]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - kernel/sched/core.c
sched/core: Add missing update_rq_clock() call in set_user_nice()
[mirror_ubuntu-hirsute-kernel.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
e1b77c92 29#include <linux/kasan.h>
1da177e4
LT
30#include <linux/mm.h>
31#include <linux/module.h>
32#include <linux/nmi.h>
33#include <linux/init.h>
dff06c15 34#include <linux/uaccess.h>
1da177e4 35#include <linux/highmem.h>
f98db601 36#include <linux/mmu_context.h>
1da177e4 37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
cdd6c482 42#include <linux/perf_event.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
b5aadf7f 58#include <linux/proc_fs.h>
1da177e4 59#include <linux/seq_file.h>
e692ab53 60#include <linux/sysctl.h>
1da177e4
LT
61#include <linux/syscalls.h>
62#include <linux/times.h>
8f0ab514 63#include <linux/tsacct_kern.h>
c6fd91f0 64#include <linux/kprobes.h>
0ff92245 65#include <linux/delayacct.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
30914a58 69#include <linux/tick.h>
f00b45c1 70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
91d1aa43 74#include <linux/context_tracking.h>
52f5684c 75#include <linux/compiler.h>
8e05e96a 76#include <linux/frame.h>
6075620b 77#include <linux/prefetch.h>
3ca0ff57 78#include <linux/mutex.h>
1da177e4 79
96f951ed 80#include <asm/switch_to.h>
5517d86b 81#include <asm/tlb.h>
838225b4 82#include <asm/irq_regs.h>
e6e6685a
GC
83#ifdef CONFIG_PARAVIRT
84#include <asm/paravirt.h>
85#endif
1da177e4 86
029632fb 87#include "sched.h"
ea138446 88#include "../workqueue_internal.h"
29d5e047 89#include "../smpboot.h"
6e0534f2 90
a8d154b0 91#define CREATE_TRACE_POINTS
ad8d75ff 92#include <trace/events/sched.h>
a8d154b0 93
029632fb
PZ
94DEFINE_MUTEX(sched_domains_mutex);
95DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 96
fe44d621 97static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 98
029632fb 99void update_rq_clock(struct rq *rq)
3e51f33f 100{
fe44d621 101 s64 delta;
305e6835 102
9edfbfed
PZ
103 lockdep_assert_held(&rq->lock);
104
105 if (rq->clock_skip_update & RQCF_ACT_SKIP)
f26f9aff 106 return;
aa483808 107
fe44d621 108 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
4036ac15
MG
109 if (delta < 0)
110 return;
fe44d621
PZ
111 rq->clock += delta;
112 update_rq_clock_task(rq, delta);
3e51f33f
PZ
113}
114
bf5c91ba
IM
115/*
116 * Debugging: various feature bits
117 */
f00b45c1 118
f00b45c1
PZ
119#define SCHED_FEAT(name, enabled) \
120 (1UL << __SCHED_FEAT_##name) * enabled |
121
bf5c91ba 122const_debug unsigned int sysctl_sched_features =
391e43da 123#include "features.h"
f00b45c1
PZ
124 0;
125
126#undef SCHED_FEAT
127
b82d9fdd
PZ
128/*
129 * Number of tasks to iterate in a single balance run.
130 * Limited because this is done with IRQs disabled.
131 */
132const_debug unsigned int sysctl_sched_nr_migrate = 32;
133
e9e9250b
PZ
134/*
135 * period over which we average the RT time consumption, measured
136 * in ms.
137 *
138 * default: 1s
139 */
140const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
141
fa85ae24 142/*
9f0c1e56 143 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
144 * default: 1s
145 */
9f0c1e56 146unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 147
029632fb 148__read_mostly int scheduler_running;
6892b75e 149
9f0c1e56
PZ
150/*
151 * part of the period that we allow rt tasks to run in us.
152 * default: 0.95s
153 */
154int sysctl_sched_rt_runtime = 950000;
fa85ae24 155
3fa0818b
RR
156/* cpus with isolated domains */
157cpumask_var_t cpu_isolated_map;
158
1da177e4 159/*
cc2a73b5 160 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 161 */
a9957449 162static struct rq *this_rq_lock(void)
1da177e4
LT
163 __acquires(rq->lock)
164{
70b97a7f 165 struct rq *rq;
1da177e4
LT
166
167 local_irq_disable();
168 rq = this_rq();
05fa785c 169 raw_spin_lock(&rq->lock);
1da177e4
LT
170
171 return rq;
172}
173
3e71a462
PZ
174/*
175 * __task_rq_lock - lock the rq @p resides on.
176 */
eb580751 177struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
178 __acquires(rq->lock)
179{
180 struct rq *rq;
181
182 lockdep_assert_held(&p->pi_lock);
183
184 for (;;) {
185 rq = task_rq(p);
186 raw_spin_lock(&rq->lock);
187 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 188 rq_pin_lock(rq, rf);
3e71a462
PZ
189 return rq;
190 }
191 raw_spin_unlock(&rq->lock);
192
193 while (unlikely(task_on_rq_migrating(p)))
194 cpu_relax();
195 }
196}
197
198/*
199 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
200 */
eb580751 201struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
202 __acquires(p->pi_lock)
203 __acquires(rq->lock)
204{
205 struct rq *rq;
206
207 for (;;) {
eb580751 208 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
3e71a462
PZ
209 rq = task_rq(p);
210 raw_spin_lock(&rq->lock);
211 /*
212 * move_queued_task() task_rq_lock()
213 *
214 * ACQUIRE (rq->lock)
215 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
216 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
217 * [S] ->cpu = new_cpu [L] task_rq()
218 * [L] ->on_rq
219 * RELEASE (rq->lock)
220 *
221 * If we observe the old cpu in task_rq_lock, the acquire of
222 * the old rq->lock will fully serialize against the stores.
223 *
224 * If we observe the new cpu in task_rq_lock, the acquire will
225 * pair with the WMB to ensure we must then also see migrating.
226 */
227 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 228 rq_pin_lock(rq, rf);
3e71a462
PZ
229 return rq;
230 }
231 raw_spin_unlock(&rq->lock);
eb580751 232 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
3e71a462
PZ
233
234 while (unlikely(task_on_rq_migrating(p)))
235 cpu_relax();
236 }
237}
238
8f4d37ec
PZ
239#ifdef CONFIG_SCHED_HRTICK
240/*
241 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 242 */
8f4d37ec 243
8f4d37ec
PZ
244static void hrtick_clear(struct rq *rq)
245{
246 if (hrtimer_active(&rq->hrtick_timer))
247 hrtimer_cancel(&rq->hrtick_timer);
248}
249
8f4d37ec
PZ
250/*
251 * High-resolution timer tick.
252 * Runs from hardirq context with interrupts disabled.
253 */
254static enum hrtimer_restart hrtick(struct hrtimer *timer)
255{
256 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
257
258 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
259
05fa785c 260 raw_spin_lock(&rq->lock);
3e51f33f 261 update_rq_clock(rq);
8f4d37ec 262 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 263 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
264
265 return HRTIMER_NORESTART;
266}
267
95e904c7 268#ifdef CONFIG_SMP
971ee28c 269
4961b6e1 270static void __hrtick_restart(struct rq *rq)
971ee28c
PZ
271{
272 struct hrtimer *timer = &rq->hrtick_timer;
971ee28c 273
4961b6e1 274 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
971ee28c
PZ
275}
276
31656519
PZ
277/*
278 * called from hardirq (IPI) context
279 */
280static void __hrtick_start(void *arg)
b328ca18 281{
31656519 282 struct rq *rq = arg;
b328ca18 283
05fa785c 284 raw_spin_lock(&rq->lock);
971ee28c 285 __hrtick_restart(rq);
31656519 286 rq->hrtick_csd_pending = 0;
05fa785c 287 raw_spin_unlock(&rq->lock);
b328ca18
PZ
288}
289
31656519
PZ
290/*
291 * Called to set the hrtick timer state.
292 *
293 * called with rq->lock held and irqs disabled
294 */
029632fb 295void hrtick_start(struct rq *rq, u64 delay)
b328ca18 296{
31656519 297 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 298 ktime_t time;
299 s64 delta;
300
301 /*
302 * Don't schedule slices shorter than 10000ns, that just
303 * doesn't make sense and can cause timer DoS.
304 */
305 delta = max_t(s64, delay, 10000LL);
306 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 307
cc584b21 308 hrtimer_set_expires(timer, time);
31656519
PZ
309
310 if (rq == this_rq()) {
971ee28c 311 __hrtick_restart(rq);
31656519 312 } else if (!rq->hrtick_csd_pending) {
c46fff2a 313 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
314 rq->hrtick_csd_pending = 1;
315 }
b328ca18
PZ
316}
317
31656519
PZ
318#else
319/*
320 * Called to set the hrtick timer state.
321 *
322 * called with rq->lock held and irqs disabled
323 */
029632fb 324void hrtick_start(struct rq *rq, u64 delay)
31656519 325{
86893335
WL
326 /*
327 * Don't schedule slices shorter than 10000ns, that just
328 * doesn't make sense. Rely on vruntime for fairness.
329 */
330 delay = max_t(u64, delay, 10000LL);
4961b6e1
TG
331 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
332 HRTIMER_MODE_REL_PINNED);
31656519 333}
31656519 334#endif /* CONFIG_SMP */
8f4d37ec 335
31656519 336static void init_rq_hrtick(struct rq *rq)
8f4d37ec 337{
31656519
PZ
338#ifdef CONFIG_SMP
339 rq->hrtick_csd_pending = 0;
8f4d37ec 340
31656519
PZ
341 rq->hrtick_csd.flags = 0;
342 rq->hrtick_csd.func = __hrtick_start;
343 rq->hrtick_csd.info = rq;
344#endif
8f4d37ec 345
31656519
PZ
346 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
347 rq->hrtick_timer.function = hrtick;
8f4d37ec 348}
006c75f1 349#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
350static inline void hrtick_clear(struct rq *rq)
351{
352}
353
8f4d37ec
PZ
354static inline void init_rq_hrtick(struct rq *rq)
355{
356}
006c75f1 357#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 358
5529578a
FW
359/*
360 * cmpxchg based fetch_or, macro so it works for different integer types
361 */
362#define fetch_or(ptr, mask) \
363 ({ \
364 typeof(ptr) _ptr = (ptr); \
365 typeof(mask) _mask = (mask); \
366 typeof(*_ptr) _old, _val = *_ptr; \
367 \
368 for (;;) { \
369 _old = cmpxchg(_ptr, _val, _val | _mask); \
370 if (_old == _val) \
371 break; \
372 _val = _old; \
373 } \
374 _old; \
375})
376
e3baac47 377#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
378/*
379 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
380 * this avoids any races wrt polling state changes and thereby avoids
381 * spurious IPIs.
382 */
383static bool set_nr_and_not_polling(struct task_struct *p)
384{
385 struct thread_info *ti = task_thread_info(p);
386 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
387}
e3baac47
PZ
388
389/*
390 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
391 *
392 * If this returns true, then the idle task promises to call
393 * sched_ttwu_pending() and reschedule soon.
394 */
395static bool set_nr_if_polling(struct task_struct *p)
396{
397 struct thread_info *ti = task_thread_info(p);
316c1608 398 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
e3baac47
PZ
399
400 for (;;) {
401 if (!(val & _TIF_POLLING_NRFLAG))
402 return false;
403 if (val & _TIF_NEED_RESCHED)
404 return true;
405 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
406 if (old == val)
407 break;
408 val = old;
409 }
410 return true;
411}
412
fd99f91a
PZ
413#else
414static bool set_nr_and_not_polling(struct task_struct *p)
415{
416 set_tsk_need_resched(p);
417 return true;
418}
e3baac47
PZ
419
420#ifdef CONFIG_SMP
421static bool set_nr_if_polling(struct task_struct *p)
422{
423 return false;
424}
425#endif
fd99f91a
PZ
426#endif
427
76751049
PZ
428void wake_q_add(struct wake_q_head *head, struct task_struct *task)
429{
430 struct wake_q_node *node = &task->wake_q;
431
432 /*
433 * Atomically grab the task, if ->wake_q is !nil already it means
434 * its already queued (either by us or someone else) and will get the
435 * wakeup due to that.
436 *
437 * This cmpxchg() implies a full barrier, which pairs with the write
58fe9c46 438 * barrier implied by the wakeup in wake_up_q().
76751049
PZ
439 */
440 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
441 return;
442
443 get_task_struct(task);
444
445 /*
446 * The head is context local, there can be no concurrency.
447 */
448 *head->lastp = node;
449 head->lastp = &node->next;
450}
451
452void wake_up_q(struct wake_q_head *head)
453{
454 struct wake_q_node *node = head->first;
455
456 while (node != WAKE_Q_TAIL) {
457 struct task_struct *task;
458
459 task = container_of(node, struct task_struct, wake_q);
460 BUG_ON(!task);
461 /* task can safely be re-inserted now */
462 node = node->next;
463 task->wake_q.next = NULL;
464
465 /*
466 * wake_up_process() implies a wmb() to pair with the queueing
467 * in wake_q_add() so as not to miss wakeups.
468 */
469 wake_up_process(task);
470 put_task_struct(task);
471 }
472}
473
c24d20db 474/*
8875125e 475 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
476 *
477 * On UP this means the setting of the need_resched flag, on SMP it
478 * might also involve a cross-CPU call to trigger the scheduler on
479 * the target CPU.
480 */
8875125e 481void resched_curr(struct rq *rq)
c24d20db 482{
8875125e 483 struct task_struct *curr = rq->curr;
c24d20db
IM
484 int cpu;
485
8875125e 486 lockdep_assert_held(&rq->lock);
c24d20db 487
8875125e 488 if (test_tsk_need_resched(curr))
c24d20db
IM
489 return;
490
8875125e 491 cpu = cpu_of(rq);
fd99f91a 492
f27dde8d 493 if (cpu == smp_processor_id()) {
8875125e 494 set_tsk_need_resched(curr);
f27dde8d 495 set_preempt_need_resched();
c24d20db 496 return;
f27dde8d 497 }
c24d20db 498
8875125e 499 if (set_nr_and_not_polling(curr))
c24d20db 500 smp_send_reschedule(cpu);
dfc68f29
AL
501 else
502 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
503}
504
029632fb 505void resched_cpu(int cpu)
c24d20db
IM
506{
507 struct rq *rq = cpu_rq(cpu);
508 unsigned long flags;
509
05fa785c 510 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db 511 return;
8875125e 512 resched_curr(rq);
05fa785c 513 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 514}
06d8308c 515
b021fe3e 516#ifdef CONFIG_SMP
3451d024 517#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
518/*
519 * In the semi idle case, use the nearest busy cpu for migrating timers
520 * from an idle cpu. This is good for power-savings.
521 *
522 * We don't do similar optimization for completely idle system, as
523 * selecting an idle cpu will add more delays to the timers than intended
524 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
525 */
bc7a34b8 526int get_nohz_timer_target(void)
83cd4fe2 527{
bc7a34b8 528 int i, cpu = smp_processor_id();
83cd4fe2
VP
529 struct sched_domain *sd;
530
9642d18e 531 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
6201b4d6
VK
532 return cpu;
533
057f3fad 534 rcu_read_lock();
83cd4fe2 535 for_each_domain(cpu, sd) {
057f3fad 536 for_each_cpu(i, sched_domain_span(sd)) {
44496922
WL
537 if (cpu == i)
538 continue;
539
540 if (!idle_cpu(i) && is_housekeeping_cpu(i)) {
057f3fad
PZ
541 cpu = i;
542 goto unlock;
543 }
544 }
83cd4fe2 545 }
9642d18e
VH
546
547 if (!is_housekeeping_cpu(cpu))
548 cpu = housekeeping_any_cpu();
057f3fad
PZ
549unlock:
550 rcu_read_unlock();
83cd4fe2
VP
551 return cpu;
552}
06d8308c
TG
553/*
554 * When add_timer_on() enqueues a timer into the timer wheel of an
555 * idle CPU then this timer might expire before the next timer event
556 * which is scheduled to wake up that CPU. In case of a completely
557 * idle system the next event might even be infinite time into the
558 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
559 * leaves the inner idle loop so the newly added timer is taken into
560 * account when the CPU goes back to idle and evaluates the timer
561 * wheel for the next timer event.
562 */
1c20091e 563static void wake_up_idle_cpu(int cpu)
06d8308c
TG
564{
565 struct rq *rq = cpu_rq(cpu);
566
567 if (cpu == smp_processor_id())
568 return;
569
67b9ca70 570 if (set_nr_and_not_polling(rq->idle))
06d8308c 571 smp_send_reschedule(cpu);
dfc68f29
AL
572 else
573 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
574}
575
c5bfece2 576static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 577{
53c5fa16
FW
578 /*
579 * We just need the target to call irq_exit() and re-evaluate
580 * the next tick. The nohz full kick at least implies that.
581 * If needed we can still optimize that later with an
582 * empty IRQ.
583 */
379d9ecb
PM
584 if (cpu_is_offline(cpu))
585 return true; /* Don't try to wake offline CPUs. */
c5bfece2 586 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
587 if (cpu != smp_processor_id() ||
588 tick_nohz_tick_stopped())
53c5fa16 589 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
590 return true;
591 }
592
593 return false;
594}
595
379d9ecb
PM
596/*
597 * Wake up the specified CPU. If the CPU is going offline, it is the
598 * caller's responsibility to deal with the lost wakeup, for example,
599 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
600 */
1c20091e
FW
601void wake_up_nohz_cpu(int cpu)
602{
c5bfece2 603 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
604 wake_up_idle_cpu(cpu);
605}
606
ca38062e 607static inline bool got_nohz_idle_kick(void)
45bf76df 608{
1c792db7 609 int cpu = smp_processor_id();
873b4c65
VG
610
611 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
612 return false;
613
614 if (idle_cpu(cpu) && !need_resched())
615 return true;
616
617 /*
618 * We can't run Idle Load Balance on this CPU for this time so we
619 * cancel it and clear NOHZ_BALANCE_KICK
620 */
621 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
622 return false;
45bf76df
IM
623}
624
3451d024 625#else /* CONFIG_NO_HZ_COMMON */
45bf76df 626
ca38062e 627static inline bool got_nohz_idle_kick(void)
2069dd75 628{
ca38062e 629 return false;
2069dd75
PZ
630}
631
3451d024 632#endif /* CONFIG_NO_HZ_COMMON */
d842de87 633
ce831b38 634#ifdef CONFIG_NO_HZ_FULL
76d92ac3 635bool sched_can_stop_tick(struct rq *rq)
ce831b38 636{
76d92ac3
FW
637 int fifo_nr_running;
638
639 /* Deadline tasks, even if single, need the tick */
640 if (rq->dl.dl_nr_running)
641 return false;
642
1e78cdbd 643 /*
2548d546
PZ
644 * If there are more than one RR tasks, we need the tick to effect the
645 * actual RR behaviour.
1e78cdbd 646 */
76d92ac3
FW
647 if (rq->rt.rr_nr_running) {
648 if (rq->rt.rr_nr_running == 1)
649 return true;
650 else
651 return false;
1e78cdbd
RR
652 }
653
2548d546
PZ
654 /*
655 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
656 * forced preemption between FIFO tasks.
657 */
658 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
659 if (fifo_nr_running)
660 return true;
661
662 /*
663 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
664 * if there's more than one we need the tick for involuntary
665 * preemption.
666 */
667 if (rq->nr_running > 1)
541b8264 668 return false;
ce831b38 669
541b8264 670 return true;
ce831b38
FW
671}
672#endif /* CONFIG_NO_HZ_FULL */
d842de87 673
029632fb 674void sched_avg_update(struct rq *rq)
18d95a28 675{
e9e9250b
PZ
676 s64 period = sched_avg_period();
677
78becc27 678 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
679 /*
680 * Inline assembly required to prevent the compiler
681 * optimising this loop into a divmod call.
682 * See __iter_div_u64_rem() for another example of this.
683 */
684 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
685 rq->age_stamp += period;
686 rq->rt_avg /= 2;
687 }
18d95a28
PZ
688}
689
6d6bc0ad 690#endif /* CONFIG_SMP */
18d95a28 691
a790de99
PT
692#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
693 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 694/*
8277434e
PT
695 * Iterate task_group tree rooted at *from, calling @down when first entering a
696 * node and @up when leaving it for the final time.
697 *
698 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 699 */
029632fb 700int walk_tg_tree_from(struct task_group *from,
8277434e 701 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
702{
703 struct task_group *parent, *child;
eb755805 704 int ret;
c09595f6 705
8277434e
PT
706 parent = from;
707
c09595f6 708down:
eb755805
PZ
709 ret = (*down)(parent, data);
710 if (ret)
8277434e 711 goto out;
c09595f6
PZ
712 list_for_each_entry_rcu(child, &parent->children, siblings) {
713 parent = child;
714 goto down;
715
716up:
717 continue;
718 }
eb755805 719 ret = (*up)(parent, data);
8277434e
PT
720 if (ret || parent == from)
721 goto out;
c09595f6
PZ
722
723 child = parent;
724 parent = parent->parent;
725 if (parent)
726 goto up;
8277434e 727out:
eb755805 728 return ret;
c09595f6
PZ
729}
730
029632fb 731int tg_nop(struct task_group *tg, void *data)
eb755805 732{
e2b245f8 733 return 0;
eb755805 734}
18d95a28
PZ
735#endif
736
45bf76df
IM
737static void set_load_weight(struct task_struct *p)
738{
f05998d4
NR
739 int prio = p->static_prio - MAX_RT_PRIO;
740 struct load_weight *load = &p->se.load;
741
dd41f596
IM
742 /*
743 * SCHED_IDLE tasks get minimal weight:
744 */
20f9cd2a 745 if (idle_policy(p->policy)) {
c8b28116 746 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 747 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
748 return;
749 }
71f8bd46 750
ed82b8a1
AK
751 load->weight = scale_load(sched_prio_to_weight[prio]);
752 load->inv_weight = sched_prio_to_wmult[prio];
71f8bd46
IM
753}
754
1de64443 755static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 756{
a64692a3 757 update_rq_clock(rq);
1de64443
PZ
758 if (!(flags & ENQUEUE_RESTORE))
759 sched_info_queued(rq, p);
371fd7e7 760 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
761}
762
1de64443 763static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 764{
a64692a3 765 update_rq_clock(rq);
1de64443
PZ
766 if (!(flags & DEQUEUE_SAVE))
767 sched_info_dequeued(rq, p);
371fd7e7 768 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
769}
770
029632fb 771void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
772{
773 if (task_contributes_to_load(p))
774 rq->nr_uninterruptible--;
775
371fd7e7 776 enqueue_task(rq, p, flags);
1e3c88bd
PZ
777}
778
029632fb 779void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
780{
781 if (task_contributes_to_load(p))
782 rq->nr_uninterruptible++;
783
371fd7e7 784 dequeue_task(rq, p, flags);
1e3c88bd
PZ
785}
786
fe44d621 787static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 788{
095c0aa8
GC
789/*
790 * In theory, the compile should just see 0 here, and optimize out the call
791 * to sched_rt_avg_update. But I don't trust it...
792 */
793#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
794 s64 steal = 0, irq_delta = 0;
795#endif
796#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 797 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
798
799 /*
800 * Since irq_time is only updated on {soft,}irq_exit, we might run into
801 * this case when a previous update_rq_clock() happened inside a
802 * {soft,}irq region.
803 *
804 * When this happens, we stop ->clock_task and only update the
805 * prev_irq_time stamp to account for the part that fit, so that a next
806 * update will consume the rest. This ensures ->clock_task is
807 * monotonic.
808 *
809 * It does however cause some slight miss-attribution of {soft,}irq
810 * time, a more accurate solution would be to update the irq_time using
811 * the current rq->clock timestamp, except that would require using
812 * atomic ops.
813 */
814 if (irq_delta > delta)
815 irq_delta = delta;
816
817 rq->prev_irq_time += irq_delta;
818 delta -= irq_delta;
095c0aa8
GC
819#endif
820#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 821 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
822 steal = paravirt_steal_clock(cpu_of(rq));
823 steal -= rq->prev_steal_time_rq;
824
825 if (unlikely(steal > delta))
826 steal = delta;
827
095c0aa8 828 rq->prev_steal_time_rq += steal;
095c0aa8
GC
829 delta -= steal;
830 }
831#endif
832
fe44d621
PZ
833 rq->clock_task += delta;
834
095c0aa8 835#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
5d4dfddd 836 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
095c0aa8
GC
837 sched_rt_avg_update(rq, irq_delta + steal);
838#endif
aa483808
VP
839}
840
34f971f6
PZ
841void sched_set_stop_task(int cpu, struct task_struct *stop)
842{
843 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
844 struct task_struct *old_stop = cpu_rq(cpu)->stop;
845
846 if (stop) {
847 /*
848 * Make it appear like a SCHED_FIFO task, its something
849 * userspace knows about and won't get confused about.
850 *
851 * Also, it will make PI more or less work without too
852 * much confusion -- but then, stop work should not
853 * rely on PI working anyway.
854 */
855 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
856
857 stop->sched_class = &stop_sched_class;
858 }
859
860 cpu_rq(cpu)->stop = stop;
861
862 if (old_stop) {
863 /*
864 * Reset it back to a normal scheduling class so that
865 * it can die in pieces.
866 */
867 old_stop->sched_class = &rt_sched_class;
868 }
869}
870
14531189 871/*
dd41f596 872 * __normal_prio - return the priority that is based on the static prio
14531189 873 */
14531189
IM
874static inline int __normal_prio(struct task_struct *p)
875{
dd41f596 876 return p->static_prio;
14531189
IM
877}
878
b29739f9
IM
879/*
880 * Calculate the expected normal priority: i.e. priority
881 * without taking RT-inheritance into account. Might be
882 * boosted by interactivity modifiers. Changes upon fork,
883 * setprio syscalls, and whenever the interactivity
884 * estimator recalculates.
885 */
36c8b586 886static inline int normal_prio(struct task_struct *p)
b29739f9
IM
887{
888 int prio;
889
aab03e05
DF
890 if (task_has_dl_policy(p))
891 prio = MAX_DL_PRIO-1;
892 else if (task_has_rt_policy(p))
b29739f9
IM
893 prio = MAX_RT_PRIO-1 - p->rt_priority;
894 else
895 prio = __normal_prio(p);
896 return prio;
897}
898
899/*
900 * Calculate the current priority, i.e. the priority
901 * taken into account by the scheduler. This value might
902 * be boosted by RT tasks, or might be boosted by
903 * interactivity modifiers. Will be RT if the task got
904 * RT-boosted. If not then it returns p->normal_prio.
905 */
36c8b586 906static int effective_prio(struct task_struct *p)
b29739f9
IM
907{
908 p->normal_prio = normal_prio(p);
909 /*
910 * If we are RT tasks or we were boosted to RT priority,
911 * keep the priority unchanged. Otherwise, update priority
912 * to the normal priority:
913 */
914 if (!rt_prio(p->prio))
915 return p->normal_prio;
916 return p->prio;
917}
918
1da177e4
LT
919/**
920 * task_curr - is this task currently executing on a CPU?
921 * @p: the task in question.
e69f6186
YB
922 *
923 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 924 */
36c8b586 925inline int task_curr(const struct task_struct *p)
1da177e4
LT
926{
927 return cpu_curr(task_cpu(p)) == p;
928}
929
67dfa1b7 930/*
4c9a4bc8
PZ
931 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
932 * use the balance_callback list if you want balancing.
933 *
934 * this means any call to check_class_changed() must be followed by a call to
935 * balance_callback().
67dfa1b7 936 */
cb469845
SR
937static inline void check_class_changed(struct rq *rq, struct task_struct *p,
938 const struct sched_class *prev_class,
da7a735e 939 int oldprio)
cb469845
SR
940{
941 if (prev_class != p->sched_class) {
942 if (prev_class->switched_from)
da7a735e 943 prev_class->switched_from(rq, p);
4c9a4bc8 944
da7a735e 945 p->sched_class->switched_to(rq, p);
2d3d891d 946 } else if (oldprio != p->prio || dl_task(p))
da7a735e 947 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
948}
949
029632fb 950void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
951{
952 const struct sched_class *class;
953
954 if (p->sched_class == rq->curr->sched_class) {
955 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
956 } else {
957 for_each_class(class) {
958 if (class == rq->curr->sched_class)
959 break;
960 if (class == p->sched_class) {
8875125e 961 resched_curr(rq);
1e5a7405
PZ
962 break;
963 }
964 }
965 }
966
967 /*
968 * A queue event has occurred, and we're going to schedule. In
969 * this case, we can save a useless back to back clock update.
970 */
da0c1e65 971 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
9edfbfed 972 rq_clock_skip_update(rq, true);
1e5a7405
PZ
973}
974
1da177e4 975#ifdef CONFIG_SMP
5cc389bc
PZ
976/*
977 * This is how migration works:
978 *
979 * 1) we invoke migration_cpu_stop() on the target CPU using
980 * stop_one_cpu().
981 * 2) stopper starts to run (implicitly forcing the migrated thread
982 * off the CPU)
983 * 3) it checks whether the migrated task is still in the wrong runqueue.
984 * 4) if it's in the wrong runqueue then the migration thread removes
985 * it and puts it into the right queue.
986 * 5) stopper completes and stop_one_cpu() returns and the migration
987 * is done.
988 */
989
990/*
991 * move_queued_task - move a queued task to new rq.
992 *
993 * Returns (locked) new rq. Old rq's lock is released.
994 */
5e16bbc2 995static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
5cc389bc 996{
5cc389bc
PZ
997 lockdep_assert_held(&rq->lock);
998
5cc389bc 999 p->on_rq = TASK_ON_RQ_MIGRATING;
3ea94de1 1000 dequeue_task(rq, p, 0);
5cc389bc
PZ
1001 set_task_cpu(p, new_cpu);
1002 raw_spin_unlock(&rq->lock);
1003
1004 rq = cpu_rq(new_cpu);
1005
1006 raw_spin_lock(&rq->lock);
1007 BUG_ON(task_cpu(p) != new_cpu);
5cc389bc 1008 enqueue_task(rq, p, 0);
3ea94de1 1009 p->on_rq = TASK_ON_RQ_QUEUED;
5cc389bc
PZ
1010 check_preempt_curr(rq, p, 0);
1011
1012 return rq;
1013}
1014
1015struct migration_arg {
1016 struct task_struct *task;
1017 int dest_cpu;
1018};
1019
1020/*
1021 * Move (not current) task off this cpu, onto dest cpu. We're doing
1022 * this because either it can't run here any more (set_cpus_allowed()
1023 * away from this CPU, or CPU going down), or because we're
1024 * attempting to rebalance this task on exec (sched_exec).
1025 *
1026 * So we race with normal scheduler movements, but that's OK, as long
1027 * as the task is no longer on this CPU.
5cc389bc 1028 */
5e16bbc2 1029static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
5cc389bc 1030{
5cc389bc 1031 if (unlikely(!cpu_active(dest_cpu)))
5e16bbc2 1032 return rq;
5cc389bc
PZ
1033
1034 /* Affinity changed (again). */
1035 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
5e16bbc2 1036 return rq;
5cc389bc 1037
5e16bbc2
PZ
1038 rq = move_queued_task(rq, p, dest_cpu);
1039
1040 return rq;
5cc389bc
PZ
1041}
1042
1043/*
1044 * migration_cpu_stop - this will be executed by a highprio stopper thread
1045 * and performs thread migration by bumping thread off CPU then
1046 * 'pushing' onto another runqueue.
1047 */
1048static int migration_cpu_stop(void *data)
1049{
1050 struct migration_arg *arg = data;
5e16bbc2
PZ
1051 struct task_struct *p = arg->task;
1052 struct rq *rq = this_rq();
5cc389bc
PZ
1053
1054 /*
1055 * The original target cpu might have gone down and we might
1056 * be on another cpu but it doesn't matter.
1057 */
1058 local_irq_disable();
1059 /*
1060 * We need to explicitly wake pending tasks before running
1061 * __migrate_task() such that we will not miss enforcing cpus_allowed
1062 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1063 */
1064 sched_ttwu_pending();
5e16bbc2
PZ
1065
1066 raw_spin_lock(&p->pi_lock);
1067 raw_spin_lock(&rq->lock);
1068 /*
1069 * If task_rq(p) != rq, it cannot be migrated here, because we're
1070 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1071 * we're holding p->pi_lock.
1072 */
bf89a304
CC
1073 if (task_rq(p) == rq) {
1074 if (task_on_rq_queued(p))
1075 rq = __migrate_task(rq, p, arg->dest_cpu);
1076 else
1077 p->wake_cpu = arg->dest_cpu;
1078 }
5e16bbc2
PZ
1079 raw_spin_unlock(&rq->lock);
1080 raw_spin_unlock(&p->pi_lock);
1081
5cc389bc
PZ
1082 local_irq_enable();
1083 return 0;
1084}
1085
c5b28038
PZ
1086/*
1087 * sched_class::set_cpus_allowed must do the below, but is not required to
1088 * actually call this function.
1089 */
1090void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
5cc389bc 1091{
5cc389bc
PZ
1092 cpumask_copy(&p->cpus_allowed, new_mask);
1093 p->nr_cpus_allowed = cpumask_weight(new_mask);
1094}
1095
c5b28038
PZ
1096void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1097{
6c37067e
PZ
1098 struct rq *rq = task_rq(p);
1099 bool queued, running;
1100
c5b28038 1101 lockdep_assert_held(&p->pi_lock);
6c37067e
PZ
1102
1103 queued = task_on_rq_queued(p);
1104 running = task_current(rq, p);
1105
1106 if (queued) {
1107 /*
1108 * Because __kthread_bind() calls this on blocked tasks without
1109 * holding rq->lock.
1110 */
1111 lockdep_assert_held(&rq->lock);
1de64443 1112 dequeue_task(rq, p, DEQUEUE_SAVE);
6c37067e
PZ
1113 }
1114 if (running)
1115 put_prev_task(rq, p);
1116
c5b28038 1117 p->sched_class->set_cpus_allowed(p, new_mask);
6c37067e 1118
6c37067e 1119 if (queued)
1de64443 1120 enqueue_task(rq, p, ENQUEUE_RESTORE);
a399d233 1121 if (running)
b2bf6c31 1122 set_curr_task(rq, p);
c5b28038
PZ
1123}
1124
5cc389bc
PZ
1125/*
1126 * Change a given task's CPU affinity. Migrate the thread to a
1127 * proper CPU and schedule it away if the CPU it's executing on
1128 * is removed from the allowed bitmask.
1129 *
1130 * NOTE: the caller must have a valid reference to the task, the
1131 * task must not exit() & deallocate itself prematurely. The
1132 * call is not atomic; no spinlocks may be held.
1133 */
25834c73
PZ
1134static int __set_cpus_allowed_ptr(struct task_struct *p,
1135 const struct cpumask *new_mask, bool check)
5cc389bc 1136{
e9d867a6 1137 const struct cpumask *cpu_valid_mask = cpu_active_mask;
5cc389bc 1138 unsigned int dest_cpu;
eb580751
PZ
1139 struct rq_flags rf;
1140 struct rq *rq;
5cc389bc
PZ
1141 int ret = 0;
1142
eb580751 1143 rq = task_rq_lock(p, &rf);
5cc389bc 1144
e9d867a6
PZI
1145 if (p->flags & PF_KTHREAD) {
1146 /*
1147 * Kernel threads are allowed on online && !active CPUs
1148 */
1149 cpu_valid_mask = cpu_online_mask;
1150 }
1151
25834c73
PZ
1152 /*
1153 * Must re-check here, to close a race against __kthread_bind(),
1154 * sched_setaffinity() is not guaranteed to observe the flag.
1155 */
1156 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1157 ret = -EINVAL;
1158 goto out;
1159 }
1160
5cc389bc
PZ
1161 if (cpumask_equal(&p->cpus_allowed, new_mask))
1162 goto out;
1163
e9d867a6 1164 if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
5cc389bc
PZ
1165 ret = -EINVAL;
1166 goto out;
1167 }
1168
1169 do_set_cpus_allowed(p, new_mask);
1170
e9d867a6
PZI
1171 if (p->flags & PF_KTHREAD) {
1172 /*
1173 * For kernel threads that do indeed end up on online &&
1174 * !active we want to ensure they are strict per-cpu threads.
1175 */
1176 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1177 !cpumask_intersects(new_mask, cpu_active_mask) &&
1178 p->nr_cpus_allowed != 1);
1179 }
1180
5cc389bc
PZ
1181 /* Can the task run on the task's current CPU? If so, we're done */
1182 if (cpumask_test_cpu(task_cpu(p), new_mask))
1183 goto out;
1184
e9d867a6 1185 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
5cc389bc
PZ
1186 if (task_running(rq, p) || p->state == TASK_WAKING) {
1187 struct migration_arg arg = { p, dest_cpu };
1188 /* Need help from migration thread: drop lock and wait. */
eb580751 1189 task_rq_unlock(rq, p, &rf);
5cc389bc
PZ
1190 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1191 tlb_migrate_finish(p->mm);
1192 return 0;
cbce1a68
PZ
1193 } else if (task_on_rq_queued(p)) {
1194 /*
1195 * OK, since we're going to drop the lock immediately
1196 * afterwards anyway.
1197 */
d8ac8971 1198 rq_unpin_lock(rq, &rf);
5e16bbc2 1199 rq = move_queued_task(rq, p, dest_cpu);
d8ac8971 1200 rq_repin_lock(rq, &rf);
cbce1a68 1201 }
5cc389bc 1202out:
eb580751 1203 task_rq_unlock(rq, p, &rf);
5cc389bc
PZ
1204
1205 return ret;
1206}
25834c73
PZ
1207
1208int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1209{
1210 return __set_cpus_allowed_ptr(p, new_mask, false);
1211}
5cc389bc
PZ
1212EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1213
dd41f596 1214void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1215{
e2912009
PZ
1216#ifdef CONFIG_SCHED_DEBUG
1217 /*
1218 * We should never call set_task_cpu() on a blocked task,
1219 * ttwu() will sort out the placement.
1220 */
077614ee 1221 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
e2336f6e 1222 !p->on_rq);
0122ec5b 1223
3ea94de1
JP
1224 /*
1225 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1226 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1227 * time relying on p->on_rq.
1228 */
1229 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1230 p->sched_class == &fair_sched_class &&
1231 (p->on_rq && !task_on_rq_migrating(p)));
1232
0122ec5b 1233#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1234 /*
1235 * The caller should hold either p->pi_lock or rq->lock, when changing
1236 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1237 *
1238 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1239 * see task_group().
6c6c54e1
PZ
1240 *
1241 * Furthermore, all task_rq users should acquire both locks, see
1242 * task_rq_lock().
1243 */
0122ec5b
PZ
1244 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1245 lockdep_is_held(&task_rq(p)->lock)));
1246#endif
e2912009
PZ
1247#endif
1248
de1d7286 1249 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1250
0c69774e 1251 if (task_cpu(p) != new_cpu) {
0a74bef8 1252 if (p->sched_class->migrate_task_rq)
5a4fd036 1253 p->sched_class->migrate_task_rq(p);
0c69774e 1254 p->se.nr_migrations++;
ff303e66 1255 perf_event_task_migrate(p);
0c69774e 1256 }
dd41f596
IM
1257
1258 __set_task_cpu(p, new_cpu);
c65cc870
IM
1259}
1260
ac66f547
PZ
1261static void __migrate_swap_task(struct task_struct *p, int cpu)
1262{
da0c1e65 1263 if (task_on_rq_queued(p)) {
ac66f547
PZ
1264 struct rq *src_rq, *dst_rq;
1265
1266 src_rq = task_rq(p);
1267 dst_rq = cpu_rq(cpu);
1268
3ea94de1 1269 p->on_rq = TASK_ON_RQ_MIGRATING;
ac66f547
PZ
1270 deactivate_task(src_rq, p, 0);
1271 set_task_cpu(p, cpu);
1272 activate_task(dst_rq, p, 0);
3ea94de1 1273 p->on_rq = TASK_ON_RQ_QUEUED;
ac66f547
PZ
1274 check_preempt_curr(dst_rq, p, 0);
1275 } else {
1276 /*
1277 * Task isn't running anymore; make it appear like we migrated
1278 * it before it went to sleep. This means on wakeup we make the
a1fd4656 1279 * previous cpu our target instead of where it really is.
ac66f547
PZ
1280 */
1281 p->wake_cpu = cpu;
1282 }
1283}
1284
1285struct migration_swap_arg {
1286 struct task_struct *src_task, *dst_task;
1287 int src_cpu, dst_cpu;
1288};
1289
1290static int migrate_swap_stop(void *data)
1291{
1292 struct migration_swap_arg *arg = data;
1293 struct rq *src_rq, *dst_rq;
1294 int ret = -EAGAIN;
1295
62694cd5
PZ
1296 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1297 return -EAGAIN;
1298
ac66f547
PZ
1299 src_rq = cpu_rq(arg->src_cpu);
1300 dst_rq = cpu_rq(arg->dst_cpu);
1301
74602315
PZ
1302 double_raw_lock(&arg->src_task->pi_lock,
1303 &arg->dst_task->pi_lock);
ac66f547 1304 double_rq_lock(src_rq, dst_rq);
62694cd5 1305
ac66f547
PZ
1306 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1307 goto unlock;
1308
1309 if (task_cpu(arg->src_task) != arg->src_cpu)
1310 goto unlock;
1311
1312 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1313 goto unlock;
1314
1315 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1316 goto unlock;
1317
1318 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1319 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1320
1321 ret = 0;
1322
1323unlock:
1324 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1325 raw_spin_unlock(&arg->dst_task->pi_lock);
1326 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1327
1328 return ret;
1329}
1330
1331/*
1332 * Cross migrate two tasks
1333 */
1334int migrate_swap(struct task_struct *cur, struct task_struct *p)
1335{
1336 struct migration_swap_arg arg;
1337 int ret = -EINVAL;
1338
ac66f547
PZ
1339 arg = (struct migration_swap_arg){
1340 .src_task = cur,
1341 .src_cpu = task_cpu(cur),
1342 .dst_task = p,
1343 .dst_cpu = task_cpu(p),
1344 };
1345
1346 if (arg.src_cpu == arg.dst_cpu)
1347 goto out;
1348
6acce3ef
PZ
1349 /*
1350 * These three tests are all lockless; this is OK since all of them
1351 * will be re-checked with proper locks held further down the line.
1352 */
ac66f547
PZ
1353 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1354 goto out;
1355
1356 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1357 goto out;
1358
1359 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1360 goto out;
1361
286549dc 1362 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1363 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1364
1365out:
ac66f547
PZ
1366 return ret;
1367}
1368
1da177e4
LT
1369/*
1370 * wait_task_inactive - wait for a thread to unschedule.
1371 *
85ba2d86
RM
1372 * If @match_state is nonzero, it's the @p->state value just checked and
1373 * not expected to change. If it changes, i.e. @p might have woken up,
1374 * then return zero. When we succeed in waiting for @p to be off its CPU,
1375 * we return a positive number (its total switch count). If a second call
1376 * a short while later returns the same number, the caller can be sure that
1377 * @p has remained unscheduled the whole time.
1378 *
1da177e4
LT
1379 * The caller must ensure that the task *will* unschedule sometime soon,
1380 * else this function might spin for a *long* time. This function can't
1381 * be called with interrupts off, or it may introduce deadlock with
1382 * smp_call_function() if an IPI is sent by the same process we are
1383 * waiting to become inactive.
1384 */
85ba2d86 1385unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4 1386{
da0c1e65 1387 int running, queued;
eb580751 1388 struct rq_flags rf;
85ba2d86 1389 unsigned long ncsw;
70b97a7f 1390 struct rq *rq;
1da177e4 1391
3a5c359a
AK
1392 for (;;) {
1393 /*
1394 * We do the initial early heuristics without holding
1395 * any task-queue locks at all. We'll only try to get
1396 * the runqueue lock when things look like they will
1397 * work out!
1398 */
1399 rq = task_rq(p);
fa490cfd 1400
3a5c359a
AK
1401 /*
1402 * If the task is actively running on another CPU
1403 * still, just relax and busy-wait without holding
1404 * any locks.
1405 *
1406 * NOTE! Since we don't hold any locks, it's not
1407 * even sure that "rq" stays as the right runqueue!
1408 * But we don't care, since "task_running()" will
1409 * return false if the runqueue has changed and p
1410 * is actually now running somewhere else!
1411 */
85ba2d86
RM
1412 while (task_running(rq, p)) {
1413 if (match_state && unlikely(p->state != match_state))
1414 return 0;
3a5c359a 1415 cpu_relax();
85ba2d86 1416 }
fa490cfd 1417
3a5c359a
AK
1418 /*
1419 * Ok, time to look more closely! We need the rq
1420 * lock now, to be *sure*. If we're wrong, we'll
1421 * just go back and repeat.
1422 */
eb580751 1423 rq = task_rq_lock(p, &rf);
27a9da65 1424 trace_sched_wait_task(p);
3a5c359a 1425 running = task_running(rq, p);
da0c1e65 1426 queued = task_on_rq_queued(p);
85ba2d86 1427 ncsw = 0;
f31e11d8 1428 if (!match_state || p->state == match_state)
93dcf55f 1429 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
eb580751 1430 task_rq_unlock(rq, p, &rf);
fa490cfd 1431
85ba2d86
RM
1432 /*
1433 * If it changed from the expected state, bail out now.
1434 */
1435 if (unlikely(!ncsw))
1436 break;
1437
3a5c359a
AK
1438 /*
1439 * Was it really running after all now that we
1440 * checked with the proper locks actually held?
1441 *
1442 * Oops. Go back and try again..
1443 */
1444 if (unlikely(running)) {
1445 cpu_relax();
1446 continue;
1447 }
fa490cfd 1448
3a5c359a
AK
1449 /*
1450 * It's not enough that it's not actively running,
1451 * it must be off the runqueue _entirely_, and not
1452 * preempted!
1453 *
80dd99b3 1454 * So if it was still runnable (but just not actively
3a5c359a
AK
1455 * running right now), it's preempted, and we should
1456 * yield - it could be a while.
1457 */
da0c1e65 1458 if (unlikely(queued)) {
8b0e1953 1459 ktime_t to = NSEC_PER_SEC / HZ;
8eb90c30
TG
1460
1461 set_current_state(TASK_UNINTERRUPTIBLE);
1462 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1463 continue;
1464 }
fa490cfd 1465
3a5c359a
AK
1466 /*
1467 * Ahh, all good. It wasn't running, and it wasn't
1468 * runnable, which means that it will never become
1469 * running in the future either. We're all done!
1470 */
1471 break;
1472 }
85ba2d86
RM
1473
1474 return ncsw;
1da177e4
LT
1475}
1476
1477/***
1478 * kick_process - kick a running thread to enter/exit the kernel
1479 * @p: the to-be-kicked thread
1480 *
1481 * Cause a process which is running on another CPU to enter
1482 * kernel-mode, without any delay. (to get signals handled.)
1483 *
25985edc 1484 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1485 * because all it wants to ensure is that the remote task enters
1486 * the kernel. If the IPI races and the task has been migrated
1487 * to another CPU then no harm is done and the purpose has been
1488 * achieved as well.
1489 */
36c8b586 1490void kick_process(struct task_struct *p)
1da177e4
LT
1491{
1492 int cpu;
1493
1494 preempt_disable();
1495 cpu = task_cpu(p);
1496 if ((cpu != smp_processor_id()) && task_curr(p))
1497 smp_send_reschedule(cpu);
1498 preempt_enable();
1499}
b43e3521 1500EXPORT_SYMBOL_GPL(kick_process);
1da177e4 1501
30da688e 1502/*
013fdb80 1503 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
e9d867a6
PZI
1504 *
1505 * A few notes on cpu_active vs cpu_online:
1506 *
1507 * - cpu_active must be a subset of cpu_online
1508 *
1509 * - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
1510 * see __set_cpus_allowed_ptr(). At this point the newly online
1511 * cpu isn't yet part of the sched domains, and balancing will not
1512 * see it.
1513 *
1514 * - on cpu-down we clear cpu_active() to mask the sched domains and
1515 * avoid the load balancer to place new tasks on the to be removed
1516 * cpu. Existing tasks will remain running there and will be taken
1517 * off.
1518 *
1519 * This means that fallback selection must not select !active CPUs.
1520 * And can assume that any active CPU must be online. Conversely
1521 * select_task_rq() below may allow selection of !active CPUs in order
1522 * to satisfy the above rules.
30da688e 1523 */
5da9a0fb
PZ
1524static int select_fallback_rq(int cpu, struct task_struct *p)
1525{
aa00d89c
TC
1526 int nid = cpu_to_node(cpu);
1527 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1528 enum { cpuset, possible, fail } state = cpuset;
1529 int dest_cpu;
5da9a0fb 1530
aa00d89c
TC
1531 /*
1532 * If the node that the cpu is on has been offlined, cpu_to_node()
1533 * will return -1. There is no cpu on the node, and we should
1534 * select the cpu on the other node.
1535 */
1536 if (nid != -1) {
1537 nodemask = cpumask_of_node(nid);
1538
1539 /* Look for allowed, online CPU in same node. */
1540 for_each_cpu(dest_cpu, nodemask) {
aa00d89c
TC
1541 if (!cpu_active(dest_cpu))
1542 continue;
1543 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1544 return dest_cpu;
1545 }
2baab4e9 1546 }
5da9a0fb 1547
2baab4e9
PZ
1548 for (;;) {
1549 /* Any allowed, online CPU? */
e3831edd 1550 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
feb245e3
TH
1551 if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu))
1552 continue;
1553 if (!cpu_online(dest_cpu))
2baab4e9
PZ
1554 continue;
1555 goto out;
1556 }
5da9a0fb 1557
e73e85f0 1558 /* No more Mr. Nice Guy. */
2baab4e9
PZ
1559 switch (state) {
1560 case cpuset:
e73e85f0
ON
1561 if (IS_ENABLED(CONFIG_CPUSETS)) {
1562 cpuset_cpus_allowed_fallback(p);
1563 state = possible;
1564 break;
1565 }
1566 /* fall-through */
2baab4e9
PZ
1567 case possible:
1568 do_set_cpus_allowed(p, cpu_possible_mask);
1569 state = fail;
1570 break;
1571
1572 case fail:
1573 BUG();
1574 break;
1575 }
1576 }
1577
1578out:
1579 if (state != cpuset) {
1580 /*
1581 * Don't tell them about moving exiting tasks or
1582 * kernel threads (both mm NULL), since they never
1583 * leave kernel.
1584 */
1585 if (p->mm && printk_ratelimit()) {
aac74dc4 1586 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1587 task_pid_nr(p), p->comm, cpu);
1588 }
5da9a0fb
PZ
1589 }
1590
1591 return dest_cpu;
1592}
1593
e2912009 1594/*
013fdb80 1595 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1596 */
970b13ba 1597static inline
ac66f547 1598int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1599{
cbce1a68
PZ
1600 lockdep_assert_held(&p->pi_lock);
1601
50605ffb 1602 if (tsk_nr_cpus_allowed(p) > 1)
6c1d9410 1603 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e9d867a6
PZI
1604 else
1605 cpu = cpumask_any(tsk_cpus_allowed(p));
e2912009
PZ
1606
1607 /*
1608 * In order not to call set_task_cpu() on a blocking task we need
1609 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1610 * cpu.
1611 *
1612 * Since this is common to all placement strategies, this lives here.
1613 *
1614 * [ this allows ->select_task() to simply return task_cpu(p) and
1615 * not worry about this generic constraint ]
1616 */
fa17b507 1617 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1618 !cpu_online(cpu)))
5da9a0fb 1619 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1620
1621 return cpu;
970b13ba 1622}
09a40af5
MG
1623
1624static void update_avg(u64 *avg, u64 sample)
1625{
1626 s64 diff = sample - *avg;
1627 *avg += diff >> 3;
1628}
25834c73
PZ
1629
1630#else
1631
1632static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1633 const struct cpumask *new_mask, bool check)
1634{
1635 return set_cpus_allowed_ptr(p, new_mask);
1636}
1637
5cc389bc 1638#endif /* CONFIG_SMP */
970b13ba 1639
d7c01d27 1640static void
b84cb5df 1641ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1642{
4fa8d299 1643 struct rq *rq;
b84cb5df 1644
4fa8d299
JP
1645 if (!schedstat_enabled())
1646 return;
1647
1648 rq = this_rq();
d7c01d27 1649
4fa8d299
JP
1650#ifdef CONFIG_SMP
1651 if (cpu == rq->cpu) {
ae92882e
JP
1652 schedstat_inc(rq->ttwu_local);
1653 schedstat_inc(p->se.statistics.nr_wakeups_local);
d7c01d27
PZ
1654 } else {
1655 struct sched_domain *sd;
1656
ae92882e 1657 schedstat_inc(p->se.statistics.nr_wakeups_remote);
057f3fad 1658 rcu_read_lock();
4fa8d299 1659 for_each_domain(rq->cpu, sd) {
d7c01d27 1660 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
ae92882e 1661 schedstat_inc(sd->ttwu_wake_remote);
d7c01d27
PZ
1662 break;
1663 }
1664 }
057f3fad 1665 rcu_read_unlock();
d7c01d27 1666 }
f339b9dc
PZ
1667
1668 if (wake_flags & WF_MIGRATED)
ae92882e 1669 schedstat_inc(p->se.statistics.nr_wakeups_migrate);
d7c01d27
PZ
1670#endif /* CONFIG_SMP */
1671
ae92882e
JP
1672 schedstat_inc(rq->ttwu_count);
1673 schedstat_inc(p->se.statistics.nr_wakeups);
d7c01d27
PZ
1674
1675 if (wake_flags & WF_SYNC)
ae92882e 1676 schedstat_inc(p->se.statistics.nr_wakeups_sync);
d7c01d27
PZ
1677}
1678
1de64443 1679static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
d7c01d27 1680{
9ed3811a 1681 activate_task(rq, p, en_flags);
da0c1e65 1682 p->on_rq = TASK_ON_RQ_QUEUED;
c2f7115e
PZ
1683
1684 /* if a worker is waking up, notify workqueue */
1685 if (p->flags & PF_WQ_WORKER)
1686 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1687}
1688
23f41eeb
PZ
1689/*
1690 * Mark the task runnable and perform wakeup-preemption.
1691 */
e7904a28 1692static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
d8ac8971 1693 struct rq_flags *rf)
9ed3811a 1694{
9ed3811a 1695 check_preempt_curr(rq, p, wake_flags);
9ed3811a 1696 p->state = TASK_RUNNING;
fbd705a0
PZ
1697 trace_sched_wakeup(p);
1698
9ed3811a 1699#ifdef CONFIG_SMP
4c9a4bc8
PZ
1700 if (p->sched_class->task_woken) {
1701 /*
cbce1a68
PZ
1702 * Our task @p is fully woken up and running; so its safe to
1703 * drop the rq->lock, hereafter rq is only used for statistics.
4c9a4bc8 1704 */
d8ac8971 1705 rq_unpin_lock(rq, rf);
9ed3811a 1706 p->sched_class->task_woken(rq, p);
d8ac8971 1707 rq_repin_lock(rq, rf);
4c9a4bc8 1708 }
9ed3811a 1709
e69c6341 1710 if (rq->idle_stamp) {
78becc27 1711 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1712 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1713
abfafa54
JL
1714 update_avg(&rq->avg_idle, delta);
1715
1716 if (rq->avg_idle > max)
9ed3811a 1717 rq->avg_idle = max;
abfafa54 1718
9ed3811a
TH
1719 rq->idle_stamp = 0;
1720 }
1721#endif
1722}
1723
c05fbafb 1724static void
e7904a28 1725ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
d8ac8971 1726 struct rq_flags *rf)
c05fbafb 1727{
b5179ac7
PZ
1728 int en_flags = ENQUEUE_WAKEUP;
1729
cbce1a68
PZ
1730 lockdep_assert_held(&rq->lock);
1731
c05fbafb
PZ
1732#ifdef CONFIG_SMP
1733 if (p->sched_contributes_to_load)
1734 rq->nr_uninterruptible--;
b5179ac7 1735
b5179ac7 1736 if (wake_flags & WF_MIGRATED)
59efa0ba 1737 en_flags |= ENQUEUE_MIGRATED;
c05fbafb
PZ
1738#endif
1739
b5179ac7 1740 ttwu_activate(rq, p, en_flags);
d8ac8971 1741 ttwu_do_wakeup(rq, p, wake_flags, rf);
c05fbafb
PZ
1742}
1743
1744/*
1745 * Called in case the task @p isn't fully descheduled from its runqueue,
1746 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1747 * since all we need to do is flip p->state to TASK_RUNNING, since
1748 * the task is still ->on_rq.
1749 */
1750static int ttwu_remote(struct task_struct *p, int wake_flags)
1751{
eb580751 1752 struct rq_flags rf;
c05fbafb
PZ
1753 struct rq *rq;
1754 int ret = 0;
1755
eb580751 1756 rq = __task_rq_lock(p, &rf);
da0c1e65 1757 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
1758 /* check_preempt_curr() may use rq clock */
1759 update_rq_clock(rq);
d8ac8971 1760 ttwu_do_wakeup(rq, p, wake_flags, &rf);
c05fbafb
PZ
1761 ret = 1;
1762 }
eb580751 1763 __task_rq_unlock(rq, &rf);
c05fbafb
PZ
1764
1765 return ret;
1766}
1767
317f3941 1768#ifdef CONFIG_SMP
e3baac47 1769void sched_ttwu_pending(void)
317f3941
PZ
1770{
1771 struct rq *rq = this_rq();
fa14ff4a
PZ
1772 struct llist_node *llist = llist_del_all(&rq->wake_list);
1773 struct task_struct *p;
e3baac47 1774 unsigned long flags;
d8ac8971 1775 struct rq_flags rf;
317f3941 1776
e3baac47
PZ
1777 if (!llist)
1778 return;
1779
1780 raw_spin_lock_irqsave(&rq->lock, flags);
d8ac8971 1781 rq_pin_lock(rq, &rf);
317f3941 1782
fa14ff4a 1783 while (llist) {
b7e7ade3
PZ
1784 int wake_flags = 0;
1785
fa14ff4a
PZ
1786 p = llist_entry(llist, struct task_struct, wake_entry);
1787 llist = llist_next(llist);
b7e7ade3
PZ
1788
1789 if (p->sched_remote_wakeup)
1790 wake_flags = WF_MIGRATED;
1791
d8ac8971 1792 ttwu_do_activate(rq, p, wake_flags, &rf);
317f3941
PZ
1793 }
1794
d8ac8971 1795 rq_unpin_lock(rq, &rf);
e3baac47 1796 raw_spin_unlock_irqrestore(&rq->lock, flags);
317f3941
PZ
1797}
1798
1799void scheduler_ipi(void)
1800{
f27dde8d
PZ
1801 /*
1802 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1803 * TIF_NEED_RESCHED remotely (for the first time) will also send
1804 * this IPI.
1805 */
8cb75e0c 1806 preempt_fold_need_resched();
f27dde8d 1807
fd2ac4f4 1808 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1809 return;
1810
1811 /*
1812 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1813 * traditionally all their work was done from the interrupt return
1814 * path. Now that we actually do some work, we need to make sure
1815 * we do call them.
1816 *
1817 * Some archs already do call them, luckily irq_enter/exit nest
1818 * properly.
1819 *
1820 * Arguably we should visit all archs and update all handlers,
1821 * however a fair share of IPIs are still resched only so this would
1822 * somewhat pessimize the simple resched case.
1823 */
1824 irq_enter();
fa14ff4a 1825 sched_ttwu_pending();
ca38062e
SS
1826
1827 /*
1828 * Check if someone kicked us for doing the nohz idle load balance.
1829 */
873b4c65 1830 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1831 this_rq()->idle_balance = 1;
ca38062e 1832 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1833 }
c5d753a5 1834 irq_exit();
317f3941
PZ
1835}
1836
b7e7ade3 1837static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
317f3941 1838{
e3baac47
PZ
1839 struct rq *rq = cpu_rq(cpu);
1840
b7e7ade3
PZ
1841 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1842
e3baac47
PZ
1843 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1844 if (!set_nr_if_polling(rq->idle))
1845 smp_send_reschedule(cpu);
1846 else
1847 trace_sched_wake_idle_without_ipi(cpu);
1848 }
317f3941 1849}
d6aa8f85 1850
f6be8af1
CL
1851void wake_up_if_idle(int cpu)
1852{
1853 struct rq *rq = cpu_rq(cpu);
1854 unsigned long flags;
1855
fd7de1e8
AL
1856 rcu_read_lock();
1857
1858 if (!is_idle_task(rcu_dereference(rq->curr)))
1859 goto out;
f6be8af1
CL
1860
1861 if (set_nr_if_polling(rq->idle)) {
1862 trace_sched_wake_idle_without_ipi(cpu);
1863 } else {
1864 raw_spin_lock_irqsave(&rq->lock, flags);
1865 if (is_idle_task(rq->curr))
1866 smp_send_reschedule(cpu);
1867 /* Else cpu is not in idle, do nothing here */
1868 raw_spin_unlock_irqrestore(&rq->lock, flags);
1869 }
fd7de1e8
AL
1870
1871out:
1872 rcu_read_unlock();
f6be8af1
CL
1873}
1874
39be3501 1875bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1876{
1877 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1878}
d6aa8f85 1879#endif /* CONFIG_SMP */
317f3941 1880
b5179ac7 1881static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
c05fbafb
PZ
1882{
1883 struct rq *rq = cpu_rq(cpu);
d8ac8971 1884 struct rq_flags rf;
c05fbafb 1885
17d9f311 1886#if defined(CONFIG_SMP)
39be3501 1887 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1888 sched_clock_cpu(cpu); /* sync clocks x-cpu */
b7e7ade3 1889 ttwu_queue_remote(p, cpu, wake_flags);
317f3941
PZ
1890 return;
1891 }
1892#endif
1893
c05fbafb 1894 raw_spin_lock(&rq->lock);
d8ac8971
MF
1895 rq_pin_lock(rq, &rf);
1896 ttwu_do_activate(rq, p, wake_flags, &rf);
1897 rq_unpin_lock(rq, &rf);
c05fbafb 1898 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1899}
1900
8643cda5
PZ
1901/*
1902 * Notes on Program-Order guarantees on SMP systems.
1903 *
1904 * MIGRATION
1905 *
1906 * The basic program-order guarantee on SMP systems is that when a task [t]
1907 * migrates, all its activity on its old cpu [c0] happens-before any subsequent
1908 * execution on its new cpu [c1].
1909 *
1910 * For migration (of runnable tasks) this is provided by the following means:
1911 *
1912 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1913 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1914 * rq(c1)->lock (if not at the same time, then in that order).
1915 * C) LOCK of the rq(c1)->lock scheduling in task
1916 *
1917 * Transitivity guarantees that B happens after A and C after B.
1918 * Note: we only require RCpc transitivity.
1919 * Note: the cpu doing B need not be c0 or c1
1920 *
1921 * Example:
1922 *
1923 * CPU0 CPU1 CPU2
1924 *
1925 * LOCK rq(0)->lock
1926 * sched-out X
1927 * sched-in Y
1928 * UNLOCK rq(0)->lock
1929 *
1930 * LOCK rq(0)->lock // orders against CPU0
1931 * dequeue X
1932 * UNLOCK rq(0)->lock
1933 *
1934 * LOCK rq(1)->lock
1935 * enqueue X
1936 * UNLOCK rq(1)->lock
1937 *
1938 * LOCK rq(1)->lock // orders against CPU2
1939 * sched-out Z
1940 * sched-in X
1941 * UNLOCK rq(1)->lock
1942 *
1943 *
1944 * BLOCKING -- aka. SLEEP + WAKEUP
1945 *
1946 * For blocking we (obviously) need to provide the same guarantee as for
1947 * migration. However the means are completely different as there is no lock
1948 * chain to provide order. Instead we do:
1949 *
1950 * 1) smp_store_release(X->on_cpu, 0)
1f03e8d2 1951 * 2) smp_cond_load_acquire(!X->on_cpu)
8643cda5
PZ
1952 *
1953 * Example:
1954 *
1955 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1956 *
1957 * LOCK rq(0)->lock LOCK X->pi_lock
1958 * dequeue X
1959 * sched-out X
1960 * smp_store_release(X->on_cpu, 0);
1961 *
1f03e8d2 1962 * smp_cond_load_acquire(&X->on_cpu, !VAL);
8643cda5
PZ
1963 * X->state = WAKING
1964 * set_task_cpu(X,2)
1965 *
1966 * LOCK rq(2)->lock
1967 * enqueue X
1968 * X->state = RUNNING
1969 * UNLOCK rq(2)->lock
1970 *
1971 * LOCK rq(2)->lock // orders against CPU1
1972 * sched-out Z
1973 * sched-in X
1974 * UNLOCK rq(2)->lock
1975 *
1976 * UNLOCK X->pi_lock
1977 * UNLOCK rq(0)->lock
1978 *
1979 *
1980 * However; for wakeups there is a second guarantee we must provide, namely we
1981 * must observe the state that lead to our wakeup. That is, not only must our
1982 * task observe its own prior state, it must also observe the stores prior to
1983 * its wakeup.
1984 *
1985 * This means that any means of doing remote wakeups must order the CPU doing
1986 * the wakeup against the CPU the task is going to end up running on. This,
1987 * however, is already required for the regular Program-Order guarantee above,
1f03e8d2 1988 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
8643cda5
PZ
1989 *
1990 */
1991
9ed3811a 1992/**
1da177e4 1993 * try_to_wake_up - wake up a thread
9ed3811a 1994 * @p: the thread to be awakened
1da177e4 1995 * @state: the mask of task states that can be woken
9ed3811a 1996 * @wake_flags: wake modifier flags (WF_*)
1da177e4 1997 *
a2250238 1998 * If (@state & @p->state) @p->state = TASK_RUNNING.
1da177e4 1999 *
a2250238
PZ
2000 * If the task was not queued/runnable, also place it back on a runqueue.
2001 *
2002 * Atomic against schedule() which would dequeue a task, also see
2003 * set_current_state().
2004 *
2005 * Return: %true if @p->state changes (an actual wakeup was done),
2006 * %false otherwise.
1da177e4 2007 */
e4a52bcb
PZ
2008static int
2009try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 2010{
1da177e4 2011 unsigned long flags;
c05fbafb 2012 int cpu, success = 0;
2398f2c6 2013
e0acd0a6
ON
2014 /*
2015 * If we are going to wake up a thread waiting for CONDITION we
2016 * need to ensure that CONDITION=1 done by the caller can not be
2017 * reordered with p->state check below. This pairs with mb() in
2018 * set_current_state() the waiting thread does.
2019 */
2020 smp_mb__before_spinlock();
013fdb80 2021 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 2022 if (!(p->state & state))
1da177e4
LT
2023 goto out;
2024
fbd705a0
PZ
2025 trace_sched_waking(p);
2026
c05fbafb 2027 success = 1; /* we're going to change ->state */
1da177e4 2028 cpu = task_cpu(p);
1da177e4 2029
135e8c92
BS
2030 /*
2031 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2032 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2033 * in smp_cond_load_acquire() below.
2034 *
2035 * sched_ttwu_pending() try_to_wake_up()
2036 * [S] p->on_rq = 1; [L] P->state
2037 * UNLOCK rq->lock -----.
2038 * \
2039 * +--- RMB
2040 * schedule() /
2041 * LOCK rq->lock -----'
2042 * UNLOCK rq->lock
2043 *
2044 * [task p]
2045 * [S] p->state = UNINTERRUPTIBLE [L] p->on_rq
2046 *
2047 * Pairs with the UNLOCK+LOCK on rq->lock from the
2048 * last wakeup of our task and the schedule that got our task
2049 * current.
2050 */
2051 smp_rmb();
c05fbafb
PZ
2052 if (p->on_rq && ttwu_remote(p, wake_flags))
2053 goto stat;
1da177e4 2054
1da177e4 2055#ifdef CONFIG_SMP
ecf7d01c
PZ
2056 /*
2057 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2058 * possible to, falsely, observe p->on_cpu == 0.
2059 *
2060 * One must be running (->on_cpu == 1) in order to remove oneself
2061 * from the runqueue.
2062 *
2063 * [S] ->on_cpu = 1; [L] ->on_rq
2064 * UNLOCK rq->lock
2065 * RMB
2066 * LOCK rq->lock
2067 * [S] ->on_rq = 0; [L] ->on_cpu
2068 *
2069 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2070 * from the consecutive calls to schedule(); the first switching to our
2071 * task, the second putting it to sleep.
2072 */
2073 smp_rmb();
2074
e9c84311 2075 /*
c05fbafb
PZ
2076 * If the owning (remote) cpu is still in the middle of schedule() with
2077 * this task as prev, wait until its done referencing the task.
b75a2253
PZ
2078 *
2079 * Pairs with the smp_store_release() in finish_lock_switch().
2080 *
2081 * This ensures that tasks getting woken will be fully ordered against
2082 * their previous state and preserve Program Order.
0970d299 2083 */
1f03e8d2 2084 smp_cond_load_acquire(&p->on_cpu, !VAL);
1da177e4 2085
a8e4f2ea 2086 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 2087 p->state = TASK_WAKING;
e7693a36 2088
ac66f547 2089 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
2090 if (task_cpu(p) != cpu) {
2091 wake_flags |= WF_MIGRATED;
e4a52bcb 2092 set_task_cpu(p, cpu);
f339b9dc 2093 }
1da177e4 2094#endif /* CONFIG_SMP */
1da177e4 2095
b5179ac7 2096 ttwu_queue(p, cpu, wake_flags);
c05fbafb 2097stat:
4fa8d299 2098 ttwu_stat(p, cpu, wake_flags);
1da177e4 2099out:
013fdb80 2100 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
2101
2102 return success;
2103}
2104
21aa9af0
TH
2105/**
2106 * try_to_wake_up_local - try to wake up a local task with rq lock held
2107 * @p: the thread to be awakened
9279e0d2 2108 * @cookie: context's cookie for pinning
21aa9af0 2109 *
2acca55e 2110 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 2111 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 2112 * the current task.
21aa9af0 2113 */
d8ac8971 2114static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf)
21aa9af0
TH
2115{
2116 struct rq *rq = task_rq(p);
21aa9af0 2117
383efcd0
TH
2118 if (WARN_ON_ONCE(rq != this_rq()) ||
2119 WARN_ON_ONCE(p == current))
2120 return;
2121
21aa9af0
TH
2122 lockdep_assert_held(&rq->lock);
2123
2acca55e 2124 if (!raw_spin_trylock(&p->pi_lock)) {
cbce1a68
PZ
2125 /*
2126 * This is OK, because current is on_cpu, which avoids it being
2127 * picked for load-balance and preemption/IRQs are still
2128 * disabled avoiding further scheduler activity on it and we've
2129 * not yet picked a replacement task.
2130 */
d8ac8971 2131 rq_unpin_lock(rq, rf);
2acca55e
PZ
2132 raw_spin_unlock(&rq->lock);
2133 raw_spin_lock(&p->pi_lock);
2134 raw_spin_lock(&rq->lock);
d8ac8971 2135 rq_repin_lock(rq, rf);
2acca55e
PZ
2136 }
2137
21aa9af0 2138 if (!(p->state & TASK_NORMAL))
2acca55e 2139 goto out;
21aa9af0 2140
fbd705a0
PZ
2141 trace_sched_waking(p);
2142
da0c1e65 2143 if (!task_on_rq_queued(p))
d7c01d27
PZ
2144 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2145
d8ac8971 2146 ttwu_do_wakeup(rq, p, 0, rf);
4fa8d299 2147 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
2148out:
2149 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
2150}
2151
50fa610a
DH
2152/**
2153 * wake_up_process - Wake up a specific process
2154 * @p: The process to be woken up.
2155 *
2156 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
2157 * processes.
2158 *
2159 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
2160 *
2161 * It may be assumed that this function implies a write memory barrier before
2162 * changing the task state if and only if any tasks are woken up.
2163 */
7ad5b3a5 2164int wake_up_process(struct task_struct *p)
1da177e4 2165{
9067ac85 2166 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 2167}
1da177e4
LT
2168EXPORT_SYMBOL(wake_up_process);
2169
7ad5b3a5 2170int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2171{
2172 return try_to_wake_up(p, state, 0);
2173}
2174
a5e7be3b
JL
2175/*
2176 * This function clears the sched_dl_entity static params.
2177 */
2178void __dl_clear_params(struct task_struct *p)
2179{
2180 struct sched_dl_entity *dl_se = &p->dl;
2181
2182 dl_se->dl_runtime = 0;
2183 dl_se->dl_deadline = 0;
2184 dl_se->dl_period = 0;
2185 dl_se->flags = 0;
2186 dl_se->dl_bw = 0;
40767b0d
PZ
2187
2188 dl_se->dl_throttled = 0;
40767b0d 2189 dl_se->dl_yielded = 0;
a5e7be3b
JL
2190}
2191
1da177e4
LT
2192/*
2193 * Perform scheduler related setup for a newly forked process p.
2194 * p is forked by current.
dd41f596
IM
2195 *
2196 * __sched_fork() is basic setup used by init_idle() too:
2197 */
5e1576ed 2198static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2199{
fd2f4419
PZ
2200 p->on_rq = 0;
2201
2202 p->se.on_rq = 0;
dd41f596
IM
2203 p->se.exec_start = 0;
2204 p->se.sum_exec_runtime = 0;
f6cf891c 2205 p->se.prev_sum_exec_runtime = 0;
6c594c21 2206 p->se.nr_migrations = 0;
da7a735e 2207 p->se.vruntime = 0;
fd2f4419 2208 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d 2209
ad936d86
BP
2210#ifdef CONFIG_FAIR_GROUP_SCHED
2211 p->se.cfs_rq = NULL;
2212#endif
2213
6cfb0d5d 2214#ifdef CONFIG_SCHEDSTATS
cb251765 2215 /* Even if schedstat is disabled, there should not be garbage */
41acab88 2216 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2217#endif
476d139c 2218
aab03e05 2219 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 2220 init_dl_task_timer(&p->dl);
a5e7be3b 2221 __dl_clear_params(p);
aab03e05 2222
fa717060 2223 INIT_LIST_HEAD(&p->rt.run_list);
ff77e468
PZ
2224 p->rt.timeout = 0;
2225 p->rt.time_slice = sched_rr_timeslice;
2226 p->rt.on_rq = 0;
2227 p->rt.on_list = 0;
476d139c 2228
e107be36
AK
2229#ifdef CONFIG_PREEMPT_NOTIFIERS
2230 INIT_HLIST_HEAD(&p->preempt_notifiers);
2231#endif
cbee9f88
PZ
2232
2233#ifdef CONFIG_NUMA_BALANCING
2234 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 2235 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
2236 p->mm->numa_scan_seq = 0;
2237 }
2238
5e1576ed
RR
2239 if (clone_flags & CLONE_VM)
2240 p->numa_preferred_nid = current->numa_preferred_nid;
2241 else
2242 p->numa_preferred_nid = -1;
2243
cbee9f88
PZ
2244 p->node_stamp = 0ULL;
2245 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 2246 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 2247 p->numa_work.next = &p->numa_work;
44dba3d5 2248 p->numa_faults = NULL;
7e2703e6
RR
2249 p->last_task_numa_placement = 0;
2250 p->last_sum_exec_runtime = 0;
8c8a743c 2251
8c8a743c 2252 p->numa_group = NULL;
cbee9f88 2253#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
2254}
2255
2a595721
SD
2256DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2257
1a687c2e 2258#ifdef CONFIG_NUMA_BALANCING
c3b9bc5b 2259
1a687c2e
MG
2260void set_numabalancing_state(bool enabled)
2261{
2262 if (enabled)
2a595721 2263 static_branch_enable(&sched_numa_balancing);
1a687c2e 2264 else
2a595721 2265 static_branch_disable(&sched_numa_balancing);
1a687c2e 2266}
54a43d54
AK
2267
2268#ifdef CONFIG_PROC_SYSCTL
2269int sysctl_numa_balancing(struct ctl_table *table, int write,
2270 void __user *buffer, size_t *lenp, loff_t *ppos)
2271{
2272 struct ctl_table t;
2273 int err;
2a595721 2274 int state = static_branch_likely(&sched_numa_balancing);
54a43d54
AK
2275
2276 if (write && !capable(CAP_SYS_ADMIN))
2277 return -EPERM;
2278
2279 t = *table;
2280 t.data = &state;
2281 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2282 if (err < 0)
2283 return err;
2284 if (write)
2285 set_numabalancing_state(state);
2286 return err;
2287}
2288#endif
2289#endif
dd41f596 2290
4698f88c
JP
2291#ifdef CONFIG_SCHEDSTATS
2292
cb251765 2293DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4698f88c 2294static bool __initdata __sched_schedstats = false;
cb251765 2295
cb251765
MG
2296static void set_schedstats(bool enabled)
2297{
2298 if (enabled)
2299 static_branch_enable(&sched_schedstats);
2300 else
2301 static_branch_disable(&sched_schedstats);
2302}
2303
2304void force_schedstat_enabled(void)
2305{
2306 if (!schedstat_enabled()) {
2307 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2308 static_branch_enable(&sched_schedstats);
2309 }
2310}
2311
2312static int __init setup_schedstats(char *str)
2313{
2314 int ret = 0;
2315 if (!str)
2316 goto out;
2317
4698f88c
JP
2318 /*
2319 * This code is called before jump labels have been set up, so we can't
2320 * change the static branch directly just yet. Instead set a temporary
2321 * variable so init_schedstats() can do it later.
2322 */
cb251765 2323 if (!strcmp(str, "enable")) {
4698f88c 2324 __sched_schedstats = true;
cb251765
MG
2325 ret = 1;
2326 } else if (!strcmp(str, "disable")) {
4698f88c 2327 __sched_schedstats = false;
cb251765
MG
2328 ret = 1;
2329 }
2330out:
2331 if (!ret)
2332 pr_warn("Unable to parse schedstats=\n");
2333
2334 return ret;
2335}
2336__setup("schedstats=", setup_schedstats);
2337
4698f88c
JP
2338static void __init init_schedstats(void)
2339{
2340 set_schedstats(__sched_schedstats);
2341}
2342
cb251765
MG
2343#ifdef CONFIG_PROC_SYSCTL
2344int sysctl_schedstats(struct ctl_table *table, int write,
2345 void __user *buffer, size_t *lenp, loff_t *ppos)
2346{
2347 struct ctl_table t;
2348 int err;
2349 int state = static_branch_likely(&sched_schedstats);
2350
2351 if (write && !capable(CAP_SYS_ADMIN))
2352 return -EPERM;
2353
2354 t = *table;
2355 t.data = &state;
2356 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2357 if (err < 0)
2358 return err;
2359 if (write)
2360 set_schedstats(state);
2361 return err;
2362}
4698f88c
JP
2363#endif /* CONFIG_PROC_SYSCTL */
2364#else /* !CONFIG_SCHEDSTATS */
2365static inline void init_schedstats(void) {}
2366#endif /* CONFIG_SCHEDSTATS */
dd41f596
IM
2367
2368/*
2369 * fork()/clone()-time setup:
2370 */
aab03e05 2371int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2372{
0122ec5b 2373 unsigned long flags;
dd41f596
IM
2374 int cpu = get_cpu();
2375
5e1576ed 2376 __sched_fork(clone_flags, p);
06b83b5f 2377 /*
7dc603c9 2378 * We mark the process as NEW here. This guarantees that
06b83b5f
PZ
2379 * nobody will actually run it, and a signal or other external
2380 * event cannot wake it up and insert it on the runqueue either.
2381 */
7dc603c9 2382 p->state = TASK_NEW;
dd41f596 2383
c350a04e
MG
2384 /*
2385 * Make sure we do not leak PI boosting priority to the child.
2386 */
2387 p->prio = current->normal_prio;
2388
b9dc29e7
MG
2389 /*
2390 * Revert to default priority/policy on fork if requested.
2391 */
2392 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 2393 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 2394 p->policy = SCHED_NORMAL;
6c697bdf 2395 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
2396 p->rt_priority = 0;
2397 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2398 p->static_prio = NICE_TO_PRIO(0);
2399
2400 p->prio = p->normal_prio = __normal_prio(p);
2401 set_load_weight(p);
6c697bdf 2402
b9dc29e7
MG
2403 /*
2404 * We don't need the reset flag anymore after the fork. It has
2405 * fulfilled its duty:
2406 */
2407 p->sched_reset_on_fork = 0;
2408 }
ca94c442 2409
aab03e05
DF
2410 if (dl_prio(p->prio)) {
2411 put_cpu();
2412 return -EAGAIN;
2413 } else if (rt_prio(p->prio)) {
2414 p->sched_class = &rt_sched_class;
2415 } else {
2ddbf952 2416 p->sched_class = &fair_sched_class;
aab03e05 2417 }
b29739f9 2418
7dc603c9 2419 init_entity_runnable_average(&p->se);
cd29fe6f 2420
86951599
PZ
2421 /*
2422 * The child is not yet in the pid-hash so no cgroup attach races,
2423 * and the cgroup is pinned to this child due to cgroup_fork()
2424 * is ran before sched_fork().
2425 *
2426 * Silence PROVE_RCU.
2427 */
0122ec5b 2428 raw_spin_lock_irqsave(&p->pi_lock, flags);
e210bffd
PZ
2429 /*
2430 * We're setting the cpu for the first time, we don't migrate,
2431 * so use __set_task_cpu().
2432 */
2433 __set_task_cpu(p, cpu);
2434 if (p->sched_class->task_fork)
2435 p->sched_class->task_fork(p);
0122ec5b 2436 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 2437
f6db8347 2438#ifdef CONFIG_SCHED_INFO
dd41f596 2439 if (likely(sched_info_on()))
52f17b6c 2440 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2441#endif
3ca7a440
PZ
2442#if defined(CONFIG_SMP)
2443 p->on_cpu = 0;
4866cde0 2444#endif
01028747 2445 init_task_preempt_count(p);
806c09a7 2446#ifdef CONFIG_SMP
917b627d 2447 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 2448 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 2449#endif
917b627d 2450
476d139c 2451 put_cpu();
aab03e05 2452 return 0;
1da177e4
LT
2453}
2454
332ac17e
DF
2455unsigned long to_ratio(u64 period, u64 runtime)
2456{
2457 if (runtime == RUNTIME_INF)
2458 return 1ULL << 20;
2459
2460 /*
2461 * Doing this here saves a lot of checks in all
2462 * the calling paths, and returning zero seems
2463 * safe for them anyway.
2464 */
2465 if (period == 0)
2466 return 0;
2467
2468 return div64_u64(runtime << 20, period);
2469}
2470
2471#ifdef CONFIG_SMP
2472inline struct dl_bw *dl_bw_of(int i)
2473{
f78f5b90
PM
2474 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2475 "sched RCU must be held");
332ac17e
DF
2476 return &cpu_rq(i)->rd->dl_bw;
2477}
2478
de212f18 2479static inline int dl_bw_cpus(int i)
332ac17e 2480{
de212f18
PZ
2481 struct root_domain *rd = cpu_rq(i)->rd;
2482 int cpus = 0;
2483
f78f5b90
PM
2484 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2485 "sched RCU must be held");
de212f18
PZ
2486 for_each_cpu_and(i, rd->span, cpu_active_mask)
2487 cpus++;
2488
2489 return cpus;
332ac17e
DF
2490}
2491#else
2492inline struct dl_bw *dl_bw_of(int i)
2493{
2494 return &cpu_rq(i)->dl.dl_bw;
2495}
2496
de212f18 2497static inline int dl_bw_cpus(int i)
332ac17e
DF
2498{
2499 return 1;
2500}
2501#endif
2502
332ac17e
DF
2503/*
2504 * We must be sure that accepting a new task (or allowing changing the
2505 * parameters of an existing one) is consistent with the bandwidth
2506 * constraints. If yes, this function also accordingly updates the currently
2507 * allocated bandwidth to reflect the new situation.
2508 *
2509 * This function is called while holding p's rq->lock.
40767b0d
PZ
2510 *
2511 * XXX we should delay bw change until the task's 0-lag point, see
2512 * __setparam_dl().
332ac17e
DF
2513 */
2514static int dl_overflow(struct task_struct *p, int policy,
2515 const struct sched_attr *attr)
2516{
2517
2518 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
4df1638c 2519 u64 period = attr->sched_period ?: attr->sched_deadline;
332ac17e
DF
2520 u64 runtime = attr->sched_runtime;
2521 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 2522 int cpus, err = -1;
332ac17e 2523
fec148c0
XP
2524 /* !deadline task may carry old deadline bandwidth */
2525 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
332ac17e
DF
2526 return 0;
2527
2528 /*
2529 * Either if a task, enters, leave, or stays -deadline but changes
2530 * its parameters, we may need to update accordingly the total
2531 * allocated bandwidth of the container.
2532 */
2533 raw_spin_lock(&dl_b->lock);
de212f18 2534 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
2535 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2536 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2537 __dl_add(dl_b, new_bw);
2538 err = 0;
2539 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2540 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2541 __dl_clear(dl_b, p->dl.dl_bw);
2542 __dl_add(dl_b, new_bw);
2543 err = 0;
2544 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2545 __dl_clear(dl_b, p->dl.dl_bw);
2546 err = 0;
2547 }
2548 raw_spin_unlock(&dl_b->lock);
2549
2550 return err;
2551}
2552
2553extern void init_dl_bw(struct dl_bw *dl_b);
2554
1da177e4
LT
2555/*
2556 * wake_up_new_task - wake up a newly created task for the first time.
2557 *
2558 * This function will do some initial scheduler statistics housekeeping
2559 * that must be done for every newly created context, then puts the task
2560 * on the runqueue and wakes it.
2561 */
3e51e3ed 2562void wake_up_new_task(struct task_struct *p)
1da177e4 2563{
eb580751 2564 struct rq_flags rf;
dd41f596 2565 struct rq *rq;
fabf318e 2566
eb580751 2567 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
7dc603c9 2568 p->state = TASK_RUNNING;
fabf318e
PZ
2569#ifdef CONFIG_SMP
2570 /*
2571 * Fork balancing, do it here and not earlier because:
2572 * - cpus_allowed can change in the fork path
2573 * - any previously selected cpu might disappear through hotplug
e210bffd
PZ
2574 *
2575 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2576 * as we're not fully set-up yet.
fabf318e 2577 */
e210bffd 2578 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735 2579#endif
b7fa30c9 2580 rq = __task_rq_lock(p, &rf);
4126bad6 2581 update_rq_clock(rq);
2b8c41da 2582 post_init_entity_util_avg(&p->se);
0017d735 2583
cd29fe6f 2584 activate_task(rq, p, 0);
da0c1e65 2585 p->on_rq = TASK_ON_RQ_QUEUED;
fbd705a0 2586 trace_sched_wakeup_new(p);
a7558e01 2587 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2588#ifdef CONFIG_SMP
0aaafaab
PZ
2589 if (p->sched_class->task_woken) {
2590 /*
2591 * Nothing relies on rq->lock after this, so its fine to
2592 * drop it.
2593 */
d8ac8971 2594 rq_unpin_lock(rq, &rf);
efbbd05a 2595 p->sched_class->task_woken(rq, p);
d8ac8971 2596 rq_repin_lock(rq, &rf);
0aaafaab 2597 }
9a897c5a 2598#endif
eb580751 2599 task_rq_unlock(rq, p, &rf);
1da177e4
LT
2600}
2601
e107be36
AK
2602#ifdef CONFIG_PREEMPT_NOTIFIERS
2603
1cde2930
PZ
2604static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2605
2ecd9d29
PZ
2606void preempt_notifier_inc(void)
2607{
2608 static_key_slow_inc(&preempt_notifier_key);
2609}
2610EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2611
2612void preempt_notifier_dec(void)
2613{
2614 static_key_slow_dec(&preempt_notifier_key);
2615}
2616EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2617
e107be36 2618/**
80dd99b3 2619 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2620 * @notifier: notifier struct to register
e107be36
AK
2621 */
2622void preempt_notifier_register(struct preempt_notifier *notifier)
2623{
2ecd9d29
PZ
2624 if (!static_key_false(&preempt_notifier_key))
2625 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2626
e107be36
AK
2627 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2628}
2629EXPORT_SYMBOL_GPL(preempt_notifier_register);
2630
2631/**
2632 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2633 * @notifier: notifier struct to unregister
e107be36 2634 *
d84525a8 2635 * This is *not* safe to call from within a preemption notifier.
e107be36
AK
2636 */
2637void preempt_notifier_unregister(struct preempt_notifier *notifier)
2638{
2639 hlist_del(&notifier->link);
2640}
2641EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2642
1cde2930 2643static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2644{
2645 struct preempt_notifier *notifier;
e107be36 2646
b67bfe0d 2647 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2648 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2649}
2650
1cde2930
PZ
2651static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2652{
2653 if (static_key_false(&preempt_notifier_key))
2654 __fire_sched_in_preempt_notifiers(curr);
2655}
2656
e107be36 2657static void
1cde2930
PZ
2658__fire_sched_out_preempt_notifiers(struct task_struct *curr,
2659 struct task_struct *next)
e107be36
AK
2660{
2661 struct preempt_notifier *notifier;
e107be36 2662
b67bfe0d 2663 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2664 notifier->ops->sched_out(notifier, next);
2665}
2666
1cde2930
PZ
2667static __always_inline void
2668fire_sched_out_preempt_notifiers(struct task_struct *curr,
2669 struct task_struct *next)
2670{
2671 if (static_key_false(&preempt_notifier_key))
2672 __fire_sched_out_preempt_notifiers(curr, next);
2673}
2674
6d6bc0ad 2675#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36 2676
1cde2930 2677static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2678{
2679}
2680
1cde2930 2681static inline void
e107be36
AK
2682fire_sched_out_preempt_notifiers(struct task_struct *curr,
2683 struct task_struct *next)
2684{
2685}
2686
6d6bc0ad 2687#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2688
4866cde0
NP
2689/**
2690 * prepare_task_switch - prepare to switch tasks
2691 * @rq: the runqueue preparing to switch
421cee29 2692 * @prev: the current task that is being switched out
4866cde0
NP
2693 * @next: the task we are going to switch to.
2694 *
2695 * This is called with the rq lock held and interrupts off. It must
2696 * be paired with a subsequent finish_task_switch after the context
2697 * switch.
2698 *
2699 * prepare_task_switch sets up locking and calls architecture specific
2700 * hooks.
2701 */
e107be36
AK
2702static inline void
2703prepare_task_switch(struct rq *rq, struct task_struct *prev,
2704 struct task_struct *next)
4866cde0 2705{
43148951 2706 sched_info_switch(rq, prev, next);
fe4b04fa 2707 perf_event_task_sched_out(prev, next);
e107be36 2708 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2709 prepare_lock_switch(rq, next);
2710 prepare_arch_switch(next);
2711}
2712
1da177e4
LT
2713/**
2714 * finish_task_switch - clean up after a task-switch
2715 * @prev: the thread we just switched away from.
2716 *
4866cde0
NP
2717 * finish_task_switch must be called after the context switch, paired
2718 * with a prepare_task_switch call before the context switch.
2719 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2720 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2721 *
2722 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2723 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2724 * with the lock held can cause deadlocks; see schedule() for
2725 * details.)
dfa50b60
ON
2726 *
2727 * The context switch have flipped the stack from under us and restored the
2728 * local variables which were saved when this task called schedule() in the
2729 * past. prev == current is still correct but we need to recalculate this_rq
2730 * because prev may have moved to another CPU.
1da177e4 2731 */
dfa50b60 2732static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
2733 __releases(rq->lock)
2734{
dfa50b60 2735 struct rq *rq = this_rq();
1da177e4 2736 struct mm_struct *mm = rq->prev_mm;
55a101f8 2737 long prev_state;
1da177e4 2738
609ca066
PZ
2739 /*
2740 * The previous task will have left us with a preempt_count of 2
2741 * because it left us after:
2742 *
2743 * schedule()
2744 * preempt_disable(); // 1
2745 * __schedule()
2746 * raw_spin_lock_irq(&rq->lock) // 2
2747 *
2748 * Also, see FORK_PREEMPT_COUNT.
2749 */
e2bf1c4b
PZ
2750 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2751 "corrupted preempt_count: %s/%d/0x%x\n",
2752 current->comm, current->pid, preempt_count()))
2753 preempt_count_set(FORK_PREEMPT_COUNT);
609ca066 2754
1da177e4
LT
2755 rq->prev_mm = NULL;
2756
2757 /*
2758 * A task struct has one reference for the use as "current".
c394cc9f 2759 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2760 * schedule one last time. The schedule call will never return, and
2761 * the scheduled task must drop that reference.
95913d97
PZ
2762 *
2763 * We must observe prev->state before clearing prev->on_cpu (in
2764 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2765 * running on another CPU and we could rave with its RUNNING -> DEAD
2766 * transition, resulting in a double drop.
1da177e4 2767 */
55a101f8 2768 prev_state = prev->state;
bf9fae9f 2769 vtime_task_switch(prev);
a8d757ef 2770 perf_event_task_sched_in(prev, current);
4866cde0 2771 finish_lock_switch(rq, prev);
01f23e16 2772 finish_arch_post_lock_switch();
e8fa1362 2773
e107be36 2774 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2775 if (mm)
2776 mmdrop(mm);
c394cc9f 2777 if (unlikely(prev_state == TASK_DEAD)) {
e6c390f2
DF
2778 if (prev->sched_class->task_dead)
2779 prev->sched_class->task_dead(prev);
2780
c6fd91f0 2781 /*
2782 * Remove function-return probe instances associated with this
2783 * task and put them back on the free list.
9761eea8 2784 */
c6fd91f0 2785 kprobe_flush_task(prev);
68f24b08
AL
2786
2787 /* Task is done with its stack. */
2788 put_task_stack(prev);
2789
1da177e4 2790 put_task_struct(prev);
c6fd91f0 2791 }
99e5ada9 2792
de734f89 2793 tick_nohz_task_switch();
dfa50b60 2794 return rq;
1da177e4
LT
2795}
2796
3f029d3c
GH
2797#ifdef CONFIG_SMP
2798
3f029d3c 2799/* rq->lock is NOT held, but preemption is disabled */
e3fca9e7 2800static void __balance_callback(struct rq *rq)
3f029d3c 2801{
e3fca9e7
PZ
2802 struct callback_head *head, *next;
2803 void (*func)(struct rq *rq);
2804 unsigned long flags;
3f029d3c 2805
e3fca9e7
PZ
2806 raw_spin_lock_irqsave(&rq->lock, flags);
2807 head = rq->balance_callback;
2808 rq->balance_callback = NULL;
2809 while (head) {
2810 func = (void (*)(struct rq *))head->func;
2811 next = head->next;
2812 head->next = NULL;
2813 head = next;
3f029d3c 2814
e3fca9e7 2815 func(rq);
3f029d3c 2816 }
e3fca9e7
PZ
2817 raw_spin_unlock_irqrestore(&rq->lock, flags);
2818}
2819
2820static inline void balance_callback(struct rq *rq)
2821{
2822 if (unlikely(rq->balance_callback))
2823 __balance_callback(rq);
3f029d3c
GH
2824}
2825
2826#else
da19ab51 2827
e3fca9e7 2828static inline void balance_callback(struct rq *rq)
3f029d3c 2829{
1da177e4
LT
2830}
2831
3f029d3c
GH
2832#endif
2833
1da177e4
LT
2834/**
2835 * schedule_tail - first thing a freshly forked thread must call.
2836 * @prev: the thread we just switched away from.
2837 */
722a9f92 2838asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
2839 __releases(rq->lock)
2840{
1a43a14a 2841 struct rq *rq;
da19ab51 2842
609ca066
PZ
2843 /*
2844 * New tasks start with FORK_PREEMPT_COUNT, see there and
2845 * finish_task_switch() for details.
2846 *
2847 * finish_task_switch() will drop rq->lock() and lower preempt_count
2848 * and the preempt_enable() will end up enabling preemption (on
2849 * PREEMPT_COUNT kernels).
2850 */
2851
dfa50b60 2852 rq = finish_task_switch(prev);
e3fca9e7 2853 balance_callback(rq);
1a43a14a 2854 preempt_enable();
70b97a7f 2855
1da177e4 2856 if (current->set_child_tid)
b488893a 2857 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2858}
2859
2860/*
dfa50b60 2861 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 2862 */
04936948 2863static __always_inline struct rq *
70b97a7f 2864context_switch(struct rq *rq, struct task_struct *prev,
d8ac8971 2865 struct task_struct *next, struct rq_flags *rf)
1da177e4 2866{
dd41f596 2867 struct mm_struct *mm, *oldmm;
1da177e4 2868
e107be36 2869 prepare_task_switch(rq, prev, next);
fe4b04fa 2870
dd41f596
IM
2871 mm = next->mm;
2872 oldmm = prev->active_mm;
9226d125
ZA
2873 /*
2874 * For paravirt, this is coupled with an exit in switch_to to
2875 * combine the page table reload and the switch backend into
2876 * one hypercall.
2877 */
224101ed 2878 arch_start_context_switch(prev);
9226d125 2879
31915ab4 2880 if (!mm) {
1da177e4
LT
2881 next->active_mm = oldmm;
2882 atomic_inc(&oldmm->mm_count);
2883 enter_lazy_tlb(oldmm, next);
2884 } else
f98db601 2885 switch_mm_irqs_off(oldmm, mm, next);
1da177e4 2886
31915ab4 2887 if (!prev->mm) {
1da177e4 2888 prev->active_mm = NULL;
1da177e4
LT
2889 rq->prev_mm = oldmm;
2890 }
92509b73
MF
2891
2892 rq->clock_skip_update = 0;
2893
3a5f5e48
IM
2894 /*
2895 * Since the runqueue lock will be released by the next
2896 * task (which is an invalid locking op but in the case
2897 * of the scheduler it's an obvious special-case), so we
2898 * do an early lockdep release here:
2899 */
d8ac8971 2900 rq_unpin_lock(rq, rf);
8a25d5de 2901 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
2902
2903 /* Here we just switch the register state and the stack. */
2904 switch_to(prev, next, prev);
dd41f596 2905 barrier();
dfa50b60
ON
2906
2907 return finish_task_switch(prev);
1da177e4
LT
2908}
2909
2910/*
1c3e8264 2911 * nr_running and nr_context_switches:
1da177e4
LT
2912 *
2913 * externally visible scheduler statistics: current number of runnable
1c3e8264 2914 * threads, total number of context switches performed since bootup.
1da177e4
LT
2915 */
2916unsigned long nr_running(void)
2917{
2918 unsigned long i, sum = 0;
2919
2920 for_each_online_cpu(i)
2921 sum += cpu_rq(i)->nr_running;
2922
2923 return sum;
f711f609 2924}
1da177e4 2925
2ee507c4
TC
2926/*
2927 * Check if only the current task is running on the cpu.
00cc1633
DD
2928 *
2929 * Caution: this function does not check that the caller has disabled
2930 * preemption, thus the result might have a time-of-check-to-time-of-use
2931 * race. The caller is responsible to use it correctly, for example:
2932 *
2933 * - from a non-preemptable section (of course)
2934 *
2935 * - from a thread that is bound to a single CPU
2936 *
2937 * - in a loop with very short iterations (e.g. a polling loop)
2ee507c4
TC
2938 */
2939bool single_task_running(void)
2940{
00cc1633 2941 return raw_rq()->nr_running == 1;
2ee507c4
TC
2942}
2943EXPORT_SYMBOL(single_task_running);
2944
1da177e4 2945unsigned long long nr_context_switches(void)
46cb4b7c 2946{
cc94abfc
SR
2947 int i;
2948 unsigned long long sum = 0;
46cb4b7c 2949
0a945022 2950 for_each_possible_cpu(i)
1da177e4 2951 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2952
1da177e4
LT
2953 return sum;
2954}
483b4ee6 2955
1da177e4
LT
2956unsigned long nr_iowait(void)
2957{
2958 unsigned long i, sum = 0;
483b4ee6 2959
0a945022 2960 for_each_possible_cpu(i)
1da177e4 2961 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2962
1da177e4
LT
2963 return sum;
2964}
483b4ee6 2965
8c215bd3 2966unsigned long nr_iowait_cpu(int cpu)
69d25870 2967{
8c215bd3 2968 struct rq *this = cpu_rq(cpu);
69d25870
AV
2969 return atomic_read(&this->nr_iowait);
2970}
46cb4b7c 2971
372ba8cb
MG
2972void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2973{
3289bdb4
PZ
2974 struct rq *rq = this_rq();
2975 *nr_waiters = atomic_read(&rq->nr_iowait);
2976 *load = rq->load.weight;
372ba8cb
MG
2977}
2978
dd41f596 2979#ifdef CONFIG_SMP
8a0be9ef 2980
46cb4b7c 2981/*
38022906
PZ
2982 * sched_exec - execve() is a valuable balancing opportunity, because at
2983 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2984 */
38022906 2985void sched_exec(void)
46cb4b7c 2986{
38022906 2987 struct task_struct *p = current;
1da177e4 2988 unsigned long flags;
0017d735 2989 int dest_cpu;
46cb4b7c 2990
8f42ced9 2991 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2992 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2993 if (dest_cpu == smp_processor_id())
2994 goto unlock;
38022906 2995
8f42ced9 2996 if (likely(cpu_active(dest_cpu))) {
969c7921 2997 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2998
8f42ced9
PZ
2999 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3000 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
3001 return;
3002 }
0017d735 3003unlock:
8f42ced9 3004 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 3005}
dd41f596 3006
1da177e4
LT
3007#endif
3008
1da177e4 3009DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 3010DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
3011
3012EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 3013EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 3014
6075620b
GG
3015/*
3016 * The function fair_sched_class.update_curr accesses the struct curr
3017 * and its field curr->exec_start; when called from task_sched_runtime(),
3018 * we observe a high rate of cache misses in practice.
3019 * Prefetching this data results in improved performance.
3020 */
3021static inline void prefetch_curr_exec_start(struct task_struct *p)
3022{
3023#ifdef CONFIG_FAIR_GROUP_SCHED
3024 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3025#else
3026 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3027#endif
3028 prefetch(curr);
3029 prefetch(&curr->exec_start);
3030}
3031
c5f8d995
HS
3032/*
3033 * Return accounted runtime for the task.
3034 * In case the task is currently running, return the runtime plus current's
3035 * pending runtime that have not been accounted yet.
3036 */
3037unsigned long long task_sched_runtime(struct task_struct *p)
3038{
eb580751 3039 struct rq_flags rf;
c5f8d995 3040 struct rq *rq;
6e998916 3041 u64 ns;
c5f8d995 3042
911b2898
PZ
3043#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3044 /*
3045 * 64-bit doesn't need locks to atomically read a 64bit value.
3046 * So we have a optimization chance when the task's delta_exec is 0.
3047 * Reading ->on_cpu is racy, but this is ok.
3048 *
3049 * If we race with it leaving cpu, we'll take a lock. So we're correct.
3050 * If we race with it entering cpu, unaccounted time is 0. This is
3051 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
3052 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3053 * been accounted, so we're correct here as well.
911b2898 3054 */
da0c1e65 3055 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
3056 return p->se.sum_exec_runtime;
3057#endif
3058
eb580751 3059 rq = task_rq_lock(p, &rf);
6e998916
SG
3060 /*
3061 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3062 * project cycles that may never be accounted to this
3063 * thread, breaking clock_gettime().
3064 */
3065 if (task_current(rq, p) && task_on_rq_queued(p)) {
6075620b 3066 prefetch_curr_exec_start(p);
6e998916
SG
3067 update_rq_clock(rq);
3068 p->sched_class->update_curr(rq);
3069 }
3070 ns = p->se.sum_exec_runtime;
eb580751 3071 task_rq_unlock(rq, p, &rf);
c5f8d995
HS
3072
3073 return ns;
3074}
48f24c4d 3075
7835b98b
CL
3076/*
3077 * This function gets called by the timer code, with HZ frequency.
3078 * We call it with interrupts disabled.
7835b98b
CL
3079 */
3080void scheduler_tick(void)
3081{
7835b98b
CL
3082 int cpu = smp_processor_id();
3083 struct rq *rq = cpu_rq(cpu);
dd41f596 3084 struct task_struct *curr = rq->curr;
3e51f33f
PZ
3085
3086 sched_clock_tick();
dd41f596 3087
05fa785c 3088 raw_spin_lock(&rq->lock);
3e51f33f 3089 update_rq_clock(rq);
fa85ae24 3090 curr->sched_class->task_tick(rq, curr, 0);
cee1afce 3091 cpu_load_update_active(rq);
3289bdb4 3092 calc_global_load_tick(rq);
05fa785c 3093 raw_spin_unlock(&rq->lock);
7835b98b 3094
e9d2b064 3095 perf_event_task_tick();
e220d2dc 3096
e418e1c2 3097#ifdef CONFIG_SMP
6eb57e0d 3098 rq->idle_balance = idle_cpu(cpu);
7caff66f 3099 trigger_load_balance(rq);
e418e1c2 3100#endif
265f22a9 3101 rq_last_tick_reset(rq);
1da177e4
LT
3102}
3103
265f22a9
FW
3104#ifdef CONFIG_NO_HZ_FULL
3105/**
3106 * scheduler_tick_max_deferment
3107 *
3108 * Keep at least one tick per second when a single
3109 * active task is running because the scheduler doesn't
3110 * yet completely support full dynticks environment.
3111 *
3112 * This makes sure that uptime, CFS vruntime, load
3113 * balancing, etc... continue to move forward, even
3114 * with a very low granularity.
e69f6186
YB
3115 *
3116 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
3117 */
3118u64 scheduler_tick_max_deferment(void)
3119{
3120 struct rq *rq = this_rq();
316c1608 3121 unsigned long next, now = READ_ONCE(jiffies);
265f22a9
FW
3122
3123 next = rq->last_sched_tick + HZ;
3124
3125 if (time_before_eq(next, now))
3126 return 0;
3127
8fe8ff09 3128 return jiffies_to_nsecs(next - now);
1da177e4 3129}
265f22a9 3130#endif
1da177e4 3131
7e49fcce
SR
3132#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3133 defined(CONFIG_PREEMPT_TRACER))
47252cfb
SR
3134/*
3135 * If the value passed in is equal to the current preempt count
3136 * then we just disabled preemption. Start timing the latency.
3137 */
3138static inline void preempt_latency_start(int val)
3139{
3140 if (preempt_count() == val) {
3141 unsigned long ip = get_lock_parent_ip();
3142#ifdef CONFIG_DEBUG_PREEMPT
3143 current->preempt_disable_ip = ip;
3144#endif
3145 trace_preempt_off(CALLER_ADDR0, ip);
3146 }
3147}
7e49fcce 3148
edafe3a5 3149void preempt_count_add(int val)
1da177e4 3150{
6cd8a4bb 3151#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3152 /*
3153 * Underflow?
3154 */
9a11b49a
IM
3155 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3156 return;
6cd8a4bb 3157#endif
bdb43806 3158 __preempt_count_add(val);
6cd8a4bb 3159#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3160 /*
3161 * Spinlock count overflowing soon?
3162 */
33859f7f
MOS
3163 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3164 PREEMPT_MASK - 10);
6cd8a4bb 3165#endif
47252cfb 3166 preempt_latency_start(val);
1da177e4 3167}
bdb43806 3168EXPORT_SYMBOL(preempt_count_add);
edafe3a5 3169NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 3170
47252cfb
SR
3171/*
3172 * If the value passed in equals to the current preempt count
3173 * then we just enabled preemption. Stop timing the latency.
3174 */
3175static inline void preempt_latency_stop(int val)
3176{
3177 if (preempt_count() == val)
3178 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3179}
3180
edafe3a5 3181void preempt_count_sub(int val)
1da177e4 3182{
6cd8a4bb 3183#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3184 /*
3185 * Underflow?
3186 */
01e3eb82 3187 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3188 return;
1da177e4
LT
3189 /*
3190 * Is the spinlock portion underflowing?
3191 */
9a11b49a
IM
3192 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3193 !(preempt_count() & PREEMPT_MASK)))
3194 return;
6cd8a4bb 3195#endif
9a11b49a 3196
47252cfb 3197 preempt_latency_stop(val);
bdb43806 3198 __preempt_count_sub(val);
1da177e4 3199}
bdb43806 3200EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 3201NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4 3202
47252cfb
SR
3203#else
3204static inline void preempt_latency_start(int val) { }
3205static inline void preempt_latency_stop(int val) { }
1da177e4
LT
3206#endif
3207
3208/*
dd41f596 3209 * Print scheduling while atomic bug:
1da177e4 3210 */
dd41f596 3211static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3212{
d1c6d149
VN
3213 /* Save this before calling printk(), since that will clobber it */
3214 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3215
664dfa65
DJ
3216 if (oops_in_progress)
3217 return;
3218
3df0fc5b
PZ
3219 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3220 prev->comm, prev->pid, preempt_count());
838225b4 3221
dd41f596 3222 debug_show_held_locks(prev);
e21f5b15 3223 print_modules();
dd41f596
IM
3224 if (irqs_disabled())
3225 print_irqtrace_events(prev);
d1c6d149
VN
3226 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3227 && in_atomic_preempt_off()) {
8f47b187 3228 pr_err("Preemption disabled at:");
d1c6d149 3229 print_ip_sym(preempt_disable_ip);
8f47b187
TG
3230 pr_cont("\n");
3231 }
748c7201
DBO
3232 if (panic_on_warn)
3233 panic("scheduling while atomic\n");
3234
6135fc1e 3235 dump_stack();
373d4d09 3236 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 3237}
1da177e4 3238
dd41f596
IM
3239/*
3240 * Various schedule()-time debugging checks and statistics:
3241 */
3242static inline void schedule_debug(struct task_struct *prev)
3243{
0d9e2632 3244#ifdef CONFIG_SCHED_STACK_END_CHECK
29d64551
JH
3245 if (task_stack_end_corrupted(prev))
3246 panic("corrupted stack end detected inside scheduler\n");
0d9e2632 3247#endif
b99def8b 3248
1dc0fffc 3249 if (unlikely(in_atomic_preempt_off())) {
dd41f596 3250 __schedule_bug(prev);
1dc0fffc
PZ
3251 preempt_count_set(PREEMPT_DISABLED);
3252 }
b3fbab05 3253 rcu_sleep_check();
dd41f596 3254
1da177e4
LT
3255 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3256
ae92882e 3257 schedstat_inc(this_rq()->sched_count);
dd41f596
IM
3258}
3259
3260/*
3261 * Pick up the highest-prio task:
3262 */
3263static inline struct task_struct *
d8ac8971 3264pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
dd41f596 3265{
37e117c0 3266 const struct sched_class *class = &fair_sched_class;
dd41f596 3267 struct task_struct *p;
1da177e4
LT
3268
3269 /*
dd41f596
IM
3270 * Optimization: we know that if all tasks are in
3271 * the fair class we can call that function directly:
1da177e4 3272 */
37e117c0 3273 if (likely(prev->sched_class == class &&
38033c37 3274 rq->nr_running == rq->cfs.h_nr_running)) {
d8ac8971 3275 p = fair_sched_class.pick_next_task(rq, prev, rf);
6ccdc84b
PZ
3276 if (unlikely(p == RETRY_TASK))
3277 goto again;
3278
3279 /* assumes fair_sched_class->next == idle_sched_class */
3280 if (unlikely(!p))
d8ac8971 3281 p = idle_sched_class.pick_next_task(rq, prev, rf);
6ccdc84b
PZ
3282
3283 return p;
1da177e4
LT
3284 }
3285
37e117c0 3286again:
34f971f6 3287 for_each_class(class) {
d8ac8971 3288 p = class->pick_next_task(rq, prev, rf);
37e117c0
PZ
3289 if (p) {
3290 if (unlikely(p == RETRY_TASK))
3291 goto again;
dd41f596 3292 return p;
37e117c0 3293 }
dd41f596 3294 }
34f971f6
PZ
3295
3296 BUG(); /* the idle class will always have a runnable task */
dd41f596 3297}
1da177e4 3298
dd41f596 3299/*
c259e01a 3300 * __schedule() is the main scheduler function.
edde96ea
PE
3301 *
3302 * The main means of driving the scheduler and thus entering this function are:
3303 *
3304 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3305 *
3306 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3307 * paths. For example, see arch/x86/entry_64.S.
3308 *
3309 * To drive preemption between tasks, the scheduler sets the flag in timer
3310 * interrupt handler scheduler_tick().
3311 *
3312 * 3. Wakeups don't really cause entry into schedule(). They add a
3313 * task to the run-queue and that's it.
3314 *
3315 * Now, if the new task added to the run-queue preempts the current
3316 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3317 * called on the nearest possible occasion:
3318 *
3319 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3320 *
3321 * - in syscall or exception context, at the next outmost
3322 * preempt_enable(). (this might be as soon as the wake_up()'s
3323 * spin_unlock()!)
3324 *
3325 * - in IRQ context, return from interrupt-handler to
3326 * preemptible context
3327 *
3328 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3329 * then at the next:
3330 *
3331 * - cond_resched() call
3332 * - explicit schedule() call
3333 * - return from syscall or exception to user-space
3334 * - return from interrupt-handler to user-space
bfd9b2b5 3335 *
b30f0e3f 3336 * WARNING: must be called with preemption disabled!
dd41f596 3337 */
499d7955 3338static void __sched notrace __schedule(bool preempt)
dd41f596
IM
3339{
3340 struct task_struct *prev, *next;
67ca7bde 3341 unsigned long *switch_count;
d8ac8971 3342 struct rq_flags rf;
dd41f596 3343 struct rq *rq;
31656519 3344 int cpu;
dd41f596 3345
dd41f596
IM
3346 cpu = smp_processor_id();
3347 rq = cpu_rq(cpu);
dd41f596 3348 prev = rq->curr;
dd41f596 3349
dd41f596 3350 schedule_debug(prev);
1da177e4 3351
31656519 3352 if (sched_feat(HRTICK))
f333fdc9 3353 hrtick_clear(rq);
8f4d37ec 3354
46a5d164
PM
3355 local_irq_disable();
3356 rcu_note_context_switch();
3357
e0acd0a6
ON
3358 /*
3359 * Make sure that signal_pending_state()->signal_pending() below
3360 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3361 * done by the caller to avoid the race with signal_wake_up().
3362 */
3363 smp_mb__before_spinlock();
46a5d164 3364 raw_spin_lock(&rq->lock);
d8ac8971 3365 rq_pin_lock(rq, &rf);
1da177e4 3366
9edfbfed
PZ
3367 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3368
246d86b5 3369 switch_count = &prev->nivcsw;
fc13aeba 3370 if (!preempt && prev->state) {
21aa9af0 3371 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 3372 prev->state = TASK_RUNNING;
21aa9af0 3373 } else {
2acca55e
PZ
3374 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3375 prev->on_rq = 0;
3376
21aa9af0 3377 /*
2acca55e
PZ
3378 * If a worker went to sleep, notify and ask workqueue
3379 * whether it wants to wake up a task to maintain
3380 * concurrency.
21aa9af0
TH
3381 */
3382 if (prev->flags & PF_WQ_WORKER) {
3383 struct task_struct *to_wakeup;
3384
9b7f6597 3385 to_wakeup = wq_worker_sleeping(prev);
21aa9af0 3386 if (to_wakeup)
d8ac8971 3387 try_to_wake_up_local(to_wakeup, &rf);
21aa9af0 3388 }
21aa9af0 3389 }
dd41f596 3390 switch_count = &prev->nvcsw;
1da177e4
LT
3391 }
3392
9edfbfed 3393 if (task_on_rq_queued(prev))
606dba2e
PZ
3394 update_rq_clock(rq);
3395
d8ac8971 3396 next = pick_next_task(rq, prev, &rf);
f26f9aff 3397 clear_tsk_need_resched(prev);
f27dde8d 3398 clear_preempt_need_resched();
1da177e4 3399
1da177e4 3400 if (likely(prev != next)) {
1da177e4
LT
3401 rq->nr_switches++;
3402 rq->curr = next;
3403 ++*switch_count;
3404
c73464b1 3405 trace_sched_switch(preempt, prev, next);
d8ac8971 3406 rq = context_switch(rq, prev, next, &rf); /* unlocks the rq */
cbce1a68 3407 } else {
92509b73 3408 rq->clock_skip_update = 0;
d8ac8971 3409 rq_unpin_lock(rq, &rf);
05fa785c 3410 raw_spin_unlock_irq(&rq->lock);
cbce1a68 3411 }
1da177e4 3412
e3fca9e7 3413 balance_callback(rq);
1da177e4 3414}
c259e01a 3415
9af6528e
PZ
3416void __noreturn do_task_dead(void)
3417{
3418 /*
3419 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
3420 * when the following two conditions become true.
3421 * - There is race condition of mmap_sem (It is acquired by
3422 * exit_mm()), and
3423 * - SMI occurs before setting TASK_RUNINNG.
3424 * (or hypervisor of virtual machine switches to other guest)
3425 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD
3426 *
3427 * To avoid it, we have to wait for releasing tsk->pi_lock which
3428 * is held by try_to_wake_up()
3429 */
3430 smp_mb();
3431 raw_spin_unlock_wait(&current->pi_lock);
3432
3433 /* causes final put_task_struct in finish_task_switch(). */
3434 __set_current_state(TASK_DEAD);
3435 current->flags |= PF_NOFREEZE; /* tell freezer to ignore us */
3436 __schedule(false);
3437 BUG();
3438 /* Avoid "noreturn function does return". */
3439 for (;;)
3440 cpu_relax(); /* For when BUG is null */
3441}
3442
9c40cef2
TG
3443static inline void sched_submit_work(struct task_struct *tsk)
3444{
3c7d5184 3445 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
3446 return;
3447 /*
3448 * If we are going to sleep and we have plugged IO queued,
3449 * make sure to submit it to avoid deadlocks.
3450 */
3451 if (blk_needs_flush_plug(tsk))
3452 blk_schedule_flush_plug(tsk);
3453}
3454
722a9f92 3455asmlinkage __visible void __sched schedule(void)
c259e01a 3456{
9c40cef2
TG
3457 struct task_struct *tsk = current;
3458
3459 sched_submit_work(tsk);
bfd9b2b5 3460 do {
b30f0e3f 3461 preempt_disable();
fc13aeba 3462 __schedule(false);
b30f0e3f 3463 sched_preempt_enable_no_resched();
bfd9b2b5 3464 } while (need_resched());
c259e01a 3465}
1da177e4
LT
3466EXPORT_SYMBOL(schedule);
3467
91d1aa43 3468#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 3469asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
3470{
3471 /*
3472 * If we come here after a random call to set_need_resched(),
3473 * or we have been woken up remotely but the IPI has not yet arrived,
3474 * we haven't yet exited the RCU idle mode. Do it here manually until
3475 * we find a better solution.
7cc78f8f
AL
3476 *
3477 * NB: There are buggy callers of this function. Ideally we
c467ea76 3478 * should warn if prev_state != CONTEXT_USER, but that will trigger
7cc78f8f 3479 * too frequently to make sense yet.
20ab65e3 3480 */
7cc78f8f 3481 enum ctx_state prev_state = exception_enter();
20ab65e3 3482 schedule();
7cc78f8f 3483 exception_exit(prev_state);
20ab65e3
FW
3484}
3485#endif
3486
c5491ea7
TG
3487/**
3488 * schedule_preempt_disabled - called with preemption disabled
3489 *
3490 * Returns with preemption disabled. Note: preempt_count must be 1
3491 */
3492void __sched schedule_preempt_disabled(void)
3493{
ba74c144 3494 sched_preempt_enable_no_resched();
c5491ea7
TG
3495 schedule();
3496 preempt_disable();
3497}
3498
06b1f808 3499static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
3500{
3501 do {
47252cfb
SR
3502 /*
3503 * Because the function tracer can trace preempt_count_sub()
3504 * and it also uses preempt_enable/disable_notrace(), if
3505 * NEED_RESCHED is set, the preempt_enable_notrace() called
3506 * by the function tracer will call this function again and
3507 * cause infinite recursion.
3508 *
3509 * Preemption must be disabled here before the function
3510 * tracer can trace. Break up preempt_disable() into two
3511 * calls. One to disable preemption without fear of being
3512 * traced. The other to still record the preemption latency,
3513 * which can also be traced by the function tracer.
3514 */
499d7955 3515 preempt_disable_notrace();
47252cfb 3516 preempt_latency_start(1);
fc13aeba 3517 __schedule(true);
47252cfb 3518 preempt_latency_stop(1);
499d7955 3519 preempt_enable_no_resched_notrace();
a18b5d01
FW
3520
3521 /*
3522 * Check again in case we missed a preemption opportunity
3523 * between schedule and now.
3524 */
a18b5d01
FW
3525 } while (need_resched());
3526}
3527
1da177e4
LT
3528#ifdef CONFIG_PREEMPT
3529/*
2ed6e34f 3530 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3531 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3532 * occur there and call schedule directly.
3533 */
722a9f92 3534asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 3535{
1da177e4
LT
3536 /*
3537 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3538 * we do not want to preempt the current task. Just return..
1da177e4 3539 */
fbb00b56 3540 if (likely(!preemptible()))
1da177e4
LT
3541 return;
3542
a18b5d01 3543 preempt_schedule_common();
1da177e4 3544}
376e2424 3545NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 3546EXPORT_SYMBOL(preempt_schedule);
009f60e2 3547
009f60e2 3548/**
4eaca0a8 3549 * preempt_schedule_notrace - preempt_schedule called by tracing
009f60e2
ON
3550 *
3551 * The tracing infrastructure uses preempt_enable_notrace to prevent
3552 * recursion and tracing preempt enabling caused by the tracing
3553 * infrastructure itself. But as tracing can happen in areas coming
3554 * from userspace or just about to enter userspace, a preempt enable
3555 * can occur before user_exit() is called. This will cause the scheduler
3556 * to be called when the system is still in usermode.
3557 *
3558 * To prevent this, the preempt_enable_notrace will use this function
3559 * instead of preempt_schedule() to exit user context if needed before
3560 * calling the scheduler.
3561 */
4eaca0a8 3562asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
009f60e2
ON
3563{
3564 enum ctx_state prev_ctx;
3565
3566 if (likely(!preemptible()))
3567 return;
3568
3569 do {
47252cfb
SR
3570 /*
3571 * Because the function tracer can trace preempt_count_sub()
3572 * and it also uses preempt_enable/disable_notrace(), if
3573 * NEED_RESCHED is set, the preempt_enable_notrace() called
3574 * by the function tracer will call this function again and
3575 * cause infinite recursion.
3576 *
3577 * Preemption must be disabled here before the function
3578 * tracer can trace. Break up preempt_disable() into two
3579 * calls. One to disable preemption without fear of being
3580 * traced. The other to still record the preemption latency,
3581 * which can also be traced by the function tracer.
3582 */
3d8f74dd 3583 preempt_disable_notrace();
47252cfb 3584 preempt_latency_start(1);
009f60e2
ON
3585 /*
3586 * Needs preempt disabled in case user_exit() is traced
3587 * and the tracer calls preempt_enable_notrace() causing
3588 * an infinite recursion.
3589 */
3590 prev_ctx = exception_enter();
fc13aeba 3591 __schedule(true);
009f60e2
ON
3592 exception_exit(prev_ctx);
3593
47252cfb 3594 preempt_latency_stop(1);
3d8f74dd 3595 preempt_enable_no_resched_notrace();
009f60e2
ON
3596 } while (need_resched());
3597}
4eaca0a8 3598EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
009f60e2 3599
32e475d7 3600#endif /* CONFIG_PREEMPT */
1da177e4
LT
3601
3602/*
2ed6e34f 3603 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3604 * off of irq context.
3605 * Note, that this is called and return with irqs disabled. This will
3606 * protect us against recursive calling from irq.
3607 */
722a9f92 3608asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 3609{
b22366cd 3610 enum ctx_state prev_state;
6478d880 3611
2ed6e34f 3612 /* Catch callers which need to be fixed */
f27dde8d 3613 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 3614
b22366cd
FW
3615 prev_state = exception_enter();
3616
3a5c359a 3617 do {
3d8f74dd 3618 preempt_disable();
3a5c359a 3619 local_irq_enable();
fc13aeba 3620 __schedule(true);
3a5c359a 3621 local_irq_disable();
3d8f74dd 3622 sched_preempt_enable_no_resched();
5ed0cec0 3623 } while (need_resched());
b22366cd
FW
3624
3625 exception_exit(prev_state);
1da177e4
LT
3626}
3627
63859d4f 3628int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3629 void *key)
1da177e4 3630{
63859d4f 3631 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3632}
1da177e4
LT
3633EXPORT_SYMBOL(default_wake_function);
3634
b29739f9
IM
3635#ifdef CONFIG_RT_MUTEXES
3636
3637/*
3638 * rt_mutex_setprio - set the current priority of a task
3639 * @p: task
3640 * @prio: prio value (kernel-internal form)
3641 *
3642 * This function changes the 'effective' priority of a task. It does
3643 * not touch ->normal_prio like __setscheduler().
3644 *
c365c292
TG
3645 * Used by the rt_mutex code to implement priority inheritance
3646 * logic. Call site only calls if the priority of the task changed.
b29739f9 3647 */
36c8b586 3648void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3649{
ff77e468 3650 int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE;
83ab0aa0 3651 const struct sched_class *prev_class;
eb580751
PZ
3652 struct rq_flags rf;
3653 struct rq *rq;
b29739f9 3654
aab03e05 3655 BUG_ON(prio > MAX_PRIO);
b29739f9 3656
eb580751 3657 rq = __task_rq_lock(p, &rf);
80f5c1b8 3658 update_rq_clock(rq);
b29739f9 3659
1c4dd99b
TG
3660 /*
3661 * Idle task boosting is a nono in general. There is one
3662 * exception, when PREEMPT_RT and NOHZ is active:
3663 *
3664 * The idle task calls get_next_timer_interrupt() and holds
3665 * the timer wheel base->lock on the CPU and another CPU wants
3666 * to access the timer (probably to cancel it). We can safely
3667 * ignore the boosting request, as the idle CPU runs this code
3668 * with interrupts disabled and will complete the lock
3669 * protected section without being interrupted. So there is no
3670 * real need to boost.
3671 */
3672 if (unlikely(p == rq->idle)) {
3673 WARN_ON(p != rq->curr);
3674 WARN_ON(p->pi_blocked_on);
3675 goto out_unlock;
3676 }
3677
a8027073 3678 trace_sched_pi_setprio(p, prio);
d5f9f942 3679 oldprio = p->prio;
ff77e468
PZ
3680
3681 if (oldprio == prio)
3682 queue_flag &= ~DEQUEUE_MOVE;
3683
83ab0aa0 3684 prev_class = p->sched_class;
da0c1e65 3685 queued = task_on_rq_queued(p);
051a1d1a 3686 running = task_current(rq, p);
da0c1e65 3687 if (queued)
ff77e468 3688 dequeue_task(rq, p, queue_flag);
0e1f3483 3689 if (running)
f3cd1c4e 3690 put_prev_task(rq, p);
dd41f596 3691
2d3d891d
DF
3692 /*
3693 * Boosting condition are:
3694 * 1. -rt task is running and holds mutex A
3695 * --> -dl task blocks on mutex A
3696 *
3697 * 2. -dl task is running and holds mutex A
3698 * --> -dl task blocks on mutex A and could preempt the
3699 * running task
3700 */
3701 if (dl_prio(prio)) {
466af29b
ON
3702 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3703 if (!dl_prio(p->normal_prio) ||
3704 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d 3705 p->dl.dl_boosted = 1;
ff77e468 3706 queue_flag |= ENQUEUE_REPLENISH;
2d3d891d
DF
3707 } else
3708 p->dl.dl_boosted = 0;
aab03e05 3709 p->sched_class = &dl_sched_class;
2d3d891d
DF
3710 } else if (rt_prio(prio)) {
3711 if (dl_prio(oldprio))
3712 p->dl.dl_boosted = 0;
3713 if (oldprio < prio)
ff77e468 3714 queue_flag |= ENQUEUE_HEAD;
dd41f596 3715 p->sched_class = &rt_sched_class;
2d3d891d
DF
3716 } else {
3717 if (dl_prio(oldprio))
3718 p->dl.dl_boosted = 0;
746db944
BS
3719 if (rt_prio(oldprio))
3720 p->rt.timeout = 0;
dd41f596 3721 p->sched_class = &fair_sched_class;
2d3d891d 3722 }
dd41f596 3723
b29739f9
IM
3724 p->prio = prio;
3725
da0c1e65 3726 if (queued)
ff77e468 3727 enqueue_task(rq, p, queue_flag);
a399d233 3728 if (running)
b2bf6c31 3729 set_curr_task(rq, p);
cb469845 3730
da7a735e 3731 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3732out_unlock:
4c9a4bc8 3733 preempt_disable(); /* avoid rq from going away on us */
eb580751 3734 __task_rq_unlock(rq, &rf);
4c9a4bc8
PZ
3735
3736 balance_callback(rq);
3737 preempt_enable();
b29739f9 3738}
b29739f9 3739#endif
d50dde5a 3740
36c8b586 3741void set_user_nice(struct task_struct *p, long nice)
1da177e4 3742{
49bd21ef
PZ
3743 bool queued, running;
3744 int old_prio, delta;
eb580751 3745 struct rq_flags rf;
70b97a7f 3746 struct rq *rq;
1da177e4 3747
75e45d51 3748 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
3749 return;
3750 /*
3751 * We have to be careful, if called from sys_setpriority(),
3752 * the task might be in the middle of scheduling on another CPU.
3753 */
eb580751 3754 rq = task_rq_lock(p, &rf);
2fb8d367
PZ
3755 update_rq_clock(rq);
3756
1da177e4
LT
3757 /*
3758 * The RT priorities are set via sched_setscheduler(), but we still
3759 * allow the 'normal' nice value to be set - but as expected
3760 * it wont have any effect on scheduling until the task is
aab03e05 3761 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3762 */
aab03e05 3763 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3764 p->static_prio = NICE_TO_PRIO(nice);
3765 goto out_unlock;
3766 }
da0c1e65 3767 queued = task_on_rq_queued(p);
49bd21ef 3768 running = task_current(rq, p);
da0c1e65 3769 if (queued)
1de64443 3770 dequeue_task(rq, p, DEQUEUE_SAVE);
49bd21ef
PZ
3771 if (running)
3772 put_prev_task(rq, p);
1da177e4 3773
1da177e4 3774 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3775 set_load_weight(p);
b29739f9
IM
3776 old_prio = p->prio;
3777 p->prio = effective_prio(p);
3778 delta = p->prio - old_prio;
1da177e4 3779
da0c1e65 3780 if (queued) {
1de64443 3781 enqueue_task(rq, p, ENQUEUE_RESTORE);
1da177e4 3782 /*
d5f9f942
AM
3783 * If the task increased its priority or is running and
3784 * lowered its priority, then reschedule its CPU:
1da177e4 3785 */
d5f9f942 3786 if (delta < 0 || (delta > 0 && task_running(rq, p)))
8875125e 3787 resched_curr(rq);
1da177e4 3788 }
49bd21ef
PZ
3789 if (running)
3790 set_curr_task(rq, p);
1da177e4 3791out_unlock:
eb580751 3792 task_rq_unlock(rq, p, &rf);
1da177e4 3793}
1da177e4
LT
3794EXPORT_SYMBOL(set_user_nice);
3795
e43379f1
MM
3796/*
3797 * can_nice - check if a task can reduce its nice value
3798 * @p: task
3799 * @nice: nice value
3800 */
36c8b586 3801int can_nice(const struct task_struct *p, const int nice)
e43379f1 3802{
024f4747 3803 /* convert nice value [19,-20] to rlimit style value [1,40] */
7aa2c016 3804 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 3805
78d7d407 3806 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3807 capable(CAP_SYS_NICE));
3808}
3809
1da177e4
LT
3810#ifdef __ARCH_WANT_SYS_NICE
3811
3812/*
3813 * sys_nice - change the priority of the current process.
3814 * @increment: priority increment
3815 *
3816 * sys_setpriority is a more generic, but much slower function that
3817 * does similar things.
3818 */
5add95d4 3819SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3820{
48f24c4d 3821 long nice, retval;
1da177e4
LT
3822
3823 /*
3824 * Setpriority might change our priority at the same moment.
3825 * We don't have to worry. Conceptually one call occurs first
3826 * and we have a single winner.
3827 */
a9467fa3 3828 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 3829 nice = task_nice(current) + increment;
1da177e4 3830
a9467fa3 3831 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
3832 if (increment < 0 && !can_nice(current, nice))
3833 return -EPERM;
3834
1da177e4
LT
3835 retval = security_task_setnice(current, nice);
3836 if (retval)
3837 return retval;
3838
3839 set_user_nice(current, nice);
3840 return 0;
3841}
3842
3843#endif
3844
3845/**
3846 * task_prio - return the priority value of a given task.
3847 * @p: the task in question.
3848 *
e69f6186 3849 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3850 * RT tasks are offset by -200. Normal tasks are centered
3851 * around 0, value goes from -16 to +15.
3852 */
36c8b586 3853int task_prio(const struct task_struct *p)
1da177e4
LT
3854{
3855 return p->prio - MAX_RT_PRIO;
3856}
3857
1da177e4
LT
3858/**
3859 * idle_cpu - is a given cpu idle currently?
3860 * @cpu: the processor in question.
e69f6186
YB
3861 *
3862 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3863 */
3864int idle_cpu(int cpu)
3865{
908a3283
TG
3866 struct rq *rq = cpu_rq(cpu);
3867
3868 if (rq->curr != rq->idle)
3869 return 0;
3870
3871 if (rq->nr_running)
3872 return 0;
3873
3874#ifdef CONFIG_SMP
3875 if (!llist_empty(&rq->wake_list))
3876 return 0;
3877#endif
3878
3879 return 1;
1da177e4
LT
3880}
3881
1da177e4
LT
3882/**
3883 * idle_task - return the idle task for a given cpu.
3884 * @cpu: the processor in question.
e69f6186
YB
3885 *
3886 * Return: The idle task for the cpu @cpu.
1da177e4 3887 */
36c8b586 3888struct task_struct *idle_task(int cpu)
1da177e4
LT
3889{
3890 return cpu_rq(cpu)->idle;
3891}
3892
3893/**
3894 * find_process_by_pid - find a process with a matching PID value.
3895 * @pid: the pid in question.
e69f6186
YB
3896 *
3897 * The task of @pid, if found. %NULL otherwise.
1da177e4 3898 */
a9957449 3899static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3900{
228ebcbe 3901 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3902}
3903
aab03e05
DF
3904/*
3905 * This function initializes the sched_dl_entity of a newly becoming
3906 * SCHED_DEADLINE task.
3907 *
3908 * Only the static values are considered here, the actual runtime and the
3909 * absolute deadline will be properly calculated when the task is enqueued
3910 * for the first time with its new policy.
3911 */
3912static void
3913__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3914{
3915 struct sched_dl_entity *dl_se = &p->dl;
3916
aab03e05
DF
3917 dl_se->dl_runtime = attr->sched_runtime;
3918 dl_se->dl_deadline = attr->sched_deadline;
755378a4 3919 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 3920 dl_se->flags = attr->sched_flags;
332ac17e 3921 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
40767b0d
PZ
3922
3923 /*
3924 * Changing the parameters of a task is 'tricky' and we're not doing
3925 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3926 *
3927 * What we SHOULD do is delay the bandwidth release until the 0-lag
3928 * point. This would include retaining the task_struct until that time
3929 * and change dl_overflow() to not immediately decrement the current
3930 * amount.
3931 *
3932 * Instead we retain the current runtime/deadline and let the new
3933 * parameters take effect after the current reservation period lapses.
3934 * This is safe (albeit pessimistic) because the 0-lag point is always
3935 * before the current scheduling deadline.
3936 *
3937 * We can still have temporary overloads because we do not delay the
3938 * change in bandwidth until that time; so admission control is
3939 * not on the safe side. It does however guarantee tasks will never
3940 * consume more than promised.
3941 */
aab03e05
DF
3942}
3943
c13db6b1
SR
3944/*
3945 * sched_setparam() passes in -1 for its policy, to let the functions
3946 * it calls know not to change it.
3947 */
3948#define SETPARAM_POLICY -1
3949
c365c292
TG
3950static void __setscheduler_params(struct task_struct *p,
3951 const struct sched_attr *attr)
1da177e4 3952{
d50dde5a
DF
3953 int policy = attr->sched_policy;
3954
c13db6b1 3955 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
3956 policy = p->policy;
3957
1da177e4 3958 p->policy = policy;
d50dde5a 3959
aab03e05
DF
3960 if (dl_policy(policy))
3961 __setparam_dl(p, attr);
39fd8fd2 3962 else if (fair_policy(policy))
d50dde5a
DF
3963 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3964
39fd8fd2
PZ
3965 /*
3966 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3967 * !rt_policy. Always setting this ensures that things like
3968 * getparam()/getattr() don't report silly values for !rt tasks.
3969 */
3970 p->rt_priority = attr->sched_priority;
383afd09 3971 p->normal_prio = normal_prio(p);
c365c292
TG
3972 set_load_weight(p);
3973}
39fd8fd2 3974
c365c292
TG
3975/* Actually do priority change: must hold pi & rq lock. */
3976static void __setscheduler(struct rq *rq, struct task_struct *p,
0782e63b 3977 const struct sched_attr *attr, bool keep_boost)
c365c292
TG
3978{
3979 __setscheduler_params(p, attr);
d50dde5a 3980
383afd09 3981 /*
0782e63b
TG
3982 * Keep a potential priority boosting if called from
3983 * sched_setscheduler().
383afd09 3984 */
0782e63b
TG
3985 if (keep_boost)
3986 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3987 else
3988 p->prio = normal_prio(p);
383afd09 3989
aab03e05
DF
3990 if (dl_prio(p->prio))
3991 p->sched_class = &dl_sched_class;
3992 else if (rt_prio(p->prio))
ffd44db5
PZ
3993 p->sched_class = &rt_sched_class;
3994 else
3995 p->sched_class = &fair_sched_class;
1da177e4 3996}
aab03e05
DF
3997
3998static void
3999__getparam_dl(struct task_struct *p, struct sched_attr *attr)
4000{
4001 struct sched_dl_entity *dl_se = &p->dl;
4002
4003 attr->sched_priority = p->rt_priority;
4004 attr->sched_runtime = dl_se->dl_runtime;
4005 attr->sched_deadline = dl_se->dl_deadline;
755378a4 4006 attr->sched_period = dl_se->dl_period;
aab03e05
DF
4007 attr->sched_flags = dl_se->flags;
4008}
4009
4010/*
4011 * This function validates the new parameters of a -deadline task.
4012 * We ask for the deadline not being zero, and greater or equal
755378a4 4013 * than the runtime, as well as the period of being zero or
332ac17e 4014 * greater than deadline. Furthermore, we have to be sure that
b0827819
JL
4015 * user parameters are above the internal resolution of 1us (we
4016 * check sched_runtime only since it is always the smaller one) and
4017 * below 2^63 ns (we have to check both sched_deadline and
4018 * sched_period, as the latter can be zero).
aab03e05
DF
4019 */
4020static bool
4021__checkparam_dl(const struct sched_attr *attr)
4022{
b0827819
JL
4023 /* deadline != 0 */
4024 if (attr->sched_deadline == 0)
4025 return false;
4026
4027 /*
4028 * Since we truncate DL_SCALE bits, make sure we're at least
4029 * that big.
4030 */
4031 if (attr->sched_runtime < (1ULL << DL_SCALE))
4032 return false;
4033
4034 /*
4035 * Since we use the MSB for wrap-around and sign issues, make
4036 * sure it's not set (mind that period can be equal to zero).
4037 */
4038 if (attr->sched_deadline & (1ULL << 63) ||
4039 attr->sched_period & (1ULL << 63))
4040 return false;
4041
4042 /* runtime <= deadline <= period (if period != 0) */
4043 if ((attr->sched_period != 0 &&
4044 attr->sched_period < attr->sched_deadline) ||
4045 attr->sched_deadline < attr->sched_runtime)
4046 return false;
4047
4048 return true;
aab03e05
DF
4049}
4050
c69e8d9c
DH
4051/*
4052 * check the target process has a UID that matches the current process's
4053 */
4054static bool check_same_owner(struct task_struct *p)
4055{
4056 const struct cred *cred = current_cred(), *pcred;
4057 bool match;
4058
4059 rcu_read_lock();
4060 pcred = __task_cred(p);
9c806aa0
EB
4061 match = (uid_eq(cred->euid, pcred->euid) ||
4062 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
4063 rcu_read_unlock();
4064 return match;
4065}
4066
75381608
WL
4067static bool dl_param_changed(struct task_struct *p,
4068 const struct sched_attr *attr)
4069{
4070 struct sched_dl_entity *dl_se = &p->dl;
4071
4072 if (dl_se->dl_runtime != attr->sched_runtime ||
4073 dl_se->dl_deadline != attr->sched_deadline ||
4074 dl_se->dl_period != attr->sched_period ||
4075 dl_se->flags != attr->sched_flags)
4076 return true;
4077
4078 return false;
4079}
4080
d50dde5a
DF
4081static int __sched_setscheduler(struct task_struct *p,
4082 const struct sched_attr *attr,
dbc7f069 4083 bool user, bool pi)
1da177e4 4084{
383afd09
SR
4085 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4086 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 4087 int retval, oldprio, oldpolicy = -1, queued, running;
0782e63b 4088 int new_effective_prio, policy = attr->sched_policy;
83ab0aa0 4089 const struct sched_class *prev_class;
eb580751 4090 struct rq_flags rf;
ca94c442 4091 int reset_on_fork;
ff77e468 4092 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
eb580751 4093 struct rq *rq;
1da177e4 4094
66e5393a
SR
4095 /* may grab non-irq protected spin_locks */
4096 BUG_ON(in_interrupt());
1da177e4
LT
4097recheck:
4098 /* double check policy once rq lock held */
ca94c442
LP
4099 if (policy < 0) {
4100 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4101 policy = oldpolicy = p->policy;
ca94c442 4102 } else {
7479f3c9 4103 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 4104
20f9cd2a 4105 if (!valid_policy(policy))
ca94c442
LP
4106 return -EINVAL;
4107 }
4108
7479f3c9
PZ
4109 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
4110 return -EINVAL;
4111
1da177e4
LT
4112 /*
4113 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4114 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4115 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 4116 */
0bb040a4 4117 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 4118 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 4119 return -EINVAL;
aab03e05
DF
4120 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4121 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
4122 return -EINVAL;
4123
37e4ab3f
OC
4124 /*
4125 * Allow unprivileged RT tasks to decrease priority:
4126 */
961ccddd 4127 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 4128 if (fair_policy(policy)) {
d0ea0268 4129 if (attr->sched_nice < task_nice(p) &&
eaad4513 4130 !can_nice(p, attr->sched_nice))
d50dde5a
DF
4131 return -EPERM;
4132 }
4133
e05606d3 4134 if (rt_policy(policy)) {
a44702e8
ON
4135 unsigned long rlim_rtprio =
4136 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
4137
4138 /* can't set/change the rt policy */
4139 if (policy != p->policy && !rlim_rtprio)
4140 return -EPERM;
4141
4142 /* can't increase priority */
d50dde5a
DF
4143 if (attr->sched_priority > p->rt_priority &&
4144 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
4145 return -EPERM;
4146 }
c02aa73b 4147
d44753b8
JL
4148 /*
4149 * Can't set/change SCHED_DEADLINE policy at all for now
4150 * (safest behavior); in the future we would like to allow
4151 * unprivileged DL tasks to increase their relative deadline
4152 * or reduce their runtime (both ways reducing utilization)
4153 */
4154 if (dl_policy(policy))
4155 return -EPERM;
4156
dd41f596 4157 /*
c02aa73b
DH
4158 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4159 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 4160 */
20f9cd2a 4161 if (idle_policy(p->policy) && !idle_policy(policy)) {
d0ea0268 4162 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
4163 return -EPERM;
4164 }
5fe1d75f 4165
37e4ab3f 4166 /* can't change other user's priorities */
c69e8d9c 4167 if (!check_same_owner(p))
37e4ab3f 4168 return -EPERM;
ca94c442
LP
4169
4170 /* Normal users shall not reset the sched_reset_on_fork flag */
4171 if (p->sched_reset_on_fork && !reset_on_fork)
4172 return -EPERM;
37e4ab3f 4173 }
1da177e4 4174
725aad24 4175 if (user) {
b0ae1981 4176 retval = security_task_setscheduler(p);
725aad24
JF
4177 if (retval)
4178 return retval;
4179 }
4180
b29739f9
IM
4181 /*
4182 * make sure no PI-waiters arrive (or leave) while we are
4183 * changing the priority of the task:
0122ec5b 4184 *
25985edc 4185 * To be able to change p->policy safely, the appropriate
1da177e4
LT
4186 * runqueue lock must be held.
4187 */
eb580751 4188 rq = task_rq_lock(p, &rf);
80f5c1b8 4189 update_rq_clock(rq);
dc61b1d6 4190
34f971f6
PZ
4191 /*
4192 * Changing the policy of the stop threads its a very bad idea
4193 */
4194 if (p == rq->stop) {
eb580751 4195 task_rq_unlock(rq, p, &rf);
34f971f6
PZ
4196 return -EINVAL;
4197 }
4198
a51e9198 4199 /*
d6b1e911
TG
4200 * If not changing anything there's no need to proceed further,
4201 * but store a possible modification of reset_on_fork.
a51e9198 4202 */
d50dde5a 4203 if (unlikely(policy == p->policy)) {
d0ea0268 4204 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
4205 goto change;
4206 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4207 goto change;
75381608 4208 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 4209 goto change;
d50dde5a 4210
d6b1e911 4211 p->sched_reset_on_fork = reset_on_fork;
eb580751 4212 task_rq_unlock(rq, p, &rf);
a51e9198
DF
4213 return 0;
4214 }
d50dde5a 4215change:
a51e9198 4216
dc61b1d6 4217 if (user) {
332ac17e 4218#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
4219 /*
4220 * Do not allow realtime tasks into groups that have no runtime
4221 * assigned.
4222 */
4223 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
4224 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4225 !task_group_is_autogroup(task_group(p))) {
eb580751 4226 task_rq_unlock(rq, p, &rf);
dc61b1d6
PZ
4227 return -EPERM;
4228 }
dc61b1d6 4229#endif
332ac17e
DF
4230#ifdef CONFIG_SMP
4231 if (dl_bandwidth_enabled() && dl_policy(policy)) {
4232 cpumask_t *span = rq->rd->span;
332ac17e
DF
4233
4234 /*
4235 * Don't allow tasks with an affinity mask smaller than
4236 * the entire root_domain to become SCHED_DEADLINE. We
4237 * will also fail if there's no bandwidth available.
4238 */
e4099a5e
PZ
4239 if (!cpumask_subset(span, &p->cpus_allowed) ||
4240 rq->rd->dl_bw.bw == 0) {
eb580751 4241 task_rq_unlock(rq, p, &rf);
332ac17e
DF
4242 return -EPERM;
4243 }
4244 }
4245#endif
4246 }
dc61b1d6 4247
1da177e4
LT
4248 /* recheck policy now with rq lock held */
4249 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4250 policy = oldpolicy = -1;
eb580751 4251 task_rq_unlock(rq, p, &rf);
1da177e4
LT
4252 goto recheck;
4253 }
332ac17e
DF
4254
4255 /*
4256 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4257 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4258 * is available.
4259 */
e4099a5e 4260 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
eb580751 4261 task_rq_unlock(rq, p, &rf);
332ac17e
DF
4262 return -EBUSY;
4263 }
4264
c365c292
TG
4265 p->sched_reset_on_fork = reset_on_fork;
4266 oldprio = p->prio;
4267
dbc7f069
PZ
4268 if (pi) {
4269 /*
4270 * Take priority boosted tasks into account. If the new
4271 * effective priority is unchanged, we just store the new
4272 * normal parameters and do not touch the scheduler class and
4273 * the runqueue. This will be done when the task deboost
4274 * itself.
4275 */
4276 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
ff77e468
PZ
4277 if (new_effective_prio == oldprio)
4278 queue_flags &= ~DEQUEUE_MOVE;
c365c292
TG
4279 }
4280
da0c1e65 4281 queued = task_on_rq_queued(p);
051a1d1a 4282 running = task_current(rq, p);
da0c1e65 4283 if (queued)
ff77e468 4284 dequeue_task(rq, p, queue_flags);
0e1f3483 4285 if (running)
f3cd1c4e 4286 put_prev_task(rq, p);
f6b53205 4287
83ab0aa0 4288 prev_class = p->sched_class;
dbc7f069 4289 __setscheduler(rq, p, attr, pi);
f6b53205 4290
da0c1e65 4291 if (queued) {
81a44c54
TG
4292 /*
4293 * We enqueue to tail when the priority of a task is
4294 * increased (user space view).
4295 */
ff77e468
PZ
4296 if (oldprio < p->prio)
4297 queue_flags |= ENQUEUE_HEAD;
1de64443 4298
ff77e468 4299 enqueue_task(rq, p, queue_flags);
81a44c54 4300 }
a399d233 4301 if (running)
b2bf6c31 4302 set_curr_task(rq, p);
cb469845 4303
da7a735e 4304 check_class_changed(rq, p, prev_class, oldprio);
4c9a4bc8 4305 preempt_disable(); /* avoid rq from going away on us */
eb580751 4306 task_rq_unlock(rq, p, &rf);
b29739f9 4307
dbc7f069
PZ
4308 if (pi)
4309 rt_mutex_adjust_pi(p);
95e02ca9 4310
4c9a4bc8
PZ
4311 /*
4312 * Run balance callbacks after we've adjusted the PI chain.
4313 */
4314 balance_callback(rq);
4315 preempt_enable();
95e02ca9 4316
1da177e4
LT
4317 return 0;
4318}
961ccddd 4319
7479f3c9
PZ
4320static int _sched_setscheduler(struct task_struct *p, int policy,
4321 const struct sched_param *param, bool check)
4322{
4323 struct sched_attr attr = {
4324 .sched_policy = policy,
4325 .sched_priority = param->sched_priority,
4326 .sched_nice = PRIO_TO_NICE(p->static_prio),
4327 };
4328
c13db6b1
SR
4329 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4330 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
4331 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4332 policy &= ~SCHED_RESET_ON_FORK;
4333 attr.sched_policy = policy;
4334 }
4335
dbc7f069 4336 return __sched_setscheduler(p, &attr, check, true);
7479f3c9 4337}
961ccddd
RR
4338/**
4339 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4340 * @p: the task in question.
4341 * @policy: new policy.
4342 * @param: structure containing the new RT priority.
4343 *
e69f6186
YB
4344 * Return: 0 on success. An error code otherwise.
4345 *
961ccddd
RR
4346 * NOTE that the task may be already dead.
4347 */
4348int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4349 const struct sched_param *param)
961ccddd 4350{
7479f3c9 4351 return _sched_setscheduler(p, policy, param, true);
961ccddd 4352}
1da177e4
LT
4353EXPORT_SYMBOL_GPL(sched_setscheduler);
4354
d50dde5a
DF
4355int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4356{
dbc7f069 4357 return __sched_setscheduler(p, attr, true, true);
d50dde5a
DF
4358}
4359EXPORT_SYMBOL_GPL(sched_setattr);
4360
961ccddd
RR
4361/**
4362 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4363 * @p: the task in question.
4364 * @policy: new policy.
4365 * @param: structure containing the new RT priority.
4366 *
4367 * Just like sched_setscheduler, only don't bother checking if the
4368 * current context has permission. For example, this is needed in
4369 * stop_machine(): we create temporary high priority worker threads,
4370 * but our caller might not have that capability.
e69f6186
YB
4371 *
4372 * Return: 0 on success. An error code otherwise.
961ccddd
RR
4373 */
4374int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 4375 const struct sched_param *param)
961ccddd 4376{
7479f3c9 4377 return _sched_setscheduler(p, policy, param, false);
961ccddd 4378}
84778472 4379EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
961ccddd 4380
95cdf3b7
IM
4381static int
4382do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4383{
1da177e4
LT
4384 struct sched_param lparam;
4385 struct task_struct *p;
36c8b586 4386 int retval;
1da177e4
LT
4387
4388 if (!param || pid < 0)
4389 return -EINVAL;
4390 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4391 return -EFAULT;
5fe1d75f
ON
4392
4393 rcu_read_lock();
4394 retval = -ESRCH;
1da177e4 4395 p = find_process_by_pid(pid);
5fe1d75f
ON
4396 if (p != NULL)
4397 retval = sched_setscheduler(p, policy, &lparam);
4398 rcu_read_unlock();
36c8b586 4399
1da177e4
LT
4400 return retval;
4401}
4402
d50dde5a
DF
4403/*
4404 * Mimics kernel/events/core.c perf_copy_attr().
4405 */
4406static int sched_copy_attr(struct sched_attr __user *uattr,
4407 struct sched_attr *attr)
4408{
4409 u32 size;
4410 int ret;
4411
4412 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4413 return -EFAULT;
4414
4415 /*
4416 * zero the full structure, so that a short copy will be nice.
4417 */
4418 memset(attr, 0, sizeof(*attr));
4419
4420 ret = get_user(size, &uattr->size);
4421 if (ret)
4422 return ret;
4423
4424 if (size > PAGE_SIZE) /* silly large */
4425 goto err_size;
4426
4427 if (!size) /* abi compat */
4428 size = SCHED_ATTR_SIZE_VER0;
4429
4430 if (size < SCHED_ATTR_SIZE_VER0)
4431 goto err_size;
4432
4433 /*
4434 * If we're handed a bigger struct than we know of,
4435 * ensure all the unknown bits are 0 - i.e. new
4436 * user-space does not rely on any kernel feature
4437 * extensions we dont know about yet.
4438 */
4439 if (size > sizeof(*attr)) {
4440 unsigned char __user *addr;
4441 unsigned char __user *end;
4442 unsigned char val;
4443
4444 addr = (void __user *)uattr + sizeof(*attr);
4445 end = (void __user *)uattr + size;
4446
4447 for (; addr < end; addr++) {
4448 ret = get_user(val, addr);
4449 if (ret)
4450 return ret;
4451 if (val)
4452 goto err_size;
4453 }
4454 size = sizeof(*attr);
4455 }
4456
4457 ret = copy_from_user(attr, uattr, size);
4458 if (ret)
4459 return -EFAULT;
4460
4461 /*
4462 * XXX: do we want to be lenient like existing syscalls; or do we want
4463 * to be strict and return an error on out-of-bounds values?
4464 */
75e45d51 4465 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 4466
e78c7bca 4467 return 0;
d50dde5a
DF
4468
4469err_size:
4470 put_user(sizeof(*attr), &uattr->size);
e78c7bca 4471 return -E2BIG;
d50dde5a
DF
4472}
4473
1da177e4
LT
4474/**
4475 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4476 * @pid: the pid in question.
4477 * @policy: new policy.
4478 * @param: structure containing the new RT priority.
e69f6186
YB
4479 *
4480 * Return: 0 on success. An error code otherwise.
1da177e4 4481 */
5add95d4
HC
4482SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4483 struct sched_param __user *, param)
1da177e4 4484{
c21761f1
JB
4485 /* negative values for policy are not valid */
4486 if (policy < 0)
4487 return -EINVAL;
4488
1da177e4
LT
4489 return do_sched_setscheduler(pid, policy, param);
4490}
4491
4492/**
4493 * sys_sched_setparam - set/change the RT priority of a thread
4494 * @pid: the pid in question.
4495 * @param: structure containing the new RT priority.
e69f6186
YB
4496 *
4497 * Return: 0 on success. An error code otherwise.
1da177e4 4498 */
5add95d4 4499SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4500{
c13db6b1 4501 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
4502}
4503
d50dde5a
DF
4504/**
4505 * sys_sched_setattr - same as above, but with extended sched_attr
4506 * @pid: the pid in question.
5778fccf 4507 * @uattr: structure containing the extended parameters.
db66d756 4508 * @flags: for future extension.
d50dde5a 4509 */
6d35ab48
PZ
4510SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4511 unsigned int, flags)
d50dde5a
DF
4512{
4513 struct sched_attr attr;
4514 struct task_struct *p;
4515 int retval;
4516
6d35ab48 4517 if (!uattr || pid < 0 || flags)
d50dde5a
DF
4518 return -EINVAL;
4519
143cf23d
MK
4520 retval = sched_copy_attr(uattr, &attr);
4521 if (retval)
4522 return retval;
d50dde5a 4523
b14ed2c2 4524 if ((int)attr.sched_policy < 0)
dbdb2275 4525 return -EINVAL;
d50dde5a
DF
4526
4527 rcu_read_lock();
4528 retval = -ESRCH;
4529 p = find_process_by_pid(pid);
4530 if (p != NULL)
4531 retval = sched_setattr(p, &attr);
4532 rcu_read_unlock();
4533
4534 return retval;
4535}
4536
1da177e4
LT
4537/**
4538 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4539 * @pid: the pid in question.
e69f6186
YB
4540 *
4541 * Return: On success, the policy of the thread. Otherwise, a negative error
4542 * code.
1da177e4 4543 */
5add95d4 4544SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4545{
36c8b586 4546 struct task_struct *p;
3a5c359a 4547 int retval;
1da177e4
LT
4548
4549 if (pid < 0)
3a5c359a 4550 return -EINVAL;
1da177e4
LT
4551
4552 retval = -ESRCH;
5fe85be0 4553 rcu_read_lock();
1da177e4
LT
4554 p = find_process_by_pid(pid);
4555 if (p) {
4556 retval = security_task_getscheduler(p);
4557 if (!retval)
ca94c442
LP
4558 retval = p->policy
4559 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4560 }
5fe85be0 4561 rcu_read_unlock();
1da177e4
LT
4562 return retval;
4563}
4564
4565/**
ca94c442 4566 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4567 * @pid: the pid in question.
4568 * @param: structure containing the RT priority.
e69f6186
YB
4569 *
4570 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4571 * code.
1da177e4 4572 */
5add95d4 4573SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4574{
ce5f7f82 4575 struct sched_param lp = { .sched_priority = 0 };
36c8b586 4576 struct task_struct *p;
3a5c359a 4577 int retval;
1da177e4
LT
4578
4579 if (!param || pid < 0)
3a5c359a 4580 return -EINVAL;
1da177e4 4581
5fe85be0 4582 rcu_read_lock();
1da177e4
LT
4583 p = find_process_by_pid(pid);
4584 retval = -ESRCH;
4585 if (!p)
4586 goto out_unlock;
4587
4588 retval = security_task_getscheduler(p);
4589 if (retval)
4590 goto out_unlock;
4591
ce5f7f82
PZ
4592 if (task_has_rt_policy(p))
4593 lp.sched_priority = p->rt_priority;
5fe85be0 4594 rcu_read_unlock();
1da177e4
LT
4595
4596 /*
4597 * This one might sleep, we cannot do it with a spinlock held ...
4598 */
4599 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4600
1da177e4
LT
4601 return retval;
4602
4603out_unlock:
5fe85be0 4604 rcu_read_unlock();
1da177e4
LT
4605 return retval;
4606}
4607
d50dde5a
DF
4608static int sched_read_attr(struct sched_attr __user *uattr,
4609 struct sched_attr *attr,
4610 unsigned int usize)
4611{
4612 int ret;
4613
4614 if (!access_ok(VERIFY_WRITE, uattr, usize))
4615 return -EFAULT;
4616
4617 /*
4618 * If we're handed a smaller struct than we know of,
4619 * ensure all the unknown bits are 0 - i.e. old
4620 * user-space does not get uncomplete information.
4621 */
4622 if (usize < sizeof(*attr)) {
4623 unsigned char *addr;
4624 unsigned char *end;
4625
4626 addr = (void *)attr + usize;
4627 end = (void *)attr + sizeof(*attr);
4628
4629 for (; addr < end; addr++) {
4630 if (*addr)
22400674 4631 return -EFBIG;
d50dde5a
DF
4632 }
4633
4634 attr->size = usize;
4635 }
4636
4efbc454 4637 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
4638 if (ret)
4639 return -EFAULT;
4640
22400674 4641 return 0;
d50dde5a
DF
4642}
4643
4644/**
aab03e05 4645 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 4646 * @pid: the pid in question.
5778fccf 4647 * @uattr: structure containing the extended parameters.
d50dde5a 4648 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 4649 * @flags: for future extension.
d50dde5a 4650 */
6d35ab48
PZ
4651SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4652 unsigned int, size, unsigned int, flags)
d50dde5a
DF
4653{
4654 struct sched_attr attr = {
4655 .size = sizeof(struct sched_attr),
4656 };
4657 struct task_struct *p;
4658 int retval;
4659
4660 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 4661 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
4662 return -EINVAL;
4663
4664 rcu_read_lock();
4665 p = find_process_by_pid(pid);
4666 retval = -ESRCH;
4667 if (!p)
4668 goto out_unlock;
4669
4670 retval = security_task_getscheduler(p);
4671 if (retval)
4672 goto out_unlock;
4673
4674 attr.sched_policy = p->policy;
7479f3c9
PZ
4675 if (p->sched_reset_on_fork)
4676 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
4677 if (task_has_dl_policy(p))
4678 __getparam_dl(p, &attr);
4679 else if (task_has_rt_policy(p))
d50dde5a
DF
4680 attr.sched_priority = p->rt_priority;
4681 else
d0ea0268 4682 attr.sched_nice = task_nice(p);
d50dde5a
DF
4683
4684 rcu_read_unlock();
4685
4686 retval = sched_read_attr(uattr, &attr, size);
4687 return retval;
4688
4689out_unlock:
4690 rcu_read_unlock();
4691 return retval;
4692}
4693
96f874e2 4694long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4695{
5a16f3d3 4696 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4697 struct task_struct *p;
4698 int retval;
1da177e4 4699
23f5d142 4700 rcu_read_lock();
1da177e4
LT
4701
4702 p = find_process_by_pid(pid);
4703 if (!p) {
23f5d142 4704 rcu_read_unlock();
1da177e4
LT
4705 return -ESRCH;
4706 }
4707
23f5d142 4708 /* Prevent p going away */
1da177e4 4709 get_task_struct(p);
23f5d142 4710 rcu_read_unlock();
1da177e4 4711
14a40ffc
TH
4712 if (p->flags & PF_NO_SETAFFINITY) {
4713 retval = -EINVAL;
4714 goto out_put_task;
4715 }
5a16f3d3
RR
4716 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4717 retval = -ENOMEM;
4718 goto out_put_task;
4719 }
4720 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4721 retval = -ENOMEM;
4722 goto out_free_cpus_allowed;
4723 }
1da177e4 4724 retval = -EPERM;
4c44aaaf
EB
4725 if (!check_same_owner(p)) {
4726 rcu_read_lock();
4727 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4728 rcu_read_unlock();
16303ab2 4729 goto out_free_new_mask;
4c44aaaf
EB
4730 }
4731 rcu_read_unlock();
4732 }
1da177e4 4733
b0ae1981 4734 retval = security_task_setscheduler(p);
e7834f8f 4735 if (retval)
16303ab2 4736 goto out_free_new_mask;
e7834f8f 4737
e4099a5e
PZ
4738
4739 cpuset_cpus_allowed(p, cpus_allowed);
4740 cpumask_and(new_mask, in_mask, cpus_allowed);
4741
332ac17e
DF
4742 /*
4743 * Since bandwidth control happens on root_domain basis,
4744 * if admission test is enabled, we only admit -deadline
4745 * tasks allowed to run on all the CPUs in the task's
4746 * root_domain.
4747 */
4748#ifdef CONFIG_SMP
f1e3a093
KT
4749 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4750 rcu_read_lock();
4751 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 4752 retval = -EBUSY;
f1e3a093 4753 rcu_read_unlock();
16303ab2 4754 goto out_free_new_mask;
332ac17e 4755 }
f1e3a093 4756 rcu_read_unlock();
332ac17e
DF
4757 }
4758#endif
49246274 4759again:
25834c73 4760 retval = __set_cpus_allowed_ptr(p, new_mask, true);
1da177e4 4761
8707d8b8 4762 if (!retval) {
5a16f3d3
RR
4763 cpuset_cpus_allowed(p, cpus_allowed);
4764 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4765 /*
4766 * We must have raced with a concurrent cpuset
4767 * update. Just reset the cpus_allowed to the
4768 * cpuset's cpus_allowed
4769 */
5a16f3d3 4770 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4771 goto again;
4772 }
4773 }
16303ab2 4774out_free_new_mask:
5a16f3d3
RR
4775 free_cpumask_var(new_mask);
4776out_free_cpus_allowed:
4777 free_cpumask_var(cpus_allowed);
4778out_put_task:
1da177e4 4779 put_task_struct(p);
1da177e4
LT
4780 return retval;
4781}
4782
4783static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4784 struct cpumask *new_mask)
1da177e4 4785{
96f874e2
RR
4786 if (len < cpumask_size())
4787 cpumask_clear(new_mask);
4788 else if (len > cpumask_size())
4789 len = cpumask_size();
4790
1da177e4
LT
4791 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4792}
4793
4794/**
4795 * sys_sched_setaffinity - set the cpu affinity of a process
4796 * @pid: pid of the process
4797 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4798 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
4799 *
4800 * Return: 0 on success. An error code otherwise.
1da177e4 4801 */
5add95d4
HC
4802SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4803 unsigned long __user *, user_mask_ptr)
1da177e4 4804{
5a16f3d3 4805 cpumask_var_t new_mask;
1da177e4
LT
4806 int retval;
4807
5a16f3d3
RR
4808 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4809 return -ENOMEM;
1da177e4 4810
5a16f3d3
RR
4811 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4812 if (retval == 0)
4813 retval = sched_setaffinity(pid, new_mask);
4814 free_cpumask_var(new_mask);
4815 return retval;
1da177e4
LT
4816}
4817
96f874e2 4818long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4819{
36c8b586 4820 struct task_struct *p;
31605683 4821 unsigned long flags;
1da177e4 4822 int retval;
1da177e4 4823
23f5d142 4824 rcu_read_lock();
1da177e4
LT
4825
4826 retval = -ESRCH;
4827 p = find_process_by_pid(pid);
4828 if (!p)
4829 goto out_unlock;
4830
e7834f8f
DQ
4831 retval = security_task_getscheduler(p);
4832 if (retval)
4833 goto out_unlock;
4834
013fdb80 4835 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4836 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4837 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4838
4839out_unlock:
23f5d142 4840 rcu_read_unlock();
1da177e4 4841
9531b62f 4842 return retval;
1da177e4
LT
4843}
4844
4845/**
4846 * sys_sched_getaffinity - get the cpu affinity of a process
4847 * @pid: pid of the process
4848 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4849 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186 4850 *
599b4840
ZW
4851 * Return: size of CPU mask copied to user_mask_ptr on success. An
4852 * error code otherwise.
1da177e4 4853 */
5add95d4
HC
4854SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4855 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4856{
4857 int ret;
f17c8607 4858 cpumask_var_t mask;
1da177e4 4859
84fba5ec 4860 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4861 return -EINVAL;
4862 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4863 return -EINVAL;
4864
f17c8607
RR
4865 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4866 return -ENOMEM;
1da177e4 4867
f17c8607
RR
4868 ret = sched_getaffinity(pid, mask);
4869 if (ret == 0) {
8bc037fb 4870 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4871
4872 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4873 ret = -EFAULT;
4874 else
cd3d8031 4875 ret = retlen;
f17c8607
RR
4876 }
4877 free_cpumask_var(mask);
1da177e4 4878
f17c8607 4879 return ret;
1da177e4
LT
4880}
4881
4882/**
4883 * sys_sched_yield - yield the current processor to other threads.
4884 *
dd41f596
IM
4885 * This function yields the current CPU to other tasks. If there are no
4886 * other threads running on this CPU then this function will return.
e69f6186
YB
4887 *
4888 * Return: 0.
1da177e4 4889 */
5add95d4 4890SYSCALL_DEFINE0(sched_yield)
1da177e4 4891{
70b97a7f 4892 struct rq *rq = this_rq_lock();
1da177e4 4893
ae92882e 4894 schedstat_inc(rq->yld_count);
4530d7ab 4895 current->sched_class->yield_task(rq);
1da177e4
LT
4896
4897 /*
4898 * Since we are going to call schedule() anyway, there's
4899 * no need to preempt or enable interrupts:
4900 */
4901 __release(rq->lock);
8a25d5de 4902 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4903 do_raw_spin_unlock(&rq->lock);
ba74c144 4904 sched_preempt_enable_no_resched();
1da177e4
LT
4905
4906 schedule();
4907
4908 return 0;
4909}
4910
35a773a0 4911#ifndef CONFIG_PREEMPT
02b67cc3 4912int __sched _cond_resched(void)
1da177e4 4913{
fe32d3cd 4914 if (should_resched(0)) {
a18b5d01 4915 preempt_schedule_common();
1da177e4
LT
4916 return 1;
4917 }
4918 return 0;
4919}
02b67cc3 4920EXPORT_SYMBOL(_cond_resched);
35a773a0 4921#endif
1da177e4
LT
4922
4923/*
613afbf8 4924 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4925 * call schedule, and on return reacquire the lock.
4926 *
41a2d6cf 4927 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4928 * operations here to prevent schedule() from being called twice (once via
4929 * spin_unlock(), once by hand).
4930 */
613afbf8 4931int __cond_resched_lock(spinlock_t *lock)
1da177e4 4932{
fe32d3cd 4933 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6df3cecb
JK
4934 int ret = 0;
4935
f607c668
PZ
4936 lockdep_assert_held(lock);
4937
4a81e832 4938 if (spin_needbreak(lock) || resched) {
1da177e4 4939 spin_unlock(lock);
d86ee480 4940 if (resched)
a18b5d01 4941 preempt_schedule_common();
95c354fe
NP
4942 else
4943 cpu_relax();
6df3cecb 4944 ret = 1;
1da177e4 4945 spin_lock(lock);
1da177e4 4946 }
6df3cecb 4947 return ret;
1da177e4 4948}
613afbf8 4949EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4950
613afbf8 4951int __sched __cond_resched_softirq(void)
1da177e4
LT
4952{
4953 BUG_ON(!in_softirq());
4954
fe32d3cd 4955 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
98d82567 4956 local_bh_enable();
a18b5d01 4957 preempt_schedule_common();
1da177e4
LT
4958 local_bh_disable();
4959 return 1;
4960 }
4961 return 0;
4962}
613afbf8 4963EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4964
1da177e4
LT
4965/**
4966 * yield - yield the current processor to other threads.
4967 *
8e3fabfd
PZ
4968 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4969 *
4970 * The scheduler is at all times free to pick the calling task as the most
4971 * eligible task to run, if removing the yield() call from your code breaks
4972 * it, its already broken.
4973 *
4974 * Typical broken usage is:
4975 *
4976 * while (!event)
4977 * yield();
4978 *
4979 * where one assumes that yield() will let 'the other' process run that will
4980 * make event true. If the current task is a SCHED_FIFO task that will never
4981 * happen. Never use yield() as a progress guarantee!!
4982 *
4983 * If you want to use yield() to wait for something, use wait_event().
4984 * If you want to use yield() to be 'nice' for others, use cond_resched().
4985 * If you still want to use yield(), do not!
1da177e4
LT
4986 */
4987void __sched yield(void)
4988{
4989 set_current_state(TASK_RUNNING);
4990 sys_sched_yield();
4991}
1da177e4
LT
4992EXPORT_SYMBOL(yield);
4993
d95f4122
MG
4994/**
4995 * yield_to - yield the current processor to another thread in
4996 * your thread group, or accelerate that thread toward the
4997 * processor it's on.
16addf95
RD
4998 * @p: target task
4999 * @preempt: whether task preemption is allowed or not
d95f4122
MG
5000 *
5001 * It's the caller's job to ensure that the target task struct
5002 * can't go away on us before we can do any checks.
5003 *
e69f6186 5004 * Return:
7b270f60
PZ
5005 * true (>0) if we indeed boosted the target task.
5006 * false (0) if we failed to boost the target.
5007 * -ESRCH if there's no task to yield to.
d95f4122 5008 */
fa93384f 5009int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
5010{
5011 struct task_struct *curr = current;
5012 struct rq *rq, *p_rq;
5013 unsigned long flags;
c3c18640 5014 int yielded = 0;
d95f4122
MG
5015
5016 local_irq_save(flags);
5017 rq = this_rq();
5018
5019again:
5020 p_rq = task_rq(p);
7b270f60
PZ
5021 /*
5022 * If we're the only runnable task on the rq and target rq also
5023 * has only one task, there's absolutely no point in yielding.
5024 */
5025 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5026 yielded = -ESRCH;
5027 goto out_irq;
5028 }
5029
d95f4122 5030 double_rq_lock(rq, p_rq);
39e24d8f 5031 if (task_rq(p) != p_rq) {
d95f4122
MG
5032 double_rq_unlock(rq, p_rq);
5033 goto again;
5034 }
5035
5036 if (!curr->sched_class->yield_to_task)
7b270f60 5037 goto out_unlock;
d95f4122
MG
5038
5039 if (curr->sched_class != p->sched_class)
7b270f60 5040 goto out_unlock;
d95f4122
MG
5041
5042 if (task_running(p_rq, p) || p->state)
7b270f60 5043 goto out_unlock;
d95f4122
MG
5044
5045 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 5046 if (yielded) {
ae92882e 5047 schedstat_inc(rq->yld_count);
6d1cafd8
VP
5048 /*
5049 * Make p's CPU reschedule; pick_next_entity takes care of
5050 * fairness.
5051 */
5052 if (preempt && rq != p_rq)
8875125e 5053 resched_curr(p_rq);
6d1cafd8 5054 }
d95f4122 5055
7b270f60 5056out_unlock:
d95f4122 5057 double_rq_unlock(rq, p_rq);
7b270f60 5058out_irq:
d95f4122
MG
5059 local_irq_restore(flags);
5060
7b270f60 5061 if (yielded > 0)
d95f4122
MG
5062 schedule();
5063
5064 return yielded;
5065}
5066EXPORT_SYMBOL_GPL(yield_to);
5067
1da177e4 5068/*
41a2d6cf 5069 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5070 * that process accounting knows that this is a task in IO wait state.
1da177e4 5071 */
1da177e4
LT
5072long __sched io_schedule_timeout(long timeout)
5073{
9cff8ade
N
5074 int old_iowait = current->in_iowait;
5075 struct rq *rq;
1da177e4
LT
5076 long ret;
5077
9cff8ade 5078 current->in_iowait = 1;
10d784ea 5079 blk_schedule_flush_plug(current);
9cff8ade 5080
0ff92245 5081 delayacct_blkio_start();
9cff8ade 5082 rq = raw_rq();
1da177e4
LT
5083 atomic_inc(&rq->nr_iowait);
5084 ret = schedule_timeout(timeout);
9cff8ade 5085 current->in_iowait = old_iowait;
1da177e4 5086 atomic_dec(&rq->nr_iowait);
0ff92245 5087 delayacct_blkio_end();
9cff8ade 5088
1da177e4
LT
5089 return ret;
5090}
9cff8ade 5091EXPORT_SYMBOL(io_schedule_timeout);
1da177e4
LT
5092
5093/**
5094 * sys_sched_get_priority_max - return maximum RT priority.
5095 * @policy: scheduling class.
5096 *
e69f6186
YB
5097 * Return: On success, this syscall returns the maximum
5098 * rt_priority that can be used by a given scheduling class.
5099 * On failure, a negative error code is returned.
1da177e4 5100 */
5add95d4 5101SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5102{
5103 int ret = -EINVAL;
5104
5105 switch (policy) {
5106 case SCHED_FIFO:
5107 case SCHED_RR:
5108 ret = MAX_USER_RT_PRIO-1;
5109 break;
aab03e05 5110 case SCHED_DEADLINE:
1da177e4 5111 case SCHED_NORMAL:
b0a9499c 5112 case SCHED_BATCH:
dd41f596 5113 case SCHED_IDLE:
1da177e4
LT
5114 ret = 0;
5115 break;
5116 }
5117 return ret;
5118}
5119
5120/**
5121 * sys_sched_get_priority_min - return minimum RT priority.
5122 * @policy: scheduling class.
5123 *
e69f6186
YB
5124 * Return: On success, this syscall returns the minimum
5125 * rt_priority that can be used by a given scheduling class.
5126 * On failure, a negative error code is returned.
1da177e4 5127 */
5add95d4 5128SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5129{
5130 int ret = -EINVAL;
5131
5132 switch (policy) {
5133 case SCHED_FIFO:
5134 case SCHED_RR:
5135 ret = 1;
5136 break;
aab03e05 5137 case SCHED_DEADLINE:
1da177e4 5138 case SCHED_NORMAL:
b0a9499c 5139 case SCHED_BATCH:
dd41f596 5140 case SCHED_IDLE:
1da177e4
LT
5141 ret = 0;
5142 }
5143 return ret;
5144}
5145
5146/**
5147 * sys_sched_rr_get_interval - return the default timeslice of a process.
5148 * @pid: pid of the process.
5149 * @interval: userspace pointer to the timeslice value.
5150 *
5151 * this syscall writes the default timeslice value of a given process
5152 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
5153 *
5154 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5155 * an error code.
1da177e4 5156 */
17da2bd9 5157SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5158 struct timespec __user *, interval)
1da177e4 5159{
36c8b586 5160 struct task_struct *p;
a4ec24b4 5161 unsigned int time_slice;
eb580751
PZ
5162 struct rq_flags rf;
5163 struct timespec t;
dba091b9 5164 struct rq *rq;
3a5c359a 5165 int retval;
1da177e4
LT
5166
5167 if (pid < 0)
3a5c359a 5168 return -EINVAL;
1da177e4
LT
5169
5170 retval = -ESRCH;
1a551ae7 5171 rcu_read_lock();
1da177e4
LT
5172 p = find_process_by_pid(pid);
5173 if (!p)
5174 goto out_unlock;
5175
5176 retval = security_task_getscheduler(p);
5177 if (retval)
5178 goto out_unlock;
5179
eb580751 5180 rq = task_rq_lock(p, &rf);
a57beec5
PZ
5181 time_slice = 0;
5182 if (p->sched_class->get_rr_interval)
5183 time_slice = p->sched_class->get_rr_interval(rq, p);
eb580751 5184 task_rq_unlock(rq, p, &rf);
a4ec24b4 5185
1a551ae7 5186 rcu_read_unlock();
a4ec24b4 5187 jiffies_to_timespec(time_slice, &t);
1da177e4 5188 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5189 return retval;
3a5c359a 5190
1da177e4 5191out_unlock:
1a551ae7 5192 rcu_read_unlock();
1da177e4
LT
5193 return retval;
5194}
5195
7c731e0a 5196static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5197
82a1fcb9 5198void sched_show_task(struct task_struct *p)
1da177e4 5199{
1da177e4 5200 unsigned long free = 0;
4e79752c 5201 int ppid;
1f8a7633 5202 unsigned long state = p->state;
1da177e4 5203
38200502
TH
5204 if (!try_get_task_stack(p))
5205 return;
1f8a7633
TH
5206 if (state)
5207 state = __ffs(state) + 1;
28d0686c 5208 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 5209 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
1da177e4 5210 if (state == TASK_RUNNING)
3df0fc5b 5211 printk(KERN_CONT " running task ");
1da177e4 5212#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5213 free = stack_not_used(p);
1da177e4 5214#endif
a90e984c 5215 ppid = 0;
4e79752c 5216 rcu_read_lock();
a90e984c
ON
5217 if (pid_alive(p))
5218 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 5219 rcu_read_unlock();
3df0fc5b 5220 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 5221 task_pid_nr(p), ppid,
aa47b7e0 5222 (unsigned long)task_thread_info(p)->flags);
1da177e4 5223
3d1cb205 5224 print_worker_info(KERN_INFO, p);
5fb5e6de 5225 show_stack(p, NULL);
38200502 5226 put_task_stack(p);
1da177e4
LT
5227}
5228
e59e2ae2 5229void show_state_filter(unsigned long state_filter)
1da177e4 5230{
36c8b586 5231 struct task_struct *g, *p;
1da177e4 5232
4bd77321 5233#if BITS_PER_LONG == 32
3df0fc5b
PZ
5234 printk(KERN_INFO
5235 " task PC stack pid father\n");
1da177e4 5236#else
3df0fc5b
PZ
5237 printk(KERN_INFO
5238 " task PC stack pid father\n");
1da177e4 5239#endif
510f5acc 5240 rcu_read_lock();
5d07f420 5241 for_each_process_thread(g, p) {
1da177e4
LT
5242 /*
5243 * reset the NMI-timeout, listing all files on a slow
25985edc 5244 * console might take a lot of time:
57675cb9
AR
5245 * Also, reset softlockup watchdogs on all CPUs, because
5246 * another CPU might be blocked waiting for us to process
5247 * an IPI.
1da177e4
LT
5248 */
5249 touch_nmi_watchdog();
57675cb9 5250 touch_all_softlockup_watchdogs();
39bc89fd 5251 if (!state_filter || (p->state & state_filter))
82a1fcb9 5252 sched_show_task(p);
5d07f420 5253 }
1da177e4 5254
dd41f596 5255#ifdef CONFIG_SCHED_DEBUG
fb90a6e9
RV
5256 if (!state_filter)
5257 sysrq_sched_debug_show();
dd41f596 5258#endif
510f5acc 5259 rcu_read_unlock();
e59e2ae2
IM
5260 /*
5261 * Only show locks if all tasks are dumped:
5262 */
93335a21 5263 if (!state_filter)
e59e2ae2 5264 debug_show_all_locks();
1da177e4
LT
5265}
5266
0db0628d 5267void init_idle_bootup_task(struct task_struct *idle)
1df21055 5268{
dd41f596 5269 idle->sched_class = &idle_sched_class;
1df21055
IM
5270}
5271
f340c0d1
IM
5272/**
5273 * init_idle - set up an idle thread for a given CPU
5274 * @idle: task in question
5275 * @cpu: cpu the idle task belongs to
5276 *
5277 * NOTE: this function does not set the idle thread's NEED_RESCHED
5278 * flag, to make booting more robust.
5279 */
0db0628d 5280void init_idle(struct task_struct *idle, int cpu)
1da177e4 5281{
70b97a7f 5282 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5283 unsigned long flags;
5284
25834c73
PZ
5285 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5286 raw_spin_lock(&rq->lock);
5cbd54ef 5287
5e1576ed 5288 __sched_fork(0, idle);
06b83b5f 5289 idle->state = TASK_RUNNING;
dd41f596 5290 idle->se.exec_start = sched_clock();
c1de45ca 5291 idle->flags |= PF_IDLE;
dd41f596 5292
e1b77c92
MR
5293 kasan_unpoison_task_stack(idle);
5294
de9b8f5d
PZ
5295#ifdef CONFIG_SMP
5296 /*
5297 * Its possible that init_idle() gets called multiple times on a task,
5298 * in that case do_set_cpus_allowed() will not do the right thing.
5299 *
5300 * And since this is boot we can forgo the serialization.
5301 */
5302 set_cpus_allowed_common(idle, cpumask_of(cpu));
5303#endif
6506cf6c
PZ
5304 /*
5305 * We're having a chicken and egg problem, even though we are
5306 * holding rq->lock, the cpu isn't yet set to this cpu so the
5307 * lockdep check in task_group() will fail.
5308 *
5309 * Similar case to sched_fork(). / Alternatively we could
5310 * use task_rq_lock() here and obtain the other rq->lock.
5311 *
5312 * Silence PROVE_RCU
5313 */
5314 rcu_read_lock();
dd41f596 5315 __set_task_cpu(idle, cpu);
6506cf6c 5316 rcu_read_unlock();
1da177e4 5317
1da177e4 5318 rq->curr = rq->idle = idle;
da0c1e65 5319 idle->on_rq = TASK_ON_RQ_QUEUED;
de9b8f5d 5320#ifdef CONFIG_SMP
3ca7a440 5321 idle->on_cpu = 1;
4866cde0 5322#endif
25834c73
PZ
5323 raw_spin_unlock(&rq->lock);
5324 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
1da177e4
LT
5325
5326 /* Set the preempt count _outside_ the spinlocks! */
01028747 5327 init_idle_preempt_count(idle, cpu);
55cd5340 5328
dd41f596
IM
5329 /*
5330 * The idle tasks have their own, simple scheduling class:
5331 */
5332 idle->sched_class = &idle_sched_class;
868baf07 5333 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 5334 vtime_init_idle(idle, cpu);
de9b8f5d 5335#ifdef CONFIG_SMP
f1c6f1a7
CE
5336 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5337#endif
19978ca6
IM
5338}
5339
f82f8042
JL
5340int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5341 const struct cpumask *trial)
5342{
5343 int ret = 1, trial_cpus;
5344 struct dl_bw *cur_dl_b;
5345 unsigned long flags;
5346
bb2bc55a
MG
5347 if (!cpumask_weight(cur))
5348 return ret;
5349
75e23e49 5350 rcu_read_lock_sched();
f82f8042
JL
5351 cur_dl_b = dl_bw_of(cpumask_any(cur));
5352 trial_cpus = cpumask_weight(trial);
5353
5354 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5355 if (cur_dl_b->bw != -1 &&
5356 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5357 ret = 0;
5358 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
75e23e49 5359 rcu_read_unlock_sched();
f82f8042
JL
5360
5361 return ret;
5362}
5363
7f51412a
JL
5364int task_can_attach(struct task_struct *p,
5365 const struct cpumask *cs_cpus_allowed)
5366{
5367 int ret = 0;
5368
5369 /*
5370 * Kthreads which disallow setaffinity shouldn't be moved
5371 * to a new cpuset; we don't want to change their cpu
5372 * affinity and isolating such threads by their set of
5373 * allowed nodes is unnecessary. Thus, cpusets are not
5374 * applicable for such threads. This prevents checking for
5375 * success of set_cpus_allowed_ptr() on all attached tasks
5376 * before cpus_allowed may be changed.
5377 */
5378 if (p->flags & PF_NO_SETAFFINITY) {
5379 ret = -EINVAL;
5380 goto out;
5381 }
5382
5383#ifdef CONFIG_SMP
5384 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5385 cs_cpus_allowed)) {
5386 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5387 cs_cpus_allowed);
75e23e49 5388 struct dl_bw *dl_b;
7f51412a
JL
5389 bool overflow;
5390 int cpus;
5391 unsigned long flags;
5392
75e23e49
JL
5393 rcu_read_lock_sched();
5394 dl_b = dl_bw_of(dest_cpu);
7f51412a
JL
5395 raw_spin_lock_irqsave(&dl_b->lock, flags);
5396 cpus = dl_bw_cpus(dest_cpu);
5397 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5398 if (overflow)
5399 ret = -EBUSY;
5400 else {
5401 /*
5402 * We reserve space for this task in the destination
5403 * root_domain, as we can't fail after this point.
5404 * We will free resources in the source root_domain
5405 * later on (see set_cpus_allowed_dl()).
5406 */
5407 __dl_add(dl_b, p->dl.dl_bw);
5408 }
5409 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
75e23e49 5410 rcu_read_unlock_sched();
7f51412a
JL
5411
5412 }
5413#endif
5414out:
5415 return ret;
5416}
5417
1da177e4 5418#ifdef CONFIG_SMP
1da177e4 5419
e26fbffd
TG
5420static bool sched_smp_initialized __read_mostly;
5421
e6628d5b
MG
5422#ifdef CONFIG_NUMA_BALANCING
5423/* Migrate current task p to target_cpu */
5424int migrate_task_to(struct task_struct *p, int target_cpu)
5425{
5426 struct migration_arg arg = { p, target_cpu };
5427 int curr_cpu = task_cpu(p);
5428
5429 if (curr_cpu == target_cpu)
5430 return 0;
5431
5432 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5433 return -EINVAL;
5434
5435 /* TODO: This is not properly updating schedstats */
5436
286549dc 5437 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
5438 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5439}
0ec8aa00
PZ
5440
5441/*
5442 * Requeue a task on a given node and accurately track the number of NUMA
5443 * tasks on the runqueues
5444 */
5445void sched_setnuma(struct task_struct *p, int nid)
5446{
da0c1e65 5447 bool queued, running;
eb580751
PZ
5448 struct rq_flags rf;
5449 struct rq *rq;
0ec8aa00 5450
eb580751 5451 rq = task_rq_lock(p, &rf);
da0c1e65 5452 queued = task_on_rq_queued(p);
0ec8aa00
PZ
5453 running = task_current(rq, p);
5454
da0c1e65 5455 if (queued)
1de64443 5456 dequeue_task(rq, p, DEQUEUE_SAVE);
0ec8aa00 5457 if (running)
f3cd1c4e 5458 put_prev_task(rq, p);
0ec8aa00
PZ
5459
5460 p->numa_preferred_nid = nid;
0ec8aa00 5461
da0c1e65 5462 if (queued)
1de64443 5463 enqueue_task(rq, p, ENQUEUE_RESTORE);
a399d233 5464 if (running)
b2bf6c31 5465 set_curr_task(rq, p);
eb580751 5466 task_rq_unlock(rq, p, &rf);
0ec8aa00 5467}
5cc389bc 5468#endif /* CONFIG_NUMA_BALANCING */
f7b4cddc 5469
1da177e4 5470#ifdef CONFIG_HOTPLUG_CPU
054b9108 5471/*
48c5ccae
PZ
5472 * Ensures that the idle task is using init_mm right before its cpu goes
5473 * offline.
054b9108 5474 */
48c5ccae 5475void idle_task_exit(void)
1da177e4 5476{
48c5ccae 5477 struct mm_struct *mm = current->active_mm;
e76bd8d9 5478
48c5ccae 5479 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 5480
a53efe5f 5481 if (mm != &init_mm) {
f98db601 5482 switch_mm_irqs_off(mm, &init_mm, current);
a53efe5f
MS
5483 finish_arch_post_lock_switch();
5484 }
48c5ccae 5485 mmdrop(mm);
1da177e4
LT
5486}
5487
5488/*
5d180232
PZ
5489 * Since this CPU is going 'away' for a while, fold any nr_active delta
5490 * we might have. Assumes we're called after migrate_tasks() so that the
d60585c5
TG
5491 * nr_active count is stable. We need to take the teardown thread which
5492 * is calling this into account, so we hand in adjust = 1 to the load
5493 * calculation.
5d180232
PZ
5494 *
5495 * Also see the comment "Global load-average calculations".
1da177e4 5496 */
5d180232 5497static void calc_load_migrate(struct rq *rq)
1da177e4 5498{
d60585c5 5499 long delta = calc_load_fold_active(rq, 1);
5d180232
PZ
5500 if (delta)
5501 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
5502}
5503
3f1d2a31
PZ
5504static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5505{
5506}
5507
5508static const struct sched_class fake_sched_class = {
5509 .put_prev_task = put_prev_task_fake,
5510};
5511
5512static struct task_struct fake_task = {
5513 /*
5514 * Avoid pull_{rt,dl}_task()
5515 */
5516 .prio = MAX_PRIO + 1,
5517 .sched_class = &fake_sched_class,
5518};
5519
48f24c4d 5520/*
48c5ccae
PZ
5521 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5522 * try_to_wake_up()->select_task_rq().
5523 *
5524 * Called with rq->lock held even though we'er in stop_machine() and
5525 * there's no concurrency possible, we hold the required locks anyway
5526 * because of lock validation efforts.
1da177e4 5527 */
5e16bbc2 5528static void migrate_tasks(struct rq *dead_rq)
1da177e4 5529{
5e16bbc2 5530 struct rq *rq = dead_rq;
48c5ccae 5531 struct task_struct *next, *stop = rq->stop;
d8ac8971 5532 struct rq_flags rf;
48c5ccae 5533 int dest_cpu;
1da177e4
LT
5534
5535 /*
48c5ccae
PZ
5536 * Fudge the rq selection such that the below task selection loop
5537 * doesn't get stuck on the currently eligible stop task.
5538 *
5539 * We're currently inside stop_machine() and the rq is either stuck
5540 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5541 * either way we should never end up calling schedule() until we're
5542 * done here.
1da177e4 5543 */
48c5ccae 5544 rq->stop = NULL;
48f24c4d 5545
77bd3970
FW
5546 /*
5547 * put_prev_task() and pick_next_task() sched
5548 * class method both need to have an up-to-date
5549 * value of rq->clock[_task]
5550 */
5551 update_rq_clock(rq);
5552
5e16bbc2 5553 for (;;) {
48c5ccae
PZ
5554 /*
5555 * There's this thread running, bail when that's the only
5556 * remaining thread.
5557 */
5558 if (rq->nr_running == 1)
dd41f596 5559 break;
48c5ccae 5560
cbce1a68 5561 /*
5473e0cc 5562 * pick_next_task assumes pinned rq->lock.
cbce1a68 5563 */
d8ac8971
MF
5564 rq_pin_lock(rq, &rf);
5565 next = pick_next_task(rq, &fake_task, &rf);
48c5ccae 5566 BUG_ON(!next);
79c53799 5567 next->sched_class->put_prev_task(rq, next);
e692ab53 5568
5473e0cc
WL
5569 /*
5570 * Rules for changing task_struct::cpus_allowed are holding
5571 * both pi_lock and rq->lock, such that holding either
5572 * stabilizes the mask.
5573 *
5574 * Drop rq->lock is not quite as disastrous as it usually is
5575 * because !cpu_active at this point, which means load-balance
5576 * will not interfere. Also, stop-machine.
5577 */
d8ac8971 5578 rq_unpin_lock(rq, &rf);
5473e0cc
WL
5579 raw_spin_unlock(&rq->lock);
5580 raw_spin_lock(&next->pi_lock);
5581 raw_spin_lock(&rq->lock);
5582
5583 /*
5584 * Since we're inside stop-machine, _nothing_ should have
5585 * changed the task, WARN if weird stuff happened, because in
5586 * that case the above rq->lock drop is a fail too.
5587 */
5588 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5589 raw_spin_unlock(&next->pi_lock);
5590 continue;
5591 }
5592
48c5ccae 5593 /* Find suitable destination for @next, with force if needed. */
5e16bbc2 5594 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
48c5ccae 5595
5e16bbc2
PZ
5596 rq = __migrate_task(rq, next, dest_cpu);
5597 if (rq != dead_rq) {
5598 raw_spin_unlock(&rq->lock);
5599 rq = dead_rq;
5600 raw_spin_lock(&rq->lock);
5601 }
5473e0cc 5602 raw_spin_unlock(&next->pi_lock);
1da177e4 5603 }
dce48a84 5604
48c5ccae 5605 rq->stop = stop;
dce48a84 5606}
1da177e4
LT
5607#endif /* CONFIG_HOTPLUG_CPU */
5608
1f11eb6a
GH
5609static void set_rq_online(struct rq *rq)
5610{
5611 if (!rq->online) {
5612 const struct sched_class *class;
5613
c6c4927b 5614 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5615 rq->online = 1;
5616
5617 for_each_class(class) {
5618 if (class->rq_online)
5619 class->rq_online(rq);
5620 }
5621 }
5622}
5623
5624static void set_rq_offline(struct rq *rq)
5625{
5626 if (rq->online) {
5627 const struct sched_class *class;
5628
5629 for_each_class(class) {
5630 if (class->rq_offline)
5631 class->rq_offline(rq);
5632 }
5633
c6c4927b 5634 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5635 rq->online = 0;
5636 }
5637}
5638
9cf7243d 5639static void set_cpu_rq_start_time(unsigned int cpu)
1da177e4 5640{
969c7921 5641 struct rq *rq = cpu_rq(cpu);
1da177e4 5642
a803f026
CM
5643 rq->age_stamp = sched_clock_cpu(cpu);
5644}
5645
4cb98839
PZ
5646static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5647
3e9830dc 5648#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5649
d039ac60 5650static __read_mostly int sched_debug_enabled;
f6630114 5651
d039ac60 5652static int __init sched_debug_setup(char *str)
f6630114 5653{
d039ac60 5654 sched_debug_enabled = 1;
f6630114
MT
5655
5656 return 0;
5657}
d039ac60
PZ
5658early_param("sched_debug", sched_debug_setup);
5659
5660static inline bool sched_debug(void)
5661{
5662 return sched_debug_enabled;
5663}
f6630114 5664
7c16ec58 5665static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5666 struct cpumask *groupmask)
1da177e4 5667{
4dcf6aff 5668 struct sched_group *group = sd->groups;
1da177e4 5669
96f874e2 5670 cpumask_clear(groupmask);
4dcf6aff
IM
5671
5672 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5673
5674 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5675 printk("does not load-balance\n");
4dcf6aff 5676 if (sd->parent)
3df0fc5b
PZ
5677 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5678 " has parent");
4dcf6aff 5679 return -1;
41c7ce9a
NP
5680 }
5681
333470ee
TH
5682 printk(KERN_CONT "span %*pbl level %s\n",
5683 cpumask_pr_args(sched_domain_span(sd)), sd->name);
4dcf6aff 5684
758b2cdc 5685 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5686 printk(KERN_ERR "ERROR: domain->span does not contain "
5687 "CPU%d\n", cpu);
4dcf6aff 5688 }
758b2cdc 5689 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5690 printk(KERN_ERR "ERROR: domain->groups does not contain"
5691 " CPU%d\n", cpu);
4dcf6aff 5692 }
1da177e4 5693
4dcf6aff 5694 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5695 do {
4dcf6aff 5696 if (!group) {
3df0fc5b
PZ
5697 printk("\n");
5698 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5699 break;
5700 }
5701
758b2cdc 5702 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5703 printk(KERN_CONT "\n");
5704 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5705 break;
5706 }
1da177e4 5707
cb83b629
PZ
5708 if (!(sd->flags & SD_OVERLAP) &&
5709 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5710 printk(KERN_CONT "\n");
5711 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5712 break;
5713 }
1da177e4 5714
758b2cdc 5715 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5716
333470ee
TH
5717 printk(KERN_CONT " %*pbl",
5718 cpumask_pr_args(sched_group_cpus(group)));
ca8ce3d0 5719 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
bf475ce0 5720 printk(KERN_CONT " (cpu_capacity = %lu)",
63b2ca30 5721 group->sgc->capacity);
381512cf 5722 }
1da177e4 5723
4dcf6aff
IM
5724 group = group->next;
5725 } while (group != sd->groups);
3df0fc5b 5726 printk(KERN_CONT "\n");
1da177e4 5727
758b2cdc 5728 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5729 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5730
758b2cdc
RR
5731 if (sd->parent &&
5732 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5733 printk(KERN_ERR "ERROR: parent span is not a superset "
5734 "of domain->span\n");
4dcf6aff
IM
5735 return 0;
5736}
1da177e4 5737
4dcf6aff
IM
5738static void sched_domain_debug(struct sched_domain *sd, int cpu)
5739{
5740 int level = 0;
1da177e4 5741
d039ac60 5742 if (!sched_debug_enabled)
f6630114
MT
5743 return;
5744
4dcf6aff
IM
5745 if (!sd) {
5746 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5747 return;
5748 }
1da177e4 5749
4dcf6aff
IM
5750 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5751
5752 for (;;) {
4cb98839 5753 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5754 break;
1da177e4
LT
5755 level++;
5756 sd = sd->parent;
33859f7f 5757 if (!sd)
4dcf6aff
IM
5758 break;
5759 }
1da177e4 5760}
6d6bc0ad 5761#else /* !CONFIG_SCHED_DEBUG */
a18a579e
PZ
5762
5763# define sched_debug_enabled 0
48f24c4d 5764# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5765static inline bool sched_debug(void)
5766{
5767 return false;
5768}
6d6bc0ad 5769#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5770
1a20ff27 5771static int sd_degenerate(struct sched_domain *sd)
245af2c7 5772{
758b2cdc 5773 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5774 return 1;
5775
5776 /* Following flags need at least 2 groups */
5777 if (sd->flags & (SD_LOAD_BALANCE |
5778 SD_BALANCE_NEWIDLE |
5779 SD_BALANCE_FORK |
89c4710e 5780 SD_BALANCE_EXEC |
5d4dfddd 5781 SD_SHARE_CPUCAPACITY |
1f6e6c7c 5782 SD_ASYM_CPUCAPACITY |
d77b3ed5
VG
5783 SD_SHARE_PKG_RESOURCES |
5784 SD_SHARE_POWERDOMAIN)) {
245af2c7
SS
5785 if (sd->groups != sd->groups->next)
5786 return 0;
5787 }
5788
5789 /* Following flags don't use groups */
c88d5910 5790 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5791 return 0;
5792
5793 return 1;
5794}
5795
48f24c4d
IM
5796static int
5797sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5798{
5799 unsigned long cflags = sd->flags, pflags = parent->flags;
5800
5801 if (sd_degenerate(parent))
5802 return 1;
5803
758b2cdc 5804 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5805 return 0;
5806
245af2c7
SS
5807 /* Flags needing groups don't count if only 1 group in parent */
5808 if (parent->groups == parent->groups->next) {
5809 pflags &= ~(SD_LOAD_BALANCE |
5810 SD_BALANCE_NEWIDLE |
5811 SD_BALANCE_FORK |
89c4710e 5812 SD_BALANCE_EXEC |
1f6e6c7c 5813 SD_ASYM_CPUCAPACITY |
5d4dfddd 5814 SD_SHARE_CPUCAPACITY |
10866e62 5815 SD_SHARE_PKG_RESOURCES |
d77b3ed5
VG
5816 SD_PREFER_SIBLING |
5817 SD_SHARE_POWERDOMAIN);
5436499e
KC
5818 if (nr_node_ids == 1)
5819 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5820 }
5821 if (~cflags & pflags)
5822 return 0;
5823
5824 return 1;
5825}
5826
dce840a0 5827static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5828{
dce840a0 5829 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5830
68e74568 5831 cpupri_cleanup(&rd->cpupri);
6bfd6d72 5832 cpudl_cleanup(&rd->cpudl);
1baca4ce 5833 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5834 free_cpumask_var(rd->rto_mask);
5835 free_cpumask_var(rd->online);
5836 free_cpumask_var(rd->span);
5837 kfree(rd);
5838}
5839
57d885fe
GH
5840static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5841{
a0490fa3 5842 struct root_domain *old_rd = NULL;
57d885fe 5843 unsigned long flags;
57d885fe 5844
05fa785c 5845 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5846
5847 if (rq->rd) {
a0490fa3 5848 old_rd = rq->rd;
57d885fe 5849
c6c4927b 5850 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5851 set_rq_offline(rq);
57d885fe 5852
c6c4927b 5853 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5854
a0490fa3 5855 /*
0515973f 5856 * If we dont want to free the old_rd yet then
a0490fa3
IM
5857 * set old_rd to NULL to skip the freeing later
5858 * in this function:
5859 */
5860 if (!atomic_dec_and_test(&old_rd->refcount))
5861 old_rd = NULL;
57d885fe
GH
5862 }
5863
5864 atomic_inc(&rd->refcount);
5865 rq->rd = rd;
5866
c6c4927b 5867 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5868 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5869 set_rq_online(rq);
57d885fe 5870
05fa785c 5871 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5872
5873 if (old_rd)
dce840a0 5874 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5875}
5876
68c38fc3 5877static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5878{
5879 memset(rd, 0, sizeof(*rd));
5880
8295c699 5881 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5882 goto out;
8295c699 5883 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5884 goto free_span;
8295c699 5885 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
c6c4927b 5886 goto free_online;
8295c699 5887 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
1baca4ce 5888 goto free_dlo_mask;
6e0534f2 5889
332ac17e 5890 init_dl_bw(&rd->dl_bw);
6bfd6d72
JL
5891 if (cpudl_init(&rd->cpudl) != 0)
5892 goto free_dlo_mask;
332ac17e 5893
68c38fc3 5894 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5895 goto free_rto_mask;
c6c4927b 5896 return 0;
6e0534f2 5897
68e74568
RR
5898free_rto_mask:
5899 free_cpumask_var(rd->rto_mask);
1baca4ce
JL
5900free_dlo_mask:
5901 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5902free_online:
5903 free_cpumask_var(rd->online);
5904free_span:
5905 free_cpumask_var(rd->span);
0c910d28 5906out:
c6c4927b 5907 return -ENOMEM;
57d885fe
GH
5908}
5909
029632fb
PZ
5910/*
5911 * By default the system creates a single root-domain with all cpus as
5912 * members (mimicking the global state we have today).
5913 */
5914struct root_domain def_root_domain;
5915
57d885fe
GH
5916static void init_defrootdomain(void)
5917{
68c38fc3 5918 init_rootdomain(&def_root_domain);
c6c4927b 5919
57d885fe
GH
5920 atomic_set(&def_root_domain.refcount, 1);
5921}
5922
dc938520 5923static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5924{
5925 struct root_domain *rd;
5926
5927 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5928 if (!rd)
5929 return NULL;
5930
68c38fc3 5931 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5932 kfree(rd);
5933 return NULL;
5934 }
57d885fe
GH
5935
5936 return rd;
5937}
5938
63b2ca30 5939static void free_sched_groups(struct sched_group *sg, int free_sgc)
e3589f6c
PZ
5940{
5941 struct sched_group *tmp, *first;
5942
5943 if (!sg)
5944 return;
5945
5946 first = sg;
5947 do {
5948 tmp = sg->next;
5949
63b2ca30
NP
5950 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5951 kfree(sg->sgc);
e3589f6c
PZ
5952
5953 kfree(sg);
5954 sg = tmp;
5955 } while (sg != first);
5956}
5957
16f3ef46 5958static void destroy_sched_domain(struct sched_domain *sd)
dce840a0 5959{
e3589f6c
PZ
5960 /*
5961 * If its an overlapping domain it has private groups, iterate and
5962 * nuke them all.
5963 */
5964 if (sd->flags & SD_OVERLAP) {
5965 free_sched_groups(sd->groups, 1);
5966 } else if (atomic_dec_and_test(&sd->groups->ref)) {
63b2ca30 5967 kfree(sd->groups->sgc);
dce840a0 5968 kfree(sd->groups);
9c3f75cb 5969 }
24fc7edb
PZ
5970 if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
5971 kfree(sd->shared);
dce840a0
PZ
5972 kfree(sd);
5973}
5974
16f3ef46 5975static void destroy_sched_domains_rcu(struct rcu_head *rcu)
dce840a0 5976{
16f3ef46
PZ
5977 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5978
5979 while (sd) {
5980 struct sched_domain *parent = sd->parent;
5981 destroy_sched_domain(sd);
5982 sd = parent;
5983 }
dce840a0
PZ
5984}
5985
f39180ef 5986static void destroy_sched_domains(struct sched_domain *sd)
dce840a0 5987{
16f3ef46
PZ
5988 if (sd)
5989 call_rcu(&sd->rcu, destroy_sched_domains_rcu);
dce840a0
PZ
5990}
5991
518cd623
PZ
5992/*
5993 * Keep a special pointer to the highest sched_domain that has
5994 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5995 * allows us to avoid some pointer chasing select_idle_sibling().
5996 *
5997 * Also keep a unique ID per domain (we use the first cpu number in
5998 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5999 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
6000 */
6001DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 6002DEFINE_PER_CPU(int, sd_llc_size);
518cd623 6003DEFINE_PER_CPU(int, sd_llc_id);
0e369d75 6004DEFINE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
fb13c7ee 6005DEFINE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50 6006DEFINE_PER_CPU(struct sched_domain *, sd_asym);
518cd623
PZ
6007
6008static void update_top_cache_domain(int cpu)
6009{
0e369d75 6010 struct sched_domain_shared *sds = NULL;
518cd623
PZ
6011 struct sched_domain *sd;
6012 int id = cpu;
7d9ffa89 6013 int size = 1;
518cd623
PZ
6014
6015 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 6016 if (sd) {
518cd623 6017 id = cpumask_first(sched_domain_span(sd));
7d9ffa89 6018 size = cpumask_weight(sched_domain_span(sd));
0e369d75 6019 sds = sd->shared;
7d9ffa89 6020 }
518cd623
PZ
6021
6022 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 6023 per_cpu(sd_llc_size, cpu) = size;
518cd623 6024 per_cpu(sd_llc_id, cpu) = id;
0e369d75 6025 rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
fb13c7ee
MG
6026
6027 sd = lowest_flag_domain(cpu, SD_NUMA);
6028 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
37dc6b50
PM
6029
6030 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
6031 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
518cd623
PZ
6032}
6033
1da177e4 6034/*
0eab9146 6035 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6036 * hold the hotplug lock.
6037 */
0eab9146
IM
6038static void
6039cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6040{
70b97a7f 6041 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6042 struct sched_domain *tmp;
6043
6044 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6045 for (tmp = sd; tmp; ) {
245af2c7
SS
6046 struct sched_domain *parent = tmp->parent;
6047 if (!parent)
6048 break;
f29c9b1c 6049
1a848870 6050 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6051 tmp->parent = parent->parent;
1a848870
SS
6052 if (parent->parent)
6053 parent->parent->child = tmp;
10866e62
PZ
6054 /*
6055 * Transfer SD_PREFER_SIBLING down in case of a
6056 * degenerate parent; the spans match for this
6057 * so the property transfers.
6058 */
6059 if (parent->flags & SD_PREFER_SIBLING)
6060 tmp->flags |= SD_PREFER_SIBLING;
f39180ef 6061 destroy_sched_domain(parent);
f29c9b1c
LZ
6062 } else
6063 tmp = tmp->parent;
245af2c7
SS
6064 }
6065
1a848870 6066 if (sd && sd_degenerate(sd)) {
dce840a0 6067 tmp = sd;
245af2c7 6068 sd = sd->parent;
f39180ef 6069 destroy_sched_domain(tmp);
1a848870
SS
6070 if (sd)
6071 sd->child = NULL;
6072 }
1da177e4 6073
4cb98839 6074 sched_domain_debug(sd, cpu);
1da177e4 6075
57d885fe 6076 rq_attach_root(rq, rd);
dce840a0 6077 tmp = rq->sd;
674311d5 6078 rcu_assign_pointer(rq->sd, sd);
f39180ef 6079 destroy_sched_domains(tmp);
518cd623
PZ
6080
6081 update_top_cache_domain(cpu);
1da177e4
LT
6082}
6083
1da177e4
LT
6084/* Setup the mask of cpus configured for isolated domains */
6085static int __init isolated_cpu_setup(char *str)
6086{
a6e4491c
PB
6087 int ret;
6088
bdddd296 6089 alloc_bootmem_cpumask_var(&cpu_isolated_map);
a6e4491c
PB
6090 ret = cpulist_parse(str, cpu_isolated_map);
6091 if (ret) {
6092 pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
6093 return 0;
6094 }
1da177e4
LT
6095 return 1;
6096}
8927f494 6097__setup("isolcpus=", isolated_cpu_setup);
1da177e4 6098
49a02c51 6099struct s_data {
21d42ccf 6100 struct sched_domain ** __percpu sd;
49a02c51
AH
6101 struct root_domain *rd;
6102};
6103
2109b99e 6104enum s_alloc {
2109b99e 6105 sa_rootdomain,
21d42ccf 6106 sa_sd,
dce840a0 6107 sa_sd_storage,
2109b99e
AH
6108 sa_none,
6109};
6110
c1174876
PZ
6111/*
6112 * Build an iteration mask that can exclude certain CPUs from the upwards
6113 * domain traversal.
6114 *
6115 * Asymmetric node setups can result in situations where the domain tree is of
6116 * unequal depth, make sure to skip domains that already cover the entire
6117 * range.
6118 *
6119 * In that case build_sched_domains() will have terminated the iteration early
6120 * and our sibling sd spans will be empty. Domains should always include the
6121 * cpu they're built on, so check that.
6122 *
6123 */
6124static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6125{
6126 const struct cpumask *span = sched_domain_span(sd);
6127 struct sd_data *sdd = sd->private;
6128 struct sched_domain *sibling;
6129 int i;
6130
6131 for_each_cpu(i, span) {
6132 sibling = *per_cpu_ptr(sdd->sd, i);
6133 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6134 continue;
6135
6136 cpumask_set_cpu(i, sched_group_mask(sg));
6137 }
6138}
6139
6140/*
6141 * Return the canonical balance cpu for this group, this is the first cpu
6142 * of this group that's also in the iteration mask.
6143 */
6144int group_balance_cpu(struct sched_group *sg)
6145{
6146 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6147}
6148
e3589f6c
PZ
6149static int
6150build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6151{
6152 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6153 const struct cpumask *span = sched_domain_span(sd);
6154 struct cpumask *covered = sched_domains_tmpmask;
6155 struct sd_data *sdd = sd->private;
aaecac4a 6156 struct sched_domain *sibling;
e3589f6c
PZ
6157 int i;
6158
6159 cpumask_clear(covered);
6160
6161 for_each_cpu(i, span) {
6162 struct cpumask *sg_span;
6163
6164 if (cpumask_test_cpu(i, covered))
6165 continue;
6166
aaecac4a 6167 sibling = *per_cpu_ptr(sdd->sd, i);
c1174876
PZ
6168
6169 /* See the comment near build_group_mask(). */
aaecac4a 6170 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
c1174876
PZ
6171 continue;
6172
e3589f6c 6173 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 6174 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
6175
6176 if (!sg)
6177 goto fail;
6178
6179 sg_span = sched_group_cpus(sg);
aaecac4a
ZZ
6180 if (sibling->child)
6181 cpumask_copy(sg_span, sched_domain_span(sibling->child));
6182 else
e3589f6c
PZ
6183 cpumask_set_cpu(i, sg_span);
6184
6185 cpumask_or(covered, covered, sg_span);
6186
63b2ca30
NP
6187 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6188 if (atomic_inc_return(&sg->sgc->ref) == 1)
c1174876
PZ
6189 build_group_mask(sd, sg);
6190
c3decf0d 6191 /*
63b2ca30 6192 * Initialize sgc->capacity such that even if we mess up the
c3decf0d
PZ
6193 * domains and no possible iteration will get us here, we won't
6194 * die on a /0 trap.
6195 */
ca8ce3d0 6196 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
bf475ce0 6197 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
e3589f6c 6198
c1174876
PZ
6199 /*
6200 * Make sure the first group of this domain contains the
6201 * canonical balance cpu. Otherwise the sched_domain iteration
6202 * breaks. See update_sg_lb_stats().
6203 */
74a5ce20 6204 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 6205 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
6206 groups = sg;
6207
6208 if (!first)
6209 first = sg;
6210 if (last)
6211 last->next = sg;
6212 last = sg;
6213 last->next = first;
6214 }
6215 sd->groups = groups;
6216
6217 return 0;
6218
6219fail:
6220 free_sched_groups(first, 0);
6221
6222 return -ENOMEM;
6223}
6224
dce840a0 6225static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 6226{
dce840a0
PZ
6227 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6228 struct sched_domain *child = sd->child;
1da177e4 6229
dce840a0
PZ
6230 if (child)
6231 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 6232
9c3f75cb 6233 if (sg) {
dce840a0 6234 *sg = *per_cpu_ptr(sdd->sg, cpu);
63b2ca30
NP
6235 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6236 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
9c3f75cb 6237 }
dce840a0
PZ
6238
6239 return cpu;
1e9f28fa 6240}
1e9f28fa 6241
01a08546 6242/*
dce840a0
PZ
6243 * build_sched_groups will build a circular linked list of the groups
6244 * covered by the given span, and will set each group's ->cpumask correctly,
ced549fa 6245 * and ->cpu_capacity to 0.
e3589f6c
PZ
6246 *
6247 * Assumes the sched_domain tree is fully constructed
01a08546 6248 */
e3589f6c
PZ
6249static int
6250build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 6251{
dce840a0
PZ
6252 struct sched_group *first = NULL, *last = NULL;
6253 struct sd_data *sdd = sd->private;
6254 const struct cpumask *span = sched_domain_span(sd);
f96225fd 6255 struct cpumask *covered;
dce840a0 6256 int i;
9c1cfda2 6257
e3589f6c
PZ
6258 get_group(cpu, sdd, &sd->groups);
6259 atomic_inc(&sd->groups->ref);
6260
0936629f 6261 if (cpu != cpumask_first(span))
e3589f6c
PZ
6262 return 0;
6263
f96225fd
PZ
6264 lockdep_assert_held(&sched_domains_mutex);
6265 covered = sched_domains_tmpmask;
6266
dce840a0 6267 cpumask_clear(covered);
6711cab4 6268
dce840a0
PZ
6269 for_each_cpu(i, span) {
6270 struct sched_group *sg;
cd08e923 6271 int group, j;
6711cab4 6272
dce840a0
PZ
6273 if (cpumask_test_cpu(i, covered))
6274 continue;
6711cab4 6275
cd08e923 6276 group = get_group(i, sdd, &sg);
c1174876 6277 cpumask_setall(sched_group_mask(sg));
0601a88d 6278
dce840a0
PZ
6279 for_each_cpu(j, span) {
6280 if (get_group(j, sdd, NULL) != group)
6281 continue;
0601a88d 6282
dce840a0
PZ
6283 cpumask_set_cpu(j, covered);
6284 cpumask_set_cpu(j, sched_group_cpus(sg));
6285 }
0601a88d 6286
dce840a0
PZ
6287 if (!first)
6288 first = sg;
6289 if (last)
6290 last->next = sg;
6291 last = sg;
6292 }
6293 last->next = first;
e3589f6c
PZ
6294
6295 return 0;
0601a88d 6296}
51888ca2 6297
89c4710e 6298/*
63b2ca30 6299 * Initialize sched groups cpu_capacity.
89c4710e 6300 *
63b2ca30 6301 * cpu_capacity indicates the capacity of sched group, which is used while
89c4710e 6302 * distributing the load between different sched groups in a sched domain.
63b2ca30
NP
6303 * Typically cpu_capacity for all the groups in a sched domain will be same
6304 * unless there are asymmetries in the topology. If there are asymmetries,
6305 * group having more cpu_capacity will pickup more load compared to the
6306 * group having less cpu_capacity.
89c4710e 6307 */
63b2ca30 6308static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
89c4710e 6309{
e3589f6c 6310 struct sched_group *sg = sd->groups;
89c4710e 6311
94c95ba6 6312 WARN_ON(!sg);
e3589f6c
PZ
6313
6314 do {
afe06efd
TC
6315 int cpu, max_cpu = -1;
6316
e3589f6c 6317 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
afe06efd
TC
6318
6319 if (!(sd->flags & SD_ASYM_PACKING))
6320 goto next;
6321
6322 for_each_cpu(cpu, sched_group_cpus(sg)) {
6323 if (max_cpu < 0)
6324 max_cpu = cpu;
6325 else if (sched_asym_prefer(cpu, max_cpu))
6326 max_cpu = cpu;
6327 }
6328 sg->asym_prefer_cpu = max_cpu;
6329
6330next:
e3589f6c
PZ
6331 sg = sg->next;
6332 } while (sg != sd->groups);
89c4710e 6333
c1174876 6334 if (cpu != group_balance_cpu(sg))
e3589f6c 6335 return;
aae6d3dd 6336
63b2ca30 6337 update_group_capacity(sd, cpu);
89c4710e
SS
6338}
6339
7c16ec58
MT
6340/*
6341 * Initializers for schedule domains
6342 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6343 */
6344
1d3504fc 6345static int default_relax_domain_level = -1;
60495e77 6346int sched_domain_level_max;
1d3504fc
HS
6347
6348static int __init setup_relax_domain_level(char *str)
6349{
a841f8ce
DS
6350 if (kstrtoint(str, 0, &default_relax_domain_level))
6351 pr_warn("Unable to set relax_domain_level\n");
30e0e178 6352
1d3504fc
HS
6353 return 1;
6354}
6355__setup("relax_domain_level=", setup_relax_domain_level);
6356
6357static void set_domain_attribute(struct sched_domain *sd,
6358 struct sched_domain_attr *attr)
6359{
6360 int request;
6361
6362 if (!attr || attr->relax_domain_level < 0) {
6363 if (default_relax_domain_level < 0)
6364 return;
6365 else
6366 request = default_relax_domain_level;
6367 } else
6368 request = attr->relax_domain_level;
6369 if (request < sd->level) {
6370 /* turn off idle balance on this domain */
c88d5910 6371 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6372 } else {
6373 /* turn on idle balance on this domain */
c88d5910 6374 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6375 }
6376}
6377
54ab4ff4
PZ
6378static void __sdt_free(const struct cpumask *cpu_map);
6379static int __sdt_alloc(const struct cpumask *cpu_map);
6380
2109b99e
AH
6381static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6382 const struct cpumask *cpu_map)
6383{
6384 switch (what) {
2109b99e 6385 case sa_rootdomain:
822ff793
PZ
6386 if (!atomic_read(&d->rd->refcount))
6387 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
6388 case sa_sd:
6389 free_percpu(d->sd); /* fall through */
dce840a0 6390 case sa_sd_storage:
54ab4ff4 6391 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
6392 case sa_none:
6393 break;
6394 }
6395}
3404c8d9 6396
2109b99e
AH
6397static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6398 const struct cpumask *cpu_map)
6399{
dce840a0
PZ
6400 memset(d, 0, sizeof(*d));
6401
54ab4ff4
PZ
6402 if (__sdt_alloc(cpu_map))
6403 return sa_sd_storage;
dce840a0
PZ
6404 d->sd = alloc_percpu(struct sched_domain *);
6405 if (!d->sd)
6406 return sa_sd_storage;
2109b99e 6407 d->rd = alloc_rootdomain();
dce840a0 6408 if (!d->rd)
21d42ccf 6409 return sa_sd;
2109b99e
AH
6410 return sa_rootdomain;
6411}
57d885fe 6412
dce840a0
PZ
6413/*
6414 * NULL the sd_data elements we've used to build the sched_domain and
6415 * sched_group structure so that the subsequent __free_domain_allocs()
6416 * will not free the data we're using.
6417 */
6418static void claim_allocations(int cpu, struct sched_domain *sd)
6419{
6420 struct sd_data *sdd = sd->private;
dce840a0
PZ
6421
6422 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6423 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6424
24fc7edb
PZ
6425 if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
6426 *per_cpu_ptr(sdd->sds, cpu) = NULL;
6427
e3589f6c 6428 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 6429 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c 6430
63b2ca30
NP
6431 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6432 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
dce840a0
PZ
6433}
6434
cb83b629 6435#ifdef CONFIG_NUMA
cb83b629 6436static int sched_domains_numa_levels;
e3fe70b1 6437enum numa_topology_type sched_numa_topology_type;
cb83b629 6438static int *sched_domains_numa_distance;
9942f79b 6439int sched_max_numa_distance;
cb83b629
PZ
6440static struct cpumask ***sched_domains_numa_masks;
6441static int sched_domains_curr_level;
143e1e28 6442#endif
cb83b629 6443
143e1e28
VG
6444/*
6445 * SD_flags allowed in topology descriptions.
6446 *
94f438c8
PZ
6447 * These flags are purely descriptive of the topology and do not prescribe
6448 * behaviour. Behaviour is artificial and mapped in the below sd_init()
6449 * function:
143e1e28 6450 *
94f438c8
PZ
6451 * SD_SHARE_CPUCAPACITY - describes SMT topologies
6452 * SD_SHARE_PKG_RESOURCES - describes shared caches
6453 * SD_NUMA - describes NUMA topologies
6454 * SD_SHARE_POWERDOMAIN - describes shared power domain
1f6e6c7c 6455 * SD_ASYM_CPUCAPACITY - describes mixed capacity topologies
94f438c8
PZ
6456 *
6457 * Odd one out, which beside describing the topology has a quirk also
6458 * prescribes the desired behaviour that goes along with it:
143e1e28 6459 *
94f438c8 6460 * SD_ASYM_PACKING - describes SMT quirks
143e1e28
VG
6461 */
6462#define TOPOLOGY_SD_FLAGS \
5d4dfddd 6463 (SD_SHARE_CPUCAPACITY | \
143e1e28
VG
6464 SD_SHARE_PKG_RESOURCES | \
6465 SD_NUMA | \
d77b3ed5 6466 SD_ASYM_PACKING | \
1f6e6c7c 6467 SD_ASYM_CPUCAPACITY | \
d77b3ed5 6468 SD_SHARE_POWERDOMAIN)
cb83b629
PZ
6469
6470static struct sched_domain *
3676b13e 6471sd_init(struct sched_domain_topology_level *tl,
24fc7edb 6472 const struct cpumask *cpu_map,
3676b13e 6473 struct sched_domain *child, int cpu)
cb83b629 6474{
24fc7edb
PZ
6475 struct sd_data *sdd = &tl->data;
6476 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6477 int sd_id, sd_weight, sd_flags = 0;
143e1e28
VG
6478
6479#ifdef CONFIG_NUMA
6480 /*
6481 * Ugly hack to pass state to sd_numa_mask()...
6482 */
6483 sched_domains_curr_level = tl->numa_level;
6484#endif
6485
6486 sd_weight = cpumask_weight(tl->mask(cpu));
6487
6488 if (tl->sd_flags)
6489 sd_flags = (*tl->sd_flags)();
6490 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6491 "wrong sd_flags in topology description\n"))
6492 sd_flags &= ~TOPOLOGY_SD_FLAGS;
cb83b629
PZ
6493
6494 *sd = (struct sched_domain){
6495 .min_interval = sd_weight,
6496 .max_interval = 2*sd_weight,
6497 .busy_factor = 32,
870a0bb5 6498 .imbalance_pct = 125,
143e1e28
VG
6499
6500 .cache_nice_tries = 0,
6501 .busy_idx = 0,
6502 .idle_idx = 0,
cb83b629
PZ
6503 .newidle_idx = 0,
6504 .wake_idx = 0,
6505 .forkexec_idx = 0,
6506
6507 .flags = 1*SD_LOAD_BALANCE
6508 | 1*SD_BALANCE_NEWIDLE
143e1e28
VG
6509 | 1*SD_BALANCE_EXEC
6510 | 1*SD_BALANCE_FORK
cb83b629 6511 | 0*SD_BALANCE_WAKE
143e1e28 6512 | 1*SD_WAKE_AFFINE
5d4dfddd 6513 | 0*SD_SHARE_CPUCAPACITY
cb83b629 6514 | 0*SD_SHARE_PKG_RESOURCES
143e1e28 6515 | 0*SD_SERIALIZE
cb83b629 6516 | 0*SD_PREFER_SIBLING
143e1e28
VG
6517 | 0*SD_NUMA
6518 | sd_flags
cb83b629 6519 ,
143e1e28 6520
cb83b629
PZ
6521 .last_balance = jiffies,
6522 .balance_interval = sd_weight,
143e1e28 6523 .smt_gain = 0,
2b4cfe64
JL
6524 .max_newidle_lb_cost = 0,
6525 .next_decay_max_lb_cost = jiffies,
3676b13e 6526 .child = child,
143e1e28
VG
6527#ifdef CONFIG_SCHED_DEBUG
6528 .name = tl->name,
6529#endif
cb83b629 6530 };
cb83b629 6531
24fc7edb
PZ
6532 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6533 sd_id = cpumask_first(sched_domain_span(sd));
6534
cb83b629 6535 /*
143e1e28 6536 * Convert topological properties into behaviour.
cb83b629 6537 */
143e1e28 6538
9ee1cda5
MR
6539 if (sd->flags & SD_ASYM_CPUCAPACITY) {
6540 struct sched_domain *t = sd;
6541
6542 for_each_lower_domain(t)
6543 t->flags |= SD_BALANCE_WAKE;
6544 }
6545
5d4dfddd 6546 if (sd->flags & SD_SHARE_CPUCAPACITY) {
caff37ef 6547 sd->flags |= SD_PREFER_SIBLING;
143e1e28
VG
6548 sd->imbalance_pct = 110;
6549 sd->smt_gain = 1178; /* ~15% */
143e1e28
VG
6550
6551 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6552 sd->imbalance_pct = 117;
6553 sd->cache_nice_tries = 1;
6554 sd->busy_idx = 2;
6555
6556#ifdef CONFIG_NUMA
6557 } else if (sd->flags & SD_NUMA) {
6558 sd->cache_nice_tries = 2;
6559 sd->busy_idx = 3;
6560 sd->idle_idx = 2;
6561
6562 sd->flags |= SD_SERIALIZE;
6563 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6564 sd->flags &= ~(SD_BALANCE_EXEC |
6565 SD_BALANCE_FORK |
6566 SD_WAKE_AFFINE);
6567 }
6568
6569#endif
6570 } else {
6571 sd->flags |= SD_PREFER_SIBLING;
6572 sd->cache_nice_tries = 1;
6573 sd->busy_idx = 2;
6574 sd->idle_idx = 1;
6575 }
6576
24fc7edb
PZ
6577 /*
6578 * For all levels sharing cache; connect a sched_domain_shared
6579 * instance.
6580 */
6581 if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6582 sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
6583 atomic_inc(&sd->shared->ref);
0e369d75 6584 atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
24fc7edb
PZ
6585 }
6586
6587 sd->private = sdd;
cb83b629
PZ
6588
6589 return sd;
6590}
6591
143e1e28
VG
6592/*
6593 * Topology list, bottom-up.
6594 */
6595static struct sched_domain_topology_level default_topology[] = {
6596#ifdef CONFIG_SCHED_SMT
6597 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6598#endif
6599#ifdef CONFIG_SCHED_MC
6600 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
143e1e28
VG
6601#endif
6602 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6603 { NULL, },
6604};
6605
c6e1e7b5
JG
6606static struct sched_domain_topology_level *sched_domain_topology =
6607 default_topology;
143e1e28
VG
6608
6609#define for_each_sd_topology(tl) \
6610 for (tl = sched_domain_topology; tl->mask; tl++)
6611
6612void set_sched_topology(struct sched_domain_topology_level *tl)
6613{
8f37961c
TC
6614 if (WARN_ON_ONCE(sched_smp_initialized))
6615 return;
6616
143e1e28
VG
6617 sched_domain_topology = tl;
6618}
6619
6620#ifdef CONFIG_NUMA
6621
cb83b629
PZ
6622static const struct cpumask *sd_numa_mask(int cpu)
6623{
6624 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6625}
6626
d039ac60
PZ
6627static void sched_numa_warn(const char *str)
6628{
6629 static int done = false;
6630 int i,j;
6631
6632 if (done)
6633 return;
6634
6635 done = true;
6636
6637 printk(KERN_WARNING "ERROR: %s\n\n", str);
6638
6639 for (i = 0; i < nr_node_ids; i++) {
6640 printk(KERN_WARNING " ");
6641 for (j = 0; j < nr_node_ids; j++)
6642 printk(KERN_CONT "%02d ", node_distance(i,j));
6643 printk(KERN_CONT "\n");
6644 }
6645 printk(KERN_WARNING "\n");
6646}
6647
9942f79b 6648bool find_numa_distance(int distance)
d039ac60
PZ
6649{
6650 int i;
6651
6652 if (distance == node_distance(0, 0))
6653 return true;
6654
6655 for (i = 0; i < sched_domains_numa_levels; i++) {
6656 if (sched_domains_numa_distance[i] == distance)
6657 return true;
6658 }
6659
6660 return false;
6661}
6662
e3fe70b1
RR
6663/*
6664 * A system can have three types of NUMA topology:
6665 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6666 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6667 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6668 *
6669 * The difference between a glueless mesh topology and a backplane
6670 * topology lies in whether communication between not directly
6671 * connected nodes goes through intermediary nodes (where programs
6672 * could run), or through backplane controllers. This affects
6673 * placement of programs.
6674 *
6675 * The type of topology can be discerned with the following tests:
6676 * - If the maximum distance between any nodes is 1 hop, the system
6677 * is directly connected.
6678 * - If for two nodes A and B, located N > 1 hops away from each other,
6679 * there is an intermediary node C, which is < N hops away from both
6680 * nodes A and B, the system is a glueless mesh.
6681 */
6682static void init_numa_topology_type(void)
6683{
6684 int a, b, c, n;
6685
6686 n = sched_max_numa_distance;
6687
e237882b 6688 if (sched_domains_numa_levels <= 1) {
e3fe70b1 6689 sched_numa_topology_type = NUMA_DIRECT;
e237882b
AG
6690 return;
6691 }
e3fe70b1
RR
6692
6693 for_each_online_node(a) {
6694 for_each_online_node(b) {
6695 /* Find two nodes furthest removed from each other. */
6696 if (node_distance(a, b) < n)
6697 continue;
6698
6699 /* Is there an intermediary node between a and b? */
6700 for_each_online_node(c) {
6701 if (node_distance(a, c) < n &&
6702 node_distance(b, c) < n) {
6703 sched_numa_topology_type =
6704 NUMA_GLUELESS_MESH;
6705 return;
6706 }
6707 }
6708
6709 sched_numa_topology_type = NUMA_BACKPLANE;
6710 return;
6711 }
6712 }
6713}
6714
cb83b629
PZ
6715static void sched_init_numa(void)
6716{
6717 int next_distance, curr_distance = node_distance(0, 0);
6718 struct sched_domain_topology_level *tl;
6719 int level = 0;
6720 int i, j, k;
6721
cb83b629
PZ
6722 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6723 if (!sched_domains_numa_distance)
6724 return;
6725
6726 /*
6727 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6728 * unique distances in the node_distance() table.
6729 *
6730 * Assumes node_distance(0,j) includes all distances in
6731 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6732 */
6733 next_distance = curr_distance;
6734 for (i = 0; i < nr_node_ids; i++) {
6735 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6736 for (k = 0; k < nr_node_ids; k++) {
6737 int distance = node_distance(i, k);
6738
6739 if (distance > curr_distance &&
6740 (distance < next_distance ||
6741 next_distance == curr_distance))
6742 next_distance = distance;
6743
6744 /*
6745 * While not a strong assumption it would be nice to know
6746 * about cases where if node A is connected to B, B is not
6747 * equally connected to A.
6748 */
6749 if (sched_debug() && node_distance(k, i) != distance)
6750 sched_numa_warn("Node-distance not symmetric");
6751
6752 if (sched_debug() && i && !find_numa_distance(distance))
6753 sched_numa_warn("Node-0 not representative");
6754 }
6755 if (next_distance != curr_distance) {
6756 sched_domains_numa_distance[level++] = next_distance;
6757 sched_domains_numa_levels = level;
6758 curr_distance = next_distance;
6759 } else break;
cb83b629 6760 }
d039ac60
PZ
6761
6762 /*
6763 * In case of sched_debug() we verify the above assumption.
6764 */
6765 if (!sched_debug())
6766 break;
cb83b629 6767 }
c123588b
AR
6768
6769 if (!level)
6770 return;
6771
cb83b629
PZ
6772 /*
6773 * 'level' contains the number of unique distances, excluding the
6774 * identity distance node_distance(i,i).
6775 *
28b4a521 6776 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
6777 * numbers.
6778 */
6779
5f7865f3
TC
6780 /*
6781 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6782 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6783 * the array will contain less then 'level' members. This could be
6784 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6785 * in other functions.
6786 *
6787 * We reset it to 'level' at the end of this function.
6788 */
6789 sched_domains_numa_levels = 0;
6790
cb83b629
PZ
6791 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6792 if (!sched_domains_numa_masks)
6793 return;
6794
6795 /*
6796 * Now for each level, construct a mask per node which contains all
6797 * cpus of nodes that are that many hops away from us.
6798 */
6799 for (i = 0; i < level; i++) {
6800 sched_domains_numa_masks[i] =
6801 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6802 if (!sched_domains_numa_masks[i])
6803 return;
6804
6805 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6806 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6807 if (!mask)
6808 return;
6809
6810 sched_domains_numa_masks[i][j] = mask;
6811
9c03ee14 6812 for_each_node(k) {
dd7d8634 6813 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6814 continue;
6815
6816 cpumask_or(mask, mask, cpumask_of_node(k));
6817 }
6818 }
6819 }
6820
143e1e28
VG
6821 /* Compute default topology size */
6822 for (i = 0; sched_domain_topology[i].mask; i++);
6823
c515db8c 6824 tl = kzalloc((i + level + 1) *
cb83b629
PZ
6825 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6826 if (!tl)
6827 return;
6828
6829 /*
6830 * Copy the default topology bits..
6831 */
143e1e28
VG
6832 for (i = 0; sched_domain_topology[i].mask; i++)
6833 tl[i] = sched_domain_topology[i];
cb83b629
PZ
6834
6835 /*
6836 * .. and append 'j' levels of NUMA goodness.
6837 */
6838 for (j = 0; j < level; i++, j++) {
6839 tl[i] = (struct sched_domain_topology_level){
cb83b629 6840 .mask = sd_numa_mask,
143e1e28 6841 .sd_flags = cpu_numa_flags,
cb83b629
PZ
6842 .flags = SDTL_OVERLAP,
6843 .numa_level = j,
143e1e28 6844 SD_INIT_NAME(NUMA)
cb83b629
PZ
6845 };
6846 }
6847
6848 sched_domain_topology = tl;
5f7865f3
TC
6849
6850 sched_domains_numa_levels = level;
9942f79b 6851 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
e3fe70b1
RR
6852
6853 init_numa_topology_type();
cb83b629 6854}
301a5cba 6855
135fb3e1 6856static void sched_domains_numa_masks_set(unsigned int cpu)
301a5cba 6857{
301a5cba 6858 int node = cpu_to_node(cpu);
135fb3e1 6859 int i, j;
301a5cba
TC
6860
6861 for (i = 0; i < sched_domains_numa_levels; i++) {
6862 for (j = 0; j < nr_node_ids; j++) {
6863 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6864 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6865 }
6866 }
6867}
6868
135fb3e1 6869static void sched_domains_numa_masks_clear(unsigned int cpu)
301a5cba
TC
6870{
6871 int i, j;
135fb3e1 6872
301a5cba
TC
6873 for (i = 0; i < sched_domains_numa_levels; i++) {
6874 for (j = 0; j < nr_node_ids; j++)
6875 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6876 }
6877}
6878
cb83b629 6879#else
135fb3e1
TG
6880static inline void sched_init_numa(void) { }
6881static void sched_domains_numa_masks_set(unsigned int cpu) { }
6882static void sched_domains_numa_masks_clear(unsigned int cpu) { }
cb83b629
PZ
6883#endif /* CONFIG_NUMA */
6884
54ab4ff4
PZ
6885static int __sdt_alloc(const struct cpumask *cpu_map)
6886{
6887 struct sched_domain_topology_level *tl;
6888 int j;
6889
27723a68 6890 for_each_sd_topology(tl) {
54ab4ff4
PZ
6891 struct sd_data *sdd = &tl->data;
6892
6893 sdd->sd = alloc_percpu(struct sched_domain *);
6894 if (!sdd->sd)
6895 return -ENOMEM;
6896
24fc7edb
PZ
6897 sdd->sds = alloc_percpu(struct sched_domain_shared *);
6898 if (!sdd->sds)
6899 return -ENOMEM;
6900
54ab4ff4
PZ
6901 sdd->sg = alloc_percpu(struct sched_group *);
6902 if (!sdd->sg)
6903 return -ENOMEM;
6904
63b2ca30
NP
6905 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6906 if (!sdd->sgc)
9c3f75cb
PZ
6907 return -ENOMEM;
6908
54ab4ff4
PZ
6909 for_each_cpu(j, cpu_map) {
6910 struct sched_domain *sd;
24fc7edb 6911 struct sched_domain_shared *sds;
54ab4ff4 6912 struct sched_group *sg;
63b2ca30 6913 struct sched_group_capacity *sgc;
54ab4ff4 6914
5cc389bc 6915 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
54ab4ff4
PZ
6916 GFP_KERNEL, cpu_to_node(j));
6917 if (!sd)
6918 return -ENOMEM;
6919
6920 *per_cpu_ptr(sdd->sd, j) = sd;
6921
24fc7edb
PZ
6922 sds = kzalloc_node(sizeof(struct sched_domain_shared),
6923 GFP_KERNEL, cpu_to_node(j));
6924 if (!sds)
6925 return -ENOMEM;
6926
6927 *per_cpu_ptr(sdd->sds, j) = sds;
6928
54ab4ff4
PZ
6929 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6930 GFP_KERNEL, cpu_to_node(j));
6931 if (!sg)
6932 return -ENOMEM;
6933
30b4e9eb
IM
6934 sg->next = sg;
6935
54ab4ff4 6936 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6937
63b2ca30 6938 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
9c3f75cb 6939 GFP_KERNEL, cpu_to_node(j));
63b2ca30 6940 if (!sgc)
9c3f75cb
PZ
6941 return -ENOMEM;
6942
63b2ca30 6943 *per_cpu_ptr(sdd->sgc, j) = sgc;
54ab4ff4
PZ
6944 }
6945 }
6946
6947 return 0;
6948}
6949
6950static void __sdt_free(const struct cpumask *cpu_map)
6951{
6952 struct sched_domain_topology_level *tl;
6953 int j;
6954
27723a68 6955 for_each_sd_topology(tl) {
54ab4ff4
PZ
6956 struct sd_data *sdd = &tl->data;
6957
6958 for_each_cpu(j, cpu_map) {
fb2cf2c6 6959 struct sched_domain *sd;
6960
6961 if (sdd->sd) {
6962 sd = *per_cpu_ptr(sdd->sd, j);
6963 if (sd && (sd->flags & SD_OVERLAP))
6964 free_sched_groups(sd->groups, 0);
6965 kfree(*per_cpu_ptr(sdd->sd, j));
6966 }
6967
24fc7edb
PZ
6968 if (sdd->sds)
6969 kfree(*per_cpu_ptr(sdd->sds, j));
fb2cf2c6 6970 if (sdd->sg)
6971 kfree(*per_cpu_ptr(sdd->sg, j));
63b2ca30
NP
6972 if (sdd->sgc)
6973 kfree(*per_cpu_ptr(sdd->sgc, j));
54ab4ff4
PZ
6974 }
6975 free_percpu(sdd->sd);
fb2cf2c6 6976 sdd->sd = NULL;
24fc7edb
PZ
6977 free_percpu(sdd->sds);
6978 sdd->sds = NULL;
54ab4ff4 6979 free_percpu(sdd->sg);
fb2cf2c6 6980 sdd->sg = NULL;
63b2ca30
NP
6981 free_percpu(sdd->sgc);
6982 sdd->sgc = NULL;
54ab4ff4
PZ
6983 }
6984}
6985
2c402dc3 6986struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
6987 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6988 struct sched_domain *child, int cpu)
2c402dc3 6989{
24fc7edb 6990 struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu);
2c402dc3 6991
60495e77
PZ
6992 if (child) {
6993 sd->level = child->level + 1;
6994 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6995 child->parent = sd;
6ae72dff
PZ
6996
6997 if (!cpumask_subset(sched_domain_span(child),
6998 sched_domain_span(sd))) {
6999 pr_err("BUG: arch topology borken\n");
7000#ifdef CONFIG_SCHED_DEBUG
7001 pr_err(" the %s domain not a subset of the %s domain\n",
7002 child->name, sd->name);
7003#endif
7004 /* Fixup, ensure @sd has at least @child cpus. */
7005 cpumask_or(sched_domain_span(sd),
7006 sched_domain_span(sd),
7007 sched_domain_span(child));
7008 }
7009
60495e77 7010 }
a841f8ce 7011 set_domain_attribute(sd, attr);
2c402dc3
PZ
7012
7013 return sd;
7014}
7015
2109b99e
AH
7016/*
7017 * Build sched domains for a given set of cpus and attach the sched domains
7018 * to the individual cpus
7019 */
dce840a0
PZ
7020static int build_sched_domains(const struct cpumask *cpu_map,
7021 struct sched_domain_attr *attr)
2109b99e 7022{
1c632169 7023 enum s_alloc alloc_state;
dce840a0 7024 struct sched_domain *sd;
2109b99e 7025 struct s_data d;
cd92bfd3 7026 struct rq *rq = NULL;
822ff793 7027 int i, ret = -ENOMEM;
9c1cfda2 7028
2109b99e
AH
7029 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7030 if (alloc_state != sa_rootdomain)
7031 goto error;
9c1cfda2 7032
dce840a0 7033 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 7034 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
7035 struct sched_domain_topology_level *tl;
7036
3bd65a80 7037 sd = NULL;
27723a68 7038 for_each_sd_topology(tl) {
4a850cbe 7039 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
7040 if (tl == sched_domain_topology)
7041 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
7042 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
7043 sd->flags |= SD_OVERLAP;
d110235d
PZ
7044 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
7045 break;
e3589f6c 7046 }
dce840a0
PZ
7047 }
7048
7049 /* Build the groups for the domains */
7050 for_each_cpu(i, cpu_map) {
7051 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7052 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
7053 if (sd->flags & SD_OVERLAP) {
7054 if (build_overlap_sched_groups(sd, i))
7055 goto error;
7056 } else {
7057 if (build_sched_groups(sd, i))
7058 goto error;
7059 }
1cf51902 7060 }
a06dadbe 7061 }
9c1cfda2 7062
ced549fa 7063 /* Calculate CPU capacity for physical packages and nodes */
a9c9a9b6
PZ
7064 for (i = nr_cpumask_bits-1; i >= 0; i--) {
7065 if (!cpumask_test_cpu(i, cpu_map))
7066 continue;
9c1cfda2 7067
dce840a0
PZ
7068 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7069 claim_allocations(i, sd);
63b2ca30 7070 init_sched_groups_capacity(i, sd);
dce840a0 7071 }
f712c0c7 7072 }
9c1cfda2 7073
1da177e4 7074 /* Attach the domains */
dce840a0 7075 rcu_read_lock();
abcd083a 7076 for_each_cpu(i, cpu_map) {
cd92bfd3 7077 rq = cpu_rq(i);
21d42ccf 7078 sd = *per_cpu_ptr(d.sd, i);
cd92bfd3
DE
7079
7080 /* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
7081 if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
7082 WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
7083
49a02c51 7084 cpu_attach_domain(sd, d.rd, i);
1da177e4 7085 }
dce840a0 7086 rcu_read_unlock();
51888ca2 7087
a18a579e 7088 if (rq && sched_debug_enabled) {
cd92bfd3
DE
7089 pr_info("span: %*pbl (max cpu_capacity = %lu)\n",
7090 cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
7091 }
7092
822ff793 7093 ret = 0;
51888ca2 7094error:
2109b99e 7095 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 7096 return ret;
1da177e4 7097}
029190c5 7098
acc3f5d7 7099static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 7100static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7101static struct sched_domain_attr *dattr_cur;
7102 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7103
7104/*
7105 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7106 * cpumask) fails, then fallback to a single sched domain,
7107 * as determined by the single cpumask fallback_doms.
029190c5 7108 */
4212823f 7109static cpumask_var_t fallback_doms;
029190c5 7110
ee79d1bd
HC
7111/*
7112 * arch_update_cpu_topology lets virtualized architectures update the
7113 * cpu core maps. It is supposed to return 1 if the topology changed
7114 * or 0 if it stayed the same.
7115 */
52f5684c 7116int __weak arch_update_cpu_topology(void)
22e52b07 7117{
ee79d1bd 7118 return 0;
22e52b07
HC
7119}
7120
acc3f5d7
RR
7121cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7122{
7123 int i;
7124 cpumask_var_t *doms;
7125
7126 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7127 if (!doms)
7128 return NULL;
7129 for (i = 0; i < ndoms; i++) {
7130 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7131 free_sched_domains(doms, i);
7132 return NULL;
7133 }
7134 }
7135 return doms;
7136}
7137
7138void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7139{
7140 unsigned int i;
7141 for (i = 0; i < ndoms; i++)
7142 free_cpumask_var(doms[i]);
7143 kfree(doms);
7144}
7145
1a20ff27 7146/*
41a2d6cf 7147 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7148 * For now this just excludes isolated cpus, but could be used to
7149 * exclude other special cases in the future.
1a20ff27 7150 */
c4a8849a 7151static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7152{
7378547f
MM
7153 int err;
7154
22e52b07 7155 arch_update_cpu_topology();
029190c5 7156 ndoms_cur = 1;
acc3f5d7 7157 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7158 if (!doms_cur)
acc3f5d7
RR
7159 doms_cur = &fallback_doms;
7160 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 7161 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 7162 register_sched_domain_sysctl();
7378547f
MM
7163
7164 return err;
1a20ff27
DG
7165}
7166
1a20ff27
DG
7167/*
7168 * Detach sched domains from a group of cpus specified in cpu_map
7169 * These cpus will now be attached to the NULL domain
7170 */
96f874e2 7171static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
7172{
7173 int i;
7174
dce840a0 7175 rcu_read_lock();
abcd083a 7176 for_each_cpu(i, cpu_map)
57d885fe 7177 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 7178 rcu_read_unlock();
1a20ff27
DG
7179}
7180
1d3504fc
HS
7181/* handle null as "default" */
7182static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7183 struct sched_domain_attr *new, int idx_new)
7184{
7185 struct sched_domain_attr tmp;
7186
7187 /* fast path */
7188 if (!new && !cur)
7189 return 1;
7190
7191 tmp = SD_ATTR_INIT;
7192 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7193 new ? (new + idx_new) : &tmp,
7194 sizeof(struct sched_domain_attr));
7195}
7196
029190c5
PJ
7197/*
7198 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7199 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7200 * doms_new[] to the current sched domain partitioning, doms_cur[].
7201 * It destroys each deleted domain and builds each new domain.
7202 *
acc3f5d7 7203 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7204 * The masks don't intersect (don't overlap.) We should setup one
7205 * sched domain for each mask. CPUs not in any of the cpumasks will
7206 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7207 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7208 * it as it is.
7209 *
acc3f5d7
RR
7210 * The passed in 'doms_new' should be allocated using
7211 * alloc_sched_domains. This routine takes ownership of it and will
7212 * free_sched_domains it when done with it. If the caller failed the
7213 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7214 * and partition_sched_domains() will fallback to the single partition
7215 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7216 *
96f874e2 7217 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7218 * ndoms_new == 0 is a special case for destroying existing domains,
7219 * and it will not create the default domain.
dfb512ec 7220 *
029190c5
PJ
7221 * Call with hotplug lock held
7222 */
acc3f5d7 7223void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7224 struct sched_domain_attr *dattr_new)
029190c5 7225{
dfb512ec 7226 int i, j, n;
d65bd5ec 7227 int new_topology;
029190c5 7228
712555ee 7229 mutex_lock(&sched_domains_mutex);
a1835615 7230
7378547f
MM
7231 /* always unregister in case we don't destroy any domains */
7232 unregister_sched_domain_sysctl();
7233
d65bd5ec
HC
7234 /* Let architecture update cpu core mappings. */
7235 new_topology = arch_update_cpu_topology();
7236
dfb512ec 7237 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7238
7239 /* Destroy deleted domains */
7240 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7241 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7242 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7243 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7244 goto match1;
7245 }
7246 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7247 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7248match1:
7249 ;
7250 }
7251
c8d2d47a 7252 n = ndoms_cur;
e761b772 7253 if (doms_new == NULL) {
c8d2d47a 7254 n = 0;
acc3f5d7 7255 doms_new = &fallback_doms;
6ad4c188 7256 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7257 WARN_ON_ONCE(dattr_new);
e761b772
MK
7258 }
7259
029190c5
PJ
7260 /* Build new domains */
7261 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 7262 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7263 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7264 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7265 goto match2;
7266 }
7267 /* no match - add a new doms_new */
dce840a0 7268 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7269match2:
7270 ;
7271 }
7272
7273 /* Remember the new sched domains */
acc3f5d7
RR
7274 if (doms_cur != &fallback_doms)
7275 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7276 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7277 doms_cur = doms_new;
1d3504fc 7278 dattr_cur = dattr_new;
029190c5 7279 ndoms_cur = ndoms_new;
7378547f
MM
7280
7281 register_sched_domain_sysctl();
a1835615 7282
712555ee 7283 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7284}
7285
d35be8ba
SB
7286static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
7287
1da177e4 7288/*
3a101d05
TH
7289 * Update cpusets according to cpu_active mask. If cpusets are
7290 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7291 * around partition_sched_domains().
d35be8ba
SB
7292 *
7293 * If we come here as part of a suspend/resume, don't touch cpusets because we
7294 * want to restore it back to its original state upon resume anyway.
1da177e4 7295 */
40190a78 7296static void cpuset_cpu_active(void)
e761b772 7297{
40190a78 7298 if (cpuhp_tasks_frozen) {
d35be8ba
SB
7299 /*
7300 * num_cpus_frozen tracks how many CPUs are involved in suspend
7301 * resume sequence. As long as this is not the last online
7302 * operation in the resume sequence, just build a single sched
7303 * domain, ignoring cpusets.
7304 */
7305 num_cpus_frozen--;
7306 if (likely(num_cpus_frozen)) {
7307 partition_sched_domains(1, NULL, NULL);
135fb3e1 7308 return;
d35be8ba 7309 }
d35be8ba
SB
7310 /*
7311 * This is the last CPU online operation. So fall through and
7312 * restore the original sched domains by considering the
7313 * cpuset configurations.
7314 */
3a101d05 7315 }
135fb3e1 7316 cpuset_update_active_cpus(true);
3a101d05 7317}
e761b772 7318
40190a78 7319static int cpuset_cpu_inactive(unsigned int cpu)
3a101d05 7320{
3c18d447 7321 unsigned long flags;
3c18d447 7322 struct dl_bw *dl_b;
533445c6
OS
7323 bool overflow;
7324 int cpus;
3c18d447 7325
40190a78 7326 if (!cpuhp_tasks_frozen) {
533445c6
OS
7327 rcu_read_lock_sched();
7328 dl_b = dl_bw_of(cpu);
3c18d447 7329
533445c6
OS
7330 raw_spin_lock_irqsave(&dl_b->lock, flags);
7331 cpus = dl_bw_cpus(cpu);
7332 overflow = __dl_overflow(dl_b, cpus, 0, 0);
7333 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3c18d447 7334
533445c6 7335 rcu_read_unlock_sched();
3c18d447 7336
533445c6 7337 if (overflow)
135fb3e1 7338 return -EBUSY;
7ddf96b0 7339 cpuset_update_active_cpus(false);
135fb3e1 7340 } else {
d35be8ba
SB
7341 num_cpus_frozen++;
7342 partition_sched_domains(1, NULL, NULL);
e761b772 7343 }
135fb3e1 7344 return 0;
e761b772 7345}
e761b772 7346
40190a78 7347int sched_cpu_activate(unsigned int cpu)
135fb3e1 7348{
7d976699
TG
7349 struct rq *rq = cpu_rq(cpu);
7350 unsigned long flags;
7351
40190a78 7352 set_cpu_active(cpu, true);
135fb3e1 7353
40190a78 7354 if (sched_smp_initialized) {
135fb3e1 7355 sched_domains_numa_masks_set(cpu);
40190a78 7356 cpuset_cpu_active();
e761b772 7357 }
7d976699
TG
7358
7359 /*
7360 * Put the rq online, if not already. This happens:
7361 *
7362 * 1) In the early boot process, because we build the real domains
7363 * after all cpus have been brought up.
7364 *
7365 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
7366 * domains.
7367 */
7368 raw_spin_lock_irqsave(&rq->lock, flags);
7369 if (rq->rd) {
7370 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7371 set_rq_online(rq);
7372 }
7373 raw_spin_unlock_irqrestore(&rq->lock, flags);
7374
7375 update_max_interval();
7376
40190a78 7377 return 0;
135fb3e1
TG
7378}
7379
40190a78 7380int sched_cpu_deactivate(unsigned int cpu)
135fb3e1 7381{
135fb3e1
TG
7382 int ret;
7383
40190a78 7384 set_cpu_active(cpu, false);
b2454caa
PZ
7385 /*
7386 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
7387 * users of this state to go away such that all new such users will
7388 * observe it.
7389 *
7390 * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might
7391 * not imply sync_sched(), so wait for both.
7392 *
7393 * Do sync before park smpboot threads to take care the rcu boost case.
7394 */
7395 if (IS_ENABLED(CONFIG_PREEMPT))
7396 synchronize_rcu_mult(call_rcu, call_rcu_sched);
7397 else
7398 synchronize_rcu();
40190a78
TG
7399
7400 if (!sched_smp_initialized)
7401 return 0;
7402
7403 ret = cpuset_cpu_inactive(cpu);
7404 if (ret) {
7405 set_cpu_active(cpu, true);
7406 return ret;
135fb3e1 7407 }
40190a78
TG
7408 sched_domains_numa_masks_clear(cpu);
7409 return 0;
135fb3e1
TG
7410}
7411
94baf7a5
TG
7412static void sched_rq_cpu_starting(unsigned int cpu)
7413{
7414 struct rq *rq = cpu_rq(cpu);
7415
7416 rq->calc_load_update = calc_load_update;
94baf7a5
TG
7417 update_max_interval();
7418}
7419
135fb3e1
TG
7420int sched_cpu_starting(unsigned int cpu)
7421{
7422 set_cpu_rq_start_time(cpu);
94baf7a5 7423 sched_rq_cpu_starting(cpu);
135fb3e1 7424 return 0;
e761b772 7425}
e761b772 7426
f2785ddb
TG
7427#ifdef CONFIG_HOTPLUG_CPU
7428int sched_cpu_dying(unsigned int cpu)
7429{
7430 struct rq *rq = cpu_rq(cpu);
7431 unsigned long flags;
7432
7433 /* Handle pending wakeups and then migrate everything off */
7434 sched_ttwu_pending();
7435 raw_spin_lock_irqsave(&rq->lock, flags);
7436 if (rq->rd) {
7437 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7438 set_rq_offline(rq);
7439 }
7440 migrate_tasks(rq);
7441 BUG_ON(rq->nr_running != 1);
7442 raw_spin_unlock_irqrestore(&rq->lock, flags);
7443 calc_load_migrate(rq);
7444 update_max_interval();
20a5c8cc 7445 nohz_balance_exit_idle(cpu);
e5ef27d0 7446 hrtick_clear(rq);
f2785ddb
TG
7447 return 0;
7448}
7449#endif
7450
1b568f0a
PZ
7451#ifdef CONFIG_SCHED_SMT
7452DEFINE_STATIC_KEY_FALSE(sched_smt_present);
7453
7454static void sched_init_smt(void)
7455{
7456 /*
7457 * We've enumerated all CPUs and will assume that if any CPU
7458 * has SMT siblings, CPU0 will too.
7459 */
7460 if (cpumask_weight(cpu_smt_mask(0)) > 1)
7461 static_branch_enable(&sched_smt_present);
7462}
7463#else
7464static inline void sched_init_smt(void) { }
7465#endif
7466
1da177e4
LT
7467void __init sched_init_smp(void)
7468{
dcc30a35
RR
7469 cpumask_var_t non_isolated_cpus;
7470
7471 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7472 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7473
cb83b629
PZ
7474 sched_init_numa();
7475
6acce3ef
PZ
7476 /*
7477 * There's no userspace yet to cause hotplug operations; hence all the
7478 * cpu masks are stable and all blatant races in the below code cannot
7479 * happen.
7480 */
712555ee 7481 mutex_lock(&sched_domains_mutex);
c4a8849a 7482 init_sched_domains(cpu_active_mask);
dcc30a35
RR
7483 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7484 if (cpumask_empty(non_isolated_cpus))
7485 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7486 mutex_unlock(&sched_domains_mutex);
e761b772 7487
5c1e1767 7488 /* Move init over to a non-isolated CPU */
dcc30a35 7489 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7490 BUG();
19978ca6 7491 sched_init_granularity();
dcc30a35 7492 free_cpumask_var(non_isolated_cpus);
4212823f 7493
0e3900e6 7494 init_sched_rt_class();
1baca4ce 7495 init_sched_dl_class();
1b568f0a
PZ
7496
7497 sched_init_smt();
7498
e26fbffd 7499 sched_smp_initialized = true;
1da177e4 7500}
e26fbffd
TG
7501
7502static int __init migration_init(void)
7503{
94baf7a5 7504 sched_rq_cpu_starting(smp_processor_id());
e26fbffd 7505 return 0;
1da177e4 7506}
e26fbffd
TG
7507early_initcall(migration_init);
7508
1da177e4
LT
7509#else
7510void __init sched_init_smp(void)
7511{
19978ca6 7512 sched_init_granularity();
1da177e4
LT
7513}
7514#endif /* CONFIG_SMP */
7515
7516int in_sched_functions(unsigned long addr)
7517{
1da177e4
LT
7518 return in_lock_functions(addr) ||
7519 (addr >= (unsigned long)__sched_text_start
7520 && addr < (unsigned long)__sched_text_end);
7521}
7522
029632fb 7523#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
7524/*
7525 * Default task group.
7526 * Every task in system belongs to this group at bootup.
7527 */
029632fb 7528struct task_group root_task_group;
35cf4e50 7529LIST_HEAD(task_groups);
b0367629
WL
7530
7531/* Cacheline aligned slab cache for task_group */
7532static struct kmem_cache *task_group_cache __read_mostly;
052f1dc7 7533#endif
6f505b16 7534
e6252c3e 7535DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
10e2f1ac 7536DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
6f505b16 7537
9dcb8b68
LT
7538#define WAIT_TABLE_BITS 8
7539#define WAIT_TABLE_SIZE (1 << WAIT_TABLE_BITS)
7540static wait_queue_head_t bit_wait_table[WAIT_TABLE_SIZE] __cacheline_aligned;
7541
7542wait_queue_head_t *bit_waitqueue(void *word, int bit)
7543{
7544 const int shift = BITS_PER_LONG == 32 ? 5 : 6;
7545 unsigned long val = (unsigned long)word << shift | bit;
7546
7547 return bit_wait_table + hash_long(val, WAIT_TABLE_BITS);
7548}
7549EXPORT_SYMBOL(bit_waitqueue);
7550
1da177e4
LT
7551void __init sched_init(void)
7552{
dd41f596 7553 int i, j;
434d53b0
MT
7554 unsigned long alloc_size = 0, ptr;
7555
9dcb8b68
LT
7556 for (i = 0; i < WAIT_TABLE_SIZE; i++)
7557 init_waitqueue_head(bit_wait_table + i);
7558
434d53b0
MT
7559#ifdef CONFIG_FAIR_GROUP_SCHED
7560 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7561#endif
7562#ifdef CONFIG_RT_GROUP_SCHED
7563 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7564#endif
434d53b0 7565 if (alloc_size) {
36b7b6d4 7566 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7567
7568#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 7569 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
7570 ptr += nr_cpu_ids * sizeof(void **);
7571
07e06b01 7572 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 7573 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7574
6d6bc0ad 7575#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 7576#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7577 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
7578 ptr += nr_cpu_ids * sizeof(void **);
7579
07e06b01 7580 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7581 ptr += nr_cpu_ids * sizeof(void **);
7582
6d6bc0ad 7583#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 7584 }
df7c8e84 7585#ifdef CONFIG_CPUMASK_OFFSTACK
b74e6278
AT
7586 for_each_possible_cpu(i) {
7587 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7588 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
10e2f1ac
PZ
7589 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
7590 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
434d53b0 7591 }
b74e6278 7592#endif /* CONFIG_CPUMASK_OFFSTACK */
dd41f596 7593
332ac17e
DF
7594 init_rt_bandwidth(&def_rt_bandwidth,
7595 global_rt_period(), global_rt_runtime());
7596 init_dl_bandwidth(&def_dl_bandwidth,
1724813d 7597 global_rt_period(), global_rt_runtime());
332ac17e 7598
57d885fe
GH
7599#ifdef CONFIG_SMP
7600 init_defrootdomain();
7601#endif
7602
d0b27fa7 7603#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7604 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 7605 global_rt_period(), global_rt_runtime());
6d6bc0ad 7606#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7607
7c941438 7608#ifdef CONFIG_CGROUP_SCHED
b0367629
WL
7609 task_group_cache = KMEM_CACHE(task_group, 0);
7610
07e06b01
YZ
7611 list_add(&root_task_group.list, &task_groups);
7612 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 7613 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 7614 autogroup_init(&init_task);
7c941438 7615#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7616
0a945022 7617 for_each_possible_cpu(i) {
70b97a7f 7618 struct rq *rq;
1da177e4
LT
7619
7620 rq = cpu_rq(i);
05fa785c 7621 raw_spin_lock_init(&rq->lock);
7897986b 7622 rq->nr_running = 0;
dce48a84
TG
7623 rq->calc_load_active = 0;
7624 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 7625 init_cfs_rq(&rq->cfs);
07c54f7a
AV
7626 init_rt_rq(&rq->rt);
7627 init_dl_rq(&rq->dl);
dd41f596 7628#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 7629 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 7630 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9c2791f9 7631 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
354d60c2 7632 /*
07e06b01 7633 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
7634 *
7635 * In case of task-groups formed thr' the cgroup filesystem, it
7636 * gets 100% of the cpu resources in the system. This overall
7637 * system cpu resource is divided among the tasks of
07e06b01 7638 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
7639 * based on each entity's (task or task-group's) weight
7640 * (se->load.weight).
7641 *
07e06b01 7642 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
7643 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7644 * then A0's share of the cpu resource is:
7645 *
0d905bca 7646 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 7647 *
07e06b01
YZ
7648 * We achieve this by letting root_task_group's tasks sit
7649 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 7650 */
ab84d31e 7651 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 7652 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
7653#endif /* CONFIG_FAIR_GROUP_SCHED */
7654
7655 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7656#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7657 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 7658#endif
1da177e4 7659
dd41f596
IM
7660 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7661 rq->cpu_load[j] = 0;
fdf3e95d 7662
1da177e4 7663#ifdef CONFIG_SMP
41c7ce9a 7664 rq->sd = NULL;
57d885fe 7665 rq->rd = NULL;
ca6d75e6 7666 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
e3fca9e7 7667 rq->balance_callback = NULL;
1da177e4 7668 rq->active_balance = 0;
dd41f596 7669 rq->next_balance = jiffies;
1da177e4 7670 rq->push_cpu = 0;
0a2966b4 7671 rq->cpu = i;
1f11eb6a 7672 rq->online = 0;
eae0c9df
MG
7673 rq->idle_stamp = 0;
7674 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 7675 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
7676
7677 INIT_LIST_HEAD(&rq->cfs_tasks);
7678
dc938520 7679 rq_attach_root(rq, &def_root_domain);
3451d024 7680#ifdef CONFIG_NO_HZ_COMMON
9fd81dd5 7681 rq->last_load_update_tick = jiffies;
1c792db7 7682 rq->nohz_flags = 0;
83cd4fe2 7683#endif
265f22a9
FW
7684#ifdef CONFIG_NO_HZ_FULL
7685 rq->last_sched_tick = 0;
7686#endif
9fd81dd5 7687#endif /* CONFIG_SMP */
8f4d37ec 7688 init_rq_hrtick(rq);
1da177e4 7689 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7690 }
7691
2dd73a4f 7692 set_load_weight(&init_task);
b50f60ce 7693
1da177e4
LT
7694 /*
7695 * The boot idle thread does lazy MMU switching as well:
7696 */
7697 atomic_inc(&init_mm.mm_count);
7698 enter_lazy_tlb(&init_mm, current);
7699
7700 /*
7701 * Make us the idle thread. Technically, schedule() should not be
7702 * called from this thread, however somewhere below it might be,
7703 * but because we are the idle thread, we just pick up running again
7704 * when this runqueue becomes "idle".
7705 */
7706 init_idle(current, smp_processor_id());
dce48a84
TG
7707
7708 calc_load_update = jiffies + LOAD_FREQ;
7709
bf4d83f6 7710#ifdef CONFIG_SMP
4cb98839 7711 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
7712 /* May be allocated at isolcpus cmdline parse time */
7713 if (cpu_isolated_map == NULL)
7714 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 7715 idle_thread_set_boot_cpu();
9cf7243d 7716 set_cpu_rq_start_time(smp_processor_id());
029632fb
PZ
7717#endif
7718 init_sched_fair_class();
6a7b3dc3 7719
4698f88c
JP
7720 init_schedstats();
7721
6892b75e 7722 scheduler_running = 1;
1da177e4
LT
7723}
7724
d902db1e 7725#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
7726static inline int preempt_count_equals(int preempt_offset)
7727{
da7142e2 7728 int nested = preempt_count() + rcu_preempt_depth();
e4aafea2 7729
4ba8216c 7730 return (nested == preempt_offset);
e4aafea2
FW
7731}
7732
d894837f 7733void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7734{
8eb23b9f
PZ
7735 /*
7736 * Blocking primitives will set (and therefore destroy) current->state,
7737 * since we will exit with TASK_RUNNING make sure we enter with it,
7738 * otherwise we will destroy state.
7739 */
00845eb9 7740 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
8eb23b9f
PZ
7741 "do not call blocking ops when !TASK_RUNNING; "
7742 "state=%lx set at [<%p>] %pS\n",
7743 current->state,
7744 (void *)current->task_state_change,
00845eb9 7745 (void *)current->task_state_change);
8eb23b9f 7746
3427445a
PZ
7747 ___might_sleep(file, line, preempt_offset);
7748}
7749EXPORT_SYMBOL(__might_sleep);
7750
7751void ___might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7752{
1da177e4 7753 static unsigned long prev_jiffy; /* ratelimiting */
d1c6d149 7754 unsigned long preempt_disable_ip;
1da177e4 7755
b3fbab05 7756 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
db273be2
TG
7757 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7758 !is_idle_task(current)) ||
e4aafea2 7759 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7760 return;
7761 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7762 return;
7763 prev_jiffy = jiffies;
7764
d1c6d149
VN
7765 /* Save this before calling printk(), since that will clobber it */
7766 preempt_disable_ip = get_preempt_disable_ip(current);
7767
3df0fc5b
PZ
7768 printk(KERN_ERR
7769 "BUG: sleeping function called from invalid context at %s:%d\n",
7770 file, line);
7771 printk(KERN_ERR
7772 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7773 in_atomic(), irqs_disabled(),
7774 current->pid, current->comm);
aef745fc 7775
a8b686b3
ES
7776 if (task_stack_end_corrupted(current))
7777 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7778
aef745fc
IM
7779 debug_show_held_locks(current);
7780 if (irqs_disabled())
7781 print_irqtrace_events(current);
d1c6d149
VN
7782 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
7783 && !preempt_count_equals(preempt_offset)) {
8f47b187 7784 pr_err("Preemption disabled at:");
d1c6d149 7785 print_ip_sym(preempt_disable_ip);
8f47b187
TG
7786 pr_cont("\n");
7787 }
aef745fc 7788 dump_stack();
f0b22e39 7789 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
1da177e4 7790}
3427445a 7791EXPORT_SYMBOL(___might_sleep);
1da177e4
LT
7792#endif
7793
7794#ifdef CONFIG_MAGIC_SYSRQ
dbc7f069 7795void normalize_rt_tasks(void)
3a5e4dc1 7796{
dbc7f069 7797 struct task_struct *g, *p;
d50dde5a
DF
7798 struct sched_attr attr = {
7799 .sched_policy = SCHED_NORMAL,
7800 };
1da177e4 7801
3472eaa1 7802 read_lock(&tasklist_lock);
5d07f420 7803 for_each_process_thread(g, p) {
178be793
IM
7804 /*
7805 * Only normalize user tasks:
7806 */
3472eaa1 7807 if (p->flags & PF_KTHREAD)
178be793
IM
7808 continue;
7809
4fa8d299
JP
7810 p->se.exec_start = 0;
7811 schedstat_set(p->se.statistics.wait_start, 0);
7812 schedstat_set(p->se.statistics.sleep_start, 0);
7813 schedstat_set(p->se.statistics.block_start, 0);
dd41f596 7814
aab03e05 7815 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
7816 /*
7817 * Renice negative nice level userspace
7818 * tasks back to 0:
7819 */
3472eaa1 7820 if (task_nice(p) < 0)
dd41f596 7821 set_user_nice(p, 0);
1da177e4 7822 continue;
dd41f596 7823 }
1da177e4 7824
dbc7f069 7825 __sched_setscheduler(p, &attr, false, false);
5d07f420 7826 }
3472eaa1 7827 read_unlock(&tasklist_lock);
1da177e4
LT
7828}
7829
7830#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7831
67fc4e0c 7832#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7833/*
67fc4e0c 7834 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7835 *
7836 * They can only be called when the whole system has been
7837 * stopped - every CPU needs to be quiescent, and no scheduling
7838 * activity can take place. Using them for anything else would
7839 * be a serious bug, and as a result, they aren't even visible
7840 * under any other configuration.
7841 */
7842
7843/**
7844 * curr_task - return the current task for a given cpu.
7845 * @cpu: the processor in question.
7846 *
7847 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
7848 *
7849 * Return: The current task for @cpu.
1df5c10a 7850 */
36c8b586 7851struct task_struct *curr_task(int cpu)
1df5c10a
LT
7852{
7853 return cpu_curr(cpu);
7854}
7855
67fc4e0c
JW
7856#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7857
7858#ifdef CONFIG_IA64
1df5c10a
LT
7859/**
7860 * set_curr_task - set the current task for a given cpu.
7861 * @cpu: the processor in question.
7862 * @p: the task pointer to set.
7863 *
7864 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7865 * are serviced on a separate stack. It allows the architecture to switch the
7866 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7867 * must be called with all CPU's synchronized, and interrupts disabled, the
7868 * and caller must save the original value of the current task (see
7869 * curr_task() above) and restore that value before reenabling interrupts and
7870 * re-starting the system.
7871 *
7872 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7873 */
a458ae2e 7874void ia64_set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7875{
7876 cpu_curr(cpu) = p;
7877}
7878
7879#endif
29f59db3 7880
7c941438 7881#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7882/* task_group_lock serializes the addition/removal of task groups */
7883static DEFINE_SPINLOCK(task_group_lock);
7884
2f5177f0 7885static void sched_free_group(struct task_group *tg)
bccbe08a
PZ
7886{
7887 free_fair_sched_group(tg);
7888 free_rt_sched_group(tg);
e9aa1dd1 7889 autogroup_free(tg);
b0367629 7890 kmem_cache_free(task_group_cache, tg);
bccbe08a
PZ
7891}
7892
7893/* allocate runqueue etc for a new task group */
ec7dc8ac 7894struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7895{
7896 struct task_group *tg;
bccbe08a 7897
b0367629 7898 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
bccbe08a
PZ
7899 if (!tg)
7900 return ERR_PTR(-ENOMEM);
7901
ec7dc8ac 7902 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7903 goto err;
7904
ec7dc8ac 7905 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7906 goto err;
7907
ace783b9
LZ
7908 return tg;
7909
7910err:
2f5177f0 7911 sched_free_group(tg);
ace783b9
LZ
7912 return ERR_PTR(-ENOMEM);
7913}
7914
7915void sched_online_group(struct task_group *tg, struct task_group *parent)
7916{
7917 unsigned long flags;
7918
8ed36996 7919 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7920 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7921
7922 WARN_ON(!parent); /* root should already exist */
7923
7924 tg->parent = parent;
f473aa5e 7925 INIT_LIST_HEAD(&tg->children);
09f2724a 7926 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7927 spin_unlock_irqrestore(&task_group_lock, flags);
8663e24d
PZ
7928
7929 online_fair_sched_group(tg);
29f59db3
SV
7930}
7931
9b5b7751 7932/* rcu callback to free various structures associated with a task group */
2f5177f0 7933static void sched_free_group_rcu(struct rcu_head *rhp)
29f59db3 7934{
29f59db3 7935 /* now it should be safe to free those cfs_rqs */
2f5177f0 7936 sched_free_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7937}
7938
4cf86d77 7939void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
7940{
7941 /* wait for possible concurrent references to cfs_rqs complete */
2f5177f0 7942 call_rcu(&tg->rcu, sched_free_group_rcu);
ace783b9
LZ
7943}
7944
7945void sched_offline_group(struct task_group *tg)
29f59db3 7946{
8ed36996 7947 unsigned long flags;
29f59db3 7948
3d4b47b4 7949 /* end participation in shares distribution */
6fe1f348 7950 unregister_fair_sched_group(tg);
3d4b47b4
PZ
7951
7952 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7953 list_del_rcu(&tg->list);
f473aa5e 7954 list_del_rcu(&tg->siblings);
8ed36996 7955 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7956}
7957
ea86cb4b 7958static void sched_change_group(struct task_struct *tsk, int type)
29f59db3 7959{
8323f26c 7960 struct task_group *tg;
29f59db3 7961
f7b8a47d
KT
7962 /*
7963 * All callers are synchronized by task_rq_lock(); we do not use RCU
7964 * which is pointless here. Thus, we pass "true" to task_css_check()
7965 * to prevent lockdep warnings.
7966 */
7967 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
7968 struct task_group, css);
7969 tg = autogroup_task_group(tsk, tg);
7970 tsk->sched_task_group = tg;
7971
810b3817 7972#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
7973 if (tsk->sched_class->task_change_group)
7974 tsk->sched_class->task_change_group(tsk, type);
b2b5ce02 7975 else
810b3817 7976#endif
b2b5ce02 7977 set_task_rq(tsk, task_cpu(tsk));
ea86cb4b
VG
7978}
7979
7980/*
7981 * Change task's runqueue when it moves between groups.
7982 *
7983 * The caller of this function should have put the task in its new group by
7984 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
7985 * its new group.
7986 */
7987void sched_move_task(struct task_struct *tsk)
7988{
7989 int queued, running;
7990 struct rq_flags rf;
7991 struct rq *rq;
7992
7993 rq = task_rq_lock(tsk, &rf);
7994
7995 running = task_current(rq, tsk);
7996 queued = task_on_rq_queued(tsk);
7997
7998 if (queued)
7999 dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
8000 if (unlikely(running))
8001 put_prev_task(rq, tsk);
8002
8003 sched_change_group(tsk, TASK_MOVE_GROUP);
810b3817 8004
da0c1e65 8005 if (queued)
ff77e468 8006 enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
a399d233 8007 if (unlikely(running))
b2bf6c31 8008 set_curr_task(rq, tsk);
29f59db3 8009
eb580751 8010 task_rq_unlock(rq, tsk, &rf);
29f59db3 8011}
7c941438 8012#endif /* CONFIG_CGROUP_SCHED */
29f59db3 8013
a790de99
PT
8014#ifdef CONFIG_RT_GROUP_SCHED
8015/*
8016 * Ensure that the real time constraints are schedulable.
8017 */
8018static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 8019
9a7e0b18
PZ
8020/* Must be called with tasklist_lock held */
8021static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 8022{
9a7e0b18 8023 struct task_struct *g, *p;
b40b2e8e 8024
1fe89e1b
PZ
8025 /*
8026 * Autogroups do not have RT tasks; see autogroup_create().
8027 */
8028 if (task_group_is_autogroup(tg))
8029 return 0;
8030
5d07f420 8031 for_each_process_thread(g, p) {
8651c658 8032 if (rt_task(p) && task_group(p) == tg)
9a7e0b18 8033 return 1;
5d07f420 8034 }
b40b2e8e 8035
9a7e0b18
PZ
8036 return 0;
8037}
b40b2e8e 8038
9a7e0b18
PZ
8039struct rt_schedulable_data {
8040 struct task_group *tg;
8041 u64 rt_period;
8042 u64 rt_runtime;
8043};
b40b2e8e 8044
a790de99 8045static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
8046{
8047 struct rt_schedulable_data *d = data;
8048 struct task_group *child;
8049 unsigned long total, sum = 0;
8050 u64 period, runtime;
b40b2e8e 8051
9a7e0b18
PZ
8052 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8053 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 8054
9a7e0b18
PZ
8055 if (tg == d->tg) {
8056 period = d->rt_period;
8057 runtime = d->rt_runtime;
b40b2e8e 8058 }
b40b2e8e 8059
4653f803
PZ
8060 /*
8061 * Cannot have more runtime than the period.
8062 */
8063 if (runtime > period && runtime != RUNTIME_INF)
8064 return -EINVAL;
6f505b16 8065
4653f803
PZ
8066 /*
8067 * Ensure we don't starve existing RT tasks.
8068 */
9a7e0b18
PZ
8069 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8070 return -EBUSY;
6f505b16 8071
9a7e0b18 8072 total = to_ratio(period, runtime);
6f505b16 8073
4653f803
PZ
8074 /*
8075 * Nobody can have more than the global setting allows.
8076 */
8077 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8078 return -EINVAL;
6f505b16 8079
4653f803
PZ
8080 /*
8081 * The sum of our children's runtime should not exceed our own.
8082 */
9a7e0b18
PZ
8083 list_for_each_entry_rcu(child, &tg->children, siblings) {
8084 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8085 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8086
9a7e0b18
PZ
8087 if (child == d->tg) {
8088 period = d->rt_period;
8089 runtime = d->rt_runtime;
8090 }
6f505b16 8091
9a7e0b18 8092 sum += to_ratio(period, runtime);
9f0c1e56 8093 }
6f505b16 8094
9a7e0b18
PZ
8095 if (sum > total)
8096 return -EINVAL;
8097
8098 return 0;
6f505b16
PZ
8099}
8100
9a7e0b18 8101static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8102{
8277434e
PT
8103 int ret;
8104
9a7e0b18
PZ
8105 struct rt_schedulable_data data = {
8106 .tg = tg,
8107 .rt_period = period,
8108 .rt_runtime = runtime,
8109 };
8110
8277434e
PT
8111 rcu_read_lock();
8112 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
8113 rcu_read_unlock();
8114
8115 return ret;
521f1a24
DG
8116}
8117
ab84d31e 8118static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 8119 u64 rt_period, u64 rt_runtime)
6f505b16 8120{
ac086bc2 8121 int i, err = 0;
9f0c1e56 8122
2636ed5f
PZ
8123 /*
8124 * Disallowing the root group RT runtime is BAD, it would disallow the
8125 * kernel creating (and or operating) RT threads.
8126 */
8127 if (tg == &root_task_group && rt_runtime == 0)
8128 return -EINVAL;
8129
8130 /* No period doesn't make any sense. */
8131 if (rt_period == 0)
8132 return -EINVAL;
8133
9f0c1e56 8134 mutex_lock(&rt_constraints_mutex);
521f1a24 8135 read_lock(&tasklist_lock);
9a7e0b18
PZ
8136 err = __rt_schedulable(tg, rt_period, rt_runtime);
8137 if (err)
9f0c1e56 8138 goto unlock;
ac086bc2 8139
0986b11b 8140 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8141 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8142 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8143
8144 for_each_possible_cpu(i) {
8145 struct rt_rq *rt_rq = tg->rt_rq[i];
8146
0986b11b 8147 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8148 rt_rq->rt_runtime = rt_runtime;
0986b11b 8149 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8150 }
0986b11b 8151 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 8152unlock:
521f1a24 8153 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8154 mutex_unlock(&rt_constraints_mutex);
8155
8156 return err;
6f505b16
PZ
8157}
8158
25cc7da7 8159static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
8160{
8161 u64 rt_runtime, rt_period;
8162
8163 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8164 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8165 if (rt_runtime_us < 0)
8166 rt_runtime = RUNTIME_INF;
8167
ab84d31e 8168 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
8169}
8170
25cc7da7 8171static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
8172{
8173 u64 rt_runtime_us;
8174
d0b27fa7 8175 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8176 return -1;
8177
d0b27fa7 8178 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8179 do_div(rt_runtime_us, NSEC_PER_USEC);
8180 return rt_runtime_us;
8181}
d0b27fa7 8182
ce2f5fe4 8183static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
d0b27fa7
PZ
8184{
8185 u64 rt_runtime, rt_period;
8186
ce2f5fe4 8187 rt_period = rt_period_us * NSEC_PER_USEC;
d0b27fa7
PZ
8188 rt_runtime = tg->rt_bandwidth.rt_runtime;
8189
ab84d31e 8190 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
8191}
8192
25cc7da7 8193static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
8194{
8195 u64 rt_period_us;
8196
8197 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8198 do_div(rt_period_us, NSEC_PER_USEC);
8199 return rt_period_us;
8200}
332ac17e 8201#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8202
332ac17e 8203#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
8204static int sched_rt_global_constraints(void)
8205{
8206 int ret = 0;
8207
8208 mutex_lock(&rt_constraints_mutex);
9a7e0b18 8209 read_lock(&tasklist_lock);
4653f803 8210 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 8211 read_unlock(&tasklist_lock);
d0b27fa7
PZ
8212 mutex_unlock(&rt_constraints_mutex);
8213
8214 return ret;
8215}
54e99124 8216
25cc7da7 8217static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
8218{
8219 /* Don't accept realtime tasks when there is no way for them to run */
8220 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8221 return 0;
8222
8223 return 1;
8224}
8225
6d6bc0ad 8226#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8227static int sched_rt_global_constraints(void)
8228{
ac086bc2 8229 unsigned long flags;
8c5e9554 8230 int i;
ec5d4989 8231
0986b11b 8232 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
8233 for_each_possible_cpu(i) {
8234 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8235
0986b11b 8236 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8237 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 8238 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8239 }
0986b11b 8240 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 8241
8c5e9554 8242 return 0;
d0b27fa7 8243}
6d6bc0ad 8244#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8245
a1963b81 8246static int sched_dl_global_validate(void)
332ac17e 8247{
1724813d
PZ
8248 u64 runtime = global_rt_runtime();
8249 u64 period = global_rt_period();
332ac17e 8250 u64 new_bw = to_ratio(period, runtime);
f10e00f4 8251 struct dl_bw *dl_b;
1724813d 8252 int cpu, ret = 0;
49516342 8253 unsigned long flags;
332ac17e
DF
8254
8255 /*
8256 * Here we want to check the bandwidth not being set to some
8257 * value smaller than the currently allocated bandwidth in
8258 * any of the root_domains.
8259 *
8260 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
8261 * cycling on root_domains... Discussion on different/better
8262 * solutions is welcome!
8263 */
1724813d 8264 for_each_possible_cpu(cpu) {
f10e00f4
KT
8265 rcu_read_lock_sched();
8266 dl_b = dl_bw_of(cpu);
332ac17e 8267
49516342 8268 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d
PZ
8269 if (new_bw < dl_b->total_bw)
8270 ret = -EBUSY;
49516342 8271 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
1724813d 8272
f10e00f4
KT
8273 rcu_read_unlock_sched();
8274
1724813d
PZ
8275 if (ret)
8276 break;
332ac17e
DF
8277 }
8278
1724813d 8279 return ret;
332ac17e
DF
8280}
8281
1724813d 8282static void sched_dl_do_global(void)
ce0dbbbb 8283{
1724813d 8284 u64 new_bw = -1;
f10e00f4 8285 struct dl_bw *dl_b;
1724813d 8286 int cpu;
49516342 8287 unsigned long flags;
ce0dbbbb 8288
1724813d
PZ
8289 def_dl_bandwidth.dl_period = global_rt_period();
8290 def_dl_bandwidth.dl_runtime = global_rt_runtime();
8291
8292 if (global_rt_runtime() != RUNTIME_INF)
8293 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
8294
8295 /*
8296 * FIXME: As above...
8297 */
8298 for_each_possible_cpu(cpu) {
f10e00f4
KT
8299 rcu_read_lock_sched();
8300 dl_b = dl_bw_of(cpu);
1724813d 8301
49516342 8302 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d 8303 dl_b->bw = new_bw;
49516342 8304 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
f10e00f4
KT
8305
8306 rcu_read_unlock_sched();
ce0dbbbb 8307 }
1724813d
PZ
8308}
8309
8310static int sched_rt_global_validate(void)
8311{
8312 if (sysctl_sched_rt_period <= 0)
8313 return -EINVAL;
8314
e9e7cb38
JL
8315 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
8316 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
1724813d
PZ
8317 return -EINVAL;
8318
8319 return 0;
8320}
8321
8322static void sched_rt_do_global(void)
8323{
8324 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8325 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
8326}
8327
d0b27fa7 8328int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8329 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8330 loff_t *ppos)
8331{
d0b27fa7
PZ
8332 int old_period, old_runtime;
8333 static DEFINE_MUTEX(mutex);
1724813d 8334 int ret;
d0b27fa7
PZ
8335
8336 mutex_lock(&mutex);
8337 old_period = sysctl_sched_rt_period;
8338 old_runtime = sysctl_sched_rt_runtime;
8339
8d65af78 8340 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
8341
8342 if (!ret && write) {
1724813d
PZ
8343 ret = sched_rt_global_validate();
8344 if (ret)
8345 goto undo;
8346
a1963b81 8347 ret = sched_dl_global_validate();
1724813d
PZ
8348 if (ret)
8349 goto undo;
8350
a1963b81 8351 ret = sched_rt_global_constraints();
1724813d
PZ
8352 if (ret)
8353 goto undo;
8354
8355 sched_rt_do_global();
8356 sched_dl_do_global();
8357 }
8358 if (0) {
8359undo:
8360 sysctl_sched_rt_period = old_period;
8361 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
8362 }
8363 mutex_unlock(&mutex);
8364
8365 return ret;
8366}
68318b8e 8367
1724813d 8368int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
8369 void __user *buffer, size_t *lenp,
8370 loff_t *ppos)
8371{
8372 int ret;
332ac17e 8373 static DEFINE_MUTEX(mutex);
332ac17e
DF
8374
8375 mutex_lock(&mutex);
332ac17e 8376 ret = proc_dointvec(table, write, buffer, lenp, ppos);
1724813d
PZ
8377 /* make sure that internally we keep jiffies */
8378 /* also, writing zero resets timeslice to default */
332ac17e 8379 if (!ret && write) {
1724813d
PZ
8380 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8381 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
332ac17e
DF
8382 }
8383 mutex_unlock(&mutex);
332ac17e
DF
8384 return ret;
8385}
8386
052f1dc7 8387#ifdef CONFIG_CGROUP_SCHED
68318b8e 8388
a7c6d554 8389static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 8390{
a7c6d554 8391 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
8392}
8393
eb95419b
TH
8394static struct cgroup_subsys_state *
8395cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 8396{
eb95419b
TH
8397 struct task_group *parent = css_tg(parent_css);
8398 struct task_group *tg;
68318b8e 8399
eb95419b 8400 if (!parent) {
68318b8e 8401 /* This is early initialization for the top cgroup */
07e06b01 8402 return &root_task_group.css;
68318b8e
SV
8403 }
8404
ec7dc8ac 8405 tg = sched_create_group(parent);
68318b8e
SV
8406 if (IS_ERR(tg))
8407 return ERR_PTR(-ENOMEM);
8408
2f5177f0
PZ
8409 sched_online_group(tg, parent);
8410
68318b8e
SV
8411 return &tg->css;
8412}
8413
2f5177f0 8414static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
ace783b9 8415{
eb95419b 8416 struct task_group *tg = css_tg(css);
ace783b9 8417
2f5177f0 8418 sched_offline_group(tg);
ace783b9
LZ
8419}
8420
eb95419b 8421static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 8422{
eb95419b 8423 struct task_group *tg = css_tg(css);
68318b8e 8424
2f5177f0
PZ
8425 /*
8426 * Relies on the RCU grace period between css_released() and this.
8427 */
8428 sched_free_group(tg);
ace783b9
LZ
8429}
8430
ea86cb4b
VG
8431/*
8432 * This is called before wake_up_new_task(), therefore we really only
8433 * have to set its group bits, all the other stuff does not apply.
8434 */
b53202e6 8435static void cpu_cgroup_fork(struct task_struct *task)
eeb61e53 8436{
ea86cb4b
VG
8437 struct rq_flags rf;
8438 struct rq *rq;
8439
8440 rq = task_rq_lock(task, &rf);
8441
80f5c1b8 8442 update_rq_clock(rq);
ea86cb4b
VG
8443 sched_change_group(task, TASK_SET_GROUP);
8444
8445 task_rq_unlock(rq, task, &rf);
eeb61e53
KT
8446}
8447
1f7dd3e5 8448static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
68318b8e 8449{
bb9d97b6 8450 struct task_struct *task;
1f7dd3e5 8451 struct cgroup_subsys_state *css;
7dc603c9 8452 int ret = 0;
bb9d97b6 8453
1f7dd3e5 8454 cgroup_taskset_for_each(task, css, tset) {
b68aa230 8455#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 8456 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 8457 return -EINVAL;
b68aa230 8458#else
bb9d97b6
TH
8459 /* We don't support RT-tasks being in separate groups */
8460 if (task->sched_class != &fair_sched_class)
8461 return -EINVAL;
b68aa230 8462#endif
7dc603c9
PZ
8463 /*
8464 * Serialize against wake_up_new_task() such that if its
8465 * running, we're sure to observe its full state.
8466 */
8467 raw_spin_lock_irq(&task->pi_lock);
8468 /*
8469 * Avoid calling sched_move_task() before wake_up_new_task()
8470 * has happened. This would lead to problems with PELT, due to
8471 * move wanting to detach+attach while we're not attached yet.
8472 */
8473 if (task->state == TASK_NEW)
8474 ret = -EINVAL;
8475 raw_spin_unlock_irq(&task->pi_lock);
8476
8477 if (ret)
8478 break;
bb9d97b6 8479 }
7dc603c9 8480 return ret;
be367d09 8481}
68318b8e 8482
1f7dd3e5 8483static void cpu_cgroup_attach(struct cgroup_taskset *tset)
68318b8e 8484{
bb9d97b6 8485 struct task_struct *task;
1f7dd3e5 8486 struct cgroup_subsys_state *css;
bb9d97b6 8487
1f7dd3e5 8488 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 8489 sched_move_task(task);
68318b8e
SV
8490}
8491
052f1dc7 8492#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
8493static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8494 struct cftype *cftype, u64 shareval)
68318b8e 8495{
182446d0 8496 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
8497}
8498
182446d0
TH
8499static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8500 struct cftype *cft)
68318b8e 8501{
182446d0 8502 struct task_group *tg = css_tg(css);
68318b8e 8503
c8b28116 8504 return (u64) scale_load_down(tg->shares);
68318b8e 8505}
ab84d31e
PT
8506
8507#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
8508static DEFINE_MUTEX(cfs_constraints_mutex);
8509
ab84d31e
PT
8510const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8511const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8512
a790de99
PT
8513static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8514
ab84d31e
PT
8515static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8516{
56f570e5 8517 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 8518 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
8519
8520 if (tg == &root_task_group)
8521 return -EINVAL;
8522
8523 /*
8524 * Ensure we have at some amount of bandwidth every period. This is
8525 * to prevent reaching a state of large arrears when throttled via
8526 * entity_tick() resulting in prolonged exit starvation.
8527 */
8528 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8529 return -EINVAL;
8530
8531 /*
8532 * Likewise, bound things on the otherside by preventing insane quota
8533 * periods. This also allows us to normalize in computing quota
8534 * feasibility.
8535 */
8536 if (period > max_cfs_quota_period)
8537 return -EINVAL;
8538
0e59bdae
KT
8539 /*
8540 * Prevent race between setting of cfs_rq->runtime_enabled and
8541 * unthrottle_offline_cfs_rqs().
8542 */
8543 get_online_cpus();
a790de99
PT
8544 mutex_lock(&cfs_constraints_mutex);
8545 ret = __cfs_schedulable(tg, period, quota);
8546 if (ret)
8547 goto out_unlock;
8548
58088ad0 8549 runtime_enabled = quota != RUNTIME_INF;
56f570e5 8550 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
8551 /*
8552 * If we need to toggle cfs_bandwidth_used, off->on must occur
8553 * before making related changes, and on->off must occur afterwards
8554 */
8555 if (runtime_enabled && !runtime_was_enabled)
8556 cfs_bandwidth_usage_inc();
ab84d31e
PT
8557 raw_spin_lock_irq(&cfs_b->lock);
8558 cfs_b->period = ns_to_ktime(period);
8559 cfs_b->quota = quota;
58088ad0 8560
a9cf55b2 8561 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 8562 /* restart the period timer (if active) to handle new period expiry */
77a4d1a1
PZ
8563 if (runtime_enabled)
8564 start_cfs_bandwidth(cfs_b);
ab84d31e
PT
8565 raw_spin_unlock_irq(&cfs_b->lock);
8566
0e59bdae 8567 for_each_online_cpu(i) {
ab84d31e 8568 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 8569 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
8570
8571 raw_spin_lock_irq(&rq->lock);
58088ad0 8572 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 8573 cfs_rq->runtime_remaining = 0;
671fd9da 8574
029632fb 8575 if (cfs_rq->throttled)
671fd9da 8576 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
8577 raw_spin_unlock_irq(&rq->lock);
8578 }
1ee14e6c
BS
8579 if (runtime_was_enabled && !runtime_enabled)
8580 cfs_bandwidth_usage_dec();
a790de99
PT
8581out_unlock:
8582 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 8583 put_online_cpus();
ab84d31e 8584
a790de99 8585 return ret;
ab84d31e
PT
8586}
8587
8588int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8589{
8590 u64 quota, period;
8591
029632fb 8592 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8593 if (cfs_quota_us < 0)
8594 quota = RUNTIME_INF;
8595 else
8596 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8597
8598 return tg_set_cfs_bandwidth(tg, period, quota);
8599}
8600
8601long tg_get_cfs_quota(struct task_group *tg)
8602{
8603 u64 quota_us;
8604
029632fb 8605 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
8606 return -1;
8607
029632fb 8608 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
8609 do_div(quota_us, NSEC_PER_USEC);
8610
8611 return quota_us;
8612}
8613
8614int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8615{
8616 u64 quota, period;
8617
8618 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 8619 quota = tg->cfs_bandwidth.quota;
ab84d31e 8620
ab84d31e
PT
8621 return tg_set_cfs_bandwidth(tg, period, quota);
8622}
8623
8624long tg_get_cfs_period(struct task_group *tg)
8625{
8626 u64 cfs_period_us;
8627
029632fb 8628 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8629 do_div(cfs_period_us, NSEC_PER_USEC);
8630
8631 return cfs_period_us;
8632}
8633
182446d0
TH
8634static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8635 struct cftype *cft)
ab84d31e 8636{
182446d0 8637 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
8638}
8639
182446d0
TH
8640static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8641 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 8642{
182446d0 8643 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
8644}
8645
182446d0
TH
8646static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8647 struct cftype *cft)
ab84d31e 8648{
182446d0 8649 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
8650}
8651
182446d0
TH
8652static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8653 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 8654{
182446d0 8655 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
8656}
8657
a790de99
PT
8658struct cfs_schedulable_data {
8659 struct task_group *tg;
8660 u64 period, quota;
8661};
8662
8663/*
8664 * normalize group quota/period to be quota/max_period
8665 * note: units are usecs
8666 */
8667static u64 normalize_cfs_quota(struct task_group *tg,
8668 struct cfs_schedulable_data *d)
8669{
8670 u64 quota, period;
8671
8672 if (tg == d->tg) {
8673 period = d->period;
8674 quota = d->quota;
8675 } else {
8676 period = tg_get_cfs_period(tg);
8677 quota = tg_get_cfs_quota(tg);
8678 }
8679
8680 /* note: these should typically be equivalent */
8681 if (quota == RUNTIME_INF || quota == -1)
8682 return RUNTIME_INF;
8683
8684 return to_ratio(period, quota);
8685}
8686
8687static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8688{
8689 struct cfs_schedulable_data *d = data;
029632fb 8690 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
8691 s64 quota = 0, parent_quota = -1;
8692
8693 if (!tg->parent) {
8694 quota = RUNTIME_INF;
8695 } else {
029632fb 8696 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
8697
8698 quota = normalize_cfs_quota(tg, d);
9c58c79a 8699 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
8700
8701 /*
8702 * ensure max(child_quota) <= parent_quota, inherit when no
8703 * limit is set
8704 */
8705 if (quota == RUNTIME_INF)
8706 quota = parent_quota;
8707 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8708 return -EINVAL;
8709 }
9c58c79a 8710 cfs_b->hierarchical_quota = quota;
a790de99
PT
8711
8712 return 0;
8713}
8714
8715static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8716{
8277434e 8717 int ret;
a790de99
PT
8718 struct cfs_schedulable_data data = {
8719 .tg = tg,
8720 .period = period,
8721 .quota = quota,
8722 };
8723
8724 if (quota != RUNTIME_INF) {
8725 do_div(data.period, NSEC_PER_USEC);
8726 do_div(data.quota, NSEC_PER_USEC);
8727 }
8728
8277434e
PT
8729 rcu_read_lock();
8730 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8731 rcu_read_unlock();
8732
8733 return ret;
a790de99 8734}
e8da1b18 8735
2da8ca82 8736static int cpu_stats_show(struct seq_file *sf, void *v)
e8da1b18 8737{
2da8ca82 8738 struct task_group *tg = css_tg(seq_css(sf));
029632fb 8739 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 8740
44ffc75b
TH
8741 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8742 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8743 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
8744
8745 return 0;
8746}
ab84d31e 8747#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 8748#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8749
052f1dc7 8750#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
8751static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8752 struct cftype *cft, s64 val)
6f505b16 8753{
182446d0 8754 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
8755}
8756
182446d0
TH
8757static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8758 struct cftype *cft)
6f505b16 8759{
182446d0 8760 return sched_group_rt_runtime(css_tg(css));
6f505b16 8761}
d0b27fa7 8762
182446d0
TH
8763static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8764 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 8765{
182446d0 8766 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
8767}
8768
182446d0
TH
8769static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8770 struct cftype *cft)
d0b27fa7 8771{
182446d0 8772 return sched_group_rt_period(css_tg(css));
d0b27fa7 8773}
6d6bc0ad 8774#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8775
fe5c7cc2 8776static struct cftype cpu_files[] = {
052f1dc7 8777#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8778 {
8779 .name = "shares",
f4c753b7
PM
8780 .read_u64 = cpu_shares_read_u64,
8781 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8782 },
052f1dc7 8783#endif
ab84d31e
PT
8784#ifdef CONFIG_CFS_BANDWIDTH
8785 {
8786 .name = "cfs_quota_us",
8787 .read_s64 = cpu_cfs_quota_read_s64,
8788 .write_s64 = cpu_cfs_quota_write_s64,
8789 },
8790 {
8791 .name = "cfs_period_us",
8792 .read_u64 = cpu_cfs_period_read_u64,
8793 .write_u64 = cpu_cfs_period_write_u64,
8794 },
e8da1b18
NR
8795 {
8796 .name = "stat",
2da8ca82 8797 .seq_show = cpu_stats_show,
e8da1b18 8798 },
ab84d31e 8799#endif
052f1dc7 8800#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8801 {
9f0c1e56 8802 .name = "rt_runtime_us",
06ecb27c
PM
8803 .read_s64 = cpu_rt_runtime_read,
8804 .write_s64 = cpu_rt_runtime_write,
6f505b16 8805 },
d0b27fa7
PZ
8806 {
8807 .name = "rt_period_us",
f4c753b7
PM
8808 .read_u64 = cpu_rt_period_read_uint,
8809 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8810 },
052f1dc7 8811#endif
4baf6e33 8812 { } /* terminate */
68318b8e
SV
8813};
8814
073219e9 8815struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748 8816 .css_alloc = cpu_cgroup_css_alloc,
2f5177f0 8817 .css_released = cpu_cgroup_css_released,
92fb9748 8818 .css_free = cpu_cgroup_css_free,
eeb61e53 8819 .fork = cpu_cgroup_fork,
bb9d97b6
TH
8820 .can_attach = cpu_cgroup_can_attach,
8821 .attach = cpu_cgroup_attach,
5577964e 8822 .legacy_cftypes = cpu_files,
b38e42e9 8823 .early_init = true,
68318b8e
SV
8824};
8825
052f1dc7 8826#endif /* CONFIG_CGROUP_SCHED */
d842de87 8827
b637a328
PM
8828void dump_cpu_task(int cpu)
8829{
8830 pr_info("Task dump for CPU %d:\n", cpu);
8831 sched_show_task(cpu_curr(cpu));
8832}
ed82b8a1
AK
8833
8834/*
8835 * Nice levels are multiplicative, with a gentle 10% change for every
8836 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8837 * nice 1, it will get ~10% less CPU time than another CPU-bound task
8838 * that remained on nice 0.
8839 *
8840 * The "10% effect" is relative and cumulative: from _any_ nice level,
8841 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8842 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8843 * If a task goes up by ~10% and another task goes down by ~10% then
8844 * the relative distance between them is ~25%.)
8845 */
8846const int sched_prio_to_weight[40] = {
8847 /* -20 */ 88761, 71755, 56483, 46273, 36291,
8848 /* -15 */ 29154, 23254, 18705, 14949, 11916,
8849 /* -10 */ 9548, 7620, 6100, 4904, 3906,
8850 /* -5 */ 3121, 2501, 1991, 1586, 1277,
8851 /* 0 */ 1024, 820, 655, 526, 423,
8852 /* 5 */ 335, 272, 215, 172, 137,
8853 /* 10 */ 110, 87, 70, 56, 45,
8854 /* 15 */ 36, 29, 23, 18, 15,
8855};
8856
8857/*
8858 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8859 *
8860 * In cases where the weight does not change often, we can use the
8861 * precalculated inverse to speed up arithmetics by turning divisions
8862 * into multiplications:
8863 */
8864const u32 sched_prio_to_wmult[40] = {
8865 /* -20 */ 48388, 59856, 76040, 92818, 118348,
8866 /* -15 */ 147320, 184698, 229616, 287308, 360437,
8867 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
8868 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
8869 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
8870 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
8871 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
8872 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8873};