]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/sched/core.c
membarrier/selftest: Test private expedited sync core command
[mirror_ubuntu-jammy-kernel.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4 3 *
d1ccc66d 4 * Core kernel scheduler code and related syscalls
1da177e4
LT
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
1da177e4 7 */
004172bd 8#include <linux/sched.h>
e6017571 9#include <linux/sched/clock.h>
ae7e81c0 10#include <uapi/linux/sched/types.h>
4f17722c 11#include <linux/sched/loadavg.h>
ef8bd77f 12#include <linux/sched/hotplug.h>
5822a454 13#include <linux/wait_bit.h>
1da177e4 14#include <linux/cpuset.h>
0ff92245 15#include <linux/delayacct.h>
f1c6f1a7 16#include <linux/init_task.h>
91d1aa43 17#include <linux/context_tracking.h>
f9411ebe 18#include <linux/rcupdate_wait.h>
abca5fc5 19#include <linux/compat.h>
004172bd
IM
20
21#include <linux/blkdev.h>
22#include <linux/kprobes.h>
23#include <linux/mmu_context.h>
24#include <linux/module.h>
25#include <linux/nmi.h>
6075620b 26#include <linux/prefetch.h>
004172bd
IM
27#include <linux/profile.h>
28#include <linux/security.h>
29#include <linux/syscalls.h>
78634061 30#include <linux/sched/isolation.h>
1da177e4 31
96f951ed 32#include <asm/switch_to.h>
5517d86b 33#include <asm/tlb.h>
fd4a61e0
MB
34#ifdef CONFIG_PARAVIRT
35#include <asm/paravirt.h>
36#endif
1da177e4 37
029632fb 38#include "sched.h"
ea138446 39#include "../workqueue_internal.h"
29d5e047 40#include "../smpboot.h"
6e0534f2 41
a8d154b0 42#define CREATE_TRACE_POINTS
ad8d75ff 43#include <trace/events/sched.h>
a8d154b0 44
029632fb 45DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 46
765cc3a4 47#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
bf5c91ba
IM
48/*
49 * Debugging: various feature bits
765cc3a4
PB
50 *
51 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
52 * sysctl_sched_features, defined in sched.h, to allow constants propagation
53 * at compile time and compiler optimization based on features default.
bf5c91ba 54 */
f00b45c1
PZ
55#define SCHED_FEAT(name, enabled) \
56 (1UL << __SCHED_FEAT_##name) * enabled |
bf5c91ba 57const_debug unsigned int sysctl_sched_features =
391e43da 58#include "features.h"
f00b45c1 59 0;
f00b45c1 60#undef SCHED_FEAT
765cc3a4 61#endif
f00b45c1 62
b82d9fdd
PZ
63/*
64 * Number of tasks to iterate in a single balance run.
65 * Limited because this is done with IRQs disabled.
66 */
67const_debug unsigned int sysctl_sched_nr_migrate = 32;
68
e9e9250b
PZ
69/*
70 * period over which we average the RT time consumption, measured
71 * in ms.
72 *
73 * default: 1s
74 */
75const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
76
fa85ae24 77/*
d1ccc66d 78 * period over which we measure -rt task CPU usage in us.
fa85ae24
PZ
79 * default: 1s
80 */
9f0c1e56 81unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 82
029632fb 83__read_mostly int scheduler_running;
6892b75e 84
9f0c1e56
PZ
85/*
86 * part of the period that we allow rt tasks to run in us.
87 * default: 0.95s
88 */
89int sysctl_sched_rt_runtime = 950000;
fa85ae24 90
3e71a462
PZ
91/*
92 * __task_rq_lock - lock the rq @p resides on.
93 */
eb580751 94struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
95 __acquires(rq->lock)
96{
97 struct rq *rq;
98
99 lockdep_assert_held(&p->pi_lock);
100
101 for (;;) {
102 rq = task_rq(p);
103 raw_spin_lock(&rq->lock);
104 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 105 rq_pin_lock(rq, rf);
3e71a462
PZ
106 return rq;
107 }
108 raw_spin_unlock(&rq->lock);
109
110 while (unlikely(task_on_rq_migrating(p)))
111 cpu_relax();
112 }
113}
114
115/*
116 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
117 */
eb580751 118struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
119 __acquires(p->pi_lock)
120 __acquires(rq->lock)
121{
122 struct rq *rq;
123
124 for (;;) {
eb580751 125 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
3e71a462
PZ
126 rq = task_rq(p);
127 raw_spin_lock(&rq->lock);
128 /*
129 * move_queued_task() task_rq_lock()
130 *
131 * ACQUIRE (rq->lock)
132 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
133 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
134 * [S] ->cpu = new_cpu [L] task_rq()
135 * [L] ->on_rq
136 * RELEASE (rq->lock)
137 *
138 * If we observe the old cpu in task_rq_lock, the acquire of
139 * the old rq->lock will fully serialize against the stores.
140 *
d1ccc66d 141 * If we observe the new CPU in task_rq_lock, the acquire will
3e71a462
PZ
142 * pair with the WMB to ensure we must then also see migrating.
143 */
144 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 145 rq_pin_lock(rq, rf);
3e71a462
PZ
146 return rq;
147 }
148 raw_spin_unlock(&rq->lock);
eb580751 149 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
3e71a462
PZ
150
151 while (unlikely(task_on_rq_migrating(p)))
152 cpu_relax();
153 }
154}
155
535b9552
IM
156/*
157 * RQ-clock updating methods:
158 */
159
160static void update_rq_clock_task(struct rq *rq, s64 delta)
161{
162/*
163 * In theory, the compile should just see 0 here, and optimize out the call
164 * to sched_rt_avg_update. But I don't trust it...
165 */
166#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
167 s64 steal = 0, irq_delta = 0;
168#endif
169#ifdef CONFIG_IRQ_TIME_ACCOUNTING
170 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
171
172 /*
173 * Since irq_time is only updated on {soft,}irq_exit, we might run into
174 * this case when a previous update_rq_clock() happened inside a
175 * {soft,}irq region.
176 *
177 * When this happens, we stop ->clock_task and only update the
178 * prev_irq_time stamp to account for the part that fit, so that a next
179 * update will consume the rest. This ensures ->clock_task is
180 * monotonic.
181 *
182 * It does however cause some slight miss-attribution of {soft,}irq
183 * time, a more accurate solution would be to update the irq_time using
184 * the current rq->clock timestamp, except that would require using
185 * atomic ops.
186 */
187 if (irq_delta > delta)
188 irq_delta = delta;
189
190 rq->prev_irq_time += irq_delta;
191 delta -= irq_delta;
192#endif
193#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
194 if (static_key_false((&paravirt_steal_rq_enabled))) {
195 steal = paravirt_steal_clock(cpu_of(rq));
196 steal -= rq->prev_steal_time_rq;
197
198 if (unlikely(steal > delta))
199 steal = delta;
200
201 rq->prev_steal_time_rq += steal;
202 delta -= steal;
203 }
204#endif
205
206 rq->clock_task += delta;
207
208#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
209 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
210 sched_rt_avg_update(rq, irq_delta + steal);
211#endif
212}
213
214void update_rq_clock(struct rq *rq)
215{
216 s64 delta;
217
218 lockdep_assert_held(&rq->lock);
219
220 if (rq->clock_update_flags & RQCF_ACT_SKIP)
221 return;
222
223#ifdef CONFIG_SCHED_DEBUG
26ae58d2
PZ
224 if (sched_feat(WARN_DOUBLE_CLOCK))
225 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
535b9552
IM
226 rq->clock_update_flags |= RQCF_UPDATED;
227#endif
26ae58d2 228
535b9552
IM
229 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
230 if (delta < 0)
231 return;
232 rq->clock += delta;
233 update_rq_clock_task(rq, delta);
234}
235
236
8f4d37ec
PZ
237#ifdef CONFIG_SCHED_HRTICK
238/*
239 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 240 */
8f4d37ec 241
8f4d37ec
PZ
242static void hrtick_clear(struct rq *rq)
243{
244 if (hrtimer_active(&rq->hrtick_timer))
245 hrtimer_cancel(&rq->hrtick_timer);
246}
247
8f4d37ec
PZ
248/*
249 * High-resolution timer tick.
250 * Runs from hardirq context with interrupts disabled.
251 */
252static enum hrtimer_restart hrtick(struct hrtimer *timer)
253{
254 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
8a8c69c3 255 struct rq_flags rf;
8f4d37ec
PZ
256
257 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
258
8a8c69c3 259 rq_lock(rq, &rf);
3e51f33f 260 update_rq_clock(rq);
8f4d37ec 261 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
8a8c69c3 262 rq_unlock(rq, &rf);
8f4d37ec
PZ
263
264 return HRTIMER_NORESTART;
265}
266
95e904c7 267#ifdef CONFIG_SMP
971ee28c 268
4961b6e1 269static void __hrtick_restart(struct rq *rq)
971ee28c
PZ
270{
271 struct hrtimer *timer = &rq->hrtick_timer;
971ee28c 272
4961b6e1 273 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
971ee28c
PZ
274}
275
31656519
PZ
276/*
277 * called from hardirq (IPI) context
278 */
279static void __hrtick_start(void *arg)
b328ca18 280{
31656519 281 struct rq *rq = arg;
8a8c69c3 282 struct rq_flags rf;
b328ca18 283
8a8c69c3 284 rq_lock(rq, &rf);
971ee28c 285 __hrtick_restart(rq);
31656519 286 rq->hrtick_csd_pending = 0;
8a8c69c3 287 rq_unlock(rq, &rf);
b328ca18
PZ
288}
289
31656519
PZ
290/*
291 * Called to set the hrtick timer state.
292 *
293 * called with rq->lock held and irqs disabled
294 */
029632fb 295void hrtick_start(struct rq *rq, u64 delay)
b328ca18 296{
31656519 297 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 298 ktime_t time;
299 s64 delta;
300
301 /*
302 * Don't schedule slices shorter than 10000ns, that just
303 * doesn't make sense and can cause timer DoS.
304 */
305 delta = max_t(s64, delay, 10000LL);
306 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 307
cc584b21 308 hrtimer_set_expires(timer, time);
31656519
PZ
309
310 if (rq == this_rq()) {
971ee28c 311 __hrtick_restart(rq);
31656519 312 } else if (!rq->hrtick_csd_pending) {
c46fff2a 313 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
314 rq->hrtick_csd_pending = 1;
315 }
b328ca18
PZ
316}
317
31656519
PZ
318#else
319/*
320 * Called to set the hrtick timer state.
321 *
322 * called with rq->lock held and irqs disabled
323 */
029632fb 324void hrtick_start(struct rq *rq, u64 delay)
31656519 325{
86893335
WL
326 /*
327 * Don't schedule slices shorter than 10000ns, that just
328 * doesn't make sense. Rely on vruntime for fairness.
329 */
330 delay = max_t(u64, delay, 10000LL);
4961b6e1
TG
331 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
332 HRTIMER_MODE_REL_PINNED);
31656519 333}
31656519 334#endif /* CONFIG_SMP */
8f4d37ec 335
31656519 336static void init_rq_hrtick(struct rq *rq)
8f4d37ec 337{
31656519
PZ
338#ifdef CONFIG_SMP
339 rq->hrtick_csd_pending = 0;
8f4d37ec 340
31656519
PZ
341 rq->hrtick_csd.flags = 0;
342 rq->hrtick_csd.func = __hrtick_start;
343 rq->hrtick_csd.info = rq;
344#endif
8f4d37ec 345
31656519
PZ
346 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
347 rq->hrtick_timer.function = hrtick;
8f4d37ec 348}
006c75f1 349#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
350static inline void hrtick_clear(struct rq *rq)
351{
352}
353
8f4d37ec
PZ
354static inline void init_rq_hrtick(struct rq *rq)
355{
356}
006c75f1 357#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 358
5529578a
FW
359/*
360 * cmpxchg based fetch_or, macro so it works for different integer types
361 */
362#define fetch_or(ptr, mask) \
363 ({ \
364 typeof(ptr) _ptr = (ptr); \
365 typeof(mask) _mask = (mask); \
366 typeof(*_ptr) _old, _val = *_ptr; \
367 \
368 for (;;) { \
369 _old = cmpxchg(_ptr, _val, _val | _mask); \
370 if (_old == _val) \
371 break; \
372 _val = _old; \
373 } \
374 _old; \
375})
376
e3baac47 377#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
378/*
379 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
380 * this avoids any races wrt polling state changes and thereby avoids
381 * spurious IPIs.
382 */
383static bool set_nr_and_not_polling(struct task_struct *p)
384{
385 struct thread_info *ti = task_thread_info(p);
386 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
387}
e3baac47
PZ
388
389/*
390 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
391 *
392 * If this returns true, then the idle task promises to call
393 * sched_ttwu_pending() and reschedule soon.
394 */
395static bool set_nr_if_polling(struct task_struct *p)
396{
397 struct thread_info *ti = task_thread_info(p);
316c1608 398 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
e3baac47
PZ
399
400 for (;;) {
401 if (!(val & _TIF_POLLING_NRFLAG))
402 return false;
403 if (val & _TIF_NEED_RESCHED)
404 return true;
405 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
406 if (old == val)
407 break;
408 val = old;
409 }
410 return true;
411}
412
fd99f91a
PZ
413#else
414static bool set_nr_and_not_polling(struct task_struct *p)
415{
416 set_tsk_need_resched(p);
417 return true;
418}
e3baac47
PZ
419
420#ifdef CONFIG_SMP
421static bool set_nr_if_polling(struct task_struct *p)
422{
423 return false;
424}
425#endif
fd99f91a
PZ
426#endif
427
76751049
PZ
428void wake_q_add(struct wake_q_head *head, struct task_struct *task)
429{
430 struct wake_q_node *node = &task->wake_q;
431
432 /*
433 * Atomically grab the task, if ->wake_q is !nil already it means
434 * its already queued (either by us or someone else) and will get the
435 * wakeup due to that.
436 *
437 * This cmpxchg() implies a full barrier, which pairs with the write
58fe9c46 438 * barrier implied by the wakeup in wake_up_q().
76751049
PZ
439 */
440 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
441 return;
442
443 get_task_struct(task);
444
445 /*
446 * The head is context local, there can be no concurrency.
447 */
448 *head->lastp = node;
449 head->lastp = &node->next;
450}
451
452void wake_up_q(struct wake_q_head *head)
453{
454 struct wake_q_node *node = head->first;
455
456 while (node != WAKE_Q_TAIL) {
457 struct task_struct *task;
458
459 task = container_of(node, struct task_struct, wake_q);
460 BUG_ON(!task);
d1ccc66d 461 /* Task can safely be re-inserted now: */
76751049
PZ
462 node = node->next;
463 task->wake_q.next = NULL;
464
465 /*
466 * wake_up_process() implies a wmb() to pair with the queueing
467 * in wake_q_add() so as not to miss wakeups.
468 */
469 wake_up_process(task);
470 put_task_struct(task);
471 }
472}
473
c24d20db 474/*
8875125e 475 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
476 *
477 * On UP this means the setting of the need_resched flag, on SMP it
478 * might also involve a cross-CPU call to trigger the scheduler on
479 * the target CPU.
480 */
8875125e 481void resched_curr(struct rq *rq)
c24d20db 482{
8875125e 483 struct task_struct *curr = rq->curr;
c24d20db
IM
484 int cpu;
485
8875125e 486 lockdep_assert_held(&rq->lock);
c24d20db 487
8875125e 488 if (test_tsk_need_resched(curr))
c24d20db
IM
489 return;
490
8875125e 491 cpu = cpu_of(rq);
fd99f91a 492
f27dde8d 493 if (cpu == smp_processor_id()) {
8875125e 494 set_tsk_need_resched(curr);
f27dde8d 495 set_preempt_need_resched();
c24d20db 496 return;
f27dde8d 497 }
c24d20db 498
8875125e 499 if (set_nr_and_not_polling(curr))
c24d20db 500 smp_send_reschedule(cpu);
dfc68f29
AL
501 else
502 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
503}
504
029632fb 505void resched_cpu(int cpu)
c24d20db
IM
506{
507 struct rq *rq = cpu_rq(cpu);
508 unsigned long flags;
509
7c2102e5 510 raw_spin_lock_irqsave(&rq->lock, flags);
a0982dfa
PM
511 if (cpu_online(cpu) || cpu == smp_processor_id())
512 resched_curr(rq);
05fa785c 513 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 514}
06d8308c 515
b021fe3e 516#ifdef CONFIG_SMP
3451d024 517#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2 518/*
d1ccc66d
IM
519 * In the semi idle case, use the nearest busy CPU for migrating timers
520 * from an idle CPU. This is good for power-savings.
83cd4fe2
VP
521 *
522 * We don't do similar optimization for completely idle system, as
d1ccc66d
IM
523 * selecting an idle CPU will add more delays to the timers than intended
524 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
83cd4fe2 525 */
bc7a34b8 526int get_nohz_timer_target(void)
83cd4fe2 527{
bc7a34b8 528 int i, cpu = smp_processor_id();
83cd4fe2
VP
529 struct sched_domain *sd;
530
de201559 531 if (!idle_cpu(cpu) && housekeeping_cpu(cpu, HK_FLAG_TIMER))
6201b4d6
VK
532 return cpu;
533
057f3fad 534 rcu_read_lock();
83cd4fe2 535 for_each_domain(cpu, sd) {
057f3fad 536 for_each_cpu(i, sched_domain_span(sd)) {
44496922
WL
537 if (cpu == i)
538 continue;
539
de201559 540 if (!idle_cpu(i) && housekeeping_cpu(i, HK_FLAG_TIMER)) {
057f3fad
PZ
541 cpu = i;
542 goto unlock;
543 }
544 }
83cd4fe2 545 }
9642d18e 546
de201559
FW
547 if (!housekeeping_cpu(cpu, HK_FLAG_TIMER))
548 cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
057f3fad
PZ
549unlock:
550 rcu_read_unlock();
83cd4fe2
VP
551 return cpu;
552}
d1ccc66d 553
06d8308c
TG
554/*
555 * When add_timer_on() enqueues a timer into the timer wheel of an
556 * idle CPU then this timer might expire before the next timer event
557 * which is scheduled to wake up that CPU. In case of a completely
558 * idle system the next event might even be infinite time into the
559 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
560 * leaves the inner idle loop so the newly added timer is taken into
561 * account when the CPU goes back to idle and evaluates the timer
562 * wheel for the next timer event.
563 */
1c20091e 564static void wake_up_idle_cpu(int cpu)
06d8308c
TG
565{
566 struct rq *rq = cpu_rq(cpu);
567
568 if (cpu == smp_processor_id())
569 return;
570
67b9ca70 571 if (set_nr_and_not_polling(rq->idle))
06d8308c 572 smp_send_reschedule(cpu);
dfc68f29
AL
573 else
574 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
575}
576
c5bfece2 577static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 578{
53c5fa16
FW
579 /*
580 * We just need the target to call irq_exit() and re-evaluate
581 * the next tick. The nohz full kick at least implies that.
582 * If needed we can still optimize that later with an
583 * empty IRQ.
584 */
379d9ecb
PM
585 if (cpu_is_offline(cpu))
586 return true; /* Don't try to wake offline CPUs. */
c5bfece2 587 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
588 if (cpu != smp_processor_id() ||
589 tick_nohz_tick_stopped())
53c5fa16 590 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
591 return true;
592 }
593
594 return false;
595}
596
379d9ecb
PM
597/*
598 * Wake up the specified CPU. If the CPU is going offline, it is the
599 * caller's responsibility to deal with the lost wakeup, for example,
600 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
601 */
1c20091e
FW
602void wake_up_nohz_cpu(int cpu)
603{
c5bfece2 604 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
605 wake_up_idle_cpu(cpu);
606}
607
ca38062e 608static inline bool got_nohz_idle_kick(void)
45bf76df 609{
1c792db7 610 int cpu = smp_processor_id();
873b4c65
VG
611
612 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
613 return false;
614
615 if (idle_cpu(cpu) && !need_resched())
616 return true;
617
618 /*
619 * We can't run Idle Load Balance on this CPU for this time so we
620 * cancel it and clear NOHZ_BALANCE_KICK
621 */
622 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
623 return false;
45bf76df
IM
624}
625
3451d024 626#else /* CONFIG_NO_HZ_COMMON */
45bf76df 627
ca38062e 628static inline bool got_nohz_idle_kick(void)
2069dd75 629{
ca38062e 630 return false;
2069dd75
PZ
631}
632
3451d024 633#endif /* CONFIG_NO_HZ_COMMON */
d842de87 634
ce831b38 635#ifdef CONFIG_NO_HZ_FULL
76d92ac3 636bool sched_can_stop_tick(struct rq *rq)
ce831b38 637{
76d92ac3
FW
638 int fifo_nr_running;
639
640 /* Deadline tasks, even if single, need the tick */
641 if (rq->dl.dl_nr_running)
642 return false;
643
1e78cdbd 644 /*
2548d546
PZ
645 * If there are more than one RR tasks, we need the tick to effect the
646 * actual RR behaviour.
1e78cdbd 647 */
76d92ac3
FW
648 if (rq->rt.rr_nr_running) {
649 if (rq->rt.rr_nr_running == 1)
650 return true;
651 else
652 return false;
1e78cdbd
RR
653 }
654
2548d546
PZ
655 /*
656 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
657 * forced preemption between FIFO tasks.
658 */
659 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
660 if (fifo_nr_running)
661 return true;
662
663 /*
664 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
665 * if there's more than one we need the tick for involuntary
666 * preemption.
667 */
668 if (rq->nr_running > 1)
541b8264 669 return false;
ce831b38 670
541b8264 671 return true;
ce831b38
FW
672}
673#endif /* CONFIG_NO_HZ_FULL */
d842de87 674
029632fb 675void sched_avg_update(struct rq *rq)
18d95a28 676{
e9e9250b
PZ
677 s64 period = sched_avg_period();
678
78becc27 679 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
680 /*
681 * Inline assembly required to prevent the compiler
682 * optimising this loop into a divmod call.
683 * See __iter_div_u64_rem() for another example of this.
684 */
685 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
686 rq->age_stamp += period;
687 rq->rt_avg /= 2;
688 }
18d95a28
PZ
689}
690
6d6bc0ad 691#endif /* CONFIG_SMP */
18d95a28 692
a790de99
PT
693#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
694 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 695/*
8277434e
PT
696 * Iterate task_group tree rooted at *from, calling @down when first entering a
697 * node and @up when leaving it for the final time.
698 *
699 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 700 */
029632fb 701int walk_tg_tree_from(struct task_group *from,
8277434e 702 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
703{
704 struct task_group *parent, *child;
eb755805 705 int ret;
c09595f6 706
8277434e
PT
707 parent = from;
708
c09595f6 709down:
eb755805
PZ
710 ret = (*down)(parent, data);
711 if (ret)
8277434e 712 goto out;
c09595f6
PZ
713 list_for_each_entry_rcu(child, &parent->children, siblings) {
714 parent = child;
715 goto down;
716
717up:
718 continue;
719 }
eb755805 720 ret = (*up)(parent, data);
8277434e
PT
721 if (ret || parent == from)
722 goto out;
c09595f6
PZ
723
724 child = parent;
725 parent = parent->parent;
726 if (parent)
727 goto up;
8277434e 728out:
eb755805 729 return ret;
c09595f6
PZ
730}
731
029632fb 732int tg_nop(struct task_group *tg, void *data)
eb755805 733{
e2b245f8 734 return 0;
eb755805 735}
18d95a28
PZ
736#endif
737
9059393e 738static void set_load_weight(struct task_struct *p, bool update_load)
45bf76df 739{
f05998d4
NR
740 int prio = p->static_prio - MAX_RT_PRIO;
741 struct load_weight *load = &p->se.load;
742
dd41f596
IM
743 /*
744 * SCHED_IDLE tasks get minimal weight:
745 */
20f9cd2a 746 if (idle_policy(p->policy)) {
c8b28116 747 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 748 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
749 return;
750 }
71f8bd46 751
9059393e
VG
752 /*
753 * SCHED_OTHER tasks have to update their load when changing their
754 * weight
755 */
756 if (update_load && p->sched_class == &fair_sched_class) {
757 reweight_task(p, prio);
758 } else {
759 load->weight = scale_load(sched_prio_to_weight[prio]);
760 load->inv_weight = sched_prio_to_wmult[prio];
761 }
71f8bd46
IM
762}
763
1de64443 764static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 765{
0a67d1ee
PZ
766 if (!(flags & ENQUEUE_NOCLOCK))
767 update_rq_clock(rq);
768
1de64443
PZ
769 if (!(flags & ENQUEUE_RESTORE))
770 sched_info_queued(rq, p);
0a67d1ee 771
371fd7e7 772 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
773}
774
1de64443 775static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 776{
0a67d1ee
PZ
777 if (!(flags & DEQUEUE_NOCLOCK))
778 update_rq_clock(rq);
779
1de64443
PZ
780 if (!(flags & DEQUEUE_SAVE))
781 sched_info_dequeued(rq, p);
0a67d1ee 782
371fd7e7 783 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
784}
785
029632fb 786void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
787{
788 if (task_contributes_to_load(p))
789 rq->nr_uninterruptible--;
790
371fd7e7 791 enqueue_task(rq, p, flags);
1e3c88bd
PZ
792}
793
029632fb 794void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
795{
796 if (task_contributes_to_load(p))
797 rq->nr_uninterruptible++;
798
371fd7e7 799 dequeue_task(rq, p, flags);
1e3c88bd
PZ
800}
801
14531189 802/*
dd41f596 803 * __normal_prio - return the priority that is based on the static prio
14531189 804 */
14531189
IM
805static inline int __normal_prio(struct task_struct *p)
806{
dd41f596 807 return p->static_prio;
14531189
IM
808}
809
b29739f9
IM
810/*
811 * Calculate the expected normal priority: i.e. priority
812 * without taking RT-inheritance into account. Might be
813 * boosted by interactivity modifiers. Changes upon fork,
814 * setprio syscalls, and whenever the interactivity
815 * estimator recalculates.
816 */
36c8b586 817static inline int normal_prio(struct task_struct *p)
b29739f9
IM
818{
819 int prio;
820
aab03e05
DF
821 if (task_has_dl_policy(p))
822 prio = MAX_DL_PRIO-1;
823 else if (task_has_rt_policy(p))
b29739f9
IM
824 prio = MAX_RT_PRIO-1 - p->rt_priority;
825 else
826 prio = __normal_prio(p);
827 return prio;
828}
829
830/*
831 * Calculate the current priority, i.e. the priority
832 * taken into account by the scheduler. This value might
833 * be boosted by RT tasks, or might be boosted by
834 * interactivity modifiers. Will be RT if the task got
835 * RT-boosted. If not then it returns p->normal_prio.
836 */
36c8b586 837static int effective_prio(struct task_struct *p)
b29739f9
IM
838{
839 p->normal_prio = normal_prio(p);
840 /*
841 * If we are RT tasks or we were boosted to RT priority,
842 * keep the priority unchanged. Otherwise, update priority
843 * to the normal priority:
844 */
845 if (!rt_prio(p->prio))
846 return p->normal_prio;
847 return p->prio;
848}
849
1da177e4
LT
850/**
851 * task_curr - is this task currently executing on a CPU?
852 * @p: the task in question.
e69f6186
YB
853 *
854 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 855 */
36c8b586 856inline int task_curr(const struct task_struct *p)
1da177e4
LT
857{
858 return cpu_curr(task_cpu(p)) == p;
859}
860
67dfa1b7 861/*
4c9a4bc8
PZ
862 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
863 * use the balance_callback list if you want balancing.
864 *
865 * this means any call to check_class_changed() must be followed by a call to
866 * balance_callback().
67dfa1b7 867 */
cb469845
SR
868static inline void check_class_changed(struct rq *rq, struct task_struct *p,
869 const struct sched_class *prev_class,
da7a735e 870 int oldprio)
cb469845
SR
871{
872 if (prev_class != p->sched_class) {
873 if (prev_class->switched_from)
da7a735e 874 prev_class->switched_from(rq, p);
4c9a4bc8 875
da7a735e 876 p->sched_class->switched_to(rq, p);
2d3d891d 877 } else if (oldprio != p->prio || dl_task(p))
da7a735e 878 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
879}
880
029632fb 881void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
882{
883 const struct sched_class *class;
884
885 if (p->sched_class == rq->curr->sched_class) {
886 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
887 } else {
888 for_each_class(class) {
889 if (class == rq->curr->sched_class)
890 break;
891 if (class == p->sched_class) {
8875125e 892 resched_curr(rq);
1e5a7405
PZ
893 break;
894 }
895 }
896 }
897
898 /*
899 * A queue event has occurred, and we're going to schedule. In
900 * this case, we can save a useless back to back clock update.
901 */
da0c1e65 902 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
9edfbfed 903 rq_clock_skip_update(rq, true);
1e5a7405
PZ
904}
905
1da177e4 906#ifdef CONFIG_SMP
5cc389bc
PZ
907/*
908 * This is how migration works:
909 *
910 * 1) we invoke migration_cpu_stop() on the target CPU using
911 * stop_one_cpu().
912 * 2) stopper starts to run (implicitly forcing the migrated thread
913 * off the CPU)
914 * 3) it checks whether the migrated task is still in the wrong runqueue.
915 * 4) if it's in the wrong runqueue then the migration thread removes
916 * it and puts it into the right queue.
917 * 5) stopper completes and stop_one_cpu() returns and the migration
918 * is done.
919 */
920
921/*
922 * move_queued_task - move a queued task to new rq.
923 *
924 * Returns (locked) new rq. Old rq's lock is released.
925 */
8a8c69c3
PZ
926static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
927 struct task_struct *p, int new_cpu)
5cc389bc 928{
5cc389bc
PZ
929 lockdep_assert_held(&rq->lock);
930
5cc389bc 931 p->on_rq = TASK_ON_RQ_MIGRATING;
15ff991e 932 dequeue_task(rq, p, DEQUEUE_NOCLOCK);
5cc389bc 933 set_task_cpu(p, new_cpu);
8a8c69c3 934 rq_unlock(rq, rf);
5cc389bc
PZ
935
936 rq = cpu_rq(new_cpu);
937
8a8c69c3 938 rq_lock(rq, rf);
5cc389bc 939 BUG_ON(task_cpu(p) != new_cpu);
5cc389bc 940 enqueue_task(rq, p, 0);
3ea94de1 941 p->on_rq = TASK_ON_RQ_QUEUED;
5cc389bc
PZ
942 check_preempt_curr(rq, p, 0);
943
944 return rq;
945}
946
947struct migration_arg {
948 struct task_struct *task;
949 int dest_cpu;
950};
951
952/*
d1ccc66d 953 * Move (not current) task off this CPU, onto the destination CPU. We're doing
5cc389bc
PZ
954 * this because either it can't run here any more (set_cpus_allowed()
955 * away from this CPU, or CPU going down), or because we're
956 * attempting to rebalance this task on exec (sched_exec).
957 *
958 * So we race with normal scheduler movements, but that's OK, as long
959 * as the task is no longer on this CPU.
5cc389bc 960 */
8a8c69c3
PZ
961static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
962 struct task_struct *p, int dest_cpu)
5cc389bc 963{
955dbdf4
TH
964 if (p->flags & PF_KTHREAD) {
965 if (unlikely(!cpu_online(dest_cpu)))
966 return rq;
967 } else {
968 if (unlikely(!cpu_active(dest_cpu)))
969 return rq;
970 }
5cc389bc
PZ
971
972 /* Affinity changed (again). */
0c98d344 973 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
5e16bbc2 974 return rq;
5cc389bc 975
15ff991e 976 update_rq_clock(rq);
8a8c69c3 977 rq = move_queued_task(rq, rf, p, dest_cpu);
5e16bbc2
PZ
978
979 return rq;
5cc389bc
PZ
980}
981
982/*
983 * migration_cpu_stop - this will be executed by a highprio stopper thread
984 * and performs thread migration by bumping thread off CPU then
985 * 'pushing' onto another runqueue.
986 */
987static int migration_cpu_stop(void *data)
988{
989 struct migration_arg *arg = data;
5e16bbc2
PZ
990 struct task_struct *p = arg->task;
991 struct rq *rq = this_rq();
8a8c69c3 992 struct rq_flags rf;
5cc389bc
PZ
993
994 /*
d1ccc66d
IM
995 * The original target CPU might have gone down and we might
996 * be on another CPU but it doesn't matter.
5cc389bc
PZ
997 */
998 local_irq_disable();
999 /*
1000 * We need to explicitly wake pending tasks before running
1001 * __migrate_task() such that we will not miss enforcing cpus_allowed
1002 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1003 */
1004 sched_ttwu_pending();
5e16bbc2
PZ
1005
1006 raw_spin_lock(&p->pi_lock);
8a8c69c3 1007 rq_lock(rq, &rf);
5e16bbc2
PZ
1008 /*
1009 * If task_rq(p) != rq, it cannot be migrated here, because we're
1010 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1011 * we're holding p->pi_lock.
1012 */
bf89a304
CC
1013 if (task_rq(p) == rq) {
1014 if (task_on_rq_queued(p))
8a8c69c3 1015 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
bf89a304
CC
1016 else
1017 p->wake_cpu = arg->dest_cpu;
1018 }
8a8c69c3 1019 rq_unlock(rq, &rf);
5e16bbc2
PZ
1020 raw_spin_unlock(&p->pi_lock);
1021
5cc389bc
PZ
1022 local_irq_enable();
1023 return 0;
1024}
1025
c5b28038
PZ
1026/*
1027 * sched_class::set_cpus_allowed must do the below, but is not required to
1028 * actually call this function.
1029 */
1030void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
5cc389bc 1031{
5cc389bc
PZ
1032 cpumask_copy(&p->cpus_allowed, new_mask);
1033 p->nr_cpus_allowed = cpumask_weight(new_mask);
1034}
1035
c5b28038
PZ
1036void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1037{
6c37067e
PZ
1038 struct rq *rq = task_rq(p);
1039 bool queued, running;
1040
c5b28038 1041 lockdep_assert_held(&p->pi_lock);
6c37067e
PZ
1042
1043 queued = task_on_rq_queued(p);
1044 running = task_current(rq, p);
1045
1046 if (queued) {
1047 /*
1048 * Because __kthread_bind() calls this on blocked tasks without
1049 * holding rq->lock.
1050 */
1051 lockdep_assert_held(&rq->lock);
7a57f32a 1052 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
6c37067e
PZ
1053 }
1054 if (running)
1055 put_prev_task(rq, p);
1056
c5b28038 1057 p->sched_class->set_cpus_allowed(p, new_mask);
6c37067e 1058
6c37067e 1059 if (queued)
7134b3e9 1060 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
a399d233 1061 if (running)
b2bf6c31 1062 set_curr_task(rq, p);
c5b28038
PZ
1063}
1064
5cc389bc
PZ
1065/*
1066 * Change a given task's CPU affinity. Migrate the thread to a
1067 * proper CPU and schedule it away if the CPU it's executing on
1068 * is removed from the allowed bitmask.
1069 *
1070 * NOTE: the caller must have a valid reference to the task, the
1071 * task must not exit() & deallocate itself prematurely. The
1072 * call is not atomic; no spinlocks may be held.
1073 */
25834c73
PZ
1074static int __set_cpus_allowed_ptr(struct task_struct *p,
1075 const struct cpumask *new_mask, bool check)
5cc389bc 1076{
e9d867a6 1077 const struct cpumask *cpu_valid_mask = cpu_active_mask;
5cc389bc 1078 unsigned int dest_cpu;
eb580751
PZ
1079 struct rq_flags rf;
1080 struct rq *rq;
5cc389bc
PZ
1081 int ret = 0;
1082
eb580751 1083 rq = task_rq_lock(p, &rf);
a499c3ea 1084 update_rq_clock(rq);
5cc389bc 1085
e9d867a6
PZI
1086 if (p->flags & PF_KTHREAD) {
1087 /*
1088 * Kernel threads are allowed on online && !active CPUs
1089 */
1090 cpu_valid_mask = cpu_online_mask;
1091 }
1092
25834c73
PZ
1093 /*
1094 * Must re-check here, to close a race against __kthread_bind(),
1095 * sched_setaffinity() is not guaranteed to observe the flag.
1096 */
1097 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1098 ret = -EINVAL;
1099 goto out;
1100 }
1101
5cc389bc
PZ
1102 if (cpumask_equal(&p->cpus_allowed, new_mask))
1103 goto out;
1104
e9d867a6 1105 if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
5cc389bc
PZ
1106 ret = -EINVAL;
1107 goto out;
1108 }
1109
1110 do_set_cpus_allowed(p, new_mask);
1111
e9d867a6
PZI
1112 if (p->flags & PF_KTHREAD) {
1113 /*
1114 * For kernel threads that do indeed end up on online &&
d1ccc66d 1115 * !active we want to ensure they are strict per-CPU threads.
e9d867a6
PZI
1116 */
1117 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1118 !cpumask_intersects(new_mask, cpu_active_mask) &&
1119 p->nr_cpus_allowed != 1);
1120 }
1121
5cc389bc
PZ
1122 /* Can the task run on the task's current CPU? If so, we're done */
1123 if (cpumask_test_cpu(task_cpu(p), new_mask))
1124 goto out;
1125
e9d867a6 1126 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
5cc389bc
PZ
1127 if (task_running(rq, p) || p->state == TASK_WAKING) {
1128 struct migration_arg arg = { p, dest_cpu };
1129 /* Need help from migration thread: drop lock and wait. */
eb580751 1130 task_rq_unlock(rq, p, &rf);
5cc389bc
PZ
1131 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1132 tlb_migrate_finish(p->mm);
1133 return 0;
cbce1a68
PZ
1134 } else if (task_on_rq_queued(p)) {
1135 /*
1136 * OK, since we're going to drop the lock immediately
1137 * afterwards anyway.
1138 */
8a8c69c3 1139 rq = move_queued_task(rq, &rf, p, dest_cpu);
cbce1a68 1140 }
5cc389bc 1141out:
eb580751 1142 task_rq_unlock(rq, p, &rf);
5cc389bc
PZ
1143
1144 return ret;
1145}
25834c73
PZ
1146
1147int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1148{
1149 return __set_cpus_allowed_ptr(p, new_mask, false);
1150}
5cc389bc
PZ
1151EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1152
dd41f596 1153void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1154{
e2912009
PZ
1155#ifdef CONFIG_SCHED_DEBUG
1156 /*
1157 * We should never call set_task_cpu() on a blocked task,
1158 * ttwu() will sort out the placement.
1159 */
077614ee 1160 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
e2336f6e 1161 !p->on_rq);
0122ec5b 1162
3ea94de1
JP
1163 /*
1164 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1165 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1166 * time relying on p->on_rq.
1167 */
1168 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1169 p->sched_class == &fair_sched_class &&
1170 (p->on_rq && !task_on_rq_migrating(p)));
1171
0122ec5b 1172#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1173 /*
1174 * The caller should hold either p->pi_lock or rq->lock, when changing
1175 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1176 *
1177 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1178 * see task_group().
6c6c54e1
PZ
1179 *
1180 * Furthermore, all task_rq users should acquire both locks, see
1181 * task_rq_lock().
1182 */
0122ec5b
PZ
1183 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1184 lockdep_is_held(&task_rq(p)->lock)));
1185#endif
4ff9083b
PZ
1186 /*
1187 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1188 */
1189 WARN_ON_ONCE(!cpu_online(new_cpu));
e2912009
PZ
1190#endif
1191
de1d7286 1192 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1193
0c69774e 1194 if (task_cpu(p) != new_cpu) {
0a74bef8 1195 if (p->sched_class->migrate_task_rq)
5a4fd036 1196 p->sched_class->migrate_task_rq(p);
0c69774e 1197 p->se.nr_migrations++;
ff303e66 1198 perf_event_task_migrate(p);
0c69774e 1199 }
dd41f596
IM
1200
1201 __set_task_cpu(p, new_cpu);
c65cc870
IM
1202}
1203
ac66f547
PZ
1204static void __migrate_swap_task(struct task_struct *p, int cpu)
1205{
da0c1e65 1206 if (task_on_rq_queued(p)) {
ac66f547 1207 struct rq *src_rq, *dst_rq;
8a8c69c3 1208 struct rq_flags srf, drf;
ac66f547
PZ
1209
1210 src_rq = task_rq(p);
1211 dst_rq = cpu_rq(cpu);
1212
8a8c69c3
PZ
1213 rq_pin_lock(src_rq, &srf);
1214 rq_pin_lock(dst_rq, &drf);
1215
3ea94de1 1216 p->on_rq = TASK_ON_RQ_MIGRATING;
ac66f547
PZ
1217 deactivate_task(src_rq, p, 0);
1218 set_task_cpu(p, cpu);
1219 activate_task(dst_rq, p, 0);
3ea94de1 1220 p->on_rq = TASK_ON_RQ_QUEUED;
ac66f547 1221 check_preempt_curr(dst_rq, p, 0);
8a8c69c3
PZ
1222
1223 rq_unpin_lock(dst_rq, &drf);
1224 rq_unpin_lock(src_rq, &srf);
1225
ac66f547
PZ
1226 } else {
1227 /*
1228 * Task isn't running anymore; make it appear like we migrated
1229 * it before it went to sleep. This means on wakeup we make the
d1ccc66d 1230 * previous CPU our target instead of where it really is.
ac66f547
PZ
1231 */
1232 p->wake_cpu = cpu;
1233 }
1234}
1235
1236struct migration_swap_arg {
1237 struct task_struct *src_task, *dst_task;
1238 int src_cpu, dst_cpu;
1239};
1240
1241static int migrate_swap_stop(void *data)
1242{
1243 struct migration_swap_arg *arg = data;
1244 struct rq *src_rq, *dst_rq;
1245 int ret = -EAGAIN;
1246
62694cd5
PZ
1247 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1248 return -EAGAIN;
1249
ac66f547
PZ
1250 src_rq = cpu_rq(arg->src_cpu);
1251 dst_rq = cpu_rq(arg->dst_cpu);
1252
74602315
PZ
1253 double_raw_lock(&arg->src_task->pi_lock,
1254 &arg->dst_task->pi_lock);
ac66f547 1255 double_rq_lock(src_rq, dst_rq);
62694cd5 1256
ac66f547
PZ
1257 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1258 goto unlock;
1259
1260 if (task_cpu(arg->src_task) != arg->src_cpu)
1261 goto unlock;
1262
0c98d344 1263 if (!cpumask_test_cpu(arg->dst_cpu, &arg->src_task->cpus_allowed))
ac66f547
PZ
1264 goto unlock;
1265
0c98d344 1266 if (!cpumask_test_cpu(arg->src_cpu, &arg->dst_task->cpus_allowed))
ac66f547
PZ
1267 goto unlock;
1268
1269 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1270 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1271
1272 ret = 0;
1273
1274unlock:
1275 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1276 raw_spin_unlock(&arg->dst_task->pi_lock);
1277 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1278
1279 return ret;
1280}
1281
1282/*
1283 * Cross migrate two tasks
1284 */
1285int migrate_swap(struct task_struct *cur, struct task_struct *p)
1286{
1287 struct migration_swap_arg arg;
1288 int ret = -EINVAL;
1289
ac66f547
PZ
1290 arg = (struct migration_swap_arg){
1291 .src_task = cur,
1292 .src_cpu = task_cpu(cur),
1293 .dst_task = p,
1294 .dst_cpu = task_cpu(p),
1295 };
1296
1297 if (arg.src_cpu == arg.dst_cpu)
1298 goto out;
1299
6acce3ef
PZ
1300 /*
1301 * These three tests are all lockless; this is OK since all of them
1302 * will be re-checked with proper locks held further down the line.
1303 */
ac66f547
PZ
1304 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1305 goto out;
1306
0c98d344 1307 if (!cpumask_test_cpu(arg.dst_cpu, &arg.src_task->cpus_allowed))
ac66f547
PZ
1308 goto out;
1309
0c98d344 1310 if (!cpumask_test_cpu(arg.src_cpu, &arg.dst_task->cpus_allowed))
ac66f547
PZ
1311 goto out;
1312
286549dc 1313 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1314 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1315
1316out:
ac66f547
PZ
1317 return ret;
1318}
1319
1da177e4
LT
1320/*
1321 * wait_task_inactive - wait for a thread to unschedule.
1322 *
85ba2d86
RM
1323 * If @match_state is nonzero, it's the @p->state value just checked and
1324 * not expected to change. If it changes, i.e. @p might have woken up,
1325 * then return zero. When we succeed in waiting for @p to be off its CPU,
1326 * we return a positive number (its total switch count). If a second call
1327 * a short while later returns the same number, the caller can be sure that
1328 * @p has remained unscheduled the whole time.
1329 *
1da177e4
LT
1330 * The caller must ensure that the task *will* unschedule sometime soon,
1331 * else this function might spin for a *long* time. This function can't
1332 * be called with interrupts off, or it may introduce deadlock with
1333 * smp_call_function() if an IPI is sent by the same process we are
1334 * waiting to become inactive.
1335 */
85ba2d86 1336unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4 1337{
da0c1e65 1338 int running, queued;
eb580751 1339 struct rq_flags rf;
85ba2d86 1340 unsigned long ncsw;
70b97a7f 1341 struct rq *rq;
1da177e4 1342
3a5c359a
AK
1343 for (;;) {
1344 /*
1345 * We do the initial early heuristics without holding
1346 * any task-queue locks at all. We'll only try to get
1347 * the runqueue lock when things look like they will
1348 * work out!
1349 */
1350 rq = task_rq(p);
fa490cfd 1351
3a5c359a
AK
1352 /*
1353 * If the task is actively running on another CPU
1354 * still, just relax and busy-wait without holding
1355 * any locks.
1356 *
1357 * NOTE! Since we don't hold any locks, it's not
1358 * even sure that "rq" stays as the right runqueue!
1359 * But we don't care, since "task_running()" will
1360 * return false if the runqueue has changed and p
1361 * is actually now running somewhere else!
1362 */
85ba2d86
RM
1363 while (task_running(rq, p)) {
1364 if (match_state && unlikely(p->state != match_state))
1365 return 0;
3a5c359a 1366 cpu_relax();
85ba2d86 1367 }
fa490cfd 1368
3a5c359a
AK
1369 /*
1370 * Ok, time to look more closely! We need the rq
1371 * lock now, to be *sure*. If we're wrong, we'll
1372 * just go back and repeat.
1373 */
eb580751 1374 rq = task_rq_lock(p, &rf);
27a9da65 1375 trace_sched_wait_task(p);
3a5c359a 1376 running = task_running(rq, p);
da0c1e65 1377 queued = task_on_rq_queued(p);
85ba2d86 1378 ncsw = 0;
f31e11d8 1379 if (!match_state || p->state == match_state)
93dcf55f 1380 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
eb580751 1381 task_rq_unlock(rq, p, &rf);
fa490cfd 1382
85ba2d86
RM
1383 /*
1384 * If it changed from the expected state, bail out now.
1385 */
1386 if (unlikely(!ncsw))
1387 break;
1388
3a5c359a
AK
1389 /*
1390 * Was it really running after all now that we
1391 * checked with the proper locks actually held?
1392 *
1393 * Oops. Go back and try again..
1394 */
1395 if (unlikely(running)) {
1396 cpu_relax();
1397 continue;
1398 }
fa490cfd 1399
3a5c359a
AK
1400 /*
1401 * It's not enough that it's not actively running,
1402 * it must be off the runqueue _entirely_, and not
1403 * preempted!
1404 *
80dd99b3 1405 * So if it was still runnable (but just not actively
3a5c359a
AK
1406 * running right now), it's preempted, and we should
1407 * yield - it could be a while.
1408 */
da0c1e65 1409 if (unlikely(queued)) {
8b0e1953 1410 ktime_t to = NSEC_PER_SEC / HZ;
8eb90c30
TG
1411
1412 set_current_state(TASK_UNINTERRUPTIBLE);
1413 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1414 continue;
1415 }
fa490cfd 1416
3a5c359a
AK
1417 /*
1418 * Ahh, all good. It wasn't running, and it wasn't
1419 * runnable, which means that it will never become
1420 * running in the future either. We're all done!
1421 */
1422 break;
1423 }
85ba2d86
RM
1424
1425 return ncsw;
1da177e4
LT
1426}
1427
1428/***
1429 * kick_process - kick a running thread to enter/exit the kernel
1430 * @p: the to-be-kicked thread
1431 *
1432 * Cause a process which is running on another CPU to enter
1433 * kernel-mode, without any delay. (to get signals handled.)
1434 *
25985edc 1435 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1436 * because all it wants to ensure is that the remote task enters
1437 * the kernel. If the IPI races and the task has been migrated
1438 * to another CPU then no harm is done and the purpose has been
1439 * achieved as well.
1440 */
36c8b586 1441void kick_process(struct task_struct *p)
1da177e4
LT
1442{
1443 int cpu;
1444
1445 preempt_disable();
1446 cpu = task_cpu(p);
1447 if ((cpu != smp_processor_id()) && task_curr(p))
1448 smp_send_reschedule(cpu);
1449 preempt_enable();
1450}
b43e3521 1451EXPORT_SYMBOL_GPL(kick_process);
1da177e4 1452
30da688e 1453/*
013fdb80 1454 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
e9d867a6
PZI
1455 *
1456 * A few notes on cpu_active vs cpu_online:
1457 *
1458 * - cpu_active must be a subset of cpu_online
1459 *
1460 * - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
1461 * see __set_cpus_allowed_ptr(). At this point the newly online
d1ccc66d 1462 * CPU isn't yet part of the sched domains, and balancing will not
e9d867a6
PZI
1463 * see it.
1464 *
d1ccc66d 1465 * - on CPU-down we clear cpu_active() to mask the sched domains and
e9d867a6 1466 * avoid the load balancer to place new tasks on the to be removed
d1ccc66d 1467 * CPU. Existing tasks will remain running there and will be taken
e9d867a6
PZI
1468 * off.
1469 *
1470 * This means that fallback selection must not select !active CPUs.
1471 * And can assume that any active CPU must be online. Conversely
1472 * select_task_rq() below may allow selection of !active CPUs in order
1473 * to satisfy the above rules.
30da688e 1474 */
5da9a0fb
PZ
1475static int select_fallback_rq(int cpu, struct task_struct *p)
1476{
aa00d89c
TC
1477 int nid = cpu_to_node(cpu);
1478 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1479 enum { cpuset, possible, fail } state = cpuset;
1480 int dest_cpu;
5da9a0fb 1481
aa00d89c 1482 /*
d1ccc66d
IM
1483 * If the node that the CPU is on has been offlined, cpu_to_node()
1484 * will return -1. There is no CPU on the node, and we should
1485 * select the CPU on the other node.
aa00d89c
TC
1486 */
1487 if (nid != -1) {
1488 nodemask = cpumask_of_node(nid);
1489
1490 /* Look for allowed, online CPU in same node. */
1491 for_each_cpu(dest_cpu, nodemask) {
aa00d89c
TC
1492 if (!cpu_active(dest_cpu))
1493 continue;
0c98d344 1494 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
aa00d89c
TC
1495 return dest_cpu;
1496 }
2baab4e9 1497 }
5da9a0fb 1498
2baab4e9
PZ
1499 for (;;) {
1500 /* Any allowed, online CPU? */
0c98d344 1501 for_each_cpu(dest_cpu, &p->cpus_allowed) {
feb245e3
TH
1502 if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu))
1503 continue;
1504 if (!cpu_online(dest_cpu))
2baab4e9
PZ
1505 continue;
1506 goto out;
1507 }
5da9a0fb 1508
e73e85f0 1509 /* No more Mr. Nice Guy. */
2baab4e9
PZ
1510 switch (state) {
1511 case cpuset:
e73e85f0
ON
1512 if (IS_ENABLED(CONFIG_CPUSETS)) {
1513 cpuset_cpus_allowed_fallback(p);
1514 state = possible;
1515 break;
1516 }
d1ccc66d 1517 /* Fall-through */
2baab4e9
PZ
1518 case possible:
1519 do_set_cpus_allowed(p, cpu_possible_mask);
1520 state = fail;
1521 break;
1522
1523 case fail:
1524 BUG();
1525 break;
1526 }
1527 }
1528
1529out:
1530 if (state != cpuset) {
1531 /*
1532 * Don't tell them about moving exiting tasks or
1533 * kernel threads (both mm NULL), since they never
1534 * leave kernel.
1535 */
1536 if (p->mm && printk_ratelimit()) {
aac74dc4 1537 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1538 task_pid_nr(p), p->comm, cpu);
1539 }
5da9a0fb
PZ
1540 }
1541
1542 return dest_cpu;
1543}
1544
e2912009 1545/*
013fdb80 1546 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1547 */
970b13ba 1548static inline
ac66f547 1549int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1550{
cbce1a68
PZ
1551 lockdep_assert_held(&p->pi_lock);
1552
4b53a341 1553 if (p->nr_cpus_allowed > 1)
6c1d9410 1554 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e9d867a6 1555 else
0c98d344 1556 cpu = cpumask_any(&p->cpus_allowed);
e2912009
PZ
1557
1558 /*
1559 * In order not to call set_task_cpu() on a blocking task we need
1560 * to rely on ttwu() to place the task on a valid ->cpus_allowed
d1ccc66d 1561 * CPU.
e2912009
PZ
1562 *
1563 * Since this is common to all placement strategies, this lives here.
1564 *
1565 * [ this allows ->select_task() to simply return task_cpu(p) and
1566 * not worry about this generic constraint ]
1567 */
0c98d344 1568 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
70f11205 1569 !cpu_online(cpu)))
5da9a0fb 1570 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1571
1572 return cpu;
970b13ba 1573}
09a40af5
MG
1574
1575static void update_avg(u64 *avg, u64 sample)
1576{
1577 s64 diff = sample - *avg;
1578 *avg += diff >> 3;
1579}
25834c73 1580
f5832c19
NP
1581void sched_set_stop_task(int cpu, struct task_struct *stop)
1582{
1583 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1584 struct task_struct *old_stop = cpu_rq(cpu)->stop;
1585
1586 if (stop) {
1587 /*
1588 * Make it appear like a SCHED_FIFO task, its something
1589 * userspace knows about and won't get confused about.
1590 *
1591 * Also, it will make PI more or less work without too
1592 * much confusion -- but then, stop work should not
1593 * rely on PI working anyway.
1594 */
1595 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
1596
1597 stop->sched_class = &stop_sched_class;
1598 }
1599
1600 cpu_rq(cpu)->stop = stop;
1601
1602 if (old_stop) {
1603 /*
1604 * Reset it back to a normal scheduling class so that
1605 * it can die in pieces.
1606 */
1607 old_stop->sched_class = &rt_sched_class;
1608 }
1609}
1610
25834c73
PZ
1611#else
1612
1613static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1614 const struct cpumask *new_mask, bool check)
1615{
1616 return set_cpus_allowed_ptr(p, new_mask);
1617}
1618
5cc389bc 1619#endif /* CONFIG_SMP */
970b13ba 1620
d7c01d27 1621static void
b84cb5df 1622ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1623{
4fa8d299 1624 struct rq *rq;
b84cb5df 1625
4fa8d299
JP
1626 if (!schedstat_enabled())
1627 return;
1628
1629 rq = this_rq();
d7c01d27 1630
4fa8d299
JP
1631#ifdef CONFIG_SMP
1632 if (cpu == rq->cpu) {
ae92882e
JP
1633 schedstat_inc(rq->ttwu_local);
1634 schedstat_inc(p->se.statistics.nr_wakeups_local);
d7c01d27
PZ
1635 } else {
1636 struct sched_domain *sd;
1637
ae92882e 1638 schedstat_inc(p->se.statistics.nr_wakeups_remote);
057f3fad 1639 rcu_read_lock();
4fa8d299 1640 for_each_domain(rq->cpu, sd) {
d7c01d27 1641 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
ae92882e 1642 schedstat_inc(sd->ttwu_wake_remote);
d7c01d27
PZ
1643 break;
1644 }
1645 }
057f3fad 1646 rcu_read_unlock();
d7c01d27 1647 }
f339b9dc
PZ
1648
1649 if (wake_flags & WF_MIGRATED)
ae92882e 1650 schedstat_inc(p->se.statistics.nr_wakeups_migrate);
d7c01d27
PZ
1651#endif /* CONFIG_SMP */
1652
ae92882e
JP
1653 schedstat_inc(rq->ttwu_count);
1654 schedstat_inc(p->se.statistics.nr_wakeups);
d7c01d27
PZ
1655
1656 if (wake_flags & WF_SYNC)
ae92882e 1657 schedstat_inc(p->se.statistics.nr_wakeups_sync);
d7c01d27
PZ
1658}
1659
1de64443 1660static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
d7c01d27 1661{
9ed3811a 1662 activate_task(rq, p, en_flags);
da0c1e65 1663 p->on_rq = TASK_ON_RQ_QUEUED;
c2f7115e 1664
d1ccc66d 1665 /* If a worker is waking up, notify the workqueue: */
c2f7115e
PZ
1666 if (p->flags & PF_WQ_WORKER)
1667 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1668}
1669
23f41eeb
PZ
1670/*
1671 * Mark the task runnable and perform wakeup-preemption.
1672 */
e7904a28 1673static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
d8ac8971 1674 struct rq_flags *rf)
9ed3811a 1675{
9ed3811a 1676 check_preempt_curr(rq, p, wake_flags);
9ed3811a 1677 p->state = TASK_RUNNING;
fbd705a0
PZ
1678 trace_sched_wakeup(p);
1679
9ed3811a 1680#ifdef CONFIG_SMP
4c9a4bc8
PZ
1681 if (p->sched_class->task_woken) {
1682 /*
cbce1a68
PZ
1683 * Our task @p is fully woken up and running; so its safe to
1684 * drop the rq->lock, hereafter rq is only used for statistics.
4c9a4bc8 1685 */
d8ac8971 1686 rq_unpin_lock(rq, rf);
9ed3811a 1687 p->sched_class->task_woken(rq, p);
d8ac8971 1688 rq_repin_lock(rq, rf);
4c9a4bc8 1689 }
9ed3811a 1690
e69c6341 1691 if (rq->idle_stamp) {
78becc27 1692 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1693 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1694
abfafa54
JL
1695 update_avg(&rq->avg_idle, delta);
1696
1697 if (rq->avg_idle > max)
9ed3811a 1698 rq->avg_idle = max;
abfafa54 1699
9ed3811a
TH
1700 rq->idle_stamp = 0;
1701 }
1702#endif
1703}
1704
c05fbafb 1705static void
e7904a28 1706ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
d8ac8971 1707 struct rq_flags *rf)
c05fbafb 1708{
77558e4d 1709 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
b5179ac7 1710
cbce1a68
PZ
1711 lockdep_assert_held(&rq->lock);
1712
c05fbafb
PZ
1713#ifdef CONFIG_SMP
1714 if (p->sched_contributes_to_load)
1715 rq->nr_uninterruptible--;
b5179ac7 1716
b5179ac7 1717 if (wake_flags & WF_MIGRATED)
59efa0ba 1718 en_flags |= ENQUEUE_MIGRATED;
c05fbafb
PZ
1719#endif
1720
b5179ac7 1721 ttwu_activate(rq, p, en_flags);
d8ac8971 1722 ttwu_do_wakeup(rq, p, wake_flags, rf);
c05fbafb
PZ
1723}
1724
1725/*
1726 * Called in case the task @p isn't fully descheduled from its runqueue,
1727 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1728 * since all we need to do is flip p->state to TASK_RUNNING, since
1729 * the task is still ->on_rq.
1730 */
1731static int ttwu_remote(struct task_struct *p, int wake_flags)
1732{
eb580751 1733 struct rq_flags rf;
c05fbafb
PZ
1734 struct rq *rq;
1735 int ret = 0;
1736
eb580751 1737 rq = __task_rq_lock(p, &rf);
da0c1e65 1738 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
1739 /* check_preempt_curr() may use rq clock */
1740 update_rq_clock(rq);
d8ac8971 1741 ttwu_do_wakeup(rq, p, wake_flags, &rf);
c05fbafb
PZ
1742 ret = 1;
1743 }
eb580751 1744 __task_rq_unlock(rq, &rf);
c05fbafb
PZ
1745
1746 return ret;
1747}
1748
317f3941 1749#ifdef CONFIG_SMP
e3baac47 1750void sched_ttwu_pending(void)
317f3941
PZ
1751{
1752 struct rq *rq = this_rq();
fa14ff4a 1753 struct llist_node *llist = llist_del_all(&rq->wake_list);
73215849 1754 struct task_struct *p, *t;
d8ac8971 1755 struct rq_flags rf;
317f3941 1756
e3baac47
PZ
1757 if (!llist)
1758 return;
1759
8a8c69c3 1760 rq_lock_irqsave(rq, &rf);
77558e4d 1761 update_rq_clock(rq);
317f3941 1762
73215849
BP
1763 llist_for_each_entry_safe(p, t, llist, wake_entry)
1764 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
317f3941 1765
8a8c69c3 1766 rq_unlock_irqrestore(rq, &rf);
317f3941
PZ
1767}
1768
1769void scheduler_ipi(void)
1770{
f27dde8d
PZ
1771 /*
1772 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1773 * TIF_NEED_RESCHED remotely (for the first time) will also send
1774 * this IPI.
1775 */
8cb75e0c 1776 preempt_fold_need_resched();
f27dde8d 1777
fd2ac4f4 1778 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1779 return;
1780
1781 /*
1782 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1783 * traditionally all their work was done from the interrupt return
1784 * path. Now that we actually do some work, we need to make sure
1785 * we do call them.
1786 *
1787 * Some archs already do call them, luckily irq_enter/exit nest
1788 * properly.
1789 *
1790 * Arguably we should visit all archs and update all handlers,
1791 * however a fair share of IPIs are still resched only so this would
1792 * somewhat pessimize the simple resched case.
1793 */
1794 irq_enter();
fa14ff4a 1795 sched_ttwu_pending();
ca38062e
SS
1796
1797 /*
1798 * Check if someone kicked us for doing the nohz idle load balance.
1799 */
873b4c65 1800 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1801 this_rq()->idle_balance = 1;
ca38062e 1802 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1803 }
c5d753a5 1804 irq_exit();
317f3941
PZ
1805}
1806
b7e7ade3 1807static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
317f3941 1808{
e3baac47
PZ
1809 struct rq *rq = cpu_rq(cpu);
1810
b7e7ade3
PZ
1811 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1812
e3baac47
PZ
1813 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1814 if (!set_nr_if_polling(rq->idle))
1815 smp_send_reschedule(cpu);
1816 else
1817 trace_sched_wake_idle_without_ipi(cpu);
1818 }
317f3941 1819}
d6aa8f85 1820
f6be8af1
CL
1821void wake_up_if_idle(int cpu)
1822{
1823 struct rq *rq = cpu_rq(cpu);
8a8c69c3 1824 struct rq_flags rf;
f6be8af1 1825
fd7de1e8
AL
1826 rcu_read_lock();
1827
1828 if (!is_idle_task(rcu_dereference(rq->curr)))
1829 goto out;
f6be8af1
CL
1830
1831 if (set_nr_if_polling(rq->idle)) {
1832 trace_sched_wake_idle_without_ipi(cpu);
1833 } else {
8a8c69c3 1834 rq_lock_irqsave(rq, &rf);
f6be8af1
CL
1835 if (is_idle_task(rq->curr))
1836 smp_send_reschedule(cpu);
d1ccc66d 1837 /* Else CPU is not idle, do nothing here: */
8a8c69c3 1838 rq_unlock_irqrestore(rq, &rf);
f6be8af1 1839 }
fd7de1e8
AL
1840
1841out:
1842 rcu_read_unlock();
f6be8af1
CL
1843}
1844
39be3501 1845bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1846{
1847 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1848}
d6aa8f85 1849#endif /* CONFIG_SMP */
317f3941 1850
b5179ac7 1851static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
c05fbafb
PZ
1852{
1853 struct rq *rq = cpu_rq(cpu);
d8ac8971 1854 struct rq_flags rf;
c05fbafb 1855
17d9f311 1856#if defined(CONFIG_SMP)
39be3501 1857 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
d1ccc66d 1858 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
b7e7ade3 1859 ttwu_queue_remote(p, cpu, wake_flags);
317f3941
PZ
1860 return;
1861 }
1862#endif
1863
8a8c69c3 1864 rq_lock(rq, &rf);
77558e4d 1865 update_rq_clock(rq);
d8ac8971 1866 ttwu_do_activate(rq, p, wake_flags, &rf);
8a8c69c3 1867 rq_unlock(rq, &rf);
9ed3811a
TH
1868}
1869
8643cda5
PZ
1870/*
1871 * Notes on Program-Order guarantees on SMP systems.
1872 *
1873 * MIGRATION
1874 *
1875 * The basic program-order guarantee on SMP systems is that when a task [t]
d1ccc66d
IM
1876 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
1877 * execution on its new CPU [c1].
8643cda5
PZ
1878 *
1879 * For migration (of runnable tasks) this is provided by the following means:
1880 *
1881 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1882 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1883 * rq(c1)->lock (if not at the same time, then in that order).
1884 * C) LOCK of the rq(c1)->lock scheduling in task
1885 *
1886 * Transitivity guarantees that B happens after A and C after B.
1887 * Note: we only require RCpc transitivity.
d1ccc66d 1888 * Note: the CPU doing B need not be c0 or c1
8643cda5
PZ
1889 *
1890 * Example:
1891 *
1892 * CPU0 CPU1 CPU2
1893 *
1894 * LOCK rq(0)->lock
1895 * sched-out X
1896 * sched-in Y
1897 * UNLOCK rq(0)->lock
1898 *
1899 * LOCK rq(0)->lock // orders against CPU0
1900 * dequeue X
1901 * UNLOCK rq(0)->lock
1902 *
1903 * LOCK rq(1)->lock
1904 * enqueue X
1905 * UNLOCK rq(1)->lock
1906 *
1907 * LOCK rq(1)->lock // orders against CPU2
1908 * sched-out Z
1909 * sched-in X
1910 * UNLOCK rq(1)->lock
1911 *
1912 *
1913 * BLOCKING -- aka. SLEEP + WAKEUP
1914 *
1915 * For blocking we (obviously) need to provide the same guarantee as for
1916 * migration. However the means are completely different as there is no lock
1917 * chain to provide order. Instead we do:
1918 *
1919 * 1) smp_store_release(X->on_cpu, 0)
1f03e8d2 1920 * 2) smp_cond_load_acquire(!X->on_cpu)
8643cda5
PZ
1921 *
1922 * Example:
1923 *
1924 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1925 *
1926 * LOCK rq(0)->lock LOCK X->pi_lock
1927 * dequeue X
1928 * sched-out X
1929 * smp_store_release(X->on_cpu, 0);
1930 *
1f03e8d2 1931 * smp_cond_load_acquire(&X->on_cpu, !VAL);
8643cda5
PZ
1932 * X->state = WAKING
1933 * set_task_cpu(X,2)
1934 *
1935 * LOCK rq(2)->lock
1936 * enqueue X
1937 * X->state = RUNNING
1938 * UNLOCK rq(2)->lock
1939 *
1940 * LOCK rq(2)->lock // orders against CPU1
1941 * sched-out Z
1942 * sched-in X
1943 * UNLOCK rq(2)->lock
1944 *
1945 * UNLOCK X->pi_lock
1946 * UNLOCK rq(0)->lock
1947 *
1948 *
1949 * However; for wakeups there is a second guarantee we must provide, namely we
1950 * must observe the state that lead to our wakeup. That is, not only must our
1951 * task observe its own prior state, it must also observe the stores prior to
1952 * its wakeup.
1953 *
1954 * This means that any means of doing remote wakeups must order the CPU doing
1955 * the wakeup against the CPU the task is going to end up running on. This,
1956 * however, is already required for the regular Program-Order guarantee above,
1f03e8d2 1957 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
8643cda5
PZ
1958 *
1959 */
1960
9ed3811a 1961/**
1da177e4 1962 * try_to_wake_up - wake up a thread
9ed3811a 1963 * @p: the thread to be awakened
1da177e4 1964 * @state: the mask of task states that can be woken
9ed3811a 1965 * @wake_flags: wake modifier flags (WF_*)
1da177e4 1966 *
a2250238 1967 * If (@state & @p->state) @p->state = TASK_RUNNING.
1da177e4 1968 *
a2250238
PZ
1969 * If the task was not queued/runnable, also place it back on a runqueue.
1970 *
1971 * Atomic against schedule() which would dequeue a task, also see
1972 * set_current_state().
1973 *
1974 * Return: %true if @p->state changes (an actual wakeup was done),
1975 * %false otherwise.
1da177e4 1976 */
e4a52bcb
PZ
1977static int
1978try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1979{
1da177e4 1980 unsigned long flags;
c05fbafb 1981 int cpu, success = 0;
2398f2c6 1982
e0acd0a6
ON
1983 /*
1984 * If we are going to wake up a thread waiting for CONDITION we
1985 * need to ensure that CONDITION=1 done by the caller can not be
1986 * reordered with p->state check below. This pairs with mb() in
1987 * set_current_state() the waiting thread does.
1988 */
013fdb80 1989 raw_spin_lock_irqsave(&p->pi_lock, flags);
d89e588c 1990 smp_mb__after_spinlock();
e9c84311 1991 if (!(p->state & state))
1da177e4
LT
1992 goto out;
1993
fbd705a0
PZ
1994 trace_sched_waking(p);
1995
d1ccc66d
IM
1996 /* We're going to change ->state: */
1997 success = 1;
1da177e4 1998 cpu = task_cpu(p);
1da177e4 1999
135e8c92
BS
2000 /*
2001 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2002 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2003 * in smp_cond_load_acquire() below.
2004 *
2005 * sched_ttwu_pending() try_to_wake_up()
2006 * [S] p->on_rq = 1; [L] P->state
2007 * UNLOCK rq->lock -----.
2008 * \
2009 * +--- RMB
2010 * schedule() /
2011 * LOCK rq->lock -----'
2012 * UNLOCK rq->lock
2013 *
2014 * [task p]
2015 * [S] p->state = UNINTERRUPTIBLE [L] p->on_rq
2016 *
2017 * Pairs with the UNLOCK+LOCK on rq->lock from the
2018 * last wakeup of our task and the schedule that got our task
2019 * current.
2020 */
2021 smp_rmb();
c05fbafb
PZ
2022 if (p->on_rq && ttwu_remote(p, wake_flags))
2023 goto stat;
1da177e4 2024
1da177e4 2025#ifdef CONFIG_SMP
ecf7d01c
PZ
2026 /*
2027 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2028 * possible to, falsely, observe p->on_cpu == 0.
2029 *
2030 * One must be running (->on_cpu == 1) in order to remove oneself
2031 * from the runqueue.
2032 *
2033 * [S] ->on_cpu = 1; [L] ->on_rq
2034 * UNLOCK rq->lock
2035 * RMB
2036 * LOCK rq->lock
2037 * [S] ->on_rq = 0; [L] ->on_cpu
2038 *
2039 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2040 * from the consecutive calls to schedule(); the first switching to our
2041 * task, the second putting it to sleep.
2042 */
2043 smp_rmb();
2044
e9c84311 2045 /*
d1ccc66d 2046 * If the owning (remote) CPU is still in the middle of schedule() with
c05fbafb 2047 * this task as prev, wait until its done referencing the task.
b75a2253 2048 *
31cb1bc0 2049 * Pairs with the smp_store_release() in finish_task().
b75a2253
PZ
2050 *
2051 * This ensures that tasks getting woken will be fully ordered against
2052 * their previous state and preserve Program Order.
0970d299 2053 */
1f03e8d2 2054 smp_cond_load_acquire(&p->on_cpu, !VAL);
1da177e4 2055
a8e4f2ea 2056 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 2057 p->state = TASK_WAKING;
e7693a36 2058
e33a9bba 2059 if (p->in_iowait) {
c96f5471 2060 delayacct_blkio_end(p);
e33a9bba
TH
2061 atomic_dec(&task_rq(p)->nr_iowait);
2062 }
2063
ac66f547 2064 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
2065 if (task_cpu(p) != cpu) {
2066 wake_flags |= WF_MIGRATED;
e4a52bcb 2067 set_task_cpu(p, cpu);
f339b9dc 2068 }
e33a9bba
TH
2069
2070#else /* CONFIG_SMP */
2071
2072 if (p->in_iowait) {
c96f5471 2073 delayacct_blkio_end(p);
e33a9bba
TH
2074 atomic_dec(&task_rq(p)->nr_iowait);
2075 }
2076
1da177e4 2077#endif /* CONFIG_SMP */
1da177e4 2078
b5179ac7 2079 ttwu_queue(p, cpu, wake_flags);
c05fbafb 2080stat:
4fa8d299 2081 ttwu_stat(p, cpu, wake_flags);
1da177e4 2082out:
013fdb80 2083 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
2084
2085 return success;
2086}
2087
21aa9af0
TH
2088/**
2089 * try_to_wake_up_local - try to wake up a local task with rq lock held
2090 * @p: the thread to be awakened
bf50f0e8 2091 * @rf: request-queue flags for pinning
21aa9af0 2092 *
2acca55e 2093 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 2094 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 2095 * the current task.
21aa9af0 2096 */
d8ac8971 2097static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf)
21aa9af0
TH
2098{
2099 struct rq *rq = task_rq(p);
21aa9af0 2100
383efcd0
TH
2101 if (WARN_ON_ONCE(rq != this_rq()) ||
2102 WARN_ON_ONCE(p == current))
2103 return;
2104
21aa9af0
TH
2105 lockdep_assert_held(&rq->lock);
2106
2acca55e 2107 if (!raw_spin_trylock(&p->pi_lock)) {
cbce1a68
PZ
2108 /*
2109 * This is OK, because current is on_cpu, which avoids it being
2110 * picked for load-balance and preemption/IRQs are still
2111 * disabled avoiding further scheduler activity on it and we've
2112 * not yet picked a replacement task.
2113 */
8a8c69c3 2114 rq_unlock(rq, rf);
2acca55e 2115 raw_spin_lock(&p->pi_lock);
8a8c69c3 2116 rq_relock(rq, rf);
2acca55e
PZ
2117 }
2118
21aa9af0 2119 if (!(p->state & TASK_NORMAL))
2acca55e 2120 goto out;
21aa9af0 2121
fbd705a0
PZ
2122 trace_sched_waking(p);
2123
e33a9bba
TH
2124 if (!task_on_rq_queued(p)) {
2125 if (p->in_iowait) {
c96f5471 2126 delayacct_blkio_end(p);
e33a9bba
TH
2127 atomic_dec(&rq->nr_iowait);
2128 }
bce4dc80 2129 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK);
e33a9bba 2130 }
d7c01d27 2131
d8ac8971 2132 ttwu_do_wakeup(rq, p, 0, rf);
4fa8d299 2133 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
2134out:
2135 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
2136}
2137
50fa610a
DH
2138/**
2139 * wake_up_process - Wake up a specific process
2140 * @p: The process to be woken up.
2141 *
2142 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
2143 * processes.
2144 *
2145 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
2146 *
2147 * It may be assumed that this function implies a write memory barrier before
2148 * changing the task state if and only if any tasks are woken up.
2149 */
7ad5b3a5 2150int wake_up_process(struct task_struct *p)
1da177e4 2151{
9067ac85 2152 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 2153}
1da177e4
LT
2154EXPORT_SYMBOL(wake_up_process);
2155
7ad5b3a5 2156int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2157{
2158 return try_to_wake_up(p, state, 0);
2159}
2160
1da177e4
LT
2161/*
2162 * Perform scheduler related setup for a newly forked process p.
2163 * p is forked by current.
dd41f596
IM
2164 *
2165 * __sched_fork() is basic setup used by init_idle() too:
2166 */
5e1576ed 2167static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2168{
fd2f4419
PZ
2169 p->on_rq = 0;
2170
2171 p->se.on_rq = 0;
dd41f596
IM
2172 p->se.exec_start = 0;
2173 p->se.sum_exec_runtime = 0;
f6cf891c 2174 p->se.prev_sum_exec_runtime = 0;
6c594c21 2175 p->se.nr_migrations = 0;
da7a735e 2176 p->se.vruntime = 0;
fd2f4419 2177 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d 2178
ad936d86
BP
2179#ifdef CONFIG_FAIR_GROUP_SCHED
2180 p->se.cfs_rq = NULL;
2181#endif
2182
6cfb0d5d 2183#ifdef CONFIG_SCHEDSTATS
cb251765 2184 /* Even if schedstat is disabled, there should not be garbage */
41acab88 2185 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2186#endif
476d139c 2187
aab03e05 2188 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 2189 init_dl_task_timer(&p->dl);
209a0cbd 2190 init_dl_inactive_task_timer(&p->dl);
a5e7be3b 2191 __dl_clear_params(p);
aab03e05 2192
fa717060 2193 INIT_LIST_HEAD(&p->rt.run_list);
ff77e468
PZ
2194 p->rt.timeout = 0;
2195 p->rt.time_slice = sched_rr_timeslice;
2196 p->rt.on_rq = 0;
2197 p->rt.on_list = 0;
476d139c 2198
e107be36
AK
2199#ifdef CONFIG_PREEMPT_NOTIFIERS
2200 INIT_HLIST_HEAD(&p->preempt_notifiers);
2201#endif
cbee9f88
PZ
2202
2203#ifdef CONFIG_NUMA_BALANCING
2204 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 2205 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
2206 p->mm->numa_scan_seq = 0;
2207 }
2208
5e1576ed
RR
2209 if (clone_flags & CLONE_VM)
2210 p->numa_preferred_nid = current->numa_preferred_nid;
2211 else
2212 p->numa_preferred_nid = -1;
2213
cbee9f88
PZ
2214 p->node_stamp = 0ULL;
2215 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 2216 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 2217 p->numa_work.next = &p->numa_work;
44dba3d5 2218 p->numa_faults = NULL;
7e2703e6
RR
2219 p->last_task_numa_placement = 0;
2220 p->last_sum_exec_runtime = 0;
8c8a743c 2221
8c8a743c 2222 p->numa_group = NULL;
cbee9f88 2223#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
2224}
2225
2a595721
SD
2226DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2227
1a687c2e 2228#ifdef CONFIG_NUMA_BALANCING
c3b9bc5b 2229
1a687c2e
MG
2230void set_numabalancing_state(bool enabled)
2231{
2232 if (enabled)
2a595721 2233 static_branch_enable(&sched_numa_balancing);
1a687c2e 2234 else
2a595721 2235 static_branch_disable(&sched_numa_balancing);
1a687c2e 2236}
54a43d54
AK
2237
2238#ifdef CONFIG_PROC_SYSCTL
2239int sysctl_numa_balancing(struct ctl_table *table, int write,
2240 void __user *buffer, size_t *lenp, loff_t *ppos)
2241{
2242 struct ctl_table t;
2243 int err;
2a595721 2244 int state = static_branch_likely(&sched_numa_balancing);
54a43d54
AK
2245
2246 if (write && !capable(CAP_SYS_ADMIN))
2247 return -EPERM;
2248
2249 t = *table;
2250 t.data = &state;
2251 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2252 if (err < 0)
2253 return err;
2254 if (write)
2255 set_numabalancing_state(state);
2256 return err;
2257}
2258#endif
2259#endif
dd41f596 2260
4698f88c
JP
2261#ifdef CONFIG_SCHEDSTATS
2262
cb251765 2263DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4698f88c 2264static bool __initdata __sched_schedstats = false;
cb251765 2265
cb251765
MG
2266static void set_schedstats(bool enabled)
2267{
2268 if (enabled)
2269 static_branch_enable(&sched_schedstats);
2270 else
2271 static_branch_disable(&sched_schedstats);
2272}
2273
2274void force_schedstat_enabled(void)
2275{
2276 if (!schedstat_enabled()) {
2277 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2278 static_branch_enable(&sched_schedstats);
2279 }
2280}
2281
2282static int __init setup_schedstats(char *str)
2283{
2284 int ret = 0;
2285 if (!str)
2286 goto out;
2287
4698f88c
JP
2288 /*
2289 * This code is called before jump labels have been set up, so we can't
2290 * change the static branch directly just yet. Instead set a temporary
2291 * variable so init_schedstats() can do it later.
2292 */
cb251765 2293 if (!strcmp(str, "enable")) {
4698f88c 2294 __sched_schedstats = true;
cb251765
MG
2295 ret = 1;
2296 } else if (!strcmp(str, "disable")) {
4698f88c 2297 __sched_schedstats = false;
cb251765
MG
2298 ret = 1;
2299 }
2300out:
2301 if (!ret)
2302 pr_warn("Unable to parse schedstats=\n");
2303
2304 return ret;
2305}
2306__setup("schedstats=", setup_schedstats);
2307
4698f88c
JP
2308static void __init init_schedstats(void)
2309{
2310 set_schedstats(__sched_schedstats);
2311}
2312
cb251765
MG
2313#ifdef CONFIG_PROC_SYSCTL
2314int sysctl_schedstats(struct ctl_table *table, int write,
2315 void __user *buffer, size_t *lenp, loff_t *ppos)
2316{
2317 struct ctl_table t;
2318 int err;
2319 int state = static_branch_likely(&sched_schedstats);
2320
2321 if (write && !capable(CAP_SYS_ADMIN))
2322 return -EPERM;
2323
2324 t = *table;
2325 t.data = &state;
2326 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2327 if (err < 0)
2328 return err;
2329 if (write)
2330 set_schedstats(state);
2331 return err;
2332}
4698f88c
JP
2333#endif /* CONFIG_PROC_SYSCTL */
2334#else /* !CONFIG_SCHEDSTATS */
2335static inline void init_schedstats(void) {}
2336#endif /* CONFIG_SCHEDSTATS */
dd41f596
IM
2337
2338/*
2339 * fork()/clone()-time setup:
2340 */
aab03e05 2341int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2342{
0122ec5b 2343 unsigned long flags;
dd41f596
IM
2344 int cpu = get_cpu();
2345
5e1576ed 2346 __sched_fork(clone_flags, p);
06b83b5f 2347 /*
7dc603c9 2348 * We mark the process as NEW here. This guarantees that
06b83b5f
PZ
2349 * nobody will actually run it, and a signal or other external
2350 * event cannot wake it up and insert it on the runqueue either.
2351 */
7dc603c9 2352 p->state = TASK_NEW;
dd41f596 2353
c350a04e
MG
2354 /*
2355 * Make sure we do not leak PI boosting priority to the child.
2356 */
2357 p->prio = current->normal_prio;
2358
b9dc29e7
MG
2359 /*
2360 * Revert to default priority/policy on fork if requested.
2361 */
2362 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 2363 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 2364 p->policy = SCHED_NORMAL;
6c697bdf 2365 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
2366 p->rt_priority = 0;
2367 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2368 p->static_prio = NICE_TO_PRIO(0);
2369
2370 p->prio = p->normal_prio = __normal_prio(p);
9059393e 2371 set_load_weight(p, false);
6c697bdf 2372
b9dc29e7
MG
2373 /*
2374 * We don't need the reset flag anymore after the fork. It has
2375 * fulfilled its duty:
2376 */
2377 p->sched_reset_on_fork = 0;
2378 }
ca94c442 2379
aab03e05
DF
2380 if (dl_prio(p->prio)) {
2381 put_cpu();
2382 return -EAGAIN;
2383 } else if (rt_prio(p->prio)) {
2384 p->sched_class = &rt_sched_class;
2385 } else {
2ddbf952 2386 p->sched_class = &fair_sched_class;
aab03e05 2387 }
b29739f9 2388
7dc603c9 2389 init_entity_runnable_average(&p->se);
cd29fe6f 2390
86951599
PZ
2391 /*
2392 * The child is not yet in the pid-hash so no cgroup attach races,
2393 * and the cgroup is pinned to this child due to cgroup_fork()
2394 * is ran before sched_fork().
2395 *
2396 * Silence PROVE_RCU.
2397 */
0122ec5b 2398 raw_spin_lock_irqsave(&p->pi_lock, flags);
e210bffd 2399 /*
d1ccc66d 2400 * We're setting the CPU for the first time, we don't migrate,
e210bffd
PZ
2401 * so use __set_task_cpu().
2402 */
2403 __set_task_cpu(p, cpu);
2404 if (p->sched_class->task_fork)
2405 p->sched_class->task_fork(p);
0122ec5b 2406 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 2407
f6db8347 2408#ifdef CONFIG_SCHED_INFO
dd41f596 2409 if (likely(sched_info_on()))
52f17b6c 2410 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2411#endif
3ca7a440
PZ
2412#if defined(CONFIG_SMP)
2413 p->on_cpu = 0;
4866cde0 2414#endif
01028747 2415 init_task_preempt_count(p);
806c09a7 2416#ifdef CONFIG_SMP
917b627d 2417 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 2418 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 2419#endif
917b627d 2420
476d139c 2421 put_cpu();
aab03e05 2422 return 0;
1da177e4
LT
2423}
2424
332ac17e
DF
2425unsigned long to_ratio(u64 period, u64 runtime)
2426{
2427 if (runtime == RUNTIME_INF)
c52f14d3 2428 return BW_UNIT;
332ac17e
DF
2429
2430 /*
2431 * Doing this here saves a lot of checks in all
2432 * the calling paths, and returning zero seems
2433 * safe for them anyway.
2434 */
2435 if (period == 0)
2436 return 0;
2437
c52f14d3 2438 return div64_u64(runtime << BW_SHIFT, period);
332ac17e
DF
2439}
2440
1da177e4
LT
2441/*
2442 * wake_up_new_task - wake up a newly created task for the first time.
2443 *
2444 * This function will do some initial scheduler statistics housekeeping
2445 * that must be done for every newly created context, then puts the task
2446 * on the runqueue and wakes it.
2447 */
3e51e3ed 2448void wake_up_new_task(struct task_struct *p)
1da177e4 2449{
eb580751 2450 struct rq_flags rf;
dd41f596 2451 struct rq *rq;
fabf318e 2452
eb580751 2453 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
7dc603c9 2454 p->state = TASK_RUNNING;
fabf318e
PZ
2455#ifdef CONFIG_SMP
2456 /*
2457 * Fork balancing, do it here and not earlier because:
2458 * - cpus_allowed can change in the fork path
d1ccc66d 2459 * - any previously selected CPU might disappear through hotplug
e210bffd
PZ
2460 *
2461 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2462 * as we're not fully set-up yet.
fabf318e 2463 */
e210bffd 2464 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735 2465#endif
b7fa30c9 2466 rq = __task_rq_lock(p, &rf);
4126bad6 2467 update_rq_clock(rq);
2b8c41da 2468 post_init_entity_util_avg(&p->se);
0017d735 2469
7a57f32a 2470 activate_task(rq, p, ENQUEUE_NOCLOCK);
da0c1e65 2471 p->on_rq = TASK_ON_RQ_QUEUED;
fbd705a0 2472 trace_sched_wakeup_new(p);
a7558e01 2473 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2474#ifdef CONFIG_SMP
0aaafaab
PZ
2475 if (p->sched_class->task_woken) {
2476 /*
2477 * Nothing relies on rq->lock after this, so its fine to
2478 * drop it.
2479 */
d8ac8971 2480 rq_unpin_lock(rq, &rf);
efbbd05a 2481 p->sched_class->task_woken(rq, p);
d8ac8971 2482 rq_repin_lock(rq, &rf);
0aaafaab 2483 }
9a897c5a 2484#endif
eb580751 2485 task_rq_unlock(rq, p, &rf);
1da177e4
LT
2486}
2487
e107be36
AK
2488#ifdef CONFIG_PREEMPT_NOTIFIERS
2489
1cde2930
PZ
2490static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2491
2ecd9d29
PZ
2492void preempt_notifier_inc(void)
2493{
2494 static_key_slow_inc(&preempt_notifier_key);
2495}
2496EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2497
2498void preempt_notifier_dec(void)
2499{
2500 static_key_slow_dec(&preempt_notifier_key);
2501}
2502EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2503
e107be36 2504/**
80dd99b3 2505 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2506 * @notifier: notifier struct to register
e107be36
AK
2507 */
2508void preempt_notifier_register(struct preempt_notifier *notifier)
2509{
2ecd9d29
PZ
2510 if (!static_key_false(&preempt_notifier_key))
2511 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2512
e107be36
AK
2513 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2514}
2515EXPORT_SYMBOL_GPL(preempt_notifier_register);
2516
2517/**
2518 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2519 * @notifier: notifier struct to unregister
e107be36 2520 *
d84525a8 2521 * This is *not* safe to call from within a preemption notifier.
e107be36
AK
2522 */
2523void preempt_notifier_unregister(struct preempt_notifier *notifier)
2524{
2525 hlist_del(&notifier->link);
2526}
2527EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2528
1cde2930 2529static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2530{
2531 struct preempt_notifier *notifier;
e107be36 2532
b67bfe0d 2533 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2534 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2535}
2536
1cde2930
PZ
2537static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2538{
2539 if (static_key_false(&preempt_notifier_key))
2540 __fire_sched_in_preempt_notifiers(curr);
2541}
2542
e107be36 2543static void
1cde2930
PZ
2544__fire_sched_out_preempt_notifiers(struct task_struct *curr,
2545 struct task_struct *next)
e107be36
AK
2546{
2547 struct preempt_notifier *notifier;
e107be36 2548
b67bfe0d 2549 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2550 notifier->ops->sched_out(notifier, next);
2551}
2552
1cde2930
PZ
2553static __always_inline void
2554fire_sched_out_preempt_notifiers(struct task_struct *curr,
2555 struct task_struct *next)
2556{
2557 if (static_key_false(&preempt_notifier_key))
2558 __fire_sched_out_preempt_notifiers(curr, next);
2559}
2560
6d6bc0ad 2561#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36 2562
1cde2930 2563static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2564{
2565}
2566
1cde2930 2567static inline void
e107be36
AK
2568fire_sched_out_preempt_notifiers(struct task_struct *curr,
2569 struct task_struct *next)
2570{
2571}
2572
6d6bc0ad 2573#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2574
31cb1bc0 2575static inline void prepare_task(struct task_struct *next)
2576{
2577#ifdef CONFIG_SMP
2578 /*
2579 * Claim the task as running, we do this before switching to it
2580 * such that any running task will have this set.
2581 */
2582 next->on_cpu = 1;
2583#endif
2584}
2585
2586static inline void finish_task(struct task_struct *prev)
2587{
2588#ifdef CONFIG_SMP
2589 /*
2590 * After ->on_cpu is cleared, the task can be moved to a different CPU.
2591 * We must ensure this doesn't happen until the switch is completely
2592 * finished.
2593 *
2594 * In particular, the load of prev->state in finish_task_switch() must
2595 * happen before this.
2596 *
2597 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
2598 */
2599 smp_store_release(&prev->on_cpu, 0);
2600#endif
2601}
2602
2603static inline void finish_lock_switch(struct rq *rq)
2604{
2605#ifdef CONFIG_DEBUG_SPINLOCK
2606 /* this is a valid case when another task releases the spinlock */
2607 rq->lock.owner = current;
2608#endif
2609 /*
2610 * If we are tracking spinlock dependencies then we have to
2611 * fix up the runqueue lock - which gets 'carried over' from
2612 * prev into current:
2613 */
2614 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
2615
2616 raw_spin_unlock_irq(&rq->lock);
2617}
2618
4866cde0
NP
2619/**
2620 * prepare_task_switch - prepare to switch tasks
2621 * @rq: the runqueue preparing to switch
421cee29 2622 * @prev: the current task that is being switched out
4866cde0
NP
2623 * @next: the task we are going to switch to.
2624 *
2625 * This is called with the rq lock held and interrupts off. It must
2626 * be paired with a subsequent finish_task_switch after the context
2627 * switch.
2628 *
2629 * prepare_task_switch sets up locking and calls architecture specific
2630 * hooks.
2631 */
e107be36
AK
2632static inline void
2633prepare_task_switch(struct rq *rq, struct task_struct *prev,
2634 struct task_struct *next)
4866cde0 2635{
43148951 2636 sched_info_switch(rq, prev, next);
fe4b04fa 2637 perf_event_task_sched_out(prev, next);
e107be36 2638 fire_sched_out_preempt_notifiers(prev, next);
31cb1bc0 2639 prepare_task(next);
4866cde0
NP
2640 prepare_arch_switch(next);
2641}
2642
1da177e4
LT
2643/**
2644 * finish_task_switch - clean up after a task-switch
2645 * @prev: the thread we just switched away from.
2646 *
4866cde0
NP
2647 * finish_task_switch must be called after the context switch, paired
2648 * with a prepare_task_switch call before the context switch.
2649 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2650 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2651 *
2652 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2653 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2654 * with the lock held can cause deadlocks; see schedule() for
2655 * details.)
dfa50b60
ON
2656 *
2657 * The context switch have flipped the stack from under us and restored the
2658 * local variables which were saved when this task called schedule() in the
2659 * past. prev == current is still correct but we need to recalculate this_rq
2660 * because prev may have moved to another CPU.
1da177e4 2661 */
dfa50b60 2662static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
2663 __releases(rq->lock)
2664{
dfa50b60 2665 struct rq *rq = this_rq();
1da177e4 2666 struct mm_struct *mm = rq->prev_mm;
55a101f8 2667 long prev_state;
1da177e4 2668
609ca066
PZ
2669 /*
2670 * The previous task will have left us with a preempt_count of 2
2671 * because it left us after:
2672 *
2673 * schedule()
2674 * preempt_disable(); // 1
2675 * __schedule()
2676 * raw_spin_lock_irq(&rq->lock) // 2
2677 *
2678 * Also, see FORK_PREEMPT_COUNT.
2679 */
e2bf1c4b
PZ
2680 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2681 "corrupted preempt_count: %s/%d/0x%x\n",
2682 current->comm, current->pid, preempt_count()))
2683 preempt_count_set(FORK_PREEMPT_COUNT);
609ca066 2684
1da177e4
LT
2685 rq->prev_mm = NULL;
2686
2687 /*
2688 * A task struct has one reference for the use as "current".
c394cc9f 2689 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2690 * schedule one last time. The schedule call will never return, and
2691 * the scheduled task must drop that reference.
95913d97
PZ
2692 *
2693 * We must observe prev->state before clearing prev->on_cpu (in
31cb1bc0 2694 * finish_task), otherwise a concurrent wakeup can get prev
95913d97
PZ
2695 * running on another CPU and we could rave with its RUNNING -> DEAD
2696 * transition, resulting in a double drop.
1da177e4 2697 */
55a101f8 2698 prev_state = prev->state;
bf9fae9f 2699 vtime_task_switch(prev);
a8d757ef 2700 perf_event_task_sched_in(prev, current);
31cb1bc0 2701 finish_task(prev);
2702 finish_lock_switch(rq);
01f23e16 2703 finish_arch_post_lock_switch();
e8fa1362 2704
e107be36 2705 fire_sched_in_preempt_notifiers(current);
306e0604 2706 /*
70216e18
MD
2707 * When switching through a kernel thread, the loop in
2708 * membarrier_{private,global}_expedited() may have observed that
2709 * kernel thread and not issued an IPI. It is therefore possible to
2710 * schedule between user->kernel->user threads without passing though
2711 * switch_mm(). Membarrier requires a barrier after storing to
2712 * rq->curr, before returning to userspace, so provide them here:
2713 *
2714 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
2715 * provided by mmdrop(),
2716 * - a sync_core for SYNC_CORE.
306e0604 2717 */
70216e18
MD
2718 if (mm) {
2719 membarrier_mm_sync_core_before_usermode(mm);
1da177e4 2720 mmdrop(mm);
70216e18 2721 }
c394cc9f 2722 if (unlikely(prev_state == TASK_DEAD)) {
e6c390f2
DF
2723 if (prev->sched_class->task_dead)
2724 prev->sched_class->task_dead(prev);
2725
c6fd91f0 2726 /*
2727 * Remove function-return probe instances associated with this
2728 * task and put them back on the free list.
9761eea8 2729 */
c6fd91f0 2730 kprobe_flush_task(prev);
68f24b08
AL
2731
2732 /* Task is done with its stack. */
2733 put_task_stack(prev);
2734
1da177e4 2735 put_task_struct(prev);
c6fd91f0 2736 }
99e5ada9 2737
de734f89 2738 tick_nohz_task_switch();
dfa50b60 2739 return rq;
1da177e4
LT
2740}
2741
3f029d3c
GH
2742#ifdef CONFIG_SMP
2743
3f029d3c 2744/* rq->lock is NOT held, but preemption is disabled */
e3fca9e7 2745static void __balance_callback(struct rq *rq)
3f029d3c 2746{
e3fca9e7
PZ
2747 struct callback_head *head, *next;
2748 void (*func)(struct rq *rq);
2749 unsigned long flags;
3f029d3c 2750
e3fca9e7
PZ
2751 raw_spin_lock_irqsave(&rq->lock, flags);
2752 head = rq->balance_callback;
2753 rq->balance_callback = NULL;
2754 while (head) {
2755 func = (void (*)(struct rq *))head->func;
2756 next = head->next;
2757 head->next = NULL;
2758 head = next;
3f029d3c 2759
e3fca9e7 2760 func(rq);
3f029d3c 2761 }
e3fca9e7
PZ
2762 raw_spin_unlock_irqrestore(&rq->lock, flags);
2763}
2764
2765static inline void balance_callback(struct rq *rq)
2766{
2767 if (unlikely(rq->balance_callback))
2768 __balance_callback(rq);
3f029d3c
GH
2769}
2770
2771#else
da19ab51 2772
e3fca9e7 2773static inline void balance_callback(struct rq *rq)
3f029d3c 2774{
1da177e4
LT
2775}
2776
3f029d3c
GH
2777#endif
2778
1da177e4
LT
2779/**
2780 * schedule_tail - first thing a freshly forked thread must call.
2781 * @prev: the thread we just switched away from.
2782 */
722a9f92 2783asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
2784 __releases(rq->lock)
2785{
1a43a14a 2786 struct rq *rq;
da19ab51 2787
609ca066
PZ
2788 /*
2789 * New tasks start with FORK_PREEMPT_COUNT, see there and
2790 * finish_task_switch() for details.
2791 *
2792 * finish_task_switch() will drop rq->lock() and lower preempt_count
2793 * and the preempt_enable() will end up enabling preemption (on
2794 * PREEMPT_COUNT kernels).
2795 */
2796
dfa50b60 2797 rq = finish_task_switch(prev);
e3fca9e7 2798 balance_callback(rq);
1a43a14a 2799 preempt_enable();
70b97a7f 2800
1da177e4 2801 if (current->set_child_tid)
b488893a 2802 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2803}
2804
2805/*
dfa50b60 2806 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 2807 */
04936948 2808static __always_inline struct rq *
70b97a7f 2809context_switch(struct rq *rq, struct task_struct *prev,
d8ac8971 2810 struct task_struct *next, struct rq_flags *rf)
1da177e4 2811{
dd41f596 2812 struct mm_struct *mm, *oldmm;
1da177e4 2813
e107be36 2814 prepare_task_switch(rq, prev, next);
fe4b04fa 2815
dd41f596
IM
2816 mm = next->mm;
2817 oldmm = prev->active_mm;
9226d125
ZA
2818 /*
2819 * For paravirt, this is coupled with an exit in switch_to to
2820 * combine the page table reload and the switch backend into
2821 * one hypercall.
2822 */
224101ed 2823 arch_start_context_switch(prev);
9226d125 2824
306e0604
MD
2825 /*
2826 * If mm is non-NULL, we pass through switch_mm(). If mm is
2827 * NULL, we will pass through mmdrop() in finish_task_switch().
2828 * Both of these contain the full memory barrier required by
2829 * membarrier after storing to rq->curr, before returning to
2830 * user-space.
2831 */
31915ab4 2832 if (!mm) {
1da177e4 2833 next->active_mm = oldmm;
f1f10076 2834 mmgrab(oldmm);
1da177e4
LT
2835 enter_lazy_tlb(oldmm, next);
2836 } else
f98db601 2837 switch_mm_irqs_off(oldmm, mm, next);
1da177e4 2838
31915ab4 2839 if (!prev->mm) {
1da177e4 2840 prev->active_mm = NULL;
1da177e4
LT
2841 rq->prev_mm = oldmm;
2842 }
92509b73 2843
cb42c9a3 2844 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
92509b73 2845
3a5f5e48
IM
2846 /*
2847 * Since the runqueue lock will be released by the next
2848 * task (which is an invalid locking op but in the case
2849 * of the scheduler it's an obvious special-case), so we
2850 * do an early lockdep release here:
2851 */
d8ac8971 2852 rq_unpin_lock(rq, rf);
8a25d5de 2853 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
2854
2855 /* Here we just switch the register state and the stack. */
2856 switch_to(prev, next, prev);
dd41f596 2857 barrier();
dfa50b60
ON
2858
2859 return finish_task_switch(prev);
1da177e4
LT
2860}
2861
2862/*
1c3e8264 2863 * nr_running and nr_context_switches:
1da177e4
LT
2864 *
2865 * externally visible scheduler statistics: current number of runnable
1c3e8264 2866 * threads, total number of context switches performed since bootup.
1da177e4
LT
2867 */
2868unsigned long nr_running(void)
2869{
2870 unsigned long i, sum = 0;
2871
2872 for_each_online_cpu(i)
2873 sum += cpu_rq(i)->nr_running;
2874
2875 return sum;
f711f609 2876}
1da177e4 2877
2ee507c4 2878/*
d1ccc66d 2879 * Check if only the current task is running on the CPU.
00cc1633
DD
2880 *
2881 * Caution: this function does not check that the caller has disabled
2882 * preemption, thus the result might have a time-of-check-to-time-of-use
2883 * race. The caller is responsible to use it correctly, for example:
2884 *
2885 * - from a non-preemptable section (of course)
2886 *
2887 * - from a thread that is bound to a single CPU
2888 *
2889 * - in a loop with very short iterations (e.g. a polling loop)
2ee507c4
TC
2890 */
2891bool single_task_running(void)
2892{
00cc1633 2893 return raw_rq()->nr_running == 1;
2ee507c4
TC
2894}
2895EXPORT_SYMBOL(single_task_running);
2896
1da177e4 2897unsigned long long nr_context_switches(void)
46cb4b7c 2898{
cc94abfc
SR
2899 int i;
2900 unsigned long long sum = 0;
46cb4b7c 2901
0a945022 2902 for_each_possible_cpu(i)
1da177e4 2903 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2904
1da177e4
LT
2905 return sum;
2906}
483b4ee6 2907
e33a9bba
TH
2908/*
2909 * IO-wait accounting, and how its mostly bollocks (on SMP).
2910 *
2911 * The idea behind IO-wait account is to account the idle time that we could
2912 * have spend running if it were not for IO. That is, if we were to improve the
2913 * storage performance, we'd have a proportional reduction in IO-wait time.
2914 *
2915 * This all works nicely on UP, where, when a task blocks on IO, we account
2916 * idle time as IO-wait, because if the storage were faster, it could've been
2917 * running and we'd not be idle.
2918 *
2919 * This has been extended to SMP, by doing the same for each CPU. This however
2920 * is broken.
2921 *
2922 * Imagine for instance the case where two tasks block on one CPU, only the one
2923 * CPU will have IO-wait accounted, while the other has regular idle. Even
2924 * though, if the storage were faster, both could've ran at the same time,
2925 * utilising both CPUs.
2926 *
2927 * This means, that when looking globally, the current IO-wait accounting on
2928 * SMP is a lower bound, by reason of under accounting.
2929 *
2930 * Worse, since the numbers are provided per CPU, they are sometimes
2931 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
2932 * associated with any one particular CPU, it can wake to another CPU than it
2933 * blocked on. This means the per CPU IO-wait number is meaningless.
2934 *
2935 * Task CPU affinities can make all that even more 'interesting'.
2936 */
2937
1da177e4
LT
2938unsigned long nr_iowait(void)
2939{
2940 unsigned long i, sum = 0;
483b4ee6 2941
0a945022 2942 for_each_possible_cpu(i)
1da177e4 2943 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2944
1da177e4
LT
2945 return sum;
2946}
483b4ee6 2947
e33a9bba
TH
2948/*
2949 * Consumers of these two interfaces, like for example the cpufreq menu
2950 * governor are using nonsensical data. Boosting frequency for a CPU that has
2951 * IO-wait which might not even end up running the task when it does become
2952 * runnable.
2953 */
2954
8c215bd3 2955unsigned long nr_iowait_cpu(int cpu)
69d25870 2956{
8c215bd3 2957 struct rq *this = cpu_rq(cpu);
69d25870
AV
2958 return atomic_read(&this->nr_iowait);
2959}
46cb4b7c 2960
372ba8cb
MG
2961void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2962{
3289bdb4
PZ
2963 struct rq *rq = this_rq();
2964 *nr_waiters = atomic_read(&rq->nr_iowait);
2965 *load = rq->load.weight;
372ba8cb
MG
2966}
2967
dd41f596 2968#ifdef CONFIG_SMP
8a0be9ef 2969
46cb4b7c 2970/*
38022906
PZ
2971 * sched_exec - execve() is a valuable balancing opportunity, because at
2972 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2973 */
38022906 2974void sched_exec(void)
46cb4b7c 2975{
38022906 2976 struct task_struct *p = current;
1da177e4 2977 unsigned long flags;
0017d735 2978 int dest_cpu;
46cb4b7c 2979
8f42ced9 2980 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2981 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2982 if (dest_cpu == smp_processor_id())
2983 goto unlock;
38022906 2984
8f42ced9 2985 if (likely(cpu_active(dest_cpu))) {
969c7921 2986 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2987
8f42ced9
PZ
2988 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2989 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2990 return;
2991 }
0017d735 2992unlock:
8f42ced9 2993 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2994}
dd41f596 2995
1da177e4
LT
2996#endif
2997
1da177e4 2998DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2999DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
3000
3001EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 3002EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 3003
6075620b
GG
3004/*
3005 * The function fair_sched_class.update_curr accesses the struct curr
3006 * and its field curr->exec_start; when called from task_sched_runtime(),
3007 * we observe a high rate of cache misses in practice.
3008 * Prefetching this data results in improved performance.
3009 */
3010static inline void prefetch_curr_exec_start(struct task_struct *p)
3011{
3012#ifdef CONFIG_FAIR_GROUP_SCHED
3013 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3014#else
3015 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3016#endif
3017 prefetch(curr);
3018 prefetch(&curr->exec_start);
3019}
3020
c5f8d995
HS
3021/*
3022 * Return accounted runtime for the task.
3023 * In case the task is currently running, return the runtime plus current's
3024 * pending runtime that have not been accounted yet.
3025 */
3026unsigned long long task_sched_runtime(struct task_struct *p)
3027{
eb580751 3028 struct rq_flags rf;
c5f8d995 3029 struct rq *rq;
6e998916 3030 u64 ns;
c5f8d995 3031
911b2898
PZ
3032#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3033 /*
3034 * 64-bit doesn't need locks to atomically read a 64bit value.
3035 * So we have a optimization chance when the task's delta_exec is 0.
3036 * Reading ->on_cpu is racy, but this is ok.
3037 *
d1ccc66d
IM
3038 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3039 * If we race with it entering CPU, unaccounted time is 0. This is
911b2898 3040 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
3041 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3042 * been accounted, so we're correct here as well.
911b2898 3043 */
da0c1e65 3044 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
3045 return p->se.sum_exec_runtime;
3046#endif
3047
eb580751 3048 rq = task_rq_lock(p, &rf);
6e998916
SG
3049 /*
3050 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3051 * project cycles that may never be accounted to this
3052 * thread, breaking clock_gettime().
3053 */
3054 if (task_current(rq, p) && task_on_rq_queued(p)) {
6075620b 3055 prefetch_curr_exec_start(p);
6e998916
SG
3056 update_rq_clock(rq);
3057 p->sched_class->update_curr(rq);
3058 }
3059 ns = p->se.sum_exec_runtime;
eb580751 3060 task_rq_unlock(rq, p, &rf);
c5f8d995
HS
3061
3062 return ns;
3063}
48f24c4d 3064
7835b98b
CL
3065/*
3066 * This function gets called by the timer code, with HZ frequency.
3067 * We call it with interrupts disabled.
7835b98b
CL
3068 */
3069void scheduler_tick(void)
3070{
7835b98b
CL
3071 int cpu = smp_processor_id();
3072 struct rq *rq = cpu_rq(cpu);
dd41f596 3073 struct task_struct *curr = rq->curr;
8a8c69c3 3074 struct rq_flags rf;
3e51f33f
PZ
3075
3076 sched_clock_tick();
dd41f596 3077
8a8c69c3
PZ
3078 rq_lock(rq, &rf);
3079
3e51f33f 3080 update_rq_clock(rq);
fa85ae24 3081 curr->sched_class->task_tick(rq, curr, 0);
cee1afce 3082 cpu_load_update_active(rq);
3289bdb4 3083 calc_global_load_tick(rq);
8a8c69c3
PZ
3084
3085 rq_unlock(rq, &rf);
7835b98b 3086
e9d2b064 3087 perf_event_task_tick();
e220d2dc 3088
e418e1c2 3089#ifdef CONFIG_SMP
6eb57e0d 3090 rq->idle_balance = idle_cpu(cpu);
7caff66f 3091 trigger_load_balance(rq);
e418e1c2 3092#endif
265f22a9 3093 rq_last_tick_reset(rq);
1da177e4
LT
3094}
3095
265f22a9
FW
3096#ifdef CONFIG_NO_HZ_FULL
3097/**
3098 * scheduler_tick_max_deferment
3099 *
3100 * Keep at least one tick per second when a single
3101 * active task is running because the scheduler doesn't
3102 * yet completely support full dynticks environment.
3103 *
3104 * This makes sure that uptime, CFS vruntime, load
3105 * balancing, etc... continue to move forward, even
3106 * with a very low granularity.
e69f6186
YB
3107 *
3108 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
3109 */
3110u64 scheduler_tick_max_deferment(void)
3111{
3112 struct rq *rq = this_rq();
316c1608 3113 unsigned long next, now = READ_ONCE(jiffies);
265f22a9
FW
3114
3115 next = rq->last_sched_tick + HZ;
3116
3117 if (time_before_eq(next, now))
3118 return 0;
3119
8fe8ff09 3120 return jiffies_to_nsecs(next - now);
1da177e4 3121}
265f22a9 3122#endif
1da177e4 3123
7e49fcce
SR
3124#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3125 defined(CONFIG_PREEMPT_TRACER))
47252cfb
SR
3126/*
3127 * If the value passed in is equal to the current preempt count
3128 * then we just disabled preemption. Start timing the latency.
3129 */
3130static inline void preempt_latency_start(int val)
3131{
3132 if (preempt_count() == val) {
3133 unsigned long ip = get_lock_parent_ip();
3134#ifdef CONFIG_DEBUG_PREEMPT
3135 current->preempt_disable_ip = ip;
3136#endif
3137 trace_preempt_off(CALLER_ADDR0, ip);
3138 }
3139}
7e49fcce 3140
edafe3a5 3141void preempt_count_add(int val)
1da177e4 3142{
6cd8a4bb 3143#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3144 /*
3145 * Underflow?
3146 */
9a11b49a
IM
3147 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3148 return;
6cd8a4bb 3149#endif
bdb43806 3150 __preempt_count_add(val);
6cd8a4bb 3151#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3152 /*
3153 * Spinlock count overflowing soon?
3154 */
33859f7f
MOS
3155 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3156 PREEMPT_MASK - 10);
6cd8a4bb 3157#endif
47252cfb 3158 preempt_latency_start(val);
1da177e4 3159}
bdb43806 3160EXPORT_SYMBOL(preempt_count_add);
edafe3a5 3161NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 3162
47252cfb
SR
3163/*
3164 * If the value passed in equals to the current preempt count
3165 * then we just enabled preemption. Stop timing the latency.
3166 */
3167static inline void preempt_latency_stop(int val)
3168{
3169 if (preempt_count() == val)
3170 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3171}
3172
edafe3a5 3173void preempt_count_sub(int val)
1da177e4 3174{
6cd8a4bb 3175#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3176 /*
3177 * Underflow?
3178 */
01e3eb82 3179 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3180 return;
1da177e4
LT
3181 /*
3182 * Is the spinlock portion underflowing?
3183 */
9a11b49a
IM
3184 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3185 !(preempt_count() & PREEMPT_MASK)))
3186 return;
6cd8a4bb 3187#endif
9a11b49a 3188
47252cfb 3189 preempt_latency_stop(val);
bdb43806 3190 __preempt_count_sub(val);
1da177e4 3191}
bdb43806 3192EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 3193NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4 3194
47252cfb
SR
3195#else
3196static inline void preempt_latency_start(int val) { }
3197static inline void preempt_latency_stop(int val) { }
1da177e4
LT
3198#endif
3199
59ddbcb2
IM
3200static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3201{
3202#ifdef CONFIG_DEBUG_PREEMPT
3203 return p->preempt_disable_ip;
3204#else
3205 return 0;
3206#endif
3207}
3208
1da177e4 3209/*
dd41f596 3210 * Print scheduling while atomic bug:
1da177e4 3211 */
dd41f596 3212static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3213{
d1c6d149
VN
3214 /* Save this before calling printk(), since that will clobber it */
3215 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3216
664dfa65
DJ
3217 if (oops_in_progress)
3218 return;
3219
3df0fc5b
PZ
3220 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3221 prev->comm, prev->pid, preempt_count());
838225b4 3222
dd41f596 3223 debug_show_held_locks(prev);
e21f5b15 3224 print_modules();
dd41f596
IM
3225 if (irqs_disabled())
3226 print_irqtrace_events(prev);
d1c6d149
VN
3227 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3228 && in_atomic_preempt_off()) {
8f47b187 3229 pr_err("Preemption disabled at:");
d1c6d149 3230 print_ip_sym(preempt_disable_ip);
8f47b187
TG
3231 pr_cont("\n");
3232 }
748c7201
DBO
3233 if (panic_on_warn)
3234 panic("scheduling while atomic\n");
3235
6135fc1e 3236 dump_stack();
373d4d09 3237 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 3238}
1da177e4 3239
dd41f596
IM
3240/*
3241 * Various schedule()-time debugging checks and statistics:
3242 */
3243static inline void schedule_debug(struct task_struct *prev)
3244{
0d9e2632 3245#ifdef CONFIG_SCHED_STACK_END_CHECK
29d64551
JH
3246 if (task_stack_end_corrupted(prev))
3247 panic("corrupted stack end detected inside scheduler\n");
0d9e2632 3248#endif
b99def8b 3249
1dc0fffc 3250 if (unlikely(in_atomic_preempt_off())) {
dd41f596 3251 __schedule_bug(prev);
1dc0fffc
PZ
3252 preempt_count_set(PREEMPT_DISABLED);
3253 }
b3fbab05 3254 rcu_sleep_check();
dd41f596 3255
1da177e4
LT
3256 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3257
ae92882e 3258 schedstat_inc(this_rq()->sched_count);
dd41f596
IM
3259}
3260
3261/*
3262 * Pick up the highest-prio task:
3263 */
3264static inline struct task_struct *
d8ac8971 3265pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
dd41f596 3266{
49ee5768 3267 const struct sched_class *class;
dd41f596 3268 struct task_struct *p;
1da177e4
LT
3269
3270 /*
0ba87bb2
PZ
3271 * Optimization: we know that if all tasks are in the fair class we can
3272 * call that function directly, but only if the @prev task wasn't of a
3273 * higher scheduling class, because otherwise those loose the
3274 * opportunity to pull in more work from other CPUs.
1da177e4 3275 */
0ba87bb2
PZ
3276 if (likely((prev->sched_class == &idle_sched_class ||
3277 prev->sched_class == &fair_sched_class) &&
3278 rq->nr_running == rq->cfs.h_nr_running)) {
3279
d8ac8971 3280 p = fair_sched_class.pick_next_task(rq, prev, rf);
6ccdc84b
PZ
3281 if (unlikely(p == RETRY_TASK))
3282 goto again;
3283
d1ccc66d 3284 /* Assumes fair_sched_class->next == idle_sched_class */
6ccdc84b 3285 if (unlikely(!p))
d8ac8971 3286 p = idle_sched_class.pick_next_task(rq, prev, rf);
6ccdc84b
PZ
3287
3288 return p;
1da177e4
LT
3289 }
3290
37e117c0 3291again:
34f971f6 3292 for_each_class(class) {
d8ac8971 3293 p = class->pick_next_task(rq, prev, rf);
37e117c0
PZ
3294 if (p) {
3295 if (unlikely(p == RETRY_TASK))
3296 goto again;
dd41f596 3297 return p;
37e117c0 3298 }
dd41f596 3299 }
34f971f6 3300
d1ccc66d
IM
3301 /* The idle class should always have a runnable task: */
3302 BUG();
dd41f596 3303}
1da177e4 3304
dd41f596 3305/*
c259e01a 3306 * __schedule() is the main scheduler function.
edde96ea
PE
3307 *
3308 * The main means of driving the scheduler and thus entering this function are:
3309 *
3310 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3311 *
3312 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3313 * paths. For example, see arch/x86/entry_64.S.
3314 *
3315 * To drive preemption between tasks, the scheduler sets the flag in timer
3316 * interrupt handler scheduler_tick().
3317 *
3318 * 3. Wakeups don't really cause entry into schedule(). They add a
3319 * task to the run-queue and that's it.
3320 *
3321 * Now, if the new task added to the run-queue preempts the current
3322 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3323 * called on the nearest possible occasion:
3324 *
3325 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3326 *
3327 * - in syscall or exception context, at the next outmost
3328 * preempt_enable(). (this might be as soon as the wake_up()'s
3329 * spin_unlock()!)
3330 *
3331 * - in IRQ context, return from interrupt-handler to
3332 * preemptible context
3333 *
3334 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3335 * then at the next:
3336 *
3337 * - cond_resched() call
3338 * - explicit schedule() call
3339 * - return from syscall or exception to user-space
3340 * - return from interrupt-handler to user-space
bfd9b2b5 3341 *
b30f0e3f 3342 * WARNING: must be called with preemption disabled!
dd41f596 3343 */
499d7955 3344static void __sched notrace __schedule(bool preempt)
dd41f596
IM
3345{
3346 struct task_struct *prev, *next;
67ca7bde 3347 unsigned long *switch_count;
d8ac8971 3348 struct rq_flags rf;
dd41f596 3349 struct rq *rq;
31656519 3350 int cpu;
dd41f596 3351
dd41f596
IM
3352 cpu = smp_processor_id();
3353 rq = cpu_rq(cpu);
dd41f596 3354 prev = rq->curr;
dd41f596 3355
dd41f596 3356 schedule_debug(prev);
1da177e4 3357
31656519 3358 if (sched_feat(HRTICK))
f333fdc9 3359 hrtick_clear(rq);
8f4d37ec 3360
46a5d164 3361 local_irq_disable();
bcbfdd01 3362 rcu_note_context_switch(preempt);
46a5d164 3363
e0acd0a6
ON
3364 /*
3365 * Make sure that signal_pending_state()->signal_pending() below
3366 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3367 * done by the caller to avoid the race with signal_wake_up().
306e0604
MD
3368 *
3369 * The membarrier system call requires a full memory barrier
3370 * after coming from user-space, before storing to rq->curr.
e0acd0a6 3371 */
8a8c69c3 3372 rq_lock(rq, &rf);
d89e588c 3373 smp_mb__after_spinlock();
1da177e4 3374
d1ccc66d
IM
3375 /* Promote REQ to ACT */
3376 rq->clock_update_flags <<= 1;
bce4dc80 3377 update_rq_clock(rq);
9edfbfed 3378
246d86b5 3379 switch_count = &prev->nivcsw;
fc13aeba 3380 if (!preempt && prev->state) {
21aa9af0 3381 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 3382 prev->state = TASK_RUNNING;
21aa9af0 3383 } else {
bce4dc80 3384 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
2acca55e
PZ
3385 prev->on_rq = 0;
3386
e33a9bba
TH
3387 if (prev->in_iowait) {
3388 atomic_inc(&rq->nr_iowait);
3389 delayacct_blkio_start();
3390 }
3391
21aa9af0 3392 /*
2acca55e
PZ
3393 * If a worker went to sleep, notify and ask workqueue
3394 * whether it wants to wake up a task to maintain
3395 * concurrency.
21aa9af0
TH
3396 */
3397 if (prev->flags & PF_WQ_WORKER) {
3398 struct task_struct *to_wakeup;
3399
9b7f6597 3400 to_wakeup = wq_worker_sleeping(prev);
21aa9af0 3401 if (to_wakeup)
d8ac8971 3402 try_to_wake_up_local(to_wakeup, &rf);
21aa9af0 3403 }
21aa9af0 3404 }
dd41f596 3405 switch_count = &prev->nvcsw;
1da177e4
LT
3406 }
3407
d8ac8971 3408 next = pick_next_task(rq, prev, &rf);
f26f9aff 3409 clear_tsk_need_resched(prev);
f27dde8d 3410 clear_preempt_need_resched();
1da177e4 3411
1da177e4 3412 if (likely(prev != next)) {
1da177e4
LT
3413 rq->nr_switches++;
3414 rq->curr = next;
22e4ebb9
MD
3415 /*
3416 * The membarrier system call requires each architecture
3417 * to have a full memory barrier after updating
306e0604
MD
3418 * rq->curr, before returning to user-space.
3419 *
3420 * Here are the schemes providing that barrier on the
3421 * various architectures:
3422 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
3423 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
3424 * - finish_lock_switch() for weakly-ordered
3425 * architectures where spin_unlock is a full barrier,
3426 * - switch_to() for arm64 (weakly-ordered, spin_unlock
3427 * is a RELEASE barrier),
22e4ebb9 3428 */
1da177e4
LT
3429 ++*switch_count;
3430
c73464b1 3431 trace_sched_switch(preempt, prev, next);
d1ccc66d
IM
3432
3433 /* Also unlocks the rq: */
3434 rq = context_switch(rq, prev, next, &rf);
cbce1a68 3435 } else {
cb42c9a3 3436 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
8a8c69c3 3437 rq_unlock_irq(rq, &rf);
cbce1a68 3438 }
1da177e4 3439
e3fca9e7 3440 balance_callback(rq);
1da177e4 3441}
c259e01a 3442
9af6528e
PZ
3443void __noreturn do_task_dead(void)
3444{
3445 /*
3446 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
3447 * when the following two conditions become true.
3448 * - There is race condition of mmap_sem (It is acquired by
3449 * exit_mm()), and
3450 * - SMI occurs before setting TASK_RUNINNG.
3451 * (or hypervisor of virtual machine switches to other guest)
3452 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD
3453 *
3454 * To avoid it, we have to wait for releasing tsk->pi_lock which
3455 * is held by try_to_wake_up()
3456 */
23a9b748
PM
3457 raw_spin_lock_irq(&current->pi_lock);
3458 raw_spin_unlock_irq(&current->pi_lock);
9af6528e 3459
d1ccc66d 3460 /* Causes final put_task_struct in finish_task_switch(): */
9af6528e 3461 __set_current_state(TASK_DEAD);
d1ccc66d
IM
3462
3463 /* Tell freezer to ignore us: */
3464 current->flags |= PF_NOFREEZE;
3465
9af6528e
PZ
3466 __schedule(false);
3467 BUG();
d1ccc66d
IM
3468
3469 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
9af6528e 3470 for (;;)
d1ccc66d 3471 cpu_relax();
9af6528e
PZ
3472}
3473
9c40cef2
TG
3474static inline void sched_submit_work(struct task_struct *tsk)
3475{
3c7d5184 3476 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
3477 return;
3478 /*
3479 * If we are going to sleep and we have plugged IO queued,
3480 * make sure to submit it to avoid deadlocks.
3481 */
3482 if (blk_needs_flush_plug(tsk))
3483 blk_schedule_flush_plug(tsk);
3484}
3485
722a9f92 3486asmlinkage __visible void __sched schedule(void)
c259e01a 3487{
9c40cef2
TG
3488 struct task_struct *tsk = current;
3489
3490 sched_submit_work(tsk);
bfd9b2b5 3491 do {
b30f0e3f 3492 preempt_disable();
fc13aeba 3493 __schedule(false);
b30f0e3f 3494 sched_preempt_enable_no_resched();
bfd9b2b5 3495 } while (need_resched());
c259e01a 3496}
1da177e4
LT
3497EXPORT_SYMBOL(schedule);
3498
8663effb
SRV
3499/*
3500 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
3501 * state (have scheduled out non-voluntarily) by making sure that all
3502 * tasks have either left the run queue or have gone into user space.
3503 * As idle tasks do not do either, they must not ever be preempted
3504 * (schedule out non-voluntarily).
3505 *
3506 * schedule_idle() is similar to schedule_preempt_disable() except that it
3507 * never enables preemption because it does not call sched_submit_work().
3508 */
3509void __sched schedule_idle(void)
3510{
3511 /*
3512 * As this skips calling sched_submit_work(), which the idle task does
3513 * regardless because that function is a nop when the task is in a
3514 * TASK_RUNNING state, make sure this isn't used someplace that the
3515 * current task can be in any other state. Note, idle is always in the
3516 * TASK_RUNNING state.
3517 */
3518 WARN_ON_ONCE(current->state);
3519 do {
3520 __schedule(false);
3521 } while (need_resched());
3522}
3523
91d1aa43 3524#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 3525asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
3526{
3527 /*
3528 * If we come here after a random call to set_need_resched(),
3529 * or we have been woken up remotely but the IPI has not yet arrived,
3530 * we haven't yet exited the RCU idle mode. Do it here manually until
3531 * we find a better solution.
7cc78f8f
AL
3532 *
3533 * NB: There are buggy callers of this function. Ideally we
c467ea76 3534 * should warn if prev_state != CONTEXT_USER, but that will trigger
7cc78f8f 3535 * too frequently to make sense yet.
20ab65e3 3536 */
7cc78f8f 3537 enum ctx_state prev_state = exception_enter();
20ab65e3 3538 schedule();
7cc78f8f 3539 exception_exit(prev_state);
20ab65e3
FW
3540}
3541#endif
3542
c5491ea7
TG
3543/**
3544 * schedule_preempt_disabled - called with preemption disabled
3545 *
3546 * Returns with preemption disabled. Note: preempt_count must be 1
3547 */
3548void __sched schedule_preempt_disabled(void)
3549{
ba74c144 3550 sched_preempt_enable_no_resched();
c5491ea7
TG
3551 schedule();
3552 preempt_disable();
3553}
3554
06b1f808 3555static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
3556{
3557 do {
47252cfb
SR
3558 /*
3559 * Because the function tracer can trace preempt_count_sub()
3560 * and it also uses preempt_enable/disable_notrace(), if
3561 * NEED_RESCHED is set, the preempt_enable_notrace() called
3562 * by the function tracer will call this function again and
3563 * cause infinite recursion.
3564 *
3565 * Preemption must be disabled here before the function
3566 * tracer can trace. Break up preempt_disable() into two
3567 * calls. One to disable preemption without fear of being
3568 * traced. The other to still record the preemption latency,
3569 * which can also be traced by the function tracer.
3570 */
499d7955 3571 preempt_disable_notrace();
47252cfb 3572 preempt_latency_start(1);
fc13aeba 3573 __schedule(true);
47252cfb 3574 preempt_latency_stop(1);
499d7955 3575 preempt_enable_no_resched_notrace();
a18b5d01
FW
3576
3577 /*
3578 * Check again in case we missed a preemption opportunity
3579 * between schedule and now.
3580 */
a18b5d01
FW
3581 } while (need_resched());
3582}
3583
1da177e4
LT
3584#ifdef CONFIG_PREEMPT
3585/*
2ed6e34f 3586 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3587 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3588 * occur there and call schedule directly.
3589 */
722a9f92 3590asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 3591{
1da177e4
LT
3592 /*
3593 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3594 * we do not want to preempt the current task. Just return..
1da177e4 3595 */
fbb00b56 3596 if (likely(!preemptible()))
1da177e4
LT
3597 return;
3598
a18b5d01 3599 preempt_schedule_common();
1da177e4 3600}
376e2424 3601NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 3602EXPORT_SYMBOL(preempt_schedule);
009f60e2 3603
009f60e2 3604/**
4eaca0a8 3605 * preempt_schedule_notrace - preempt_schedule called by tracing
009f60e2
ON
3606 *
3607 * The tracing infrastructure uses preempt_enable_notrace to prevent
3608 * recursion and tracing preempt enabling caused by the tracing
3609 * infrastructure itself. But as tracing can happen in areas coming
3610 * from userspace or just about to enter userspace, a preempt enable
3611 * can occur before user_exit() is called. This will cause the scheduler
3612 * to be called when the system is still in usermode.
3613 *
3614 * To prevent this, the preempt_enable_notrace will use this function
3615 * instead of preempt_schedule() to exit user context if needed before
3616 * calling the scheduler.
3617 */
4eaca0a8 3618asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
009f60e2
ON
3619{
3620 enum ctx_state prev_ctx;
3621
3622 if (likely(!preemptible()))
3623 return;
3624
3625 do {
47252cfb
SR
3626 /*
3627 * Because the function tracer can trace preempt_count_sub()
3628 * and it also uses preempt_enable/disable_notrace(), if
3629 * NEED_RESCHED is set, the preempt_enable_notrace() called
3630 * by the function tracer will call this function again and
3631 * cause infinite recursion.
3632 *
3633 * Preemption must be disabled here before the function
3634 * tracer can trace. Break up preempt_disable() into two
3635 * calls. One to disable preemption without fear of being
3636 * traced. The other to still record the preemption latency,
3637 * which can also be traced by the function tracer.
3638 */
3d8f74dd 3639 preempt_disable_notrace();
47252cfb 3640 preempt_latency_start(1);
009f60e2
ON
3641 /*
3642 * Needs preempt disabled in case user_exit() is traced
3643 * and the tracer calls preempt_enable_notrace() causing
3644 * an infinite recursion.
3645 */
3646 prev_ctx = exception_enter();
fc13aeba 3647 __schedule(true);
009f60e2
ON
3648 exception_exit(prev_ctx);
3649
47252cfb 3650 preempt_latency_stop(1);
3d8f74dd 3651 preempt_enable_no_resched_notrace();
009f60e2
ON
3652 } while (need_resched());
3653}
4eaca0a8 3654EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
009f60e2 3655
32e475d7 3656#endif /* CONFIG_PREEMPT */
1da177e4
LT
3657
3658/*
2ed6e34f 3659 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3660 * off of irq context.
3661 * Note, that this is called and return with irqs disabled. This will
3662 * protect us against recursive calling from irq.
3663 */
722a9f92 3664asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 3665{
b22366cd 3666 enum ctx_state prev_state;
6478d880 3667
2ed6e34f 3668 /* Catch callers which need to be fixed */
f27dde8d 3669 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 3670
b22366cd
FW
3671 prev_state = exception_enter();
3672
3a5c359a 3673 do {
3d8f74dd 3674 preempt_disable();
3a5c359a 3675 local_irq_enable();
fc13aeba 3676 __schedule(true);
3a5c359a 3677 local_irq_disable();
3d8f74dd 3678 sched_preempt_enable_no_resched();
5ed0cec0 3679 } while (need_resched());
b22366cd
FW
3680
3681 exception_exit(prev_state);
1da177e4
LT
3682}
3683
ac6424b9 3684int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3685 void *key)
1da177e4 3686{
63859d4f 3687 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3688}
1da177e4
LT
3689EXPORT_SYMBOL(default_wake_function);
3690
b29739f9
IM
3691#ifdef CONFIG_RT_MUTEXES
3692
acd58620
PZ
3693static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
3694{
3695 if (pi_task)
3696 prio = min(prio, pi_task->prio);
3697
3698 return prio;
3699}
3700
3701static inline int rt_effective_prio(struct task_struct *p, int prio)
3702{
3703 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3704
3705 return __rt_effective_prio(pi_task, prio);
3706}
3707
b29739f9
IM
3708/*
3709 * rt_mutex_setprio - set the current priority of a task
acd58620
PZ
3710 * @p: task to boost
3711 * @pi_task: donor task
b29739f9
IM
3712 *
3713 * This function changes the 'effective' priority of a task. It does
3714 * not touch ->normal_prio like __setscheduler().
3715 *
c365c292
TG
3716 * Used by the rt_mutex code to implement priority inheritance
3717 * logic. Call site only calls if the priority of the task changed.
b29739f9 3718 */
acd58620 3719void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
b29739f9 3720{
acd58620 3721 int prio, oldprio, queued, running, queue_flag =
7a57f32a 3722 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
83ab0aa0 3723 const struct sched_class *prev_class;
eb580751
PZ
3724 struct rq_flags rf;
3725 struct rq *rq;
b29739f9 3726
acd58620
PZ
3727 /* XXX used to be waiter->prio, not waiter->task->prio */
3728 prio = __rt_effective_prio(pi_task, p->normal_prio);
3729
3730 /*
3731 * If nothing changed; bail early.
3732 */
3733 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
3734 return;
b29739f9 3735
eb580751 3736 rq = __task_rq_lock(p, &rf);
80f5c1b8 3737 update_rq_clock(rq);
acd58620
PZ
3738 /*
3739 * Set under pi_lock && rq->lock, such that the value can be used under
3740 * either lock.
3741 *
3742 * Note that there is loads of tricky to make this pointer cache work
3743 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
3744 * ensure a task is de-boosted (pi_task is set to NULL) before the
3745 * task is allowed to run again (and can exit). This ensures the pointer
3746 * points to a blocked task -- which guaratees the task is present.
3747 */
3748 p->pi_top_task = pi_task;
3749
3750 /*
3751 * For FIFO/RR we only need to set prio, if that matches we're done.
3752 */
3753 if (prio == p->prio && !dl_prio(prio))
3754 goto out_unlock;
b29739f9 3755
1c4dd99b
TG
3756 /*
3757 * Idle task boosting is a nono in general. There is one
3758 * exception, when PREEMPT_RT and NOHZ is active:
3759 *
3760 * The idle task calls get_next_timer_interrupt() and holds
3761 * the timer wheel base->lock on the CPU and another CPU wants
3762 * to access the timer (probably to cancel it). We can safely
3763 * ignore the boosting request, as the idle CPU runs this code
3764 * with interrupts disabled and will complete the lock
3765 * protected section without being interrupted. So there is no
3766 * real need to boost.
3767 */
3768 if (unlikely(p == rq->idle)) {
3769 WARN_ON(p != rq->curr);
3770 WARN_ON(p->pi_blocked_on);
3771 goto out_unlock;
3772 }
3773
b91473ff 3774 trace_sched_pi_setprio(p, pi_task);
d5f9f942 3775 oldprio = p->prio;
ff77e468
PZ
3776
3777 if (oldprio == prio)
3778 queue_flag &= ~DEQUEUE_MOVE;
3779
83ab0aa0 3780 prev_class = p->sched_class;
da0c1e65 3781 queued = task_on_rq_queued(p);
051a1d1a 3782 running = task_current(rq, p);
da0c1e65 3783 if (queued)
ff77e468 3784 dequeue_task(rq, p, queue_flag);
0e1f3483 3785 if (running)
f3cd1c4e 3786 put_prev_task(rq, p);
dd41f596 3787
2d3d891d
DF
3788 /*
3789 * Boosting condition are:
3790 * 1. -rt task is running and holds mutex A
3791 * --> -dl task blocks on mutex A
3792 *
3793 * 2. -dl task is running and holds mutex A
3794 * --> -dl task blocks on mutex A and could preempt the
3795 * running task
3796 */
3797 if (dl_prio(prio)) {
466af29b
ON
3798 if (!dl_prio(p->normal_prio) ||
3799 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d 3800 p->dl.dl_boosted = 1;
ff77e468 3801 queue_flag |= ENQUEUE_REPLENISH;
2d3d891d
DF
3802 } else
3803 p->dl.dl_boosted = 0;
aab03e05 3804 p->sched_class = &dl_sched_class;
2d3d891d
DF
3805 } else if (rt_prio(prio)) {
3806 if (dl_prio(oldprio))
3807 p->dl.dl_boosted = 0;
3808 if (oldprio < prio)
ff77e468 3809 queue_flag |= ENQUEUE_HEAD;
dd41f596 3810 p->sched_class = &rt_sched_class;
2d3d891d
DF
3811 } else {
3812 if (dl_prio(oldprio))
3813 p->dl.dl_boosted = 0;
746db944
BS
3814 if (rt_prio(oldprio))
3815 p->rt.timeout = 0;
dd41f596 3816 p->sched_class = &fair_sched_class;
2d3d891d 3817 }
dd41f596 3818
b29739f9
IM
3819 p->prio = prio;
3820
da0c1e65 3821 if (queued)
ff77e468 3822 enqueue_task(rq, p, queue_flag);
a399d233 3823 if (running)
b2bf6c31 3824 set_curr_task(rq, p);
cb469845 3825
da7a735e 3826 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3827out_unlock:
d1ccc66d
IM
3828 /* Avoid rq from going away on us: */
3829 preempt_disable();
eb580751 3830 __task_rq_unlock(rq, &rf);
4c9a4bc8
PZ
3831
3832 balance_callback(rq);
3833 preempt_enable();
b29739f9 3834}
acd58620
PZ
3835#else
3836static inline int rt_effective_prio(struct task_struct *p, int prio)
3837{
3838 return prio;
3839}
b29739f9 3840#endif
d50dde5a 3841
36c8b586 3842void set_user_nice(struct task_struct *p, long nice)
1da177e4 3843{
49bd21ef
PZ
3844 bool queued, running;
3845 int old_prio, delta;
eb580751 3846 struct rq_flags rf;
70b97a7f 3847 struct rq *rq;
1da177e4 3848
75e45d51 3849 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
3850 return;
3851 /*
3852 * We have to be careful, if called from sys_setpriority(),
3853 * the task might be in the middle of scheduling on another CPU.
3854 */
eb580751 3855 rq = task_rq_lock(p, &rf);
2fb8d367
PZ
3856 update_rq_clock(rq);
3857
1da177e4
LT
3858 /*
3859 * The RT priorities are set via sched_setscheduler(), but we still
3860 * allow the 'normal' nice value to be set - but as expected
3861 * it wont have any effect on scheduling until the task is
aab03e05 3862 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3863 */
aab03e05 3864 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3865 p->static_prio = NICE_TO_PRIO(nice);
3866 goto out_unlock;
3867 }
da0c1e65 3868 queued = task_on_rq_queued(p);
49bd21ef 3869 running = task_current(rq, p);
da0c1e65 3870 if (queued)
7a57f32a 3871 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
49bd21ef
PZ
3872 if (running)
3873 put_prev_task(rq, p);
1da177e4 3874
1da177e4 3875 p->static_prio = NICE_TO_PRIO(nice);
9059393e 3876 set_load_weight(p, true);
b29739f9
IM
3877 old_prio = p->prio;
3878 p->prio = effective_prio(p);
3879 delta = p->prio - old_prio;
1da177e4 3880
da0c1e65 3881 if (queued) {
7134b3e9 3882 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1da177e4 3883 /*
d5f9f942
AM
3884 * If the task increased its priority or is running and
3885 * lowered its priority, then reschedule its CPU:
1da177e4 3886 */
d5f9f942 3887 if (delta < 0 || (delta > 0 && task_running(rq, p)))
8875125e 3888 resched_curr(rq);
1da177e4 3889 }
49bd21ef
PZ
3890 if (running)
3891 set_curr_task(rq, p);
1da177e4 3892out_unlock:
eb580751 3893 task_rq_unlock(rq, p, &rf);
1da177e4 3894}
1da177e4
LT
3895EXPORT_SYMBOL(set_user_nice);
3896
e43379f1
MM
3897/*
3898 * can_nice - check if a task can reduce its nice value
3899 * @p: task
3900 * @nice: nice value
3901 */
36c8b586 3902int can_nice(const struct task_struct *p, const int nice)
e43379f1 3903{
d1ccc66d 3904 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
7aa2c016 3905 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 3906
78d7d407 3907 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3908 capable(CAP_SYS_NICE));
3909}
3910
1da177e4
LT
3911#ifdef __ARCH_WANT_SYS_NICE
3912
3913/*
3914 * sys_nice - change the priority of the current process.
3915 * @increment: priority increment
3916 *
3917 * sys_setpriority is a more generic, but much slower function that
3918 * does similar things.
3919 */
5add95d4 3920SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3921{
48f24c4d 3922 long nice, retval;
1da177e4
LT
3923
3924 /*
3925 * Setpriority might change our priority at the same moment.
3926 * We don't have to worry. Conceptually one call occurs first
3927 * and we have a single winner.
3928 */
a9467fa3 3929 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 3930 nice = task_nice(current) + increment;
1da177e4 3931
a9467fa3 3932 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
3933 if (increment < 0 && !can_nice(current, nice))
3934 return -EPERM;
3935
1da177e4
LT
3936 retval = security_task_setnice(current, nice);
3937 if (retval)
3938 return retval;
3939
3940 set_user_nice(current, nice);
3941 return 0;
3942}
3943
3944#endif
3945
3946/**
3947 * task_prio - return the priority value of a given task.
3948 * @p: the task in question.
3949 *
e69f6186 3950 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3951 * RT tasks are offset by -200. Normal tasks are centered
3952 * around 0, value goes from -16 to +15.
3953 */
36c8b586 3954int task_prio(const struct task_struct *p)
1da177e4
LT
3955{
3956 return p->prio - MAX_RT_PRIO;
3957}
3958
1da177e4 3959/**
d1ccc66d 3960 * idle_cpu - is a given CPU idle currently?
1da177e4 3961 * @cpu: the processor in question.
e69f6186
YB
3962 *
3963 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3964 */
3965int idle_cpu(int cpu)
3966{
908a3283
TG
3967 struct rq *rq = cpu_rq(cpu);
3968
3969 if (rq->curr != rq->idle)
3970 return 0;
3971
3972 if (rq->nr_running)
3973 return 0;
3974
3975#ifdef CONFIG_SMP
3976 if (!llist_empty(&rq->wake_list))
3977 return 0;
3978#endif
3979
3980 return 1;
1da177e4
LT
3981}
3982
1da177e4 3983/**
d1ccc66d 3984 * idle_task - return the idle task for a given CPU.
1da177e4 3985 * @cpu: the processor in question.
e69f6186 3986 *
d1ccc66d 3987 * Return: The idle task for the CPU @cpu.
1da177e4 3988 */
36c8b586 3989struct task_struct *idle_task(int cpu)
1da177e4
LT
3990{
3991 return cpu_rq(cpu)->idle;
3992}
3993
3994/**
3995 * find_process_by_pid - find a process with a matching PID value.
3996 * @pid: the pid in question.
e69f6186
YB
3997 *
3998 * The task of @pid, if found. %NULL otherwise.
1da177e4 3999 */
a9957449 4000static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4001{
228ebcbe 4002 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4003}
4004
c13db6b1
SR
4005/*
4006 * sched_setparam() passes in -1 for its policy, to let the functions
4007 * it calls know not to change it.
4008 */
4009#define SETPARAM_POLICY -1
4010
c365c292
TG
4011static void __setscheduler_params(struct task_struct *p,
4012 const struct sched_attr *attr)
1da177e4 4013{
d50dde5a
DF
4014 int policy = attr->sched_policy;
4015
c13db6b1 4016 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
4017 policy = p->policy;
4018
1da177e4 4019 p->policy = policy;
d50dde5a 4020
aab03e05
DF
4021 if (dl_policy(policy))
4022 __setparam_dl(p, attr);
39fd8fd2 4023 else if (fair_policy(policy))
d50dde5a
DF
4024 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
4025
39fd8fd2
PZ
4026 /*
4027 * __sched_setscheduler() ensures attr->sched_priority == 0 when
4028 * !rt_policy. Always setting this ensures that things like
4029 * getparam()/getattr() don't report silly values for !rt tasks.
4030 */
4031 p->rt_priority = attr->sched_priority;
383afd09 4032 p->normal_prio = normal_prio(p);
9059393e 4033 set_load_weight(p, true);
c365c292 4034}
39fd8fd2 4035
c365c292
TG
4036/* Actually do priority change: must hold pi & rq lock. */
4037static void __setscheduler(struct rq *rq, struct task_struct *p,
0782e63b 4038 const struct sched_attr *attr, bool keep_boost)
c365c292
TG
4039{
4040 __setscheduler_params(p, attr);
d50dde5a 4041
383afd09 4042 /*
0782e63b
TG
4043 * Keep a potential priority boosting if called from
4044 * sched_setscheduler().
383afd09 4045 */
acd58620 4046 p->prio = normal_prio(p);
0782e63b 4047 if (keep_boost)
acd58620 4048 p->prio = rt_effective_prio(p, p->prio);
383afd09 4049
aab03e05
DF
4050 if (dl_prio(p->prio))
4051 p->sched_class = &dl_sched_class;
4052 else if (rt_prio(p->prio))
ffd44db5
PZ
4053 p->sched_class = &rt_sched_class;
4054 else
4055 p->sched_class = &fair_sched_class;
1da177e4 4056}
aab03e05 4057
c69e8d9c 4058/*
d1ccc66d 4059 * Check the target process has a UID that matches the current process's:
c69e8d9c
DH
4060 */
4061static bool check_same_owner(struct task_struct *p)
4062{
4063 const struct cred *cred = current_cred(), *pcred;
4064 bool match;
4065
4066 rcu_read_lock();
4067 pcred = __task_cred(p);
9c806aa0
EB
4068 match = (uid_eq(cred->euid, pcred->euid) ||
4069 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
4070 rcu_read_unlock();
4071 return match;
4072}
4073
d50dde5a
DF
4074static int __sched_setscheduler(struct task_struct *p,
4075 const struct sched_attr *attr,
dbc7f069 4076 bool user, bool pi)
1da177e4 4077{
383afd09
SR
4078 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4079 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 4080 int retval, oldprio, oldpolicy = -1, queued, running;
0782e63b 4081 int new_effective_prio, policy = attr->sched_policy;
83ab0aa0 4082 const struct sched_class *prev_class;
eb580751 4083 struct rq_flags rf;
ca94c442 4084 int reset_on_fork;
7a57f32a 4085 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
eb580751 4086 struct rq *rq;
1da177e4 4087
896bbb25
SRV
4088 /* The pi code expects interrupts enabled */
4089 BUG_ON(pi && in_interrupt());
1da177e4 4090recheck:
d1ccc66d 4091 /* Double check policy once rq lock held: */
ca94c442
LP
4092 if (policy < 0) {
4093 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4094 policy = oldpolicy = p->policy;
ca94c442 4095 } else {
7479f3c9 4096 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 4097
20f9cd2a 4098 if (!valid_policy(policy))
ca94c442
LP
4099 return -EINVAL;
4100 }
4101
794a56eb 4102 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
7479f3c9
PZ
4103 return -EINVAL;
4104
1da177e4
LT
4105 /*
4106 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4107 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4108 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 4109 */
0bb040a4 4110 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 4111 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 4112 return -EINVAL;
aab03e05
DF
4113 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4114 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
4115 return -EINVAL;
4116
37e4ab3f
OC
4117 /*
4118 * Allow unprivileged RT tasks to decrease priority:
4119 */
961ccddd 4120 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 4121 if (fair_policy(policy)) {
d0ea0268 4122 if (attr->sched_nice < task_nice(p) &&
eaad4513 4123 !can_nice(p, attr->sched_nice))
d50dde5a
DF
4124 return -EPERM;
4125 }
4126
e05606d3 4127 if (rt_policy(policy)) {
a44702e8
ON
4128 unsigned long rlim_rtprio =
4129 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909 4130
d1ccc66d 4131 /* Can't set/change the rt policy: */
8dc3e909
ON
4132 if (policy != p->policy && !rlim_rtprio)
4133 return -EPERM;
4134
d1ccc66d 4135 /* Can't increase priority: */
d50dde5a
DF
4136 if (attr->sched_priority > p->rt_priority &&
4137 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
4138 return -EPERM;
4139 }
c02aa73b 4140
d44753b8
JL
4141 /*
4142 * Can't set/change SCHED_DEADLINE policy at all for now
4143 * (safest behavior); in the future we would like to allow
4144 * unprivileged DL tasks to increase their relative deadline
4145 * or reduce their runtime (both ways reducing utilization)
4146 */
4147 if (dl_policy(policy))
4148 return -EPERM;
4149
dd41f596 4150 /*
c02aa73b
DH
4151 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4152 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 4153 */
20f9cd2a 4154 if (idle_policy(p->policy) && !idle_policy(policy)) {
d0ea0268 4155 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
4156 return -EPERM;
4157 }
5fe1d75f 4158
d1ccc66d 4159 /* Can't change other user's priorities: */
c69e8d9c 4160 if (!check_same_owner(p))
37e4ab3f 4161 return -EPERM;
ca94c442 4162
d1ccc66d 4163 /* Normal users shall not reset the sched_reset_on_fork flag: */
ca94c442
LP
4164 if (p->sched_reset_on_fork && !reset_on_fork)
4165 return -EPERM;
37e4ab3f 4166 }
1da177e4 4167
725aad24 4168 if (user) {
794a56eb
JL
4169 if (attr->sched_flags & SCHED_FLAG_SUGOV)
4170 return -EINVAL;
4171
b0ae1981 4172 retval = security_task_setscheduler(p);
725aad24
JF
4173 if (retval)
4174 return retval;
4175 }
4176
b29739f9 4177 /*
d1ccc66d 4178 * Make sure no PI-waiters arrive (or leave) while we are
b29739f9 4179 * changing the priority of the task:
0122ec5b 4180 *
25985edc 4181 * To be able to change p->policy safely, the appropriate
1da177e4
LT
4182 * runqueue lock must be held.
4183 */
eb580751 4184 rq = task_rq_lock(p, &rf);
80f5c1b8 4185 update_rq_clock(rq);
dc61b1d6 4186
34f971f6 4187 /*
d1ccc66d 4188 * Changing the policy of the stop threads its a very bad idea:
34f971f6
PZ
4189 */
4190 if (p == rq->stop) {
eb580751 4191 task_rq_unlock(rq, p, &rf);
34f971f6
PZ
4192 return -EINVAL;
4193 }
4194
a51e9198 4195 /*
d6b1e911
TG
4196 * If not changing anything there's no need to proceed further,
4197 * but store a possible modification of reset_on_fork.
a51e9198 4198 */
d50dde5a 4199 if (unlikely(policy == p->policy)) {
d0ea0268 4200 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
4201 goto change;
4202 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4203 goto change;
75381608 4204 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 4205 goto change;
d50dde5a 4206
d6b1e911 4207 p->sched_reset_on_fork = reset_on_fork;
eb580751 4208 task_rq_unlock(rq, p, &rf);
a51e9198
DF
4209 return 0;
4210 }
d50dde5a 4211change:
a51e9198 4212
dc61b1d6 4213 if (user) {
332ac17e 4214#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
4215 /*
4216 * Do not allow realtime tasks into groups that have no runtime
4217 * assigned.
4218 */
4219 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
4220 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4221 !task_group_is_autogroup(task_group(p))) {
eb580751 4222 task_rq_unlock(rq, p, &rf);
dc61b1d6
PZ
4223 return -EPERM;
4224 }
dc61b1d6 4225#endif
332ac17e 4226#ifdef CONFIG_SMP
794a56eb
JL
4227 if (dl_bandwidth_enabled() && dl_policy(policy) &&
4228 !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
332ac17e 4229 cpumask_t *span = rq->rd->span;
332ac17e
DF
4230
4231 /*
4232 * Don't allow tasks with an affinity mask smaller than
4233 * the entire root_domain to become SCHED_DEADLINE. We
4234 * will also fail if there's no bandwidth available.
4235 */
e4099a5e
PZ
4236 if (!cpumask_subset(span, &p->cpus_allowed) ||
4237 rq->rd->dl_bw.bw == 0) {
eb580751 4238 task_rq_unlock(rq, p, &rf);
332ac17e
DF
4239 return -EPERM;
4240 }
4241 }
4242#endif
4243 }
dc61b1d6 4244
d1ccc66d 4245 /* Re-check policy now with rq lock held: */
1da177e4
LT
4246 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4247 policy = oldpolicy = -1;
eb580751 4248 task_rq_unlock(rq, p, &rf);
1da177e4
LT
4249 goto recheck;
4250 }
332ac17e
DF
4251
4252 /*
4253 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4254 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4255 * is available.
4256 */
06a76fe0 4257 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
eb580751 4258 task_rq_unlock(rq, p, &rf);
332ac17e
DF
4259 return -EBUSY;
4260 }
4261
c365c292
TG
4262 p->sched_reset_on_fork = reset_on_fork;
4263 oldprio = p->prio;
4264
dbc7f069
PZ
4265 if (pi) {
4266 /*
4267 * Take priority boosted tasks into account. If the new
4268 * effective priority is unchanged, we just store the new
4269 * normal parameters and do not touch the scheduler class and
4270 * the runqueue. This will be done when the task deboost
4271 * itself.
4272 */
acd58620 4273 new_effective_prio = rt_effective_prio(p, newprio);
ff77e468
PZ
4274 if (new_effective_prio == oldprio)
4275 queue_flags &= ~DEQUEUE_MOVE;
c365c292
TG
4276 }
4277
da0c1e65 4278 queued = task_on_rq_queued(p);
051a1d1a 4279 running = task_current(rq, p);
da0c1e65 4280 if (queued)
ff77e468 4281 dequeue_task(rq, p, queue_flags);
0e1f3483 4282 if (running)
f3cd1c4e 4283 put_prev_task(rq, p);
f6b53205 4284
83ab0aa0 4285 prev_class = p->sched_class;
dbc7f069 4286 __setscheduler(rq, p, attr, pi);
f6b53205 4287
da0c1e65 4288 if (queued) {
81a44c54
TG
4289 /*
4290 * We enqueue to tail when the priority of a task is
4291 * increased (user space view).
4292 */
ff77e468
PZ
4293 if (oldprio < p->prio)
4294 queue_flags |= ENQUEUE_HEAD;
1de64443 4295
ff77e468 4296 enqueue_task(rq, p, queue_flags);
81a44c54 4297 }
a399d233 4298 if (running)
b2bf6c31 4299 set_curr_task(rq, p);
cb469845 4300
da7a735e 4301 check_class_changed(rq, p, prev_class, oldprio);
d1ccc66d
IM
4302
4303 /* Avoid rq from going away on us: */
4304 preempt_disable();
eb580751 4305 task_rq_unlock(rq, p, &rf);
b29739f9 4306
dbc7f069
PZ
4307 if (pi)
4308 rt_mutex_adjust_pi(p);
95e02ca9 4309
d1ccc66d 4310 /* Run balance callbacks after we've adjusted the PI chain: */
4c9a4bc8
PZ
4311 balance_callback(rq);
4312 preempt_enable();
95e02ca9 4313
1da177e4
LT
4314 return 0;
4315}
961ccddd 4316
7479f3c9
PZ
4317static int _sched_setscheduler(struct task_struct *p, int policy,
4318 const struct sched_param *param, bool check)
4319{
4320 struct sched_attr attr = {
4321 .sched_policy = policy,
4322 .sched_priority = param->sched_priority,
4323 .sched_nice = PRIO_TO_NICE(p->static_prio),
4324 };
4325
c13db6b1
SR
4326 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4327 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
4328 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4329 policy &= ~SCHED_RESET_ON_FORK;
4330 attr.sched_policy = policy;
4331 }
4332
dbc7f069 4333 return __sched_setscheduler(p, &attr, check, true);
7479f3c9 4334}
961ccddd
RR
4335/**
4336 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4337 * @p: the task in question.
4338 * @policy: new policy.
4339 * @param: structure containing the new RT priority.
4340 *
e69f6186
YB
4341 * Return: 0 on success. An error code otherwise.
4342 *
961ccddd
RR
4343 * NOTE that the task may be already dead.
4344 */
4345int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4346 const struct sched_param *param)
961ccddd 4347{
7479f3c9 4348 return _sched_setscheduler(p, policy, param, true);
961ccddd 4349}
1da177e4
LT
4350EXPORT_SYMBOL_GPL(sched_setscheduler);
4351
d50dde5a
DF
4352int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4353{
dbc7f069 4354 return __sched_setscheduler(p, attr, true, true);
d50dde5a
DF
4355}
4356EXPORT_SYMBOL_GPL(sched_setattr);
4357
794a56eb
JL
4358int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
4359{
4360 return __sched_setscheduler(p, attr, false, true);
4361}
4362
961ccddd
RR
4363/**
4364 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4365 * @p: the task in question.
4366 * @policy: new policy.
4367 * @param: structure containing the new RT priority.
4368 *
4369 * Just like sched_setscheduler, only don't bother checking if the
4370 * current context has permission. For example, this is needed in
4371 * stop_machine(): we create temporary high priority worker threads,
4372 * but our caller might not have that capability.
e69f6186
YB
4373 *
4374 * Return: 0 on success. An error code otherwise.
961ccddd
RR
4375 */
4376int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 4377 const struct sched_param *param)
961ccddd 4378{
7479f3c9 4379 return _sched_setscheduler(p, policy, param, false);
961ccddd 4380}
84778472 4381EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
961ccddd 4382
95cdf3b7
IM
4383static int
4384do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4385{
1da177e4
LT
4386 struct sched_param lparam;
4387 struct task_struct *p;
36c8b586 4388 int retval;
1da177e4
LT
4389
4390 if (!param || pid < 0)
4391 return -EINVAL;
4392 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4393 return -EFAULT;
5fe1d75f
ON
4394
4395 rcu_read_lock();
4396 retval = -ESRCH;
1da177e4 4397 p = find_process_by_pid(pid);
5fe1d75f
ON
4398 if (p != NULL)
4399 retval = sched_setscheduler(p, policy, &lparam);
4400 rcu_read_unlock();
36c8b586 4401
1da177e4
LT
4402 return retval;
4403}
4404
d50dde5a
DF
4405/*
4406 * Mimics kernel/events/core.c perf_copy_attr().
4407 */
d1ccc66d 4408static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
d50dde5a
DF
4409{
4410 u32 size;
4411 int ret;
4412
4413 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4414 return -EFAULT;
4415
d1ccc66d 4416 /* Zero the full structure, so that a short copy will be nice: */
d50dde5a
DF
4417 memset(attr, 0, sizeof(*attr));
4418
4419 ret = get_user(size, &uattr->size);
4420 if (ret)
4421 return ret;
4422
d1ccc66d
IM
4423 /* Bail out on silly large: */
4424 if (size > PAGE_SIZE)
d50dde5a
DF
4425 goto err_size;
4426
d1ccc66d
IM
4427 /* ABI compatibility quirk: */
4428 if (!size)
d50dde5a
DF
4429 size = SCHED_ATTR_SIZE_VER0;
4430
4431 if (size < SCHED_ATTR_SIZE_VER0)
4432 goto err_size;
4433
4434 /*
4435 * If we're handed a bigger struct than we know of,
4436 * ensure all the unknown bits are 0 - i.e. new
4437 * user-space does not rely on any kernel feature
4438 * extensions we dont know about yet.
4439 */
4440 if (size > sizeof(*attr)) {
4441 unsigned char __user *addr;
4442 unsigned char __user *end;
4443 unsigned char val;
4444
4445 addr = (void __user *)uattr + sizeof(*attr);
4446 end = (void __user *)uattr + size;
4447
4448 for (; addr < end; addr++) {
4449 ret = get_user(val, addr);
4450 if (ret)
4451 return ret;
4452 if (val)
4453 goto err_size;
4454 }
4455 size = sizeof(*attr);
4456 }
4457
4458 ret = copy_from_user(attr, uattr, size);
4459 if (ret)
4460 return -EFAULT;
4461
4462 /*
d1ccc66d 4463 * XXX: Do we want to be lenient like existing syscalls; or do we want
d50dde5a
DF
4464 * to be strict and return an error on out-of-bounds values?
4465 */
75e45d51 4466 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 4467
e78c7bca 4468 return 0;
d50dde5a
DF
4469
4470err_size:
4471 put_user(sizeof(*attr), &uattr->size);
e78c7bca 4472 return -E2BIG;
d50dde5a
DF
4473}
4474
1da177e4
LT
4475/**
4476 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4477 * @pid: the pid in question.
4478 * @policy: new policy.
4479 * @param: structure containing the new RT priority.
e69f6186
YB
4480 *
4481 * Return: 0 on success. An error code otherwise.
1da177e4 4482 */
d1ccc66d 4483SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
1da177e4 4484{
c21761f1
JB
4485 if (policy < 0)
4486 return -EINVAL;
4487
1da177e4
LT
4488 return do_sched_setscheduler(pid, policy, param);
4489}
4490
4491/**
4492 * sys_sched_setparam - set/change the RT priority of a thread
4493 * @pid: the pid in question.
4494 * @param: structure containing the new RT priority.
e69f6186
YB
4495 *
4496 * Return: 0 on success. An error code otherwise.
1da177e4 4497 */
5add95d4 4498SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4499{
c13db6b1 4500 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
4501}
4502
d50dde5a
DF
4503/**
4504 * sys_sched_setattr - same as above, but with extended sched_attr
4505 * @pid: the pid in question.
5778fccf 4506 * @uattr: structure containing the extended parameters.
db66d756 4507 * @flags: for future extension.
d50dde5a 4508 */
6d35ab48
PZ
4509SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4510 unsigned int, flags)
d50dde5a
DF
4511{
4512 struct sched_attr attr;
4513 struct task_struct *p;
4514 int retval;
4515
6d35ab48 4516 if (!uattr || pid < 0 || flags)
d50dde5a
DF
4517 return -EINVAL;
4518
143cf23d
MK
4519 retval = sched_copy_attr(uattr, &attr);
4520 if (retval)
4521 return retval;
d50dde5a 4522
b14ed2c2 4523 if ((int)attr.sched_policy < 0)
dbdb2275 4524 return -EINVAL;
d50dde5a
DF
4525
4526 rcu_read_lock();
4527 retval = -ESRCH;
4528 p = find_process_by_pid(pid);
4529 if (p != NULL)
4530 retval = sched_setattr(p, &attr);
4531 rcu_read_unlock();
4532
4533 return retval;
4534}
4535
1da177e4
LT
4536/**
4537 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4538 * @pid: the pid in question.
e69f6186
YB
4539 *
4540 * Return: On success, the policy of the thread. Otherwise, a negative error
4541 * code.
1da177e4 4542 */
5add95d4 4543SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4544{
36c8b586 4545 struct task_struct *p;
3a5c359a 4546 int retval;
1da177e4
LT
4547
4548 if (pid < 0)
3a5c359a 4549 return -EINVAL;
1da177e4
LT
4550
4551 retval = -ESRCH;
5fe85be0 4552 rcu_read_lock();
1da177e4
LT
4553 p = find_process_by_pid(pid);
4554 if (p) {
4555 retval = security_task_getscheduler(p);
4556 if (!retval)
ca94c442
LP
4557 retval = p->policy
4558 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4559 }
5fe85be0 4560 rcu_read_unlock();
1da177e4
LT
4561 return retval;
4562}
4563
4564/**
ca94c442 4565 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4566 * @pid: the pid in question.
4567 * @param: structure containing the RT priority.
e69f6186
YB
4568 *
4569 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4570 * code.
1da177e4 4571 */
5add95d4 4572SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4573{
ce5f7f82 4574 struct sched_param lp = { .sched_priority = 0 };
36c8b586 4575 struct task_struct *p;
3a5c359a 4576 int retval;
1da177e4
LT
4577
4578 if (!param || pid < 0)
3a5c359a 4579 return -EINVAL;
1da177e4 4580
5fe85be0 4581 rcu_read_lock();
1da177e4
LT
4582 p = find_process_by_pid(pid);
4583 retval = -ESRCH;
4584 if (!p)
4585 goto out_unlock;
4586
4587 retval = security_task_getscheduler(p);
4588 if (retval)
4589 goto out_unlock;
4590
ce5f7f82
PZ
4591 if (task_has_rt_policy(p))
4592 lp.sched_priority = p->rt_priority;
5fe85be0 4593 rcu_read_unlock();
1da177e4
LT
4594
4595 /*
4596 * This one might sleep, we cannot do it with a spinlock held ...
4597 */
4598 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4599
1da177e4
LT
4600 return retval;
4601
4602out_unlock:
5fe85be0 4603 rcu_read_unlock();
1da177e4
LT
4604 return retval;
4605}
4606
d50dde5a
DF
4607static int sched_read_attr(struct sched_attr __user *uattr,
4608 struct sched_attr *attr,
4609 unsigned int usize)
4610{
4611 int ret;
4612
4613 if (!access_ok(VERIFY_WRITE, uattr, usize))
4614 return -EFAULT;
4615
4616 /*
4617 * If we're handed a smaller struct than we know of,
4618 * ensure all the unknown bits are 0 - i.e. old
4619 * user-space does not get uncomplete information.
4620 */
4621 if (usize < sizeof(*attr)) {
4622 unsigned char *addr;
4623 unsigned char *end;
4624
4625 addr = (void *)attr + usize;
4626 end = (void *)attr + sizeof(*attr);
4627
4628 for (; addr < end; addr++) {
4629 if (*addr)
22400674 4630 return -EFBIG;
d50dde5a
DF
4631 }
4632
4633 attr->size = usize;
4634 }
4635
4efbc454 4636 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
4637 if (ret)
4638 return -EFAULT;
4639
22400674 4640 return 0;
d50dde5a
DF
4641}
4642
4643/**
aab03e05 4644 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 4645 * @pid: the pid in question.
5778fccf 4646 * @uattr: structure containing the extended parameters.
d50dde5a 4647 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 4648 * @flags: for future extension.
d50dde5a 4649 */
6d35ab48
PZ
4650SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4651 unsigned int, size, unsigned int, flags)
d50dde5a
DF
4652{
4653 struct sched_attr attr = {
4654 .size = sizeof(struct sched_attr),
4655 };
4656 struct task_struct *p;
4657 int retval;
4658
4659 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 4660 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
4661 return -EINVAL;
4662
4663 rcu_read_lock();
4664 p = find_process_by_pid(pid);
4665 retval = -ESRCH;
4666 if (!p)
4667 goto out_unlock;
4668
4669 retval = security_task_getscheduler(p);
4670 if (retval)
4671 goto out_unlock;
4672
4673 attr.sched_policy = p->policy;
7479f3c9
PZ
4674 if (p->sched_reset_on_fork)
4675 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
4676 if (task_has_dl_policy(p))
4677 __getparam_dl(p, &attr);
4678 else if (task_has_rt_policy(p))
d50dde5a
DF
4679 attr.sched_priority = p->rt_priority;
4680 else
d0ea0268 4681 attr.sched_nice = task_nice(p);
d50dde5a
DF
4682
4683 rcu_read_unlock();
4684
4685 retval = sched_read_attr(uattr, &attr, size);
4686 return retval;
4687
4688out_unlock:
4689 rcu_read_unlock();
4690 return retval;
4691}
4692
96f874e2 4693long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4694{
5a16f3d3 4695 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4696 struct task_struct *p;
4697 int retval;
1da177e4 4698
23f5d142 4699 rcu_read_lock();
1da177e4
LT
4700
4701 p = find_process_by_pid(pid);
4702 if (!p) {
23f5d142 4703 rcu_read_unlock();
1da177e4
LT
4704 return -ESRCH;
4705 }
4706
23f5d142 4707 /* Prevent p going away */
1da177e4 4708 get_task_struct(p);
23f5d142 4709 rcu_read_unlock();
1da177e4 4710
14a40ffc
TH
4711 if (p->flags & PF_NO_SETAFFINITY) {
4712 retval = -EINVAL;
4713 goto out_put_task;
4714 }
5a16f3d3
RR
4715 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4716 retval = -ENOMEM;
4717 goto out_put_task;
4718 }
4719 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4720 retval = -ENOMEM;
4721 goto out_free_cpus_allowed;
4722 }
1da177e4 4723 retval = -EPERM;
4c44aaaf
EB
4724 if (!check_same_owner(p)) {
4725 rcu_read_lock();
4726 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4727 rcu_read_unlock();
16303ab2 4728 goto out_free_new_mask;
4c44aaaf
EB
4729 }
4730 rcu_read_unlock();
4731 }
1da177e4 4732
b0ae1981 4733 retval = security_task_setscheduler(p);
e7834f8f 4734 if (retval)
16303ab2 4735 goto out_free_new_mask;
e7834f8f 4736
e4099a5e
PZ
4737
4738 cpuset_cpus_allowed(p, cpus_allowed);
4739 cpumask_and(new_mask, in_mask, cpus_allowed);
4740
332ac17e
DF
4741 /*
4742 * Since bandwidth control happens on root_domain basis,
4743 * if admission test is enabled, we only admit -deadline
4744 * tasks allowed to run on all the CPUs in the task's
4745 * root_domain.
4746 */
4747#ifdef CONFIG_SMP
f1e3a093
KT
4748 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4749 rcu_read_lock();
4750 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 4751 retval = -EBUSY;
f1e3a093 4752 rcu_read_unlock();
16303ab2 4753 goto out_free_new_mask;
332ac17e 4754 }
f1e3a093 4755 rcu_read_unlock();
332ac17e
DF
4756 }
4757#endif
49246274 4758again:
25834c73 4759 retval = __set_cpus_allowed_ptr(p, new_mask, true);
1da177e4 4760
8707d8b8 4761 if (!retval) {
5a16f3d3
RR
4762 cpuset_cpus_allowed(p, cpus_allowed);
4763 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4764 /*
4765 * We must have raced with a concurrent cpuset
4766 * update. Just reset the cpus_allowed to the
4767 * cpuset's cpus_allowed
4768 */
5a16f3d3 4769 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4770 goto again;
4771 }
4772 }
16303ab2 4773out_free_new_mask:
5a16f3d3
RR
4774 free_cpumask_var(new_mask);
4775out_free_cpus_allowed:
4776 free_cpumask_var(cpus_allowed);
4777out_put_task:
1da177e4 4778 put_task_struct(p);
1da177e4
LT
4779 return retval;
4780}
4781
4782static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4783 struct cpumask *new_mask)
1da177e4 4784{
96f874e2
RR
4785 if (len < cpumask_size())
4786 cpumask_clear(new_mask);
4787 else if (len > cpumask_size())
4788 len = cpumask_size();
4789
1da177e4
LT
4790 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4791}
4792
4793/**
d1ccc66d 4794 * sys_sched_setaffinity - set the CPU affinity of a process
1da177e4
LT
4795 * @pid: pid of the process
4796 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
d1ccc66d 4797 * @user_mask_ptr: user-space pointer to the new CPU mask
e69f6186
YB
4798 *
4799 * Return: 0 on success. An error code otherwise.
1da177e4 4800 */
5add95d4
HC
4801SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4802 unsigned long __user *, user_mask_ptr)
1da177e4 4803{
5a16f3d3 4804 cpumask_var_t new_mask;
1da177e4
LT
4805 int retval;
4806
5a16f3d3
RR
4807 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4808 return -ENOMEM;
1da177e4 4809
5a16f3d3
RR
4810 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4811 if (retval == 0)
4812 retval = sched_setaffinity(pid, new_mask);
4813 free_cpumask_var(new_mask);
4814 return retval;
1da177e4
LT
4815}
4816
96f874e2 4817long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4818{
36c8b586 4819 struct task_struct *p;
31605683 4820 unsigned long flags;
1da177e4 4821 int retval;
1da177e4 4822
23f5d142 4823 rcu_read_lock();
1da177e4
LT
4824
4825 retval = -ESRCH;
4826 p = find_process_by_pid(pid);
4827 if (!p)
4828 goto out_unlock;
4829
e7834f8f
DQ
4830 retval = security_task_getscheduler(p);
4831 if (retval)
4832 goto out_unlock;
4833
013fdb80 4834 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4835 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4836 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4837
4838out_unlock:
23f5d142 4839 rcu_read_unlock();
1da177e4 4840
9531b62f 4841 return retval;
1da177e4
LT
4842}
4843
4844/**
d1ccc66d 4845 * sys_sched_getaffinity - get the CPU affinity of a process
1da177e4
LT
4846 * @pid: pid of the process
4847 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
d1ccc66d 4848 * @user_mask_ptr: user-space pointer to hold the current CPU mask
e69f6186 4849 *
599b4840
ZW
4850 * Return: size of CPU mask copied to user_mask_ptr on success. An
4851 * error code otherwise.
1da177e4 4852 */
5add95d4
HC
4853SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4854 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4855{
4856 int ret;
f17c8607 4857 cpumask_var_t mask;
1da177e4 4858
84fba5ec 4859 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4860 return -EINVAL;
4861 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4862 return -EINVAL;
4863
f17c8607
RR
4864 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4865 return -ENOMEM;
1da177e4 4866
f17c8607
RR
4867 ret = sched_getaffinity(pid, mask);
4868 if (ret == 0) {
8bc037fb 4869 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4870
4871 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4872 ret = -EFAULT;
4873 else
cd3d8031 4874 ret = retlen;
f17c8607
RR
4875 }
4876 free_cpumask_var(mask);
1da177e4 4877
f17c8607 4878 return ret;
1da177e4
LT
4879}
4880
4881/**
4882 * sys_sched_yield - yield the current processor to other threads.
4883 *
dd41f596
IM
4884 * This function yields the current CPU to other tasks. If there are no
4885 * other threads running on this CPU then this function will return.
e69f6186
YB
4886 *
4887 * Return: 0.
1da177e4 4888 */
5add95d4 4889SYSCALL_DEFINE0(sched_yield)
1da177e4 4890{
8a8c69c3
PZ
4891 struct rq_flags rf;
4892 struct rq *rq;
4893
4894 local_irq_disable();
4895 rq = this_rq();
4896 rq_lock(rq, &rf);
1da177e4 4897
ae92882e 4898 schedstat_inc(rq->yld_count);
4530d7ab 4899 current->sched_class->yield_task(rq);
1da177e4
LT
4900
4901 /*
4902 * Since we are going to call schedule() anyway, there's
4903 * no need to preempt or enable interrupts:
4904 */
8a8c69c3
PZ
4905 preempt_disable();
4906 rq_unlock(rq, &rf);
ba74c144 4907 sched_preempt_enable_no_resched();
1da177e4
LT
4908
4909 schedule();
4910
4911 return 0;
4912}
4913
35a773a0 4914#ifndef CONFIG_PREEMPT
02b67cc3 4915int __sched _cond_resched(void)
1da177e4 4916{
fe32d3cd 4917 if (should_resched(0)) {
a18b5d01 4918 preempt_schedule_common();
1da177e4
LT
4919 return 1;
4920 }
f79c3ad6 4921 rcu_all_qs();
1da177e4
LT
4922 return 0;
4923}
02b67cc3 4924EXPORT_SYMBOL(_cond_resched);
35a773a0 4925#endif
1da177e4
LT
4926
4927/*
613afbf8 4928 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4929 * call schedule, and on return reacquire the lock.
4930 *
41a2d6cf 4931 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4932 * operations here to prevent schedule() from being called twice (once via
4933 * spin_unlock(), once by hand).
4934 */
613afbf8 4935int __cond_resched_lock(spinlock_t *lock)
1da177e4 4936{
fe32d3cd 4937 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6df3cecb
JK
4938 int ret = 0;
4939
f607c668
PZ
4940 lockdep_assert_held(lock);
4941
4a81e832 4942 if (spin_needbreak(lock) || resched) {
1da177e4 4943 spin_unlock(lock);
d86ee480 4944 if (resched)
a18b5d01 4945 preempt_schedule_common();
95c354fe
NP
4946 else
4947 cpu_relax();
6df3cecb 4948 ret = 1;
1da177e4 4949 spin_lock(lock);
1da177e4 4950 }
6df3cecb 4951 return ret;
1da177e4 4952}
613afbf8 4953EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4954
613afbf8 4955int __sched __cond_resched_softirq(void)
1da177e4
LT
4956{
4957 BUG_ON(!in_softirq());
4958
fe32d3cd 4959 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
98d82567 4960 local_bh_enable();
a18b5d01 4961 preempt_schedule_common();
1da177e4
LT
4962 local_bh_disable();
4963 return 1;
4964 }
4965 return 0;
4966}
613afbf8 4967EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4968
1da177e4
LT
4969/**
4970 * yield - yield the current processor to other threads.
4971 *
8e3fabfd
PZ
4972 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4973 *
4974 * The scheduler is at all times free to pick the calling task as the most
4975 * eligible task to run, if removing the yield() call from your code breaks
4976 * it, its already broken.
4977 *
4978 * Typical broken usage is:
4979 *
4980 * while (!event)
d1ccc66d 4981 * yield();
8e3fabfd
PZ
4982 *
4983 * where one assumes that yield() will let 'the other' process run that will
4984 * make event true. If the current task is a SCHED_FIFO task that will never
4985 * happen. Never use yield() as a progress guarantee!!
4986 *
4987 * If you want to use yield() to wait for something, use wait_event().
4988 * If you want to use yield() to be 'nice' for others, use cond_resched().
4989 * If you still want to use yield(), do not!
1da177e4
LT
4990 */
4991void __sched yield(void)
4992{
4993 set_current_state(TASK_RUNNING);
4994 sys_sched_yield();
4995}
1da177e4
LT
4996EXPORT_SYMBOL(yield);
4997
d95f4122
MG
4998/**
4999 * yield_to - yield the current processor to another thread in
5000 * your thread group, or accelerate that thread toward the
5001 * processor it's on.
16addf95
RD
5002 * @p: target task
5003 * @preempt: whether task preemption is allowed or not
d95f4122
MG
5004 *
5005 * It's the caller's job to ensure that the target task struct
5006 * can't go away on us before we can do any checks.
5007 *
e69f6186 5008 * Return:
7b270f60
PZ
5009 * true (>0) if we indeed boosted the target task.
5010 * false (0) if we failed to boost the target.
5011 * -ESRCH if there's no task to yield to.
d95f4122 5012 */
fa93384f 5013int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
5014{
5015 struct task_struct *curr = current;
5016 struct rq *rq, *p_rq;
5017 unsigned long flags;
c3c18640 5018 int yielded = 0;
d95f4122
MG
5019
5020 local_irq_save(flags);
5021 rq = this_rq();
5022
5023again:
5024 p_rq = task_rq(p);
7b270f60
PZ
5025 /*
5026 * If we're the only runnable task on the rq and target rq also
5027 * has only one task, there's absolutely no point in yielding.
5028 */
5029 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5030 yielded = -ESRCH;
5031 goto out_irq;
5032 }
5033
d95f4122 5034 double_rq_lock(rq, p_rq);
39e24d8f 5035 if (task_rq(p) != p_rq) {
d95f4122
MG
5036 double_rq_unlock(rq, p_rq);
5037 goto again;
5038 }
5039
5040 if (!curr->sched_class->yield_to_task)
7b270f60 5041 goto out_unlock;
d95f4122
MG
5042
5043 if (curr->sched_class != p->sched_class)
7b270f60 5044 goto out_unlock;
d95f4122
MG
5045
5046 if (task_running(p_rq, p) || p->state)
7b270f60 5047 goto out_unlock;
d95f4122
MG
5048
5049 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 5050 if (yielded) {
ae92882e 5051 schedstat_inc(rq->yld_count);
6d1cafd8
VP
5052 /*
5053 * Make p's CPU reschedule; pick_next_entity takes care of
5054 * fairness.
5055 */
5056 if (preempt && rq != p_rq)
8875125e 5057 resched_curr(p_rq);
6d1cafd8 5058 }
d95f4122 5059
7b270f60 5060out_unlock:
d95f4122 5061 double_rq_unlock(rq, p_rq);
7b270f60 5062out_irq:
d95f4122
MG
5063 local_irq_restore(flags);
5064
7b270f60 5065 if (yielded > 0)
d95f4122
MG
5066 schedule();
5067
5068 return yielded;
5069}
5070EXPORT_SYMBOL_GPL(yield_to);
5071
10ab5643
TH
5072int io_schedule_prepare(void)
5073{
5074 int old_iowait = current->in_iowait;
5075
5076 current->in_iowait = 1;
5077 blk_schedule_flush_plug(current);
5078
5079 return old_iowait;
5080}
5081
5082void io_schedule_finish(int token)
5083{
5084 current->in_iowait = token;
5085}
5086
1da177e4 5087/*
41a2d6cf 5088 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5089 * that process accounting knows that this is a task in IO wait state.
1da177e4 5090 */
1da177e4
LT
5091long __sched io_schedule_timeout(long timeout)
5092{
10ab5643 5093 int token;
1da177e4
LT
5094 long ret;
5095
10ab5643 5096 token = io_schedule_prepare();
1da177e4 5097 ret = schedule_timeout(timeout);
10ab5643 5098 io_schedule_finish(token);
9cff8ade 5099
1da177e4
LT
5100 return ret;
5101}
9cff8ade 5102EXPORT_SYMBOL(io_schedule_timeout);
1da177e4 5103
10ab5643
TH
5104void io_schedule(void)
5105{
5106 int token;
5107
5108 token = io_schedule_prepare();
5109 schedule();
5110 io_schedule_finish(token);
5111}
5112EXPORT_SYMBOL(io_schedule);
5113
1da177e4
LT
5114/**
5115 * sys_sched_get_priority_max - return maximum RT priority.
5116 * @policy: scheduling class.
5117 *
e69f6186
YB
5118 * Return: On success, this syscall returns the maximum
5119 * rt_priority that can be used by a given scheduling class.
5120 * On failure, a negative error code is returned.
1da177e4 5121 */
5add95d4 5122SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5123{
5124 int ret = -EINVAL;
5125
5126 switch (policy) {
5127 case SCHED_FIFO:
5128 case SCHED_RR:
5129 ret = MAX_USER_RT_PRIO-1;
5130 break;
aab03e05 5131 case SCHED_DEADLINE:
1da177e4 5132 case SCHED_NORMAL:
b0a9499c 5133 case SCHED_BATCH:
dd41f596 5134 case SCHED_IDLE:
1da177e4
LT
5135 ret = 0;
5136 break;
5137 }
5138 return ret;
5139}
5140
5141/**
5142 * sys_sched_get_priority_min - return minimum RT priority.
5143 * @policy: scheduling class.
5144 *
e69f6186
YB
5145 * Return: On success, this syscall returns the minimum
5146 * rt_priority that can be used by a given scheduling class.
5147 * On failure, a negative error code is returned.
1da177e4 5148 */
5add95d4 5149SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5150{
5151 int ret = -EINVAL;
5152
5153 switch (policy) {
5154 case SCHED_FIFO:
5155 case SCHED_RR:
5156 ret = 1;
5157 break;
aab03e05 5158 case SCHED_DEADLINE:
1da177e4 5159 case SCHED_NORMAL:
b0a9499c 5160 case SCHED_BATCH:
dd41f596 5161 case SCHED_IDLE:
1da177e4
LT
5162 ret = 0;
5163 }
5164 return ret;
5165}
5166
abca5fc5 5167static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
1da177e4 5168{
36c8b586 5169 struct task_struct *p;
a4ec24b4 5170 unsigned int time_slice;
eb580751 5171 struct rq_flags rf;
dba091b9 5172 struct rq *rq;
3a5c359a 5173 int retval;
1da177e4
LT
5174
5175 if (pid < 0)
3a5c359a 5176 return -EINVAL;
1da177e4
LT
5177
5178 retval = -ESRCH;
1a551ae7 5179 rcu_read_lock();
1da177e4
LT
5180 p = find_process_by_pid(pid);
5181 if (!p)
5182 goto out_unlock;
5183
5184 retval = security_task_getscheduler(p);
5185 if (retval)
5186 goto out_unlock;
5187
eb580751 5188 rq = task_rq_lock(p, &rf);
a57beec5
PZ
5189 time_slice = 0;
5190 if (p->sched_class->get_rr_interval)
5191 time_slice = p->sched_class->get_rr_interval(rq, p);
eb580751 5192 task_rq_unlock(rq, p, &rf);
a4ec24b4 5193
1a551ae7 5194 rcu_read_unlock();
abca5fc5
AV
5195 jiffies_to_timespec64(time_slice, t);
5196 return 0;
3a5c359a 5197
1da177e4 5198out_unlock:
1a551ae7 5199 rcu_read_unlock();
1da177e4
LT
5200 return retval;
5201}
5202
2064a5ab
RD
5203/**
5204 * sys_sched_rr_get_interval - return the default timeslice of a process.
5205 * @pid: pid of the process.
5206 * @interval: userspace pointer to the timeslice value.
5207 *
5208 * this syscall writes the default timeslice value of a given process
5209 * into the user-space timespec buffer. A value of '0' means infinity.
5210 *
5211 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5212 * an error code.
5213 */
abca5fc5
AV
5214SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5215 struct timespec __user *, interval)
5216{
5217 struct timespec64 t;
5218 int retval = sched_rr_get_interval(pid, &t);
5219
5220 if (retval == 0)
5221 retval = put_timespec64(&t, interval);
5222
5223 return retval;
5224}
5225
5226#ifdef CONFIG_COMPAT
5227COMPAT_SYSCALL_DEFINE2(sched_rr_get_interval,
5228 compat_pid_t, pid,
5229 struct compat_timespec __user *, interval)
5230{
5231 struct timespec64 t;
5232 int retval = sched_rr_get_interval(pid, &t);
5233
5234 if (retval == 0)
5235 retval = compat_put_timespec64(&t, interval);
5236 return retval;
5237}
5238#endif
5239
82a1fcb9 5240void sched_show_task(struct task_struct *p)
1da177e4 5241{
1da177e4 5242 unsigned long free = 0;
4e79752c 5243 int ppid;
c930b2c0 5244
38200502
TH
5245 if (!try_get_task_stack(p))
5246 return;
20435d84
XX
5247
5248 printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));
5249
5250 if (p->state == TASK_RUNNING)
3df0fc5b 5251 printk(KERN_CONT " running task ");
1da177e4 5252#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5253 free = stack_not_used(p);
1da177e4 5254#endif
a90e984c 5255 ppid = 0;
4e79752c 5256 rcu_read_lock();
a90e984c
ON
5257 if (pid_alive(p))
5258 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 5259 rcu_read_unlock();
3df0fc5b 5260 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 5261 task_pid_nr(p), ppid,
aa47b7e0 5262 (unsigned long)task_thread_info(p)->flags);
1da177e4 5263
3d1cb205 5264 print_worker_info(KERN_INFO, p);
5fb5e6de 5265 show_stack(p, NULL);
38200502 5266 put_task_stack(p);
1da177e4 5267}
0032f4e8 5268EXPORT_SYMBOL_GPL(sched_show_task);
1da177e4 5269
5d68cc95
PZ
5270static inline bool
5271state_filter_match(unsigned long state_filter, struct task_struct *p)
5272{
5273 /* no filter, everything matches */
5274 if (!state_filter)
5275 return true;
5276
5277 /* filter, but doesn't match */
5278 if (!(p->state & state_filter))
5279 return false;
5280
5281 /*
5282 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
5283 * TASK_KILLABLE).
5284 */
5285 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
5286 return false;
5287
5288 return true;
5289}
5290
5291
e59e2ae2 5292void show_state_filter(unsigned long state_filter)
1da177e4 5293{
36c8b586 5294 struct task_struct *g, *p;
1da177e4 5295
4bd77321 5296#if BITS_PER_LONG == 32
3df0fc5b
PZ
5297 printk(KERN_INFO
5298 " task PC stack pid father\n");
1da177e4 5299#else
3df0fc5b
PZ
5300 printk(KERN_INFO
5301 " task PC stack pid father\n");
1da177e4 5302#endif
510f5acc 5303 rcu_read_lock();
5d07f420 5304 for_each_process_thread(g, p) {
1da177e4
LT
5305 /*
5306 * reset the NMI-timeout, listing all files on a slow
25985edc 5307 * console might take a lot of time:
57675cb9
AR
5308 * Also, reset softlockup watchdogs on all CPUs, because
5309 * another CPU might be blocked waiting for us to process
5310 * an IPI.
1da177e4
LT
5311 */
5312 touch_nmi_watchdog();
57675cb9 5313 touch_all_softlockup_watchdogs();
5d68cc95 5314 if (state_filter_match(state_filter, p))
82a1fcb9 5315 sched_show_task(p);
5d07f420 5316 }
1da177e4 5317
dd41f596 5318#ifdef CONFIG_SCHED_DEBUG
fb90a6e9
RV
5319 if (!state_filter)
5320 sysrq_sched_debug_show();
dd41f596 5321#endif
510f5acc 5322 rcu_read_unlock();
e59e2ae2
IM
5323 /*
5324 * Only show locks if all tasks are dumped:
5325 */
93335a21 5326 if (!state_filter)
e59e2ae2 5327 debug_show_all_locks();
1da177e4
LT
5328}
5329
f340c0d1
IM
5330/**
5331 * init_idle - set up an idle thread for a given CPU
5332 * @idle: task in question
d1ccc66d 5333 * @cpu: CPU the idle task belongs to
f340c0d1
IM
5334 *
5335 * NOTE: this function does not set the idle thread's NEED_RESCHED
5336 * flag, to make booting more robust.
5337 */
0db0628d 5338void init_idle(struct task_struct *idle, int cpu)
1da177e4 5339{
70b97a7f 5340 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5341 unsigned long flags;
5342
25834c73
PZ
5343 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5344 raw_spin_lock(&rq->lock);
5cbd54ef 5345
5e1576ed 5346 __sched_fork(0, idle);
06b83b5f 5347 idle->state = TASK_RUNNING;
dd41f596 5348 idle->se.exec_start = sched_clock();
c1de45ca 5349 idle->flags |= PF_IDLE;
dd41f596 5350
e1b77c92
MR
5351 kasan_unpoison_task_stack(idle);
5352
de9b8f5d
PZ
5353#ifdef CONFIG_SMP
5354 /*
5355 * Its possible that init_idle() gets called multiple times on a task,
5356 * in that case do_set_cpus_allowed() will not do the right thing.
5357 *
5358 * And since this is boot we can forgo the serialization.
5359 */
5360 set_cpus_allowed_common(idle, cpumask_of(cpu));
5361#endif
6506cf6c
PZ
5362 /*
5363 * We're having a chicken and egg problem, even though we are
d1ccc66d 5364 * holding rq->lock, the CPU isn't yet set to this CPU so the
6506cf6c
PZ
5365 * lockdep check in task_group() will fail.
5366 *
5367 * Similar case to sched_fork(). / Alternatively we could
5368 * use task_rq_lock() here and obtain the other rq->lock.
5369 *
5370 * Silence PROVE_RCU
5371 */
5372 rcu_read_lock();
dd41f596 5373 __set_task_cpu(idle, cpu);
6506cf6c 5374 rcu_read_unlock();
1da177e4 5375
1da177e4 5376 rq->curr = rq->idle = idle;
da0c1e65 5377 idle->on_rq = TASK_ON_RQ_QUEUED;
de9b8f5d 5378#ifdef CONFIG_SMP
3ca7a440 5379 idle->on_cpu = 1;
4866cde0 5380#endif
25834c73
PZ
5381 raw_spin_unlock(&rq->lock);
5382 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
1da177e4
LT
5383
5384 /* Set the preempt count _outside_ the spinlocks! */
01028747 5385 init_idle_preempt_count(idle, cpu);
55cd5340 5386
dd41f596
IM
5387 /*
5388 * The idle tasks have their own, simple scheduling class:
5389 */
5390 idle->sched_class = &idle_sched_class;
868baf07 5391 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 5392 vtime_init_idle(idle, cpu);
de9b8f5d 5393#ifdef CONFIG_SMP
f1c6f1a7
CE
5394 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5395#endif
19978ca6
IM
5396}
5397
e1d4eeec
NP
5398#ifdef CONFIG_SMP
5399
f82f8042
JL
5400int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5401 const struct cpumask *trial)
5402{
06a76fe0 5403 int ret = 1;
f82f8042 5404
bb2bc55a
MG
5405 if (!cpumask_weight(cur))
5406 return ret;
5407
06a76fe0 5408 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
f82f8042
JL
5409
5410 return ret;
5411}
5412
7f51412a
JL
5413int task_can_attach(struct task_struct *p,
5414 const struct cpumask *cs_cpus_allowed)
5415{
5416 int ret = 0;
5417
5418 /*
5419 * Kthreads which disallow setaffinity shouldn't be moved
d1ccc66d 5420 * to a new cpuset; we don't want to change their CPU
7f51412a
JL
5421 * affinity and isolating such threads by their set of
5422 * allowed nodes is unnecessary. Thus, cpusets are not
5423 * applicable for such threads. This prevents checking for
5424 * success of set_cpus_allowed_ptr() on all attached tasks
5425 * before cpus_allowed may be changed.
5426 */
5427 if (p->flags & PF_NO_SETAFFINITY) {
5428 ret = -EINVAL;
5429 goto out;
5430 }
5431
7f51412a 5432 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
06a76fe0
NP
5433 cs_cpus_allowed))
5434 ret = dl_task_can_attach(p, cs_cpus_allowed);
7f51412a 5435
7f51412a
JL
5436out:
5437 return ret;
5438}
5439
f2cb1360 5440bool sched_smp_initialized __read_mostly;
e26fbffd 5441
e6628d5b
MG
5442#ifdef CONFIG_NUMA_BALANCING
5443/* Migrate current task p to target_cpu */
5444int migrate_task_to(struct task_struct *p, int target_cpu)
5445{
5446 struct migration_arg arg = { p, target_cpu };
5447 int curr_cpu = task_cpu(p);
5448
5449 if (curr_cpu == target_cpu)
5450 return 0;
5451
0c98d344 5452 if (!cpumask_test_cpu(target_cpu, &p->cpus_allowed))
e6628d5b
MG
5453 return -EINVAL;
5454
5455 /* TODO: This is not properly updating schedstats */
5456
286549dc 5457 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
5458 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5459}
0ec8aa00
PZ
5460
5461/*
5462 * Requeue a task on a given node and accurately track the number of NUMA
5463 * tasks on the runqueues
5464 */
5465void sched_setnuma(struct task_struct *p, int nid)
5466{
da0c1e65 5467 bool queued, running;
eb580751
PZ
5468 struct rq_flags rf;
5469 struct rq *rq;
0ec8aa00 5470
eb580751 5471 rq = task_rq_lock(p, &rf);
da0c1e65 5472 queued = task_on_rq_queued(p);
0ec8aa00
PZ
5473 running = task_current(rq, p);
5474
da0c1e65 5475 if (queued)
1de64443 5476 dequeue_task(rq, p, DEQUEUE_SAVE);
0ec8aa00 5477 if (running)
f3cd1c4e 5478 put_prev_task(rq, p);
0ec8aa00
PZ
5479
5480 p->numa_preferred_nid = nid;
0ec8aa00 5481
da0c1e65 5482 if (queued)
7134b3e9 5483 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
a399d233 5484 if (running)
b2bf6c31 5485 set_curr_task(rq, p);
eb580751 5486 task_rq_unlock(rq, p, &rf);
0ec8aa00 5487}
5cc389bc 5488#endif /* CONFIG_NUMA_BALANCING */
f7b4cddc 5489
1da177e4 5490#ifdef CONFIG_HOTPLUG_CPU
054b9108 5491/*
d1ccc66d 5492 * Ensure that the idle task is using init_mm right before its CPU goes
48c5ccae 5493 * offline.
054b9108 5494 */
48c5ccae 5495void idle_task_exit(void)
1da177e4 5496{
48c5ccae 5497 struct mm_struct *mm = current->active_mm;
e76bd8d9 5498
48c5ccae 5499 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 5500
a53efe5f 5501 if (mm != &init_mm) {
252d2a41 5502 switch_mm(mm, &init_mm, current);
a53efe5f
MS
5503 finish_arch_post_lock_switch();
5504 }
48c5ccae 5505 mmdrop(mm);
1da177e4
LT
5506}
5507
5508/*
5d180232
PZ
5509 * Since this CPU is going 'away' for a while, fold any nr_active delta
5510 * we might have. Assumes we're called after migrate_tasks() so that the
d60585c5
TG
5511 * nr_active count is stable. We need to take the teardown thread which
5512 * is calling this into account, so we hand in adjust = 1 to the load
5513 * calculation.
5d180232
PZ
5514 *
5515 * Also see the comment "Global load-average calculations".
1da177e4 5516 */
5d180232 5517static void calc_load_migrate(struct rq *rq)
1da177e4 5518{
d60585c5 5519 long delta = calc_load_fold_active(rq, 1);
5d180232
PZ
5520 if (delta)
5521 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
5522}
5523
3f1d2a31
PZ
5524static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5525{
5526}
5527
5528static const struct sched_class fake_sched_class = {
5529 .put_prev_task = put_prev_task_fake,
5530};
5531
5532static struct task_struct fake_task = {
5533 /*
5534 * Avoid pull_{rt,dl}_task()
5535 */
5536 .prio = MAX_PRIO + 1,
5537 .sched_class = &fake_sched_class,
5538};
5539
48f24c4d 5540/*
48c5ccae
PZ
5541 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5542 * try_to_wake_up()->select_task_rq().
5543 *
5544 * Called with rq->lock held even though we'er in stop_machine() and
5545 * there's no concurrency possible, we hold the required locks anyway
5546 * because of lock validation efforts.
1da177e4 5547 */
8a8c69c3 5548static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
1da177e4 5549{
5e16bbc2 5550 struct rq *rq = dead_rq;
48c5ccae 5551 struct task_struct *next, *stop = rq->stop;
8a8c69c3 5552 struct rq_flags orf = *rf;
48c5ccae 5553 int dest_cpu;
1da177e4
LT
5554
5555 /*
48c5ccae
PZ
5556 * Fudge the rq selection such that the below task selection loop
5557 * doesn't get stuck on the currently eligible stop task.
5558 *
5559 * We're currently inside stop_machine() and the rq is either stuck
5560 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5561 * either way we should never end up calling schedule() until we're
5562 * done here.
1da177e4 5563 */
48c5ccae 5564 rq->stop = NULL;
48f24c4d 5565
77bd3970
FW
5566 /*
5567 * put_prev_task() and pick_next_task() sched
5568 * class method both need to have an up-to-date
5569 * value of rq->clock[_task]
5570 */
5571 update_rq_clock(rq);
5572
5e16bbc2 5573 for (;;) {
48c5ccae
PZ
5574 /*
5575 * There's this thread running, bail when that's the only
d1ccc66d 5576 * remaining thread:
48c5ccae
PZ
5577 */
5578 if (rq->nr_running == 1)
dd41f596 5579 break;
48c5ccae 5580
cbce1a68 5581 /*
d1ccc66d 5582 * pick_next_task() assumes pinned rq->lock:
cbce1a68 5583 */
8a8c69c3 5584 next = pick_next_task(rq, &fake_task, rf);
48c5ccae 5585 BUG_ON(!next);
5b713a3d 5586 put_prev_task(rq, next);
e692ab53 5587
5473e0cc
WL
5588 /*
5589 * Rules for changing task_struct::cpus_allowed are holding
5590 * both pi_lock and rq->lock, such that holding either
5591 * stabilizes the mask.
5592 *
5593 * Drop rq->lock is not quite as disastrous as it usually is
5594 * because !cpu_active at this point, which means load-balance
5595 * will not interfere. Also, stop-machine.
5596 */
8a8c69c3 5597 rq_unlock(rq, rf);
5473e0cc 5598 raw_spin_lock(&next->pi_lock);
8a8c69c3 5599 rq_relock(rq, rf);
5473e0cc
WL
5600
5601 /*
5602 * Since we're inside stop-machine, _nothing_ should have
5603 * changed the task, WARN if weird stuff happened, because in
5604 * that case the above rq->lock drop is a fail too.
5605 */
5606 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5607 raw_spin_unlock(&next->pi_lock);
5608 continue;
5609 }
5610
48c5ccae 5611 /* Find suitable destination for @next, with force if needed. */
5e16bbc2 5612 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
8a8c69c3 5613 rq = __migrate_task(rq, rf, next, dest_cpu);
5e16bbc2 5614 if (rq != dead_rq) {
8a8c69c3 5615 rq_unlock(rq, rf);
5e16bbc2 5616 rq = dead_rq;
8a8c69c3
PZ
5617 *rf = orf;
5618 rq_relock(rq, rf);
5e16bbc2 5619 }
5473e0cc 5620 raw_spin_unlock(&next->pi_lock);
1da177e4 5621 }
dce48a84 5622
48c5ccae 5623 rq->stop = stop;
dce48a84 5624}
1da177e4
LT
5625#endif /* CONFIG_HOTPLUG_CPU */
5626
f2cb1360 5627void set_rq_online(struct rq *rq)
1f11eb6a
GH
5628{
5629 if (!rq->online) {
5630 const struct sched_class *class;
5631
c6c4927b 5632 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5633 rq->online = 1;
5634
5635 for_each_class(class) {
5636 if (class->rq_online)
5637 class->rq_online(rq);
5638 }
5639 }
5640}
5641
f2cb1360 5642void set_rq_offline(struct rq *rq)
1f11eb6a
GH
5643{
5644 if (rq->online) {
5645 const struct sched_class *class;
5646
5647 for_each_class(class) {
5648 if (class->rq_offline)
5649 class->rq_offline(rq);
5650 }
5651
c6c4927b 5652 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5653 rq->online = 0;
5654 }
5655}
5656
9cf7243d 5657static void set_cpu_rq_start_time(unsigned int cpu)
1da177e4 5658{
969c7921 5659 struct rq *rq = cpu_rq(cpu);
1da177e4 5660
a803f026
CM
5661 rq->age_stamp = sched_clock_cpu(cpu);
5662}
5663
d1ccc66d
IM
5664/*
5665 * used to mark begin/end of suspend/resume:
5666 */
5667static int num_cpus_frozen;
d35be8ba 5668
1da177e4 5669/*
3a101d05
TH
5670 * Update cpusets according to cpu_active mask. If cpusets are
5671 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
5672 * around partition_sched_domains().
d35be8ba
SB
5673 *
5674 * If we come here as part of a suspend/resume, don't touch cpusets because we
5675 * want to restore it back to its original state upon resume anyway.
1da177e4 5676 */
40190a78 5677static void cpuset_cpu_active(void)
e761b772 5678{
40190a78 5679 if (cpuhp_tasks_frozen) {
d35be8ba
SB
5680 /*
5681 * num_cpus_frozen tracks how many CPUs are involved in suspend
5682 * resume sequence. As long as this is not the last online
5683 * operation in the resume sequence, just build a single sched
5684 * domain, ignoring cpusets.
5685 */
50e76632
PZ
5686 partition_sched_domains(1, NULL, NULL);
5687 if (--num_cpus_frozen)
135fb3e1 5688 return;
d35be8ba
SB
5689 /*
5690 * This is the last CPU online operation. So fall through and
5691 * restore the original sched domains by considering the
5692 * cpuset configurations.
5693 */
50e76632 5694 cpuset_force_rebuild();
3a101d05 5695 }
30e03acd 5696 cpuset_update_active_cpus();
3a101d05 5697}
e761b772 5698
40190a78 5699static int cpuset_cpu_inactive(unsigned int cpu)
3a101d05 5700{
40190a78 5701 if (!cpuhp_tasks_frozen) {
06a76fe0 5702 if (dl_cpu_busy(cpu))
135fb3e1 5703 return -EBUSY;
30e03acd 5704 cpuset_update_active_cpus();
135fb3e1 5705 } else {
d35be8ba
SB
5706 num_cpus_frozen++;
5707 partition_sched_domains(1, NULL, NULL);
e761b772 5708 }
135fb3e1 5709 return 0;
e761b772 5710}
e761b772 5711
40190a78 5712int sched_cpu_activate(unsigned int cpu)
135fb3e1 5713{
7d976699 5714 struct rq *rq = cpu_rq(cpu);
8a8c69c3 5715 struct rq_flags rf;
7d976699 5716
40190a78 5717 set_cpu_active(cpu, true);
135fb3e1 5718
40190a78 5719 if (sched_smp_initialized) {
135fb3e1 5720 sched_domains_numa_masks_set(cpu);
40190a78 5721 cpuset_cpu_active();
e761b772 5722 }
7d976699
TG
5723
5724 /*
5725 * Put the rq online, if not already. This happens:
5726 *
5727 * 1) In the early boot process, because we build the real domains
d1ccc66d 5728 * after all CPUs have been brought up.
7d976699
TG
5729 *
5730 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
5731 * domains.
5732 */
8a8c69c3 5733 rq_lock_irqsave(rq, &rf);
7d976699
TG
5734 if (rq->rd) {
5735 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5736 set_rq_online(rq);
5737 }
8a8c69c3 5738 rq_unlock_irqrestore(rq, &rf);
7d976699
TG
5739
5740 update_max_interval();
5741
40190a78 5742 return 0;
135fb3e1
TG
5743}
5744
40190a78 5745int sched_cpu_deactivate(unsigned int cpu)
135fb3e1 5746{
135fb3e1
TG
5747 int ret;
5748
40190a78 5749 set_cpu_active(cpu, false);
b2454caa
PZ
5750 /*
5751 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
5752 * users of this state to go away such that all new such users will
5753 * observe it.
5754 *
b2454caa
PZ
5755 * Do sync before park smpboot threads to take care the rcu boost case.
5756 */
d7d34d5e 5757 synchronize_rcu_mult(call_rcu, call_rcu_sched);
40190a78
TG
5758
5759 if (!sched_smp_initialized)
5760 return 0;
5761
5762 ret = cpuset_cpu_inactive(cpu);
5763 if (ret) {
5764 set_cpu_active(cpu, true);
5765 return ret;
135fb3e1 5766 }
40190a78
TG
5767 sched_domains_numa_masks_clear(cpu);
5768 return 0;
135fb3e1
TG
5769}
5770
94baf7a5
TG
5771static void sched_rq_cpu_starting(unsigned int cpu)
5772{
5773 struct rq *rq = cpu_rq(cpu);
5774
5775 rq->calc_load_update = calc_load_update;
94baf7a5
TG
5776 update_max_interval();
5777}
5778
135fb3e1
TG
5779int sched_cpu_starting(unsigned int cpu)
5780{
5781 set_cpu_rq_start_time(cpu);
94baf7a5 5782 sched_rq_cpu_starting(cpu);
135fb3e1 5783 return 0;
e761b772 5784}
e761b772 5785
f2785ddb
TG
5786#ifdef CONFIG_HOTPLUG_CPU
5787int sched_cpu_dying(unsigned int cpu)
5788{
5789 struct rq *rq = cpu_rq(cpu);
8a8c69c3 5790 struct rq_flags rf;
f2785ddb
TG
5791
5792 /* Handle pending wakeups and then migrate everything off */
5793 sched_ttwu_pending();
8a8c69c3
PZ
5794
5795 rq_lock_irqsave(rq, &rf);
f2785ddb
TG
5796 if (rq->rd) {
5797 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5798 set_rq_offline(rq);
5799 }
8a8c69c3 5800 migrate_tasks(rq, &rf);
f2785ddb 5801 BUG_ON(rq->nr_running != 1);
8a8c69c3
PZ
5802 rq_unlock_irqrestore(rq, &rf);
5803
f2785ddb
TG
5804 calc_load_migrate(rq);
5805 update_max_interval();
20a5c8cc 5806 nohz_balance_exit_idle(cpu);
e5ef27d0 5807 hrtick_clear(rq);
f2785ddb
TG
5808 return 0;
5809}
5810#endif
5811
1b568f0a
PZ
5812#ifdef CONFIG_SCHED_SMT
5813DEFINE_STATIC_KEY_FALSE(sched_smt_present);
5814
5815static void sched_init_smt(void)
5816{
5817 /*
5818 * We've enumerated all CPUs and will assume that if any CPU
5819 * has SMT siblings, CPU0 will too.
5820 */
5821 if (cpumask_weight(cpu_smt_mask(0)) > 1)
5822 static_branch_enable(&sched_smt_present);
5823}
5824#else
5825static inline void sched_init_smt(void) { }
5826#endif
5827
1da177e4
LT
5828void __init sched_init_smp(void)
5829{
cb83b629
PZ
5830 sched_init_numa();
5831
6acce3ef
PZ
5832 /*
5833 * There's no userspace yet to cause hotplug operations; hence all the
d1ccc66d 5834 * CPU masks are stable and all blatant races in the below code cannot
6acce3ef
PZ
5835 * happen.
5836 */
712555ee 5837 mutex_lock(&sched_domains_mutex);
8d5dc512 5838 sched_init_domains(cpu_active_mask);
712555ee 5839 mutex_unlock(&sched_domains_mutex);
e761b772 5840
5c1e1767 5841 /* Move init over to a non-isolated CPU */
edb93821 5842 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
5c1e1767 5843 BUG();
19978ca6 5844 sched_init_granularity();
4212823f 5845
0e3900e6 5846 init_sched_rt_class();
1baca4ce 5847 init_sched_dl_class();
1b568f0a
PZ
5848
5849 sched_init_smt();
5850
e26fbffd 5851 sched_smp_initialized = true;
1da177e4 5852}
e26fbffd
TG
5853
5854static int __init migration_init(void)
5855{
94baf7a5 5856 sched_rq_cpu_starting(smp_processor_id());
e26fbffd 5857 return 0;
1da177e4 5858}
e26fbffd
TG
5859early_initcall(migration_init);
5860
1da177e4
LT
5861#else
5862void __init sched_init_smp(void)
5863{
19978ca6 5864 sched_init_granularity();
1da177e4
LT
5865}
5866#endif /* CONFIG_SMP */
5867
5868int in_sched_functions(unsigned long addr)
5869{
1da177e4
LT
5870 return in_lock_functions(addr) ||
5871 (addr >= (unsigned long)__sched_text_start
5872 && addr < (unsigned long)__sched_text_end);
5873}
5874
029632fb 5875#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
5876/*
5877 * Default task group.
5878 * Every task in system belongs to this group at bootup.
5879 */
029632fb 5880struct task_group root_task_group;
35cf4e50 5881LIST_HEAD(task_groups);
b0367629
WL
5882
5883/* Cacheline aligned slab cache for task_group */
5884static struct kmem_cache *task_group_cache __read_mostly;
052f1dc7 5885#endif
6f505b16 5886
e6252c3e 5887DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
10e2f1ac 5888DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
6f505b16 5889
1da177e4
LT
5890void __init sched_init(void)
5891{
dd41f596 5892 int i, j;
434d53b0
MT
5893 unsigned long alloc_size = 0, ptr;
5894
9881b024 5895 sched_clock_init();
5822a454 5896 wait_bit_init();
9dcb8b68 5897
434d53b0
MT
5898#ifdef CONFIG_FAIR_GROUP_SCHED
5899 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5900#endif
5901#ifdef CONFIG_RT_GROUP_SCHED
5902 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5903#endif
434d53b0 5904 if (alloc_size) {
36b7b6d4 5905 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
5906
5907#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 5908 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
5909 ptr += nr_cpu_ids * sizeof(void **);
5910
07e06b01 5911 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 5912 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 5913
6d6bc0ad 5914#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 5915#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 5916 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
5917 ptr += nr_cpu_ids * sizeof(void **);
5918
07e06b01 5919 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
5920 ptr += nr_cpu_ids * sizeof(void **);
5921
6d6bc0ad 5922#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 5923 }
df7c8e84 5924#ifdef CONFIG_CPUMASK_OFFSTACK
b74e6278
AT
5925 for_each_possible_cpu(i) {
5926 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
5927 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
10e2f1ac
PZ
5928 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
5929 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
434d53b0 5930 }
b74e6278 5931#endif /* CONFIG_CPUMASK_OFFSTACK */
dd41f596 5932
d1ccc66d
IM
5933 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
5934 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
332ac17e 5935
57d885fe
GH
5936#ifdef CONFIG_SMP
5937 init_defrootdomain();
5938#endif
5939
d0b27fa7 5940#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 5941 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 5942 global_rt_period(), global_rt_runtime());
6d6bc0ad 5943#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 5944
7c941438 5945#ifdef CONFIG_CGROUP_SCHED
b0367629
WL
5946 task_group_cache = KMEM_CACHE(task_group, 0);
5947
07e06b01
YZ
5948 list_add(&root_task_group.list, &task_groups);
5949 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 5950 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 5951 autogroup_init(&init_task);
7c941438 5952#endif /* CONFIG_CGROUP_SCHED */
6f505b16 5953
0a945022 5954 for_each_possible_cpu(i) {
70b97a7f 5955 struct rq *rq;
1da177e4
LT
5956
5957 rq = cpu_rq(i);
05fa785c 5958 raw_spin_lock_init(&rq->lock);
7897986b 5959 rq->nr_running = 0;
dce48a84
TG
5960 rq->calc_load_active = 0;
5961 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 5962 init_cfs_rq(&rq->cfs);
07c54f7a
AV
5963 init_rt_rq(&rq->rt);
5964 init_dl_rq(&rq->dl);
dd41f596 5965#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 5966 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 5967 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9c2791f9 5968 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
354d60c2 5969 /*
d1ccc66d 5970 * How much CPU bandwidth does root_task_group get?
354d60c2
DG
5971 *
5972 * In case of task-groups formed thr' the cgroup filesystem, it
d1ccc66d
IM
5973 * gets 100% of the CPU resources in the system. This overall
5974 * system CPU resource is divided among the tasks of
07e06b01 5975 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
5976 * based on each entity's (task or task-group's) weight
5977 * (se->load.weight).
5978 *
07e06b01 5979 * In other words, if root_task_group has 10 tasks of weight
354d60c2 5980 * 1024) and two child groups A0 and A1 (of weight 1024 each),
d1ccc66d 5981 * then A0's share of the CPU resource is:
354d60c2 5982 *
0d905bca 5983 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 5984 *
07e06b01
YZ
5985 * We achieve this by letting root_task_group's tasks sit
5986 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 5987 */
ab84d31e 5988 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 5989 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
5990#endif /* CONFIG_FAIR_GROUP_SCHED */
5991
5992 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 5993#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 5994 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 5995#endif
1da177e4 5996
dd41f596
IM
5997 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
5998 rq->cpu_load[j] = 0;
fdf3e95d 5999
1da177e4 6000#ifdef CONFIG_SMP
41c7ce9a 6001 rq->sd = NULL;
57d885fe 6002 rq->rd = NULL;
ca6d75e6 6003 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
e3fca9e7 6004 rq->balance_callback = NULL;
1da177e4 6005 rq->active_balance = 0;
dd41f596 6006 rq->next_balance = jiffies;
1da177e4 6007 rq->push_cpu = 0;
0a2966b4 6008 rq->cpu = i;
1f11eb6a 6009 rq->online = 0;
eae0c9df
MG
6010 rq->idle_stamp = 0;
6011 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 6012 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
6013
6014 INIT_LIST_HEAD(&rq->cfs_tasks);
6015
dc938520 6016 rq_attach_root(rq, &def_root_domain);
3451d024 6017#ifdef CONFIG_NO_HZ_COMMON
9fd81dd5 6018 rq->last_load_update_tick = jiffies;
1c792db7 6019 rq->nohz_flags = 0;
83cd4fe2 6020#endif
265f22a9
FW
6021#ifdef CONFIG_NO_HZ_FULL
6022 rq->last_sched_tick = 0;
6023#endif
9fd81dd5 6024#endif /* CONFIG_SMP */
8f4d37ec 6025 init_rq_hrtick(rq);
1da177e4 6026 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
6027 }
6028
9059393e 6029 set_load_weight(&init_task, false);
b50f60ce 6030
1da177e4
LT
6031 /*
6032 * The boot idle thread does lazy MMU switching as well:
6033 */
f1f10076 6034 mmgrab(&init_mm);
1da177e4
LT
6035 enter_lazy_tlb(&init_mm, current);
6036
6037 /*
6038 * Make us the idle thread. Technically, schedule() should not be
6039 * called from this thread, however somewhere below it might be,
6040 * but because we are the idle thread, we just pick up running again
6041 * when this runqueue becomes "idle".
6042 */
6043 init_idle(current, smp_processor_id());
dce48a84
TG
6044
6045 calc_load_update = jiffies + LOAD_FREQ;
6046
bf4d83f6 6047#ifdef CONFIG_SMP
29d5e047 6048 idle_thread_set_boot_cpu();
9cf7243d 6049 set_cpu_rq_start_time(smp_processor_id());
029632fb
PZ
6050#endif
6051 init_sched_fair_class();
6a7b3dc3 6052
4698f88c
JP
6053 init_schedstats();
6054
6892b75e 6055 scheduler_running = 1;
1da177e4
LT
6056}
6057
d902db1e 6058#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
6059static inline int preempt_count_equals(int preempt_offset)
6060{
da7142e2 6061 int nested = preempt_count() + rcu_preempt_depth();
e4aafea2 6062
4ba8216c 6063 return (nested == preempt_offset);
e4aafea2
FW
6064}
6065
d894837f 6066void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6067{
8eb23b9f
PZ
6068 /*
6069 * Blocking primitives will set (and therefore destroy) current->state,
6070 * since we will exit with TASK_RUNNING make sure we enter with it,
6071 * otherwise we will destroy state.
6072 */
00845eb9 6073 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
8eb23b9f
PZ
6074 "do not call blocking ops when !TASK_RUNNING; "
6075 "state=%lx set at [<%p>] %pS\n",
6076 current->state,
6077 (void *)current->task_state_change,
00845eb9 6078 (void *)current->task_state_change);
8eb23b9f 6079
3427445a
PZ
6080 ___might_sleep(file, line, preempt_offset);
6081}
6082EXPORT_SYMBOL(__might_sleep);
6083
6084void ___might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6085{
d1ccc66d
IM
6086 /* Ratelimiting timestamp: */
6087 static unsigned long prev_jiffy;
6088
d1c6d149 6089 unsigned long preempt_disable_ip;
1da177e4 6090
d1ccc66d
IM
6091 /* WARN_ON_ONCE() by default, no rate limit required: */
6092 rcu_sleep_check();
6093
db273be2
TG
6094 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6095 !is_idle_task(current)) ||
1c3c5eab
TG
6096 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
6097 oops_in_progress)
aef745fc 6098 return;
1c3c5eab 6099
aef745fc
IM
6100 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6101 return;
6102 prev_jiffy = jiffies;
6103
d1ccc66d 6104 /* Save this before calling printk(), since that will clobber it: */
d1c6d149
VN
6105 preempt_disable_ip = get_preempt_disable_ip(current);
6106
3df0fc5b
PZ
6107 printk(KERN_ERR
6108 "BUG: sleeping function called from invalid context at %s:%d\n",
6109 file, line);
6110 printk(KERN_ERR
6111 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6112 in_atomic(), irqs_disabled(),
6113 current->pid, current->comm);
aef745fc 6114
a8b686b3
ES
6115 if (task_stack_end_corrupted(current))
6116 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6117
aef745fc
IM
6118 debug_show_held_locks(current);
6119 if (irqs_disabled())
6120 print_irqtrace_events(current);
d1c6d149
VN
6121 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6122 && !preempt_count_equals(preempt_offset)) {
8f47b187 6123 pr_err("Preemption disabled at:");
d1c6d149 6124 print_ip_sym(preempt_disable_ip);
8f47b187
TG
6125 pr_cont("\n");
6126 }
aef745fc 6127 dump_stack();
f0b22e39 6128 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
1da177e4 6129}
3427445a 6130EXPORT_SYMBOL(___might_sleep);
1da177e4
LT
6131#endif
6132
6133#ifdef CONFIG_MAGIC_SYSRQ
dbc7f069 6134void normalize_rt_tasks(void)
3a5e4dc1 6135{
dbc7f069 6136 struct task_struct *g, *p;
d50dde5a
DF
6137 struct sched_attr attr = {
6138 .sched_policy = SCHED_NORMAL,
6139 };
1da177e4 6140
3472eaa1 6141 read_lock(&tasklist_lock);
5d07f420 6142 for_each_process_thread(g, p) {
178be793
IM
6143 /*
6144 * Only normalize user tasks:
6145 */
3472eaa1 6146 if (p->flags & PF_KTHREAD)
178be793
IM
6147 continue;
6148
4fa8d299
JP
6149 p->se.exec_start = 0;
6150 schedstat_set(p->se.statistics.wait_start, 0);
6151 schedstat_set(p->se.statistics.sleep_start, 0);
6152 schedstat_set(p->se.statistics.block_start, 0);
dd41f596 6153
aab03e05 6154 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
6155 /*
6156 * Renice negative nice level userspace
6157 * tasks back to 0:
6158 */
3472eaa1 6159 if (task_nice(p) < 0)
dd41f596 6160 set_user_nice(p, 0);
1da177e4 6161 continue;
dd41f596 6162 }
1da177e4 6163
dbc7f069 6164 __sched_setscheduler(p, &attr, false, false);
5d07f420 6165 }
3472eaa1 6166 read_unlock(&tasklist_lock);
1da177e4
LT
6167}
6168
6169#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 6170
67fc4e0c 6171#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 6172/*
67fc4e0c 6173 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
6174 *
6175 * They can only be called when the whole system has been
6176 * stopped - every CPU needs to be quiescent, and no scheduling
6177 * activity can take place. Using them for anything else would
6178 * be a serious bug, and as a result, they aren't even visible
6179 * under any other configuration.
6180 */
6181
6182/**
d1ccc66d 6183 * curr_task - return the current task for a given CPU.
1df5c10a
LT
6184 * @cpu: the processor in question.
6185 *
6186 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
6187 *
6188 * Return: The current task for @cpu.
1df5c10a 6189 */
36c8b586 6190struct task_struct *curr_task(int cpu)
1df5c10a
LT
6191{
6192 return cpu_curr(cpu);
6193}
6194
67fc4e0c
JW
6195#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6196
6197#ifdef CONFIG_IA64
1df5c10a 6198/**
d1ccc66d 6199 * set_curr_task - set the current task for a given CPU.
1df5c10a
LT
6200 * @cpu: the processor in question.
6201 * @p: the task pointer to set.
6202 *
6203 * Description: This function must only be used when non-maskable interrupts
41a2d6cf 6204 * are serviced on a separate stack. It allows the architecture to switch the
d1ccc66d 6205 * notion of the current task on a CPU in a non-blocking manner. This function
1df5c10a
LT
6206 * must be called with all CPU's synchronized, and interrupts disabled, the
6207 * and caller must save the original value of the current task (see
6208 * curr_task() above) and restore that value before reenabling interrupts and
6209 * re-starting the system.
6210 *
6211 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6212 */
a458ae2e 6213void ia64_set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
6214{
6215 cpu_curr(cpu) = p;
6216}
6217
6218#endif
29f59db3 6219
7c941438 6220#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
6221/* task_group_lock serializes the addition/removal of task groups */
6222static DEFINE_SPINLOCK(task_group_lock);
6223
2f5177f0 6224static void sched_free_group(struct task_group *tg)
bccbe08a
PZ
6225{
6226 free_fair_sched_group(tg);
6227 free_rt_sched_group(tg);
e9aa1dd1 6228 autogroup_free(tg);
b0367629 6229 kmem_cache_free(task_group_cache, tg);
bccbe08a
PZ
6230}
6231
6232/* allocate runqueue etc for a new task group */
ec7dc8ac 6233struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
6234{
6235 struct task_group *tg;
bccbe08a 6236
b0367629 6237 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
bccbe08a
PZ
6238 if (!tg)
6239 return ERR_PTR(-ENOMEM);
6240
ec7dc8ac 6241 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
6242 goto err;
6243
ec7dc8ac 6244 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
6245 goto err;
6246
ace783b9
LZ
6247 return tg;
6248
6249err:
2f5177f0 6250 sched_free_group(tg);
ace783b9
LZ
6251 return ERR_PTR(-ENOMEM);
6252}
6253
6254void sched_online_group(struct task_group *tg, struct task_group *parent)
6255{
6256 unsigned long flags;
6257
8ed36996 6258 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 6259 list_add_rcu(&tg->list, &task_groups);
f473aa5e 6260
d1ccc66d
IM
6261 /* Root should already exist: */
6262 WARN_ON(!parent);
f473aa5e
PZ
6263
6264 tg->parent = parent;
f473aa5e 6265 INIT_LIST_HEAD(&tg->children);
09f2724a 6266 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 6267 spin_unlock_irqrestore(&task_group_lock, flags);
8663e24d
PZ
6268
6269 online_fair_sched_group(tg);
29f59db3
SV
6270}
6271
9b5b7751 6272/* rcu callback to free various structures associated with a task group */
2f5177f0 6273static void sched_free_group_rcu(struct rcu_head *rhp)
29f59db3 6274{
d1ccc66d 6275 /* Now it should be safe to free those cfs_rqs: */
2f5177f0 6276 sched_free_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
6277}
6278
4cf86d77 6279void sched_destroy_group(struct task_group *tg)
ace783b9 6280{
d1ccc66d 6281 /* Wait for possible concurrent references to cfs_rqs complete: */
2f5177f0 6282 call_rcu(&tg->rcu, sched_free_group_rcu);
ace783b9
LZ
6283}
6284
6285void sched_offline_group(struct task_group *tg)
29f59db3 6286{
8ed36996 6287 unsigned long flags;
29f59db3 6288
d1ccc66d 6289 /* End participation in shares distribution: */
6fe1f348 6290 unregister_fair_sched_group(tg);
3d4b47b4
PZ
6291
6292 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 6293 list_del_rcu(&tg->list);
f473aa5e 6294 list_del_rcu(&tg->siblings);
8ed36996 6295 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
6296}
6297
ea86cb4b 6298static void sched_change_group(struct task_struct *tsk, int type)
29f59db3 6299{
8323f26c 6300 struct task_group *tg;
29f59db3 6301
f7b8a47d
KT
6302 /*
6303 * All callers are synchronized by task_rq_lock(); we do not use RCU
6304 * which is pointless here. Thus, we pass "true" to task_css_check()
6305 * to prevent lockdep warnings.
6306 */
6307 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
6308 struct task_group, css);
6309 tg = autogroup_task_group(tsk, tg);
6310 tsk->sched_task_group = tg;
6311
810b3817 6312#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
6313 if (tsk->sched_class->task_change_group)
6314 tsk->sched_class->task_change_group(tsk, type);
b2b5ce02 6315 else
810b3817 6316#endif
b2b5ce02 6317 set_task_rq(tsk, task_cpu(tsk));
ea86cb4b
VG
6318}
6319
6320/*
6321 * Change task's runqueue when it moves between groups.
6322 *
6323 * The caller of this function should have put the task in its new group by
6324 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
6325 * its new group.
6326 */
6327void sched_move_task(struct task_struct *tsk)
6328{
7a57f32a
PZ
6329 int queued, running, queue_flags =
6330 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
ea86cb4b
VG
6331 struct rq_flags rf;
6332 struct rq *rq;
6333
6334 rq = task_rq_lock(tsk, &rf);
1b1d6225 6335 update_rq_clock(rq);
ea86cb4b
VG
6336
6337 running = task_current(rq, tsk);
6338 queued = task_on_rq_queued(tsk);
6339
6340 if (queued)
7a57f32a 6341 dequeue_task(rq, tsk, queue_flags);
bb3bac2c 6342 if (running)
ea86cb4b
VG
6343 put_prev_task(rq, tsk);
6344
6345 sched_change_group(tsk, TASK_MOVE_GROUP);
810b3817 6346
da0c1e65 6347 if (queued)
7a57f32a 6348 enqueue_task(rq, tsk, queue_flags);
bb3bac2c 6349 if (running)
b2bf6c31 6350 set_curr_task(rq, tsk);
29f59db3 6351
eb580751 6352 task_rq_unlock(rq, tsk, &rf);
29f59db3 6353}
68318b8e 6354
a7c6d554 6355static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 6356{
a7c6d554 6357 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
6358}
6359
eb95419b
TH
6360static struct cgroup_subsys_state *
6361cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 6362{
eb95419b
TH
6363 struct task_group *parent = css_tg(parent_css);
6364 struct task_group *tg;
68318b8e 6365
eb95419b 6366 if (!parent) {
68318b8e 6367 /* This is early initialization for the top cgroup */
07e06b01 6368 return &root_task_group.css;
68318b8e
SV
6369 }
6370
ec7dc8ac 6371 tg = sched_create_group(parent);
68318b8e
SV
6372 if (IS_ERR(tg))
6373 return ERR_PTR(-ENOMEM);
6374
68318b8e
SV
6375 return &tg->css;
6376}
6377
96b77745
KK
6378/* Expose task group only after completing cgroup initialization */
6379static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
6380{
6381 struct task_group *tg = css_tg(css);
6382 struct task_group *parent = css_tg(css->parent);
6383
6384 if (parent)
6385 sched_online_group(tg, parent);
6386 return 0;
6387}
6388
2f5177f0 6389static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
ace783b9 6390{
eb95419b 6391 struct task_group *tg = css_tg(css);
ace783b9 6392
2f5177f0 6393 sched_offline_group(tg);
ace783b9
LZ
6394}
6395
eb95419b 6396static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 6397{
eb95419b 6398 struct task_group *tg = css_tg(css);
68318b8e 6399
2f5177f0
PZ
6400 /*
6401 * Relies on the RCU grace period between css_released() and this.
6402 */
6403 sched_free_group(tg);
ace783b9
LZ
6404}
6405
ea86cb4b
VG
6406/*
6407 * This is called before wake_up_new_task(), therefore we really only
6408 * have to set its group bits, all the other stuff does not apply.
6409 */
b53202e6 6410static void cpu_cgroup_fork(struct task_struct *task)
eeb61e53 6411{
ea86cb4b
VG
6412 struct rq_flags rf;
6413 struct rq *rq;
6414
6415 rq = task_rq_lock(task, &rf);
6416
80f5c1b8 6417 update_rq_clock(rq);
ea86cb4b
VG
6418 sched_change_group(task, TASK_SET_GROUP);
6419
6420 task_rq_unlock(rq, task, &rf);
eeb61e53
KT
6421}
6422
1f7dd3e5 6423static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
68318b8e 6424{
bb9d97b6 6425 struct task_struct *task;
1f7dd3e5 6426 struct cgroup_subsys_state *css;
7dc603c9 6427 int ret = 0;
bb9d97b6 6428
1f7dd3e5 6429 cgroup_taskset_for_each(task, css, tset) {
b68aa230 6430#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 6431 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 6432 return -EINVAL;
b68aa230 6433#else
bb9d97b6
TH
6434 /* We don't support RT-tasks being in separate groups */
6435 if (task->sched_class != &fair_sched_class)
6436 return -EINVAL;
b68aa230 6437#endif
7dc603c9
PZ
6438 /*
6439 * Serialize against wake_up_new_task() such that if its
6440 * running, we're sure to observe its full state.
6441 */
6442 raw_spin_lock_irq(&task->pi_lock);
6443 /*
6444 * Avoid calling sched_move_task() before wake_up_new_task()
6445 * has happened. This would lead to problems with PELT, due to
6446 * move wanting to detach+attach while we're not attached yet.
6447 */
6448 if (task->state == TASK_NEW)
6449 ret = -EINVAL;
6450 raw_spin_unlock_irq(&task->pi_lock);
6451
6452 if (ret)
6453 break;
bb9d97b6 6454 }
7dc603c9 6455 return ret;
be367d09 6456}
68318b8e 6457
1f7dd3e5 6458static void cpu_cgroup_attach(struct cgroup_taskset *tset)
68318b8e 6459{
bb9d97b6 6460 struct task_struct *task;
1f7dd3e5 6461 struct cgroup_subsys_state *css;
bb9d97b6 6462
1f7dd3e5 6463 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 6464 sched_move_task(task);
68318b8e
SV
6465}
6466
052f1dc7 6467#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
6468static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
6469 struct cftype *cftype, u64 shareval)
68318b8e 6470{
182446d0 6471 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
6472}
6473
182446d0
TH
6474static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
6475 struct cftype *cft)
68318b8e 6476{
182446d0 6477 struct task_group *tg = css_tg(css);
68318b8e 6478
c8b28116 6479 return (u64) scale_load_down(tg->shares);
68318b8e 6480}
ab84d31e
PT
6481
6482#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
6483static DEFINE_MUTEX(cfs_constraints_mutex);
6484
ab84d31e
PT
6485const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
6486const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
6487
a790de99
PT
6488static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
6489
ab84d31e
PT
6490static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
6491{
56f570e5 6492 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 6493 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
6494
6495 if (tg == &root_task_group)
6496 return -EINVAL;
6497
6498 /*
6499 * Ensure we have at some amount of bandwidth every period. This is
6500 * to prevent reaching a state of large arrears when throttled via
6501 * entity_tick() resulting in prolonged exit starvation.
6502 */
6503 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
6504 return -EINVAL;
6505
6506 /*
6507 * Likewise, bound things on the otherside by preventing insane quota
6508 * periods. This also allows us to normalize in computing quota
6509 * feasibility.
6510 */
6511 if (period > max_cfs_quota_period)
6512 return -EINVAL;
6513
0e59bdae
KT
6514 /*
6515 * Prevent race between setting of cfs_rq->runtime_enabled and
6516 * unthrottle_offline_cfs_rqs().
6517 */
6518 get_online_cpus();
a790de99
PT
6519 mutex_lock(&cfs_constraints_mutex);
6520 ret = __cfs_schedulable(tg, period, quota);
6521 if (ret)
6522 goto out_unlock;
6523
58088ad0 6524 runtime_enabled = quota != RUNTIME_INF;
56f570e5 6525 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
6526 /*
6527 * If we need to toggle cfs_bandwidth_used, off->on must occur
6528 * before making related changes, and on->off must occur afterwards
6529 */
6530 if (runtime_enabled && !runtime_was_enabled)
6531 cfs_bandwidth_usage_inc();
ab84d31e
PT
6532 raw_spin_lock_irq(&cfs_b->lock);
6533 cfs_b->period = ns_to_ktime(period);
6534 cfs_b->quota = quota;
58088ad0 6535
a9cf55b2 6536 __refill_cfs_bandwidth_runtime(cfs_b);
d1ccc66d
IM
6537
6538 /* Restart the period timer (if active) to handle new period expiry: */
77a4d1a1
PZ
6539 if (runtime_enabled)
6540 start_cfs_bandwidth(cfs_b);
d1ccc66d 6541
ab84d31e
PT
6542 raw_spin_unlock_irq(&cfs_b->lock);
6543
0e59bdae 6544 for_each_online_cpu(i) {
ab84d31e 6545 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 6546 struct rq *rq = cfs_rq->rq;
8a8c69c3 6547 struct rq_flags rf;
ab84d31e 6548
8a8c69c3 6549 rq_lock_irq(rq, &rf);
58088ad0 6550 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 6551 cfs_rq->runtime_remaining = 0;
671fd9da 6552
029632fb 6553 if (cfs_rq->throttled)
671fd9da 6554 unthrottle_cfs_rq(cfs_rq);
8a8c69c3 6555 rq_unlock_irq(rq, &rf);
ab84d31e 6556 }
1ee14e6c
BS
6557 if (runtime_was_enabled && !runtime_enabled)
6558 cfs_bandwidth_usage_dec();
a790de99
PT
6559out_unlock:
6560 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 6561 put_online_cpus();
ab84d31e 6562
a790de99 6563 return ret;
ab84d31e
PT
6564}
6565
6566int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
6567{
6568 u64 quota, period;
6569
029632fb 6570 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
6571 if (cfs_quota_us < 0)
6572 quota = RUNTIME_INF;
6573 else
6574 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
6575
6576 return tg_set_cfs_bandwidth(tg, period, quota);
6577}
6578
6579long tg_get_cfs_quota(struct task_group *tg)
6580{
6581 u64 quota_us;
6582
029632fb 6583 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
6584 return -1;
6585
029632fb 6586 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
6587 do_div(quota_us, NSEC_PER_USEC);
6588
6589 return quota_us;
6590}
6591
6592int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
6593{
6594 u64 quota, period;
6595
6596 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 6597 quota = tg->cfs_bandwidth.quota;
ab84d31e 6598
ab84d31e
PT
6599 return tg_set_cfs_bandwidth(tg, period, quota);
6600}
6601
6602long tg_get_cfs_period(struct task_group *tg)
6603{
6604 u64 cfs_period_us;
6605
029632fb 6606 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
6607 do_div(cfs_period_us, NSEC_PER_USEC);
6608
6609 return cfs_period_us;
6610}
6611
182446d0
TH
6612static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
6613 struct cftype *cft)
ab84d31e 6614{
182446d0 6615 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
6616}
6617
182446d0
TH
6618static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
6619 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 6620{
182446d0 6621 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
6622}
6623
182446d0
TH
6624static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
6625 struct cftype *cft)
ab84d31e 6626{
182446d0 6627 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
6628}
6629
182446d0
TH
6630static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
6631 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 6632{
182446d0 6633 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
6634}
6635
a790de99
PT
6636struct cfs_schedulable_data {
6637 struct task_group *tg;
6638 u64 period, quota;
6639};
6640
6641/*
6642 * normalize group quota/period to be quota/max_period
6643 * note: units are usecs
6644 */
6645static u64 normalize_cfs_quota(struct task_group *tg,
6646 struct cfs_schedulable_data *d)
6647{
6648 u64 quota, period;
6649
6650 if (tg == d->tg) {
6651 period = d->period;
6652 quota = d->quota;
6653 } else {
6654 period = tg_get_cfs_period(tg);
6655 quota = tg_get_cfs_quota(tg);
6656 }
6657
6658 /* note: these should typically be equivalent */
6659 if (quota == RUNTIME_INF || quota == -1)
6660 return RUNTIME_INF;
6661
6662 return to_ratio(period, quota);
6663}
6664
6665static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
6666{
6667 struct cfs_schedulable_data *d = data;
029632fb 6668 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
6669 s64 quota = 0, parent_quota = -1;
6670
6671 if (!tg->parent) {
6672 quota = RUNTIME_INF;
6673 } else {
029632fb 6674 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
6675
6676 quota = normalize_cfs_quota(tg, d);
9c58c79a 6677 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
6678
6679 /*
d1ccc66d
IM
6680 * Ensure max(child_quota) <= parent_quota, inherit when no
6681 * limit is set:
a790de99
PT
6682 */
6683 if (quota == RUNTIME_INF)
6684 quota = parent_quota;
6685 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
6686 return -EINVAL;
6687 }
9c58c79a 6688 cfs_b->hierarchical_quota = quota;
a790de99
PT
6689
6690 return 0;
6691}
6692
6693static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
6694{
8277434e 6695 int ret;
a790de99
PT
6696 struct cfs_schedulable_data data = {
6697 .tg = tg,
6698 .period = period,
6699 .quota = quota,
6700 };
6701
6702 if (quota != RUNTIME_INF) {
6703 do_div(data.period, NSEC_PER_USEC);
6704 do_div(data.quota, NSEC_PER_USEC);
6705 }
6706
8277434e
PT
6707 rcu_read_lock();
6708 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
6709 rcu_read_unlock();
6710
6711 return ret;
a790de99 6712}
e8da1b18 6713
a1f7164c 6714static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
e8da1b18 6715{
2da8ca82 6716 struct task_group *tg = css_tg(seq_css(sf));
029632fb 6717 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 6718
44ffc75b
TH
6719 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
6720 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
6721 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
6722
6723 return 0;
6724}
ab84d31e 6725#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 6726#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 6727
052f1dc7 6728#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
6729static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
6730 struct cftype *cft, s64 val)
6f505b16 6731{
182446d0 6732 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
6733}
6734
182446d0
TH
6735static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
6736 struct cftype *cft)
6f505b16 6737{
182446d0 6738 return sched_group_rt_runtime(css_tg(css));
6f505b16 6739}
d0b27fa7 6740
182446d0
TH
6741static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
6742 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 6743{
182446d0 6744 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
6745}
6746
182446d0
TH
6747static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
6748 struct cftype *cft)
d0b27fa7 6749{
182446d0 6750 return sched_group_rt_period(css_tg(css));
d0b27fa7 6751}
6d6bc0ad 6752#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 6753
a1f7164c 6754static struct cftype cpu_legacy_files[] = {
052f1dc7 6755#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
6756 {
6757 .name = "shares",
f4c753b7
PM
6758 .read_u64 = cpu_shares_read_u64,
6759 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 6760 },
052f1dc7 6761#endif
ab84d31e
PT
6762#ifdef CONFIG_CFS_BANDWIDTH
6763 {
6764 .name = "cfs_quota_us",
6765 .read_s64 = cpu_cfs_quota_read_s64,
6766 .write_s64 = cpu_cfs_quota_write_s64,
6767 },
6768 {
6769 .name = "cfs_period_us",
6770 .read_u64 = cpu_cfs_period_read_u64,
6771 .write_u64 = cpu_cfs_period_write_u64,
6772 },
e8da1b18
NR
6773 {
6774 .name = "stat",
a1f7164c 6775 .seq_show = cpu_cfs_stat_show,
e8da1b18 6776 },
ab84d31e 6777#endif
052f1dc7 6778#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 6779 {
9f0c1e56 6780 .name = "rt_runtime_us",
06ecb27c
PM
6781 .read_s64 = cpu_rt_runtime_read,
6782 .write_s64 = cpu_rt_runtime_write,
6f505b16 6783 },
d0b27fa7
PZ
6784 {
6785 .name = "rt_period_us",
f4c753b7
PM
6786 .read_u64 = cpu_rt_period_read_uint,
6787 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 6788 },
052f1dc7 6789#endif
d1ccc66d 6790 { } /* Terminate */
68318b8e
SV
6791};
6792
d41bf8c9
TH
6793static int cpu_extra_stat_show(struct seq_file *sf,
6794 struct cgroup_subsys_state *css)
0d593634 6795{
0d593634
TH
6796#ifdef CONFIG_CFS_BANDWIDTH
6797 {
d41bf8c9 6798 struct task_group *tg = css_tg(css);
0d593634
TH
6799 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6800 u64 throttled_usec;
6801
6802 throttled_usec = cfs_b->throttled_time;
6803 do_div(throttled_usec, NSEC_PER_USEC);
6804
6805 seq_printf(sf, "nr_periods %d\n"
6806 "nr_throttled %d\n"
6807 "throttled_usec %llu\n",
6808 cfs_b->nr_periods, cfs_b->nr_throttled,
6809 throttled_usec);
6810 }
6811#endif
6812 return 0;
6813}
6814
6815#ifdef CONFIG_FAIR_GROUP_SCHED
6816static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
6817 struct cftype *cft)
6818{
6819 struct task_group *tg = css_tg(css);
6820 u64 weight = scale_load_down(tg->shares);
6821
6822 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
6823}
6824
6825static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
6826 struct cftype *cft, u64 weight)
6827{
6828 /*
6829 * cgroup weight knobs should use the common MIN, DFL and MAX
6830 * values which are 1, 100 and 10000 respectively. While it loses
6831 * a bit of range on both ends, it maps pretty well onto the shares
6832 * value used by scheduler and the round-trip conversions preserve
6833 * the original value over the entire range.
6834 */
6835 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
6836 return -ERANGE;
6837
6838 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
6839
6840 return sched_group_set_shares(css_tg(css), scale_load(weight));
6841}
6842
6843static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
6844 struct cftype *cft)
6845{
6846 unsigned long weight = scale_load_down(css_tg(css)->shares);
6847 int last_delta = INT_MAX;
6848 int prio, delta;
6849
6850 /* find the closest nice value to the current weight */
6851 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
6852 delta = abs(sched_prio_to_weight[prio] - weight);
6853 if (delta >= last_delta)
6854 break;
6855 last_delta = delta;
6856 }
6857
6858 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
6859}
6860
6861static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
6862 struct cftype *cft, s64 nice)
6863{
6864 unsigned long weight;
6865
6866 if (nice < MIN_NICE || nice > MAX_NICE)
6867 return -ERANGE;
6868
6869 weight = sched_prio_to_weight[NICE_TO_PRIO(nice) - MAX_RT_PRIO];
6870 return sched_group_set_shares(css_tg(css), scale_load(weight));
6871}
6872#endif
6873
6874static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
6875 long period, long quota)
6876{
6877 if (quota < 0)
6878 seq_puts(sf, "max");
6879 else
6880 seq_printf(sf, "%ld", quota);
6881
6882 seq_printf(sf, " %ld\n", period);
6883}
6884
6885/* caller should put the current value in *@periodp before calling */
6886static int __maybe_unused cpu_period_quota_parse(char *buf,
6887 u64 *periodp, u64 *quotap)
6888{
6889 char tok[21]; /* U64_MAX */
6890
6891 if (!sscanf(buf, "%s %llu", tok, periodp))
6892 return -EINVAL;
6893
6894 *periodp *= NSEC_PER_USEC;
6895
6896 if (sscanf(tok, "%llu", quotap))
6897 *quotap *= NSEC_PER_USEC;
6898 else if (!strcmp(tok, "max"))
6899 *quotap = RUNTIME_INF;
6900 else
6901 return -EINVAL;
6902
6903 return 0;
6904}
6905
6906#ifdef CONFIG_CFS_BANDWIDTH
6907static int cpu_max_show(struct seq_file *sf, void *v)
6908{
6909 struct task_group *tg = css_tg(seq_css(sf));
6910
6911 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
6912 return 0;
6913}
6914
6915static ssize_t cpu_max_write(struct kernfs_open_file *of,
6916 char *buf, size_t nbytes, loff_t off)
6917{
6918 struct task_group *tg = css_tg(of_css(of));
6919 u64 period = tg_get_cfs_period(tg);
6920 u64 quota;
6921 int ret;
6922
6923 ret = cpu_period_quota_parse(buf, &period, &quota);
6924 if (!ret)
6925 ret = tg_set_cfs_bandwidth(tg, period, quota);
6926 return ret ?: nbytes;
6927}
6928#endif
6929
6930static struct cftype cpu_files[] = {
0d593634
TH
6931#ifdef CONFIG_FAIR_GROUP_SCHED
6932 {
6933 .name = "weight",
6934 .flags = CFTYPE_NOT_ON_ROOT,
6935 .read_u64 = cpu_weight_read_u64,
6936 .write_u64 = cpu_weight_write_u64,
6937 },
6938 {
6939 .name = "weight.nice",
6940 .flags = CFTYPE_NOT_ON_ROOT,
6941 .read_s64 = cpu_weight_nice_read_s64,
6942 .write_s64 = cpu_weight_nice_write_s64,
6943 },
6944#endif
6945#ifdef CONFIG_CFS_BANDWIDTH
6946 {
6947 .name = "max",
6948 .flags = CFTYPE_NOT_ON_ROOT,
6949 .seq_show = cpu_max_show,
6950 .write = cpu_max_write,
6951 },
6952#endif
6953 { } /* terminate */
6954};
6955
073219e9 6956struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748 6957 .css_alloc = cpu_cgroup_css_alloc,
96b77745 6958 .css_online = cpu_cgroup_css_online,
2f5177f0 6959 .css_released = cpu_cgroup_css_released,
92fb9748 6960 .css_free = cpu_cgroup_css_free,
d41bf8c9 6961 .css_extra_stat_show = cpu_extra_stat_show,
eeb61e53 6962 .fork = cpu_cgroup_fork,
bb9d97b6
TH
6963 .can_attach = cpu_cgroup_can_attach,
6964 .attach = cpu_cgroup_attach,
a1f7164c 6965 .legacy_cftypes = cpu_legacy_files,
0d593634 6966 .dfl_cftypes = cpu_files,
b38e42e9 6967 .early_init = true,
0d593634 6968 .threaded = true,
68318b8e
SV
6969};
6970
052f1dc7 6971#endif /* CONFIG_CGROUP_SCHED */
d842de87 6972
b637a328
PM
6973void dump_cpu_task(int cpu)
6974{
6975 pr_info("Task dump for CPU %d:\n", cpu);
6976 sched_show_task(cpu_curr(cpu));
6977}
ed82b8a1
AK
6978
6979/*
6980 * Nice levels are multiplicative, with a gentle 10% change for every
6981 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
6982 * nice 1, it will get ~10% less CPU time than another CPU-bound task
6983 * that remained on nice 0.
6984 *
6985 * The "10% effect" is relative and cumulative: from _any_ nice level,
6986 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
6987 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
6988 * If a task goes up by ~10% and another task goes down by ~10% then
6989 * the relative distance between them is ~25%.)
6990 */
6991const int sched_prio_to_weight[40] = {
6992 /* -20 */ 88761, 71755, 56483, 46273, 36291,
6993 /* -15 */ 29154, 23254, 18705, 14949, 11916,
6994 /* -10 */ 9548, 7620, 6100, 4904, 3906,
6995 /* -5 */ 3121, 2501, 1991, 1586, 1277,
6996 /* 0 */ 1024, 820, 655, 526, 423,
6997 /* 5 */ 335, 272, 215, 172, 137,
6998 /* 10 */ 110, 87, 70, 56, 45,
6999 /* 15 */ 36, 29, 23, 18, 15,
7000};
7001
7002/*
7003 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
7004 *
7005 * In cases where the weight does not change often, we can use the
7006 * precalculated inverse to speed up arithmetics by turning divisions
7007 * into multiplications:
7008 */
7009const u32 sched_prio_to_wmult[40] = {
7010 /* -20 */ 48388, 59856, 76040, 92818, 118348,
7011 /* -15 */ 147320, 184698, 229616, 287308, 360437,
7012 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
7013 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
7014 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
7015 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
7016 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
7017 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
7018};