]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - kernel/sched/core.c
Merge branch 'sched/urgent' into sched/core, to pick up fixes before applying new...
[mirror_ubuntu-eoan-kernel.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
91d1aa43 75#include <linux/context_tracking.h>
52f5684c 76#include <linux/compiler.h>
1da177e4 77
96f951ed 78#include <asm/switch_to.h>
5517d86b 79#include <asm/tlb.h>
838225b4 80#include <asm/irq_regs.h>
db7e527d 81#include <asm/mutex.h>
e6e6685a
GC
82#ifdef CONFIG_PARAVIRT
83#include <asm/paravirt.h>
84#endif
1da177e4 85
029632fb 86#include "sched.h"
ea138446 87#include "../workqueue_internal.h"
29d5e047 88#include "../smpboot.h"
6e0534f2 89
a8d154b0 90#define CREATE_TRACE_POINTS
ad8d75ff 91#include <trace/events/sched.h>
a8d154b0 92
029632fb
PZ
93DEFINE_MUTEX(sched_domains_mutex);
94DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 95
fe44d621 96static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 97
029632fb 98void update_rq_clock(struct rq *rq)
3e51f33f 99{
fe44d621 100 s64 delta;
305e6835 101
9edfbfed
PZ
102 lockdep_assert_held(&rq->lock);
103
104 if (rq->clock_skip_update & RQCF_ACT_SKIP)
f26f9aff 105 return;
aa483808 106
fe44d621 107 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
4036ac15
MG
108 if (delta < 0)
109 return;
fe44d621
PZ
110 rq->clock += delta;
111 update_rq_clock_task(rq, delta);
3e51f33f
PZ
112}
113
bf5c91ba
IM
114/*
115 * Debugging: various feature bits
116 */
f00b45c1 117
f00b45c1
PZ
118#define SCHED_FEAT(name, enabled) \
119 (1UL << __SCHED_FEAT_##name) * enabled |
120
bf5c91ba 121const_debug unsigned int sysctl_sched_features =
391e43da 122#include "features.h"
f00b45c1
PZ
123 0;
124
125#undef SCHED_FEAT
126
127#ifdef CONFIG_SCHED_DEBUG
128#define SCHED_FEAT(name, enabled) \
129 #name ,
130
1292531f 131static const char * const sched_feat_names[] = {
391e43da 132#include "features.h"
f00b45c1
PZ
133};
134
135#undef SCHED_FEAT
136
34f3a814 137static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 138{
f00b45c1
PZ
139 int i;
140
f8b6d1cc 141 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
142 if (!(sysctl_sched_features & (1UL << i)))
143 seq_puts(m, "NO_");
144 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 145 }
34f3a814 146 seq_puts(m, "\n");
f00b45c1 147
34f3a814 148 return 0;
f00b45c1
PZ
149}
150
f8b6d1cc
PZ
151#ifdef HAVE_JUMP_LABEL
152
c5905afb
IM
153#define jump_label_key__true STATIC_KEY_INIT_TRUE
154#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
155
156#define SCHED_FEAT(name, enabled) \
157 jump_label_key__##enabled ,
158
c5905afb 159struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
160#include "features.h"
161};
162
163#undef SCHED_FEAT
164
165static void sched_feat_disable(int i)
166{
e33886b3 167 static_key_disable(&sched_feat_keys[i]);
f8b6d1cc
PZ
168}
169
170static void sched_feat_enable(int i)
171{
e33886b3 172 static_key_enable(&sched_feat_keys[i]);
f8b6d1cc
PZ
173}
174#else
175static void sched_feat_disable(int i) { };
176static void sched_feat_enable(int i) { };
177#endif /* HAVE_JUMP_LABEL */
178
1a687c2e 179static int sched_feat_set(char *cmp)
f00b45c1 180{
f00b45c1 181 int i;
1a687c2e 182 int neg = 0;
f00b45c1 183
524429c3 184 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
185 neg = 1;
186 cmp += 3;
187 }
188
f8b6d1cc 189 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 190 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 191 if (neg) {
f00b45c1 192 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
193 sched_feat_disable(i);
194 } else {
f00b45c1 195 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
196 sched_feat_enable(i);
197 }
f00b45c1
PZ
198 break;
199 }
200 }
201
1a687c2e
MG
202 return i;
203}
204
205static ssize_t
206sched_feat_write(struct file *filp, const char __user *ubuf,
207 size_t cnt, loff_t *ppos)
208{
209 char buf[64];
210 char *cmp;
211 int i;
5cd08fbf 212 struct inode *inode;
1a687c2e
MG
213
214 if (cnt > 63)
215 cnt = 63;
216
217 if (copy_from_user(&buf, ubuf, cnt))
218 return -EFAULT;
219
220 buf[cnt] = 0;
221 cmp = strstrip(buf);
222
5cd08fbf
JB
223 /* Ensure the static_key remains in a consistent state */
224 inode = file_inode(filp);
225 mutex_lock(&inode->i_mutex);
1a687c2e 226 i = sched_feat_set(cmp);
5cd08fbf 227 mutex_unlock(&inode->i_mutex);
f8b6d1cc 228 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
229 return -EINVAL;
230
42994724 231 *ppos += cnt;
f00b45c1
PZ
232
233 return cnt;
234}
235
34f3a814
LZ
236static int sched_feat_open(struct inode *inode, struct file *filp)
237{
238 return single_open(filp, sched_feat_show, NULL);
239}
240
828c0950 241static const struct file_operations sched_feat_fops = {
34f3a814
LZ
242 .open = sched_feat_open,
243 .write = sched_feat_write,
244 .read = seq_read,
245 .llseek = seq_lseek,
246 .release = single_release,
f00b45c1
PZ
247};
248
249static __init int sched_init_debug(void)
250{
f00b45c1
PZ
251 debugfs_create_file("sched_features", 0644, NULL, NULL,
252 &sched_feat_fops);
253
254 return 0;
255}
256late_initcall(sched_init_debug);
f8b6d1cc 257#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 258
b82d9fdd
PZ
259/*
260 * Number of tasks to iterate in a single balance run.
261 * Limited because this is done with IRQs disabled.
262 */
263const_debug unsigned int sysctl_sched_nr_migrate = 32;
264
e9e9250b
PZ
265/*
266 * period over which we average the RT time consumption, measured
267 * in ms.
268 *
269 * default: 1s
270 */
271const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
272
fa85ae24 273/*
9f0c1e56 274 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
275 * default: 1s
276 */
9f0c1e56 277unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 278
029632fb 279__read_mostly int scheduler_running;
6892b75e 280
9f0c1e56
PZ
281/*
282 * part of the period that we allow rt tasks to run in us.
283 * default: 0.95s
284 */
285int sysctl_sched_rt_runtime = 950000;
fa85ae24 286
3fa0818b
RR
287/* cpus with isolated domains */
288cpumask_var_t cpu_isolated_map;
289
1da177e4 290/*
cc2a73b5 291 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 292 */
a9957449 293static struct rq *this_rq_lock(void)
1da177e4
LT
294 __acquires(rq->lock)
295{
70b97a7f 296 struct rq *rq;
1da177e4
LT
297
298 local_irq_disable();
299 rq = this_rq();
05fa785c 300 raw_spin_lock(&rq->lock);
1da177e4
LT
301
302 return rq;
303}
304
8f4d37ec
PZ
305#ifdef CONFIG_SCHED_HRTICK
306/*
307 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 308 */
8f4d37ec 309
8f4d37ec
PZ
310static void hrtick_clear(struct rq *rq)
311{
312 if (hrtimer_active(&rq->hrtick_timer))
313 hrtimer_cancel(&rq->hrtick_timer);
314}
315
8f4d37ec
PZ
316/*
317 * High-resolution timer tick.
318 * Runs from hardirq context with interrupts disabled.
319 */
320static enum hrtimer_restart hrtick(struct hrtimer *timer)
321{
322 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
323
324 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
325
05fa785c 326 raw_spin_lock(&rq->lock);
3e51f33f 327 update_rq_clock(rq);
8f4d37ec 328 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 329 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
330
331 return HRTIMER_NORESTART;
332}
333
95e904c7 334#ifdef CONFIG_SMP
971ee28c 335
4961b6e1 336static void __hrtick_restart(struct rq *rq)
971ee28c
PZ
337{
338 struct hrtimer *timer = &rq->hrtick_timer;
971ee28c 339
4961b6e1 340 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
971ee28c
PZ
341}
342
31656519
PZ
343/*
344 * called from hardirq (IPI) context
345 */
346static void __hrtick_start(void *arg)
b328ca18 347{
31656519 348 struct rq *rq = arg;
b328ca18 349
05fa785c 350 raw_spin_lock(&rq->lock);
971ee28c 351 __hrtick_restart(rq);
31656519 352 rq->hrtick_csd_pending = 0;
05fa785c 353 raw_spin_unlock(&rq->lock);
b328ca18
PZ
354}
355
31656519
PZ
356/*
357 * Called to set the hrtick timer state.
358 *
359 * called with rq->lock held and irqs disabled
360 */
029632fb 361void hrtick_start(struct rq *rq, u64 delay)
b328ca18 362{
31656519 363 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 364 ktime_t time;
365 s64 delta;
366
367 /*
368 * Don't schedule slices shorter than 10000ns, that just
369 * doesn't make sense and can cause timer DoS.
370 */
371 delta = max_t(s64, delay, 10000LL);
372 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 373
cc584b21 374 hrtimer_set_expires(timer, time);
31656519
PZ
375
376 if (rq == this_rq()) {
971ee28c 377 __hrtick_restart(rq);
31656519 378 } else if (!rq->hrtick_csd_pending) {
c46fff2a 379 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
380 rq->hrtick_csd_pending = 1;
381 }
b328ca18
PZ
382}
383
384static int
385hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
386{
387 int cpu = (int)(long)hcpu;
388
389 switch (action) {
390 case CPU_UP_CANCELED:
391 case CPU_UP_CANCELED_FROZEN:
392 case CPU_DOWN_PREPARE:
393 case CPU_DOWN_PREPARE_FROZEN:
394 case CPU_DEAD:
395 case CPU_DEAD_FROZEN:
31656519 396 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
397 return NOTIFY_OK;
398 }
399
400 return NOTIFY_DONE;
401}
402
fa748203 403static __init void init_hrtick(void)
b328ca18
PZ
404{
405 hotcpu_notifier(hotplug_hrtick, 0);
406}
31656519
PZ
407#else
408/*
409 * Called to set the hrtick timer state.
410 *
411 * called with rq->lock held and irqs disabled
412 */
029632fb 413void hrtick_start(struct rq *rq, u64 delay)
31656519 414{
86893335
WL
415 /*
416 * Don't schedule slices shorter than 10000ns, that just
417 * doesn't make sense. Rely on vruntime for fairness.
418 */
419 delay = max_t(u64, delay, 10000LL);
4961b6e1
TG
420 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
421 HRTIMER_MODE_REL_PINNED);
31656519 422}
b328ca18 423
006c75f1 424static inline void init_hrtick(void)
8f4d37ec 425{
8f4d37ec 426}
31656519 427#endif /* CONFIG_SMP */
8f4d37ec 428
31656519 429static void init_rq_hrtick(struct rq *rq)
8f4d37ec 430{
31656519
PZ
431#ifdef CONFIG_SMP
432 rq->hrtick_csd_pending = 0;
8f4d37ec 433
31656519
PZ
434 rq->hrtick_csd.flags = 0;
435 rq->hrtick_csd.func = __hrtick_start;
436 rq->hrtick_csd.info = rq;
437#endif
8f4d37ec 438
31656519
PZ
439 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
440 rq->hrtick_timer.function = hrtick;
8f4d37ec 441}
006c75f1 442#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
443static inline void hrtick_clear(struct rq *rq)
444{
445}
446
8f4d37ec
PZ
447static inline void init_rq_hrtick(struct rq *rq)
448{
449}
450
b328ca18
PZ
451static inline void init_hrtick(void)
452{
453}
006c75f1 454#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 455
fd99f91a
PZ
456/*
457 * cmpxchg based fetch_or, macro so it works for different integer types
458 */
459#define fetch_or(ptr, val) \
460({ typeof(*(ptr)) __old, __val = *(ptr); \
461 for (;;) { \
462 __old = cmpxchg((ptr), __val, __val | (val)); \
463 if (__old == __val) \
464 break; \
465 __val = __old; \
466 } \
467 __old; \
468})
469
e3baac47 470#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
471/*
472 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
473 * this avoids any races wrt polling state changes and thereby avoids
474 * spurious IPIs.
475 */
476static bool set_nr_and_not_polling(struct task_struct *p)
477{
478 struct thread_info *ti = task_thread_info(p);
479 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
480}
e3baac47
PZ
481
482/*
483 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
484 *
485 * If this returns true, then the idle task promises to call
486 * sched_ttwu_pending() and reschedule soon.
487 */
488static bool set_nr_if_polling(struct task_struct *p)
489{
490 struct thread_info *ti = task_thread_info(p);
316c1608 491 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
e3baac47
PZ
492
493 for (;;) {
494 if (!(val & _TIF_POLLING_NRFLAG))
495 return false;
496 if (val & _TIF_NEED_RESCHED)
497 return true;
498 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
499 if (old == val)
500 break;
501 val = old;
502 }
503 return true;
504}
505
fd99f91a
PZ
506#else
507static bool set_nr_and_not_polling(struct task_struct *p)
508{
509 set_tsk_need_resched(p);
510 return true;
511}
e3baac47
PZ
512
513#ifdef CONFIG_SMP
514static bool set_nr_if_polling(struct task_struct *p)
515{
516 return false;
517}
518#endif
fd99f91a
PZ
519#endif
520
76751049
PZ
521void wake_q_add(struct wake_q_head *head, struct task_struct *task)
522{
523 struct wake_q_node *node = &task->wake_q;
524
525 /*
526 * Atomically grab the task, if ->wake_q is !nil already it means
527 * its already queued (either by us or someone else) and will get the
528 * wakeup due to that.
529 *
530 * This cmpxchg() implies a full barrier, which pairs with the write
531 * barrier implied by the wakeup in wake_up_list().
532 */
533 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
534 return;
535
536 get_task_struct(task);
537
538 /*
539 * The head is context local, there can be no concurrency.
540 */
541 *head->lastp = node;
542 head->lastp = &node->next;
543}
544
545void wake_up_q(struct wake_q_head *head)
546{
547 struct wake_q_node *node = head->first;
548
549 while (node != WAKE_Q_TAIL) {
550 struct task_struct *task;
551
552 task = container_of(node, struct task_struct, wake_q);
553 BUG_ON(!task);
554 /* task can safely be re-inserted now */
555 node = node->next;
556 task->wake_q.next = NULL;
557
558 /*
559 * wake_up_process() implies a wmb() to pair with the queueing
560 * in wake_q_add() so as not to miss wakeups.
561 */
562 wake_up_process(task);
563 put_task_struct(task);
564 }
565}
566
c24d20db 567/*
8875125e 568 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
569 *
570 * On UP this means the setting of the need_resched flag, on SMP it
571 * might also involve a cross-CPU call to trigger the scheduler on
572 * the target CPU.
573 */
8875125e 574void resched_curr(struct rq *rq)
c24d20db 575{
8875125e 576 struct task_struct *curr = rq->curr;
c24d20db
IM
577 int cpu;
578
8875125e 579 lockdep_assert_held(&rq->lock);
c24d20db 580
8875125e 581 if (test_tsk_need_resched(curr))
c24d20db
IM
582 return;
583
8875125e 584 cpu = cpu_of(rq);
fd99f91a 585
f27dde8d 586 if (cpu == smp_processor_id()) {
8875125e 587 set_tsk_need_resched(curr);
f27dde8d 588 set_preempt_need_resched();
c24d20db 589 return;
f27dde8d 590 }
c24d20db 591
8875125e 592 if (set_nr_and_not_polling(curr))
c24d20db 593 smp_send_reschedule(cpu);
dfc68f29
AL
594 else
595 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
596}
597
029632fb 598void resched_cpu(int cpu)
c24d20db
IM
599{
600 struct rq *rq = cpu_rq(cpu);
601 unsigned long flags;
602
05fa785c 603 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db 604 return;
8875125e 605 resched_curr(rq);
05fa785c 606 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 607}
06d8308c 608
b021fe3e 609#ifdef CONFIG_SMP
3451d024 610#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
611/*
612 * In the semi idle case, use the nearest busy cpu for migrating timers
613 * from an idle cpu. This is good for power-savings.
614 *
615 * We don't do similar optimization for completely idle system, as
616 * selecting an idle cpu will add more delays to the timers than intended
617 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
618 */
bc7a34b8 619int get_nohz_timer_target(void)
83cd4fe2 620{
bc7a34b8 621 int i, cpu = smp_processor_id();
83cd4fe2
VP
622 struct sched_domain *sd;
623
9642d18e 624 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
6201b4d6
VK
625 return cpu;
626
057f3fad 627 rcu_read_lock();
83cd4fe2 628 for_each_domain(cpu, sd) {
057f3fad 629 for_each_cpu(i, sched_domain_span(sd)) {
9642d18e 630 if (!idle_cpu(i) && is_housekeeping_cpu(cpu)) {
057f3fad
PZ
631 cpu = i;
632 goto unlock;
633 }
634 }
83cd4fe2 635 }
9642d18e
VH
636
637 if (!is_housekeeping_cpu(cpu))
638 cpu = housekeeping_any_cpu();
057f3fad
PZ
639unlock:
640 rcu_read_unlock();
83cd4fe2
VP
641 return cpu;
642}
06d8308c
TG
643/*
644 * When add_timer_on() enqueues a timer into the timer wheel of an
645 * idle CPU then this timer might expire before the next timer event
646 * which is scheduled to wake up that CPU. In case of a completely
647 * idle system the next event might even be infinite time into the
648 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
649 * leaves the inner idle loop so the newly added timer is taken into
650 * account when the CPU goes back to idle and evaluates the timer
651 * wheel for the next timer event.
652 */
1c20091e 653static void wake_up_idle_cpu(int cpu)
06d8308c
TG
654{
655 struct rq *rq = cpu_rq(cpu);
656
657 if (cpu == smp_processor_id())
658 return;
659
67b9ca70 660 if (set_nr_and_not_polling(rq->idle))
06d8308c 661 smp_send_reschedule(cpu);
dfc68f29
AL
662 else
663 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
664}
665
c5bfece2 666static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 667{
53c5fa16
FW
668 /*
669 * We just need the target to call irq_exit() and re-evaluate
670 * the next tick. The nohz full kick at least implies that.
671 * If needed we can still optimize that later with an
672 * empty IRQ.
673 */
c5bfece2 674 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
675 if (cpu != smp_processor_id() ||
676 tick_nohz_tick_stopped())
53c5fa16 677 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
678 return true;
679 }
680
681 return false;
682}
683
684void wake_up_nohz_cpu(int cpu)
685{
c5bfece2 686 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
687 wake_up_idle_cpu(cpu);
688}
689
ca38062e 690static inline bool got_nohz_idle_kick(void)
45bf76df 691{
1c792db7 692 int cpu = smp_processor_id();
873b4c65
VG
693
694 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
695 return false;
696
697 if (idle_cpu(cpu) && !need_resched())
698 return true;
699
700 /*
701 * We can't run Idle Load Balance on this CPU for this time so we
702 * cancel it and clear NOHZ_BALANCE_KICK
703 */
704 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
705 return false;
45bf76df
IM
706}
707
3451d024 708#else /* CONFIG_NO_HZ_COMMON */
45bf76df 709
ca38062e 710static inline bool got_nohz_idle_kick(void)
2069dd75 711{
ca38062e 712 return false;
2069dd75
PZ
713}
714
3451d024 715#endif /* CONFIG_NO_HZ_COMMON */
d842de87 716
ce831b38
FW
717#ifdef CONFIG_NO_HZ_FULL
718bool sched_can_stop_tick(void)
719{
1e78cdbd
RR
720 /*
721 * FIFO realtime policy runs the highest priority task. Other runnable
722 * tasks are of a lower priority. The scheduler tick does nothing.
723 */
724 if (current->policy == SCHED_FIFO)
725 return true;
726
727 /*
728 * Round-robin realtime tasks time slice with other tasks at the same
729 * realtime priority. Is this task the only one at this priority?
730 */
731 if (current->policy == SCHED_RR) {
732 struct sched_rt_entity *rt_se = &current->rt;
733
01783e0d 734 return list_is_singular(&rt_se->run_list);
1e78cdbd
RR
735 }
736
3882ec64
FW
737 /*
738 * More than one running task need preemption.
739 * nr_running update is assumed to be visible
740 * after IPI is sent from wakers.
741 */
541b8264
VK
742 if (this_rq()->nr_running > 1)
743 return false;
ce831b38 744
541b8264 745 return true;
ce831b38
FW
746}
747#endif /* CONFIG_NO_HZ_FULL */
d842de87 748
029632fb 749void sched_avg_update(struct rq *rq)
18d95a28 750{
e9e9250b
PZ
751 s64 period = sched_avg_period();
752
78becc27 753 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
754 /*
755 * Inline assembly required to prevent the compiler
756 * optimising this loop into a divmod call.
757 * See __iter_div_u64_rem() for another example of this.
758 */
759 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
760 rq->age_stamp += period;
761 rq->rt_avg /= 2;
762 }
18d95a28
PZ
763}
764
6d6bc0ad 765#endif /* CONFIG_SMP */
18d95a28 766
a790de99
PT
767#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
768 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 769/*
8277434e
PT
770 * Iterate task_group tree rooted at *from, calling @down when first entering a
771 * node and @up when leaving it for the final time.
772 *
773 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 774 */
029632fb 775int walk_tg_tree_from(struct task_group *from,
8277434e 776 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
777{
778 struct task_group *parent, *child;
eb755805 779 int ret;
c09595f6 780
8277434e
PT
781 parent = from;
782
c09595f6 783down:
eb755805
PZ
784 ret = (*down)(parent, data);
785 if (ret)
8277434e 786 goto out;
c09595f6
PZ
787 list_for_each_entry_rcu(child, &parent->children, siblings) {
788 parent = child;
789 goto down;
790
791up:
792 continue;
793 }
eb755805 794 ret = (*up)(parent, data);
8277434e
PT
795 if (ret || parent == from)
796 goto out;
c09595f6
PZ
797
798 child = parent;
799 parent = parent->parent;
800 if (parent)
801 goto up;
8277434e 802out:
eb755805 803 return ret;
c09595f6
PZ
804}
805
029632fb 806int tg_nop(struct task_group *tg, void *data)
eb755805 807{
e2b245f8 808 return 0;
eb755805 809}
18d95a28
PZ
810#endif
811
45bf76df
IM
812static void set_load_weight(struct task_struct *p)
813{
f05998d4
NR
814 int prio = p->static_prio - MAX_RT_PRIO;
815 struct load_weight *load = &p->se.load;
816
dd41f596
IM
817 /*
818 * SCHED_IDLE tasks get minimal weight:
819 */
20f9cd2a 820 if (idle_policy(p->policy)) {
c8b28116 821 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 822 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
823 return;
824 }
71f8bd46 825
c8b28116 826 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 827 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
828}
829
1de64443 830static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 831{
a64692a3 832 update_rq_clock(rq);
1de64443
PZ
833 if (!(flags & ENQUEUE_RESTORE))
834 sched_info_queued(rq, p);
371fd7e7 835 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
836}
837
1de64443 838static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 839{
a64692a3 840 update_rq_clock(rq);
1de64443
PZ
841 if (!(flags & DEQUEUE_SAVE))
842 sched_info_dequeued(rq, p);
371fd7e7 843 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
844}
845
029632fb 846void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
847{
848 if (task_contributes_to_load(p))
849 rq->nr_uninterruptible--;
850
371fd7e7 851 enqueue_task(rq, p, flags);
1e3c88bd
PZ
852}
853
029632fb 854void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
855{
856 if (task_contributes_to_load(p))
857 rq->nr_uninterruptible++;
858
371fd7e7 859 dequeue_task(rq, p, flags);
1e3c88bd
PZ
860}
861
fe44d621 862static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 863{
095c0aa8
GC
864/*
865 * In theory, the compile should just see 0 here, and optimize out the call
866 * to sched_rt_avg_update. But I don't trust it...
867 */
868#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
869 s64 steal = 0, irq_delta = 0;
870#endif
871#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 872 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
873
874 /*
875 * Since irq_time is only updated on {soft,}irq_exit, we might run into
876 * this case when a previous update_rq_clock() happened inside a
877 * {soft,}irq region.
878 *
879 * When this happens, we stop ->clock_task and only update the
880 * prev_irq_time stamp to account for the part that fit, so that a next
881 * update will consume the rest. This ensures ->clock_task is
882 * monotonic.
883 *
884 * It does however cause some slight miss-attribution of {soft,}irq
885 * time, a more accurate solution would be to update the irq_time using
886 * the current rq->clock timestamp, except that would require using
887 * atomic ops.
888 */
889 if (irq_delta > delta)
890 irq_delta = delta;
891
892 rq->prev_irq_time += irq_delta;
893 delta -= irq_delta;
095c0aa8
GC
894#endif
895#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 896 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
897 steal = paravirt_steal_clock(cpu_of(rq));
898 steal -= rq->prev_steal_time_rq;
899
900 if (unlikely(steal > delta))
901 steal = delta;
902
095c0aa8 903 rq->prev_steal_time_rq += steal;
095c0aa8
GC
904 delta -= steal;
905 }
906#endif
907
fe44d621
PZ
908 rq->clock_task += delta;
909
095c0aa8 910#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
5d4dfddd 911 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
095c0aa8
GC
912 sched_rt_avg_update(rq, irq_delta + steal);
913#endif
aa483808
VP
914}
915
34f971f6
PZ
916void sched_set_stop_task(int cpu, struct task_struct *stop)
917{
918 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
919 struct task_struct *old_stop = cpu_rq(cpu)->stop;
920
921 if (stop) {
922 /*
923 * Make it appear like a SCHED_FIFO task, its something
924 * userspace knows about and won't get confused about.
925 *
926 * Also, it will make PI more or less work without too
927 * much confusion -- but then, stop work should not
928 * rely on PI working anyway.
929 */
930 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
931
932 stop->sched_class = &stop_sched_class;
933 }
934
935 cpu_rq(cpu)->stop = stop;
936
937 if (old_stop) {
938 /*
939 * Reset it back to a normal scheduling class so that
940 * it can die in pieces.
941 */
942 old_stop->sched_class = &rt_sched_class;
943 }
944}
945
14531189 946/*
dd41f596 947 * __normal_prio - return the priority that is based on the static prio
14531189 948 */
14531189
IM
949static inline int __normal_prio(struct task_struct *p)
950{
dd41f596 951 return p->static_prio;
14531189
IM
952}
953
b29739f9
IM
954/*
955 * Calculate the expected normal priority: i.e. priority
956 * without taking RT-inheritance into account. Might be
957 * boosted by interactivity modifiers. Changes upon fork,
958 * setprio syscalls, and whenever the interactivity
959 * estimator recalculates.
960 */
36c8b586 961static inline int normal_prio(struct task_struct *p)
b29739f9
IM
962{
963 int prio;
964
aab03e05
DF
965 if (task_has_dl_policy(p))
966 prio = MAX_DL_PRIO-1;
967 else if (task_has_rt_policy(p))
b29739f9
IM
968 prio = MAX_RT_PRIO-1 - p->rt_priority;
969 else
970 prio = __normal_prio(p);
971 return prio;
972}
973
974/*
975 * Calculate the current priority, i.e. the priority
976 * taken into account by the scheduler. This value might
977 * be boosted by RT tasks, or might be boosted by
978 * interactivity modifiers. Will be RT if the task got
979 * RT-boosted. If not then it returns p->normal_prio.
980 */
36c8b586 981static int effective_prio(struct task_struct *p)
b29739f9
IM
982{
983 p->normal_prio = normal_prio(p);
984 /*
985 * If we are RT tasks or we were boosted to RT priority,
986 * keep the priority unchanged. Otherwise, update priority
987 * to the normal priority:
988 */
989 if (!rt_prio(p->prio))
990 return p->normal_prio;
991 return p->prio;
992}
993
1da177e4
LT
994/**
995 * task_curr - is this task currently executing on a CPU?
996 * @p: the task in question.
e69f6186
YB
997 *
998 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 999 */
36c8b586 1000inline int task_curr(const struct task_struct *p)
1da177e4
LT
1001{
1002 return cpu_curr(task_cpu(p)) == p;
1003}
1004
67dfa1b7 1005/*
4c9a4bc8
PZ
1006 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1007 * use the balance_callback list if you want balancing.
1008 *
1009 * this means any call to check_class_changed() must be followed by a call to
1010 * balance_callback().
67dfa1b7 1011 */
cb469845
SR
1012static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1013 const struct sched_class *prev_class,
da7a735e 1014 int oldprio)
cb469845
SR
1015{
1016 if (prev_class != p->sched_class) {
1017 if (prev_class->switched_from)
da7a735e 1018 prev_class->switched_from(rq, p);
4c9a4bc8 1019
da7a735e 1020 p->sched_class->switched_to(rq, p);
2d3d891d 1021 } else if (oldprio != p->prio || dl_task(p))
da7a735e 1022 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
1023}
1024
029632fb 1025void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
1026{
1027 const struct sched_class *class;
1028
1029 if (p->sched_class == rq->curr->sched_class) {
1030 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1031 } else {
1032 for_each_class(class) {
1033 if (class == rq->curr->sched_class)
1034 break;
1035 if (class == p->sched_class) {
8875125e 1036 resched_curr(rq);
1e5a7405
PZ
1037 break;
1038 }
1039 }
1040 }
1041
1042 /*
1043 * A queue event has occurred, and we're going to schedule. In
1044 * this case, we can save a useless back to back clock update.
1045 */
da0c1e65 1046 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
9edfbfed 1047 rq_clock_skip_update(rq, true);
1e5a7405
PZ
1048}
1049
1da177e4 1050#ifdef CONFIG_SMP
5cc389bc
PZ
1051/*
1052 * This is how migration works:
1053 *
1054 * 1) we invoke migration_cpu_stop() on the target CPU using
1055 * stop_one_cpu().
1056 * 2) stopper starts to run (implicitly forcing the migrated thread
1057 * off the CPU)
1058 * 3) it checks whether the migrated task is still in the wrong runqueue.
1059 * 4) if it's in the wrong runqueue then the migration thread removes
1060 * it and puts it into the right queue.
1061 * 5) stopper completes and stop_one_cpu() returns and the migration
1062 * is done.
1063 */
1064
1065/*
1066 * move_queued_task - move a queued task to new rq.
1067 *
1068 * Returns (locked) new rq. Old rq's lock is released.
1069 */
5e16bbc2 1070static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
5cc389bc 1071{
5cc389bc
PZ
1072 lockdep_assert_held(&rq->lock);
1073
5cc389bc 1074 p->on_rq = TASK_ON_RQ_MIGRATING;
3ea94de1 1075 dequeue_task(rq, p, 0);
5cc389bc
PZ
1076 set_task_cpu(p, new_cpu);
1077 raw_spin_unlock(&rq->lock);
1078
1079 rq = cpu_rq(new_cpu);
1080
1081 raw_spin_lock(&rq->lock);
1082 BUG_ON(task_cpu(p) != new_cpu);
5cc389bc 1083 enqueue_task(rq, p, 0);
3ea94de1 1084 p->on_rq = TASK_ON_RQ_QUEUED;
5cc389bc
PZ
1085 check_preempt_curr(rq, p, 0);
1086
1087 return rq;
1088}
1089
1090struct migration_arg {
1091 struct task_struct *task;
1092 int dest_cpu;
1093};
1094
1095/*
1096 * Move (not current) task off this cpu, onto dest cpu. We're doing
1097 * this because either it can't run here any more (set_cpus_allowed()
1098 * away from this CPU, or CPU going down), or because we're
1099 * attempting to rebalance this task on exec (sched_exec).
1100 *
1101 * So we race with normal scheduler movements, but that's OK, as long
1102 * as the task is no longer on this CPU.
5cc389bc 1103 */
5e16bbc2 1104static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
5cc389bc 1105{
5cc389bc 1106 if (unlikely(!cpu_active(dest_cpu)))
5e16bbc2 1107 return rq;
5cc389bc
PZ
1108
1109 /* Affinity changed (again). */
1110 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
5e16bbc2 1111 return rq;
5cc389bc 1112
5e16bbc2
PZ
1113 rq = move_queued_task(rq, p, dest_cpu);
1114
1115 return rq;
5cc389bc
PZ
1116}
1117
1118/*
1119 * migration_cpu_stop - this will be executed by a highprio stopper thread
1120 * and performs thread migration by bumping thread off CPU then
1121 * 'pushing' onto another runqueue.
1122 */
1123static int migration_cpu_stop(void *data)
1124{
1125 struct migration_arg *arg = data;
5e16bbc2
PZ
1126 struct task_struct *p = arg->task;
1127 struct rq *rq = this_rq();
5cc389bc
PZ
1128
1129 /*
1130 * The original target cpu might have gone down and we might
1131 * be on another cpu but it doesn't matter.
1132 */
1133 local_irq_disable();
1134 /*
1135 * We need to explicitly wake pending tasks before running
1136 * __migrate_task() such that we will not miss enforcing cpus_allowed
1137 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1138 */
1139 sched_ttwu_pending();
5e16bbc2
PZ
1140
1141 raw_spin_lock(&p->pi_lock);
1142 raw_spin_lock(&rq->lock);
1143 /*
1144 * If task_rq(p) != rq, it cannot be migrated here, because we're
1145 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1146 * we're holding p->pi_lock.
1147 */
1148 if (task_rq(p) == rq && task_on_rq_queued(p))
1149 rq = __migrate_task(rq, p, arg->dest_cpu);
1150 raw_spin_unlock(&rq->lock);
1151 raw_spin_unlock(&p->pi_lock);
1152
5cc389bc
PZ
1153 local_irq_enable();
1154 return 0;
1155}
1156
c5b28038
PZ
1157/*
1158 * sched_class::set_cpus_allowed must do the below, but is not required to
1159 * actually call this function.
1160 */
1161void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
5cc389bc 1162{
5cc389bc
PZ
1163 cpumask_copy(&p->cpus_allowed, new_mask);
1164 p->nr_cpus_allowed = cpumask_weight(new_mask);
1165}
1166
c5b28038
PZ
1167void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1168{
6c37067e
PZ
1169 struct rq *rq = task_rq(p);
1170 bool queued, running;
1171
c5b28038 1172 lockdep_assert_held(&p->pi_lock);
6c37067e
PZ
1173
1174 queued = task_on_rq_queued(p);
1175 running = task_current(rq, p);
1176
1177 if (queued) {
1178 /*
1179 * Because __kthread_bind() calls this on blocked tasks without
1180 * holding rq->lock.
1181 */
1182 lockdep_assert_held(&rq->lock);
1de64443 1183 dequeue_task(rq, p, DEQUEUE_SAVE);
6c37067e
PZ
1184 }
1185 if (running)
1186 put_prev_task(rq, p);
1187
c5b28038 1188 p->sched_class->set_cpus_allowed(p, new_mask);
6c37067e
PZ
1189
1190 if (running)
1191 p->sched_class->set_curr_task(rq);
1192 if (queued)
1de64443 1193 enqueue_task(rq, p, ENQUEUE_RESTORE);
c5b28038
PZ
1194}
1195
5cc389bc
PZ
1196/*
1197 * Change a given task's CPU affinity. Migrate the thread to a
1198 * proper CPU and schedule it away if the CPU it's executing on
1199 * is removed from the allowed bitmask.
1200 *
1201 * NOTE: the caller must have a valid reference to the task, the
1202 * task must not exit() & deallocate itself prematurely. The
1203 * call is not atomic; no spinlocks may be held.
1204 */
25834c73
PZ
1205static int __set_cpus_allowed_ptr(struct task_struct *p,
1206 const struct cpumask *new_mask, bool check)
5cc389bc
PZ
1207{
1208 unsigned long flags;
1209 struct rq *rq;
1210 unsigned int dest_cpu;
1211 int ret = 0;
1212
1213 rq = task_rq_lock(p, &flags);
1214
25834c73
PZ
1215 /*
1216 * Must re-check here, to close a race against __kthread_bind(),
1217 * sched_setaffinity() is not guaranteed to observe the flag.
1218 */
1219 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1220 ret = -EINVAL;
1221 goto out;
1222 }
1223
5cc389bc
PZ
1224 if (cpumask_equal(&p->cpus_allowed, new_mask))
1225 goto out;
1226
1227 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1228 ret = -EINVAL;
1229 goto out;
1230 }
1231
1232 do_set_cpus_allowed(p, new_mask);
1233
1234 /* Can the task run on the task's current CPU? If so, we're done */
1235 if (cpumask_test_cpu(task_cpu(p), new_mask))
1236 goto out;
1237
1238 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
1239 if (task_running(rq, p) || p->state == TASK_WAKING) {
1240 struct migration_arg arg = { p, dest_cpu };
1241 /* Need help from migration thread: drop lock and wait. */
1242 task_rq_unlock(rq, p, &flags);
1243 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1244 tlb_migrate_finish(p->mm);
1245 return 0;
cbce1a68
PZ
1246 } else if (task_on_rq_queued(p)) {
1247 /*
1248 * OK, since we're going to drop the lock immediately
1249 * afterwards anyway.
1250 */
1251 lockdep_unpin_lock(&rq->lock);
5e16bbc2 1252 rq = move_queued_task(rq, p, dest_cpu);
cbce1a68
PZ
1253 lockdep_pin_lock(&rq->lock);
1254 }
5cc389bc
PZ
1255out:
1256 task_rq_unlock(rq, p, &flags);
1257
1258 return ret;
1259}
25834c73
PZ
1260
1261int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1262{
1263 return __set_cpus_allowed_ptr(p, new_mask, false);
1264}
5cc389bc
PZ
1265EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1266
dd41f596 1267void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1268{
e2912009
PZ
1269#ifdef CONFIG_SCHED_DEBUG
1270 /*
1271 * We should never call set_task_cpu() on a blocked task,
1272 * ttwu() will sort out the placement.
1273 */
077614ee 1274 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
e2336f6e 1275 !p->on_rq);
0122ec5b 1276
3ea94de1
JP
1277 /*
1278 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1279 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1280 * time relying on p->on_rq.
1281 */
1282 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1283 p->sched_class == &fair_sched_class &&
1284 (p->on_rq && !task_on_rq_migrating(p)));
1285
0122ec5b 1286#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1287 /*
1288 * The caller should hold either p->pi_lock or rq->lock, when changing
1289 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1290 *
1291 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1292 * see task_group().
6c6c54e1
PZ
1293 *
1294 * Furthermore, all task_rq users should acquire both locks, see
1295 * task_rq_lock().
1296 */
0122ec5b
PZ
1297 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1298 lockdep_is_held(&task_rq(p)->lock)));
1299#endif
e2912009
PZ
1300#endif
1301
de1d7286 1302 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1303
0c69774e 1304 if (task_cpu(p) != new_cpu) {
0a74bef8 1305 if (p->sched_class->migrate_task_rq)
5a4fd036 1306 p->sched_class->migrate_task_rq(p);
0c69774e 1307 p->se.nr_migrations++;
ff303e66 1308 perf_event_task_migrate(p);
0c69774e 1309 }
dd41f596
IM
1310
1311 __set_task_cpu(p, new_cpu);
c65cc870
IM
1312}
1313
ac66f547
PZ
1314static void __migrate_swap_task(struct task_struct *p, int cpu)
1315{
da0c1e65 1316 if (task_on_rq_queued(p)) {
ac66f547
PZ
1317 struct rq *src_rq, *dst_rq;
1318
1319 src_rq = task_rq(p);
1320 dst_rq = cpu_rq(cpu);
1321
3ea94de1 1322 p->on_rq = TASK_ON_RQ_MIGRATING;
ac66f547
PZ
1323 deactivate_task(src_rq, p, 0);
1324 set_task_cpu(p, cpu);
1325 activate_task(dst_rq, p, 0);
3ea94de1 1326 p->on_rq = TASK_ON_RQ_QUEUED;
ac66f547
PZ
1327 check_preempt_curr(dst_rq, p, 0);
1328 } else {
1329 /*
1330 * Task isn't running anymore; make it appear like we migrated
1331 * it before it went to sleep. This means on wakeup we make the
1332 * previous cpu our targer instead of where it really is.
1333 */
1334 p->wake_cpu = cpu;
1335 }
1336}
1337
1338struct migration_swap_arg {
1339 struct task_struct *src_task, *dst_task;
1340 int src_cpu, dst_cpu;
1341};
1342
1343static int migrate_swap_stop(void *data)
1344{
1345 struct migration_swap_arg *arg = data;
1346 struct rq *src_rq, *dst_rq;
1347 int ret = -EAGAIN;
1348
62694cd5
PZ
1349 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1350 return -EAGAIN;
1351
ac66f547
PZ
1352 src_rq = cpu_rq(arg->src_cpu);
1353 dst_rq = cpu_rq(arg->dst_cpu);
1354
74602315
PZ
1355 double_raw_lock(&arg->src_task->pi_lock,
1356 &arg->dst_task->pi_lock);
ac66f547 1357 double_rq_lock(src_rq, dst_rq);
62694cd5 1358
ac66f547
PZ
1359 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1360 goto unlock;
1361
1362 if (task_cpu(arg->src_task) != arg->src_cpu)
1363 goto unlock;
1364
1365 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1366 goto unlock;
1367
1368 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1369 goto unlock;
1370
1371 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1372 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1373
1374 ret = 0;
1375
1376unlock:
1377 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1378 raw_spin_unlock(&arg->dst_task->pi_lock);
1379 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1380
1381 return ret;
1382}
1383
1384/*
1385 * Cross migrate two tasks
1386 */
1387int migrate_swap(struct task_struct *cur, struct task_struct *p)
1388{
1389 struct migration_swap_arg arg;
1390 int ret = -EINVAL;
1391
ac66f547
PZ
1392 arg = (struct migration_swap_arg){
1393 .src_task = cur,
1394 .src_cpu = task_cpu(cur),
1395 .dst_task = p,
1396 .dst_cpu = task_cpu(p),
1397 };
1398
1399 if (arg.src_cpu == arg.dst_cpu)
1400 goto out;
1401
6acce3ef
PZ
1402 /*
1403 * These three tests are all lockless; this is OK since all of them
1404 * will be re-checked with proper locks held further down the line.
1405 */
ac66f547
PZ
1406 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1407 goto out;
1408
1409 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1410 goto out;
1411
1412 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1413 goto out;
1414
286549dc 1415 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1416 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1417
1418out:
ac66f547
PZ
1419 return ret;
1420}
1421
1da177e4
LT
1422/*
1423 * wait_task_inactive - wait for a thread to unschedule.
1424 *
85ba2d86
RM
1425 * If @match_state is nonzero, it's the @p->state value just checked and
1426 * not expected to change. If it changes, i.e. @p might have woken up,
1427 * then return zero. When we succeed in waiting for @p to be off its CPU,
1428 * we return a positive number (its total switch count). If a second call
1429 * a short while later returns the same number, the caller can be sure that
1430 * @p has remained unscheduled the whole time.
1431 *
1da177e4
LT
1432 * The caller must ensure that the task *will* unschedule sometime soon,
1433 * else this function might spin for a *long* time. This function can't
1434 * be called with interrupts off, or it may introduce deadlock with
1435 * smp_call_function() if an IPI is sent by the same process we are
1436 * waiting to become inactive.
1437 */
85ba2d86 1438unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1439{
1440 unsigned long flags;
da0c1e65 1441 int running, queued;
85ba2d86 1442 unsigned long ncsw;
70b97a7f 1443 struct rq *rq;
1da177e4 1444
3a5c359a
AK
1445 for (;;) {
1446 /*
1447 * We do the initial early heuristics without holding
1448 * any task-queue locks at all. We'll only try to get
1449 * the runqueue lock when things look like they will
1450 * work out!
1451 */
1452 rq = task_rq(p);
fa490cfd 1453
3a5c359a
AK
1454 /*
1455 * If the task is actively running on another CPU
1456 * still, just relax and busy-wait without holding
1457 * any locks.
1458 *
1459 * NOTE! Since we don't hold any locks, it's not
1460 * even sure that "rq" stays as the right runqueue!
1461 * But we don't care, since "task_running()" will
1462 * return false if the runqueue has changed and p
1463 * is actually now running somewhere else!
1464 */
85ba2d86
RM
1465 while (task_running(rq, p)) {
1466 if (match_state && unlikely(p->state != match_state))
1467 return 0;
3a5c359a 1468 cpu_relax();
85ba2d86 1469 }
fa490cfd 1470
3a5c359a
AK
1471 /*
1472 * Ok, time to look more closely! We need the rq
1473 * lock now, to be *sure*. If we're wrong, we'll
1474 * just go back and repeat.
1475 */
1476 rq = task_rq_lock(p, &flags);
27a9da65 1477 trace_sched_wait_task(p);
3a5c359a 1478 running = task_running(rq, p);
da0c1e65 1479 queued = task_on_rq_queued(p);
85ba2d86 1480 ncsw = 0;
f31e11d8 1481 if (!match_state || p->state == match_state)
93dcf55f 1482 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1483 task_rq_unlock(rq, p, &flags);
fa490cfd 1484
85ba2d86
RM
1485 /*
1486 * If it changed from the expected state, bail out now.
1487 */
1488 if (unlikely(!ncsw))
1489 break;
1490
3a5c359a
AK
1491 /*
1492 * Was it really running after all now that we
1493 * checked with the proper locks actually held?
1494 *
1495 * Oops. Go back and try again..
1496 */
1497 if (unlikely(running)) {
1498 cpu_relax();
1499 continue;
1500 }
fa490cfd 1501
3a5c359a
AK
1502 /*
1503 * It's not enough that it's not actively running,
1504 * it must be off the runqueue _entirely_, and not
1505 * preempted!
1506 *
80dd99b3 1507 * So if it was still runnable (but just not actively
3a5c359a
AK
1508 * running right now), it's preempted, and we should
1509 * yield - it could be a while.
1510 */
da0c1e65 1511 if (unlikely(queued)) {
8eb90c30
TG
1512 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1513
1514 set_current_state(TASK_UNINTERRUPTIBLE);
1515 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1516 continue;
1517 }
fa490cfd 1518
3a5c359a
AK
1519 /*
1520 * Ahh, all good. It wasn't running, and it wasn't
1521 * runnable, which means that it will never become
1522 * running in the future either. We're all done!
1523 */
1524 break;
1525 }
85ba2d86
RM
1526
1527 return ncsw;
1da177e4
LT
1528}
1529
1530/***
1531 * kick_process - kick a running thread to enter/exit the kernel
1532 * @p: the to-be-kicked thread
1533 *
1534 * Cause a process which is running on another CPU to enter
1535 * kernel-mode, without any delay. (to get signals handled.)
1536 *
25985edc 1537 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1538 * because all it wants to ensure is that the remote task enters
1539 * the kernel. If the IPI races and the task has been migrated
1540 * to another CPU then no harm is done and the purpose has been
1541 * achieved as well.
1542 */
36c8b586 1543void kick_process(struct task_struct *p)
1da177e4
LT
1544{
1545 int cpu;
1546
1547 preempt_disable();
1548 cpu = task_cpu(p);
1549 if ((cpu != smp_processor_id()) && task_curr(p))
1550 smp_send_reschedule(cpu);
1551 preempt_enable();
1552}
b43e3521 1553EXPORT_SYMBOL_GPL(kick_process);
1da177e4 1554
30da688e 1555/*
013fdb80 1556 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1557 */
5da9a0fb
PZ
1558static int select_fallback_rq(int cpu, struct task_struct *p)
1559{
aa00d89c
TC
1560 int nid = cpu_to_node(cpu);
1561 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1562 enum { cpuset, possible, fail } state = cpuset;
1563 int dest_cpu;
5da9a0fb 1564
aa00d89c
TC
1565 /*
1566 * If the node that the cpu is on has been offlined, cpu_to_node()
1567 * will return -1. There is no cpu on the node, and we should
1568 * select the cpu on the other node.
1569 */
1570 if (nid != -1) {
1571 nodemask = cpumask_of_node(nid);
1572
1573 /* Look for allowed, online CPU in same node. */
1574 for_each_cpu(dest_cpu, nodemask) {
1575 if (!cpu_online(dest_cpu))
1576 continue;
1577 if (!cpu_active(dest_cpu))
1578 continue;
1579 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1580 return dest_cpu;
1581 }
2baab4e9 1582 }
5da9a0fb 1583
2baab4e9
PZ
1584 for (;;) {
1585 /* Any allowed, online CPU? */
e3831edd 1586 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1587 if (!cpu_online(dest_cpu))
1588 continue;
1589 if (!cpu_active(dest_cpu))
1590 continue;
1591 goto out;
1592 }
5da9a0fb 1593
e73e85f0 1594 /* No more Mr. Nice Guy. */
2baab4e9
PZ
1595 switch (state) {
1596 case cpuset:
e73e85f0
ON
1597 if (IS_ENABLED(CONFIG_CPUSETS)) {
1598 cpuset_cpus_allowed_fallback(p);
1599 state = possible;
1600 break;
1601 }
1602 /* fall-through */
2baab4e9
PZ
1603 case possible:
1604 do_set_cpus_allowed(p, cpu_possible_mask);
1605 state = fail;
1606 break;
1607
1608 case fail:
1609 BUG();
1610 break;
1611 }
1612 }
1613
1614out:
1615 if (state != cpuset) {
1616 /*
1617 * Don't tell them about moving exiting tasks or
1618 * kernel threads (both mm NULL), since they never
1619 * leave kernel.
1620 */
1621 if (p->mm && printk_ratelimit()) {
aac74dc4 1622 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1623 task_pid_nr(p), p->comm, cpu);
1624 }
5da9a0fb
PZ
1625 }
1626
1627 return dest_cpu;
1628}
1629
e2912009 1630/*
013fdb80 1631 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1632 */
970b13ba 1633static inline
ac66f547 1634int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1635{
cbce1a68
PZ
1636 lockdep_assert_held(&p->pi_lock);
1637
6c1d9410
WL
1638 if (p->nr_cpus_allowed > 1)
1639 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e2912009
PZ
1640
1641 /*
1642 * In order not to call set_task_cpu() on a blocking task we need
1643 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1644 * cpu.
1645 *
1646 * Since this is common to all placement strategies, this lives here.
1647 *
1648 * [ this allows ->select_task() to simply return task_cpu(p) and
1649 * not worry about this generic constraint ]
1650 */
fa17b507 1651 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1652 !cpu_online(cpu)))
5da9a0fb 1653 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1654
1655 return cpu;
970b13ba 1656}
09a40af5
MG
1657
1658static void update_avg(u64 *avg, u64 sample)
1659{
1660 s64 diff = sample - *avg;
1661 *avg += diff >> 3;
1662}
25834c73
PZ
1663
1664#else
1665
1666static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1667 const struct cpumask *new_mask, bool check)
1668{
1669 return set_cpus_allowed_ptr(p, new_mask);
1670}
1671
5cc389bc 1672#endif /* CONFIG_SMP */
970b13ba 1673
d7c01d27 1674static void
b84cb5df 1675ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1676{
d7c01d27 1677#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1678 struct rq *rq = this_rq();
1679
d7c01d27
PZ
1680#ifdef CONFIG_SMP
1681 int this_cpu = smp_processor_id();
1682
1683 if (cpu == this_cpu) {
1684 schedstat_inc(rq, ttwu_local);
1685 schedstat_inc(p, se.statistics.nr_wakeups_local);
1686 } else {
1687 struct sched_domain *sd;
1688
1689 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1690 rcu_read_lock();
d7c01d27
PZ
1691 for_each_domain(this_cpu, sd) {
1692 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1693 schedstat_inc(sd, ttwu_wake_remote);
1694 break;
1695 }
1696 }
057f3fad 1697 rcu_read_unlock();
d7c01d27 1698 }
f339b9dc
PZ
1699
1700 if (wake_flags & WF_MIGRATED)
1701 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1702
d7c01d27
PZ
1703#endif /* CONFIG_SMP */
1704
1705 schedstat_inc(rq, ttwu_count);
9ed3811a 1706 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1707
1708 if (wake_flags & WF_SYNC)
9ed3811a 1709 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1710
d7c01d27
PZ
1711#endif /* CONFIG_SCHEDSTATS */
1712}
1713
1de64443 1714static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
d7c01d27 1715{
9ed3811a 1716 activate_task(rq, p, en_flags);
da0c1e65 1717 p->on_rq = TASK_ON_RQ_QUEUED;
c2f7115e
PZ
1718
1719 /* if a worker is waking up, notify workqueue */
1720 if (p->flags & PF_WQ_WORKER)
1721 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1722}
1723
23f41eeb
PZ
1724/*
1725 * Mark the task runnable and perform wakeup-preemption.
1726 */
89363381 1727static void
23f41eeb 1728ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1729{
9ed3811a 1730 check_preempt_curr(rq, p, wake_flags);
9ed3811a 1731 p->state = TASK_RUNNING;
fbd705a0
PZ
1732 trace_sched_wakeup(p);
1733
9ed3811a 1734#ifdef CONFIG_SMP
4c9a4bc8
PZ
1735 if (p->sched_class->task_woken) {
1736 /*
cbce1a68
PZ
1737 * Our task @p is fully woken up and running; so its safe to
1738 * drop the rq->lock, hereafter rq is only used for statistics.
4c9a4bc8 1739 */
cbce1a68 1740 lockdep_unpin_lock(&rq->lock);
9ed3811a 1741 p->sched_class->task_woken(rq, p);
cbce1a68 1742 lockdep_pin_lock(&rq->lock);
4c9a4bc8 1743 }
9ed3811a 1744
e69c6341 1745 if (rq->idle_stamp) {
78becc27 1746 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1747 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1748
abfafa54
JL
1749 update_avg(&rq->avg_idle, delta);
1750
1751 if (rq->avg_idle > max)
9ed3811a 1752 rq->avg_idle = max;
abfafa54 1753
9ed3811a
TH
1754 rq->idle_stamp = 0;
1755 }
1756#endif
1757}
1758
c05fbafb
PZ
1759static void
1760ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1761{
cbce1a68
PZ
1762 lockdep_assert_held(&rq->lock);
1763
c05fbafb
PZ
1764#ifdef CONFIG_SMP
1765 if (p->sched_contributes_to_load)
1766 rq->nr_uninterruptible--;
1767#endif
1768
1769 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1770 ttwu_do_wakeup(rq, p, wake_flags);
1771}
1772
1773/*
1774 * Called in case the task @p isn't fully descheduled from its runqueue,
1775 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1776 * since all we need to do is flip p->state to TASK_RUNNING, since
1777 * the task is still ->on_rq.
1778 */
1779static int ttwu_remote(struct task_struct *p, int wake_flags)
1780{
1781 struct rq *rq;
1782 int ret = 0;
1783
1784 rq = __task_rq_lock(p);
da0c1e65 1785 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
1786 /* check_preempt_curr() may use rq clock */
1787 update_rq_clock(rq);
c05fbafb
PZ
1788 ttwu_do_wakeup(rq, p, wake_flags);
1789 ret = 1;
1790 }
1791 __task_rq_unlock(rq);
1792
1793 return ret;
1794}
1795
317f3941 1796#ifdef CONFIG_SMP
e3baac47 1797void sched_ttwu_pending(void)
317f3941
PZ
1798{
1799 struct rq *rq = this_rq();
fa14ff4a
PZ
1800 struct llist_node *llist = llist_del_all(&rq->wake_list);
1801 struct task_struct *p;
e3baac47 1802 unsigned long flags;
317f3941 1803
e3baac47
PZ
1804 if (!llist)
1805 return;
1806
1807 raw_spin_lock_irqsave(&rq->lock, flags);
cbce1a68 1808 lockdep_pin_lock(&rq->lock);
317f3941 1809
fa14ff4a
PZ
1810 while (llist) {
1811 p = llist_entry(llist, struct task_struct, wake_entry);
1812 llist = llist_next(llist);
317f3941
PZ
1813 ttwu_do_activate(rq, p, 0);
1814 }
1815
cbce1a68 1816 lockdep_unpin_lock(&rq->lock);
e3baac47 1817 raw_spin_unlock_irqrestore(&rq->lock, flags);
317f3941
PZ
1818}
1819
1820void scheduler_ipi(void)
1821{
f27dde8d
PZ
1822 /*
1823 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1824 * TIF_NEED_RESCHED remotely (for the first time) will also send
1825 * this IPI.
1826 */
8cb75e0c 1827 preempt_fold_need_resched();
f27dde8d 1828
fd2ac4f4 1829 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1830 return;
1831
1832 /*
1833 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1834 * traditionally all their work was done from the interrupt return
1835 * path. Now that we actually do some work, we need to make sure
1836 * we do call them.
1837 *
1838 * Some archs already do call them, luckily irq_enter/exit nest
1839 * properly.
1840 *
1841 * Arguably we should visit all archs and update all handlers,
1842 * however a fair share of IPIs are still resched only so this would
1843 * somewhat pessimize the simple resched case.
1844 */
1845 irq_enter();
fa14ff4a 1846 sched_ttwu_pending();
ca38062e
SS
1847
1848 /*
1849 * Check if someone kicked us for doing the nohz idle load balance.
1850 */
873b4c65 1851 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1852 this_rq()->idle_balance = 1;
ca38062e 1853 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1854 }
c5d753a5 1855 irq_exit();
317f3941
PZ
1856}
1857
1858static void ttwu_queue_remote(struct task_struct *p, int cpu)
1859{
e3baac47
PZ
1860 struct rq *rq = cpu_rq(cpu);
1861
1862 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1863 if (!set_nr_if_polling(rq->idle))
1864 smp_send_reschedule(cpu);
1865 else
1866 trace_sched_wake_idle_without_ipi(cpu);
1867 }
317f3941 1868}
d6aa8f85 1869
f6be8af1
CL
1870void wake_up_if_idle(int cpu)
1871{
1872 struct rq *rq = cpu_rq(cpu);
1873 unsigned long flags;
1874
fd7de1e8
AL
1875 rcu_read_lock();
1876
1877 if (!is_idle_task(rcu_dereference(rq->curr)))
1878 goto out;
f6be8af1
CL
1879
1880 if (set_nr_if_polling(rq->idle)) {
1881 trace_sched_wake_idle_without_ipi(cpu);
1882 } else {
1883 raw_spin_lock_irqsave(&rq->lock, flags);
1884 if (is_idle_task(rq->curr))
1885 smp_send_reschedule(cpu);
1886 /* Else cpu is not in idle, do nothing here */
1887 raw_spin_unlock_irqrestore(&rq->lock, flags);
1888 }
fd7de1e8
AL
1889
1890out:
1891 rcu_read_unlock();
f6be8af1
CL
1892}
1893
39be3501 1894bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1895{
1896 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1897}
d6aa8f85 1898#endif /* CONFIG_SMP */
317f3941 1899
c05fbafb
PZ
1900static void ttwu_queue(struct task_struct *p, int cpu)
1901{
1902 struct rq *rq = cpu_rq(cpu);
1903
17d9f311 1904#if defined(CONFIG_SMP)
39be3501 1905 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1906 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1907 ttwu_queue_remote(p, cpu);
1908 return;
1909 }
1910#endif
1911
c05fbafb 1912 raw_spin_lock(&rq->lock);
cbce1a68 1913 lockdep_pin_lock(&rq->lock);
c05fbafb 1914 ttwu_do_activate(rq, p, 0);
cbce1a68 1915 lockdep_unpin_lock(&rq->lock);
c05fbafb 1916 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1917}
1918
1919/**
1da177e4 1920 * try_to_wake_up - wake up a thread
9ed3811a 1921 * @p: the thread to be awakened
1da177e4 1922 * @state: the mask of task states that can be woken
9ed3811a 1923 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1924 *
1925 * Put it on the run-queue if it's not already there. The "current"
1926 * thread is always on the run-queue (except when the actual
1927 * re-schedule is in progress), and as such you're allowed to do
1928 * the simpler "current->state = TASK_RUNNING" to mark yourself
1929 * runnable without the overhead of this.
1930 *
e69f6186 1931 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1932 * or @state didn't match @p's state.
1da177e4 1933 */
e4a52bcb
PZ
1934static int
1935try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1936{
1da177e4 1937 unsigned long flags;
c05fbafb 1938 int cpu, success = 0;
2398f2c6 1939
e0acd0a6
ON
1940 /*
1941 * If we are going to wake up a thread waiting for CONDITION we
1942 * need to ensure that CONDITION=1 done by the caller can not be
1943 * reordered with p->state check below. This pairs with mb() in
1944 * set_current_state() the waiting thread does.
1945 */
1946 smp_mb__before_spinlock();
013fdb80 1947 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1948 if (!(p->state & state))
1da177e4
LT
1949 goto out;
1950
fbd705a0
PZ
1951 trace_sched_waking(p);
1952
c05fbafb 1953 success = 1; /* we're going to change ->state */
1da177e4 1954 cpu = task_cpu(p);
1da177e4 1955
c05fbafb
PZ
1956 if (p->on_rq && ttwu_remote(p, wake_flags))
1957 goto stat;
1da177e4 1958
1da177e4 1959#ifdef CONFIG_SMP
ecf7d01c
PZ
1960 /*
1961 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
1962 * possible to, falsely, observe p->on_cpu == 0.
1963 *
1964 * One must be running (->on_cpu == 1) in order to remove oneself
1965 * from the runqueue.
1966 *
1967 * [S] ->on_cpu = 1; [L] ->on_rq
1968 * UNLOCK rq->lock
1969 * RMB
1970 * LOCK rq->lock
1971 * [S] ->on_rq = 0; [L] ->on_cpu
1972 *
1973 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
1974 * from the consecutive calls to schedule(); the first switching to our
1975 * task, the second putting it to sleep.
1976 */
1977 smp_rmb();
1978
e9c84311 1979 /*
c05fbafb
PZ
1980 * If the owning (remote) cpu is still in the middle of schedule() with
1981 * this task as prev, wait until its done referencing the task.
e9c84311 1982 */
f3e94786 1983 while (p->on_cpu)
e4a52bcb 1984 cpu_relax();
0970d299 1985 /*
b75a2253
PZ
1986 * Combined with the control dependency above, we have an effective
1987 * smp_load_acquire() without the need for full barriers.
1988 *
1989 * Pairs with the smp_store_release() in finish_lock_switch().
1990 *
1991 * This ensures that tasks getting woken will be fully ordered against
1992 * their previous state and preserve Program Order.
0970d299 1993 */
e4a52bcb 1994 smp_rmb();
1da177e4 1995
a8e4f2ea 1996 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1997 p->state = TASK_WAKING;
e7693a36 1998
e4a52bcb 1999 if (p->sched_class->task_waking)
74f8e4b2 2000 p->sched_class->task_waking(p);
efbbd05a 2001
ac66f547 2002 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
2003 if (task_cpu(p) != cpu) {
2004 wake_flags |= WF_MIGRATED;
e4a52bcb 2005 set_task_cpu(p, cpu);
f339b9dc 2006 }
1da177e4 2007#endif /* CONFIG_SMP */
1da177e4 2008
c05fbafb
PZ
2009 ttwu_queue(p, cpu);
2010stat:
b84cb5df 2011 ttwu_stat(p, cpu, wake_flags);
1da177e4 2012out:
013fdb80 2013 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
2014
2015 return success;
2016}
2017
21aa9af0
TH
2018/**
2019 * try_to_wake_up_local - try to wake up a local task with rq lock held
2020 * @p: the thread to be awakened
2021 *
2acca55e 2022 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 2023 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 2024 * the current task.
21aa9af0
TH
2025 */
2026static void try_to_wake_up_local(struct task_struct *p)
2027{
2028 struct rq *rq = task_rq(p);
21aa9af0 2029
383efcd0
TH
2030 if (WARN_ON_ONCE(rq != this_rq()) ||
2031 WARN_ON_ONCE(p == current))
2032 return;
2033
21aa9af0
TH
2034 lockdep_assert_held(&rq->lock);
2035
2acca55e 2036 if (!raw_spin_trylock(&p->pi_lock)) {
cbce1a68
PZ
2037 /*
2038 * This is OK, because current is on_cpu, which avoids it being
2039 * picked for load-balance and preemption/IRQs are still
2040 * disabled avoiding further scheduler activity on it and we've
2041 * not yet picked a replacement task.
2042 */
2043 lockdep_unpin_lock(&rq->lock);
2acca55e
PZ
2044 raw_spin_unlock(&rq->lock);
2045 raw_spin_lock(&p->pi_lock);
2046 raw_spin_lock(&rq->lock);
cbce1a68 2047 lockdep_pin_lock(&rq->lock);
2acca55e
PZ
2048 }
2049
21aa9af0 2050 if (!(p->state & TASK_NORMAL))
2acca55e 2051 goto out;
21aa9af0 2052
fbd705a0
PZ
2053 trace_sched_waking(p);
2054
da0c1e65 2055 if (!task_on_rq_queued(p))
d7c01d27
PZ
2056 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2057
23f41eeb 2058 ttwu_do_wakeup(rq, p, 0);
b84cb5df 2059 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
2060out:
2061 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
2062}
2063
50fa610a
DH
2064/**
2065 * wake_up_process - Wake up a specific process
2066 * @p: The process to be woken up.
2067 *
2068 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
2069 * processes.
2070 *
2071 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
2072 *
2073 * It may be assumed that this function implies a write memory barrier before
2074 * changing the task state if and only if any tasks are woken up.
2075 */
7ad5b3a5 2076int wake_up_process(struct task_struct *p)
1da177e4 2077{
9067ac85 2078 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 2079}
1da177e4
LT
2080EXPORT_SYMBOL(wake_up_process);
2081
7ad5b3a5 2082int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2083{
2084 return try_to_wake_up(p, state, 0);
2085}
2086
a5e7be3b
JL
2087/*
2088 * This function clears the sched_dl_entity static params.
2089 */
2090void __dl_clear_params(struct task_struct *p)
2091{
2092 struct sched_dl_entity *dl_se = &p->dl;
2093
2094 dl_se->dl_runtime = 0;
2095 dl_se->dl_deadline = 0;
2096 dl_se->dl_period = 0;
2097 dl_se->flags = 0;
2098 dl_se->dl_bw = 0;
40767b0d
PZ
2099
2100 dl_se->dl_throttled = 0;
2101 dl_se->dl_new = 1;
2102 dl_se->dl_yielded = 0;
a5e7be3b
JL
2103}
2104
1da177e4
LT
2105/*
2106 * Perform scheduler related setup for a newly forked process p.
2107 * p is forked by current.
dd41f596
IM
2108 *
2109 * __sched_fork() is basic setup used by init_idle() too:
2110 */
5e1576ed 2111static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2112{
fd2f4419
PZ
2113 p->on_rq = 0;
2114
2115 p->se.on_rq = 0;
dd41f596
IM
2116 p->se.exec_start = 0;
2117 p->se.sum_exec_runtime = 0;
f6cf891c 2118 p->se.prev_sum_exec_runtime = 0;
6c594c21 2119 p->se.nr_migrations = 0;
da7a735e 2120 p->se.vruntime = 0;
fd2f4419 2121 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
2122
2123#ifdef CONFIG_SCHEDSTATS
41acab88 2124 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2125#endif
476d139c 2126
aab03e05 2127 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 2128 init_dl_task_timer(&p->dl);
a5e7be3b 2129 __dl_clear_params(p);
aab03e05 2130
fa717060 2131 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 2132
e107be36
AK
2133#ifdef CONFIG_PREEMPT_NOTIFIERS
2134 INIT_HLIST_HEAD(&p->preempt_notifiers);
2135#endif
cbee9f88
PZ
2136
2137#ifdef CONFIG_NUMA_BALANCING
2138 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 2139 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
2140 p->mm->numa_scan_seq = 0;
2141 }
2142
5e1576ed
RR
2143 if (clone_flags & CLONE_VM)
2144 p->numa_preferred_nid = current->numa_preferred_nid;
2145 else
2146 p->numa_preferred_nid = -1;
2147
cbee9f88
PZ
2148 p->node_stamp = 0ULL;
2149 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 2150 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 2151 p->numa_work.next = &p->numa_work;
44dba3d5 2152 p->numa_faults = NULL;
7e2703e6
RR
2153 p->last_task_numa_placement = 0;
2154 p->last_sum_exec_runtime = 0;
8c8a743c 2155
8c8a743c 2156 p->numa_group = NULL;
cbee9f88 2157#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
2158}
2159
2a595721
SD
2160DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2161
1a687c2e 2162#ifdef CONFIG_NUMA_BALANCING
c3b9bc5b 2163
1a687c2e
MG
2164void set_numabalancing_state(bool enabled)
2165{
2166 if (enabled)
2a595721 2167 static_branch_enable(&sched_numa_balancing);
1a687c2e 2168 else
2a595721 2169 static_branch_disable(&sched_numa_balancing);
1a687c2e 2170}
54a43d54
AK
2171
2172#ifdef CONFIG_PROC_SYSCTL
2173int sysctl_numa_balancing(struct ctl_table *table, int write,
2174 void __user *buffer, size_t *lenp, loff_t *ppos)
2175{
2176 struct ctl_table t;
2177 int err;
2a595721 2178 int state = static_branch_likely(&sched_numa_balancing);
54a43d54
AK
2179
2180 if (write && !capable(CAP_SYS_ADMIN))
2181 return -EPERM;
2182
2183 t = *table;
2184 t.data = &state;
2185 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2186 if (err < 0)
2187 return err;
2188 if (write)
2189 set_numabalancing_state(state);
2190 return err;
2191}
2192#endif
2193#endif
dd41f596
IM
2194
2195/*
2196 * fork()/clone()-time setup:
2197 */
aab03e05 2198int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2199{
0122ec5b 2200 unsigned long flags;
dd41f596
IM
2201 int cpu = get_cpu();
2202
5e1576ed 2203 __sched_fork(clone_flags, p);
06b83b5f 2204 /*
0017d735 2205 * We mark the process as running here. This guarantees that
06b83b5f
PZ
2206 * nobody will actually run it, and a signal or other external
2207 * event cannot wake it up and insert it on the runqueue either.
2208 */
0017d735 2209 p->state = TASK_RUNNING;
dd41f596 2210
c350a04e
MG
2211 /*
2212 * Make sure we do not leak PI boosting priority to the child.
2213 */
2214 p->prio = current->normal_prio;
2215
b9dc29e7
MG
2216 /*
2217 * Revert to default priority/policy on fork if requested.
2218 */
2219 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 2220 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 2221 p->policy = SCHED_NORMAL;
6c697bdf 2222 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
2223 p->rt_priority = 0;
2224 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2225 p->static_prio = NICE_TO_PRIO(0);
2226
2227 p->prio = p->normal_prio = __normal_prio(p);
2228 set_load_weight(p);
6c697bdf 2229
b9dc29e7
MG
2230 /*
2231 * We don't need the reset flag anymore after the fork. It has
2232 * fulfilled its duty:
2233 */
2234 p->sched_reset_on_fork = 0;
2235 }
ca94c442 2236
aab03e05
DF
2237 if (dl_prio(p->prio)) {
2238 put_cpu();
2239 return -EAGAIN;
2240 } else if (rt_prio(p->prio)) {
2241 p->sched_class = &rt_sched_class;
2242 } else {
2ddbf952 2243 p->sched_class = &fair_sched_class;
aab03e05 2244 }
b29739f9 2245
cd29fe6f
PZ
2246 if (p->sched_class->task_fork)
2247 p->sched_class->task_fork(p);
2248
86951599
PZ
2249 /*
2250 * The child is not yet in the pid-hash so no cgroup attach races,
2251 * and the cgroup is pinned to this child due to cgroup_fork()
2252 * is ran before sched_fork().
2253 *
2254 * Silence PROVE_RCU.
2255 */
0122ec5b 2256 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 2257 set_task_cpu(p, cpu);
0122ec5b 2258 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 2259
f6db8347 2260#ifdef CONFIG_SCHED_INFO
dd41f596 2261 if (likely(sched_info_on()))
52f17b6c 2262 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2263#endif
3ca7a440
PZ
2264#if defined(CONFIG_SMP)
2265 p->on_cpu = 0;
4866cde0 2266#endif
01028747 2267 init_task_preempt_count(p);
806c09a7 2268#ifdef CONFIG_SMP
917b627d 2269 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 2270 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 2271#endif
917b627d 2272
476d139c 2273 put_cpu();
aab03e05 2274 return 0;
1da177e4
LT
2275}
2276
332ac17e
DF
2277unsigned long to_ratio(u64 period, u64 runtime)
2278{
2279 if (runtime == RUNTIME_INF)
2280 return 1ULL << 20;
2281
2282 /*
2283 * Doing this here saves a lot of checks in all
2284 * the calling paths, and returning zero seems
2285 * safe for them anyway.
2286 */
2287 if (period == 0)
2288 return 0;
2289
2290 return div64_u64(runtime << 20, period);
2291}
2292
2293#ifdef CONFIG_SMP
2294inline struct dl_bw *dl_bw_of(int i)
2295{
f78f5b90
PM
2296 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2297 "sched RCU must be held");
332ac17e
DF
2298 return &cpu_rq(i)->rd->dl_bw;
2299}
2300
de212f18 2301static inline int dl_bw_cpus(int i)
332ac17e 2302{
de212f18
PZ
2303 struct root_domain *rd = cpu_rq(i)->rd;
2304 int cpus = 0;
2305
f78f5b90
PM
2306 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2307 "sched RCU must be held");
de212f18
PZ
2308 for_each_cpu_and(i, rd->span, cpu_active_mask)
2309 cpus++;
2310
2311 return cpus;
332ac17e
DF
2312}
2313#else
2314inline struct dl_bw *dl_bw_of(int i)
2315{
2316 return &cpu_rq(i)->dl.dl_bw;
2317}
2318
de212f18 2319static inline int dl_bw_cpus(int i)
332ac17e
DF
2320{
2321 return 1;
2322}
2323#endif
2324
332ac17e
DF
2325/*
2326 * We must be sure that accepting a new task (or allowing changing the
2327 * parameters of an existing one) is consistent with the bandwidth
2328 * constraints. If yes, this function also accordingly updates the currently
2329 * allocated bandwidth to reflect the new situation.
2330 *
2331 * This function is called while holding p's rq->lock.
40767b0d
PZ
2332 *
2333 * XXX we should delay bw change until the task's 0-lag point, see
2334 * __setparam_dl().
332ac17e
DF
2335 */
2336static int dl_overflow(struct task_struct *p, int policy,
2337 const struct sched_attr *attr)
2338{
2339
2340 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
4df1638c 2341 u64 period = attr->sched_period ?: attr->sched_deadline;
332ac17e
DF
2342 u64 runtime = attr->sched_runtime;
2343 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 2344 int cpus, err = -1;
332ac17e
DF
2345
2346 if (new_bw == p->dl.dl_bw)
2347 return 0;
2348
2349 /*
2350 * Either if a task, enters, leave, or stays -deadline but changes
2351 * its parameters, we may need to update accordingly the total
2352 * allocated bandwidth of the container.
2353 */
2354 raw_spin_lock(&dl_b->lock);
de212f18 2355 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
2356 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2357 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2358 __dl_add(dl_b, new_bw);
2359 err = 0;
2360 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2361 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2362 __dl_clear(dl_b, p->dl.dl_bw);
2363 __dl_add(dl_b, new_bw);
2364 err = 0;
2365 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2366 __dl_clear(dl_b, p->dl.dl_bw);
2367 err = 0;
2368 }
2369 raw_spin_unlock(&dl_b->lock);
2370
2371 return err;
2372}
2373
2374extern void init_dl_bw(struct dl_bw *dl_b);
2375
1da177e4
LT
2376/*
2377 * wake_up_new_task - wake up a newly created task for the first time.
2378 *
2379 * This function will do some initial scheduler statistics housekeeping
2380 * that must be done for every newly created context, then puts the task
2381 * on the runqueue and wakes it.
2382 */
3e51e3ed 2383void wake_up_new_task(struct task_struct *p)
1da177e4
LT
2384{
2385 unsigned long flags;
dd41f596 2386 struct rq *rq;
fabf318e 2387
ab2515c4 2388 raw_spin_lock_irqsave(&p->pi_lock, flags);
98d8fd81
MR
2389 /* Initialize new task's runnable average */
2390 init_entity_runnable_average(&p->se);
fabf318e
PZ
2391#ifdef CONFIG_SMP
2392 /*
2393 * Fork balancing, do it here and not earlier because:
2394 * - cpus_allowed can change in the fork path
2395 * - any previously selected cpu might disappear through hotplug
fabf318e 2396 */
ac66f547 2397 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735
PZ
2398#endif
2399
ab2515c4 2400 rq = __task_rq_lock(p);
cd29fe6f 2401 activate_task(rq, p, 0);
da0c1e65 2402 p->on_rq = TASK_ON_RQ_QUEUED;
fbd705a0 2403 trace_sched_wakeup_new(p);
a7558e01 2404 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2405#ifdef CONFIG_SMP
0aaafaab
PZ
2406 if (p->sched_class->task_woken) {
2407 /*
2408 * Nothing relies on rq->lock after this, so its fine to
2409 * drop it.
2410 */
2411 lockdep_unpin_lock(&rq->lock);
efbbd05a 2412 p->sched_class->task_woken(rq, p);
0aaafaab
PZ
2413 lockdep_pin_lock(&rq->lock);
2414 }
9a897c5a 2415#endif
0122ec5b 2416 task_rq_unlock(rq, p, &flags);
1da177e4
LT
2417}
2418
e107be36
AK
2419#ifdef CONFIG_PREEMPT_NOTIFIERS
2420
1cde2930
PZ
2421static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2422
2ecd9d29
PZ
2423void preempt_notifier_inc(void)
2424{
2425 static_key_slow_inc(&preempt_notifier_key);
2426}
2427EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2428
2429void preempt_notifier_dec(void)
2430{
2431 static_key_slow_dec(&preempt_notifier_key);
2432}
2433EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2434
e107be36 2435/**
80dd99b3 2436 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2437 * @notifier: notifier struct to register
e107be36
AK
2438 */
2439void preempt_notifier_register(struct preempt_notifier *notifier)
2440{
2ecd9d29
PZ
2441 if (!static_key_false(&preempt_notifier_key))
2442 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2443
e107be36
AK
2444 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2445}
2446EXPORT_SYMBOL_GPL(preempt_notifier_register);
2447
2448/**
2449 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2450 * @notifier: notifier struct to unregister
e107be36 2451 *
d84525a8 2452 * This is *not* safe to call from within a preemption notifier.
e107be36
AK
2453 */
2454void preempt_notifier_unregister(struct preempt_notifier *notifier)
2455{
2456 hlist_del(&notifier->link);
2457}
2458EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2459
1cde2930 2460static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2461{
2462 struct preempt_notifier *notifier;
e107be36 2463
b67bfe0d 2464 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2465 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2466}
2467
1cde2930
PZ
2468static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2469{
2470 if (static_key_false(&preempt_notifier_key))
2471 __fire_sched_in_preempt_notifiers(curr);
2472}
2473
e107be36 2474static void
1cde2930
PZ
2475__fire_sched_out_preempt_notifiers(struct task_struct *curr,
2476 struct task_struct *next)
e107be36
AK
2477{
2478 struct preempt_notifier *notifier;
e107be36 2479
b67bfe0d 2480 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2481 notifier->ops->sched_out(notifier, next);
2482}
2483
1cde2930
PZ
2484static __always_inline void
2485fire_sched_out_preempt_notifiers(struct task_struct *curr,
2486 struct task_struct *next)
2487{
2488 if (static_key_false(&preempt_notifier_key))
2489 __fire_sched_out_preempt_notifiers(curr, next);
2490}
2491
6d6bc0ad 2492#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36 2493
1cde2930 2494static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2495{
2496}
2497
1cde2930 2498static inline void
e107be36
AK
2499fire_sched_out_preempt_notifiers(struct task_struct *curr,
2500 struct task_struct *next)
2501{
2502}
2503
6d6bc0ad 2504#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2505
4866cde0
NP
2506/**
2507 * prepare_task_switch - prepare to switch tasks
2508 * @rq: the runqueue preparing to switch
421cee29 2509 * @prev: the current task that is being switched out
4866cde0
NP
2510 * @next: the task we are going to switch to.
2511 *
2512 * This is called with the rq lock held and interrupts off. It must
2513 * be paired with a subsequent finish_task_switch after the context
2514 * switch.
2515 *
2516 * prepare_task_switch sets up locking and calls architecture specific
2517 * hooks.
2518 */
e107be36
AK
2519static inline void
2520prepare_task_switch(struct rq *rq, struct task_struct *prev,
2521 struct task_struct *next)
4866cde0 2522{
43148951 2523 sched_info_switch(rq, prev, next);
fe4b04fa 2524 perf_event_task_sched_out(prev, next);
e107be36 2525 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2526 prepare_lock_switch(rq, next);
2527 prepare_arch_switch(next);
2528}
2529
1da177e4
LT
2530/**
2531 * finish_task_switch - clean up after a task-switch
2532 * @prev: the thread we just switched away from.
2533 *
4866cde0
NP
2534 * finish_task_switch must be called after the context switch, paired
2535 * with a prepare_task_switch call before the context switch.
2536 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2537 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2538 *
2539 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2540 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2541 * with the lock held can cause deadlocks; see schedule() for
2542 * details.)
dfa50b60
ON
2543 *
2544 * The context switch have flipped the stack from under us and restored the
2545 * local variables which were saved when this task called schedule() in the
2546 * past. prev == current is still correct but we need to recalculate this_rq
2547 * because prev may have moved to another CPU.
1da177e4 2548 */
dfa50b60 2549static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
2550 __releases(rq->lock)
2551{
dfa50b60 2552 struct rq *rq = this_rq();
1da177e4 2553 struct mm_struct *mm = rq->prev_mm;
55a101f8 2554 long prev_state;
1da177e4 2555
609ca066
PZ
2556 /*
2557 * The previous task will have left us with a preempt_count of 2
2558 * because it left us after:
2559 *
2560 * schedule()
2561 * preempt_disable(); // 1
2562 * __schedule()
2563 * raw_spin_lock_irq(&rq->lock) // 2
2564 *
2565 * Also, see FORK_PREEMPT_COUNT.
2566 */
e2bf1c4b
PZ
2567 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2568 "corrupted preempt_count: %s/%d/0x%x\n",
2569 current->comm, current->pid, preempt_count()))
2570 preempt_count_set(FORK_PREEMPT_COUNT);
609ca066 2571
1da177e4
LT
2572 rq->prev_mm = NULL;
2573
2574 /*
2575 * A task struct has one reference for the use as "current".
c394cc9f 2576 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2577 * schedule one last time. The schedule call will never return, and
2578 * the scheduled task must drop that reference.
95913d97
PZ
2579 *
2580 * We must observe prev->state before clearing prev->on_cpu (in
2581 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2582 * running on another CPU and we could rave with its RUNNING -> DEAD
2583 * transition, resulting in a double drop.
1da177e4 2584 */
55a101f8 2585 prev_state = prev->state;
bf9fae9f 2586 vtime_task_switch(prev);
a8d757ef 2587 perf_event_task_sched_in(prev, current);
4866cde0 2588 finish_lock_switch(rq, prev);
01f23e16 2589 finish_arch_post_lock_switch();
e8fa1362 2590
e107be36 2591 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2592 if (mm)
2593 mmdrop(mm);
c394cc9f 2594 if (unlikely(prev_state == TASK_DEAD)) {
e6c390f2
DF
2595 if (prev->sched_class->task_dead)
2596 prev->sched_class->task_dead(prev);
2597
c6fd91f0 2598 /*
2599 * Remove function-return probe instances associated with this
2600 * task and put them back on the free list.
9761eea8 2601 */
c6fd91f0 2602 kprobe_flush_task(prev);
1da177e4 2603 put_task_struct(prev);
c6fd91f0 2604 }
99e5ada9 2605
de734f89 2606 tick_nohz_task_switch();
dfa50b60 2607 return rq;
1da177e4
LT
2608}
2609
3f029d3c
GH
2610#ifdef CONFIG_SMP
2611
3f029d3c 2612/* rq->lock is NOT held, but preemption is disabled */
e3fca9e7 2613static void __balance_callback(struct rq *rq)
3f029d3c 2614{
e3fca9e7
PZ
2615 struct callback_head *head, *next;
2616 void (*func)(struct rq *rq);
2617 unsigned long flags;
3f029d3c 2618
e3fca9e7
PZ
2619 raw_spin_lock_irqsave(&rq->lock, flags);
2620 head = rq->balance_callback;
2621 rq->balance_callback = NULL;
2622 while (head) {
2623 func = (void (*)(struct rq *))head->func;
2624 next = head->next;
2625 head->next = NULL;
2626 head = next;
3f029d3c 2627
e3fca9e7 2628 func(rq);
3f029d3c 2629 }
e3fca9e7
PZ
2630 raw_spin_unlock_irqrestore(&rq->lock, flags);
2631}
2632
2633static inline void balance_callback(struct rq *rq)
2634{
2635 if (unlikely(rq->balance_callback))
2636 __balance_callback(rq);
3f029d3c
GH
2637}
2638
2639#else
da19ab51 2640
e3fca9e7 2641static inline void balance_callback(struct rq *rq)
3f029d3c 2642{
1da177e4
LT
2643}
2644
3f029d3c
GH
2645#endif
2646
1da177e4
LT
2647/**
2648 * schedule_tail - first thing a freshly forked thread must call.
2649 * @prev: the thread we just switched away from.
2650 */
722a9f92 2651asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
2652 __releases(rq->lock)
2653{
1a43a14a 2654 struct rq *rq;
da19ab51 2655
609ca066
PZ
2656 /*
2657 * New tasks start with FORK_PREEMPT_COUNT, see there and
2658 * finish_task_switch() for details.
2659 *
2660 * finish_task_switch() will drop rq->lock() and lower preempt_count
2661 * and the preempt_enable() will end up enabling preemption (on
2662 * PREEMPT_COUNT kernels).
2663 */
2664
dfa50b60 2665 rq = finish_task_switch(prev);
e3fca9e7 2666 balance_callback(rq);
1a43a14a 2667 preempt_enable();
70b97a7f 2668
1da177e4 2669 if (current->set_child_tid)
b488893a 2670 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2671}
2672
2673/*
dfa50b60 2674 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 2675 */
dfa50b60 2676static inline struct rq *
70b97a7f 2677context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2678 struct task_struct *next)
1da177e4 2679{
dd41f596 2680 struct mm_struct *mm, *oldmm;
1da177e4 2681
e107be36 2682 prepare_task_switch(rq, prev, next);
fe4b04fa 2683
dd41f596
IM
2684 mm = next->mm;
2685 oldmm = prev->active_mm;
9226d125
ZA
2686 /*
2687 * For paravirt, this is coupled with an exit in switch_to to
2688 * combine the page table reload and the switch backend into
2689 * one hypercall.
2690 */
224101ed 2691 arch_start_context_switch(prev);
9226d125 2692
31915ab4 2693 if (!mm) {
1da177e4
LT
2694 next->active_mm = oldmm;
2695 atomic_inc(&oldmm->mm_count);
2696 enter_lazy_tlb(oldmm, next);
2697 } else
2698 switch_mm(oldmm, mm, next);
2699
31915ab4 2700 if (!prev->mm) {
1da177e4 2701 prev->active_mm = NULL;
1da177e4
LT
2702 rq->prev_mm = oldmm;
2703 }
3a5f5e48
IM
2704 /*
2705 * Since the runqueue lock will be released by the next
2706 * task (which is an invalid locking op but in the case
2707 * of the scheduler it's an obvious special-case), so we
2708 * do an early lockdep release here:
2709 */
cbce1a68 2710 lockdep_unpin_lock(&rq->lock);
8a25d5de 2711 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
2712
2713 /* Here we just switch the register state and the stack. */
2714 switch_to(prev, next, prev);
dd41f596 2715 barrier();
dfa50b60
ON
2716
2717 return finish_task_switch(prev);
1da177e4
LT
2718}
2719
2720/*
1c3e8264 2721 * nr_running and nr_context_switches:
1da177e4
LT
2722 *
2723 * externally visible scheduler statistics: current number of runnable
1c3e8264 2724 * threads, total number of context switches performed since bootup.
1da177e4
LT
2725 */
2726unsigned long nr_running(void)
2727{
2728 unsigned long i, sum = 0;
2729
2730 for_each_online_cpu(i)
2731 sum += cpu_rq(i)->nr_running;
2732
2733 return sum;
f711f609 2734}
1da177e4 2735
2ee507c4
TC
2736/*
2737 * Check if only the current task is running on the cpu.
00cc1633
DD
2738 *
2739 * Caution: this function does not check that the caller has disabled
2740 * preemption, thus the result might have a time-of-check-to-time-of-use
2741 * race. The caller is responsible to use it correctly, for example:
2742 *
2743 * - from a non-preemptable section (of course)
2744 *
2745 * - from a thread that is bound to a single CPU
2746 *
2747 * - in a loop with very short iterations (e.g. a polling loop)
2ee507c4
TC
2748 */
2749bool single_task_running(void)
2750{
00cc1633 2751 return raw_rq()->nr_running == 1;
2ee507c4
TC
2752}
2753EXPORT_SYMBOL(single_task_running);
2754
1da177e4 2755unsigned long long nr_context_switches(void)
46cb4b7c 2756{
cc94abfc
SR
2757 int i;
2758 unsigned long long sum = 0;
46cb4b7c 2759
0a945022 2760 for_each_possible_cpu(i)
1da177e4 2761 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2762
1da177e4
LT
2763 return sum;
2764}
483b4ee6 2765
1da177e4
LT
2766unsigned long nr_iowait(void)
2767{
2768 unsigned long i, sum = 0;
483b4ee6 2769
0a945022 2770 for_each_possible_cpu(i)
1da177e4 2771 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2772
1da177e4
LT
2773 return sum;
2774}
483b4ee6 2775
8c215bd3 2776unsigned long nr_iowait_cpu(int cpu)
69d25870 2777{
8c215bd3 2778 struct rq *this = cpu_rq(cpu);
69d25870
AV
2779 return atomic_read(&this->nr_iowait);
2780}
46cb4b7c 2781
372ba8cb
MG
2782void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2783{
3289bdb4
PZ
2784 struct rq *rq = this_rq();
2785 *nr_waiters = atomic_read(&rq->nr_iowait);
2786 *load = rq->load.weight;
372ba8cb
MG
2787}
2788
dd41f596 2789#ifdef CONFIG_SMP
8a0be9ef 2790
46cb4b7c 2791/*
38022906
PZ
2792 * sched_exec - execve() is a valuable balancing opportunity, because at
2793 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2794 */
38022906 2795void sched_exec(void)
46cb4b7c 2796{
38022906 2797 struct task_struct *p = current;
1da177e4 2798 unsigned long flags;
0017d735 2799 int dest_cpu;
46cb4b7c 2800
8f42ced9 2801 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2802 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2803 if (dest_cpu == smp_processor_id())
2804 goto unlock;
38022906 2805
8f42ced9 2806 if (likely(cpu_active(dest_cpu))) {
969c7921 2807 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2808
8f42ced9
PZ
2809 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2810 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2811 return;
2812 }
0017d735 2813unlock:
8f42ced9 2814 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2815}
dd41f596 2816
1da177e4
LT
2817#endif
2818
1da177e4 2819DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2820DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2821
2822EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2823EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 2824
c5f8d995
HS
2825/*
2826 * Return accounted runtime for the task.
2827 * In case the task is currently running, return the runtime plus current's
2828 * pending runtime that have not been accounted yet.
2829 */
2830unsigned long long task_sched_runtime(struct task_struct *p)
2831{
2832 unsigned long flags;
2833 struct rq *rq;
6e998916 2834 u64 ns;
c5f8d995 2835
911b2898
PZ
2836#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2837 /*
2838 * 64-bit doesn't need locks to atomically read a 64bit value.
2839 * So we have a optimization chance when the task's delta_exec is 0.
2840 * Reading ->on_cpu is racy, but this is ok.
2841 *
2842 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2843 * If we race with it entering cpu, unaccounted time is 0. This is
2844 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
2845 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2846 * been accounted, so we're correct here as well.
911b2898 2847 */
da0c1e65 2848 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
2849 return p->se.sum_exec_runtime;
2850#endif
2851
c5f8d995 2852 rq = task_rq_lock(p, &flags);
6e998916
SG
2853 /*
2854 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2855 * project cycles that may never be accounted to this
2856 * thread, breaking clock_gettime().
2857 */
2858 if (task_current(rq, p) && task_on_rq_queued(p)) {
2859 update_rq_clock(rq);
2860 p->sched_class->update_curr(rq);
2861 }
2862 ns = p->se.sum_exec_runtime;
0122ec5b 2863 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2864
2865 return ns;
2866}
48f24c4d 2867
7835b98b
CL
2868/*
2869 * This function gets called by the timer code, with HZ frequency.
2870 * We call it with interrupts disabled.
7835b98b
CL
2871 */
2872void scheduler_tick(void)
2873{
7835b98b
CL
2874 int cpu = smp_processor_id();
2875 struct rq *rq = cpu_rq(cpu);
dd41f596 2876 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2877
2878 sched_clock_tick();
dd41f596 2879
05fa785c 2880 raw_spin_lock(&rq->lock);
3e51f33f 2881 update_rq_clock(rq);
fa85ae24 2882 curr->sched_class->task_tick(rq, curr, 0);
83dfd523 2883 update_cpu_load_active(rq);
3289bdb4 2884 calc_global_load_tick(rq);
05fa785c 2885 raw_spin_unlock(&rq->lock);
7835b98b 2886
e9d2b064 2887 perf_event_task_tick();
e220d2dc 2888
e418e1c2 2889#ifdef CONFIG_SMP
6eb57e0d 2890 rq->idle_balance = idle_cpu(cpu);
7caff66f 2891 trigger_load_balance(rq);
e418e1c2 2892#endif
265f22a9 2893 rq_last_tick_reset(rq);
1da177e4
LT
2894}
2895
265f22a9
FW
2896#ifdef CONFIG_NO_HZ_FULL
2897/**
2898 * scheduler_tick_max_deferment
2899 *
2900 * Keep at least one tick per second when a single
2901 * active task is running because the scheduler doesn't
2902 * yet completely support full dynticks environment.
2903 *
2904 * This makes sure that uptime, CFS vruntime, load
2905 * balancing, etc... continue to move forward, even
2906 * with a very low granularity.
e69f6186
YB
2907 *
2908 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
2909 */
2910u64 scheduler_tick_max_deferment(void)
2911{
2912 struct rq *rq = this_rq();
316c1608 2913 unsigned long next, now = READ_ONCE(jiffies);
265f22a9
FW
2914
2915 next = rq->last_sched_tick + HZ;
2916
2917 if (time_before_eq(next, now))
2918 return 0;
2919
8fe8ff09 2920 return jiffies_to_nsecs(next - now);
1da177e4 2921}
265f22a9 2922#endif
1da177e4 2923
132380a0 2924notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
2925{
2926 if (in_lock_functions(addr)) {
2927 addr = CALLER_ADDR2;
2928 if (in_lock_functions(addr))
2929 addr = CALLER_ADDR3;
2930 }
2931 return addr;
2932}
1da177e4 2933
7e49fcce
SR
2934#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2935 defined(CONFIG_PREEMPT_TRACER))
2936
edafe3a5 2937void preempt_count_add(int val)
1da177e4 2938{
6cd8a4bb 2939#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2940 /*
2941 * Underflow?
2942 */
9a11b49a
IM
2943 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2944 return;
6cd8a4bb 2945#endif
bdb43806 2946 __preempt_count_add(val);
6cd8a4bb 2947#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2948 /*
2949 * Spinlock count overflowing soon?
2950 */
33859f7f
MOS
2951 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2952 PREEMPT_MASK - 10);
6cd8a4bb 2953#endif
8f47b187
TG
2954 if (preempt_count() == val) {
2955 unsigned long ip = get_parent_ip(CALLER_ADDR1);
2956#ifdef CONFIG_DEBUG_PREEMPT
2957 current->preempt_disable_ip = ip;
2958#endif
2959 trace_preempt_off(CALLER_ADDR0, ip);
2960 }
1da177e4 2961}
bdb43806 2962EXPORT_SYMBOL(preempt_count_add);
edafe3a5 2963NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 2964
edafe3a5 2965void preempt_count_sub(int val)
1da177e4 2966{
6cd8a4bb 2967#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2968 /*
2969 * Underflow?
2970 */
01e3eb82 2971 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 2972 return;
1da177e4
LT
2973 /*
2974 * Is the spinlock portion underflowing?
2975 */
9a11b49a
IM
2976 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2977 !(preempt_count() & PREEMPT_MASK)))
2978 return;
6cd8a4bb 2979#endif
9a11b49a 2980
6cd8a4bb
SR
2981 if (preempt_count() == val)
2982 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
bdb43806 2983 __preempt_count_sub(val);
1da177e4 2984}
bdb43806 2985EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 2986NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4
LT
2987
2988#endif
2989
2990/*
dd41f596 2991 * Print scheduling while atomic bug:
1da177e4 2992 */
dd41f596 2993static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 2994{
664dfa65
DJ
2995 if (oops_in_progress)
2996 return;
2997
3df0fc5b
PZ
2998 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2999 prev->comm, prev->pid, preempt_count());
838225b4 3000
dd41f596 3001 debug_show_held_locks(prev);
e21f5b15 3002 print_modules();
dd41f596
IM
3003 if (irqs_disabled())
3004 print_irqtrace_events(prev);
8f47b187
TG
3005#ifdef CONFIG_DEBUG_PREEMPT
3006 if (in_atomic_preempt_off()) {
3007 pr_err("Preemption disabled at:");
3008 print_ip_sym(current->preempt_disable_ip);
3009 pr_cont("\n");
3010 }
3011#endif
6135fc1e 3012 dump_stack();
373d4d09 3013 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 3014}
1da177e4 3015
dd41f596
IM
3016/*
3017 * Various schedule()-time debugging checks and statistics:
3018 */
3019static inline void schedule_debug(struct task_struct *prev)
3020{
0d9e2632 3021#ifdef CONFIG_SCHED_STACK_END_CHECK
ce03e413 3022 BUG_ON(task_stack_end_corrupted(prev));
0d9e2632 3023#endif
b99def8b 3024
1dc0fffc 3025 if (unlikely(in_atomic_preempt_off())) {
dd41f596 3026 __schedule_bug(prev);
1dc0fffc
PZ
3027 preempt_count_set(PREEMPT_DISABLED);
3028 }
b3fbab05 3029 rcu_sleep_check();
dd41f596 3030
1da177e4
LT
3031 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3032
2d72376b 3033 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
3034}
3035
3036/*
3037 * Pick up the highest-prio task:
3038 */
3039static inline struct task_struct *
606dba2e 3040pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 3041{
37e117c0 3042 const struct sched_class *class = &fair_sched_class;
dd41f596 3043 struct task_struct *p;
1da177e4
LT
3044
3045 /*
dd41f596
IM
3046 * Optimization: we know that if all tasks are in
3047 * the fair class we can call that function directly:
1da177e4 3048 */
37e117c0 3049 if (likely(prev->sched_class == class &&
38033c37 3050 rq->nr_running == rq->cfs.h_nr_running)) {
606dba2e 3051 p = fair_sched_class.pick_next_task(rq, prev);
6ccdc84b
PZ
3052 if (unlikely(p == RETRY_TASK))
3053 goto again;
3054
3055 /* assumes fair_sched_class->next == idle_sched_class */
3056 if (unlikely(!p))
3057 p = idle_sched_class.pick_next_task(rq, prev);
3058
3059 return p;
1da177e4
LT
3060 }
3061
37e117c0 3062again:
34f971f6 3063 for_each_class(class) {
606dba2e 3064 p = class->pick_next_task(rq, prev);
37e117c0
PZ
3065 if (p) {
3066 if (unlikely(p == RETRY_TASK))
3067 goto again;
dd41f596 3068 return p;
37e117c0 3069 }
dd41f596 3070 }
34f971f6
PZ
3071
3072 BUG(); /* the idle class will always have a runnable task */
dd41f596 3073}
1da177e4 3074
dd41f596 3075/*
c259e01a 3076 * __schedule() is the main scheduler function.
edde96ea
PE
3077 *
3078 * The main means of driving the scheduler and thus entering this function are:
3079 *
3080 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3081 *
3082 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3083 * paths. For example, see arch/x86/entry_64.S.
3084 *
3085 * To drive preemption between tasks, the scheduler sets the flag in timer
3086 * interrupt handler scheduler_tick().
3087 *
3088 * 3. Wakeups don't really cause entry into schedule(). They add a
3089 * task to the run-queue and that's it.
3090 *
3091 * Now, if the new task added to the run-queue preempts the current
3092 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3093 * called on the nearest possible occasion:
3094 *
3095 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3096 *
3097 * - in syscall or exception context, at the next outmost
3098 * preempt_enable(). (this might be as soon as the wake_up()'s
3099 * spin_unlock()!)
3100 *
3101 * - in IRQ context, return from interrupt-handler to
3102 * preemptible context
3103 *
3104 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3105 * then at the next:
3106 *
3107 * - cond_resched() call
3108 * - explicit schedule() call
3109 * - return from syscall or exception to user-space
3110 * - return from interrupt-handler to user-space
bfd9b2b5 3111 *
b30f0e3f 3112 * WARNING: must be called with preemption disabled!
dd41f596 3113 */
499d7955 3114static void __sched notrace __schedule(bool preempt)
dd41f596
IM
3115{
3116 struct task_struct *prev, *next;
67ca7bde 3117 unsigned long *switch_count;
dd41f596 3118 struct rq *rq;
31656519 3119 int cpu;
dd41f596 3120
dd41f596
IM
3121 cpu = smp_processor_id();
3122 rq = cpu_rq(cpu);
38200cf2 3123 rcu_note_context_switch();
dd41f596 3124 prev = rq->curr;
dd41f596 3125
b99def8b
PZ
3126 /*
3127 * do_exit() calls schedule() with preemption disabled as an exception;
3128 * however we must fix that up, otherwise the next task will see an
3129 * inconsistent (higher) preempt count.
3130 *
3131 * It also avoids the below schedule_debug() test from complaining
3132 * about this.
3133 */
3134 if (unlikely(prev->state == TASK_DEAD))
3135 preempt_enable_no_resched_notrace();
3136
dd41f596 3137 schedule_debug(prev);
1da177e4 3138
31656519 3139 if (sched_feat(HRTICK))
f333fdc9 3140 hrtick_clear(rq);
8f4d37ec 3141
e0acd0a6
ON
3142 /*
3143 * Make sure that signal_pending_state()->signal_pending() below
3144 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3145 * done by the caller to avoid the race with signal_wake_up().
3146 */
3147 smp_mb__before_spinlock();
05fa785c 3148 raw_spin_lock_irq(&rq->lock);
cbce1a68 3149 lockdep_pin_lock(&rq->lock);
1da177e4 3150
9edfbfed
PZ
3151 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3152
246d86b5 3153 switch_count = &prev->nivcsw;
fc13aeba 3154 if (!preempt && prev->state) {
21aa9af0 3155 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 3156 prev->state = TASK_RUNNING;
21aa9af0 3157 } else {
2acca55e
PZ
3158 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3159 prev->on_rq = 0;
3160
21aa9af0 3161 /*
2acca55e
PZ
3162 * If a worker went to sleep, notify and ask workqueue
3163 * whether it wants to wake up a task to maintain
3164 * concurrency.
21aa9af0
TH
3165 */
3166 if (prev->flags & PF_WQ_WORKER) {
3167 struct task_struct *to_wakeup;
3168
3169 to_wakeup = wq_worker_sleeping(prev, cpu);
3170 if (to_wakeup)
3171 try_to_wake_up_local(to_wakeup);
3172 }
21aa9af0 3173 }
dd41f596 3174 switch_count = &prev->nvcsw;
1da177e4
LT
3175 }
3176
9edfbfed 3177 if (task_on_rq_queued(prev))
606dba2e
PZ
3178 update_rq_clock(rq);
3179
3180 next = pick_next_task(rq, prev);
f26f9aff 3181 clear_tsk_need_resched(prev);
f27dde8d 3182 clear_preempt_need_resched();
9edfbfed 3183 rq->clock_skip_update = 0;
1da177e4 3184
1da177e4 3185 if (likely(prev != next)) {
1da177e4
LT
3186 rq->nr_switches++;
3187 rq->curr = next;
3188 ++*switch_count;
3189
c73464b1 3190 trace_sched_switch(preempt, prev, next);
dfa50b60
ON
3191 rq = context_switch(rq, prev, next); /* unlocks the rq */
3192 cpu = cpu_of(rq);
cbce1a68
PZ
3193 } else {
3194 lockdep_unpin_lock(&rq->lock);
05fa785c 3195 raw_spin_unlock_irq(&rq->lock);
cbce1a68 3196 }
1da177e4 3197
e3fca9e7 3198 balance_callback(rq);
1da177e4 3199}
c259e01a 3200
9c40cef2
TG
3201static inline void sched_submit_work(struct task_struct *tsk)
3202{
3c7d5184 3203 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
3204 return;
3205 /*
3206 * If we are going to sleep and we have plugged IO queued,
3207 * make sure to submit it to avoid deadlocks.
3208 */
3209 if (blk_needs_flush_plug(tsk))
3210 blk_schedule_flush_plug(tsk);
3211}
3212
722a9f92 3213asmlinkage __visible void __sched schedule(void)
c259e01a 3214{
9c40cef2
TG
3215 struct task_struct *tsk = current;
3216
3217 sched_submit_work(tsk);
bfd9b2b5 3218 do {
b30f0e3f 3219 preempt_disable();
fc13aeba 3220 __schedule(false);
b30f0e3f 3221 sched_preempt_enable_no_resched();
bfd9b2b5 3222 } while (need_resched());
c259e01a 3223}
1da177e4
LT
3224EXPORT_SYMBOL(schedule);
3225
91d1aa43 3226#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 3227asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
3228{
3229 /*
3230 * If we come here after a random call to set_need_resched(),
3231 * or we have been woken up remotely but the IPI has not yet arrived,
3232 * we haven't yet exited the RCU idle mode. Do it here manually until
3233 * we find a better solution.
7cc78f8f
AL
3234 *
3235 * NB: There are buggy callers of this function. Ideally we
c467ea76 3236 * should warn if prev_state != CONTEXT_USER, but that will trigger
7cc78f8f 3237 * too frequently to make sense yet.
20ab65e3 3238 */
7cc78f8f 3239 enum ctx_state prev_state = exception_enter();
20ab65e3 3240 schedule();
7cc78f8f 3241 exception_exit(prev_state);
20ab65e3
FW
3242}
3243#endif
3244
c5491ea7
TG
3245/**
3246 * schedule_preempt_disabled - called with preemption disabled
3247 *
3248 * Returns with preemption disabled. Note: preempt_count must be 1
3249 */
3250void __sched schedule_preempt_disabled(void)
3251{
ba74c144 3252 sched_preempt_enable_no_resched();
c5491ea7
TG
3253 schedule();
3254 preempt_disable();
3255}
3256
06b1f808 3257static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
3258{
3259 do {
499d7955 3260 preempt_disable_notrace();
fc13aeba 3261 __schedule(true);
499d7955 3262 preempt_enable_no_resched_notrace();
a18b5d01
FW
3263
3264 /*
3265 * Check again in case we missed a preemption opportunity
3266 * between schedule and now.
3267 */
a18b5d01
FW
3268 } while (need_resched());
3269}
3270
1da177e4
LT
3271#ifdef CONFIG_PREEMPT
3272/*
2ed6e34f 3273 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3274 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3275 * occur there and call schedule directly.
3276 */
722a9f92 3277asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 3278{
1da177e4
LT
3279 /*
3280 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3281 * we do not want to preempt the current task. Just return..
1da177e4 3282 */
fbb00b56 3283 if (likely(!preemptible()))
1da177e4
LT
3284 return;
3285
a18b5d01 3286 preempt_schedule_common();
1da177e4 3287}
376e2424 3288NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 3289EXPORT_SYMBOL(preempt_schedule);
009f60e2 3290
009f60e2 3291/**
4eaca0a8 3292 * preempt_schedule_notrace - preempt_schedule called by tracing
009f60e2
ON
3293 *
3294 * The tracing infrastructure uses preempt_enable_notrace to prevent
3295 * recursion and tracing preempt enabling caused by the tracing
3296 * infrastructure itself. But as tracing can happen in areas coming
3297 * from userspace or just about to enter userspace, a preempt enable
3298 * can occur before user_exit() is called. This will cause the scheduler
3299 * to be called when the system is still in usermode.
3300 *
3301 * To prevent this, the preempt_enable_notrace will use this function
3302 * instead of preempt_schedule() to exit user context if needed before
3303 * calling the scheduler.
3304 */
4eaca0a8 3305asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
009f60e2
ON
3306{
3307 enum ctx_state prev_ctx;
3308
3309 if (likely(!preemptible()))
3310 return;
3311
3312 do {
3d8f74dd 3313 preempt_disable_notrace();
009f60e2
ON
3314 /*
3315 * Needs preempt disabled in case user_exit() is traced
3316 * and the tracer calls preempt_enable_notrace() causing
3317 * an infinite recursion.
3318 */
3319 prev_ctx = exception_enter();
fc13aeba 3320 __schedule(true);
009f60e2
ON
3321 exception_exit(prev_ctx);
3322
3d8f74dd 3323 preempt_enable_no_resched_notrace();
009f60e2
ON
3324 } while (need_resched());
3325}
4eaca0a8 3326EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
009f60e2 3327
32e475d7 3328#endif /* CONFIG_PREEMPT */
1da177e4
LT
3329
3330/*
2ed6e34f 3331 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3332 * off of irq context.
3333 * Note, that this is called and return with irqs disabled. This will
3334 * protect us against recursive calling from irq.
3335 */
722a9f92 3336asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 3337{
b22366cd 3338 enum ctx_state prev_state;
6478d880 3339
2ed6e34f 3340 /* Catch callers which need to be fixed */
f27dde8d 3341 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 3342
b22366cd
FW
3343 prev_state = exception_enter();
3344
3a5c359a 3345 do {
3d8f74dd 3346 preempt_disable();
3a5c359a 3347 local_irq_enable();
fc13aeba 3348 __schedule(true);
3a5c359a 3349 local_irq_disable();
3d8f74dd 3350 sched_preempt_enable_no_resched();
5ed0cec0 3351 } while (need_resched());
b22366cd
FW
3352
3353 exception_exit(prev_state);
1da177e4
LT
3354}
3355
63859d4f 3356int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3357 void *key)
1da177e4 3358{
63859d4f 3359 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3360}
1da177e4
LT
3361EXPORT_SYMBOL(default_wake_function);
3362
b29739f9
IM
3363#ifdef CONFIG_RT_MUTEXES
3364
3365/*
3366 * rt_mutex_setprio - set the current priority of a task
3367 * @p: task
3368 * @prio: prio value (kernel-internal form)
3369 *
3370 * This function changes the 'effective' priority of a task. It does
3371 * not touch ->normal_prio like __setscheduler().
3372 *
c365c292
TG
3373 * Used by the rt_mutex code to implement priority inheritance
3374 * logic. Call site only calls if the priority of the task changed.
b29739f9 3375 */
36c8b586 3376void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3377{
1de64443 3378 int oldprio, queued, running, enqueue_flag = ENQUEUE_RESTORE;
70b97a7f 3379 struct rq *rq;
83ab0aa0 3380 const struct sched_class *prev_class;
b29739f9 3381
aab03e05 3382 BUG_ON(prio > MAX_PRIO);
b29739f9 3383
0122ec5b 3384 rq = __task_rq_lock(p);
b29739f9 3385
1c4dd99b
TG
3386 /*
3387 * Idle task boosting is a nono in general. There is one
3388 * exception, when PREEMPT_RT and NOHZ is active:
3389 *
3390 * The idle task calls get_next_timer_interrupt() and holds
3391 * the timer wheel base->lock on the CPU and another CPU wants
3392 * to access the timer (probably to cancel it). We can safely
3393 * ignore the boosting request, as the idle CPU runs this code
3394 * with interrupts disabled and will complete the lock
3395 * protected section without being interrupted. So there is no
3396 * real need to boost.
3397 */
3398 if (unlikely(p == rq->idle)) {
3399 WARN_ON(p != rq->curr);
3400 WARN_ON(p->pi_blocked_on);
3401 goto out_unlock;
3402 }
3403
a8027073 3404 trace_sched_pi_setprio(p, prio);
d5f9f942 3405 oldprio = p->prio;
83ab0aa0 3406 prev_class = p->sched_class;
da0c1e65 3407 queued = task_on_rq_queued(p);
051a1d1a 3408 running = task_current(rq, p);
da0c1e65 3409 if (queued)
1de64443 3410 dequeue_task(rq, p, DEQUEUE_SAVE);
0e1f3483 3411 if (running)
f3cd1c4e 3412 put_prev_task(rq, p);
dd41f596 3413
2d3d891d
DF
3414 /*
3415 * Boosting condition are:
3416 * 1. -rt task is running and holds mutex A
3417 * --> -dl task blocks on mutex A
3418 *
3419 * 2. -dl task is running and holds mutex A
3420 * --> -dl task blocks on mutex A and could preempt the
3421 * running task
3422 */
3423 if (dl_prio(prio)) {
466af29b
ON
3424 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3425 if (!dl_prio(p->normal_prio) ||
3426 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d 3427 p->dl.dl_boosted = 1;
1de64443 3428 enqueue_flag |= ENQUEUE_REPLENISH;
2d3d891d
DF
3429 } else
3430 p->dl.dl_boosted = 0;
aab03e05 3431 p->sched_class = &dl_sched_class;
2d3d891d
DF
3432 } else if (rt_prio(prio)) {
3433 if (dl_prio(oldprio))
3434 p->dl.dl_boosted = 0;
3435 if (oldprio < prio)
1de64443 3436 enqueue_flag |= ENQUEUE_HEAD;
dd41f596 3437 p->sched_class = &rt_sched_class;
2d3d891d
DF
3438 } else {
3439 if (dl_prio(oldprio))
3440 p->dl.dl_boosted = 0;
746db944
BS
3441 if (rt_prio(oldprio))
3442 p->rt.timeout = 0;
dd41f596 3443 p->sched_class = &fair_sched_class;
2d3d891d 3444 }
dd41f596 3445
b29739f9
IM
3446 p->prio = prio;
3447
0e1f3483
HS
3448 if (running)
3449 p->sched_class->set_curr_task(rq);
da0c1e65 3450 if (queued)
2d3d891d 3451 enqueue_task(rq, p, enqueue_flag);
cb469845 3452
da7a735e 3453 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3454out_unlock:
4c9a4bc8 3455 preempt_disable(); /* avoid rq from going away on us */
0122ec5b 3456 __task_rq_unlock(rq);
4c9a4bc8
PZ
3457
3458 balance_callback(rq);
3459 preempt_enable();
b29739f9 3460}
b29739f9 3461#endif
d50dde5a 3462
36c8b586 3463void set_user_nice(struct task_struct *p, long nice)
1da177e4 3464{
da0c1e65 3465 int old_prio, delta, queued;
1da177e4 3466 unsigned long flags;
70b97a7f 3467 struct rq *rq;
1da177e4 3468
75e45d51 3469 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
3470 return;
3471 /*
3472 * We have to be careful, if called from sys_setpriority(),
3473 * the task might be in the middle of scheduling on another CPU.
3474 */
3475 rq = task_rq_lock(p, &flags);
3476 /*
3477 * The RT priorities are set via sched_setscheduler(), but we still
3478 * allow the 'normal' nice value to be set - but as expected
3479 * it wont have any effect on scheduling until the task is
aab03e05 3480 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3481 */
aab03e05 3482 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3483 p->static_prio = NICE_TO_PRIO(nice);
3484 goto out_unlock;
3485 }
da0c1e65
KT
3486 queued = task_on_rq_queued(p);
3487 if (queued)
1de64443 3488 dequeue_task(rq, p, DEQUEUE_SAVE);
1da177e4 3489
1da177e4 3490 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3491 set_load_weight(p);
b29739f9
IM
3492 old_prio = p->prio;
3493 p->prio = effective_prio(p);
3494 delta = p->prio - old_prio;
1da177e4 3495
da0c1e65 3496 if (queued) {
1de64443 3497 enqueue_task(rq, p, ENQUEUE_RESTORE);
1da177e4 3498 /*
d5f9f942
AM
3499 * If the task increased its priority or is running and
3500 * lowered its priority, then reschedule its CPU:
1da177e4 3501 */
d5f9f942 3502 if (delta < 0 || (delta > 0 && task_running(rq, p)))
8875125e 3503 resched_curr(rq);
1da177e4
LT
3504 }
3505out_unlock:
0122ec5b 3506 task_rq_unlock(rq, p, &flags);
1da177e4 3507}
1da177e4
LT
3508EXPORT_SYMBOL(set_user_nice);
3509
e43379f1
MM
3510/*
3511 * can_nice - check if a task can reduce its nice value
3512 * @p: task
3513 * @nice: nice value
3514 */
36c8b586 3515int can_nice(const struct task_struct *p, const int nice)
e43379f1 3516{
024f4747 3517 /* convert nice value [19,-20] to rlimit style value [1,40] */
7aa2c016 3518 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 3519
78d7d407 3520 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3521 capable(CAP_SYS_NICE));
3522}
3523
1da177e4
LT
3524#ifdef __ARCH_WANT_SYS_NICE
3525
3526/*
3527 * sys_nice - change the priority of the current process.
3528 * @increment: priority increment
3529 *
3530 * sys_setpriority is a more generic, but much slower function that
3531 * does similar things.
3532 */
5add95d4 3533SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3534{
48f24c4d 3535 long nice, retval;
1da177e4
LT
3536
3537 /*
3538 * Setpriority might change our priority at the same moment.
3539 * We don't have to worry. Conceptually one call occurs first
3540 * and we have a single winner.
3541 */
a9467fa3 3542 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 3543 nice = task_nice(current) + increment;
1da177e4 3544
a9467fa3 3545 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
3546 if (increment < 0 && !can_nice(current, nice))
3547 return -EPERM;
3548
1da177e4
LT
3549 retval = security_task_setnice(current, nice);
3550 if (retval)
3551 return retval;
3552
3553 set_user_nice(current, nice);
3554 return 0;
3555}
3556
3557#endif
3558
3559/**
3560 * task_prio - return the priority value of a given task.
3561 * @p: the task in question.
3562 *
e69f6186 3563 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3564 * RT tasks are offset by -200. Normal tasks are centered
3565 * around 0, value goes from -16 to +15.
3566 */
36c8b586 3567int task_prio(const struct task_struct *p)
1da177e4
LT
3568{
3569 return p->prio - MAX_RT_PRIO;
3570}
3571
1da177e4
LT
3572/**
3573 * idle_cpu - is a given cpu idle currently?
3574 * @cpu: the processor in question.
e69f6186
YB
3575 *
3576 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3577 */
3578int idle_cpu(int cpu)
3579{
908a3283
TG
3580 struct rq *rq = cpu_rq(cpu);
3581
3582 if (rq->curr != rq->idle)
3583 return 0;
3584
3585 if (rq->nr_running)
3586 return 0;
3587
3588#ifdef CONFIG_SMP
3589 if (!llist_empty(&rq->wake_list))
3590 return 0;
3591#endif
3592
3593 return 1;
1da177e4
LT
3594}
3595
1da177e4
LT
3596/**
3597 * idle_task - return the idle task for a given cpu.
3598 * @cpu: the processor in question.
e69f6186
YB
3599 *
3600 * Return: The idle task for the cpu @cpu.
1da177e4 3601 */
36c8b586 3602struct task_struct *idle_task(int cpu)
1da177e4
LT
3603{
3604 return cpu_rq(cpu)->idle;
3605}
3606
3607/**
3608 * find_process_by_pid - find a process with a matching PID value.
3609 * @pid: the pid in question.
e69f6186
YB
3610 *
3611 * The task of @pid, if found. %NULL otherwise.
1da177e4 3612 */
a9957449 3613static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3614{
228ebcbe 3615 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3616}
3617
aab03e05
DF
3618/*
3619 * This function initializes the sched_dl_entity of a newly becoming
3620 * SCHED_DEADLINE task.
3621 *
3622 * Only the static values are considered here, the actual runtime and the
3623 * absolute deadline will be properly calculated when the task is enqueued
3624 * for the first time with its new policy.
3625 */
3626static void
3627__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3628{
3629 struct sched_dl_entity *dl_se = &p->dl;
3630
aab03e05
DF
3631 dl_se->dl_runtime = attr->sched_runtime;
3632 dl_se->dl_deadline = attr->sched_deadline;
755378a4 3633 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 3634 dl_se->flags = attr->sched_flags;
332ac17e 3635 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
40767b0d
PZ
3636
3637 /*
3638 * Changing the parameters of a task is 'tricky' and we're not doing
3639 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3640 *
3641 * What we SHOULD do is delay the bandwidth release until the 0-lag
3642 * point. This would include retaining the task_struct until that time
3643 * and change dl_overflow() to not immediately decrement the current
3644 * amount.
3645 *
3646 * Instead we retain the current runtime/deadline and let the new
3647 * parameters take effect after the current reservation period lapses.
3648 * This is safe (albeit pessimistic) because the 0-lag point is always
3649 * before the current scheduling deadline.
3650 *
3651 * We can still have temporary overloads because we do not delay the
3652 * change in bandwidth until that time; so admission control is
3653 * not on the safe side. It does however guarantee tasks will never
3654 * consume more than promised.
3655 */
aab03e05
DF
3656}
3657
c13db6b1
SR
3658/*
3659 * sched_setparam() passes in -1 for its policy, to let the functions
3660 * it calls know not to change it.
3661 */
3662#define SETPARAM_POLICY -1
3663
c365c292
TG
3664static void __setscheduler_params(struct task_struct *p,
3665 const struct sched_attr *attr)
1da177e4 3666{
d50dde5a
DF
3667 int policy = attr->sched_policy;
3668
c13db6b1 3669 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
3670 policy = p->policy;
3671
1da177e4 3672 p->policy = policy;
d50dde5a 3673
aab03e05
DF
3674 if (dl_policy(policy))
3675 __setparam_dl(p, attr);
39fd8fd2 3676 else if (fair_policy(policy))
d50dde5a
DF
3677 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3678
39fd8fd2
PZ
3679 /*
3680 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3681 * !rt_policy. Always setting this ensures that things like
3682 * getparam()/getattr() don't report silly values for !rt tasks.
3683 */
3684 p->rt_priority = attr->sched_priority;
383afd09 3685 p->normal_prio = normal_prio(p);
c365c292
TG
3686 set_load_weight(p);
3687}
39fd8fd2 3688
c365c292
TG
3689/* Actually do priority change: must hold pi & rq lock. */
3690static void __setscheduler(struct rq *rq, struct task_struct *p,
0782e63b 3691 const struct sched_attr *attr, bool keep_boost)
c365c292
TG
3692{
3693 __setscheduler_params(p, attr);
d50dde5a 3694
383afd09 3695 /*
0782e63b
TG
3696 * Keep a potential priority boosting if called from
3697 * sched_setscheduler().
383afd09 3698 */
0782e63b
TG
3699 if (keep_boost)
3700 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3701 else
3702 p->prio = normal_prio(p);
383afd09 3703
aab03e05
DF
3704 if (dl_prio(p->prio))
3705 p->sched_class = &dl_sched_class;
3706 else if (rt_prio(p->prio))
ffd44db5
PZ
3707 p->sched_class = &rt_sched_class;
3708 else
3709 p->sched_class = &fair_sched_class;
1da177e4 3710}
aab03e05
DF
3711
3712static void
3713__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3714{
3715 struct sched_dl_entity *dl_se = &p->dl;
3716
3717 attr->sched_priority = p->rt_priority;
3718 attr->sched_runtime = dl_se->dl_runtime;
3719 attr->sched_deadline = dl_se->dl_deadline;
755378a4 3720 attr->sched_period = dl_se->dl_period;
aab03e05
DF
3721 attr->sched_flags = dl_se->flags;
3722}
3723
3724/*
3725 * This function validates the new parameters of a -deadline task.
3726 * We ask for the deadline not being zero, and greater or equal
755378a4 3727 * than the runtime, as well as the period of being zero or
332ac17e 3728 * greater than deadline. Furthermore, we have to be sure that
b0827819
JL
3729 * user parameters are above the internal resolution of 1us (we
3730 * check sched_runtime only since it is always the smaller one) and
3731 * below 2^63 ns (we have to check both sched_deadline and
3732 * sched_period, as the latter can be zero).
aab03e05
DF
3733 */
3734static bool
3735__checkparam_dl(const struct sched_attr *attr)
3736{
b0827819
JL
3737 /* deadline != 0 */
3738 if (attr->sched_deadline == 0)
3739 return false;
3740
3741 /*
3742 * Since we truncate DL_SCALE bits, make sure we're at least
3743 * that big.
3744 */
3745 if (attr->sched_runtime < (1ULL << DL_SCALE))
3746 return false;
3747
3748 /*
3749 * Since we use the MSB for wrap-around and sign issues, make
3750 * sure it's not set (mind that period can be equal to zero).
3751 */
3752 if (attr->sched_deadline & (1ULL << 63) ||
3753 attr->sched_period & (1ULL << 63))
3754 return false;
3755
3756 /* runtime <= deadline <= period (if period != 0) */
3757 if ((attr->sched_period != 0 &&
3758 attr->sched_period < attr->sched_deadline) ||
3759 attr->sched_deadline < attr->sched_runtime)
3760 return false;
3761
3762 return true;
aab03e05
DF
3763}
3764
c69e8d9c
DH
3765/*
3766 * check the target process has a UID that matches the current process's
3767 */
3768static bool check_same_owner(struct task_struct *p)
3769{
3770 const struct cred *cred = current_cred(), *pcred;
3771 bool match;
3772
3773 rcu_read_lock();
3774 pcred = __task_cred(p);
9c806aa0
EB
3775 match = (uid_eq(cred->euid, pcred->euid) ||
3776 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3777 rcu_read_unlock();
3778 return match;
3779}
3780
75381608
WL
3781static bool dl_param_changed(struct task_struct *p,
3782 const struct sched_attr *attr)
3783{
3784 struct sched_dl_entity *dl_se = &p->dl;
3785
3786 if (dl_se->dl_runtime != attr->sched_runtime ||
3787 dl_se->dl_deadline != attr->sched_deadline ||
3788 dl_se->dl_period != attr->sched_period ||
3789 dl_se->flags != attr->sched_flags)
3790 return true;
3791
3792 return false;
3793}
3794
d50dde5a
DF
3795static int __sched_setscheduler(struct task_struct *p,
3796 const struct sched_attr *attr,
dbc7f069 3797 bool user, bool pi)
1da177e4 3798{
383afd09
SR
3799 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3800 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 3801 int retval, oldprio, oldpolicy = -1, queued, running;
0782e63b 3802 int new_effective_prio, policy = attr->sched_policy;
1da177e4 3803 unsigned long flags;
83ab0aa0 3804 const struct sched_class *prev_class;
70b97a7f 3805 struct rq *rq;
ca94c442 3806 int reset_on_fork;
1da177e4 3807
66e5393a
SR
3808 /* may grab non-irq protected spin_locks */
3809 BUG_ON(in_interrupt());
1da177e4
LT
3810recheck:
3811 /* double check policy once rq lock held */
ca94c442
LP
3812 if (policy < 0) {
3813 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3814 policy = oldpolicy = p->policy;
ca94c442 3815 } else {
7479f3c9 3816 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 3817
20f9cd2a 3818 if (!valid_policy(policy))
ca94c442
LP
3819 return -EINVAL;
3820 }
3821
7479f3c9
PZ
3822 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3823 return -EINVAL;
3824
1da177e4
LT
3825 /*
3826 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3827 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3828 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 3829 */
0bb040a4 3830 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 3831 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 3832 return -EINVAL;
aab03e05
DF
3833 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3834 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
3835 return -EINVAL;
3836
37e4ab3f
OC
3837 /*
3838 * Allow unprivileged RT tasks to decrease priority:
3839 */
961ccddd 3840 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 3841 if (fair_policy(policy)) {
d0ea0268 3842 if (attr->sched_nice < task_nice(p) &&
eaad4513 3843 !can_nice(p, attr->sched_nice))
d50dde5a
DF
3844 return -EPERM;
3845 }
3846
e05606d3 3847 if (rt_policy(policy)) {
a44702e8
ON
3848 unsigned long rlim_rtprio =
3849 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3850
3851 /* can't set/change the rt policy */
3852 if (policy != p->policy && !rlim_rtprio)
3853 return -EPERM;
3854
3855 /* can't increase priority */
d50dde5a
DF
3856 if (attr->sched_priority > p->rt_priority &&
3857 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
3858 return -EPERM;
3859 }
c02aa73b 3860
d44753b8
JL
3861 /*
3862 * Can't set/change SCHED_DEADLINE policy at all for now
3863 * (safest behavior); in the future we would like to allow
3864 * unprivileged DL tasks to increase their relative deadline
3865 * or reduce their runtime (both ways reducing utilization)
3866 */
3867 if (dl_policy(policy))
3868 return -EPERM;
3869
dd41f596 3870 /*
c02aa73b
DH
3871 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3872 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3873 */
20f9cd2a 3874 if (idle_policy(p->policy) && !idle_policy(policy)) {
d0ea0268 3875 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
3876 return -EPERM;
3877 }
5fe1d75f 3878
37e4ab3f 3879 /* can't change other user's priorities */
c69e8d9c 3880 if (!check_same_owner(p))
37e4ab3f 3881 return -EPERM;
ca94c442
LP
3882
3883 /* Normal users shall not reset the sched_reset_on_fork flag */
3884 if (p->sched_reset_on_fork && !reset_on_fork)
3885 return -EPERM;
37e4ab3f 3886 }
1da177e4 3887
725aad24 3888 if (user) {
b0ae1981 3889 retval = security_task_setscheduler(p);
725aad24
JF
3890 if (retval)
3891 return retval;
3892 }
3893
b29739f9
IM
3894 /*
3895 * make sure no PI-waiters arrive (or leave) while we are
3896 * changing the priority of the task:
0122ec5b 3897 *
25985edc 3898 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3899 * runqueue lock must be held.
3900 */
0122ec5b 3901 rq = task_rq_lock(p, &flags);
dc61b1d6 3902
34f971f6
PZ
3903 /*
3904 * Changing the policy of the stop threads its a very bad idea
3905 */
3906 if (p == rq->stop) {
0122ec5b 3907 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3908 return -EINVAL;
3909 }
3910
a51e9198 3911 /*
d6b1e911
TG
3912 * If not changing anything there's no need to proceed further,
3913 * but store a possible modification of reset_on_fork.
a51e9198 3914 */
d50dde5a 3915 if (unlikely(policy == p->policy)) {
d0ea0268 3916 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
3917 goto change;
3918 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3919 goto change;
75381608 3920 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 3921 goto change;
d50dde5a 3922
d6b1e911 3923 p->sched_reset_on_fork = reset_on_fork;
45afb173 3924 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3925 return 0;
3926 }
d50dde5a 3927change:
a51e9198 3928
dc61b1d6 3929 if (user) {
332ac17e 3930#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
3931 /*
3932 * Do not allow realtime tasks into groups that have no runtime
3933 * assigned.
3934 */
3935 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3936 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3937 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3938 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3939 return -EPERM;
3940 }
dc61b1d6 3941#endif
332ac17e
DF
3942#ifdef CONFIG_SMP
3943 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3944 cpumask_t *span = rq->rd->span;
332ac17e
DF
3945
3946 /*
3947 * Don't allow tasks with an affinity mask smaller than
3948 * the entire root_domain to become SCHED_DEADLINE. We
3949 * will also fail if there's no bandwidth available.
3950 */
e4099a5e
PZ
3951 if (!cpumask_subset(span, &p->cpus_allowed) ||
3952 rq->rd->dl_bw.bw == 0) {
332ac17e
DF
3953 task_rq_unlock(rq, p, &flags);
3954 return -EPERM;
3955 }
3956 }
3957#endif
3958 }
dc61b1d6 3959
1da177e4
LT
3960 /* recheck policy now with rq lock held */
3961 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3962 policy = oldpolicy = -1;
0122ec5b 3963 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3964 goto recheck;
3965 }
332ac17e
DF
3966
3967 /*
3968 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3969 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3970 * is available.
3971 */
e4099a5e 3972 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
332ac17e
DF
3973 task_rq_unlock(rq, p, &flags);
3974 return -EBUSY;
3975 }
3976
c365c292
TG
3977 p->sched_reset_on_fork = reset_on_fork;
3978 oldprio = p->prio;
3979
dbc7f069
PZ
3980 if (pi) {
3981 /*
3982 * Take priority boosted tasks into account. If the new
3983 * effective priority is unchanged, we just store the new
3984 * normal parameters and do not touch the scheduler class and
3985 * the runqueue. This will be done when the task deboost
3986 * itself.
3987 */
3988 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
3989 if (new_effective_prio == oldprio) {
3990 __setscheduler_params(p, attr);
3991 task_rq_unlock(rq, p, &flags);
3992 return 0;
3993 }
c365c292
TG
3994 }
3995
da0c1e65 3996 queued = task_on_rq_queued(p);
051a1d1a 3997 running = task_current(rq, p);
da0c1e65 3998 if (queued)
1de64443 3999 dequeue_task(rq, p, DEQUEUE_SAVE);
0e1f3483 4000 if (running)
f3cd1c4e 4001 put_prev_task(rq, p);
f6b53205 4002
83ab0aa0 4003 prev_class = p->sched_class;
dbc7f069 4004 __setscheduler(rq, p, attr, pi);
f6b53205 4005
0e1f3483
HS
4006 if (running)
4007 p->sched_class->set_curr_task(rq);
da0c1e65 4008 if (queued) {
1de64443 4009 int enqueue_flags = ENQUEUE_RESTORE;
81a44c54
TG
4010 /*
4011 * We enqueue to tail when the priority of a task is
4012 * increased (user space view).
4013 */
1de64443
PZ
4014 if (oldprio <= p->prio)
4015 enqueue_flags |= ENQUEUE_HEAD;
4016
4017 enqueue_task(rq, p, enqueue_flags);
81a44c54 4018 }
cb469845 4019
da7a735e 4020 check_class_changed(rq, p, prev_class, oldprio);
4c9a4bc8 4021 preempt_disable(); /* avoid rq from going away on us */
0122ec5b 4022 task_rq_unlock(rq, p, &flags);
b29739f9 4023
dbc7f069
PZ
4024 if (pi)
4025 rt_mutex_adjust_pi(p);
95e02ca9 4026
4c9a4bc8
PZ
4027 /*
4028 * Run balance callbacks after we've adjusted the PI chain.
4029 */
4030 balance_callback(rq);
4031 preempt_enable();
95e02ca9 4032
1da177e4
LT
4033 return 0;
4034}
961ccddd 4035
7479f3c9
PZ
4036static int _sched_setscheduler(struct task_struct *p, int policy,
4037 const struct sched_param *param, bool check)
4038{
4039 struct sched_attr attr = {
4040 .sched_policy = policy,
4041 .sched_priority = param->sched_priority,
4042 .sched_nice = PRIO_TO_NICE(p->static_prio),
4043 };
4044
c13db6b1
SR
4045 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4046 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
4047 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4048 policy &= ~SCHED_RESET_ON_FORK;
4049 attr.sched_policy = policy;
4050 }
4051
dbc7f069 4052 return __sched_setscheduler(p, &attr, check, true);
7479f3c9 4053}
961ccddd
RR
4054/**
4055 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4056 * @p: the task in question.
4057 * @policy: new policy.
4058 * @param: structure containing the new RT priority.
4059 *
e69f6186
YB
4060 * Return: 0 on success. An error code otherwise.
4061 *
961ccddd
RR
4062 * NOTE that the task may be already dead.
4063 */
4064int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4065 const struct sched_param *param)
961ccddd 4066{
7479f3c9 4067 return _sched_setscheduler(p, policy, param, true);
961ccddd 4068}
1da177e4
LT
4069EXPORT_SYMBOL_GPL(sched_setscheduler);
4070
d50dde5a
DF
4071int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4072{
dbc7f069 4073 return __sched_setscheduler(p, attr, true, true);
d50dde5a
DF
4074}
4075EXPORT_SYMBOL_GPL(sched_setattr);
4076
961ccddd
RR
4077/**
4078 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4079 * @p: the task in question.
4080 * @policy: new policy.
4081 * @param: structure containing the new RT priority.
4082 *
4083 * Just like sched_setscheduler, only don't bother checking if the
4084 * current context has permission. For example, this is needed in
4085 * stop_machine(): we create temporary high priority worker threads,
4086 * but our caller might not have that capability.
e69f6186
YB
4087 *
4088 * Return: 0 on success. An error code otherwise.
961ccddd
RR
4089 */
4090int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 4091 const struct sched_param *param)
961ccddd 4092{
7479f3c9 4093 return _sched_setscheduler(p, policy, param, false);
961ccddd 4094}
84778472 4095EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
961ccddd 4096
95cdf3b7
IM
4097static int
4098do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4099{
1da177e4
LT
4100 struct sched_param lparam;
4101 struct task_struct *p;
36c8b586 4102 int retval;
1da177e4
LT
4103
4104 if (!param || pid < 0)
4105 return -EINVAL;
4106 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4107 return -EFAULT;
5fe1d75f
ON
4108
4109 rcu_read_lock();
4110 retval = -ESRCH;
1da177e4 4111 p = find_process_by_pid(pid);
5fe1d75f
ON
4112 if (p != NULL)
4113 retval = sched_setscheduler(p, policy, &lparam);
4114 rcu_read_unlock();
36c8b586 4115
1da177e4
LT
4116 return retval;
4117}
4118
d50dde5a
DF
4119/*
4120 * Mimics kernel/events/core.c perf_copy_attr().
4121 */
4122static int sched_copy_attr(struct sched_attr __user *uattr,
4123 struct sched_attr *attr)
4124{
4125 u32 size;
4126 int ret;
4127
4128 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4129 return -EFAULT;
4130
4131 /*
4132 * zero the full structure, so that a short copy will be nice.
4133 */
4134 memset(attr, 0, sizeof(*attr));
4135
4136 ret = get_user(size, &uattr->size);
4137 if (ret)
4138 return ret;
4139
4140 if (size > PAGE_SIZE) /* silly large */
4141 goto err_size;
4142
4143 if (!size) /* abi compat */
4144 size = SCHED_ATTR_SIZE_VER0;
4145
4146 if (size < SCHED_ATTR_SIZE_VER0)
4147 goto err_size;
4148
4149 /*
4150 * If we're handed a bigger struct than we know of,
4151 * ensure all the unknown bits are 0 - i.e. new
4152 * user-space does not rely on any kernel feature
4153 * extensions we dont know about yet.
4154 */
4155 if (size > sizeof(*attr)) {
4156 unsigned char __user *addr;
4157 unsigned char __user *end;
4158 unsigned char val;
4159
4160 addr = (void __user *)uattr + sizeof(*attr);
4161 end = (void __user *)uattr + size;
4162
4163 for (; addr < end; addr++) {
4164 ret = get_user(val, addr);
4165 if (ret)
4166 return ret;
4167 if (val)
4168 goto err_size;
4169 }
4170 size = sizeof(*attr);
4171 }
4172
4173 ret = copy_from_user(attr, uattr, size);
4174 if (ret)
4175 return -EFAULT;
4176
4177 /*
4178 * XXX: do we want to be lenient like existing syscalls; or do we want
4179 * to be strict and return an error on out-of-bounds values?
4180 */
75e45d51 4181 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 4182
e78c7bca 4183 return 0;
d50dde5a
DF
4184
4185err_size:
4186 put_user(sizeof(*attr), &uattr->size);
e78c7bca 4187 return -E2BIG;
d50dde5a
DF
4188}
4189
1da177e4
LT
4190/**
4191 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4192 * @pid: the pid in question.
4193 * @policy: new policy.
4194 * @param: structure containing the new RT priority.
e69f6186
YB
4195 *
4196 * Return: 0 on success. An error code otherwise.
1da177e4 4197 */
5add95d4
HC
4198SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4199 struct sched_param __user *, param)
1da177e4 4200{
c21761f1
JB
4201 /* negative values for policy are not valid */
4202 if (policy < 0)
4203 return -EINVAL;
4204
1da177e4
LT
4205 return do_sched_setscheduler(pid, policy, param);
4206}
4207
4208/**
4209 * sys_sched_setparam - set/change the RT priority of a thread
4210 * @pid: the pid in question.
4211 * @param: structure containing the new RT priority.
e69f6186
YB
4212 *
4213 * Return: 0 on success. An error code otherwise.
1da177e4 4214 */
5add95d4 4215SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4216{
c13db6b1 4217 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
4218}
4219
d50dde5a
DF
4220/**
4221 * sys_sched_setattr - same as above, but with extended sched_attr
4222 * @pid: the pid in question.
5778fccf 4223 * @uattr: structure containing the extended parameters.
db66d756 4224 * @flags: for future extension.
d50dde5a 4225 */
6d35ab48
PZ
4226SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4227 unsigned int, flags)
d50dde5a
DF
4228{
4229 struct sched_attr attr;
4230 struct task_struct *p;
4231 int retval;
4232
6d35ab48 4233 if (!uattr || pid < 0 || flags)
d50dde5a
DF
4234 return -EINVAL;
4235
143cf23d
MK
4236 retval = sched_copy_attr(uattr, &attr);
4237 if (retval)
4238 return retval;
d50dde5a 4239
b14ed2c2 4240 if ((int)attr.sched_policy < 0)
dbdb2275 4241 return -EINVAL;
d50dde5a
DF
4242
4243 rcu_read_lock();
4244 retval = -ESRCH;
4245 p = find_process_by_pid(pid);
4246 if (p != NULL)
4247 retval = sched_setattr(p, &attr);
4248 rcu_read_unlock();
4249
4250 return retval;
4251}
4252
1da177e4
LT
4253/**
4254 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4255 * @pid: the pid in question.
e69f6186
YB
4256 *
4257 * Return: On success, the policy of the thread. Otherwise, a negative error
4258 * code.
1da177e4 4259 */
5add95d4 4260SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4261{
36c8b586 4262 struct task_struct *p;
3a5c359a 4263 int retval;
1da177e4
LT
4264
4265 if (pid < 0)
3a5c359a 4266 return -EINVAL;
1da177e4
LT
4267
4268 retval = -ESRCH;
5fe85be0 4269 rcu_read_lock();
1da177e4
LT
4270 p = find_process_by_pid(pid);
4271 if (p) {
4272 retval = security_task_getscheduler(p);
4273 if (!retval)
ca94c442
LP
4274 retval = p->policy
4275 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4276 }
5fe85be0 4277 rcu_read_unlock();
1da177e4
LT
4278 return retval;
4279}
4280
4281/**
ca94c442 4282 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4283 * @pid: the pid in question.
4284 * @param: structure containing the RT priority.
e69f6186
YB
4285 *
4286 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4287 * code.
1da177e4 4288 */
5add95d4 4289SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4290{
ce5f7f82 4291 struct sched_param lp = { .sched_priority = 0 };
36c8b586 4292 struct task_struct *p;
3a5c359a 4293 int retval;
1da177e4
LT
4294
4295 if (!param || pid < 0)
3a5c359a 4296 return -EINVAL;
1da177e4 4297
5fe85be0 4298 rcu_read_lock();
1da177e4
LT
4299 p = find_process_by_pid(pid);
4300 retval = -ESRCH;
4301 if (!p)
4302 goto out_unlock;
4303
4304 retval = security_task_getscheduler(p);
4305 if (retval)
4306 goto out_unlock;
4307
ce5f7f82
PZ
4308 if (task_has_rt_policy(p))
4309 lp.sched_priority = p->rt_priority;
5fe85be0 4310 rcu_read_unlock();
1da177e4
LT
4311
4312 /*
4313 * This one might sleep, we cannot do it with a spinlock held ...
4314 */
4315 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4316
1da177e4
LT
4317 return retval;
4318
4319out_unlock:
5fe85be0 4320 rcu_read_unlock();
1da177e4
LT
4321 return retval;
4322}
4323
d50dde5a
DF
4324static int sched_read_attr(struct sched_attr __user *uattr,
4325 struct sched_attr *attr,
4326 unsigned int usize)
4327{
4328 int ret;
4329
4330 if (!access_ok(VERIFY_WRITE, uattr, usize))
4331 return -EFAULT;
4332
4333 /*
4334 * If we're handed a smaller struct than we know of,
4335 * ensure all the unknown bits are 0 - i.e. old
4336 * user-space does not get uncomplete information.
4337 */
4338 if (usize < sizeof(*attr)) {
4339 unsigned char *addr;
4340 unsigned char *end;
4341
4342 addr = (void *)attr + usize;
4343 end = (void *)attr + sizeof(*attr);
4344
4345 for (; addr < end; addr++) {
4346 if (*addr)
22400674 4347 return -EFBIG;
d50dde5a
DF
4348 }
4349
4350 attr->size = usize;
4351 }
4352
4efbc454 4353 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
4354 if (ret)
4355 return -EFAULT;
4356
22400674 4357 return 0;
d50dde5a
DF
4358}
4359
4360/**
aab03e05 4361 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 4362 * @pid: the pid in question.
5778fccf 4363 * @uattr: structure containing the extended parameters.
d50dde5a 4364 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 4365 * @flags: for future extension.
d50dde5a 4366 */
6d35ab48
PZ
4367SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4368 unsigned int, size, unsigned int, flags)
d50dde5a
DF
4369{
4370 struct sched_attr attr = {
4371 .size = sizeof(struct sched_attr),
4372 };
4373 struct task_struct *p;
4374 int retval;
4375
4376 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 4377 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
4378 return -EINVAL;
4379
4380 rcu_read_lock();
4381 p = find_process_by_pid(pid);
4382 retval = -ESRCH;
4383 if (!p)
4384 goto out_unlock;
4385
4386 retval = security_task_getscheduler(p);
4387 if (retval)
4388 goto out_unlock;
4389
4390 attr.sched_policy = p->policy;
7479f3c9
PZ
4391 if (p->sched_reset_on_fork)
4392 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
4393 if (task_has_dl_policy(p))
4394 __getparam_dl(p, &attr);
4395 else if (task_has_rt_policy(p))
d50dde5a
DF
4396 attr.sched_priority = p->rt_priority;
4397 else
d0ea0268 4398 attr.sched_nice = task_nice(p);
d50dde5a
DF
4399
4400 rcu_read_unlock();
4401
4402 retval = sched_read_attr(uattr, &attr, size);
4403 return retval;
4404
4405out_unlock:
4406 rcu_read_unlock();
4407 return retval;
4408}
4409
96f874e2 4410long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4411{
5a16f3d3 4412 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4413 struct task_struct *p;
4414 int retval;
1da177e4 4415
23f5d142 4416 rcu_read_lock();
1da177e4
LT
4417
4418 p = find_process_by_pid(pid);
4419 if (!p) {
23f5d142 4420 rcu_read_unlock();
1da177e4
LT
4421 return -ESRCH;
4422 }
4423
23f5d142 4424 /* Prevent p going away */
1da177e4 4425 get_task_struct(p);
23f5d142 4426 rcu_read_unlock();
1da177e4 4427
14a40ffc
TH
4428 if (p->flags & PF_NO_SETAFFINITY) {
4429 retval = -EINVAL;
4430 goto out_put_task;
4431 }
5a16f3d3
RR
4432 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4433 retval = -ENOMEM;
4434 goto out_put_task;
4435 }
4436 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4437 retval = -ENOMEM;
4438 goto out_free_cpus_allowed;
4439 }
1da177e4 4440 retval = -EPERM;
4c44aaaf
EB
4441 if (!check_same_owner(p)) {
4442 rcu_read_lock();
4443 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4444 rcu_read_unlock();
16303ab2 4445 goto out_free_new_mask;
4c44aaaf
EB
4446 }
4447 rcu_read_unlock();
4448 }
1da177e4 4449
b0ae1981 4450 retval = security_task_setscheduler(p);
e7834f8f 4451 if (retval)
16303ab2 4452 goto out_free_new_mask;
e7834f8f 4453
e4099a5e
PZ
4454
4455 cpuset_cpus_allowed(p, cpus_allowed);
4456 cpumask_and(new_mask, in_mask, cpus_allowed);
4457
332ac17e
DF
4458 /*
4459 * Since bandwidth control happens on root_domain basis,
4460 * if admission test is enabled, we only admit -deadline
4461 * tasks allowed to run on all the CPUs in the task's
4462 * root_domain.
4463 */
4464#ifdef CONFIG_SMP
f1e3a093
KT
4465 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4466 rcu_read_lock();
4467 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 4468 retval = -EBUSY;
f1e3a093 4469 rcu_read_unlock();
16303ab2 4470 goto out_free_new_mask;
332ac17e 4471 }
f1e3a093 4472 rcu_read_unlock();
332ac17e
DF
4473 }
4474#endif
49246274 4475again:
25834c73 4476 retval = __set_cpus_allowed_ptr(p, new_mask, true);
1da177e4 4477
8707d8b8 4478 if (!retval) {
5a16f3d3
RR
4479 cpuset_cpus_allowed(p, cpus_allowed);
4480 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4481 /*
4482 * We must have raced with a concurrent cpuset
4483 * update. Just reset the cpus_allowed to the
4484 * cpuset's cpus_allowed
4485 */
5a16f3d3 4486 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4487 goto again;
4488 }
4489 }
16303ab2 4490out_free_new_mask:
5a16f3d3
RR
4491 free_cpumask_var(new_mask);
4492out_free_cpus_allowed:
4493 free_cpumask_var(cpus_allowed);
4494out_put_task:
1da177e4 4495 put_task_struct(p);
1da177e4
LT
4496 return retval;
4497}
4498
4499static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4500 struct cpumask *new_mask)
1da177e4 4501{
96f874e2
RR
4502 if (len < cpumask_size())
4503 cpumask_clear(new_mask);
4504 else if (len > cpumask_size())
4505 len = cpumask_size();
4506
1da177e4
LT
4507 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4508}
4509
4510/**
4511 * sys_sched_setaffinity - set the cpu affinity of a process
4512 * @pid: pid of the process
4513 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4514 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
4515 *
4516 * Return: 0 on success. An error code otherwise.
1da177e4 4517 */
5add95d4
HC
4518SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4519 unsigned long __user *, user_mask_ptr)
1da177e4 4520{
5a16f3d3 4521 cpumask_var_t new_mask;
1da177e4
LT
4522 int retval;
4523
5a16f3d3
RR
4524 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4525 return -ENOMEM;
1da177e4 4526
5a16f3d3
RR
4527 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4528 if (retval == 0)
4529 retval = sched_setaffinity(pid, new_mask);
4530 free_cpumask_var(new_mask);
4531 return retval;
1da177e4
LT
4532}
4533
96f874e2 4534long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4535{
36c8b586 4536 struct task_struct *p;
31605683 4537 unsigned long flags;
1da177e4 4538 int retval;
1da177e4 4539
23f5d142 4540 rcu_read_lock();
1da177e4
LT
4541
4542 retval = -ESRCH;
4543 p = find_process_by_pid(pid);
4544 if (!p)
4545 goto out_unlock;
4546
e7834f8f
DQ
4547 retval = security_task_getscheduler(p);
4548 if (retval)
4549 goto out_unlock;
4550
013fdb80 4551 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4552 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4553 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4554
4555out_unlock:
23f5d142 4556 rcu_read_unlock();
1da177e4 4557
9531b62f 4558 return retval;
1da177e4
LT
4559}
4560
4561/**
4562 * sys_sched_getaffinity - get the cpu affinity of a process
4563 * @pid: pid of the process
4564 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4565 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186
YB
4566 *
4567 * Return: 0 on success. An error code otherwise.
1da177e4 4568 */
5add95d4
HC
4569SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4570 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4571{
4572 int ret;
f17c8607 4573 cpumask_var_t mask;
1da177e4 4574
84fba5ec 4575 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4576 return -EINVAL;
4577 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4578 return -EINVAL;
4579
f17c8607
RR
4580 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4581 return -ENOMEM;
1da177e4 4582
f17c8607
RR
4583 ret = sched_getaffinity(pid, mask);
4584 if (ret == 0) {
8bc037fb 4585 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4586
4587 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4588 ret = -EFAULT;
4589 else
cd3d8031 4590 ret = retlen;
f17c8607
RR
4591 }
4592 free_cpumask_var(mask);
1da177e4 4593
f17c8607 4594 return ret;
1da177e4
LT
4595}
4596
4597/**
4598 * sys_sched_yield - yield the current processor to other threads.
4599 *
dd41f596
IM
4600 * This function yields the current CPU to other tasks. If there are no
4601 * other threads running on this CPU then this function will return.
e69f6186
YB
4602 *
4603 * Return: 0.
1da177e4 4604 */
5add95d4 4605SYSCALL_DEFINE0(sched_yield)
1da177e4 4606{
70b97a7f 4607 struct rq *rq = this_rq_lock();
1da177e4 4608
2d72376b 4609 schedstat_inc(rq, yld_count);
4530d7ab 4610 current->sched_class->yield_task(rq);
1da177e4
LT
4611
4612 /*
4613 * Since we are going to call schedule() anyway, there's
4614 * no need to preempt or enable interrupts:
4615 */
4616 __release(rq->lock);
8a25d5de 4617 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4618 do_raw_spin_unlock(&rq->lock);
ba74c144 4619 sched_preempt_enable_no_resched();
1da177e4
LT
4620
4621 schedule();
4622
4623 return 0;
4624}
4625
02b67cc3 4626int __sched _cond_resched(void)
1da177e4 4627{
fe32d3cd 4628 if (should_resched(0)) {
a18b5d01 4629 preempt_schedule_common();
1da177e4
LT
4630 return 1;
4631 }
4632 return 0;
4633}
02b67cc3 4634EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4635
4636/*
613afbf8 4637 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4638 * call schedule, and on return reacquire the lock.
4639 *
41a2d6cf 4640 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4641 * operations here to prevent schedule() from being called twice (once via
4642 * spin_unlock(), once by hand).
4643 */
613afbf8 4644int __cond_resched_lock(spinlock_t *lock)
1da177e4 4645{
fe32d3cd 4646 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6df3cecb
JK
4647 int ret = 0;
4648
f607c668
PZ
4649 lockdep_assert_held(lock);
4650
4a81e832 4651 if (spin_needbreak(lock) || resched) {
1da177e4 4652 spin_unlock(lock);
d86ee480 4653 if (resched)
a18b5d01 4654 preempt_schedule_common();
95c354fe
NP
4655 else
4656 cpu_relax();
6df3cecb 4657 ret = 1;
1da177e4 4658 spin_lock(lock);
1da177e4 4659 }
6df3cecb 4660 return ret;
1da177e4 4661}
613afbf8 4662EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4663
613afbf8 4664int __sched __cond_resched_softirq(void)
1da177e4
LT
4665{
4666 BUG_ON(!in_softirq());
4667
fe32d3cd 4668 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
98d82567 4669 local_bh_enable();
a18b5d01 4670 preempt_schedule_common();
1da177e4
LT
4671 local_bh_disable();
4672 return 1;
4673 }
4674 return 0;
4675}
613afbf8 4676EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4677
1da177e4
LT
4678/**
4679 * yield - yield the current processor to other threads.
4680 *
8e3fabfd
PZ
4681 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4682 *
4683 * The scheduler is at all times free to pick the calling task as the most
4684 * eligible task to run, if removing the yield() call from your code breaks
4685 * it, its already broken.
4686 *
4687 * Typical broken usage is:
4688 *
4689 * while (!event)
4690 * yield();
4691 *
4692 * where one assumes that yield() will let 'the other' process run that will
4693 * make event true. If the current task is a SCHED_FIFO task that will never
4694 * happen. Never use yield() as a progress guarantee!!
4695 *
4696 * If you want to use yield() to wait for something, use wait_event().
4697 * If you want to use yield() to be 'nice' for others, use cond_resched().
4698 * If you still want to use yield(), do not!
1da177e4
LT
4699 */
4700void __sched yield(void)
4701{
4702 set_current_state(TASK_RUNNING);
4703 sys_sched_yield();
4704}
1da177e4
LT
4705EXPORT_SYMBOL(yield);
4706
d95f4122
MG
4707/**
4708 * yield_to - yield the current processor to another thread in
4709 * your thread group, or accelerate that thread toward the
4710 * processor it's on.
16addf95
RD
4711 * @p: target task
4712 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4713 *
4714 * It's the caller's job to ensure that the target task struct
4715 * can't go away on us before we can do any checks.
4716 *
e69f6186 4717 * Return:
7b270f60
PZ
4718 * true (>0) if we indeed boosted the target task.
4719 * false (0) if we failed to boost the target.
4720 * -ESRCH if there's no task to yield to.
d95f4122 4721 */
fa93384f 4722int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
4723{
4724 struct task_struct *curr = current;
4725 struct rq *rq, *p_rq;
4726 unsigned long flags;
c3c18640 4727 int yielded = 0;
d95f4122
MG
4728
4729 local_irq_save(flags);
4730 rq = this_rq();
4731
4732again:
4733 p_rq = task_rq(p);
7b270f60
PZ
4734 /*
4735 * If we're the only runnable task on the rq and target rq also
4736 * has only one task, there's absolutely no point in yielding.
4737 */
4738 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4739 yielded = -ESRCH;
4740 goto out_irq;
4741 }
4742
d95f4122 4743 double_rq_lock(rq, p_rq);
39e24d8f 4744 if (task_rq(p) != p_rq) {
d95f4122
MG
4745 double_rq_unlock(rq, p_rq);
4746 goto again;
4747 }
4748
4749 if (!curr->sched_class->yield_to_task)
7b270f60 4750 goto out_unlock;
d95f4122
MG
4751
4752 if (curr->sched_class != p->sched_class)
7b270f60 4753 goto out_unlock;
d95f4122
MG
4754
4755 if (task_running(p_rq, p) || p->state)
7b270f60 4756 goto out_unlock;
d95f4122
MG
4757
4758 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4759 if (yielded) {
d95f4122 4760 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4761 /*
4762 * Make p's CPU reschedule; pick_next_entity takes care of
4763 * fairness.
4764 */
4765 if (preempt && rq != p_rq)
8875125e 4766 resched_curr(p_rq);
6d1cafd8 4767 }
d95f4122 4768
7b270f60 4769out_unlock:
d95f4122 4770 double_rq_unlock(rq, p_rq);
7b270f60 4771out_irq:
d95f4122
MG
4772 local_irq_restore(flags);
4773
7b270f60 4774 if (yielded > 0)
d95f4122
MG
4775 schedule();
4776
4777 return yielded;
4778}
4779EXPORT_SYMBOL_GPL(yield_to);
4780
1da177e4 4781/*
41a2d6cf 4782 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4783 * that process accounting knows that this is a task in IO wait state.
1da177e4 4784 */
1da177e4
LT
4785long __sched io_schedule_timeout(long timeout)
4786{
9cff8ade
N
4787 int old_iowait = current->in_iowait;
4788 struct rq *rq;
1da177e4
LT
4789 long ret;
4790
9cff8ade 4791 current->in_iowait = 1;
10d784ea 4792 blk_schedule_flush_plug(current);
9cff8ade 4793
0ff92245 4794 delayacct_blkio_start();
9cff8ade 4795 rq = raw_rq();
1da177e4
LT
4796 atomic_inc(&rq->nr_iowait);
4797 ret = schedule_timeout(timeout);
9cff8ade 4798 current->in_iowait = old_iowait;
1da177e4 4799 atomic_dec(&rq->nr_iowait);
0ff92245 4800 delayacct_blkio_end();
9cff8ade 4801
1da177e4
LT
4802 return ret;
4803}
9cff8ade 4804EXPORT_SYMBOL(io_schedule_timeout);
1da177e4
LT
4805
4806/**
4807 * sys_sched_get_priority_max - return maximum RT priority.
4808 * @policy: scheduling class.
4809 *
e69f6186
YB
4810 * Return: On success, this syscall returns the maximum
4811 * rt_priority that can be used by a given scheduling class.
4812 * On failure, a negative error code is returned.
1da177e4 4813 */
5add95d4 4814SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4815{
4816 int ret = -EINVAL;
4817
4818 switch (policy) {
4819 case SCHED_FIFO:
4820 case SCHED_RR:
4821 ret = MAX_USER_RT_PRIO-1;
4822 break;
aab03e05 4823 case SCHED_DEADLINE:
1da177e4 4824 case SCHED_NORMAL:
b0a9499c 4825 case SCHED_BATCH:
dd41f596 4826 case SCHED_IDLE:
1da177e4
LT
4827 ret = 0;
4828 break;
4829 }
4830 return ret;
4831}
4832
4833/**
4834 * sys_sched_get_priority_min - return minimum RT priority.
4835 * @policy: scheduling class.
4836 *
e69f6186
YB
4837 * Return: On success, this syscall returns the minimum
4838 * rt_priority that can be used by a given scheduling class.
4839 * On failure, a negative error code is returned.
1da177e4 4840 */
5add95d4 4841SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4842{
4843 int ret = -EINVAL;
4844
4845 switch (policy) {
4846 case SCHED_FIFO:
4847 case SCHED_RR:
4848 ret = 1;
4849 break;
aab03e05 4850 case SCHED_DEADLINE:
1da177e4 4851 case SCHED_NORMAL:
b0a9499c 4852 case SCHED_BATCH:
dd41f596 4853 case SCHED_IDLE:
1da177e4
LT
4854 ret = 0;
4855 }
4856 return ret;
4857}
4858
4859/**
4860 * sys_sched_rr_get_interval - return the default timeslice of a process.
4861 * @pid: pid of the process.
4862 * @interval: userspace pointer to the timeslice value.
4863 *
4864 * this syscall writes the default timeslice value of a given process
4865 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
4866 *
4867 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4868 * an error code.
1da177e4 4869 */
17da2bd9 4870SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4871 struct timespec __user *, interval)
1da177e4 4872{
36c8b586 4873 struct task_struct *p;
a4ec24b4 4874 unsigned int time_slice;
dba091b9
TG
4875 unsigned long flags;
4876 struct rq *rq;
3a5c359a 4877 int retval;
1da177e4 4878 struct timespec t;
1da177e4
LT
4879
4880 if (pid < 0)
3a5c359a 4881 return -EINVAL;
1da177e4
LT
4882
4883 retval = -ESRCH;
1a551ae7 4884 rcu_read_lock();
1da177e4
LT
4885 p = find_process_by_pid(pid);
4886 if (!p)
4887 goto out_unlock;
4888
4889 retval = security_task_getscheduler(p);
4890 if (retval)
4891 goto out_unlock;
4892
dba091b9 4893 rq = task_rq_lock(p, &flags);
a57beec5
PZ
4894 time_slice = 0;
4895 if (p->sched_class->get_rr_interval)
4896 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4897 task_rq_unlock(rq, p, &flags);
a4ec24b4 4898
1a551ae7 4899 rcu_read_unlock();
a4ec24b4 4900 jiffies_to_timespec(time_slice, &t);
1da177e4 4901 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4902 return retval;
3a5c359a 4903
1da177e4 4904out_unlock:
1a551ae7 4905 rcu_read_unlock();
1da177e4
LT
4906 return retval;
4907}
4908
7c731e0a 4909static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4910
82a1fcb9 4911void sched_show_task(struct task_struct *p)
1da177e4 4912{
1da177e4 4913 unsigned long free = 0;
4e79752c 4914 int ppid;
1f8a7633 4915 unsigned long state = p->state;
1da177e4 4916
1f8a7633
TH
4917 if (state)
4918 state = __ffs(state) + 1;
28d0686c 4919 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4920 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4921#if BITS_PER_LONG == 32
1da177e4 4922 if (state == TASK_RUNNING)
3df0fc5b 4923 printk(KERN_CONT " running ");
1da177e4 4924 else
3df0fc5b 4925 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4926#else
4927 if (state == TASK_RUNNING)
3df0fc5b 4928 printk(KERN_CONT " running task ");
1da177e4 4929 else
3df0fc5b 4930 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4931#endif
4932#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4933 free = stack_not_used(p);
1da177e4 4934#endif
a90e984c 4935 ppid = 0;
4e79752c 4936 rcu_read_lock();
a90e984c
ON
4937 if (pid_alive(p))
4938 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 4939 rcu_read_unlock();
3df0fc5b 4940 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 4941 task_pid_nr(p), ppid,
aa47b7e0 4942 (unsigned long)task_thread_info(p)->flags);
1da177e4 4943
3d1cb205 4944 print_worker_info(KERN_INFO, p);
5fb5e6de 4945 show_stack(p, NULL);
1da177e4
LT
4946}
4947
e59e2ae2 4948void show_state_filter(unsigned long state_filter)
1da177e4 4949{
36c8b586 4950 struct task_struct *g, *p;
1da177e4 4951
4bd77321 4952#if BITS_PER_LONG == 32
3df0fc5b
PZ
4953 printk(KERN_INFO
4954 " task PC stack pid father\n");
1da177e4 4955#else
3df0fc5b
PZ
4956 printk(KERN_INFO
4957 " task PC stack pid father\n");
1da177e4 4958#endif
510f5acc 4959 rcu_read_lock();
5d07f420 4960 for_each_process_thread(g, p) {
1da177e4
LT
4961 /*
4962 * reset the NMI-timeout, listing all files on a slow
25985edc 4963 * console might take a lot of time:
1da177e4
LT
4964 */
4965 touch_nmi_watchdog();
39bc89fd 4966 if (!state_filter || (p->state & state_filter))
82a1fcb9 4967 sched_show_task(p);
5d07f420 4968 }
1da177e4 4969
04c9167f
JF
4970 touch_all_softlockup_watchdogs();
4971
dd41f596
IM
4972#ifdef CONFIG_SCHED_DEBUG
4973 sysrq_sched_debug_show();
4974#endif
510f5acc 4975 rcu_read_unlock();
e59e2ae2
IM
4976 /*
4977 * Only show locks if all tasks are dumped:
4978 */
93335a21 4979 if (!state_filter)
e59e2ae2 4980 debug_show_all_locks();
1da177e4
LT
4981}
4982
0db0628d 4983void init_idle_bootup_task(struct task_struct *idle)
1df21055 4984{
dd41f596 4985 idle->sched_class = &idle_sched_class;
1df21055
IM
4986}
4987
f340c0d1
IM
4988/**
4989 * init_idle - set up an idle thread for a given CPU
4990 * @idle: task in question
4991 * @cpu: cpu the idle task belongs to
4992 *
4993 * NOTE: this function does not set the idle thread's NEED_RESCHED
4994 * flag, to make booting more robust.
4995 */
0db0628d 4996void init_idle(struct task_struct *idle, int cpu)
1da177e4 4997{
70b97a7f 4998 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4999 unsigned long flags;
5000
25834c73
PZ
5001 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5002 raw_spin_lock(&rq->lock);
5cbd54ef 5003
5e1576ed 5004 __sched_fork(0, idle);
06b83b5f 5005 idle->state = TASK_RUNNING;
dd41f596
IM
5006 idle->se.exec_start = sched_clock();
5007
de9b8f5d
PZ
5008#ifdef CONFIG_SMP
5009 /*
5010 * Its possible that init_idle() gets called multiple times on a task,
5011 * in that case do_set_cpus_allowed() will not do the right thing.
5012 *
5013 * And since this is boot we can forgo the serialization.
5014 */
5015 set_cpus_allowed_common(idle, cpumask_of(cpu));
5016#endif
6506cf6c
PZ
5017 /*
5018 * We're having a chicken and egg problem, even though we are
5019 * holding rq->lock, the cpu isn't yet set to this cpu so the
5020 * lockdep check in task_group() will fail.
5021 *
5022 * Similar case to sched_fork(). / Alternatively we could
5023 * use task_rq_lock() here and obtain the other rq->lock.
5024 *
5025 * Silence PROVE_RCU
5026 */
5027 rcu_read_lock();
dd41f596 5028 __set_task_cpu(idle, cpu);
6506cf6c 5029 rcu_read_unlock();
1da177e4 5030
1da177e4 5031 rq->curr = rq->idle = idle;
da0c1e65 5032 idle->on_rq = TASK_ON_RQ_QUEUED;
de9b8f5d 5033#ifdef CONFIG_SMP
3ca7a440 5034 idle->on_cpu = 1;
4866cde0 5035#endif
25834c73
PZ
5036 raw_spin_unlock(&rq->lock);
5037 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
1da177e4
LT
5038
5039 /* Set the preempt count _outside_ the spinlocks! */
01028747 5040 init_idle_preempt_count(idle, cpu);
55cd5340 5041
dd41f596
IM
5042 /*
5043 * The idle tasks have their own, simple scheduling class:
5044 */
5045 idle->sched_class = &idle_sched_class;
868baf07 5046 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 5047 vtime_init_idle(idle, cpu);
de9b8f5d 5048#ifdef CONFIG_SMP
f1c6f1a7
CE
5049 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5050#endif
19978ca6
IM
5051}
5052
f82f8042
JL
5053int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5054 const struct cpumask *trial)
5055{
5056 int ret = 1, trial_cpus;
5057 struct dl_bw *cur_dl_b;
5058 unsigned long flags;
5059
bb2bc55a
MG
5060 if (!cpumask_weight(cur))
5061 return ret;
5062
75e23e49 5063 rcu_read_lock_sched();
f82f8042
JL
5064 cur_dl_b = dl_bw_of(cpumask_any(cur));
5065 trial_cpus = cpumask_weight(trial);
5066
5067 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5068 if (cur_dl_b->bw != -1 &&
5069 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5070 ret = 0;
5071 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
75e23e49 5072 rcu_read_unlock_sched();
f82f8042
JL
5073
5074 return ret;
5075}
5076
7f51412a
JL
5077int task_can_attach(struct task_struct *p,
5078 const struct cpumask *cs_cpus_allowed)
5079{
5080 int ret = 0;
5081
5082 /*
5083 * Kthreads which disallow setaffinity shouldn't be moved
5084 * to a new cpuset; we don't want to change their cpu
5085 * affinity and isolating such threads by their set of
5086 * allowed nodes is unnecessary. Thus, cpusets are not
5087 * applicable for such threads. This prevents checking for
5088 * success of set_cpus_allowed_ptr() on all attached tasks
5089 * before cpus_allowed may be changed.
5090 */
5091 if (p->flags & PF_NO_SETAFFINITY) {
5092 ret = -EINVAL;
5093 goto out;
5094 }
5095
5096#ifdef CONFIG_SMP
5097 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5098 cs_cpus_allowed)) {
5099 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5100 cs_cpus_allowed);
75e23e49 5101 struct dl_bw *dl_b;
7f51412a
JL
5102 bool overflow;
5103 int cpus;
5104 unsigned long flags;
5105
75e23e49
JL
5106 rcu_read_lock_sched();
5107 dl_b = dl_bw_of(dest_cpu);
7f51412a
JL
5108 raw_spin_lock_irqsave(&dl_b->lock, flags);
5109 cpus = dl_bw_cpus(dest_cpu);
5110 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5111 if (overflow)
5112 ret = -EBUSY;
5113 else {
5114 /*
5115 * We reserve space for this task in the destination
5116 * root_domain, as we can't fail after this point.
5117 * We will free resources in the source root_domain
5118 * later on (see set_cpus_allowed_dl()).
5119 */
5120 __dl_add(dl_b, p->dl.dl_bw);
5121 }
5122 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
75e23e49 5123 rcu_read_unlock_sched();
7f51412a
JL
5124
5125 }
5126#endif
5127out:
5128 return ret;
5129}
5130
1da177e4 5131#ifdef CONFIG_SMP
1da177e4 5132
e6628d5b
MG
5133#ifdef CONFIG_NUMA_BALANCING
5134/* Migrate current task p to target_cpu */
5135int migrate_task_to(struct task_struct *p, int target_cpu)
5136{
5137 struct migration_arg arg = { p, target_cpu };
5138 int curr_cpu = task_cpu(p);
5139
5140 if (curr_cpu == target_cpu)
5141 return 0;
5142
5143 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5144 return -EINVAL;
5145
5146 /* TODO: This is not properly updating schedstats */
5147
286549dc 5148 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
5149 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5150}
0ec8aa00
PZ
5151
5152/*
5153 * Requeue a task on a given node and accurately track the number of NUMA
5154 * tasks on the runqueues
5155 */
5156void sched_setnuma(struct task_struct *p, int nid)
5157{
5158 struct rq *rq;
5159 unsigned long flags;
da0c1e65 5160 bool queued, running;
0ec8aa00
PZ
5161
5162 rq = task_rq_lock(p, &flags);
da0c1e65 5163 queued = task_on_rq_queued(p);
0ec8aa00
PZ
5164 running = task_current(rq, p);
5165
da0c1e65 5166 if (queued)
1de64443 5167 dequeue_task(rq, p, DEQUEUE_SAVE);
0ec8aa00 5168 if (running)
f3cd1c4e 5169 put_prev_task(rq, p);
0ec8aa00
PZ
5170
5171 p->numa_preferred_nid = nid;
0ec8aa00
PZ
5172
5173 if (running)
5174 p->sched_class->set_curr_task(rq);
da0c1e65 5175 if (queued)
1de64443 5176 enqueue_task(rq, p, ENQUEUE_RESTORE);
0ec8aa00
PZ
5177 task_rq_unlock(rq, p, &flags);
5178}
5cc389bc 5179#endif /* CONFIG_NUMA_BALANCING */
f7b4cddc 5180
1da177e4 5181#ifdef CONFIG_HOTPLUG_CPU
054b9108 5182/*
48c5ccae
PZ
5183 * Ensures that the idle task is using init_mm right before its cpu goes
5184 * offline.
054b9108 5185 */
48c5ccae 5186void idle_task_exit(void)
1da177e4 5187{
48c5ccae 5188 struct mm_struct *mm = current->active_mm;
e76bd8d9 5189
48c5ccae 5190 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 5191
a53efe5f 5192 if (mm != &init_mm) {
48c5ccae 5193 switch_mm(mm, &init_mm, current);
a53efe5f
MS
5194 finish_arch_post_lock_switch();
5195 }
48c5ccae 5196 mmdrop(mm);
1da177e4
LT
5197}
5198
5199/*
5d180232
PZ
5200 * Since this CPU is going 'away' for a while, fold any nr_active delta
5201 * we might have. Assumes we're called after migrate_tasks() so that the
5202 * nr_active count is stable.
5203 *
5204 * Also see the comment "Global load-average calculations".
1da177e4 5205 */
5d180232 5206static void calc_load_migrate(struct rq *rq)
1da177e4 5207{
5d180232
PZ
5208 long delta = calc_load_fold_active(rq);
5209 if (delta)
5210 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
5211}
5212
3f1d2a31
PZ
5213static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5214{
5215}
5216
5217static const struct sched_class fake_sched_class = {
5218 .put_prev_task = put_prev_task_fake,
5219};
5220
5221static struct task_struct fake_task = {
5222 /*
5223 * Avoid pull_{rt,dl}_task()
5224 */
5225 .prio = MAX_PRIO + 1,
5226 .sched_class = &fake_sched_class,
5227};
5228
48f24c4d 5229/*
48c5ccae
PZ
5230 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5231 * try_to_wake_up()->select_task_rq().
5232 *
5233 * Called with rq->lock held even though we'er in stop_machine() and
5234 * there's no concurrency possible, we hold the required locks anyway
5235 * because of lock validation efforts.
1da177e4 5236 */
5e16bbc2 5237static void migrate_tasks(struct rq *dead_rq)
1da177e4 5238{
5e16bbc2 5239 struct rq *rq = dead_rq;
48c5ccae
PZ
5240 struct task_struct *next, *stop = rq->stop;
5241 int dest_cpu;
1da177e4
LT
5242
5243 /*
48c5ccae
PZ
5244 * Fudge the rq selection such that the below task selection loop
5245 * doesn't get stuck on the currently eligible stop task.
5246 *
5247 * We're currently inside stop_machine() and the rq is either stuck
5248 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5249 * either way we should never end up calling schedule() until we're
5250 * done here.
1da177e4 5251 */
48c5ccae 5252 rq->stop = NULL;
48f24c4d 5253
77bd3970
FW
5254 /*
5255 * put_prev_task() and pick_next_task() sched
5256 * class method both need to have an up-to-date
5257 * value of rq->clock[_task]
5258 */
5259 update_rq_clock(rq);
5260
5e16bbc2 5261 for (;;) {
48c5ccae
PZ
5262 /*
5263 * There's this thread running, bail when that's the only
5264 * remaining thread.
5265 */
5266 if (rq->nr_running == 1)
dd41f596 5267 break;
48c5ccae 5268
cbce1a68 5269 /*
5473e0cc 5270 * pick_next_task assumes pinned rq->lock.
cbce1a68
PZ
5271 */
5272 lockdep_pin_lock(&rq->lock);
3f1d2a31 5273 next = pick_next_task(rq, &fake_task);
48c5ccae 5274 BUG_ON(!next);
79c53799 5275 next->sched_class->put_prev_task(rq, next);
e692ab53 5276
5473e0cc
WL
5277 /*
5278 * Rules for changing task_struct::cpus_allowed are holding
5279 * both pi_lock and rq->lock, such that holding either
5280 * stabilizes the mask.
5281 *
5282 * Drop rq->lock is not quite as disastrous as it usually is
5283 * because !cpu_active at this point, which means load-balance
5284 * will not interfere. Also, stop-machine.
5285 */
5286 lockdep_unpin_lock(&rq->lock);
5287 raw_spin_unlock(&rq->lock);
5288 raw_spin_lock(&next->pi_lock);
5289 raw_spin_lock(&rq->lock);
5290
5291 /*
5292 * Since we're inside stop-machine, _nothing_ should have
5293 * changed the task, WARN if weird stuff happened, because in
5294 * that case the above rq->lock drop is a fail too.
5295 */
5296 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5297 raw_spin_unlock(&next->pi_lock);
5298 continue;
5299 }
5300
48c5ccae 5301 /* Find suitable destination for @next, with force if needed. */
5e16bbc2 5302 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
48c5ccae 5303
5e16bbc2
PZ
5304 rq = __migrate_task(rq, next, dest_cpu);
5305 if (rq != dead_rq) {
5306 raw_spin_unlock(&rq->lock);
5307 rq = dead_rq;
5308 raw_spin_lock(&rq->lock);
5309 }
5473e0cc 5310 raw_spin_unlock(&next->pi_lock);
1da177e4 5311 }
dce48a84 5312
48c5ccae 5313 rq->stop = stop;
dce48a84 5314}
1da177e4
LT
5315#endif /* CONFIG_HOTPLUG_CPU */
5316
e692ab53
NP
5317#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5318
5319static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5320 {
5321 .procname = "sched_domain",
c57baf1e 5322 .mode = 0555,
e0361851 5323 },
56992309 5324 {}
e692ab53
NP
5325};
5326
5327static struct ctl_table sd_ctl_root[] = {
e0361851
AD
5328 {
5329 .procname = "kernel",
c57baf1e 5330 .mode = 0555,
e0361851
AD
5331 .child = sd_ctl_dir,
5332 },
56992309 5333 {}
e692ab53
NP
5334};
5335
5336static struct ctl_table *sd_alloc_ctl_entry(int n)
5337{
5338 struct ctl_table *entry =
5cf9f062 5339 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5340
e692ab53
NP
5341 return entry;
5342}
5343
6382bc90
MM
5344static void sd_free_ctl_entry(struct ctl_table **tablep)
5345{
cd790076 5346 struct ctl_table *entry;
6382bc90 5347
cd790076
MM
5348 /*
5349 * In the intermediate directories, both the child directory and
5350 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5351 * will always be set. In the lowest directory the names are
cd790076
MM
5352 * static strings and all have proc handlers.
5353 */
5354 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5355 if (entry->child)
5356 sd_free_ctl_entry(&entry->child);
cd790076
MM
5357 if (entry->proc_handler == NULL)
5358 kfree(entry->procname);
5359 }
6382bc90
MM
5360
5361 kfree(*tablep);
5362 *tablep = NULL;
5363}
5364
201c373e 5365static int min_load_idx = 0;
fd9b86d3 5366static int max_load_idx = CPU_LOAD_IDX_MAX-1;
201c373e 5367
e692ab53 5368static void
e0361851 5369set_table_entry(struct ctl_table *entry,
e692ab53 5370 const char *procname, void *data, int maxlen,
201c373e
NK
5371 umode_t mode, proc_handler *proc_handler,
5372 bool load_idx)
e692ab53 5373{
e692ab53
NP
5374 entry->procname = procname;
5375 entry->data = data;
5376 entry->maxlen = maxlen;
5377 entry->mode = mode;
5378 entry->proc_handler = proc_handler;
201c373e
NK
5379
5380 if (load_idx) {
5381 entry->extra1 = &min_load_idx;
5382 entry->extra2 = &max_load_idx;
5383 }
e692ab53
NP
5384}
5385
5386static struct ctl_table *
5387sd_alloc_ctl_domain_table(struct sched_domain *sd)
5388{
37e6bae8 5389 struct ctl_table *table = sd_alloc_ctl_entry(14);
e692ab53 5390
ad1cdc1d
MM
5391 if (table == NULL)
5392 return NULL;
5393
e0361851 5394 set_table_entry(&table[0], "min_interval", &sd->min_interval,
201c373e 5395 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 5396 set_table_entry(&table[1], "max_interval", &sd->max_interval,
201c373e 5397 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 5398 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
201c373e 5399 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5400 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
201c373e 5401 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5402 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
201c373e 5403 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5404 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
201c373e 5405 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5406 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
201c373e 5407 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5408 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
201c373e 5409 sizeof(int), 0644, proc_dointvec_minmax, false);
e0361851 5410 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
201c373e 5411 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 5412 set_table_entry(&table[9], "cache_nice_tries",
e692ab53 5413 &sd->cache_nice_tries,
201c373e 5414 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 5415 set_table_entry(&table[10], "flags", &sd->flags,
201c373e 5416 sizeof(int), 0644, proc_dointvec_minmax, false);
37e6bae8
AS
5417 set_table_entry(&table[11], "max_newidle_lb_cost",
5418 &sd->max_newidle_lb_cost,
5419 sizeof(long), 0644, proc_doulongvec_minmax, false);
5420 set_table_entry(&table[12], "name", sd->name,
201c373e 5421 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
37e6bae8 5422 /* &table[13] is terminator */
e692ab53
NP
5423
5424 return table;
5425}
5426
be7002e6 5427static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5428{
5429 struct ctl_table *entry, *table;
5430 struct sched_domain *sd;
5431 int domain_num = 0, i;
5432 char buf[32];
5433
5434 for_each_domain(cpu, sd)
5435 domain_num++;
5436 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5437 if (table == NULL)
5438 return NULL;
e692ab53
NP
5439
5440 i = 0;
5441 for_each_domain(cpu, sd) {
5442 snprintf(buf, 32, "domain%d", i);
e692ab53 5443 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5444 entry->mode = 0555;
e692ab53
NP
5445 entry->child = sd_alloc_ctl_domain_table(sd);
5446 entry++;
5447 i++;
5448 }
5449 return table;
5450}
5451
5452static struct ctl_table_header *sd_sysctl_header;
6382bc90 5453static void register_sched_domain_sysctl(void)
e692ab53 5454{
6ad4c188 5455 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5456 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5457 char buf[32];
5458
7378547f
MM
5459 WARN_ON(sd_ctl_dir[0].child);
5460 sd_ctl_dir[0].child = entry;
5461
ad1cdc1d
MM
5462 if (entry == NULL)
5463 return;
5464
6ad4c188 5465 for_each_possible_cpu(i) {
e692ab53 5466 snprintf(buf, 32, "cpu%d", i);
e692ab53 5467 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5468 entry->mode = 0555;
e692ab53 5469 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5470 entry++;
e692ab53 5471 }
7378547f
MM
5472
5473 WARN_ON(sd_sysctl_header);
e692ab53
NP
5474 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5475}
6382bc90 5476
7378547f 5477/* may be called multiple times per register */
6382bc90
MM
5478static void unregister_sched_domain_sysctl(void)
5479{
781b0203 5480 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5481 sd_sysctl_header = NULL;
7378547f
MM
5482 if (sd_ctl_dir[0].child)
5483 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5484}
e692ab53 5485#else
6382bc90
MM
5486static void register_sched_domain_sysctl(void)
5487{
5488}
5489static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5490{
5491}
5cc389bc 5492#endif /* CONFIG_SCHED_DEBUG && CONFIG_SYSCTL */
e692ab53 5493
1f11eb6a
GH
5494static void set_rq_online(struct rq *rq)
5495{
5496 if (!rq->online) {
5497 const struct sched_class *class;
5498
c6c4927b 5499 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5500 rq->online = 1;
5501
5502 for_each_class(class) {
5503 if (class->rq_online)
5504 class->rq_online(rq);
5505 }
5506 }
5507}
5508
5509static void set_rq_offline(struct rq *rq)
5510{
5511 if (rq->online) {
5512 const struct sched_class *class;
5513
5514 for_each_class(class) {
5515 if (class->rq_offline)
5516 class->rq_offline(rq);
5517 }
5518
c6c4927b 5519 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5520 rq->online = 0;
5521 }
5522}
5523
1da177e4
LT
5524/*
5525 * migration_call - callback that gets triggered when a CPU is added.
5526 * Here we can start up the necessary migration thread for the new CPU.
5527 */
0db0628d 5528static int
48f24c4d 5529migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5530{
48f24c4d 5531 int cpu = (long)hcpu;
1da177e4 5532 unsigned long flags;
969c7921 5533 struct rq *rq = cpu_rq(cpu);
1da177e4 5534
48c5ccae 5535 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 5536
1da177e4 5537 case CPU_UP_PREPARE:
a468d389 5538 rq->calc_load_update = calc_load_update;
1da177e4 5539 break;
48f24c4d 5540
1da177e4 5541 case CPU_ONLINE:
1f94ef59 5542 /* Update our root-domain */
05fa785c 5543 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5544 if (rq->rd) {
c6c4927b 5545 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5546
5547 set_rq_online(rq);
1f94ef59 5548 }
05fa785c 5549 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5550 break;
48f24c4d 5551
1da177e4 5552#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5553 case CPU_DYING:
317f3941 5554 sched_ttwu_pending();
57d885fe 5555 /* Update our root-domain */
05fa785c 5556 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5557 if (rq->rd) {
c6c4927b 5558 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5559 set_rq_offline(rq);
57d885fe 5560 }
5e16bbc2 5561 migrate_tasks(rq);
48c5ccae 5562 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5563 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 5564 break;
48c5ccae 5565
5d180232 5566 case CPU_DEAD:
f319da0c 5567 calc_load_migrate(rq);
57d885fe 5568 break;
1da177e4
LT
5569#endif
5570 }
49c022e6
PZ
5571
5572 update_max_interval();
5573
1da177e4
LT
5574 return NOTIFY_OK;
5575}
5576
f38b0820
PM
5577/*
5578 * Register at high priority so that task migration (migrate_all_tasks)
5579 * happens before everything else. This has to be lower priority than
cdd6c482 5580 * the notifier in the perf_event subsystem, though.
1da177e4 5581 */
0db0628d 5582static struct notifier_block migration_notifier = {
1da177e4 5583 .notifier_call = migration_call,
50a323b7 5584 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5585};
5586
6a82b60d 5587static void set_cpu_rq_start_time(void)
a803f026
CM
5588{
5589 int cpu = smp_processor_id();
5590 struct rq *rq = cpu_rq(cpu);
5591 rq->age_stamp = sched_clock_cpu(cpu);
5592}
5593
0db0628d 5594static int sched_cpu_active(struct notifier_block *nfb,
3a101d05
TH
5595 unsigned long action, void *hcpu)
5596{
07f06cb3
PZ
5597 int cpu = (long)hcpu;
5598
3a101d05 5599 switch (action & ~CPU_TASKS_FROZEN) {
a803f026
CM
5600 case CPU_STARTING:
5601 set_cpu_rq_start_time();
5602 return NOTIFY_OK;
07f06cb3 5603
dd9d3843
JS
5604 case CPU_ONLINE:
5605 /*
5606 * At this point a starting CPU has marked itself as online via
5607 * set_cpu_online(). But it might not yet have marked itself
5608 * as active, which is essential from here on.
dd9d3843 5609 */
07f06cb3
PZ
5610 set_cpu_active(cpu, true);
5611 stop_machine_unpark(cpu);
5612 return NOTIFY_OK;
5613
3a101d05 5614 case CPU_DOWN_FAILED:
07f06cb3 5615 set_cpu_active(cpu, true);
3a101d05 5616 return NOTIFY_OK;
07f06cb3 5617
3a101d05
TH
5618 default:
5619 return NOTIFY_DONE;
5620 }
5621}
5622
0db0628d 5623static int sched_cpu_inactive(struct notifier_block *nfb,
3a101d05
TH
5624 unsigned long action, void *hcpu)
5625{
5626 switch (action & ~CPU_TASKS_FROZEN) {
5627 case CPU_DOWN_PREPARE:
3c18d447 5628 set_cpu_active((long)hcpu, false);
3a101d05 5629 return NOTIFY_OK;
3c18d447
JL
5630 default:
5631 return NOTIFY_DONE;
3a101d05
TH
5632 }
5633}
5634
7babe8db 5635static int __init migration_init(void)
1da177e4
LT
5636{
5637 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5638 int err;
48f24c4d 5639
3a101d05 5640 /* Initialize migration for the boot CPU */
07dccf33
AM
5641 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5642 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5643 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5644 register_cpu_notifier(&migration_notifier);
7babe8db 5645
3a101d05
TH
5646 /* Register cpu active notifiers */
5647 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5648 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5649
a004cd42 5650 return 0;
1da177e4 5651}
7babe8db 5652early_initcall(migration_init);
476f3534 5653
4cb98839
PZ
5654static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5655
3e9830dc 5656#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5657
d039ac60 5658static __read_mostly int sched_debug_enabled;
f6630114 5659
d039ac60 5660static int __init sched_debug_setup(char *str)
f6630114 5661{
d039ac60 5662 sched_debug_enabled = 1;
f6630114
MT
5663
5664 return 0;
5665}
d039ac60
PZ
5666early_param("sched_debug", sched_debug_setup);
5667
5668static inline bool sched_debug(void)
5669{
5670 return sched_debug_enabled;
5671}
f6630114 5672
7c16ec58 5673static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5674 struct cpumask *groupmask)
1da177e4 5675{
4dcf6aff 5676 struct sched_group *group = sd->groups;
1da177e4 5677
96f874e2 5678 cpumask_clear(groupmask);
4dcf6aff
IM
5679
5680 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5681
5682 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5683 printk("does not load-balance\n");
4dcf6aff 5684 if (sd->parent)
3df0fc5b
PZ
5685 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5686 " has parent");
4dcf6aff 5687 return -1;
41c7ce9a
NP
5688 }
5689
333470ee
TH
5690 printk(KERN_CONT "span %*pbl level %s\n",
5691 cpumask_pr_args(sched_domain_span(sd)), sd->name);
4dcf6aff 5692
758b2cdc 5693 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5694 printk(KERN_ERR "ERROR: domain->span does not contain "
5695 "CPU%d\n", cpu);
4dcf6aff 5696 }
758b2cdc 5697 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5698 printk(KERN_ERR "ERROR: domain->groups does not contain"
5699 " CPU%d\n", cpu);
4dcf6aff 5700 }
1da177e4 5701
4dcf6aff 5702 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5703 do {
4dcf6aff 5704 if (!group) {
3df0fc5b
PZ
5705 printk("\n");
5706 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5707 break;
5708 }
5709
758b2cdc 5710 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5711 printk(KERN_CONT "\n");
5712 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5713 break;
5714 }
1da177e4 5715
cb83b629
PZ
5716 if (!(sd->flags & SD_OVERLAP) &&
5717 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5718 printk(KERN_CONT "\n");
5719 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5720 break;
5721 }
1da177e4 5722
758b2cdc 5723 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5724
333470ee
TH
5725 printk(KERN_CONT " %*pbl",
5726 cpumask_pr_args(sched_group_cpus(group)));
ca8ce3d0 5727 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
63b2ca30
NP
5728 printk(KERN_CONT " (cpu_capacity = %d)",
5729 group->sgc->capacity);
381512cf 5730 }
1da177e4 5731
4dcf6aff
IM
5732 group = group->next;
5733 } while (group != sd->groups);
3df0fc5b 5734 printk(KERN_CONT "\n");
1da177e4 5735
758b2cdc 5736 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5737 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5738
758b2cdc
RR
5739 if (sd->parent &&
5740 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5741 printk(KERN_ERR "ERROR: parent span is not a superset "
5742 "of domain->span\n");
4dcf6aff
IM
5743 return 0;
5744}
1da177e4 5745
4dcf6aff
IM
5746static void sched_domain_debug(struct sched_domain *sd, int cpu)
5747{
5748 int level = 0;
1da177e4 5749
d039ac60 5750 if (!sched_debug_enabled)
f6630114
MT
5751 return;
5752
4dcf6aff
IM
5753 if (!sd) {
5754 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5755 return;
5756 }
1da177e4 5757
4dcf6aff
IM
5758 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5759
5760 for (;;) {
4cb98839 5761 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5762 break;
1da177e4
LT
5763 level++;
5764 sd = sd->parent;
33859f7f 5765 if (!sd)
4dcf6aff
IM
5766 break;
5767 }
1da177e4 5768}
6d6bc0ad 5769#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5770# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5771static inline bool sched_debug(void)
5772{
5773 return false;
5774}
6d6bc0ad 5775#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5776
1a20ff27 5777static int sd_degenerate(struct sched_domain *sd)
245af2c7 5778{
758b2cdc 5779 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5780 return 1;
5781
5782 /* Following flags need at least 2 groups */
5783 if (sd->flags & (SD_LOAD_BALANCE |
5784 SD_BALANCE_NEWIDLE |
5785 SD_BALANCE_FORK |
89c4710e 5786 SD_BALANCE_EXEC |
5d4dfddd 5787 SD_SHARE_CPUCAPACITY |
d77b3ed5
VG
5788 SD_SHARE_PKG_RESOURCES |
5789 SD_SHARE_POWERDOMAIN)) {
245af2c7
SS
5790 if (sd->groups != sd->groups->next)
5791 return 0;
5792 }
5793
5794 /* Following flags don't use groups */
c88d5910 5795 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5796 return 0;
5797
5798 return 1;
5799}
5800
48f24c4d
IM
5801static int
5802sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5803{
5804 unsigned long cflags = sd->flags, pflags = parent->flags;
5805
5806 if (sd_degenerate(parent))
5807 return 1;
5808
758b2cdc 5809 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5810 return 0;
5811
245af2c7
SS
5812 /* Flags needing groups don't count if only 1 group in parent */
5813 if (parent->groups == parent->groups->next) {
5814 pflags &= ~(SD_LOAD_BALANCE |
5815 SD_BALANCE_NEWIDLE |
5816 SD_BALANCE_FORK |
89c4710e 5817 SD_BALANCE_EXEC |
5d4dfddd 5818 SD_SHARE_CPUCAPACITY |
10866e62 5819 SD_SHARE_PKG_RESOURCES |
d77b3ed5
VG
5820 SD_PREFER_SIBLING |
5821 SD_SHARE_POWERDOMAIN);
5436499e
KC
5822 if (nr_node_ids == 1)
5823 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5824 }
5825 if (~cflags & pflags)
5826 return 0;
5827
5828 return 1;
5829}
5830
dce840a0 5831static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5832{
dce840a0 5833 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5834
68e74568 5835 cpupri_cleanup(&rd->cpupri);
6bfd6d72 5836 cpudl_cleanup(&rd->cpudl);
1baca4ce 5837 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5838 free_cpumask_var(rd->rto_mask);
5839 free_cpumask_var(rd->online);
5840 free_cpumask_var(rd->span);
5841 kfree(rd);
5842}
5843
57d885fe
GH
5844static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5845{
a0490fa3 5846 struct root_domain *old_rd = NULL;
57d885fe 5847 unsigned long flags;
57d885fe 5848
05fa785c 5849 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5850
5851 if (rq->rd) {
a0490fa3 5852 old_rd = rq->rd;
57d885fe 5853
c6c4927b 5854 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5855 set_rq_offline(rq);
57d885fe 5856
c6c4927b 5857 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5858
a0490fa3 5859 /*
0515973f 5860 * If we dont want to free the old_rd yet then
a0490fa3
IM
5861 * set old_rd to NULL to skip the freeing later
5862 * in this function:
5863 */
5864 if (!atomic_dec_and_test(&old_rd->refcount))
5865 old_rd = NULL;
57d885fe
GH
5866 }
5867
5868 atomic_inc(&rd->refcount);
5869 rq->rd = rd;
5870
c6c4927b 5871 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5872 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5873 set_rq_online(rq);
57d885fe 5874
05fa785c 5875 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5876
5877 if (old_rd)
dce840a0 5878 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5879}
5880
68c38fc3 5881static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5882{
5883 memset(rd, 0, sizeof(*rd));
5884
8295c699 5885 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5886 goto out;
8295c699 5887 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5888 goto free_span;
8295c699 5889 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
c6c4927b 5890 goto free_online;
8295c699 5891 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
1baca4ce 5892 goto free_dlo_mask;
6e0534f2 5893
332ac17e 5894 init_dl_bw(&rd->dl_bw);
6bfd6d72
JL
5895 if (cpudl_init(&rd->cpudl) != 0)
5896 goto free_dlo_mask;
332ac17e 5897
68c38fc3 5898 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5899 goto free_rto_mask;
c6c4927b 5900 return 0;
6e0534f2 5901
68e74568
RR
5902free_rto_mask:
5903 free_cpumask_var(rd->rto_mask);
1baca4ce
JL
5904free_dlo_mask:
5905 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5906free_online:
5907 free_cpumask_var(rd->online);
5908free_span:
5909 free_cpumask_var(rd->span);
0c910d28 5910out:
c6c4927b 5911 return -ENOMEM;
57d885fe
GH
5912}
5913
029632fb
PZ
5914/*
5915 * By default the system creates a single root-domain with all cpus as
5916 * members (mimicking the global state we have today).
5917 */
5918struct root_domain def_root_domain;
5919
57d885fe
GH
5920static void init_defrootdomain(void)
5921{
68c38fc3 5922 init_rootdomain(&def_root_domain);
c6c4927b 5923
57d885fe
GH
5924 atomic_set(&def_root_domain.refcount, 1);
5925}
5926
dc938520 5927static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5928{
5929 struct root_domain *rd;
5930
5931 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5932 if (!rd)
5933 return NULL;
5934
68c38fc3 5935 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5936 kfree(rd);
5937 return NULL;
5938 }
57d885fe
GH
5939
5940 return rd;
5941}
5942
63b2ca30 5943static void free_sched_groups(struct sched_group *sg, int free_sgc)
e3589f6c
PZ
5944{
5945 struct sched_group *tmp, *first;
5946
5947 if (!sg)
5948 return;
5949
5950 first = sg;
5951 do {
5952 tmp = sg->next;
5953
63b2ca30
NP
5954 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5955 kfree(sg->sgc);
e3589f6c
PZ
5956
5957 kfree(sg);
5958 sg = tmp;
5959 } while (sg != first);
5960}
5961
dce840a0
PZ
5962static void free_sched_domain(struct rcu_head *rcu)
5963{
5964 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5965
5966 /*
5967 * If its an overlapping domain it has private groups, iterate and
5968 * nuke them all.
5969 */
5970 if (sd->flags & SD_OVERLAP) {
5971 free_sched_groups(sd->groups, 1);
5972 } else if (atomic_dec_and_test(&sd->groups->ref)) {
63b2ca30 5973 kfree(sd->groups->sgc);
dce840a0 5974 kfree(sd->groups);
9c3f75cb 5975 }
dce840a0
PZ
5976 kfree(sd);
5977}
5978
5979static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5980{
5981 call_rcu(&sd->rcu, free_sched_domain);
5982}
5983
5984static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5985{
5986 for (; sd; sd = sd->parent)
5987 destroy_sched_domain(sd, cpu);
5988}
5989
518cd623
PZ
5990/*
5991 * Keep a special pointer to the highest sched_domain that has
5992 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5993 * allows us to avoid some pointer chasing select_idle_sibling().
5994 *
5995 * Also keep a unique ID per domain (we use the first cpu number in
5996 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5997 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5998 */
5999DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 6000DEFINE_PER_CPU(int, sd_llc_size);
518cd623 6001DEFINE_PER_CPU(int, sd_llc_id);
fb13c7ee 6002DEFINE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
6003DEFINE_PER_CPU(struct sched_domain *, sd_busy);
6004DEFINE_PER_CPU(struct sched_domain *, sd_asym);
518cd623
PZ
6005
6006static void update_top_cache_domain(int cpu)
6007{
6008 struct sched_domain *sd;
5d4cf996 6009 struct sched_domain *busy_sd = NULL;
518cd623 6010 int id = cpu;
7d9ffa89 6011 int size = 1;
518cd623
PZ
6012
6013 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 6014 if (sd) {
518cd623 6015 id = cpumask_first(sched_domain_span(sd));
7d9ffa89 6016 size = cpumask_weight(sched_domain_span(sd));
5d4cf996 6017 busy_sd = sd->parent; /* sd_busy */
7d9ffa89 6018 }
5d4cf996 6019 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
518cd623
PZ
6020
6021 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 6022 per_cpu(sd_llc_size, cpu) = size;
518cd623 6023 per_cpu(sd_llc_id, cpu) = id;
fb13c7ee
MG
6024
6025 sd = lowest_flag_domain(cpu, SD_NUMA);
6026 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
37dc6b50
PM
6027
6028 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
6029 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
518cd623
PZ
6030}
6031
1da177e4 6032/*
0eab9146 6033 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6034 * hold the hotplug lock.
6035 */
0eab9146
IM
6036static void
6037cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6038{
70b97a7f 6039 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6040 struct sched_domain *tmp;
6041
6042 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6043 for (tmp = sd; tmp; ) {
245af2c7
SS
6044 struct sched_domain *parent = tmp->parent;
6045 if (!parent)
6046 break;
f29c9b1c 6047
1a848870 6048 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6049 tmp->parent = parent->parent;
1a848870
SS
6050 if (parent->parent)
6051 parent->parent->child = tmp;
10866e62
PZ
6052 /*
6053 * Transfer SD_PREFER_SIBLING down in case of a
6054 * degenerate parent; the spans match for this
6055 * so the property transfers.
6056 */
6057 if (parent->flags & SD_PREFER_SIBLING)
6058 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 6059 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
6060 } else
6061 tmp = tmp->parent;
245af2c7
SS
6062 }
6063
1a848870 6064 if (sd && sd_degenerate(sd)) {
dce840a0 6065 tmp = sd;
245af2c7 6066 sd = sd->parent;
dce840a0 6067 destroy_sched_domain(tmp, cpu);
1a848870
SS
6068 if (sd)
6069 sd->child = NULL;
6070 }
1da177e4 6071
4cb98839 6072 sched_domain_debug(sd, cpu);
1da177e4 6073
57d885fe 6074 rq_attach_root(rq, rd);
dce840a0 6075 tmp = rq->sd;
674311d5 6076 rcu_assign_pointer(rq->sd, sd);
dce840a0 6077 destroy_sched_domains(tmp, cpu);
518cd623
PZ
6078
6079 update_top_cache_domain(cpu);
1da177e4
LT
6080}
6081
1da177e4
LT
6082/* Setup the mask of cpus configured for isolated domains */
6083static int __init isolated_cpu_setup(char *str)
6084{
bdddd296 6085 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 6086 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
6087 return 1;
6088}
6089
8927f494 6090__setup("isolcpus=", isolated_cpu_setup);
1da177e4 6091
49a02c51 6092struct s_data {
21d42ccf 6093 struct sched_domain ** __percpu sd;
49a02c51
AH
6094 struct root_domain *rd;
6095};
6096
2109b99e 6097enum s_alloc {
2109b99e 6098 sa_rootdomain,
21d42ccf 6099 sa_sd,
dce840a0 6100 sa_sd_storage,
2109b99e
AH
6101 sa_none,
6102};
6103
c1174876
PZ
6104/*
6105 * Build an iteration mask that can exclude certain CPUs from the upwards
6106 * domain traversal.
6107 *
6108 * Asymmetric node setups can result in situations where the domain tree is of
6109 * unequal depth, make sure to skip domains that already cover the entire
6110 * range.
6111 *
6112 * In that case build_sched_domains() will have terminated the iteration early
6113 * and our sibling sd spans will be empty. Domains should always include the
6114 * cpu they're built on, so check that.
6115 *
6116 */
6117static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6118{
6119 const struct cpumask *span = sched_domain_span(sd);
6120 struct sd_data *sdd = sd->private;
6121 struct sched_domain *sibling;
6122 int i;
6123
6124 for_each_cpu(i, span) {
6125 sibling = *per_cpu_ptr(sdd->sd, i);
6126 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6127 continue;
6128
6129 cpumask_set_cpu(i, sched_group_mask(sg));
6130 }
6131}
6132
6133/*
6134 * Return the canonical balance cpu for this group, this is the first cpu
6135 * of this group that's also in the iteration mask.
6136 */
6137int group_balance_cpu(struct sched_group *sg)
6138{
6139 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6140}
6141
e3589f6c
PZ
6142static int
6143build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6144{
6145 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6146 const struct cpumask *span = sched_domain_span(sd);
6147 struct cpumask *covered = sched_domains_tmpmask;
6148 struct sd_data *sdd = sd->private;
aaecac4a 6149 struct sched_domain *sibling;
e3589f6c
PZ
6150 int i;
6151
6152 cpumask_clear(covered);
6153
6154 for_each_cpu(i, span) {
6155 struct cpumask *sg_span;
6156
6157 if (cpumask_test_cpu(i, covered))
6158 continue;
6159
aaecac4a 6160 sibling = *per_cpu_ptr(sdd->sd, i);
c1174876
PZ
6161
6162 /* See the comment near build_group_mask(). */
aaecac4a 6163 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
c1174876
PZ
6164 continue;
6165
e3589f6c 6166 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 6167 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
6168
6169 if (!sg)
6170 goto fail;
6171
6172 sg_span = sched_group_cpus(sg);
aaecac4a
ZZ
6173 if (sibling->child)
6174 cpumask_copy(sg_span, sched_domain_span(sibling->child));
6175 else
e3589f6c
PZ
6176 cpumask_set_cpu(i, sg_span);
6177
6178 cpumask_or(covered, covered, sg_span);
6179
63b2ca30
NP
6180 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6181 if (atomic_inc_return(&sg->sgc->ref) == 1)
c1174876
PZ
6182 build_group_mask(sd, sg);
6183
c3decf0d 6184 /*
63b2ca30 6185 * Initialize sgc->capacity such that even if we mess up the
c3decf0d
PZ
6186 * domains and no possible iteration will get us here, we won't
6187 * die on a /0 trap.
6188 */
ca8ce3d0 6189 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
e3589f6c 6190
c1174876
PZ
6191 /*
6192 * Make sure the first group of this domain contains the
6193 * canonical balance cpu. Otherwise the sched_domain iteration
6194 * breaks. See update_sg_lb_stats().
6195 */
74a5ce20 6196 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 6197 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
6198 groups = sg;
6199
6200 if (!first)
6201 first = sg;
6202 if (last)
6203 last->next = sg;
6204 last = sg;
6205 last->next = first;
6206 }
6207 sd->groups = groups;
6208
6209 return 0;
6210
6211fail:
6212 free_sched_groups(first, 0);
6213
6214 return -ENOMEM;
6215}
6216
dce840a0 6217static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 6218{
dce840a0
PZ
6219 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6220 struct sched_domain *child = sd->child;
1da177e4 6221
dce840a0
PZ
6222 if (child)
6223 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 6224
9c3f75cb 6225 if (sg) {
dce840a0 6226 *sg = *per_cpu_ptr(sdd->sg, cpu);
63b2ca30
NP
6227 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6228 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
9c3f75cb 6229 }
dce840a0
PZ
6230
6231 return cpu;
1e9f28fa 6232}
1e9f28fa 6233
01a08546 6234/*
dce840a0
PZ
6235 * build_sched_groups will build a circular linked list of the groups
6236 * covered by the given span, and will set each group's ->cpumask correctly,
ced549fa 6237 * and ->cpu_capacity to 0.
e3589f6c
PZ
6238 *
6239 * Assumes the sched_domain tree is fully constructed
01a08546 6240 */
e3589f6c
PZ
6241static int
6242build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 6243{
dce840a0
PZ
6244 struct sched_group *first = NULL, *last = NULL;
6245 struct sd_data *sdd = sd->private;
6246 const struct cpumask *span = sched_domain_span(sd);
f96225fd 6247 struct cpumask *covered;
dce840a0 6248 int i;
9c1cfda2 6249
e3589f6c
PZ
6250 get_group(cpu, sdd, &sd->groups);
6251 atomic_inc(&sd->groups->ref);
6252
0936629f 6253 if (cpu != cpumask_first(span))
e3589f6c
PZ
6254 return 0;
6255
f96225fd
PZ
6256 lockdep_assert_held(&sched_domains_mutex);
6257 covered = sched_domains_tmpmask;
6258
dce840a0 6259 cpumask_clear(covered);
6711cab4 6260
dce840a0
PZ
6261 for_each_cpu(i, span) {
6262 struct sched_group *sg;
cd08e923 6263 int group, j;
6711cab4 6264
dce840a0
PZ
6265 if (cpumask_test_cpu(i, covered))
6266 continue;
6711cab4 6267
cd08e923 6268 group = get_group(i, sdd, &sg);
c1174876 6269 cpumask_setall(sched_group_mask(sg));
0601a88d 6270
dce840a0
PZ
6271 for_each_cpu(j, span) {
6272 if (get_group(j, sdd, NULL) != group)
6273 continue;
0601a88d 6274
dce840a0
PZ
6275 cpumask_set_cpu(j, covered);
6276 cpumask_set_cpu(j, sched_group_cpus(sg));
6277 }
0601a88d 6278
dce840a0
PZ
6279 if (!first)
6280 first = sg;
6281 if (last)
6282 last->next = sg;
6283 last = sg;
6284 }
6285 last->next = first;
e3589f6c
PZ
6286
6287 return 0;
0601a88d 6288}
51888ca2 6289
89c4710e 6290/*
63b2ca30 6291 * Initialize sched groups cpu_capacity.
89c4710e 6292 *
63b2ca30 6293 * cpu_capacity indicates the capacity of sched group, which is used while
89c4710e 6294 * distributing the load between different sched groups in a sched domain.
63b2ca30
NP
6295 * Typically cpu_capacity for all the groups in a sched domain will be same
6296 * unless there are asymmetries in the topology. If there are asymmetries,
6297 * group having more cpu_capacity will pickup more load compared to the
6298 * group having less cpu_capacity.
89c4710e 6299 */
63b2ca30 6300static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
89c4710e 6301{
e3589f6c 6302 struct sched_group *sg = sd->groups;
89c4710e 6303
94c95ba6 6304 WARN_ON(!sg);
e3589f6c
PZ
6305
6306 do {
6307 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6308 sg = sg->next;
6309 } while (sg != sd->groups);
89c4710e 6310
c1174876 6311 if (cpu != group_balance_cpu(sg))
e3589f6c 6312 return;
aae6d3dd 6313
63b2ca30
NP
6314 update_group_capacity(sd, cpu);
6315 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
89c4710e
SS
6316}
6317
7c16ec58
MT
6318/*
6319 * Initializers for schedule domains
6320 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6321 */
6322
1d3504fc 6323static int default_relax_domain_level = -1;
60495e77 6324int sched_domain_level_max;
1d3504fc
HS
6325
6326static int __init setup_relax_domain_level(char *str)
6327{
a841f8ce
DS
6328 if (kstrtoint(str, 0, &default_relax_domain_level))
6329 pr_warn("Unable to set relax_domain_level\n");
30e0e178 6330
1d3504fc
HS
6331 return 1;
6332}
6333__setup("relax_domain_level=", setup_relax_domain_level);
6334
6335static void set_domain_attribute(struct sched_domain *sd,
6336 struct sched_domain_attr *attr)
6337{
6338 int request;
6339
6340 if (!attr || attr->relax_domain_level < 0) {
6341 if (default_relax_domain_level < 0)
6342 return;
6343 else
6344 request = default_relax_domain_level;
6345 } else
6346 request = attr->relax_domain_level;
6347 if (request < sd->level) {
6348 /* turn off idle balance on this domain */
c88d5910 6349 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6350 } else {
6351 /* turn on idle balance on this domain */
c88d5910 6352 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6353 }
6354}
6355
54ab4ff4
PZ
6356static void __sdt_free(const struct cpumask *cpu_map);
6357static int __sdt_alloc(const struct cpumask *cpu_map);
6358
2109b99e
AH
6359static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6360 const struct cpumask *cpu_map)
6361{
6362 switch (what) {
2109b99e 6363 case sa_rootdomain:
822ff793
PZ
6364 if (!atomic_read(&d->rd->refcount))
6365 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
6366 case sa_sd:
6367 free_percpu(d->sd); /* fall through */
dce840a0 6368 case sa_sd_storage:
54ab4ff4 6369 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
6370 case sa_none:
6371 break;
6372 }
6373}
3404c8d9 6374
2109b99e
AH
6375static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6376 const struct cpumask *cpu_map)
6377{
dce840a0
PZ
6378 memset(d, 0, sizeof(*d));
6379
54ab4ff4
PZ
6380 if (__sdt_alloc(cpu_map))
6381 return sa_sd_storage;
dce840a0
PZ
6382 d->sd = alloc_percpu(struct sched_domain *);
6383 if (!d->sd)
6384 return sa_sd_storage;
2109b99e 6385 d->rd = alloc_rootdomain();
dce840a0 6386 if (!d->rd)
21d42ccf 6387 return sa_sd;
2109b99e
AH
6388 return sa_rootdomain;
6389}
57d885fe 6390
dce840a0
PZ
6391/*
6392 * NULL the sd_data elements we've used to build the sched_domain and
6393 * sched_group structure so that the subsequent __free_domain_allocs()
6394 * will not free the data we're using.
6395 */
6396static void claim_allocations(int cpu, struct sched_domain *sd)
6397{
6398 struct sd_data *sdd = sd->private;
dce840a0
PZ
6399
6400 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6401 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6402
e3589f6c 6403 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 6404 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c 6405
63b2ca30
NP
6406 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6407 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
dce840a0
PZ
6408}
6409
cb83b629 6410#ifdef CONFIG_NUMA
cb83b629 6411static int sched_domains_numa_levels;
e3fe70b1 6412enum numa_topology_type sched_numa_topology_type;
cb83b629 6413static int *sched_domains_numa_distance;
9942f79b 6414int sched_max_numa_distance;
cb83b629
PZ
6415static struct cpumask ***sched_domains_numa_masks;
6416static int sched_domains_curr_level;
143e1e28 6417#endif
cb83b629 6418
143e1e28
VG
6419/*
6420 * SD_flags allowed in topology descriptions.
6421 *
5d4dfddd 6422 * SD_SHARE_CPUCAPACITY - describes SMT topologies
143e1e28
VG
6423 * SD_SHARE_PKG_RESOURCES - describes shared caches
6424 * SD_NUMA - describes NUMA topologies
d77b3ed5 6425 * SD_SHARE_POWERDOMAIN - describes shared power domain
143e1e28
VG
6426 *
6427 * Odd one out:
6428 * SD_ASYM_PACKING - describes SMT quirks
6429 */
6430#define TOPOLOGY_SD_FLAGS \
5d4dfddd 6431 (SD_SHARE_CPUCAPACITY | \
143e1e28
VG
6432 SD_SHARE_PKG_RESOURCES | \
6433 SD_NUMA | \
d77b3ed5
VG
6434 SD_ASYM_PACKING | \
6435 SD_SHARE_POWERDOMAIN)
cb83b629
PZ
6436
6437static struct sched_domain *
143e1e28 6438sd_init(struct sched_domain_topology_level *tl, int cpu)
cb83b629
PZ
6439{
6440 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
143e1e28
VG
6441 int sd_weight, sd_flags = 0;
6442
6443#ifdef CONFIG_NUMA
6444 /*
6445 * Ugly hack to pass state to sd_numa_mask()...
6446 */
6447 sched_domains_curr_level = tl->numa_level;
6448#endif
6449
6450 sd_weight = cpumask_weight(tl->mask(cpu));
6451
6452 if (tl->sd_flags)
6453 sd_flags = (*tl->sd_flags)();
6454 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6455 "wrong sd_flags in topology description\n"))
6456 sd_flags &= ~TOPOLOGY_SD_FLAGS;
cb83b629
PZ
6457
6458 *sd = (struct sched_domain){
6459 .min_interval = sd_weight,
6460 .max_interval = 2*sd_weight,
6461 .busy_factor = 32,
870a0bb5 6462 .imbalance_pct = 125,
143e1e28
VG
6463
6464 .cache_nice_tries = 0,
6465 .busy_idx = 0,
6466 .idle_idx = 0,
cb83b629
PZ
6467 .newidle_idx = 0,
6468 .wake_idx = 0,
6469 .forkexec_idx = 0,
6470
6471 .flags = 1*SD_LOAD_BALANCE
6472 | 1*SD_BALANCE_NEWIDLE
143e1e28
VG
6473 | 1*SD_BALANCE_EXEC
6474 | 1*SD_BALANCE_FORK
cb83b629 6475 | 0*SD_BALANCE_WAKE
143e1e28 6476 | 1*SD_WAKE_AFFINE
5d4dfddd 6477 | 0*SD_SHARE_CPUCAPACITY
cb83b629 6478 | 0*SD_SHARE_PKG_RESOURCES
143e1e28 6479 | 0*SD_SERIALIZE
cb83b629 6480 | 0*SD_PREFER_SIBLING
143e1e28
VG
6481 | 0*SD_NUMA
6482 | sd_flags
cb83b629 6483 ,
143e1e28 6484
cb83b629
PZ
6485 .last_balance = jiffies,
6486 .balance_interval = sd_weight,
143e1e28 6487 .smt_gain = 0,
2b4cfe64
JL
6488 .max_newidle_lb_cost = 0,
6489 .next_decay_max_lb_cost = jiffies,
143e1e28
VG
6490#ifdef CONFIG_SCHED_DEBUG
6491 .name = tl->name,
6492#endif
cb83b629 6493 };
cb83b629
PZ
6494
6495 /*
143e1e28 6496 * Convert topological properties into behaviour.
cb83b629 6497 */
143e1e28 6498
5d4dfddd 6499 if (sd->flags & SD_SHARE_CPUCAPACITY) {
caff37ef 6500 sd->flags |= SD_PREFER_SIBLING;
143e1e28
VG
6501 sd->imbalance_pct = 110;
6502 sd->smt_gain = 1178; /* ~15% */
143e1e28
VG
6503
6504 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6505 sd->imbalance_pct = 117;
6506 sd->cache_nice_tries = 1;
6507 sd->busy_idx = 2;
6508
6509#ifdef CONFIG_NUMA
6510 } else if (sd->flags & SD_NUMA) {
6511 sd->cache_nice_tries = 2;
6512 sd->busy_idx = 3;
6513 sd->idle_idx = 2;
6514
6515 sd->flags |= SD_SERIALIZE;
6516 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6517 sd->flags &= ~(SD_BALANCE_EXEC |
6518 SD_BALANCE_FORK |
6519 SD_WAKE_AFFINE);
6520 }
6521
6522#endif
6523 } else {
6524 sd->flags |= SD_PREFER_SIBLING;
6525 sd->cache_nice_tries = 1;
6526 sd->busy_idx = 2;
6527 sd->idle_idx = 1;
6528 }
6529
6530 sd->private = &tl->data;
cb83b629
PZ
6531
6532 return sd;
6533}
6534
143e1e28
VG
6535/*
6536 * Topology list, bottom-up.
6537 */
6538static struct sched_domain_topology_level default_topology[] = {
6539#ifdef CONFIG_SCHED_SMT
6540 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6541#endif
6542#ifdef CONFIG_SCHED_MC
6543 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
143e1e28
VG
6544#endif
6545 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6546 { NULL, },
6547};
6548
c6e1e7b5
JG
6549static struct sched_domain_topology_level *sched_domain_topology =
6550 default_topology;
143e1e28
VG
6551
6552#define for_each_sd_topology(tl) \
6553 for (tl = sched_domain_topology; tl->mask; tl++)
6554
6555void set_sched_topology(struct sched_domain_topology_level *tl)
6556{
6557 sched_domain_topology = tl;
6558}
6559
6560#ifdef CONFIG_NUMA
6561
cb83b629
PZ
6562static const struct cpumask *sd_numa_mask(int cpu)
6563{
6564 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6565}
6566
d039ac60
PZ
6567static void sched_numa_warn(const char *str)
6568{
6569 static int done = false;
6570 int i,j;
6571
6572 if (done)
6573 return;
6574
6575 done = true;
6576
6577 printk(KERN_WARNING "ERROR: %s\n\n", str);
6578
6579 for (i = 0; i < nr_node_ids; i++) {
6580 printk(KERN_WARNING " ");
6581 for (j = 0; j < nr_node_ids; j++)
6582 printk(KERN_CONT "%02d ", node_distance(i,j));
6583 printk(KERN_CONT "\n");
6584 }
6585 printk(KERN_WARNING "\n");
6586}
6587
9942f79b 6588bool find_numa_distance(int distance)
d039ac60
PZ
6589{
6590 int i;
6591
6592 if (distance == node_distance(0, 0))
6593 return true;
6594
6595 for (i = 0; i < sched_domains_numa_levels; i++) {
6596 if (sched_domains_numa_distance[i] == distance)
6597 return true;
6598 }
6599
6600 return false;
6601}
6602
e3fe70b1
RR
6603/*
6604 * A system can have three types of NUMA topology:
6605 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6606 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6607 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6608 *
6609 * The difference between a glueless mesh topology and a backplane
6610 * topology lies in whether communication between not directly
6611 * connected nodes goes through intermediary nodes (where programs
6612 * could run), or through backplane controllers. This affects
6613 * placement of programs.
6614 *
6615 * The type of topology can be discerned with the following tests:
6616 * - If the maximum distance between any nodes is 1 hop, the system
6617 * is directly connected.
6618 * - If for two nodes A and B, located N > 1 hops away from each other,
6619 * there is an intermediary node C, which is < N hops away from both
6620 * nodes A and B, the system is a glueless mesh.
6621 */
6622static void init_numa_topology_type(void)
6623{
6624 int a, b, c, n;
6625
6626 n = sched_max_numa_distance;
6627
e237882b 6628 if (sched_domains_numa_levels <= 1) {
e3fe70b1 6629 sched_numa_topology_type = NUMA_DIRECT;
e237882b
AG
6630 return;
6631 }
e3fe70b1
RR
6632
6633 for_each_online_node(a) {
6634 for_each_online_node(b) {
6635 /* Find two nodes furthest removed from each other. */
6636 if (node_distance(a, b) < n)
6637 continue;
6638
6639 /* Is there an intermediary node between a and b? */
6640 for_each_online_node(c) {
6641 if (node_distance(a, c) < n &&
6642 node_distance(b, c) < n) {
6643 sched_numa_topology_type =
6644 NUMA_GLUELESS_MESH;
6645 return;
6646 }
6647 }
6648
6649 sched_numa_topology_type = NUMA_BACKPLANE;
6650 return;
6651 }
6652 }
6653}
6654
cb83b629
PZ
6655static void sched_init_numa(void)
6656{
6657 int next_distance, curr_distance = node_distance(0, 0);
6658 struct sched_domain_topology_level *tl;
6659 int level = 0;
6660 int i, j, k;
6661
cb83b629
PZ
6662 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6663 if (!sched_domains_numa_distance)
6664 return;
6665
6666 /*
6667 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6668 * unique distances in the node_distance() table.
6669 *
6670 * Assumes node_distance(0,j) includes all distances in
6671 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6672 */
6673 next_distance = curr_distance;
6674 for (i = 0; i < nr_node_ids; i++) {
6675 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6676 for (k = 0; k < nr_node_ids; k++) {
6677 int distance = node_distance(i, k);
6678
6679 if (distance > curr_distance &&
6680 (distance < next_distance ||
6681 next_distance == curr_distance))
6682 next_distance = distance;
6683
6684 /*
6685 * While not a strong assumption it would be nice to know
6686 * about cases where if node A is connected to B, B is not
6687 * equally connected to A.
6688 */
6689 if (sched_debug() && node_distance(k, i) != distance)
6690 sched_numa_warn("Node-distance not symmetric");
6691
6692 if (sched_debug() && i && !find_numa_distance(distance))
6693 sched_numa_warn("Node-0 not representative");
6694 }
6695 if (next_distance != curr_distance) {
6696 sched_domains_numa_distance[level++] = next_distance;
6697 sched_domains_numa_levels = level;
6698 curr_distance = next_distance;
6699 } else break;
cb83b629 6700 }
d039ac60
PZ
6701
6702 /*
6703 * In case of sched_debug() we verify the above assumption.
6704 */
6705 if (!sched_debug())
6706 break;
cb83b629 6707 }
c123588b
AR
6708
6709 if (!level)
6710 return;
6711
cb83b629
PZ
6712 /*
6713 * 'level' contains the number of unique distances, excluding the
6714 * identity distance node_distance(i,i).
6715 *
28b4a521 6716 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
6717 * numbers.
6718 */
6719
5f7865f3
TC
6720 /*
6721 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6722 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6723 * the array will contain less then 'level' members. This could be
6724 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6725 * in other functions.
6726 *
6727 * We reset it to 'level' at the end of this function.
6728 */
6729 sched_domains_numa_levels = 0;
6730
cb83b629
PZ
6731 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6732 if (!sched_domains_numa_masks)
6733 return;
6734
6735 /*
6736 * Now for each level, construct a mask per node which contains all
6737 * cpus of nodes that are that many hops away from us.
6738 */
6739 for (i = 0; i < level; i++) {
6740 sched_domains_numa_masks[i] =
6741 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6742 if (!sched_domains_numa_masks[i])
6743 return;
6744
6745 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6746 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6747 if (!mask)
6748 return;
6749
6750 sched_domains_numa_masks[i][j] = mask;
6751
6752 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 6753 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6754 continue;
6755
6756 cpumask_or(mask, mask, cpumask_of_node(k));
6757 }
6758 }
6759 }
6760
143e1e28
VG
6761 /* Compute default topology size */
6762 for (i = 0; sched_domain_topology[i].mask; i++);
6763
c515db8c 6764 tl = kzalloc((i + level + 1) *
cb83b629
PZ
6765 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6766 if (!tl)
6767 return;
6768
6769 /*
6770 * Copy the default topology bits..
6771 */
143e1e28
VG
6772 for (i = 0; sched_domain_topology[i].mask; i++)
6773 tl[i] = sched_domain_topology[i];
cb83b629
PZ
6774
6775 /*
6776 * .. and append 'j' levels of NUMA goodness.
6777 */
6778 for (j = 0; j < level; i++, j++) {
6779 tl[i] = (struct sched_domain_topology_level){
cb83b629 6780 .mask = sd_numa_mask,
143e1e28 6781 .sd_flags = cpu_numa_flags,
cb83b629
PZ
6782 .flags = SDTL_OVERLAP,
6783 .numa_level = j,
143e1e28 6784 SD_INIT_NAME(NUMA)
cb83b629
PZ
6785 };
6786 }
6787
6788 sched_domain_topology = tl;
5f7865f3
TC
6789
6790 sched_domains_numa_levels = level;
9942f79b 6791 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
e3fe70b1
RR
6792
6793 init_numa_topology_type();
cb83b629 6794}
301a5cba
TC
6795
6796static void sched_domains_numa_masks_set(int cpu)
6797{
6798 int i, j;
6799 int node = cpu_to_node(cpu);
6800
6801 for (i = 0; i < sched_domains_numa_levels; i++) {
6802 for (j = 0; j < nr_node_ids; j++) {
6803 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6804 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6805 }
6806 }
6807}
6808
6809static void sched_domains_numa_masks_clear(int cpu)
6810{
6811 int i, j;
6812 for (i = 0; i < sched_domains_numa_levels; i++) {
6813 for (j = 0; j < nr_node_ids; j++)
6814 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6815 }
6816}
6817
6818/*
6819 * Update sched_domains_numa_masks[level][node] array when new cpus
6820 * are onlined.
6821 */
6822static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6823 unsigned long action,
6824 void *hcpu)
6825{
6826 int cpu = (long)hcpu;
6827
6828 switch (action & ~CPU_TASKS_FROZEN) {
6829 case CPU_ONLINE:
6830 sched_domains_numa_masks_set(cpu);
6831 break;
6832
6833 case CPU_DEAD:
6834 sched_domains_numa_masks_clear(cpu);
6835 break;
6836
6837 default:
6838 return NOTIFY_DONE;
6839 }
6840
6841 return NOTIFY_OK;
cb83b629
PZ
6842}
6843#else
6844static inline void sched_init_numa(void)
6845{
6846}
301a5cba
TC
6847
6848static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6849 unsigned long action,
6850 void *hcpu)
6851{
6852 return 0;
6853}
cb83b629
PZ
6854#endif /* CONFIG_NUMA */
6855
54ab4ff4
PZ
6856static int __sdt_alloc(const struct cpumask *cpu_map)
6857{
6858 struct sched_domain_topology_level *tl;
6859 int j;
6860
27723a68 6861 for_each_sd_topology(tl) {
54ab4ff4
PZ
6862 struct sd_data *sdd = &tl->data;
6863
6864 sdd->sd = alloc_percpu(struct sched_domain *);
6865 if (!sdd->sd)
6866 return -ENOMEM;
6867
6868 sdd->sg = alloc_percpu(struct sched_group *);
6869 if (!sdd->sg)
6870 return -ENOMEM;
6871
63b2ca30
NP
6872 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6873 if (!sdd->sgc)
9c3f75cb
PZ
6874 return -ENOMEM;
6875
54ab4ff4
PZ
6876 for_each_cpu(j, cpu_map) {
6877 struct sched_domain *sd;
6878 struct sched_group *sg;
63b2ca30 6879 struct sched_group_capacity *sgc;
54ab4ff4 6880
5cc389bc 6881 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
54ab4ff4
PZ
6882 GFP_KERNEL, cpu_to_node(j));
6883 if (!sd)
6884 return -ENOMEM;
6885
6886 *per_cpu_ptr(sdd->sd, j) = sd;
6887
6888 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6889 GFP_KERNEL, cpu_to_node(j));
6890 if (!sg)
6891 return -ENOMEM;
6892
30b4e9eb
IM
6893 sg->next = sg;
6894
54ab4ff4 6895 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6896
63b2ca30 6897 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
9c3f75cb 6898 GFP_KERNEL, cpu_to_node(j));
63b2ca30 6899 if (!sgc)
9c3f75cb
PZ
6900 return -ENOMEM;
6901
63b2ca30 6902 *per_cpu_ptr(sdd->sgc, j) = sgc;
54ab4ff4
PZ
6903 }
6904 }
6905
6906 return 0;
6907}
6908
6909static void __sdt_free(const struct cpumask *cpu_map)
6910{
6911 struct sched_domain_topology_level *tl;
6912 int j;
6913
27723a68 6914 for_each_sd_topology(tl) {
54ab4ff4
PZ
6915 struct sd_data *sdd = &tl->data;
6916
6917 for_each_cpu(j, cpu_map) {
fb2cf2c6 6918 struct sched_domain *sd;
6919
6920 if (sdd->sd) {
6921 sd = *per_cpu_ptr(sdd->sd, j);
6922 if (sd && (sd->flags & SD_OVERLAP))
6923 free_sched_groups(sd->groups, 0);
6924 kfree(*per_cpu_ptr(sdd->sd, j));
6925 }
6926
6927 if (sdd->sg)
6928 kfree(*per_cpu_ptr(sdd->sg, j));
63b2ca30
NP
6929 if (sdd->sgc)
6930 kfree(*per_cpu_ptr(sdd->sgc, j));
54ab4ff4
PZ
6931 }
6932 free_percpu(sdd->sd);
fb2cf2c6 6933 sdd->sd = NULL;
54ab4ff4 6934 free_percpu(sdd->sg);
fb2cf2c6 6935 sdd->sg = NULL;
63b2ca30
NP
6936 free_percpu(sdd->sgc);
6937 sdd->sgc = NULL;
54ab4ff4
PZ
6938 }
6939}
6940
2c402dc3 6941struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
6942 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6943 struct sched_domain *child, int cpu)
2c402dc3 6944{
143e1e28 6945 struct sched_domain *sd = sd_init(tl, cpu);
2c402dc3 6946 if (!sd)
d069b916 6947 return child;
2c402dc3 6948
2c402dc3 6949 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6950 if (child) {
6951 sd->level = child->level + 1;
6952 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6953 child->parent = sd;
c75e0128 6954 sd->child = child;
6ae72dff
PZ
6955
6956 if (!cpumask_subset(sched_domain_span(child),
6957 sched_domain_span(sd))) {
6958 pr_err("BUG: arch topology borken\n");
6959#ifdef CONFIG_SCHED_DEBUG
6960 pr_err(" the %s domain not a subset of the %s domain\n",
6961 child->name, sd->name);
6962#endif
6963 /* Fixup, ensure @sd has at least @child cpus. */
6964 cpumask_or(sched_domain_span(sd),
6965 sched_domain_span(sd),
6966 sched_domain_span(child));
6967 }
6968
60495e77 6969 }
a841f8ce 6970 set_domain_attribute(sd, attr);
2c402dc3
PZ
6971
6972 return sd;
6973}
6974
2109b99e
AH
6975/*
6976 * Build sched domains for a given set of cpus and attach the sched domains
6977 * to the individual cpus
6978 */
dce840a0
PZ
6979static int build_sched_domains(const struct cpumask *cpu_map,
6980 struct sched_domain_attr *attr)
2109b99e 6981{
1c632169 6982 enum s_alloc alloc_state;
dce840a0 6983 struct sched_domain *sd;
2109b99e 6984 struct s_data d;
822ff793 6985 int i, ret = -ENOMEM;
9c1cfda2 6986
2109b99e
AH
6987 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6988 if (alloc_state != sa_rootdomain)
6989 goto error;
9c1cfda2 6990
dce840a0 6991 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6992 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6993 struct sched_domain_topology_level *tl;
6994
3bd65a80 6995 sd = NULL;
27723a68 6996 for_each_sd_topology(tl) {
4a850cbe 6997 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
6998 if (tl == sched_domain_topology)
6999 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
7000 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
7001 sd->flags |= SD_OVERLAP;
d110235d
PZ
7002 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
7003 break;
e3589f6c 7004 }
dce840a0
PZ
7005 }
7006
7007 /* Build the groups for the domains */
7008 for_each_cpu(i, cpu_map) {
7009 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7010 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
7011 if (sd->flags & SD_OVERLAP) {
7012 if (build_overlap_sched_groups(sd, i))
7013 goto error;
7014 } else {
7015 if (build_sched_groups(sd, i))
7016 goto error;
7017 }
1cf51902 7018 }
a06dadbe 7019 }
9c1cfda2 7020
ced549fa 7021 /* Calculate CPU capacity for physical packages and nodes */
a9c9a9b6
PZ
7022 for (i = nr_cpumask_bits-1; i >= 0; i--) {
7023 if (!cpumask_test_cpu(i, cpu_map))
7024 continue;
9c1cfda2 7025
dce840a0
PZ
7026 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7027 claim_allocations(i, sd);
63b2ca30 7028 init_sched_groups_capacity(i, sd);
dce840a0 7029 }
f712c0c7 7030 }
9c1cfda2 7031
1da177e4 7032 /* Attach the domains */
dce840a0 7033 rcu_read_lock();
abcd083a 7034 for_each_cpu(i, cpu_map) {
21d42ccf 7035 sd = *per_cpu_ptr(d.sd, i);
49a02c51 7036 cpu_attach_domain(sd, d.rd, i);
1da177e4 7037 }
dce840a0 7038 rcu_read_unlock();
51888ca2 7039
822ff793 7040 ret = 0;
51888ca2 7041error:
2109b99e 7042 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 7043 return ret;
1da177e4 7044}
029190c5 7045
acc3f5d7 7046static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 7047static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7048static struct sched_domain_attr *dattr_cur;
7049 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7050
7051/*
7052 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7053 * cpumask) fails, then fallback to a single sched domain,
7054 * as determined by the single cpumask fallback_doms.
029190c5 7055 */
4212823f 7056static cpumask_var_t fallback_doms;
029190c5 7057
ee79d1bd
HC
7058/*
7059 * arch_update_cpu_topology lets virtualized architectures update the
7060 * cpu core maps. It is supposed to return 1 if the topology changed
7061 * or 0 if it stayed the same.
7062 */
52f5684c 7063int __weak arch_update_cpu_topology(void)
22e52b07 7064{
ee79d1bd 7065 return 0;
22e52b07
HC
7066}
7067
acc3f5d7
RR
7068cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7069{
7070 int i;
7071 cpumask_var_t *doms;
7072
7073 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7074 if (!doms)
7075 return NULL;
7076 for (i = 0; i < ndoms; i++) {
7077 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7078 free_sched_domains(doms, i);
7079 return NULL;
7080 }
7081 }
7082 return doms;
7083}
7084
7085void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7086{
7087 unsigned int i;
7088 for (i = 0; i < ndoms; i++)
7089 free_cpumask_var(doms[i]);
7090 kfree(doms);
7091}
7092
1a20ff27 7093/*
41a2d6cf 7094 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7095 * For now this just excludes isolated cpus, but could be used to
7096 * exclude other special cases in the future.
1a20ff27 7097 */
c4a8849a 7098static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7099{
7378547f
MM
7100 int err;
7101
22e52b07 7102 arch_update_cpu_topology();
029190c5 7103 ndoms_cur = 1;
acc3f5d7 7104 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7105 if (!doms_cur)
acc3f5d7
RR
7106 doms_cur = &fallback_doms;
7107 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 7108 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 7109 register_sched_domain_sysctl();
7378547f
MM
7110
7111 return err;
1a20ff27
DG
7112}
7113
1a20ff27
DG
7114/*
7115 * Detach sched domains from a group of cpus specified in cpu_map
7116 * These cpus will now be attached to the NULL domain
7117 */
96f874e2 7118static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
7119{
7120 int i;
7121
dce840a0 7122 rcu_read_lock();
abcd083a 7123 for_each_cpu(i, cpu_map)
57d885fe 7124 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 7125 rcu_read_unlock();
1a20ff27
DG
7126}
7127
1d3504fc
HS
7128/* handle null as "default" */
7129static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7130 struct sched_domain_attr *new, int idx_new)
7131{
7132 struct sched_domain_attr tmp;
7133
7134 /* fast path */
7135 if (!new && !cur)
7136 return 1;
7137
7138 tmp = SD_ATTR_INIT;
7139 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7140 new ? (new + idx_new) : &tmp,
7141 sizeof(struct sched_domain_attr));
7142}
7143
029190c5
PJ
7144/*
7145 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7146 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7147 * doms_new[] to the current sched domain partitioning, doms_cur[].
7148 * It destroys each deleted domain and builds each new domain.
7149 *
acc3f5d7 7150 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7151 * The masks don't intersect (don't overlap.) We should setup one
7152 * sched domain for each mask. CPUs not in any of the cpumasks will
7153 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7154 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7155 * it as it is.
7156 *
acc3f5d7
RR
7157 * The passed in 'doms_new' should be allocated using
7158 * alloc_sched_domains. This routine takes ownership of it and will
7159 * free_sched_domains it when done with it. If the caller failed the
7160 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7161 * and partition_sched_domains() will fallback to the single partition
7162 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7163 *
96f874e2 7164 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7165 * ndoms_new == 0 is a special case for destroying existing domains,
7166 * and it will not create the default domain.
dfb512ec 7167 *
029190c5
PJ
7168 * Call with hotplug lock held
7169 */
acc3f5d7 7170void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7171 struct sched_domain_attr *dattr_new)
029190c5 7172{
dfb512ec 7173 int i, j, n;
d65bd5ec 7174 int new_topology;
029190c5 7175
712555ee 7176 mutex_lock(&sched_domains_mutex);
a1835615 7177
7378547f
MM
7178 /* always unregister in case we don't destroy any domains */
7179 unregister_sched_domain_sysctl();
7180
d65bd5ec
HC
7181 /* Let architecture update cpu core mappings. */
7182 new_topology = arch_update_cpu_topology();
7183
dfb512ec 7184 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7185
7186 /* Destroy deleted domains */
7187 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7188 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7189 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7190 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7191 goto match1;
7192 }
7193 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7194 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7195match1:
7196 ;
7197 }
7198
c8d2d47a 7199 n = ndoms_cur;
e761b772 7200 if (doms_new == NULL) {
c8d2d47a 7201 n = 0;
acc3f5d7 7202 doms_new = &fallback_doms;
6ad4c188 7203 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7204 WARN_ON_ONCE(dattr_new);
e761b772
MK
7205 }
7206
029190c5
PJ
7207 /* Build new domains */
7208 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 7209 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7210 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7211 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7212 goto match2;
7213 }
7214 /* no match - add a new doms_new */
dce840a0 7215 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7216match2:
7217 ;
7218 }
7219
7220 /* Remember the new sched domains */
acc3f5d7
RR
7221 if (doms_cur != &fallback_doms)
7222 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7223 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7224 doms_cur = doms_new;
1d3504fc 7225 dattr_cur = dattr_new;
029190c5 7226 ndoms_cur = ndoms_new;
7378547f
MM
7227
7228 register_sched_domain_sysctl();
a1835615 7229
712555ee 7230 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7231}
7232
d35be8ba
SB
7233static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
7234
1da177e4 7235/*
3a101d05
TH
7236 * Update cpusets according to cpu_active mask. If cpusets are
7237 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7238 * around partition_sched_domains().
d35be8ba
SB
7239 *
7240 * If we come here as part of a suspend/resume, don't touch cpusets because we
7241 * want to restore it back to its original state upon resume anyway.
1da177e4 7242 */
0b2e918a
TH
7243static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7244 void *hcpu)
e761b772 7245{
d35be8ba
SB
7246 switch (action) {
7247 case CPU_ONLINE_FROZEN:
7248 case CPU_DOWN_FAILED_FROZEN:
7249
7250 /*
7251 * num_cpus_frozen tracks how many CPUs are involved in suspend
7252 * resume sequence. As long as this is not the last online
7253 * operation in the resume sequence, just build a single sched
7254 * domain, ignoring cpusets.
7255 */
7256 num_cpus_frozen--;
7257 if (likely(num_cpus_frozen)) {
7258 partition_sched_domains(1, NULL, NULL);
7259 break;
7260 }
7261
7262 /*
7263 * This is the last CPU online operation. So fall through and
7264 * restore the original sched domains by considering the
7265 * cpuset configurations.
7266 */
7267
e761b772 7268 case CPU_ONLINE:
7ddf96b0 7269 cpuset_update_active_cpus(true);
d35be8ba 7270 break;
3a101d05
TH
7271 default:
7272 return NOTIFY_DONE;
7273 }
d35be8ba 7274 return NOTIFY_OK;
3a101d05 7275}
e761b772 7276
0b2e918a
TH
7277static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7278 void *hcpu)
3a101d05 7279{
3c18d447
JL
7280 unsigned long flags;
7281 long cpu = (long)hcpu;
7282 struct dl_bw *dl_b;
533445c6
OS
7283 bool overflow;
7284 int cpus;
3c18d447 7285
533445c6 7286 switch (action) {
3a101d05 7287 case CPU_DOWN_PREPARE:
533445c6
OS
7288 rcu_read_lock_sched();
7289 dl_b = dl_bw_of(cpu);
3c18d447 7290
533445c6
OS
7291 raw_spin_lock_irqsave(&dl_b->lock, flags);
7292 cpus = dl_bw_cpus(cpu);
7293 overflow = __dl_overflow(dl_b, cpus, 0, 0);
7294 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3c18d447 7295
533445c6 7296 rcu_read_unlock_sched();
3c18d447 7297
533445c6
OS
7298 if (overflow)
7299 return notifier_from_errno(-EBUSY);
7ddf96b0 7300 cpuset_update_active_cpus(false);
d35be8ba
SB
7301 break;
7302 case CPU_DOWN_PREPARE_FROZEN:
7303 num_cpus_frozen++;
7304 partition_sched_domains(1, NULL, NULL);
7305 break;
e761b772
MK
7306 default:
7307 return NOTIFY_DONE;
7308 }
d35be8ba 7309 return NOTIFY_OK;
e761b772 7310}
e761b772 7311
1da177e4
LT
7312void __init sched_init_smp(void)
7313{
dcc30a35
RR
7314 cpumask_var_t non_isolated_cpus;
7315
7316 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7317 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7318
cb83b629
PZ
7319 sched_init_numa();
7320
6acce3ef
PZ
7321 /*
7322 * There's no userspace yet to cause hotplug operations; hence all the
7323 * cpu masks are stable and all blatant races in the below code cannot
7324 * happen.
7325 */
712555ee 7326 mutex_lock(&sched_domains_mutex);
c4a8849a 7327 init_sched_domains(cpu_active_mask);
dcc30a35
RR
7328 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7329 if (cpumask_empty(non_isolated_cpus))
7330 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7331 mutex_unlock(&sched_domains_mutex);
e761b772 7332
301a5cba 7333 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
7334 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7335 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772 7336
b328ca18 7337 init_hrtick();
5c1e1767
NP
7338
7339 /* Move init over to a non-isolated CPU */
dcc30a35 7340 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7341 BUG();
19978ca6 7342 sched_init_granularity();
dcc30a35 7343 free_cpumask_var(non_isolated_cpus);
4212823f 7344
0e3900e6 7345 init_sched_rt_class();
1baca4ce 7346 init_sched_dl_class();
1da177e4
LT
7347}
7348#else
7349void __init sched_init_smp(void)
7350{
19978ca6 7351 sched_init_granularity();
1da177e4
LT
7352}
7353#endif /* CONFIG_SMP */
7354
7355int in_sched_functions(unsigned long addr)
7356{
1da177e4
LT
7357 return in_lock_functions(addr) ||
7358 (addr >= (unsigned long)__sched_text_start
7359 && addr < (unsigned long)__sched_text_end);
7360}
7361
029632fb 7362#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
7363/*
7364 * Default task group.
7365 * Every task in system belongs to this group at bootup.
7366 */
029632fb 7367struct task_group root_task_group;
35cf4e50 7368LIST_HEAD(task_groups);
052f1dc7 7369#endif
6f505b16 7370
e6252c3e 7371DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 7372
1da177e4
LT
7373void __init sched_init(void)
7374{
dd41f596 7375 int i, j;
434d53b0
MT
7376 unsigned long alloc_size = 0, ptr;
7377
7378#ifdef CONFIG_FAIR_GROUP_SCHED
7379 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7380#endif
7381#ifdef CONFIG_RT_GROUP_SCHED
7382 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7383#endif
434d53b0 7384 if (alloc_size) {
36b7b6d4 7385 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7386
7387#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 7388 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
7389 ptr += nr_cpu_ids * sizeof(void **);
7390
07e06b01 7391 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 7392 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7393
6d6bc0ad 7394#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 7395#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7396 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
7397 ptr += nr_cpu_ids * sizeof(void **);
7398
07e06b01 7399 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7400 ptr += nr_cpu_ids * sizeof(void **);
7401
6d6bc0ad 7402#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 7403 }
df7c8e84 7404#ifdef CONFIG_CPUMASK_OFFSTACK
b74e6278
AT
7405 for_each_possible_cpu(i) {
7406 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7407 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
434d53b0 7408 }
b74e6278 7409#endif /* CONFIG_CPUMASK_OFFSTACK */
dd41f596 7410
332ac17e
DF
7411 init_rt_bandwidth(&def_rt_bandwidth,
7412 global_rt_period(), global_rt_runtime());
7413 init_dl_bandwidth(&def_dl_bandwidth,
1724813d 7414 global_rt_period(), global_rt_runtime());
332ac17e 7415
57d885fe
GH
7416#ifdef CONFIG_SMP
7417 init_defrootdomain();
7418#endif
7419
d0b27fa7 7420#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7421 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 7422 global_rt_period(), global_rt_runtime());
6d6bc0ad 7423#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7424
7c941438 7425#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
7426 list_add(&root_task_group.list, &task_groups);
7427 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 7428 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 7429 autogroup_init(&init_task);
54c707e9 7430
7c941438 7431#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7432
0a945022 7433 for_each_possible_cpu(i) {
70b97a7f 7434 struct rq *rq;
1da177e4
LT
7435
7436 rq = cpu_rq(i);
05fa785c 7437 raw_spin_lock_init(&rq->lock);
7897986b 7438 rq->nr_running = 0;
dce48a84
TG
7439 rq->calc_load_active = 0;
7440 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 7441 init_cfs_rq(&rq->cfs);
07c54f7a
AV
7442 init_rt_rq(&rq->rt);
7443 init_dl_rq(&rq->dl);
dd41f596 7444#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 7445 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 7446 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 7447 /*
07e06b01 7448 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
7449 *
7450 * In case of task-groups formed thr' the cgroup filesystem, it
7451 * gets 100% of the cpu resources in the system. This overall
7452 * system cpu resource is divided among the tasks of
07e06b01 7453 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
7454 * based on each entity's (task or task-group's) weight
7455 * (se->load.weight).
7456 *
07e06b01 7457 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
7458 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7459 * then A0's share of the cpu resource is:
7460 *
0d905bca 7461 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 7462 *
07e06b01
YZ
7463 * We achieve this by letting root_task_group's tasks sit
7464 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 7465 */
ab84d31e 7466 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 7467 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
7468#endif /* CONFIG_FAIR_GROUP_SCHED */
7469
7470 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7471#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7472 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 7473#endif
1da177e4 7474
dd41f596
IM
7475 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7476 rq->cpu_load[j] = 0;
fdf3e95d
VP
7477
7478 rq->last_load_update_tick = jiffies;
7479
1da177e4 7480#ifdef CONFIG_SMP
41c7ce9a 7481 rq->sd = NULL;
57d885fe 7482 rq->rd = NULL;
ca6d75e6 7483 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
e3fca9e7 7484 rq->balance_callback = NULL;
1da177e4 7485 rq->active_balance = 0;
dd41f596 7486 rq->next_balance = jiffies;
1da177e4 7487 rq->push_cpu = 0;
0a2966b4 7488 rq->cpu = i;
1f11eb6a 7489 rq->online = 0;
eae0c9df
MG
7490 rq->idle_stamp = 0;
7491 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 7492 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
7493
7494 INIT_LIST_HEAD(&rq->cfs_tasks);
7495
dc938520 7496 rq_attach_root(rq, &def_root_domain);
3451d024 7497#ifdef CONFIG_NO_HZ_COMMON
1c792db7 7498 rq->nohz_flags = 0;
83cd4fe2 7499#endif
265f22a9
FW
7500#ifdef CONFIG_NO_HZ_FULL
7501 rq->last_sched_tick = 0;
7502#endif
1da177e4 7503#endif
8f4d37ec 7504 init_rq_hrtick(rq);
1da177e4 7505 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7506 }
7507
2dd73a4f 7508 set_load_weight(&init_task);
b50f60ce 7509
e107be36
AK
7510#ifdef CONFIG_PREEMPT_NOTIFIERS
7511 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7512#endif
7513
1da177e4
LT
7514 /*
7515 * The boot idle thread does lazy MMU switching as well:
7516 */
7517 atomic_inc(&init_mm.mm_count);
7518 enter_lazy_tlb(&init_mm, current);
7519
1b537c7d
YD
7520 /*
7521 * During early bootup we pretend to be a normal task:
7522 */
7523 current->sched_class = &fair_sched_class;
7524
1da177e4
LT
7525 /*
7526 * Make us the idle thread. Technically, schedule() should not be
7527 * called from this thread, however somewhere below it might be,
7528 * but because we are the idle thread, we just pick up running again
7529 * when this runqueue becomes "idle".
7530 */
7531 init_idle(current, smp_processor_id());
dce48a84
TG
7532
7533 calc_load_update = jiffies + LOAD_FREQ;
7534
bf4d83f6 7535#ifdef CONFIG_SMP
4cb98839 7536 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
7537 /* May be allocated at isolcpus cmdline parse time */
7538 if (cpu_isolated_map == NULL)
7539 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 7540 idle_thread_set_boot_cpu();
a803f026 7541 set_cpu_rq_start_time();
029632fb
PZ
7542#endif
7543 init_sched_fair_class();
6a7b3dc3 7544
6892b75e 7545 scheduler_running = 1;
1da177e4
LT
7546}
7547
d902db1e 7548#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
7549static inline int preempt_count_equals(int preempt_offset)
7550{
da7142e2 7551 int nested = preempt_count() + rcu_preempt_depth();
e4aafea2 7552
4ba8216c 7553 return (nested == preempt_offset);
e4aafea2
FW
7554}
7555
d894837f 7556void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7557{
8eb23b9f
PZ
7558 /*
7559 * Blocking primitives will set (and therefore destroy) current->state,
7560 * since we will exit with TASK_RUNNING make sure we enter with it,
7561 * otherwise we will destroy state.
7562 */
00845eb9 7563 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
8eb23b9f
PZ
7564 "do not call blocking ops when !TASK_RUNNING; "
7565 "state=%lx set at [<%p>] %pS\n",
7566 current->state,
7567 (void *)current->task_state_change,
00845eb9 7568 (void *)current->task_state_change);
8eb23b9f 7569
3427445a
PZ
7570 ___might_sleep(file, line, preempt_offset);
7571}
7572EXPORT_SYMBOL(__might_sleep);
7573
7574void ___might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7575{
1da177e4
LT
7576 static unsigned long prev_jiffy; /* ratelimiting */
7577
b3fbab05 7578 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
db273be2
TG
7579 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7580 !is_idle_task(current)) ||
e4aafea2 7581 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7582 return;
7583 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7584 return;
7585 prev_jiffy = jiffies;
7586
3df0fc5b
PZ
7587 printk(KERN_ERR
7588 "BUG: sleeping function called from invalid context at %s:%d\n",
7589 file, line);
7590 printk(KERN_ERR
7591 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7592 in_atomic(), irqs_disabled(),
7593 current->pid, current->comm);
aef745fc 7594
a8b686b3
ES
7595 if (task_stack_end_corrupted(current))
7596 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7597
aef745fc
IM
7598 debug_show_held_locks(current);
7599 if (irqs_disabled())
7600 print_irqtrace_events(current);
8f47b187
TG
7601#ifdef CONFIG_DEBUG_PREEMPT
7602 if (!preempt_count_equals(preempt_offset)) {
7603 pr_err("Preemption disabled at:");
7604 print_ip_sym(current->preempt_disable_ip);
7605 pr_cont("\n");
7606 }
7607#endif
aef745fc 7608 dump_stack();
1da177e4 7609}
3427445a 7610EXPORT_SYMBOL(___might_sleep);
1da177e4
LT
7611#endif
7612
7613#ifdef CONFIG_MAGIC_SYSRQ
dbc7f069 7614void normalize_rt_tasks(void)
3a5e4dc1 7615{
dbc7f069 7616 struct task_struct *g, *p;
d50dde5a
DF
7617 struct sched_attr attr = {
7618 .sched_policy = SCHED_NORMAL,
7619 };
1da177e4 7620
3472eaa1 7621 read_lock(&tasklist_lock);
5d07f420 7622 for_each_process_thread(g, p) {
178be793
IM
7623 /*
7624 * Only normalize user tasks:
7625 */
3472eaa1 7626 if (p->flags & PF_KTHREAD)
178be793
IM
7627 continue;
7628
6cfb0d5d 7629 p->se.exec_start = 0;
6cfb0d5d 7630#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7631 p->se.statistics.wait_start = 0;
7632 p->se.statistics.sleep_start = 0;
7633 p->se.statistics.block_start = 0;
6cfb0d5d 7634#endif
dd41f596 7635
aab03e05 7636 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
7637 /*
7638 * Renice negative nice level userspace
7639 * tasks back to 0:
7640 */
3472eaa1 7641 if (task_nice(p) < 0)
dd41f596 7642 set_user_nice(p, 0);
1da177e4 7643 continue;
dd41f596 7644 }
1da177e4 7645
dbc7f069 7646 __sched_setscheduler(p, &attr, false, false);
5d07f420 7647 }
3472eaa1 7648 read_unlock(&tasklist_lock);
1da177e4
LT
7649}
7650
7651#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7652
67fc4e0c 7653#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7654/*
67fc4e0c 7655 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7656 *
7657 * They can only be called when the whole system has been
7658 * stopped - every CPU needs to be quiescent, and no scheduling
7659 * activity can take place. Using them for anything else would
7660 * be a serious bug, and as a result, they aren't even visible
7661 * under any other configuration.
7662 */
7663
7664/**
7665 * curr_task - return the current task for a given cpu.
7666 * @cpu: the processor in question.
7667 *
7668 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
7669 *
7670 * Return: The current task for @cpu.
1df5c10a 7671 */
36c8b586 7672struct task_struct *curr_task(int cpu)
1df5c10a
LT
7673{
7674 return cpu_curr(cpu);
7675}
7676
67fc4e0c
JW
7677#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7678
7679#ifdef CONFIG_IA64
1df5c10a
LT
7680/**
7681 * set_curr_task - set the current task for a given cpu.
7682 * @cpu: the processor in question.
7683 * @p: the task pointer to set.
7684 *
7685 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7686 * are serviced on a separate stack. It allows the architecture to switch the
7687 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7688 * must be called with all CPU's synchronized, and interrupts disabled, the
7689 * and caller must save the original value of the current task (see
7690 * curr_task() above) and restore that value before reenabling interrupts and
7691 * re-starting the system.
7692 *
7693 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7694 */
36c8b586 7695void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7696{
7697 cpu_curr(cpu) = p;
7698}
7699
7700#endif
29f59db3 7701
7c941438 7702#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7703/* task_group_lock serializes the addition/removal of task groups */
7704static DEFINE_SPINLOCK(task_group_lock);
7705
bccbe08a
PZ
7706static void free_sched_group(struct task_group *tg)
7707{
7708 free_fair_sched_group(tg);
7709 free_rt_sched_group(tg);
e9aa1dd1 7710 autogroup_free(tg);
bccbe08a
PZ
7711 kfree(tg);
7712}
7713
7714/* allocate runqueue etc for a new task group */
ec7dc8ac 7715struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7716{
7717 struct task_group *tg;
bccbe08a
PZ
7718
7719 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7720 if (!tg)
7721 return ERR_PTR(-ENOMEM);
7722
ec7dc8ac 7723 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7724 goto err;
7725
ec7dc8ac 7726 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7727 goto err;
7728
ace783b9
LZ
7729 return tg;
7730
7731err:
7732 free_sched_group(tg);
7733 return ERR_PTR(-ENOMEM);
7734}
7735
7736void sched_online_group(struct task_group *tg, struct task_group *parent)
7737{
7738 unsigned long flags;
7739
8ed36996 7740 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7741 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7742
7743 WARN_ON(!parent); /* root should already exist */
7744
7745 tg->parent = parent;
f473aa5e 7746 INIT_LIST_HEAD(&tg->children);
09f2724a 7747 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7748 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7749}
7750
9b5b7751 7751/* rcu callback to free various structures associated with a task group */
6f505b16 7752static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7753{
29f59db3 7754 /* now it should be safe to free those cfs_rqs */
6f505b16 7755 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7756}
7757
9b5b7751 7758/* Destroy runqueue etc associated with a task group */
4cf86d77 7759void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
7760{
7761 /* wait for possible concurrent references to cfs_rqs complete */
7762 call_rcu(&tg->rcu, free_sched_group_rcu);
7763}
7764
7765void sched_offline_group(struct task_group *tg)
29f59db3 7766{
8ed36996 7767 unsigned long flags;
9b5b7751 7768 int i;
29f59db3 7769
3d4b47b4
PZ
7770 /* end participation in shares distribution */
7771 for_each_possible_cpu(i)
bccbe08a 7772 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
7773
7774 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7775 list_del_rcu(&tg->list);
f473aa5e 7776 list_del_rcu(&tg->siblings);
8ed36996 7777 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7778}
7779
9b5b7751 7780/* change task's runqueue when it moves between groups.
3a252015
IM
7781 * The caller of this function should have put the task in its new group
7782 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7783 * reflect its new group.
9b5b7751
SV
7784 */
7785void sched_move_task(struct task_struct *tsk)
29f59db3 7786{
8323f26c 7787 struct task_group *tg;
da0c1e65 7788 int queued, running;
29f59db3
SV
7789 unsigned long flags;
7790 struct rq *rq;
7791
7792 rq = task_rq_lock(tsk, &flags);
7793
051a1d1a 7794 running = task_current(rq, tsk);
da0c1e65 7795 queued = task_on_rq_queued(tsk);
29f59db3 7796
da0c1e65 7797 if (queued)
1de64443 7798 dequeue_task(rq, tsk, DEQUEUE_SAVE);
0e1f3483 7799 if (unlikely(running))
f3cd1c4e 7800 put_prev_task(rq, tsk);
29f59db3 7801
f7b8a47d
KT
7802 /*
7803 * All callers are synchronized by task_rq_lock(); we do not use RCU
7804 * which is pointless here. Thus, we pass "true" to task_css_check()
7805 * to prevent lockdep warnings.
7806 */
7807 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
7808 struct task_group, css);
7809 tg = autogroup_task_group(tsk, tg);
7810 tsk->sched_task_group = tg;
7811
810b3817 7812#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7813 if (tsk->sched_class->task_move_group)
bc54da21 7814 tsk->sched_class->task_move_group(tsk);
b2b5ce02 7815 else
810b3817 7816#endif
b2b5ce02 7817 set_task_rq(tsk, task_cpu(tsk));
810b3817 7818
0e1f3483
HS
7819 if (unlikely(running))
7820 tsk->sched_class->set_curr_task(rq);
da0c1e65 7821 if (queued)
1de64443 7822 enqueue_task(rq, tsk, ENQUEUE_RESTORE);
29f59db3 7823
0122ec5b 7824 task_rq_unlock(rq, tsk, &flags);
29f59db3 7825}
7c941438 7826#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7827
a790de99
PT
7828#ifdef CONFIG_RT_GROUP_SCHED
7829/*
7830 * Ensure that the real time constraints are schedulable.
7831 */
7832static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7833
9a7e0b18
PZ
7834/* Must be called with tasklist_lock held */
7835static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7836{
9a7e0b18 7837 struct task_struct *g, *p;
b40b2e8e 7838
1fe89e1b
PZ
7839 /*
7840 * Autogroups do not have RT tasks; see autogroup_create().
7841 */
7842 if (task_group_is_autogroup(tg))
7843 return 0;
7844
5d07f420 7845 for_each_process_thread(g, p) {
8651c658 7846 if (rt_task(p) && task_group(p) == tg)
9a7e0b18 7847 return 1;
5d07f420 7848 }
b40b2e8e 7849
9a7e0b18
PZ
7850 return 0;
7851}
b40b2e8e 7852
9a7e0b18
PZ
7853struct rt_schedulable_data {
7854 struct task_group *tg;
7855 u64 rt_period;
7856 u64 rt_runtime;
7857};
b40b2e8e 7858
a790de99 7859static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7860{
7861 struct rt_schedulable_data *d = data;
7862 struct task_group *child;
7863 unsigned long total, sum = 0;
7864 u64 period, runtime;
b40b2e8e 7865
9a7e0b18
PZ
7866 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7867 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7868
9a7e0b18
PZ
7869 if (tg == d->tg) {
7870 period = d->rt_period;
7871 runtime = d->rt_runtime;
b40b2e8e 7872 }
b40b2e8e 7873
4653f803
PZ
7874 /*
7875 * Cannot have more runtime than the period.
7876 */
7877 if (runtime > period && runtime != RUNTIME_INF)
7878 return -EINVAL;
6f505b16 7879
4653f803
PZ
7880 /*
7881 * Ensure we don't starve existing RT tasks.
7882 */
9a7e0b18
PZ
7883 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7884 return -EBUSY;
6f505b16 7885
9a7e0b18 7886 total = to_ratio(period, runtime);
6f505b16 7887
4653f803
PZ
7888 /*
7889 * Nobody can have more than the global setting allows.
7890 */
7891 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7892 return -EINVAL;
6f505b16 7893
4653f803
PZ
7894 /*
7895 * The sum of our children's runtime should not exceed our own.
7896 */
9a7e0b18
PZ
7897 list_for_each_entry_rcu(child, &tg->children, siblings) {
7898 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7899 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7900
9a7e0b18
PZ
7901 if (child == d->tg) {
7902 period = d->rt_period;
7903 runtime = d->rt_runtime;
7904 }
6f505b16 7905
9a7e0b18 7906 sum += to_ratio(period, runtime);
9f0c1e56 7907 }
6f505b16 7908
9a7e0b18
PZ
7909 if (sum > total)
7910 return -EINVAL;
7911
7912 return 0;
6f505b16
PZ
7913}
7914
9a7e0b18 7915static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7916{
8277434e
PT
7917 int ret;
7918
9a7e0b18
PZ
7919 struct rt_schedulable_data data = {
7920 .tg = tg,
7921 .rt_period = period,
7922 .rt_runtime = runtime,
7923 };
7924
8277434e
PT
7925 rcu_read_lock();
7926 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7927 rcu_read_unlock();
7928
7929 return ret;
521f1a24
DG
7930}
7931
ab84d31e 7932static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7933 u64 rt_period, u64 rt_runtime)
6f505b16 7934{
ac086bc2 7935 int i, err = 0;
9f0c1e56 7936
2636ed5f
PZ
7937 /*
7938 * Disallowing the root group RT runtime is BAD, it would disallow the
7939 * kernel creating (and or operating) RT threads.
7940 */
7941 if (tg == &root_task_group && rt_runtime == 0)
7942 return -EINVAL;
7943
7944 /* No period doesn't make any sense. */
7945 if (rt_period == 0)
7946 return -EINVAL;
7947
9f0c1e56 7948 mutex_lock(&rt_constraints_mutex);
521f1a24 7949 read_lock(&tasklist_lock);
9a7e0b18
PZ
7950 err = __rt_schedulable(tg, rt_period, rt_runtime);
7951 if (err)
9f0c1e56 7952 goto unlock;
ac086bc2 7953
0986b11b 7954 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7955 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7956 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7957
7958 for_each_possible_cpu(i) {
7959 struct rt_rq *rt_rq = tg->rt_rq[i];
7960
0986b11b 7961 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7962 rt_rq->rt_runtime = rt_runtime;
0986b11b 7963 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7964 }
0986b11b 7965 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7966unlock:
521f1a24 7967 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7968 mutex_unlock(&rt_constraints_mutex);
7969
7970 return err;
6f505b16
PZ
7971}
7972
25cc7da7 7973static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
7974{
7975 u64 rt_runtime, rt_period;
7976
7977 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7978 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7979 if (rt_runtime_us < 0)
7980 rt_runtime = RUNTIME_INF;
7981
ab84d31e 7982 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7983}
7984
25cc7da7 7985static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
7986{
7987 u64 rt_runtime_us;
7988
d0b27fa7 7989 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7990 return -1;
7991
d0b27fa7 7992 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7993 do_div(rt_runtime_us, NSEC_PER_USEC);
7994 return rt_runtime_us;
7995}
d0b27fa7 7996
ce2f5fe4 7997static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
d0b27fa7
PZ
7998{
7999 u64 rt_runtime, rt_period;
8000
ce2f5fe4 8001 rt_period = rt_period_us * NSEC_PER_USEC;
d0b27fa7
PZ
8002 rt_runtime = tg->rt_bandwidth.rt_runtime;
8003
ab84d31e 8004 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
8005}
8006
25cc7da7 8007static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
8008{
8009 u64 rt_period_us;
8010
8011 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8012 do_div(rt_period_us, NSEC_PER_USEC);
8013 return rt_period_us;
8014}
332ac17e 8015#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8016
332ac17e 8017#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
8018static int sched_rt_global_constraints(void)
8019{
8020 int ret = 0;
8021
8022 mutex_lock(&rt_constraints_mutex);
9a7e0b18 8023 read_lock(&tasklist_lock);
4653f803 8024 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 8025 read_unlock(&tasklist_lock);
d0b27fa7
PZ
8026 mutex_unlock(&rt_constraints_mutex);
8027
8028 return ret;
8029}
54e99124 8030
25cc7da7 8031static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
8032{
8033 /* Don't accept realtime tasks when there is no way for them to run */
8034 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8035 return 0;
8036
8037 return 1;
8038}
8039
6d6bc0ad 8040#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8041static int sched_rt_global_constraints(void)
8042{
ac086bc2 8043 unsigned long flags;
332ac17e 8044 int i, ret = 0;
ec5d4989 8045
0986b11b 8046 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
8047 for_each_possible_cpu(i) {
8048 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8049
0986b11b 8050 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8051 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 8052 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8053 }
0986b11b 8054 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 8055
332ac17e 8056 return ret;
d0b27fa7 8057}
6d6bc0ad 8058#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8059
a1963b81 8060static int sched_dl_global_validate(void)
332ac17e 8061{
1724813d
PZ
8062 u64 runtime = global_rt_runtime();
8063 u64 period = global_rt_period();
332ac17e 8064 u64 new_bw = to_ratio(period, runtime);
f10e00f4 8065 struct dl_bw *dl_b;
1724813d 8066 int cpu, ret = 0;
49516342 8067 unsigned long flags;
332ac17e
DF
8068
8069 /*
8070 * Here we want to check the bandwidth not being set to some
8071 * value smaller than the currently allocated bandwidth in
8072 * any of the root_domains.
8073 *
8074 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
8075 * cycling on root_domains... Discussion on different/better
8076 * solutions is welcome!
8077 */
1724813d 8078 for_each_possible_cpu(cpu) {
f10e00f4
KT
8079 rcu_read_lock_sched();
8080 dl_b = dl_bw_of(cpu);
332ac17e 8081
49516342 8082 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d
PZ
8083 if (new_bw < dl_b->total_bw)
8084 ret = -EBUSY;
49516342 8085 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
1724813d 8086
f10e00f4
KT
8087 rcu_read_unlock_sched();
8088
1724813d
PZ
8089 if (ret)
8090 break;
332ac17e
DF
8091 }
8092
1724813d 8093 return ret;
332ac17e
DF
8094}
8095
1724813d 8096static void sched_dl_do_global(void)
ce0dbbbb 8097{
1724813d 8098 u64 new_bw = -1;
f10e00f4 8099 struct dl_bw *dl_b;
1724813d 8100 int cpu;
49516342 8101 unsigned long flags;
ce0dbbbb 8102
1724813d
PZ
8103 def_dl_bandwidth.dl_period = global_rt_period();
8104 def_dl_bandwidth.dl_runtime = global_rt_runtime();
8105
8106 if (global_rt_runtime() != RUNTIME_INF)
8107 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
8108
8109 /*
8110 * FIXME: As above...
8111 */
8112 for_each_possible_cpu(cpu) {
f10e00f4
KT
8113 rcu_read_lock_sched();
8114 dl_b = dl_bw_of(cpu);
1724813d 8115
49516342 8116 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d 8117 dl_b->bw = new_bw;
49516342 8118 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
f10e00f4
KT
8119
8120 rcu_read_unlock_sched();
ce0dbbbb 8121 }
1724813d
PZ
8122}
8123
8124static int sched_rt_global_validate(void)
8125{
8126 if (sysctl_sched_rt_period <= 0)
8127 return -EINVAL;
8128
e9e7cb38
JL
8129 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
8130 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
1724813d
PZ
8131 return -EINVAL;
8132
8133 return 0;
8134}
8135
8136static void sched_rt_do_global(void)
8137{
8138 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8139 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
8140}
8141
d0b27fa7 8142int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8143 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8144 loff_t *ppos)
8145{
d0b27fa7
PZ
8146 int old_period, old_runtime;
8147 static DEFINE_MUTEX(mutex);
1724813d 8148 int ret;
d0b27fa7
PZ
8149
8150 mutex_lock(&mutex);
8151 old_period = sysctl_sched_rt_period;
8152 old_runtime = sysctl_sched_rt_runtime;
8153
8d65af78 8154 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
8155
8156 if (!ret && write) {
1724813d
PZ
8157 ret = sched_rt_global_validate();
8158 if (ret)
8159 goto undo;
8160
a1963b81 8161 ret = sched_dl_global_validate();
1724813d
PZ
8162 if (ret)
8163 goto undo;
8164
a1963b81 8165 ret = sched_rt_global_constraints();
1724813d
PZ
8166 if (ret)
8167 goto undo;
8168
8169 sched_rt_do_global();
8170 sched_dl_do_global();
8171 }
8172 if (0) {
8173undo:
8174 sysctl_sched_rt_period = old_period;
8175 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
8176 }
8177 mutex_unlock(&mutex);
8178
8179 return ret;
8180}
68318b8e 8181
1724813d 8182int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
8183 void __user *buffer, size_t *lenp,
8184 loff_t *ppos)
8185{
8186 int ret;
332ac17e 8187 static DEFINE_MUTEX(mutex);
332ac17e
DF
8188
8189 mutex_lock(&mutex);
332ac17e 8190 ret = proc_dointvec(table, write, buffer, lenp, ppos);
1724813d
PZ
8191 /* make sure that internally we keep jiffies */
8192 /* also, writing zero resets timeslice to default */
332ac17e 8193 if (!ret && write) {
1724813d
PZ
8194 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8195 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
332ac17e
DF
8196 }
8197 mutex_unlock(&mutex);
332ac17e
DF
8198 return ret;
8199}
8200
052f1dc7 8201#ifdef CONFIG_CGROUP_SCHED
68318b8e 8202
a7c6d554 8203static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 8204{
a7c6d554 8205 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
8206}
8207
eb95419b
TH
8208static struct cgroup_subsys_state *
8209cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 8210{
eb95419b
TH
8211 struct task_group *parent = css_tg(parent_css);
8212 struct task_group *tg;
68318b8e 8213
eb95419b 8214 if (!parent) {
68318b8e 8215 /* This is early initialization for the top cgroup */
07e06b01 8216 return &root_task_group.css;
68318b8e
SV
8217 }
8218
ec7dc8ac 8219 tg = sched_create_group(parent);
68318b8e
SV
8220 if (IS_ERR(tg))
8221 return ERR_PTR(-ENOMEM);
8222
68318b8e
SV
8223 return &tg->css;
8224}
8225
eb95419b 8226static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
ace783b9 8227{
eb95419b 8228 struct task_group *tg = css_tg(css);
5c9d535b 8229 struct task_group *parent = css_tg(css->parent);
ace783b9 8230
63876986
TH
8231 if (parent)
8232 sched_online_group(tg, parent);
ace783b9
LZ
8233 return 0;
8234}
8235
eb95419b 8236static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 8237{
eb95419b 8238 struct task_group *tg = css_tg(css);
68318b8e
SV
8239
8240 sched_destroy_group(tg);
8241}
8242
eb95419b 8243static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
ace783b9 8244{
eb95419b 8245 struct task_group *tg = css_tg(css);
ace783b9
LZ
8246
8247 sched_offline_group(tg);
8248}
8249
7e47682e 8250static void cpu_cgroup_fork(struct task_struct *task, void *private)
eeb61e53
KT
8251{
8252 sched_move_task(task);
8253}
8254
eb95419b 8255static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
bb9d97b6 8256 struct cgroup_taskset *tset)
68318b8e 8257{
bb9d97b6
TH
8258 struct task_struct *task;
8259
924f0d9a 8260 cgroup_taskset_for_each(task, tset) {
b68aa230 8261#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 8262 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 8263 return -EINVAL;
b68aa230 8264#else
bb9d97b6
TH
8265 /* We don't support RT-tasks being in separate groups */
8266 if (task->sched_class != &fair_sched_class)
8267 return -EINVAL;
b68aa230 8268#endif
bb9d97b6 8269 }
be367d09
BB
8270 return 0;
8271}
68318b8e 8272
eb95419b 8273static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
bb9d97b6 8274 struct cgroup_taskset *tset)
68318b8e 8275{
bb9d97b6
TH
8276 struct task_struct *task;
8277
924f0d9a 8278 cgroup_taskset_for_each(task, tset)
bb9d97b6 8279 sched_move_task(task);
68318b8e
SV
8280}
8281
052f1dc7 8282#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
8283static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8284 struct cftype *cftype, u64 shareval)
68318b8e 8285{
182446d0 8286 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
8287}
8288
182446d0
TH
8289static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8290 struct cftype *cft)
68318b8e 8291{
182446d0 8292 struct task_group *tg = css_tg(css);
68318b8e 8293
c8b28116 8294 return (u64) scale_load_down(tg->shares);
68318b8e 8295}
ab84d31e
PT
8296
8297#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
8298static DEFINE_MUTEX(cfs_constraints_mutex);
8299
ab84d31e
PT
8300const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8301const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8302
a790de99
PT
8303static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8304
ab84d31e
PT
8305static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8306{
56f570e5 8307 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 8308 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
8309
8310 if (tg == &root_task_group)
8311 return -EINVAL;
8312
8313 /*
8314 * Ensure we have at some amount of bandwidth every period. This is
8315 * to prevent reaching a state of large arrears when throttled via
8316 * entity_tick() resulting in prolonged exit starvation.
8317 */
8318 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8319 return -EINVAL;
8320
8321 /*
8322 * Likewise, bound things on the otherside by preventing insane quota
8323 * periods. This also allows us to normalize in computing quota
8324 * feasibility.
8325 */
8326 if (period > max_cfs_quota_period)
8327 return -EINVAL;
8328
0e59bdae
KT
8329 /*
8330 * Prevent race between setting of cfs_rq->runtime_enabled and
8331 * unthrottle_offline_cfs_rqs().
8332 */
8333 get_online_cpus();
a790de99
PT
8334 mutex_lock(&cfs_constraints_mutex);
8335 ret = __cfs_schedulable(tg, period, quota);
8336 if (ret)
8337 goto out_unlock;
8338
58088ad0 8339 runtime_enabled = quota != RUNTIME_INF;
56f570e5 8340 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
8341 /*
8342 * If we need to toggle cfs_bandwidth_used, off->on must occur
8343 * before making related changes, and on->off must occur afterwards
8344 */
8345 if (runtime_enabled && !runtime_was_enabled)
8346 cfs_bandwidth_usage_inc();
ab84d31e
PT
8347 raw_spin_lock_irq(&cfs_b->lock);
8348 cfs_b->period = ns_to_ktime(period);
8349 cfs_b->quota = quota;
58088ad0 8350
a9cf55b2 8351 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 8352 /* restart the period timer (if active) to handle new period expiry */
77a4d1a1
PZ
8353 if (runtime_enabled)
8354 start_cfs_bandwidth(cfs_b);
ab84d31e
PT
8355 raw_spin_unlock_irq(&cfs_b->lock);
8356
0e59bdae 8357 for_each_online_cpu(i) {
ab84d31e 8358 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 8359 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
8360
8361 raw_spin_lock_irq(&rq->lock);
58088ad0 8362 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 8363 cfs_rq->runtime_remaining = 0;
671fd9da 8364
029632fb 8365 if (cfs_rq->throttled)
671fd9da 8366 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
8367 raw_spin_unlock_irq(&rq->lock);
8368 }
1ee14e6c
BS
8369 if (runtime_was_enabled && !runtime_enabled)
8370 cfs_bandwidth_usage_dec();
a790de99
PT
8371out_unlock:
8372 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 8373 put_online_cpus();
ab84d31e 8374
a790de99 8375 return ret;
ab84d31e
PT
8376}
8377
8378int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8379{
8380 u64 quota, period;
8381
029632fb 8382 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8383 if (cfs_quota_us < 0)
8384 quota = RUNTIME_INF;
8385 else
8386 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8387
8388 return tg_set_cfs_bandwidth(tg, period, quota);
8389}
8390
8391long tg_get_cfs_quota(struct task_group *tg)
8392{
8393 u64 quota_us;
8394
029632fb 8395 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
8396 return -1;
8397
029632fb 8398 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
8399 do_div(quota_us, NSEC_PER_USEC);
8400
8401 return quota_us;
8402}
8403
8404int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8405{
8406 u64 quota, period;
8407
8408 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 8409 quota = tg->cfs_bandwidth.quota;
ab84d31e 8410
ab84d31e
PT
8411 return tg_set_cfs_bandwidth(tg, period, quota);
8412}
8413
8414long tg_get_cfs_period(struct task_group *tg)
8415{
8416 u64 cfs_period_us;
8417
029632fb 8418 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8419 do_div(cfs_period_us, NSEC_PER_USEC);
8420
8421 return cfs_period_us;
8422}
8423
182446d0
TH
8424static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8425 struct cftype *cft)
ab84d31e 8426{
182446d0 8427 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
8428}
8429
182446d0
TH
8430static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8431 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 8432{
182446d0 8433 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
8434}
8435
182446d0
TH
8436static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8437 struct cftype *cft)
ab84d31e 8438{
182446d0 8439 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
8440}
8441
182446d0
TH
8442static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8443 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 8444{
182446d0 8445 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
8446}
8447
a790de99
PT
8448struct cfs_schedulable_data {
8449 struct task_group *tg;
8450 u64 period, quota;
8451};
8452
8453/*
8454 * normalize group quota/period to be quota/max_period
8455 * note: units are usecs
8456 */
8457static u64 normalize_cfs_quota(struct task_group *tg,
8458 struct cfs_schedulable_data *d)
8459{
8460 u64 quota, period;
8461
8462 if (tg == d->tg) {
8463 period = d->period;
8464 quota = d->quota;
8465 } else {
8466 period = tg_get_cfs_period(tg);
8467 quota = tg_get_cfs_quota(tg);
8468 }
8469
8470 /* note: these should typically be equivalent */
8471 if (quota == RUNTIME_INF || quota == -1)
8472 return RUNTIME_INF;
8473
8474 return to_ratio(period, quota);
8475}
8476
8477static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8478{
8479 struct cfs_schedulable_data *d = data;
029632fb 8480 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
8481 s64 quota = 0, parent_quota = -1;
8482
8483 if (!tg->parent) {
8484 quota = RUNTIME_INF;
8485 } else {
029632fb 8486 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
8487
8488 quota = normalize_cfs_quota(tg, d);
9c58c79a 8489 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
8490
8491 /*
8492 * ensure max(child_quota) <= parent_quota, inherit when no
8493 * limit is set
8494 */
8495 if (quota == RUNTIME_INF)
8496 quota = parent_quota;
8497 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8498 return -EINVAL;
8499 }
9c58c79a 8500 cfs_b->hierarchical_quota = quota;
a790de99
PT
8501
8502 return 0;
8503}
8504
8505static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8506{
8277434e 8507 int ret;
a790de99
PT
8508 struct cfs_schedulable_data data = {
8509 .tg = tg,
8510 .period = period,
8511 .quota = quota,
8512 };
8513
8514 if (quota != RUNTIME_INF) {
8515 do_div(data.period, NSEC_PER_USEC);
8516 do_div(data.quota, NSEC_PER_USEC);
8517 }
8518
8277434e
PT
8519 rcu_read_lock();
8520 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8521 rcu_read_unlock();
8522
8523 return ret;
a790de99 8524}
e8da1b18 8525
2da8ca82 8526static int cpu_stats_show(struct seq_file *sf, void *v)
e8da1b18 8527{
2da8ca82 8528 struct task_group *tg = css_tg(seq_css(sf));
029632fb 8529 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 8530
44ffc75b
TH
8531 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8532 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8533 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
8534
8535 return 0;
8536}
ab84d31e 8537#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 8538#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8539
052f1dc7 8540#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
8541static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8542 struct cftype *cft, s64 val)
6f505b16 8543{
182446d0 8544 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
8545}
8546
182446d0
TH
8547static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8548 struct cftype *cft)
6f505b16 8549{
182446d0 8550 return sched_group_rt_runtime(css_tg(css));
6f505b16 8551}
d0b27fa7 8552
182446d0
TH
8553static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8554 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 8555{
182446d0 8556 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
8557}
8558
182446d0
TH
8559static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8560 struct cftype *cft)
d0b27fa7 8561{
182446d0 8562 return sched_group_rt_period(css_tg(css));
d0b27fa7 8563}
6d6bc0ad 8564#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8565
fe5c7cc2 8566static struct cftype cpu_files[] = {
052f1dc7 8567#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8568 {
8569 .name = "shares",
f4c753b7
PM
8570 .read_u64 = cpu_shares_read_u64,
8571 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8572 },
052f1dc7 8573#endif
ab84d31e
PT
8574#ifdef CONFIG_CFS_BANDWIDTH
8575 {
8576 .name = "cfs_quota_us",
8577 .read_s64 = cpu_cfs_quota_read_s64,
8578 .write_s64 = cpu_cfs_quota_write_s64,
8579 },
8580 {
8581 .name = "cfs_period_us",
8582 .read_u64 = cpu_cfs_period_read_u64,
8583 .write_u64 = cpu_cfs_period_write_u64,
8584 },
e8da1b18
NR
8585 {
8586 .name = "stat",
2da8ca82 8587 .seq_show = cpu_stats_show,
e8da1b18 8588 },
ab84d31e 8589#endif
052f1dc7 8590#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8591 {
9f0c1e56 8592 .name = "rt_runtime_us",
06ecb27c
PM
8593 .read_s64 = cpu_rt_runtime_read,
8594 .write_s64 = cpu_rt_runtime_write,
6f505b16 8595 },
d0b27fa7
PZ
8596 {
8597 .name = "rt_period_us",
f4c753b7
PM
8598 .read_u64 = cpu_rt_period_read_uint,
8599 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8600 },
052f1dc7 8601#endif
4baf6e33 8602 { } /* terminate */
68318b8e
SV
8603};
8604
073219e9 8605struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748
TH
8606 .css_alloc = cpu_cgroup_css_alloc,
8607 .css_free = cpu_cgroup_css_free,
ace783b9
LZ
8608 .css_online = cpu_cgroup_css_online,
8609 .css_offline = cpu_cgroup_css_offline,
eeb61e53 8610 .fork = cpu_cgroup_fork,
bb9d97b6
TH
8611 .can_attach = cpu_cgroup_can_attach,
8612 .attach = cpu_cgroup_attach,
5577964e 8613 .legacy_cftypes = cpu_files,
68318b8e
SV
8614 .early_init = 1,
8615};
8616
052f1dc7 8617#endif /* CONFIG_CGROUP_SCHED */
d842de87 8618
b637a328
PM
8619void dump_cpu_task(int cpu)
8620{
8621 pr_info("Task dump for CPU %d:\n", cpu);
8622 sched_show_task(cpu_curr(cpu));
8623}