_class;
b29739f9 1771
cd29fe6f
PZ
1772 if (p->sched_class->task_fork)
1773 p->sched_class->task_fork(p);
1774
86951599
PZ
1775 /*
1776 * The child is not yet in the pid-hash so no cgroup attach races,
1777 * and the cgroup is pinned to this child due to cgroup_fork()
1778 * is ran before sched_fork().
1779 *
1780 * Silence PROVE_RCU.
1781 */
0122ec5b 1782 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 1783 set_task_cpu(p, cpu);
0122ec5b 1784 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 1785
52f17b6c 1786#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1787 if (likely(sched_info_on()))
52f17b6c 1788 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1789#endif
3ca7a440
PZ
1790#if defined(CONFIG_SMP)
1791 p->on_cpu = 0;
4866cde0 1792#endif
bdd4e85d 1793#ifdef CONFIG_PREEMPT_COUNT
4866cde0 1794 /* Want to start with kernel preemption disabled. */
a1261f54 1795 task_thread_info(p)->preempt_count = 1;
1da177e4 1796#endif
806c09a7 1797#ifdef CONFIG_SMP
917b627d 1798 plist_node_init(&p->pushable_tasks, MAX_PRIO);
806c09a7 1799#endif
917b627d 1800
476d139c 1801 put_cpu();
1da177e4
LT
1802}
1803
1804/*
1805 * wake_up_new_task - wake up a newly created task for the first time.
1806 *
1807 * This function will do some initial scheduler statistics housekeeping
1808 * that must be done for every newly created context, then puts the task
1809 * on the runqueue and wakes it.
1810 */
3e51e3ed 1811void wake_up_new_task(struct task_struct *p)
1da177e4
LT
1812{
1813 unsigned long flags;
dd41f596 1814 struct rq *rq;
fabf318e 1815
ab2515c4 1816 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
1817#ifdef CONFIG_SMP
1818 /*
1819 * Fork balancing, do it here and not earlier because:
1820 * - cpus_allowed can change in the fork path
1821 * - any previously selected cpu might disappear through hotplug
fabf318e 1822 */
ab2515c4 1823 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
0017d735
PZ
1824#endif
1825
ab2515c4 1826 rq = __task_rq_lock(p);
cd29fe6f 1827 activate_task(rq, p, 0);
fd2f4419 1828 p->on_rq = 1;
89363381 1829 trace_sched_wakeup_new(p, true);
a7558e01 1830 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 1831#ifdef CONFIG_SMP
efbbd05a
PZ
1832 if (p->sched_class->task_woken)
1833 p->sched_class->task_woken(rq, p);
9a897c5a 1834#endif
0122ec5b 1835 task_rq_unlock(rq, p, &flags);
1da177e4
LT
1836}
1837
e107be36
AK
1838#ifdef CONFIG_PREEMPT_NOTIFIERS
1839
1840/**
80dd99b3 1841 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 1842 * @notifier: notifier struct to register
e107be36
AK
1843 */
1844void preempt_notifier_register(struct preempt_notifier *notifier)
1845{
1846 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1847}
1848EXPORT_SYMBOL_GPL(preempt_notifier_register);
1849
1850/**
1851 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 1852 * @notifier: notifier struct to unregister
e107be36
AK
1853 *
1854 * This is safe to call from within a preemption notifier.
1855 */
1856void preempt_notifier_unregister(struct preempt_notifier *notifier)
1857{
1858 hlist_del(&notifier->link);
1859}
1860EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1861
1862static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1863{
1864 struct preempt_notifier *notifier;
1865 struct hlist_node *node;
1866
1867 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1868 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1869}
1870
1871static void
1872fire_sched_out_preempt_notifiers(struct task_struct *curr,
1873 struct task_struct *next)
1874{
1875 struct preempt_notifier *notifier;
1876 struct hlist_node *node;
1877
1878 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1879 notifier->ops->sched_out(notifier, next);
1880}
1881
6d6bc0ad 1882#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
1883
1884static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1885{
1886}
1887
1888static void
1889fire_sched_out_preempt_notifiers(struct task_struct *curr,
1890 struct task_struct *next)
1891{
1892}
1893
6d6bc0ad 1894#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 1895
4866cde0
NP
1896/**
1897 * prepare_task_switch - prepare to switch tasks
1898 * @rq: the runqueue preparing to switch
421cee29 1899 * @prev: the current task that is being switched out
4866cde0
NP
1900 * @next: the task we are going to switch to.
1901 *
1902 * This is called with the rq lock held and interrupts off. It must
1903 * be paired with a subsequent finish_task_switch after the context
1904 * switch.
1905 *
1906 * prepare_task_switch sets up locking and calls architecture specific
1907 * hooks.
1908 */
e107be36
AK
1909static inline void
1910prepare_task_switch(struct rq *rq, struct task_struct *prev,
1911 struct task_struct *next)
4866cde0 1912{
fe4b04fa
PZ
1913 sched_info_switch(prev, next);
1914 perf_event_task_sched_out(prev, next);
e107be36 1915 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
1916 prepare_lock_switch(rq, next);
1917 prepare_arch_switch(next);
fe4b04fa 1918 trace_sched_switch(prev, next);
4866cde0
NP
1919}
1920
1da177e4
LT
1921/**
1922 * finish_task_switch - clean up after a task-switch
344babaa 1923 * @rq: runqueue associated with task-switch
1da177e4
LT
1924 * @prev: the thread we just switched away from.
1925 *
4866cde0
NP
1926 * finish_task_switch must be called after the context switch, paired
1927 * with a prepare_task_switch call before the context switch.
1928 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1929 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1930 *
1931 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 1932 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
1933 * with the lock held can cause deadlocks; see schedule() for
1934 * details.)
1935 */
a9957449 1936static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1937 __releases(rq->lock)
1938{
1da177e4 1939 struct mm_struct *mm = rq->prev_mm;
55a101f8 1940 long prev_state;
1da177e4
LT
1941
1942 rq->prev_mm = NULL;
1943
1944 /*
1945 * A task struct has one reference for the use as "current".
c394cc9f 1946 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1947 * schedule one last time. The schedule call will never return, and
1948 * the scheduled task must drop that reference.
c394cc9f 1949 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1950 * still held, otherwise prev could be scheduled on another cpu, die
1951 * there before we look at prev->state, and then the reference would
1952 * be dropped twice.
1953 * Manfred Spraul <manfred@colorfullife.com>
1954 */
55a101f8 1955 prev_state = prev->state;
4866cde0 1956 finish_arch_switch(prev);
8381f65d
JI
1957#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1958 local_irq_disable();
1959#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
a8d757ef 1960 perf_event_task_sched_in(prev, current);
8381f65d
JI
1961#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1962 local_irq_enable();
1963#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
4866cde0 1964 finish_lock_switch(rq, prev);
01f23e16 1965 finish_arch_post_lock_switch();
e8fa1362 1966
e107be36 1967 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
1968 if (mm)
1969 mmdrop(mm);
c394cc9f 1970 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 1971 /*
1972 * Remove function-return probe instances associated with this
1973 * task and put them back on the free list.
9761eea8 1974 */
c6fd91f0 1975 kprobe_flush_task(prev);
1da177e4 1976 put_task_struct(prev);
c6fd91f0 1977 }
1da177e4
LT
1978}
1979
3f029d3c
GH
1980#ifdef CONFIG_SMP
1981
1982/* assumes rq->lock is held */
1983static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1984{
1985 if (prev->sched_class->pre_schedule)
1986 prev->sched_class->pre_schedule(rq, prev);
1987}
1988
1989/* rq->lock is NOT held, but preemption is disabled */
1990static inline void post_schedule(struct rq *rq)
1991{
1992 if (rq->post_schedule) {
1993 unsigned long flags;
1994
05fa785c 1995 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
1996 if (rq->curr->sched_class->post_schedule)
1997 rq->curr->sched_class->post_schedule(rq);
05fa785c 1998 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
1999
2000 rq->post_schedule = 0;
2001 }
2002}
2003
2004#else
da19ab51 2005
3f029d3c
GH
2006static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2007{
2008}
2009
2010static inline void post_schedule(struct rq *rq)
2011{
1da177e4
LT
2012}
2013
3f029d3c
GH
2014#endif
2015
1da177e4
LT
2016/**
2017 * schedule_tail - first thing a freshly forked thread must call.
2018 * @prev: the thread we just switched away from.
2019 */
36c8b586 2020asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2021 __releases(rq->lock)
2022{
70b97a7f
IM
2023 struct rq *rq = this_rq();
2024
4866cde0 2025 finish_task_switch(rq, prev);
da19ab51 2026
3f029d3c
GH
2027 /*
2028 * FIXME: do we need to worry about rq being invalidated by the
2029 * task_switch?
2030 */
2031 post_schedule(rq);
70b97a7f 2032
4866cde0
NP
2033#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2034 /* In this case, finish_task_switch does not reenable preemption */
2035 preempt_enable();
2036#endif
1da177e4 2037 if (current->set_child_tid)
b488893a 2038 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2039}
2040
2041/*
2042 * context_switch - switch to the new MM and the new
2043 * thread's register state.
2044 */
dd41f596 2045static inline void
70b97a7f 2046context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2047 struct task_struct *next)
1da177e4 2048{
dd41f596 2049 struct mm_struct *mm, *oldmm;
1da177e4 2050
e107be36 2051 prepare_task_switch(rq, prev, next);
fe4b04fa 2052
dd41f596
IM
2053 mm = next->mm;
2054 oldmm = prev->active_mm;
9226d125
ZA
2055 /*
2056 * For paravirt, this is coupled with an exit in switch_to to
2057 * combine the page table reload and the switch backend into
2058 * one hypercall.
2059 */
224101ed 2060 arch_start_context_switch(prev);
9226d125 2061
31915ab4 2062 if (!mm) {
1da177e4
LT
2063 next->active_mm = oldmm;
2064 atomic_inc(&oldmm->mm_count);
2065 enter_lazy_tlb(oldmm, next);
2066 } else
2067 switch_mm(oldmm, mm, next);
2068
31915ab4 2069 if (!prev->mm) {
1da177e4 2070 prev->active_mm = NULL;
1da177e4
LT
2071 rq->prev_mm = oldmm;
2072 }
3a5f5e48
IM
2073 /*
2074 * Since the runqueue lock will be released by the next
2075 * task (which is an invalid locking op but in the case
2076 * of the scheduler it's an obvious special-case), so we
2077 * do an early lockdep release here:
2078 */
2079#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2080 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2081#endif
1da177e4
LT
2082
2083 /* Here we just switch the register state and the stack. */
2084 switch_to(prev, next, prev);
2085
dd41f596
IM
2086 barrier();
2087 /*
2088 * this_rq must be evaluated again because prev may have moved
2089 * CPUs since it called schedule(), thus the 'rq' on its stack
2090 * frame will be invalid.
2091 */
2092 finish_task_switch(this_rq(), prev);
1da177e4
LT
2093}
2094
2095/*
2096 * nr_running, nr_uninterruptible and nr_context_switches:
2097 *
2098 * externally visible scheduler statistics: current number of runnable
2099 * threads, current number of uninterruptible-sleeping threads, total
2100 * number of context switches performed since bootup.
2101 */
2102unsigned long nr_running(void)
2103{
2104 unsigned long i, sum = 0;
2105
2106 for_each_online_cpu(i)
2107 sum += cpu_rq(i)->nr_running;
2108
2109 return sum;
f711f609 2110}
1da177e4
LT
2111
2112unsigned long nr_uninterruptible(void)
f711f609 2113{
1da177e4 2114 unsigned long i, sum = 0;
f711f609 2115
0a945022 2116 for_each_possible_cpu(i)
1da177e4 2117 sum += cpu_rq(i)->nr_uninterruptible;
f711f609
GS
2118
2119 /*
1da177e4
LT
2120 * Since we read the counters lockless, it might be slightly
2121 * inaccurate. Do not allow it to go below zero though:
f711f609 2122 */
1da177e4
LT
2123 if (unlikely((long)sum < 0))
2124 sum = 0;
f711f609 2125
1da177e4 2126 return sum;
f711f609 2127}
f711f609 2128
1da177e4 2129unsigned long long nr_context_switches(void)
46cb4b7c 2130{
cc94abfc
SR
2131 int i;
2132 unsigned long long sum = 0;
46cb4b7c 2133
0a945022 2134 for_each_possible_cpu(i)
1da177e4 2135 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2136
1da177e4
LT
2137 return sum;
2138}
483b4ee6 2139
1da177e4
LT
2140unsigned long nr_iowait(void)
2141{
2142 unsigned long i, sum = 0;
483b4ee6 2143
0a945022 2144 for_each_possible_cpu(i)
1da177e4 2145 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2146
1da177e4
LT
2147 return sum;
2148}
483b4ee6 2149
8c215bd3 2150unsigned long nr_iowait_cpu(int cpu)
69d25870 2151{
8c215bd3 2152 struct rq *this = cpu_rq(cpu);
69d25870
AV
2153 return atomic_read(&this->nr_iowait);
2154}
46cb4b7c 2155
69d25870
AV
2156unsigned long this_cpu_load(void)
2157{
2158 struct rq *this = this_rq();
2159 return this->cpu_load[0];
2160}
e790fb0b 2161
46cb4b7c 2162
dce48a84
TG
2163/* Variables and functions for calc_load */
2164static atomic_long_t calc_load_tasks;
2165static unsigned long calc_load_update;
2166unsigned long avenrun[3];
2167EXPORT_SYMBOL(avenrun);
46cb4b7c 2168
74f5187a
PZ
2169static long calc_load_fold_active(struct rq *this_rq)
2170{
2171 long nr_active, delta = 0;
2172
2173 nr_active = this_rq->nr_running;
2174 nr_active += (long) this_rq->nr_uninterruptible;
2175
2176 if (nr_active != this_rq->calc_load_active) {
2177 delta = nr_active - this_rq->calc_load_active;
2178 this_rq->calc_load_active = nr_active;
2179 }
2180
2181 return delta;
2182}
2183
0f004f5a
PZ
2184static unsigned long
2185calc_load(unsigned long load, unsigned long exp, unsigned long active)
2186{
2187 load *= exp;
2188 load += active * (FIXED_1 - exp);
2189 load += 1UL << (FSHIFT - 1);
2190 return load >> FSHIFT;
2191}
2192
74f5187a
PZ
2193#ifdef CONFIG_NO_HZ
2194/*
2195 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
2196 *
2197 * When making the ILB scale, we should try to pull this in as well.
2198 */
2199static atomic_long_t calc_load_tasks_idle;
2200
029632fb 2201void calc_load_account_idle(struct rq *this_rq)
74f5187a
PZ
2202{
2203 long delta;
2204
2205 delta = calc_load_fold_active(this_rq);
2206 if (delta)
2207 atomic_long_add(delta, &calc_load_tasks_idle);
2208}
2209
2210static long calc_load_fold_idle(void)
2211{
2212 long delta = 0;
2213
2214 /*
2215 * Its got a race, we don't care...
2216 */
2217 if (atomic_long_read(&calc_load_tasks_idle))
2218 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
2219
2220 return delta;
2221}
0f004f5a
PZ
2222
2223/**
2224 * fixed_power_int - compute: x^n, in O(log n) time
2225 *
2226 * @x: base of the power
2227 * @frac_bits: fractional bits of @x
2228 * @n: power to raise @x to.
2229 *
2230 * By exploiting the relation between the definition of the natural power
2231 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2232 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2233 * (where: n_i \elem {0, 1}, the binary vector representing n),
2234 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2235 * of course trivially computable in O(log_2 n), the length of our binary
2236 * vector.
2237 */
2238static unsigned long
2239fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2240{
2241 unsigned long result = 1UL << frac_bits;
2242
2243 if (n) for (;;) {
2244 if (n & 1) {
2245 result *= x;
2246 result += 1UL << (frac_bits - 1);
2247 result >>= frac_bits;
2248 }
2249 n >>= 1;
2250 if (!n)
2251 break;
2252 x *= x;
2253 x += 1UL << (frac_bits - 1);
2254 x >>= frac_bits;
2255 }
2256
2257 return result;
2258}
2259
2260/*
2261 * a1 = a0 * e + a * (1 - e)
2262 *
2263 * a2 = a1 * e + a * (1 - e)
2264 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2265 * = a0 * e^2 + a * (1 - e) * (1 + e)
2266 *
2267 * a3 = a2 * e + a * (1 - e)
2268 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2269 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2270 *
2271 * ...
2272 *
2273 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2274 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2275 * = a0 * e^n + a * (1 - e^n)
2276 *
2277 * [1] application of the geometric series:
2278 *
2279 * n 1 - x^(n+1)
2280 * S_n := \Sum x^i = -------------
2281 * i=0 1 - x
2282 */
2283static unsigned long
2284calc_load_n(unsigned long load, unsigned long exp,
2285 unsigned long active, unsigned int n)
2286{
2287
2288 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2289}
2290
2291/*
2292 * NO_HZ can leave us missing all per-cpu ticks calling
2293 * calc_load_account_active(), but since an idle CPU folds its delta into
2294 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2295 * in the pending idle delta if our idle period crossed a load cycle boundary.
2296 *
2297 * Once we've updated the global active value, we need to apply the exponential
2298 * weights adjusted to the number of cycles missed.
2299 */
c308b56b 2300static void calc_global_nohz(void)
0f004f5a
PZ
2301{
2302 long delta, active, n;
2303
0f004f5a
PZ
2304 /*
2305 * If we crossed a calc_load_update boundary, make sure to fold
2306 * any pending idle changes, the respective CPUs might have
2307 * missed the tick driven calc_load_account_active() update
2308 * due to NO_HZ.
2309 */
2310 delta = calc_load_fold_idle();
2311 if (delta)
2312 atomic_long_add(delta, &calc_load_tasks);
2313
2314 /*
c308b56b 2315 * It could be the one fold was all it took, we done!
0f004f5a 2316 */
c308b56b
PZ
2317 if (time_before(jiffies, calc_load_update + 10))
2318 return;
0f004f5a 2319
c308b56b
PZ
2320 /*
2321 * Catch-up, fold however many we are behind still
2322 */
2323 delta = jiffies - calc_load_update - 10;
2324 n = 1 + (delta / LOAD_FREQ);
0f004f5a 2325
c308b56b
PZ
2326 active = atomic_long_read(&calc_load_tasks);
2327 active = active > 0 ? active * FIXED_1 : 0;
0f004f5a 2328
c308b56b
PZ
2329 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2330 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2331 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
0f004f5a 2332
c308b56b 2333 calc_load_update += n * LOAD_FREQ;
0f004f5a 2334}
74f5187a 2335#else
029632fb 2336void calc_load_account_idle(struct rq *this_rq)
74f5187a
PZ
2337{
2338}
2339
2340static inline long calc_load_fold_idle(void)
2341{
2342 return 0;
2343}
0f004f5a 2344
c308b56b 2345static void calc_global_nohz(void)
0f004f5a
PZ
2346{
2347}
74f5187a
PZ
2348#endif
2349
2d02494f
TG
2350/**
2351 * get_avenrun - get the load average array
2352 * @loads: pointer to dest load array
2353 * @offset: offset to add
2354 * @shift: shift count to shift the result left
2355 *
2356 * These values are estimates at best, so no need for locking.
2357 */
2358void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2359{
2360 loads[0] = (avenrun[0] + offset) << shift;
2361 loads[1] = (avenrun[1] + offset) << shift;
2362 loads[2] = (avenrun[2] + offset) << shift;
46cb4b7c 2363}
46cb4b7c 2364
46cb4b7c 2365/*
dce48a84
TG
2366 * calc_load - update the avenrun load estimates 10 ticks after the
2367 * CPUs have updated calc_load_tasks.
7835b98b 2368 */
0f004f5a 2369void calc_global_load(unsigned long ticks)
7835b98b 2370{
dce48a84 2371 long active;
1da177e4 2372
0f004f5a 2373 if (time_before(jiffies, calc_load_update + 10))
dce48a84 2374 return;
1da177e4 2375
dce48a84
TG
2376 active = atomic_long_read(&calc_load_tasks);
2377 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 2378
dce48a84
TG
2379 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2380 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2381 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 2382
dce48a84 2383 calc_load_update += LOAD_FREQ;
c308b56b
PZ
2384
2385 /*
2386 * Account one period with whatever state we found before
2387 * folding in the nohz state and ageing the entire idle period.
2388 *
2389 * This avoids loosing a sample when we go idle between
2390 * calc_load_account_active() (10 ticks ago) and now and thus
2391 * under-accounting.
2392 */
2393 calc_global_nohz();
dce48a84 2394}
1da177e4 2395
dce48a84 2396/*
74f5187a
PZ
2397 * Called from update_cpu_load() to periodically update this CPU's
2398 * active count.
dce48a84
TG
2399 */
2400static void calc_load_account_active(struct rq *this_rq)
2401{
74f5187a 2402 long delta;
08c183f3 2403
74f5187a
PZ
2404 if (time_before(jiffies, this_rq->calc_load_update))
2405 return;
783609c6 2406
74f5187a
PZ
2407 delta = calc_load_fold_active(this_rq);
2408 delta += calc_load_fold_idle();
2409 if (delta)
dce48a84 2410 atomic_long_add(delta, &calc_load_tasks);
74f5187a
PZ
2411
2412 this_rq->calc_load_update += LOAD_FREQ;
46cb4b7c
SS
2413}
2414
fdf3e95d
VP
2415/*
2416 * The exact cpuload at various idx values, calculated at every tick would be
2417 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2418 *
2419 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2420 * on nth tick when cpu may be busy, then we have:
2421 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2422 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2423 *
2424 * decay_load_missed() below does efficient calculation of
2425 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2426 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2427 *
2428 * The calculation is approximated on a 128 point scale.
2429 * degrade_zero_ticks is the number of ticks after which load at any
2430 * particular idx is approximated to be zero.
2431 * degrade_factor is a precomputed table, a row for each load idx.
2432 * Each column corresponds to degradation factor for a power of two ticks,
2433 * based on 128 point scale.
2434 * Example:
2435 * row 2, col 3 (=12) says that the degradation at load idx 2 after
2436 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2437 *
2438 * With this power of 2 load factors, we can degrade the load n times
2439 * by looking at 1 bits in n and doing as many mult/shift instead of
2440 * n mult/shifts needed by the exact degradation.
2441 */
2442#define DEGRADE_SHIFT 7
2443static const unsigned char
2444 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2445static const unsigned char
2446 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2447 {0, 0, 0, 0, 0, 0, 0, 0},
2448 {64, 32, 8, 0, 0, 0, 0, 0},
2449 {96, 72, 40, 12, 1, 0, 0},
2450 {112, 98, 75, 43, 15, 1, 0},
2451 {120, 112, 98, 76, 45, 16, 2} };
2452
2453/*
2454 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2455 * would be when CPU is idle and so we just decay the old load without
2456 * adding any new load.
2457 */
2458static unsigned long
2459decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2460{
2461 int j = 0;
2462
2463 if (!missed_updates)
2464 return load;
2465
2466 if (missed_updates >= degrade_zero_ticks[idx])
2467 return 0;
2468
2469 if (idx == 1)
2470 return load >> missed_updates;
2471
2472 while (missed_updates) {
2473 if (missed_updates % 2)
2474 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2475
2476 missed_updates >>= 1;
2477 j++;
2478 }
2479 return load;
2480}
2481
46cb4b7c 2482/*
dd41f596 2483 * Update rq->cpu_load[] statistics. This function is usually called every
fdf3e95d
VP
2484 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2485 * every tick. We fix it up based on jiffies.
46cb4b7c 2486 */
029632fb 2487void update_cpu_load(struct rq *this_rq)
46cb4b7c 2488{
495eca49 2489 unsigned long this_load = this_rq->load.weight;
fdf3e95d
VP
2490 unsigned long curr_jiffies = jiffies;
2491 unsigned long pending_updates;
dd41f596 2492 int i, scale;
46cb4b7c 2493
dd41f596 2494 this_rq->nr_load_updates++;
46cb4b7c 2495
fdf3e95d
VP
2496 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
2497 if (curr_jiffies == this_rq->last_load_update_tick)
2498 return;
2499
2500 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2501 this_rq->last_load_update_tick = curr_jiffies;
2502
dd41f596 2503 /* Update our load: */
fdf3e95d
VP
2504 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2505 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
dd41f596 2506 unsigned long old_load, new_load;
7d1e6a9b 2507
dd41f596 2508 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 2509
dd41f596 2510 old_load = this_rq->cpu_load[i];
fdf3e95d 2511 old_load = decay_load_missed(old_load, pending_updates - 1, i);
dd41f596 2512 new_load = this_load;
a25707f3
IM
2513 /*
2514 * Round up the averaging division if load is increasing. This
2515 * prevents us from getting stuck on 9 if the load is 10, for
2516 * example.
2517 */
2518 if (new_load > old_load)
fdf3e95d
VP
2519 new_load += scale - 1;
2520
2521 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
dd41f596 2522 }
da2b71ed
SS
2523
2524 sched_avg_update(this_rq);
fdf3e95d
VP
2525}
2526
2527static void update_cpu_load_active(struct rq *this_rq)
2528{
2529 update_cpu_load(this_rq);
46cb4b7c 2530
74f5187a 2531 calc_load_account_active(this_rq);
46cb4b7c
SS
2532}
2533
dd41f596 2534#ifdef CONFIG_SMP
8a0be9ef 2535
46cb4b7c 2536/*
38022906
PZ
2537 * sched_exec - execve() is a valuable balancing opportunity, because at
2538 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2539 */
38022906 2540void sched_exec(void)
46cb4b7c 2541{
38022906 2542 struct task_struct *p = current;
1da177e4 2543 unsigned long flags;
0017d735 2544 int dest_cpu;
46cb4b7c 2545
8f42ced9 2546 raw_spin_lock_irqsave(&p->pi_lock, flags);
7608dec2 2547 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
0017d735
PZ
2548 if (dest_cpu == smp_processor_id())
2549 goto unlock;
38022906 2550
8f42ced9 2551 if (likely(cpu_active(dest_cpu))) {
969c7921 2552 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2553
8f42ced9
PZ
2554 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2555 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2556 return;
2557 }
0017d735 2558unlock:
8f42ced9 2559 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2560}
dd41f596 2561
1da177e4
LT
2562#endif
2563
1da177e4 2564DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2565DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2566
2567EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2568EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4
LT
2569
2570/*
c5f8d995 2571 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 2572 * @p in case that task is currently running.
c5f8d995
HS
2573 *
2574 * Called with task_rq_lock() held on @rq.
1da177e4 2575 */
c5f8d995
HS
2576static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2577{
2578 u64 ns = 0;
2579
2580 if (task_current(rq, p)) {
2581 update_rq_clock(rq);
305e6835 2582 ns = rq->clock_task - p->se.exec_start;
c5f8d995
HS
2583 if ((s64)ns < 0)
2584 ns = 0;
2585 }
2586
2587 return ns;
2588}
2589
bb34d92f 2590unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 2591{
1da177e4 2592 unsigned long flags;
41b86e9c 2593 struct rq *rq;
bb34d92f 2594 u64 ns = 0;
48f24c4d 2595
41b86e9c 2596 rq = task_rq_lock(p, &flags);
c5f8d995 2597 ns = do_task_delta_exec(p, rq);
0122ec5b 2598 task_rq_unlock(rq, p, &flags);
1508487e 2599
c5f8d995
HS
2600 return ns;
2601}
f06febc9 2602
c5f8d995
HS
2603/*
2604 * Return accounted runtime for the task.
2605 * In case the task is currently running, return the runtime plus current's
2606 * pending runtime that have not been accounted yet.
2607 */
2608unsigned long long task_sched_runtime(struct task_struct *p)
2609{
2610 unsigned long flags;
2611 struct rq *rq;
2612 u64 ns = 0;
2613
2614 rq = task_rq_lock(p, &flags);
2615 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 2616 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2617
2618 return ns;
2619}
48f24c4d 2620
54c707e9
GC
2621#ifdef CONFIG_CGROUP_CPUACCT
2622struct cgroup_subsys cpuacct_subsys;
2623struct cpuacct root_cpuacct;
2624#endif
2625
be726ffd
GC
2626static inline void task_group_account_field(struct task_struct *p, int index,
2627 u64 tmp)
54c707e9
GC
2628{
2629#ifdef CONFIG_CGROUP_CPUACCT
2630 struct kernel_cpustat *kcpustat;
2631 struct cpuacct *ca;
2632#endif
2633 /*
2634 * Since all updates are sure to touch the root cgroup, we
2635 * get ourselves ahead and touch it first. If the root cgroup
2636 * is the only cgroup, then nothing else should be necessary.
2637 *
2638 */
2639 __get_cpu_var(kernel_cpustat).cpustat[index] += tmp;
2640
2641#ifdef CONFIG_CGROUP_CPUACCT
2642 if (unlikely(!cpuacct_subsys.active))
2643 return;
2644
2645 rcu_read_lock();
2646 ca = task_ca(p);
2647 while (ca && (ca != &root_cpuacct)) {
2648 kcpustat = this_cpu_ptr(ca->cpustat);
2649 kcpustat->cpustat[index] += tmp;
2650 ca = parent_ca(ca);
2651 }
2652 rcu_read_unlock();
2653#endif
2654}
2655
2656
1da177e4
LT
2657/*
2658 * Account user cpu time to a process.
2659 * @p: the process that the cpu time gets accounted to
1da177e4 2660 * @cputime: the cpu time spent in user space since the last update
457533a7 2661 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 2662 */
457533a7
MS
2663void account_user_time(struct task_struct *p, cputime_t cputime,
2664 cputime_t cputime_scaled)
1da177e4 2665{
3292beb3 2666 int index;
1da177e4 2667
457533a7 2668 /* Add user time to process. */
64861634
MS
2669 p->utime += cputime;
2670 p->utimescaled += cputime_scaled;
f06febc9 2671 account_group_user_time(p, cputime);
1da177e4 2672
3292beb3 2673 index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
ef12fefa 2674
1da177e4 2675 /* Add user time to cpustat. */
612ef28a 2676 task_group_account_field(p, index, (__force u64) cputime);
ef12fefa 2677
49b5cf34
JL
2678 /* Account for user time used */
2679 acct_update_integrals(p);
1da177e4
LT
2680}
2681
94886b84
LV
2682/*
2683 * Account guest cpu time to a process.
2684 * @p: the process that the cpu time gets accounted to
2685 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 2686 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 2687 */
457533a7
MS
2688static void account_guest_time(struct task_struct *p, cputime_t cputime,
2689 cputime_t cputime_scaled)
94886b84 2690{
3292beb3 2691 u64 *cpustat = kcpustat_this_cpu->cpustat;
94886b84 2692
457533a7 2693 /* Add guest time to process. */
64861634
MS
2694 p->utime += cputime;
2695 p->utimescaled += cputime_scaled;
f06febc9 2696 account_group_user_time(p, cputime);
64861634 2697 p->gtime += cputime;
94886b84 2698
457533a7 2699 /* Add guest time to cpustat. */
ce0e7b28 2700 if (TASK_NICE(p) > 0) {
612ef28a
MS
2701 cpustat[CPUTIME_NICE] += (__force u64) cputime;
2702 cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
ce0e7b28 2703 } else {
612ef28a
MS
2704 cpustat[CPUTIME_USER] += (__force u64) cputime;
2705 cpustat[CPUTIME_GUEST] += (__force u64) cputime;
ce0e7b28 2706 }
94886b84
LV
2707}
2708
70a89a66
VP
2709/*
2710 * Account system cpu time to a process and desired cpustat field
2711 * @p: the process that the cpu time gets accounted to
2712 * @cputime: the cpu time spent in kernel space since the last update
2713 * @cputime_scaled: cputime scaled by cpu frequency
2714 * @target_cputime64: pointer to cpustat field that has to be updated
2715 */
2716static inline
2717void __account_system_time(struct task_struct *p, cputime_t cputime,
3292beb3 2718 cputime_t cputime_scaled, int index)
70a89a66 2719{
70a89a66 2720 /* Add system time to process. */
64861634
MS
2721 p->stime += cputime;
2722 p->stimescaled += cputime_scaled;
70a89a66
VP
2723 account_group_system_time(p, cputime);
2724
2725 /* Add system time to cpustat. */
612ef28a 2726 task_group_account_field(p, index, (__force u64) cputime);
70a89a66
VP
2727
2728 /* Account for system time used */
2729 acct_update_integrals(p);
2730}
2731
1da177e4
LT
2732/*
2733 * Account system cpu time to a process.
2734 * @p: the process that the cpu time gets accounted to
2735 * @hardirq_offset: the offset to subtract from hardirq_count()
2736 * @cputime: the cpu time spent in kernel space since the last update
457533a7 2737 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
2738 */
2739void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 2740 cputime_t cputime, cputime_t cputime_scaled)
1da177e4 2741{
3292beb3 2742 int index;
1da177e4 2743
983ed7a6 2744 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 2745 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
2746 return;
2747 }
94886b84 2748
1da177e4 2749 if (hardirq_count() - hardirq_offset)
3292beb3 2750 index = CPUTIME_IRQ;
75e1056f 2751 else if (in_serving_softirq())
3292beb3 2752 index = CPUTIME_SOFTIRQ;
1da177e4 2753 else
3292beb3 2754 index = CPUTIME_SYSTEM;
ef12fefa 2755
3292beb3 2756 __account_system_time(p, cputime, cputime_scaled, index);
1da177e4
LT
2757}
2758
c66f08be 2759/*
1da177e4 2760 * Account for involuntary wait time.
544b4a1f 2761 * @cputime: the cpu time spent in involuntary wait
c66f08be 2762 */
79741dd3 2763void account_steal_time(cputime_t cputime)
c66f08be 2764{
3292beb3 2765 u64 *cpustat = kcpustat_this_cpu->cpustat;
79741dd3 2766
612ef28a 2767 cpustat[CPUTIME_STEAL] += (__force u64) cputime;
c66f08be
MN
2768}
2769
1da177e4 2770/*
79741dd3
MS
2771 * Account for idle time.
2772 * @cputime: the cpu time spent in idle wait
1da177e4 2773 */
79741dd3 2774void account_idle_time(cputime_t cputime)
1da177e4 2775{
3292beb3 2776 u64 *cpustat = kcpustat_this_cpu->cpustat;
70b97a7f 2777 struct rq *rq = this_rq();
1da177e4 2778
79741dd3 2779 if (atomic_read(&rq->nr_iowait) > 0)
612ef28a 2780 cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
79741dd3 2781 else
612ef28a 2782 cpustat[CPUTIME_IDLE] += (__force u64) cputime;
1da177e4
LT
2783}
2784
e6e6685a
GC
2785static __always_inline bool steal_account_process_tick(void)
2786{
2787#ifdef CONFIG_PARAVIRT
2788 if (static_branch(&paravirt_steal_enabled)) {
2789 u64 steal, st = 0;
2790
2791 steal = paravirt_steal_clock(smp_processor_id());
2792 steal -= this_rq()->prev_steal_time;
2793
2794 st = steal_ticks(steal);
2795 this_rq()->prev_steal_time += st * TICK_NSEC;
2796
2797 account_steal_time(st);
2798 return st;
2799 }
2800#endif
2801 return false;
2802}
2803
79741dd3
MS
2804#ifndef CONFIG_VIRT_CPU_ACCOUNTING
2805
abb74cef
VP
2806#ifdef CONFIG_IRQ_TIME_ACCOUNTING
2807/*
2808 * Account a tick to a process and cpustat
2809 * @p: the process that the cpu time gets accounted to
2810 * @user_tick: is the tick from userspace
2811 * @rq: the pointer to rq
2812 *
2813 * Tick demultiplexing follows the order
2814 * - pending hardirq update
2815 * - pending softirq update
2816 * - user_time
2817 * - idle_time
2818 * - system time
2819 * - check for guest_time
2820 * - else account as system_time
2821 *
2822 * Check for hardirq is done both for system and user time as there is
2823 * no timer going off while we are on hardirq and hence we may never get an
2824 * opportunity to update it solely in system time.
2825 * p->stime and friends are only updated on system time and not on irq
2826 * softirq as those do not count in task exec_runtime any more.
2827 */
2828static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
2829 struct rq *rq)
2830{
2831 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3292beb3 2832 u64 *cpustat = kcpustat_this_cpu->cpustat;
abb74cef 2833
e6e6685a
GC
2834 if (steal_account_process_tick())
2835 return;
2836
abb74cef 2837 if (irqtime_account_hi_update()) {
612ef28a 2838 cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy;
abb74cef 2839 } else if (irqtime_account_si_update()) {
612ef28a 2840 cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy;
414bee9b
VP
2841 } else if (this_cpu_ksoftirqd() == p) {
2842 /*
2843 * ksoftirqd time do not get accounted in cpu_softirq_time.
2844 * So, we have to handle it separately here.
2845 * Also, p->stime needs to be updated for ksoftirqd.
2846 */
2847 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3292beb3 2848 CPUTIME_SOFTIRQ);
abb74cef
VP
2849 } else if (user_tick) {
2850 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
2851 } else if (p == rq->idle) {
2852 account_idle_time(cputime_one_jiffy);
2853 } else if (p->flags & PF_VCPU) { /* System time or guest time */
2854 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
2855 } else {
2856 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3292beb3 2857 CPUTIME_SYSTEM);
abb74cef
VP
2858 }
2859}
2860
2861static void irqtime_account_idle_ticks(int ticks)
2862{
2863 int i;
2864 struct rq *rq = this_rq();
2865
2866 for (i = 0; i < ticks; i++)
2867 irqtime_account_process_tick(current, 0, rq);
2868}
544b4a1f 2869#else /* CONFIG_IRQ_TIME_ACCOUNTING */
abb74cef
VP
2870static void irqtime_account_idle_ticks(int ticks) {}
2871static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
2872 struct rq *rq) {}
544b4a1f 2873#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
79741dd3
MS
2874
2875/*
2876 * Account a single tick of cpu time.
2877 * @p: the process that the cpu time gets accounted to
2878 * @user_tick: indicates if the tick is a user or a system tick
2879 */
2880void account_process_tick(struct task_struct *p, int user_tick)
2881{
a42548a1 2882 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
2883 struct rq *rq = this_rq();
2884
abb74cef
VP
2885 if (sched_clock_irqtime) {
2886 irqtime_account_process_tick(p, user_tick, rq);
2887 return;
2888 }
2889
e6e6685a
GC
2890 if (steal_account_process_tick())
2891 return;
2892
79741dd3 2893 if (user_tick)
a42548a1 2894 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 2895 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 2896 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
2897 one_jiffy_scaled);
2898 else
a42548a1 2899 account_idle_time(cputime_one_jiffy);
79741dd3
MS
2900}
2901
2902/*
2903 * Account multiple ticks of steal time.
2904 * @p: the process from which the cpu time has been stolen
2905 * @ticks: number of stolen ticks
2906 */
2907void account_steal_ticks(unsigned long ticks)
2908{
2909 account_steal_time(jiffies_to_cputime(ticks));
2910}
2911
2912/*
2913 * Account multiple ticks of idle time.
2914 * @ticks: number of stolen ticks
2915 */
2916void account_idle_ticks(unsigned long ticks)
2917{
abb74cef
VP
2918
2919 if (sched_clock_irqtime) {
2920 irqtime_account_idle_ticks(ticks);
2921 return;
2922 }
2923
79741dd3 2924 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
2925}
2926
79741dd3
MS
2927#endif
2928
49048622
BS
2929/*
2930 * Use precise platform statistics if available:
2931 */
2932#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 2933void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 2934{
d99ca3b9
HS
2935 *ut = p->utime;
2936 *st = p->stime;
49048622
BS
2937}
2938
0cf55e1e 2939void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 2940{
0cf55e1e
HS
2941 struct task_cputime cputime;
2942
2943 thread_group_cputime(p, &cputime);
2944
2945 *ut = cputime.utime;
2946 *st = cputime.stime;
49048622
BS
2947}
2948#else
761b1d26
HS
2949
2950#ifndef nsecs_to_cputime
b7b20df9 2951# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
2952#endif
2953
d180c5bc 2954void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 2955{
64861634 2956 cputime_t rtime, utime = p->utime, total = utime + p->stime;
49048622
BS
2957
2958 /*
2959 * Use CFS's precise accounting:
2960 */
d180c5bc 2961 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
2962
2963 if (total) {
64861634 2964 u64 temp = (__force u64) rtime;
d180c5bc 2965
64861634
MS
2966 temp *= (__force u64) utime;
2967 do_div(temp, (__force u32) total);
2968 utime = (__force cputime_t) temp;
d180c5bc
HS
2969 } else
2970 utime = rtime;
49048622 2971
d180c5bc
HS
2972 /*
2973 * Compare with previous values, to keep monotonicity:
2974 */
761b1d26 2975 p->prev_utime = max(p->prev_utime, utime);
64861634 2976 p->prev_stime = max(p->prev_stime, rtime - p->prev_utime);
49048622 2977
d99ca3b9
HS
2978 *ut = p->prev_utime;
2979 *st = p->prev_stime;
49048622
BS
2980}
2981
0cf55e1e
HS
2982/*
2983 * Must be called with siglock held.
2984 */
2985void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 2986{
0cf55e1e
HS
2987 struct signal_struct *sig = p->signal;
2988 struct task_cputime cputime;
2989 cputime_t rtime, utime, total;
49048622 2990
0cf55e1e 2991 thread_group_cputime(p, &cputime);
49048622 2992
64861634 2993 total = cputime.utime + cputime.stime;
0cf55e1e 2994 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 2995
0cf55e1e 2996 if (total) {
64861634 2997 u64 temp = (__force u64) rtime;
49048622 2998
64861634
MS
2999 temp *= (__force u64) cputime.utime;
3000 do_div(temp, (__force u32) total);
3001 utime = (__force cputime_t) temp;
0cf55e1e
HS
3002 } else
3003 utime = rtime;
3004
3005 sig->prev_utime = max(sig->prev_utime, utime);
64861634 3006 sig->prev_stime = max(sig->prev_stime, rtime - sig->prev_utime);
0cf55e1e
HS
3007
3008 *ut = sig->prev_utime;
3009 *st = sig->prev_stime;
49048622 3010}
49048622 3011#endif
49048622 3012
7835b98b
CL
3013/*
3014 * This function gets called by the timer code, with HZ frequency.
3015 * We call it with interrupts disabled.
7835b98b
CL
3016 */
3017void scheduler_tick(void)
3018{
7835b98b
CL
3019 int cpu = smp_processor_id();
3020 struct rq *rq = cpu_rq(cpu);
dd41f596 3021 struct task_struct *curr = rq->curr;
3e51f33f
PZ
3022
3023 sched_clock_tick();
dd41f596 3024
05fa785c 3025 raw_spin_lock(&rq->lock);
3e51f33f 3026 update_rq_clock(rq);
fdf3e95d 3027 update_cpu_load_active(rq);
fa85ae24 3028 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 3029 raw_spin_unlock(&rq->lock);
7835b98b 3030
e9d2b064 3031 perf_event_task_tick();
e220d2dc 3032
e418e1c2 3033#ifdef CONFIG_SMP
6eb57e0d 3034 rq->idle_balance = idle_cpu(cpu);
dd41f596 3035 trigger_load_balance(rq, cpu);
e418e1c2 3036#endif
1da177e4
LT
3037}
3038
132380a0 3039notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
3040{
3041 if (in_lock_functions(addr)) {
3042 addr = CALLER_ADDR2;
3043 if (in_lock_functions(addr))
3044 addr = CALLER_ADDR3;
3045 }
3046 return addr;
3047}
1da177e4 3048
7e49fcce
SR
3049#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3050 defined(CONFIG_PREEMPT_TRACER))
3051
43627582 3052void __kprobes add_preempt_count(int val)
1da177e4 3053{
6cd8a4bb 3054#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3055 /*
3056 * Underflow?
3057 */
9a11b49a
IM
3058 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3059 return;
6cd8a4bb 3060#endif
1da177e4 3061 preempt_count() += val;
6cd8a4bb 3062#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3063 /*
3064 * Spinlock count overflowing soon?
3065 */
33859f7f
MOS
3066 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3067 PREEMPT_MASK - 10);
6cd8a4bb
SR
3068#endif
3069 if (preempt_count() == val)
3070 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3071}
3072EXPORT_SYMBOL(add_preempt_count);
3073
43627582 3074void __kprobes sub_preempt_count(int val)
1da177e4 3075{
6cd8a4bb 3076#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3077 /*
3078 * Underflow?
3079 */
01e3eb82 3080 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3081 return;
1da177e4
LT
3082 /*
3083 * Is the spinlock portion underflowing?
3084 */
9a11b49a
IM
3085 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3086 !(preempt_count() & PREEMPT_MASK)))
3087 return;
6cd8a4bb 3088#endif
9a11b49a 3089
6cd8a4bb
SR
3090 if (preempt_count() == val)
3091 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3092 preempt_count() -= val;
3093}
3094EXPORT_SYMBOL(sub_preempt_count);
3095
3096#endif
3097
3098/*
dd41f596 3099 * Print scheduling while atomic bug:
1da177e4 3100 */
dd41f596 3101static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3102{
664dfa65
DJ
3103 if (oops_in_progress)
3104 return;
3105
3df0fc5b
PZ
3106 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3107 prev->comm, prev->pid, preempt_count());
838225b4 3108
dd41f596 3109 debug_show_held_locks(prev);
e21f5b15 3110 print_modules();
dd41f596
IM
3111 if (irqs_disabled())
3112 print_irqtrace_events(prev);
6135fc1e 3113 dump_stack();
dd41f596 3114}
1da177e4 3115
dd41f596
IM
3116/*
3117 * Various schedule()-time debugging checks and statistics:
3118 */
3119static inline void schedule_debug(struct task_struct *prev)
3120{
1da177e4 3121 /*
41a2d6cf 3122 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
3123 * schedule() atomically, we ignore that path for now.
3124 * Otherwise, whine if we are scheduling when we should not be.
3125 */
3f33a7ce 3126 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596 3127 __schedule_bug(prev);
b3fbab05 3128 rcu_sleep_check();
dd41f596 3129
1da177e4
LT
3130 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3131
2d72376b 3132 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
3133}
3134
6cecd084 3135static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 3136{
61eadef6 3137 if (prev->on_rq || rq->skip_clock_update < 0)
a64692a3 3138 update_rq_clock(rq);
6cecd084 3139 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
3140}
3141
dd41f596
IM
3142/*
3143 * Pick up the highest-prio task:
3144 */
3145static inline struct task_struct *
b67802ea 3146pick_next_task(struct rq *rq)
dd41f596 3147{
5522d5d5 3148 const struct sched_class *class;
dd41f596 3149 struct task_struct *p;
1da177e4
LT
3150
3151 /*
dd41f596
IM
3152 * Optimization: we know that if all tasks are in
3153 * the fair class we can call that function directly:
1da177e4 3154 */
953bfcd1 3155 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
fb8d4724 3156 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3157 if (likely(p))
3158 return p;
1da177e4
LT
3159 }
3160
34f971f6 3161 for_each_class(class) {
fb8d4724 3162 p = class->pick_next_task(rq);
dd41f596
IM
3163 if (p)
3164 return p;
dd41f596 3165 }
34f971f6
PZ
3166
3167 BUG(); /* the idle class will always have a runnable task */
dd41f596 3168}
1da177e4 3169
dd41f596 3170/*
c259e01a 3171 * __schedule() is the main scheduler function.
dd41f596 3172 */
c259e01a 3173static void __sched __schedule(void)
dd41f596
IM
3174{
3175 struct task_struct *prev, *next;
67ca7bde 3176 unsigned long *switch_count;
dd41f596 3177 struct rq *rq;
31656519 3178 int cpu;
dd41f596 3179
ff743345
PZ
3180need_resched:
3181 preempt_disable();
dd41f596
IM
3182 cpu = smp_processor_id();
3183 rq = cpu_rq(cpu);
25502a6c 3184 rcu_note_context_switch(cpu);
dd41f596 3185 prev = rq->curr;
dd41f596 3186
dd41f596 3187 schedule_debug(prev);
1da177e4 3188
31656519 3189 if (sched_feat(HRTICK))
f333fdc9 3190 hrtick_clear(rq);
8f4d37ec 3191
05fa785c 3192 raw_spin_lock_irq(&rq->lock);
1da177e4 3193
246d86b5 3194 switch_count = &prev->nivcsw;
1da177e4 3195 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 3196 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 3197 prev->state = TASK_RUNNING;
21aa9af0 3198 } else {
2acca55e
PZ
3199 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3200 prev->on_rq = 0;
3201
21aa9af0 3202 /*
2acca55e
PZ
3203 * If a worker went to sleep, notify and ask workqueue
3204 * whether it wants to wake up a task to maintain
3205 * concurrency.
21aa9af0
TH
3206 */
3207 if (prev->flags & PF_WQ_WORKER) {
3208 struct task_struct *to_wakeup;
3209
3210 to_wakeup = wq_worker_sleeping(prev, cpu);
3211 if (to_wakeup)
3212 try_to_wake_up_local(to_wakeup);
3213 }
21aa9af0 3214 }
dd41f596 3215 switch_count = &prev->nvcsw;
1da177e4
LT
3216 }
3217
3f029d3c 3218 pre_schedule(rq, prev);
f65eda4f 3219
dd41f596 3220 if (unlikely(!rq->nr_running))
1da177e4 3221 idle_balance(cpu, rq);
1da177e4 3222
df1c99d4 3223 put_prev_task(rq, prev);
b67802ea 3224 next = pick_next_task(rq);
f26f9aff
MG
3225 clear_tsk_need_resched(prev);
3226 rq->skip_clock_update = 0;
1da177e4 3227
1da177e4 3228 if (likely(prev != next)) {
1da177e4
LT
3229 rq->nr_switches++;
3230 rq->curr = next;
3231 ++*switch_count;
3232
dd41f596 3233 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 3234 /*
246d86b5
ON
3235 * The context switch have flipped the stack from under us
3236 * and restored the local variables which were saved when
3237 * this task called schedule() in the past. prev == current
3238 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
3239 */
3240 cpu = smp_processor_id();
3241 rq = cpu_rq(cpu);
1da177e4 3242 } else
05fa785c 3243 raw_spin_unlock_irq(&rq->lock);
1da177e4 3244
3f029d3c 3245 post_schedule(rq);
1da177e4 3246
ba74c144 3247 sched_preempt_enable_no_resched();
ff743345 3248 if (need_resched())
1da177e4
LT
3249 goto need_resched;
3250}
c259e01a 3251
9c40cef2
TG
3252static inline void sched_submit_work(struct task_struct *tsk)
3253{
3c7d5184 3254 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
3255 return;
3256 /*
3257 * If we are going to sleep and we have plugged IO queued,
3258 * make sure to submit it to avoid deadlocks.
3259 */
3260 if (blk_needs_flush_plug(tsk))
3261 blk_schedule_flush_plug(tsk);
3262}
3263
6ebbe7a0 3264asmlinkage void __sched schedule(void)
c259e01a 3265{
9c40cef2
TG
3266 struct task_struct *tsk = current;
3267
3268 sched_submit_work(tsk);
c259e01a
TG
3269 __schedule();
3270}
1da177e4
LT
3271EXPORT_SYMBOL(schedule);
3272
c5491ea7
TG
3273/**
3274 * schedule_preempt_disabled - called with preemption disabled
3275 *
3276 * Returns with preemption disabled. Note: preempt_count must be 1
3277 */
3278void __sched schedule_preempt_disabled(void)
3279{
ba74c144 3280 sched_preempt_enable_no_resched();
c5491ea7
TG
3281 schedule();
3282 preempt_disable();
3283}
3284
c08f7829 3285#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d 3286
c6eb3dda
PZ
3287static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
3288{
c6eb3dda 3289 if (lock->owner != owner)
307bf980 3290 return false;
0d66bf6d
PZ
3291
3292 /*
c6eb3dda
PZ
3293 * Ensure we emit the owner->on_cpu, dereference _after_ checking
3294 * lock->owner still matches owner, if that fails, owner might
3295 * point to free()d memory, if it still matches, the rcu_read_lock()
3296 * ensures the memory stays valid.
0d66bf6d 3297 */
c6eb3dda 3298 barrier();
0d66bf6d 3299
307bf980 3300 return owner->on_cpu;
c6eb3dda 3301}
0d66bf6d 3302
c6eb3dda
PZ
3303/*
3304 * Look out! "owner" is an entirely speculative pointer
3305 * access and not reliable.
3306 */
3307int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
3308{
3309 if (!sched_feat(OWNER_SPIN))
3310 return 0;
0d66bf6d 3311
307bf980 3312 rcu_read_lock();
c6eb3dda
PZ
3313 while (owner_running(lock, owner)) {
3314 if (need_resched())
307bf980 3315 break;
0d66bf6d 3316
335d7afb 3317 arch_mutex_cpu_relax();
0d66bf6d 3318 }
307bf980 3319 rcu_read_unlock();
4b402210 3320
c6eb3dda 3321 /*
307bf980
TG
3322 * We break out the loop above on need_resched() and when the
3323 * owner changed, which is a sign for heavy contention. Return
3324 * success only when lock->owner is NULL.
c6eb3dda 3325 */
307bf980 3326 return lock->owner == NULL;
0d66bf6d
PZ
3327}
3328#endif
3329
1da177e4
LT
3330#ifdef CONFIG_PREEMPT
3331/*
2ed6e34f 3332 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3333 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3334 * occur there and call schedule directly.
3335 */
d1f74e20 3336asmlinkage void __sched notrace preempt_schedule(void)
1da177e4
LT
3337{
3338 struct thread_info *ti = current_thread_info();
6478d880 3339
1da177e4
LT
3340 /*
3341 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3342 * we do not want to preempt the current task. Just return..
1da177e4 3343 */
beed33a8 3344 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3345 return;
3346
3a5c359a 3347 do {
d1f74e20 3348 add_preempt_count_notrace(PREEMPT_ACTIVE);
c259e01a 3349 __schedule();
d1f74e20 3350 sub_preempt_count_notrace(PREEMPT_ACTIVE);
1da177e4 3351
3a5c359a
AK
3352 /*
3353 * Check again in case we missed a preemption opportunity
3354 * between schedule and now.
3355 */
3356 barrier();
5ed0cec0 3357 } while (need_resched());
1da177e4 3358}
1da177e4
LT
3359EXPORT_SYMBOL(preempt_schedule);
3360
3361/*
2ed6e34f 3362 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3363 * off of irq context.
3364 * Note, that this is called and return with irqs disabled. This will
3365 * protect us against recursive calling from irq.
3366 */
3367asmlinkage void __sched preempt_schedule_irq(void)
3368{
3369 struct thread_info *ti = current_thread_info();
6478d880 3370
2ed6e34f 3371 /* Catch callers which need to be fixed */
1da177e4
LT
3372 BUG_ON(ti->preempt_count || !irqs_disabled());
3373
3a5c359a
AK
3374 do {
3375 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 3376 local_irq_enable();
c259e01a 3377 __schedule();
3a5c359a 3378 local_irq_disable();
3a5c359a 3379 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3380
3a5c359a
AK
3381 /*
3382 * Check again in case we missed a preemption opportunity
3383 * between schedule and now.
3384 */
3385 barrier();
5ed0cec0 3386 } while (need_resched());
1da177e4
LT
3387}
3388
3389#endif /* CONFIG_PREEMPT */
3390
63859d4f 3391int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3392 void *key)
1da177e4 3393{
63859d4f 3394 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3395}
1da177e4
LT
3396EXPORT_SYMBOL(default_wake_function);
3397
3398/*
41a2d6cf
IM
3399 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3400 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
3401 * number) then we wake all the non-exclusive tasks and one exclusive task.
3402 *
3403 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 3404 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
3405 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3406 */
78ddb08f 3407static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 3408 int nr_exclusive, int wake_flags, void *key)
1da177e4 3409{
2e45874c 3410 wait_queue_t *curr, *next;
1da177e4 3411
2e45874c 3412 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
3413 unsigned flags = curr->flags;
3414
63859d4f 3415 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 3416 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3417 break;
3418 }
3419}
3420
3421/**
3422 * __wake_up - wake up threads blocked on a waitqueue.
3423 * @q: the waitqueue
3424 * @mode: which threads
3425 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3426 * @key: is directly passed to the wakeup function
50fa610a
DH
3427 *
3428 * It may be assumed that this function implies a write memory barrier before
3429 * changing the task state if and only if any tasks are woken up.
1da177e4 3430 */
7ad5b3a5 3431void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3432 int nr_exclusive, void *key)
1da177e4
LT
3433{
3434 unsigned long flags;
3435
3436 spin_lock_irqsave(&q->lock, flags);
3437 __wake_up_common(q, mode, nr_exclusive, 0, key);
3438 spin_unlock_irqrestore(&q->lock, flags);
3439}
1da177e4
LT
3440EXPORT_SYMBOL(__wake_up);
3441
3442/*
3443 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3444 */
63b20011 3445void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
1da177e4 3446{
63b20011 3447 __wake_up_common(q, mode, nr, 0, NULL);
1da177e4 3448}
22c43c81 3449EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 3450
4ede816a
DL
3451void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3452{
3453 __wake_up_common(q, mode, 1, 0, key);
3454}
bf294b41 3455EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4ede816a 3456
1da177e4 3457/**
4ede816a 3458 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
3459 * @q: the waitqueue
3460 * @mode: which threads
3461 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 3462 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
3463 *
3464 * The sync wakeup differs that the waker knows that it will schedule
3465 * away soon, so while the target thread will be woken up, it will not
3466 * be migrated to another CPU - ie. the two threads are 'synchronized'
3467 * with each other. This can prevent needless bouncing between CPUs.
3468 *
3469 * On UP it can prevent extra preemption.
50fa610a
DH
3470 *
3471 * It may be assumed that this function implies a write memory barrier before
3472 * changing the task state if and only if any tasks are woken up.
1da177e4 3473 */
4ede816a
DL
3474void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3475 int nr_exclusive, void *key)
1da177e4
LT
3476{
3477 unsigned long flags;
7d478721 3478 int wake_flags = WF_SYNC;
1da177e4
LT
3479
3480 if (unlikely(!q))
3481 return;
3482
3483 if (unlikely(!nr_exclusive))
7d478721 3484 wake_flags = 0;
1da177e4
LT
3485
3486 spin_lock_irqsave(&q->lock, flags);
7d478721 3487 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
3488 spin_unlock_irqrestore(&q->lock, flags);
3489}
4ede816a
DL
3490EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3491
3492/*
3493 * __wake_up_sync - see __wake_up_sync_key()
3494 */
3495void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3496{
3497 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3498}
1da177e4
LT
3499EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3500
65eb3dc6
KD
3501/**
3502 * complete: - signals a single thread waiting on this completion
3503 * @x: holds the state of this particular completion
3504 *
3505 * This will wake up a single thread waiting on this completion. Threads will be
3506 * awakened in the same order in which they were queued.
3507 *
3508 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
3509 *
3510 * It may be assumed that this function implies a write memory barrier before
3511 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3512 */
b15136e9 3513void complete(struct completion *x)
1da177e4
LT
3514{
3515 unsigned long flags;
3516
3517 spin_lock_irqsave(&x->wait.lock, flags);
3518 x->done++;
d9514f6c 3519 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
3520 spin_unlock_irqrestore(&x->wait.lock, flags);
3521}
3522EXPORT_SYMBOL(complete);
3523
65eb3dc6
KD
3524/**
3525 * complete_all: - signals all threads waiting on this completion
3526 * @x: holds the state of this particular completion
3527 *
3528 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
3529 *
3530 * It may be assumed that this function implies a write memory barrier before
3531 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3532 */
b15136e9 3533void complete_all(struct completion *x)
1da177e4
LT
3534{
3535 unsigned long flags;
3536
3537 spin_lock_irqsave(&x->wait.lock, flags);
3538 x->done += UINT_MAX/2;
d9514f6c 3539 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
3540 spin_unlock_irqrestore(&x->wait.lock, flags);
3541}
3542EXPORT_SYMBOL(complete_all);
3543
8cbbe86d
AK
3544static inline long __sched
3545do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3546{
1da177e4
LT
3547 if (!x->done) {
3548 DECLARE_WAITQUEUE(wait, current);
3549
a93d2f17 3550 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 3551 do {
94d3d824 3552 if (signal_pending_state(state, current)) {
ea71a546
ON
3553 timeout = -ERESTARTSYS;
3554 break;
8cbbe86d
AK
3555 }
3556 __set_current_state(state);
1da177e4
LT
3557 spin_unlock_irq(&x->wait.lock);
3558 timeout = schedule_timeout(timeout);
3559 spin_lock_irq(&x->wait.lock);
ea71a546 3560 } while (!x->done && timeout);
1da177e4 3561 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
3562 if (!x->done)
3563 return timeout;
1da177e4
LT
3564 }
3565 x->done--;
ea71a546 3566 return timeout ?: 1;
1da177e4 3567}
1da177e4 3568
8cbbe86d
AK
3569static long __sched
3570wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3571{
1da177e4
LT
3572 might_sleep();
3573
3574 spin_lock_irq(&x->wait.lock);
8cbbe86d 3575 timeout = do_wait_for_common(x, timeout, state);
1da177e4 3576 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
3577 return timeout;
3578}
1da177e4 3579
65eb3dc6
KD
3580/**
3581 * wait_for_completion: - waits for completion of a task
3582 * @x: holds the state of this particular completion
3583 *
3584 * This waits to be signaled for completion of a specific task. It is NOT
3585 * interruptible and there is no timeout.
3586 *
3587 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3588 * and interrupt capability. Also see complete().
3589 */
b15136e9 3590void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
3591{
3592 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 3593}
8cbbe86d 3594EXPORT_SYMBOL(wait_for_completion);
1da177e4 3595
65eb3dc6
KD
3596/**
3597 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3598 * @x: holds the state of this particular completion
3599 * @timeout: timeout value in jiffies
3600 *
3601 * This waits for either a completion of a specific task to be signaled or for a
3602 * specified timeout to expire. The timeout is in jiffies. It is not
3603 * interruptible.
c6dc7f05
BF
3604 *
3605 * The return value is 0 if timed out, and positive (at least 1, or number of
3606 * jiffies left till timeout) if completed.
65eb3dc6 3607 */
b15136e9 3608unsigned long __sched
8cbbe86d 3609wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 3610{
8cbbe86d 3611 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 3612}
8cbbe86d 3613EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 3614
65eb3dc6
KD
3615/**
3616 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3617 * @x: holds the state of this particular completion
3618 *
3619 * This waits for completion of a specific task to be signaled. It is
3620 * interruptible.
c6dc7f05
BF
3621 *
3622 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
65eb3dc6 3623 */
8cbbe86d 3624int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 3625{
51e97990
AK
3626 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3627 if (t == -ERESTARTSYS)
3628 return t;
3629 return 0;
0fec171c 3630}
8cbbe86d 3631EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 3632
65eb3dc6
KD
3633/**
3634 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3635 * @x: holds the state of this particular completion
3636 * @timeout: timeout value in jiffies
3637 *
3638 * This waits for either a completion of a specific task to be signaled or for a
3639 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
c6dc7f05
BF
3640 *
3641 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3642 * positive (at least 1, or number of jiffies left till timeout) if completed.
65eb3dc6 3643 */
6bf41237 3644long __sched
8cbbe86d
AK
3645wait_for_completion_interruptible_timeout(struct completion *x,
3646 unsigned long timeout)
0fec171c 3647{
8cbbe86d 3648 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 3649}
8cbbe86d 3650EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 3651
65eb3dc6
KD
3652/**
3653 * wait_for_completion_killable: - waits for completion of a task (killable)
3654 * @x: holds the state of this particular completion
3655 *
3656 * This waits to be signaled for completion of a specific task. It can be
3657 * interrupted by a kill signal.
c6dc7f05
BF
3658 *
3659 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
65eb3dc6 3660 */
009e577e
MW
3661int __sched wait_for_completion_killable(struct completion *x)
3662{
3663 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3664 if (t == -ERESTARTSYS)
3665 return t;
3666 return 0;
3667}
3668EXPORT_SYMBOL(wait_for_completion_killable);
3669
0aa12fb4
SW
3670/**
3671 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3672 * @x: holds the state of this particular completion
3673 * @timeout: timeout value in jiffies
3674 *
3675 * This waits for either a completion of a specific task to be
3676 * signaled or for a specified timeout to expire. It can be
3677 * interrupted by a kill signal. The timeout is in jiffies.
c6dc7f05
BF
3678 *
3679 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3680 * positive (at least 1, or number of jiffies left till timeout) if completed.
0aa12fb4 3681 */
6bf41237 3682long __sched
0aa12fb4
SW
3683wait_for_completion_killable_timeout(struct completion *x,
3684 unsigned long timeout)
3685{
3686 return wait_for_common(x, timeout, TASK_KILLABLE);
3687}
3688EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3689
be4de352
DC
3690/**
3691 * try_wait_for_completion - try to decrement a completion without blocking
3692 * @x: completion structure
3693 *
3694 * Returns: 0 if a decrement cannot be done without blocking
3695 * 1 if a decrement succeeded.
3696 *
3697 * If a completion is being used as a counting completion,
3698 * attempt to decrement the counter without blocking. This
3699 * enables us to avoid waiting if the resource the completion
3700 * is protecting is not available.
3701 */
3702bool try_wait_for_completion(struct completion *x)
3703{
7539a3b3 3704 unsigned long flags;
be4de352
DC
3705 int ret = 1;
3706
7539a3b3 3707 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
3708 if (!x->done)
3709 ret = 0;
3710 else
3711 x->done--;
7539a3b3 3712 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
3713 return ret;
3714}
3715EXPORT_SYMBOL(try_wait_for_completion);
3716
3717/**
3718 * completion_done - Test to see if a completion has any waiters
3719 * @x: completion structure
3720 *
3721 * Returns: 0 if there are waiters (wait_for_completion() in progress)
3722 * 1 if there are no waiters.
3723 *
3724 */
3725bool completion_done(struct completion *x)
3726{
7539a3b3 3727 unsigned long flags;
be4de352
DC
3728 int ret = 1;
3729
7539a3b3 3730 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
3731 if (!x->done)
3732 ret = 0;
7539a3b3 3733 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
3734 return ret;
3735}
3736EXPORT_SYMBOL(completion_done);
3737
8cbbe86d
AK
3738static long __sched
3739sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 3740{
0fec171c
IM
3741 unsigned long flags;
3742 wait_queue_t wait;
3743
3744 init_waitqueue_entry(&wait, current);
1da177e4 3745
8cbbe86d 3746 __set_current_state(state);
1da177e4 3747
8cbbe86d
AK
3748 spin_lock_irqsave(&q->lock, flags);
3749 __add_wait_queue(q, &wait);
3750 spin_unlock(&q->lock);
3751 timeout = schedule_timeout(timeout);
3752 spin_lock_irq(&q->lock);
3753 __remove_wait_queue(q, &wait);
3754 spin_unlock_irqrestore(&q->lock, flags);
3755
3756 return timeout;
3757}
3758
3759void __sched interruptible_sleep_on(wait_queue_head_t *q)
3760{
3761 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3762}
1da177e4
LT
3763EXPORT_SYMBOL(interruptible_sleep_on);
3764
0fec171c 3765long __sched
95cdf3b7 3766interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3767{
8cbbe86d 3768 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 3769}
1da177e4
LT
3770EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3771
0fec171c 3772void __sched sleep_on(wait_queue_head_t *q)
1da177e4 3773{
8cbbe86d 3774 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3775}
1da177e4
LT
3776EXPORT_SYMBOL(sleep_on);
3777
0fec171c 3778long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3779{
8cbbe86d 3780 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 3781}
1da177e4
LT
3782EXPORT_SYMBOL(sleep_on_timeout);
3783
b29739f9
IM
3784#ifdef CONFIG_RT_MUTEXES
3785
3786/*
3787 * rt_mutex_setprio - set the current priority of a task
3788 * @p: task
3789 * @prio: prio value (kernel-internal form)
3790 *
3791 * This function changes the 'effective' priority of a task. It does
3792 * not touch ->normal_prio like __setscheduler().
3793 *
3794 * Used by the rt_mutex code to implement priority inheritance logic.
3795 */
36c8b586 3796void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3797{
83b699ed 3798 int oldprio, on_rq, running;
70b97a7f 3799 struct rq *rq;
83ab0aa0 3800 const struct sched_class *prev_class;
b29739f9
IM
3801
3802 BUG_ON(prio < 0 || prio > MAX_PRIO);
3803
0122ec5b 3804 rq = __task_rq_lock(p);
b29739f9 3805
1c4dd99b
TG
3806 /*
3807 * Idle task boosting is a nono in general. There is one
3808 * exception, when PREEMPT_RT and NOHZ is active:
3809 *
3810 * The idle task calls get_next_timer_interrupt() and holds
3811 * the timer wheel base->lock on the CPU and another CPU wants
3812 * to access the timer (probably to cancel it). We can safely
3813 * ignore the boosting request, as the idle CPU runs this code
3814 * with interrupts disabled and will complete the lock
3815 * protected section without being interrupted. So there is no
3816 * real need to boost.
3817 */
3818 if (unlikely(p == rq->idle)) {
3819 WARN_ON(p != rq->curr);
3820 WARN_ON(p->pi_blocked_on);
3821 goto out_unlock;
3822 }
3823
a8027073 3824 trace_sched_pi_setprio(p, prio);
d5f9f942 3825 oldprio = p->prio;
83ab0aa0 3826 prev_class = p->sched_class;
fd2f4419 3827 on_rq = p->on_rq;
051a1d1a 3828 running = task_current(rq, p);
0e1f3483 3829 if (on_rq)
69be72c1 3830 dequeue_task(rq, p, 0);
0e1f3483
HS
3831 if (running)
3832 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
3833
3834 if (rt_prio(prio))
3835 p->sched_class = &rt_sched_class;
3836 else
3837 p->sched_class = &fair_sched_class;
3838
b29739f9
IM
3839 p->prio = prio;
3840
0e1f3483
HS
3841 if (running)
3842 p->sched_class->set_curr_task(rq);
da7a735e 3843 if (on_rq)
371fd7e7 3844 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845 3845
da7a735e 3846 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3847out_unlock:
0122ec5b 3848 __task_rq_unlock(rq);
b29739f9 3849}
b29739f9 3850#endif
36c8b586 3851void set_user_nice(struct task_struct *p, long nice)
1da177e4 3852{
dd41f596 3853 int old_prio, delta, on_rq;
1da177e4 3854 unsigned long flags;
70b97a7f 3855 struct rq *rq;
1da177e4
LT
3856
3857 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3858 return;
3859 /*
3860 * We have to be careful, if called from sys_setpriority(),
3861 * the task might be in the middle of scheduling on another CPU.
3862 */
3863 rq = task_rq_lock(p, &flags);
3864 /*
3865 * The RT priorities are set via sched_setscheduler(), but we still
3866 * allow the 'normal' nice value to be set - but as expected
3867 * it wont have any effect on scheduling until the task is
dd41f596 3868 * SCHED_FIFO/SCHED_RR:
1da177e4 3869 */
e05606d3 3870 if (task_has_rt_policy(p)) {
1da177e4
LT
3871 p->static_prio = NICE_TO_PRIO(nice);
3872 goto out_unlock;
3873 }
fd2f4419 3874 on_rq = p->on_rq;
c09595f6 3875 if (on_rq)
69be72c1 3876 dequeue_task(rq, p, 0);
1da177e4 3877
1da177e4 3878 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3879 set_load_weight(p);
b29739f9
IM
3880 old_prio = p->prio;
3881 p->prio = effective_prio(p);
3882 delta = p->prio - old_prio;
1da177e4 3883
dd41f596 3884 if (on_rq) {
371fd7e7 3885 enqueue_task(rq, p, 0);
1da177e4 3886 /*
d5f9f942
AM
3887 * If the task increased its priority or is running and
3888 * lowered its priority, then reschedule its CPU:
1da177e4 3889 */
d5f9f942 3890 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
3891 resched_task(rq->curr);
3892 }
3893out_unlock:
0122ec5b 3894 task_rq_unlock(rq, p, &flags);
1da177e4 3895}
1da177e4
LT
3896EXPORT_SYMBOL(set_user_nice);
3897
e43379f1
MM
3898/*
3899 * can_nice - check if a task can reduce its nice value
3900 * @p: task
3901 * @nice: nice value
3902 */
36c8b586 3903int can_nice(const struct task_struct *p, const int nice)
e43379f1 3904{
024f4747
MM
3905 /* convert nice value [19,-20] to rlimit style value [1,40] */
3906 int nice_rlim = 20 - nice;
48f24c4d 3907
78d7d407 3908 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3909 capable(CAP_SYS_NICE));
3910}
3911
1da177e4
LT
3912#ifdef __ARCH_WANT_SYS_NICE
3913
3914/*
3915 * sys_nice - change the priority of the current process.
3916 * @increment: priority increment
3917 *
3918 * sys_setpriority is a more generic, but much slower function that
3919 * does similar things.
3920 */
5add95d4 3921SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3922{
48f24c4d 3923 long nice, retval;
1da177e4
LT
3924
3925 /*
3926 * Setpriority might change our priority at the same moment.
3927 * We don't have to worry. Conceptually one call occurs first
3928 * and we have a single winner.
3929 */
e43379f1
MM
3930 if (increment < -40)
3931 increment = -40;
1da177e4
LT
3932 if (increment > 40)
3933 increment = 40;
3934
2b8f836f 3935 nice = TASK_NICE(current) + increment;
1da177e4
LT
3936 if (nice < -20)
3937 nice = -20;
3938 if (nice > 19)
3939 nice = 19;
3940
e43379f1
MM
3941 if (increment < 0 && !can_nice(current, nice))
3942 return -EPERM;
3943
1da177e4
LT
3944 retval = security_task_setnice(current, nice);
3945 if (retval)
3946 return retval;
3947
3948 set_user_nice(current, nice);
3949 return 0;
3950}
3951
3952#endif
3953
3954/**
3955 * task_prio - return the priority value of a given task.
3956 * @p: the task in question.
3957 *
3958 * This is the priority value as seen by users in /proc.
3959 * RT tasks are offset by -200. Normal tasks are centered
3960 * around 0, value goes from -16 to +15.
3961 */
36c8b586 3962int task_prio(const struct task_struct *p)
1da177e4
LT
3963{
3964 return p->prio - MAX_RT_PRIO;
3965}
3966
3967/**
3968 * task_nice - return the nice value of a given task.
3969 * @p: the task in question.
3970 */
36c8b586 3971int task_nice(const struct task_struct *p)
1da177e4
LT
3972{
3973 return TASK_NICE(p);
3974}
150d8bed 3975EXPORT_SYMBOL(task_nice);
1da177e4
LT
3976
3977/**
3978 * idle_cpu - is a given cpu idle currently?
3979 * @cpu: the processor in question.
3980 */
3981int idle_cpu(int cpu)
3982{
908a3283
TG
3983 struct rq *rq = cpu_rq(cpu);
3984
3985 if (rq->curr != rq->idle)
3986 return 0;
3987
3988 if (rq->nr_running)
3989 return 0;
3990
3991#ifdef CONFIG_SMP
3992 if (!llist_empty(&rq->wake_list))
3993 return 0;
3994#endif
3995
3996 return 1;
1da177e4
LT
3997}
3998
1da177e4
LT
3999/**
4000 * idle_task - return the idle task for a given cpu.
4001 * @cpu: the processor in question.
4002 */
36c8b586 4003struct task_struct *idle_task(int cpu)
1da177e4
LT
4004{
4005 return cpu_rq(cpu)->idle;
4006}
4007
4008/**
4009 * find_process_by_pid - find a process with a matching PID value.
4010 * @pid: the pid in question.
4011 */
a9957449 4012static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4013{
228ebcbe 4014 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4015}
4016
4017/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4018static void
4019__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4020{
1da177e4
LT
4021 p->policy = policy;
4022 p->rt_priority = prio;
b29739f9
IM
4023 p->normal_prio = normal_prio(p);
4024 /* we are holding p->pi_lock already */
4025 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
4026 if (rt_prio(p->prio))
4027 p->sched_class = &rt_sched_class;
4028 else
4029 p->sched_class = &fair_sched_class;
2dd73a4f 4030 set_load_weight(p);
1da177e4
LT
4031}
4032
c69e8d9c
DH
4033/*
4034 * check the target process has a UID that matches the current process's
4035 */
4036static bool check_same_owner(struct task_struct *p)
4037{
4038 const struct cred *cred = current_cred(), *pcred;
4039 bool match;
4040
4041 rcu_read_lock();
4042 pcred = __task_cred(p);
b0e77598
SH
4043 if (cred->user->user_ns == pcred->user->user_ns)
4044 match = (cred->euid == pcred->euid ||
4045 cred->euid == pcred->uid);
4046 else
4047 match = false;
c69e8d9c
DH
4048 rcu_read_unlock();
4049 return match;
4050}
4051
961ccddd 4052static int __sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4053 const struct sched_param *param, bool user)
1da177e4 4054{
83b699ed 4055 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4056 unsigned long flags;
83ab0aa0 4057 const struct sched_class *prev_class;
70b97a7f 4058 struct rq *rq;
ca94c442 4059 int reset_on_fork;
1da177e4 4060
66e5393a
SR
4061 /* may grab non-irq protected spin_locks */
4062 BUG_ON(in_interrupt());
1da177e4
LT
4063recheck:
4064 /* double check policy once rq lock held */
ca94c442
LP
4065 if (policy < 0) {
4066 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4067 policy = oldpolicy = p->policy;
ca94c442
LP
4068 } else {
4069 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4070 policy &= ~SCHED_RESET_ON_FORK;
4071
4072 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4073 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4074 policy != SCHED_IDLE)
4075 return -EINVAL;
4076 }
4077
1da177e4
LT
4078 /*
4079 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4080 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4081 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4082 */
4083 if (param->sched_priority < 0 ||
95cdf3b7 4084 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4085 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4086 return -EINVAL;
e05606d3 4087 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4088 return -EINVAL;
4089
37e4ab3f
OC
4090 /*
4091 * Allow unprivileged RT tasks to decrease priority:
4092 */
961ccddd 4093 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 4094 if (rt_policy(policy)) {
a44702e8
ON
4095 unsigned long rlim_rtprio =
4096 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
4097
4098 /* can't set/change the rt policy */
4099 if (policy != p->policy && !rlim_rtprio)
4100 return -EPERM;
4101
4102 /* can't increase priority */
4103 if (param->sched_priority > p->rt_priority &&
4104 param->sched_priority > rlim_rtprio)
4105 return -EPERM;
4106 }
c02aa73b 4107
dd41f596 4108 /*
c02aa73b
DH
4109 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4110 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 4111 */
c02aa73b
DH
4112 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
4113 if (!can_nice(p, TASK_NICE(p)))
4114 return -EPERM;
4115 }
5fe1d75f 4116
37e4ab3f 4117 /* can't change other user's priorities */
c69e8d9c 4118 if (!check_same_owner(p))
37e4ab3f 4119 return -EPERM;
ca94c442
LP
4120
4121 /* Normal users shall not reset the sched_reset_on_fork flag */
4122 if (p->sched_reset_on_fork && !reset_on_fork)
4123 return -EPERM;
37e4ab3f 4124 }
1da177e4 4125
725aad24 4126 if (user) {
b0ae1981 4127 retval = security_task_setscheduler(p);
725aad24
JF
4128 if (retval)
4129 return retval;
4130 }
4131
b29739f9
IM
4132 /*
4133 * make sure no PI-waiters arrive (or leave) while we are
4134 * changing the priority of the task:
0122ec5b 4135 *
25985edc 4136 * To be able to change p->policy safely, the appropriate
1da177e4
LT
4137 * runqueue lock must be held.
4138 */
0122ec5b 4139 rq = task_rq_lock(p, &flags);
dc61b1d6 4140
34f971f6
PZ
4141 /*
4142 * Changing the policy of the stop threads its a very bad idea
4143 */
4144 if (p == rq->stop) {
0122ec5b 4145 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
4146 return -EINVAL;
4147 }
4148
a51e9198
DF
4149 /*
4150 * If not changing anything there's no need to proceed further:
4151 */
4152 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
4153 param->sched_priority == p->rt_priority))) {
4154
4155 __task_rq_unlock(rq);
4156 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4157 return 0;
4158 }
4159
dc61b1d6
PZ
4160#ifdef CONFIG_RT_GROUP_SCHED
4161 if (user) {
4162 /*
4163 * Do not allow realtime tasks into groups that have no runtime
4164 * assigned.
4165 */
4166 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
4167 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4168 !task_group_is_autogroup(task_group(p))) {
0122ec5b 4169 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
4170 return -EPERM;
4171 }
4172 }
4173#endif
4174
1da177e4
LT
4175 /* recheck policy now with rq lock held */
4176 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4177 policy = oldpolicy = -1;
0122ec5b 4178 task_rq_unlock(rq, p, &flags);
1da177e4
LT
4179 goto recheck;
4180 }
fd2f4419 4181 on_rq = p->on_rq;
051a1d1a 4182 running = task_current(rq, p);
0e1f3483 4183 if (on_rq)
4ca9b72b 4184 dequeue_task(rq, p, 0);
0e1f3483
HS
4185 if (running)
4186 p->sched_class->put_prev_task(rq, p);
f6b53205 4187
ca94c442
LP
4188 p->sched_reset_on_fork = reset_on_fork;
4189
1da177e4 4190 oldprio = p->prio;
83ab0aa0 4191 prev_class = p->sched_class;
dd41f596 4192 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4193
0e1f3483
HS
4194 if (running)
4195 p->sched_class->set_curr_task(rq);
da7a735e 4196 if (on_rq)
4ca9b72b 4197 enqueue_task(rq, p, 0);
cb469845 4198
da7a735e 4199 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 4200 task_rq_unlock(rq, p, &flags);
b29739f9 4201
95e02ca9
TG
4202 rt_mutex_adjust_pi(p);
4203
1da177e4
LT
4204 return 0;
4205}
961ccddd
RR
4206
4207/**
4208 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4209 * @p: the task in question.
4210 * @policy: new policy.
4211 * @param: structure containing the new RT priority.
4212 *
4213 * NOTE that the task may be already dead.
4214 */
4215int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4216 const struct sched_param *param)
961ccddd
RR
4217{
4218 return __sched_setscheduler(p, policy, param, true);
4219}
1da177e4
LT
4220EXPORT_SYMBOL_GPL(sched_setscheduler);
4221
961ccddd
RR
4222/**
4223 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4224 * @p: the task in question.
4225 * @policy: new policy.
4226 * @param: structure containing the new RT priority.
4227 *
4228 * Just like sched_setscheduler, only don't bother checking if the
4229 * current context has permission. For example, this is needed in
4230 * stop_machine(): we create temporary high priority worker threads,
4231 * but our caller might not have that capability.
4232 */
4233int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 4234 const struct sched_param *param)
961ccddd
RR
4235{
4236 return __sched_setscheduler(p, policy, param, false);
4237}
4238
95cdf3b7
IM
4239static int
4240do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4241{
1da177e4
LT
4242 struct sched_param lparam;
4243 struct task_struct *p;
36c8b586 4244 int retval;
1da177e4
LT
4245
4246 if (!param || pid < 0)
4247 return -EINVAL;
4248 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4249 return -EFAULT;
5fe1d75f
ON
4250
4251 rcu_read_lock();
4252 retval = -ESRCH;
1da177e4 4253 p = find_process_by_pid(pid);
5fe1d75f
ON
4254 if (p != NULL)
4255 retval = sched_setscheduler(p, policy, &lparam);
4256 rcu_read_unlock();
36c8b586 4257
1da177e4
LT
4258 return retval;
4259}
4260
4261/**
4262 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4263 * @pid: the pid in question.
4264 * @policy: new policy.
4265 * @param: structure containing the new RT priority.
4266 */
5add95d4
HC
4267SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4268 struct sched_param __user *, param)
1da177e4 4269{
c21761f1
JB
4270 /* negative values for policy are not valid */
4271 if (policy < 0)
4272 return -EINVAL;
4273
1da177e4
LT
4274 return do_sched_setscheduler(pid, policy, param);
4275}
4276
4277/**
4278 * sys_sched_setparam - set/change the RT priority of a thread
4279 * @pid: the pid in question.
4280 * @param: structure containing the new RT priority.
4281 */
5add95d4 4282SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4283{
4284 return do_sched_setscheduler(pid, -1, param);
4285}
4286
4287/**
4288 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4289 * @pid: the pid in question.
4290 */
5add95d4 4291SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4292{
36c8b586 4293 struct task_struct *p;
3a5c359a 4294 int retval;
1da177e4
LT
4295
4296 if (pid < 0)
3a5c359a 4297 return -EINVAL;
1da177e4
LT
4298
4299 retval = -ESRCH;
5fe85be0 4300 rcu_read_lock();
1da177e4
LT
4301 p = find_process_by_pid(pid);
4302 if (p) {
4303 retval = security_task_getscheduler(p);
4304 if (!retval)
ca94c442
LP
4305 retval = p->policy
4306 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4307 }
5fe85be0 4308 rcu_read_unlock();
1da177e4
LT
4309 return retval;
4310}
4311
4312/**
ca94c442 4313 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4314 * @pid: the pid in question.
4315 * @param: structure containing the RT priority.
4316 */
5add95d4 4317SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4318{
4319 struct sched_param lp;
36c8b586 4320 struct task_struct *p;
3a5c359a 4321 int retval;
1da177e4
LT
4322
4323 if (!param || pid < 0)
3a5c359a 4324 return -EINVAL;
1da177e4 4325
5fe85be0 4326 rcu_read_lock();
1da177e4
LT
4327 p = find_process_by_pid(pid);
4328 retval = -ESRCH;
4329 if (!p)
4330 goto out_unlock;
4331
4332 retval = security_task_getscheduler(p);
4333 if (retval)
4334 goto out_unlock;
4335
4336 lp.sched_priority = p->rt_priority;
5fe85be0 4337 rcu_read_unlock();
1da177e4
LT
4338
4339 /*
4340 * This one might sleep, we cannot do it with a spinlock held ...
4341 */
4342 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4343
1da177e4
LT
4344 return retval;
4345
4346out_unlock:
5fe85be0 4347 rcu_read_unlock();
1da177e4
LT
4348 return retval;
4349}
4350
96f874e2 4351long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4352{
5a16f3d3 4353 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4354 struct task_struct *p;
4355 int retval;
1da177e4 4356
95402b38 4357 get_online_cpus();
23f5d142 4358 rcu_read_lock();
1da177e4
LT
4359
4360 p = find_process_by_pid(pid);
4361 if (!p) {
23f5d142 4362 rcu_read_unlock();
95402b38 4363 put_online_cpus();
1da177e4
LT
4364 return -ESRCH;
4365 }
4366
23f5d142 4367 /* Prevent p going away */
1da177e4 4368 get_task_struct(p);
23f5d142 4369 rcu_read_unlock();
1da177e4 4370
5a16f3d3
RR
4371 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4372 retval = -ENOMEM;
4373 goto out_put_task;
4374 }
4375 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4376 retval = -ENOMEM;
4377 goto out_free_cpus_allowed;
4378 }
1da177e4 4379 retval = -EPERM;
f1c84dae 4380 if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE))
1da177e4
LT
4381 goto out_unlock;
4382
b0ae1981 4383 retval = security_task_setscheduler(p);
e7834f8f
DQ
4384 if (retval)
4385 goto out_unlock;
4386
5a16f3d3
RR
4387 cpuset_cpus_allowed(p, cpus_allowed);
4388 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 4389again:
5a16f3d3 4390 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 4391
8707d8b8 4392 if (!retval) {
5a16f3d3
RR
4393 cpuset_cpus_allowed(p, cpus_allowed);
4394 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4395 /*
4396 * We must have raced with a concurrent cpuset
4397 * update. Just reset the cpus_allowed to the
4398 * cpuset's cpus_allowed
4399 */
5a16f3d3 4400 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4401 goto again;
4402 }
4403 }
1da177e4 4404out_unlock:
5a16f3d3
RR
4405 free_cpumask_var(new_mask);
4406out_free_cpus_allowed:
4407 free_cpumask_var(cpus_allowed);
4408out_put_task:
1da177e4 4409 put_task_struct(p);
95402b38 4410 put_online_cpus();
1da177e4
LT
4411 return retval;
4412}
4413
4414static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4415 struct cpumask *new_mask)
1da177e4 4416{
96f874e2
RR
4417 if (len < cpumask_size())
4418 cpumask_clear(new_mask);
4419 else if (len > cpumask_size())
4420 len = cpumask_size();
4421
1da177e4
LT
4422 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4423}
4424
4425/**
4426 * sys_sched_setaffinity - set the cpu affinity of a process
4427 * @pid: pid of the process
4428 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4429 * @user_mask_ptr: user-space pointer to the new cpu mask
4430 */
5add95d4
HC
4431SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4432 unsigned long __user *, user_mask_ptr)
1da177e4 4433{
5a16f3d3 4434 cpumask_var_t new_mask;
1da177e4
LT
4435 int retval;
4436
5a16f3d3
RR
4437 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4438 return -ENOMEM;
1da177e4 4439
5a16f3d3
RR
4440 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4441 if (retval == 0)
4442 retval = sched_setaffinity(pid, new_mask);
4443 free_cpumask_var(new_mask);
4444 return retval;
1da177e4
LT
4445}
4446
96f874e2 4447long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4448{
36c8b586 4449 struct task_struct *p;
31605683 4450 unsigned long flags;
1da177e4 4451 int retval;
1da177e4 4452
95402b38 4453 get_online_cpus();
23f5d142 4454 rcu_read_lock();
1da177e4
LT
4455
4456 retval = -ESRCH;
4457 p = find_process_by_pid(pid);
4458 if (!p)
4459 goto out_unlock;
4460
e7834f8f
DQ
4461 retval = security_task_getscheduler(p);
4462 if (retval)
4463 goto out_unlock;
4464
013fdb80 4465 raw_spin_lock_irqsave(&p->pi_lock, flags);
96f874e2 4466 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
013fdb80 4467 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4468
4469out_unlock:
23f5d142 4470 rcu_read_unlock();
95402b38 4471 put_online_cpus();
1da177e4 4472
9531b62f 4473 return retval;
1da177e4
LT
4474}
4475
4476/**
4477 * sys_sched_getaffinity - get the cpu affinity of a process
4478 * @pid: pid of the process
4479 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4480 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4481 */
5add95d4
HC
4482SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4483 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4484{
4485 int ret;
f17c8607 4486 cpumask_var_t mask;
1da177e4 4487
84fba5ec 4488 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4489 return -EINVAL;
4490 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4491 return -EINVAL;
4492
f17c8607
RR
4493 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4494 return -ENOMEM;
1da177e4 4495
f17c8607
RR
4496 ret = sched_getaffinity(pid, mask);
4497 if (ret == 0) {
8bc037fb 4498 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4499
4500 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4501 ret = -EFAULT;
4502 else
cd3d8031 4503 ret = retlen;
f17c8607
RR
4504 }
4505 free_cpumask_var(mask);
1da177e4 4506
f17c8607 4507 return ret;
1da177e4
LT
4508}
4509
4510/**
4511 * sys_sched_yield - yield the current processor to other threads.
4512 *
dd41f596
IM
4513 * This function yields the current CPU to other tasks. If there are no
4514 * other threads running on this CPU then this function will return.
1da177e4 4515 */
5add95d4 4516SYSCALL_DEFINE0(sched_yield)
1da177e4 4517{
70b97a7f 4518 struct rq *rq = this_rq_lock();
1da177e4 4519
2d72376b 4520 schedstat_inc(rq, yld_count);
4530d7ab 4521 current->sched_class->yield_task(rq);
1da177e4
LT
4522
4523 /*
4524 * Since we are going to call schedule() anyway, there's
4525 * no need to preempt or enable interrupts:
4526 */
4527 __release(rq->lock);
8a25d5de 4528 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4529 do_raw_spin_unlock(&rq->lock);
ba74c144 4530 sched_preempt_enable_no_resched();
1da177e4
LT
4531
4532 schedule();
4533
4534 return 0;
4535}
4536
d86ee480
PZ
4537static inline int should_resched(void)
4538{
4539 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4540}
4541
e7b38404 4542static void __cond_resched(void)
1da177e4 4543{
e7aaaa69 4544 add_preempt_count(PREEMPT_ACTIVE);
c259e01a 4545 __schedule();
e7aaaa69 4546 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
4547}
4548
02b67cc3 4549int __sched _cond_resched(void)
1da177e4 4550{
d86ee480 4551 if (should_resched()) {
1da177e4
LT
4552 __cond_resched();
4553 return 1;
4554 }
4555 return 0;
4556}
02b67cc3 4557EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4558
4559/*
613afbf8 4560 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4561 * call schedule, and on return reacquire the lock.
4562 *
41a2d6cf 4563 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4564 * operations here to prevent schedule() from being called twice (once via
4565 * spin_unlock(), once by hand).
4566 */
613afbf8 4567int __cond_resched_lock(spinlock_t *lock)
1da177e4 4568{
d86ee480 4569 int resched = should_resched();
6df3cecb
JK
4570 int ret = 0;
4571
f607c668
PZ
4572 lockdep_assert_held(lock);
4573
95c354fe 4574 if (spin_needbreak(lock) || resched) {
1da177e4 4575 spin_unlock(lock);
d86ee480 4576 if (resched)
95c354fe
NP
4577 __cond_resched();
4578 else
4579 cpu_relax();
6df3cecb 4580 ret = 1;
1da177e4 4581 spin_lock(lock);
1da177e4 4582 }
6df3cecb 4583 return ret;
1da177e4 4584}
613afbf8 4585EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4586
613afbf8 4587int __sched __cond_resched_softirq(void)
1da177e4
LT
4588{
4589 BUG_ON(!in_softirq());
4590
d86ee480 4591 if (should_resched()) {
98d82567 4592 local_bh_enable();
1da177e4
LT
4593 __cond_resched();
4594 local_bh_disable();
4595 return 1;
4596 }
4597 return 0;
4598}
613afbf8 4599EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4600
1da177e4
LT
4601/**
4602 * yield - yield the current processor to other threads.
4603 *
8e3fabfd
PZ
4604 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4605 *
4606 * The scheduler is at all times free to pick the calling task as the most
4607 * eligible task to run, if removing the yield() call from your code breaks
4608 * it, its already broken.
4609 *
4610 * Typical broken usage is:
4611 *
4612 * while (!event)
4613 * yield();
4614 *
4615 * where one assumes that yield() will let 'the other' process run that will
4616 * make event true. If the current task is a SCHED_FIFO task that will never
4617 * happen. Never use yield() as a progress guarantee!!
4618 *
4619 * If you want to use yield() to wait for something, use wait_event().
4620 * If you want to use yield() to be 'nice' for others, use cond_resched().
4621 * If you still want to use yield(), do not!
1da177e4
LT
4622 */
4623void __sched yield(void)
4624{
4625 set_current_state(TASK_RUNNING);
4626 sys_sched_yield();
4627}
1da177e4
LT
4628EXPORT_SYMBOL(yield);
4629
d95f4122
MG
4630/**
4631 * yield_to - yield the current processor to another thread in
4632 * your thread group, or accelerate that thread toward the
4633 * processor it's on.
16addf95
RD
4634 * @p: target task
4635 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4636 *
4637 * It's the caller's job to ensure that the target task struct
4638 * can't go away on us before we can do any checks.
4639 *
4640 * Returns true if we indeed boosted the target task.
4641 */
4642bool __sched yield_to(struct task_struct *p, bool preempt)
4643{
4644 struct task_struct *curr = current;
4645 struct rq *rq, *p_rq;
4646 unsigned long flags;
4647 bool yielded = 0;
4648
4649 local_irq_save(flags);
4650 rq = this_rq();
4651
4652again:
4653 p_rq = task_rq(p);
4654 double_rq_lock(rq, p_rq);
4655 while (task_rq(p) != p_rq) {
4656 double_rq_unlock(rq, p_rq);
4657 goto again;
4658 }
4659
4660 if (!curr->sched_class->yield_to_task)
4661 goto out;
4662
4663 if (curr->sched_class != p->sched_class)
4664 goto out;
4665
4666 if (task_running(p_rq, p) || p->state)
4667 goto out;
4668
4669 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4670 if (yielded) {
d95f4122 4671 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4672 /*
4673 * Make p's CPU reschedule; pick_next_entity takes care of
4674 * fairness.
4675 */
4676 if (preempt && rq != p_rq)
4677 resched_task(p_rq->curr);
916671c0
MG
4678 } else {
4679 /*
4680 * We might have set it in task_yield_fair(), but are
4681 * not going to schedule(), so don't want to skip
4682 * the next update.
4683 */
4684 rq->skip_clock_update = 0;
6d1cafd8 4685 }
d95f4122
MG
4686
4687out:
4688 double_rq_unlock(rq, p_rq);
4689 local_irq_restore(flags);
4690
4691 if (yielded)
4692 schedule();
4693
4694 return yielded;
4695}
4696EXPORT_SYMBOL_GPL(yield_to);
4697
1da177e4 4698/*
41a2d6cf 4699 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4700 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
4701 */
4702void __sched io_schedule(void)
4703{
54d35f29 4704 struct rq *rq = raw_rq();
1da177e4 4705
0ff92245 4706 delayacct_blkio_start();
1da177e4 4707 atomic_inc(&rq->nr_iowait);
73c10101 4708 blk_flush_plug(current);
8f0dfc34 4709 current->in_iowait = 1;
1da177e4 4710 schedule();
8f0dfc34 4711 current->in_iowait = 0;
1da177e4 4712 atomic_dec(&rq->nr_iowait);
0ff92245 4713 delayacct_blkio_end();
1da177e4 4714}
1da177e4
LT
4715EXPORT_SYMBOL(io_schedule);
4716
4717long __sched io_schedule_timeout(long timeout)
4718{
54d35f29 4719 struct rq *rq = raw_rq();
1da177e4
LT
4720 long ret;
4721
0ff92245 4722 delayacct_blkio_start();
1da177e4 4723 atomic_inc(&rq->nr_iowait);
73c10101 4724 blk_flush_plug(current);
8f0dfc34 4725 current->in_iowait = 1;
1da177e4 4726 ret = schedule_timeout(timeout);
8f0dfc34 4727 current->in_iowait = 0;
1da177e4 4728 atomic_dec(&rq->nr_iowait);
0ff92245 4729 delayacct_blkio_end();
1da177e4
LT
4730 return ret;
4731}
4732
4733/**
4734 * sys_sched_get_priority_max - return maximum RT priority.
4735 * @policy: scheduling class.
4736 *
4737 * this syscall returns the maximum rt_priority that can be used
4738 * by a given scheduling class.
4739 */
5add95d4 4740SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4741{
4742 int ret = -EINVAL;
4743
4744 switch (policy) {
4745 case SCHED_FIFO:
4746 case SCHED_RR:
4747 ret = MAX_USER_RT_PRIO-1;
4748 break;
4749 case SCHED_NORMAL:
b0a9499c 4750 case SCHED_BATCH:
dd41f596 4751 case SCHED_IDLE:
1da177e4
LT
4752 ret = 0;
4753 break;
4754 }
4755 return ret;
4756}
4757
4758/**
4759 * sys_sched_get_priority_min - return minimum RT priority.
4760 * @policy: scheduling class.
4761 *
4762 * this syscall returns the minimum rt_priority that can be used
4763 * by a given scheduling class.
4764 */
5add95d4 4765SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4766{
4767 int ret = -EINVAL;
4768
4769 switch (policy) {
4770 case SCHED_FIFO:
4771 case SCHED_RR:
4772 ret = 1;
4773 break;
4774 case SCHED_NORMAL:
b0a9499c 4775 case SCHED_BATCH:
dd41f596 4776 case SCHED_IDLE:
1da177e4
LT
4777 ret = 0;
4778 }
4779 return ret;
4780}
4781
4782/**
4783 * sys_sched_rr_get_interval - return the default timeslice of a process.
4784 * @pid: pid of the process.
4785 * @interval: userspace pointer to the timeslice value.
4786 *
4787 * this syscall writes the default timeslice value of a given process
4788 * into the user-space timespec buffer. A value of '0' means infinity.
4789 */
17da2bd9 4790SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4791 struct timespec __user *, interval)
1da177e4 4792{
36c8b586 4793 struct task_struct *p;
a4ec24b4 4794 unsigned int time_slice;
dba091b9
TG
4795 unsigned long flags;
4796 struct rq *rq;
3a5c359a 4797 int retval;
1da177e4 4798 struct timespec t;
1da177e4
LT
4799
4800 if (pid < 0)
3a5c359a 4801 return -EINVAL;
1da177e4
LT
4802
4803 retval = -ESRCH;
1a551ae7 4804 rcu_read_lock();
1da177e4
LT
4805 p = find_process_by_pid(pid);
4806 if (!p)
4807 goto out_unlock;
4808
4809 retval = security_task_getscheduler(p);
4810 if (retval)
4811 goto out_unlock;
4812
dba091b9
TG
4813 rq = task_rq_lock(p, &flags);
4814 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4815 task_rq_unlock(rq, p, &flags);
a4ec24b4 4816
1a551ae7 4817 rcu_read_unlock();
a4ec24b4 4818 jiffies_to_timespec(time_slice, &t);
1da177e4 4819 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4820 return retval;
3a5c359a 4821
1da177e4 4822out_unlock:
1a551ae7 4823 rcu_read_unlock();
1da177e4
LT
4824 return retval;
4825}
4826
7c731e0a 4827static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4828
82a1fcb9 4829void sched_show_task(struct task_struct *p)
1da177e4 4830{
1da177e4 4831 unsigned long free = 0;
36c8b586 4832 unsigned state;
1da177e4 4833
1da177e4 4834 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 4835 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4836 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4837#if BITS_PER_LONG == 32
1da177e4 4838 if (state == TASK_RUNNING)
3df0fc5b 4839 printk(KERN_CONT " running ");
1da177e4 4840 else
3df0fc5b 4841 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4842#else
4843 if (state == TASK_RUNNING)
3df0fc5b 4844 printk(KERN_CONT " running task ");
1da177e4 4845 else
3df0fc5b 4846 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4847#endif
4848#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4849 free = stack_not_used(p);
1da177e4 4850#endif
3df0fc5b 4851 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
07cde260 4852 task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)),
aa47b7e0 4853 (unsigned long)task_thread_info(p)->flags);
1da177e4 4854
5fb5e6de 4855 show_stack(p, NULL);
1da177e4
LT
4856}
4857
e59e2ae2 4858void show_state_filter(unsigned long state_filter)
1da177e4 4859{
36c8b586 4860 struct task_struct *g, *p;
1da177e4 4861
4bd77321 4862#if BITS_PER_LONG == 32
3df0fc5b
PZ
4863 printk(KERN_INFO
4864 " task PC stack pid father\n");
1da177e4 4865#else
3df0fc5b
PZ
4866 printk(KERN_INFO
4867 " task PC stack pid father\n");
1da177e4 4868#endif
510f5acc 4869 rcu_read_lock();
1da177e4
LT
4870 do_each_thread(g, p) {
4871 /*
4872 * reset the NMI-timeout, listing all files on a slow
25985edc 4873 * console might take a lot of time:
1da177e4
LT
4874 */
4875 touch_nmi_watchdog();
39bc89fd 4876 if (!state_filter || (p->state & state_filter))
82a1fcb9 4877 sched_show_task(p);
1da177e4
LT
4878 } while_each_thread(g, p);
4879
04c9167f
JF
4880 touch_all_softlockup_watchdogs();
4881
dd41f596
IM
4882#ifdef CONFIG_SCHED_DEBUG
4883 sysrq_sched_debug_show();
4884#endif
510f5acc 4885 rcu_read_unlock();
e59e2ae2
IM
4886 /*
4887 * Only show locks if all tasks are dumped:
4888 */
93335a21 4889 if (!state_filter)
e59e2ae2 4890 debug_show_all_locks();
1da177e4
LT
4891}
4892
1df21055
IM
4893void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4894{
dd41f596 4895 idle->sched_class = &idle_sched_class;
1df21055
IM
4896}
4897
f340c0d1
IM
4898/**
4899 * init_idle - set up an idle thread for a given CPU
4900 * @idle: task in question
4901 * @cpu: cpu the idle task belongs to
4902 *
4903 * NOTE: this function does not set the idle thread's NEED_RESCHED
4904 * flag, to make booting more robust.
4905 */
5c1e1767 4906void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 4907{
70b97a7f 4908 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4909 unsigned long flags;
4910
05fa785c 4911 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 4912
dd41f596 4913 __sched_fork(idle);
06b83b5f 4914 idle->state = TASK_RUNNING;
dd41f596
IM
4915 idle->se.exec_start = sched_clock();
4916
1e1b6c51 4917 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4918 /*
4919 * We're having a chicken and egg problem, even though we are
4920 * holding rq->lock, the cpu isn't yet set to this cpu so the
4921 * lockdep check in task_group() will fail.
4922 *
4923 * Similar case to sched_fork(). / Alternatively we could
4924 * use task_rq_lock() here and obtain the other rq->lock.
4925 *
4926 * Silence PROVE_RCU
4927 */
4928 rcu_read_lock();
dd41f596 4929 __set_task_cpu(idle, cpu);
6506cf6c 4930 rcu_read_unlock();
1da177e4 4931
1da177e4 4932 rq->curr = rq->idle = idle;
3ca7a440
PZ
4933#if defined(CONFIG_SMP)
4934 idle->on_cpu = 1;
4866cde0 4935#endif
05fa785c 4936 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
4937
4938 /* Set the preempt count _outside_ the spinlocks! */
a1261f54 4939 task_thread_info(idle)->preempt_count = 0;
55cd5340 4940
dd41f596
IM
4941 /*
4942 * The idle tasks have their own, simple scheduling class:
4943 */
4944 idle->sched_class = &idle_sched_class;
868baf07 4945 ftrace_graph_init_idle_task(idle, cpu);
f1c6f1a7
CE
4946#if defined(CONFIG_SMP)
4947 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4948#endif
19978ca6
IM
4949}
4950
1da177e4 4951#ifdef CONFIG_SMP
1e1b6c51
KM
4952void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4953{
4954 if (p->sched_class && p->sched_class->set_cpus_allowed)
4955 p->sched_class->set_cpus_allowed(p, new_mask);
4939602a
PZ
4956
4957 cpumask_copy(&p->cpus_allowed, new_mask);
4958 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
1e1b6c51
KM
4959}
4960
1da177e4
LT
4961/*
4962 * This is how migration works:
4963 *
969c7921
TH
4964 * 1) we invoke migration_cpu_stop() on the target CPU using
4965 * stop_one_cpu().
4966 * 2) stopper starts to run (implicitly forcing the migrated thread
4967 * off the CPU)
4968 * 3) it checks whether the migrated task is still in the wrong runqueue.
4969 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 4970 * it and puts it into the right queue.
969c7921
TH
4971 * 5) stopper completes and stop_one_cpu() returns and the migration
4972 * is done.
1da177e4
LT
4973 */
4974
4975/*
4976 * Change a given task's CPU affinity. Migrate the thread to a
4977 * proper CPU and schedule it away if the CPU it's executing on
4978 * is removed from the allowed bitmask.
4979 *
4980 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 4981 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
4982 * call is not atomic; no spinlocks may be held.
4983 */
96f874e2 4984int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
4985{
4986 unsigned long flags;
70b97a7f 4987 struct rq *rq;
969c7921 4988 unsigned int dest_cpu;
48f24c4d 4989 int ret = 0;
1da177e4
LT
4990
4991 rq = task_rq_lock(p, &flags);
e2912009 4992
db44fc01
YZ
4993 if (cpumask_equal(&p->cpus_allowed, new_mask))
4994 goto out;
4995
6ad4c188 4996 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
4997 ret = -EINVAL;
4998 goto out;
4999 }
5000
db44fc01 5001 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
9985b0ba
DR
5002 ret = -EINVAL;
5003 goto out;
5004 }
5005
1e1b6c51 5006 do_set_cpus_allowed(p, new_mask);
73fe6aae 5007
1da177e4 5008 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 5009 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
5010 goto out;
5011
969c7921 5012 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
bd8e7dde 5013 if (p->on_rq) {
969c7921 5014 struct migration_arg arg = { p, dest_cpu };
1da177e4 5015 /* Need help from migration thread: drop lock and wait. */
0122ec5b 5016 task_rq_unlock(rq, p, &flags);
969c7921 5017 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
5018 tlb_migrate_finish(p->mm);
5019 return 0;
5020 }
5021out:
0122ec5b 5022 task_rq_unlock(rq, p, &flags);
48f24c4d 5023
1da177e4
LT
5024 return ret;
5025}
cd8ba7cd 5026EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5027
5028/*
41a2d6cf 5029 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5030 * this because either it can't run here any more (set_cpus_allowed()
5031 * away from this CPU, or CPU going down), or because we're
5032 * attempting to rebalance this task on exec (sched_exec).
5033 *
5034 * So we race with normal scheduler movements, but that's OK, as long
5035 * as the task is no longer on this CPU.
efc30814
KK
5036 *
5037 * Returns non-zero if task was successfully migrated.
1da177e4 5038 */
efc30814 5039static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5040{
70b97a7f 5041 struct rq *rq_dest, *rq_src;
e2912009 5042 int ret = 0;
1da177e4 5043
e761b772 5044 if (unlikely(!cpu_active(dest_cpu)))
efc30814 5045 return ret;
1da177e4
LT
5046
5047 rq_src = cpu_rq(src_cpu);
5048 rq_dest = cpu_rq(dest_cpu);
5049
0122ec5b 5050 raw_spin_lock(&p->pi_lock);
1da177e4
LT
5051 double_rq_lock(rq_src, rq_dest);
5052 /* Already moved. */
5053 if (task_cpu(p) != src_cpu)
b1e38734 5054 goto done;
1da177e4 5055 /* Affinity changed (again). */
fa17b507 5056 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
b1e38734 5057 goto fail;
1da177e4 5058
e2912009
PZ
5059 /*
5060 * If we're not on a rq, the next wake-up will ensure we're
5061 * placed properly.
5062 */
fd2f4419 5063 if (p->on_rq) {
4ca9b72b 5064 dequeue_task(rq_src, p, 0);
e2912009 5065 set_task_cpu(p, dest_cpu);
4ca9b72b 5066 enqueue_task(rq_dest, p, 0);
15afe09b 5067 check_preempt_curr(rq_dest, p, 0);
1da177e4 5068 }
b1e38734 5069done:
efc30814 5070 ret = 1;
b1e38734 5071fail:
1da177e4 5072 double_rq_unlock(rq_src, rq_dest);
0122ec5b 5073 raw_spin_unlock(&p->pi_lock);
efc30814 5074 return ret;
1da177e4
LT
5075}
5076
5077/*
969c7921
TH
5078 * migration_cpu_stop - this will be executed by a highprio stopper thread
5079 * and performs thread migration by bumping thread off CPU then
5080 * 'pushing' onto another runqueue.
1da177e4 5081 */
969c7921 5082static int migration_cpu_stop(void *data)
1da177e4 5083{
969c7921 5084 struct migration_arg *arg = data;
f7b4cddc 5085
969c7921
TH
5086 /*
5087 * The original target cpu might have gone down and we might
5088 * be on another cpu but it doesn't matter.
5089 */
f7b4cddc 5090 local_irq_disable();
969c7921 5091 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 5092 local_irq_enable();
1da177e4 5093 return 0;
f7b4cddc
ON
5094}
5095
1da177e4 5096#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 5097
054b9108 5098/*
48c5ccae
PZ
5099 * Ensures that the idle task is using init_mm right before its cpu goes
5100 * offline.
054b9108 5101 */
48c5ccae 5102void idle_task_exit(void)
1da177e4 5103{
48c5ccae 5104 struct mm_struct *mm = current->active_mm;
e76bd8d9 5105
48c5ccae 5106 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 5107
48c5ccae
PZ
5108 if (mm != &init_mm)
5109 switch_mm(mm, &init_mm, current);
5110 mmdrop(mm);
1da177e4
LT
5111}
5112
5113/*
5114 * While a dead CPU has no uninterruptible tasks queued at this point,
5115 * it might still have a nonzero ->nr_uninterruptible counter, because
5116 * for performance reasons the counter is not stricly tracking tasks to
5117 * their home CPUs. So we just add the counter to another CPU's counter,
5118 * to keep the global sum constant after CPU-down:
5119 */
70b97a7f 5120static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5121{
6ad4c188 5122 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4 5123
1da177e4
LT
5124 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5125 rq_src->nr_uninterruptible = 0;
1da177e4
LT
5126}
5127
dd41f596 5128/*
48c5ccae 5129 * remove the tasks which were accounted by rq from calc_load_tasks.
1da177e4 5130 */
48c5ccae 5131static void calc_global_load_remove(struct rq *rq)
1da177e4 5132{
48c5ccae
PZ
5133 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5134 rq->calc_load_active = 0;
1da177e4
LT
5135}
5136
48f24c4d 5137/*
48c5ccae
PZ
5138 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5139 * try_to_wake_up()->select_task_rq().
5140 *
5141 * Called with rq->lock held even though we'er in stop_machine() and
5142 * there's no concurrency possible, we hold the required locks anyway
5143 * because of lock validation efforts.
1da177e4 5144 */
48c5ccae 5145static void migrate_tasks(unsigned int dead_cpu)
1da177e4 5146{
70b97a7f 5147 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
5148 struct task_struct *next, *stop = rq->stop;
5149 int dest_cpu;
1da177e4
LT
5150
5151 /*
48c5ccae
PZ
5152 * Fudge the rq selection such that the below task selection loop
5153 * doesn't get stuck on the currently eligible stop task.
5154 *
5155 * We're currently inside stop_machine() and the rq is either stuck
5156 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5157 * either way we should never end up calling schedule() until we're
5158 * done here.
1da177e4 5159 */
48c5ccae 5160 rq->stop = NULL;
48f24c4d 5161
8cb120d3
PT
5162 /* Ensure any throttled groups are reachable by pick_next_task */
5163 unthrottle_offline_cfs_rqs(rq);
5164
dd41f596 5165 for ( ; ; ) {
48c5ccae
PZ
5166 /*
5167 * There's this thread running, bail when that's the only
5168 * remaining thread.
5169 */
5170 if (rq->nr_running == 1)
dd41f596 5171 break;
48c5ccae 5172
b67802ea 5173 next = pick_next_task(rq);
48c5ccae 5174 BUG_ON(!next);
79c53799 5175 next->sched_class->put_prev_task(rq, next);
e692ab53 5176
48c5ccae
PZ
5177 /* Find suitable destination for @next, with force if needed. */
5178 dest_cpu = select_fallback_rq(dead_cpu, next);
5179 raw_spin_unlock(&rq->lock);
5180
5181 __migrate_task(next, dead_cpu, dest_cpu);
5182
5183 raw_spin_lock(&rq->lock);
1da177e4 5184 }
dce48a84 5185
48c5ccae 5186 rq->stop = stop;
dce48a84 5187}
48c5ccae 5188
1da177e4
LT
5189#endif /* CONFIG_HOTPLUG_CPU */
5190
e692ab53
NP
5191#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5192
5193static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5194 {
5195 .procname = "sched_domain",
c57baf1e 5196 .mode = 0555,
e0361851 5197 },
56992309 5198 {}
e692ab53
NP
5199};
5200
5201static struct ctl_table sd_ctl_root[] = {
e0361851
AD
5202 {
5203 .procname = "kernel",
c57baf1e 5204 .mode = 0555,
e0361851
AD
5205 .child = sd_ctl_dir,
5206 },
56992309 5207 {}
e692ab53
NP
5208};
5209
5210static struct ctl_table *sd_alloc_ctl_entry(int n)
5211{
5212 struct ctl_table *entry =
5cf9f062 5213 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5214
e692ab53
NP
5215 return entry;
5216}
5217
6382bc90
MM
5218static void sd_free_ctl_entry(struct ctl_table **tablep)
5219{
cd790076 5220 struct ctl_table *entry;
6382bc90 5221
cd790076
MM
5222 /*
5223 * In the intermediate directories, both the child directory and
5224 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5225 * will always be set. In the lowest directory the names are
cd790076
MM
5226 * static strings and all have proc handlers.
5227 */
5228 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5229 if (entry->child)
5230 sd_free_ctl_entry(&entry->child);
cd790076
MM
5231 if (entry->proc_handler == NULL)
5232 kfree(entry->procname);
5233 }
6382bc90
MM
5234
5235 kfree(*tablep);
5236 *tablep = NULL;
5237}
5238
e692ab53 5239static void
e0361851 5240set_table_entry(struct ctl_table *entry,
e692ab53 5241 const char *procname, void *data, int maxlen,
36fcb589 5242 umode_t mode, proc_handler *proc_handler)
e692ab53 5243{
e692ab53
NP
5244 entry->procname = procname;
5245 entry->data = data;
5246 entry->maxlen = maxlen;
5247 entry->mode = mode;
5248 entry->proc_handler = proc_handler;
5249}
5250
5251static struct ctl_table *
5252sd_alloc_ctl_domain_table(struct sched_domain *sd)
5253{
a5d8c348 5254 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 5255
ad1cdc1d
MM
5256 if (table == NULL)
5257 return NULL;
5258
e0361851 5259 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5260 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5261 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5262 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5263 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5264 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5265 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5266 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5267 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5268 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5269 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5270 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5271 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5272 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5273 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5274 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5275 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5276 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5277 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
5278 &sd->cache_nice_tries,
5279 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5280 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 5281 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
5282 set_table_entry(&table[11], "name", sd->name,
5283 CORENAME_MAX_SIZE, 0444, proc_dostring);
5284 /* &table[12] is terminator */
e692ab53
NP
5285
5286 return table;
5287}
5288
9a4e7159 5289static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5290{
5291 struct ctl_table *entry, *table;
5292 struct sched_domain *sd;
5293 int domain_num = 0, i;
5294 char buf[32];
5295
5296 for_each_domain(cpu, sd)
5297 domain_num++;
5298 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5299 if (table == NULL)
5300 return NULL;
e692ab53
NP
5301
5302 i = 0;
5303 for_each_domain(cpu, sd) {
5304 snprintf(buf, 32, "domain%d", i);
e692ab53 5305 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5306 entry->mode = 0555;
e692ab53
NP
5307 entry->child = sd_alloc_ctl_domain_table(sd);
5308 entry++;
5309 i++;
5310 }
5311 return table;
5312}
5313
5314static struct ctl_table_header *sd_sysctl_header;
6382bc90 5315static void register_sched_domain_sysctl(void)
e692ab53 5316{
6ad4c188 5317 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5318 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5319 char buf[32];
5320
7378547f
MM
5321 WARN_ON(sd_ctl_dir[0].child);
5322 sd_ctl_dir[0].child = entry;
5323
ad1cdc1d
MM
5324 if (entry == NULL)
5325 return;
5326
6ad4c188 5327 for_each_possible_cpu(i) {
e692ab53 5328 snprintf(buf, 32, "cpu%d", i);
e692ab53 5329 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5330 entry->mode = 0555;
e692ab53 5331 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5332 entry++;
e692ab53 5333 }
7378547f
MM
5334
5335 WARN_ON(sd_sysctl_header);
e692ab53
NP
5336 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5337}
6382bc90 5338
7378547f 5339/* may be called multiple times per register */
6382bc90
MM
5340static void unregister_sched_domain_sysctl(void)
5341{
7378547f
MM
5342 if (sd_sysctl_header)
5343 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5344 sd_sysctl_header = NULL;
7378547f
MM
5345 if (sd_ctl_dir[0].child)
5346 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5347}
e692ab53 5348#else
6382bc90
MM
5349static void register_sched_domain_sysctl(void)
5350{
5351}
5352static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5353{
5354}
5355#endif
5356
1f11eb6a
GH
5357static void set_rq_online(struct rq *rq)
5358{
5359 if (!rq->online) {
5360 const struct sched_class *class;
5361
c6c4927b 5362 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5363 rq->online = 1;
5364
5365 for_each_class(class) {
5366 if (class->rq_online)
5367 class->rq_online(rq);
5368 }
5369 }
5370}
5371
5372static void set_rq_offline(struct rq *rq)
5373{
5374 if (rq->online) {
5375 const struct sched_class *class;
5376
5377 for_each_class(class) {
5378 if (class->rq_offline)
5379 class->rq_offline(rq);
5380 }
5381
c6c4927b 5382 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5383 rq->online = 0;
5384 }
5385}
5386
1da177e4
LT
5387/*
5388 * migration_call - callback that gets triggered when a CPU is added.
5389 * Here we can start up the necessary migration thread for the new CPU.
5390 */
48f24c4d
IM
5391static int __cpuinit
5392migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5393{
48f24c4d 5394 int cpu = (long)hcpu;
1da177e4 5395 unsigned long flags;
969c7921 5396 struct rq *rq = cpu_rq(cpu);
1da177e4 5397
48c5ccae 5398 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 5399
1da177e4 5400 case CPU_UP_PREPARE:
a468d389 5401 rq->calc_load_update = calc_load_update;
1da177e4 5402 break;
48f24c4d 5403
1da177e4 5404 case CPU_ONLINE:
1f94ef59 5405 /* Update our root-domain */
05fa785c 5406 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5407 if (rq->rd) {
c6c4927b 5408 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5409
5410 set_rq_online(rq);
1f94ef59 5411 }
05fa785c 5412 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5413 break;
48f24c4d 5414
1da177e4 5415#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5416 case CPU_DYING:
317f3941 5417 sched_ttwu_pending();
57d885fe 5418 /* Update our root-domain */
05fa785c 5419 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5420 if (rq->rd) {
c6c4927b 5421 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5422 set_rq_offline(rq);
57d885fe 5423 }
48c5ccae
PZ
5424 migrate_tasks(cpu);
5425 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5426 raw_spin_unlock_irqrestore(&rq->lock, flags);
48c5ccae
PZ
5427
5428 migrate_nr_uninterruptible(rq);
5429 calc_global_load_remove(rq);
57d885fe 5430 break;
1da177e4
LT
5431#endif
5432 }
49c022e6
PZ
5433
5434 update_max_interval();
5435
1da177e4
LT
5436 return NOTIFY_OK;
5437}
5438
f38b0820
PM
5439/*
5440 * Register at high priority so that task migration (migrate_all_tasks)
5441 * happens before everything else. This has to be lower priority than
cdd6c482 5442 * the notifier in the perf_event subsystem, though.
1da177e4 5443 */
26c2143b 5444static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4 5445 .notifier_call = migration_call,
50a323b7 5446 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5447};
5448
3a101d05
TH
5449static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5450 unsigned long action, void *hcpu)
5451{
5452 switch (action & ~CPU_TASKS_FROZEN) {
5fbd036b 5453 case CPU_STARTING:
3a101d05
TH
5454 case CPU_DOWN_FAILED:
5455 set_cpu_active((long)hcpu, true);
5456 return NOTIFY_OK;
5457 default:
5458 return NOTIFY_DONE;
5459 }
5460}
5461
5462static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5463 unsigned long action, void *hcpu)
5464{
5465 switch (action & ~CPU_TASKS_FROZEN) {
5466 case CPU_DOWN_PREPARE:
5467 set_cpu_active((long)hcpu, false);
5468 return NOTIFY_OK;
5469 default:
5470 return NOTIFY_DONE;
5471 }
5472}
5473
7babe8db 5474static int __init migration_init(void)
1da177e4
LT
5475{
5476 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5477 int err;
48f24c4d 5478
3a101d05 5479 /* Initialize migration for the boot CPU */
07dccf33
AM
5480 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5481 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5482 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5483 register_cpu_notifier(&migration_notifier);
7babe8db 5484
3a101d05
TH
5485 /* Register cpu active notifiers */
5486 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5487 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5488
a004cd42 5489 return 0;
1da177e4 5490}
7babe8db 5491early_initcall(migration_init);
1da177e4
LT
5492#endif
5493
5494#ifdef CONFIG_SMP
476f3534 5495
4cb98839
PZ
5496static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5497
3e9830dc 5498#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5499
f6630114
MT
5500static __read_mostly int sched_domain_debug_enabled;
5501
5502static int __init sched_domain_debug_setup(char *str)
5503{
5504 sched_domain_debug_enabled = 1;
5505
5506 return 0;
5507}
5508early_param("sched_debug", sched_domain_debug_setup);
5509
7c16ec58 5510static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5511 struct cpumask *groupmask)
1da177e4 5512{
4dcf6aff 5513 struct sched_group *group = sd->groups;
434d53b0 5514 char str[256];
1da177e4 5515
968ea6d8 5516 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 5517 cpumask_clear(groupmask);
4dcf6aff
IM
5518
5519 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5520
5521 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5522 printk("does not load-balance\n");
4dcf6aff 5523 if (sd->parent)
3df0fc5b
PZ
5524 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5525 " has parent");
4dcf6aff 5526 return -1;
41c7ce9a
NP
5527 }
5528
3df0fc5b 5529 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 5530
758b2cdc 5531 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5532 printk(KERN_ERR "ERROR: domain->span does not contain "
5533 "CPU%d\n", cpu);
4dcf6aff 5534 }
758b2cdc 5535 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5536 printk(KERN_ERR "ERROR: domain->groups does not contain"
5537 " CPU%d\n", cpu);
4dcf6aff 5538 }
1da177e4 5539
4dcf6aff 5540 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5541 do {
4dcf6aff 5542 if (!group) {
3df0fc5b
PZ
5543 printk("\n");
5544 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5545 break;
5546 }
5547
9c3f75cb 5548 if (!group->sgp->power) {
3df0fc5b
PZ
5549 printk(KERN_CONT "\n");
5550 printk(KERN_ERR "ERROR: domain->cpu_power not "
5551 "set\n");
4dcf6aff
IM
5552 break;
5553 }
1da177e4 5554
758b2cdc 5555 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5556 printk(KERN_CONT "\n");
5557 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5558 break;
5559 }
1da177e4 5560
758b2cdc 5561 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5562 printk(KERN_CONT "\n");
5563 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5564 break;
5565 }
1da177e4 5566
758b2cdc 5567 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5568
968ea6d8 5569 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 5570
3df0fc5b 5571 printk(KERN_CONT " %s", str);
9c3f75cb 5572 if (group->sgp->power != SCHED_POWER_SCALE) {
3df0fc5b 5573 printk(KERN_CONT " (cpu_power = %d)",
9c3f75cb 5574 group->sgp->power);
381512cf 5575 }
1da177e4 5576
4dcf6aff
IM
5577 group = group->next;
5578 } while (group != sd->groups);
3df0fc5b 5579 printk(KERN_CONT "\n");
1da177e4 5580
758b2cdc 5581 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5582 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5583
758b2cdc
RR
5584 if (sd->parent &&
5585 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5586 printk(KERN_ERR "ERROR: parent span is not a superset "
5587 "of domain->span\n");
4dcf6aff
IM
5588 return 0;
5589}
1da177e4 5590
4dcf6aff
IM
5591static void sched_domain_debug(struct sched_domain *sd, int cpu)
5592{
5593 int level = 0;
1da177e4 5594
f6630114
MT
5595 if (!sched_domain_debug_enabled)
5596 return;
5597
4dcf6aff
IM
5598 if (!sd) {
5599 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5600 return;
5601 }
1da177e4 5602
4dcf6aff
IM
5603 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5604
5605 for (;;) {
4cb98839 5606 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5607 break;
1da177e4
LT
5608 level++;
5609 sd = sd->parent;
33859f7f 5610 if (!sd)
4dcf6aff
IM
5611 break;
5612 }
1da177e4 5613}
6d6bc0ad 5614#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5615# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 5616#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5617
1a20ff27 5618static int sd_degenerate(struct sched_domain *sd)
245af2c7 5619{
758b2cdc 5620 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5621 return 1;
5622
5623 /* Following flags need at least 2 groups */
5624 if (sd->flags & (SD_LOAD_BALANCE |
5625 SD_BALANCE_NEWIDLE |
5626 SD_BALANCE_FORK |
89c4710e
SS
5627 SD_BALANCE_EXEC |
5628 SD_SHARE_CPUPOWER |
5629 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5630 if (sd->groups != sd->groups->next)
5631 return 0;
5632 }
5633
5634 /* Following flags don't use groups */
c88d5910 5635 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5636 return 0;
5637
5638 return 1;
5639}
5640
48f24c4d
IM
5641static int
5642sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5643{
5644 unsigned long cflags = sd->flags, pflags = parent->flags;
5645
5646 if (sd_degenerate(parent))
5647 return 1;
5648
758b2cdc 5649 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5650 return 0;
5651
245af2c7
SS
5652 /* Flags needing groups don't count if only 1 group in parent */
5653 if (parent->groups == parent->groups->next) {
5654 pflags &= ~(SD_LOAD_BALANCE |
5655 SD_BALANCE_NEWIDLE |
5656 SD_BALANCE_FORK |
89c4710e
SS
5657 SD_BALANCE_EXEC |
5658 SD_SHARE_CPUPOWER |
5659 SD_SHARE_PKG_RESOURCES);
5436499e
KC
5660 if (nr_node_ids == 1)
5661 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5662 }
5663 if (~cflags & pflags)
5664 return 0;
5665
5666 return 1;
5667}
5668
dce840a0 5669static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5670{
dce840a0 5671 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5672
68e74568 5673 cpupri_cleanup(&rd->cpupri);
c6c4927b
RR
5674 free_cpumask_var(rd->rto_mask);
5675 free_cpumask_var(rd->online);
5676 free_cpumask_var(rd->span);
5677 kfree(rd);
5678}
5679
57d885fe
GH
5680static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5681{
a0490fa3 5682 struct root_domain *old_rd = NULL;
57d885fe 5683 unsigned long flags;
57d885fe 5684
05fa785c 5685 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5686
5687 if (rq->rd) {
a0490fa3 5688 old_rd = rq->rd;
57d885fe 5689
c6c4927b 5690 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5691 set_rq_offline(rq);
57d885fe 5692
c6c4927b 5693 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5694
a0490fa3
IM
5695 /*
5696 * If we dont want to free the old_rt yet then
5697 * set old_rd to NULL to skip the freeing later
5698 * in this function:
5699 */
5700 if (!atomic_dec_and_test(&old_rd->refcount))
5701 old_rd = NULL;
57d885fe
GH
5702 }
5703
5704 atomic_inc(&rd->refcount);
5705 rq->rd = rd;
5706
c6c4927b 5707 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5708 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5709 set_rq_online(rq);
57d885fe 5710
05fa785c 5711 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5712
5713 if (old_rd)
dce840a0 5714 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5715}
5716
68c38fc3 5717static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5718{
5719 memset(rd, 0, sizeof(*rd));
5720
68c38fc3 5721 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5722 goto out;
68c38fc3 5723 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5724 goto free_span;
68c38fc3 5725 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 5726 goto free_online;
6e0534f2 5727
68c38fc3 5728 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5729 goto free_rto_mask;
c6c4927b 5730 return 0;
6e0534f2 5731
68e74568
RR
5732free_rto_mask:
5733 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
5734free_online:
5735 free_cpumask_var(rd->online);
5736free_span:
5737 free_cpumask_var(rd->span);
0c910d28 5738out:
c6c4927b 5739 return -ENOMEM;
57d885fe
GH
5740}
5741
029632fb
PZ
5742/*
5743 * By default the system creates a single root-domain with all cpus as
5744 * members (mimicking the global state we have today).
5745 */
5746struct root_domain def_root_domain;
5747
57d885fe
GH
5748static void init_defrootdomain(void)
5749{
68c38fc3 5750 init_rootdomain(&def_root_domain);
c6c4927b 5751
57d885fe
GH
5752 atomic_set(&def_root_domain.refcount, 1);
5753}
5754
dc938520 5755static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5756{
5757 struct root_domain *rd;
5758
5759 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5760 if (!rd)
5761 return NULL;
5762
68c38fc3 5763 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5764 kfree(rd);
5765 return NULL;
5766 }
57d885fe
GH
5767
5768 return rd;
5769}
5770
e3589f6c
PZ
5771static void free_sched_groups(struct sched_group *sg, int free_sgp)
5772{
5773 struct sched_group *tmp, *first;
5774
5775 if (!sg)
5776 return;
5777
5778 first = sg;
5779 do {
5780 tmp = sg->next;
5781
5782 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5783 kfree(sg->sgp);
5784
5785 kfree(sg);
5786 sg = tmp;
5787 } while (sg != first);
5788}
5789
dce840a0
PZ
5790static void free_sched_domain(struct rcu_head *rcu)
5791{
5792 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5793
5794 /*
5795 * If its an overlapping domain it has private groups, iterate and
5796 * nuke them all.
5797 */
5798 if (sd->flags & SD_OVERLAP) {
5799 free_sched_groups(sd->groups, 1);
5800 } else if (atomic_dec_and_test(&sd->groups->ref)) {
9c3f75cb 5801 kfree(sd->groups->sgp);
dce840a0 5802 kfree(sd->groups);
9c3f75cb 5803 }
dce840a0
PZ
5804 kfree(sd);
5805}
5806
5807static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5808{
5809 call_rcu(&sd->rcu, free_sched_domain);
5810}
5811
5812static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5813{
5814 for (; sd; sd = sd->parent)
5815 destroy_sched_domain(sd, cpu);
5816}
5817
518cd623
PZ
5818/*
5819 * Keep a special pointer to the highest sched_domain that has
5820 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5821 * allows us to avoid some pointer chasing select_idle_sibling().
5822 *
5823 * Also keep a unique ID per domain (we use the first cpu number in
5824 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5825 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5826 */
5827DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5828DEFINE_PER_CPU(int, sd_llc_id);
5829
5830static void update_top_cache_domain(int cpu)
5831{
5832 struct sched_domain *sd;
5833 int id = cpu;
5834
5835 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5836 if (sd)
5837 id = cpumask_first(sched_domain_span(sd));
5838
5839 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5840 per_cpu(sd_llc_id, cpu) = id;
5841}
5842
1da177e4 5843/*
0eab9146 5844 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5845 * hold the hotplug lock.
5846 */
0eab9146
IM
5847static void
5848cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5849{
70b97a7f 5850 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5851 struct sched_domain *tmp;
5852
5853 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5854 for (tmp = sd; tmp; ) {
245af2c7
SS
5855 struct sched_domain *parent = tmp->parent;
5856 if (!parent)
5857 break;
f29c9b1c 5858
1a848870 5859 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5860 tmp->parent = parent->parent;
1a848870
SS
5861 if (parent->parent)
5862 parent->parent->child = tmp;
dce840a0 5863 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5864 } else
5865 tmp = tmp->parent;
245af2c7
SS
5866 }
5867
1a848870 5868 if (sd && sd_degenerate(sd)) {
dce840a0 5869 tmp = sd;
245af2c7 5870 sd = sd->parent;
dce840a0 5871 destroy_sched_domain(tmp, cpu);
1a848870
SS
5872 if (sd)
5873 sd->child = NULL;
5874 }
1da177e4 5875
4cb98839 5876 sched_domain_debug(sd, cpu);
1da177e4 5877
57d885fe 5878 rq_attach_root(rq, rd);
dce840a0 5879 tmp = rq->sd;
674311d5 5880 rcu_assign_pointer(rq->sd, sd);
dce840a0 5881 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5882
5883 update_top_cache_domain(cpu);
1da177e4
LT
5884}
5885
5886/* cpus with isolated domains */
dcc30a35 5887static cpumask_var_t cpu_isolated_map;
1da177e4
LT
5888
5889/* Setup the mask of cpus configured for isolated domains */
5890static int __init isolated_cpu_setup(char *str)
5891{
bdddd296 5892 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5893 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5894 return 1;
5895}
5896
8927f494 5897__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5898
9c1cfda2 5899#ifdef CONFIG_NUMA
198e2f18 5900
9c1cfda2
JH
5901/**
5902 * find_next_best_node - find the next node to include in a sched_domain
5903 * @node: node whose sched_domain we're building
5904 * @used_nodes: nodes already in the sched_domain
5905 *
41a2d6cf 5906 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
5907 * finds the closest node not already in the @used_nodes map.
5908 *
5909 * Should use nodemask_t.
5910 */
c5f59f08 5911static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2 5912{
7142d17e 5913 int i, n, val, min_val, best_node = -1;
9c1cfda2
JH
5914
5915 min_val = INT_MAX;
5916
076ac2af 5917 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 5918 /* Start at @node */
076ac2af 5919 n = (node + i) % nr_node_ids;
9c1cfda2
JH
5920
5921 if (!nr_cpus_node(n))
5922 continue;
5923
5924 /* Skip already used nodes */
c5f59f08 5925 if (node_isset(n, *used_nodes))
9c1cfda2
JH
5926 continue;
5927
5928 /* Simple min distance search */
5929 val = node_distance(node, n);
5930
5931 if (val < min_val) {
5932 min_val = val;
5933 best_node = n;
5934 }
5935 }
5936
7142d17e
HD
5937 if (best_node != -1)
5938 node_set(best_node, *used_nodes);
9c1cfda2
JH
5939 return best_node;
5940}
5941
5942/**
5943 * sched_domain_node_span - get a cpumask for a node's sched_domain
5944 * @node: node whose cpumask we're constructing
73486722 5945 * @span: resulting cpumask
9c1cfda2 5946 *
41a2d6cf 5947 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
5948 * should be one that prevents unnecessary balancing, but also spreads tasks
5949 * out optimally.
5950 */
96f874e2 5951static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 5952{
c5f59f08 5953 nodemask_t used_nodes;
48f24c4d 5954 int i;
9c1cfda2 5955
6ca09dfc 5956 cpumask_clear(span);
c5f59f08 5957 nodes_clear(used_nodes);
9c1cfda2 5958
6ca09dfc 5959 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 5960 node_set(node, used_nodes);
9c1cfda2
JH
5961
5962 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 5963 int next_node = find_next_best_node(node, &used_nodes);
7142d17e
HD
5964 if (next_node < 0)
5965 break;
6ca09dfc 5966 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 5967 }
9c1cfda2 5968}
d3081f52
PZ
5969
5970static const struct cpumask *cpu_node_mask(int cpu)
5971{
5972 lockdep_assert_held(&sched_domains_mutex);
5973
5974 sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);
5975
5976 return sched_domains_tmpmask;
5977}
2c402dc3
PZ
5978
5979static const struct cpumask *cpu_allnodes_mask(int cpu)
5980{
5981 return cpu_possible_mask;
5982}
6d6bc0ad 5983#endif /* CONFIG_NUMA */
9c1cfda2 5984
d3081f52
PZ
5985static const struct cpumask *cpu_cpu_mask(int cpu)
5986{
5987 return cpumask_of_node(cpu_to_node(cpu));
5988}
5989
5c45bf27 5990int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 5991
dce840a0
PZ
5992struct sd_data {
5993 struct sched_domain **__percpu sd;
5994 struct sched_group **__percpu sg;
9c3f75cb 5995 struct sched_group_power **__percpu sgp;
dce840a0
PZ
5996};
5997
49a02c51 5998struct s_data {
21d42ccf 5999 struct sched_domain ** __percpu sd;
49a02c51
AH
6000 struct root_domain *rd;
6001};
6002
2109b99e 6003enum s_alloc {
2109b99e 6004 sa_rootdomain,
21d42ccf 6005 sa_sd,
dce840a0 6006 sa_sd_storage,
2109b99e
AH
6007 sa_none,
6008};
6009
54ab4ff4
PZ
6010struct sched_domain_topology_level;
6011
6012typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
eb7a74e6
PZ
6013typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
6014
e3589f6c
PZ
6015#define SDTL_OVERLAP 0x01
6016
eb7a74e6 6017struct sched_domain_topology_level {
2c402dc3
PZ
6018 sched_domain_init_f init;
6019 sched_domain_mask_f mask;
e3589f6c 6020 int flags;
54ab4ff4 6021 struct sd_data data;
eb7a74e6
PZ
6022};
6023
e3589f6c
PZ
6024static int
6025build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6026{
6027 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6028 const struct cpumask *span = sched_domain_span(sd);
6029 struct cpumask *covered = sched_domains_tmpmask;
6030 struct sd_data *sdd = sd->private;
6031 struct sched_domain *child;
6032 int i;
6033
6034 cpumask_clear(covered);
6035
6036 for_each_cpu(i, span) {
6037 struct cpumask *sg_span;
6038
6039 if (cpumask_test_cpu(i, covered))
6040 continue;
6041
6042 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 6043 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
6044
6045 if (!sg)
6046 goto fail;
6047
6048 sg_span = sched_group_cpus(sg);
6049
6050 child = *per_cpu_ptr(sdd->sd, i);
6051 if (child->child) {
6052 child = child->child;
6053 cpumask_copy(sg_span, sched_domain_span(child));
6054 } else
6055 cpumask_set_cpu(i, sg_span);
6056
6057 cpumask_or(covered, covered, sg_span);
6058
6059 sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span));
6060 atomic_inc(&sg->sgp->ref);
6061
6062 if (cpumask_test_cpu(cpu, sg_span))
6063 groups = sg;
6064
6065 if (!first)
6066 first = sg;
6067 if (last)
6068 last->next = sg;
6069 last = sg;
6070 last->next = first;
6071 }
6072 sd->groups = groups;
6073
6074 return 0;
6075
6076fail:
6077 free_sched_groups(first, 0);
6078
6079 return -ENOMEM;
6080}
6081
dce840a0 6082static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 6083{
dce840a0
PZ
6084 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6085 struct sched_domain *child = sd->child;
1da177e4 6086
dce840a0
PZ
6087 if (child)
6088 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 6089
9c3f75cb 6090 if (sg) {
dce840a0 6091 *sg = *per_cpu_ptr(sdd->sg, cpu);
9c3f75cb 6092 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
e3589f6c 6093 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
9c3f75cb 6094 }
dce840a0
PZ
6095
6096 return cpu;
1e9f28fa 6097}
1e9f28fa 6098
01a08546 6099/*
dce840a0
PZ
6100 * build_sched_groups will build a circular linked list of the groups
6101 * covered by the given span, and will set each group's ->cpumask correctly,
6102 * and ->cpu_power to 0.
e3589f6c
PZ
6103 *
6104 * Assumes the sched_domain tree is fully constructed
01a08546 6105 */
e3589f6c
PZ
6106static int
6107build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 6108{
dce840a0
PZ
6109 struct sched_group *first = NULL, *last = NULL;
6110 struct sd_data *sdd = sd->private;
6111 const struct cpumask *span = sched_domain_span(sd);
f96225fd 6112 struct cpumask *covered;
dce840a0 6113 int i;
9c1cfda2 6114
e3589f6c
PZ
6115 get_group(cpu, sdd, &sd->groups);
6116 atomic_inc(&sd->groups->ref);
6117
6118 if (cpu != cpumask_first(sched_domain_span(sd)))
6119 return 0;
6120
f96225fd
PZ
6121 lockdep_assert_held(&sched_domains_mutex);
6122 covered = sched_domains_tmpmask;
6123
dce840a0 6124 cpumask_clear(covered);
6711cab4 6125
dce840a0
PZ
6126 for_each_cpu(i, span) {
6127 struct sched_group *sg;
6128 int group = get_group(i, sdd, &sg);
6129 int j;
6711cab4 6130
dce840a0
PZ
6131 if (cpumask_test_cpu(i, covered))
6132 continue;
6711cab4 6133
dce840a0 6134 cpumask_clear(sched_group_cpus(sg));
9c3f75cb 6135 sg->sgp->power = 0;
0601a88d 6136
dce840a0
PZ
6137 for_each_cpu(j, span) {
6138 if (get_group(j, sdd, NULL) != group)
6139 continue;
0601a88d 6140
dce840a0
PZ
6141 cpumask_set_cpu(j, covered);
6142 cpumask_set_cpu(j, sched_group_cpus(sg));
6143 }
0601a88d 6144
dce840a0
PZ
6145 if (!first)
6146 first = sg;
6147 if (last)
6148 last->next = sg;
6149 last = sg;
6150 }
6151 last->next = first;
e3589f6c
PZ
6152
6153 return 0;
0601a88d 6154}
51888ca2 6155
89c4710e
SS
6156/*
6157 * Initialize sched groups cpu_power.
6158 *
6159 * cpu_power indicates the capacity of sched group, which is used while
6160 * distributing the load between different sched groups in a sched domain.
6161 * Typically cpu_power for all the groups in a sched domain will be same unless
6162 * there are asymmetries in the topology. If there are asymmetries, group
6163 * having more cpu_power will pickup more load compared to the group having
6164 * less cpu_power.
89c4710e
SS
6165 */
6166static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6167{
e3589f6c 6168 struct sched_group *sg = sd->groups;
89c4710e 6169
e3589f6c
PZ
6170 WARN_ON(!sd || !sg);
6171
6172 do {
6173 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6174 sg = sg->next;
6175 } while (sg != sd->groups);
89c4710e 6176
e3589f6c
PZ
6177 if (cpu != group_first_cpu(sg))
6178 return;
aae6d3dd 6179
d274cb30 6180 update_group_power(sd, cpu);
69e1e811 6181 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
89c4710e
SS
6182}
6183
029632fb
PZ
6184int __weak arch_sd_sibling_asym_packing(void)
6185{
6186 return 0*SD_ASYM_PACKING;
89c4710e
SS
6187}
6188
7c16ec58
MT
6189/*
6190 * Initializers for schedule domains
6191 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6192 */
6193
a5d8c348
IM
6194#ifdef CONFIG_SCHED_DEBUG
6195# define SD_INIT_NAME(sd, type) sd->name = #type
6196#else
6197# define SD_INIT_NAME(sd, type) do { } while (0)
6198#endif
6199
54ab4ff4
PZ
6200#define SD_INIT_FUNC(type) \
6201static noinline struct sched_domain * \
6202sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
6203{ \
6204 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
6205 *sd = SD_##type##_INIT; \
54ab4ff4
PZ
6206 SD_INIT_NAME(sd, type); \
6207 sd->private = &tl->data; \
6208 return sd; \
7c16ec58
MT
6209}
6210
6211SD_INIT_FUNC(CPU)
6212#ifdef CONFIG_NUMA
6213 SD_INIT_FUNC(ALLNODES)
6214 SD_INIT_FUNC(NODE)
6215#endif
6216#ifdef CONFIG_SCHED_SMT
6217 SD_INIT_FUNC(SIBLING)
6218#endif
6219#ifdef CONFIG_SCHED_MC
6220 SD_INIT_FUNC(MC)
6221#endif
01a08546
HC
6222#ifdef CONFIG_SCHED_BOOK
6223 SD_INIT_FUNC(BOOK)
6224#endif
7c16ec58 6225
1d3504fc 6226static int default_relax_domain_level = -1;
60495e77 6227int sched_domain_level_max;
1d3504fc
HS
6228
6229static int __init setup_relax_domain_level(char *str)
6230{
30e0e178
LZ
6231 unsigned long val;
6232
6233 val = simple_strtoul(str, NULL, 0);
60495e77 6234 if (val < sched_domain_level_max)
30e0e178
LZ
6235 default_relax_domain_level = val;
6236
1d3504fc
HS
6237 return 1;
6238}
6239__setup("relax_domain_level=", setup_relax_domain_level);
6240
6241static void set_domain_attribute(struct sched_domain *sd,
6242 struct sched_domain_attr *attr)
6243{
6244 int request;
6245
6246 if (!attr || attr->relax_domain_level < 0) {
6247 if (default_relax_domain_level < 0)
6248 return;
6249 else
6250 request = default_relax_domain_level;
6251 } else
6252 request = attr->relax_domain_level;
6253 if (request < sd->level) {
6254 /* turn off idle balance on this domain */
c88d5910 6255 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6256 } else {
6257 /* turn on idle balance on this domain */
c88d5910 6258 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6259 }
6260}
6261
54ab4ff4
PZ
6262static void __sdt_free(const struct cpumask *cpu_map);
6263static int __sdt_alloc(const struct cpumask *cpu_map);
6264
2109b99e
AH
6265static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6266 const struct cpumask *cpu_map)
6267{
6268 switch (what) {
2109b99e 6269 case sa_rootdomain:
822ff793
PZ
6270 if (!atomic_read(&d->rd->refcount))
6271 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
6272 case sa_sd:
6273 free_percpu(d->sd); /* fall through */
dce840a0 6274 case sa_sd_storage:
54ab4ff4 6275 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
6276 case sa_none:
6277 break;
6278 }
6279}
3404c8d9 6280
2109b99e
AH
6281static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6282 const struct cpumask *cpu_map)
6283{
dce840a0
PZ
6284 memset(d, 0, sizeof(*d));
6285
54ab4ff4
PZ
6286 if (__sdt_alloc(cpu_map))
6287 return sa_sd_storage;
dce840a0
PZ
6288 d->sd = alloc_percpu(struct sched_domain *);
6289 if (!d->sd)
6290 return sa_sd_storage;
2109b99e 6291 d->rd = alloc_rootdomain();
dce840a0 6292 if (!d->rd)
21d42ccf 6293 return sa_sd;
2109b99e
AH
6294 return sa_rootdomain;
6295}
57d885fe 6296
dce840a0
PZ
6297/*
6298 * NULL the sd_data elements we've used to build the sched_domain and
6299 * sched_group structure so that the subsequent __free_domain_allocs()
6300 * will not free the data we're using.
6301 */
6302static void claim_allocations(int cpu, struct sched_domain *sd)
6303{
6304 struct sd_data *sdd = sd->private;
dce840a0
PZ
6305
6306 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6307 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6308
e3589f6c 6309 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 6310 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c
PZ
6311
6312 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
9c3f75cb 6313 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
dce840a0
PZ
6314}
6315
2c402dc3
PZ
6316#ifdef CONFIG_SCHED_SMT
6317static const struct cpumask *cpu_smt_mask(int cpu)
7f4588f3 6318{
2c402dc3 6319 return topology_thread_cpumask(cpu);
3bd65a80 6320}
2c402dc3 6321#endif
7f4588f3 6322
d069b916
PZ
6323/*
6324 * Topology list, bottom-up.
6325 */
2c402dc3 6326static struct sched_domain_topology_level default_topology[] = {
d069b916
PZ
6327#ifdef CONFIG_SCHED_SMT
6328 { sd_init_SIBLING, cpu_smt_mask, },
01a08546 6329#endif
1e9f28fa 6330#ifdef CONFIG_SCHED_MC
2c402dc3 6331 { sd_init_MC, cpu_coregroup_mask, },
1e9f28fa 6332#endif
d069b916
PZ
6333#ifdef CONFIG_SCHED_BOOK
6334 { sd_init_BOOK, cpu_book_mask, },
6335#endif
6336 { sd_init_CPU, cpu_cpu_mask, },
6337#ifdef CONFIG_NUMA
e3589f6c 6338 { sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, },
d069b916 6339 { sd_init_ALLNODES, cpu_allnodes_mask, },
1da177e4 6340#endif
eb7a74e6
PZ
6341 { NULL, },
6342};
6343
6344static struct sched_domain_topology_level *sched_domain_topology = default_topology;
6345
54ab4ff4
PZ
6346static int __sdt_alloc(const struct cpumask *cpu_map)
6347{
6348 struct sched_domain_topology_level *tl;
6349 int j;
6350
6351 for (tl = sched_domain_topology; tl->init; tl++) {
6352 struct sd_data *sdd = &tl->data;
6353
6354 sdd->sd = alloc_percpu(struct sched_domain *);
6355 if (!sdd->sd)
6356 return -ENOMEM;
6357
6358 sdd->sg = alloc_percpu(struct sched_group *);
6359 if (!sdd->sg)
6360 return -ENOMEM;
6361
9c3f75cb
PZ
6362 sdd->sgp = alloc_percpu(struct sched_group_power *);
6363 if (!sdd->sgp)
6364 return -ENOMEM;
6365
54ab4ff4
PZ
6366 for_each_cpu(j, cpu_map) {
6367 struct sched_domain *sd;
6368 struct sched_group *sg;
9c3f75cb 6369 struct sched_group_power *sgp;
54ab4ff4
PZ
6370
6371 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6372 GFP_KERNEL, cpu_to_node(j));
6373 if (!sd)
6374 return -ENOMEM;
6375
6376 *per_cpu_ptr(sdd->sd, j) = sd;
6377
6378 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6379 GFP_KERNEL, cpu_to_node(j));
6380 if (!sg)
6381 return -ENOMEM;
6382
6383 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb
PZ
6384
6385 sgp = kzalloc_node(sizeof(struct sched_group_power),
6386 GFP_KERNEL, cpu_to_node(j));
6387 if (!sgp)
6388 return -ENOMEM;
6389
6390 *per_cpu_ptr(sdd->sgp, j) = sgp;
54ab4ff4
PZ
6391 }
6392 }
6393
6394 return 0;
6395}
6396
6397static void __sdt_free(const struct cpumask *cpu_map)
6398{
6399 struct sched_domain_topology_level *tl;
6400 int j;
6401
6402 for (tl = sched_domain_topology; tl->init; tl++) {
6403 struct sd_data *sdd = &tl->data;
6404
6405 for_each_cpu(j, cpu_map) {
e3589f6c
PZ
6406 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, j);
6407 if (sd && (sd->flags & SD_OVERLAP))
6408 free_sched_groups(sd->groups, 0);
feff8fa0 6409 kfree(*per_cpu_ptr(sdd->sd, j));
54ab4ff4 6410 kfree(*per_cpu_ptr(sdd->sg, j));
9c3f75cb 6411 kfree(*per_cpu_ptr(sdd->sgp, j));
54ab4ff4
PZ
6412 }
6413 free_percpu(sdd->sd);
6414 free_percpu(sdd->sg);
9c3f75cb 6415 free_percpu(sdd->sgp);
54ab4ff4
PZ
6416 }
6417}
6418
2c402dc3
PZ
6419struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6420 struct s_data *d, const struct cpumask *cpu_map,
d069b916 6421 struct sched_domain_attr *attr, struct sched_domain *child,
2c402dc3
PZ
6422 int cpu)
6423{
54ab4ff4 6424 struct sched_domain *sd = tl->init(tl, cpu);
2c402dc3 6425 if (!sd)
d069b916 6426 return child;
2c402dc3
PZ
6427
6428 set_domain_attribute(sd, attr);
6429 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6430 if (child) {
6431 sd->level = child->level + 1;
6432 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6433 child->parent = sd;
60495e77 6434 }
d069b916 6435 sd->child = child;
2c402dc3
PZ
6436
6437 return sd;
6438}
6439
2109b99e
AH
6440/*
6441 * Build sched domains for a given set of cpus and attach the sched domains
6442 * to the individual cpus
6443 */
dce840a0
PZ
6444static int build_sched_domains(const struct cpumask *cpu_map,
6445 struct sched_domain_attr *attr)
2109b99e
AH
6446{
6447 enum s_alloc alloc_state = sa_none;
dce840a0 6448 struct sched_domain *sd;
2109b99e 6449 struct s_data d;
822ff793 6450 int i, ret = -ENOMEM;
9c1cfda2 6451
2109b99e
AH
6452 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6453 if (alloc_state != sa_rootdomain)
6454 goto error;
9c1cfda2 6455
dce840a0 6456 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6457 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6458 struct sched_domain_topology_level *tl;
6459
3bd65a80 6460 sd = NULL;
e3589f6c 6461 for (tl = sched_domain_topology; tl->init; tl++) {
2c402dc3 6462 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
e3589f6c
PZ
6463 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6464 sd->flags |= SD_OVERLAP;
d110235d
PZ
6465 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6466 break;
e3589f6c 6467 }
d274cb30 6468
d069b916
PZ
6469 while (sd->child)
6470 sd = sd->child;
6471
21d42ccf 6472 *per_cpu_ptr(d.sd, i) = sd;
dce840a0
PZ
6473 }
6474
6475 /* Build the groups for the domains */
6476 for_each_cpu(i, cpu_map) {
6477 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6478 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6479 if (sd->flags & SD_OVERLAP) {
6480 if (build_overlap_sched_groups(sd, i))
6481 goto error;
6482 } else {
6483 if (build_sched_groups(sd, i))
6484 goto error;
6485 }
1cf51902 6486 }
a06dadbe 6487 }
9c1cfda2 6488
1da177e4 6489 /* Calculate CPU power for physical packages and nodes */
a9c9a9b6
PZ
6490 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6491 if (!cpumask_test_cpu(i, cpu_map))
6492 continue;
9c1cfda2 6493
dce840a0
PZ
6494 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6495 claim_allocations(i, sd);
cd4ea6ae 6496 init_sched_groups_power(i, sd);
dce840a0 6497 }
f712c0c7 6498 }
9c1cfda2 6499
1da177e4 6500 /* Attach the domains */
dce840a0 6501 rcu_read_lock();
abcd083a 6502 for_each_cpu(i, cpu_map) {
21d42ccf 6503 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6504 cpu_attach_domain(sd, d.rd, i);
1da177e4 6505 }
dce840a0 6506 rcu_read_unlock();
51888ca2 6507
822ff793 6508 ret = 0;
51888ca2 6509error:
2109b99e 6510 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6511 return ret;
1da177e4 6512}
029190c5 6513
acc3f5d7 6514static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6515static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6516static struct sched_domain_attr *dattr_cur;
6517 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6518
6519/*
6520 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6521 * cpumask) fails, then fallback to a single sched domain,
6522 * as determined by the single cpumask fallback_doms.
029190c5 6523 */
4212823f 6524static cpumask_var_t fallback_doms;
029190c5 6525
ee79d1bd
HC
6526/*
6527 * arch_update_cpu_topology lets virtualized architectures update the
6528 * cpu core maps. It is supposed to return 1 if the topology changed
6529 * or 0 if it stayed the same.
6530 */
6531int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 6532{
ee79d1bd 6533 return 0;
22e52b07
HC
6534}
6535
acc3f5d7
RR
6536cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6537{
6538 int i;
6539 cpumask_var_t *doms;
6540
6541 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6542 if (!doms)
6543 return NULL;
6544 for (i = 0; i < ndoms; i++) {
6545 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6546 free_sched_domains(doms, i);
6547 return NULL;
6548 }
6549 }
6550 return doms;
6551}
6552
6553void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6554{
6555 unsigned int i;
6556 for (i = 0; i < ndoms; i++)
6557 free_cpumask_var(doms[i]);
6558 kfree(doms);
6559}
6560
1a20ff27 6561/*
41a2d6cf 6562 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6563 * For now this just excludes isolated cpus, but could be used to
6564 * exclude other special cases in the future.
1a20ff27 6565 */
c4a8849a 6566static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6567{
7378547f
MM
6568 int err;
6569
22e52b07 6570 arch_update_cpu_topology();
029190c5 6571 ndoms_cur = 1;
acc3f5d7 6572 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6573 if (!doms_cur)
acc3f5d7
RR
6574 doms_cur = &fallback_doms;
6575 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 6576 dattr_cur = NULL;
dce840a0 6577 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6578 register_sched_domain_sysctl();
7378547f
MM
6579
6580 return err;
1a20ff27
DG
6581}
6582
1a20ff27
DG
6583/*
6584 * Detach sched domains from a group of cpus specified in cpu_map
6585 * These cpus will now be attached to the NULL domain
6586 */
96f874e2 6587static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6588{
6589 int i;
6590
dce840a0 6591 rcu_read_lock();
abcd083a 6592 for_each_cpu(i, cpu_map)
57d885fe 6593 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6594 rcu_read_unlock();
1a20ff27
DG
6595}
6596
1d3504fc
HS
6597/* handle null as "default" */
6598static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6599 struct sched_domain_attr *new, int idx_new)
6600{
6601 struct sched_domain_attr tmp;
6602
6603 /* fast path */
6604 if (!new && !cur)
6605 return 1;
6606
6607 tmp = SD_ATTR_INIT;
6608 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6609 new ? (new + idx_new) : &tmp,
6610 sizeof(struct sched_domain_attr));
6611}
6612
029190c5
PJ
6613/*
6614 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6615 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6616 * doms_new[] to the current sched domain partitioning, doms_cur[].
6617 * It destroys each deleted domain and builds each new domain.
6618 *
acc3f5d7 6619 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
6620 * The masks don't intersect (don't overlap.) We should setup one
6621 * sched domain for each mask. CPUs not in any of the cpumasks will
6622 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6623 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6624 * it as it is.
6625 *
acc3f5d7
RR
6626 * The passed in 'doms_new' should be allocated using
6627 * alloc_sched_domains. This routine takes ownership of it and will
6628 * free_sched_domains it when done with it. If the caller failed the
6629 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6630 * and partition_sched_domains() will fallback to the single partition
6631 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 6632 *
96f874e2 6633 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
6634 * ndoms_new == 0 is a special case for destroying existing domains,
6635 * and it will not create the default domain.
dfb512ec 6636 *
029190c5
PJ
6637 * Call with hotplug lock held
6638 */
acc3f5d7 6639void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 6640 struct sched_domain_attr *dattr_new)
029190c5 6641{
dfb512ec 6642 int i, j, n;
d65bd5ec 6643 int new_topology;
029190c5 6644
712555ee 6645 mutex_lock(&sched_domains_mutex);
a1835615 6646
7378547f
MM
6647 /* always unregister in case we don't destroy any domains */
6648 unregister_sched_domain_sysctl();
6649
d65bd5ec
HC
6650 /* Let architecture update cpu core mappings. */
6651 new_topology = arch_update_cpu_topology();
6652
dfb512ec 6653 n = doms_new ? ndoms_new : 0;
029190c5
PJ
6654
6655 /* Destroy deleted domains */
6656 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 6657 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6658 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 6659 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
6660 goto match1;
6661 }
6662 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 6663 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
6664match1:
6665 ;
6666 }
6667
e761b772
MK
6668 if (doms_new == NULL) {
6669 ndoms_cur = 0;
acc3f5d7 6670 doms_new = &fallback_doms;
6ad4c188 6671 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 6672 WARN_ON_ONCE(dattr_new);
e761b772
MK
6673 }
6674
029190c5
PJ
6675 /* Build new domains */
6676 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 6677 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 6678 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 6679 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
6680 goto match2;
6681 }
6682 /* no match - add a new doms_new */
dce840a0 6683 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
6684match2:
6685 ;
6686 }
6687
6688 /* Remember the new sched domains */
acc3f5d7
RR
6689 if (doms_cur != &fallback_doms)
6690 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 6691 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 6692 doms_cur = doms_new;
1d3504fc 6693 dattr_cur = dattr_new;
029190c5 6694 ndoms_cur = ndoms_new;
7378547f
MM
6695
6696 register_sched_domain_sysctl();
a1835615 6697
712555ee 6698 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
6699}
6700
5c45bf27 6701#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c4a8849a 6702static void reinit_sched_domains(void)
5c45bf27 6703{
95402b38 6704 get_online_cpus();
dfb512ec
MK
6705
6706 /* Destroy domains first to force the rebuild */
6707 partition_sched_domains(0, NULL, NULL);
6708
e761b772 6709 rebuild_sched_domains();
95402b38 6710 put_online_cpus();
5c45bf27
SS
6711}
6712
6713static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6714{
afb8a9b7 6715 unsigned int level = 0;
5c45bf27 6716
afb8a9b7
GS
6717 if (sscanf(buf, "%u", &level) != 1)
6718 return -EINVAL;
6719
6720 /*
6721 * level is always be positive so don't check for
6722 * level < POWERSAVINGS_BALANCE_NONE which is 0
6723 * What happens on 0 or 1 byte write,
6724 * need to check for count as well?
6725 */
6726
6727 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
6728 return -EINVAL;
6729
6730 if (smt)
afb8a9b7 6731 sched_smt_power_savings = level;
5c45bf27 6732 else
afb8a9b7 6733 sched_mc_power_savings = level;
5c45bf27 6734
c4a8849a 6735 reinit_sched_domains();
5c45bf27 6736
c70f22d2 6737 return count;
5c45bf27
SS
6738}
6739
5c45bf27 6740#ifdef CONFIG_SCHED_MC
8a25a2fd
KS
6741static ssize_t sched_mc_power_savings_show(struct device *dev,
6742 struct device_attribute *attr,
6743 char *buf)
5c45bf27 6744{
8a25a2fd 6745 return sprintf(buf, "%u\n", sched_mc_power_savings);
5c45bf27 6746}
8a25a2fd
KS
6747static ssize_t sched_mc_power_savings_store(struct device *dev,
6748 struct device_attribute *attr,
48f24c4d 6749 const char *buf, size_t count)
5c45bf27
SS
6750{
6751 return sched_power_savings_store(buf, count, 0);
6752}
8a25a2fd
KS
6753static DEVICE_ATTR(sched_mc_power_savings, 0644,
6754 sched_mc_power_savings_show,
6755 sched_mc_power_savings_store);
5c45bf27
SS
6756#endif
6757
6758#ifdef CONFIG_SCHED_SMT
8a25a2fd
KS
6759static ssize_t sched_smt_power_savings_show(struct device *dev,
6760 struct device_attribute *attr,
6761 char *buf)
5c45bf27 6762{
8a25a2fd 6763 return sprintf(buf, "%u\n", sched_smt_power_savings);
5c45bf27 6764}
8a25a2fd
KS
6765static ssize_t sched_smt_power_savings_store(struct device *dev,
6766 struct device_attribute *attr,
48f24c4d 6767 const char *buf, size_t count)
5c45bf27
SS
6768{
6769 return sched_power_savings_store(buf, count, 1);
6770}
8a25a2fd 6771static DEVICE_ATTR(sched_smt_power_savings, 0644,
f718cd4a 6772 sched_smt_power_savings_show,
6707de00
AB
6773 sched_smt_power_savings_store);
6774#endif
6775
8a25a2fd 6776int __init sched_create_sysfs_power_savings_entries(struct device *dev)
6707de00
AB
6777{
6778 int err = 0;
6779
6780#ifdef CONFIG_SCHED_SMT
6781 if (smt_capable())
8a25a2fd 6782 err = device_create_file(dev, &dev_attr_sched_smt_power_savings);
6707de00
AB
6783#endif
6784#ifdef CONFIG_SCHED_MC
6785 if (!err && mc_capable())
8a25a2fd 6786 err = device_create_file(dev, &dev_attr_sched_mc_power_savings);
6707de00
AB
6787#endif
6788 return err;
6789}
6d6bc0ad 6790#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 6791
1da177e4 6792/*
3a101d05
TH
6793 * Update cpusets according to cpu_active mask. If cpusets are
6794 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6795 * around partition_sched_domains().
1da177e4 6796 */
0b2e918a
TH
6797static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6798 void *hcpu)
e761b772 6799{
3a101d05 6800 switch (action & ~CPU_TASKS_FROZEN) {
e761b772 6801 case CPU_ONLINE:
6ad4c188 6802 case CPU_DOWN_FAILED:
3a101d05 6803 cpuset_update_active_cpus();
e761b772 6804 return NOTIFY_OK;
3a101d05
TH
6805 default:
6806 return NOTIFY_DONE;
6807 }
6808}
e761b772 6809
0b2e918a
TH
6810static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6811 void *hcpu)
3a101d05
TH
6812{
6813 switch (action & ~CPU_TASKS_FROZEN) {
6814 case CPU_DOWN_PREPARE:
6815 cpuset_update_active_cpus();
6816 return NOTIFY_OK;
e761b772
MK
6817 default:
6818 return NOTIFY_DONE;
6819 }
6820}
e761b772 6821
1da177e4
LT
6822void __init sched_init_smp(void)
6823{
dcc30a35
RR
6824 cpumask_var_t non_isolated_cpus;
6825
6826 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 6827 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 6828
95402b38 6829 get_online_cpus();
712555ee 6830 mutex_lock(&sched_domains_mutex);
c4a8849a 6831 init_sched_domains(cpu_active_mask);
dcc30a35
RR
6832 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6833 if (cpumask_empty(non_isolated_cpus))
6834 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 6835 mutex_unlock(&sched_domains_mutex);
95402b38 6836 put_online_cpus();
e761b772 6837
3a101d05
TH
6838 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6839 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772
MK
6840
6841 /* RT runtime code needs to handle some hotplug events */
6842 hotcpu_notifier(update_runtime, 0);
6843
b328ca18 6844 init_hrtick();
5c1e1767
NP
6845
6846 /* Move init over to a non-isolated CPU */
dcc30a35 6847 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 6848 BUG();
19978ca6 6849 sched_init_granularity();
dcc30a35 6850 free_cpumask_var(non_isolated_cpus);
4212823f 6851
0e3900e6 6852 init_sched_rt_class();
1da177e4
LT
6853}
6854#else
6855void __init sched_init_smp(void)
6856{
19978ca6 6857 sched_init_granularity();
1da177e4
LT
6858}
6859#endif /* CONFIG_SMP */
6860
cd1bb94b
AB
6861const_debug unsigned int sysctl_timer_migration = 1;
6862
1da177e4
LT
6863int in_sched_functions(unsigned long addr)
6864{
1da177e4
LT
6865 return in_lock_functions(addr) ||
6866 (addr >= (unsigned long)__sched_text_start
6867 && addr < (unsigned long)__sched_text_end);
6868}
6869
029632fb
PZ
6870#ifdef CONFIG_CGROUP_SCHED
6871struct task_group root_task_group;
052f1dc7 6872#endif
6f505b16 6873
029632fb 6874DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
6f505b16 6875
1da177e4
LT
6876void __init sched_init(void)
6877{
dd41f596 6878 int i, j;
434d53b0
MT
6879 unsigned long alloc_size = 0, ptr;
6880
6881#ifdef CONFIG_FAIR_GROUP_SCHED
6882 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6883#endif
6884#ifdef CONFIG_RT_GROUP_SCHED
6885 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 6886#endif
df7c8e84 6887#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 6888 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 6889#endif
434d53b0 6890 if (alloc_size) {
36b7b6d4 6891 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
6892
6893#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 6894 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
6895 ptr += nr_cpu_ids * sizeof(void **);
6896
07e06b01 6897 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 6898 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 6899
6d6bc0ad 6900#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 6901#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6902 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
6903 ptr += nr_cpu_ids * sizeof(void **);
6904
07e06b01 6905 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
6906 ptr += nr_cpu_ids * sizeof(void **);
6907
6d6bc0ad 6908#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
6909#ifdef CONFIG_CPUMASK_OFFSTACK
6910 for_each_possible_cpu(i) {
6911 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
6912 ptr += cpumask_size();
6913 }
6914#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 6915 }
dd41f596 6916
57d885fe
GH
6917#ifdef CONFIG_SMP
6918 init_defrootdomain();
6919#endif
6920
d0b27fa7
PZ
6921 init_rt_bandwidth(&def_rt_bandwidth,
6922 global_rt_period(), global_rt_runtime());
6923
6924#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6925 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 6926 global_rt_period(), global_rt_runtime());
6d6bc0ad 6927#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6928
7c941438 6929#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
6930 list_add(&root_task_group.list, &task_groups);
6931 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 6932 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 6933 autogroup_init(&init_task);
54c707e9 6934
7c941438 6935#endif /* CONFIG_CGROUP_SCHED */
6f505b16 6936
54c707e9
GC
6937#ifdef CONFIG_CGROUP_CPUACCT
6938 root_cpuacct.cpustat = &kernel_cpustat;
6939 root_cpuacct.cpuusage = alloc_percpu(u64);
6940 /* Too early, not expected to fail */
6941 BUG_ON(!root_cpuacct.cpuusage);
6942#endif
0a945022 6943 for_each_possible_cpu(i) {
70b97a7f 6944 struct rq *rq;
1da177e4
LT
6945
6946 rq = cpu_rq(i);
05fa785c 6947 raw_spin_lock_init(&rq->lock);
7897986b 6948 rq->nr_running = 0;
dce48a84
TG
6949 rq->calc_load_active = 0;
6950 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 6951 init_cfs_rq(&rq->cfs);
6f505b16 6952 init_rt_rq(&rq->rt, rq);
dd41f596 6953#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 6954 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 6955 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 6956 /*
07e06b01 6957 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
6958 *
6959 * In case of task-groups formed thr' the cgroup filesystem, it
6960 * gets 100% of the cpu resources in the system. This overall
6961 * system cpu resource is divided among the tasks of
07e06b01 6962 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
6963 * based on each entity's (task or task-group's) weight
6964 * (se->load.weight).
6965 *
07e06b01 6966 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
6967 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6968 * then A0's share of the cpu resource is:
6969 *
0d905bca 6970 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 6971 *
07e06b01
YZ
6972 * We achieve this by letting root_task_group's tasks sit
6973 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 6974 */
ab84d31e 6975 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 6976 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
6977#endif /* CONFIG_FAIR_GROUP_SCHED */
6978
6979 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 6980#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 6981 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
07e06b01 6982 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 6983#endif
1da177e4 6984
dd41f596
IM
6985 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6986 rq->cpu_load[j] = 0;
fdf3e95d
VP
6987
6988 rq->last_load_update_tick = jiffies;
6989
1da177e4 6990#ifdef CONFIG_SMP
41c7ce9a 6991 rq->sd = NULL;
57d885fe 6992 rq->rd = NULL;
1399fa78 6993 rq->cpu_power = SCHED_POWER_SCALE;
3f029d3c 6994 rq->post_schedule = 0;
1da177e4 6995 rq->active_balance = 0;
dd41f596 6996 rq->next_balance = jiffies;
1da177e4 6997 rq->push_cpu = 0;
0a2966b4 6998 rq->cpu = i;
1f11eb6a 6999 rq->online = 0;
eae0c9df
MG
7000 rq->idle_stamp = 0;
7001 rq->avg_idle = 2*sysctl_sched_migration_cost;
367456c7
PZ
7002
7003 INIT_LIST_HEAD(&rq->cfs_tasks);
7004
dc938520 7005 rq_attach_root(rq, &def_root_domain);
83cd4fe2 7006#ifdef CONFIG_NO_HZ
1c792db7 7007 rq->nohz_flags = 0;
83cd4fe2 7008#endif
1da177e4 7009#endif
8f4d37ec 7010 init_rq_hrtick(rq);
1da177e4 7011 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7012 }
7013
2dd73a4f 7014 set_load_weight(&init_task);
b50f60ce 7015
e107be36
AK
7016#ifdef CONFIG_PREEMPT_NOTIFIERS
7017 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7018#endif
7019
b50f60ce 7020#ifdef CONFIG_RT_MUTEXES
732375c6 7021 plist_head_init(&init_task.pi_waiters);
b50f60ce
HC
7022#endif
7023
1da177e4
LT
7024 /*
7025 * The boot idle thread does lazy MMU switching as well:
7026 */
7027 atomic_inc(&init_mm.mm_count);
7028 enter_lazy_tlb(&init_mm, current);
7029
7030 /*
7031 * Make us the idle thread. Technically, schedule() should not be
7032 * called from this thread, however somewhere below it might be,
7033 * but because we are the idle thread, we just pick up running again
7034 * when this runqueue becomes "idle".
7035 */
7036 init_idle(current, smp_processor_id());
dce48a84
TG
7037
7038 calc_load_update = jiffies + LOAD_FREQ;
7039
dd41f596
IM
7040 /*
7041 * During early bootup we pretend to be a normal task:
7042 */
7043 current->sched_class = &fair_sched_class;
6892b75e 7044
bf4d83f6 7045#ifdef CONFIG_SMP
4cb98839 7046 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
7047 /* May be allocated at isolcpus cmdline parse time */
7048 if (cpu_isolated_map == NULL)
7049 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
029632fb
PZ
7050#endif
7051 init_sched_fair_class();
6a7b3dc3 7052
6892b75e 7053 scheduler_running = 1;
1da177e4
LT
7054}
7055
d902db1e 7056#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
7057static inline int preempt_count_equals(int preempt_offset)
7058{
234da7bc 7059 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 7060
4ba8216c 7061 return (nested == preempt_offset);
e4aafea2
FW
7062}
7063
d894837f 7064void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7065{
1da177e4
LT
7066 static unsigned long prev_jiffy; /* ratelimiting */
7067
b3fbab05 7068 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
e4aafea2
FW
7069 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7070 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7071 return;
7072 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7073 return;
7074 prev_jiffy = jiffies;
7075
3df0fc5b
PZ
7076 printk(KERN_ERR
7077 "BUG: sleeping function called from invalid context at %s:%d\n",
7078 file, line);
7079 printk(KERN_ERR
7080 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7081 in_atomic(), irqs_disabled(),
7082 current->pid, current->comm);
aef745fc
IM
7083
7084 debug_show_held_locks(current);
7085 if (irqs_disabled())
7086 print_irqtrace_events(current);
7087 dump_stack();
1da177e4
LT
7088}
7089EXPORT_SYMBOL(__might_sleep);
7090#endif
7091
7092#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7093static void normalize_task(struct rq *rq, struct task_struct *p)
7094{
da7a735e
PZ
7095 const struct sched_class *prev_class = p->sched_class;
7096 int old_prio = p->prio;
3a5e4dc1 7097 int on_rq;
3e51f33f 7098
fd2f4419 7099 on_rq = p->on_rq;
3a5e4dc1 7100 if (on_rq)
4ca9b72b 7101 dequeue_task(rq, p, 0);
3a5e4dc1
AK
7102 __setscheduler(rq, p, SCHED_NORMAL, 0);
7103 if (on_rq) {
4ca9b72b 7104 enqueue_task(rq, p, 0);
3a5e4dc1
AK
7105 resched_task(rq->curr);
7106 }
da7a735e
PZ
7107
7108 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
7109}
7110
1da177e4
LT
7111void normalize_rt_tasks(void)
7112{
a0f98a1c 7113 struct task_struct *g, *p;
1da177e4 7114 unsigned long flags;
70b97a7f 7115 struct rq *rq;
1da177e4 7116
4cf5d77a 7117 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 7118 do_each_thread(g, p) {
178be793
IM
7119 /*
7120 * Only normalize user tasks:
7121 */
7122 if (!p->mm)
7123 continue;
7124
6cfb0d5d 7125 p->se.exec_start = 0;
6cfb0d5d 7126#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7127 p->se.statistics.wait_start = 0;
7128 p->se.statistics.sleep_start = 0;
7129 p->se.statistics.block_start = 0;
6cfb0d5d 7130#endif
dd41f596
IM
7131
7132 if (!rt_task(p)) {
7133 /*
7134 * Renice negative nice level userspace
7135 * tasks back to 0:
7136 */
7137 if (TASK_NICE(p) < 0 && p->mm)
7138 set_user_nice(p, 0);
1da177e4 7139 continue;
dd41f596 7140 }
1da177e4 7141
1d615482 7142 raw_spin_lock(&p->pi_lock);
b29739f9 7143 rq = __task_rq_lock(p);
1da177e4 7144
178be793 7145 normalize_task(rq, p);
3a5e4dc1 7146
b29739f9 7147 __task_rq_unlock(rq);
1d615482 7148 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
7149 } while_each_thread(g, p);
7150
4cf5d77a 7151 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
7152}
7153
7154#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7155
67fc4e0c 7156#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7157/*
67fc4e0c 7158 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7159 *
7160 * They can only be called when the whole system has been
7161 * stopped - every CPU needs to be quiescent, and no scheduling
7162 * activity can take place. Using them for anything else would
7163 * be a serious bug, and as a result, they aren't even visible
7164 * under any other configuration.
7165 */
7166
7167/**
7168 * curr_task - return the current task for a given cpu.
7169 * @cpu: the processor in question.
7170 *
7171 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7172 */
36c8b586 7173struct task_struct *curr_task(int cpu)
1df5c10a
LT
7174{
7175 return cpu_curr(cpu);
7176}
7177
67fc4e0c
JW
7178#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7179
7180#ifdef CONFIG_IA64
1df5c10a
LT
7181/**
7182 * set_curr_task - set the current task for a given cpu.
7183 * @cpu: the processor in question.
7184 * @p: the task pointer to set.
7185 *
7186 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7187 * are serviced on a separate stack. It allows the architecture to switch the
7188 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7189 * must be called with all CPU's synchronized, and interrupts disabled, the
7190 * and caller must save the original value of the current task (see
7191 * curr_task() above) and restore that value before reenabling interrupts and
7192 * re-starting the system.
7193 *
7194 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7195 */
36c8b586 7196void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7197{
7198 cpu_curr(cpu) = p;
7199}
7200
7201#endif
29f59db3 7202
7c941438 7203#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7204/* task_group_lock serializes the addition/removal of task groups */
7205static DEFINE_SPINLOCK(task_group_lock);
7206
bccbe08a
PZ
7207static void free_sched_group(struct task_group *tg)
7208{
7209 free_fair_sched_group(tg);
7210 free_rt_sched_group(tg);
e9aa1dd1 7211 autogroup_free(tg);
bccbe08a
PZ
7212 kfree(tg);
7213}
7214
7215/* allocate runqueue etc for a new task group */
ec7dc8ac 7216struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7217{
7218 struct task_group *tg;
7219 unsigned long flags;
bccbe08a
PZ
7220
7221 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7222 if (!tg)
7223 return ERR_PTR(-ENOMEM);
7224
ec7dc8ac 7225 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7226 goto err;
7227
ec7dc8ac 7228 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7229 goto err;
7230
8ed36996 7231 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7232 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7233
7234 WARN_ON(!parent); /* root should already exist */
7235
7236 tg->parent = parent;
f473aa5e 7237 INIT_LIST_HEAD(&tg->children);
09f2724a 7238 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7239 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 7240
9b5b7751 7241 return tg;
29f59db3
SV
7242
7243err:
6f505b16 7244 free_sched_group(tg);
29f59db3
SV
7245 return ERR_PTR(-ENOMEM);
7246}
7247
9b5b7751 7248/* rcu callback to free various structures associated with a task group */
6f505b16 7249static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7250{
29f59db3 7251 /* now it should be safe to free those cfs_rqs */
6f505b16 7252 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7253}
7254
9b5b7751 7255/* Destroy runqueue etc associated with a task group */
4cf86d77 7256void sched_destroy_group(struct task_group *tg)
29f59db3 7257{
8ed36996 7258 unsigned long flags;
9b5b7751 7259 int i;
29f59db3 7260
3d4b47b4
PZ
7261 /* end participation in shares distribution */
7262 for_each_possible_cpu(i)
bccbe08a 7263 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
7264
7265 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7266 list_del_rcu(&tg->list);
f473aa5e 7267 list_del_rcu(&tg->siblings);
8ed36996 7268 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 7269
9b5b7751 7270 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 7271 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
7272}
7273
9b5b7751 7274/* change task's runqueue when it moves between groups.
3a252015
IM
7275 * The caller of this function should have put the task in its new group
7276 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7277 * reflect its new group.
9b5b7751
SV
7278 */
7279void sched_move_task(struct task_struct *tsk)
29f59db3
SV
7280{
7281 int on_rq, running;
7282 unsigned long flags;
7283 struct rq *rq;
7284
7285 rq = task_rq_lock(tsk, &flags);
7286
051a1d1a 7287 running = task_current(rq, tsk);
fd2f4419 7288 on_rq = tsk->on_rq;
29f59db3 7289
0e1f3483 7290 if (on_rq)
29f59db3 7291 dequeue_task(rq, tsk, 0);
0e1f3483
HS
7292 if (unlikely(running))
7293 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 7294
810b3817 7295#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
7296 if (tsk->sched_class->task_move_group)
7297 tsk->sched_class->task_move_group(tsk, on_rq);
7298 else
810b3817 7299#endif
b2b5ce02 7300 set_task_rq(tsk, task_cpu(tsk));
810b3817 7301
0e1f3483
HS
7302 if (unlikely(running))
7303 tsk->sched_class->set_curr_task(rq);
7304 if (on_rq)
371fd7e7 7305 enqueue_task(rq, tsk, 0);
29f59db3 7306
0122ec5b 7307 task_rq_unlock(rq, tsk, &flags);
29f59db3 7308}
7c941438 7309#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7310
a790de99 7311#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
9f0c1e56
PZ
7312static unsigned long to_ratio(u64 period, u64 runtime)
7313{
7314 if (runtime == RUNTIME_INF)
9a7e0b18 7315 return 1ULL << 20;
9f0c1e56 7316
9a7e0b18 7317 return div64_u64(runtime << 20, period);
9f0c1e56 7318}
a790de99
PT
7319#endif
7320
7321#ifdef CONFIG_RT_GROUP_SCHED
7322/*
7323 * Ensure that the real time constraints are schedulable.
7324 */
7325static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7326
9a7e0b18
PZ
7327/* Must be called with tasklist_lock held */
7328static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7329{
9a7e0b18 7330 struct task_struct *g, *p;
b40b2e8e 7331
9a7e0b18 7332 do_each_thread(g, p) {
029632fb 7333 if (rt_task(p) && task_rq(p)->rt.tg == tg)
9a7e0b18
PZ
7334 return 1;
7335 } while_each_thread(g, p);
b40b2e8e 7336
9a7e0b18
PZ
7337 return 0;
7338}
b40b2e8e 7339
9a7e0b18
PZ
7340struct rt_schedulable_data {
7341 struct task_group *tg;
7342 u64 rt_period;
7343 u64 rt_runtime;
7344};
b40b2e8e 7345
a790de99 7346static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7347{
7348 struct rt_schedulable_data *d = data;
7349 struct task_group *child;
7350 unsigned long total, sum = 0;
7351 u64 period, runtime;
b40b2e8e 7352
9a7e0b18
PZ
7353 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7354 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7355
9a7e0b18
PZ
7356 if (tg == d->tg) {
7357 period = d->rt_period;
7358 runtime = d->rt_runtime;
b40b2e8e 7359 }
b40b2e8e 7360
4653f803
PZ
7361 /*
7362 * Cannot have more runtime than the period.
7363 */
7364 if (runtime > period && runtime != RUNTIME_INF)
7365 return -EINVAL;
6f505b16 7366
4653f803
PZ
7367 /*
7368 * Ensure we don't starve existing RT tasks.
7369 */
9a7e0b18
PZ
7370 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7371 return -EBUSY;
6f505b16 7372
9a7e0b18 7373 total = to_ratio(period, runtime);
6f505b16 7374
4653f803
PZ
7375 /*
7376 * Nobody can have more than the global setting allows.
7377 */
7378 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7379 return -EINVAL;
6f505b16 7380
4653f803
PZ
7381 /*
7382 * The sum of our children's runtime should not exceed our own.
7383 */
9a7e0b18
PZ
7384 list_for_each_entry_rcu(child, &tg->children, siblings) {
7385 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7386 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7387
9a7e0b18
PZ
7388 if (child == d->tg) {
7389 period = d->rt_period;
7390 runtime = d->rt_runtime;
7391 }
6f505b16 7392
9a7e0b18 7393 sum += to_ratio(period, runtime);
9f0c1e56 7394 }
6f505b16 7395
9a7e0b18
PZ
7396 if (sum > total)
7397 return -EINVAL;
7398
7399 return 0;
6f505b16
PZ
7400}
7401
9a7e0b18 7402static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7403{
8277434e
PT
7404 int ret;
7405
9a7e0b18
PZ
7406 struct rt_schedulable_data data = {
7407 .tg = tg,
7408 .rt_period = period,
7409 .rt_runtime = runtime,
7410 };
7411
8277434e
PT
7412 rcu_read_lock();
7413 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7414 rcu_read_unlock();
7415
7416 return ret;
521f1a24
DG
7417}
7418
ab84d31e 7419static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7420 u64 rt_period, u64 rt_runtime)
6f505b16 7421{
ac086bc2 7422 int i, err = 0;
9f0c1e56 7423
9f0c1e56 7424 mutex_lock(&rt_constraints_mutex);
521f1a24 7425 read_lock(&tasklist_lock);
9a7e0b18
PZ
7426 err = __rt_schedulable(tg, rt_period, rt_runtime);
7427 if (err)
9f0c1e56 7428 goto unlock;
ac086bc2 7429
0986b11b 7430 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7431 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7432 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7433
7434 for_each_possible_cpu(i) {
7435 struct rt_rq *rt_rq = tg->rt_rq[i];
7436
0986b11b 7437 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7438 rt_rq->rt_runtime = rt_runtime;
0986b11b 7439 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7440 }
0986b11b 7441 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7442unlock:
521f1a24 7443 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7444 mutex_unlock(&rt_constraints_mutex);
7445
7446 return err;
6f505b16
PZ
7447}
7448
d0b27fa7
PZ
7449int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7450{
7451 u64 rt_runtime, rt_period;
7452
7453 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7454 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7455 if (rt_runtime_us < 0)
7456 rt_runtime = RUNTIME_INF;
7457
ab84d31e 7458 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7459}
7460
9f0c1e56
PZ
7461long sched_group_rt_runtime(struct task_group *tg)
7462{
7463 u64 rt_runtime_us;
7464
d0b27fa7 7465 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7466 return -1;
7467
d0b27fa7 7468 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7469 do_div(rt_runtime_us, NSEC_PER_USEC);
7470 return rt_runtime_us;
7471}
d0b27fa7
PZ
7472
7473int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7474{
7475 u64 rt_runtime, rt_period;
7476
7477 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7478 rt_runtime = tg->rt_bandwidth.rt_runtime;
7479
619b0488
R
7480 if (rt_period == 0)
7481 return -EINVAL;
7482
ab84d31e 7483 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7484}
7485
7486long sched_group_rt_period(struct task_group *tg)
7487{
7488 u64 rt_period_us;
7489
7490 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7491 do_div(rt_period_us, NSEC_PER_USEC);
7492 return rt_period_us;
7493}
7494
7495static int sched_rt_global_constraints(void)
7496{
4653f803 7497 u64 runtime, period;
d0b27fa7
PZ
7498 int ret = 0;
7499
ec5d4989
HS
7500 if (sysctl_sched_rt_period <= 0)
7501 return -EINVAL;
7502
4653f803
PZ
7503 runtime = global_rt_runtime();
7504 period = global_rt_period();
7505
7506 /*
7507 * Sanity check on the sysctl variables.
7508 */
7509 if (runtime > period && runtime != RUNTIME_INF)
7510 return -EINVAL;
10b612f4 7511
d0b27fa7 7512 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7513 read_lock(&tasklist_lock);
4653f803 7514 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7515 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7516 mutex_unlock(&rt_constraints_mutex);
7517
7518 return ret;
7519}
54e99124
DG
7520
7521int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7522{
7523 /* Don't accept realtime tasks when there is no way for them to run */
7524 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7525 return 0;
7526
7527 return 1;
7528}
7529
6d6bc0ad 7530#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7531static int sched_rt_global_constraints(void)
7532{
ac086bc2
PZ
7533 unsigned long flags;
7534 int i;
7535
ec5d4989
HS
7536 if (sysctl_sched_rt_period <= 0)
7537 return -EINVAL;
7538
60aa605d
PZ
7539 /*
7540 * There's always some RT tasks in the root group
7541 * -- migration, kstopmachine etc..
7542 */
7543 if (sysctl_sched_rt_runtime == 0)
7544 return -EBUSY;
7545
0986b11b 7546 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7547 for_each_possible_cpu(i) {
7548 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7549
0986b11b 7550 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7551 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7552 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7553 }
0986b11b 7554 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7555
d0b27fa7
PZ
7556 return 0;
7557}
6d6bc0ad 7558#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7559
7560int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7561 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7562 loff_t *ppos)
7563{
7564 int ret;
7565 int old_period, old_runtime;
7566 static DEFINE_MUTEX(mutex);
7567
7568 mutex_lock(&mutex);
7569 old_period = sysctl_sched_rt_period;
7570 old_runtime = sysctl_sched_rt_runtime;
7571
8d65af78 7572 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
7573
7574 if (!ret && write) {
7575 ret = sched_rt_global_constraints();
7576 if (ret) {
7577 sysctl_sched_rt_period = old_period;
7578 sysctl_sched_rt_runtime = old_runtime;
7579 } else {
7580 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7581 def_rt_bandwidth.rt_period =
7582 ns_to_ktime(global_rt_period());
7583 }
7584 }
7585 mutex_unlock(&mutex);
7586
7587 return ret;
7588}
68318b8e 7589
052f1dc7 7590#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
7591
7592/* return corresponding task_group object of a cgroup */
2b01dfe3 7593static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 7594{
2b01dfe3
PM
7595 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7596 struct task_group, css);
68318b8e
SV
7597}
7598
7599static struct cgroup_subsys_state *
2b01dfe3 7600cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 7601{
ec7dc8ac 7602 struct task_group *tg, *parent;
68318b8e 7603
2b01dfe3 7604 if (!cgrp->parent) {
68318b8e 7605 /* This is early initialization for the top cgroup */
07e06b01 7606 return &root_task_group.css;
68318b8e
SV
7607 }
7608
ec7dc8ac
DG
7609 parent = cgroup_tg(cgrp->parent);
7610 tg = sched_create_group(parent);
68318b8e
SV
7611 if (IS_ERR(tg))
7612 return ERR_PTR(-ENOMEM);
7613
68318b8e
SV
7614 return &tg->css;
7615}
7616
41a2d6cf
IM
7617static void
7618cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 7619{
2b01dfe3 7620 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
7621
7622 sched_destroy_group(tg);
7623}
7624
bb9d97b6
TH
7625static int cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7626 struct cgroup_taskset *tset)
68318b8e 7627{
bb9d97b6
TH
7628 struct task_struct *task;
7629
7630 cgroup_taskset_for_each(task, cgrp, tset) {
b68aa230 7631#ifdef CONFIG_RT_GROUP_SCHED
bb9d97b6
TH
7632 if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7633 return -EINVAL;
b68aa230 7634#else
bb9d97b6
TH
7635 /* We don't support RT-tasks being in separate groups */
7636 if (task->sched_class != &fair_sched_class)
7637 return -EINVAL;
b68aa230 7638#endif
bb9d97b6 7639 }
be367d09
BB
7640 return 0;
7641}
68318b8e 7642
bb9d97b6
TH
7643static void cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7644 struct cgroup_taskset *tset)
68318b8e 7645{
bb9d97b6
TH
7646 struct task_struct *task;
7647
7648 cgroup_taskset_for_each(task, cgrp, tset)
7649 sched_move_task(task);
68318b8e
SV
7650}
7651
068c5cc5 7652static void
d41d5a01
PZ
7653cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
7654 struct cgroup *old_cgrp, struct task_struct *task)
068c5cc5
PZ
7655{
7656 /*
7657 * cgroup_exit() is called in the copy_process() failure path.
7658 * Ignore this case since the task hasn't ran yet, this avoids
7659 * trying to poke a half freed task state from generic code.
7660 */
7661 if (!(task->flags & PF_EXITING))
7662 return;
7663
7664 sched_move_task(task);
7665}
7666
052f1dc7 7667#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 7668static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 7669 u64 shareval)
68318b8e 7670{
c8b28116 7671 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
68318b8e
SV
7672}
7673
f4c753b7 7674static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 7675{
2b01dfe3 7676 struct task_group *tg = cgroup_tg(cgrp);
68318b8e 7677
c8b28116 7678 return (u64) scale_load_down(tg->shares);
68318b8e 7679}
ab84d31e
PT
7680
7681#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
7682static DEFINE_MUTEX(cfs_constraints_mutex);
7683
ab84d31e
PT
7684const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7685const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7686
a790de99
PT
7687static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7688
ab84d31e
PT
7689static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7690{
56f570e5 7691 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 7692 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
7693
7694 if (tg == &root_task_group)
7695 return -EINVAL;
7696
7697 /*
7698 * Ensure we have at some amount of bandwidth every period. This is
7699 * to prevent reaching a state of large arrears when throttled via
7700 * entity_tick() resulting in prolonged exit starvation.
7701 */
7702 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7703 return -EINVAL;
7704
7705 /*
7706 * Likewise, bound things on the otherside by preventing insane quota
7707 * periods. This also allows us to normalize in computing quota
7708 * feasibility.
7709 */
7710 if (period > max_cfs_quota_period)
7711 return -EINVAL;
7712
a790de99
PT
7713 mutex_lock(&cfs_constraints_mutex);
7714 ret = __cfs_schedulable(tg, period, quota);
7715 if (ret)
7716 goto out_unlock;
7717
58088ad0 7718 runtime_enabled = quota != RUNTIME_INF;
56f570e5
PT
7719 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7720 account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
ab84d31e
PT
7721 raw_spin_lock_irq(&cfs_b->lock);
7722 cfs_b->period = ns_to_ktime(period);
7723 cfs_b->quota = quota;
58088ad0 7724
a9cf55b2 7725 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
7726 /* restart the period timer (if active) to handle new period expiry */
7727 if (runtime_enabled && cfs_b->timer_active) {
7728 /* force a reprogram */
7729 cfs_b->timer_active = 0;
7730 __start_cfs_bandwidth(cfs_b);
7731 }
ab84d31e
PT
7732 raw_spin_unlock_irq(&cfs_b->lock);
7733
7734 for_each_possible_cpu(i) {
7735 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 7736 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
7737
7738 raw_spin_lock_irq(&rq->lock);
58088ad0 7739 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 7740 cfs_rq->runtime_remaining = 0;
671fd9da 7741
029632fb 7742 if (cfs_rq->throttled)
671fd9da 7743 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
7744 raw_spin_unlock_irq(&rq->lock);
7745 }
a790de99
PT
7746out_unlock:
7747 mutex_unlock(&cfs_constraints_mutex);
ab84d31e 7748
a790de99 7749 return ret;
ab84d31e
PT
7750}
7751
7752int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7753{
7754 u64 quota, period;
7755
029632fb 7756 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7757 if (cfs_quota_us < 0)
7758 quota = RUNTIME_INF;
7759 else
7760 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7761
7762 return tg_set_cfs_bandwidth(tg, period, quota);
7763}
7764
7765long tg_get_cfs_quota(struct task_group *tg)
7766{
7767 u64 quota_us;
7768
029632fb 7769 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
7770 return -1;
7771
029632fb 7772 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
7773 do_div(quota_us, NSEC_PER_USEC);
7774
7775 return quota_us;
7776}
7777
7778int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7779{
7780 u64 quota, period;
7781
7782 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 7783 quota = tg->cfs_bandwidth.quota;
ab84d31e 7784
ab84d31e
PT
7785 return tg_set_cfs_bandwidth(tg, period, quota);
7786}
7787
7788long tg_get_cfs_period(struct task_group *tg)
7789{
7790 u64 cfs_period_us;
7791
029632fb 7792 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7793 do_div(cfs_period_us, NSEC_PER_USEC);
7794
7795 return cfs_period_us;
7796}
7797
7798static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7799{
7800 return tg_get_cfs_quota(cgroup_tg(cgrp));
7801}
7802
7803static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7804 s64 cfs_quota_us)
7805{
7806 return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7807}
7808
7809static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7810{
7811 return tg_get_cfs_period(cgroup_tg(cgrp));
7812}
7813
7814static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7815 u64 cfs_period_us)
7816{
7817 return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7818}
7819
a790de99
PT
7820struct cfs_schedulable_data {
7821 struct task_group *tg;
7822 u64 period, quota;
7823};
7824
7825/*
7826 * normalize group quota/period to be quota/max_period
7827 * note: units are usecs
7828 */
7829static u64 normalize_cfs_quota(struct task_group *tg,
7830 struct cfs_schedulable_data *d)
7831{
7832 u64 quota, period;
7833
7834 if (tg == d->tg) {
7835 period = d->period;
7836 quota = d->quota;
7837 } else {
7838 period = tg_get_cfs_period(tg);
7839 quota = tg_get_cfs_quota(tg);
7840 }
7841
7842 /* note: these should typically be equivalent */
7843 if (quota == RUNTIME_INF || quota == -1)
7844 return RUNTIME_INF;
7845
7846 return to_ratio(period, quota);
7847}
7848
7849static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7850{
7851 struct cfs_schedulable_data *d = data;
029632fb 7852 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
7853 s64 quota = 0, parent_quota = -1;
7854
7855 if (!tg->parent) {
7856 quota = RUNTIME_INF;
7857 } else {
029632fb 7858 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
7859
7860 quota = normalize_cfs_quota(tg, d);
7861 parent_quota = parent_b->hierarchal_quota;
7862
7863 /*
7864 * ensure max(child_quota) <= parent_quota, inherit when no
7865 * limit is set
7866 */
7867 if (quota == RUNTIME_INF)
7868 quota = parent_quota;
7869 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7870 return -EINVAL;
7871 }
7872 cfs_b->hierarchal_quota = quota;
7873
7874 return 0;
7875}
7876
7877static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7878{
8277434e 7879 int ret;
a790de99
PT
7880 struct cfs_schedulable_data data = {
7881 .tg = tg,
7882 .period = period,
7883 .quota = quota,
7884 };
7885
7886 if (quota != RUNTIME_INF) {
7887 do_div(data.period, NSEC_PER_USEC);
7888 do_div(data.quota, NSEC_PER_USEC);
7889 }
7890
8277434e
PT
7891 rcu_read_lock();
7892 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7893 rcu_read_unlock();
7894
7895 return ret;
a790de99 7896}
e8da1b18
NR
7897
7898static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
7899 struct cgroup_map_cb *cb)
7900{
7901 struct task_group *tg = cgroup_tg(cgrp);
029632fb 7902 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18
NR
7903
7904 cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7905 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7906 cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7907
7908 return 0;
7909}
ab84d31e 7910#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 7911#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 7912
052f1dc7 7913#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 7914static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 7915 s64 val)
6f505b16 7916{
06ecb27c 7917 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
7918}
7919
06ecb27c 7920static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 7921{
06ecb27c 7922 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 7923}
d0b27fa7
PZ
7924
7925static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7926 u64 rt_period_us)
7927{
7928 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
7929}
7930
7931static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
7932{
7933 return sched_group_rt_period(cgroup_tg(cgrp));
7934}
6d6bc0ad 7935#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 7936
fe5c7cc2 7937static struct cftype cpu_files[] = {
052f1dc7 7938#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
7939 {
7940 .name = "shares",
f4c753b7
PM
7941 .read_u64 = cpu_shares_read_u64,
7942 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 7943 },
052f1dc7 7944#endif
ab84d31e
PT
7945#ifdef CONFIG_CFS_BANDWIDTH
7946 {
7947 .name = "cfs_quota_us",
7948 .read_s64 = cpu_cfs_quota_read_s64,
7949 .write_s64 = cpu_cfs_quota_write_s64,
7950 },
7951 {
7952 .name = "cfs_period_us",
7953 .read_u64 = cpu_cfs_period_read_u64,
7954 .write_u64 = cpu_cfs_period_write_u64,
7955 },
e8da1b18
NR
7956 {
7957 .name = "stat",
7958 .read_map = cpu_stats_show,
7959 },
ab84d31e 7960#endif
052f1dc7 7961#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7962 {
9f0c1e56 7963 .name = "rt_runtime_us",
06ecb27c
PM
7964 .read_s64 = cpu_rt_runtime_read,
7965 .write_s64 = cpu_rt_runtime_write,
6f505b16 7966 },
d0b27fa7
PZ
7967 {
7968 .name = "rt_period_us",
f4c753b7
PM
7969 .read_u64 = cpu_rt_period_read_uint,
7970 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 7971 },
052f1dc7 7972#endif
68318b8e
SV
7973};
7974
7975static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7976{
fe5c7cc2 7977 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
7978}
7979
7980struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
7981 .name = "cpu",
7982 .create = cpu_cgroup_create,
7983 .destroy = cpu_cgroup_destroy,
bb9d97b6
TH
7984 .can_attach = cpu_cgroup_can_attach,
7985 .attach = cpu_cgroup_attach,
068c5cc5 7986 .exit = cpu_cgroup_exit,
38605cae
IM
7987 .populate = cpu_cgroup_populate,
7988 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
7989 .early_init = 1,
7990};
7991
052f1dc7 7992#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
7993
7994#ifdef CONFIG_CGROUP_CPUACCT
7995
7996/*
7997 * CPU accounting code for task groups.
7998 *
7999 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8000 * (balbir@in.ibm.com).
8001 */
8002
d842de87
SV
8003/* create a new cpu accounting group */
8004static struct cgroup_subsys_state *cpuacct_create(
32cd756a 8005 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8006{
54c707e9 8007 struct cpuacct *ca;
d842de87 8008
54c707e9
GC
8009 if (!cgrp->parent)
8010 return &root_cpuacct.css;
8011
8012 ca = kzalloc(sizeof(*ca), GFP_KERNEL);
d842de87 8013 if (!ca)
ef12fefa 8014 goto out;
d842de87
SV
8015
8016 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
8017 if (!ca->cpuusage)
8018 goto out_free_ca;
8019
54c707e9
GC
8020 ca->cpustat = alloc_percpu(struct kernel_cpustat);
8021 if (!ca->cpustat)
8022 goto out_free_cpuusage;
934352f2 8023
d842de87 8024 return &ca->css;
ef12fefa 8025
54c707e9 8026out_free_cpuusage:
ef12fefa
BR
8027 free_percpu(ca->cpuusage);
8028out_free_ca:
8029 kfree(ca);
8030out:
8031 return ERR_PTR(-ENOMEM);
d842de87
SV
8032}
8033
8034/* destroy an existing cpu accounting group */
41a2d6cf 8035static void
32cd756a 8036cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8037{
32cd756a 8038 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87 8039
54c707e9 8040 free_percpu(ca->cpustat);
d842de87
SV
8041 free_percpu(ca->cpuusage);
8042 kfree(ca);
8043}
8044
720f5498
KC
8045static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8046{
b36128c8 8047 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8048 u64 data;
8049
8050#ifndef CONFIG_64BIT
8051 /*
8052 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8053 */
05fa785c 8054 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8055 data = *cpuusage;
05fa785c 8056 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8057#else
8058 data = *cpuusage;
8059#endif
8060
8061 return data;
8062}
8063
8064static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8065{
b36128c8 8066 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8067
8068#ifndef CONFIG_64BIT
8069 /*
8070 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8071 */
05fa785c 8072 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8073 *cpuusage = val;
05fa785c 8074 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8075#else
8076 *cpuusage = val;
8077#endif
8078}
8079
d842de87 8080/* return total cpu usage (in nanoseconds) of a group */
32cd756a 8081static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 8082{
32cd756a 8083 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
8084 u64 totalcpuusage = 0;
8085 int i;
8086
720f5498
KC
8087 for_each_present_cpu(i)
8088 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
8089
8090 return totalcpuusage;
8091}
8092
0297b803
DG
8093static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8094 u64 reset)
8095{
8096 struct cpuacct *ca = cgroup_ca(cgrp);
8097 int err = 0;
8098 int i;
8099
8100 if (reset) {
8101 err = -EINVAL;
8102 goto out;
8103 }
8104
720f5498
KC
8105 for_each_present_cpu(i)
8106 cpuacct_cpuusage_write(ca, i, 0);
0297b803 8107
0297b803
DG
8108out:
8109 return err;
8110}
8111
e9515c3c
KC
8112static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8113 struct seq_file *m)
8114{
8115 struct cpuacct *ca = cgroup_ca(cgroup);
8116 u64 percpu;
8117 int i;
8118
8119 for_each_present_cpu(i) {
8120 percpu = cpuacct_cpuusage_read(ca, i);
8121 seq_printf(m, "%llu ", (unsigned long long) percpu);
8122 }
8123 seq_printf(m, "\n");
8124 return 0;
8125}
8126
ef12fefa
BR
8127static const char *cpuacct_stat_desc[] = {
8128 [CPUACCT_STAT_USER] = "user",
8129 [CPUACCT_STAT_SYSTEM] = "system",
8130};
8131
8132static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
54c707e9 8133 struct cgroup_map_cb *cb)
ef12fefa
BR
8134{
8135 struct cpuacct *ca = cgroup_ca(cgrp);
54c707e9
GC
8136 int cpu;
8137 s64 val = 0;
ef12fefa 8138
54c707e9
GC
8139 for_each_online_cpu(cpu) {
8140 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8141 val += kcpustat->cpustat[CPUTIME_USER];
8142 val += kcpustat->cpustat[CPUTIME_NICE];
ef12fefa 8143 }
54c707e9
GC
8144 val = cputime64_to_clock_t(val);
8145 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
ef12fefa 8146
54c707e9
GC
8147 val = 0;
8148 for_each_online_cpu(cpu) {
8149 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8150 val += kcpustat->cpustat[CPUTIME_SYSTEM];
8151 val += kcpustat->cpustat[CPUTIME_IRQ];
8152 val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
ef12fefa 8153 }
54c707e9
GC
8154
8155 val = cputime64_to_clock_t(val);
8156 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
8157
ef12fefa
BR
8158 return 0;
8159}
8160
d842de87
SV
8161static struct cftype files[] = {
8162 {
8163 .name = "usage",
f4c753b7
PM
8164 .read_u64 = cpuusage_read,
8165 .write_u64 = cpuusage_write,
d842de87 8166 },
e9515c3c
KC
8167 {
8168 .name = "usage_percpu",
8169 .read_seq_string = cpuacct_percpu_seq_read,
8170 },
ef12fefa
BR
8171 {
8172 .name = "stat",
8173 .read_map = cpuacct_stats_show,
8174 },
d842de87
SV
8175};
8176
32cd756a 8177static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8178{
32cd756a 8179 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
8180}
8181
8182/*
8183 * charge this task's execution time to its accounting group.
8184 *
8185 * called with rq->lock held.
8186 */
029632fb 8187void cpuacct_charge(struct task_struct *tsk, u64 cputime)
d842de87
SV
8188{
8189 struct cpuacct *ca;
934352f2 8190 int cpu;
d842de87 8191
c40c6f85 8192 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
8193 return;
8194
934352f2 8195 cpu = task_cpu(tsk);
a18b83b7
BR
8196
8197 rcu_read_lock();
8198
d842de87 8199 ca = task_ca(tsk);
d842de87 8200
44252e42 8201 for (; ca; ca = parent_ca(ca)) {
b36128c8 8202 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
8203 *cpuusage += cputime;
8204 }
a18b83b7
BR
8205
8206 rcu_read_unlock();
d842de87
SV
8207}
8208
8209struct cgroup_subsys cpuacct_subsys = {
8210 .name = "cpuacct",
8211 .create = cpuacct_create,
8212 .destroy = cpuacct_destroy,
8213 .populate = cpuacct_populate,
8214 .subsys_id = cpuacct_subsys_id,
8215};
8216#endif /* CONFIG_CGROUP_CPUACCT */