]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - kernel/sched/core.c
sched: Introduce preempt_count accessor functions
[mirror_ubuntu-hirsute-kernel.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
91d1aa43 75#include <linux/context_tracking.h>
1da177e4 76
96f951ed 77#include <asm/switch_to.h>
5517d86b 78#include <asm/tlb.h>
838225b4 79#include <asm/irq_regs.h>
db7e527d 80#include <asm/mutex.h>
e6e6685a
GC
81#ifdef CONFIG_PARAVIRT
82#include <asm/paravirt.h>
83#endif
1da177e4 84
029632fb 85#include "sched.h"
ea138446 86#include "../workqueue_internal.h"
29d5e047 87#include "../smpboot.h"
6e0534f2 88
a8d154b0 89#define CREATE_TRACE_POINTS
ad8d75ff 90#include <trace/events/sched.h>
a8d154b0 91
029632fb 92void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 93{
58088ad0
PT
94 unsigned long delta;
95 ktime_t soft, hard, now;
d0b27fa7 96
58088ad0
PT
97 for (;;) {
98 if (hrtimer_active(period_timer))
99 break;
100
101 now = hrtimer_cb_get_time(period_timer);
102 hrtimer_forward(period_timer, now, period);
d0b27fa7 103
58088ad0
PT
104 soft = hrtimer_get_softexpires(period_timer);
105 hard = hrtimer_get_expires(period_timer);
106 delta = ktime_to_ns(ktime_sub(hard, soft));
107 __hrtimer_start_range_ns(period_timer, soft, delta,
108 HRTIMER_MODE_ABS_PINNED, 0);
109 }
110}
111
029632fb
PZ
112DEFINE_MUTEX(sched_domains_mutex);
113DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 114
fe44d621 115static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 116
029632fb 117void update_rq_clock(struct rq *rq)
3e51f33f 118{
fe44d621 119 s64 delta;
305e6835 120
61eadef6 121 if (rq->skip_clock_update > 0)
f26f9aff 122 return;
aa483808 123
fe44d621
PZ
124 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125 rq->clock += delta;
126 update_rq_clock_task(rq, delta);
3e51f33f
PZ
127}
128
bf5c91ba
IM
129/*
130 * Debugging: various feature bits
131 */
f00b45c1 132
f00b45c1
PZ
133#define SCHED_FEAT(name, enabled) \
134 (1UL << __SCHED_FEAT_##name) * enabled |
135
bf5c91ba 136const_debug unsigned int sysctl_sched_features =
391e43da 137#include "features.h"
f00b45c1
PZ
138 0;
139
140#undef SCHED_FEAT
141
142#ifdef CONFIG_SCHED_DEBUG
143#define SCHED_FEAT(name, enabled) \
144 #name ,
145
1292531f 146static const char * const sched_feat_names[] = {
391e43da 147#include "features.h"
f00b45c1
PZ
148};
149
150#undef SCHED_FEAT
151
34f3a814 152static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 153{
f00b45c1
PZ
154 int i;
155
f8b6d1cc 156 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
157 if (!(sysctl_sched_features & (1UL << i)))
158 seq_puts(m, "NO_");
159 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 160 }
34f3a814 161 seq_puts(m, "\n");
f00b45c1 162
34f3a814 163 return 0;
f00b45c1
PZ
164}
165
f8b6d1cc
PZ
166#ifdef HAVE_JUMP_LABEL
167
c5905afb
IM
168#define jump_label_key__true STATIC_KEY_INIT_TRUE
169#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
170
171#define SCHED_FEAT(name, enabled) \
172 jump_label_key__##enabled ,
173
c5905afb 174struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
175#include "features.h"
176};
177
178#undef SCHED_FEAT
179
180static void sched_feat_disable(int i)
181{
c5905afb
IM
182 if (static_key_enabled(&sched_feat_keys[i]))
183 static_key_slow_dec(&sched_feat_keys[i]);
f8b6d1cc
PZ
184}
185
186static void sched_feat_enable(int i)
187{
c5905afb
IM
188 if (!static_key_enabled(&sched_feat_keys[i]))
189 static_key_slow_inc(&sched_feat_keys[i]);
f8b6d1cc
PZ
190}
191#else
192static void sched_feat_disable(int i) { };
193static void sched_feat_enable(int i) { };
194#endif /* HAVE_JUMP_LABEL */
195
1a687c2e 196static int sched_feat_set(char *cmp)
f00b45c1 197{
f00b45c1 198 int i;
1a687c2e 199 int neg = 0;
f00b45c1 200
524429c3 201 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
202 neg = 1;
203 cmp += 3;
204 }
205
f8b6d1cc 206 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 207 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 208 if (neg) {
f00b45c1 209 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
210 sched_feat_disable(i);
211 } else {
f00b45c1 212 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
213 sched_feat_enable(i);
214 }
f00b45c1
PZ
215 break;
216 }
217 }
218
1a687c2e
MG
219 return i;
220}
221
222static ssize_t
223sched_feat_write(struct file *filp, const char __user *ubuf,
224 size_t cnt, loff_t *ppos)
225{
226 char buf[64];
227 char *cmp;
228 int i;
229
230 if (cnt > 63)
231 cnt = 63;
232
233 if (copy_from_user(&buf, ubuf, cnt))
234 return -EFAULT;
235
236 buf[cnt] = 0;
237 cmp = strstrip(buf);
238
239 i = sched_feat_set(cmp);
f8b6d1cc 240 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
241 return -EINVAL;
242
42994724 243 *ppos += cnt;
f00b45c1
PZ
244
245 return cnt;
246}
247
34f3a814
LZ
248static int sched_feat_open(struct inode *inode, struct file *filp)
249{
250 return single_open(filp, sched_feat_show, NULL);
251}
252
828c0950 253static const struct file_operations sched_feat_fops = {
34f3a814
LZ
254 .open = sched_feat_open,
255 .write = sched_feat_write,
256 .read = seq_read,
257 .llseek = seq_lseek,
258 .release = single_release,
f00b45c1
PZ
259};
260
261static __init int sched_init_debug(void)
262{
f00b45c1
PZ
263 debugfs_create_file("sched_features", 0644, NULL, NULL,
264 &sched_feat_fops);
265
266 return 0;
267}
268late_initcall(sched_init_debug);
f8b6d1cc 269#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 270
b82d9fdd
PZ
271/*
272 * Number of tasks to iterate in a single balance run.
273 * Limited because this is done with IRQs disabled.
274 */
275const_debug unsigned int sysctl_sched_nr_migrate = 32;
276
e9e9250b
PZ
277/*
278 * period over which we average the RT time consumption, measured
279 * in ms.
280 *
281 * default: 1s
282 */
283const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284
fa85ae24 285/*
9f0c1e56 286 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
287 * default: 1s
288 */
9f0c1e56 289unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 290
029632fb 291__read_mostly int scheduler_running;
6892b75e 292
9f0c1e56
PZ
293/*
294 * part of the period that we allow rt tasks to run in us.
295 * default: 0.95s
296 */
297int sysctl_sched_rt_runtime = 950000;
fa85ae24 298
fa85ae24 299
1da177e4 300
0970d299 301/*
0122ec5b 302 * __task_rq_lock - lock the rq @p resides on.
b29739f9 303 */
70b97a7f 304static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
305 __acquires(rq->lock)
306{
0970d299
PZ
307 struct rq *rq;
308
0122ec5b
PZ
309 lockdep_assert_held(&p->pi_lock);
310
3a5c359a 311 for (;;) {
0970d299 312 rq = task_rq(p);
05fa785c 313 raw_spin_lock(&rq->lock);
65cc8e48 314 if (likely(rq == task_rq(p)))
3a5c359a 315 return rq;
05fa785c 316 raw_spin_unlock(&rq->lock);
b29739f9 317 }
b29739f9
IM
318}
319
1da177e4 320/*
0122ec5b 321 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 322 */
70b97a7f 323static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 324 __acquires(p->pi_lock)
1da177e4
LT
325 __acquires(rq->lock)
326{
70b97a7f 327 struct rq *rq;
1da177e4 328
3a5c359a 329 for (;;) {
0122ec5b 330 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 331 rq = task_rq(p);
05fa785c 332 raw_spin_lock(&rq->lock);
65cc8e48 333 if (likely(rq == task_rq(p)))
3a5c359a 334 return rq;
0122ec5b
PZ
335 raw_spin_unlock(&rq->lock);
336 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4 337 }
1da177e4
LT
338}
339
a9957449 340static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
341 __releases(rq->lock)
342{
05fa785c 343 raw_spin_unlock(&rq->lock);
b29739f9
IM
344}
345
0122ec5b
PZ
346static inline void
347task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 348 __releases(rq->lock)
0122ec5b 349 __releases(p->pi_lock)
1da177e4 350{
0122ec5b
PZ
351 raw_spin_unlock(&rq->lock);
352 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
353}
354
1da177e4 355/*
cc2a73b5 356 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 357 */
a9957449 358static struct rq *this_rq_lock(void)
1da177e4
LT
359 __acquires(rq->lock)
360{
70b97a7f 361 struct rq *rq;
1da177e4
LT
362
363 local_irq_disable();
364 rq = this_rq();
05fa785c 365 raw_spin_lock(&rq->lock);
1da177e4
LT
366
367 return rq;
368}
369
8f4d37ec
PZ
370#ifdef CONFIG_SCHED_HRTICK
371/*
372 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 373 */
8f4d37ec 374
8f4d37ec
PZ
375static void hrtick_clear(struct rq *rq)
376{
377 if (hrtimer_active(&rq->hrtick_timer))
378 hrtimer_cancel(&rq->hrtick_timer);
379}
380
8f4d37ec
PZ
381/*
382 * High-resolution timer tick.
383 * Runs from hardirq context with interrupts disabled.
384 */
385static enum hrtimer_restart hrtick(struct hrtimer *timer)
386{
387 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
388
389 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
390
05fa785c 391 raw_spin_lock(&rq->lock);
3e51f33f 392 update_rq_clock(rq);
8f4d37ec 393 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 394 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
395
396 return HRTIMER_NORESTART;
397}
398
95e904c7 399#ifdef CONFIG_SMP
971ee28c
PZ
400
401static int __hrtick_restart(struct rq *rq)
402{
403 struct hrtimer *timer = &rq->hrtick_timer;
404 ktime_t time = hrtimer_get_softexpires(timer);
405
406 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
407}
408
31656519
PZ
409/*
410 * called from hardirq (IPI) context
411 */
412static void __hrtick_start(void *arg)
b328ca18 413{
31656519 414 struct rq *rq = arg;
b328ca18 415
05fa785c 416 raw_spin_lock(&rq->lock);
971ee28c 417 __hrtick_restart(rq);
31656519 418 rq->hrtick_csd_pending = 0;
05fa785c 419 raw_spin_unlock(&rq->lock);
b328ca18
PZ
420}
421
31656519
PZ
422/*
423 * Called to set the hrtick timer state.
424 *
425 * called with rq->lock held and irqs disabled
426 */
029632fb 427void hrtick_start(struct rq *rq, u64 delay)
b328ca18 428{
31656519
PZ
429 struct hrtimer *timer = &rq->hrtick_timer;
430 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 431
cc584b21 432 hrtimer_set_expires(timer, time);
31656519
PZ
433
434 if (rq == this_rq()) {
971ee28c 435 __hrtick_restart(rq);
31656519 436 } else if (!rq->hrtick_csd_pending) {
6e275637 437 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
438 rq->hrtick_csd_pending = 1;
439 }
b328ca18
PZ
440}
441
442static int
443hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
444{
445 int cpu = (int)(long)hcpu;
446
447 switch (action) {
448 case CPU_UP_CANCELED:
449 case CPU_UP_CANCELED_FROZEN:
450 case CPU_DOWN_PREPARE:
451 case CPU_DOWN_PREPARE_FROZEN:
452 case CPU_DEAD:
453 case CPU_DEAD_FROZEN:
31656519 454 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
455 return NOTIFY_OK;
456 }
457
458 return NOTIFY_DONE;
459}
460
fa748203 461static __init void init_hrtick(void)
b328ca18
PZ
462{
463 hotcpu_notifier(hotplug_hrtick, 0);
464}
31656519
PZ
465#else
466/*
467 * Called to set the hrtick timer state.
468 *
469 * called with rq->lock held and irqs disabled
470 */
029632fb 471void hrtick_start(struct rq *rq, u64 delay)
31656519 472{
7f1e2ca9 473 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 474 HRTIMER_MODE_REL_PINNED, 0);
31656519 475}
b328ca18 476
006c75f1 477static inline void init_hrtick(void)
8f4d37ec 478{
8f4d37ec 479}
31656519 480#endif /* CONFIG_SMP */
8f4d37ec 481
31656519 482static void init_rq_hrtick(struct rq *rq)
8f4d37ec 483{
31656519
PZ
484#ifdef CONFIG_SMP
485 rq->hrtick_csd_pending = 0;
8f4d37ec 486
31656519
PZ
487 rq->hrtick_csd.flags = 0;
488 rq->hrtick_csd.func = __hrtick_start;
489 rq->hrtick_csd.info = rq;
490#endif
8f4d37ec 491
31656519
PZ
492 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
493 rq->hrtick_timer.function = hrtick;
8f4d37ec 494}
006c75f1 495#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
496static inline void hrtick_clear(struct rq *rq)
497{
498}
499
8f4d37ec
PZ
500static inline void init_rq_hrtick(struct rq *rq)
501{
502}
503
b328ca18
PZ
504static inline void init_hrtick(void)
505{
506}
006c75f1 507#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 508
c24d20db
IM
509/*
510 * resched_task - mark a task 'to be rescheduled now'.
511 *
512 * On UP this means the setting of the need_resched flag, on SMP it
513 * might also involve a cross-CPU call to trigger the scheduler on
514 * the target CPU.
515 */
029632fb 516void resched_task(struct task_struct *p)
c24d20db
IM
517{
518 int cpu;
519
b021fe3e 520 lockdep_assert_held(&task_rq(p)->lock);
c24d20db 521
5ed0cec0 522 if (test_tsk_need_resched(p))
c24d20db
IM
523 return;
524
5ed0cec0 525 set_tsk_need_resched(p);
c24d20db
IM
526
527 cpu = task_cpu(p);
528 if (cpu == smp_processor_id())
529 return;
530
531 /* NEED_RESCHED must be visible before we test polling */
532 smp_mb();
533 if (!tsk_is_polling(p))
534 smp_send_reschedule(cpu);
535}
536
029632fb 537void resched_cpu(int cpu)
c24d20db
IM
538{
539 struct rq *rq = cpu_rq(cpu);
540 unsigned long flags;
541
05fa785c 542 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
543 return;
544 resched_task(cpu_curr(cpu));
05fa785c 545 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 546}
06d8308c 547
b021fe3e 548#ifdef CONFIG_SMP
3451d024 549#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
550/*
551 * In the semi idle case, use the nearest busy cpu for migrating timers
552 * from an idle cpu. This is good for power-savings.
553 *
554 * We don't do similar optimization for completely idle system, as
555 * selecting an idle cpu will add more delays to the timers than intended
556 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
557 */
558int get_nohz_timer_target(void)
559{
560 int cpu = smp_processor_id();
561 int i;
562 struct sched_domain *sd;
563
057f3fad 564 rcu_read_lock();
83cd4fe2 565 for_each_domain(cpu, sd) {
057f3fad
PZ
566 for_each_cpu(i, sched_domain_span(sd)) {
567 if (!idle_cpu(i)) {
568 cpu = i;
569 goto unlock;
570 }
571 }
83cd4fe2 572 }
057f3fad
PZ
573unlock:
574 rcu_read_unlock();
83cd4fe2
VP
575 return cpu;
576}
06d8308c
TG
577/*
578 * When add_timer_on() enqueues a timer into the timer wheel of an
579 * idle CPU then this timer might expire before the next timer event
580 * which is scheduled to wake up that CPU. In case of a completely
581 * idle system the next event might even be infinite time into the
582 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
583 * leaves the inner idle loop so the newly added timer is taken into
584 * account when the CPU goes back to idle and evaluates the timer
585 * wheel for the next timer event.
586 */
1c20091e 587static void wake_up_idle_cpu(int cpu)
06d8308c
TG
588{
589 struct rq *rq = cpu_rq(cpu);
590
591 if (cpu == smp_processor_id())
592 return;
593
594 /*
595 * This is safe, as this function is called with the timer
596 * wheel base lock of (cpu) held. When the CPU is on the way
597 * to idle and has not yet set rq->curr to idle then it will
598 * be serialized on the timer wheel base lock and take the new
599 * timer into account automatically.
600 */
601 if (rq->curr != rq->idle)
602 return;
45bf76df 603
45bf76df 604 /*
06d8308c
TG
605 * We can set TIF_RESCHED on the idle task of the other CPU
606 * lockless. The worst case is that the other CPU runs the
607 * idle task through an additional NOOP schedule()
45bf76df 608 */
5ed0cec0 609 set_tsk_need_resched(rq->idle);
45bf76df 610
06d8308c
TG
611 /* NEED_RESCHED must be visible before we test polling */
612 smp_mb();
613 if (!tsk_is_polling(rq->idle))
614 smp_send_reschedule(cpu);
45bf76df
IM
615}
616
c5bfece2 617static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 618{
c5bfece2 619 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
620 if (cpu != smp_processor_id() ||
621 tick_nohz_tick_stopped())
622 smp_send_reschedule(cpu);
623 return true;
624 }
625
626 return false;
627}
628
629void wake_up_nohz_cpu(int cpu)
630{
c5bfece2 631 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
632 wake_up_idle_cpu(cpu);
633}
634
ca38062e 635static inline bool got_nohz_idle_kick(void)
45bf76df 636{
1c792db7 637 int cpu = smp_processor_id();
873b4c65
VG
638
639 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
640 return false;
641
642 if (idle_cpu(cpu) && !need_resched())
643 return true;
644
645 /*
646 * We can't run Idle Load Balance on this CPU for this time so we
647 * cancel it and clear NOHZ_BALANCE_KICK
648 */
649 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
650 return false;
45bf76df
IM
651}
652
3451d024 653#else /* CONFIG_NO_HZ_COMMON */
45bf76df 654
ca38062e 655static inline bool got_nohz_idle_kick(void)
2069dd75 656{
ca38062e 657 return false;
2069dd75
PZ
658}
659
3451d024 660#endif /* CONFIG_NO_HZ_COMMON */
d842de87 661
ce831b38
FW
662#ifdef CONFIG_NO_HZ_FULL
663bool sched_can_stop_tick(void)
664{
665 struct rq *rq;
666
667 rq = this_rq();
668
669 /* Make sure rq->nr_running update is visible after the IPI */
670 smp_rmb();
671
672 /* More than one running task need preemption */
673 if (rq->nr_running > 1)
674 return false;
675
676 return true;
677}
678#endif /* CONFIG_NO_HZ_FULL */
d842de87 679
029632fb 680void sched_avg_update(struct rq *rq)
18d95a28 681{
e9e9250b
PZ
682 s64 period = sched_avg_period();
683
78becc27 684 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
685 /*
686 * Inline assembly required to prevent the compiler
687 * optimising this loop into a divmod call.
688 * See __iter_div_u64_rem() for another example of this.
689 */
690 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
691 rq->age_stamp += period;
692 rq->rt_avg /= 2;
693 }
18d95a28
PZ
694}
695
6d6bc0ad 696#endif /* CONFIG_SMP */
18d95a28 697
a790de99
PT
698#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
699 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 700/*
8277434e
PT
701 * Iterate task_group tree rooted at *from, calling @down when first entering a
702 * node and @up when leaving it for the final time.
703 *
704 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 705 */
029632fb 706int walk_tg_tree_from(struct task_group *from,
8277434e 707 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
708{
709 struct task_group *parent, *child;
eb755805 710 int ret;
c09595f6 711
8277434e
PT
712 parent = from;
713
c09595f6 714down:
eb755805
PZ
715 ret = (*down)(parent, data);
716 if (ret)
8277434e 717 goto out;
c09595f6
PZ
718 list_for_each_entry_rcu(child, &parent->children, siblings) {
719 parent = child;
720 goto down;
721
722up:
723 continue;
724 }
eb755805 725 ret = (*up)(parent, data);
8277434e
PT
726 if (ret || parent == from)
727 goto out;
c09595f6
PZ
728
729 child = parent;
730 parent = parent->parent;
731 if (parent)
732 goto up;
8277434e 733out:
eb755805 734 return ret;
c09595f6
PZ
735}
736
029632fb 737int tg_nop(struct task_group *tg, void *data)
eb755805 738{
e2b245f8 739 return 0;
eb755805 740}
18d95a28
PZ
741#endif
742
45bf76df
IM
743static void set_load_weight(struct task_struct *p)
744{
f05998d4
NR
745 int prio = p->static_prio - MAX_RT_PRIO;
746 struct load_weight *load = &p->se.load;
747
dd41f596
IM
748 /*
749 * SCHED_IDLE tasks get minimal weight:
750 */
751 if (p->policy == SCHED_IDLE) {
c8b28116 752 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 753 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
754 return;
755 }
71f8bd46 756
c8b28116 757 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 758 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
759}
760
371fd7e7 761static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 762{
a64692a3 763 update_rq_clock(rq);
43148951 764 sched_info_queued(rq, p);
371fd7e7 765 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
766}
767
371fd7e7 768static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 769{
a64692a3 770 update_rq_clock(rq);
43148951 771 sched_info_dequeued(rq, p);
371fd7e7 772 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
773}
774
029632fb 775void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
776{
777 if (task_contributes_to_load(p))
778 rq->nr_uninterruptible--;
779
371fd7e7 780 enqueue_task(rq, p, flags);
1e3c88bd
PZ
781}
782
029632fb 783void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
784{
785 if (task_contributes_to_load(p))
786 rq->nr_uninterruptible++;
787
371fd7e7 788 dequeue_task(rq, p, flags);
1e3c88bd
PZ
789}
790
fe44d621 791static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 792{
095c0aa8
GC
793/*
794 * In theory, the compile should just see 0 here, and optimize out the call
795 * to sched_rt_avg_update. But I don't trust it...
796 */
797#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
798 s64 steal = 0, irq_delta = 0;
799#endif
800#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 801 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
802
803 /*
804 * Since irq_time is only updated on {soft,}irq_exit, we might run into
805 * this case when a previous update_rq_clock() happened inside a
806 * {soft,}irq region.
807 *
808 * When this happens, we stop ->clock_task and only update the
809 * prev_irq_time stamp to account for the part that fit, so that a next
810 * update will consume the rest. This ensures ->clock_task is
811 * monotonic.
812 *
813 * It does however cause some slight miss-attribution of {soft,}irq
814 * time, a more accurate solution would be to update the irq_time using
815 * the current rq->clock timestamp, except that would require using
816 * atomic ops.
817 */
818 if (irq_delta > delta)
819 irq_delta = delta;
820
821 rq->prev_irq_time += irq_delta;
822 delta -= irq_delta;
095c0aa8
GC
823#endif
824#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 825 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
826 u64 st;
827
828 steal = paravirt_steal_clock(cpu_of(rq));
829 steal -= rq->prev_steal_time_rq;
830
831 if (unlikely(steal > delta))
832 steal = delta;
833
834 st = steal_ticks(steal);
835 steal = st * TICK_NSEC;
836
837 rq->prev_steal_time_rq += steal;
838
839 delta -= steal;
840 }
841#endif
842
fe44d621
PZ
843 rq->clock_task += delta;
844
095c0aa8
GC
845#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
846 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
847 sched_rt_avg_update(rq, irq_delta + steal);
848#endif
aa483808
VP
849}
850
34f971f6
PZ
851void sched_set_stop_task(int cpu, struct task_struct *stop)
852{
853 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
854 struct task_struct *old_stop = cpu_rq(cpu)->stop;
855
856 if (stop) {
857 /*
858 * Make it appear like a SCHED_FIFO task, its something
859 * userspace knows about and won't get confused about.
860 *
861 * Also, it will make PI more or less work without too
862 * much confusion -- but then, stop work should not
863 * rely on PI working anyway.
864 */
865 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
866
867 stop->sched_class = &stop_sched_class;
868 }
869
870 cpu_rq(cpu)->stop = stop;
871
872 if (old_stop) {
873 /*
874 * Reset it back to a normal scheduling class so that
875 * it can die in pieces.
876 */
877 old_stop->sched_class = &rt_sched_class;
878 }
879}
880
14531189 881/*
dd41f596 882 * __normal_prio - return the priority that is based on the static prio
14531189 883 */
14531189
IM
884static inline int __normal_prio(struct task_struct *p)
885{
dd41f596 886 return p->static_prio;
14531189
IM
887}
888
b29739f9
IM
889/*
890 * Calculate the expected normal priority: i.e. priority
891 * without taking RT-inheritance into account. Might be
892 * boosted by interactivity modifiers. Changes upon fork,
893 * setprio syscalls, and whenever the interactivity
894 * estimator recalculates.
895 */
36c8b586 896static inline int normal_prio(struct task_struct *p)
b29739f9
IM
897{
898 int prio;
899
e05606d3 900 if (task_has_rt_policy(p))
b29739f9
IM
901 prio = MAX_RT_PRIO-1 - p->rt_priority;
902 else
903 prio = __normal_prio(p);
904 return prio;
905}
906
907/*
908 * Calculate the current priority, i.e. the priority
909 * taken into account by the scheduler. This value might
910 * be boosted by RT tasks, or might be boosted by
911 * interactivity modifiers. Will be RT if the task got
912 * RT-boosted. If not then it returns p->normal_prio.
913 */
36c8b586 914static int effective_prio(struct task_struct *p)
b29739f9
IM
915{
916 p->normal_prio = normal_prio(p);
917 /*
918 * If we are RT tasks or we were boosted to RT priority,
919 * keep the priority unchanged. Otherwise, update priority
920 * to the normal priority:
921 */
922 if (!rt_prio(p->prio))
923 return p->normal_prio;
924 return p->prio;
925}
926
1da177e4
LT
927/**
928 * task_curr - is this task currently executing on a CPU?
929 * @p: the task in question.
e69f6186
YB
930 *
931 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 932 */
36c8b586 933inline int task_curr(const struct task_struct *p)
1da177e4
LT
934{
935 return cpu_curr(task_cpu(p)) == p;
936}
937
cb469845
SR
938static inline void check_class_changed(struct rq *rq, struct task_struct *p,
939 const struct sched_class *prev_class,
da7a735e 940 int oldprio)
cb469845
SR
941{
942 if (prev_class != p->sched_class) {
943 if (prev_class->switched_from)
da7a735e
PZ
944 prev_class->switched_from(rq, p);
945 p->sched_class->switched_to(rq, p);
946 } else if (oldprio != p->prio)
947 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
948}
949
029632fb 950void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
951{
952 const struct sched_class *class;
953
954 if (p->sched_class == rq->curr->sched_class) {
955 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
956 } else {
957 for_each_class(class) {
958 if (class == rq->curr->sched_class)
959 break;
960 if (class == p->sched_class) {
961 resched_task(rq->curr);
962 break;
963 }
964 }
965 }
966
967 /*
968 * A queue event has occurred, and we're going to schedule. In
969 * this case, we can save a useless back to back clock update.
970 */
fd2f4419 971 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
972 rq->skip_clock_update = 1;
973}
974
1da177e4 975#ifdef CONFIG_SMP
dd41f596 976void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 977{
e2912009
PZ
978#ifdef CONFIG_SCHED_DEBUG
979 /*
980 * We should never call set_task_cpu() on a blocked task,
981 * ttwu() will sort out the placement.
982 */
077614ee
PZ
983 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
984 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
0122ec5b
PZ
985
986#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
987 /*
988 * The caller should hold either p->pi_lock or rq->lock, when changing
989 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
990 *
991 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 992 * see task_group().
6c6c54e1
PZ
993 *
994 * Furthermore, all task_rq users should acquire both locks, see
995 * task_rq_lock().
996 */
0122ec5b
PZ
997 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
998 lockdep_is_held(&task_rq(p)->lock)));
999#endif
e2912009
PZ
1000#endif
1001
de1d7286 1002 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1003
0c69774e 1004 if (task_cpu(p) != new_cpu) {
0a74bef8
PT
1005 if (p->sched_class->migrate_task_rq)
1006 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 1007 p->se.nr_migrations++;
a8b0ca17 1008 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
0c69774e 1009 }
dd41f596
IM
1010
1011 __set_task_cpu(p, new_cpu);
c65cc870
IM
1012}
1013
969c7921 1014struct migration_arg {
36c8b586 1015 struct task_struct *task;
1da177e4 1016 int dest_cpu;
70b97a7f 1017};
1da177e4 1018
969c7921
TH
1019static int migration_cpu_stop(void *data);
1020
1da177e4
LT
1021/*
1022 * wait_task_inactive - wait for a thread to unschedule.
1023 *
85ba2d86
RM
1024 * If @match_state is nonzero, it's the @p->state value just checked and
1025 * not expected to change. If it changes, i.e. @p might have woken up,
1026 * then return zero. When we succeed in waiting for @p to be off its CPU,
1027 * we return a positive number (its total switch count). If a second call
1028 * a short while later returns the same number, the caller can be sure that
1029 * @p has remained unscheduled the whole time.
1030 *
1da177e4
LT
1031 * The caller must ensure that the task *will* unschedule sometime soon,
1032 * else this function might spin for a *long* time. This function can't
1033 * be called with interrupts off, or it may introduce deadlock with
1034 * smp_call_function() if an IPI is sent by the same process we are
1035 * waiting to become inactive.
1036 */
85ba2d86 1037unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1038{
1039 unsigned long flags;
dd41f596 1040 int running, on_rq;
85ba2d86 1041 unsigned long ncsw;
70b97a7f 1042 struct rq *rq;
1da177e4 1043
3a5c359a
AK
1044 for (;;) {
1045 /*
1046 * We do the initial early heuristics without holding
1047 * any task-queue locks at all. We'll only try to get
1048 * the runqueue lock when things look like they will
1049 * work out!
1050 */
1051 rq = task_rq(p);
fa490cfd 1052
3a5c359a
AK
1053 /*
1054 * If the task is actively running on another CPU
1055 * still, just relax and busy-wait without holding
1056 * any locks.
1057 *
1058 * NOTE! Since we don't hold any locks, it's not
1059 * even sure that "rq" stays as the right runqueue!
1060 * But we don't care, since "task_running()" will
1061 * return false if the runqueue has changed and p
1062 * is actually now running somewhere else!
1063 */
85ba2d86
RM
1064 while (task_running(rq, p)) {
1065 if (match_state && unlikely(p->state != match_state))
1066 return 0;
3a5c359a 1067 cpu_relax();
85ba2d86 1068 }
fa490cfd 1069
3a5c359a
AK
1070 /*
1071 * Ok, time to look more closely! We need the rq
1072 * lock now, to be *sure*. If we're wrong, we'll
1073 * just go back and repeat.
1074 */
1075 rq = task_rq_lock(p, &flags);
27a9da65 1076 trace_sched_wait_task(p);
3a5c359a 1077 running = task_running(rq, p);
fd2f4419 1078 on_rq = p->on_rq;
85ba2d86 1079 ncsw = 0;
f31e11d8 1080 if (!match_state || p->state == match_state)
93dcf55f 1081 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1082 task_rq_unlock(rq, p, &flags);
fa490cfd 1083
85ba2d86
RM
1084 /*
1085 * If it changed from the expected state, bail out now.
1086 */
1087 if (unlikely(!ncsw))
1088 break;
1089
3a5c359a
AK
1090 /*
1091 * Was it really running after all now that we
1092 * checked with the proper locks actually held?
1093 *
1094 * Oops. Go back and try again..
1095 */
1096 if (unlikely(running)) {
1097 cpu_relax();
1098 continue;
1099 }
fa490cfd 1100
3a5c359a
AK
1101 /*
1102 * It's not enough that it's not actively running,
1103 * it must be off the runqueue _entirely_, and not
1104 * preempted!
1105 *
80dd99b3 1106 * So if it was still runnable (but just not actively
3a5c359a
AK
1107 * running right now), it's preempted, and we should
1108 * yield - it could be a while.
1109 */
1110 if (unlikely(on_rq)) {
8eb90c30
TG
1111 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1112
1113 set_current_state(TASK_UNINTERRUPTIBLE);
1114 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1115 continue;
1116 }
fa490cfd 1117
3a5c359a
AK
1118 /*
1119 * Ahh, all good. It wasn't running, and it wasn't
1120 * runnable, which means that it will never become
1121 * running in the future either. We're all done!
1122 */
1123 break;
1124 }
85ba2d86
RM
1125
1126 return ncsw;
1da177e4
LT
1127}
1128
1129/***
1130 * kick_process - kick a running thread to enter/exit the kernel
1131 * @p: the to-be-kicked thread
1132 *
1133 * Cause a process which is running on another CPU to enter
1134 * kernel-mode, without any delay. (to get signals handled.)
1135 *
25985edc 1136 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1137 * because all it wants to ensure is that the remote task enters
1138 * the kernel. If the IPI races and the task has been migrated
1139 * to another CPU then no harm is done and the purpose has been
1140 * achieved as well.
1141 */
36c8b586 1142void kick_process(struct task_struct *p)
1da177e4
LT
1143{
1144 int cpu;
1145
1146 preempt_disable();
1147 cpu = task_cpu(p);
1148 if ((cpu != smp_processor_id()) && task_curr(p))
1149 smp_send_reschedule(cpu);
1150 preempt_enable();
1151}
b43e3521 1152EXPORT_SYMBOL_GPL(kick_process);
476d139c 1153#endif /* CONFIG_SMP */
1da177e4 1154
970b13ba 1155#ifdef CONFIG_SMP
30da688e 1156/*
013fdb80 1157 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1158 */
5da9a0fb
PZ
1159static int select_fallback_rq(int cpu, struct task_struct *p)
1160{
aa00d89c
TC
1161 int nid = cpu_to_node(cpu);
1162 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1163 enum { cpuset, possible, fail } state = cpuset;
1164 int dest_cpu;
5da9a0fb 1165
aa00d89c
TC
1166 /*
1167 * If the node that the cpu is on has been offlined, cpu_to_node()
1168 * will return -1. There is no cpu on the node, and we should
1169 * select the cpu on the other node.
1170 */
1171 if (nid != -1) {
1172 nodemask = cpumask_of_node(nid);
1173
1174 /* Look for allowed, online CPU in same node. */
1175 for_each_cpu(dest_cpu, nodemask) {
1176 if (!cpu_online(dest_cpu))
1177 continue;
1178 if (!cpu_active(dest_cpu))
1179 continue;
1180 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1181 return dest_cpu;
1182 }
2baab4e9 1183 }
5da9a0fb 1184
2baab4e9
PZ
1185 for (;;) {
1186 /* Any allowed, online CPU? */
e3831edd 1187 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1188 if (!cpu_online(dest_cpu))
1189 continue;
1190 if (!cpu_active(dest_cpu))
1191 continue;
1192 goto out;
1193 }
5da9a0fb 1194
2baab4e9
PZ
1195 switch (state) {
1196 case cpuset:
1197 /* No more Mr. Nice Guy. */
1198 cpuset_cpus_allowed_fallback(p);
1199 state = possible;
1200 break;
1201
1202 case possible:
1203 do_set_cpus_allowed(p, cpu_possible_mask);
1204 state = fail;
1205 break;
1206
1207 case fail:
1208 BUG();
1209 break;
1210 }
1211 }
1212
1213out:
1214 if (state != cpuset) {
1215 /*
1216 * Don't tell them about moving exiting tasks or
1217 * kernel threads (both mm NULL), since they never
1218 * leave kernel.
1219 */
1220 if (p->mm && printk_ratelimit()) {
1221 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1222 task_pid_nr(p), p->comm, cpu);
1223 }
5da9a0fb
PZ
1224 }
1225
1226 return dest_cpu;
1227}
1228
e2912009 1229/*
013fdb80 1230 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1231 */
970b13ba 1232static inline
7608dec2 1233int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 1234{
7608dec2 1235 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
e2912009
PZ
1236
1237 /*
1238 * In order not to call set_task_cpu() on a blocking task we need
1239 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1240 * cpu.
1241 *
1242 * Since this is common to all placement strategies, this lives here.
1243 *
1244 * [ this allows ->select_task() to simply return task_cpu(p) and
1245 * not worry about this generic constraint ]
1246 */
fa17b507 1247 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1248 !cpu_online(cpu)))
5da9a0fb 1249 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1250
1251 return cpu;
970b13ba 1252}
09a40af5
MG
1253
1254static void update_avg(u64 *avg, u64 sample)
1255{
1256 s64 diff = sample - *avg;
1257 *avg += diff >> 3;
1258}
970b13ba
PZ
1259#endif
1260
d7c01d27 1261static void
b84cb5df 1262ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1263{
d7c01d27 1264#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1265 struct rq *rq = this_rq();
1266
d7c01d27
PZ
1267#ifdef CONFIG_SMP
1268 int this_cpu = smp_processor_id();
1269
1270 if (cpu == this_cpu) {
1271 schedstat_inc(rq, ttwu_local);
1272 schedstat_inc(p, se.statistics.nr_wakeups_local);
1273 } else {
1274 struct sched_domain *sd;
1275
1276 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1277 rcu_read_lock();
d7c01d27
PZ
1278 for_each_domain(this_cpu, sd) {
1279 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1280 schedstat_inc(sd, ttwu_wake_remote);
1281 break;
1282 }
1283 }
057f3fad 1284 rcu_read_unlock();
d7c01d27 1285 }
f339b9dc
PZ
1286
1287 if (wake_flags & WF_MIGRATED)
1288 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1289
d7c01d27
PZ
1290#endif /* CONFIG_SMP */
1291
1292 schedstat_inc(rq, ttwu_count);
9ed3811a 1293 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1294
1295 if (wake_flags & WF_SYNC)
9ed3811a 1296 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1297
d7c01d27
PZ
1298#endif /* CONFIG_SCHEDSTATS */
1299}
1300
1301static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1302{
9ed3811a 1303 activate_task(rq, p, en_flags);
fd2f4419 1304 p->on_rq = 1;
c2f7115e
PZ
1305
1306 /* if a worker is waking up, notify workqueue */
1307 if (p->flags & PF_WQ_WORKER)
1308 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1309}
1310
23f41eeb
PZ
1311/*
1312 * Mark the task runnable and perform wakeup-preemption.
1313 */
89363381 1314static void
23f41eeb 1315ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1316{
9ed3811a 1317 check_preempt_curr(rq, p, wake_flags);
a8d7ad52 1318 trace_sched_wakeup(p, true);
9ed3811a
TH
1319
1320 p->state = TASK_RUNNING;
1321#ifdef CONFIG_SMP
1322 if (p->sched_class->task_woken)
1323 p->sched_class->task_woken(rq, p);
1324
e69c6341 1325 if (rq->idle_stamp) {
78becc27 1326 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1327 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1328
abfafa54
JL
1329 update_avg(&rq->avg_idle, delta);
1330
1331 if (rq->avg_idle > max)
9ed3811a 1332 rq->avg_idle = max;
abfafa54 1333
9ed3811a
TH
1334 rq->idle_stamp = 0;
1335 }
1336#endif
1337}
1338
c05fbafb
PZ
1339static void
1340ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1341{
1342#ifdef CONFIG_SMP
1343 if (p->sched_contributes_to_load)
1344 rq->nr_uninterruptible--;
1345#endif
1346
1347 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1348 ttwu_do_wakeup(rq, p, wake_flags);
1349}
1350
1351/*
1352 * Called in case the task @p isn't fully descheduled from its runqueue,
1353 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1354 * since all we need to do is flip p->state to TASK_RUNNING, since
1355 * the task is still ->on_rq.
1356 */
1357static int ttwu_remote(struct task_struct *p, int wake_flags)
1358{
1359 struct rq *rq;
1360 int ret = 0;
1361
1362 rq = __task_rq_lock(p);
1363 if (p->on_rq) {
1ad4ec0d
FW
1364 /* check_preempt_curr() may use rq clock */
1365 update_rq_clock(rq);
c05fbafb
PZ
1366 ttwu_do_wakeup(rq, p, wake_flags);
1367 ret = 1;
1368 }
1369 __task_rq_unlock(rq);
1370
1371 return ret;
1372}
1373
317f3941 1374#ifdef CONFIG_SMP
fa14ff4a 1375static void sched_ttwu_pending(void)
317f3941
PZ
1376{
1377 struct rq *rq = this_rq();
fa14ff4a
PZ
1378 struct llist_node *llist = llist_del_all(&rq->wake_list);
1379 struct task_struct *p;
317f3941
PZ
1380
1381 raw_spin_lock(&rq->lock);
1382
fa14ff4a
PZ
1383 while (llist) {
1384 p = llist_entry(llist, struct task_struct, wake_entry);
1385 llist = llist_next(llist);
317f3941
PZ
1386 ttwu_do_activate(rq, p, 0);
1387 }
1388
1389 raw_spin_unlock(&rq->lock);
1390}
1391
1392void scheduler_ipi(void)
1393{
873b4c65
VG
1394 if (llist_empty(&this_rq()->wake_list)
1395 && !tick_nohz_full_cpu(smp_processor_id())
1396 && !got_nohz_idle_kick())
c5d753a5
PZ
1397 return;
1398
1399 /*
1400 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1401 * traditionally all their work was done from the interrupt return
1402 * path. Now that we actually do some work, we need to make sure
1403 * we do call them.
1404 *
1405 * Some archs already do call them, luckily irq_enter/exit nest
1406 * properly.
1407 *
1408 * Arguably we should visit all archs and update all handlers,
1409 * however a fair share of IPIs are still resched only so this would
1410 * somewhat pessimize the simple resched case.
1411 */
1412 irq_enter();
ff442c51 1413 tick_nohz_full_check();
fa14ff4a 1414 sched_ttwu_pending();
ca38062e
SS
1415
1416 /*
1417 * Check if someone kicked us for doing the nohz idle load balance.
1418 */
873b4c65 1419 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1420 this_rq()->idle_balance = 1;
ca38062e 1421 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1422 }
c5d753a5 1423 irq_exit();
317f3941
PZ
1424}
1425
1426static void ttwu_queue_remote(struct task_struct *p, int cpu)
1427{
fa14ff4a 1428 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
317f3941
PZ
1429 smp_send_reschedule(cpu);
1430}
d6aa8f85 1431
39be3501 1432bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1433{
1434 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1435}
d6aa8f85 1436#endif /* CONFIG_SMP */
317f3941 1437
c05fbafb
PZ
1438static void ttwu_queue(struct task_struct *p, int cpu)
1439{
1440 struct rq *rq = cpu_rq(cpu);
1441
17d9f311 1442#if defined(CONFIG_SMP)
39be3501 1443 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1444 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1445 ttwu_queue_remote(p, cpu);
1446 return;
1447 }
1448#endif
1449
c05fbafb
PZ
1450 raw_spin_lock(&rq->lock);
1451 ttwu_do_activate(rq, p, 0);
1452 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1453}
1454
1455/**
1da177e4 1456 * try_to_wake_up - wake up a thread
9ed3811a 1457 * @p: the thread to be awakened
1da177e4 1458 * @state: the mask of task states that can be woken
9ed3811a 1459 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1460 *
1461 * Put it on the run-queue if it's not already there. The "current"
1462 * thread is always on the run-queue (except when the actual
1463 * re-schedule is in progress), and as such you're allowed to do
1464 * the simpler "current->state = TASK_RUNNING" to mark yourself
1465 * runnable without the overhead of this.
1466 *
e69f6186 1467 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1468 * or @state didn't match @p's state.
1da177e4 1469 */
e4a52bcb
PZ
1470static int
1471try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1472{
1da177e4 1473 unsigned long flags;
c05fbafb 1474 int cpu, success = 0;
2398f2c6 1475
e0acd0a6
ON
1476 /*
1477 * If we are going to wake up a thread waiting for CONDITION we
1478 * need to ensure that CONDITION=1 done by the caller can not be
1479 * reordered with p->state check below. This pairs with mb() in
1480 * set_current_state() the waiting thread does.
1481 */
1482 smp_mb__before_spinlock();
013fdb80 1483 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1484 if (!(p->state & state))
1da177e4
LT
1485 goto out;
1486
c05fbafb 1487 success = 1; /* we're going to change ->state */
1da177e4 1488 cpu = task_cpu(p);
1da177e4 1489
c05fbafb
PZ
1490 if (p->on_rq && ttwu_remote(p, wake_flags))
1491 goto stat;
1da177e4 1492
1da177e4 1493#ifdef CONFIG_SMP
e9c84311 1494 /*
c05fbafb
PZ
1495 * If the owning (remote) cpu is still in the middle of schedule() with
1496 * this task as prev, wait until its done referencing the task.
e9c84311 1497 */
f3e94786 1498 while (p->on_cpu)
e4a52bcb 1499 cpu_relax();
0970d299 1500 /*
e4a52bcb 1501 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1502 */
e4a52bcb 1503 smp_rmb();
1da177e4 1504
a8e4f2ea 1505 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1506 p->state = TASK_WAKING;
e7693a36 1507
e4a52bcb 1508 if (p->sched_class->task_waking)
74f8e4b2 1509 p->sched_class->task_waking(p);
efbbd05a 1510
7608dec2 1511 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1512 if (task_cpu(p) != cpu) {
1513 wake_flags |= WF_MIGRATED;
e4a52bcb 1514 set_task_cpu(p, cpu);
f339b9dc 1515 }
1da177e4 1516#endif /* CONFIG_SMP */
1da177e4 1517
c05fbafb
PZ
1518 ttwu_queue(p, cpu);
1519stat:
b84cb5df 1520 ttwu_stat(p, cpu, wake_flags);
1da177e4 1521out:
013fdb80 1522 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1523
1524 return success;
1525}
1526
21aa9af0
TH
1527/**
1528 * try_to_wake_up_local - try to wake up a local task with rq lock held
1529 * @p: the thread to be awakened
1530 *
2acca55e 1531 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1532 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1533 * the current task.
21aa9af0
TH
1534 */
1535static void try_to_wake_up_local(struct task_struct *p)
1536{
1537 struct rq *rq = task_rq(p);
21aa9af0 1538
383efcd0
TH
1539 if (WARN_ON_ONCE(rq != this_rq()) ||
1540 WARN_ON_ONCE(p == current))
1541 return;
1542
21aa9af0
TH
1543 lockdep_assert_held(&rq->lock);
1544
2acca55e
PZ
1545 if (!raw_spin_trylock(&p->pi_lock)) {
1546 raw_spin_unlock(&rq->lock);
1547 raw_spin_lock(&p->pi_lock);
1548 raw_spin_lock(&rq->lock);
1549 }
1550
21aa9af0 1551 if (!(p->state & TASK_NORMAL))
2acca55e 1552 goto out;
21aa9af0 1553
fd2f4419 1554 if (!p->on_rq)
d7c01d27
PZ
1555 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1556
23f41eeb 1557 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1558 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1559out:
1560 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1561}
1562
50fa610a
DH
1563/**
1564 * wake_up_process - Wake up a specific process
1565 * @p: The process to be woken up.
1566 *
1567 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
1568 * processes.
1569 *
1570 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
1571 *
1572 * It may be assumed that this function implies a write memory barrier before
1573 * changing the task state if and only if any tasks are woken up.
1574 */
7ad5b3a5 1575int wake_up_process(struct task_struct *p)
1da177e4 1576{
9067ac85
ON
1577 WARN_ON(task_is_stopped_or_traced(p));
1578 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 1579}
1da177e4
LT
1580EXPORT_SYMBOL(wake_up_process);
1581
7ad5b3a5 1582int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1583{
1584 return try_to_wake_up(p, state, 0);
1585}
1586
1da177e4
LT
1587/*
1588 * Perform scheduler related setup for a newly forked process p.
1589 * p is forked by current.
dd41f596
IM
1590 *
1591 * __sched_fork() is basic setup used by init_idle() too:
1592 */
1593static void __sched_fork(struct task_struct *p)
1594{
fd2f4419
PZ
1595 p->on_rq = 0;
1596
1597 p->se.on_rq = 0;
dd41f596
IM
1598 p->se.exec_start = 0;
1599 p->se.sum_exec_runtime = 0;
f6cf891c 1600 p->se.prev_sum_exec_runtime = 0;
6c594c21 1601 p->se.nr_migrations = 0;
da7a735e 1602 p->se.vruntime = 0;
fd2f4419 1603 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
1604
1605#ifdef CONFIG_SCHEDSTATS
41acab88 1606 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 1607#endif
476d139c 1608
fa717060 1609 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 1610
e107be36
AK
1611#ifdef CONFIG_PREEMPT_NOTIFIERS
1612 INIT_HLIST_HEAD(&p->preempt_notifiers);
1613#endif
cbee9f88
PZ
1614
1615#ifdef CONFIG_NUMA_BALANCING
1616 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1617 p->mm->numa_next_scan = jiffies;
b8593bfd 1618 p->mm->numa_next_reset = jiffies;
cbee9f88
PZ
1619 p->mm->numa_scan_seq = 0;
1620 }
1621
1622 p->node_stamp = 0ULL;
1623 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1624 p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0;
4b96a29b 1625 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88
PZ
1626 p->numa_work.next = &p->numa_work;
1627#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1628}
1629
1a687c2e 1630#ifdef CONFIG_NUMA_BALANCING
3105b86a 1631#ifdef CONFIG_SCHED_DEBUG
1a687c2e
MG
1632void set_numabalancing_state(bool enabled)
1633{
1634 if (enabled)
1635 sched_feat_set("NUMA");
1636 else
1637 sched_feat_set("NO_NUMA");
1638}
3105b86a
MG
1639#else
1640__read_mostly bool numabalancing_enabled;
1641
1642void set_numabalancing_state(bool enabled)
1643{
1644 numabalancing_enabled = enabled;
dd41f596 1645}
3105b86a 1646#endif /* CONFIG_SCHED_DEBUG */
1a687c2e 1647#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1648
1649/*
1650 * fork()/clone()-time setup:
1651 */
3e51e3ed 1652void sched_fork(struct task_struct *p)
dd41f596 1653{
0122ec5b 1654 unsigned long flags;
dd41f596
IM
1655 int cpu = get_cpu();
1656
1657 __sched_fork(p);
06b83b5f 1658 /*
0017d735 1659 * We mark the process as running here. This guarantees that
06b83b5f
PZ
1660 * nobody will actually run it, and a signal or other external
1661 * event cannot wake it up and insert it on the runqueue either.
1662 */
0017d735 1663 p->state = TASK_RUNNING;
dd41f596 1664
c350a04e
MG
1665 /*
1666 * Make sure we do not leak PI boosting priority to the child.
1667 */
1668 p->prio = current->normal_prio;
1669
b9dc29e7
MG
1670 /*
1671 * Revert to default priority/policy on fork if requested.
1672 */
1673 if (unlikely(p->sched_reset_on_fork)) {
c350a04e 1674 if (task_has_rt_policy(p)) {
b9dc29e7 1675 p->policy = SCHED_NORMAL;
6c697bdf 1676 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
1677 p->rt_priority = 0;
1678 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1679 p->static_prio = NICE_TO_PRIO(0);
1680
1681 p->prio = p->normal_prio = __normal_prio(p);
1682 set_load_weight(p);
6c697bdf 1683
b9dc29e7
MG
1684 /*
1685 * We don't need the reset flag anymore after the fork. It has
1686 * fulfilled its duty:
1687 */
1688 p->sched_reset_on_fork = 0;
1689 }
ca94c442 1690
2ddbf952
HS
1691 if (!rt_prio(p->prio))
1692 p->sched_class = &fair_sched_class;
b29739f9 1693
cd29fe6f
PZ
1694 if (p->sched_class->task_fork)
1695 p->sched_class->task_fork(p);
1696
86951599
PZ
1697 /*
1698 * The child is not yet in the pid-hash so no cgroup attach races,
1699 * and the cgroup is pinned to this child due to cgroup_fork()
1700 * is ran before sched_fork().
1701 *
1702 * Silence PROVE_RCU.
1703 */
0122ec5b 1704 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 1705 set_task_cpu(p, cpu);
0122ec5b 1706 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 1707
52f17b6c 1708#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1709 if (likely(sched_info_on()))
52f17b6c 1710 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1711#endif
3ca7a440
PZ
1712#if defined(CONFIG_SMP)
1713 p->on_cpu = 0;
4866cde0 1714#endif
bdd4e85d 1715#ifdef CONFIG_PREEMPT_COUNT
4866cde0 1716 /* Want to start with kernel preemption disabled. */
a1261f54 1717 task_thread_info(p)->preempt_count = 1;
1da177e4 1718#endif
806c09a7 1719#ifdef CONFIG_SMP
917b627d 1720 plist_node_init(&p->pushable_tasks, MAX_PRIO);
806c09a7 1721#endif
917b627d 1722
476d139c 1723 put_cpu();
1da177e4
LT
1724}
1725
1726/*
1727 * wake_up_new_task - wake up a newly created task for the first time.
1728 *
1729 * This function will do some initial scheduler statistics housekeeping
1730 * that must be done for every newly created context, then puts the task
1731 * on the runqueue and wakes it.
1732 */
3e51e3ed 1733void wake_up_new_task(struct task_struct *p)
1da177e4
LT
1734{
1735 unsigned long flags;
dd41f596 1736 struct rq *rq;
fabf318e 1737
ab2515c4 1738 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
1739#ifdef CONFIG_SMP
1740 /*
1741 * Fork balancing, do it here and not earlier because:
1742 * - cpus_allowed can change in the fork path
1743 * - any previously selected cpu might disappear through hotplug
fabf318e 1744 */
ab2515c4 1745 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
0017d735
PZ
1746#endif
1747
a75cdaa9
AS
1748 /* Initialize new task's runnable average */
1749 init_task_runnable_average(p);
ab2515c4 1750 rq = __task_rq_lock(p);
cd29fe6f 1751 activate_task(rq, p, 0);
fd2f4419 1752 p->on_rq = 1;
89363381 1753 trace_sched_wakeup_new(p, true);
a7558e01 1754 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 1755#ifdef CONFIG_SMP
efbbd05a
PZ
1756 if (p->sched_class->task_woken)
1757 p->sched_class->task_woken(rq, p);
9a897c5a 1758#endif
0122ec5b 1759 task_rq_unlock(rq, p, &flags);
1da177e4
LT
1760}
1761
e107be36
AK
1762#ifdef CONFIG_PREEMPT_NOTIFIERS
1763
1764/**
80dd99b3 1765 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 1766 * @notifier: notifier struct to register
e107be36
AK
1767 */
1768void preempt_notifier_register(struct preempt_notifier *notifier)
1769{
1770 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1771}
1772EXPORT_SYMBOL_GPL(preempt_notifier_register);
1773
1774/**
1775 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 1776 * @notifier: notifier struct to unregister
e107be36
AK
1777 *
1778 * This is safe to call from within a preemption notifier.
1779 */
1780void preempt_notifier_unregister(struct preempt_notifier *notifier)
1781{
1782 hlist_del(&notifier->link);
1783}
1784EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1785
1786static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1787{
1788 struct preempt_notifier *notifier;
e107be36 1789
b67bfe0d 1790 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
1791 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1792}
1793
1794static void
1795fire_sched_out_preempt_notifiers(struct task_struct *curr,
1796 struct task_struct *next)
1797{
1798 struct preempt_notifier *notifier;
e107be36 1799
b67bfe0d 1800 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
1801 notifier->ops->sched_out(notifier, next);
1802}
1803
6d6bc0ad 1804#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
1805
1806static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1807{
1808}
1809
1810static void
1811fire_sched_out_preempt_notifiers(struct task_struct *curr,
1812 struct task_struct *next)
1813{
1814}
1815
6d6bc0ad 1816#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 1817
4866cde0
NP
1818/**
1819 * prepare_task_switch - prepare to switch tasks
1820 * @rq: the runqueue preparing to switch
421cee29 1821 * @prev: the current task that is being switched out
4866cde0
NP
1822 * @next: the task we are going to switch to.
1823 *
1824 * This is called with the rq lock held and interrupts off. It must
1825 * be paired with a subsequent finish_task_switch after the context
1826 * switch.
1827 *
1828 * prepare_task_switch sets up locking and calls architecture specific
1829 * hooks.
1830 */
e107be36
AK
1831static inline void
1832prepare_task_switch(struct rq *rq, struct task_struct *prev,
1833 struct task_struct *next)
4866cde0 1834{
895dd92c 1835 trace_sched_switch(prev, next);
43148951 1836 sched_info_switch(rq, prev, next);
fe4b04fa 1837 perf_event_task_sched_out(prev, next);
e107be36 1838 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
1839 prepare_lock_switch(rq, next);
1840 prepare_arch_switch(next);
1841}
1842
1da177e4
LT
1843/**
1844 * finish_task_switch - clean up after a task-switch
344babaa 1845 * @rq: runqueue associated with task-switch
1da177e4
LT
1846 * @prev: the thread we just switched away from.
1847 *
4866cde0
NP
1848 * finish_task_switch must be called after the context switch, paired
1849 * with a prepare_task_switch call before the context switch.
1850 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1851 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1852 *
1853 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 1854 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
1855 * with the lock held can cause deadlocks; see schedule() for
1856 * details.)
1857 */
a9957449 1858static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1859 __releases(rq->lock)
1860{
1da177e4 1861 struct mm_struct *mm = rq->prev_mm;
55a101f8 1862 long prev_state;
1da177e4
LT
1863
1864 rq->prev_mm = NULL;
1865
1866 /*
1867 * A task struct has one reference for the use as "current".
c394cc9f 1868 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1869 * schedule one last time. The schedule call will never return, and
1870 * the scheduled task must drop that reference.
c394cc9f 1871 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1872 * still held, otherwise prev could be scheduled on another cpu, die
1873 * there before we look at prev->state, and then the reference would
1874 * be dropped twice.
1875 * Manfred Spraul <manfred@colorfullife.com>
1876 */
55a101f8 1877 prev_state = prev->state;
bf9fae9f 1878 vtime_task_switch(prev);
4866cde0 1879 finish_arch_switch(prev);
a8d757ef 1880 perf_event_task_sched_in(prev, current);
4866cde0 1881 finish_lock_switch(rq, prev);
01f23e16 1882 finish_arch_post_lock_switch();
e8fa1362 1883
e107be36 1884 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
1885 if (mm)
1886 mmdrop(mm);
c394cc9f 1887 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 1888 /*
1889 * Remove function-return probe instances associated with this
1890 * task and put them back on the free list.
9761eea8 1891 */
c6fd91f0 1892 kprobe_flush_task(prev);
1da177e4 1893 put_task_struct(prev);
c6fd91f0 1894 }
99e5ada9
FW
1895
1896 tick_nohz_task_switch(current);
1da177e4
LT
1897}
1898
3f029d3c
GH
1899#ifdef CONFIG_SMP
1900
1901/* assumes rq->lock is held */
1902static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1903{
1904 if (prev->sched_class->pre_schedule)
1905 prev->sched_class->pre_schedule(rq, prev);
1906}
1907
1908/* rq->lock is NOT held, but preemption is disabled */
1909static inline void post_schedule(struct rq *rq)
1910{
1911 if (rq->post_schedule) {
1912 unsigned long flags;
1913
05fa785c 1914 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
1915 if (rq->curr->sched_class->post_schedule)
1916 rq->curr->sched_class->post_schedule(rq);
05fa785c 1917 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
1918
1919 rq->post_schedule = 0;
1920 }
1921}
1922
1923#else
da19ab51 1924
3f029d3c
GH
1925static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1926{
1927}
1928
1929static inline void post_schedule(struct rq *rq)
1930{
1da177e4
LT
1931}
1932
3f029d3c
GH
1933#endif
1934
1da177e4
LT
1935/**
1936 * schedule_tail - first thing a freshly forked thread must call.
1937 * @prev: the thread we just switched away from.
1938 */
36c8b586 1939asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
1940 __releases(rq->lock)
1941{
70b97a7f
IM
1942 struct rq *rq = this_rq();
1943
4866cde0 1944 finish_task_switch(rq, prev);
da19ab51 1945
3f029d3c
GH
1946 /*
1947 * FIXME: do we need to worry about rq being invalidated by the
1948 * task_switch?
1949 */
1950 post_schedule(rq);
70b97a7f 1951
4866cde0
NP
1952#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1953 /* In this case, finish_task_switch does not reenable preemption */
1954 preempt_enable();
1955#endif
1da177e4 1956 if (current->set_child_tid)
b488893a 1957 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
1958}
1959
1960/*
1961 * context_switch - switch to the new MM and the new
1962 * thread's register state.
1963 */
dd41f596 1964static inline void
70b97a7f 1965context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 1966 struct task_struct *next)
1da177e4 1967{
dd41f596 1968 struct mm_struct *mm, *oldmm;
1da177e4 1969
e107be36 1970 prepare_task_switch(rq, prev, next);
fe4b04fa 1971
dd41f596
IM
1972 mm = next->mm;
1973 oldmm = prev->active_mm;
9226d125
ZA
1974 /*
1975 * For paravirt, this is coupled with an exit in switch_to to
1976 * combine the page table reload and the switch backend into
1977 * one hypercall.
1978 */
224101ed 1979 arch_start_context_switch(prev);
9226d125 1980
31915ab4 1981 if (!mm) {
1da177e4
LT
1982 next->active_mm = oldmm;
1983 atomic_inc(&oldmm->mm_count);
1984 enter_lazy_tlb(oldmm, next);
1985 } else
1986 switch_mm(oldmm, mm, next);
1987
31915ab4 1988 if (!prev->mm) {
1da177e4 1989 prev->active_mm = NULL;
1da177e4
LT
1990 rq->prev_mm = oldmm;
1991 }
3a5f5e48
IM
1992 /*
1993 * Since the runqueue lock will be released by the next
1994 * task (which is an invalid locking op but in the case
1995 * of the scheduler it's an obvious special-case), so we
1996 * do an early lockdep release here:
1997 */
1998#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 1999 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2000#endif
1da177e4 2001
91d1aa43 2002 context_tracking_task_switch(prev, next);
1da177e4
LT
2003 /* Here we just switch the register state and the stack. */
2004 switch_to(prev, next, prev);
2005
dd41f596
IM
2006 barrier();
2007 /*
2008 * this_rq must be evaluated again because prev may have moved
2009 * CPUs since it called schedule(), thus the 'rq' on its stack
2010 * frame will be invalid.
2011 */
2012 finish_task_switch(this_rq(), prev);
1da177e4
LT
2013}
2014
2015/*
1c3e8264 2016 * nr_running and nr_context_switches:
1da177e4
LT
2017 *
2018 * externally visible scheduler statistics: current number of runnable
1c3e8264 2019 * threads, total number of context switches performed since bootup.
1da177e4
LT
2020 */
2021unsigned long nr_running(void)
2022{
2023 unsigned long i, sum = 0;
2024
2025 for_each_online_cpu(i)
2026 sum += cpu_rq(i)->nr_running;
2027
2028 return sum;
f711f609 2029}
1da177e4 2030
1da177e4 2031unsigned long long nr_context_switches(void)
46cb4b7c 2032{
cc94abfc
SR
2033 int i;
2034 unsigned long long sum = 0;
46cb4b7c 2035
0a945022 2036 for_each_possible_cpu(i)
1da177e4 2037 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2038
1da177e4
LT
2039 return sum;
2040}
483b4ee6 2041
1da177e4
LT
2042unsigned long nr_iowait(void)
2043{
2044 unsigned long i, sum = 0;
483b4ee6 2045
0a945022 2046 for_each_possible_cpu(i)
1da177e4 2047 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2048
1da177e4
LT
2049 return sum;
2050}
483b4ee6 2051
8c215bd3 2052unsigned long nr_iowait_cpu(int cpu)
69d25870 2053{
8c215bd3 2054 struct rq *this = cpu_rq(cpu);
69d25870
AV
2055 return atomic_read(&this->nr_iowait);
2056}
46cb4b7c 2057
dd41f596 2058#ifdef CONFIG_SMP
8a0be9ef 2059
46cb4b7c 2060/*
38022906
PZ
2061 * sched_exec - execve() is a valuable balancing opportunity, because at
2062 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2063 */
38022906 2064void sched_exec(void)
46cb4b7c 2065{
38022906 2066 struct task_struct *p = current;
1da177e4 2067 unsigned long flags;
0017d735 2068 int dest_cpu;
46cb4b7c 2069
8f42ced9 2070 raw_spin_lock_irqsave(&p->pi_lock, flags);
7608dec2 2071 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
0017d735
PZ
2072 if (dest_cpu == smp_processor_id())
2073 goto unlock;
38022906 2074
8f42ced9 2075 if (likely(cpu_active(dest_cpu))) {
969c7921 2076 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2077
8f42ced9
PZ
2078 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2079 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2080 return;
2081 }
0017d735 2082unlock:
8f42ced9 2083 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2084}
dd41f596 2085
1da177e4
LT
2086#endif
2087
1da177e4 2088DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2089DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2090
2091EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2092EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4
LT
2093
2094/*
c5f8d995 2095 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 2096 * @p in case that task is currently running.
c5f8d995
HS
2097 *
2098 * Called with task_rq_lock() held on @rq.
1da177e4 2099 */
c5f8d995
HS
2100static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2101{
2102 u64 ns = 0;
2103
2104 if (task_current(rq, p)) {
2105 update_rq_clock(rq);
78becc27 2106 ns = rq_clock_task(rq) - p->se.exec_start;
c5f8d995
HS
2107 if ((s64)ns < 0)
2108 ns = 0;
2109 }
2110
2111 return ns;
2112}
2113
bb34d92f 2114unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 2115{
1da177e4 2116 unsigned long flags;
41b86e9c 2117 struct rq *rq;
bb34d92f 2118 u64 ns = 0;
48f24c4d 2119
41b86e9c 2120 rq = task_rq_lock(p, &flags);
c5f8d995 2121 ns = do_task_delta_exec(p, rq);
0122ec5b 2122 task_rq_unlock(rq, p, &flags);
1508487e 2123
c5f8d995
HS
2124 return ns;
2125}
f06febc9 2126
c5f8d995
HS
2127/*
2128 * Return accounted runtime for the task.
2129 * In case the task is currently running, return the runtime plus current's
2130 * pending runtime that have not been accounted yet.
2131 */
2132unsigned long long task_sched_runtime(struct task_struct *p)
2133{
2134 unsigned long flags;
2135 struct rq *rq;
2136 u64 ns = 0;
2137
2138 rq = task_rq_lock(p, &flags);
2139 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 2140 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2141
2142 return ns;
2143}
48f24c4d 2144
7835b98b
CL
2145/*
2146 * This function gets called by the timer code, with HZ frequency.
2147 * We call it with interrupts disabled.
7835b98b
CL
2148 */
2149void scheduler_tick(void)
2150{
7835b98b
CL
2151 int cpu = smp_processor_id();
2152 struct rq *rq = cpu_rq(cpu);
dd41f596 2153 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2154
2155 sched_clock_tick();
dd41f596 2156
05fa785c 2157 raw_spin_lock(&rq->lock);
3e51f33f 2158 update_rq_clock(rq);
fa85ae24 2159 curr->sched_class->task_tick(rq, curr, 0);
83dfd523 2160 update_cpu_load_active(rq);
05fa785c 2161 raw_spin_unlock(&rq->lock);
7835b98b 2162
e9d2b064 2163 perf_event_task_tick();
e220d2dc 2164
e418e1c2 2165#ifdef CONFIG_SMP
6eb57e0d 2166 rq->idle_balance = idle_cpu(cpu);
dd41f596 2167 trigger_load_balance(rq, cpu);
e418e1c2 2168#endif
265f22a9 2169 rq_last_tick_reset(rq);
1da177e4
LT
2170}
2171
265f22a9
FW
2172#ifdef CONFIG_NO_HZ_FULL
2173/**
2174 * scheduler_tick_max_deferment
2175 *
2176 * Keep at least one tick per second when a single
2177 * active task is running because the scheduler doesn't
2178 * yet completely support full dynticks environment.
2179 *
2180 * This makes sure that uptime, CFS vruntime, load
2181 * balancing, etc... continue to move forward, even
2182 * with a very low granularity.
e69f6186
YB
2183 *
2184 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
2185 */
2186u64 scheduler_tick_max_deferment(void)
2187{
2188 struct rq *rq = this_rq();
2189 unsigned long next, now = ACCESS_ONCE(jiffies);
2190
2191 next = rq->last_sched_tick + HZ;
2192
2193 if (time_before_eq(next, now))
2194 return 0;
2195
2196 return jiffies_to_usecs(next - now) * NSEC_PER_USEC;
1da177e4 2197}
265f22a9 2198#endif
1da177e4 2199
132380a0 2200notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
2201{
2202 if (in_lock_functions(addr)) {
2203 addr = CALLER_ADDR2;
2204 if (in_lock_functions(addr))
2205 addr = CALLER_ADDR3;
2206 }
2207 return addr;
2208}
1da177e4 2209
7e49fcce
SR
2210#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2211 defined(CONFIG_PREEMPT_TRACER))
2212
43627582 2213void __kprobes add_preempt_count(int val)
1da177e4 2214{
6cd8a4bb 2215#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2216 /*
2217 * Underflow?
2218 */
9a11b49a
IM
2219 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2220 return;
6cd8a4bb 2221#endif
4a2b4b22 2222 add_preempt_count_notrace(val);
6cd8a4bb 2223#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2224 /*
2225 * Spinlock count overflowing soon?
2226 */
33859f7f
MOS
2227 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2228 PREEMPT_MASK - 10);
6cd8a4bb
SR
2229#endif
2230 if (preempt_count() == val)
2231 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
2232}
2233EXPORT_SYMBOL(add_preempt_count);
2234
43627582 2235void __kprobes sub_preempt_count(int val)
1da177e4 2236{
6cd8a4bb 2237#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2238 /*
2239 * Underflow?
2240 */
01e3eb82 2241 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 2242 return;
1da177e4
LT
2243 /*
2244 * Is the spinlock portion underflowing?
2245 */
9a11b49a
IM
2246 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2247 !(preempt_count() & PREEMPT_MASK)))
2248 return;
6cd8a4bb 2249#endif
9a11b49a 2250
6cd8a4bb
SR
2251 if (preempt_count() == val)
2252 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4a2b4b22 2253 sub_preempt_count_notrace(val);
1da177e4
LT
2254}
2255EXPORT_SYMBOL(sub_preempt_count);
2256
2257#endif
2258
2259/*
dd41f596 2260 * Print scheduling while atomic bug:
1da177e4 2261 */
dd41f596 2262static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 2263{
664dfa65
DJ
2264 if (oops_in_progress)
2265 return;
2266
3df0fc5b
PZ
2267 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2268 prev->comm, prev->pid, preempt_count());
838225b4 2269
dd41f596 2270 debug_show_held_locks(prev);
e21f5b15 2271 print_modules();
dd41f596
IM
2272 if (irqs_disabled())
2273 print_irqtrace_events(prev);
6135fc1e 2274 dump_stack();
373d4d09 2275 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 2276}
1da177e4 2277
dd41f596
IM
2278/*
2279 * Various schedule()-time debugging checks and statistics:
2280 */
2281static inline void schedule_debug(struct task_struct *prev)
2282{
1da177e4 2283 /*
41a2d6cf 2284 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
2285 * schedule() atomically, we ignore that path for now.
2286 * Otherwise, whine if we are scheduling when we should not be.
2287 */
3f33a7ce 2288 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596 2289 __schedule_bug(prev);
b3fbab05 2290 rcu_sleep_check();
dd41f596 2291
1da177e4
LT
2292 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2293
2d72376b 2294 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
2295}
2296
6cecd084 2297static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 2298{
61eadef6 2299 if (prev->on_rq || rq->skip_clock_update < 0)
a64692a3 2300 update_rq_clock(rq);
6cecd084 2301 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
2302}
2303
dd41f596
IM
2304/*
2305 * Pick up the highest-prio task:
2306 */
2307static inline struct task_struct *
b67802ea 2308pick_next_task(struct rq *rq)
dd41f596 2309{
5522d5d5 2310 const struct sched_class *class;
dd41f596 2311 struct task_struct *p;
1da177e4
LT
2312
2313 /*
dd41f596
IM
2314 * Optimization: we know that if all tasks are in
2315 * the fair class we can call that function directly:
1da177e4 2316 */
953bfcd1 2317 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
fb8d4724 2318 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
2319 if (likely(p))
2320 return p;
1da177e4
LT
2321 }
2322
34f971f6 2323 for_each_class(class) {
fb8d4724 2324 p = class->pick_next_task(rq);
dd41f596
IM
2325 if (p)
2326 return p;
dd41f596 2327 }
34f971f6
PZ
2328
2329 BUG(); /* the idle class will always have a runnable task */
dd41f596 2330}
1da177e4 2331
dd41f596 2332/*
c259e01a 2333 * __schedule() is the main scheduler function.
edde96ea
PE
2334 *
2335 * The main means of driving the scheduler and thus entering this function are:
2336 *
2337 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2338 *
2339 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2340 * paths. For example, see arch/x86/entry_64.S.
2341 *
2342 * To drive preemption between tasks, the scheduler sets the flag in timer
2343 * interrupt handler scheduler_tick().
2344 *
2345 * 3. Wakeups don't really cause entry into schedule(). They add a
2346 * task to the run-queue and that's it.
2347 *
2348 * Now, if the new task added to the run-queue preempts the current
2349 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2350 * called on the nearest possible occasion:
2351 *
2352 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2353 *
2354 * - in syscall or exception context, at the next outmost
2355 * preempt_enable(). (this might be as soon as the wake_up()'s
2356 * spin_unlock()!)
2357 *
2358 * - in IRQ context, return from interrupt-handler to
2359 * preemptible context
2360 *
2361 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2362 * then at the next:
2363 *
2364 * - cond_resched() call
2365 * - explicit schedule() call
2366 * - return from syscall or exception to user-space
2367 * - return from interrupt-handler to user-space
dd41f596 2368 */
c259e01a 2369static void __sched __schedule(void)
dd41f596
IM
2370{
2371 struct task_struct *prev, *next;
67ca7bde 2372 unsigned long *switch_count;
dd41f596 2373 struct rq *rq;
31656519 2374 int cpu;
dd41f596 2375
ff743345
PZ
2376need_resched:
2377 preempt_disable();
dd41f596
IM
2378 cpu = smp_processor_id();
2379 rq = cpu_rq(cpu);
25502a6c 2380 rcu_note_context_switch(cpu);
dd41f596 2381 prev = rq->curr;
dd41f596 2382
dd41f596 2383 schedule_debug(prev);
1da177e4 2384
31656519 2385 if (sched_feat(HRTICK))
f333fdc9 2386 hrtick_clear(rq);
8f4d37ec 2387
e0acd0a6
ON
2388 /*
2389 * Make sure that signal_pending_state()->signal_pending() below
2390 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2391 * done by the caller to avoid the race with signal_wake_up().
2392 */
2393 smp_mb__before_spinlock();
05fa785c 2394 raw_spin_lock_irq(&rq->lock);
1da177e4 2395
246d86b5 2396 switch_count = &prev->nivcsw;
1da177e4 2397 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 2398 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 2399 prev->state = TASK_RUNNING;
21aa9af0 2400 } else {
2acca55e
PZ
2401 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2402 prev->on_rq = 0;
2403
21aa9af0 2404 /*
2acca55e
PZ
2405 * If a worker went to sleep, notify and ask workqueue
2406 * whether it wants to wake up a task to maintain
2407 * concurrency.
21aa9af0
TH
2408 */
2409 if (prev->flags & PF_WQ_WORKER) {
2410 struct task_struct *to_wakeup;
2411
2412 to_wakeup = wq_worker_sleeping(prev, cpu);
2413 if (to_wakeup)
2414 try_to_wake_up_local(to_wakeup);
2415 }
21aa9af0 2416 }
dd41f596 2417 switch_count = &prev->nvcsw;
1da177e4
LT
2418 }
2419
3f029d3c 2420 pre_schedule(rq, prev);
f65eda4f 2421
dd41f596 2422 if (unlikely(!rq->nr_running))
1da177e4 2423 idle_balance(cpu, rq);
1da177e4 2424
df1c99d4 2425 put_prev_task(rq, prev);
b67802ea 2426 next = pick_next_task(rq);
f26f9aff
MG
2427 clear_tsk_need_resched(prev);
2428 rq->skip_clock_update = 0;
1da177e4 2429
1da177e4 2430 if (likely(prev != next)) {
1da177e4
LT
2431 rq->nr_switches++;
2432 rq->curr = next;
2433 ++*switch_count;
2434
dd41f596 2435 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 2436 /*
246d86b5
ON
2437 * The context switch have flipped the stack from under us
2438 * and restored the local variables which were saved when
2439 * this task called schedule() in the past. prev == current
2440 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
2441 */
2442 cpu = smp_processor_id();
2443 rq = cpu_rq(cpu);
1da177e4 2444 } else
05fa785c 2445 raw_spin_unlock_irq(&rq->lock);
1da177e4 2446
3f029d3c 2447 post_schedule(rq);
1da177e4 2448
ba74c144 2449 sched_preempt_enable_no_resched();
ff743345 2450 if (need_resched())
1da177e4
LT
2451 goto need_resched;
2452}
c259e01a 2453
9c40cef2
TG
2454static inline void sched_submit_work(struct task_struct *tsk)
2455{
3c7d5184 2456 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
2457 return;
2458 /*
2459 * If we are going to sleep and we have plugged IO queued,
2460 * make sure to submit it to avoid deadlocks.
2461 */
2462 if (blk_needs_flush_plug(tsk))
2463 blk_schedule_flush_plug(tsk);
2464}
2465
6ebbe7a0 2466asmlinkage void __sched schedule(void)
c259e01a 2467{
9c40cef2
TG
2468 struct task_struct *tsk = current;
2469
2470 sched_submit_work(tsk);
c259e01a
TG
2471 __schedule();
2472}
1da177e4
LT
2473EXPORT_SYMBOL(schedule);
2474
91d1aa43 2475#ifdef CONFIG_CONTEXT_TRACKING
20ab65e3
FW
2476asmlinkage void __sched schedule_user(void)
2477{
2478 /*
2479 * If we come here after a random call to set_need_resched(),
2480 * or we have been woken up remotely but the IPI has not yet arrived,
2481 * we haven't yet exited the RCU idle mode. Do it here manually until
2482 * we find a better solution.
2483 */
91d1aa43 2484 user_exit();
20ab65e3 2485 schedule();
91d1aa43 2486 user_enter();
20ab65e3
FW
2487}
2488#endif
2489
c5491ea7
TG
2490/**
2491 * schedule_preempt_disabled - called with preemption disabled
2492 *
2493 * Returns with preemption disabled. Note: preempt_count must be 1
2494 */
2495void __sched schedule_preempt_disabled(void)
2496{
ba74c144 2497 sched_preempt_enable_no_resched();
c5491ea7
TG
2498 schedule();
2499 preempt_disable();
2500}
2501
1da177e4
LT
2502#ifdef CONFIG_PREEMPT
2503/*
2ed6e34f 2504 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 2505 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
2506 * occur there and call schedule directly.
2507 */
d1f74e20 2508asmlinkage void __sched notrace preempt_schedule(void)
1da177e4 2509{
1da177e4
LT
2510 /*
2511 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 2512 * we do not want to preempt the current task. Just return..
1da177e4 2513 */
fbb00b56 2514 if (likely(!preemptible()))
1da177e4
LT
2515 return;
2516
3a5c359a 2517 do {
d1f74e20 2518 add_preempt_count_notrace(PREEMPT_ACTIVE);
c259e01a 2519 __schedule();
d1f74e20 2520 sub_preempt_count_notrace(PREEMPT_ACTIVE);
1da177e4 2521
3a5c359a
AK
2522 /*
2523 * Check again in case we missed a preemption opportunity
2524 * between schedule and now.
2525 */
2526 barrier();
5ed0cec0 2527 } while (need_resched());
1da177e4 2528}
1da177e4
LT
2529EXPORT_SYMBOL(preempt_schedule);
2530
2531/*
2ed6e34f 2532 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
2533 * off of irq context.
2534 * Note, that this is called and return with irqs disabled. This will
2535 * protect us against recursive calling from irq.
2536 */
2537asmlinkage void __sched preempt_schedule_irq(void)
2538{
2539 struct thread_info *ti = current_thread_info();
b22366cd 2540 enum ctx_state prev_state;
6478d880 2541
2ed6e34f 2542 /* Catch callers which need to be fixed */
1da177e4
LT
2543 BUG_ON(ti->preempt_count || !irqs_disabled());
2544
b22366cd
FW
2545 prev_state = exception_enter();
2546
3a5c359a
AK
2547 do {
2548 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 2549 local_irq_enable();
c259e01a 2550 __schedule();
3a5c359a 2551 local_irq_disable();
3a5c359a 2552 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 2553
3a5c359a
AK
2554 /*
2555 * Check again in case we missed a preemption opportunity
2556 * between schedule and now.
2557 */
2558 barrier();
5ed0cec0 2559 } while (need_resched());
b22366cd
FW
2560
2561 exception_exit(prev_state);
1da177e4
LT
2562}
2563
2564#endif /* CONFIG_PREEMPT */
2565
63859d4f 2566int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 2567 void *key)
1da177e4 2568{
63859d4f 2569 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 2570}
1da177e4
LT
2571EXPORT_SYMBOL(default_wake_function);
2572
2573/*
41a2d6cf
IM
2574 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
2575 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
2576 * number) then we wake all the non-exclusive tasks and one exclusive task.
2577 *
2578 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 2579 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
2580 * zero in this (rare) case, and we handle it by continuing to scan the queue.
2581 */
78ddb08f 2582static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 2583 int nr_exclusive, int wake_flags, void *key)
1da177e4 2584{
2e45874c 2585 wait_queue_t *curr, *next;
1da177e4 2586
2e45874c 2587 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
2588 unsigned flags = curr->flags;
2589
63859d4f 2590 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 2591 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
2592 break;
2593 }
2594}
2595
2596/**
2597 * __wake_up - wake up threads blocked on a waitqueue.
2598 * @q: the waitqueue
2599 * @mode: which threads
2600 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 2601 * @key: is directly passed to the wakeup function
50fa610a
DH
2602 *
2603 * It may be assumed that this function implies a write memory barrier before
2604 * changing the task state if and only if any tasks are woken up.
1da177e4 2605 */
7ad5b3a5 2606void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 2607 int nr_exclusive, void *key)
1da177e4
LT
2608{
2609 unsigned long flags;
2610
2611 spin_lock_irqsave(&q->lock, flags);
2612 __wake_up_common(q, mode, nr_exclusive, 0, key);
2613 spin_unlock_irqrestore(&q->lock, flags);
2614}
1da177e4
LT
2615EXPORT_SYMBOL(__wake_up);
2616
2617/*
2618 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
2619 */
63b20011 2620void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
1da177e4 2621{
63b20011 2622 __wake_up_common(q, mode, nr, 0, NULL);
1da177e4 2623}
22c43c81 2624EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 2625
4ede816a
DL
2626void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
2627{
2628 __wake_up_common(q, mode, 1, 0, key);
2629}
bf294b41 2630EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4ede816a 2631
1da177e4 2632/**
4ede816a 2633 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
2634 * @q: the waitqueue
2635 * @mode: which threads
2636 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 2637 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
2638 *
2639 * The sync wakeup differs that the waker knows that it will schedule
2640 * away soon, so while the target thread will be woken up, it will not
2641 * be migrated to another CPU - ie. the two threads are 'synchronized'
2642 * with each other. This can prevent needless bouncing between CPUs.
2643 *
2644 * On UP it can prevent extra preemption.
50fa610a
DH
2645 *
2646 * It may be assumed that this function implies a write memory barrier before
2647 * changing the task state if and only if any tasks are woken up.
1da177e4 2648 */
4ede816a
DL
2649void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
2650 int nr_exclusive, void *key)
1da177e4
LT
2651{
2652 unsigned long flags;
7d478721 2653 int wake_flags = WF_SYNC;
1da177e4
LT
2654
2655 if (unlikely(!q))
2656 return;
2657
cedce3e7 2658 if (unlikely(nr_exclusive != 1))
7d478721 2659 wake_flags = 0;
1da177e4
LT
2660
2661 spin_lock_irqsave(&q->lock, flags);
7d478721 2662 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
2663 spin_unlock_irqrestore(&q->lock, flags);
2664}
4ede816a
DL
2665EXPORT_SYMBOL_GPL(__wake_up_sync_key);
2666
2667/*
2668 * __wake_up_sync - see __wake_up_sync_key()
2669 */
2670void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
2671{
2672 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
2673}
1da177e4
LT
2674EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
2675
65eb3dc6
KD
2676/**
2677 * complete: - signals a single thread waiting on this completion
2678 * @x: holds the state of this particular completion
2679 *
2680 * This will wake up a single thread waiting on this completion. Threads will be
2681 * awakened in the same order in which they were queued.
2682 *
2683 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
2684 *
2685 * It may be assumed that this function implies a write memory barrier before
2686 * changing the task state if and only if any tasks are woken up.
65eb3dc6 2687 */
b15136e9 2688void complete(struct completion *x)
1da177e4
LT
2689{
2690 unsigned long flags;
2691
2692 spin_lock_irqsave(&x->wait.lock, flags);
2693 x->done++;
d9514f6c 2694 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
2695 spin_unlock_irqrestore(&x->wait.lock, flags);
2696}
2697EXPORT_SYMBOL(complete);
2698
65eb3dc6
KD
2699/**
2700 * complete_all: - signals all threads waiting on this completion
2701 * @x: holds the state of this particular completion
2702 *
2703 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
2704 *
2705 * It may be assumed that this function implies a write memory barrier before
2706 * changing the task state if and only if any tasks are woken up.
65eb3dc6 2707 */
b15136e9 2708void complete_all(struct completion *x)
1da177e4
LT
2709{
2710 unsigned long flags;
2711
2712 spin_lock_irqsave(&x->wait.lock, flags);
2713 x->done += UINT_MAX/2;
d9514f6c 2714 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
2715 spin_unlock_irqrestore(&x->wait.lock, flags);
2716}
2717EXPORT_SYMBOL(complete_all);
2718
8cbbe86d 2719static inline long __sched
686855f5
VD
2720do_wait_for_common(struct completion *x,
2721 long (*action)(long), long timeout, int state)
1da177e4 2722{
1da177e4
LT
2723 if (!x->done) {
2724 DECLARE_WAITQUEUE(wait, current);
2725
a93d2f17 2726 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 2727 do {
94d3d824 2728 if (signal_pending_state(state, current)) {
ea71a546
ON
2729 timeout = -ERESTARTSYS;
2730 break;
8cbbe86d
AK
2731 }
2732 __set_current_state(state);
1da177e4 2733 spin_unlock_irq(&x->wait.lock);
686855f5 2734 timeout = action(timeout);
1da177e4 2735 spin_lock_irq(&x->wait.lock);
ea71a546 2736 } while (!x->done && timeout);
1da177e4 2737 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
2738 if (!x->done)
2739 return timeout;
1da177e4
LT
2740 }
2741 x->done--;
ea71a546 2742 return timeout ?: 1;
1da177e4 2743}
1da177e4 2744
686855f5
VD
2745static inline long __sched
2746__wait_for_common(struct completion *x,
2747 long (*action)(long), long timeout, int state)
1da177e4 2748{
1da177e4
LT
2749 might_sleep();
2750
2751 spin_lock_irq(&x->wait.lock);
686855f5 2752 timeout = do_wait_for_common(x, action, timeout, state);
1da177e4 2753 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
2754 return timeout;
2755}
1da177e4 2756
686855f5
VD
2757static long __sched
2758wait_for_common(struct completion *x, long timeout, int state)
2759{
2760 return __wait_for_common(x, schedule_timeout, timeout, state);
2761}
2762
2763static long __sched
2764wait_for_common_io(struct completion *x, long timeout, int state)
2765{
2766 return __wait_for_common(x, io_schedule_timeout, timeout, state);
2767}
2768
65eb3dc6
KD
2769/**
2770 * wait_for_completion: - waits for completion of a task
2771 * @x: holds the state of this particular completion
2772 *
2773 * This waits to be signaled for completion of a specific task. It is NOT
2774 * interruptible and there is no timeout.
2775 *
2776 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
2777 * and interrupt capability. Also see complete().
2778 */
b15136e9 2779void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
2780{
2781 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 2782}
8cbbe86d 2783EXPORT_SYMBOL(wait_for_completion);
1da177e4 2784
65eb3dc6
KD
2785/**
2786 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
2787 * @x: holds the state of this particular completion
2788 * @timeout: timeout value in jiffies
2789 *
2790 * This waits for either a completion of a specific task to be signaled or for a
2791 * specified timeout to expire. The timeout is in jiffies. It is not
2792 * interruptible.
c6dc7f05 2793 *
e69f6186
YB
2794 * Return: 0 if timed out, and positive (at least 1, or number of jiffies left
2795 * till timeout) if completed.
65eb3dc6 2796 */
b15136e9 2797unsigned long __sched
8cbbe86d 2798wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 2799{
8cbbe86d 2800 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 2801}
8cbbe86d 2802EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 2803
686855f5
VD
2804/**
2805 * wait_for_completion_io: - waits for completion of a task
2806 * @x: holds the state of this particular completion
2807 *
2808 * This waits to be signaled for completion of a specific task. It is NOT
2809 * interruptible and there is no timeout. The caller is accounted as waiting
2810 * for IO.
2811 */
2812void __sched wait_for_completion_io(struct completion *x)
2813{
2814 wait_for_common_io(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
2815}
2816EXPORT_SYMBOL(wait_for_completion_io);
2817
2818/**
2819 * wait_for_completion_io_timeout: - waits for completion of a task (w/timeout)
2820 * @x: holds the state of this particular completion
2821 * @timeout: timeout value in jiffies
2822 *
2823 * This waits for either a completion of a specific task to be signaled or for a
2824 * specified timeout to expire. The timeout is in jiffies. It is not
2825 * interruptible. The caller is accounted as waiting for IO.
2826 *
e69f6186
YB
2827 * Return: 0 if timed out, and positive (at least 1, or number of jiffies left
2828 * till timeout) if completed.
686855f5
VD
2829 */
2830unsigned long __sched
2831wait_for_completion_io_timeout(struct completion *x, unsigned long timeout)
2832{
2833 return wait_for_common_io(x, timeout, TASK_UNINTERRUPTIBLE);
2834}
2835EXPORT_SYMBOL(wait_for_completion_io_timeout);
2836
65eb3dc6
KD
2837/**
2838 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
2839 * @x: holds the state of this particular completion
2840 *
2841 * This waits for completion of a specific task to be signaled. It is
2842 * interruptible.
c6dc7f05 2843 *
e69f6186 2844 * Return: -ERESTARTSYS if interrupted, 0 if completed.
65eb3dc6 2845 */
8cbbe86d 2846int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 2847{
51e97990
AK
2848 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
2849 if (t == -ERESTARTSYS)
2850 return t;
2851 return 0;
0fec171c 2852}
8cbbe86d 2853EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 2854
65eb3dc6
KD
2855/**
2856 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
2857 * @x: holds the state of this particular completion
2858 * @timeout: timeout value in jiffies
2859 *
2860 * This waits for either a completion of a specific task to be signaled or for a
2861 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
c6dc7f05 2862 *
e69f6186
YB
2863 * Return: -ERESTARTSYS if interrupted, 0 if timed out, positive (at least 1,
2864 * or number of jiffies left till timeout) if completed.
65eb3dc6 2865 */
6bf41237 2866long __sched
8cbbe86d
AK
2867wait_for_completion_interruptible_timeout(struct completion *x,
2868 unsigned long timeout)
0fec171c 2869{
8cbbe86d 2870 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 2871}
8cbbe86d 2872EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 2873
65eb3dc6
KD
2874/**
2875 * wait_for_completion_killable: - waits for completion of a task (killable)
2876 * @x: holds the state of this particular completion
2877 *
2878 * This waits to be signaled for completion of a specific task. It can be
2879 * interrupted by a kill signal.
c6dc7f05 2880 *
e69f6186 2881 * Return: -ERESTARTSYS if interrupted, 0 if completed.
65eb3dc6 2882 */
009e577e
MW
2883int __sched wait_for_completion_killable(struct completion *x)
2884{
2885 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
2886 if (t == -ERESTARTSYS)
2887 return t;
2888 return 0;
2889}
2890EXPORT_SYMBOL(wait_for_completion_killable);
2891
0aa12fb4
SW
2892/**
2893 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
2894 * @x: holds the state of this particular completion
2895 * @timeout: timeout value in jiffies
2896 *
2897 * This waits for either a completion of a specific task to be
2898 * signaled or for a specified timeout to expire. It can be
2899 * interrupted by a kill signal. The timeout is in jiffies.
c6dc7f05 2900 *
e69f6186
YB
2901 * Return: -ERESTARTSYS if interrupted, 0 if timed out, positive (at least 1,
2902 * or number of jiffies left till timeout) if completed.
0aa12fb4 2903 */
6bf41237 2904long __sched
0aa12fb4
SW
2905wait_for_completion_killable_timeout(struct completion *x,
2906 unsigned long timeout)
2907{
2908 return wait_for_common(x, timeout, TASK_KILLABLE);
2909}
2910EXPORT_SYMBOL(wait_for_completion_killable_timeout);
2911
be4de352
DC
2912/**
2913 * try_wait_for_completion - try to decrement a completion without blocking
2914 * @x: completion structure
2915 *
e69f6186 2916 * Return: 0 if a decrement cannot be done without blocking
be4de352
DC
2917 * 1 if a decrement succeeded.
2918 *
2919 * If a completion is being used as a counting completion,
2920 * attempt to decrement the counter without blocking. This
2921 * enables us to avoid waiting if the resource the completion
2922 * is protecting is not available.
2923 */
2924bool try_wait_for_completion(struct completion *x)
2925{
7539a3b3 2926 unsigned long flags;
be4de352
DC
2927 int ret = 1;
2928
7539a3b3 2929 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
2930 if (!x->done)
2931 ret = 0;
2932 else
2933 x->done--;
7539a3b3 2934 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
2935 return ret;
2936}
2937EXPORT_SYMBOL(try_wait_for_completion);
2938
2939/**
2940 * completion_done - Test to see if a completion has any waiters
2941 * @x: completion structure
2942 *
e69f6186 2943 * Return: 0 if there are waiters (wait_for_completion() in progress)
be4de352
DC
2944 * 1 if there are no waiters.
2945 *
2946 */
2947bool completion_done(struct completion *x)
2948{
7539a3b3 2949 unsigned long flags;
be4de352
DC
2950 int ret = 1;
2951
7539a3b3 2952 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
2953 if (!x->done)
2954 ret = 0;
7539a3b3 2955 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
2956 return ret;
2957}
2958EXPORT_SYMBOL(completion_done);
2959
8cbbe86d
AK
2960static long __sched
2961sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 2962{
0fec171c
IM
2963 unsigned long flags;
2964 wait_queue_t wait;
2965
2966 init_waitqueue_entry(&wait, current);
1da177e4 2967
8cbbe86d 2968 __set_current_state(state);
1da177e4 2969
8cbbe86d
AK
2970 spin_lock_irqsave(&q->lock, flags);
2971 __add_wait_queue(q, &wait);
2972 spin_unlock(&q->lock);
2973 timeout = schedule_timeout(timeout);
2974 spin_lock_irq(&q->lock);
2975 __remove_wait_queue(q, &wait);
2976 spin_unlock_irqrestore(&q->lock, flags);
2977
2978 return timeout;
2979}
2980
2981void __sched interruptible_sleep_on(wait_queue_head_t *q)
2982{
2983 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 2984}
1da177e4
LT
2985EXPORT_SYMBOL(interruptible_sleep_on);
2986
0fec171c 2987long __sched
95cdf3b7 2988interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 2989{
8cbbe86d 2990 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 2991}
1da177e4
LT
2992EXPORT_SYMBOL(interruptible_sleep_on_timeout);
2993
0fec171c 2994void __sched sleep_on(wait_queue_head_t *q)
1da177e4 2995{
8cbbe86d 2996 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 2997}
1da177e4
LT
2998EXPORT_SYMBOL(sleep_on);
2999
0fec171c 3000long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3001{
8cbbe86d 3002 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 3003}
1da177e4
LT
3004EXPORT_SYMBOL(sleep_on_timeout);
3005
b29739f9
IM
3006#ifdef CONFIG_RT_MUTEXES
3007
3008/*
3009 * rt_mutex_setprio - set the current priority of a task
3010 * @p: task
3011 * @prio: prio value (kernel-internal form)
3012 *
3013 * This function changes the 'effective' priority of a task. It does
3014 * not touch ->normal_prio like __setscheduler().
3015 *
3016 * Used by the rt_mutex code to implement priority inheritance logic.
3017 */
36c8b586 3018void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3019{
83b699ed 3020 int oldprio, on_rq, running;
70b97a7f 3021 struct rq *rq;
83ab0aa0 3022 const struct sched_class *prev_class;
b29739f9
IM
3023
3024 BUG_ON(prio < 0 || prio > MAX_PRIO);
3025
0122ec5b 3026 rq = __task_rq_lock(p);
b29739f9 3027
1c4dd99b
TG
3028 /*
3029 * Idle task boosting is a nono in general. There is one
3030 * exception, when PREEMPT_RT and NOHZ is active:
3031 *
3032 * The idle task calls get_next_timer_interrupt() and holds
3033 * the timer wheel base->lock on the CPU and another CPU wants
3034 * to access the timer (probably to cancel it). We can safely
3035 * ignore the boosting request, as the idle CPU runs this code
3036 * with interrupts disabled and will complete the lock
3037 * protected section without being interrupted. So there is no
3038 * real need to boost.
3039 */
3040 if (unlikely(p == rq->idle)) {
3041 WARN_ON(p != rq->curr);
3042 WARN_ON(p->pi_blocked_on);
3043 goto out_unlock;
3044 }
3045
a8027073 3046 trace_sched_pi_setprio(p, prio);
d5f9f942 3047 oldprio = p->prio;
83ab0aa0 3048 prev_class = p->sched_class;
fd2f4419 3049 on_rq = p->on_rq;
051a1d1a 3050 running = task_current(rq, p);
0e1f3483 3051 if (on_rq)
69be72c1 3052 dequeue_task(rq, p, 0);
0e1f3483
HS
3053 if (running)
3054 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
3055
3056 if (rt_prio(prio))
3057 p->sched_class = &rt_sched_class;
3058 else
3059 p->sched_class = &fair_sched_class;
3060
b29739f9
IM
3061 p->prio = prio;
3062
0e1f3483
HS
3063 if (running)
3064 p->sched_class->set_curr_task(rq);
da7a735e 3065 if (on_rq)
371fd7e7 3066 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845 3067
da7a735e 3068 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3069out_unlock:
0122ec5b 3070 __task_rq_unlock(rq);
b29739f9 3071}
b29739f9 3072#endif
36c8b586 3073void set_user_nice(struct task_struct *p, long nice)
1da177e4 3074{
dd41f596 3075 int old_prio, delta, on_rq;
1da177e4 3076 unsigned long flags;
70b97a7f 3077 struct rq *rq;
1da177e4
LT
3078
3079 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3080 return;
3081 /*
3082 * We have to be careful, if called from sys_setpriority(),
3083 * the task might be in the middle of scheduling on another CPU.
3084 */
3085 rq = task_rq_lock(p, &flags);
3086 /*
3087 * The RT priorities are set via sched_setscheduler(), but we still
3088 * allow the 'normal' nice value to be set - but as expected
3089 * it wont have any effect on scheduling until the task is
dd41f596 3090 * SCHED_FIFO/SCHED_RR:
1da177e4 3091 */
e05606d3 3092 if (task_has_rt_policy(p)) {
1da177e4
LT
3093 p->static_prio = NICE_TO_PRIO(nice);
3094 goto out_unlock;
3095 }
fd2f4419 3096 on_rq = p->on_rq;
c09595f6 3097 if (on_rq)
69be72c1 3098 dequeue_task(rq, p, 0);
1da177e4 3099
1da177e4 3100 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3101 set_load_weight(p);
b29739f9
IM
3102 old_prio = p->prio;
3103 p->prio = effective_prio(p);
3104 delta = p->prio - old_prio;
1da177e4 3105
dd41f596 3106 if (on_rq) {
371fd7e7 3107 enqueue_task(rq, p, 0);
1da177e4 3108 /*
d5f9f942
AM
3109 * If the task increased its priority or is running and
3110 * lowered its priority, then reschedule its CPU:
1da177e4 3111 */
d5f9f942 3112 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
3113 resched_task(rq->curr);
3114 }
3115out_unlock:
0122ec5b 3116 task_rq_unlock(rq, p, &flags);
1da177e4 3117}
1da177e4
LT
3118EXPORT_SYMBOL(set_user_nice);
3119
e43379f1
MM
3120/*
3121 * can_nice - check if a task can reduce its nice value
3122 * @p: task
3123 * @nice: nice value
3124 */
36c8b586 3125int can_nice(const struct task_struct *p, const int nice)
e43379f1 3126{
024f4747
MM
3127 /* convert nice value [19,-20] to rlimit style value [1,40] */
3128 int nice_rlim = 20 - nice;
48f24c4d 3129
78d7d407 3130 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3131 capable(CAP_SYS_NICE));
3132}
3133
1da177e4
LT
3134#ifdef __ARCH_WANT_SYS_NICE
3135
3136/*
3137 * sys_nice - change the priority of the current process.
3138 * @increment: priority increment
3139 *
3140 * sys_setpriority is a more generic, but much slower function that
3141 * does similar things.
3142 */
5add95d4 3143SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3144{
48f24c4d 3145 long nice, retval;
1da177e4
LT
3146
3147 /*
3148 * Setpriority might change our priority at the same moment.
3149 * We don't have to worry. Conceptually one call occurs first
3150 * and we have a single winner.
3151 */
e43379f1
MM
3152 if (increment < -40)
3153 increment = -40;
1da177e4
LT
3154 if (increment > 40)
3155 increment = 40;
3156
2b8f836f 3157 nice = TASK_NICE(current) + increment;
1da177e4
LT
3158 if (nice < -20)
3159 nice = -20;
3160 if (nice > 19)
3161 nice = 19;
3162
e43379f1
MM
3163 if (increment < 0 && !can_nice(current, nice))
3164 return -EPERM;
3165
1da177e4
LT
3166 retval = security_task_setnice(current, nice);
3167 if (retval)
3168 return retval;
3169
3170 set_user_nice(current, nice);
3171 return 0;
3172}
3173
3174#endif
3175
3176/**
3177 * task_prio - return the priority value of a given task.
3178 * @p: the task in question.
3179 *
e69f6186 3180 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3181 * RT tasks are offset by -200. Normal tasks are centered
3182 * around 0, value goes from -16 to +15.
3183 */
36c8b586 3184int task_prio(const struct task_struct *p)
1da177e4
LT
3185{
3186 return p->prio - MAX_RT_PRIO;
3187}
3188
3189/**
3190 * task_nice - return the nice value of a given task.
3191 * @p: the task in question.
e69f6186
YB
3192 *
3193 * Return: The nice value [ -20 ... 0 ... 19 ].
1da177e4 3194 */
36c8b586 3195int task_nice(const struct task_struct *p)
1da177e4
LT
3196{
3197 return TASK_NICE(p);
3198}
150d8bed 3199EXPORT_SYMBOL(task_nice);
1da177e4
LT
3200
3201/**
3202 * idle_cpu - is a given cpu idle currently?
3203 * @cpu: the processor in question.
e69f6186
YB
3204 *
3205 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3206 */
3207int idle_cpu(int cpu)
3208{
908a3283
TG
3209 struct rq *rq = cpu_rq(cpu);
3210
3211 if (rq->curr != rq->idle)
3212 return 0;
3213
3214 if (rq->nr_running)
3215 return 0;
3216
3217#ifdef CONFIG_SMP
3218 if (!llist_empty(&rq->wake_list))
3219 return 0;
3220#endif
3221
3222 return 1;
1da177e4
LT
3223}
3224
1da177e4
LT
3225/**
3226 * idle_task - return the idle task for a given cpu.
3227 * @cpu: the processor in question.
e69f6186
YB
3228 *
3229 * Return: The idle task for the cpu @cpu.
1da177e4 3230 */
36c8b586 3231struct task_struct *idle_task(int cpu)
1da177e4
LT
3232{
3233 return cpu_rq(cpu)->idle;
3234}
3235
3236/**
3237 * find_process_by_pid - find a process with a matching PID value.
3238 * @pid: the pid in question.
e69f6186
YB
3239 *
3240 * The task of @pid, if found. %NULL otherwise.
1da177e4 3241 */
a9957449 3242static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3243{
228ebcbe 3244 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3245}
3246
3247/* Actually do priority change: must hold rq lock. */
dd41f596
IM
3248static void
3249__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 3250{
1da177e4
LT
3251 p->policy = policy;
3252 p->rt_priority = prio;
b29739f9
IM
3253 p->normal_prio = normal_prio(p);
3254 /* we are holding p->pi_lock already */
3255 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
3256 if (rt_prio(p->prio))
3257 p->sched_class = &rt_sched_class;
3258 else
3259 p->sched_class = &fair_sched_class;
2dd73a4f 3260 set_load_weight(p);
1da177e4
LT
3261}
3262
c69e8d9c
DH
3263/*
3264 * check the target process has a UID that matches the current process's
3265 */
3266static bool check_same_owner(struct task_struct *p)
3267{
3268 const struct cred *cred = current_cred(), *pcred;
3269 bool match;
3270
3271 rcu_read_lock();
3272 pcred = __task_cred(p);
9c806aa0
EB
3273 match = (uid_eq(cred->euid, pcred->euid) ||
3274 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3275 rcu_read_unlock();
3276 return match;
3277}
3278
961ccddd 3279static int __sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3280 const struct sched_param *param, bool user)
1da177e4 3281{
83b699ed 3282 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 3283 unsigned long flags;
83ab0aa0 3284 const struct sched_class *prev_class;
70b97a7f 3285 struct rq *rq;
ca94c442 3286 int reset_on_fork;
1da177e4 3287
66e5393a
SR
3288 /* may grab non-irq protected spin_locks */
3289 BUG_ON(in_interrupt());
1da177e4
LT
3290recheck:
3291 /* double check policy once rq lock held */
ca94c442
LP
3292 if (policy < 0) {
3293 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3294 policy = oldpolicy = p->policy;
ca94c442
LP
3295 } else {
3296 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3297 policy &= ~SCHED_RESET_ON_FORK;
3298
3299 if (policy != SCHED_FIFO && policy != SCHED_RR &&
3300 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3301 policy != SCHED_IDLE)
3302 return -EINVAL;
3303 }
3304
1da177e4
LT
3305 /*
3306 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3307 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3308 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
3309 */
3310 if (param->sched_priority < 0 ||
95cdf3b7 3311 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 3312 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 3313 return -EINVAL;
e05606d3 3314 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
3315 return -EINVAL;
3316
37e4ab3f
OC
3317 /*
3318 * Allow unprivileged RT tasks to decrease priority:
3319 */
961ccddd 3320 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 3321 if (rt_policy(policy)) {
a44702e8
ON
3322 unsigned long rlim_rtprio =
3323 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3324
3325 /* can't set/change the rt policy */
3326 if (policy != p->policy && !rlim_rtprio)
3327 return -EPERM;
3328
3329 /* can't increase priority */
3330 if (param->sched_priority > p->rt_priority &&
3331 param->sched_priority > rlim_rtprio)
3332 return -EPERM;
3333 }
c02aa73b 3334
dd41f596 3335 /*
c02aa73b
DH
3336 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3337 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3338 */
c02aa73b
DH
3339 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3340 if (!can_nice(p, TASK_NICE(p)))
3341 return -EPERM;
3342 }
5fe1d75f 3343
37e4ab3f 3344 /* can't change other user's priorities */
c69e8d9c 3345 if (!check_same_owner(p))
37e4ab3f 3346 return -EPERM;
ca94c442
LP
3347
3348 /* Normal users shall not reset the sched_reset_on_fork flag */
3349 if (p->sched_reset_on_fork && !reset_on_fork)
3350 return -EPERM;
37e4ab3f 3351 }
1da177e4 3352
725aad24 3353 if (user) {
b0ae1981 3354 retval = security_task_setscheduler(p);
725aad24
JF
3355 if (retval)
3356 return retval;
3357 }
3358
b29739f9
IM
3359 /*
3360 * make sure no PI-waiters arrive (or leave) while we are
3361 * changing the priority of the task:
0122ec5b 3362 *
25985edc 3363 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3364 * runqueue lock must be held.
3365 */
0122ec5b 3366 rq = task_rq_lock(p, &flags);
dc61b1d6 3367
34f971f6
PZ
3368 /*
3369 * Changing the policy of the stop threads its a very bad idea
3370 */
3371 if (p == rq->stop) {
0122ec5b 3372 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3373 return -EINVAL;
3374 }
3375
a51e9198
DF
3376 /*
3377 * If not changing anything there's no need to proceed further:
3378 */
3379 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
3380 param->sched_priority == p->rt_priority))) {
45afb173 3381 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3382 return 0;
3383 }
3384
dc61b1d6
PZ
3385#ifdef CONFIG_RT_GROUP_SCHED
3386 if (user) {
3387 /*
3388 * Do not allow realtime tasks into groups that have no runtime
3389 * assigned.
3390 */
3391 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3392 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3393 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3394 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3395 return -EPERM;
3396 }
3397 }
3398#endif
3399
1da177e4
LT
3400 /* recheck policy now with rq lock held */
3401 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3402 policy = oldpolicy = -1;
0122ec5b 3403 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3404 goto recheck;
3405 }
fd2f4419 3406 on_rq = p->on_rq;
051a1d1a 3407 running = task_current(rq, p);
0e1f3483 3408 if (on_rq)
4ca9b72b 3409 dequeue_task(rq, p, 0);
0e1f3483
HS
3410 if (running)
3411 p->sched_class->put_prev_task(rq, p);
f6b53205 3412
ca94c442
LP
3413 p->sched_reset_on_fork = reset_on_fork;
3414
1da177e4 3415 oldprio = p->prio;
83ab0aa0 3416 prev_class = p->sched_class;
dd41f596 3417 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 3418
0e1f3483
HS
3419 if (running)
3420 p->sched_class->set_curr_task(rq);
da7a735e 3421 if (on_rq)
4ca9b72b 3422 enqueue_task(rq, p, 0);
cb469845 3423
da7a735e 3424 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 3425 task_rq_unlock(rq, p, &flags);
b29739f9 3426
95e02ca9
TG
3427 rt_mutex_adjust_pi(p);
3428
1da177e4
LT
3429 return 0;
3430}
961ccddd
RR
3431
3432/**
3433 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3434 * @p: the task in question.
3435 * @policy: new policy.
3436 * @param: structure containing the new RT priority.
3437 *
e69f6186
YB
3438 * Return: 0 on success. An error code otherwise.
3439 *
961ccddd
RR
3440 * NOTE that the task may be already dead.
3441 */
3442int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3443 const struct sched_param *param)
961ccddd
RR
3444{
3445 return __sched_setscheduler(p, policy, param, true);
3446}
1da177e4
LT
3447EXPORT_SYMBOL_GPL(sched_setscheduler);
3448
961ccddd
RR
3449/**
3450 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3451 * @p: the task in question.
3452 * @policy: new policy.
3453 * @param: structure containing the new RT priority.
3454 *
3455 * Just like sched_setscheduler, only don't bother checking if the
3456 * current context has permission. For example, this is needed in
3457 * stop_machine(): we create temporary high priority worker threads,
3458 * but our caller might not have that capability.
e69f6186
YB
3459 *
3460 * Return: 0 on success. An error code otherwise.
961ccddd
RR
3461 */
3462int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 3463 const struct sched_param *param)
961ccddd
RR
3464{
3465 return __sched_setscheduler(p, policy, param, false);
3466}
3467
95cdf3b7
IM
3468static int
3469do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 3470{
1da177e4
LT
3471 struct sched_param lparam;
3472 struct task_struct *p;
36c8b586 3473 int retval;
1da177e4
LT
3474
3475 if (!param || pid < 0)
3476 return -EINVAL;
3477 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3478 return -EFAULT;
5fe1d75f
ON
3479
3480 rcu_read_lock();
3481 retval = -ESRCH;
1da177e4 3482 p = find_process_by_pid(pid);
5fe1d75f
ON
3483 if (p != NULL)
3484 retval = sched_setscheduler(p, policy, &lparam);
3485 rcu_read_unlock();
36c8b586 3486
1da177e4
LT
3487 return retval;
3488}
3489
3490/**
3491 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3492 * @pid: the pid in question.
3493 * @policy: new policy.
3494 * @param: structure containing the new RT priority.
e69f6186
YB
3495 *
3496 * Return: 0 on success. An error code otherwise.
1da177e4 3497 */
5add95d4
HC
3498SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3499 struct sched_param __user *, param)
1da177e4 3500{
c21761f1
JB
3501 /* negative values for policy are not valid */
3502 if (policy < 0)
3503 return -EINVAL;
3504
1da177e4
LT
3505 return do_sched_setscheduler(pid, policy, param);
3506}
3507
3508/**
3509 * sys_sched_setparam - set/change the RT priority of a thread
3510 * @pid: the pid in question.
3511 * @param: structure containing the new RT priority.
e69f6186
YB
3512 *
3513 * Return: 0 on success. An error code otherwise.
1da177e4 3514 */
5add95d4 3515SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
3516{
3517 return do_sched_setscheduler(pid, -1, param);
3518}
3519
3520/**
3521 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3522 * @pid: the pid in question.
e69f6186
YB
3523 *
3524 * Return: On success, the policy of the thread. Otherwise, a negative error
3525 * code.
1da177e4 3526 */
5add95d4 3527SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 3528{
36c8b586 3529 struct task_struct *p;
3a5c359a 3530 int retval;
1da177e4
LT
3531
3532 if (pid < 0)
3a5c359a 3533 return -EINVAL;
1da177e4
LT
3534
3535 retval = -ESRCH;
5fe85be0 3536 rcu_read_lock();
1da177e4
LT
3537 p = find_process_by_pid(pid);
3538 if (p) {
3539 retval = security_task_getscheduler(p);
3540 if (!retval)
ca94c442
LP
3541 retval = p->policy
3542 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 3543 }
5fe85be0 3544 rcu_read_unlock();
1da177e4
LT
3545 return retval;
3546}
3547
3548/**
ca94c442 3549 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
3550 * @pid: the pid in question.
3551 * @param: structure containing the RT priority.
e69f6186
YB
3552 *
3553 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3554 * code.
1da177e4 3555 */
5add95d4 3556SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
3557{
3558 struct sched_param lp;
36c8b586 3559 struct task_struct *p;
3a5c359a 3560 int retval;
1da177e4
LT
3561
3562 if (!param || pid < 0)
3a5c359a 3563 return -EINVAL;
1da177e4 3564
5fe85be0 3565 rcu_read_lock();
1da177e4
LT
3566 p = find_process_by_pid(pid);
3567 retval = -ESRCH;
3568 if (!p)
3569 goto out_unlock;
3570
3571 retval = security_task_getscheduler(p);
3572 if (retval)
3573 goto out_unlock;
3574
3575 lp.sched_priority = p->rt_priority;
5fe85be0 3576 rcu_read_unlock();
1da177e4
LT
3577
3578 /*
3579 * This one might sleep, we cannot do it with a spinlock held ...
3580 */
3581 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3582
1da177e4
LT
3583 return retval;
3584
3585out_unlock:
5fe85be0 3586 rcu_read_unlock();
1da177e4
LT
3587 return retval;
3588}
3589
96f874e2 3590long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 3591{
5a16f3d3 3592 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
3593 struct task_struct *p;
3594 int retval;
1da177e4 3595
95402b38 3596 get_online_cpus();
23f5d142 3597 rcu_read_lock();
1da177e4
LT
3598
3599 p = find_process_by_pid(pid);
3600 if (!p) {
23f5d142 3601 rcu_read_unlock();
95402b38 3602 put_online_cpus();
1da177e4
LT
3603 return -ESRCH;
3604 }
3605
23f5d142 3606 /* Prevent p going away */
1da177e4 3607 get_task_struct(p);
23f5d142 3608 rcu_read_unlock();
1da177e4 3609
14a40ffc
TH
3610 if (p->flags & PF_NO_SETAFFINITY) {
3611 retval = -EINVAL;
3612 goto out_put_task;
3613 }
5a16f3d3
RR
3614 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3615 retval = -ENOMEM;
3616 goto out_put_task;
3617 }
3618 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3619 retval = -ENOMEM;
3620 goto out_free_cpus_allowed;
3621 }
1da177e4 3622 retval = -EPERM;
4c44aaaf
EB
3623 if (!check_same_owner(p)) {
3624 rcu_read_lock();
3625 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3626 rcu_read_unlock();
3627 goto out_unlock;
3628 }
3629 rcu_read_unlock();
3630 }
1da177e4 3631
b0ae1981 3632 retval = security_task_setscheduler(p);
e7834f8f
DQ
3633 if (retval)
3634 goto out_unlock;
3635
5a16f3d3
RR
3636 cpuset_cpus_allowed(p, cpus_allowed);
3637 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 3638again:
5a16f3d3 3639 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 3640
8707d8b8 3641 if (!retval) {
5a16f3d3
RR
3642 cpuset_cpus_allowed(p, cpus_allowed);
3643 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
3644 /*
3645 * We must have raced with a concurrent cpuset
3646 * update. Just reset the cpus_allowed to the
3647 * cpuset's cpus_allowed
3648 */
5a16f3d3 3649 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
3650 goto again;
3651 }
3652 }
1da177e4 3653out_unlock:
5a16f3d3
RR
3654 free_cpumask_var(new_mask);
3655out_free_cpus_allowed:
3656 free_cpumask_var(cpus_allowed);
3657out_put_task:
1da177e4 3658 put_task_struct(p);
95402b38 3659 put_online_cpus();
1da177e4
LT
3660 return retval;
3661}
3662
3663static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 3664 struct cpumask *new_mask)
1da177e4 3665{
96f874e2
RR
3666 if (len < cpumask_size())
3667 cpumask_clear(new_mask);
3668 else if (len > cpumask_size())
3669 len = cpumask_size();
3670
1da177e4
LT
3671 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3672}
3673
3674/**
3675 * sys_sched_setaffinity - set the cpu affinity of a process
3676 * @pid: pid of the process
3677 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3678 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
3679 *
3680 * Return: 0 on success. An error code otherwise.
1da177e4 3681 */
5add95d4
HC
3682SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
3683 unsigned long __user *, user_mask_ptr)
1da177e4 3684{
5a16f3d3 3685 cpumask_var_t new_mask;
1da177e4
LT
3686 int retval;
3687
5a16f3d3
RR
3688 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3689 return -ENOMEM;
1da177e4 3690
5a16f3d3
RR
3691 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
3692 if (retval == 0)
3693 retval = sched_setaffinity(pid, new_mask);
3694 free_cpumask_var(new_mask);
3695 return retval;
1da177e4
LT
3696}
3697
96f874e2 3698long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 3699{
36c8b586 3700 struct task_struct *p;
31605683 3701 unsigned long flags;
1da177e4 3702 int retval;
1da177e4 3703
95402b38 3704 get_online_cpus();
23f5d142 3705 rcu_read_lock();
1da177e4
LT
3706
3707 retval = -ESRCH;
3708 p = find_process_by_pid(pid);
3709 if (!p)
3710 goto out_unlock;
3711
e7834f8f
DQ
3712 retval = security_task_getscheduler(p);
3713 if (retval)
3714 goto out_unlock;
3715
013fdb80 3716 raw_spin_lock_irqsave(&p->pi_lock, flags);
96f874e2 3717 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
013fdb80 3718 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
3719
3720out_unlock:
23f5d142 3721 rcu_read_unlock();
95402b38 3722 put_online_cpus();
1da177e4 3723
9531b62f 3724 return retval;
1da177e4
LT
3725}
3726
3727/**
3728 * sys_sched_getaffinity - get the cpu affinity of a process
3729 * @pid: pid of the process
3730 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3731 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186
YB
3732 *
3733 * Return: 0 on success. An error code otherwise.
1da177e4 3734 */
5add95d4
HC
3735SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
3736 unsigned long __user *, user_mask_ptr)
1da177e4
LT
3737{
3738 int ret;
f17c8607 3739 cpumask_var_t mask;
1da177e4 3740
84fba5ec 3741 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
3742 return -EINVAL;
3743 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
3744 return -EINVAL;
3745
f17c8607
RR
3746 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
3747 return -ENOMEM;
1da177e4 3748
f17c8607
RR
3749 ret = sched_getaffinity(pid, mask);
3750 if (ret == 0) {
8bc037fb 3751 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
3752
3753 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
3754 ret = -EFAULT;
3755 else
cd3d8031 3756 ret = retlen;
f17c8607
RR
3757 }
3758 free_cpumask_var(mask);
1da177e4 3759
f17c8607 3760 return ret;
1da177e4
LT
3761}
3762
3763/**
3764 * sys_sched_yield - yield the current processor to other threads.
3765 *
dd41f596
IM
3766 * This function yields the current CPU to other tasks. If there are no
3767 * other threads running on this CPU then this function will return.
e69f6186
YB
3768 *
3769 * Return: 0.
1da177e4 3770 */
5add95d4 3771SYSCALL_DEFINE0(sched_yield)
1da177e4 3772{
70b97a7f 3773 struct rq *rq = this_rq_lock();
1da177e4 3774
2d72376b 3775 schedstat_inc(rq, yld_count);
4530d7ab 3776 current->sched_class->yield_task(rq);
1da177e4
LT
3777
3778 /*
3779 * Since we are going to call schedule() anyway, there's
3780 * no need to preempt or enable interrupts:
3781 */
3782 __release(rq->lock);
8a25d5de 3783 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 3784 do_raw_spin_unlock(&rq->lock);
ba74c144 3785 sched_preempt_enable_no_resched();
1da177e4
LT
3786
3787 schedule();
3788
3789 return 0;
3790}
3791
d86ee480
PZ
3792static inline int should_resched(void)
3793{
3794 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
3795}
3796
e7b38404 3797static void __cond_resched(void)
1da177e4 3798{
e7aaaa69 3799 add_preempt_count(PREEMPT_ACTIVE);
c259e01a 3800 __schedule();
e7aaaa69 3801 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
3802}
3803
02b67cc3 3804int __sched _cond_resched(void)
1da177e4 3805{
d86ee480 3806 if (should_resched()) {
1da177e4
LT
3807 __cond_resched();
3808 return 1;
3809 }
3810 return 0;
3811}
02b67cc3 3812EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
3813
3814/*
613afbf8 3815 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
3816 * call schedule, and on return reacquire the lock.
3817 *
41a2d6cf 3818 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
3819 * operations here to prevent schedule() from being called twice (once via
3820 * spin_unlock(), once by hand).
3821 */
613afbf8 3822int __cond_resched_lock(spinlock_t *lock)
1da177e4 3823{
d86ee480 3824 int resched = should_resched();
6df3cecb
JK
3825 int ret = 0;
3826
f607c668
PZ
3827 lockdep_assert_held(lock);
3828
95c354fe 3829 if (spin_needbreak(lock) || resched) {
1da177e4 3830 spin_unlock(lock);
d86ee480 3831 if (resched)
95c354fe
NP
3832 __cond_resched();
3833 else
3834 cpu_relax();
6df3cecb 3835 ret = 1;
1da177e4 3836 spin_lock(lock);
1da177e4 3837 }
6df3cecb 3838 return ret;
1da177e4 3839}
613afbf8 3840EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 3841
613afbf8 3842int __sched __cond_resched_softirq(void)
1da177e4
LT
3843{
3844 BUG_ON(!in_softirq());
3845
d86ee480 3846 if (should_resched()) {
98d82567 3847 local_bh_enable();
1da177e4
LT
3848 __cond_resched();
3849 local_bh_disable();
3850 return 1;
3851 }
3852 return 0;
3853}
613afbf8 3854EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 3855
1da177e4
LT
3856/**
3857 * yield - yield the current processor to other threads.
3858 *
8e3fabfd
PZ
3859 * Do not ever use this function, there's a 99% chance you're doing it wrong.
3860 *
3861 * The scheduler is at all times free to pick the calling task as the most
3862 * eligible task to run, if removing the yield() call from your code breaks
3863 * it, its already broken.
3864 *
3865 * Typical broken usage is:
3866 *
3867 * while (!event)
3868 * yield();
3869 *
3870 * where one assumes that yield() will let 'the other' process run that will
3871 * make event true. If the current task is a SCHED_FIFO task that will never
3872 * happen. Never use yield() as a progress guarantee!!
3873 *
3874 * If you want to use yield() to wait for something, use wait_event().
3875 * If you want to use yield() to be 'nice' for others, use cond_resched().
3876 * If you still want to use yield(), do not!
1da177e4
LT
3877 */
3878void __sched yield(void)
3879{
3880 set_current_state(TASK_RUNNING);
3881 sys_sched_yield();
3882}
1da177e4
LT
3883EXPORT_SYMBOL(yield);
3884
d95f4122
MG
3885/**
3886 * yield_to - yield the current processor to another thread in
3887 * your thread group, or accelerate that thread toward the
3888 * processor it's on.
16addf95
RD
3889 * @p: target task
3890 * @preempt: whether task preemption is allowed or not
d95f4122
MG
3891 *
3892 * It's the caller's job to ensure that the target task struct
3893 * can't go away on us before we can do any checks.
3894 *
e69f6186 3895 * Return:
7b270f60
PZ
3896 * true (>0) if we indeed boosted the target task.
3897 * false (0) if we failed to boost the target.
3898 * -ESRCH if there's no task to yield to.
d95f4122
MG
3899 */
3900bool __sched yield_to(struct task_struct *p, bool preempt)
3901{
3902 struct task_struct *curr = current;
3903 struct rq *rq, *p_rq;
3904 unsigned long flags;
c3c18640 3905 int yielded = 0;
d95f4122
MG
3906
3907 local_irq_save(flags);
3908 rq = this_rq();
3909
3910again:
3911 p_rq = task_rq(p);
7b270f60
PZ
3912 /*
3913 * If we're the only runnable task on the rq and target rq also
3914 * has only one task, there's absolutely no point in yielding.
3915 */
3916 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
3917 yielded = -ESRCH;
3918 goto out_irq;
3919 }
3920
d95f4122
MG
3921 double_rq_lock(rq, p_rq);
3922 while (task_rq(p) != p_rq) {
3923 double_rq_unlock(rq, p_rq);
3924 goto again;
3925 }
3926
3927 if (!curr->sched_class->yield_to_task)
7b270f60 3928 goto out_unlock;
d95f4122
MG
3929
3930 if (curr->sched_class != p->sched_class)
7b270f60 3931 goto out_unlock;
d95f4122
MG
3932
3933 if (task_running(p_rq, p) || p->state)
7b270f60 3934 goto out_unlock;
d95f4122
MG
3935
3936 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 3937 if (yielded) {
d95f4122 3938 schedstat_inc(rq, yld_count);
6d1cafd8
VP
3939 /*
3940 * Make p's CPU reschedule; pick_next_entity takes care of
3941 * fairness.
3942 */
3943 if (preempt && rq != p_rq)
3944 resched_task(p_rq->curr);
3945 }
d95f4122 3946
7b270f60 3947out_unlock:
d95f4122 3948 double_rq_unlock(rq, p_rq);
7b270f60 3949out_irq:
d95f4122
MG
3950 local_irq_restore(flags);
3951
7b270f60 3952 if (yielded > 0)
d95f4122
MG
3953 schedule();
3954
3955 return yielded;
3956}
3957EXPORT_SYMBOL_GPL(yield_to);
3958
1da177e4 3959/*
41a2d6cf 3960 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 3961 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
3962 */
3963void __sched io_schedule(void)
3964{
54d35f29 3965 struct rq *rq = raw_rq();
1da177e4 3966
0ff92245 3967 delayacct_blkio_start();
1da177e4 3968 atomic_inc(&rq->nr_iowait);
73c10101 3969 blk_flush_plug(current);
8f0dfc34 3970 current->in_iowait = 1;
1da177e4 3971 schedule();
8f0dfc34 3972 current->in_iowait = 0;
1da177e4 3973 atomic_dec(&rq->nr_iowait);
0ff92245 3974 delayacct_blkio_end();
1da177e4 3975}
1da177e4
LT
3976EXPORT_SYMBOL(io_schedule);
3977
3978long __sched io_schedule_timeout(long timeout)
3979{
54d35f29 3980 struct rq *rq = raw_rq();
1da177e4
LT
3981 long ret;
3982
0ff92245 3983 delayacct_blkio_start();
1da177e4 3984 atomic_inc(&rq->nr_iowait);
73c10101 3985 blk_flush_plug(current);
8f0dfc34 3986 current->in_iowait = 1;
1da177e4 3987 ret = schedule_timeout(timeout);
8f0dfc34 3988 current->in_iowait = 0;
1da177e4 3989 atomic_dec(&rq->nr_iowait);
0ff92245 3990 delayacct_blkio_end();
1da177e4
LT
3991 return ret;
3992}
3993
3994/**
3995 * sys_sched_get_priority_max - return maximum RT priority.
3996 * @policy: scheduling class.
3997 *
e69f6186
YB
3998 * Return: On success, this syscall returns the maximum
3999 * rt_priority that can be used by a given scheduling class.
4000 * On failure, a negative error code is returned.
1da177e4 4001 */
5add95d4 4002SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4003{
4004 int ret = -EINVAL;
4005
4006 switch (policy) {
4007 case SCHED_FIFO:
4008 case SCHED_RR:
4009 ret = MAX_USER_RT_PRIO-1;
4010 break;
4011 case SCHED_NORMAL:
b0a9499c 4012 case SCHED_BATCH:
dd41f596 4013 case SCHED_IDLE:
1da177e4
LT
4014 ret = 0;
4015 break;
4016 }
4017 return ret;
4018}
4019
4020/**
4021 * sys_sched_get_priority_min - return minimum RT priority.
4022 * @policy: scheduling class.
4023 *
e69f6186
YB
4024 * Return: On success, this syscall returns the minimum
4025 * rt_priority that can be used by a given scheduling class.
4026 * On failure, a negative error code is returned.
1da177e4 4027 */
5add95d4 4028SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4029{
4030 int ret = -EINVAL;
4031
4032 switch (policy) {
4033 case SCHED_FIFO:
4034 case SCHED_RR:
4035 ret = 1;
4036 break;
4037 case SCHED_NORMAL:
b0a9499c 4038 case SCHED_BATCH:
dd41f596 4039 case SCHED_IDLE:
1da177e4
LT
4040 ret = 0;
4041 }
4042 return ret;
4043}
4044
4045/**
4046 * sys_sched_rr_get_interval - return the default timeslice of a process.
4047 * @pid: pid of the process.
4048 * @interval: userspace pointer to the timeslice value.
4049 *
4050 * this syscall writes the default timeslice value of a given process
4051 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
4052 *
4053 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4054 * an error code.
1da177e4 4055 */
17da2bd9 4056SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4057 struct timespec __user *, interval)
1da177e4 4058{
36c8b586 4059 struct task_struct *p;
a4ec24b4 4060 unsigned int time_slice;
dba091b9
TG
4061 unsigned long flags;
4062 struct rq *rq;
3a5c359a 4063 int retval;
1da177e4 4064 struct timespec t;
1da177e4
LT
4065
4066 if (pid < 0)
3a5c359a 4067 return -EINVAL;
1da177e4
LT
4068
4069 retval = -ESRCH;
1a551ae7 4070 rcu_read_lock();
1da177e4
LT
4071 p = find_process_by_pid(pid);
4072 if (!p)
4073 goto out_unlock;
4074
4075 retval = security_task_getscheduler(p);
4076 if (retval)
4077 goto out_unlock;
4078
dba091b9
TG
4079 rq = task_rq_lock(p, &flags);
4080 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4081 task_rq_unlock(rq, p, &flags);
a4ec24b4 4082
1a551ae7 4083 rcu_read_unlock();
a4ec24b4 4084 jiffies_to_timespec(time_slice, &t);
1da177e4 4085 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4086 return retval;
3a5c359a 4087
1da177e4 4088out_unlock:
1a551ae7 4089 rcu_read_unlock();
1da177e4
LT
4090 return retval;
4091}
4092
7c731e0a 4093static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4094
82a1fcb9 4095void sched_show_task(struct task_struct *p)
1da177e4 4096{
1da177e4 4097 unsigned long free = 0;
4e79752c 4098 int ppid;
36c8b586 4099 unsigned state;
1da177e4 4100
1da177e4 4101 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 4102 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4103 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4104#if BITS_PER_LONG == 32
1da177e4 4105 if (state == TASK_RUNNING)
3df0fc5b 4106 printk(KERN_CONT " running ");
1da177e4 4107 else
3df0fc5b 4108 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4109#else
4110 if (state == TASK_RUNNING)
3df0fc5b 4111 printk(KERN_CONT " running task ");
1da177e4 4112 else
3df0fc5b 4113 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4114#endif
4115#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4116 free = stack_not_used(p);
1da177e4 4117#endif
4e79752c
PM
4118 rcu_read_lock();
4119 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4120 rcu_read_unlock();
3df0fc5b 4121 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 4122 task_pid_nr(p), ppid,
aa47b7e0 4123 (unsigned long)task_thread_info(p)->flags);
1da177e4 4124
3d1cb205 4125 print_worker_info(KERN_INFO, p);
5fb5e6de 4126 show_stack(p, NULL);
1da177e4
LT
4127}
4128
e59e2ae2 4129void show_state_filter(unsigned long state_filter)
1da177e4 4130{
36c8b586 4131 struct task_struct *g, *p;
1da177e4 4132
4bd77321 4133#if BITS_PER_LONG == 32
3df0fc5b
PZ
4134 printk(KERN_INFO
4135 " task PC stack pid father\n");
1da177e4 4136#else
3df0fc5b
PZ
4137 printk(KERN_INFO
4138 " task PC stack pid father\n");
1da177e4 4139#endif
510f5acc 4140 rcu_read_lock();
1da177e4
LT
4141 do_each_thread(g, p) {
4142 /*
4143 * reset the NMI-timeout, listing all files on a slow
25985edc 4144 * console might take a lot of time:
1da177e4
LT
4145 */
4146 touch_nmi_watchdog();
39bc89fd 4147 if (!state_filter || (p->state & state_filter))
82a1fcb9 4148 sched_show_task(p);
1da177e4
LT
4149 } while_each_thread(g, p);
4150
04c9167f
JF
4151 touch_all_softlockup_watchdogs();
4152
dd41f596
IM
4153#ifdef CONFIG_SCHED_DEBUG
4154 sysrq_sched_debug_show();
4155#endif
510f5acc 4156 rcu_read_unlock();
e59e2ae2
IM
4157 /*
4158 * Only show locks if all tasks are dumped:
4159 */
93335a21 4160 if (!state_filter)
e59e2ae2 4161 debug_show_all_locks();
1da177e4
LT
4162}
4163
0db0628d 4164void init_idle_bootup_task(struct task_struct *idle)
1df21055 4165{
dd41f596 4166 idle->sched_class = &idle_sched_class;
1df21055
IM
4167}
4168
f340c0d1
IM
4169/**
4170 * init_idle - set up an idle thread for a given CPU
4171 * @idle: task in question
4172 * @cpu: cpu the idle task belongs to
4173 *
4174 * NOTE: this function does not set the idle thread's NEED_RESCHED
4175 * flag, to make booting more robust.
4176 */
0db0628d 4177void init_idle(struct task_struct *idle, int cpu)
1da177e4 4178{
70b97a7f 4179 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4180 unsigned long flags;
4181
05fa785c 4182 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 4183
dd41f596 4184 __sched_fork(idle);
06b83b5f 4185 idle->state = TASK_RUNNING;
dd41f596
IM
4186 idle->se.exec_start = sched_clock();
4187
1e1b6c51 4188 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4189 /*
4190 * We're having a chicken and egg problem, even though we are
4191 * holding rq->lock, the cpu isn't yet set to this cpu so the
4192 * lockdep check in task_group() will fail.
4193 *
4194 * Similar case to sched_fork(). / Alternatively we could
4195 * use task_rq_lock() here and obtain the other rq->lock.
4196 *
4197 * Silence PROVE_RCU
4198 */
4199 rcu_read_lock();
dd41f596 4200 __set_task_cpu(idle, cpu);
6506cf6c 4201 rcu_read_unlock();
1da177e4 4202
1da177e4 4203 rq->curr = rq->idle = idle;
3ca7a440
PZ
4204#if defined(CONFIG_SMP)
4205 idle->on_cpu = 1;
4866cde0 4206#endif
05fa785c 4207 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
4208
4209 /* Set the preempt count _outside_ the spinlocks! */
a1261f54 4210 task_thread_info(idle)->preempt_count = 0;
55cd5340 4211
dd41f596
IM
4212 /*
4213 * The idle tasks have their own, simple scheduling class:
4214 */
4215 idle->sched_class = &idle_sched_class;
868baf07 4216 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 4217 vtime_init_idle(idle, cpu);
f1c6f1a7
CE
4218#if defined(CONFIG_SMP)
4219 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4220#endif
19978ca6
IM
4221}
4222
1da177e4 4223#ifdef CONFIG_SMP
1e1b6c51
KM
4224void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4225{
4226 if (p->sched_class && p->sched_class->set_cpus_allowed)
4227 p->sched_class->set_cpus_allowed(p, new_mask);
4939602a
PZ
4228
4229 cpumask_copy(&p->cpus_allowed, new_mask);
29baa747 4230 p->nr_cpus_allowed = cpumask_weight(new_mask);
1e1b6c51
KM
4231}
4232
1da177e4
LT
4233/*
4234 * This is how migration works:
4235 *
969c7921
TH
4236 * 1) we invoke migration_cpu_stop() on the target CPU using
4237 * stop_one_cpu().
4238 * 2) stopper starts to run (implicitly forcing the migrated thread
4239 * off the CPU)
4240 * 3) it checks whether the migrated task is still in the wrong runqueue.
4241 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 4242 * it and puts it into the right queue.
969c7921
TH
4243 * 5) stopper completes and stop_one_cpu() returns and the migration
4244 * is done.
1da177e4
LT
4245 */
4246
4247/*
4248 * Change a given task's CPU affinity. Migrate the thread to a
4249 * proper CPU and schedule it away if the CPU it's executing on
4250 * is removed from the allowed bitmask.
4251 *
4252 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 4253 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
4254 * call is not atomic; no spinlocks may be held.
4255 */
96f874e2 4256int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
4257{
4258 unsigned long flags;
70b97a7f 4259 struct rq *rq;
969c7921 4260 unsigned int dest_cpu;
48f24c4d 4261 int ret = 0;
1da177e4
LT
4262
4263 rq = task_rq_lock(p, &flags);
e2912009 4264
db44fc01
YZ
4265 if (cpumask_equal(&p->cpus_allowed, new_mask))
4266 goto out;
4267
6ad4c188 4268 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
4269 ret = -EINVAL;
4270 goto out;
4271 }
4272
1e1b6c51 4273 do_set_cpus_allowed(p, new_mask);
73fe6aae 4274
1da177e4 4275 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 4276 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
4277 goto out;
4278
969c7921 4279 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
bd8e7dde 4280 if (p->on_rq) {
969c7921 4281 struct migration_arg arg = { p, dest_cpu };
1da177e4 4282 /* Need help from migration thread: drop lock and wait. */
0122ec5b 4283 task_rq_unlock(rq, p, &flags);
969c7921 4284 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
4285 tlb_migrate_finish(p->mm);
4286 return 0;
4287 }
4288out:
0122ec5b 4289 task_rq_unlock(rq, p, &flags);
48f24c4d 4290
1da177e4
LT
4291 return ret;
4292}
cd8ba7cd 4293EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
4294
4295/*
41a2d6cf 4296 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
4297 * this because either it can't run here any more (set_cpus_allowed()
4298 * away from this CPU, or CPU going down), or because we're
4299 * attempting to rebalance this task on exec (sched_exec).
4300 *
4301 * So we race with normal scheduler movements, but that's OK, as long
4302 * as the task is no longer on this CPU.
efc30814
KK
4303 *
4304 * Returns non-zero if task was successfully migrated.
1da177e4 4305 */
efc30814 4306static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4307{
70b97a7f 4308 struct rq *rq_dest, *rq_src;
e2912009 4309 int ret = 0;
1da177e4 4310
e761b772 4311 if (unlikely(!cpu_active(dest_cpu)))
efc30814 4312 return ret;
1da177e4
LT
4313
4314 rq_src = cpu_rq(src_cpu);
4315 rq_dest = cpu_rq(dest_cpu);
4316
0122ec5b 4317 raw_spin_lock(&p->pi_lock);
1da177e4
LT
4318 double_rq_lock(rq_src, rq_dest);
4319 /* Already moved. */
4320 if (task_cpu(p) != src_cpu)
b1e38734 4321 goto done;
1da177e4 4322 /* Affinity changed (again). */
fa17b507 4323 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
b1e38734 4324 goto fail;
1da177e4 4325
e2912009
PZ
4326 /*
4327 * If we're not on a rq, the next wake-up will ensure we're
4328 * placed properly.
4329 */
fd2f4419 4330 if (p->on_rq) {
4ca9b72b 4331 dequeue_task(rq_src, p, 0);
e2912009 4332 set_task_cpu(p, dest_cpu);
4ca9b72b 4333 enqueue_task(rq_dest, p, 0);
15afe09b 4334 check_preempt_curr(rq_dest, p, 0);
1da177e4 4335 }
b1e38734 4336done:
efc30814 4337 ret = 1;
b1e38734 4338fail:
1da177e4 4339 double_rq_unlock(rq_src, rq_dest);
0122ec5b 4340 raw_spin_unlock(&p->pi_lock);
efc30814 4341 return ret;
1da177e4
LT
4342}
4343
4344/*
969c7921
TH
4345 * migration_cpu_stop - this will be executed by a highprio stopper thread
4346 * and performs thread migration by bumping thread off CPU then
4347 * 'pushing' onto another runqueue.
1da177e4 4348 */
969c7921 4349static int migration_cpu_stop(void *data)
1da177e4 4350{
969c7921 4351 struct migration_arg *arg = data;
f7b4cddc 4352
969c7921
TH
4353 /*
4354 * The original target cpu might have gone down and we might
4355 * be on another cpu but it doesn't matter.
4356 */
f7b4cddc 4357 local_irq_disable();
969c7921 4358 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 4359 local_irq_enable();
1da177e4 4360 return 0;
f7b4cddc
ON
4361}
4362
1da177e4 4363#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 4364
054b9108 4365/*
48c5ccae
PZ
4366 * Ensures that the idle task is using init_mm right before its cpu goes
4367 * offline.
054b9108 4368 */
48c5ccae 4369void idle_task_exit(void)
1da177e4 4370{
48c5ccae 4371 struct mm_struct *mm = current->active_mm;
e76bd8d9 4372
48c5ccae 4373 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 4374
48c5ccae
PZ
4375 if (mm != &init_mm)
4376 switch_mm(mm, &init_mm, current);
4377 mmdrop(mm);
1da177e4
LT
4378}
4379
4380/*
5d180232
PZ
4381 * Since this CPU is going 'away' for a while, fold any nr_active delta
4382 * we might have. Assumes we're called after migrate_tasks() so that the
4383 * nr_active count is stable.
4384 *
4385 * Also see the comment "Global load-average calculations".
1da177e4 4386 */
5d180232 4387static void calc_load_migrate(struct rq *rq)
1da177e4 4388{
5d180232
PZ
4389 long delta = calc_load_fold_active(rq);
4390 if (delta)
4391 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
4392}
4393
48f24c4d 4394/*
48c5ccae
PZ
4395 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4396 * try_to_wake_up()->select_task_rq().
4397 *
4398 * Called with rq->lock held even though we'er in stop_machine() and
4399 * there's no concurrency possible, we hold the required locks anyway
4400 * because of lock validation efforts.
1da177e4 4401 */
48c5ccae 4402static void migrate_tasks(unsigned int dead_cpu)
1da177e4 4403{
70b97a7f 4404 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
4405 struct task_struct *next, *stop = rq->stop;
4406 int dest_cpu;
1da177e4
LT
4407
4408 /*
48c5ccae
PZ
4409 * Fudge the rq selection such that the below task selection loop
4410 * doesn't get stuck on the currently eligible stop task.
4411 *
4412 * We're currently inside stop_machine() and the rq is either stuck
4413 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4414 * either way we should never end up calling schedule() until we're
4415 * done here.
1da177e4 4416 */
48c5ccae 4417 rq->stop = NULL;
48f24c4d 4418
77bd3970
FW
4419 /*
4420 * put_prev_task() and pick_next_task() sched
4421 * class method both need to have an up-to-date
4422 * value of rq->clock[_task]
4423 */
4424 update_rq_clock(rq);
4425
dd41f596 4426 for ( ; ; ) {
48c5ccae
PZ
4427 /*
4428 * There's this thread running, bail when that's the only
4429 * remaining thread.
4430 */
4431 if (rq->nr_running == 1)
dd41f596 4432 break;
48c5ccae 4433
b67802ea 4434 next = pick_next_task(rq);
48c5ccae 4435 BUG_ON(!next);
79c53799 4436 next->sched_class->put_prev_task(rq, next);
e692ab53 4437
48c5ccae
PZ
4438 /* Find suitable destination for @next, with force if needed. */
4439 dest_cpu = select_fallback_rq(dead_cpu, next);
4440 raw_spin_unlock(&rq->lock);
4441
4442 __migrate_task(next, dead_cpu, dest_cpu);
4443
4444 raw_spin_lock(&rq->lock);
1da177e4 4445 }
dce48a84 4446
48c5ccae 4447 rq->stop = stop;
dce48a84 4448}
48c5ccae 4449
1da177e4
LT
4450#endif /* CONFIG_HOTPLUG_CPU */
4451
e692ab53
NP
4452#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4453
4454static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
4455 {
4456 .procname = "sched_domain",
c57baf1e 4457 .mode = 0555,
e0361851 4458 },
56992309 4459 {}
e692ab53
NP
4460};
4461
4462static struct ctl_table sd_ctl_root[] = {
e0361851
AD
4463 {
4464 .procname = "kernel",
c57baf1e 4465 .mode = 0555,
e0361851
AD
4466 .child = sd_ctl_dir,
4467 },
56992309 4468 {}
e692ab53
NP
4469};
4470
4471static struct ctl_table *sd_alloc_ctl_entry(int n)
4472{
4473 struct ctl_table *entry =
5cf9f062 4474 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 4475
e692ab53
NP
4476 return entry;
4477}
4478
6382bc90
MM
4479static void sd_free_ctl_entry(struct ctl_table **tablep)
4480{
cd790076 4481 struct ctl_table *entry;
6382bc90 4482
cd790076
MM
4483 /*
4484 * In the intermediate directories, both the child directory and
4485 * procname are dynamically allocated and could fail but the mode
41a2d6cf 4486 * will always be set. In the lowest directory the names are
cd790076
MM
4487 * static strings and all have proc handlers.
4488 */
4489 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
4490 if (entry->child)
4491 sd_free_ctl_entry(&entry->child);
cd790076
MM
4492 if (entry->proc_handler == NULL)
4493 kfree(entry->procname);
4494 }
6382bc90
MM
4495
4496 kfree(*tablep);
4497 *tablep = NULL;
4498}
4499
201c373e 4500static int min_load_idx = 0;
fd9b86d3 4501static int max_load_idx = CPU_LOAD_IDX_MAX-1;
201c373e 4502
e692ab53 4503static void
e0361851 4504set_table_entry(struct ctl_table *entry,
e692ab53 4505 const char *procname, void *data, int maxlen,
201c373e
NK
4506 umode_t mode, proc_handler *proc_handler,
4507 bool load_idx)
e692ab53 4508{
e692ab53
NP
4509 entry->procname = procname;
4510 entry->data = data;
4511 entry->maxlen = maxlen;
4512 entry->mode = mode;
4513 entry->proc_handler = proc_handler;
201c373e
NK
4514
4515 if (load_idx) {
4516 entry->extra1 = &min_load_idx;
4517 entry->extra2 = &max_load_idx;
4518 }
e692ab53
NP
4519}
4520
4521static struct ctl_table *
4522sd_alloc_ctl_domain_table(struct sched_domain *sd)
4523{
a5d8c348 4524 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 4525
ad1cdc1d
MM
4526 if (table == NULL)
4527 return NULL;
4528
e0361851 4529 set_table_entry(&table[0], "min_interval", &sd->min_interval,
201c373e 4530 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4531 set_table_entry(&table[1], "max_interval", &sd->max_interval,
201c373e 4532 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4533 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
201c373e 4534 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4535 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
201c373e 4536 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4537 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
201c373e 4538 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4539 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
201c373e 4540 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4541 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
201c373e 4542 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4543 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
201c373e 4544 sizeof(int), 0644, proc_dointvec_minmax, false);
e0361851 4545 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
201c373e 4546 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4547 set_table_entry(&table[9], "cache_nice_tries",
e692ab53 4548 &sd->cache_nice_tries,
201c373e 4549 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4550 set_table_entry(&table[10], "flags", &sd->flags,
201c373e 4551 sizeof(int), 0644, proc_dointvec_minmax, false);
a5d8c348 4552 set_table_entry(&table[11], "name", sd->name,
201c373e 4553 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
a5d8c348 4554 /* &table[12] is terminator */
e692ab53
NP
4555
4556 return table;
4557}
4558
be7002e6 4559static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
4560{
4561 struct ctl_table *entry, *table;
4562 struct sched_domain *sd;
4563 int domain_num = 0, i;
4564 char buf[32];
4565
4566 for_each_domain(cpu, sd)
4567 domain_num++;
4568 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
4569 if (table == NULL)
4570 return NULL;
e692ab53
NP
4571
4572 i = 0;
4573 for_each_domain(cpu, sd) {
4574 snprintf(buf, 32, "domain%d", i);
e692ab53 4575 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 4576 entry->mode = 0555;
e692ab53
NP
4577 entry->child = sd_alloc_ctl_domain_table(sd);
4578 entry++;
4579 i++;
4580 }
4581 return table;
4582}
4583
4584static struct ctl_table_header *sd_sysctl_header;
6382bc90 4585static void register_sched_domain_sysctl(void)
e692ab53 4586{
6ad4c188 4587 int i, cpu_num = num_possible_cpus();
e692ab53
NP
4588 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4589 char buf[32];
4590
7378547f
MM
4591 WARN_ON(sd_ctl_dir[0].child);
4592 sd_ctl_dir[0].child = entry;
4593
ad1cdc1d
MM
4594 if (entry == NULL)
4595 return;
4596
6ad4c188 4597 for_each_possible_cpu(i) {
e692ab53 4598 snprintf(buf, 32, "cpu%d", i);
e692ab53 4599 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 4600 entry->mode = 0555;
e692ab53 4601 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 4602 entry++;
e692ab53 4603 }
7378547f
MM
4604
4605 WARN_ON(sd_sysctl_header);
e692ab53
NP
4606 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4607}
6382bc90 4608
7378547f 4609/* may be called multiple times per register */
6382bc90
MM
4610static void unregister_sched_domain_sysctl(void)
4611{
7378547f
MM
4612 if (sd_sysctl_header)
4613 unregister_sysctl_table(sd_sysctl_header);
6382bc90 4614 sd_sysctl_header = NULL;
7378547f
MM
4615 if (sd_ctl_dir[0].child)
4616 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 4617}
e692ab53 4618#else
6382bc90
MM
4619static void register_sched_domain_sysctl(void)
4620{
4621}
4622static void unregister_sched_domain_sysctl(void)
e692ab53
NP
4623{
4624}
4625#endif
4626
1f11eb6a
GH
4627static void set_rq_online(struct rq *rq)
4628{
4629 if (!rq->online) {
4630 const struct sched_class *class;
4631
c6c4927b 4632 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
4633 rq->online = 1;
4634
4635 for_each_class(class) {
4636 if (class->rq_online)
4637 class->rq_online(rq);
4638 }
4639 }
4640}
4641
4642static void set_rq_offline(struct rq *rq)
4643{
4644 if (rq->online) {
4645 const struct sched_class *class;
4646
4647 for_each_class(class) {
4648 if (class->rq_offline)
4649 class->rq_offline(rq);
4650 }
4651
c6c4927b 4652 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
4653 rq->online = 0;
4654 }
4655}
4656
1da177e4
LT
4657/*
4658 * migration_call - callback that gets triggered when a CPU is added.
4659 * Here we can start up the necessary migration thread for the new CPU.
4660 */
0db0628d 4661static int
48f24c4d 4662migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 4663{
48f24c4d 4664 int cpu = (long)hcpu;
1da177e4 4665 unsigned long flags;
969c7921 4666 struct rq *rq = cpu_rq(cpu);
1da177e4 4667
48c5ccae 4668 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 4669
1da177e4 4670 case CPU_UP_PREPARE:
a468d389 4671 rq->calc_load_update = calc_load_update;
1da177e4 4672 break;
48f24c4d 4673
1da177e4 4674 case CPU_ONLINE:
1f94ef59 4675 /* Update our root-domain */
05fa785c 4676 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 4677 if (rq->rd) {
c6c4927b 4678 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
4679
4680 set_rq_online(rq);
1f94ef59 4681 }
05fa785c 4682 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 4683 break;
48f24c4d 4684
1da177e4 4685#ifdef CONFIG_HOTPLUG_CPU
08f503b0 4686 case CPU_DYING:
317f3941 4687 sched_ttwu_pending();
57d885fe 4688 /* Update our root-domain */
05fa785c 4689 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 4690 if (rq->rd) {
c6c4927b 4691 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 4692 set_rq_offline(rq);
57d885fe 4693 }
48c5ccae
PZ
4694 migrate_tasks(cpu);
4695 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 4696 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 4697 break;
48c5ccae 4698
5d180232 4699 case CPU_DEAD:
f319da0c 4700 calc_load_migrate(rq);
57d885fe 4701 break;
1da177e4
LT
4702#endif
4703 }
49c022e6
PZ
4704
4705 update_max_interval();
4706
1da177e4
LT
4707 return NOTIFY_OK;
4708}
4709
f38b0820
PM
4710/*
4711 * Register at high priority so that task migration (migrate_all_tasks)
4712 * happens before everything else. This has to be lower priority than
cdd6c482 4713 * the notifier in the perf_event subsystem, though.
1da177e4 4714 */
0db0628d 4715static struct notifier_block migration_notifier = {
1da177e4 4716 .notifier_call = migration_call,
50a323b7 4717 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
4718};
4719
0db0628d 4720static int sched_cpu_active(struct notifier_block *nfb,
3a101d05
TH
4721 unsigned long action, void *hcpu)
4722{
4723 switch (action & ~CPU_TASKS_FROZEN) {
5fbd036b 4724 case CPU_STARTING:
3a101d05
TH
4725 case CPU_DOWN_FAILED:
4726 set_cpu_active((long)hcpu, true);
4727 return NOTIFY_OK;
4728 default:
4729 return NOTIFY_DONE;
4730 }
4731}
4732
0db0628d 4733static int sched_cpu_inactive(struct notifier_block *nfb,
3a101d05
TH
4734 unsigned long action, void *hcpu)
4735{
4736 switch (action & ~CPU_TASKS_FROZEN) {
4737 case CPU_DOWN_PREPARE:
4738 set_cpu_active((long)hcpu, false);
4739 return NOTIFY_OK;
4740 default:
4741 return NOTIFY_DONE;
4742 }
4743}
4744
7babe8db 4745static int __init migration_init(void)
1da177e4
LT
4746{
4747 void *cpu = (void *)(long)smp_processor_id();
07dccf33 4748 int err;
48f24c4d 4749
3a101d05 4750 /* Initialize migration for the boot CPU */
07dccf33
AM
4751 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4752 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
4753 migration_call(&migration_notifier, CPU_ONLINE, cpu);
4754 register_cpu_notifier(&migration_notifier);
7babe8db 4755
3a101d05
TH
4756 /* Register cpu active notifiers */
4757 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
4758 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
4759
a004cd42 4760 return 0;
1da177e4 4761}
7babe8db 4762early_initcall(migration_init);
1da177e4
LT
4763#endif
4764
4765#ifdef CONFIG_SMP
476f3534 4766
4cb98839
PZ
4767static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
4768
3e9830dc 4769#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 4770
d039ac60 4771static __read_mostly int sched_debug_enabled;
f6630114 4772
d039ac60 4773static int __init sched_debug_setup(char *str)
f6630114 4774{
d039ac60 4775 sched_debug_enabled = 1;
f6630114
MT
4776
4777 return 0;
4778}
d039ac60
PZ
4779early_param("sched_debug", sched_debug_setup);
4780
4781static inline bool sched_debug(void)
4782{
4783 return sched_debug_enabled;
4784}
f6630114 4785
7c16ec58 4786static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 4787 struct cpumask *groupmask)
1da177e4 4788{
4dcf6aff 4789 struct sched_group *group = sd->groups;
434d53b0 4790 char str[256];
1da177e4 4791
968ea6d8 4792 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 4793 cpumask_clear(groupmask);
4dcf6aff
IM
4794
4795 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
4796
4797 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 4798 printk("does not load-balance\n");
4dcf6aff 4799 if (sd->parent)
3df0fc5b
PZ
4800 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
4801 " has parent");
4dcf6aff 4802 return -1;
41c7ce9a
NP
4803 }
4804
3df0fc5b 4805 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 4806
758b2cdc 4807 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
4808 printk(KERN_ERR "ERROR: domain->span does not contain "
4809 "CPU%d\n", cpu);
4dcf6aff 4810 }
758b2cdc 4811 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
4812 printk(KERN_ERR "ERROR: domain->groups does not contain"
4813 " CPU%d\n", cpu);
4dcf6aff 4814 }
1da177e4 4815
4dcf6aff 4816 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 4817 do {
4dcf6aff 4818 if (!group) {
3df0fc5b
PZ
4819 printk("\n");
4820 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
4821 break;
4822 }
4823
c3decf0d
PZ
4824 /*
4825 * Even though we initialize ->power to something semi-sane,
4826 * we leave power_orig unset. This allows us to detect if
4827 * domain iteration is still funny without causing /0 traps.
4828 */
4829 if (!group->sgp->power_orig) {
3df0fc5b
PZ
4830 printk(KERN_CONT "\n");
4831 printk(KERN_ERR "ERROR: domain->cpu_power not "
4832 "set\n");
4dcf6aff
IM
4833 break;
4834 }
1da177e4 4835
758b2cdc 4836 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
4837 printk(KERN_CONT "\n");
4838 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
4839 break;
4840 }
1da177e4 4841
cb83b629
PZ
4842 if (!(sd->flags & SD_OVERLAP) &&
4843 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
4844 printk(KERN_CONT "\n");
4845 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
4846 break;
4847 }
1da177e4 4848
758b2cdc 4849 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 4850
968ea6d8 4851 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 4852
3df0fc5b 4853 printk(KERN_CONT " %s", str);
9c3f75cb 4854 if (group->sgp->power != SCHED_POWER_SCALE) {
3df0fc5b 4855 printk(KERN_CONT " (cpu_power = %d)",
9c3f75cb 4856 group->sgp->power);
381512cf 4857 }
1da177e4 4858
4dcf6aff
IM
4859 group = group->next;
4860 } while (group != sd->groups);
3df0fc5b 4861 printk(KERN_CONT "\n");
1da177e4 4862
758b2cdc 4863 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 4864 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 4865
758b2cdc
RR
4866 if (sd->parent &&
4867 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
4868 printk(KERN_ERR "ERROR: parent span is not a superset "
4869 "of domain->span\n");
4dcf6aff
IM
4870 return 0;
4871}
1da177e4 4872
4dcf6aff
IM
4873static void sched_domain_debug(struct sched_domain *sd, int cpu)
4874{
4875 int level = 0;
1da177e4 4876
d039ac60 4877 if (!sched_debug_enabled)
f6630114
MT
4878 return;
4879
4dcf6aff
IM
4880 if (!sd) {
4881 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4882 return;
4883 }
1da177e4 4884
4dcf6aff
IM
4885 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4886
4887 for (;;) {
4cb98839 4888 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 4889 break;
1da177e4
LT
4890 level++;
4891 sd = sd->parent;
33859f7f 4892 if (!sd)
4dcf6aff
IM
4893 break;
4894 }
1da177e4 4895}
6d6bc0ad 4896#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 4897# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
4898static inline bool sched_debug(void)
4899{
4900 return false;
4901}
6d6bc0ad 4902#endif /* CONFIG_SCHED_DEBUG */
1da177e4 4903
1a20ff27 4904static int sd_degenerate(struct sched_domain *sd)
245af2c7 4905{
758b2cdc 4906 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
4907 return 1;
4908
4909 /* Following flags need at least 2 groups */
4910 if (sd->flags & (SD_LOAD_BALANCE |
4911 SD_BALANCE_NEWIDLE |
4912 SD_BALANCE_FORK |
89c4710e
SS
4913 SD_BALANCE_EXEC |
4914 SD_SHARE_CPUPOWER |
4915 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
4916 if (sd->groups != sd->groups->next)
4917 return 0;
4918 }
4919
4920 /* Following flags don't use groups */
c88d5910 4921 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
4922 return 0;
4923
4924 return 1;
4925}
4926
48f24c4d
IM
4927static int
4928sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
4929{
4930 unsigned long cflags = sd->flags, pflags = parent->flags;
4931
4932 if (sd_degenerate(parent))
4933 return 1;
4934
758b2cdc 4935 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
4936 return 0;
4937
245af2c7
SS
4938 /* Flags needing groups don't count if only 1 group in parent */
4939 if (parent->groups == parent->groups->next) {
4940 pflags &= ~(SD_LOAD_BALANCE |
4941 SD_BALANCE_NEWIDLE |
4942 SD_BALANCE_FORK |
89c4710e
SS
4943 SD_BALANCE_EXEC |
4944 SD_SHARE_CPUPOWER |
10866e62
PZ
4945 SD_SHARE_PKG_RESOURCES |
4946 SD_PREFER_SIBLING);
5436499e
KC
4947 if (nr_node_ids == 1)
4948 pflags &= ~SD_SERIALIZE;
245af2c7
SS
4949 }
4950 if (~cflags & pflags)
4951 return 0;
4952
4953 return 1;
4954}
4955
dce840a0 4956static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 4957{
dce840a0 4958 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 4959
68e74568 4960 cpupri_cleanup(&rd->cpupri);
c6c4927b
RR
4961 free_cpumask_var(rd->rto_mask);
4962 free_cpumask_var(rd->online);
4963 free_cpumask_var(rd->span);
4964 kfree(rd);
4965}
4966
57d885fe
GH
4967static void rq_attach_root(struct rq *rq, struct root_domain *rd)
4968{
a0490fa3 4969 struct root_domain *old_rd = NULL;
57d885fe 4970 unsigned long flags;
57d885fe 4971
05fa785c 4972 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
4973
4974 if (rq->rd) {
a0490fa3 4975 old_rd = rq->rd;
57d885fe 4976
c6c4927b 4977 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 4978 set_rq_offline(rq);
57d885fe 4979
c6c4927b 4980 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 4981
a0490fa3
IM
4982 /*
4983 * If we dont want to free the old_rt yet then
4984 * set old_rd to NULL to skip the freeing later
4985 * in this function:
4986 */
4987 if (!atomic_dec_and_test(&old_rd->refcount))
4988 old_rd = NULL;
57d885fe
GH
4989 }
4990
4991 atomic_inc(&rd->refcount);
4992 rq->rd = rd;
4993
c6c4927b 4994 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 4995 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 4996 set_rq_online(rq);
57d885fe 4997
05fa785c 4998 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
4999
5000 if (old_rd)
dce840a0 5001 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5002}
5003
68c38fc3 5004static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5005{
5006 memset(rd, 0, sizeof(*rd));
5007
68c38fc3 5008 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5009 goto out;
68c38fc3 5010 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5011 goto free_span;
68c38fc3 5012 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 5013 goto free_online;
6e0534f2 5014
68c38fc3 5015 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5016 goto free_rto_mask;
c6c4927b 5017 return 0;
6e0534f2 5018
68e74568
RR
5019free_rto_mask:
5020 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
5021free_online:
5022 free_cpumask_var(rd->online);
5023free_span:
5024 free_cpumask_var(rd->span);
0c910d28 5025out:
c6c4927b 5026 return -ENOMEM;
57d885fe
GH
5027}
5028
029632fb
PZ
5029/*
5030 * By default the system creates a single root-domain with all cpus as
5031 * members (mimicking the global state we have today).
5032 */
5033struct root_domain def_root_domain;
5034
57d885fe
GH
5035static void init_defrootdomain(void)
5036{
68c38fc3 5037 init_rootdomain(&def_root_domain);
c6c4927b 5038
57d885fe
GH
5039 atomic_set(&def_root_domain.refcount, 1);
5040}
5041
dc938520 5042static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5043{
5044 struct root_domain *rd;
5045
5046 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5047 if (!rd)
5048 return NULL;
5049
68c38fc3 5050 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5051 kfree(rd);
5052 return NULL;
5053 }
57d885fe
GH
5054
5055 return rd;
5056}
5057
e3589f6c
PZ
5058static void free_sched_groups(struct sched_group *sg, int free_sgp)
5059{
5060 struct sched_group *tmp, *first;
5061
5062 if (!sg)
5063 return;
5064
5065 first = sg;
5066 do {
5067 tmp = sg->next;
5068
5069 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5070 kfree(sg->sgp);
5071
5072 kfree(sg);
5073 sg = tmp;
5074 } while (sg != first);
5075}
5076
dce840a0
PZ
5077static void free_sched_domain(struct rcu_head *rcu)
5078{
5079 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5080
5081 /*
5082 * If its an overlapping domain it has private groups, iterate and
5083 * nuke them all.
5084 */
5085 if (sd->flags & SD_OVERLAP) {
5086 free_sched_groups(sd->groups, 1);
5087 } else if (atomic_dec_and_test(&sd->groups->ref)) {
9c3f75cb 5088 kfree(sd->groups->sgp);
dce840a0 5089 kfree(sd->groups);
9c3f75cb 5090 }
dce840a0
PZ
5091 kfree(sd);
5092}
5093
5094static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5095{
5096 call_rcu(&sd->rcu, free_sched_domain);
5097}
5098
5099static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5100{
5101 for (; sd; sd = sd->parent)
5102 destroy_sched_domain(sd, cpu);
5103}
5104
518cd623
PZ
5105/*
5106 * Keep a special pointer to the highest sched_domain that has
5107 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5108 * allows us to avoid some pointer chasing select_idle_sibling().
5109 *
5110 * Also keep a unique ID per domain (we use the first cpu number in
5111 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5112 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5113 */
5114DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5115DEFINE_PER_CPU(int, sd_llc_size);
518cd623
PZ
5116DEFINE_PER_CPU(int, sd_llc_id);
5117
5118static void update_top_cache_domain(int cpu)
5119{
5120 struct sched_domain *sd;
5121 int id = cpu;
7d9ffa89 5122 int size = 1;
518cd623
PZ
5123
5124 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 5125 if (sd) {
518cd623 5126 id = cpumask_first(sched_domain_span(sd));
7d9ffa89
PZ
5127 size = cpumask_weight(sched_domain_span(sd));
5128 }
518cd623
PZ
5129
5130 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 5131 per_cpu(sd_llc_size, cpu) = size;
518cd623
PZ
5132 per_cpu(sd_llc_id, cpu) = id;
5133}
5134
1da177e4 5135/*
0eab9146 5136 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5137 * hold the hotplug lock.
5138 */
0eab9146
IM
5139static void
5140cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5141{
70b97a7f 5142 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5143 struct sched_domain *tmp;
5144
5145 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5146 for (tmp = sd; tmp; ) {
245af2c7
SS
5147 struct sched_domain *parent = tmp->parent;
5148 if (!parent)
5149 break;
f29c9b1c 5150
1a848870 5151 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5152 tmp->parent = parent->parent;
1a848870
SS
5153 if (parent->parent)
5154 parent->parent->child = tmp;
10866e62
PZ
5155 /*
5156 * Transfer SD_PREFER_SIBLING down in case of a
5157 * degenerate parent; the spans match for this
5158 * so the property transfers.
5159 */
5160 if (parent->flags & SD_PREFER_SIBLING)
5161 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 5162 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5163 } else
5164 tmp = tmp->parent;
245af2c7
SS
5165 }
5166
1a848870 5167 if (sd && sd_degenerate(sd)) {
dce840a0 5168 tmp = sd;
245af2c7 5169 sd = sd->parent;
dce840a0 5170 destroy_sched_domain(tmp, cpu);
1a848870
SS
5171 if (sd)
5172 sd->child = NULL;
5173 }
1da177e4 5174
4cb98839 5175 sched_domain_debug(sd, cpu);
1da177e4 5176
57d885fe 5177 rq_attach_root(rq, rd);
dce840a0 5178 tmp = rq->sd;
674311d5 5179 rcu_assign_pointer(rq->sd, sd);
dce840a0 5180 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5181
5182 update_top_cache_domain(cpu);
1da177e4
LT
5183}
5184
5185/* cpus with isolated domains */
dcc30a35 5186static cpumask_var_t cpu_isolated_map;
1da177e4
LT
5187
5188/* Setup the mask of cpus configured for isolated domains */
5189static int __init isolated_cpu_setup(char *str)
5190{
bdddd296 5191 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5192 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5193 return 1;
5194}
5195
8927f494 5196__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5197
d3081f52
PZ
5198static const struct cpumask *cpu_cpu_mask(int cpu)
5199{
5200 return cpumask_of_node(cpu_to_node(cpu));
5201}
5202
dce840a0
PZ
5203struct sd_data {
5204 struct sched_domain **__percpu sd;
5205 struct sched_group **__percpu sg;
9c3f75cb 5206 struct sched_group_power **__percpu sgp;
dce840a0
PZ
5207};
5208
49a02c51 5209struct s_data {
21d42ccf 5210 struct sched_domain ** __percpu sd;
49a02c51
AH
5211 struct root_domain *rd;
5212};
5213
2109b99e 5214enum s_alloc {
2109b99e 5215 sa_rootdomain,
21d42ccf 5216 sa_sd,
dce840a0 5217 sa_sd_storage,
2109b99e
AH
5218 sa_none,
5219};
5220
54ab4ff4
PZ
5221struct sched_domain_topology_level;
5222
5223typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
eb7a74e6
PZ
5224typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5225
e3589f6c
PZ
5226#define SDTL_OVERLAP 0x01
5227
eb7a74e6 5228struct sched_domain_topology_level {
2c402dc3
PZ
5229 sched_domain_init_f init;
5230 sched_domain_mask_f mask;
e3589f6c 5231 int flags;
cb83b629 5232 int numa_level;
54ab4ff4 5233 struct sd_data data;
eb7a74e6
PZ
5234};
5235
c1174876
PZ
5236/*
5237 * Build an iteration mask that can exclude certain CPUs from the upwards
5238 * domain traversal.
5239 *
5240 * Asymmetric node setups can result in situations where the domain tree is of
5241 * unequal depth, make sure to skip domains that already cover the entire
5242 * range.
5243 *
5244 * In that case build_sched_domains() will have terminated the iteration early
5245 * and our sibling sd spans will be empty. Domains should always include the
5246 * cpu they're built on, so check that.
5247 *
5248 */
5249static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5250{
5251 const struct cpumask *span = sched_domain_span(sd);
5252 struct sd_data *sdd = sd->private;
5253 struct sched_domain *sibling;
5254 int i;
5255
5256 for_each_cpu(i, span) {
5257 sibling = *per_cpu_ptr(sdd->sd, i);
5258 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5259 continue;
5260
5261 cpumask_set_cpu(i, sched_group_mask(sg));
5262 }
5263}
5264
5265/*
5266 * Return the canonical balance cpu for this group, this is the first cpu
5267 * of this group that's also in the iteration mask.
5268 */
5269int group_balance_cpu(struct sched_group *sg)
5270{
5271 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5272}
5273
e3589f6c
PZ
5274static int
5275build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5276{
5277 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5278 const struct cpumask *span = sched_domain_span(sd);
5279 struct cpumask *covered = sched_domains_tmpmask;
5280 struct sd_data *sdd = sd->private;
5281 struct sched_domain *child;
5282 int i;
5283
5284 cpumask_clear(covered);
5285
5286 for_each_cpu(i, span) {
5287 struct cpumask *sg_span;
5288
5289 if (cpumask_test_cpu(i, covered))
5290 continue;
5291
c1174876
PZ
5292 child = *per_cpu_ptr(sdd->sd, i);
5293
5294 /* See the comment near build_group_mask(). */
5295 if (!cpumask_test_cpu(i, sched_domain_span(child)))
5296 continue;
5297
e3589f6c 5298 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 5299 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
5300
5301 if (!sg)
5302 goto fail;
5303
5304 sg_span = sched_group_cpus(sg);
e3589f6c
PZ
5305 if (child->child) {
5306 child = child->child;
5307 cpumask_copy(sg_span, sched_domain_span(child));
5308 } else
5309 cpumask_set_cpu(i, sg_span);
5310
5311 cpumask_or(covered, covered, sg_span);
5312
74a5ce20 5313 sg->sgp = *per_cpu_ptr(sdd->sgp, i);
c1174876
PZ
5314 if (atomic_inc_return(&sg->sgp->ref) == 1)
5315 build_group_mask(sd, sg);
5316
c3decf0d
PZ
5317 /*
5318 * Initialize sgp->power such that even if we mess up the
5319 * domains and no possible iteration will get us here, we won't
5320 * die on a /0 trap.
5321 */
5322 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
e3589f6c 5323
c1174876
PZ
5324 /*
5325 * Make sure the first group of this domain contains the
5326 * canonical balance cpu. Otherwise the sched_domain iteration
5327 * breaks. See update_sg_lb_stats().
5328 */
74a5ce20 5329 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 5330 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
5331 groups = sg;
5332
5333 if (!first)
5334 first = sg;
5335 if (last)
5336 last->next = sg;
5337 last = sg;
5338 last->next = first;
5339 }
5340 sd->groups = groups;
5341
5342 return 0;
5343
5344fail:
5345 free_sched_groups(first, 0);
5346
5347 return -ENOMEM;
5348}
5349
dce840a0 5350static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 5351{
dce840a0
PZ
5352 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5353 struct sched_domain *child = sd->child;
1da177e4 5354
dce840a0
PZ
5355 if (child)
5356 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 5357
9c3f75cb 5358 if (sg) {
dce840a0 5359 *sg = *per_cpu_ptr(sdd->sg, cpu);
9c3f75cb 5360 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
e3589f6c 5361 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
9c3f75cb 5362 }
dce840a0
PZ
5363
5364 return cpu;
1e9f28fa 5365}
1e9f28fa 5366
01a08546 5367/*
dce840a0
PZ
5368 * build_sched_groups will build a circular linked list of the groups
5369 * covered by the given span, and will set each group's ->cpumask correctly,
5370 * and ->cpu_power to 0.
e3589f6c
PZ
5371 *
5372 * Assumes the sched_domain tree is fully constructed
01a08546 5373 */
e3589f6c
PZ
5374static int
5375build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 5376{
dce840a0
PZ
5377 struct sched_group *first = NULL, *last = NULL;
5378 struct sd_data *sdd = sd->private;
5379 const struct cpumask *span = sched_domain_span(sd);
f96225fd 5380 struct cpumask *covered;
dce840a0 5381 int i;
9c1cfda2 5382
e3589f6c
PZ
5383 get_group(cpu, sdd, &sd->groups);
5384 atomic_inc(&sd->groups->ref);
5385
0936629f 5386 if (cpu != cpumask_first(span))
e3589f6c
PZ
5387 return 0;
5388
f96225fd
PZ
5389 lockdep_assert_held(&sched_domains_mutex);
5390 covered = sched_domains_tmpmask;
5391
dce840a0 5392 cpumask_clear(covered);
6711cab4 5393
dce840a0
PZ
5394 for_each_cpu(i, span) {
5395 struct sched_group *sg;
cd08e923 5396 int group, j;
6711cab4 5397
dce840a0
PZ
5398 if (cpumask_test_cpu(i, covered))
5399 continue;
6711cab4 5400
cd08e923 5401 group = get_group(i, sdd, &sg);
dce840a0 5402 cpumask_clear(sched_group_cpus(sg));
9c3f75cb 5403 sg->sgp->power = 0;
c1174876 5404 cpumask_setall(sched_group_mask(sg));
0601a88d 5405
dce840a0
PZ
5406 for_each_cpu(j, span) {
5407 if (get_group(j, sdd, NULL) != group)
5408 continue;
0601a88d 5409
dce840a0
PZ
5410 cpumask_set_cpu(j, covered);
5411 cpumask_set_cpu(j, sched_group_cpus(sg));
5412 }
0601a88d 5413
dce840a0
PZ
5414 if (!first)
5415 first = sg;
5416 if (last)
5417 last->next = sg;
5418 last = sg;
5419 }
5420 last->next = first;
e3589f6c
PZ
5421
5422 return 0;
0601a88d 5423}
51888ca2 5424
89c4710e
SS
5425/*
5426 * Initialize sched groups cpu_power.
5427 *
5428 * cpu_power indicates the capacity of sched group, which is used while
5429 * distributing the load between different sched groups in a sched domain.
5430 * Typically cpu_power for all the groups in a sched domain will be same unless
5431 * there are asymmetries in the topology. If there are asymmetries, group
5432 * having more cpu_power will pickup more load compared to the group having
5433 * less cpu_power.
89c4710e
SS
5434 */
5435static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5436{
e3589f6c 5437 struct sched_group *sg = sd->groups;
89c4710e 5438
94c95ba6 5439 WARN_ON(!sg);
e3589f6c
PZ
5440
5441 do {
5442 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5443 sg = sg->next;
5444 } while (sg != sd->groups);
89c4710e 5445
c1174876 5446 if (cpu != group_balance_cpu(sg))
e3589f6c 5447 return;
aae6d3dd 5448
d274cb30 5449 update_group_power(sd, cpu);
69e1e811 5450 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
89c4710e
SS
5451}
5452
029632fb
PZ
5453int __weak arch_sd_sibling_asym_packing(void)
5454{
5455 return 0*SD_ASYM_PACKING;
89c4710e
SS
5456}
5457
7c16ec58
MT
5458/*
5459 * Initializers for schedule domains
5460 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5461 */
5462
a5d8c348
IM
5463#ifdef CONFIG_SCHED_DEBUG
5464# define SD_INIT_NAME(sd, type) sd->name = #type
5465#else
5466# define SD_INIT_NAME(sd, type) do { } while (0)
5467#endif
5468
54ab4ff4
PZ
5469#define SD_INIT_FUNC(type) \
5470static noinline struct sched_domain * \
5471sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
5472{ \
5473 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
5474 *sd = SD_##type##_INIT; \
54ab4ff4
PZ
5475 SD_INIT_NAME(sd, type); \
5476 sd->private = &tl->data; \
5477 return sd; \
7c16ec58
MT
5478}
5479
5480SD_INIT_FUNC(CPU)
7c16ec58
MT
5481#ifdef CONFIG_SCHED_SMT
5482 SD_INIT_FUNC(SIBLING)
5483#endif
5484#ifdef CONFIG_SCHED_MC
5485 SD_INIT_FUNC(MC)
5486#endif
01a08546
HC
5487#ifdef CONFIG_SCHED_BOOK
5488 SD_INIT_FUNC(BOOK)
5489#endif
7c16ec58 5490
1d3504fc 5491static int default_relax_domain_level = -1;
60495e77 5492int sched_domain_level_max;
1d3504fc
HS
5493
5494static int __init setup_relax_domain_level(char *str)
5495{
a841f8ce
DS
5496 if (kstrtoint(str, 0, &default_relax_domain_level))
5497 pr_warn("Unable to set relax_domain_level\n");
30e0e178 5498
1d3504fc
HS
5499 return 1;
5500}
5501__setup("relax_domain_level=", setup_relax_domain_level);
5502
5503static void set_domain_attribute(struct sched_domain *sd,
5504 struct sched_domain_attr *attr)
5505{
5506 int request;
5507
5508 if (!attr || attr->relax_domain_level < 0) {
5509 if (default_relax_domain_level < 0)
5510 return;
5511 else
5512 request = default_relax_domain_level;
5513 } else
5514 request = attr->relax_domain_level;
5515 if (request < sd->level) {
5516 /* turn off idle balance on this domain */
c88d5910 5517 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5518 } else {
5519 /* turn on idle balance on this domain */
c88d5910 5520 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5521 }
5522}
5523
54ab4ff4
PZ
5524static void __sdt_free(const struct cpumask *cpu_map);
5525static int __sdt_alloc(const struct cpumask *cpu_map);
5526
2109b99e
AH
5527static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5528 const struct cpumask *cpu_map)
5529{
5530 switch (what) {
2109b99e 5531 case sa_rootdomain:
822ff793
PZ
5532 if (!atomic_read(&d->rd->refcount))
5533 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
5534 case sa_sd:
5535 free_percpu(d->sd); /* fall through */
dce840a0 5536 case sa_sd_storage:
54ab4ff4 5537 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
5538 case sa_none:
5539 break;
5540 }
5541}
3404c8d9 5542
2109b99e
AH
5543static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5544 const struct cpumask *cpu_map)
5545{
dce840a0
PZ
5546 memset(d, 0, sizeof(*d));
5547
54ab4ff4
PZ
5548 if (__sdt_alloc(cpu_map))
5549 return sa_sd_storage;
dce840a0
PZ
5550 d->sd = alloc_percpu(struct sched_domain *);
5551 if (!d->sd)
5552 return sa_sd_storage;
2109b99e 5553 d->rd = alloc_rootdomain();
dce840a0 5554 if (!d->rd)
21d42ccf 5555 return sa_sd;
2109b99e
AH
5556 return sa_rootdomain;
5557}
57d885fe 5558
dce840a0
PZ
5559/*
5560 * NULL the sd_data elements we've used to build the sched_domain and
5561 * sched_group structure so that the subsequent __free_domain_allocs()
5562 * will not free the data we're using.
5563 */
5564static void claim_allocations(int cpu, struct sched_domain *sd)
5565{
5566 struct sd_data *sdd = sd->private;
dce840a0
PZ
5567
5568 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5569 *per_cpu_ptr(sdd->sd, cpu) = NULL;
5570
e3589f6c 5571 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 5572 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c
PZ
5573
5574 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
9c3f75cb 5575 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
dce840a0
PZ
5576}
5577
2c402dc3
PZ
5578#ifdef CONFIG_SCHED_SMT
5579static const struct cpumask *cpu_smt_mask(int cpu)
7f4588f3 5580{
2c402dc3 5581 return topology_thread_cpumask(cpu);
3bd65a80 5582}
2c402dc3 5583#endif
7f4588f3 5584
d069b916
PZ
5585/*
5586 * Topology list, bottom-up.
5587 */
2c402dc3 5588static struct sched_domain_topology_level default_topology[] = {
d069b916
PZ
5589#ifdef CONFIG_SCHED_SMT
5590 { sd_init_SIBLING, cpu_smt_mask, },
01a08546 5591#endif
1e9f28fa 5592#ifdef CONFIG_SCHED_MC
2c402dc3 5593 { sd_init_MC, cpu_coregroup_mask, },
1e9f28fa 5594#endif
d069b916
PZ
5595#ifdef CONFIG_SCHED_BOOK
5596 { sd_init_BOOK, cpu_book_mask, },
5597#endif
5598 { sd_init_CPU, cpu_cpu_mask, },
eb7a74e6
PZ
5599 { NULL, },
5600};
5601
5602static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5603
27723a68
VK
5604#define for_each_sd_topology(tl) \
5605 for (tl = sched_domain_topology; tl->init; tl++)
5606
cb83b629
PZ
5607#ifdef CONFIG_NUMA
5608
5609static int sched_domains_numa_levels;
cb83b629
PZ
5610static int *sched_domains_numa_distance;
5611static struct cpumask ***sched_domains_numa_masks;
5612static int sched_domains_curr_level;
5613
cb83b629
PZ
5614static inline int sd_local_flags(int level)
5615{
10717dcd 5616 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
cb83b629
PZ
5617 return 0;
5618
5619 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
5620}
5621
5622static struct sched_domain *
5623sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
5624{
5625 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
5626 int level = tl->numa_level;
5627 int sd_weight = cpumask_weight(
5628 sched_domains_numa_masks[level][cpu_to_node(cpu)]);
5629
5630 *sd = (struct sched_domain){
5631 .min_interval = sd_weight,
5632 .max_interval = 2*sd_weight,
5633 .busy_factor = 32,
870a0bb5 5634 .imbalance_pct = 125,
cb83b629
PZ
5635 .cache_nice_tries = 2,
5636 .busy_idx = 3,
5637 .idle_idx = 2,
5638 .newidle_idx = 0,
5639 .wake_idx = 0,
5640 .forkexec_idx = 0,
5641
5642 .flags = 1*SD_LOAD_BALANCE
5643 | 1*SD_BALANCE_NEWIDLE
5644 | 0*SD_BALANCE_EXEC
5645 | 0*SD_BALANCE_FORK
5646 | 0*SD_BALANCE_WAKE
5647 | 0*SD_WAKE_AFFINE
cb83b629 5648 | 0*SD_SHARE_CPUPOWER
cb83b629
PZ
5649 | 0*SD_SHARE_PKG_RESOURCES
5650 | 1*SD_SERIALIZE
5651 | 0*SD_PREFER_SIBLING
5652 | sd_local_flags(level)
5653 ,
5654 .last_balance = jiffies,
5655 .balance_interval = sd_weight,
5656 };
5657 SD_INIT_NAME(sd, NUMA);
5658 sd->private = &tl->data;
5659
5660 /*
5661 * Ugly hack to pass state to sd_numa_mask()...
5662 */
5663 sched_domains_curr_level = tl->numa_level;
5664
5665 return sd;
5666}
5667
5668static const struct cpumask *sd_numa_mask(int cpu)
5669{
5670 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
5671}
5672
d039ac60
PZ
5673static void sched_numa_warn(const char *str)
5674{
5675 static int done = false;
5676 int i,j;
5677
5678 if (done)
5679 return;
5680
5681 done = true;
5682
5683 printk(KERN_WARNING "ERROR: %s\n\n", str);
5684
5685 for (i = 0; i < nr_node_ids; i++) {
5686 printk(KERN_WARNING " ");
5687 for (j = 0; j < nr_node_ids; j++)
5688 printk(KERN_CONT "%02d ", node_distance(i,j));
5689 printk(KERN_CONT "\n");
5690 }
5691 printk(KERN_WARNING "\n");
5692}
5693
5694static bool find_numa_distance(int distance)
5695{
5696 int i;
5697
5698 if (distance == node_distance(0, 0))
5699 return true;
5700
5701 for (i = 0; i < sched_domains_numa_levels; i++) {
5702 if (sched_domains_numa_distance[i] == distance)
5703 return true;
5704 }
5705
5706 return false;
5707}
5708
cb83b629
PZ
5709static void sched_init_numa(void)
5710{
5711 int next_distance, curr_distance = node_distance(0, 0);
5712 struct sched_domain_topology_level *tl;
5713 int level = 0;
5714 int i, j, k;
5715
cb83b629
PZ
5716 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
5717 if (!sched_domains_numa_distance)
5718 return;
5719
5720 /*
5721 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
5722 * unique distances in the node_distance() table.
5723 *
5724 * Assumes node_distance(0,j) includes all distances in
5725 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
5726 */
5727 next_distance = curr_distance;
5728 for (i = 0; i < nr_node_ids; i++) {
5729 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
5730 for (k = 0; k < nr_node_ids; k++) {
5731 int distance = node_distance(i, k);
5732
5733 if (distance > curr_distance &&
5734 (distance < next_distance ||
5735 next_distance == curr_distance))
5736 next_distance = distance;
5737
5738 /*
5739 * While not a strong assumption it would be nice to know
5740 * about cases where if node A is connected to B, B is not
5741 * equally connected to A.
5742 */
5743 if (sched_debug() && node_distance(k, i) != distance)
5744 sched_numa_warn("Node-distance not symmetric");
5745
5746 if (sched_debug() && i && !find_numa_distance(distance))
5747 sched_numa_warn("Node-0 not representative");
5748 }
5749 if (next_distance != curr_distance) {
5750 sched_domains_numa_distance[level++] = next_distance;
5751 sched_domains_numa_levels = level;
5752 curr_distance = next_distance;
5753 } else break;
cb83b629 5754 }
d039ac60
PZ
5755
5756 /*
5757 * In case of sched_debug() we verify the above assumption.
5758 */
5759 if (!sched_debug())
5760 break;
cb83b629
PZ
5761 }
5762 /*
5763 * 'level' contains the number of unique distances, excluding the
5764 * identity distance node_distance(i,i).
5765 *
28b4a521 5766 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
5767 * numbers.
5768 */
5769
5f7865f3
TC
5770 /*
5771 * Here, we should temporarily reset sched_domains_numa_levels to 0.
5772 * If it fails to allocate memory for array sched_domains_numa_masks[][],
5773 * the array will contain less then 'level' members. This could be
5774 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
5775 * in other functions.
5776 *
5777 * We reset it to 'level' at the end of this function.
5778 */
5779 sched_domains_numa_levels = 0;
5780
cb83b629
PZ
5781 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
5782 if (!sched_domains_numa_masks)
5783 return;
5784
5785 /*
5786 * Now for each level, construct a mask per node which contains all
5787 * cpus of nodes that are that many hops away from us.
5788 */
5789 for (i = 0; i < level; i++) {
5790 sched_domains_numa_masks[i] =
5791 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
5792 if (!sched_domains_numa_masks[i])
5793 return;
5794
5795 for (j = 0; j < nr_node_ids; j++) {
2ea45800 5796 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
5797 if (!mask)
5798 return;
5799
5800 sched_domains_numa_masks[i][j] = mask;
5801
5802 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 5803 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
5804 continue;
5805
5806 cpumask_or(mask, mask, cpumask_of_node(k));
5807 }
5808 }
5809 }
5810
5811 tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
5812 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
5813 if (!tl)
5814 return;
5815
5816 /*
5817 * Copy the default topology bits..
5818 */
5819 for (i = 0; default_topology[i].init; i++)
5820 tl[i] = default_topology[i];
5821
5822 /*
5823 * .. and append 'j' levels of NUMA goodness.
5824 */
5825 for (j = 0; j < level; i++, j++) {
5826 tl[i] = (struct sched_domain_topology_level){
5827 .init = sd_numa_init,
5828 .mask = sd_numa_mask,
5829 .flags = SDTL_OVERLAP,
5830 .numa_level = j,
5831 };
5832 }
5833
5834 sched_domain_topology = tl;
5f7865f3
TC
5835
5836 sched_domains_numa_levels = level;
cb83b629 5837}
301a5cba
TC
5838
5839static void sched_domains_numa_masks_set(int cpu)
5840{
5841 int i, j;
5842 int node = cpu_to_node(cpu);
5843
5844 for (i = 0; i < sched_domains_numa_levels; i++) {
5845 for (j = 0; j < nr_node_ids; j++) {
5846 if (node_distance(j, node) <= sched_domains_numa_distance[i])
5847 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
5848 }
5849 }
5850}
5851
5852static void sched_domains_numa_masks_clear(int cpu)
5853{
5854 int i, j;
5855 for (i = 0; i < sched_domains_numa_levels; i++) {
5856 for (j = 0; j < nr_node_ids; j++)
5857 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
5858 }
5859}
5860
5861/*
5862 * Update sched_domains_numa_masks[level][node] array when new cpus
5863 * are onlined.
5864 */
5865static int sched_domains_numa_masks_update(struct notifier_block *nfb,
5866 unsigned long action,
5867 void *hcpu)
5868{
5869 int cpu = (long)hcpu;
5870
5871 switch (action & ~CPU_TASKS_FROZEN) {
5872 case CPU_ONLINE:
5873 sched_domains_numa_masks_set(cpu);
5874 break;
5875
5876 case CPU_DEAD:
5877 sched_domains_numa_masks_clear(cpu);
5878 break;
5879
5880 default:
5881 return NOTIFY_DONE;
5882 }
5883
5884 return NOTIFY_OK;
cb83b629
PZ
5885}
5886#else
5887static inline void sched_init_numa(void)
5888{
5889}
301a5cba
TC
5890
5891static int sched_domains_numa_masks_update(struct notifier_block *nfb,
5892 unsigned long action,
5893 void *hcpu)
5894{
5895 return 0;
5896}
cb83b629
PZ
5897#endif /* CONFIG_NUMA */
5898
54ab4ff4
PZ
5899static int __sdt_alloc(const struct cpumask *cpu_map)
5900{
5901 struct sched_domain_topology_level *tl;
5902 int j;
5903
27723a68 5904 for_each_sd_topology(tl) {
54ab4ff4
PZ
5905 struct sd_data *sdd = &tl->data;
5906
5907 sdd->sd = alloc_percpu(struct sched_domain *);
5908 if (!sdd->sd)
5909 return -ENOMEM;
5910
5911 sdd->sg = alloc_percpu(struct sched_group *);
5912 if (!sdd->sg)
5913 return -ENOMEM;
5914
9c3f75cb
PZ
5915 sdd->sgp = alloc_percpu(struct sched_group_power *);
5916 if (!sdd->sgp)
5917 return -ENOMEM;
5918
54ab4ff4
PZ
5919 for_each_cpu(j, cpu_map) {
5920 struct sched_domain *sd;
5921 struct sched_group *sg;
9c3f75cb 5922 struct sched_group_power *sgp;
54ab4ff4
PZ
5923
5924 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
5925 GFP_KERNEL, cpu_to_node(j));
5926 if (!sd)
5927 return -ENOMEM;
5928
5929 *per_cpu_ptr(sdd->sd, j) = sd;
5930
5931 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5932 GFP_KERNEL, cpu_to_node(j));
5933 if (!sg)
5934 return -ENOMEM;
5935
30b4e9eb
IM
5936 sg->next = sg;
5937
54ab4ff4 5938 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 5939
c1174876 5940 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
9c3f75cb
PZ
5941 GFP_KERNEL, cpu_to_node(j));
5942 if (!sgp)
5943 return -ENOMEM;
5944
5945 *per_cpu_ptr(sdd->sgp, j) = sgp;
54ab4ff4
PZ
5946 }
5947 }
5948
5949 return 0;
5950}
5951
5952static void __sdt_free(const struct cpumask *cpu_map)
5953{
5954 struct sched_domain_topology_level *tl;
5955 int j;
5956
27723a68 5957 for_each_sd_topology(tl) {
54ab4ff4
PZ
5958 struct sd_data *sdd = &tl->data;
5959
5960 for_each_cpu(j, cpu_map) {
fb2cf2c6 5961 struct sched_domain *sd;
5962
5963 if (sdd->sd) {
5964 sd = *per_cpu_ptr(sdd->sd, j);
5965 if (sd && (sd->flags & SD_OVERLAP))
5966 free_sched_groups(sd->groups, 0);
5967 kfree(*per_cpu_ptr(sdd->sd, j));
5968 }
5969
5970 if (sdd->sg)
5971 kfree(*per_cpu_ptr(sdd->sg, j));
5972 if (sdd->sgp)
5973 kfree(*per_cpu_ptr(sdd->sgp, j));
54ab4ff4
PZ
5974 }
5975 free_percpu(sdd->sd);
fb2cf2c6 5976 sdd->sd = NULL;
54ab4ff4 5977 free_percpu(sdd->sg);
fb2cf2c6 5978 sdd->sg = NULL;
9c3f75cb 5979 free_percpu(sdd->sgp);
fb2cf2c6 5980 sdd->sgp = NULL;
54ab4ff4
PZ
5981 }
5982}
5983
2c402dc3 5984struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
5985 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
5986 struct sched_domain *child, int cpu)
2c402dc3 5987{
54ab4ff4 5988 struct sched_domain *sd = tl->init(tl, cpu);
2c402dc3 5989 if (!sd)
d069b916 5990 return child;
2c402dc3 5991
2c402dc3 5992 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
5993 if (child) {
5994 sd->level = child->level + 1;
5995 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 5996 child->parent = sd;
c75e0128 5997 sd->child = child;
60495e77 5998 }
a841f8ce 5999 set_domain_attribute(sd, attr);
2c402dc3
PZ
6000
6001 return sd;
6002}
6003
2109b99e
AH
6004/*
6005 * Build sched domains for a given set of cpus and attach the sched domains
6006 * to the individual cpus
6007 */
dce840a0
PZ
6008static int build_sched_domains(const struct cpumask *cpu_map,
6009 struct sched_domain_attr *attr)
2109b99e 6010{
1c632169 6011 enum s_alloc alloc_state;
dce840a0 6012 struct sched_domain *sd;
2109b99e 6013 struct s_data d;
822ff793 6014 int i, ret = -ENOMEM;
9c1cfda2 6015
2109b99e
AH
6016 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6017 if (alloc_state != sa_rootdomain)
6018 goto error;
9c1cfda2 6019
dce840a0 6020 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6021 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6022 struct sched_domain_topology_level *tl;
6023
3bd65a80 6024 sd = NULL;
27723a68 6025 for_each_sd_topology(tl) {
4a850cbe 6026 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
6027 if (tl == sched_domain_topology)
6028 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
6029 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6030 sd->flags |= SD_OVERLAP;
d110235d
PZ
6031 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6032 break;
e3589f6c 6033 }
dce840a0
PZ
6034 }
6035
6036 /* Build the groups for the domains */
6037 for_each_cpu(i, cpu_map) {
6038 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6039 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6040 if (sd->flags & SD_OVERLAP) {
6041 if (build_overlap_sched_groups(sd, i))
6042 goto error;
6043 } else {
6044 if (build_sched_groups(sd, i))
6045 goto error;
6046 }
1cf51902 6047 }
a06dadbe 6048 }
9c1cfda2 6049
1da177e4 6050 /* Calculate CPU power for physical packages and nodes */
a9c9a9b6
PZ
6051 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6052 if (!cpumask_test_cpu(i, cpu_map))
6053 continue;
9c1cfda2 6054
dce840a0
PZ
6055 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6056 claim_allocations(i, sd);
cd4ea6ae 6057 init_sched_groups_power(i, sd);
dce840a0 6058 }
f712c0c7 6059 }
9c1cfda2 6060
1da177e4 6061 /* Attach the domains */
dce840a0 6062 rcu_read_lock();
abcd083a 6063 for_each_cpu(i, cpu_map) {
21d42ccf 6064 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6065 cpu_attach_domain(sd, d.rd, i);
1da177e4 6066 }
dce840a0 6067 rcu_read_unlock();
51888ca2 6068
822ff793 6069 ret = 0;
51888ca2 6070error:
2109b99e 6071 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6072 return ret;
1da177e4 6073}
029190c5 6074
acc3f5d7 6075static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6076static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6077static struct sched_domain_attr *dattr_cur;
6078 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6079
6080/*
6081 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6082 * cpumask) fails, then fallback to a single sched domain,
6083 * as determined by the single cpumask fallback_doms.
029190c5 6084 */
4212823f 6085static cpumask_var_t fallback_doms;
029190c5 6086
ee79d1bd
HC
6087/*
6088 * arch_update_cpu_topology lets virtualized architectures update the
6089 * cpu core maps. It is supposed to return 1 if the topology changed
6090 * or 0 if it stayed the same.
6091 */
6092int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 6093{
ee79d1bd 6094 return 0;
22e52b07
HC
6095}
6096
acc3f5d7
RR
6097cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6098{
6099 int i;
6100 cpumask_var_t *doms;
6101
6102 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6103 if (!doms)
6104 return NULL;
6105 for (i = 0; i < ndoms; i++) {
6106 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6107 free_sched_domains(doms, i);
6108 return NULL;
6109 }
6110 }
6111 return doms;
6112}
6113
6114void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6115{
6116 unsigned int i;
6117 for (i = 0; i < ndoms; i++)
6118 free_cpumask_var(doms[i]);
6119 kfree(doms);
6120}
6121
1a20ff27 6122/*
41a2d6cf 6123 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6124 * For now this just excludes isolated cpus, but could be used to
6125 * exclude other special cases in the future.
1a20ff27 6126 */
c4a8849a 6127static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6128{
7378547f
MM
6129 int err;
6130
22e52b07 6131 arch_update_cpu_topology();
029190c5 6132 ndoms_cur = 1;
acc3f5d7 6133 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6134 if (!doms_cur)
acc3f5d7
RR
6135 doms_cur = &fallback_doms;
6136 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 6137 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6138 register_sched_domain_sysctl();
7378547f
MM
6139
6140 return err;
1a20ff27
DG
6141}
6142
1a20ff27
DG
6143/*
6144 * Detach sched domains from a group of cpus specified in cpu_map
6145 * These cpus will now be attached to the NULL domain
6146 */
96f874e2 6147static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6148{
6149 int i;
6150
dce840a0 6151 rcu_read_lock();
abcd083a 6152 for_each_cpu(i, cpu_map)
57d885fe 6153 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6154 rcu_read_unlock();
1a20ff27
DG
6155}
6156
1d3504fc
HS
6157/* handle null as "default" */
6158static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6159 struct sched_domain_attr *new, int idx_new)
6160{
6161 struct sched_domain_attr tmp;
6162
6163 /* fast path */
6164 if (!new && !cur)
6165 return 1;
6166
6167 tmp = SD_ATTR_INIT;
6168 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6169 new ? (new + idx_new) : &tmp,
6170 sizeof(struct sched_domain_attr));
6171}
6172
029190c5
PJ
6173/*
6174 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6175 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6176 * doms_new[] to the current sched domain partitioning, doms_cur[].
6177 * It destroys each deleted domain and builds each new domain.
6178 *
acc3f5d7 6179 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
6180 * The masks don't intersect (don't overlap.) We should setup one
6181 * sched domain for each mask. CPUs not in any of the cpumasks will
6182 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6183 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6184 * it as it is.
6185 *
acc3f5d7
RR
6186 * The passed in 'doms_new' should be allocated using
6187 * alloc_sched_domains. This routine takes ownership of it and will
6188 * free_sched_domains it when done with it. If the caller failed the
6189 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6190 * and partition_sched_domains() will fallback to the single partition
6191 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 6192 *
96f874e2 6193 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
6194 * ndoms_new == 0 is a special case for destroying existing domains,
6195 * and it will not create the default domain.
dfb512ec 6196 *
029190c5
PJ
6197 * Call with hotplug lock held
6198 */
acc3f5d7 6199void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 6200 struct sched_domain_attr *dattr_new)
029190c5 6201{
dfb512ec 6202 int i, j, n;
d65bd5ec 6203 int new_topology;
029190c5 6204
712555ee 6205 mutex_lock(&sched_domains_mutex);
a1835615 6206
7378547f
MM
6207 /* always unregister in case we don't destroy any domains */
6208 unregister_sched_domain_sysctl();
6209
d65bd5ec
HC
6210 /* Let architecture update cpu core mappings. */
6211 new_topology = arch_update_cpu_topology();
6212
dfb512ec 6213 n = doms_new ? ndoms_new : 0;
029190c5
PJ
6214
6215 /* Destroy deleted domains */
6216 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 6217 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6218 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 6219 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
6220 goto match1;
6221 }
6222 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 6223 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
6224match1:
6225 ;
6226 }
6227
c8d2d47a 6228 n = ndoms_cur;
e761b772 6229 if (doms_new == NULL) {
c8d2d47a 6230 n = 0;
acc3f5d7 6231 doms_new = &fallback_doms;
6ad4c188 6232 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 6233 WARN_ON_ONCE(dattr_new);
e761b772
MK
6234 }
6235
029190c5
PJ
6236 /* Build new domains */
6237 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 6238 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6239 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 6240 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
6241 goto match2;
6242 }
6243 /* no match - add a new doms_new */
dce840a0 6244 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
6245match2:
6246 ;
6247 }
6248
6249 /* Remember the new sched domains */
acc3f5d7
RR
6250 if (doms_cur != &fallback_doms)
6251 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 6252 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 6253 doms_cur = doms_new;
1d3504fc 6254 dattr_cur = dattr_new;
029190c5 6255 ndoms_cur = ndoms_new;
7378547f
MM
6256
6257 register_sched_domain_sysctl();
a1835615 6258
712555ee 6259 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
6260}
6261
d35be8ba
SB
6262static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6263
1da177e4 6264/*
3a101d05
TH
6265 * Update cpusets according to cpu_active mask. If cpusets are
6266 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6267 * around partition_sched_domains().
d35be8ba
SB
6268 *
6269 * If we come here as part of a suspend/resume, don't touch cpusets because we
6270 * want to restore it back to its original state upon resume anyway.
1da177e4 6271 */
0b2e918a
TH
6272static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6273 void *hcpu)
e761b772 6274{
d35be8ba
SB
6275 switch (action) {
6276 case CPU_ONLINE_FROZEN:
6277 case CPU_DOWN_FAILED_FROZEN:
6278
6279 /*
6280 * num_cpus_frozen tracks how many CPUs are involved in suspend
6281 * resume sequence. As long as this is not the last online
6282 * operation in the resume sequence, just build a single sched
6283 * domain, ignoring cpusets.
6284 */
6285 num_cpus_frozen--;
6286 if (likely(num_cpus_frozen)) {
6287 partition_sched_domains(1, NULL, NULL);
6288 break;
6289 }
6290
6291 /*
6292 * This is the last CPU online operation. So fall through and
6293 * restore the original sched domains by considering the
6294 * cpuset configurations.
6295 */
6296
e761b772 6297 case CPU_ONLINE:
6ad4c188 6298 case CPU_DOWN_FAILED:
7ddf96b0 6299 cpuset_update_active_cpus(true);
d35be8ba 6300 break;
3a101d05
TH
6301 default:
6302 return NOTIFY_DONE;
6303 }
d35be8ba 6304 return NOTIFY_OK;
3a101d05 6305}
e761b772 6306
0b2e918a
TH
6307static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6308 void *hcpu)
3a101d05 6309{
d35be8ba 6310 switch (action) {
3a101d05 6311 case CPU_DOWN_PREPARE:
7ddf96b0 6312 cpuset_update_active_cpus(false);
d35be8ba
SB
6313 break;
6314 case CPU_DOWN_PREPARE_FROZEN:
6315 num_cpus_frozen++;
6316 partition_sched_domains(1, NULL, NULL);
6317 break;
e761b772
MK
6318 default:
6319 return NOTIFY_DONE;
6320 }
d35be8ba 6321 return NOTIFY_OK;
e761b772 6322}
e761b772 6323
1da177e4
LT
6324void __init sched_init_smp(void)
6325{
dcc30a35
RR
6326 cpumask_var_t non_isolated_cpus;
6327
6328 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 6329 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 6330
cb83b629
PZ
6331 sched_init_numa();
6332
95402b38 6333 get_online_cpus();
712555ee 6334 mutex_lock(&sched_domains_mutex);
c4a8849a 6335 init_sched_domains(cpu_active_mask);
dcc30a35
RR
6336 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6337 if (cpumask_empty(non_isolated_cpus))
6338 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 6339 mutex_unlock(&sched_domains_mutex);
95402b38 6340 put_online_cpus();
e761b772 6341
301a5cba 6342 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
6343 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6344 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772 6345
b328ca18 6346 init_hrtick();
5c1e1767
NP
6347
6348 /* Move init over to a non-isolated CPU */
dcc30a35 6349 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 6350 BUG();
19978ca6 6351 sched_init_granularity();
dcc30a35 6352 free_cpumask_var(non_isolated_cpus);
4212823f 6353
0e3900e6 6354 init_sched_rt_class();
1da177e4
LT
6355}
6356#else
6357void __init sched_init_smp(void)
6358{
19978ca6 6359 sched_init_granularity();
1da177e4
LT
6360}
6361#endif /* CONFIG_SMP */
6362
cd1bb94b
AB
6363const_debug unsigned int sysctl_timer_migration = 1;
6364
1da177e4
LT
6365int in_sched_functions(unsigned long addr)
6366{
1da177e4
LT
6367 return in_lock_functions(addr) ||
6368 (addr >= (unsigned long)__sched_text_start
6369 && addr < (unsigned long)__sched_text_end);
6370}
6371
029632fb 6372#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
6373/*
6374 * Default task group.
6375 * Every task in system belongs to this group at bootup.
6376 */
029632fb 6377struct task_group root_task_group;
35cf4e50 6378LIST_HEAD(task_groups);
052f1dc7 6379#endif
6f505b16 6380
e6252c3e 6381DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 6382
1da177e4
LT
6383void __init sched_init(void)
6384{
dd41f596 6385 int i, j;
434d53b0
MT
6386 unsigned long alloc_size = 0, ptr;
6387
6388#ifdef CONFIG_FAIR_GROUP_SCHED
6389 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6390#endif
6391#ifdef CONFIG_RT_GROUP_SCHED
6392 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 6393#endif
df7c8e84 6394#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 6395 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 6396#endif
434d53b0 6397 if (alloc_size) {
36b7b6d4 6398 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
6399
6400#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 6401 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
6402 ptr += nr_cpu_ids * sizeof(void **);
6403
07e06b01 6404 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 6405 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 6406
6d6bc0ad 6407#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 6408#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6409 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
6410 ptr += nr_cpu_ids * sizeof(void **);
6411
07e06b01 6412 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
6413 ptr += nr_cpu_ids * sizeof(void **);
6414
6d6bc0ad 6415#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
6416#ifdef CONFIG_CPUMASK_OFFSTACK
6417 for_each_possible_cpu(i) {
e6252c3e 6418 per_cpu(load_balance_mask, i) = (void *)ptr;
df7c8e84
RR
6419 ptr += cpumask_size();
6420 }
6421#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 6422 }
dd41f596 6423
57d885fe
GH
6424#ifdef CONFIG_SMP
6425 init_defrootdomain();
6426#endif
6427
d0b27fa7
PZ
6428 init_rt_bandwidth(&def_rt_bandwidth,
6429 global_rt_period(), global_rt_runtime());
6430
6431#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6432 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 6433 global_rt_period(), global_rt_runtime());
6d6bc0ad 6434#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6435
7c941438 6436#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
6437 list_add(&root_task_group.list, &task_groups);
6438 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 6439 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 6440 autogroup_init(&init_task);
54c707e9 6441
7c941438 6442#endif /* CONFIG_CGROUP_SCHED */
6f505b16 6443
0a945022 6444 for_each_possible_cpu(i) {
70b97a7f 6445 struct rq *rq;
1da177e4
LT
6446
6447 rq = cpu_rq(i);
05fa785c 6448 raw_spin_lock_init(&rq->lock);
7897986b 6449 rq->nr_running = 0;
dce48a84
TG
6450 rq->calc_load_active = 0;
6451 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 6452 init_cfs_rq(&rq->cfs);
6f505b16 6453 init_rt_rq(&rq->rt, rq);
dd41f596 6454#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 6455 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 6456 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 6457 /*
07e06b01 6458 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
6459 *
6460 * In case of task-groups formed thr' the cgroup filesystem, it
6461 * gets 100% of the cpu resources in the system. This overall
6462 * system cpu resource is divided among the tasks of
07e06b01 6463 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
6464 * based on each entity's (task or task-group's) weight
6465 * (se->load.weight).
6466 *
07e06b01 6467 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
6468 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6469 * then A0's share of the cpu resource is:
6470 *
0d905bca 6471 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 6472 *
07e06b01
YZ
6473 * We achieve this by letting root_task_group's tasks sit
6474 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 6475 */
ab84d31e 6476 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 6477 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
6478#endif /* CONFIG_FAIR_GROUP_SCHED */
6479
6480 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 6481#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 6482 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
07e06b01 6483 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 6484#endif
1da177e4 6485
dd41f596
IM
6486 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6487 rq->cpu_load[j] = 0;
fdf3e95d
VP
6488
6489 rq->last_load_update_tick = jiffies;
6490
1da177e4 6491#ifdef CONFIG_SMP
41c7ce9a 6492 rq->sd = NULL;
57d885fe 6493 rq->rd = NULL;
1399fa78 6494 rq->cpu_power = SCHED_POWER_SCALE;
3f029d3c 6495 rq->post_schedule = 0;
1da177e4 6496 rq->active_balance = 0;
dd41f596 6497 rq->next_balance = jiffies;
1da177e4 6498 rq->push_cpu = 0;
0a2966b4 6499 rq->cpu = i;
1f11eb6a 6500 rq->online = 0;
eae0c9df
MG
6501 rq->idle_stamp = 0;
6502 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 6503 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
6504
6505 INIT_LIST_HEAD(&rq->cfs_tasks);
6506
dc938520 6507 rq_attach_root(rq, &def_root_domain);
3451d024 6508#ifdef CONFIG_NO_HZ_COMMON
1c792db7 6509 rq->nohz_flags = 0;
83cd4fe2 6510#endif
265f22a9
FW
6511#ifdef CONFIG_NO_HZ_FULL
6512 rq->last_sched_tick = 0;
6513#endif
1da177e4 6514#endif
8f4d37ec 6515 init_rq_hrtick(rq);
1da177e4 6516 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
6517 }
6518
2dd73a4f 6519 set_load_weight(&init_task);
b50f60ce 6520
e107be36
AK
6521#ifdef CONFIG_PREEMPT_NOTIFIERS
6522 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6523#endif
6524
b50f60ce 6525#ifdef CONFIG_RT_MUTEXES
732375c6 6526 plist_head_init(&init_task.pi_waiters);
b50f60ce
HC
6527#endif
6528
1da177e4
LT
6529 /*
6530 * The boot idle thread does lazy MMU switching as well:
6531 */
6532 atomic_inc(&init_mm.mm_count);
6533 enter_lazy_tlb(&init_mm, current);
6534
6535 /*
6536 * Make us the idle thread. Technically, schedule() should not be
6537 * called from this thread, however somewhere below it might be,
6538 * but because we are the idle thread, we just pick up running again
6539 * when this runqueue becomes "idle".
6540 */
6541 init_idle(current, smp_processor_id());
dce48a84
TG
6542
6543 calc_load_update = jiffies + LOAD_FREQ;
6544
dd41f596
IM
6545 /*
6546 * During early bootup we pretend to be a normal task:
6547 */
6548 current->sched_class = &fair_sched_class;
6892b75e 6549
bf4d83f6 6550#ifdef CONFIG_SMP
4cb98839 6551 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
6552 /* May be allocated at isolcpus cmdline parse time */
6553 if (cpu_isolated_map == NULL)
6554 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 6555 idle_thread_set_boot_cpu();
029632fb
PZ
6556#endif
6557 init_sched_fair_class();
6a7b3dc3 6558
6892b75e 6559 scheduler_running = 1;
1da177e4
LT
6560}
6561
d902db1e 6562#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
6563static inline int preempt_count_equals(int preempt_offset)
6564{
234da7bc 6565 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 6566
4ba8216c 6567 return (nested == preempt_offset);
e4aafea2
FW
6568}
6569
d894837f 6570void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6571{
1da177e4
LT
6572 static unsigned long prev_jiffy; /* ratelimiting */
6573
b3fbab05 6574 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
e4aafea2
FW
6575 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
6576 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
6577 return;
6578 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6579 return;
6580 prev_jiffy = jiffies;
6581
3df0fc5b
PZ
6582 printk(KERN_ERR
6583 "BUG: sleeping function called from invalid context at %s:%d\n",
6584 file, line);
6585 printk(KERN_ERR
6586 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6587 in_atomic(), irqs_disabled(),
6588 current->pid, current->comm);
aef745fc
IM
6589
6590 debug_show_held_locks(current);
6591 if (irqs_disabled())
6592 print_irqtrace_events(current);
6593 dump_stack();
1da177e4
LT
6594}
6595EXPORT_SYMBOL(__might_sleep);
6596#endif
6597
6598#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
6599static void normalize_task(struct rq *rq, struct task_struct *p)
6600{
da7a735e
PZ
6601 const struct sched_class *prev_class = p->sched_class;
6602 int old_prio = p->prio;
3a5e4dc1 6603 int on_rq;
3e51f33f 6604
fd2f4419 6605 on_rq = p->on_rq;
3a5e4dc1 6606 if (on_rq)
4ca9b72b 6607 dequeue_task(rq, p, 0);
3a5e4dc1
AK
6608 __setscheduler(rq, p, SCHED_NORMAL, 0);
6609 if (on_rq) {
4ca9b72b 6610 enqueue_task(rq, p, 0);
3a5e4dc1
AK
6611 resched_task(rq->curr);
6612 }
da7a735e
PZ
6613
6614 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
6615}
6616
1da177e4
LT
6617void normalize_rt_tasks(void)
6618{
a0f98a1c 6619 struct task_struct *g, *p;
1da177e4 6620 unsigned long flags;
70b97a7f 6621 struct rq *rq;
1da177e4 6622
4cf5d77a 6623 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 6624 do_each_thread(g, p) {
178be793
IM
6625 /*
6626 * Only normalize user tasks:
6627 */
6628 if (!p->mm)
6629 continue;
6630
6cfb0d5d 6631 p->se.exec_start = 0;
6cfb0d5d 6632#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
6633 p->se.statistics.wait_start = 0;
6634 p->se.statistics.sleep_start = 0;
6635 p->se.statistics.block_start = 0;
6cfb0d5d 6636#endif
dd41f596
IM
6637
6638 if (!rt_task(p)) {
6639 /*
6640 * Renice negative nice level userspace
6641 * tasks back to 0:
6642 */
6643 if (TASK_NICE(p) < 0 && p->mm)
6644 set_user_nice(p, 0);
1da177e4 6645 continue;
dd41f596 6646 }
1da177e4 6647
1d615482 6648 raw_spin_lock(&p->pi_lock);
b29739f9 6649 rq = __task_rq_lock(p);
1da177e4 6650
178be793 6651 normalize_task(rq, p);
3a5e4dc1 6652
b29739f9 6653 __task_rq_unlock(rq);
1d615482 6654 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
6655 } while_each_thread(g, p);
6656
4cf5d77a 6657 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
6658}
6659
6660#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 6661
67fc4e0c 6662#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 6663/*
67fc4e0c 6664 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
6665 *
6666 * They can only be called when the whole system has been
6667 * stopped - every CPU needs to be quiescent, and no scheduling
6668 * activity can take place. Using them for anything else would
6669 * be a serious bug, and as a result, they aren't even visible
6670 * under any other configuration.
6671 */
6672
6673/**
6674 * curr_task - return the current task for a given cpu.
6675 * @cpu: the processor in question.
6676 *
6677 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
6678 *
6679 * Return: The current task for @cpu.
1df5c10a 6680 */
36c8b586 6681struct task_struct *curr_task(int cpu)
1df5c10a
LT
6682{
6683 return cpu_curr(cpu);
6684}
6685
67fc4e0c
JW
6686#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6687
6688#ifdef CONFIG_IA64
1df5c10a
LT
6689/**
6690 * set_curr_task - set the current task for a given cpu.
6691 * @cpu: the processor in question.
6692 * @p: the task pointer to set.
6693 *
6694 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
6695 * are serviced on a separate stack. It allows the architecture to switch the
6696 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
6697 * must be called with all CPU's synchronized, and interrupts disabled, the
6698 * and caller must save the original value of the current task (see
6699 * curr_task() above) and restore that value before reenabling interrupts and
6700 * re-starting the system.
6701 *
6702 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6703 */
36c8b586 6704void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
6705{
6706 cpu_curr(cpu) = p;
6707}
6708
6709#endif
29f59db3 6710
7c941438 6711#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
6712/* task_group_lock serializes the addition/removal of task groups */
6713static DEFINE_SPINLOCK(task_group_lock);
6714
bccbe08a
PZ
6715static void free_sched_group(struct task_group *tg)
6716{
6717 free_fair_sched_group(tg);
6718 free_rt_sched_group(tg);
e9aa1dd1 6719 autogroup_free(tg);
bccbe08a
PZ
6720 kfree(tg);
6721}
6722
6723/* allocate runqueue etc for a new task group */
ec7dc8ac 6724struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
6725{
6726 struct task_group *tg;
bccbe08a
PZ
6727
6728 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
6729 if (!tg)
6730 return ERR_PTR(-ENOMEM);
6731
ec7dc8ac 6732 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
6733 goto err;
6734
ec7dc8ac 6735 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
6736 goto err;
6737
ace783b9
LZ
6738 return tg;
6739
6740err:
6741 free_sched_group(tg);
6742 return ERR_PTR(-ENOMEM);
6743}
6744
6745void sched_online_group(struct task_group *tg, struct task_group *parent)
6746{
6747 unsigned long flags;
6748
8ed36996 6749 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 6750 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
6751
6752 WARN_ON(!parent); /* root should already exist */
6753
6754 tg->parent = parent;
f473aa5e 6755 INIT_LIST_HEAD(&tg->children);
09f2724a 6756 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 6757 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
6758}
6759
9b5b7751 6760/* rcu callback to free various structures associated with a task group */
6f505b16 6761static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 6762{
29f59db3 6763 /* now it should be safe to free those cfs_rqs */
6f505b16 6764 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
6765}
6766
9b5b7751 6767/* Destroy runqueue etc associated with a task group */
4cf86d77 6768void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
6769{
6770 /* wait for possible concurrent references to cfs_rqs complete */
6771 call_rcu(&tg->rcu, free_sched_group_rcu);
6772}
6773
6774void sched_offline_group(struct task_group *tg)
29f59db3 6775{
8ed36996 6776 unsigned long flags;
9b5b7751 6777 int i;
29f59db3 6778
3d4b47b4
PZ
6779 /* end participation in shares distribution */
6780 for_each_possible_cpu(i)
bccbe08a 6781 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
6782
6783 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 6784 list_del_rcu(&tg->list);
f473aa5e 6785 list_del_rcu(&tg->siblings);
8ed36996 6786 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
6787}
6788
9b5b7751 6789/* change task's runqueue when it moves between groups.
3a252015
IM
6790 * The caller of this function should have put the task in its new group
6791 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
6792 * reflect its new group.
9b5b7751
SV
6793 */
6794void sched_move_task(struct task_struct *tsk)
29f59db3 6795{
8323f26c 6796 struct task_group *tg;
29f59db3
SV
6797 int on_rq, running;
6798 unsigned long flags;
6799 struct rq *rq;
6800
6801 rq = task_rq_lock(tsk, &flags);
6802
051a1d1a 6803 running = task_current(rq, tsk);
fd2f4419 6804 on_rq = tsk->on_rq;
29f59db3 6805
0e1f3483 6806 if (on_rq)
29f59db3 6807 dequeue_task(rq, tsk, 0);
0e1f3483
HS
6808 if (unlikely(running))
6809 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 6810
8af01f56 6811 tg = container_of(task_css_check(tsk, cpu_cgroup_subsys_id,
8323f26c
PZ
6812 lockdep_is_held(&tsk->sighand->siglock)),
6813 struct task_group, css);
6814 tg = autogroup_task_group(tsk, tg);
6815 tsk->sched_task_group = tg;
6816
810b3817 6817#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
6818 if (tsk->sched_class->task_move_group)
6819 tsk->sched_class->task_move_group(tsk, on_rq);
6820 else
810b3817 6821#endif
b2b5ce02 6822 set_task_rq(tsk, task_cpu(tsk));
810b3817 6823
0e1f3483
HS
6824 if (unlikely(running))
6825 tsk->sched_class->set_curr_task(rq);
6826 if (on_rq)
371fd7e7 6827 enqueue_task(rq, tsk, 0);
29f59db3 6828
0122ec5b 6829 task_rq_unlock(rq, tsk, &flags);
29f59db3 6830}
7c941438 6831#endif /* CONFIG_CGROUP_SCHED */
29f59db3 6832
a790de99 6833#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
9f0c1e56
PZ
6834static unsigned long to_ratio(u64 period, u64 runtime)
6835{
6836 if (runtime == RUNTIME_INF)
9a7e0b18 6837 return 1ULL << 20;
9f0c1e56 6838
9a7e0b18 6839 return div64_u64(runtime << 20, period);
9f0c1e56 6840}
a790de99
PT
6841#endif
6842
6843#ifdef CONFIG_RT_GROUP_SCHED
6844/*
6845 * Ensure that the real time constraints are schedulable.
6846 */
6847static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 6848
9a7e0b18
PZ
6849/* Must be called with tasklist_lock held */
6850static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 6851{
9a7e0b18 6852 struct task_struct *g, *p;
b40b2e8e 6853
9a7e0b18 6854 do_each_thread(g, p) {
029632fb 6855 if (rt_task(p) && task_rq(p)->rt.tg == tg)
9a7e0b18
PZ
6856 return 1;
6857 } while_each_thread(g, p);
b40b2e8e 6858
9a7e0b18
PZ
6859 return 0;
6860}
b40b2e8e 6861
9a7e0b18
PZ
6862struct rt_schedulable_data {
6863 struct task_group *tg;
6864 u64 rt_period;
6865 u64 rt_runtime;
6866};
b40b2e8e 6867
a790de99 6868static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
6869{
6870 struct rt_schedulable_data *d = data;
6871 struct task_group *child;
6872 unsigned long total, sum = 0;
6873 u64 period, runtime;
b40b2e8e 6874
9a7e0b18
PZ
6875 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6876 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 6877
9a7e0b18
PZ
6878 if (tg == d->tg) {
6879 period = d->rt_period;
6880 runtime = d->rt_runtime;
b40b2e8e 6881 }
b40b2e8e 6882
4653f803
PZ
6883 /*
6884 * Cannot have more runtime than the period.
6885 */
6886 if (runtime > period && runtime != RUNTIME_INF)
6887 return -EINVAL;
6f505b16 6888
4653f803
PZ
6889 /*
6890 * Ensure we don't starve existing RT tasks.
6891 */
9a7e0b18
PZ
6892 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
6893 return -EBUSY;
6f505b16 6894
9a7e0b18 6895 total = to_ratio(period, runtime);
6f505b16 6896
4653f803
PZ
6897 /*
6898 * Nobody can have more than the global setting allows.
6899 */
6900 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
6901 return -EINVAL;
6f505b16 6902
4653f803
PZ
6903 /*
6904 * The sum of our children's runtime should not exceed our own.
6905 */
9a7e0b18
PZ
6906 list_for_each_entry_rcu(child, &tg->children, siblings) {
6907 period = ktime_to_ns(child->rt_bandwidth.rt_period);
6908 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 6909
9a7e0b18
PZ
6910 if (child == d->tg) {
6911 period = d->rt_period;
6912 runtime = d->rt_runtime;
6913 }
6f505b16 6914
9a7e0b18 6915 sum += to_ratio(period, runtime);
9f0c1e56 6916 }
6f505b16 6917
9a7e0b18
PZ
6918 if (sum > total)
6919 return -EINVAL;
6920
6921 return 0;
6f505b16
PZ
6922}
6923
9a7e0b18 6924static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 6925{
8277434e
PT
6926 int ret;
6927
9a7e0b18
PZ
6928 struct rt_schedulable_data data = {
6929 .tg = tg,
6930 .rt_period = period,
6931 .rt_runtime = runtime,
6932 };
6933
8277434e
PT
6934 rcu_read_lock();
6935 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
6936 rcu_read_unlock();
6937
6938 return ret;
521f1a24
DG
6939}
6940
ab84d31e 6941static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 6942 u64 rt_period, u64 rt_runtime)
6f505b16 6943{
ac086bc2 6944 int i, err = 0;
9f0c1e56 6945
9f0c1e56 6946 mutex_lock(&rt_constraints_mutex);
521f1a24 6947 read_lock(&tasklist_lock);
9a7e0b18
PZ
6948 err = __rt_schedulable(tg, rt_period, rt_runtime);
6949 if (err)
9f0c1e56 6950 goto unlock;
ac086bc2 6951
0986b11b 6952 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
6953 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
6954 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
6955
6956 for_each_possible_cpu(i) {
6957 struct rt_rq *rt_rq = tg->rt_rq[i];
6958
0986b11b 6959 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 6960 rt_rq->rt_runtime = rt_runtime;
0986b11b 6961 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 6962 }
0986b11b 6963 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 6964unlock:
521f1a24 6965 read_unlock(&tasklist_lock);
9f0c1e56
PZ
6966 mutex_unlock(&rt_constraints_mutex);
6967
6968 return err;
6f505b16
PZ
6969}
6970
25cc7da7 6971static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
6972{
6973 u64 rt_runtime, rt_period;
6974
6975 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6976 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
6977 if (rt_runtime_us < 0)
6978 rt_runtime = RUNTIME_INF;
6979
ab84d31e 6980 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
6981}
6982
25cc7da7 6983static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
6984{
6985 u64 rt_runtime_us;
6986
d0b27fa7 6987 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
6988 return -1;
6989
d0b27fa7 6990 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
6991 do_div(rt_runtime_us, NSEC_PER_USEC);
6992 return rt_runtime_us;
6993}
d0b27fa7 6994
25cc7da7 6995static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
d0b27fa7
PZ
6996{
6997 u64 rt_runtime, rt_period;
6998
6999 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7000 rt_runtime = tg->rt_bandwidth.rt_runtime;
7001
619b0488
R
7002 if (rt_period == 0)
7003 return -EINVAL;
7004
ab84d31e 7005 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7006}
7007
25cc7da7 7008static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
7009{
7010 u64 rt_period_us;
7011
7012 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7013 do_div(rt_period_us, NSEC_PER_USEC);
7014 return rt_period_us;
7015}
7016
7017static int sched_rt_global_constraints(void)
7018{
4653f803 7019 u64 runtime, period;
d0b27fa7
PZ
7020 int ret = 0;
7021
ec5d4989
HS
7022 if (sysctl_sched_rt_period <= 0)
7023 return -EINVAL;
7024
4653f803
PZ
7025 runtime = global_rt_runtime();
7026 period = global_rt_period();
7027
7028 /*
7029 * Sanity check on the sysctl variables.
7030 */
7031 if (runtime > period && runtime != RUNTIME_INF)
7032 return -EINVAL;
10b612f4 7033
d0b27fa7 7034 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7035 read_lock(&tasklist_lock);
4653f803 7036 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7037 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7038 mutex_unlock(&rt_constraints_mutex);
7039
7040 return ret;
7041}
54e99124 7042
25cc7da7 7043static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
7044{
7045 /* Don't accept realtime tasks when there is no way for them to run */
7046 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7047 return 0;
7048
7049 return 1;
7050}
7051
6d6bc0ad 7052#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7053static int sched_rt_global_constraints(void)
7054{
ac086bc2
PZ
7055 unsigned long flags;
7056 int i;
7057
ec5d4989
HS
7058 if (sysctl_sched_rt_period <= 0)
7059 return -EINVAL;
7060
60aa605d
PZ
7061 /*
7062 * There's always some RT tasks in the root group
7063 * -- migration, kstopmachine etc..
7064 */
7065 if (sysctl_sched_rt_runtime == 0)
7066 return -EBUSY;
7067
0986b11b 7068 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7069 for_each_possible_cpu(i) {
7070 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7071
0986b11b 7072 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7073 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7074 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7075 }
0986b11b 7076 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7077
d0b27fa7
PZ
7078 return 0;
7079}
6d6bc0ad 7080#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7081
ce0dbbbb
CW
7082int sched_rr_handler(struct ctl_table *table, int write,
7083 void __user *buffer, size_t *lenp,
7084 loff_t *ppos)
7085{
7086 int ret;
7087 static DEFINE_MUTEX(mutex);
7088
7089 mutex_lock(&mutex);
7090 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7091 /* make sure that internally we keep jiffies */
7092 /* also, writing zero resets timeslice to default */
7093 if (!ret && write) {
7094 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7095 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7096 }
7097 mutex_unlock(&mutex);
7098 return ret;
7099}
7100
d0b27fa7 7101int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7102 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7103 loff_t *ppos)
7104{
7105 int ret;
7106 int old_period, old_runtime;
7107 static DEFINE_MUTEX(mutex);
7108
7109 mutex_lock(&mutex);
7110 old_period = sysctl_sched_rt_period;
7111 old_runtime = sysctl_sched_rt_runtime;
7112
8d65af78 7113 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
7114
7115 if (!ret && write) {
7116 ret = sched_rt_global_constraints();
7117 if (ret) {
7118 sysctl_sched_rt_period = old_period;
7119 sysctl_sched_rt_runtime = old_runtime;
7120 } else {
7121 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7122 def_rt_bandwidth.rt_period =
7123 ns_to_ktime(global_rt_period());
7124 }
7125 }
7126 mutex_unlock(&mutex);
7127
7128 return ret;
7129}
68318b8e 7130
052f1dc7 7131#ifdef CONFIG_CGROUP_SCHED
68318b8e 7132
a7c6d554 7133static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 7134{
a7c6d554 7135 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
7136}
7137
eb95419b
TH
7138static struct cgroup_subsys_state *
7139cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 7140{
eb95419b
TH
7141 struct task_group *parent = css_tg(parent_css);
7142 struct task_group *tg;
68318b8e 7143
eb95419b 7144 if (!parent) {
68318b8e 7145 /* This is early initialization for the top cgroup */
07e06b01 7146 return &root_task_group.css;
68318b8e
SV
7147 }
7148
ec7dc8ac 7149 tg = sched_create_group(parent);
68318b8e
SV
7150 if (IS_ERR(tg))
7151 return ERR_PTR(-ENOMEM);
7152
68318b8e
SV
7153 return &tg->css;
7154}
7155
eb95419b 7156static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
ace783b9 7157{
eb95419b
TH
7158 struct task_group *tg = css_tg(css);
7159 struct task_group *parent = css_tg(css_parent(css));
ace783b9 7160
63876986
TH
7161 if (parent)
7162 sched_online_group(tg, parent);
ace783b9
LZ
7163 return 0;
7164}
7165
eb95419b 7166static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 7167{
eb95419b 7168 struct task_group *tg = css_tg(css);
68318b8e
SV
7169
7170 sched_destroy_group(tg);
7171}
7172
eb95419b 7173static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
ace783b9 7174{
eb95419b 7175 struct task_group *tg = css_tg(css);
ace783b9
LZ
7176
7177 sched_offline_group(tg);
7178}
7179
eb95419b 7180static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
bb9d97b6 7181 struct cgroup_taskset *tset)
68318b8e 7182{
bb9d97b6
TH
7183 struct task_struct *task;
7184
d99c8727 7185 cgroup_taskset_for_each(task, css, tset) {
b68aa230 7186#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 7187 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 7188 return -EINVAL;
b68aa230 7189#else
bb9d97b6
TH
7190 /* We don't support RT-tasks being in separate groups */
7191 if (task->sched_class != &fair_sched_class)
7192 return -EINVAL;
b68aa230 7193#endif
bb9d97b6 7194 }
be367d09
BB
7195 return 0;
7196}
68318b8e 7197
eb95419b 7198static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
bb9d97b6 7199 struct cgroup_taskset *tset)
68318b8e 7200{
bb9d97b6
TH
7201 struct task_struct *task;
7202
d99c8727 7203 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 7204 sched_move_task(task);
68318b8e
SV
7205}
7206
eb95419b
TH
7207static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7208 struct cgroup_subsys_state *old_css,
7209 struct task_struct *task)
068c5cc5
PZ
7210{
7211 /*
7212 * cgroup_exit() is called in the copy_process() failure path.
7213 * Ignore this case since the task hasn't ran yet, this avoids
7214 * trying to poke a half freed task state from generic code.
7215 */
7216 if (!(task->flags & PF_EXITING))
7217 return;
7218
7219 sched_move_task(task);
7220}
7221
052f1dc7 7222#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
7223static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7224 struct cftype *cftype, u64 shareval)
68318b8e 7225{
182446d0 7226 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
7227}
7228
182446d0
TH
7229static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7230 struct cftype *cft)
68318b8e 7231{
182446d0 7232 struct task_group *tg = css_tg(css);
68318b8e 7233
c8b28116 7234 return (u64) scale_load_down(tg->shares);
68318b8e 7235}
ab84d31e
PT
7236
7237#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
7238static DEFINE_MUTEX(cfs_constraints_mutex);
7239
ab84d31e
PT
7240const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7241const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7242
a790de99
PT
7243static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7244
ab84d31e
PT
7245static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7246{
56f570e5 7247 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 7248 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
7249
7250 if (tg == &root_task_group)
7251 return -EINVAL;
7252
7253 /*
7254 * Ensure we have at some amount of bandwidth every period. This is
7255 * to prevent reaching a state of large arrears when throttled via
7256 * entity_tick() resulting in prolonged exit starvation.
7257 */
7258 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7259 return -EINVAL;
7260
7261 /*
7262 * Likewise, bound things on the otherside by preventing insane quota
7263 * periods. This also allows us to normalize in computing quota
7264 * feasibility.
7265 */
7266 if (period > max_cfs_quota_period)
7267 return -EINVAL;
7268
a790de99
PT
7269 mutex_lock(&cfs_constraints_mutex);
7270 ret = __cfs_schedulable(tg, period, quota);
7271 if (ret)
7272 goto out_unlock;
7273
58088ad0 7274 runtime_enabled = quota != RUNTIME_INF;
56f570e5
PT
7275 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7276 account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
ab84d31e
PT
7277 raw_spin_lock_irq(&cfs_b->lock);
7278 cfs_b->period = ns_to_ktime(period);
7279 cfs_b->quota = quota;
58088ad0 7280
a9cf55b2 7281 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
7282 /* restart the period timer (if active) to handle new period expiry */
7283 if (runtime_enabled && cfs_b->timer_active) {
7284 /* force a reprogram */
7285 cfs_b->timer_active = 0;
7286 __start_cfs_bandwidth(cfs_b);
7287 }
ab84d31e
PT
7288 raw_spin_unlock_irq(&cfs_b->lock);
7289
7290 for_each_possible_cpu(i) {
7291 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 7292 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
7293
7294 raw_spin_lock_irq(&rq->lock);
58088ad0 7295 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 7296 cfs_rq->runtime_remaining = 0;
671fd9da 7297
029632fb 7298 if (cfs_rq->throttled)
671fd9da 7299 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
7300 raw_spin_unlock_irq(&rq->lock);
7301 }
a790de99
PT
7302out_unlock:
7303 mutex_unlock(&cfs_constraints_mutex);
ab84d31e 7304
a790de99 7305 return ret;
ab84d31e
PT
7306}
7307
7308int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7309{
7310 u64 quota, period;
7311
029632fb 7312 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7313 if (cfs_quota_us < 0)
7314 quota = RUNTIME_INF;
7315 else
7316 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7317
7318 return tg_set_cfs_bandwidth(tg, period, quota);
7319}
7320
7321long tg_get_cfs_quota(struct task_group *tg)
7322{
7323 u64 quota_us;
7324
029632fb 7325 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
7326 return -1;
7327
029632fb 7328 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
7329 do_div(quota_us, NSEC_PER_USEC);
7330
7331 return quota_us;
7332}
7333
7334int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7335{
7336 u64 quota, period;
7337
7338 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 7339 quota = tg->cfs_bandwidth.quota;
ab84d31e 7340
ab84d31e
PT
7341 return tg_set_cfs_bandwidth(tg, period, quota);
7342}
7343
7344long tg_get_cfs_period(struct task_group *tg)
7345{
7346 u64 cfs_period_us;
7347
029632fb 7348 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7349 do_div(cfs_period_us, NSEC_PER_USEC);
7350
7351 return cfs_period_us;
7352}
7353
182446d0
TH
7354static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7355 struct cftype *cft)
ab84d31e 7356{
182446d0 7357 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
7358}
7359
182446d0
TH
7360static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7361 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 7362{
182446d0 7363 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
7364}
7365
182446d0
TH
7366static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7367 struct cftype *cft)
ab84d31e 7368{
182446d0 7369 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
7370}
7371
182446d0
TH
7372static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7373 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 7374{
182446d0 7375 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
7376}
7377
a790de99
PT
7378struct cfs_schedulable_data {
7379 struct task_group *tg;
7380 u64 period, quota;
7381};
7382
7383/*
7384 * normalize group quota/period to be quota/max_period
7385 * note: units are usecs
7386 */
7387static u64 normalize_cfs_quota(struct task_group *tg,
7388 struct cfs_schedulable_data *d)
7389{
7390 u64 quota, period;
7391
7392 if (tg == d->tg) {
7393 period = d->period;
7394 quota = d->quota;
7395 } else {
7396 period = tg_get_cfs_period(tg);
7397 quota = tg_get_cfs_quota(tg);
7398 }
7399
7400 /* note: these should typically be equivalent */
7401 if (quota == RUNTIME_INF || quota == -1)
7402 return RUNTIME_INF;
7403
7404 return to_ratio(period, quota);
7405}
7406
7407static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7408{
7409 struct cfs_schedulable_data *d = data;
029632fb 7410 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
7411 s64 quota = 0, parent_quota = -1;
7412
7413 if (!tg->parent) {
7414 quota = RUNTIME_INF;
7415 } else {
029632fb 7416 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
7417
7418 quota = normalize_cfs_quota(tg, d);
7419 parent_quota = parent_b->hierarchal_quota;
7420
7421 /*
7422 * ensure max(child_quota) <= parent_quota, inherit when no
7423 * limit is set
7424 */
7425 if (quota == RUNTIME_INF)
7426 quota = parent_quota;
7427 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7428 return -EINVAL;
7429 }
7430 cfs_b->hierarchal_quota = quota;
7431
7432 return 0;
7433}
7434
7435static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7436{
8277434e 7437 int ret;
a790de99
PT
7438 struct cfs_schedulable_data data = {
7439 .tg = tg,
7440 .period = period,
7441 .quota = quota,
7442 };
7443
7444 if (quota != RUNTIME_INF) {
7445 do_div(data.period, NSEC_PER_USEC);
7446 do_div(data.quota, NSEC_PER_USEC);
7447 }
7448
8277434e
PT
7449 rcu_read_lock();
7450 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7451 rcu_read_unlock();
7452
7453 return ret;
a790de99 7454}
e8da1b18 7455
182446d0 7456static int cpu_stats_show(struct cgroup_subsys_state *css, struct cftype *cft,
e8da1b18
NR
7457 struct cgroup_map_cb *cb)
7458{
182446d0 7459 struct task_group *tg = css_tg(css);
029632fb 7460 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18
NR
7461
7462 cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7463 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7464 cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7465
7466 return 0;
7467}
ab84d31e 7468#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 7469#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 7470
052f1dc7 7471#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
7472static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7473 struct cftype *cft, s64 val)
6f505b16 7474{
182446d0 7475 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
7476}
7477
182446d0
TH
7478static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7479 struct cftype *cft)
6f505b16 7480{
182446d0 7481 return sched_group_rt_runtime(css_tg(css));
6f505b16 7482}
d0b27fa7 7483
182446d0
TH
7484static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7485 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 7486{
182446d0 7487 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
7488}
7489
182446d0
TH
7490static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7491 struct cftype *cft)
d0b27fa7 7492{
182446d0 7493 return sched_group_rt_period(css_tg(css));
d0b27fa7 7494}
6d6bc0ad 7495#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 7496
fe5c7cc2 7497static struct cftype cpu_files[] = {
052f1dc7 7498#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
7499 {
7500 .name = "shares",
f4c753b7
PM
7501 .read_u64 = cpu_shares_read_u64,
7502 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 7503 },
052f1dc7 7504#endif
ab84d31e
PT
7505#ifdef CONFIG_CFS_BANDWIDTH
7506 {
7507 .name = "cfs_quota_us",
7508 .read_s64 = cpu_cfs_quota_read_s64,
7509 .write_s64 = cpu_cfs_quota_write_s64,
7510 },
7511 {
7512 .name = "cfs_period_us",
7513 .read_u64 = cpu_cfs_period_read_u64,
7514 .write_u64 = cpu_cfs_period_write_u64,
7515 },
e8da1b18
NR
7516 {
7517 .name = "stat",
7518 .read_map = cpu_stats_show,
7519 },
ab84d31e 7520#endif
052f1dc7 7521#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7522 {
9f0c1e56 7523 .name = "rt_runtime_us",
06ecb27c
PM
7524 .read_s64 = cpu_rt_runtime_read,
7525 .write_s64 = cpu_rt_runtime_write,
6f505b16 7526 },
d0b27fa7
PZ
7527 {
7528 .name = "rt_period_us",
f4c753b7
PM
7529 .read_u64 = cpu_rt_period_read_uint,
7530 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 7531 },
052f1dc7 7532#endif
4baf6e33 7533 { } /* terminate */
68318b8e
SV
7534};
7535
68318b8e 7536struct cgroup_subsys cpu_cgroup_subsys = {
38605cae 7537 .name = "cpu",
92fb9748
TH
7538 .css_alloc = cpu_cgroup_css_alloc,
7539 .css_free = cpu_cgroup_css_free,
ace783b9
LZ
7540 .css_online = cpu_cgroup_css_online,
7541 .css_offline = cpu_cgroup_css_offline,
bb9d97b6
TH
7542 .can_attach = cpu_cgroup_can_attach,
7543 .attach = cpu_cgroup_attach,
068c5cc5 7544 .exit = cpu_cgroup_exit,
38605cae 7545 .subsys_id = cpu_cgroup_subsys_id,
4baf6e33 7546 .base_cftypes = cpu_files,
68318b8e
SV
7547 .early_init = 1,
7548};
7549
052f1dc7 7550#endif /* CONFIG_CGROUP_SCHED */
d842de87 7551
b637a328
PM
7552void dump_cpu_task(int cpu)
7553{
7554 pr_info("Task dump for CPU %d:\n", cpu);
7555 sched_show_task(cpu_curr(cpu));
7556}