]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - kernel/sched/core.c
security: trim security.h
[mirror_ubuntu-zesty-kernel.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
1da177e4 75
5517d86b 76#include <asm/tlb.h>
838225b4 77#include <asm/irq_regs.h>
db7e527d 78#include <asm/mutex.h>
e6e6685a
GC
79#ifdef CONFIG_PARAVIRT
80#include <asm/paravirt.h>
81#endif
1da177e4 82
029632fb 83#include "sched.h"
391e43da 84#include "../workqueue_sched.h"
6e0534f2 85
a8d154b0 86#define CREATE_TRACE_POINTS
ad8d75ff 87#include <trace/events/sched.h>
a8d154b0 88
029632fb 89void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 90{
58088ad0
PT
91 unsigned long delta;
92 ktime_t soft, hard, now;
d0b27fa7 93
58088ad0
PT
94 for (;;) {
95 if (hrtimer_active(period_timer))
96 break;
97
98 now = hrtimer_cb_get_time(period_timer);
99 hrtimer_forward(period_timer, now, period);
d0b27fa7 100
58088ad0
PT
101 soft = hrtimer_get_softexpires(period_timer);
102 hard = hrtimer_get_expires(period_timer);
103 delta = ktime_to_ns(ktime_sub(hard, soft));
104 __hrtimer_start_range_ns(period_timer, soft, delta,
105 HRTIMER_MODE_ABS_PINNED, 0);
106 }
107}
108
029632fb
PZ
109DEFINE_MUTEX(sched_domains_mutex);
110DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 111
fe44d621 112static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 113
029632fb 114void update_rq_clock(struct rq *rq)
3e51f33f 115{
fe44d621 116 s64 delta;
305e6835 117
61eadef6 118 if (rq->skip_clock_update > 0)
f26f9aff 119 return;
aa483808 120
fe44d621
PZ
121 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
122 rq->clock += delta;
123 update_rq_clock_task(rq, delta);
3e51f33f
PZ
124}
125
bf5c91ba
IM
126/*
127 * Debugging: various feature bits
128 */
f00b45c1 129
f00b45c1
PZ
130#define SCHED_FEAT(name, enabled) \
131 (1UL << __SCHED_FEAT_##name) * enabled |
132
bf5c91ba 133const_debug unsigned int sysctl_sched_features =
391e43da 134#include "features.h"
f00b45c1
PZ
135 0;
136
137#undef SCHED_FEAT
138
139#ifdef CONFIG_SCHED_DEBUG
140#define SCHED_FEAT(name, enabled) \
141 #name ,
142
983ed7a6 143static __read_mostly char *sched_feat_names[] = {
391e43da 144#include "features.h"
f00b45c1
PZ
145 NULL
146};
147
148#undef SCHED_FEAT
149
34f3a814 150static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 151{
f00b45c1
PZ
152 int i;
153
f8b6d1cc 154 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
155 if (!(sysctl_sched_features & (1UL << i)))
156 seq_puts(m, "NO_");
157 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 158 }
34f3a814 159 seq_puts(m, "\n");
f00b45c1 160
34f3a814 161 return 0;
f00b45c1
PZ
162}
163
f8b6d1cc
PZ
164#ifdef HAVE_JUMP_LABEL
165
166#define jump_label_key__true jump_label_key_enabled
167#define jump_label_key__false jump_label_key_disabled
168
169#define SCHED_FEAT(name, enabled) \
170 jump_label_key__##enabled ,
171
172struct jump_label_key sched_feat_keys[__SCHED_FEAT_NR] = {
173#include "features.h"
174};
175
176#undef SCHED_FEAT
177
178static void sched_feat_disable(int i)
179{
180 if (jump_label_enabled(&sched_feat_keys[i]))
181 jump_label_dec(&sched_feat_keys[i]);
182}
183
184static void sched_feat_enable(int i)
185{
186 if (!jump_label_enabled(&sched_feat_keys[i]))
187 jump_label_inc(&sched_feat_keys[i]);
188}
189#else
190static void sched_feat_disable(int i) { };
191static void sched_feat_enable(int i) { };
192#endif /* HAVE_JUMP_LABEL */
193
f00b45c1
PZ
194static ssize_t
195sched_feat_write(struct file *filp, const char __user *ubuf,
196 size_t cnt, loff_t *ppos)
197{
198 char buf[64];
7740191c 199 char *cmp;
f00b45c1
PZ
200 int neg = 0;
201 int i;
202
203 if (cnt > 63)
204 cnt = 63;
205
206 if (copy_from_user(&buf, ubuf, cnt))
207 return -EFAULT;
208
209 buf[cnt] = 0;
7740191c 210 cmp = strstrip(buf);
f00b45c1 211
524429c3 212 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
213 neg = 1;
214 cmp += 3;
215 }
216
f8b6d1cc 217 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 218 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 219 if (neg) {
f00b45c1 220 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
221 sched_feat_disable(i);
222 } else {
f00b45c1 223 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
224 sched_feat_enable(i);
225 }
f00b45c1
PZ
226 break;
227 }
228 }
229
f8b6d1cc 230 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
231 return -EINVAL;
232
42994724 233 *ppos += cnt;
f00b45c1
PZ
234
235 return cnt;
236}
237
34f3a814
LZ
238static int sched_feat_open(struct inode *inode, struct file *filp)
239{
240 return single_open(filp, sched_feat_show, NULL);
241}
242
828c0950 243static const struct file_operations sched_feat_fops = {
34f3a814
LZ
244 .open = sched_feat_open,
245 .write = sched_feat_write,
246 .read = seq_read,
247 .llseek = seq_lseek,
248 .release = single_release,
f00b45c1
PZ
249};
250
251static __init int sched_init_debug(void)
252{
f00b45c1
PZ
253 debugfs_create_file("sched_features", 0644, NULL, NULL,
254 &sched_feat_fops);
255
256 return 0;
257}
258late_initcall(sched_init_debug);
f8b6d1cc 259#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 260
b82d9fdd
PZ
261/*
262 * Number of tasks to iterate in a single balance run.
263 * Limited because this is done with IRQs disabled.
264 */
265const_debug unsigned int sysctl_sched_nr_migrate = 32;
266
e9e9250b
PZ
267/*
268 * period over which we average the RT time consumption, measured
269 * in ms.
270 *
271 * default: 1s
272 */
273const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
274
fa85ae24 275/*
9f0c1e56 276 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
277 * default: 1s
278 */
9f0c1e56 279unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 280
029632fb 281__read_mostly int scheduler_running;
6892b75e 282
9f0c1e56
PZ
283/*
284 * part of the period that we allow rt tasks to run in us.
285 * default: 0.95s
286 */
287int sysctl_sched_rt_runtime = 950000;
fa85ae24 288
fa85ae24 289
1da177e4 290
0970d299 291/*
0122ec5b 292 * __task_rq_lock - lock the rq @p resides on.
b29739f9 293 */
70b97a7f 294static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
295 __acquires(rq->lock)
296{
0970d299
PZ
297 struct rq *rq;
298
0122ec5b
PZ
299 lockdep_assert_held(&p->pi_lock);
300
3a5c359a 301 for (;;) {
0970d299 302 rq = task_rq(p);
05fa785c 303 raw_spin_lock(&rq->lock);
65cc8e48 304 if (likely(rq == task_rq(p)))
3a5c359a 305 return rq;
05fa785c 306 raw_spin_unlock(&rq->lock);
b29739f9 307 }
b29739f9
IM
308}
309
1da177e4 310/*
0122ec5b 311 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 312 */
70b97a7f 313static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 314 __acquires(p->pi_lock)
1da177e4
LT
315 __acquires(rq->lock)
316{
70b97a7f 317 struct rq *rq;
1da177e4 318
3a5c359a 319 for (;;) {
0122ec5b 320 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 321 rq = task_rq(p);
05fa785c 322 raw_spin_lock(&rq->lock);
65cc8e48 323 if (likely(rq == task_rq(p)))
3a5c359a 324 return rq;
0122ec5b
PZ
325 raw_spin_unlock(&rq->lock);
326 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4 327 }
1da177e4
LT
328}
329
a9957449 330static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
331 __releases(rq->lock)
332{
05fa785c 333 raw_spin_unlock(&rq->lock);
b29739f9
IM
334}
335
0122ec5b
PZ
336static inline void
337task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 338 __releases(rq->lock)
0122ec5b 339 __releases(p->pi_lock)
1da177e4 340{
0122ec5b
PZ
341 raw_spin_unlock(&rq->lock);
342 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
343}
344
1da177e4 345/*
cc2a73b5 346 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 347 */
a9957449 348static struct rq *this_rq_lock(void)
1da177e4
LT
349 __acquires(rq->lock)
350{
70b97a7f 351 struct rq *rq;
1da177e4
LT
352
353 local_irq_disable();
354 rq = this_rq();
05fa785c 355 raw_spin_lock(&rq->lock);
1da177e4
LT
356
357 return rq;
358}
359
8f4d37ec
PZ
360#ifdef CONFIG_SCHED_HRTICK
361/*
362 * Use HR-timers to deliver accurate preemption points.
363 *
364 * Its all a bit involved since we cannot program an hrt while holding the
365 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
366 * reschedule event.
367 *
368 * When we get rescheduled we reprogram the hrtick_timer outside of the
369 * rq->lock.
370 */
8f4d37ec 371
8f4d37ec
PZ
372static void hrtick_clear(struct rq *rq)
373{
374 if (hrtimer_active(&rq->hrtick_timer))
375 hrtimer_cancel(&rq->hrtick_timer);
376}
377
8f4d37ec
PZ
378/*
379 * High-resolution timer tick.
380 * Runs from hardirq context with interrupts disabled.
381 */
382static enum hrtimer_restart hrtick(struct hrtimer *timer)
383{
384 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
385
386 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
387
05fa785c 388 raw_spin_lock(&rq->lock);
3e51f33f 389 update_rq_clock(rq);
8f4d37ec 390 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 391 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
392
393 return HRTIMER_NORESTART;
394}
395
95e904c7 396#ifdef CONFIG_SMP
31656519
PZ
397/*
398 * called from hardirq (IPI) context
399 */
400static void __hrtick_start(void *arg)
b328ca18 401{
31656519 402 struct rq *rq = arg;
b328ca18 403
05fa785c 404 raw_spin_lock(&rq->lock);
31656519
PZ
405 hrtimer_restart(&rq->hrtick_timer);
406 rq->hrtick_csd_pending = 0;
05fa785c 407 raw_spin_unlock(&rq->lock);
b328ca18
PZ
408}
409
31656519
PZ
410/*
411 * Called to set the hrtick timer state.
412 *
413 * called with rq->lock held and irqs disabled
414 */
029632fb 415void hrtick_start(struct rq *rq, u64 delay)
b328ca18 416{
31656519
PZ
417 struct hrtimer *timer = &rq->hrtick_timer;
418 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 419
cc584b21 420 hrtimer_set_expires(timer, time);
31656519
PZ
421
422 if (rq == this_rq()) {
423 hrtimer_restart(timer);
424 } else if (!rq->hrtick_csd_pending) {
6e275637 425 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
426 rq->hrtick_csd_pending = 1;
427 }
b328ca18
PZ
428}
429
430static int
431hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
432{
433 int cpu = (int)(long)hcpu;
434
435 switch (action) {
436 case CPU_UP_CANCELED:
437 case CPU_UP_CANCELED_FROZEN:
438 case CPU_DOWN_PREPARE:
439 case CPU_DOWN_PREPARE_FROZEN:
440 case CPU_DEAD:
441 case CPU_DEAD_FROZEN:
31656519 442 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
443 return NOTIFY_OK;
444 }
445
446 return NOTIFY_DONE;
447}
448
fa748203 449static __init void init_hrtick(void)
b328ca18
PZ
450{
451 hotcpu_notifier(hotplug_hrtick, 0);
452}
31656519
PZ
453#else
454/*
455 * Called to set the hrtick timer state.
456 *
457 * called with rq->lock held and irqs disabled
458 */
029632fb 459void hrtick_start(struct rq *rq, u64 delay)
31656519 460{
7f1e2ca9 461 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 462 HRTIMER_MODE_REL_PINNED, 0);
31656519 463}
b328ca18 464
006c75f1 465static inline void init_hrtick(void)
8f4d37ec 466{
8f4d37ec 467}
31656519 468#endif /* CONFIG_SMP */
8f4d37ec 469
31656519 470static void init_rq_hrtick(struct rq *rq)
8f4d37ec 471{
31656519
PZ
472#ifdef CONFIG_SMP
473 rq->hrtick_csd_pending = 0;
8f4d37ec 474
31656519
PZ
475 rq->hrtick_csd.flags = 0;
476 rq->hrtick_csd.func = __hrtick_start;
477 rq->hrtick_csd.info = rq;
478#endif
8f4d37ec 479
31656519
PZ
480 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
481 rq->hrtick_timer.function = hrtick;
8f4d37ec 482}
006c75f1 483#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
484static inline void hrtick_clear(struct rq *rq)
485{
486}
487
8f4d37ec
PZ
488static inline void init_rq_hrtick(struct rq *rq)
489{
490}
491
b328ca18
PZ
492static inline void init_hrtick(void)
493{
494}
006c75f1 495#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 496
c24d20db
IM
497/*
498 * resched_task - mark a task 'to be rescheduled now'.
499 *
500 * On UP this means the setting of the need_resched flag, on SMP it
501 * might also involve a cross-CPU call to trigger the scheduler on
502 * the target CPU.
503 */
504#ifdef CONFIG_SMP
505
506#ifndef tsk_is_polling
507#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
508#endif
509
029632fb 510void resched_task(struct task_struct *p)
c24d20db
IM
511{
512 int cpu;
513
05fa785c 514 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 515
5ed0cec0 516 if (test_tsk_need_resched(p))
c24d20db
IM
517 return;
518
5ed0cec0 519 set_tsk_need_resched(p);
c24d20db
IM
520
521 cpu = task_cpu(p);
522 if (cpu == smp_processor_id())
523 return;
524
525 /* NEED_RESCHED must be visible before we test polling */
526 smp_mb();
527 if (!tsk_is_polling(p))
528 smp_send_reschedule(cpu);
529}
530
029632fb 531void resched_cpu(int cpu)
c24d20db
IM
532{
533 struct rq *rq = cpu_rq(cpu);
534 unsigned long flags;
535
05fa785c 536 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
537 return;
538 resched_task(cpu_curr(cpu));
05fa785c 539 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 540}
06d8308c
TG
541
542#ifdef CONFIG_NO_HZ
83cd4fe2
VP
543/*
544 * In the semi idle case, use the nearest busy cpu for migrating timers
545 * from an idle cpu. This is good for power-savings.
546 *
547 * We don't do similar optimization for completely idle system, as
548 * selecting an idle cpu will add more delays to the timers than intended
549 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
550 */
551int get_nohz_timer_target(void)
552{
553 int cpu = smp_processor_id();
554 int i;
555 struct sched_domain *sd;
556
057f3fad 557 rcu_read_lock();
83cd4fe2 558 for_each_domain(cpu, sd) {
057f3fad
PZ
559 for_each_cpu(i, sched_domain_span(sd)) {
560 if (!idle_cpu(i)) {
561 cpu = i;
562 goto unlock;
563 }
564 }
83cd4fe2 565 }
057f3fad
PZ
566unlock:
567 rcu_read_unlock();
83cd4fe2
VP
568 return cpu;
569}
06d8308c
TG
570/*
571 * When add_timer_on() enqueues a timer into the timer wheel of an
572 * idle CPU then this timer might expire before the next timer event
573 * which is scheduled to wake up that CPU. In case of a completely
574 * idle system the next event might even be infinite time into the
575 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
576 * leaves the inner idle loop so the newly added timer is taken into
577 * account when the CPU goes back to idle and evaluates the timer
578 * wheel for the next timer event.
579 */
580void wake_up_idle_cpu(int cpu)
581{
582 struct rq *rq = cpu_rq(cpu);
583
584 if (cpu == smp_processor_id())
585 return;
586
587 /*
588 * This is safe, as this function is called with the timer
589 * wheel base lock of (cpu) held. When the CPU is on the way
590 * to idle and has not yet set rq->curr to idle then it will
591 * be serialized on the timer wheel base lock and take the new
592 * timer into account automatically.
593 */
594 if (rq->curr != rq->idle)
595 return;
45bf76df 596
45bf76df 597 /*
06d8308c
TG
598 * We can set TIF_RESCHED on the idle task of the other CPU
599 * lockless. The worst case is that the other CPU runs the
600 * idle task through an additional NOOP schedule()
45bf76df 601 */
5ed0cec0 602 set_tsk_need_resched(rq->idle);
45bf76df 603
06d8308c
TG
604 /* NEED_RESCHED must be visible before we test polling */
605 smp_mb();
606 if (!tsk_is_polling(rq->idle))
607 smp_send_reschedule(cpu);
45bf76df
IM
608}
609
ca38062e 610static inline bool got_nohz_idle_kick(void)
45bf76df 611{
1c792db7
SS
612 int cpu = smp_processor_id();
613 return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
45bf76df
IM
614}
615
ca38062e 616#else /* CONFIG_NO_HZ */
45bf76df 617
ca38062e 618static inline bool got_nohz_idle_kick(void)
2069dd75 619{
ca38062e 620 return false;
2069dd75
PZ
621}
622
6d6bc0ad 623#endif /* CONFIG_NO_HZ */
d842de87 624
029632fb 625void sched_avg_update(struct rq *rq)
18d95a28 626{
e9e9250b
PZ
627 s64 period = sched_avg_period();
628
629 while ((s64)(rq->clock - rq->age_stamp) > period) {
0d98bb26
WD
630 /*
631 * Inline assembly required to prevent the compiler
632 * optimising this loop into a divmod call.
633 * See __iter_div_u64_rem() for another example of this.
634 */
635 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
636 rq->age_stamp += period;
637 rq->rt_avg /= 2;
638 }
18d95a28
PZ
639}
640
6d6bc0ad 641#else /* !CONFIG_SMP */
029632fb 642void resched_task(struct task_struct *p)
18d95a28 643{
05fa785c 644 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 645 set_tsk_need_resched(p);
18d95a28 646}
6d6bc0ad 647#endif /* CONFIG_SMP */
18d95a28 648
a790de99
PT
649#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
650 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 651/*
8277434e
PT
652 * Iterate task_group tree rooted at *from, calling @down when first entering a
653 * node and @up when leaving it for the final time.
654 *
655 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 656 */
029632fb 657int walk_tg_tree_from(struct task_group *from,
8277434e 658 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
659{
660 struct task_group *parent, *child;
eb755805 661 int ret;
c09595f6 662
8277434e
PT
663 parent = from;
664
c09595f6 665down:
eb755805
PZ
666 ret = (*down)(parent, data);
667 if (ret)
8277434e 668 goto out;
c09595f6
PZ
669 list_for_each_entry_rcu(child, &parent->children, siblings) {
670 parent = child;
671 goto down;
672
673up:
674 continue;
675 }
eb755805 676 ret = (*up)(parent, data);
8277434e
PT
677 if (ret || parent == from)
678 goto out;
c09595f6
PZ
679
680 child = parent;
681 parent = parent->parent;
682 if (parent)
683 goto up;
8277434e 684out:
eb755805 685 return ret;
c09595f6
PZ
686}
687
029632fb 688int tg_nop(struct task_group *tg, void *data)
eb755805 689{
e2b245f8 690 return 0;
eb755805 691}
18d95a28
PZ
692#endif
693
029632fb 694void update_cpu_load(struct rq *this_rq);
9c217245 695
45bf76df
IM
696static void set_load_weight(struct task_struct *p)
697{
f05998d4
NR
698 int prio = p->static_prio - MAX_RT_PRIO;
699 struct load_weight *load = &p->se.load;
700
dd41f596
IM
701 /*
702 * SCHED_IDLE tasks get minimal weight:
703 */
704 if (p->policy == SCHED_IDLE) {
c8b28116 705 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 706 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
707 return;
708 }
71f8bd46 709
c8b28116 710 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 711 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
712}
713
371fd7e7 714static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 715{
a64692a3 716 update_rq_clock(rq);
dd41f596 717 sched_info_queued(p);
371fd7e7 718 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
719}
720
371fd7e7 721static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 722{
a64692a3 723 update_rq_clock(rq);
46ac22ba 724 sched_info_dequeued(p);
371fd7e7 725 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
726}
727
029632fb 728void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
729{
730 if (task_contributes_to_load(p))
731 rq->nr_uninterruptible--;
732
371fd7e7 733 enqueue_task(rq, p, flags);
1e3c88bd
PZ
734}
735
029632fb 736void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
737{
738 if (task_contributes_to_load(p))
739 rq->nr_uninterruptible++;
740
371fd7e7 741 dequeue_task(rq, p, flags);
1e3c88bd
PZ
742}
743
b52bfee4
VP
744#ifdef CONFIG_IRQ_TIME_ACCOUNTING
745
305e6835
VP
746/*
747 * There are no locks covering percpu hardirq/softirq time.
748 * They are only modified in account_system_vtime, on corresponding CPU
749 * with interrupts disabled. So, writes are safe.
750 * They are read and saved off onto struct rq in update_rq_clock().
751 * This may result in other CPU reading this CPU's irq time and can
752 * race with irq/account_system_vtime on this CPU. We would either get old
8e92c201
PZ
753 * or new value with a side effect of accounting a slice of irq time to wrong
754 * task when irq is in progress while we read rq->clock. That is a worthy
755 * compromise in place of having locks on each irq in account_system_time.
305e6835 756 */
b52bfee4
VP
757static DEFINE_PER_CPU(u64, cpu_hardirq_time);
758static DEFINE_PER_CPU(u64, cpu_softirq_time);
759
760static DEFINE_PER_CPU(u64, irq_start_time);
761static int sched_clock_irqtime;
762
763void enable_sched_clock_irqtime(void)
764{
765 sched_clock_irqtime = 1;
766}
767
768void disable_sched_clock_irqtime(void)
769{
770 sched_clock_irqtime = 0;
771}
772
8e92c201
PZ
773#ifndef CONFIG_64BIT
774static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
775
776static inline void irq_time_write_begin(void)
777{
778 __this_cpu_inc(irq_time_seq.sequence);
779 smp_wmb();
780}
781
782static inline void irq_time_write_end(void)
783{
784 smp_wmb();
785 __this_cpu_inc(irq_time_seq.sequence);
786}
787
788static inline u64 irq_time_read(int cpu)
789{
790 u64 irq_time;
791 unsigned seq;
792
793 do {
794 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
795 irq_time = per_cpu(cpu_softirq_time, cpu) +
796 per_cpu(cpu_hardirq_time, cpu);
797 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
798
799 return irq_time;
800}
801#else /* CONFIG_64BIT */
802static inline void irq_time_write_begin(void)
803{
804}
805
806static inline void irq_time_write_end(void)
807{
808}
809
810static inline u64 irq_time_read(int cpu)
305e6835 811{
305e6835
VP
812 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
813}
8e92c201 814#endif /* CONFIG_64BIT */
305e6835 815
fe44d621
PZ
816/*
817 * Called before incrementing preempt_count on {soft,}irq_enter
818 * and before decrementing preempt_count on {soft,}irq_exit.
819 */
b52bfee4
VP
820void account_system_vtime(struct task_struct *curr)
821{
822 unsigned long flags;
fe44d621 823 s64 delta;
b52bfee4 824 int cpu;
b52bfee4
VP
825
826 if (!sched_clock_irqtime)
827 return;
828
829 local_irq_save(flags);
830
b52bfee4 831 cpu = smp_processor_id();
fe44d621
PZ
832 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
833 __this_cpu_add(irq_start_time, delta);
834
8e92c201 835 irq_time_write_begin();
b52bfee4
VP
836 /*
837 * We do not account for softirq time from ksoftirqd here.
838 * We want to continue accounting softirq time to ksoftirqd thread
839 * in that case, so as not to confuse scheduler with a special task
840 * that do not consume any time, but still wants to run.
841 */
842 if (hardirq_count())
fe44d621 843 __this_cpu_add(cpu_hardirq_time, delta);
4dd53d89 844 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
fe44d621 845 __this_cpu_add(cpu_softirq_time, delta);
b52bfee4 846
8e92c201 847 irq_time_write_end();
b52bfee4
VP
848 local_irq_restore(flags);
849}
b7dadc38 850EXPORT_SYMBOL_GPL(account_system_vtime);
b52bfee4 851
e6e6685a
GC
852#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
853
854#ifdef CONFIG_PARAVIRT
855static inline u64 steal_ticks(u64 steal)
aa483808 856{
e6e6685a
GC
857 if (unlikely(steal > NSEC_PER_SEC))
858 return div_u64(steal, TICK_NSEC);
fe44d621 859
e6e6685a
GC
860 return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
861}
862#endif
863
fe44d621 864static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 865{
095c0aa8
GC
866/*
867 * In theory, the compile should just see 0 here, and optimize out the call
868 * to sched_rt_avg_update. But I don't trust it...
869 */
870#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
871 s64 steal = 0, irq_delta = 0;
872#endif
873#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 874 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
875
876 /*
877 * Since irq_time is only updated on {soft,}irq_exit, we might run into
878 * this case when a previous update_rq_clock() happened inside a
879 * {soft,}irq region.
880 *
881 * When this happens, we stop ->clock_task and only update the
882 * prev_irq_time stamp to account for the part that fit, so that a next
883 * update will consume the rest. This ensures ->clock_task is
884 * monotonic.
885 *
886 * It does however cause some slight miss-attribution of {soft,}irq
887 * time, a more accurate solution would be to update the irq_time using
888 * the current rq->clock timestamp, except that would require using
889 * atomic ops.
890 */
891 if (irq_delta > delta)
892 irq_delta = delta;
893
894 rq->prev_irq_time += irq_delta;
895 delta -= irq_delta;
095c0aa8
GC
896#endif
897#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
898 if (static_branch((&paravirt_steal_rq_enabled))) {
899 u64 st;
900
901 steal = paravirt_steal_clock(cpu_of(rq));
902 steal -= rq->prev_steal_time_rq;
903
904 if (unlikely(steal > delta))
905 steal = delta;
906
907 st = steal_ticks(steal);
908 steal = st * TICK_NSEC;
909
910 rq->prev_steal_time_rq += steal;
911
912 delta -= steal;
913 }
914#endif
915
fe44d621
PZ
916 rq->clock_task += delta;
917
095c0aa8
GC
918#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
919 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
920 sched_rt_avg_update(rq, irq_delta + steal);
921#endif
aa483808
VP
922}
923
095c0aa8 924#ifdef CONFIG_IRQ_TIME_ACCOUNTING
abb74cef
VP
925static int irqtime_account_hi_update(void)
926{
3292beb3 927 u64 *cpustat = kcpustat_this_cpu->cpustat;
abb74cef
VP
928 unsigned long flags;
929 u64 latest_ns;
930 int ret = 0;
931
932 local_irq_save(flags);
933 latest_ns = this_cpu_read(cpu_hardirq_time);
612ef28a 934 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
abb74cef
VP
935 ret = 1;
936 local_irq_restore(flags);
937 return ret;
938}
939
940static int irqtime_account_si_update(void)
941{
3292beb3 942 u64 *cpustat = kcpustat_this_cpu->cpustat;
abb74cef
VP
943 unsigned long flags;
944 u64 latest_ns;
945 int ret = 0;
946
947 local_irq_save(flags);
948 latest_ns = this_cpu_read(cpu_softirq_time);
612ef28a 949 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
abb74cef
VP
950 ret = 1;
951 local_irq_restore(flags);
952 return ret;
953}
954
fe44d621 955#else /* CONFIG_IRQ_TIME_ACCOUNTING */
305e6835 956
abb74cef
VP
957#define sched_clock_irqtime (0)
958
095c0aa8 959#endif
b52bfee4 960
34f971f6
PZ
961void sched_set_stop_task(int cpu, struct task_struct *stop)
962{
963 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
964 struct task_struct *old_stop = cpu_rq(cpu)->stop;
965
966 if (stop) {
967 /*
968 * Make it appear like a SCHED_FIFO task, its something
969 * userspace knows about and won't get confused about.
970 *
971 * Also, it will make PI more or less work without too
972 * much confusion -- but then, stop work should not
973 * rely on PI working anyway.
974 */
975 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
976
977 stop->sched_class = &stop_sched_class;
978 }
979
980 cpu_rq(cpu)->stop = stop;
981
982 if (old_stop) {
983 /*
984 * Reset it back to a normal scheduling class so that
985 * it can die in pieces.
986 */
987 old_stop->sched_class = &rt_sched_class;
988 }
989}
990
14531189 991/*
dd41f596 992 * __normal_prio - return the priority that is based on the static prio
14531189 993 */
14531189
IM
994static inline int __normal_prio(struct task_struct *p)
995{
dd41f596 996 return p->static_prio;
14531189
IM
997}
998
b29739f9
IM
999/*
1000 * Calculate the expected normal priority: i.e. priority
1001 * without taking RT-inheritance into account. Might be
1002 * boosted by interactivity modifiers. Changes upon fork,
1003 * setprio syscalls, and whenever the interactivity
1004 * estimator recalculates.
1005 */
36c8b586 1006static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1007{
1008 int prio;
1009
e05606d3 1010 if (task_has_rt_policy(p))
b29739f9
IM
1011 prio = MAX_RT_PRIO-1 - p->rt_priority;
1012 else
1013 prio = __normal_prio(p);
1014 return prio;
1015}
1016
1017/*
1018 * Calculate the current priority, i.e. the priority
1019 * taken into account by the scheduler. This value might
1020 * be boosted by RT tasks, or might be boosted by
1021 * interactivity modifiers. Will be RT if the task got
1022 * RT-boosted. If not then it returns p->normal_prio.
1023 */
36c8b586 1024static int effective_prio(struct task_struct *p)
b29739f9
IM
1025{
1026 p->normal_prio = normal_prio(p);
1027 /*
1028 * If we are RT tasks or we were boosted to RT priority,
1029 * keep the priority unchanged. Otherwise, update priority
1030 * to the normal priority:
1031 */
1032 if (!rt_prio(p->prio))
1033 return p->normal_prio;
1034 return p->prio;
1035}
1036
1da177e4
LT
1037/**
1038 * task_curr - is this task currently executing on a CPU?
1039 * @p: the task in question.
1040 */
36c8b586 1041inline int task_curr(const struct task_struct *p)
1da177e4
LT
1042{
1043 return cpu_curr(task_cpu(p)) == p;
1044}
1045
cb469845
SR
1046static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1047 const struct sched_class *prev_class,
da7a735e 1048 int oldprio)
cb469845
SR
1049{
1050 if (prev_class != p->sched_class) {
1051 if (prev_class->switched_from)
da7a735e
PZ
1052 prev_class->switched_from(rq, p);
1053 p->sched_class->switched_to(rq, p);
1054 } else if (oldprio != p->prio)
1055 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
1056}
1057
029632fb 1058void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
1059{
1060 const struct sched_class *class;
1061
1062 if (p->sched_class == rq->curr->sched_class) {
1063 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1064 } else {
1065 for_each_class(class) {
1066 if (class == rq->curr->sched_class)
1067 break;
1068 if (class == p->sched_class) {
1069 resched_task(rq->curr);
1070 break;
1071 }
1072 }
1073 }
1074
1075 /*
1076 * A queue event has occurred, and we're going to schedule. In
1077 * this case, we can save a useless back to back clock update.
1078 */
fd2f4419 1079 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
1080 rq->skip_clock_update = 1;
1081}
1082
1da177e4 1083#ifdef CONFIG_SMP
dd41f596 1084void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1085{
e2912009
PZ
1086#ifdef CONFIG_SCHED_DEBUG
1087 /*
1088 * We should never call set_task_cpu() on a blocked task,
1089 * ttwu() will sort out the placement.
1090 */
077614ee
PZ
1091 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1092 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
0122ec5b
PZ
1093
1094#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1095 /*
1096 * The caller should hold either p->pi_lock or rq->lock, when changing
1097 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1098 *
1099 * sched_move_task() holds both and thus holding either pins the cgroup,
1100 * see set_task_rq().
1101 *
1102 * Furthermore, all task_rq users should acquire both locks, see
1103 * task_rq_lock().
1104 */
0122ec5b
PZ
1105 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1106 lockdep_is_held(&task_rq(p)->lock)));
1107#endif
e2912009
PZ
1108#endif
1109
de1d7286 1110 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1111
0c69774e
PZ
1112 if (task_cpu(p) != new_cpu) {
1113 p->se.nr_migrations++;
a8b0ca17 1114 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
0c69774e 1115 }
dd41f596
IM
1116
1117 __set_task_cpu(p, new_cpu);
c65cc870
IM
1118}
1119
969c7921 1120struct migration_arg {
36c8b586 1121 struct task_struct *task;
1da177e4 1122 int dest_cpu;
70b97a7f 1123};
1da177e4 1124
969c7921
TH
1125static int migration_cpu_stop(void *data);
1126
1da177e4
LT
1127/*
1128 * wait_task_inactive - wait for a thread to unschedule.
1129 *
85ba2d86
RM
1130 * If @match_state is nonzero, it's the @p->state value just checked and
1131 * not expected to change. If it changes, i.e. @p might have woken up,
1132 * then return zero. When we succeed in waiting for @p to be off its CPU,
1133 * we return a positive number (its total switch count). If a second call
1134 * a short while later returns the same number, the caller can be sure that
1135 * @p has remained unscheduled the whole time.
1136 *
1da177e4
LT
1137 * The caller must ensure that the task *will* unschedule sometime soon,
1138 * else this function might spin for a *long* time. This function can't
1139 * be called with interrupts off, or it may introduce deadlock with
1140 * smp_call_function() if an IPI is sent by the same process we are
1141 * waiting to become inactive.
1142 */
85ba2d86 1143unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1144{
1145 unsigned long flags;
dd41f596 1146 int running, on_rq;
85ba2d86 1147 unsigned long ncsw;
70b97a7f 1148 struct rq *rq;
1da177e4 1149
3a5c359a
AK
1150 for (;;) {
1151 /*
1152 * We do the initial early heuristics without holding
1153 * any task-queue locks at all. We'll only try to get
1154 * the runqueue lock when things look like they will
1155 * work out!
1156 */
1157 rq = task_rq(p);
fa490cfd 1158
3a5c359a
AK
1159 /*
1160 * If the task is actively running on another CPU
1161 * still, just relax and busy-wait without holding
1162 * any locks.
1163 *
1164 * NOTE! Since we don't hold any locks, it's not
1165 * even sure that "rq" stays as the right runqueue!
1166 * But we don't care, since "task_running()" will
1167 * return false if the runqueue has changed and p
1168 * is actually now running somewhere else!
1169 */
85ba2d86
RM
1170 while (task_running(rq, p)) {
1171 if (match_state && unlikely(p->state != match_state))
1172 return 0;
3a5c359a 1173 cpu_relax();
85ba2d86 1174 }
fa490cfd 1175
3a5c359a
AK
1176 /*
1177 * Ok, time to look more closely! We need the rq
1178 * lock now, to be *sure*. If we're wrong, we'll
1179 * just go back and repeat.
1180 */
1181 rq = task_rq_lock(p, &flags);
27a9da65 1182 trace_sched_wait_task(p);
3a5c359a 1183 running = task_running(rq, p);
fd2f4419 1184 on_rq = p->on_rq;
85ba2d86 1185 ncsw = 0;
f31e11d8 1186 if (!match_state || p->state == match_state)
93dcf55f 1187 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1188 task_rq_unlock(rq, p, &flags);
fa490cfd 1189
85ba2d86
RM
1190 /*
1191 * If it changed from the expected state, bail out now.
1192 */
1193 if (unlikely(!ncsw))
1194 break;
1195
3a5c359a
AK
1196 /*
1197 * Was it really running after all now that we
1198 * checked with the proper locks actually held?
1199 *
1200 * Oops. Go back and try again..
1201 */
1202 if (unlikely(running)) {
1203 cpu_relax();
1204 continue;
1205 }
fa490cfd 1206
3a5c359a
AK
1207 /*
1208 * It's not enough that it's not actively running,
1209 * it must be off the runqueue _entirely_, and not
1210 * preempted!
1211 *
80dd99b3 1212 * So if it was still runnable (but just not actively
3a5c359a
AK
1213 * running right now), it's preempted, and we should
1214 * yield - it could be a while.
1215 */
1216 if (unlikely(on_rq)) {
8eb90c30
TG
1217 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1218
1219 set_current_state(TASK_UNINTERRUPTIBLE);
1220 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1221 continue;
1222 }
fa490cfd 1223
3a5c359a
AK
1224 /*
1225 * Ahh, all good. It wasn't running, and it wasn't
1226 * runnable, which means that it will never become
1227 * running in the future either. We're all done!
1228 */
1229 break;
1230 }
85ba2d86
RM
1231
1232 return ncsw;
1da177e4
LT
1233}
1234
1235/***
1236 * kick_process - kick a running thread to enter/exit the kernel
1237 * @p: the to-be-kicked thread
1238 *
1239 * Cause a process which is running on another CPU to enter
1240 * kernel-mode, without any delay. (to get signals handled.)
1241 *
25985edc 1242 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1243 * because all it wants to ensure is that the remote task enters
1244 * the kernel. If the IPI races and the task has been migrated
1245 * to another CPU then no harm is done and the purpose has been
1246 * achieved as well.
1247 */
36c8b586 1248void kick_process(struct task_struct *p)
1da177e4
LT
1249{
1250 int cpu;
1251
1252 preempt_disable();
1253 cpu = task_cpu(p);
1254 if ((cpu != smp_processor_id()) && task_curr(p))
1255 smp_send_reschedule(cpu);
1256 preempt_enable();
1257}
b43e3521 1258EXPORT_SYMBOL_GPL(kick_process);
476d139c 1259#endif /* CONFIG_SMP */
1da177e4 1260
970b13ba 1261#ifdef CONFIG_SMP
30da688e 1262/*
013fdb80 1263 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1264 */
5da9a0fb
PZ
1265static int select_fallback_rq(int cpu, struct task_struct *p)
1266{
1267 int dest_cpu;
1268 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
1269
1270 /* Look for allowed, online CPU in same node. */
1271 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
fa17b507 1272 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
5da9a0fb
PZ
1273 return dest_cpu;
1274
1275 /* Any allowed, online CPU? */
fa17b507 1276 dest_cpu = cpumask_any_and(tsk_cpus_allowed(p), cpu_active_mask);
5da9a0fb
PZ
1277 if (dest_cpu < nr_cpu_ids)
1278 return dest_cpu;
1279
1280 /* No more Mr. Nice Guy. */
48c5ccae
PZ
1281 dest_cpu = cpuset_cpus_allowed_fallback(p);
1282 /*
1283 * Don't tell them about moving exiting tasks or
1284 * kernel threads (both mm NULL), since they never
1285 * leave kernel.
1286 */
1287 if (p->mm && printk_ratelimit()) {
1288 printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
1289 task_pid_nr(p), p->comm, cpu);
5da9a0fb
PZ
1290 }
1291
1292 return dest_cpu;
1293}
1294
e2912009 1295/*
013fdb80 1296 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1297 */
970b13ba 1298static inline
7608dec2 1299int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 1300{
7608dec2 1301 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
e2912009
PZ
1302
1303 /*
1304 * In order not to call set_task_cpu() on a blocking task we need
1305 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1306 * cpu.
1307 *
1308 * Since this is common to all placement strategies, this lives here.
1309 *
1310 * [ this allows ->select_task() to simply return task_cpu(p) and
1311 * not worry about this generic constraint ]
1312 */
fa17b507 1313 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1314 !cpu_online(cpu)))
5da9a0fb 1315 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1316
1317 return cpu;
970b13ba 1318}
09a40af5
MG
1319
1320static void update_avg(u64 *avg, u64 sample)
1321{
1322 s64 diff = sample - *avg;
1323 *avg += diff >> 3;
1324}
970b13ba
PZ
1325#endif
1326
d7c01d27 1327static void
b84cb5df 1328ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1329{
d7c01d27 1330#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1331 struct rq *rq = this_rq();
1332
d7c01d27
PZ
1333#ifdef CONFIG_SMP
1334 int this_cpu = smp_processor_id();
1335
1336 if (cpu == this_cpu) {
1337 schedstat_inc(rq, ttwu_local);
1338 schedstat_inc(p, se.statistics.nr_wakeups_local);
1339 } else {
1340 struct sched_domain *sd;
1341
1342 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1343 rcu_read_lock();
d7c01d27
PZ
1344 for_each_domain(this_cpu, sd) {
1345 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1346 schedstat_inc(sd, ttwu_wake_remote);
1347 break;
1348 }
1349 }
057f3fad 1350 rcu_read_unlock();
d7c01d27 1351 }
f339b9dc
PZ
1352
1353 if (wake_flags & WF_MIGRATED)
1354 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1355
d7c01d27
PZ
1356#endif /* CONFIG_SMP */
1357
1358 schedstat_inc(rq, ttwu_count);
9ed3811a 1359 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1360
1361 if (wake_flags & WF_SYNC)
9ed3811a 1362 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1363
d7c01d27
PZ
1364#endif /* CONFIG_SCHEDSTATS */
1365}
1366
1367static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1368{
9ed3811a 1369 activate_task(rq, p, en_flags);
fd2f4419 1370 p->on_rq = 1;
c2f7115e
PZ
1371
1372 /* if a worker is waking up, notify workqueue */
1373 if (p->flags & PF_WQ_WORKER)
1374 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1375}
1376
23f41eeb
PZ
1377/*
1378 * Mark the task runnable and perform wakeup-preemption.
1379 */
89363381 1380static void
23f41eeb 1381ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1382{
89363381 1383 trace_sched_wakeup(p, true);
9ed3811a
TH
1384 check_preempt_curr(rq, p, wake_flags);
1385
1386 p->state = TASK_RUNNING;
1387#ifdef CONFIG_SMP
1388 if (p->sched_class->task_woken)
1389 p->sched_class->task_woken(rq, p);
1390
e69c6341 1391 if (rq->idle_stamp) {
9ed3811a
TH
1392 u64 delta = rq->clock - rq->idle_stamp;
1393 u64 max = 2*sysctl_sched_migration_cost;
1394
1395 if (delta > max)
1396 rq->avg_idle = max;
1397 else
1398 update_avg(&rq->avg_idle, delta);
1399 rq->idle_stamp = 0;
1400 }
1401#endif
1402}
1403
c05fbafb
PZ
1404static void
1405ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1406{
1407#ifdef CONFIG_SMP
1408 if (p->sched_contributes_to_load)
1409 rq->nr_uninterruptible--;
1410#endif
1411
1412 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1413 ttwu_do_wakeup(rq, p, wake_flags);
1414}
1415
1416/*
1417 * Called in case the task @p isn't fully descheduled from its runqueue,
1418 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1419 * since all we need to do is flip p->state to TASK_RUNNING, since
1420 * the task is still ->on_rq.
1421 */
1422static int ttwu_remote(struct task_struct *p, int wake_flags)
1423{
1424 struct rq *rq;
1425 int ret = 0;
1426
1427 rq = __task_rq_lock(p);
1428 if (p->on_rq) {
1429 ttwu_do_wakeup(rq, p, wake_flags);
1430 ret = 1;
1431 }
1432 __task_rq_unlock(rq);
1433
1434 return ret;
1435}
1436
317f3941 1437#ifdef CONFIG_SMP
fa14ff4a 1438static void sched_ttwu_pending(void)
317f3941
PZ
1439{
1440 struct rq *rq = this_rq();
fa14ff4a
PZ
1441 struct llist_node *llist = llist_del_all(&rq->wake_list);
1442 struct task_struct *p;
317f3941
PZ
1443
1444 raw_spin_lock(&rq->lock);
1445
fa14ff4a
PZ
1446 while (llist) {
1447 p = llist_entry(llist, struct task_struct, wake_entry);
1448 llist = llist_next(llist);
317f3941
PZ
1449 ttwu_do_activate(rq, p, 0);
1450 }
1451
1452 raw_spin_unlock(&rq->lock);
1453}
1454
1455void scheduler_ipi(void)
1456{
ca38062e 1457 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1458 return;
1459
1460 /*
1461 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1462 * traditionally all their work was done from the interrupt return
1463 * path. Now that we actually do some work, we need to make sure
1464 * we do call them.
1465 *
1466 * Some archs already do call them, luckily irq_enter/exit nest
1467 * properly.
1468 *
1469 * Arguably we should visit all archs and update all handlers,
1470 * however a fair share of IPIs are still resched only so this would
1471 * somewhat pessimize the simple resched case.
1472 */
1473 irq_enter();
fa14ff4a 1474 sched_ttwu_pending();
ca38062e
SS
1475
1476 /*
1477 * Check if someone kicked us for doing the nohz idle load balance.
1478 */
6eb57e0d
SS
1479 if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1480 this_rq()->idle_balance = 1;
ca38062e 1481 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1482 }
c5d753a5 1483 irq_exit();
317f3941
PZ
1484}
1485
1486static void ttwu_queue_remote(struct task_struct *p, int cpu)
1487{
fa14ff4a 1488 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
317f3941
PZ
1489 smp_send_reschedule(cpu);
1490}
d6aa8f85
PZ
1491
1492#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1493static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
1494{
1495 struct rq *rq;
1496 int ret = 0;
1497
1498 rq = __task_rq_lock(p);
1499 if (p->on_cpu) {
1500 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1501 ttwu_do_wakeup(rq, p, wake_flags);
1502 ret = 1;
1503 }
1504 __task_rq_unlock(rq);
1505
1506 return ret;
1507
1508}
1509#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
518cd623
PZ
1510
1511static inline int ttwu_share_cache(int this_cpu, int that_cpu)
1512{
1513 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1514}
d6aa8f85 1515#endif /* CONFIG_SMP */
317f3941 1516
c05fbafb
PZ
1517static void ttwu_queue(struct task_struct *p, int cpu)
1518{
1519 struct rq *rq = cpu_rq(cpu);
1520
17d9f311 1521#if defined(CONFIG_SMP)
518cd623 1522 if (sched_feat(TTWU_QUEUE) && !ttwu_share_cache(smp_processor_id(), cpu)) {
f01114cb 1523 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1524 ttwu_queue_remote(p, cpu);
1525 return;
1526 }
1527#endif
1528
c05fbafb
PZ
1529 raw_spin_lock(&rq->lock);
1530 ttwu_do_activate(rq, p, 0);
1531 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1532}
1533
1534/**
1da177e4 1535 * try_to_wake_up - wake up a thread
9ed3811a 1536 * @p: the thread to be awakened
1da177e4 1537 * @state: the mask of task states that can be woken
9ed3811a 1538 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1539 *
1540 * Put it on the run-queue if it's not already there. The "current"
1541 * thread is always on the run-queue (except when the actual
1542 * re-schedule is in progress), and as such you're allowed to do
1543 * the simpler "current->state = TASK_RUNNING" to mark yourself
1544 * runnable without the overhead of this.
1545 *
9ed3811a
TH
1546 * Returns %true if @p was woken up, %false if it was already running
1547 * or @state didn't match @p's state.
1da177e4 1548 */
e4a52bcb
PZ
1549static int
1550try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1551{
1da177e4 1552 unsigned long flags;
c05fbafb 1553 int cpu, success = 0;
2398f2c6 1554
04e2f174 1555 smp_wmb();
013fdb80 1556 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1557 if (!(p->state & state))
1da177e4
LT
1558 goto out;
1559
c05fbafb 1560 success = 1; /* we're going to change ->state */
1da177e4 1561 cpu = task_cpu(p);
1da177e4 1562
c05fbafb
PZ
1563 if (p->on_rq && ttwu_remote(p, wake_flags))
1564 goto stat;
1da177e4 1565
1da177e4 1566#ifdef CONFIG_SMP
e9c84311 1567 /*
c05fbafb
PZ
1568 * If the owning (remote) cpu is still in the middle of schedule() with
1569 * this task as prev, wait until its done referencing the task.
e9c84311 1570 */
e4a52bcb
PZ
1571 while (p->on_cpu) {
1572#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1573 /*
d6aa8f85
PZ
1574 * In case the architecture enables interrupts in
1575 * context_switch(), we cannot busy wait, since that
1576 * would lead to deadlocks when an interrupt hits and
1577 * tries to wake up @prev. So bail and do a complete
1578 * remote wakeup.
e4a52bcb 1579 */
d6aa8f85 1580 if (ttwu_activate_remote(p, wake_flags))
c05fbafb 1581 goto stat;
d6aa8f85 1582#else
e4a52bcb 1583 cpu_relax();
d6aa8f85 1584#endif
371fd7e7 1585 }
0970d299 1586 /*
e4a52bcb 1587 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1588 */
e4a52bcb 1589 smp_rmb();
1da177e4 1590
a8e4f2ea 1591 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1592 p->state = TASK_WAKING;
e7693a36 1593
e4a52bcb 1594 if (p->sched_class->task_waking)
74f8e4b2 1595 p->sched_class->task_waking(p);
efbbd05a 1596
7608dec2 1597 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1598 if (task_cpu(p) != cpu) {
1599 wake_flags |= WF_MIGRATED;
e4a52bcb 1600 set_task_cpu(p, cpu);
f339b9dc 1601 }
1da177e4 1602#endif /* CONFIG_SMP */
1da177e4 1603
c05fbafb
PZ
1604 ttwu_queue(p, cpu);
1605stat:
b84cb5df 1606 ttwu_stat(p, cpu, wake_flags);
1da177e4 1607out:
013fdb80 1608 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1609
1610 return success;
1611}
1612
21aa9af0
TH
1613/**
1614 * try_to_wake_up_local - try to wake up a local task with rq lock held
1615 * @p: the thread to be awakened
1616 *
2acca55e 1617 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1618 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1619 * the current task.
21aa9af0
TH
1620 */
1621static void try_to_wake_up_local(struct task_struct *p)
1622{
1623 struct rq *rq = task_rq(p);
21aa9af0
TH
1624
1625 BUG_ON(rq != this_rq());
1626 BUG_ON(p == current);
1627 lockdep_assert_held(&rq->lock);
1628
2acca55e
PZ
1629 if (!raw_spin_trylock(&p->pi_lock)) {
1630 raw_spin_unlock(&rq->lock);
1631 raw_spin_lock(&p->pi_lock);
1632 raw_spin_lock(&rq->lock);
1633 }
1634
21aa9af0 1635 if (!(p->state & TASK_NORMAL))
2acca55e 1636 goto out;
21aa9af0 1637
fd2f4419 1638 if (!p->on_rq)
d7c01d27
PZ
1639 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1640
23f41eeb 1641 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1642 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1643out:
1644 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1645}
1646
50fa610a
DH
1647/**
1648 * wake_up_process - Wake up a specific process
1649 * @p: The process to be woken up.
1650 *
1651 * Attempt to wake up the nominated process and move it to the set of runnable
1652 * processes. Returns 1 if the process was woken up, 0 if it was already
1653 * running.
1654 *
1655 * It may be assumed that this function implies a write memory barrier before
1656 * changing the task state if and only if any tasks are woken up.
1657 */
7ad5b3a5 1658int wake_up_process(struct task_struct *p)
1da177e4 1659{
d9514f6c 1660 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 1661}
1da177e4
LT
1662EXPORT_SYMBOL(wake_up_process);
1663
7ad5b3a5 1664int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1665{
1666 return try_to_wake_up(p, state, 0);
1667}
1668
1da177e4
LT
1669/*
1670 * Perform scheduler related setup for a newly forked process p.
1671 * p is forked by current.
dd41f596
IM
1672 *
1673 * __sched_fork() is basic setup used by init_idle() too:
1674 */
1675static void __sched_fork(struct task_struct *p)
1676{
fd2f4419
PZ
1677 p->on_rq = 0;
1678
1679 p->se.on_rq = 0;
dd41f596
IM
1680 p->se.exec_start = 0;
1681 p->se.sum_exec_runtime = 0;
f6cf891c 1682 p->se.prev_sum_exec_runtime = 0;
6c594c21 1683 p->se.nr_migrations = 0;
da7a735e 1684 p->se.vruntime = 0;
fd2f4419 1685 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
1686
1687#ifdef CONFIG_SCHEDSTATS
41acab88 1688 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 1689#endif
476d139c 1690
fa717060 1691 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 1692
e107be36
AK
1693#ifdef CONFIG_PREEMPT_NOTIFIERS
1694 INIT_HLIST_HEAD(&p->preempt_notifiers);
1695#endif
dd41f596
IM
1696}
1697
1698/*
1699 * fork()/clone()-time setup:
1700 */
3e51e3ed 1701void sched_fork(struct task_struct *p)
dd41f596 1702{
0122ec5b 1703 unsigned long flags;
dd41f596
IM
1704 int cpu = get_cpu();
1705
1706 __sched_fork(p);
06b83b5f 1707 /*
0017d735 1708 * We mark the process as running here. This guarantees that
06b83b5f
PZ
1709 * nobody will actually run it, and a signal or other external
1710 * event cannot wake it up and insert it on the runqueue either.
1711 */
0017d735 1712 p->state = TASK_RUNNING;
dd41f596 1713
c350a04e
MG
1714 /*
1715 * Make sure we do not leak PI boosting priority to the child.
1716 */
1717 p->prio = current->normal_prio;
1718
b9dc29e7
MG
1719 /*
1720 * Revert to default priority/policy on fork if requested.
1721 */
1722 if (unlikely(p->sched_reset_on_fork)) {
c350a04e 1723 if (task_has_rt_policy(p)) {
b9dc29e7 1724 p->policy = SCHED_NORMAL;
6c697bdf 1725 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
1726 p->rt_priority = 0;
1727 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1728 p->static_prio = NICE_TO_PRIO(0);
1729
1730 p->prio = p->normal_prio = __normal_prio(p);
1731 set_load_weight(p);
6c697bdf 1732
b9dc29e7
MG
1733 /*
1734 * We don't need the reset flag anymore after the fork. It has
1735 * fulfilled its duty:
1736 */
1737 p->sched_reset_on_fork = 0;
1738 }
ca94c442 1739
2ddbf952
HS
1740 if (!rt_prio(p->prio))
1741 p->sched_class = &fair_sched_class;
b29739f9 1742
cd29fe6f
PZ
1743 if (p->sched_class->task_fork)
1744 p->sched_class->task_fork(p);
1745
86951599
PZ
1746 /*
1747 * The child is not yet in the pid-hash so no cgroup attach races,
1748 * and the cgroup is pinned to this child due to cgroup_fork()
1749 * is ran before sched_fork().
1750 *
1751 * Silence PROVE_RCU.
1752 */
0122ec5b 1753 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 1754 set_task_cpu(p, cpu);
0122ec5b 1755 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 1756
52f17b6c 1757#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1758 if (likely(sched_info_on()))
52f17b6c 1759 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1760#endif
3ca7a440
PZ
1761#if defined(CONFIG_SMP)
1762 p->on_cpu = 0;
4866cde0 1763#endif
bdd4e85d 1764#ifdef CONFIG_PREEMPT_COUNT
4866cde0 1765 /* Want to start with kernel preemption disabled. */
a1261f54 1766 task_thread_info(p)->preempt_count = 1;
1da177e4 1767#endif
806c09a7 1768#ifdef CONFIG_SMP
917b627d 1769 plist_node_init(&p->pushable_tasks, MAX_PRIO);
806c09a7 1770#endif
917b627d 1771
476d139c 1772 put_cpu();
1da177e4
LT
1773}
1774
1775/*
1776 * wake_up_new_task - wake up a newly created task for the first time.
1777 *
1778 * This function will do some initial scheduler statistics housekeeping
1779 * that must be done for every newly created context, then puts the task
1780 * on the runqueue and wakes it.
1781 */
3e51e3ed 1782void wake_up_new_task(struct task_struct *p)
1da177e4
LT
1783{
1784 unsigned long flags;
dd41f596 1785 struct rq *rq;
fabf318e 1786
ab2515c4 1787 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
1788#ifdef CONFIG_SMP
1789 /*
1790 * Fork balancing, do it here and not earlier because:
1791 * - cpus_allowed can change in the fork path
1792 * - any previously selected cpu might disappear through hotplug
fabf318e 1793 */
ab2515c4 1794 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
0017d735
PZ
1795#endif
1796
ab2515c4 1797 rq = __task_rq_lock(p);
cd29fe6f 1798 activate_task(rq, p, 0);
fd2f4419 1799 p->on_rq = 1;
89363381 1800 trace_sched_wakeup_new(p, true);
a7558e01 1801 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 1802#ifdef CONFIG_SMP
efbbd05a
PZ
1803 if (p->sched_class->task_woken)
1804 p->sched_class->task_woken(rq, p);
9a897c5a 1805#endif
0122ec5b 1806 task_rq_unlock(rq, p, &flags);
1da177e4
LT
1807}
1808
e107be36
AK
1809#ifdef CONFIG_PREEMPT_NOTIFIERS
1810
1811/**
80dd99b3 1812 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 1813 * @notifier: notifier struct to register
e107be36
AK
1814 */
1815void preempt_notifier_register(struct preempt_notifier *notifier)
1816{
1817 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1818}
1819EXPORT_SYMBOL_GPL(preempt_notifier_register);
1820
1821/**
1822 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 1823 * @notifier: notifier struct to unregister
e107be36
AK
1824 *
1825 * This is safe to call from within a preemption notifier.
1826 */
1827void preempt_notifier_unregister(struct preempt_notifier *notifier)
1828{
1829 hlist_del(&notifier->link);
1830}
1831EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1832
1833static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1834{
1835 struct preempt_notifier *notifier;
1836 struct hlist_node *node;
1837
1838 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1839 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1840}
1841
1842static void
1843fire_sched_out_preempt_notifiers(struct task_struct *curr,
1844 struct task_struct *next)
1845{
1846 struct preempt_notifier *notifier;
1847 struct hlist_node *node;
1848
1849 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1850 notifier->ops->sched_out(notifier, next);
1851}
1852
6d6bc0ad 1853#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
1854
1855static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1856{
1857}
1858
1859static void
1860fire_sched_out_preempt_notifiers(struct task_struct *curr,
1861 struct task_struct *next)
1862{
1863}
1864
6d6bc0ad 1865#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 1866
4866cde0
NP
1867/**
1868 * prepare_task_switch - prepare to switch tasks
1869 * @rq: the runqueue preparing to switch
421cee29 1870 * @prev: the current task that is being switched out
4866cde0
NP
1871 * @next: the task we are going to switch to.
1872 *
1873 * This is called with the rq lock held and interrupts off. It must
1874 * be paired with a subsequent finish_task_switch after the context
1875 * switch.
1876 *
1877 * prepare_task_switch sets up locking and calls architecture specific
1878 * hooks.
1879 */
e107be36
AK
1880static inline void
1881prepare_task_switch(struct rq *rq, struct task_struct *prev,
1882 struct task_struct *next)
4866cde0 1883{
fe4b04fa
PZ
1884 sched_info_switch(prev, next);
1885 perf_event_task_sched_out(prev, next);
e107be36 1886 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
1887 prepare_lock_switch(rq, next);
1888 prepare_arch_switch(next);
fe4b04fa 1889 trace_sched_switch(prev, next);
4866cde0
NP
1890}
1891
1da177e4
LT
1892/**
1893 * finish_task_switch - clean up after a task-switch
344babaa 1894 * @rq: runqueue associated with task-switch
1da177e4
LT
1895 * @prev: the thread we just switched away from.
1896 *
4866cde0
NP
1897 * finish_task_switch must be called after the context switch, paired
1898 * with a prepare_task_switch call before the context switch.
1899 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1900 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1901 *
1902 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 1903 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
1904 * with the lock held can cause deadlocks; see schedule() for
1905 * details.)
1906 */
a9957449 1907static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1908 __releases(rq->lock)
1909{
1da177e4 1910 struct mm_struct *mm = rq->prev_mm;
55a101f8 1911 long prev_state;
1da177e4
LT
1912
1913 rq->prev_mm = NULL;
1914
1915 /*
1916 * A task struct has one reference for the use as "current".
c394cc9f 1917 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1918 * schedule one last time. The schedule call will never return, and
1919 * the scheduled task must drop that reference.
c394cc9f 1920 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1921 * still held, otherwise prev could be scheduled on another cpu, die
1922 * there before we look at prev->state, and then the reference would
1923 * be dropped twice.
1924 * Manfred Spraul <manfred@colorfullife.com>
1925 */
55a101f8 1926 prev_state = prev->state;
4866cde0 1927 finish_arch_switch(prev);
8381f65d
JI
1928#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1929 local_irq_disable();
1930#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
a8d757ef 1931 perf_event_task_sched_in(prev, current);
8381f65d
JI
1932#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1933 local_irq_enable();
1934#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
4866cde0 1935 finish_lock_switch(rq, prev);
1ac9bc69 1936 trace_sched_stat_sleeptime(current, rq->clock);
e8fa1362 1937
e107be36 1938 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
1939 if (mm)
1940 mmdrop(mm);
c394cc9f 1941 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 1942 /*
1943 * Remove function-return probe instances associated with this
1944 * task and put them back on the free list.
9761eea8 1945 */
c6fd91f0 1946 kprobe_flush_task(prev);
1da177e4 1947 put_task_struct(prev);
c6fd91f0 1948 }
1da177e4
LT
1949}
1950
3f029d3c
GH
1951#ifdef CONFIG_SMP
1952
1953/* assumes rq->lock is held */
1954static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1955{
1956 if (prev->sched_class->pre_schedule)
1957 prev->sched_class->pre_schedule(rq, prev);
1958}
1959
1960/* rq->lock is NOT held, but preemption is disabled */
1961static inline void post_schedule(struct rq *rq)
1962{
1963 if (rq->post_schedule) {
1964 unsigned long flags;
1965
05fa785c 1966 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
1967 if (rq->curr->sched_class->post_schedule)
1968 rq->curr->sched_class->post_schedule(rq);
05fa785c 1969 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
1970
1971 rq->post_schedule = 0;
1972 }
1973}
1974
1975#else
da19ab51 1976
3f029d3c
GH
1977static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1978{
1979}
1980
1981static inline void post_schedule(struct rq *rq)
1982{
1da177e4
LT
1983}
1984
3f029d3c
GH
1985#endif
1986
1da177e4
LT
1987/**
1988 * schedule_tail - first thing a freshly forked thread must call.
1989 * @prev: the thread we just switched away from.
1990 */
36c8b586 1991asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
1992 __releases(rq->lock)
1993{
70b97a7f
IM
1994 struct rq *rq = this_rq();
1995
4866cde0 1996 finish_task_switch(rq, prev);
da19ab51 1997
3f029d3c
GH
1998 /*
1999 * FIXME: do we need to worry about rq being invalidated by the
2000 * task_switch?
2001 */
2002 post_schedule(rq);
70b97a7f 2003
4866cde0
NP
2004#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2005 /* In this case, finish_task_switch does not reenable preemption */
2006 preempt_enable();
2007#endif
1da177e4 2008 if (current->set_child_tid)
b488893a 2009 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2010}
2011
2012/*
2013 * context_switch - switch to the new MM and the new
2014 * thread's register state.
2015 */
dd41f596 2016static inline void
70b97a7f 2017context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2018 struct task_struct *next)
1da177e4 2019{
dd41f596 2020 struct mm_struct *mm, *oldmm;
1da177e4 2021
e107be36 2022 prepare_task_switch(rq, prev, next);
fe4b04fa 2023
dd41f596
IM
2024 mm = next->mm;
2025 oldmm = prev->active_mm;
9226d125
ZA
2026 /*
2027 * For paravirt, this is coupled with an exit in switch_to to
2028 * combine the page table reload and the switch backend into
2029 * one hypercall.
2030 */
224101ed 2031 arch_start_context_switch(prev);
9226d125 2032
31915ab4 2033 if (!mm) {
1da177e4
LT
2034 next->active_mm = oldmm;
2035 atomic_inc(&oldmm->mm_count);
2036 enter_lazy_tlb(oldmm, next);
2037 } else
2038 switch_mm(oldmm, mm, next);
2039
31915ab4 2040 if (!prev->mm) {
1da177e4 2041 prev->active_mm = NULL;
1da177e4
LT
2042 rq->prev_mm = oldmm;
2043 }
3a5f5e48
IM
2044 /*
2045 * Since the runqueue lock will be released by the next
2046 * task (which is an invalid locking op but in the case
2047 * of the scheduler it's an obvious special-case), so we
2048 * do an early lockdep release here:
2049 */
2050#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2051 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2052#endif
1da177e4
LT
2053
2054 /* Here we just switch the register state and the stack. */
2055 switch_to(prev, next, prev);
2056
dd41f596
IM
2057 barrier();
2058 /*
2059 * this_rq must be evaluated again because prev may have moved
2060 * CPUs since it called schedule(), thus the 'rq' on its stack
2061 * frame will be invalid.
2062 */
2063 finish_task_switch(this_rq(), prev);
1da177e4
LT
2064}
2065
2066/*
2067 * nr_running, nr_uninterruptible and nr_context_switches:
2068 *
2069 * externally visible scheduler statistics: current number of runnable
2070 * threads, current number of uninterruptible-sleeping threads, total
2071 * number of context switches performed since bootup.
2072 */
2073unsigned long nr_running(void)
2074{
2075 unsigned long i, sum = 0;
2076
2077 for_each_online_cpu(i)
2078 sum += cpu_rq(i)->nr_running;
2079
2080 return sum;
f711f609 2081}
1da177e4
LT
2082
2083unsigned long nr_uninterruptible(void)
f711f609 2084{
1da177e4 2085 unsigned long i, sum = 0;
f711f609 2086
0a945022 2087 for_each_possible_cpu(i)
1da177e4 2088 sum += cpu_rq(i)->nr_uninterruptible;
f711f609
GS
2089
2090 /*
1da177e4
LT
2091 * Since we read the counters lockless, it might be slightly
2092 * inaccurate. Do not allow it to go below zero though:
f711f609 2093 */
1da177e4
LT
2094 if (unlikely((long)sum < 0))
2095 sum = 0;
f711f609 2096
1da177e4 2097 return sum;
f711f609 2098}
f711f609 2099
1da177e4 2100unsigned long long nr_context_switches(void)
46cb4b7c 2101{
cc94abfc
SR
2102 int i;
2103 unsigned long long sum = 0;
46cb4b7c 2104
0a945022 2105 for_each_possible_cpu(i)
1da177e4 2106 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2107
1da177e4
LT
2108 return sum;
2109}
483b4ee6 2110
1da177e4
LT
2111unsigned long nr_iowait(void)
2112{
2113 unsigned long i, sum = 0;
483b4ee6 2114
0a945022 2115 for_each_possible_cpu(i)
1da177e4 2116 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2117
1da177e4
LT
2118 return sum;
2119}
483b4ee6 2120
8c215bd3 2121unsigned long nr_iowait_cpu(int cpu)
69d25870 2122{
8c215bd3 2123 struct rq *this = cpu_rq(cpu);
69d25870
AV
2124 return atomic_read(&this->nr_iowait);
2125}
46cb4b7c 2126
69d25870
AV
2127unsigned long this_cpu_load(void)
2128{
2129 struct rq *this = this_rq();
2130 return this->cpu_load[0];
2131}
e790fb0b 2132
46cb4b7c 2133
dce48a84
TG
2134/* Variables and functions for calc_load */
2135static atomic_long_t calc_load_tasks;
2136static unsigned long calc_load_update;
2137unsigned long avenrun[3];
2138EXPORT_SYMBOL(avenrun);
46cb4b7c 2139
74f5187a
PZ
2140static long calc_load_fold_active(struct rq *this_rq)
2141{
2142 long nr_active, delta = 0;
2143
2144 nr_active = this_rq->nr_running;
2145 nr_active += (long) this_rq->nr_uninterruptible;
2146
2147 if (nr_active != this_rq->calc_load_active) {
2148 delta = nr_active - this_rq->calc_load_active;
2149 this_rq->calc_load_active = nr_active;
2150 }
2151
2152 return delta;
2153}
2154
0f004f5a
PZ
2155static unsigned long
2156calc_load(unsigned long load, unsigned long exp, unsigned long active)
2157{
2158 load *= exp;
2159 load += active * (FIXED_1 - exp);
2160 load += 1UL << (FSHIFT - 1);
2161 return load >> FSHIFT;
2162}
2163
74f5187a
PZ
2164#ifdef CONFIG_NO_HZ
2165/*
2166 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
2167 *
2168 * When making the ILB scale, we should try to pull this in as well.
2169 */
2170static atomic_long_t calc_load_tasks_idle;
2171
029632fb 2172void calc_load_account_idle(struct rq *this_rq)
74f5187a
PZ
2173{
2174 long delta;
2175
2176 delta = calc_load_fold_active(this_rq);
2177 if (delta)
2178 atomic_long_add(delta, &calc_load_tasks_idle);
2179}
2180
2181static long calc_load_fold_idle(void)
2182{
2183 long delta = 0;
2184
2185 /*
2186 * Its got a race, we don't care...
2187 */
2188 if (atomic_long_read(&calc_load_tasks_idle))
2189 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
2190
2191 return delta;
2192}
0f004f5a
PZ
2193
2194/**
2195 * fixed_power_int - compute: x^n, in O(log n) time
2196 *
2197 * @x: base of the power
2198 * @frac_bits: fractional bits of @x
2199 * @n: power to raise @x to.
2200 *
2201 * By exploiting the relation between the definition of the natural power
2202 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2203 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2204 * (where: n_i \elem {0, 1}, the binary vector representing n),
2205 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2206 * of course trivially computable in O(log_2 n), the length of our binary
2207 * vector.
2208 */
2209static unsigned long
2210fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2211{
2212 unsigned long result = 1UL << frac_bits;
2213
2214 if (n) for (;;) {
2215 if (n & 1) {
2216 result *= x;
2217 result += 1UL << (frac_bits - 1);
2218 result >>= frac_bits;
2219 }
2220 n >>= 1;
2221 if (!n)
2222 break;
2223 x *= x;
2224 x += 1UL << (frac_bits - 1);
2225 x >>= frac_bits;
2226 }
2227
2228 return result;
2229}
2230
2231/*
2232 * a1 = a0 * e + a * (1 - e)
2233 *
2234 * a2 = a1 * e + a * (1 - e)
2235 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2236 * = a0 * e^2 + a * (1 - e) * (1 + e)
2237 *
2238 * a3 = a2 * e + a * (1 - e)
2239 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2240 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2241 *
2242 * ...
2243 *
2244 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2245 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2246 * = a0 * e^n + a * (1 - e^n)
2247 *
2248 * [1] application of the geometric series:
2249 *
2250 * n 1 - x^(n+1)
2251 * S_n := \Sum x^i = -------------
2252 * i=0 1 - x
2253 */
2254static unsigned long
2255calc_load_n(unsigned long load, unsigned long exp,
2256 unsigned long active, unsigned int n)
2257{
2258
2259 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2260}
2261
2262/*
2263 * NO_HZ can leave us missing all per-cpu ticks calling
2264 * calc_load_account_active(), but since an idle CPU folds its delta into
2265 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2266 * in the pending idle delta if our idle period crossed a load cycle boundary.
2267 *
2268 * Once we've updated the global active value, we need to apply the exponential
2269 * weights adjusted to the number of cycles missed.
2270 */
2271static void calc_global_nohz(unsigned long ticks)
2272{
2273 long delta, active, n;
2274
2275 if (time_before(jiffies, calc_load_update))
2276 return;
2277
2278 /*
2279 * If we crossed a calc_load_update boundary, make sure to fold
2280 * any pending idle changes, the respective CPUs might have
2281 * missed the tick driven calc_load_account_active() update
2282 * due to NO_HZ.
2283 */
2284 delta = calc_load_fold_idle();
2285 if (delta)
2286 atomic_long_add(delta, &calc_load_tasks);
2287
2288 /*
2289 * If we were idle for multiple load cycles, apply them.
2290 */
2291 if (ticks >= LOAD_FREQ) {
2292 n = ticks / LOAD_FREQ;
2293
2294 active = atomic_long_read(&calc_load_tasks);
2295 active = active > 0 ? active * FIXED_1 : 0;
2296
2297 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2298 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2299 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2300
2301 calc_load_update += n * LOAD_FREQ;
2302 }
2303
2304 /*
2305 * Its possible the remainder of the above division also crosses
2306 * a LOAD_FREQ period, the regular check in calc_global_load()
2307 * which comes after this will take care of that.
2308 *
2309 * Consider us being 11 ticks before a cycle completion, and us
2310 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
2311 * age us 4 cycles, and the test in calc_global_load() will
2312 * pick up the final one.
2313 */
2314}
74f5187a 2315#else
029632fb 2316void calc_load_account_idle(struct rq *this_rq)
74f5187a
PZ
2317{
2318}
2319
2320static inline long calc_load_fold_idle(void)
2321{
2322 return 0;
2323}
0f004f5a
PZ
2324
2325static void calc_global_nohz(unsigned long ticks)
2326{
2327}
74f5187a
PZ
2328#endif
2329
2d02494f
TG
2330/**
2331 * get_avenrun - get the load average array
2332 * @loads: pointer to dest load array
2333 * @offset: offset to add
2334 * @shift: shift count to shift the result left
2335 *
2336 * These values are estimates at best, so no need for locking.
2337 */
2338void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2339{
2340 loads[0] = (avenrun[0] + offset) << shift;
2341 loads[1] = (avenrun[1] + offset) << shift;
2342 loads[2] = (avenrun[2] + offset) << shift;
46cb4b7c 2343}
46cb4b7c 2344
46cb4b7c 2345/*
dce48a84
TG
2346 * calc_load - update the avenrun load estimates 10 ticks after the
2347 * CPUs have updated calc_load_tasks.
7835b98b 2348 */
0f004f5a 2349void calc_global_load(unsigned long ticks)
7835b98b 2350{
dce48a84 2351 long active;
1da177e4 2352
0f004f5a
PZ
2353 calc_global_nohz(ticks);
2354
2355 if (time_before(jiffies, calc_load_update + 10))
dce48a84 2356 return;
1da177e4 2357
dce48a84
TG
2358 active = atomic_long_read(&calc_load_tasks);
2359 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 2360
dce48a84
TG
2361 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2362 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2363 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 2364
dce48a84
TG
2365 calc_load_update += LOAD_FREQ;
2366}
1da177e4 2367
dce48a84 2368/*
74f5187a
PZ
2369 * Called from update_cpu_load() to periodically update this CPU's
2370 * active count.
dce48a84
TG
2371 */
2372static void calc_load_account_active(struct rq *this_rq)
2373{
74f5187a 2374 long delta;
08c183f3 2375
74f5187a
PZ
2376 if (time_before(jiffies, this_rq->calc_load_update))
2377 return;
783609c6 2378
74f5187a
PZ
2379 delta = calc_load_fold_active(this_rq);
2380 delta += calc_load_fold_idle();
2381 if (delta)
dce48a84 2382 atomic_long_add(delta, &calc_load_tasks);
74f5187a
PZ
2383
2384 this_rq->calc_load_update += LOAD_FREQ;
46cb4b7c
SS
2385}
2386
fdf3e95d
VP
2387/*
2388 * The exact cpuload at various idx values, calculated at every tick would be
2389 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2390 *
2391 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2392 * on nth tick when cpu may be busy, then we have:
2393 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2394 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2395 *
2396 * decay_load_missed() below does efficient calculation of
2397 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2398 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2399 *
2400 * The calculation is approximated on a 128 point scale.
2401 * degrade_zero_ticks is the number of ticks after which load at any
2402 * particular idx is approximated to be zero.
2403 * degrade_factor is a precomputed table, a row for each load idx.
2404 * Each column corresponds to degradation factor for a power of two ticks,
2405 * based on 128 point scale.
2406 * Example:
2407 * row 2, col 3 (=12) says that the degradation at load idx 2 after
2408 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2409 *
2410 * With this power of 2 load factors, we can degrade the load n times
2411 * by looking at 1 bits in n and doing as many mult/shift instead of
2412 * n mult/shifts needed by the exact degradation.
2413 */
2414#define DEGRADE_SHIFT 7
2415static const unsigned char
2416 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2417static const unsigned char
2418 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2419 {0, 0, 0, 0, 0, 0, 0, 0},
2420 {64, 32, 8, 0, 0, 0, 0, 0},
2421 {96, 72, 40, 12, 1, 0, 0},
2422 {112, 98, 75, 43, 15, 1, 0},
2423 {120, 112, 98, 76, 45, 16, 2} };
2424
2425/*
2426 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2427 * would be when CPU is idle and so we just decay the old load without
2428 * adding any new load.
2429 */
2430static unsigned long
2431decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2432{
2433 int j = 0;
2434
2435 if (!missed_updates)
2436 return load;
2437
2438 if (missed_updates >= degrade_zero_ticks[idx])
2439 return 0;
2440
2441 if (idx == 1)
2442 return load >> missed_updates;
2443
2444 while (missed_updates) {
2445 if (missed_updates % 2)
2446 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2447
2448 missed_updates >>= 1;
2449 j++;
2450 }
2451 return load;
2452}
2453
46cb4b7c 2454/*
dd41f596 2455 * Update rq->cpu_load[] statistics. This function is usually called every
fdf3e95d
VP
2456 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2457 * every tick. We fix it up based on jiffies.
46cb4b7c 2458 */
029632fb 2459void update_cpu_load(struct rq *this_rq)
46cb4b7c 2460{
495eca49 2461 unsigned long this_load = this_rq->load.weight;
fdf3e95d
VP
2462 unsigned long curr_jiffies = jiffies;
2463 unsigned long pending_updates;
dd41f596 2464 int i, scale;
46cb4b7c 2465
dd41f596 2466 this_rq->nr_load_updates++;
46cb4b7c 2467
fdf3e95d
VP
2468 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
2469 if (curr_jiffies == this_rq->last_load_update_tick)
2470 return;
2471
2472 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2473 this_rq->last_load_update_tick = curr_jiffies;
2474
dd41f596 2475 /* Update our load: */
fdf3e95d
VP
2476 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2477 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
dd41f596 2478 unsigned long old_load, new_load;
7d1e6a9b 2479
dd41f596 2480 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 2481
dd41f596 2482 old_load = this_rq->cpu_load[i];
fdf3e95d 2483 old_load = decay_load_missed(old_load, pending_updates - 1, i);
dd41f596 2484 new_load = this_load;
a25707f3
IM
2485 /*
2486 * Round up the averaging division if load is increasing. This
2487 * prevents us from getting stuck on 9 if the load is 10, for
2488 * example.
2489 */
2490 if (new_load > old_load)
fdf3e95d
VP
2491 new_load += scale - 1;
2492
2493 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
dd41f596 2494 }
da2b71ed
SS
2495
2496 sched_avg_update(this_rq);
fdf3e95d
VP
2497}
2498
2499static void update_cpu_load_active(struct rq *this_rq)
2500{
2501 update_cpu_load(this_rq);
46cb4b7c 2502
74f5187a 2503 calc_load_account_active(this_rq);
46cb4b7c
SS
2504}
2505
dd41f596 2506#ifdef CONFIG_SMP
8a0be9ef 2507
46cb4b7c 2508/*
38022906
PZ
2509 * sched_exec - execve() is a valuable balancing opportunity, because at
2510 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2511 */
38022906 2512void sched_exec(void)
46cb4b7c 2513{
38022906 2514 struct task_struct *p = current;
1da177e4 2515 unsigned long flags;
0017d735 2516 int dest_cpu;
46cb4b7c 2517
8f42ced9 2518 raw_spin_lock_irqsave(&p->pi_lock, flags);
7608dec2 2519 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
0017d735
PZ
2520 if (dest_cpu == smp_processor_id())
2521 goto unlock;
38022906 2522
8f42ced9 2523 if (likely(cpu_active(dest_cpu))) {
969c7921 2524 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2525
8f42ced9
PZ
2526 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2527 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2528 return;
2529 }
0017d735 2530unlock:
8f42ced9 2531 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2532}
dd41f596 2533
1da177e4
LT
2534#endif
2535
1da177e4 2536DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2537DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2538
2539EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2540EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4
LT
2541
2542/*
c5f8d995 2543 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 2544 * @p in case that task is currently running.
c5f8d995
HS
2545 *
2546 * Called with task_rq_lock() held on @rq.
1da177e4 2547 */
c5f8d995
HS
2548static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2549{
2550 u64 ns = 0;
2551
2552 if (task_current(rq, p)) {
2553 update_rq_clock(rq);
305e6835 2554 ns = rq->clock_task - p->se.exec_start;
c5f8d995
HS
2555 if ((s64)ns < 0)
2556 ns = 0;
2557 }
2558
2559 return ns;
2560}
2561
bb34d92f 2562unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 2563{
1da177e4 2564 unsigned long flags;
41b86e9c 2565 struct rq *rq;
bb34d92f 2566 u64 ns = 0;
48f24c4d 2567
41b86e9c 2568 rq = task_rq_lock(p, &flags);
c5f8d995 2569 ns = do_task_delta_exec(p, rq);
0122ec5b 2570 task_rq_unlock(rq, p, &flags);
1508487e 2571
c5f8d995
HS
2572 return ns;
2573}
f06febc9 2574
c5f8d995
HS
2575/*
2576 * Return accounted runtime for the task.
2577 * In case the task is currently running, return the runtime plus current's
2578 * pending runtime that have not been accounted yet.
2579 */
2580unsigned long long task_sched_runtime(struct task_struct *p)
2581{
2582 unsigned long flags;
2583 struct rq *rq;
2584 u64 ns = 0;
2585
2586 rq = task_rq_lock(p, &flags);
2587 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 2588 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2589
2590 return ns;
2591}
48f24c4d 2592
54c707e9
GC
2593#ifdef CONFIG_CGROUP_CPUACCT
2594struct cgroup_subsys cpuacct_subsys;
2595struct cpuacct root_cpuacct;
2596#endif
2597
be726ffd
GC
2598static inline void task_group_account_field(struct task_struct *p, int index,
2599 u64 tmp)
54c707e9
GC
2600{
2601#ifdef CONFIG_CGROUP_CPUACCT
2602 struct kernel_cpustat *kcpustat;
2603 struct cpuacct *ca;
2604#endif
2605 /*
2606 * Since all updates are sure to touch the root cgroup, we
2607 * get ourselves ahead and touch it first. If the root cgroup
2608 * is the only cgroup, then nothing else should be necessary.
2609 *
2610 */
2611 __get_cpu_var(kernel_cpustat).cpustat[index] += tmp;
2612
2613#ifdef CONFIG_CGROUP_CPUACCT
2614 if (unlikely(!cpuacct_subsys.active))
2615 return;
2616
2617 rcu_read_lock();
2618 ca = task_ca(p);
2619 while (ca && (ca != &root_cpuacct)) {
2620 kcpustat = this_cpu_ptr(ca->cpustat);
2621 kcpustat->cpustat[index] += tmp;
2622 ca = parent_ca(ca);
2623 }
2624 rcu_read_unlock();
2625#endif
2626}
2627
2628
1da177e4
LT
2629/*
2630 * Account user cpu time to a process.
2631 * @p: the process that the cpu time gets accounted to
1da177e4 2632 * @cputime: the cpu time spent in user space since the last update
457533a7 2633 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 2634 */
457533a7
MS
2635void account_user_time(struct task_struct *p, cputime_t cputime,
2636 cputime_t cputime_scaled)
1da177e4 2637{
3292beb3 2638 int index;
1da177e4 2639
457533a7 2640 /* Add user time to process. */
64861634
MS
2641 p->utime += cputime;
2642 p->utimescaled += cputime_scaled;
f06febc9 2643 account_group_user_time(p, cputime);
1da177e4 2644
3292beb3 2645 index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
ef12fefa 2646
1da177e4 2647 /* Add user time to cpustat. */
612ef28a 2648 task_group_account_field(p, index, (__force u64) cputime);
ef12fefa 2649
49b5cf34
JL
2650 /* Account for user time used */
2651 acct_update_integrals(p);
1da177e4
LT
2652}
2653
94886b84
LV
2654/*
2655 * Account guest cpu time to a process.
2656 * @p: the process that the cpu time gets accounted to
2657 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 2658 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 2659 */
457533a7
MS
2660static void account_guest_time(struct task_struct *p, cputime_t cputime,
2661 cputime_t cputime_scaled)
94886b84 2662{
3292beb3 2663 u64 *cpustat = kcpustat_this_cpu->cpustat;
94886b84 2664
457533a7 2665 /* Add guest time to process. */
64861634
MS
2666 p->utime += cputime;
2667 p->utimescaled += cputime_scaled;
f06febc9 2668 account_group_user_time(p, cputime);
64861634 2669 p->gtime += cputime;
94886b84 2670
457533a7 2671 /* Add guest time to cpustat. */
ce0e7b28 2672 if (TASK_NICE(p) > 0) {
612ef28a
MS
2673 cpustat[CPUTIME_NICE] += (__force u64) cputime;
2674 cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
ce0e7b28 2675 } else {
612ef28a
MS
2676 cpustat[CPUTIME_USER] += (__force u64) cputime;
2677 cpustat[CPUTIME_GUEST] += (__force u64) cputime;
ce0e7b28 2678 }
94886b84
LV
2679}
2680
70a89a66
VP
2681/*
2682 * Account system cpu time to a process and desired cpustat field
2683 * @p: the process that the cpu time gets accounted to
2684 * @cputime: the cpu time spent in kernel space since the last update
2685 * @cputime_scaled: cputime scaled by cpu frequency
2686 * @target_cputime64: pointer to cpustat field that has to be updated
2687 */
2688static inline
2689void __account_system_time(struct task_struct *p, cputime_t cputime,
3292beb3 2690 cputime_t cputime_scaled, int index)
70a89a66 2691{
70a89a66 2692 /* Add system time to process. */
64861634
MS
2693 p->stime += cputime;
2694 p->stimescaled += cputime_scaled;
70a89a66
VP
2695 account_group_system_time(p, cputime);
2696
2697 /* Add system time to cpustat. */
612ef28a 2698 task_group_account_field(p, index, (__force u64) cputime);
70a89a66
VP
2699
2700 /* Account for system time used */
2701 acct_update_integrals(p);
2702}
2703
1da177e4
LT
2704/*
2705 * Account system cpu time to a process.
2706 * @p: the process that the cpu time gets accounted to
2707 * @hardirq_offset: the offset to subtract from hardirq_count()
2708 * @cputime: the cpu time spent in kernel space since the last update
457533a7 2709 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
2710 */
2711void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 2712 cputime_t cputime, cputime_t cputime_scaled)
1da177e4 2713{
3292beb3 2714 int index;
1da177e4 2715
983ed7a6 2716 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 2717 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
2718 return;
2719 }
94886b84 2720
1da177e4 2721 if (hardirq_count() - hardirq_offset)
3292beb3 2722 index = CPUTIME_IRQ;
75e1056f 2723 else if (in_serving_softirq())
3292beb3 2724 index = CPUTIME_SOFTIRQ;
1da177e4 2725 else
3292beb3 2726 index = CPUTIME_SYSTEM;
ef12fefa 2727
3292beb3 2728 __account_system_time(p, cputime, cputime_scaled, index);
1da177e4
LT
2729}
2730
c66f08be 2731/*
1da177e4 2732 * Account for involuntary wait time.
544b4a1f 2733 * @cputime: the cpu time spent in involuntary wait
c66f08be 2734 */
79741dd3 2735void account_steal_time(cputime_t cputime)
c66f08be 2736{
3292beb3 2737 u64 *cpustat = kcpustat_this_cpu->cpustat;
79741dd3 2738
612ef28a 2739 cpustat[CPUTIME_STEAL] += (__force u64) cputime;
c66f08be
MN
2740}
2741
1da177e4 2742/*
79741dd3
MS
2743 * Account for idle time.
2744 * @cputime: the cpu time spent in idle wait
1da177e4 2745 */
79741dd3 2746void account_idle_time(cputime_t cputime)
1da177e4 2747{
3292beb3 2748 u64 *cpustat = kcpustat_this_cpu->cpustat;
70b97a7f 2749 struct rq *rq = this_rq();
1da177e4 2750
79741dd3 2751 if (atomic_read(&rq->nr_iowait) > 0)
612ef28a 2752 cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
79741dd3 2753 else
612ef28a 2754 cpustat[CPUTIME_IDLE] += (__force u64) cputime;
1da177e4
LT
2755}
2756
e6e6685a
GC
2757static __always_inline bool steal_account_process_tick(void)
2758{
2759#ifdef CONFIG_PARAVIRT
2760 if (static_branch(&paravirt_steal_enabled)) {
2761 u64 steal, st = 0;
2762
2763 steal = paravirt_steal_clock(smp_processor_id());
2764 steal -= this_rq()->prev_steal_time;
2765
2766 st = steal_ticks(steal);
2767 this_rq()->prev_steal_time += st * TICK_NSEC;
2768
2769 account_steal_time(st);
2770 return st;
2771 }
2772#endif
2773 return false;
2774}
2775
79741dd3
MS
2776#ifndef CONFIG_VIRT_CPU_ACCOUNTING
2777
abb74cef
VP
2778#ifdef CONFIG_IRQ_TIME_ACCOUNTING
2779/*
2780 * Account a tick to a process and cpustat
2781 * @p: the process that the cpu time gets accounted to
2782 * @user_tick: is the tick from userspace
2783 * @rq: the pointer to rq
2784 *
2785 * Tick demultiplexing follows the order
2786 * - pending hardirq update
2787 * - pending softirq update
2788 * - user_time
2789 * - idle_time
2790 * - system time
2791 * - check for guest_time
2792 * - else account as system_time
2793 *
2794 * Check for hardirq is done both for system and user time as there is
2795 * no timer going off while we are on hardirq and hence we may never get an
2796 * opportunity to update it solely in system time.
2797 * p->stime and friends are only updated on system time and not on irq
2798 * softirq as those do not count in task exec_runtime any more.
2799 */
2800static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
2801 struct rq *rq)
2802{
2803 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3292beb3 2804 u64 *cpustat = kcpustat_this_cpu->cpustat;
abb74cef 2805
e6e6685a
GC
2806 if (steal_account_process_tick())
2807 return;
2808
abb74cef 2809 if (irqtime_account_hi_update()) {
612ef28a 2810 cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy;
abb74cef 2811 } else if (irqtime_account_si_update()) {
612ef28a 2812 cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy;
414bee9b
VP
2813 } else if (this_cpu_ksoftirqd() == p) {
2814 /*
2815 * ksoftirqd time do not get accounted in cpu_softirq_time.
2816 * So, we have to handle it separately here.
2817 * Also, p->stime needs to be updated for ksoftirqd.
2818 */
2819 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3292beb3 2820 CPUTIME_SOFTIRQ);
abb74cef
VP
2821 } else if (user_tick) {
2822 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
2823 } else if (p == rq->idle) {
2824 account_idle_time(cputime_one_jiffy);
2825 } else if (p->flags & PF_VCPU) { /* System time or guest time */
2826 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
2827 } else {
2828 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3292beb3 2829 CPUTIME_SYSTEM);
abb74cef
VP
2830 }
2831}
2832
2833static void irqtime_account_idle_ticks(int ticks)
2834{
2835 int i;
2836 struct rq *rq = this_rq();
2837
2838 for (i = 0; i < ticks; i++)
2839 irqtime_account_process_tick(current, 0, rq);
2840}
544b4a1f 2841#else /* CONFIG_IRQ_TIME_ACCOUNTING */
abb74cef
VP
2842static void irqtime_account_idle_ticks(int ticks) {}
2843static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
2844 struct rq *rq) {}
544b4a1f 2845#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
79741dd3
MS
2846
2847/*
2848 * Account a single tick of cpu time.
2849 * @p: the process that the cpu time gets accounted to
2850 * @user_tick: indicates if the tick is a user or a system tick
2851 */
2852void account_process_tick(struct task_struct *p, int user_tick)
2853{
a42548a1 2854 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
2855 struct rq *rq = this_rq();
2856
abb74cef
VP
2857 if (sched_clock_irqtime) {
2858 irqtime_account_process_tick(p, user_tick, rq);
2859 return;
2860 }
2861
e6e6685a
GC
2862 if (steal_account_process_tick())
2863 return;
2864
79741dd3 2865 if (user_tick)
a42548a1 2866 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 2867 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 2868 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
2869 one_jiffy_scaled);
2870 else
a42548a1 2871 account_idle_time(cputime_one_jiffy);
79741dd3
MS
2872}
2873
2874/*
2875 * Account multiple ticks of steal time.
2876 * @p: the process from which the cpu time has been stolen
2877 * @ticks: number of stolen ticks
2878 */
2879void account_steal_ticks(unsigned long ticks)
2880{
2881 account_steal_time(jiffies_to_cputime(ticks));
2882}
2883
2884/*
2885 * Account multiple ticks of idle time.
2886 * @ticks: number of stolen ticks
2887 */
2888void account_idle_ticks(unsigned long ticks)
2889{
abb74cef
VP
2890
2891 if (sched_clock_irqtime) {
2892 irqtime_account_idle_ticks(ticks);
2893 return;
2894 }
2895
79741dd3 2896 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
2897}
2898
79741dd3
MS
2899#endif
2900
49048622
BS
2901/*
2902 * Use precise platform statistics if available:
2903 */
2904#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 2905void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 2906{
d99ca3b9
HS
2907 *ut = p->utime;
2908 *st = p->stime;
49048622
BS
2909}
2910
0cf55e1e 2911void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 2912{
0cf55e1e
HS
2913 struct task_cputime cputime;
2914
2915 thread_group_cputime(p, &cputime);
2916
2917 *ut = cputime.utime;
2918 *st = cputime.stime;
49048622
BS
2919}
2920#else
761b1d26
HS
2921
2922#ifndef nsecs_to_cputime
b7b20df9 2923# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
2924#endif
2925
d180c5bc 2926void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 2927{
64861634 2928 cputime_t rtime, utime = p->utime, total = utime + p->stime;
49048622
BS
2929
2930 /*
2931 * Use CFS's precise accounting:
2932 */
d180c5bc 2933 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
2934
2935 if (total) {
64861634 2936 u64 temp = (__force u64) rtime;
d180c5bc 2937
64861634
MS
2938 temp *= (__force u64) utime;
2939 do_div(temp, (__force u32) total);
2940 utime = (__force cputime_t) temp;
d180c5bc
HS
2941 } else
2942 utime = rtime;
49048622 2943
d180c5bc
HS
2944 /*
2945 * Compare with previous values, to keep monotonicity:
2946 */
761b1d26 2947 p->prev_utime = max(p->prev_utime, utime);
64861634 2948 p->prev_stime = max(p->prev_stime, rtime - p->prev_utime);
49048622 2949
d99ca3b9
HS
2950 *ut = p->prev_utime;
2951 *st = p->prev_stime;
49048622
BS
2952}
2953
0cf55e1e
HS
2954/*
2955 * Must be called with siglock held.
2956 */
2957void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 2958{
0cf55e1e
HS
2959 struct signal_struct *sig = p->signal;
2960 struct task_cputime cputime;
2961 cputime_t rtime, utime, total;
49048622 2962
0cf55e1e 2963 thread_group_cputime(p, &cputime);
49048622 2964
64861634 2965 total = cputime.utime + cputime.stime;
0cf55e1e 2966 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 2967
0cf55e1e 2968 if (total) {
64861634 2969 u64 temp = (__force u64) rtime;
49048622 2970
64861634
MS
2971 temp *= (__force u64) cputime.utime;
2972 do_div(temp, (__force u32) total);
2973 utime = (__force cputime_t) temp;
0cf55e1e
HS
2974 } else
2975 utime = rtime;
2976
2977 sig->prev_utime = max(sig->prev_utime, utime);
64861634 2978 sig->prev_stime = max(sig->prev_stime, rtime - sig->prev_utime);
0cf55e1e
HS
2979
2980 *ut = sig->prev_utime;
2981 *st = sig->prev_stime;
49048622 2982}
49048622 2983#endif
49048622 2984
7835b98b
CL
2985/*
2986 * This function gets called by the timer code, with HZ frequency.
2987 * We call it with interrupts disabled.
7835b98b
CL
2988 */
2989void scheduler_tick(void)
2990{
7835b98b
CL
2991 int cpu = smp_processor_id();
2992 struct rq *rq = cpu_rq(cpu);
dd41f596 2993 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2994
2995 sched_clock_tick();
dd41f596 2996
05fa785c 2997 raw_spin_lock(&rq->lock);
3e51f33f 2998 update_rq_clock(rq);
fdf3e95d 2999 update_cpu_load_active(rq);
fa85ae24 3000 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 3001 raw_spin_unlock(&rq->lock);
7835b98b 3002
e9d2b064 3003 perf_event_task_tick();
e220d2dc 3004
e418e1c2 3005#ifdef CONFIG_SMP
6eb57e0d 3006 rq->idle_balance = idle_cpu(cpu);
dd41f596 3007 trigger_load_balance(rq, cpu);
e418e1c2 3008#endif
1da177e4
LT
3009}
3010
132380a0 3011notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
3012{
3013 if (in_lock_functions(addr)) {
3014 addr = CALLER_ADDR2;
3015 if (in_lock_functions(addr))
3016 addr = CALLER_ADDR3;
3017 }
3018 return addr;
3019}
1da177e4 3020
7e49fcce
SR
3021#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3022 defined(CONFIG_PREEMPT_TRACER))
3023
43627582 3024void __kprobes add_preempt_count(int val)
1da177e4 3025{
6cd8a4bb 3026#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3027 /*
3028 * Underflow?
3029 */
9a11b49a
IM
3030 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3031 return;
6cd8a4bb 3032#endif
1da177e4 3033 preempt_count() += val;
6cd8a4bb 3034#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3035 /*
3036 * Spinlock count overflowing soon?
3037 */
33859f7f
MOS
3038 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3039 PREEMPT_MASK - 10);
6cd8a4bb
SR
3040#endif
3041 if (preempt_count() == val)
3042 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3043}
3044EXPORT_SYMBOL(add_preempt_count);
3045
43627582 3046void __kprobes sub_preempt_count(int val)
1da177e4 3047{
6cd8a4bb 3048#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3049 /*
3050 * Underflow?
3051 */
01e3eb82 3052 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3053 return;
1da177e4
LT
3054 /*
3055 * Is the spinlock portion underflowing?
3056 */
9a11b49a
IM
3057 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3058 !(preempt_count() & PREEMPT_MASK)))
3059 return;
6cd8a4bb 3060#endif
9a11b49a 3061
6cd8a4bb
SR
3062 if (preempt_count() == val)
3063 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3064 preempt_count() -= val;
3065}
3066EXPORT_SYMBOL(sub_preempt_count);
3067
3068#endif
3069
3070/*
dd41f596 3071 * Print scheduling while atomic bug:
1da177e4 3072 */
dd41f596 3073static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3074{
838225b4
SS
3075 struct pt_regs *regs = get_irq_regs();
3076
664dfa65
DJ
3077 if (oops_in_progress)
3078 return;
3079
3df0fc5b
PZ
3080 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3081 prev->comm, prev->pid, preempt_count());
838225b4 3082
dd41f596 3083 debug_show_held_locks(prev);
e21f5b15 3084 print_modules();
dd41f596
IM
3085 if (irqs_disabled())
3086 print_irqtrace_events(prev);
838225b4
SS
3087
3088 if (regs)
3089 show_regs(regs);
3090 else
3091 dump_stack();
dd41f596 3092}
1da177e4 3093
dd41f596
IM
3094/*
3095 * Various schedule()-time debugging checks and statistics:
3096 */
3097static inline void schedule_debug(struct task_struct *prev)
3098{
1da177e4 3099 /*
41a2d6cf 3100 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
3101 * schedule() atomically, we ignore that path for now.
3102 * Otherwise, whine if we are scheduling when we should not be.
3103 */
3f33a7ce 3104 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596 3105 __schedule_bug(prev);
b3fbab05 3106 rcu_sleep_check();
dd41f596 3107
1da177e4
LT
3108 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3109
2d72376b 3110 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
3111}
3112
6cecd084 3113static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 3114{
61eadef6 3115 if (prev->on_rq || rq->skip_clock_update < 0)
a64692a3 3116 update_rq_clock(rq);
6cecd084 3117 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
3118}
3119
dd41f596
IM
3120/*
3121 * Pick up the highest-prio task:
3122 */
3123static inline struct task_struct *
b67802ea 3124pick_next_task(struct rq *rq)
dd41f596 3125{
5522d5d5 3126 const struct sched_class *class;
dd41f596 3127 struct task_struct *p;
1da177e4
LT
3128
3129 /*
dd41f596
IM
3130 * Optimization: we know that if all tasks are in
3131 * the fair class we can call that function directly:
1da177e4 3132 */
953bfcd1 3133 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
fb8d4724 3134 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3135 if (likely(p))
3136 return p;
1da177e4
LT
3137 }
3138
34f971f6 3139 for_each_class(class) {
fb8d4724 3140 p = class->pick_next_task(rq);
dd41f596
IM
3141 if (p)
3142 return p;
dd41f596 3143 }
34f971f6
PZ
3144
3145 BUG(); /* the idle class will always have a runnable task */
dd41f596 3146}
1da177e4 3147
dd41f596 3148/*
c259e01a 3149 * __schedule() is the main scheduler function.
dd41f596 3150 */
c259e01a 3151static void __sched __schedule(void)
dd41f596
IM
3152{
3153 struct task_struct *prev, *next;
67ca7bde 3154 unsigned long *switch_count;
dd41f596 3155 struct rq *rq;
31656519 3156 int cpu;
dd41f596 3157
ff743345
PZ
3158need_resched:
3159 preempt_disable();
dd41f596
IM
3160 cpu = smp_processor_id();
3161 rq = cpu_rq(cpu);
25502a6c 3162 rcu_note_context_switch(cpu);
dd41f596 3163 prev = rq->curr;
dd41f596 3164
dd41f596 3165 schedule_debug(prev);
1da177e4 3166
31656519 3167 if (sched_feat(HRTICK))
f333fdc9 3168 hrtick_clear(rq);
8f4d37ec 3169
05fa785c 3170 raw_spin_lock_irq(&rq->lock);
1da177e4 3171
246d86b5 3172 switch_count = &prev->nivcsw;
1da177e4 3173 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 3174 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 3175 prev->state = TASK_RUNNING;
21aa9af0 3176 } else {
2acca55e
PZ
3177 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3178 prev->on_rq = 0;
3179
21aa9af0 3180 /*
2acca55e
PZ
3181 * If a worker went to sleep, notify and ask workqueue
3182 * whether it wants to wake up a task to maintain
3183 * concurrency.
21aa9af0
TH
3184 */
3185 if (prev->flags & PF_WQ_WORKER) {
3186 struct task_struct *to_wakeup;
3187
3188 to_wakeup = wq_worker_sleeping(prev, cpu);
3189 if (to_wakeup)
3190 try_to_wake_up_local(to_wakeup);
3191 }
21aa9af0 3192 }
dd41f596 3193 switch_count = &prev->nvcsw;
1da177e4
LT
3194 }
3195
3f029d3c 3196 pre_schedule(rq, prev);
f65eda4f 3197
dd41f596 3198 if (unlikely(!rq->nr_running))
1da177e4 3199 idle_balance(cpu, rq);
1da177e4 3200
df1c99d4 3201 put_prev_task(rq, prev);
b67802ea 3202 next = pick_next_task(rq);
f26f9aff
MG
3203 clear_tsk_need_resched(prev);
3204 rq->skip_clock_update = 0;
1da177e4 3205
1da177e4 3206 if (likely(prev != next)) {
1da177e4
LT
3207 rq->nr_switches++;
3208 rq->curr = next;
3209 ++*switch_count;
3210
dd41f596 3211 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 3212 /*
246d86b5
ON
3213 * The context switch have flipped the stack from under us
3214 * and restored the local variables which were saved when
3215 * this task called schedule() in the past. prev == current
3216 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
3217 */
3218 cpu = smp_processor_id();
3219 rq = cpu_rq(cpu);
1da177e4 3220 } else
05fa785c 3221 raw_spin_unlock_irq(&rq->lock);
1da177e4 3222
3f029d3c 3223 post_schedule(rq);
1da177e4 3224
1da177e4 3225 preempt_enable_no_resched();
ff743345 3226 if (need_resched())
1da177e4
LT
3227 goto need_resched;
3228}
c259e01a 3229
9c40cef2
TG
3230static inline void sched_submit_work(struct task_struct *tsk)
3231{
3232 if (!tsk->state)
3233 return;
3234 /*
3235 * If we are going to sleep and we have plugged IO queued,
3236 * make sure to submit it to avoid deadlocks.
3237 */
3238 if (blk_needs_flush_plug(tsk))
3239 blk_schedule_flush_plug(tsk);
3240}
3241
6ebbe7a0 3242asmlinkage void __sched schedule(void)
c259e01a 3243{
9c40cef2
TG
3244 struct task_struct *tsk = current;
3245
3246 sched_submit_work(tsk);
c259e01a
TG
3247 __schedule();
3248}
1da177e4
LT
3249EXPORT_SYMBOL(schedule);
3250
c08f7829 3251#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d 3252
c6eb3dda
PZ
3253static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
3254{
c6eb3dda 3255 if (lock->owner != owner)
307bf980 3256 return false;
0d66bf6d
PZ
3257
3258 /*
c6eb3dda
PZ
3259 * Ensure we emit the owner->on_cpu, dereference _after_ checking
3260 * lock->owner still matches owner, if that fails, owner might
3261 * point to free()d memory, if it still matches, the rcu_read_lock()
3262 * ensures the memory stays valid.
0d66bf6d 3263 */
c6eb3dda 3264 barrier();
0d66bf6d 3265
307bf980 3266 return owner->on_cpu;
c6eb3dda 3267}
0d66bf6d 3268
c6eb3dda
PZ
3269/*
3270 * Look out! "owner" is an entirely speculative pointer
3271 * access and not reliable.
3272 */
3273int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
3274{
3275 if (!sched_feat(OWNER_SPIN))
3276 return 0;
0d66bf6d 3277
307bf980 3278 rcu_read_lock();
c6eb3dda
PZ
3279 while (owner_running(lock, owner)) {
3280 if (need_resched())
307bf980 3281 break;
0d66bf6d 3282
335d7afb 3283 arch_mutex_cpu_relax();
0d66bf6d 3284 }
307bf980 3285 rcu_read_unlock();
4b402210 3286
c6eb3dda 3287 /*
307bf980
TG
3288 * We break out the loop above on need_resched() and when the
3289 * owner changed, which is a sign for heavy contention. Return
3290 * success only when lock->owner is NULL.
c6eb3dda 3291 */
307bf980 3292 return lock->owner == NULL;
0d66bf6d
PZ
3293}
3294#endif
3295
1da177e4
LT
3296#ifdef CONFIG_PREEMPT
3297/*
2ed6e34f 3298 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3299 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3300 * occur there and call schedule directly.
3301 */
d1f74e20 3302asmlinkage void __sched notrace preempt_schedule(void)
1da177e4
LT
3303{
3304 struct thread_info *ti = current_thread_info();
6478d880 3305
1da177e4
LT
3306 /*
3307 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3308 * we do not want to preempt the current task. Just return..
1da177e4 3309 */
beed33a8 3310 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3311 return;
3312
3a5c359a 3313 do {
d1f74e20 3314 add_preempt_count_notrace(PREEMPT_ACTIVE);
c259e01a 3315 __schedule();
d1f74e20 3316 sub_preempt_count_notrace(PREEMPT_ACTIVE);
1da177e4 3317
3a5c359a
AK
3318 /*
3319 * Check again in case we missed a preemption opportunity
3320 * between schedule and now.
3321 */
3322 barrier();
5ed0cec0 3323 } while (need_resched());
1da177e4 3324}
1da177e4
LT
3325EXPORT_SYMBOL(preempt_schedule);
3326
3327/*
2ed6e34f 3328 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3329 * off of irq context.
3330 * Note, that this is called and return with irqs disabled. This will
3331 * protect us against recursive calling from irq.
3332 */
3333asmlinkage void __sched preempt_schedule_irq(void)
3334{
3335 struct thread_info *ti = current_thread_info();
6478d880 3336
2ed6e34f 3337 /* Catch callers which need to be fixed */
1da177e4
LT
3338 BUG_ON(ti->preempt_count || !irqs_disabled());
3339
3a5c359a
AK
3340 do {
3341 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 3342 local_irq_enable();
c259e01a 3343 __schedule();
3a5c359a 3344 local_irq_disable();
3a5c359a 3345 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3346
3a5c359a
AK
3347 /*
3348 * Check again in case we missed a preemption opportunity
3349 * between schedule and now.
3350 */
3351 barrier();
5ed0cec0 3352 } while (need_resched());
1da177e4
LT
3353}
3354
3355#endif /* CONFIG_PREEMPT */
3356
63859d4f 3357int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3358 void *key)
1da177e4 3359{
63859d4f 3360 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3361}
1da177e4
LT
3362EXPORT_SYMBOL(default_wake_function);
3363
3364/*
41a2d6cf
IM
3365 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3366 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
3367 * number) then we wake all the non-exclusive tasks and one exclusive task.
3368 *
3369 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 3370 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
3371 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3372 */
78ddb08f 3373static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 3374 int nr_exclusive, int wake_flags, void *key)
1da177e4 3375{
2e45874c 3376 wait_queue_t *curr, *next;
1da177e4 3377
2e45874c 3378 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
3379 unsigned flags = curr->flags;
3380
63859d4f 3381 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 3382 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3383 break;
3384 }
3385}
3386
3387/**
3388 * __wake_up - wake up threads blocked on a waitqueue.
3389 * @q: the waitqueue
3390 * @mode: which threads
3391 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3392 * @key: is directly passed to the wakeup function
50fa610a
DH
3393 *
3394 * It may be assumed that this function implies a write memory barrier before
3395 * changing the task state if and only if any tasks are woken up.
1da177e4 3396 */
7ad5b3a5 3397void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3398 int nr_exclusive, void *key)
1da177e4
LT
3399{
3400 unsigned long flags;
3401
3402 spin_lock_irqsave(&q->lock, flags);
3403 __wake_up_common(q, mode, nr_exclusive, 0, key);
3404 spin_unlock_irqrestore(&q->lock, flags);
3405}
1da177e4
LT
3406EXPORT_SYMBOL(__wake_up);
3407
3408/*
3409 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3410 */
7ad5b3a5 3411void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
3412{
3413 __wake_up_common(q, mode, 1, 0, NULL);
3414}
22c43c81 3415EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 3416
4ede816a
DL
3417void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3418{
3419 __wake_up_common(q, mode, 1, 0, key);
3420}
bf294b41 3421EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4ede816a 3422
1da177e4 3423/**
4ede816a 3424 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
3425 * @q: the waitqueue
3426 * @mode: which threads
3427 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 3428 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
3429 *
3430 * The sync wakeup differs that the waker knows that it will schedule
3431 * away soon, so while the target thread will be woken up, it will not
3432 * be migrated to another CPU - ie. the two threads are 'synchronized'
3433 * with each other. This can prevent needless bouncing between CPUs.
3434 *
3435 * On UP it can prevent extra preemption.
50fa610a
DH
3436 *
3437 * It may be assumed that this function implies a write memory barrier before
3438 * changing the task state if and only if any tasks are woken up.
1da177e4 3439 */
4ede816a
DL
3440void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3441 int nr_exclusive, void *key)
1da177e4
LT
3442{
3443 unsigned long flags;
7d478721 3444 int wake_flags = WF_SYNC;
1da177e4
LT
3445
3446 if (unlikely(!q))
3447 return;
3448
3449 if (unlikely(!nr_exclusive))
7d478721 3450 wake_flags = 0;
1da177e4
LT
3451
3452 spin_lock_irqsave(&q->lock, flags);
7d478721 3453 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
3454 spin_unlock_irqrestore(&q->lock, flags);
3455}
4ede816a
DL
3456EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3457
3458/*
3459 * __wake_up_sync - see __wake_up_sync_key()
3460 */
3461void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3462{
3463 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3464}
1da177e4
LT
3465EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3466
65eb3dc6
KD
3467/**
3468 * complete: - signals a single thread waiting on this completion
3469 * @x: holds the state of this particular completion
3470 *
3471 * This will wake up a single thread waiting on this completion. Threads will be
3472 * awakened in the same order in which they were queued.
3473 *
3474 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
3475 *
3476 * It may be assumed that this function implies a write memory barrier before
3477 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3478 */
b15136e9 3479void complete(struct completion *x)
1da177e4
LT
3480{
3481 unsigned long flags;
3482
3483 spin_lock_irqsave(&x->wait.lock, flags);
3484 x->done++;
d9514f6c 3485 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
3486 spin_unlock_irqrestore(&x->wait.lock, flags);
3487}
3488EXPORT_SYMBOL(complete);
3489
65eb3dc6
KD
3490/**
3491 * complete_all: - signals all threads waiting on this completion
3492 * @x: holds the state of this particular completion
3493 *
3494 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
3495 *
3496 * It may be assumed that this function implies a write memory barrier before
3497 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3498 */
b15136e9 3499void complete_all(struct completion *x)
1da177e4
LT
3500{
3501 unsigned long flags;
3502
3503 spin_lock_irqsave(&x->wait.lock, flags);
3504 x->done += UINT_MAX/2;
d9514f6c 3505 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
3506 spin_unlock_irqrestore(&x->wait.lock, flags);
3507}
3508EXPORT_SYMBOL(complete_all);
3509
8cbbe86d
AK
3510static inline long __sched
3511do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3512{
1da177e4
LT
3513 if (!x->done) {
3514 DECLARE_WAITQUEUE(wait, current);
3515
a93d2f17 3516 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 3517 do {
94d3d824 3518 if (signal_pending_state(state, current)) {
ea71a546
ON
3519 timeout = -ERESTARTSYS;
3520 break;
8cbbe86d
AK
3521 }
3522 __set_current_state(state);
1da177e4
LT
3523 spin_unlock_irq(&x->wait.lock);
3524 timeout = schedule_timeout(timeout);
3525 spin_lock_irq(&x->wait.lock);
ea71a546 3526 } while (!x->done && timeout);
1da177e4 3527 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
3528 if (!x->done)
3529 return timeout;
1da177e4
LT
3530 }
3531 x->done--;
ea71a546 3532 return timeout ?: 1;
1da177e4 3533}
1da177e4 3534
8cbbe86d
AK
3535static long __sched
3536wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3537{
1da177e4
LT
3538 might_sleep();
3539
3540 spin_lock_irq(&x->wait.lock);
8cbbe86d 3541 timeout = do_wait_for_common(x, timeout, state);
1da177e4 3542 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
3543 return timeout;
3544}
1da177e4 3545
65eb3dc6
KD
3546/**
3547 * wait_for_completion: - waits for completion of a task
3548 * @x: holds the state of this particular completion
3549 *
3550 * This waits to be signaled for completion of a specific task. It is NOT
3551 * interruptible and there is no timeout.
3552 *
3553 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3554 * and interrupt capability. Also see complete().
3555 */
b15136e9 3556void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
3557{
3558 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 3559}
8cbbe86d 3560EXPORT_SYMBOL(wait_for_completion);
1da177e4 3561
65eb3dc6
KD
3562/**
3563 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3564 * @x: holds the state of this particular completion
3565 * @timeout: timeout value in jiffies
3566 *
3567 * This waits for either a completion of a specific task to be signaled or for a
3568 * specified timeout to expire. The timeout is in jiffies. It is not
3569 * interruptible.
c6dc7f05
BF
3570 *
3571 * The return value is 0 if timed out, and positive (at least 1, or number of
3572 * jiffies left till timeout) if completed.
65eb3dc6 3573 */
b15136e9 3574unsigned long __sched
8cbbe86d 3575wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 3576{
8cbbe86d 3577 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 3578}
8cbbe86d 3579EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 3580
65eb3dc6
KD
3581/**
3582 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3583 * @x: holds the state of this particular completion
3584 *
3585 * This waits for completion of a specific task to be signaled. It is
3586 * interruptible.
c6dc7f05
BF
3587 *
3588 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
65eb3dc6 3589 */
8cbbe86d 3590int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 3591{
51e97990
AK
3592 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3593 if (t == -ERESTARTSYS)
3594 return t;
3595 return 0;
0fec171c 3596}
8cbbe86d 3597EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 3598
65eb3dc6
KD
3599/**
3600 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3601 * @x: holds the state of this particular completion
3602 * @timeout: timeout value in jiffies
3603 *
3604 * This waits for either a completion of a specific task to be signaled or for a
3605 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
c6dc7f05
BF
3606 *
3607 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3608 * positive (at least 1, or number of jiffies left till timeout) if completed.
65eb3dc6 3609 */
6bf41237 3610long __sched
8cbbe86d
AK
3611wait_for_completion_interruptible_timeout(struct completion *x,
3612 unsigned long timeout)
0fec171c 3613{
8cbbe86d 3614 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 3615}
8cbbe86d 3616EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 3617
65eb3dc6
KD
3618/**
3619 * wait_for_completion_killable: - waits for completion of a task (killable)
3620 * @x: holds the state of this particular completion
3621 *
3622 * This waits to be signaled for completion of a specific task. It can be
3623 * interrupted by a kill signal.
c6dc7f05
BF
3624 *
3625 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
65eb3dc6 3626 */
009e577e
MW
3627int __sched wait_for_completion_killable(struct completion *x)
3628{
3629 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3630 if (t == -ERESTARTSYS)
3631 return t;
3632 return 0;
3633}
3634EXPORT_SYMBOL(wait_for_completion_killable);
3635
0aa12fb4
SW
3636/**
3637 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3638 * @x: holds the state of this particular completion
3639 * @timeout: timeout value in jiffies
3640 *
3641 * This waits for either a completion of a specific task to be
3642 * signaled or for a specified timeout to expire. It can be
3643 * interrupted by a kill signal. The timeout is in jiffies.
c6dc7f05
BF
3644 *
3645 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3646 * positive (at least 1, or number of jiffies left till timeout) if completed.
0aa12fb4 3647 */
6bf41237 3648long __sched
0aa12fb4
SW
3649wait_for_completion_killable_timeout(struct completion *x,
3650 unsigned long timeout)
3651{
3652 return wait_for_common(x, timeout, TASK_KILLABLE);
3653}
3654EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3655
be4de352
DC
3656/**
3657 * try_wait_for_completion - try to decrement a completion without blocking
3658 * @x: completion structure
3659 *
3660 * Returns: 0 if a decrement cannot be done without blocking
3661 * 1 if a decrement succeeded.
3662 *
3663 * If a completion is being used as a counting completion,
3664 * attempt to decrement the counter without blocking. This
3665 * enables us to avoid waiting if the resource the completion
3666 * is protecting is not available.
3667 */
3668bool try_wait_for_completion(struct completion *x)
3669{
7539a3b3 3670 unsigned long flags;
be4de352
DC
3671 int ret = 1;
3672
7539a3b3 3673 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
3674 if (!x->done)
3675 ret = 0;
3676 else
3677 x->done--;
7539a3b3 3678 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
3679 return ret;
3680}
3681EXPORT_SYMBOL(try_wait_for_completion);
3682
3683/**
3684 * completion_done - Test to see if a completion has any waiters
3685 * @x: completion structure
3686 *
3687 * Returns: 0 if there are waiters (wait_for_completion() in progress)
3688 * 1 if there are no waiters.
3689 *
3690 */
3691bool completion_done(struct completion *x)
3692{
7539a3b3 3693 unsigned long flags;
be4de352
DC
3694 int ret = 1;
3695
7539a3b3 3696 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
3697 if (!x->done)
3698 ret = 0;
7539a3b3 3699 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
3700 return ret;
3701}
3702EXPORT_SYMBOL(completion_done);
3703
8cbbe86d
AK
3704static long __sched
3705sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 3706{
0fec171c
IM
3707 unsigned long flags;
3708 wait_queue_t wait;
3709
3710 init_waitqueue_entry(&wait, current);
1da177e4 3711
8cbbe86d 3712 __set_current_state(state);
1da177e4 3713
8cbbe86d
AK
3714 spin_lock_irqsave(&q->lock, flags);
3715 __add_wait_queue(q, &wait);
3716 spin_unlock(&q->lock);
3717 timeout = schedule_timeout(timeout);
3718 spin_lock_irq(&q->lock);
3719 __remove_wait_queue(q, &wait);
3720 spin_unlock_irqrestore(&q->lock, flags);
3721
3722 return timeout;
3723}
3724
3725void __sched interruptible_sleep_on(wait_queue_head_t *q)
3726{
3727 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3728}
1da177e4
LT
3729EXPORT_SYMBOL(interruptible_sleep_on);
3730
0fec171c 3731long __sched
95cdf3b7 3732interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3733{
8cbbe86d 3734 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 3735}
1da177e4
LT
3736EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3737
0fec171c 3738void __sched sleep_on(wait_queue_head_t *q)
1da177e4 3739{
8cbbe86d 3740 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3741}
1da177e4
LT
3742EXPORT_SYMBOL(sleep_on);
3743
0fec171c 3744long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3745{
8cbbe86d 3746 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 3747}
1da177e4
LT
3748EXPORT_SYMBOL(sleep_on_timeout);
3749
b29739f9
IM
3750#ifdef CONFIG_RT_MUTEXES
3751
3752/*
3753 * rt_mutex_setprio - set the current priority of a task
3754 * @p: task
3755 * @prio: prio value (kernel-internal form)
3756 *
3757 * This function changes the 'effective' priority of a task. It does
3758 * not touch ->normal_prio like __setscheduler().
3759 *
3760 * Used by the rt_mutex code to implement priority inheritance logic.
3761 */
36c8b586 3762void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3763{
83b699ed 3764 int oldprio, on_rq, running;
70b97a7f 3765 struct rq *rq;
83ab0aa0 3766 const struct sched_class *prev_class;
b29739f9
IM
3767
3768 BUG_ON(prio < 0 || prio > MAX_PRIO);
3769
0122ec5b 3770 rq = __task_rq_lock(p);
b29739f9 3771
a8027073 3772 trace_sched_pi_setprio(p, prio);
d5f9f942 3773 oldprio = p->prio;
83ab0aa0 3774 prev_class = p->sched_class;
fd2f4419 3775 on_rq = p->on_rq;
051a1d1a 3776 running = task_current(rq, p);
0e1f3483 3777 if (on_rq)
69be72c1 3778 dequeue_task(rq, p, 0);
0e1f3483
HS
3779 if (running)
3780 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
3781
3782 if (rt_prio(prio))
3783 p->sched_class = &rt_sched_class;
3784 else
3785 p->sched_class = &fair_sched_class;
3786
b29739f9
IM
3787 p->prio = prio;
3788
0e1f3483
HS
3789 if (running)
3790 p->sched_class->set_curr_task(rq);
da7a735e 3791 if (on_rq)
371fd7e7 3792 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845 3793
da7a735e 3794 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 3795 __task_rq_unlock(rq);
b29739f9
IM
3796}
3797
3798#endif
3799
36c8b586 3800void set_user_nice(struct task_struct *p, long nice)
1da177e4 3801{
dd41f596 3802 int old_prio, delta, on_rq;
1da177e4 3803 unsigned long flags;
70b97a7f 3804 struct rq *rq;
1da177e4
LT
3805
3806 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3807 return;
3808 /*
3809 * We have to be careful, if called from sys_setpriority(),
3810 * the task might be in the middle of scheduling on another CPU.
3811 */
3812 rq = task_rq_lock(p, &flags);
3813 /*
3814 * The RT priorities are set via sched_setscheduler(), but we still
3815 * allow the 'normal' nice value to be set - but as expected
3816 * it wont have any effect on scheduling until the task is
dd41f596 3817 * SCHED_FIFO/SCHED_RR:
1da177e4 3818 */
e05606d3 3819 if (task_has_rt_policy(p)) {
1da177e4
LT
3820 p->static_prio = NICE_TO_PRIO(nice);
3821 goto out_unlock;
3822 }
fd2f4419 3823 on_rq = p->on_rq;
c09595f6 3824 if (on_rq)
69be72c1 3825 dequeue_task(rq, p, 0);
1da177e4 3826
1da177e4 3827 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3828 set_load_weight(p);
b29739f9
IM
3829 old_prio = p->prio;
3830 p->prio = effective_prio(p);
3831 delta = p->prio - old_prio;
1da177e4 3832
dd41f596 3833 if (on_rq) {
371fd7e7 3834 enqueue_task(rq, p, 0);
1da177e4 3835 /*
d5f9f942
AM
3836 * If the task increased its priority or is running and
3837 * lowered its priority, then reschedule its CPU:
1da177e4 3838 */
d5f9f942 3839 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
3840 resched_task(rq->curr);
3841 }
3842out_unlock:
0122ec5b 3843 task_rq_unlock(rq, p, &flags);
1da177e4 3844}
1da177e4
LT
3845EXPORT_SYMBOL(set_user_nice);
3846
e43379f1
MM
3847/*
3848 * can_nice - check if a task can reduce its nice value
3849 * @p: task
3850 * @nice: nice value
3851 */
36c8b586 3852int can_nice(const struct task_struct *p, const int nice)
e43379f1 3853{
024f4747
MM
3854 /* convert nice value [19,-20] to rlimit style value [1,40] */
3855 int nice_rlim = 20 - nice;
48f24c4d 3856
78d7d407 3857 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3858 capable(CAP_SYS_NICE));
3859}
3860
1da177e4
LT
3861#ifdef __ARCH_WANT_SYS_NICE
3862
3863/*
3864 * sys_nice - change the priority of the current process.
3865 * @increment: priority increment
3866 *
3867 * sys_setpriority is a more generic, but much slower function that
3868 * does similar things.
3869 */
5add95d4 3870SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3871{
48f24c4d 3872 long nice, retval;
1da177e4
LT
3873
3874 /*
3875 * Setpriority might change our priority at the same moment.
3876 * We don't have to worry. Conceptually one call occurs first
3877 * and we have a single winner.
3878 */
e43379f1
MM
3879 if (increment < -40)
3880 increment = -40;
1da177e4
LT
3881 if (increment > 40)
3882 increment = 40;
3883
2b8f836f 3884 nice = TASK_NICE(current) + increment;
1da177e4
LT
3885 if (nice < -20)
3886 nice = -20;
3887 if (nice > 19)
3888 nice = 19;
3889
e43379f1
MM
3890 if (increment < 0 && !can_nice(current, nice))
3891 return -EPERM;
3892
1da177e4
LT
3893 retval = security_task_setnice(current, nice);
3894 if (retval)
3895 return retval;
3896
3897 set_user_nice(current, nice);
3898 return 0;
3899}
3900
3901#endif
3902
3903/**
3904 * task_prio - return the priority value of a given task.
3905 * @p: the task in question.
3906 *
3907 * This is the priority value as seen by users in /proc.
3908 * RT tasks are offset by -200. Normal tasks are centered
3909 * around 0, value goes from -16 to +15.
3910 */
36c8b586 3911int task_prio(const struct task_struct *p)
1da177e4
LT
3912{
3913 return p->prio - MAX_RT_PRIO;
3914}
3915
3916/**
3917 * task_nice - return the nice value of a given task.
3918 * @p: the task in question.
3919 */
36c8b586 3920int task_nice(const struct task_struct *p)
1da177e4
LT
3921{
3922 return TASK_NICE(p);
3923}
150d8bed 3924EXPORT_SYMBOL(task_nice);
1da177e4
LT
3925
3926/**
3927 * idle_cpu - is a given cpu idle currently?
3928 * @cpu: the processor in question.
3929 */
3930int idle_cpu(int cpu)
3931{
908a3283
TG
3932 struct rq *rq = cpu_rq(cpu);
3933
3934 if (rq->curr != rq->idle)
3935 return 0;
3936
3937 if (rq->nr_running)
3938 return 0;
3939
3940#ifdef CONFIG_SMP
3941 if (!llist_empty(&rq->wake_list))
3942 return 0;
3943#endif
3944
3945 return 1;
1da177e4
LT
3946}
3947
1da177e4
LT
3948/**
3949 * idle_task - return the idle task for a given cpu.
3950 * @cpu: the processor in question.
3951 */
36c8b586 3952struct task_struct *idle_task(int cpu)
1da177e4
LT
3953{
3954 return cpu_rq(cpu)->idle;
3955}
3956
3957/**
3958 * find_process_by_pid - find a process with a matching PID value.
3959 * @pid: the pid in question.
3960 */
a9957449 3961static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3962{
228ebcbe 3963 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3964}
3965
3966/* Actually do priority change: must hold rq lock. */
dd41f596
IM
3967static void
3968__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 3969{
1da177e4
LT
3970 p->policy = policy;
3971 p->rt_priority = prio;
b29739f9
IM
3972 p->normal_prio = normal_prio(p);
3973 /* we are holding p->pi_lock already */
3974 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
3975 if (rt_prio(p->prio))
3976 p->sched_class = &rt_sched_class;
3977 else
3978 p->sched_class = &fair_sched_class;
2dd73a4f 3979 set_load_weight(p);
1da177e4
LT
3980}
3981
c69e8d9c
DH
3982/*
3983 * check the target process has a UID that matches the current process's
3984 */
3985static bool check_same_owner(struct task_struct *p)
3986{
3987 const struct cred *cred = current_cred(), *pcred;
3988 bool match;
3989
3990 rcu_read_lock();
3991 pcred = __task_cred(p);
b0e77598
SH
3992 if (cred->user->user_ns == pcred->user->user_ns)
3993 match = (cred->euid == pcred->euid ||
3994 cred->euid == pcred->uid);
3995 else
3996 match = false;
c69e8d9c
DH
3997 rcu_read_unlock();
3998 return match;
3999}
4000
961ccddd 4001static int __sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4002 const struct sched_param *param, bool user)
1da177e4 4003{
83b699ed 4004 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4005 unsigned long flags;
83ab0aa0 4006 const struct sched_class *prev_class;
70b97a7f 4007 struct rq *rq;
ca94c442 4008 int reset_on_fork;
1da177e4 4009
66e5393a
SR
4010 /* may grab non-irq protected spin_locks */
4011 BUG_ON(in_interrupt());
1da177e4
LT
4012recheck:
4013 /* double check policy once rq lock held */
ca94c442
LP
4014 if (policy < 0) {
4015 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4016 policy = oldpolicy = p->policy;
ca94c442
LP
4017 } else {
4018 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4019 policy &= ~SCHED_RESET_ON_FORK;
4020
4021 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4022 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4023 policy != SCHED_IDLE)
4024 return -EINVAL;
4025 }
4026
1da177e4
LT
4027 /*
4028 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4029 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4030 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4031 */
4032 if (param->sched_priority < 0 ||
95cdf3b7 4033 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4034 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4035 return -EINVAL;
e05606d3 4036 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4037 return -EINVAL;
4038
37e4ab3f
OC
4039 /*
4040 * Allow unprivileged RT tasks to decrease priority:
4041 */
961ccddd 4042 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 4043 if (rt_policy(policy)) {
a44702e8
ON
4044 unsigned long rlim_rtprio =
4045 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
4046
4047 /* can't set/change the rt policy */
4048 if (policy != p->policy && !rlim_rtprio)
4049 return -EPERM;
4050
4051 /* can't increase priority */
4052 if (param->sched_priority > p->rt_priority &&
4053 param->sched_priority > rlim_rtprio)
4054 return -EPERM;
4055 }
c02aa73b 4056
dd41f596 4057 /*
c02aa73b
DH
4058 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4059 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 4060 */
c02aa73b
DH
4061 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
4062 if (!can_nice(p, TASK_NICE(p)))
4063 return -EPERM;
4064 }
5fe1d75f 4065
37e4ab3f 4066 /* can't change other user's priorities */
c69e8d9c 4067 if (!check_same_owner(p))
37e4ab3f 4068 return -EPERM;
ca94c442
LP
4069
4070 /* Normal users shall not reset the sched_reset_on_fork flag */
4071 if (p->sched_reset_on_fork && !reset_on_fork)
4072 return -EPERM;
37e4ab3f 4073 }
1da177e4 4074
725aad24 4075 if (user) {
b0ae1981 4076 retval = security_task_setscheduler(p);
725aad24
JF
4077 if (retval)
4078 return retval;
4079 }
4080
b29739f9
IM
4081 /*
4082 * make sure no PI-waiters arrive (or leave) while we are
4083 * changing the priority of the task:
0122ec5b 4084 *
25985edc 4085 * To be able to change p->policy safely, the appropriate
1da177e4
LT
4086 * runqueue lock must be held.
4087 */
0122ec5b 4088 rq = task_rq_lock(p, &flags);
dc61b1d6 4089
34f971f6
PZ
4090 /*
4091 * Changing the policy of the stop threads its a very bad idea
4092 */
4093 if (p == rq->stop) {
0122ec5b 4094 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
4095 return -EINVAL;
4096 }
4097
a51e9198
DF
4098 /*
4099 * If not changing anything there's no need to proceed further:
4100 */
4101 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
4102 param->sched_priority == p->rt_priority))) {
4103
4104 __task_rq_unlock(rq);
4105 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4106 return 0;
4107 }
4108
dc61b1d6
PZ
4109#ifdef CONFIG_RT_GROUP_SCHED
4110 if (user) {
4111 /*
4112 * Do not allow realtime tasks into groups that have no runtime
4113 * assigned.
4114 */
4115 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
4116 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4117 !task_group_is_autogroup(task_group(p))) {
0122ec5b 4118 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
4119 return -EPERM;
4120 }
4121 }
4122#endif
4123
1da177e4
LT
4124 /* recheck policy now with rq lock held */
4125 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4126 policy = oldpolicy = -1;
0122ec5b 4127 task_rq_unlock(rq, p, &flags);
1da177e4
LT
4128 goto recheck;
4129 }
fd2f4419 4130 on_rq = p->on_rq;
051a1d1a 4131 running = task_current(rq, p);
0e1f3483 4132 if (on_rq)
4ca9b72b 4133 dequeue_task(rq, p, 0);
0e1f3483
HS
4134 if (running)
4135 p->sched_class->put_prev_task(rq, p);
f6b53205 4136
ca94c442
LP
4137 p->sched_reset_on_fork = reset_on_fork;
4138
1da177e4 4139 oldprio = p->prio;
83ab0aa0 4140 prev_class = p->sched_class;
dd41f596 4141 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4142
0e1f3483
HS
4143 if (running)
4144 p->sched_class->set_curr_task(rq);
da7a735e 4145 if (on_rq)
4ca9b72b 4146 enqueue_task(rq, p, 0);
cb469845 4147
da7a735e 4148 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 4149 task_rq_unlock(rq, p, &flags);
b29739f9 4150
95e02ca9
TG
4151 rt_mutex_adjust_pi(p);
4152
1da177e4
LT
4153 return 0;
4154}
961ccddd
RR
4155
4156/**
4157 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4158 * @p: the task in question.
4159 * @policy: new policy.
4160 * @param: structure containing the new RT priority.
4161 *
4162 * NOTE that the task may be already dead.
4163 */
4164int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4165 const struct sched_param *param)
961ccddd
RR
4166{
4167 return __sched_setscheduler(p, policy, param, true);
4168}
1da177e4
LT
4169EXPORT_SYMBOL_GPL(sched_setscheduler);
4170
961ccddd
RR
4171/**
4172 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4173 * @p: the task in question.
4174 * @policy: new policy.
4175 * @param: structure containing the new RT priority.
4176 *
4177 * Just like sched_setscheduler, only don't bother checking if the
4178 * current context has permission. For example, this is needed in
4179 * stop_machine(): we create temporary high priority worker threads,
4180 * but our caller might not have that capability.
4181 */
4182int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 4183 const struct sched_param *param)
961ccddd
RR
4184{
4185 return __sched_setscheduler(p, policy, param, false);
4186}
4187
95cdf3b7
IM
4188static int
4189do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4190{
1da177e4
LT
4191 struct sched_param lparam;
4192 struct task_struct *p;
36c8b586 4193 int retval;
1da177e4
LT
4194
4195 if (!param || pid < 0)
4196 return -EINVAL;
4197 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4198 return -EFAULT;
5fe1d75f
ON
4199
4200 rcu_read_lock();
4201 retval = -ESRCH;
1da177e4 4202 p = find_process_by_pid(pid);
5fe1d75f
ON
4203 if (p != NULL)
4204 retval = sched_setscheduler(p, policy, &lparam);
4205 rcu_read_unlock();
36c8b586 4206
1da177e4
LT
4207 return retval;
4208}
4209
4210/**
4211 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4212 * @pid: the pid in question.
4213 * @policy: new policy.
4214 * @param: structure containing the new RT priority.
4215 */
5add95d4
HC
4216SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4217 struct sched_param __user *, param)
1da177e4 4218{
c21761f1
JB
4219 /* negative values for policy are not valid */
4220 if (policy < 0)
4221 return -EINVAL;
4222
1da177e4
LT
4223 return do_sched_setscheduler(pid, policy, param);
4224}
4225
4226/**
4227 * sys_sched_setparam - set/change the RT priority of a thread
4228 * @pid: the pid in question.
4229 * @param: structure containing the new RT priority.
4230 */
5add95d4 4231SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4232{
4233 return do_sched_setscheduler(pid, -1, param);
4234}
4235
4236/**
4237 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4238 * @pid: the pid in question.
4239 */
5add95d4 4240SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4241{
36c8b586 4242 struct task_struct *p;
3a5c359a 4243 int retval;
1da177e4
LT
4244
4245 if (pid < 0)
3a5c359a 4246 return -EINVAL;
1da177e4
LT
4247
4248 retval = -ESRCH;
5fe85be0 4249 rcu_read_lock();
1da177e4
LT
4250 p = find_process_by_pid(pid);
4251 if (p) {
4252 retval = security_task_getscheduler(p);
4253 if (!retval)
ca94c442
LP
4254 retval = p->policy
4255 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4256 }
5fe85be0 4257 rcu_read_unlock();
1da177e4
LT
4258 return retval;
4259}
4260
4261/**
ca94c442 4262 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4263 * @pid: the pid in question.
4264 * @param: structure containing the RT priority.
4265 */
5add95d4 4266SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4267{
4268 struct sched_param lp;
36c8b586 4269 struct task_struct *p;
3a5c359a 4270 int retval;
1da177e4
LT
4271
4272 if (!param || pid < 0)
3a5c359a 4273 return -EINVAL;
1da177e4 4274
5fe85be0 4275 rcu_read_lock();
1da177e4
LT
4276 p = find_process_by_pid(pid);
4277 retval = -ESRCH;
4278 if (!p)
4279 goto out_unlock;
4280
4281 retval = security_task_getscheduler(p);
4282 if (retval)
4283 goto out_unlock;
4284
4285 lp.sched_priority = p->rt_priority;
5fe85be0 4286 rcu_read_unlock();
1da177e4
LT
4287
4288 /*
4289 * This one might sleep, we cannot do it with a spinlock held ...
4290 */
4291 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4292
1da177e4
LT
4293 return retval;
4294
4295out_unlock:
5fe85be0 4296 rcu_read_unlock();
1da177e4
LT
4297 return retval;
4298}
4299
96f874e2 4300long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4301{
5a16f3d3 4302 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4303 struct task_struct *p;
4304 int retval;
1da177e4 4305
95402b38 4306 get_online_cpus();
23f5d142 4307 rcu_read_lock();
1da177e4
LT
4308
4309 p = find_process_by_pid(pid);
4310 if (!p) {
23f5d142 4311 rcu_read_unlock();
95402b38 4312 put_online_cpus();
1da177e4
LT
4313 return -ESRCH;
4314 }
4315
23f5d142 4316 /* Prevent p going away */
1da177e4 4317 get_task_struct(p);
23f5d142 4318 rcu_read_unlock();
1da177e4 4319
5a16f3d3
RR
4320 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4321 retval = -ENOMEM;
4322 goto out_put_task;
4323 }
4324 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4325 retval = -ENOMEM;
4326 goto out_free_cpus_allowed;
4327 }
1da177e4 4328 retval = -EPERM;
f1c84dae 4329 if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE))
1da177e4
LT
4330 goto out_unlock;
4331
b0ae1981 4332 retval = security_task_setscheduler(p);
e7834f8f
DQ
4333 if (retval)
4334 goto out_unlock;
4335
5a16f3d3
RR
4336 cpuset_cpus_allowed(p, cpus_allowed);
4337 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 4338again:
5a16f3d3 4339 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 4340
8707d8b8 4341 if (!retval) {
5a16f3d3
RR
4342 cpuset_cpus_allowed(p, cpus_allowed);
4343 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4344 /*
4345 * We must have raced with a concurrent cpuset
4346 * update. Just reset the cpus_allowed to the
4347 * cpuset's cpus_allowed
4348 */
5a16f3d3 4349 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4350 goto again;
4351 }
4352 }
1da177e4 4353out_unlock:
5a16f3d3
RR
4354 free_cpumask_var(new_mask);
4355out_free_cpus_allowed:
4356 free_cpumask_var(cpus_allowed);
4357out_put_task:
1da177e4 4358 put_task_struct(p);
95402b38 4359 put_online_cpus();
1da177e4
LT
4360 return retval;
4361}
4362
4363static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4364 struct cpumask *new_mask)
1da177e4 4365{
96f874e2
RR
4366 if (len < cpumask_size())
4367 cpumask_clear(new_mask);
4368 else if (len > cpumask_size())
4369 len = cpumask_size();
4370
1da177e4
LT
4371 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4372}
4373
4374/**
4375 * sys_sched_setaffinity - set the cpu affinity of a process
4376 * @pid: pid of the process
4377 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4378 * @user_mask_ptr: user-space pointer to the new cpu mask
4379 */
5add95d4
HC
4380SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4381 unsigned long __user *, user_mask_ptr)
1da177e4 4382{
5a16f3d3 4383 cpumask_var_t new_mask;
1da177e4
LT
4384 int retval;
4385
5a16f3d3
RR
4386 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4387 return -ENOMEM;
1da177e4 4388
5a16f3d3
RR
4389 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4390 if (retval == 0)
4391 retval = sched_setaffinity(pid, new_mask);
4392 free_cpumask_var(new_mask);
4393 return retval;
1da177e4
LT
4394}
4395
96f874e2 4396long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4397{
36c8b586 4398 struct task_struct *p;
31605683 4399 unsigned long flags;
1da177e4 4400 int retval;
1da177e4 4401
95402b38 4402 get_online_cpus();
23f5d142 4403 rcu_read_lock();
1da177e4
LT
4404
4405 retval = -ESRCH;
4406 p = find_process_by_pid(pid);
4407 if (!p)
4408 goto out_unlock;
4409
e7834f8f
DQ
4410 retval = security_task_getscheduler(p);
4411 if (retval)
4412 goto out_unlock;
4413
013fdb80 4414 raw_spin_lock_irqsave(&p->pi_lock, flags);
96f874e2 4415 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
013fdb80 4416 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4417
4418out_unlock:
23f5d142 4419 rcu_read_unlock();
95402b38 4420 put_online_cpus();
1da177e4 4421
9531b62f 4422 return retval;
1da177e4
LT
4423}
4424
4425/**
4426 * sys_sched_getaffinity - get the cpu affinity of a process
4427 * @pid: pid of the process
4428 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4429 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4430 */
5add95d4
HC
4431SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4432 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4433{
4434 int ret;
f17c8607 4435 cpumask_var_t mask;
1da177e4 4436
84fba5ec 4437 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4438 return -EINVAL;
4439 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4440 return -EINVAL;
4441
f17c8607
RR
4442 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4443 return -ENOMEM;
1da177e4 4444
f17c8607
RR
4445 ret = sched_getaffinity(pid, mask);
4446 if (ret == 0) {
8bc037fb 4447 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4448
4449 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4450 ret = -EFAULT;
4451 else
cd3d8031 4452 ret = retlen;
f17c8607
RR
4453 }
4454 free_cpumask_var(mask);
1da177e4 4455
f17c8607 4456 return ret;
1da177e4
LT
4457}
4458
4459/**
4460 * sys_sched_yield - yield the current processor to other threads.
4461 *
dd41f596
IM
4462 * This function yields the current CPU to other tasks. If there are no
4463 * other threads running on this CPU then this function will return.
1da177e4 4464 */
5add95d4 4465SYSCALL_DEFINE0(sched_yield)
1da177e4 4466{
70b97a7f 4467 struct rq *rq = this_rq_lock();
1da177e4 4468
2d72376b 4469 schedstat_inc(rq, yld_count);
4530d7ab 4470 current->sched_class->yield_task(rq);
1da177e4
LT
4471
4472 /*
4473 * Since we are going to call schedule() anyway, there's
4474 * no need to preempt or enable interrupts:
4475 */
4476 __release(rq->lock);
8a25d5de 4477 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4478 do_raw_spin_unlock(&rq->lock);
1da177e4
LT
4479 preempt_enable_no_resched();
4480
4481 schedule();
4482
4483 return 0;
4484}
4485
d86ee480
PZ
4486static inline int should_resched(void)
4487{
4488 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4489}
4490
e7b38404 4491static void __cond_resched(void)
1da177e4 4492{
e7aaaa69 4493 add_preempt_count(PREEMPT_ACTIVE);
c259e01a 4494 __schedule();
e7aaaa69 4495 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
4496}
4497
02b67cc3 4498int __sched _cond_resched(void)
1da177e4 4499{
d86ee480 4500 if (should_resched()) {
1da177e4
LT
4501 __cond_resched();
4502 return 1;
4503 }
4504 return 0;
4505}
02b67cc3 4506EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4507
4508/*
613afbf8 4509 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4510 * call schedule, and on return reacquire the lock.
4511 *
41a2d6cf 4512 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4513 * operations here to prevent schedule() from being called twice (once via
4514 * spin_unlock(), once by hand).
4515 */
613afbf8 4516int __cond_resched_lock(spinlock_t *lock)
1da177e4 4517{
d86ee480 4518 int resched = should_resched();
6df3cecb
JK
4519 int ret = 0;
4520
f607c668
PZ
4521 lockdep_assert_held(lock);
4522
95c354fe 4523 if (spin_needbreak(lock) || resched) {
1da177e4 4524 spin_unlock(lock);
d86ee480 4525 if (resched)
95c354fe
NP
4526 __cond_resched();
4527 else
4528 cpu_relax();
6df3cecb 4529 ret = 1;
1da177e4 4530 spin_lock(lock);
1da177e4 4531 }
6df3cecb 4532 return ret;
1da177e4 4533}
613afbf8 4534EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4535
613afbf8 4536int __sched __cond_resched_softirq(void)
1da177e4
LT
4537{
4538 BUG_ON(!in_softirq());
4539
d86ee480 4540 if (should_resched()) {
98d82567 4541 local_bh_enable();
1da177e4
LT
4542 __cond_resched();
4543 local_bh_disable();
4544 return 1;
4545 }
4546 return 0;
4547}
613afbf8 4548EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4549
1da177e4
LT
4550/**
4551 * yield - yield the current processor to other threads.
4552 *
72fd4a35 4553 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
4554 * thread runnable and calls sys_sched_yield().
4555 */
4556void __sched yield(void)
4557{
4558 set_current_state(TASK_RUNNING);
4559 sys_sched_yield();
4560}
1da177e4
LT
4561EXPORT_SYMBOL(yield);
4562
d95f4122
MG
4563/**
4564 * yield_to - yield the current processor to another thread in
4565 * your thread group, or accelerate that thread toward the
4566 * processor it's on.
16addf95
RD
4567 * @p: target task
4568 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4569 *
4570 * It's the caller's job to ensure that the target task struct
4571 * can't go away on us before we can do any checks.
4572 *
4573 * Returns true if we indeed boosted the target task.
4574 */
4575bool __sched yield_to(struct task_struct *p, bool preempt)
4576{
4577 struct task_struct *curr = current;
4578 struct rq *rq, *p_rq;
4579 unsigned long flags;
4580 bool yielded = 0;
4581
4582 local_irq_save(flags);
4583 rq = this_rq();
4584
4585again:
4586 p_rq = task_rq(p);
4587 double_rq_lock(rq, p_rq);
4588 while (task_rq(p) != p_rq) {
4589 double_rq_unlock(rq, p_rq);
4590 goto again;
4591 }
4592
4593 if (!curr->sched_class->yield_to_task)
4594 goto out;
4595
4596 if (curr->sched_class != p->sched_class)
4597 goto out;
4598
4599 if (task_running(p_rq, p) || p->state)
4600 goto out;
4601
4602 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4603 if (yielded) {
d95f4122 4604 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4605 /*
4606 * Make p's CPU reschedule; pick_next_entity takes care of
4607 * fairness.
4608 */
4609 if (preempt && rq != p_rq)
4610 resched_task(p_rq->curr);
916671c0
MG
4611 } else {
4612 /*
4613 * We might have set it in task_yield_fair(), but are
4614 * not going to schedule(), so don't want to skip
4615 * the next update.
4616 */
4617 rq->skip_clock_update = 0;
6d1cafd8 4618 }
d95f4122
MG
4619
4620out:
4621 double_rq_unlock(rq, p_rq);
4622 local_irq_restore(flags);
4623
4624 if (yielded)
4625 schedule();
4626
4627 return yielded;
4628}
4629EXPORT_SYMBOL_GPL(yield_to);
4630
1da177e4 4631/*
41a2d6cf 4632 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4633 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
4634 */
4635void __sched io_schedule(void)
4636{
54d35f29 4637 struct rq *rq = raw_rq();
1da177e4 4638
0ff92245 4639 delayacct_blkio_start();
1da177e4 4640 atomic_inc(&rq->nr_iowait);
73c10101 4641 blk_flush_plug(current);
8f0dfc34 4642 current->in_iowait = 1;
1da177e4 4643 schedule();
8f0dfc34 4644 current->in_iowait = 0;
1da177e4 4645 atomic_dec(&rq->nr_iowait);
0ff92245 4646 delayacct_blkio_end();
1da177e4 4647}
1da177e4
LT
4648EXPORT_SYMBOL(io_schedule);
4649
4650long __sched io_schedule_timeout(long timeout)
4651{
54d35f29 4652 struct rq *rq = raw_rq();
1da177e4
LT
4653 long ret;
4654
0ff92245 4655 delayacct_blkio_start();
1da177e4 4656 atomic_inc(&rq->nr_iowait);
73c10101 4657 blk_flush_plug(current);
8f0dfc34 4658 current->in_iowait = 1;
1da177e4 4659 ret = schedule_timeout(timeout);
8f0dfc34 4660 current->in_iowait = 0;
1da177e4 4661 atomic_dec(&rq->nr_iowait);
0ff92245 4662 delayacct_blkio_end();
1da177e4
LT
4663 return ret;
4664}
4665
4666/**
4667 * sys_sched_get_priority_max - return maximum RT priority.
4668 * @policy: scheduling class.
4669 *
4670 * this syscall returns the maximum rt_priority that can be used
4671 * by a given scheduling class.
4672 */
5add95d4 4673SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4674{
4675 int ret = -EINVAL;
4676
4677 switch (policy) {
4678 case SCHED_FIFO:
4679 case SCHED_RR:
4680 ret = MAX_USER_RT_PRIO-1;
4681 break;
4682 case SCHED_NORMAL:
b0a9499c 4683 case SCHED_BATCH:
dd41f596 4684 case SCHED_IDLE:
1da177e4
LT
4685 ret = 0;
4686 break;
4687 }
4688 return ret;
4689}
4690
4691/**
4692 * sys_sched_get_priority_min - return minimum RT priority.
4693 * @policy: scheduling class.
4694 *
4695 * this syscall returns the minimum rt_priority that can be used
4696 * by a given scheduling class.
4697 */
5add95d4 4698SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4699{
4700 int ret = -EINVAL;
4701
4702 switch (policy) {
4703 case SCHED_FIFO:
4704 case SCHED_RR:
4705 ret = 1;
4706 break;
4707 case SCHED_NORMAL:
b0a9499c 4708 case SCHED_BATCH:
dd41f596 4709 case SCHED_IDLE:
1da177e4
LT
4710 ret = 0;
4711 }
4712 return ret;
4713}
4714
4715/**
4716 * sys_sched_rr_get_interval - return the default timeslice of a process.
4717 * @pid: pid of the process.
4718 * @interval: userspace pointer to the timeslice value.
4719 *
4720 * this syscall writes the default timeslice value of a given process
4721 * into the user-space timespec buffer. A value of '0' means infinity.
4722 */
17da2bd9 4723SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4724 struct timespec __user *, interval)
1da177e4 4725{
36c8b586 4726 struct task_struct *p;
a4ec24b4 4727 unsigned int time_slice;
dba091b9
TG
4728 unsigned long flags;
4729 struct rq *rq;
3a5c359a 4730 int retval;
1da177e4 4731 struct timespec t;
1da177e4
LT
4732
4733 if (pid < 0)
3a5c359a 4734 return -EINVAL;
1da177e4
LT
4735
4736 retval = -ESRCH;
1a551ae7 4737 rcu_read_lock();
1da177e4
LT
4738 p = find_process_by_pid(pid);
4739 if (!p)
4740 goto out_unlock;
4741
4742 retval = security_task_getscheduler(p);
4743 if (retval)
4744 goto out_unlock;
4745
dba091b9
TG
4746 rq = task_rq_lock(p, &flags);
4747 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4748 task_rq_unlock(rq, p, &flags);
a4ec24b4 4749
1a551ae7 4750 rcu_read_unlock();
a4ec24b4 4751 jiffies_to_timespec(time_slice, &t);
1da177e4 4752 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4753 return retval;
3a5c359a 4754
1da177e4 4755out_unlock:
1a551ae7 4756 rcu_read_unlock();
1da177e4
LT
4757 return retval;
4758}
4759
7c731e0a 4760static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4761
82a1fcb9 4762void sched_show_task(struct task_struct *p)
1da177e4 4763{
1da177e4 4764 unsigned long free = 0;
36c8b586 4765 unsigned state;
1da177e4 4766
1da177e4 4767 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 4768 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4769 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4770#if BITS_PER_LONG == 32
1da177e4 4771 if (state == TASK_RUNNING)
3df0fc5b 4772 printk(KERN_CONT " running ");
1da177e4 4773 else
3df0fc5b 4774 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4775#else
4776 if (state == TASK_RUNNING)
3df0fc5b 4777 printk(KERN_CONT " running task ");
1da177e4 4778 else
3df0fc5b 4779 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4780#endif
4781#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4782 free = stack_not_used(p);
1da177e4 4783#endif
3df0fc5b 4784 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
07cde260 4785 task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)),
aa47b7e0 4786 (unsigned long)task_thread_info(p)->flags);
1da177e4 4787
5fb5e6de 4788 show_stack(p, NULL);
1da177e4
LT
4789}
4790
e59e2ae2 4791void show_state_filter(unsigned long state_filter)
1da177e4 4792{
36c8b586 4793 struct task_struct *g, *p;
1da177e4 4794
4bd77321 4795#if BITS_PER_LONG == 32
3df0fc5b
PZ
4796 printk(KERN_INFO
4797 " task PC stack pid father\n");
1da177e4 4798#else
3df0fc5b
PZ
4799 printk(KERN_INFO
4800 " task PC stack pid father\n");
1da177e4 4801#endif
510f5acc 4802 rcu_read_lock();
1da177e4
LT
4803 do_each_thread(g, p) {
4804 /*
4805 * reset the NMI-timeout, listing all files on a slow
25985edc 4806 * console might take a lot of time:
1da177e4
LT
4807 */
4808 touch_nmi_watchdog();
39bc89fd 4809 if (!state_filter || (p->state & state_filter))
82a1fcb9 4810 sched_show_task(p);
1da177e4
LT
4811 } while_each_thread(g, p);
4812
04c9167f
JF
4813 touch_all_softlockup_watchdogs();
4814
dd41f596
IM
4815#ifdef CONFIG_SCHED_DEBUG
4816 sysrq_sched_debug_show();
4817#endif
510f5acc 4818 rcu_read_unlock();
e59e2ae2
IM
4819 /*
4820 * Only show locks if all tasks are dumped:
4821 */
93335a21 4822 if (!state_filter)
e59e2ae2 4823 debug_show_all_locks();
1da177e4
LT
4824}
4825
1df21055
IM
4826void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4827{
dd41f596 4828 idle->sched_class = &idle_sched_class;
1df21055
IM
4829}
4830
f340c0d1
IM
4831/**
4832 * init_idle - set up an idle thread for a given CPU
4833 * @idle: task in question
4834 * @cpu: cpu the idle task belongs to
4835 *
4836 * NOTE: this function does not set the idle thread's NEED_RESCHED
4837 * flag, to make booting more robust.
4838 */
5c1e1767 4839void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 4840{
70b97a7f 4841 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4842 unsigned long flags;
4843
05fa785c 4844 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 4845
dd41f596 4846 __sched_fork(idle);
06b83b5f 4847 idle->state = TASK_RUNNING;
dd41f596
IM
4848 idle->se.exec_start = sched_clock();
4849
1e1b6c51 4850 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4851 /*
4852 * We're having a chicken and egg problem, even though we are
4853 * holding rq->lock, the cpu isn't yet set to this cpu so the
4854 * lockdep check in task_group() will fail.
4855 *
4856 * Similar case to sched_fork(). / Alternatively we could
4857 * use task_rq_lock() here and obtain the other rq->lock.
4858 *
4859 * Silence PROVE_RCU
4860 */
4861 rcu_read_lock();
dd41f596 4862 __set_task_cpu(idle, cpu);
6506cf6c 4863 rcu_read_unlock();
1da177e4 4864
1da177e4 4865 rq->curr = rq->idle = idle;
3ca7a440
PZ
4866#if defined(CONFIG_SMP)
4867 idle->on_cpu = 1;
4866cde0 4868#endif
05fa785c 4869 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
4870
4871 /* Set the preempt count _outside_ the spinlocks! */
a1261f54 4872 task_thread_info(idle)->preempt_count = 0;
55cd5340 4873
dd41f596
IM
4874 /*
4875 * The idle tasks have their own, simple scheduling class:
4876 */
4877 idle->sched_class = &idle_sched_class;
868baf07 4878 ftrace_graph_init_idle_task(idle, cpu);
f1c6f1a7
CE
4879#if defined(CONFIG_SMP)
4880 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4881#endif
19978ca6
IM
4882}
4883
1da177e4 4884#ifdef CONFIG_SMP
1e1b6c51
KM
4885void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4886{
4887 if (p->sched_class && p->sched_class->set_cpus_allowed)
4888 p->sched_class->set_cpus_allowed(p, new_mask);
4939602a
PZ
4889
4890 cpumask_copy(&p->cpus_allowed, new_mask);
4891 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
1e1b6c51
KM
4892}
4893
1da177e4
LT
4894/*
4895 * This is how migration works:
4896 *
969c7921
TH
4897 * 1) we invoke migration_cpu_stop() on the target CPU using
4898 * stop_one_cpu().
4899 * 2) stopper starts to run (implicitly forcing the migrated thread
4900 * off the CPU)
4901 * 3) it checks whether the migrated task is still in the wrong runqueue.
4902 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 4903 * it and puts it into the right queue.
969c7921
TH
4904 * 5) stopper completes and stop_one_cpu() returns and the migration
4905 * is done.
1da177e4
LT
4906 */
4907
4908/*
4909 * Change a given task's CPU affinity. Migrate the thread to a
4910 * proper CPU and schedule it away if the CPU it's executing on
4911 * is removed from the allowed bitmask.
4912 *
4913 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 4914 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
4915 * call is not atomic; no spinlocks may be held.
4916 */
96f874e2 4917int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
4918{
4919 unsigned long flags;
70b97a7f 4920 struct rq *rq;
969c7921 4921 unsigned int dest_cpu;
48f24c4d 4922 int ret = 0;
1da177e4
LT
4923
4924 rq = task_rq_lock(p, &flags);
e2912009 4925
db44fc01
YZ
4926 if (cpumask_equal(&p->cpus_allowed, new_mask))
4927 goto out;
4928
6ad4c188 4929 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
4930 ret = -EINVAL;
4931 goto out;
4932 }
4933
db44fc01 4934 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
9985b0ba
DR
4935 ret = -EINVAL;
4936 goto out;
4937 }
4938
1e1b6c51 4939 do_set_cpus_allowed(p, new_mask);
73fe6aae 4940
1da177e4 4941 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 4942 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
4943 goto out;
4944
969c7921 4945 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
bd8e7dde 4946 if (p->on_rq) {
969c7921 4947 struct migration_arg arg = { p, dest_cpu };
1da177e4 4948 /* Need help from migration thread: drop lock and wait. */
0122ec5b 4949 task_rq_unlock(rq, p, &flags);
969c7921 4950 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
4951 tlb_migrate_finish(p->mm);
4952 return 0;
4953 }
4954out:
0122ec5b 4955 task_rq_unlock(rq, p, &flags);
48f24c4d 4956
1da177e4
LT
4957 return ret;
4958}
cd8ba7cd 4959EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
4960
4961/*
41a2d6cf 4962 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
4963 * this because either it can't run here any more (set_cpus_allowed()
4964 * away from this CPU, or CPU going down), or because we're
4965 * attempting to rebalance this task on exec (sched_exec).
4966 *
4967 * So we race with normal scheduler movements, but that's OK, as long
4968 * as the task is no longer on this CPU.
efc30814
KK
4969 *
4970 * Returns non-zero if task was successfully migrated.
1da177e4 4971 */
efc30814 4972static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4973{
70b97a7f 4974 struct rq *rq_dest, *rq_src;
e2912009 4975 int ret = 0;
1da177e4 4976
e761b772 4977 if (unlikely(!cpu_active(dest_cpu)))
efc30814 4978 return ret;
1da177e4
LT
4979
4980 rq_src = cpu_rq(src_cpu);
4981 rq_dest = cpu_rq(dest_cpu);
4982
0122ec5b 4983 raw_spin_lock(&p->pi_lock);
1da177e4
LT
4984 double_rq_lock(rq_src, rq_dest);
4985 /* Already moved. */
4986 if (task_cpu(p) != src_cpu)
b1e38734 4987 goto done;
1da177e4 4988 /* Affinity changed (again). */
fa17b507 4989 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
b1e38734 4990 goto fail;
1da177e4 4991
e2912009
PZ
4992 /*
4993 * If we're not on a rq, the next wake-up will ensure we're
4994 * placed properly.
4995 */
fd2f4419 4996 if (p->on_rq) {
4ca9b72b 4997 dequeue_task(rq_src, p, 0);
e2912009 4998 set_task_cpu(p, dest_cpu);
4ca9b72b 4999 enqueue_task(rq_dest, p, 0);
15afe09b 5000 check_preempt_curr(rq_dest, p, 0);
1da177e4 5001 }
b1e38734 5002done:
efc30814 5003 ret = 1;
b1e38734 5004fail:
1da177e4 5005 double_rq_unlock(rq_src, rq_dest);
0122ec5b 5006 raw_spin_unlock(&p->pi_lock);
efc30814 5007 return ret;
1da177e4
LT
5008}
5009
5010/*
969c7921
TH
5011 * migration_cpu_stop - this will be executed by a highprio stopper thread
5012 * and performs thread migration by bumping thread off CPU then
5013 * 'pushing' onto another runqueue.
1da177e4 5014 */
969c7921 5015static int migration_cpu_stop(void *data)
1da177e4 5016{
969c7921 5017 struct migration_arg *arg = data;
f7b4cddc 5018
969c7921
TH
5019 /*
5020 * The original target cpu might have gone down and we might
5021 * be on another cpu but it doesn't matter.
5022 */
f7b4cddc 5023 local_irq_disable();
969c7921 5024 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 5025 local_irq_enable();
1da177e4 5026 return 0;
f7b4cddc
ON
5027}
5028
1da177e4 5029#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 5030
054b9108 5031/*
48c5ccae
PZ
5032 * Ensures that the idle task is using init_mm right before its cpu goes
5033 * offline.
054b9108 5034 */
48c5ccae 5035void idle_task_exit(void)
1da177e4 5036{
48c5ccae 5037 struct mm_struct *mm = current->active_mm;
e76bd8d9 5038
48c5ccae 5039 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 5040
48c5ccae
PZ
5041 if (mm != &init_mm)
5042 switch_mm(mm, &init_mm, current);
5043 mmdrop(mm);
1da177e4
LT
5044}
5045
5046/*
5047 * While a dead CPU has no uninterruptible tasks queued at this point,
5048 * it might still have a nonzero ->nr_uninterruptible counter, because
5049 * for performance reasons the counter is not stricly tracking tasks to
5050 * their home CPUs. So we just add the counter to another CPU's counter,
5051 * to keep the global sum constant after CPU-down:
5052 */
70b97a7f 5053static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5054{
6ad4c188 5055 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4 5056
1da177e4
LT
5057 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5058 rq_src->nr_uninterruptible = 0;
1da177e4
LT
5059}
5060
dd41f596 5061/*
48c5ccae 5062 * remove the tasks which were accounted by rq from calc_load_tasks.
1da177e4 5063 */
48c5ccae 5064static void calc_global_load_remove(struct rq *rq)
1da177e4 5065{
48c5ccae
PZ
5066 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5067 rq->calc_load_active = 0;
1da177e4
LT
5068}
5069
48f24c4d 5070/*
48c5ccae
PZ
5071 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5072 * try_to_wake_up()->select_task_rq().
5073 *
5074 * Called with rq->lock held even though we'er in stop_machine() and
5075 * there's no concurrency possible, we hold the required locks anyway
5076 * because of lock validation efforts.
1da177e4 5077 */
48c5ccae 5078static void migrate_tasks(unsigned int dead_cpu)
1da177e4 5079{
70b97a7f 5080 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
5081 struct task_struct *next, *stop = rq->stop;
5082 int dest_cpu;
1da177e4
LT
5083
5084 /*
48c5ccae
PZ
5085 * Fudge the rq selection such that the below task selection loop
5086 * doesn't get stuck on the currently eligible stop task.
5087 *
5088 * We're currently inside stop_machine() and the rq is either stuck
5089 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5090 * either way we should never end up calling schedule() until we're
5091 * done here.
1da177e4 5092 */
48c5ccae 5093 rq->stop = NULL;
48f24c4d 5094
8cb120d3
PT
5095 /* Ensure any throttled groups are reachable by pick_next_task */
5096 unthrottle_offline_cfs_rqs(rq);
5097
dd41f596 5098 for ( ; ; ) {
48c5ccae
PZ
5099 /*
5100 * There's this thread running, bail when that's the only
5101 * remaining thread.
5102 */
5103 if (rq->nr_running == 1)
dd41f596 5104 break;
48c5ccae 5105
b67802ea 5106 next = pick_next_task(rq);
48c5ccae 5107 BUG_ON(!next);
79c53799 5108 next->sched_class->put_prev_task(rq, next);
e692ab53 5109
48c5ccae
PZ
5110 /* Find suitable destination for @next, with force if needed. */
5111 dest_cpu = select_fallback_rq(dead_cpu, next);
5112 raw_spin_unlock(&rq->lock);
5113
5114 __migrate_task(next, dead_cpu, dest_cpu);
5115
5116 raw_spin_lock(&rq->lock);
1da177e4 5117 }
dce48a84 5118
48c5ccae 5119 rq->stop = stop;
dce48a84 5120}
48c5ccae 5121
1da177e4
LT
5122#endif /* CONFIG_HOTPLUG_CPU */
5123
e692ab53
NP
5124#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5125
5126static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5127 {
5128 .procname = "sched_domain",
c57baf1e 5129 .mode = 0555,
e0361851 5130 },
56992309 5131 {}
e692ab53
NP
5132};
5133
5134static struct ctl_table sd_ctl_root[] = {
e0361851
AD
5135 {
5136 .procname = "kernel",
c57baf1e 5137 .mode = 0555,
e0361851
AD
5138 .child = sd_ctl_dir,
5139 },
56992309 5140 {}
e692ab53
NP
5141};
5142
5143static struct ctl_table *sd_alloc_ctl_entry(int n)
5144{
5145 struct ctl_table *entry =
5cf9f062 5146 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5147
e692ab53
NP
5148 return entry;
5149}
5150
6382bc90
MM
5151static void sd_free_ctl_entry(struct ctl_table **tablep)
5152{
cd790076 5153 struct ctl_table *entry;
6382bc90 5154
cd790076
MM
5155 /*
5156 * In the intermediate directories, both the child directory and
5157 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5158 * will always be set. In the lowest directory the names are
cd790076
MM
5159 * static strings and all have proc handlers.
5160 */
5161 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5162 if (entry->child)
5163 sd_free_ctl_entry(&entry->child);
cd790076
MM
5164 if (entry->proc_handler == NULL)
5165 kfree(entry->procname);
5166 }
6382bc90
MM
5167
5168 kfree(*tablep);
5169 *tablep = NULL;
5170}
5171
e692ab53 5172static void
e0361851 5173set_table_entry(struct ctl_table *entry,
e692ab53 5174 const char *procname, void *data, int maxlen,
36fcb589 5175 umode_t mode, proc_handler *proc_handler)
e692ab53 5176{
e692ab53
NP
5177 entry->procname = procname;
5178 entry->data = data;
5179 entry->maxlen = maxlen;
5180 entry->mode = mode;
5181 entry->proc_handler = proc_handler;
5182}
5183
5184static struct ctl_table *
5185sd_alloc_ctl_domain_table(struct sched_domain *sd)
5186{
a5d8c348 5187 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 5188
ad1cdc1d
MM
5189 if (table == NULL)
5190 return NULL;
5191
e0361851 5192 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5193 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5194 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5195 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5196 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5197 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5198 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5199 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5200 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5201 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5202 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5203 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5204 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5205 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5206 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5207 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5208 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5209 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5210 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
5211 &sd->cache_nice_tries,
5212 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5213 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 5214 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
5215 set_table_entry(&table[11], "name", sd->name,
5216 CORENAME_MAX_SIZE, 0444, proc_dostring);
5217 /* &table[12] is terminator */
e692ab53
NP
5218
5219 return table;
5220}
5221
9a4e7159 5222static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5223{
5224 struct ctl_table *entry, *table;
5225 struct sched_domain *sd;
5226 int domain_num = 0, i;
5227 char buf[32];
5228
5229 for_each_domain(cpu, sd)
5230 domain_num++;
5231 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5232 if (table == NULL)
5233 return NULL;
e692ab53
NP
5234
5235 i = 0;
5236 for_each_domain(cpu, sd) {
5237 snprintf(buf, 32, "domain%d", i);
e692ab53 5238 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5239 entry->mode = 0555;
e692ab53
NP
5240 entry->child = sd_alloc_ctl_domain_table(sd);
5241 entry++;
5242 i++;
5243 }
5244 return table;
5245}
5246
5247static struct ctl_table_header *sd_sysctl_header;
6382bc90 5248static void register_sched_domain_sysctl(void)
e692ab53 5249{
6ad4c188 5250 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5251 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5252 char buf[32];
5253
7378547f
MM
5254 WARN_ON(sd_ctl_dir[0].child);
5255 sd_ctl_dir[0].child = entry;
5256
ad1cdc1d
MM
5257 if (entry == NULL)
5258 return;
5259
6ad4c188 5260 for_each_possible_cpu(i) {
e692ab53 5261 snprintf(buf, 32, "cpu%d", i);
e692ab53 5262 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5263 entry->mode = 0555;
e692ab53 5264 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5265 entry++;
e692ab53 5266 }
7378547f
MM
5267
5268 WARN_ON(sd_sysctl_header);
e692ab53
NP
5269 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5270}
6382bc90 5271
7378547f 5272/* may be called multiple times per register */
6382bc90
MM
5273static void unregister_sched_domain_sysctl(void)
5274{
7378547f
MM
5275 if (sd_sysctl_header)
5276 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5277 sd_sysctl_header = NULL;
7378547f
MM
5278 if (sd_ctl_dir[0].child)
5279 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5280}
e692ab53 5281#else
6382bc90
MM
5282static void register_sched_domain_sysctl(void)
5283{
5284}
5285static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5286{
5287}
5288#endif
5289
1f11eb6a
GH
5290static void set_rq_online(struct rq *rq)
5291{
5292 if (!rq->online) {
5293 const struct sched_class *class;
5294
c6c4927b 5295 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5296 rq->online = 1;
5297
5298 for_each_class(class) {
5299 if (class->rq_online)
5300 class->rq_online(rq);
5301 }
5302 }
5303}
5304
5305static void set_rq_offline(struct rq *rq)
5306{
5307 if (rq->online) {
5308 const struct sched_class *class;
5309
5310 for_each_class(class) {
5311 if (class->rq_offline)
5312 class->rq_offline(rq);
5313 }
5314
c6c4927b 5315 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5316 rq->online = 0;
5317 }
5318}
5319
1da177e4
LT
5320/*
5321 * migration_call - callback that gets triggered when a CPU is added.
5322 * Here we can start up the necessary migration thread for the new CPU.
5323 */
48f24c4d
IM
5324static int __cpuinit
5325migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5326{
48f24c4d 5327 int cpu = (long)hcpu;
1da177e4 5328 unsigned long flags;
969c7921 5329 struct rq *rq = cpu_rq(cpu);
1da177e4 5330
48c5ccae 5331 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 5332
1da177e4 5333 case CPU_UP_PREPARE:
a468d389 5334 rq->calc_load_update = calc_load_update;
1da177e4 5335 break;
48f24c4d 5336
1da177e4 5337 case CPU_ONLINE:
1f94ef59 5338 /* Update our root-domain */
05fa785c 5339 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5340 if (rq->rd) {
c6c4927b 5341 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5342
5343 set_rq_online(rq);
1f94ef59 5344 }
05fa785c 5345 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5346 break;
48f24c4d 5347
1da177e4 5348#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5349 case CPU_DYING:
317f3941 5350 sched_ttwu_pending();
57d885fe 5351 /* Update our root-domain */
05fa785c 5352 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5353 if (rq->rd) {
c6c4927b 5354 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5355 set_rq_offline(rq);
57d885fe 5356 }
48c5ccae
PZ
5357 migrate_tasks(cpu);
5358 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5359 raw_spin_unlock_irqrestore(&rq->lock, flags);
48c5ccae
PZ
5360
5361 migrate_nr_uninterruptible(rq);
5362 calc_global_load_remove(rq);
57d885fe 5363 break;
1da177e4
LT
5364#endif
5365 }
49c022e6
PZ
5366
5367 update_max_interval();
5368
1da177e4
LT
5369 return NOTIFY_OK;
5370}
5371
f38b0820
PM
5372/*
5373 * Register at high priority so that task migration (migrate_all_tasks)
5374 * happens before everything else. This has to be lower priority than
cdd6c482 5375 * the notifier in the perf_event subsystem, though.
1da177e4 5376 */
26c2143b 5377static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4 5378 .notifier_call = migration_call,
50a323b7 5379 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5380};
5381
3a101d05
TH
5382static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5383 unsigned long action, void *hcpu)
5384{
5385 switch (action & ~CPU_TASKS_FROZEN) {
5386 case CPU_ONLINE:
5387 case CPU_DOWN_FAILED:
5388 set_cpu_active((long)hcpu, true);
5389 return NOTIFY_OK;
5390 default:
5391 return NOTIFY_DONE;
5392 }
5393}
5394
5395static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5396 unsigned long action, void *hcpu)
5397{
5398 switch (action & ~CPU_TASKS_FROZEN) {
5399 case CPU_DOWN_PREPARE:
5400 set_cpu_active((long)hcpu, false);
5401 return NOTIFY_OK;
5402 default:
5403 return NOTIFY_DONE;
5404 }
5405}
5406
7babe8db 5407static int __init migration_init(void)
1da177e4
LT
5408{
5409 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5410 int err;
48f24c4d 5411
3a101d05 5412 /* Initialize migration for the boot CPU */
07dccf33
AM
5413 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5414 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5415 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5416 register_cpu_notifier(&migration_notifier);
7babe8db 5417
3a101d05
TH
5418 /* Register cpu active notifiers */
5419 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5420 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5421
a004cd42 5422 return 0;
1da177e4 5423}
7babe8db 5424early_initcall(migration_init);
1da177e4
LT
5425#endif
5426
5427#ifdef CONFIG_SMP
476f3534 5428
4cb98839
PZ
5429static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5430
3e9830dc 5431#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5432
f6630114
MT
5433static __read_mostly int sched_domain_debug_enabled;
5434
5435static int __init sched_domain_debug_setup(char *str)
5436{
5437 sched_domain_debug_enabled = 1;
5438
5439 return 0;
5440}
5441early_param("sched_debug", sched_domain_debug_setup);
5442
7c16ec58 5443static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5444 struct cpumask *groupmask)
1da177e4 5445{
4dcf6aff 5446 struct sched_group *group = sd->groups;
434d53b0 5447 char str[256];
1da177e4 5448
968ea6d8 5449 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 5450 cpumask_clear(groupmask);
4dcf6aff
IM
5451
5452 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5453
5454 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5455 printk("does not load-balance\n");
4dcf6aff 5456 if (sd->parent)
3df0fc5b
PZ
5457 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5458 " has parent");
4dcf6aff 5459 return -1;
41c7ce9a
NP
5460 }
5461
3df0fc5b 5462 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 5463
758b2cdc 5464 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5465 printk(KERN_ERR "ERROR: domain->span does not contain "
5466 "CPU%d\n", cpu);
4dcf6aff 5467 }
758b2cdc 5468 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5469 printk(KERN_ERR "ERROR: domain->groups does not contain"
5470 " CPU%d\n", cpu);
4dcf6aff 5471 }
1da177e4 5472
4dcf6aff 5473 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5474 do {
4dcf6aff 5475 if (!group) {
3df0fc5b
PZ
5476 printk("\n");
5477 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5478 break;
5479 }
5480
9c3f75cb 5481 if (!group->sgp->power) {
3df0fc5b
PZ
5482 printk(KERN_CONT "\n");
5483 printk(KERN_ERR "ERROR: domain->cpu_power not "
5484 "set\n");
4dcf6aff
IM
5485 break;
5486 }
1da177e4 5487
758b2cdc 5488 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5489 printk(KERN_CONT "\n");
5490 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5491 break;
5492 }
1da177e4 5493
758b2cdc 5494 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5495 printk(KERN_CONT "\n");
5496 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5497 break;
5498 }
1da177e4 5499
758b2cdc 5500 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5501
968ea6d8 5502 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 5503
3df0fc5b 5504 printk(KERN_CONT " %s", str);
9c3f75cb 5505 if (group->sgp->power != SCHED_POWER_SCALE) {
3df0fc5b 5506 printk(KERN_CONT " (cpu_power = %d)",
9c3f75cb 5507 group->sgp->power);
381512cf 5508 }
1da177e4 5509
4dcf6aff
IM
5510 group = group->next;
5511 } while (group != sd->groups);
3df0fc5b 5512 printk(KERN_CONT "\n");
1da177e4 5513
758b2cdc 5514 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5515 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5516
758b2cdc
RR
5517 if (sd->parent &&
5518 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5519 printk(KERN_ERR "ERROR: parent span is not a superset "
5520 "of domain->span\n");
4dcf6aff
IM
5521 return 0;
5522}
1da177e4 5523
4dcf6aff
IM
5524static void sched_domain_debug(struct sched_domain *sd, int cpu)
5525{
5526 int level = 0;
1da177e4 5527
f6630114
MT
5528 if (!sched_domain_debug_enabled)
5529 return;
5530
4dcf6aff
IM
5531 if (!sd) {
5532 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5533 return;
5534 }
1da177e4 5535
4dcf6aff
IM
5536 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5537
5538 for (;;) {
4cb98839 5539 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5540 break;
1da177e4
LT
5541 level++;
5542 sd = sd->parent;
33859f7f 5543 if (!sd)
4dcf6aff
IM
5544 break;
5545 }
1da177e4 5546}
6d6bc0ad 5547#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5548# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 5549#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5550
1a20ff27 5551static int sd_degenerate(struct sched_domain *sd)
245af2c7 5552{
758b2cdc 5553 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5554 return 1;
5555
5556 /* Following flags need at least 2 groups */
5557 if (sd->flags & (SD_LOAD_BALANCE |
5558 SD_BALANCE_NEWIDLE |
5559 SD_BALANCE_FORK |
89c4710e
SS
5560 SD_BALANCE_EXEC |
5561 SD_SHARE_CPUPOWER |
5562 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5563 if (sd->groups != sd->groups->next)
5564 return 0;
5565 }
5566
5567 /* Following flags don't use groups */
c88d5910 5568 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5569 return 0;
5570
5571 return 1;
5572}
5573
48f24c4d
IM
5574static int
5575sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5576{
5577 unsigned long cflags = sd->flags, pflags = parent->flags;
5578
5579 if (sd_degenerate(parent))
5580 return 1;
5581
758b2cdc 5582 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5583 return 0;
5584
245af2c7
SS
5585 /* Flags needing groups don't count if only 1 group in parent */
5586 if (parent->groups == parent->groups->next) {
5587 pflags &= ~(SD_LOAD_BALANCE |
5588 SD_BALANCE_NEWIDLE |
5589 SD_BALANCE_FORK |
89c4710e
SS
5590 SD_BALANCE_EXEC |
5591 SD_SHARE_CPUPOWER |
5592 SD_SHARE_PKG_RESOURCES);
5436499e
KC
5593 if (nr_node_ids == 1)
5594 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5595 }
5596 if (~cflags & pflags)
5597 return 0;
5598
5599 return 1;
5600}
5601
dce840a0 5602static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5603{
dce840a0 5604 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5605
68e74568 5606 cpupri_cleanup(&rd->cpupri);
c6c4927b
RR
5607 free_cpumask_var(rd->rto_mask);
5608 free_cpumask_var(rd->online);
5609 free_cpumask_var(rd->span);
5610 kfree(rd);
5611}
5612
57d885fe
GH
5613static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5614{
a0490fa3 5615 struct root_domain *old_rd = NULL;
57d885fe 5616 unsigned long flags;
57d885fe 5617
05fa785c 5618 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5619
5620 if (rq->rd) {
a0490fa3 5621 old_rd = rq->rd;
57d885fe 5622
c6c4927b 5623 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5624 set_rq_offline(rq);
57d885fe 5625
c6c4927b 5626 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5627
a0490fa3
IM
5628 /*
5629 * If we dont want to free the old_rt yet then
5630 * set old_rd to NULL to skip the freeing later
5631 * in this function:
5632 */
5633 if (!atomic_dec_and_test(&old_rd->refcount))
5634 old_rd = NULL;
57d885fe
GH
5635 }
5636
5637 atomic_inc(&rd->refcount);
5638 rq->rd = rd;
5639
c6c4927b 5640 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5641 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5642 set_rq_online(rq);
57d885fe 5643
05fa785c 5644 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5645
5646 if (old_rd)
dce840a0 5647 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5648}
5649
68c38fc3 5650static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5651{
5652 memset(rd, 0, sizeof(*rd));
5653
68c38fc3 5654 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5655 goto out;
68c38fc3 5656 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5657 goto free_span;
68c38fc3 5658 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 5659 goto free_online;
6e0534f2 5660
68c38fc3 5661 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5662 goto free_rto_mask;
c6c4927b 5663 return 0;
6e0534f2 5664
68e74568
RR
5665free_rto_mask:
5666 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
5667free_online:
5668 free_cpumask_var(rd->online);
5669free_span:
5670 free_cpumask_var(rd->span);
0c910d28 5671out:
c6c4927b 5672 return -ENOMEM;
57d885fe
GH
5673}
5674
029632fb
PZ
5675/*
5676 * By default the system creates a single root-domain with all cpus as
5677 * members (mimicking the global state we have today).
5678 */
5679struct root_domain def_root_domain;
5680
57d885fe
GH
5681static void init_defrootdomain(void)
5682{
68c38fc3 5683 init_rootdomain(&def_root_domain);
c6c4927b 5684
57d885fe
GH
5685 atomic_set(&def_root_domain.refcount, 1);
5686}
5687
dc938520 5688static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5689{
5690 struct root_domain *rd;
5691
5692 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5693 if (!rd)
5694 return NULL;
5695
68c38fc3 5696 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5697 kfree(rd);
5698 return NULL;
5699 }
57d885fe
GH
5700
5701 return rd;
5702}
5703
e3589f6c
PZ
5704static void free_sched_groups(struct sched_group *sg, int free_sgp)
5705{
5706 struct sched_group *tmp, *first;
5707
5708 if (!sg)
5709 return;
5710
5711 first = sg;
5712 do {
5713 tmp = sg->next;
5714
5715 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5716 kfree(sg->sgp);
5717
5718 kfree(sg);
5719 sg = tmp;
5720 } while (sg != first);
5721}
5722
dce840a0
PZ
5723static void free_sched_domain(struct rcu_head *rcu)
5724{
5725 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5726
5727 /*
5728 * If its an overlapping domain it has private groups, iterate and
5729 * nuke them all.
5730 */
5731 if (sd->flags & SD_OVERLAP) {
5732 free_sched_groups(sd->groups, 1);
5733 } else if (atomic_dec_and_test(&sd->groups->ref)) {
9c3f75cb 5734 kfree(sd->groups->sgp);
dce840a0 5735 kfree(sd->groups);
9c3f75cb 5736 }
dce840a0
PZ
5737 kfree(sd);
5738}
5739
5740static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5741{
5742 call_rcu(&sd->rcu, free_sched_domain);
5743}
5744
5745static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5746{
5747 for (; sd; sd = sd->parent)
5748 destroy_sched_domain(sd, cpu);
5749}
5750
518cd623
PZ
5751/*
5752 * Keep a special pointer to the highest sched_domain that has
5753 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5754 * allows us to avoid some pointer chasing select_idle_sibling().
5755 *
5756 * Also keep a unique ID per domain (we use the first cpu number in
5757 * the cpumask of the domain), this allows us to quickly tell if
5758 * two cpus are in the same cache domain, see ttwu_share_cache().
5759 */
5760DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5761DEFINE_PER_CPU(int, sd_llc_id);
5762
5763static void update_top_cache_domain(int cpu)
5764{
5765 struct sched_domain *sd;
5766 int id = cpu;
5767
5768 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5769 if (sd)
5770 id = cpumask_first(sched_domain_span(sd));
5771
5772 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5773 per_cpu(sd_llc_id, cpu) = id;
5774}
5775
1da177e4 5776/*
0eab9146 5777 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5778 * hold the hotplug lock.
5779 */
0eab9146
IM
5780static void
5781cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5782{
70b97a7f 5783 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5784 struct sched_domain *tmp;
5785
5786 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5787 for (tmp = sd; tmp; ) {
245af2c7
SS
5788 struct sched_domain *parent = tmp->parent;
5789 if (!parent)
5790 break;
f29c9b1c 5791
1a848870 5792 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5793 tmp->parent = parent->parent;
1a848870
SS
5794 if (parent->parent)
5795 parent->parent->child = tmp;
dce840a0 5796 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5797 } else
5798 tmp = tmp->parent;
245af2c7
SS
5799 }
5800
1a848870 5801 if (sd && sd_degenerate(sd)) {
dce840a0 5802 tmp = sd;
245af2c7 5803 sd = sd->parent;
dce840a0 5804 destroy_sched_domain(tmp, cpu);
1a848870
SS
5805 if (sd)
5806 sd->child = NULL;
5807 }
1da177e4 5808
4cb98839 5809 sched_domain_debug(sd, cpu);
1da177e4 5810
57d885fe 5811 rq_attach_root(rq, rd);
dce840a0 5812 tmp = rq->sd;
674311d5 5813 rcu_assign_pointer(rq->sd, sd);
dce840a0 5814 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5815
5816 update_top_cache_domain(cpu);
1da177e4
LT
5817}
5818
5819/* cpus with isolated domains */
dcc30a35 5820static cpumask_var_t cpu_isolated_map;
1da177e4
LT
5821
5822/* Setup the mask of cpus configured for isolated domains */
5823static int __init isolated_cpu_setup(char *str)
5824{
bdddd296 5825 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5826 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5827 return 1;
5828}
5829
8927f494 5830__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5831
9c1cfda2 5832#ifdef CONFIG_NUMA
198e2f18 5833
9c1cfda2
JH
5834/**
5835 * find_next_best_node - find the next node to include in a sched_domain
5836 * @node: node whose sched_domain we're building
5837 * @used_nodes: nodes already in the sched_domain
5838 *
41a2d6cf 5839 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
5840 * finds the closest node not already in the @used_nodes map.
5841 *
5842 * Should use nodemask_t.
5843 */
c5f59f08 5844static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2 5845{
7142d17e 5846 int i, n, val, min_val, best_node = -1;
9c1cfda2
JH
5847
5848 min_val = INT_MAX;
5849
076ac2af 5850 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 5851 /* Start at @node */
076ac2af 5852 n = (node + i) % nr_node_ids;
9c1cfda2
JH
5853
5854 if (!nr_cpus_node(n))
5855 continue;
5856
5857 /* Skip already used nodes */
c5f59f08 5858 if (node_isset(n, *used_nodes))
9c1cfda2
JH
5859 continue;
5860
5861 /* Simple min distance search */
5862 val = node_distance(node, n);
5863
5864 if (val < min_val) {
5865 min_val = val;
5866 best_node = n;
5867 }
5868 }
5869
7142d17e
HD
5870 if (best_node != -1)
5871 node_set(best_node, *used_nodes);
9c1cfda2
JH
5872 return best_node;
5873}
5874
5875/**
5876 * sched_domain_node_span - get a cpumask for a node's sched_domain
5877 * @node: node whose cpumask we're constructing
73486722 5878 * @span: resulting cpumask
9c1cfda2 5879 *
41a2d6cf 5880 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
5881 * should be one that prevents unnecessary balancing, but also spreads tasks
5882 * out optimally.
5883 */
96f874e2 5884static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 5885{
c5f59f08 5886 nodemask_t used_nodes;
48f24c4d 5887 int i;
9c1cfda2 5888
6ca09dfc 5889 cpumask_clear(span);
c5f59f08 5890 nodes_clear(used_nodes);
9c1cfda2 5891
6ca09dfc 5892 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 5893 node_set(node, used_nodes);
9c1cfda2
JH
5894
5895 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 5896 int next_node = find_next_best_node(node, &used_nodes);
7142d17e
HD
5897 if (next_node < 0)
5898 break;
6ca09dfc 5899 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 5900 }
9c1cfda2 5901}
d3081f52
PZ
5902
5903static const struct cpumask *cpu_node_mask(int cpu)
5904{
5905 lockdep_assert_held(&sched_domains_mutex);
5906
5907 sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);
5908
5909 return sched_domains_tmpmask;
5910}
2c402dc3
PZ
5911
5912static const struct cpumask *cpu_allnodes_mask(int cpu)
5913{
5914 return cpu_possible_mask;
5915}
6d6bc0ad 5916#endif /* CONFIG_NUMA */
9c1cfda2 5917
d3081f52
PZ
5918static const struct cpumask *cpu_cpu_mask(int cpu)
5919{
5920 return cpumask_of_node(cpu_to_node(cpu));
5921}
5922
5c45bf27 5923int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 5924
dce840a0
PZ
5925struct sd_data {
5926 struct sched_domain **__percpu sd;
5927 struct sched_group **__percpu sg;
9c3f75cb 5928 struct sched_group_power **__percpu sgp;
dce840a0
PZ
5929};
5930
49a02c51 5931struct s_data {
21d42ccf 5932 struct sched_domain ** __percpu sd;
49a02c51
AH
5933 struct root_domain *rd;
5934};
5935
2109b99e 5936enum s_alloc {
2109b99e 5937 sa_rootdomain,
21d42ccf 5938 sa_sd,
dce840a0 5939 sa_sd_storage,
2109b99e
AH
5940 sa_none,
5941};
5942
54ab4ff4
PZ
5943struct sched_domain_topology_level;
5944
5945typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
eb7a74e6
PZ
5946typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5947
e3589f6c
PZ
5948#define SDTL_OVERLAP 0x01
5949
eb7a74e6 5950struct sched_domain_topology_level {
2c402dc3
PZ
5951 sched_domain_init_f init;
5952 sched_domain_mask_f mask;
e3589f6c 5953 int flags;
54ab4ff4 5954 struct sd_data data;
eb7a74e6
PZ
5955};
5956
e3589f6c
PZ
5957static int
5958build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5959{
5960 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5961 const struct cpumask *span = sched_domain_span(sd);
5962 struct cpumask *covered = sched_domains_tmpmask;
5963 struct sd_data *sdd = sd->private;
5964 struct sched_domain *child;
5965 int i;
5966
5967 cpumask_clear(covered);
5968
5969 for_each_cpu(i, span) {
5970 struct cpumask *sg_span;
5971
5972 if (cpumask_test_cpu(i, covered))
5973 continue;
5974
5975 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 5976 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
5977
5978 if (!sg)
5979 goto fail;
5980
5981 sg_span = sched_group_cpus(sg);
5982
5983 child = *per_cpu_ptr(sdd->sd, i);
5984 if (child->child) {
5985 child = child->child;
5986 cpumask_copy(sg_span, sched_domain_span(child));
5987 } else
5988 cpumask_set_cpu(i, sg_span);
5989
5990 cpumask_or(covered, covered, sg_span);
5991
5992 sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span));
5993 atomic_inc(&sg->sgp->ref);
5994
5995 if (cpumask_test_cpu(cpu, sg_span))
5996 groups = sg;
5997
5998 if (!first)
5999 first = sg;
6000 if (last)
6001 last->next = sg;
6002 last = sg;
6003 last->next = first;
6004 }
6005 sd->groups = groups;
6006
6007 return 0;
6008
6009fail:
6010 free_sched_groups(first, 0);
6011
6012 return -ENOMEM;
6013}
6014
dce840a0 6015static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 6016{
dce840a0
PZ
6017 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6018 struct sched_domain *child = sd->child;
1da177e4 6019
dce840a0
PZ
6020 if (child)
6021 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 6022
9c3f75cb 6023 if (sg) {
dce840a0 6024 *sg = *per_cpu_ptr(sdd->sg, cpu);
9c3f75cb 6025 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
e3589f6c 6026 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
9c3f75cb 6027 }
dce840a0
PZ
6028
6029 return cpu;
1e9f28fa 6030}
1e9f28fa 6031
01a08546 6032/*
dce840a0
PZ
6033 * build_sched_groups will build a circular linked list of the groups
6034 * covered by the given span, and will set each group's ->cpumask correctly,
6035 * and ->cpu_power to 0.
e3589f6c
PZ
6036 *
6037 * Assumes the sched_domain tree is fully constructed
01a08546 6038 */
e3589f6c
PZ
6039static int
6040build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 6041{
dce840a0
PZ
6042 struct sched_group *first = NULL, *last = NULL;
6043 struct sd_data *sdd = sd->private;
6044 const struct cpumask *span = sched_domain_span(sd);
f96225fd 6045 struct cpumask *covered;
dce840a0 6046 int i;
9c1cfda2 6047
e3589f6c
PZ
6048 get_group(cpu, sdd, &sd->groups);
6049 atomic_inc(&sd->groups->ref);
6050
6051 if (cpu != cpumask_first(sched_domain_span(sd)))
6052 return 0;
6053
f96225fd
PZ
6054 lockdep_assert_held(&sched_domains_mutex);
6055 covered = sched_domains_tmpmask;
6056
dce840a0 6057 cpumask_clear(covered);
6711cab4 6058
dce840a0
PZ
6059 for_each_cpu(i, span) {
6060 struct sched_group *sg;
6061 int group = get_group(i, sdd, &sg);
6062 int j;
6711cab4 6063
dce840a0
PZ
6064 if (cpumask_test_cpu(i, covered))
6065 continue;
6711cab4 6066
dce840a0 6067 cpumask_clear(sched_group_cpus(sg));
9c3f75cb 6068 sg->sgp->power = 0;
0601a88d 6069
dce840a0
PZ
6070 for_each_cpu(j, span) {
6071 if (get_group(j, sdd, NULL) != group)
6072 continue;
0601a88d 6073
dce840a0
PZ
6074 cpumask_set_cpu(j, covered);
6075 cpumask_set_cpu(j, sched_group_cpus(sg));
6076 }
0601a88d 6077
dce840a0
PZ
6078 if (!first)
6079 first = sg;
6080 if (last)
6081 last->next = sg;
6082 last = sg;
6083 }
6084 last->next = first;
e3589f6c
PZ
6085
6086 return 0;
0601a88d 6087}
51888ca2 6088
89c4710e
SS
6089/*
6090 * Initialize sched groups cpu_power.
6091 *
6092 * cpu_power indicates the capacity of sched group, which is used while
6093 * distributing the load between different sched groups in a sched domain.
6094 * Typically cpu_power for all the groups in a sched domain will be same unless
6095 * there are asymmetries in the topology. If there are asymmetries, group
6096 * having more cpu_power will pickup more load compared to the group having
6097 * less cpu_power.
89c4710e
SS
6098 */
6099static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6100{
e3589f6c 6101 struct sched_group *sg = sd->groups;
89c4710e 6102
e3589f6c
PZ
6103 WARN_ON(!sd || !sg);
6104
6105 do {
6106 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6107 sg = sg->next;
6108 } while (sg != sd->groups);
89c4710e 6109
e3589f6c
PZ
6110 if (cpu != group_first_cpu(sg))
6111 return;
aae6d3dd 6112
d274cb30 6113 update_group_power(sd, cpu);
69e1e811 6114 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
89c4710e
SS
6115}
6116
029632fb
PZ
6117int __weak arch_sd_sibling_asym_packing(void)
6118{
6119 return 0*SD_ASYM_PACKING;
89c4710e
SS
6120}
6121
7c16ec58
MT
6122/*
6123 * Initializers for schedule domains
6124 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6125 */
6126
a5d8c348
IM
6127#ifdef CONFIG_SCHED_DEBUG
6128# define SD_INIT_NAME(sd, type) sd->name = #type
6129#else
6130# define SD_INIT_NAME(sd, type) do { } while (0)
6131#endif
6132
54ab4ff4
PZ
6133#define SD_INIT_FUNC(type) \
6134static noinline struct sched_domain * \
6135sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
6136{ \
6137 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
6138 *sd = SD_##type##_INIT; \
54ab4ff4
PZ
6139 SD_INIT_NAME(sd, type); \
6140 sd->private = &tl->data; \
6141 return sd; \
7c16ec58
MT
6142}
6143
6144SD_INIT_FUNC(CPU)
6145#ifdef CONFIG_NUMA
6146 SD_INIT_FUNC(ALLNODES)
6147 SD_INIT_FUNC(NODE)
6148#endif
6149#ifdef CONFIG_SCHED_SMT
6150 SD_INIT_FUNC(SIBLING)
6151#endif
6152#ifdef CONFIG_SCHED_MC
6153 SD_INIT_FUNC(MC)
6154#endif
01a08546
HC
6155#ifdef CONFIG_SCHED_BOOK
6156 SD_INIT_FUNC(BOOK)
6157#endif
7c16ec58 6158
1d3504fc 6159static int default_relax_domain_level = -1;
60495e77 6160int sched_domain_level_max;
1d3504fc
HS
6161
6162static int __init setup_relax_domain_level(char *str)
6163{
30e0e178
LZ
6164 unsigned long val;
6165
6166 val = simple_strtoul(str, NULL, 0);
60495e77 6167 if (val < sched_domain_level_max)
30e0e178
LZ
6168 default_relax_domain_level = val;
6169
1d3504fc
HS
6170 return 1;
6171}
6172__setup("relax_domain_level=", setup_relax_domain_level);
6173
6174static void set_domain_attribute(struct sched_domain *sd,
6175 struct sched_domain_attr *attr)
6176{
6177 int request;
6178
6179 if (!attr || attr->relax_domain_level < 0) {
6180 if (default_relax_domain_level < 0)
6181 return;
6182 else
6183 request = default_relax_domain_level;
6184 } else
6185 request = attr->relax_domain_level;
6186 if (request < sd->level) {
6187 /* turn off idle balance on this domain */
c88d5910 6188 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6189 } else {
6190 /* turn on idle balance on this domain */
c88d5910 6191 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6192 }
6193}
6194
54ab4ff4
PZ
6195static void __sdt_free(const struct cpumask *cpu_map);
6196static int __sdt_alloc(const struct cpumask *cpu_map);
6197
2109b99e
AH
6198static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6199 const struct cpumask *cpu_map)
6200{
6201 switch (what) {
2109b99e 6202 case sa_rootdomain:
822ff793
PZ
6203 if (!atomic_read(&d->rd->refcount))
6204 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
6205 case sa_sd:
6206 free_percpu(d->sd); /* fall through */
dce840a0 6207 case sa_sd_storage:
54ab4ff4 6208 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
6209 case sa_none:
6210 break;
6211 }
6212}
3404c8d9 6213
2109b99e
AH
6214static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6215 const struct cpumask *cpu_map)
6216{
dce840a0
PZ
6217 memset(d, 0, sizeof(*d));
6218
54ab4ff4
PZ
6219 if (__sdt_alloc(cpu_map))
6220 return sa_sd_storage;
dce840a0
PZ
6221 d->sd = alloc_percpu(struct sched_domain *);
6222 if (!d->sd)
6223 return sa_sd_storage;
2109b99e 6224 d->rd = alloc_rootdomain();
dce840a0 6225 if (!d->rd)
21d42ccf 6226 return sa_sd;
2109b99e
AH
6227 return sa_rootdomain;
6228}
57d885fe 6229
dce840a0
PZ
6230/*
6231 * NULL the sd_data elements we've used to build the sched_domain and
6232 * sched_group structure so that the subsequent __free_domain_allocs()
6233 * will not free the data we're using.
6234 */
6235static void claim_allocations(int cpu, struct sched_domain *sd)
6236{
6237 struct sd_data *sdd = sd->private;
dce840a0
PZ
6238
6239 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6240 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6241
e3589f6c 6242 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 6243 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c
PZ
6244
6245 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
9c3f75cb 6246 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
dce840a0
PZ
6247}
6248
2c402dc3
PZ
6249#ifdef CONFIG_SCHED_SMT
6250static const struct cpumask *cpu_smt_mask(int cpu)
7f4588f3 6251{
2c402dc3 6252 return topology_thread_cpumask(cpu);
3bd65a80 6253}
2c402dc3 6254#endif
7f4588f3 6255
d069b916
PZ
6256/*
6257 * Topology list, bottom-up.
6258 */
2c402dc3 6259static struct sched_domain_topology_level default_topology[] = {
d069b916
PZ
6260#ifdef CONFIG_SCHED_SMT
6261 { sd_init_SIBLING, cpu_smt_mask, },
01a08546 6262#endif
1e9f28fa 6263#ifdef CONFIG_SCHED_MC
2c402dc3 6264 { sd_init_MC, cpu_coregroup_mask, },
1e9f28fa 6265#endif
d069b916
PZ
6266#ifdef CONFIG_SCHED_BOOK
6267 { sd_init_BOOK, cpu_book_mask, },
6268#endif
6269 { sd_init_CPU, cpu_cpu_mask, },
6270#ifdef CONFIG_NUMA
e3589f6c 6271 { sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, },
d069b916 6272 { sd_init_ALLNODES, cpu_allnodes_mask, },
1da177e4 6273#endif
eb7a74e6
PZ
6274 { NULL, },
6275};
6276
6277static struct sched_domain_topology_level *sched_domain_topology = default_topology;
6278
54ab4ff4
PZ
6279static int __sdt_alloc(const struct cpumask *cpu_map)
6280{
6281 struct sched_domain_topology_level *tl;
6282 int j;
6283
6284 for (tl = sched_domain_topology; tl->init; tl++) {
6285 struct sd_data *sdd = &tl->data;
6286
6287 sdd->sd = alloc_percpu(struct sched_domain *);
6288 if (!sdd->sd)
6289 return -ENOMEM;
6290
6291 sdd->sg = alloc_percpu(struct sched_group *);
6292 if (!sdd->sg)
6293 return -ENOMEM;
6294
9c3f75cb
PZ
6295 sdd->sgp = alloc_percpu(struct sched_group_power *);
6296 if (!sdd->sgp)
6297 return -ENOMEM;
6298
54ab4ff4
PZ
6299 for_each_cpu(j, cpu_map) {
6300 struct sched_domain *sd;
6301 struct sched_group *sg;
9c3f75cb 6302 struct sched_group_power *sgp;
54ab4ff4
PZ
6303
6304 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6305 GFP_KERNEL, cpu_to_node(j));
6306 if (!sd)
6307 return -ENOMEM;
6308
6309 *per_cpu_ptr(sdd->sd, j) = sd;
6310
6311 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6312 GFP_KERNEL, cpu_to_node(j));
6313 if (!sg)
6314 return -ENOMEM;
6315
6316 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb
PZ
6317
6318 sgp = kzalloc_node(sizeof(struct sched_group_power),
6319 GFP_KERNEL, cpu_to_node(j));
6320 if (!sgp)
6321 return -ENOMEM;
6322
6323 *per_cpu_ptr(sdd->sgp, j) = sgp;
54ab4ff4
PZ
6324 }
6325 }
6326
6327 return 0;
6328}
6329
6330static void __sdt_free(const struct cpumask *cpu_map)
6331{
6332 struct sched_domain_topology_level *tl;
6333 int j;
6334
6335 for (tl = sched_domain_topology; tl->init; tl++) {
6336 struct sd_data *sdd = &tl->data;
6337
6338 for_each_cpu(j, cpu_map) {
e3589f6c
PZ
6339 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, j);
6340 if (sd && (sd->flags & SD_OVERLAP))
6341 free_sched_groups(sd->groups, 0);
feff8fa0 6342 kfree(*per_cpu_ptr(sdd->sd, j));
54ab4ff4 6343 kfree(*per_cpu_ptr(sdd->sg, j));
9c3f75cb 6344 kfree(*per_cpu_ptr(sdd->sgp, j));
54ab4ff4
PZ
6345 }
6346 free_percpu(sdd->sd);
6347 free_percpu(sdd->sg);
9c3f75cb 6348 free_percpu(sdd->sgp);
54ab4ff4
PZ
6349 }
6350}
6351
2c402dc3
PZ
6352struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6353 struct s_data *d, const struct cpumask *cpu_map,
d069b916 6354 struct sched_domain_attr *attr, struct sched_domain *child,
2c402dc3
PZ
6355 int cpu)
6356{
54ab4ff4 6357 struct sched_domain *sd = tl->init(tl, cpu);
2c402dc3 6358 if (!sd)
d069b916 6359 return child;
2c402dc3
PZ
6360
6361 set_domain_attribute(sd, attr);
6362 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6363 if (child) {
6364 sd->level = child->level + 1;
6365 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6366 child->parent = sd;
60495e77 6367 }
d069b916 6368 sd->child = child;
2c402dc3
PZ
6369
6370 return sd;
6371}
6372
2109b99e
AH
6373/*
6374 * Build sched domains for a given set of cpus and attach the sched domains
6375 * to the individual cpus
6376 */
dce840a0
PZ
6377static int build_sched_domains(const struct cpumask *cpu_map,
6378 struct sched_domain_attr *attr)
2109b99e
AH
6379{
6380 enum s_alloc alloc_state = sa_none;
dce840a0 6381 struct sched_domain *sd;
2109b99e 6382 struct s_data d;
822ff793 6383 int i, ret = -ENOMEM;
9c1cfda2 6384
2109b99e
AH
6385 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6386 if (alloc_state != sa_rootdomain)
6387 goto error;
9c1cfda2 6388
dce840a0 6389 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6390 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6391 struct sched_domain_topology_level *tl;
6392
3bd65a80 6393 sd = NULL;
e3589f6c 6394 for (tl = sched_domain_topology; tl->init; tl++) {
2c402dc3 6395 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
e3589f6c
PZ
6396 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6397 sd->flags |= SD_OVERLAP;
d110235d
PZ
6398 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6399 break;
e3589f6c 6400 }
d274cb30 6401
d069b916
PZ
6402 while (sd->child)
6403 sd = sd->child;
6404
21d42ccf 6405 *per_cpu_ptr(d.sd, i) = sd;
dce840a0
PZ
6406 }
6407
6408 /* Build the groups for the domains */
6409 for_each_cpu(i, cpu_map) {
6410 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6411 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6412 if (sd->flags & SD_OVERLAP) {
6413 if (build_overlap_sched_groups(sd, i))
6414 goto error;
6415 } else {
6416 if (build_sched_groups(sd, i))
6417 goto error;
6418 }
1cf51902 6419 }
a06dadbe 6420 }
9c1cfda2 6421
1da177e4 6422 /* Calculate CPU power for physical packages and nodes */
a9c9a9b6
PZ
6423 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6424 if (!cpumask_test_cpu(i, cpu_map))
6425 continue;
9c1cfda2 6426
dce840a0
PZ
6427 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6428 claim_allocations(i, sd);
cd4ea6ae 6429 init_sched_groups_power(i, sd);
dce840a0 6430 }
f712c0c7 6431 }
9c1cfda2 6432
1da177e4 6433 /* Attach the domains */
dce840a0 6434 rcu_read_lock();
abcd083a 6435 for_each_cpu(i, cpu_map) {
21d42ccf 6436 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6437 cpu_attach_domain(sd, d.rd, i);
1da177e4 6438 }
dce840a0 6439 rcu_read_unlock();
51888ca2 6440
822ff793 6441 ret = 0;
51888ca2 6442error:
2109b99e 6443 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6444 return ret;
1da177e4 6445}
029190c5 6446
acc3f5d7 6447static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6448static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6449static struct sched_domain_attr *dattr_cur;
6450 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6451
6452/*
6453 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6454 * cpumask) fails, then fallback to a single sched domain,
6455 * as determined by the single cpumask fallback_doms.
029190c5 6456 */
4212823f 6457static cpumask_var_t fallback_doms;
029190c5 6458
ee79d1bd
HC
6459/*
6460 * arch_update_cpu_topology lets virtualized architectures update the
6461 * cpu core maps. It is supposed to return 1 if the topology changed
6462 * or 0 if it stayed the same.
6463 */
6464int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 6465{
ee79d1bd 6466 return 0;
22e52b07
HC
6467}
6468
acc3f5d7
RR
6469cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6470{
6471 int i;
6472 cpumask_var_t *doms;
6473
6474 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6475 if (!doms)
6476 return NULL;
6477 for (i = 0; i < ndoms; i++) {
6478 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6479 free_sched_domains(doms, i);
6480 return NULL;
6481 }
6482 }
6483 return doms;
6484}
6485
6486void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6487{
6488 unsigned int i;
6489 for (i = 0; i < ndoms; i++)
6490 free_cpumask_var(doms[i]);
6491 kfree(doms);
6492}
6493
1a20ff27 6494/*
41a2d6cf 6495 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6496 * For now this just excludes isolated cpus, but could be used to
6497 * exclude other special cases in the future.
1a20ff27 6498 */
c4a8849a 6499static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6500{
7378547f
MM
6501 int err;
6502
22e52b07 6503 arch_update_cpu_topology();
029190c5 6504 ndoms_cur = 1;
acc3f5d7 6505 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6506 if (!doms_cur)
acc3f5d7
RR
6507 doms_cur = &fallback_doms;
6508 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 6509 dattr_cur = NULL;
dce840a0 6510 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6511 register_sched_domain_sysctl();
7378547f
MM
6512
6513 return err;
1a20ff27
DG
6514}
6515
1a20ff27
DG
6516/*
6517 * Detach sched domains from a group of cpus specified in cpu_map
6518 * These cpus will now be attached to the NULL domain
6519 */
96f874e2 6520static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6521{
6522 int i;
6523
dce840a0 6524 rcu_read_lock();
abcd083a 6525 for_each_cpu(i, cpu_map)
57d885fe 6526 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6527 rcu_read_unlock();
1a20ff27
DG
6528}
6529
1d3504fc
HS
6530/* handle null as "default" */
6531static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6532 struct sched_domain_attr *new, int idx_new)
6533{
6534 struct sched_domain_attr tmp;
6535
6536 /* fast path */
6537 if (!new && !cur)
6538 return 1;
6539
6540 tmp = SD_ATTR_INIT;
6541 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6542 new ? (new + idx_new) : &tmp,
6543 sizeof(struct sched_domain_attr));
6544}
6545
029190c5
PJ
6546/*
6547 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6548 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6549 * doms_new[] to the current sched domain partitioning, doms_cur[].
6550 * It destroys each deleted domain and builds each new domain.
6551 *
acc3f5d7 6552 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
6553 * The masks don't intersect (don't overlap.) We should setup one
6554 * sched domain for each mask. CPUs not in any of the cpumasks will
6555 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6556 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6557 * it as it is.
6558 *
acc3f5d7
RR
6559 * The passed in 'doms_new' should be allocated using
6560 * alloc_sched_domains. This routine takes ownership of it and will
6561 * free_sched_domains it when done with it. If the caller failed the
6562 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6563 * and partition_sched_domains() will fallback to the single partition
6564 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 6565 *
96f874e2 6566 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
6567 * ndoms_new == 0 is a special case for destroying existing domains,
6568 * and it will not create the default domain.
dfb512ec 6569 *
029190c5
PJ
6570 * Call with hotplug lock held
6571 */
acc3f5d7 6572void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 6573 struct sched_domain_attr *dattr_new)
029190c5 6574{
dfb512ec 6575 int i, j, n;
d65bd5ec 6576 int new_topology;
029190c5 6577
712555ee 6578 mutex_lock(&sched_domains_mutex);
a1835615 6579
7378547f
MM
6580 /* always unregister in case we don't destroy any domains */
6581 unregister_sched_domain_sysctl();
6582
d65bd5ec
HC
6583 /* Let architecture update cpu core mappings. */
6584 new_topology = arch_update_cpu_topology();
6585
dfb512ec 6586 n = doms_new ? ndoms_new : 0;
029190c5
PJ
6587
6588 /* Destroy deleted domains */
6589 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 6590 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6591 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 6592 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
6593 goto match1;
6594 }
6595 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 6596 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
6597match1:
6598 ;
6599 }
6600
e761b772
MK
6601 if (doms_new == NULL) {
6602 ndoms_cur = 0;
acc3f5d7 6603 doms_new = &fallback_doms;
6ad4c188 6604 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 6605 WARN_ON_ONCE(dattr_new);
e761b772
MK
6606 }
6607
029190c5
PJ
6608 /* Build new domains */
6609 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 6610 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 6611 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 6612 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
6613 goto match2;
6614 }
6615 /* no match - add a new doms_new */
dce840a0 6616 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
6617match2:
6618 ;
6619 }
6620
6621 /* Remember the new sched domains */
acc3f5d7
RR
6622 if (doms_cur != &fallback_doms)
6623 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 6624 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 6625 doms_cur = doms_new;
1d3504fc 6626 dattr_cur = dattr_new;
029190c5 6627 ndoms_cur = ndoms_new;
7378547f
MM
6628
6629 register_sched_domain_sysctl();
a1835615 6630
712555ee 6631 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
6632}
6633
5c45bf27 6634#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c4a8849a 6635static void reinit_sched_domains(void)
5c45bf27 6636{
95402b38 6637 get_online_cpus();
dfb512ec
MK
6638
6639 /* Destroy domains first to force the rebuild */
6640 partition_sched_domains(0, NULL, NULL);
6641
e761b772 6642 rebuild_sched_domains();
95402b38 6643 put_online_cpus();
5c45bf27
SS
6644}
6645
6646static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6647{
afb8a9b7 6648 unsigned int level = 0;
5c45bf27 6649
afb8a9b7
GS
6650 if (sscanf(buf, "%u", &level) != 1)
6651 return -EINVAL;
6652
6653 /*
6654 * level is always be positive so don't check for
6655 * level < POWERSAVINGS_BALANCE_NONE which is 0
6656 * What happens on 0 or 1 byte write,
6657 * need to check for count as well?
6658 */
6659
6660 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
6661 return -EINVAL;
6662
6663 if (smt)
afb8a9b7 6664 sched_smt_power_savings = level;
5c45bf27 6665 else
afb8a9b7 6666 sched_mc_power_savings = level;
5c45bf27 6667
c4a8849a 6668 reinit_sched_domains();
5c45bf27 6669
c70f22d2 6670 return count;
5c45bf27
SS
6671}
6672
5c45bf27 6673#ifdef CONFIG_SCHED_MC
8a25a2fd
KS
6674static ssize_t sched_mc_power_savings_show(struct device *dev,
6675 struct device_attribute *attr,
6676 char *buf)
5c45bf27 6677{
8a25a2fd 6678 return sprintf(buf, "%u\n", sched_mc_power_savings);
5c45bf27 6679}
8a25a2fd
KS
6680static ssize_t sched_mc_power_savings_store(struct device *dev,
6681 struct device_attribute *attr,
48f24c4d 6682 const char *buf, size_t count)
5c45bf27
SS
6683{
6684 return sched_power_savings_store(buf, count, 0);
6685}
8a25a2fd
KS
6686static DEVICE_ATTR(sched_mc_power_savings, 0644,
6687 sched_mc_power_savings_show,
6688 sched_mc_power_savings_store);
5c45bf27
SS
6689#endif
6690
6691#ifdef CONFIG_SCHED_SMT
8a25a2fd
KS
6692static ssize_t sched_smt_power_savings_show(struct device *dev,
6693 struct device_attribute *attr,
6694 char *buf)
5c45bf27 6695{
8a25a2fd 6696 return sprintf(buf, "%u\n", sched_smt_power_savings);
5c45bf27 6697}
8a25a2fd
KS
6698static ssize_t sched_smt_power_savings_store(struct device *dev,
6699 struct device_attribute *attr,
48f24c4d 6700 const char *buf, size_t count)
5c45bf27
SS
6701{
6702 return sched_power_savings_store(buf, count, 1);
6703}
8a25a2fd 6704static DEVICE_ATTR(sched_smt_power_savings, 0644,
f718cd4a 6705 sched_smt_power_savings_show,
6707de00
AB
6706 sched_smt_power_savings_store);
6707#endif
6708
8a25a2fd 6709int __init sched_create_sysfs_power_savings_entries(struct device *dev)
6707de00
AB
6710{
6711 int err = 0;
6712
6713#ifdef CONFIG_SCHED_SMT
6714 if (smt_capable())
8a25a2fd 6715 err = device_create_file(dev, &dev_attr_sched_smt_power_savings);
6707de00
AB
6716#endif
6717#ifdef CONFIG_SCHED_MC
6718 if (!err && mc_capable())
8a25a2fd 6719 err = device_create_file(dev, &dev_attr_sched_mc_power_savings);
6707de00
AB
6720#endif
6721 return err;
6722}
6d6bc0ad 6723#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 6724
1da177e4 6725/*
3a101d05
TH
6726 * Update cpusets according to cpu_active mask. If cpusets are
6727 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6728 * around partition_sched_domains().
1da177e4 6729 */
0b2e918a
TH
6730static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6731 void *hcpu)
e761b772 6732{
3a101d05 6733 switch (action & ~CPU_TASKS_FROZEN) {
e761b772 6734 case CPU_ONLINE:
6ad4c188 6735 case CPU_DOWN_FAILED:
3a101d05 6736 cpuset_update_active_cpus();
e761b772 6737 return NOTIFY_OK;
3a101d05
TH
6738 default:
6739 return NOTIFY_DONE;
6740 }
6741}
e761b772 6742
0b2e918a
TH
6743static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6744 void *hcpu)
3a101d05
TH
6745{
6746 switch (action & ~CPU_TASKS_FROZEN) {
6747 case CPU_DOWN_PREPARE:
6748 cpuset_update_active_cpus();
6749 return NOTIFY_OK;
e761b772
MK
6750 default:
6751 return NOTIFY_DONE;
6752 }
6753}
e761b772 6754
1da177e4
LT
6755void __init sched_init_smp(void)
6756{
dcc30a35
RR
6757 cpumask_var_t non_isolated_cpus;
6758
6759 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 6760 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 6761
95402b38 6762 get_online_cpus();
712555ee 6763 mutex_lock(&sched_domains_mutex);
c4a8849a 6764 init_sched_domains(cpu_active_mask);
dcc30a35
RR
6765 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6766 if (cpumask_empty(non_isolated_cpus))
6767 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 6768 mutex_unlock(&sched_domains_mutex);
95402b38 6769 put_online_cpus();
e761b772 6770
3a101d05
TH
6771 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6772 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772
MK
6773
6774 /* RT runtime code needs to handle some hotplug events */
6775 hotcpu_notifier(update_runtime, 0);
6776
b328ca18 6777 init_hrtick();
5c1e1767
NP
6778
6779 /* Move init over to a non-isolated CPU */
dcc30a35 6780 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 6781 BUG();
19978ca6 6782 sched_init_granularity();
dcc30a35 6783 free_cpumask_var(non_isolated_cpus);
4212823f 6784
0e3900e6 6785 init_sched_rt_class();
1da177e4
LT
6786}
6787#else
6788void __init sched_init_smp(void)
6789{
19978ca6 6790 sched_init_granularity();
1da177e4
LT
6791}
6792#endif /* CONFIG_SMP */
6793
cd1bb94b
AB
6794const_debug unsigned int sysctl_timer_migration = 1;
6795
1da177e4
LT
6796int in_sched_functions(unsigned long addr)
6797{
1da177e4
LT
6798 return in_lock_functions(addr) ||
6799 (addr >= (unsigned long)__sched_text_start
6800 && addr < (unsigned long)__sched_text_end);
6801}
6802
029632fb
PZ
6803#ifdef CONFIG_CGROUP_SCHED
6804struct task_group root_task_group;
052f1dc7 6805#endif
6f505b16 6806
029632fb 6807DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
6f505b16 6808
1da177e4
LT
6809void __init sched_init(void)
6810{
dd41f596 6811 int i, j;
434d53b0
MT
6812 unsigned long alloc_size = 0, ptr;
6813
6814#ifdef CONFIG_FAIR_GROUP_SCHED
6815 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6816#endif
6817#ifdef CONFIG_RT_GROUP_SCHED
6818 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 6819#endif
df7c8e84 6820#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 6821 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 6822#endif
434d53b0 6823 if (alloc_size) {
36b7b6d4 6824 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
6825
6826#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 6827 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
6828 ptr += nr_cpu_ids * sizeof(void **);
6829
07e06b01 6830 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 6831 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 6832
6d6bc0ad 6833#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 6834#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6835 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
6836 ptr += nr_cpu_ids * sizeof(void **);
6837
07e06b01 6838 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
6839 ptr += nr_cpu_ids * sizeof(void **);
6840
6d6bc0ad 6841#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
6842#ifdef CONFIG_CPUMASK_OFFSTACK
6843 for_each_possible_cpu(i) {
6844 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
6845 ptr += cpumask_size();
6846 }
6847#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 6848 }
dd41f596 6849
57d885fe
GH
6850#ifdef CONFIG_SMP
6851 init_defrootdomain();
6852#endif
6853
d0b27fa7
PZ
6854 init_rt_bandwidth(&def_rt_bandwidth,
6855 global_rt_period(), global_rt_runtime());
6856
6857#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6858 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 6859 global_rt_period(), global_rt_runtime());
6d6bc0ad 6860#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6861
7c941438 6862#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
6863 list_add(&root_task_group.list, &task_groups);
6864 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 6865 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 6866 autogroup_init(&init_task);
54c707e9 6867
7c941438 6868#endif /* CONFIG_CGROUP_SCHED */
6f505b16 6869
54c707e9
GC
6870#ifdef CONFIG_CGROUP_CPUACCT
6871 root_cpuacct.cpustat = &kernel_cpustat;
6872 root_cpuacct.cpuusage = alloc_percpu(u64);
6873 /* Too early, not expected to fail */
6874 BUG_ON(!root_cpuacct.cpuusage);
6875#endif
0a945022 6876 for_each_possible_cpu(i) {
70b97a7f 6877 struct rq *rq;
1da177e4
LT
6878
6879 rq = cpu_rq(i);
05fa785c 6880 raw_spin_lock_init(&rq->lock);
7897986b 6881 rq->nr_running = 0;
dce48a84
TG
6882 rq->calc_load_active = 0;
6883 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 6884 init_cfs_rq(&rq->cfs);
6f505b16 6885 init_rt_rq(&rq->rt, rq);
dd41f596 6886#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 6887 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 6888 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 6889 /*
07e06b01 6890 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
6891 *
6892 * In case of task-groups formed thr' the cgroup filesystem, it
6893 * gets 100% of the cpu resources in the system. This overall
6894 * system cpu resource is divided among the tasks of
07e06b01 6895 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
6896 * based on each entity's (task or task-group's) weight
6897 * (se->load.weight).
6898 *
07e06b01 6899 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
6900 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6901 * then A0's share of the cpu resource is:
6902 *
0d905bca 6903 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 6904 *
07e06b01
YZ
6905 * We achieve this by letting root_task_group's tasks sit
6906 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 6907 */
ab84d31e 6908 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 6909 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
6910#endif /* CONFIG_FAIR_GROUP_SCHED */
6911
6912 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 6913#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 6914 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
07e06b01 6915 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 6916#endif
1da177e4 6917
dd41f596
IM
6918 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6919 rq->cpu_load[j] = 0;
fdf3e95d
VP
6920
6921 rq->last_load_update_tick = jiffies;
6922
1da177e4 6923#ifdef CONFIG_SMP
41c7ce9a 6924 rq->sd = NULL;
57d885fe 6925 rq->rd = NULL;
1399fa78 6926 rq->cpu_power = SCHED_POWER_SCALE;
3f029d3c 6927 rq->post_schedule = 0;
1da177e4 6928 rq->active_balance = 0;
dd41f596 6929 rq->next_balance = jiffies;
1da177e4 6930 rq->push_cpu = 0;
0a2966b4 6931 rq->cpu = i;
1f11eb6a 6932 rq->online = 0;
eae0c9df
MG
6933 rq->idle_stamp = 0;
6934 rq->avg_idle = 2*sysctl_sched_migration_cost;
dc938520 6935 rq_attach_root(rq, &def_root_domain);
83cd4fe2 6936#ifdef CONFIG_NO_HZ
1c792db7 6937 rq->nohz_flags = 0;
83cd4fe2 6938#endif
1da177e4 6939#endif
8f4d37ec 6940 init_rq_hrtick(rq);
1da177e4 6941 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
6942 }
6943
2dd73a4f 6944 set_load_weight(&init_task);
b50f60ce 6945
e107be36
AK
6946#ifdef CONFIG_PREEMPT_NOTIFIERS
6947 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6948#endif
6949
b50f60ce 6950#ifdef CONFIG_RT_MUTEXES
732375c6 6951 plist_head_init(&init_task.pi_waiters);
b50f60ce
HC
6952#endif
6953
1da177e4
LT
6954 /*
6955 * The boot idle thread does lazy MMU switching as well:
6956 */
6957 atomic_inc(&init_mm.mm_count);
6958 enter_lazy_tlb(&init_mm, current);
6959
6960 /*
6961 * Make us the idle thread. Technically, schedule() should not be
6962 * called from this thread, however somewhere below it might be,
6963 * but because we are the idle thread, we just pick up running again
6964 * when this runqueue becomes "idle".
6965 */
6966 init_idle(current, smp_processor_id());
dce48a84
TG
6967
6968 calc_load_update = jiffies + LOAD_FREQ;
6969
dd41f596
IM
6970 /*
6971 * During early bootup we pretend to be a normal task:
6972 */
6973 current->sched_class = &fair_sched_class;
6892b75e 6974
bf4d83f6 6975#ifdef CONFIG_SMP
4cb98839 6976 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
6977 /* May be allocated at isolcpus cmdline parse time */
6978 if (cpu_isolated_map == NULL)
6979 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
029632fb
PZ
6980#endif
6981 init_sched_fair_class();
6a7b3dc3 6982
6892b75e 6983 scheduler_running = 1;
1da177e4
LT
6984}
6985
d902db1e 6986#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
6987static inline int preempt_count_equals(int preempt_offset)
6988{
234da7bc 6989 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 6990
4ba8216c 6991 return (nested == preempt_offset);
e4aafea2
FW
6992}
6993
d894837f 6994void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6995{
1da177e4
LT
6996 static unsigned long prev_jiffy; /* ratelimiting */
6997
b3fbab05 6998 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
e4aafea2
FW
6999 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7000 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7001 return;
7002 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7003 return;
7004 prev_jiffy = jiffies;
7005
3df0fc5b
PZ
7006 printk(KERN_ERR
7007 "BUG: sleeping function called from invalid context at %s:%d\n",
7008 file, line);
7009 printk(KERN_ERR
7010 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7011 in_atomic(), irqs_disabled(),
7012 current->pid, current->comm);
aef745fc
IM
7013
7014 debug_show_held_locks(current);
7015 if (irqs_disabled())
7016 print_irqtrace_events(current);
7017 dump_stack();
1da177e4
LT
7018}
7019EXPORT_SYMBOL(__might_sleep);
7020#endif
7021
7022#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7023static void normalize_task(struct rq *rq, struct task_struct *p)
7024{
da7a735e
PZ
7025 const struct sched_class *prev_class = p->sched_class;
7026 int old_prio = p->prio;
3a5e4dc1 7027 int on_rq;
3e51f33f 7028
fd2f4419 7029 on_rq = p->on_rq;
3a5e4dc1 7030 if (on_rq)
4ca9b72b 7031 dequeue_task(rq, p, 0);
3a5e4dc1
AK
7032 __setscheduler(rq, p, SCHED_NORMAL, 0);
7033 if (on_rq) {
4ca9b72b 7034 enqueue_task(rq, p, 0);
3a5e4dc1
AK
7035 resched_task(rq->curr);
7036 }
da7a735e
PZ
7037
7038 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
7039}
7040
1da177e4
LT
7041void normalize_rt_tasks(void)
7042{
a0f98a1c 7043 struct task_struct *g, *p;
1da177e4 7044 unsigned long flags;
70b97a7f 7045 struct rq *rq;
1da177e4 7046
4cf5d77a 7047 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 7048 do_each_thread(g, p) {
178be793
IM
7049 /*
7050 * Only normalize user tasks:
7051 */
7052 if (!p->mm)
7053 continue;
7054
6cfb0d5d 7055 p->se.exec_start = 0;
6cfb0d5d 7056#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7057 p->se.statistics.wait_start = 0;
7058 p->se.statistics.sleep_start = 0;
7059 p->se.statistics.block_start = 0;
6cfb0d5d 7060#endif
dd41f596
IM
7061
7062 if (!rt_task(p)) {
7063 /*
7064 * Renice negative nice level userspace
7065 * tasks back to 0:
7066 */
7067 if (TASK_NICE(p) < 0 && p->mm)
7068 set_user_nice(p, 0);
1da177e4 7069 continue;
dd41f596 7070 }
1da177e4 7071
1d615482 7072 raw_spin_lock(&p->pi_lock);
b29739f9 7073 rq = __task_rq_lock(p);
1da177e4 7074
178be793 7075 normalize_task(rq, p);
3a5e4dc1 7076
b29739f9 7077 __task_rq_unlock(rq);
1d615482 7078 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
7079 } while_each_thread(g, p);
7080
4cf5d77a 7081 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
7082}
7083
7084#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7085
67fc4e0c 7086#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7087/*
67fc4e0c 7088 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7089 *
7090 * They can only be called when the whole system has been
7091 * stopped - every CPU needs to be quiescent, and no scheduling
7092 * activity can take place. Using them for anything else would
7093 * be a serious bug, and as a result, they aren't even visible
7094 * under any other configuration.
7095 */
7096
7097/**
7098 * curr_task - return the current task for a given cpu.
7099 * @cpu: the processor in question.
7100 *
7101 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7102 */
36c8b586 7103struct task_struct *curr_task(int cpu)
1df5c10a
LT
7104{
7105 return cpu_curr(cpu);
7106}
7107
67fc4e0c
JW
7108#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7109
7110#ifdef CONFIG_IA64
1df5c10a
LT
7111/**
7112 * set_curr_task - set the current task for a given cpu.
7113 * @cpu: the processor in question.
7114 * @p: the task pointer to set.
7115 *
7116 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7117 * are serviced on a separate stack. It allows the architecture to switch the
7118 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7119 * must be called with all CPU's synchronized, and interrupts disabled, the
7120 * and caller must save the original value of the current task (see
7121 * curr_task() above) and restore that value before reenabling interrupts and
7122 * re-starting the system.
7123 *
7124 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7125 */
36c8b586 7126void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7127{
7128 cpu_curr(cpu) = p;
7129}
7130
7131#endif
29f59db3 7132
7c941438 7133#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7134/* task_group_lock serializes the addition/removal of task groups */
7135static DEFINE_SPINLOCK(task_group_lock);
7136
bccbe08a
PZ
7137static void free_sched_group(struct task_group *tg)
7138{
7139 free_fair_sched_group(tg);
7140 free_rt_sched_group(tg);
e9aa1dd1 7141 autogroup_free(tg);
bccbe08a
PZ
7142 kfree(tg);
7143}
7144
7145/* allocate runqueue etc for a new task group */
ec7dc8ac 7146struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7147{
7148 struct task_group *tg;
7149 unsigned long flags;
bccbe08a
PZ
7150
7151 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7152 if (!tg)
7153 return ERR_PTR(-ENOMEM);
7154
ec7dc8ac 7155 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7156 goto err;
7157
ec7dc8ac 7158 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7159 goto err;
7160
8ed36996 7161 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7162 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7163
7164 WARN_ON(!parent); /* root should already exist */
7165
7166 tg->parent = parent;
f473aa5e 7167 INIT_LIST_HEAD(&tg->children);
09f2724a 7168 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7169 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 7170
9b5b7751 7171 return tg;
29f59db3
SV
7172
7173err:
6f505b16 7174 free_sched_group(tg);
29f59db3
SV
7175 return ERR_PTR(-ENOMEM);
7176}
7177
9b5b7751 7178/* rcu callback to free various structures associated with a task group */
6f505b16 7179static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7180{
29f59db3 7181 /* now it should be safe to free those cfs_rqs */
6f505b16 7182 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7183}
7184
9b5b7751 7185/* Destroy runqueue etc associated with a task group */
4cf86d77 7186void sched_destroy_group(struct task_group *tg)
29f59db3 7187{
8ed36996 7188 unsigned long flags;
9b5b7751 7189 int i;
29f59db3 7190
3d4b47b4
PZ
7191 /* end participation in shares distribution */
7192 for_each_possible_cpu(i)
bccbe08a 7193 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
7194
7195 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7196 list_del_rcu(&tg->list);
f473aa5e 7197 list_del_rcu(&tg->siblings);
8ed36996 7198 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 7199
9b5b7751 7200 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 7201 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
7202}
7203
9b5b7751 7204/* change task's runqueue when it moves between groups.
3a252015
IM
7205 * The caller of this function should have put the task in its new group
7206 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7207 * reflect its new group.
9b5b7751
SV
7208 */
7209void sched_move_task(struct task_struct *tsk)
29f59db3
SV
7210{
7211 int on_rq, running;
7212 unsigned long flags;
7213 struct rq *rq;
7214
7215 rq = task_rq_lock(tsk, &flags);
7216
051a1d1a 7217 running = task_current(rq, tsk);
fd2f4419 7218 on_rq = tsk->on_rq;
29f59db3 7219
0e1f3483 7220 if (on_rq)
29f59db3 7221 dequeue_task(rq, tsk, 0);
0e1f3483
HS
7222 if (unlikely(running))
7223 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 7224
810b3817 7225#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
7226 if (tsk->sched_class->task_move_group)
7227 tsk->sched_class->task_move_group(tsk, on_rq);
7228 else
810b3817 7229#endif
b2b5ce02 7230 set_task_rq(tsk, task_cpu(tsk));
810b3817 7231
0e1f3483
HS
7232 if (unlikely(running))
7233 tsk->sched_class->set_curr_task(rq);
7234 if (on_rq)
371fd7e7 7235 enqueue_task(rq, tsk, 0);
29f59db3 7236
0122ec5b 7237 task_rq_unlock(rq, tsk, &flags);
29f59db3 7238}
7c941438 7239#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7240
a790de99 7241#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
9f0c1e56
PZ
7242static unsigned long to_ratio(u64 period, u64 runtime)
7243{
7244 if (runtime == RUNTIME_INF)
9a7e0b18 7245 return 1ULL << 20;
9f0c1e56 7246
9a7e0b18 7247 return div64_u64(runtime << 20, period);
9f0c1e56 7248}
a790de99
PT
7249#endif
7250
7251#ifdef CONFIG_RT_GROUP_SCHED
7252/*
7253 * Ensure that the real time constraints are schedulable.
7254 */
7255static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7256
9a7e0b18
PZ
7257/* Must be called with tasklist_lock held */
7258static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7259{
9a7e0b18 7260 struct task_struct *g, *p;
b40b2e8e 7261
9a7e0b18 7262 do_each_thread(g, p) {
029632fb 7263 if (rt_task(p) && task_rq(p)->rt.tg == tg)
9a7e0b18
PZ
7264 return 1;
7265 } while_each_thread(g, p);
b40b2e8e 7266
9a7e0b18
PZ
7267 return 0;
7268}
b40b2e8e 7269
9a7e0b18
PZ
7270struct rt_schedulable_data {
7271 struct task_group *tg;
7272 u64 rt_period;
7273 u64 rt_runtime;
7274};
b40b2e8e 7275
a790de99 7276static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7277{
7278 struct rt_schedulable_data *d = data;
7279 struct task_group *child;
7280 unsigned long total, sum = 0;
7281 u64 period, runtime;
b40b2e8e 7282
9a7e0b18
PZ
7283 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7284 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7285
9a7e0b18
PZ
7286 if (tg == d->tg) {
7287 period = d->rt_period;
7288 runtime = d->rt_runtime;
b40b2e8e 7289 }
b40b2e8e 7290
4653f803
PZ
7291 /*
7292 * Cannot have more runtime than the period.
7293 */
7294 if (runtime > period && runtime != RUNTIME_INF)
7295 return -EINVAL;
6f505b16 7296
4653f803
PZ
7297 /*
7298 * Ensure we don't starve existing RT tasks.
7299 */
9a7e0b18
PZ
7300 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7301 return -EBUSY;
6f505b16 7302
9a7e0b18 7303 total = to_ratio(period, runtime);
6f505b16 7304
4653f803
PZ
7305 /*
7306 * Nobody can have more than the global setting allows.
7307 */
7308 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7309 return -EINVAL;
6f505b16 7310
4653f803
PZ
7311 /*
7312 * The sum of our children's runtime should not exceed our own.
7313 */
9a7e0b18
PZ
7314 list_for_each_entry_rcu(child, &tg->children, siblings) {
7315 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7316 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7317
9a7e0b18
PZ
7318 if (child == d->tg) {
7319 period = d->rt_period;
7320 runtime = d->rt_runtime;
7321 }
6f505b16 7322
9a7e0b18 7323 sum += to_ratio(period, runtime);
9f0c1e56 7324 }
6f505b16 7325
9a7e0b18
PZ
7326 if (sum > total)
7327 return -EINVAL;
7328
7329 return 0;
6f505b16
PZ
7330}
7331
9a7e0b18 7332static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7333{
8277434e
PT
7334 int ret;
7335
9a7e0b18
PZ
7336 struct rt_schedulable_data data = {
7337 .tg = tg,
7338 .rt_period = period,
7339 .rt_runtime = runtime,
7340 };
7341
8277434e
PT
7342 rcu_read_lock();
7343 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7344 rcu_read_unlock();
7345
7346 return ret;
521f1a24
DG
7347}
7348
ab84d31e 7349static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7350 u64 rt_period, u64 rt_runtime)
6f505b16 7351{
ac086bc2 7352 int i, err = 0;
9f0c1e56 7353
9f0c1e56 7354 mutex_lock(&rt_constraints_mutex);
521f1a24 7355 read_lock(&tasklist_lock);
9a7e0b18
PZ
7356 err = __rt_schedulable(tg, rt_period, rt_runtime);
7357 if (err)
9f0c1e56 7358 goto unlock;
ac086bc2 7359
0986b11b 7360 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7361 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7362 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7363
7364 for_each_possible_cpu(i) {
7365 struct rt_rq *rt_rq = tg->rt_rq[i];
7366
0986b11b 7367 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7368 rt_rq->rt_runtime = rt_runtime;
0986b11b 7369 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7370 }
0986b11b 7371 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7372unlock:
521f1a24 7373 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7374 mutex_unlock(&rt_constraints_mutex);
7375
7376 return err;
6f505b16
PZ
7377}
7378
d0b27fa7
PZ
7379int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7380{
7381 u64 rt_runtime, rt_period;
7382
7383 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7384 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7385 if (rt_runtime_us < 0)
7386 rt_runtime = RUNTIME_INF;
7387
ab84d31e 7388 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7389}
7390
9f0c1e56
PZ
7391long sched_group_rt_runtime(struct task_group *tg)
7392{
7393 u64 rt_runtime_us;
7394
d0b27fa7 7395 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7396 return -1;
7397
d0b27fa7 7398 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7399 do_div(rt_runtime_us, NSEC_PER_USEC);
7400 return rt_runtime_us;
7401}
d0b27fa7
PZ
7402
7403int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7404{
7405 u64 rt_runtime, rt_period;
7406
7407 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7408 rt_runtime = tg->rt_bandwidth.rt_runtime;
7409
619b0488
R
7410 if (rt_period == 0)
7411 return -EINVAL;
7412
ab84d31e 7413 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7414}
7415
7416long sched_group_rt_period(struct task_group *tg)
7417{
7418 u64 rt_period_us;
7419
7420 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7421 do_div(rt_period_us, NSEC_PER_USEC);
7422 return rt_period_us;
7423}
7424
7425static int sched_rt_global_constraints(void)
7426{
4653f803 7427 u64 runtime, period;
d0b27fa7
PZ
7428 int ret = 0;
7429
ec5d4989
HS
7430 if (sysctl_sched_rt_period <= 0)
7431 return -EINVAL;
7432
4653f803
PZ
7433 runtime = global_rt_runtime();
7434 period = global_rt_period();
7435
7436 /*
7437 * Sanity check on the sysctl variables.
7438 */
7439 if (runtime > period && runtime != RUNTIME_INF)
7440 return -EINVAL;
10b612f4 7441
d0b27fa7 7442 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7443 read_lock(&tasklist_lock);
4653f803 7444 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7445 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7446 mutex_unlock(&rt_constraints_mutex);
7447
7448 return ret;
7449}
54e99124
DG
7450
7451int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7452{
7453 /* Don't accept realtime tasks when there is no way for them to run */
7454 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7455 return 0;
7456
7457 return 1;
7458}
7459
6d6bc0ad 7460#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7461static int sched_rt_global_constraints(void)
7462{
ac086bc2
PZ
7463 unsigned long flags;
7464 int i;
7465
ec5d4989
HS
7466 if (sysctl_sched_rt_period <= 0)
7467 return -EINVAL;
7468
60aa605d
PZ
7469 /*
7470 * There's always some RT tasks in the root group
7471 * -- migration, kstopmachine etc..
7472 */
7473 if (sysctl_sched_rt_runtime == 0)
7474 return -EBUSY;
7475
0986b11b 7476 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7477 for_each_possible_cpu(i) {
7478 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7479
0986b11b 7480 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7481 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7482 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7483 }
0986b11b 7484 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7485
d0b27fa7
PZ
7486 return 0;
7487}
6d6bc0ad 7488#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7489
7490int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7491 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7492 loff_t *ppos)
7493{
7494 int ret;
7495 int old_period, old_runtime;
7496 static DEFINE_MUTEX(mutex);
7497
7498 mutex_lock(&mutex);
7499 old_period = sysctl_sched_rt_period;
7500 old_runtime = sysctl_sched_rt_runtime;
7501
8d65af78 7502 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
7503
7504 if (!ret && write) {
7505 ret = sched_rt_global_constraints();
7506 if (ret) {
7507 sysctl_sched_rt_period = old_period;
7508 sysctl_sched_rt_runtime = old_runtime;
7509 } else {
7510 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7511 def_rt_bandwidth.rt_period =
7512 ns_to_ktime(global_rt_period());
7513 }
7514 }
7515 mutex_unlock(&mutex);
7516
7517 return ret;
7518}
68318b8e 7519
052f1dc7 7520#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
7521
7522/* return corresponding task_group object of a cgroup */
2b01dfe3 7523static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 7524{
2b01dfe3
PM
7525 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7526 struct task_group, css);
68318b8e
SV
7527}
7528
7529static struct cgroup_subsys_state *
2b01dfe3 7530cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 7531{
ec7dc8ac 7532 struct task_group *tg, *parent;
68318b8e 7533
2b01dfe3 7534 if (!cgrp->parent) {
68318b8e 7535 /* This is early initialization for the top cgroup */
07e06b01 7536 return &root_task_group.css;
68318b8e
SV
7537 }
7538
ec7dc8ac
DG
7539 parent = cgroup_tg(cgrp->parent);
7540 tg = sched_create_group(parent);
68318b8e
SV
7541 if (IS_ERR(tg))
7542 return ERR_PTR(-ENOMEM);
7543
68318b8e
SV
7544 return &tg->css;
7545}
7546
41a2d6cf
IM
7547static void
7548cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 7549{
2b01dfe3 7550 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
7551
7552 sched_destroy_group(tg);
7553}
7554
bb9d97b6
TH
7555static int cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7556 struct cgroup_taskset *tset)
68318b8e 7557{
bb9d97b6
TH
7558 struct task_struct *task;
7559
7560 cgroup_taskset_for_each(task, cgrp, tset) {
b68aa230 7561#ifdef CONFIG_RT_GROUP_SCHED
bb9d97b6
TH
7562 if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7563 return -EINVAL;
b68aa230 7564#else
bb9d97b6
TH
7565 /* We don't support RT-tasks being in separate groups */
7566 if (task->sched_class != &fair_sched_class)
7567 return -EINVAL;
b68aa230 7568#endif
bb9d97b6 7569 }
be367d09
BB
7570 return 0;
7571}
68318b8e 7572
bb9d97b6
TH
7573static void cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7574 struct cgroup_taskset *tset)
68318b8e 7575{
bb9d97b6
TH
7576 struct task_struct *task;
7577
7578 cgroup_taskset_for_each(task, cgrp, tset)
7579 sched_move_task(task);
68318b8e
SV
7580}
7581
068c5cc5 7582static void
d41d5a01
PZ
7583cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
7584 struct cgroup *old_cgrp, struct task_struct *task)
068c5cc5
PZ
7585{
7586 /*
7587 * cgroup_exit() is called in the copy_process() failure path.
7588 * Ignore this case since the task hasn't ran yet, this avoids
7589 * trying to poke a half freed task state from generic code.
7590 */
7591 if (!(task->flags & PF_EXITING))
7592 return;
7593
7594 sched_move_task(task);
7595}
7596
052f1dc7 7597#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 7598static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 7599 u64 shareval)
68318b8e 7600{
c8b28116 7601 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
68318b8e
SV
7602}
7603
f4c753b7 7604static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 7605{
2b01dfe3 7606 struct task_group *tg = cgroup_tg(cgrp);
68318b8e 7607
c8b28116 7608 return (u64) scale_load_down(tg->shares);
68318b8e 7609}
ab84d31e
PT
7610
7611#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
7612static DEFINE_MUTEX(cfs_constraints_mutex);
7613
ab84d31e
PT
7614const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7615const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7616
a790de99
PT
7617static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7618
ab84d31e
PT
7619static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7620{
56f570e5 7621 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 7622 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
7623
7624 if (tg == &root_task_group)
7625 return -EINVAL;
7626
7627 /*
7628 * Ensure we have at some amount of bandwidth every period. This is
7629 * to prevent reaching a state of large arrears when throttled via
7630 * entity_tick() resulting in prolonged exit starvation.
7631 */
7632 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7633 return -EINVAL;
7634
7635 /*
7636 * Likewise, bound things on the otherside by preventing insane quota
7637 * periods. This also allows us to normalize in computing quota
7638 * feasibility.
7639 */
7640 if (period > max_cfs_quota_period)
7641 return -EINVAL;
7642
a790de99
PT
7643 mutex_lock(&cfs_constraints_mutex);
7644 ret = __cfs_schedulable(tg, period, quota);
7645 if (ret)
7646 goto out_unlock;
7647
58088ad0 7648 runtime_enabled = quota != RUNTIME_INF;
56f570e5
PT
7649 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7650 account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
ab84d31e
PT
7651 raw_spin_lock_irq(&cfs_b->lock);
7652 cfs_b->period = ns_to_ktime(period);
7653 cfs_b->quota = quota;
58088ad0 7654
a9cf55b2 7655 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
7656 /* restart the period timer (if active) to handle new period expiry */
7657 if (runtime_enabled && cfs_b->timer_active) {
7658 /* force a reprogram */
7659 cfs_b->timer_active = 0;
7660 __start_cfs_bandwidth(cfs_b);
7661 }
ab84d31e
PT
7662 raw_spin_unlock_irq(&cfs_b->lock);
7663
7664 for_each_possible_cpu(i) {
7665 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 7666 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
7667
7668 raw_spin_lock_irq(&rq->lock);
58088ad0 7669 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 7670 cfs_rq->runtime_remaining = 0;
671fd9da 7671
029632fb 7672 if (cfs_rq->throttled)
671fd9da 7673 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
7674 raw_spin_unlock_irq(&rq->lock);
7675 }
a790de99
PT
7676out_unlock:
7677 mutex_unlock(&cfs_constraints_mutex);
ab84d31e 7678
a790de99 7679 return ret;
ab84d31e
PT
7680}
7681
7682int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7683{
7684 u64 quota, period;
7685
029632fb 7686 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7687 if (cfs_quota_us < 0)
7688 quota = RUNTIME_INF;
7689 else
7690 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7691
7692 return tg_set_cfs_bandwidth(tg, period, quota);
7693}
7694
7695long tg_get_cfs_quota(struct task_group *tg)
7696{
7697 u64 quota_us;
7698
029632fb 7699 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
7700 return -1;
7701
029632fb 7702 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
7703 do_div(quota_us, NSEC_PER_USEC);
7704
7705 return quota_us;
7706}
7707
7708int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7709{
7710 u64 quota, period;
7711
7712 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 7713 quota = tg->cfs_bandwidth.quota;
ab84d31e 7714
ab84d31e
PT
7715 return tg_set_cfs_bandwidth(tg, period, quota);
7716}
7717
7718long tg_get_cfs_period(struct task_group *tg)
7719{
7720 u64 cfs_period_us;
7721
029632fb 7722 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7723 do_div(cfs_period_us, NSEC_PER_USEC);
7724
7725 return cfs_period_us;
7726}
7727
7728static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7729{
7730 return tg_get_cfs_quota(cgroup_tg(cgrp));
7731}
7732
7733static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7734 s64 cfs_quota_us)
7735{
7736 return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7737}
7738
7739static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7740{
7741 return tg_get_cfs_period(cgroup_tg(cgrp));
7742}
7743
7744static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7745 u64 cfs_period_us)
7746{
7747 return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7748}
7749
a790de99
PT
7750struct cfs_schedulable_data {
7751 struct task_group *tg;
7752 u64 period, quota;
7753};
7754
7755/*
7756 * normalize group quota/period to be quota/max_period
7757 * note: units are usecs
7758 */
7759static u64 normalize_cfs_quota(struct task_group *tg,
7760 struct cfs_schedulable_data *d)
7761{
7762 u64 quota, period;
7763
7764 if (tg == d->tg) {
7765 period = d->period;
7766 quota = d->quota;
7767 } else {
7768 period = tg_get_cfs_period(tg);
7769 quota = tg_get_cfs_quota(tg);
7770 }
7771
7772 /* note: these should typically be equivalent */
7773 if (quota == RUNTIME_INF || quota == -1)
7774 return RUNTIME_INF;
7775
7776 return to_ratio(period, quota);
7777}
7778
7779static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7780{
7781 struct cfs_schedulable_data *d = data;
029632fb 7782 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
7783 s64 quota = 0, parent_quota = -1;
7784
7785 if (!tg->parent) {
7786 quota = RUNTIME_INF;
7787 } else {
029632fb 7788 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
7789
7790 quota = normalize_cfs_quota(tg, d);
7791 parent_quota = parent_b->hierarchal_quota;
7792
7793 /*
7794 * ensure max(child_quota) <= parent_quota, inherit when no
7795 * limit is set
7796 */
7797 if (quota == RUNTIME_INF)
7798 quota = parent_quota;
7799 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7800 return -EINVAL;
7801 }
7802 cfs_b->hierarchal_quota = quota;
7803
7804 return 0;
7805}
7806
7807static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7808{
8277434e 7809 int ret;
a790de99
PT
7810 struct cfs_schedulable_data data = {
7811 .tg = tg,
7812 .period = period,
7813 .quota = quota,
7814 };
7815
7816 if (quota != RUNTIME_INF) {
7817 do_div(data.period, NSEC_PER_USEC);
7818 do_div(data.quota, NSEC_PER_USEC);
7819 }
7820
8277434e
PT
7821 rcu_read_lock();
7822 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7823 rcu_read_unlock();
7824
7825 return ret;
a790de99 7826}
e8da1b18
NR
7827
7828static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
7829 struct cgroup_map_cb *cb)
7830{
7831 struct task_group *tg = cgroup_tg(cgrp);
029632fb 7832 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18
NR
7833
7834 cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7835 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7836 cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7837
7838 return 0;
7839}
ab84d31e 7840#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 7841#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 7842
052f1dc7 7843#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 7844static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 7845 s64 val)
6f505b16 7846{
06ecb27c 7847 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
7848}
7849
06ecb27c 7850static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 7851{
06ecb27c 7852 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 7853}
d0b27fa7
PZ
7854
7855static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7856 u64 rt_period_us)
7857{
7858 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
7859}
7860
7861static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
7862{
7863 return sched_group_rt_period(cgroup_tg(cgrp));
7864}
6d6bc0ad 7865#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 7866
fe5c7cc2 7867static struct cftype cpu_files[] = {
052f1dc7 7868#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
7869 {
7870 .name = "shares",
f4c753b7
PM
7871 .read_u64 = cpu_shares_read_u64,
7872 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 7873 },
052f1dc7 7874#endif
ab84d31e
PT
7875#ifdef CONFIG_CFS_BANDWIDTH
7876 {
7877 .name = "cfs_quota_us",
7878 .read_s64 = cpu_cfs_quota_read_s64,
7879 .write_s64 = cpu_cfs_quota_write_s64,
7880 },
7881 {
7882 .name = "cfs_period_us",
7883 .read_u64 = cpu_cfs_period_read_u64,
7884 .write_u64 = cpu_cfs_period_write_u64,
7885 },
e8da1b18
NR
7886 {
7887 .name = "stat",
7888 .read_map = cpu_stats_show,
7889 },
ab84d31e 7890#endif
052f1dc7 7891#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7892 {
9f0c1e56 7893 .name = "rt_runtime_us",
06ecb27c
PM
7894 .read_s64 = cpu_rt_runtime_read,
7895 .write_s64 = cpu_rt_runtime_write,
6f505b16 7896 },
d0b27fa7
PZ
7897 {
7898 .name = "rt_period_us",
f4c753b7
PM
7899 .read_u64 = cpu_rt_period_read_uint,
7900 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 7901 },
052f1dc7 7902#endif
68318b8e
SV
7903};
7904
7905static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7906{
fe5c7cc2 7907 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
7908}
7909
7910struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
7911 .name = "cpu",
7912 .create = cpu_cgroup_create,
7913 .destroy = cpu_cgroup_destroy,
bb9d97b6
TH
7914 .can_attach = cpu_cgroup_can_attach,
7915 .attach = cpu_cgroup_attach,
068c5cc5 7916 .exit = cpu_cgroup_exit,
38605cae
IM
7917 .populate = cpu_cgroup_populate,
7918 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
7919 .early_init = 1,
7920};
7921
052f1dc7 7922#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
7923
7924#ifdef CONFIG_CGROUP_CPUACCT
7925
7926/*
7927 * CPU accounting code for task groups.
7928 *
7929 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
7930 * (balbir@in.ibm.com).
7931 */
7932
d842de87
SV
7933/* create a new cpu accounting group */
7934static struct cgroup_subsys_state *cpuacct_create(
32cd756a 7935 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 7936{
54c707e9 7937 struct cpuacct *ca;
d842de87 7938
54c707e9
GC
7939 if (!cgrp->parent)
7940 return &root_cpuacct.css;
7941
7942 ca = kzalloc(sizeof(*ca), GFP_KERNEL);
d842de87 7943 if (!ca)
ef12fefa 7944 goto out;
d842de87
SV
7945
7946 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
7947 if (!ca->cpuusage)
7948 goto out_free_ca;
7949
54c707e9
GC
7950 ca->cpustat = alloc_percpu(struct kernel_cpustat);
7951 if (!ca->cpustat)
7952 goto out_free_cpuusage;
934352f2 7953
d842de87 7954 return &ca->css;
ef12fefa 7955
54c707e9 7956out_free_cpuusage:
ef12fefa
BR
7957 free_percpu(ca->cpuusage);
7958out_free_ca:
7959 kfree(ca);
7960out:
7961 return ERR_PTR(-ENOMEM);
d842de87
SV
7962}
7963
7964/* destroy an existing cpu accounting group */
41a2d6cf 7965static void
32cd756a 7966cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 7967{
32cd756a 7968 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87 7969
54c707e9 7970 free_percpu(ca->cpustat);
d842de87
SV
7971 free_percpu(ca->cpuusage);
7972 kfree(ca);
7973}
7974
720f5498
KC
7975static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
7976{
b36128c8 7977 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
7978 u64 data;
7979
7980#ifndef CONFIG_64BIT
7981 /*
7982 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
7983 */
05fa785c 7984 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 7985 data = *cpuusage;
05fa785c 7986 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
7987#else
7988 data = *cpuusage;
7989#endif
7990
7991 return data;
7992}
7993
7994static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
7995{
b36128c8 7996 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
7997
7998#ifndef CONFIG_64BIT
7999 /*
8000 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8001 */
05fa785c 8002 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8003 *cpuusage = val;
05fa785c 8004 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8005#else
8006 *cpuusage = val;
8007#endif
8008}
8009
d842de87 8010/* return total cpu usage (in nanoseconds) of a group */
32cd756a 8011static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 8012{
32cd756a 8013 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
8014 u64 totalcpuusage = 0;
8015 int i;
8016
720f5498
KC
8017 for_each_present_cpu(i)
8018 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
8019
8020 return totalcpuusage;
8021}
8022
0297b803
DG
8023static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8024 u64 reset)
8025{
8026 struct cpuacct *ca = cgroup_ca(cgrp);
8027 int err = 0;
8028 int i;
8029
8030 if (reset) {
8031 err = -EINVAL;
8032 goto out;
8033 }
8034
720f5498
KC
8035 for_each_present_cpu(i)
8036 cpuacct_cpuusage_write(ca, i, 0);
0297b803 8037
0297b803
DG
8038out:
8039 return err;
8040}
8041
e9515c3c
KC
8042static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8043 struct seq_file *m)
8044{
8045 struct cpuacct *ca = cgroup_ca(cgroup);
8046 u64 percpu;
8047 int i;
8048
8049 for_each_present_cpu(i) {
8050 percpu = cpuacct_cpuusage_read(ca, i);
8051 seq_printf(m, "%llu ", (unsigned long long) percpu);
8052 }
8053 seq_printf(m, "\n");
8054 return 0;
8055}
8056
ef12fefa
BR
8057static const char *cpuacct_stat_desc[] = {
8058 [CPUACCT_STAT_USER] = "user",
8059 [CPUACCT_STAT_SYSTEM] = "system",
8060};
8061
8062static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
54c707e9 8063 struct cgroup_map_cb *cb)
ef12fefa
BR
8064{
8065 struct cpuacct *ca = cgroup_ca(cgrp);
54c707e9
GC
8066 int cpu;
8067 s64 val = 0;
ef12fefa 8068
54c707e9
GC
8069 for_each_online_cpu(cpu) {
8070 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8071 val += kcpustat->cpustat[CPUTIME_USER];
8072 val += kcpustat->cpustat[CPUTIME_NICE];
ef12fefa 8073 }
54c707e9
GC
8074 val = cputime64_to_clock_t(val);
8075 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
ef12fefa 8076
54c707e9
GC
8077 val = 0;
8078 for_each_online_cpu(cpu) {
8079 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8080 val += kcpustat->cpustat[CPUTIME_SYSTEM];
8081 val += kcpustat->cpustat[CPUTIME_IRQ];
8082 val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
ef12fefa 8083 }
54c707e9
GC
8084
8085 val = cputime64_to_clock_t(val);
8086 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
8087
ef12fefa
BR
8088 return 0;
8089}
8090
d842de87
SV
8091static struct cftype files[] = {
8092 {
8093 .name = "usage",
f4c753b7
PM
8094 .read_u64 = cpuusage_read,
8095 .write_u64 = cpuusage_write,
d842de87 8096 },
e9515c3c
KC
8097 {
8098 .name = "usage_percpu",
8099 .read_seq_string = cpuacct_percpu_seq_read,
8100 },
ef12fefa
BR
8101 {
8102 .name = "stat",
8103 .read_map = cpuacct_stats_show,
8104 },
d842de87
SV
8105};
8106
32cd756a 8107static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8108{
32cd756a 8109 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
8110}
8111
8112/*
8113 * charge this task's execution time to its accounting group.
8114 *
8115 * called with rq->lock held.
8116 */
029632fb 8117void cpuacct_charge(struct task_struct *tsk, u64 cputime)
d842de87
SV
8118{
8119 struct cpuacct *ca;
934352f2 8120 int cpu;
d842de87 8121
c40c6f85 8122 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
8123 return;
8124
934352f2 8125 cpu = task_cpu(tsk);
a18b83b7
BR
8126
8127 rcu_read_lock();
8128
d842de87 8129 ca = task_ca(tsk);
d842de87 8130
44252e42 8131 for (; ca; ca = parent_ca(ca)) {
b36128c8 8132 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
8133 *cpuusage += cputime;
8134 }
a18b83b7
BR
8135
8136 rcu_read_unlock();
d842de87
SV
8137}
8138
8139struct cgroup_subsys cpuacct_subsys = {
8140 .name = "cpuacct",
8141 .create = cpuacct_create,
8142 .destroy = cpuacct_destroy,
8143 .populate = cpuacct_populate,
8144 .subsys_id = cpuacct_subsys_id,
8145};
8146#endif /* CONFIG_CGROUP_CPUACCT */