]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - kernel/sched/core.c
sched/fair: Push rq lock pin/unpin into idle_balance()
[mirror_ubuntu-kernels.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
e1b77c92 29#include <linux/kasan.h>
1da177e4
LT
30#include <linux/mm.h>
31#include <linux/module.h>
32#include <linux/nmi.h>
33#include <linux/init.h>
dff06c15 34#include <linux/uaccess.h>
1da177e4 35#include <linux/highmem.h>
f98db601 36#include <linux/mmu_context.h>
1da177e4 37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
cdd6c482 42#include <linux/perf_event.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
b5aadf7f 58#include <linux/proc_fs.h>
1da177e4 59#include <linux/seq_file.h>
e692ab53 60#include <linux/sysctl.h>
1da177e4
LT
61#include <linux/syscalls.h>
62#include <linux/times.h>
8f0ab514 63#include <linux/tsacct_kern.h>
c6fd91f0 64#include <linux/kprobes.h>
0ff92245 65#include <linux/delayacct.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
30914a58 69#include <linux/tick.h>
f00b45c1 70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
91d1aa43 74#include <linux/context_tracking.h>
52f5684c 75#include <linux/compiler.h>
8e05e96a 76#include <linux/frame.h>
6075620b 77#include <linux/prefetch.h>
3ca0ff57 78#include <linux/mutex.h>
1da177e4 79
96f951ed 80#include <asm/switch_to.h>
5517d86b 81#include <asm/tlb.h>
838225b4 82#include <asm/irq_regs.h>
e6e6685a
GC
83#ifdef CONFIG_PARAVIRT
84#include <asm/paravirt.h>
85#endif
1da177e4 86
029632fb 87#include "sched.h"
ea138446 88#include "../workqueue_internal.h"
29d5e047 89#include "../smpboot.h"
6e0534f2 90
a8d154b0 91#define CREATE_TRACE_POINTS
ad8d75ff 92#include <trace/events/sched.h>
a8d154b0 93
029632fb
PZ
94DEFINE_MUTEX(sched_domains_mutex);
95DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 96
fe44d621 97static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 98
029632fb 99void update_rq_clock(struct rq *rq)
3e51f33f 100{
fe44d621 101 s64 delta;
305e6835 102
9edfbfed
PZ
103 lockdep_assert_held(&rq->lock);
104
105 if (rq->clock_skip_update & RQCF_ACT_SKIP)
f26f9aff 106 return;
aa483808 107
fe44d621 108 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
4036ac15
MG
109 if (delta < 0)
110 return;
fe44d621
PZ
111 rq->clock += delta;
112 update_rq_clock_task(rq, delta);
3e51f33f
PZ
113}
114
bf5c91ba
IM
115/*
116 * Debugging: various feature bits
117 */
f00b45c1 118
f00b45c1
PZ
119#define SCHED_FEAT(name, enabled) \
120 (1UL << __SCHED_FEAT_##name) * enabled |
121
bf5c91ba 122const_debug unsigned int sysctl_sched_features =
391e43da 123#include "features.h"
f00b45c1
PZ
124 0;
125
126#undef SCHED_FEAT
127
b82d9fdd
PZ
128/*
129 * Number of tasks to iterate in a single balance run.
130 * Limited because this is done with IRQs disabled.
131 */
132const_debug unsigned int sysctl_sched_nr_migrate = 32;
133
e9e9250b
PZ
134/*
135 * period over which we average the RT time consumption, measured
136 * in ms.
137 *
138 * default: 1s
139 */
140const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
141
fa85ae24 142/*
9f0c1e56 143 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
144 * default: 1s
145 */
9f0c1e56 146unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 147
029632fb 148__read_mostly int scheduler_running;
6892b75e 149
9f0c1e56
PZ
150/*
151 * part of the period that we allow rt tasks to run in us.
152 * default: 0.95s
153 */
154int sysctl_sched_rt_runtime = 950000;
fa85ae24 155
3fa0818b
RR
156/* cpus with isolated domains */
157cpumask_var_t cpu_isolated_map;
158
1da177e4 159/*
cc2a73b5 160 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 161 */
a9957449 162static struct rq *this_rq_lock(void)
1da177e4
LT
163 __acquires(rq->lock)
164{
70b97a7f 165 struct rq *rq;
1da177e4
LT
166
167 local_irq_disable();
168 rq = this_rq();
05fa785c 169 raw_spin_lock(&rq->lock);
1da177e4
LT
170
171 return rq;
172}
173
3e71a462
PZ
174/*
175 * __task_rq_lock - lock the rq @p resides on.
176 */
eb580751 177struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
178 __acquires(rq->lock)
179{
180 struct rq *rq;
181
182 lockdep_assert_held(&p->pi_lock);
183
184 for (;;) {
185 rq = task_rq(p);
186 raw_spin_lock(&rq->lock);
187 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 188 rq_pin_lock(rq, rf);
3e71a462
PZ
189 return rq;
190 }
191 raw_spin_unlock(&rq->lock);
192
193 while (unlikely(task_on_rq_migrating(p)))
194 cpu_relax();
195 }
196}
197
198/*
199 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
200 */
eb580751 201struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
202 __acquires(p->pi_lock)
203 __acquires(rq->lock)
204{
205 struct rq *rq;
206
207 for (;;) {
eb580751 208 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
3e71a462
PZ
209 rq = task_rq(p);
210 raw_spin_lock(&rq->lock);
211 /*
212 * move_queued_task() task_rq_lock()
213 *
214 * ACQUIRE (rq->lock)
215 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
216 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
217 * [S] ->cpu = new_cpu [L] task_rq()
218 * [L] ->on_rq
219 * RELEASE (rq->lock)
220 *
221 * If we observe the old cpu in task_rq_lock, the acquire of
222 * the old rq->lock will fully serialize against the stores.
223 *
224 * If we observe the new cpu in task_rq_lock, the acquire will
225 * pair with the WMB to ensure we must then also see migrating.
226 */
227 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 228 rq_pin_lock(rq, rf);
3e71a462
PZ
229 return rq;
230 }
231 raw_spin_unlock(&rq->lock);
eb580751 232 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
3e71a462
PZ
233
234 while (unlikely(task_on_rq_migrating(p)))
235 cpu_relax();
236 }
237}
238
8f4d37ec
PZ
239#ifdef CONFIG_SCHED_HRTICK
240/*
241 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 242 */
8f4d37ec 243
8f4d37ec
PZ
244static void hrtick_clear(struct rq *rq)
245{
246 if (hrtimer_active(&rq->hrtick_timer))
247 hrtimer_cancel(&rq->hrtick_timer);
248}
249
8f4d37ec
PZ
250/*
251 * High-resolution timer tick.
252 * Runs from hardirq context with interrupts disabled.
253 */
254static enum hrtimer_restart hrtick(struct hrtimer *timer)
255{
256 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
257
258 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
259
05fa785c 260 raw_spin_lock(&rq->lock);
3e51f33f 261 update_rq_clock(rq);
8f4d37ec 262 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 263 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
264
265 return HRTIMER_NORESTART;
266}
267
95e904c7 268#ifdef CONFIG_SMP
971ee28c 269
4961b6e1 270static void __hrtick_restart(struct rq *rq)
971ee28c
PZ
271{
272 struct hrtimer *timer = &rq->hrtick_timer;
971ee28c 273
4961b6e1 274 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
971ee28c
PZ
275}
276
31656519
PZ
277/*
278 * called from hardirq (IPI) context
279 */
280static void __hrtick_start(void *arg)
b328ca18 281{
31656519 282 struct rq *rq = arg;
b328ca18 283
05fa785c 284 raw_spin_lock(&rq->lock);
971ee28c 285 __hrtick_restart(rq);
31656519 286 rq->hrtick_csd_pending = 0;
05fa785c 287 raw_spin_unlock(&rq->lock);
b328ca18
PZ
288}
289
31656519
PZ
290/*
291 * Called to set the hrtick timer state.
292 *
293 * called with rq->lock held and irqs disabled
294 */
029632fb 295void hrtick_start(struct rq *rq, u64 delay)
b328ca18 296{
31656519 297 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 298 ktime_t time;
299 s64 delta;
300
301 /*
302 * Don't schedule slices shorter than 10000ns, that just
303 * doesn't make sense and can cause timer DoS.
304 */
305 delta = max_t(s64, delay, 10000LL);
306 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 307
cc584b21 308 hrtimer_set_expires(timer, time);
31656519
PZ
309
310 if (rq == this_rq()) {
971ee28c 311 __hrtick_restart(rq);
31656519 312 } else if (!rq->hrtick_csd_pending) {
c46fff2a 313 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
314 rq->hrtick_csd_pending = 1;
315 }
b328ca18
PZ
316}
317
31656519
PZ
318#else
319/*
320 * Called to set the hrtick timer state.
321 *
322 * called with rq->lock held and irqs disabled
323 */
029632fb 324void hrtick_start(struct rq *rq, u64 delay)
31656519 325{
86893335
WL
326 /*
327 * Don't schedule slices shorter than 10000ns, that just
328 * doesn't make sense. Rely on vruntime for fairness.
329 */
330 delay = max_t(u64, delay, 10000LL);
4961b6e1
TG
331 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
332 HRTIMER_MODE_REL_PINNED);
31656519 333}
31656519 334#endif /* CONFIG_SMP */
8f4d37ec 335
31656519 336static void init_rq_hrtick(struct rq *rq)
8f4d37ec 337{
31656519
PZ
338#ifdef CONFIG_SMP
339 rq->hrtick_csd_pending = 0;
8f4d37ec 340
31656519
PZ
341 rq->hrtick_csd.flags = 0;
342 rq->hrtick_csd.func = __hrtick_start;
343 rq->hrtick_csd.info = rq;
344#endif
8f4d37ec 345
31656519
PZ
346 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
347 rq->hrtick_timer.function = hrtick;
8f4d37ec 348}
006c75f1 349#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
350static inline void hrtick_clear(struct rq *rq)
351{
352}
353
8f4d37ec
PZ
354static inline void init_rq_hrtick(struct rq *rq)
355{
356}
006c75f1 357#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 358
5529578a
FW
359/*
360 * cmpxchg based fetch_or, macro so it works for different integer types
361 */
362#define fetch_or(ptr, mask) \
363 ({ \
364 typeof(ptr) _ptr = (ptr); \
365 typeof(mask) _mask = (mask); \
366 typeof(*_ptr) _old, _val = *_ptr; \
367 \
368 for (;;) { \
369 _old = cmpxchg(_ptr, _val, _val | _mask); \
370 if (_old == _val) \
371 break; \
372 _val = _old; \
373 } \
374 _old; \
375})
376
e3baac47 377#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
378/*
379 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
380 * this avoids any races wrt polling state changes and thereby avoids
381 * spurious IPIs.
382 */
383static bool set_nr_and_not_polling(struct task_struct *p)
384{
385 struct thread_info *ti = task_thread_info(p);
386 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
387}
e3baac47
PZ
388
389/*
390 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
391 *
392 * If this returns true, then the idle task promises to call
393 * sched_ttwu_pending() and reschedule soon.
394 */
395static bool set_nr_if_polling(struct task_struct *p)
396{
397 struct thread_info *ti = task_thread_info(p);
316c1608 398 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
e3baac47
PZ
399
400 for (;;) {
401 if (!(val & _TIF_POLLING_NRFLAG))
402 return false;
403 if (val & _TIF_NEED_RESCHED)
404 return true;
405 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
406 if (old == val)
407 break;
408 val = old;
409 }
410 return true;
411}
412
fd99f91a
PZ
413#else
414static bool set_nr_and_not_polling(struct task_struct *p)
415{
416 set_tsk_need_resched(p);
417 return true;
418}
e3baac47
PZ
419
420#ifdef CONFIG_SMP
421static bool set_nr_if_polling(struct task_struct *p)
422{
423 return false;
424}
425#endif
fd99f91a
PZ
426#endif
427
76751049
PZ
428void wake_q_add(struct wake_q_head *head, struct task_struct *task)
429{
430 struct wake_q_node *node = &task->wake_q;
431
432 /*
433 * Atomically grab the task, if ->wake_q is !nil already it means
434 * its already queued (either by us or someone else) and will get the
435 * wakeup due to that.
436 *
437 * This cmpxchg() implies a full barrier, which pairs with the write
58fe9c46 438 * barrier implied by the wakeup in wake_up_q().
76751049
PZ
439 */
440 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
441 return;
442
443 get_task_struct(task);
444
445 /*
446 * The head is context local, there can be no concurrency.
447 */
448 *head->lastp = node;
449 head->lastp = &node->next;
450}
451
452void wake_up_q(struct wake_q_head *head)
453{
454 struct wake_q_node *node = head->first;
455
456 while (node != WAKE_Q_TAIL) {
457 struct task_struct *task;
458
459 task = container_of(node, struct task_struct, wake_q);
460 BUG_ON(!task);
461 /* task can safely be re-inserted now */
462 node = node->next;
463 task->wake_q.next = NULL;
464
465 /*
466 * wake_up_process() implies a wmb() to pair with the queueing
467 * in wake_q_add() so as not to miss wakeups.
468 */
469 wake_up_process(task);
470 put_task_struct(task);
471 }
472}
473
c24d20db 474/*
8875125e 475 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
476 *
477 * On UP this means the setting of the need_resched flag, on SMP it
478 * might also involve a cross-CPU call to trigger the scheduler on
479 * the target CPU.
480 */
8875125e 481void resched_curr(struct rq *rq)
c24d20db 482{
8875125e 483 struct task_struct *curr = rq->curr;
c24d20db
IM
484 int cpu;
485
8875125e 486 lockdep_assert_held(&rq->lock);
c24d20db 487
8875125e 488 if (test_tsk_need_resched(curr))
c24d20db
IM
489 return;
490
8875125e 491 cpu = cpu_of(rq);
fd99f91a 492
f27dde8d 493 if (cpu == smp_processor_id()) {
8875125e 494 set_tsk_need_resched(curr);
f27dde8d 495 set_preempt_need_resched();
c24d20db 496 return;
f27dde8d 497 }
c24d20db 498
8875125e 499 if (set_nr_and_not_polling(curr))
c24d20db 500 smp_send_reschedule(cpu);
dfc68f29
AL
501 else
502 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
503}
504
029632fb 505void resched_cpu(int cpu)
c24d20db
IM
506{
507 struct rq *rq = cpu_rq(cpu);
508 unsigned long flags;
509
05fa785c 510 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db 511 return;
8875125e 512 resched_curr(rq);
05fa785c 513 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 514}
06d8308c 515
b021fe3e 516#ifdef CONFIG_SMP
3451d024 517#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
518/*
519 * In the semi idle case, use the nearest busy cpu for migrating timers
520 * from an idle cpu. This is good for power-savings.
521 *
522 * We don't do similar optimization for completely idle system, as
523 * selecting an idle cpu will add more delays to the timers than intended
524 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
525 */
bc7a34b8 526int get_nohz_timer_target(void)
83cd4fe2 527{
bc7a34b8 528 int i, cpu = smp_processor_id();
83cd4fe2
VP
529 struct sched_domain *sd;
530
9642d18e 531 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
6201b4d6
VK
532 return cpu;
533
057f3fad 534 rcu_read_lock();
83cd4fe2 535 for_each_domain(cpu, sd) {
057f3fad 536 for_each_cpu(i, sched_domain_span(sd)) {
44496922
WL
537 if (cpu == i)
538 continue;
539
540 if (!idle_cpu(i) && is_housekeeping_cpu(i)) {
057f3fad
PZ
541 cpu = i;
542 goto unlock;
543 }
544 }
83cd4fe2 545 }
9642d18e
VH
546
547 if (!is_housekeeping_cpu(cpu))
548 cpu = housekeeping_any_cpu();
057f3fad
PZ
549unlock:
550 rcu_read_unlock();
83cd4fe2
VP
551 return cpu;
552}
06d8308c
TG
553/*
554 * When add_timer_on() enqueues a timer into the timer wheel of an
555 * idle CPU then this timer might expire before the next timer event
556 * which is scheduled to wake up that CPU. In case of a completely
557 * idle system the next event might even be infinite time into the
558 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
559 * leaves the inner idle loop so the newly added timer is taken into
560 * account when the CPU goes back to idle and evaluates the timer
561 * wheel for the next timer event.
562 */
1c20091e 563static void wake_up_idle_cpu(int cpu)
06d8308c
TG
564{
565 struct rq *rq = cpu_rq(cpu);
566
567 if (cpu == smp_processor_id())
568 return;
569
67b9ca70 570 if (set_nr_and_not_polling(rq->idle))
06d8308c 571 smp_send_reschedule(cpu);
dfc68f29
AL
572 else
573 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
574}
575
c5bfece2 576static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 577{
53c5fa16
FW
578 /*
579 * We just need the target to call irq_exit() and re-evaluate
580 * the next tick. The nohz full kick at least implies that.
581 * If needed we can still optimize that later with an
582 * empty IRQ.
583 */
379d9ecb
PM
584 if (cpu_is_offline(cpu))
585 return true; /* Don't try to wake offline CPUs. */
c5bfece2 586 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
587 if (cpu != smp_processor_id() ||
588 tick_nohz_tick_stopped())
53c5fa16 589 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
590 return true;
591 }
592
593 return false;
594}
595
379d9ecb
PM
596/*
597 * Wake up the specified CPU. If the CPU is going offline, it is the
598 * caller's responsibility to deal with the lost wakeup, for example,
599 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
600 */
1c20091e
FW
601void wake_up_nohz_cpu(int cpu)
602{
c5bfece2 603 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
604 wake_up_idle_cpu(cpu);
605}
606
ca38062e 607static inline bool got_nohz_idle_kick(void)
45bf76df 608{
1c792db7 609 int cpu = smp_processor_id();
873b4c65
VG
610
611 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
612 return false;
613
614 if (idle_cpu(cpu) && !need_resched())
615 return true;
616
617 /*
618 * We can't run Idle Load Balance on this CPU for this time so we
619 * cancel it and clear NOHZ_BALANCE_KICK
620 */
621 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
622 return false;
45bf76df
IM
623}
624
3451d024 625#else /* CONFIG_NO_HZ_COMMON */
45bf76df 626
ca38062e 627static inline bool got_nohz_idle_kick(void)
2069dd75 628{
ca38062e 629 return false;
2069dd75
PZ
630}
631
3451d024 632#endif /* CONFIG_NO_HZ_COMMON */
d842de87 633
ce831b38 634#ifdef CONFIG_NO_HZ_FULL
76d92ac3 635bool sched_can_stop_tick(struct rq *rq)
ce831b38 636{
76d92ac3
FW
637 int fifo_nr_running;
638
639 /* Deadline tasks, even if single, need the tick */
640 if (rq->dl.dl_nr_running)
641 return false;
642
1e78cdbd 643 /*
2548d546
PZ
644 * If there are more than one RR tasks, we need the tick to effect the
645 * actual RR behaviour.
1e78cdbd 646 */
76d92ac3
FW
647 if (rq->rt.rr_nr_running) {
648 if (rq->rt.rr_nr_running == 1)
649 return true;
650 else
651 return false;
1e78cdbd
RR
652 }
653
2548d546
PZ
654 /*
655 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
656 * forced preemption between FIFO tasks.
657 */
658 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
659 if (fifo_nr_running)
660 return true;
661
662 /*
663 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
664 * if there's more than one we need the tick for involuntary
665 * preemption.
666 */
667 if (rq->nr_running > 1)
541b8264 668 return false;
ce831b38 669
541b8264 670 return true;
ce831b38
FW
671}
672#endif /* CONFIG_NO_HZ_FULL */
d842de87 673
029632fb 674void sched_avg_update(struct rq *rq)
18d95a28 675{
e9e9250b
PZ
676 s64 period = sched_avg_period();
677
78becc27 678 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
679 /*
680 * Inline assembly required to prevent the compiler
681 * optimising this loop into a divmod call.
682 * See __iter_div_u64_rem() for another example of this.
683 */
684 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
685 rq->age_stamp += period;
686 rq->rt_avg /= 2;
687 }
18d95a28
PZ
688}
689
6d6bc0ad 690#endif /* CONFIG_SMP */
18d95a28 691
a790de99
PT
692#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
693 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 694/*
8277434e
PT
695 * Iterate task_group tree rooted at *from, calling @down when first entering a
696 * node and @up when leaving it for the final time.
697 *
698 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 699 */
029632fb 700int walk_tg_tree_from(struct task_group *from,
8277434e 701 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
702{
703 struct task_group *parent, *child;
eb755805 704 int ret;
c09595f6 705
8277434e
PT
706 parent = from;
707
c09595f6 708down:
eb755805
PZ
709 ret = (*down)(parent, data);
710 if (ret)
8277434e 711 goto out;
c09595f6
PZ
712 list_for_each_entry_rcu(child, &parent->children, siblings) {
713 parent = child;
714 goto down;
715
716up:
717 continue;
718 }
eb755805 719 ret = (*up)(parent, data);
8277434e
PT
720 if (ret || parent == from)
721 goto out;
c09595f6
PZ
722
723 child = parent;
724 parent = parent->parent;
725 if (parent)
726 goto up;
8277434e 727out:
eb755805 728 return ret;
c09595f6
PZ
729}
730
029632fb 731int tg_nop(struct task_group *tg, void *data)
eb755805 732{
e2b245f8 733 return 0;
eb755805 734}
18d95a28
PZ
735#endif
736
45bf76df
IM
737static void set_load_weight(struct task_struct *p)
738{
f05998d4
NR
739 int prio = p->static_prio - MAX_RT_PRIO;
740 struct load_weight *load = &p->se.load;
741
dd41f596
IM
742 /*
743 * SCHED_IDLE tasks get minimal weight:
744 */
20f9cd2a 745 if (idle_policy(p->policy)) {
c8b28116 746 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 747 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
748 return;
749 }
71f8bd46 750
ed82b8a1
AK
751 load->weight = scale_load(sched_prio_to_weight[prio]);
752 load->inv_weight = sched_prio_to_wmult[prio];
71f8bd46
IM
753}
754
1de64443 755static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 756{
a64692a3 757 update_rq_clock(rq);
1de64443
PZ
758 if (!(flags & ENQUEUE_RESTORE))
759 sched_info_queued(rq, p);
371fd7e7 760 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
761}
762
1de64443 763static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 764{
a64692a3 765 update_rq_clock(rq);
1de64443
PZ
766 if (!(flags & DEQUEUE_SAVE))
767 sched_info_dequeued(rq, p);
371fd7e7 768 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
769}
770
029632fb 771void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
772{
773 if (task_contributes_to_load(p))
774 rq->nr_uninterruptible--;
775
371fd7e7 776 enqueue_task(rq, p, flags);
1e3c88bd
PZ
777}
778
029632fb 779void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
780{
781 if (task_contributes_to_load(p))
782 rq->nr_uninterruptible++;
783
371fd7e7 784 dequeue_task(rq, p, flags);
1e3c88bd
PZ
785}
786
fe44d621 787static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 788{
095c0aa8
GC
789/*
790 * In theory, the compile should just see 0 here, and optimize out the call
791 * to sched_rt_avg_update. But I don't trust it...
792 */
793#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
794 s64 steal = 0, irq_delta = 0;
795#endif
796#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 797 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
798
799 /*
800 * Since irq_time is only updated on {soft,}irq_exit, we might run into
801 * this case when a previous update_rq_clock() happened inside a
802 * {soft,}irq region.
803 *
804 * When this happens, we stop ->clock_task and only update the
805 * prev_irq_time stamp to account for the part that fit, so that a next
806 * update will consume the rest. This ensures ->clock_task is
807 * monotonic.
808 *
809 * It does however cause some slight miss-attribution of {soft,}irq
810 * time, a more accurate solution would be to update the irq_time using
811 * the current rq->clock timestamp, except that would require using
812 * atomic ops.
813 */
814 if (irq_delta > delta)
815 irq_delta = delta;
816
817 rq->prev_irq_time += irq_delta;
818 delta -= irq_delta;
095c0aa8
GC
819#endif
820#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 821 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
822 steal = paravirt_steal_clock(cpu_of(rq));
823 steal -= rq->prev_steal_time_rq;
824
825 if (unlikely(steal > delta))
826 steal = delta;
827
095c0aa8 828 rq->prev_steal_time_rq += steal;
095c0aa8
GC
829 delta -= steal;
830 }
831#endif
832
fe44d621
PZ
833 rq->clock_task += delta;
834
095c0aa8 835#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
5d4dfddd 836 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
095c0aa8
GC
837 sched_rt_avg_update(rq, irq_delta + steal);
838#endif
aa483808
VP
839}
840
34f971f6
PZ
841void sched_set_stop_task(int cpu, struct task_struct *stop)
842{
843 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
844 struct task_struct *old_stop = cpu_rq(cpu)->stop;
845
846 if (stop) {
847 /*
848 * Make it appear like a SCHED_FIFO task, its something
849 * userspace knows about and won't get confused about.
850 *
851 * Also, it will make PI more or less work without too
852 * much confusion -- but then, stop work should not
853 * rely on PI working anyway.
854 */
855 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
856
857 stop->sched_class = &stop_sched_class;
858 }
859
860 cpu_rq(cpu)->stop = stop;
861
862 if (old_stop) {
863 /*
864 * Reset it back to a normal scheduling class so that
865 * it can die in pieces.
866 */
867 old_stop->sched_class = &rt_sched_class;
868 }
869}
870
14531189 871/*
dd41f596 872 * __normal_prio - return the priority that is based on the static prio
14531189 873 */
14531189
IM
874static inline int __normal_prio(struct task_struct *p)
875{
dd41f596 876 return p->static_prio;
14531189
IM
877}
878
b29739f9
IM
879/*
880 * Calculate the expected normal priority: i.e. priority
881 * without taking RT-inheritance into account. Might be
882 * boosted by interactivity modifiers. Changes upon fork,
883 * setprio syscalls, and whenever the interactivity
884 * estimator recalculates.
885 */
36c8b586 886static inline int normal_prio(struct task_struct *p)
b29739f9
IM
887{
888 int prio;
889
aab03e05
DF
890 if (task_has_dl_policy(p))
891 prio = MAX_DL_PRIO-1;
892 else if (task_has_rt_policy(p))
b29739f9
IM
893 prio = MAX_RT_PRIO-1 - p->rt_priority;
894 else
895 prio = __normal_prio(p);
896 return prio;
897}
898
899/*
900 * Calculate the current priority, i.e. the priority
901 * taken into account by the scheduler. This value might
902 * be boosted by RT tasks, or might be boosted by
903 * interactivity modifiers. Will be RT if the task got
904 * RT-boosted. If not then it returns p->normal_prio.
905 */
36c8b586 906static int effective_prio(struct task_struct *p)
b29739f9
IM
907{
908 p->normal_prio = normal_prio(p);
909 /*
910 * If we are RT tasks or we were boosted to RT priority,
911 * keep the priority unchanged. Otherwise, update priority
912 * to the normal priority:
913 */
914 if (!rt_prio(p->prio))
915 return p->normal_prio;
916 return p->prio;
917}
918
1da177e4
LT
919/**
920 * task_curr - is this task currently executing on a CPU?
921 * @p: the task in question.
e69f6186
YB
922 *
923 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 924 */
36c8b586 925inline int task_curr(const struct task_struct *p)
1da177e4
LT
926{
927 return cpu_curr(task_cpu(p)) == p;
928}
929
67dfa1b7 930/*
4c9a4bc8
PZ
931 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
932 * use the balance_callback list if you want balancing.
933 *
934 * this means any call to check_class_changed() must be followed by a call to
935 * balance_callback().
67dfa1b7 936 */
cb469845
SR
937static inline void check_class_changed(struct rq *rq, struct task_struct *p,
938 const struct sched_class *prev_class,
da7a735e 939 int oldprio)
cb469845
SR
940{
941 if (prev_class != p->sched_class) {
942 if (prev_class->switched_from)
da7a735e 943 prev_class->switched_from(rq, p);
4c9a4bc8 944
da7a735e 945 p->sched_class->switched_to(rq, p);
2d3d891d 946 } else if (oldprio != p->prio || dl_task(p))
da7a735e 947 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
948}
949
029632fb 950void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
951{
952 const struct sched_class *class;
953
954 if (p->sched_class == rq->curr->sched_class) {
955 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
956 } else {
957 for_each_class(class) {
958 if (class == rq->curr->sched_class)
959 break;
960 if (class == p->sched_class) {
8875125e 961 resched_curr(rq);
1e5a7405
PZ
962 break;
963 }
964 }
965 }
966
967 /*
968 * A queue event has occurred, and we're going to schedule. In
969 * this case, we can save a useless back to back clock update.
970 */
da0c1e65 971 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
9edfbfed 972 rq_clock_skip_update(rq, true);
1e5a7405
PZ
973}
974
1da177e4 975#ifdef CONFIG_SMP
5cc389bc
PZ
976/*
977 * This is how migration works:
978 *
979 * 1) we invoke migration_cpu_stop() on the target CPU using
980 * stop_one_cpu().
981 * 2) stopper starts to run (implicitly forcing the migrated thread
982 * off the CPU)
983 * 3) it checks whether the migrated task is still in the wrong runqueue.
984 * 4) if it's in the wrong runqueue then the migration thread removes
985 * it and puts it into the right queue.
986 * 5) stopper completes and stop_one_cpu() returns and the migration
987 * is done.
988 */
989
990/*
991 * move_queued_task - move a queued task to new rq.
992 *
993 * Returns (locked) new rq. Old rq's lock is released.
994 */
5e16bbc2 995static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
5cc389bc 996{
5cc389bc
PZ
997 lockdep_assert_held(&rq->lock);
998
5cc389bc 999 p->on_rq = TASK_ON_RQ_MIGRATING;
3ea94de1 1000 dequeue_task(rq, p, 0);
5cc389bc
PZ
1001 set_task_cpu(p, new_cpu);
1002 raw_spin_unlock(&rq->lock);
1003
1004 rq = cpu_rq(new_cpu);
1005
1006 raw_spin_lock(&rq->lock);
1007 BUG_ON(task_cpu(p) != new_cpu);
5cc389bc 1008 enqueue_task(rq, p, 0);
3ea94de1 1009 p->on_rq = TASK_ON_RQ_QUEUED;
5cc389bc
PZ
1010 check_preempt_curr(rq, p, 0);
1011
1012 return rq;
1013}
1014
1015struct migration_arg {
1016 struct task_struct *task;
1017 int dest_cpu;
1018};
1019
1020/*
1021 * Move (not current) task off this cpu, onto dest cpu. We're doing
1022 * this because either it can't run here any more (set_cpus_allowed()
1023 * away from this CPU, or CPU going down), or because we're
1024 * attempting to rebalance this task on exec (sched_exec).
1025 *
1026 * So we race with normal scheduler movements, but that's OK, as long
1027 * as the task is no longer on this CPU.
5cc389bc 1028 */
5e16bbc2 1029static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
5cc389bc 1030{
5cc389bc 1031 if (unlikely(!cpu_active(dest_cpu)))
5e16bbc2 1032 return rq;
5cc389bc
PZ
1033
1034 /* Affinity changed (again). */
1035 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
5e16bbc2 1036 return rq;
5cc389bc 1037
5e16bbc2
PZ
1038 rq = move_queued_task(rq, p, dest_cpu);
1039
1040 return rq;
5cc389bc
PZ
1041}
1042
1043/*
1044 * migration_cpu_stop - this will be executed by a highprio stopper thread
1045 * and performs thread migration by bumping thread off CPU then
1046 * 'pushing' onto another runqueue.
1047 */
1048static int migration_cpu_stop(void *data)
1049{
1050 struct migration_arg *arg = data;
5e16bbc2
PZ
1051 struct task_struct *p = arg->task;
1052 struct rq *rq = this_rq();
5cc389bc
PZ
1053
1054 /*
1055 * The original target cpu might have gone down and we might
1056 * be on another cpu but it doesn't matter.
1057 */
1058 local_irq_disable();
1059 /*
1060 * We need to explicitly wake pending tasks before running
1061 * __migrate_task() such that we will not miss enforcing cpus_allowed
1062 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1063 */
1064 sched_ttwu_pending();
5e16bbc2
PZ
1065
1066 raw_spin_lock(&p->pi_lock);
1067 raw_spin_lock(&rq->lock);
1068 /*
1069 * If task_rq(p) != rq, it cannot be migrated here, because we're
1070 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1071 * we're holding p->pi_lock.
1072 */
bf89a304
CC
1073 if (task_rq(p) == rq) {
1074 if (task_on_rq_queued(p))
1075 rq = __migrate_task(rq, p, arg->dest_cpu);
1076 else
1077 p->wake_cpu = arg->dest_cpu;
1078 }
5e16bbc2
PZ
1079 raw_spin_unlock(&rq->lock);
1080 raw_spin_unlock(&p->pi_lock);
1081
5cc389bc
PZ
1082 local_irq_enable();
1083 return 0;
1084}
1085
c5b28038
PZ
1086/*
1087 * sched_class::set_cpus_allowed must do the below, but is not required to
1088 * actually call this function.
1089 */
1090void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
5cc389bc 1091{
5cc389bc
PZ
1092 cpumask_copy(&p->cpus_allowed, new_mask);
1093 p->nr_cpus_allowed = cpumask_weight(new_mask);
1094}
1095
c5b28038
PZ
1096void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1097{
6c37067e
PZ
1098 struct rq *rq = task_rq(p);
1099 bool queued, running;
1100
c5b28038 1101 lockdep_assert_held(&p->pi_lock);
6c37067e
PZ
1102
1103 queued = task_on_rq_queued(p);
1104 running = task_current(rq, p);
1105
1106 if (queued) {
1107 /*
1108 * Because __kthread_bind() calls this on blocked tasks without
1109 * holding rq->lock.
1110 */
1111 lockdep_assert_held(&rq->lock);
1de64443 1112 dequeue_task(rq, p, DEQUEUE_SAVE);
6c37067e
PZ
1113 }
1114 if (running)
1115 put_prev_task(rq, p);
1116
c5b28038 1117 p->sched_class->set_cpus_allowed(p, new_mask);
6c37067e 1118
6c37067e 1119 if (queued)
1de64443 1120 enqueue_task(rq, p, ENQUEUE_RESTORE);
a399d233 1121 if (running)
b2bf6c31 1122 set_curr_task(rq, p);
c5b28038
PZ
1123}
1124
5cc389bc
PZ
1125/*
1126 * Change a given task's CPU affinity. Migrate the thread to a
1127 * proper CPU and schedule it away if the CPU it's executing on
1128 * is removed from the allowed bitmask.
1129 *
1130 * NOTE: the caller must have a valid reference to the task, the
1131 * task must not exit() & deallocate itself prematurely. The
1132 * call is not atomic; no spinlocks may be held.
1133 */
25834c73
PZ
1134static int __set_cpus_allowed_ptr(struct task_struct *p,
1135 const struct cpumask *new_mask, bool check)
5cc389bc 1136{
e9d867a6 1137 const struct cpumask *cpu_valid_mask = cpu_active_mask;
5cc389bc 1138 unsigned int dest_cpu;
eb580751
PZ
1139 struct rq_flags rf;
1140 struct rq *rq;
5cc389bc
PZ
1141 int ret = 0;
1142
eb580751 1143 rq = task_rq_lock(p, &rf);
5cc389bc 1144
e9d867a6
PZI
1145 if (p->flags & PF_KTHREAD) {
1146 /*
1147 * Kernel threads are allowed on online && !active CPUs
1148 */
1149 cpu_valid_mask = cpu_online_mask;
1150 }
1151
25834c73
PZ
1152 /*
1153 * Must re-check here, to close a race against __kthread_bind(),
1154 * sched_setaffinity() is not guaranteed to observe the flag.
1155 */
1156 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1157 ret = -EINVAL;
1158 goto out;
1159 }
1160
5cc389bc
PZ
1161 if (cpumask_equal(&p->cpus_allowed, new_mask))
1162 goto out;
1163
e9d867a6 1164 if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
5cc389bc
PZ
1165 ret = -EINVAL;
1166 goto out;
1167 }
1168
1169 do_set_cpus_allowed(p, new_mask);
1170
e9d867a6
PZI
1171 if (p->flags & PF_KTHREAD) {
1172 /*
1173 * For kernel threads that do indeed end up on online &&
1174 * !active we want to ensure they are strict per-cpu threads.
1175 */
1176 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1177 !cpumask_intersects(new_mask, cpu_active_mask) &&
1178 p->nr_cpus_allowed != 1);
1179 }
1180
5cc389bc
PZ
1181 /* Can the task run on the task's current CPU? If so, we're done */
1182 if (cpumask_test_cpu(task_cpu(p), new_mask))
1183 goto out;
1184
e9d867a6 1185 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
5cc389bc
PZ
1186 if (task_running(rq, p) || p->state == TASK_WAKING) {
1187 struct migration_arg arg = { p, dest_cpu };
1188 /* Need help from migration thread: drop lock and wait. */
eb580751 1189 task_rq_unlock(rq, p, &rf);
5cc389bc
PZ
1190 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1191 tlb_migrate_finish(p->mm);
1192 return 0;
cbce1a68
PZ
1193 } else if (task_on_rq_queued(p)) {
1194 /*
1195 * OK, since we're going to drop the lock immediately
1196 * afterwards anyway.
1197 */
d8ac8971 1198 rq_unpin_lock(rq, &rf);
5e16bbc2 1199 rq = move_queued_task(rq, p, dest_cpu);
d8ac8971 1200 rq_repin_lock(rq, &rf);
cbce1a68 1201 }
5cc389bc 1202out:
eb580751 1203 task_rq_unlock(rq, p, &rf);
5cc389bc
PZ
1204
1205 return ret;
1206}
25834c73
PZ
1207
1208int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1209{
1210 return __set_cpus_allowed_ptr(p, new_mask, false);
1211}
5cc389bc
PZ
1212EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1213
dd41f596 1214void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1215{
e2912009
PZ
1216#ifdef CONFIG_SCHED_DEBUG
1217 /*
1218 * We should never call set_task_cpu() on a blocked task,
1219 * ttwu() will sort out the placement.
1220 */
077614ee 1221 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
e2336f6e 1222 !p->on_rq);
0122ec5b 1223
3ea94de1
JP
1224 /*
1225 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1226 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1227 * time relying on p->on_rq.
1228 */
1229 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1230 p->sched_class == &fair_sched_class &&
1231 (p->on_rq && !task_on_rq_migrating(p)));
1232
0122ec5b 1233#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1234 /*
1235 * The caller should hold either p->pi_lock or rq->lock, when changing
1236 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1237 *
1238 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1239 * see task_group().
6c6c54e1
PZ
1240 *
1241 * Furthermore, all task_rq users should acquire both locks, see
1242 * task_rq_lock().
1243 */
0122ec5b
PZ
1244 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1245 lockdep_is_held(&task_rq(p)->lock)));
1246#endif
e2912009
PZ
1247#endif
1248
de1d7286 1249 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1250
0c69774e 1251 if (task_cpu(p) != new_cpu) {
0a74bef8 1252 if (p->sched_class->migrate_task_rq)
5a4fd036 1253 p->sched_class->migrate_task_rq(p);
0c69774e 1254 p->se.nr_migrations++;
ff303e66 1255 perf_event_task_migrate(p);
0c69774e 1256 }
dd41f596
IM
1257
1258 __set_task_cpu(p, new_cpu);
c65cc870
IM
1259}
1260
ac66f547
PZ
1261static void __migrate_swap_task(struct task_struct *p, int cpu)
1262{
da0c1e65 1263 if (task_on_rq_queued(p)) {
ac66f547
PZ
1264 struct rq *src_rq, *dst_rq;
1265
1266 src_rq = task_rq(p);
1267 dst_rq = cpu_rq(cpu);
1268
3ea94de1 1269 p->on_rq = TASK_ON_RQ_MIGRATING;
ac66f547
PZ
1270 deactivate_task(src_rq, p, 0);
1271 set_task_cpu(p, cpu);
1272 activate_task(dst_rq, p, 0);
3ea94de1 1273 p->on_rq = TASK_ON_RQ_QUEUED;
ac66f547
PZ
1274 check_preempt_curr(dst_rq, p, 0);
1275 } else {
1276 /*
1277 * Task isn't running anymore; make it appear like we migrated
1278 * it before it went to sleep. This means on wakeup we make the
a1fd4656 1279 * previous cpu our target instead of where it really is.
ac66f547
PZ
1280 */
1281 p->wake_cpu = cpu;
1282 }
1283}
1284
1285struct migration_swap_arg {
1286 struct task_struct *src_task, *dst_task;
1287 int src_cpu, dst_cpu;
1288};
1289
1290static int migrate_swap_stop(void *data)
1291{
1292 struct migration_swap_arg *arg = data;
1293 struct rq *src_rq, *dst_rq;
1294 int ret = -EAGAIN;
1295
62694cd5
PZ
1296 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1297 return -EAGAIN;
1298
ac66f547
PZ
1299 src_rq = cpu_rq(arg->src_cpu);
1300 dst_rq = cpu_rq(arg->dst_cpu);
1301
74602315
PZ
1302 double_raw_lock(&arg->src_task->pi_lock,
1303 &arg->dst_task->pi_lock);
ac66f547 1304 double_rq_lock(src_rq, dst_rq);
62694cd5 1305
ac66f547
PZ
1306 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1307 goto unlock;
1308
1309 if (task_cpu(arg->src_task) != arg->src_cpu)
1310 goto unlock;
1311
1312 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1313 goto unlock;
1314
1315 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1316 goto unlock;
1317
1318 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1319 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1320
1321 ret = 0;
1322
1323unlock:
1324 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1325 raw_spin_unlock(&arg->dst_task->pi_lock);
1326 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1327
1328 return ret;
1329}
1330
1331/*
1332 * Cross migrate two tasks
1333 */
1334int migrate_swap(struct task_struct *cur, struct task_struct *p)
1335{
1336 struct migration_swap_arg arg;
1337 int ret = -EINVAL;
1338
ac66f547
PZ
1339 arg = (struct migration_swap_arg){
1340 .src_task = cur,
1341 .src_cpu = task_cpu(cur),
1342 .dst_task = p,
1343 .dst_cpu = task_cpu(p),
1344 };
1345
1346 if (arg.src_cpu == arg.dst_cpu)
1347 goto out;
1348
6acce3ef
PZ
1349 /*
1350 * These three tests are all lockless; this is OK since all of them
1351 * will be re-checked with proper locks held further down the line.
1352 */
ac66f547
PZ
1353 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1354 goto out;
1355
1356 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1357 goto out;
1358
1359 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1360 goto out;
1361
286549dc 1362 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1363 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1364
1365out:
ac66f547
PZ
1366 return ret;
1367}
1368
1da177e4
LT
1369/*
1370 * wait_task_inactive - wait for a thread to unschedule.
1371 *
85ba2d86
RM
1372 * If @match_state is nonzero, it's the @p->state value just checked and
1373 * not expected to change. If it changes, i.e. @p might have woken up,
1374 * then return zero. When we succeed in waiting for @p to be off its CPU,
1375 * we return a positive number (its total switch count). If a second call
1376 * a short while later returns the same number, the caller can be sure that
1377 * @p has remained unscheduled the whole time.
1378 *
1da177e4
LT
1379 * The caller must ensure that the task *will* unschedule sometime soon,
1380 * else this function might spin for a *long* time. This function can't
1381 * be called with interrupts off, or it may introduce deadlock with
1382 * smp_call_function() if an IPI is sent by the same process we are
1383 * waiting to become inactive.
1384 */
85ba2d86 1385unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4 1386{
da0c1e65 1387 int running, queued;
eb580751 1388 struct rq_flags rf;
85ba2d86 1389 unsigned long ncsw;
70b97a7f 1390 struct rq *rq;
1da177e4 1391
3a5c359a
AK
1392 for (;;) {
1393 /*
1394 * We do the initial early heuristics without holding
1395 * any task-queue locks at all. We'll only try to get
1396 * the runqueue lock when things look like they will
1397 * work out!
1398 */
1399 rq = task_rq(p);
fa490cfd 1400
3a5c359a
AK
1401 /*
1402 * If the task is actively running on another CPU
1403 * still, just relax and busy-wait without holding
1404 * any locks.
1405 *
1406 * NOTE! Since we don't hold any locks, it's not
1407 * even sure that "rq" stays as the right runqueue!
1408 * But we don't care, since "task_running()" will
1409 * return false if the runqueue has changed and p
1410 * is actually now running somewhere else!
1411 */
85ba2d86
RM
1412 while (task_running(rq, p)) {
1413 if (match_state && unlikely(p->state != match_state))
1414 return 0;
3a5c359a 1415 cpu_relax();
85ba2d86 1416 }
fa490cfd 1417
3a5c359a
AK
1418 /*
1419 * Ok, time to look more closely! We need the rq
1420 * lock now, to be *sure*. If we're wrong, we'll
1421 * just go back and repeat.
1422 */
eb580751 1423 rq = task_rq_lock(p, &rf);
27a9da65 1424 trace_sched_wait_task(p);
3a5c359a 1425 running = task_running(rq, p);
da0c1e65 1426 queued = task_on_rq_queued(p);
85ba2d86 1427 ncsw = 0;
f31e11d8 1428 if (!match_state || p->state == match_state)
93dcf55f 1429 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
eb580751 1430 task_rq_unlock(rq, p, &rf);
fa490cfd 1431
85ba2d86
RM
1432 /*
1433 * If it changed from the expected state, bail out now.
1434 */
1435 if (unlikely(!ncsw))
1436 break;
1437
3a5c359a
AK
1438 /*
1439 * Was it really running after all now that we
1440 * checked with the proper locks actually held?
1441 *
1442 * Oops. Go back and try again..
1443 */
1444 if (unlikely(running)) {
1445 cpu_relax();
1446 continue;
1447 }
fa490cfd 1448
3a5c359a
AK
1449 /*
1450 * It's not enough that it's not actively running,
1451 * it must be off the runqueue _entirely_, and not
1452 * preempted!
1453 *
80dd99b3 1454 * So if it was still runnable (but just not actively
3a5c359a
AK
1455 * running right now), it's preempted, and we should
1456 * yield - it could be a while.
1457 */
da0c1e65 1458 if (unlikely(queued)) {
8b0e1953 1459 ktime_t to = NSEC_PER_SEC / HZ;
8eb90c30
TG
1460
1461 set_current_state(TASK_UNINTERRUPTIBLE);
1462 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1463 continue;
1464 }
fa490cfd 1465
3a5c359a
AK
1466 /*
1467 * Ahh, all good. It wasn't running, and it wasn't
1468 * runnable, which means that it will never become
1469 * running in the future either. We're all done!
1470 */
1471 break;
1472 }
85ba2d86
RM
1473
1474 return ncsw;
1da177e4
LT
1475}
1476
1477/***
1478 * kick_process - kick a running thread to enter/exit the kernel
1479 * @p: the to-be-kicked thread
1480 *
1481 * Cause a process which is running on another CPU to enter
1482 * kernel-mode, without any delay. (to get signals handled.)
1483 *
25985edc 1484 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1485 * because all it wants to ensure is that the remote task enters
1486 * the kernel. If the IPI races and the task has been migrated
1487 * to another CPU then no harm is done and the purpose has been
1488 * achieved as well.
1489 */
36c8b586 1490void kick_process(struct task_struct *p)
1da177e4
LT
1491{
1492 int cpu;
1493
1494 preempt_disable();
1495 cpu = task_cpu(p);
1496 if ((cpu != smp_processor_id()) && task_curr(p))
1497 smp_send_reschedule(cpu);
1498 preempt_enable();
1499}
b43e3521 1500EXPORT_SYMBOL_GPL(kick_process);
1da177e4 1501
30da688e 1502/*
013fdb80 1503 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
e9d867a6
PZI
1504 *
1505 * A few notes on cpu_active vs cpu_online:
1506 *
1507 * - cpu_active must be a subset of cpu_online
1508 *
1509 * - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
1510 * see __set_cpus_allowed_ptr(). At this point the newly online
1511 * cpu isn't yet part of the sched domains, and balancing will not
1512 * see it.
1513 *
1514 * - on cpu-down we clear cpu_active() to mask the sched domains and
1515 * avoid the load balancer to place new tasks on the to be removed
1516 * cpu. Existing tasks will remain running there and will be taken
1517 * off.
1518 *
1519 * This means that fallback selection must not select !active CPUs.
1520 * And can assume that any active CPU must be online. Conversely
1521 * select_task_rq() below may allow selection of !active CPUs in order
1522 * to satisfy the above rules.
30da688e 1523 */
5da9a0fb
PZ
1524static int select_fallback_rq(int cpu, struct task_struct *p)
1525{
aa00d89c
TC
1526 int nid = cpu_to_node(cpu);
1527 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1528 enum { cpuset, possible, fail } state = cpuset;
1529 int dest_cpu;
5da9a0fb 1530
aa00d89c
TC
1531 /*
1532 * If the node that the cpu is on has been offlined, cpu_to_node()
1533 * will return -1. There is no cpu on the node, and we should
1534 * select the cpu on the other node.
1535 */
1536 if (nid != -1) {
1537 nodemask = cpumask_of_node(nid);
1538
1539 /* Look for allowed, online CPU in same node. */
1540 for_each_cpu(dest_cpu, nodemask) {
aa00d89c
TC
1541 if (!cpu_active(dest_cpu))
1542 continue;
1543 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1544 return dest_cpu;
1545 }
2baab4e9 1546 }
5da9a0fb 1547
2baab4e9
PZ
1548 for (;;) {
1549 /* Any allowed, online CPU? */
e3831edd 1550 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
feb245e3
TH
1551 if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu))
1552 continue;
1553 if (!cpu_online(dest_cpu))
2baab4e9
PZ
1554 continue;
1555 goto out;
1556 }
5da9a0fb 1557
e73e85f0 1558 /* No more Mr. Nice Guy. */
2baab4e9
PZ
1559 switch (state) {
1560 case cpuset:
e73e85f0
ON
1561 if (IS_ENABLED(CONFIG_CPUSETS)) {
1562 cpuset_cpus_allowed_fallback(p);
1563 state = possible;
1564 break;
1565 }
1566 /* fall-through */
2baab4e9
PZ
1567 case possible:
1568 do_set_cpus_allowed(p, cpu_possible_mask);
1569 state = fail;
1570 break;
1571
1572 case fail:
1573 BUG();
1574 break;
1575 }
1576 }
1577
1578out:
1579 if (state != cpuset) {
1580 /*
1581 * Don't tell them about moving exiting tasks or
1582 * kernel threads (both mm NULL), since they never
1583 * leave kernel.
1584 */
1585 if (p->mm && printk_ratelimit()) {
aac74dc4 1586 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1587 task_pid_nr(p), p->comm, cpu);
1588 }
5da9a0fb
PZ
1589 }
1590
1591 return dest_cpu;
1592}
1593
e2912009 1594/*
013fdb80 1595 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1596 */
970b13ba 1597static inline
ac66f547 1598int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1599{
cbce1a68
PZ
1600 lockdep_assert_held(&p->pi_lock);
1601
50605ffb 1602 if (tsk_nr_cpus_allowed(p) > 1)
6c1d9410 1603 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e9d867a6
PZI
1604 else
1605 cpu = cpumask_any(tsk_cpus_allowed(p));
e2912009
PZ
1606
1607 /*
1608 * In order not to call set_task_cpu() on a blocking task we need
1609 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1610 * cpu.
1611 *
1612 * Since this is common to all placement strategies, this lives here.
1613 *
1614 * [ this allows ->select_task() to simply return task_cpu(p) and
1615 * not worry about this generic constraint ]
1616 */
fa17b507 1617 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1618 !cpu_online(cpu)))
5da9a0fb 1619 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1620
1621 return cpu;
970b13ba 1622}
09a40af5
MG
1623
1624static void update_avg(u64 *avg, u64 sample)
1625{
1626 s64 diff = sample - *avg;
1627 *avg += diff >> 3;
1628}
25834c73
PZ
1629
1630#else
1631
1632static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1633 const struct cpumask *new_mask, bool check)
1634{
1635 return set_cpus_allowed_ptr(p, new_mask);
1636}
1637
5cc389bc 1638#endif /* CONFIG_SMP */
970b13ba 1639
d7c01d27 1640static void
b84cb5df 1641ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1642{
4fa8d299 1643 struct rq *rq;
b84cb5df 1644
4fa8d299
JP
1645 if (!schedstat_enabled())
1646 return;
1647
1648 rq = this_rq();
d7c01d27 1649
4fa8d299
JP
1650#ifdef CONFIG_SMP
1651 if (cpu == rq->cpu) {
ae92882e
JP
1652 schedstat_inc(rq->ttwu_local);
1653 schedstat_inc(p->se.statistics.nr_wakeups_local);
d7c01d27
PZ
1654 } else {
1655 struct sched_domain *sd;
1656
ae92882e 1657 schedstat_inc(p->se.statistics.nr_wakeups_remote);
057f3fad 1658 rcu_read_lock();
4fa8d299 1659 for_each_domain(rq->cpu, sd) {
d7c01d27 1660 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
ae92882e 1661 schedstat_inc(sd->ttwu_wake_remote);
d7c01d27
PZ
1662 break;
1663 }
1664 }
057f3fad 1665 rcu_read_unlock();
d7c01d27 1666 }
f339b9dc
PZ
1667
1668 if (wake_flags & WF_MIGRATED)
ae92882e 1669 schedstat_inc(p->se.statistics.nr_wakeups_migrate);
d7c01d27
PZ
1670#endif /* CONFIG_SMP */
1671
ae92882e
JP
1672 schedstat_inc(rq->ttwu_count);
1673 schedstat_inc(p->se.statistics.nr_wakeups);
d7c01d27
PZ
1674
1675 if (wake_flags & WF_SYNC)
ae92882e 1676 schedstat_inc(p->se.statistics.nr_wakeups_sync);
d7c01d27
PZ
1677}
1678
1de64443 1679static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
d7c01d27 1680{
9ed3811a 1681 activate_task(rq, p, en_flags);
da0c1e65 1682 p->on_rq = TASK_ON_RQ_QUEUED;
c2f7115e
PZ
1683
1684 /* if a worker is waking up, notify workqueue */
1685 if (p->flags & PF_WQ_WORKER)
1686 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1687}
1688
23f41eeb
PZ
1689/*
1690 * Mark the task runnable and perform wakeup-preemption.
1691 */
e7904a28 1692static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
d8ac8971 1693 struct rq_flags *rf)
9ed3811a 1694{
9ed3811a 1695 check_preempt_curr(rq, p, wake_flags);
9ed3811a 1696 p->state = TASK_RUNNING;
fbd705a0
PZ
1697 trace_sched_wakeup(p);
1698
9ed3811a 1699#ifdef CONFIG_SMP
4c9a4bc8
PZ
1700 if (p->sched_class->task_woken) {
1701 /*
cbce1a68
PZ
1702 * Our task @p is fully woken up and running; so its safe to
1703 * drop the rq->lock, hereafter rq is only used for statistics.
4c9a4bc8 1704 */
d8ac8971 1705 rq_unpin_lock(rq, rf);
9ed3811a 1706 p->sched_class->task_woken(rq, p);
d8ac8971 1707 rq_repin_lock(rq, rf);
4c9a4bc8 1708 }
9ed3811a 1709
e69c6341 1710 if (rq->idle_stamp) {
78becc27 1711 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1712 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1713
abfafa54
JL
1714 update_avg(&rq->avg_idle, delta);
1715
1716 if (rq->avg_idle > max)
9ed3811a 1717 rq->avg_idle = max;
abfafa54 1718
9ed3811a
TH
1719 rq->idle_stamp = 0;
1720 }
1721#endif
1722}
1723
c05fbafb 1724static void
e7904a28 1725ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
d8ac8971 1726 struct rq_flags *rf)
c05fbafb 1727{
b5179ac7
PZ
1728 int en_flags = ENQUEUE_WAKEUP;
1729
cbce1a68
PZ
1730 lockdep_assert_held(&rq->lock);
1731
c05fbafb
PZ
1732#ifdef CONFIG_SMP
1733 if (p->sched_contributes_to_load)
1734 rq->nr_uninterruptible--;
b5179ac7 1735
b5179ac7 1736 if (wake_flags & WF_MIGRATED)
59efa0ba 1737 en_flags |= ENQUEUE_MIGRATED;
c05fbafb
PZ
1738#endif
1739
b5179ac7 1740 ttwu_activate(rq, p, en_flags);
d8ac8971 1741 ttwu_do_wakeup(rq, p, wake_flags, rf);
c05fbafb
PZ
1742}
1743
1744/*
1745 * Called in case the task @p isn't fully descheduled from its runqueue,
1746 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1747 * since all we need to do is flip p->state to TASK_RUNNING, since
1748 * the task is still ->on_rq.
1749 */
1750static int ttwu_remote(struct task_struct *p, int wake_flags)
1751{
eb580751 1752 struct rq_flags rf;
c05fbafb
PZ
1753 struct rq *rq;
1754 int ret = 0;
1755
eb580751 1756 rq = __task_rq_lock(p, &rf);
da0c1e65 1757 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
1758 /* check_preempt_curr() may use rq clock */
1759 update_rq_clock(rq);
d8ac8971 1760 ttwu_do_wakeup(rq, p, wake_flags, &rf);
c05fbafb
PZ
1761 ret = 1;
1762 }
eb580751 1763 __task_rq_unlock(rq, &rf);
c05fbafb
PZ
1764
1765 return ret;
1766}
1767
317f3941 1768#ifdef CONFIG_SMP
e3baac47 1769void sched_ttwu_pending(void)
317f3941
PZ
1770{
1771 struct rq *rq = this_rq();
fa14ff4a
PZ
1772 struct llist_node *llist = llist_del_all(&rq->wake_list);
1773 struct task_struct *p;
e3baac47 1774 unsigned long flags;
d8ac8971 1775 struct rq_flags rf;
317f3941 1776
e3baac47
PZ
1777 if (!llist)
1778 return;
1779
1780 raw_spin_lock_irqsave(&rq->lock, flags);
d8ac8971 1781 rq_pin_lock(rq, &rf);
317f3941 1782
fa14ff4a 1783 while (llist) {
b7e7ade3
PZ
1784 int wake_flags = 0;
1785
fa14ff4a
PZ
1786 p = llist_entry(llist, struct task_struct, wake_entry);
1787 llist = llist_next(llist);
b7e7ade3
PZ
1788
1789 if (p->sched_remote_wakeup)
1790 wake_flags = WF_MIGRATED;
1791
d8ac8971 1792 ttwu_do_activate(rq, p, wake_flags, &rf);
317f3941
PZ
1793 }
1794
d8ac8971 1795 rq_unpin_lock(rq, &rf);
e3baac47 1796 raw_spin_unlock_irqrestore(&rq->lock, flags);
317f3941
PZ
1797}
1798
1799void scheduler_ipi(void)
1800{
f27dde8d
PZ
1801 /*
1802 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1803 * TIF_NEED_RESCHED remotely (for the first time) will also send
1804 * this IPI.
1805 */
8cb75e0c 1806 preempt_fold_need_resched();
f27dde8d 1807
fd2ac4f4 1808 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1809 return;
1810
1811 /*
1812 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1813 * traditionally all their work was done from the interrupt return
1814 * path. Now that we actually do some work, we need to make sure
1815 * we do call them.
1816 *
1817 * Some archs already do call them, luckily irq_enter/exit nest
1818 * properly.
1819 *
1820 * Arguably we should visit all archs and update all handlers,
1821 * however a fair share of IPIs are still resched only so this would
1822 * somewhat pessimize the simple resched case.
1823 */
1824 irq_enter();
fa14ff4a 1825 sched_ttwu_pending();
ca38062e
SS
1826
1827 /*
1828 * Check if someone kicked us for doing the nohz idle load balance.
1829 */
873b4c65 1830 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1831 this_rq()->idle_balance = 1;
ca38062e 1832 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1833 }
c5d753a5 1834 irq_exit();
317f3941
PZ
1835}
1836
b7e7ade3 1837static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
317f3941 1838{
e3baac47
PZ
1839 struct rq *rq = cpu_rq(cpu);
1840
b7e7ade3
PZ
1841 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1842
e3baac47
PZ
1843 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1844 if (!set_nr_if_polling(rq->idle))
1845 smp_send_reschedule(cpu);
1846 else
1847 trace_sched_wake_idle_without_ipi(cpu);
1848 }
317f3941 1849}
d6aa8f85 1850
f6be8af1
CL
1851void wake_up_if_idle(int cpu)
1852{
1853 struct rq *rq = cpu_rq(cpu);
1854 unsigned long flags;
1855
fd7de1e8
AL
1856 rcu_read_lock();
1857
1858 if (!is_idle_task(rcu_dereference(rq->curr)))
1859 goto out;
f6be8af1
CL
1860
1861 if (set_nr_if_polling(rq->idle)) {
1862 trace_sched_wake_idle_without_ipi(cpu);
1863 } else {
1864 raw_spin_lock_irqsave(&rq->lock, flags);
1865 if (is_idle_task(rq->curr))
1866 smp_send_reschedule(cpu);
1867 /* Else cpu is not in idle, do nothing here */
1868 raw_spin_unlock_irqrestore(&rq->lock, flags);
1869 }
fd7de1e8
AL
1870
1871out:
1872 rcu_read_unlock();
f6be8af1
CL
1873}
1874
39be3501 1875bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1876{
1877 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1878}
d6aa8f85 1879#endif /* CONFIG_SMP */
317f3941 1880
b5179ac7 1881static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
c05fbafb
PZ
1882{
1883 struct rq *rq = cpu_rq(cpu);
d8ac8971 1884 struct rq_flags rf;
c05fbafb 1885
17d9f311 1886#if defined(CONFIG_SMP)
39be3501 1887 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1888 sched_clock_cpu(cpu); /* sync clocks x-cpu */
b7e7ade3 1889 ttwu_queue_remote(p, cpu, wake_flags);
317f3941
PZ
1890 return;
1891 }
1892#endif
1893
c05fbafb 1894 raw_spin_lock(&rq->lock);
d8ac8971
MF
1895 rq_pin_lock(rq, &rf);
1896 ttwu_do_activate(rq, p, wake_flags, &rf);
1897 rq_unpin_lock(rq, &rf);
c05fbafb 1898 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1899}
1900
8643cda5
PZ
1901/*
1902 * Notes on Program-Order guarantees on SMP systems.
1903 *
1904 * MIGRATION
1905 *
1906 * The basic program-order guarantee on SMP systems is that when a task [t]
1907 * migrates, all its activity on its old cpu [c0] happens-before any subsequent
1908 * execution on its new cpu [c1].
1909 *
1910 * For migration (of runnable tasks) this is provided by the following means:
1911 *
1912 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1913 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1914 * rq(c1)->lock (if not at the same time, then in that order).
1915 * C) LOCK of the rq(c1)->lock scheduling in task
1916 *
1917 * Transitivity guarantees that B happens after A and C after B.
1918 * Note: we only require RCpc transitivity.
1919 * Note: the cpu doing B need not be c0 or c1
1920 *
1921 * Example:
1922 *
1923 * CPU0 CPU1 CPU2
1924 *
1925 * LOCK rq(0)->lock
1926 * sched-out X
1927 * sched-in Y
1928 * UNLOCK rq(0)->lock
1929 *
1930 * LOCK rq(0)->lock // orders against CPU0
1931 * dequeue X
1932 * UNLOCK rq(0)->lock
1933 *
1934 * LOCK rq(1)->lock
1935 * enqueue X
1936 * UNLOCK rq(1)->lock
1937 *
1938 * LOCK rq(1)->lock // orders against CPU2
1939 * sched-out Z
1940 * sched-in X
1941 * UNLOCK rq(1)->lock
1942 *
1943 *
1944 * BLOCKING -- aka. SLEEP + WAKEUP
1945 *
1946 * For blocking we (obviously) need to provide the same guarantee as for
1947 * migration. However the means are completely different as there is no lock
1948 * chain to provide order. Instead we do:
1949 *
1950 * 1) smp_store_release(X->on_cpu, 0)
1f03e8d2 1951 * 2) smp_cond_load_acquire(!X->on_cpu)
8643cda5
PZ
1952 *
1953 * Example:
1954 *
1955 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1956 *
1957 * LOCK rq(0)->lock LOCK X->pi_lock
1958 * dequeue X
1959 * sched-out X
1960 * smp_store_release(X->on_cpu, 0);
1961 *
1f03e8d2 1962 * smp_cond_load_acquire(&X->on_cpu, !VAL);
8643cda5
PZ
1963 * X->state = WAKING
1964 * set_task_cpu(X,2)
1965 *
1966 * LOCK rq(2)->lock
1967 * enqueue X
1968 * X->state = RUNNING
1969 * UNLOCK rq(2)->lock
1970 *
1971 * LOCK rq(2)->lock // orders against CPU1
1972 * sched-out Z
1973 * sched-in X
1974 * UNLOCK rq(2)->lock
1975 *
1976 * UNLOCK X->pi_lock
1977 * UNLOCK rq(0)->lock
1978 *
1979 *
1980 * However; for wakeups there is a second guarantee we must provide, namely we
1981 * must observe the state that lead to our wakeup. That is, not only must our
1982 * task observe its own prior state, it must also observe the stores prior to
1983 * its wakeup.
1984 *
1985 * This means that any means of doing remote wakeups must order the CPU doing
1986 * the wakeup against the CPU the task is going to end up running on. This,
1987 * however, is already required for the regular Program-Order guarantee above,
1f03e8d2 1988 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
8643cda5
PZ
1989 *
1990 */
1991
9ed3811a 1992/**
1da177e4 1993 * try_to_wake_up - wake up a thread
9ed3811a 1994 * @p: the thread to be awakened
1da177e4 1995 * @state: the mask of task states that can be woken
9ed3811a 1996 * @wake_flags: wake modifier flags (WF_*)
1da177e4 1997 *
a2250238 1998 * If (@state & @p->state) @p->state = TASK_RUNNING.
1da177e4 1999 *
a2250238
PZ
2000 * If the task was not queued/runnable, also place it back on a runqueue.
2001 *
2002 * Atomic against schedule() which would dequeue a task, also see
2003 * set_current_state().
2004 *
2005 * Return: %true if @p->state changes (an actual wakeup was done),
2006 * %false otherwise.
1da177e4 2007 */
e4a52bcb
PZ
2008static int
2009try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 2010{
1da177e4 2011 unsigned long flags;
c05fbafb 2012 int cpu, success = 0;
2398f2c6 2013
e0acd0a6
ON
2014 /*
2015 * If we are going to wake up a thread waiting for CONDITION we
2016 * need to ensure that CONDITION=1 done by the caller can not be
2017 * reordered with p->state check below. This pairs with mb() in
2018 * set_current_state() the waiting thread does.
2019 */
2020 smp_mb__before_spinlock();
013fdb80 2021 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 2022 if (!(p->state & state))
1da177e4
LT
2023 goto out;
2024
fbd705a0
PZ
2025 trace_sched_waking(p);
2026
c05fbafb 2027 success = 1; /* we're going to change ->state */
1da177e4 2028 cpu = task_cpu(p);
1da177e4 2029
135e8c92
BS
2030 /*
2031 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2032 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2033 * in smp_cond_load_acquire() below.
2034 *
2035 * sched_ttwu_pending() try_to_wake_up()
2036 * [S] p->on_rq = 1; [L] P->state
2037 * UNLOCK rq->lock -----.
2038 * \
2039 * +--- RMB
2040 * schedule() /
2041 * LOCK rq->lock -----'
2042 * UNLOCK rq->lock
2043 *
2044 * [task p]
2045 * [S] p->state = UNINTERRUPTIBLE [L] p->on_rq
2046 *
2047 * Pairs with the UNLOCK+LOCK on rq->lock from the
2048 * last wakeup of our task and the schedule that got our task
2049 * current.
2050 */
2051 smp_rmb();
c05fbafb
PZ
2052 if (p->on_rq && ttwu_remote(p, wake_flags))
2053 goto stat;
1da177e4 2054
1da177e4 2055#ifdef CONFIG_SMP
ecf7d01c
PZ
2056 /*
2057 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2058 * possible to, falsely, observe p->on_cpu == 0.
2059 *
2060 * One must be running (->on_cpu == 1) in order to remove oneself
2061 * from the runqueue.
2062 *
2063 * [S] ->on_cpu = 1; [L] ->on_rq
2064 * UNLOCK rq->lock
2065 * RMB
2066 * LOCK rq->lock
2067 * [S] ->on_rq = 0; [L] ->on_cpu
2068 *
2069 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2070 * from the consecutive calls to schedule(); the first switching to our
2071 * task, the second putting it to sleep.
2072 */
2073 smp_rmb();
2074
e9c84311 2075 /*
c05fbafb
PZ
2076 * If the owning (remote) cpu is still in the middle of schedule() with
2077 * this task as prev, wait until its done referencing the task.
b75a2253
PZ
2078 *
2079 * Pairs with the smp_store_release() in finish_lock_switch().
2080 *
2081 * This ensures that tasks getting woken will be fully ordered against
2082 * their previous state and preserve Program Order.
0970d299 2083 */
1f03e8d2 2084 smp_cond_load_acquire(&p->on_cpu, !VAL);
1da177e4 2085
a8e4f2ea 2086 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 2087 p->state = TASK_WAKING;
e7693a36 2088
ac66f547 2089 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
2090 if (task_cpu(p) != cpu) {
2091 wake_flags |= WF_MIGRATED;
e4a52bcb 2092 set_task_cpu(p, cpu);
f339b9dc 2093 }
1da177e4 2094#endif /* CONFIG_SMP */
1da177e4 2095
b5179ac7 2096 ttwu_queue(p, cpu, wake_flags);
c05fbafb 2097stat:
4fa8d299 2098 ttwu_stat(p, cpu, wake_flags);
1da177e4 2099out:
013fdb80 2100 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
2101
2102 return success;
2103}
2104
21aa9af0
TH
2105/**
2106 * try_to_wake_up_local - try to wake up a local task with rq lock held
2107 * @p: the thread to be awakened
9279e0d2 2108 * @cookie: context's cookie for pinning
21aa9af0 2109 *
2acca55e 2110 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 2111 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 2112 * the current task.
21aa9af0 2113 */
d8ac8971 2114static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf)
21aa9af0
TH
2115{
2116 struct rq *rq = task_rq(p);
21aa9af0 2117
383efcd0
TH
2118 if (WARN_ON_ONCE(rq != this_rq()) ||
2119 WARN_ON_ONCE(p == current))
2120 return;
2121
21aa9af0
TH
2122 lockdep_assert_held(&rq->lock);
2123
2acca55e 2124 if (!raw_spin_trylock(&p->pi_lock)) {
cbce1a68
PZ
2125 /*
2126 * This is OK, because current is on_cpu, which avoids it being
2127 * picked for load-balance and preemption/IRQs are still
2128 * disabled avoiding further scheduler activity on it and we've
2129 * not yet picked a replacement task.
2130 */
d8ac8971 2131 rq_unpin_lock(rq, rf);
2acca55e
PZ
2132 raw_spin_unlock(&rq->lock);
2133 raw_spin_lock(&p->pi_lock);
2134 raw_spin_lock(&rq->lock);
d8ac8971 2135 rq_repin_lock(rq, rf);
2acca55e
PZ
2136 }
2137
21aa9af0 2138 if (!(p->state & TASK_NORMAL))
2acca55e 2139 goto out;
21aa9af0 2140
fbd705a0
PZ
2141 trace_sched_waking(p);
2142
da0c1e65 2143 if (!task_on_rq_queued(p))
d7c01d27
PZ
2144 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2145
d8ac8971 2146 ttwu_do_wakeup(rq, p, 0, rf);
4fa8d299 2147 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
2148out:
2149 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
2150}
2151
50fa610a
DH
2152/**
2153 * wake_up_process - Wake up a specific process
2154 * @p: The process to be woken up.
2155 *
2156 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
2157 * processes.
2158 *
2159 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
2160 *
2161 * It may be assumed that this function implies a write memory barrier before
2162 * changing the task state if and only if any tasks are woken up.
2163 */
7ad5b3a5 2164int wake_up_process(struct task_struct *p)
1da177e4 2165{
9067ac85 2166 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 2167}
1da177e4
LT
2168EXPORT_SYMBOL(wake_up_process);
2169
7ad5b3a5 2170int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2171{
2172 return try_to_wake_up(p, state, 0);
2173}
2174
a5e7be3b
JL
2175/*
2176 * This function clears the sched_dl_entity static params.
2177 */
2178void __dl_clear_params(struct task_struct *p)
2179{
2180 struct sched_dl_entity *dl_se = &p->dl;
2181
2182 dl_se->dl_runtime = 0;
2183 dl_se->dl_deadline = 0;
2184 dl_se->dl_period = 0;
2185 dl_se->flags = 0;
2186 dl_se->dl_bw = 0;
40767b0d
PZ
2187
2188 dl_se->dl_throttled = 0;
40767b0d 2189 dl_se->dl_yielded = 0;
a5e7be3b
JL
2190}
2191
1da177e4
LT
2192/*
2193 * Perform scheduler related setup for a newly forked process p.
2194 * p is forked by current.
dd41f596
IM
2195 *
2196 * __sched_fork() is basic setup used by init_idle() too:
2197 */
5e1576ed 2198static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2199{
fd2f4419
PZ
2200 p->on_rq = 0;
2201
2202 p->se.on_rq = 0;
dd41f596
IM
2203 p->se.exec_start = 0;
2204 p->se.sum_exec_runtime = 0;
f6cf891c 2205 p->se.prev_sum_exec_runtime = 0;
6c594c21 2206 p->se.nr_migrations = 0;
da7a735e 2207 p->se.vruntime = 0;
fd2f4419 2208 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d 2209
ad936d86
BP
2210#ifdef CONFIG_FAIR_GROUP_SCHED
2211 p->se.cfs_rq = NULL;
2212#endif
2213
6cfb0d5d 2214#ifdef CONFIG_SCHEDSTATS
cb251765 2215 /* Even if schedstat is disabled, there should not be garbage */
41acab88 2216 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2217#endif
476d139c 2218
aab03e05 2219 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 2220 init_dl_task_timer(&p->dl);
a5e7be3b 2221 __dl_clear_params(p);
aab03e05 2222
fa717060 2223 INIT_LIST_HEAD(&p->rt.run_list);
ff77e468
PZ
2224 p->rt.timeout = 0;
2225 p->rt.time_slice = sched_rr_timeslice;
2226 p->rt.on_rq = 0;
2227 p->rt.on_list = 0;
476d139c 2228
e107be36
AK
2229#ifdef CONFIG_PREEMPT_NOTIFIERS
2230 INIT_HLIST_HEAD(&p->preempt_notifiers);
2231#endif
cbee9f88
PZ
2232
2233#ifdef CONFIG_NUMA_BALANCING
2234 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 2235 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
2236 p->mm->numa_scan_seq = 0;
2237 }
2238
5e1576ed
RR
2239 if (clone_flags & CLONE_VM)
2240 p->numa_preferred_nid = current->numa_preferred_nid;
2241 else
2242 p->numa_preferred_nid = -1;
2243
cbee9f88
PZ
2244 p->node_stamp = 0ULL;
2245 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 2246 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 2247 p->numa_work.next = &p->numa_work;
44dba3d5 2248 p->numa_faults = NULL;
7e2703e6
RR
2249 p->last_task_numa_placement = 0;
2250 p->last_sum_exec_runtime = 0;
8c8a743c 2251
8c8a743c 2252 p->numa_group = NULL;
cbee9f88 2253#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
2254}
2255
2a595721
SD
2256DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2257
1a687c2e 2258#ifdef CONFIG_NUMA_BALANCING
c3b9bc5b 2259
1a687c2e
MG
2260void set_numabalancing_state(bool enabled)
2261{
2262 if (enabled)
2a595721 2263 static_branch_enable(&sched_numa_balancing);
1a687c2e 2264 else
2a595721 2265 static_branch_disable(&sched_numa_balancing);
1a687c2e 2266}
54a43d54
AK
2267
2268#ifdef CONFIG_PROC_SYSCTL
2269int sysctl_numa_balancing(struct ctl_table *table, int write,
2270 void __user *buffer, size_t *lenp, loff_t *ppos)
2271{
2272 struct ctl_table t;
2273 int err;
2a595721 2274 int state = static_branch_likely(&sched_numa_balancing);
54a43d54
AK
2275
2276 if (write && !capable(CAP_SYS_ADMIN))
2277 return -EPERM;
2278
2279 t = *table;
2280 t.data = &state;
2281 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2282 if (err < 0)
2283 return err;
2284 if (write)
2285 set_numabalancing_state(state);
2286 return err;
2287}
2288#endif
2289#endif
dd41f596 2290
4698f88c
JP
2291#ifdef CONFIG_SCHEDSTATS
2292
cb251765 2293DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4698f88c 2294static bool __initdata __sched_schedstats = false;
cb251765 2295
cb251765
MG
2296static void set_schedstats(bool enabled)
2297{
2298 if (enabled)
2299 static_branch_enable(&sched_schedstats);
2300 else
2301 static_branch_disable(&sched_schedstats);
2302}
2303
2304void force_schedstat_enabled(void)
2305{
2306 if (!schedstat_enabled()) {
2307 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2308 static_branch_enable(&sched_schedstats);
2309 }
2310}
2311
2312static int __init setup_schedstats(char *str)
2313{
2314 int ret = 0;
2315 if (!str)
2316 goto out;
2317
4698f88c
JP
2318 /*
2319 * This code is called before jump labels have been set up, so we can't
2320 * change the static branch directly just yet. Instead set a temporary
2321 * variable so init_schedstats() can do it later.
2322 */
cb251765 2323 if (!strcmp(str, "enable")) {
4698f88c 2324 __sched_schedstats = true;
cb251765
MG
2325 ret = 1;
2326 } else if (!strcmp(str, "disable")) {
4698f88c 2327 __sched_schedstats = false;
cb251765
MG
2328 ret = 1;
2329 }
2330out:
2331 if (!ret)
2332 pr_warn("Unable to parse schedstats=\n");
2333
2334 return ret;
2335}
2336__setup("schedstats=", setup_schedstats);
2337
4698f88c
JP
2338static void __init init_schedstats(void)
2339{
2340 set_schedstats(__sched_schedstats);
2341}
2342
cb251765
MG
2343#ifdef CONFIG_PROC_SYSCTL
2344int sysctl_schedstats(struct ctl_table *table, int write,
2345 void __user *buffer, size_t *lenp, loff_t *ppos)
2346{
2347 struct ctl_table t;
2348 int err;
2349 int state = static_branch_likely(&sched_schedstats);
2350
2351 if (write && !capable(CAP_SYS_ADMIN))
2352 return -EPERM;
2353
2354 t = *table;
2355 t.data = &state;
2356 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2357 if (err < 0)
2358 return err;
2359 if (write)
2360 set_schedstats(state);
2361 return err;
2362}
4698f88c
JP
2363#endif /* CONFIG_PROC_SYSCTL */
2364#else /* !CONFIG_SCHEDSTATS */
2365static inline void init_schedstats(void) {}
2366#endif /* CONFIG_SCHEDSTATS */
dd41f596
IM
2367
2368/*
2369 * fork()/clone()-time setup:
2370 */
aab03e05 2371int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2372{
0122ec5b 2373 unsigned long flags;
dd41f596
IM
2374 int cpu = get_cpu();
2375
5e1576ed 2376 __sched_fork(clone_flags, p);
06b83b5f 2377 /*
7dc603c9 2378 * We mark the process as NEW here. This guarantees that
06b83b5f
PZ
2379 * nobody will actually run it, and a signal or other external
2380 * event cannot wake it up and insert it on the runqueue either.
2381 */
7dc603c9 2382 p->state = TASK_NEW;
dd41f596 2383
c350a04e
MG
2384 /*
2385 * Make sure we do not leak PI boosting priority to the child.
2386 */
2387 p->prio = current->normal_prio;
2388
b9dc29e7
MG
2389 /*
2390 * Revert to default priority/policy on fork if requested.
2391 */
2392 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 2393 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 2394 p->policy = SCHED_NORMAL;
6c697bdf 2395 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
2396 p->rt_priority = 0;
2397 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2398 p->static_prio = NICE_TO_PRIO(0);
2399
2400 p->prio = p->normal_prio = __normal_prio(p);
2401 set_load_weight(p);
6c697bdf 2402
b9dc29e7
MG
2403 /*
2404 * We don't need the reset flag anymore after the fork. It has
2405 * fulfilled its duty:
2406 */
2407 p->sched_reset_on_fork = 0;
2408 }
ca94c442 2409
aab03e05
DF
2410 if (dl_prio(p->prio)) {
2411 put_cpu();
2412 return -EAGAIN;
2413 } else if (rt_prio(p->prio)) {
2414 p->sched_class = &rt_sched_class;
2415 } else {
2ddbf952 2416 p->sched_class = &fair_sched_class;
aab03e05 2417 }
b29739f9 2418
7dc603c9 2419 init_entity_runnable_average(&p->se);
cd29fe6f 2420
86951599
PZ
2421 /*
2422 * The child is not yet in the pid-hash so no cgroup attach races,
2423 * and the cgroup is pinned to this child due to cgroup_fork()
2424 * is ran before sched_fork().
2425 *
2426 * Silence PROVE_RCU.
2427 */
0122ec5b 2428 raw_spin_lock_irqsave(&p->pi_lock, flags);
e210bffd
PZ
2429 /*
2430 * We're setting the cpu for the first time, we don't migrate,
2431 * so use __set_task_cpu().
2432 */
2433 __set_task_cpu(p, cpu);
2434 if (p->sched_class->task_fork)
2435 p->sched_class->task_fork(p);
0122ec5b 2436 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 2437
f6db8347 2438#ifdef CONFIG_SCHED_INFO
dd41f596 2439 if (likely(sched_info_on()))
52f17b6c 2440 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2441#endif
3ca7a440
PZ
2442#if defined(CONFIG_SMP)
2443 p->on_cpu = 0;
4866cde0 2444#endif
01028747 2445 init_task_preempt_count(p);
806c09a7 2446#ifdef CONFIG_SMP
917b627d 2447 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 2448 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 2449#endif
917b627d 2450
476d139c 2451 put_cpu();
aab03e05 2452 return 0;
1da177e4
LT
2453}
2454
332ac17e
DF
2455unsigned long to_ratio(u64 period, u64 runtime)
2456{
2457 if (runtime == RUNTIME_INF)
2458 return 1ULL << 20;
2459
2460 /*
2461 * Doing this here saves a lot of checks in all
2462 * the calling paths, and returning zero seems
2463 * safe for them anyway.
2464 */
2465 if (period == 0)
2466 return 0;
2467
2468 return div64_u64(runtime << 20, period);
2469}
2470
2471#ifdef CONFIG_SMP
2472inline struct dl_bw *dl_bw_of(int i)
2473{
f78f5b90
PM
2474 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2475 "sched RCU must be held");
332ac17e
DF
2476 return &cpu_rq(i)->rd->dl_bw;
2477}
2478
de212f18 2479static inline int dl_bw_cpus(int i)
332ac17e 2480{
de212f18
PZ
2481 struct root_domain *rd = cpu_rq(i)->rd;
2482 int cpus = 0;
2483
f78f5b90
PM
2484 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2485 "sched RCU must be held");
de212f18
PZ
2486 for_each_cpu_and(i, rd->span, cpu_active_mask)
2487 cpus++;
2488
2489 return cpus;
332ac17e
DF
2490}
2491#else
2492inline struct dl_bw *dl_bw_of(int i)
2493{
2494 return &cpu_rq(i)->dl.dl_bw;
2495}
2496
de212f18 2497static inline int dl_bw_cpus(int i)
332ac17e
DF
2498{
2499 return 1;
2500}
2501#endif
2502
332ac17e
DF
2503/*
2504 * We must be sure that accepting a new task (or allowing changing the
2505 * parameters of an existing one) is consistent with the bandwidth
2506 * constraints. If yes, this function also accordingly updates the currently
2507 * allocated bandwidth to reflect the new situation.
2508 *
2509 * This function is called while holding p's rq->lock.
40767b0d
PZ
2510 *
2511 * XXX we should delay bw change until the task's 0-lag point, see
2512 * __setparam_dl().
332ac17e
DF
2513 */
2514static int dl_overflow(struct task_struct *p, int policy,
2515 const struct sched_attr *attr)
2516{
2517
2518 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
4df1638c 2519 u64 period = attr->sched_period ?: attr->sched_deadline;
332ac17e
DF
2520 u64 runtime = attr->sched_runtime;
2521 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 2522 int cpus, err = -1;
332ac17e 2523
fec148c0
XP
2524 /* !deadline task may carry old deadline bandwidth */
2525 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
332ac17e
DF
2526 return 0;
2527
2528 /*
2529 * Either if a task, enters, leave, or stays -deadline but changes
2530 * its parameters, we may need to update accordingly the total
2531 * allocated bandwidth of the container.
2532 */
2533 raw_spin_lock(&dl_b->lock);
de212f18 2534 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
2535 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2536 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2537 __dl_add(dl_b, new_bw);
2538 err = 0;
2539 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2540 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2541 __dl_clear(dl_b, p->dl.dl_bw);
2542 __dl_add(dl_b, new_bw);
2543 err = 0;
2544 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2545 __dl_clear(dl_b, p->dl.dl_bw);
2546 err = 0;
2547 }
2548 raw_spin_unlock(&dl_b->lock);
2549
2550 return err;
2551}
2552
2553extern void init_dl_bw(struct dl_bw *dl_b);
2554
1da177e4
LT
2555/*
2556 * wake_up_new_task - wake up a newly created task for the first time.
2557 *
2558 * This function will do some initial scheduler statistics housekeeping
2559 * that must be done for every newly created context, then puts the task
2560 * on the runqueue and wakes it.
2561 */
3e51e3ed 2562void wake_up_new_task(struct task_struct *p)
1da177e4 2563{
eb580751 2564 struct rq_flags rf;
dd41f596 2565 struct rq *rq;
fabf318e 2566
eb580751 2567 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
7dc603c9 2568 p->state = TASK_RUNNING;
fabf318e
PZ
2569#ifdef CONFIG_SMP
2570 /*
2571 * Fork balancing, do it here and not earlier because:
2572 * - cpus_allowed can change in the fork path
2573 * - any previously selected cpu might disappear through hotplug
e210bffd
PZ
2574 *
2575 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2576 * as we're not fully set-up yet.
fabf318e 2577 */
e210bffd 2578 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735 2579#endif
b7fa30c9 2580 rq = __task_rq_lock(p, &rf);
2b8c41da 2581 post_init_entity_util_avg(&p->se);
0017d735 2582
cd29fe6f 2583 activate_task(rq, p, 0);
da0c1e65 2584 p->on_rq = TASK_ON_RQ_QUEUED;
fbd705a0 2585 trace_sched_wakeup_new(p);
a7558e01 2586 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2587#ifdef CONFIG_SMP
0aaafaab
PZ
2588 if (p->sched_class->task_woken) {
2589 /*
2590 * Nothing relies on rq->lock after this, so its fine to
2591 * drop it.
2592 */
d8ac8971 2593 rq_unpin_lock(rq, &rf);
efbbd05a 2594 p->sched_class->task_woken(rq, p);
d8ac8971 2595 rq_repin_lock(rq, &rf);
0aaafaab 2596 }
9a897c5a 2597#endif
eb580751 2598 task_rq_unlock(rq, p, &rf);
1da177e4
LT
2599}
2600
e107be36
AK
2601#ifdef CONFIG_PREEMPT_NOTIFIERS
2602
1cde2930
PZ
2603static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2604
2ecd9d29
PZ
2605void preempt_notifier_inc(void)
2606{
2607 static_key_slow_inc(&preempt_notifier_key);
2608}
2609EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2610
2611void preempt_notifier_dec(void)
2612{
2613 static_key_slow_dec(&preempt_notifier_key);
2614}
2615EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2616
e107be36 2617/**
80dd99b3 2618 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2619 * @notifier: notifier struct to register
e107be36
AK
2620 */
2621void preempt_notifier_register(struct preempt_notifier *notifier)
2622{
2ecd9d29
PZ
2623 if (!static_key_false(&preempt_notifier_key))
2624 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2625
e107be36
AK
2626 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2627}
2628EXPORT_SYMBOL_GPL(preempt_notifier_register);
2629
2630/**
2631 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2632 * @notifier: notifier struct to unregister
e107be36 2633 *
d84525a8 2634 * This is *not* safe to call from within a preemption notifier.
e107be36
AK
2635 */
2636void preempt_notifier_unregister(struct preempt_notifier *notifier)
2637{
2638 hlist_del(&notifier->link);
2639}
2640EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2641
1cde2930 2642static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2643{
2644 struct preempt_notifier *notifier;
e107be36 2645
b67bfe0d 2646 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2647 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2648}
2649
1cde2930
PZ
2650static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2651{
2652 if (static_key_false(&preempt_notifier_key))
2653 __fire_sched_in_preempt_notifiers(curr);
2654}
2655
e107be36 2656static void
1cde2930
PZ
2657__fire_sched_out_preempt_notifiers(struct task_struct *curr,
2658 struct task_struct *next)
e107be36
AK
2659{
2660 struct preempt_notifier *notifier;
e107be36 2661
b67bfe0d 2662 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2663 notifier->ops->sched_out(notifier, next);
2664}
2665
1cde2930
PZ
2666static __always_inline void
2667fire_sched_out_preempt_notifiers(struct task_struct *curr,
2668 struct task_struct *next)
2669{
2670 if (static_key_false(&preempt_notifier_key))
2671 __fire_sched_out_preempt_notifiers(curr, next);
2672}
2673
6d6bc0ad 2674#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36 2675
1cde2930 2676static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2677{
2678}
2679
1cde2930 2680static inline void
e107be36
AK
2681fire_sched_out_preempt_notifiers(struct task_struct *curr,
2682 struct task_struct *next)
2683{
2684}
2685
6d6bc0ad 2686#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2687
4866cde0
NP
2688/**
2689 * prepare_task_switch - prepare to switch tasks
2690 * @rq: the runqueue preparing to switch
421cee29 2691 * @prev: the current task that is being switched out
4866cde0
NP
2692 * @next: the task we are going to switch to.
2693 *
2694 * This is called with the rq lock held and interrupts off. It must
2695 * be paired with a subsequent finish_task_switch after the context
2696 * switch.
2697 *
2698 * prepare_task_switch sets up locking and calls architecture specific
2699 * hooks.
2700 */
e107be36
AK
2701static inline void
2702prepare_task_switch(struct rq *rq, struct task_struct *prev,
2703 struct task_struct *next)
4866cde0 2704{
43148951 2705 sched_info_switch(rq, prev, next);
fe4b04fa 2706 perf_event_task_sched_out(prev, next);
e107be36 2707 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2708 prepare_lock_switch(rq, next);
2709 prepare_arch_switch(next);
2710}
2711
1da177e4
LT
2712/**
2713 * finish_task_switch - clean up after a task-switch
2714 * @prev: the thread we just switched away from.
2715 *
4866cde0
NP
2716 * finish_task_switch must be called after the context switch, paired
2717 * with a prepare_task_switch call before the context switch.
2718 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2719 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2720 *
2721 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2722 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2723 * with the lock held can cause deadlocks; see schedule() for
2724 * details.)
dfa50b60
ON
2725 *
2726 * The context switch have flipped the stack from under us and restored the
2727 * local variables which were saved when this task called schedule() in the
2728 * past. prev == current is still correct but we need to recalculate this_rq
2729 * because prev may have moved to another CPU.
1da177e4 2730 */
dfa50b60 2731static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
2732 __releases(rq->lock)
2733{
dfa50b60 2734 struct rq *rq = this_rq();
1da177e4 2735 struct mm_struct *mm = rq->prev_mm;
55a101f8 2736 long prev_state;
1da177e4 2737
609ca066
PZ
2738 /*
2739 * The previous task will have left us with a preempt_count of 2
2740 * because it left us after:
2741 *
2742 * schedule()
2743 * preempt_disable(); // 1
2744 * __schedule()
2745 * raw_spin_lock_irq(&rq->lock) // 2
2746 *
2747 * Also, see FORK_PREEMPT_COUNT.
2748 */
e2bf1c4b
PZ
2749 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2750 "corrupted preempt_count: %s/%d/0x%x\n",
2751 current->comm, current->pid, preempt_count()))
2752 preempt_count_set(FORK_PREEMPT_COUNT);
609ca066 2753
1da177e4
LT
2754 rq->prev_mm = NULL;
2755
2756 /*
2757 * A task struct has one reference for the use as "current".
c394cc9f 2758 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2759 * schedule one last time. The schedule call will never return, and
2760 * the scheduled task must drop that reference.
95913d97
PZ
2761 *
2762 * We must observe prev->state before clearing prev->on_cpu (in
2763 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2764 * running on another CPU and we could rave with its RUNNING -> DEAD
2765 * transition, resulting in a double drop.
1da177e4 2766 */
55a101f8 2767 prev_state = prev->state;
bf9fae9f 2768 vtime_task_switch(prev);
a8d757ef 2769 perf_event_task_sched_in(prev, current);
4866cde0 2770 finish_lock_switch(rq, prev);
01f23e16 2771 finish_arch_post_lock_switch();
e8fa1362 2772
e107be36 2773 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2774 if (mm)
2775 mmdrop(mm);
c394cc9f 2776 if (unlikely(prev_state == TASK_DEAD)) {
e6c390f2
DF
2777 if (prev->sched_class->task_dead)
2778 prev->sched_class->task_dead(prev);
2779
c6fd91f0 2780 /*
2781 * Remove function-return probe instances associated with this
2782 * task and put them back on the free list.
9761eea8 2783 */
c6fd91f0 2784 kprobe_flush_task(prev);
68f24b08
AL
2785
2786 /* Task is done with its stack. */
2787 put_task_stack(prev);
2788
1da177e4 2789 put_task_struct(prev);
c6fd91f0 2790 }
99e5ada9 2791
de734f89 2792 tick_nohz_task_switch();
dfa50b60 2793 return rq;
1da177e4
LT
2794}
2795
3f029d3c
GH
2796#ifdef CONFIG_SMP
2797
3f029d3c 2798/* rq->lock is NOT held, but preemption is disabled */
e3fca9e7 2799static void __balance_callback(struct rq *rq)
3f029d3c 2800{
e3fca9e7
PZ
2801 struct callback_head *head, *next;
2802 void (*func)(struct rq *rq);
2803 unsigned long flags;
3f029d3c 2804
e3fca9e7
PZ
2805 raw_spin_lock_irqsave(&rq->lock, flags);
2806 head = rq->balance_callback;
2807 rq->balance_callback = NULL;
2808 while (head) {
2809 func = (void (*)(struct rq *))head->func;
2810 next = head->next;
2811 head->next = NULL;
2812 head = next;
3f029d3c 2813
e3fca9e7 2814 func(rq);
3f029d3c 2815 }
e3fca9e7
PZ
2816 raw_spin_unlock_irqrestore(&rq->lock, flags);
2817}
2818
2819static inline void balance_callback(struct rq *rq)
2820{
2821 if (unlikely(rq->balance_callback))
2822 __balance_callback(rq);
3f029d3c
GH
2823}
2824
2825#else
da19ab51 2826
e3fca9e7 2827static inline void balance_callback(struct rq *rq)
3f029d3c 2828{
1da177e4
LT
2829}
2830
3f029d3c
GH
2831#endif
2832
1da177e4
LT
2833/**
2834 * schedule_tail - first thing a freshly forked thread must call.
2835 * @prev: the thread we just switched away from.
2836 */
722a9f92 2837asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
2838 __releases(rq->lock)
2839{
1a43a14a 2840 struct rq *rq;
da19ab51 2841
609ca066
PZ
2842 /*
2843 * New tasks start with FORK_PREEMPT_COUNT, see there and
2844 * finish_task_switch() for details.
2845 *
2846 * finish_task_switch() will drop rq->lock() and lower preempt_count
2847 * and the preempt_enable() will end up enabling preemption (on
2848 * PREEMPT_COUNT kernels).
2849 */
2850
dfa50b60 2851 rq = finish_task_switch(prev);
e3fca9e7 2852 balance_callback(rq);
1a43a14a 2853 preempt_enable();
70b97a7f 2854
1da177e4 2855 if (current->set_child_tid)
b488893a 2856 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2857}
2858
2859/*
dfa50b60 2860 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 2861 */
04936948 2862static __always_inline struct rq *
70b97a7f 2863context_switch(struct rq *rq, struct task_struct *prev,
d8ac8971 2864 struct task_struct *next, struct rq_flags *rf)
1da177e4 2865{
dd41f596 2866 struct mm_struct *mm, *oldmm;
1da177e4 2867
e107be36 2868 prepare_task_switch(rq, prev, next);
fe4b04fa 2869
dd41f596
IM
2870 mm = next->mm;
2871 oldmm = prev->active_mm;
9226d125
ZA
2872 /*
2873 * For paravirt, this is coupled with an exit in switch_to to
2874 * combine the page table reload and the switch backend into
2875 * one hypercall.
2876 */
224101ed 2877 arch_start_context_switch(prev);
9226d125 2878
31915ab4 2879 if (!mm) {
1da177e4
LT
2880 next->active_mm = oldmm;
2881 atomic_inc(&oldmm->mm_count);
2882 enter_lazy_tlb(oldmm, next);
2883 } else
f98db601 2884 switch_mm_irqs_off(oldmm, mm, next);
1da177e4 2885
31915ab4 2886 if (!prev->mm) {
1da177e4 2887 prev->active_mm = NULL;
1da177e4
LT
2888 rq->prev_mm = oldmm;
2889 }
92509b73
MF
2890
2891 rq->clock_skip_update = 0;
2892
3a5f5e48
IM
2893 /*
2894 * Since the runqueue lock will be released by the next
2895 * task (which is an invalid locking op but in the case
2896 * of the scheduler it's an obvious special-case), so we
2897 * do an early lockdep release here:
2898 */
d8ac8971 2899 rq_unpin_lock(rq, rf);
8a25d5de 2900 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
2901
2902 /* Here we just switch the register state and the stack. */
2903 switch_to(prev, next, prev);
dd41f596 2904 barrier();
dfa50b60
ON
2905
2906 return finish_task_switch(prev);
1da177e4
LT
2907}
2908
2909/*
1c3e8264 2910 * nr_running and nr_context_switches:
1da177e4
LT
2911 *
2912 * externally visible scheduler statistics: current number of runnable
1c3e8264 2913 * threads, total number of context switches performed since bootup.
1da177e4
LT
2914 */
2915unsigned long nr_running(void)
2916{
2917 unsigned long i, sum = 0;
2918
2919 for_each_online_cpu(i)
2920 sum += cpu_rq(i)->nr_running;
2921
2922 return sum;
f711f609 2923}
1da177e4 2924
2ee507c4
TC
2925/*
2926 * Check if only the current task is running on the cpu.
00cc1633
DD
2927 *
2928 * Caution: this function does not check that the caller has disabled
2929 * preemption, thus the result might have a time-of-check-to-time-of-use
2930 * race. The caller is responsible to use it correctly, for example:
2931 *
2932 * - from a non-preemptable section (of course)
2933 *
2934 * - from a thread that is bound to a single CPU
2935 *
2936 * - in a loop with very short iterations (e.g. a polling loop)
2ee507c4
TC
2937 */
2938bool single_task_running(void)
2939{
00cc1633 2940 return raw_rq()->nr_running == 1;
2ee507c4
TC
2941}
2942EXPORT_SYMBOL(single_task_running);
2943
1da177e4 2944unsigned long long nr_context_switches(void)
46cb4b7c 2945{
cc94abfc
SR
2946 int i;
2947 unsigned long long sum = 0;
46cb4b7c 2948
0a945022 2949 for_each_possible_cpu(i)
1da177e4 2950 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2951
1da177e4
LT
2952 return sum;
2953}
483b4ee6 2954
1da177e4
LT
2955unsigned long nr_iowait(void)
2956{
2957 unsigned long i, sum = 0;
483b4ee6 2958
0a945022 2959 for_each_possible_cpu(i)
1da177e4 2960 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2961
1da177e4
LT
2962 return sum;
2963}
483b4ee6 2964
8c215bd3 2965unsigned long nr_iowait_cpu(int cpu)
69d25870 2966{
8c215bd3 2967 struct rq *this = cpu_rq(cpu);
69d25870
AV
2968 return atomic_read(&this->nr_iowait);
2969}
46cb4b7c 2970
372ba8cb
MG
2971void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2972{
3289bdb4
PZ
2973 struct rq *rq = this_rq();
2974 *nr_waiters = atomic_read(&rq->nr_iowait);
2975 *load = rq->load.weight;
372ba8cb
MG
2976}
2977
dd41f596 2978#ifdef CONFIG_SMP
8a0be9ef 2979
46cb4b7c 2980/*
38022906
PZ
2981 * sched_exec - execve() is a valuable balancing opportunity, because at
2982 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2983 */
38022906 2984void sched_exec(void)
46cb4b7c 2985{
38022906 2986 struct task_struct *p = current;
1da177e4 2987 unsigned long flags;
0017d735 2988 int dest_cpu;
46cb4b7c 2989
8f42ced9 2990 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2991 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2992 if (dest_cpu == smp_processor_id())
2993 goto unlock;
38022906 2994
8f42ced9 2995 if (likely(cpu_active(dest_cpu))) {
969c7921 2996 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2997
8f42ced9
PZ
2998 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2999 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
3000 return;
3001 }
0017d735 3002unlock:
8f42ced9 3003 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 3004}
dd41f596 3005
1da177e4
LT
3006#endif
3007
1da177e4 3008DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 3009DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
3010
3011EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 3012EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 3013
6075620b
GG
3014/*
3015 * The function fair_sched_class.update_curr accesses the struct curr
3016 * and its field curr->exec_start; when called from task_sched_runtime(),
3017 * we observe a high rate of cache misses in practice.
3018 * Prefetching this data results in improved performance.
3019 */
3020static inline void prefetch_curr_exec_start(struct task_struct *p)
3021{
3022#ifdef CONFIG_FAIR_GROUP_SCHED
3023 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3024#else
3025 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3026#endif
3027 prefetch(curr);
3028 prefetch(&curr->exec_start);
3029}
3030
c5f8d995
HS
3031/*
3032 * Return accounted runtime for the task.
3033 * In case the task is currently running, return the runtime plus current's
3034 * pending runtime that have not been accounted yet.
3035 */
3036unsigned long long task_sched_runtime(struct task_struct *p)
3037{
eb580751 3038 struct rq_flags rf;
c5f8d995 3039 struct rq *rq;
6e998916 3040 u64 ns;
c5f8d995 3041
911b2898
PZ
3042#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3043 /*
3044 * 64-bit doesn't need locks to atomically read a 64bit value.
3045 * So we have a optimization chance when the task's delta_exec is 0.
3046 * Reading ->on_cpu is racy, but this is ok.
3047 *
3048 * If we race with it leaving cpu, we'll take a lock. So we're correct.
3049 * If we race with it entering cpu, unaccounted time is 0. This is
3050 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
3051 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3052 * been accounted, so we're correct here as well.
911b2898 3053 */
da0c1e65 3054 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
3055 return p->se.sum_exec_runtime;
3056#endif
3057
eb580751 3058 rq = task_rq_lock(p, &rf);
6e998916
SG
3059 /*
3060 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3061 * project cycles that may never be accounted to this
3062 * thread, breaking clock_gettime().
3063 */
3064 if (task_current(rq, p) && task_on_rq_queued(p)) {
6075620b 3065 prefetch_curr_exec_start(p);
6e998916
SG
3066 update_rq_clock(rq);
3067 p->sched_class->update_curr(rq);
3068 }
3069 ns = p->se.sum_exec_runtime;
eb580751 3070 task_rq_unlock(rq, p, &rf);
c5f8d995
HS
3071
3072 return ns;
3073}
48f24c4d 3074
7835b98b
CL
3075/*
3076 * This function gets called by the timer code, with HZ frequency.
3077 * We call it with interrupts disabled.
7835b98b
CL
3078 */
3079void scheduler_tick(void)
3080{
7835b98b
CL
3081 int cpu = smp_processor_id();
3082 struct rq *rq = cpu_rq(cpu);
dd41f596 3083 struct task_struct *curr = rq->curr;
3e51f33f
PZ
3084
3085 sched_clock_tick();
dd41f596 3086
05fa785c 3087 raw_spin_lock(&rq->lock);
3e51f33f 3088 update_rq_clock(rq);
fa85ae24 3089 curr->sched_class->task_tick(rq, curr, 0);
cee1afce 3090 cpu_load_update_active(rq);
3289bdb4 3091 calc_global_load_tick(rq);
05fa785c 3092 raw_spin_unlock(&rq->lock);
7835b98b 3093
e9d2b064 3094 perf_event_task_tick();
e220d2dc 3095
e418e1c2 3096#ifdef CONFIG_SMP
6eb57e0d 3097 rq->idle_balance = idle_cpu(cpu);
7caff66f 3098 trigger_load_balance(rq);
e418e1c2 3099#endif
265f22a9 3100 rq_last_tick_reset(rq);
1da177e4
LT
3101}
3102
265f22a9
FW
3103#ifdef CONFIG_NO_HZ_FULL
3104/**
3105 * scheduler_tick_max_deferment
3106 *
3107 * Keep at least one tick per second when a single
3108 * active task is running because the scheduler doesn't
3109 * yet completely support full dynticks environment.
3110 *
3111 * This makes sure that uptime, CFS vruntime, load
3112 * balancing, etc... continue to move forward, even
3113 * with a very low granularity.
e69f6186
YB
3114 *
3115 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
3116 */
3117u64 scheduler_tick_max_deferment(void)
3118{
3119 struct rq *rq = this_rq();
316c1608 3120 unsigned long next, now = READ_ONCE(jiffies);
265f22a9
FW
3121
3122 next = rq->last_sched_tick + HZ;
3123
3124 if (time_before_eq(next, now))
3125 return 0;
3126
8fe8ff09 3127 return jiffies_to_nsecs(next - now);
1da177e4 3128}
265f22a9 3129#endif
1da177e4 3130
7e49fcce
SR
3131#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3132 defined(CONFIG_PREEMPT_TRACER))
47252cfb
SR
3133/*
3134 * If the value passed in is equal to the current preempt count
3135 * then we just disabled preemption. Start timing the latency.
3136 */
3137static inline void preempt_latency_start(int val)
3138{
3139 if (preempt_count() == val) {
3140 unsigned long ip = get_lock_parent_ip();
3141#ifdef CONFIG_DEBUG_PREEMPT
3142 current->preempt_disable_ip = ip;
3143#endif
3144 trace_preempt_off(CALLER_ADDR0, ip);
3145 }
3146}
7e49fcce 3147
edafe3a5 3148void preempt_count_add(int val)
1da177e4 3149{
6cd8a4bb 3150#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3151 /*
3152 * Underflow?
3153 */
9a11b49a
IM
3154 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3155 return;
6cd8a4bb 3156#endif
bdb43806 3157 __preempt_count_add(val);
6cd8a4bb 3158#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3159 /*
3160 * Spinlock count overflowing soon?
3161 */
33859f7f
MOS
3162 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3163 PREEMPT_MASK - 10);
6cd8a4bb 3164#endif
47252cfb 3165 preempt_latency_start(val);
1da177e4 3166}
bdb43806 3167EXPORT_SYMBOL(preempt_count_add);
edafe3a5 3168NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 3169
47252cfb
SR
3170/*
3171 * If the value passed in equals to the current preempt count
3172 * then we just enabled preemption. Stop timing the latency.
3173 */
3174static inline void preempt_latency_stop(int val)
3175{
3176 if (preempt_count() == val)
3177 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3178}
3179
edafe3a5 3180void preempt_count_sub(int val)
1da177e4 3181{
6cd8a4bb 3182#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3183 /*
3184 * Underflow?
3185 */
01e3eb82 3186 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3187 return;
1da177e4
LT
3188 /*
3189 * Is the spinlock portion underflowing?
3190 */
9a11b49a
IM
3191 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3192 !(preempt_count() & PREEMPT_MASK)))
3193 return;
6cd8a4bb 3194#endif
9a11b49a 3195
47252cfb 3196 preempt_latency_stop(val);
bdb43806 3197 __preempt_count_sub(val);
1da177e4 3198}
bdb43806 3199EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 3200NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4 3201
47252cfb
SR
3202#else
3203static inline void preempt_latency_start(int val) { }
3204static inline void preempt_latency_stop(int val) { }
1da177e4
LT
3205#endif
3206
3207/*
dd41f596 3208 * Print scheduling while atomic bug:
1da177e4 3209 */
dd41f596 3210static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3211{
d1c6d149
VN
3212 /* Save this before calling printk(), since that will clobber it */
3213 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3214
664dfa65
DJ
3215 if (oops_in_progress)
3216 return;
3217
3df0fc5b
PZ
3218 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3219 prev->comm, prev->pid, preempt_count());
838225b4 3220
dd41f596 3221 debug_show_held_locks(prev);
e21f5b15 3222 print_modules();
dd41f596
IM
3223 if (irqs_disabled())
3224 print_irqtrace_events(prev);
d1c6d149
VN
3225 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3226 && in_atomic_preempt_off()) {
8f47b187 3227 pr_err("Preemption disabled at:");
d1c6d149 3228 print_ip_sym(preempt_disable_ip);
8f47b187
TG
3229 pr_cont("\n");
3230 }
748c7201
DBO
3231 if (panic_on_warn)
3232 panic("scheduling while atomic\n");
3233
6135fc1e 3234 dump_stack();
373d4d09 3235 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 3236}
1da177e4 3237
dd41f596
IM
3238/*
3239 * Various schedule()-time debugging checks and statistics:
3240 */
3241static inline void schedule_debug(struct task_struct *prev)
3242{
0d9e2632 3243#ifdef CONFIG_SCHED_STACK_END_CHECK
29d64551
JH
3244 if (task_stack_end_corrupted(prev))
3245 panic("corrupted stack end detected inside scheduler\n");
0d9e2632 3246#endif
b99def8b 3247
1dc0fffc 3248 if (unlikely(in_atomic_preempt_off())) {
dd41f596 3249 __schedule_bug(prev);
1dc0fffc
PZ
3250 preempt_count_set(PREEMPT_DISABLED);
3251 }
b3fbab05 3252 rcu_sleep_check();
dd41f596 3253
1da177e4
LT
3254 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3255
ae92882e 3256 schedstat_inc(this_rq()->sched_count);
dd41f596
IM
3257}
3258
3259/*
3260 * Pick up the highest-prio task:
3261 */
3262static inline struct task_struct *
d8ac8971 3263pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
dd41f596 3264{
37e117c0 3265 const struct sched_class *class = &fair_sched_class;
dd41f596 3266 struct task_struct *p;
1da177e4
LT
3267
3268 /*
dd41f596
IM
3269 * Optimization: we know that if all tasks are in
3270 * the fair class we can call that function directly:
1da177e4 3271 */
37e117c0 3272 if (likely(prev->sched_class == class &&
38033c37 3273 rq->nr_running == rq->cfs.h_nr_running)) {
d8ac8971 3274 p = fair_sched_class.pick_next_task(rq, prev, rf);
6ccdc84b
PZ
3275 if (unlikely(p == RETRY_TASK))
3276 goto again;
3277
3278 /* assumes fair_sched_class->next == idle_sched_class */
3279 if (unlikely(!p))
d8ac8971 3280 p = idle_sched_class.pick_next_task(rq, prev, rf);
6ccdc84b
PZ
3281
3282 return p;
1da177e4
LT
3283 }
3284
37e117c0 3285again:
34f971f6 3286 for_each_class(class) {
d8ac8971 3287 p = class->pick_next_task(rq, prev, rf);
37e117c0
PZ
3288 if (p) {
3289 if (unlikely(p == RETRY_TASK))
3290 goto again;
dd41f596 3291 return p;
37e117c0 3292 }
dd41f596 3293 }
34f971f6
PZ
3294
3295 BUG(); /* the idle class will always have a runnable task */
dd41f596 3296}
1da177e4 3297
dd41f596 3298/*
c259e01a 3299 * __schedule() is the main scheduler function.
edde96ea
PE
3300 *
3301 * The main means of driving the scheduler and thus entering this function are:
3302 *
3303 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3304 *
3305 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3306 * paths. For example, see arch/x86/entry_64.S.
3307 *
3308 * To drive preemption between tasks, the scheduler sets the flag in timer
3309 * interrupt handler scheduler_tick().
3310 *
3311 * 3. Wakeups don't really cause entry into schedule(). They add a
3312 * task to the run-queue and that's it.
3313 *
3314 * Now, if the new task added to the run-queue preempts the current
3315 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3316 * called on the nearest possible occasion:
3317 *
3318 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3319 *
3320 * - in syscall or exception context, at the next outmost
3321 * preempt_enable(). (this might be as soon as the wake_up()'s
3322 * spin_unlock()!)
3323 *
3324 * - in IRQ context, return from interrupt-handler to
3325 * preemptible context
3326 *
3327 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3328 * then at the next:
3329 *
3330 * - cond_resched() call
3331 * - explicit schedule() call
3332 * - return from syscall or exception to user-space
3333 * - return from interrupt-handler to user-space
bfd9b2b5 3334 *
b30f0e3f 3335 * WARNING: must be called with preemption disabled!
dd41f596 3336 */
499d7955 3337static void __sched notrace __schedule(bool preempt)
dd41f596
IM
3338{
3339 struct task_struct *prev, *next;
67ca7bde 3340 unsigned long *switch_count;
d8ac8971 3341 struct rq_flags rf;
dd41f596 3342 struct rq *rq;
31656519 3343 int cpu;
dd41f596 3344
dd41f596
IM
3345 cpu = smp_processor_id();
3346 rq = cpu_rq(cpu);
dd41f596 3347 prev = rq->curr;
dd41f596 3348
dd41f596 3349 schedule_debug(prev);
1da177e4 3350
31656519 3351 if (sched_feat(HRTICK))
f333fdc9 3352 hrtick_clear(rq);
8f4d37ec 3353
46a5d164
PM
3354 local_irq_disable();
3355 rcu_note_context_switch();
3356
e0acd0a6
ON
3357 /*
3358 * Make sure that signal_pending_state()->signal_pending() below
3359 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3360 * done by the caller to avoid the race with signal_wake_up().
3361 */
3362 smp_mb__before_spinlock();
46a5d164 3363 raw_spin_lock(&rq->lock);
d8ac8971 3364 rq_pin_lock(rq, &rf);
1da177e4 3365
9edfbfed
PZ
3366 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3367
246d86b5 3368 switch_count = &prev->nivcsw;
fc13aeba 3369 if (!preempt && prev->state) {
21aa9af0 3370 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 3371 prev->state = TASK_RUNNING;
21aa9af0 3372 } else {
2acca55e
PZ
3373 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3374 prev->on_rq = 0;
3375
21aa9af0 3376 /*
2acca55e
PZ
3377 * If a worker went to sleep, notify and ask workqueue
3378 * whether it wants to wake up a task to maintain
3379 * concurrency.
21aa9af0
TH
3380 */
3381 if (prev->flags & PF_WQ_WORKER) {
3382 struct task_struct *to_wakeup;
3383
9b7f6597 3384 to_wakeup = wq_worker_sleeping(prev);
21aa9af0 3385 if (to_wakeup)
d8ac8971 3386 try_to_wake_up_local(to_wakeup, &rf);
21aa9af0 3387 }
21aa9af0 3388 }
dd41f596 3389 switch_count = &prev->nvcsw;
1da177e4
LT
3390 }
3391
9edfbfed 3392 if (task_on_rq_queued(prev))
606dba2e
PZ
3393 update_rq_clock(rq);
3394
d8ac8971 3395 next = pick_next_task(rq, prev, &rf);
f26f9aff 3396 clear_tsk_need_resched(prev);
f27dde8d 3397 clear_preempt_need_resched();
1da177e4 3398
1da177e4 3399 if (likely(prev != next)) {
1da177e4
LT
3400 rq->nr_switches++;
3401 rq->curr = next;
3402 ++*switch_count;
3403
c73464b1 3404 trace_sched_switch(preempt, prev, next);
d8ac8971 3405 rq = context_switch(rq, prev, next, &rf); /* unlocks the rq */
cbce1a68 3406 } else {
92509b73 3407 rq->clock_skip_update = 0;
d8ac8971 3408 rq_unpin_lock(rq, &rf);
05fa785c 3409 raw_spin_unlock_irq(&rq->lock);
cbce1a68 3410 }
1da177e4 3411
e3fca9e7 3412 balance_callback(rq);
1da177e4 3413}
c259e01a 3414
9af6528e
PZ
3415void __noreturn do_task_dead(void)
3416{
3417 /*
3418 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
3419 * when the following two conditions become true.
3420 * - There is race condition of mmap_sem (It is acquired by
3421 * exit_mm()), and
3422 * - SMI occurs before setting TASK_RUNINNG.
3423 * (or hypervisor of virtual machine switches to other guest)
3424 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD
3425 *
3426 * To avoid it, we have to wait for releasing tsk->pi_lock which
3427 * is held by try_to_wake_up()
3428 */
3429 smp_mb();
3430 raw_spin_unlock_wait(&current->pi_lock);
3431
3432 /* causes final put_task_struct in finish_task_switch(). */
3433 __set_current_state(TASK_DEAD);
3434 current->flags |= PF_NOFREEZE; /* tell freezer to ignore us */
3435 __schedule(false);
3436 BUG();
3437 /* Avoid "noreturn function does return". */
3438 for (;;)
3439 cpu_relax(); /* For when BUG is null */
3440}
3441
9c40cef2
TG
3442static inline void sched_submit_work(struct task_struct *tsk)
3443{
3c7d5184 3444 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
3445 return;
3446 /*
3447 * If we are going to sleep and we have plugged IO queued,
3448 * make sure to submit it to avoid deadlocks.
3449 */
3450 if (blk_needs_flush_plug(tsk))
3451 blk_schedule_flush_plug(tsk);
3452}
3453
722a9f92 3454asmlinkage __visible void __sched schedule(void)
c259e01a 3455{
9c40cef2
TG
3456 struct task_struct *tsk = current;
3457
3458 sched_submit_work(tsk);
bfd9b2b5 3459 do {
b30f0e3f 3460 preempt_disable();
fc13aeba 3461 __schedule(false);
b30f0e3f 3462 sched_preempt_enable_no_resched();
bfd9b2b5 3463 } while (need_resched());
c259e01a 3464}
1da177e4
LT
3465EXPORT_SYMBOL(schedule);
3466
91d1aa43 3467#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 3468asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
3469{
3470 /*
3471 * If we come here after a random call to set_need_resched(),
3472 * or we have been woken up remotely but the IPI has not yet arrived,
3473 * we haven't yet exited the RCU idle mode. Do it here manually until
3474 * we find a better solution.
7cc78f8f
AL
3475 *
3476 * NB: There are buggy callers of this function. Ideally we
c467ea76 3477 * should warn if prev_state != CONTEXT_USER, but that will trigger
7cc78f8f 3478 * too frequently to make sense yet.
20ab65e3 3479 */
7cc78f8f 3480 enum ctx_state prev_state = exception_enter();
20ab65e3 3481 schedule();
7cc78f8f 3482 exception_exit(prev_state);
20ab65e3
FW
3483}
3484#endif
3485
c5491ea7
TG
3486/**
3487 * schedule_preempt_disabled - called with preemption disabled
3488 *
3489 * Returns with preemption disabled. Note: preempt_count must be 1
3490 */
3491void __sched schedule_preempt_disabled(void)
3492{
ba74c144 3493 sched_preempt_enable_no_resched();
c5491ea7
TG
3494 schedule();
3495 preempt_disable();
3496}
3497
06b1f808 3498static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
3499{
3500 do {
47252cfb
SR
3501 /*
3502 * Because the function tracer can trace preempt_count_sub()
3503 * and it also uses preempt_enable/disable_notrace(), if
3504 * NEED_RESCHED is set, the preempt_enable_notrace() called
3505 * by the function tracer will call this function again and
3506 * cause infinite recursion.
3507 *
3508 * Preemption must be disabled here before the function
3509 * tracer can trace. Break up preempt_disable() into two
3510 * calls. One to disable preemption without fear of being
3511 * traced. The other to still record the preemption latency,
3512 * which can also be traced by the function tracer.
3513 */
499d7955 3514 preempt_disable_notrace();
47252cfb 3515 preempt_latency_start(1);
fc13aeba 3516 __schedule(true);
47252cfb 3517 preempt_latency_stop(1);
499d7955 3518 preempt_enable_no_resched_notrace();
a18b5d01
FW
3519
3520 /*
3521 * Check again in case we missed a preemption opportunity
3522 * between schedule and now.
3523 */
a18b5d01
FW
3524 } while (need_resched());
3525}
3526
1da177e4
LT
3527#ifdef CONFIG_PREEMPT
3528/*
2ed6e34f 3529 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3530 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3531 * occur there and call schedule directly.
3532 */
722a9f92 3533asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 3534{
1da177e4
LT
3535 /*
3536 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3537 * we do not want to preempt the current task. Just return..
1da177e4 3538 */
fbb00b56 3539 if (likely(!preemptible()))
1da177e4
LT
3540 return;
3541
a18b5d01 3542 preempt_schedule_common();
1da177e4 3543}
376e2424 3544NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 3545EXPORT_SYMBOL(preempt_schedule);
009f60e2 3546
009f60e2 3547/**
4eaca0a8 3548 * preempt_schedule_notrace - preempt_schedule called by tracing
009f60e2
ON
3549 *
3550 * The tracing infrastructure uses preempt_enable_notrace to prevent
3551 * recursion and tracing preempt enabling caused by the tracing
3552 * infrastructure itself. But as tracing can happen in areas coming
3553 * from userspace or just about to enter userspace, a preempt enable
3554 * can occur before user_exit() is called. This will cause the scheduler
3555 * to be called when the system is still in usermode.
3556 *
3557 * To prevent this, the preempt_enable_notrace will use this function
3558 * instead of preempt_schedule() to exit user context if needed before
3559 * calling the scheduler.
3560 */
4eaca0a8 3561asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
009f60e2
ON
3562{
3563 enum ctx_state prev_ctx;
3564
3565 if (likely(!preemptible()))
3566 return;
3567
3568 do {
47252cfb
SR
3569 /*
3570 * Because the function tracer can trace preempt_count_sub()
3571 * and it also uses preempt_enable/disable_notrace(), if
3572 * NEED_RESCHED is set, the preempt_enable_notrace() called
3573 * by the function tracer will call this function again and
3574 * cause infinite recursion.
3575 *
3576 * Preemption must be disabled here before the function
3577 * tracer can trace. Break up preempt_disable() into two
3578 * calls. One to disable preemption without fear of being
3579 * traced. The other to still record the preemption latency,
3580 * which can also be traced by the function tracer.
3581 */
3d8f74dd 3582 preempt_disable_notrace();
47252cfb 3583 preempt_latency_start(1);
009f60e2
ON
3584 /*
3585 * Needs preempt disabled in case user_exit() is traced
3586 * and the tracer calls preempt_enable_notrace() causing
3587 * an infinite recursion.
3588 */
3589 prev_ctx = exception_enter();
fc13aeba 3590 __schedule(true);
009f60e2
ON
3591 exception_exit(prev_ctx);
3592
47252cfb 3593 preempt_latency_stop(1);
3d8f74dd 3594 preempt_enable_no_resched_notrace();
009f60e2
ON
3595 } while (need_resched());
3596}
4eaca0a8 3597EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
009f60e2 3598
32e475d7 3599#endif /* CONFIG_PREEMPT */
1da177e4
LT
3600
3601/*
2ed6e34f 3602 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3603 * off of irq context.
3604 * Note, that this is called and return with irqs disabled. This will
3605 * protect us against recursive calling from irq.
3606 */
722a9f92 3607asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 3608{
b22366cd 3609 enum ctx_state prev_state;
6478d880 3610
2ed6e34f 3611 /* Catch callers which need to be fixed */
f27dde8d 3612 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 3613
b22366cd
FW
3614 prev_state = exception_enter();
3615
3a5c359a 3616 do {
3d8f74dd 3617 preempt_disable();
3a5c359a 3618 local_irq_enable();
fc13aeba 3619 __schedule(true);
3a5c359a 3620 local_irq_disable();
3d8f74dd 3621 sched_preempt_enable_no_resched();
5ed0cec0 3622 } while (need_resched());
b22366cd
FW
3623
3624 exception_exit(prev_state);
1da177e4
LT
3625}
3626
63859d4f 3627int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3628 void *key)
1da177e4 3629{
63859d4f 3630 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3631}
1da177e4
LT
3632EXPORT_SYMBOL(default_wake_function);
3633
b29739f9
IM
3634#ifdef CONFIG_RT_MUTEXES
3635
3636/*
3637 * rt_mutex_setprio - set the current priority of a task
3638 * @p: task
3639 * @prio: prio value (kernel-internal form)
3640 *
3641 * This function changes the 'effective' priority of a task. It does
3642 * not touch ->normal_prio like __setscheduler().
3643 *
c365c292
TG
3644 * Used by the rt_mutex code to implement priority inheritance
3645 * logic. Call site only calls if the priority of the task changed.
b29739f9 3646 */
36c8b586 3647void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3648{
ff77e468 3649 int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE;
83ab0aa0 3650 const struct sched_class *prev_class;
eb580751
PZ
3651 struct rq_flags rf;
3652 struct rq *rq;
b29739f9 3653
aab03e05 3654 BUG_ON(prio > MAX_PRIO);
b29739f9 3655
eb580751 3656 rq = __task_rq_lock(p, &rf);
b29739f9 3657
1c4dd99b
TG
3658 /*
3659 * Idle task boosting is a nono in general. There is one
3660 * exception, when PREEMPT_RT and NOHZ is active:
3661 *
3662 * The idle task calls get_next_timer_interrupt() and holds
3663 * the timer wheel base->lock on the CPU and another CPU wants
3664 * to access the timer (probably to cancel it). We can safely
3665 * ignore the boosting request, as the idle CPU runs this code
3666 * with interrupts disabled and will complete the lock
3667 * protected section without being interrupted. So there is no
3668 * real need to boost.
3669 */
3670 if (unlikely(p == rq->idle)) {
3671 WARN_ON(p != rq->curr);
3672 WARN_ON(p->pi_blocked_on);
3673 goto out_unlock;
3674 }
3675
a8027073 3676 trace_sched_pi_setprio(p, prio);
d5f9f942 3677 oldprio = p->prio;
ff77e468
PZ
3678
3679 if (oldprio == prio)
3680 queue_flag &= ~DEQUEUE_MOVE;
3681
83ab0aa0 3682 prev_class = p->sched_class;
da0c1e65 3683 queued = task_on_rq_queued(p);
051a1d1a 3684 running = task_current(rq, p);
da0c1e65 3685 if (queued)
ff77e468 3686 dequeue_task(rq, p, queue_flag);
0e1f3483 3687 if (running)
f3cd1c4e 3688 put_prev_task(rq, p);
dd41f596 3689
2d3d891d
DF
3690 /*
3691 * Boosting condition are:
3692 * 1. -rt task is running and holds mutex A
3693 * --> -dl task blocks on mutex A
3694 *
3695 * 2. -dl task is running and holds mutex A
3696 * --> -dl task blocks on mutex A and could preempt the
3697 * running task
3698 */
3699 if (dl_prio(prio)) {
466af29b
ON
3700 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3701 if (!dl_prio(p->normal_prio) ||
3702 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d 3703 p->dl.dl_boosted = 1;
ff77e468 3704 queue_flag |= ENQUEUE_REPLENISH;
2d3d891d
DF
3705 } else
3706 p->dl.dl_boosted = 0;
aab03e05 3707 p->sched_class = &dl_sched_class;
2d3d891d
DF
3708 } else if (rt_prio(prio)) {
3709 if (dl_prio(oldprio))
3710 p->dl.dl_boosted = 0;
3711 if (oldprio < prio)
ff77e468 3712 queue_flag |= ENQUEUE_HEAD;
dd41f596 3713 p->sched_class = &rt_sched_class;
2d3d891d
DF
3714 } else {
3715 if (dl_prio(oldprio))
3716 p->dl.dl_boosted = 0;
746db944
BS
3717 if (rt_prio(oldprio))
3718 p->rt.timeout = 0;
dd41f596 3719 p->sched_class = &fair_sched_class;
2d3d891d 3720 }
dd41f596 3721
b29739f9
IM
3722 p->prio = prio;
3723
da0c1e65 3724 if (queued)
ff77e468 3725 enqueue_task(rq, p, queue_flag);
a399d233 3726 if (running)
b2bf6c31 3727 set_curr_task(rq, p);
cb469845 3728
da7a735e 3729 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3730out_unlock:
4c9a4bc8 3731 preempt_disable(); /* avoid rq from going away on us */
eb580751 3732 __task_rq_unlock(rq, &rf);
4c9a4bc8
PZ
3733
3734 balance_callback(rq);
3735 preempt_enable();
b29739f9 3736}
b29739f9 3737#endif
d50dde5a 3738
36c8b586 3739void set_user_nice(struct task_struct *p, long nice)
1da177e4 3740{
49bd21ef
PZ
3741 bool queued, running;
3742 int old_prio, delta;
eb580751 3743 struct rq_flags rf;
70b97a7f 3744 struct rq *rq;
1da177e4 3745
75e45d51 3746 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
3747 return;
3748 /*
3749 * We have to be careful, if called from sys_setpriority(),
3750 * the task might be in the middle of scheduling on another CPU.
3751 */
eb580751 3752 rq = task_rq_lock(p, &rf);
1da177e4
LT
3753 /*
3754 * The RT priorities are set via sched_setscheduler(), but we still
3755 * allow the 'normal' nice value to be set - but as expected
3756 * it wont have any effect on scheduling until the task is
aab03e05 3757 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3758 */
aab03e05 3759 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3760 p->static_prio = NICE_TO_PRIO(nice);
3761 goto out_unlock;
3762 }
da0c1e65 3763 queued = task_on_rq_queued(p);
49bd21ef 3764 running = task_current(rq, p);
da0c1e65 3765 if (queued)
1de64443 3766 dequeue_task(rq, p, DEQUEUE_SAVE);
49bd21ef
PZ
3767 if (running)
3768 put_prev_task(rq, p);
1da177e4 3769
1da177e4 3770 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3771 set_load_weight(p);
b29739f9
IM
3772 old_prio = p->prio;
3773 p->prio = effective_prio(p);
3774 delta = p->prio - old_prio;
1da177e4 3775
da0c1e65 3776 if (queued) {
1de64443 3777 enqueue_task(rq, p, ENQUEUE_RESTORE);
1da177e4 3778 /*
d5f9f942
AM
3779 * If the task increased its priority or is running and
3780 * lowered its priority, then reschedule its CPU:
1da177e4 3781 */
d5f9f942 3782 if (delta < 0 || (delta > 0 && task_running(rq, p)))
8875125e 3783 resched_curr(rq);
1da177e4 3784 }
49bd21ef
PZ
3785 if (running)
3786 set_curr_task(rq, p);
1da177e4 3787out_unlock:
eb580751 3788 task_rq_unlock(rq, p, &rf);
1da177e4 3789}
1da177e4
LT
3790EXPORT_SYMBOL(set_user_nice);
3791
e43379f1
MM
3792/*
3793 * can_nice - check if a task can reduce its nice value
3794 * @p: task
3795 * @nice: nice value
3796 */
36c8b586 3797int can_nice(const struct task_struct *p, const int nice)
e43379f1 3798{
024f4747 3799 /* convert nice value [19,-20] to rlimit style value [1,40] */
7aa2c016 3800 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 3801
78d7d407 3802 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3803 capable(CAP_SYS_NICE));
3804}
3805
1da177e4
LT
3806#ifdef __ARCH_WANT_SYS_NICE
3807
3808/*
3809 * sys_nice - change the priority of the current process.
3810 * @increment: priority increment
3811 *
3812 * sys_setpriority is a more generic, but much slower function that
3813 * does similar things.
3814 */
5add95d4 3815SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3816{
48f24c4d 3817 long nice, retval;
1da177e4
LT
3818
3819 /*
3820 * Setpriority might change our priority at the same moment.
3821 * We don't have to worry. Conceptually one call occurs first
3822 * and we have a single winner.
3823 */
a9467fa3 3824 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 3825 nice = task_nice(current) + increment;
1da177e4 3826
a9467fa3 3827 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
3828 if (increment < 0 && !can_nice(current, nice))
3829 return -EPERM;
3830
1da177e4
LT
3831 retval = security_task_setnice(current, nice);
3832 if (retval)
3833 return retval;
3834
3835 set_user_nice(current, nice);
3836 return 0;
3837}
3838
3839#endif
3840
3841/**
3842 * task_prio - return the priority value of a given task.
3843 * @p: the task in question.
3844 *
e69f6186 3845 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3846 * RT tasks are offset by -200. Normal tasks are centered
3847 * around 0, value goes from -16 to +15.
3848 */
36c8b586 3849int task_prio(const struct task_struct *p)
1da177e4
LT
3850{
3851 return p->prio - MAX_RT_PRIO;
3852}
3853
1da177e4
LT
3854/**
3855 * idle_cpu - is a given cpu idle currently?
3856 * @cpu: the processor in question.
e69f6186
YB
3857 *
3858 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3859 */
3860int idle_cpu(int cpu)
3861{
908a3283
TG
3862 struct rq *rq = cpu_rq(cpu);
3863
3864 if (rq->curr != rq->idle)
3865 return 0;
3866
3867 if (rq->nr_running)
3868 return 0;
3869
3870#ifdef CONFIG_SMP
3871 if (!llist_empty(&rq->wake_list))
3872 return 0;
3873#endif
3874
3875 return 1;
1da177e4
LT
3876}
3877
1da177e4
LT
3878/**
3879 * idle_task - return the idle task for a given cpu.
3880 * @cpu: the processor in question.
e69f6186
YB
3881 *
3882 * Return: The idle task for the cpu @cpu.
1da177e4 3883 */
36c8b586 3884struct task_struct *idle_task(int cpu)
1da177e4
LT
3885{
3886 return cpu_rq(cpu)->idle;
3887}
3888
3889/**
3890 * find_process_by_pid - find a process with a matching PID value.
3891 * @pid: the pid in question.
e69f6186
YB
3892 *
3893 * The task of @pid, if found. %NULL otherwise.
1da177e4 3894 */
a9957449 3895static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3896{
228ebcbe 3897 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3898}
3899
aab03e05
DF
3900/*
3901 * This function initializes the sched_dl_entity of a newly becoming
3902 * SCHED_DEADLINE task.
3903 *
3904 * Only the static values are considered here, the actual runtime and the
3905 * absolute deadline will be properly calculated when the task is enqueued
3906 * for the first time with its new policy.
3907 */
3908static void
3909__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3910{
3911 struct sched_dl_entity *dl_se = &p->dl;
3912
aab03e05
DF
3913 dl_se->dl_runtime = attr->sched_runtime;
3914 dl_se->dl_deadline = attr->sched_deadline;
755378a4 3915 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 3916 dl_se->flags = attr->sched_flags;
332ac17e 3917 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
40767b0d
PZ
3918
3919 /*
3920 * Changing the parameters of a task is 'tricky' and we're not doing
3921 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3922 *
3923 * What we SHOULD do is delay the bandwidth release until the 0-lag
3924 * point. This would include retaining the task_struct until that time
3925 * and change dl_overflow() to not immediately decrement the current
3926 * amount.
3927 *
3928 * Instead we retain the current runtime/deadline and let the new
3929 * parameters take effect after the current reservation period lapses.
3930 * This is safe (albeit pessimistic) because the 0-lag point is always
3931 * before the current scheduling deadline.
3932 *
3933 * We can still have temporary overloads because we do not delay the
3934 * change in bandwidth until that time; so admission control is
3935 * not on the safe side. It does however guarantee tasks will never
3936 * consume more than promised.
3937 */
aab03e05
DF
3938}
3939
c13db6b1
SR
3940/*
3941 * sched_setparam() passes in -1 for its policy, to let the functions
3942 * it calls know not to change it.
3943 */
3944#define SETPARAM_POLICY -1
3945
c365c292
TG
3946static void __setscheduler_params(struct task_struct *p,
3947 const struct sched_attr *attr)
1da177e4 3948{
d50dde5a
DF
3949 int policy = attr->sched_policy;
3950
c13db6b1 3951 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
3952 policy = p->policy;
3953
1da177e4 3954 p->policy = policy;
d50dde5a 3955
aab03e05
DF
3956 if (dl_policy(policy))
3957 __setparam_dl(p, attr);
39fd8fd2 3958 else if (fair_policy(policy))
d50dde5a
DF
3959 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3960
39fd8fd2
PZ
3961 /*
3962 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3963 * !rt_policy. Always setting this ensures that things like
3964 * getparam()/getattr() don't report silly values for !rt tasks.
3965 */
3966 p->rt_priority = attr->sched_priority;
383afd09 3967 p->normal_prio = normal_prio(p);
c365c292
TG
3968 set_load_weight(p);
3969}
39fd8fd2 3970
c365c292
TG
3971/* Actually do priority change: must hold pi & rq lock. */
3972static void __setscheduler(struct rq *rq, struct task_struct *p,
0782e63b 3973 const struct sched_attr *attr, bool keep_boost)
c365c292
TG
3974{
3975 __setscheduler_params(p, attr);
d50dde5a 3976
383afd09 3977 /*
0782e63b
TG
3978 * Keep a potential priority boosting if called from
3979 * sched_setscheduler().
383afd09 3980 */
0782e63b
TG
3981 if (keep_boost)
3982 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3983 else
3984 p->prio = normal_prio(p);
383afd09 3985
aab03e05
DF
3986 if (dl_prio(p->prio))
3987 p->sched_class = &dl_sched_class;
3988 else if (rt_prio(p->prio))
ffd44db5
PZ
3989 p->sched_class = &rt_sched_class;
3990 else
3991 p->sched_class = &fair_sched_class;
1da177e4 3992}
aab03e05
DF
3993
3994static void
3995__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3996{
3997 struct sched_dl_entity *dl_se = &p->dl;
3998
3999 attr->sched_priority = p->rt_priority;
4000 attr->sched_runtime = dl_se->dl_runtime;
4001 attr->sched_deadline = dl_se->dl_deadline;
755378a4 4002 attr->sched_period = dl_se->dl_period;
aab03e05
DF
4003 attr->sched_flags = dl_se->flags;
4004}
4005
4006/*
4007 * This function validates the new parameters of a -deadline task.
4008 * We ask for the deadline not being zero, and greater or equal
755378a4 4009 * than the runtime, as well as the period of being zero or
332ac17e 4010 * greater than deadline. Furthermore, we have to be sure that
b0827819
JL
4011 * user parameters are above the internal resolution of 1us (we
4012 * check sched_runtime only since it is always the smaller one) and
4013 * below 2^63 ns (we have to check both sched_deadline and
4014 * sched_period, as the latter can be zero).
aab03e05
DF
4015 */
4016static bool
4017__checkparam_dl(const struct sched_attr *attr)
4018{
b0827819
JL
4019 /* deadline != 0 */
4020 if (attr->sched_deadline == 0)
4021 return false;
4022
4023 /*
4024 * Since we truncate DL_SCALE bits, make sure we're at least
4025 * that big.
4026 */
4027 if (attr->sched_runtime < (1ULL << DL_SCALE))
4028 return false;
4029
4030 /*
4031 * Since we use the MSB for wrap-around and sign issues, make
4032 * sure it's not set (mind that period can be equal to zero).
4033 */
4034 if (attr->sched_deadline & (1ULL << 63) ||
4035 attr->sched_period & (1ULL << 63))
4036 return false;
4037
4038 /* runtime <= deadline <= period (if period != 0) */
4039 if ((attr->sched_period != 0 &&
4040 attr->sched_period < attr->sched_deadline) ||
4041 attr->sched_deadline < attr->sched_runtime)
4042 return false;
4043
4044 return true;
aab03e05
DF
4045}
4046
c69e8d9c
DH
4047/*
4048 * check the target process has a UID that matches the current process's
4049 */
4050static bool check_same_owner(struct task_struct *p)
4051{
4052 const struct cred *cred = current_cred(), *pcred;
4053 bool match;
4054
4055 rcu_read_lock();
4056 pcred = __task_cred(p);
9c806aa0
EB
4057 match = (uid_eq(cred->euid, pcred->euid) ||
4058 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
4059 rcu_read_unlock();
4060 return match;
4061}
4062
75381608
WL
4063static bool dl_param_changed(struct task_struct *p,
4064 const struct sched_attr *attr)
4065{
4066 struct sched_dl_entity *dl_se = &p->dl;
4067
4068 if (dl_se->dl_runtime != attr->sched_runtime ||
4069 dl_se->dl_deadline != attr->sched_deadline ||
4070 dl_se->dl_period != attr->sched_period ||
4071 dl_se->flags != attr->sched_flags)
4072 return true;
4073
4074 return false;
4075}
4076
d50dde5a
DF
4077static int __sched_setscheduler(struct task_struct *p,
4078 const struct sched_attr *attr,
dbc7f069 4079 bool user, bool pi)
1da177e4 4080{
383afd09
SR
4081 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4082 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 4083 int retval, oldprio, oldpolicy = -1, queued, running;
0782e63b 4084 int new_effective_prio, policy = attr->sched_policy;
83ab0aa0 4085 const struct sched_class *prev_class;
eb580751 4086 struct rq_flags rf;
ca94c442 4087 int reset_on_fork;
ff77e468 4088 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
eb580751 4089 struct rq *rq;
1da177e4 4090
66e5393a
SR
4091 /* may grab non-irq protected spin_locks */
4092 BUG_ON(in_interrupt());
1da177e4
LT
4093recheck:
4094 /* double check policy once rq lock held */
ca94c442
LP
4095 if (policy < 0) {
4096 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4097 policy = oldpolicy = p->policy;
ca94c442 4098 } else {
7479f3c9 4099 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 4100
20f9cd2a 4101 if (!valid_policy(policy))
ca94c442
LP
4102 return -EINVAL;
4103 }
4104
7479f3c9
PZ
4105 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
4106 return -EINVAL;
4107
1da177e4
LT
4108 /*
4109 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4110 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4111 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 4112 */
0bb040a4 4113 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 4114 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 4115 return -EINVAL;
aab03e05
DF
4116 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4117 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
4118 return -EINVAL;
4119
37e4ab3f
OC
4120 /*
4121 * Allow unprivileged RT tasks to decrease priority:
4122 */
961ccddd 4123 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 4124 if (fair_policy(policy)) {
d0ea0268 4125 if (attr->sched_nice < task_nice(p) &&
eaad4513 4126 !can_nice(p, attr->sched_nice))
d50dde5a
DF
4127 return -EPERM;
4128 }
4129
e05606d3 4130 if (rt_policy(policy)) {
a44702e8
ON
4131 unsigned long rlim_rtprio =
4132 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
4133
4134 /* can't set/change the rt policy */
4135 if (policy != p->policy && !rlim_rtprio)
4136 return -EPERM;
4137
4138 /* can't increase priority */
d50dde5a
DF
4139 if (attr->sched_priority > p->rt_priority &&
4140 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
4141 return -EPERM;
4142 }
c02aa73b 4143
d44753b8
JL
4144 /*
4145 * Can't set/change SCHED_DEADLINE policy at all for now
4146 * (safest behavior); in the future we would like to allow
4147 * unprivileged DL tasks to increase their relative deadline
4148 * or reduce their runtime (both ways reducing utilization)
4149 */
4150 if (dl_policy(policy))
4151 return -EPERM;
4152
dd41f596 4153 /*
c02aa73b
DH
4154 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4155 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 4156 */
20f9cd2a 4157 if (idle_policy(p->policy) && !idle_policy(policy)) {
d0ea0268 4158 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
4159 return -EPERM;
4160 }
5fe1d75f 4161
37e4ab3f 4162 /* can't change other user's priorities */
c69e8d9c 4163 if (!check_same_owner(p))
37e4ab3f 4164 return -EPERM;
ca94c442
LP
4165
4166 /* Normal users shall not reset the sched_reset_on_fork flag */
4167 if (p->sched_reset_on_fork && !reset_on_fork)
4168 return -EPERM;
37e4ab3f 4169 }
1da177e4 4170
725aad24 4171 if (user) {
b0ae1981 4172 retval = security_task_setscheduler(p);
725aad24
JF
4173 if (retval)
4174 return retval;
4175 }
4176
b29739f9
IM
4177 /*
4178 * make sure no PI-waiters arrive (or leave) while we are
4179 * changing the priority of the task:
0122ec5b 4180 *
25985edc 4181 * To be able to change p->policy safely, the appropriate
1da177e4
LT
4182 * runqueue lock must be held.
4183 */
eb580751 4184 rq = task_rq_lock(p, &rf);
dc61b1d6 4185
34f971f6
PZ
4186 /*
4187 * Changing the policy of the stop threads its a very bad idea
4188 */
4189 if (p == rq->stop) {
eb580751 4190 task_rq_unlock(rq, p, &rf);
34f971f6
PZ
4191 return -EINVAL;
4192 }
4193
a51e9198 4194 /*
d6b1e911
TG
4195 * If not changing anything there's no need to proceed further,
4196 * but store a possible modification of reset_on_fork.
a51e9198 4197 */
d50dde5a 4198 if (unlikely(policy == p->policy)) {
d0ea0268 4199 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
4200 goto change;
4201 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4202 goto change;
75381608 4203 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 4204 goto change;
d50dde5a 4205
d6b1e911 4206 p->sched_reset_on_fork = reset_on_fork;
eb580751 4207 task_rq_unlock(rq, p, &rf);
a51e9198
DF
4208 return 0;
4209 }
d50dde5a 4210change:
a51e9198 4211
dc61b1d6 4212 if (user) {
332ac17e 4213#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
4214 /*
4215 * Do not allow realtime tasks into groups that have no runtime
4216 * assigned.
4217 */
4218 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
4219 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4220 !task_group_is_autogroup(task_group(p))) {
eb580751 4221 task_rq_unlock(rq, p, &rf);
dc61b1d6
PZ
4222 return -EPERM;
4223 }
dc61b1d6 4224#endif
332ac17e
DF
4225#ifdef CONFIG_SMP
4226 if (dl_bandwidth_enabled() && dl_policy(policy)) {
4227 cpumask_t *span = rq->rd->span;
332ac17e
DF
4228
4229 /*
4230 * Don't allow tasks with an affinity mask smaller than
4231 * the entire root_domain to become SCHED_DEADLINE. We
4232 * will also fail if there's no bandwidth available.
4233 */
e4099a5e
PZ
4234 if (!cpumask_subset(span, &p->cpus_allowed) ||
4235 rq->rd->dl_bw.bw == 0) {
eb580751 4236 task_rq_unlock(rq, p, &rf);
332ac17e
DF
4237 return -EPERM;
4238 }
4239 }
4240#endif
4241 }
dc61b1d6 4242
1da177e4
LT
4243 /* recheck policy now with rq lock held */
4244 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4245 policy = oldpolicy = -1;
eb580751 4246 task_rq_unlock(rq, p, &rf);
1da177e4
LT
4247 goto recheck;
4248 }
332ac17e
DF
4249
4250 /*
4251 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4252 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4253 * is available.
4254 */
e4099a5e 4255 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
eb580751 4256 task_rq_unlock(rq, p, &rf);
332ac17e
DF
4257 return -EBUSY;
4258 }
4259
c365c292
TG
4260 p->sched_reset_on_fork = reset_on_fork;
4261 oldprio = p->prio;
4262
dbc7f069
PZ
4263 if (pi) {
4264 /*
4265 * Take priority boosted tasks into account. If the new
4266 * effective priority is unchanged, we just store the new
4267 * normal parameters and do not touch the scheduler class and
4268 * the runqueue. This will be done when the task deboost
4269 * itself.
4270 */
4271 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
ff77e468
PZ
4272 if (new_effective_prio == oldprio)
4273 queue_flags &= ~DEQUEUE_MOVE;
c365c292
TG
4274 }
4275
da0c1e65 4276 queued = task_on_rq_queued(p);
051a1d1a 4277 running = task_current(rq, p);
da0c1e65 4278 if (queued)
ff77e468 4279 dequeue_task(rq, p, queue_flags);
0e1f3483 4280 if (running)
f3cd1c4e 4281 put_prev_task(rq, p);
f6b53205 4282
83ab0aa0 4283 prev_class = p->sched_class;
dbc7f069 4284 __setscheduler(rq, p, attr, pi);
f6b53205 4285
da0c1e65 4286 if (queued) {
81a44c54
TG
4287 /*
4288 * We enqueue to tail when the priority of a task is
4289 * increased (user space view).
4290 */
ff77e468
PZ
4291 if (oldprio < p->prio)
4292 queue_flags |= ENQUEUE_HEAD;
1de64443 4293
ff77e468 4294 enqueue_task(rq, p, queue_flags);
81a44c54 4295 }
a399d233 4296 if (running)
b2bf6c31 4297 set_curr_task(rq, p);
cb469845 4298
da7a735e 4299 check_class_changed(rq, p, prev_class, oldprio);
4c9a4bc8 4300 preempt_disable(); /* avoid rq from going away on us */
eb580751 4301 task_rq_unlock(rq, p, &rf);
b29739f9 4302
dbc7f069
PZ
4303 if (pi)
4304 rt_mutex_adjust_pi(p);
95e02ca9 4305
4c9a4bc8
PZ
4306 /*
4307 * Run balance callbacks after we've adjusted the PI chain.
4308 */
4309 balance_callback(rq);
4310 preempt_enable();
95e02ca9 4311
1da177e4
LT
4312 return 0;
4313}
961ccddd 4314
7479f3c9
PZ
4315static int _sched_setscheduler(struct task_struct *p, int policy,
4316 const struct sched_param *param, bool check)
4317{
4318 struct sched_attr attr = {
4319 .sched_policy = policy,
4320 .sched_priority = param->sched_priority,
4321 .sched_nice = PRIO_TO_NICE(p->static_prio),
4322 };
4323
c13db6b1
SR
4324 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4325 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
4326 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4327 policy &= ~SCHED_RESET_ON_FORK;
4328 attr.sched_policy = policy;
4329 }
4330
dbc7f069 4331 return __sched_setscheduler(p, &attr, check, true);
7479f3c9 4332}
961ccddd
RR
4333/**
4334 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4335 * @p: the task in question.
4336 * @policy: new policy.
4337 * @param: structure containing the new RT priority.
4338 *
e69f6186
YB
4339 * Return: 0 on success. An error code otherwise.
4340 *
961ccddd
RR
4341 * NOTE that the task may be already dead.
4342 */
4343int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4344 const struct sched_param *param)
961ccddd 4345{
7479f3c9 4346 return _sched_setscheduler(p, policy, param, true);
961ccddd 4347}
1da177e4
LT
4348EXPORT_SYMBOL_GPL(sched_setscheduler);
4349
d50dde5a
DF
4350int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4351{
dbc7f069 4352 return __sched_setscheduler(p, attr, true, true);
d50dde5a
DF
4353}
4354EXPORT_SYMBOL_GPL(sched_setattr);
4355
961ccddd
RR
4356/**
4357 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4358 * @p: the task in question.
4359 * @policy: new policy.
4360 * @param: structure containing the new RT priority.
4361 *
4362 * Just like sched_setscheduler, only don't bother checking if the
4363 * current context has permission. For example, this is needed in
4364 * stop_machine(): we create temporary high priority worker threads,
4365 * but our caller might not have that capability.
e69f6186
YB
4366 *
4367 * Return: 0 on success. An error code otherwise.
961ccddd
RR
4368 */
4369int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 4370 const struct sched_param *param)
961ccddd 4371{
7479f3c9 4372 return _sched_setscheduler(p, policy, param, false);
961ccddd 4373}
84778472 4374EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
961ccddd 4375
95cdf3b7
IM
4376static int
4377do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4378{
1da177e4
LT
4379 struct sched_param lparam;
4380 struct task_struct *p;
36c8b586 4381 int retval;
1da177e4
LT
4382
4383 if (!param || pid < 0)
4384 return -EINVAL;
4385 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4386 return -EFAULT;
5fe1d75f
ON
4387
4388 rcu_read_lock();
4389 retval = -ESRCH;
1da177e4 4390 p = find_process_by_pid(pid);
5fe1d75f
ON
4391 if (p != NULL)
4392 retval = sched_setscheduler(p, policy, &lparam);
4393 rcu_read_unlock();
36c8b586 4394
1da177e4
LT
4395 return retval;
4396}
4397
d50dde5a
DF
4398/*
4399 * Mimics kernel/events/core.c perf_copy_attr().
4400 */
4401static int sched_copy_attr(struct sched_attr __user *uattr,
4402 struct sched_attr *attr)
4403{
4404 u32 size;
4405 int ret;
4406
4407 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4408 return -EFAULT;
4409
4410 /*
4411 * zero the full structure, so that a short copy will be nice.
4412 */
4413 memset(attr, 0, sizeof(*attr));
4414
4415 ret = get_user(size, &uattr->size);
4416 if (ret)
4417 return ret;
4418
4419 if (size > PAGE_SIZE) /* silly large */
4420 goto err_size;
4421
4422 if (!size) /* abi compat */
4423 size = SCHED_ATTR_SIZE_VER0;
4424
4425 if (size < SCHED_ATTR_SIZE_VER0)
4426 goto err_size;
4427
4428 /*
4429 * If we're handed a bigger struct than we know of,
4430 * ensure all the unknown bits are 0 - i.e. new
4431 * user-space does not rely on any kernel feature
4432 * extensions we dont know about yet.
4433 */
4434 if (size > sizeof(*attr)) {
4435 unsigned char __user *addr;
4436 unsigned char __user *end;
4437 unsigned char val;
4438
4439 addr = (void __user *)uattr + sizeof(*attr);
4440 end = (void __user *)uattr + size;
4441
4442 for (; addr < end; addr++) {
4443 ret = get_user(val, addr);
4444 if (ret)
4445 return ret;
4446 if (val)
4447 goto err_size;
4448 }
4449 size = sizeof(*attr);
4450 }
4451
4452 ret = copy_from_user(attr, uattr, size);
4453 if (ret)
4454 return -EFAULT;
4455
4456 /*
4457 * XXX: do we want to be lenient like existing syscalls; or do we want
4458 * to be strict and return an error on out-of-bounds values?
4459 */
75e45d51 4460 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 4461
e78c7bca 4462 return 0;
d50dde5a
DF
4463
4464err_size:
4465 put_user(sizeof(*attr), &uattr->size);
e78c7bca 4466 return -E2BIG;
d50dde5a
DF
4467}
4468
1da177e4
LT
4469/**
4470 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4471 * @pid: the pid in question.
4472 * @policy: new policy.
4473 * @param: structure containing the new RT priority.
e69f6186
YB
4474 *
4475 * Return: 0 on success. An error code otherwise.
1da177e4 4476 */
5add95d4
HC
4477SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4478 struct sched_param __user *, param)
1da177e4 4479{
c21761f1
JB
4480 /* negative values for policy are not valid */
4481 if (policy < 0)
4482 return -EINVAL;
4483
1da177e4
LT
4484 return do_sched_setscheduler(pid, policy, param);
4485}
4486
4487/**
4488 * sys_sched_setparam - set/change the RT priority of a thread
4489 * @pid: the pid in question.
4490 * @param: structure containing the new RT priority.
e69f6186
YB
4491 *
4492 * Return: 0 on success. An error code otherwise.
1da177e4 4493 */
5add95d4 4494SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4495{
c13db6b1 4496 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
4497}
4498
d50dde5a
DF
4499/**
4500 * sys_sched_setattr - same as above, but with extended sched_attr
4501 * @pid: the pid in question.
5778fccf 4502 * @uattr: structure containing the extended parameters.
db66d756 4503 * @flags: for future extension.
d50dde5a 4504 */
6d35ab48
PZ
4505SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4506 unsigned int, flags)
d50dde5a
DF
4507{
4508 struct sched_attr attr;
4509 struct task_struct *p;
4510 int retval;
4511
6d35ab48 4512 if (!uattr || pid < 0 || flags)
d50dde5a
DF
4513 return -EINVAL;
4514
143cf23d
MK
4515 retval = sched_copy_attr(uattr, &attr);
4516 if (retval)
4517 return retval;
d50dde5a 4518
b14ed2c2 4519 if ((int)attr.sched_policy < 0)
dbdb2275 4520 return -EINVAL;
d50dde5a
DF
4521
4522 rcu_read_lock();
4523 retval = -ESRCH;
4524 p = find_process_by_pid(pid);
4525 if (p != NULL)
4526 retval = sched_setattr(p, &attr);
4527 rcu_read_unlock();
4528
4529 return retval;
4530}
4531
1da177e4
LT
4532/**
4533 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4534 * @pid: the pid in question.
e69f6186
YB
4535 *
4536 * Return: On success, the policy of the thread. Otherwise, a negative error
4537 * code.
1da177e4 4538 */
5add95d4 4539SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4540{
36c8b586 4541 struct task_struct *p;
3a5c359a 4542 int retval;
1da177e4
LT
4543
4544 if (pid < 0)
3a5c359a 4545 return -EINVAL;
1da177e4
LT
4546
4547 retval = -ESRCH;
5fe85be0 4548 rcu_read_lock();
1da177e4
LT
4549 p = find_process_by_pid(pid);
4550 if (p) {
4551 retval = security_task_getscheduler(p);
4552 if (!retval)
ca94c442
LP
4553 retval = p->policy
4554 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4555 }
5fe85be0 4556 rcu_read_unlock();
1da177e4
LT
4557 return retval;
4558}
4559
4560/**
ca94c442 4561 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4562 * @pid: the pid in question.
4563 * @param: structure containing the RT priority.
e69f6186
YB
4564 *
4565 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4566 * code.
1da177e4 4567 */
5add95d4 4568SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4569{
ce5f7f82 4570 struct sched_param lp = { .sched_priority = 0 };
36c8b586 4571 struct task_struct *p;
3a5c359a 4572 int retval;
1da177e4
LT
4573
4574 if (!param || pid < 0)
3a5c359a 4575 return -EINVAL;
1da177e4 4576
5fe85be0 4577 rcu_read_lock();
1da177e4
LT
4578 p = find_process_by_pid(pid);
4579 retval = -ESRCH;
4580 if (!p)
4581 goto out_unlock;
4582
4583 retval = security_task_getscheduler(p);
4584 if (retval)
4585 goto out_unlock;
4586
ce5f7f82
PZ
4587 if (task_has_rt_policy(p))
4588 lp.sched_priority = p->rt_priority;
5fe85be0 4589 rcu_read_unlock();
1da177e4
LT
4590
4591 /*
4592 * This one might sleep, we cannot do it with a spinlock held ...
4593 */
4594 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4595
1da177e4
LT
4596 return retval;
4597
4598out_unlock:
5fe85be0 4599 rcu_read_unlock();
1da177e4
LT
4600 return retval;
4601}
4602
d50dde5a
DF
4603static int sched_read_attr(struct sched_attr __user *uattr,
4604 struct sched_attr *attr,
4605 unsigned int usize)
4606{
4607 int ret;
4608
4609 if (!access_ok(VERIFY_WRITE, uattr, usize))
4610 return -EFAULT;
4611
4612 /*
4613 * If we're handed a smaller struct than we know of,
4614 * ensure all the unknown bits are 0 - i.e. old
4615 * user-space does not get uncomplete information.
4616 */
4617 if (usize < sizeof(*attr)) {
4618 unsigned char *addr;
4619 unsigned char *end;
4620
4621 addr = (void *)attr + usize;
4622 end = (void *)attr + sizeof(*attr);
4623
4624 for (; addr < end; addr++) {
4625 if (*addr)
22400674 4626 return -EFBIG;
d50dde5a
DF
4627 }
4628
4629 attr->size = usize;
4630 }
4631
4efbc454 4632 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
4633 if (ret)
4634 return -EFAULT;
4635
22400674 4636 return 0;
d50dde5a
DF
4637}
4638
4639/**
aab03e05 4640 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 4641 * @pid: the pid in question.
5778fccf 4642 * @uattr: structure containing the extended parameters.
d50dde5a 4643 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 4644 * @flags: for future extension.
d50dde5a 4645 */
6d35ab48
PZ
4646SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4647 unsigned int, size, unsigned int, flags)
d50dde5a
DF
4648{
4649 struct sched_attr attr = {
4650 .size = sizeof(struct sched_attr),
4651 };
4652 struct task_struct *p;
4653 int retval;
4654
4655 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 4656 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
4657 return -EINVAL;
4658
4659 rcu_read_lock();
4660 p = find_process_by_pid(pid);
4661 retval = -ESRCH;
4662 if (!p)
4663 goto out_unlock;
4664
4665 retval = security_task_getscheduler(p);
4666 if (retval)
4667 goto out_unlock;
4668
4669 attr.sched_policy = p->policy;
7479f3c9
PZ
4670 if (p->sched_reset_on_fork)
4671 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
4672 if (task_has_dl_policy(p))
4673 __getparam_dl(p, &attr);
4674 else if (task_has_rt_policy(p))
d50dde5a
DF
4675 attr.sched_priority = p->rt_priority;
4676 else
d0ea0268 4677 attr.sched_nice = task_nice(p);
d50dde5a
DF
4678
4679 rcu_read_unlock();
4680
4681 retval = sched_read_attr(uattr, &attr, size);
4682 return retval;
4683
4684out_unlock:
4685 rcu_read_unlock();
4686 return retval;
4687}
4688
96f874e2 4689long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4690{
5a16f3d3 4691 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4692 struct task_struct *p;
4693 int retval;
1da177e4 4694
23f5d142 4695 rcu_read_lock();
1da177e4
LT
4696
4697 p = find_process_by_pid(pid);
4698 if (!p) {
23f5d142 4699 rcu_read_unlock();
1da177e4
LT
4700 return -ESRCH;
4701 }
4702
23f5d142 4703 /* Prevent p going away */
1da177e4 4704 get_task_struct(p);
23f5d142 4705 rcu_read_unlock();
1da177e4 4706
14a40ffc
TH
4707 if (p->flags & PF_NO_SETAFFINITY) {
4708 retval = -EINVAL;
4709 goto out_put_task;
4710 }
5a16f3d3
RR
4711 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4712 retval = -ENOMEM;
4713 goto out_put_task;
4714 }
4715 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4716 retval = -ENOMEM;
4717 goto out_free_cpus_allowed;
4718 }
1da177e4 4719 retval = -EPERM;
4c44aaaf
EB
4720 if (!check_same_owner(p)) {
4721 rcu_read_lock();
4722 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4723 rcu_read_unlock();
16303ab2 4724 goto out_free_new_mask;
4c44aaaf
EB
4725 }
4726 rcu_read_unlock();
4727 }
1da177e4 4728
b0ae1981 4729 retval = security_task_setscheduler(p);
e7834f8f 4730 if (retval)
16303ab2 4731 goto out_free_new_mask;
e7834f8f 4732
e4099a5e
PZ
4733
4734 cpuset_cpus_allowed(p, cpus_allowed);
4735 cpumask_and(new_mask, in_mask, cpus_allowed);
4736
332ac17e
DF
4737 /*
4738 * Since bandwidth control happens on root_domain basis,
4739 * if admission test is enabled, we only admit -deadline
4740 * tasks allowed to run on all the CPUs in the task's
4741 * root_domain.
4742 */
4743#ifdef CONFIG_SMP
f1e3a093
KT
4744 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4745 rcu_read_lock();
4746 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 4747 retval = -EBUSY;
f1e3a093 4748 rcu_read_unlock();
16303ab2 4749 goto out_free_new_mask;
332ac17e 4750 }
f1e3a093 4751 rcu_read_unlock();
332ac17e
DF
4752 }
4753#endif
49246274 4754again:
25834c73 4755 retval = __set_cpus_allowed_ptr(p, new_mask, true);
1da177e4 4756
8707d8b8 4757 if (!retval) {
5a16f3d3
RR
4758 cpuset_cpus_allowed(p, cpus_allowed);
4759 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4760 /*
4761 * We must have raced with a concurrent cpuset
4762 * update. Just reset the cpus_allowed to the
4763 * cpuset's cpus_allowed
4764 */
5a16f3d3 4765 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4766 goto again;
4767 }
4768 }
16303ab2 4769out_free_new_mask:
5a16f3d3
RR
4770 free_cpumask_var(new_mask);
4771out_free_cpus_allowed:
4772 free_cpumask_var(cpus_allowed);
4773out_put_task:
1da177e4 4774 put_task_struct(p);
1da177e4
LT
4775 return retval;
4776}
4777
4778static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4779 struct cpumask *new_mask)
1da177e4 4780{
96f874e2
RR
4781 if (len < cpumask_size())
4782 cpumask_clear(new_mask);
4783 else if (len > cpumask_size())
4784 len = cpumask_size();
4785
1da177e4
LT
4786 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4787}
4788
4789/**
4790 * sys_sched_setaffinity - set the cpu affinity of a process
4791 * @pid: pid of the process
4792 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4793 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
4794 *
4795 * Return: 0 on success. An error code otherwise.
1da177e4 4796 */
5add95d4
HC
4797SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4798 unsigned long __user *, user_mask_ptr)
1da177e4 4799{
5a16f3d3 4800 cpumask_var_t new_mask;
1da177e4
LT
4801 int retval;
4802
5a16f3d3
RR
4803 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4804 return -ENOMEM;
1da177e4 4805
5a16f3d3
RR
4806 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4807 if (retval == 0)
4808 retval = sched_setaffinity(pid, new_mask);
4809 free_cpumask_var(new_mask);
4810 return retval;
1da177e4
LT
4811}
4812
96f874e2 4813long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4814{
36c8b586 4815 struct task_struct *p;
31605683 4816 unsigned long flags;
1da177e4 4817 int retval;
1da177e4 4818
23f5d142 4819 rcu_read_lock();
1da177e4
LT
4820
4821 retval = -ESRCH;
4822 p = find_process_by_pid(pid);
4823 if (!p)
4824 goto out_unlock;
4825
e7834f8f
DQ
4826 retval = security_task_getscheduler(p);
4827 if (retval)
4828 goto out_unlock;
4829
013fdb80 4830 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4831 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4832 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4833
4834out_unlock:
23f5d142 4835 rcu_read_unlock();
1da177e4 4836
9531b62f 4837 return retval;
1da177e4
LT
4838}
4839
4840/**
4841 * sys_sched_getaffinity - get the cpu affinity of a process
4842 * @pid: pid of the process
4843 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4844 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186 4845 *
599b4840
ZW
4846 * Return: size of CPU mask copied to user_mask_ptr on success. An
4847 * error code otherwise.
1da177e4 4848 */
5add95d4
HC
4849SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4850 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4851{
4852 int ret;
f17c8607 4853 cpumask_var_t mask;
1da177e4 4854
84fba5ec 4855 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4856 return -EINVAL;
4857 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4858 return -EINVAL;
4859
f17c8607
RR
4860 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4861 return -ENOMEM;
1da177e4 4862
f17c8607
RR
4863 ret = sched_getaffinity(pid, mask);
4864 if (ret == 0) {
8bc037fb 4865 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4866
4867 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4868 ret = -EFAULT;
4869 else
cd3d8031 4870 ret = retlen;
f17c8607
RR
4871 }
4872 free_cpumask_var(mask);
1da177e4 4873
f17c8607 4874 return ret;
1da177e4
LT
4875}
4876
4877/**
4878 * sys_sched_yield - yield the current processor to other threads.
4879 *
dd41f596
IM
4880 * This function yields the current CPU to other tasks. If there are no
4881 * other threads running on this CPU then this function will return.
e69f6186
YB
4882 *
4883 * Return: 0.
1da177e4 4884 */
5add95d4 4885SYSCALL_DEFINE0(sched_yield)
1da177e4 4886{
70b97a7f 4887 struct rq *rq = this_rq_lock();
1da177e4 4888
ae92882e 4889 schedstat_inc(rq->yld_count);
4530d7ab 4890 current->sched_class->yield_task(rq);
1da177e4
LT
4891
4892 /*
4893 * Since we are going to call schedule() anyway, there's
4894 * no need to preempt or enable interrupts:
4895 */
4896 __release(rq->lock);
8a25d5de 4897 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4898 do_raw_spin_unlock(&rq->lock);
ba74c144 4899 sched_preempt_enable_no_resched();
1da177e4
LT
4900
4901 schedule();
4902
4903 return 0;
4904}
4905
35a773a0 4906#ifndef CONFIG_PREEMPT
02b67cc3 4907int __sched _cond_resched(void)
1da177e4 4908{
fe32d3cd 4909 if (should_resched(0)) {
a18b5d01 4910 preempt_schedule_common();
1da177e4
LT
4911 return 1;
4912 }
4913 return 0;
4914}
02b67cc3 4915EXPORT_SYMBOL(_cond_resched);
35a773a0 4916#endif
1da177e4
LT
4917
4918/*
613afbf8 4919 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4920 * call schedule, and on return reacquire the lock.
4921 *
41a2d6cf 4922 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4923 * operations here to prevent schedule() from being called twice (once via
4924 * spin_unlock(), once by hand).
4925 */
613afbf8 4926int __cond_resched_lock(spinlock_t *lock)
1da177e4 4927{
fe32d3cd 4928 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6df3cecb
JK
4929 int ret = 0;
4930
f607c668
PZ
4931 lockdep_assert_held(lock);
4932
4a81e832 4933 if (spin_needbreak(lock) || resched) {
1da177e4 4934 spin_unlock(lock);
d86ee480 4935 if (resched)
a18b5d01 4936 preempt_schedule_common();
95c354fe
NP
4937 else
4938 cpu_relax();
6df3cecb 4939 ret = 1;
1da177e4 4940 spin_lock(lock);
1da177e4 4941 }
6df3cecb 4942 return ret;
1da177e4 4943}
613afbf8 4944EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4945
613afbf8 4946int __sched __cond_resched_softirq(void)
1da177e4
LT
4947{
4948 BUG_ON(!in_softirq());
4949
fe32d3cd 4950 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
98d82567 4951 local_bh_enable();
a18b5d01 4952 preempt_schedule_common();
1da177e4
LT
4953 local_bh_disable();
4954 return 1;
4955 }
4956 return 0;
4957}
613afbf8 4958EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4959
1da177e4
LT
4960/**
4961 * yield - yield the current processor to other threads.
4962 *
8e3fabfd
PZ
4963 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4964 *
4965 * The scheduler is at all times free to pick the calling task as the most
4966 * eligible task to run, if removing the yield() call from your code breaks
4967 * it, its already broken.
4968 *
4969 * Typical broken usage is:
4970 *
4971 * while (!event)
4972 * yield();
4973 *
4974 * where one assumes that yield() will let 'the other' process run that will
4975 * make event true. If the current task is a SCHED_FIFO task that will never
4976 * happen. Never use yield() as a progress guarantee!!
4977 *
4978 * If you want to use yield() to wait for something, use wait_event().
4979 * If you want to use yield() to be 'nice' for others, use cond_resched().
4980 * If you still want to use yield(), do not!
1da177e4
LT
4981 */
4982void __sched yield(void)
4983{
4984 set_current_state(TASK_RUNNING);
4985 sys_sched_yield();
4986}
1da177e4
LT
4987EXPORT_SYMBOL(yield);
4988
d95f4122
MG
4989/**
4990 * yield_to - yield the current processor to another thread in
4991 * your thread group, or accelerate that thread toward the
4992 * processor it's on.
16addf95
RD
4993 * @p: target task
4994 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4995 *
4996 * It's the caller's job to ensure that the target task struct
4997 * can't go away on us before we can do any checks.
4998 *
e69f6186 4999 * Return:
7b270f60
PZ
5000 * true (>0) if we indeed boosted the target task.
5001 * false (0) if we failed to boost the target.
5002 * -ESRCH if there's no task to yield to.
d95f4122 5003 */
fa93384f 5004int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
5005{
5006 struct task_struct *curr = current;
5007 struct rq *rq, *p_rq;
5008 unsigned long flags;
c3c18640 5009 int yielded = 0;
d95f4122
MG
5010
5011 local_irq_save(flags);
5012 rq = this_rq();
5013
5014again:
5015 p_rq = task_rq(p);
7b270f60
PZ
5016 /*
5017 * If we're the only runnable task on the rq and target rq also
5018 * has only one task, there's absolutely no point in yielding.
5019 */
5020 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5021 yielded = -ESRCH;
5022 goto out_irq;
5023 }
5024
d95f4122 5025 double_rq_lock(rq, p_rq);
39e24d8f 5026 if (task_rq(p) != p_rq) {
d95f4122
MG
5027 double_rq_unlock(rq, p_rq);
5028 goto again;
5029 }
5030
5031 if (!curr->sched_class->yield_to_task)
7b270f60 5032 goto out_unlock;
d95f4122
MG
5033
5034 if (curr->sched_class != p->sched_class)
7b270f60 5035 goto out_unlock;
d95f4122
MG
5036
5037 if (task_running(p_rq, p) || p->state)
7b270f60 5038 goto out_unlock;
d95f4122
MG
5039
5040 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 5041 if (yielded) {
ae92882e 5042 schedstat_inc(rq->yld_count);
6d1cafd8
VP
5043 /*
5044 * Make p's CPU reschedule; pick_next_entity takes care of
5045 * fairness.
5046 */
5047 if (preempt && rq != p_rq)
8875125e 5048 resched_curr(p_rq);
6d1cafd8 5049 }
d95f4122 5050
7b270f60 5051out_unlock:
d95f4122 5052 double_rq_unlock(rq, p_rq);
7b270f60 5053out_irq:
d95f4122
MG
5054 local_irq_restore(flags);
5055
7b270f60 5056 if (yielded > 0)
d95f4122
MG
5057 schedule();
5058
5059 return yielded;
5060}
5061EXPORT_SYMBOL_GPL(yield_to);
5062
1da177e4 5063/*
41a2d6cf 5064 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5065 * that process accounting knows that this is a task in IO wait state.
1da177e4 5066 */
1da177e4
LT
5067long __sched io_schedule_timeout(long timeout)
5068{
9cff8ade
N
5069 int old_iowait = current->in_iowait;
5070 struct rq *rq;
1da177e4
LT
5071 long ret;
5072
9cff8ade 5073 current->in_iowait = 1;
10d784ea 5074 blk_schedule_flush_plug(current);
9cff8ade 5075
0ff92245 5076 delayacct_blkio_start();
9cff8ade 5077 rq = raw_rq();
1da177e4
LT
5078 atomic_inc(&rq->nr_iowait);
5079 ret = schedule_timeout(timeout);
9cff8ade 5080 current->in_iowait = old_iowait;
1da177e4 5081 atomic_dec(&rq->nr_iowait);
0ff92245 5082 delayacct_blkio_end();
9cff8ade 5083
1da177e4
LT
5084 return ret;
5085}
9cff8ade 5086EXPORT_SYMBOL(io_schedule_timeout);
1da177e4
LT
5087
5088/**
5089 * sys_sched_get_priority_max - return maximum RT priority.
5090 * @policy: scheduling class.
5091 *
e69f6186
YB
5092 * Return: On success, this syscall returns the maximum
5093 * rt_priority that can be used by a given scheduling class.
5094 * On failure, a negative error code is returned.
1da177e4 5095 */
5add95d4 5096SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5097{
5098 int ret = -EINVAL;
5099
5100 switch (policy) {
5101 case SCHED_FIFO:
5102 case SCHED_RR:
5103 ret = MAX_USER_RT_PRIO-1;
5104 break;
aab03e05 5105 case SCHED_DEADLINE:
1da177e4 5106 case SCHED_NORMAL:
b0a9499c 5107 case SCHED_BATCH:
dd41f596 5108 case SCHED_IDLE:
1da177e4
LT
5109 ret = 0;
5110 break;
5111 }
5112 return ret;
5113}
5114
5115/**
5116 * sys_sched_get_priority_min - return minimum RT priority.
5117 * @policy: scheduling class.
5118 *
e69f6186
YB
5119 * Return: On success, this syscall returns the minimum
5120 * rt_priority that can be used by a given scheduling class.
5121 * On failure, a negative error code is returned.
1da177e4 5122 */
5add95d4 5123SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5124{
5125 int ret = -EINVAL;
5126
5127 switch (policy) {
5128 case SCHED_FIFO:
5129 case SCHED_RR:
5130 ret = 1;
5131 break;
aab03e05 5132 case SCHED_DEADLINE:
1da177e4 5133 case SCHED_NORMAL:
b0a9499c 5134 case SCHED_BATCH:
dd41f596 5135 case SCHED_IDLE:
1da177e4
LT
5136 ret = 0;
5137 }
5138 return ret;
5139}
5140
5141/**
5142 * sys_sched_rr_get_interval - return the default timeslice of a process.
5143 * @pid: pid of the process.
5144 * @interval: userspace pointer to the timeslice value.
5145 *
5146 * this syscall writes the default timeslice value of a given process
5147 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
5148 *
5149 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5150 * an error code.
1da177e4 5151 */
17da2bd9 5152SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5153 struct timespec __user *, interval)
1da177e4 5154{
36c8b586 5155 struct task_struct *p;
a4ec24b4 5156 unsigned int time_slice;
eb580751
PZ
5157 struct rq_flags rf;
5158 struct timespec t;
dba091b9 5159 struct rq *rq;
3a5c359a 5160 int retval;
1da177e4
LT
5161
5162 if (pid < 0)
3a5c359a 5163 return -EINVAL;
1da177e4
LT
5164
5165 retval = -ESRCH;
1a551ae7 5166 rcu_read_lock();
1da177e4
LT
5167 p = find_process_by_pid(pid);
5168 if (!p)
5169 goto out_unlock;
5170
5171 retval = security_task_getscheduler(p);
5172 if (retval)
5173 goto out_unlock;
5174
eb580751 5175 rq = task_rq_lock(p, &rf);
a57beec5
PZ
5176 time_slice = 0;
5177 if (p->sched_class->get_rr_interval)
5178 time_slice = p->sched_class->get_rr_interval(rq, p);
eb580751 5179 task_rq_unlock(rq, p, &rf);
a4ec24b4 5180
1a551ae7 5181 rcu_read_unlock();
a4ec24b4 5182 jiffies_to_timespec(time_slice, &t);
1da177e4 5183 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5184 return retval;
3a5c359a 5185
1da177e4 5186out_unlock:
1a551ae7 5187 rcu_read_unlock();
1da177e4
LT
5188 return retval;
5189}
5190
7c731e0a 5191static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5192
82a1fcb9 5193void sched_show_task(struct task_struct *p)
1da177e4 5194{
1da177e4 5195 unsigned long free = 0;
4e79752c 5196 int ppid;
1f8a7633 5197 unsigned long state = p->state;
1da177e4 5198
38200502
TH
5199 if (!try_get_task_stack(p))
5200 return;
1f8a7633
TH
5201 if (state)
5202 state = __ffs(state) + 1;
28d0686c 5203 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 5204 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
1da177e4 5205 if (state == TASK_RUNNING)
3df0fc5b 5206 printk(KERN_CONT " running task ");
1da177e4 5207#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5208 free = stack_not_used(p);
1da177e4 5209#endif
a90e984c 5210 ppid = 0;
4e79752c 5211 rcu_read_lock();
a90e984c
ON
5212 if (pid_alive(p))
5213 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 5214 rcu_read_unlock();
3df0fc5b 5215 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 5216 task_pid_nr(p), ppid,
aa47b7e0 5217 (unsigned long)task_thread_info(p)->flags);
1da177e4 5218
3d1cb205 5219 print_worker_info(KERN_INFO, p);
5fb5e6de 5220 show_stack(p, NULL);
38200502 5221 put_task_stack(p);
1da177e4
LT
5222}
5223
e59e2ae2 5224void show_state_filter(unsigned long state_filter)
1da177e4 5225{
36c8b586 5226 struct task_struct *g, *p;
1da177e4 5227
4bd77321 5228#if BITS_PER_LONG == 32
3df0fc5b
PZ
5229 printk(KERN_INFO
5230 " task PC stack pid father\n");
1da177e4 5231#else
3df0fc5b
PZ
5232 printk(KERN_INFO
5233 " task PC stack pid father\n");
1da177e4 5234#endif
510f5acc 5235 rcu_read_lock();
5d07f420 5236 for_each_process_thread(g, p) {
1da177e4
LT
5237 /*
5238 * reset the NMI-timeout, listing all files on a slow
25985edc 5239 * console might take a lot of time:
57675cb9
AR
5240 * Also, reset softlockup watchdogs on all CPUs, because
5241 * another CPU might be blocked waiting for us to process
5242 * an IPI.
1da177e4
LT
5243 */
5244 touch_nmi_watchdog();
57675cb9 5245 touch_all_softlockup_watchdogs();
39bc89fd 5246 if (!state_filter || (p->state & state_filter))
82a1fcb9 5247 sched_show_task(p);
5d07f420 5248 }
1da177e4 5249
dd41f596 5250#ifdef CONFIG_SCHED_DEBUG
fb90a6e9
RV
5251 if (!state_filter)
5252 sysrq_sched_debug_show();
dd41f596 5253#endif
510f5acc 5254 rcu_read_unlock();
e59e2ae2
IM
5255 /*
5256 * Only show locks if all tasks are dumped:
5257 */
93335a21 5258 if (!state_filter)
e59e2ae2 5259 debug_show_all_locks();
1da177e4
LT
5260}
5261
0db0628d 5262void init_idle_bootup_task(struct task_struct *idle)
1df21055 5263{
dd41f596 5264 idle->sched_class = &idle_sched_class;
1df21055
IM
5265}
5266
f340c0d1
IM
5267/**
5268 * init_idle - set up an idle thread for a given CPU
5269 * @idle: task in question
5270 * @cpu: cpu the idle task belongs to
5271 *
5272 * NOTE: this function does not set the idle thread's NEED_RESCHED
5273 * flag, to make booting more robust.
5274 */
0db0628d 5275void init_idle(struct task_struct *idle, int cpu)
1da177e4 5276{
70b97a7f 5277 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5278 unsigned long flags;
5279
25834c73
PZ
5280 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5281 raw_spin_lock(&rq->lock);
5cbd54ef 5282
5e1576ed 5283 __sched_fork(0, idle);
06b83b5f 5284 idle->state = TASK_RUNNING;
dd41f596 5285 idle->se.exec_start = sched_clock();
c1de45ca 5286 idle->flags |= PF_IDLE;
dd41f596 5287
e1b77c92
MR
5288 kasan_unpoison_task_stack(idle);
5289
de9b8f5d
PZ
5290#ifdef CONFIG_SMP
5291 /*
5292 * Its possible that init_idle() gets called multiple times on a task,
5293 * in that case do_set_cpus_allowed() will not do the right thing.
5294 *
5295 * And since this is boot we can forgo the serialization.
5296 */
5297 set_cpus_allowed_common(idle, cpumask_of(cpu));
5298#endif
6506cf6c
PZ
5299 /*
5300 * We're having a chicken and egg problem, even though we are
5301 * holding rq->lock, the cpu isn't yet set to this cpu so the
5302 * lockdep check in task_group() will fail.
5303 *
5304 * Similar case to sched_fork(). / Alternatively we could
5305 * use task_rq_lock() here and obtain the other rq->lock.
5306 *
5307 * Silence PROVE_RCU
5308 */
5309 rcu_read_lock();
dd41f596 5310 __set_task_cpu(idle, cpu);
6506cf6c 5311 rcu_read_unlock();
1da177e4 5312
1da177e4 5313 rq->curr = rq->idle = idle;
da0c1e65 5314 idle->on_rq = TASK_ON_RQ_QUEUED;
de9b8f5d 5315#ifdef CONFIG_SMP
3ca7a440 5316 idle->on_cpu = 1;
4866cde0 5317#endif
25834c73
PZ
5318 raw_spin_unlock(&rq->lock);
5319 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
1da177e4
LT
5320
5321 /* Set the preempt count _outside_ the spinlocks! */
01028747 5322 init_idle_preempt_count(idle, cpu);
55cd5340 5323
dd41f596
IM
5324 /*
5325 * The idle tasks have their own, simple scheduling class:
5326 */
5327 idle->sched_class = &idle_sched_class;
868baf07 5328 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 5329 vtime_init_idle(idle, cpu);
de9b8f5d 5330#ifdef CONFIG_SMP
f1c6f1a7
CE
5331 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5332#endif
19978ca6
IM
5333}
5334
f82f8042
JL
5335int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5336 const struct cpumask *trial)
5337{
5338 int ret = 1, trial_cpus;
5339 struct dl_bw *cur_dl_b;
5340 unsigned long flags;
5341
bb2bc55a
MG
5342 if (!cpumask_weight(cur))
5343 return ret;
5344
75e23e49 5345 rcu_read_lock_sched();
f82f8042
JL
5346 cur_dl_b = dl_bw_of(cpumask_any(cur));
5347 trial_cpus = cpumask_weight(trial);
5348
5349 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5350 if (cur_dl_b->bw != -1 &&
5351 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5352 ret = 0;
5353 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
75e23e49 5354 rcu_read_unlock_sched();
f82f8042
JL
5355
5356 return ret;
5357}
5358
7f51412a
JL
5359int task_can_attach(struct task_struct *p,
5360 const struct cpumask *cs_cpus_allowed)
5361{
5362 int ret = 0;
5363
5364 /*
5365 * Kthreads which disallow setaffinity shouldn't be moved
5366 * to a new cpuset; we don't want to change their cpu
5367 * affinity and isolating such threads by their set of
5368 * allowed nodes is unnecessary. Thus, cpusets are not
5369 * applicable for such threads. This prevents checking for
5370 * success of set_cpus_allowed_ptr() on all attached tasks
5371 * before cpus_allowed may be changed.
5372 */
5373 if (p->flags & PF_NO_SETAFFINITY) {
5374 ret = -EINVAL;
5375 goto out;
5376 }
5377
5378#ifdef CONFIG_SMP
5379 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5380 cs_cpus_allowed)) {
5381 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5382 cs_cpus_allowed);
75e23e49 5383 struct dl_bw *dl_b;
7f51412a
JL
5384 bool overflow;
5385 int cpus;
5386 unsigned long flags;
5387
75e23e49
JL
5388 rcu_read_lock_sched();
5389 dl_b = dl_bw_of(dest_cpu);
7f51412a
JL
5390 raw_spin_lock_irqsave(&dl_b->lock, flags);
5391 cpus = dl_bw_cpus(dest_cpu);
5392 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5393 if (overflow)
5394 ret = -EBUSY;
5395 else {
5396 /*
5397 * We reserve space for this task in the destination
5398 * root_domain, as we can't fail after this point.
5399 * We will free resources in the source root_domain
5400 * later on (see set_cpus_allowed_dl()).
5401 */
5402 __dl_add(dl_b, p->dl.dl_bw);
5403 }
5404 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
75e23e49 5405 rcu_read_unlock_sched();
7f51412a
JL
5406
5407 }
5408#endif
5409out:
5410 return ret;
5411}
5412
1da177e4 5413#ifdef CONFIG_SMP
1da177e4 5414
e26fbffd
TG
5415static bool sched_smp_initialized __read_mostly;
5416
e6628d5b
MG
5417#ifdef CONFIG_NUMA_BALANCING
5418/* Migrate current task p to target_cpu */
5419int migrate_task_to(struct task_struct *p, int target_cpu)
5420{
5421 struct migration_arg arg = { p, target_cpu };
5422 int curr_cpu = task_cpu(p);
5423
5424 if (curr_cpu == target_cpu)
5425 return 0;
5426
5427 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5428 return -EINVAL;
5429
5430 /* TODO: This is not properly updating schedstats */
5431
286549dc 5432 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
5433 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5434}
0ec8aa00
PZ
5435
5436/*
5437 * Requeue a task on a given node and accurately track the number of NUMA
5438 * tasks on the runqueues
5439 */
5440void sched_setnuma(struct task_struct *p, int nid)
5441{
da0c1e65 5442 bool queued, running;
eb580751
PZ
5443 struct rq_flags rf;
5444 struct rq *rq;
0ec8aa00 5445
eb580751 5446 rq = task_rq_lock(p, &rf);
da0c1e65 5447 queued = task_on_rq_queued(p);
0ec8aa00
PZ
5448 running = task_current(rq, p);
5449
da0c1e65 5450 if (queued)
1de64443 5451 dequeue_task(rq, p, DEQUEUE_SAVE);
0ec8aa00 5452 if (running)
f3cd1c4e 5453 put_prev_task(rq, p);
0ec8aa00
PZ
5454
5455 p->numa_preferred_nid = nid;
0ec8aa00 5456
da0c1e65 5457 if (queued)
1de64443 5458 enqueue_task(rq, p, ENQUEUE_RESTORE);
a399d233 5459 if (running)
b2bf6c31 5460 set_curr_task(rq, p);
eb580751 5461 task_rq_unlock(rq, p, &rf);
0ec8aa00 5462}
5cc389bc 5463#endif /* CONFIG_NUMA_BALANCING */
f7b4cddc 5464
1da177e4 5465#ifdef CONFIG_HOTPLUG_CPU
054b9108 5466/*
48c5ccae
PZ
5467 * Ensures that the idle task is using init_mm right before its cpu goes
5468 * offline.
054b9108 5469 */
48c5ccae 5470void idle_task_exit(void)
1da177e4 5471{
48c5ccae 5472 struct mm_struct *mm = current->active_mm;
e76bd8d9 5473
48c5ccae 5474 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 5475
a53efe5f 5476 if (mm != &init_mm) {
f98db601 5477 switch_mm_irqs_off(mm, &init_mm, current);
a53efe5f
MS
5478 finish_arch_post_lock_switch();
5479 }
48c5ccae 5480 mmdrop(mm);
1da177e4
LT
5481}
5482
5483/*
5d180232
PZ
5484 * Since this CPU is going 'away' for a while, fold any nr_active delta
5485 * we might have. Assumes we're called after migrate_tasks() so that the
d60585c5
TG
5486 * nr_active count is stable. We need to take the teardown thread which
5487 * is calling this into account, so we hand in adjust = 1 to the load
5488 * calculation.
5d180232
PZ
5489 *
5490 * Also see the comment "Global load-average calculations".
1da177e4 5491 */
5d180232 5492static void calc_load_migrate(struct rq *rq)
1da177e4 5493{
d60585c5 5494 long delta = calc_load_fold_active(rq, 1);
5d180232
PZ
5495 if (delta)
5496 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
5497}
5498
3f1d2a31
PZ
5499static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5500{
5501}
5502
5503static const struct sched_class fake_sched_class = {
5504 .put_prev_task = put_prev_task_fake,
5505};
5506
5507static struct task_struct fake_task = {
5508 /*
5509 * Avoid pull_{rt,dl}_task()
5510 */
5511 .prio = MAX_PRIO + 1,
5512 .sched_class = &fake_sched_class,
5513};
5514
48f24c4d 5515/*
48c5ccae
PZ
5516 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5517 * try_to_wake_up()->select_task_rq().
5518 *
5519 * Called with rq->lock held even though we'er in stop_machine() and
5520 * there's no concurrency possible, we hold the required locks anyway
5521 * because of lock validation efforts.
1da177e4 5522 */
5e16bbc2 5523static void migrate_tasks(struct rq *dead_rq)
1da177e4 5524{
5e16bbc2 5525 struct rq *rq = dead_rq;
48c5ccae 5526 struct task_struct *next, *stop = rq->stop;
d8ac8971 5527 struct rq_flags rf;
48c5ccae 5528 int dest_cpu;
1da177e4
LT
5529
5530 /*
48c5ccae
PZ
5531 * Fudge the rq selection such that the below task selection loop
5532 * doesn't get stuck on the currently eligible stop task.
5533 *
5534 * We're currently inside stop_machine() and the rq is either stuck
5535 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5536 * either way we should never end up calling schedule() until we're
5537 * done here.
1da177e4 5538 */
48c5ccae 5539 rq->stop = NULL;
48f24c4d 5540
77bd3970
FW
5541 /*
5542 * put_prev_task() and pick_next_task() sched
5543 * class method both need to have an up-to-date
5544 * value of rq->clock[_task]
5545 */
5546 update_rq_clock(rq);
5547
5e16bbc2 5548 for (;;) {
48c5ccae
PZ
5549 /*
5550 * There's this thread running, bail when that's the only
5551 * remaining thread.
5552 */
5553 if (rq->nr_running == 1)
dd41f596 5554 break;
48c5ccae 5555
cbce1a68 5556 /*
5473e0cc 5557 * pick_next_task assumes pinned rq->lock.
cbce1a68 5558 */
d8ac8971
MF
5559 rq_pin_lock(rq, &rf);
5560 next = pick_next_task(rq, &fake_task, &rf);
48c5ccae 5561 BUG_ON(!next);
79c53799 5562 next->sched_class->put_prev_task(rq, next);
e692ab53 5563
5473e0cc
WL
5564 /*
5565 * Rules for changing task_struct::cpus_allowed are holding
5566 * both pi_lock and rq->lock, such that holding either
5567 * stabilizes the mask.
5568 *
5569 * Drop rq->lock is not quite as disastrous as it usually is
5570 * because !cpu_active at this point, which means load-balance
5571 * will not interfere. Also, stop-machine.
5572 */
d8ac8971 5573 rq_unpin_lock(rq, &rf);
5473e0cc
WL
5574 raw_spin_unlock(&rq->lock);
5575 raw_spin_lock(&next->pi_lock);
5576 raw_spin_lock(&rq->lock);
5577
5578 /*
5579 * Since we're inside stop-machine, _nothing_ should have
5580 * changed the task, WARN if weird stuff happened, because in
5581 * that case the above rq->lock drop is a fail too.
5582 */
5583 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5584 raw_spin_unlock(&next->pi_lock);
5585 continue;
5586 }
5587
48c5ccae 5588 /* Find suitable destination for @next, with force if needed. */
5e16bbc2 5589 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
48c5ccae 5590
5e16bbc2
PZ
5591 rq = __migrate_task(rq, next, dest_cpu);
5592 if (rq != dead_rq) {
5593 raw_spin_unlock(&rq->lock);
5594 rq = dead_rq;
5595 raw_spin_lock(&rq->lock);
5596 }
5473e0cc 5597 raw_spin_unlock(&next->pi_lock);
1da177e4 5598 }
dce48a84 5599
48c5ccae 5600 rq->stop = stop;
dce48a84 5601}
1da177e4
LT
5602#endif /* CONFIG_HOTPLUG_CPU */
5603
1f11eb6a
GH
5604static void set_rq_online(struct rq *rq)
5605{
5606 if (!rq->online) {
5607 const struct sched_class *class;
5608
c6c4927b 5609 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5610 rq->online = 1;
5611
5612 for_each_class(class) {
5613 if (class->rq_online)
5614 class->rq_online(rq);
5615 }
5616 }
5617}
5618
5619static void set_rq_offline(struct rq *rq)
5620{
5621 if (rq->online) {
5622 const struct sched_class *class;
5623
5624 for_each_class(class) {
5625 if (class->rq_offline)
5626 class->rq_offline(rq);
5627 }
5628
c6c4927b 5629 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5630 rq->online = 0;
5631 }
5632}
5633
9cf7243d 5634static void set_cpu_rq_start_time(unsigned int cpu)
1da177e4 5635{
969c7921 5636 struct rq *rq = cpu_rq(cpu);
1da177e4 5637
a803f026
CM
5638 rq->age_stamp = sched_clock_cpu(cpu);
5639}
5640
4cb98839
PZ
5641static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5642
3e9830dc 5643#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5644
d039ac60 5645static __read_mostly int sched_debug_enabled;
f6630114 5646
d039ac60 5647static int __init sched_debug_setup(char *str)
f6630114 5648{
d039ac60 5649 sched_debug_enabled = 1;
f6630114
MT
5650
5651 return 0;
5652}
d039ac60
PZ
5653early_param("sched_debug", sched_debug_setup);
5654
5655static inline bool sched_debug(void)
5656{
5657 return sched_debug_enabled;
5658}
f6630114 5659
7c16ec58 5660static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5661 struct cpumask *groupmask)
1da177e4 5662{
4dcf6aff 5663 struct sched_group *group = sd->groups;
1da177e4 5664
96f874e2 5665 cpumask_clear(groupmask);
4dcf6aff
IM
5666
5667 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5668
5669 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5670 printk("does not load-balance\n");
4dcf6aff 5671 if (sd->parent)
3df0fc5b
PZ
5672 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5673 " has parent");
4dcf6aff 5674 return -1;
41c7ce9a
NP
5675 }
5676
333470ee
TH
5677 printk(KERN_CONT "span %*pbl level %s\n",
5678 cpumask_pr_args(sched_domain_span(sd)), sd->name);
4dcf6aff 5679
758b2cdc 5680 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5681 printk(KERN_ERR "ERROR: domain->span does not contain "
5682 "CPU%d\n", cpu);
4dcf6aff 5683 }
758b2cdc 5684 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5685 printk(KERN_ERR "ERROR: domain->groups does not contain"
5686 " CPU%d\n", cpu);
4dcf6aff 5687 }
1da177e4 5688
4dcf6aff 5689 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5690 do {
4dcf6aff 5691 if (!group) {
3df0fc5b
PZ
5692 printk("\n");
5693 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5694 break;
5695 }
5696
758b2cdc 5697 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5698 printk(KERN_CONT "\n");
5699 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5700 break;
5701 }
1da177e4 5702
cb83b629
PZ
5703 if (!(sd->flags & SD_OVERLAP) &&
5704 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5705 printk(KERN_CONT "\n");
5706 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5707 break;
5708 }
1da177e4 5709
758b2cdc 5710 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5711
333470ee
TH
5712 printk(KERN_CONT " %*pbl",
5713 cpumask_pr_args(sched_group_cpus(group)));
ca8ce3d0 5714 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
bf475ce0 5715 printk(KERN_CONT " (cpu_capacity = %lu)",
63b2ca30 5716 group->sgc->capacity);
381512cf 5717 }
1da177e4 5718
4dcf6aff
IM
5719 group = group->next;
5720 } while (group != sd->groups);
3df0fc5b 5721 printk(KERN_CONT "\n");
1da177e4 5722
758b2cdc 5723 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5724 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5725
758b2cdc
RR
5726 if (sd->parent &&
5727 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5728 printk(KERN_ERR "ERROR: parent span is not a superset "
5729 "of domain->span\n");
4dcf6aff
IM
5730 return 0;
5731}
1da177e4 5732
4dcf6aff
IM
5733static void sched_domain_debug(struct sched_domain *sd, int cpu)
5734{
5735 int level = 0;
1da177e4 5736
d039ac60 5737 if (!sched_debug_enabled)
f6630114
MT
5738 return;
5739
4dcf6aff
IM
5740 if (!sd) {
5741 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5742 return;
5743 }
1da177e4 5744
4dcf6aff
IM
5745 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5746
5747 for (;;) {
4cb98839 5748 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5749 break;
1da177e4
LT
5750 level++;
5751 sd = sd->parent;
33859f7f 5752 if (!sd)
4dcf6aff
IM
5753 break;
5754 }
1da177e4 5755}
6d6bc0ad 5756#else /* !CONFIG_SCHED_DEBUG */
a18a579e
PZ
5757
5758# define sched_debug_enabled 0
48f24c4d 5759# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5760static inline bool sched_debug(void)
5761{
5762 return false;
5763}
6d6bc0ad 5764#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5765
1a20ff27 5766static int sd_degenerate(struct sched_domain *sd)
245af2c7 5767{
758b2cdc 5768 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5769 return 1;
5770
5771 /* Following flags need at least 2 groups */
5772 if (sd->flags & (SD_LOAD_BALANCE |
5773 SD_BALANCE_NEWIDLE |
5774 SD_BALANCE_FORK |
89c4710e 5775 SD_BALANCE_EXEC |
5d4dfddd 5776 SD_SHARE_CPUCAPACITY |
1f6e6c7c 5777 SD_ASYM_CPUCAPACITY |
d77b3ed5
VG
5778 SD_SHARE_PKG_RESOURCES |
5779 SD_SHARE_POWERDOMAIN)) {
245af2c7
SS
5780 if (sd->groups != sd->groups->next)
5781 return 0;
5782 }
5783
5784 /* Following flags don't use groups */
c88d5910 5785 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5786 return 0;
5787
5788 return 1;
5789}
5790
48f24c4d
IM
5791static int
5792sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5793{
5794 unsigned long cflags = sd->flags, pflags = parent->flags;
5795
5796 if (sd_degenerate(parent))
5797 return 1;
5798
758b2cdc 5799 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5800 return 0;
5801
245af2c7
SS
5802 /* Flags needing groups don't count if only 1 group in parent */
5803 if (parent->groups == parent->groups->next) {
5804 pflags &= ~(SD_LOAD_BALANCE |
5805 SD_BALANCE_NEWIDLE |
5806 SD_BALANCE_FORK |
89c4710e 5807 SD_BALANCE_EXEC |
1f6e6c7c 5808 SD_ASYM_CPUCAPACITY |
5d4dfddd 5809 SD_SHARE_CPUCAPACITY |
10866e62 5810 SD_SHARE_PKG_RESOURCES |
d77b3ed5
VG
5811 SD_PREFER_SIBLING |
5812 SD_SHARE_POWERDOMAIN);
5436499e
KC
5813 if (nr_node_ids == 1)
5814 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5815 }
5816 if (~cflags & pflags)
5817 return 0;
5818
5819 return 1;
5820}
5821
dce840a0 5822static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5823{
dce840a0 5824 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5825
68e74568 5826 cpupri_cleanup(&rd->cpupri);
6bfd6d72 5827 cpudl_cleanup(&rd->cpudl);
1baca4ce 5828 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5829 free_cpumask_var(rd->rto_mask);
5830 free_cpumask_var(rd->online);
5831 free_cpumask_var(rd->span);
5832 kfree(rd);
5833}
5834
57d885fe
GH
5835static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5836{
a0490fa3 5837 struct root_domain *old_rd = NULL;
57d885fe 5838 unsigned long flags;
57d885fe 5839
05fa785c 5840 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5841
5842 if (rq->rd) {
a0490fa3 5843 old_rd = rq->rd;
57d885fe 5844
c6c4927b 5845 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5846 set_rq_offline(rq);
57d885fe 5847
c6c4927b 5848 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5849
a0490fa3 5850 /*
0515973f 5851 * If we dont want to free the old_rd yet then
a0490fa3
IM
5852 * set old_rd to NULL to skip the freeing later
5853 * in this function:
5854 */
5855 if (!atomic_dec_and_test(&old_rd->refcount))
5856 old_rd = NULL;
57d885fe
GH
5857 }
5858
5859 atomic_inc(&rd->refcount);
5860 rq->rd = rd;
5861
c6c4927b 5862 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5863 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5864 set_rq_online(rq);
57d885fe 5865
05fa785c 5866 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5867
5868 if (old_rd)
dce840a0 5869 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5870}
5871
68c38fc3 5872static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5873{
5874 memset(rd, 0, sizeof(*rd));
5875
8295c699 5876 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5877 goto out;
8295c699 5878 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5879 goto free_span;
8295c699 5880 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
c6c4927b 5881 goto free_online;
8295c699 5882 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
1baca4ce 5883 goto free_dlo_mask;
6e0534f2 5884
332ac17e 5885 init_dl_bw(&rd->dl_bw);
6bfd6d72
JL
5886 if (cpudl_init(&rd->cpudl) != 0)
5887 goto free_dlo_mask;
332ac17e 5888
68c38fc3 5889 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5890 goto free_rto_mask;
c6c4927b 5891 return 0;
6e0534f2 5892
68e74568
RR
5893free_rto_mask:
5894 free_cpumask_var(rd->rto_mask);
1baca4ce
JL
5895free_dlo_mask:
5896 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5897free_online:
5898 free_cpumask_var(rd->online);
5899free_span:
5900 free_cpumask_var(rd->span);
0c910d28 5901out:
c6c4927b 5902 return -ENOMEM;
57d885fe
GH
5903}
5904
029632fb
PZ
5905/*
5906 * By default the system creates a single root-domain with all cpus as
5907 * members (mimicking the global state we have today).
5908 */
5909struct root_domain def_root_domain;
5910
57d885fe
GH
5911static void init_defrootdomain(void)
5912{
68c38fc3 5913 init_rootdomain(&def_root_domain);
c6c4927b 5914
57d885fe
GH
5915 atomic_set(&def_root_domain.refcount, 1);
5916}
5917
dc938520 5918static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5919{
5920 struct root_domain *rd;
5921
5922 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5923 if (!rd)
5924 return NULL;
5925
68c38fc3 5926 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5927 kfree(rd);
5928 return NULL;
5929 }
57d885fe
GH
5930
5931 return rd;
5932}
5933
63b2ca30 5934static void free_sched_groups(struct sched_group *sg, int free_sgc)
e3589f6c
PZ
5935{
5936 struct sched_group *tmp, *first;
5937
5938 if (!sg)
5939 return;
5940
5941 first = sg;
5942 do {
5943 tmp = sg->next;
5944
63b2ca30
NP
5945 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5946 kfree(sg->sgc);
e3589f6c
PZ
5947
5948 kfree(sg);
5949 sg = tmp;
5950 } while (sg != first);
5951}
5952
16f3ef46 5953static void destroy_sched_domain(struct sched_domain *sd)
dce840a0 5954{
e3589f6c
PZ
5955 /*
5956 * If its an overlapping domain it has private groups, iterate and
5957 * nuke them all.
5958 */
5959 if (sd->flags & SD_OVERLAP) {
5960 free_sched_groups(sd->groups, 1);
5961 } else if (atomic_dec_and_test(&sd->groups->ref)) {
63b2ca30 5962 kfree(sd->groups->sgc);
dce840a0 5963 kfree(sd->groups);
9c3f75cb 5964 }
24fc7edb
PZ
5965 if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
5966 kfree(sd->shared);
dce840a0
PZ
5967 kfree(sd);
5968}
5969
16f3ef46 5970static void destroy_sched_domains_rcu(struct rcu_head *rcu)
dce840a0 5971{
16f3ef46
PZ
5972 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5973
5974 while (sd) {
5975 struct sched_domain *parent = sd->parent;
5976 destroy_sched_domain(sd);
5977 sd = parent;
5978 }
dce840a0
PZ
5979}
5980
f39180ef 5981static void destroy_sched_domains(struct sched_domain *sd)
dce840a0 5982{
16f3ef46
PZ
5983 if (sd)
5984 call_rcu(&sd->rcu, destroy_sched_domains_rcu);
dce840a0
PZ
5985}
5986
518cd623
PZ
5987/*
5988 * Keep a special pointer to the highest sched_domain that has
5989 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5990 * allows us to avoid some pointer chasing select_idle_sibling().
5991 *
5992 * Also keep a unique ID per domain (we use the first cpu number in
5993 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5994 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5995 */
5996DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5997DEFINE_PER_CPU(int, sd_llc_size);
518cd623 5998DEFINE_PER_CPU(int, sd_llc_id);
0e369d75 5999DEFINE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
fb13c7ee 6000DEFINE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50 6001DEFINE_PER_CPU(struct sched_domain *, sd_asym);
518cd623
PZ
6002
6003static void update_top_cache_domain(int cpu)
6004{
0e369d75 6005 struct sched_domain_shared *sds = NULL;
518cd623
PZ
6006 struct sched_domain *sd;
6007 int id = cpu;
7d9ffa89 6008 int size = 1;
518cd623
PZ
6009
6010 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 6011 if (sd) {
518cd623 6012 id = cpumask_first(sched_domain_span(sd));
7d9ffa89 6013 size = cpumask_weight(sched_domain_span(sd));
0e369d75 6014 sds = sd->shared;
7d9ffa89 6015 }
518cd623
PZ
6016
6017 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 6018 per_cpu(sd_llc_size, cpu) = size;
518cd623 6019 per_cpu(sd_llc_id, cpu) = id;
0e369d75 6020 rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
fb13c7ee
MG
6021
6022 sd = lowest_flag_domain(cpu, SD_NUMA);
6023 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
37dc6b50
PM
6024
6025 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
6026 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
518cd623
PZ
6027}
6028
1da177e4 6029/*
0eab9146 6030 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6031 * hold the hotplug lock.
6032 */
0eab9146
IM
6033static void
6034cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6035{
70b97a7f 6036 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6037 struct sched_domain *tmp;
6038
6039 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6040 for (tmp = sd; tmp; ) {
245af2c7
SS
6041 struct sched_domain *parent = tmp->parent;
6042 if (!parent)
6043 break;
f29c9b1c 6044
1a848870 6045 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6046 tmp->parent = parent->parent;
1a848870
SS
6047 if (parent->parent)
6048 parent->parent->child = tmp;
10866e62
PZ
6049 /*
6050 * Transfer SD_PREFER_SIBLING down in case of a
6051 * degenerate parent; the spans match for this
6052 * so the property transfers.
6053 */
6054 if (parent->flags & SD_PREFER_SIBLING)
6055 tmp->flags |= SD_PREFER_SIBLING;
f39180ef 6056 destroy_sched_domain(parent);
f29c9b1c
LZ
6057 } else
6058 tmp = tmp->parent;
245af2c7
SS
6059 }
6060
1a848870 6061 if (sd && sd_degenerate(sd)) {
dce840a0 6062 tmp = sd;
245af2c7 6063 sd = sd->parent;
f39180ef 6064 destroy_sched_domain(tmp);
1a848870
SS
6065 if (sd)
6066 sd->child = NULL;
6067 }
1da177e4 6068
4cb98839 6069 sched_domain_debug(sd, cpu);
1da177e4 6070
57d885fe 6071 rq_attach_root(rq, rd);
dce840a0 6072 tmp = rq->sd;
674311d5 6073 rcu_assign_pointer(rq->sd, sd);
f39180ef 6074 destroy_sched_domains(tmp);
518cd623
PZ
6075
6076 update_top_cache_domain(cpu);
1da177e4
LT
6077}
6078
1da177e4
LT
6079/* Setup the mask of cpus configured for isolated domains */
6080static int __init isolated_cpu_setup(char *str)
6081{
a6e4491c
PB
6082 int ret;
6083
bdddd296 6084 alloc_bootmem_cpumask_var(&cpu_isolated_map);
a6e4491c
PB
6085 ret = cpulist_parse(str, cpu_isolated_map);
6086 if (ret) {
6087 pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
6088 return 0;
6089 }
1da177e4
LT
6090 return 1;
6091}
8927f494 6092__setup("isolcpus=", isolated_cpu_setup);
1da177e4 6093
49a02c51 6094struct s_data {
21d42ccf 6095 struct sched_domain ** __percpu sd;
49a02c51
AH
6096 struct root_domain *rd;
6097};
6098
2109b99e 6099enum s_alloc {
2109b99e 6100 sa_rootdomain,
21d42ccf 6101 sa_sd,
dce840a0 6102 sa_sd_storage,
2109b99e
AH
6103 sa_none,
6104};
6105
c1174876
PZ
6106/*
6107 * Build an iteration mask that can exclude certain CPUs from the upwards
6108 * domain traversal.
6109 *
6110 * Asymmetric node setups can result in situations where the domain tree is of
6111 * unequal depth, make sure to skip domains that already cover the entire
6112 * range.
6113 *
6114 * In that case build_sched_domains() will have terminated the iteration early
6115 * and our sibling sd spans will be empty. Domains should always include the
6116 * cpu they're built on, so check that.
6117 *
6118 */
6119static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6120{
6121 const struct cpumask *span = sched_domain_span(sd);
6122 struct sd_data *sdd = sd->private;
6123 struct sched_domain *sibling;
6124 int i;
6125
6126 for_each_cpu(i, span) {
6127 sibling = *per_cpu_ptr(sdd->sd, i);
6128 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6129 continue;
6130
6131 cpumask_set_cpu(i, sched_group_mask(sg));
6132 }
6133}
6134
6135/*
6136 * Return the canonical balance cpu for this group, this is the first cpu
6137 * of this group that's also in the iteration mask.
6138 */
6139int group_balance_cpu(struct sched_group *sg)
6140{
6141 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6142}
6143
e3589f6c
PZ
6144static int
6145build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6146{
6147 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6148 const struct cpumask *span = sched_domain_span(sd);
6149 struct cpumask *covered = sched_domains_tmpmask;
6150 struct sd_data *sdd = sd->private;
aaecac4a 6151 struct sched_domain *sibling;
e3589f6c
PZ
6152 int i;
6153
6154 cpumask_clear(covered);
6155
6156 for_each_cpu(i, span) {
6157 struct cpumask *sg_span;
6158
6159 if (cpumask_test_cpu(i, covered))
6160 continue;
6161
aaecac4a 6162 sibling = *per_cpu_ptr(sdd->sd, i);
c1174876
PZ
6163
6164 /* See the comment near build_group_mask(). */
aaecac4a 6165 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
c1174876
PZ
6166 continue;
6167
e3589f6c 6168 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 6169 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
6170
6171 if (!sg)
6172 goto fail;
6173
6174 sg_span = sched_group_cpus(sg);
aaecac4a
ZZ
6175 if (sibling->child)
6176 cpumask_copy(sg_span, sched_domain_span(sibling->child));
6177 else
e3589f6c
PZ
6178 cpumask_set_cpu(i, sg_span);
6179
6180 cpumask_or(covered, covered, sg_span);
6181
63b2ca30
NP
6182 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6183 if (atomic_inc_return(&sg->sgc->ref) == 1)
c1174876
PZ
6184 build_group_mask(sd, sg);
6185
c3decf0d 6186 /*
63b2ca30 6187 * Initialize sgc->capacity such that even if we mess up the
c3decf0d
PZ
6188 * domains and no possible iteration will get us here, we won't
6189 * die on a /0 trap.
6190 */
ca8ce3d0 6191 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
bf475ce0 6192 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
e3589f6c 6193
c1174876
PZ
6194 /*
6195 * Make sure the first group of this domain contains the
6196 * canonical balance cpu. Otherwise the sched_domain iteration
6197 * breaks. See update_sg_lb_stats().
6198 */
74a5ce20 6199 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 6200 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
6201 groups = sg;
6202
6203 if (!first)
6204 first = sg;
6205 if (last)
6206 last->next = sg;
6207 last = sg;
6208 last->next = first;
6209 }
6210 sd->groups = groups;
6211
6212 return 0;
6213
6214fail:
6215 free_sched_groups(first, 0);
6216
6217 return -ENOMEM;
6218}
6219
dce840a0 6220static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 6221{
dce840a0
PZ
6222 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6223 struct sched_domain *child = sd->child;
1da177e4 6224
dce840a0
PZ
6225 if (child)
6226 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 6227
9c3f75cb 6228 if (sg) {
dce840a0 6229 *sg = *per_cpu_ptr(sdd->sg, cpu);
63b2ca30
NP
6230 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6231 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
9c3f75cb 6232 }
dce840a0
PZ
6233
6234 return cpu;
1e9f28fa 6235}
1e9f28fa 6236
01a08546 6237/*
dce840a0
PZ
6238 * build_sched_groups will build a circular linked list of the groups
6239 * covered by the given span, and will set each group's ->cpumask correctly,
ced549fa 6240 * and ->cpu_capacity to 0.
e3589f6c
PZ
6241 *
6242 * Assumes the sched_domain tree is fully constructed
01a08546 6243 */
e3589f6c
PZ
6244static int
6245build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 6246{
dce840a0
PZ
6247 struct sched_group *first = NULL, *last = NULL;
6248 struct sd_data *sdd = sd->private;
6249 const struct cpumask *span = sched_domain_span(sd);
f96225fd 6250 struct cpumask *covered;
dce840a0 6251 int i;
9c1cfda2 6252
e3589f6c
PZ
6253 get_group(cpu, sdd, &sd->groups);
6254 atomic_inc(&sd->groups->ref);
6255
0936629f 6256 if (cpu != cpumask_first(span))
e3589f6c
PZ
6257 return 0;
6258
f96225fd
PZ
6259 lockdep_assert_held(&sched_domains_mutex);
6260 covered = sched_domains_tmpmask;
6261
dce840a0 6262 cpumask_clear(covered);
6711cab4 6263
dce840a0
PZ
6264 for_each_cpu(i, span) {
6265 struct sched_group *sg;
cd08e923 6266 int group, j;
6711cab4 6267
dce840a0
PZ
6268 if (cpumask_test_cpu(i, covered))
6269 continue;
6711cab4 6270
cd08e923 6271 group = get_group(i, sdd, &sg);
c1174876 6272 cpumask_setall(sched_group_mask(sg));
0601a88d 6273
dce840a0
PZ
6274 for_each_cpu(j, span) {
6275 if (get_group(j, sdd, NULL) != group)
6276 continue;
0601a88d 6277
dce840a0
PZ
6278 cpumask_set_cpu(j, covered);
6279 cpumask_set_cpu(j, sched_group_cpus(sg));
6280 }
0601a88d 6281
dce840a0
PZ
6282 if (!first)
6283 first = sg;
6284 if (last)
6285 last->next = sg;
6286 last = sg;
6287 }
6288 last->next = first;
e3589f6c
PZ
6289
6290 return 0;
0601a88d 6291}
51888ca2 6292
89c4710e 6293/*
63b2ca30 6294 * Initialize sched groups cpu_capacity.
89c4710e 6295 *
63b2ca30 6296 * cpu_capacity indicates the capacity of sched group, which is used while
89c4710e 6297 * distributing the load between different sched groups in a sched domain.
63b2ca30
NP
6298 * Typically cpu_capacity for all the groups in a sched domain will be same
6299 * unless there are asymmetries in the topology. If there are asymmetries,
6300 * group having more cpu_capacity will pickup more load compared to the
6301 * group having less cpu_capacity.
89c4710e 6302 */
63b2ca30 6303static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
89c4710e 6304{
e3589f6c 6305 struct sched_group *sg = sd->groups;
89c4710e 6306
94c95ba6 6307 WARN_ON(!sg);
e3589f6c
PZ
6308
6309 do {
afe06efd
TC
6310 int cpu, max_cpu = -1;
6311
e3589f6c 6312 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
afe06efd
TC
6313
6314 if (!(sd->flags & SD_ASYM_PACKING))
6315 goto next;
6316
6317 for_each_cpu(cpu, sched_group_cpus(sg)) {
6318 if (max_cpu < 0)
6319 max_cpu = cpu;
6320 else if (sched_asym_prefer(cpu, max_cpu))
6321 max_cpu = cpu;
6322 }
6323 sg->asym_prefer_cpu = max_cpu;
6324
6325next:
e3589f6c
PZ
6326 sg = sg->next;
6327 } while (sg != sd->groups);
89c4710e 6328
c1174876 6329 if (cpu != group_balance_cpu(sg))
e3589f6c 6330 return;
aae6d3dd 6331
63b2ca30 6332 update_group_capacity(sd, cpu);
89c4710e
SS
6333}
6334
7c16ec58
MT
6335/*
6336 * Initializers for schedule domains
6337 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6338 */
6339
1d3504fc 6340static int default_relax_domain_level = -1;
60495e77 6341int sched_domain_level_max;
1d3504fc
HS
6342
6343static int __init setup_relax_domain_level(char *str)
6344{
a841f8ce
DS
6345 if (kstrtoint(str, 0, &default_relax_domain_level))
6346 pr_warn("Unable to set relax_domain_level\n");
30e0e178 6347
1d3504fc
HS
6348 return 1;
6349}
6350__setup("relax_domain_level=", setup_relax_domain_level);
6351
6352static void set_domain_attribute(struct sched_domain *sd,
6353 struct sched_domain_attr *attr)
6354{
6355 int request;
6356
6357 if (!attr || attr->relax_domain_level < 0) {
6358 if (default_relax_domain_level < 0)
6359 return;
6360 else
6361 request = default_relax_domain_level;
6362 } else
6363 request = attr->relax_domain_level;
6364 if (request < sd->level) {
6365 /* turn off idle balance on this domain */
c88d5910 6366 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6367 } else {
6368 /* turn on idle balance on this domain */
c88d5910 6369 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6370 }
6371}
6372
54ab4ff4
PZ
6373static void __sdt_free(const struct cpumask *cpu_map);
6374static int __sdt_alloc(const struct cpumask *cpu_map);
6375
2109b99e
AH
6376static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6377 const struct cpumask *cpu_map)
6378{
6379 switch (what) {
2109b99e 6380 case sa_rootdomain:
822ff793
PZ
6381 if (!atomic_read(&d->rd->refcount))
6382 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
6383 case sa_sd:
6384 free_percpu(d->sd); /* fall through */
dce840a0 6385 case sa_sd_storage:
54ab4ff4 6386 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
6387 case sa_none:
6388 break;
6389 }
6390}
3404c8d9 6391
2109b99e
AH
6392static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6393 const struct cpumask *cpu_map)
6394{
dce840a0
PZ
6395 memset(d, 0, sizeof(*d));
6396
54ab4ff4
PZ
6397 if (__sdt_alloc(cpu_map))
6398 return sa_sd_storage;
dce840a0
PZ
6399 d->sd = alloc_percpu(struct sched_domain *);
6400 if (!d->sd)
6401 return sa_sd_storage;
2109b99e 6402 d->rd = alloc_rootdomain();
dce840a0 6403 if (!d->rd)
21d42ccf 6404 return sa_sd;
2109b99e
AH
6405 return sa_rootdomain;
6406}
57d885fe 6407
dce840a0
PZ
6408/*
6409 * NULL the sd_data elements we've used to build the sched_domain and
6410 * sched_group structure so that the subsequent __free_domain_allocs()
6411 * will not free the data we're using.
6412 */
6413static void claim_allocations(int cpu, struct sched_domain *sd)
6414{
6415 struct sd_data *sdd = sd->private;
dce840a0
PZ
6416
6417 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6418 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6419
24fc7edb
PZ
6420 if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
6421 *per_cpu_ptr(sdd->sds, cpu) = NULL;
6422
e3589f6c 6423 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 6424 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c 6425
63b2ca30
NP
6426 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6427 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
dce840a0
PZ
6428}
6429
cb83b629 6430#ifdef CONFIG_NUMA
cb83b629 6431static int sched_domains_numa_levels;
e3fe70b1 6432enum numa_topology_type sched_numa_topology_type;
cb83b629 6433static int *sched_domains_numa_distance;
9942f79b 6434int sched_max_numa_distance;
cb83b629
PZ
6435static struct cpumask ***sched_domains_numa_masks;
6436static int sched_domains_curr_level;
143e1e28 6437#endif
cb83b629 6438
143e1e28
VG
6439/*
6440 * SD_flags allowed in topology descriptions.
6441 *
94f438c8
PZ
6442 * These flags are purely descriptive of the topology and do not prescribe
6443 * behaviour. Behaviour is artificial and mapped in the below sd_init()
6444 * function:
143e1e28 6445 *
94f438c8
PZ
6446 * SD_SHARE_CPUCAPACITY - describes SMT topologies
6447 * SD_SHARE_PKG_RESOURCES - describes shared caches
6448 * SD_NUMA - describes NUMA topologies
6449 * SD_SHARE_POWERDOMAIN - describes shared power domain
1f6e6c7c 6450 * SD_ASYM_CPUCAPACITY - describes mixed capacity topologies
94f438c8
PZ
6451 *
6452 * Odd one out, which beside describing the topology has a quirk also
6453 * prescribes the desired behaviour that goes along with it:
143e1e28 6454 *
94f438c8 6455 * SD_ASYM_PACKING - describes SMT quirks
143e1e28
VG
6456 */
6457#define TOPOLOGY_SD_FLAGS \
5d4dfddd 6458 (SD_SHARE_CPUCAPACITY | \
143e1e28
VG
6459 SD_SHARE_PKG_RESOURCES | \
6460 SD_NUMA | \
d77b3ed5 6461 SD_ASYM_PACKING | \
1f6e6c7c 6462 SD_ASYM_CPUCAPACITY | \
d77b3ed5 6463 SD_SHARE_POWERDOMAIN)
cb83b629
PZ
6464
6465static struct sched_domain *
3676b13e 6466sd_init(struct sched_domain_topology_level *tl,
24fc7edb 6467 const struct cpumask *cpu_map,
3676b13e 6468 struct sched_domain *child, int cpu)
cb83b629 6469{
24fc7edb
PZ
6470 struct sd_data *sdd = &tl->data;
6471 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6472 int sd_id, sd_weight, sd_flags = 0;
143e1e28
VG
6473
6474#ifdef CONFIG_NUMA
6475 /*
6476 * Ugly hack to pass state to sd_numa_mask()...
6477 */
6478 sched_domains_curr_level = tl->numa_level;
6479#endif
6480
6481 sd_weight = cpumask_weight(tl->mask(cpu));
6482
6483 if (tl->sd_flags)
6484 sd_flags = (*tl->sd_flags)();
6485 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6486 "wrong sd_flags in topology description\n"))
6487 sd_flags &= ~TOPOLOGY_SD_FLAGS;
cb83b629
PZ
6488
6489 *sd = (struct sched_domain){
6490 .min_interval = sd_weight,
6491 .max_interval = 2*sd_weight,
6492 .busy_factor = 32,
870a0bb5 6493 .imbalance_pct = 125,
143e1e28
VG
6494
6495 .cache_nice_tries = 0,
6496 .busy_idx = 0,
6497 .idle_idx = 0,
cb83b629
PZ
6498 .newidle_idx = 0,
6499 .wake_idx = 0,
6500 .forkexec_idx = 0,
6501
6502 .flags = 1*SD_LOAD_BALANCE
6503 | 1*SD_BALANCE_NEWIDLE
143e1e28
VG
6504 | 1*SD_BALANCE_EXEC
6505 | 1*SD_BALANCE_FORK
cb83b629 6506 | 0*SD_BALANCE_WAKE
143e1e28 6507 | 1*SD_WAKE_AFFINE
5d4dfddd 6508 | 0*SD_SHARE_CPUCAPACITY
cb83b629 6509 | 0*SD_SHARE_PKG_RESOURCES
143e1e28 6510 | 0*SD_SERIALIZE
cb83b629 6511 | 0*SD_PREFER_SIBLING
143e1e28
VG
6512 | 0*SD_NUMA
6513 | sd_flags
cb83b629 6514 ,
143e1e28 6515
cb83b629
PZ
6516 .last_balance = jiffies,
6517 .balance_interval = sd_weight,
143e1e28 6518 .smt_gain = 0,
2b4cfe64
JL
6519 .max_newidle_lb_cost = 0,
6520 .next_decay_max_lb_cost = jiffies,
3676b13e 6521 .child = child,
143e1e28
VG
6522#ifdef CONFIG_SCHED_DEBUG
6523 .name = tl->name,
6524#endif
cb83b629 6525 };
cb83b629 6526
24fc7edb
PZ
6527 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6528 sd_id = cpumask_first(sched_domain_span(sd));
6529
cb83b629 6530 /*
143e1e28 6531 * Convert topological properties into behaviour.
cb83b629 6532 */
143e1e28 6533
9ee1cda5
MR
6534 if (sd->flags & SD_ASYM_CPUCAPACITY) {
6535 struct sched_domain *t = sd;
6536
6537 for_each_lower_domain(t)
6538 t->flags |= SD_BALANCE_WAKE;
6539 }
6540
5d4dfddd 6541 if (sd->flags & SD_SHARE_CPUCAPACITY) {
caff37ef 6542 sd->flags |= SD_PREFER_SIBLING;
143e1e28
VG
6543 sd->imbalance_pct = 110;
6544 sd->smt_gain = 1178; /* ~15% */
143e1e28
VG
6545
6546 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6547 sd->imbalance_pct = 117;
6548 sd->cache_nice_tries = 1;
6549 sd->busy_idx = 2;
6550
6551#ifdef CONFIG_NUMA
6552 } else if (sd->flags & SD_NUMA) {
6553 sd->cache_nice_tries = 2;
6554 sd->busy_idx = 3;
6555 sd->idle_idx = 2;
6556
6557 sd->flags |= SD_SERIALIZE;
6558 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6559 sd->flags &= ~(SD_BALANCE_EXEC |
6560 SD_BALANCE_FORK |
6561 SD_WAKE_AFFINE);
6562 }
6563
6564#endif
6565 } else {
6566 sd->flags |= SD_PREFER_SIBLING;
6567 sd->cache_nice_tries = 1;
6568 sd->busy_idx = 2;
6569 sd->idle_idx = 1;
6570 }
6571
24fc7edb
PZ
6572 /*
6573 * For all levels sharing cache; connect a sched_domain_shared
6574 * instance.
6575 */
6576 if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6577 sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
6578 atomic_inc(&sd->shared->ref);
0e369d75 6579 atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
24fc7edb
PZ
6580 }
6581
6582 sd->private = sdd;
cb83b629
PZ
6583
6584 return sd;
6585}
6586
143e1e28
VG
6587/*
6588 * Topology list, bottom-up.
6589 */
6590static struct sched_domain_topology_level default_topology[] = {
6591#ifdef CONFIG_SCHED_SMT
6592 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6593#endif
6594#ifdef CONFIG_SCHED_MC
6595 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
143e1e28
VG
6596#endif
6597 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6598 { NULL, },
6599};
6600
c6e1e7b5
JG
6601static struct sched_domain_topology_level *sched_domain_topology =
6602 default_topology;
143e1e28
VG
6603
6604#define for_each_sd_topology(tl) \
6605 for (tl = sched_domain_topology; tl->mask; tl++)
6606
6607void set_sched_topology(struct sched_domain_topology_level *tl)
6608{
8f37961c
TC
6609 if (WARN_ON_ONCE(sched_smp_initialized))
6610 return;
6611
143e1e28
VG
6612 sched_domain_topology = tl;
6613}
6614
6615#ifdef CONFIG_NUMA
6616
cb83b629
PZ
6617static const struct cpumask *sd_numa_mask(int cpu)
6618{
6619 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6620}
6621
d039ac60
PZ
6622static void sched_numa_warn(const char *str)
6623{
6624 static int done = false;
6625 int i,j;
6626
6627 if (done)
6628 return;
6629
6630 done = true;
6631
6632 printk(KERN_WARNING "ERROR: %s\n\n", str);
6633
6634 for (i = 0; i < nr_node_ids; i++) {
6635 printk(KERN_WARNING " ");
6636 for (j = 0; j < nr_node_ids; j++)
6637 printk(KERN_CONT "%02d ", node_distance(i,j));
6638 printk(KERN_CONT "\n");
6639 }
6640 printk(KERN_WARNING "\n");
6641}
6642
9942f79b 6643bool find_numa_distance(int distance)
d039ac60
PZ
6644{
6645 int i;
6646
6647 if (distance == node_distance(0, 0))
6648 return true;
6649
6650 for (i = 0; i < sched_domains_numa_levels; i++) {
6651 if (sched_domains_numa_distance[i] == distance)
6652 return true;
6653 }
6654
6655 return false;
6656}
6657
e3fe70b1
RR
6658/*
6659 * A system can have three types of NUMA topology:
6660 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6661 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6662 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6663 *
6664 * The difference between a glueless mesh topology and a backplane
6665 * topology lies in whether communication between not directly
6666 * connected nodes goes through intermediary nodes (where programs
6667 * could run), or through backplane controllers. This affects
6668 * placement of programs.
6669 *
6670 * The type of topology can be discerned with the following tests:
6671 * - If the maximum distance between any nodes is 1 hop, the system
6672 * is directly connected.
6673 * - If for two nodes A and B, located N > 1 hops away from each other,
6674 * there is an intermediary node C, which is < N hops away from both
6675 * nodes A and B, the system is a glueless mesh.
6676 */
6677static void init_numa_topology_type(void)
6678{
6679 int a, b, c, n;
6680
6681 n = sched_max_numa_distance;
6682
e237882b 6683 if (sched_domains_numa_levels <= 1) {
e3fe70b1 6684 sched_numa_topology_type = NUMA_DIRECT;
e237882b
AG
6685 return;
6686 }
e3fe70b1
RR
6687
6688 for_each_online_node(a) {
6689 for_each_online_node(b) {
6690 /* Find two nodes furthest removed from each other. */
6691 if (node_distance(a, b) < n)
6692 continue;
6693
6694 /* Is there an intermediary node between a and b? */
6695 for_each_online_node(c) {
6696 if (node_distance(a, c) < n &&
6697 node_distance(b, c) < n) {
6698 sched_numa_topology_type =
6699 NUMA_GLUELESS_MESH;
6700 return;
6701 }
6702 }
6703
6704 sched_numa_topology_type = NUMA_BACKPLANE;
6705 return;
6706 }
6707 }
6708}
6709
cb83b629
PZ
6710static void sched_init_numa(void)
6711{
6712 int next_distance, curr_distance = node_distance(0, 0);
6713 struct sched_domain_topology_level *tl;
6714 int level = 0;
6715 int i, j, k;
6716
cb83b629
PZ
6717 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6718 if (!sched_domains_numa_distance)
6719 return;
6720
6721 /*
6722 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6723 * unique distances in the node_distance() table.
6724 *
6725 * Assumes node_distance(0,j) includes all distances in
6726 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6727 */
6728 next_distance = curr_distance;
6729 for (i = 0; i < nr_node_ids; i++) {
6730 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6731 for (k = 0; k < nr_node_ids; k++) {
6732 int distance = node_distance(i, k);
6733
6734 if (distance > curr_distance &&
6735 (distance < next_distance ||
6736 next_distance == curr_distance))
6737 next_distance = distance;
6738
6739 /*
6740 * While not a strong assumption it would be nice to know
6741 * about cases where if node A is connected to B, B is not
6742 * equally connected to A.
6743 */
6744 if (sched_debug() && node_distance(k, i) != distance)
6745 sched_numa_warn("Node-distance not symmetric");
6746
6747 if (sched_debug() && i && !find_numa_distance(distance))
6748 sched_numa_warn("Node-0 not representative");
6749 }
6750 if (next_distance != curr_distance) {
6751 sched_domains_numa_distance[level++] = next_distance;
6752 sched_domains_numa_levels = level;
6753 curr_distance = next_distance;
6754 } else break;
cb83b629 6755 }
d039ac60
PZ
6756
6757 /*
6758 * In case of sched_debug() we verify the above assumption.
6759 */
6760 if (!sched_debug())
6761 break;
cb83b629 6762 }
c123588b
AR
6763
6764 if (!level)
6765 return;
6766
cb83b629
PZ
6767 /*
6768 * 'level' contains the number of unique distances, excluding the
6769 * identity distance node_distance(i,i).
6770 *
28b4a521 6771 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
6772 * numbers.
6773 */
6774
5f7865f3
TC
6775 /*
6776 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6777 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6778 * the array will contain less then 'level' members. This could be
6779 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6780 * in other functions.
6781 *
6782 * We reset it to 'level' at the end of this function.
6783 */
6784 sched_domains_numa_levels = 0;
6785
cb83b629
PZ
6786 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6787 if (!sched_domains_numa_masks)
6788 return;
6789
6790 /*
6791 * Now for each level, construct a mask per node which contains all
6792 * cpus of nodes that are that many hops away from us.
6793 */
6794 for (i = 0; i < level; i++) {
6795 sched_domains_numa_masks[i] =
6796 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6797 if (!sched_domains_numa_masks[i])
6798 return;
6799
6800 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6801 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6802 if (!mask)
6803 return;
6804
6805 sched_domains_numa_masks[i][j] = mask;
6806
9c03ee14 6807 for_each_node(k) {
dd7d8634 6808 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6809 continue;
6810
6811 cpumask_or(mask, mask, cpumask_of_node(k));
6812 }
6813 }
6814 }
6815
143e1e28
VG
6816 /* Compute default topology size */
6817 for (i = 0; sched_domain_topology[i].mask; i++);
6818
c515db8c 6819 tl = kzalloc((i + level + 1) *
cb83b629
PZ
6820 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6821 if (!tl)
6822 return;
6823
6824 /*
6825 * Copy the default topology bits..
6826 */
143e1e28
VG
6827 for (i = 0; sched_domain_topology[i].mask; i++)
6828 tl[i] = sched_domain_topology[i];
cb83b629
PZ
6829
6830 /*
6831 * .. and append 'j' levels of NUMA goodness.
6832 */
6833 for (j = 0; j < level; i++, j++) {
6834 tl[i] = (struct sched_domain_topology_level){
cb83b629 6835 .mask = sd_numa_mask,
143e1e28 6836 .sd_flags = cpu_numa_flags,
cb83b629
PZ
6837 .flags = SDTL_OVERLAP,
6838 .numa_level = j,
143e1e28 6839 SD_INIT_NAME(NUMA)
cb83b629
PZ
6840 };
6841 }
6842
6843 sched_domain_topology = tl;
5f7865f3
TC
6844
6845 sched_domains_numa_levels = level;
9942f79b 6846 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
e3fe70b1
RR
6847
6848 init_numa_topology_type();
cb83b629 6849}
301a5cba 6850
135fb3e1 6851static void sched_domains_numa_masks_set(unsigned int cpu)
301a5cba 6852{
301a5cba 6853 int node = cpu_to_node(cpu);
135fb3e1 6854 int i, j;
301a5cba
TC
6855
6856 for (i = 0; i < sched_domains_numa_levels; i++) {
6857 for (j = 0; j < nr_node_ids; j++) {
6858 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6859 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6860 }
6861 }
6862}
6863
135fb3e1 6864static void sched_domains_numa_masks_clear(unsigned int cpu)
301a5cba
TC
6865{
6866 int i, j;
135fb3e1 6867
301a5cba
TC
6868 for (i = 0; i < sched_domains_numa_levels; i++) {
6869 for (j = 0; j < nr_node_ids; j++)
6870 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6871 }
6872}
6873
cb83b629 6874#else
135fb3e1
TG
6875static inline void sched_init_numa(void) { }
6876static void sched_domains_numa_masks_set(unsigned int cpu) { }
6877static void sched_domains_numa_masks_clear(unsigned int cpu) { }
cb83b629
PZ
6878#endif /* CONFIG_NUMA */
6879
54ab4ff4
PZ
6880static int __sdt_alloc(const struct cpumask *cpu_map)
6881{
6882 struct sched_domain_topology_level *tl;
6883 int j;
6884
27723a68 6885 for_each_sd_topology(tl) {
54ab4ff4
PZ
6886 struct sd_data *sdd = &tl->data;
6887
6888 sdd->sd = alloc_percpu(struct sched_domain *);
6889 if (!sdd->sd)
6890 return -ENOMEM;
6891
24fc7edb
PZ
6892 sdd->sds = alloc_percpu(struct sched_domain_shared *);
6893 if (!sdd->sds)
6894 return -ENOMEM;
6895
54ab4ff4
PZ
6896 sdd->sg = alloc_percpu(struct sched_group *);
6897 if (!sdd->sg)
6898 return -ENOMEM;
6899
63b2ca30
NP
6900 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6901 if (!sdd->sgc)
9c3f75cb
PZ
6902 return -ENOMEM;
6903
54ab4ff4
PZ
6904 for_each_cpu(j, cpu_map) {
6905 struct sched_domain *sd;
24fc7edb 6906 struct sched_domain_shared *sds;
54ab4ff4 6907 struct sched_group *sg;
63b2ca30 6908 struct sched_group_capacity *sgc;
54ab4ff4 6909
5cc389bc 6910 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
54ab4ff4
PZ
6911 GFP_KERNEL, cpu_to_node(j));
6912 if (!sd)
6913 return -ENOMEM;
6914
6915 *per_cpu_ptr(sdd->sd, j) = sd;
6916
24fc7edb
PZ
6917 sds = kzalloc_node(sizeof(struct sched_domain_shared),
6918 GFP_KERNEL, cpu_to_node(j));
6919 if (!sds)
6920 return -ENOMEM;
6921
6922 *per_cpu_ptr(sdd->sds, j) = sds;
6923
54ab4ff4
PZ
6924 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6925 GFP_KERNEL, cpu_to_node(j));
6926 if (!sg)
6927 return -ENOMEM;
6928
30b4e9eb
IM
6929 sg->next = sg;
6930
54ab4ff4 6931 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6932
63b2ca30 6933 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
9c3f75cb 6934 GFP_KERNEL, cpu_to_node(j));
63b2ca30 6935 if (!sgc)
9c3f75cb
PZ
6936 return -ENOMEM;
6937
63b2ca30 6938 *per_cpu_ptr(sdd->sgc, j) = sgc;
54ab4ff4
PZ
6939 }
6940 }
6941
6942 return 0;
6943}
6944
6945static void __sdt_free(const struct cpumask *cpu_map)
6946{
6947 struct sched_domain_topology_level *tl;
6948 int j;
6949
27723a68 6950 for_each_sd_topology(tl) {
54ab4ff4
PZ
6951 struct sd_data *sdd = &tl->data;
6952
6953 for_each_cpu(j, cpu_map) {
fb2cf2c6 6954 struct sched_domain *sd;
6955
6956 if (sdd->sd) {
6957 sd = *per_cpu_ptr(sdd->sd, j);
6958 if (sd && (sd->flags & SD_OVERLAP))
6959 free_sched_groups(sd->groups, 0);
6960 kfree(*per_cpu_ptr(sdd->sd, j));
6961 }
6962
24fc7edb
PZ
6963 if (sdd->sds)
6964 kfree(*per_cpu_ptr(sdd->sds, j));
fb2cf2c6 6965 if (sdd->sg)
6966 kfree(*per_cpu_ptr(sdd->sg, j));
63b2ca30
NP
6967 if (sdd->sgc)
6968 kfree(*per_cpu_ptr(sdd->sgc, j));
54ab4ff4
PZ
6969 }
6970 free_percpu(sdd->sd);
fb2cf2c6 6971 sdd->sd = NULL;
24fc7edb
PZ
6972 free_percpu(sdd->sds);
6973 sdd->sds = NULL;
54ab4ff4 6974 free_percpu(sdd->sg);
fb2cf2c6 6975 sdd->sg = NULL;
63b2ca30
NP
6976 free_percpu(sdd->sgc);
6977 sdd->sgc = NULL;
54ab4ff4
PZ
6978 }
6979}
6980
2c402dc3 6981struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
6982 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6983 struct sched_domain *child, int cpu)
2c402dc3 6984{
24fc7edb 6985 struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu);
2c402dc3 6986
60495e77
PZ
6987 if (child) {
6988 sd->level = child->level + 1;
6989 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6990 child->parent = sd;
6ae72dff
PZ
6991
6992 if (!cpumask_subset(sched_domain_span(child),
6993 sched_domain_span(sd))) {
6994 pr_err("BUG: arch topology borken\n");
6995#ifdef CONFIG_SCHED_DEBUG
6996 pr_err(" the %s domain not a subset of the %s domain\n",
6997 child->name, sd->name);
6998#endif
6999 /* Fixup, ensure @sd has at least @child cpus. */
7000 cpumask_or(sched_domain_span(sd),
7001 sched_domain_span(sd),
7002 sched_domain_span(child));
7003 }
7004
60495e77 7005 }
a841f8ce 7006 set_domain_attribute(sd, attr);
2c402dc3
PZ
7007
7008 return sd;
7009}
7010
2109b99e
AH
7011/*
7012 * Build sched domains for a given set of cpus and attach the sched domains
7013 * to the individual cpus
7014 */
dce840a0
PZ
7015static int build_sched_domains(const struct cpumask *cpu_map,
7016 struct sched_domain_attr *attr)
2109b99e 7017{
1c632169 7018 enum s_alloc alloc_state;
dce840a0 7019 struct sched_domain *sd;
2109b99e 7020 struct s_data d;
cd92bfd3 7021 struct rq *rq = NULL;
822ff793 7022 int i, ret = -ENOMEM;
9c1cfda2 7023
2109b99e
AH
7024 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7025 if (alloc_state != sa_rootdomain)
7026 goto error;
9c1cfda2 7027
dce840a0 7028 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 7029 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
7030 struct sched_domain_topology_level *tl;
7031
3bd65a80 7032 sd = NULL;
27723a68 7033 for_each_sd_topology(tl) {
4a850cbe 7034 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
7035 if (tl == sched_domain_topology)
7036 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
7037 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
7038 sd->flags |= SD_OVERLAP;
d110235d
PZ
7039 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
7040 break;
e3589f6c 7041 }
dce840a0
PZ
7042 }
7043
7044 /* Build the groups for the domains */
7045 for_each_cpu(i, cpu_map) {
7046 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7047 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
7048 if (sd->flags & SD_OVERLAP) {
7049 if (build_overlap_sched_groups(sd, i))
7050 goto error;
7051 } else {
7052 if (build_sched_groups(sd, i))
7053 goto error;
7054 }
1cf51902 7055 }
a06dadbe 7056 }
9c1cfda2 7057
ced549fa 7058 /* Calculate CPU capacity for physical packages and nodes */
a9c9a9b6
PZ
7059 for (i = nr_cpumask_bits-1; i >= 0; i--) {
7060 if (!cpumask_test_cpu(i, cpu_map))
7061 continue;
9c1cfda2 7062
dce840a0
PZ
7063 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7064 claim_allocations(i, sd);
63b2ca30 7065 init_sched_groups_capacity(i, sd);
dce840a0 7066 }
f712c0c7 7067 }
9c1cfda2 7068
1da177e4 7069 /* Attach the domains */
dce840a0 7070 rcu_read_lock();
abcd083a 7071 for_each_cpu(i, cpu_map) {
cd92bfd3 7072 rq = cpu_rq(i);
21d42ccf 7073 sd = *per_cpu_ptr(d.sd, i);
cd92bfd3
DE
7074
7075 /* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
7076 if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
7077 WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
7078
49a02c51 7079 cpu_attach_domain(sd, d.rd, i);
1da177e4 7080 }
dce840a0 7081 rcu_read_unlock();
51888ca2 7082
a18a579e 7083 if (rq && sched_debug_enabled) {
cd92bfd3
DE
7084 pr_info("span: %*pbl (max cpu_capacity = %lu)\n",
7085 cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
7086 }
7087
822ff793 7088 ret = 0;
51888ca2 7089error:
2109b99e 7090 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 7091 return ret;
1da177e4 7092}
029190c5 7093
acc3f5d7 7094static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 7095static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7096static struct sched_domain_attr *dattr_cur;
7097 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7098
7099/*
7100 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7101 * cpumask) fails, then fallback to a single sched domain,
7102 * as determined by the single cpumask fallback_doms.
029190c5 7103 */
4212823f 7104static cpumask_var_t fallback_doms;
029190c5 7105
ee79d1bd
HC
7106/*
7107 * arch_update_cpu_topology lets virtualized architectures update the
7108 * cpu core maps. It is supposed to return 1 if the topology changed
7109 * or 0 if it stayed the same.
7110 */
52f5684c 7111int __weak arch_update_cpu_topology(void)
22e52b07 7112{
ee79d1bd 7113 return 0;
22e52b07
HC
7114}
7115
acc3f5d7
RR
7116cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7117{
7118 int i;
7119 cpumask_var_t *doms;
7120
7121 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7122 if (!doms)
7123 return NULL;
7124 for (i = 0; i < ndoms; i++) {
7125 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7126 free_sched_domains(doms, i);
7127 return NULL;
7128 }
7129 }
7130 return doms;
7131}
7132
7133void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7134{
7135 unsigned int i;
7136 for (i = 0; i < ndoms; i++)
7137 free_cpumask_var(doms[i]);
7138 kfree(doms);
7139}
7140
1a20ff27 7141/*
41a2d6cf 7142 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7143 * For now this just excludes isolated cpus, but could be used to
7144 * exclude other special cases in the future.
1a20ff27 7145 */
c4a8849a 7146static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7147{
7378547f
MM
7148 int err;
7149
22e52b07 7150 arch_update_cpu_topology();
029190c5 7151 ndoms_cur = 1;
acc3f5d7 7152 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7153 if (!doms_cur)
acc3f5d7
RR
7154 doms_cur = &fallback_doms;
7155 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 7156 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 7157 register_sched_domain_sysctl();
7378547f
MM
7158
7159 return err;
1a20ff27
DG
7160}
7161
1a20ff27
DG
7162/*
7163 * Detach sched domains from a group of cpus specified in cpu_map
7164 * These cpus will now be attached to the NULL domain
7165 */
96f874e2 7166static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
7167{
7168 int i;
7169
dce840a0 7170 rcu_read_lock();
abcd083a 7171 for_each_cpu(i, cpu_map)
57d885fe 7172 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 7173 rcu_read_unlock();
1a20ff27
DG
7174}
7175
1d3504fc
HS
7176/* handle null as "default" */
7177static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7178 struct sched_domain_attr *new, int idx_new)
7179{
7180 struct sched_domain_attr tmp;
7181
7182 /* fast path */
7183 if (!new && !cur)
7184 return 1;
7185
7186 tmp = SD_ATTR_INIT;
7187 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7188 new ? (new + idx_new) : &tmp,
7189 sizeof(struct sched_domain_attr));
7190}
7191
029190c5
PJ
7192/*
7193 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7194 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7195 * doms_new[] to the current sched domain partitioning, doms_cur[].
7196 * It destroys each deleted domain and builds each new domain.
7197 *
acc3f5d7 7198 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7199 * The masks don't intersect (don't overlap.) We should setup one
7200 * sched domain for each mask. CPUs not in any of the cpumasks will
7201 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7202 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7203 * it as it is.
7204 *
acc3f5d7
RR
7205 * The passed in 'doms_new' should be allocated using
7206 * alloc_sched_domains. This routine takes ownership of it and will
7207 * free_sched_domains it when done with it. If the caller failed the
7208 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7209 * and partition_sched_domains() will fallback to the single partition
7210 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7211 *
96f874e2 7212 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7213 * ndoms_new == 0 is a special case for destroying existing domains,
7214 * and it will not create the default domain.
dfb512ec 7215 *
029190c5
PJ
7216 * Call with hotplug lock held
7217 */
acc3f5d7 7218void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7219 struct sched_domain_attr *dattr_new)
029190c5 7220{
dfb512ec 7221 int i, j, n;
d65bd5ec 7222 int new_topology;
029190c5 7223
712555ee 7224 mutex_lock(&sched_domains_mutex);
a1835615 7225
7378547f
MM
7226 /* always unregister in case we don't destroy any domains */
7227 unregister_sched_domain_sysctl();
7228
d65bd5ec
HC
7229 /* Let architecture update cpu core mappings. */
7230 new_topology = arch_update_cpu_topology();
7231
dfb512ec 7232 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7233
7234 /* Destroy deleted domains */
7235 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7236 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7237 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7238 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7239 goto match1;
7240 }
7241 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7242 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7243match1:
7244 ;
7245 }
7246
c8d2d47a 7247 n = ndoms_cur;
e761b772 7248 if (doms_new == NULL) {
c8d2d47a 7249 n = 0;
acc3f5d7 7250 doms_new = &fallback_doms;
6ad4c188 7251 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7252 WARN_ON_ONCE(dattr_new);
e761b772
MK
7253 }
7254
029190c5
PJ
7255 /* Build new domains */
7256 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 7257 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7258 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7259 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7260 goto match2;
7261 }
7262 /* no match - add a new doms_new */
dce840a0 7263 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7264match2:
7265 ;
7266 }
7267
7268 /* Remember the new sched domains */
acc3f5d7
RR
7269 if (doms_cur != &fallback_doms)
7270 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7271 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7272 doms_cur = doms_new;
1d3504fc 7273 dattr_cur = dattr_new;
029190c5 7274 ndoms_cur = ndoms_new;
7378547f
MM
7275
7276 register_sched_domain_sysctl();
a1835615 7277
712555ee 7278 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7279}
7280
d35be8ba
SB
7281static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
7282
1da177e4 7283/*
3a101d05
TH
7284 * Update cpusets according to cpu_active mask. If cpusets are
7285 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7286 * around partition_sched_domains().
d35be8ba
SB
7287 *
7288 * If we come here as part of a suspend/resume, don't touch cpusets because we
7289 * want to restore it back to its original state upon resume anyway.
1da177e4 7290 */
40190a78 7291static void cpuset_cpu_active(void)
e761b772 7292{
40190a78 7293 if (cpuhp_tasks_frozen) {
d35be8ba
SB
7294 /*
7295 * num_cpus_frozen tracks how many CPUs are involved in suspend
7296 * resume sequence. As long as this is not the last online
7297 * operation in the resume sequence, just build a single sched
7298 * domain, ignoring cpusets.
7299 */
7300 num_cpus_frozen--;
7301 if (likely(num_cpus_frozen)) {
7302 partition_sched_domains(1, NULL, NULL);
135fb3e1 7303 return;
d35be8ba 7304 }
d35be8ba
SB
7305 /*
7306 * This is the last CPU online operation. So fall through and
7307 * restore the original sched domains by considering the
7308 * cpuset configurations.
7309 */
3a101d05 7310 }
135fb3e1 7311 cpuset_update_active_cpus(true);
3a101d05 7312}
e761b772 7313
40190a78 7314static int cpuset_cpu_inactive(unsigned int cpu)
3a101d05 7315{
3c18d447 7316 unsigned long flags;
3c18d447 7317 struct dl_bw *dl_b;
533445c6
OS
7318 bool overflow;
7319 int cpus;
3c18d447 7320
40190a78 7321 if (!cpuhp_tasks_frozen) {
533445c6
OS
7322 rcu_read_lock_sched();
7323 dl_b = dl_bw_of(cpu);
3c18d447 7324
533445c6
OS
7325 raw_spin_lock_irqsave(&dl_b->lock, flags);
7326 cpus = dl_bw_cpus(cpu);
7327 overflow = __dl_overflow(dl_b, cpus, 0, 0);
7328 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3c18d447 7329
533445c6 7330 rcu_read_unlock_sched();
3c18d447 7331
533445c6 7332 if (overflow)
135fb3e1 7333 return -EBUSY;
7ddf96b0 7334 cpuset_update_active_cpus(false);
135fb3e1 7335 } else {
d35be8ba
SB
7336 num_cpus_frozen++;
7337 partition_sched_domains(1, NULL, NULL);
e761b772 7338 }
135fb3e1 7339 return 0;
e761b772 7340}
e761b772 7341
40190a78 7342int sched_cpu_activate(unsigned int cpu)
135fb3e1 7343{
7d976699
TG
7344 struct rq *rq = cpu_rq(cpu);
7345 unsigned long flags;
7346
40190a78 7347 set_cpu_active(cpu, true);
135fb3e1 7348
40190a78 7349 if (sched_smp_initialized) {
135fb3e1 7350 sched_domains_numa_masks_set(cpu);
40190a78 7351 cpuset_cpu_active();
e761b772 7352 }
7d976699
TG
7353
7354 /*
7355 * Put the rq online, if not already. This happens:
7356 *
7357 * 1) In the early boot process, because we build the real domains
7358 * after all cpus have been brought up.
7359 *
7360 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
7361 * domains.
7362 */
7363 raw_spin_lock_irqsave(&rq->lock, flags);
7364 if (rq->rd) {
7365 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7366 set_rq_online(rq);
7367 }
7368 raw_spin_unlock_irqrestore(&rq->lock, flags);
7369
7370 update_max_interval();
7371
40190a78 7372 return 0;
135fb3e1
TG
7373}
7374
40190a78 7375int sched_cpu_deactivate(unsigned int cpu)
135fb3e1 7376{
135fb3e1
TG
7377 int ret;
7378
40190a78 7379 set_cpu_active(cpu, false);
b2454caa
PZ
7380 /*
7381 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
7382 * users of this state to go away such that all new such users will
7383 * observe it.
7384 *
7385 * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might
7386 * not imply sync_sched(), so wait for both.
7387 *
7388 * Do sync before park smpboot threads to take care the rcu boost case.
7389 */
7390 if (IS_ENABLED(CONFIG_PREEMPT))
7391 synchronize_rcu_mult(call_rcu, call_rcu_sched);
7392 else
7393 synchronize_rcu();
40190a78
TG
7394
7395 if (!sched_smp_initialized)
7396 return 0;
7397
7398 ret = cpuset_cpu_inactive(cpu);
7399 if (ret) {
7400 set_cpu_active(cpu, true);
7401 return ret;
135fb3e1 7402 }
40190a78
TG
7403 sched_domains_numa_masks_clear(cpu);
7404 return 0;
135fb3e1
TG
7405}
7406
94baf7a5
TG
7407static void sched_rq_cpu_starting(unsigned int cpu)
7408{
7409 struct rq *rq = cpu_rq(cpu);
7410
7411 rq->calc_load_update = calc_load_update;
94baf7a5
TG
7412 update_max_interval();
7413}
7414
135fb3e1
TG
7415int sched_cpu_starting(unsigned int cpu)
7416{
7417 set_cpu_rq_start_time(cpu);
94baf7a5 7418 sched_rq_cpu_starting(cpu);
135fb3e1 7419 return 0;
e761b772 7420}
e761b772 7421
f2785ddb
TG
7422#ifdef CONFIG_HOTPLUG_CPU
7423int sched_cpu_dying(unsigned int cpu)
7424{
7425 struct rq *rq = cpu_rq(cpu);
7426 unsigned long flags;
7427
7428 /* Handle pending wakeups and then migrate everything off */
7429 sched_ttwu_pending();
7430 raw_spin_lock_irqsave(&rq->lock, flags);
7431 if (rq->rd) {
7432 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7433 set_rq_offline(rq);
7434 }
7435 migrate_tasks(rq);
7436 BUG_ON(rq->nr_running != 1);
7437 raw_spin_unlock_irqrestore(&rq->lock, flags);
7438 calc_load_migrate(rq);
7439 update_max_interval();
20a5c8cc 7440 nohz_balance_exit_idle(cpu);
e5ef27d0 7441 hrtick_clear(rq);
f2785ddb
TG
7442 return 0;
7443}
7444#endif
7445
1b568f0a
PZ
7446#ifdef CONFIG_SCHED_SMT
7447DEFINE_STATIC_KEY_FALSE(sched_smt_present);
7448
7449static void sched_init_smt(void)
7450{
7451 /*
7452 * We've enumerated all CPUs and will assume that if any CPU
7453 * has SMT siblings, CPU0 will too.
7454 */
7455 if (cpumask_weight(cpu_smt_mask(0)) > 1)
7456 static_branch_enable(&sched_smt_present);
7457}
7458#else
7459static inline void sched_init_smt(void) { }
7460#endif
7461
1da177e4
LT
7462void __init sched_init_smp(void)
7463{
dcc30a35
RR
7464 cpumask_var_t non_isolated_cpus;
7465
7466 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7467 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7468
cb83b629
PZ
7469 sched_init_numa();
7470
6acce3ef
PZ
7471 /*
7472 * There's no userspace yet to cause hotplug operations; hence all the
7473 * cpu masks are stable and all blatant races in the below code cannot
7474 * happen.
7475 */
712555ee 7476 mutex_lock(&sched_domains_mutex);
c4a8849a 7477 init_sched_domains(cpu_active_mask);
dcc30a35
RR
7478 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7479 if (cpumask_empty(non_isolated_cpus))
7480 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7481 mutex_unlock(&sched_domains_mutex);
e761b772 7482
5c1e1767 7483 /* Move init over to a non-isolated CPU */
dcc30a35 7484 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7485 BUG();
19978ca6 7486 sched_init_granularity();
dcc30a35 7487 free_cpumask_var(non_isolated_cpus);
4212823f 7488
0e3900e6 7489 init_sched_rt_class();
1baca4ce 7490 init_sched_dl_class();
1b568f0a
PZ
7491
7492 sched_init_smt();
7493
e26fbffd 7494 sched_smp_initialized = true;
1da177e4 7495}
e26fbffd
TG
7496
7497static int __init migration_init(void)
7498{
94baf7a5 7499 sched_rq_cpu_starting(smp_processor_id());
e26fbffd 7500 return 0;
1da177e4 7501}
e26fbffd
TG
7502early_initcall(migration_init);
7503
1da177e4
LT
7504#else
7505void __init sched_init_smp(void)
7506{
19978ca6 7507 sched_init_granularity();
1da177e4
LT
7508}
7509#endif /* CONFIG_SMP */
7510
7511int in_sched_functions(unsigned long addr)
7512{
1da177e4
LT
7513 return in_lock_functions(addr) ||
7514 (addr >= (unsigned long)__sched_text_start
7515 && addr < (unsigned long)__sched_text_end);
7516}
7517
029632fb 7518#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
7519/*
7520 * Default task group.
7521 * Every task in system belongs to this group at bootup.
7522 */
029632fb 7523struct task_group root_task_group;
35cf4e50 7524LIST_HEAD(task_groups);
b0367629
WL
7525
7526/* Cacheline aligned slab cache for task_group */
7527static struct kmem_cache *task_group_cache __read_mostly;
052f1dc7 7528#endif
6f505b16 7529
e6252c3e 7530DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
10e2f1ac 7531DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
6f505b16 7532
9dcb8b68
LT
7533#define WAIT_TABLE_BITS 8
7534#define WAIT_TABLE_SIZE (1 << WAIT_TABLE_BITS)
7535static wait_queue_head_t bit_wait_table[WAIT_TABLE_SIZE] __cacheline_aligned;
7536
7537wait_queue_head_t *bit_waitqueue(void *word, int bit)
7538{
7539 const int shift = BITS_PER_LONG == 32 ? 5 : 6;
7540 unsigned long val = (unsigned long)word << shift | bit;
7541
7542 return bit_wait_table + hash_long(val, WAIT_TABLE_BITS);
7543}
7544EXPORT_SYMBOL(bit_waitqueue);
7545
1da177e4
LT
7546void __init sched_init(void)
7547{
dd41f596 7548 int i, j;
434d53b0
MT
7549 unsigned long alloc_size = 0, ptr;
7550
9dcb8b68
LT
7551 for (i = 0; i < WAIT_TABLE_SIZE; i++)
7552 init_waitqueue_head(bit_wait_table + i);
7553
434d53b0
MT
7554#ifdef CONFIG_FAIR_GROUP_SCHED
7555 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7556#endif
7557#ifdef CONFIG_RT_GROUP_SCHED
7558 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7559#endif
434d53b0 7560 if (alloc_size) {
36b7b6d4 7561 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7562
7563#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 7564 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
7565 ptr += nr_cpu_ids * sizeof(void **);
7566
07e06b01 7567 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 7568 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7569
6d6bc0ad 7570#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 7571#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7572 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
7573 ptr += nr_cpu_ids * sizeof(void **);
7574
07e06b01 7575 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7576 ptr += nr_cpu_ids * sizeof(void **);
7577
6d6bc0ad 7578#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 7579 }
df7c8e84 7580#ifdef CONFIG_CPUMASK_OFFSTACK
b74e6278
AT
7581 for_each_possible_cpu(i) {
7582 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7583 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
10e2f1ac
PZ
7584 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
7585 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
434d53b0 7586 }
b74e6278 7587#endif /* CONFIG_CPUMASK_OFFSTACK */
dd41f596 7588
332ac17e
DF
7589 init_rt_bandwidth(&def_rt_bandwidth,
7590 global_rt_period(), global_rt_runtime());
7591 init_dl_bandwidth(&def_dl_bandwidth,
1724813d 7592 global_rt_period(), global_rt_runtime());
332ac17e 7593
57d885fe
GH
7594#ifdef CONFIG_SMP
7595 init_defrootdomain();
7596#endif
7597
d0b27fa7 7598#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7599 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 7600 global_rt_period(), global_rt_runtime());
6d6bc0ad 7601#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7602
7c941438 7603#ifdef CONFIG_CGROUP_SCHED
b0367629
WL
7604 task_group_cache = KMEM_CACHE(task_group, 0);
7605
07e06b01
YZ
7606 list_add(&root_task_group.list, &task_groups);
7607 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 7608 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 7609 autogroup_init(&init_task);
7c941438 7610#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7611
0a945022 7612 for_each_possible_cpu(i) {
70b97a7f 7613 struct rq *rq;
1da177e4
LT
7614
7615 rq = cpu_rq(i);
05fa785c 7616 raw_spin_lock_init(&rq->lock);
7897986b 7617 rq->nr_running = 0;
dce48a84
TG
7618 rq->calc_load_active = 0;
7619 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 7620 init_cfs_rq(&rq->cfs);
07c54f7a
AV
7621 init_rt_rq(&rq->rt);
7622 init_dl_rq(&rq->dl);
dd41f596 7623#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 7624 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 7625 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9c2791f9 7626 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
354d60c2 7627 /*
07e06b01 7628 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
7629 *
7630 * In case of task-groups formed thr' the cgroup filesystem, it
7631 * gets 100% of the cpu resources in the system. This overall
7632 * system cpu resource is divided among the tasks of
07e06b01 7633 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
7634 * based on each entity's (task or task-group's) weight
7635 * (se->load.weight).
7636 *
07e06b01 7637 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
7638 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7639 * then A0's share of the cpu resource is:
7640 *
0d905bca 7641 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 7642 *
07e06b01
YZ
7643 * We achieve this by letting root_task_group's tasks sit
7644 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 7645 */
ab84d31e 7646 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 7647 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
7648#endif /* CONFIG_FAIR_GROUP_SCHED */
7649
7650 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7651#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7652 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 7653#endif
1da177e4 7654
dd41f596
IM
7655 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7656 rq->cpu_load[j] = 0;
fdf3e95d 7657
1da177e4 7658#ifdef CONFIG_SMP
41c7ce9a 7659 rq->sd = NULL;
57d885fe 7660 rq->rd = NULL;
ca6d75e6 7661 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
e3fca9e7 7662 rq->balance_callback = NULL;
1da177e4 7663 rq->active_balance = 0;
dd41f596 7664 rq->next_balance = jiffies;
1da177e4 7665 rq->push_cpu = 0;
0a2966b4 7666 rq->cpu = i;
1f11eb6a 7667 rq->online = 0;
eae0c9df
MG
7668 rq->idle_stamp = 0;
7669 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 7670 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
7671
7672 INIT_LIST_HEAD(&rq->cfs_tasks);
7673
dc938520 7674 rq_attach_root(rq, &def_root_domain);
3451d024 7675#ifdef CONFIG_NO_HZ_COMMON
9fd81dd5 7676 rq->last_load_update_tick = jiffies;
1c792db7 7677 rq->nohz_flags = 0;
83cd4fe2 7678#endif
265f22a9
FW
7679#ifdef CONFIG_NO_HZ_FULL
7680 rq->last_sched_tick = 0;
7681#endif
9fd81dd5 7682#endif /* CONFIG_SMP */
8f4d37ec 7683 init_rq_hrtick(rq);
1da177e4 7684 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7685 }
7686
2dd73a4f 7687 set_load_weight(&init_task);
b50f60ce 7688
1da177e4
LT
7689 /*
7690 * The boot idle thread does lazy MMU switching as well:
7691 */
7692 atomic_inc(&init_mm.mm_count);
7693 enter_lazy_tlb(&init_mm, current);
7694
7695 /*
7696 * Make us the idle thread. Technically, schedule() should not be
7697 * called from this thread, however somewhere below it might be,
7698 * but because we are the idle thread, we just pick up running again
7699 * when this runqueue becomes "idle".
7700 */
7701 init_idle(current, smp_processor_id());
dce48a84
TG
7702
7703 calc_load_update = jiffies + LOAD_FREQ;
7704
bf4d83f6 7705#ifdef CONFIG_SMP
4cb98839 7706 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
7707 /* May be allocated at isolcpus cmdline parse time */
7708 if (cpu_isolated_map == NULL)
7709 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 7710 idle_thread_set_boot_cpu();
9cf7243d 7711 set_cpu_rq_start_time(smp_processor_id());
029632fb
PZ
7712#endif
7713 init_sched_fair_class();
6a7b3dc3 7714
4698f88c
JP
7715 init_schedstats();
7716
6892b75e 7717 scheduler_running = 1;
1da177e4
LT
7718}
7719
d902db1e 7720#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
7721static inline int preempt_count_equals(int preempt_offset)
7722{
da7142e2 7723 int nested = preempt_count() + rcu_preempt_depth();
e4aafea2 7724
4ba8216c 7725 return (nested == preempt_offset);
e4aafea2
FW
7726}
7727
d894837f 7728void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7729{
8eb23b9f
PZ
7730 /*
7731 * Blocking primitives will set (and therefore destroy) current->state,
7732 * since we will exit with TASK_RUNNING make sure we enter with it,
7733 * otherwise we will destroy state.
7734 */
00845eb9 7735 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
8eb23b9f
PZ
7736 "do not call blocking ops when !TASK_RUNNING; "
7737 "state=%lx set at [<%p>] %pS\n",
7738 current->state,
7739 (void *)current->task_state_change,
00845eb9 7740 (void *)current->task_state_change);
8eb23b9f 7741
3427445a
PZ
7742 ___might_sleep(file, line, preempt_offset);
7743}
7744EXPORT_SYMBOL(__might_sleep);
7745
7746void ___might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7747{
1da177e4 7748 static unsigned long prev_jiffy; /* ratelimiting */
d1c6d149 7749 unsigned long preempt_disable_ip;
1da177e4 7750
b3fbab05 7751 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
db273be2
TG
7752 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7753 !is_idle_task(current)) ||
e4aafea2 7754 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7755 return;
7756 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7757 return;
7758 prev_jiffy = jiffies;
7759
d1c6d149
VN
7760 /* Save this before calling printk(), since that will clobber it */
7761 preempt_disable_ip = get_preempt_disable_ip(current);
7762
3df0fc5b
PZ
7763 printk(KERN_ERR
7764 "BUG: sleeping function called from invalid context at %s:%d\n",
7765 file, line);
7766 printk(KERN_ERR
7767 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7768 in_atomic(), irqs_disabled(),
7769 current->pid, current->comm);
aef745fc 7770
a8b686b3
ES
7771 if (task_stack_end_corrupted(current))
7772 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7773
aef745fc
IM
7774 debug_show_held_locks(current);
7775 if (irqs_disabled())
7776 print_irqtrace_events(current);
d1c6d149
VN
7777 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
7778 && !preempt_count_equals(preempt_offset)) {
8f47b187 7779 pr_err("Preemption disabled at:");
d1c6d149 7780 print_ip_sym(preempt_disable_ip);
8f47b187
TG
7781 pr_cont("\n");
7782 }
aef745fc 7783 dump_stack();
f0b22e39 7784 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
1da177e4 7785}
3427445a 7786EXPORT_SYMBOL(___might_sleep);
1da177e4
LT
7787#endif
7788
7789#ifdef CONFIG_MAGIC_SYSRQ
dbc7f069 7790void normalize_rt_tasks(void)
3a5e4dc1 7791{
dbc7f069 7792 struct task_struct *g, *p;
d50dde5a
DF
7793 struct sched_attr attr = {
7794 .sched_policy = SCHED_NORMAL,
7795 };
1da177e4 7796
3472eaa1 7797 read_lock(&tasklist_lock);
5d07f420 7798 for_each_process_thread(g, p) {
178be793
IM
7799 /*
7800 * Only normalize user tasks:
7801 */
3472eaa1 7802 if (p->flags & PF_KTHREAD)
178be793
IM
7803 continue;
7804
4fa8d299
JP
7805 p->se.exec_start = 0;
7806 schedstat_set(p->se.statistics.wait_start, 0);
7807 schedstat_set(p->se.statistics.sleep_start, 0);
7808 schedstat_set(p->se.statistics.block_start, 0);
dd41f596 7809
aab03e05 7810 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
7811 /*
7812 * Renice negative nice level userspace
7813 * tasks back to 0:
7814 */
3472eaa1 7815 if (task_nice(p) < 0)
dd41f596 7816 set_user_nice(p, 0);
1da177e4 7817 continue;
dd41f596 7818 }
1da177e4 7819
dbc7f069 7820 __sched_setscheduler(p, &attr, false, false);
5d07f420 7821 }
3472eaa1 7822 read_unlock(&tasklist_lock);
1da177e4
LT
7823}
7824
7825#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7826
67fc4e0c 7827#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7828/*
67fc4e0c 7829 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7830 *
7831 * They can only be called when the whole system has been
7832 * stopped - every CPU needs to be quiescent, and no scheduling
7833 * activity can take place. Using them for anything else would
7834 * be a serious bug, and as a result, they aren't even visible
7835 * under any other configuration.
7836 */
7837
7838/**
7839 * curr_task - return the current task for a given cpu.
7840 * @cpu: the processor in question.
7841 *
7842 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
7843 *
7844 * Return: The current task for @cpu.
1df5c10a 7845 */
36c8b586 7846struct task_struct *curr_task(int cpu)
1df5c10a
LT
7847{
7848 return cpu_curr(cpu);
7849}
7850
67fc4e0c
JW
7851#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7852
7853#ifdef CONFIG_IA64
1df5c10a
LT
7854/**
7855 * set_curr_task - set the current task for a given cpu.
7856 * @cpu: the processor in question.
7857 * @p: the task pointer to set.
7858 *
7859 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7860 * are serviced on a separate stack. It allows the architecture to switch the
7861 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7862 * must be called with all CPU's synchronized, and interrupts disabled, the
7863 * and caller must save the original value of the current task (see
7864 * curr_task() above) and restore that value before reenabling interrupts and
7865 * re-starting the system.
7866 *
7867 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7868 */
a458ae2e 7869void ia64_set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7870{
7871 cpu_curr(cpu) = p;
7872}
7873
7874#endif
29f59db3 7875
7c941438 7876#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7877/* task_group_lock serializes the addition/removal of task groups */
7878static DEFINE_SPINLOCK(task_group_lock);
7879
2f5177f0 7880static void sched_free_group(struct task_group *tg)
bccbe08a
PZ
7881{
7882 free_fair_sched_group(tg);
7883 free_rt_sched_group(tg);
e9aa1dd1 7884 autogroup_free(tg);
b0367629 7885 kmem_cache_free(task_group_cache, tg);
bccbe08a
PZ
7886}
7887
7888/* allocate runqueue etc for a new task group */
ec7dc8ac 7889struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7890{
7891 struct task_group *tg;
bccbe08a 7892
b0367629 7893 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
bccbe08a
PZ
7894 if (!tg)
7895 return ERR_PTR(-ENOMEM);
7896
ec7dc8ac 7897 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7898 goto err;
7899
ec7dc8ac 7900 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7901 goto err;
7902
ace783b9
LZ
7903 return tg;
7904
7905err:
2f5177f0 7906 sched_free_group(tg);
ace783b9
LZ
7907 return ERR_PTR(-ENOMEM);
7908}
7909
7910void sched_online_group(struct task_group *tg, struct task_group *parent)
7911{
7912 unsigned long flags;
7913
8ed36996 7914 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7915 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7916
7917 WARN_ON(!parent); /* root should already exist */
7918
7919 tg->parent = parent;
f473aa5e 7920 INIT_LIST_HEAD(&tg->children);
09f2724a 7921 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7922 spin_unlock_irqrestore(&task_group_lock, flags);
8663e24d
PZ
7923
7924 online_fair_sched_group(tg);
29f59db3
SV
7925}
7926
9b5b7751 7927/* rcu callback to free various structures associated with a task group */
2f5177f0 7928static void sched_free_group_rcu(struct rcu_head *rhp)
29f59db3 7929{
29f59db3 7930 /* now it should be safe to free those cfs_rqs */
2f5177f0 7931 sched_free_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7932}
7933
4cf86d77 7934void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
7935{
7936 /* wait for possible concurrent references to cfs_rqs complete */
2f5177f0 7937 call_rcu(&tg->rcu, sched_free_group_rcu);
ace783b9
LZ
7938}
7939
7940void sched_offline_group(struct task_group *tg)
29f59db3 7941{
8ed36996 7942 unsigned long flags;
29f59db3 7943
3d4b47b4 7944 /* end participation in shares distribution */
6fe1f348 7945 unregister_fair_sched_group(tg);
3d4b47b4
PZ
7946
7947 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7948 list_del_rcu(&tg->list);
f473aa5e 7949 list_del_rcu(&tg->siblings);
8ed36996 7950 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7951}
7952
ea86cb4b 7953static void sched_change_group(struct task_struct *tsk, int type)
29f59db3 7954{
8323f26c 7955 struct task_group *tg;
29f59db3 7956
f7b8a47d
KT
7957 /*
7958 * All callers are synchronized by task_rq_lock(); we do not use RCU
7959 * which is pointless here. Thus, we pass "true" to task_css_check()
7960 * to prevent lockdep warnings.
7961 */
7962 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
7963 struct task_group, css);
7964 tg = autogroup_task_group(tsk, tg);
7965 tsk->sched_task_group = tg;
7966
810b3817 7967#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
7968 if (tsk->sched_class->task_change_group)
7969 tsk->sched_class->task_change_group(tsk, type);
b2b5ce02 7970 else
810b3817 7971#endif
b2b5ce02 7972 set_task_rq(tsk, task_cpu(tsk));
ea86cb4b
VG
7973}
7974
7975/*
7976 * Change task's runqueue when it moves between groups.
7977 *
7978 * The caller of this function should have put the task in its new group by
7979 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
7980 * its new group.
7981 */
7982void sched_move_task(struct task_struct *tsk)
7983{
7984 int queued, running;
7985 struct rq_flags rf;
7986 struct rq *rq;
7987
7988 rq = task_rq_lock(tsk, &rf);
7989
7990 running = task_current(rq, tsk);
7991 queued = task_on_rq_queued(tsk);
7992
7993 if (queued)
7994 dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
7995 if (unlikely(running))
7996 put_prev_task(rq, tsk);
7997
7998 sched_change_group(tsk, TASK_MOVE_GROUP);
810b3817 7999
da0c1e65 8000 if (queued)
ff77e468 8001 enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
a399d233 8002 if (unlikely(running))
b2bf6c31 8003 set_curr_task(rq, tsk);
29f59db3 8004
eb580751 8005 task_rq_unlock(rq, tsk, &rf);
29f59db3 8006}
7c941438 8007#endif /* CONFIG_CGROUP_SCHED */
29f59db3 8008
a790de99
PT
8009#ifdef CONFIG_RT_GROUP_SCHED
8010/*
8011 * Ensure that the real time constraints are schedulable.
8012 */
8013static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 8014
9a7e0b18
PZ
8015/* Must be called with tasklist_lock held */
8016static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 8017{
9a7e0b18 8018 struct task_struct *g, *p;
b40b2e8e 8019
1fe89e1b
PZ
8020 /*
8021 * Autogroups do not have RT tasks; see autogroup_create().
8022 */
8023 if (task_group_is_autogroup(tg))
8024 return 0;
8025
5d07f420 8026 for_each_process_thread(g, p) {
8651c658 8027 if (rt_task(p) && task_group(p) == tg)
9a7e0b18 8028 return 1;
5d07f420 8029 }
b40b2e8e 8030
9a7e0b18
PZ
8031 return 0;
8032}
b40b2e8e 8033
9a7e0b18
PZ
8034struct rt_schedulable_data {
8035 struct task_group *tg;
8036 u64 rt_period;
8037 u64 rt_runtime;
8038};
b40b2e8e 8039
a790de99 8040static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
8041{
8042 struct rt_schedulable_data *d = data;
8043 struct task_group *child;
8044 unsigned long total, sum = 0;
8045 u64 period, runtime;
b40b2e8e 8046
9a7e0b18
PZ
8047 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8048 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 8049
9a7e0b18
PZ
8050 if (tg == d->tg) {
8051 period = d->rt_period;
8052 runtime = d->rt_runtime;
b40b2e8e 8053 }
b40b2e8e 8054
4653f803
PZ
8055 /*
8056 * Cannot have more runtime than the period.
8057 */
8058 if (runtime > period && runtime != RUNTIME_INF)
8059 return -EINVAL;
6f505b16 8060
4653f803
PZ
8061 /*
8062 * Ensure we don't starve existing RT tasks.
8063 */
9a7e0b18
PZ
8064 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8065 return -EBUSY;
6f505b16 8066
9a7e0b18 8067 total = to_ratio(period, runtime);
6f505b16 8068
4653f803
PZ
8069 /*
8070 * Nobody can have more than the global setting allows.
8071 */
8072 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8073 return -EINVAL;
6f505b16 8074
4653f803
PZ
8075 /*
8076 * The sum of our children's runtime should not exceed our own.
8077 */
9a7e0b18
PZ
8078 list_for_each_entry_rcu(child, &tg->children, siblings) {
8079 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8080 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8081
9a7e0b18
PZ
8082 if (child == d->tg) {
8083 period = d->rt_period;
8084 runtime = d->rt_runtime;
8085 }
6f505b16 8086
9a7e0b18 8087 sum += to_ratio(period, runtime);
9f0c1e56 8088 }
6f505b16 8089
9a7e0b18
PZ
8090 if (sum > total)
8091 return -EINVAL;
8092
8093 return 0;
6f505b16
PZ
8094}
8095
9a7e0b18 8096static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8097{
8277434e
PT
8098 int ret;
8099
9a7e0b18
PZ
8100 struct rt_schedulable_data data = {
8101 .tg = tg,
8102 .rt_period = period,
8103 .rt_runtime = runtime,
8104 };
8105
8277434e
PT
8106 rcu_read_lock();
8107 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
8108 rcu_read_unlock();
8109
8110 return ret;
521f1a24
DG
8111}
8112
ab84d31e 8113static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 8114 u64 rt_period, u64 rt_runtime)
6f505b16 8115{
ac086bc2 8116 int i, err = 0;
9f0c1e56 8117
2636ed5f
PZ
8118 /*
8119 * Disallowing the root group RT runtime is BAD, it would disallow the
8120 * kernel creating (and or operating) RT threads.
8121 */
8122 if (tg == &root_task_group && rt_runtime == 0)
8123 return -EINVAL;
8124
8125 /* No period doesn't make any sense. */
8126 if (rt_period == 0)
8127 return -EINVAL;
8128
9f0c1e56 8129 mutex_lock(&rt_constraints_mutex);
521f1a24 8130 read_lock(&tasklist_lock);
9a7e0b18
PZ
8131 err = __rt_schedulable(tg, rt_period, rt_runtime);
8132 if (err)
9f0c1e56 8133 goto unlock;
ac086bc2 8134
0986b11b 8135 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8136 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8137 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8138
8139 for_each_possible_cpu(i) {
8140 struct rt_rq *rt_rq = tg->rt_rq[i];
8141
0986b11b 8142 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8143 rt_rq->rt_runtime = rt_runtime;
0986b11b 8144 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8145 }
0986b11b 8146 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 8147unlock:
521f1a24 8148 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8149 mutex_unlock(&rt_constraints_mutex);
8150
8151 return err;
6f505b16
PZ
8152}
8153
25cc7da7 8154static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
8155{
8156 u64 rt_runtime, rt_period;
8157
8158 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8159 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8160 if (rt_runtime_us < 0)
8161 rt_runtime = RUNTIME_INF;
8162
ab84d31e 8163 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
8164}
8165
25cc7da7 8166static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
8167{
8168 u64 rt_runtime_us;
8169
d0b27fa7 8170 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8171 return -1;
8172
d0b27fa7 8173 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8174 do_div(rt_runtime_us, NSEC_PER_USEC);
8175 return rt_runtime_us;
8176}
d0b27fa7 8177
ce2f5fe4 8178static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
d0b27fa7
PZ
8179{
8180 u64 rt_runtime, rt_period;
8181
ce2f5fe4 8182 rt_period = rt_period_us * NSEC_PER_USEC;
d0b27fa7
PZ
8183 rt_runtime = tg->rt_bandwidth.rt_runtime;
8184
ab84d31e 8185 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
8186}
8187
25cc7da7 8188static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
8189{
8190 u64 rt_period_us;
8191
8192 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8193 do_div(rt_period_us, NSEC_PER_USEC);
8194 return rt_period_us;
8195}
332ac17e 8196#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8197
332ac17e 8198#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
8199static int sched_rt_global_constraints(void)
8200{
8201 int ret = 0;
8202
8203 mutex_lock(&rt_constraints_mutex);
9a7e0b18 8204 read_lock(&tasklist_lock);
4653f803 8205 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 8206 read_unlock(&tasklist_lock);
d0b27fa7
PZ
8207 mutex_unlock(&rt_constraints_mutex);
8208
8209 return ret;
8210}
54e99124 8211
25cc7da7 8212static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
8213{
8214 /* Don't accept realtime tasks when there is no way for them to run */
8215 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8216 return 0;
8217
8218 return 1;
8219}
8220
6d6bc0ad 8221#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8222static int sched_rt_global_constraints(void)
8223{
ac086bc2 8224 unsigned long flags;
8c5e9554 8225 int i;
ec5d4989 8226
0986b11b 8227 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
8228 for_each_possible_cpu(i) {
8229 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8230
0986b11b 8231 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8232 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 8233 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8234 }
0986b11b 8235 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 8236
8c5e9554 8237 return 0;
d0b27fa7 8238}
6d6bc0ad 8239#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8240
a1963b81 8241static int sched_dl_global_validate(void)
332ac17e 8242{
1724813d
PZ
8243 u64 runtime = global_rt_runtime();
8244 u64 period = global_rt_period();
332ac17e 8245 u64 new_bw = to_ratio(period, runtime);
f10e00f4 8246 struct dl_bw *dl_b;
1724813d 8247 int cpu, ret = 0;
49516342 8248 unsigned long flags;
332ac17e
DF
8249
8250 /*
8251 * Here we want to check the bandwidth not being set to some
8252 * value smaller than the currently allocated bandwidth in
8253 * any of the root_domains.
8254 *
8255 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
8256 * cycling on root_domains... Discussion on different/better
8257 * solutions is welcome!
8258 */
1724813d 8259 for_each_possible_cpu(cpu) {
f10e00f4
KT
8260 rcu_read_lock_sched();
8261 dl_b = dl_bw_of(cpu);
332ac17e 8262
49516342 8263 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d
PZ
8264 if (new_bw < dl_b->total_bw)
8265 ret = -EBUSY;
49516342 8266 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
1724813d 8267
f10e00f4
KT
8268 rcu_read_unlock_sched();
8269
1724813d
PZ
8270 if (ret)
8271 break;
332ac17e
DF
8272 }
8273
1724813d 8274 return ret;
332ac17e
DF
8275}
8276
1724813d 8277static void sched_dl_do_global(void)
ce0dbbbb 8278{
1724813d 8279 u64 new_bw = -1;
f10e00f4 8280 struct dl_bw *dl_b;
1724813d 8281 int cpu;
49516342 8282 unsigned long flags;
ce0dbbbb 8283
1724813d
PZ
8284 def_dl_bandwidth.dl_period = global_rt_period();
8285 def_dl_bandwidth.dl_runtime = global_rt_runtime();
8286
8287 if (global_rt_runtime() != RUNTIME_INF)
8288 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
8289
8290 /*
8291 * FIXME: As above...
8292 */
8293 for_each_possible_cpu(cpu) {
f10e00f4
KT
8294 rcu_read_lock_sched();
8295 dl_b = dl_bw_of(cpu);
1724813d 8296
49516342 8297 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d 8298 dl_b->bw = new_bw;
49516342 8299 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
f10e00f4
KT
8300
8301 rcu_read_unlock_sched();
ce0dbbbb 8302 }
1724813d
PZ
8303}
8304
8305static int sched_rt_global_validate(void)
8306{
8307 if (sysctl_sched_rt_period <= 0)
8308 return -EINVAL;
8309
e9e7cb38
JL
8310 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
8311 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
1724813d
PZ
8312 return -EINVAL;
8313
8314 return 0;
8315}
8316
8317static void sched_rt_do_global(void)
8318{
8319 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8320 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
8321}
8322
d0b27fa7 8323int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8324 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8325 loff_t *ppos)
8326{
d0b27fa7
PZ
8327 int old_period, old_runtime;
8328 static DEFINE_MUTEX(mutex);
1724813d 8329 int ret;
d0b27fa7
PZ
8330
8331 mutex_lock(&mutex);
8332 old_period = sysctl_sched_rt_period;
8333 old_runtime = sysctl_sched_rt_runtime;
8334
8d65af78 8335 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
8336
8337 if (!ret && write) {
1724813d
PZ
8338 ret = sched_rt_global_validate();
8339 if (ret)
8340 goto undo;
8341
a1963b81 8342 ret = sched_dl_global_validate();
1724813d
PZ
8343 if (ret)
8344 goto undo;
8345
a1963b81 8346 ret = sched_rt_global_constraints();
1724813d
PZ
8347 if (ret)
8348 goto undo;
8349
8350 sched_rt_do_global();
8351 sched_dl_do_global();
8352 }
8353 if (0) {
8354undo:
8355 sysctl_sched_rt_period = old_period;
8356 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
8357 }
8358 mutex_unlock(&mutex);
8359
8360 return ret;
8361}
68318b8e 8362
1724813d 8363int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
8364 void __user *buffer, size_t *lenp,
8365 loff_t *ppos)
8366{
8367 int ret;
332ac17e 8368 static DEFINE_MUTEX(mutex);
332ac17e
DF
8369
8370 mutex_lock(&mutex);
332ac17e 8371 ret = proc_dointvec(table, write, buffer, lenp, ppos);
1724813d
PZ
8372 /* make sure that internally we keep jiffies */
8373 /* also, writing zero resets timeslice to default */
332ac17e 8374 if (!ret && write) {
1724813d
PZ
8375 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8376 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
332ac17e
DF
8377 }
8378 mutex_unlock(&mutex);
332ac17e
DF
8379 return ret;
8380}
8381
052f1dc7 8382#ifdef CONFIG_CGROUP_SCHED
68318b8e 8383
a7c6d554 8384static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 8385{
a7c6d554 8386 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
8387}
8388
eb95419b
TH
8389static struct cgroup_subsys_state *
8390cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 8391{
eb95419b
TH
8392 struct task_group *parent = css_tg(parent_css);
8393 struct task_group *tg;
68318b8e 8394
eb95419b 8395 if (!parent) {
68318b8e 8396 /* This is early initialization for the top cgroup */
07e06b01 8397 return &root_task_group.css;
68318b8e
SV
8398 }
8399
ec7dc8ac 8400 tg = sched_create_group(parent);
68318b8e
SV
8401 if (IS_ERR(tg))
8402 return ERR_PTR(-ENOMEM);
8403
2f5177f0
PZ
8404 sched_online_group(tg, parent);
8405
68318b8e
SV
8406 return &tg->css;
8407}
8408
2f5177f0 8409static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
ace783b9 8410{
eb95419b 8411 struct task_group *tg = css_tg(css);
ace783b9 8412
2f5177f0 8413 sched_offline_group(tg);
ace783b9
LZ
8414}
8415
eb95419b 8416static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 8417{
eb95419b 8418 struct task_group *tg = css_tg(css);
68318b8e 8419
2f5177f0
PZ
8420 /*
8421 * Relies on the RCU grace period between css_released() and this.
8422 */
8423 sched_free_group(tg);
ace783b9
LZ
8424}
8425
ea86cb4b
VG
8426/*
8427 * This is called before wake_up_new_task(), therefore we really only
8428 * have to set its group bits, all the other stuff does not apply.
8429 */
b53202e6 8430static void cpu_cgroup_fork(struct task_struct *task)
eeb61e53 8431{
ea86cb4b
VG
8432 struct rq_flags rf;
8433 struct rq *rq;
8434
8435 rq = task_rq_lock(task, &rf);
8436
8437 sched_change_group(task, TASK_SET_GROUP);
8438
8439 task_rq_unlock(rq, task, &rf);
eeb61e53
KT
8440}
8441
1f7dd3e5 8442static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
68318b8e 8443{
bb9d97b6 8444 struct task_struct *task;
1f7dd3e5 8445 struct cgroup_subsys_state *css;
7dc603c9 8446 int ret = 0;
bb9d97b6 8447
1f7dd3e5 8448 cgroup_taskset_for_each(task, css, tset) {
b68aa230 8449#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 8450 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 8451 return -EINVAL;
b68aa230 8452#else
bb9d97b6
TH
8453 /* We don't support RT-tasks being in separate groups */
8454 if (task->sched_class != &fair_sched_class)
8455 return -EINVAL;
b68aa230 8456#endif
7dc603c9
PZ
8457 /*
8458 * Serialize against wake_up_new_task() such that if its
8459 * running, we're sure to observe its full state.
8460 */
8461 raw_spin_lock_irq(&task->pi_lock);
8462 /*
8463 * Avoid calling sched_move_task() before wake_up_new_task()
8464 * has happened. This would lead to problems with PELT, due to
8465 * move wanting to detach+attach while we're not attached yet.
8466 */
8467 if (task->state == TASK_NEW)
8468 ret = -EINVAL;
8469 raw_spin_unlock_irq(&task->pi_lock);
8470
8471 if (ret)
8472 break;
bb9d97b6 8473 }
7dc603c9 8474 return ret;
be367d09 8475}
68318b8e 8476
1f7dd3e5 8477static void cpu_cgroup_attach(struct cgroup_taskset *tset)
68318b8e 8478{
bb9d97b6 8479 struct task_struct *task;
1f7dd3e5 8480 struct cgroup_subsys_state *css;
bb9d97b6 8481
1f7dd3e5 8482 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 8483 sched_move_task(task);
68318b8e
SV
8484}
8485
052f1dc7 8486#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
8487static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8488 struct cftype *cftype, u64 shareval)
68318b8e 8489{
182446d0 8490 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
8491}
8492
182446d0
TH
8493static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8494 struct cftype *cft)
68318b8e 8495{
182446d0 8496 struct task_group *tg = css_tg(css);
68318b8e 8497
c8b28116 8498 return (u64) scale_load_down(tg->shares);
68318b8e 8499}
ab84d31e
PT
8500
8501#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
8502static DEFINE_MUTEX(cfs_constraints_mutex);
8503
ab84d31e
PT
8504const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8505const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8506
a790de99
PT
8507static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8508
ab84d31e
PT
8509static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8510{
56f570e5 8511 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 8512 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
8513
8514 if (tg == &root_task_group)
8515 return -EINVAL;
8516
8517 /*
8518 * Ensure we have at some amount of bandwidth every period. This is
8519 * to prevent reaching a state of large arrears when throttled via
8520 * entity_tick() resulting in prolonged exit starvation.
8521 */
8522 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8523 return -EINVAL;
8524
8525 /*
8526 * Likewise, bound things on the otherside by preventing insane quota
8527 * periods. This also allows us to normalize in computing quota
8528 * feasibility.
8529 */
8530 if (period > max_cfs_quota_period)
8531 return -EINVAL;
8532
0e59bdae
KT
8533 /*
8534 * Prevent race between setting of cfs_rq->runtime_enabled and
8535 * unthrottle_offline_cfs_rqs().
8536 */
8537 get_online_cpus();
a790de99
PT
8538 mutex_lock(&cfs_constraints_mutex);
8539 ret = __cfs_schedulable(tg, period, quota);
8540 if (ret)
8541 goto out_unlock;
8542
58088ad0 8543 runtime_enabled = quota != RUNTIME_INF;
56f570e5 8544 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
8545 /*
8546 * If we need to toggle cfs_bandwidth_used, off->on must occur
8547 * before making related changes, and on->off must occur afterwards
8548 */
8549 if (runtime_enabled && !runtime_was_enabled)
8550 cfs_bandwidth_usage_inc();
ab84d31e
PT
8551 raw_spin_lock_irq(&cfs_b->lock);
8552 cfs_b->period = ns_to_ktime(period);
8553 cfs_b->quota = quota;
58088ad0 8554
a9cf55b2 8555 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 8556 /* restart the period timer (if active) to handle new period expiry */
77a4d1a1
PZ
8557 if (runtime_enabled)
8558 start_cfs_bandwidth(cfs_b);
ab84d31e
PT
8559 raw_spin_unlock_irq(&cfs_b->lock);
8560
0e59bdae 8561 for_each_online_cpu(i) {
ab84d31e 8562 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 8563 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
8564
8565 raw_spin_lock_irq(&rq->lock);
58088ad0 8566 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 8567 cfs_rq->runtime_remaining = 0;
671fd9da 8568
029632fb 8569 if (cfs_rq->throttled)
671fd9da 8570 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
8571 raw_spin_unlock_irq(&rq->lock);
8572 }
1ee14e6c
BS
8573 if (runtime_was_enabled && !runtime_enabled)
8574 cfs_bandwidth_usage_dec();
a790de99
PT
8575out_unlock:
8576 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 8577 put_online_cpus();
ab84d31e 8578
a790de99 8579 return ret;
ab84d31e
PT
8580}
8581
8582int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8583{
8584 u64 quota, period;
8585
029632fb 8586 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8587 if (cfs_quota_us < 0)
8588 quota = RUNTIME_INF;
8589 else
8590 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8591
8592 return tg_set_cfs_bandwidth(tg, period, quota);
8593}
8594
8595long tg_get_cfs_quota(struct task_group *tg)
8596{
8597 u64 quota_us;
8598
029632fb 8599 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
8600 return -1;
8601
029632fb 8602 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
8603 do_div(quota_us, NSEC_PER_USEC);
8604
8605 return quota_us;
8606}
8607
8608int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8609{
8610 u64 quota, period;
8611
8612 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 8613 quota = tg->cfs_bandwidth.quota;
ab84d31e 8614
ab84d31e
PT
8615 return tg_set_cfs_bandwidth(tg, period, quota);
8616}
8617
8618long tg_get_cfs_period(struct task_group *tg)
8619{
8620 u64 cfs_period_us;
8621
029632fb 8622 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8623 do_div(cfs_period_us, NSEC_PER_USEC);
8624
8625 return cfs_period_us;
8626}
8627
182446d0
TH
8628static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8629 struct cftype *cft)
ab84d31e 8630{
182446d0 8631 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
8632}
8633
182446d0
TH
8634static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8635 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 8636{
182446d0 8637 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
8638}
8639
182446d0
TH
8640static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8641 struct cftype *cft)
ab84d31e 8642{
182446d0 8643 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
8644}
8645
182446d0
TH
8646static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8647 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 8648{
182446d0 8649 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
8650}
8651
a790de99
PT
8652struct cfs_schedulable_data {
8653 struct task_group *tg;
8654 u64 period, quota;
8655};
8656
8657/*
8658 * normalize group quota/period to be quota/max_period
8659 * note: units are usecs
8660 */
8661static u64 normalize_cfs_quota(struct task_group *tg,
8662 struct cfs_schedulable_data *d)
8663{
8664 u64 quota, period;
8665
8666 if (tg == d->tg) {
8667 period = d->period;
8668 quota = d->quota;
8669 } else {
8670 period = tg_get_cfs_period(tg);
8671 quota = tg_get_cfs_quota(tg);
8672 }
8673
8674 /* note: these should typically be equivalent */
8675 if (quota == RUNTIME_INF || quota == -1)
8676 return RUNTIME_INF;
8677
8678 return to_ratio(period, quota);
8679}
8680
8681static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8682{
8683 struct cfs_schedulable_data *d = data;
029632fb 8684 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
8685 s64 quota = 0, parent_quota = -1;
8686
8687 if (!tg->parent) {
8688 quota = RUNTIME_INF;
8689 } else {
029632fb 8690 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
8691
8692 quota = normalize_cfs_quota(tg, d);
9c58c79a 8693 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
8694
8695 /*
8696 * ensure max(child_quota) <= parent_quota, inherit when no
8697 * limit is set
8698 */
8699 if (quota == RUNTIME_INF)
8700 quota = parent_quota;
8701 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8702 return -EINVAL;
8703 }
9c58c79a 8704 cfs_b->hierarchical_quota = quota;
a790de99
PT
8705
8706 return 0;
8707}
8708
8709static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8710{
8277434e 8711 int ret;
a790de99
PT
8712 struct cfs_schedulable_data data = {
8713 .tg = tg,
8714 .period = period,
8715 .quota = quota,
8716 };
8717
8718 if (quota != RUNTIME_INF) {
8719 do_div(data.period, NSEC_PER_USEC);
8720 do_div(data.quota, NSEC_PER_USEC);
8721 }
8722
8277434e
PT
8723 rcu_read_lock();
8724 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8725 rcu_read_unlock();
8726
8727 return ret;
a790de99 8728}
e8da1b18 8729
2da8ca82 8730static int cpu_stats_show(struct seq_file *sf, void *v)
e8da1b18 8731{
2da8ca82 8732 struct task_group *tg = css_tg(seq_css(sf));
029632fb 8733 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 8734
44ffc75b
TH
8735 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8736 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8737 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
8738
8739 return 0;
8740}
ab84d31e 8741#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 8742#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8743
052f1dc7 8744#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
8745static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8746 struct cftype *cft, s64 val)
6f505b16 8747{
182446d0 8748 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
8749}
8750
182446d0
TH
8751static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8752 struct cftype *cft)
6f505b16 8753{
182446d0 8754 return sched_group_rt_runtime(css_tg(css));
6f505b16 8755}
d0b27fa7 8756
182446d0
TH
8757static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8758 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 8759{
182446d0 8760 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
8761}
8762
182446d0
TH
8763static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8764 struct cftype *cft)
d0b27fa7 8765{
182446d0 8766 return sched_group_rt_period(css_tg(css));
d0b27fa7 8767}
6d6bc0ad 8768#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8769
fe5c7cc2 8770static struct cftype cpu_files[] = {
052f1dc7 8771#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8772 {
8773 .name = "shares",
f4c753b7
PM
8774 .read_u64 = cpu_shares_read_u64,
8775 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8776 },
052f1dc7 8777#endif
ab84d31e
PT
8778#ifdef CONFIG_CFS_BANDWIDTH
8779 {
8780 .name = "cfs_quota_us",
8781 .read_s64 = cpu_cfs_quota_read_s64,
8782 .write_s64 = cpu_cfs_quota_write_s64,
8783 },
8784 {
8785 .name = "cfs_period_us",
8786 .read_u64 = cpu_cfs_period_read_u64,
8787 .write_u64 = cpu_cfs_period_write_u64,
8788 },
e8da1b18
NR
8789 {
8790 .name = "stat",
2da8ca82 8791 .seq_show = cpu_stats_show,
e8da1b18 8792 },
ab84d31e 8793#endif
052f1dc7 8794#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8795 {
9f0c1e56 8796 .name = "rt_runtime_us",
06ecb27c
PM
8797 .read_s64 = cpu_rt_runtime_read,
8798 .write_s64 = cpu_rt_runtime_write,
6f505b16 8799 },
d0b27fa7
PZ
8800 {
8801 .name = "rt_period_us",
f4c753b7
PM
8802 .read_u64 = cpu_rt_period_read_uint,
8803 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8804 },
052f1dc7 8805#endif
4baf6e33 8806 { } /* terminate */
68318b8e
SV
8807};
8808
073219e9 8809struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748 8810 .css_alloc = cpu_cgroup_css_alloc,
2f5177f0 8811 .css_released = cpu_cgroup_css_released,
92fb9748 8812 .css_free = cpu_cgroup_css_free,
eeb61e53 8813 .fork = cpu_cgroup_fork,
bb9d97b6
TH
8814 .can_attach = cpu_cgroup_can_attach,
8815 .attach = cpu_cgroup_attach,
5577964e 8816 .legacy_cftypes = cpu_files,
b38e42e9 8817 .early_init = true,
68318b8e
SV
8818};
8819
052f1dc7 8820#endif /* CONFIG_CGROUP_SCHED */
d842de87 8821
b637a328
PM
8822void dump_cpu_task(int cpu)
8823{
8824 pr_info("Task dump for CPU %d:\n", cpu);
8825 sched_show_task(cpu_curr(cpu));
8826}
ed82b8a1
AK
8827
8828/*
8829 * Nice levels are multiplicative, with a gentle 10% change for every
8830 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8831 * nice 1, it will get ~10% less CPU time than another CPU-bound task
8832 * that remained on nice 0.
8833 *
8834 * The "10% effect" is relative and cumulative: from _any_ nice level,
8835 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8836 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8837 * If a task goes up by ~10% and another task goes down by ~10% then
8838 * the relative distance between them is ~25%.)
8839 */
8840const int sched_prio_to_weight[40] = {
8841 /* -20 */ 88761, 71755, 56483, 46273, 36291,
8842 /* -15 */ 29154, 23254, 18705, 14949, 11916,
8843 /* -10 */ 9548, 7620, 6100, 4904, 3906,
8844 /* -5 */ 3121, 2501, 1991, 1586, 1277,
8845 /* 0 */ 1024, 820, 655, 526, 423,
8846 /* 5 */ 335, 272, 215, 172, 137,
8847 /* 10 */ 110, 87, 70, 56, 45,
8848 /* 15 */ 36, 29, 23, 18, 15,
8849};
8850
8851/*
8852 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8853 *
8854 * In cases where the weight does not change often, we can use the
8855 * precalculated inverse to speed up arithmetics by turning divisions
8856 * into multiplications:
8857 */
8858const u32 sched_prio_to_wmult[40] = {
8859 /* -20 */ 48388, 59856, 76040, 92818, 118348,
8860 /* -15 */ 147320, 184698, 229616, 287308, 360437,
8861 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
8862 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
8863 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
8864 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
8865 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
8866 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8867};