]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - kernel/sched/core.c
sched/deadline: Fix the update of the total -deadline utilization
[mirror_ubuntu-eoan-kernel.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4 3 *
d1ccc66d 4 * Core kernel scheduler code and related syscalls
1da177e4
LT
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
1da177e4 7 */
004172bd 8#include <linux/sched.h>
e6017571 9#include <linux/sched/clock.h>
ae7e81c0 10#include <uapi/linux/sched/types.h>
4f17722c 11#include <linux/sched/loadavg.h>
ef8bd77f 12#include <linux/sched/hotplug.h>
1da177e4 13#include <linux/cpuset.h>
0ff92245 14#include <linux/delayacct.h>
f1c6f1a7 15#include <linux/init_task.h>
91d1aa43 16#include <linux/context_tracking.h>
f9411ebe 17#include <linux/rcupdate_wait.h>
004172bd
IM
18
19#include <linux/blkdev.h>
20#include <linux/kprobes.h>
21#include <linux/mmu_context.h>
22#include <linux/module.h>
23#include <linux/nmi.h>
6075620b 24#include <linux/prefetch.h>
004172bd
IM
25#include <linux/profile.h>
26#include <linux/security.h>
27#include <linux/syscalls.h>
1da177e4 28
96f951ed 29#include <asm/switch_to.h>
5517d86b 30#include <asm/tlb.h>
fd4a61e0
MB
31#ifdef CONFIG_PARAVIRT
32#include <asm/paravirt.h>
33#endif
1da177e4 34
029632fb 35#include "sched.h"
ea138446 36#include "../workqueue_internal.h"
29d5e047 37#include "../smpboot.h"
6e0534f2 38
a8d154b0 39#define CREATE_TRACE_POINTS
ad8d75ff 40#include <trace/events/sched.h>
a8d154b0 41
029632fb 42DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 43
bf5c91ba
IM
44/*
45 * Debugging: various feature bits
46 */
f00b45c1 47
f00b45c1
PZ
48#define SCHED_FEAT(name, enabled) \
49 (1UL << __SCHED_FEAT_##name) * enabled |
50
bf5c91ba 51const_debug unsigned int sysctl_sched_features =
391e43da 52#include "features.h"
f00b45c1
PZ
53 0;
54
55#undef SCHED_FEAT
56
b82d9fdd
PZ
57/*
58 * Number of tasks to iterate in a single balance run.
59 * Limited because this is done with IRQs disabled.
60 */
61const_debug unsigned int sysctl_sched_nr_migrate = 32;
62
e9e9250b
PZ
63/*
64 * period over which we average the RT time consumption, measured
65 * in ms.
66 *
67 * default: 1s
68 */
69const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
70
fa85ae24 71/*
d1ccc66d 72 * period over which we measure -rt task CPU usage in us.
fa85ae24
PZ
73 * default: 1s
74 */
9f0c1e56 75unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 76
029632fb 77__read_mostly int scheduler_running;
6892b75e 78
9f0c1e56
PZ
79/*
80 * part of the period that we allow rt tasks to run in us.
81 * default: 0.95s
82 */
83int sysctl_sched_rt_runtime = 950000;
fa85ae24 84
d1ccc66d 85/* CPUs with isolated domains */
3fa0818b
RR
86cpumask_var_t cpu_isolated_map;
87
3e71a462
PZ
88/*
89 * __task_rq_lock - lock the rq @p resides on.
90 */
eb580751 91struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
92 __acquires(rq->lock)
93{
94 struct rq *rq;
95
96 lockdep_assert_held(&p->pi_lock);
97
98 for (;;) {
99 rq = task_rq(p);
100 raw_spin_lock(&rq->lock);
101 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 102 rq_pin_lock(rq, rf);
3e71a462
PZ
103 return rq;
104 }
105 raw_spin_unlock(&rq->lock);
106
107 while (unlikely(task_on_rq_migrating(p)))
108 cpu_relax();
109 }
110}
111
112/*
113 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
114 */
eb580751 115struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
116 __acquires(p->pi_lock)
117 __acquires(rq->lock)
118{
119 struct rq *rq;
120
121 for (;;) {
eb580751 122 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
3e71a462
PZ
123 rq = task_rq(p);
124 raw_spin_lock(&rq->lock);
125 /*
126 * move_queued_task() task_rq_lock()
127 *
128 * ACQUIRE (rq->lock)
129 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
130 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
131 * [S] ->cpu = new_cpu [L] task_rq()
132 * [L] ->on_rq
133 * RELEASE (rq->lock)
134 *
135 * If we observe the old cpu in task_rq_lock, the acquire of
136 * the old rq->lock will fully serialize against the stores.
137 *
d1ccc66d 138 * If we observe the new CPU in task_rq_lock, the acquire will
3e71a462
PZ
139 * pair with the WMB to ensure we must then also see migrating.
140 */
141 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 142 rq_pin_lock(rq, rf);
3e71a462
PZ
143 return rq;
144 }
145 raw_spin_unlock(&rq->lock);
eb580751 146 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
3e71a462
PZ
147
148 while (unlikely(task_on_rq_migrating(p)))
149 cpu_relax();
150 }
151}
152
535b9552
IM
153/*
154 * RQ-clock updating methods:
155 */
156
157static void update_rq_clock_task(struct rq *rq, s64 delta)
158{
159/*
160 * In theory, the compile should just see 0 here, and optimize out the call
161 * to sched_rt_avg_update. But I don't trust it...
162 */
163#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
164 s64 steal = 0, irq_delta = 0;
165#endif
166#ifdef CONFIG_IRQ_TIME_ACCOUNTING
167 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
168
169 /*
170 * Since irq_time is only updated on {soft,}irq_exit, we might run into
171 * this case when a previous update_rq_clock() happened inside a
172 * {soft,}irq region.
173 *
174 * When this happens, we stop ->clock_task and only update the
175 * prev_irq_time stamp to account for the part that fit, so that a next
176 * update will consume the rest. This ensures ->clock_task is
177 * monotonic.
178 *
179 * It does however cause some slight miss-attribution of {soft,}irq
180 * time, a more accurate solution would be to update the irq_time using
181 * the current rq->clock timestamp, except that would require using
182 * atomic ops.
183 */
184 if (irq_delta > delta)
185 irq_delta = delta;
186
187 rq->prev_irq_time += irq_delta;
188 delta -= irq_delta;
189#endif
190#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
191 if (static_key_false((&paravirt_steal_rq_enabled))) {
192 steal = paravirt_steal_clock(cpu_of(rq));
193 steal -= rq->prev_steal_time_rq;
194
195 if (unlikely(steal > delta))
196 steal = delta;
197
198 rq->prev_steal_time_rq += steal;
199 delta -= steal;
200 }
201#endif
202
203 rq->clock_task += delta;
204
205#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
206 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
207 sched_rt_avg_update(rq, irq_delta + steal);
208#endif
209}
210
211void update_rq_clock(struct rq *rq)
212{
213 s64 delta;
214
215 lockdep_assert_held(&rq->lock);
216
217 if (rq->clock_update_flags & RQCF_ACT_SKIP)
218 return;
219
220#ifdef CONFIG_SCHED_DEBUG
26ae58d2
PZ
221 if (sched_feat(WARN_DOUBLE_CLOCK))
222 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
535b9552
IM
223 rq->clock_update_flags |= RQCF_UPDATED;
224#endif
26ae58d2 225
535b9552
IM
226 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
227 if (delta < 0)
228 return;
229 rq->clock += delta;
230 update_rq_clock_task(rq, delta);
231}
232
233
8f4d37ec
PZ
234#ifdef CONFIG_SCHED_HRTICK
235/*
236 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 237 */
8f4d37ec 238
8f4d37ec
PZ
239static void hrtick_clear(struct rq *rq)
240{
241 if (hrtimer_active(&rq->hrtick_timer))
242 hrtimer_cancel(&rq->hrtick_timer);
243}
244
8f4d37ec
PZ
245/*
246 * High-resolution timer tick.
247 * Runs from hardirq context with interrupts disabled.
248 */
249static enum hrtimer_restart hrtick(struct hrtimer *timer)
250{
251 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
8a8c69c3 252 struct rq_flags rf;
8f4d37ec
PZ
253
254 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
255
8a8c69c3 256 rq_lock(rq, &rf);
3e51f33f 257 update_rq_clock(rq);
8f4d37ec 258 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
8a8c69c3 259 rq_unlock(rq, &rf);
8f4d37ec
PZ
260
261 return HRTIMER_NORESTART;
262}
263
95e904c7 264#ifdef CONFIG_SMP
971ee28c 265
4961b6e1 266static void __hrtick_restart(struct rq *rq)
971ee28c
PZ
267{
268 struct hrtimer *timer = &rq->hrtick_timer;
971ee28c 269
4961b6e1 270 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
971ee28c
PZ
271}
272
31656519
PZ
273/*
274 * called from hardirq (IPI) context
275 */
276static void __hrtick_start(void *arg)
b328ca18 277{
31656519 278 struct rq *rq = arg;
8a8c69c3 279 struct rq_flags rf;
b328ca18 280
8a8c69c3 281 rq_lock(rq, &rf);
971ee28c 282 __hrtick_restart(rq);
31656519 283 rq->hrtick_csd_pending = 0;
8a8c69c3 284 rq_unlock(rq, &rf);
b328ca18
PZ
285}
286
31656519
PZ
287/*
288 * Called to set the hrtick timer state.
289 *
290 * called with rq->lock held and irqs disabled
291 */
029632fb 292void hrtick_start(struct rq *rq, u64 delay)
b328ca18 293{
31656519 294 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 295 ktime_t time;
296 s64 delta;
297
298 /*
299 * Don't schedule slices shorter than 10000ns, that just
300 * doesn't make sense and can cause timer DoS.
301 */
302 delta = max_t(s64, delay, 10000LL);
303 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 304
cc584b21 305 hrtimer_set_expires(timer, time);
31656519
PZ
306
307 if (rq == this_rq()) {
971ee28c 308 __hrtick_restart(rq);
31656519 309 } else if (!rq->hrtick_csd_pending) {
c46fff2a 310 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
311 rq->hrtick_csd_pending = 1;
312 }
b328ca18
PZ
313}
314
31656519
PZ
315#else
316/*
317 * Called to set the hrtick timer state.
318 *
319 * called with rq->lock held and irqs disabled
320 */
029632fb 321void hrtick_start(struct rq *rq, u64 delay)
31656519 322{
86893335
WL
323 /*
324 * Don't schedule slices shorter than 10000ns, that just
325 * doesn't make sense. Rely on vruntime for fairness.
326 */
327 delay = max_t(u64, delay, 10000LL);
4961b6e1
TG
328 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
329 HRTIMER_MODE_REL_PINNED);
31656519 330}
31656519 331#endif /* CONFIG_SMP */
8f4d37ec 332
31656519 333static void init_rq_hrtick(struct rq *rq)
8f4d37ec 334{
31656519
PZ
335#ifdef CONFIG_SMP
336 rq->hrtick_csd_pending = 0;
8f4d37ec 337
31656519
PZ
338 rq->hrtick_csd.flags = 0;
339 rq->hrtick_csd.func = __hrtick_start;
340 rq->hrtick_csd.info = rq;
341#endif
8f4d37ec 342
31656519
PZ
343 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
344 rq->hrtick_timer.function = hrtick;
8f4d37ec 345}
006c75f1 346#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
347static inline void hrtick_clear(struct rq *rq)
348{
349}
350
8f4d37ec
PZ
351static inline void init_rq_hrtick(struct rq *rq)
352{
353}
006c75f1 354#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 355
5529578a
FW
356/*
357 * cmpxchg based fetch_or, macro so it works for different integer types
358 */
359#define fetch_or(ptr, mask) \
360 ({ \
361 typeof(ptr) _ptr = (ptr); \
362 typeof(mask) _mask = (mask); \
363 typeof(*_ptr) _old, _val = *_ptr; \
364 \
365 for (;;) { \
366 _old = cmpxchg(_ptr, _val, _val | _mask); \
367 if (_old == _val) \
368 break; \
369 _val = _old; \
370 } \
371 _old; \
372})
373
e3baac47 374#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
375/*
376 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
377 * this avoids any races wrt polling state changes and thereby avoids
378 * spurious IPIs.
379 */
380static bool set_nr_and_not_polling(struct task_struct *p)
381{
382 struct thread_info *ti = task_thread_info(p);
383 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
384}
e3baac47
PZ
385
386/*
387 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
388 *
389 * If this returns true, then the idle task promises to call
390 * sched_ttwu_pending() and reschedule soon.
391 */
392static bool set_nr_if_polling(struct task_struct *p)
393{
394 struct thread_info *ti = task_thread_info(p);
316c1608 395 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
e3baac47
PZ
396
397 for (;;) {
398 if (!(val & _TIF_POLLING_NRFLAG))
399 return false;
400 if (val & _TIF_NEED_RESCHED)
401 return true;
402 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
403 if (old == val)
404 break;
405 val = old;
406 }
407 return true;
408}
409
fd99f91a
PZ
410#else
411static bool set_nr_and_not_polling(struct task_struct *p)
412{
413 set_tsk_need_resched(p);
414 return true;
415}
e3baac47
PZ
416
417#ifdef CONFIG_SMP
418static bool set_nr_if_polling(struct task_struct *p)
419{
420 return false;
421}
422#endif
fd99f91a
PZ
423#endif
424
76751049
PZ
425void wake_q_add(struct wake_q_head *head, struct task_struct *task)
426{
427 struct wake_q_node *node = &task->wake_q;
428
429 /*
430 * Atomically grab the task, if ->wake_q is !nil already it means
431 * its already queued (either by us or someone else) and will get the
432 * wakeup due to that.
433 *
434 * This cmpxchg() implies a full barrier, which pairs with the write
58fe9c46 435 * barrier implied by the wakeup in wake_up_q().
76751049
PZ
436 */
437 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
438 return;
439
440 get_task_struct(task);
441
442 /*
443 * The head is context local, there can be no concurrency.
444 */
445 *head->lastp = node;
446 head->lastp = &node->next;
447}
448
449void wake_up_q(struct wake_q_head *head)
450{
451 struct wake_q_node *node = head->first;
452
453 while (node != WAKE_Q_TAIL) {
454 struct task_struct *task;
455
456 task = container_of(node, struct task_struct, wake_q);
457 BUG_ON(!task);
d1ccc66d 458 /* Task can safely be re-inserted now: */
76751049
PZ
459 node = node->next;
460 task->wake_q.next = NULL;
461
462 /*
463 * wake_up_process() implies a wmb() to pair with the queueing
464 * in wake_q_add() so as not to miss wakeups.
465 */
466 wake_up_process(task);
467 put_task_struct(task);
468 }
469}
470
c24d20db 471/*
8875125e 472 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
473 *
474 * On UP this means the setting of the need_resched flag, on SMP it
475 * might also involve a cross-CPU call to trigger the scheduler on
476 * the target CPU.
477 */
8875125e 478void resched_curr(struct rq *rq)
c24d20db 479{
8875125e 480 struct task_struct *curr = rq->curr;
c24d20db
IM
481 int cpu;
482
8875125e 483 lockdep_assert_held(&rq->lock);
c24d20db 484
8875125e 485 if (test_tsk_need_resched(curr))
c24d20db
IM
486 return;
487
8875125e 488 cpu = cpu_of(rq);
fd99f91a 489
f27dde8d 490 if (cpu == smp_processor_id()) {
8875125e 491 set_tsk_need_resched(curr);
f27dde8d 492 set_preempt_need_resched();
c24d20db 493 return;
f27dde8d 494 }
c24d20db 495
8875125e 496 if (set_nr_and_not_polling(curr))
c24d20db 497 smp_send_reschedule(cpu);
dfc68f29
AL
498 else
499 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
500}
501
029632fb 502void resched_cpu(int cpu)
c24d20db
IM
503{
504 struct rq *rq = cpu_rq(cpu);
505 unsigned long flags;
506
05fa785c 507 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db 508 return;
8875125e 509 resched_curr(rq);
05fa785c 510 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 511}
06d8308c 512
b021fe3e 513#ifdef CONFIG_SMP
3451d024 514#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2 515/*
d1ccc66d
IM
516 * In the semi idle case, use the nearest busy CPU for migrating timers
517 * from an idle CPU. This is good for power-savings.
83cd4fe2
VP
518 *
519 * We don't do similar optimization for completely idle system, as
d1ccc66d
IM
520 * selecting an idle CPU will add more delays to the timers than intended
521 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
83cd4fe2 522 */
bc7a34b8 523int get_nohz_timer_target(void)
83cd4fe2 524{
bc7a34b8 525 int i, cpu = smp_processor_id();
83cd4fe2
VP
526 struct sched_domain *sd;
527
9642d18e 528 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
6201b4d6
VK
529 return cpu;
530
057f3fad 531 rcu_read_lock();
83cd4fe2 532 for_each_domain(cpu, sd) {
057f3fad 533 for_each_cpu(i, sched_domain_span(sd)) {
44496922
WL
534 if (cpu == i)
535 continue;
536
537 if (!idle_cpu(i) && is_housekeeping_cpu(i)) {
057f3fad
PZ
538 cpu = i;
539 goto unlock;
540 }
541 }
83cd4fe2 542 }
9642d18e
VH
543
544 if (!is_housekeeping_cpu(cpu))
545 cpu = housekeeping_any_cpu();
057f3fad
PZ
546unlock:
547 rcu_read_unlock();
83cd4fe2
VP
548 return cpu;
549}
d1ccc66d 550
06d8308c
TG
551/*
552 * When add_timer_on() enqueues a timer into the timer wheel of an
553 * idle CPU then this timer might expire before the next timer event
554 * which is scheduled to wake up that CPU. In case of a completely
555 * idle system the next event might even be infinite time into the
556 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
557 * leaves the inner idle loop so the newly added timer is taken into
558 * account when the CPU goes back to idle and evaluates the timer
559 * wheel for the next timer event.
560 */
1c20091e 561static void wake_up_idle_cpu(int cpu)
06d8308c
TG
562{
563 struct rq *rq = cpu_rq(cpu);
564
565 if (cpu == smp_processor_id())
566 return;
567
67b9ca70 568 if (set_nr_and_not_polling(rq->idle))
06d8308c 569 smp_send_reschedule(cpu);
dfc68f29
AL
570 else
571 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
572}
573
c5bfece2 574static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 575{
53c5fa16
FW
576 /*
577 * We just need the target to call irq_exit() and re-evaluate
578 * the next tick. The nohz full kick at least implies that.
579 * If needed we can still optimize that later with an
580 * empty IRQ.
581 */
379d9ecb
PM
582 if (cpu_is_offline(cpu))
583 return true; /* Don't try to wake offline CPUs. */
c5bfece2 584 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
585 if (cpu != smp_processor_id() ||
586 tick_nohz_tick_stopped())
53c5fa16 587 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
588 return true;
589 }
590
591 return false;
592}
593
379d9ecb
PM
594/*
595 * Wake up the specified CPU. If the CPU is going offline, it is the
596 * caller's responsibility to deal with the lost wakeup, for example,
597 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
598 */
1c20091e
FW
599void wake_up_nohz_cpu(int cpu)
600{
c5bfece2 601 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
602 wake_up_idle_cpu(cpu);
603}
604
ca38062e 605static inline bool got_nohz_idle_kick(void)
45bf76df 606{
1c792db7 607 int cpu = smp_processor_id();
873b4c65
VG
608
609 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
610 return false;
611
612 if (idle_cpu(cpu) && !need_resched())
613 return true;
614
615 /*
616 * We can't run Idle Load Balance on this CPU for this time so we
617 * cancel it and clear NOHZ_BALANCE_KICK
618 */
619 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
620 return false;
45bf76df
IM
621}
622
3451d024 623#else /* CONFIG_NO_HZ_COMMON */
45bf76df 624
ca38062e 625static inline bool got_nohz_idle_kick(void)
2069dd75 626{
ca38062e 627 return false;
2069dd75
PZ
628}
629
3451d024 630#endif /* CONFIG_NO_HZ_COMMON */
d842de87 631
ce831b38 632#ifdef CONFIG_NO_HZ_FULL
76d92ac3 633bool sched_can_stop_tick(struct rq *rq)
ce831b38 634{
76d92ac3
FW
635 int fifo_nr_running;
636
637 /* Deadline tasks, even if single, need the tick */
638 if (rq->dl.dl_nr_running)
639 return false;
640
1e78cdbd 641 /*
2548d546
PZ
642 * If there are more than one RR tasks, we need the tick to effect the
643 * actual RR behaviour.
1e78cdbd 644 */
76d92ac3
FW
645 if (rq->rt.rr_nr_running) {
646 if (rq->rt.rr_nr_running == 1)
647 return true;
648 else
649 return false;
1e78cdbd
RR
650 }
651
2548d546
PZ
652 /*
653 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
654 * forced preemption between FIFO tasks.
655 */
656 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
657 if (fifo_nr_running)
658 return true;
659
660 /*
661 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
662 * if there's more than one we need the tick for involuntary
663 * preemption.
664 */
665 if (rq->nr_running > 1)
541b8264 666 return false;
ce831b38 667
541b8264 668 return true;
ce831b38
FW
669}
670#endif /* CONFIG_NO_HZ_FULL */
d842de87 671
029632fb 672void sched_avg_update(struct rq *rq)
18d95a28 673{
e9e9250b
PZ
674 s64 period = sched_avg_period();
675
78becc27 676 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
677 /*
678 * Inline assembly required to prevent the compiler
679 * optimising this loop into a divmod call.
680 * See __iter_div_u64_rem() for another example of this.
681 */
682 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
683 rq->age_stamp += period;
684 rq->rt_avg /= 2;
685 }
18d95a28
PZ
686}
687
6d6bc0ad 688#endif /* CONFIG_SMP */
18d95a28 689
a790de99
PT
690#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
691 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 692/*
8277434e
PT
693 * Iterate task_group tree rooted at *from, calling @down when first entering a
694 * node and @up when leaving it for the final time.
695 *
696 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 697 */
029632fb 698int walk_tg_tree_from(struct task_group *from,
8277434e 699 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
700{
701 struct task_group *parent, *child;
eb755805 702 int ret;
c09595f6 703
8277434e
PT
704 parent = from;
705
c09595f6 706down:
eb755805
PZ
707 ret = (*down)(parent, data);
708 if (ret)
8277434e 709 goto out;
c09595f6
PZ
710 list_for_each_entry_rcu(child, &parent->children, siblings) {
711 parent = child;
712 goto down;
713
714up:
715 continue;
716 }
eb755805 717 ret = (*up)(parent, data);
8277434e
PT
718 if (ret || parent == from)
719 goto out;
c09595f6
PZ
720
721 child = parent;
722 parent = parent->parent;
723 if (parent)
724 goto up;
8277434e 725out:
eb755805 726 return ret;
c09595f6
PZ
727}
728
029632fb 729int tg_nop(struct task_group *tg, void *data)
eb755805 730{
e2b245f8 731 return 0;
eb755805 732}
18d95a28
PZ
733#endif
734
45bf76df
IM
735static void set_load_weight(struct task_struct *p)
736{
f05998d4
NR
737 int prio = p->static_prio - MAX_RT_PRIO;
738 struct load_weight *load = &p->se.load;
739
dd41f596
IM
740 /*
741 * SCHED_IDLE tasks get minimal weight:
742 */
20f9cd2a 743 if (idle_policy(p->policy)) {
c8b28116 744 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 745 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
746 return;
747 }
71f8bd46 748
ed82b8a1
AK
749 load->weight = scale_load(sched_prio_to_weight[prio]);
750 load->inv_weight = sched_prio_to_wmult[prio];
71f8bd46
IM
751}
752
1de64443 753static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 754{
0a67d1ee
PZ
755 if (!(flags & ENQUEUE_NOCLOCK))
756 update_rq_clock(rq);
757
1de64443
PZ
758 if (!(flags & ENQUEUE_RESTORE))
759 sched_info_queued(rq, p);
0a67d1ee 760
371fd7e7 761 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
762}
763
1de64443 764static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 765{
0a67d1ee
PZ
766 if (!(flags & DEQUEUE_NOCLOCK))
767 update_rq_clock(rq);
768
1de64443
PZ
769 if (!(flags & DEQUEUE_SAVE))
770 sched_info_dequeued(rq, p);
0a67d1ee 771
371fd7e7 772 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
773}
774
029632fb 775void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
776{
777 if (task_contributes_to_load(p))
778 rq->nr_uninterruptible--;
779
371fd7e7 780 enqueue_task(rq, p, flags);
1e3c88bd
PZ
781}
782
029632fb 783void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
784{
785 if (task_contributes_to_load(p))
786 rq->nr_uninterruptible++;
787
371fd7e7 788 dequeue_task(rq, p, flags);
1e3c88bd
PZ
789}
790
34f971f6
PZ
791void sched_set_stop_task(int cpu, struct task_struct *stop)
792{
793 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
794 struct task_struct *old_stop = cpu_rq(cpu)->stop;
795
796 if (stop) {
797 /*
798 * Make it appear like a SCHED_FIFO task, its something
799 * userspace knows about and won't get confused about.
800 *
801 * Also, it will make PI more or less work without too
802 * much confusion -- but then, stop work should not
803 * rely on PI working anyway.
804 */
805 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
806
807 stop->sched_class = &stop_sched_class;
808 }
809
810 cpu_rq(cpu)->stop = stop;
811
812 if (old_stop) {
813 /*
814 * Reset it back to a normal scheduling class so that
815 * it can die in pieces.
816 */
817 old_stop->sched_class = &rt_sched_class;
818 }
819}
820
14531189 821/*
dd41f596 822 * __normal_prio - return the priority that is based on the static prio
14531189 823 */
14531189
IM
824static inline int __normal_prio(struct task_struct *p)
825{
dd41f596 826 return p->static_prio;
14531189
IM
827}
828
b29739f9
IM
829/*
830 * Calculate the expected normal priority: i.e. priority
831 * without taking RT-inheritance into account. Might be
832 * boosted by interactivity modifiers. Changes upon fork,
833 * setprio syscalls, and whenever the interactivity
834 * estimator recalculates.
835 */
36c8b586 836static inline int normal_prio(struct task_struct *p)
b29739f9
IM
837{
838 int prio;
839
aab03e05
DF
840 if (task_has_dl_policy(p))
841 prio = MAX_DL_PRIO-1;
842 else if (task_has_rt_policy(p))
b29739f9
IM
843 prio = MAX_RT_PRIO-1 - p->rt_priority;
844 else
845 prio = __normal_prio(p);
846 return prio;
847}
848
849/*
850 * Calculate the current priority, i.e. the priority
851 * taken into account by the scheduler. This value might
852 * be boosted by RT tasks, or might be boosted by
853 * interactivity modifiers. Will be RT if the task got
854 * RT-boosted. If not then it returns p->normal_prio.
855 */
36c8b586 856static int effective_prio(struct task_struct *p)
b29739f9
IM
857{
858 p->normal_prio = normal_prio(p);
859 /*
860 * If we are RT tasks or we were boosted to RT priority,
861 * keep the priority unchanged. Otherwise, update priority
862 * to the normal priority:
863 */
864 if (!rt_prio(p->prio))
865 return p->normal_prio;
866 return p->prio;
867}
868
1da177e4
LT
869/**
870 * task_curr - is this task currently executing on a CPU?
871 * @p: the task in question.
e69f6186
YB
872 *
873 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 874 */
36c8b586 875inline int task_curr(const struct task_struct *p)
1da177e4
LT
876{
877 return cpu_curr(task_cpu(p)) == p;
878}
879
67dfa1b7 880/*
4c9a4bc8
PZ
881 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
882 * use the balance_callback list if you want balancing.
883 *
884 * this means any call to check_class_changed() must be followed by a call to
885 * balance_callback().
67dfa1b7 886 */
cb469845
SR
887static inline void check_class_changed(struct rq *rq, struct task_struct *p,
888 const struct sched_class *prev_class,
da7a735e 889 int oldprio)
cb469845
SR
890{
891 if (prev_class != p->sched_class) {
892 if (prev_class->switched_from)
da7a735e 893 prev_class->switched_from(rq, p);
4c9a4bc8 894
da7a735e 895 p->sched_class->switched_to(rq, p);
2d3d891d 896 } else if (oldprio != p->prio || dl_task(p))
da7a735e 897 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
898}
899
029632fb 900void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
901{
902 const struct sched_class *class;
903
904 if (p->sched_class == rq->curr->sched_class) {
905 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
906 } else {
907 for_each_class(class) {
908 if (class == rq->curr->sched_class)
909 break;
910 if (class == p->sched_class) {
8875125e 911 resched_curr(rq);
1e5a7405
PZ
912 break;
913 }
914 }
915 }
916
917 /*
918 * A queue event has occurred, and we're going to schedule. In
919 * this case, we can save a useless back to back clock update.
920 */
da0c1e65 921 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
9edfbfed 922 rq_clock_skip_update(rq, true);
1e5a7405
PZ
923}
924
1da177e4 925#ifdef CONFIG_SMP
5cc389bc
PZ
926/*
927 * This is how migration works:
928 *
929 * 1) we invoke migration_cpu_stop() on the target CPU using
930 * stop_one_cpu().
931 * 2) stopper starts to run (implicitly forcing the migrated thread
932 * off the CPU)
933 * 3) it checks whether the migrated task is still in the wrong runqueue.
934 * 4) if it's in the wrong runqueue then the migration thread removes
935 * it and puts it into the right queue.
936 * 5) stopper completes and stop_one_cpu() returns and the migration
937 * is done.
938 */
939
940/*
941 * move_queued_task - move a queued task to new rq.
942 *
943 * Returns (locked) new rq. Old rq's lock is released.
944 */
8a8c69c3
PZ
945static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
946 struct task_struct *p, int new_cpu)
5cc389bc 947{
5cc389bc
PZ
948 lockdep_assert_held(&rq->lock);
949
5cc389bc 950 p->on_rq = TASK_ON_RQ_MIGRATING;
15ff991e 951 dequeue_task(rq, p, DEQUEUE_NOCLOCK);
5cc389bc 952 set_task_cpu(p, new_cpu);
8a8c69c3 953 rq_unlock(rq, rf);
5cc389bc
PZ
954
955 rq = cpu_rq(new_cpu);
956
8a8c69c3 957 rq_lock(rq, rf);
5cc389bc 958 BUG_ON(task_cpu(p) != new_cpu);
5cc389bc 959 enqueue_task(rq, p, 0);
3ea94de1 960 p->on_rq = TASK_ON_RQ_QUEUED;
5cc389bc
PZ
961 check_preempt_curr(rq, p, 0);
962
963 return rq;
964}
965
966struct migration_arg {
967 struct task_struct *task;
968 int dest_cpu;
969};
970
971/*
d1ccc66d 972 * Move (not current) task off this CPU, onto the destination CPU. We're doing
5cc389bc
PZ
973 * this because either it can't run here any more (set_cpus_allowed()
974 * away from this CPU, or CPU going down), or because we're
975 * attempting to rebalance this task on exec (sched_exec).
976 *
977 * So we race with normal scheduler movements, but that's OK, as long
978 * as the task is no longer on this CPU.
5cc389bc 979 */
8a8c69c3
PZ
980static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
981 struct task_struct *p, int dest_cpu)
5cc389bc 982{
5cc389bc 983 if (unlikely(!cpu_active(dest_cpu)))
5e16bbc2 984 return rq;
5cc389bc
PZ
985
986 /* Affinity changed (again). */
0c98d344 987 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
5e16bbc2 988 return rq;
5cc389bc 989
15ff991e 990 update_rq_clock(rq);
8a8c69c3 991 rq = move_queued_task(rq, rf, p, dest_cpu);
5e16bbc2
PZ
992
993 return rq;
5cc389bc
PZ
994}
995
996/*
997 * migration_cpu_stop - this will be executed by a highprio stopper thread
998 * and performs thread migration by bumping thread off CPU then
999 * 'pushing' onto another runqueue.
1000 */
1001static int migration_cpu_stop(void *data)
1002{
1003 struct migration_arg *arg = data;
5e16bbc2
PZ
1004 struct task_struct *p = arg->task;
1005 struct rq *rq = this_rq();
8a8c69c3 1006 struct rq_flags rf;
5cc389bc
PZ
1007
1008 /*
d1ccc66d
IM
1009 * The original target CPU might have gone down and we might
1010 * be on another CPU but it doesn't matter.
5cc389bc
PZ
1011 */
1012 local_irq_disable();
1013 /*
1014 * We need to explicitly wake pending tasks before running
1015 * __migrate_task() such that we will not miss enforcing cpus_allowed
1016 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1017 */
1018 sched_ttwu_pending();
5e16bbc2
PZ
1019
1020 raw_spin_lock(&p->pi_lock);
8a8c69c3 1021 rq_lock(rq, &rf);
5e16bbc2
PZ
1022 /*
1023 * If task_rq(p) != rq, it cannot be migrated here, because we're
1024 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1025 * we're holding p->pi_lock.
1026 */
bf89a304
CC
1027 if (task_rq(p) == rq) {
1028 if (task_on_rq_queued(p))
8a8c69c3 1029 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
bf89a304
CC
1030 else
1031 p->wake_cpu = arg->dest_cpu;
1032 }
8a8c69c3 1033 rq_unlock(rq, &rf);
5e16bbc2
PZ
1034 raw_spin_unlock(&p->pi_lock);
1035
5cc389bc
PZ
1036 local_irq_enable();
1037 return 0;
1038}
1039
c5b28038
PZ
1040/*
1041 * sched_class::set_cpus_allowed must do the below, but is not required to
1042 * actually call this function.
1043 */
1044void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
5cc389bc 1045{
5cc389bc
PZ
1046 cpumask_copy(&p->cpus_allowed, new_mask);
1047 p->nr_cpus_allowed = cpumask_weight(new_mask);
1048}
1049
c5b28038
PZ
1050void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1051{
6c37067e
PZ
1052 struct rq *rq = task_rq(p);
1053 bool queued, running;
1054
c5b28038 1055 lockdep_assert_held(&p->pi_lock);
6c37067e
PZ
1056
1057 queued = task_on_rq_queued(p);
1058 running = task_current(rq, p);
1059
1060 if (queued) {
1061 /*
1062 * Because __kthread_bind() calls this on blocked tasks without
1063 * holding rq->lock.
1064 */
1065 lockdep_assert_held(&rq->lock);
7a57f32a 1066 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
6c37067e
PZ
1067 }
1068 if (running)
1069 put_prev_task(rq, p);
1070
c5b28038 1071 p->sched_class->set_cpus_allowed(p, new_mask);
6c37067e 1072
6c37067e 1073 if (queued)
7134b3e9 1074 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
a399d233 1075 if (running)
b2bf6c31 1076 set_curr_task(rq, p);
c5b28038
PZ
1077}
1078
5cc389bc
PZ
1079/*
1080 * Change a given task's CPU affinity. Migrate the thread to a
1081 * proper CPU and schedule it away if the CPU it's executing on
1082 * is removed from the allowed bitmask.
1083 *
1084 * NOTE: the caller must have a valid reference to the task, the
1085 * task must not exit() & deallocate itself prematurely. The
1086 * call is not atomic; no spinlocks may be held.
1087 */
25834c73
PZ
1088static int __set_cpus_allowed_ptr(struct task_struct *p,
1089 const struct cpumask *new_mask, bool check)
5cc389bc 1090{
e9d867a6 1091 const struct cpumask *cpu_valid_mask = cpu_active_mask;
5cc389bc 1092 unsigned int dest_cpu;
eb580751
PZ
1093 struct rq_flags rf;
1094 struct rq *rq;
5cc389bc
PZ
1095 int ret = 0;
1096
eb580751 1097 rq = task_rq_lock(p, &rf);
a499c3ea 1098 update_rq_clock(rq);
5cc389bc 1099
e9d867a6
PZI
1100 if (p->flags & PF_KTHREAD) {
1101 /*
1102 * Kernel threads are allowed on online && !active CPUs
1103 */
1104 cpu_valid_mask = cpu_online_mask;
1105 }
1106
25834c73
PZ
1107 /*
1108 * Must re-check here, to close a race against __kthread_bind(),
1109 * sched_setaffinity() is not guaranteed to observe the flag.
1110 */
1111 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1112 ret = -EINVAL;
1113 goto out;
1114 }
1115
5cc389bc
PZ
1116 if (cpumask_equal(&p->cpus_allowed, new_mask))
1117 goto out;
1118
e9d867a6 1119 if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
5cc389bc
PZ
1120 ret = -EINVAL;
1121 goto out;
1122 }
1123
1124 do_set_cpus_allowed(p, new_mask);
1125
e9d867a6
PZI
1126 if (p->flags & PF_KTHREAD) {
1127 /*
1128 * For kernel threads that do indeed end up on online &&
d1ccc66d 1129 * !active we want to ensure they are strict per-CPU threads.
e9d867a6
PZI
1130 */
1131 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1132 !cpumask_intersects(new_mask, cpu_active_mask) &&
1133 p->nr_cpus_allowed != 1);
1134 }
1135
5cc389bc
PZ
1136 /* Can the task run on the task's current CPU? If so, we're done */
1137 if (cpumask_test_cpu(task_cpu(p), new_mask))
1138 goto out;
1139
e9d867a6 1140 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
5cc389bc
PZ
1141 if (task_running(rq, p) || p->state == TASK_WAKING) {
1142 struct migration_arg arg = { p, dest_cpu };
1143 /* Need help from migration thread: drop lock and wait. */
eb580751 1144 task_rq_unlock(rq, p, &rf);
5cc389bc
PZ
1145 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1146 tlb_migrate_finish(p->mm);
1147 return 0;
cbce1a68
PZ
1148 } else if (task_on_rq_queued(p)) {
1149 /*
1150 * OK, since we're going to drop the lock immediately
1151 * afterwards anyway.
1152 */
8a8c69c3 1153 rq = move_queued_task(rq, &rf, p, dest_cpu);
cbce1a68 1154 }
5cc389bc 1155out:
eb580751 1156 task_rq_unlock(rq, p, &rf);
5cc389bc
PZ
1157
1158 return ret;
1159}
25834c73
PZ
1160
1161int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1162{
1163 return __set_cpus_allowed_ptr(p, new_mask, false);
1164}
5cc389bc
PZ
1165EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1166
dd41f596 1167void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1168{
e2912009
PZ
1169#ifdef CONFIG_SCHED_DEBUG
1170 /*
1171 * We should never call set_task_cpu() on a blocked task,
1172 * ttwu() will sort out the placement.
1173 */
077614ee 1174 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
e2336f6e 1175 !p->on_rq);
0122ec5b 1176
3ea94de1
JP
1177 /*
1178 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1179 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1180 * time relying on p->on_rq.
1181 */
1182 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1183 p->sched_class == &fair_sched_class &&
1184 (p->on_rq && !task_on_rq_migrating(p)));
1185
0122ec5b 1186#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1187 /*
1188 * The caller should hold either p->pi_lock or rq->lock, when changing
1189 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1190 *
1191 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1192 * see task_group().
6c6c54e1
PZ
1193 *
1194 * Furthermore, all task_rq users should acquire both locks, see
1195 * task_rq_lock().
1196 */
0122ec5b
PZ
1197 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1198 lockdep_is_held(&task_rq(p)->lock)));
1199#endif
e2912009
PZ
1200#endif
1201
de1d7286 1202 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1203
0c69774e 1204 if (task_cpu(p) != new_cpu) {
0a74bef8 1205 if (p->sched_class->migrate_task_rq)
5a4fd036 1206 p->sched_class->migrate_task_rq(p);
0c69774e 1207 p->se.nr_migrations++;
ff303e66 1208 perf_event_task_migrate(p);
0c69774e 1209 }
dd41f596
IM
1210
1211 __set_task_cpu(p, new_cpu);
c65cc870
IM
1212}
1213
ac66f547
PZ
1214static void __migrate_swap_task(struct task_struct *p, int cpu)
1215{
da0c1e65 1216 if (task_on_rq_queued(p)) {
ac66f547 1217 struct rq *src_rq, *dst_rq;
8a8c69c3 1218 struct rq_flags srf, drf;
ac66f547
PZ
1219
1220 src_rq = task_rq(p);
1221 dst_rq = cpu_rq(cpu);
1222
8a8c69c3
PZ
1223 rq_pin_lock(src_rq, &srf);
1224 rq_pin_lock(dst_rq, &drf);
1225
3ea94de1 1226 p->on_rq = TASK_ON_RQ_MIGRATING;
ac66f547
PZ
1227 deactivate_task(src_rq, p, 0);
1228 set_task_cpu(p, cpu);
1229 activate_task(dst_rq, p, 0);
3ea94de1 1230 p->on_rq = TASK_ON_RQ_QUEUED;
ac66f547 1231 check_preempt_curr(dst_rq, p, 0);
8a8c69c3
PZ
1232
1233 rq_unpin_lock(dst_rq, &drf);
1234 rq_unpin_lock(src_rq, &srf);
1235
ac66f547
PZ
1236 } else {
1237 /*
1238 * Task isn't running anymore; make it appear like we migrated
1239 * it before it went to sleep. This means on wakeup we make the
d1ccc66d 1240 * previous CPU our target instead of where it really is.
ac66f547
PZ
1241 */
1242 p->wake_cpu = cpu;
1243 }
1244}
1245
1246struct migration_swap_arg {
1247 struct task_struct *src_task, *dst_task;
1248 int src_cpu, dst_cpu;
1249};
1250
1251static int migrate_swap_stop(void *data)
1252{
1253 struct migration_swap_arg *arg = data;
1254 struct rq *src_rq, *dst_rq;
1255 int ret = -EAGAIN;
1256
62694cd5
PZ
1257 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1258 return -EAGAIN;
1259
ac66f547
PZ
1260 src_rq = cpu_rq(arg->src_cpu);
1261 dst_rq = cpu_rq(arg->dst_cpu);
1262
74602315
PZ
1263 double_raw_lock(&arg->src_task->pi_lock,
1264 &arg->dst_task->pi_lock);
ac66f547 1265 double_rq_lock(src_rq, dst_rq);
62694cd5 1266
ac66f547
PZ
1267 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1268 goto unlock;
1269
1270 if (task_cpu(arg->src_task) != arg->src_cpu)
1271 goto unlock;
1272
0c98d344 1273 if (!cpumask_test_cpu(arg->dst_cpu, &arg->src_task->cpus_allowed))
ac66f547
PZ
1274 goto unlock;
1275
0c98d344 1276 if (!cpumask_test_cpu(arg->src_cpu, &arg->dst_task->cpus_allowed))
ac66f547
PZ
1277 goto unlock;
1278
1279 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1280 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1281
1282 ret = 0;
1283
1284unlock:
1285 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1286 raw_spin_unlock(&arg->dst_task->pi_lock);
1287 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1288
1289 return ret;
1290}
1291
1292/*
1293 * Cross migrate two tasks
1294 */
1295int migrate_swap(struct task_struct *cur, struct task_struct *p)
1296{
1297 struct migration_swap_arg arg;
1298 int ret = -EINVAL;
1299
ac66f547
PZ
1300 arg = (struct migration_swap_arg){
1301 .src_task = cur,
1302 .src_cpu = task_cpu(cur),
1303 .dst_task = p,
1304 .dst_cpu = task_cpu(p),
1305 };
1306
1307 if (arg.src_cpu == arg.dst_cpu)
1308 goto out;
1309
6acce3ef
PZ
1310 /*
1311 * These three tests are all lockless; this is OK since all of them
1312 * will be re-checked with proper locks held further down the line.
1313 */
ac66f547
PZ
1314 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1315 goto out;
1316
0c98d344 1317 if (!cpumask_test_cpu(arg.dst_cpu, &arg.src_task->cpus_allowed))
ac66f547
PZ
1318 goto out;
1319
0c98d344 1320 if (!cpumask_test_cpu(arg.src_cpu, &arg.dst_task->cpus_allowed))
ac66f547
PZ
1321 goto out;
1322
286549dc 1323 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1324 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1325
1326out:
ac66f547
PZ
1327 return ret;
1328}
1329
1da177e4
LT
1330/*
1331 * wait_task_inactive - wait for a thread to unschedule.
1332 *
85ba2d86
RM
1333 * If @match_state is nonzero, it's the @p->state value just checked and
1334 * not expected to change. If it changes, i.e. @p might have woken up,
1335 * then return zero. When we succeed in waiting for @p to be off its CPU,
1336 * we return a positive number (its total switch count). If a second call
1337 * a short while later returns the same number, the caller can be sure that
1338 * @p has remained unscheduled the whole time.
1339 *
1da177e4
LT
1340 * The caller must ensure that the task *will* unschedule sometime soon,
1341 * else this function might spin for a *long* time. This function can't
1342 * be called with interrupts off, or it may introduce deadlock with
1343 * smp_call_function() if an IPI is sent by the same process we are
1344 * waiting to become inactive.
1345 */
85ba2d86 1346unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4 1347{
da0c1e65 1348 int running, queued;
eb580751 1349 struct rq_flags rf;
85ba2d86 1350 unsigned long ncsw;
70b97a7f 1351 struct rq *rq;
1da177e4 1352
3a5c359a
AK
1353 for (;;) {
1354 /*
1355 * We do the initial early heuristics without holding
1356 * any task-queue locks at all. We'll only try to get
1357 * the runqueue lock when things look like they will
1358 * work out!
1359 */
1360 rq = task_rq(p);
fa490cfd 1361
3a5c359a
AK
1362 /*
1363 * If the task is actively running on another CPU
1364 * still, just relax and busy-wait without holding
1365 * any locks.
1366 *
1367 * NOTE! Since we don't hold any locks, it's not
1368 * even sure that "rq" stays as the right runqueue!
1369 * But we don't care, since "task_running()" will
1370 * return false if the runqueue has changed and p
1371 * is actually now running somewhere else!
1372 */
85ba2d86
RM
1373 while (task_running(rq, p)) {
1374 if (match_state && unlikely(p->state != match_state))
1375 return 0;
3a5c359a 1376 cpu_relax();
85ba2d86 1377 }
fa490cfd 1378
3a5c359a
AK
1379 /*
1380 * Ok, time to look more closely! We need the rq
1381 * lock now, to be *sure*. If we're wrong, we'll
1382 * just go back and repeat.
1383 */
eb580751 1384 rq = task_rq_lock(p, &rf);
27a9da65 1385 trace_sched_wait_task(p);
3a5c359a 1386 running = task_running(rq, p);
da0c1e65 1387 queued = task_on_rq_queued(p);
85ba2d86 1388 ncsw = 0;
f31e11d8 1389 if (!match_state || p->state == match_state)
93dcf55f 1390 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
eb580751 1391 task_rq_unlock(rq, p, &rf);
fa490cfd 1392
85ba2d86
RM
1393 /*
1394 * If it changed from the expected state, bail out now.
1395 */
1396 if (unlikely(!ncsw))
1397 break;
1398
3a5c359a
AK
1399 /*
1400 * Was it really running after all now that we
1401 * checked with the proper locks actually held?
1402 *
1403 * Oops. Go back and try again..
1404 */
1405 if (unlikely(running)) {
1406 cpu_relax();
1407 continue;
1408 }
fa490cfd 1409
3a5c359a
AK
1410 /*
1411 * It's not enough that it's not actively running,
1412 * it must be off the runqueue _entirely_, and not
1413 * preempted!
1414 *
80dd99b3 1415 * So if it was still runnable (but just not actively
3a5c359a
AK
1416 * running right now), it's preempted, and we should
1417 * yield - it could be a while.
1418 */
da0c1e65 1419 if (unlikely(queued)) {
8b0e1953 1420 ktime_t to = NSEC_PER_SEC / HZ;
8eb90c30
TG
1421
1422 set_current_state(TASK_UNINTERRUPTIBLE);
1423 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1424 continue;
1425 }
fa490cfd 1426
3a5c359a
AK
1427 /*
1428 * Ahh, all good. It wasn't running, and it wasn't
1429 * runnable, which means that it will never become
1430 * running in the future either. We're all done!
1431 */
1432 break;
1433 }
85ba2d86
RM
1434
1435 return ncsw;
1da177e4
LT
1436}
1437
1438/***
1439 * kick_process - kick a running thread to enter/exit the kernel
1440 * @p: the to-be-kicked thread
1441 *
1442 * Cause a process which is running on another CPU to enter
1443 * kernel-mode, without any delay. (to get signals handled.)
1444 *
25985edc 1445 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1446 * because all it wants to ensure is that the remote task enters
1447 * the kernel. If the IPI races and the task has been migrated
1448 * to another CPU then no harm is done and the purpose has been
1449 * achieved as well.
1450 */
36c8b586 1451void kick_process(struct task_struct *p)
1da177e4
LT
1452{
1453 int cpu;
1454
1455 preempt_disable();
1456 cpu = task_cpu(p);
1457 if ((cpu != smp_processor_id()) && task_curr(p))
1458 smp_send_reschedule(cpu);
1459 preempt_enable();
1460}
b43e3521 1461EXPORT_SYMBOL_GPL(kick_process);
1da177e4 1462
30da688e 1463/*
013fdb80 1464 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
e9d867a6
PZI
1465 *
1466 * A few notes on cpu_active vs cpu_online:
1467 *
1468 * - cpu_active must be a subset of cpu_online
1469 *
1470 * - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
1471 * see __set_cpus_allowed_ptr(). At this point the newly online
d1ccc66d 1472 * CPU isn't yet part of the sched domains, and balancing will not
e9d867a6
PZI
1473 * see it.
1474 *
d1ccc66d 1475 * - on CPU-down we clear cpu_active() to mask the sched domains and
e9d867a6 1476 * avoid the load balancer to place new tasks on the to be removed
d1ccc66d 1477 * CPU. Existing tasks will remain running there and will be taken
e9d867a6
PZI
1478 * off.
1479 *
1480 * This means that fallback selection must not select !active CPUs.
1481 * And can assume that any active CPU must be online. Conversely
1482 * select_task_rq() below may allow selection of !active CPUs in order
1483 * to satisfy the above rules.
30da688e 1484 */
5da9a0fb
PZ
1485static int select_fallback_rq(int cpu, struct task_struct *p)
1486{
aa00d89c
TC
1487 int nid = cpu_to_node(cpu);
1488 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1489 enum { cpuset, possible, fail } state = cpuset;
1490 int dest_cpu;
5da9a0fb 1491
aa00d89c 1492 /*
d1ccc66d
IM
1493 * If the node that the CPU is on has been offlined, cpu_to_node()
1494 * will return -1. There is no CPU on the node, and we should
1495 * select the CPU on the other node.
aa00d89c
TC
1496 */
1497 if (nid != -1) {
1498 nodemask = cpumask_of_node(nid);
1499
1500 /* Look for allowed, online CPU in same node. */
1501 for_each_cpu(dest_cpu, nodemask) {
aa00d89c
TC
1502 if (!cpu_active(dest_cpu))
1503 continue;
0c98d344 1504 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
aa00d89c
TC
1505 return dest_cpu;
1506 }
2baab4e9 1507 }
5da9a0fb 1508
2baab4e9
PZ
1509 for (;;) {
1510 /* Any allowed, online CPU? */
0c98d344 1511 for_each_cpu(dest_cpu, &p->cpus_allowed) {
feb245e3
TH
1512 if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu))
1513 continue;
1514 if (!cpu_online(dest_cpu))
2baab4e9
PZ
1515 continue;
1516 goto out;
1517 }
5da9a0fb 1518
e73e85f0 1519 /* No more Mr. Nice Guy. */
2baab4e9
PZ
1520 switch (state) {
1521 case cpuset:
e73e85f0
ON
1522 if (IS_ENABLED(CONFIG_CPUSETS)) {
1523 cpuset_cpus_allowed_fallback(p);
1524 state = possible;
1525 break;
1526 }
d1ccc66d 1527 /* Fall-through */
2baab4e9
PZ
1528 case possible:
1529 do_set_cpus_allowed(p, cpu_possible_mask);
1530 state = fail;
1531 break;
1532
1533 case fail:
1534 BUG();
1535 break;
1536 }
1537 }
1538
1539out:
1540 if (state != cpuset) {
1541 /*
1542 * Don't tell them about moving exiting tasks or
1543 * kernel threads (both mm NULL), since they never
1544 * leave kernel.
1545 */
1546 if (p->mm && printk_ratelimit()) {
aac74dc4 1547 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1548 task_pid_nr(p), p->comm, cpu);
1549 }
5da9a0fb
PZ
1550 }
1551
1552 return dest_cpu;
1553}
1554
e2912009 1555/*
013fdb80 1556 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1557 */
970b13ba 1558static inline
ac66f547 1559int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1560{
cbce1a68
PZ
1561 lockdep_assert_held(&p->pi_lock);
1562
4b53a341 1563 if (p->nr_cpus_allowed > 1)
6c1d9410 1564 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e9d867a6 1565 else
0c98d344 1566 cpu = cpumask_any(&p->cpus_allowed);
e2912009
PZ
1567
1568 /*
1569 * In order not to call set_task_cpu() on a blocking task we need
1570 * to rely on ttwu() to place the task on a valid ->cpus_allowed
d1ccc66d 1571 * CPU.
e2912009
PZ
1572 *
1573 * Since this is common to all placement strategies, this lives here.
1574 *
1575 * [ this allows ->select_task() to simply return task_cpu(p) and
1576 * not worry about this generic constraint ]
1577 */
0c98d344 1578 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
70f11205 1579 !cpu_online(cpu)))
5da9a0fb 1580 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1581
1582 return cpu;
970b13ba 1583}
09a40af5
MG
1584
1585static void update_avg(u64 *avg, u64 sample)
1586{
1587 s64 diff = sample - *avg;
1588 *avg += diff >> 3;
1589}
25834c73
PZ
1590
1591#else
1592
1593static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1594 const struct cpumask *new_mask, bool check)
1595{
1596 return set_cpus_allowed_ptr(p, new_mask);
1597}
1598
5cc389bc 1599#endif /* CONFIG_SMP */
970b13ba 1600
d7c01d27 1601static void
b84cb5df 1602ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1603{
4fa8d299 1604 struct rq *rq;
b84cb5df 1605
4fa8d299
JP
1606 if (!schedstat_enabled())
1607 return;
1608
1609 rq = this_rq();
d7c01d27 1610
4fa8d299
JP
1611#ifdef CONFIG_SMP
1612 if (cpu == rq->cpu) {
ae92882e
JP
1613 schedstat_inc(rq->ttwu_local);
1614 schedstat_inc(p->se.statistics.nr_wakeups_local);
d7c01d27
PZ
1615 } else {
1616 struct sched_domain *sd;
1617
ae92882e 1618 schedstat_inc(p->se.statistics.nr_wakeups_remote);
057f3fad 1619 rcu_read_lock();
4fa8d299 1620 for_each_domain(rq->cpu, sd) {
d7c01d27 1621 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
ae92882e 1622 schedstat_inc(sd->ttwu_wake_remote);
d7c01d27
PZ
1623 break;
1624 }
1625 }
057f3fad 1626 rcu_read_unlock();
d7c01d27 1627 }
f339b9dc
PZ
1628
1629 if (wake_flags & WF_MIGRATED)
ae92882e 1630 schedstat_inc(p->se.statistics.nr_wakeups_migrate);
d7c01d27
PZ
1631#endif /* CONFIG_SMP */
1632
ae92882e
JP
1633 schedstat_inc(rq->ttwu_count);
1634 schedstat_inc(p->se.statistics.nr_wakeups);
d7c01d27
PZ
1635
1636 if (wake_flags & WF_SYNC)
ae92882e 1637 schedstat_inc(p->se.statistics.nr_wakeups_sync);
d7c01d27
PZ
1638}
1639
1de64443 1640static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
d7c01d27 1641{
9ed3811a 1642 activate_task(rq, p, en_flags);
da0c1e65 1643 p->on_rq = TASK_ON_RQ_QUEUED;
c2f7115e 1644
d1ccc66d 1645 /* If a worker is waking up, notify the workqueue: */
c2f7115e
PZ
1646 if (p->flags & PF_WQ_WORKER)
1647 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1648}
1649
23f41eeb
PZ
1650/*
1651 * Mark the task runnable and perform wakeup-preemption.
1652 */
e7904a28 1653static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
d8ac8971 1654 struct rq_flags *rf)
9ed3811a 1655{
9ed3811a 1656 check_preempt_curr(rq, p, wake_flags);
9ed3811a 1657 p->state = TASK_RUNNING;
fbd705a0
PZ
1658 trace_sched_wakeup(p);
1659
9ed3811a 1660#ifdef CONFIG_SMP
4c9a4bc8
PZ
1661 if (p->sched_class->task_woken) {
1662 /*
cbce1a68
PZ
1663 * Our task @p is fully woken up and running; so its safe to
1664 * drop the rq->lock, hereafter rq is only used for statistics.
4c9a4bc8 1665 */
d8ac8971 1666 rq_unpin_lock(rq, rf);
9ed3811a 1667 p->sched_class->task_woken(rq, p);
d8ac8971 1668 rq_repin_lock(rq, rf);
4c9a4bc8 1669 }
9ed3811a 1670
e69c6341 1671 if (rq->idle_stamp) {
78becc27 1672 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1673 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1674
abfafa54
JL
1675 update_avg(&rq->avg_idle, delta);
1676
1677 if (rq->avg_idle > max)
9ed3811a 1678 rq->avg_idle = max;
abfafa54 1679
9ed3811a
TH
1680 rq->idle_stamp = 0;
1681 }
1682#endif
1683}
1684
c05fbafb 1685static void
e7904a28 1686ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
d8ac8971 1687 struct rq_flags *rf)
c05fbafb 1688{
77558e4d 1689 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
b5179ac7 1690
cbce1a68
PZ
1691 lockdep_assert_held(&rq->lock);
1692
c05fbafb
PZ
1693#ifdef CONFIG_SMP
1694 if (p->sched_contributes_to_load)
1695 rq->nr_uninterruptible--;
b5179ac7 1696
b5179ac7 1697 if (wake_flags & WF_MIGRATED)
59efa0ba 1698 en_flags |= ENQUEUE_MIGRATED;
c05fbafb
PZ
1699#endif
1700
b5179ac7 1701 ttwu_activate(rq, p, en_flags);
d8ac8971 1702 ttwu_do_wakeup(rq, p, wake_flags, rf);
c05fbafb
PZ
1703}
1704
1705/*
1706 * Called in case the task @p isn't fully descheduled from its runqueue,
1707 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1708 * since all we need to do is flip p->state to TASK_RUNNING, since
1709 * the task is still ->on_rq.
1710 */
1711static int ttwu_remote(struct task_struct *p, int wake_flags)
1712{
eb580751 1713 struct rq_flags rf;
c05fbafb
PZ
1714 struct rq *rq;
1715 int ret = 0;
1716
eb580751 1717 rq = __task_rq_lock(p, &rf);
da0c1e65 1718 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
1719 /* check_preempt_curr() may use rq clock */
1720 update_rq_clock(rq);
d8ac8971 1721 ttwu_do_wakeup(rq, p, wake_flags, &rf);
c05fbafb
PZ
1722 ret = 1;
1723 }
eb580751 1724 __task_rq_unlock(rq, &rf);
c05fbafb
PZ
1725
1726 return ret;
1727}
1728
317f3941 1729#ifdef CONFIG_SMP
e3baac47 1730void sched_ttwu_pending(void)
317f3941
PZ
1731{
1732 struct rq *rq = this_rq();
fa14ff4a 1733 struct llist_node *llist = llist_del_all(&rq->wake_list);
73215849 1734 struct task_struct *p, *t;
d8ac8971 1735 struct rq_flags rf;
317f3941 1736
e3baac47
PZ
1737 if (!llist)
1738 return;
1739
8a8c69c3 1740 rq_lock_irqsave(rq, &rf);
77558e4d 1741 update_rq_clock(rq);
317f3941 1742
73215849
BP
1743 llist_for_each_entry_safe(p, t, llist, wake_entry)
1744 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
317f3941 1745
8a8c69c3 1746 rq_unlock_irqrestore(rq, &rf);
317f3941
PZ
1747}
1748
1749void scheduler_ipi(void)
1750{
f27dde8d
PZ
1751 /*
1752 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1753 * TIF_NEED_RESCHED remotely (for the first time) will also send
1754 * this IPI.
1755 */
8cb75e0c 1756 preempt_fold_need_resched();
f27dde8d 1757
fd2ac4f4 1758 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1759 return;
1760
1761 /*
1762 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1763 * traditionally all their work was done from the interrupt return
1764 * path. Now that we actually do some work, we need to make sure
1765 * we do call them.
1766 *
1767 * Some archs already do call them, luckily irq_enter/exit nest
1768 * properly.
1769 *
1770 * Arguably we should visit all archs and update all handlers,
1771 * however a fair share of IPIs are still resched only so this would
1772 * somewhat pessimize the simple resched case.
1773 */
1774 irq_enter();
fa14ff4a 1775 sched_ttwu_pending();
ca38062e
SS
1776
1777 /*
1778 * Check if someone kicked us for doing the nohz idle load balance.
1779 */
873b4c65 1780 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1781 this_rq()->idle_balance = 1;
ca38062e 1782 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1783 }
c5d753a5 1784 irq_exit();
317f3941
PZ
1785}
1786
b7e7ade3 1787static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
317f3941 1788{
e3baac47
PZ
1789 struct rq *rq = cpu_rq(cpu);
1790
b7e7ade3
PZ
1791 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1792
e3baac47
PZ
1793 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1794 if (!set_nr_if_polling(rq->idle))
1795 smp_send_reschedule(cpu);
1796 else
1797 trace_sched_wake_idle_without_ipi(cpu);
1798 }
317f3941 1799}
d6aa8f85 1800
f6be8af1
CL
1801void wake_up_if_idle(int cpu)
1802{
1803 struct rq *rq = cpu_rq(cpu);
8a8c69c3 1804 struct rq_flags rf;
f6be8af1 1805
fd7de1e8
AL
1806 rcu_read_lock();
1807
1808 if (!is_idle_task(rcu_dereference(rq->curr)))
1809 goto out;
f6be8af1
CL
1810
1811 if (set_nr_if_polling(rq->idle)) {
1812 trace_sched_wake_idle_without_ipi(cpu);
1813 } else {
8a8c69c3 1814 rq_lock_irqsave(rq, &rf);
f6be8af1
CL
1815 if (is_idle_task(rq->curr))
1816 smp_send_reschedule(cpu);
d1ccc66d 1817 /* Else CPU is not idle, do nothing here: */
8a8c69c3 1818 rq_unlock_irqrestore(rq, &rf);
f6be8af1 1819 }
fd7de1e8
AL
1820
1821out:
1822 rcu_read_unlock();
f6be8af1
CL
1823}
1824
39be3501 1825bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1826{
1827 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1828}
d6aa8f85 1829#endif /* CONFIG_SMP */
317f3941 1830
b5179ac7 1831static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
c05fbafb
PZ
1832{
1833 struct rq *rq = cpu_rq(cpu);
d8ac8971 1834 struct rq_flags rf;
c05fbafb 1835
17d9f311 1836#if defined(CONFIG_SMP)
39be3501 1837 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
d1ccc66d 1838 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
b7e7ade3 1839 ttwu_queue_remote(p, cpu, wake_flags);
317f3941
PZ
1840 return;
1841 }
1842#endif
1843
8a8c69c3 1844 rq_lock(rq, &rf);
77558e4d 1845 update_rq_clock(rq);
d8ac8971 1846 ttwu_do_activate(rq, p, wake_flags, &rf);
8a8c69c3 1847 rq_unlock(rq, &rf);
9ed3811a
TH
1848}
1849
8643cda5
PZ
1850/*
1851 * Notes on Program-Order guarantees on SMP systems.
1852 *
1853 * MIGRATION
1854 *
1855 * The basic program-order guarantee on SMP systems is that when a task [t]
d1ccc66d
IM
1856 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
1857 * execution on its new CPU [c1].
8643cda5
PZ
1858 *
1859 * For migration (of runnable tasks) this is provided by the following means:
1860 *
1861 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1862 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1863 * rq(c1)->lock (if not at the same time, then in that order).
1864 * C) LOCK of the rq(c1)->lock scheduling in task
1865 *
1866 * Transitivity guarantees that B happens after A and C after B.
1867 * Note: we only require RCpc transitivity.
d1ccc66d 1868 * Note: the CPU doing B need not be c0 or c1
8643cda5
PZ
1869 *
1870 * Example:
1871 *
1872 * CPU0 CPU1 CPU2
1873 *
1874 * LOCK rq(0)->lock
1875 * sched-out X
1876 * sched-in Y
1877 * UNLOCK rq(0)->lock
1878 *
1879 * LOCK rq(0)->lock // orders against CPU0
1880 * dequeue X
1881 * UNLOCK rq(0)->lock
1882 *
1883 * LOCK rq(1)->lock
1884 * enqueue X
1885 * UNLOCK rq(1)->lock
1886 *
1887 * LOCK rq(1)->lock // orders against CPU2
1888 * sched-out Z
1889 * sched-in X
1890 * UNLOCK rq(1)->lock
1891 *
1892 *
1893 * BLOCKING -- aka. SLEEP + WAKEUP
1894 *
1895 * For blocking we (obviously) need to provide the same guarantee as for
1896 * migration. However the means are completely different as there is no lock
1897 * chain to provide order. Instead we do:
1898 *
1899 * 1) smp_store_release(X->on_cpu, 0)
1f03e8d2 1900 * 2) smp_cond_load_acquire(!X->on_cpu)
8643cda5
PZ
1901 *
1902 * Example:
1903 *
1904 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1905 *
1906 * LOCK rq(0)->lock LOCK X->pi_lock
1907 * dequeue X
1908 * sched-out X
1909 * smp_store_release(X->on_cpu, 0);
1910 *
1f03e8d2 1911 * smp_cond_load_acquire(&X->on_cpu, !VAL);
8643cda5
PZ
1912 * X->state = WAKING
1913 * set_task_cpu(X,2)
1914 *
1915 * LOCK rq(2)->lock
1916 * enqueue X
1917 * X->state = RUNNING
1918 * UNLOCK rq(2)->lock
1919 *
1920 * LOCK rq(2)->lock // orders against CPU1
1921 * sched-out Z
1922 * sched-in X
1923 * UNLOCK rq(2)->lock
1924 *
1925 * UNLOCK X->pi_lock
1926 * UNLOCK rq(0)->lock
1927 *
1928 *
1929 * However; for wakeups there is a second guarantee we must provide, namely we
1930 * must observe the state that lead to our wakeup. That is, not only must our
1931 * task observe its own prior state, it must also observe the stores prior to
1932 * its wakeup.
1933 *
1934 * This means that any means of doing remote wakeups must order the CPU doing
1935 * the wakeup against the CPU the task is going to end up running on. This,
1936 * however, is already required for the regular Program-Order guarantee above,
1f03e8d2 1937 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
8643cda5
PZ
1938 *
1939 */
1940
9ed3811a 1941/**
1da177e4 1942 * try_to_wake_up - wake up a thread
9ed3811a 1943 * @p: the thread to be awakened
1da177e4 1944 * @state: the mask of task states that can be woken
9ed3811a 1945 * @wake_flags: wake modifier flags (WF_*)
1da177e4 1946 *
a2250238 1947 * If (@state & @p->state) @p->state = TASK_RUNNING.
1da177e4 1948 *
a2250238
PZ
1949 * If the task was not queued/runnable, also place it back on a runqueue.
1950 *
1951 * Atomic against schedule() which would dequeue a task, also see
1952 * set_current_state().
1953 *
1954 * Return: %true if @p->state changes (an actual wakeup was done),
1955 * %false otherwise.
1da177e4 1956 */
e4a52bcb
PZ
1957static int
1958try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1959{
1da177e4 1960 unsigned long flags;
c05fbafb 1961 int cpu, success = 0;
2398f2c6 1962
e0acd0a6
ON
1963 /*
1964 * If we are going to wake up a thread waiting for CONDITION we
1965 * need to ensure that CONDITION=1 done by the caller can not be
1966 * reordered with p->state check below. This pairs with mb() in
1967 * set_current_state() the waiting thread does.
1968 */
1969 smp_mb__before_spinlock();
013fdb80 1970 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1971 if (!(p->state & state))
1da177e4
LT
1972 goto out;
1973
fbd705a0
PZ
1974 trace_sched_waking(p);
1975
d1ccc66d
IM
1976 /* We're going to change ->state: */
1977 success = 1;
1da177e4 1978 cpu = task_cpu(p);
1da177e4 1979
135e8c92
BS
1980 /*
1981 * Ensure we load p->on_rq _after_ p->state, otherwise it would
1982 * be possible to, falsely, observe p->on_rq == 0 and get stuck
1983 * in smp_cond_load_acquire() below.
1984 *
1985 * sched_ttwu_pending() try_to_wake_up()
1986 * [S] p->on_rq = 1; [L] P->state
1987 * UNLOCK rq->lock -----.
1988 * \
1989 * +--- RMB
1990 * schedule() /
1991 * LOCK rq->lock -----'
1992 * UNLOCK rq->lock
1993 *
1994 * [task p]
1995 * [S] p->state = UNINTERRUPTIBLE [L] p->on_rq
1996 *
1997 * Pairs with the UNLOCK+LOCK on rq->lock from the
1998 * last wakeup of our task and the schedule that got our task
1999 * current.
2000 */
2001 smp_rmb();
c05fbafb
PZ
2002 if (p->on_rq && ttwu_remote(p, wake_flags))
2003 goto stat;
1da177e4 2004
1da177e4 2005#ifdef CONFIG_SMP
ecf7d01c
PZ
2006 /*
2007 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2008 * possible to, falsely, observe p->on_cpu == 0.
2009 *
2010 * One must be running (->on_cpu == 1) in order to remove oneself
2011 * from the runqueue.
2012 *
2013 * [S] ->on_cpu = 1; [L] ->on_rq
2014 * UNLOCK rq->lock
2015 * RMB
2016 * LOCK rq->lock
2017 * [S] ->on_rq = 0; [L] ->on_cpu
2018 *
2019 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2020 * from the consecutive calls to schedule(); the first switching to our
2021 * task, the second putting it to sleep.
2022 */
2023 smp_rmb();
2024
e9c84311 2025 /*
d1ccc66d 2026 * If the owning (remote) CPU is still in the middle of schedule() with
c05fbafb 2027 * this task as prev, wait until its done referencing the task.
b75a2253
PZ
2028 *
2029 * Pairs with the smp_store_release() in finish_lock_switch().
2030 *
2031 * This ensures that tasks getting woken will be fully ordered against
2032 * their previous state and preserve Program Order.
0970d299 2033 */
1f03e8d2 2034 smp_cond_load_acquire(&p->on_cpu, !VAL);
1da177e4 2035
a8e4f2ea 2036 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 2037 p->state = TASK_WAKING;
e7693a36 2038
e33a9bba
TH
2039 if (p->in_iowait) {
2040 delayacct_blkio_end();
2041 atomic_dec(&task_rq(p)->nr_iowait);
2042 }
2043
ac66f547 2044 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
2045 if (task_cpu(p) != cpu) {
2046 wake_flags |= WF_MIGRATED;
e4a52bcb 2047 set_task_cpu(p, cpu);
f339b9dc 2048 }
e33a9bba
TH
2049
2050#else /* CONFIG_SMP */
2051
2052 if (p->in_iowait) {
2053 delayacct_blkio_end();
2054 atomic_dec(&task_rq(p)->nr_iowait);
2055 }
2056
1da177e4 2057#endif /* CONFIG_SMP */
1da177e4 2058
b5179ac7 2059 ttwu_queue(p, cpu, wake_flags);
c05fbafb 2060stat:
4fa8d299 2061 ttwu_stat(p, cpu, wake_flags);
1da177e4 2062out:
013fdb80 2063 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
2064
2065 return success;
2066}
2067
21aa9af0
TH
2068/**
2069 * try_to_wake_up_local - try to wake up a local task with rq lock held
2070 * @p: the thread to be awakened
9279e0d2 2071 * @cookie: context's cookie for pinning
21aa9af0 2072 *
2acca55e 2073 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 2074 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 2075 * the current task.
21aa9af0 2076 */
d8ac8971 2077static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf)
21aa9af0
TH
2078{
2079 struct rq *rq = task_rq(p);
21aa9af0 2080
383efcd0
TH
2081 if (WARN_ON_ONCE(rq != this_rq()) ||
2082 WARN_ON_ONCE(p == current))
2083 return;
2084
21aa9af0
TH
2085 lockdep_assert_held(&rq->lock);
2086
2acca55e 2087 if (!raw_spin_trylock(&p->pi_lock)) {
cbce1a68
PZ
2088 /*
2089 * This is OK, because current is on_cpu, which avoids it being
2090 * picked for load-balance and preemption/IRQs are still
2091 * disabled avoiding further scheduler activity on it and we've
2092 * not yet picked a replacement task.
2093 */
8a8c69c3 2094 rq_unlock(rq, rf);
2acca55e 2095 raw_spin_lock(&p->pi_lock);
8a8c69c3 2096 rq_relock(rq, rf);
2acca55e
PZ
2097 }
2098
21aa9af0 2099 if (!(p->state & TASK_NORMAL))
2acca55e 2100 goto out;
21aa9af0 2101
fbd705a0
PZ
2102 trace_sched_waking(p);
2103
e33a9bba
TH
2104 if (!task_on_rq_queued(p)) {
2105 if (p->in_iowait) {
2106 delayacct_blkio_end();
2107 atomic_dec(&rq->nr_iowait);
2108 }
bce4dc80 2109 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK);
e33a9bba 2110 }
d7c01d27 2111
d8ac8971 2112 ttwu_do_wakeup(rq, p, 0, rf);
4fa8d299 2113 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
2114out:
2115 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
2116}
2117
50fa610a
DH
2118/**
2119 * wake_up_process - Wake up a specific process
2120 * @p: The process to be woken up.
2121 *
2122 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
2123 * processes.
2124 *
2125 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
2126 *
2127 * It may be assumed that this function implies a write memory barrier before
2128 * changing the task state if and only if any tasks are woken up.
2129 */
7ad5b3a5 2130int wake_up_process(struct task_struct *p)
1da177e4 2131{
9067ac85 2132 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 2133}
1da177e4
LT
2134EXPORT_SYMBOL(wake_up_process);
2135
7ad5b3a5 2136int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2137{
2138 return try_to_wake_up(p, state, 0);
2139}
2140
a5e7be3b
JL
2141/*
2142 * This function clears the sched_dl_entity static params.
2143 */
2144void __dl_clear_params(struct task_struct *p)
2145{
2146 struct sched_dl_entity *dl_se = &p->dl;
2147
2148 dl_se->dl_runtime = 0;
2149 dl_se->dl_deadline = 0;
2150 dl_se->dl_period = 0;
2151 dl_se->flags = 0;
2152 dl_se->dl_bw = 0;
40767b0d
PZ
2153
2154 dl_se->dl_throttled = 0;
40767b0d 2155 dl_se->dl_yielded = 0;
209a0cbd 2156 dl_se->dl_non_contending = 0;
a5e7be3b
JL
2157}
2158
1da177e4
LT
2159/*
2160 * Perform scheduler related setup for a newly forked process p.
2161 * p is forked by current.
dd41f596
IM
2162 *
2163 * __sched_fork() is basic setup used by init_idle() too:
2164 */
5e1576ed 2165static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2166{
fd2f4419
PZ
2167 p->on_rq = 0;
2168
2169 p->se.on_rq = 0;
dd41f596
IM
2170 p->se.exec_start = 0;
2171 p->se.sum_exec_runtime = 0;
f6cf891c 2172 p->se.prev_sum_exec_runtime = 0;
6c594c21 2173 p->se.nr_migrations = 0;
da7a735e 2174 p->se.vruntime = 0;
fd2f4419 2175 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d 2176
ad936d86
BP
2177#ifdef CONFIG_FAIR_GROUP_SCHED
2178 p->se.cfs_rq = NULL;
2179#endif
2180
6cfb0d5d 2181#ifdef CONFIG_SCHEDSTATS
cb251765 2182 /* Even if schedstat is disabled, there should not be garbage */
41acab88 2183 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2184#endif
476d139c 2185
aab03e05 2186 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 2187 init_dl_task_timer(&p->dl);
209a0cbd 2188 init_dl_inactive_task_timer(&p->dl);
a5e7be3b 2189 __dl_clear_params(p);
aab03e05 2190
fa717060 2191 INIT_LIST_HEAD(&p->rt.run_list);
ff77e468
PZ
2192 p->rt.timeout = 0;
2193 p->rt.time_slice = sched_rr_timeslice;
2194 p->rt.on_rq = 0;
2195 p->rt.on_list = 0;
476d139c 2196
e107be36
AK
2197#ifdef CONFIG_PREEMPT_NOTIFIERS
2198 INIT_HLIST_HEAD(&p->preempt_notifiers);
2199#endif
cbee9f88
PZ
2200
2201#ifdef CONFIG_NUMA_BALANCING
2202 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 2203 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
2204 p->mm->numa_scan_seq = 0;
2205 }
2206
5e1576ed
RR
2207 if (clone_flags & CLONE_VM)
2208 p->numa_preferred_nid = current->numa_preferred_nid;
2209 else
2210 p->numa_preferred_nid = -1;
2211
cbee9f88
PZ
2212 p->node_stamp = 0ULL;
2213 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 2214 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 2215 p->numa_work.next = &p->numa_work;
44dba3d5 2216 p->numa_faults = NULL;
7e2703e6
RR
2217 p->last_task_numa_placement = 0;
2218 p->last_sum_exec_runtime = 0;
8c8a743c 2219
8c8a743c 2220 p->numa_group = NULL;
cbee9f88 2221#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
2222}
2223
2a595721
SD
2224DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2225
1a687c2e 2226#ifdef CONFIG_NUMA_BALANCING
c3b9bc5b 2227
1a687c2e
MG
2228void set_numabalancing_state(bool enabled)
2229{
2230 if (enabled)
2a595721 2231 static_branch_enable(&sched_numa_balancing);
1a687c2e 2232 else
2a595721 2233 static_branch_disable(&sched_numa_balancing);
1a687c2e 2234}
54a43d54
AK
2235
2236#ifdef CONFIG_PROC_SYSCTL
2237int sysctl_numa_balancing(struct ctl_table *table, int write,
2238 void __user *buffer, size_t *lenp, loff_t *ppos)
2239{
2240 struct ctl_table t;
2241 int err;
2a595721 2242 int state = static_branch_likely(&sched_numa_balancing);
54a43d54
AK
2243
2244 if (write && !capable(CAP_SYS_ADMIN))
2245 return -EPERM;
2246
2247 t = *table;
2248 t.data = &state;
2249 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2250 if (err < 0)
2251 return err;
2252 if (write)
2253 set_numabalancing_state(state);
2254 return err;
2255}
2256#endif
2257#endif
dd41f596 2258
4698f88c
JP
2259#ifdef CONFIG_SCHEDSTATS
2260
cb251765 2261DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4698f88c 2262static bool __initdata __sched_schedstats = false;
cb251765 2263
cb251765
MG
2264static void set_schedstats(bool enabled)
2265{
2266 if (enabled)
2267 static_branch_enable(&sched_schedstats);
2268 else
2269 static_branch_disable(&sched_schedstats);
2270}
2271
2272void force_schedstat_enabled(void)
2273{
2274 if (!schedstat_enabled()) {
2275 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2276 static_branch_enable(&sched_schedstats);
2277 }
2278}
2279
2280static int __init setup_schedstats(char *str)
2281{
2282 int ret = 0;
2283 if (!str)
2284 goto out;
2285
4698f88c
JP
2286 /*
2287 * This code is called before jump labels have been set up, so we can't
2288 * change the static branch directly just yet. Instead set a temporary
2289 * variable so init_schedstats() can do it later.
2290 */
cb251765 2291 if (!strcmp(str, "enable")) {
4698f88c 2292 __sched_schedstats = true;
cb251765
MG
2293 ret = 1;
2294 } else if (!strcmp(str, "disable")) {
4698f88c 2295 __sched_schedstats = false;
cb251765
MG
2296 ret = 1;
2297 }
2298out:
2299 if (!ret)
2300 pr_warn("Unable to parse schedstats=\n");
2301
2302 return ret;
2303}
2304__setup("schedstats=", setup_schedstats);
2305
4698f88c
JP
2306static void __init init_schedstats(void)
2307{
2308 set_schedstats(__sched_schedstats);
2309}
2310
cb251765
MG
2311#ifdef CONFIG_PROC_SYSCTL
2312int sysctl_schedstats(struct ctl_table *table, int write,
2313 void __user *buffer, size_t *lenp, loff_t *ppos)
2314{
2315 struct ctl_table t;
2316 int err;
2317 int state = static_branch_likely(&sched_schedstats);
2318
2319 if (write && !capable(CAP_SYS_ADMIN))
2320 return -EPERM;
2321
2322 t = *table;
2323 t.data = &state;
2324 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2325 if (err < 0)
2326 return err;
2327 if (write)
2328 set_schedstats(state);
2329 return err;
2330}
4698f88c
JP
2331#endif /* CONFIG_PROC_SYSCTL */
2332#else /* !CONFIG_SCHEDSTATS */
2333static inline void init_schedstats(void) {}
2334#endif /* CONFIG_SCHEDSTATS */
dd41f596
IM
2335
2336/*
2337 * fork()/clone()-time setup:
2338 */
aab03e05 2339int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2340{
0122ec5b 2341 unsigned long flags;
dd41f596
IM
2342 int cpu = get_cpu();
2343
5e1576ed 2344 __sched_fork(clone_flags, p);
06b83b5f 2345 /*
7dc603c9 2346 * We mark the process as NEW here. This guarantees that
06b83b5f
PZ
2347 * nobody will actually run it, and a signal or other external
2348 * event cannot wake it up and insert it on the runqueue either.
2349 */
7dc603c9 2350 p->state = TASK_NEW;
dd41f596 2351
c350a04e
MG
2352 /*
2353 * Make sure we do not leak PI boosting priority to the child.
2354 */
2355 p->prio = current->normal_prio;
2356
b9dc29e7
MG
2357 /*
2358 * Revert to default priority/policy on fork if requested.
2359 */
2360 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 2361 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 2362 p->policy = SCHED_NORMAL;
6c697bdf 2363 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
2364 p->rt_priority = 0;
2365 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2366 p->static_prio = NICE_TO_PRIO(0);
2367
2368 p->prio = p->normal_prio = __normal_prio(p);
2369 set_load_weight(p);
6c697bdf 2370
b9dc29e7
MG
2371 /*
2372 * We don't need the reset flag anymore after the fork. It has
2373 * fulfilled its duty:
2374 */
2375 p->sched_reset_on_fork = 0;
2376 }
ca94c442 2377
aab03e05
DF
2378 if (dl_prio(p->prio)) {
2379 put_cpu();
2380 return -EAGAIN;
2381 } else if (rt_prio(p->prio)) {
2382 p->sched_class = &rt_sched_class;
2383 } else {
2ddbf952 2384 p->sched_class = &fair_sched_class;
aab03e05 2385 }
b29739f9 2386
7dc603c9 2387 init_entity_runnable_average(&p->se);
cd29fe6f 2388
86951599
PZ
2389 /*
2390 * The child is not yet in the pid-hash so no cgroup attach races,
2391 * and the cgroup is pinned to this child due to cgroup_fork()
2392 * is ran before sched_fork().
2393 *
2394 * Silence PROVE_RCU.
2395 */
0122ec5b 2396 raw_spin_lock_irqsave(&p->pi_lock, flags);
e210bffd 2397 /*
d1ccc66d 2398 * We're setting the CPU for the first time, we don't migrate,
e210bffd
PZ
2399 * so use __set_task_cpu().
2400 */
2401 __set_task_cpu(p, cpu);
2402 if (p->sched_class->task_fork)
2403 p->sched_class->task_fork(p);
0122ec5b 2404 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 2405
f6db8347 2406#ifdef CONFIG_SCHED_INFO
dd41f596 2407 if (likely(sched_info_on()))
52f17b6c 2408 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2409#endif
3ca7a440
PZ
2410#if defined(CONFIG_SMP)
2411 p->on_cpu = 0;
4866cde0 2412#endif
01028747 2413 init_task_preempt_count(p);
806c09a7 2414#ifdef CONFIG_SMP
917b627d 2415 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 2416 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 2417#endif
917b627d 2418
476d139c 2419 put_cpu();
aab03e05 2420 return 0;
1da177e4
LT
2421}
2422
332ac17e
DF
2423unsigned long to_ratio(u64 period, u64 runtime)
2424{
2425 if (runtime == RUNTIME_INF)
2426 return 1ULL << 20;
2427
2428 /*
2429 * Doing this here saves a lot of checks in all
2430 * the calling paths, and returning zero seems
2431 * safe for them anyway.
2432 */
2433 if (period == 0)
2434 return 0;
2435
2436 return div64_u64(runtime << 20, period);
2437}
2438
2439#ifdef CONFIG_SMP
2440inline struct dl_bw *dl_bw_of(int i)
2441{
f78f5b90
PM
2442 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2443 "sched RCU must be held");
332ac17e
DF
2444 return &cpu_rq(i)->rd->dl_bw;
2445}
2446
de212f18 2447static inline int dl_bw_cpus(int i)
332ac17e 2448{
de212f18
PZ
2449 struct root_domain *rd = cpu_rq(i)->rd;
2450 int cpus = 0;
2451
f78f5b90
PM
2452 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2453 "sched RCU must be held");
de212f18
PZ
2454 for_each_cpu_and(i, rd->span, cpu_active_mask)
2455 cpus++;
2456
2457 return cpus;
332ac17e
DF
2458}
2459#else
2460inline struct dl_bw *dl_bw_of(int i)
2461{
2462 return &cpu_rq(i)->dl.dl_bw;
2463}
2464
de212f18 2465static inline int dl_bw_cpus(int i)
332ac17e
DF
2466{
2467 return 1;
2468}
2469#endif
2470
332ac17e
DF
2471/*
2472 * We must be sure that accepting a new task (or allowing changing the
2473 * parameters of an existing one) is consistent with the bandwidth
2474 * constraints. If yes, this function also accordingly updates the currently
2475 * allocated bandwidth to reflect the new situation.
2476 *
2477 * This function is called while holding p's rq->lock.
2478 */
2479static int dl_overflow(struct task_struct *p, int policy,
2480 const struct sched_attr *attr)
2481{
2482
2483 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
4df1638c 2484 u64 period = attr->sched_period ?: attr->sched_deadline;
332ac17e
DF
2485 u64 runtime = attr->sched_runtime;
2486 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 2487 int cpus, err = -1;
332ac17e 2488
fec148c0
XP
2489 /* !deadline task may carry old deadline bandwidth */
2490 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
332ac17e
DF
2491 return 0;
2492
2493 /*
2494 * Either if a task, enters, leave, or stays -deadline but changes
2495 * its parameters, we may need to update accordingly the total
2496 * allocated bandwidth of the container.
2497 */
2498 raw_spin_lock(&dl_b->lock);
de212f18 2499 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
2500 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2501 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
387e3130
LA
2502 if (hrtimer_active(&p->dl.inactive_timer))
2503 __dl_clear(dl_b, p->dl.dl_bw);
332ac17e
DF
2504 __dl_add(dl_b, new_bw);
2505 err = 0;
2506 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2507 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
387e3130
LA
2508 /*
2509 * XXX this is slightly incorrect: when the task
2510 * utilization decreases, we should delay the total
2511 * utilization change until the task's 0-lag point.
2512 * But this would require to set the task's "inactive
2513 * timer" when the task is not inactive.
2514 */
332ac17e
DF
2515 __dl_clear(dl_b, p->dl.dl_bw);
2516 __dl_add(dl_b, new_bw);
209a0cbd 2517 dl_change_utilization(p, new_bw);
332ac17e
DF
2518 err = 0;
2519 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
387e3130
LA
2520 /*
2521 * Do not decrease the total deadline utilization here,
2522 * switched_from_dl() will take care to do it at the correct
2523 * (0-lag) time.
2524 */
332ac17e
DF
2525 err = 0;
2526 }
2527 raw_spin_unlock(&dl_b->lock);
2528
2529 return err;
2530}
2531
2532extern void init_dl_bw(struct dl_bw *dl_b);
2533
1da177e4
LT
2534/*
2535 * wake_up_new_task - wake up a newly created task for the first time.
2536 *
2537 * This function will do some initial scheduler statistics housekeeping
2538 * that must be done for every newly created context, then puts the task
2539 * on the runqueue and wakes it.
2540 */
3e51e3ed 2541void wake_up_new_task(struct task_struct *p)
1da177e4 2542{
eb580751 2543 struct rq_flags rf;
dd41f596 2544 struct rq *rq;
fabf318e 2545
eb580751 2546 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
7dc603c9 2547 p->state = TASK_RUNNING;
fabf318e
PZ
2548#ifdef CONFIG_SMP
2549 /*
2550 * Fork balancing, do it here and not earlier because:
2551 * - cpus_allowed can change in the fork path
d1ccc66d 2552 * - any previously selected CPU might disappear through hotplug
e210bffd
PZ
2553 *
2554 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2555 * as we're not fully set-up yet.
fabf318e 2556 */
e210bffd 2557 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735 2558#endif
b7fa30c9 2559 rq = __task_rq_lock(p, &rf);
4126bad6 2560 update_rq_clock(rq);
2b8c41da 2561 post_init_entity_util_avg(&p->se);
0017d735 2562
7a57f32a 2563 activate_task(rq, p, ENQUEUE_NOCLOCK);
da0c1e65 2564 p->on_rq = TASK_ON_RQ_QUEUED;
fbd705a0 2565 trace_sched_wakeup_new(p);
a7558e01 2566 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2567#ifdef CONFIG_SMP
0aaafaab
PZ
2568 if (p->sched_class->task_woken) {
2569 /*
2570 * Nothing relies on rq->lock after this, so its fine to
2571 * drop it.
2572 */
d8ac8971 2573 rq_unpin_lock(rq, &rf);
efbbd05a 2574 p->sched_class->task_woken(rq, p);
d8ac8971 2575 rq_repin_lock(rq, &rf);
0aaafaab 2576 }
9a897c5a 2577#endif
eb580751 2578 task_rq_unlock(rq, p, &rf);
1da177e4
LT
2579}
2580
e107be36
AK
2581#ifdef CONFIG_PREEMPT_NOTIFIERS
2582
1cde2930
PZ
2583static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2584
2ecd9d29
PZ
2585void preempt_notifier_inc(void)
2586{
2587 static_key_slow_inc(&preempt_notifier_key);
2588}
2589EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2590
2591void preempt_notifier_dec(void)
2592{
2593 static_key_slow_dec(&preempt_notifier_key);
2594}
2595EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2596
e107be36 2597/**
80dd99b3 2598 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2599 * @notifier: notifier struct to register
e107be36
AK
2600 */
2601void preempt_notifier_register(struct preempt_notifier *notifier)
2602{
2ecd9d29
PZ
2603 if (!static_key_false(&preempt_notifier_key))
2604 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2605
e107be36
AK
2606 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2607}
2608EXPORT_SYMBOL_GPL(preempt_notifier_register);
2609
2610/**
2611 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2612 * @notifier: notifier struct to unregister
e107be36 2613 *
d84525a8 2614 * This is *not* safe to call from within a preemption notifier.
e107be36
AK
2615 */
2616void preempt_notifier_unregister(struct preempt_notifier *notifier)
2617{
2618 hlist_del(&notifier->link);
2619}
2620EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2621
1cde2930 2622static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2623{
2624 struct preempt_notifier *notifier;
e107be36 2625
b67bfe0d 2626 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2627 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2628}
2629
1cde2930
PZ
2630static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2631{
2632 if (static_key_false(&preempt_notifier_key))
2633 __fire_sched_in_preempt_notifiers(curr);
2634}
2635
e107be36 2636static void
1cde2930
PZ
2637__fire_sched_out_preempt_notifiers(struct task_struct *curr,
2638 struct task_struct *next)
e107be36
AK
2639{
2640 struct preempt_notifier *notifier;
e107be36 2641
b67bfe0d 2642 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2643 notifier->ops->sched_out(notifier, next);
2644}
2645
1cde2930
PZ
2646static __always_inline void
2647fire_sched_out_preempt_notifiers(struct task_struct *curr,
2648 struct task_struct *next)
2649{
2650 if (static_key_false(&preempt_notifier_key))
2651 __fire_sched_out_preempt_notifiers(curr, next);
2652}
2653
6d6bc0ad 2654#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36 2655
1cde2930 2656static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2657{
2658}
2659
1cde2930 2660static inline void
e107be36
AK
2661fire_sched_out_preempt_notifiers(struct task_struct *curr,
2662 struct task_struct *next)
2663{
2664}
2665
6d6bc0ad 2666#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2667
4866cde0
NP
2668/**
2669 * prepare_task_switch - prepare to switch tasks
2670 * @rq: the runqueue preparing to switch
421cee29 2671 * @prev: the current task that is being switched out
4866cde0
NP
2672 * @next: the task we are going to switch to.
2673 *
2674 * This is called with the rq lock held and interrupts off. It must
2675 * be paired with a subsequent finish_task_switch after the context
2676 * switch.
2677 *
2678 * prepare_task_switch sets up locking and calls architecture specific
2679 * hooks.
2680 */
e107be36
AK
2681static inline void
2682prepare_task_switch(struct rq *rq, struct task_struct *prev,
2683 struct task_struct *next)
4866cde0 2684{
43148951 2685 sched_info_switch(rq, prev, next);
fe4b04fa 2686 perf_event_task_sched_out(prev, next);
e107be36 2687 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2688 prepare_lock_switch(rq, next);
2689 prepare_arch_switch(next);
2690}
2691
1da177e4
LT
2692/**
2693 * finish_task_switch - clean up after a task-switch
2694 * @prev: the thread we just switched away from.
2695 *
4866cde0
NP
2696 * finish_task_switch must be called after the context switch, paired
2697 * with a prepare_task_switch call before the context switch.
2698 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2699 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2700 *
2701 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2702 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2703 * with the lock held can cause deadlocks; see schedule() for
2704 * details.)
dfa50b60
ON
2705 *
2706 * The context switch have flipped the stack from under us and restored the
2707 * local variables which were saved when this task called schedule() in the
2708 * past. prev == current is still correct but we need to recalculate this_rq
2709 * because prev may have moved to another CPU.
1da177e4 2710 */
dfa50b60 2711static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
2712 __releases(rq->lock)
2713{
dfa50b60 2714 struct rq *rq = this_rq();
1da177e4 2715 struct mm_struct *mm = rq->prev_mm;
55a101f8 2716 long prev_state;
1da177e4 2717
609ca066
PZ
2718 /*
2719 * The previous task will have left us with a preempt_count of 2
2720 * because it left us after:
2721 *
2722 * schedule()
2723 * preempt_disable(); // 1
2724 * __schedule()
2725 * raw_spin_lock_irq(&rq->lock) // 2
2726 *
2727 * Also, see FORK_PREEMPT_COUNT.
2728 */
e2bf1c4b
PZ
2729 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2730 "corrupted preempt_count: %s/%d/0x%x\n",
2731 current->comm, current->pid, preempt_count()))
2732 preempt_count_set(FORK_PREEMPT_COUNT);
609ca066 2733
1da177e4
LT
2734 rq->prev_mm = NULL;
2735
2736 /*
2737 * A task struct has one reference for the use as "current".
c394cc9f 2738 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2739 * schedule one last time. The schedule call will never return, and
2740 * the scheduled task must drop that reference.
95913d97
PZ
2741 *
2742 * We must observe prev->state before clearing prev->on_cpu (in
2743 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2744 * running on another CPU and we could rave with its RUNNING -> DEAD
2745 * transition, resulting in a double drop.
1da177e4 2746 */
55a101f8 2747 prev_state = prev->state;
bf9fae9f 2748 vtime_task_switch(prev);
a8d757ef 2749 perf_event_task_sched_in(prev, current);
4866cde0 2750 finish_lock_switch(rq, prev);
01f23e16 2751 finish_arch_post_lock_switch();
e8fa1362 2752
e107be36 2753 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2754 if (mm)
2755 mmdrop(mm);
c394cc9f 2756 if (unlikely(prev_state == TASK_DEAD)) {
e6c390f2
DF
2757 if (prev->sched_class->task_dead)
2758 prev->sched_class->task_dead(prev);
2759
c6fd91f0 2760 /*
2761 * Remove function-return probe instances associated with this
2762 * task and put them back on the free list.
9761eea8 2763 */
c6fd91f0 2764 kprobe_flush_task(prev);
68f24b08
AL
2765
2766 /* Task is done with its stack. */
2767 put_task_stack(prev);
2768
1da177e4 2769 put_task_struct(prev);
c6fd91f0 2770 }
99e5ada9 2771
de734f89 2772 tick_nohz_task_switch();
dfa50b60 2773 return rq;
1da177e4
LT
2774}
2775
3f029d3c
GH
2776#ifdef CONFIG_SMP
2777
3f029d3c 2778/* rq->lock is NOT held, but preemption is disabled */
e3fca9e7 2779static void __balance_callback(struct rq *rq)
3f029d3c 2780{
e3fca9e7
PZ
2781 struct callback_head *head, *next;
2782 void (*func)(struct rq *rq);
2783 unsigned long flags;
3f029d3c 2784
e3fca9e7
PZ
2785 raw_spin_lock_irqsave(&rq->lock, flags);
2786 head = rq->balance_callback;
2787 rq->balance_callback = NULL;
2788 while (head) {
2789 func = (void (*)(struct rq *))head->func;
2790 next = head->next;
2791 head->next = NULL;
2792 head = next;
3f029d3c 2793
e3fca9e7 2794 func(rq);
3f029d3c 2795 }
e3fca9e7
PZ
2796 raw_spin_unlock_irqrestore(&rq->lock, flags);
2797}
2798
2799static inline void balance_callback(struct rq *rq)
2800{
2801 if (unlikely(rq->balance_callback))
2802 __balance_callback(rq);
3f029d3c
GH
2803}
2804
2805#else
da19ab51 2806
e3fca9e7 2807static inline void balance_callback(struct rq *rq)
3f029d3c 2808{
1da177e4
LT
2809}
2810
3f029d3c
GH
2811#endif
2812
1da177e4
LT
2813/**
2814 * schedule_tail - first thing a freshly forked thread must call.
2815 * @prev: the thread we just switched away from.
2816 */
722a9f92 2817asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
2818 __releases(rq->lock)
2819{
1a43a14a 2820 struct rq *rq;
da19ab51 2821
609ca066
PZ
2822 /*
2823 * New tasks start with FORK_PREEMPT_COUNT, see there and
2824 * finish_task_switch() for details.
2825 *
2826 * finish_task_switch() will drop rq->lock() and lower preempt_count
2827 * and the preempt_enable() will end up enabling preemption (on
2828 * PREEMPT_COUNT kernels).
2829 */
2830
dfa50b60 2831 rq = finish_task_switch(prev);
e3fca9e7 2832 balance_callback(rq);
1a43a14a 2833 preempt_enable();
70b97a7f 2834
1da177e4 2835 if (current->set_child_tid)
b488893a 2836 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2837}
2838
2839/*
dfa50b60 2840 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 2841 */
04936948 2842static __always_inline struct rq *
70b97a7f 2843context_switch(struct rq *rq, struct task_struct *prev,
d8ac8971 2844 struct task_struct *next, struct rq_flags *rf)
1da177e4 2845{
dd41f596 2846 struct mm_struct *mm, *oldmm;
1da177e4 2847
e107be36 2848 prepare_task_switch(rq, prev, next);
fe4b04fa 2849
dd41f596
IM
2850 mm = next->mm;
2851 oldmm = prev->active_mm;
9226d125
ZA
2852 /*
2853 * For paravirt, this is coupled with an exit in switch_to to
2854 * combine the page table reload and the switch backend into
2855 * one hypercall.
2856 */
224101ed 2857 arch_start_context_switch(prev);
9226d125 2858
31915ab4 2859 if (!mm) {
1da177e4 2860 next->active_mm = oldmm;
f1f10076 2861 mmgrab(oldmm);
1da177e4
LT
2862 enter_lazy_tlb(oldmm, next);
2863 } else
f98db601 2864 switch_mm_irqs_off(oldmm, mm, next);
1da177e4 2865
31915ab4 2866 if (!prev->mm) {
1da177e4 2867 prev->active_mm = NULL;
1da177e4
LT
2868 rq->prev_mm = oldmm;
2869 }
92509b73 2870
cb42c9a3 2871 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
92509b73 2872
3a5f5e48
IM
2873 /*
2874 * Since the runqueue lock will be released by the next
2875 * task (which is an invalid locking op but in the case
2876 * of the scheduler it's an obvious special-case), so we
2877 * do an early lockdep release here:
2878 */
d8ac8971 2879 rq_unpin_lock(rq, rf);
8a25d5de 2880 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
2881
2882 /* Here we just switch the register state and the stack. */
2883 switch_to(prev, next, prev);
dd41f596 2884 barrier();
dfa50b60
ON
2885
2886 return finish_task_switch(prev);
1da177e4
LT
2887}
2888
2889/*
1c3e8264 2890 * nr_running and nr_context_switches:
1da177e4
LT
2891 *
2892 * externally visible scheduler statistics: current number of runnable
1c3e8264 2893 * threads, total number of context switches performed since bootup.
1da177e4
LT
2894 */
2895unsigned long nr_running(void)
2896{
2897 unsigned long i, sum = 0;
2898
2899 for_each_online_cpu(i)
2900 sum += cpu_rq(i)->nr_running;
2901
2902 return sum;
f711f609 2903}
1da177e4 2904
2ee507c4 2905/*
d1ccc66d 2906 * Check if only the current task is running on the CPU.
00cc1633
DD
2907 *
2908 * Caution: this function does not check that the caller has disabled
2909 * preemption, thus the result might have a time-of-check-to-time-of-use
2910 * race. The caller is responsible to use it correctly, for example:
2911 *
2912 * - from a non-preemptable section (of course)
2913 *
2914 * - from a thread that is bound to a single CPU
2915 *
2916 * - in a loop with very short iterations (e.g. a polling loop)
2ee507c4
TC
2917 */
2918bool single_task_running(void)
2919{
00cc1633 2920 return raw_rq()->nr_running == 1;
2ee507c4
TC
2921}
2922EXPORT_SYMBOL(single_task_running);
2923
1da177e4 2924unsigned long long nr_context_switches(void)
46cb4b7c 2925{
cc94abfc
SR
2926 int i;
2927 unsigned long long sum = 0;
46cb4b7c 2928
0a945022 2929 for_each_possible_cpu(i)
1da177e4 2930 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2931
1da177e4
LT
2932 return sum;
2933}
483b4ee6 2934
e33a9bba
TH
2935/*
2936 * IO-wait accounting, and how its mostly bollocks (on SMP).
2937 *
2938 * The idea behind IO-wait account is to account the idle time that we could
2939 * have spend running if it were not for IO. That is, if we were to improve the
2940 * storage performance, we'd have a proportional reduction in IO-wait time.
2941 *
2942 * This all works nicely on UP, where, when a task blocks on IO, we account
2943 * idle time as IO-wait, because if the storage were faster, it could've been
2944 * running and we'd not be idle.
2945 *
2946 * This has been extended to SMP, by doing the same for each CPU. This however
2947 * is broken.
2948 *
2949 * Imagine for instance the case where two tasks block on one CPU, only the one
2950 * CPU will have IO-wait accounted, while the other has regular idle. Even
2951 * though, if the storage were faster, both could've ran at the same time,
2952 * utilising both CPUs.
2953 *
2954 * This means, that when looking globally, the current IO-wait accounting on
2955 * SMP is a lower bound, by reason of under accounting.
2956 *
2957 * Worse, since the numbers are provided per CPU, they are sometimes
2958 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
2959 * associated with any one particular CPU, it can wake to another CPU than it
2960 * blocked on. This means the per CPU IO-wait number is meaningless.
2961 *
2962 * Task CPU affinities can make all that even more 'interesting'.
2963 */
2964
1da177e4
LT
2965unsigned long nr_iowait(void)
2966{
2967 unsigned long i, sum = 0;
483b4ee6 2968
0a945022 2969 for_each_possible_cpu(i)
1da177e4 2970 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2971
1da177e4
LT
2972 return sum;
2973}
483b4ee6 2974
e33a9bba
TH
2975/*
2976 * Consumers of these two interfaces, like for example the cpufreq menu
2977 * governor are using nonsensical data. Boosting frequency for a CPU that has
2978 * IO-wait which might not even end up running the task when it does become
2979 * runnable.
2980 */
2981
8c215bd3 2982unsigned long nr_iowait_cpu(int cpu)
69d25870 2983{
8c215bd3 2984 struct rq *this = cpu_rq(cpu);
69d25870
AV
2985 return atomic_read(&this->nr_iowait);
2986}
46cb4b7c 2987
372ba8cb
MG
2988void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2989{
3289bdb4
PZ
2990 struct rq *rq = this_rq();
2991 *nr_waiters = atomic_read(&rq->nr_iowait);
2992 *load = rq->load.weight;
372ba8cb
MG
2993}
2994
dd41f596 2995#ifdef CONFIG_SMP
8a0be9ef 2996
46cb4b7c 2997/*
38022906
PZ
2998 * sched_exec - execve() is a valuable balancing opportunity, because at
2999 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 3000 */
38022906 3001void sched_exec(void)
46cb4b7c 3002{
38022906 3003 struct task_struct *p = current;
1da177e4 3004 unsigned long flags;
0017d735 3005 int dest_cpu;
46cb4b7c 3006
8f42ced9 3007 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 3008 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
3009 if (dest_cpu == smp_processor_id())
3010 goto unlock;
38022906 3011
8f42ced9 3012 if (likely(cpu_active(dest_cpu))) {
969c7921 3013 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 3014
8f42ced9
PZ
3015 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3016 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
3017 return;
3018 }
0017d735 3019unlock:
8f42ced9 3020 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 3021}
dd41f596 3022
1da177e4
LT
3023#endif
3024
1da177e4 3025DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 3026DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
3027
3028EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 3029EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 3030
6075620b
GG
3031/*
3032 * The function fair_sched_class.update_curr accesses the struct curr
3033 * and its field curr->exec_start; when called from task_sched_runtime(),
3034 * we observe a high rate of cache misses in practice.
3035 * Prefetching this data results in improved performance.
3036 */
3037static inline void prefetch_curr_exec_start(struct task_struct *p)
3038{
3039#ifdef CONFIG_FAIR_GROUP_SCHED
3040 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3041#else
3042 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3043#endif
3044 prefetch(curr);
3045 prefetch(&curr->exec_start);
3046}
3047
c5f8d995
HS
3048/*
3049 * Return accounted runtime for the task.
3050 * In case the task is currently running, return the runtime plus current's
3051 * pending runtime that have not been accounted yet.
3052 */
3053unsigned long long task_sched_runtime(struct task_struct *p)
3054{
eb580751 3055 struct rq_flags rf;
c5f8d995 3056 struct rq *rq;
6e998916 3057 u64 ns;
c5f8d995 3058
911b2898
PZ
3059#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3060 /*
3061 * 64-bit doesn't need locks to atomically read a 64bit value.
3062 * So we have a optimization chance when the task's delta_exec is 0.
3063 * Reading ->on_cpu is racy, but this is ok.
3064 *
d1ccc66d
IM
3065 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3066 * If we race with it entering CPU, unaccounted time is 0. This is
911b2898 3067 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
3068 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3069 * been accounted, so we're correct here as well.
911b2898 3070 */
da0c1e65 3071 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
3072 return p->se.sum_exec_runtime;
3073#endif
3074
eb580751 3075 rq = task_rq_lock(p, &rf);
6e998916
SG
3076 /*
3077 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3078 * project cycles that may never be accounted to this
3079 * thread, breaking clock_gettime().
3080 */
3081 if (task_current(rq, p) && task_on_rq_queued(p)) {
6075620b 3082 prefetch_curr_exec_start(p);
6e998916
SG
3083 update_rq_clock(rq);
3084 p->sched_class->update_curr(rq);
3085 }
3086 ns = p->se.sum_exec_runtime;
eb580751 3087 task_rq_unlock(rq, p, &rf);
c5f8d995
HS
3088
3089 return ns;
3090}
48f24c4d 3091
7835b98b
CL
3092/*
3093 * This function gets called by the timer code, with HZ frequency.
3094 * We call it with interrupts disabled.
7835b98b
CL
3095 */
3096void scheduler_tick(void)
3097{
7835b98b
CL
3098 int cpu = smp_processor_id();
3099 struct rq *rq = cpu_rq(cpu);
dd41f596 3100 struct task_struct *curr = rq->curr;
8a8c69c3 3101 struct rq_flags rf;
3e51f33f
PZ
3102
3103 sched_clock_tick();
dd41f596 3104
8a8c69c3
PZ
3105 rq_lock(rq, &rf);
3106
3e51f33f 3107 update_rq_clock(rq);
fa85ae24 3108 curr->sched_class->task_tick(rq, curr, 0);
cee1afce 3109 cpu_load_update_active(rq);
3289bdb4 3110 calc_global_load_tick(rq);
8a8c69c3
PZ
3111
3112 rq_unlock(rq, &rf);
7835b98b 3113
e9d2b064 3114 perf_event_task_tick();
e220d2dc 3115
e418e1c2 3116#ifdef CONFIG_SMP
6eb57e0d 3117 rq->idle_balance = idle_cpu(cpu);
7caff66f 3118 trigger_load_balance(rq);
e418e1c2 3119#endif
265f22a9 3120 rq_last_tick_reset(rq);
1da177e4
LT
3121}
3122
265f22a9
FW
3123#ifdef CONFIG_NO_HZ_FULL
3124/**
3125 * scheduler_tick_max_deferment
3126 *
3127 * Keep at least one tick per second when a single
3128 * active task is running because the scheduler doesn't
3129 * yet completely support full dynticks environment.
3130 *
3131 * This makes sure that uptime, CFS vruntime, load
3132 * balancing, etc... continue to move forward, even
3133 * with a very low granularity.
e69f6186
YB
3134 *
3135 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
3136 */
3137u64 scheduler_tick_max_deferment(void)
3138{
3139 struct rq *rq = this_rq();
316c1608 3140 unsigned long next, now = READ_ONCE(jiffies);
265f22a9
FW
3141
3142 next = rq->last_sched_tick + HZ;
3143
3144 if (time_before_eq(next, now))
3145 return 0;
3146
8fe8ff09 3147 return jiffies_to_nsecs(next - now);
1da177e4 3148}
265f22a9 3149#endif
1da177e4 3150
7e49fcce
SR
3151#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3152 defined(CONFIG_PREEMPT_TRACER))
47252cfb
SR
3153/*
3154 * If the value passed in is equal to the current preempt count
3155 * then we just disabled preemption. Start timing the latency.
3156 */
3157static inline void preempt_latency_start(int val)
3158{
3159 if (preempt_count() == val) {
3160 unsigned long ip = get_lock_parent_ip();
3161#ifdef CONFIG_DEBUG_PREEMPT
3162 current->preempt_disable_ip = ip;
3163#endif
3164 trace_preempt_off(CALLER_ADDR0, ip);
3165 }
3166}
7e49fcce 3167
edafe3a5 3168void preempt_count_add(int val)
1da177e4 3169{
6cd8a4bb 3170#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3171 /*
3172 * Underflow?
3173 */
9a11b49a
IM
3174 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3175 return;
6cd8a4bb 3176#endif
bdb43806 3177 __preempt_count_add(val);
6cd8a4bb 3178#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3179 /*
3180 * Spinlock count overflowing soon?
3181 */
33859f7f
MOS
3182 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3183 PREEMPT_MASK - 10);
6cd8a4bb 3184#endif
47252cfb 3185 preempt_latency_start(val);
1da177e4 3186}
bdb43806 3187EXPORT_SYMBOL(preempt_count_add);
edafe3a5 3188NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 3189
47252cfb
SR
3190/*
3191 * If the value passed in equals to the current preempt count
3192 * then we just enabled preemption. Stop timing the latency.
3193 */
3194static inline void preempt_latency_stop(int val)
3195{
3196 if (preempt_count() == val)
3197 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3198}
3199
edafe3a5 3200void preempt_count_sub(int val)
1da177e4 3201{
6cd8a4bb 3202#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3203 /*
3204 * Underflow?
3205 */
01e3eb82 3206 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3207 return;
1da177e4
LT
3208 /*
3209 * Is the spinlock portion underflowing?
3210 */
9a11b49a
IM
3211 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3212 !(preempt_count() & PREEMPT_MASK)))
3213 return;
6cd8a4bb 3214#endif
9a11b49a 3215
47252cfb 3216 preempt_latency_stop(val);
bdb43806 3217 __preempt_count_sub(val);
1da177e4 3218}
bdb43806 3219EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 3220NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4 3221
47252cfb
SR
3222#else
3223static inline void preempt_latency_start(int val) { }
3224static inline void preempt_latency_stop(int val) { }
1da177e4
LT
3225#endif
3226
59ddbcb2
IM
3227static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3228{
3229#ifdef CONFIG_DEBUG_PREEMPT
3230 return p->preempt_disable_ip;
3231#else
3232 return 0;
3233#endif
3234}
3235
1da177e4 3236/*
dd41f596 3237 * Print scheduling while atomic bug:
1da177e4 3238 */
dd41f596 3239static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3240{
d1c6d149
VN
3241 /* Save this before calling printk(), since that will clobber it */
3242 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3243
664dfa65
DJ
3244 if (oops_in_progress)
3245 return;
3246
3df0fc5b
PZ
3247 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3248 prev->comm, prev->pid, preempt_count());
838225b4 3249
dd41f596 3250 debug_show_held_locks(prev);
e21f5b15 3251 print_modules();
dd41f596
IM
3252 if (irqs_disabled())
3253 print_irqtrace_events(prev);
d1c6d149
VN
3254 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3255 && in_atomic_preempt_off()) {
8f47b187 3256 pr_err("Preemption disabled at:");
d1c6d149 3257 print_ip_sym(preempt_disable_ip);
8f47b187
TG
3258 pr_cont("\n");
3259 }
748c7201
DBO
3260 if (panic_on_warn)
3261 panic("scheduling while atomic\n");
3262
6135fc1e 3263 dump_stack();
373d4d09 3264 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 3265}
1da177e4 3266
dd41f596
IM
3267/*
3268 * Various schedule()-time debugging checks and statistics:
3269 */
3270static inline void schedule_debug(struct task_struct *prev)
3271{
0d9e2632 3272#ifdef CONFIG_SCHED_STACK_END_CHECK
29d64551
JH
3273 if (task_stack_end_corrupted(prev))
3274 panic("corrupted stack end detected inside scheduler\n");
0d9e2632 3275#endif
b99def8b 3276
1dc0fffc 3277 if (unlikely(in_atomic_preempt_off())) {
dd41f596 3278 __schedule_bug(prev);
1dc0fffc
PZ
3279 preempt_count_set(PREEMPT_DISABLED);
3280 }
b3fbab05 3281 rcu_sleep_check();
dd41f596 3282
1da177e4
LT
3283 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3284
ae92882e 3285 schedstat_inc(this_rq()->sched_count);
dd41f596
IM
3286}
3287
3288/*
3289 * Pick up the highest-prio task:
3290 */
3291static inline struct task_struct *
d8ac8971 3292pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
dd41f596 3293{
49ee5768 3294 const struct sched_class *class;
dd41f596 3295 struct task_struct *p;
1da177e4
LT
3296
3297 /*
0ba87bb2
PZ
3298 * Optimization: we know that if all tasks are in the fair class we can
3299 * call that function directly, but only if the @prev task wasn't of a
3300 * higher scheduling class, because otherwise those loose the
3301 * opportunity to pull in more work from other CPUs.
1da177e4 3302 */
0ba87bb2
PZ
3303 if (likely((prev->sched_class == &idle_sched_class ||
3304 prev->sched_class == &fair_sched_class) &&
3305 rq->nr_running == rq->cfs.h_nr_running)) {
3306
d8ac8971 3307 p = fair_sched_class.pick_next_task(rq, prev, rf);
6ccdc84b
PZ
3308 if (unlikely(p == RETRY_TASK))
3309 goto again;
3310
d1ccc66d 3311 /* Assumes fair_sched_class->next == idle_sched_class */
6ccdc84b 3312 if (unlikely(!p))
d8ac8971 3313 p = idle_sched_class.pick_next_task(rq, prev, rf);
6ccdc84b
PZ
3314
3315 return p;
1da177e4
LT
3316 }
3317
37e117c0 3318again:
34f971f6 3319 for_each_class(class) {
d8ac8971 3320 p = class->pick_next_task(rq, prev, rf);
37e117c0
PZ
3321 if (p) {
3322 if (unlikely(p == RETRY_TASK))
3323 goto again;
dd41f596 3324 return p;
37e117c0 3325 }
dd41f596 3326 }
34f971f6 3327
d1ccc66d
IM
3328 /* The idle class should always have a runnable task: */
3329 BUG();
dd41f596 3330}
1da177e4 3331
dd41f596 3332/*
c259e01a 3333 * __schedule() is the main scheduler function.
edde96ea
PE
3334 *
3335 * The main means of driving the scheduler and thus entering this function are:
3336 *
3337 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3338 *
3339 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3340 * paths. For example, see arch/x86/entry_64.S.
3341 *
3342 * To drive preemption between tasks, the scheduler sets the flag in timer
3343 * interrupt handler scheduler_tick().
3344 *
3345 * 3. Wakeups don't really cause entry into schedule(). They add a
3346 * task to the run-queue and that's it.
3347 *
3348 * Now, if the new task added to the run-queue preempts the current
3349 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3350 * called on the nearest possible occasion:
3351 *
3352 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3353 *
3354 * - in syscall or exception context, at the next outmost
3355 * preempt_enable(). (this might be as soon as the wake_up()'s
3356 * spin_unlock()!)
3357 *
3358 * - in IRQ context, return from interrupt-handler to
3359 * preemptible context
3360 *
3361 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3362 * then at the next:
3363 *
3364 * - cond_resched() call
3365 * - explicit schedule() call
3366 * - return from syscall or exception to user-space
3367 * - return from interrupt-handler to user-space
bfd9b2b5 3368 *
b30f0e3f 3369 * WARNING: must be called with preemption disabled!
dd41f596 3370 */
499d7955 3371static void __sched notrace __schedule(bool preempt)
dd41f596
IM
3372{
3373 struct task_struct *prev, *next;
67ca7bde 3374 unsigned long *switch_count;
d8ac8971 3375 struct rq_flags rf;
dd41f596 3376 struct rq *rq;
31656519 3377 int cpu;
dd41f596 3378
dd41f596
IM
3379 cpu = smp_processor_id();
3380 rq = cpu_rq(cpu);
dd41f596 3381 prev = rq->curr;
dd41f596 3382
dd41f596 3383 schedule_debug(prev);
1da177e4 3384
31656519 3385 if (sched_feat(HRTICK))
f333fdc9 3386 hrtick_clear(rq);
8f4d37ec 3387
46a5d164 3388 local_irq_disable();
bcbfdd01 3389 rcu_note_context_switch(preempt);
46a5d164 3390
e0acd0a6
ON
3391 /*
3392 * Make sure that signal_pending_state()->signal_pending() below
3393 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3394 * done by the caller to avoid the race with signal_wake_up().
3395 */
3396 smp_mb__before_spinlock();
8a8c69c3 3397 rq_lock(rq, &rf);
1da177e4 3398
d1ccc66d
IM
3399 /* Promote REQ to ACT */
3400 rq->clock_update_flags <<= 1;
bce4dc80 3401 update_rq_clock(rq);
9edfbfed 3402
246d86b5 3403 switch_count = &prev->nivcsw;
fc13aeba 3404 if (!preempt && prev->state) {
21aa9af0 3405 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 3406 prev->state = TASK_RUNNING;
21aa9af0 3407 } else {
bce4dc80 3408 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
2acca55e
PZ
3409 prev->on_rq = 0;
3410
e33a9bba
TH
3411 if (prev->in_iowait) {
3412 atomic_inc(&rq->nr_iowait);
3413 delayacct_blkio_start();
3414 }
3415
21aa9af0 3416 /*
2acca55e
PZ
3417 * If a worker went to sleep, notify and ask workqueue
3418 * whether it wants to wake up a task to maintain
3419 * concurrency.
21aa9af0
TH
3420 */
3421 if (prev->flags & PF_WQ_WORKER) {
3422 struct task_struct *to_wakeup;
3423
9b7f6597 3424 to_wakeup = wq_worker_sleeping(prev);
21aa9af0 3425 if (to_wakeup)
d8ac8971 3426 try_to_wake_up_local(to_wakeup, &rf);
21aa9af0 3427 }
21aa9af0 3428 }
dd41f596 3429 switch_count = &prev->nvcsw;
1da177e4
LT
3430 }
3431
d8ac8971 3432 next = pick_next_task(rq, prev, &rf);
f26f9aff 3433 clear_tsk_need_resched(prev);
f27dde8d 3434 clear_preempt_need_resched();
1da177e4 3435
1da177e4 3436 if (likely(prev != next)) {
1da177e4
LT
3437 rq->nr_switches++;
3438 rq->curr = next;
3439 ++*switch_count;
3440
c73464b1 3441 trace_sched_switch(preempt, prev, next);
d1ccc66d
IM
3442
3443 /* Also unlocks the rq: */
3444 rq = context_switch(rq, prev, next, &rf);
cbce1a68 3445 } else {
cb42c9a3 3446 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
8a8c69c3 3447 rq_unlock_irq(rq, &rf);
cbce1a68 3448 }
1da177e4 3449
e3fca9e7 3450 balance_callback(rq);
1da177e4 3451}
c259e01a 3452
9af6528e
PZ
3453void __noreturn do_task_dead(void)
3454{
3455 /*
3456 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
3457 * when the following two conditions become true.
3458 * - There is race condition of mmap_sem (It is acquired by
3459 * exit_mm()), and
3460 * - SMI occurs before setting TASK_RUNINNG.
3461 * (or hypervisor of virtual machine switches to other guest)
3462 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD
3463 *
3464 * To avoid it, we have to wait for releasing tsk->pi_lock which
3465 * is held by try_to_wake_up()
3466 */
3467 smp_mb();
3468 raw_spin_unlock_wait(&current->pi_lock);
3469
d1ccc66d 3470 /* Causes final put_task_struct in finish_task_switch(): */
9af6528e 3471 __set_current_state(TASK_DEAD);
d1ccc66d
IM
3472
3473 /* Tell freezer to ignore us: */
3474 current->flags |= PF_NOFREEZE;
3475
9af6528e
PZ
3476 __schedule(false);
3477 BUG();
d1ccc66d
IM
3478
3479 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
9af6528e 3480 for (;;)
d1ccc66d 3481 cpu_relax();
9af6528e
PZ
3482}
3483
9c40cef2
TG
3484static inline void sched_submit_work(struct task_struct *tsk)
3485{
3c7d5184 3486 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
3487 return;
3488 /*
3489 * If we are going to sleep and we have plugged IO queued,
3490 * make sure to submit it to avoid deadlocks.
3491 */
3492 if (blk_needs_flush_plug(tsk))
3493 blk_schedule_flush_plug(tsk);
3494}
3495
722a9f92 3496asmlinkage __visible void __sched schedule(void)
c259e01a 3497{
9c40cef2
TG
3498 struct task_struct *tsk = current;
3499
3500 sched_submit_work(tsk);
bfd9b2b5 3501 do {
b30f0e3f 3502 preempt_disable();
fc13aeba 3503 __schedule(false);
b30f0e3f 3504 sched_preempt_enable_no_resched();
bfd9b2b5 3505 } while (need_resched());
c259e01a 3506}
1da177e4
LT
3507EXPORT_SYMBOL(schedule);
3508
8663effb
SRV
3509/*
3510 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
3511 * state (have scheduled out non-voluntarily) by making sure that all
3512 * tasks have either left the run queue or have gone into user space.
3513 * As idle tasks do not do either, they must not ever be preempted
3514 * (schedule out non-voluntarily).
3515 *
3516 * schedule_idle() is similar to schedule_preempt_disable() except that it
3517 * never enables preemption because it does not call sched_submit_work().
3518 */
3519void __sched schedule_idle(void)
3520{
3521 /*
3522 * As this skips calling sched_submit_work(), which the idle task does
3523 * regardless because that function is a nop when the task is in a
3524 * TASK_RUNNING state, make sure this isn't used someplace that the
3525 * current task can be in any other state. Note, idle is always in the
3526 * TASK_RUNNING state.
3527 */
3528 WARN_ON_ONCE(current->state);
3529 do {
3530 __schedule(false);
3531 } while (need_resched());
3532}
3533
91d1aa43 3534#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 3535asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
3536{
3537 /*
3538 * If we come here after a random call to set_need_resched(),
3539 * or we have been woken up remotely but the IPI has not yet arrived,
3540 * we haven't yet exited the RCU idle mode. Do it here manually until
3541 * we find a better solution.
7cc78f8f
AL
3542 *
3543 * NB: There are buggy callers of this function. Ideally we
c467ea76 3544 * should warn if prev_state != CONTEXT_USER, but that will trigger
7cc78f8f 3545 * too frequently to make sense yet.
20ab65e3 3546 */
7cc78f8f 3547 enum ctx_state prev_state = exception_enter();
20ab65e3 3548 schedule();
7cc78f8f 3549 exception_exit(prev_state);
20ab65e3
FW
3550}
3551#endif
3552
c5491ea7
TG
3553/**
3554 * schedule_preempt_disabled - called with preemption disabled
3555 *
3556 * Returns with preemption disabled. Note: preempt_count must be 1
3557 */
3558void __sched schedule_preempt_disabled(void)
3559{
ba74c144 3560 sched_preempt_enable_no_resched();
c5491ea7
TG
3561 schedule();
3562 preempt_disable();
3563}
3564
06b1f808 3565static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
3566{
3567 do {
47252cfb
SR
3568 /*
3569 * Because the function tracer can trace preempt_count_sub()
3570 * and it also uses preempt_enable/disable_notrace(), if
3571 * NEED_RESCHED is set, the preempt_enable_notrace() called
3572 * by the function tracer will call this function again and
3573 * cause infinite recursion.
3574 *
3575 * Preemption must be disabled here before the function
3576 * tracer can trace. Break up preempt_disable() into two
3577 * calls. One to disable preemption without fear of being
3578 * traced. The other to still record the preemption latency,
3579 * which can also be traced by the function tracer.
3580 */
499d7955 3581 preempt_disable_notrace();
47252cfb 3582 preempt_latency_start(1);
fc13aeba 3583 __schedule(true);
47252cfb 3584 preempt_latency_stop(1);
499d7955 3585 preempt_enable_no_resched_notrace();
a18b5d01
FW
3586
3587 /*
3588 * Check again in case we missed a preemption opportunity
3589 * between schedule and now.
3590 */
a18b5d01
FW
3591 } while (need_resched());
3592}
3593
1da177e4
LT
3594#ifdef CONFIG_PREEMPT
3595/*
2ed6e34f 3596 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3597 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3598 * occur there and call schedule directly.
3599 */
722a9f92 3600asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 3601{
1da177e4
LT
3602 /*
3603 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3604 * we do not want to preempt the current task. Just return..
1da177e4 3605 */
fbb00b56 3606 if (likely(!preemptible()))
1da177e4
LT
3607 return;
3608
a18b5d01 3609 preempt_schedule_common();
1da177e4 3610}
376e2424 3611NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 3612EXPORT_SYMBOL(preempt_schedule);
009f60e2 3613
009f60e2 3614/**
4eaca0a8 3615 * preempt_schedule_notrace - preempt_schedule called by tracing
009f60e2
ON
3616 *
3617 * The tracing infrastructure uses preempt_enable_notrace to prevent
3618 * recursion and tracing preempt enabling caused by the tracing
3619 * infrastructure itself. But as tracing can happen in areas coming
3620 * from userspace or just about to enter userspace, a preempt enable
3621 * can occur before user_exit() is called. This will cause the scheduler
3622 * to be called when the system is still in usermode.
3623 *
3624 * To prevent this, the preempt_enable_notrace will use this function
3625 * instead of preempt_schedule() to exit user context if needed before
3626 * calling the scheduler.
3627 */
4eaca0a8 3628asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
009f60e2
ON
3629{
3630 enum ctx_state prev_ctx;
3631
3632 if (likely(!preemptible()))
3633 return;
3634
3635 do {
47252cfb
SR
3636 /*
3637 * Because the function tracer can trace preempt_count_sub()
3638 * and it also uses preempt_enable/disable_notrace(), if
3639 * NEED_RESCHED is set, the preempt_enable_notrace() called
3640 * by the function tracer will call this function again and
3641 * cause infinite recursion.
3642 *
3643 * Preemption must be disabled here before the function
3644 * tracer can trace. Break up preempt_disable() into two
3645 * calls. One to disable preemption without fear of being
3646 * traced. The other to still record the preemption latency,
3647 * which can also be traced by the function tracer.
3648 */
3d8f74dd 3649 preempt_disable_notrace();
47252cfb 3650 preempt_latency_start(1);
009f60e2
ON
3651 /*
3652 * Needs preempt disabled in case user_exit() is traced
3653 * and the tracer calls preempt_enable_notrace() causing
3654 * an infinite recursion.
3655 */
3656 prev_ctx = exception_enter();
fc13aeba 3657 __schedule(true);
009f60e2
ON
3658 exception_exit(prev_ctx);
3659
47252cfb 3660 preempt_latency_stop(1);
3d8f74dd 3661 preempt_enable_no_resched_notrace();
009f60e2
ON
3662 } while (need_resched());
3663}
4eaca0a8 3664EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
009f60e2 3665
32e475d7 3666#endif /* CONFIG_PREEMPT */
1da177e4
LT
3667
3668/*
2ed6e34f 3669 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3670 * off of irq context.
3671 * Note, that this is called and return with irqs disabled. This will
3672 * protect us against recursive calling from irq.
3673 */
722a9f92 3674asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 3675{
b22366cd 3676 enum ctx_state prev_state;
6478d880 3677
2ed6e34f 3678 /* Catch callers which need to be fixed */
f27dde8d 3679 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 3680
b22366cd
FW
3681 prev_state = exception_enter();
3682
3a5c359a 3683 do {
3d8f74dd 3684 preempt_disable();
3a5c359a 3685 local_irq_enable();
fc13aeba 3686 __schedule(true);
3a5c359a 3687 local_irq_disable();
3d8f74dd 3688 sched_preempt_enable_no_resched();
5ed0cec0 3689 } while (need_resched());
b22366cd
FW
3690
3691 exception_exit(prev_state);
1da177e4
LT
3692}
3693
63859d4f 3694int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3695 void *key)
1da177e4 3696{
63859d4f 3697 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3698}
1da177e4
LT
3699EXPORT_SYMBOL(default_wake_function);
3700
b29739f9
IM
3701#ifdef CONFIG_RT_MUTEXES
3702
acd58620
PZ
3703static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
3704{
3705 if (pi_task)
3706 prio = min(prio, pi_task->prio);
3707
3708 return prio;
3709}
3710
3711static inline int rt_effective_prio(struct task_struct *p, int prio)
3712{
3713 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3714
3715 return __rt_effective_prio(pi_task, prio);
3716}
3717
b29739f9
IM
3718/*
3719 * rt_mutex_setprio - set the current priority of a task
acd58620
PZ
3720 * @p: task to boost
3721 * @pi_task: donor task
b29739f9
IM
3722 *
3723 * This function changes the 'effective' priority of a task. It does
3724 * not touch ->normal_prio like __setscheduler().
3725 *
c365c292
TG
3726 * Used by the rt_mutex code to implement priority inheritance
3727 * logic. Call site only calls if the priority of the task changed.
b29739f9 3728 */
acd58620 3729void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
b29739f9 3730{
acd58620 3731 int prio, oldprio, queued, running, queue_flag =
7a57f32a 3732 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
83ab0aa0 3733 const struct sched_class *prev_class;
eb580751
PZ
3734 struct rq_flags rf;
3735 struct rq *rq;
b29739f9 3736
acd58620
PZ
3737 /* XXX used to be waiter->prio, not waiter->task->prio */
3738 prio = __rt_effective_prio(pi_task, p->normal_prio);
3739
3740 /*
3741 * If nothing changed; bail early.
3742 */
3743 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
3744 return;
b29739f9 3745
eb580751 3746 rq = __task_rq_lock(p, &rf);
80f5c1b8 3747 update_rq_clock(rq);
acd58620
PZ
3748 /*
3749 * Set under pi_lock && rq->lock, such that the value can be used under
3750 * either lock.
3751 *
3752 * Note that there is loads of tricky to make this pointer cache work
3753 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
3754 * ensure a task is de-boosted (pi_task is set to NULL) before the
3755 * task is allowed to run again (and can exit). This ensures the pointer
3756 * points to a blocked task -- which guaratees the task is present.
3757 */
3758 p->pi_top_task = pi_task;
3759
3760 /*
3761 * For FIFO/RR we only need to set prio, if that matches we're done.
3762 */
3763 if (prio == p->prio && !dl_prio(prio))
3764 goto out_unlock;
b29739f9 3765
1c4dd99b
TG
3766 /*
3767 * Idle task boosting is a nono in general. There is one
3768 * exception, when PREEMPT_RT and NOHZ is active:
3769 *
3770 * The idle task calls get_next_timer_interrupt() and holds
3771 * the timer wheel base->lock on the CPU and another CPU wants
3772 * to access the timer (probably to cancel it). We can safely
3773 * ignore the boosting request, as the idle CPU runs this code
3774 * with interrupts disabled and will complete the lock
3775 * protected section without being interrupted. So there is no
3776 * real need to boost.
3777 */
3778 if (unlikely(p == rq->idle)) {
3779 WARN_ON(p != rq->curr);
3780 WARN_ON(p->pi_blocked_on);
3781 goto out_unlock;
3782 }
3783
b91473ff 3784 trace_sched_pi_setprio(p, pi_task);
d5f9f942 3785 oldprio = p->prio;
ff77e468
PZ
3786
3787 if (oldprio == prio)
3788 queue_flag &= ~DEQUEUE_MOVE;
3789
83ab0aa0 3790 prev_class = p->sched_class;
da0c1e65 3791 queued = task_on_rq_queued(p);
051a1d1a 3792 running = task_current(rq, p);
da0c1e65 3793 if (queued)
ff77e468 3794 dequeue_task(rq, p, queue_flag);
0e1f3483 3795 if (running)
f3cd1c4e 3796 put_prev_task(rq, p);
dd41f596 3797
2d3d891d
DF
3798 /*
3799 * Boosting condition are:
3800 * 1. -rt task is running and holds mutex A
3801 * --> -dl task blocks on mutex A
3802 *
3803 * 2. -dl task is running and holds mutex A
3804 * --> -dl task blocks on mutex A and could preempt the
3805 * running task
3806 */
3807 if (dl_prio(prio)) {
466af29b
ON
3808 if (!dl_prio(p->normal_prio) ||
3809 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d 3810 p->dl.dl_boosted = 1;
ff77e468 3811 queue_flag |= ENQUEUE_REPLENISH;
2d3d891d
DF
3812 } else
3813 p->dl.dl_boosted = 0;
aab03e05 3814 p->sched_class = &dl_sched_class;
2d3d891d
DF
3815 } else if (rt_prio(prio)) {
3816 if (dl_prio(oldprio))
3817 p->dl.dl_boosted = 0;
3818 if (oldprio < prio)
ff77e468 3819 queue_flag |= ENQUEUE_HEAD;
dd41f596 3820 p->sched_class = &rt_sched_class;
2d3d891d
DF
3821 } else {
3822 if (dl_prio(oldprio))
3823 p->dl.dl_boosted = 0;
746db944
BS
3824 if (rt_prio(oldprio))
3825 p->rt.timeout = 0;
dd41f596 3826 p->sched_class = &fair_sched_class;
2d3d891d 3827 }
dd41f596 3828
b29739f9
IM
3829 p->prio = prio;
3830
da0c1e65 3831 if (queued)
ff77e468 3832 enqueue_task(rq, p, queue_flag);
a399d233 3833 if (running)
b2bf6c31 3834 set_curr_task(rq, p);
cb469845 3835
da7a735e 3836 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3837out_unlock:
d1ccc66d
IM
3838 /* Avoid rq from going away on us: */
3839 preempt_disable();
eb580751 3840 __task_rq_unlock(rq, &rf);
4c9a4bc8
PZ
3841
3842 balance_callback(rq);
3843 preempt_enable();
b29739f9 3844}
acd58620
PZ
3845#else
3846static inline int rt_effective_prio(struct task_struct *p, int prio)
3847{
3848 return prio;
3849}
b29739f9 3850#endif
d50dde5a 3851
36c8b586 3852void set_user_nice(struct task_struct *p, long nice)
1da177e4 3853{
49bd21ef
PZ
3854 bool queued, running;
3855 int old_prio, delta;
eb580751 3856 struct rq_flags rf;
70b97a7f 3857 struct rq *rq;
1da177e4 3858
75e45d51 3859 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
3860 return;
3861 /*
3862 * We have to be careful, if called from sys_setpriority(),
3863 * the task might be in the middle of scheduling on another CPU.
3864 */
eb580751 3865 rq = task_rq_lock(p, &rf);
2fb8d367
PZ
3866 update_rq_clock(rq);
3867
1da177e4
LT
3868 /*
3869 * The RT priorities are set via sched_setscheduler(), but we still
3870 * allow the 'normal' nice value to be set - but as expected
3871 * it wont have any effect on scheduling until the task is
aab03e05 3872 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3873 */
aab03e05 3874 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3875 p->static_prio = NICE_TO_PRIO(nice);
3876 goto out_unlock;
3877 }
da0c1e65 3878 queued = task_on_rq_queued(p);
49bd21ef 3879 running = task_current(rq, p);
da0c1e65 3880 if (queued)
7a57f32a 3881 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
49bd21ef
PZ
3882 if (running)
3883 put_prev_task(rq, p);
1da177e4 3884
1da177e4 3885 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3886 set_load_weight(p);
b29739f9
IM
3887 old_prio = p->prio;
3888 p->prio = effective_prio(p);
3889 delta = p->prio - old_prio;
1da177e4 3890
da0c1e65 3891 if (queued) {
7134b3e9 3892 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1da177e4 3893 /*
d5f9f942
AM
3894 * If the task increased its priority or is running and
3895 * lowered its priority, then reschedule its CPU:
1da177e4 3896 */
d5f9f942 3897 if (delta < 0 || (delta > 0 && task_running(rq, p)))
8875125e 3898 resched_curr(rq);
1da177e4 3899 }
49bd21ef
PZ
3900 if (running)
3901 set_curr_task(rq, p);
1da177e4 3902out_unlock:
eb580751 3903 task_rq_unlock(rq, p, &rf);
1da177e4 3904}
1da177e4
LT
3905EXPORT_SYMBOL(set_user_nice);
3906
e43379f1
MM
3907/*
3908 * can_nice - check if a task can reduce its nice value
3909 * @p: task
3910 * @nice: nice value
3911 */
36c8b586 3912int can_nice(const struct task_struct *p, const int nice)
e43379f1 3913{
d1ccc66d 3914 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
7aa2c016 3915 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 3916
78d7d407 3917 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3918 capable(CAP_SYS_NICE));
3919}
3920
1da177e4
LT
3921#ifdef __ARCH_WANT_SYS_NICE
3922
3923/*
3924 * sys_nice - change the priority of the current process.
3925 * @increment: priority increment
3926 *
3927 * sys_setpriority is a more generic, but much slower function that
3928 * does similar things.
3929 */
5add95d4 3930SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3931{
48f24c4d 3932 long nice, retval;
1da177e4
LT
3933
3934 /*
3935 * Setpriority might change our priority at the same moment.
3936 * We don't have to worry. Conceptually one call occurs first
3937 * and we have a single winner.
3938 */
a9467fa3 3939 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 3940 nice = task_nice(current) + increment;
1da177e4 3941
a9467fa3 3942 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
3943 if (increment < 0 && !can_nice(current, nice))
3944 return -EPERM;
3945
1da177e4
LT
3946 retval = security_task_setnice(current, nice);
3947 if (retval)
3948 return retval;
3949
3950 set_user_nice(current, nice);
3951 return 0;
3952}
3953
3954#endif
3955
3956/**
3957 * task_prio - return the priority value of a given task.
3958 * @p: the task in question.
3959 *
e69f6186 3960 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3961 * RT tasks are offset by -200. Normal tasks are centered
3962 * around 0, value goes from -16 to +15.
3963 */
36c8b586 3964int task_prio(const struct task_struct *p)
1da177e4
LT
3965{
3966 return p->prio - MAX_RT_PRIO;
3967}
3968
1da177e4 3969/**
d1ccc66d 3970 * idle_cpu - is a given CPU idle currently?
1da177e4 3971 * @cpu: the processor in question.
e69f6186
YB
3972 *
3973 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3974 */
3975int idle_cpu(int cpu)
3976{
908a3283
TG
3977 struct rq *rq = cpu_rq(cpu);
3978
3979 if (rq->curr != rq->idle)
3980 return 0;
3981
3982 if (rq->nr_running)
3983 return 0;
3984
3985#ifdef CONFIG_SMP
3986 if (!llist_empty(&rq->wake_list))
3987 return 0;
3988#endif
3989
3990 return 1;
1da177e4
LT
3991}
3992
1da177e4 3993/**
d1ccc66d 3994 * idle_task - return the idle task for a given CPU.
1da177e4 3995 * @cpu: the processor in question.
e69f6186 3996 *
d1ccc66d 3997 * Return: The idle task for the CPU @cpu.
1da177e4 3998 */
36c8b586 3999struct task_struct *idle_task(int cpu)
1da177e4
LT
4000{
4001 return cpu_rq(cpu)->idle;
4002}
4003
4004/**
4005 * find_process_by_pid - find a process with a matching PID value.
4006 * @pid: the pid in question.
e69f6186
YB
4007 *
4008 * The task of @pid, if found. %NULL otherwise.
1da177e4 4009 */
a9957449 4010static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4011{
228ebcbe 4012 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4013}
4014
aab03e05
DF
4015/*
4016 * This function initializes the sched_dl_entity of a newly becoming
4017 * SCHED_DEADLINE task.
4018 *
4019 * Only the static values are considered here, the actual runtime and the
4020 * absolute deadline will be properly calculated when the task is enqueued
4021 * for the first time with its new policy.
4022 */
4023static void
4024__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
4025{
4026 struct sched_dl_entity *dl_se = &p->dl;
4027
aab03e05
DF
4028 dl_se->dl_runtime = attr->sched_runtime;
4029 dl_se->dl_deadline = attr->sched_deadline;
755378a4 4030 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 4031 dl_se->flags = attr->sched_flags;
332ac17e 4032 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
aab03e05
DF
4033}
4034
c13db6b1
SR
4035/*
4036 * sched_setparam() passes in -1 for its policy, to let the functions
4037 * it calls know not to change it.
4038 */
4039#define SETPARAM_POLICY -1
4040
c365c292
TG
4041static void __setscheduler_params(struct task_struct *p,
4042 const struct sched_attr *attr)
1da177e4 4043{
d50dde5a
DF
4044 int policy = attr->sched_policy;
4045
c13db6b1 4046 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
4047 policy = p->policy;
4048
1da177e4 4049 p->policy = policy;
d50dde5a 4050
aab03e05
DF
4051 if (dl_policy(policy))
4052 __setparam_dl(p, attr);
39fd8fd2 4053 else if (fair_policy(policy))
d50dde5a
DF
4054 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
4055
39fd8fd2
PZ
4056 /*
4057 * __sched_setscheduler() ensures attr->sched_priority == 0 when
4058 * !rt_policy. Always setting this ensures that things like
4059 * getparam()/getattr() don't report silly values for !rt tasks.
4060 */
4061 p->rt_priority = attr->sched_priority;
383afd09 4062 p->normal_prio = normal_prio(p);
c365c292
TG
4063 set_load_weight(p);
4064}
39fd8fd2 4065
c365c292
TG
4066/* Actually do priority change: must hold pi & rq lock. */
4067static void __setscheduler(struct rq *rq, struct task_struct *p,
0782e63b 4068 const struct sched_attr *attr, bool keep_boost)
c365c292
TG
4069{
4070 __setscheduler_params(p, attr);
d50dde5a 4071
383afd09 4072 /*
0782e63b
TG
4073 * Keep a potential priority boosting if called from
4074 * sched_setscheduler().
383afd09 4075 */
acd58620 4076 p->prio = normal_prio(p);
0782e63b 4077 if (keep_boost)
acd58620 4078 p->prio = rt_effective_prio(p, p->prio);
383afd09 4079
aab03e05
DF
4080 if (dl_prio(p->prio))
4081 p->sched_class = &dl_sched_class;
4082 else if (rt_prio(p->prio))
ffd44db5
PZ
4083 p->sched_class = &rt_sched_class;
4084 else
4085 p->sched_class = &fair_sched_class;
1da177e4 4086}
aab03e05
DF
4087
4088static void
4089__getparam_dl(struct task_struct *p, struct sched_attr *attr)
4090{
4091 struct sched_dl_entity *dl_se = &p->dl;
4092
4093 attr->sched_priority = p->rt_priority;
4094 attr->sched_runtime = dl_se->dl_runtime;
4095 attr->sched_deadline = dl_se->dl_deadline;
755378a4 4096 attr->sched_period = dl_se->dl_period;
aab03e05
DF
4097 attr->sched_flags = dl_se->flags;
4098}
4099
4100/*
4101 * This function validates the new parameters of a -deadline task.
4102 * We ask for the deadline not being zero, and greater or equal
755378a4 4103 * than the runtime, as well as the period of being zero or
332ac17e 4104 * greater than deadline. Furthermore, we have to be sure that
b0827819
JL
4105 * user parameters are above the internal resolution of 1us (we
4106 * check sched_runtime only since it is always the smaller one) and
4107 * below 2^63 ns (we have to check both sched_deadline and
4108 * sched_period, as the latter can be zero).
aab03e05
DF
4109 */
4110static bool
4111__checkparam_dl(const struct sched_attr *attr)
4112{
b0827819
JL
4113 /* deadline != 0 */
4114 if (attr->sched_deadline == 0)
4115 return false;
4116
4117 /*
4118 * Since we truncate DL_SCALE bits, make sure we're at least
4119 * that big.
4120 */
4121 if (attr->sched_runtime < (1ULL << DL_SCALE))
4122 return false;
4123
4124 /*
4125 * Since we use the MSB for wrap-around and sign issues, make
4126 * sure it's not set (mind that period can be equal to zero).
4127 */
4128 if (attr->sched_deadline & (1ULL << 63) ||
4129 attr->sched_period & (1ULL << 63))
4130 return false;
4131
4132 /* runtime <= deadline <= period (if period != 0) */
4133 if ((attr->sched_period != 0 &&
4134 attr->sched_period < attr->sched_deadline) ||
4135 attr->sched_deadline < attr->sched_runtime)
4136 return false;
4137
4138 return true;
aab03e05
DF
4139}
4140
c69e8d9c 4141/*
d1ccc66d 4142 * Check the target process has a UID that matches the current process's:
c69e8d9c
DH
4143 */
4144static bool check_same_owner(struct task_struct *p)
4145{
4146 const struct cred *cred = current_cred(), *pcred;
4147 bool match;
4148
4149 rcu_read_lock();
4150 pcred = __task_cred(p);
9c806aa0
EB
4151 match = (uid_eq(cred->euid, pcred->euid) ||
4152 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
4153 rcu_read_unlock();
4154 return match;
4155}
4156
d1ccc66d 4157static bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
75381608
WL
4158{
4159 struct sched_dl_entity *dl_se = &p->dl;
4160
4161 if (dl_se->dl_runtime != attr->sched_runtime ||
4162 dl_se->dl_deadline != attr->sched_deadline ||
4163 dl_se->dl_period != attr->sched_period ||
4164 dl_se->flags != attr->sched_flags)
4165 return true;
4166
4167 return false;
4168}
4169
d50dde5a
DF
4170static int __sched_setscheduler(struct task_struct *p,
4171 const struct sched_attr *attr,
dbc7f069 4172 bool user, bool pi)
1da177e4 4173{
383afd09
SR
4174 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4175 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 4176 int retval, oldprio, oldpolicy = -1, queued, running;
0782e63b 4177 int new_effective_prio, policy = attr->sched_policy;
83ab0aa0 4178 const struct sched_class *prev_class;
eb580751 4179 struct rq_flags rf;
ca94c442 4180 int reset_on_fork;
7a57f32a 4181 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
eb580751 4182 struct rq *rq;
1da177e4 4183
896bbb25
SRV
4184 /* The pi code expects interrupts enabled */
4185 BUG_ON(pi && in_interrupt());
1da177e4 4186recheck:
d1ccc66d 4187 /* Double check policy once rq lock held: */
ca94c442
LP
4188 if (policy < 0) {
4189 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4190 policy = oldpolicy = p->policy;
ca94c442 4191 } else {
7479f3c9 4192 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 4193
20f9cd2a 4194 if (!valid_policy(policy))
ca94c442
LP
4195 return -EINVAL;
4196 }
4197
7479f3c9
PZ
4198 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
4199 return -EINVAL;
4200
1da177e4
LT
4201 /*
4202 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4203 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4204 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 4205 */
0bb040a4 4206 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 4207 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 4208 return -EINVAL;
aab03e05
DF
4209 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4210 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
4211 return -EINVAL;
4212
37e4ab3f
OC
4213 /*
4214 * Allow unprivileged RT tasks to decrease priority:
4215 */
961ccddd 4216 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 4217 if (fair_policy(policy)) {
d0ea0268 4218 if (attr->sched_nice < task_nice(p) &&
eaad4513 4219 !can_nice(p, attr->sched_nice))
d50dde5a
DF
4220 return -EPERM;
4221 }
4222
e05606d3 4223 if (rt_policy(policy)) {
a44702e8
ON
4224 unsigned long rlim_rtprio =
4225 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909 4226
d1ccc66d 4227 /* Can't set/change the rt policy: */
8dc3e909
ON
4228 if (policy != p->policy && !rlim_rtprio)
4229 return -EPERM;
4230
d1ccc66d 4231 /* Can't increase priority: */
d50dde5a
DF
4232 if (attr->sched_priority > p->rt_priority &&
4233 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
4234 return -EPERM;
4235 }
c02aa73b 4236
d44753b8
JL
4237 /*
4238 * Can't set/change SCHED_DEADLINE policy at all for now
4239 * (safest behavior); in the future we would like to allow
4240 * unprivileged DL tasks to increase their relative deadline
4241 * or reduce their runtime (both ways reducing utilization)
4242 */
4243 if (dl_policy(policy))
4244 return -EPERM;
4245
dd41f596 4246 /*
c02aa73b
DH
4247 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4248 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 4249 */
20f9cd2a 4250 if (idle_policy(p->policy) && !idle_policy(policy)) {
d0ea0268 4251 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
4252 return -EPERM;
4253 }
5fe1d75f 4254
d1ccc66d 4255 /* Can't change other user's priorities: */
c69e8d9c 4256 if (!check_same_owner(p))
37e4ab3f 4257 return -EPERM;
ca94c442 4258
d1ccc66d 4259 /* Normal users shall not reset the sched_reset_on_fork flag: */
ca94c442
LP
4260 if (p->sched_reset_on_fork && !reset_on_fork)
4261 return -EPERM;
37e4ab3f 4262 }
1da177e4 4263
725aad24 4264 if (user) {
b0ae1981 4265 retval = security_task_setscheduler(p);
725aad24
JF
4266 if (retval)
4267 return retval;
4268 }
4269
b29739f9 4270 /*
d1ccc66d 4271 * Make sure no PI-waiters arrive (or leave) while we are
b29739f9 4272 * changing the priority of the task:
0122ec5b 4273 *
25985edc 4274 * To be able to change p->policy safely, the appropriate
1da177e4
LT
4275 * runqueue lock must be held.
4276 */
eb580751 4277 rq = task_rq_lock(p, &rf);
80f5c1b8 4278 update_rq_clock(rq);
dc61b1d6 4279
34f971f6 4280 /*
d1ccc66d 4281 * Changing the policy of the stop threads its a very bad idea:
34f971f6
PZ
4282 */
4283 if (p == rq->stop) {
eb580751 4284 task_rq_unlock(rq, p, &rf);
34f971f6
PZ
4285 return -EINVAL;
4286 }
4287
a51e9198 4288 /*
d6b1e911
TG
4289 * If not changing anything there's no need to proceed further,
4290 * but store a possible modification of reset_on_fork.
a51e9198 4291 */
d50dde5a 4292 if (unlikely(policy == p->policy)) {
d0ea0268 4293 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
4294 goto change;
4295 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4296 goto change;
75381608 4297 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 4298 goto change;
d50dde5a 4299
d6b1e911 4300 p->sched_reset_on_fork = reset_on_fork;
eb580751 4301 task_rq_unlock(rq, p, &rf);
a51e9198
DF
4302 return 0;
4303 }
d50dde5a 4304change:
a51e9198 4305
dc61b1d6 4306 if (user) {
332ac17e 4307#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
4308 /*
4309 * Do not allow realtime tasks into groups that have no runtime
4310 * assigned.
4311 */
4312 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
4313 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4314 !task_group_is_autogroup(task_group(p))) {
eb580751 4315 task_rq_unlock(rq, p, &rf);
dc61b1d6
PZ
4316 return -EPERM;
4317 }
dc61b1d6 4318#endif
332ac17e
DF
4319#ifdef CONFIG_SMP
4320 if (dl_bandwidth_enabled() && dl_policy(policy)) {
4321 cpumask_t *span = rq->rd->span;
332ac17e
DF
4322
4323 /*
4324 * Don't allow tasks with an affinity mask smaller than
4325 * the entire root_domain to become SCHED_DEADLINE. We
4326 * will also fail if there's no bandwidth available.
4327 */
e4099a5e
PZ
4328 if (!cpumask_subset(span, &p->cpus_allowed) ||
4329 rq->rd->dl_bw.bw == 0) {
eb580751 4330 task_rq_unlock(rq, p, &rf);
332ac17e
DF
4331 return -EPERM;
4332 }
4333 }
4334#endif
4335 }
dc61b1d6 4336
d1ccc66d 4337 /* Re-check policy now with rq lock held: */
1da177e4
LT
4338 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4339 policy = oldpolicy = -1;
eb580751 4340 task_rq_unlock(rq, p, &rf);
1da177e4
LT
4341 goto recheck;
4342 }
332ac17e
DF
4343
4344 /*
4345 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4346 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4347 * is available.
4348 */
e4099a5e 4349 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
eb580751 4350 task_rq_unlock(rq, p, &rf);
332ac17e
DF
4351 return -EBUSY;
4352 }
4353
c365c292
TG
4354 p->sched_reset_on_fork = reset_on_fork;
4355 oldprio = p->prio;
4356
dbc7f069
PZ
4357 if (pi) {
4358 /*
4359 * Take priority boosted tasks into account. If the new
4360 * effective priority is unchanged, we just store the new
4361 * normal parameters and do not touch the scheduler class and
4362 * the runqueue. This will be done when the task deboost
4363 * itself.
4364 */
acd58620 4365 new_effective_prio = rt_effective_prio(p, newprio);
ff77e468
PZ
4366 if (new_effective_prio == oldprio)
4367 queue_flags &= ~DEQUEUE_MOVE;
c365c292
TG
4368 }
4369
da0c1e65 4370 queued = task_on_rq_queued(p);
051a1d1a 4371 running = task_current(rq, p);
da0c1e65 4372 if (queued)
ff77e468 4373 dequeue_task(rq, p, queue_flags);
0e1f3483 4374 if (running)
f3cd1c4e 4375 put_prev_task(rq, p);
f6b53205 4376
83ab0aa0 4377 prev_class = p->sched_class;
dbc7f069 4378 __setscheduler(rq, p, attr, pi);
f6b53205 4379
da0c1e65 4380 if (queued) {
81a44c54
TG
4381 /*
4382 * We enqueue to tail when the priority of a task is
4383 * increased (user space view).
4384 */
ff77e468
PZ
4385 if (oldprio < p->prio)
4386 queue_flags |= ENQUEUE_HEAD;
1de64443 4387
ff77e468 4388 enqueue_task(rq, p, queue_flags);
81a44c54 4389 }
a399d233 4390 if (running)
b2bf6c31 4391 set_curr_task(rq, p);
cb469845 4392
da7a735e 4393 check_class_changed(rq, p, prev_class, oldprio);
d1ccc66d
IM
4394
4395 /* Avoid rq from going away on us: */
4396 preempt_disable();
eb580751 4397 task_rq_unlock(rq, p, &rf);
b29739f9 4398
dbc7f069
PZ
4399 if (pi)
4400 rt_mutex_adjust_pi(p);
95e02ca9 4401
d1ccc66d 4402 /* Run balance callbacks after we've adjusted the PI chain: */
4c9a4bc8
PZ
4403 balance_callback(rq);
4404 preempt_enable();
95e02ca9 4405
1da177e4
LT
4406 return 0;
4407}
961ccddd 4408
7479f3c9
PZ
4409static int _sched_setscheduler(struct task_struct *p, int policy,
4410 const struct sched_param *param, bool check)
4411{
4412 struct sched_attr attr = {
4413 .sched_policy = policy,
4414 .sched_priority = param->sched_priority,
4415 .sched_nice = PRIO_TO_NICE(p->static_prio),
4416 };
4417
c13db6b1
SR
4418 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4419 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
4420 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4421 policy &= ~SCHED_RESET_ON_FORK;
4422 attr.sched_policy = policy;
4423 }
4424
dbc7f069 4425 return __sched_setscheduler(p, &attr, check, true);
7479f3c9 4426}
961ccddd
RR
4427/**
4428 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4429 * @p: the task in question.
4430 * @policy: new policy.
4431 * @param: structure containing the new RT priority.
4432 *
e69f6186
YB
4433 * Return: 0 on success. An error code otherwise.
4434 *
961ccddd
RR
4435 * NOTE that the task may be already dead.
4436 */
4437int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4438 const struct sched_param *param)
961ccddd 4439{
7479f3c9 4440 return _sched_setscheduler(p, policy, param, true);
961ccddd 4441}
1da177e4
LT
4442EXPORT_SYMBOL_GPL(sched_setscheduler);
4443
d50dde5a
DF
4444int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4445{
dbc7f069 4446 return __sched_setscheduler(p, attr, true, true);
d50dde5a
DF
4447}
4448EXPORT_SYMBOL_GPL(sched_setattr);
4449
961ccddd
RR
4450/**
4451 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4452 * @p: the task in question.
4453 * @policy: new policy.
4454 * @param: structure containing the new RT priority.
4455 *
4456 * Just like sched_setscheduler, only don't bother checking if the
4457 * current context has permission. For example, this is needed in
4458 * stop_machine(): we create temporary high priority worker threads,
4459 * but our caller might not have that capability.
e69f6186
YB
4460 *
4461 * Return: 0 on success. An error code otherwise.
961ccddd
RR
4462 */
4463int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 4464 const struct sched_param *param)
961ccddd 4465{
7479f3c9 4466 return _sched_setscheduler(p, policy, param, false);
961ccddd 4467}
84778472 4468EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
961ccddd 4469
95cdf3b7
IM
4470static int
4471do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4472{
1da177e4
LT
4473 struct sched_param lparam;
4474 struct task_struct *p;
36c8b586 4475 int retval;
1da177e4
LT
4476
4477 if (!param || pid < 0)
4478 return -EINVAL;
4479 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4480 return -EFAULT;
5fe1d75f
ON
4481
4482 rcu_read_lock();
4483 retval = -ESRCH;
1da177e4 4484 p = find_process_by_pid(pid);
5fe1d75f
ON
4485 if (p != NULL)
4486 retval = sched_setscheduler(p, policy, &lparam);
4487 rcu_read_unlock();
36c8b586 4488
1da177e4
LT
4489 return retval;
4490}
4491
d50dde5a
DF
4492/*
4493 * Mimics kernel/events/core.c perf_copy_attr().
4494 */
d1ccc66d 4495static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
d50dde5a
DF
4496{
4497 u32 size;
4498 int ret;
4499
4500 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4501 return -EFAULT;
4502
d1ccc66d 4503 /* Zero the full structure, so that a short copy will be nice: */
d50dde5a
DF
4504 memset(attr, 0, sizeof(*attr));
4505
4506 ret = get_user(size, &uattr->size);
4507 if (ret)
4508 return ret;
4509
d1ccc66d
IM
4510 /* Bail out on silly large: */
4511 if (size > PAGE_SIZE)
d50dde5a
DF
4512 goto err_size;
4513
d1ccc66d
IM
4514 /* ABI compatibility quirk: */
4515 if (!size)
d50dde5a
DF
4516 size = SCHED_ATTR_SIZE_VER0;
4517
4518 if (size < SCHED_ATTR_SIZE_VER0)
4519 goto err_size;
4520
4521 /*
4522 * If we're handed a bigger struct than we know of,
4523 * ensure all the unknown bits are 0 - i.e. new
4524 * user-space does not rely on any kernel feature
4525 * extensions we dont know about yet.
4526 */
4527 if (size > sizeof(*attr)) {
4528 unsigned char __user *addr;
4529 unsigned char __user *end;
4530 unsigned char val;
4531
4532 addr = (void __user *)uattr + sizeof(*attr);
4533 end = (void __user *)uattr + size;
4534
4535 for (; addr < end; addr++) {
4536 ret = get_user(val, addr);
4537 if (ret)
4538 return ret;
4539 if (val)
4540 goto err_size;
4541 }
4542 size = sizeof(*attr);
4543 }
4544
4545 ret = copy_from_user(attr, uattr, size);
4546 if (ret)
4547 return -EFAULT;
4548
4549 /*
d1ccc66d 4550 * XXX: Do we want to be lenient like existing syscalls; or do we want
d50dde5a
DF
4551 * to be strict and return an error on out-of-bounds values?
4552 */
75e45d51 4553 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 4554
e78c7bca 4555 return 0;
d50dde5a
DF
4556
4557err_size:
4558 put_user(sizeof(*attr), &uattr->size);
e78c7bca 4559 return -E2BIG;
d50dde5a
DF
4560}
4561
1da177e4
LT
4562/**
4563 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4564 * @pid: the pid in question.
4565 * @policy: new policy.
4566 * @param: structure containing the new RT priority.
e69f6186
YB
4567 *
4568 * Return: 0 on success. An error code otherwise.
1da177e4 4569 */
d1ccc66d 4570SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
1da177e4 4571{
c21761f1
JB
4572 if (policy < 0)
4573 return -EINVAL;
4574
1da177e4
LT
4575 return do_sched_setscheduler(pid, policy, param);
4576}
4577
4578/**
4579 * sys_sched_setparam - set/change the RT priority of a thread
4580 * @pid: the pid in question.
4581 * @param: structure containing the new RT priority.
e69f6186
YB
4582 *
4583 * Return: 0 on success. An error code otherwise.
1da177e4 4584 */
5add95d4 4585SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4586{
c13db6b1 4587 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
4588}
4589
d50dde5a
DF
4590/**
4591 * sys_sched_setattr - same as above, but with extended sched_attr
4592 * @pid: the pid in question.
5778fccf 4593 * @uattr: structure containing the extended parameters.
db66d756 4594 * @flags: for future extension.
d50dde5a 4595 */
6d35ab48
PZ
4596SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4597 unsigned int, flags)
d50dde5a
DF
4598{
4599 struct sched_attr attr;
4600 struct task_struct *p;
4601 int retval;
4602
6d35ab48 4603 if (!uattr || pid < 0 || flags)
d50dde5a
DF
4604 return -EINVAL;
4605
143cf23d
MK
4606 retval = sched_copy_attr(uattr, &attr);
4607 if (retval)
4608 return retval;
d50dde5a 4609
b14ed2c2 4610 if ((int)attr.sched_policy < 0)
dbdb2275 4611 return -EINVAL;
d50dde5a
DF
4612
4613 rcu_read_lock();
4614 retval = -ESRCH;
4615 p = find_process_by_pid(pid);
4616 if (p != NULL)
4617 retval = sched_setattr(p, &attr);
4618 rcu_read_unlock();
4619
4620 return retval;
4621}
4622
1da177e4
LT
4623/**
4624 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4625 * @pid: the pid in question.
e69f6186
YB
4626 *
4627 * Return: On success, the policy of the thread. Otherwise, a negative error
4628 * code.
1da177e4 4629 */
5add95d4 4630SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4631{
36c8b586 4632 struct task_struct *p;
3a5c359a 4633 int retval;
1da177e4
LT
4634
4635 if (pid < 0)
3a5c359a 4636 return -EINVAL;
1da177e4
LT
4637
4638 retval = -ESRCH;
5fe85be0 4639 rcu_read_lock();
1da177e4
LT
4640 p = find_process_by_pid(pid);
4641 if (p) {
4642 retval = security_task_getscheduler(p);
4643 if (!retval)
ca94c442
LP
4644 retval = p->policy
4645 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4646 }
5fe85be0 4647 rcu_read_unlock();
1da177e4
LT
4648 return retval;
4649}
4650
4651/**
ca94c442 4652 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4653 * @pid: the pid in question.
4654 * @param: structure containing the RT priority.
e69f6186
YB
4655 *
4656 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4657 * code.
1da177e4 4658 */
5add95d4 4659SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4660{
ce5f7f82 4661 struct sched_param lp = { .sched_priority = 0 };
36c8b586 4662 struct task_struct *p;
3a5c359a 4663 int retval;
1da177e4
LT
4664
4665 if (!param || pid < 0)
3a5c359a 4666 return -EINVAL;
1da177e4 4667
5fe85be0 4668 rcu_read_lock();
1da177e4
LT
4669 p = find_process_by_pid(pid);
4670 retval = -ESRCH;
4671 if (!p)
4672 goto out_unlock;
4673
4674 retval = security_task_getscheduler(p);
4675 if (retval)
4676 goto out_unlock;
4677
ce5f7f82
PZ
4678 if (task_has_rt_policy(p))
4679 lp.sched_priority = p->rt_priority;
5fe85be0 4680 rcu_read_unlock();
1da177e4
LT
4681
4682 /*
4683 * This one might sleep, we cannot do it with a spinlock held ...
4684 */
4685 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4686
1da177e4
LT
4687 return retval;
4688
4689out_unlock:
5fe85be0 4690 rcu_read_unlock();
1da177e4
LT
4691 return retval;
4692}
4693
d50dde5a
DF
4694static int sched_read_attr(struct sched_attr __user *uattr,
4695 struct sched_attr *attr,
4696 unsigned int usize)
4697{
4698 int ret;
4699
4700 if (!access_ok(VERIFY_WRITE, uattr, usize))
4701 return -EFAULT;
4702
4703 /*
4704 * If we're handed a smaller struct than we know of,
4705 * ensure all the unknown bits are 0 - i.e. old
4706 * user-space does not get uncomplete information.
4707 */
4708 if (usize < sizeof(*attr)) {
4709 unsigned char *addr;
4710 unsigned char *end;
4711
4712 addr = (void *)attr + usize;
4713 end = (void *)attr + sizeof(*attr);
4714
4715 for (; addr < end; addr++) {
4716 if (*addr)
22400674 4717 return -EFBIG;
d50dde5a
DF
4718 }
4719
4720 attr->size = usize;
4721 }
4722
4efbc454 4723 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
4724 if (ret)
4725 return -EFAULT;
4726
22400674 4727 return 0;
d50dde5a
DF
4728}
4729
4730/**
aab03e05 4731 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 4732 * @pid: the pid in question.
5778fccf 4733 * @uattr: structure containing the extended parameters.
d50dde5a 4734 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 4735 * @flags: for future extension.
d50dde5a 4736 */
6d35ab48
PZ
4737SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4738 unsigned int, size, unsigned int, flags)
d50dde5a
DF
4739{
4740 struct sched_attr attr = {
4741 .size = sizeof(struct sched_attr),
4742 };
4743 struct task_struct *p;
4744 int retval;
4745
4746 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 4747 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
4748 return -EINVAL;
4749
4750 rcu_read_lock();
4751 p = find_process_by_pid(pid);
4752 retval = -ESRCH;
4753 if (!p)
4754 goto out_unlock;
4755
4756 retval = security_task_getscheduler(p);
4757 if (retval)
4758 goto out_unlock;
4759
4760 attr.sched_policy = p->policy;
7479f3c9
PZ
4761 if (p->sched_reset_on_fork)
4762 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
4763 if (task_has_dl_policy(p))
4764 __getparam_dl(p, &attr);
4765 else if (task_has_rt_policy(p))
d50dde5a
DF
4766 attr.sched_priority = p->rt_priority;
4767 else
d0ea0268 4768 attr.sched_nice = task_nice(p);
d50dde5a
DF
4769
4770 rcu_read_unlock();
4771
4772 retval = sched_read_attr(uattr, &attr, size);
4773 return retval;
4774
4775out_unlock:
4776 rcu_read_unlock();
4777 return retval;
4778}
4779
96f874e2 4780long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4781{
5a16f3d3 4782 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4783 struct task_struct *p;
4784 int retval;
1da177e4 4785
23f5d142 4786 rcu_read_lock();
1da177e4
LT
4787
4788 p = find_process_by_pid(pid);
4789 if (!p) {
23f5d142 4790 rcu_read_unlock();
1da177e4
LT
4791 return -ESRCH;
4792 }
4793
23f5d142 4794 /* Prevent p going away */
1da177e4 4795 get_task_struct(p);
23f5d142 4796 rcu_read_unlock();
1da177e4 4797
14a40ffc
TH
4798 if (p->flags & PF_NO_SETAFFINITY) {
4799 retval = -EINVAL;
4800 goto out_put_task;
4801 }
5a16f3d3
RR
4802 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4803 retval = -ENOMEM;
4804 goto out_put_task;
4805 }
4806 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4807 retval = -ENOMEM;
4808 goto out_free_cpus_allowed;
4809 }
1da177e4 4810 retval = -EPERM;
4c44aaaf
EB
4811 if (!check_same_owner(p)) {
4812 rcu_read_lock();
4813 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4814 rcu_read_unlock();
16303ab2 4815 goto out_free_new_mask;
4c44aaaf
EB
4816 }
4817 rcu_read_unlock();
4818 }
1da177e4 4819
b0ae1981 4820 retval = security_task_setscheduler(p);
e7834f8f 4821 if (retval)
16303ab2 4822 goto out_free_new_mask;
e7834f8f 4823
e4099a5e
PZ
4824
4825 cpuset_cpus_allowed(p, cpus_allowed);
4826 cpumask_and(new_mask, in_mask, cpus_allowed);
4827
332ac17e
DF
4828 /*
4829 * Since bandwidth control happens on root_domain basis,
4830 * if admission test is enabled, we only admit -deadline
4831 * tasks allowed to run on all the CPUs in the task's
4832 * root_domain.
4833 */
4834#ifdef CONFIG_SMP
f1e3a093
KT
4835 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4836 rcu_read_lock();
4837 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 4838 retval = -EBUSY;
f1e3a093 4839 rcu_read_unlock();
16303ab2 4840 goto out_free_new_mask;
332ac17e 4841 }
f1e3a093 4842 rcu_read_unlock();
332ac17e
DF
4843 }
4844#endif
49246274 4845again:
25834c73 4846 retval = __set_cpus_allowed_ptr(p, new_mask, true);
1da177e4 4847
8707d8b8 4848 if (!retval) {
5a16f3d3
RR
4849 cpuset_cpus_allowed(p, cpus_allowed);
4850 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4851 /*
4852 * We must have raced with a concurrent cpuset
4853 * update. Just reset the cpus_allowed to the
4854 * cpuset's cpus_allowed
4855 */
5a16f3d3 4856 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4857 goto again;
4858 }
4859 }
16303ab2 4860out_free_new_mask:
5a16f3d3
RR
4861 free_cpumask_var(new_mask);
4862out_free_cpus_allowed:
4863 free_cpumask_var(cpus_allowed);
4864out_put_task:
1da177e4 4865 put_task_struct(p);
1da177e4
LT
4866 return retval;
4867}
4868
4869static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4870 struct cpumask *new_mask)
1da177e4 4871{
96f874e2
RR
4872 if (len < cpumask_size())
4873 cpumask_clear(new_mask);
4874 else if (len > cpumask_size())
4875 len = cpumask_size();
4876
1da177e4
LT
4877 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4878}
4879
4880/**
d1ccc66d 4881 * sys_sched_setaffinity - set the CPU affinity of a process
1da177e4
LT
4882 * @pid: pid of the process
4883 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
d1ccc66d 4884 * @user_mask_ptr: user-space pointer to the new CPU mask
e69f6186
YB
4885 *
4886 * Return: 0 on success. An error code otherwise.
1da177e4 4887 */
5add95d4
HC
4888SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4889 unsigned long __user *, user_mask_ptr)
1da177e4 4890{
5a16f3d3 4891 cpumask_var_t new_mask;
1da177e4
LT
4892 int retval;
4893
5a16f3d3
RR
4894 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4895 return -ENOMEM;
1da177e4 4896
5a16f3d3
RR
4897 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4898 if (retval == 0)
4899 retval = sched_setaffinity(pid, new_mask);
4900 free_cpumask_var(new_mask);
4901 return retval;
1da177e4
LT
4902}
4903
96f874e2 4904long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4905{
36c8b586 4906 struct task_struct *p;
31605683 4907 unsigned long flags;
1da177e4 4908 int retval;
1da177e4 4909
23f5d142 4910 rcu_read_lock();
1da177e4
LT
4911
4912 retval = -ESRCH;
4913 p = find_process_by_pid(pid);
4914 if (!p)
4915 goto out_unlock;
4916
e7834f8f
DQ
4917 retval = security_task_getscheduler(p);
4918 if (retval)
4919 goto out_unlock;
4920
013fdb80 4921 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4922 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4923 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4924
4925out_unlock:
23f5d142 4926 rcu_read_unlock();
1da177e4 4927
9531b62f 4928 return retval;
1da177e4
LT
4929}
4930
4931/**
d1ccc66d 4932 * sys_sched_getaffinity - get the CPU affinity of a process
1da177e4
LT
4933 * @pid: pid of the process
4934 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
d1ccc66d 4935 * @user_mask_ptr: user-space pointer to hold the current CPU mask
e69f6186 4936 *
599b4840
ZW
4937 * Return: size of CPU mask copied to user_mask_ptr on success. An
4938 * error code otherwise.
1da177e4 4939 */
5add95d4
HC
4940SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4941 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4942{
4943 int ret;
f17c8607 4944 cpumask_var_t mask;
1da177e4 4945
84fba5ec 4946 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4947 return -EINVAL;
4948 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4949 return -EINVAL;
4950
f17c8607
RR
4951 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4952 return -ENOMEM;
1da177e4 4953
f17c8607
RR
4954 ret = sched_getaffinity(pid, mask);
4955 if (ret == 0) {
8bc037fb 4956 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4957
4958 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4959 ret = -EFAULT;
4960 else
cd3d8031 4961 ret = retlen;
f17c8607
RR
4962 }
4963 free_cpumask_var(mask);
1da177e4 4964
f17c8607 4965 return ret;
1da177e4
LT
4966}
4967
4968/**
4969 * sys_sched_yield - yield the current processor to other threads.
4970 *
dd41f596
IM
4971 * This function yields the current CPU to other tasks. If there are no
4972 * other threads running on this CPU then this function will return.
e69f6186
YB
4973 *
4974 * Return: 0.
1da177e4 4975 */
5add95d4 4976SYSCALL_DEFINE0(sched_yield)
1da177e4 4977{
8a8c69c3
PZ
4978 struct rq_flags rf;
4979 struct rq *rq;
4980
4981 local_irq_disable();
4982 rq = this_rq();
4983 rq_lock(rq, &rf);
1da177e4 4984
ae92882e 4985 schedstat_inc(rq->yld_count);
4530d7ab 4986 current->sched_class->yield_task(rq);
1da177e4
LT
4987
4988 /*
4989 * Since we are going to call schedule() anyway, there's
4990 * no need to preempt or enable interrupts:
4991 */
8a8c69c3
PZ
4992 preempt_disable();
4993 rq_unlock(rq, &rf);
ba74c144 4994 sched_preempt_enable_no_resched();
1da177e4
LT
4995
4996 schedule();
4997
4998 return 0;
4999}
5000
35a773a0 5001#ifndef CONFIG_PREEMPT
02b67cc3 5002int __sched _cond_resched(void)
1da177e4 5003{
fe32d3cd 5004 if (should_resched(0)) {
a18b5d01 5005 preempt_schedule_common();
1da177e4
LT
5006 return 1;
5007 }
5008 return 0;
5009}
02b67cc3 5010EXPORT_SYMBOL(_cond_resched);
35a773a0 5011#endif
1da177e4
LT
5012
5013/*
613afbf8 5014 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
5015 * call schedule, and on return reacquire the lock.
5016 *
41a2d6cf 5017 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5018 * operations here to prevent schedule() from being called twice (once via
5019 * spin_unlock(), once by hand).
5020 */
613afbf8 5021int __cond_resched_lock(spinlock_t *lock)
1da177e4 5022{
fe32d3cd 5023 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6df3cecb
JK
5024 int ret = 0;
5025
f607c668
PZ
5026 lockdep_assert_held(lock);
5027
4a81e832 5028 if (spin_needbreak(lock) || resched) {
1da177e4 5029 spin_unlock(lock);
d86ee480 5030 if (resched)
a18b5d01 5031 preempt_schedule_common();
95c354fe
NP
5032 else
5033 cpu_relax();
6df3cecb 5034 ret = 1;
1da177e4 5035 spin_lock(lock);
1da177e4 5036 }
6df3cecb 5037 return ret;
1da177e4 5038}
613afbf8 5039EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 5040
613afbf8 5041int __sched __cond_resched_softirq(void)
1da177e4
LT
5042{
5043 BUG_ON(!in_softirq());
5044
fe32d3cd 5045 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
98d82567 5046 local_bh_enable();
a18b5d01 5047 preempt_schedule_common();
1da177e4
LT
5048 local_bh_disable();
5049 return 1;
5050 }
5051 return 0;
5052}
613afbf8 5053EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 5054
1da177e4
LT
5055/**
5056 * yield - yield the current processor to other threads.
5057 *
8e3fabfd
PZ
5058 * Do not ever use this function, there's a 99% chance you're doing it wrong.
5059 *
5060 * The scheduler is at all times free to pick the calling task as the most
5061 * eligible task to run, if removing the yield() call from your code breaks
5062 * it, its already broken.
5063 *
5064 * Typical broken usage is:
5065 *
5066 * while (!event)
d1ccc66d 5067 * yield();
8e3fabfd
PZ
5068 *
5069 * where one assumes that yield() will let 'the other' process run that will
5070 * make event true. If the current task is a SCHED_FIFO task that will never
5071 * happen. Never use yield() as a progress guarantee!!
5072 *
5073 * If you want to use yield() to wait for something, use wait_event().
5074 * If you want to use yield() to be 'nice' for others, use cond_resched().
5075 * If you still want to use yield(), do not!
1da177e4
LT
5076 */
5077void __sched yield(void)
5078{
5079 set_current_state(TASK_RUNNING);
5080 sys_sched_yield();
5081}
1da177e4
LT
5082EXPORT_SYMBOL(yield);
5083
d95f4122
MG
5084/**
5085 * yield_to - yield the current processor to another thread in
5086 * your thread group, or accelerate that thread toward the
5087 * processor it's on.
16addf95
RD
5088 * @p: target task
5089 * @preempt: whether task preemption is allowed or not
d95f4122
MG
5090 *
5091 * It's the caller's job to ensure that the target task struct
5092 * can't go away on us before we can do any checks.
5093 *
e69f6186 5094 * Return:
7b270f60
PZ
5095 * true (>0) if we indeed boosted the target task.
5096 * false (0) if we failed to boost the target.
5097 * -ESRCH if there's no task to yield to.
d95f4122 5098 */
fa93384f 5099int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
5100{
5101 struct task_struct *curr = current;
5102 struct rq *rq, *p_rq;
5103 unsigned long flags;
c3c18640 5104 int yielded = 0;
d95f4122
MG
5105
5106 local_irq_save(flags);
5107 rq = this_rq();
5108
5109again:
5110 p_rq = task_rq(p);
7b270f60
PZ
5111 /*
5112 * If we're the only runnable task on the rq and target rq also
5113 * has only one task, there's absolutely no point in yielding.
5114 */
5115 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5116 yielded = -ESRCH;
5117 goto out_irq;
5118 }
5119
d95f4122 5120 double_rq_lock(rq, p_rq);
39e24d8f 5121 if (task_rq(p) != p_rq) {
d95f4122
MG
5122 double_rq_unlock(rq, p_rq);
5123 goto again;
5124 }
5125
5126 if (!curr->sched_class->yield_to_task)
7b270f60 5127 goto out_unlock;
d95f4122
MG
5128
5129 if (curr->sched_class != p->sched_class)
7b270f60 5130 goto out_unlock;
d95f4122
MG
5131
5132 if (task_running(p_rq, p) || p->state)
7b270f60 5133 goto out_unlock;
d95f4122
MG
5134
5135 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 5136 if (yielded) {
ae92882e 5137 schedstat_inc(rq->yld_count);
6d1cafd8
VP
5138 /*
5139 * Make p's CPU reschedule; pick_next_entity takes care of
5140 * fairness.
5141 */
5142 if (preempt && rq != p_rq)
8875125e 5143 resched_curr(p_rq);
6d1cafd8 5144 }
d95f4122 5145
7b270f60 5146out_unlock:
d95f4122 5147 double_rq_unlock(rq, p_rq);
7b270f60 5148out_irq:
d95f4122
MG
5149 local_irq_restore(flags);
5150
7b270f60 5151 if (yielded > 0)
d95f4122
MG
5152 schedule();
5153
5154 return yielded;
5155}
5156EXPORT_SYMBOL_GPL(yield_to);
5157
10ab5643
TH
5158int io_schedule_prepare(void)
5159{
5160 int old_iowait = current->in_iowait;
5161
5162 current->in_iowait = 1;
5163 blk_schedule_flush_plug(current);
5164
5165 return old_iowait;
5166}
5167
5168void io_schedule_finish(int token)
5169{
5170 current->in_iowait = token;
5171}
5172
1da177e4 5173/*
41a2d6cf 5174 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5175 * that process accounting knows that this is a task in IO wait state.
1da177e4 5176 */
1da177e4
LT
5177long __sched io_schedule_timeout(long timeout)
5178{
10ab5643 5179 int token;
1da177e4
LT
5180 long ret;
5181
10ab5643 5182 token = io_schedule_prepare();
1da177e4 5183 ret = schedule_timeout(timeout);
10ab5643 5184 io_schedule_finish(token);
9cff8ade 5185
1da177e4
LT
5186 return ret;
5187}
9cff8ade 5188EXPORT_SYMBOL(io_schedule_timeout);
1da177e4 5189
10ab5643
TH
5190void io_schedule(void)
5191{
5192 int token;
5193
5194 token = io_schedule_prepare();
5195 schedule();
5196 io_schedule_finish(token);
5197}
5198EXPORT_SYMBOL(io_schedule);
5199
1da177e4
LT
5200/**
5201 * sys_sched_get_priority_max - return maximum RT priority.
5202 * @policy: scheduling class.
5203 *
e69f6186
YB
5204 * Return: On success, this syscall returns the maximum
5205 * rt_priority that can be used by a given scheduling class.
5206 * On failure, a negative error code is returned.
1da177e4 5207 */
5add95d4 5208SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5209{
5210 int ret = -EINVAL;
5211
5212 switch (policy) {
5213 case SCHED_FIFO:
5214 case SCHED_RR:
5215 ret = MAX_USER_RT_PRIO-1;
5216 break;
aab03e05 5217 case SCHED_DEADLINE:
1da177e4 5218 case SCHED_NORMAL:
b0a9499c 5219 case SCHED_BATCH:
dd41f596 5220 case SCHED_IDLE:
1da177e4
LT
5221 ret = 0;
5222 break;
5223 }
5224 return ret;
5225}
5226
5227/**
5228 * sys_sched_get_priority_min - return minimum RT priority.
5229 * @policy: scheduling class.
5230 *
e69f6186
YB
5231 * Return: On success, this syscall returns the minimum
5232 * rt_priority that can be used by a given scheduling class.
5233 * On failure, a negative error code is returned.
1da177e4 5234 */
5add95d4 5235SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5236{
5237 int ret = -EINVAL;
5238
5239 switch (policy) {
5240 case SCHED_FIFO:
5241 case SCHED_RR:
5242 ret = 1;
5243 break;
aab03e05 5244 case SCHED_DEADLINE:
1da177e4 5245 case SCHED_NORMAL:
b0a9499c 5246 case SCHED_BATCH:
dd41f596 5247 case SCHED_IDLE:
1da177e4
LT
5248 ret = 0;
5249 }
5250 return ret;
5251}
5252
5253/**
5254 * sys_sched_rr_get_interval - return the default timeslice of a process.
5255 * @pid: pid of the process.
5256 * @interval: userspace pointer to the timeslice value.
5257 *
5258 * this syscall writes the default timeslice value of a given process
5259 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
5260 *
5261 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5262 * an error code.
1da177e4 5263 */
17da2bd9 5264SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5265 struct timespec __user *, interval)
1da177e4 5266{
36c8b586 5267 struct task_struct *p;
a4ec24b4 5268 unsigned int time_slice;
eb580751
PZ
5269 struct rq_flags rf;
5270 struct timespec t;
dba091b9 5271 struct rq *rq;
3a5c359a 5272 int retval;
1da177e4
LT
5273
5274 if (pid < 0)
3a5c359a 5275 return -EINVAL;
1da177e4
LT
5276
5277 retval = -ESRCH;
1a551ae7 5278 rcu_read_lock();
1da177e4
LT
5279 p = find_process_by_pid(pid);
5280 if (!p)
5281 goto out_unlock;
5282
5283 retval = security_task_getscheduler(p);
5284 if (retval)
5285 goto out_unlock;
5286
eb580751 5287 rq = task_rq_lock(p, &rf);
a57beec5
PZ
5288 time_slice = 0;
5289 if (p->sched_class->get_rr_interval)
5290 time_slice = p->sched_class->get_rr_interval(rq, p);
eb580751 5291 task_rq_unlock(rq, p, &rf);
a4ec24b4 5292
1a551ae7 5293 rcu_read_unlock();
a4ec24b4 5294 jiffies_to_timespec(time_slice, &t);
1da177e4 5295 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5296 return retval;
3a5c359a 5297
1da177e4 5298out_unlock:
1a551ae7 5299 rcu_read_unlock();
1da177e4
LT
5300 return retval;
5301}
5302
7c731e0a 5303static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5304
82a1fcb9 5305void sched_show_task(struct task_struct *p)
1da177e4 5306{
1da177e4 5307 unsigned long free = 0;
4e79752c 5308 int ppid;
1f8a7633 5309 unsigned long state = p->state;
1da177e4 5310
c930b2c0
IM
5311 /* Make sure the string lines up properly with the number of task states: */
5312 BUILD_BUG_ON(sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1);
5313
38200502
TH
5314 if (!try_get_task_stack(p))
5315 return;
1f8a7633
TH
5316 if (state)
5317 state = __ffs(state) + 1;
28d0686c 5318 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 5319 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
1da177e4 5320 if (state == TASK_RUNNING)
3df0fc5b 5321 printk(KERN_CONT " running task ");
1da177e4 5322#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5323 free = stack_not_used(p);
1da177e4 5324#endif
a90e984c 5325 ppid = 0;
4e79752c 5326 rcu_read_lock();
a90e984c
ON
5327 if (pid_alive(p))
5328 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 5329 rcu_read_unlock();
3df0fc5b 5330 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 5331 task_pid_nr(p), ppid,
aa47b7e0 5332 (unsigned long)task_thread_info(p)->flags);
1da177e4 5333
3d1cb205 5334 print_worker_info(KERN_INFO, p);
5fb5e6de 5335 show_stack(p, NULL);
38200502 5336 put_task_stack(p);
1da177e4
LT
5337}
5338
e59e2ae2 5339void show_state_filter(unsigned long state_filter)
1da177e4 5340{
36c8b586 5341 struct task_struct *g, *p;
1da177e4 5342
4bd77321 5343#if BITS_PER_LONG == 32
3df0fc5b
PZ
5344 printk(KERN_INFO
5345 " task PC stack pid father\n");
1da177e4 5346#else
3df0fc5b
PZ
5347 printk(KERN_INFO
5348 " task PC stack pid father\n");
1da177e4 5349#endif
510f5acc 5350 rcu_read_lock();
5d07f420 5351 for_each_process_thread(g, p) {
1da177e4
LT
5352 /*
5353 * reset the NMI-timeout, listing all files on a slow
25985edc 5354 * console might take a lot of time:
57675cb9
AR
5355 * Also, reset softlockup watchdogs on all CPUs, because
5356 * another CPU might be blocked waiting for us to process
5357 * an IPI.
1da177e4
LT
5358 */
5359 touch_nmi_watchdog();
57675cb9 5360 touch_all_softlockup_watchdogs();
39bc89fd 5361 if (!state_filter || (p->state & state_filter))
82a1fcb9 5362 sched_show_task(p);
5d07f420 5363 }
1da177e4 5364
dd41f596 5365#ifdef CONFIG_SCHED_DEBUG
fb90a6e9
RV
5366 if (!state_filter)
5367 sysrq_sched_debug_show();
dd41f596 5368#endif
510f5acc 5369 rcu_read_unlock();
e59e2ae2
IM
5370 /*
5371 * Only show locks if all tasks are dumped:
5372 */
93335a21 5373 if (!state_filter)
e59e2ae2 5374 debug_show_all_locks();
1da177e4
LT
5375}
5376
0db0628d 5377void init_idle_bootup_task(struct task_struct *idle)
1df21055 5378{
dd41f596 5379 idle->sched_class = &idle_sched_class;
1df21055
IM
5380}
5381
f340c0d1
IM
5382/**
5383 * init_idle - set up an idle thread for a given CPU
5384 * @idle: task in question
d1ccc66d 5385 * @cpu: CPU the idle task belongs to
f340c0d1
IM
5386 *
5387 * NOTE: this function does not set the idle thread's NEED_RESCHED
5388 * flag, to make booting more robust.
5389 */
0db0628d 5390void init_idle(struct task_struct *idle, int cpu)
1da177e4 5391{
70b97a7f 5392 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5393 unsigned long flags;
5394
25834c73
PZ
5395 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5396 raw_spin_lock(&rq->lock);
5cbd54ef 5397
5e1576ed 5398 __sched_fork(0, idle);
06b83b5f 5399 idle->state = TASK_RUNNING;
dd41f596 5400 idle->se.exec_start = sched_clock();
c1de45ca 5401 idle->flags |= PF_IDLE;
dd41f596 5402
e1b77c92
MR
5403 kasan_unpoison_task_stack(idle);
5404
de9b8f5d
PZ
5405#ifdef CONFIG_SMP
5406 /*
5407 * Its possible that init_idle() gets called multiple times on a task,
5408 * in that case do_set_cpus_allowed() will not do the right thing.
5409 *
5410 * And since this is boot we can forgo the serialization.
5411 */
5412 set_cpus_allowed_common(idle, cpumask_of(cpu));
5413#endif
6506cf6c
PZ
5414 /*
5415 * We're having a chicken and egg problem, even though we are
d1ccc66d 5416 * holding rq->lock, the CPU isn't yet set to this CPU so the
6506cf6c
PZ
5417 * lockdep check in task_group() will fail.
5418 *
5419 * Similar case to sched_fork(). / Alternatively we could
5420 * use task_rq_lock() here and obtain the other rq->lock.
5421 *
5422 * Silence PROVE_RCU
5423 */
5424 rcu_read_lock();
dd41f596 5425 __set_task_cpu(idle, cpu);
6506cf6c 5426 rcu_read_unlock();
1da177e4 5427
1da177e4 5428 rq->curr = rq->idle = idle;
da0c1e65 5429 idle->on_rq = TASK_ON_RQ_QUEUED;
de9b8f5d 5430#ifdef CONFIG_SMP
3ca7a440 5431 idle->on_cpu = 1;
4866cde0 5432#endif
25834c73
PZ
5433 raw_spin_unlock(&rq->lock);
5434 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
1da177e4
LT
5435
5436 /* Set the preempt count _outside_ the spinlocks! */
01028747 5437 init_idle_preempt_count(idle, cpu);
55cd5340 5438
dd41f596
IM
5439 /*
5440 * The idle tasks have their own, simple scheduling class:
5441 */
5442 idle->sched_class = &idle_sched_class;
868baf07 5443 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 5444 vtime_init_idle(idle, cpu);
de9b8f5d 5445#ifdef CONFIG_SMP
f1c6f1a7
CE
5446 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5447#endif
19978ca6
IM
5448}
5449
f82f8042
JL
5450int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5451 const struct cpumask *trial)
5452{
5453 int ret = 1, trial_cpus;
5454 struct dl_bw *cur_dl_b;
5455 unsigned long flags;
5456
bb2bc55a
MG
5457 if (!cpumask_weight(cur))
5458 return ret;
5459
75e23e49 5460 rcu_read_lock_sched();
f82f8042
JL
5461 cur_dl_b = dl_bw_of(cpumask_any(cur));
5462 trial_cpus = cpumask_weight(trial);
5463
5464 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5465 if (cur_dl_b->bw != -1 &&
5466 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5467 ret = 0;
5468 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
75e23e49 5469 rcu_read_unlock_sched();
f82f8042
JL
5470
5471 return ret;
5472}
5473
7f51412a
JL
5474int task_can_attach(struct task_struct *p,
5475 const struct cpumask *cs_cpus_allowed)
5476{
5477 int ret = 0;
5478
5479 /*
5480 * Kthreads which disallow setaffinity shouldn't be moved
d1ccc66d 5481 * to a new cpuset; we don't want to change their CPU
7f51412a
JL
5482 * affinity and isolating such threads by their set of
5483 * allowed nodes is unnecessary. Thus, cpusets are not
5484 * applicable for such threads. This prevents checking for
5485 * success of set_cpus_allowed_ptr() on all attached tasks
5486 * before cpus_allowed may be changed.
5487 */
5488 if (p->flags & PF_NO_SETAFFINITY) {
5489 ret = -EINVAL;
5490 goto out;
5491 }
5492
5493#ifdef CONFIG_SMP
5494 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5495 cs_cpus_allowed)) {
5496 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5497 cs_cpus_allowed);
75e23e49 5498 struct dl_bw *dl_b;
7f51412a
JL
5499 bool overflow;
5500 int cpus;
5501 unsigned long flags;
5502
75e23e49
JL
5503 rcu_read_lock_sched();
5504 dl_b = dl_bw_of(dest_cpu);
7f51412a
JL
5505 raw_spin_lock_irqsave(&dl_b->lock, flags);
5506 cpus = dl_bw_cpus(dest_cpu);
5507 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5508 if (overflow)
5509 ret = -EBUSY;
5510 else {
5511 /*
5512 * We reserve space for this task in the destination
5513 * root_domain, as we can't fail after this point.
5514 * We will free resources in the source root_domain
5515 * later on (see set_cpus_allowed_dl()).
5516 */
5517 __dl_add(dl_b, p->dl.dl_bw);
5518 }
5519 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
75e23e49 5520 rcu_read_unlock_sched();
7f51412a
JL
5521
5522 }
5523#endif
5524out:
5525 return ret;
5526}
5527
1da177e4 5528#ifdef CONFIG_SMP
1da177e4 5529
f2cb1360 5530bool sched_smp_initialized __read_mostly;
e26fbffd 5531
e6628d5b
MG
5532#ifdef CONFIG_NUMA_BALANCING
5533/* Migrate current task p to target_cpu */
5534int migrate_task_to(struct task_struct *p, int target_cpu)
5535{
5536 struct migration_arg arg = { p, target_cpu };
5537 int curr_cpu = task_cpu(p);
5538
5539 if (curr_cpu == target_cpu)
5540 return 0;
5541
0c98d344 5542 if (!cpumask_test_cpu(target_cpu, &p->cpus_allowed))
e6628d5b
MG
5543 return -EINVAL;
5544
5545 /* TODO: This is not properly updating schedstats */
5546
286549dc 5547 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
5548 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5549}
0ec8aa00
PZ
5550
5551/*
5552 * Requeue a task on a given node and accurately track the number of NUMA
5553 * tasks on the runqueues
5554 */
5555void sched_setnuma(struct task_struct *p, int nid)
5556{
da0c1e65 5557 bool queued, running;
eb580751
PZ
5558 struct rq_flags rf;
5559 struct rq *rq;
0ec8aa00 5560
eb580751 5561 rq = task_rq_lock(p, &rf);
da0c1e65 5562 queued = task_on_rq_queued(p);
0ec8aa00
PZ
5563 running = task_current(rq, p);
5564
da0c1e65 5565 if (queued)
1de64443 5566 dequeue_task(rq, p, DEQUEUE_SAVE);
0ec8aa00 5567 if (running)
f3cd1c4e 5568 put_prev_task(rq, p);
0ec8aa00
PZ
5569
5570 p->numa_preferred_nid = nid;
0ec8aa00 5571
da0c1e65 5572 if (queued)
7134b3e9 5573 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
a399d233 5574 if (running)
b2bf6c31 5575 set_curr_task(rq, p);
eb580751 5576 task_rq_unlock(rq, p, &rf);
0ec8aa00 5577}
5cc389bc 5578#endif /* CONFIG_NUMA_BALANCING */
f7b4cddc 5579
1da177e4 5580#ifdef CONFIG_HOTPLUG_CPU
054b9108 5581/*
d1ccc66d 5582 * Ensure that the idle task is using init_mm right before its CPU goes
48c5ccae 5583 * offline.
054b9108 5584 */
48c5ccae 5585void idle_task_exit(void)
1da177e4 5586{
48c5ccae 5587 struct mm_struct *mm = current->active_mm;
e76bd8d9 5588
48c5ccae 5589 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 5590
a53efe5f 5591 if (mm != &init_mm) {
f98db601 5592 switch_mm_irqs_off(mm, &init_mm, current);
a53efe5f
MS
5593 finish_arch_post_lock_switch();
5594 }
48c5ccae 5595 mmdrop(mm);
1da177e4
LT
5596}
5597
5598/*
5d180232
PZ
5599 * Since this CPU is going 'away' for a while, fold any nr_active delta
5600 * we might have. Assumes we're called after migrate_tasks() so that the
d60585c5
TG
5601 * nr_active count is stable. We need to take the teardown thread which
5602 * is calling this into account, so we hand in adjust = 1 to the load
5603 * calculation.
5d180232
PZ
5604 *
5605 * Also see the comment "Global load-average calculations".
1da177e4 5606 */
5d180232 5607static void calc_load_migrate(struct rq *rq)
1da177e4 5608{
d60585c5 5609 long delta = calc_load_fold_active(rq, 1);
5d180232
PZ
5610 if (delta)
5611 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
5612}
5613
3f1d2a31
PZ
5614static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5615{
5616}
5617
5618static const struct sched_class fake_sched_class = {
5619 .put_prev_task = put_prev_task_fake,
5620};
5621
5622static struct task_struct fake_task = {
5623 /*
5624 * Avoid pull_{rt,dl}_task()
5625 */
5626 .prio = MAX_PRIO + 1,
5627 .sched_class = &fake_sched_class,
5628};
5629
48f24c4d 5630/*
48c5ccae
PZ
5631 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5632 * try_to_wake_up()->select_task_rq().
5633 *
5634 * Called with rq->lock held even though we'er in stop_machine() and
5635 * there's no concurrency possible, we hold the required locks anyway
5636 * because of lock validation efforts.
1da177e4 5637 */
8a8c69c3 5638static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
1da177e4 5639{
5e16bbc2 5640 struct rq *rq = dead_rq;
48c5ccae 5641 struct task_struct *next, *stop = rq->stop;
8a8c69c3 5642 struct rq_flags orf = *rf;
48c5ccae 5643 int dest_cpu;
1da177e4
LT
5644
5645 /*
48c5ccae
PZ
5646 * Fudge the rq selection such that the below task selection loop
5647 * doesn't get stuck on the currently eligible stop task.
5648 *
5649 * We're currently inside stop_machine() and the rq is either stuck
5650 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5651 * either way we should never end up calling schedule() until we're
5652 * done here.
1da177e4 5653 */
48c5ccae 5654 rq->stop = NULL;
48f24c4d 5655
77bd3970
FW
5656 /*
5657 * put_prev_task() and pick_next_task() sched
5658 * class method both need to have an up-to-date
5659 * value of rq->clock[_task]
5660 */
5661 update_rq_clock(rq);
5662
5e16bbc2 5663 for (;;) {
48c5ccae
PZ
5664 /*
5665 * There's this thread running, bail when that's the only
d1ccc66d 5666 * remaining thread:
48c5ccae
PZ
5667 */
5668 if (rq->nr_running == 1)
dd41f596 5669 break;
48c5ccae 5670
cbce1a68 5671 /*
d1ccc66d 5672 * pick_next_task() assumes pinned rq->lock:
cbce1a68 5673 */
8a8c69c3 5674 next = pick_next_task(rq, &fake_task, rf);
48c5ccae 5675 BUG_ON(!next);
79c53799 5676 next->sched_class->put_prev_task(rq, next);
e692ab53 5677
5473e0cc
WL
5678 /*
5679 * Rules for changing task_struct::cpus_allowed are holding
5680 * both pi_lock and rq->lock, such that holding either
5681 * stabilizes the mask.
5682 *
5683 * Drop rq->lock is not quite as disastrous as it usually is
5684 * because !cpu_active at this point, which means load-balance
5685 * will not interfere. Also, stop-machine.
5686 */
8a8c69c3 5687 rq_unlock(rq, rf);
5473e0cc 5688 raw_spin_lock(&next->pi_lock);
8a8c69c3 5689 rq_relock(rq, rf);
5473e0cc
WL
5690
5691 /*
5692 * Since we're inside stop-machine, _nothing_ should have
5693 * changed the task, WARN if weird stuff happened, because in
5694 * that case the above rq->lock drop is a fail too.
5695 */
5696 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5697 raw_spin_unlock(&next->pi_lock);
5698 continue;
5699 }
5700
48c5ccae 5701 /* Find suitable destination for @next, with force if needed. */
5e16bbc2 5702 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
8a8c69c3 5703 rq = __migrate_task(rq, rf, next, dest_cpu);
5e16bbc2 5704 if (rq != dead_rq) {
8a8c69c3 5705 rq_unlock(rq, rf);
5e16bbc2 5706 rq = dead_rq;
8a8c69c3
PZ
5707 *rf = orf;
5708 rq_relock(rq, rf);
5e16bbc2 5709 }
5473e0cc 5710 raw_spin_unlock(&next->pi_lock);
1da177e4 5711 }
dce48a84 5712
48c5ccae 5713 rq->stop = stop;
dce48a84 5714}
1da177e4
LT
5715#endif /* CONFIG_HOTPLUG_CPU */
5716
f2cb1360 5717void set_rq_online(struct rq *rq)
1f11eb6a
GH
5718{
5719 if (!rq->online) {
5720 const struct sched_class *class;
5721
c6c4927b 5722 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5723 rq->online = 1;
5724
5725 for_each_class(class) {
5726 if (class->rq_online)
5727 class->rq_online(rq);
5728 }
5729 }
5730}
5731
f2cb1360 5732void set_rq_offline(struct rq *rq)
1f11eb6a
GH
5733{
5734 if (rq->online) {
5735 const struct sched_class *class;
5736
5737 for_each_class(class) {
5738 if (class->rq_offline)
5739 class->rq_offline(rq);
5740 }
5741
c6c4927b 5742 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5743 rq->online = 0;
5744 }
5745}
5746
9cf7243d 5747static void set_cpu_rq_start_time(unsigned int cpu)
1da177e4 5748{
969c7921 5749 struct rq *rq = cpu_rq(cpu);
1da177e4 5750
a803f026
CM
5751 rq->age_stamp = sched_clock_cpu(cpu);
5752}
5753
d1ccc66d
IM
5754/*
5755 * used to mark begin/end of suspend/resume:
5756 */
5757static int num_cpus_frozen;
d35be8ba 5758
1da177e4 5759/*
3a101d05
TH
5760 * Update cpusets according to cpu_active mask. If cpusets are
5761 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
5762 * around partition_sched_domains().
d35be8ba
SB
5763 *
5764 * If we come here as part of a suspend/resume, don't touch cpusets because we
5765 * want to restore it back to its original state upon resume anyway.
1da177e4 5766 */
40190a78 5767static void cpuset_cpu_active(void)
e761b772 5768{
40190a78 5769 if (cpuhp_tasks_frozen) {
d35be8ba
SB
5770 /*
5771 * num_cpus_frozen tracks how many CPUs are involved in suspend
5772 * resume sequence. As long as this is not the last online
5773 * operation in the resume sequence, just build a single sched
5774 * domain, ignoring cpusets.
5775 */
5776 num_cpus_frozen--;
5777 if (likely(num_cpus_frozen)) {
5778 partition_sched_domains(1, NULL, NULL);
135fb3e1 5779 return;
d35be8ba 5780 }
d35be8ba
SB
5781 /*
5782 * This is the last CPU online operation. So fall through and
5783 * restore the original sched domains by considering the
5784 * cpuset configurations.
5785 */
3a101d05 5786 }
30e03acd 5787 cpuset_update_active_cpus();
3a101d05 5788}
e761b772 5789
40190a78 5790static int cpuset_cpu_inactive(unsigned int cpu)
3a101d05 5791{
3c18d447 5792 unsigned long flags;
3c18d447 5793 struct dl_bw *dl_b;
533445c6
OS
5794 bool overflow;
5795 int cpus;
3c18d447 5796
40190a78 5797 if (!cpuhp_tasks_frozen) {
533445c6
OS
5798 rcu_read_lock_sched();
5799 dl_b = dl_bw_of(cpu);
3c18d447 5800
533445c6
OS
5801 raw_spin_lock_irqsave(&dl_b->lock, flags);
5802 cpus = dl_bw_cpus(cpu);
5803 overflow = __dl_overflow(dl_b, cpus, 0, 0);
5804 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3c18d447 5805
533445c6 5806 rcu_read_unlock_sched();
3c18d447 5807
533445c6 5808 if (overflow)
135fb3e1 5809 return -EBUSY;
30e03acd 5810 cpuset_update_active_cpus();
135fb3e1 5811 } else {
d35be8ba
SB
5812 num_cpus_frozen++;
5813 partition_sched_domains(1, NULL, NULL);
e761b772 5814 }
135fb3e1 5815 return 0;
e761b772 5816}
e761b772 5817
40190a78 5818int sched_cpu_activate(unsigned int cpu)
135fb3e1 5819{
7d976699 5820 struct rq *rq = cpu_rq(cpu);
8a8c69c3 5821 struct rq_flags rf;
7d976699 5822
40190a78 5823 set_cpu_active(cpu, true);
135fb3e1 5824
40190a78 5825 if (sched_smp_initialized) {
135fb3e1 5826 sched_domains_numa_masks_set(cpu);
40190a78 5827 cpuset_cpu_active();
e761b772 5828 }
7d976699
TG
5829
5830 /*
5831 * Put the rq online, if not already. This happens:
5832 *
5833 * 1) In the early boot process, because we build the real domains
d1ccc66d 5834 * after all CPUs have been brought up.
7d976699
TG
5835 *
5836 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
5837 * domains.
5838 */
8a8c69c3 5839 rq_lock_irqsave(rq, &rf);
7d976699
TG
5840 if (rq->rd) {
5841 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5842 set_rq_online(rq);
5843 }
8a8c69c3 5844 rq_unlock_irqrestore(rq, &rf);
7d976699
TG
5845
5846 update_max_interval();
5847
40190a78 5848 return 0;
135fb3e1
TG
5849}
5850
40190a78 5851int sched_cpu_deactivate(unsigned int cpu)
135fb3e1 5852{
135fb3e1
TG
5853 int ret;
5854
40190a78 5855 set_cpu_active(cpu, false);
b2454caa
PZ
5856 /*
5857 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
5858 * users of this state to go away such that all new such users will
5859 * observe it.
5860 *
5861 * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might
5862 * not imply sync_sched(), so wait for both.
5863 *
5864 * Do sync before park smpboot threads to take care the rcu boost case.
5865 */
5866 if (IS_ENABLED(CONFIG_PREEMPT))
5867 synchronize_rcu_mult(call_rcu, call_rcu_sched);
5868 else
5869 synchronize_rcu();
40190a78
TG
5870
5871 if (!sched_smp_initialized)
5872 return 0;
5873
5874 ret = cpuset_cpu_inactive(cpu);
5875 if (ret) {
5876 set_cpu_active(cpu, true);
5877 return ret;
135fb3e1 5878 }
40190a78
TG
5879 sched_domains_numa_masks_clear(cpu);
5880 return 0;
135fb3e1
TG
5881}
5882
94baf7a5
TG
5883static void sched_rq_cpu_starting(unsigned int cpu)
5884{
5885 struct rq *rq = cpu_rq(cpu);
5886
5887 rq->calc_load_update = calc_load_update;
94baf7a5
TG
5888 update_max_interval();
5889}
5890
135fb3e1
TG
5891int sched_cpu_starting(unsigned int cpu)
5892{
5893 set_cpu_rq_start_time(cpu);
94baf7a5 5894 sched_rq_cpu_starting(cpu);
135fb3e1 5895 return 0;
e761b772 5896}
e761b772 5897
f2785ddb
TG
5898#ifdef CONFIG_HOTPLUG_CPU
5899int sched_cpu_dying(unsigned int cpu)
5900{
5901 struct rq *rq = cpu_rq(cpu);
8a8c69c3 5902 struct rq_flags rf;
f2785ddb
TG
5903
5904 /* Handle pending wakeups and then migrate everything off */
5905 sched_ttwu_pending();
8a8c69c3
PZ
5906
5907 rq_lock_irqsave(rq, &rf);
f2785ddb
TG
5908 if (rq->rd) {
5909 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5910 set_rq_offline(rq);
5911 }
8a8c69c3 5912 migrate_tasks(rq, &rf);
f2785ddb 5913 BUG_ON(rq->nr_running != 1);
8a8c69c3
PZ
5914 rq_unlock_irqrestore(rq, &rf);
5915
f2785ddb
TG
5916 calc_load_migrate(rq);
5917 update_max_interval();
20a5c8cc 5918 nohz_balance_exit_idle(cpu);
e5ef27d0 5919 hrtick_clear(rq);
f2785ddb
TG
5920 return 0;
5921}
5922#endif
5923
1b568f0a
PZ
5924#ifdef CONFIG_SCHED_SMT
5925DEFINE_STATIC_KEY_FALSE(sched_smt_present);
5926
5927static void sched_init_smt(void)
5928{
5929 /*
5930 * We've enumerated all CPUs and will assume that if any CPU
5931 * has SMT siblings, CPU0 will too.
5932 */
5933 if (cpumask_weight(cpu_smt_mask(0)) > 1)
5934 static_branch_enable(&sched_smt_present);
5935}
5936#else
5937static inline void sched_init_smt(void) { }
5938#endif
5939
1da177e4
LT
5940void __init sched_init_smp(void)
5941{
dcc30a35
RR
5942 cpumask_var_t non_isolated_cpus;
5943
5944 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
5c1e1767 5945
cb83b629
PZ
5946 sched_init_numa();
5947
6acce3ef
PZ
5948 /*
5949 * There's no userspace yet to cause hotplug operations; hence all the
d1ccc66d 5950 * CPU masks are stable and all blatant races in the below code cannot
6acce3ef
PZ
5951 * happen.
5952 */
712555ee 5953 mutex_lock(&sched_domains_mutex);
8d5dc512 5954 sched_init_domains(cpu_active_mask);
dcc30a35
RR
5955 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
5956 if (cpumask_empty(non_isolated_cpus))
5957 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 5958 mutex_unlock(&sched_domains_mutex);
e761b772 5959
5c1e1767 5960 /* Move init over to a non-isolated CPU */
dcc30a35 5961 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 5962 BUG();
19978ca6 5963 sched_init_granularity();
dcc30a35 5964 free_cpumask_var(non_isolated_cpus);
4212823f 5965
0e3900e6 5966 init_sched_rt_class();
1baca4ce 5967 init_sched_dl_class();
1b568f0a
PZ
5968
5969 sched_init_smt();
5970
e26fbffd 5971 sched_smp_initialized = true;
1da177e4 5972}
e26fbffd
TG
5973
5974static int __init migration_init(void)
5975{
94baf7a5 5976 sched_rq_cpu_starting(smp_processor_id());
e26fbffd 5977 return 0;
1da177e4 5978}
e26fbffd
TG
5979early_initcall(migration_init);
5980
1da177e4
LT
5981#else
5982void __init sched_init_smp(void)
5983{
19978ca6 5984 sched_init_granularity();
1da177e4
LT
5985}
5986#endif /* CONFIG_SMP */
5987
5988int in_sched_functions(unsigned long addr)
5989{
1da177e4
LT
5990 return in_lock_functions(addr) ||
5991 (addr >= (unsigned long)__sched_text_start
5992 && addr < (unsigned long)__sched_text_end);
5993}
5994
029632fb 5995#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
5996/*
5997 * Default task group.
5998 * Every task in system belongs to this group at bootup.
5999 */
029632fb 6000struct task_group root_task_group;
35cf4e50 6001LIST_HEAD(task_groups);
b0367629
WL
6002
6003/* Cacheline aligned slab cache for task_group */
6004static struct kmem_cache *task_group_cache __read_mostly;
052f1dc7 6005#endif
6f505b16 6006
e6252c3e 6007DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
10e2f1ac 6008DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
6f505b16 6009
9dcb8b68
LT
6010#define WAIT_TABLE_BITS 8
6011#define WAIT_TABLE_SIZE (1 << WAIT_TABLE_BITS)
6012static wait_queue_head_t bit_wait_table[WAIT_TABLE_SIZE] __cacheline_aligned;
6013
6014wait_queue_head_t *bit_waitqueue(void *word, int bit)
6015{
6016 const int shift = BITS_PER_LONG == 32 ? 5 : 6;
6017 unsigned long val = (unsigned long)word << shift | bit;
6018
6019 return bit_wait_table + hash_long(val, WAIT_TABLE_BITS);
6020}
6021EXPORT_SYMBOL(bit_waitqueue);
6022
1da177e4
LT
6023void __init sched_init(void)
6024{
dd41f596 6025 int i, j;
434d53b0
MT
6026 unsigned long alloc_size = 0, ptr;
6027
9881b024
PZ
6028 sched_clock_init();
6029
9dcb8b68
LT
6030 for (i = 0; i < WAIT_TABLE_SIZE; i++)
6031 init_waitqueue_head(bit_wait_table + i);
6032
434d53b0
MT
6033#ifdef CONFIG_FAIR_GROUP_SCHED
6034 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6035#endif
6036#ifdef CONFIG_RT_GROUP_SCHED
6037 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6038#endif
434d53b0 6039 if (alloc_size) {
36b7b6d4 6040 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
6041
6042#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 6043 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
6044 ptr += nr_cpu_ids * sizeof(void **);
6045
07e06b01 6046 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 6047 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 6048
6d6bc0ad 6049#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 6050#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6051 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
6052 ptr += nr_cpu_ids * sizeof(void **);
6053
07e06b01 6054 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
6055 ptr += nr_cpu_ids * sizeof(void **);
6056
6d6bc0ad 6057#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 6058 }
df7c8e84 6059#ifdef CONFIG_CPUMASK_OFFSTACK
b74e6278
AT
6060 for_each_possible_cpu(i) {
6061 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
6062 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
10e2f1ac
PZ
6063 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
6064 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
434d53b0 6065 }
b74e6278 6066#endif /* CONFIG_CPUMASK_OFFSTACK */
dd41f596 6067
d1ccc66d
IM
6068 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
6069 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
332ac17e 6070
57d885fe
GH
6071#ifdef CONFIG_SMP
6072 init_defrootdomain();
6073#endif
6074
d0b27fa7 6075#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6076 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 6077 global_rt_period(), global_rt_runtime());
6d6bc0ad 6078#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6079
7c941438 6080#ifdef CONFIG_CGROUP_SCHED
b0367629
WL
6081 task_group_cache = KMEM_CACHE(task_group, 0);
6082
07e06b01
YZ
6083 list_add(&root_task_group.list, &task_groups);
6084 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 6085 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 6086 autogroup_init(&init_task);
7c941438 6087#endif /* CONFIG_CGROUP_SCHED */
6f505b16 6088
0a945022 6089 for_each_possible_cpu(i) {
70b97a7f 6090 struct rq *rq;
1da177e4
LT
6091
6092 rq = cpu_rq(i);
05fa785c 6093 raw_spin_lock_init(&rq->lock);
7897986b 6094 rq->nr_running = 0;
dce48a84
TG
6095 rq->calc_load_active = 0;
6096 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 6097 init_cfs_rq(&rq->cfs);
07c54f7a
AV
6098 init_rt_rq(&rq->rt);
6099 init_dl_rq(&rq->dl);
dd41f596 6100#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 6101 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 6102 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9c2791f9 6103 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
354d60c2 6104 /*
d1ccc66d 6105 * How much CPU bandwidth does root_task_group get?
354d60c2
DG
6106 *
6107 * In case of task-groups formed thr' the cgroup filesystem, it
d1ccc66d
IM
6108 * gets 100% of the CPU resources in the system. This overall
6109 * system CPU resource is divided among the tasks of
07e06b01 6110 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
6111 * based on each entity's (task or task-group's) weight
6112 * (se->load.weight).
6113 *
07e06b01 6114 * In other words, if root_task_group has 10 tasks of weight
354d60c2 6115 * 1024) and two child groups A0 and A1 (of weight 1024 each),
d1ccc66d 6116 * then A0's share of the CPU resource is:
354d60c2 6117 *
0d905bca 6118 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 6119 *
07e06b01
YZ
6120 * We achieve this by letting root_task_group's tasks sit
6121 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 6122 */
ab84d31e 6123 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 6124 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
6125#endif /* CONFIG_FAIR_GROUP_SCHED */
6126
6127 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 6128#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6129 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 6130#endif
1da177e4 6131
dd41f596
IM
6132 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6133 rq->cpu_load[j] = 0;
fdf3e95d 6134
1da177e4 6135#ifdef CONFIG_SMP
41c7ce9a 6136 rq->sd = NULL;
57d885fe 6137 rq->rd = NULL;
ca6d75e6 6138 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
e3fca9e7 6139 rq->balance_callback = NULL;
1da177e4 6140 rq->active_balance = 0;
dd41f596 6141 rq->next_balance = jiffies;
1da177e4 6142 rq->push_cpu = 0;
0a2966b4 6143 rq->cpu = i;
1f11eb6a 6144 rq->online = 0;
eae0c9df
MG
6145 rq->idle_stamp = 0;
6146 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 6147 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
6148
6149 INIT_LIST_HEAD(&rq->cfs_tasks);
6150
dc938520 6151 rq_attach_root(rq, &def_root_domain);
3451d024 6152#ifdef CONFIG_NO_HZ_COMMON
9fd81dd5 6153 rq->last_load_update_tick = jiffies;
1c792db7 6154 rq->nohz_flags = 0;
83cd4fe2 6155#endif
265f22a9
FW
6156#ifdef CONFIG_NO_HZ_FULL
6157 rq->last_sched_tick = 0;
6158#endif
9fd81dd5 6159#endif /* CONFIG_SMP */
8f4d37ec 6160 init_rq_hrtick(rq);
1da177e4 6161 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
6162 }
6163
2dd73a4f 6164 set_load_weight(&init_task);
b50f60ce 6165
1da177e4
LT
6166 /*
6167 * The boot idle thread does lazy MMU switching as well:
6168 */
f1f10076 6169 mmgrab(&init_mm);
1da177e4
LT
6170 enter_lazy_tlb(&init_mm, current);
6171
6172 /*
6173 * Make us the idle thread. Technically, schedule() should not be
6174 * called from this thread, however somewhere below it might be,
6175 * but because we are the idle thread, we just pick up running again
6176 * when this runqueue becomes "idle".
6177 */
6178 init_idle(current, smp_processor_id());
dce48a84
TG
6179
6180 calc_load_update = jiffies + LOAD_FREQ;
6181
bf4d83f6 6182#ifdef CONFIG_SMP
bdddd296
RR
6183 /* May be allocated at isolcpus cmdline parse time */
6184 if (cpu_isolated_map == NULL)
6185 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 6186 idle_thread_set_boot_cpu();
9cf7243d 6187 set_cpu_rq_start_time(smp_processor_id());
029632fb
PZ
6188#endif
6189 init_sched_fair_class();
6a7b3dc3 6190
4698f88c
JP
6191 init_schedstats();
6192
6892b75e 6193 scheduler_running = 1;
1da177e4
LT
6194}
6195
d902db1e 6196#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
6197static inline int preempt_count_equals(int preempt_offset)
6198{
da7142e2 6199 int nested = preempt_count() + rcu_preempt_depth();
e4aafea2 6200
4ba8216c 6201 return (nested == preempt_offset);
e4aafea2
FW
6202}
6203
d894837f 6204void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6205{
8eb23b9f
PZ
6206 /*
6207 * Blocking primitives will set (and therefore destroy) current->state,
6208 * since we will exit with TASK_RUNNING make sure we enter with it,
6209 * otherwise we will destroy state.
6210 */
00845eb9 6211 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
8eb23b9f
PZ
6212 "do not call blocking ops when !TASK_RUNNING; "
6213 "state=%lx set at [<%p>] %pS\n",
6214 current->state,
6215 (void *)current->task_state_change,
00845eb9 6216 (void *)current->task_state_change);
8eb23b9f 6217
3427445a
PZ
6218 ___might_sleep(file, line, preempt_offset);
6219}
6220EXPORT_SYMBOL(__might_sleep);
6221
6222void ___might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6223{
d1ccc66d
IM
6224 /* Ratelimiting timestamp: */
6225 static unsigned long prev_jiffy;
6226
d1c6d149 6227 unsigned long preempt_disable_ip;
1da177e4 6228
d1ccc66d
IM
6229 /* WARN_ON_ONCE() by default, no rate limit required: */
6230 rcu_sleep_check();
6231
db273be2
TG
6232 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6233 !is_idle_task(current)) ||
1c3c5eab
TG
6234 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
6235 oops_in_progress)
aef745fc 6236 return;
1c3c5eab 6237
aef745fc
IM
6238 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6239 return;
6240 prev_jiffy = jiffies;
6241
d1ccc66d 6242 /* Save this before calling printk(), since that will clobber it: */
d1c6d149
VN
6243 preempt_disable_ip = get_preempt_disable_ip(current);
6244
3df0fc5b
PZ
6245 printk(KERN_ERR
6246 "BUG: sleeping function called from invalid context at %s:%d\n",
6247 file, line);
6248 printk(KERN_ERR
6249 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6250 in_atomic(), irqs_disabled(),
6251 current->pid, current->comm);
aef745fc 6252
a8b686b3
ES
6253 if (task_stack_end_corrupted(current))
6254 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6255
aef745fc
IM
6256 debug_show_held_locks(current);
6257 if (irqs_disabled())
6258 print_irqtrace_events(current);
d1c6d149
VN
6259 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6260 && !preempt_count_equals(preempt_offset)) {
8f47b187 6261 pr_err("Preemption disabled at:");
d1c6d149 6262 print_ip_sym(preempt_disable_ip);
8f47b187
TG
6263 pr_cont("\n");
6264 }
aef745fc 6265 dump_stack();
f0b22e39 6266 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
1da177e4 6267}
3427445a 6268EXPORT_SYMBOL(___might_sleep);
1da177e4
LT
6269#endif
6270
6271#ifdef CONFIG_MAGIC_SYSRQ
dbc7f069 6272void normalize_rt_tasks(void)
3a5e4dc1 6273{
dbc7f069 6274 struct task_struct *g, *p;
d50dde5a
DF
6275 struct sched_attr attr = {
6276 .sched_policy = SCHED_NORMAL,
6277 };
1da177e4 6278
3472eaa1 6279 read_lock(&tasklist_lock);
5d07f420 6280 for_each_process_thread(g, p) {
178be793
IM
6281 /*
6282 * Only normalize user tasks:
6283 */
3472eaa1 6284 if (p->flags & PF_KTHREAD)
178be793
IM
6285 continue;
6286
4fa8d299
JP
6287 p->se.exec_start = 0;
6288 schedstat_set(p->se.statistics.wait_start, 0);
6289 schedstat_set(p->se.statistics.sleep_start, 0);
6290 schedstat_set(p->se.statistics.block_start, 0);
dd41f596 6291
aab03e05 6292 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
6293 /*
6294 * Renice negative nice level userspace
6295 * tasks back to 0:
6296 */
3472eaa1 6297 if (task_nice(p) < 0)
dd41f596 6298 set_user_nice(p, 0);
1da177e4 6299 continue;
dd41f596 6300 }
1da177e4 6301
dbc7f069 6302 __sched_setscheduler(p, &attr, false, false);
5d07f420 6303 }
3472eaa1 6304 read_unlock(&tasklist_lock);
1da177e4
LT
6305}
6306
6307#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 6308
67fc4e0c 6309#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 6310/*
67fc4e0c 6311 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
6312 *
6313 * They can only be called when the whole system has been
6314 * stopped - every CPU needs to be quiescent, and no scheduling
6315 * activity can take place. Using them for anything else would
6316 * be a serious bug, and as a result, they aren't even visible
6317 * under any other configuration.
6318 */
6319
6320/**
d1ccc66d 6321 * curr_task - return the current task for a given CPU.
1df5c10a
LT
6322 * @cpu: the processor in question.
6323 *
6324 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
6325 *
6326 * Return: The current task for @cpu.
1df5c10a 6327 */
36c8b586 6328struct task_struct *curr_task(int cpu)
1df5c10a
LT
6329{
6330 return cpu_curr(cpu);
6331}
6332
67fc4e0c
JW
6333#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6334
6335#ifdef CONFIG_IA64
1df5c10a 6336/**
d1ccc66d 6337 * set_curr_task - set the current task for a given CPU.
1df5c10a
LT
6338 * @cpu: the processor in question.
6339 * @p: the task pointer to set.
6340 *
6341 * Description: This function must only be used when non-maskable interrupts
41a2d6cf 6342 * are serviced on a separate stack. It allows the architecture to switch the
d1ccc66d 6343 * notion of the current task on a CPU in a non-blocking manner. This function
1df5c10a
LT
6344 * must be called with all CPU's synchronized, and interrupts disabled, the
6345 * and caller must save the original value of the current task (see
6346 * curr_task() above) and restore that value before reenabling interrupts and
6347 * re-starting the system.
6348 *
6349 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6350 */
a458ae2e 6351void ia64_set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
6352{
6353 cpu_curr(cpu) = p;
6354}
6355
6356#endif
29f59db3 6357
7c941438 6358#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
6359/* task_group_lock serializes the addition/removal of task groups */
6360static DEFINE_SPINLOCK(task_group_lock);
6361
2f5177f0 6362static void sched_free_group(struct task_group *tg)
bccbe08a
PZ
6363{
6364 free_fair_sched_group(tg);
6365 free_rt_sched_group(tg);
e9aa1dd1 6366 autogroup_free(tg);
b0367629 6367 kmem_cache_free(task_group_cache, tg);
bccbe08a
PZ
6368}
6369
6370/* allocate runqueue etc for a new task group */
ec7dc8ac 6371struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
6372{
6373 struct task_group *tg;
bccbe08a 6374
b0367629 6375 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
bccbe08a
PZ
6376 if (!tg)
6377 return ERR_PTR(-ENOMEM);
6378
ec7dc8ac 6379 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
6380 goto err;
6381
ec7dc8ac 6382 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
6383 goto err;
6384
ace783b9
LZ
6385 return tg;
6386
6387err:
2f5177f0 6388 sched_free_group(tg);
ace783b9
LZ
6389 return ERR_PTR(-ENOMEM);
6390}
6391
6392void sched_online_group(struct task_group *tg, struct task_group *parent)
6393{
6394 unsigned long flags;
6395
8ed36996 6396 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 6397 list_add_rcu(&tg->list, &task_groups);
f473aa5e 6398
d1ccc66d
IM
6399 /* Root should already exist: */
6400 WARN_ON(!parent);
f473aa5e
PZ
6401
6402 tg->parent = parent;
f473aa5e 6403 INIT_LIST_HEAD(&tg->children);
09f2724a 6404 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 6405 spin_unlock_irqrestore(&task_group_lock, flags);
8663e24d
PZ
6406
6407 online_fair_sched_group(tg);
29f59db3
SV
6408}
6409
9b5b7751 6410/* rcu callback to free various structures associated with a task group */
2f5177f0 6411static void sched_free_group_rcu(struct rcu_head *rhp)
29f59db3 6412{
d1ccc66d 6413 /* Now it should be safe to free those cfs_rqs: */
2f5177f0 6414 sched_free_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
6415}
6416
4cf86d77 6417void sched_destroy_group(struct task_group *tg)
ace783b9 6418{
d1ccc66d 6419 /* Wait for possible concurrent references to cfs_rqs complete: */
2f5177f0 6420 call_rcu(&tg->rcu, sched_free_group_rcu);
ace783b9
LZ
6421}
6422
6423void sched_offline_group(struct task_group *tg)
29f59db3 6424{
8ed36996 6425 unsigned long flags;
29f59db3 6426
d1ccc66d 6427 /* End participation in shares distribution: */
6fe1f348 6428 unregister_fair_sched_group(tg);
3d4b47b4
PZ
6429
6430 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 6431 list_del_rcu(&tg->list);
f473aa5e 6432 list_del_rcu(&tg->siblings);
8ed36996 6433 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
6434}
6435
ea86cb4b 6436static void sched_change_group(struct task_struct *tsk, int type)
29f59db3 6437{
8323f26c 6438 struct task_group *tg;
29f59db3 6439
f7b8a47d
KT
6440 /*
6441 * All callers are synchronized by task_rq_lock(); we do not use RCU
6442 * which is pointless here. Thus, we pass "true" to task_css_check()
6443 * to prevent lockdep warnings.
6444 */
6445 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
6446 struct task_group, css);
6447 tg = autogroup_task_group(tsk, tg);
6448 tsk->sched_task_group = tg;
6449
810b3817 6450#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
6451 if (tsk->sched_class->task_change_group)
6452 tsk->sched_class->task_change_group(tsk, type);
b2b5ce02 6453 else
810b3817 6454#endif
b2b5ce02 6455 set_task_rq(tsk, task_cpu(tsk));
ea86cb4b
VG
6456}
6457
6458/*
6459 * Change task's runqueue when it moves between groups.
6460 *
6461 * The caller of this function should have put the task in its new group by
6462 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
6463 * its new group.
6464 */
6465void sched_move_task(struct task_struct *tsk)
6466{
7a57f32a
PZ
6467 int queued, running, queue_flags =
6468 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
ea86cb4b
VG
6469 struct rq_flags rf;
6470 struct rq *rq;
6471
6472 rq = task_rq_lock(tsk, &rf);
1b1d6225 6473 update_rq_clock(rq);
ea86cb4b
VG
6474
6475 running = task_current(rq, tsk);
6476 queued = task_on_rq_queued(tsk);
6477
6478 if (queued)
7a57f32a 6479 dequeue_task(rq, tsk, queue_flags);
bb3bac2c 6480 if (running)
ea86cb4b
VG
6481 put_prev_task(rq, tsk);
6482
6483 sched_change_group(tsk, TASK_MOVE_GROUP);
810b3817 6484
da0c1e65 6485 if (queued)
7a57f32a 6486 enqueue_task(rq, tsk, queue_flags);
bb3bac2c 6487 if (running)
b2bf6c31 6488 set_curr_task(rq, tsk);
29f59db3 6489
eb580751 6490 task_rq_unlock(rq, tsk, &rf);
29f59db3 6491}
7c941438 6492#endif /* CONFIG_CGROUP_SCHED */
29f59db3 6493
a790de99
PT
6494#ifdef CONFIG_RT_GROUP_SCHED
6495/*
6496 * Ensure that the real time constraints are schedulable.
6497 */
6498static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 6499
9a7e0b18
PZ
6500/* Must be called with tasklist_lock held */
6501static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 6502{
9a7e0b18 6503 struct task_struct *g, *p;
b40b2e8e 6504
1fe89e1b
PZ
6505 /*
6506 * Autogroups do not have RT tasks; see autogroup_create().
6507 */
6508 if (task_group_is_autogroup(tg))
6509 return 0;
6510
5d07f420 6511 for_each_process_thread(g, p) {
8651c658 6512 if (rt_task(p) && task_group(p) == tg)
9a7e0b18 6513 return 1;
5d07f420 6514 }
b40b2e8e 6515
9a7e0b18
PZ
6516 return 0;
6517}
b40b2e8e 6518
9a7e0b18
PZ
6519struct rt_schedulable_data {
6520 struct task_group *tg;
6521 u64 rt_period;
6522 u64 rt_runtime;
6523};
b40b2e8e 6524
a790de99 6525static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
6526{
6527 struct rt_schedulable_data *d = data;
6528 struct task_group *child;
6529 unsigned long total, sum = 0;
6530 u64 period, runtime;
b40b2e8e 6531
9a7e0b18
PZ
6532 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6533 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 6534
9a7e0b18
PZ
6535 if (tg == d->tg) {
6536 period = d->rt_period;
6537 runtime = d->rt_runtime;
b40b2e8e 6538 }
b40b2e8e 6539
4653f803
PZ
6540 /*
6541 * Cannot have more runtime than the period.
6542 */
6543 if (runtime > period && runtime != RUNTIME_INF)
6544 return -EINVAL;
6f505b16 6545
4653f803
PZ
6546 /*
6547 * Ensure we don't starve existing RT tasks.
6548 */
9a7e0b18
PZ
6549 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
6550 return -EBUSY;
6f505b16 6551
9a7e0b18 6552 total = to_ratio(period, runtime);
6f505b16 6553
4653f803
PZ
6554 /*
6555 * Nobody can have more than the global setting allows.
6556 */
6557 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
6558 return -EINVAL;
6f505b16 6559
4653f803
PZ
6560 /*
6561 * The sum of our children's runtime should not exceed our own.
6562 */
9a7e0b18
PZ
6563 list_for_each_entry_rcu(child, &tg->children, siblings) {
6564 period = ktime_to_ns(child->rt_bandwidth.rt_period);
6565 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 6566
9a7e0b18
PZ
6567 if (child == d->tg) {
6568 period = d->rt_period;
6569 runtime = d->rt_runtime;
6570 }
6f505b16 6571
9a7e0b18 6572 sum += to_ratio(period, runtime);
9f0c1e56 6573 }
6f505b16 6574
9a7e0b18
PZ
6575 if (sum > total)
6576 return -EINVAL;
6577
6578 return 0;
6f505b16
PZ
6579}
6580
9a7e0b18 6581static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 6582{
8277434e
PT
6583 int ret;
6584
9a7e0b18
PZ
6585 struct rt_schedulable_data data = {
6586 .tg = tg,
6587 .rt_period = period,
6588 .rt_runtime = runtime,
6589 };
6590
8277434e
PT
6591 rcu_read_lock();
6592 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
6593 rcu_read_unlock();
6594
6595 return ret;
521f1a24
DG
6596}
6597
ab84d31e 6598static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 6599 u64 rt_period, u64 rt_runtime)
6f505b16 6600{
ac086bc2 6601 int i, err = 0;
9f0c1e56 6602
2636ed5f
PZ
6603 /*
6604 * Disallowing the root group RT runtime is BAD, it would disallow the
6605 * kernel creating (and or operating) RT threads.
6606 */
6607 if (tg == &root_task_group && rt_runtime == 0)
6608 return -EINVAL;
6609
6610 /* No period doesn't make any sense. */
6611 if (rt_period == 0)
6612 return -EINVAL;
6613
9f0c1e56 6614 mutex_lock(&rt_constraints_mutex);
521f1a24 6615 read_lock(&tasklist_lock);
9a7e0b18
PZ
6616 err = __rt_schedulable(tg, rt_period, rt_runtime);
6617 if (err)
9f0c1e56 6618 goto unlock;
ac086bc2 6619
0986b11b 6620 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
6621 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
6622 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
6623
6624 for_each_possible_cpu(i) {
6625 struct rt_rq *rt_rq = tg->rt_rq[i];
6626
0986b11b 6627 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 6628 rt_rq->rt_runtime = rt_runtime;
0986b11b 6629 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 6630 }
0986b11b 6631 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 6632unlock:
521f1a24 6633 read_unlock(&tasklist_lock);
9f0c1e56
PZ
6634 mutex_unlock(&rt_constraints_mutex);
6635
6636 return err;
6f505b16
PZ
6637}
6638
25cc7da7 6639static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
6640{
6641 u64 rt_runtime, rt_period;
6642
6643 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6644 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
6645 if (rt_runtime_us < 0)
6646 rt_runtime = RUNTIME_INF;
6647
ab84d31e 6648 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
6649}
6650
25cc7da7 6651static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
6652{
6653 u64 rt_runtime_us;
6654
d0b27fa7 6655 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
6656 return -1;
6657
d0b27fa7 6658 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
6659 do_div(rt_runtime_us, NSEC_PER_USEC);
6660 return rt_runtime_us;
6661}
d0b27fa7 6662
ce2f5fe4 6663static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
d0b27fa7
PZ
6664{
6665 u64 rt_runtime, rt_period;
6666
ce2f5fe4 6667 rt_period = rt_period_us * NSEC_PER_USEC;
d0b27fa7
PZ
6668 rt_runtime = tg->rt_bandwidth.rt_runtime;
6669
ab84d31e 6670 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
6671}
6672
25cc7da7 6673static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
6674{
6675 u64 rt_period_us;
6676
6677 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
6678 do_div(rt_period_us, NSEC_PER_USEC);
6679 return rt_period_us;
6680}
332ac17e 6681#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6682
332ac17e 6683#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
6684static int sched_rt_global_constraints(void)
6685{
6686 int ret = 0;
6687
6688 mutex_lock(&rt_constraints_mutex);
9a7e0b18 6689 read_lock(&tasklist_lock);
4653f803 6690 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 6691 read_unlock(&tasklist_lock);
d0b27fa7
PZ
6692 mutex_unlock(&rt_constraints_mutex);
6693
6694 return ret;
6695}
54e99124 6696
25cc7da7 6697static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
6698{
6699 /* Don't accept realtime tasks when there is no way for them to run */
6700 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
6701 return 0;
6702
6703 return 1;
6704}
6705
6d6bc0ad 6706#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
6707static int sched_rt_global_constraints(void)
6708{
ac086bc2 6709 unsigned long flags;
8c5e9554 6710 int i;
ec5d4989 6711
0986b11b 6712 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
6713 for_each_possible_cpu(i) {
6714 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
6715
0986b11b 6716 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 6717 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 6718 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 6719 }
0986b11b 6720 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 6721
8c5e9554 6722 return 0;
d0b27fa7 6723}
6d6bc0ad 6724#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6725
a1963b81 6726static int sched_dl_global_validate(void)
332ac17e 6727{
1724813d
PZ
6728 u64 runtime = global_rt_runtime();
6729 u64 period = global_rt_period();
332ac17e 6730 u64 new_bw = to_ratio(period, runtime);
f10e00f4 6731 struct dl_bw *dl_b;
1724813d 6732 int cpu, ret = 0;
49516342 6733 unsigned long flags;
332ac17e
DF
6734
6735 /*
6736 * Here we want to check the bandwidth not being set to some
6737 * value smaller than the currently allocated bandwidth in
6738 * any of the root_domains.
6739 *
6740 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
6741 * cycling on root_domains... Discussion on different/better
6742 * solutions is welcome!
6743 */
1724813d 6744 for_each_possible_cpu(cpu) {
f10e00f4
KT
6745 rcu_read_lock_sched();
6746 dl_b = dl_bw_of(cpu);
332ac17e 6747
49516342 6748 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d
PZ
6749 if (new_bw < dl_b->total_bw)
6750 ret = -EBUSY;
49516342 6751 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
1724813d 6752
f10e00f4
KT
6753 rcu_read_unlock_sched();
6754
1724813d
PZ
6755 if (ret)
6756 break;
332ac17e
DF
6757 }
6758
1724813d 6759 return ret;
332ac17e
DF
6760}
6761
1724813d 6762static void sched_dl_do_global(void)
ce0dbbbb 6763{
1724813d 6764 u64 new_bw = -1;
f10e00f4 6765 struct dl_bw *dl_b;
1724813d 6766 int cpu;
49516342 6767 unsigned long flags;
ce0dbbbb 6768
1724813d
PZ
6769 def_dl_bandwidth.dl_period = global_rt_period();
6770 def_dl_bandwidth.dl_runtime = global_rt_runtime();
6771
6772 if (global_rt_runtime() != RUNTIME_INF)
6773 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
6774
6775 /*
6776 * FIXME: As above...
6777 */
6778 for_each_possible_cpu(cpu) {
f10e00f4
KT
6779 rcu_read_lock_sched();
6780 dl_b = dl_bw_of(cpu);
1724813d 6781
49516342 6782 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d 6783 dl_b->bw = new_bw;
49516342 6784 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
f10e00f4
KT
6785
6786 rcu_read_unlock_sched();
ce0dbbbb 6787 }
1724813d
PZ
6788}
6789
6790static int sched_rt_global_validate(void)
6791{
6792 if (sysctl_sched_rt_period <= 0)
6793 return -EINVAL;
6794
e9e7cb38
JL
6795 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
6796 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
1724813d
PZ
6797 return -EINVAL;
6798
6799 return 0;
6800}
6801
6802static void sched_rt_do_global(void)
6803{
6804 def_rt_bandwidth.rt_runtime = global_rt_runtime();
6805 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
6806}
6807
d0b27fa7 6808int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 6809 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
6810 loff_t *ppos)
6811{
d0b27fa7
PZ
6812 int old_period, old_runtime;
6813 static DEFINE_MUTEX(mutex);
1724813d 6814 int ret;
d0b27fa7
PZ
6815
6816 mutex_lock(&mutex);
6817 old_period = sysctl_sched_rt_period;
6818 old_runtime = sysctl_sched_rt_runtime;
6819
8d65af78 6820 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
6821
6822 if (!ret && write) {
1724813d
PZ
6823 ret = sched_rt_global_validate();
6824 if (ret)
6825 goto undo;
6826
a1963b81 6827 ret = sched_dl_global_validate();
1724813d
PZ
6828 if (ret)
6829 goto undo;
6830
a1963b81 6831 ret = sched_rt_global_constraints();
1724813d
PZ
6832 if (ret)
6833 goto undo;
6834
6835 sched_rt_do_global();
6836 sched_dl_do_global();
6837 }
6838 if (0) {
6839undo:
6840 sysctl_sched_rt_period = old_period;
6841 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
6842 }
6843 mutex_unlock(&mutex);
6844
6845 return ret;
6846}
68318b8e 6847
1724813d 6848int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
6849 void __user *buffer, size_t *lenp,
6850 loff_t *ppos)
6851{
6852 int ret;
332ac17e 6853 static DEFINE_MUTEX(mutex);
332ac17e
DF
6854
6855 mutex_lock(&mutex);
332ac17e 6856 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d1ccc66d
IM
6857 /*
6858 * Make sure that internally we keep jiffies.
6859 * Also, writing zero resets the timeslice to default:
6860 */
332ac17e 6861 if (!ret && write) {
975e155e
SZ
6862 sched_rr_timeslice =
6863 sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
6864 msecs_to_jiffies(sysctl_sched_rr_timeslice);
332ac17e
DF
6865 }
6866 mutex_unlock(&mutex);
332ac17e
DF
6867 return ret;
6868}
6869
052f1dc7 6870#ifdef CONFIG_CGROUP_SCHED
68318b8e 6871
a7c6d554 6872static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 6873{
a7c6d554 6874 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
6875}
6876
eb95419b
TH
6877static struct cgroup_subsys_state *
6878cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 6879{
eb95419b
TH
6880 struct task_group *parent = css_tg(parent_css);
6881 struct task_group *tg;
68318b8e 6882
eb95419b 6883 if (!parent) {
68318b8e 6884 /* This is early initialization for the top cgroup */
07e06b01 6885 return &root_task_group.css;
68318b8e
SV
6886 }
6887
ec7dc8ac 6888 tg = sched_create_group(parent);
68318b8e
SV
6889 if (IS_ERR(tg))
6890 return ERR_PTR(-ENOMEM);
6891
68318b8e
SV
6892 return &tg->css;
6893}
6894
96b77745
KK
6895/* Expose task group only after completing cgroup initialization */
6896static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
6897{
6898 struct task_group *tg = css_tg(css);
6899 struct task_group *parent = css_tg(css->parent);
6900
6901 if (parent)
6902 sched_online_group(tg, parent);
6903 return 0;
6904}
6905
2f5177f0 6906static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
ace783b9 6907{
eb95419b 6908 struct task_group *tg = css_tg(css);
ace783b9 6909
2f5177f0 6910 sched_offline_group(tg);
ace783b9
LZ
6911}
6912
eb95419b 6913static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 6914{
eb95419b 6915 struct task_group *tg = css_tg(css);
68318b8e 6916
2f5177f0
PZ
6917 /*
6918 * Relies on the RCU grace period between css_released() and this.
6919 */
6920 sched_free_group(tg);
ace783b9
LZ
6921}
6922
ea86cb4b
VG
6923/*
6924 * This is called before wake_up_new_task(), therefore we really only
6925 * have to set its group bits, all the other stuff does not apply.
6926 */
b53202e6 6927static void cpu_cgroup_fork(struct task_struct *task)
eeb61e53 6928{
ea86cb4b
VG
6929 struct rq_flags rf;
6930 struct rq *rq;
6931
6932 rq = task_rq_lock(task, &rf);
6933
80f5c1b8 6934 update_rq_clock(rq);
ea86cb4b
VG
6935 sched_change_group(task, TASK_SET_GROUP);
6936
6937 task_rq_unlock(rq, task, &rf);
eeb61e53
KT
6938}
6939
1f7dd3e5 6940static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
68318b8e 6941{
bb9d97b6 6942 struct task_struct *task;
1f7dd3e5 6943 struct cgroup_subsys_state *css;
7dc603c9 6944 int ret = 0;
bb9d97b6 6945
1f7dd3e5 6946 cgroup_taskset_for_each(task, css, tset) {
b68aa230 6947#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 6948 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 6949 return -EINVAL;
b68aa230 6950#else
bb9d97b6
TH
6951 /* We don't support RT-tasks being in separate groups */
6952 if (task->sched_class != &fair_sched_class)
6953 return -EINVAL;
b68aa230 6954#endif
7dc603c9
PZ
6955 /*
6956 * Serialize against wake_up_new_task() such that if its
6957 * running, we're sure to observe its full state.
6958 */
6959 raw_spin_lock_irq(&task->pi_lock);
6960 /*
6961 * Avoid calling sched_move_task() before wake_up_new_task()
6962 * has happened. This would lead to problems with PELT, due to
6963 * move wanting to detach+attach while we're not attached yet.
6964 */
6965 if (task->state == TASK_NEW)
6966 ret = -EINVAL;
6967 raw_spin_unlock_irq(&task->pi_lock);
6968
6969 if (ret)
6970 break;
bb9d97b6 6971 }
7dc603c9 6972 return ret;
be367d09 6973}
68318b8e 6974
1f7dd3e5 6975static void cpu_cgroup_attach(struct cgroup_taskset *tset)
68318b8e 6976{
bb9d97b6 6977 struct task_struct *task;
1f7dd3e5 6978 struct cgroup_subsys_state *css;
bb9d97b6 6979
1f7dd3e5 6980 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 6981 sched_move_task(task);
68318b8e
SV
6982}
6983
052f1dc7 6984#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
6985static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
6986 struct cftype *cftype, u64 shareval)
68318b8e 6987{
182446d0 6988 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
6989}
6990
182446d0
TH
6991static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
6992 struct cftype *cft)
68318b8e 6993{
182446d0 6994 struct task_group *tg = css_tg(css);
68318b8e 6995
c8b28116 6996 return (u64) scale_load_down(tg->shares);
68318b8e 6997}
ab84d31e
PT
6998
6999#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
7000static DEFINE_MUTEX(cfs_constraints_mutex);
7001
ab84d31e
PT
7002const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7003const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7004
a790de99
PT
7005static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7006
ab84d31e
PT
7007static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7008{
56f570e5 7009 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 7010 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
7011
7012 if (tg == &root_task_group)
7013 return -EINVAL;
7014
7015 /*
7016 * Ensure we have at some amount of bandwidth every period. This is
7017 * to prevent reaching a state of large arrears when throttled via
7018 * entity_tick() resulting in prolonged exit starvation.
7019 */
7020 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7021 return -EINVAL;
7022
7023 /*
7024 * Likewise, bound things on the otherside by preventing insane quota
7025 * periods. This also allows us to normalize in computing quota
7026 * feasibility.
7027 */
7028 if (period > max_cfs_quota_period)
7029 return -EINVAL;
7030
0e59bdae
KT
7031 /*
7032 * Prevent race between setting of cfs_rq->runtime_enabled and
7033 * unthrottle_offline_cfs_rqs().
7034 */
7035 get_online_cpus();
a790de99
PT
7036 mutex_lock(&cfs_constraints_mutex);
7037 ret = __cfs_schedulable(tg, period, quota);
7038 if (ret)
7039 goto out_unlock;
7040
58088ad0 7041 runtime_enabled = quota != RUNTIME_INF;
56f570e5 7042 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
7043 /*
7044 * If we need to toggle cfs_bandwidth_used, off->on must occur
7045 * before making related changes, and on->off must occur afterwards
7046 */
7047 if (runtime_enabled && !runtime_was_enabled)
7048 cfs_bandwidth_usage_inc();
ab84d31e
PT
7049 raw_spin_lock_irq(&cfs_b->lock);
7050 cfs_b->period = ns_to_ktime(period);
7051 cfs_b->quota = quota;
58088ad0 7052
a9cf55b2 7053 __refill_cfs_bandwidth_runtime(cfs_b);
d1ccc66d
IM
7054
7055 /* Restart the period timer (if active) to handle new period expiry: */
77a4d1a1
PZ
7056 if (runtime_enabled)
7057 start_cfs_bandwidth(cfs_b);
d1ccc66d 7058
ab84d31e
PT
7059 raw_spin_unlock_irq(&cfs_b->lock);
7060
0e59bdae 7061 for_each_online_cpu(i) {
ab84d31e 7062 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 7063 struct rq *rq = cfs_rq->rq;
8a8c69c3 7064 struct rq_flags rf;
ab84d31e 7065
8a8c69c3 7066 rq_lock_irq(rq, &rf);
58088ad0 7067 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 7068 cfs_rq->runtime_remaining = 0;
671fd9da 7069
029632fb 7070 if (cfs_rq->throttled)
671fd9da 7071 unthrottle_cfs_rq(cfs_rq);
8a8c69c3 7072 rq_unlock_irq(rq, &rf);
ab84d31e 7073 }
1ee14e6c
BS
7074 if (runtime_was_enabled && !runtime_enabled)
7075 cfs_bandwidth_usage_dec();
a790de99
PT
7076out_unlock:
7077 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 7078 put_online_cpus();
ab84d31e 7079
a790de99 7080 return ret;
ab84d31e
PT
7081}
7082
7083int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7084{
7085 u64 quota, period;
7086
029632fb 7087 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7088 if (cfs_quota_us < 0)
7089 quota = RUNTIME_INF;
7090 else
7091 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7092
7093 return tg_set_cfs_bandwidth(tg, period, quota);
7094}
7095
7096long tg_get_cfs_quota(struct task_group *tg)
7097{
7098 u64 quota_us;
7099
029632fb 7100 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
7101 return -1;
7102
029632fb 7103 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
7104 do_div(quota_us, NSEC_PER_USEC);
7105
7106 return quota_us;
7107}
7108
7109int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7110{
7111 u64 quota, period;
7112
7113 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 7114 quota = tg->cfs_bandwidth.quota;
ab84d31e 7115
ab84d31e
PT
7116 return tg_set_cfs_bandwidth(tg, period, quota);
7117}
7118
7119long tg_get_cfs_period(struct task_group *tg)
7120{
7121 u64 cfs_period_us;
7122
029632fb 7123 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7124 do_div(cfs_period_us, NSEC_PER_USEC);
7125
7126 return cfs_period_us;
7127}
7128
182446d0
TH
7129static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7130 struct cftype *cft)
ab84d31e 7131{
182446d0 7132 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
7133}
7134
182446d0
TH
7135static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7136 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 7137{
182446d0 7138 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
7139}
7140
182446d0
TH
7141static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7142 struct cftype *cft)
ab84d31e 7143{
182446d0 7144 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
7145}
7146
182446d0
TH
7147static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7148 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 7149{
182446d0 7150 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
7151}
7152
a790de99
PT
7153struct cfs_schedulable_data {
7154 struct task_group *tg;
7155 u64 period, quota;
7156};
7157
7158/*
7159 * normalize group quota/period to be quota/max_period
7160 * note: units are usecs
7161 */
7162static u64 normalize_cfs_quota(struct task_group *tg,
7163 struct cfs_schedulable_data *d)
7164{
7165 u64 quota, period;
7166
7167 if (tg == d->tg) {
7168 period = d->period;
7169 quota = d->quota;
7170 } else {
7171 period = tg_get_cfs_period(tg);
7172 quota = tg_get_cfs_quota(tg);
7173 }
7174
7175 /* note: these should typically be equivalent */
7176 if (quota == RUNTIME_INF || quota == -1)
7177 return RUNTIME_INF;
7178
7179 return to_ratio(period, quota);
7180}
7181
7182static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7183{
7184 struct cfs_schedulable_data *d = data;
029632fb 7185 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
7186 s64 quota = 0, parent_quota = -1;
7187
7188 if (!tg->parent) {
7189 quota = RUNTIME_INF;
7190 } else {
029632fb 7191 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
7192
7193 quota = normalize_cfs_quota(tg, d);
9c58c79a 7194 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
7195
7196 /*
d1ccc66d
IM
7197 * Ensure max(child_quota) <= parent_quota, inherit when no
7198 * limit is set:
a790de99
PT
7199 */
7200 if (quota == RUNTIME_INF)
7201 quota = parent_quota;
7202 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7203 return -EINVAL;
7204 }
9c58c79a 7205 cfs_b->hierarchical_quota = quota;
a790de99
PT
7206
7207 return 0;
7208}
7209
7210static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7211{
8277434e 7212 int ret;
a790de99
PT
7213 struct cfs_schedulable_data data = {
7214 .tg = tg,
7215 .period = period,
7216 .quota = quota,
7217 };
7218
7219 if (quota != RUNTIME_INF) {
7220 do_div(data.period, NSEC_PER_USEC);
7221 do_div(data.quota, NSEC_PER_USEC);
7222 }
7223
8277434e
PT
7224 rcu_read_lock();
7225 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7226 rcu_read_unlock();
7227
7228 return ret;
a790de99 7229}
e8da1b18 7230
2da8ca82 7231static int cpu_stats_show(struct seq_file *sf, void *v)
e8da1b18 7232{
2da8ca82 7233 struct task_group *tg = css_tg(seq_css(sf));
029632fb 7234 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 7235
44ffc75b
TH
7236 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7237 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7238 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
7239
7240 return 0;
7241}
ab84d31e 7242#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 7243#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 7244
052f1dc7 7245#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
7246static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7247 struct cftype *cft, s64 val)
6f505b16 7248{
182446d0 7249 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
7250}
7251
182446d0
TH
7252static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7253 struct cftype *cft)
6f505b16 7254{
182446d0 7255 return sched_group_rt_runtime(css_tg(css));
6f505b16 7256}
d0b27fa7 7257
182446d0
TH
7258static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7259 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 7260{
182446d0 7261 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
7262}
7263
182446d0
TH
7264static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7265 struct cftype *cft)
d0b27fa7 7266{
182446d0 7267 return sched_group_rt_period(css_tg(css));
d0b27fa7 7268}
6d6bc0ad 7269#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 7270
fe5c7cc2 7271static struct cftype cpu_files[] = {
052f1dc7 7272#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
7273 {
7274 .name = "shares",
f4c753b7
PM
7275 .read_u64 = cpu_shares_read_u64,
7276 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 7277 },
052f1dc7 7278#endif
ab84d31e
PT
7279#ifdef CONFIG_CFS_BANDWIDTH
7280 {
7281 .name = "cfs_quota_us",
7282 .read_s64 = cpu_cfs_quota_read_s64,
7283 .write_s64 = cpu_cfs_quota_write_s64,
7284 },
7285 {
7286 .name = "cfs_period_us",
7287 .read_u64 = cpu_cfs_period_read_u64,
7288 .write_u64 = cpu_cfs_period_write_u64,
7289 },
e8da1b18
NR
7290 {
7291 .name = "stat",
2da8ca82 7292 .seq_show = cpu_stats_show,
e8da1b18 7293 },
ab84d31e 7294#endif
052f1dc7 7295#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7296 {
9f0c1e56 7297 .name = "rt_runtime_us",
06ecb27c
PM
7298 .read_s64 = cpu_rt_runtime_read,
7299 .write_s64 = cpu_rt_runtime_write,
6f505b16 7300 },
d0b27fa7
PZ
7301 {
7302 .name = "rt_period_us",
f4c753b7
PM
7303 .read_u64 = cpu_rt_period_read_uint,
7304 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 7305 },
052f1dc7 7306#endif
d1ccc66d 7307 { } /* Terminate */
68318b8e
SV
7308};
7309
073219e9 7310struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748 7311 .css_alloc = cpu_cgroup_css_alloc,
96b77745 7312 .css_online = cpu_cgroup_css_online,
2f5177f0 7313 .css_released = cpu_cgroup_css_released,
92fb9748 7314 .css_free = cpu_cgroup_css_free,
eeb61e53 7315 .fork = cpu_cgroup_fork,
bb9d97b6
TH
7316 .can_attach = cpu_cgroup_can_attach,
7317 .attach = cpu_cgroup_attach,
5577964e 7318 .legacy_cftypes = cpu_files,
b38e42e9 7319 .early_init = true,
68318b8e
SV
7320};
7321
052f1dc7 7322#endif /* CONFIG_CGROUP_SCHED */
d842de87 7323
b637a328
PM
7324void dump_cpu_task(int cpu)
7325{
7326 pr_info("Task dump for CPU %d:\n", cpu);
7327 sched_show_task(cpu_curr(cpu));
7328}
ed82b8a1
AK
7329
7330/*
7331 * Nice levels are multiplicative, with a gentle 10% change for every
7332 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
7333 * nice 1, it will get ~10% less CPU time than another CPU-bound task
7334 * that remained on nice 0.
7335 *
7336 * The "10% effect" is relative and cumulative: from _any_ nice level,
7337 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
7338 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
7339 * If a task goes up by ~10% and another task goes down by ~10% then
7340 * the relative distance between them is ~25%.)
7341 */
7342const int sched_prio_to_weight[40] = {
7343 /* -20 */ 88761, 71755, 56483, 46273, 36291,
7344 /* -15 */ 29154, 23254, 18705, 14949, 11916,
7345 /* -10 */ 9548, 7620, 6100, 4904, 3906,
7346 /* -5 */ 3121, 2501, 1991, 1586, 1277,
7347 /* 0 */ 1024, 820, 655, 526, 423,
7348 /* 5 */ 335, 272, 215, 172, 137,
7349 /* 10 */ 110, 87, 70, 56, 45,
7350 /* 15 */ 36, 29, 23, 18, 15,
7351};
7352
7353/*
7354 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
7355 *
7356 * In cases where the weight does not change often, we can use the
7357 * precalculated inverse to speed up arithmetics by turning divisions
7358 * into multiplications:
7359 */
7360const u32 sched_prio_to_wmult[40] = {
7361 /* -20 */ 48388, 59856, 76040, 92818, 118348,
7362 /* -15 */ 147320, 184698, 229616, 287308, 360437,
7363 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
7364 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
7365 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
7366 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
7367 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
7368 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
7369};