]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - kernel/sched/core.c
Merge remote-tracking branch 'spi/fix/core' into spi-linus
[mirror_ubuntu-zesty-kernel.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
91d1aa43 75#include <linux/context_tracking.h>
52f5684c 76#include <linux/compiler.h>
1da177e4 77
96f951ed 78#include <asm/switch_to.h>
5517d86b 79#include <asm/tlb.h>
838225b4 80#include <asm/irq_regs.h>
db7e527d 81#include <asm/mutex.h>
e6e6685a
GC
82#ifdef CONFIG_PARAVIRT
83#include <asm/paravirt.h>
84#endif
1da177e4 85
029632fb 86#include "sched.h"
ea138446 87#include "../workqueue_internal.h"
29d5e047 88#include "../smpboot.h"
6e0534f2 89
a8d154b0 90#define CREATE_TRACE_POINTS
ad8d75ff 91#include <trace/events/sched.h>
a8d154b0 92
029632fb
PZ
93DEFINE_MUTEX(sched_domains_mutex);
94DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 95
fe44d621 96static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 97
029632fb 98void update_rq_clock(struct rq *rq)
3e51f33f 99{
fe44d621 100 s64 delta;
305e6835 101
9edfbfed
PZ
102 lockdep_assert_held(&rq->lock);
103
104 if (rq->clock_skip_update & RQCF_ACT_SKIP)
f26f9aff 105 return;
aa483808 106
fe44d621 107 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
4036ac15
MG
108 if (delta < 0)
109 return;
fe44d621
PZ
110 rq->clock += delta;
111 update_rq_clock_task(rq, delta);
3e51f33f
PZ
112}
113
bf5c91ba
IM
114/*
115 * Debugging: various feature bits
116 */
f00b45c1 117
f00b45c1
PZ
118#define SCHED_FEAT(name, enabled) \
119 (1UL << __SCHED_FEAT_##name) * enabled |
120
bf5c91ba 121const_debug unsigned int sysctl_sched_features =
391e43da 122#include "features.h"
f00b45c1
PZ
123 0;
124
125#undef SCHED_FEAT
126
127#ifdef CONFIG_SCHED_DEBUG
128#define SCHED_FEAT(name, enabled) \
129 #name ,
130
1292531f 131static const char * const sched_feat_names[] = {
391e43da 132#include "features.h"
f00b45c1
PZ
133};
134
135#undef SCHED_FEAT
136
34f3a814 137static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 138{
f00b45c1
PZ
139 int i;
140
f8b6d1cc 141 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
142 if (!(sysctl_sched_features & (1UL << i)))
143 seq_puts(m, "NO_");
144 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 145 }
34f3a814 146 seq_puts(m, "\n");
f00b45c1 147
34f3a814 148 return 0;
f00b45c1
PZ
149}
150
f8b6d1cc
PZ
151#ifdef HAVE_JUMP_LABEL
152
c5905afb
IM
153#define jump_label_key__true STATIC_KEY_INIT_TRUE
154#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
155
156#define SCHED_FEAT(name, enabled) \
157 jump_label_key__##enabled ,
158
c5905afb 159struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
160#include "features.h"
161};
162
163#undef SCHED_FEAT
164
165static void sched_feat_disable(int i)
166{
e33886b3 167 static_key_disable(&sched_feat_keys[i]);
f8b6d1cc
PZ
168}
169
170static void sched_feat_enable(int i)
171{
e33886b3 172 static_key_enable(&sched_feat_keys[i]);
f8b6d1cc
PZ
173}
174#else
175static void sched_feat_disable(int i) { };
176static void sched_feat_enable(int i) { };
177#endif /* HAVE_JUMP_LABEL */
178
1a687c2e 179static int sched_feat_set(char *cmp)
f00b45c1 180{
f00b45c1 181 int i;
1a687c2e 182 int neg = 0;
f00b45c1 183
524429c3 184 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
185 neg = 1;
186 cmp += 3;
187 }
188
f8b6d1cc 189 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 190 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 191 if (neg) {
f00b45c1 192 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
193 sched_feat_disable(i);
194 } else {
f00b45c1 195 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
196 sched_feat_enable(i);
197 }
f00b45c1
PZ
198 break;
199 }
200 }
201
1a687c2e
MG
202 return i;
203}
204
205static ssize_t
206sched_feat_write(struct file *filp, const char __user *ubuf,
207 size_t cnt, loff_t *ppos)
208{
209 char buf[64];
210 char *cmp;
211 int i;
5cd08fbf 212 struct inode *inode;
1a687c2e
MG
213
214 if (cnt > 63)
215 cnt = 63;
216
217 if (copy_from_user(&buf, ubuf, cnt))
218 return -EFAULT;
219
220 buf[cnt] = 0;
221 cmp = strstrip(buf);
222
5cd08fbf
JB
223 /* Ensure the static_key remains in a consistent state */
224 inode = file_inode(filp);
225 mutex_lock(&inode->i_mutex);
1a687c2e 226 i = sched_feat_set(cmp);
5cd08fbf 227 mutex_unlock(&inode->i_mutex);
f8b6d1cc 228 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
229 return -EINVAL;
230
42994724 231 *ppos += cnt;
f00b45c1
PZ
232
233 return cnt;
234}
235
34f3a814
LZ
236static int sched_feat_open(struct inode *inode, struct file *filp)
237{
238 return single_open(filp, sched_feat_show, NULL);
239}
240
828c0950 241static const struct file_operations sched_feat_fops = {
34f3a814
LZ
242 .open = sched_feat_open,
243 .write = sched_feat_write,
244 .read = seq_read,
245 .llseek = seq_lseek,
246 .release = single_release,
f00b45c1
PZ
247};
248
249static __init int sched_init_debug(void)
250{
f00b45c1
PZ
251 debugfs_create_file("sched_features", 0644, NULL, NULL,
252 &sched_feat_fops);
253
254 return 0;
255}
256late_initcall(sched_init_debug);
f8b6d1cc 257#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 258
b82d9fdd
PZ
259/*
260 * Number of tasks to iterate in a single balance run.
261 * Limited because this is done with IRQs disabled.
262 */
263const_debug unsigned int sysctl_sched_nr_migrate = 32;
264
e9e9250b
PZ
265/*
266 * period over which we average the RT time consumption, measured
267 * in ms.
268 *
269 * default: 1s
270 */
271const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
272
fa85ae24 273/*
9f0c1e56 274 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
275 * default: 1s
276 */
9f0c1e56 277unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 278
029632fb 279__read_mostly int scheduler_running;
6892b75e 280
9f0c1e56
PZ
281/*
282 * part of the period that we allow rt tasks to run in us.
283 * default: 0.95s
284 */
285int sysctl_sched_rt_runtime = 950000;
fa85ae24 286
3fa0818b
RR
287/* cpus with isolated domains */
288cpumask_var_t cpu_isolated_map;
289
1da177e4 290/*
cc2a73b5 291 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 292 */
a9957449 293static struct rq *this_rq_lock(void)
1da177e4
LT
294 __acquires(rq->lock)
295{
70b97a7f 296 struct rq *rq;
1da177e4
LT
297
298 local_irq_disable();
299 rq = this_rq();
05fa785c 300 raw_spin_lock(&rq->lock);
1da177e4
LT
301
302 return rq;
303}
304
8f4d37ec
PZ
305#ifdef CONFIG_SCHED_HRTICK
306/*
307 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 308 */
8f4d37ec 309
8f4d37ec
PZ
310static void hrtick_clear(struct rq *rq)
311{
312 if (hrtimer_active(&rq->hrtick_timer))
313 hrtimer_cancel(&rq->hrtick_timer);
314}
315
8f4d37ec
PZ
316/*
317 * High-resolution timer tick.
318 * Runs from hardirq context with interrupts disabled.
319 */
320static enum hrtimer_restart hrtick(struct hrtimer *timer)
321{
322 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
323
324 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
325
05fa785c 326 raw_spin_lock(&rq->lock);
3e51f33f 327 update_rq_clock(rq);
8f4d37ec 328 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 329 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
330
331 return HRTIMER_NORESTART;
332}
333
95e904c7 334#ifdef CONFIG_SMP
971ee28c 335
4961b6e1 336static void __hrtick_restart(struct rq *rq)
971ee28c
PZ
337{
338 struct hrtimer *timer = &rq->hrtick_timer;
971ee28c 339
4961b6e1 340 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
971ee28c
PZ
341}
342
31656519
PZ
343/*
344 * called from hardirq (IPI) context
345 */
346static void __hrtick_start(void *arg)
b328ca18 347{
31656519 348 struct rq *rq = arg;
b328ca18 349
05fa785c 350 raw_spin_lock(&rq->lock);
971ee28c 351 __hrtick_restart(rq);
31656519 352 rq->hrtick_csd_pending = 0;
05fa785c 353 raw_spin_unlock(&rq->lock);
b328ca18
PZ
354}
355
31656519
PZ
356/*
357 * Called to set the hrtick timer state.
358 *
359 * called with rq->lock held and irqs disabled
360 */
029632fb 361void hrtick_start(struct rq *rq, u64 delay)
b328ca18 362{
31656519 363 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 364 ktime_t time;
365 s64 delta;
366
367 /*
368 * Don't schedule slices shorter than 10000ns, that just
369 * doesn't make sense and can cause timer DoS.
370 */
371 delta = max_t(s64, delay, 10000LL);
372 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 373
cc584b21 374 hrtimer_set_expires(timer, time);
31656519
PZ
375
376 if (rq == this_rq()) {
971ee28c 377 __hrtick_restart(rq);
31656519 378 } else if (!rq->hrtick_csd_pending) {
c46fff2a 379 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
380 rq->hrtick_csd_pending = 1;
381 }
b328ca18
PZ
382}
383
384static int
385hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
386{
387 int cpu = (int)(long)hcpu;
388
389 switch (action) {
390 case CPU_UP_CANCELED:
391 case CPU_UP_CANCELED_FROZEN:
392 case CPU_DOWN_PREPARE:
393 case CPU_DOWN_PREPARE_FROZEN:
394 case CPU_DEAD:
395 case CPU_DEAD_FROZEN:
31656519 396 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
397 return NOTIFY_OK;
398 }
399
400 return NOTIFY_DONE;
401}
402
fa748203 403static __init void init_hrtick(void)
b328ca18
PZ
404{
405 hotcpu_notifier(hotplug_hrtick, 0);
406}
31656519
PZ
407#else
408/*
409 * Called to set the hrtick timer state.
410 *
411 * called with rq->lock held and irqs disabled
412 */
029632fb 413void hrtick_start(struct rq *rq, u64 delay)
31656519 414{
86893335
WL
415 /*
416 * Don't schedule slices shorter than 10000ns, that just
417 * doesn't make sense. Rely on vruntime for fairness.
418 */
419 delay = max_t(u64, delay, 10000LL);
4961b6e1
TG
420 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
421 HRTIMER_MODE_REL_PINNED);
31656519 422}
b328ca18 423
006c75f1 424static inline void init_hrtick(void)
8f4d37ec 425{
8f4d37ec 426}
31656519 427#endif /* CONFIG_SMP */
8f4d37ec 428
31656519 429static void init_rq_hrtick(struct rq *rq)
8f4d37ec 430{
31656519
PZ
431#ifdef CONFIG_SMP
432 rq->hrtick_csd_pending = 0;
8f4d37ec 433
31656519
PZ
434 rq->hrtick_csd.flags = 0;
435 rq->hrtick_csd.func = __hrtick_start;
436 rq->hrtick_csd.info = rq;
437#endif
8f4d37ec 438
31656519
PZ
439 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
440 rq->hrtick_timer.function = hrtick;
8f4d37ec 441}
006c75f1 442#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
443static inline void hrtick_clear(struct rq *rq)
444{
445}
446
8f4d37ec
PZ
447static inline void init_rq_hrtick(struct rq *rq)
448{
449}
450
b328ca18
PZ
451static inline void init_hrtick(void)
452{
453}
006c75f1 454#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 455
fd99f91a
PZ
456/*
457 * cmpxchg based fetch_or, macro so it works for different integer types
458 */
459#define fetch_or(ptr, val) \
460({ typeof(*(ptr)) __old, __val = *(ptr); \
461 for (;;) { \
462 __old = cmpxchg((ptr), __val, __val | (val)); \
463 if (__old == __val) \
464 break; \
465 __val = __old; \
466 } \
467 __old; \
468})
469
e3baac47 470#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
471/*
472 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
473 * this avoids any races wrt polling state changes and thereby avoids
474 * spurious IPIs.
475 */
476static bool set_nr_and_not_polling(struct task_struct *p)
477{
478 struct thread_info *ti = task_thread_info(p);
479 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
480}
e3baac47
PZ
481
482/*
483 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
484 *
485 * If this returns true, then the idle task promises to call
486 * sched_ttwu_pending() and reschedule soon.
487 */
488static bool set_nr_if_polling(struct task_struct *p)
489{
490 struct thread_info *ti = task_thread_info(p);
316c1608 491 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
e3baac47
PZ
492
493 for (;;) {
494 if (!(val & _TIF_POLLING_NRFLAG))
495 return false;
496 if (val & _TIF_NEED_RESCHED)
497 return true;
498 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
499 if (old == val)
500 break;
501 val = old;
502 }
503 return true;
504}
505
fd99f91a
PZ
506#else
507static bool set_nr_and_not_polling(struct task_struct *p)
508{
509 set_tsk_need_resched(p);
510 return true;
511}
e3baac47
PZ
512
513#ifdef CONFIG_SMP
514static bool set_nr_if_polling(struct task_struct *p)
515{
516 return false;
517}
518#endif
fd99f91a
PZ
519#endif
520
76751049
PZ
521void wake_q_add(struct wake_q_head *head, struct task_struct *task)
522{
523 struct wake_q_node *node = &task->wake_q;
524
525 /*
526 * Atomically grab the task, if ->wake_q is !nil already it means
527 * its already queued (either by us or someone else) and will get the
528 * wakeup due to that.
529 *
530 * This cmpxchg() implies a full barrier, which pairs with the write
531 * barrier implied by the wakeup in wake_up_list().
532 */
533 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
534 return;
535
536 get_task_struct(task);
537
538 /*
539 * The head is context local, there can be no concurrency.
540 */
541 *head->lastp = node;
542 head->lastp = &node->next;
543}
544
545void wake_up_q(struct wake_q_head *head)
546{
547 struct wake_q_node *node = head->first;
548
549 while (node != WAKE_Q_TAIL) {
550 struct task_struct *task;
551
552 task = container_of(node, struct task_struct, wake_q);
553 BUG_ON(!task);
554 /* task can safely be re-inserted now */
555 node = node->next;
556 task->wake_q.next = NULL;
557
558 /*
559 * wake_up_process() implies a wmb() to pair with the queueing
560 * in wake_q_add() so as not to miss wakeups.
561 */
562 wake_up_process(task);
563 put_task_struct(task);
564 }
565}
566
c24d20db 567/*
8875125e 568 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
569 *
570 * On UP this means the setting of the need_resched flag, on SMP it
571 * might also involve a cross-CPU call to trigger the scheduler on
572 * the target CPU.
573 */
8875125e 574void resched_curr(struct rq *rq)
c24d20db 575{
8875125e 576 struct task_struct *curr = rq->curr;
c24d20db
IM
577 int cpu;
578
8875125e 579 lockdep_assert_held(&rq->lock);
c24d20db 580
8875125e 581 if (test_tsk_need_resched(curr))
c24d20db
IM
582 return;
583
8875125e 584 cpu = cpu_of(rq);
fd99f91a 585
f27dde8d 586 if (cpu == smp_processor_id()) {
8875125e 587 set_tsk_need_resched(curr);
f27dde8d 588 set_preempt_need_resched();
c24d20db 589 return;
f27dde8d 590 }
c24d20db 591
8875125e 592 if (set_nr_and_not_polling(curr))
c24d20db 593 smp_send_reschedule(cpu);
dfc68f29
AL
594 else
595 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
596}
597
029632fb 598void resched_cpu(int cpu)
c24d20db
IM
599{
600 struct rq *rq = cpu_rq(cpu);
601 unsigned long flags;
602
05fa785c 603 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db 604 return;
8875125e 605 resched_curr(rq);
05fa785c 606 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 607}
06d8308c 608
b021fe3e 609#ifdef CONFIG_SMP
3451d024 610#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
611/*
612 * In the semi idle case, use the nearest busy cpu for migrating timers
613 * from an idle cpu. This is good for power-savings.
614 *
615 * We don't do similar optimization for completely idle system, as
616 * selecting an idle cpu will add more delays to the timers than intended
617 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
618 */
bc7a34b8 619int get_nohz_timer_target(void)
83cd4fe2 620{
bc7a34b8 621 int i, cpu = smp_processor_id();
83cd4fe2
VP
622 struct sched_domain *sd;
623
9642d18e 624 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
6201b4d6
VK
625 return cpu;
626
057f3fad 627 rcu_read_lock();
83cd4fe2 628 for_each_domain(cpu, sd) {
057f3fad 629 for_each_cpu(i, sched_domain_span(sd)) {
9642d18e 630 if (!idle_cpu(i) && is_housekeeping_cpu(cpu)) {
057f3fad
PZ
631 cpu = i;
632 goto unlock;
633 }
634 }
83cd4fe2 635 }
9642d18e
VH
636
637 if (!is_housekeeping_cpu(cpu))
638 cpu = housekeeping_any_cpu();
057f3fad
PZ
639unlock:
640 rcu_read_unlock();
83cd4fe2
VP
641 return cpu;
642}
06d8308c
TG
643/*
644 * When add_timer_on() enqueues a timer into the timer wheel of an
645 * idle CPU then this timer might expire before the next timer event
646 * which is scheduled to wake up that CPU. In case of a completely
647 * idle system the next event might even be infinite time into the
648 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
649 * leaves the inner idle loop so the newly added timer is taken into
650 * account when the CPU goes back to idle and evaluates the timer
651 * wheel for the next timer event.
652 */
1c20091e 653static void wake_up_idle_cpu(int cpu)
06d8308c
TG
654{
655 struct rq *rq = cpu_rq(cpu);
656
657 if (cpu == smp_processor_id())
658 return;
659
67b9ca70 660 if (set_nr_and_not_polling(rq->idle))
06d8308c 661 smp_send_reschedule(cpu);
dfc68f29
AL
662 else
663 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
664}
665
c5bfece2 666static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 667{
53c5fa16
FW
668 /*
669 * We just need the target to call irq_exit() and re-evaluate
670 * the next tick. The nohz full kick at least implies that.
671 * If needed we can still optimize that later with an
672 * empty IRQ.
673 */
c5bfece2 674 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
675 if (cpu != smp_processor_id() ||
676 tick_nohz_tick_stopped())
53c5fa16 677 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
678 return true;
679 }
680
681 return false;
682}
683
684void wake_up_nohz_cpu(int cpu)
685{
c5bfece2 686 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
687 wake_up_idle_cpu(cpu);
688}
689
ca38062e 690static inline bool got_nohz_idle_kick(void)
45bf76df 691{
1c792db7 692 int cpu = smp_processor_id();
873b4c65
VG
693
694 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
695 return false;
696
697 if (idle_cpu(cpu) && !need_resched())
698 return true;
699
700 /*
701 * We can't run Idle Load Balance on this CPU for this time so we
702 * cancel it and clear NOHZ_BALANCE_KICK
703 */
704 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
705 return false;
45bf76df
IM
706}
707
3451d024 708#else /* CONFIG_NO_HZ_COMMON */
45bf76df 709
ca38062e 710static inline bool got_nohz_idle_kick(void)
2069dd75 711{
ca38062e 712 return false;
2069dd75
PZ
713}
714
3451d024 715#endif /* CONFIG_NO_HZ_COMMON */
d842de87 716
ce831b38
FW
717#ifdef CONFIG_NO_HZ_FULL
718bool sched_can_stop_tick(void)
719{
1e78cdbd
RR
720 /*
721 * FIFO realtime policy runs the highest priority task. Other runnable
722 * tasks are of a lower priority. The scheduler tick does nothing.
723 */
724 if (current->policy == SCHED_FIFO)
725 return true;
726
727 /*
728 * Round-robin realtime tasks time slice with other tasks at the same
729 * realtime priority. Is this task the only one at this priority?
730 */
731 if (current->policy == SCHED_RR) {
732 struct sched_rt_entity *rt_se = &current->rt;
733
734 return rt_se->run_list.prev == rt_se->run_list.next;
735 }
736
3882ec64
FW
737 /*
738 * More than one running task need preemption.
739 * nr_running update is assumed to be visible
740 * after IPI is sent from wakers.
741 */
541b8264
VK
742 if (this_rq()->nr_running > 1)
743 return false;
ce831b38 744
541b8264 745 return true;
ce831b38
FW
746}
747#endif /* CONFIG_NO_HZ_FULL */
d842de87 748
029632fb 749void sched_avg_update(struct rq *rq)
18d95a28 750{
e9e9250b
PZ
751 s64 period = sched_avg_period();
752
78becc27 753 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
754 /*
755 * Inline assembly required to prevent the compiler
756 * optimising this loop into a divmod call.
757 * See __iter_div_u64_rem() for another example of this.
758 */
759 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
760 rq->age_stamp += period;
761 rq->rt_avg /= 2;
762 }
18d95a28
PZ
763}
764
6d6bc0ad 765#endif /* CONFIG_SMP */
18d95a28 766
a790de99
PT
767#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
768 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 769/*
8277434e
PT
770 * Iterate task_group tree rooted at *from, calling @down when first entering a
771 * node and @up when leaving it for the final time.
772 *
773 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 774 */
029632fb 775int walk_tg_tree_from(struct task_group *from,
8277434e 776 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
777{
778 struct task_group *parent, *child;
eb755805 779 int ret;
c09595f6 780
8277434e
PT
781 parent = from;
782
c09595f6 783down:
eb755805
PZ
784 ret = (*down)(parent, data);
785 if (ret)
8277434e 786 goto out;
c09595f6
PZ
787 list_for_each_entry_rcu(child, &parent->children, siblings) {
788 parent = child;
789 goto down;
790
791up:
792 continue;
793 }
eb755805 794 ret = (*up)(parent, data);
8277434e
PT
795 if (ret || parent == from)
796 goto out;
c09595f6
PZ
797
798 child = parent;
799 parent = parent->parent;
800 if (parent)
801 goto up;
8277434e 802out:
eb755805 803 return ret;
c09595f6
PZ
804}
805
029632fb 806int tg_nop(struct task_group *tg, void *data)
eb755805 807{
e2b245f8 808 return 0;
eb755805 809}
18d95a28
PZ
810#endif
811
45bf76df
IM
812static void set_load_weight(struct task_struct *p)
813{
f05998d4
NR
814 int prio = p->static_prio - MAX_RT_PRIO;
815 struct load_weight *load = &p->se.load;
816
dd41f596
IM
817 /*
818 * SCHED_IDLE tasks get minimal weight:
819 */
820 if (p->policy == SCHED_IDLE) {
c8b28116 821 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 822 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
823 return;
824 }
71f8bd46 825
c8b28116 826 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 827 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
828}
829
371fd7e7 830static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 831{
a64692a3 832 update_rq_clock(rq);
43148951 833 sched_info_queued(rq, p);
371fd7e7 834 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
835}
836
371fd7e7 837static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 838{
a64692a3 839 update_rq_clock(rq);
43148951 840 sched_info_dequeued(rq, p);
371fd7e7 841 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
842}
843
029632fb 844void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
845{
846 if (task_contributes_to_load(p))
847 rq->nr_uninterruptible--;
848
371fd7e7 849 enqueue_task(rq, p, flags);
1e3c88bd
PZ
850}
851
029632fb 852void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
853{
854 if (task_contributes_to_load(p))
855 rq->nr_uninterruptible++;
856
371fd7e7 857 dequeue_task(rq, p, flags);
1e3c88bd
PZ
858}
859
fe44d621 860static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 861{
095c0aa8
GC
862/*
863 * In theory, the compile should just see 0 here, and optimize out the call
864 * to sched_rt_avg_update. But I don't trust it...
865 */
866#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
867 s64 steal = 0, irq_delta = 0;
868#endif
869#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 870 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
871
872 /*
873 * Since irq_time is only updated on {soft,}irq_exit, we might run into
874 * this case when a previous update_rq_clock() happened inside a
875 * {soft,}irq region.
876 *
877 * When this happens, we stop ->clock_task and only update the
878 * prev_irq_time stamp to account for the part that fit, so that a next
879 * update will consume the rest. This ensures ->clock_task is
880 * monotonic.
881 *
882 * It does however cause some slight miss-attribution of {soft,}irq
883 * time, a more accurate solution would be to update the irq_time using
884 * the current rq->clock timestamp, except that would require using
885 * atomic ops.
886 */
887 if (irq_delta > delta)
888 irq_delta = delta;
889
890 rq->prev_irq_time += irq_delta;
891 delta -= irq_delta;
095c0aa8
GC
892#endif
893#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 894 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
895 steal = paravirt_steal_clock(cpu_of(rq));
896 steal -= rq->prev_steal_time_rq;
897
898 if (unlikely(steal > delta))
899 steal = delta;
900
095c0aa8 901 rq->prev_steal_time_rq += steal;
095c0aa8
GC
902 delta -= steal;
903 }
904#endif
905
fe44d621
PZ
906 rq->clock_task += delta;
907
095c0aa8 908#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
5d4dfddd 909 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
095c0aa8
GC
910 sched_rt_avg_update(rq, irq_delta + steal);
911#endif
aa483808
VP
912}
913
34f971f6
PZ
914void sched_set_stop_task(int cpu, struct task_struct *stop)
915{
916 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
917 struct task_struct *old_stop = cpu_rq(cpu)->stop;
918
919 if (stop) {
920 /*
921 * Make it appear like a SCHED_FIFO task, its something
922 * userspace knows about and won't get confused about.
923 *
924 * Also, it will make PI more or less work without too
925 * much confusion -- but then, stop work should not
926 * rely on PI working anyway.
927 */
928 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
929
930 stop->sched_class = &stop_sched_class;
931 }
932
933 cpu_rq(cpu)->stop = stop;
934
935 if (old_stop) {
936 /*
937 * Reset it back to a normal scheduling class so that
938 * it can die in pieces.
939 */
940 old_stop->sched_class = &rt_sched_class;
941 }
942}
943
14531189 944/*
dd41f596 945 * __normal_prio - return the priority that is based on the static prio
14531189 946 */
14531189
IM
947static inline int __normal_prio(struct task_struct *p)
948{
dd41f596 949 return p->static_prio;
14531189
IM
950}
951
b29739f9
IM
952/*
953 * Calculate the expected normal priority: i.e. priority
954 * without taking RT-inheritance into account. Might be
955 * boosted by interactivity modifiers. Changes upon fork,
956 * setprio syscalls, and whenever the interactivity
957 * estimator recalculates.
958 */
36c8b586 959static inline int normal_prio(struct task_struct *p)
b29739f9
IM
960{
961 int prio;
962
aab03e05
DF
963 if (task_has_dl_policy(p))
964 prio = MAX_DL_PRIO-1;
965 else if (task_has_rt_policy(p))
b29739f9
IM
966 prio = MAX_RT_PRIO-1 - p->rt_priority;
967 else
968 prio = __normal_prio(p);
969 return prio;
970}
971
972/*
973 * Calculate the current priority, i.e. the priority
974 * taken into account by the scheduler. This value might
975 * be boosted by RT tasks, or might be boosted by
976 * interactivity modifiers. Will be RT if the task got
977 * RT-boosted. If not then it returns p->normal_prio.
978 */
36c8b586 979static int effective_prio(struct task_struct *p)
b29739f9
IM
980{
981 p->normal_prio = normal_prio(p);
982 /*
983 * If we are RT tasks or we were boosted to RT priority,
984 * keep the priority unchanged. Otherwise, update priority
985 * to the normal priority:
986 */
987 if (!rt_prio(p->prio))
988 return p->normal_prio;
989 return p->prio;
990}
991
1da177e4
LT
992/**
993 * task_curr - is this task currently executing on a CPU?
994 * @p: the task in question.
e69f6186
YB
995 *
996 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 997 */
36c8b586 998inline int task_curr(const struct task_struct *p)
1da177e4
LT
999{
1000 return cpu_curr(task_cpu(p)) == p;
1001}
1002
67dfa1b7 1003/*
4c9a4bc8
PZ
1004 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1005 * use the balance_callback list if you want balancing.
1006 *
1007 * this means any call to check_class_changed() must be followed by a call to
1008 * balance_callback().
67dfa1b7 1009 */
cb469845
SR
1010static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1011 const struct sched_class *prev_class,
da7a735e 1012 int oldprio)
cb469845
SR
1013{
1014 if (prev_class != p->sched_class) {
1015 if (prev_class->switched_from)
da7a735e 1016 prev_class->switched_from(rq, p);
4c9a4bc8 1017
da7a735e 1018 p->sched_class->switched_to(rq, p);
2d3d891d 1019 } else if (oldprio != p->prio || dl_task(p))
da7a735e 1020 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
1021}
1022
029632fb 1023void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
1024{
1025 const struct sched_class *class;
1026
1027 if (p->sched_class == rq->curr->sched_class) {
1028 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1029 } else {
1030 for_each_class(class) {
1031 if (class == rq->curr->sched_class)
1032 break;
1033 if (class == p->sched_class) {
8875125e 1034 resched_curr(rq);
1e5a7405
PZ
1035 break;
1036 }
1037 }
1038 }
1039
1040 /*
1041 * A queue event has occurred, and we're going to schedule. In
1042 * this case, we can save a useless back to back clock update.
1043 */
da0c1e65 1044 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
9edfbfed 1045 rq_clock_skip_update(rq, true);
1e5a7405
PZ
1046}
1047
1da177e4 1048#ifdef CONFIG_SMP
5cc389bc
PZ
1049/*
1050 * This is how migration works:
1051 *
1052 * 1) we invoke migration_cpu_stop() on the target CPU using
1053 * stop_one_cpu().
1054 * 2) stopper starts to run (implicitly forcing the migrated thread
1055 * off the CPU)
1056 * 3) it checks whether the migrated task is still in the wrong runqueue.
1057 * 4) if it's in the wrong runqueue then the migration thread removes
1058 * it and puts it into the right queue.
1059 * 5) stopper completes and stop_one_cpu() returns and the migration
1060 * is done.
1061 */
1062
1063/*
1064 * move_queued_task - move a queued task to new rq.
1065 *
1066 * Returns (locked) new rq. Old rq's lock is released.
1067 */
5e16bbc2 1068static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
5cc389bc 1069{
5cc389bc
PZ
1070 lockdep_assert_held(&rq->lock);
1071
1072 dequeue_task(rq, p, 0);
1073 p->on_rq = TASK_ON_RQ_MIGRATING;
1074 set_task_cpu(p, new_cpu);
1075 raw_spin_unlock(&rq->lock);
1076
1077 rq = cpu_rq(new_cpu);
1078
1079 raw_spin_lock(&rq->lock);
1080 BUG_ON(task_cpu(p) != new_cpu);
1081 p->on_rq = TASK_ON_RQ_QUEUED;
1082 enqueue_task(rq, p, 0);
1083 check_preempt_curr(rq, p, 0);
1084
1085 return rq;
1086}
1087
1088struct migration_arg {
1089 struct task_struct *task;
1090 int dest_cpu;
1091};
1092
1093/*
1094 * Move (not current) task off this cpu, onto dest cpu. We're doing
1095 * this because either it can't run here any more (set_cpus_allowed()
1096 * away from this CPU, or CPU going down), or because we're
1097 * attempting to rebalance this task on exec (sched_exec).
1098 *
1099 * So we race with normal scheduler movements, but that's OK, as long
1100 * as the task is no longer on this CPU.
5cc389bc 1101 */
5e16bbc2 1102static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
5cc389bc 1103{
5cc389bc 1104 if (unlikely(!cpu_active(dest_cpu)))
5e16bbc2 1105 return rq;
5cc389bc
PZ
1106
1107 /* Affinity changed (again). */
1108 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
5e16bbc2 1109 return rq;
5cc389bc 1110
5e16bbc2
PZ
1111 rq = move_queued_task(rq, p, dest_cpu);
1112
1113 return rq;
5cc389bc
PZ
1114}
1115
1116/*
1117 * migration_cpu_stop - this will be executed by a highprio stopper thread
1118 * and performs thread migration by bumping thread off CPU then
1119 * 'pushing' onto another runqueue.
1120 */
1121static int migration_cpu_stop(void *data)
1122{
1123 struct migration_arg *arg = data;
5e16bbc2
PZ
1124 struct task_struct *p = arg->task;
1125 struct rq *rq = this_rq();
5cc389bc
PZ
1126
1127 /*
1128 * The original target cpu might have gone down and we might
1129 * be on another cpu but it doesn't matter.
1130 */
1131 local_irq_disable();
1132 /*
1133 * We need to explicitly wake pending tasks before running
1134 * __migrate_task() such that we will not miss enforcing cpus_allowed
1135 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1136 */
1137 sched_ttwu_pending();
5e16bbc2
PZ
1138
1139 raw_spin_lock(&p->pi_lock);
1140 raw_spin_lock(&rq->lock);
1141 /*
1142 * If task_rq(p) != rq, it cannot be migrated here, because we're
1143 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1144 * we're holding p->pi_lock.
1145 */
1146 if (task_rq(p) == rq && task_on_rq_queued(p))
1147 rq = __migrate_task(rq, p, arg->dest_cpu);
1148 raw_spin_unlock(&rq->lock);
1149 raw_spin_unlock(&p->pi_lock);
1150
5cc389bc
PZ
1151 local_irq_enable();
1152 return 0;
1153}
1154
c5b28038
PZ
1155/*
1156 * sched_class::set_cpus_allowed must do the below, but is not required to
1157 * actually call this function.
1158 */
1159void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
5cc389bc 1160{
5cc389bc
PZ
1161 cpumask_copy(&p->cpus_allowed, new_mask);
1162 p->nr_cpus_allowed = cpumask_weight(new_mask);
1163}
1164
c5b28038
PZ
1165void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1166{
6c37067e
PZ
1167 struct rq *rq = task_rq(p);
1168 bool queued, running;
1169
c5b28038 1170 lockdep_assert_held(&p->pi_lock);
6c37067e
PZ
1171
1172 queued = task_on_rq_queued(p);
1173 running = task_current(rq, p);
1174
1175 if (queued) {
1176 /*
1177 * Because __kthread_bind() calls this on blocked tasks without
1178 * holding rq->lock.
1179 */
1180 lockdep_assert_held(&rq->lock);
1181 dequeue_task(rq, p, 0);
1182 }
1183 if (running)
1184 put_prev_task(rq, p);
1185
c5b28038 1186 p->sched_class->set_cpus_allowed(p, new_mask);
6c37067e
PZ
1187
1188 if (running)
1189 p->sched_class->set_curr_task(rq);
1190 if (queued)
1191 enqueue_task(rq, p, 0);
c5b28038
PZ
1192}
1193
5cc389bc
PZ
1194/*
1195 * Change a given task's CPU affinity. Migrate the thread to a
1196 * proper CPU and schedule it away if the CPU it's executing on
1197 * is removed from the allowed bitmask.
1198 *
1199 * NOTE: the caller must have a valid reference to the task, the
1200 * task must not exit() & deallocate itself prematurely. The
1201 * call is not atomic; no spinlocks may be held.
1202 */
25834c73
PZ
1203static int __set_cpus_allowed_ptr(struct task_struct *p,
1204 const struct cpumask *new_mask, bool check)
5cc389bc
PZ
1205{
1206 unsigned long flags;
1207 struct rq *rq;
1208 unsigned int dest_cpu;
1209 int ret = 0;
1210
1211 rq = task_rq_lock(p, &flags);
1212
25834c73
PZ
1213 /*
1214 * Must re-check here, to close a race against __kthread_bind(),
1215 * sched_setaffinity() is not guaranteed to observe the flag.
1216 */
1217 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1218 ret = -EINVAL;
1219 goto out;
1220 }
1221
5cc389bc
PZ
1222 if (cpumask_equal(&p->cpus_allowed, new_mask))
1223 goto out;
1224
1225 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1226 ret = -EINVAL;
1227 goto out;
1228 }
1229
1230 do_set_cpus_allowed(p, new_mask);
1231
1232 /* Can the task run on the task's current CPU? If so, we're done */
1233 if (cpumask_test_cpu(task_cpu(p), new_mask))
1234 goto out;
1235
1236 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
1237 if (task_running(rq, p) || p->state == TASK_WAKING) {
1238 struct migration_arg arg = { p, dest_cpu };
1239 /* Need help from migration thread: drop lock and wait. */
1240 task_rq_unlock(rq, p, &flags);
1241 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1242 tlb_migrate_finish(p->mm);
1243 return 0;
cbce1a68
PZ
1244 } else if (task_on_rq_queued(p)) {
1245 /*
1246 * OK, since we're going to drop the lock immediately
1247 * afterwards anyway.
1248 */
1249 lockdep_unpin_lock(&rq->lock);
5e16bbc2 1250 rq = move_queued_task(rq, p, dest_cpu);
cbce1a68
PZ
1251 lockdep_pin_lock(&rq->lock);
1252 }
5cc389bc
PZ
1253out:
1254 task_rq_unlock(rq, p, &flags);
1255
1256 return ret;
1257}
25834c73
PZ
1258
1259int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1260{
1261 return __set_cpus_allowed_ptr(p, new_mask, false);
1262}
5cc389bc
PZ
1263EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1264
dd41f596 1265void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1266{
e2912009
PZ
1267#ifdef CONFIG_SCHED_DEBUG
1268 /*
1269 * We should never call set_task_cpu() on a blocked task,
1270 * ttwu() will sort out the placement.
1271 */
077614ee 1272 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
e2336f6e 1273 !p->on_rq);
0122ec5b
PZ
1274
1275#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1276 /*
1277 * The caller should hold either p->pi_lock or rq->lock, when changing
1278 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1279 *
1280 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1281 * see task_group().
6c6c54e1
PZ
1282 *
1283 * Furthermore, all task_rq users should acquire both locks, see
1284 * task_rq_lock().
1285 */
0122ec5b
PZ
1286 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1287 lockdep_is_held(&task_rq(p)->lock)));
1288#endif
e2912009
PZ
1289#endif
1290
de1d7286 1291 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1292
0c69774e 1293 if (task_cpu(p) != new_cpu) {
0a74bef8
PT
1294 if (p->sched_class->migrate_task_rq)
1295 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 1296 p->se.nr_migrations++;
ff303e66 1297 perf_event_task_migrate(p);
0c69774e 1298 }
dd41f596
IM
1299
1300 __set_task_cpu(p, new_cpu);
c65cc870
IM
1301}
1302
ac66f547
PZ
1303static void __migrate_swap_task(struct task_struct *p, int cpu)
1304{
da0c1e65 1305 if (task_on_rq_queued(p)) {
ac66f547
PZ
1306 struct rq *src_rq, *dst_rq;
1307
1308 src_rq = task_rq(p);
1309 dst_rq = cpu_rq(cpu);
1310
1311 deactivate_task(src_rq, p, 0);
1312 set_task_cpu(p, cpu);
1313 activate_task(dst_rq, p, 0);
1314 check_preempt_curr(dst_rq, p, 0);
1315 } else {
1316 /*
1317 * Task isn't running anymore; make it appear like we migrated
1318 * it before it went to sleep. This means on wakeup we make the
1319 * previous cpu our targer instead of where it really is.
1320 */
1321 p->wake_cpu = cpu;
1322 }
1323}
1324
1325struct migration_swap_arg {
1326 struct task_struct *src_task, *dst_task;
1327 int src_cpu, dst_cpu;
1328};
1329
1330static int migrate_swap_stop(void *data)
1331{
1332 struct migration_swap_arg *arg = data;
1333 struct rq *src_rq, *dst_rq;
1334 int ret = -EAGAIN;
1335
1336 src_rq = cpu_rq(arg->src_cpu);
1337 dst_rq = cpu_rq(arg->dst_cpu);
1338
74602315
PZ
1339 double_raw_lock(&arg->src_task->pi_lock,
1340 &arg->dst_task->pi_lock);
ac66f547
PZ
1341 double_rq_lock(src_rq, dst_rq);
1342 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1343 goto unlock;
1344
1345 if (task_cpu(arg->src_task) != arg->src_cpu)
1346 goto unlock;
1347
1348 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1349 goto unlock;
1350
1351 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1352 goto unlock;
1353
1354 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1355 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1356
1357 ret = 0;
1358
1359unlock:
1360 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1361 raw_spin_unlock(&arg->dst_task->pi_lock);
1362 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1363
1364 return ret;
1365}
1366
1367/*
1368 * Cross migrate two tasks
1369 */
1370int migrate_swap(struct task_struct *cur, struct task_struct *p)
1371{
1372 struct migration_swap_arg arg;
1373 int ret = -EINVAL;
1374
ac66f547
PZ
1375 arg = (struct migration_swap_arg){
1376 .src_task = cur,
1377 .src_cpu = task_cpu(cur),
1378 .dst_task = p,
1379 .dst_cpu = task_cpu(p),
1380 };
1381
1382 if (arg.src_cpu == arg.dst_cpu)
1383 goto out;
1384
6acce3ef
PZ
1385 /*
1386 * These three tests are all lockless; this is OK since all of them
1387 * will be re-checked with proper locks held further down the line.
1388 */
ac66f547
PZ
1389 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1390 goto out;
1391
1392 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1393 goto out;
1394
1395 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1396 goto out;
1397
286549dc 1398 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1399 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1400
1401out:
ac66f547
PZ
1402 return ret;
1403}
1404
1da177e4
LT
1405/*
1406 * wait_task_inactive - wait for a thread to unschedule.
1407 *
85ba2d86
RM
1408 * If @match_state is nonzero, it's the @p->state value just checked and
1409 * not expected to change. If it changes, i.e. @p might have woken up,
1410 * then return zero. When we succeed in waiting for @p to be off its CPU,
1411 * we return a positive number (its total switch count). If a second call
1412 * a short while later returns the same number, the caller can be sure that
1413 * @p has remained unscheduled the whole time.
1414 *
1da177e4
LT
1415 * The caller must ensure that the task *will* unschedule sometime soon,
1416 * else this function might spin for a *long* time. This function can't
1417 * be called with interrupts off, or it may introduce deadlock with
1418 * smp_call_function() if an IPI is sent by the same process we are
1419 * waiting to become inactive.
1420 */
85ba2d86 1421unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1422{
1423 unsigned long flags;
da0c1e65 1424 int running, queued;
85ba2d86 1425 unsigned long ncsw;
70b97a7f 1426 struct rq *rq;
1da177e4 1427
3a5c359a
AK
1428 for (;;) {
1429 /*
1430 * We do the initial early heuristics without holding
1431 * any task-queue locks at all. We'll only try to get
1432 * the runqueue lock when things look like they will
1433 * work out!
1434 */
1435 rq = task_rq(p);
fa490cfd 1436
3a5c359a
AK
1437 /*
1438 * If the task is actively running on another CPU
1439 * still, just relax and busy-wait without holding
1440 * any locks.
1441 *
1442 * NOTE! Since we don't hold any locks, it's not
1443 * even sure that "rq" stays as the right runqueue!
1444 * But we don't care, since "task_running()" will
1445 * return false if the runqueue has changed and p
1446 * is actually now running somewhere else!
1447 */
85ba2d86
RM
1448 while (task_running(rq, p)) {
1449 if (match_state && unlikely(p->state != match_state))
1450 return 0;
3a5c359a 1451 cpu_relax();
85ba2d86 1452 }
fa490cfd 1453
3a5c359a
AK
1454 /*
1455 * Ok, time to look more closely! We need the rq
1456 * lock now, to be *sure*. If we're wrong, we'll
1457 * just go back and repeat.
1458 */
1459 rq = task_rq_lock(p, &flags);
27a9da65 1460 trace_sched_wait_task(p);
3a5c359a 1461 running = task_running(rq, p);
da0c1e65 1462 queued = task_on_rq_queued(p);
85ba2d86 1463 ncsw = 0;
f31e11d8 1464 if (!match_state || p->state == match_state)
93dcf55f 1465 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1466 task_rq_unlock(rq, p, &flags);
fa490cfd 1467
85ba2d86
RM
1468 /*
1469 * If it changed from the expected state, bail out now.
1470 */
1471 if (unlikely(!ncsw))
1472 break;
1473
3a5c359a
AK
1474 /*
1475 * Was it really running after all now that we
1476 * checked with the proper locks actually held?
1477 *
1478 * Oops. Go back and try again..
1479 */
1480 if (unlikely(running)) {
1481 cpu_relax();
1482 continue;
1483 }
fa490cfd 1484
3a5c359a
AK
1485 /*
1486 * It's not enough that it's not actively running,
1487 * it must be off the runqueue _entirely_, and not
1488 * preempted!
1489 *
80dd99b3 1490 * So if it was still runnable (but just not actively
3a5c359a
AK
1491 * running right now), it's preempted, and we should
1492 * yield - it could be a while.
1493 */
da0c1e65 1494 if (unlikely(queued)) {
8eb90c30
TG
1495 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1496
1497 set_current_state(TASK_UNINTERRUPTIBLE);
1498 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1499 continue;
1500 }
fa490cfd 1501
3a5c359a
AK
1502 /*
1503 * Ahh, all good. It wasn't running, and it wasn't
1504 * runnable, which means that it will never become
1505 * running in the future either. We're all done!
1506 */
1507 break;
1508 }
85ba2d86
RM
1509
1510 return ncsw;
1da177e4
LT
1511}
1512
1513/***
1514 * kick_process - kick a running thread to enter/exit the kernel
1515 * @p: the to-be-kicked thread
1516 *
1517 * Cause a process which is running on another CPU to enter
1518 * kernel-mode, without any delay. (to get signals handled.)
1519 *
25985edc 1520 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1521 * because all it wants to ensure is that the remote task enters
1522 * the kernel. If the IPI races and the task has been migrated
1523 * to another CPU then no harm is done and the purpose has been
1524 * achieved as well.
1525 */
36c8b586 1526void kick_process(struct task_struct *p)
1da177e4
LT
1527{
1528 int cpu;
1529
1530 preempt_disable();
1531 cpu = task_cpu(p);
1532 if ((cpu != smp_processor_id()) && task_curr(p))
1533 smp_send_reschedule(cpu);
1534 preempt_enable();
1535}
b43e3521 1536EXPORT_SYMBOL_GPL(kick_process);
1da177e4 1537
30da688e 1538/*
013fdb80 1539 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1540 */
5da9a0fb
PZ
1541static int select_fallback_rq(int cpu, struct task_struct *p)
1542{
aa00d89c
TC
1543 int nid = cpu_to_node(cpu);
1544 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1545 enum { cpuset, possible, fail } state = cpuset;
1546 int dest_cpu;
5da9a0fb 1547
aa00d89c
TC
1548 /*
1549 * If the node that the cpu is on has been offlined, cpu_to_node()
1550 * will return -1. There is no cpu on the node, and we should
1551 * select the cpu on the other node.
1552 */
1553 if (nid != -1) {
1554 nodemask = cpumask_of_node(nid);
1555
1556 /* Look for allowed, online CPU in same node. */
1557 for_each_cpu(dest_cpu, nodemask) {
1558 if (!cpu_online(dest_cpu))
1559 continue;
1560 if (!cpu_active(dest_cpu))
1561 continue;
1562 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1563 return dest_cpu;
1564 }
2baab4e9 1565 }
5da9a0fb 1566
2baab4e9
PZ
1567 for (;;) {
1568 /* Any allowed, online CPU? */
e3831edd 1569 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1570 if (!cpu_online(dest_cpu))
1571 continue;
1572 if (!cpu_active(dest_cpu))
1573 continue;
1574 goto out;
1575 }
5da9a0fb 1576
2baab4e9
PZ
1577 switch (state) {
1578 case cpuset:
1579 /* No more Mr. Nice Guy. */
1580 cpuset_cpus_allowed_fallback(p);
1581 state = possible;
1582 break;
1583
1584 case possible:
1585 do_set_cpus_allowed(p, cpu_possible_mask);
1586 state = fail;
1587 break;
1588
1589 case fail:
1590 BUG();
1591 break;
1592 }
1593 }
1594
1595out:
1596 if (state != cpuset) {
1597 /*
1598 * Don't tell them about moving exiting tasks or
1599 * kernel threads (both mm NULL), since they never
1600 * leave kernel.
1601 */
1602 if (p->mm && printk_ratelimit()) {
aac74dc4 1603 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1604 task_pid_nr(p), p->comm, cpu);
1605 }
5da9a0fb
PZ
1606 }
1607
1608 return dest_cpu;
1609}
1610
e2912009 1611/*
013fdb80 1612 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1613 */
970b13ba 1614static inline
ac66f547 1615int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1616{
cbce1a68
PZ
1617 lockdep_assert_held(&p->pi_lock);
1618
6c1d9410
WL
1619 if (p->nr_cpus_allowed > 1)
1620 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e2912009
PZ
1621
1622 /*
1623 * In order not to call set_task_cpu() on a blocking task we need
1624 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1625 * cpu.
1626 *
1627 * Since this is common to all placement strategies, this lives here.
1628 *
1629 * [ this allows ->select_task() to simply return task_cpu(p) and
1630 * not worry about this generic constraint ]
1631 */
fa17b507 1632 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1633 !cpu_online(cpu)))
5da9a0fb 1634 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1635
1636 return cpu;
970b13ba 1637}
09a40af5
MG
1638
1639static void update_avg(u64 *avg, u64 sample)
1640{
1641 s64 diff = sample - *avg;
1642 *avg += diff >> 3;
1643}
25834c73
PZ
1644
1645#else
1646
1647static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1648 const struct cpumask *new_mask, bool check)
1649{
1650 return set_cpus_allowed_ptr(p, new_mask);
1651}
1652
5cc389bc 1653#endif /* CONFIG_SMP */
970b13ba 1654
d7c01d27 1655static void
b84cb5df 1656ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1657{
d7c01d27 1658#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1659 struct rq *rq = this_rq();
1660
d7c01d27
PZ
1661#ifdef CONFIG_SMP
1662 int this_cpu = smp_processor_id();
1663
1664 if (cpu == this_cpu) {
1665 schedstat_inc(rq, ttwu_local);
1666 schedstat_inc(p, se.statistics.nr_wakeups_local);
1667 } else {
1668 struct sched_domain *sd;
1669
1670 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1671 rcu_read_lock();
d7c01d27
PZ
1672 for_each_domain(this_cpu, sd) {
1673 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1674 schedstat_inc(sd, ttwu_wake_remote);
1675 break;
1676 }
1677 }
057f3fad 1678 rcu_read_unlock();
d7c01d27 1679 }
f339b9dc
PZ
1680
1681 if (wake_flags & WF_MIGRATED)
1682 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1683
d7c01d27
PZ
1684#endif /* CONFIG_SMP */
1685
1686 schedstat_inc(rq, ttwu_count);
9ed3811a 1687 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1688
1689 if (wake_flags & WF_SYNC)
9ed3811a 1690 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1691
d7c01d27
PZ
1692#endif /* CONFIG_SCHEDSTATS */
1693}
1694
1695static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1696{
9ed3811a 1697 activate_task(rq, p, en_flags);
da0c1e65 1698 p->on_rq = TASK_ON_RQ_QUEUED;
c2f7115e
PZ
1699
1700 /* if a worker is waking up, notify workqueue */
1701 if (p->flags & PF_WQ_WORKER)
1702 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1703}
1704
23f41eeb
PZ
1705/*
1706 * Mark the task runnable and perform wakeup-preemption.
1707 */
89363381 1708static void
23f41eeb 1709ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1710{
9ed3811a 1711 check_preempt_curr(rq, p, wake_flags);
9ed3811a 1712 p->state = TASK_RUNNING;
fbd705a0
PZ
1713 trace_sched_wakeup(p);
1714
9ed3811a 1715#ifdef CONFIG_SMP
4c9a4bc8
PZ
1716 if (p->sched_class->task_woken) {
1717 /*
cbce1a68
PZ
1718 * Our task @p is fully woken up and running; so its safe to
1719 * drop the rq->lock, hereafter rq is only used for statistics.
4c9a4bc8 1720 */
cbce1a68 1721 lockdep_unpin_lock(&rq->lock);
9ed3811a 1722 p->sched_class->task_woken(rq, p);
cbce1a68 1723 lockdep_pin_lock(&rq->lock);
4c9a4bc8 1724 }
9ed3811a 1725
e69c6341 1726 if (rq->idle_stamp) {
78becc27 1727 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1728 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1729
abfafa54
JL
1730 update_avg(&rq->avg_idle, delta);
1731
1732 if (rq->avg_idle > max)
9ed3811a 1733 rq->avg_idle = max;
abfafa54 1734
9ed3811a
TH
1735 rq->idle_stamp = 0;
1736 }
1737#endif
1738}
1739
c05fbafb
PZ
1740static void
1741ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1742{
cbce1a68
PZ
1743 lockdep_assert_held(&rq->lock);
1744
c05fbafb
PZ
1745#ifdef CONFIG_SMP
1746 if (p->sched_contributes_to_load)
1747 rq->nr_uninterruptible--;
1748#endif
1749
1750 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1751 ttwu_do_wakeup(rq, p, wake_flags);
1752}
1753
1754/*
1755 * Called in case the task @p isn't fully descheduled from its runqueue,
1756 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1757 * since all we need to do is flip p->state to TASK_RUNNING, since
1758 * the task is still ->on_rq.
1759 */
1760static int ttwu_remote(struct task_struct *p, int wake_flags)
1761{
1762 struct rq *rq;
1763 int ret = 0;
1764
1765 rq = __task_rq_lock(p);
da0c1e65 1766 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
1767 /* check_preempt_curr() may use rq clock */
1768 update_rq_clock(rq);
c05fbafb
PZ
1769 ttwu_do_wakeup(rq, p, wake_flags);
1770 ret = 1;
1771 }
1772 __task_rq_unlock(rq);
1773
1774 return ret;
1775}
1776
317f3941 1777#ifdef CONFIG_SMP
e3baac47 1778void sched_ttwu_pending(void)
317f3941
PZ
1779{
1780 struct rq *rq = this_rq();
fa14ff4a
PZ
1781 struct llist_node *llist = llist_del_all(&rq->wake_list);
1782 struct task_struct *p;
e3baac47 1783 unsigned long flags;
317f3941 1784
e3baac47
PZ
1785 if (!llist)
1786 return;
1787
1788 raw_spin_lock_irqsave(&rq->lock, flags);
cbce1a68 1789 lockdep_pin_lock(&rq->lock);
317f3941 1790
fa14ff4a
PZ
1791 while (llist) {
1792 p = llist_entry(llist, struct task_struct, wake_entry);
1793 llist = llist_next(llist);
317f3941
PZ
1794 ttwu_do_activate(rq, p, 0);
1795 }
1796
cbce1a68 1797 lockdep_unpin_lock(&rq->lock);
e3baac47 1798 raw_spin_unlock_irqrestore(&rq->lock, flags);
317f3941
PZ
1799}
1800
1801void scheduler_ipi(void)
1802{
f27dde8d
PZ
1803 /*
1804 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1805 * TIF_NEED_RESCHED remotely (for the first time) will also send
1806 * this IPI.
1807 */
8cb75e0c 1808 preempt_fold_need_resched();
f27dde8d 1809
fd2ac4f4 1810 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1811 return;
1812
1813 /*
1814 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1815 * traditionally all their work was done from the interrupt return
1816 * path. Now that we actually do some work, we need to make sure
1817 * we do call them.
1818 *
1819 * Some archs already do call them, luckily irq_enter/exit nest
1820 * properly.
1821 *
1822 * Arguably we should visit all archs and update all handlers,
1823 * however a fair share of IPIs are still resched only so this would
1824 * somewhat pessimize the simple resched case.
1825 */
1826 irq_enter();
fa14ff4a 1827 sched_ttwu_pending();
ca38062e
SS
1828
1829 /*
1830 * Check if someone kicked us for doing the nohz idle load balance.
1831 */
873b4c65 1832 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1833 this_rq()->idle_balance = 1;
ca38062e 1834 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1835 }
c5d753a5 1836 irq_exit();
317f3941
PZ
1837}
1838
1839static void ttwu_queue_remote(struct task_struct *p, int cpu)
1840{
e3baac47
PZ
1841 struct rq *rq = cpu_rq(cpu);
1842
1843 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1844 if (!set_nr_if_polling(rq->idle))
1845 smp_send_reschedule(cpu);
1846 else
1847 trace_sched_wake_idle_without_ipi(cpu);
1848 }
317f3941 1849}
d6aa8f85 1850
f6be8af1
CL
1851void wake_up_if_idle(int cpu)
1852{
1853 struct rq *rq = cpu_rq(cpu);
1854 unsigned long flags;
1855
fd7de1e8
AL
1856 rcu_read_lock();
1857
1858 if (!is_idle_task(rcu_dereference(rq->curr)))
1859 goto out;
f6be8af1
CL
1860
1861 if (set_nr_if_polling(rq->idle)) {
1862 trace_sched_wake_idle_without_ipi(cpu);
1863 } else {
1864 raw_spin_lock_irqsave(&rq->lock, flags);
1865 if (is_idle_task(rq->curr))
1866 smp_send_reschedule(cpu);
1867 /* Else cpu is not in idle, do nothing here */
1868 raw_spin_unlock_irqrestore(&rq->lock, flags);
1869 }
fd7de1e8
AL
1870
1871out:
1872 rcu_read_unlock();
f6be8af1
CL
1873}
1874
39be3501 1875bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1876{
1877 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1878}
d6aa8f85 1879#endif /* CONFIG_SMP */
317f3941 1880
c05fbafb
PZ
1881static void ttwu_queue(struct task_struct *p, int cpu)
1882{
1883 struct rq *rq = cpu_rq(cpu);
1884
17d9f311 1885#if defined(CONFIG_SMP)
39be3501 1886 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1887 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1888 ttwu_queue_remote(p, cpu);
1889 return;
1890 }
1891#endif
1892
c05fbafb 1893 raw_spin_lock(&rq->lock);
cbce1a68 1894 lockdep_pin_lock(&rq->lock);
c05fbafb 1895 ttwu_do_activate(rq, p, 0);
cbce1a68 1896 lockdep_unpin_lock(&rq->lock);
c05fbafb 1897 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1898}
1899
1900/**
1da177e4 1901 * try_to_wake_up - wake up a thread
9ed3811a 1902 * @p: the thread to be awakened
1da177e4 1903 * @state: the mask of task states that can be woken
9ed3811a 1904 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1905 *
1906 * Put it on the run-queue if it's not already there. The "current"
1907 * thread is always on the run-queue (except when the actual
1908 * re-schedule is in progress), and as such you're allowed to do
1909 * the simpler "current->state = TASK_RUNNING" to mark yourself
1910 * runnable without the overhead of this.
1911 *
e69f6186 1912 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1913 * or @state didn't match @p's state.
1da177e4 1914 */
e4a52bcb
PZ
1915static int
1916try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1917{
1da177e4 1918 unsigned long flags;
c05fbafb 1919 int cpu, success = 0;
2398f2c6 1920
e0acd0a6
ON
1921 /*
1922 * If we are going to wake up a thread waiting for CONDITION we
1923 * need to ensure that CONDITION=1 done by the caller can not be
1924 * reordered with p->state check below. This pairs with mb() in
1925 * set_current_state() the waiting thread does.
1926 */
1927 smp_mb__before_spinlock();
013fdb80 1928 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1929 if (!(p->state & state))
1da177e4
LT
1930 goto out;
1931
fbd705a0
PZ
1932 trace_sched_waking(p);
1933
c05fbafb 1934 success = 1; /* we're going to change ->state */
1da177e4 1935 cpu = task_cpu(p);
1da177e4 1936
c05fbafb
PZ
1937 if (p->on_rq && ttwu_remote(p, wake_flags))
1938 goto stat;
1da177e4 1939
1da177e4 1940#ifdef CONFIG_SMP
e9c84311 1941 /*
c05fbafb
PZ
1942 * If the owning (remote) cpu is still in the middle of schedule() with
1943 * this task as prev, wait until its done referencing the task.
e9c84311 1944 */
f3e94786 1945 while (p->on_cpu)
e4a52bcb 1946 cpu_relax();
0970d299 1947 /*
e4a52bcb 1948 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1949 */
e4a52bcb 1950 smp_rmb();
1da177e4 1951
a8e4f2ea 1952 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1953 p->state = TASK_WAKING;
e7693a36 1954
e4a52bcb 1955 if (p->sched_class->task_waking)
74f8e4b2 1956 p->sched_class->task_waking(p);
efbbd05a 1957
ac66f547 1958 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1959 if (task_cpu(p) != cpu) {
1960 wake_flags |= WF_MIGRATED;
e4a52bcb 1961 set_task_cpu(p, cpu);
f339b9dc 1962 }
1da177e4 1963#endif /* CONFIG_SMP */
1da177e4 1964
c05fbafb
PZ
1965 ttwu_queue(p, cpu);
1966stat:
b84cb5df 1967 ttwu_stat(p, cpu, wake_flags);
1da177e4 1968out:
013fdb80 1969 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1970
1971 return success;
1972}
1973
21aa9af0
TH
1974/**
1975 * try_to_wake_up_local - try to wake up a local task with rq lock held
1976 * @p: the thread to be awakened
1977 *
2acca55e 1978 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1979 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1980 * the current task.
21aa9af0
TH
1981 */
1982static void try_to_wake_up_local(struct task_struct *p)
1983{
1984 struct rq *rq = task_rq(p);
21aa9af0 1985
383efcd0
TH
1986 if (WARN_ON_ONCE(rq != this_rq()) ||
1987 WARN_ON_ONCE(p == current))
1988 return;
1989
21aa9af0
TH
1990 lockdep_assert_held(&rq->lock);
1991
2acca55e 1992 if (!raw_spin_trylock(&p->pi_lock)) {
cbce1a68
PZ
1993 /*
1994 * This is OK, because current is on_cpu, which avoids it being
1995 * picked for load-balance and preemption/IRQs are still
1996 * disabled avoiding further scheduler activity on it and we've
1997 * not yet picked a replacement task.
1998 */
1999 lockdep_unpin_lock(&rq->lock);
2acca55e
PZ
2000 raw_spin_unlock(&rq->lock);
2001 raw_spin_lock(&p->pi_lock);
2002 raw_spin_lock(&rq->lock);
cbce1a68 2003 lockdep_pin_lock(&rq->lock);
2acca55e
PZ
2004 }
2005
21aa9af0 2006 if (!(p->state & TASK_NORMAL))
2acca55e 2007 goto out;
21aa9af0 2008
fbd705a0
PZ
2009 trace_sched_waking(p);
2010
da0c1e65 2011 if (!task_on_rq_queued(p))
d7c01d27
PZ
2012 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2013
23f41eeb 2014 ttwu_do_wakeup(rq, p, 0);
b84cb5df 2015 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
2016out:
2017 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
2018}
2019
50fa610a
DH
2020/**
2021 * wake_up_process - Wake up a specific process
2022 * @p: The process to be woken up.
2023 *
2024 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
2025 * processes.
2026 *
2027 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
2028 *
2029 * It may be assumed that this function implies a write memory barrier before
2030 * changing the task state if and only if any tasks are woken up.
2031 */
7ad5b3a5 2032int wake_up_process(struct task_struct *p)
1da177e4 2033{
9067ac85
ON
2034 WARN_ON(task_is_stopped_or_traced(p));
2035 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 2036}
1da177e4
LT
2037EXPORT_SYMBOL(wake_up_process);
2038
7ad5b3a5 2039int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2040{
2041 return try_to_wake_up(p, state, 0);
2042}
2043
a5e7be3b
JL
2044/*
2045 * This function clears the sched_dl_entity static params.
2046 */
2047void __dl_clear_params(struct task_struct *p)
2048{
2049 struct sched_dl_entity *dl_se = &p->dl;
2050
2051 dl_se->dl_runtime = 0;
2052 dl_se->dl_deadline = 0;
2053 dl_se->dl_period = 0;
2054 dl_se->flags = 0;
2055 dl_se->dl_bw = 0;
40767b0d
PZ
2056
2057 dl_se->dl_throttled = 0;
2058 dl_se->dl_new = 1;
2059 dl_se->dl_yielded = 0;
a5e7be3b
JL
2060}
2061
1da177e4
LT
2062/*
2063 * Perform scheduler related setup for a newly forked process p.
2064 * p is forked by current.
dd41f596
IM
2065 *
2066 * __sched_fork() is basic setup used by init_idle() too:
2067 */
5e1576ed 2068static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2069{
fd2f4419
PZ
2070 p->on_rq = 0;
2071
2072 p->se.on_rq = 0;
dd41f596
IM
2073 p->se.exec_start = 0;
2074 p->se.sum_exec_runtime = 0;
f6cf891c 2075 p->se.prev_sum_exec_runtime = 0;
6c594c21 2076 p->se.nr_migrations = 0;
da7a735e 2077 p->se.vruntime = 0;
fd2f4419 2078 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
2079
2080#ifdef CONFIG_SCHEDSTATS
41acab88 2081 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2082#endif
476d139c 2083
aab03e05 2084 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 2085 init_dl_task_timer(&p->dl);
a5e7be3b 2086 __dl_clear_params(p);
aab03e05 2087
fa717060 2088 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 2089
e107be36
AK
2090#ifdef CONFIG_PREEMPT_NOTIFIERS
2091 INIT_HLIST_HEAD(&p->preempt_notifiers);
2092#endif
cbee9f88
PZ
2093
2094#ifdef CONFIG_NUMA_BALANCING
2095 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 2096 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
2097 p->mm->numa_scan_seq = 0;
2098 }
2099
5e1576ed
RR
2100 if (clone_flags & CLONE_VM)
2101 p->numa_preferred_nid = current->numa_preferred_nid;
2102 else
2103 p->numa_preferred_nid = -1;
2104
cbee9f88
PZ
2105 p->node_stamp = 0ULL;
2106 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 2107 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 2108 p->numa_work.next = &p->numa_work;
44dba3d5 2109 p->numa_faults = NULL;
7e2703e6
RR
2110 p->last_task_numa_placement = 0;
2111 p->last_sum_exec_runtime = 0;
8c8a743c 2112
8c8a743c 2113 p->numa_group = NULL;
cbee9f88 2114#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
2115}
2116
1a687c2e 2117#ifdef CONFIG_NUMA_BALANCING
3105b86a 2118#ifdef CONFIG_SCHED_DEBUG
1a687c2e
MG
2119void set_numabalancing_state(bool enabled)
2120{
2121 if (enabled)
2122 sched_feat_set("NUMA");
2123 else
2124 sched_feat_set("NO_NUMA");
2125}
3105b86a
MG
2126#else
2127__read_mostly bool numabalancing_enabled;
2128
2129void set_numabalancing_state(bool enabled)
2130{
2131 numabalancing_enabled = enabled;
dd41f596 2132}
3105b86a 2133#endif /* CONFIG_SCHED_DEBUG */
54a43d54
AK
2134
2135#ifdef CONFIG_PROC_SYSCTL
2136int sysctl_numa_balancing(struct ctl_table *table, int write,
2137 void __user *buffer, size_t *lenp, loff_t *ppos)
2138{
2139 struct ctl_table t;
2140 int err;
2141 int state = numabalancing_enabled;
2142
2143 if (write && !capable(CAP_SYS_ADMIN))
2144 return -EPERM;
2145
2146 t = *table;
2147 t.data = &state;
2148 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2149 if (err < 0)
2150 return err;
2151 if (write)
2152 set_numabalancing_state(state);
2153 return err;
2154}
2155#endif
2156#endif
dd41f596
IM
2157
2158/*
2159 * fork()/clone()-time setup:
2160 */
aab03e05 2161int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2162{
0122ec5b 2163 unsigned long flags;
dd41f596
IM
2164 int cpu = get_cpu();
2165
5e1576ed 2166 __sched_fork(clone_flags, p);
06b83b5f 2167 /*
0017d735 2168 * We mark the process as running here. This guarantees that
06b83b5f
PZ
2169 * nobody will actually run it, and a signal or other external
2170 * event cannot wake it up and insert it on the runqueue either.
2171 */
0017d735 2172 p->state = TASK_RUNNING;
dd41f596 2173
c350a04e
MG
2174 /*
2175 * Make sure we do not leak PI boosting priority to the child.
2176 */
2177 p->prio = current->normal_prio;
2178
b9dc29e7
MG
2179 /*
2180 * Revert to default priority/policy on fork if requested.
2181 */
2182 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 2183 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 2184 p->policy = SCHED_NORMAL;
6c697bdf 2185 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
2186 p->rt_priority = 0;
2187 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2188 p->static_prio = NICE_TO_PRIO(0);
2189
2190 p->prio = p->normal_prio = __normal_prio(p);
2191 set_load_weight(p);
6c697bdf 2192
b9dc29e7
MG
2193 /*
2194 * We don't need the reset flag anymore after the fork. It has
2195 * fulfilled its duty:
2196 */
2197 p->sched_reset_on_fork = 0;
2198 }
ca94c442 2199
aab03e05
DF
2200 if (dl_prio(p->prio)) {
2201 put_cpu();
2202 return -EAGAIN;
2203 } else if (rt_prio(p->prio)) {
2204 p->sched_class = &rt_sched_class;
2205 } else {
2ddbf952 2206 p->sched_class = &fair_sched_class;
aab03e05 2207 }
b29739f9 2208
cd29fe6f
PZ
2209 if (p->sched_class->task_fork)
2210 p->sched_class->task_fork(p);
2211
86951599
PZ
2212 /*
2213 * The child is not yet in the pid-hash so no cgroup attach races,
2214 * and the cgroup is pinned to this child due to cgroup_fork()
2215 * is ran before sched_fork().
2216 *
2217 * Silence PROVE_RCU.
2218 */
0122ec5b 2219 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 2220 set_task_cpu(p, cpu);
0122ec5b 2221 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 2222
f6db8347 2223#ifdef CONFIG_SCHED_INFO
dd41f596 2224 if (likely(sched_info_on()))
52f17b6c 2225 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2226#endif
3ca7a440
PZ
2227#if defined(CONFIG_SMP)
2228 p->on_cpu = 0;
4866cde0 2229#endif
01028747 2230 init_task_preempt_count(p);
806c09a7 2231#ifdef CONFIG_SMP
917b627d 2232 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 2233 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 2234#endif
917b627d 2235
476d139c 2236 put_cpu();
aab03e05 2237 return 0;
1da177e4
LT
2238}
2239
332ac17e
DF
2240unsigned long to_ratio(u64 period, u64 runtime)
2241{
2242 if (runtime == RUNTIME_INF)
2243 return 1ULL << 20;
2244
2245 /*
2246 * Doing this here saves a lot of checks in all
2247 * the calling paths, and returning zero seems
2248 * safe for them anyway.
2249 */
2250 if (period == 0)
2251 return 0;
2252
2253 return div64_u64(runtime << 20, period);
2254}
2255
2256#ifdef CONFIG_SMP
2257inline struct dl_bw *dl_bw_of(int i)
2258{
f78f5b90
PM
2259 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2260 "sched RCU must be held");
332ac17e
DF
2261 return &cpu_rq(i)->rd->dl_bw;
2262}
2263
de212f18 2264static inline int dl_bw_cpus(int i)
332ac17e 2265{
de212f18
PZ
2266 struct root_domain *rd = cpu_rq(i)->rd;
2267 int cpus = 0;
2268
f78f5b90
PM
2269 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2270 "sched RCU must be held");
de212f18
PZ
2271 for_each_cpu_and(i, rd->span, cpu_active_mask)
2272 cpus++;
2273
2274 return cpus;
332ac17e
DF
2275}
2276#else
2277inline struct dl_bw *dl_bw_of(int i)
2278{
2279 return &cpu_rq(i)->dl.dl_bw;
2280}
2281
de212f18 2282static inline int dl_bw_cpus(int i)
332ac17e
DF
2283{
2284 return 1;
2285}
2286#endif
2287
332ac17e
DF
2288/*
2289 * We must be sure that accepting a new task (or allowing changing the
2290 * parameters of an existing one) is consistent with the bandwidth
2291 * constraints. If yes, this function also accordingly updates the currently
2292 * allocated bandwidth to reflect the new situation.
2293 *
2294 * This function is called while holding p's rq->lock.
40767b0d
PZ
2295 *
2296 * XXX we should delay bw change until the task's 0-lag point, see
2297 * __setparam_dl().
332ac17e
DF
2298 */
2299static int dl_overflow(struct task_struct *p, int policy,
2300 const struct sched_attr *attr)
2301{
2302
2303 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
4df1638c 2304 u64 period = attr->sched_period ?: attr->sched_deadline;
332ac17e
DF
2305 u64 runtime = attr->sched_runtime;
2306 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 2307 int cpus, err = -1;
332ac17e
DF
2308
2309 if (new_bw == p->dl.dl_bw)
2310 return 0;
2311
2312 /*
2313 * Either if a task, enters, leave, or stays -deadline but changes
2314 * its parameters, we may need to update accordingly the total
2315 * allocated bandwidth of the container.
2316 */
2317 raw_spin_lock(&dl_b->lock);
de212f18 2318 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
2319 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2320 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2321 __dl_add(dl_b, new_bw);
2322 err = 0;
2323 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2324 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2325 __dl_clear(dl_b, p->dl.dl_bw);
2326 __dl_add(dl_b, new_bw);
2327 err = 0;
2328 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2329 __dl_clear(dl_b, p->dl.dl_bw);
2330 err = 0;
2331 }
2332 raw_spin_unlock(&dl_b->lock);
2333
2334 return err;
2335}
2336
2337extern void init_dl_bw(struct dl_bw *dl_b);
2338
1da177e4
LT
2339/*
2340 * wake_up_new_task - wake up a newly created task for the first time.
2341 *
2342 * This function will do some initial scheduler statistics housekeeping
2343 * that must be done for every newly created context, then puts the task
2344 * on the runqueue and wakes it.
2345 */
3e51e3ed 2346void wake_up_new_task(struct task_struct *p)
1da177e4
LT
2347{
2348 unsigned long flags;
dd41f596 2349 struct rq *rq;
fabf318e 2350
ab2515c4 2351 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
2352#ifdef CONFIG_SMP
2353 /*
2354 * Fork balancing, do it here and not earlier because:
2355 * - cpus_allowed can change in the fork path
2356 * - any previously selected cpu might disappear through hotplug
fabf318e 2357 */
ac66f547 2358 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735
PZ
2359#endif
2360
a75cdaa9 2361 /* Initialize new task's runnable average */
540247fb 2362 init_entity_runnable_average(&p->se);
ab2515c4 2363 rq = __task_rq_lock(p);
cd29fe6f 2364 activate_task(rq, p, 0);
da0c1e65 2365 p->on_rq = TASK_ON_RQ_QUEUED;
fbd705a0 2366 trace_sched_wakeup_new(p);
a7558e01 2367 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2368#ifdef CONFIG_SMP
0aaafaab
PZ
2369 if (p->sched_class->task_woken) {
2370 /*
2371 * Nothing relies on rq->lock after this, so its fine to
2372 * drop it.
2373 */
2374 lockdep_unpin_lock(&rq->lock);
efbbd05a 2375 p->sched_class->task_woken(rq, p);
0aaafaab
PZ
2376 lockdep_pin_lock(&rq->lock);
2377 }
9a897c5a 2378#endif
0122ec5b 2379 task_rq_unlock(rq, p, &flags);
1da177e4
LT
2380}
2381
e107be36
AK
2382#ifdef CONFIG_PREEMPT_NOTIFIERS
2383
1cde2930
PZ
2384static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2385
2ecd9d29
PZ
2386void preempt_notifier_inc(void)
2387{
2388 static_key_slow_inc(&preempt_notifier_key);
2389}
2390EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2391
2392void preempt_notifier_dec(void)
2393{
2394 static_key_slow_dec(&preempt_notifier_key);
2395}
2396EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2397
e107be36 2398/**
80dd99b3 2399 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2400 * @notifier: notifier struct to register
e107be36
AK
2401 */
2402void preempt_notifier_register(struct preempt_notifier *notifier)
2403{
2ecd9d29
PZ
2404 if (!static_key_false(&preempt_notifier_key))
2405 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2406
e107be36
AK
2407 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2408}
2409EXPORT_SYMBOL_GPL(preempt_notifier_register);
2410
2411/**
2412 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2413 * @notifier: notifier struct to unregister
e107be36 2414 *
d84525a8 2415 * This is *not* safe to call from within a preemption notifier.
e107be36
AK
2416 */
2417void preempt_notifier_unregister(struct preempt_notifier *notifier)
2418{
2419 hlist_del(&notifier->link);
2420}
2421EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2422
1cde2930 2423static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2424{
2425 struct preempt_notifier *notifier;
e107be36 2426
b67bfe0d 2427 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2428 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2429}
2430
1cde2930
PZ
2431static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2432{
2433 if (static_key_false(&preempt_notifier_key))
2434 __fire_sched_in_preempt_notifiers(curr);
2435}
2436
e107be36 2437static void
1cde2930
PZ
2438__fire_sched_out_preempt_notifiers(struct task_struct *curr,
2439 struct task_struct *next)
e107be36
AK
2440{
2441 struct preempt_notifier *notifier;
e107be36 2442
b67bfe0d 2443 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2444 notifier->ops->sched_out(notifier, next);
2445}
2446
1cde2930
PZ
2447static __always_inline void
2448fire_sched_out_preempt_notifiers(struct task_struct *curr,
2449 struct task_struct *next)
2450{
2451 if (static_key_false(&preempt_notifier_key))
2452 __fire_sched_out_preempt_notifiers(curr, next);
2453}
2454
6d6bc0ad 2455#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36 2456
1cde2930 2457static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2458{
2459}
2460
1cde2930 2461static inline void
e107be36
AK
2462fire_sched_out_preempt_notifiers(struct task_struct *curr,
2463 struct task_struct *next)
2464{
2465}
2466
6d6bc0ad 2467#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2468
4866cde0
NP
2469/**
2470 * prepare_task_switch - prepare to switch tasks
2471 * @rq: the runqueue preparing to switch
421cee29 2472 * @prev: the current task that is being switched out
4866cde0
NP
2473 * @next: the task we are going to switch to.
2474 *
2475 * This is called with the rq lock held and interrupts off. It must
2476 * be paired with a subsequent finish_task_switch after the context
2477 * switch.
2478 *
2479 * prepare_task_switch sets up locking and calls architecture specific
2480 * hooks.
2481 */
e107be36
AK
2482static inline void
2483prepare_task_switch(struct rq *rq, struct task_struct *prev,
2484 struct task_struct *next)
4866cde0 2485{
895dd92c 2486 trace_sched_switch(prev, next);
43148951 2487 sched_info_switch(rq, prev, next);
fe4b04fa 2488 perf_event_task_sched_out(prev, next);
e107be36 2489 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2490 prepare_lock_switch(rq, next);
2491 prepare_arch_switch(next);
2492}
2493
1da177e4
LT
2494/**
2495 * finish_task_switch - clean up after a task-switch
2496 * @prev: the thread we just switched away from.
2497 *
4866cde0
NP
2498 * finish_task_switch must be called after the context switch, paired
2499 * with a prepare_task_switch call before the context switch.
2500 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2501 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2502 *
2503 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2504 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2505 * with the lock held can cause deadlocks; see schedule() for
2506 * details.)
dfa50b60
ON
2507 *
2508 * The context switch have flipped the stack from under us and restored the
2509 * local variables which were saved when this task called schedule() in the
2510 * past. prev == current is still correct but we need to recalculate this_rq
2511 * because prev may have moved to another CPU.
1da177e4 2512 */
dfa50b60 2513static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
2514 __releases(rq->lock)
2515{
dfa50b60 2516 struct rq *rq = this_rq();
1da177e4 2517 struct mm_struct *mm = rq->prev_mm;
55a101f8 2518 long prev_state;
1da177e4
LT
2519
2520 rq->prev_mm = NULL;
2521
2522 /*
2523 * A task struct has one reference for the use as "current".
c394cc9f 2524 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2525 * schedule one last time. The schedule call will never return, and
2526 * the scheduled task must drop that reference.
95913d97
PZ
2527 *
2528 * We must observe prev->state before clearing prev->on_cpu (in
2529 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2530 * running on another CPU and we could rave with its RUNNING -> DEAD
2531 * transition, resulting in a double drop.
1da177e4 2532 */
55a101f8 2533 prev_state = prev->state;
bf9fae9f 2534 vtime_task_switch(prev);
a8d757ef 2535 perf_event_task_sched_in(prev, current);
4866cde0 2536 finish_lock_switch(rq, prev);
01f23e16 2537 finish_arch_post_lock_switch();
e8fa1362 2538
e107be36 2539 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2540 if (mm)
2541 mmdrop(mm);
c394cc9f 2542 if (unlikely(prev_state == TASK_DEAD)) {
e6c390f2
DF
2543 if (prev->sched_class->task_dead)
2544 prev->sched_class->task_dead(prev);
2545
c6fd91f0 2546 /*
2547 * Remove function-return probe instances associated with this
2548 * task and put them back on the free list.
9761eea8 2549 */
c6fd91f0 2550 kprobe_flush_task(prev);
1da177e4 2551 put_task_struct(prev);
c6fd91f0 2552 }
99e5ada9 2553
de734f89 2554 tick_nohz_task_switch();
dfa50b60 2555 return rq;
1da177e4
LT
2556}
2557
3f029d3c
GH
2558#ifdef CONFIG_SMP
2559
3f029d3c 2560/* rq->lock is NOT held, but preemption is disabled */
e3fca9e7 2561static void __balance_callback(struct rq *rq)
3f029d3c 2562{
e3fca9e7
PZ
2563 struct callback_head *head, *next;
2564 void (*func)(struct rq *rq);
2565 unsigned long flags;
3f029d3c 2566
e3fca9e7
PZ
2567 raw_spin_lock_irqsave(&rq->lock, flags);
2568 head = rq->balance_callback;
2569 rq->balance_callback = NULL;
2570 while (head) {
2571 func = (void (*)(struct rq *))head->func;
2572 next = head->next;
2573 head->next = NULL;
2574 head = next;
3f029d3c 2575
e3fca9e7 2576 func(rq);
3f029d3c 2577 }
e3fca9e7
PZ
2578 raw_spin_unlock_irqrestore(&rq->lock, flags);
2579}
2580
2581static inline void balance_callback(struct rq *rq)
2582{
2583 if (unlikely(rq->balance_callback))
2584 __balance_callback(rq);
3f029d3c
GH
2585}
2586
2587#else
da19ab51 2588
e3fca9e7 2589static inline void balance_callback(struct rq *rq)
3f029d3c 2590{
1da177e4
LT
2591}
2592
3f029d3c
GH
2593#endif
2594
1da177e4
LT
2595/**
2596 * schedule_tail - first thing a freshly forked thread must call.
2597 * @prev: the thread we just switched away from.
2598 */
722a9f92 2599asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
2600 __releases(rq->lock)
2601{
1a43a14a 2602 struct rq *rq;
da19ab51 2603
1a43a14a
ON
2604 /* finish_task_switch() drops rq->lock and enables preemtion */
2605 preempt_disable();
dfa50b60 2606 rq = finish_task_switch(prev);
e3fca9e7 2607 balance_callback(rq);
1a43a14a 2608 preempt_enable();
70b97a7f 2609
1da177e4 2610 if (current->set_child_tid)
b488893a 2611 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2612}
2613
2614/*
dfa50b60 2615 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 2616 */
dfa50b60 2617static inline struct rq *
70b97a7f 2618context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2619 struct task_struct *next)
1da177e4 2620{
dd41f596 2621 struct mm_struct *mm, *oldmm;
1da177e4 2622
e107be36 2623 prepare_task_switch(rq, prev, next);
fe4b04fa 2624
dd41f596
IM
2625 mm = next->mm;
2626 oldmm = prev->active_mm;
9226d125
ZA
2627 /*
2628 * For paravirt, this is coupled with an exit in switch_to to
2629 * combine the page table reload and the switch backend into
2630 * one hypercall.
2631 */
224101ed 2632 arch_start_context_switch(prev);
9226d125 2633
31915ab4 2634 if (!mm) {
1da177e4
LT
2635 next->active_mm = oldmm;
2636 atomic_inc(&oldmm->mm_count);
2637 enter_lazy_tlb(oldmm, next);
2638 } else
2639 switch_mm(oldmm, mm, next);
2640
31915ab4 2641 if (!prev->mm) {
1da177e4 2642 prev->active_mm = NULL;
1da177e4
LT
2643 rq->prev_mm = oldmm;
2644 }
3a5f5e48
IM
2645 /*
2646 * Since the runqueue lock will be released by the next
2647 * task (which is an invalid locking op but in the case
2648 * of the scheduler it's an obvious special-case), so we
2649 * do an early lockdep release here:
2650 */
cbce1a68 2651 lockdep_unpin_lock(&rq->lock);
8a25d5de 2652 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
2653
2654 /* Here we just switch the register state and the stack. */
2655 switch_to(prev, next, prev);
dd41f596 2656 barrier();
dfa50b60
ON
2657
2658 return finish_task_switch(prev);
1da177e4
LT
2659}
2660
2661/*
1c3e8264 2662 * nr_running and nr_context_switches:
1da177e4
LT
2663 *
2664 * externally visible scheduler statistics: current number of runnable
1c3e8264 2665 * threads, total number of context switches performed since bootup.
1da177e4
LT
2666 */
2667unsigned long nr_running(void)
2668{
2669 unsigned long i, sum = 0;
2670
2671 for_each_online_cpu(i)
2672 sum += cpu_rq(i)->nr_running;
2673
2674 return sum;
f711f609 2675}
1da177e4 2676
2ee507c4
TC
2677/*
2678 * Check if only the current task is running on the cpu.
00cc1633
DD
2679 *
2680 * Caution: this function does not check that the caller has disabled
2681 * preemption, thus the result might have a time-of-check-to-time-of-use
2682 * race. The caller is responsible to use it correctly, for example:
2683 *
2684 * - from a non-preemptable section (of course)
2685 *
2686 * - from a thread that is bound to a single CPU
2687 *
2688 * - in a loop with very short iterations (e.g. a polling loop)
2ee507c4
TC
2689 */
2690bool single_task_running(void)
2691{
00cc1633 2692 return raw_rq()->nr_running == 1;
2ee507c4
TC
2693}
2694EXPORT_SYMBOL(single_task_running);
2695
1da177e4 2696unsigned long long nr_context_switches(void)
46cb4b7c 2697{
cc94abfc
SR
2698 int i;
2699 unsigned long long sum = 0;
46cb4b7c 2700
0a945022 2701 for_each_possible_cpu(i)
1da177e4 2702 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2703
1da177e4
LT
2704 return sum;
2705}
483b4ee6 2706
1da177e4
LT
2707unsigned long nr_iowait(void)
2708{
2709 unsigned long i, sum = 0;
483b4ee6 2710
0a945022 2711 for_each_possible_cpu(i)
1da177e4 2712 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2713
1da177e4
LT
2714 return sum;
2715}
483b4ee6 2716
8c215bd3 2717unsigned long nr_iowait_cpu(int cpu)
69d25870 2718{
8c215bd3 2719 struct rq *this = cpu_rq(cpu);
69d25870
AV
2720 return atomic_read(&this->nr_iowait);
2721}
46cb4b7c 2722
372ba8cb
MG
2723void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2724{
3289bdb4
PZ
2725 struct rq *rq = this_rq();
2726 *nr_waiters = atomic_read(&rq->nr_iowait);
2727 *load = rq->load.weight;
372ba8cb
MG
2728}
2729
dd41f596 2730#ifdef CONFIG_SMP
8a0be9ef 2731
46cb4b7c 2732/*
38022906
PZ
2733 * sched_exec - execve() is a valuable balancing opportunity, because at
2734 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2735 */
38022906 2736void sched_exec(void)
46cb4b7c 2737{
38022906 2738 struct task_struct *p = current;
1da177e4 2739 unsigned long flags;
0017d735 2740 int dest_cpu;
46cb4b7c 2741
8f42ced9 2742 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2743 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2744 if (dest_cpu == smp_processor_id())
2745 goto unlock;
38022906 2746
8f42ced9 2747 if (likely(cpu_active(dest_cpu))) {
969c7921 2748 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2749
8f42ced9
PZ
2750 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2751 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2752 return;
2753 }
0017d735 2754unlock:
8f42ced9 2755 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2756}
dd41f596 2757
1da177e4
LT
2758#endif
2759
1da177e4 2760DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2761DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2762
2763EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2764EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 2765
c5f8d995
HS
2766/*
2767 * Return accounted runtime for the task.
2768 * In case the task is currently running, return the runtime plus current's
2769 * pending runtime that have not been accounted yet.
2770 */
2771unsigned long long task_sched_runtime(struct task_struct *p)
2772{
2773 unsigned long flags;
2774 struct rq *rq;
6e998916 2775 u64 ns;
c5f8d995 2776
911b2898
PZ
2777#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2778 /*
2779 * 64-bit doesn't need locks to atomically read a 64bit value.
2780 * So we have a optimization chance when the task's delta_exec is 0.
2781 * Reading ->on_cpu is racy, but this is ok.
2782 *
2783 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2784 * If we race with it entering cpu, unaccounted time is 0. This is
2785 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
2786 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2787 * been accounted, so we're correct here as well.
911b2898 2788 */
da0c1e65 2789 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
2790 return p->se.sum_exec_runtime;
2791#endif
2792
c5f8d995 2793 rq = task_rq_lock(p, &flags);
6e998916
SG
2794 /*
2795 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2796 * project cycles that may never be accounted to this
2797 * thread, breaking clock_gettime().
2798 */
2799 if (task_current(rq, p) && task_on_rq_queued(p)) {
2800 update_rq_clock(rq);
2801 p->sched_class->update_curr(rq);
2802 }
2803 ns = p->se.sum_exec_runtime;
0122ec5b 2804 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2805
2806 return ns;
2807}
48f24c4d 2808
7835b98b
CL
2809/*
2810 * This function gets called by the timer code, with HZ frequency.
2811 * We call it with interrupts disabled.
7835b98b
CL
2812 */
2813void scheduler_tick(void)
2814{
7835b98b
CL
2815 int cpu = smp_processor_id();
2816 struct rq *rq = cpu_rq(cpu);
dd41f596 2817 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2818
2819 sched_clock_tick();
dd41f596 2820
05fa785c 2821 raw_spin_lock(&rq->lock);
3e51f33f 2822 update_rq_clock(rq);
fa85ae24 2823 curr->sched_class->task_tick(rq, curr, 0);
83dfd523 2824 update_cpu_load_active(rq);
3289bdb4 2825 calc_global_load_tick(rq);
05fa785c 2826 raw_spin_unlock(&rq->lock);
7835b98b 2827
e9d2b064 2828 perf_event_task_tick();
e220d2dc 2829
e418e1c2 2830#ifdef CONFIG_SMP
6eb57e0d 2831 rq->idle_balance = idle_cpu(cpu);
7caff66f 2832 trigger_load_balance(rq);
e418e1c2 2833#endif
265f22a9 2834 rq_last_tick_reset(rq);
1da177e4
LT
2835}
2836
265f22a9
FW
2837#ifdef CONFIG_NO_HZ_FULL
2838/**
2839 * scheduler_tick_max_deferment
2840 *
2841 * Keep at least one tick per second when a single
2842 * active task is running because the scheduler doesn't
2843 * yet completely support full dynticks environment.
2844 *
2845 * This makes sure that uptime, CFS vruntime, load
2846 * balancing, etc... continue to move forward, even
2847 * with a very low granularity.
e69f6186
YB
2848 *
2849 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
2850 */
2851u64 scheduler_tick_max_deferment(void)
2852{
2853 struct rq *rq = this_rq();
316c1608 2854 unsigned long next, now = READ_ONCE(jiffies);
265f22a9
FW
2855
2856 next = rq->last_sched_tick + HZ;
2857
2858 if (time_before_eq(next, now))
2859 return 0;
2860
8fe8ff09 2861 return jiffies_to_nsecs(next - now);
1da177e4 2862}
265f22a9 2863#endif
1da177e4 2864
132380a0 2865notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
2866{
2867 if (in_lock_functions(addr)) {
2868 addr = CALLER_ADDR2;
2869 if (in_lock_functions(addr))
2870 addr = CALLER_ADDR3;
2871 }
2872 return addr;
2873}
1da177e4 2874
7e49fcce
SR
2875#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2876 defined(CONFIG_PREEMPT_TRACER))
2877
edafe3a5 2878void preempt_count_add(int val)
1da177e4 2879{
6cd8a4bb 2880#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2881 /*
2882 * Underflow?
2883 */
9a11b49a
IM
2884 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2885 return;
6cd8a4bb 2886#endif
bdb43806 2887 __preempt_count_add(val);
6cd8a4bb 2888#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2889 /*
2890 * Spinlock count overflowing soon?
2891 */
33859f7f
MOS
2892 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2893 PREEMPT_MASK - 10);
6cd8a4bb 2894#endif
8f47b187
TG
2895 if (preempt_count() == val) {
2896 unsigned long ip = get_parent_ip(CALLER_ADDR1);
2897#ifdef CONFIG_DEBUG_PREEMPT
2898 current->preempt_disable_ip = ip;
2899#endif
2900 trace_preempt_off(CALLER_ADDR0, ip);
2901 }
1da177e4 2902}
bdb43806 2903EXPORT_SYMBOL(preempt_count_add);
edafe3a5 2904NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 2905
edafe3a5 2906void preempt_count_sub(int val)
1da177e4 2907{
6cd8a4bb 2908#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2909 /*
2910 * Underflow?
2911 */
01e3eb82 2912 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 2913 return;
1da177e4
LT
2914 /*
2915 * Is the spinlock portion underflowing?
2916 */
9a11b49a
IM
2917 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2918 !(preempt_count() & PREEMPT_MASK)))
2919 return;
6cd8a4bb 2920#endif
9a11b49a 2921
6cd8a4bb
SR
2922 if (preempt_count() == val)
2923 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
bdb43806 2924 __preempt_count_sub(val);
1da177e4 2925}
bdb43806 2926EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 2927NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4
LT
2928
2929#endif
2930
2931/*
dd41f596 2932 * Print scheduling while atomic bug:
1da177e4 2933 */
dd41f596 2934static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 2935{
664dfa65
DJ
2936 if (oops_in_progress)
2937 return;
2938
3df0fc5b
PZ
2939 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2940 prev->comm, prev->pid, preempt_count());
838225b4 2941
dd41f596 2942 debug_show_held_locks(prev);
e21f5b15 2943 print_modules();
dd41f596
IM
2944 if (irqs_disabled())
2945 print_irqtrace_events(prev);
8f47b187
TG
2946#ifdef CONFIG_DEBUG_PREEMPT
2947 if (in_atomic_preempt_off()) {
2948 pr_err("Preemption disabled at:");
2949 print_ip_sym(current->preempt_disable_ip);
2950 pr_cont("\n");
2951 }
2952#endif
6135fc1e 2953 dump_stack();
373d4d09 2954 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 2955}
1da177e4 2956
dd41f596
IM
2957/*
2958 * Various schedule()-time debugging checks and statistics:
2959 */
2960static inline void schedule_debug(struct task_struct *prev)
2961{
0d9e2632
AT
2962#ifdef CONFIG_SCHED_STACK_END_CHECK
2963 BUG_ON(unlikely(task_stack_end_corrupted(prev)));
2964#endif
1da177e4 2965 /*
41a2d6cf 2966 * Test if we are atomic. Since do_exit() needs to call into
192301e7
ON
2967 * schedule() atomically, we ignore that path. Otherwise whine
2968 * if we are scheduling when we should not.
1da177e4 2969 */
192301e7 2970 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
dd41f596 2971 __schedule_bug(prev);
b3fbab05 2972 rcu_sleep_check();
dd41f596 2973
1da177e4
LT
2974 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2975
2d72376b 2976 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
2977}
2978
2979/*
2980 * Pick up the highest-prio task:
2981 */
2982static inline struct task_struct *
606dba2e 2983pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 2984{
37e117c0 2985 const struct sched_class *class = &fair_sched_class;
dd41f596 2986 struct task_struct *p;
1da177e4
LT
2987
2988 /*
dd41f596
IM
2989 * Optimization: we know that if all tasks are in
2990 * the fair class we can call that function directly:
1da177e4 2991 */
37e117c0 2992 if (likely(prev->sched_class == class &&
38033c37 2993 rq->nr_running == rq->cfs.h_nr_running)) {
606dba2e 2994 p = fair_sched_class.pick_next_task(rq, prev);
6ccdc84b
PZ
2995 if (unlikely(p == RETRY_TASK))
2996 goto again;
2997
2998 /* assumes fair_sched_class->next == idle_sched_class */
2999 if (unlikely(!p))
3000 p = idle_sched_class.pick_next_task(rq, prev);
3001
3002 return p;
1da177e4
LT
3003 }
3004
37e117c0 3005again:
34f971f6 3006 for_each_class(class) {
606dba2e 3007 p = class->pick_next_task(rq, prev);
37e117c0
PZ
3008 if (p) {
3009 if (unlikely(p == RETRY_TASK))
3010 goto again;
dd41f596 3011 return p;
37e117c0 3012 }
dd41f596 3013 }
34f971f6
PZ
3014
3015 BUG(); /* the idle class will always have a runnable task */
dd41f596 3016}
1da177e4 3017
dd41f596 3018/*
c259e01a 3019 * __schedule() is the main scheduler function.
edde96ea
PE
3020 *
3021 * The main means of driving the scheduler and thus entering this function are:
3022 *
3023 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3024 *
3025 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3026 * paths. For example, see arch/x86/entry_64.S.
3027 *
3028 * To drive preemption between tasks, the scheduler sets the flag in timer
3029 * interrupt handler scheduler_tick().
3030 *
3031 * 3. Wakeups don't really cause entry into schedule(). They add a
3032 * task to the run-queue and that's it.
3033 *
3034 * Now, if the new task added to the run-queue preempts the current
3035 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3036 * called on the nearest possible occasion:
3037 *
3038 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3039 *
3040 * - in syscall or exception context, at the next outmost
3041 * preempt_enable(). (this might be as soon as the wake_up()'s
3042 * spin_unlock()!)
3043 *
3044 * - in IRQ context, return from interrupt-handler to
3045 * preemptible context
3046 *
3047 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3048 * then at the next:
3049 *
3050 * - cond_resched() call
3051 * - explicit schedule() call
3052 * - return from syscall or exception to user-space
3053 * - return from interrupt-handler to user-space
bfd9b2b5 3054 *
b30f0e3f 3055 * WARNING: must be called with preemption disabled!
dd41f596 3056 */
c259e01a 3057static void __sched __schedule(void)
dd41f596
IM
3058{
3059 struct task_struct *prev, *next;
67ca7bde 3060 unsigned long *switch_count;
dd41f596 3061 struct rq *rq;
31656519 3062 int cpu;
dd41f596 3063
dd41f596
IM
3064 cpu = smp_processor_id();
3065 rq = cpu_rq(cpu);
38200cf2 3066 rcu_note_context_switch();
dd41f596 3067 prev = rq->curr;
dd41f596 3068
dd41f596 3069 schedule_debug(prev);
1da177e4 3070
31656519 3071 if (sched_feat(HRTICK))
f333fdc9 3072 hrtick_clear(rq);
8f4d37ec 3073
e0acd0a6
ON
3074 /*
3075 * Make sure that signal_pending_state()->signal_pending() below
3076 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3077 * done by the caller to avoid the race with signal_wake_up().
3078 */
3079 smp_mb__before_spinlock();
05fa785c 3080 raw_spin_lock_irq(&rq->lock);
cbce1a68 3081 lockdep_pin_lock(&rq->lock);
1da177e4 3082
9edfbfed
PZ
3083 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3084
246d86b5 3085 switch_count = &prev->nivcsw;
1da177e4 3086 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 3087 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 3088 prev->state = TASK_RUNNING;
21aa9af0 3089 } else {
2acca55e
PZ
3090 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3091 prev->on_rq = 0;
3092
21aa9af0 3093 /*
2acca55e
PZ
3094 * If a worker went to sleep, notify and ask workqueue
3095 * whether it wants to wake up a task to maintain
3096 * concurrency.
21aa9af0
TH
3097 */
3098 if (prev->flags & PF_WQ_WORKER) {
3099 struct task_struct *to_wakeup;
3100
3101 to_wakeup = wq_worker_sleeping(prev, cpu);
3102 if (to_wakeup)
3103 try_to_wake_up_local(to_wakeup);
3104 }
21aa9af0 3105 }
dd41f596 3106 switch_count = &prev->nvcsw;
1da177e4
LT
3107 }
3108
9edfbfed 3109 if (task_on_rq_queued(prev))
606dba2e
PZ
3110 update_rq_clock(rq);
3111
3112 next = pick_next_task(rq, prev);
f26f9aff 3113 clear_tsk_need_resched(prev);
f27dde8d 3114 clear_preempt_need_resched();
9edfbfed 3115 rq->clock_skip_update = 0;
1da177e4 3116
1da177e4 3117 if (likely(prev != next)) {
1da177e4
LT
3118 rq->nr_switches++;
3119 rq->curr = next;
3120 ++*switch_count;
3121
dfa50b60
ON
3122 rq = context_switch(rq, prev, next); /* unlocks the rq */
3123 cpu = cpu_of(rq);
cbce1a68
PZ
3124 } else {
3125 lockdep_unpin_lock(&rq->lock);
05fa785c 3126 raw_spin_unlock_irq(&rq->lock);
cbce1a68 3127 }
1da177e4 3128
e3fca9e7 3129 balance_callback(rq);
1da177e4 3130}
c259e01a 3131
9c40cef2
TG
3132static inline void sched_submit_work(struct task_struct *tsk)
3133{
3c7d5184 3134 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
3135 return;
3136 /*
3137 * If we are going to sleep and we have plugged IO queued,
3138 * make sure to submit it to avoid deadlocks.
3139 */
3140 if (blk_needs_flush_plug(tsk))
3141 blk_schedule_flush_plug(tsk);
3142}
3143
722a9f92 3144asmlinkage __visible void __sched schedule(void)
c259e01a 3145{
9c40cef2
TG
3146 struct task_struct *tsk = current;
3147
3148 sched_submit_work(tsk);
bfd9b2b5 3149 do {
b30f0e3f 3150 preempt_disable();
bfd9b2b5 3151 __schedule();
b30f0e3f 3152 sched_preempt_enable_no_resched();
bfd9b2b5 3153 } while (need_resched());
c259e01a 3154}
1da177e4
LT
3155EXPORT_SYMBOL(schedule);
3156
91d1aa43 3157#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 3158asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
3159{
3160 /*
3161 * If we come here after a random call to set_need_resched(),
3162 * or we have been woken up remotely but the IPI has not yet arrived,
3163 * we haven't yet exited the RCU idle mode. Do it here manually until
3164 * we find a better solution.
7cc78f8f
AL
3165 *
3166 * NB: There are buggy callers of this function. Ideally we
c467ea76 3167 * should warn if prev_state != CONTEXT_USER, but that will trigger
7cc78f8f 3168 * too frequently to make sense yet.
20ab65e3 3169 */
7cc78f8f 3170 enum ctx_state prev_state = exception_enter();
20ab65e3 3171 schedule();
7cc78f8f 3172 exception_exit(prev_state);
20ab65e3
FW
3173}
3174#endif
3175
c5491ea7
TG
3176/**
3177 * schedule_preempt_disabled - called with preemption disabled
3178 *
3179 * Returns with preemption disabled. Note: preempt_count must be 1
3180 */
3181void __sched schedule_preempt_disabled(void)
3182{
ba74c144 3183 sched_preempt_enable_no_resched();
c5491ea7
TG
3184 schedule();
3185 preempt_disable();
3186}
3187
06b1f808 3188static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
3189{
3190 do {
b30f0e3f 3191 preempt_active_enter();
a18b5d01 3192 __schedule();
b30f0e3f 3193 preempt_active_exit();
a18b5d01
FW
3194
3195 /*
3196 * Check again in case we missed a preemption opportunity
3197 * between schedule and now.
3198 */
a18b5d01
FW
3199 } while (need_resched());
3200}
3201
1da177e4
LT
3202#ifdef CONFIG_PREEMPT
3203/*
2ed6e34f 3204 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3205 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3206 * occur there and call schedule directly.
3207 */
722a9f92 3208asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 3209{
1da177e4
LT
3210 /*
3211 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3212 * we do not want to preempt the current task. Just return..
1da177e4 3213 */
fbb00b56 3214 if (likely(!preemptible()))
1da177e4
LT
3215 return;
3216
a18b5d01 3217 preempt_schedule_common();
1da177e4 3218}
376e2424 3219NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 3220EXPORT_SYMBOL(preempt_schedule);
009f60e2 3221
009f60e2 3222/**
4eaca0a8 3223 * preempt_schedule_notrace - preempt_schedule called by tracing
009f60e2
ON
3224 *
3225 * The tracing infrastructure uses preempt_enable_notrace to prevent
3226 * recursion and tracing preempt enabling caused by the tracing
3227 * infrastructure itself. But as tracing can happen in areas coming
3228 * from userspace or just about to enter userspace, a preempt enable
3229 * can occur before user_exit() is called. This will cause the scheduler
3230 * to be called when the system is still in usermode.
3231 *
3232 * To prevent this, the preempt_enable_notrace will use this function
3233 * instead of preempt_schedule() to exit user context if needed before
3234 * calling the scheduler.
3235 */
4eaca0a8 3236asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
009f60e2
ON
3237{
3238 enum ctx_state prev_ctx;
3239
3240 if (likely(!preemptible()))
3241 return;
3242
3243 do {
be690035
FW
3244 /*
3245 * Use raw __prempt_count() ops that don't call function.
3246 * We can't call functions before disabling preemption which
3247 * disarm preemption tracing recursions.
3248 */
3249 __preempt_count_add(PREEMPT_ACTIVE + PREEMPT_DISABLE_OFFSET);
3250 barrier();
009f60e2
ON
3251 /*
3252 * Needs preempt disabled in case user_exit() is traced
3253 * and the tracer calls preempt_enable_notrace() causing
3254 * an infinite recursion.
3255 */
3256 prev_ctx = exception_enter();
3257 __schedule();
3258 exception_exit(prev_ctx);
3259
009f60e2 3260 barrier();
be690035 3261 __preempt_count_sub(PREEMPT_ACTIVE + PREEMPT_DISABLE_OFFSET);
009f60e2
ON
3262 } while (need_resched());
3263}
4eaca0a8 3264EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
009f60e2 3265
32e475d7 3266#endif /* CONFIG_PREEMPT */
1da177e4
LT
3267
3268/*
2ed6e34f 3269 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3270 * off of irq context.
3271 * Note, that this is called and return with irqs disabled. This will
3272 * protect us against recursive calling from irq.
3273 */
722a9f92 3274asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 3275{
b22366cd 3276 enum ctx_state prev_state;
6478d880 3277
2ed6e34f 3278 /* Catch callers which need to be fixed */
f27dde8d 3279 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 3280
b22366cd
FW
3281 prev_state = exception_enter();
3282
3a5c359a 3283 do {
b30f0e3f 3284 preempt_active_enter();
3a5c359a 3285 local_irq_enable();
c259e01a 3286 __schedule();
3a5c359a 3287 local_irq_disable();
b30f0e3f 3288 preempt_active_exit();
5ed0cec0 3289 } while (need_resched());
b22366cd
FW
3290
3291 exception_exit(prev_state);
1da177e4
LT
3292}
3293
63859d4f 3294int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3295 void *key)
1da177e4 3296{
63859d4f 3297 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3298}
1da177e4
LT
3299EXPORT_SYMBOL(default_wake_function);
3300
b29739f9
IM
3301#ifdef CONFIG_RT_MUTEXES
3302
3303/*
3304 * rt_mutex_setprio - set the current priority of a task
3305 * @p: task
3306 * @prio: prio value (kernel-internal form)
3307 *
3308 * This function changes the 'effective' priority of a task. It does
3309 * not touch ->normal_prio like __setscheduler().
3310 *
c365c292
TG
3311 * Used by the rt_mutex code to implement priority inheritance
3312 * logic. Call site only calls if the priority of the task changed.
b29739f9 3313 */
36c8b586 3314void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3315{
da0c1e65 3316 int oldprio, queued, running, enqueue_flag = 0;
70b97a7f 3317 struct rq *rq;
83ab0aa0 3318 const struct sched_class *prev_class;
b29739f9 3319
aab03e05 3320 BUG_ON(prio > MAX_PRIO);
b29739f9 3321
0122ec5b 3322 rq = __task_rq_lock(p);
b29739f9 3323
1c4dd99b
TG
3324 /*
3325 * Idle task boosting is a nono in general. There is one
3326 * exception, when PREEMPT_RT and NOHZ is active:
3327 *
3328 * The idle task calls get_next_timer_interrupt() and holds
3329 * the timer wheel base->lock on the CPU and another CPU wants
3330 * to access the timer (probably to cancel it). We can safely
3331 * ignore the boosting request, as the idle CPU runs this code
3332 * with interrupts disabled and will complete the lock
3333 * protected section without being interrupted. So there is no
3334 * real need to boost.
3335 */
3336 if (unlikely(p == rq->idle)) {
3337 WARN_ON(p != rq->curr);
3338 WARN_ON(p->pi_blocked_on);
3339 goto out_unlock;
3340 }
3341
a8027073 3342 trace_sched_pi_setprio(p, prio);
d5f9f942 3343 oldprio = p->prio;
83ab0aa0 3344 prev_class = p->sched_class;
da0c1e65 3345 queued = task_on_rq_queued(p);
051a1d1a 3346 running = task_current(rq, p);
da0c1e65 3347 if (queued)
69be72c1 3348 dequeue_task(rq, p, 0);
0e1f3483 3349 if (running)
f3cd1c4e 3350 put_prev_task(rq, p);
dd41f596 3351
2d3d891d
DF
3352 /*
3353 * Boosting condition are:
3354 * 1. -rt task is running and holds mutex A
3355 * --> -dl task blocks on mutex A
3356 *
3357 * 2. -dl task is running and holds mutex A
3358 * --> -dl task blocks on mutex A and could preempt the
3359 * running task
3360 */
3361 if (dl_prio(prio)) {
466af29b
ON
3362 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3363 if (!dl_prio(p->normal_prio) ||
3364 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d 3365 p->dl.dl_boosted = 1;
2d3d891d
DF
3366 enqueue_flag = ENQUEUE_REPLENISH;
3367 } else
3368 p->dl.dl_boosted = 0;
aab03e05 3369 p->sched_class = &dl_sched_class;
2d3d891d
DF
3370 } else if (rt_prio(prio)) {
3371 if (dl_prio(oldprio))
3372 p->dl.dl_boosted = 0;
3373 if (oldprio < prio)
3374 enqueue_flag = ENQUEUE_HEAD;
dd41f596 3375 p->sched_class = &rt_sched_class;
2d3d891d
DF
3376 } else {
3377 if (dl_prio(oldprio))
3378 p->dl.dl_boosted = 0;
746db944
BS
3379 if (rt_prio(oldprio))
3380 p->rt.timeout = 0;
dd41f596 3381 p->sched_class = &fair_sched_class;
2d3d891d 3382 }
dd41f596 3383
b29739f9
IM
3384 p->prio = prio;
3385
0e1f3483
HS
3386 if (running)
3387 p->sched_class->set_curr_task(rq);
da0c1e65 3388 if (queued)
2d3d891d 3389 enqueue_task(rq, p, enqueue_flag);
cb469845 3390
da7a735e 3391 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3392out_unlock:
4c9a4bc8 3393 preempt_disable(); /* avoid rq from going away on us */
0122ec5b 3394 __task_rq_unlock(rq);
4c9a4bc8
PZ
3395
3396 balance_callback(rq);
3397 preempt_enable();
b29739f9 3398}
b29739f9 3399#endif
d50dde5a 3400
36c8b586 3401void set_user_nice(struct task_struct *p, long nice)
1da177e4 3402{
da0c1e65 3403 int old_prio, delta, queued;
1da177e4 3404 unsigned long flags;
70b97a7f 3405 struct rq *rq;
1da177e4 3406
75e45d51 3407 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
3408 return;
3409 /*
3410 * We have to be careful, if called from sys_setpriority(),
3411 * the task might be in the middle of scheduling on another CPU.
3412 */
3413 rq = task_rq_lock(p, &flags);
3414 /*
3415 * The RT priorities are set via sched_setscheduler(), but we still
3416 * allow the 'normal' nice value to be set - but as expected
3417 * it wont have any effect on scheduling until the task is
aab03e05 3418 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3419 */
aab03e05 3420 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3421 p->static_prio = NICE_TO_PRIO(nice);
3422 goto out_unlock;
3423 }
da0c1e65
KT
3424 queued = task_on_rq_queued(p);
3425 if (queued)
69be72c1 3426 dequeue_task(rq, p, 0);
1da177e4 3427
1da177e4 3428 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3429 set_load_weight(p);
b29739f9
IM
3430 old_prio = p->prio;
3431 p->prio = effective_prio(p);
3432 delta = p->prio - old_prio;
1da177e4 3433
da0c1e65 3434 if (queued) {
371fd7e7 3435 enqueue_task(rq, p, 0);
1da177e4 3436 /*
d5f9f942
AM
3437 * If the task increased its priority or is running and
3438 * lowered its priority, then reschedule its CPU:
1da177e4 3439 */
d5f9f942 3440 if (delta < 0 || (delta > 0 && task_running(rq, p)))
8875125e 3441 resched_curr(rq);
1da177e4
LT
3442 }
3443out_unlock:
0122ec5b 3444 task_rq_unlock(rq, p, &flags);
1da177e4 3445}
1da177e4
LT
3446EXPORT_SYMBOL(set_user_nice);
3447
e43379f1
MM
3448/*
3449 * can_nice - check if a task can reduce its nice value
3450 * @p: task
3451 * @nice: nice value
3452 */
36c8b586 3453int can_nice(const struct task_struct *p, const int nice)
e43379f1 3454{
024f4747 3455 /* convert nice value [19,-20] to rlimit style value [1,40] */
7aa2c016 3456 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 3457
78d7d407 3458 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3459 capable(CAP_SYS_NICE));
3460}
3461
1da177e4
LT
3462#ifdef __ARCH_WANT_SYS_NICE
3463
3464/*
3465 * sys_nice - change the priority of the current process.
3466 * @increment: priority increment
3467 *
3468 * sys_setpriority is a more generic, but much slower function that
3469 * does similar things.
3470 */
5add95d4 3471SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3472{
48f24c4d 3473 long nice, retval;
1da177e4
LT
3474
3475 /*
3476 * Setpriority might change our priority at the same moment.
3477 * We don't have to worry. Conceptually one call occurs first
3478 * and we have a single winner.
3479 */
a9467fa3 3480 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 3481 nice = task_nice(current) + increment;
1da177e4 3482
a9467fa3 3483 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
3484 if (increment < 0 && !can_nice(current, nice))
3485 return -EPERM;
3486
1da177e4
LT
3487 retval = security_task_setnice(current, nice);
3488 if (retval)
3489 return retval;
3490
3491 set_user_nice(current, nice);
3492 return 0;
3493}
3494
3495#endif
3496
3497/**
3498 * task_prio - return the priority value of a given task.
3499 * @p: the task in question.
3500 *
e69f6186 3501 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3502 * RT tasks are offset by -200. Normal tasks are centered
3503 * around 0, value goes from -16 to +15.
3504 */
36c8b586 3505int task_prio(const struct task_struct *p)
1da177e4
LT
3506{
3507 return p->prio - MAX_RT_PRIO;
3508}
3509
1da177e4
LT
3510/**
3511 * idle_cpu - is a given cpu idle currently?
3512 * @cpu: the processor in question.
e69f6186
YB
3513 *
3514 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3515 */
3516int idle_cpu(int cpu)
3517{
908a3283
TG
3518 struct rq *rq = cpu_rq(cpu);
3519
3520 if (rq->curr != rq->idle)
3521 return 0;
3522
3523 if (rq->nr_running)
3524 return 0;
3525
3526#ifdef CONFIG_SMP
3527 if (!llist_empty(&rq->wake_list))
3528 return 0;
3529#endif
3530
3531 return 1;
1da177e4
LT
3532}
3533
1da177e4
LT
3534/**
3535 * idle_task - return the idle task for a given cpu.
3536 * @cpu: the processor in question.
e69f6186
YB
3537 *
3538 * Return: The idle task for the cpu @cpu.
1da177e4 3539 */
36c8b586 3540struct task_struct *idle_task(int cpu)
1da177e4
LT
3541{
3542 return cpu_rq(cpu)->idle;
3543}
3544
3545/**
3546 * find_process_by_pid - find a process with a matching PID value.
3547 * @pid: the pid in question.
e69f6186
YB
3548 *
3549 * The task of @pid, if found. %NULL otherwise.
1da177e4 3550 */
a9957449 3551static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3552{
228ebcbe 3553 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3554}
3555
aab03e05
DF
3556/*
3557 * This function initializes the sched_dl_entity of a newly becoming
3558 * SCHED_DEADLINE task.
3559 *
3560 * Only the static values are considered here, the actual runtime and the
3561 * absolute deadline will be properly calculated when the task is enqueued
3562 * for the first time with its new policy.
3563 */
3564static void
3565__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3566{
3567 struct sched_dl_entity *dl_se = &p->dl;
3568
aab03e05
DF
3569 dl_se->dl_runtime = attr->sched_runtime;
3570 dl_se->dl_deadline = attr->sched_deadline;
755378a4 3571 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 3572 dl_se->flags = attr->sched_flags;
332ac17e 3573 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
40767b0d
PZ
3574
3575 /*
3576 * Changing the parameters of a task is 'tricky' and we're not doing
3577 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3578 *
3579 * What we SHOULD do is delay the bandwidth release until the 0-lag
3580 * point. This would include retaining the task_struct until that time
3581 * and change dl_overflow() to not immediately decrement the current
3582 * amount.
3583 *
3584 * Instead we retain the current runtime/deadline and let the new
3585 * parameters take effect after the current reservation period lapses.
3586 * This is safe (albeit pessimistic) because the 0-lag point is always
3587 * before the current scheduling deadline.
3588 *
3589 * We can still have temporary overloads because we do not delay the
3590 * change in bandwidth until that time; so admission control is
3591 * not on the safe side. It does however guarantee tasks will never
3592 * consume more than promised.
3593 */
aab03e05
DF
3594}
3595
c13db6b1
SR
3596/*
3597 * sched_setparam() passes in -1 for its policy, to let the functions
3598 * it calls know not to change it.
3599 */
3600#define SETPARAM_POLICY -1
3601
c365c292
TG
3602static void __setscheduler_params(struct task_struct *p,
3603 const struct sched_attr *attr)
1da177e4 3604{
d50dde5a
DF
3605 int policy = attr->sched_policy;
3606
c13db6b1 3607 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
3608 policy = p->policy;
3609
1da177e4 3610 p->policy = policy;
d50dde5a 3611
aab03e05
DF
3612 if (dl_policy(policy))
3613 __setparam_dl(p, attr);
39fd8fd2 3614 else if (fair_policy(policy))
d50dde5a
DF
3615 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3616
39fd8fd2
PZ
3617 /*
3618 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3619 * !rt_policy. Always setting this ensures that things like
3620 * getparam()/getattr() don't report silly values for !rt tasks.
3621 */
3622 p->rt_priority = attr->sched_priority;
383afd09 3623 p->normal_prio = normal_prio(p);
c365c292
TG
3624 set_load_weight(p);
3625}
39fd8fd2 3626
c365c292
TG
3627/* Actually do priority change: must hold pi & rq lock. */
3628static void __setscheduler(struct rq *rq, struct task_struct *p,
0782e63b 3629 const struct sched_attr *attr, bool keep_boost)
c365c292
TG
3630{
3631 __setscheduler_params(p, attr);
d50dde5a 3632
383afd09 3633 /*
0782e63b
TG
3634 * Keep a potential priority boosting if called from
3635 * sched_setscheduler().
383afd09 3636 */
0782e63b
TG
3637 if (keep_boost)
3638 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3639 else
3640 p->prio = normal_prio(p);
383afd09 3641
aab03e05
DF
3642 if (dl_prio(p->prio))
3643 p->sched_class = &dl_sched_class;
3644 else if (rt_prio(p->prio))
ffd44db5
PZ
3645 p->sched_class = &rt_sched_class;
3646 else
3647 p->sched_class = &fair_sched_class;
1da177e4 3648}
aab03e05
DF
3649
3650static void
3651__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3652{
3653 struct sched_dl_entity *dl_se = &p->dl;
3654
3655 attr->sched_priority = p->rt_priority;
3656 attr->sched_runtime = dl_se->dl_runtime;
3657 attr->sched_deadline = dl_se->dl_deadline;
755378a4 3658 attr->sched_period = dl_se->dl_period;
aab03e05
DF
3659 attr->sched_flags = dl_se->flags;
3660}
3661
3662/*
3663 * This function validates the new parameters of a -deadline task.
3664 * We ask for the deadline not being zero, and greater or equal
755378a4 3665 * than the runtime, as well as the period of being zero or
332ac17e 3666 * greater than deadline. Furthermore, we have to be sure that
b0827819
JL
3667 * user parameters are above the internal resolution of 1us (we
3668 * check sched_runtime only since it is always the smaller one) and
3669 * below 2^63 ns (we have to check both sched_deadline and
3670 * sched_period, as the latter can be zero).
aab03e05
DF
3671 */
3672static bool
3673__checkparam_dl(const struct sched_attr *attr)
3674{
b0827819
JL
3675 /* deadline != 0 */
3676 if (attr->sched_deadline == 0)
3677 return false;
3678
3679 /*
3680 * Since we truncate DL_SCALE bits, make sure we're at least
3681 * that big.
3682 */
3683 if (attr->sched_runtime < (1ULL << DL_SCALE))
3684 return false;
3685
3686 /*
3687 * Since we use the MSB for wrap-around and sign issues, make
3688 * sure it's not set (mind that period can be equal to zero).
3689 */
3690 if (attr->sched_deadline & (1ULL << 63) ||
3691 attr->sched_period & (1ULL << 63))
3692 return false;
3693
3694 /* runtime <= deadline <= period (if period != 0) */
3695 if ((attr->sched_period != 0 &&
3696 attr->sched_period < attr->sched_deadline) ||
3697 attr->sched_deadline < attr->sched_runtime)
3698 return false;
3699
3700 return true;
aab03e05
DF
3701}
3702
c69e8d9c
DH
3703/*
3704 * check the target process has a UID that matches the current process's
3705 */
3706static bool check_same_owner(struct task_struct *p)
3707{
3708 const struct cred *cred = current_cred(), *pcred;
3709 bool match;
3710
3711 rcu_read_lock();
3712 pcred = __task_cred(p);
9c806aa0
EB
3713 match = (uid_eq(cred->euid, pcred->euid) ||
3714 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3715 rcu_read_unlock();
3716 return match;
3717}
3718
75381608
WL
3719static bool dl_param_changed(struct task_struct *p,
3720 const struct sched_attr *attr)
3721{
3722 struct sched_dl_entity *dl_se = &p->dl;
3723
3724 if (dl_se->dl_runtime != attr->sched_runtime ||
3725 dl_se->dl_deadline != attr->sched_deadline ||
3726 dl_se->dl_period != attr->sched_period ||
3727 dl_se->flags != attr->sched_flags)
3728 return true;
3729
3730 return false;
3731}
3732
d50dde5a
DF
3733static int __sched_setscheduler(struct task_struct *p,
3734 const struct sched_attr *attr,
dbc7f069 3735 bool user, bool pi)
1da177e4 3736{
383afd09
SR
3737 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3738 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 3739 int retval, oldprio, oldpolicy = -1, queued, running;
0782e63b 3740 int new_effective_prio, policy = attr->sched_policy;
1da177e4 3741 unsigned long flags;
83ab0aa0 3742 const struct sched_class *prev_class;
70b97a7f 3743 struct rq *rq;
ca94c442 3744 int reset_on_fork;
1da177e4 3745
66e5393a
SR
3746 /* may grab non-irq protected spin_locks */
3747 BUG_ON(in_interrupt());
1da177e4
LT
3748recheck:
3749 /* double check policy once rq lock held */
ca94c442
LP
3750 if (policy < 0) {
3751 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3752 policy = oldpolicy = p->policy;
ca94c442 3753 } else {
7479f3c9 3754 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 3755
aab03e05
DF
3756 if (policy != SCHED_DEADLINE &&
3757 policy != SCHED_FIFO && policy != SCHED_RR &&
ca94c442
LP
3758 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3759 policy != SCHED_IDLE)
3760 return -EINVAL;
3761 }
3762
7479f3c9
PZ
3763 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3764 return -EINVAL;
3765
1da177e4
LT
3766 /*
3767 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3768 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3769 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 3770 */
0bb040a4 3771 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 3772 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 3773 return -EINVAL;
aab03e05
DF
3774 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3775 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
3776 return -EINVAL;
3777
37e4ab3f
OC
3778 /*
3779 * Allow unprivileged RT tasks to decrease priority:
3780 */
961ccddd 3781 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 3782 if (fair_policy(policy)) {
d0ea0268 3783 if (attr->sched_nice < task_nice(p) &&
eaad4513 3784 !can_nice(p, attr->sched_nice))
d50dde5a
DF
3785 return -EPERM;
3786 }
3787
e05606d3 3788 if (rt_policy(policy)) {
a44702e8
ON
3789 unsigned long rlim_rtprio =
3790 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3791
3792 /* can't set/change the rt policy */
3793 if (policy != p->policy && !rlim_rtprio)
3794 return -EPERM;
3795
3796 /* can't increase priority */
d50dde5a
DF
3797 if (attr->sched_priority > p->rt_priority &&
3798 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
3799 return -EPERM;
3800 }
c02aa73b 3801
d44753b8
JL
3802 /*
3803 * Can't set/change SCHED_DEADLINE policy at all for now
3804 * (safest behavior); in the future we would like to allow
3805 * unprivileged DL tasks to increase their relative deadline
3806 * or reduce their runtime (both ways reducing utilization)
3807 */
3808 if (dl_policy(policy))
3809 return -EPERM;
3810
dd41f596 3811 /*
c02aa73b
DH
3812 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3813 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3814 */
c02aa73b 3815 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
d0ea0268 3816 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
3817 return -EPERM;
3818 }
5fe1d75f 3819
37e4ab3f 3820 /* can't change other user's priorities */
c69e8d9c 3821 if (!check_same_owner(p))
37e4ab3f 3822 return -EPERM;
ca94c442
LP
3823
3824 /* Normal users shall not reset the sched_reset_on_fork flag */
3825 if (p->sched_reset_on_fork && !reset_on_fork)
3826 return -EPERM;
37e4ab3f 3827 }
1da177e4 3828
725aad24 3829 if (user) {
b0ae1981 3830 retval = security_task_setscheduler(p);
725aad24
JF
3831 if (retval)
3832 return retval;
3833 }
3834
b29739f9
IM
3835 /*
3836 * make sure no PI-waiters arrive (or leave) while we are
3837 * changing the priority of the task:
0122ec5b 3838 *
25985edc 3839 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3840 * runqueue lock must be held.
3841 */
0122ec5b 3842 rq = task_rq_lock(p, &flags);
dc61b1d6 3843
34f971f6
PZ
3844 /*
3845 * Changing the policy of the stop threads its a very bad idea
3846 */
3847 if (p == rq->stop) {
0122ec5b 3848 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3849 return -EINVAL;
3850 }
3851
a51e9198 3852 /*
d6b1e911
TG
3853 * If not changing anything there's no need to proceed further,
3854 * but store a possible modification of reset_on_fork.
a51e9198 3855 */
d50dde5a 3856 if (unlikely(policy == p->policy)) {
d0ea0268 3857 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
3858 goto change;
3859 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3860 goto change;
75381608 3861 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 3862 goto change;
d50dde5a 3863
d6b1e911 3864 p->sched_reset_on_fork = reset_on_fork;
45afb173 3865 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3866 return 0;
3867 }
d50dde5a 3868change:
a51e9198 3869
dc61b1d6 3870 if (user) {
332ac17e 3871#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
3872 /*
3873 * Do not allow realtime tasks into groups that have no runtime
3874 * assigned.
3875 */
3876 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3877 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3878 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3879 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3880 return -EPERM;
3881 }
dc61b1d6 3882#endif
332ac17e
DF
3883#ifdef CONFIG_SMP
3884 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3885 cpumask_t *span = rq->rd->span;
332ac17e
DF
3886
3887 /*
3888 * Don't allow tasks with an affinity mask smaller than
3889 * the entire root_domain to become SCHED_DEADLINE. We
3890 * will also fail if there's no bandwidth available.
3891 */
e4099a5e
PZ
3892 if (!cpumask_subset(span, &p->cpus_allowed) ||
3893 rq->rd->dl_bw.bw == 0) {
332ac17e
DF
3894 task_rq_unlock(rq, p, &flags);
3895 return -EPERM;
3896 }
3897 }
3898#endif
3899 }
dc61b1d6 3900
1da177e4
LT
3901 /* recheck policy now with rq lock held */
3902 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3903 policy = oldpolicy = -1;
0122ec5b 3904 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3905 goto recheck;
3906 }
332ac17e
DF
3907
3908 /*
3909 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3910 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3911 * is available.
3912 */
e4099a5e 3913 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
332ac17e
DF
3914 task_rq_unlock(rq, p, &flags);
3915 return -EBUSY;
3916 }
3917
c365c292
TG
3918 p->sched_reset_on_fork = reset_on_fork;
3919 oldprio = p->prio;
3920
dbc7f069
PZ
3921 if (pi) {
3922 /*
3923 * Take priority boosted tasks into account. If the new
3924 * effective priority is unchanged, we just store the new
3925 * normal parameters and do not touch the scheduler class and
3926 * the runqueue. This will be done when the task deboost
3927 * itself.
3928 */
3929 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
3930 if (new_effective_prio == oldprio) {
3931 __setscheduler_params(p, attr);
3932 task_rq_unlock(rq, p, &flags);
3933 return 0;
3934 }
c365c292
TG
3935 }
3936
da0c1e65 3937 queued = task_on_rq_queued(p);
051a1d1a 3938 running = task_current(rq, p);
da0c1e65 3939 if (queued)
4ca9b72b 3940 dequeue_task(rq, p, 0);
0e1f3483 3941 if (running)
f3cd1c4e 3942 put_prev_task(rq, p);
f6b53205 3943
83ab0aa0 3944 prev_class = p->sched_class;
dbc7f069 3945 __setscheduler(rq, p, attr, pi);
f6b53205 3946
0e1f3483
HS
3947 if (running)
3948 p->sched_class->set_curr_task(rq);
da0c1e65 3949 if (queued) {
81a44c54
TG
3950 /*
3951 * We enqueue to tail when the priority of a task is
3952 * increased (user space view).
3953 */
3954 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3955 }
cb469845 3956
da7a735e 3957 check_class_changed(rq, p, prev_class, oldprio);
4c9a4bc8 3958 preempt_disable(); /* avoid rq from going away on us */
0122ec5b 3959 task_rq_unlock(rq, p, &flags);
b29739f9 3960
dbc7f069
PZ
3961 if (pi)
3962 rt_mutex_adjust_pi(p);
95e02ca9 3963
4c9a4bc8
PZ
3964 /*
3965 * Run balance callbacks after we've adjusted the PI chain.
3966 */
3967 balance_callback(rq);
3968 preempt_enable();
95e02ca9 3969
1da177e4
LT
3970 return 0;
3971}
961ccddd 3972
7479f3c9
PZ
3973static int _sched_setscheduler(struct task_struct *p, int policy,
3974 const struct sched_param *param, bool check)
3975{
3976 struct sched_attr attr = {
3977 .sched_policy = policy,
3978 .sched_priority = param->sched_priority,
3979 .sched_nice = PRIO_TO_NICE(p->static_prio),
3980 };
3981
c13db6b1
SR
3982 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
3983 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
3984 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3985 policy &= ~SCHED_RESET_ON_FORK;
3986 attr.sched_policy = policy;
3987 }
3988
dbc7f069 3989 return __sched_setscheduler(p, &attr, check, true);
7479f3c9 3990}
961ccddd
RR
3991/**
3992 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3993 * @p: the task in question.
3994 * @policy: new policy.
3995 * @param: structure containing the new RT priority.
3996 *
e69f6186
YB
3997 * Return: 0 on success. An error code otherwise.
3998 *
961ccddd
RR
3999 * NOTE that the task may be already dead.
4000 */
4001int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4002 const struct sched_param *param)
961ccddd 4003{
7479f3c9 4004 return _sched_setscheduler(p, policy, param, true);
961ccddd 4005}
1da177e4
LT
4006EXPORT_SYMBOL_GPL(sched_setscheduler);
4007
d50dde5a
DF
4008int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4009{
dbc7f069 4010 return __sched_setscheduler(p, attr, true, true);
d50dde5a
DF
4011}
4012EXPORT_SYMBOL_GPL(sched_setattr);
4013
961ccddd
RR
4014/**
4015 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4016 * @p: the task in question.
4017 * @policy: new policy.
4018 * @param: structure containing the new RT priority.
4019 *
4020 * Just like sched_setscheduler, only don't bother checking if the
4021 * current context has permission. For example, this is needed in
4022 * stop_machine(): we create temporary high priority worker threads,
4023 * but our caller might not have that capability.
e69f6186
YB
4024 *
4025 * Return: 0 on success. An error code otherwise.
961ccddd
RR
4026 */
4027int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 4028 const struct sched_param *param)
961ccddd 4029{
7479f3c9 4030 return _sched_setscheduler(p, policy, param, false);
961ccddd
RR
4031}
4032
95cdf3b7
IM
4033static int
4034do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4035{
1da177e4
LT
4036 struct sched_param lparam;
4037 struct task_struct *p;
36c8b586 4038 int retval;
1da177e4
LT
4039
4040 if (!param || pid < 0)
4041 return -EINVAL;
4042 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4043 return -EFAULT;
5fe1d75f
ON
4044
4045 rcu_read_lock();
4046 retval = -ESRCH;
1da177e4 4047 p = find_process_by_pid(pid);
5fe1d75f
ON
4048 if (p != NULL)
4049 retval = sched_setscheduler(p, policy, &lparam);
4050 rcu_read_unlock();
36c8b586 4051
1da177e4
LT
4052 return retval;
4053}
4054
d50dde5a
DF
4055/*
4056 * Mimics kernel/events/core.c perf_copy_attr().
4057 */
4058static int sched_copy_attr(struct sched_attr __user *uattr,
4059 struct sched_attr *attr)
4060{
4061 u32 size;
4062 int ret;
4063
4064 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4065 return -EFAULT;
4066
4067 /*
4068 * zero the full structure, so that a short copy will be nice.
4069 */
4070 memset(attr, 0, sizeof(*attr));
4071
4072 ret = get_user(size, &uattr->size);
4073 if (ret)
4074 return ret;
4075
4076 if (size > PAGE_SIZE) /* silly large */
4077 goto err_size;
4078
4079 if (!size) /* abi compat */
4080 size = SCHED_ATTR_SIZE_VER0;
4081
4082 if (size < SCHED_ATTR_SIZE_VER0)
4083 goto err_size;
4084
4085 /*
4086 * If we're handed a bigger struct than we know of,
4087 * ensure all the unknown bits are 0 - i.e. new
4088 * user-space does not rely on any kernel feature
4089 * extensions we dont know about yet.
4090 */
4091 if (size > sizeof(*attr)) {
4092 unsigned char __user *addr;
4093 unsigned char __user *end;
4094 unsigned char val;
4095
4096 addr = (void __user *)uattr + sizeof(*attr);
4097 end = (void __user *)uattr + size;
4098
4099 for (; addr < end; addr++) {
4100 ret = get_user(val, addr);
4101 if (ret)
4102 return ret;
4103 if (val)
4104 goto err_size;
4105 }
4106 size = sizeof(*attr);
4107 }
4108
4109 ret = copy_from_user(attr, uattr, size);
4110 if (ret)
4111 return -EFAULT;
4112
4113 /*
4114 * XXX: do we want to be lenient like existing syscalls; or do we want
4115 * to be strict and return an error on out-of-bounds values?
4116 */
75e45d51 4117 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 4118
e78c7bca 4119 return 0;
d50dde5a
DF
4120
4121err_size:
4122 put_user(sizeof(*attr), &uattr->size);
e78c7bca 4123 return -E2BIG;
d50dde5a
DF
4124}
4125
1da177e4
LT
4126/**
4127 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4128 * @pid: the pid in question.
4129 * @policy: new policy.
4130 * @param: structure containing the new RT priority.
e69f6186
YB
4131 *
4132 * Return: 0 on success. An error code otherwise.
1da177e4 4133 */
5add95d4
HC
4134SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4135 struct sched_param __user *, param)
1da177e4 4136{
c21761f1
JB
4137 /* negative values for policy are not valid */
4138 if (policy < 0)
4139 return -EINVAL;
4140
1da177e4
LT
4141 return do_sched_setscheduler(pid, policy, param);
4142}
4143
4144/**
4145 * sys_sched_setparam - set/change the RT priority of a thread
4146 * @pid: the pid in question.
4147 * @param: structure containing the new RT priority.
e69f6186
YB
4148 *
4149 * Return: 0 on success. An error code otherwise.
1da177e4 4150 */
5add95d4 4151SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4152{
c13db6b1 4153 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
4154}
4155
d50dde5a
DF
4156/**
4157 * sys_sched_setattr - same as above, but with extended sched_attr
4158 * @pid: the pid in question.
5778fccf 4159 * @uattr: structure containing the extended parameters.
db66d756 4160 * @flags: for future extension.
d50dde5a 4161 */
6d35ab48
PZ
4162SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4163 unsigned int, flags)
d50dde5a
DF
4164{
4165 struct sched_attr attr;
4166 struct task_struct *p;
4167 int retval;
4168
6d35ab48 4169 if (!uattr || pid < 0 || flags)
d50dde5a
DF
4170 return -EINVAL;
4171
143cf23d
MK
4172 retval = sched_copy_attr(uattr, &attr);
4173 if (retval)
4174 return retval;
d50dde5a 4175
b14ed2c2 4176 if ((int)attr.sched_policy < 0)
dbdb2275 4177 return -EINVAL;
d50dde5a
DF
4178
4179 rcu_read_lock();
4180 retval = -ESRCH;
4181 p = find_process_by_pid(pid);
4182 if (p != NULL)
4183 retval = sched_setattr(p, &attr);
4184 rcu_read_unlock();
4185
4186 return retval;
4187}
4188
1da177e4
LT
4189/**
4190 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4191 * @pid: the pid in question.
e69f6186
YB
4192 *
4193 * Return: On success, the policy of the thread. Otherwise, a negative error
4194 * code.
1da177e4 4195 */
5add95d4 4196SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4197{
36c8b586 4198 struct task_struct *p;
3a5c359a 4199 int retval;
1da177e4
LT
4200
4201 if (pid < 0)
3a5c359a 4202 return -EINVAL;
1da177e4
LT
4203
4204 retval = -ESRCH;
5fe85be0 4205 rcu_read_lock();
1da177e4
LT
4206 p = find_process_by_pid(pid);
4207 if (p) {
4208 retval = security_task_getscheduler(p);
4209 if (!retval)
ca94c442
LP
4210 retval = p->policy
4211 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4212 }
5fe85be0 4213 rcu_read_unlock();
1da177e4
LT
4214 return retval;
4215}
4216
4217/**
ca94c442 4218 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4219 * @pid: the pid in question.
4220 * @param: structure containing the RT priority.
e69f6186
YB
4221 *
4222 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4223 * code.
1da177e4 4224 */
5add95d4 4225SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4226{
ce5f7f82 4227 struct sched_param lp = { .sched_priority = 0 };
36c8b586 4228 struct task_struct *p;
3a5c359a 4229 int retval;
1da177e4
LT
4230
4231 if (!param || pid < 0)
3a5c359a 4232 return -EINVAL;
1da177e4 4233
5fe85be0 4234 rcu_read_lock();
1da177e4
LT
4235 p = find_process_by_pid(pid);
4236 retval = -ESRCH;
4237 if (!p)
4238 goto out_unlock;
4239
4240 retval = security_task_getscheduler(p);
4241 if (retval)
4242 goto out_unlock;
4243
ce5f7f82
PZ
4244 if (task_has_rt_policy(p))
4245 lp.sched_priority = p->rt_priority;
5fe85be0 4246 rcu_read_unlock();
1da177e4
LT
4247
4248 /*
4249 * This one might sleep, we cannot do it with a spinlock held ...
4250 */
4251 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4252
1da177e4
LT
4253 return retval;
4254
4255out_unlock:
5fe85be0 4256 rcu_read_unlock();
1da177e4
LT
4257 return retval;
4258}
4259
d50dde5a
DF
4260static int sched_read_attr(struct sched_attr __user *uattr,
4261 struct sched_attr *attr,
4262 unsigned int usize)
4263{
4264 int ret;
4265
4266 if (!access_ok(VERIFY_WRITE, uattr, usize))
4267 return -EFAULT;
4268
4269 /*
4270 * If we're handed a smaller struct than we know of,
4271 * ensure all the unknown bits are 0 - i.e. old
4272 * user-space does not get uncomplete information.
4273 */
4274 if (usize < sizeof(*attr)) {
4275 unsigned char *addr;
4276 unsigned char *end;
4277
4278 addr = (void *)attr + usize;
4279 end = (void *)attr + sizeof(*attr);
4280
4281 for (; addr < end; addr++) {
4282 if (*addr)
22400674 4283 return -EFBIG;
d50dde5a
DF
4284 }
4285
4286 attr->size = usize;
4287 }
4288
4efbc454 4289 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
4290 if (ret)
4291 return -EFAULT;
4292
22400674 4293 return 0;
d50dde5a
DF
4294}
4295
4296/**
aab03e05 4297 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 4298 * @pid: the pid in question.
5778fccf 4299 * @uattr: structure containing the extended parameters.
d50dde5a 4300 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 4301 * @flags: for future extension.
d50dde5a 4302 */
6d35ab48
PZ
4303SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4304 unsigned int, size, unsigned int, flags)
d50dde5a
DF
4305{
4306 struct sched_attr attr = {
4307 .size = sizeof(struct sched_attr),
4308 };
4309 struct task_struct *p;
4310 int retval;
4311
4312 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 4313 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
4314 return -EINVAL;
4315
4316 rcu_read_lock();
4317 p = find_process_by_pid(pid);
4318 retval = -ESRCH;
4319 if (!p)
4320 goto out_unlock;
4321
4322 retval = security_task_getscheduler(p);
4323 if (retval)
4324 goto out_unlock;
4325
4326 attr.sched_policy = p->policy;
7479f3c9
PZ
4327 if (p->sched_reset_on_fork)
4328 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
4329 if (task_has_dl_policy(p))
4330 __getparam_dl(p, &attr);
4331 else if (task_has_rt_policy(p))
d50dde5a
DF
4332 attr.sched_priority = p->rt_priority;
4333 else
d0ea0268 4334 attr.sched_nice = task_nice(p);
d50dde5a
DF
4335
4336 rcu_read_unlock();
4337
4338 retval = sched_read_attr(uattr, &attr, size);
4339 return retval;
4340
4341out_unlock:
4342 rcu_read_unlock();
4343 return retval;
4344}
4345
96f874e2 4346long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4347{
5a16f3d3 4348 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4349 struct task_struct *p;
4350 int retval;
1da177e4 4351
23f5d142 4352 rcu_read_lock();
1da177e4
LT
4353
4354 p = find_process_by_pid(pid);
4355 if (!p) {
23f5d142 4356 rcu_read_unlock();
1da177e4
LT
4357 return -ESRCH;
4358 }
4359
23f5d142 4360 /* Prevent p going away */
1da177e4 4361 get_task_struct(p);
23f5d142 4362 rcu_read_unlock();
1da177e4 4363
14a40ffc
TH
4364 if (p->flags & PF_NO_SETAFFINITY) {
4365 retval = -EINVAL;
4366 goto out_put_task;
4367 }
5a16f3d3
RR
4368 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4369 retval = -ENOMEM;
4370 goto out_put_task;
4371 }
4372 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4373 retval = -ENOMEM;
4374 goto out_free_cpus_allowed;
4375 }
1da177e4 4376 retval = -EPERM;
4c44aaaf
EB
4377 if (!check_same_owner(p)) {
4378 rcu_read_lock();
4379 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4380 rcu_read_unlock();
16303ab2 4381 goto out_free_new_mask;
4c44aaaf
EB
4382 }
4383 rcu_read_unlock();
4384 }
1da177e4 4385
b0ae1981 4386 retval = security_task_setscheduler(p);
e7834f8f 4387 if (retval)
16303ab2 4388 goto out_free_new_mask;
e7834f8f 4389
e4099a5e
PZ
4390
4391 cpuset_cpus_allowed(p, cpus_allowed);
4392 cpumask_and(new_mask, in_mask, cpus_allowed);
4393
332ac17e
DF
4394 /*
4395 * Since bandwidth control happens on root_domain basis,
4396 * if admission test is enabled, we only admit -deadline
4397 * tasks allowed to run on all the CPUs in the task's
4398 * root_domain.
4399 */
4400#ifdef CONFIG_SMP
f1e3a093
KT
4401 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4402 rcu_read_lock();
4403 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 4404 retval = -EBUSY;
f1e3a093 4405 rcu_read_unlock();
16303ab2 4406 goto out_free_new_mask;
332ac17e 4407 }
f1e3a093 4408 rcu_read_unlock();
332ac17e
DF
4409 }
4410#endif
49246274 4411again:
25834c73 4412 retval = __set_cpus_allowed_ptr(p, new_mask, true);
1da177e4 4413
8707d8b8 4414 if (!retval) {
5a16f3d3
RR
4415 cpuset_cpus_allowed(p, cpus_allowed);
4416 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4417 /*
4418 * We must have raced with a concurrent cpuset
4419 * update. Just reset the cpus_allowed to the
4420 * cpuset's cpus_allowed
4421 */
5a16f3d3 4422 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4423 goto again;
4424 }
4425 }
16303ab2 4426out_free_new_mask:
5a16f3d3
RR
4427 free_cpumask_var(new_mask);
4428out_free_cpus_allowed:
4429 free_cpumask_var(cpus_allowed);
4430out_put_task:
1da177e4 4431 put_task_struct(p);
1da177e4
LT
4432 return retval;
4433}
4434
4435static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4436 struct cpumask *new_mask)
1da177e4 4437{
96f874e2
RR
4438 if (len < cpumask_size())
4439 cpumask_clear(new_mask);
4440 else if (len > cpumask_size())
4441 len = cpumask_size();
4442
1da177e4
LT
4443 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4444}
4445
4446/**
4447 * sys_sched_setaffinity - set the cpu affinity of a process
4448 * @pid: pid of the process
4449 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4450 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
4451 *
4452 * Return: 0 on success. An error code otherwise.
1da177e4 4453 */
5add95d4
HC
4454SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4455 unsigned long __user *, user_mask_ptr)
1da177e4 4456{
5a16f3d3 4457 cpumask_var_t new_mask;
1da177e4
LT
4458 int retval;
4459
5a16f3d3
RR
4460 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4461 return -ENOMEM;
1da177e4 4462
5a16f3d3
RR
4463 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4464 if (retval == 0)
4465 retval = sched_setaffinity(pid, new_mask);
4466 free_cpumask_var(new_mask);
4467 return retval;
1da177e4
LT
4468}
4469
96f874e2 4470long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4471{
36c8b586 4472 struct task_struct *p;
31605683 4473 unsigned long flags;
1da177e4 4474 int retval;
1da177e4 4475
23f5d142 4476 rcu_read_lock();
1da177e4
LT
4477
4478 retval = -ESRCH;
4479 p = find_process_by_pid(pid);
4480 if (!p)
4481 goto out_unlock;
4482
e7834f8f
DQ
4483 retval = security_task_getscheduler(p);
4484 if (retval)
4485 goto out_unlock;
4486
013fdb80 4487 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4488 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4489 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4490
4491out_unlock:
23f5d142 4492 rcu_read_unlock();
1da177e4 4493
9531b62f 4494 return retval;
1da177e4
LT
4495}
4496
4497/**
4498 * sys_sched_getaffinity - get the cpu affinity of a process
4499 * @pid: pid of the process
4500 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4501 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186
YB
4502 *
4503 * Return: 0 on success. An error code otherwise.
1da177e4 4504 */
5add95d4
HC
4505SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4506 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4507{
4508 int ret;
f17c8607 4509 cpumask_var_t mask;
1da177e4 4510
84fba5ec 4511 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4512 return -EINVAL;
4513 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4514 return -EINVAL;
4515
f17c8607
RR
4516 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4517 return -ENOMEM;
1da177e4 4518
f17c8607
RR
4519 ret = sched_getaffinity(pid, mask);
4520 if (ret == 0) {
8bc037fb 4521 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4522
4523 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4524 ret = -EFAULT;
4525 else
cd3d8031 4526 ret = retlen;
f17c8607
RR
4527 }
4528 free_cpumask_var(mask);
1da177e4 4529
f17c8607 4530 return ret;
1da177e4
LT
4531}
4532
4533/**
4534 * sys_sched_yield - yield the current processor to other threads.
4535 *
dd41f596
IM
4536 * This function yields the current CPU to other tasks. If there are no
4537 * other threads running on this CPU then this function will return.
e69f6186
YB
4538 *
4539 * Return: 0.
1da177e4 4540 */
5add95d4 4541SYSCALL_DEFINE0(sched_yield)
1da177e4 4542{
70b97a7f 4543 struct rq *rq = this_rq_lock();
1da177e4 4544
2d72376b 4545 schedstat_inc(rq, yld_count);
4530d7ab 4546 current->sched_class->yield_task(rq);
1da177e4
LT
4547
4548 /*
4549 * Since we are going to call schedule() anyway, there's
4550 * no need to preempt or enable interrupts:
4551 */
4552 __release(rq->lock);
8a25d5de 4553 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4554 do_raw_spin_unlock(&rq->lock);
ba74c144 4555 sched_preempt_enable_no_resched();
1da177e4
LT
4556
4557 schedule();
4558
4559 return 0;
4560}
4561
02b67cc3 4562int __sched _cond_resched(void)
1da177e4 4563{
fe32d3cd 4564 if (should_resched(0)) {
a18b5d01 4565 preempt_schedule_common();
1da177e4
LT
4566 return 1;
4567 }
4568 return 0;
4569}
02b67cc3 4570EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4571
4572/*
613afbf8 4573 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4574 * call schedule, and on return reacquire the lock.
4575 *
41a2d6cf 4576 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4577 * operations here to prevent schedule() from being called twice (once via
4578 * spin_unlock(), once by hand).
4579 */
613afbf8 4580int __cond_resched_lock(spinlock_t *lock)
1da177e4 4581{
fe32d3cd 4582 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6df3cecb
JK
4583 int ret = 0;
4584
f607c668
PZ
4585 lockdep_assert_held(lock);
4586
4a81e832 4587 if (spin_needbreak(lock) || resched) {
1da177e4 4588 spin_unlock(lock);
d86ee480 4589 if (resched)
a18b5d01 4590 preempt_schedule_common();
95c354fe
NP
4591 else
4592 cpu_relax();
6df3cecb 4593 ret = 1;
1da177e4 4594 spin_lock(lock);
1da177e4 4595 }
6df3cecb 4596 return ret;
1da177e4 4597}
613afbf8 4598EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4599
613afbf8 4600int __sched __cond_resched_softirq(void)
1da177e4
LT
4601{
4602 BUG_ON(!in_softirq());
4603
fe32d3cd 4604 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
98d82567 4605 local_bh_enable();
a18b5d01 4606 preempt_schedule_common();
1da177e4
LT
4607 local_bh_disable();
4608 return 1;
4609 }
4610 return 0;
4611}
613afbf8 4612EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4613
1da177e4
LT
4614/**
4615 * yield - yield the current processor to other threads.
4616 *
8e3fabfd
PZ
4617 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4618 *
4619 * The scheduler is at all times free to pick the calling task as the most
4620 * eligible task to run, if removing the yield() call from your code breaks
4621 * it, its already broken.
4622 *
4623 * Typical broken usage is:
4624 *
4625 * while (!event)
4626 * yield();
4627 *
4628 * where one assumes that yield() will let 'the other' process run that will
4629 * make event true. If the current task is a SCHED_FIFO task that will never
4630 * happen. Never use yield() as a progress guarantee!!
4631 *
4632 * If you want to use yield() to wait for something, use wait_event().
4633 * If you want to use yield() to be 'nice' for others, use cond_resched().
4634 * If you still want to use yield(), do not!
1da177e4
LT
4635 */
4636void __sched yield(void)
4637{
4638 set_current_state(TASK_RUNNING);
4639 sys_sched_yield();
4640}
1da177e4
LT
4641EXPORT_SYMBOL(yield);
4642
d95f4122
MG
4643/**
4644 * yield_to - yield the current processor to another thread in
4645 * your thread group, or accelerate that thread toward the
4646 * processor it's on.
16addf95
RD
4647 * @p: target task
4648 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4649 *
4650 * It's the caller's job to ensure that the target task struct
4651 * can't go away on us before we can do any checks.
4652 *
e69f6186 4653 * Return:
7b270f60
PZ
4654 * true (>0) if we indeed boosted the target task.
4655 * false (0) if we failed to boost the target.
4656 * -ESRCH if there's no task to yield to.
d95f4122 4657 */
fa93384f 4658int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
4659{
4660 struct task_struct *curr = current;
4661 struct rq *rq, *p_rq;
4662 unsigned long flags;
c3c18640 4663 int yielded = 0;
d95f4122
MG
4664
4665 local_irq_save(flags);
4666 rq = this_rq();
4667
4668again:
4669 p_rq = task_rq(p);
7b270f60
PZ
4670 /*
4671 * If we're the only runnable task on the rq and target rq also
4672 * has only one task, there's absolutely no point in yielding.
4673 */
4674 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4675 yielded = -ESRCH;
4676 goto out_irq;
4677 }
4678
d95f4122 4679 double_rq_lock(rq, p_rq);
39e24d8f 4680 if (task_rq(p) != p_rq) {
d95f4122
MG
4681 double_rq_unlock(rq, p_rq);
4682 goto again;
4683 }
4684
4685 if (!curr->sched_class->yield_to_task)
7b270f60 4686 goto out_unlock;
d95f4122
MG
4687
4688 if (curr->sched_class != p->sched_class)
7b270f60 4689 goto out_unlock;
d95f4122
MG
4690
4691 if (task_running(p_rq, p) || p->state)
7b270f60 4692 goto out_unlock;
d95f4122
MG
4693
4694 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4695 if (yielded) {
d95f4122 4696 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4697 /*
4698 * Make p's CPU reschedule; pick_next_entity takes care of
4699 * fairness.
4700 */
4701 if (preempt && rq != p_rq)
8875125e 4702 resched_curr(p_rq);
6d1cafd8 4703 }
d95f4122 4704
7b270f60 4705out_unlock:
d95f4122 4706 double_rq_unlock(rq, p_rq);
7b270f60 4707out_irq:
d95f4122
MG
4708 local_irq_restore(flags);
4709
7b270f60 4710 if (yielded > 0)
d95f4122
MG
4711 schedule();
4712
4713 return yielded;
4714}
4715EXPORT_SYMBOL_GPL(yield_to);
4716
1da177e4 4717/*
41a2d6cf 4718 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4719 * that process accounting knows that this is a task in IO wait state.
1da177e4 4720 */
1da177e4
LT
4721long __sched io_schedule_timeout(long timeout)
4722{
9cff8ade
N
4723 int old_iowait = current->in_iowait;
4724 struct rq *rq;
1da177e4
LT
4725 long ret;
4726
9cff8ade 4727 current->in_iowait = 1;
10d784ea 4728 blk_schedule_flush_plug(current);
9cff8ade 4729
0ff92245 4730 delayacct_blkio_start();
9cff8ade 4731 rq = raw_rq();
1da177e4
LT
4732 atomic_inc(&rq->nr_iowait);
4733 ret = schedule_timeout(timeout);
9cff8ade 4734 current->in_iowait = old_iowait;
1da177e4 4735 atomic_dec(&rq->nr_iowait);
0ff92245 4736 delayacct_blkio_end();
9cff8ade 4737
1da177e4
LT
4738 return ret;
4739}
9cff8ade 4740EXPORT_SYMBOL(io_schedule_timeout);
1da177e4
LT
4741
4742/**
4743 * sys_sched_get_priority_max - return maximum RT priority.
4744 * @policy: scheduling class.
4745 *
e69f6186
YB
4746 * Return: On success, this syscall returns the maximum
4747 * rt_priority that can be used by a given scheduling class.
4748 * On failure, a negative error code is returned.
1da177e4 4749 */
5add95d4 4750SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4751{
4752 int ret = -EINVAL;
4753
4754 switch (policy) {
4755 case SCHED_FIFO:
4756 case SCHED_RR:
4757 ret = MAX_USER_RT_PRIO-1;
4758 break;
aab03e05 4759 case SCHED_DEADLINE:
1da177e4 4760 case SCHED_NORMAL:
b0a9499c 4761 case SCHED_BATCH:
dd41f596 4762 case SCHED_IDLE:
1da177e4
LT
4763 ret = 0;
4764 break;
4765 }
4766 return ret;
4767}
4768
4769/**
4770 * sys_sched_get_priority_min - return minimum RT priority.
4771 * @policy: scheduling class.
4772 *
e69f6186
YB
4773 * Return: On success, this syscall returns the minimum
4774 * rt_priority that can be used by a given scheduling class.
4775 * On failure, a negative error code is returned.
1da177e4 4776 */
5add95d4 4777SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4778{
4779 int ret = -EINVAL;
4780
4781 switch (policy) {
4782 case SCHED_FIFO:
4783 case SCHED_RR:
4784 ret = 1;
4785 break;
aab03e05 4786 case SCHED_DEADLINE:
1da177e4 4787 case SCHED_NORMAL:
b0a9499c 4788 case SCHED_BATCH:
dd41f596 4789 case SCHED_IDLE:
1da177e4
LT
4790 ret = 0;
4791 }
4792 return ret;
4793}
4794
4795/**
4796 * sys_sched_rr_get_interval - return the default timeslice of a process.
4797 * @pid: pid of the process.
4798 * @interval: userspace pointer to the timeslice value.
4799 *
4800 * this syscall writes the default timeslice value of a given process
4801 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
4802 *
4803 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4804 * an error code.
1da177e4 4805 */
17da2bd9 4806SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4807 struct timespec __user *, interval)
1da177e4 4808{
36c8b586 4809 struct task_struct *p;
a4ec24b4 4810 unsigned int time_slice;
dba091b9
TG
4811 unsigned long flags;
4812 struct rq *rq;
3a5c359a 4813 int retval;
1da177e4 4814 struct timespec t;
1da177e4
LT
4815
4816 if (pid < 0)
3a5c359a 4817 return -EINVAL;
1da177e4
LT
4818
4819 retval = -ESRCH;
1a551ae7 4820 rcu_read_lock();
1da177e4
LT
4821 p = find_process_by_pid(pid);
4822 if (!p)
4823 goto out_unlock;
4824
4825 retval = security_task_getscheduler(p);
4826 if (retval)
4827 goto out_unlock;
4828
dba091b9 4829 rq = task_rq_lock(p, &flags);
a57beec5
PZ
4830 time_slice = 0;
4831 if (p->sched_class->get_rr_interval)
4832 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4833 task_rq_unlock(rq, p, &flags);
a4ec24b4 4834
1a551ae7 4835 rcu_read_unlock();
a4ec24b4 4836 jiffies_to_timespec(time_slice, &t);
1da177e4 4837 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4838 return retval;
3a5c359a 4839
1da177e4 4840out_unlock:
1a551ae7 4841 rcu_read_unlock();
1da177e4
LT
4842 return retval;
4843}
4844
7c731e0a 4845static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4846
82a1fcb9 4847void sched_show_task(struct task_struct *p)
1da177e4 4848{
1da177e4 4849 unsigned long free = 0;
4e79752c 4850 int ppid;
1f8a7633 4851 unsigned long state = p->state;
1da177e4 4852
1f8a7633
TH
4853 if (state)
4854 state = __ffs(state) + 1;
28d0686c 4855 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4856 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4857#if BITS_PER_LONG == 32
1da177e4 4858 if (state == TASK_RUNNING)
3df0fc5b 4859 printk(KERN_CONT " running ");
1da177e4 4860 else
3df0fc5b 4861 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4862#else
4863 if (state == TASK_RUNNING)
3df0fc5b 4864 printk(KERN_CONT " running task ");
1da177e4 4865 else
3df0fc5b 4866 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4867#endif
4868#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4869 free = stack_not_used(p);
1da177e4 4870#endif
a90e984c 4871 ppid = 0;
4e79752c 4872 rcu_read_lock();
a90e984c
ON
4873 if (pid_alive(p))
4874 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 4875 rcu_read_unlock();
3df0fc5b 4876 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 4877 task_pid_nr(p), ppid,
aa47b7e0 4878 (unsigned long)task_thread_info(p)->flags);
1da177e4 4879
3d1cb205 4880 print_worker_info(KERN_INFO, p);
5fb5e6de 4881 show_stack(p, NULL);
1da177e4
LT
4882}
4883
e59e2ae2 4884void show_state_filter(unsigned long state_filter)
1da177e4 4885{
36c8b586 4886 struct task_struct *g, *p;
1da177e4 4887
4bd77321 4888#if BITS_PER_LONG == 32
3df0fc5b
PZ
4889 printk(KERN_INFO
4890 " task PC stack pid father\n");
1da177e4 4891#else
3df0fc5b
PZ
4892 printk(KERN_INFO
4893 " task PC stack pid father\n");
1da177e4 4894#endif
510f5acc 4895 rcu_read_lock();
5d07f420 4896 for_each_process_thread(g, p) {
1da177e4
LT
4897 /*
4898 * reset the NMI-timeout, listing all files on a slow
25985edc 4899 * console might take a lot of time:
1da177e4
LT
4900 */
4901 touch_nmi_watchdog();
39bc89fd 4902 if (!state_filter || (p->state & state_filter))
82a1fcb9 4903 sched_show_task(p);
5d07f420 4904 }
1da177e4 4905
04c9167f
JF
4906 touch_all_softlockup_watchdogs();
4907
dd41f596
IM
4908#ifdef CONFIG_SCHED_DEBUG
4909 sysrq_sched_debug_show();
4910#endif
510f5acc 4911 rcu_read_unlock();
e59e2ae2
IM
4912 /*
4913 * Only show locks if all tasks are dumped:
4914 */
93335a21 4915 if (!state_filter)
e59e2ae2 4916 debug_show_all_locks();
1da177e4
LT
4917}
4918
0db0628d 4919void init_idle_bootup_task(struct task_struct *idle)
1df21055 4920{
dd41f596 4921 idle->sched_class = &idle_sched_class;
1df21055
IM
4922}
4923
f340c0d1
IM
4924/**
4925 * init_idle - set up an idle thread for a given CPU
4926 * @idle: task in question
4927 * @cpu: cpu the idle task belongs to
4928 *
4929 * NOTE: this function does not set the idle thread's NEED_RESCHED
4930 * flag, to make booting more robust.
4931 */
0db0628d 4932void init_idle(struct task_struct *idle, int cpu)
1da177e4 4933{
70b97a7f 4934 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4935 unsigned long flags;
4936
25834c73
PZ
4937 raw_spin_lock_irqsave(&idle->pi_lock, flags);
4938 raw_spin_lock(&rq->lock);
5cbd54ef 4939
5e1576ed 4940 __sched_fork(0, idle);
06b83b5f 4941 idle->state = TASK_RUNNING;
dd41f596
IM
4942 idle->se.exec_start = sched_clock();
4943
de9b8f5d
PZ
4944#ifdef CONFIG_SMP
4945 /*
4946 * Its possible that init_idle() gets called multiple times on a task,
4947 * in that case do_set_cpus_allowed() will not do the right thing.
4948 *
4949 * And since this is boot we can forgo the serialization.
4950 */
4951 set_cpus_allowed_common(idle, cpumask_of(cpu));
4952#endif
6506cf6c
PZ
4953 /*
4954 * We're having a chicken and egg problem, even though we are
4955 * holding rq->lock, the cpu isn't yet set to this cpu so the
4956 * lockdep check in task_group() will fail.
4957 *
4958 * Similar case to sched_fork(). / Alternatively we could
4959 * use task_rq_lock() here and obtain the other rq->lock.
4960 *
4961 * Silence PROVE_RCU
4962 */
4963 rcu_read_lock();
dd41f596 4964 __set_task_cpu(idle, cpu);
6506cf6c 4965 rcu_read_unlock();
1da177e4 4966
1da177e4 4967 rq->curr = rq->idle = idle;
da0c1e65 4968 idle->on_rq = TASK_ON_RQ_QUEUED;
de9b8f5d 4969#ifdef CONFIG_SMP
3ca7a440 4970 idle->on_cpu = 1;
4866cde0 4971#endif
25834c73
PZ
4972 raw_spin_unlock(&rq->lock);
4973 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
1da177e4
LT
4974
4975 /* Set the preempt count _outside_ the spinlocks! */
01028747 4976 init_idle_preempt_count(idle, cpu);
55cd5340 4977
dd41f596
IM
4978 /*
4979 * The idle tasks have their own, simple scheduling class:
4980 */
4981 idle->sched_class = &idle_sched_class;
868baf07 4982 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 4983 vtime_init_idle(idle, cpu);
de9b8f5d 4984#ifdef CONFIG_SMP
f1c6f1a7
CE
4985 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4986#endif
19978ca6
IM
4987}
4988
f82f8042
JL
4989int cpuset_cpumask_can_shrink(const struct cpumask *cur,
4990 const struct cpumask *trial)
4991{
4992 int ret = 1, trial_cpus;
4993 struct dl_bw *cur_dl_b;
4994 unsigned long flags;
4995
bb2bc55a
MG
4996 if (!cpumask_weight(cur))
4997 return ret;
4998
75e23e49 4999 rcu_read_lock_sched();
f82f8042
JL
5000 cur_dl_b = dl_bw_of(cpumask_any(cur));
5001 trial_cpus = cpumask_weight(trial);
5002
5003 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5004 if (cur_dl_b->bw != -1 &&
5005 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5006 ret = 0;
5007 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
75e23e49 5008 rcu_read_unlock_sched();
f82f8042
JL
5009
5010 return ret;
5011}
5012
7f51412a
JL
5013int task_can_attach(struct task_struct *p,
5014 const struct cpumask *cs_cpus_allowed)
5015{
5016 int ret = 0;
5017
5018 /*
5019 * Kthreads which disallow setaffinity shouldn't be moved
5020 * to a new cpuset; we don't want to change their cpu
5021 * affinity and isolating such threads by their set of
5022 * allowed nodes is unnecessary. Thus, cpusets are not
5023 * applicable for such threads. This prevents checking for
5024 * success of set_cpus_allowed_ptr() on all attached tasks
5025 * before cpus_allowed may be changed.
5026 */
5027 if (p->flags & PF_NO_SETAFFINITY) {
5028 ret = -EINVAL;
5029 goto out;
5030 }
5031
5032#ifdef CONFIG_SMP
5033 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5034 cs_cpus_allowed)) {
5035 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5036 cs_cpus_allowed);
75e23e49 5037 struct dl_bw *dl_b;
7f51412a
JL
5038 bool overflow;
5039 int cpus;
5040 unsigned long flags;
5041
75e23e49
JL
5042 rcu_read_lock_sched();
5043 dl_b = dl_bw_of(dest_cpu);
7f51412a
JL
5044 raw_spin_lock_irqsave(&dl_b->lock, flags);
5045 cpus = dl_bw_cpus(dest_cpu);
5046 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5047 if (overflow)
5048 ret = -EBUSY;
5049 else {
5050 /*
5051 * We reserve space for this task in the destination
5052 * root_domain, as we can't fail after this point.
5053 * We will free resources in the source root_domain
5054 * later on (see set_cpus_allowed_dl()).
5055 */
5056 __dl_add(dl_b, p->dl.dl_bw);
5057 }
5058 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
75e23e49 5059 rcu_read_unlock_sched();
7f51412a
JL
5060
5061 }
5062#endif
5063out:
5064 return ret;
5065}
5066
1da177e4 5067#ifdef CONFIG_SMP
1da177e4 5068
e6628d5b
MG
5069#ifdef CONFIG_NUMA_BALANCING
5070/* Migrate current task p to target_cpu */
5071int migrate_task_to(struct task_struct *p, int target_cpu)
5072{
5073 struct migration_arg arg = { p, target_cpu };
5074 int curr_cpu = task_cpu(p);
5075
5076 if (curr_cpu == target_cpu)
5077 return 0;
5078
5079 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5080 return -EINVAL;
5081
5082 /* TODO: This is not properly updating schedstats */
5083
286549dc 5084 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
5085 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5086}
0ec8aa00
PZ
5087
5088/*
5089 * Requeue a task on a given node and accurately track the number of NUMA
5090 * tasks on the runqueues
5091 */
5092void sched_setnuma(struct task_struct *p, int nid)
5093{
5094 struct rq *rq;
5095 unsigned long flags;
da0c1e65 5096 bool queued, running;
0ec8aa00
PZ
5097
5098 rq = task_rq_lock(p, &flags);
da0c1e65 5099 queued = task_on_rq_queued(p);
0ec8aa00
PZ
5100 running = task_current(rq, p);
5101
da0c1e65 5102 if (queued)
0ec8aa00
PZ
5103 dequeue_task(rq, p, 0);
5104 if (running)
f3cd1c4e 5105 put_prev_task(rq, p);
0ec8aa00
PZ
5106
5107 p->numa_preferred_nid = nid;
0ec8aa00
PZ
5108
5109 if (running)
5110 p->sched_class->set_curr_task(rq);
da0c1e65 5111 if (queued)
0ec8aa00
PZ
5112 enqueue_task(rq, p, 0);
5113 task_rq_unlock(rq, p, &flags);
5114}
5cc389bc 5115#endif /* CONFIG_NUMA_BALANCING */
f7b4cddc 5116
1da177e4 5117#ifdef CONFIG_HOTPLUG_CPU
054b9108 5118/*
48c5ccae
PZ
5119 * Ensures that the idle task is using init_mm right before its cpu goes
5120 * offline.
054b9108 5121 */
48c5ccae 5122void idle_task_exit(void)
1da177e4 5123{
48c5ccae 5124 struct mm_struct *mm = current->active_mm;
e76bd8d9 5125
48c5ccae 5126 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 5127
a53efe5f 5128 if (mm != &init_mm) {
48c5ccae 5129 switch_mm(mm, &init_mm, current);
a53efe5f
MS
5130 finish_arch_post_lock_switch();
5131 }
48c5ccae 5132 mmdrop(mm);
1da177e4
LT
5133}
5134
5135/*
5d180232
PZ
5136 * Since this CPU is going 'away' for a while, fold any nr_active delta
5137 * we might have. Assumes we're called after migrate_tasks() so that the
5138 * nr_active count is stable.
5139 *
5140 * Also see the comment "Global load-average calculations".
1da177e4 5141 */
5d180232 5142static void calc_load_migrate(struct rq *rq)
1da177e4 5143{
5d180232
PZ
5144 long delta = calc_load_fold_active(rq);
5145 if (delta)
5146 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
5147}
5148
3f1d2a31
PZ
5149static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5150{
5151}
5152
5153static const struct sched_class fake_sched_class = {
5154 .put_prev_task = put_prev_task_fake,
5155};
5156
5157static struct task_struct fake_task = {
5158 /*
5159 * Avoid pull_{rt,dl}_task()
5160 */
5161 .prio = MAX_PRIO + 1,
5162 .sched_class = &fake_sched_class,
5163};
5164
48f24c4d 5165/*
48c5ccae
PZ
5166 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5167 * try_to_wake_up()->select_task_rq().
5168 *
5169 * Called with rq->lock held even though we'er in stop_machine() and
5170 * there's no concurrency possible, we hold the required locks anyway
5171 * because of lock validation efforts.
1da177e4 5172 */
5e16bbc2 5173static void migrate_tasks(struct rq *dead_rq)
1da177e4 5174{
5e16bbc2 5175 struct rq *rq = dead_rq;
48c5ccae
PZ
5176 struct task_struct *next, *stop = rq->stop;
5177 int dest_cpu;
1da177e4
LT
5178
5179 /*
48c5ccae
PZ
5180 * Fudge the rq selection such that the below task selection loop
5181 * doesn't get stuck on the currently eligible stop task.
5182 *
5183 * We're currently inside stop_machine() and the rq is either stuck
5184 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5185 * either way we should never end up calling schedule() until we're
5186 * done here.
1da177e4 5187 */
48c5ccae 5188 rq->stop = NULL;
48f24c4d 5189
77bd3970
FW
5190 /*
5191 * put_prev_task() and pick_next_task() sched
5192 * class method both need to have an up-to-date
5193 * value of rq->clock[_task]
5194 */
5195 update_rq_clock(rq);
5196
5e16bbc2 5197 for (;;) {
48c5ccae
PZ
5198 /*
5199 * There's this thread running, bail when that's the only
5200 * remaining thread.
5201 */
5202 if (rq->nr_running == 1)
dd41f596 5203 break;
48c5ccae 5204
cbce1a68 5205 /*
5473e0cc 5206 * pick_next_task assumes pinned rq->lock.
cbce1a68
PZ
5207 */
5208 lockdep_pin_lock(&rq->lock);
3f1d2a31 5209 next = pick_next_task(rq, &fake_task);
48c5ccae 5210 BUG_ON(!next);
79c53799 5211 next->sched_class->put_prev_task(rq, next);
e692ab53 5212
5473e0cc
WL
5213 /*
5214 * Rules for changing task_struct::cpus_allowed are holding
5215 * both pi_lock and rq->lock, such that holding either
5216 * stabilizes the mask.
5217 *
5218 * Drop rq->lock is not quite as disastrous as it usually is
5219 * because !cpu_active at this point, which means load-balance
5220 * will not interfere. Also, stop-machine.
5221 */
5222 lockdep_unpin_lock(&rq->lock);
5223 raw_spin_unlock(&rq->lock);
5224 raw_spin_lock(&next->pi_lock);
5225 raw_spin_lock(&rq->lock);
5226
5227 /*
5228 * Since we're inside stop-machine, _nothing_ should have
5229 * changed the task, WARN if weird stuff happened, because in
5230 * that case the above rq->lock drop is a fail too.
5231 */
5232 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5233 raw_spin_unlock(&next->pi_lock);
5234 continue;
5235 }
5236
48c5ccae 5237 /* Find suitable destination for @next, with force if needed. */
5e16bbc2 5238 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
48c5ccae 5239
5e16bbc2
PZ
5240 rq = __migrate_task(rq, next, dest_cpu);
5241 if (rq != dead_rq) {
5242 raw_spin_unlock(&rq->lock);
5243 rq = dead_rq;
5244 raw_spin_lock(&rq->lock);
5245 }
5473e0cc 5246 raw_spin_unlock(&next->pi_lock);
1da177e4 5247 }
dce48a84 5248
48c5ccae 5249 rq->stop = stop;
dce48a84 5250}
1da177e4
LT
5251#endif /* CONFIG_HOTPLUG_CPU */
5252
e692ab53
NP
5253#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5254
5255static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5256 {
5257 .procname = "sched_domain",
c57baf1e 5258 .mode = 0555,
e0361851 5259 },
56992309 5260 {}
e692ab53
NP
5261};
5262
5263static struct ctl_table sd_ctl_root[] = {
e0361851
AD
5264 {
5265 .procname = "kernel",
c57baf1e 5266 .mode = 0555,
e0361851
AD
5267 .child = sd_ctl_dir,
5268 },
56992309 5269 {}
e692ab53
NP
5270};
5271
5272static struct ctl_table *sd_alloc_ctl_entry(int n)
5273{
5274 struct ctl_table *entry =
5cf9f062 5275 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5276
e692ab53
NP
5277 return entry;
5278}
5279
6382bc90
MM
5280static void sd_free_ctl_entry(struct ctl_table **tablep)
5281{
cd790076 5282 struct ctl_table *entry;
6382bc90 5283
cd790076
MM
5284 /*
5285 * In the intermediate directories, both the child directory and
5286 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5287 * will always be set. In the lowest directory the names are
cd790076
MM
5288 * static strings and all have proc handlers.
5289 */
5290 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5291 if (entry->child)
5292 sd_free_ctl_entry(&entry->child);
cd790076
MM
5293 if (entry->proc_handler == NULL)
5294 kfree(entry->procname);
5295 }
6382bc90
MM
5296
5297 kfree(*tablep);
5298 *tablep = NULL;
5299}
5300
201c373e 5301static int min_load_idx = 0;
fd9b86d3 5302static int max_load_idx = CPU_LOAD_IDX_MAX-1;
201c373e 5303
e692ab53 5304static void
e0361851 5305set_table_entry(struct ctl_table *entry,
e692ab53 5306 const char *procname, void *data, int maxlen,
201c373e
NK
5307 umode_t mode, proc_handler *proc_handler,
5308 bool load_idx)
e692ab53 5309{
e692ab53
NP
5310 entry->procname = procname;
5311 entry->data = data;
5312 entry->maxlen = maxlen;
5313 entry->mode = mode;
5314 entry->proc_handler = proc_handler;
201c373e
NK
5315
5316 if (load_idx) {
5317 entry->extra1 = &min_load_idx;
5318 entry->extra2 = &max_load_idx;
5319 }
e692ab53
NP
5320}
5321
5322static struct ctl_table *
5323sd_alloc_ctl_domain_table(struct sched_domain *sd)
5324{
37e6bae8 5325 struct ctl_table *table = sd_alloc_ctl_entry(14);
e692ab53 5326
ad1cdc1d
MM
5327 if (table == NULL)
5328 return NULL;
5329
e0361851 5330 set_table_entry(&table[0], "min_interval", &sd->min_interval,
201c373e 5331 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 5332 set_table_entry(&table[1], "max_interval", &sd->max_interval,
201c373e 5333 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 5334 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
201c373e 5335 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5336 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
201c373e 5337 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5338 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
201c373e 5339 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5340 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
201c373e 5341 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5342 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
201c373e 5343 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5344 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
201c373e 5345 sizeof(int), 0644, proc_dointvec_minmax, false);
e0361851 5346 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
201c373e 5347 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 5348 set_table_entry(&table[9], "cache_nice_tries",
e692ab53 5349 &sd->cache_nice_tries,
201c373e 5350 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 5351 set_table_entry(&table[10], "flags", &sd->flags,
201c373e 5352 sizeof(int), 0644, proc_dointvec_minmax, false);
37e6bae8
AS
5353 set_table_entry(&table[11], "max_newidle_lb_cost",
5354 &sd->max_newidle_lb_cost,
5355 sizeof(long), 0644, proc_doulongvec_minmax, false);
5356 set_table_entry(&table[12], "name", sd->name,
201c373e 5357 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
37e6bae8 5358 /* &table[13] is terminator */
e692ab53
NP
5359
5360 return table;
5361}
5362
be7002e6 5363static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5364{
5365 struct ctl_table *entry, *table;
5366 struct sched_domain *sd;
5367 int domain_num = 0, i;
5368 char buf[32];
5369
5370 for_each_domain(cpu, sd)
5371 domain_num++;
5372 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5373 if (table == NULL)
5374 return NULL;
e692ab53
NP
5375
5376 i = 0;
5377 for_each_domain(cpu, sd) {
5378 snprintf(buf, 32, "domain%d", i);
e692ab53 5379 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5380 entry->mode = 0555;
e692ab53
NP
5381 entry->child = sd_alloc_ctl_domain_table(sd);
5382 entry++;
5383 i++;
5384 }
5385 return table;
5386}
5387
5388static struct ctl_table_header *sd_sysctl_header;
6382bc90 5389static void register_sched_domain_sysctl(void)
e692ab53 5390{
6ad4c188 5391 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5392 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5393 char buf[32];
5394
7378547f
MM
5395 WARN_ON(sd_ctl_dir[0].child);
5396 sd_ctl_dir[0].child = entry;
5397
ad1cdc1d
MM
5398 if (entry == NULL)
5399 return;
5400
6ad4c188 5401 for_each_possible_cpu(i) {
e692ab53 5402 snprintf(buf, 32, "cpu%d", i);
e692ab53 5403 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5404 entry->mode = 0555;
e692ab53 5405 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5406 entry++;
e692ab53 5407 }
7378547f
MM
5408
5409 WARN_ON(sd_sysctl_header);
e692ab53
NP
5410 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5411}
6382bc90 5412
7378547f 5413/* may be called multiple times per register */
6382bc90
MM
5414static void unregister_sched_domain_sysctl(void)
5415{
781b0203 5416 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5417 sd_sysctl_header = NULL;
7378547f
MM
5418 if (sd_ctl_dir[0].child)
5419 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5420}
e692ab53 5421#else
6382bc90
MM
5422static void register_sched_domain_sysctl(void)
5423{
5424}
5425static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5426{
5427}
5cc389bc 5428#endif /* CONFIG_SCHED_DEBUG && CONFIG_SYSCTL */
e692ab53 5429
1f11eb6a
GH
5430static void set_rq_online(struct rq *rq)
5431{
5432 if (!rq->online) {
5433 const struct sched_class *class;
5434
c6c4927b 5435 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5436 rq->online = 1;
5437
5438 for_each_class(class) {
5439 if (class->rq_online)
5440 class->rq_online(rq);
5441 }
5442 }
5443}
5444
5445static void set_rq_offline(struct rq *rq)
5446{
5447 if (rq->online) {
5448 const struct sched_class *class;
5449
5450 for_each_class(class) {
5451 if (class->rq_offline)
5452 class->rq_offline(rq);
5453 }
5454
c6c4927b 5455 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5456 rq->online = 0;
5457 }
5458}
5459
1da177e4
LT
5460/*
5461 * migration_call - callback that gets triggered when a CPU is added.
5462 * Here we can start up the necessary migration thread for the new CPU.
5463 */
0db0628d 5464static int
48f24c4d 5465migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5466{
48f24c4d 5467 int cpu = (long)hcpu;
1da177e4 5468 unsigned long flags;
969c7921 5469 struct rq *rq = cpu_rq(cpu);
1da177e4 5470
48c5ccae 5471 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 5472
1da177e4 5473 case CPU_UP_PREPARE:
a468d389 5474 rq->calc_load_update = calc_load_update;
1da177e4 5475 break;
48f24c4d 5476
1da177e4 5477 case CPU_ONLINE:
1f94ef59 5478 /* Update our root-domain */
05fa785c 5479 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5480 if (rq->rd) {
c6c4927b 5481 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5482
5483 set_rq_online(rq);
1f94ef59 5484 }
05fa785c 5485 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5486 break;
48f24c4d 5487
1da177e4 5488#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5489 case CPU_DYING:
317f3941 5490 sched_ttwu_pending();
57d885fe 5491 /* Update our root-domain */
05fa785c 5492 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5493 if (rq->rd) {
c6c4927b 5494 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5495 set_rq_offline(rq);
57d885fe 5496 }
5e16bbc2 5497 migrate_tasks(rq);
48c5ccae 5498 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5499 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 5500 break;
48c5ccae 5501
5d180232 5502 case CPU_DEAD:
f319da0c 5503 calc_load_migrate(rq);
57d885fe 5504 break;
1da177e4
LT
5505#endif
5506 }
49c022e6
PZ
5507
5508 update_max_interval();
5509
1da177e4
LT
5510 return NOTIFY_OK;
5511}
5512
f38b0820
PM
5513/*
5514 * Register at high priority so that task migration (migrate_all_tasks)
5515 * happens before everything else. This has to be lower priority than
cdd6c482 5516 * the notifier in the perf_event subsystem, though.
1da177e4 5517 */
0db0628d 5518static struct notifier_block migration_notifier = {
1da177e4 5519 .notifier_call = migration_call,
50a323b7 5520 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5521};
5522
6a82b60d 5523static void set_cpu_rq_start_time(void)
a803f026
CM
5524{
5525 int cpu = smp_processor_id();
5526 struct rq *rq = cpu_rq(cpu);
5527 rq->age_stamp = sched_clock_cpu(cpu);
5528}
5529
0db0628d 5530static int sched_cpu_active(struct notifier_block *nfb,
3a101d05
TH
5531 unsigned long action, void *hcpu)
5532{
5533 switch (action & ~CPU_TASKS_FROZEN) {
a803f026
CM
5534 case CPU_STARTING:
5535 set_cpu_rq_start_time();
5536 return NOTIFY_OK;
dd9d3843
JS
5537 case CPU_ONLINE:
5538 /*
5539 * At this point a starting CPU has marked itself as online via
5540 * set_cpu_online(). But it might not yet have marked itself
5541 * as active, which is essential from here on.
5542 *
5543 * Thus, fall-through and help the starting CPU along.
5544 */
3a101d05
TH
5545 case CPU_DOWN_FAILED:
5546 set_cpu_active((long)hcpu, true);
5547 return NOTIFY_OK;
5548 default:
5549 return NOTIFY_DONE;
5550 }
5551}
5552
0db0628d 5553static int sched_cpu_inactive(struct notifier_block *nfb,
3a101d05
TH
5554 unsigned long action, void *hcpu)
5555{
5556 switch (action & ~CPU_TASKS_FROZEN) {
5557 case CPU_DOWN_PREPARE:
3c18d447 5558 set_cpu_active((long)hcpu, false);
3a101d05 5559 return NOTIFY_OK;
3c18d447
JL
5560 default:
5561 return NOTIFY_DONE;
3a101d05
TH
5562 }
5563}
5564
7babe8db 5565static int __init migration_init(void)
1da177e4
LT
5566{
5567 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5568 int err;
48f24c4d 5569
3a101d05 5570 /* Initialize migration for the boot CPU */
07dccf33
AM
5571 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5572 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5573 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5574 register_cpu_notifier(&migration_notifier);
7babe8db 5575
3a101d05
TH
5576 /* Register cpu active notifiers */
5577 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5578 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5579
a004cd42 5580 return 0;
1da177e4 5581}
7babe8db 5582early_initcall(migration_init);
476f3534 5583
4cb98839
PZ
5584static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5585
3e9830dc 5586#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5587
d039ac60 5588static __read_mostly int sched_debug_enabled;
f6630114 5589
d039ac60 5590static int __init sched_debug_setup(char *str)
f6630114 5591{
d039ac60 5592 sched_debug_enabled = 1;
f6630114
MT
5593
5594 return 0;
5595}
d039ac60
PZ
5596early_param("sched_debug", sched_debug_setup);
5597
5598static inline bool sched_debug(void)
5599{
5600 return sched_debug_enabled;
5601}
f6630114 5602
7c16ec58 5603static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5604 struct cpumask *groupmask)
1da177e4 5605{
4dcf6aff 5606 struct sched_group *group = sd->groups;
1da177e4 5607
96f874e2 5608 cpumask_clear(groupmask);
4dcf6aff
IM
5609
5610 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5611
5612 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5613 printk("does not load-balance\n");
4dcf6aff 5614 if (sd->parent)
3df0fc5b
PZ
5615 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5616 " has parent");
4dcf6aff 5617 return -1;
41c7ce9a
NP
5618 }
5619
333470ee
TH
5620 printk(KERN_CONT "span %*pbl level %s\n",
5621 cpumask_pr_args(sched_domain_span(sd)), sd->name);
4dcf6aff 5622
758b2cdc 5623 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5624 printk(KERN_ERR "ERROR: domain->span does not contain "
5625 "CPU%d\n", cpu);
4dcf6aff 5626 }
758b2cdc 5627 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5628 printk(KERN_ERR "ERROR: domain->groups does not contain"
5629 " CPU%d\n", cpu);
4dcf6aff 5630 }
1da177e4 5631
4dcf6aff 5632 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5633 do {
4dcf6aff 5634 if (!group) {
3df0fc5b
PZ
5635 printk("\n");
5636 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5637 break;
5638 }
5639
758b2cdc 5640 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5641 printk(KERN_CONT "\n");
5642 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5643 break;
5644 }
1da177e4 5645
cb83b629
PZ
5646 if (!(sd->flags & SD_OVERLAP) &&
5647 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5648 printk(KERN_CONT "\n");
5649 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5650 break;
5651 }
1da177e4 5652
758b2cdc 5653 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5654
333470ee
TH
5655 printk(KERN_CONT " %*pbl",
5656 cpumask_pr_args(sched_group_cpus(group)));
ca8ce3d0 5657 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
63b2ca30
NP
5658 printk(KERN_CONT " (cpu_capacity = %d)",
5659 group->sgc->capacity);
381512cf 5660 }
1da177e4 5661
4dcf6aff
IM
5662 group = group->next;
5663 } while (group != sd->groups);
3df0fc5b 5664 printk(KERN_CONT "\n");
1da177e4 5665
758b2cdc 5666 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5667 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5668
758b2cdc
RR
5669 if (sd->parent &&
5670 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5671 printk(KERN_ERR "ERROR: parent span is not a superset "
5672 "of domain->span\n");
4dcf6aff
IM
5673 return 0;
5674}
1da177e4 5675
4dcf6aff
IM
5676static void sched_domain_debug(struct sched_domain *sd, int cpu)
5677{
5678 int level = 0;
1da177e4 5679
d039ac60 5680 if (!sched_debug_enabled)
f6630114
MT
5681 return;
5682
4dcf6aff
IM
5683 if (!sd) {
5684 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5685 return;
5686 }
1da177e4 5687
4dcf6aff
IM
5688 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5689
5690 for (;;) {
4cb98839 5691 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5692 break;
1da177e4
LT
5693 level++;
5694 sd = sd->parent;
33859f7f 5695 if (!sd)
4dcf6aff
IM
5696 break;
5697 }
1da177e4 5698}
6d6bc0ad 5699#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5700# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5701static inline bool sched_debug(void)
5702{
5703 return false;
5704}
6d6bc0ad 5705#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5706
1a20ff27 5707static int sd_degenerate(struct sched_domain *sd)
245af2c7 5708{
758b2cdc 5709 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5710 return 1;
5711
5712 /* Following flags need at least 2 groups */
5713 if (sd->flags & (SD_LOAD_BALANCE |
5714 SD_BALANCE_NEWIDLE |
5715 SD_BALANCE_FORK |
89c4710e 5716 SD_BALANCE_EXEC |
5d4dfddd 5717 SD_SHARE_CPUCAPACITY |
d77b3ed5
VG
5718 SD_SHARE_PKG_RESOURCES |
5719 SD_SHARE_POWERDOMAIN)) {
245af2c7
SS
5720 if (sd->groups != sd->groups->next)
5721 return 0;
5722 }
5723
5724 /* Following flags don't use groups */
c88d5910 5725 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5726 return 0;
5727
5728 return 1;
5729}
5730
48f24c4d
IM
5731static int
5732sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5733{
5734 unsigned long cflags = sd->flags, pflags = parent->flags;
5735
5736 if (sd_degenerate(parent))
5737 return 1;
5738
758b2cdc 5739 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5740 return 0;
5741
245af2c7
SS
5742 /* Flags needing groups don't count if only 1 group in parent */
5743 if (parent->groups == parent->groups->next) {
5744 pflags &= ~(SD_LOAD_BALANCE |
5745 SD_BALANCE_NEWIDLE |
5746 SD_BALANCE_FORK |
89c4710e 5747 SD_BALANCE_EXEC |
5d4dfddd 5748 SD_SHARE_CPUCAPACITY |
10866e62 5749 SD_SHARE_PKG_RESOURCES |
d77b3ed5
VG
5750 SD_PREFER_SIBLING |
5751 SD_SHARE_POWERDOMAIN);
5436499e
KC
5752 if (nr_node_ids == 1)
5753 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5754 }
5755 if (~cflags & pflags)
5756 return 0;
5757
5758 return 1;
5759}
5760
dce840a0 5761static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5762{
dce840a0 5763 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5764
68e74568 5765 cpupri_cleanup(&rd->cpupri);
6bfd6d72 5766 cpudl_cleanup(&rd->cpudl);
1baca4ce 5767 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5768 free_cpumask_var(rd->rto_mask);
5769 free_cpumask_var(rd->online);
5770 free_cpumask_var(rd->span);
5771 kfree(rd);
5772}
5773
57d885fe
GH
5774static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5775{
a0490fa3 5776 struct root_domain *old_rd = NULL;
57d885fe 5777 unsigned long flags;
57d885fe 5778
05fa785c 5779 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5780
5781 if (rq->rd) {
a0490fa3 5782 old_rd = rq->rd;
57d885fe 5783
c6c4927b 5784 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5785 set_rq_offline(rq);
57d885fe 5786
c6c4927b 5787 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5788
a0490fa3 5789 /*
0515973f 5790 * If we dont want to free the old_rd yet then
a0490fa3
IM
5791 * set old_rd to NULL to skip the freeing later
5792 * in this function:
5793 */
5794 if (!atomic_dec_and_test(&old_rd->refcount))
5795 old_rd = NULL;
57d885fe
GH
5796 }
5797
5798 atomic_inc(&rd->refcount);
5799 rq->rd = rd;
5800
c6c4927b 5801 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5802 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5803 set_rq_online(rq);
57d885fe 5804
05fa785c 5805 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5806
5807 if (old_rd)
dce840a0 5808 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5809}
5810
68c38fc3 5811static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5812{
5813 memset(rd, 0, sizeof(*rd));
5814
68c38fc3 5815 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5816 goto out;
68c38fc3 5817 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5818 goto free_span;
1baca4ce 5819 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
c6c4927b 5820 goto free_online;
1baca4ce
JL
5821 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5822 goto free_dlo_mask;
6e0534f2 5823
332ac17e 5824 init_dl_bw(&rd->dl_bw);
6bfd6d72
JL
5825 if (cpudl_init(&rd->cpudl) != 0)
5826 goto free_dlo_mask;
332ac17e 5827
68c38fc3 5828 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5829 goto free_rto_mask;
c6c4927b 5830 return 0;
6e0534f2 5831
68e74568
RR
5832free_rto_mask:
5833 free_cpumask_var(rd->rto_mask);
1baca4ce
JL
5834free_dlo_mask:
5835 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5836free_online:
5837 free_cpumask_var(rd->online);
5838free_span:
5839 free_cpumask_var(rd->span);
0c910d28 5840out:
c6c4927b 5841 return -ENOMEM;
57d885fe
GH
5842}
5843
029632fb
PZ
5844/*
5845 * By default the system creates a single root-domain with all cpus as
5846 * members (mimicking the global state we have today).
5847 */
5848struct root_domain def_root_domain;
5849
57d885fe
GH
5850static void init_defrootdomain(void)
5851{
68c38fc3 5852 init_rootdomain(&def_root_domain);
c6c4927b 5853
57d885fe
GH
5854 atomic_set(&def_root_domain.refcount, 1);
5855}
5856
dc938520 5857static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5858{
5859 struct root_domain *rd;
5860
5861 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5862 if (!rd)
5863 return NULL;
5864
68c38fc3 5865 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5866 kfree(rd);
5867 return NULL;
5868 }
57d885fe
GH
5869
5870 return rd;
5871}
5872
63b2ca30 5873static void free_sched_groups(struct sched_group *sg, int free_sgc)
e3589f6c
PZ
5874{
5875 struct sched_group *tmp, *first;
5876
5877 if (!sg)
5878 return;
5879
5880 first = sg;
5881 do {
5882 tmp = sg->next;
5883
63b2ca30
NP
5884 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5885 kfree(sg->sgc);
e3589f6c
PZ
5886
5887 kfree(sg);
5888 sg = tmp;
5889 } while (sg != first);
5890}
5891
dce840a0
PZ
5892static void free_sched_domain(struct rcu_head *rcu)
5893{
5894 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5895
5896 /*
5897 * If its an overlapping domain it has private groups, iterate and
5898 * nuke them all.
5899 */
5900 if (sd->flags & SD_OVERLAP) {
5901 free_sched_groups(sd->groups, 1);
5902 } else if (atomic_dec_and_test(&sd->groups->ref)) {
63b2ca30 5903 kfree(sd->groups->sgc);
dce840a0 5904 kfree(sd->groups);
9c3f75cb 5905 }
dce840a0
PZ
5906 kfree(sd);
5907}
5908
5909static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5910{
5911 call_rcu(&sd->rcu, free_sched_domain);
5912}
5913
5914static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5915{
5916 for (; sd; sd = sd->parent)
5917 destroy_sched_domain(sd, cpu);
5918}
5919
518cd623
PZ
5920/*
5921 * Keep a special pointer to the highest sched_domain that has
5922 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5923 * allows us to avoid some pointer chasing select_idle_sibling().
5924 *
5925 * Also keep a unique ID per domain (we use the first cpu number in
5926 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5927 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5928 */
5929DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5930DEFINE_PER_CPU(int, sd_llc_size);
518cd623 5931DEFINE_PER_CPU(int, sd_llc_id);
fb13c7ee 5932DEFINE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
5933DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5934DEFINE_PER_CPU(struct sched_domain *, sd_asym);
518cd623
PZ
5935
5936static void update_top_cache_domain(int cpu)
5937{
5938 struct sched_domain *sd;
5d4cf996 5939 struct sched_domain *busy_sd = NULL;
518cd623 5940 int id = cpu;
7d9ffa89 5941 int size = 1;
518cd623
PZ
5942
5943 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 5944 if (sd) {
518cd623 5945 id = cpumask_first(sched_domain_span(sd));
7d9ffa89 5946 size = cpumask_weight(sched_domain_span(sd));
5d4cf996 5947 busy_sd = sd->parent; /* sd_busy */
7d9ffa89 5948 }
5d4cf996 5949 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
518cd623
PZ
5950
5951 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 5952 per_cpu(sd_llc_size, cpu) = size;
518cd623 5953 per_cpu(sd_llc_id, cpu) = id;
fb13c7ee
MG
5954
5955 sd = lowest_flag_domain(cpu, SD_NUMA);
5956 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
37dc6b50
PM
5957
5958 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5959 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
518cd623
PZ
5960}
5961
1da177e4 5962/*
0eab9146 5963 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5964 * hold the hotplug lock.
5965 */
0eab9146
IM
5966static void
5967cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5968{
70b97a7f 5969 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5970 struct sched_domain *tmp;
5971
5972 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5973 for (tmp = sd; tmp; ) {
245af2c7
SS
5974 struct sched_domain *parent = tmp->parent;
5975 if (!parent)
5976 break;
f29c9b1c 5977
1a848870 5978 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5979 tmp->parent = parent->parent;
1a848870
SS
5980 if (parent->parent)
5981 parent->parent->child = tmp;
10866e62
PZ
5982 /*
5983 * Transfer SD_PREFER_SIBLING down in case of a
5984 * degenerate parent; the spans match for this
5985 * so the property transfers.
5986 */
5987 if (parent->flags & SD_PREFER_SIBLING)
5988 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 5989 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5990 } else
5991 tmp = tmp->parent;
245af2c7
SS
5992 }
5993
1a848870 5994 if (sd && sd_degenerate(sd)) {
dce840a0 5995 tmp = sd;
245af2c7 5996 sd = sd->parent;
dce840a0 5997 destroy_sched_domain(tmp, cpu);
1a848870
SS
5998 if (sd)
5999 sd->child = NULL;
6000 }
1da177e4 6001
4cb98839 6002 sched_domain_debug(sd, cpu);
1da177e4 6003
57d885fe 6004 rq_attach_root(rq, rd);
dce840a0 6005 tmp = rq->sd;
674311d5 6006 rcu_assign_pointer(rq->sd, sd);
dce840a0 6007 destroy_sched_domains(tmp, cpu);
518cd623
PZ
6008
6009 update_top_cache_domain(cpu);
1da177e4
LT
6010}
6011
1da177e4
LT
6012/* Setup the mask of cpus configured for isolated domains */
6013static int __init isolated_cpu_setup(char *str)
6014{
bdddd296 6015 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 6016 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
6017 return 1;
6018}
6019
8927f494 6020__setup("isolcpus=", isolated_cpu_setup);
1da177e4 6021
49a02c51 6022struct s_data {
21d42ccf 6023 struct sched_domain ** __percpu sd;
49a02c51
AH
6024 struct root_domain *rd;
6025};
6026
2109b99e 6027enum s_alloc {
2109b99e 6028 sa_rootdomain,
21d42ccf 6029 sa_sd,
dce840a0 6030 sa_sd_storage,
2109b99e
AH
6031 sa_none,
6032};
6033
c1174876
PZ
6034/*
6035 * Build an iteration mask that can exclude certain CPUs from the upwards
6036 * domain traversal.
6037 *
6038 * Asymmetric node setups can result in situations where the domain tree is of
6039 * unequal depth, make sure to skip domains that already cover the entire
6040 * range.
6041 *
6042 * In that case build_sched_domains() will have terminated the iteration early
6043 * and our sibling sd spans will be empty. Domains should always include the
6044 * cpu they're built on, so check that.
6045 *
6046 */
6047static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6048{
6049 const struct cpumask *span = sched_domain_span(sd);
6050 struct sd_data *sdd = sd->private;
6051 struct sched_domain *sibling;
6052 int i;
6053
6054 for_each_cpu(i, span) {
6055 sibling = *per_cpu_ptr(sdd->sd, i);
6056 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6057 continue;
6058
6059 cpumask_set_cpu(i, sched_group_mask(sg));
6060 }
6061}
6062
6063/*
6064 * Return the canonical balance cpu for this group, this is the first cpu
6065 * of this group that's also in the iteration mask.
6066 */
6067int group_balance_cpu(struct sched_group *sg)
6068{
6069 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6070}
6071
e3589f6c
PZ
6072static int
6073build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6074{
6075 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6076 const struct cpumask *span = sched_domain_span(sd);
6077 struct cpumask *covered = sched_domains_tmpmask;
6078 struct sd_data *sdd = sd->private;
aaecac4a 6079 struct sched_domain *sibling;
e3589f6c
PZ
6080 int i;
6081
6082 cpumask_clear(covered);
6083
6084 for_each_cpu(i, span) {
6085 struct cpumask *sg_span;
6086
6087 if (cpumask_test_cpu(i, covered))
6088 continue;
6089
aaecac4a 6090 sibling = *per_cpu_ptr(sdd->sd, i);
c1174876
PZ
6091
6092 /* See the comment near build_group_mask(). */
aaecac4a 6093 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
c1174876
PZ
6094 continue;
6095
e3589f6c 6096 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 6097 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
6098
6099 if (!sg)
6100 goto fail;
6101
6102 sg_span = sched_group_cpus(sg);
aaecac4a
ZZ
6103 if (sibling->child)
6104 cpumask_copy(sg_span, sched_domain_span(sibling->child));
6105 else
e3589f6c
PZ
6106 cpumask_set_cpu(i, sg_span);
6107
6108 cpumask_or(covered, covered, sg_span);
6109
63b2ca30
NP
6110 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6111 if (atomic_inc_return(&sg->sgc->ref) == 1)
c1174876
PZ
6112 build_group_mask(sd, sg);
6113
c3decf0d 6114 /*
63b2ca30 6115 * Initialize sgc->capacity such that even if we mess up the
c3decf0d
PZ
6116 * domains and no possible iteration will get us here, we won't
6117 * die on a /0 trap.
6118 */
ca8ce3d0 6119 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
e3589f6c 6120
c1174876
PZ
6121 /*
6122 * Make sure the first group of this domain contains the
6123 * canonical balance cpu. Otherwise the sched_domain iteration
6124 * breaks. See update_sg_lb_stats().
6125 */
74a5ce20 6126 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 6127 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
6128 groups = sg;
6129
6130 if (!first)
6131 first = sg;
6132 if (last)
6133 last->next = sg;
6134 last = sg;
6135 last->next = first;
6136 }
6137 sd->groups = groups;
6138
6139 return 0;
6140
6141fail:
6142 free_sched_groups(first, 0);
6143
6144 return -ENOMEM;
6145}
6146
dce840a0 6147static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 6148{
dce840a0
PZ
6149 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6150 struct sched_domain *child = sd->child;
1da177e4 6151
dce840a0
PZ
6152 if (child)
6153 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 6154
9c3f75cb 6155 if (sg) {
dce840a0 6156 *sg = *per_cpu_ptr(sdd->sg, cpu);
63b2ca30
NP
6157 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6158 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
9c3f75cb 6159 }
dce840a0
PZ
6160
6161 return cpu;
1e9f28fa 6162}
1e9f28fa 6163
01a08546 6164/*
dce840a0
PZ
6165 * build_sched_groups will build a circular linked list of the groups
6166 * covered by the given span, and will set each group's ->cpumask correctly,
ced549fa 6167 * and ->cpu_capacity to 0.
e3589f6c
PZ
6168 *
6169 * Assumes the sched_domain tree is fully constructed
01a08546 6170 */
e3589f6c
PZ
6171static int
6172build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 6173{
dce840a0
PZ
6174 struct sched_group *first = NULL, *last = NULL;
6175 struct sd_data *sdd = sd->private;
6176 const struct cpumask *span = sched_domain_span(sd);
f96225fd 6177 struct cpumask *covered;
dce840a0 6178 int i;
9c1cfda2 6179
e3589f6c
PZ
6180 get_group(cpu, sdd, &sd->groups);
6181 atomic_inc(&sd->groups->ref);
6182
0936629f 6183 if (cpu != cpumask_first(span))
e3589f6c
PZ
6184 return 0;
6185
f96225fd
PZ
6186 lockdep_assert_held(&sched_domains_mutex);
6187 covered = sched_domains_tmpmask;
6188
dce840a0 6189 cpumask_clear(covered);
6711cab4 6190
dce840a0
PZ
6191 for_each_cpu(i, span) {
6192 struct sched_group *sg;
cd08e923 6193 int group, j;
6711cab4 6194
dce840a0
PZ
6195 if (cpumask_test_cpu(i, covered))
6196 continue;
6711cab4 6197
cd08e923 6198 group = get_group(i, sdd, &sg);
c1174876 6199 cpumask_setall(sched_group_mask(sg));
0601a88d 6200
dce840a0
PZ
6201 for_each_cpu(j, span) {
6202 if (get_group(j, sdd, NULL) != group)
6203 continue;
0601a88d 6204
dce840a0
PZ
6205 cpumask_set_cpu(j, covered);
6206 cpumask_set_cpu(j, sched_group_cpus(sg));
6207 }
0601a88d 6208
dce840a0
PZ
6209 if (!first)
6210 first = sg;
6211 if (last)
6212 last->next = sg;
6213 last = sg;
6214 }
6215 last->next = first;
e3589f6c
PZ
6216
6217 return 0;
0601a88d 6218}
51888ca2 6219
89c4710e 6220/*
63b2ca30 6221 * Initialize sched groups cpu_capacity.
89c4710e 6222 *
63b2ca30 6223 * cpu_capacity indicates the capacity of sched group, which is used while
89c4710e 6224 * distributing the load between different sched groups in a sched domain.
63b2ca30
NP
6225 * Typically cpu_capacity for all the groups in a sched domain will be same
6226 * unless there are asymmetries in the topology. If there are asymmetries,
6227 * group having more cpu_capacity will pickup more load compared to the
6228 * group having less cpu_capacity.
89c4710e 6229 */
63b2ca30 6230static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
89c4710e 6231{
e3589f6c 6232 struct sched_group *sg = sd->groups;
89c4710e 6233
94c95ba6 6234 WARN_ON(!sg);
e3589f6c
PZ
6235
6236 do {
6237 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6238 sg = sg->next;
6239 } while (sg != sd->groups);
89c4710e 6240
c1174876 6241 if (cpu != group_balance_cpu(sg))
e3589f6c 6242 return;
aae6d3dd 6243
63b2ca30
NP
6244 update_group_capacity(sd, cpu);
6245 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
89c4710e
SS
6246}
6247
7c16ec58
MT
6248/*
6249 * Initializers for schedule domains
6250 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6251 */
6252
1d3504fc 6253static int default_relax_domain_level = -1;
60495e77 6254int sched_domain_level_max;
1d3504fc
HS
6255
6256static int __init setup_relax_domain_level(char *str)
6257{
a841f8ce
DS
6258 if (kstrtoint(str, 0, &default_relax_domain_level))
6259 pr_warn("Unable to set relax_domain_level\n");
30e0e178 6260
1d3504fc
HS
6261 return 1;
6262}
6263__setup("relax_domain_level=", setup_relax_domain_level);
6264
6265static void set_domain_attribute(struct sched_domain *sd,
6266 struct sched_domain_attr *attr)
6267{
6268 int request;
6269
6270 if (!attr || attr->relax_domain_level < 0) {
6271 if (default_relax_domain_level < 0)
6272 return;
6273 else
6274 request = default_relax_domain_level;
6275 } else
6276 request = attr->relax_domain_level;
6277 if (request < sd->level) {
6278 /* turn off idle balance on this domain */
c88d5910 6279 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6280 } else {
6281 /* turn on idle balance on this domain */
c88d5910 6282 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6283 }
6284}
6285
54ab4ff4
PZ
6286static void __sdt_free(const struct cpumask *cpu_map);
6287static int __sdt_alloc(const struct cpumask *cpu_map);
6288
2109b99e
AH
6289static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6290 const struct cpumask *cpu_map)
6291{
6292 switch (what) {
2109b99e 6293 case sa_rootdomain:
822ff793
PZ
6294 if (!atomic_read(&d->rd->refcount))
6295 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
6296 case sa_sd:
6297 free_percpu(d->sd); /* fall through */
dce840a0 6298 case sa_sd_storage:
54ab4ff4 6299 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
6300 case sa_none:
6301 break;
6302 }
6303}
3404c8d9 6304
2109b99e
AH
6305static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6306 const struct cpumask *cpu_map)
6307{
dce840a0
PZ
6308 memset(d, 0, sizeof(*d));
6309
54ab4ff4
PZ
6310 if (__sdt_alloc(cpu_map))
6311 return sa_sd_storage;
dce840a0
PZ
6312 d->sd = alloc_percpu(struct sched_domain *);
6313 if (!d->sd)
6314 return sa_sd_storage;
2109b99e 6315 d->rd = alloc_rootdomain();
dce840a0 6316 if (!d->rd)
21d42ccf 6317 return sa_sd;
2109b99e
AH
6318 return sa_rootdomain;
6319}
57d885fe 6320
dce840a0
PZ
6321/*
6322 * NULL the sd_data elements we've used to build the sched_domain and
6323 * sched_group structure so that the subsequent __free_domain_allocs()
6324 * will not free the data we're using.
6325 */
6326static void claim_allocations(int cpu, struct sched_domain *sd)
6327{
6328 struct sd_data *sdd = sd->private;
dce840a0
PZ
6329
6330 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6331 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6332
e3589f6c 6333 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 6334 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c 6335
63b2ca30
NP
6336 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6337 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
dce840a0
PZ
6338}
6339
cb83b629 6340#ifdef CONFIG_NUMA
cb83b629 6341static int sched_domains_numa_levels;
e3fe70b1 6342enum numa_topology_type sched_numa_topology_type;
cb83b629 6343static int *sched_domains_numa_distance;
9942f79b 6344int sched_max_numa_distance;
cb83b629
PZ
6345static struct cpumask ***sched_domains_numa_masks;
6346static int sched_domains_curr_level;
143e1e28 6347#endif
cb83b629 6348
143e1e28
VG
6349/*
6350 * SD_flags allowed in topology descriptions.
6351 *
5d4dfddd 6352 * SD_SHARE_CPUCAPACITY - describes SMT topologies
143e1e28
VG
6353 * SD_SHARE_PKG_RESOURCES - describes shared caches
6354 * SD_NUMA - describes NUMA topologies
d77b3ed5 6355 * SD_SHARE_POWERDOMAIN - describes shared power domain
143e1e28
VG
6356 *
6357 * Odd one out:
6358 * SD_ASYM_PACKING - describes SMT quirks
6359 */
6360#define TOPOLOGY_SD_FLAGS \
5d4dfddd 6361 (SD_SHARE_CPUCAPACITY | \
143e1e28
VG
6362 SD_SHARE_PKG_RESOURCES | \
6363 SD_NUMA | \
d77b3ed5
VG
6364 SD_ASYM_PACKING | \
6365 SD_SHARE_POWERDOMAIN)
cb83b629
PZ
6366
6367static struct sched_domain *
143e1e28 6368sd_init(struct sched_domain_topology_level *tl, int cpu)
cb83b629
PZ
6369{
6370 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
143e1e28
VG
6371 int sd_weight, sd_flags = 0;
6372
6373#ifdef CONFIG_NUMA
6374 /*
6375 * Ugly hack to pass state to sd_numa_mask()...
6376 */
6377 sched_domains_curr_level = tl->numa_level;
6378#endif
6379
6380 sd_weight = cpumask_weight(tl->mask(cpu));
6381
6382 if (tl->sd_flags)
6383 sd_flags = (*tl->sd_flags)();
6384 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6385 "wrong sd_flags in topology description\n"))
6386 sd_flags &= ~TOPOLOGY_SD_FLAGS;
cb83b629
PZ
6387
6388 *sd = (struct sched_domain){
6389 .min_interval = sd_weight,
6390 .max_interval = 2*sd_weight,
6391 .busy_factor = 32,
870a0bb5 6392 .imbalance_pct = 125,
143e1e28
VG
6393
6394 .cache_nice_tries = 0,
6395 .busy_idx = 0,
6396 .idle_idx = 0,
cb83b629
PZ
6397 .newidle_idx = 0,
6398 .wake_idx = 0,
6399 .forkexec_idx = 0,
6400
6401 .flags = 1*SD_LOAD_BALANCE
6402 | 1*SD_BALANCE_NEWIDLE
143e1e28
VG
6403 | 1*SD_BALANCE_EXEC
6404 | 1*SD_BALANCE_FORK
cb83b629 6405 | 0*SD_BALANCE_WAKE
143e1e28 6406 | 1*SD_WAKE_AFFINE
5d4dfddd 6407 | 0*SD_SHARE_CPUCAPACITY
cb83b629 6408 | 0*SD_SHARE_PKG_RESOURCES
143e1e28 6409 | 0*SD_SERIALIZE
cb83b629 6410 | 0*SD_PREFER_SIBLING
143e1e28
VG
6411 | 0*SD_NUMA
6412 | sd_flags
cb83b629 6413 ,
143e1e28 6414
cb83b629
PZ
6415 .last_balance = jiffies,
6416 .balance_interval = sd_weight,
143e1e28 6417 .smt_gain = 0,
2b4cfe64
JL
6418 .max_newidle_lb_cost = 0,
6419 .next_decay_max_lb_cost = jiffies,
143e1e28
VG
6420#ifdef CONFIG_SCHED_DEBUG
6421 .name = tl->name,
6422#endif
cb83b629 6423 };
cb83b629
PZ
6424
6425 /*
143e1e28 6426 * Convert topological properties into behaviour.
cb83b629 6427 */
143e1e28 6428
5d4dfddd 6429 if (sd->flags & SD_SHARE_CPUCAPACITY) {
caff37ef 6430 sd->flags |= SD_PREFER_SIBLING;
143e1e28
VG
6431 sd->imbalance_pct = 110;
6432 sd->smt_gain = 1178; /* ~15% */
143e1e28
VG
6433
6434 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6435 sd->imbalance_pct = 117;
6436 sd->cache_nice_tries = 1;
6437 sd->busy_idx = 2;
6438
6439#ifdef CONFIG_NUMA
6440 } else if (sd->flags & SD_NUMA) {
6441 sd->cache_nice_tries = 2;
6442 sd->busy_idx = 3;
6443 sd->idle_idx = 2;
6444
6445 sd->flags |= SD_SERIALIZE;
6446 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6447 sd->flags &= ~(SD_BALANCE_EXEC |
6448 SD_BALANCE_FORK |
6449 SD_WAKE_AFFINE);
6450 }
6451
6452#endif
6453 } else {
6454 sd->flags |= SD_PREFER_SIBLING;
6455 sd->cache_nice_tries = 1;
6456 sd->busy_idx = 2;
6457 sd->idle_idx = 1;
6458 }
6459
6460 sd->private = &tl->data;
cb83b629
PZ
6461
6462 return sd;
6463}
6464
143e1e28
VG
6465/*
6466 * Topology list, bottom-up.
6467 */
6468static struct sched_domain_topology_level default_topology[] = {
6469#ifdef CONFIG_SCHED_SMT
6470 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6471#endif
6472#ifdef CONFIG_SCHED_MC
6473 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
143e1e28
VG
6474#endif
6475 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6476 { NULL, },
6477};
6478
6479struct sched_domain_topology_level *sched_domain_topology = default_topology;
6480
6481#define for_each_sd_topology(tl) \
6482 for (tl = sched_domain_topology; tl->mask; tl++)
6483
6484void set_sched_topology(struct sched_domain_topology_level *tl)
6485{
6486 sched_domain_topology = tl;
6487}
6488
6489#ifdef CONFIG_NUMA
6490
cb83b629
PZ
6491static const struct cpumask *sd_numa_mask(int cpu)
6492{
6493 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6494}
6495
d039ac60
PZ
6496static void sched_numa_warn(const char *str)
6497{
6498 static int done = false;
6499 int i,j;
6500
6501 if (done)
6502 return;
6503
6504 done = true;
6505
6506 printk(KERN_WARNING "ERROR: %s\n\n", str);
6507
6508 for (i = 0; i < nr_node_ids; i++) {
6509 printk(KERN_WARNING " ");
6510 for (j = 0; j < nr_node_ids; j++)
6511 printk(KERN_CONT "%02d ", node_distance(i,j));
6512 printk(KERN_CONT "\n");
6513 }
6514 printk(KERN_WARNING "\n");
6515}
6516
9942f79b 6517bool find_numa_distance(int distance)
d039ac60
PZ
6518{
6519 int i;
6520
6521 if (distance == node_distance(0, 0))
6522 return true;
6523
6524 for (i = 0; i < sched_domains_numa_levels; i++) {
6525 if (sched_domains_numa_distance[i] == distance)
6526 return true;
6527 }
6528
6529 return false;
6530}
6531
e3fe70b1
RR
6532/*
6533 * A system can have three types of NUMA topology:
6534 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6535 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6536 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6537 *
6538 * The difference between a glueless mesh topology and a backplane
6539 * topology lies in whether communication between not directly
6540 * connected nodes goes through intermediary nodes (where programs
6541 * could run), or through backplane controllers. This affects
6542 * placement of programs.
6543 *
6544 * The type of topology can be discerned with the following tests:
6545 * - If the maximum distance between any nodes is 1 hop, the system
6546 * is directly connected.
6547 * - If for two nodes A and B, located N > 1 hops away from each other,
6548 * there is an intermediary node C, which is < N hops away from both
6549 * nodes A and B, the system is a glueless mesh.
6550 */
6551static void init_numa_topology_type(void)
6552{
6553 int a, b, c, n;
6554
6555 n = sched_max_numa_distance;
6556
e237882b 6557 if (sched_domains_numa_levels <= 1) {
e3fe70b1 6558 sched_numa_topology_type = NUMA_DIRECT;
e237882b
AG
6559 return;
6560 }
e3fe70b1
RR
6561
6562 for_each_online_node(a) {
6563 for_each_online_node(b) {
6564 /* Find two nodes furthest removed from each other. */
6565 if (node_distance(a, b) < n)
6566 continue;
6567
6568 /* Is there an intermediary node between a and b? */
6569 for_each_online_node(c) {
6570 if (node_distance(a, c) < n &&
6571 node_distance(b, c) < n) {
6572 sched_numa_topology_type =
6573 NUMA_GLUELESS_MESH;
6574 return;
6575 }
6576 }
6577
6578 sched_numa_topology_type = NUMA_BACKPLANE;
6579 return;
6580 }
6581 }
6582}
6583
cb83b629
PZ
6584static void sched_init_numa(void)
6585{
6586 int next_distance, curr_distance = node_distance(0, 0);
6587 struct sched_domain_topology_level *tl;
6588 int level = 0;
6589 int i, j, k;
6590
cb83b629
PZ
6591 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6592 if (!sched_domains_numa_distance)
6593 return;
6594
6595 /*
6596 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6597 * unique distances in the node_distance() table.
6598 *
6599 * Assumes node_distance(0,j) includes all distances in
6600 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6601 */
6602 next_distance = curr_distance;
6603 for (i = 0; i < nr_node_ids; i++) {
6604 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6605 for (k = 0; k < nr_node_ids; k++) {
6606 int distance = node_distance(i, k);
6607
6608 if (distance > curr_distance &&
6609 (distance < next_distance ||
6610 next_distance == curr_distance))
6611 next_distance = distance;
6612
6613 /*
6614 * While not a strong assumption it would be nice to know
6615 * about cases where if node A is connected to B, B is not
6616 * equally connected to A.
6617 */
6618 if (sched_debug() && node_distance(k, i) != distance)
6619 sched_numa_warn("Node-distance not symmetric");
6620
6621 if (sched_debug() && i && !find_numa_distance(distance))
6622 sched_numa_warn("Node-0 not representative");
6623 }
6624 if (next_distance != curr_distance) {
6625 sched_domains_numa_distance[level++] = next_distance;
6626 sched_domains_numa_levels = level;
6627 curr_distance = next_distance;
6628 } else break;
cb83b629 6629 }
d039ac60
PZ
6630
6631 /*
6632 * In case of sched_debug() we verify the above assumption.
6633 */
6634 if (!sched_debug())
6635 break;
cb83b629 6636 }
c123588b
AR
6637
6638 if (!level)
6639 return;
6640
cb83b629
PZ
6641 /*
6642 * 'level' contains the number of unique distances, excluding the
6643 * identity distance node_distance(i,i).
6644 *
28b4a521 6645 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
6646 * numbers.
6647 */
6648
5f7865f3
TC
6649 /*
6650 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6651 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6652 * the array will contain less then 'level' members. This could be
6653 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6654 * in other functions.
6655 *
6656 * We reset it to 'level' at the end of this function.
6657 */
6658 sched_domains_numa_levels = 0;
6659
cb83b629
PZ
6660 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6661 if (!sched_domains_numa_masks)
6662 return;
6663
6664 /*
6665 * Now for each level, construct a mask per node which contains all
6666 * cpus of nodes that are that many hops away from us.
6667 */
6668 for (i = 0; i < level; i++) {
6669 sched_domains_numa_masks[i] =
6670 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6671 if (!sched_domains_numa_masks[i])
6672 return;
6673
6674 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6675 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6676 if (!mask)
6677 return;
6678
6679 sched_domains_numa_masks[i][j] = mask;
6680
6681 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 6682 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6683 continue;
6684
6685 cpumask_or(mask, mask, cpumask_of_node(k));
6686 }
6687 }
6688 }
6689
143e1e28
VG
6690 /* Compute default topology size */
6691 for (i = 0; sched_domain_topology[i].mask; i++);
6692
c515db8c 6693 tl = kzalloc((i + level + 1) *
cb83b629
PZ
6694 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6695 if (!tl)
6696 return;
6697
6698 /*
6699 * Copy the default topology bits..
6700 */
143e1e28
VG
6701 for (i = 0; sched_domain_topology[i].mask; i++)
6702 tl[i] = sched_domain_topology[i];
cb83b629
PZ
6703
6704 /*
6705 * .. and append 'j' levels of NUMA goodness.
6706 */
6707 for (j = 0; j < level; i++, j++) {
6708 tl[i] = (struct sched_domain_topology_level){
cb83b629 6709 .mask = sd_numa_mask,
143e1e28 6710 .sd_flags = cpu_numa_flags,
cb83b629
PZ
6711 .flags = SDTL_OVERLAP,
6712 .numa_level = j,
143e1e28 6713 SD_INIT_NAME(NUMA)
cb83b629
PZ
6714 };
6715 }
6716
6717 sched_domain_topology = tl;
5f7865f3
TC
6718
6719 sched_domains_numa_levels = level;
9942f79b 6720 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
e3fe70b1
RR
6721
6722 init_numa_topology_type();
cb83b629 6723}
301a5cba
TC
6724
6725static void sched_domains_numa_masks_set(int cpu)
6726{
6727 int i, j;
6728 int node = cpu_to_node(cpu);
6729
6730 for (i = 0; i < sched_domains_numa_levels; i++) {
6731 for (j = 0; j < nr_node_ids; j++) {
6732 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6733 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6734 }
6735 }
6736}
6737
6738static void sched_domains_numa_masks_clear(int cpu)
6739{
6740 int i, j;
6741 for (i = 0; i < sched_domains_numa_levels; i++) {
6742 for (j = 0; j < nr_node_ids; j++)
6743 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6744 }
6745}
6746
6747/*
6748 * Update sched_domains_numa_masks[level][node] array when new cpus
6749 * are onlined.
6750 */
6751static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6752 unsigned long action,
6753 void *hcpu)
6754{
6755 int cpu = (long)hcpu;
6756
6757 switch (action & ~CPU_TASKS_FROZEN) {
6758 case CPU_ONLINE:
6759 sched_domains_numa_masks_set(cpu);
6760 break;
6761
6762 case CPU_DEAD:
6763 sched_domains_numa_masks_clear(cpu);
6764 break;
6765
6766 default:
6767 return NOTIFY_DONE;
6768 }
6769
6770 return NOTIFY_OK;
cb83b629
PZ
6771}
6772#else
6773static inline void sched_init_numa(void)
6774{
6775}
301a5cba
TC
6776
6777static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6778 unsigned long action,
6779 void *hcpu)
6780{
6781 return 0;
6782}
cb83b629
PZ
6783#endif /* CONFIG_NUMA */
6784
54ab4ff4
PZ
6785static int __sdt_alloc(const struct cpumask *cpu_map)
6786{
6787 struct sched_domain_topology_level *tl;
6788 int j;
6789
27723a68 6790 for_each_sd_topology(tl) {
54ab4ff4
PZ
6791 struct sd_data *sdd = &tl->data;
6792
6793 sdd->sd = alloc_percpu(struct sched_domain *);
6794 if (!sdd->sd)
6795 return -ENOMEM;
6796
6797 sdd->sg = alloc_percpu(struct sched_group *);
6798 if (!sdd->sg)
6799 return -ENOMEM;
6800
63b2ca30
NP
6801 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6802 if (!sdd->sgc)
9c3f75cb
PZ
6803 return -ENOMEM;
6804
54ab4ff4
PZ
6805 for_each_cpu(j, cpu_map) {
6806 struct sched_domain *sd;
6807 struct sched_group *sg;
63b2ca30 6808 struct sched_group_capacity *sgc;
54ab4ff4 6809
5cc389bc 6810 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
54ab4ff4
PZ
6811 GFP_KERNEL, cpu_to_node(j));
6812 if (!sd)
6813 return -ENOMEM;
6814
6815 *per_cpu_ptr(sdd->sd, j) = sd;
6816
6817 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6818 GFP_KERNEL, cpu_to_node(j));
6819 if (!sg)
6820 return -ENOMEM;
6821
30b4e9eb
IM
6822 sg->next = sg;
6823
54ab4ff4 6824 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6825
63b2ca30 6826 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
9c3f75cb 6827 GFP_KERNEL, cpu_to_node(j));
63b2ca30 6828 if (!sgc)
9c3f75cb
PZ
6829 return -ENOMEM;
6830
63b2ca30 6831 *per_cpu_ptr(sdd->sgc, j) = sgc;
54ab4ff4
PZ
6832 }
6833 }
6834
6835 return 0;
6836}
6837
6838static void __sdt_free(const struct cpumask *cpu_map)
6839{
6840 struct sched_domain_topology_level *tl;
6841 int j;
6842
27723a68 6843 for_each_sd_topology(tl) {
54ab4ff4
PZ
6844 struct sd_data *sdd = &tl->data;
6845
6846 for_each_cpu(j, cpu_map) {
fb2cf2c6 6847 struct sched_domain *sd;
6848
6849 if (sdd->sd) {
6850 sd = *per_cpu_ptr(sdd->sd, j);
6851 if (sd && (sd->flags & SD_OVERLAP))
6852 free_sched_groups(sd->groups, 0);
6853 kfree(*per_cpu_ptr(sdd->sd, j));
6854 }
6855
6856 if (sdd->sg)
6857 kfree(*per_cpu_ptr(sdd->sg, j));
63b2ca30
NP
6858 if (sdd->sgc)
6859 kfree(*per_cpu_ptr(sdd->sgc, j));
54ab4ff4
PZ
6860 }
6861 free_percpu(sdd->sd);
fb2cf2c6 6862 sdd->sd = NULL;
54ab4ff4 6863 free_percpu(sdd->sg);
fb2cf2c6 6864 sdd->sg = NULL;
63b2ca30
NP
6865 free_percpu(sdd->sgc);
6866 sdd->sgc = NULL;
54ab4ff4
PZ
6867 }
6868}
6869
2c402dc3 6870struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
6871 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6872 struct sched_domain *child, int cpu)
2c402dc3 6873{
143e1e28 6874 struct sched_domain *sd = sd_init(tl, cpu);
2c402dc3 6875 if (!sd)
d069b916 6876 return child;
2c402dc3 6877
2c402dc3 6878 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6879 if (child) {
6880 sd->level = child->level + 1;
6881 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6882 child->parent = sd;
c75e0128 6883 sd->child = child;
6ae72dff
PZ
6884
6885 if (!cpumask_subset(sched_domain_span(child),
6886 sched_domain_span(sd))) {
6887 pr_err("BUG: arch topology borken\n");
6888#ifdef CONFIG_SCHED_DEBUG
6889 pr_err(" the %s domain not a subset of the %s domain\n",
6890 child->name, sd->name);
6891#endif
6892 /* Fixup, ensure @sd has at least @child cpus. */
6893 cpumask_or(sched_domain_span(sd),
6894 sched_domain_span(sd),
6895 sched_domain_span(child));
6896 }
6897
60495e77 6898 }
a841f8ce 6899 set_domain_attribute(sd, attr);
2c402dc3
PZ
6900
6901 return sd;
6902}
6903
2109b99e
AH
6904/*
6905 * Build sched domains for a given set of cpus and attach the sched domains
6906 * to the individual cpus
6907 */
dce840a0
PZ
6908static int build_sched_domains(const struct cpumask *cpu_map,
6909 struct sched_domain_attr *attr)
2109b99e 6910{
1c632169 6911 enum s_alloc alloc_state;
dce840a0 6912 struct sched_domain *sd;
2109b99e 6913 struct s_data d;
822ff793 6914 int i, ret = -ENOMEM;
9c1cfda2 6915
2109b99e
AH
6916 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6917 if (alloc_state != sa_rootdomain)
6918 goto error;
9c1cfda2 6919
dce840a0 6920 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6921 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6922 struct sched_domain_topology_level *tl;
6923
3bd65a80 6924 sd = NULL;
27723a68 6925 for_each_sd_topology(tl) {
4a850cbe 6926 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
6927 if (tl == sched_domain_topology)
6928 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
6929 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6930 sd->flags |= SD_OVERLAP;
d110235d
PZ
6931 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6932 break;
e3589f6c 6933 }
dce840a0
PZ
6934 }
6935
6936 /* Build the groups for the domains */
6937 for_each_cpu(i, cpu_map) {
6938 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6939 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6940 if (sd->flags & SD_OVERLAP) {
6941 if (build_overlap_sched_groups(sd, i))
6942 goto error;
6943 } else {
6944 if (build_sched_groups(sd, i))
6945 goto error;
6946 }
1cf51902 6947 }
a06dadbe 6948 }
9c1cfda2 6949
ced549fa 6950 /* Calculate CPU capacity for physical packages and nodes */
a9c9a9b6
PZ
6951 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6952 if (!cpumask_test_cpu(i, cpu_map))
6953 continue;
9c1cfda2 6954
dce840a0
PZ
6955 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6956 claim_allocations(i, sd);
63b2ca30 6957 init_sched_groups_capacity(i, sd);
dce840a0 6958 }
f712c0c7 6959 }
9c1cfda2 6960
1da177e4 6961 /* Attach the domains */
dce840a0 6962 rcu_read_lock();
abcd083a 6963 for_each_cpu(i, cpu_map) {
21d42ccf 6964 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6965 cpu_attach_domain(sd, d.rd, i);
1da177e4 6966 }
dce840a0 6967 rcu_read_unlock();
51888ca2 6968
822ff793 6969 ret = 0;
51888ca2 6970error:
2109b99e 6971 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6972 return ret;
1da177e4 6973}
029190c5 6974
acc3f5d7 6975static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6976static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6977static struct sched_domain_attr *dattr_cur;
6978 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6979
6980/*
6981 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6982 * cpumask) fails, then fallback to a single sched domain,
6983 * as determined by the single cpumask fallback_doms.
029190c5 6984 */
4212823f 6985static cpumask_var_t fallback_doms;
029190c5 6986
ee79d1bd
HC
6987/*
6988 * arch_update_cpu_topology lets virtualized architectures update the
6989 * cpu core maps. It is supposed to return 1 if the topology changed
6990 * or 0 if it stayed the same.
6991 */
52f5684c 6992int __weak arch_update_cpu_topology(void)
22e52b07 6993{
ee79d1bd 6994 return 0;
22e52b07
HC
6995}
6996
acc3f5d7
RR
6997cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6998{
6999 int i;
7000 cpumask_var_t *doms;
7001
7002 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7003 if (!doms)
7004 return NULL;
7005 for (i = 0; i < ndoms; i++) {
7006 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7007 free_sched_domains(doms, i);
7008 return NULL;
7009 }
7010 }
7011 return doms;
7012}
7013
7014void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7015{
7016 unsigned int i;
7017 for (i = 0; i < ndoms; i++)
7018 free_cpumask_var(doms[i]);
7019 kfree(doms);
7020}
7021
1a20ff27 7022/*
41a2d6cf 7023 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7024 * For now this just excludes isolated cpus, but could be used to
7025 * exclude other special cases in the future.
1a20ff27 7026 */
c4a8849a 7027static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7028{
7378547f
MM
7029 int err;
7030
22e52b07 7031 arch_update_cpu_topology();
029190c5 7032 ndoms_cur = 1;
acc3f5d7 7033 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7034 if (!doms_cur)
acc3f5d7
RR
7035 doms_cur = &fallback_doms;
7036 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 7037 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 7038 register_sched_domain_sysctl();
7378547f
MM
7039
7040 return err;
1a20ff27
DG
7041}
7042
1a20ff27
DG
7043/*
7044 * Detach sched domains from a group of cpus specified in cpu_map
7045 * These cpus will now be attached to the NULL domain
7046 */
96f874e2 7047static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
7048{
7049 int i;
7050
dce840a0 7051 rcu_read_lock();
abcd083a 7052 for_each_cpu(i, cpu_map)
57d885fe 7053 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 7054 rcu_read_unlock();
1a20ff27
DG
7055}
7056
1d3504fc
HS
7057/* handle null as "default" */
7058static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7059 struct sched_domain_attr *new, int idx_new)
7060{
7061 struct sched_domain_attr tmp;
7062
7063 /* fast path */
7064 if (!new && !cur)
7065 return 1;
7066
7067 tmp = SD_ATTR_INIT;
7068 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7069 new ? (new + idx_new) : &tmp,
7070 sizeof(struct sched_domain_attr));
7071}
7072
029190c5
PJ
7073/*
7074 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7075 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7076 * doms_new[] to the current sched domain partitioning, doms_cur[].
7077 * It destroys each deleted domain and builds each new domain.
7078 *
acc3f5d7 7079 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7080 * The masks don't intersect (don't overlap.) We should setup one
7081 * sched domain for each mask. CPUs not in any of the cpumasks will
7082 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7083 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7084 * it as it is.
7085 *
acc3f5d7
RR
7086 * The passed in 'doms_new' should be allocated using
7087 * alloc_sched_domains. This routine takes ownership of it and will
7088 * free_sched_domains it when done with it. If the caller failed the
7089 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7090 * and partition_sched_domains() will fallback to the single partition
7091 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7092 *
96f874e2 7093 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7094 * ndoms_new == 0 is a special case for destroying existing domains,
7095 * and it will not create the default domain.
dfb512ec 7096 *
029190c5
PJ
7097 * Call with hotplug lock held
7098 */
acc3f5d7 7099void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7100 struct sched_domain_attr *dattr_new)
029190c5 7101{
dfb512ec 7102 int i, j, n;
d65bd5ec 7103 int new_topology;
029190c5 7104
712555ee 7105 mutex_lock(&sched_domains_mutex);
a1835615 7106
7378547f
MM
7107 /* always unregister in case we don't destroy any domains */
7108 unregister_sched_domain_sysctl();
7109
d65bd5ec
HC
7110 /* Let architecture update cpu core mappings. */
7111 new_topology = arch_update_cpu_topology();
7112
dfb512ec 7113 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7114
7115 /* Destroy deleted domains */
7116 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7117 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7118 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7119 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7120 goto match1;
7121 }
7122 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7123 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7124match1:
7125 ;
7126 }
7127
c8d2d47a 7128 n = ndoms_cur;
e761b772 7129 if (doms_new == NULL) {
c8d2d47a 7130 n = 0;
acc3f5d7 7131 doms_new = &fallback_doms;
6ad4c188 7132 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7133 WARN_ON_ONCE(dattr_new);
e761b772
MK
7134 }
7135
029190c5
PJ
7136 /* Build new domains */
7137 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 7138 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7139 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7140 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7141 goto match2;
7142 }
7143 /* no match - add a new doms_new */
dce840a0 7144 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7145match2:
7146 ;
7147 }
7148
7149 /* Remember the new sched domains */
acc3f5d7
RR
7150 if (doms_cur != &fallback_doms)
7151 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7152 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7153 doms_cur = doms_new;
1d3504fc 7154 dattr_cur = dattr_new;
029190c5 7155 ndoms_cur = ndoms_new;
7378547f
MM
7156
7157 register_sched_domain_sysctl();
a1835615 7158
712555ee 7159 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7160}
7161
d35be8ba
SB
7162static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
7163
1da177e4 7164/*
3a101d05
TH
7165 * Update cpusets according to cpu_active mask. If cpusets are
7166 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7167 * around partition_sched_domains().
d35be8ba
SB
7168 *
7169 * If we come here as part of a suspend/resume, don't touch cpusets because we
7170 * want to restore it back to its original state upon resume anyway.
1da177e4 7171 */
0b2e918a
TH
7172static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7173 void *hcpu)
e761b772 7174{
d35be8ba
SB
7175 switch (action) {
7176 case CPU_ONLINE_FROZEN:
7177 case CPU_DOWN_FAILED_FROZEN:
7178
7179 /*
7180 * num_cpus_frozen tracks how many CPUs are involved in suspend
7181 * resume sequence. As long as this is not the last online
7182 * operation in the resume sequence, just build a single sched
7183 * domain, ignoring cpusets.
7184 */
7185 num_cpus_frozen--;
7186 if (likely(num_cpus_frozen)) {
7187 partition_sched_domains(1, NULL, NULL);
7188 break;
7189 }
7190
7191 /*
7192 * This is the last CPU online operation. So fall through and
7193 * restore the original sched domains by considering the
7194 * cpuset configurations.
7195 */
7196
e761b772 7197 case CPU_ONLINE:
7ddf96b0 7198 cpuset_update_active_cpus(true);
d35be8ba 7199 break;
3a101d05
TH
7200 default:
7201 return NOTIFY_DONE;
7202 }
d35be8ba 7203 return NOTIFY_OK;
3a101d05 7204}
e761b772 7205
0b2e918a
TH
7206static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7207 void *hcpu)
3a101d05 7208{
3c18d447
JL
7209 unsigned long flags;
7210 long cpu = (long)hcpu;
7211 struct dl_bw *dl_b;
533445c6
OS
7212 bool overflow;
7213 int cpus;
3c18d447 7214
533445c6 7215 switch (action) {
3a101d05 7216 case CPU_DOWN_PREPARE:
533445c6
OS
7217 rcu_read_lock_sched();
7218 dl_b = dl_bw_of(cpu);
3c18d447 7219
533445c6
OS
7220 raw_spin_lock_irqsave(&dl_b->lock, flags);
7221 cpus = dl_bw_cpus(cpu);
7222 overflow = __dl_overflow(dl_b, cpus, 0, 0);
7223 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3c18d447 7224
533445c6 7225 rcu_read_unlock_sched();
3c18d447 7226
533445c6
OS
7227 if (overflow)
7228 return notifier_from_errno(-EBUSY);
7ddf96b0 7229 cpuset_update_active_cpus(false);
d35be8ba
SB
7230 break;
7231 case CPU_DOWN_PREPARE_FROZEN:
7232 num_cpus_frozen++;
7233 partition_sched_domains(1, NULL, NULL);
7234 break;
e761b772
MK
7235 default:
7236 return NOTIFY_DONE;
7237 }
d35be8ba 7238 return NOTIFY_OK;
e761b772 7239}
e761b772 7240
1da177e4
LT
7241void __init sched_init_smp(void)
7242{
dcc30a35
RR
7243 cpumask_var_t non_isolated_cpus;
7244
7245 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7246 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7247
cb83b629
PZ
7248 sched_init_numa();
7249
6acce3ef
PZ
7250 /*
7251 * There's no userspace yet to cause hotplug operations; hence all the
7252 * cpu masks are stable and all blatant races in the below code cannot
7253 * happen.
7254 */
712555ee 7255 mutex_lock(&sched_domains_mutex);
c4a8849a 7256 init_sched_domains(cpu_active_mask);
dcc30a35
RR
7257 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7258 if (cpumask_empty(non_isolated_cpus))
7259 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7260 mutex_unlock(&sched_domains_mutex);
e761b772 7261
301a5cba 7262 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
7263 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7264 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772 7265
b328ca18 7266 init_hrtick();
5c1e1767
NP
7267
7268 /* Move init over to a non-isolated CPU */
dcc30a35 7269 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7270 BUG();
19978ca6 7271 sched_init_granularity();
dcc30a35 7272 free_cpumask_var(non_isolated_cpus);
4212823f 7273
0e3900e6 7274 init_sched_rt_class();
1baca4ce 7275 init_sched_dl_class();
1da177e4
LT
7276}
7277#else
7278void __init sched_init_smp(void)
7279{
19978ca6 7280 sched_init_granularity();
1da177e4
LT
7281}
7282#endif /* CONFIG_SMP */
7283
7284int in_sched_functions(unsigned long addr)
7285{
1da177e4
LT
7286 return in_lock_functions(addr) ||
7287 (addr >= (unsigned long)__sched_text_start
7288 && addr < (unsigned long)__sched_text_end);
7289}
7290
029632fb 7291#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
7292/*
7293 * Default task group.
7294 * Every task in system belongs to this group at bootup.
7295 */
029632fb 7296struct task_group root_task_group;
35cf4e50 7297LIST_HEAD(task_groups);
052f1dc7 7298#endif
6f505b16 7299
e6252c3e 7300DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 7301
1da177e4
LT
7302void __init sched_init(void)
7303{
dd41f596 7304 int i, j;
434d53b0
MT
7305 unsigned long alloc_size = 0, ptr;
7306
7307#ifdef CONFIG_FAIR_GROUP_SCHED
7308 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7309#endif
7310#ifdef CONFIG_RT_GROUP_SCHED
7311 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7312#endif
434d53b0 7313 if (alloc_size) {
36b7b6d4 7314 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7315
7316#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 7317 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
7318 ptr += nr_cpu_ids * sizeof(void **);
7319
07e06b01 7320 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 7321 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7322
6d6bc0ad 7323#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 7324#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7325 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
7326 ptr += nr_cpu_ids * sizeof(void **);
7327
07e06b01 7328 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7329 ptr += nr_cpu_ids * sizeof(void **);
7330
6d6bc0ad 7331#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 7332 }
df7c8e84 7333#ifdef CONFIG_CPUMASK_OFFSTACK
b74e6278
AT
7334 for_each_possible_cpu(i) {
7335 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7336 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
434d53b0 7337 }
b74e6278 7338#endif /* CONFIG_CPUMASK_OFFSTACK */
dd41f596 7339
332ac17e
DF
7340 init_rt_bandwidth(&def_rt_bandwidth,
7341 global_rt_period(), global_rt_runtime());
7342 init_dl_bandwidth(&def_dl_bandwidth,
1724813d 7343 global_rt_period(), global_rt_runtime());
332ac17e 7344
57d885fe
GH
7345#ifdef CONFIG_SMP
7346 init_defrootdomain();
7347#endif
7348
d0b27fa7 7349#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7350 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 7351 global_rt_period(), global_rt_runtime());
6d6bc0ad 7352#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7353
7c941438 7354#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
7355 list_add(&root_task_group.list, &task_groups);
7356 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 7357 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 7358 autogroup_init(&init_task);
54c707e9 7359
7c941438 7360#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7361
0a945022 7362 for_each_possible_cpu(i) {
70b97a7f 7363 struct rq *rq;
1da177e4
LT
7364
7365 rq = cpu_rq(i);
05fa785c 7366 raw_spin_lock_init(&rq->lock);
7897986b 7367 rq->nr_running = 0;
dce48a84
TG
7368 rq->calc_load_active = 0;
7369 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 7370 init_cfs_rq(&rq->cfs);
07c54f7a
AV
7371 init_rt_rq(&rq->rt);
7372 init_dl_rq(&rq->dl);
dd41f596 7373#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 7374 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 7375 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 7376 /*
07e06b01 7377 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
7378 *
7379 * In case of task-groups formed thr' the cgroup filesystem, it
7380 * gets 100% of the cpu resources in the system. This overall
7381 * system cpu resource is divided among the tasks of
07e06b01 7382 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
7383 * based on each entity's (task or task-group's) weight
7384 * (se->load.weight).
7385 *
07e06b01 7386 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
7387 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7388 * then A0's share of the cpu resource is:
7389 *
0d905bca 7390 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 7391 *
07e06b01
YZ
7392 * We achieve this by letting root_task_group's tasks sit
7393 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 7394 */
ab84d31e 7395 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 7396 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
7397#endif /* CONFIG_FAIR_GROUP_SCHED */
7398
7399 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7400#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7401 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 7402#endif
1da177e4 7403
dd41f596
IM
7404 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7405 rq->cpu_load[j] = 0;
fdf3e95d
VP
7406
7407 rq->last_load_update_tick = jiffies;
7408
1da177e4 7409#ifdef CONFIG_SMP
41c7ce9a 7410 rq->sd = NULL;
57d885fe 7411 rq->rd = NULL;
ca6d75e6 7412 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
e3fca9e7 7413 rq->balance_callback = NULL;
1da177e4 7414 rq->active_balance = 0;
dd41f596 7415 rq->next_balance = jiffies;
1da177e4 7416 rq->push_cpu = 0;
0a2966b4 7417 rq->cpu = i;
1f11eb6a 7418 rq->online = 0;
eae0c9df
MG
7419 rq->idle_stamp = 0;
7420 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 7421 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
7422
7423 INIT_LIST_HEAD(&rq->cfs_tasks);
7424
dc938520 7425 rq_attach_root(rq, &def_root_domain);
3451d024 7426#ifdef CONFIG_NO_HZ_COMMON
1c792db7 7427 rq->nohz_flags = 0;
83cd4fe2 7428#endif
265f22a9
FW
7429#ifdef CONFIG_NO_HZ_FULL
7430 rq->last_sched_tick = 0;
7431#endif
1da177e4 7432#endif
8f4d37ec 7433 init_rq_hrtick(rq);
1da177e4 7434 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7435 }
7436
2dd73a4f 7437 set_load_weight(&init_task);
b50f60ce 7438
e107be36
AK
7439#ifdef CONFIG_PREEMPT_NOTIFIERS
7440 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7441#endif
7442
1da177e4
LT
7443 /*
7444 * The boot idle thread does lazy MMU switching as well:
7445 */
7446 atomic_inc(&init_mm.mm_count);
7447 enter_lazy_tlb(&init_mm, current);
7448
1b537c7d
YD
7449 /*
7450 * During early bootup we pretend to be a normal task:
7451 */
7452 current->sched_class = &fair_sched_class;
7453
1da177e4
LT
7454 /*
7455 * Make us the idle thread. Technically, schedule() should not be
7456 * called from this thread, however somewhere below it might be,
7457 * but because we are the idle thread, we just pick up running again
7458 * when this runqueue becomes "idle".
7459 */
7460 init_idle(current, smp_processor_id());
dce48a84
TG
7461
7462 calc_load_update = jiffies + LOAD_FREQ;
7463
bf4d83f6 7464#ifdef CONFIG_SMP
4cb98839 7465 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
7466 /* May be allocated at isolcpus cmdline parse time */
7467 if (cpu_isolated_map == NULL)
7468 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 7469 idle_thread_set_boot_cpu();
a803f026 7470 set_cpu_rq_start_time();
029632fb
PZ
7471#endif
7472 init_sched_fair_class();
6a7b3dc3 7473
6892b75e 7474 scheduler_running = 1;
1da177e4
LT
7475}
7476
d902db1e 7477#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
7478static inline int preempt_count_equals(int preempt_offset)
7479{
234da7bc 7480 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 7481
4ba8216c 7482 return (nested == preempt_offset);
e4aafea2
FW
7483}
7484
d894837f 7485void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7486{
8eb23b9f
PZ
7487 /*
7488 * Blocking primitives will set (and therefore destroy) current->state,
7489 * since we will exit with TASK_RUNNING make sure we enter with it,
7490 * otherwise we will destroy state.
7491 */
00845eb9 7492 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
8eb23b9f
PZ
7493 "do not call blocking ops when !TASK_RUNNING; "
7494 "state=%lx set at [<%p>] %pS\n",
7495 current->state,
7496 (void *)current->task_state_change,
00845eb9 7497 (void *)current->task_state_change);
8eb23b9f 7498
3427445a
PZ
7499 ___might_sleep(file, line, preempt_offset);
7500}
7501EXPORT_SYMBOL(__might_sleep);
7502
7503void ___might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7504{
1da177e4
LT
7505 static unsigned long prev_jiffy; /* ratelimiting */
7506
b3fbab05 7507 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
db273be2
TG
7508 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7509 !is_idle_task(current)) ||
e4aafea2 7510 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7511 return;
7512 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7513 return;
7514 prev_jiffy = jiffies;
7515
3df0fc5b
PZ
7516 printk(KERN_ERR
7517 "BUG: sleeping function called from invalid context at %s:%d\n",
7518 file, line);
7519 printk(KERN_ERR
7520 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7521 in_atomic(), irqs_disabled(),
7522 current->pid, current->comm);
aef745fc 7523
a8b686b3
ES
7524 if (task_stack_end_corrupted(current))
7525 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7526
aef745fc
IM
7527 debug_show_held_locks(current);
7528 if (irqs_disabled())
7529 print_irqtrace_events(current);
8f47b187
TG
7530#ifdef CONFIG_DEBUG_PREEMPT
7531 if (!preempt_count_equals(preempt_offset)) {
7532 pr_err("Preemption disabled at:");
7533 print_ip_sym(current->preempt_disable_ip);
7534 pr_cont("\n");
7535 }
7536#endif
aef745fc 7537 dump_stack();
1da177e4 7538}
3427445a 7539EXPORT_SYMBOL(___might_sleep);
1da177e4
LT
7540#endif
7541
7542#ifdef CONFIG_MAGIC_SYSRQ
dbc7f069 7543void normalize_rt_tasks(void)
3a5e4dc1 7544{
dbc7f069 7545 struct task_struct *g, *p;
d50dde5a
DF
7546 struct sched_attr attr = {
7547 .sched_policy = SCHED_NORMAL,
7548 };
1da177e4 7549
3472eaa1 7550 read_lock(&tasklist_lock);
5d07f420 7551 for_each_process_thread(g, p) {
178be793
IM
7552 /*
7553 * Only normalize user tasks:
7554 */
3472eaa1 7555 if (p->flags & PF_KTHREAD)
178be793
IM
7556 continue;
7557
6cfb0d5d 7558 p->se.exec_start = 0;
6cfb0d5d 7559#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7560 p->se.statistics.wait_start = 0;
7561 p->se.statistics.sleep_start = 0;
7562 p->se.statistics.block_start = 0;
6cfb0d5d 7563#endif
dd41f596 7564
aab03e05 7565 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
7566 /*
7567 * Renice negative nice level userspace
7568 * tasks back to 0:
7569 */
3472eaa1 7570 if (task_nice(p) < 0)
dd41f596 7571 set_user_nice(p, 0);
1da177e4 7572 continue;
dd41f596 7573 }
1da177e4 7574
dbc7f069 7575 __sched_setscheduler(p, &attr, false, false);
5d07f420 7576 }
3472eaa1 7577 read_unlock(&tasklist_lock);
1da177e4
LT
7578}
7579
7580#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7581
67fc4e0c 7582#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7583/*
67fc4e0c 7584 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7585 *
7586 * They can only be called when the whole system has been
7587 * stopped - every CPU needs to be quiescent, and no scheduling
7588 * activity can take place. Using them for anything else would
7589 * be a serious bug, and as a result, they aren't even visible
7590 * under any other configuration.
7591 */
7592
7593/**
7594 * curr_task - return the current task for a given cpu.
7595 * @cpu: the processor in question.
7596 *
7597 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
7598 *
7599 * Return: The current task for @cpu.
1df5c10a 7600 */
36c8b586 7601struct task_struct *curr_task(int cpu)
1df5c10a
LT
7602{
7603 return cpu_curr(cpu);
7604}
7605
67fc4e0c
JW
7606#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7607
7608#ifdef CONFIG_IA64
1df5c10a
LT
7609/**
7610 * set_curr_task - set the current task for a given cpu.
7611 * @cpu: the processor in question.
7612 * @p: the task pointer to set.
7613 *
7614 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7615 * are serviced on a separate stack. It allows the architecture to switch the
7616 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7617 * must be called with all CPU's synchronized, and interrupts disabled, the
7618 * and caller must save the original value of the current task (see
7619 * curr_task() above) and restore that value before reenabling interrupts and
7620 * re-starting the system.
7621 *
7622 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7623 */
36c8b586 7624void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7625{
7626 cpu_curr(cpu) = p;
7627}
7628
7629#endif
29f59db3 7630
7c941438 7631#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7632/* task_group_lock serializes the addition/removal of task groups */
7633static DEFINE_SPINLOCK(task_group_lock);
7634
bccbe08a
PZ
7635static void free_sched_group(struct task_group *tg)
7636{
7637 free_fair_sched_group(tg);
7638 free_rt_sched_group(tg);
e9aa1dd1 7639 autogroup_free(tg);
bccbe08a
PZ
7640 kfree(tg);
7641}
7642
7643/* allocate runqueue etc for a new task group */
ec7dc8ac 7644struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7645{
7646 struct task_group *tg;
bccbe08a
PZ
7647
7648 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7649 if (!tg)
7650 return ERR_PTR(-ENOMEM);
7651
ec7dc8ac 7652 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7653 goto err;
7654
ec7dc8ac 7655 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7656 goto err;
7657
ace783b9
LZ
7658 return tg;
7659
7660err:
7661 free_sched_group(tg);
7662 return ERR_PTR(-ENOMEM);
7663}
7664
7665void sched_online_group(struct task_group *tg, struct task_group *parent)
7666{
7667 unsigned long flags;
7668
8ed36996 7669 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7670 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7671
7672 WARN_ON(!parent); /* root should already exist */
7673
7674 tg->parent = parent;
f473aa5e 7675 INIT_LIST_HEAD(&tg->children);
09f2724a 7676 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7677 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7678}
7679
9b5b7751 7680/* rcu callback to free various structures associated with a task group */
6f505b16 7681static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7682{
29f59db3 7683 /* now it should be safe to free those cfs_rqs */
6f505b16 7684 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7685}
7686
9b5b7751 7687/* Destroy runqueue etc associated with a task group */
4cf86d77 7688void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
7689{
7690 /* wait for possible concurrent references to cfs_rqs complete */
7691 call_rcu(&tg->rcu, free_sched_group_rcu);
7692}
7693
7694void sched_offline_group(struct task_group *tg)
29f59db3 7695{
8ed36996 7696 unsigned long flags;
9b5b7751 7697 int i;
29f59db3 7698
3d4b47b4
PZ
7699 /* end participation in shares distribution */
7700 for_each_possible_cpu(i)
bccbe08a 7701 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
7702
7703 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7704 list_del_rcu(&tg->list);
f473aa5e 7705 list_del_rcu(&tg->siblings);
8ed36996 7706 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7707}
7708
9b5b7751 7709/* change task's runqueue when it moves between groups.
3a252015
IM
7710 * The caller of this function should have put the task in its new group
7711 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7712 * reflect its new group.
9b5b7751
SV
7713 */
7714void sched_move_task(struct task_struct *tsk)
29f59db3 7715{
8323f26c 7716 struct task_group *tg;
da0c1e65 7717 int queued, running;
29f59db3
SV
7718 unsigned long flags;
7719 struct rq *rq;
7720
7721 rq = task_rq_lock(tsk, &flags);
7722
051a1d1a 7723 running = task_current(rq, tsk);
da0c1e65 7724 queued = task_on_rq_queued(tsk);
29f59db3 7725
da0c1e65 7726 if (queued)
29f59db3 7727 dequeue_task(rq, tsk, 0);
0e1f3483 7728 if (unlikely(running))
f3cd1c4e 7729 put_prev_task(rq, tsk);
29f59db3 7730
f7b8a47d
KT
7731 /*
7732 * All callers are synchronized by task_rq_lock(); we do not use RCU
7733 * which is pointless here. Thus, we pass "true" to task_css_check()
7734 * to prevent lockdep warnings.
7735 */
7736 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
7737 struct task_group, css);
7738 tg = autogroup_task_group(tsk, tg);
7739 tsk->sched_task_group = tg;
7740
810b3817 7741#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7742 if (tsk->sched_class->task_move_group)
da0c1e65 7743 tsk->sched_class->task_move_group(tsk, queued);
b2b5ce02 7744 else
810b3817 7745#endif
b2b5ce02 7746 set_task_rq(tsk, task_cpu(tsk));
810b3817 7747
0e1f3483
HS
7748 if (unlikely(running))
7749 tsk->sched_class->set_curr_task(rq);
da0c1e65 7750 if (queued)
371fd7e7 7751 enqueue_task(rq, tsk, 0);
29f59db3 7752
0122ec5b 7753 task_rq_unlock(rq, tsk, &flags);
29f59db3 7754}
7c941438 7755#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7756
a790de99
PT
7757#ifdef CONFIG_RT_GROUP_SCHED
7758/*
7759 * Ensure that the real time constraints are schedulable.
7760 */
7761static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7762
9a7e0b18
PZ
7763/* Must be called with tasklist_lock held */
7764static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7765{
9a7e0b18 7766 struct task_struct *g, *p;
b40b2e8e 7767
1fe89e1b
PZ
7768 /*
7769 * Autogroups do not have RT tasks; see autogroup_create().
7770 */
7771 if (task_group_is_autogroup(tg))
7772 return 0;
7773
5d07f420 7774 for_each_process_thread(g, p) {
8651c658 7775 if (rt_task(p) && task_group(p) == tg)
9a7e0b18 7776 return 1;
5d07f420 7777 }
b40b2e8e 7778
9a7e0b18
PZ
7779 return 0;
7780}
b40b2e8e 7781
9a7e0b18
PZ
7782struct rt_schedulable_data {
7783 struct task_group *tg;
7784 u64 rt_period;
7785 u64 rt_runtime;
7786};
b40b2e8e 7787
a790de99 7788static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7789{
7790 struct rt_schedulable_data *d = data;
7791 struct task_group *child;
7792 unsigned long total, sum = 0;
7793 u64 period, runtime;
b40b2e8e 7794
9a7e0b18
PZ
7795 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7796 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7797
9a7e0b18
PZ
7798 if (tg == d->tg) {
7799 period = d->rt_period;
7800 runtime = d->rt_runtime;
b40b2e8e 7801 }
b40b2e8e 7802
4653f803
PZ
7803 /*
7804 * Cannot have more runtime than the period.
7805 */
7806 if (runtime > period && runtime != RUNTIME_INF)
7807 return -EINVAL;
6f505b16 7808
4653f803
PZ
7809 /*
7810 * Ensure we don't starve existing RT tasks.
7811 */
9a7e0b18
PZ
7812 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7813 return -EBUSY;
6f505b16 7814
9a7e0b18 7815 total = to_ratio(period, runtime);
6f505b16 7816
4653f803
PZ
7817 /*
7818 * Nobody can have more than the global setting allows.
7819 */
7820 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7821 return -EINVAL;
6f505b16 7822
4653f803
PZ
7823 /*
7824 * The sum of our children's runtime should not exceed our own.
7825 */
9a7e0b18
PZ
7826 list_for_each_entry_rcu(child, &tg->children, siblings) {
7827 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7828 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7829
9a7e0b18
PZ
7830 if (child == d->tg) {
7831 period = d->rt_period;
7832 runtime = d->rt_runtime;
7833 }
6f505b16 7834
9a7e0b18 7835 sum += to_ratio(period, runtime);
9f0c1e56 7836 }
6f505b16 7837
9a7e0b18
PZ
7838 if (sum > total)
7839 return -EINVAL;
7840
7841 return 0;
6f505b16
PZ
7842}
7843
9a7e0b18 7844static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7845{
8277434e
PT
7846 int ret;
7847
9a7e0b18
PZ
7848 struct rt_schedulable_data data = {
7849 .tg = tg,
7850 .rt_period = period,
7851 .rt_runtime = runtime,
7852 };
7853
8277434e
PT
7854 rcu_read_lock();
7855 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7856 rcu_read_unlock();
7857
7858 return ret;
521f1a24
DG
7859}
7860
ab84d31e 7861static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7862 u64 rt_period, u64 rt_runtime)
6f505b16 7863{
ac086bc2 7864 int i, err = 0;
9f0c1e56 7865
2636ed5f
PZ
7866 /*
7867 * Disallowing the root group RT runtime is BAD, it would disallow the
7868 * kernel creating (and or operating) RT threads.
7869 */
7870 if (tg == &root_task_group && rt_runtime == 0)
7871 return -EINVAL;
7872
7873 /* No period doesn't make any sense. */
7874 if (rt_period == 0)
7875 return -EINVAL;
7876
9f0c1e56 7877 mutex_lock(&rt_constraints_mutex);
521f1a24 7878 read_lock(&tasklist_lock);
9a7e0b18
PZ
7879 err = __rt_schedulable(tg, rt_period, rt_runtime);
7880 if (err)
9f0c1e56 7881 goto unlock;
ac086bc2 7882
0986b11b 7883 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7884 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7885 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7886
7887 for_each_possible_cpu(i) {
7888 struct rt_rq *rt_rq = tg->rt_rq[i];
7889
0986b11b 7890 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7891 rt_rq->rt_runtime = rt_runtime;
0986b11b 7892 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7893 }
0986b11b 7894 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7895unlock:
521f1a24 7896 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7897 mutex_unlock(&rt_constraints_mutex);
7898
7899 return err;
6f505b16
PZ
7900}
7901
25cc7da7 7902static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
7903{
7904 u64 rt_runtime, rt_period;
7905
7906 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7907 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7908 if (rt_runtime_us < 0)
7909 rt_runtime = RUNTIME_INF;
7910
ab84d31e 7911 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7912}
7913
25cc7da7 7914static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
7915{
7916 u64 rt_runtime_us;
7917
d0b27fa7 7918 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7919 return -1;
7920
d0b27fa7 7921 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7922 do_div(rt_runtime_us, NSEC_PER_USEC);
7923 return rt_runtime_us;
7924}
d0b27fa7 7925
ce2f5fe4 7926static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
d0b27fa7
PZ
7927{
7928 u64 rt_runtime, rt_period;
7929
ce2f5fe4 7930 rt_period = rt_period_us * NSEC_PER_USEC;
d0b27fa7
PZ
7931 rt_runtime = tg->rt_bandwidth.rt_runtime;
7932
ab84d31e 7933 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7934}
7935
25cc7da7 7936static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
7937{
7938 u64 rt_period_us;
7939
7940 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7941 do_div(rt_period_us, NSEC_PER_USEC);
7942 return rt_period_us;
7943}
332ac17e 7944#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7945
332ac17e 7946#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
7947static int sched_rt_global_constraints(void)
7948{
7949 int ret = 0;
7950
7951 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7952 read_lock(&tasklist_lock);
4653f803 7953 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7954 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7955 mutex_unlock(&rt_constraints_mutex);
7956
7957 return ret;
7958}
54e99124 7959
25cc7da7 7960static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
7961{
7962 /* Don't accept realtime tasks when there is no way for them to run */
7963 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7964 return 0;
7965
7966 return 1;
7967}
7968
6d6bc0ad 7969#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7970static int sched_rt_global_constraints(void)
7971{
ac086bc2 7972 unsigned long flags;
332ac17e 7973 int i, ret = 0;
ec5d4989 7974
0986b11b 7975 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7976 for_each_possible_cpu(i) {
7977 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7978
0986b11b 7979 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7980 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7981 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7982 }
0986b11b 7983 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7984
332ac17e 7985 return ret;
d0b27fa7 7986}
6d6bc0ad 7987#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7988
a1963b81 7989static int sched_dl_global_validate(void)
332ac17e 7990{
1724813d
PZ
7991 u64 runtime = global_rt_runtime();
7992 u64 period = global_rt_period();
332ac17e 7993 u64 new_bw = to_ratio(period, runtime);
f10e00f4 7994 struct dl_bw *dl_b;
1724813d 7995 int cpu, ret = 0;
49516342 7996 unsigned long flags;
332ac17e
DF
7997
7998 /*
7999 * Here we want to check the bandwidth not being set to some
8000 * value smaller than the currently allocated bandwidth in
8001 * any of the root_domains.
8002 *
8003 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
8004 * cycling on root_domains... Discussion on different/better
8005 * solutions is welcome!
8006 */
1724813d 8007 for_each_possible_cpu(cpu) {
f10e00f4
KT
8008 rcu_read_lock_sched();
8009 dl_b = dl_bw_of(cpu);
332ac17e 8010
49516342 8011 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d
PZ
8012 if (new_bw < dl_b->total_bw)
8013 ret = -EBUSY;
49516342 8014 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
1724813d 8015
f10e00f4
KT
8016 rcu_read_unlock_sched();
8017
1724813d
PZ
8018 if (ret)
8019 break;
332ac17e
DF
8020 }
8021
1724813d 8022 return ret;
332ac17e
DF
8023}
8024
1724813d 8025static void sched_dl_do_global(void)
ce0dbbbb 8026{
1724813d 8027 u64 new_bw = -1;
f10e00f4 8028 struct dl_bw *dl_b;
1724813d 8029 int cpu;
49516342 8030 unsigned long flags;
ce0dbbbb 8031
1724813d
PZ
8032 def_dl_bandwidth.dl_period = global_rt_period();
8033 def_dl_bandwidth.dl_runtime = global_rt_runtime();
8034
8035 if (global_rt_runtime() != RUNTIME_INF)
8036 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
8037
8038 /*
8039 * FIXME: As above...
8040 */
8041 for_each_possible_cpu(cpu) {
f10e00f4
KT
8042 rcu_read_lock_sched();
8043 dl_b = dl_bw_of(cpu);
1724813d 8044
49516342 8045 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d 8046 dl_b->bw = new_bw;
49516342 8047 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
f10e00f4
KT
8048
8049 rcu_read_unlock_sched();
ce0dbbbb 8050 }
1724813d
PZ
8051}
8052
8053static int sched_rt_global_validate(void)
8054{
8055 if (sysctl_sched_rt_period <= 0)
8056 return -EINVAL;
8057
e9e7cb38
JL
8058 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
8059 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
1724813d
PZ
8060 return -EINVAL;
8061
8062 return 0;
8063}
8064
8065static void sched_rt_do_global(void)
8066{
8067 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8068 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
8069}
8070
d0b27fa7 8071int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8072 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8073 loff_t *ppos)
8074{
d0b27fa7
PZ
8075 int old_period, old_runtime;
8076 static DEFINE_MUTEX(mutex);
1724813d 8077 int ret;
d0b27fa7
PZ
8078
8079 mutex_lock(&mutex);
8080 old_period = sysctl_sched_rt_period;
8081 old_runtime = sysctl_sched_rt_runtime;
8082
8d65af78 8083 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
8084
8085 if (!ret && write) {
1724813d
PZ
8086 ret = sched_rt_global_validate();
8087 if (ret)
8088 goto undo;
8089
a1963b81 8090 ret = sched_dl_global_validate();
1724813d
PZ
8091 if (ret)
8092 goto undo;
8093
a1963b81 8094 ret = sched_rt_global_constraints();
1724813d
PZ
8095 if (ret)
8096 goto undo;
8097
8098 sched_rt_do_global();
8099 sched_dl_do_global();
8100 }
8101 if (0) {
8102undo:
8103 sysctl_sched_rt_period = old_period;
8104 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
8105 }
8106 mutex_unlock(&mutex);
8107
8108 return ret;
8109}
68318b8e 8110
1724813d 8111int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
8112 void __user *buffer, size_t *lenp,
8113 loff_t *ppos)
8114{
8115 int ret;
332ac17e 8116 static DEFINE_MUTEX(mutex);
332ac17e
DF
8117
8118 mutex_lock(&mutex);
332ac17e 8119 ret = proc_dointvec(table, write, buffer, lenp, ppos);
1724813d
PZ
8120 /* make sure that internally we keep jiffies */
8121 /* also, writing zero resets timeslice to default */
332ac17e 8122 if (!ret && write) {
1724813d
PZ
8123 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8124 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
332ac17e
DF
8125 }
8126 mutex_unlock(&mutex);
332ac17e
DF
8127 return ret;
8128}
8129
052f1dc7 8130#ifdef CONFIG_CGROUP_SCHED
68318b8e 8131
a7c6d554 8132static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 8133{
a7c6d554 8134 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
8135}
8136
eb95419b
TH
8137static struct cgroup_subsys_state *
8138cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 8139{
eb95419b
TH
8140 struct task_group *parent = css_tg(parent_css);
8141 struct task_group *tg;
68318b8e 8142
eb95419b 8143 if (!parent) {
68318b8e 8144 /* This is early initialization for the top cgroup */
07e06b01 8145 return &root_task_group.css;
68318b8e
SV
8146 }
8147
ec7dc8ac 8148 tg = sched_create_group(parent);
68318b8e
SV
8149 if (IS_ERR(tg))
8150 return ERR_PTR(-ENOMEM);
8151
68318b8e
SV
8152 return &tg->css;
8153}
8154
eb95419b 8155static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
ace783b9 8156{
eb95419b 8157 struct task_group *tg = css_tg(css);
5c9d535b 8158 struct task_group *parent = css_tg(css->parent);
ace783b9 8159
63876986
TH
8160 if (parent)
8161 sched_online_group(tg, parent);
ace783b9
LZ
8162 return 0;
8163}
8164
eb95419b 8165static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 8166{
eb95419b 8167 struct task_group *tg = css_tg(css);
68318b8e
SV
8168
8169 sched_destroy_group(tg);
8170}
8171
eb95419b 8172static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
ace783b9 8173{
eb95419b 8174 struct task_group *tg = css_tg(css);
ace783b9
LZ
8175
8176 sched_offline_group(tg);
8177}
8178
7e47682e 8179static void cpu_cgroup_fork(struct task_struct *task, void *private)
eeb61e53
KT
8180{
8181 sched_move_task(task);
8182}
8183
eb95419b 8184static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
bb9d97b6 8185 struct cgroup_taskset *tset)
68318b8e 8186{
bb9d97b6
TH
8187 struct task_struct *task;
8188
924f0d9a 8189 cgroup_taskset_for_each(task, tset) {
b68aa230 8190#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 8191 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 8192 return -EINVAL;
b68aa230 8193#else
bb9d97b6
TH
8194 /* We don't support RT-tasks being in separate groups */
8195 if (task->sched_class != &fair_sched_class)
8196 return -EINVAL;
b68aa230 8197#endif
bb9d97b6 8198 }
be367d09
BB
8199 return 0;
8200}
68318b8e 8201
eb95419b 8202static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
bb9d97b6 8203 struct cgroup_taskset *tset)
68318b8e 8204{
bb9d97b6
TH
8205 struct task_struct *task;
8206
924f0d9a 8207 cgroup_taskset_for_each(task, tset)
bb9d97b6 8208 sched_move_task(task);
68318b8e
SV
8209}
8210
eb95419b
TH
8211static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
8212 struct cgroup_subsys_state *old_css,
8213 struct task_struct *task)
068c5cc5
PZ
8214{
8215 /*
8216 * cgroup_exit() is called in the copy_process() failure path.
8217 * Ignore this case since the task hasn't ran yet, this avoids
8218 * trying to poke a half freed task state from generic code.
8219 */
8220 if (!(task->flags & PF_EXITING))
8221 return;
8222
8223 sched_move_task(task);
8224}
8225
052f1dc7 8226#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
8227static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8228 struct cftype *cftype, u64 shareval)
68318b8e 8229{
182446d0 8230 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
8231}
8232
182446d0
TH
8233static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8234 struct cftype *cft)
68318b8e 8235{
182446d0 8236 struct task_group *tg = css_tg(css);
68318b8e 8237
c8b28116 8238 return (u64) scale_load_down(tg->shares);
68318b8e 8239}
ab84d31e
PT
8240
8241#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
8242static DEFINE_MUTEX(cfs_constraints_mutex);
8243
ab84d31e
PT
8244const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8245const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8246
a790de99
PT
8247static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8248
ab84d31e
PT
8249static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8250{
56f570e5 8251 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 8252 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
8253
8254 if (tg == &root_task_group)
8255 return -EINVAL;
8256
8257 /*
8258 * Ensure we have at some amount of bandwidth every period. This is
8259 * to prevent reaching a state of large arrears when throttled via
8260 * entity_tick() resulting in prolonged exit starvation.
8261 */
8262 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8263 return -EINVAL;
8264
8265 /*
8266 * Likewise, bound things on the otherside by preventing insane quota
8267 * periods. This also allows us to normalize in computing quota
8268 * feasibility.
8269 */
8270 if (period > max_cfs_quota_period)
8271 return -EINVAL;
8272
0e59bdae
KT
8273 /*
8274 * Prevent race between setting of cfs_rq->runtime_enabled and
8275 * unthrottle_offline_cfs_rqs().
8276 */
8277 get_online_cpus();
a790de99
PT
8278 mutex_lock(&cfs_constraints_mutex);
8279 ret = __cfs_schedulable(tg, period, quota);
8280 if (ret)
8281 goto out_unlock;
8282
58088ad0 8283 runtime_enabled = quota != RUNTIME_INF;
56f570e5 8284 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
8285 /*
8286 * If we need to toggle cfs_bandwidth_used, off->on must occur
8287 * before making related changes, and on->off must occur afterwards
8288 */
8289 if (runtime_enabled && !runtime_was_enabled)
8290 cfs_bandwidth_usage_inc();
ab84d31e
PT
8291 raw_spin_lock_irq(&cfs_b->lock);
8292 cfs_b->period = ns_to_ktime(period);
8293 cfs_b->quota = quota;
58088ad0 8294
a9cf55b2 8295 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 8296 /* restart the period timer (if active) to handle new period expiry */
77a4d1a1
PZ
8297 if (runtime_enabled)
8298 start_cfs_bandwidth(cfs_b);
ab84d31e
PT
8299 raw_spin_unlock_irq(&cfs_b->lock);
8300
0e59bdae 8301 for_each_online_cpu(i) {
ab84d31e 8302 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 8303 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
8304
8305 raw_spin_lock_irq(&rq->lock);
58088ad0 8306 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 8307 cfs_rq->runtime_remaining = 0;
671fd9da 8308
029632fb 8309 if (cfs_rq->throttled)
671fd9da 8310 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
8311 raw_spin_unlock_irq(&rq->lock);
8312 }
1ee14e6c
BS
8313 if (runtime_was_enabled && !runtime_enabled)
8314 cfs_bandwidth_usage_dec();
a790de99
PT
8315out_unlock:
8316 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 8317 put_online_cpus();
ab84d31e 8318
a790de99 8319 return ret;
ab84d31e
PT
8320}
8321
8322int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8323{
8324 u64 quota, period;
8325
029632fb 8326 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8327 if (cfs_quota_us < 0)
8328 quota = RUNTIME_INF;
8329 else
8330 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8331
8332 return tg_set_cfs_bandwidth(tg, period, quota);
8333}
8334
8335long tg_get_cfs_quota(struct task_group *tg)
8336{
8337 u64 quota_us;
8338
029632fb 8339 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
8340 return -1;
8341
029632fb 8342 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
8343 do_div(quota_us, NSEC_PER_USEC);
8344
8345 return quota_us;
8346}
8347
8348int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8349{
8350 u64 quota, period;
8351
8352 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 8353 quota = tg->cfs_bandwidth.quota;
ab84d31e 8354
ab84d31e
PT
8355 return tg_set_cfs_bandwidth(tg, period, quota);
8356}
8357
8358long tg_get_cfs_period(struct task_group *tg)
8359{
8360 u64 cfs_period_us;
8361
029632fb 8362 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8363 do_div(cfs_period_us, NSEC_PER_USEC);
8364
8365 return cfs_period_us;
8366}
8367
182446d0
TH
8368static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8369 struct cftype *cft)
ab84d31e 8370{
182446d0 8371 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
8372}
8373
182446d0
TH
8374static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8375 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 8376{
182446d0 8377 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
8378}
8379
182446d0
TH
8380static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8381 struct cftype *cft)
ab84d31e 8382{
182446d0 8383 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
8384}
8385
182446d0
TH
8386static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8387 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 8388{
182446d0 8389 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
8390}
8391
a790de99
PT
8392struct cfs_schedulable_data {
8393 struct task_group *tg;
8394 u64 period, quota;
8395};
8396
8397/*
8398 * normalize group quota/period to be quota/max_period
8399 * note: units are usecs
8400 */
8401static u64 normalize_cfs_quota(struct task_group *tg,
8402 struct cfs_schedulable_data *d)
8403{
8404 u64 quota, period;
8405
8406 if (tg == d->tg) {
8407 period = d->period;
8408 quota = d->quota;
8409 } else {
8410 period = tg_get_cfs_period(tg);
8411 quota = tg_get_cfs_quota(tg);
8412 }
8413
8414 /* note: these should typically be equivalent */
8415 if (quota == RUNTIME_INF || quota == -1)
8416 return RUNTIME_INF;
8417
8418 return to_ratio(period, quota);
8419}
8420
8421static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8422{
8423 struct cfs_schedulable_data *d = data;
029632fb 8424 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
8425 s64 quota = 0, parent_quota = -1;
8426
8427 if (!tg->parent) {
8428 quota = RUNTIME_INF;
8429 } else {
029632fb 8430 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
8431
8432 quota = normalize_cfs_quota(tg, d);
9c58c79a 8433 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
8434
8435 /*
8436 * ensure max(child_quota) <= parent_quota, inherit when no
8437 * limit is set
8438 */
8439 if (quota == RUNTIME_INF)
8440 quota = parent_quota;
8441 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8442 return -EINVAL;
8443 }
9c58c79a 8444 cfs_b->hierarchical_quota = quota;
a790de99
PT
8445
8446 return 0;
8447}
8448
8449static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8450{
8277434e 8451 int ret;
a790de99
PT
8452 struct cfs_schedulable_data data = {
8453 .tg = tg,
8454 .period = period,
8455 .quota = quota,
8456 };
8457
8458 if (quota != RUNTIME_INF) {
8459 do_div(data.period, NSEC_PER_USEC);
8460 do_div(data.quota, NSEC_PER_USEC);
8461 }
8462
8277434e
PT
8463 rcu_read_lock();
8464 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8465 rcu_read_unlock();
8466
8467 return ret;
a790de99 8468}
e8da1b18 8469
2da8ca82 8470static int cpu_stats_show(struct seq_file *sf, void *v)
e8da1b18 8471{
2da8ca82 8472 struct task_group *tg = css_tg(seq_css(sf));
029632fb 8473 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 8474
44ffc75b
TH
8475 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8476 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8477 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
8478
8479 return 0;
8480}
ab84d31e 8481#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 8482#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8483
052f1dc7 8484#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
8485static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8486 struct cftype *cft, s64 val)
6f505b16 8487{
182446d0 8488 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
8489}
8490
182446d0
TH
8491static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8492 struct cftype *cft)
6f505b16 8493{
182446d0 8494 return sched_group_rt_runtime(css_tg(css));
6f505b16 8495}
d0b27fa7 8496
182446d0
TH
8497static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8498 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 8499{
182446d0 8500 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
8501}
8502
182446d0
TH
8503static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8504 struct cftype *cft)
d0b27fa7 8505{
182446d0 8506 return sched_group_rt_period(css_tg(css));
d0b27fa7 8507}
6d6bc0ad 8508#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8509
fe5c7cc2 8510static struct cftype cpu_files[] = {
052f1dc7 8511#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8512 {
8513 .name = "shares",
f4c753b7
PM
8514 .read_u64 = cpu_shares_read_u64,
8515 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8516 },
052f1dc7 8517#endif
ab84d31e
PT
8518#ifdef CONFIG_CFS_BANDWIDTH
8519 {
8520 .name = "cfs_quota_us",
8521 .read_s64 = cpu_cfs_quota_read_s64,
8522 .write_s64 = cpu_cfs_quota_write_s64,
8523 },
8524 {
8525 .name = "cfs_period_us",
8526 .read_u64 = cpu_cfs_period_read_u64,
8527 .write_u64 = cpu_cfs_period_write_u64,
8528 },
e8da1b18
NR
8529 {
8530 .name = "stat",
2da8ca82 8531 .seq_show = cpu_stats_show,
e8da1b18 8532 },
ab84d31e 8533#endif
052f1dc7 8534#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8535 {
9f0c1e56 8536 .name = "rt_runtime_us",
06ecb27c
PM
8537 .read_s64 = cpu_rt_runtime_read,
8538 .write_s64 = cpu_rt_runtime_write,
6f505b16 8539 },
d0b27fa7
PZ
8540 {
8541 .name = "rt_period_us",
f4c753b7
PM
8542 .read_u64 = cpu_rt_period_read_uint,
8543 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8544 },
052f1dc7 8545#endif
4baf6e33 8546 { } /* terminate */
68318b8e
SV
8547};
8548
073219e9 8549struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748
TH
8550 .css_alloc = cpu_cgroup_css_alloc,
8551 .css_free = cpu_cgroup_css_free,
ace783b9
LZ
8552 .css_online = cpu_cgroup_css_online,
8553 .css_offline = cpu_cgroup_css_offline,
eeb61e53 8554 .fork = cpu_cgroup_fork,
bb9d97b6
TH
8555 .can_attach = cpu_cgroup_can_attach,
8556 .attach = cpu_cgroup_attach,
068c5cc5 8557 .exit = cpu_cgroup_exit,
5577964e 8558 .legacy_cftypes = cpu_files,
68318b8e
SV
8559 .early_init = 1,
8560};
8561
052f1dc7 8562#endif /* CONFIG_CGROUP_SCHED */
d842de87 8563
b637a328
PM
8564void dump_cpu_task(int cpu)
8565{
8566 pr_info("Task dump for CPU %d:\n", cpu);
8567 sched_show_task(cpu_curr(cpu));
8568}