]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/sched/core.c
Merge remote-tracking branches 'asoc/topic/adsp', 'asoc/topic/ak4613', 'asoc/topic...
[mirror_ubuntu-bionic-kernel.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4 3 *
d1ccc66d 4 * Core kernel scheduler code and related syscalls
1da177e4
LT
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
1da177e4 7 */
004172bd 8#include <linux/sched.h>
e6017571 9#include <linux/sched/clock.h>
ae7e81c0 10#include <uapi/linux/sched/types.h>
4f17722c 11#include <linux/sched/loadavg.h>
ef8bd77f 12#include <linux/sched/hotplug.h>
1da177e4 13#include <linux/cpuset.h>
0ff92245 14#include <linux/delayacct.h>
f1c6f1a7 15#include <linux/init_task.h>
91d1aa43 16#include <linux/context_tracking.h>
f9411ebe 17#include <linux/rcupdate_wait.h>
004172bd
IM
18
19#include <linux/blkdev.h>
20#include <linux/kprobes.h>
21#include <linux/mmu_context.h>
22#include <linux/module.h>
23#include <linux/nmi.h>
6075620b 24#include <linux/prefetch.h>
004172bd
IM
25#include <linux/profile.h>
26#include <linux/security.h>
27#include <linux/syscalls.h>
1da177e4 28
96f951ed 29#include <asm/switch_to.h>
5517d86b 30#include <asm/tlb.h>
fd4a61e0
MB
31#ifdef CONFIG_PARAVIRT
32#include <asm/paravirt.h>
33#endif
1da177e4 34
029632fb 35#include "sched.h"
ea138446 36#include "../workqueue_internal.h"
29d5e047 37#include "../smpboot.h"
6e0534f2 38
a8d154b0 39#define CREATE_TRACE_POINTS
ad8d75ff 40#include <trace/events/sched.h>
a8d154b0 41
029632fb 42DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 43
bf5c91ba
IM
44/*
45 * Debugging: various feature bits
46 */
f00b45c1 47
f00b45c1
PZ
48#define SCHED_FEAT(name, enabled) \
49 (1UL << __SCHED_FEAT_##name) * enabled |
50
bf5c91ba 51const_debug unsigned int sysctl_sched_features =
391e43da 52#include "features.h"
f00b45c1
PZ
53 0;
54
55#undef SCHED_FEAT
56
b82d9fdd
PZ
57/*
58 * Number of tasks to iterate in a single balance run.
59 * Limited because this is done with IRQs disabled.
60 */
61const_debug unsigned int sysctl_sched_nr_migrate = 32;
62
e9e9250b
PZ
63/*
64 * period over which we average the RT time consumption, measured
65 * in ms.
66 *
67 * default: 1s
68 */
69const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
70
fa85ae24 71/*
d1ccc66d 72 * period over which we measure -rt task CPU usage in us.
fa85ae24
PZ
73 * default: 1s
74 */
9f0c1e56 75unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 76
029632fb 77__read_mostly int scheduler_running;
6892b75e 78
9f0c1e56
PZ
79/*
80 * part of the period that we allow rt tasks to run in us.
81 * default: 0.95s
82 */
83int sysctl_sched_rt_runtime = 950000;
fa85ae24 84
d1ccc66d 85/* CPUs with isolated domains */
3fa0818b
RR
86cpumask_var_t cpu_isolated_map;
87
1da177e4 88/*
cc2a73b5 89 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 90 */
a9957449 91static struct rq *this_rq_lock(void)
1da177e4
LT
92 __acquires(rq->lock)
93{
70b97a7f 94 struct rq *rq;
1da177e4
LT
95
96 local_irq_disable();
97 rq = this_rq();
05fa785c 98 raw_spin_lock(&rq->lock);
1da177e4
LT
99
100 return rq;
101}
102
3e71a462
PZ
103/*
104 * __task_rq_lock - lock the rq @p resides on.
105 */
eb580751 106struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
107 __acquires(rq->lock)
108{
109 struct rq *rq;
110
111 lockdep_assert_held(&p->pi_lock);
112
113 for (;;) {
114 rq = task_rq(p);
115 raw_spin_lock(&rq->lock);
116 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 117 rq_pin_lock(rq, rf);
3e71a462
PZ
118 return rq;
119 }
120 raw_spin_unlock(&rq->lock);
121
122 while (unlikely(task_on_rq_migrating(p)))
123 cpu_relax();
124 }
125}
126
127/*
128 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
129 */
eb580751 130struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
131 __acquires(p->pi_lock)
132 __acquires(rq->lock)
133{
134 struct rq *rq;
135
136 for (;;) {
eb580751 137 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
3e71a462
PZ
138 rq = task_rq(p);
139 raw_spin_lock(&rq->lock);
140 /*
141 * move_queued_task() task_rq_lock()
142 *
143 * ACQUIRE (rq->lock)
144 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
145 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
146 * [S] ->cpu = new_cpu [L] task_rq()
147 * [L] ->on_rq
148 * RELEASE (rq->lock)
149 *
150 * If we observe the old cpu in task_rq_lock, the acquire of
151 * the old rq->lock will fully serialize against the stores.
152 *
d1ccc66d 153 * If we observe the new CPU in task_rq_lock, the acquire will
3e71a462
PZ
154 * pair with the WMB to ensure we must then also see migrating.
155 */
156 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 157 rq_pin_lock(rq, rf);
3e71a462
PZ
158 return rq;
159 }
160 raw_spin_unlock(&rq->lock);
eb580751 161 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
3e71a462
PZ
162
163 while (unlikely(task_on_rq_migrating(p)))
164 cpu_relax();
165 }
166}
167
535b9552
IM
168/*
169 * RQ-clock updating methods:
170 */
171
172static void update_rq_clock_task(struct rq *rq, s64 delta)
173{
174/*
175 * In theory, the compile should just see 0 here, and optimize out the call
176 * to sched_rt_avg_update. But I don't trust it...
177 */
178#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
179 s64 steal = 0, irq_delta = 0;
180#endif
181#ifdef CONFIG_IRQ_TIME_ACCOUNTING
182 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
183
184 /*
185 * Since irq_time is only updated on {soft,}irq_exit, we might run into
186 * this case when a previous update_rq_clock() happened inside a
187 * {soft,}irq region.
188 *
189 * When this happens, we stop ->clock_task and only update the
190 * prev_irq_time stamp to account for the part that fit, so that a next
191 * update will consume the rest. This ensures ->clock_task is
192 * monotonic.
193 *
194 * It does however cause some slight miss-attribution of {soft,}irq
195 * time, a more accurate solution would be to update the irq_time using
196 * the current rq->clock timestamp, except that would require using
197 * atomic ops.
198 */
199 if (irq_delta > delta)
200 irq_delta = delta;
201
202 rq->prev_irq_time += irq_delta;
203 delta -= irq_delta;
204#endif
205#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
206 if (static_key_false((&paravirt_steal_rq_enabled))) {
207 steal = paravirt_steal_clock(cpu_of(rq));
208 steal -= rq->prev_steal_time_rq;
209
210 if (unlikely(steal > delta))
211 steal = delta;
212
213 rq->prev_steal_time_rq += steal;
214 delta -= steal;
215 }
216#endif
217
218 rq->clock_task += delta;
219
220#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
221 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
222 sched_rt_avg_update(rq, irq_delta + steal);
223#endif
224}
225
226void update_rq_clock(struct rq *rq)
227{
228 s64 delta;
229
230 lockdep_assert_held(&rq->lock);
231
232 if (rq->clock_update_flags & RQCF_ACT_SKIP)
233 return;
234
235#ifdef CONFIG_SCHED_DEBUG
236 rq->clock_update_flags |= RQCF_UPDATED;
237#endif
238 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
239 if (delta < 0)
240 return;
241 rq->clock += delta;
242 update_rq_clock_task(rq, delta);
243}
244
245
8f4d37ec
PZ
246#ifdef CONFIG_SCHED_HRTICK
247/*
248 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 249 */
8f4d37ec 250
8f4d37ec
PZ
251static void hrtick_clear(struct rq *rq)
252{
253 if (hrtimer_active(&rq->hrtick_timer))
254 hrtimer_cancel(&rq->hrtick_timer);
255}
256
8f4d37ec
PZ
257/*
258 * High-resolution timer tick.
259 * Runs from hardirq context with interrupts disabled.
260 */
261static enum hrtimer_restart hrtick(struct hrtimer *timer)
262{
263 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
264
265 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
266
05fa785c 267 raw_spin_lock(&rq->lock);
3e51f33f 268 update_rq_clock(rq);
8f4d37ec 269 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 270 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
271
272 return HRTIMER_NORESTART;
273}
274
95e904c7 275#ifdef CONFIG_SMP
971ee28c 276
4961b6e1 277static void __hrtick_restart(struct rq *rq)
971ee28c
PZ
278{
279 struct hrtimer *timer = &rq->hrtick_timer;
971ee28c 280
4961b6e1 281 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
971ee28c
PZ
282}
283
31656519
PZ
284/*
285 * called from hardirq (IPI) context
286 */
287static void __hrtick_start(void *arg)
b328ca18 288{
31656519 289 struct rq *rq = arg;
b328ca18 290
05fa785c 291 raw_spin_lock(&rq->lock);
971ee28c 292 __hrtick_restart(rq);
31656519 293 rq->hrtick_csd_pending = 0;
05fa785c 294 raw_spin_unlock(&rq->lock);
b328ca18
PZ
295}
296
31656519
PZ
297/*
298 * Called to set the hrtick timer state.
299 *
300 * called with rq->lock held and irqs disabled
301 */
029632fb 302void hrtick_start(struct rq *rq, u64 delay)
b328ca18 303{
31656519 304 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 305 ktime_t time;
306 s64 delta;
307
308 /*
309 * Don't schedule slices shorter than 10000ns, that just
310 * doesn't make sense and can cause timer DoS.
311 */
312 delta = max_t(s64, delay, 10000LL);
313 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 314
cc584b21 315 hrtimer_set_expires(timer, time);
31656519
PZ
316
317 if (rq == this_rq()) {
971ee28c 318 __hrtick_restart(rq);
31656519 319 } else if (!rq->hrtick_csd_pending) {
c46fff2a 320 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
321 rq->hrtick_csd_pending = 1;
322 }
b328ca18
PZ
323}
324
31656519
PZ
325#else
326/*
327 * Called to set the hrtick timer state.
328 *
329 * called with rq->lock held and irqs disabled
330 */
029632fb 331void hrtick_start(struct rq *rq, u64 delay)
31656519 332{
86893335
WL
333 /*
334 * Don't schedule slices shorter than 10000ns, that just
335 * doesn't make sense. Rely on vruntime for fairness.
336 */
337 delay = max_t(u64, delay, 10000LL);
4961b6e1
TG
338 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
339 HRTIMER_MODE_REL_PINNED);
31656519 340}
31656519 341#endif /* CONFIG_SMP */
8f4d37ec 342
31656519 343static void init_rq_hrtick(struct rq *rq)
8f4d37ec 344{
31656519
PZ
345#ifdef CONFIG_SMP
346 rq->hrtick_csd_pending = 0;
8f4d37ec 347
31656519
PZ
348 rq->hrtick_csd.flags = 0;
349 rq->hrtick_csd.func = __hrtick_start;
350 rq->hrtick_csd.info = rq;
351#endif
8f4d37ec 352
31656519
PZ
353 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
354 rq->hrtick_timer.function = hrtick;
8f4d37ec 355}
006c75f1 356#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
357static inline void hrtick_clear(struct rq *rq)
358{
359}
360
8f4d37ec
PZ
361static inline void init_rq_hrtick(struct rq *rq)
362{
363}
006c75f1 364#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 365
5529578a
FW
366/*
367 * cmpxchg based fetch_or, macro so it works for different integer types
368 */
369#define fetch_or(ptr, mask) \
370 ({ \
371 typeof(ptr) _ptr = (ptr); \
372 typeof(mask) _mask = (mask); \
373 typeof(*_ptr) _old, _val = *_ptr; \
374 \
375 for (;;) { \
376 _old = cmpxchg(_ptr, _val, _val | _mask); \
377 if (_old == _val) \
378 break; \
379 _val = _old; \
380 } \
381 _old; \
382})
383
e3baac47 384#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
385/*
386 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
387 * this avoids any races wrt polling state changes and thereby avoids
388 * spurious IPIs.
389 */
390static bool set_nr_and_not_polling(struct task_struct *p)
391{
392 struct thread_info *ti = task_thread_info(p);
393 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
394}
e3baac47
PZ
395
396/*
397 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
398 *
399 * If this returns true, then the idle task promises to call
400 * sched_ttwu_pending() and reschedule soon.
401 */
402static bool set_nr_if_polling(struct task_struct *p)
403{
404 struct thread_info *ti = task_thread_info(p);
316c1608 405 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
e3baac47
PZ
406
407 for (;;) {
408 if (!(val & _TIF_POLLING_NRFLAG))
409 return false;
410 if (val & _TIF_NEED_RESCHED)
411 return true;
412 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
413 if (old == val)
414 break;
415 val = old;
416 }
417 return true;
418}
419
fd99f91a
PZ
420#else
421static bool set_nr_and_not_polling(struct task_struct *p)
422{
423 set_tsk_need_resched(p);
424 return true;
425}
e3baac47
PZ
426
427#ifdef CONFIG_SMP
428static bool set_nr_if_polling(struct task_struct *p)
429{
430 return false;
431}
432#endif
fd99f91a
PZ
433#endif
434
76751049
PZ
435void wake_q_add(struct wake_q_head *head, struct task_struct *task)
436{
437 struct wake_q_node *node = &task->wake_q;
438
439 /*
440 * Atomically grab the task, if ->wake_q is !nil already it means
441 * its already queued (either by us or someone else) and will get the
442 * wakeup due to that.
443 *
444 * This cmpxchg() implies a full barrier, which pairs with the write
58fe9c46 445 * barrier implied by the wakeup in wake_up_q().
76751049
PZ
446 */
447 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
448 return;
449
450 get_task_struct(task);
451
452 /*
453 * The head is context local, there can be no concurrency.
454 */
455 *head->lastp = node;
456 head->lastp = &node->next;
457}
458
459void wake_up_q(struct wake_q_head *head)
460{
461 struct wake_q_node *node = head->first;
462
463 while (node != WAKE_Q_TAIL) {
464 struct task_struct *task;
465
466 task = container_of(node, struct task_struct, wake_q);
467 BUG_ON(!task);
d1ccc66d 468 /* Task can safely be re-inserted now: */
76751049
PZ
469 node = node->next;
470 task->wake_q.next = NULL;
471
472 /*
473 * wake_up_process() implies a wmb() to pair with the queueing
474 * in wake_q_add() so as not to miss wakeups.
475 */
476 wake_up_process(task);
477 put_task_struct(task);
478 }
479}
480
c24d20db 481/*
8875125e 482 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
483 *
484 * On UP this means the setting of the need_resched flag, on SMP it
485 * might also involve a cross-CPU call to trigger the scheduler on
486 * the target CPU.
487 */
8875125e 488void resched_curr(struct rq *rq)
c24d20db 489{
8875125e 490 struct task_struct *curr = rq->curr;
c24d20db
IM
491 int cpu;
492
8875125e 493 lockdep_assert_held(&rq->lock);
c24d20db 494
8875125e 495 if (test_tsk_need_resched(curr))
c24d20db
IM
496 return;
497
8875125e 498 cpu = cpu_of(rq);
fd99f91a 499
f27dde8d 500 if (cpu == smp_processor_id()) {
8875125e 501 set_tsk_need_resched(curr);
f27dde8d 502 set_preempt_need_resched();
c24d20db 503 return;
f27dde8d 504 }
c24d20db 505
8875125e 506 if (set_nr_and_not_polling(curr))
c24d20db 507 smp_send_reschedule(cpu);
dfc68f29
AL
508 else
509 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
510}
511
029632fb 512void resched_cpu(int cpu)
c24d20db
IM
513{
514 struct rq *rq = cpu_rq(cpu);
515 unsigned long flags;
516
05fa785c 517 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db 518 return;
8875125e 519 resched_curr(rq);
05fa785c 520 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 521}
06d8308c 522
b021fe3e 523#ifdef CONFIG_SMP
3451d024 524#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2 525/*
d1ccc66d
IM
526 * In the semi idle case, use the nearest busy CPU for migrating timers
527 * from an idle CPU. This is good for power-savings.
83cd4fe2
VP
528 *
529 * We don't do similar optimization for completely idle system, as
d1ccc66d
IM
530 * selecting an idle CPU will add more delays to the timers than intended
531 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
83cd4fe2 532 */
bc7a34b8 533int get_nohz_timer_target(void)
83cd4fe2 534{
bc7a34b8 535 int i, cpu = smp_processor_id();
83cd4fe2
VP
536 struct sched_domain *sd;
537
9642d18e 538 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
6201b4d6
VK
539 return cpu;
540
057f3fad 541 rcu_read_lock();
83cd4fe2 542 for_each_domain(cpu, sd) {
057f3fad 543 for_each_cpu(i, sched_domain_span(sd)) {
44496922
WL
544 if (cpu == i)
545 continue;
546
547 if (!idle_cpu(i) && is_housekeeping_cpu(i)) {
057f3fad
PZ
548 cpu = i;
549 goto unlock;
550 }
551 }
83cd4fe2 552 }
9642d18e
VH
553
554 if (!is_housekeeping_cpu(cpu))
555 cpu = housekeeping_any_cpu();
057f3fad
PZ
556unlock:
557 rcu_read_unlock();
83cd4fe2
VP
558 return cpu;
559}
d1ccc66d 560
06d8308c
TG
561/*
562 * When add_timer_on() enqueues a timer into the timer wheel of an
563 * idle CPU then this timer might expire before the next timer event
564 * which is scheduled to wake up that CPU. In case of a completely
565 * idle system the next event might even be infinite time into the
566 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
567 * leaves the inner idle loop so the newly added timer is taken into
568 * account when the CPU goes back to idle and evaluates the timer
569 * wheel for the next timer event.
570 */
1c20091e 571static void wake_up_idle_cpu(int cpu)
06d8308c
TG
572{
573 struct rq *rq = cpu_rq(cpu);
574
575 if (cpu == smp_processor_id())
576 return;
577
67b9ca70 578 if (set_nr_and_not_polling(rq->idle))
06d8308c 579 smp_send_reschedule(cpu);
dfc68f29
AL
580 else
581 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
582}
583
c5bfece2 584static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 585{
53c5fa16
FW
586 /*
587 * We just need the target to call irq_exit() and re-evaluate
588 * the next tick. The nohz full kick at least implies that.
589 * If needed we can still optimize that later with an
590 * empty IRQ.
591 */
379d9ecb
PM
592 if (cpu_is_offline(cpu))
593 return true; /* Don't try to wake offline CPUs. */
c5bfece2 594 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
595 if (cpu != smp_processor_id() ||
596 tick_nohz_tick_stopped())
53c5fa16 597 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
598 return true;
599 }
600
601 return false;
602}
603
379d9ecb
PM
604/*
605 * Wake up the specified CPU. If the CPU is going offline, it is the
606 * caller's responsibility to deal with the lost wakeup, for example,
607 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
608 */
1c20091e
FW
609void wake_up_nohz_cpu(int cpu)
610{
c5bfece2 611 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
612 wake_up_idle_cpu(cpu);
613}
614
ca38062e 615static inline bool got_nohz_idle_kick(void)
45bf76df 616{
1c792db7 617 int cpu = smp_processor_id();
873b4c65
VG
618
619 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
620 return false;
621
622 if (idle_cpu(cpu) && !need_resched())
623 return true;
624
625 /*
626 * We can't run Idle Load Balance on this CPU for this time so we
627 * cancel it and clear NOHZ_BALANCE_KICK
628 */
629 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
630 return false;
45bf76df
IM
631}
632
3451d024 633#else /* CONFIG_NO_HZ_COMMON */
45bf76df 634
ca38062e 635static inline bool got_nohz_idle_kick(void)
2069dd75 636{
ca38062e 637 return false;
2069dd75
PZ
638}
639
3451d024 640#endif /* CONFIG_NO_HZ_COMMON */
d842de87 641
ce831b38 642#ifdef CONFIG_NO_HZ_FULL
76d92ac3 643bool sched_can_stop_tick(struct rq *rq)
ce831b38 644{
76d92ac3
FW
645 int fifo_nr_running;
646
647 /* Deadline tasks, even if single, need the tick */
648 if (rq->dl.dl_nr_running)
649 return false;
650
1e78cdbd 651 /*
2548d546
PZ
652 * If there are more than one RR tasks, we need the tick to effect the
653 * actual RR behaviour.
1e78cdbd 654 */
76d92ac3
FW
655 if (rq->rt.rr_nr_running) {
656 if (rq->rt.rr_nr_running == 1)
657 return true;
658 else
659 return false;
1e78cdbd
RR
660 }
661
2548d546
PZ
662 /*
663 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
664 * forced preemption between FIFO tasks.
665 */
666 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
667 if (fifo_nr_running)
668 return true;
669
670 /*
671 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
672 * if there's more than one we need the tick for involuntary
673 * preemption.
674 */
675 if (rq->nr_running > 1)
541b8264 676 return false;
ce831b38 677
541b8264 678 return true;
ce831b38
FW
679}
680#endif /* CONFIG_NO_HZ_FULL */
d842de87 681
029632fb 682void sched_avg_update(struct rq *rq)
18d95a28 683{
e9e9250b
PZ
684 s64 period = sched_avg_period();
685
78becc27 686 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
687 /*
688 * Inline assembly required to prevent the compiler
689 * optimising this loop into a divmod call.
690 * See __iter_div_u64_rem() for another example of this.
691 */
692 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
693 rq->age_stamp += period;
694 rq->rt_avg /= 2;
695 }
18d95a28
PZ
696}
697
6d6bc0ad 698#endif /* CONFIG_SMP */
18d95a28 699
a790de99
PT
700#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
701 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 702/*
8277434e
PT
703 * Iterate task_group tree rooted at *from, calling @down when first entering a
704 * node and @up when leaving it for the final time.
705 *
706 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 707 */
029632fb 708int walk_tg_tree_from(struct task_group *from,
8277434e 709 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
710{
711 struct task_group *parent, *child;
eb755805 712 int ret;
c09595f6 713
8277434e
PT
714 parent = from;
715
c09595f6 716down:
eb755805
PZ
717 ret = (*down)(parent, data);
718 if (ret)
8277434e 719 goto out;
c09595f6
PZ
720 list_for_each_entry_rcu(child, &parent->children, siblings) {
721 parent = child;
722 goto down;
723
724up:
725 continue;
726 }
eb755805 727 ret = (*up)(parent, data);
8277434e
PT
728 if (ret || parent == from)
729 goto out;
c09595f6
PZ
730
731 child = parent;
732 parent = parent->parent;
733 if (parent)
734 goto up;
8277434e 735out:
eb755805 736 return ret;
c09595f6
PZ
737}
738
029632fb 739int tg_nop(struct task_group *tg, void *data)
eb755805 740{
e2b245f8 741 return 0;
eb755805 742}
18d95a28
PZ
743#endif
744
45bf76df
IM
745static void set_load_weight(struct task_struct *p)
746{
f05998d4
NR
747 int prio = p->static_prio - MAX_RT_PRIO;
748 struct load_weight *load = &p->se.load;
749
dd41f596
IM
750 /*
751 * SCHED_IDLE tasks get minimal weight:
752 */
20f9cd2a 753 if (idle_policy(p->policy)) {
c8b28116 754 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 755 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
756 return;
757 }
71f8bd46 758
ed82b8a1
AK
759 load->weight = scale_load(sched_prio_to_weight[prio]);
760 load->inv_weight = sched_prio_to_wmult[prio];
71f8bd46
IM
761}
762
1de64443 763static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 764{
a64692a3 765 update_rq_clock(rq);
1de64443
PZ
766 if (!(flags & ENQUEUE_RESTORE))
767 sched_info_queued(rq, p);
371fd7e7 768 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
769}
770
1de64443 771static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 772{
a64692a3 773 update_rq_clock(rq);
1de64443
PZ
774 if (!(flags & DEQUEUE_SAVE))
775 sched_info_dequeued(rq, p);
371fd7e7 776 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
777}
778
029632fb 779void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
780{
781 if (task_contributes_to_load(p))
782 rq->nr_uninterruptible--;
783
371fd7e7 784 enqueue_task(rq, p, flags);
1e3c88bd
PZ
785}
786
029632fb 787void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
788{
789 if (task_contributes_to_load(p))
790 rq->nr_uninterruptible++;
791
371fd7e7 792 dequeue_task(rq, p, flags);
1e3c88bd
PZ
793}
794
34f971f6
PZ
795void sched_set_stop_task(int cpu, struct task_struct *stop)
796{
797 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
798 struct task_struct *old_stop = cpu_rq(cpu)->stop;
799
800 if (stop) {
801 /*
802 * Make it appear like a SCHED_FIFO task, its something
803 * userspace knows about and won't get confused about.
804 *
805 * Also, it will make PI more or less work without too
806 * much confusion -- but then, stop work should not
807 * rely on PI working anyway.
808 */
809 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
810
811 stop->sched_class = &stop_sched_class;
812 }
813
814 cpu_rq(cpu)->stop = stop;
815
816 if (old_stop) {
817 /*
818 * Reset it back to a normal scheduling class so that
819 * it can die in pieces.
820 */
821 old_stop->sched_class = &rt_sched_class;
822 }
823}
824
14531189 825/*
dd41f596 826 * __normal_prio - return the priority that is based on the static prio
14531189 827 */
14531189
IM
828static inline int __normal_prio(struct task_struct *p)
829{
dd41f596 830 return p->static_prio;
14531189
IM
831}
832
b29739f9
IM
833/*
834 * Calculate the expected normal priority: i.e. priority
835 * without taking RT-inheritance into account. Might be
836 * boosted by interactivity modifiers. Changes upon fork,
837 * setprio syscalls, and whenever the interactivity
838 * estimator recalculates.
839 */
36c8b586 840static inline int normal_prio(struct task_struct *p)
b29739f9
IM
841{
842 int prio;
843
aab03e05
DF
844 if (task_has_dl_policy(p))
845 prio = MAX_DL_PRIO-1;
846 else if (task_has_rt_policy(p))
b29739f9
IM
847 prio = MAX_RT_PRIO-1 - p->rt_priority;
848 else
849 prio = __normal_prio(p);
850 return prio;
851}
852
853/*
854 * Calculate the current priority, i.e. the priority
855 * taken into account by the scheduler. This value might
856 * be boosted by RT tasks, or might be boosted by
857 * interactivity modifiers. Will be RT if the task got
858 * RT-boosted. If not then it returns p->normal_prio.
859 */
36c8b586 860static int effective_prio(struct task_struct *p)
b29739f9
IM
861{
862 p->normal_prio = normal_prio(p);
863 /*
864 * If we are RT tasks or we were boosted to RT priority,
865 * keep the priority unchanged. Otherwise, update priority
866 * to the normal priority:
867 */
868 if (!rt_prio(p->prio))
869 return p->normal_prio;
870 return p->prio;
871}
872
1da177e4
LT
873/**
874 * task_curr - is this task currently executing on a CPU?
875 * @p: the task in question.
e69f6186
YB
876 *
877 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 878 */
36c8b586 879inline int task_curr(const struct task_struct *p)
1da177e4
LT
880{
881 return cpu_curr(task_cpu(p)) == p;
882}
883
67dfa1b7 884/*
4c9a4bc8
PZ
885 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
886 * use the balance_callback list if you want balancing.
887 *
888 * this means any call to check_class_changed() must be followed by a call to
889 * balance_callback().
67dfa1b7 890 */
cb469845
SR
891static inline void check_class_changed(struct rq *rq, struct task_struct *p,
892 const struct sched_class *prev_class,
da7a735e 893 int oldprio)
cb469845
SR
894{
895 if (prev_class != p->sched_class) {
896 if (prev_class->switched_from)
da7a735e 897 prev_class->switched_from(rq, p);
4c9a4bc8 898
da7a735e 899 p->sched_class->switched_to(rq, p);
2d3d891d 900 } else if (oldprio != p->prio || dl_task(p))
da7a735e 901 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
902}
903
029632fb 904void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
905{
906 const struct sched_class *class;
907
908 if (p->sched_class == rq->curr->sched_class) {
909 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
910 } else {
911 for_each_class(class) {
912 if (class == rq->curr->sched_class)
913 break;
914 if (class == p->sched_class) {
8875125e 915 resched_curr(rq);
1e5a7405
PZ
916 break;
917 }
918 }
919 }
920
921 /*
922 * A queue event has occurred, and we're going to schedule. In
923 * this case, we can save a useless back to back clock update.
924 */
da0c1e65 925 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
9edfbfed 926 rq_clock_skip_update(rq, true);
1e5a7405
PZ
927}
928
1da177e4 929#ifdef CONFIG_SMP
5cc389bc
PZ
930/*
931 * This is how migration works:
932 *
933 * 1) we invoke migration_cpu_stop() on the target CPU using
934 * stop_one_cpu().
935 * 2) stopper starts to run (implicitly forcing the migrated thread
936 * off the CPU)
937 * 3) it checks whether the migrated task is still in the wrong runqueue.
938 * 4) if it's in the wrong runqueue then the migration thread removes
939 * it and puts it into the right queue.
940 * 5) stopper completes and stop_one_cpu() returns and the migration
941 * is done.
942 */
943
944/*
945 * move_queued_task - move a queued task to new rq.
946 *
947 * Returns (locked) new rq. Old rq's lock is released.
948 */
5e16bbc2 949static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
5cc389bc 950{
5cc389bc
PZ
951 lockdep_assert_held(&rq->lock);
952
5cc389bc 953 p->on_rq = TASK_ON_RQ_MIGRATING;
3ea94de1 954 dequeue_task(rq, p, 0);
5cc389bc
PZ
955 set_task_cpu(p, new_cpu);
956 raw_spin_unlock(&rq->lock);
957
958 rq = cpu_rq(new_cpu);
959
960 raw_spin_lock(&rq->lock);
961 BUG_ON(task_cpu(p) != new_cpu);
5cc389bc 962 enqueue_task(rq, p, 0);
3ea94de1 963 p->on_rq = TASK_ON_RQ_QUEUED;
5cc389bc
PZ
964 check_preempt_curr(rq, p, 0);
965
966 return rq;
967}
968
969struct migration_arg {
970 struct task_struct *task;
971 int dest_cpu;
972};
973
974/*
d1ccc66d 975 * Move (not current) task off this CPU, onto the destination CPU. We're doing
5cc389bc
PZ
976 * this because either it can't run here any more (set_cpus_allowed()
977 * away from this CPU, or CPU going down), or because we're
978 * attempting to rebalance this task on exec (sched_exec).
979 *
980 * So we race with normal scheduler movements, but that's OK, as long
981 * as the task is no longer on this CPU.
5cc389bc 982 */
5e16bbc2 983static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
5cc389bc 984{
5cc389bc 985 if (unlikely(!cpu_active(dest_cpu)))
5e16bbc2 986 return rq;
5cc389bc
PZ
987
988 /* Affinity changed (again). */
0c98d344 989 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
5e16bbc2 990 return rq;
5cc389bc 991
5e16bbc2
PZ
992 rq = move_queued_task(rq, p, dest_cpu);
993
994 return rq;
5cc389bc
PZ
995}
996
997/*
998 * migration_cpu_stop - this will be executed by a highprio stopper thread
999 * and performs thread migration by bumping thread off CPU then
1000 * 'pushing' onto another runqueue.
1001 */
1002static int migration_cpu_stop(void *data)
1003{
1004 struct migration_arg *arg = data;
5e16bbc2
PZ
1005 struct task_struct *p = arg->task;
1006 struct rq *rq = this_rq();
5cc389bc
PZ
1007
1008 /*
d1ccc66d
IM
1009 * The original target CPU might have gone down and we might
1010 * be on another CPU but it doesn't matter.
5cc389bc
PZ
1011 */
1012 local_irq_disable();
1013 /*
1014 * We need to explicitly wake pending tasks before running
1015 * __migrate_task() such that we will not miss enforcing cpus_allowed
1016 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1017 */
1018 sched_ttwu_pending();
5e16bbc2
PZ
1019
1020 raw_spin_lock(&p->pi_lock);
1021 raw_spin_lock(&rq->lock);
1022 /*
1023 * If task_rq(p) != rq, it cannot be migrated here, because we're
1024 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1025 * we're holding p->pi_lock.
1026 */
bf89a304
CC
1027 if (task_rq(p) == rq) {
1028 if (task_on_rq_queued(p))
1029 rq = __migrate_task(rq, p, arg->dest_cpu);
1030 else
1031 p->wake_cpu = arg->dest_cpu;
1032 }
5e16bbc2
PZ
1033 raw_spin_unlock(&rq->lock);
1034 raw_spin_unlock(&p->pi_lock);
1035
5cc389bc
PZ
1036 local_irq_enable();
1037 return 0;
1038}
1039
c5b28038
PZ
1040/*
1041 * sched_class::set_cpus_allowed must do the below, but is not required to
1042 * actually call this function.
1043 */
1044void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
5cc389bc 1045{
5cc389bc
PZ
1046 cpumask_copy(&p->cpus_allowed, new_mask);
1047 p->nr_cpus_allowed = cpumask_weight(new_mask);
1048}
1049
c5b28038
PZ
1050void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1051{
6c37067e
PZ
1052 struct rq *rq = task_rq(p);
1053 bool queued, running;
1054
c5b28038 1055 lockdep_assert_held(&p->pi_lock);
6c37067e
PZ
1056
1057 queued = task_on_rq_queued(p);
1058 running = task_current(rq, p);
1059
1060 if (queued) {
1061 /*
1062 * Because __kthread_bind() calls this on blocked tasks without
1063 * holding rq->lock.
1064 */
1065 lockdep_assert_held(&rq->lock);
1de64443 1066 dequeue_task(rq, p, DEQUEUE_SAVE);
6c37067e
PZ
1067 }
1068 if (running)
1069 put_prev_task(rq, p);
1070
c5b28038 1071 p->sched_class->set_cpus_allowed(p, new_mask);
6c37067e 1072
6c37067e 1073 if (queued)
1de64443 1074 enqueue_task(rq, p, ENQUEUE_RESTORE);
a399d233 1075 if (running)
b2bf6c31 1076 set_curr_task(rq, p);
c5b28038
PZ
1077}
1078
5cc389bc
PZ
1079/*
1080 * Change a given task's CPU affinity. Migrate the thread to a
1081 * proper CPU and schedule it away if the CPU it's executing on
1082 * is removed from the allowed bitmask.
1083 *
1084 * NOTE: the caller must have a valid reference to the task, the
1085 * task must not exit() & deallocate itself prematurely. The
1086 * call is not atomic; no spinlocks may be held.
1087 */
25834c73
PZ
1088static int __set_cpus_allowed_ptr(struct task_struct *p,
1089 const struct cpumask *new_mask, bool check)
5cc389bc 1090{
e9d867a6 1091 const struct cpumask *cpu_valid_mask = cpu_active_mask;
5cc389bc 1092 unsigned int dest_cpu;
eb580751
PZ
1093 struct rq_flags rf;
1094 struct rq *rq;
5cc389bc
PZ
1095 int ret = 0;
1096
eb580751 1097 rq = task_rq_lock(p, &rf);
a499c3ea 1098 update_rq_clock(rq);
5cc389bc 1099
e9d867a6
PZI
1100 if (p->flags & PF_KTHREAD) {
1101 /*
1102 * Kernel threads are allowed on online && !active CPUs
1103 */
1104 cpu_valid_mask = cpu_online_mask;
1105 }
1106
25834c73
PZ
1107 /*
1108 * Must re-check here, to close a race against __kthread_bind(),
1109 * sched_setaffinity() is not guaranteed to observe the flag.
1110 */
1111 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1112 ret = -EINVAL;
1113 goto out;
1114 }
1115
5cc389bc
PZ
1116 if (cpumask_equal(&p->cpus_allowed, new_mask))
1117 goto out;
1118
e9d867a6 1119 if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
5cc389bc
PZ
1120 ret = -EINVAL;
1121 goto out;
1122 }
1123
1124 do_set_cpus_allowed(p, new_mask);
1125
e9d867a6
PZI
1126 if (p->flags & PF_KTHREAD) {
1127 /*
1128 * For kernel threads that do indeed end up on online &&
d1ccc66d 1129 * !active we want to ensure they are strict per-CPU threads.
e9d867a6
PZI
1130 */
1131 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1132 !cpumask_intersects(new_mask, cpu_active_mask) &&
1133 p->nr_cpus_allowed != 1);
1134 }
1135
5cc389bc
PZ
1136 /* Can the task run on the task's current CPU? If so, we're done */
1137 if (cpumask_test_cpu(task_cpu(p), new_mask))
1138 goto out;
1139
e9d867a6 1140 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
5cc389bc
PZ
1141 if (task_running(rq, p) || p->state == TASK_WAKING) {
1142 struct migration_arg arg = { p, dest_cpu };
1143 /* Need help from migration thread: drop lock and wait. */
eb580751 1144 task_rq_unlock(rq, p, &rf);
5cc389bc
PZ
1145 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1146 tlb_migrate_finish(p->mm);
1147 return 0;
cbce1a68
PZ
1148 } else if (task_on_rq_queued(p)) {
1149 /*
1150 * OK, since we're going to drop the lock immediately
1151 * afterwards anyway.
1152 */
d8ac8971 1153 rq_unpin_lock(rq, &rf);
5e16bbc2 1154 rq = move_queued_task(rq, p, dest_cpu);
d8ac8971 1155 rq_repin_lock(rq, &rf);
cbce1a68 1156 }
5cc389bc 1157out:
eb580751 1158 task_rq_unlock(rq, p, &rf);
5cc389bc
PZ
1159
1160 return ret;
1161}
25834c73
PZ
1162
1163int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1164{
1165 return __set_cpus_allowed_ptr(p, new_mask, false);
1166}
5cc389bc
PZ
1167EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1168
dd41f596 1169void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1170{
e2912009
PZ
1171#ifdef CONFIG_SCHED_DEBUG
1172 /*
1173 * We should never call set_task_cpu() on a blocked task,
1174 * ttwu() will sort out the placement.
1175 */
077614ee 1176 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
e2336f6e 1177 !p->on_rq);
0122ec5b 1178
3ea94de1
JP
1179 /*
1180 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1181 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1182 * time relying on p->on_rq.
1183 */
1184 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1185 p->sched_class == &fair_sched_class &&
1186 (p->on_rq && !task_on_rq_migrating(p)));
1187
0122ec5b 1188#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1189 /*
1190 * The caller should hold either p->pi_lock or rq->lock, when changing
1191 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1192 *
1193 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1194 * see task_group().
6c6c54e1
PZ
1195 *
1196 * Furthermore, all task_rq users should acquire both locks, see
1197 * task_rq_lock().
1198 */
0122ec5b
PZ
1199 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1200 lockdep_is_held(&task_rq(p)->lock)));
1201#endif
e2912009
PZ
1202#endif
1203
de1d7286 1204 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1205
0c69774e 1206 if (task_cpu(p) != new_cpu) {
0a74bef8 1207 if (p->sched_class->migrate_task_rq)
5a4fd036 1208 p->sched_class->migrate_task_rq(p);
0c69774e 1209 p->se.nr_migrations++;
ff303e66 1210 perf_event_task_migrate(p);
0c69774e 1211 }
dd41f596
IM
1212
1213 __set_task_cpu(p, new_cpu);
c65cc870
IM
1214}
1215
ac66f547
PZ
1216static void __migrate_swap_task(struct task_struct *p, int cpu)
1217{
da0c1e65 1218 if (task_on_rq_queued(p)) {
ac66f547
PZ
1219 struct rq *src_rq, *dst_rq;
1220
1221 src_rq = task_rq(p);
1222 dst_rq = cpu_rq(cpu);
1223
3ea94de1 1224 p->on_rq = TASK_ON_RQ_MIGRATING;
ac66f547
PZ
1225 deactivate_task(src_rq, p, 0);
1226 set_task_cpu(p, cpu);
1227 activate_task(dst_rq, p, 0);
3ea94de1 1228 p->on_rq = TASK_ON_RQ_QUEUED;
ac66f547
PZ
1229 check_preempt_curr(dst_rq, p, 0);
1230 } else {
1231 /*
1232 * Task isn't running anymore; make it appear like we migrated
1233 * it before it went to sleep. This means on wakeup we make the
d1ccc66d 1234 * previous CPU our target instead of where it really is.
ac66f547
PZ
1235 */
1236 p->wake_cpu = cpu;
1237 }
1238}
1239
1240struct migration_swap_arg {
1241 struct task_struct *src_task, *dst_task;
1242 int src_cpu, dst_cpu;
1243};
1244
1245static int migrate_swap_stop(void *data)
1246{
1247 struct migration_swap_arg *arg = data;
1248 struct rq *src_rq, *dst_rq;
1249 int ret = -EAGAIN;
1250
62694cd5
PZ
1251 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1252 return -EAGAIN;
1253
ac66f547
PZ
1254 src_rq = cpu_rq(arg->src_cpu);
1255 dst_rq = cpu_rq(arg->dst_cpu);
1256
74602315
PZ
1257 double_raw_lock(&arg->src_task->pi_lock,
1258 &arg->dst_task->pi_lock);
ac66f547 1259 double_rq_lock(src_rq, dst_rq);
62694cd5 1260
ac66f547
PZ
1261 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1262 goto unlock;
1263
1264 if (task_cpu(arg->src_task) != arg->src_cpu)
1265 goto unlock;
1266
0c98d344 1267 if (!cpumask_test_cpu(arg->dst_cpu, &arg->src_task->cpus_allowed))
ac66f547
PZ
1268 goto unlock;
1269
0c98d344 1270 if (!cpumask_test_cpu(arg->src_cpu, &arg->dst_task->cpus_allowed))
ac66f547
PZ
1271 goto unlock;
1272
1273 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1274 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1275
1276 ret = 0;
1277
1278unlock:
1279 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1280 raw_spin_unlock(&arg->dst_task->pi_lock);
1281 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1282
1283 return ret;
1284}
1285
1286/*
1287 * Cross migrate two tasks
1288 */
1289int migrate_swap(struct task_struct *cur, struct task_struct *p)
1290{
1291 struct migration_swap_arg arg;
1292 int ret = -EINVAL;
1293
ac66f547
PZ
1294 arg = (struct migration_swap_arg){
1295 .src_task = cur,
1296 .src_cpu = task_cpu(cur),
1297 .dst_task = p,
1298 .dst_cpu = task_cpu(p),
1299 };
1300
1301 if (arg.src_cpu == arg.dst_cpu)
1302 goto out;
1303
6acce3ef
PZ
1304 /*
1305 * These three tests are all lockless; this is OK since all of them
1306 * will be re-checked with proper locks held further down the line.
1307 */
ac66f547
PZ
1308 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1309 goto out;
1310
0c98d344 1311 if (!cpumask_test_cpu(arg.dst_cpu, &arg.src_task->cpus_allowed))
ac66f547
PZ
1312 goto out;
1313
0c98d344 1314 if (!cpumask_test_cpu(arg.src_cpu, &arg.dst_task->cpus_allowed))
ac66f547
PZ
1315 goto out;
1316
286549dc 1317 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1318 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1319
1320out:
ac66f547
PZ
1321 return ret;
1322}
1323
1da177e4
LT
1324/*
1325 * wait_task_inactive - wait for a thread to unschedule.
1326 *
85ba2d86
RM
1327 * If @match_state is nonzero, it's the @p->state value just checked and
1328 * not expected to change. If it changes, i.e. @p might have woken up,
1329 * then return zero. When we succeed in waiting for @p to be off its CPU,
1330 * we return a positive number (its total switch count). If a second call
1331 * a short while later returns the same number, the caller can be sure that
1332 * @p has remained unscheduled the whole time.
1333 *
1da177e4
LT
1334 * The caller must ensure that the task *will* unschedule sometime soon,
1335 * else this function might spin for a *long* time. This function can't
1336 * be called with interrupts off, or it may introduce deadlock with
1337 * smp_call_function() if an IPI is sent by the same process we are
1338 * waiting to become inactive.
1339 */
85ba2d86 1340unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4 1341{
da0c1e65 1342 int running, queued;
eb580751 1343 struct rq_flags rf;
85ba2d86 1344 unsigned long ncsw;
70b97a7f 1345 struct rq *rq;
1da177e4 1346
3a5c359a
AK
1347 for (;;) {
1348 /*
1349 * We do the initial early heuristics without holding
1350 * any task-queue locks at all. We'll only try to get
1351 * the runqueue lock when things look like they will
1352 * work out!
1353 */
1354 rq = task_rq(p);
fa490cfd 1355
3a5c359a
AK
1356 /*
1357 * If the task is actively running on another CPU
1358 * still, just relax and busy-wait without holding
1359 * any locks.
1360 *
1361 * NOTE! Since we don't hold any locks, it's not
1362 * even sure that "rq" stays as the right runqueue!
1363 * But we don't care, since "task_running()" will
1364 * return false if the runqueue has changed and p
1365 * is actually now running somewhere else!
1366 */
85ba2d86
RM
1367 while (task_running(rq, p)) {
1368 if (match_state && unlikely(p->state != match_state))
1369 return 0;
3a5c359a 1370 cpu_relax();
85ba2d86 1371 }
fa490cfd 1372
3a5c359a
AK
1373 /*
1374 * Ok, time to look more closely! We need the rq
1375 * lock now, to be *sure*. If we're wrong, we'll
1376 * just go back and repeat.
1377 */
eb580751 1378 rq = task_rq_lock(p, &rf);
27a9da65 1379 trace_sched_wait_task(p);
3a5c359a 1380 running = task_running(rq, p);
da0c1e65 1381 queued = task_on_rq_queued(p);
85ba2d86 1382 ncsw = 0;
f31e11d8 1383 if (!match_state || p->state == match_state)
93dcf55f 1384 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
eb580751 1385 task_rq_unlock(rq, p, &rf);
fa490cfd 1386
85ba2d86
RM
1387 /*
1388 * If it changed from the expected state, bail out now.
1389 */
1390 if (unlikely(!ncsw))
1391 break;
1392
3a5c359a
AK
1393 /*
1394 * Was it really running after all now that we
1395 * checked with the proper locks actually held?
1396 *
1397 * Oops. Go back and try again..
1398 */
1399 if (unlikely(running)) {
1400 cpu_relax();
1401 continue;
1402 }
fa490cfd 1403
3a5c359a
AK
1404 /*
1405 * It's not enough that it's not actively running,
1406 * it must be off the runqueue _entirely_, and not
1407 * preempted!
1408 *
80dd99b3 1409 * So if it was still runnable (but just not actively
3a5c359a
AK
1410 * running right now), it's preempted, and we should
1411 * yield - it could be a while.
1412 */
da0c1e65 1413 if (unlikely(queued)) {
8b0e1953 1414 ktime_t to = NSEC_PER_SEC / HZ;
8eb90c30
TG
1415
1416 set_current_state(TASK_UNINTERRUPTIBLE);
1417 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1418 continue;
1419 }
fa490cfd 1420
3a5c359a
AK
1421 /*
1422 * Ahh, all good. It wasn't running, and it wasn't
1423 * runnable, which means that it will never become
1424 * running in the future either. We're all done!
1425 */
1426 break;
1427 }
85ba2d86
RM
1428
1429 return ncsw;
1da177e4
LT
1430}
1431
1432/***
1433 * kick_process - kick a running thread to enter/exit the kernel
1434 * @p: the to-be-kicked thread
1435 *
1436 * Cause a process which is running on another CPU to enter
1437 * kernel-mode, without any delay. (to get signals handled.)
1438 *
25985edc 1439 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1440 * because all it wants to ensure is that the remote task enters
1441 * the kernel. If the IPI races and the task has been migrated
1442 * to another CPU then no harm is done and the purpose has been
1443 * achieved as well.
1444 */
36c8b586 1445void kick_process(struct task_struct *p)
1da177e4
LT
1446{
1447 int cpu;
1448
1449 preempt_disable();
1450 cpu = task_cpu(p);
1451 if ((cpu != smp_processor_id()) && task_curr(p))
1452 smp_send_reschedule(cpu);
1453 preempt_enable();
1454}
b43e3521 1455EXPORT_SYMBOL_GPL(kick_process);
1da177e4 1456
30da688e 1457/*
013fdb80 1458 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
e9d867a6
PZI
1459 *
1460 * A few notes on cpu_active vs cpu_online:
1461 *
1462 * - cpu_active must be a subset of cpu_online
1463 *
1464 * - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
1465 * see __set_cpus_allowed_ptr(). At this point the newly online
d1ccc66d 1466 * CPU isn't yet part of the sched domains, and balancing will not
e9d867a6
PZI
1467 * see it.
1468 *
d1ccc66d 1469 * - on CPU-down we clear cpu_active() to mask the sched domains and
e9d867a6 1470 * avoid the load balancer to place new tasks on the to be removed
d1ccc66d 1471 * CPU. Existing tasks will remain running there and will be taken
e9d867a6
PZI
1472 * off.
1473 *
1474 * This means that fallback selection must not select !active CPUs.
1475 * And can assume that any active CPU must be online. Conversely
1476 * select_task_rq() below may allow selection of !active CPUs in order
1477 * to satisfy the above rules.
30da688e 1478 */
5da9a0fb
PZ
1479static int select_fallback_rq(int cpu, struct task_struct *p)
1480{
aa00d89c
TC
1481 int nid = cpu_to_node(cpu);
1482 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1483 enum { cpuset, possible, fail } state = cpuset;
1484 int dest_cpu;
5da9a0fb 1485
aa00d89c 1486 /*
d1ccc66d
IM
1487 * If the node that the CPU is on has been offlined, cpu_to_node()
1488 * will return -1. There is no CPU on the node, and we should
1489 * select the CPU on the other node.
aa00d89c
TC
1490 */
1491 if (nid != -1) {
1492 nodemask = cpumask_of_node(nid);
1493
1494 /* Look for allowed, online CPU in same node. */
1495 for_each_cpu(dest_cpu, nodemask) {
aa00d89c
TC
1496 if (!cpu_active(dest_cpu))
1497 continue;
0c98d344 1498 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
aa00d89c
TC
1499 return dest_cpu;
1500 }
2baab4e9 1501 }
5da9a0fb 1502
2baab4e9
PZ
1503 for (;;) {
1504 /* Any allowed, online CPU? */
0c98d344 1505 for_each_cpu(dest_cpu, &p->cpus_allowed) {
feb245e3
TH
1506 if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu))
1507 continue;
1508 if (!cpu_online(dest_cpu))
2baab4e9
PZ
1509 continue;
1510 goto out;
1511 }
5da9a0fb 1512
e73e85f0 1513 /* No more Mr. Nice Guy. */
2baab4e9
PZ
1514 switch (state) {
1515 case cpuset:
e73e85f0
ON
1516 if (IS_ENABLED(CONFIG_CPUSETS)) {
1517 cpuset_cpus_allowed_fallback(p);
1518 state = possible;
1519 break;
1520 }
d1ccc66d 1521 /* Fall-through */
2baab4e9
PZ
1522 case possible:
1523 do_set_cpus_allowed(p, cpu_possible_mask);
1524 state = fail;
1525 break;
1526
1527 case fail:
1528 BUG();
1529 break;
1530 }
1531 }
1532
1533out:
1534 if (state != cpuset) {
1535 /*
1536 * Don't tell them about moving exiting tasks or
1537 * kernel threads (both mm NULL), since they never
1538 * leave kernel.
1539 */
1540 if (p->mm && printk_ratelimit()) {
aac74dc4 1541 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1542 task_pid_nr(p), p->comm, cpu);
1543 }
5da9a0fb
PZ
1544 }
1545
1546 return dest_cpu;
1547}
1548
e2912009 1549/*
013fdb80 1550 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1551 */
970b13ba 1552static inline
ac66f547 1553int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1554{
cbce1a68
PZ
1555 lockdep_assert_held(&p->pi_lock);
1556
4b53a341 1557 if (p->nr_cpus_allowed > 1)
6c1d9410 1558 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e9d867a6 1559 else
0c98d344 1560 cpu = cpumask_any(&p->cpus_allowed);
e2912009
PZ
1561
1562 /*
1563 * In order not to call set_task_cpu() on a blocking task we need
1564 * to rely on ttwu() to place the task on a valid ->cpus_allowed
d1ccc66d 1565 * CPU.
e2912009
PZ
1566 *
1567 * Since this is common to all placement strategies, this lives here.
1568 *
1569 * [ this allows ->select_task() to simply return task_cpu(p) and
1570 * not worry about this generic constraint ]
1571 */
0c98d344 1572 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
70f11205 1573 !cpu_online(cpu)))
5da9a0fb 1574 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1575
1576 return cpu;
970b13ba 1577}
09a40af5
MG
1578
1579static void update_avg(u64 *avg, u64 sample)
1580{
1581 s64 diff = sample - *avg;
1582 *avg += diff >> 3;
1583}
25834c73
PZ
1584
1585#else
1586
1587static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1588 const struct cpumask *new_mask, bool check)
1589{
1590 return set_cpus_allowed_ptr(p, new_mask);
1591}
1592
5cc389bc 1593#endif /* CONFIG_SMP */
970b13ba 1594
d7c01d27 1595static void
b84cb5df 1596ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1597{
4fa8d299 1598 struct rq *rq;
b84cb5df 1599
4fa8d299
JP
1600 if (!schedstat_enabled())
1601 return;
1602
1603 rq = this_rq();
d7c01d27 1604
4fa8d299
JP
1605#ifdef CONFIG_SMP
1606 if (cpu == rq->cpu) {
ae92882e
JP
1607 schedstat_inc(rq->ttwu_local);
1608 schedstat_inc(p->se.statistics.nr_wakeups_local);
d7c01d27
PZ
1609 } else {
1610 struct sched_domain *sd;
1611
ae92882e 1612 schedstat_inc(p->se.statistics.nr_wakeups_remote);
057f3fad 1613 rcu_read_lock();
4fa8d299 1614 for_each_domain(rq->cpu, sd) {
d7c01d27 1615 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
ae92882e 1616 schedstat_inc(sd->ttwu_wake_remote);
d7c01d27
PZ
1617 break;
1618 }
1619 }
057f3fad 1620 rcu_read_unlock();
d7c01d27 1621 }
f339b9dc
PZ
1622
1623 if (wake_flags & WF_MIGRATED)
ae92882e 1624 schedstat_inc(p->se.statistics.nr_wakeups_migrate);
d7c01d27
PZ
1625#endif /* CONFIG_SMP */
1626
ae92882e
JP
1627 schedstat_inc(rq->ttwu_count);
1628 schedstat_inc(p->se.statistics.nr_wakeups);
d7c01d27
PZ
1629
1630 if (wake_flags & WF_SYNC)
ae92882e 1631 schedstat_inc(p->se.statistics.nr_wakeups_sync);
d7c01d27
PZ
1632}
1633
1de64443 1634static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
d7c01d27 1635{
9ed3811a 1636 activate_task(rq, p, en_flags);
da0c1e65 1637 p->on_rq = TASK_ON_RQ_QUEUED;
c2f7115e 1638
d1ccc66d 1639 /* If a worker is waking up, notify the workqueue: */
c2f7115e
PZ
1640 if (p->flags & PF_WQ_WORKER)
1641 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1642}
1643
23f41eeb
PZ
1644/*
1645 * Mark the task runnable and perform wakeup-preemption.
1646 */
e7904a28 1647static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
d8ac8971 1648 struct rq_flags *rf)
9ed3811a 1649{
9ed3811a 1650 check_preempt_curr(rq, p, wake_flags);
9ed3811a 1651 p->state = TASK_RUNNING;
fbd705a0
PZ
1652 trace_sched_wakeup(p);
1653
9ed3811a 1654#ifdef CONFIG_SMP
4c9a4bc8
PZ
1655 if (p->sched_class->task_woken) {
1656 /*
cbce1a68
PZ
1657 * Our task @p is fully woken up and running; so its safe to
1658 * drop the rq->lock, hereafter rq is only used for statistics.
4c9a4bc8 1659 */
d8ac8971 1660 rq_unpin_lock(rq, rf);
9ed3811a 1661 p->sched_class->task_woken(rq, p);
d8ac8971 1662 rq_repin_lock(rq, rf);
4c9a4bc8 1663 }
9ed3811a 1664
e69c6341 1665 if (rq->idle_stamp) {
78becc27 1666 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1667 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1668
abfafa54
JL
1669 update_avg(&rq->avg_idle, delta);
1670
1671 if (rq->avg_idle > max)
9ed3811a 1672 rq->avg_idle = max;
abfafa54 1673
9ed3811a
TH
1674 rq->idle_stamp = 0;
1675 }
1676#endif
1677}
1678
c05fbafb 1679static void
e7904a28 1680ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
d8ac8971 1681 struct rq_flags *rf)
c05fbafb 1682{
b5179ac7
PZ
1683 int en_flags = ENQUEUE_WAKEUP;
1684
cbce1a68
PZ
1685 lockdep_assert_held(&rq->lock);
1686
c05fbafb
PZ
1687#ifdef CONFIG_SMP
1688 if (p->sched_contributes_to_load)
1689 rq->nr_uninterruptible--;
b5179ac7 1690
b5179ac7 1691 if (wake_flags & WF_MIGRATED)
59efa0ba 1692 en_flags |= ENQUEUE_MIGRATED;
c05fbafb
PZ
1693#endif
1694
b5179ac7 1695 ttwu_activate(rq, p, en_flags);
d8ac8971 1696 ttwu_do_wakeup(rq, p, wake_flags, rf);
c05fbafb
PZ
1697}
1698
1699/*
1700 * Called in case the task @p isn't fully descheduled from its runqueue,
1701 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1702 * since all we need to do is flip p->state to TASK_RUNNING, since
1703 * the task is still ->on_rq.
1704 */
1705static int ttwu_remote(struct task_struct *p, int wake_flags)
1706{
eb580751 1707 struct rq_flags rf;
c05fbafb
PZ
1708 struct rq *rq;
1709 int ret = 0;
1710
eb580751 1711 rq = __task_rq_lock(p, &rf);
da0c1e65 1712 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
1713 /* check_preempt_curr() may use rq clock */
1714 update_rq_clock(rq);
d8ac8971 1715 ttwu_do_wakeup(rq, p, wake_flags, &rf);
c05fbafb
PZ
1716 ret = 1;
1717 }
eb580751 1718 __task_rq_unlock(rq, &rf);
c05fbafb
PZ
1719
1720 return ret;
1721}
1722
317f3941 1723#ifdef CONFIG_SMP
e3baac47 1724void sched_ttwu_pending(void)
317f3941
PZ
1725{
1726 struct rq *rq = this_rq();
fa14ff4a
PZ
1727 struct llist_node *llist = llist_del_all(&rq->wake_list);
1728 struct task_struct *p;
e3baac47 1729 unsigned long flags;
d8ac8971 1730 struct rq_flags rf;
317f3941 1731
e3baac47
PZ
1732 if (!llist)
1733 return;
1734
1735 raw_spin_lock_irqsave(&rq->lock, flags);
d8ac8971 1736 rq_pin_lock(rq, &rf);
317f3941 1737
fa14ff4a 1738 while (llist) {
b7e7ade3
PZ
1739 int wake_flags = 0;
1740
fa14ff4a
PZ
1741 p = llist_entry(llist, struct task_struct, wake_entry);
1742 llist = llist_next(llist);
b7e7ade3
PZ
1743
1744 if (p->sched_remote_wakeup)
1745 wake_flags = WF_MIGRATED;
1746
d8ac8971 1747 ttwu_do_activate(rq, p, wake_flags, &rf);
317f3941
PZ
1748 }
1749
d8ac8971 1750 rq_unpin_lock(rq, &rf);
e3baac47 1751 raw_spin_unlock_irqrestore(&rq->lock, flags);
317f3941
PZ
1752}
1753
1754void scheduler_ipi(void)
1755{
f27dde8d
PZ
1756 /*
1757 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1758 * TIF_NEED_RESCHED remotely (for the first time) will also send
1759 * this IPI.
1760 */
8cb75e0c 1761 preempt_fold_need_resched();
f27dde8d 1762
fd2ac4f4 1763 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1764 return;
1765
1766 /*
1767 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1768 * traditionally all their work was done from the interrupt return
1769 * path. Now that we actually do some work, we need to make sure
1770 * we do call them.
1771 *
1772 * Some archs already do call them, luckily irq_enter/exit nest
1773 * properly.
1774 *
1775 * Arguably we should visit all archs and update all handlers,
1776 * however a fair share of IPIs are still resched only so this would
1777 * somewhat pessimize the simple resched case.
1778 */
1779 irq_enter();
fa14ff4a 1780 sched_ttwu_pending();
ca38062e
SS
1781
1782 /*
1783 * Check if someone kicked us for doing the nohz idle load balance.
1784 */
873b4c65 1785 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1786 this_rq()->idle_balance = 1;
ca38062e 1787 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1788 }
c5d753a5 1789 irq_exit();
317f3941
PZ
1790}
1791
b7e7ade3 1792static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
317f3941 1793{
e3baac47
PZ
1794 struct rq *rq = cpu_rq(cpu);
1795
b7e7ade3
PZ
1796 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1797
e3baac47
PZ
1798 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1799 if (!set_nr_if_polling(rq->idle))
1800 smp_send_reschedule(cpu);
1801 else
1802 trace_sched_wake_idle_without_ipi(cpu);
1803 }
317f3941 1804}
d6aa8f85 1805
f6be8af1
CL
1806void wake_up_if_idle(int cpu)
1807{
1808 struct rq *rq = cpu_rq(cpu);
1809 unsigned long flags;
1810
fd7de1e8
AL
1811 rcu_read_lock();
1812
1813 if (!is_idle_task(rcu_dereference(rq->curr)))
1814 goto out;
f6be8af1
CL
1815
1816 if (set_nr_if_polling(rq->idle)) {
1817 trace_sched_wake_idle_without_ipi(cpu);
1818 } else {
1819 raw_spin_lock_irqsave(&rq->lock, flags);
1820 if (is_idle_task(rq->curr))
1821 smp_send_reschedule(cpu);
d1ccc66d 1822 /* Else CPU is not idle, do nothing here: */
f6be8af1
CL
1823 raw_spin_unlock_irqrestore(&rq->lock, flags);
1824 }
fd7de1e8
AL
1825
1826out:
1827 rcu_read_unlock();
f6be8af1
CL
1828}
1829
39be3501 1830bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1831{
1832 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1833}
d6aa8f85 1834#endif /* CONFIG_SMP */
317f3941 1835
b5179ac7 1836static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
c05fbafb
PZ
1837{
1838 struct rq *rq = cpu_rq(cpu);
d8ac8971 1839 struct rq_flags rf;
c05fbafb 1840
17d9f311 1841#if defined(CONFIG_SMP)
39be3501 1842 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
d1ccc66d 1843 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
b7e7ade3 1844 ttwu_queue_remote(p, cpu, wake_flags);
317f3941
PZ
1845 return;
1846 }
1847#endif
1848
c05fbafb 1849 raw_spin_lock(&rq->lock);
d8ac8971
MF
1850 rq_pin_lock(rq, &rf);
1851 ttwu_do_activate(rq, p, wake_flags, &rf);
1852 rq_unpin_lock(rq, &rf);
c05fbafb 1853 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1854}
1855
8643cda5
PZ
1856/*
1857 * Notes on Program-Order guarantees on SMP systems.
1858 *
1859 * MIGRATION
1860 *
1861 * The basic program-order guarantee on SMP systems is that when a task [t]
d1ccc66d
IM
1862 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
1863 * execution on its new CPU [c1].
8643cda5
PZ
1864 *
1865 * For migration (of runnable tasks) this is provided by the following means:
1866 *
1867 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1868 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1869 * rq(c1)->lock (if not at the same time, then in that order).
1870 * C) LOCK of the rq(c1)->lock scheduling in task
1871 *
1872 * Transitivity guarantees that B happens after A and C after B.
1873 * Note: we only require RCpc transitivity.
d1ccc66d 1874 * Note: the CPU doing B need not be c0 or c1
8643cda5
PZ
1875 *
1876 * Example:
1877 *
1878 * CPU0 CPU1 CPU2
1879 *
1880 * LOCK rq(0)->lock
1881 * sched-out X
1882 * sched-in Y
1883 * UNLOCK rq(0)->lock
1884 *
1885 * LOCK rq(0)->lock // orders against CPU0
1886 * dequeue X
1887 * UNLOCK rq(0)->lock
1888 *
1889 * LOCK rq(1)->lock
1890 * enqueue X
1891 * UNLOCK rq(1)->lock
1892 *
1893 * LOCK rq(1)->lock // orders against CPU2
1894 * sched-out Z
1895 * sched-in X
1896 * UNLOCK rq(1)->lock
1897 *
1898 *
1899 * BLOCKING -- aka. SLEEP + WAKEUP
1900 *
1901 * For blocking we (obviously) need to provide the same guarantee as for
1902 * migration. However the means are completely different as there is no lock
1903 * chain to provide order. Instead we do:
1904 *
1905 * 1) smp_store_release(X->on_cpu, 0)
1f03e8d2 1906 * 2) smp_cond_load_acquire(!X->on_cpu)
8643cda5
PZ
1907 *
1908 * Example:
1909 *
1910 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1911 *
1912 * LOCK rq(0)->lock LOCK X->pi_lock
1913 * dequeue X
1914 * sched-out X
1915 * smp_store_release(X->on_cpu, 0);
1916 *
1f03e8d2 1917 * smp_cond_load_acquire(&X->on_cpu, !VAL);
8643cda5
PZ
1918 * X->state = WAKING
1919 * set_task_cpu(X,2)
1920 *
1921 * LOCK rq(2)->lock
1922 * enqueue X
1923 * X->state = RUNNING
1924 * UNLOCK rq(2)->lock
1925 *
1926 * LOCK rq(2)->lock // orders against CPU1
1927 * sched-out Z
1928 * sched-in X
1929 * UNLOCK rq(2)->lock
1930 *
1931 * UNLOCK X->pi_lock
1932 * UNLOCK rq(0)->lock
1933 *
1934 *
1935 * However; for wakeups there is a second guarantee we must provide, namely we
1936 * must observe the state that lead to our wakeup. That is, not only must our
1937 * task observe its own prior state, it must also observe the stores prior to
1938 * its wakeup.
1939 *
1940 * This means that any means of doing remote wakeups must order the CPU doing
1941 * the wakeup against the CPU the task is going to end up running on. This,
1942 * however, is already required for the regular Program-Order guarantee above,
1f03e8d2 1943 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
8643cda5
PZ
1944 *
1945 */
1946
9ed3811a 1947/**
1da177e4 1948 * try_to_wake_up - wake up a thread
9ed3811a 1949 * @p: the thread to be awakened
1da177e4 1950 * @state: the mask of task states that can be woken
9ed3811a 1951 * @wake_flags: wake modifier flags (WF_*)
1da177e4 1952 *
a2250238 1953 * If (@state & @p->state) @p->state = TASK_RUNNING.
1da177e4 1954 *
a2250238
PZ
1955 * If the task was not queued/runnable, also place it back on a runqueue.
1956 *
1957 * Atomic against schedule() which would dequeue a task, also see
1958 * set_current_state().
1959 *
1960 * Return: %true if @p->state changes (an actual wakeup was done),
1961 * %false otherwise.
1da177e4 1962 */
e4a52bcb
PZ
1963static int
1964try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1965{
1da177e4 1966 unsigned long flags;
c05fbafb 1967 int cpu, success = 0;
2398f2c6 1968
e0acd0a6
ON
1969 /*
1970 * If we are going to wake up a thread waiting for CONDITION we
1971 * need to ensure that CONDITION=1 done by the caller can not be
1972 * reordered with p->state check below. This pairs with mb() in
1973 * set_current_state() the waiting thread does.
1974 */
1975 smp_mb__before_spinlock();
013fdb80 1976 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1977 if (!(p->state & state))
1da177e4
LT
1978 goto out;
1979
fbd705a0
PZ
1980 trace_sched_waking(p);
1981
d1ccc66d
IM
1982 /* We're going to change ->state: */
1983 success = 1;
1da177e4 1984 cpu = task_cpu(p);
1da177e4 1985
135e8c92
BS
1986 /*
1987 * Ensure we load p->on_rq _after_ p->state, otherwise it would
1988 * be possible to, falsely, observe p->on_rq == 0 and get stuck
1989 * in smp_cond_load_acquire() below.
1990 *
1991 * sched_ttwu_pending() try_to_wake_up()
1992 * [S] p->on_rq = 1; [L] P->state
1993 * UNLOCK rq->lock -----.
1994 * \
1995 * +--- RMB
1996 * schedule() /
1997 * LOCK rq->lock -----'
1998 * UNLOCK rq->lock
1999 *
2000 * [task p]
2001 * [S] p->state = UNINTERRUPTIBLE [L] p->on_rq
2002 *
2003 * Pairs with the UNLOCK+LOCK on rq->lock from the
2004 * last wakeup of our task and the schedule that got our task
2005 * current.
2006 */
2007 smp_rmb();
c05fbafb
PZ
2008 if (p->on_rq && ttwu_remote(p, wake_flags))
2009 goto stat;
1da177e4 2010
1da177e4 2011#ifdef CONFIG_SMP
ecf7d01c
PZ
2012 /*
2013 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2014 * possible to, falsely, observe p->on_cpu == 0.
2015 *
2016 * One must be running (->on_cpu == 1) in order to remove oneself
2017 * from the runqueue.
2018 *
2019 * [S] ->on_cpu = 1; [L] ->on_rq
2020 * UNLOCK rq->lock
2021 * RMB
2022 * LOCK rq->lock
2023 * [S] ->on_rq = 0; [L] ->on_cpu
2024 *
2025 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2026 * from the consecutive calls to schedule(); the first switching to our
2027 * task, the second putting it to sleep.
2028 */
2029 smp_rmb();
2030
e9c84311 2031 /*
d1ccc66d 2032 * If the owning (remote) CPU is still in the middle of schedule() with
c05fbafb 2033 * this task as prev, wait until its done referencing the task.
b75a2253
PZ
2034 *
2035 * Pairs with the smp_store_release() in finish_lock_switch().
2036 *
2037 * This ensures that tasks getting woken will be fully ordered against
2038 * their previous state and preserve Program Order.
0970d299 2039 */
1f03e8d2 2040 smp_cond_load_acquire(&p->on_cpu, !VAL);
1da177e4 2041
a8e4f2ea 2042 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 2043 p->state = TASK_WAKING;
e7693a36 2044
e33a9bba
TH
2045 if (p->in_iowait) {
2046 delayacct_blkio_end();
2047 atomic_dec(&task_rq(p)->nr_iowait);
2048 }
2049
ac66f547 2050 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
2051 if (task_cpu(p) != cpu) {
2052 wake_flags |= WF_MIGRATED;
e4a52bcb 2053 set_task_cpu(p, cpu);
f339b9dc 2054 }
e33a9bba
TH
2055
2056#else /* CONFIG_SMP */
2057
2058 if (p->in_iowait) {
2059 delayacct_blkio_end();
2060 atomic_dec(&task_rq(p)->nr_iowait);
2061 }
2062
1da177e4 2063#endif /* CONFIG_SMP */
1da177e4 2064
b5179ac7 2065 ttwu_queue(p, cpu, wake_flags);
c05fbafb 2066stat:
4fa8d299 2067 ttwu_stat(p, cpu, wake_flags);
1da177e4 2068out:
013fdb80 2069 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
2070
2071 return success;
2072}
2073
21aa9af0
TH
2074/**
2075 * try_to_wake_up_local - try to wake up a local task with rq lock held
2076 * @p: the thread to be awakened
9279e0d2 2077 * @cookie: context's cookie for pinning
21aa9af0 2078 *
2acca55e 2079 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 2080 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 2081 * the current task.
21aa9af0 2082 */
d8ac8971 2083static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf)
21aa9af0
TH
2084{
2085 struct rq *rq = task_rq(p);
21aa9af0 2086
383efcd0
TH
2087 if (WARN_ON_ONCE(rq != this_rq()) ||
2088 WARN_ON_ONCE(p == current))
2089 return;
2090
21aa9af0
TH
2091 lockdep_assert_held(&rq->lock);
2092
2acca55e 2093 if (!raw_spin_trylock(&p->pi_lock)) {
cbce1a68
PZ
2094 /*
2095 * This is OK, because current is on_cpu, which avoids it being
2096 * picked for load-balance and preemption/IRQs are still
2097 * disabled avoiding further scheduler activity on it and we've
2098 * not yet picked a replacement task.
2099 */
d8ac8971 2100 rq_unpin_lock(rq, rf);
2acca55e
PZ
2101 raw_spin_unlock(&rq->lock);
2102 raw_spin_lock(&p->pi_lock);
2103 raw_spin_lock(&rq->lock);
d8ac8971 2104 rq_repin_lock(rq, rf);
2acca55e
PZ
2105 }
2106
21aa9af0 2107 if (!(p->state & TASK_NORMAL))
2acca55e 2108 goto out;
21aa9af0 2109
fbd705a0
PZ
2110 trace_sched_waking(p);
2111
e33a9bba
TH
2112 if (!task_on_rq_queued(p)) {
2113 if (p->in_iowait) {
2114 delayacct_blkio_end();
2115 atomic_dec(&rq->nr_iowait);
2116 }
d7c01d27 2117 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
e33a9bba 2118 }
d7c01d27 2119
d8ac8971 2120 ttwu_do_wakeup(rq, p, 0, rf);
4fa8d299 2121 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
2122out:
2123 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
2124}
2125
50fa610a
DH
2126/**
2127 * wake_up_process - Wake up a specific process
2128 * @p: The process to be woken up.
2129 *
2130 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
2131 * processes.
2132 *
2133 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
2134 *
2135 * It may be assumed that this function implies a write memory barrier before
2136 * changing the task state if and only if any tasks are woken up.
2137 */
7ad5b3a5 2138int wake_up_process(struct task_struct *p)
1da177e4 2139{
9067ac85 2140 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 2141}
1da177e4
LT
2142EXPORT_SYMBOL(wake_up_process);
2143
7ad5b3a5 2144int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2145{
2146 return try_to_wake_up(p, state, 0);
2147}
2148
a5e7be3b
JL
2149/*
2150 * This function clears the sched_dl_entity static params.
2151 */
2152void __dl_clear_params(struct task_struct *p)
2153{
2154 struct sched_dl_entity *dl_se = &p->dl;
2155
2156 dl_se->dl_runtime = 0;
2157 dl_se->dl_deadline = 0;
2158 dl_se->dl_period = 0;
2159 dl_se->flags = 0;
2160 dl_se->dl_bw = 0;
40767b0d
PZ
2161
2162 dl_se->dl_throttled = 0;
40767b0d 2163 dl_se->dl_yielded = 0;
a5e7be3b
JL
2164}
2165
1da177e4
LT
2166/*
2167 * Perform scheduler related setup for a newly forked process p.
2168 * p is forked by current.
dd41f596
IM
2169 *
2170 * __sched_fork() is basic setup used by init_idle() too:
2171 */
5e1576ed 2172static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2173{
fd2f4419
PZ
2174 p->on_rq = 0;
2175
2176 p->se.on_rq = 0;
dd41f596
IM
2177 p->se.exec_start = 0;
2178 p->se.sum_exec_runtime = 0;
f6cf891c 2179 p->se.prev_sum_exec_runtime = 0;
6c594c21 2180 p->se.nr_migrations = 0;
da7a735e 2181 p->se.vruntime = 0;
fd2f4419 2182 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d 2183
ad936d86
BP
2184#ifdef CONFIG_FAIR_GROUP_SCHED
2185 p->se.cfs_rq = NULL;
2186#endif
2187
6cfb0d5d 2188#ifdef CONFIG_SCHEDSTATS
cb251765 2189 /* Even if schedstat is disabled, there should not be garbage */
41acab88 2190 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2191#endif
476d139c 2192
aab03e05 2193 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 2194 init_dl_task_timer(&p->dl);
a5e7be3b 2195 __dl_clear_params(p);
aab03e05 2196
fa717060 2197 INIT_LIST_HEAD(&p->rt.run_list);
ff77e468
PZ
2198 p->rt.timeout = 0;
2199 p->rt.time_slice = sched_rr_timeslice;
2200 p->rt.on_rq = 0;
2201 p->rt.on_list = 0;
476d139c 2202
e107be36
AK
2203#ifdef CONFIG_PREEMPT_NOTIFIERS
2204 INIT_HLIST_HEAD(&p->preempt_notifiers);
2205#endif
cbee9f88
PZ
2206
2207#ifdef CONFIG_NUMA_BALANCING
2208 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 2209 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
2210 p->mm->numa_scan_seq = 0;
2211 }
2212
5e1576ed
RR
2213 if (clone_flags & CLONE_VM)
2214 p->numa_preferred_nid = current->numa_preferred_nid;
2215 else
2216 p->numa_preferred_nid = -1;
2217
cbee9f88
PZ
2218 p->node_stamp = 0ULL;
2219 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 2220 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 2221 p->numa_work.next = &p->numa_work;
44dba3d5 2222 p->numa_faults = NULL;
7e2703e6
RR
2223 p->last_task_numa_placement = 0;
2224 p->last_sum_exec_runtime = 0;
8c8a743c 2225
8c8a743c 2226 p->numa_group = NULL;
cbee9f88 2227#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
2228}
2229
2a595721
SD
2230DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2231
1a687c2e 2232#ifdef CONFIG_NUMA_BALANCING
c3b9bc5b 2233
1a687c2e
MG
2234void set_numabalancing_state(bool enabled)
2235{
2236 if (enabled)
2a595721 2237 static_branch_enable(&sched_numa_balancing);
1a687c2e 2238 else
2a595721 2239 static_branch_disable(&sched_numa_balancing);
1a687c2e 2240}
54a43d54
AK
2241
2242#ifdef CONFIG_PROC_SYSCTL
2243int sysctl_numa_balancing(struct ctl_table *table, int write,
2244 void __user *buffer, size_t *lenp, loff_t *ppos)
2245{
2246 struct ctl_table t;
2247 int err;
2a595721 2248 int state = static_branch_likely(&sched_numa_balancing);
54a43d54
AK
2249
2250 if (write && !capable(CAP_SYS_ADMIN))
2251 return -EPERM;
2252
2253 t = *table;
2254 t.data = &state;
2255 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2256 if (err < 0)
2257 return err;
2258 if (write)
2259 set_numabalancing_state(state);
2260 return err;
2261}
2262#endif
2263#endif
dd41f596 2264
4698f88c
JP
2265#ifdef CONFIG_SCHEDSTATS
2266
cb251765 2267DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4698f88c 2268static bool __initdata __sched_schedstats = false;
cb251765 2269
cb251765
MG
2270static void set_schedstats(bool enabled)
2271{
2272 if (enabled)
2273 static_branch_enable(&sched_schedstats);
2274 else
2275 static_branch_disable(&sched_schedstats);
2276}
2277
2278void force_schedstat_enabled(void)
2279{
2280 if (!schedstat_enabled()) {
2281 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2282 static_branch_enable(&sched_schedstats);
2283 }
2284}
2285
2286static int __init setup_schedstats(char *str)
2287{
2288 int ret = 0;
2289 if (!str)
2290 goto out;
2291
4698f88c
JP
2292 /*
2293 * This code is called before jump labels have been set up, so we can't
2294 * change the static branch directly just yet. Instead set a temporary
2295 * variable so init_schedstats() can do it later.
2296 */
cb251765 2297 if (!strcmp(str, "enable")) {
4698f88c 2298 __sched_schedstats = true;
cb251765
MG
2299 ret = 1;
2300 } else if (!strcmp(str, "disable")) {
4698f88c 2301 __sched_schedstats = false;
cb251765
MG
2302 ret = 1;
2303 }
2304out:
2305 if (!ret)
2306 pr_warn("Unable to parse schedstats=\n");
2307
2308 return ret;
2309}
2310__setup("schedstats=", setup_schedstats);
2311
4698f88c
JP
2312static void __init init_schedstats(void)
2313{
2314 set_schedstats(__sched_schedstats);
2315}
2316
cb251765
MG
2317#ifdef CONFIG_PROC_SYSCTL
2318int sysctl_schedstats(struct ctl_table *table, int write,
2319 void __user *buffer, size_t *lenp, loff_t *ppos)
2320{
2321 struct ctl_table t;
2322 int err;
2323 int state = static_branch_likely(&sched_schedstats);
2324
2325 if (write && !capable(CAP_SYS_ADMIN))
2326 return -EPERM;
2327
2328 t = *table;
2329 t.data = &state;
2330 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2331 if (err < 0)
2332 return err;
2333 if (write)
2334 set_schedstats(state);
2335 return err;
2336}
4698f88c
JP
2337#endif /* CONFIG_PROC_SYSCTL */
2338#else /* !CONFIG_SCHEDSTATS */
2339static inline void init_schedstats(void) {}
2340#endif /* CONFIG_SCHEDSTATS */
dd41f596
IM
2341
2342/*
2343 * fork()/clone()-time setup:
2344 */
aab03e05 2345int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2346{
0122ec5b 2347 unsigned long flags;
dd41f596
IM
2348 int cpu = get_cpu();
2349
5e1576ed 2350 __sched_fork(clone_flags, p);
06b83b5f 2351 /*
7dc603c9 2352 * We mark the process as NEW here. This guarantees that
06b83b5f
PZ
2353 * nobody will actually run it, and a signal or other external
2354 * event cannot wake it up and insert it on the runqueue either.
2355 */
7dc603c9 2356 p->state = TASK_NEW;
dd41f596 2357
c350a04e
MG
2358 /*
2359 * Make sure we do not leak PI boosting priority to the child.
2360 */
2361 p->prio = current->normal_prio;
2362
b9dc29e7
MG
2363 /*
2364 * Revert to default priority/policy on fork if requested.
2365 */
2366 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 2367 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 2368 p->policy = SCHED_NORMAL;
6c697bdf 2369 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
2370 p->rt_priority = 0;
2371 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2372 p->static_prio = NICE_TO_PRIO(0);
2373
2374 p->prio = p->normal_prio = __normal_prio(p);
2375 set_load_weight(p);
6c697bdf 2376
b9dc29e7
MG
2377 /*
2378 * We don't need the reset flag anymore after the fork. It has
2379 * fulfilled its duty:
2380 */
2381 p->sched_reset_on_fork = 0;
2382 }
ca94c442 2383
aab03e05
DF
2384 if (dl_prio(p->prio)) {
2385 put_cpu();
2386 return -EAGAIN;
2387 } else if (rt_prio(p->prio)) {
2388 p->sched_class = &rt_sched_class;
2389 } else {
2ddbf952 2390 p->sched_class = &fair_sched_class;
aab03e05 2391 }
b29739f9 2392
7dc603c9 2393 init_entity_runnable_average(&p->se);
cd29fe6f 2394
86951599
PZ
2395 /*
2396 * The child is not yet in the pid-hash so no cgroup attach races,
2397 * and the cgroup is pinned to this child due to cgroup_fork()
2398 * is ran before sched_fork().
2399 *
2400 * Silence PROVE_RCU.
2401 */
0122ec5b 2402 raw_spin_lock_irqsave(&p->pi_lock, flags);
e210bffd 2403 /*
d1ccc66d 2404 * We're setting the CPU for the first time, we don't migrate,
e210bffd
PZ
2405 * so use __set_task_cpu().
2406 */
2407 __set_task_cpu(p, cpu);
2408 if (p->sched_class->task_fork)
2409 p->sched_class->task_fork(p);
0122ec5b 2410 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 2411
f6db8347 2412#ifdef CONFIG_SCHED_INFO
dd41f596 2413 if (likely(sched_info_on()))
52f17b6c 2414 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2415#endif
3ca7a440
PZ
2416#if defined(CONFIG_SMP)
2417 p->on_cpu = 0;
4866cde0 2418#endif
01028747 2419 init_task_preempt_count(p);
806c09a7 2420#ifdef CONFIG_SMP
917b627d 2421 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 2422 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 2423#endif
917b627d 2424
476d139c 2425 put_cpu();
aab03e05 2426 return 0;
1da177e4
LT
2427}
2428
332ac17e
DF
2429unsigned long to_ratio(u64 period, u64 runtime)
2430{
2431 if (runtime == RUNTIME_INF)
2432 return 1ULL << 20;
2433
2434 /*
2435 * Doing this here saves a lot of checks in all
2436 * the calling paths, and returning zero seems
2437 * safe for them anyway.
2438 */
2439 if (period == 0)
2440 return 0;
2441
2442 return div64_u64(runtime << 20, period);
2443}
2444
2445#ifdef CONFIG_SMP
2446inline struct dl_bw *dl_bw_of(int i)
2447{
f78f5b90
PM
2448 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2449 "sched RCU must be held");
332ac17e
DF
2450 return &cpu_rq(i)->rd->dl_bw;
2451}
2452
de212f18 2453static inline int dl_bw_cpus(int i)
332ac17e 2454{
de212f18
PZ
2455 struct root_domain *rd = cpu_rq(i)->rd;
2456 int cpus = 0;
2457
f78f5b90
PM
2458 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2459 "sched RCU must be held");
de212f18
PZ
2460 for_each_cpu_and(i, rd->span, cpu_active_mask)
2461 cpus++;
2462
2463 return cpus;
332ac17e
DF
2464}
2465#else
2466inline struct dl_bw *dl_bw_of(int i)
2467{
2468 return &cpu_rq(i)->dl.dl_bw;
2469}
2470
de212f18 2471static inline int dl_bw_cpus(int i)
332ac17e
DF
2472{
2473 return 1;
2474}
2475#endif
2476
332ac17e
DF
2477/*
2478 * We must be sure that accepting a new task (or allowing changing the
2479 * parameters of an existing one) is consistent with the bandwidth
2480 * constraints. If yes, this function also accordingly updates the currently
2481 * allocated bandwidth to reflect the new situation.
2482 *
2483 * This function is called while holding p's rq->lock.
40767b0d
PZ
2484 *
2485 * XXX we should delay bw change until the task's 0-lag point, see
2486 * __setparam_dl().
332ac17e
DF
2487 */
2488static int dl_overflow(struct task_struct *p, int policy,
2489 const struct sched_attr *attr)
2490{
2491
2492 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
4df1638c 2493 u64 period = attr->sched_period ?: attr->sched_deadline;
332ac17e
DF
2494 u64 runtime = attr->sched_runtime;
2495 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 2496 int cpus, err = -1;
332ac17e 2497
fec148c0
XP
2498 /* !deadline task may carry old deadline bandwidth */
2499 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
332ac17e
DF
2500 return 0;
2501
2502 /*
2503 * Either if a task, enters, leave, or stays -deadline but changes
2504 * its parameters, we may need to update accordingly the total
2505 * allocated bandwidth of the container.
2506 */
2507 raw_spin_lock(&dl_b->lock);
de212f18 2508 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
2509 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2510 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2511 __dl_add(dl_b, new_bw);
2512 err = 0;
2513 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2514 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2515 __dl_clear(dl_b, p->dl.dl_bw);
2516 __dl_add(dl_b, new_bw);
2517 err = 0;
2518 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2519 __dl_clear(dl_b, p->dl.dl_bw);
2520 err = 0;
2521 }
2522 raw_spin_unlock(&dl_b->lock);
2523
2524 return err;
2525}
2526
2527extern void init_dl_bw(struct dl_bw *dl_b);
2528
1da177e4
LT
2529/*
2530 * wake_up_new_task - wake up a newly created task for the first time.
2531 *
2532 * This function will do some initial scheduler statistics housekeeping
2533 * that must be done for every newly created context, then puts the task
2534 * on the runqueue and wakes it.
2535 */
3e51e3ed 2536void wake_up_new_task(struct task_struct *p)
1da177e4 2537{
eb580751 2538 struct rq_flags rf;
dd41f596 2539 struct rq *rq;
fabf318e 2540
eb580751 2541 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
7dc603c9 2542 p->state = TASK_RUNNING;
fabf318e
PZ
2543#ifdef CONFIG_SMP
2544 /*
2545 * Fork balancing, do it here and not earlier because:
2546 * - cpus_allowed can change in the fork path
d1ccc66d 2547 * - any previously selected CPU might disappear through hotplug
e210bffd
PZ
2548 *
2549 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2550 * as we're not fully set-up yet.
fabf318e 2551 */
e210bffd 2552 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735 2553#endif
b7fa30c9 2554 rq = __task_rq_lock(p, &rf);
4126bad6 2555 update_rq_clock(rq);
2b8c41da 2556 post_init_entity_util_avg(&p->se);
0017d735 2557
cd29fe6f 2558 activate_task(rq, p, 0);
da0c1e65 2559 p->on_rq = TASK_ON_RQ_QUEUED;
fbd705a0 2560 trace_sched_wakeup_new(p);
a7558e01 2561 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2562#ifdef CONFIG_SMP
0aaafaab
PZ
2563 if (p->sched_class->task_woken) {
2564 /*
2565 * Nothing relies on rq->lock after this, so its fine to
2566 * drop it.
2567 */
d8ac8971 2568 rq_unpin_lock(rq, &rf);
efbbd05a 2569 p->sched_class->task_woken(rq, p);
d8ac8971 2570 rq_repin_lock(rq, &rf);
0aaafaab 2571 }
9a897c5a 2572#endif
eb580751 2573 task_rq_unlock(rq, p, &rf);
1da177e4
LT
2574}
2575
e107be36
AK
2576#ifdef CONFIG_PREEMPT_NOTIFIERS
2577
1cde2930
PZ
2578static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2579
2ecd9d29
PZ
2580void preempt_notifier_inc(void)
2581{
2582 static_key_slow_inc(&preempt_notifier_key);
2583}
2584EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2585
2586void preempt_notifier_dec(void)
2587{
2588 static_key_slow_dec(&preempt_notifier_key);
2589}
2590EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2591
e107be36 2592/**
80dd99b3 2593 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2594 * @notifier: notifier struct to register
e107be36
AK
2595 */
2596void preempt_notifier_register(struct preempt_notifier *notifier)
2597{
2ecd9d29
PZ
2598 if (!static_key_false(&preempt_notifier_key))
2599 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2600
e107be36
AK
2601 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2602}
2603EXPORT_SYMBOL_GPL(preempt_notifier_register);
2604
2605/**
2606 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2607 * @notifier: notifier struct to unregister
e107be36 2608 *
d84525a8 2609 * This is *not* safe to call from within a preemption notifier.
e107be36
AK
2610 */
2611void preempt_notifier_unregister(struct preempt_notifier *notifier)
2612{
2613 hlist_del(&notifier->link);
2614}
2615EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2616
1cde2930 2617static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2618{
2619 struct preempt_notifier *notifier;
e107be36 2620
b67bfe0d 2621 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2622 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2623}
2624
1cde2930
PZ
2625static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2626{
2627 if (static_key_false(&preempt_notifier_key))
2628 __fire_sched_in_preempt_notifiers(curr);
2629}
2630
e107be36 2631static void
1cde2930
PZ
2632__fire_sched_out_preempt_notifiers(struct task_struct *curr,
2633 struct task_struct *next)
e107be36
AK
2634{
2635 struct preempt_notifier *notifier;
e107be36 2636
b67bfe0d 2637 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2638 notifier->ops->sched_out(notifier, next);
2639}
2640
1cde2930
PZ
2641static __always_inline void
2642fire_sched_out_preempt_notifiers(struct task_struct *curr,
2643 struct task_struct *next)
2644{
2645 if (static_key_false(&preempt_notifier_key))
2646 __fire_sched_out_preempt_notifiers(curr, next);
2647}
2648
6d6bc0ad 2649#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36 2650
1cde2930 2651static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2652{
2653}
2654
1cde2930 2655static inline void
e107be36
AK
2656fire_sched_out_preempt_notifiers(struct task_struct *curr,
2657 struct task_struct *next)
2658{
2659}
2660
6d6bc0ad 2661#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2662
4866cde0
NP
2663/**
2664 * prepare_task_switch - prepare to switch tasks
2665 * @rq: the runqueue preparing to switch
421cee29 2666 * @prev: the current task that is being switched out
4866cde0
NP
2667 * @next: the task we are going to switch to.
2668 *
2669 * This is called with the rq lock held and interrupts off. It must
2670 * be paired with a subsequent finish_task_switch after the context
2671 * switch.
2672 *
2673 * prepare_task_switch sets up locking and calls architecture specific
2674 * hooks.
2675 */
e107be36
AK
2676static inline void
2677prepare_task_switch(struct rq *rq, struct task_struct *prev,
2678 struct task_struct *next)
4866cde0 2679{
43148951 2680 sched_info_switch(rq, prev, next);
fe4b04fa 2681 perf_event_task_sched_out(prev, next);
e107be36 2682 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2683 prepare_lock_switch(rq, next);
2684 prepare_arch_switch(next);
2685}
2686
1da177e4
LT
2687/**
2688 * finish_task_switch - clean up after a task-switch
2689 * @prev: the thread we just switched away from.
2690 *
4866cde0
NP
2691 * finish_task_switch must be called after the context switch, paired
2692 * with a prepare_task_switch call before the context switch.
2693 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2694 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2695 *
2696 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2697 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2698 * with the lock held can cause deadlocks; see schedule() for
2699 * details.)
dfa50b60
ON
2700 *
2701 * The context switch have flipped the stack from under us and restored the
2702 * local variables which were saved when this task called schedule() in the
2703 * past. prev == current is still correct but we need to recalculate this_rq
2704 * because prev may have moved to another CPU.
1da177e4 2705 */
dfa50b60 2706static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
2707 __releases(rq->lock)
2708{
dfa50b60 2709 struct rq *rq = this_rq();
1da177e4 2710 struct mm_struct *mm = rq->prev_mm;
55a101f8 2711 long prev_state;
1da177e4 2712
609ca066
PZ
2713 /*
2714 * The previous task will have left us with a preempt_count of 2
2715 * because it left us after:
2716 *
2717 * schedule()
2718 * preempt_disable(); // 1
2719 * __schedule()
2720 * raw_spin_lock_irq(&rq->lock) // 2
2721 *
2722 * Also, see FORK_PREEMPT_COUNT.
2723 */
e2bf1c4b
PZ
2724 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2725 "corrupted preempt_count: %s/%d/0x%x\n",
2726 current->comm, current->pid, preempt_count()))
2727 preempt_count_set(FORK_PREEMPT_COUNT);
609ca066 2728
1da177e4
LT
2729 rq->prev_mm = NULL;
2730
2731 /*
2732 * A task struct has one reference for the use as "current".
c394cc9f 2733 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2734 * schedule one last time. The schedule call will never return, and
2735 * the scheduled task must drop that reference.
95913d97
PZ
2736 *
2737 * We must observe prev->state before clearing prev->on_cpu (in
2738 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2739 * running on another CPU and we could rave with its RUNNING -> DEAD
2740 * transition, resulting in a double drop.
1da177e4 2741 */
55a101f8 2742 prev_state = prev->state;
bf9fae9f 2743 vtime_task_switch(prev);
a8d757ef 2744 perf_event_task_sched_in(prev, current);
4866cde0 2745 finish_lock_switch(rq, prev);
01f23e16 2746 finish_arch_post_lock_switch();
e8fa1362 2747
e107be36 2748 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2749 if (mm)
2750 mmdrop(mm);
c394cc9f 2751 if (unlikely(prev_state == TASK_DEAD)) {
e6c390f2
DF
2752 if (prev->sched_class->task_dead)
2753 prev->sched_class->task_dead(prev);
2754
c6fd91f0 2755 /*
2756 * Remove function-return probe instances associated with this
2757 * task and put them back on the free list.
9761eea8 2758 */
c6fd91f0 2759 kprobe_flush_task(prev);
68f24b08
AL
2760
2761 /* Task is done with its stack. */
2762 put_task_stack(prev);
2763
1da177e4 2764 put_task_struct(prev);
c6fd91f0 2765 }
99e5ada9 2766
de734f89 2767 tick_nohz_task_switch();
dfa50b60 2768 return rq;
1da177e4
LT
2769}
2770
3f029d3c
GH
2771#ifdef CONFIG_SMP
2772
3f029d3c 2773/* rq->lock is NOT held, but preemption is disabled */
e3fca9e7 2774static void __balance_callback(struct rq *rq)
3f029d3c 2775{
e3fca9e7
PZ
2776 struct callback_head *head, *next;
2777 void (*func)(struct rq *rq);
2778 unsigned long flags;
3f029d3c 2779
e3fca9e7
PZ
2780 raw_spin_lock_irqsave(&rq->lock, flags);
2781 head = rq->balance_callback;
2782 rq->balance_callback = NULL;
2783 while (head) {
2784 func = (void (*)(struct rq *))head->func;
2785 next = head->next;
2786 head->next = NULL;
2787 head = next;
3f029d3c 2788
e3fca9e7 2789 func(rq);
3f029d3c 2790 }
e3fca9e7
PZ
2791 raw_spin_unlock_irqrestore(&rq->lock, flags);
2792}
2793
2794static inline void balance_callback(struct rq *rq)
2795{
2796 if (unlikely(rq->balance_callback))
2797 __balance_callback(rq);
3f029d3c
GH
2798}
2799
2800#else
da19ab51 2801
e3fca9e7 2802static inline void balance_callback(struct rq *rq)
3f029d3c 2803{
1da177e4
LT
2804}
2805
3f029d3c
GH
2806#endif
2807
1da177e4
LT
2808/**
2809 * schedule_tail - first thing a freshly forked thread must call.
2810 * @prev: the thread we just switched away from.
2811 */
722a9f92 2812asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
2813 __releases(rq->lock)
2814{
1a43a14a 2815 struct rq *rq;
da19ab51 2816
609ca066
PZ
2817 /*
2818 * New tasks start with FORK_PREEMPT_COUNT, see there and
2819 * finish_task_switch() for details.
2820 *
2821 * finish_task_switch() will drop rq->lock() and lower preempt_count
2822 * and the preempt_enable() will end up enabling preemption (on
2823 * PREEMPT_COUNT kernels).
2824 */
2825
dfa50b60 2826 rq = finish_task_switch(prev);
e3fca9e7 2827 balance_callback(rq);
1a43a14a 2828 preempt_enable();
70b97a7f 2829
1da177e4 2830 if (current->set_child_tid)
b488893a 2831 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2832}
2833
2834/*
dfa50b60 2835 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 2836 */
04936948 2837static __always_inline struct rq *
70b97a7f 2838context_switch(struct rq *rq, struct task_struct *prev,
d8ac8971 2839 struct task_struct *next, struct rq_flags *rf)
1da177e4 2840{
dd41f596 2841 struct mm_struct *mm, *oldmm;
1da177e4 2842
e107be36 2843 prepare_task_switch(rq, prev, next);
fe4b04fa 2844
dd41f596
IM
2845 mm = next->mm;
2846 oldmm = prev->active_mm;
9226d125
ZA
2847 /*
2848 * For paravirt, this is coupled with an exit in switch_to to
2849 * combine the page table reload and the switch backend into
2850 * one hypercall.
2851 */
224101ed 2852 arch_start_context_switch(prev);
9226d125 2853
31915ab4 2854 if (!mm) {
1da177e4 2855 next->active_mm = oldmm;
f1f10076 2856 mmgrab(oldmm);
1da177e4
LT
2857 enter_lazy_tlb(oldmm, next);
2858 } else
f98db601 2859 switch_mm_irqs_off(oldmm, mm, next);
1da177e4 2860
31915ab4 2861 if (!prev->mm) {
1da177e4 2862 prev->active_mm = NULL;
1da177e4
LT
2863 rq->prev_mm = oldmm;
2864 }
92509b73 2865
cb42c9a3 2866 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
92509b73 2867
3a5f5e48
IM
2868 /*
2869 * Since the runqueue lock will be released by the next
2870 * task (which is an invalid locking op but in the case
2871 * of the scheduler it's an obvious special-case), so we
2872 * do an early lockdep release here:
2873 */
d8ac8971 2874 rq_unpin_lock(rq, rf);
8a25d5de 2875 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
2876
2877 /* Here we just switch the register state and the stack. */
2878 switch_to(prev, next, prev);
dd41f596 2879 barrier();
dfa50b60
ON
2880
2881 return finish_task_switch(prev);
1da177e4
LT
2882}
2883
2884/*
1c3e8264 2885 * nr_running and nr_context_switches:
1da177e4
LT
2886 *
2887 * externally visible scheduler statistics: current number of runnable
1c3e8264 2888 * threads, total number of context switches performed since bootup.
1da177e4
LT
2889 */
2890unsigned long nr_running(void)
2891{
2892 unsigned long i, sum = 0;
2893
2894 for_each_online_cpu(i)
2895 sum += cpu_rq(i)->nr_running;
2896
2897 return sum;
f711f609 2898}
1da177e4 2899
2ee507c4 2900/*
d1ccc66d 2901 * Check if only the current task is running on the CPU.
00cc1633
DD
2902 *
2903 * Caution: this function does not check that the caller has disabled
2904 * preemption, thus the result might have a time-of-check-to-time-of-use
2905 * race. The caller is responsible to use it correctly, for example:
2906 *
2907 * - from a non-preemptable section (of course)
2908 *
2909 * - from a thread that is bound to a single CPU
2910 *
2911 * - in a loop with very short iterations (e.g. a polling loop)
2ee507c4
TC
2912 */
2913bool single_task_running(void)
2914{
00cc1633 2915 return raw_rq()->nr_running == 1;
2ee507c4
TC
2916}
2917EXPORT_SYMBOL(single_task_running);
2918
1da177e4 2919unsigned long long nr_context_switches(void)
46cb4b7c 2920{
cc94abfc
SR
2921 int i;
2922 unsigned long long sum = 0;
46cb4b7c 2923
0a945022 2924 for_each_possible_cpu(i)
1da177e4 2925 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2926
1da177e4
LT
2927 return sum;
2928}
483b4ee6 2929
e33a9bba
TH
2930/*
2931 * IO-wait accounting, and how its mostly bollocks (on SMP).
2932 *
2933 * The idea behind IO-wait account is to account the idle time that we could
2934 * have spend running if it were not for IO. That is, if we were to improve the
2935 * storage performance, we'd have a proportional reduction in IO-wait time.
2936 *
2937 * This all works nicely on UP, where, when a task blocks on IO, we account
2938 * idle time as IO-wait, because if the storage were faster, it could've been
2939 * running and we'd not be idle.
2940 *
2941 * This has been extended to SMP, by doing the same for each CPU. This however
2942 * is broken.
2943 *
2944 * Imagine for instance the case where two tasks block on one CPU, only the one
2945 * CPU will have IO-wait accounted, while the other has regular idle. Even
2946 * though, if the storage were faster, both could've ran at the same time,
2947 * utilising both CPUs.
2948 *
2949 * This means, that when looking globally, the current IO-wait accounting on
2950 * SMP is a lower bound, by reason of under accounting.
2951 *
2952 * Worse, since the numbers are provided per CPU, they are sometimes
2953 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
2954 * associated with any one particular CPU, it can wake to another CPU than it
2955 * blocked on. This means the per CPU IO-wait number is meaningless.
2956 *
2957 * Task CPU affinities can make all that even more 'interesting'.
2958 */
2959
1da177e4
LT
2960unsigned long nr_iowait(void)
2961{
2962 unsigned long i, sum = 0;
483b4ee6 2963
0a945022 2964 for_each_possible_cpu(i)
1da177e4 2965 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2966
1da177e4
LT
2967 return sum;
2968}
483b4ee6 2969
e33a9bba
TH
2970/*
2971 * Consumers of these two interfaces, like for example the cpufreq menu
2972 * governor are using nonsensical data. Boosting frequency for a CPU that has
2973 * IO-wait which might not even end up running the task when it does become
2974 * runnable.
2975 */
2976
8c215bd3 2977unsigned long nr_iowait_cpu(int cpu)
69d25870 2978{
8c215bd3 2979 struct rq *this = cpu_rq(cpu);
69d25870
AV
2980 return atomic_read(&this->nr_iowait);
2981}
46cb4b7c 2982
372ba8cb
MG
2983void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2984{
3289bdb4
PZ
2985 struct rq *rq = this_rq();
2986 *nr_waiters = atomic_read(&rq->nr_iowait);
2987 *load = rq->load.weight;
372ba8cb
MG
2988}
2989
dd41f596 2990#ifdef CONFIG_SMP
8a0be9ef 2991
46cb4b7c 2992/*
38022906
PZ
2993 * sched_exec - execve() is a valuable balancing opportunity, because at
2994 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2995 */
38022906 2996void sched_exec(void)
46cb4b7c 2997{
38022906 2998 struct task_struct *p = current;
1da177e4 2999 unsigned long flags;
0017d735 3000 int dest_cpu;
46cb4b7c 3001
8f42ced9 3002 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 3003 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
3004 if (dest_cpu == smp_processor_id())
3005 goto unlock;
38022906 3006
8f42ced9 3007 if (likely(cpu_active(dest_cpu))) {
969c7921 3008 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 3009
8f42ced9
PZ
3010 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3011 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
3012 return;
3013 }
0017d735 3014unlock:
8f42ced9 3015 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 3016}
dd41f596 3017
1da177e4
LT
3018#endif
3019
1da177e4 3020DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 3021DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
3022
3023EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 3024EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 3025
6075620b
GG
3026/*
3027 * The function fair_sched_class.update_curr accesses the struct curr
3028 * and its field curr->exec_start; when called from task_sched_runtime(),
3029 * we observe a high rate of cache misses in practice.
3030 * Prefetching this data results in improved performance.
3031 */
3032static inline void prefetch_curr_exec_start(struct task_struct *p)
3033{
3034#ifdef CONFIG_FAIR_GROUP_SCHED
3035 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3036#else
3037 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3038#endif
3039 prefetch(curr);
3040 prefetch(&curr->exec_start);
3041}
3042
c5f8d995
HS
3043/*
3044 * Return accounted runtime for the task.
3045 * In case the task is currently running, return the runtime plus current's
3046 * pending runtime that have not been accounted yet.
3047 */
3048unsigned long long task_sched_runtime(struct task_struct *p)
3049{
eb580751 3050 struct rq_flags rf;
c5f8d995 3051 struct rq *rq;
6e998916 3052 u64 ns;
c5f8d995 3053
911b2898
PZ
3054#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3055 /*
3056 * 64-bit doesn't need locks to atomically read a 64bit value.
3057 * So we have a optimization chance when the task's delta_exec is 0.
3058 * Reading ->on_cpu is racy, but this is ok.
3059 *
d1ccc66d
IM
3060 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3061 * If we race with it entering CPU, unaccounted time is 0. This is
911b2898 3062 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
3063 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3064 * been accounted, so we're correct here as well.
911b2898 3065 */
da0c1e65 3066 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
3067 return p->se.sum_exec_runtime;
3068#endif
3069
eb580751 3070 rq = task_rq_lock(p, &rf);
6e998916
SG
3071 /*
3072 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3073 * project cycles that may never be accounted to this
3074 * thread, breaking clock_gettime().
3075 */
3076 if (task_current(rq, p) && task_on_rq_queued(p)) {
6075620b 3077 prefetch_curr_exec_start(p);
6e998916
SG
3078 update_rq_clock(rq);
3079 p->sched_class->update_curr(rq);
3080 }
3081 ns = p->se.sum_exec_runtime;
eb580751 3082 task_rq_unlock(rq, p, &rf);
c5f8d995
HS
3083
3084 return ns;
3085}
48f24c4d 3086
7835b98b
CL
3087/*
3088 * This function gets called by the timer code, with HZ frequency.
3089 * We call it with interrupts disabled.
7835b98b
CL
3090 */
3091void scheduler_tick(void)
3092{
7835b98b
CL
3093 int cpu = smp_processor_id();
3094 struct rq *rq = cpu_rq(cpu);
dd41f596 3095 struct task_struct *curr = rq->curr;
3e51f33f
PZ
3096
3097 sched_clock_tick();
dd41f596 3098
05fa785c 3099 raw_spin_lock(&rq->lock);
3e51f33f 3100 update_rq_clock(rq);
fa85ae24 3101 curr->sched_class->task_tick(rq, curr, 0);
cee1afce 3102 cpu_load_update_active(rq);
3289bdb4 3103 calc_global_load_tick(rq);
05fa785c 3104 raw_spin_unlock(&rq->lock);
7835b98b 3105
e9d2b064 3106 perf_event_task_tick();
e220d2dc 3107
e418e1c2 3108#ifdef CONFIG_SMP
6eb57e0d 3109 rq->idle_balance = idle_cpu(cpu);
7caff66f 3110 trigger_load_balance(rq);
e418e1c2 3111#endif
265f22a9 3112 rq_last_tick_reset(rq);
1da177e4
LT
3113}
3114
265f22a9
FW
3115#ifdef CONFIG_NO_HZ_FULL
3116/**
3117 * scheduler_tick_max_deferment
3118 *
3119 * Keep at least one tick per second when a single
3120 * active task is running because the scheduler doesn't
3121 * yet completely support full dynticks environment.
3122 *
3123 * This makes sure that uptime, CFS vruntime, load
3124 * balancing, etc... continue to move forward, even
3125 * with a very low granularity.
e69f6186
YB
3126 *
3127 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
3128 */
3129u64 scheduler_tick_max_deferment(void)
3130{
3131 struct rq *rq = this_rq();
316c1608 3132 unsigned long next, now = READ_ONCE(jiffies);
265f22a9
FW
3133
3134 next = rq->last_sched_tick + HZ;
3135
3136 if (time_before_eq(next, now))
3137 return 0;
3138
8fe8ff09 3139 return jiffies_to_nsecs(next - now);
1da177e4 3140}
265f22a9 3141#endif
1da177e4 3142
7e49fcce
SR
3143#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3144 defined(CONFIG_PREEMPT_TRACER))
47252cfb
SR
3145/*
3146 * If the value passed in is equal to the current preempt count
3147 * then we just disabled preemption. Start timing the latency.
3148 */
3149static inline void preempt_latency_start(int val)
3150{
3151 if (preempt_count() == val) {
3152 unsigned long ip = get_lock_parent_ip();
3153#ifdef CONFIG_DEBUG_PREEMPT
3154 current->preempt_disable_ip = ip;
3155#endif
3156 trace_preempt_off(CALLER_ADDR0, ip);
3157 }
3158}
7e49fcce 3159
edafe3a5 3160void preempt_count_add(int val)
1da177e4 3161{
6cd8a4bb 3162#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3163 /*
3164 * Underflow?
3165 */
9a11b49a
IM
3166 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3167 return;
6cd8a4bb 3168#endif
bdb43806 3169 __preempt_count_add(val);
6cd8a4bb 3170#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3171 /*
3172 * Spinlock count overflowing soon?
3173 */
33859f7f
MOS
3174 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3175 PREEMPT_MASK - 10);
6cd8a4bb 3176#endif
47252cfb 3177 preempt_latency_start(val);
1da177e4 3178}
bdb43806 3179EXPORT_SYMBOL(preempt_count_add);
edafe3a5 3180NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 3181
47252cfb
SR
3182/*
3183 * If the value passed in equals to the current preempt count
3184 * then we just enabled preemption. Stop timing the latency.
3185 */
3186static inline void preempt_latency_stop(int val)
3187{
3188 if (preempt_count() == val)
3189 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3190}
3191
edafe3a5 3192void preempt_count_sub(int val)
1da177e4 3193{
6cd8a4bb 3194#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3195 /*
3196 * Underflow?
3197 */
01e3eb82 3198 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3199 return;
1da177e4
LT
3200 /*
3201 * Is the spinlock portion underflowing?
3202 */
9a11b49a
IM
3203 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3204 !(preempt_count() & PREEMPT_MASK)))
3205 return;
6cd8a4bb 3206#endif
9a11b49a 3207
47252cfb 3208 preempt_latency_stop(val);
bdb43806 3209 __preempt_count_sub(val);
1da177e4 3210}
bdb43806 3211EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 3212NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4 3213
47252cfb
SR
3214#else
3215static inline void preempt_latency_start(int val) { }
3216static inline void preempt_latency_stop(int val) { }
1da177e4
LT
3217#endif
3218
59ddbcb2
IM
3219static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3220{
3221#ifdef CONFIG_DEBUG_PREEMPT
3222 return p->preempt_disable_ip;
3223#else
3224 return 0;
3225#endif
3226}
3227
1da177e4 3228/*
dd41f596 3229 * Print scheduling while atomic bug:
1da177e4 3230 */
dd41f596 3231static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3232{
d1c6d149
VN
3233 /* Save this before calling printk(), since that will clobber it */
3234 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3235
664dfa65
DJ
3236 if (oops_in_progress)
3237 return;
3238
3df0fc5b
PZ
3239 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3240 prev->comm, prev->pid, preempt_count());
838225b4 3241
dd41f596 3242 debug_show_held_locks(prev);
e21f5b15 3243 print_modules();
dd41f596
IM
3244 if (irqs_disabled())
3245 print_irqtrace_events(prev);
d1c6d149
VN
3246 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3247 && in_atomic_preempt_off()) {
8f47b187 3248 pr_err("Preemption disabled at:");
d1c6d149 3249 print_ip_sym(preempt_disable_ip);
8f47b187
TG
3250 pr_cont("\n");
3251 }
748c7201
DBO
3252 if (panic_on_warn)
3253 panic("scheduling while atomic\n");
3254
6135fc1e 3255 dump_stack();
373d4d09 3256 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 3257}
1da177e4 3258
dd41f596
IM
3259/*
3260 * Various schedule()-time debugging checks and statistics:
3261 */
3262static inline void schedule_debug(struct task_struct *prev)
3263{
0d9e2632 3264#ifdef CONFIG_SCHED_STACK_END_CHECK
29d64551
JH
3265 if (task_stack_end_corrupted(prev))
3266 panic("corrupted stack end detected inside scheduler\n");
0d9e2632 3267#endif
b99def8b 3268
1dc0fffc 3269 if (unlikely(in_atomic_preempt_off())) {
dd41f596 3270 __schedule_bug(prev);
1dc0fffc
PZ
3271 preempt_count_set(PREEMPT_DISABLED);
3272 }
b3fbab05 3273 rcu_sleep_check();
dd41f596 3274
1da177e4
LT
3275 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3276
ae92882e 3277 schedstat_inc(this_rq()->sched_count);
dd41f596
IM
3278}
3279
3280/*
3281 * Pick up the highest-prio task:
3282 */
3283static inline struct task_struct *
d8ac8971 3284pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
dd41f596 3285{
49ee5768 3286 const struct sched_class *class;
dd41f596 3287 struct task_struct *p;
1da177e4
LT
3288
3289 /*
0ba87bb2
PZ
3290 * Optimization: we know that if all tasks are in the fair class we can
3291 * call that function directly, but only if the @prev task wasn't of a
3292 * higher scheduling class, because otherwise those loose the
3293 * opportunity to pull in more work from other CPUs.
1da177e4 3294 */
0ba87bb2
PZ
3295 if (likely((prev->sched_class == &idle_sched_class ||
3296 prev->sched_class == &fair_sched_class) &&
3297 rq->nr_running == rq->cfs.h_nr_running)) {
3298
d8ac8971 3299 p = fair_sched_class.pick_next_task(rq, prev, rf);
6ccdc84b
PZ
3300 if (unlikely(p == RETRY_TASK))
3301 goto again;
3302
d1ccc66d 3303 /* Assumes fair_sched_class->next == idle_sched_class */
6ccdc84b 3304 if (unlikely(!p))
d8ac8971 3305 p = idle_sched_class.pick_next_task(rq, prev, rf);
6ccdc84b
PZ
3306
3307 return p;
1da177e4
LT
3308 }
3309
37e117c0 3310again:
34f971f6 3311 for_each_class(class) {
d8ac8971 3312 p = class->pick_next_task(rq, prev, rf);
37e117c0
PZ
3313 if (p) {
3314 if (unlikely(p == RETRY_TASK))
3315 goto again;
dd41f596 3316 return p;
37e117c0 3317 }
dd41f596 3318 }
34f971f6 3319
d1ccc66d
IM
3320 /* The idle class should always have a runnable task: */
3321 BUG();
dd41f596 3322}
1da177e4 3323
dd41f596 3324/*
c259e01a 3325 * __schedule() is the main scheduler function.
edde96ea
PE
3326 *
3327 * The main means of driving the scheduler and thus entering this function are:
3328 *
3329 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3330 *
3331 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3332 * paths. For example, see arch/x86/entry_64.S.
3333 *
3334 * To drive preemption between tasks, the scheduler sets the flag in timer
3335 * interrupt handler scheduler_tick().
3336 *
3337 * 3. Wakeups don't really cause entry into schedule(). They add a
3338 * task to the run-queue and that's it.
3339 *
3340 * Now, if the new task added to the run-queue preempts the current
3341 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3342 * called on the nearest possible occasion:
3343 *
3344 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3345 *
3346 * - in syscall or exception context, at the next outmost
3347 * preempt_enable(). (this might be as soon as the wake_up()'s
3348 * spin_unlock()!)
3349 *
3350 * - in IRQ context, return from interrupt-handler to
3351 * preemptible context
3352 *
3353 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3354 * then at the next:
3355 *
3356 * - cond_resched() call
3357 * - explicit schedule() call
3358 * - return from syscall or exception to user-space
3359 * - return from interrupt-handler to user-space
bfd9b2b5 3360 *
b30f0e3f 3361 * WARNING: must be called with preemption disabled!
dd41f596 3362 */
499d7955 3363static void __sched notrace __schedule(bool preempt)
dd41f596
IM
3364{
3365 struct task_struct *prev, *next;
67ca7bde 3366 unsigned long *switch_count;
d8ac8971 3367 struct rq_flags rf;
dd41f596 3368 struct rq *rq;
31656519 3369 int cpu;
dd41f596 3370
dd41f596
IM
3371 cpu = smp_processor_id();
3372 rq = cpu_rq(cpu);
dd41f596 3373 prev = rq->curr;
dd41f596 3374
dd41f596 3375 schedule_debug(prev);
1da177e4 3376
31656519 3377 if (sched_feat(HRTICK))
f333fdc9 3378 hrtick_clear(rq);
8f4d37ec 3379
46a5d164
PM
3380 local_irq_disable();
3381 rcu_note_context_switch();
3382
e0acd0a6
ON
3383 /*
3384 * Make sure that signal_pending_state()->signal_pending() below
3385 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3386 * done by the caller to avoid the race with signal_wake_up().
3387 */
3388 smp_mb__before_spinlock();
46a5d164 3389 raw_spin_lock(&rq->lock);
d8ac8971 3390 rq_pin_lock(rq, &rf);
1da177e4 3391
d1ccc66d
IM
3392 /* Promote REQ to ACT */
3393 rq->clock_update_flags <<= 1;
9edfbfed 3394
246d86b5 3395 switch_count = &prev->nivcsw;
fc13aeba 3396 if (!preempt && prev->state) {
21aa9af0 3397 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 3398 prev->state = TASK_RUNNING;
21aa9af0 3399 } else {
2acca55e
PZ
3400 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3401 prev->on_rq = 0;
3402
e33a9bba
TH
3403 if (prev->in_iowait) {
3404 atomic_inc(&rq->nr_iowait);
3405 delayacct_blkio_start();
3406 }
3407
21aa9af0 3408 /*
2acca55e
PZ
3409 * If a worker went to sleep, notify and ask workqueue
3410 * whether it wants to wake up a task to maintain
3411 * concurrency.
21aa9af0
TH
3412 */
3413 if (prev->flags & PF_WQ_WORKER) {
3414 struct task_struct *to_wakeup;
3415
9b7f6597 3416 to_wakeup = wq_worker_sleeping(prev);
21aa9af0 3417 if (to_wakeup)
d8ac8971 3418 try_to_wake_up_local(to_wakeup, &rf);
21aa9af0 3419 }
21aa9af0 3420 }
dd41f596 3421 switch_count = &prev->nvcsw;
1da177e4
LT
3422 }
3423
9edfbfed 3424 if (task_on_rq_queued(prev))
606dba2e
PZ
3425 update_rq_clock(rq);
3426
d8ac8971 3427 next = pick_next_task(rq, prev, &rf);
f26f9aff 3428 clear_tsk_need_resched(prev);
f27dde8d 3429 clear_preempt_need_resched();
1da177e4 3430
1da177e4 3431 if (likely(prev != next)) {
1da177e4
LT
3432 rq->nr_switches++;
3433 rq->curr = next;
3434 ++*switch_count;
3435
c73464b1 3436 trace_sched_switch(preempt, prev, next);
d1ccc66d
IM
3437
3438 /* Also unlocks the rq: */
3439 rq = context_switch(rq, prev, next, &rf);
cbce1a68 3440 } else {
cb42c9a3 3441 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
d8ac8971 3442 rq_unpin_lock(rq, &rf);
05fa785c 3443 raw_spin_unlock_irq(&rq->lock);
cbce1a68 3444 }
1da177e4 3445
e3fca9e7 3446 balance_callback(rq);
1da177e4 3447}
c259e01a 3448
9af6528e
PZ
3449void __noreturn do_task_dead(void)
3450{
3451 /*
3452 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
3453 * when the following two conditions become true.
3454 * - There is race condition of mmap_sem (It is acquired by
3455 * exit_mm()), and
3456 * - SMI occurs before setting TASK_RUNINNG.
3457 * (or hypervisor of virtual machine switches to other guest)
3458 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD
3459 *
3460 * To avoid it, we have to wait for releasing tsk->pi_lock which
3461 * is held by try_to_wake_up()
3462 */
3463 smp_mb();
3464 raw_spin_unlock_wait(&current->pi_lock);
3465
d1ccc66d 3466 /* Causes final put_task_struct in finish_task_switch(): */
9af6528e 3467 __set_current_state(TASK_DEAD);
d1ccc66d
IM
3468
3469 /* Tell freezer to ignore us: */
3470 current->flags |= PF_NOFREEZE;
3471
9af6528e
PZ
3472 __schedule(false);
3473 BUG();
d1ccc66d
IM
3474
3475 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
9af6528e 3476 for (;;)
d1ccc66d 3477 cpu_relax();
9af6528e
PZ
3478}
3479
9c40cef2
TG
3480static inline void sched_submit_work(struct task_struct *tsk)
3481{
3c7d5184 3482 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
3483 return;
3484 /*
3485 * If we are going to sleep and we have plugged IO queued,
3486 * make sure to submit it to avoid deadlocks.
3487 */
3488 if (blk_needs_flush_plug(tsk))
3489 blk_schedule_flush_plug(tsk);
3490}
3491
722a9f92 3492asmlinkage __visible void __sched schedule(void)
c259e01a 3493{
9c40cef2
TG
3494 struct task_struct *tsk = current;
3495
3496 sched_submit_work(tsk);
bfd9b2b5 3497 do {
b30f0e3f 3498 preempt_disable();
fc13aeba 3499 __schedule(false);
b30f0e3f 3500 sched_preempt_enable_no_resched();
bfd9b2b5 3501 } while (need_resched());
c259e01a 3502}
1da177e4
LT
3503EXPORT_SYMBOL(schedule);
3504
91d1aa43 3505#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 3506asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
3507{
3508 /*
3509 * If we come here after a random call to set_need_resched(),
3510 * or we have been woken up remotely but the IPI has not yet arrived,
3511 * we haven't yet exited the RCU idle mode. Do it here manually until
3512 * we find a better solution.
7cc78f8f
AL
3513 *
3514 * NB: There are buggy callers of this function. Ideally we
c467ea76 3515 * should warn if prev_state != CONTEXT_USER, but that will trigger
7cc78f8f 3516 * too frequently to make sense yet.
20ab65e3 3517 */
7cc78f8f 3518 enum ctx_state prev_state = exception_enter();
20ab65e3 3519 schedule();
7cc78f8f 3520 exception_exit(prev_state);
20ab65e3
FW
3521}
3522#endif
3523
c5491ea7
TG
3524/**
3525 * schedule_preempt_disabled - called with preemption disabled
3526 *
3527 * Returns with preemption disabled. Note: preempt_count must be 1
3528 */
3529void __sched schedule_preempt_disabled(void)
3530{
ba74c144 3531 sched_preempt_enable_no_resched();
c5491ea7
TG
3532 schedule();
3533 preempt_disable();
3534}
3535
06b1f808 3536static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
3537{
3538 do {
47252cfb
SR
3539 /*
3540 * Because the function tracer can trace preempt_count_sub()
3541 * and it also uses preempt_enable/disable_notrace(), if
3542 * NEED_RESCHED is set, the preempt_enable_notrace() called
3543 * by the function tracer will call this function again and
3544 * cause infinite recursion.
3545 *
3546 * Preemption must be disabled here before the function
3547 * tracer can trace. Break up preempt_disable() into two
3548 * calls. One to disable preemption without fear of being
3549 * traced. The other to still record the preemption latency,
3550 * which can also be traced by the function tracer.
3551 */
499d7955 3552 preempt_disable_notrace();
47252cfb 3553 preempt_latency_start(1);
fc13aeba 3554 __schedule(true);
47252cfb 3555 preempt_latency_stop(1);
499d7955 3556 preempt_enable_no_resched_notrace();
a18b5d01
FW
3557
3558 /*
3559 * Check again in case we missed a preemption opportunity
3560 * between schedule and now.
3561 */
a18b5d01
FW
3562 } while (need_resched());
3563}
3564
1da177e4
LT
3565#ifdef CONFIG_PREEMPT
3566/*
2ed6e34f 3567 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3568 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3569 * occur there and call schedule directly.
3570 */
722a9f92 3571asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 3572{
1da177e4
LT
3573 /*
3574 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3575 * we do not want to preempt the current task. Just return..
1da177e4 3576 */
fbb00b56 3577 if (likely(!preemptible()))
1da177e4
LT
3578 return;
3579
a18b5d01 3580 preempt_schedule_common();
1da177e4 3581}
376e2424 3582NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 3583EXPORT_SYMBOL(preempt_schedule);
009f60e2 3584
009f60e2 3585/**
4eaca0a8 3586 * preempt_schedule_notrace - preempt_schedule called by tracing
009f60e2
ON
3587 *
3588 * The tracing infrastructure uses preempt_enable_notrace to prevent
3589 * recursion and tracing preempt enabling caused by the tracing
3590 * infrastructure itself. But as tracing can happen in areas coming
3591 * from userspace or just about to enter userspace, a preempt enable
3592 * can occur before user_exit() is called. This will cause the scheduler
3593 * to be called when the system is still in usermode.
3594 *
3595 * To prevent this, the preempt_enable_notrace will use this function
3596 * instead of preempt_schedule() to exit user context if needed before
3597 * calling the scheduler.
3598 */
4eaca0a8 3599asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
009f60e2
ON
3600{
3601 enum ctx_state prev_ctx;
3602
3603 if (likely(!preemptible()))
3604 return;
3605
3606 do {
47252cfb
SR
3607 /*
3608 * Because the function tracer can trace preempt_count_sub()
3609 * and it also uses preempt_enable/disable_notrace(), if
3610 * NEED_RESCHED is set, the preempt_enable_notrace() called
3611 * by the function tracer will call this function again and
3612 * cause infinite recursion.
3613 *
3614 * Preemption must be disabled here before the function
3615 * tracer can trace. Break up preempt_disable() into two
3616 * calls. One to disable preemption without fear of being
3617 * traced. The other to still record the preemption latency,
3618 * which can also be traced by the function tracer.
3619 */
3d8f74dd 3620 preempt_disable_notrace();
47252cfb 3621 preempt_latency_start(1);
009f60e2
ON
3622 /*
3623 * Needs preempt disabled in case user_exit() is traced
3624 * and the tracer calls preempt_enable_notrace() causing
3625 * an infinite recursion.
3626 */
3627 prev_ctx = exception_enter();
fc13aeba 3628 __schedule(true);
009f60e2
ON
3629 exception_exit(prev_ctx);
3630
47252cfb 3631 preempt_latency_stop(1);
3d8f74dd 3632 preempt_enable_no_resched_notrace();
009f60e2
ON
3633 } while (need_resched());
3634}
4eaca0a8 3635EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
009f60e2 3636
32e475d7 3637#endif /* CONFIG_PREEMPT */
1da177e4
LT
3638
3639/*
2ed6e34f 3640 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3641 * off of irq context.
3642 * Note, that this is called and return with irqs disabled. This will
3643 * protect us against recursive calling from irq.
3644 */
722a9f92 3645asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 3646{
b22366cd 3647 enum ctx_state prev_state;
6478d880 3648
2ed6e34f 3649 /* Catch callers which need to be fixed */
f27dde8d 3650 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 3651
b22366cd
FW
3652 prev_state = exception_enter();
3653
3a5c359a 3654 do {
3d8f74dd 3655 preempt_disable();
3a5c359a 3656 local_irq_enable();
fc13aeba 3657 __schedule(true);
3a5c359a 3658 local_irq_disable();
3d8f74dd 3659 sched_preempt_enable_no_resched();
5ed0cec0 3660 } while (need_resched());
b22366cd
FW
3661
3662 exception_exit(prev_state);
1da177e4
LT
3663}
3664
63859d4f 3665int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3666 void *key)
1da177e4 3667{
63859d4f 3668 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3669}
1da177e4
LT
3670EXPORT_SYMBOL(default_wake_function);
3671
b29739f9
IM
3672#ifdef CONFIG_RT_MUTEXES
3673
3674/*
3675 * rt_mutex_setprio - set the current priority of a task
3676 * @p: task
3677 * @prio: prio value (kernel-internal form)
3678 *
3679 * This function changes the 'effective' priority of a task. It does
3680 * not touch ->normal_prio like __setscheduler().
3681 *
c365c292
TG
3682 * Used by the rt_mutex code to implement priority inheritance
3683 * logic. Call site only calls if the priority of the task changed.
b29739f9 3684 */
36c8b586 3685void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3686{
ff77e468 3687 int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE;
83ab0aa0 3688 const struct sched_class *prev_class;
eb580751
PZ
3689 struct rq_flags rf;
3690 struct rq *rq;
b29739f9 3691
aab03e05 3692 BUG_ON(prio > MAX_PRIO);
b29739f9 3693
eb580751 3694 rq = __task_rq_lock(p, &rf);
80f5c1b8 3695 update_rq_clock(rq);
b29739f9 3696
1c4dd99b
TG
3697 /*
3698 * Idle task boosting is a nono in general. There is one
3699 * exception, when PREEMPT_RT and NOHZ is active:
3700 *
3701 * The idle task calls get_next_timer_interrupt() and holds
3702 * the timer wheel base->lock on the CPU and another CPU wants
3703 * to access the timer (probably to cancel it). We can safely
3704 * ignore the boosting request, as the idle CPU runs this code
3705 * with interrupts disabled and will complete the lock
3706 * protected section without being interrupted. So there is no
3707 * real need to boost.
3708 */
3709 if (unlikely(p == rq->idle)) {
3710 WARN_ON(p != rq->curr);
3711 WARN_ON(p->pi_blocked_on);
3712 goto out_unlock;
3713 }
3714
a8027073 3715 trace_sched_pi_setprio(p, prio);
d5f9f942 3716 oldprio = p->prio;
ff77e468
PZ
3717
3718 if (oldprio == prio)
3719 queue_flag &= ~DEQUEUE_MOVE;
3720
83ab0aa0 3721 prev_class = p->sched_class;
da0c1e65 3722 queued = task_on_rq_queued(p);
051a1d1a 3723 running = task_current(rq, p);
da0c1e65 3724 if (queued)
ff77e468 3725 dequeue_task(rq, p, queue_flag);
0e1f3483 3726 if (running)
f3cd1c4e 3727 put_prev_task(rq, p);
dd41f596 3728
2d3d891d
DF
3729 /*
3730 * Boosting condition are:
3731 * 1. -rt task is running and holds mutex A
3732 * --> -dl task blocks on mutex A
3733 *
3734 * 2. -dl task is running and holds mutex A
3735 * --> -dl task blocks on mutex A and could preempt the
3736 * running task
3737 */
3738 if (dl_prio(prio)) {
466af29b
ON
3739 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3740 if (!dl_prio(p->normal_prio) ||
3741 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d 3742 p->dl.dl_boosted = 1;
ff77e468 3743 queue_flag |= ENQUEUE_REPLENISH;
2d3d891d
DF
3744 } else
3745 p->dl.dl_boosted = 0;
aab03e05 3746 p->sched_class = &dl_sched_class;
2d3d891d
DF
3747 } else if (rt_prio(prio)) {
3748 if (dl_prio(oldprio))
3749 p->dl.dl_boosted = 0;
3750 if (oldprio < prio)
ff77e468 3751 queue_flag |= ENQUEUE_HEAD;
dd41f596 3752 p->sched_class = &rt_sched_class;
2d3d891d
DF
3753 } else {
3754 if (dl_prio(oldprio))
3755 p->dl.dl_boosted = 0;
746db944
BS
3756 if (rt_prio(oldprio))
3757 p->rt.timeout = 0;
dd41f596 3758 p->sched_class = &fair_sched_class;
2d3d891d 3759 }
dd41f596 3760
b29739f9
IM
3761 p->prio = prio;
3762
da0c1e65 3763 if (queued)
ff77e468 3764 enqueue_task(rq, p, queue_flag);
a399d233 3765 if (running)
b2bf6c31 3766 set_curr_task(rq, p);
cb469845 3767
da7a735e 3768 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3769out_unlock:
d1ccc66d
IM
3770 /* Avoid rq from going away on us: */
3771 preempt_disable();
eb580751 3772 __task_rq_unlock(rq, &rf);
4c9a4bc8
PZ
3773
3774 balance_callback(rq);
3775 preempt_enable();
b29739f9 3776}
b29739f9 3777#endif
d50dde5a 3778
36c8b586 3779void set_user_nice(struct task_struct *p, long nice)
1da177e4 3780{
49bd21ef
PZ
3781 bool queued, running;
3782 int old_prio, delta;
eb580751 3783 struct rq_flags rf;
70b97a7f 3784 struct rq *rq;
1da177e4 3785
75e45d51 3786 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
3787 return;
3788 /*
3789 * We have to be careful, if called from sys_setpriority(),
3790 * the task might be in the middle of scheduling on another CPU.
3791 */
eb580751 3792 rq = task_rq_lock(p, &rf);
2fb8d367
PZ
3793 update_rq_clock(rq);
3794
1da177e4
LT
3795 /*
3796 * The RT priorities are set via sched_setscheduler(), but we still
3797 * allow the 'normal' nice value to be set - but as expected
3798 * it wont have any effect on scheduling until the task is
aab03e05 3799 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3800 */
aab03e05 3801 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3802 p->static_prio = NICE_TO_PRIO(nice);
3803 goto out_unlock;
3804 }
da0c1e65 3805 queued = task_on_rq_queued(p);
49bd21ef 3806 running = task_current(rq, p);
da0c1e65 3807 if (queued)
1de64443 3808 dequeue_task(rq, p, DEQUEUE_SAVE);
49bd21ef
PZ
3809 if (running)
3810 put_prev_task(rq, p);
1da177e4 3811
1da177e4 3812 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3813 set_load_weight(p);
b29739f9
IM
3814 old_prio = p->prio;
3815 p->prio = effective_prio(p);
3816 delta = p->prio - old_prio;
1da177e4 3817
da0c1e65 3818 if (queued) {
1de64443 3819 enqueue_task(rq, p, ENQUEUE_RESTORE);
1da177e4 3820 /*
d5f9f942
AM
3821 * If the task increased its priority or is running and
3822 * lowered its priority, then reschedule its CPU:
1da177e4 3823 */
d5f9f942 3824 if (delta < 0 || (delta > 0 && task_running(rq, p)))
8875125e 3825 resched_curr(rq);
1da177e4 3826 }
49bd21ef
PZ
3827 if (running)
3828 set_curr_task(rq, p);
1da177e4 3829out_unlock:
eb580751 3830 task_rq_unlock(rq, p, &rf);
1da177e4 3831}
1da177e4
LT
3832EXPORT_SYMBOL(set_user_nice);
3833
e43379f1
MM
3834/*
3835 * can_nice - check if a task can reduce its nice value
3836 * @p: task
3837 * @nice: nice value
3838 */
36c8b586 3839int can_nice(const struct task_struct *p, const int nice)
e43379f1 3840{
d1ccc66d 3841 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
7aa2c016 3842 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 3843
78d7d407 3844 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3845 capable(CAP_SYS_NICE));
3846}
3847
1da177e4
LT
3848#ifdef __ARCH_WANT_SYS_NICE
3849
3850/*
3851 * sys_nice - change the priority of the current process.
3852 * @increment: priority increment
3853 *
3854 * sys_setpriority is a more generic, but much slower function that
3855 * does similar things.
3856 */
5add95d4 3857SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3858{
48f24c4d 3859 long nice, retval;
1da177e4
LT
3860
3861 /*
3862 * Setpriority might change our priority at the same moment.
3863 * We don't have to worry. Conceptually one call occurs first
3864 * and we have a single winner.
3865 */
a9467fa3 3866 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 3867 nice = task_nice(current) + increment;
1da177e4 3868
a9467fa3 3869 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
3870 if (increment < 0 && !can_nice(current, nice))
3871 return -EPERM;
3872
1da177e4
LT
3873 retval = security_task_setnice(current, nice);
3874 if (retval)
3875 return retval;
3876
3877 set_user_nice(current, nice);
3878 return 0;
3879}
3880
3881#endif
3882
3883/**
3884 * task_prio - return the priority value of a given task.
3885 * @p: the task in question.
3886 *
e69f6186 3887 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3888 * RT tasks are offset by -200. Normal tasks are centered
3889 * around 0, value goes from -16 to +15.
3890 */
36c8b586 3891int task_prio(const struct task_struct *p)
1da177e4
LT
3892{
3893 return p->prio - MAX_RT_PRIO;
3894}
3895
1da177e4 3896/**
d1ccc66d 3897 * idle_cpu - is a given CPU idle currently?
1da177e4 3898 * @cpu: the processor in question.
e69f6186
YB
3899 *
3900 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3901 */
3902int idle_cpu(int cpu)
3903{
908a3283
TG
3904 struct rq *rq = cpu_rq(cpu);
3905
3906 if (rq->curr != rq->idle)
3907 return 0;
3908
3909 if (rq->nr_running)
3910 return 0;
3911
3912#ifdef CONFIG_SMP
3913 if (!llist_empty(&rq->wake_list))
3914 return 0;
3915#endif
3916
3917 return 1;
1da177e4
LT
3918}
3919
1da177e4 3920/**
d1ccc66d 3921 * idle_task - return the idle task for a given CPU.
1da177e4 3922 * @cpu: the processor in question.
e69f6186 3923 *
d1ccc66d 3924 * Return: The idle task for the CPU @cpu.
1da177e4 3925 */
36c8b586 3926struct task_struct *idle_task(int cpu)
1da177e4
LT
3927{
3928 return cpu_rq(cpu)->idle;
3929}
3930
3931/**
3932 * find_process_by_pid - find a process with a matching PID value.
3933 * @pid: the pid in question.
e69f6186
YB
3934 *
3935 * The task of @pid, if found. %NULL otherwise.
1da177e4 3936 */
a9957449 3937static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3938{
228ebcbe 3939 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3940}
3941
aab03e05
DF
3942/*
3943 * This function initializes the sched_dl_entity of a newly becoming
3944 * SCHED_DEADLINE task.
3945 *
3946 * Only the static values are considered here, the actual runtime and the
3947 * absolute deadline will be properly calculated when the task is enqueued
3948 * for the first time with its new policy.
3949 */
3950static void
3951__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3952{
3953 struct sched_dl_entity *dl_se = &p->dl;
3954
aab03e05
DF
3955 dl_se->dl_runtime = attr->sched_runtime;
3956 dl_se->dl_deadline = attr->sched_deadline;
755378a4 3957 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 3958 dl_se->flags = attr->sched_flags;
332ac17e 3959 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
40767b0d
PZ
3960
3961 /*
3962 * Changing the parameters of a task is 'tricky' and we're not doing
3963 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3964 *
3965 * What we SHOULD do is delay the bandwidth release until the 0-lag
3966 * point. This would include retaining the task_struct until that time
3967 * and change dl_overflow() to not immediately decrement the current
3968 * amount.
3969 *
3970 * Instead we retain the current runtime/deadline and let the new
3971 * parameters take effect after the current reservation period lapses.
3972 * This is safe (albeit pessimistic) because the 0-lag point is always
3973 * before the current scheduling deadline.
3974 *
3975 * We can still have temporary overloads because we do not delay the
3976 * change in bandwidth until that time; so admission control is
3977 * not on the safe side. It does however guarantee tasks will never
3978 * consume more than promised.
3979 */
aab03e05
DF
3980}
3981
c13db6b1
SR
3982/*
3983 * sched_setparam() passes in -1 for its policy, to let the functions
3984 * it calls know not to change it.
3985 */
3986#define SETPARAM_POLICY -1
3987
c365c292
TG
3988static void __setscheduler_params(struct task_struct *p,
3989 const struct sched_attr *attr)
1da177e4 3990{
d50dde5a
DF
3991 int policy = attr->sched_policy;
3992
c13db6b1 3993 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
3994 policy = p->policy;
3995
1da177e4 3996 p->policy = policy;
d50dde5a 3997
aab03e05
DF
3998 if (dl_policy(policy))
3999 __setparam_dl(p, attr);
39fd8fd2 4000 else if (fair_policy(policy))
d50dde5a
DF
4001 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
4002
39fd8fd2
PZ
4003 /*
4004 * __sched_setscheduler() ensures attr->sched_priority == 0 when
4005 * !rt_policy. Always setting this ensures that things like
4006 * getparam()/getattr() don't report silly values for !rt tasks.
4007 */
4008 p->rt_priority = attr->sched_priority;
383afd09 4009 p->normal_prio = normal_prio(p);
c365c292
TG
4010 set_load_weight(p);
4011}
39fd8fd2 4012
c365c292
TG
4013/* Actually do priority change: must hold pi & rq lock. */
4014static void __setscheduler(struct rq *rq, struct task_struct *p,
0782e63b 4015 const struct sched_attr *attr, bool keep_boost)
c365c292
TG
4016{
4017 __setscheduler_params(p, attr);
d50dde5a 4018
383afd09 4019 /*
0782e63b
TG
4020 * Keep a potential priority boosting if called from
4021 * sched_setscheduler().
383afd09 4022 */
0782e63b
TG
4023 if (keep_boost)
4024 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
4025 else
4026 p->prio = normal_prio(p);
383afd09 4027
aab03e05
DF
4028 if (dl_prio(p->prio))
4029 p->sched_class = &dl_sched_class;
4030 else if (rt_prio(p->prio))
ffd44db5
PZ
4031 p->sched_class = &rt_sched_class;
4032 else
4033 p->sched_class = &fair_sched_class;
1da177e4 4034}
aab03e05
DF
4035
4036static void
4037__getparam_dl(struct task_struct *p, struct sched_attr *attr)
4038{
4039 struct sched_dl_entity *dl_se = &p->dl;
4040
4041 attr->sched_priority = p->rt_priority;
4042 attr->sched_runtime = dl_se->dl_runtime;
4043 attr->sched_deadline = dl_se->dl_deadline;
755378a4 4044 attr->sched_period = dl_se->dl_period;
aab03e05
DF
4045 attr->sched_flags = dl_se->flags;
4046}
4047
4048/*
4049 * This function validates the new parameters of a -deadline task.
4050 * We ask for the deadline not being zero, and greater or equal
755378a4 4051 * than the runtime, as well as the period of being zero or
332ac17e 4052 * greater than deadline. Furthermore, we have to be sure that
b0827819
JL
4053 * user parameters are above the internal resolution of 1us (we
4054 * check sched_runtime only since it is always the smaller one) and
4055 * below 2^63 ns (we have to check both sched_deadline and
4056 * sched_period, as the latter can be zero).
aab03e05
DF
4057 */
4058static bool
4059__checkparam_dl(const struct sched_attr *attr)
4060{
b0827819
JL
4061 /* deadline != 0 */
4062 if (attr->sched_deadline == 0)
4063 return false;
4064
4065 /*
4066 * Since we truncate DL_SCALE bits, make sure we're at least
4067 * that big.
4068 */
4069 if (attr->sched_runtime < (1ULL << DL_SCALE))
4070 return false;
4071
4072 /*
4073 * Since we use the MSB for wrap-around and sign issues, make
4074 * sure it's not set (mind that period can be equal to zero).
4075 */
4076 if (attr->sched_deadline & (1ULL << 63) ||
4077 attr->sched_period & (1ULL << 63))
4078 return false;
4079
4080 /* runtime <= deadline <= period (if period != 0) */
4081 if ((attr->sched_period != 0 &&
4082 attr->sched_period < attr->sched_deadline) ||
4083 attr->sched_deadline < attr->sched_runtime)
4084 return false;
4085
4086 return true;
aab03e05
DF
4087}
4088
c69e8d9c 4089/*
d1ccc66d 4090 * Check the target process has a UID that matches the current process's:
c69e8d9c
DH
4091 */
4092static bool check_same_owner(struct task_struct *p)
4093{
4094 const struct cred *cred = current_cred(), *pcred;
4095 bool match;
4096
4097 rcu_read_lock();
4098 pcred = __task_cred(p);
9c806aa0
EB
4099 match = (uid_eq(cred->euid, pcred->euid) ||
4100 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
4101 rcu_read_unlock();
4102 return match;
4103}
4104
d1ccc66d 4105static bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
75381608
WL
4106{
4107 struct sched_dl_entity *dl_se = &p->dl;
4108
4109 if (dl_se->dl_runtime != attr->sched_runtime ||
4110 dl_se->dl_deadline != attr->sched_deadline ||
4111 dl_se->dl_period != attr->sched_period ||
4112 dl_se->flags != attr->sched_flags)
4113 return true;
4114
4115 return false;
4116}
4117
d50dde5a
DF
4118static int __sched_setscheduler(struct task_struct *p,
4119 const struct sched_attr *attr,
dbc7f069 4120 bool user, bool pi)
1da177e4 4121{
383afd09
SR
4122 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4123 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 4124 int retval, oldprio, oldpolicy = -1, queued, running;
0782e63b 4125 int new_effective_prio, policy = attr->sched_policy;
83ab0aa0 4126 const struct sched_class *prev_class;
eb580751 4127 struct rq_flags rf;
ca94c442 4128 int reset_on_fork;
ff77e468 4129 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
eb580751 4130 struct rq *rq;
1da177e4 4131
d1ccc66d 4132 /* May grab non-irq protected spin_locks: */
66e5393a 4133 BUG_ON(in_interrupt());
1da177e4 4134recheck:
d1ccc66d 4135 /* Double check policy once rq lock held: */
ca94c442
LP
4136 if (policy < 0) {
4137 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4138 policy = oldpolicy = p->policy;
ca94c442 4139 } else {
7479f3c9 4140 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 4141
20f9cd2a 4142 if (!valid_policy(policy))
ca94c442
LP
4143 return -EINVAL;
4144 }
4145
7479f3c9
PZ
4146 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
4147 return -EINVAL;
4148
1da177e4
LT
4149 /*
4150 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4151 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4152 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 4153 */
0bb040a4 4154 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 4155 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 4156 return -EINVAL;
aab03e05
DF
4157 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4158 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
4159 return -EINVAL;
4160
37e4ab3f
OC
4161 /*
4162 * Allow unprivileged RT tasks to decrease priority:
4163 */
961ccddd 4164 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 4165 if (fair_policy(policy)) {
d0ea0268 4166 if (attr->sched_nice < task_nice(p) &&
eaad4513 4167 !can_nice(p, attr->sched_nice))
d50dde5a
DF
4168 return -EPERM;
4169 }
4170
e05606d3 4171 if (rt_policy(policy)) {
a44702e8
ON
4172 unsigned long rlim_rtprio =
4173 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909 4174
d1ccc66d 4175 /* Can't set/change the rt policy: */
8dc3e909
ON
4176 if (policy != p->policy && !rlim_rtprio)
4177 return -EPERM;
4178
d1ccc66d 4179 /* Can't increase priority: */
d50dde5a
DF
4180 if (attr->sched_priority > p->rt_priority &&
4181 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
4182 return -EPERM;
4183 }
c02aa73b 4184
d44753b8
JL
4185 /*
4186 * Can't set/change SCHED_DEADLINE policy at all for now
4187 * (safest behavior); in the future we would like to allow
4188 * unprivileged DL tasks to increase their relative deadline
4189 * or reduce their runtime (both ways reducing utilization)
4190 */
4191 if (dl_policy(policy))
4192 return -EPERM;
4193
dd41f596 4194 /*
c02aa73b
DH
4195 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4196 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 4197 */
20f9cd2a 4198 if (idle_policy(p->policy) && !idle_policy(policy)) {
d0ea0268 4199 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
4200 return -EPERM;
4201 }
5fe1d75f 4202
d1ccc66d 4203 /* Can't change other user's priorities: */
c69e8d9c 4204 if (!check_same_owner(p))
37e4ab3f 4205 return -EPERM;
ca94c442 4206
d1ccc66d 4207 /* Normal users shall not reset the sched_reset_on_fork flag: */
ca94c442
LP
4208 if (p->sched_reset_on_fork && !reset_on_fork)
4209 return -EPERM;
37e4ab3f 4210 }
1da177e4 4211
725aad24 4212 if (user) {
b0ae1981 4213 retval = security_task_setscheduler(p);
725aad24
JF
4214 if (retval)
4215 return retval;
4216 }
4217
b29739f9 4218 /*
d1ccc66d 4219 * Make sure no PI-waiters arrive (or leave) while we are
b29739f9 4220 * changing the priority of the task:
0122ec5b 4221 *
25985edc 4222 * To be able to change p->policy safely, the appropriate
1da177e4
LT
4223 * runqueue lock must be held.
4224 */
eb580751 4225 rq = task_rq_lock(p, &rf);
80f5c1b8 4226 update_rq_clock(rq);
dc61b1d6 4227
34f971f6 4228 /*
d1ccc66d 4229 * Changing the policy of the stop threads its a very bad idea:
34f971f6
PZ
4230 */
4231 if (p == rq->stop) {
eb580751 4232 task_rq_unlock(rq, p, &rf);
34f971f6
PZ
4233 return -EINVAL;
4234 }
4235
a51e9198 4236 /*
d6b1e911
TG
4237 * If not changing anything there's no need to proceed further,
4238 * but store a possible modification of reset_on_fork.
a51e9198 4239 */
d50dde5a 4240 if (unlikely(policy == p->policy)) {
d0ea0268 4241 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
4242 goto change;
4243 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4244 goto change;
75381608 4245 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 4246 goto change;
d50dde5a 4247
d6b1e911 4248 p->sched_reset_on_fork = reset_on_fork;
eb580751 4249 task_rq_unlock(rq, p, &rf);
a51e9198
DF
4250 return 0;
4251 }
d50dde5a 4252change:
a51e9198 4253
dc61b1d6 4254 if (user) {
332ac17e 4255#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
4256 /*
4257 * Do not allow realtime tasks into groups that have no runtime
4258 * assigned.
4259 */
4260 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
4261 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4262 !task_group_is_autogroup(task_group(p))) {
eb580751 4263 task_rq_unlock(rq, p, &rf);
dc61b1d6
PZ
4264 return -EPERM;
4265 }
dc61b1d6 4266#endif
332ac17e
DF
4267#ifdef CONFIG_SMP
4268 if (dl_bandwidth_enabled() && dl_policy(policy)) {
4269 cpumask_t *span = rq->rd->span;
332ac17e
DF
4270
4271 /*
4272 * Don't allow tasks with an affinity mask smaller than
4273 * the entire root_domain to become SCHED_DEADLINE. We
4274 * will also fail if there's no bandwidth available.
4275 */
e4099a5e
PZ
4276 if (!cpumask_subset(span, &p->cpus_allowed) ||
4277 rq->rd->dl_bw.bw == 0) {
eb580751 4278 task_rq_unlock(rq, p, &rf);
332ac17e
DF
4279 return -EPERM;
4280 }
4281 }
4282#endif
4283 }
dc61b1d6 4284
d1ccc66d 4285 /* Re-check policy now with rq lock held: */
1da177e4
LT
4286 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4287 policy = oldpolicy = -1;
eb580751 4288 task_rq_unlock(rq, p, &rf);
1da177e4
LT
4289 goto recheck;
4290 }
332ac17e
DF
4291
4292 /*
4293 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4294 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4295 * is available.
4296 */
e4099a5e 4297 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
eb580751 4298 task_rq_unlock(rq, p, &rf);
332ac17e
DF
4299 return -EBUSY;
4300 }
4301
c365c292
TG
4302 p->sched_reset_on_fork = reset_on_fork;
4303 oldprio = p->prio;
4304
dbc7f069
PZ
4305 if (pi) {
4306 /*
4307 * Take priority boosted tasks into account. If the new
4308 * effective priority is unchanged, we just store the new
4309 * normal parameters and do not touch the scheduler class and
4310 * the runqueue. This will be done when the task deboost
4311 * itself.
4312 */
4313 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
ff77e468
PZ
4314 if (new_effective_prio == oldprio)
4315 queue_flags &= ~DEQUEUE_MOVE;
c365c292
TG
4316 }
4317
da0c1e65 4318 queued = task_on_rq_queued(p);
051a1d1a 4319 running = task_current(rq, p);
da0c1e65 4320 if (queued)
ff77e468 4321 dequeue_task(rq, p, queue_flags);
0e1f3483 4322 if (running)
f3cd1c4e 4323 put_prev_task(rq, p);
f6b53205 4324
83ab0aa0 4325 prev_class = p->sched_class;
dbc7f069 4326 __setscheduler(rq, p, attr, pi);
f6b53205 4327
da0c1e65 4328 if (queued) {
81a44c54
TG
4329 /*
4330 * We enqueue to tail when the priority of a task is
4331 * increased (user space view).
4332 */
ff77e468
PZ
4333 if (oldprio < p->prio)
4334 queue_flags |= ENQUEUE_HEAD;
1de64443 4335
ff77e468 4336 enqueue_task(rq, p, queue_flags);
81a44c54 4337 }
a399d233 4338 if (running)
b2bf6c31 4339 set_curr_task(rq, p);
cb469845 4340
da7a735e 4341 check_class_changed(rq, p, prev_class, oldprio);
d1ccc66d
IM
4342
4343 /* Avoid rq from going away on us: */
4344 preempt_disable();
eb580751 4345 task_rq_unlock(rq, p, &rf);
b29739f9 4346
dbc7f069
PZ
4347 if (pi)
4348 rt_mutex_adjust_pi(p);
95e02ca9 4349
d1ccc66d 4350 /* Run balance callbacks after we've adjusted the PI chain: */
4c9a4bc8
PZ
4351 balance_callback(rq);
4352 preempt_enable();
95e02ca9 4353
1da177e4
LT
4354 return 0;
4355}
961ccddd 4356
7479f3c9
PZ
4357static int _sched_setscheduler(struct task_struct *p, int policy,
4358 const struct sched_param *param, bool check)
4359{
4360 struct sched_attr attr = {
4361 .sched_policy = policy,
4362 .sched_priority = param->sched_priority,
4363 .sched_nice = PRIO_TO_NICE(p->static_prio),
4364 };
4365
c13db6b1
SR
4366 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4367 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
4368 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4369 policy &= ~SCHED_RESET_ON_FORK;
4370 attr.sched_policy = policy;
4371 }
4372
dbc7f069 4373 return __sched_setscheduler(p, &attr, check, true);
7479f3c9 4374}
961ccddd
RR
4375/**
4376 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4377 * @p: the task in question.
4378 * @policy: new policy.
4379 * @param: structure containing the new RT priority.
4380 *
e69f6186
YB
4381 * Return: 0 on success. An error code otherwise.
4382 *
961ccddd
RR
4383 * NOTE that the task may be already dead.
4384 */
4385int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4386 const struct sched_param *param)
961ccddd 4387{
7479f3c9 4388 return _sched_setscheduler(p, policy, param, true);
961ccddd 4389}
1da177e4
LT
4390EXPORT_SYMBOL_GPL(sched_setscheduler);
4391
d50dde5a
DF
4392int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4393{
dbc7f069 4394 return __sched_setscheduler(p, attr, true, true);
d50dde5a
DF
4395}
4396EXPORT_SYMBOL_GPL(sched_setattr);
4397
961ccddd
RR
4398/**
4399 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4400 * @p: the task in question.
4401 * @policy: new policy.
4402 * @param: structure containing the new RT priority.
4403 *
4404 * Just like sched_setscheduler, only don't bother checking if the
4405 * current context has permission. For example, this is needed in
4406 * stop_machine(): we create temporary high priority worker threads,
4407 * but our caller might not have that capability.
e69f6186
YB
4408 *
4409 * Return: 0 on success. An error code otherwise.
961ccddd
RR
4410 */
4411int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 4412 const struct sched_param *param)
961ccddd 4413{
7479f3c9 4414 return _sched_setscheduler(p, policy, param, false);
961ccddd 4415}
84778472 4416EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
961ccddd 4417
95cdf3b7
IM
4418static int
4419do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4420{
1da177e4
LT
4421 struct sched_param lparam;
4422 struct task_struct *p;
36c8b586 4423 int retval;
1da177e4
LT
4424
4425 if (!param || pid < 0)
4426 return -EINVAL;
4427 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4428 return -EFAULT;
5fe1d75f
ON
4429
4430 rcu_read_lock();
4431 retval = -ESRCH;
1da177e4 4432 p = find_process_by_pid(pid);
5fe1d75f
ON
4433 if (p != NULL)
4434 retval = sched_setscheduler(p, policy, &lparam);
4435 rcu_read_unlock();
36c8b586 4436
1da177e4
LT
4437 return retval;
4438}
4439
d50dde5a
DF
4440/*
4441 * Mimics kernel/events/core.c perf_copy_attr().
4442 */
d1ccc66d 4443static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
d50dde5a
DF
4444{
4445 u32 size;
4446 int ret;
4447
4448 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4449 return -EFAULT;
4450
d1ccc66d 4451 /* Zero the full structure, so that a short copy will be nice: */
d50dde5a
DF
4452 memset(attr, 0, sizeof(*attr));
4453
4454 ret = get_user(size, &uattr->size);
4455 if (ret)
4456 return ret;
4457
d1ccc66d
IM
4458 /* Bail out on silly large: */
4459 if (size > PAGE_SIZE)
d50dde5a
DF
4460 goto err_size;
4461
d1ccc66d
IM
4462 /* ABI compatibility quirk: */
4463 if (!size)
d50dde5a
DF
4464 size = SCHED_ATTR_SIZE_VER0;
4465
4466 if (size < SCHED_ATTR_SIZE_VER0)
4467 goto err_size;
4468
4469 /*
4470 * If we're handed a bigger struct than we know of,
4471 * ensure all the unknown bits are 0 - i.e. new
4472 * user-space does not rely on any kernel feature
4473 * extensions we dont know about yet.
4474 */
4475 if (size > sizeof(*attr)) {
4476 unsigned char __user *addr;
4477 unsigned char __user *end;
4478 unsigned char val;
4479
4480 addr = (void __user *)uattr + sizeof(*attr);
4481 end = (void __user *)uattr + size;
4482
4483 for (; addr < end; addr++) {
4484 ret = get_user(val, addr);
4485 if (ret)
4486 return ret;
4487 if (val)
4488 goto err_size;
4489 }
4490 size = sizeof(*attr);
4491 }
4492
4493 ret = copy_from_user(attr, uattr, size);
4494 if (ret)
4495 return -EFAULT;
4496
4497 /*
d1ccc66d 4498 * XXX: Do we want to be lenient like existing syscalls; or do we want
d50dde5a
DF
4499 * to be strict and return an error on out-of-bounds values?
4500 */
75e45d51 4501 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 4502
e78c7bca 4503 return 0;
d50dde5a
DF
4504
4505err_size:
4506 put_user(sizeof(*attr), &uattr->size);
e78c7bca 4507 return -E2BIG;
d50dde5a
DF
4508}
4509
1da177e4
LT
4510/**
4511 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4512 * @pid: the pid in question.
4513 * @policy: new policy.
4514 * @param: structure containing the new RT priority.
e69f6186
YB
4515 *
4516 * Return: 0 on success. An error code otherwise.
1da177e4 4517 */
d1ccc66d 4518SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
1da177e4 4519{
c21761f1
JB
4520 if (policy < 0)
4521 return -EINVAL;
4522
1da177e4
LT
4523 return do_sched_setscheduler(pid, policy, param);
4524}
4525
4526/**
4527 * sys_sched_setparam - set/change the RT priority of a thread
4528 * @pid: the pid in question.
4529 * @param: structure containing the new RT priority.
e69f6186
YB
4530 *
4531 * Return: 0 on success. An error code otherwise.
1da177e4 4532 */
5add95d4 4533SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4534{
c13db6b1 4535 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
4536}
4537
d50dde5a
DF
4538/**
4539 * sys_sched_setattr - same as above, but with extended sched_attr
4540 * @pid: the pid in question.
5778fccf 4541 * @uattr: structure containing the extended parameters.
db66d756 4542 * @flags: for future extension.
d50dde5a 4543 */
6d35ab48
PZ
4544SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4545 unsigned int, flags)
d50dde5a
DF
4546{
4547 struct sched_attr attr;
4548 struct task_struct *p;
4549 int retval;
4550
6d35ab48 4551 if (!uattr || pid < 0 || flags)
d50dde5a
DF
4552 return -EINVAL;
4553
143cf23d
MK
4554 retval = sched_copy_attr(uattr, &attr);
4555 if (retval)
4556 return retval;
d50dde5a 4557
b14ed2c2 4558 if ((int)attr.sched_policy < 0)
dbdb2275 4559 return -EINVAL;
d50dde5a
DF
4560
4561 rcu_read_lock();
4562 retval = -ESRCH;
4563 p = find_process_by_pid(pid);
4564 if (p != NULL)
4565 retval = sched_setattr(p, &attr);
4566 rcu_read_unlock();
4567
4568 return retval;
4569}
4570
1da177e4
LT
4571/**
4572 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4573 * @pid: the pid in question.
e69f6186
YB
4574 *
4575 * Return: On success, the policy of the thread. Otherwise, a negative error
4576 * code.
1da177e4 4577 */
5add95d4 4578SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4579{
36c8b586 4580 struct task_struct *p;
3a5c359a 4581 int retval;
1da177e4
LT
4582
4583 if (pid < 0)
3a5c359a 4584 return -EINVAL;
1da177e4
LT
4585
4586 retval = -ESRCH;
5fe85be0 4587 rcu_read_lock();
1da177e4
LT
4588 p = find_process_by_pid(pid);
4589 if (p) {
4590 retval = security_task_getscheduler(p);
4591 if (!retval)
ca94c442
LP
4592 retval = p->policy
4593 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4594 }
5fe85be0 4595 rcu_read_unlock();
1da177e4
LT
4596 return retval;
4597}
4598
4599/**
ca94c442 4600 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4601 * @pid: the pid in question.
4602 * @param: structure containing the RT priority.
e69f6186
YB
4603 *
4604 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4605 * code.
1da177e4 4606 */
5add95d4 4607SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4608{
ce5f7f82 4609 struct sched_param lp = { .sched_priority = 0 };
36c8b586 4610 struct task_struct *p;
3a5c359a 4611 int retval;
1da177e4
LT
4612
4613 if (!param || pid < 0)
3a5c359a 4614 return -EINVAL;
1da177e4 4615
5fe85be0 4616 rcu_read_lock();
1da177e4
LT
4617 p = find_process_by_pid(pid);
4618 retval = -ESRCH;
4619 if (!p)
4620 goto out_unlock;
4621
4622 retval = security_task_getscheduler(p);
4623 if (retval)
4624 goto out_unlock;
4625
ce5f7f82
PZ
4626 if (task_has_rt_policy(p))
4627 lp.sched_priority = p->rt_priority;
5fe85be0 4628 rcu_read_unlock();
1da177e4
LT
4629
4630 /*
4631 * This one might sleep, we cannot do it with a spinlock held ...
4632 */
4633 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4634
1da177e4
LT
4635 return retval;
4636
4637out_unlock:
5fe85be0 4638 rcu_read_unlock();
1da177e4
LT
4639 return retval;
4640}
4641
d50dde5a
DF
4642static int sched_read_attr(struct sched_attr __user *uattr,
4643 struct sched_attr *attr,
4644 unsigned int usize)
4645{
4646 int ret;
4647
4648 if (!access_ok(VERIFY_WRITE, uattr, usize))
4649 return -EFAULT;
4650
4651 /*
4652 * If we're handed a smaller struct than we know of,
4653 * ensure all the unknown bits are 0 - i.e. old
4654 * user-space does not get uncomplete information.
4655 */
4656 if (usize < sizeof(*attr)) {
4657 unsigned char *addr;
4658 unsigned char *end;
4659
4660 addr = (void *)attr + usize;
4661 end = (void *)attr + sizeof(*attr);
4662
4663 for (; addr < end; addr++) {
4664 if (*addr)
22400674 4665 return -EFBIG;
d50dde5a
DF
4666 }
4667
4668 attr->size = usize;
4669 }
4670
4efbc454 4671 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
4672 if (ret)
4673 return -EFAULT;
4674
22400674 4675 return 0;
d50dde5a
DF
4676}
4677
4678/**
aab03e05 4679 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 4680 * @pid: the pid in question.
5778fccf 4681 * @uattr: structure containing the extended parameters.
d50dde5a 4682 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 4683 * @flags: for future extension.
d50dde5a 4684 */
6d35ab48
PZ
4685SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4686 unsigned int, size, unsigned int, flags)
d50dde5a
DF
4687{
4688 struct sched_attr attr = {
4689 .size = sizeof(struct sched_attr),
4690 };
4691 struct task_struct *p;
4692 int retval;
4693
4694 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 4695 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
4696 return -EINVAL;
4697
4698 rcu_read_lock();
4699 p = find_process_by_pid(pid);
4700 retval = -ESRCH;
4701 if (!p)
4702 goto out_unlock;
4703
4704 retval = security_task_getscheduler(p);
4705 if (retval)
4706 goto out_unlock;
4707
4708 attr.sched_policy = p->policy;
7479f3c9
PZ
4709 if (p->sched_reset_on_fork)
4710 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
4711 if (task_has_dl_policy(p))
4712 __getparam_dl(p, &attr);
4713 else if (task_has_rt_policy(p))
d50dde5a
DF
4714 attr.sched_priority = p->rt_priority;
4715 else
d0ea0268 4716 attr.sched_nice = task_nice(p);
d50dde5a
DF
4717
4718 rcu_read_unlock();
4719
4720 retval = sched_read_attr(uattr, &attr, size);
4721 return retval;
4722
4723out_unlock:
4724 rcu_read_unlock();
4725 return retval;
4726}
4727
96f874e2 4728long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4729{
5a16f3d3 4730 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4731 struct task_struct *p;
4732 int retval;
1da177e4 4733
23f5d142 4734 rcu_read_lock();
1da177e4
LT
4735
4736 p = find_process_by_pid(pid);
4737 if (!p) {
23f5d142 4738 rcu_read_unlock();
1da177e4
LT
4739 return -ESRCH;
4740 }
4741
23f5d142 4742 /* Prevent p going away */
1da177e4 4743 get_task_struct(p);
23f5d142 4744 rcu_read_unlock();
1da177e4 4745
14a40ffc
TH
4746 if (p->flags & PF_NO_SETAFFINITY) {
4747 retval = -EINVAL;
4748 goto out_put_task;
4749 }
5a16f3d3
RR
4750 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4751 retval = -ENOMEM;
4752 goto out_put_task;
4753 }
4754 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4755 retval = -ENOMEM;
4756 goto out_free_cpus_allowed;
4757 }
1da177e4 4758 retval = -EPERM;
4c44aaaf
EB
4759 if (!check_same_owner(p)) {
4760 rcu_read_lock();
4761 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4762 rcu_read_unlock();
16303ab2 4763 goto out_free_new_mask;
4c44aaaf
EB
4764 }
4765 rcu_read_unlock();
4766 }
1da177e4 4767
b0ae1981 4768 retval = security_task_setscheduler(p);
e7834f8f 4769 if (retval)
16303ab2 4770 goto out_free_new_mask;
e7834f8f 4771
e4099a5e
PZ
4772
4773 cpuset_cpus_allowed(p, cpus_allowed);
4774 cpumask_and(new_mask, in_mask, cpus_allowed);
4775
332ac17e
DF
4776 /*
4777 * Since bandwidth control happens on root_domain basis,
4778 * if admission test is enabled, we only admit -deadline
4779 * tasks allowed to run on all the CPUs in the task's
4780 * root_domain.
4781 */
4782#ifdef CONFIG_SMP
f1e3a093
KT
4783 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4784 rcu_read_lock();
4785 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 4786 retval = -EBUSY;
f1e3a093 4787 rcu_read_unlock();
16303ab2 4788 goto out_free_new_mask;
332ac17e 4789 }
f1e3a093 4790 rcu_read_unlock();
332ac17e
DF
4791 }
4792#endif
49246274 4793again:
25834c73 4794 retval = __set_cpus_allowed_ptr(p, new_mask, true);
1da177e4 4795
8707d8b8 4796 if (!retval) {
5a16f3d3
RR
4797 cpuset_cpus_allowed(p, cpus_allowed);
4798 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4799 /*
4800 * We must have raced with a concurrent cpuset
4801 * update. Just reset the cpus_allowed to the
4802 * cpuset's cpus_allowed
4803 */
5a16f3d3 4804 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4805 goto again;
4806 }
4807 }
16303ab2 4808out_free_new_mask:
5a16f3d3
RR
4809 free_cpumask_var(new_mask);
4810out_free_cpus_allowed:
4811 free_cpumask_var(cpus_allowed);
4812out_put_task:
1da177e4 4813 put_task_struct(p);
1da177e4
LT
4814 return retval;
4815}
4816
4817static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4818 struct cpumask *new_mask)
1da177e4 4819{
96f874e2
RR
4820 if (len < cpumask_size())
4821 cpumask_clear(new_mask);
4822 else if (len > cpumask_size())
4823 len = cpumask_size();
4824
1da177e4
LT
4825 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4826}
4827
4828/**
d1ccc66d 4829 * sys_sched_setaffinity - set the CPU affinity of a process
1da177e4
LT
4830 * @pid: pid of the process
4831 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
d1ccc66d 4832 * @user_mask_ptr: user-space pointer to the new CPU mask
e69f6186
YB
4833 *
4834 * Return: 0 on success. An error code otherwise.
1da177e4 4835 */
5add95d4
HC
4836SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4837 unsigned long __user *, user_mask_ptr)
1da177e4 4838{
5a16f3d3 4839 cpumask_var_t new_mask;
1da177e4
LT
4840 int retval;
4841
5a16f3d3
RR
4842 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4843 return -ENOMEM;
1da177e4 4844
5a16f3d3
RR
4845 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4846 if (retval == 0)
4847 retval = sched_setaffinity(pid, new_mask);
4848 free_cpumask_var(new_mask);
4849 return retval;
1da177e4
LT
4850}
4851
96f874e2 4852long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4853{
36c8b586 4854 struct task_struct *p;
31605683 4855 unsigned long flags;
1da177e4 4856 int retval;
1da177e4 4857
23f5d142 4858 rcu_read_lock();
1da177e4
LT
4859
4860 retval = -ESRCH;
4861 p = find_process_by_pid(pid);
4862 if (!p)
4863 goto out_unlock;
4864
e7834f8f
DQ
4865 retval = security_task_getscheduler(p);
4866 if (retval)
4867 goto out_unlock;
4868
013fdb80 4869 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4870 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4871 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4872
4873out_unlock:
23f5d142 4874 rcu_read_unlock();
1da177e4 4875
9531b62f 4876 return retval;
1da177e4
LT
4877}
4878
4879/**
d1ccc66d 4880 * sys_sched_getaffinity - get the CPU affinity of a process
1da177e4
LT
4881 * @pid: pid of the process
4882 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
d1ccc66d 4883 * @user_mask_ptr: user-space pointer to hold the current CPU mask
e69f6186 4884 *
599b4840
ZW
4885 * Return: size of CPU mask copied to user_mask_ptr on success. An
4886 * error code otherwise.
1da177e4 4887 */
5add95d4
HC
4888SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4889 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4890{
4891 int ret;
f17c8607 4892 cpumask_var_t mask;
1da177e4 4893
84fba5ec 4894 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4895 return -EINVAL;
4896 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4897 return -EINVAL;
4898
f17c8607
RR
4899 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4900 return -ENOMEM;
1da177e4 4901
f17c8607
RR
4902 ret = sched_getaffinity(pid, mask);
4903 if (ret == 0) {
8bc037fb 4904 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4905
4906 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4907 ret = -EFAULT;
4908 else
cd3d8031 4909 ret = retlen;
f17c8607
RR
4910 }
4911 free_cpumask_var(mask);
1da177e4 4912
f17c8607 4913 return ret;
1da177e4
LT
4914}
4915
4916/**
4917 * sys_sched_yield - yield the current processor to other threads.
4918 *
dd41f596
IM
4919 * This function yields the current CPU to other tasks. If there are no
4920 * other threads running on this CPU then this function will return.
e69f6186
YB
4921 *
4922 * Return: 0.
1da177e4 4923 */
5add95d4 4924SYSCALL_DEFINE0(sched_yield)
1da177e4 4925{
70b97a7f 4926 struct rq *rq = this_rq_lock();
1da177e4 4927
ae92882e 4928 schedstat_inc(rq->yld_count);
4530d7ab 4929 current->sched_class->yield_task(rq);
1da177e4
LT
4930
4931 /*
4932 * Since we are going to call schedule() anyway, there's
4933 * no need to preempt or enable interrupts:
4934 */
4935 __release(rq->lock);
8a25d5de 4936 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4937 do_raw_spin_unlock(&rq->lock);
ba74c144 4938 sched_preempt_enable_no_resched();
1da177e4
LT
4939
4940 schedule();
4941
4942 return 0;
4943}
4944
35a773a0 4945#ifndef CONFIG_PREEMPT
02b67cc3 4946int __sched _cond_resched(void)
1da177e4 4947{
fe32d3cd 4948 if (should_resched(0)) {
a18b5d01 4949 preempt_schedule_common();
1da177e4
LT
4950 return 1;
4951 }
4952 return 0;
4953}
02b67cc3 4954EXPORT_SYMBOL(_cond_resched);
35a773a0 4955#endif
1da177e4
LT
4956
4957/*
613afbf8 4958 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4959 * call schedule, and on return reacquire the lock.
4960 *
41a2d6cf 4961 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4962 * operations here to prevent schedule() from being called twice (once via
4963 * spin_unlock(), once by hand).
4964 */
613afbf8 4965int __cond_resched_lock(spinlock_t *lock)
1da177e4 4966{
fe32d3cd 4967 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6df3cecb
JK
4968 int ret = 0;
4969
f607c668
PZ
4970 lockdep_assert_held(lock);
4971
4a81e832 4972 if (spin_needbreak(lock) || resched) {
1da177e4 4973 spin_unlock(lock);
d86ee480 4974 if (resched)
a18b5d01 4975 preempt_schedule_common();
95c354fe
NP
4976 else
4977 cpu_relax();
6df3cecb 4978 ret = 1;
1da177e4 4979 spin_lock(lock);
1da177e4 4980 }
6df3cecb 4981 return ret;
1da177e4 4982}
613afbf8 4983EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4984
613afbf8 4985int __sched __cond_resched_softirq(void)
1da177e4
LT
4986{
4987 BUG_ON(!in_softirq());
4988
fe32d3cd 4989 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
98d82567 4990 local_bh_enable();
a18b5d01 4991 preempt_schedule_common();
1da177e4
LT
4992 local_bh_disable();
4993 return 1;
4994 }
4995 return 0;
4996}
613afbf8 4997EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4998
1da177e4
LT
4999/**
5000 * yield - yield the current processor to other threads.
5001 *
8e3fabfd
PZ
5002 * Do not ever use this function, there's a 99% chance you're doing it wrong.
5003 *
5004 * The scheduler is at all times free to pick the calling task as the most
5005 * eligible task to run, if removing the yield() call from your code breaks
5006 * it, its already broken.
5007 *
5008 * Typical broken usage is:
5009 *
5010 * while (!event)
d1ccc66d 5011 * yield();
8e3fabfd
PZ
5012 *
5013 * where one assumes that yield() will let 'the other' process run that will
5014 * make event true. If the current task is a SCHED_FIFO task that will never
5015 * happen. Never use yield() as a progress guarantee!!
5016 *
5017 * If you want to use yield() to wait for something, use wait_event().
5018 * If you want to use yield() to be 'nice' for others, use cond_resched().
5019 * If you still want to use yield(), do not!
1da177e4
LT
5020 */
5021void __sched yield(void)
5022{
5023 set_current_state(TASK_RUNNING);
5024 sys_sched_yield();
5025}
1da177e4
LT
5026EXPORT_SYMBOL(yield);
5027
d95f4122
MG
5028/**
5029 * yield_to - yield the current processor to another thread in
5030 * your thread group, or accelerate that thread toward the
5031 * processor it's on.
16addf95
RD
5032 * @p: target task
5033 * @preempt: whether task preemption is allowed or not
d95f4122
MG
5034 *
5035 * It's the caller's job to ensure that the target task struct
5036 * can't go away on us before we can do any checks.
5037 *
e69f6186 5038 * Return:
7b270f60
PZ
5039 * true (>0) if we indeed boosted the target task.
5040 * false (0) if we failed to boost the target.
5041 * -ESRCH if there's no task to yield to.
d95f4122 5042 */
fa93384f 5043int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
5044{
5045 struct task_struct *curr = current;
5046 struct rq *rq, *p_rq;
5047 unsigned long flags;
c3c18640 5048 int yielded = 0;
d95f4122
MG
5049
5050 local_irq_save(flags);
5051 rq = this_rq();
5052
5053again:
5054 p_rq = task_rq(p);
7b270f60
PZ
5055 /*
5056 * If we're the only runnable task on the rq and target rq also
5057 * has only one task, there's absolutely no point in yielding.
5058 */
5059 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5060 yielded = -ESRCH;
5061 goto out_irq;
5062 }
5063
d95f4122 5064 double_rq_lock(rq, p_rq);
39e24d8f 5065 if (task_rq(p) != p_rq) {
d95f4122
MG
5066 double_rq_unlock(rq, p_rq);
5067 goto again;
5068 }
5069
5070 if (!curr->sched_class->yield_to_task)
7b270f60 5071 goto out_unlock;
d95f4122
MG
5072
5073 if (curr->sched_class != p->sched_class)
7b270f60 5074 goto out_unlock;
d95f4122
MG
5075
5076 if (task_running(p_rq, p) || p->state)
7b270f60 5077 goto out_unlock;
d95f4122
MG
5078
5079 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 5080 if (yielded) {
ae92882e 5081 schedstat_inc(rq->yld_count);
6d1cafd8
VP
5082 /*
5083 * Make p's CPU reschedule; pick_next_entity takes care of
5084 * fairness.
5085 */
5086 if (preempt && rq != p_rq)
8875125e 5087 resched_curr(p_rq);
6d1cafd8 5088 }
d95f4122 5089
7b270f60 5090out_unlock:
d95f4122 5091 double_rq_unlock(rq, p_rq);
7b270f60 5092out_irq:
d95f4122
MG
5093 local_irq_restore(flags);
5094
7b270f60 5095 if (yielded > 0)
d95f4122
MG
5096 schedule();
5097
5098 return yielded;
5099}
5100EXPORT_SYMBOL_GPL(yield_to);
5101
10ab5643
TH
5102int io_schedule_prepare(void)
5103{
5104 int old_iowait = current->in_iowait;
5105
5106 current->in_iowait = 1;
5107 blk_schedule_flush_plug(current);
5108
5109 return old_iowait;
5110}
5111
5112void io_schedule_finish(int token)
5113{
5114 current->in_iowait = token;
5115}
5116
1da177e4 5117/*
41a2d6cf 5118 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5119 * that process accounting knows that this is a task in IO wait state.
1da177e4 5120 */
1da177e4
LT
5121long __sched io_schedule_timeout(long timeout)
5122{
10ab5643 5123 int token;
1da177e4
LT
5124 long ret;
5125
10ab5643 5126 token = io_schedule_prepare();
1da177e4 5127 ret = schedule_timeout(timeout);
10ab5643 5128 io_schedule_finish(token);
9cff8ade 5129
1da177e4
LT
5130 return ret;
5131}
9cff8ade 5132EXPORT_SYMBOL(io_schedule_timeout);
1da177e4 5133
10ab5643
TH
5134void io_schedule(void)
5135{
5136 int token;
5137
5138 token = io_schedule_prepare();
5139 schedule();
5140 io_schedule_finish(token);
5141}
5142EXPORT_SYMBOL(io_schedule);
5143
1da177e4
LT
5144/**
5145 * sys_sched_get_priority_max - return maximum RT priority.
5146 * @policy: scheduling class.
5147 *
e69f6186
YB
5148 * Return: On success, this syscall returns the maximum
5149 * rt_priority that can be used by a given scheduling class.
5150 * On failure, a negative error code is returned.
1da177e4 5151 */
5add95d4 5152SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5153{
5154 int ret = -EINVAL;
5155
5156 switch (policy) {
5157 case SCHED_FIFO:
5158 case SCHED_RR:
5159 ret = MAX_USER_RT_PRIO-1;
5160 break;
aab03e05 5161 case SCHED_DEADLINE:
1da177e4 5162 case SCHED_NORMAL:
b0a9499c 5163 case SCHED_BATCH:
dd41f596 5164 case SCHED_IDLE:
1da177e4
LT
5165 ret = 0;
5166 break;
5167 }
5168 return ret;
5169}
5170
5171/**
5172 * sys_sched_get_priority_min - return minimum RT priority.
5173 * @policy: scheduling class.
5174 *
e69f6186
YB
5175 * Return: On success, this syscall returns the minimum
5176 * rt_priority that can be used by a given scheduling class.
5177 * On failure, a negative error code is returned.
1da177e4 5178 */
5add95d4 5179SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5180{
5181 int ret = -EINVAL;
5182
5183 switch (policy) {
5184 case SCHED_FIFO:
5185 case SCHED_RR:
5186 ret = 1;
5187 break;
aab03e05 5188 case SCHED_DEADLINE:
1da177e4 5189 case SCHED_NORMAL:
b0a9499c 5190 case SCHED_BATCH:
dd41f596 5191 case SCHED_IDLE:
1da177e4
LT
5192 ret = 0;
5193 }
5194 return ret;
5195}
5196
5197/**
5198 * sys_sched_rr_get_interval - return the default timeslice of a process.
5199 * @pid: pid of the process.
5200 * @interval: userspace pointer to the timeslice value.
5201 *
5202 * this syscall writes the default timeslice value of a given process
5203 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
5204 *
5205 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5206 * an error code.
1da177e4 5207 */
17da2bd9 5208SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5209 struct timespec __user *, interval)
1da177e4 5210{
36c8b586 5211 struct task_struct *p;
a4ec24b4 5212 unsigned int time_slice;
eb580751
PZ
5213 struct rq_flags rf;
5214 struct timespec t;
dba091b9 5215 struct rq *rq;
3a5c359a 5216 int retval;
1da177e4
LT
5217
5218 if (pid < 0)
3a5c359a 5219 return -EINVAL;
1da177e4
LT
5220
5221 retval = -ESRCH;
1a551ae7 5222 rcu_read_lock();
1da177e4
LT
5223 p = find_process_by_pid(pid);
5224 if (!p)
5225 goto out_unlock;
5226
5227 retval = security_task_getscheduler(p);
5228 if (retval)
5229 goto out_unlock;
5230
eb580751 5231 rq = task_rq_lock(p, &rf);
a57beec5
PZ
5232 time_slice = 0;
5233 if (p->sched_class->get_rr_interval)
5234 time_slice = p->sched_class->get_rr_interval(rq, p);
eb580751 5235 task_rq_unlock(rq, p, &rf);
a4ec24b4 5236
1a551ae7 5237 rcu_read_unlock();
a4ec24b4 5238 jiffies_to_timespec(time_slice, &t);
1da177e4 5239 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5240 return retval;
3a5c359a 5241
1da177e4 5242out_unlock:
1a551ae7 5243 rcu_read_unlock();
1da177e4
LT
5244 return retval;
5245}
5246
7c731e0a 5247static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5248
82a1fcb9 5249void sched_show_task(struct task_struct *p)
1da177e4 5250{
1da177e4 5251 unsigned long free = 0;
4e79752c 5252 int ppid;
1f8a7633 5253 unsigned long state = p->state;
1da177e4 5254
c930b2c0
IM
5255 /* Make sure the string lines up properly with the number of task states: */
5256 BUILD_BUG_ON(sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1);
5257
38200502
TH
5258 if (!try_get_task_stack(p))
5259 return;
1f8a7633
TH
5260 if (state)
5261 state = __ffs(state) + 1;
28d0686c 5262 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 5263 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
1da177e4 5264 if (state == TASK_RUNNING)
3df0fc5b 5265 printk(KERN_CONT " running task ");
1da177e4 5266#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5267 free = stack_not_used(p);
1da177e4 5268#endif
a90e984c 5269 ppid = 0;
4e79752c 5270 rcu_read_lock();
a90e984c
ON
5271 if (pid_alive(p))
5272 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 5273 rcu_read_unlock();
3df0fc5b 5274 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 5275 task_pid_nr(p), ppid,
aa47b7e0 5276 (unsigned long)task_thread_info(p)->flags);
1da177e4 5277
3d1cb205 5278 print_worker_info(KERN_INFO, p);
5fb5e6de 5279 show_stack(p, NULL);
38200502 5280 put_task_stack(p);
1da177e4
LT
5281}
5282
e59e2ae2 5283void show_state_filter(unsigned long state_filter)
1da177e4 5284{
36c8b586 5285 struct task_struct *g, *p;
1da177e4 5286
4bd77321 5287#if BITS_PER_LONG == 32
3df0fc5b
PZ
5288 printk(KERN_INFO
5289 " task PC stack pid father\n");
1da177e4 5290#else
3df0fc5b
PZ
5291 printk(KERN_INFO
5292 " task PC stack pid father\n");
1da177e4 5293#endif
510f5acc 5294 rcu_read_lock();
5d07f420 5295 for_each_process_thread(g, p) {
1da177e4
LT
5296 /*
5297 * reset the NMI-timeout, listing all files on a slow
25985edc 5298 * console might take a lot of time:
57675cb9
AR
5299 * Also, reset softlockup watchdogs on all CPUs, because
5300 * another CPU might be blocked waiting for us to process
5301 * an IPI.
1da177e4
LT
5302 */
5303 touch_nmi_watchdog();
57675cb9 5304 touch_all_softlockup_watchdogs();
39bc89fd 5305 if (!state_filter || (p->state & state_filter))
82a1fcb9 5306 sched_show_task(p);
5d07f420 5307 }
1da177e4 5308
dd41f596 5309#ifdef CONFIG_SCHED_DEBUG
fb90a6e9
RV
5310 if (!state_filter)
5311 sysrq_sched_debug_show();
dd41f596 5312#endif
510f5acc 5313 rcu_read_unlock();
e59e2ae2
IM
5314 /*
5315 * Only show locks if all tasks are dumped:
5316 */
93335a21 5317 if (!state_filter)
e59e2ae2 5318 debug_show_all_locks();
1da177e4
LT
5319}
5320
0db0628d 5321void init_idle_bootup_task(struct task_struct *idle)
1df21055 5322{
dd41f596 5323 idle->sched_class = &idle_sched_class;
1df21055
IM
5324}
5325
f340c0d1
IM
5326/**
5327 * init_idle - set up an idle thread for a given CPU
5328 * @idle: task in question
d1ccc66d 5329 * @cpu: CPU the idle task belongs to
f340c0d1
IM
5330 *
5331 * NOTE: this function does not set the idle thread's NEED_RESCHED
5332 * flag, to make booting more robust.
5333 */
0db0628d 5334void init_idle(struct task_struct *idle, int cpu)
1da177e4 5335{
70b97a7f 5336 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5337 unsigned long flags;
5338
25834c73
PZ
5339 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5340 raw_spin_lock(&rq->lock);
5cbd54ef 5341
5e1576ed 5342 __sched_fork(0, idle);
06b83b5f 5343 idle->state = TASK_RUNNING;
dd41f596 5344 idle->se.exec_start = sched_clock();
c1de45ca 5345 idle->flags |= PF_IDLE;
dd41f596 5346
e1b77c92
MR
5347 kasan_unpoison_task_stack(idle);
5348
de9b8f5d
PZ
5349#ifdef CONFIG_SMP
5350 /*
5351 * Its possible that init_idle() gets called multiple times on a task,
5352 * in that case do_set_cpus_allowed() will not do the right thing.
5353 *
5354 * And since this is boot we can forgo the serialization.
5355 */
5356 set_cpus_allowed_common(idle, cpumask_of(cpu));
5357#endif
6506cf6c
PZ
5358 /*
5359 * We're having a chicken and egg problem, even though we are
d1ccc66d 5360 * holding rq->lock, the CPU isn't yet set to this CPU so the
6506cf6c
PZ
5361 * lockdep check in task_group() will fail.
5362 *
5363 * Similar case to sched_fork(). / Alternatively we could
5364 * use task_rq_lock() here and obtain the other rq->lock.
5365 *
5366 * Silence PROVE_RCU
5367 */
5368 rcu_read_lock();
dd41f596 5369 __set_task_cpu(idle, cpu);
6506cf6c 5370 rcu_read_unlock();
1da177e4 5371
1da177e4 5372 rq->curr = rq->idle = idle;
da0c1e65 5373 idle->on_rq = TASK_ON_RQ_QUEUED;
de9b8f5d 5374#ifdef CONFIG_SMP
3ca7a440 5375 idle->on_cpu = 1;
4866cde0 5376#endif
25834c73
PZ
5377 raw_spin_unlock(&rq->lock);
5378 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
1da177e4
LT
5379
5380 /* Set the preempt count _outside_ the spinlocks! */
01028747 5381 init_idle_preempt_count(idle, cpu);
55cd5340 5382
dd41f596
IM
5383 /*
5384 * The idle tasks have their own, simple scheduling class:
5385 */
5386 idle->sched_class = &idle_sched_class;
868baf07 5387 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 5388 vtime_init_idle(idle, cpu);
de9b8f5d 5389#ifdef CONFIG_SMP
f1c6f1a7
CE
5390 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5391#endif
19978ca6
IM
5392}
5393
f82f8042
JL
5394int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5395 const struct cpumask *trial)
5396{
5397 int ret = 1, trial_cpus;
5398 struct dl_bw *cur_dl_b;
5399 unsigned long flags;
5400
bb2bc55a
MG
5401 if (!cpumask_weight(cur))
5402 return ret;
5403
75e23e49 5404 rcu_read_lock_sched();
f82f8042
JL
5405 cur_dl_b = dl_bw_of(cpumask_any(cur));
5406 trial_cpus = cpumask_weight(trial);
5407
5408 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5409 if (cur_dl_b->bw != -1 &&
5410 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5411 ret = 0;
5412 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
75e23e49 5413 rcu_read_unlock_sched();
f82f8042
JL
5414
5415 return ret;
5416}
5417
7f51412a
JL
5418int task_can_attach(struct task_struct *p,
5419 const struct cpumask *cs_cpus_allowed)
5420{
5421 int ret = 0;
5422
5423 /*
5424 * Kthreads which disallow setaffinity shouldn't be moved
d1ccc66d 5425 * to a new cpuset; we don't want to change their CPU
7f51412a
JL
5426 * affinity and isolating such threads by their set of
5427 * allowed nodes is unnecessary. Thus, cpusets are not
5428 * applicable for such threads. This prevents checking for
5429 * success of set_cpus_allowed_ptr() on all attached tasks
5430 * before cpus_allowed may be changed.
5431 */
5432 if (p->flags & PF_NO_SETAFFINITY) {
5433 ret = -EINVAL;
5434 goto out;
5435 }
5436
5437#ifdef CONFIG_SMP
5438 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5439 cs_cpus_allowed)) {
5440 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5441 cs_cpus_allowed);
75e23e49 5442 struct dl_bw *dl_b;
7f51412a
JL
5443 bool overflow;
5444 int cpus;
5445 unsigned long flags;
5446
75e23e49
JL
5447 rcu_read_lock_sched();
5448 dl_b = dl_bw_of(dest_cpu);
7f51412a
JL
5449 raw_spin_lock_irqsave(&dl_b->lock, flags);
5450 cpus = dl_bw_cpus(dest_cpu);
5451 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5452 if (overflow)
5453 ret = -EBUSY;
5454 else {
5455 /*
5456 * We reserve space for this task in the destination
5457 * root_domain, as we can't fail after this point.
5458 * We will free resources in the source root_domain
5459 * later on (see set_cpus_allowed_dl()).
5460 */
5461 __dl_add(dl_b, p->dl.dl_bw);
5462 }
5463 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
75e23e49 5464 rcu_read_unlock_sched();
7f51412a
JL
5465
5466 }
5467#endif
5468out:
5469 return ret;
5470}
5471
1da177e4 5472#ifdef CONFIG_SMP
1da177e4 5473
f2cb1360 5474bool sched_smp_initialized __read_mostly;
e26fbffd 5475
e6628d5b
MG
5476#ifdef CONFIG_NUMA_BALANCING
5477/* Migrate current task p to target_cpu */
5478int migrate_task_to(struct task_struct *p, int target_cpu)
5479{
5480 struct migration_arg arg = { p, target_cpu };
5481 int curr_cpu = task_cpu(p);
5482
5483 if (curr_cpu == target_cpu)
5484 return 0;
5485
0c98d344 5486 if (!cpumask_test_cpu(target_cpu, &p->cpus_allowed))
e6628d5b
MG
5487 return -EINVAL;
5488
5489 /* TODO: This is not properly updating schedstats */
5490
286549dc 5491 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
5492 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5493}
0ec8aa00
PZ
5494
5495/*
5496 * Requeue a task on a given node and accurately track the number of NUMA
5497 * tasks on the runqueues
5498 */
5499void sched_setnuma(struct task_struct *p, int nid)
5500{
da0c1e65 5501 bool queued, running;
eb580751
PZ
5502 struct rq_flags rf;
5503 struct rq *rq;
0ec8aa00 5504
eb580751 5505 rq = task_rq_lock(p, &rf);
da0c1e65 5506 queued = task_on_rq_queued(p);
0ec8aa00
PZ
5507 running = task_current(rq, p);
5508
da0c1e65 5509 if (queued)
1de64443 5510 dequeue_task(rq, p, DEQUEUE_SAVE);
0ec8aa00 5511 if (running)
f3cd1c4e 5512 put_prev_task(rq, p);
0ec8aa00
PZ
5513
5514 p->numa_preferred_nid = nid;
0ec8aa00 5515
da0c1e65 5516 if (queued)
1de64443 5517 enqueue_task(rq, p, ENQUEUE_RESTORE);
a399d233 5518 if (running)
b2bf6c31 5519 set_curr_task(rq, p);
eb580751 5520 task_rq_unlock(rq, p, &rf);
0ec8aa00 5521}
5cc389bc 5522#endif /* CONFIG_NUMA_BALANCING */
f7b4cddc 5523
1da177e4 5524#ifdef CONFIG_HOTPLUG_CPU
054b9108 5525/*
d1ccc66d 5526 * Ensure that the idle task is using init_mm right before its CPU goes
48c5ccae 5527 * offline.
054b9108 5528 */
48c5ccae 5529void idle_task_exit(void)
1da177e4 5530{
48c5ccae 5531 struct mm_struct *mm = current->active_mm;
e76bd8d9 5532
48c5ccae 5533 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 5534
a53efe5f 5535 if (mm != &init_mm) {
f98db601 5536 switch_mm_irqs_off(mm, &init_mm, current);
a53efe5f
MS
5537 finish_arch_post_lock_switch();
5538 }
48c5ccae 5539 mmdrop(mm);
1da177e4
LT
5540}
5541
5542/*
5d180232
PZ
5543 * Since this CPU is going 'away' for a while, fold any nr_active delta
5544 * we might have. Assumes we're called after migrate_tasks() so that the
d60585c5
TG
5545 * nr_active count is stable. We need to take the teardown thread which
5546 * is calling this into account, so we hand in adjust = 1 to the load
5547 * calculation.
5d180232
PZ
5548 *
5549 * Also see the comment "Global load-average calculations".
1da177e4 5550 */
5d180232 5551static void calc_load_migrate(struct rq *rq)
1da177e4 5552{
d60585c5 5553 long delta = calc_load_fold_active(rq, 1);
5d180232
PZ
5554 if (delta)
5555 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
5556}
5557
3f1d2a31
PZ
5558static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5559{
5560}
5561
5562static const struct sched_class fake_sched_class = {
5563 .put_prev_task = put_prev_task_fake,
5564};
5565
5566static struct task_struct fake_task = {
5567 /*
5568 * Avoid pull_{rt,dl}_task()
5569 */
5570 .prio = MAX_PRIO + 1,
5571 .sched_class = &fake_sched_class,
5572};
5573
48f24c4d 5574/*
48c5ccae
PZ
5575 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5576 * try_to_wake_up()->select_task_rq().
5577 *
5578 * Called with rq->lock held even though we'er in stop_machine() and
5579 * there's no concurrency possible, we hold the required locks anyway
5580 * because of lock validation efforts.
1da177e4 5581 */
5e16bbc2 5582static void migrate_tasks(struct rq *dead_rq)
1da177e4 5583{
5e16bbc2 5584 struct rq *rq = dead_rq;
48c5ccae 5585 struct task_struct *next, *stop = rq->stop;
8cb68b34 5586 struct rq_flags rf;
48c5ccae 5587 int dest_cpu;
1da177e4
LT
5588
5589 /*
48c5ccae
PZ
5590 * Fudge the rq selection such that the below task selection loop
5591 * doesn't get stuck on the currently eligible stop task.
5592 *
5593 * We're currently inside stop_machine() and the rq is either stuck
5594 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5595 * either way we should never end up calling schedule() until we're
5596 * done here.
1da177e4 5597 */
48c5ccae 5598 rq->stop = NULL;
48f24c4d 5599
77bd3970
FW
5600 /*
5601 * put_prev_task() and pick_next_task() sched
5602 * class method both need to have an up-to-date
5603 * value of rq->clock[_task]
5604 */
8cb68b34 5605 rq_pin_lock(rq, &rf);
77bd3970 5606 update_rq_clock(rq);
8cb68b34 5607 rq_unpin_lock(rq, &rf);
77bd3970 5608
5e16bbc2 5609 for (;;) {
48c5ccae
PZ
5610 /*
5611 * There's this thread running, bail when that's the only
d1ccc66d 5612 * remaining thread:
48c5ccae
PZ
5613 */
5614 if (rq->nr_running == 1)
dd41f596 5615 break;
48c5ccae 5616
cbce1a68 5617 /*
d1ccc66d 5618 * pick_next_task() assumes pinned rq->lock:
cbce1a68 5619 */
8cb68b34 5620 rq_repin_lock(rq, &rf);
d8ac8971 5621 next = pick_next_task(rq, &fake_task, &rf);
48c5ccae 5622 BUG_ON(!next);
79c53799 5623 next->sched_class->put_prev_task(rq, next);
e692ab53 5624
5473e0cc
WL
5625 /*
5626 * Rules for changing task_struct::cpus_allowed are holding
5627 * both pi_lock and rq->lock, such that holding either
5628 * stabilizes the mask.
5629 *
5630 * Drop rq->lock is not quite as disastrous as it usually is
5631 * because !cpu_active at this point, which means load-balance
5632 * will not interfere. Also, stop-machine.
5633 */
d8ac8971 5634 rq_unpin_lock(rq, &rf);
5473e0cc
WL
5635 raw_spin_unlock(&rq->lock);
5636 raw_spin_lock(&next->pi_lock);
5637 raw_spin_lock(&rq->lock);
5638
5639 /*
5640 * Since we're inside stop-machine, _nothing_ should have
5641 * changed the task, WARN if weird stuff happened, because in
5642 * that case the above rq->lock drop is a fail too.
5643 */
5644 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5645 raw_spin_unlock(&next->pi_lock);
5646 continue;
5647 }
5648
48c5ccae 5649 /* Find suitable destination for @next, with force if needed. */
5e16bbc2 5650 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
48c5ccae 5651
5e16bbc2
PZ
5652 rq = __migrate_task(rq, next, dest_cpu);
5653 if (rq != dead_rq) {
5654 raw_spin_unlock(&rq->lock);
5655 rq = dead_rq;
5656 raw_spin_lock(&rq->lock);
5657 }
5473e0cc 5658 raw_spin_unlock(&next->pi_lock);
1da177e4 5659 }
dce48a84 5660
48c5ccae 5661 rq->stop = stop;
dce48a84 5662}
1da177e4
LT
5663#endif /* CONFIG_HOTPLUG_CPU */
5664
f2cb1360 5665void set_rq_online(struct rq *rq)
1f11eb6a
GH
5666{
5667 if (!rq->online) {
5668 const struct sched_class *class;
5669
c6c4927b 5670 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5671 rq->online = 1;
5672
5673 for_each_class(class) {
5674 if (class->rq_online)
5675 class->rq_online(rq);
5676 }
5677 }
5678}
5679
f2cb1360 5680void set_rq_offline(struct rq *rq)
1f11eb6a
GH
5681{
5682 if (rq->online) {
5683 const struct sched_class *class;
5684
5685 for_each_class(class) {
5686 if (class->rq_offline)
5687 class->rq_offline(rq);
5688 }
5689
c6c4927b 5690 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5691 rq->online = 0;
5692 }
5693}
5694
9cf7243d 5695static void set_cpu_rq_start_time(unsigned int cpu)
1da177e4 5696{
969c7921 5697 struct rq *rq = cpu_rq(cpu);
1da177e4 5698
a803f026
CM
5699 rq->age_stamp = sched_clock_cpu(cpu);
5700}
5701
d1ccc66d
IM
5702/*
5703 * used to mark begin/end of suspend/resume:
5704 */
5705static int num_cpus_frozen;
d35be8ba 5706
1da177e4 5707/*
3a101d05
TH
5708 * Update cpusets according to cpu_active mask. If cpusets are
5709 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
5710 * around partition_sched_domains().
d35be8ba
SB
5711 *
5712 * If we come here as part of a suspend/resume, don't touch cpusets because we
5713 * want to restore it back to its original state upon resume anyway.
1da177e4 5714 */
40190a78 5715static void cpuset_cpu_active(void)
e761b772 5716{
40190a78 5717 if (cpuhp_tasks_frozen) {
d35be8ba
SB
5718 /*
5719 * num_cpus_frozen tracks how many CPUs are involved in suspend
5720 * resume sequence. As long as this is not the last online
5721 * operation in the resume sequence, just build a single sched
5722 * domain, ignoring cpusets.
5723 */
5724 num_cpus_frozen--;
5725 if (likely(num_cpus_frozen)) {
5726 partition_sched_domains(1, NULL, NULL);
135fb3e1 5727 return;
d35be8ba 5728 }
d35be8ba
SB
5729 /*
5730 * This is the last CPU online operation. So fall through and
5731 * restore the original sched domains by considering the
5732 * cpuset configurations.
5733 */
3a101d05 5734 }
135fb3e1 5735 cpuset_update_active_cpus(true);
3a101d05 5736}
e761b772 5737
40190a78 5738static int cpuset_cpu_inactive(unsigned int cpu)
3a101d05 5739{
3c18d447 5740 unsigned long flags;
3c18d447 5741 struct dl_bw *dl_b;
533445c6
OS
5742 bool overflow;
5743 int cpus;
3c18d447 5744
40190a78 5745 if (!cpuhp_tasks_frozen) {
533445c6
OS
5746 rcu_read_lock_sched();
5747 dl_b = dl_bw_of(cpu);
3c18d447 5748
533445c6
OS
5749 raw_spin_lock_irqsave(&dl_b->lock, flags);
5750 cpus = dl_bw_cpus(cpu);
5751 overflow = __dl_overflow(dl_b, cpus, 0, 0);
5752 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3c18d447 5753
533445c6 5754 rcu_read_unlock_sched();
3c18d447 5755
533445c6 5756 if (overflow)
135fb3e1 5757 return -EBUSY;
7ddf96b0 5758 cpuset_update_active_cpus(false);
135fb3e1 5759 } else {
d35be8ba
SB
5760 num_cpus_frozen++;
5761 partition_sched_domains(1, NULL, NULL);
e761b772 5762 }
135fb3e1 5763 return 0;
e761b772 5764}
e761b772 5765
40190a78 5766int sched_cpu_activate(unsigned int cpu)
135fb3e1 5767{
7d976699
TG
5768 struct rq *rq = cpu_rq(cpu);
5769 unsigned long flags;
5770
40190a78 5771 set_cpu_active(cpu, true);
135fb3e1 5772
40190a78 5773 if (sched_smp_initialized) {
135fb3e1 5774 sched_domains_numa_masks_set(cpu);
40190a78 5775 cpuset_cpu_active();
e761b772 5776 }
7d976699
TG
5777
5778 /*
5779 * Put the rq online, if not already. This happens:
5780 *
5781 * 1) In the early boot process, because we build the real domains
d1ccc66d 5782 * after all CPUs have been brought up.
7d976699
TG
5783 *
5784 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
5785 * domains.
5786 */
5787 raw_spin_lock_irqsave(&rq->lock, flags);
5788 if (rq->rd) {
5789 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5790 set_rq_online(rq);
5791 }
5792 raw_spin_unlock_irqrestore(&rq->lock, flags);
5793
5794 update_max_interval();
5795
40190a78 5796 return 0;
135fb3e1
TG
5797}
5798
40190a78 5799int sched_cpu_deactivate(unsigned int cpu)
135fb3e1 5800{
135fb3e1
TG
5801 int ret;
5802
40190a78 5803 set_cpu_active(cpu, false);
b2454caa
PZ
5804 /*
5805 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
5806 * users of this state to go away such that all new such users will
5807 * observe it.
5808 *
5809 * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might
5810 * not imply sync_sched(), so wait for both.
5811 *
5812 * Do sync before park smpboot threads to take care the rcu boost case.
5813 */
5814 if (IS_ENABLED(CONFIG_PREEMPT))
5815 synchronize_rcu_mult(call_rcu, call_rcu_sched);
5816 else
5817 synchronize_rcu();
40190a78
TG
5818
5819 if (!sched_smp_initialized)
5820 return 0;
5821
5822 ret = cpuset_cpu_inactive(cpu);
5823 if (ret) {
5824 set_cpu_active(cpu, true);
5825 return ret;
135fb3e1 5826 }
40190a78
TG
5827 sched_domains_numa_masks_clear(cpu);
5828 return 0;
135fb3e1
TG
5829}
5830
94baf7a5
TG
5831static void sched_rq_cpu_starting(unsigned int cpu)
5832{
5833 struct rq *rq = cpu_rq(cpu);
5834
5835 rq->calc_load_update = calc_load_update;
94baf7a5
TG
5836 update_max_interval();
5837}
5838
135fb3e1
TG
5839int sched_cpu_starting(unsigned int cpu)
5840{
5841 set_cpu_rq_start_time(cpu);
94baf7a5 5842 sched_rq_cpu_starting(cpu);
135fb3e1 5843 return 0;
e761b772 5844}
e761b772 5845
f2785ddb
TG
5846#ifdef CONFIG_HOTPLUG_CPU
5847int sched_cpu_dying(unsigned int cpu)
5848{
5849 struct rq *rq = cpu_rq(cpu);
5850 unsigned long flags;
5851
5852 /* Handle pending wakeups and then migrate everything off */
5853 sched_ttwu_pending();
5854 raw_spin_lock_irqsave(&rq->lock, flags);
5855 if (rq->rd) {
5856 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5857 set_rq_offline(rq);
5858 }
5859 migrate_tasks(rq);
5860 BUG_ON(rq->nr_running != 1);
5861 raw_spin_unlock_irqrestore(&rq->lock, flags);
5862 calc_load_migrate(rq);
5863 update_max_interval();
20a5c8cc 5864 nohz_balance_exit_idle(cpu);
e5ef27d0 5865 hrtick_clear(rq);
f2785ddb
TG
5866 return 0;
5867}
5868#endif
5869
1b568f0a
PZ
5870#ifdef CONFIG_SCHED_SMT
5871DEFINE_STATIC_KEY_FALSE(sched_smt_present);
5872
5873static void sched_init_smt(void)
5874{
5875 /*
5876 * We've enumerated all CPUs and will assume that if any CPU
5877 * has SMT siblings, CPU0 will too.
5878 */
5879 if (cpumask_weight(cpu_smt_mask(0)) > 1)
5880 static_branch_enable(&sched_smt_present);
5881}
5882#else
5883static inline void sched_init_smt(void) { }
5884#endif
5885
1da177e4
LT
5886void __init sched_init_smp(void)
5887{
dcc30a35
RR
5888 cpumask_var_t non_isolated_cpus;
5889
5890 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 5891 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 5892
cb83b629
PZ
5893 sched_init_numa();
5894
6acce3ef
PZ
5895 /*
5896 * There's no userspace yet to cause hotplug operations; hence all the
d1ccc66d 5897 * CPU masks are stable and all blatant races in the below code cannot
6acce3ef
PZ
5898 * happen.
5899 */
712555ee 5900 mutex_lock(&sched_domains_mutex);
c4a8849a 5901 init_sched_domains(cpu_active_mask);
dcc30a35
RR
5902 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
5903 if (cpumask_empty(non_isolated_cpus))
5904 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 5905 mutex_unlock(&sched_domains_mutex);
e761b772 5906
5c1e1767 5907 /* Move init over to a non-isolated CPU */
dcc30a35 5908 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 5909 BUG();
19978ca6 5910 sched_init_granularity();
dcc30a35 5911 free_cpumask_var(non_isolated_cpus);
4212823f 5912
0e3900e6 5913 init_sched_rt_class();
1baca4ce 5914 init_sched_dl_class();
1b568f0a
PZ
5915
5916 sched_init_smt();
9881b024 5917 sched_clock_init_late();
1b568f0a 5918
e26fbffd 5919 sched_smp_initialized = true;
1da177e4 5920}
e26fbffd
TG
5921
5922static int __init migration_init(void)
5923{
94baf7a5 5924 sched_rq_cpu_starting(smp_processor_id());
e26fbffd 5925 return 0;
1da177e4 5926}
e26fbffd
TG
5927early_initcall(migration_init);
5928
1da177e4
LT
5929#else
5930void __init sched_init_smp(void)
5931{
19978ca6 5932 sched_init_granularity();
9881b024 5933 sched_clock_init_late();
1da177e4
LT
5934}
5935#endif /* CONFIG_SMP */
5936
5937int in_sched_functions(unsigned long addr)
5938{
1da177e4
LT
5939 return in_lock_functions(addr) ||
5940 (addr >= (unsigned long)__sched_text_start
5941 && addr < (unsigned long)__sched_text_end);
5942}
5943
029632fb 5944#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
5945/*
5946 * Default task group.
5947 * Every task in system belongs to this group at bootup.
5948 */
029632fb 5949struct task_group root_task_group;
35cf4e50 5950LIST_HEAD(task_groups);
b0367629
WL
5951
5952/* Cacheline aligned slab cache for task_group */
5953static struct kmem_cache *task_group_cache __read_mostly;
052f1dc7 5954#endif
6f505b16 5955
e6252c3e 5956DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
10e2f1ac 5957DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
6f505b16 5958
9dcb8b68
LT
5959#define WAIT_TABLE_BITS 8
5960#define WAIT_TABLE_SIZE (1 << WAIT_TABLE_BITS)
5961static wait_queue_head_t bit_wait_table[WAIT_TABLE_SIZE] __cacheline_aligned;
5962
5963wait_queue_head_t *bit_waitqueue(void *word, int bit)
5964{
5965 const int shift = BITS_PER_LONG == 32 ? 5 : 6;
5966 unsigned long val = (unsigned long)word << shift | bit;
5967
5968 return bit_wait_table + hash_long(val, WAIT_TABLE_BITS);
5969}
5970EXPORT_SYMBOL(bit_waitqueue);
5971
1da177e4
LT
5972void __init sched_init(void)
5973{
dd41f596 5974 int i, j;
434d53b0
MT
5975 unsigned long alloc_size = 0, ptr;
5976
9881b024
PZ
5977 sched_clock_init();
5978
9dcb8b68
LT
5979 for (i = 0; i < WAIT_TABLE_SIZE; i++)
5980 init_waitqueue_head(bit_wait_table + i);
5981
434d53b0
MT
5982#ifdef CONFIG_FAIR_GROUP_SCHED
5983 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5984#endif
5985#ifdef CONFIG_RT_GROUP_SCHED
5986 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5987#endif
434d53b0 5988 if (alloc_size) {
36b7b6d4 5989 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
5990
5991#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 5992 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
5993 ptr += nr_cpu_ids * sizeof(void **);
5994
07e06b01 5995 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 5996 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 5997
6d6bc0ad 5998#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 5999#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6000 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
6001 ptr += nr_cpu_ids * sizeof(void **);
6002
07e06b01 6003 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
6004 ptr += nr_cpu_ids * sizeof(void **);
6005
6d6bc0ad 6006#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 6007 }
df7c8e84 6008#ifdef CONFIG_CPUMASK_OFFSTACK
b74e6278
AT
6009 for_each_possible_cpu(i) {
6010 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
6011 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
10e2f1ac
PZ
6012 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
6013 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
434d53b0 6014 }
b74e6278 6015#endif /* CONFIG_CPUMASK_OFFSTACK */
dd41f596 6016
d1ccc66d
IM
6017 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
6018 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
332ac17e 6019
57d885fe
GH
6020#ifdef CONFIG_SMP
6021 init_defrootdomain();
6022#endif
6023
d0b27fa7 6024#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6025 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 6026 global_rt_period(), global_rt_runtime());
6d6bc0ad 6027#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6028
7c941438 6029#ifdef CONFIG_CGROUP_SCHED
b0367629
WL
6030 task_group_cache = KMEM_CACHE(task_group, 0);
6031
07e06b01
YZ
6032 list_add(&root_task_group.list, &task_groups);
6033 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 6034 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 6035 autogroup_init(&init_task);
7c941438 6036#endif /* CONFIG_CGROUP_SCHED */
6f505b16 6037
0a945022 6038 for_each_possible_cpu(i) {
70b97a7f 6039 struct rq *rq;
1da177e4
LT
6040
6041 rq = cpu_rq(i);
05fa785c 6042 raw_spin_lock_init(&rq->lock);
7897986b 6043 rq->nr_running = 0;
dce48a84
TG
6044 rq->calc_load_active = 0;
6045 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 6046 init_cfs_rq(&rq->cfs);
07c54f7a
AV
6047 init_rt_rq(&rq->rt);
6048 init_dl_rq(&rq->dl);
dd41f596 6049#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 6050 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 6051 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9c2791f9 6052 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
354d60c2 6053 /*
d1ccc66d 6054 * How much CPU bandwidth does root_task_group get?
354d60c2
DG
6055 *
6056 * In case of task-groups formed thr' the cgroup filesystem, it
d1ccc66d
IM
6057 * gets 100% of the CPU resources in the system. This overall
6058 * system CPU resource is divided among the tasks of
07e06b01 6059 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
6060 * based on each entity's (task or task-group's) weight
6061 * (se->load.weight).
6062 *
07e06b01 6063 * In other words, if root_task_group has 10 tasks of weight
354d60c2 6064 * 1024) and two child groups A0 and A1 (of weight 1024 each),
d1ccc66d 6065 * then A0's share of the CPU resource is:
354d60c2 6066 *
0d905bca 6067 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 6068 *
07e06b01
YZ
6069 * We achieve this by letting root_task_group's tasks sit
6070 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 6071 */
ab84d31e 6072 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 6073 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
6074#endif /* CONFIG_FAIR_GROUP_SCHED */
6075
6076 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 6077#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6078 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 6079#endif
1da177e4 6080
dd41f596
IM
6081 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6082 rq->cpu_load[j] = 0;
fdf3e95d 6083
1da177e4 6084#ifdef CONFIG_SMP
41c7ce9a 6085 rq->sd = NULL;
57d885fe 6086 rq->rd = NULL;
ca6d75e6 6087 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
e3fca9e7 6088 rq->balance_callback = NULL;
1da177e4 6089 rq->active_balance = 0;
dd41f596 6090 rq->next_balance = jiffies;
1da177e4 6091 rq->push_cpu = 0;
0a2966b4 6092 rq->cpu = i;
1f11eb6a 6093 rq->online = 0;
eae0c9df
MG
6094 rq->idle_stamp = 0;
6095 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 6096 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
6097
6098 INIT_LIST_HEAD(&rq->cfs_tasks);
6099
dc938520 6100 rq_attach_root(rq, &def_root_domain);
3451d024 6101#ifdef CONFIG_NO_HZ_COMMON
9fd81dd5 6102 rq->last_load_update_tick = jiffies;
1c792db7 6103 rq->nohz_flags = 0;
83cd4fe2 6104#endif
265f22a9
FW
6105#ifdef CONFIG_NO_HZ_FULL
6106 rq->last_sched_tick = 0;
6107#endif
9fd81dd5 6108#endif /* CONFIG_SMP */
8f4d37ec 6109 init_rq_hrtick(rq);
1da177e4 6110 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
6111 }
6112
2dd73a4f 6113 set_load_weight(&init_task);
b50f60ce 6114
1da177e4
LT
6115 /*
6116 * The boot idle thread does lazy MMU switching as well:
6117 */
f1f10076 6118 mmgrab(&init_mm);
1da177e4
LT
6119 enter_lazy_tlb(&init_mm, current);
6120
6121 /*
6122 * Make us the idle thread. Technically, schedule() should not be
6123 * called from this thread, however somewhere below it might be,
6124 * but because we are the idle thread, we just pick up running again
6125 * when this runqueue becomes "idle".
6126 */
6127 init_idle(current, smp_processor_id());
dce48a84
TG
6128
6129 calc_load_update = jiffies + LOAD_FREQ;
6130
bf4d83f6 6131#ifdef CONFIG_SMP
4cb98839 6132 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
6133 /* May be allocated at isolcpus cmdline parse time */
6134 if (cpu_isolated_map == NULL)
6135 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 6136 idle_thread_set_boot_cpu();
9cf7243d 6137 set_cpu_rq_start_time(smp_processor_id());
029632fb
PZ
6138#endif
6139 init_sched_fair_class();
6a7b3dc3 6140
4698f88c
JP
6141 init_schedstats();
6142
6892b75e 6143 scheduler_running = 1;
1da177e4
LT
6144}
6145
d902db1e 6146#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
6147static inline int preempt_count_equals(int preempt_offset)
6148{
da7142e2 6149 int nested = preempt_count() + rcu_preempt_depth();
e4aafea2 6150
4ba8216c 6151 return (nested == preempt_offset);
e4aafea2
FW
6152}
6153
d894837f 6154void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6155{
8eb23b9f
PZ
6156 /*
6157 * Blocking primitives will set (and therefore destroy) current->state,
6158 * since we will exit with TASK_RUNNING make sure we enter with it,
6159 * otherwise we will destroy state.
6160 */
00845eb9 6161 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
8eb23b9f
PZ
6162 "do not call blocking ops when !TASK_RUNNING; "
6163 "state=%lx set at [<%p>] %pS\n",
6164 current->state,
6165 (void *)current->task_state_change,
00845eb9 6166 (void *)current->task_state_change);
8eb23b9f 6167
3427445a
PZ
6168 ___might_sleep(file, line, preempt_offset);
6169}
6170EXPORT_SYMBOL(__might_sleep);
6171
6172void ___might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6173{
d1ccc66d
IM
6174 /* Ratelimiting timestamp: */
6175 static unsigned long prev_jiffy;
6176
d1c6d149 6177 unsigned long preempt_disable_ip;
1da177e4 6178
d1ccc66d
IM
6179 /* WARN_ON_ONCE() by default, no rate limit required: */
6180 rcu_sleep_check();
6181
db273be2
TG
6182 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6183 !is_idle_task(current)) ||
e4aafea2 6184 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
6185 return;
6186 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6187 return;
6188 prev_jiffy = jiffies;
6189
d1ccc66d 6190 /* Save this before calling printk(), since that will clobber it: */
d1c6d149
VN
6191 preempt_disable_ip = get_preempt_disable_ip(current);
6192
3df0fc5b
PZ
6193 printk(KERN_ERR
6194 "BUG: sleeping function called from invalid context at %s:%d\n",
6195 file, line);
6196 printk(KERN_ERR
6197 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6198 in_atomic(), irqs_disabled(),
6199 current->pid, current->comm);
aef745fc 6200
a8b686b3
ES
6201 if (task_stack_end_corrupted(current))
6202 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6203
aef745fc
IM
6204 debug_show_held_locks(current);
6205 if (irqs_disabled())
6206 print_irqtrace_events(current);
d1c6d149
VN
6207 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6208 && !preempt_count_equals(preempt_offset)) {
8f47b187 6209 pr_err("Preemption disabled at:");
d1c6d149 6210 print_ip_sym(preempt_disable_ip);
8f47b187
TG
6211 pr_cont("\n");
6212 }
aef745fc 6213 dump_stack();
f0b22e39 6214 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
1da177e4 6215}
3427445a 6216EXPORT_SYMBOL(___might_sleep);
1da177e4
LT
6217#endif
6218
6219#ifdef CONFIG_MAGIC_SYSRQ
dbc7f069 6220void normalize_rt_tasks(void)
3a5e4dc1 6221{
dbc7f069 6222 struct task_struct *g, *p;
d50dde5a
DF
6223 struct sched_attr attr = {
6224 .sched_policy = SCHED_NORMAL,
6225 };
1da177e4 6226
3472eaa1 6227 read_lock(&tasklist_lock);
5d07f420 6228 for_each_process_thread(g, p) {
178be793
IM
6229 /*
6230 * Only normalize user tasks:
6231 */
3472eaa1 6232 if (p->flags & PF_KTHREAD)
178be793
IM
6233 continue;
6234
4fa8d299
JP
6235 p->se.exec_start = 0;
6236 schedstat_set(p->se.statistics.wait_start, 0);
6237 schedstat_set(p->se.statistics.sleep_start, 0);
6238 schedstat_set(p->se.statistics.block_start, 0);
dd41f596 6239
aab03e05 6240 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
6241 /*
6242 * Renice negative nice level userspace
6243 * tasks back to 0:
6244 */
3472eaa1 6245 if (task_nice(p) < 0)
dd41f596 6246 set_user_nice(p, 0);
1da177e4 6247 continue;
dd41f596 6248 }
1da177e4 6249
dbc7f069 6250 __sched_setscheduler(p, &attr, false, false);
5d07f420 6251 }
3472eaa1 6252 read_unlock(&tasklist_lock);
1da177e4
LT
6253}
6254
6255#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 6256
67fc4e0c 6257#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 6258/*
67fc4e0c 6259 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
6260 *
6261 * They can only be called when the whole system has been
6262 * stopped - every CPU needs to be quiescent, and no scheduling
6263 * activity can take place. Using them for anything else would
6264 * be a serious bug, and as a result, they aren't even visible
6265 * under any other configuration.
6266 */
6267
6268/**
d1ccc66d 6269 * curr_task - return the current task for a given CPU.
1df5c10a
LT
6270 * @cpu: the processor in question.
6271 *
6272 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
6273 *
6274 * Return: The current task for @cpu.
1df5c10a 6275 */
36c8b586 6276struct task_struct *curr_task(int cpu)
1df5c10a
LT
6277{
6278 return cpu_curr(cpu);
6279}
6280
67fc4e0c
JW
6281#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6282
6283#ifdef CONFIG_IA64
1df5c10a 6284/**
d1ccc66d 6285 * set_curr_task - set the current task for a given CPU.
1df5c10a
LT
6286 * @cpu: the processor in question.
6287 * @p: the task pointer to set.
6288 *
6289 * Description: This function must only be used when non-maskable interrupts
41a2d6cf 6290 * are serviced on a separate stack. It allows the architecture to switch the
d1ccc66d 6291 * notion of the current task on a CPU in a non-blocking manner. This function
1df5c10a
LT
6292 * must be called with all CPU's synchronized, and interrupts disabled, the
6293 * and caller must save the original value of the current task (see
6294 * curr_task() above) and restore that value before reenabling interrupts and
6295 * re-starting the system.
6296 *
6297 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6298 */
a458ae2e 6299void ia64_set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
6300{
6301 cpu_curr(cpu) = p;
6302}
6303
6304#endif
29f59db3 6305
7c941438 6306#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
6307/* task_group_lock serializes the addition/removal of task groups */
6308static DEFINE_SPINLOCK(task_group_lock);
6309
2f5177f0 6310static void sched_free_group(struct task_group *tg)
bccbe08a
PZ
6311{
6312 free_fair_sched_group(tg);
6313 free_rt_sched_group(tg);
e9aa1dd1 6314 autogroup_free(tg);
b0367629 6315 kmem_cache_free(task_group_cache, tg);
bccbe08a
PZ
6316}
6317
6318/* allocate runqueue etc for a new task group */
ec7dc8ac 6319struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
6320{
6321 struct task_group *tg;
bccbe08a 6322
b0367629 6323 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
bccbe08a
PZ
6324 if (!tg)
6325 return ERR_PTR(-ENOMEM);
6326
ec7dc8ac 6327 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
6328 goto err;
6329
ec7dc8ac 6330 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
6331 goto err;
6332
ace783b9
LZ
6333 return tg;
6334
6335err:
2f5177f0 6336 sched_free_group(tg);
ace783b9
LZ
6337 return ERR_PTR(-ENOMEM);
6338}
6339
6340void sched_online_group(struct task_group *tg, struct task_group *parent)
6341{
6342 unsigned long flags;
6343
8ed36996 6344 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 6345 list_add_rcu(&tg->list, &task_groups);
f473aa5e 6346
d1ccc66d
IM
6347 /* Root should already exist: */
6348 WARN_ON(!parent);
f473aa5e
PZ
6349
6350 tg->parent = parent;
f473aa5e 6351 INIT_LIST_HEAD(&tg->children);
09f2724a 6352 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 6353 spin_unlock_irqrestore(&task_group_lock, flags);
8663e24d
PZ
6354
6355 online_fair_sched_group(tg);
29f59db3
SV
6356}
6357
9b5b7751 6358/* rcu callback to free various structures associated with a task group */
2f5177f0 6359static void sched_free_group_rcu(struct rcu_head *rhp)
29f59db3 6360{
d1ccc66d 6361 /* Now it should be safe to free those cfs_rqs: */
2f5177f0 6362 sched_free_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
6363}
6364
4cf86d77 6365void sched_destroy_group(struct task_group *tg)
ace783b9 6366{
d1ccc66d 6367 /* Wait for possible concurrent references to cfs_rqs complete: */
2f5177f0 6368 call_rcu(&tg->rcu, sched_free_group_rcu);
ace783b9
LZ
6369}
6370
6371void sched_offline_group(struct task_group *tg)
29f59db3 6372{
8ed36996 6373 unsigned long flags;
29f59db3 6374
d1ccc66d 6375 /* End participation in shares distribution: */
6fe1f348 6376 unregister_fair_sched_group(tg);
3d4b47b4
PZ
6377
6378 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 6379 list_del_rcu(&tg->list);
f473aa5e 6380 list_del_rcu(&tg->siblings);
8ed36996 6381 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
6382}
6383
ea86cb4b 6384static void sched_change_group(struct task_struct *tsk, int type)
29f59db3 6385{
8323f26c 6386 struct task_group *tg;
29f59db3 6387
f7b8a47d
KT
6388 /*
6389 * All callers are synchronized by task_rq_lock(); we do not use RCU
6390 * which is pointless here. Thus, we pass "true" to task_css_check()
6391 * to prevent lockdep warnings.
6392 */
6393 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
6394 struct task_group, css);
6395 tg = autogroup_task_group(tsk, tg);
6396 tsk->sched_task_group = tg;
6397
810b3817 6398#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
6399 if (tsk->sched_class->task_change_group)
6400 tsk->sched_class->task_change_group(tsk, type);
b2b5ce02 6401 else
810b3817 6402#endif
b2b5ce02 6403 set_task_rq(tsk, task_cpu(tsk));
ea86cb4b
VG
6404}
6405
6406/*
6407 * Change task's runqueue when it moves between groups.
6408 *
6409 * The caller of this function should have put the task in its new group by
6410 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
6411 * its new group.
6412 */
6413void sched_move_task(struct task_struct *tsk)
6414{
6415 int queued, running;
6416 struct rq_flags rf;
6417 struct rq *rq;
6418
6419 rq = task_rq_lock(tsk, &rf);
1b1d6225 6420 update_rq_clock(rq);
ea86cb4b
VG
6421
6422 running = task_current(rq, tsk);
6423 queued = task_on_rq_queued(tsk);
6424
6425 if (queued)
6426 dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
bb3bac2c 6427 if (running)
ea86cb4b
VG
6428 put_prev_task(rq, tsk);
6429
6430 sched_change_group(tsk, TASK_MOVE_GROUP);
810b3817 6431
da0c1e65 6432 if (queued)
ff77e468 6433 enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
bb3bac2c 6434 if (running)
b2bf6c31 6435 set_curr_task(rq, tsk);
29f59db3 6436
eb580751 6437 task_rq_unlock(rq, tsk, &rf);
29f59db3 6438}
7c941438 6439#endif /* CONFIG_CGROUP_SCHED */
29f59db3 6440
a790de99
PT
6441#ifdef CONFIG_RT_GROUP_SCHED
6442/*
6443 * Ensure that the real time constraints are schedulable.
6444 */
6445static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 6446
9a7e0b18
PZ
6447/* Must be called with tasklist_lock held */
6448static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 6449{
9a7e0b18 6450 struct task_struct *g, *p;
b40b2e8e 6451
1fe89e1b
PZ
6452 /*
6453 * Autogroups do not have RT tasks; see autogroup_create().
6454 */
6455 if (task_group_is_autogroup(tg))
6456 return 0;
6457
5d07f420 6458 for_each_process_thread(g, p) {
8651c658 6459 if (rt_task(p) && task_group(p) == tg)
9a7e0b18 6460 return 1;
5d07f420 6461 }
b40b2e8e 6462
9a7e0b18
PZ
6463 return 0;
6464}
b40b2e8e 6465
9a7e0b18
PZ
6466struct rt_schedulable_data {
6467 struct task_group *tg;
6468 u64 rt_period;
6469 u64 rt_runtime;
6470};
b40b2e8e 6471
a790de99 6472static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
6473{
6474 struct rt_schedulable_data *d = data;
6475 struct task_group *child;
6476 unsigned long total, sum = 0;
6477 u64 period, runtime;
b40b2e8e 6478
9a7e0b18
PZ
6479 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6480 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 6481
9a7e0b18
PZ
6482 if (tg == d->tg) {
6483 period = d->rt_period;
6484 runtime = d->rt_runtime;
b40b2e8e 6485 }
b40b2e8e 6486
4653f803
PZ
6487 /*
6488 * Cannot have more runtime than the period.
6489 */
6490 if (runtime > period && runtime != RUNTIME_INF)
6491 return -EINVAL;
6f505b16 6492
4653f803
PZ
6493 /*
6494 * Ensure we don't starve existing RT tasks.
6495 */
9a7e0b18
PZ
6496 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
6497 return -EBUSY;
6f505b16 6498
9a7e0b18 6499 total = to_ratio(period, runtime);
6f505b16 6500
4653f803
PZ
6501 /*
6502 * Nobody can have more than the global setting allows.
6503 */
6504 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
6505 return -EINVAL;
6f505b16 6506
4653f803
PZ
6507 /*
6508 * The sum of our children's runtime should not exceed our own.
6509 */
9a7e0b18
PZ
6510 list_for_each_entry_rcu(child, &tg->children, siblings) {
6511 period = ktime_to_ns(child->rt_bandwidth.rt_period);
6512 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 6513
9a7e0b18
PZ
6514 if (child == d->tg) {
6515 period = d->rt_period;
6516 runtime = d->rt_runtime;
6517 }
6f505b16 6518
9a7e0b18 6519 sum += to_ratio(period, runtime);
9f0c1e56 6520 }
6f505b16 6521
9a7e0b18
PZ
6522 if (sum > total)
6523 return -EINVAL;
6524
6525 return 0;
6f505b16
PZ
6526}
6527
9a7e0b18 6528static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 6529{
8277434e
PT
6530 int ret;
6531
9a7e0b18
PZ
6532 struct rt_schedulable_data data = {
6533 .tg = tg,
6534 .rt_period = period,
6535 .rt_runtime = runtime,
6536 };
6537
8277434e
PT
6538 rcu_read_lock();
6539 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
6540 rcu_read_unlock();
6541
6542 return ret;
521f1a24
DG
6543}
6544
ab84d31e 6545static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 6546 u64 rt_period, u64 rt_runtime)
6f505b16 6547{
ac086bc2 6548 int i, err = 0;
9f0c1e56 6549
2636ed5f
PZ
6550 /*
6551 * Disallowing the root group RT runtime is BAD, it would disallow the
6552 * kernel creating (and or operating) RT threads.
6553 */
6554 if (tg == &root_task_group && rt_runtime == 0)
6555 return -EINVAL;
6556
6557 /* No period doesn't make any sense. */
6558 if (rt_period == 0)
6559 return -EINVAL;
6560
9f0c1e56 6561 mutex_lock(&rt_constraints_mutex);
521f1a24 6562 read_lock(&tasklist_lock);
9a7e0b18
PZ
6563 err = __rt_schedulable(tg, rt_period, rt_runtime);
6564 if (err)
9f0c1e56 6565 goto unlock;
ac086bc2 6566
0986b11b 6567 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
6568 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
6569 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
6570
6571 for_each_possible_cpu(i) {
6572 struct rt_rq *rt_rq = tg->rt_rq[i];
6573
0986b11b 6574 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 6575 rt_rq->rt_runtime = rt_runtime;
0986b11b 6576 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 6577 }
0986b11b 6578 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 6579unlock:
521f1a24 6580 read_unlock(&tasklist_lock);
9f0c1e56
PZ
6581 mutex_unlock(&rt_constraints_mutex);
6582
6583 return err;
6f505b16
PZ
6584}
6585
25cc7da7 6586static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
6587{
6588 u64 rt_runtime, rt_period;
6589
6590 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6591 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
6592 if (rt_runtime_us < 0)
6593 rt_runtime = RUNTIME_INF;
6594
ab84d31e 6595 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
6596}
6597
25cc7da7 6598static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
6599{
6600 u64 rt_runtime_us;
6601
d0b27fa7 6602 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
6603 return -1;
6604
d0b27fa7 6605 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
6606 do_div(rt_runtime_us, NSEC_PER_USEC);
6607 return rt_runtime_us;
6608}
d0b27fa7 6609
ce2f5fe4 6610static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
d0b27fa7
PZ
6611{
6612 u64 rt_runtime, rt_period;
6613
ce2f5fe4 6614 rt_period = rt_period_us * NSEC_PER_USEC;
d0b27fa7
PZ
6615 rt_runtime = tg->rt_bandwidth.rt_runtime;
6616
ab84d31e 6617 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
6618}
6619
25cc7da7 6620static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
6621{
6622 u64 rt_period_us;
6623
6624 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
6625 do_div(rt_period_us, NSEC_PER_USEC);
6626 return rt_period_us;
6627}
332ac17e 6628#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6629
332ac17e 6630#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
6631static int sched_rt_global_constraints(void)
6632{
6633 int ret = 0;
6634
6635 mutex_lock(&rt_constraints_mutex);
9a7e0b18 6636 read_lock(&tasklist_lock);
4653f803 6637 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 6638 read_unlock(&tasklist_lock);
d0b27fa7
PZ
6639 mutex_unlock(&rt_constraints_mutex);
6640
6641 return ret;
6642}
54e99124 6643
25cc7da7 6644static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
6645{
6646 /* Don't accept realtime tasks when there is no way for them to run */
6647 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
6648 return 0;
6649
6650 return 1;
6651}
6652
6d6bc0ad 6653#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
6654static int sched_rt_global_constraints(void)
6655{
ac086bc2 6656 unsigned long flags;
8c5e9554 6657 int i;
ec5d4989 6658
0986b11b 6659 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
6660 for_each_possible_cpu(i) {
6661 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
6662
0986b11b 6663 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 6664 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 6665 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 6666 }
0986b11b 6667 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 6668
8c5e9554 6669 return 0;
d0b27fa7 6670}
6d6bc0ad 6671#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6672
a1963b81 6673static int sched_dl_global_validate(void)
332ac17e 6674{
1724813d
PZ
6675 u64 runtime = global_rt_runtime();
6676 u64 period = global_rt_period();
332ac17e 6677 u64 new_bw = to_ratio(period, runtime);
f10e00f4 6678 struct dl_bw *dl_b;
1724813d 6679 int cpu, ret = 0;
49516342 6680 unsigned long flags;
332ac17e
DF
6681
6682 /*
6683 * Here we want to check the bandwidth not being set to some
6684 * value smaller than the currently allocated bandwidth in
6685 * any of the root_domains.
6686 *
6687 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
6688 * cycling on root_domains... Discussion on different/better
6689 * solutions is welcome!
6690 */
1724813d 6691 for_each_possible_cpu(cpu) {
f10e00f4
KT
6692 rcu_read_lock_sched();
6693 dl_b = dl_bw_of(cpu);
332ac17e 6694
49516342 6695 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d
PZ
6696 if (new_bw < dl_b->total_bw)
6697 ret = -EBUSY;
49516342 6698 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
1724813d 6699
f10e00f4
KT
6700 rcu_read_unlock_sched();
6701
1724813d
PZ
6702 if (ret)
6703 break;
332ac17e
DF
6704 }
6705
1724813d 6706 return ret;
332ac17e
DF
6707}
6708
1724813d 6709static void sched_dl_do_global(void)
ce0dbbbb 6710{
1724813d 6711 u64 new_bw = -1;
f10e00f4 6712 struct dl_bw *dl_b;
1724813d 6713 int cpu;
49516342 6714 unsigned long flags;
ce0dbbbb 6715
1724813d
PZ
6716 def_dl_bandwidth.dl_period = global_rt_period();
6717 def_dl_bandwidth.dl_runtime = global_rt_runtime();
6718
6719 if (global_rt_runtime() != RUNTIME_INF)
6720 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
6721
6722 /*
6723 * FIXME: As above...
6724 */
6725 for_each_possible_cpu(cpu) {
f10e00f4
KT
6726 rcu_read_lock_sched();
6727 dl_b = dl_bw_of(cpu);
1724813d 6728
49516342 6729 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d 6730 dl_b->bw = new_bw;
49516342 6731 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
f10e00f4
KT
6732
6733 rcu_read_unlock_sched();
ce0dbbbb 6734 }
1724813d
PZ
6735}
6736
6737static int sched_rt_global_validate(void)
6738{
6739 if (sysctl_sched_rt_period <= 0)
6740 return -EINVAL;
6741
e9e7cb38
JL
6742 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
6743 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
1724813d
PZ
6744 return -EINVAL;
6745
6746 return 0;
6747}
6748
6749static void sched_rt_do_global(void)
6750{
6751 def_rt_bandwidth.rt_runtime = global_rt_runtime();
6752 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
6753}
6754
d0b27fa7 6755int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 6756 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
6757 loff_t *ppos)
6758{
d0b27fa7
PZ
6759 int old_period, old_runtime;
6760 static DEFINE_MUTEX(mutex);
1724813d 6761 int ret;
d0b27fa7
PZ
6762
6763 mutex_lock(&mutex);
6764 old_period = sysctl_sched_rt_period;
6765 old_runtime = sysctl_sched_rt_runtime;
6766
8d65af78 6767 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
6768
6769 if (!ret && write) {
1724813d
PZ
6770 ret = sched_rt_global_validate();
6771 if (ret)
6772 goto undo;
6773
a1963b81 6774 ret = sched_dl_global_validate();
1724813d
PZ
6775 if (ret)
6776 goto undo;
6777
a1963b81 6778 ret = sched_rt_global_constraints();
1724813d
PZ
6779 if (ret)
6780 goto undo;
6781
6782 sched_rt_do_global();
6783 sched_dl_do_global();
6784 }
6785 if (0) {
6786undo:
6787 sysctl_sched_rt_period = old_period;
6788 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
6789 }
6790 mutex_unlock(&mutex);
6791
6792 return ret;
6793}
68318b8e 6794
1724813d 6795int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
6796 void __user *buffer, size_t *lenp,
6797 loff_t *ppos)
6798{
6799 int ret;
332ac17e 6800 static DEFINE_MUTEX(mutex);
332ac17e
DF
6801
6802 mutex_lock(&mutex);
332ac17e 6803 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d1ccc66d
IM
6804 /*
6805 * Make sure that internally we keep jiffies.
6806 * Also, writing zero resets the timeslice to default:
6807 */
332ac17e 6808 if (!ret && write) {
975e155e
SZ
6809 sched_rr_timeslice =
6810 sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
6811 msecs_to_jiffies(sysctl_sched_rr_timeslice);
332ac17e
DF
6812 }
6813 mutex_unlock(&mutex);
332ac17e
DF
6814 return ret;
6815}
6816
052f1dc7 6817#ifdef CONFIG_CGROUP_SCHED
68318b8e 6818
a7c6d554 6819static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 6820{
a7c6d554 6821 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
6822}
6823
eb95419b
TH
6824static struct cgroup_subsys_state *
6825cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 6826{
eb95419b
TH
6827 struct task_group *parent = css_tg(parent_css);
6828 struct task_group *tg;
68318b8e 6829
eb95419b 6830 if (!parent) {
68318b8e 6831 /* This is early initialization for the top cgroup */
07e06b01 6832 return &root_task_group.css;
68318b8e
SV
6833 }
6834
ec7dc8ac 6835 tg = sched_create_group(parent);
68318b8e
SV
6836 if (IS_ERR(tg))
6837 return ERR_PTR(-ENOMEM);
6838
68318b8e
SV
6839 return &tg->css;
6840}
6841
96b77745
KK
6842/* Expose task group only after completing cgroup initialization */
6843static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
6844{
6845 struct task_group *tg = css_tg(css);
6846 struct task_group *parent = css_tg(css->parent);
6847
6848 if (parent)
6849 sched_online_group(tg, parent);
6850 return 0;
6851}
6852
2f5177f0 6853static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
ace783b9 6854{
eb95419b 6855 struct task_group *tg = css_tg(css);
ace783b9 6856
2f5177f0 6857 sched_offline_group(tg);
ace783b9
LZ
6858}
6859
eb95419b 6860static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 6861{
eb95419b 6862 struct task_group *tg = css_tg(css);
68318b8e 6863
2f5177f0
PZ
6864 /*
6865 * Relies on the RCU grace period between css_released() and this.
6866 */
6867 sched_free_group(tg);
ace783b9
LZ
6868}
6869
ea86cb4b
VG
6870/*
6871 * This is called before wake_up_new_task(), therefore we really only
6872 * have to set its group bits, all the other stuff does not apply.
6873 */
b53202e6 6874static void cpu_cgroup_fork(struct task_struct *task)
eeb61e53 6875{
ea86cb4b
VG
6876 struct rq_flags rf;
6877 struct rq *rq;
6878
6879 rq = task_rq_lock(task, &rf);
6880
80f5c1b8 6881 update_rq_clock(rq);
ea86cb4b
VG
6882 sched_change_group(task, TASK_SET_GROUP);
6883
6884 task_rq_unlock(rq, task, &rf);
eeb61e53
KT
6885}
6886
1f7dd3e5 6887static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
68318b8e 6888{
bb9d97b6 6889 struct task_struct *task;
1f7dd3e5 6890 struct cgroup_subsys_state *css;
7dc603c9 6891 int ret = 0;
bb9d97b6 6892
1f7dd3e5 6893 cgroup_taskset_for_each(task, css, tset) {
b68aa230 6894#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 6895 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 6896 return -EINVAL;
b68aa230 6897#else
bb9d97b6
TH
6898 /* We don't support RT-tasks being in separate groups */
6899 if (task->sched_class != &fair_sched_class)
6900 return -EINVAL;
b68aa230 6901#endif
7dc603c9
PZ
6902 /*
6903 * Serialize against wake_up_new_task() such that if its
6904 * running, we're sure to observe its full state.
6905 */
6906 raw_spin_lock_irq(&task->pi_lock);
6907 /*
6908 * Avoid calling sched_move_task() before wake_up_new_task()
6909 * has happened. This would lead to problems with PELT, due to
6910 * move wanting to detach+attach while we're not attached yet.
6911 */
6912 if (task->state == TASK_NEW)
6913 ret = -EINVAL;
6914 raw_spin_unlock_irq(&task->pi_lock);
6915
6916 if (ret)
6917 break;
bb9d97b6 6918 }
7dc603c9 6919 return ret;
be367d09 6920}
68318b8e 6921
1f7dd3e5 6922static void cpu_cgroup_attach(struct cgroup_taskset *tset)
68318b8e 6923{
bb9d97b6 6924 struct task_struct *task;
1f7dd3e5 6925 struct cgroup_subsys_state *css;
bb9d97b6 6926
1f7dd3e5 6927 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 6928 sched_move_task(task);
68318b8e
SV
6929}
6930
052f1dc7 6931#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
6932static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
6933 struct cftype *cftype, u64 shareval)
68318b8e 6934{
182446d0 6935 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
6936}
6937
182446d0
TH
6938static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
6939 struct cftype *cft)
68318b8e 6940{
182446d0 6941 struct task_group *tg = css_tg(css);
68318b8e 6942
c8b28116 6943 return (u64) scale_load_down(tg->shares);
68318b8e 6944}
ab84d31e
PT
6945
6946#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
6947static DEFINE_MUTEX(cfs_constraints_mutex);
6948
ab84d31e
PT
6949const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
6950const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
6951
a790de99
PT
6952static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
6953
ab84d31e
PT
6954static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
6955{
56f570e5 6956 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 6957 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
6958
6959 if (tg == &root_task_group)
6960 return -EINVAL;
6961
6962 /*
6963 * Ensure we have at some amount of bandwidth every period. This is
6964 * to prevent reaching a state of large arrears when throttled via
6965 * entity_tick() resulting in prolonged exit starvation.
6966 */
6967 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
6968 return -EINVAL;
6969
6970 /*
6971 * Likewise, bound things on the otherside by preventing insane quota
6972 * periods. This also allows us to normalize in computing quota
6973 * feasibility.
6974 */
6975 if (period > max_cfs_quota_period)
6976 return -EINVAL;
6977
0e59bdae
KT
6978 /*
6979 * Prevent race between setting of cfs_rq->runtime_enabled and
6980 * unthrottle_offline_cfs_rqs().
6981 */
6982 get_online_cpus();
a790de99
PT
6983 mutex_lock(&cfs_constraints_mutex);
6984 ret = __cfs_schedulable(tg, period, quota);
6985 if (ret)
6986 goto out_unlock;
6987
58088ad0 6988 runtime_enabled = quota != RUNTIME_INF;
56f570e5 6989 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
6990 /*
6991 * If we need to toggle cfs_bandwidth_used, off->on must occur
6992 * before making related changes, and on->off must occur afterwards
6993 */
6994 if (runtime_enabled && !runtime_was_enabled)
6995 cfs_bandwidth_usage_inc();
ab84d31e
PT
6996 raw_spin_lock_irq(&cfs_b->lock);
6997 cfs_b->period = ns_to_ktime(period);
6998 cfs_b->quota = quota;
58088ad0 6999
a9cf55b2 7000 __refill_cfs_bandwidth_runtime(cfs_b);
d1ccc66d
IM
7001
7002 /* Restart the period timer (if active) to handle new period expiry: */
77a4d1a1
PZ
7003 if (runtime_enabled)
7004 start_cfs_bandwidth(cfs_b);
d1ccc66d 7005
ab84d31e
PT
7006 raw_spin_unlock_irq(&cfs_b->lock);
7007
0e59bdae 7008 for_each_online_cpu(i) {
ab84d31e 7009 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 7010 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
7011
7012 raw_spin_lock_irq(&rq->lock);
58088ad0 7013 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 7014 cfs_rq->runtime_remaining = 0;
671fd9da 7015
029632fb 7016 if (cfs_rq->throttled)
671fd9da 7017 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
7018 raw_spin_unlock_irq(&rq->lock);
7019 }
1ee14e6c
BS
7020 if (runtime_was_enabled && !runtime_enabled)
7021 cfs_bandwidth_usage_dec();
a790de99
PT
7022out_unlock:
7023 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 7024 put_online_cpus();
ab84d31e 7025
a790de99 7026 return ret;
ab84d31e
PT
7027}
7028
7029int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7030{
7031 u64 quota, period;
7032
029632fb 7033 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7034 if (cfs_quota_us < 0)
7035 quota = RUNTIME_INF;
7036 else
7037 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7038
7039 return tg_set_cfs_bandwidth(tg, period, quota);
7040}
7041
7042long tg_get_cfs_quota(struct task_group *tg)
7043{
7044 u64 quota_us;
7045
029632fb 7046 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
7047 return -1;
7048
029632fb 7049 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
7050 do_div(quota_us, NSEC_PER_USEC);
7051
7052 return quota_us;
7053}
7054
7055int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7056{
7057 u64 quota, period;
7058
7059 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 7060 quota = tg->cfs_bandwidth.quota;
ab84d31e 7061
ab84d31e
PT
7062 return tg_set_cfs_bandwidth(tg, period, quota);
7063}
7064
7065long tg_get_cfs_period(struct task_group *tg)
7066{
7067 u64 cfs_period_us;
7068
029632fb 7069 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7070 do_div(cfs_period_us, NSEC_PER_USEC);
7071
7072 return cfs_period_us;
7073}
7074
182446d0
TH
7075static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7076 struct cftype *cft)
ab84d31e 7077{
182446d0 7078 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
7079}
7080
182446d0
TH
7081static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7082 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 7083{
182446d0 7084 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
7085}
7086
182446d0
TH
7087static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7088 struct cftype *cft)
ab84d31e 7089{
182446d0 7090 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
7091}
7092
182446d0
TH
7093static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7094 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 7095{
182446d0 7096 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
7097}
7098
a790de99
PT
7099struct cfs_schedulable_data {
7100 struct task_group *tg;
7101 u64 period, quota;
7102};
7103
7104/*
7105 * normalize group quota/period to be quota/max_period
7106 * note: units are usecs
7107 */
7108static u64 normalize_cfs_quota(struct task_group *tg,
7109 struct cfs_schedulable_data *d)
7110{
7111 u64 quota, period;
7112
7113 if (tg == d->tg) {
7114 period = d->period;
7115 quota = d->quota;
7116 } else {
7117 period = tg_get_cfs_period(tg);
7118 quota = tg_get_cfs_quota(tg);
7119 }
7120
7121 /* note: these should typically be equivalent */
7122 if (quota == RUNTIME_INF || quota == -1)
7123 return RUNTIME_INF;
7124
7125 return to_ratio(period, quota);
7126}
7127
7128static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7129{
7130 struct cfs_schedulable_data *d = data;
029632fb 7131 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
7132 s64 quota = 0, parent_quota = -1;
7133
7134 if (!tg->parent) {
7135 quota = RUNTIME_INF;
7136 } else {
029632fb 7137 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
7138
7139 quota = normalize_cfs_quota(tg, d);
9c58c79a 7140 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
7141
7142 /*
d1ccc66d
IM
7143 * Ensure max(child_quota) <= parent_quota, inherit when no
7144 * limit is set:
a790de99
PT
7145 */
7146 if (quota == RUNTIME_INF)
7147 quota = parent_quota;
7148 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7149 return -EINVAL;
7150 }
9c58c79a 7151 cfs_b->hierarchical_quota = quota;
a790de99
PT
7152
7153 return 0;
7154}
7155
7156static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7157{
8277434e 7158 int ret;
a790de99
PT
7159 struct cfs_schedulable_data data = {
7160 .tg = tg,
7161 .period = period,
7162 .quota = quota,
7163 };
7164
7165 if (quota != RUNTIME_INF) {
7166 do_div(data.period, NSEC_PER_USEC);
7167 do_div(data.quota, NSEC_PER_USEC);
7168 }
7169
8277434e
PT
7170 rcu_read_lock();
7171 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7172 rcu_read_unlock();
7173
7174 return ret;
a790de99 7175}
e8da1b18 7176
2da8ca82 7177static int cpu_stats_show(struct seq_file *sf, void *v)
e8da1b18 7178{
2da8ca82 7179 struct task_group *tg = css_tg(seq_css(sf));
029632fb 7180 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 7181
44ffc75b
TH
7182 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7183 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7184 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
7185
7186 return 0;
7187}
ab84d31e 7188#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 7189#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 7190
052f1dc7 7191#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
7192static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7193 struct cftype *cft, s64 val)
6f505b16 7194{
182446d0 7195 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
7196}
7197
182446d0
TH
7198static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7199 struct cftype *cft)
6f505b16 7200{
182446d0 7201 return sched_group_rt_runtime(css_tg(css));
6f505b16 7202}
d0b27fa7 7203
182446d0
TH
7204static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7205 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 7206{
182446d0 7207 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
7208}
7209
182446d0
TH
7210static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7211 struct cftype *cft)
d0b27fa7 7212{
182446d0 7213 return sched_group_rt_period(css_tg(css));
d0b27fa7 7214}
6d6bc0ad 7215#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 7216
fe5c7cc2 7217static struct cftype cpu_files[] = {
052f1dc7 7218#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
7219 {
7220 .name = "shares",
f4c753b7
PM
7221 .read_u64 = cpu_shares_read_u64,
7222 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 7223 },
052f1dc7 7224#endif
ab84d31e
PT
7225#ifdef CONFIG_CFS_BANDWIDTH
7226 {
7227 .name = "cfs_quota_us",
7228 .read_s64 = cpu_cfs_quota_read_s64,
7229 .write_s64 = cpu_cfs_quota_write_s64,
7230 },
7231 {
7232 .name = "cfs_period_us",
7233 .read_u64 = cpu_cfs_period_read_u64,
7234 .write_u64 = cpu_cfs_period_write_u64,
7235 },
e8da1b18
NR
7236 {
7237 .name = "stat",
2da8ca82 7238 .seq_show = cpu_stats_show,
e8da1b18 7239 },
ab84d31e 7240#endif
052f1dc7 7241#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7242 {
9f0c1e56 7243 .name = "rt_runtime_us",
06ecb27c
PM
7244 .read_s64 = cpu_rt_runtime_read,
7245 .write_s64 = cpu_rt_runtime_write,
6f505b16 7246 },
d0b27fa7
PZ
7247 {
7248 .name = "rt_period_us",
f4c753b7
PM
7249 .read_u64 = cpu_rt_period_read_uint,
7250 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 7251 },
052f1dc7 7252#endif
d1ccc66d 7253 { } /* Terminate */
68318b8e
SV
7254};
7255
073219e9 7256struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748 7257 .css_alloc = cpu_cgroup_css_alloc,
96b77745 7258 .css_online = cpu_cgroup_css_online,
2f5177f0 7259 .css_released = cpu_cgroup_css_released,
92fb9748 7260 .css_free = cpu_cgroup_css_free,
eeb61e53 7261 .fork = cpu_cgroup_fork,
bb9d97b6
TH
7262 .can_attach = cpu_cgroup_can_attach,
7263 .attach = cpu_cgroup_attach,
5577964e 7264 .legacy_cftypes = cpu_files,
b38e42e9 7265 .early_init = true,
68318b8e
SV
7266};
7267
052f1dc7 7268#endif /* CONFIG_CGROUP_SCHED */
d842de87 7269
b637a328
PM
7270void dump_cpu_task(int cpu)
7271{
7272 pr_info("Task dump for CPU %d:\n", cpu);
7273 sched_show_task(cpu_curr(cpu));
7274}
ed82b8a1
AK
7275
7276/*
7277 * Nice levels are multiplicative, with a gentle 10% change for every
7278 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
7279 * nice 1, it will get ~10% less CPU time than another CPU-bound task
7280 * that remained on nice 0.
7281 *
7282 * The "10% effect" is relative and cumulative: from _any_ nice level,
7283 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
7284 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
7285 * If a task goes up by ~10% and another task goes down by ~10% then
7286 * the relative distance between them is ~25%.)
7287 */
7288const int sched_prio_to_weight[40] = {
7289 /* -20 */ 88761, 71755, 56483, 46273, 36291,
7290 /* -15 */ 29154, 23254, 18705, 14949, 11916,
7291 /* -10 */ 9548, 7620, 6100, 4904, 3906,
7292 /* -5 */ 3121, 2501, 1991, 1586, 1277,
7293 /* 0 */ 1024, 820, 655, 526, 423,
7294 /* 5 */ 335, 272, 215, 172, 137,
7295 /* 10 */ 110, 87, 70, 56, 45,
7296 /* 15 */ 36, 29, 23, 18, 15,
7297};
7298
7299/*
7300 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
7301 *
7302 * In cases where the weight does not change often, we can use the
7303 * precalculated inverse to speed up arithmetics by turning divisions
7304 * into multiplications:
7305 */
7306const u32 sched_prio_to_wmult[40] = {
7307 /* -20 */ 48388, 59856, 76040, 92818, 118348,
7308 /* -15 */ 147320, 184698, 229616, 287308, 360437,
7309 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
7310 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
7311 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
7312 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
7313 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
7314 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
7315};