]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/sched/core.c
sched/fair: Restore previous rq_flags when migrating tasks in hotplug
[mirror_ubuntu-artful-kernel.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
e1b77c92 29#include <linux/kasan.h>
1da177e4
LT
30#include <linux/mm.h>
31#include <linux/module.h>
32#include <linux/nmi.h>
33#include <linux/init.h>
dff06c15 34#include <linux/uaccess.h>
1da177e4 35#include <linux/highmem.h>
f98db601 36#include <linux/mmu_context.h>
1da177e4 37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
cdd6c482 42#include <linux/perf_event.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
b5aadf7f 58#include <linux/proc_fs.h>
1da177e4 59#include <linux/seq_file.h>
e692ab53 60#include <linux/sysctl.h>
1da177e4
LT
61#include <linux/syscalls.h>
62#include <linux/times.h>
8f0ab514 63#include <linux/tsacct_kern.h>
c6fd91f0 64#include <linux/kprobes.h>
0ff92245 65#include <linux/delayacct.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
30914a58 69#include <linux/tick.h>
f00b45c1 70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
91d1aa43 74#include <linux/context_tracking.h>
52f5684c 75#include <linux/compiler.h>
8e05e96a 76#include <linux/frame.h>
6075620b 77#include <linux/prefetch.h>
3ca0ff57 78#include <linux/mutex.h>
1da177e4 79
96f951ed 80#include <asm/switch_to.h>
5517d86b 81#include <asm/tlb.h>
838225b4 82#include <asm/irq_regs.h>
e6e6685a
GC
83#ifdef CONFIG_PARAVIRT
84#include <asm/paravirt.h>
85#endif
1da177e4 86
029632fb 87#include "sched.h"
ea138446 88#include "../workqueue_internal.h"
29d5e047 89#include "../smpboot.h"
6e0534f2 90
a8d154b0 91#define CREATE_TRACE_POINTS
ad8d75ff 92#include <trace/events/sched.h>
a8d154b0 93
029632fb
PZ
94DEFINE_MUTEX(sched_domains_mutex);
95DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 96
fe44d621 97static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 98
029632fb 99void update_rq_clock(struct rq *rq)
3e51f33f 100{
fe44d621 101 s64 delta;
305e6835 102
9edfbfed
PZ
103 lockdep_assert_held(&rq->lock);
104
cb42c9a3 105 if (rq->clock_update_flags & RQCF_ACT_SKIP)
f26f9aff 106 return;
aa483808 107
cb42c9a3
MF
108#ifdef CONFIG_SCHED_DEBUG
109 rq->clock_update_flags |= RQCF_UPDATED;
110#endif
fe44d621 111 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
4036ac15
MG
112 if (delta < 0)
113 return;
fe44d621
PZ
114 rq->clock += delta;
115 update_rq_clock_task(rq, delta);
3e51f33f
PZ
116}
117
bf5c91ba
IM
118/*
119 * Debugging: various feature bits
120 */
f00b45c1 121
f00b45c1
PZ
122#define SCHED_FEAT(name, enabled) \
123 (1UL << __SCHED_FEAT_##name) * enabled |
124
bf5c91ba 125const_debug unsigned int sysctl_sched_features =
391e43da 126#include "features.h"
f00b45c1
PZ
127 0;
128
129#undef SCHED_FEAT
130
b82d9fdd
PZ
131/*
132 * Number of tasks to iterate in a single balance run.
133 * Limited because this is done with IRQs disabled.
134 */
135const_debug unsigned int sysctl_sched_nr_migrate = 32;
136
e9e9250b
PZ
137/*
138 * period over which we average the RT time consumption, measured
139 * in ms.
140 *
141 * default: 1s
142 */
143const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
144
fa85ae24 145/*
9f0c1e56 146 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
147 * default: 1s
148 */
9f0c1e56 149unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 150
029632fb 151__read_mostly int scheduler_running;
6892b75e 152
9f0c1e56
PZ
153/*
154 * part of the period that we allow rt tasks to run in us.
155 * default: 0.95s
156 */
157int sysctl_sched_rt_runtime = 950000;
fa85ae24 158
3fa0818b
RR
159/* cpus with isolated domains */
160cpumask_var_t cpu_isolated_map;
161
1da177e4 162/*
cc2a73b5 163 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 164 */
a9957449 165static struct rq *this_rq_lock(void)
1da177e4
LT
166 __acquires(rq->lock)
167{
70b97a7f 168 struct rq *rq;
1da177e4
LT
169
170 local_irq_disable();
171 rq = this_rq();
05fa785c 172 raw_spin_lock(&rq->lock);
1da177e4
LT
173
174 return rq;
175}
176
3e71a462
PZ
177/*
178 * __task_rq_lock - lock the rq @p resides on.
179 */
eb580751 180struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
181 __acquires(rq->lock)
182{
183 struct rq *rq;
184
185 lockdep_assert_held(&p->pi_lock);
186
187 for (;;) {
188 rq = task_rq(p);
189 raw_spin_lock(&rq->lock);
190 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 191 rq_pin_lock(rq, rf);
3e71a462
PZ
192 return rq;
193 }
194 raw_spin_unlock(&rq->lock);
195
196 while (unlikely(task_on_rq_migrating(p)))
197 cpu_relax();
198 }
199}
200
201/*
202 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
203 */
eb580751 204struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
205 __acquires(p->pi_lock)
206 __acquires(rq->lock)
207{
208 struct rq *rq;
209
210 for (;;) {
eb580751 211 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
3e71a462
PZ
212 rq = task_rq(p);
213 raw_spin_lock(&rq->lock);
214 /*
215 * move_queued_task() task_rq_lock()
216 *
217 * ACQUIRE (rq->lock)
218 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
219 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
220 * [S] ->cpu = new_cpu [L] task_rq()
221 * [L] ->on_rq
222 * RELEASE (rq->lock)
223 *
224 * If we observe the old cpu in task_rq_lock, the acquire of
225 * the old rq->lock will fully serialize against the stores.
226 *
227 * If we observe the new cpu in task_rq_lock, the acquire will
228 * pair with the WMB to ensure we must then also see migrating.
229 */
230 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 231 rq_pin_lock(rq, rf);
3e71a462
PZ
232 return rq;
233 }
234 raw_spin_unlock(&rq->lock);
eb580751 235 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
3e71a462
PZ
236
237 while (unlikely(task_on_rq_migrating(p)))
238 cpu_relax();
239 }
240}
241
8f4d37ec
PZ
242#ifdef CONFIG_SCHED_HRTICK
243/*
244 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 245 */
8f4d37ec 246
8f4d37ec
PZ
247static void hrtick_clear(struct rq *rq)
248{
249 if (hrtimer_active(&rq->hrtick_timer))
250 hrtimer_cancel(&rq->hrtick_timer);
251}
252
8f4d37ec
PZ
253/*
254 * High-resolution timer tick.
255 * Runs from hardirq context with interrupts disabled.
256 */
257static enum hrtimer_restart hrtick(struct hrtimer *timer)
258{
259 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
260
261 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
262
05fa785c 263 raw_spin_lock(&rq->lock);
3e51f33f 264 update_rq_clock(rq);
8f4d37ec 265 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 266 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
267
268 return HRTIMER_NORESTART;
269}
270
95e904c7 271#ifdef CONFIG_SMP
971ee28c 272
4961b6e1 273static void __hrtick_restart(struct rq *rq)
971ee28c
PZ
274{
275 struct hrtimer *timer = &rq->hrtick_timer;
971ee28c 276
4961b6e1 277 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
971ee28c
PZ
278}
279
31656519
PZ
280/*
281 * called from hardirq (IPI) context
282 */
283static void __hrtick_start(void *arg)
b328ca18 284{
31656519 285 struct rq *rq = arg;
b328ca18 286
05fa785c 287 raw_spin_lock(&rq->lock);
971ee28c 288 __hrtick_restart(rq);
31656519 289 rq->hrtick_csd_pending = 0;
05fa785c 290 raw_spin_unlock(&rq->lock);
b328ca18
PZ
291}
292
31656519
PZ
293/*
294 * Called to set the hrtick timer state.
295 *
296 * called with rq->lock held and irqs disabled
297 */
029632fb 298void hrtick_start(struct rq *rq, u64 delay)
b328ca18 299{
31656519 300 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 301 ktime_t time;
302 s64 delta;
303
304 /*
305 * Don't schedule slices shorter than 10000ns, that just
306 * doesn't make sense and can cause timer DoS.
307 */
308 delta = max_t(s64, delay, 10000LL);
309 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 310
cc584b21 311 hrtimer_set_expires(timer, time);
31656519
PZ
312
313 if (rq == this_rq()) {
971ee28c 314 __hrtick_restart(rq);
31656519 315 } else if (!rq->hrtick_csd_pending) {
c46fff2a 316 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
317 rq->hrtick_csd_pending = 1;
318 }
b328ca18
PZ
319}
320
31656519
PZ
321#else
322/*
323 * Called to set the hrtick timer state.
324 *
325 * called with rq->lock held and irqs disabled
326 */
029632fb 327void hrtick_start(struct rq *rq, u64 delay)
31656519 328{
86893335
WL
329 /*
330 * Don't schedule slices shorter than 10000ns, that just
331 * doesn't make sense. Rely on vruntime for fairness.
332 */
333 delay = max_t(u64, delay, 10000LL);
4961b6e1
TG
334 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
335 HRTIMER_MODE_REL_PINNED);
31656519 336}
31656519 337#endif /* CONFIG_SMP */
8f4d37ec 338
31656519 339static void init_rq_hrtick(struct rq *rq)
8f4d37ec 340{
31656519
PZ
341#ifdef CONFIG_SMP
342 rq->hrtick_csd_pending = 0;
8f4d37ec 343
31656519
PZ
344 rq->hrtick_csd.flags = 0;
345 rq->hrtick_csd.func = __hrtick_start;
346 rq->hrtick_csd.info = rq;
347#endif
8f4d37ec 348
31656519
PZ
349 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
350 rq->hrtick_timer.function = hrtick;
8f4d37ec 351}
006c75f1 352#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
353static inline void hrtick_clear(struct rq *rq)
354{
355}
356
8f4d37ec
PZ
357static inline void init_rq_hrtick(struct rq *rq)
358{
359}
006c75f1 360#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 361
5529578a
FW
362/*
363 * cmpxchg based fetch_or, macro so it works for different integer types
364 */
365#define fetch_or(ptr, mask) \
366 ({ \
367 typeof(ptr) _ptr = (ptr); \
368 typeof(mask) _mask = (mask); \
369 typeof(*_ptr) _old, _val = *_ptr; \
370 \
371 for (;;) { \
372 _old = cmpxchg(_ptr, _val, _val | _mask); \
373 if (_old == _val) \
374 break; \
375 _val = _old; \
376 } \
377 _old; \
378})
379
e3baac47 380#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
381/*
382 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
383 * this avoids any races wrt polling state changes and thereby avoids
384 * spurious IPIs.
385 */
386static bool set_nr_and_not_polling(struct task_struct *p)
387{
388 struct thread_info *ti = task_thread_info(p);
389 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
390}
e3baac47
PZ
391
392/*
393 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
394 *
395 * If this returns true, then the idle task promises to call
396 * sched_ttwu_pending() and reschedule soon.
397 */
398static bool set_nr_if_polling(struct task_struct *p)
399{
400 struct thread_info *ti = task_thread_info(p);
316c1608 401 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
e3baac47
PZ
402
403 for (;;) {
404 if (!(val & _TIF_POLLING_NRFLAG))
405 return false;
406 if (val & _TIF_NEED_RESCHED)
407 return true;
408 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
409 if (old == val)
410 break;
411 val = old;
412 }
413 return true;
414}
415
fd99f91a
PZ
416#else
417static bool set_nr_and_not_polling(struct task_struct *p)
418{
419 set_tsk_need_resched(p);
420 return true;
421}
e3baac47
PZ
422
423#ifdef CONFIG_SMP
424static bool set_nr_if_polling(struct task_struct *p)
425{
426 return false;
427}
428#endif
fd99f91a
PZ
429#endif
430
76751049
PZ
431void wake_q_add(struct wake_q_head *head, struct task_struct *task)
432{
433 struct wake_q_node *node = &task->wake_q;
434
435 /*
436 * Atomically grab the task, if ->wake_q is !nil already it means
437 * its already queued (either by us or someone else) and will get the
438 * wakeup due to that.
439 *
440 * This cmpxchg() implies a full barrier, which pairs with the write
58fe9c46 441 * barrier implied by the wakeup in wake_up_q().
76751049
PZ
442 */
443 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
444 return;
445
446 get_task_struct(task);
447
448 /*
449 * The head is context local, there can be no concurrency.
450 */
451 *head->lastp = node;
452 head->lastp = &node->next;
453}
454
455void wake_up_q(struct wake_q_head *head)
456{
457 struct wake_q_node *node = head->first;
458
459 while (node != WAKE_Q_TAIL) {
460 struct task_struct *task;
461
462 task = container_of(node, struct task_struct, wake_q);
463 BUG_ON(!task);
464 /* task can safely be re-inserted now */
465 node = node->next;
466 task->wake_q.next = NULL;
467
468 /*
469 * wake_up_process() implies a wmb() to pair with the queueing
470 * in wake_q_add() so as not to miss wakeups.
471 */
472 wake_up_process(task);
473 put_task_struct(task);
474 }
475}
476
c24d20db 477/*
8875125e 478 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
479 *
480 * On UP this means the setting of the need_resched flag, on SMP it
481 * might also involve a cross-CPU call to trigger the scheduler on
482 * the target CPU.
483 */
8875125e 484void resched_curr(struct rq *rq)
c24d20db 485{
8875125e 486 struct task_struct *curr = rq->curr;
c24d20db
IM
487 int cpu;
488
8875125e 489 lockdep_assert_held(&rq->lock);
c24d20db 490
8875125e 491 if (test_tsk_need_resched(curr))
c24d20db
IM
492 return;
493
8875125e 494 cpu = cpu_of(rq);
fd99f91a 495
f27dde8d 496 if (cpu == smp_processor_id()) {
8875125e 497 set_tsk_need_resched(curr);
f27dde8d 498 set_preempt_need_resched();
c24d20db 499 return;
f27dde8d 500 }
c24d20db 501
8875125e 502 if (set_nr_and_not_polling(curr))
c24d20db 503 smp_send_reschedule(cpu);
dfc68f29
AL
504 else
505 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
506}
507
029632fb 508void resched_cpu(int cpu)
c24d20db
IM
509{
510 struct rq *rq = cpu_rq(cpu);
511 unsigned long flags;
512
05fa785c 513 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db 514 return;
8875125e 515 resched_curr(rq);
05fa785c 516 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 517}
06d8308c 518
b021fe3e 519#ifdef CONFIG_SMP
3451d024 520#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
521/*
522 * In the semi idle case, use the nearest busy cpu for migrating timers
523 * from an idle cpu. This is good for power-savings.
524 *
525 * We don't do similar optimization for completely idle system, as
526 * selecting an idle cpu will add more delays to the timers than intended
527 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
528 */
bc7a34b8 529int get_nohz_timer_target(void)
83cd4fe2 530{
bc7a34b8 531 int i, cpu = smp_processor_id();
83cd4fe2
VP
532 struct sched_domain *sd;
533
9642d18e 534 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
6201b4d6
VK
535 return cpu;
536
057f3fad 537 rcu_read_lock();
83cd4fe2 538 for_each_domain(cpu, sd) {
057f3fad 539 for_each_cpu(i, sched_domain_span(sd)) {
44496922
WL
540 if (cpu == i)
541 continue;
542
543 if (!idle_cpu(i) && is_housekeeping_cpu(i)) {
057f3fad
PZ
544 cpu = i;
545 goto unlock;
546 }
547 }
83cd4fe2 548 }
9642d18e
VH
549
550 if (!is_housekeeping_cpu(cpu))
551 cpu = housekeeping_any_cpu();
057f3fad
PZ
552unlock:
553 rcu_read_unlock();
83cd4fe2
VP
554 return cpu;
555}
06d8308c
TG
556/*
557 * When add_timer_on() enqueues a timer into the timer wheel of an
558 * idle CPU then this timer might expire before the next timer event
559 * which is scheduled to wake up that CPU. In case of a completely
560 * idle system the next event might even be infinite time into the
561 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
562 * leaves the inner idle loop so the newly added timer is taken into
563 * account when the CPU goes back to idle and evaluates the timer
564 * wheel for the next timer event.
565 */
1c20091e 566static void wake_up_idle_cpu(int cpu)
06d8308c
TG
567{
568 struct rq *rq = cpu_rq(cpu);
569
570 if (cpu == smp_processor_id())
571 return;
572
67b9ca70 573 if (set_nr_and_not_polling(rq->idle))
06d8308c 574 smp_send_reschedule(cpu);
dfc68f29
AL
575 else
576 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
577}
578
c5bfece2 579static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 580{
53c5fa16
FW
581 /*
582 * We just need the target to call irq_exit() and re-evaluate
583 * the next tick. The nohz full kick at least implies that.
584 * If needed we can still optimize that later with an
585 * empty IRQ.
586 */
379d9ecb
PM
587 if (cpu_is_offline(cpu))
588 return true; /* Don't try to wake offline CPUs. */
c5bfece2 589 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
590 if (cpu != smp_processor_id() ||
591 tick_nohz_tick_stopped())
53c5fa16 592 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
593 return true;
594 }
595
596 return false;
597}
598
379d9ecb
PM
599/*
600 * Wake up the specified CPU. If the CPU is going offline, it is the
601 * caller's responsibility to deal with the lost wakeup, for example,
602 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
603 */
1c20091e
FW
604void wake_up_nohz_cpu(int cpu)
605{
c5bfece2 606 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
607 wake_up_idle_cpu(cpu);
608}
609
ca38062e 610static inline bool got_nohz_idle_kick(void)
45bf76df 611{
1c792db7 612 int cpu = smp_processor_id();
873b4c65
VG
613
614 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
615 return false;
616
617 if (idle_cpu(cpu) && !need_resched())
618 return true;
619
620 /*
621 * We can't run Idle Load Balance on this CPU for this time so we
622 * cancel it and clear NOHZ_BALANCE_KICK
623 */
624 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
625 return false;
45bf76df
IM
626}
627
3451d024 628#else /* CONFIG_NO_HZ_COMMON */
45bf76df 629
ca38062e 630static inline bool got_nohz_idle_kick(void)
2069dd75 631{
ca38062e 632 return false;
2069dd75
PZ
633}
634
3451d024 635#endif /* CONFIG_NO_HZ_COMMON */
d842de87 636
ce831b38 637#ifdef CONFIG_NO_HZ_FULL
76d92ac3 638bool sched_can_stop_tick(struct rq *rq)
ce831b38 639{
76d92ac3
FW
640 int fifo_nr_running;
641
642 /* Deadline tasks, even if single, need the tick */
643 if (rq->dl.dl_nr_running)
644 return false;
645
1e78cdbd 646 /*
2548d546
PZ
647 * If there are more than one RR tasks, we need the tick to effect the
648 * actual RR behaviour.
1e78cdbd 649 */
76d92ac3
FW
650 if (rq->rt.rr_nr_running) {
651 if (rq->rt.rr_nr_running == 1)
652 return true;
653 else
654 return false;
1e78cdbd
RR
655 }
656
2548d546
PZ
657 /*
658 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
659 * forced preemption between FIFO tasks.
660 */
661 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
662 if (fifo_nr_running)
663 return true;
664
665 /*
666 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
667 * if there's more than one we need the tick for involuntary
668 * preemption.
669 */
670 if (rq->nr_running > 1)
541b8264 671 return false;
ce831b38 672
541b8264 673 return true;
ce831b38
FW
674}
675#endif /* CONFIG_NO_HZ_FULL */
d842de87 676
029632fb 677void sched_avg_update(struct rq *rq)
18d95a28 678{
e9e9250b
PZ
679 s64 period = sched_avg_period();
680
78becc27 681 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
682 /*
683 * Inline assembly required to prevent the compiler
684 * optimising this loop into a divmod call.
685 * See __iter_div_u64_rem() for another example of this.
686 */
687 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
688 rq->age_stamp += period;
689 rq->rt_avg /= 2;
690 }
18d95a28
PZ
691}
692
6d6bc0ad 693#endif /* CONFIG_SMP */
18d95a28 694
a790de99
PT
695#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
696 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 697/*
8277434e
PT
698 * Iterate task_group tree rooted at *from, calling @down when first entering a
699 * node and @up when leaving it for the final time.
700 *
701 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 702 */
029632fb 703int walk_tg_tree_from(struct task_group *from,
8277434e 704 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
705{
706 struct task_group *parent, *child;
eb755805 707 int ret;
c09595f6 708
8277434e
PT
709 parent = from;
710
c09595f6 711down:
eb755805
PZ
712 ret = (*down)(parent, data);
713 if (ret)
8277434e 714 goto out;
c09595f6
PZ
715 list_for_each_entry_rcu(child, &parent->children, siblings) {
716 parent = child;
717 goto down;
718
719up:
720 continue;
721 }
eb755805 722 ret = (*up)(parent, data);
8277434e
PT
723 if (ret || parent == from)
724 goto out;
c09595f6
PZ
725
726 child = parent;
727 parent = parent->parent;
728 if (parent)
729 goto up;
8277434e 730out:
eb755805 731 return ret;
c09595f6
PZ
732}
733
029632fb 734int tg_nop(struct task_group *tg, void *data)
eb755805 735{
e2b245f8 736 return 0;
eb755805 737}
18d95a28
PZ
738#endif
739
45bf76df
IM
740static void set_load_weight(struct task_struct *p)
741{
f05998d4
NR
742 int prio = p->static_prio - MAX_RT_PRIO;
743 struct load_weight *load = &p->se.load;
744
dd41f596
IM
745 /*
746 * SCHED_IDLE tasks get minimal weight:
747 */
20f9cd2a 748 if (idle_policy(p->policy)) {
c8b28116 749 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 750 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
751 return;
752 }
71f8bd46 753
ed82b8a1
AK
754 load->weight = scale_load(sched_prio_to_weight[prio]);
755 load->inv_weight = sched_prio_to_wmult[prio];
71f8bd46
IM
756}
757
1de64443 758static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 759{
a64692a3 760 update_rq_clock(rq);
1de64443
PZ
761 if (!(flags & ENQUEUE_RESTORE))
762 sched_info_queued(rq, p);
371fd7e7 763 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
764}
765
1de64443 766static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 767{
a64692a3 768 update_rq_clock(rq);
1de64443
PZ
769 if (!(flags & DEQUEUE_SAVE))
770 sched_info_dequeued(rq, p);
371fd7e7 771 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
772}
773
029632fb 774void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
775{
776 if (task_contributes_to_load(p))
777 rq->nr_uninterruptible--;
778
371fd7e7 779 enqueue_task(rq, p, flags);
1e3c88bd
PZ
780}
781
029632fb 782void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
783{
784 if (task_contributes_to_load(p))
785 rq->nr_uninterruptible++;
786
371fd7e7 787 dequeue_task(rq, p, flags);
1e3c88bd
PZ
788}
789
fe44d621 790static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 791{
095c0aa8
GC
792/*
793 * In theory, the compile should just see 0 here, and optimize out the call
794 * to sched_rt_avg_update. But I don't trust it...
795 */
796#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
797 s64 steal = 0, irq_delta = 0;
798#endif
799#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 800 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
801
802 /*
803 * Since irq_time is only updated on {soft,}irq_exit, we might run into
804 * this case when a previous update_rq_clock() happened inside a
805 * {soft,}irq region.
806 *
807 * When this happens, we stop ->clock_task and only update the
808 * prev_irq_time stamp to account for the part that fit, so that a next
809 * update will consume the rest. This ensures ->clock_task is
810 * monotonic.
811 *
812 * It does however cause some slight miss-attribution of {soft,}irq
813 * time, a more accurate solution would be to update the irq_time using
814 * the current rq->clock timestamp, except that would require using
815 * atomic ops.
816 */
817 if (irq_delta > delta)
818 irq_delta = delta;
819
820 rq->prev_irq_time += irq_delta;
821 delta -= irq_delta;
095c0aa8
GC
822#endif
823#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 824 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
825 steal = paravirt_steal_clock(cpu_of(rq));
826 steal -= rq->prev_steal_time_rq;
827
828 if (unlikely(steal > delta))
829 steal = delta;
830
095c0aa8 831 rq->prev_steal_time_rq += steal;
095c0aa8
GC
832 delta -= steal;
833 }
834#endif
835
fe44d621
PZ
836 rq->clock_task += delta;
837
095c0aa8 838#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
5d4dfddd 839 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
095c0aa8
GC
840 sched_rt_avg_update(rq, irq_delta + steal);
841#endif
aa483808
VP
842}
843
34f971f6
PZ
844void sched_set_stop_task(int cpu, struct task_struct *stop)
845{
846 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
847 struct task_struct *old_stop = cpu_rq(cpu)->stop;
848
849 if (stop) {
850 /*
851 * Make it appear like a SCHED_FIFO task, its something
852 * userspace knows about and won't get confused about.
853 *
854 * Also, it will make PI more or less work without too
855 * much confusion -- but then, stop work should not
856 * rely on PI working anyway.
857 */
858 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
859
860 stop->sched_class = &stop_sched_class;
861 }
862
863 cpu_rq(cpu)->stop = stop;
864
865 if (old_stop) {
866 /*
867 * Reset it back to a normal scheduling class so that
868 * it can die in pieces.
869 */
870 old_stop->sched_class = &rt_sched_class;
871 }
872}
873
14531189 874/*
dd41f596 875 * __normal_prio - return the priority that is based on the static prio
14531189 876 */
14531189
IM
877static inline int __normal_prio(struct task_struct *p)
878{
dd41f596 879 return p->static_prio;
14531189
IM
880}
881
b29739f9
IM
882/*
883 * Calculate the expected normal priority: i.e. priority
884 * without taking RT-inheritance into account. Might be
885 * boosted by interactivity modifiers. Changes upon fork,
886 * setprio syscalls, and whenever the interactivity
887 * estimator recalculates.
888 */
36c8b586 889static inline int normal_prio(struct task_struct *p)
b29739f9
IM
890{
891 int prio;
892
aab03e05
DF
893 if (task_has_dl_policy(p))
894 prio = MAX_DL_PRIO-1;
895 else if (task_has_rt_policy(p))
b29739f9
IM
896 prio = MAX_RT_PRIO-1 - p->rt_priority;
897 else
898 prio = __normal_prio(p);
899 return prio;
900}
901
902/*
903 * Calculate the current priority, i.e. the priority
904 * taken into account by the scheduler. This value might
905 * be boosted by RT tasks, or might be boosted by
906 * interactivity modifiers. Will be RT if the task got
907 * RT-boosted. If not then it returns p->normal_prio.
908 */
36c8b586 909static int effective_prio(struct task_struct *p)
b29739f9
IM
910{
911 p->normal_prio = normal_prio(p);
912 /*
913 * If we are RT tasks or we were boosted to RT priority,
914 * keep the priority unchanged. Otherwise, update priority
915 * to the normal priority:
916 */
917 if (!rt_prio(p->prio))
918 return p->normal_prio;
919 return p->prio;
920}
921
1da177e4
LT
922/**
923 * task_curr - is this task currently executing on a CPU?
924 * @p: the task in question.
e69f6186
YB
925 *
926 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 927 */
36c8b586 928inline int task_curr(const struct task_struct *p)
1da177e4
LT
929{
930 return cpu_curr(task_cpu(p)) == p;
931}
932
67dfa1b7 933/*
4c9a4bc8
PZ
934 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
935 * use the balance_callback list if you want balancing.
936 *
937 * this means any call to check_class_changed() must be followed by a call to
938 * balance_callback().
67dfa1b7 939 */
cb469845
SR
940static inline void check_class_changed(struct rq *rq, struct task_struct *p,
941 const struct sched_class *prev_class,
da7a735e 942 int oldprio)
cb469845
SR
943{
944 if (prev_class != p->sched_class) {
945 if (prev_class->switched_from)
da7a735e 946 prev_class->switched_from(rq, p);
4c9a4bc8 947
da7a735e 948 p->sched_class->switched_to(rq, p);
2d3d891d 949 } else if (oldprio != p->prio || dl_task(p))
da7a735e 950 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
951}
952
029632fb 953void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
954{
955 const struct sched_class *class;
956
957 if (p->sched_class == rq->curr->sched_class) {
958 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
959 } else {
960 for_each_class(class) {
961 if (class == rq->curr->sched_class)
962 break;
963 if (class == p->sched_class) {
8875125e 964 resched_curr(rq);
1e5a7405
PZ
965 break;
966 }
967 }
968 }
969
970 /*
971 * A queue event has occurred, and we're going to schedule. In
972 * this case, we can save a useless back to back clock update.
973 */
da0c1e65 974 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
9edfbfed 975 rq_clock_skip_update(rq, true);
1e5a7405
PZ
976}
977
1da177e4 978#ifdef CONFIG_SMP
5cc389bc
PZ
979/*
980 * This is how migration works:
981 *
982 * 1) we invoke migration_cpu_stop() on the target CPU using
983 * stop_one_cpu().
984 * 2) stopper starts to run (implicitly forcing the migrated thread
985 * off the CPU)
986 * 3) it checks whether the migrated task is still in the wrong runqueue.
987 * 4) if it's in the wrong runqueue then the migration thread removes
988 * it and puts it into the right queue.
989 * 5) stopper completes and stop_one_cpu() returns and the migration
990 * is done.
991 */
992
993/*
994 * move_queued_task - move a queued task to new rq.
995 *
996 * Returns (locked) new rq. Old rq's lock is released.
997 */
5e16bbc2 998static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
5cc389bc 999{
5cc389bc
PZ
1000 lockdep_assert_held(&rq->lock);
1001
5cc389bc 1002 p->on_rq = TASK_ON_RQ_MIGRATING;
3ea94de1 1003 dequeue_task(rq, p, 0);
5cc389bc
PZ
1004 set_task_cpu(p, new_cpu);
1005 raw_spin_unlock(&rq->lock);
1006
1007 rq = cpu_rq(new_cpu);
1008
1009 raw_spin_lock(&rq->lock);
1010 BUG_ON(task_cpu(p) != new_cpu);
5cc389bc 1011 enqueue_task(rq, p, 0);
3ea94de1 1012 p->on_rq = TASK_ON_RQ_QUEUED;
5cc389bc
PZ
1013 check_preempt_curr(rq, p, 0);
1014
1015 return rq;
1016}
1017
1018struct migration_arg {
1019 struct task_struct *task;
1020 int dest_cpu;
1021};
1022
1023/*
1024 * Move (not current) task off this cpu, onto dest cpu. We're doing
1025 * this because either it can't run here any more (set_cpus_allowed()
1026 * away from this CPU, or CPU going down), or because we're
1027 * attempting to rebalance this task on exec (sched_exec).
1028 *
1029 * So we race with normal scheduler movements, but that's OK, as long
1030 * as the task is no longer on this CPU.
5cc389bc 1031 */
5e16bbc2 1032static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
5cc389bc 1033{
5cc389bc 1034 if (unlikely(!cpu_active(dest_cpu)))
5e16bbc2 1035 return rq;
5cc389bc
PZ
1036
1037 /* Affinity changed (again). */
1038 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
5e16bbc2 1039 return rq;
5cc389bc 1040
5e16bbc2
PZ
1041 rq = move_queued_task(rq, p, dest_cpu);
1042
1043 return rq;
5cc389bc
PZ
1044}
1045
1046/*
1047 * migration_cpu_stop - this will be executed by a highprio stopper thread
1048 * and performs thread migration by bumping thread off CPU then
1049 * 'pushing' onto another runqueue.
1050 */
1051static int migration_cpu_stop(void *data)
1052{
1053 struct migration_arg *arg = data;
5e16bbc2
PZ
1054 struct task_struct *p = arg->task;
1055 struct rq *rq = this_rq();
5cc389bc
PZ
1056
1057 /*
1058 * The original target cpu might have gone down and we might
1059 * be on another cpu but it doesn't matter.
1060 */
1061 local_irq_disable();
1062 /*
1063 * We need to explicitly wake pending tasks before running
1064 * __migrate_task() such that we will not miss enforcing cpus_allowed
1065 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1066 */
1067 sched_ttwu_pending();
5e16bbc2
PZ
1068
1069 raw_spin_lock(&p->pi_lock);
1070 raw_spin_lock(&rq->lock);
1071 /*
1072 * If task_rq(p) != rq, it cannot be migrated here, because we're
1073 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1074 * we're holding p->pi_lock.
1075 */
bf89a304
CC
1076 if (task_rq(p) == rq) {
1077 if (task_on_rq_queued(p))
1078 rq = __migrate_task(rq, p, arg->dest_cpu);
1079 else
1080 p->wake_cpu = arg->dest_cpu;
1081 }
5e16bbc2
PZ
1082 raw_spin_unlock(&rq->lock);
1083 raw_spin_unlock(&p->pi_lock);
1084
5cc389bc
PZ
1085 local_irq_enable();
1086 return 0;
1087}
1088
c5b28038
PZ
1089/*
1090 * sched_class::set_cpus_allowed must do the below, but is not required to
1091 * actually call this function.
1092 */
1093void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
5cc389bc 1094{
5cc389bc
PZ
1095 cpumask_copy(&p->cpus_allowed, new_mask);
1096 p->nr_cpus_allowed = cpumask_weight(new_mask);
1097}
1098
c5b28038
PZ
1099void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1100{
6c37067e
PZ
1101 struct rq *rq = task_rq(p);
1102 bool queued, running;
1103
c5b28038 1104 lockdep_assert_held(&p->pi_lock);
6c37067e
PZ
1105
1106 queued = task_on_rq_queued(p);
1107 running = task_current(rq, p);
1108
1109 if (queued) {
1110 /*
1111 * Because __kthread_bind() calls this on blocked tasks without
1112 * holding rq->lock.
1113 */
1114 lockdep_assert_held(&rq->lock);
1de64443 1115 dequeue_task(rq, p, DEQUEUE_SAVE);
6c37067e
PZ
1116 }
1117 if (running)
1118 put_prev_task(rq, p);
1119
c5b28038 1120 p->sched_class->set_cpus_allowed(p, new_mask);
6c37067e 1121
6c37067e 1122 if (queued)
1de64443 1123 enqueue_task(rq, p, ENQUEUE_RESTORE);
a399d233 1124 if (running)
b2bf6c31 1125 set_curr_task(rq, p);
c5b28038
PZ
1126}
1127
5cc389bc
PZ
1128/*
1129 * Change a given task's CPU affinity. Migrate the thread to a
1130 * proper CPU and schedule it away if the CPU it's executing on
1131 * is removed from the allowed bitmask.
1132 *
1133 * NOTE: the caller must have a valid reference to the task, the
1134 * task must not exit() & deallocate itself prematurely. The
1135 * call is not atomic; no spinlocks may be held.
1136 */
25834c73
PZ
1137static int __set_cpus_allowed_ptr(struct task_struct *p,
1138 const struct cpumask *new_mask, bool check)
5cc389bc 1139{
e9d867a6 1140 const struct cpumask *cpu_valid_mask = cpu_active_mask;
5cc389bc 1141 unsigned int dest_cpu;
eb580751
PZ
1142 struct rq_flags rf;
1143 struct rq *rq;
5cc389bc
PZ
1144 int ret = 0;
1145
eb580751 1146 rq = task_rq_lock(p, &rf);
5cc389bc 1147
e9d867a6
PZI
1148 if (p->flags & PF_KTHREAD) {
1149 /*
1150 * Kernel threads are allowed on online && !active CPUs
1151 */
1152 cpu_valid_mask = cpu_online_mask;
1153 }
1154
25834c73
PZ
1155 /*
1156 * Must re-check here, to close a race against __kthread_bind(),
1157 * sched_setaffinity() is not guaranteed to observe the flag.
1158 */
1159 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1160 ret = -EINVAL;
1161 goto out;
1162 }
1163
5cc389bc
PZ
1164 if (cpumask_equal(&p->cpus_allowed, new_mask))
1165 goto out;
1166
e9d867a6 1167 if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
5cc389bc
PZ
1168 ret = -EINVAL;
1169 goto out;
1170 }
1171
1172 do_set_cpus_allowed(p, new_mask);
1173
e9d867a6
PZI
1174 if (p->flags & PF_KTHREAD) {
1175 /*
1176 * For kernel threads that do indeed end up on online &&
1177 * !active we want to ensure they are strict per-cpu threads.
1178 */
1179 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1180 !cpumask_intersects(new_mask, cpu_active_mask) &&
1181 p->nr_cpus_allowed != 1);
1182 }
1183
5cc389bc
PZ
1184 /* Can the task run on the task's current CPU? If so, we're done */
1185 if (cpumask_test_cpu(task_cpu(p), new_mask))
1186 goto out;
1187
e9d867a6 1188 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
5cc389bc
PZ
1189 if (task_running(rq, p) || p->state == TASK_WAKING) {
1190 struct migration_arg arg = { p, dest_cpu };
1191 /* Need help from migration thread: drop lock and wait. */
eb580751 1192 task_rq_unlock(rq, p, &rf);
5cc389bc
PZ
1193 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1194 tlb_migrate_finish(p->mm);
1195 return 0;
cbce1a68
PZ
1196 } else if (task_on_rq_queued(p)) {
1197 /*
1198 * OK, since we're going to drop the lock immediately
1199 * afterwards anyway.
1200 */
d8ac8971 1201 rq_unpin_lock(rq, &rf);
5e16bbc2 1202 rq = move_queued_task(rq, p, dest_cpu);
d8ac8971 1203 rq_repin_lock(rq, &rf);
cbce1a68 1204 }
5cc389bc 1205out:
eb580751 1206 task_rq_unlock(rq, p, &rf);
5cc389bc
PZ
1207
1208 return ret;
1209}
25834c73
PZ
1210
1211int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1212{
1213 return __set_cpus_allowed_ptr(p, new_mask, false);
1214}
5cc389bc
PZ
1215EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1216
dd41f596 1217void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1218{
e2912009
PZ
1219#ifdef CONFIG_SCHED_DEBUG
1220 /*
1221 * We should never call set_task_cpu() on a blocked task,
1222 * ttwu() will sort out the placement.
1223 */
077614ee 1224 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
e2336f6e 1225 !p->on_rq);
0122ec5b 1226
3ea94de1
JP
1227 /*
1228 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1229 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1230 * time relying on p->on_rq.
1231 */
1232 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1233 p->sched_class == &fair_sched_class &&
1234 (p->on_rq && !task_on_rq_migrating(p)));
1235
0122ec5b 1236#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1237 /*
1238 * The caller should hold either p->pi_lock or rq->lock, when changing
1239 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1240 *
1241 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1242 * see task_group().
6c6c54e1
PZ
1243 *
1244 * Furthermore, all task_rq users should acquire both locks, see
1245 * task_rq_lock().
1246 */
0122ec5b
PZ
1247 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1248 lockdep_is_held(&task_rq(p)->lock)));
1249#endif
e2912009
PZ
1250#endif
1251
de1d7286 1252 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1253
0c69774e 1254 if (task_cpu(p) != new_cpu) {
0a74bef8 1255 if (p->sched_class->migrate_task_rq)
5a4fd036 1256 p->sched_class->migrate_task_rq(p);
0c69774e 1257 p->se.nr_migrations++;
ff303e66 1258 perf_event_task_migrate(p);
0c69774e 1259 }
dd41f596
IM
1260
1261 __set_task_cpu(p, new_cpu);
c65cc870
IM
1262}
1263
ac66f547
PZ
1264static void __migrate_swap_task(struct task_struct *p, int cpu)
1265{
da0c1e65 1266 if (task_on_rq_queued(p)) {
ac66f547
PZ
1267 struct rq *src_rq, *dst_rq;
1268
1269 src_rq = task_rq(p);
1270 dst_rq = cpu_rq(cpu);
1271
3ea94de1 1272 p->on_rq = TASK_ON_RQ_MIGRATING;
ac66f547
PZ
1273 deactivate_task(src_rq, p, 0);
1274 set_task_cpu(p, cpu);
1275 activate_task(dst_rq, p, 0);
3ea94de1 1276 p->on_rq = TASK_ON_RQ_QUEUED;
ac66f547
PZ
1277 check_preempt_curr(dst_rq, p, 0);
1278 } else {
1279 /*
1280 * Task isn't running anymore; make it appear like we migrated
1281 * it before it went to sleep. This means on wakeup we make the
a1fd4656 1282 * previous cpu our target instead of where it really is.
ac66f547
PZ
1283 */
1284 p->wake_cpu = cpu;
1285 }
1286}
1287
1288struct migration_swap_arg {
1289 struct task_struct *src_task, *dst_task;
1290 int src_cpu, dst_cpu;
1291};
1292
1293static int migrate_swap_stop(void *data)
1294{
1295 struct migration_swap_arg *arg = data;
1296 struct rq *src_rq, *dst_rq;
1297 int ret = -EAGAIN;
1298
62694cd5
PZ
1299 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1300 return -EAGAIN;
1301
ac66f547
PZ
1302 src_rq = cpu_rq(arg->src_cpu);
1303 dst_rq = cpu_rq(arg->dst_cpu);
1304
74602315
PZ
1305 double_raw_lock(&arg->src_task->pi_lock,
1306 &arg->dst_task->pi_lock);
ac66f547 1307 double_rq_lock(src_rq, dst_rq);
62694cd5 1308
ac66f547
PZ
1309 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1310 goto unlock;
1311
1312 if (task_cpu(arg->src_task) != arg->src_cpu)
1313 goto unlock;
1314
1315 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1316 goto unlock;
1317
1318 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1319 goto unlock;
1320
1321 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1322 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1323
1324 ret = 0;
1325
1326unlock:
1327 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1328 raw_spin_unlock(&arg->dst_task->pi_lock);
1329 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1330
1331 return ret;
1332}
1333
1334/*
1335 * Cross migrate two tasks
1336 */
1337int migrate_swap(struct task_struct *cur, struct task_struct *p)
1338{
1339 struct migration_swap_arg arg;
1340 int ret = -EINVAL;
1341
ac66f547
PZ
1342 arg = (struct migration_swap_arg){
1343 .src_task = cur,
1344 .src_cpu = task_cpu(cur),
1345 .dst_task = p,
1346 .dst_cpu = task_cpu(p),
1347 };
1348
1349 if (arg.src_cpu == arg.dst_cpu)
1350 goto out;
1351
6acce3ef
PZ
1352 /*
1353 * These three tests are all lockless; this is OK since all of them
1354 * will be re-checked with proper locks held further down the line.
1355 */
ac66f547
PZ
1356 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1357 goto out;
1358
1359 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1360 goto out;
1361
1362 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1363 goto out;
1364
286549dc 1365 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1366 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1367
1368out:
ac66f547
PZ
1369 return ret;
1370}
1371
1da177e4
LT
1372/*
1373 * wait_task_inactive - wait for a thread to unschedule.
1374 *
85ba2d86
RM
1375 * If @match_state is nonzero, it's the @p->state value just checked and
1376 * not expected to change. If it changes, i.e. @p might have woken up,
1377 * then return zero. When we succeed in waiting for @p to be off its CPU,
1378 * we return a positive number (its total switch count). If a second call
1379 * a short while later returns the same number, the caller can be sure that
1380 * @p has remained unscheduled the whole time.
1381 *
1da177e4
LT
1382 * The caller must ensure that the task *will* unschedule sometime soon,
1383 * else this function might spin for a *long* time. This function can't
1384 * be called with interrupts off, or it may introduce deadlock with
1385 * smp_call_function() if an IPI is sent by the same process we are
1386 * waiting to become inactive.
1387 */
85ba2d86 1388unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4 1389{
da0c1e65 1390 int running, queued;
eb580751 1391 struct rq_flags rf;
85ba2d86 1392 unsigned long ncsw;
70b97a7f 1393 struct rq *rq;
1da177e4 1394
3a5c359a
AK
1395 for (;;) {
1396 /*
1397 * We do the initial early heuristics without holding
1398 * any task-queue locks at all. We'll only try to get
1399 * the runqueue lock when things look like they will
1400 * work out!
1401 */
1402 rq = task_rq(p);
fa490cfd 1403
3a5c359a
AK
1404 /*
1405 * If the task is actively running on another CPU
1406 * still, just relax and busy-wait without holding
1407 * any locks.
1408 *
1409 * NOTE! Since we don't hold any locks, it's not
1410 * even sure that "rq" stays as the right runqueue!
1411 * But we don't care, since "task_running()" will
1412 * return false if the runqueue has changed and p
1413 * is actually now running somewhere else!
1414 */
85ba2d86
RM
1415 while (task_running(rq, p)) {
1416 if (match_state && unlikely(p->state != match_state))
1417 return 0;
3a5c359a 1418 cpu_relax();
85ba2d86 1419 }
fa490cfd 1420
3a5c359a
AK
1421 /*
1422 * Ok, time to look more closely! We need the rq
1423 * lock now, to be *sure*. If we're wrong, we'll
1424 * just go back and repeat.
1425 */
eb580751 1426 rq = task_rq_lock(p, &rf);
27a9da65 1427 trace_sched_wait_task(p);
3a5c359a 1428 running = task_running(rq, p);
da0c1e65 1429 queued = task_on_rq_queued(p);
85ba2d86 1430 ncsw = 0;
f31e11d8 1431 if (!match_state || p->state == match_state)
93dcf55f 1432 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
eb580751 1433 task_rq_unlock(rq, p, &rf);
fa490cfd 1434
85ba2d86
RM
1435 /*
1436 * If it changed from the expected state, bail out now.
1437 */
1438 if (unlikely(!ncsw))
1439 break;
1440
3a5c359a
AK
1441 /*
1442 * Was it really running after all now that we
1443 * checked with the proper locks actually held?
1444 *
1445 * Oops. Go back and try again..
1446 */
1447 if (unlikely(running)) {
1448 cpu_relax();
1449 continue;
1450 }
fa490cfd 1451
3a5c359a
AK
1452 /*
1453 * It's not enough that it's not actively running,
1454 * it must be off the runqueue _entirely_, and not
1455 * preempted!
1456 *
80dd99b3 1457 * So if it was still runnable (but just not actively
3a5c359a
AK
1458 * running right now), it's preempted, and we should
1459 * yield - it could be a while.
1460 */
da0c1e65 1461 if (unlikely(queued)) {
8b0e1953 1462 ktime_t to = NSEC_PER_SEC / HZ;
8eb90c30
TG
1463
1464 set_current_state(TASK_UNINTERRUPTIBLE);
1465 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1466 continue;
1467 }
fa490cfd 1468
3a5c359a
AK
1469 /*
1470 * Ahh, all good. It wasn't running, and it wasn't
1471 * runnable, which means that it will never become
1472 * running in the future either. We're all done!
1473 */
1474 break;
1475 }
85ba2d86
RM
1476
1477 return ncsw;
1da177e4
LT
1478}
1479
1480/***
1481 * kick_process - kick a running thread to enter/exit the kernel
1482 * @p: the to-be-kicked thread
1483 *
1484 * Cause a process which is running on another CPU to enter
1485 * kernel-mode, without any delay. (to get signals handled.)
1486 *
25985edc 1487 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1488 * because all it wants to ensure is that the remote task enters
1489 * the kernel. If the IPI races and the task has been migrated
1490 * to another CPU then no harm is done and the purpose has been
1491 * achieved as well.
1492 */
36c8b586 1493void kick_process(struct task_struct *p)
1da177e4
LT
1494{
1495 int cpu;
1496
1497 preempt_disable();
1498 cpu = task_cpu(p);
1499 if ((cpu != smp_processor_id()) && task_curr(p))
1500 smp_send_reschedule(cpu);
1501 preempt_enable();
1502}
b43e3521 1503EXPORT_SYMBOL_GPL(kick_process);
1da177e4 1504
30da688e 1505/*
013fdb80 1506 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
e9d867a6
PZI
1507 *
1508 * A few notes on cpu_active vs cpu_online:
1509 *
1510 * - cpu_active must be a subset of cpu_online
1511 *
1512 * - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
1513 * see __set_cpus_allowed_ptr(). At this point the newly online
1514 * cpu isn't yet part of the sched domains, and balancing will not
1515 * see it.
1516 *
1517 * - on cpu-down we clear cpu_active() to mask the sched domains and
1518 * avoid the load balancer to place new tasks on the to be removed
1519 * cpu. Existing tasks will remain running there and will be taken
1520 * off.
1521 *
1522 * This means that fallback selection must not select !active CPUs.
1523 * And can assume that any active CPU must be online. Conversely
1524 * select_task_rq() below may allow selection of !active CPUs in order
1525 * to satisfy the above rules.
30da688e 1526 */
5da9a0fb
PZ
1527static int select_fallback_rq(int cpu, struct task_struct *p)
1528{
aa00d89c
TC
1529 int nid = cpu_to_node(cpu);
1530 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1531 enum { cpuset, possible, fail } state = cpuset;
1532 int dest_cpu;
5da9a0fb 1533
aa00d89c
TC
1534 /*
1535 * If the node that the cpu is on has been offlined, cpu_to_node()
1536 * will return -1. There is no cpu on the node, and we should
1537 * select the cpu on the other node.
1538 */
1539 if (nid != -1) {
1540 nodemask = cpumask_of_node(nid);
1541
1542 /* Look for allowed, online CPU in same node. */
1543 for_each_cpu(dest_cpu, nodemask) {
aa00d89c
TC
1544 if (!cpu_active(dest_cpu))
1545 continue;
1546 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1547 return dest_cpu;
1548 }
2baab4e9 1549 }
5da9a0fb 1550
2baab4e9
PZ
1551 for (;;) {
1552 /* Any allowed, online CPU? */
e3831edd 1553 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
feb245e3
TH
1554 if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu))
1555 continue;
1556 if (!cpu_online(dest_cpu))
2baab4e9
PZ
1557 continue;
1558 goto out;
1559 }
5da9a0fb 1560
e73e85f0 1561 /* No more Mr. Nice Guy. */
2baab4e9
PZ
1562 switch (state) {
1563 case cpuset:
e73e85f0
ON
1564 if (IS_ENABLED(CONFIG_CPUSETS)) {
1565 cpuset_cpus_allowed_fallback(p);
1566 state = possible;
1567 break;
1568 }
1569 /* fall-through */
2baab4e9
PZ
1570 case possible:
1571 do_set_cpus_allowed(p, cpu_possible_mask);
1572 state = fail;
1573 break;
1574
1575 case fail:
1576 BUG();
1577 break;
1578 }
1579 }
1580
1581out:
1582 if (state != cpuset) {
1583 /*
1584 * Don't tell them about moving exiting tasks or
1585 * kernel threads (both mm NULL), since they never
1586 * leave kernel.
1587 */
1588 if (p->mm && printk_ratelimit()) {
aac74dc4 1589 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1590 task_pid_nr(p), p->comm, cpu);
1591 }
5da9a0fb
PZ
1592 }
1593
1594 return dest_cpu;
1595}
1596
e2912009 1597/*
013fdb80 1598 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1599 */
970b13ba 1600static inline
ac66f547 1601int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1602{
cbce1a68
PZ
1603 lockdep_assert_held(&p->pi_lock);
1604
50605ffb 1605 if (tsk_nr_cpus_allowed(p) > 1)
6c1d9410 1606 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e9d867a6
PZI
1607 else
1608 cpu = cpumask_any(tsk_cpus_allowed(p));
e2912009
PZ
1609
1610 /*
1611 * In order not to call set_task_cpu() on a blocking task we need
1612 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1613 * cpu.
1614 *
1615 * Since this is common to all placement strategies, this lives here.
1616 *
1617 * [ this allows ->select_task() to simply return task_cpu(p) and
1618 * not worry about this generic constraint ]
1619 */
fa17b507 1620 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1621 !cpu_online(cpu)))
5da9a0fb 1622 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1623
1624 return cpu;
970b13ba 1625}
09a40af5
MG
1626
1627static void update_avg(u64 *avg, u64 sample)
1628{
1629 s64 diff = sample - *avg;
1630 *avg += diff >> 3;
1631}
25834c73
PZ
1632
1633#else
1634
1635static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1636 const struct cpumask *new_mask, bool check)
1637{
1638 return set_cpus_allowed_ptr(p, new_mask);
1639}
1640
5cc389bc 1641#endif /* CONFIG_SMP */
970b13ba 1642
d7c01d27 1643static void
b84cb5df 1644ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1645{
4fa8d299 1646 struct rq *rq;
b84cb5df 1647
4fa8d299
JP
1648 if (!schedstat_enabled())
1649 return;
1650
1651 rq = this_rq();
d7c01d27 1652
4fa8d299
JP
1653#ifdef CONFIG_SMP
1654 if (cpu == rq->cpu) {
ae92882e
JP
1655 schedstat_inc(rq->ttwu_local);
1656 schedstat_inc(p->se.statistics.nr_wakeups_local);
d7c01d27
PZ
1657 } else {
1658 struct sched_domain *sd;
1659
ae92882e 1660 schedstat_inc(p->se.statistics.nr_wakeups_remote);
057f3fad 1661 rcu_read_lock();
4fa8d299 1662 for_each_domain(rq->cpu, sd) {
d7c01d27 1663 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
ae92882e 1664 schedstat_inc(sd->ttwu_wake_remote);
d7c01d27
PZ
1665 break;
1666 }
1667 }
057f3fad 1668 rcu_read_unlock();
d7c01d27 1669 }
f339b9dc
PZ
1670
1671 if (wake_flags & WF_MIGRATED)
ae92882e 1672 schedstat_inc(p->se.statistics.nr_wakeups_migrate);
d7c01d27
PZ
1673#endif /* CONFIG_SMP */
1674
ae92882e
JP
1675 schedstat_inc(rq->ttwu_count);
1676 schedstat_inc(p->se.statistics.nr_wakeups);
d7c01d27
PZ
1677
1678 if (wake_flags & WF_SYNC)
ae92882e 1679 schedstat_inc(p->se.statistics.nr_wakeups_sync);
d7c01d27
PZ
1680}
1681
1de64443 1682static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
d7c01d27 1683{
9ed3811a 1684 activate_task(rq, p, en_flags);
da0c1e65 1685 p->on_rq = TASK_ON_RQ_QUEUED;
c2f7115e
PZ
1686
1687 /* if a worker is waking up, notify workqueue */
1688 if (p->flags & PF_WQ_WORKER)
1689 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1690}
1691
23f41eeb
PZ
1692/*
1693 * Mark the task runnable and perform wakeup-preemption.
1694 */
e7904a28 1695static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
d8ac8971 1696 struct rq_flags *rf)
9ed3811a 1697{
9ed3811a 1698 check_preempt_curr(rq, p, wake_flags);
9ed3811a 1699 p->state = TASK_RUNNING;
fbd705a0
PZ
1700 trace_sched_wakeup(p);
1701
9ed3811a 1702#ifdef CONFIG_SMP
4c9a4bc8
PZ
1703 if (p->sched_class->task_woken) {
1704 /*
cbce1a68
PZ
1705 * Our task @p is fully woken up and running; so its safe to
1706 * drop the rq->lock, hereafter rq is only used for statistics.
4c9a4bc8 1707 */
d8ac8971 1708 rq_unpin_lock(rq, rf);
9ed3811a 1709 p->sched_class->task_woken(rq, p);
d8ac8971 1710 rq_repin_lock(rq, rf);
4c9a4bc8 1711 }
9ed3811a 1712
e69c6341 1713 if (rq->idle_stamp) {
78becc27 1714 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1715 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1716
abfafa54
JL
1717 update_avg(&rq->avg_idle, delta);
1718
1719 if (rq->avg_idle > max)
9ed3811a 1720 rq->avg_idle = max;
abfafa54 1721
9ed3811a
TH
1722 rq->idle_stamp = 0;
1723 }
1724#endif
1725}
1726
c05fbafb 1727static void
e7904a28 1728ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
d8ac8971 1729 struct rq_flags *rf)
c05fbafb 1730{
b5179ac7
PZ
1731 int en_flags = ENQUEUE_WAKEUP;
1732
cbce1a68
PZ
1733 lockdep_assert_held(&rq->lock);
1734
c05fbafb
PZ
1735#ifdef CONFIG_SMP
1736 if (p->sched_contributes_to_load)
1737 rq->nr_uninterruptible--;
b5179ac7 1738
b5179ac7 1739 if (wake_flags & WF_MIGRATED)
59efa0ba 1740 en_flags |= ENQUEUE_MIGRATED;
c05fbafb
PZ
1741#endif
1742
b5179ac7 1743 ttwu_activate(rq, p, en_flags);
d8ac8971 1744 ttwu_do_wakeup(rq, p, wake_flags, rf);
c05fbafb
PZ
1745}
1746
1747/*
1748 * Called in case the task @p isn't fully descheduled from its runqueue,
1749 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1750 * since all we need to do is flip p->state to TASK_RUNNING, since
1751 * the task is still ->on_rq.
1752 */
1753static int ttwu_remote(struct task_struct *p, int wake_flags)
1754{
eb580751 1755 struct rq_flags rf;
c05fbafb
PZ
1756 struct rq *rq;
1757 int ret = 0;
1758
eb580751 1759 rq = __task_rq_lock(p, &rf);
da0c1e65 1760 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
1761 /* check_preempt_curr() may use rq clock */
1762 update_rq_clock(rq);
d8ac8971 1763 ttwu_do_wakeup(rq, p, wake_flags, &rf);
c05fbafb
PZ
1764 ret = 1;
1765 }
eb580751 1766 __task_rq_unlock(rq, &rf);
c05fbafb
PZ
1767
1768 return ret;
1769}
1770
317f3941 1771#ifdef CONFIG_SMP
e3baac47 1772void sched_ttwu_pending(void)
317f3941
PZ
1773{
1774 struct rq *rq = this_rq();
fa14ff4a
PZ
1775 struct llist_node *llist = llist_del_all(&rq->wake_list);
1776 struct task_struct *p;
e3baac47 1777 unsigned long flags;
d8ac8971 1778 struct rq_flags rf;
317f3941 1779
e3baac47
PZ
1780 if (!llist)
1781 return;
1782
1783 raw_spin_lock_irqsave(&rq->lock, flags);
d8ac8971 1784 rq_pin_lock(rq, &rf);
317f3941 1785
fa14ff4a 1786 while (llist) {
b7e7ade3
PZ
1787 int wake_flags = 0;
1788
fa14ff4a
PZ
1789 p = llist_entry(llist, struct task_struct, wake_entry);
1790 llist = llist_next(llist);
b7e7ade3
PZ
1791
1792 if (p->sched_remote_wakeup)
1793 wake_flags = WF_MIGRATED;
1794
d8ac8971 1795 ttwu_do_activate(rq, p, wake_flags, &rf);
317f3941
PZ
1796 }
1797
d8ac8971 1798 rq_unpin_lock(rq, &rf);
e3baac47 1799 raw_spin_unlock_irqrestore(&rq->lock, flags);
317f3941
PZ
1800}
1801
1802void scheduler_ipi(void)
1803{
f27dde8d
PZ
1804 /*
1805 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1806 * TIF_NEED_RESCHED remotely (for the first time) will also send
1807 * this IPI.
1808 */
8cb75e0c 1809 preempt_fold_need_resched();
f27dde8d 1810
fd2ac4f4 1811 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1812 return;
1813
1814 /*
1815 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1816 * traditionally all their work was done from the interrupt return
1817 * path. Now that we actually do some work, we need to make sure
1818 * we do call them.
1819 *
1820 * Some archs already do call them, luckily irq_enter/exit nest
1821 * properly.
1822 *
1823 * Arguably we should visit all archs and update all handlers,
1824 * however a fair share of IPIs are still resched only so this would
1825 * somewhat pessimize the simple resched case.
1826 */
1827 irq_enter();
fa14ff4a 1828 sched_ttwu_pending();
ca38062e
SS
1829
1830 /*
1831 * Check if someone kicked us for doing the nohz idle load balance.
1832 */
873b4c65 1833 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1834 this_rq()->idle_balance = 1;
ca38062e 1835 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1836 }
c5d753a5 1837 irq_exit();
317f3941
PZ
1838}
1839
b7e7ade3 1840static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
317f3941 1841{
e3baac47
PZ
1842 struct rq *rq = cpu_rq(cpu);
1843
b7e7ade3
PZ
1844 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1845
e3baac47
PZ
1846 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1847 if (!set_nr_if_polling(rq->idle))
1848 smp_send_reschedule(cpu);
1849 else
1850 trace_sched_wake_idle_without_ipi(cpu);
1851 }
317f3941 1852}
d6aa8f85 1853
f6be8af1
CL
1854void wake_up_if_idle(int cpu)
1855{
1856 struct rq *rq = cpu_rq(cpu);
1857 unsigned long flags;
1858
fd7de1e8
AL
1859 rcu_read_lock();
1860
1861 if (!is_idle_task(rcu_dereference(rq->curr)))
1862 goto out;
f6be8af1
CL
1863
1864 if (set_nr_if_polling(rq->idle)) {
1865 trace_sched_wake_idle_without_ipi(cpu);
1866 } else {
1867 raw_spin_lock_irqsave(&rq->lock, flags);
1868 if (is_idle_task(rq->curr))
1869 smp_send_reschedule(cpu);
1870 /* Else cpu is not in idle, do nothing here */
1871 raw_spin_unlock_irqrestore(&rq->lock, flags);
1872 }
fd7de1e8
AL
1873
1874out:
1875 rcu_read_unlock();
f6be8af1
CL
1876}
1877
39be3501 1878bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1879{
1880 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1881}
d6aa8f85 1882#endif /* CONFIG_SMP */
317f3941 1883
b5179ac7 1884static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
c05fbafb
PZ
1885{
1886 struct rq *rq = cpu_rq(cpu);
d8ac8971 1887 struct rq_flags rf;
c05fbafb 1888
17d9f311 1889#if defined(CONFIG_SMP)
39be3501 1890 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1891 sched_clock_cpu(cpu); /* sync clocks x-cpu */
b7e7ade3 1892 ttwu_queue_remote(p, cpu, wake_flags);
317f3941
PZ
1893 return;
1894 }
1895#endif
1896
c05fbafb 1897 raw_spin_lock(&rq->lock);
d8ac8971
MF
1898 rq_pin_lock(rq, &rf);
1899 ttwu_do_activate(rq, p, wake_flags, &rf);
1900 rq_unpin_lock(rq, &rf);
c05fbafb 1901 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1902}
1903
8643cda5
PZ
1904/*
1905 * Notes on Program-Order guarantees on SMP systems.
1906 *
1907 * MIGRATION
1908 *
1909 * The basic program-order guarantee on SMP systems is that when a task [t]
1910 * migrates, all its activity on its old cpu [c0] happens-before any subsequent
1911 * execution on its new cpu [c1].
1912 *
1913 * For migration (of runnable tasks) this is provided by the following means:
1914 *
1915 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1916 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1917 * rq(c1)->lock (if not at the same time, then in that order).
1918 * C) LOCK of the rq(c1)->lock scheduling in task
1919 *
1920 * Transitivity guarantees that B happens after A and C after B.
1921 * Note: we only require RCpc transitivity.
1922 * Note: the cpu doing B need not be c0 or c1
1923 *
1924 * Example:
1925 *
1926 * CPU0 CPU1 CPU2
1927 *
1928 * LOCK rq(0)->lock
1929 * sched-out X
1930 * sched-in Y
1931 * UNLOCK rq(0)->lock
1932 *
1933 * LOCK rq(0)->lock // orders against CPU0
1934 * dequeue X
1935 * UNLOCK rq(0)->lock
1936 *
1937 * LOCK rq(1)->lock
1938 * enqueue X
1939 * UNLOCK rq(1)->lock
1940 *
1941 * LOCK rq(1)->lock // orders against CPU2
1942 * sched-out Z
1943 * sched-in X
1944 * UNLOCK rq(1)->lock
1945 *
1946 *
1947 * BLOCKING -- aka. SLEEP + WAKEUP
1948 *
1949 * For blocking we (obviously) need to provide the same guarantee as for
1950 * migration. However the means are completely different as there is no lock
1951 * chain to provide order. Instead we do:
1952 *
1953 * 1) smp_store_release(X->on_cpu, 0)
1f03e8d2 1954 * 2) smp_cond_load_acquire(!X->on_cpu)
8643cda5
PZ
1955 *
1956 * Example:
1957 *
1958 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1959 *
1960 * LOCK rq(0)->lock LOCK X->pi_lock
1961 * dequeue X
1962 * sched-out X
1963 * smp_store_release(X->on_cpu, 0);
1964 *
1f03e8d2 1965 * smp_cond_load_acquire(&X->on_cpu, !VAL);
8643cda5
PZ
1966 * X->state = WAKING
1967 * set_task_cpu(X,2)
1968 *
1969 * LOCK rq(2)->lock
1970 * enqueue X
1971 * X->state = RUNNING
1972 * UNLOCK rq(2)->lock
1973 *
1974 * LOCK rq(2)->lock // orders against CPU1
1975 * sched-out Z
1976 * sched-in X
1977 * UNLOCK rq(2)->lock
1978 *
1979 * UNLOCK X->pi_lock
1980 * UNLOCK rq(0)->lock
1981 *
1982 *
1983 * However; for wakeups there is a second guarantee we must provide, namely we
1984 * must observe the state that lead to our wakeup. That is, not only must our
1985 * task observe its own prior state, it must also observe the stores prior to
1986 * its wakeup.
1987 *
1988 * This means that any means of doing remote wakeups must order the CPU doing
1989 * the wakeup against the CPU the task is going to end up running on. This,
1990 * however, is already required for the regular Program-Order guarantee above,
1f03e8d2 1991 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
8643cda5
PZ
1992 *
1993 */
1994
9ed3811a 1995/**
1da177e4 1996 * try_to_wake_up - wake up a thread
9ed3811a 1997 * @p: the thread to be awakened
1da177e4 1998 * @state: the mask of task states that can be woken
9ed3811a 1999 * @wake_flags: wake modifier flags (WF_*)
1da177e4 2000 *
a2250238 2001 * If (@state & @p->state) @p->state = TASK_RUNNING.
1da177e4 2002 *
a2250238
PZ
2003 * If the task was not queued/runnable, also place it back on a runqueue.
2004 *
2005 * Atomic against schedule() which would dequeue a task, also see
2006 * set_current_state().
2007 *
2008 * Return: %true if @p->state changes (an actual wakeup was done),
2009 * %false otherwise.
1da177e4 2010 */
e4a52bcb
PZ
2011static int
2012try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 2013{
1da177e4 2014 unsigned long flags;
c05fbafb 2015 int cpu, success = 0;
2398f2c6 2016
e0acd0a6
ON
2017 /*
2018 * If we are going to wake up a thread waiting for CONDITION we
2019 * need to ensure that CONDITION=1 done by the caller can not be
2020 * reordered with p->state check below. This pairs with mb() in
2021 * set_current_state() the waiting thread does.
2022 */
2023 smp_mb__before_spinlock();
013fdb80 2024 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 2025 if (!(p->state & state))
1da177e4
LT
2026 goto out;
2027
fbd705a0
PZ
2028 trace_sched_waking(p);
2029
c05fbafb 2030 success = 1; /* we're going to change ->state */
1da177e4 2031 cpu = task_cpu(p);
1da177e4 2032
135e8c92
BS
2033 /*
2034 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2035 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2036 * in smp_cond_load_acquire() below.
2037 *
2038 * sched_ttwu_pending() try_to_wake_up()
2039 * [S] p->on_rq = 1; [L] P->state
2040 * UNLOCK rq->lock -----.
2041 * \
2042 * +--- RMB
2043 * schedule() /
2044 * LOCK rq->lock -----'
2045 * UNLOCK rq->lock
2046 *
2047 * [task p]
2048 * [S] p->state = UNINTERRUPTIBLE [L] p->on_rq
2049 *
2050 * Pairs with the UNLOCK+LOCK on rq->lock from the
2051 * last wakeup of our task and the schedule that got our task
2052 * current.
2053 */
2054 smp_rmb();
c05fbafb
PZ
2055 if (p->on_rq && ttwu_remote(p, wake_flags))
2056 goto stat;
1da177e4 2057
1da177e4 2058#ifdef CONFIG_SMP
ecf7d01c
PZ
2059 /*
2060 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2061 * possible to, falsely, observe p->on_cpu == 0.
2062 *
2063 * One must be running (->on_cpu == 1) in order to remove oneself
2064 * from the runqueue.
2065 *
2066 * [S] ->on_cpu = 1; [L] ->on_rq
2067 * UNLOCK rq->lock
2068 * RMB
2069 * LOCK rq->lock
2070 * [S] ->on_rq = 0; [L] ->on_cpu
2071 *
2072 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2073 * from the consecutive calls to schedule(); the first switching to our
2074 * task, the second putting it to sleep.
2075 */
2076 smp_rmb();
2077
e9c84311 2078 /*
c05fbafb
PZ
2079 * If the owning (remote) cpu is still in the middle of schedule() with
2080 * this task as prev, wait until its done referencing the task.
b75a2253
PZ
2081 *
2082 * Pairs with the smp_store_release() in finish_lock_switch().
2083 *
2084 * This ensures that tasks getting woken will be fully ordered against
2085 * their previous state and preserve Program Order.
0970d299 2086 */
1f03e8d2 2087 smp_cond_load_acquire(&p->on_cpu, !VAL);
1da177e4 2088
a8e4f2ea 2089 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 2090 p->state = TASK_WAKING;
e7693a36 2091
e33a9bba
TH
2092 if (p->in_iowait) {
2093 delayacct_blkio_end();
2094 atomic_dec(&task_rq(p)->nr_iowait);
2095 }
2096
ac66f547 2097 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
2098 if (task_cpu(p) != cpu) {
2099 wake_flags |= WF_MIGRATED;
e4a52bcb 2100 set_task_cpu(p, cpu);
f339b9dc 2101 }
e33a9bba
TH
2102
2103#else /* CONFIG_SMP */
2104
2105 if (p->in_iowait) {
2106 delayacct_blkio_end();
2107 atomic_dec(&task_rq(p)->nr_iowait);
2108 }
2109
1da177e4 2110#endif /* CONFIG_SMP */
1da177e4 2111
b5179ac7 2112 ttwu_queue(p, cpu, wake_flags);
c05fbafb 2113stat:
4fa8d299 2114 ttwu_stat(p, cpu, wake_flags);
1da177e4 2115out:
013fdb80 2116 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
2117
2118 return success;
2119}
2120
21aa9af0
TH
2121/**
2122 * try_to_wake_up_local - try to wake up a local task with rq lock held
2123 * @p: the thread to be awakened
9279e0d2 2124 * @cookie: context's cookie for pinning
21aa9af0 2125 *
2acca55e 2126 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 2127 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 2128 * the current task.
21aa9af0 2129 */
d8ac8971 2130static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf)
21aa9af0
TH
2131{
2132 struct rq *rq = task_rq(p);
21aa9af0 2133
383efcd0
TH
2134 if (WARN_ON_ONCE(rq != this_rq()) ||
2135 WARN_ON_ONCE(p == current))
2136 return;
2137
21aa9af0
TH
2138 lockdep_assert_held(&rq->lock);
2139
2acca55e 2140 if (!raw_spin_trylock(&p->pi_lock)) {
cbce1a68
PZ
2141 /*
2142 * This is OK, because current is on_cpu, which avoids it being
2143 * picked for load-balance and preemption/IRQs are still
2144 * disabled avoiding further scheduler activity on it and we've
2145 * not yet picked a replacement task.
2146 */
d8ac8971 2147 rq_unpin_lock(rq, rf);
2acca55e
PZ
2148 raw_spin_unlock(&rq->lock);
2149 raw_spin_lock(&p->pi_lock);
2150 raw_spin_lock(&rq->lock);
d8ac8971 2151 rq_repin_lock(rq, rf);
2acca55e
PZ
2152 }
2153
21aa9af0 2154 if (!(p->state & TASK_NORMAL))
2acca55e 2155 goto out;
21aa9af0 2156
fbd705a0
PZ
2157 trace_sched_waking(p);
2158
e33a9bba
TH
2159 if (!task_on_rq_queued(p)) {
2160 if (p->in_iowait) {
2161 delayacct_blkio_end();
2162 atomic_dec(&rq->nr_iowait);
2163 }
d7c01d27 2164 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
e33a9bba 2165 }
d7c01d27 2166
d8ac8971 2167 ttwu_do_wakeup(rq, p, 0, rf);
4fa8d299 2168 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
2169out:
2170 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
2171}
2172
50fa610a
DH
2173/**
2174 * wake_up_process - Wake up a specific process
2175 * @p: The process to be woken up.
2176 *
2177 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
2178 * processes.
2179 *
2180 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
2181 *
2182 * It may be assumed that this function implies a write memory barrier before
2183 * changing the task state if and only if any tasks are woken up.
2184 */
7ad5b3a5 2185int wake_up_process(struct task_struct *p)
1da177e4 2186{
9067ac85 2187 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 2188}
1da177e4
LT
2189EXPORT_SYMBOL(wake_up_process);
2190
7ad5b3a5 2191int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2192{
2193 return try_to_wake_up(p, state, 0);
2194}
2195
a5e7be3b
JL
2196/*
2197 * This function clears the sched_dl_entity static params.
2198 */
2199void __dl_clear_params(struct task_struct *p)
2200{
2201 struct sched_dl_entity *dl_se = &p->dl;
2202
2203 dl_se->dl_runtime = 0;
2204 dl_se->dl_deadline = 0;
2205 dl_se->dl_period = 0;
2206 dl_se->flags = 0;
2207 dl_se->dl_bw = 0;
40767b0d
PZ
2208
2209 dl_se->dl_throttled = 0;
40767b0d 2210 dl_se->dl_yielded = 0;
a5e7be3b
JL
2211}
2212
1da177e4
LT
2213/*
2214 * Perform scheduler related setup for a newly forked process p.
2215 * p is forked by current.
dd41f596
IM
2216 *
2217 * __sched_fork() is basic setup used by init_idle() too:
2218 */
5e1576ed 2219static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2220{
fd2f4419
PZ
2221 p->on_rq = 0;
2222
2223 p->se.on_rq = 0;
dd41f596
IM
2224 p->se.exec_start = 0;
2225 p->se.sum_exec_runtime = 0;
f6cf891c 2226 p->se.prev_sum_exec_runtime = 0;
6c594c21 2227 p->se.nr_migrations = 0;
da7a735e 2228 p->se.vruntime = 0;
fd2f4419 2229 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d 2230
ad936d86
BP
2231#ifdef CONFIG_FAIR_GROUP_SCHED
2232 p->se.cfs_rq = NULL;
2233#endif
2234
6cfb0d5d 2235#ifdef CONFIG_SCHEDSTATS
cb251765 2236 /* Even if schedstat is disabled, there should not be garbage */
41acab88 2237 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2238#endif
476d139c 2239
aab03e05 2240 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 2241 init_dl_task_timer(&p->dl);
a5e7be3b 2242 __dl_clear_params(p);
aab03e05 2243
fa717060 2244 INIT_LIST_HEAD(&p->rt.run_list);
ff77e468
PZ
2245 p->rt.timeout = 0;
2246 p->rt.time_slice = sched_rr_timeslice;
2247 p->rt.on_rq = 0;
2248 p->rt.on_list = 0;
476d139c 2249
e107be36
AK
2250#ifdef CONFIG_PREEMPT_NOTIFIERS
2251 INIT_HLIST_HEAD(&p->preempt_notifiers);
2252#endif
cbee9f88
PZ
2253
2254#ifdef CONFIG_NUMA_BALANCING
2255 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 2256 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
2257 p->mm->numa_scan_seq = 0;
2258 }
2259
5e1576ed
RR
2260 if (clone_flags & CLONE_VM)
2261 p->numa_preferred_nid = current->numa_preferred_nid;
2262 else
2263 p->numa_preferred_nid = -1;
2264
cbee9f88
PZ
2265 p->node_stamp = 0ULL;
2266 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 2267 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 2268 p->numa_work.next = &p->numa_work;
44dba3d5 2269 p->numa_faults = NULL;
7e2703e6
RR
2270 p->last_task_numa_placement = 0;
2271 p->last_sum_exec_runtime = 0;
8c8a743c 2272
8c8a743c 2273 p->numa_group = NULL;
cbee9f88 2274#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
2275}
2276
2a595721
SD
2277DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2278
1a687c2e 2279#ifdef CONFIG_NUMA_BALANCING
c3b9bc5b 2280
1a687c2e
MG
2281void set_numabalancing_state(bool enabled)
2282{
2283 if (enabled)
2a595721 2284 static_branch_enable(&sched_numa_balancing);
1a687c2e 2285 else
2a595721 2286 static_branch_disable(&sched_numa_balancing);
1a687c2e 2287}
54a43d54
AK
2288
2289#ifdef CONFIG_PROC_SYSCTL
2290int sysctl_numa_balancing(struct ctl_table *table, int write,
2291 void __user *buffer, size_t *lenp, loff_t *ppos)
2292{
2293 struct ctl_table t;
2294 int err;
2a595721 2295 int state = static_branch_likely(&sched_numa_balancing);
54a43d54
AK
2296
2297 if (write && !capable(CAP_SYS_ADMIN))
2298 return -EPERM;
2299
2300 t = *table;
2301 t.data = &state;
2302 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2303 if (err < 0)
2304 return err;
2305 if (write)
2306 set_numabalancing_state(state);
2307 return err;
2308}
2309#endif
2310#endif
dd41f596 2311
4698f88c
JP
2312#ifdef CONFIG_SCHEDSTATS
2313
cb251765 2314DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4698f88c 2315static bool __initdata __sched_schedstats = false;
cb251765 2316
cb251765
MG
2317static void set_schedstats(bool enabled)
2318{
2319 if (enabled)
2320 static_branch_enable(&sched_schedstats);
2321 else
2322 static_branch_disable(&sched_schedstats);
2323}
2324
2325void force_schedstat_enabled(void)
2326{
2327 if (!schedstat_enabled()) {
2328 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2329 static_branch_enable(&sched_schedstats);
2330 }
2331}
2332
2333static int __init setup_schedstats(char *str)
2334{
2335 int ret = 0;
2336 if (!str)
2337 goto out;
2338
4698f88c
JP
2339 /*
2340 * This code is called before jump labels have been set up, so we can't
2341 * change the static branch directly just yet. Instead set a temporary
2342 * variable so init_schedstats() can do it later.
2343 */
cb251765 2344 if (!strcmp(str, "enable")) {
4698f88c 2345 __sched_schedstats = true;
cb251765
MG
2346 ret = 1;
2347 } else if (!strcmp(str, "disable")) {
4698f88c 2348 __sched_schedstats = false;
cb251765
MG
2349 ret = 1;
2350 }
2351out:
2352 if (!ret)
2353 pr_warn("Unable to parse schedstats=\n");
2354
2355 return ret;
2356}
2357__setup("schedstats=", setup_schedstats);
2358
4698f88c
JP
2359static void __init init_schedstats(void)
2360{
2361 set_schedstats(__sched_schedstats);
2362}
2363
cb251765
MG
2364#ifdef CONFIG_PROC_SYSCTL
2365int sysctl_schedstats(struct ctl_table *table, int write,
2366 void __user *buffer, size_t *lenp, loff_t *ppos)
2367{
2368 struct ctl_table t;
2369 int err;
2370 int state = static_branch_likely(&sched_schedstats);
2371
2372 if (write && !capable(CAP_SYS_ADMIN))
2373 return -EPERM;
2374
2375 t = *table;
2376 t.data = &state;
2377 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2378 if (err < 0)
2379 return err;
2380 if (write)
2381 set_schedstats(state);
2382 return err;
2383}
4698f88c
JP
2384#endif /* CONFIG_PROC_SYSCTL */
2385#else /* !CONFIG_SCHEDSTATS */
2386static inline void init_schedstats(void) {}
2387#endif /* CONFIG_SCHEDSTATS */
dd41f596
IM
2388
2389/*
2390 * fork()/clone()-time setup:
2391 */
aab03e05 2392int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2393{
0122ec5b 2394 unsigned long flags;
dd41f596
IM
2395 int cpu = get_cpu();
2396
5e1576ed 2397 __sched_fork(clone_flags, p);
06b83b5f 2398 /*
7dc603c9 2399 * We mark the process as NEW here. This guarantees that
06b83b5f
PZ
2400 * nobody will actually run it, and a signal or other external
2401 * event cannot wake it up and insert it on the runqueue either.
2402 */
7dc603c9 2403 p->state = TASK_NEW;
dd41f596 2404
c350a04e
MG
2405 /*
2406 * Make sure we do not leak PI boosting priority to the child.
2407 */
2408 p->prio = current->normal_prio;
2409
b9dc29e7
MG
2410 /*
2411 * Revert to default priority/policy on fork if requested.
2412 */
2413 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 2414 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 2415 p->policy = SCHED_NORMAL;
6c697bdf 2416 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
2417 p->rt_priority = 0;
2418 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2419 p->static_prio = NICE_TO_PRIO(0);
2420
2421 p->prio = p->normal_prio = __normal_prio(p);
2422 set_load_weight(p);
6c697bdf 2423
b9dc29e7
MG
2424 /*
2425 * We don't need the reset flag anymore after the fork. It has
2426 * fulfilled its duty:
2427 */
2428 p->sched_reset_on_fork = 0;
2429 }
ca94c442 2430
aab03e05
DF
2431 if (dl_prio(p->prio)) {
2432 put_cpu();
2433 return -EAGAIN;
2434 } else if (rt_prio(p->prio)) {
2435 p->sched_class = &rt_sched_class;
2436 } else {
2ddbf952 2437 p->sched_class = &fair_sched_class;
aab03e05 2438 }
b29739f9 2439
7dc603c9 2440 init_entity_runnable_average(&p->se);
cd29fe6f 2441
86951599
PZ
2442 /*
2443 * The child is not yet in the pid-hash so no cgroup attach races,
2444 * and the cgroup is pinned to this child due to cgroup_fork()
2445 * is ran before sched_fork().
2446 *
2447 * Silence PROVE_RCU.
2448 */
0122ec5b 2449 raw_spin_lock_irqsave(&p->pi_lock, flags);
e210bffd
PZ
2450 /*
2451 * We're setting the cpu for the first time, we don't migrate,
2452 * so use __set_task_cpu().
2453 */
2454 __set_task_cpu(p, cpu);
2455 if (p->sched_class->task_fork)
2456 p->sched_class->task_fork(p);
0122ec5b 2457 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 2458
f6db8347 2459#ifdef CONFIG_SCHED_INFO
dd41f596 2460 if (likely(sched_info_on()))
52f17b6c 2461 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2462#endif
3ca7a440
PZ
2463#if defined(CONFIG_SMP)
2464 p->on_cpu = 0;
4866cde0 2465#endif
01028747 2466 init_task_preempt_count(p);
806c09a7 2467#ifdef CONFIG_SMP
917b627d 2468 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 2469 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 2470#endif
917b627d 2471
476d139c 2472 put_cpu();
aab03e05 2473 return 0;
1da177e4
LT
2474}
2475
332ac17e
DF
2476unsigned long to_ratio(u64 period, u64 runtime)
2477{
2478 if (runtime == RUNTIME_INF)
2479 return 1ULL << 20;
2480
2481 /*
2482 * Doing this here saves a lot of checks in all
2483 * the calling paths, and returning zero seems
2484 * safe for them anyway.
2485 */
2486 if (period == 0)
2487 return 0;
2488
2489 return div64_u64(runtime << 20, period);
2490}
2491
2492#ifdef CONFIG_SMP
2493inline struct dl_bw *dl_bw_of(int i)
2494{
f78f5b90
PM
2495 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2496 "sched RCU must be held");
332ac17e
DF
2497 return &cpu_rq(i)->rd->dl_bw;
2498}
2499
de212f18 2500static inline int dl_bw_cpus(int i)
332ac17e 2501{
de212f18
PZ
2502 struct root_domain *rd = cpu_rq(i)->rd;
2503 int cpus = 0;
2504
f78f5b90
PM
2505 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2506 "sched RCU must be held");
de212f18
PZ
2507 for_each_cpu_and(i, rd->span, cpu_active_mask)
2508 cpus++;
2509
2510 return cpus;
332ac17e
DF
2511}
2512#else
2513inline struct dl_bw *dl_bw_of(int i)
2514{
2515 return &cpu_rq(i)->dl.dl_bw;
2516}
2517
de212f18 2518static inline int dl_bw_cpus(int i)
332ac17e
DF
2519{
2520 return 1;
2521}
2522#endif
2523
332ac17e
DF
2524/*
2525 * We must be sure that accepting a new task (or allowing changing the
2526 * parameters of an existing one) is consistent with the bandwidth
2527 * constraints. If yes, this function also accordingly updates the currently
2528 * allocated bandwidth to reflect the new situation.
2529 *
2530 * This function is called while holding p's rq->lock.
40767b0d
PZ
2531 *
2532 * XXX we should delay bw change until the task's 0-lag point, see
2533 * __setparam_dl().
332ac17e
DF
2534 */
2535static int dl_overflow(struct task_struct *p, int policy,
2536 const struct sched_attr *attr)
2537{
2538
2539 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
4df1638c 2540 u64 period = attr->sched_period ?: attr->sched_deadline;
332ac17e
DF
2541 u64 runtime = attr->sched_runtime;
2542 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 2543 int cpus, err = -1;
332ac17e 2544
fec148c0
XP
2545 /* !deadline task may carry old deadline bandwidth */
2546 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
332ac17e
DF
2547 return 0;
2548
2549 /*
2550 * Either if a task, enters, leave, or stays -deadline but changes
2551 * its parameters, we may need to update accordingly the total
2552 * allocated bandwidth of the container.
2553 */
2554 raw_spin_lock(&dl_b->lock);
de212f18 2555 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
2556 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2557 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2558 __dl_add(dl_b, new_bw);
2559 err = 0;
2560 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2561 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2562 __dl_clear(dl_b, p->dl.dl_bw);
2563 __dl_add(dl_b, new_bw);
2564 err = 0;
2565 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2566 __dl_clear(dl_b, p->dl.dl_bw);
2567 err = 0;
2568 }
2569 raw_spin_unlock(&dl_b->lock);
2570
2571 return err;
2572}
2573
2574extern void init_dl_bw(struct dl_bw *dl_b);
2575
1da177e4
LT
2576/*
2577 * wake_up_new_task - wake up a newly created task for the first time.
2578 *
2579 * This function will do some initial scheduler statistics housekeeping
2580 * that must be done for every newly created context, then puts the task
2581 * on the runqueue and wakes it.
2582 */
3e51e3ed 2583void wake_up_new_task(struct task_struct *p)
1da177e4 2584{
eb580751 2585 struct rq_flags rf;
dd41f596 2586 struct rq *rq;
fabf318e 2587
eb580751 2588 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
7dc603c9 2589 p->state = TASK_RUNNING;
fabf318e
PZ
2590#ifdef CONFIG_SMP
2591 /*
2592 * Fork balancing, do it here and not earlier because:
2593 * - cpus_allowed can change in the fork path
2594 * - any previously selected cpu might disappear through hotplug
e210bffd
PZ
2595 *
2596 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2597 * as we're not fully set-up yet.
fabf318e 2598 */
e210bffd 2599 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735 2600#endif
b7fa30c9 2601 rq = __task_rq_lock(p, &rf);
4126bad6 2602 update_rq_clock(rq);
2b8c41da 2603 post_init_entity_util_avg(&p->se);
0017d735 2604
cd29fe6f 2605 activate_task(rq, p, 0);
da0c1e65 2606 p->on_rq = TASK_ON_RQ_QUEUED;
fbd705a0 2607 trace_sched_wakeup_new(p);
a7558e01 2608 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2609#ifdef CONFIG_SMP
0aaafaab
PZ
2610 if (p->sched_class->task_woken) {
2611 /*
2612 * Nothing relies on rq->lock after this, so its fine to
2613 * drop it.
2614 */
d8ac8971 2615 rq_unpin_lock(rq, &rf);
efbbd05a 2616 p->sched_class->task_woken(rq, p);
d8ac8971 2617 rq_repin_lock(rq, &rf);
0aaafaab 2618 }
9a897c5a 2619#endif
eb580751 2620 task_rq_unlock(rq, p, &rf);
1da177e4
LT
2621}
2622
e107be36
AK
2623#ifdef CONFIG_PREEMPT_NOTIFIERS
2624
1cde2930
PZ
2625static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2626
2ecd9d29
PZ
2627void preempt_notifier_inc(void)
2628{
2629 static_key_slow_inc(&preempt_notifier_key);
2630}
2631EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2632
2633void preempt_notifier_dec(void)
2634{
2635 static_key_slow_dec(&preempt_notifier_key);
2636}
2637EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2638
e107be36 2639/**
80dd99b3 2640 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2641 * @notifier: notifier struct to register
e107be36
AK
2642 */
2643void preempt_notifier_register(struct preempt_notifier *notifier)
2644{
2ecd9d29
PZ
2645 if (!static_key_false(&preempt_notifier_key))
2646 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2647
e107be36
AK
2648 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2649}
2650EXPORT_SYMBOL_GPL(preempt_notifier_register);
2651
2652/**
2653 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2654 * @notifier: notifier struct to unregister
e107be36 2655 *
d84525a8 2656 * This is *not* safe to call from within a preemption notifier.
e107be36
AK
2657 */
2658void preempt_notifier_unregister(struct preempt_notifier *notifier)
2659{
2660 hlist_del(&notifier->link);
2661}
2662EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2663
1cde2930 2664static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2665{
2666 struct preempt_notifier *notifier;
e107be36 2667
b67bfe0d 2668 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2669 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2670}
2671
1cde2930
PZ
2672static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2673{
2674 if (static_key_false(&preempt_notifier_key))
2675 __fire_sched_in_preempt_notifiers(curr);
2676}
2677
e107be36 2678static void
1cde2930
PZ
2679__fire_sched_out_preempt_notifiers(struct task_struct *curr,
2680 struct task_struct *next)
e107be36
AK
2681{
2682 struct preempt_notifier *notifier;
e107be36 2683
b67bfe0d 2684 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2685 notifier->ops->sched_out(notifier, next);
2686}
2687
1cde2930
PZ
2688static __always_inline void
2689fire_sched_out_preempt_notifiers(struct task_struct *curr,
2690 struct task_struct *next)
2691{
2692 if (static_key_false(&preempt_notifier_key))
2693 __fire_sched_out_preempt_notifiers(curr, next);
2694}
2695
6d6bc0ad 2696#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36 2697
1cde2930 2698static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2699{
2700}
2701
1cde2930 2702static inline void
e107be36
AK
2703fire_sched_out_preempt_notifiers(struct task_struct *curr,
2704 struct task_struct *next)
2705{
2706}
2707
6d6bc0ad 2708#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2709
4866cde0
NP
2710/**
2711 * prepare_task_switch - prepare to switch tasks
2712 * @rq: the runqueue preparing to switch
421cee29 2713 * @prev: the current task that is being switched out
4866cde0
NP
2714 * @next: the task we are going to switch to.
2715 *
2716 * This is called with the rq lock held and interrupts off. It must
2717 * be paired with a subsequent finish_task_switch after the context
2718 * switch.
2719 *
2720 * prepare_task_switch sets up locking and calls architecture specific
2721 * hooks.
2722 */
e107be36
AK
2723static inline void
2724prepare_task_switch(struct rq *rq, struct task_struct *prev,
2725 struct task_struct *next)
4866cde0 2726{
43148951 2727 sched_info_switch(rq, prev, next);
fe4b04fa 2728 perf_event_task_sched_out(prev, next);
e107be36 2729 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2730 prepare_lock_switch(rq, next);
2731 prepare_arch_switch(next);
2732}
2733
1da177e4
LT
2734/**
2735 * finish_task_switch - clean up after a task-switch
2736 * @prev: the thread we just switched away from.
2737 *
4866cde0
NP
2738 * finish_task_switch must be called after the context switch, paired
2739 * with a prepare_task_switch call before the context switch.
2740 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2741 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2742 *
2743 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2744 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2745 * with the lock held can cause deadlocks; see schedule() for
2746 * details.)
dfa50b60
ON
2747 *
2748 * The context switch have flipped the stack from under us and restored the
2749 * local variables which were saved when this task called schedule() in the
2750 * past. prev == current is still correct but we need to recalculate this_rq
2751 * because prev may have moved to another CPU.
1da177e4 2752 */
dfa50b60 2753static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
2754 __releases(rq->lock)
2755{
dfa50b60 2756 struct rq *rq = this_rq();
1da177e4 2757 struct mm_struct *mm = rq->prev_mm;
55a101f8 2758 long prev_state;
1da177e4 2759
609ca066
PZ
2760 /*
2761 * The previous task will have left us with a preempt_count of 2
2762 * because it left us after:
2763 *
2764 * schedule()
2765 * preempt_disable(); // 1
2766 * __schedule()
2767 * raw_spin_lock_irq(&rq->lock) // 2
2768 *
2769 * Also, see FORK_PREEMPT_COUNT.
2770 */
e2bf1c4b
PZ
2771 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2772 "corrupted preempt_count: %s/%d/0x%x\n",
2773 current->comm, current->pid, preempt_count()))
2774 preempt_count_set(FORK_PREEMPT_COUNT);
609ca066 2775
1da177e4
LT
2776 rq->prev_mm = NULL;
2777
2778 /*
2779 * A task struct has one reference for the use as "current".
c394cc9f 2780 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2781 * schedule one last time. The schedule call will never return, and
2782 * the scheduled task must drop that reference.
95913d97
PZ
2783 *
2784 * We must observe prev->state before clearing prev->on_cpu (in
2785 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2786 * running on another CPU and we could rave with its RUNNING -> DEAD
2787 * transition, resulting in a double drop.
1da177e4 2788 */
55a101f8 2789 prev_state = prev->state;
bf9fae9f 2790 vtime_task_switch(prev);
a8d757ef 2791 perf_event_task_sched_in(prev, current);
4866cde0 2792 finish_lock_switch(rq, prev);
01f23e16 2793 finish_arch_post_lock_switch();
e8fa1362 2794
e107be36 2795 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2796 if (mm)
2797 mmdrop(mm);
c394cc9f 2798 if (unlikely(prev_state == TASK_DEAD)) {
e6c390f2
DF
2799 if (prev->sched_class->task_dead)
2800 prev->sched_class->task_dead(prev);
2801
c6fd91f0 2802 /*
2803 * Remove function-return probe instances associated with this
2804 * task and put them back on the free list.
9761eea8 2805 */
c6fd91f0 2806 kprobe_flush_task(prev);
68f24b08
AL
2807
2808 /* Task is done with its stack. */
2809 put_task_stack(prev);
2810
1da177e4 2811 put_task_struct(prev);
c6fd91f0 2812 }
99e5ada9 2813
de734f89 2814 tick_nohz_task_switch();
dfa50b60 2815 return rq;
1da177e4
LT
2816}
2817
3f029d3c
GH
2818#ifdef CONFIG_SMP
2819
3f029d3c 2820/* rq->lock is NOT held, but preemption is disabled */
e3fca9e7 2821static void __balance_callback(struct rq *rq)
3f029d3c 2822{
e3fca9e7
PZ
2823 struct callback_head *head, *next;
2824 void (*func)(struct rq *rq);
2825 unsigned long flags;
3f029d3c 2826
e3fca9e7
PZ
2827 raw_spin_lock_irqsave(&rq->lock, flags);
2828 head = rq->balance_callback;
2829 rq->balance_callback = NULL;
2830 while (head) {
2831 func = (void (*)(struct rq *))head->func;
2832 next = head->next;
2833 head->next = NULL;
2834 head = next;
3f029d3c 2835
e3fca9e7 2836 func(rq);
3f029d3c 2837 }
e3fca9e7
PZ
2838 raw_spin_unlock_irqrestore(&rq->lock, flags);
2839}
2840
2841static inline void balance_callback(struct rq *rq)
2842{
2843 if (unlikely(rq->balance_callback))
2844 __balance_callback(rq);
3f029d3c
GH
2845}
2846
2847#else
da19ab51 2848
e3fca9e7 2849static inline void balance_callback(struct rq *rq)
3f029d3c 2850{
1da177e4
LT
2851}
2852
3f029d3c
GH
2853#endif
2854
1da177e4
LT
2855/**
2856 * schedule_tail - first thing a freshly forked thread must call.
2857 * @prev: the thread we just switched away from.
2858 */
722a9f92 2859asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
2860 __releases(rq->lock)
2861{
1a43a14a 2862 struct rq *rq;
da19ab51 2863
609ca066
PZ
2864 /*
2865 * New tasks start with FORK_PREEMPT_COUNT, see there and
2866 * finish_task_switch() for details.
2867 *
2868 * finish_task_switch() will drop rq->lock() and lower preempt_count
2869 * and the preempt_enable() will end up enabling preemption (on
2870 * PREEMPT_COUNT kernels).
2871 */
2872
dfa50b60 2873 rq = finish_task_switch(prev);
e3fca9e7 2874 balance_callback(rq);
1a43a14a 2875 preempt_enable();
70b97a7f 2876
1da177e4 2877 if (current->set_child_tid)
b488893a 2878 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2879}
2880
2881/*
dfa50b60 2882 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 2883 */
04936948 2884static __always_inline struct rq *
70b97a7f 2885context_switch(struct rq *rq, struct task_struct *prev,
d8ac8971 2886 struct task_struct *next, struct rq_flags *rf)
1da177e4 2887{
dd41f596 2888 struct mm_struct *mm, *oldmm;
1da177e4 2889
e107be36 2890 prepare_task_switch(rq, prev, next);
fe4b04fa 2891
dd41f596
IM
2892 mm = next->mm;
2893 oldmm = prev->active_mm;
9226d125
ZA
2894 /*
2895 * For paravirt, this is coupled with an exit in switch_to to
2896 * combine the page table reload and the switch backend into
2897 * one hypercall.
2898 */
224101ed 2899 arch_start_context_switch(prev);
9226d125 2900
31915ab4 2901 if (!mm) {
1da177e4
LT
2902 next->active_mm = oldmm;
2903 atomic_inc(&oldmm->mm_count);
2904 enter_lazy_tlb(oldmm, next);
2905 } else
f98db601 2906 switch_mm_irqs_off(oldmm, mm, next);
1da177e4 2907
31915ab4 2908 if (!prev->mm) {
1da177e4 2909 prev->active_mm = NULL;
1da177e4
LT
2910 rq->prev_mm = oldmm;
2911 }
92509b73 2912
cb42c9a3 2913 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
92509b73 2914
3a5f5e48
IM
2915 /*
2916 * Since the runqueue lock will be released by the next
2917 * task (which is an invalid locking op but in the case
2918 * of the scheduler it's an obvious special-case), so we
2919 * do an early lockdep release here:
2920 */
d8ac8971 2921 rq_unpin_lock(rq, rf);
8a25d5de 2922 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
2923
2924 /* Here we just switch the register state and the stack. */
2925 switch_to(prev, next, prev);
dd41f596 2926 barrier();
dfa50b60
ON
2927
2928 return finish_task_switch(prev);
1da177e4
LT
2929}
2930
2931/*
1c3e8264 2932 * nr_running and nr_context_switches:
1da177e4
LT
2933 *
2934 * externally visible scheduler statistics: current number of runnable
1c3e8264 2935 * threads, total number of context switches performed since bootup.
1da177e4
LT
2936 */
2937unsigned long nr_running(void)
2938{
2939 unsigned long i, sum = 0;
2940
2941 for_each_online_cpu(i)
2942 sum += cpu_rq(i)->nr_running;
2943
2944 return sum;
f711f609 2945}
1da177e4 2946
2ee507c4
TC
2947/*
2948 * Check if only the current task is running on the cpu.
00cc1633
DD
2949 *
2950 * Caution: this function does not check that the caller has disabled
2951 * preemption, thus the result might have a time-of-check-to-time-of-use
2952 * race. The caller is responsible to use it correctly, for example:
2953 *
2954 * - from a non-preemptable section (of course)
2955 *
2956 * - from a thread that is bound to a single CPU
2957 *
2958 * - in a loop with very short iterations (e.g. a polling loop)
2ee507c4
TC
2959 */
2960bool single_task_running(void)
2961{
00cc1633 2962 return raw_rq()->nr_running == 1;
2ee507c4
TC
2963}
2964EXPORT_SYMBOL(single_task_running);
2965
1da177e4 2966unsigned long long nr_context_switches(void)
46cb4b7c 2967{
cc94abfc
SR
2968 int i;
2969 unsigned long long sum = 0;
46cb4b7c 2970
0a945022 2971 for_each_possible_cpu(i)
1da177e4 2972 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2973
1da177e4
LT
2974 return sum;
2975}
483b4ee6 2976
e33a9bba
TH
2977/*
2978 * IO-wait accounting, and how its mostly bollocks (on SMP).
2979 *
2980 * The idea behind IO-wait account is to account the idle time that we could
2981 * have spend running if it were not for IO. That is, if we were to improve the
2982 * storage performance, we'd have a proportional reduction in IO-wait time.
2983 *
2984 * This all works nicely on UP, where, when a task blocks on IO, we account
2985 * idle time as IO-wait, because if the storage were faster, it could've been
2986 * running and we'd not be idle.
2987 *
2988 * This has been extended to SMP, by doing the same for each CPU. This however
2989 * is broken.
2990 *
2991 * Imagine for instance the case where two tasks block on one CPU, only the one
2992 * CPU will have IO-wait accounted, while the other has regular idle. Even
2993 * though, if the storage were faster, both could've ran at the same time,
2994 * utilising both CPUs.
2995 *
2996 * This means, that when looking globally, the current IO-wait accounting on
2997 * SMP is a lower bound, by reason of under accounting.
2998 *
2999 * Worse, since the numbers are provided per CPU, they are sometimes
3000 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
3001 * associated with any one particular CPU, it can wake to another CPU than it
3002 * blocked on. This means the per CPU IO-wait number is meaningless.
3003 *
3004 * Task CPU affinities can make all that even more 'interesting'.
3005 */
3006
1da177e4
LT
3007unsigned long nr_iowait(void)
3008{
3009 unsigned long i, sum = 0;
483b4ee6 3010
0a945022 3011 for_each_possible_cpu(i)
1da177e4 3012 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 3013
1da177e4
LT
3014 return sum;
3015}
483b4ee6 3016
e33a9bba
TH
3017/*
3018 * Consumers of these two interfaces, like for example the cpufreq menu
3019 * governor are using nonsensical data. Boosting frequency for a CPU that has
3020 * IO-wait which might not even end up running the task when it does become
3021 * runnable.
3022 */
3023
8c215bd3 3024unsigned long nr_iowait_cpu(int cpu)
69d25870 3025{
8c215bd3 3026 struct rq *this = cpu_rq(cpu);
69d25870
AV
3027 return atomic_read(&this->nr_iowait);
3028}
46cb4b7c 3029
372ba8cb
MG
3030void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
3031{
3289bdb4
PZ
3032 struct rq *rq = this_rq();
3033 *nr_waiters = atomic_read(&rq->nr_iowait);
3034 *load = rq->load.weight;
372ba8cb
MG
3035}
3036
dd41f596 3037#ifdef CONFIG_SMP
8a0be9ef 3038
46cb4b7c 3039/*
38022906
PZ
3040 * sched_exec - execve() is a valuable balancing opportunity, because at
3041 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 3042 */
38022906 3043void sched_exec(void)
46cb4b7c 3044{
38022906 3045 struct task_struct *p = current;
1da177e4 3046 unsigned long flags;
0017d735 3047 int dest_cpu;
46cb4b7c 3048
8f42ced9 3049 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 3050 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
3051 if (dest_cpu == smp_processor_id())
3052 goto unlock;
38022906 3053
8f42ced9 3054 if (likely(cpu_active(dest_cpu))) {
969c7921 3055 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 3056
8f42ced9
PZ
3057 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3058 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
3059 return;
3060 }
0017d735 3061unlock:
8f42ced9 3062 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 3063}
dd41f596 3064
1da177e4
LT
3065#endif
3066
1da177e4 3067DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 3068DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
3069
3070EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 3071EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 3072
6075620b
GG
3073/*
3074 * The function fair_sched_class.update_curr accesses the struct curr
3075 * and its field curr->exec_start; when called from task_sched_runtime(),
3076 * we observe a high rate of cache misses in practice.
3077 * Prefetching this data results in improved performance.
3078 */
3079static inline void prefetch_curr_exec_start(struct task_struct *p)
3080{
3081#ifdef CONFIG_FAIR_GROUP_SCHED
3082 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3083#else
3084 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3085#endif
3086 prefetch(curr);
3087 prefetch(&curr->exec_start);
3088}
3089
c5f8d995
HS
3090/*
3091 * Return accounted runtime for the task.
3092 * In case the task is currently running, return the runtime plus current's
3093 * pending runtime that have not been accounted yet.
3094 */
3095unsigned long long task_sched_runtime(struct task_struct *p)
3096{
eb580751 3097 struct rq_flags rf;
c5f8d995 3098 struct rq *rq;
6e998916 3099 u64 ns;
c5f8d995 3100
911b2898
PZ
3101#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3102 /*
3103 * 64-bit doesn't need locks to atomically read a 64bit value.
3104 * So we have a optimization chance when the task's delta_exec is 0.
3105 * Reading ->on_cpu is racy, but this is ok.
3106 *
3107 * If we race with it leaving cpu, we'll take a lock. So we're correct.
3108 * If we race with it entering cpu, unaccounted time is 0. This is
3109 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
3110 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3111 * been accounted, so we're correct here as well.
911b2898 3112 */
da0c1e65 3113 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
3114 return p->se.sum_exec_runtime;
3115#endif
3116
eb580751 3117 rq = task_rq_lock(p, &rf);
6e998916
SG
3118 /*
3119 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3120 * project cycles that may never be accounted to this
3121 * thread, breaking clock_gettime().
3122 */
3123 if (task_current(rq, p) && task_on_rq_queued(p)) {
6075620b 3124 prefetch_curr_exec_start(p);
6e998916
SG
3125 update_rq_clock(rq);
3126 p->sched_class->update_curr(rq);
3127 }
3128 ns = p->se.sum_exec_runtime;
eb580751 3129 task_rq_unlock(rq, p, &rf);
c5f8d995
HS
3130
3131 return ns;
3132}
48f24c4d 3133
7835b98b
CL
3134/*
3135 * This function gets called by the timer code, with HZ frequency.
3136 * We call it with interrupts disabled.
7835b98b
CL
3137 */
3138void scheduler_tick(void)
3139{
7835b98b
CL
3140 int cpu = smp_processor_id();
3141 struct rq *rq = cpu_rq(cpu);
dd41f596 3142 struct task_struct *curr = rq->curr;
3e51f33f
PZ
3143
3144 sched_clock_tick();
dd41f596 3145
05fa785c 3146 raw_spin_lock(&rq->lock);
3e51f33f 3147 update_rq_clock(rq);
fa85ae24 3148 curr->sched_class->task_tick(rq, curr, 0);
cee1afce 3149 cpu_load_update_active(rq);
3289bdb4 3150 calc_global_load_tick(rq);
05fa785c 3151 raw_spin_unlock(&rq->lock);
7835b98b 3152
e9d2b064 3153 perf_event_task_tick();
e220d2dc 3154
e418e1c2 3155#ifdef CONFIG_SMP
6eb57e0d 3156 rq->idle_balance = idle_cpu(cpu);
7caff66f 3157 trigger_load_balance(rq);
e418e1c2 3158#endif
265f22a9 3159 rq_last_tick_reset(rq);
1da177e4
LT
3160}
3161
265f22a9
FW
3162#ifdef CONFIG_NO_HZ_FULL
3163/**
3164 * scheduler_tick_max_deferment
3165 *
3166 * Keep at least one tick per second when a single
3167 * active task is running because the scheduler doesn't
3168 * yet completely support full dynticks environment.
3169 *
3170 * This makes sure that uptime, CFS vruntime, load
3171 * balancing, etc... continue to move forward, even
3172 * with a very low granularity.
e69f6186
YB
3173 *
3174 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
3175 */
3176u64 scheduler_tick_max_deferment(void)
3177{
3178 struct rq *rq = this_rq();
316c1608 3179 unsigned long next, now = READ_ONCE(jiffies);
265f22a9
FW
3180
3181 next = rq->last_sched_tick + HZ;
3182
3183 if (time_before_eq(next, now))
3184 return 0;
3185
8fe8ff09 3186 return jiffies_to_nsecs(next - now);
1da177e4 3187}
265f22a9 3188#endif
1da177e4 3189
7e49fcce
SR
3190#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3191 defined(CONFIG_PREEMPT_TRACER))
47252cfb
SR
3192/*
3193 * If the value passed in is equal to the current preempt count
3194 * then we just disabled preemption. Start timing the latency.
3195 */
3196static inline void preempt_latency_start(int val)
3197{
3198 if (preempt_count() == val) {
3199 unsigned long ip = get_lock_parent_ip();
3200#ifdef CONFIG_DEBUG_PREEMPT
3201 current->preempt_disable_ip = ip;
3202#endif
3203 trace_preempt_off(CALLER_ADDR0, ip);
3204 }
3205}
7e49fcce 3206
edafe3a5 3207void preempt_count_add(int val)
1da177e4 3208{
6cd8a4bb 3209#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3210 /*
3211 * Underflow?
3212 */
9a11b49a
IM
3213 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3214 return;
6cd8a4bb 3215#endif
bdb43806 3216 __preempt_count_add(val);
6cd8a4bb 3217#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3218 /*
3219 * Spinlock count overflowing soon?
3220 */
33859f7f
MOS
3221 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3222 PREEMPT_MASK - 10);
6cd8a4bb 3223#endif
47252cfb 3224 preempt_latency_start(val);
1da177e4 3225}
bdb43806 3226EXPORT_SYMBOL(preempt_count_add);
edafe3a5 3227NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 3228
47252cfb
SR
3229/*
3230 * If the value passed in equals to the current preempt count
3231 * then we just enabled preemption. Stop timing the latency.
3232 */
3233static inline void preempt_latency_stop(int val)
3234{
3235 if (preempt_count() == val)
3236 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3237}
3238
edafe3a5 3239void preempt_count_sub(int val)
1da177e4 3240{
6cd8a4bb 3241#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3242 /*
3243 * Underflow?
3244 */
01e3eb82 3245 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3246 return;
1da177e4
LT
3247 /*
3248 * Is the spinlock portion underflowing?
3249 */
9a11b49a
IM
3250 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3251 !(preempt_count() & PREEMPT_MASK)))
3252 return;
6cd8a4bb 3253#endif
9a11b49a 3254
47252cfb 3255 preempt_latency_stop(val);
bdb43806 3256 __preempt_count_sub(val);
1da177e4 3257}
bdb43806 3258EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 3259NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4 3260
47252cfb
SR
3261#else
3262static inline void preempt_latency_start(int val) { }
3263static inline void preempt_latency_stop(int val) { }
1da177e4
LT
3264#endif
3265
3266/*
dd41f596 3267 * Print scheduling while atomic bug:
1da177e4 3268 */
dd41f596 3269static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3270{
d1c6d149
VN
3271 /* Save this before calling printk(), since that will clobber it */
3272 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3273
664dfa65
DJ
3274 if (oops_in_progress)
3275 return;
3276
3df0fc5b
PZ
3277 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3278 prev->comm, prev->pid, preempt_count());
838225b4 3279
dd41f596 3280 debug_show_held_locks(prev);
e21f5b15 3281 print_modules();
dd41f596
IM
3282 if (irqs_disabled())
3283 print_irqtrace_events(prev);
d1c6d149
VN
3284 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3285 && in_atomic_preempt_off()) {
8f47b187 3286 pr_err("Preemption disabled at:");
d1c6d149 3287 print_ip_sym(preempt_disable_ip);
8f47b187
TG
3288 pr_cont("\n");
3289 }
748c7201
DBO
3290 if (panic_on_warn)
3291 panic("scheduling while atomic\n");
3292
6135fc1e 3293 dump_stack();
373d4d09 3294 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 3295}
1da177e4 3296
dd41f596
IM
3297/*
3298 * Various schedule()-time debugging checks and statistics:
3299 */
3300static inline void schedule_debug(struct task_struct *prev)
3301{
0d9e2632 3302#ifdef CONFIG_SCHED_STACK_END_CHECK
29d64551
JH
3303 if (task_stack_end_corrupted(prev))
3304 panic("corrupted stack end detected inside scheduler\n");
0d9e2632 3305#endif
b99def8b 3306
1dc0fffc 3307 if (unlikely(in_atomic_preempt_off())) {
dd41f596 3308 __schedule_bug(prev);
1dc0fffc
PZ
3309 preempt_count_set(PREEMPT_DISABLED);
3310 }
b3fbab05 3311 rcu_sleep_check();
dd41f596 3312
1da177e4
LT
3313 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3314
ae92882e 3315 schedstat_inc(this_rq()->sched_count);
dd41f596
IM
3316}
3317
3318/*
3319 * Pick up the highest-prio task:
3320 */
3321static inline struct task_struct *
d8ac8971 3322pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
dd41f596 3323{
49ee5768 3324 const struct sched_class *class;
dd41f596 3325 struct task_struct *p;
1da177e4
LT
3326
3327 /*
dd41f596
IM
3328 * Optimization: we know that if all tasks are in
3329 * the fair class we can call that function directly:
1da177e4 3330 */
49ee5768 3331 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
d8ac8971 3332 p = fair_sched_class.pick_next_task(rq, prev, rf);
6ccdc84b
PZ
3333 if (unlikely(p == RETRY_TASK))
3334 goto again;
3335
3336 /* assumes fair_sched_class->next == idle_sched_class */
3337 if (unlikely(!p))
d8ac8971 3338 p = idle_sched_class.pick_next_task(rq, prev, rf);
6ccdc84b
PZ
3339
3340 return p;
1da177e4
LT
3341 }
3342
37e117c0 3343again:
34f971f6 3344 for_each_class(class) {
d8ac8971 3345 p = class->pick_next_task(rq, prev, rf);
37e117c0
PZ
3346 if (p) {
3347 if (unlikely(p == RETRY_TASK))
3348 goto again;
dd41f596 3349 return p;
37e117c0 3350 }
dd41f596 3351 }
34f971f6
PZ
3352
3353 BUG(); /* the idle class will always have a runnable task */
dd41f596 3354}
1da177e4 3355
dd41f596 3356/*
c259e01a 3357 * __schedule() is the main scheduler function.
edde96ea
PE
3358 *
3359 * The main means of driving the scheduler and thus entering this function are:
3360 *
3361 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3362 *
3363 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3364 * paths. For example, see arch/x86/entry_64.S.
3365 *
3366 * To drive preemption between tasks, the scheduler sets the flag in timer
3367 * interrupt handler scheduler_tick().
3368 *
3369 * 3. Wakeups don't really cause entry into schedule(). They add a
3370 * task to the run-queue and that's it.
3371 *
3372 * Now, if the new task added to the run-queue preempts the current
3373 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3374 * called on the nearest possible occasion:
3375 *
3376 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3377 *
3378 * - in syscall or exception context, at the next outmost
3379 * preempt_enable(). (this might be as soon as the wake_up()'s
3380 * spin_unlock()!)
3381 *
3382 * - in IRQ context, return from interrupt-handler to
3383 * preemptible context
3384 *
3385 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3386 * then at the next:
3387 *
3388 * - cond_resched() call
3389 * - explicit schedule() call
3390 * - return from syscall or exception to user-space
3391 * - return from interrupt-handler to user-space
bfd9b2b5 3392 *
b30f0e3f 3393 * WARNING: must be called with preemption disabled!
dd41f596 3394 */
499d7955 3395static void __sched notrace __schedule(bool preempt)
dd41f596
IM
3396{
3397 struct task_struct *prev, *next;
67ca7bde 3398 unsigned long *switch_count;
d8ac8971 3399 struct rq_flags rf;
dd41f596 3400 struct rq *rq;
31656519 3401 int cpu;
dd41f596 3402
dd41f596
IM
3403 cpu = smp_processor_id();
3404 rq = cpu_rq(cpu);
dd41f596 3405 prev = rq->curr;
dd41f596 3406
dd41f596 3407 schedule_debug(prev);
1da177e4 3408
31656519 3409 if (sched_feat(HRTICK))
f333fdc9 3410 hrtick_clear(rq);
8f4d37ec 3411
46a5d164
PM
3412 local_irq_disable();
3413 rcu_note_context_switch();
3414
e0acd0a6
ON
3415 /*
3416 * Make sure that signal_pending_state()->signal_pending() below
3417 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3418 * done by the caller to avoid the race with signal_wake_up().
3419 */
3420 smp_mb__before_spinlock();
46a5d164 3421 raw_spin_lock(&rq->lock);
d8ac8971 3422 rq_pin_lock(rq, &rf);
1da177e4 3423
cb42c9a3 3424 rq->clock_update_flags <<= 1; /* promote REQ to ACT */
9edfbfed 3425
246d86b5 3426 switch_count = &prev->nivcsw;
fc13aeba 3427 if (!preempt && prev->state) {
21aa9af0 3428 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 3429 prev->state = TASK_RUNNING;
21aa9af0 3430 } else {
2acca55e
PZ
3431 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3432 prev->on_rq = 0;
3433
e33a9bba
TH
3434 if (prev->in_iowait) {
3435 atomic_inc(&rq->nr_iowait);
3436 delayacct_blkio_start();
3437 }
3438
21aa9af0 3439 /*
2acca55e
PZ
3440 * If a worker went to sleep, notify and ask workqueue
3441 * whether it wants to wake up a task to maintain
3442 * concurrency.
21aa9af0
TH
3443 */
3444 if (prev->flags & PF_WQ_WORKER) {
3445 struct task_struct *to_wakeup;
3446
9b7f6597 3447 to_wakeup = wq_worker_sleeping(prev);
21aa9af0 3448 if (to_wakeup)
d8ac8971 3449 try_to_wake_up_local(to_wakeup, &rf);
21aa9af0 3450 }
21aa9af0 3451 }
dd41f596 3452 switch_count = &prev->nvcsw;
1da177e4
LT
3453 }
3454
9edfbfed 3455 if (task_on_rq_queued(prev))
606dba2e
PZ
3456 update_rq_clock(rq);
3457
d8ac8971 3458 next = pick_next_task(rq, prev, &rf);
f26f9aff 3459 clear_tsk_need_resched(prev);
f27dde8d 3460 clear_preempt_need_resched();
1da177e4 3461
1da177e4 3462 if (likely(prev != next)) {
1da177e4
LT
3463 rq->nr_switches++;
3464 rq->curr = next;
3465 ++*switch_count;
3466
c73464b1 3467 trace_sched_switch(preempt, prev, next);
d8ac8971 3468 rq = context_switch(rq, prev, next, &rf); /* unlocks the rq */
cbce1a68 3469 } else {
cb42c9a3 3470 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
d8ac8971 3471 rq_unpin_lock(rq, &rf);
05fa785c 3472 raw_spin_unlock_irq(&rq->lock);
cbce1a68 3473 }
1da177e4 3474
e3fca9e7 3475 balance_callback(rq);
1da177e4 3476}
c259e01a 3477
9af6528e
PZ
3478void __noreturn do_task_dead(void)
3479{
3480 /*
3481 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
3482 * when the following two conditions become true.
3483 * - There is race condition of mmap_sem (It is acquired by
3484 * exit_mm()), and
3485 * - SMI occurs before setting TASK_RUNINNG.
3486 * (or hypervisor of virtual machine switches to other guest)
3487 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD
3488 *
3489 * To avoid it, we have to wait for releasing tsk->pi_lock which
3490 * is held by try_to_wake_up()
3491 */
3492 smp_mb();
3493 raw_spin_unlock_wait(&current->pi_lock);
3494
3495 /* causes final put_task_struct in finish_task_switch(). */
3496 __set_current_state(TASK_DEAD);
3497 current->flags |= PF_NOFREEZE; /* tell freezer to ignore us */
3498 __schedule(false);
3499 BUG();
3500 /* Avoid "noreturn function does return". */
3501 for (;;)
3502 cpu_relax(); /* For when BUG is null */
3503}
3504
9c40cef2
TG
3505static inline void sched_submit_work(struct task_struct *tsk)
3506{
3c7d5184 3507 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
3508 return;
3509 /*
3510 * If we are going to sleep and we have plugged IO queued,
3511 * make sure to submit it to avoid deadlocks.
3512 */
3513 if (blk_needs_flush_plug(tsk))
3514 blk_schedule_flush_plug(tsk);
3515}
3516
722a9f92 3517asmlinkage __visible void __sched schedule(void)
c259e01a 3518{
9c40cef2
TG
3519 struct task_struct *tsk = current;
3520
3521 sched_submit_work(tsk);
bfd9b2b5 3522 do {
b30f0e3f 3523 preempt_disable();
fc13aeba 3524 __schedule(false);
b30f0e3f 3525 sched_preempt_enable_no_resched();
bfd9b2b5 3526 } while (need_resched());
c259e01a 3527}
1da177e4
LT
3528EXPORT_SYMBOL(schedule);
3529
91d1aa43 3530#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 3531asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
3532{
3533 /*
3534 * If we come here after a random call to set_need_resched(),
3535 * or we have been woken up remotely but the IPI has not yet arrived,
3536 * we haven't yet exited the RCU idle mode. Do it here manually until
3537 * we find a better solution.
7cc78f8f
AL
3538 *
3539 * NB: There are buggy callers of this function. Ideally we
c467ea76 3540 * should warn if prev_state != CONTEXT_USER, but that will trigger
7cc78f8f 3541 * too frequently to make sense yet.
20ab65e3 3542 */
7cc78f8f 3543 enum ctx_state prev_state = exception_enter();
20ab65e3 3544 schedule();
7cc78f8f 3545 exception_exit(prev_state);
20ab65e3
FW
3546}
3547#endif
3548
c5491ea7
TG
3549/**
3550 * schedule_preempt_disabled - called with preemption disabled
3551 *
3552 * Returns with preemption disabled. Note: preempt_count must be 1
3553 */
3554void __sched schedule_preempt_disabled(void)
3555{
ba74c144 3556 sched_preempt_enable_no_resched();
c5491ea7
TG
3557 schedule();
3558 preempt_disable();
3559}
3560
06b1f808 3561static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
3562{
3563 do {
47252cfb
SR
3564 /*
3565 * Because the function tracer can trace preempt_count_sub()
3566 * and it also uses preempt_enable/disable_notrace(), if
3567 * NEED_RESCHED is set, the preempt_enable_notrace() called
3568 * by the function tracer will call this function again and
3569 * cause infinite recursion.
3570 *
3571 * Preemption must be disabled here before the function
3572 * tracer can trace. Break up preempt_disable() into two
3573 * calls. One to disable preemption without fear of being
3574 * traced. The other to still record the preemption latency,
3575 * which can also be traced by the function tracer.
3576 */
499d7955 3577 preempt_disable_notrace();
47252cfb 3578 preempt_latency_start(1);
fc13aeba 3579 __schedule(true);
47252cfb 3580 preempt_latency_stop(1);
499d7955 3581 preempt_enable_no_resched_notrace();
a18b5d01
FW
3582
3583 /*
3584 * Check again in case we missed a preemption opportunity
3585 * between schedule and now.
3586 */
a18b5d01
FW
3587 } while (need_resched());
3588}
3589
1da177e4
LT
3590#ifdef CONFIG_PREEMPT
3591/*
2ed6e34f 3592 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3593 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3594 * occur there and call schedule directly.
3595 */
722a9f92 3596asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 3597{
1da177e4
LT
3598 /*
3599 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3600 * we do not want to preempt the current task. Just return..
1da177e4 3601 */
fbb00b56 3602 if (likely(!preemptible()))
1da177e4
LT
3603 return;
3604
a18b5d01 3605 preempt_schedule_common();
1da177e4 3606}
376e2424 3607NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 3608EXPORT_SYMBOL(preempt_schedule);
009f60e2 3609
009f60e2 3610/**
4eaca0a8 3611 * preempt_schedule_notrace - preempt_schedule called by tracing
009f60e2
ON
3612 *
3613 * The tracing infrastructure uses preempt_enable_notrace to prevent
3614 * recursion and tracing preempt enabling caused by the tracing
3615 * infrastructure itself. But as tracing can happen in areas coming
3616 * from userspace or just about to enter userspace, a preempt enable
3617 * can occur before user_exit() is called. This will cause the scheduler
3618 * to be called when the system is still in usermode.
3619 *
3620 * To prevent this, the preempt_enable_notrace will use this function
3621 * instead of preempt_schedule() to exit user context if needed before
3622 * calling the scheduler.
3623 */
4eaca0a8 3624asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
009f60e2
ON
3625{
3626 enum ctx_state prev_ctx;
3627
3628 if (likely(!preemptible()))
3629 return;
3630
3631 do {
47252cfb
SR
3632 /*
3633 * Because the function tracer can trace preempt_count_sub()
3634 * and it also uses preempt_enable/disable_notrace(), if
3635 * NEED_RESCHED is set, the preempt_enable_notrace() called
3636 * by the function tracer will call this function again and
3637 * cause infinite recursion.
3638 *
3639 * Preemption must be disabled here before the function
3640 * tracer can trace. Break up preempt_disable() into two
3641 * calls. One to disable preemption without fear of being
3642 * traced. The other to still record the preemption latency,
3643 * which can also be traced by the function tracer.
3644 */
3d8f74dd 3645 preempt_disable_notrace();
47252cfb 3646 preempt_latency_start(1);
009f60e2
ON
3647 /*
3648 * Needs preempt disabled in case user_exit() is traced
3649 * and the tracer calls preempt_enable_notrace() causing
3650 * an infinite recursion.
3651 */
3652 prev_ctx = exception_enter();
fc13aeba 3653 __schedule(true);
009f60e2
ON
3654 exception_exit(prev_ctx);
3655
47252cfb 3656 preempt_latency_stop(1);
3d8f74dd 3657 preempt_enable_no_resched_notrace();
009f60e2
ON
3658 } while (need_resched());
3659}
4eaca0a8 3660EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
009f60e2 3661
32e475d7 3662#endif /* CONFIG_PREEMPT */
1da177e4
LT
3663
3664/*
2ed6e34f 3665 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3666 * off of irq context.
3667 * Note, that this is called and return with irqs disabled. This will
3668 * protect us against recursive calling from irq.
3669 */
722a9f92 3670asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 3671{
b22366cd 3672 enum ctx_state prev_state;
6478d880 3673
2ed6e34f 3674 /* Catch callers which need to be fixed */
f27dde8d 3675 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 3676
b22366cd
FW
3677 prev_state = exception_enter();
3678
3a5c359a 3679 do {
3d8f74dd 3680 preempt_disable();
3a5c359a 3681 local_irq_enable();
fc13aeba 3682 __schedule(true);
3a5c359a 3683 local_irq_disable();
3d8f74dd 3684 sched_preempt_enable_no_resched();
5ed0cec0 3685 } while (need_resched());
b22366cd
FW
3686
3687 exception_exit(prev_state);
1da177e4
LT
3688}
3689
63859d4f 3690int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3691 void *key)
1da177e4 3692{
63859d4f 3693 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3694}
1da177e4
LT
3695EXPORT_SYMBOL(default_wake_function);
3696
b29739f9
IM
3697#ifdef CONFIG_RT_MUTEXES
3698
3699/*
3700 * rt_mutex_setprio - set the current priority of a task
3701 * @p: task
3702 * @prio: prio value (kernel-internal form)
3703 *
3704 * This function changes the 'effective' priority of a task. It does
3705 * not touch ->normal_prio like __setscheduler().
3706 *
c365c292
TG
3707 * Used by the rt_mutex code to implement priority inheritance
3708 * logic. Call site only calls if the priority of the task changed.
b29739f9 3709 */
36c8b586 3710void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3711{
ff77e468 3712 int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE;
83ab0aa0 3713 const struct sched_class *prev_class;
eb580751
PZ
3714 struct rq_flags rf;
3715 struct rq *rq;
b29739f9 3716
aab03e05 3717 BUG_ON(prio > MAX_PRIO);
b29739f9 3718
eb580751 3719 rq = __task_rq_lock(p, &rf);
80f5c1b8 3720 update_rq_clock(rq);
b29739f9 3721
1c4dd99b
TG
3722 /*
3723 * Idle task boosting is a nono in general. There is one
3724 * exception, when PREEMPT_RT and NOHZ is active:
3725 *
3726 * The idle task calls get_next_timer_interrupt() and holds
3727 * the timer wheel base->lock on the CPU and another CPU wants
3728 * to access the timer (probably to cancel it). We can safely
3729 * ignore the boosting request, as the idle CPU runs this code
3730 * with interrupts disabled and will complete the lock
3731 * protected section without being interrupted. So there is no
3732 * real need to boost.
3733 */
3734 if (unlikely(p == rq->idle)) {
3735 WARN_ON(p != rq->curr);
3736 WARN_ON(p->pi_blocked_on);
3737 goto out_unlock;
3738 }
3739
a8027073 3740 trace_sched_pi_setprio(p, prio);
d5f9f942 3741 oldprio = p->prio;
ff77e468
PZ
3742
3743 if (oldprio == prio)
3744 queue_flag &= ~DEQUEUE_MOVE;
3745
83ab0aa0 3746 prev_class = p->sched_class;
da0c1e65 3747 queued = task_on_rq_queued(p);
051a1d1a 3748 running = task_current(rq, p);
da0c1e65 3749 if (queued)
ff77e468 3750 dequeue_task(rq, p, queue_flag);
0e1f3483 3751 if (running)
f3cd1c4e 3752 put_prev_task(rq, p);
dd41f596 3753
2d3d891d
DF
3754 /*
3755 * Boosting condition are:
3756 * 1. -rt task is running and holds mutex A
3757 * --> -dl task blocks on mutex A
3758 *
3759 * 2. -dl task is running and holds mutex A
3760 * --> -dl task blocks on mutex A and could preempt the
3761 * running task
3762 */
3763 if (dl_prio(prio)) {
466af29b
ON
3764 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3765 if (!dl_prio(p->normal_prio) ||
3766 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d 3767 p->dl.dl_boosted = 1;
ff77e468 3768 queue_flag |= ENQUEUE_REPLENISH;
2d3d891d
DF
3769 } else
3770 p->dl.dl_boosted = 0;
aab03e05 3771 p->sched_class = &dl_sched_class;
2d3d891d
DF
3772 } else if (rt_prio(prio)) {
3773 if (dl_prio(oldprio))
3774 p->dl.dl_boosted = 0;
3775 if (oldprio < prio)
ff77e468 3776 queue_flag |= ENQUEUE_HEAD;
dd41f596 3777 p->sched_class = &rt_sched_class;
2d3d891d
DF
3778 } else {
3779 if (dl_prio(oldprio))
3780 p->dl.dl_boosted = 0;
746db944
BS
3781 if (rt_prio(oldprio))
3782 p->rt.timeout = 0;
dd41f596 3783 p->sched_class = &fair_sched_class;
2d3d891d 3784 }
dd41f596 3785
b29739f9
IM
3786 p->prio = prio;
3787
da0c1e65 3788 if (queued)
ff77e468 3789 enqueue_task(rq, p, queue_flag);
a399d233 3790 if (running)
b2bf6c31 3791 set_curr_task(rq, p);
cb469845 3792
da7a735e 3793 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3794out_unlock:
4c9a4bc8 3795 preempt_disable(); /* avoid rq from going away on us */
eb580751 3796 __task_rq_unlock(rq, &rf);
4c9a4bc8
PZ
3797
3798 balance_callback(rq);
3799 preempt_enable();
b29739f9 3800}
b29739f9 3801#endif
d50dde5a 3802
36c8b586 3803void set_user_nice(struct task_struct *p, long nice)
1da177e4 3804{
49bd21ef
PZ
3805 bool queued, running;
3806 int old_prio, delta;
eb580751 3807 struct rq_flags rf;
70b97a7f 3808 struct rq *rq;
1da177e4 3809
75e45d51 3810 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
3811 return;
3812 /*
3813 * We have to be careful, if called from sys_setpriority(),
3814 * the task might be in the middle of scheduling on another CPU.
3815 */
eb580751 3816 rq = task_rq_lock(p, &rf);
2fb8d367
PZ
3817 update_rq_clock(rq);
3818
1da177e4
LT
3819 /*
3820 * The RT priorities are set via sched_setscheduler(), but we still
3821 * allow the 'normal' nice value to be set - but as expected
3822 * it wont have any effect on scheduling until the task is
aab03e05 3823 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3824 */
aab03e05 3825 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3826 p->static_prio = NICE_TO_PRIO(nice);
3827 goto out_unlock;
3828 }
da0c1e65 3829 queued = task_on_rq_queued(p);
49bd21ef 3830 running = task_current(rq, p);
da0c1e65 3831 if (queued)
1de64443 3832 dequeue_task(rq, p, DEQUEUE_SAVE);
49bd21ef
PZ
3833 if (running)
3834 put_prev_task(rq, p);
1da177e4 3835
1da177e4 3836 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3837 set_load_weight(p);
b29739f9
IM
3838 old_prio = p->prio;
3839 p->prio = effective_prio(p);
3840 delta = p->prio - old_prio;
1da177e4 3841
da0c1e65 3842 if (queued) {
1de64443 3843 enqueue_task(rq, p, ENQUEUE_RESTORE);
1da177e4 3844 /*
d5f9f942
AM
3845 * If the task increased its priority or is running and
3846 * lowered its priority, then reschedule its CPU:
1da177e4 3847 */
d5f9f942 3848 if (delta < 0 || (delta > 0 && task_running(rq, p)))
8875125e 3849 resched_curr(rq);
1da177e4 3850 }
49bd21ef
PZ
3851 if (running)
3852 set_curr_task(rq, p);
1da177e4 3853out_unlock:
eb580751 3854 task_rq_unlock(rq, p, &rf);
1da177e4 3855}
1da177e4
LT
3856EXPORT_SYMBOL(set_user_nice);
3857
e43379f1
MM
3858/*
3859 * can_nice - check if a task can reduce its nice value
3860 * @p: task
3861 * @nice: nice value
3862 */
36c8b586 3863int can_nice(const struct task_struct *p, const int nice)
e43379f1 3864{
024f4747 3865 /* convert nice value [19,-20] to rlimit style value [1,40] */
7aa2c016 3866 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 3867
78d7d407 3868 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3869 capable(CAP_SYS_NICE));
3870}
3871
1da177e4
LT
3872#ifdef __ARCH_WANT_SYS_NICE
3873
3874/*
3875 * sys_nice - change the priority of the current process.
3876 * @increment: priority increment
3877 *
3878 * sys_setpriority is a more generic, but much slower function that
3879 * does similar things.
3880 */
5add95d4 3881SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3882{
48f24c4d 3883 long nice, retval;
1da177e4
LT
3884
3885 /*
3886 * Setpriority might change our priority at the same moment.
3887 * We don't have to worry. Conceptually one call occurs first
3888 * and we have a single winner.
3889 */
a9467fa3 3890 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 3891 nice = task_nice(current) + increment;
1da177e4 3892
a9467fa3 3893 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
3894 if (increment < 0 && !can_nice(current, nice))
3895 return -EPERM;
3896
1da177e4
LT
3897 retval = security_task_setnice(current, nice);
3898 if (retval)
3899 return retval;
3900
3901 set_user_nice(current, nice);
3902 return 0;
3903}
3904
3905#endif
3906
3907/**
3908 * task_prio - return the priority value of a given task.
3909 * @p: the task in question.
3910 *
e69f6186 3911 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3912 * RT tasks are offset by -200. Normal tasks are centered
3913 * around 0, value goes from -16 to +15.
3914 */
36c8b586 3915int task_prio(const struct task_struct *p)
1da177e4
LT
3916{
3917 return p->prio - MAX_RT_PRIO;
3918}
3919
1da177e4
LT
3920/**
3921 * idle_cpu - is a given cpu idle currently?
3922 * @cpu: the processor in question.
e69f6186
YB
3923 *
3924 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3925 */
3926int idle_cpu(int cpu)
3927{
908a3283
TG
3928 struct rq *rq = cpu_rq(cpu);
3929
3930 if (rq->curr != rq->idle)
3931 return 0;
3932
3933 if (rq->nr_running)
3934 return 0;
3935
3936#ifdef CONFIG_SMP
3937 if (!llist_empty(&rq->wake_list))
3938 return 0;
3939#endif
3940
3941 return 1;
1da177e4
LT
3942}
3943
1da177e4
LT
3944/**
3945 * idle_task - return the idle task for a given cpu.
3946 * @cpu: the processor in question.
e69f6186
YB
3947 *
3948 * Return: The idle task for the cpu @cpu.
1da177e4 3949 */
36c8b586 3950struct task_struct *idle_task(int cpu)
1da177e4
LT
3951{
3952 return cpu_rq(cpu)->idle;
3953}
3954
3955/**
3956 * find_process_by_pid - find a process with a matching PID value.
3957 * @pid: the pid in question.
e69f6186
YB
3958 *
3959 * The task of @pid, if found. %NULL otherwise.
1da177e4 3960 */
a9957449 3961static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3962{
228ebcbe 3963 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3964}
3965
aab03e05
DF
3966/*
3967 * This function initializes the sched_dl_entity of a newly becoming
3968 * SCHED_DEADLINE task.
3969 *
3970 * Only the static values are considered here, the actual runtime and the
3971 * absolute deadline will be properly calculated when the task is enqueued
3972 * for the first time with its new policy.
3973 */
3974static void
3975__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3976{
3977 struct sched_dl_entity *dl_se = &p->dl;
3978
aab03e05
DF
3979 dl_se->dl_runtime = attr->sched_runtime;
3980 dl_se->dl_deadline = attr->sched_deadline;
755378a4 3981 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 3982 dl_se->flags = attr->sched_flags;
332ac17e 3983 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
40767b0d
PZ
3984
3985 /*
3986 * Changing the parameters of a task is 'tricky' and we're not doing
3987 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3988 *
3989 * What we SHOULD do is delay the bandwidth release until the 0-lag
3990 * point. This would include retaining the task_struct until that time
3991 * and change dl_overflow() to not immediately decrement the current
3992 * amount.
3993 *
3994 * Instead we retain the current runtime/deadline and let the new
3995 * parameters take effect after the current reservation period lapses.
3996 * This is safe (albeit pessimistic) because the 0-lag point is always
3997 * before the current scheduling deadline.
3998 *
3999 * We can still have temporary overloads because we do not delay the
4000 * change in bandwidth until that time; so admission control is
4001 * not on the safe side. It does however guarantee tasks will never
4002 * consume more than promised.
4003 */
aab03e05
DF
4004}
4005
c13db6b1
SR
4006/*
4007 * sched_setparam() passes in -1 for its policy, to let the functions
4008 * it calls know not to change it.
4009 */
4010#define SETPARAM_POLICY -1
4011
c365c292
TG
4012static void __setscheduler_params(struct task_struct *p,
4013 const struct sched_attr *attr)
1da177e4 4014{
d50dde5a
DF
4015 int policy = attr->sched_policy;
4016
c13db6b1 4017 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
4018 policy = p->policy;
4019
1da177e4 4020 p->policy = policy;
d50dde5a 4021
aab03e05
DF
4022 if (dl_policy(policy))
4023 __setparam_dl(p, attr);
39fd8fd2 4024 else if (fair_policy(policy))
d50dde5a
DF
4025 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
4026
39fd8fd2
PZ
4027 /*
4028 * __sched_setscheduler() ensures attr->sched_priority == 0 when
4029 * !rt_policy. Always setting this ensures that things like
4030 * getparam()/getattr() don't report silly values for !rt tasks.
4031 */
4032 p->rt_priority = attr->sched_priority;
383afd09 4033 p->normal_prio = normal_prio(p);
c365c292
TG
4034 set_load_weight(p);
4035}
39fd8fd2 4036
c365c292
TG
4037/* Actually do priority change: must hold pi & rq lock. */
4038static void __setscheduler(struct rq *rq, struct task_struct *p,
0782e63b 4039 const struct sched_attr *attr, bool keep_boost)
c365c292
TG
4040{
4041 __setscheduler_params(p, attr);
d50dde5a 4042
383afd09 4043 /*
0782e63b
TG
4044 * Keep a potential priority boosting if called from
4045 * sched_setscheduler().
383afd09 4046 */
0782e63b
TG
4047 if (keep_boost)
4048 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
4049 else
4050 p->prio = normal_prio(p);
383afd09 4051
aab03e05
DF
4052 if (dl_prio(p->prio))
4053 p->sched_class = &dl_sched_class;
4054 else if (rt_prio(p->prio))
ffd44db5
PZ
4055 p->sched_class = &rt_sched_class;
4056 else
4057 p->sched_class = &fair_sched_class;
1da177e4 4058}
aab03e05
DF
4059
4060static void
4061__getparam_dl(struct task_struct *p, struct sched_attr *attr)
4062{
4063 struct sched_dl_entity *dl_se = &p->dl;
4064
4065 attr->sched_priority = p->rt_priority;
4066 attr->sched_runtime = dl_se->dl_runtime;
4067 attr->sched_deadline = dl_se->dl_deadline;
755378a4 4068 attr->sched_period = dl_se->dl_period;
aab03e05
DF
4069 attr->sched_flags = dl_se->flags;
4070}
4071
4072/*
4073 * This function validates the new parameters of a -deadline task.
4074 * We ask for the deadline not being zero, and greater or equal
755378a4 4075 * than the runtime, as well as the period of being zero or
332ac17e 4076 * greater than deadline. Furthermore, we have to be sure that
b0827819
JL
4077 * user parameters are above the internal resolution of 1us (we
4078 * check sched_runtime only since it is always the smaller one) and
4079 * below 2^63 ns (we have to check both sched_deadline and
4080 * sched_period, as the latter can be zero).
aab03e05
DF
4081 */
4082static bool
4083__checkparam_dl(const struct sched_attr *attr)
4084{
b0827819
JL
4085 /* deadline != 0 */
4086 if (attr->sched_deadline == 0)
4087 return false;
4088
4089 /*
4090 * Since we truncate DL_SCALE bits, make sure we're at least
4091 * that big.
4092 */
4093 if (attr->sched_runtime < (1ULL << DL_SCALE))
4094 return false;
4095
4096 /*
4097 * Since we use the MSB for wrap-around and sign issues, make
4098 * sure it's not set (mind that period can be equal to zero).
4099 */
4100 if (attr->sched_deadline & (1ULL << 63) ||
4101 attr->sched_period & (1ULL << 63))
4102 return false;
4103
4104 /* runtime <= deadline <= period (if period != 0) */
4105 if ((attr->sched_period != 0 &&
4106 attr->sched_period < attr->sched_deadline) ||
4107 attr->sched_deadline < attr->sched_runtime)
4108 return false;
4109
4110 return true;
aab03e05
DF
4111}
4112
c69e8d9c
DH
4113/*
4114 * check the target process has a UID that matches the current process's
4115 */
4116static bool check_same_owner(struct task_struct *p)
4117{
4118 const struct cred *cred = current_cred(), *pcred;
4119 bool match;
4120
4121 rcu_read_lock();
4122 pcred = __task_cred(p);
9c806aa0
EB
4123 match = (uid_eq(cred->euid, pcred->euid) ||
4124 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
4125 rcu_read_unlock();
4126 return match;
4127}
4128
75381608
WL
4129static bool dl_param_changed(struct task_struct *p,
4130 const struct sched_attr *attr)
4131{
4132 struct sched_dl_entity *dl_se = &p->dl;
4133
4134 if (dl_se->dl_runtime != attr->sched_runtime ||
4135 dl_se->dl_deadline != attr->sched_deadline ||
4136 dl_se->dl_period != attr->sched_period ||
4137 dl_se->flags != attr->sched_flags)
4138 return true;
4139
4140 return false;
4141}
4142
d50dde5a
DF
4143static int __sched_setscheduler(struct task_struct *p,
4144 const struct sched_attr *attr,
dbc7f069 4145 bool user, bool pi)
1da177e4 4146{
383afd09
SR
4147 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4148 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 4149 int retval, oldprio, oldpolicy = -1, queued, running;
0782e63b 4150 int new_effective_prio, policy = attr->sched_policy;
83ab0aa0 4151 const struct sched_class *prev_class;
eb580751 4152 struct rq_flags rf;
ca94c442 4153 int reset_on_fork;
ff77e468 4154 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
eb580751 4155 struct rq *rq;
1da177e4 4156
66e5393a
SR
4157 /* may grab non-irq protected spin_locks */
4158 BUG_ON(in_interrupt());
1da177e4
LT
4159recheck:
4160 /* double check policy once rq lock held */
ca94c442
LP
4161 if (policy < 0) {
4162 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4163 policy = oldpolicy = p->policy;
ca94c442 4164 } else {
7479f3c9 4165 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 4166
20f9cd2a 4167 if (!valid_policy(policy))
ca94c442
LP
4168 return -EINVAL;
4169 }
4170
7479f3c9
PZ
4171 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
4172 return -EINVAL;
4173
1da177e4
LT
4174 /*
4175 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4176 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4177 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 4178 */
0bb040a4 4179 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 4180 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 4181 return -EINVAL;
aab03e05
DF
4182 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4183 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
4184 return -EINVAL;
4185
37e4ab3f
OC
4186 /*
4187 * Allow unprivileged RT tasks to decrease priority:
4188 */
961ccddd 4189 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 4190 if (fair_policy(policy)) {
d0ea0268 4191 if (attr->sched_nice < task_nice(p) &&
eaad4513 4192 !can_nice(p, attr->sched_nice))
d50dde5a
DF
4193 return -EPERM;
4194 }
4195
e05606d3 4196 if (rt_policy(policy)) {
a44702e8
ON
4197 unsigned long rlim_rtprio =
4198 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
4199
4200 /* can't set/change the rt policy */
4201 if (policy != p->policy && !rlim_rtprio)
4202 return -EPERM;
4203
4204 /* can't increase priority */
d50dde5a
DF
4205 if (attr->sched_priority > p->rt_priority &&
4206 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
4207 return -EPERM;
4208 }
c02aa73b 4209
d44753b8
JL
4210 /*
4211 * Can't set/change SCHED_DEADLINE policy at all for now
4212 * (safest behavior); in the future we would like to allow
4213 * unprivileged DL tasks to increase their relative deadline
4214 * or reduce their runtime (both ways reducing utilization)
4215 */
4216 if (dl_policy(policy))
4217 return -EPERM;
4218
dd41f596 4219 /*
c02aa73b
DH
4220 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4221 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 4222 */
20f9cd2a 4223 if (idle_policy(p->policy) && !idle_policy(policy)) {
d0ea0268 4224 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
4225 return -EPERM;
4226 }
5fe1d75f 4227
37e4ab3f 4228 /* can't change other user's priorities */
c69e8d9c 4229 if (!check_same_owner(p))
37e4ab3f 4230 return -EPERM;
ca94c442
LP
4231
4232 /* Normal users shall not reset the sched_reset_on_fork flag */
4233 if (p->sched_reset_on_fork && !reset_on_fork)
4234 return -EPERM;
37e4ab3f 4235 }
1da177e4 4236
725aad24 4237 if (user) {
b0ae1981 4238 retval = security_task_setscheduler(p);
725aad24
JF
4239 if (retval)
4240 return retval;
4241 }
4242
b29739f9
IM
4243 /*
4244 * make sure no PI-waiters arrive (or leave) while we are
4245 * changing the priority of the task:
0122ec5b 4246 *
25985edc 4247 * To be able to change p->policy safely, the appropriate
1da177e4
LT
4248 * runqueue lock must be held.
4249 */
eb580751 4250 rq = task_rq_lock(p, &rf);
80f5c1b8 4251 update_rq_clock(rq);
dc61b1d6 4252
34f971f6
PZ
4253 /*
4254 * Changing the policy of the stop threads its a very bad idea
4255 */
4256 if (p == rq->stop) {
eb580751 4257 task_rq_unlock(rq, p, &rf);
34f971f6
PZ
4258 return -EINVAL;
4259 }
4260
a51e9198 4261 /*
d6b1e911
TG
4262 * If not changing anything there's no need to proceed further,
4263 * but store a possible modification of reset_on_fork.
a51e9198 4264 */
d50dde5a 4265 if (unlikely(policy == p->policy)) {
d0ea0268 4266 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
4267 goto change;
4268 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4269 goto change;
75381608 4270 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 4271 goto change;
d50dde5a 4272
d6b1e911 4273 p->sched_reset_on_fork = reset_on_fork;
eb580751 4274 task_rq_unlock(rq, p, &rf);
a51e9198
DF
4275 return 0;
4276 }
d50dde5a 4277change:
a51e9198 4278
dc61b1d6 4279 if (user) {
332ac17e 4280#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
4281 /*
4282 * Do not allow realtime tasks into groups that have no runtime
4283 * assigned.
4284 */
4285 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
4286 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4287 !task_group_is_autogroup(task_group(p))) {
eb580751 4288 task_rq_unlock(rq, p, &rf);
dc61b1d6
PZ
4289 return -EPERM;
4290 }
dc61b1d6 4291#endif
332ac17e
DF
4292#ifdef CONFIG_SMP
4293 if (dl_bandwidth_enabled() && dl_policy(policy)) {
4294 cpumask_t *span = rq->rd->span;
332ac17e
DF
4295
4296 /*
4297 * Don't allow tasks with an affinity mask smaller than
4298 * the entire root_domain to become SCHED_DEADLINE. We
4299 * will also fail if there's no bandwidth available.
4300 */
e4099a5e
PZ
4301 if (!cpumask_subset(span, &p->cpus_allowed) ||
4302 rq->rd->dl_bw.bw == 0) {
eb580751 4303 task_rq_unlock(rq, p, &rf);
332ac17e
DF
4304 return -EPERM;
4305 }
4306 }
4307#endif
4308 }
dc61b1d6 4309
1da177e4
LT
4310 /* recheck policy now with rq lock held */
4311 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4312 policy = oldpolicy = -1;
eb580751 4313 task_rq_unlock(rq, p, &rf);
1da177e4
LT
4314 goto recheck;
4315 }
332ac17e
DF
4316
4317 /*
4318 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4319 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4320 * is available.
4321 */
e4099a5e 4322 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
eb580751 4323 task_rq_unlock(rq, p, &rf);
332ac17e
DF
4324 return -EBUSY;
4325 }
4326
c365c292
TG
4327 p->sched_reset_on_fork = reset_on_fork;
4328 oldprio = p->prio;
4329
dbc7f069
PZ
4330 if (pi) {
4331 /*
4332 * Take priority boosted tasks into account. If the new
4333 * effective priority is unchanged, we just store the new
4334 * normal parameters and do not touch the scheduler class and
4335 * the runqueue. This will be done when the task deboost
4336 * itself.
4337 */
4338 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
ff77e468
PZ
4339 if (new_effective_prio == oldprio)
4340 queue_flags &= ~DEQUEUE_MOVE;
c365c292
TG
4341 }
4342
da0c1e65 4343 queued = task_on_rq_queued(p);
051a1d1a 4344 running = task_current(rq, p);
da0c1e65 4345 if (queued)
ff77e468 4346 dequeue_task(rq, p, queue_flags);
0e1f3483 4347 if (running)
f3cd1c4e 4348 put_prev_task(rq, p);
f6b53205 4349
83ab0aa0 4350 prev_class = p->sched_class;
dbc7f069 4351 __setscheduler(rq, p, attr, pi);
f6b53205 4352
da0c1e65 4353 if (queued) {
81a44c54
TG
4354 /*
4355 * We enqueue to tail when the priority of a task is
4356 * increased (user space view).
4357 */
ff77e468
PZ
4358 if (oldprio < p->prio)
4359 queue_flags |= ENQUEUE_HEAD;
1de64443 4360
ff77e468 4361 enqueue_task(rq, p, queue_flags);
81a44c54 4362 }
a399d233 4363 if (running)
b2bf6c31 4364 set_curr_task(rq, p);
cb469845 4365
da7a735e 4366 check_class_changed(rq, p, prev_class, oldprio);
4c9a4bc8 4367 preempt_disable(); /* avoid rq from going away on us */
eb580751 4368 task_rq_unlock(rq, p, &rf);
b29739f9 4369
dbc7f069
PZ
4370 if (pi)
4371 rt_mutex_adjust_pi(p);
95e02ca9 4372
4c9a4bc8
PZ
4373 /*
4374 * Run balance callbacks after we've adjusted the PI chain.
4375 */
4376 balance_callback(rq);
4377 preempt_enable();
95e02ca9 4378
1da177e4
LT
4379 return 0;
4380}
961ccddd 4381
7479f3c9
PZ
4382static int _sched_setscheduler(struct task_struct *p, int policy,
4383 const struct sched_param *param, bool check)
4384{
4385 struct sched_attr attr = {
4386 .sched_policy = policy,
4387 .sched_priority = param->sched_priority,
4388 .sched_nice = PRIO_TO_NICE(p->static_prio),
4389 };
4390
c13db6b1
SR
4391 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4392 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
4393 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4394 policy &= ~SCHED_RESET_ON_FORK;
4395 attr.sched_policy = policy;
4396 }
4397
dbc7f069 4398 return __sched_setscheduler(p, &attr, check, true);
7479f3c9 4399}
961ccddd
RR
4400/**
4401 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4402 * @p: the task in question.
4403 * @policy: new policy.
4404 * @param: structure containing the new RT priority.
4405 *
e69f6186
YB
4406 * Return: 0 on success. An error code otherwise.
4407 *
961ccddd
RR
4408 * NOTE that the task may be already dead.
4409 */
4410int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4411 const struct sched_param *param)
961ccddd 4412{
7479f3c9 4413 return _sched_setscheduler(p, policy, param, true);
961ccddd 4414}
1da177e4
LT
4415EXPORT_SYMBOL_GPL(sched_setscheduler);
4416
d50dde5a
DF
4417int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4418{
dbc7f069 4419 return __sched_setscheduler(p, attr, true, true);
d50dde5a
DF
4420}
4421EXPORT_SYMBOL_GPL(sched_setattr);
4422
961ccddd
RR
4423/**
4424 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4425 * @p: the task in question.
4426 * @policy: new policy.
4427 * @param: structure containing the new RT priority.
4428 *
4429 * Just like sched_setscheduler, only don't bother checking if the
4430 * current context has permission. For example, this is needed in
4431 * stop_machine(): we create temporary high priority worker threads,
4432 * but our caller might not have that capability.
e69f6186
YB
4433 *
4434 * Return: 0 on success. An error code otherwise.
961ccddd
RR
4435 */
4436int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 4437 const struct sched_param *param)
961ccddd 4438{
7479f3c9 4439 return _sched_setscheduler(p, policy, param, false);
961ccddd 4440}
84778472 4441EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
961ccddd 4442
95cdf3b7
IM
4443static int
4444do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4445{
1da177e4
LT
4446 struct sched_param lparam;
4447 struct task_struct *p;
36c8b586 4448 int retval;
1da177e4
LT
4449
4450 if (!param || pid < 0)
4451 return -EINVAL;
4452 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4453 return -EFAULT;
5fe1d75f
ON
4454
4455 rcu_read_lock();
4456 retval = -ESRCH;
1da177e4 4457 p = find_process_by_pid(pid);
5fe1d75f
ON
4458 if (p != NULL)
4459 retval = sched_setscheduler(p, policy, &lparam);
4460 rcu_read_unlock();
36c8b586 4461
1da177e4
LT
4462 return retval;
4463}
4464
d50dde5a
DF
4465/*
4466 * Mimics kernel/events/core.c perf_copy_attr().
4467 */
4468static int sched_copy_attr(struct sched_attr __user *uattr,
4469 struct sched_attr *attr)
4470{
4471 u32 size;
4472 int ret;
4473
4474 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4475 return -EFAULT;
4476
4477 /*
4478 * zero the full structure, so that a short copy will be nice.
4479 */
4480 memset(attr, 0, sizeof(*attr));
4481
4482 ret = get_user(size, &uattr->size);
4483 if (ret)
4484 return ret;
4485
4486 if (size > PAGE_SIZE) /* silly large */
4487 goto err_size;
4488
4489 if (!size) /* abi compat */
4490 size = SCHED_ATTR_SIZE_VER0;
4491
4492 if (size < SCHED_ATTR_SIZE_VER0)
4493 goto err_size;
4494
4495 /*
4496 * If we're handed a bigger struct than we know of,
4497 * ensure all the unknown bits are 0 - i.e. new
4498 * user-space does not rely on any kernel feature
4499 * extensions we dont know about yet.
4500 */
4501 if (size > sizeof(*attr)) {
4502 unsigned char __user *addr;
4503 unsigned char __user *end;
4504 unsigned char val;
4505
4506 addr = (void __user *)uattr + sizeof(*attr);
4507 end = (void __user *)uattr + size;
4508
4509 for (; addr < end; addr++) {
4510 ret = get_user(val, addr);
4511 if (ret)
4512 return ret;
4513 if (val)
4514 goto err_size;
4515 }
4516 size = sizeof(*attr);
4517 }
4518
4519 ret = copy_from_user(attr, uattr, size);
4520 if (ret)
4521 return -EFAULT;
4522
4523 /*
4524 * XXX: do we want to be lenient like existing syscalls; or do we want
4525 * to be strict and return an error on out-of-bounds values?
4526 */
75e45d51 4527 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 4528
e78c7bca 4529 return 0;
d50dde5a
DF
4530
4531err_size:
4532 put_user(sizeof(*attr), &uattr->size);
e78c7bca 4533 return -E2BIG;
d50dde5a
DF
4534}
4535
1da177e4
LT
4536/**
4537 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4538 * @pid: the pid in question.
4539 * @policy: new policy.
4540 * @param: structure containing the new RT priority.
e69f6186
YB
4541 *
4542 * Return: 0 on success. An error code otherwise.
1da177e4 4543 */
5add95d4
HC
4544SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4545 struct sched_param __user *, param)
1da177e4 4546{
c21761f1
JB
4547 /* negative values for policy are not valid */
4548 if (policy < 0)
4549 return -EINVAL;
4550
1da177e4
LT
4551 return do_sched_setscheduler(pid, policy, param);
4552}
4553
4554/**
4555 * sys_sched_setparam - set/change the RT priority of a thread
4556 * @pid: the pid in question.
4557 * @param: structure containing the new RT priority.
e69f6186
YB
4558 *
4559 * Return: 0 on success. An error code otherwise.
1da177e4 4560 */
5add95d4 4561SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4562{
c13db6b1 4563 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
4564}
4565
d50dde5a
DF
4566/**
4567 * sys_sched_setattr - same as above, but with extended sched_attr
4568 * @pid: the pid in question.
5778fccf 4569 * @uattr: structure containing the extended parameters.
db66d756 4570 * @flags: for future extension.
d50dde5a 4571 */
6d35ab48
PZ
4572SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4573 unsigned int, flags)
d50dde5a
DF
4574{
4575 struct sched_attr attr;
4576 struct task_struct *p;
4577 int retval;
4578
6d35ab48 4579 if (!uattr || pid < 0 || flags)
d50dde5a
DF
4580 return -EINVAL;
4581
143cf23d
MK
4582 retval = sched_copy_attr(uattr, &attr);
4583 if (retval)
4584 return retval;
d50dde5a 4585
b14ed2c2 4586 if ((int)attr.sched_policy < 0)
dbdb2275 4587 return -EINVAL;
d50dde5a
DF
4588
4589 rcu_read_lock();
4590 retval = -ESRCH;
4591 p = find_process_by_pid(pid);
4592 if (p != NULL)
4593 retval = sched_setattr(p, &attr);
4594 rcu_read_unlock();
4595
4596 return retval;
4597}
4598
1da177e4
LT
4599/**
4600 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4601 * @pid: the pid in question.
e69f6186
YB
4602 *
4603 * Return: On success, the policy of the thread. Otherwise, a negative error
4604 * code.
1da177e4 4605 */
5add95d4 4606SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4607{
36c8b586 4608 struct task_struct *p;
3a5c359a 4609 int retval;
1da177e4
LT
4610
4611 if (pid < 0)
3a5c359a 4612 return -EINVAL;
1da177e4
LT
4613
4614 retval = -ESRCH;
5fe85be0 4615 rcu_read_lock();
1da177e4
LT
4616 p = find_process_by_pid(pid);
4617 if (p) {
4618 retval = security_task_getscheduler(p);
4619 if (!retval)
ca94c442
LP
4620 retval = p->policy
4621 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4622 }
5fe85be0 4623 rcu_read_unlock();
1da177e4
LT
4624 return retval;
4625}
4626
4627/**
ca94c442 4628 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4629 * @pid: the pid in question.
4630 * @param: structure containing the RT priority.
e69f6186
YB
4631 *
4632 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4633 * code.
1da177e4 4634 */
5add95d4 4635SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4636{
ce5f7f82 4637 struct sched_param lp = { .sched_priority = 0 };
36c8b586 4638 struct task_struct *p;
3a5c359a 4639 int retval;
1da177e4
LT
4640
4641 if (!param || pid < 0)
3a5c359a 4642 return -EINVAL;
1da177e4 4643
5fe85be0 4644 rcu_read_lock();
1da177e4
LT
4645 p = find_process_by_pid(pid);
4646 retval = -ESRCH;
4647 if (!p)
4648 goto out_unlock;
4649
4650 retval = security_task_getscheduler(p);
4651 if (retval)
4652 goto out_unlock;
4653
ce5f7f82
PZ
4654 if (task_has_rt_policy(p))
4655 lp.sched_priority = p->rt_priority;
5fe85be0 4656 rcu_read_unlock();
1da177e4
LT
4657
4658 /*
4659 * This one might sleep, we cannot do it with a spinlock held ...
4660 */
4661 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4662
1da177e4
LT
4663 return retval;
4664
4665out_unlock:
5fe85be0 4666 rcu_read_unlock();
1da177e4
LT
4667 return retval;
4668}
4669
d50dde5a
DF
4670static int sched_read_attr(struct sched_attr __user *uattr,
4671 struct sched_attr *attr,
4672 unsigned int usize)
4673{
4674 int ret;
4675
4676 if (!access_ok(VERIFY_WRITE, uattr, usize))
4677 return -EFAULT;
4678
4679 /*
4680 * If we're handed a smaller struct than we know of,
4681 * ensure all the unknown bits are 0 - i.e. old
4682 * user-space does not get uncomplete information.
4683 */
4684 if (usize < sizeof(*attr)) {
4685 unsigned char *addr;
4686 unsigned char *end;
4687
4688 addr = (void *)attr + usize;
4689 end = (void *)attr + sizeof(*attr);
4690
4691 for (; addr < end; addr++) {
4692 if (*addr)
22400674 4693 return -EFBIG;
d50dde5a
DF
4694 }
4695
4696 attr->size = usize;
4697 }
4698
4efbc454 4699 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
4700 if (ret)
4701 return -EFAULT;
4702
22400674 4703 return 0;
d50dde5a
DF
4704}
4705
4706/**
aab03e05 4707 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 4708 * @pid: the pid in question.
5778fccf 4709 * @uattr: structure containing the extended parameters.
d50dde5a 4710 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 4711 * @flags: for future extension.
d50dde5a 4712 */
6d35ab48
PZ
4713SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4714 unsigned int, size, unsigned int, flags)
d50dde5a
DF
4715{
4716 struct sched_attr attr = {
4717 .size = sizeof(struct sched_attr),
4718 };
4719 struct task_struct *p;
4720 int retval;
4721
4722 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 4723 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
4724 return -EINVAL;
4725
4726 rcu_read_lock();
4727 p = find_process_by_pid(pid);
4728 retval = -ESRCH;
4729 if (!p)
4730 goto out_unlock;
4731
4732 retval = security_task_getscheduler(p);
4733 if (retval)
4734 goto out_unlock;
4735
4736 attr.sched_policy = p->policy;
7479f3c9
PZ
4737 if (p->sched_reset_on_fork)
4738 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
4739 if (task_has_dl_policy(p))
4740 __getparam_dl(p, &attr);
4741 else if (task_has_rt_policy(p))
d50dde5a
DF
4742 attr.sched_priority = p->rt_priority;
4743 else
d0ea0268 4744 attr.sched_nice = task_nice(p);
d50dde5a
DF
4745
4746 rcu_read_unlock();
4747
4748 retval = sched_read_attr(uattr, &attr, size);
4749 return retval;
4750
4751out_unlock:
4752 rcu_read_unlock();
4753 return retval;
4754}
4755
96f874e2 4756long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4757{
5a16f3d3 4758 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4759 struct task_struct *p;
4760 int retval;
1da177e4 4761
23f5d142 4762 rcu_read_lock();
1da177e4
LT
4763
4764 p = find_process_by_pid(pid);
4765 if (!p) {
23f5d142 4766 rcu_read_unlock();
1da177e4
LT
4767 return -ESRCH;
4768 }
4769
23f5d142 4770 /* Prevent p going away */
1da177e4 4771 get_task_struct(p);
23f5d142 4772 rcu_read_unlock();
1da177e4 4773
14a40ffc
TH
4774 if (p->flags & PF_NO_SETAFFINITY) {
4775 retval = -EINVAL;
4776 goto out_put_task;
4777 }
5a16f3d3
RR
4778 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4779 retval = -ENOMEM;
4780 goto out_put_task;
4781 }
4782 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4783 retval = -ENOMEM;
4784 goto out_free_cpus_allowed;
4785 }
1da177e4 4786 retval = -EPERM;
4c44aaaf
EB
4787 if (!check_same_owner(p)) {
4788 rcu_read_lock();
4789 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4790 rcu_read_unlock();
16303ab2 4791 goto out_free_new_mask;
4c44aaaf
EB
4792 }
4793 rcu_read_unlock();
4794 }
1da177e4 4795
b0ae1981 4796 retval = security_task_setscheduler(p);
e7834f8f 4797 if (retval)
16303ab2 4798 goto out_free_new_mask;
e7834f8f 4799
e4099a5e
PZ
4800
4801 cpuset_cpus_allowed(p, cpus_allowed);
4802 cpumask_and(new_mask, in_mask, cpus_allowed);
4803
332ac17e
DF
4804 /*
4805 * Since bandwidth control happens on root_domain basis,
4806 * if admission test is enabled, we only admit -deadline
4807 * tasks allowed to run on all the CPUs in the task's
4808 * root_domain.
4809 */
4810#ifdef CONFIG_SMP
f1e3a093
KT
4811 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4812 rcu_read_lock();
4813 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 4814 retval = -EBUSY;
f1e3a093 4815 rcu_read_unlock();
16303ab2 4816 goto out_free_new_mask;
332ac17e 4817 }
f1e3a093 4818 rcu_read_unlock();
332ac17e
DF
4819 }
4820#endif
49246274 4821again:
25834c73 4822 retval = __set_cpus_allowed_ptr(p, new_mask, true);
1da177e4 4823
8707d8b8 4824 if (!retval) {
5a16f3d3
RR
4825 cpuset_cpus_allowed(p, cpus_allowed);
4826 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4827 /*
4828 * We must have raced with a concurrent cpuset
4829 * update. Just reset the cpus_allowed to the
4830 * cpuset's cpus_allowed
4831 */
5a16f3d3 4832 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4833 goto again;
4834 }
4835 }
16303ab2 4836out_free_new_mask:
5a16f3d3
RR
4837 free_cpumask_var(new_mask);
4838out_free_cpus_allowed:
4839 free_cpumask_var(cpus_allowed);
4840out_put_task:
1da177e4 4841 put_task_struct(p);
1da177e4
LT
4842 return retval;
4843}
4844
4845static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4846 struct cpumask *new_mask)
1da177e4 4847{
96f874e2
RR
4848 if (len < cpumask_size())
4849 cpumask_clear(new_mask);
4850 else if (len > cpumask_size())
4851 len = cpumask_size();
4852
1da177e4
LT
4853 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4854}
4855
4856/**
4857 * sys_sched_setaffinity - set the cpu affinity of a process
4858 * @pid: pid of the process
4859 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4860 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
4861 *
4862 * Return: 0 on success. An error code otherwise.
1da177e4 4863 */
5add95d4
HC
4864SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4865 unsigned long __user *, user_mask_ptr)
1da177e4 4866{
5a16f3d3 4867 cpumask_var_t new_mask;
1da177e4
LT
4868 int retval;
4869
5a16f3d3
RR
4870 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4871 return -ENOMEM;
1da177e4 4872
5a16f3d3
RR
4873 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4874 if (retval == 0)
4875 retval = sched_setaffinity(pid, new_mask);
4876 free_cpumask_var(new_mask);
4877 return retval;
1da177e4
LT
4878}
4879
96f874e2 4880long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4881{
36c8b586 4882 struct task_struct *p;
31605683 4883 unsigned long flags;
1da177e4 4884 int retval;
1da177e4 4885
23f5d142 4886 rcu_read_lock();
1da177e4
LT
4887
4888 retval = -ESRCH;
4889 p = find_process_by_pid(pid);
4890 if (!p)
4891 goto out_unlock;
4892
e7834f8f
DQ
4893 retval = security_task_getscheduler(p);
4894 if (retval)
4895 goto out_unlock;
4896
013fdb80 4897 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4898 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4899 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4900
4901out_unlock:
23f5d142 4902 rcu_read_unlock();
1da177e4 4903
9531b62f 4904 return retval;
1da177e4
LT
4905}
4906
4907/**
4908 * sys_sched_getaffinity - get the cpu affinity of a process
4909 * @pid: pid of the process
4910 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4911 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186 4912 *
599b4840
ZW
4913 * Return: size of CPU mask copied to user_mask_ptr on success. An
4914 * error code otherwise.
1da177e4 4915 */
5add95d4
HC
4916SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4917 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4918{
4919 int ret;
f17c8607 4920 cpumask_var_t mask;
1da177e4 4921
84fba5ec 4922 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4923 return -EINVAL;
4924 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4925 return -EINVAL;
4926
f17c8607
RR
4927 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4928 return -ENOMEM;
1da177e4 4929
f17c8607
RR
4930 ret = sched_getaffinity(pid, mask);
4931 if (ret == 0) {
8bc037fb 4932 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4933
4934 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4935 ret = -EFAULT;
4936 else
cd3d8031 4937 ret = retlen;
f17c8607
RR
4938 }
4939 free_cpumask_var(mask);
1da177e4 4940
f17c8607 4941 return ret;
1da177e4
LT
4942}
4943
4944/**
4945 * sys_sched_yield - yield the current processor to other threads.
4946 *
dd41f596
IM
4947 * This function yields the current CPU to other tasks. If there are no
4948 * other threads running on this CPU then this function will return.
e69f6186
YB
4949 *
4950 * Return: 0.
1da177e4 4951 */
5add95d4 4952SYSCALL_DEFINE0(sched_yield)
1da177e4 4953{
70b97a7f 4954 struct rq *rq = this_rq_lock();
1da177e4 4955
ae92882e 4956 schedstat_inc(rq->yld_count);
4530d7ab 4957 current->sched_class->yield_task(rq);
1da177e4
LT
4958
4959 /*
4960 * Since we are going to call schedule() anyway, there's
4961 * no need to preempt or enable interrupts:
4962 */
4963 __release(rq->lock);
8a25d5de 4964 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4965 do_raw_spin_unlock(&rq->lock);
ba74c144 4966 sched_preempt_enable_no_resched();
1da177e4
LT
4967
4968 schedule();
4969
4970 return 0;
4971}
4972
35a773a0 4973#ifndef CONFIG_PREEMPT
02b67cc3 4974int __sched _cond_resched(void)
1da177e4 4975{
fe32d3cd 4976 if (should_resched(0)) {
a18b5d01 4977 preempt_schedule_common();
1da177e4
LT
4978 return 1;
4979 }
4980 return 0;
4981}
02b67cc3 4982EXPORT_SYMBOL(_cond_resched);
35a773a0 4983#endif
1da177e4
LT
4984
4985/*
613afbf8 4986 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4987 * call schedule, and on return reacquire the lock.
4988 *
41a2d6cf 4989 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4990 * operations here to prevent schedule() from being called twice (once via
4991 * spin_unlock(), once by hand).
4992 */
613afbf8 4993int __cond_resched_lock(spinlock_t *lock)
1da177e4 4994{
fe32d3cd 4995 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6df3cecb
JK
4996 int ret = 0;
4997
f607c668
PZ
4998 lockdep_assert_held(lock);
4999
4a81e832 5000 if (spin_needbreak(lock) || resched) {
1da177e4 5001 spin_unlock(lock);
d86ee480 5002 if (resched)
a18b5d01 5003 preempt_schedule_common();
95c354fe
NP
5004 else
5005 cpu_relax();
6df3cecb 5006 ret = 1;
1da177e4 5007 spin_lock(lock);
1da177e4 5008 }
6df3cecb 5009 return ret;
1da177e4 5010}
613afbf8 5011EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 5012
613afbf8 5013int __sched __cond_resched_softirq(void)
1da177e4
LT
5014{
5015 BUG_ON(!in_softirq());
5016
fe32d3cd 5017 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
98d82567 5018 local_bh_enable();
a18b5d01 5019 preempt_schedule_common();
1da177e4
LT
5020 local_bh_disable();
5021 return 1;
5022 }
5023 return 0;
5024}
613afbf8 5025EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 5026
1da177e4
LT
5027/**
5028 * yield - yield the current processor to other threads.
5029 *
8e3fabfd
PZ
5030 * Do not ever use this function, there's a 99% chance you're doing it wrong.
5031 *
5032 * The scheduler is at all times free to pick the calling task as the most
5033 * eligible task to run, if removing the yield() call from your code breaks
5034 * it, its already broken.
5035 *
5036 * Typical broken usage is:
5037 *
5038 * while (!event)
5039 * yield();
5040 *
5041 * where one assumes that yield() will let 'the other' process run that will
5042 * make event true. If the current task is a SCHED_FIFO task that will never
5043 * happen. Never use yield() as a progress guarantee!!
5044 *
5045 * If you want to use yield() to wait for something, use wait_event().
5046 * If you want to use yield() to be 'nice' for others, use cond_resched().
5047 * If you still want to use yield(), do not!
1da177e4
LT
5048 */
5049void __sched yield(void)
5050{
5051 set_current_state(TASK_RUNNING);
5052 sys_sched_yield();
5053}
1da177e4
LT
5054EXPORT_SYMBOL(yield);
5055
d95f4122
MG
5056/**
5057 * yield_to - yield the current processor to another thread in
5058 * your thread group, or accelerate that thread toward the
5059 * processor it's on.
16addf95
RD
5060 * @p: target task
5061 * @preempt: whether task preemption is allowed or not
d95f4122
MG
5062 *
5063 * It's the caller's job to ensure that the target task struct
5064 * can't go away on us before we can do any checks.
5065 *
e69f6186 5066 * Return:
7b270f60
PZ
5067 * true (>0) if we indeed boosted the target task.
5068 * false (0) if we failed to boost the target.
5069 * -ESRCH if there's no task to yield to.
d95f4122 5070 */
fa93384f 5071int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
5072{
5073 struct task_struct *curr = current;
5074 struct rq *rq, *p_rq;
5075 unsigned long flags;
c3c18640 5076 int yielded = 0;
d95f4122
MG
5077
5078 local_irq_save(flags);
5079 rq = this_rq();
5080
5081again:
5082 p_rq = task_rq(p);
7b270f60
PZ
5083 /*
5084 * If we're the only runnable task on the rq and target rq also
5085 * has only one task, there's absolutely no point in yielding.
5086 */
5087 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5088 yielded = -ESRCH;
5089 goto out_irq;
5090 }
5091
d95f4122 5092 double_rq_lock(rq, p_rq);
39e24d8f 5093 if (task_rq(p) != p_rq) {
d95f4122
MG
5094 double_rq_unlock(rq, p_rq);
5095 goto again;
5096 }
5097
5098 if (!curr->sched_class->yield_to_task)
7b270f60 5099 goto out_unlock;
d95f4122
MG
5100
5101 if (curr->sched_class != p->sched_class)
7b270f60 5102 goto out_unlock;
d95f4122
MG
5103
5104 if (task_running(p_rq, p) || p->state)
7b270f60 5105 goto out_unlock;
d95f4122
MG
5106
5107 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 5108 if (yielded) {
ae92882e 5109 schedstat_inc(rq->yld_count);
6d1cafd8
VP
5110 /*
5111 * Make p's CPU reschedule; pick_next_entity takes care of
5112 * fairness.
5113 */
5114 if (preempt && rq != p_rq)
8875125e 5115 resched_curr(p_rq);
6d1cafd8 5116 }
d95f4122 5117
7b270f60 5118out_unlock:
d95f4122 5119 double_rq_unlock(rq, p_rq);
7b270f60 5120out_irq:
d95f4122
MG
5121 local_irq_restore(flags);
5122
7b270f60 5123 if (yielded > 0)
d95f4122
MG
5124 schedule();
5125
5126 return yielded;
5127}
5128EXPORT_SYMBOL_GPL(yield_to);
5129
10ab5643
TH
5130int io_schedule_prepare(void)
5131{
5132 int old_iowait = current->in_iowait;
5133
5134 current->in_iowait = 1;
5135 blk_schedule_flush_plug(current);
5136
5137 return old_iowait;
5138}
5139
5140void io_schedule_finish(int token)
5141{
5142 current->in_iowait = token;
5143}
5144
1da177e4 5145/*
41a2d6cf 5146 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5147 * that process accounting knows that this is a task in IO wait state.
1da177e4 5148 */
1da177e4
LT
5149long __sched io_schedule_timeout(long timeout)
5150{
10ab5643 5151 int token;
1da177e4
LT
5152 long ret;
5153
10ab5643 5154 token = io_schedule_prepare();
1da177e4 5155 ret = schedule_timeout(timeout);
10ab5643 5156 io_schedule_finish(token);
9cff8ade 5157
1da177e4
LT
5158 return ret;
5159}
9cff8ade 5160EXPORT_SYMBOL(io_schedule_timeout);
1da177e4 5161
10ab5643
TH
5162void io_schedule(void)
5163{
5164 int token;
5165
5166 token = io_schedule_prepare();
5167 schedule();
5168 io_schedule_finish(token);
5169}
5170EXPORT_SYMBOL(io_schedule);
5171
1da177e4
LT
5172/**
5173 * sys_sched_get_priority_max - return maximum RT priority.
5174 * @policy: scheduling class.
5175 *
e69f6186
YB
5176 * Return: On success, this syscall returns the maximum
5177 * rt_priority that can be used by a given scheduling class.
5178 * On failure, a negative error code is returned.
1da177e4 5179 */
5add95d4 5180SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5181{
5182 int ret = -EINVAL;
5183
5184 switch (policy) {
5185 case SCHED_FIFO:
5186 case SCHED_RR:
5187 ret = MAX_USER_RT_PRIO-1;
5188 break;
aab03e05 5189 case SCHED_DEADLINE:
1da177e4 5190 case SCHED_NORMAL:
b0a9499c 5191 case SCHED_BATCH:
dd41f596 5192 case SCHED_IDLE:
1da177e4
LT
5193 ret = 0;
5194 break;
5195 }
5196 return ret;
5197}
5198
5199/**
5200 * sys_sched_get_priority_min - return minimum RT priority.
5201 * @policy: scheduling class.
5202 *
e69f6186
YB
5203 * Return: On success, this syscall returns the minimum
5204 * rt_priority that can be used by a given scheduling class.
5205 * On failure, a negative error code is returned.
1da177e4 5206 */
5add95d4 5207SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5208{
5209 int ret = -EINVAL;
5210
5211 switch (policy) {
5212 case SCHED_FIFO:
5213 case SCHED_RR:
5214 ret = 1;
5215 break;
aab03e05 5216 case SCHED_DEADLINE:
1da177e4 5217 case SCHED_NORMAL:
b0a9499c 5218 case SCHED_BATCH:
dd41f596 5219 case SCHED_IDLE:
1da177e4
LT
5220 ret = 0;
5221 }
5222 return ret;
5223}
5224
5225/**
5226 * sys_sched_rr_get_interval - return the default timeslice of a process.
5227 * @pid: pid of the process.
5228 * @interval: userspace pointer to the timeslice value.
5229 *
5230 * this syscall writes the default timeslice value of a given process
5231 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
5232 *
5233 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5234 * an error code.
1da177e4 5235 */
17da2bd9 5236SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5237 struct timespec __user *, interval)
1da177e4 5238{
36c8b586 5239 struct task_struct *p;
a4ec24b4 5240 unsigned int time_slice;
eb580751
PZ
5241 struct rq_flags rf;
5242 struct timespec t;
dba091b9 5243 struct rq *rq;
3a5c359a 5244 int retval;
1da177e4
LT
5245
5246 if (pid < 0)
3a5c359a 5247 return -EINVAL;
1da177e4
LT
5248
5249 retval = -ESRCH;
1a551ae7 5250 rcu_read_lock();
1da177e4
LT
5251 p = find_process_by_pid(pid);
5252 if (!p)
5253 goto out_unlock;
5254
5255 retval = security_task_getscheduler(p);
5256 if (retval)
5257 goto out_unlock;
5258
eb580751 5259 rq = task_rq_lock(p, &rf);
a57beec5
PZ
5260 time_slice = 0;
5261 if (p->sched_class->get_rr_interval)
5262 time_slice = p->sched_class->get_rr_interval(rq, p);
eb580751 5263 task_rq_unlock(rq, p, &rf);
a4ec24b4 5264
1a551ae7 5265 rcu_read_unlock();
a4ec24b4 5266 jiffies_to_timespec(time_slice, &t);
1da177e4 5267 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5268 return retval;
3a5c359a 5269
1da177e4 5270out_unlock:
1a551ae7 5271 rcu_read_unlock();
1da177e4
LT
5272 return retval;
5273}
5274
7c731e0a 5275static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5276
82a1fcb9 5277void sched_show_task(struct task_struct *p)
1da177e4 5278{
1da177e4 5279 unsigned long free = 0;
4e79752c 5280 int ppid;
1f8a7633 5281 unsigned long state = p->state;
1da177e4 5282
38200502
TH
5283 if (!try_get_task_stack(p))
5284 return;
1f8a7633
TH
5285 if (state)
5286 state = __ffs(state) + 1;
28d0686c 5287 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 5288 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
1da177e4 5289 if (state == TASK_RUNNING)
3df0fc5b 5290 printk(KERN_CONT " running task ");
1da177e4 5291#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5292 free = stack_not_used(p);
1da177e4 5293#endif
a90e984c 5294 ppid = 0;
4e79752c 5295 rcu_read_lock();
a90e984c
ON
5296 if (pid_alive(p))
5297 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 5298 rcu_read_unlock();
3df0fc5b 5299 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 5300 task_pid_nr(p), ppid,
aa47b7e0 5301 (unsigned long)task_thread_info(p)->flags);
1da177e4 5302
3d1cb205 5303 print_worker_info(KERN_INFO, p);
5fb5e6de 5304 show_stack(p, NULL);
38200502 5305 put_task_stack(p);
1da177e4
LT
5306}
5307
e59e2ae2 5308void show_state_filter(unsigned long state_filter)
1da177e4 5309{
36c8b586 5310 struct task_struct *g, *p;
1da177e4 5311
4bd77321 5312#if BITS_PER_LONG == 32
3df0fc5b
PZ
5313 printk(KERN_INFO
5314 " task PC stack pid father\n");
1da177e4 5315#else
3df0fc5b
PZ
5316 printk(KERN_INFO
5317 " task PC stack pid father\n");
1da177e4 5318#endif
510f5acc 5319 rcu_read_lock();
5d07f420 5320 for_each_process_thread(g, p) {
1da177e4
LT
5321 /*
5322 * reset the NMI-timeout, listing all files on a slow
25985edc 5323 * console might take a lot of time:
57675cb9
AR
5324 * Also, reset softlockup watchdogs on all CPUs, because
5325 * another CPU might be blocked waiting for us to process
5326 * an IPI.
1da177e4
LT
5327 */
5328 touch_nmi_watchdog();
57675cb9 5329 touch_all_softlockup_watchdogs();
39bc89fd 5330 if (!state_filter || (p->state & state_filter))
82a1fcb9 5331 sched_show_task(p);
5d07f420 5332 }
1da177e4 5333
dd41f596 5334#ifdef CONFIG_SCHED_DEBUG
fb90a6e9
RV
5335 if (!state_filter)
5336 sysrq_sched_debug_show();
dd41f596 5337#endif
510f5acc 5338 rcu_read_unlock();
e59e2ae2
IM
5339 /*
5340 * Only show locks if all tasks are dumped:
5341 */
93335a21 5342 if (!state_filter)
e59e2ae2 5343 debug_show_all_locks();
1da177e4
LT
5344}
5345
0db0628d 5346void init_idle_bootup_task(struct task_struct *idle)
1df21055 5347{
dd41f596 5348 idle->sched_class = &idle_sched_class;
1df21055
IM
5349}
5350
f340c0d1
IM
5351/**
5352 * init_idle - set up an idle thread for a given CPU
5353 * @idle: task in question
5354 * @cpu: cpu the idle task belongs to
5355 *
5356 * NOTE: this function does not set the idle thread's NEED_RESCHED
5357 * flag, to make booting more robust.
5358 */
0db0628d 5359void init_idle(struct task_struct *idle, int cpu)
1da177e4 5360{
70b97a7f 5361 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5362 unsigned long flags;
5363
25834c73
PZ
5364 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5365 raw_spin_lock(&rq->lock);
5cbd54ef 5366
5e1576ed 5367 __sched_fork(0, idle);
06b83b5f 5368 idle->state = TASK_RUNNING;
dd41f596 5369 idle->se.exec_start = sched_clock();
c1de45ca 5370 idle->flags |= PF_IDLE;
dd41f596 5371
e1b77c92
MR
5372 kasan_unpoison_task_stack(idle);
5373
de9b8f5d
PZ
5374#ifdef CONFIG_SMP
5375 /*
5376 * Its possible that init_idle() gets called multiple times on a task,
5377 * in that case do_set_cpus_allowed() will not do the right thing.
5378 *
5379 * And since this is boot we can forgo the serialization.
5380 */
5381 set_cpus_allowed_common(idle, cpumask_of(cpu));
5382#endif
6506cf6c
PZ
5383 /*
5384 * We're having a chicken and egg problem, even though we are
5385 * holding rq->lock, the cpu isn't yet set to this cpu so the
5386 * lockdep check in task_group() will fail.
5387 *
5388 * Similar case to sched_fork(). / Alternatively we could
5389 * use task_rq_lock() here and obtain the other rq->lock.
5390 *
5391 * Silence PROVE_RCU
5392 */
5393 rcu_read_lock();
dd41f596 5394 __set_task_cpu(idle, cpu);
6506cf6c 5395 rcu_read_unlock();
1da177e4 5396
1da177e4 5397 rq->curr = rq->idle = idle;
da0c1e65 5398 idle->on_rq = TASK_ON_RQ_QUEUED;
de9b8f5d 5399#ifdef CONFIG_SMP
3ca7a440 5400 idle->on_cpu = 1;
4866cde0 5401#endif
25834c73
PZ
5402 raw_spin_unlock(&rq->lock);
5403 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
1da177e4
LT
5404
5405 /* Set the preempt count _outside_ the spinlocks! */
01028747 5406 init_idle_preempt_count(idle, cpu);
55cd5340 5407
dd41f596
IM
5408 /*
5409 * The idle tasks have their own, simple scheduling class:
5410 */
5411 idle->sched_class = &idle_sched_class;
868baf07 5412 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 5413 vtime_init_idle(idle, cpu);
de9b8f5d 5414#ifdef CONFIG_SMP
f1c6f1a7
CE
5415 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5416#endif
19978ca6
IM
5417}
5418
f82f8042
JL
5419int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5420 const struct cpumask *trial)
5421{
5422 int ret = 1, trial_cpus;
5423 struct dl_bw *cur_dl_b;
5424 unsigned long flags;
5425
bb2bc55a
MG
5426 if (!cpumask_weight(cur))
5427 return ret;
5428
75e23e49 5429 rcu_read_lock_sched();
f82f8042
JL
5430 cur_dl_b = dl_bw_of(cpumask_any(cur));
5431 trial_cpus = cpumask_weight(trial);
5432
5433 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5434 if (cur_dl_b->bw != -1 &&
5435 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5436 ret = 0;
5437 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
75e23e49 5438 rcu_read_unlock_sched();
f82f8042
JL
5439
5440 return ret;
5441}
5442
7f51412a
JL
5443int task_can_attach(struct task_struct *p,
5444 const struct cpumask *cs_cpus_allowed)
5445{
5446 int ret = 0;
5447
5448 /*
5449 * Kthreads which disallow setaffinity shouldn't be moved
5450 * to a new cpuset; we don't want to change their cpu
5451 * affinity and isolating such threads by their set of
5452 * allowed nodes is unnecessary. Thus, cpusets are not
5453 * applicable for such threads. This prevents checking for
5454 * success of set_cpus_allowed_ptr() on all attached tasks
5455 * before cpus_allowed may be changed.
5456 */
5457 if (p->flags & PF_NO_SETAFFINITY) {
5458 ret = -EINVAL;
5459 goto out;
5460 }
5461
5462#ifdef CONFIG_SMP
5463 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5464 cs_cpus_allowed)) {
5465 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5466 cs_cpus_allowed);
75e23e49 5467 struct dl_bw *dl_b;
7f51412a
JL
5468 bool overflow;
5469 int cpus;
5470 unsigned long flags;
5471
75e23e49
JL
5472 rcu_read_lock_sched();
5473 dl_b = dl_bw_of(dest_cpu);
7f51412a
JL
5474 raw_spin_lock_irqsave(&dl_b->lock, flags);
5475 cpus = dl_bw_cpus(dest_cpu);
5476 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5477 if (overflow)
5478 ret = -EBUSY;
5479 else {
5480 /*
5481 * We reserve space for this task in the destination
5482 * root_domain, as we can't fail after this point.
5483 * We will free resources in the source root_domain
5484 * later on (see set_cpus_allowed_dl()).
5485 */
5486 __dl_add(dl_b, p->dl.dl_bw);
5487 }
5488 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
75e23e49 5489 rcu_read_unlock_sched();
7f51412a
JL
5490
5491 }
5492#endif
5493out:
5494 return ret;
5495}
5496
1da177e4 5497#ifdef CONFIG_SMP
1da177e4 5498
e26fbffd
TG
5499static bool sched_smp_initialized __read_mostly;
5500
e6628d5b
MG
5501#ifdef CONFIG_NUMA_BALANCING
5502/* Migrate current task p to target_cpu */
5503int migrate_task_to(struct task_struct *p, int target_cpu)
5504{
5505 struct migration_arg arg = { p, target_cpu };
5506 int curr_cpu = task_cpu(p);
5507
5508 if (curr_cpu == target_cpu)
5509 return 0;
5510
5511 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5512 return -EINVAL;
5513
5514 /* TODO: This is not properly updating schedstats */
5515
286549dc 5516 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
5517 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5518}
0ec8aa00
PZ
5519
5520/*
5521 * Requeue a task on a given node and accurately track the number of NUMA
5522 * tasks on the runqueues
5523 */
5524void sched_setnuma(struct task_struct *p, int nid)
5525{
da0c1e65 5526 bool queued, running;
eb580751
PZ
5527 struct rq_flags rf;
5528 struct rq *rq;
0ec8aa00 5529
eb580751 5530 rq = task_rq_lock(p, &rf);
da0c1e65 5531 queued = task_on_rq_queued(p);
0ec8aa00
PZ
5532 running = task_current(rq, p);
5533
da0c1e65 5534 if (queued)
1de64443 5535 dequeue_task(rq, p, DEQUEUE_SAVE);
0ec8aa00 5536 if (running)
f3cd1c4e 5537 put_prev_task(rq, p);
0ec8aa00
PZ
5538
5539 p->numa_preferred_nid = nid;
0ec8aa00 5540
da0c1e65 5541 if (queued)
1de64443 5542 enqueue_task(rq, p, ENQUEUE_RESTORE);
a399d233 5543 if (running)
b2bf6c31 5544 set_curr_task(rq, p);
eb580751 5545 task_rq_unlock(rq, p, &rf);
0ec8aa00 5546}
5cc389bc 5547#endif /* CONFIG_NUMA_BALANCING */
f7b4cddc 5548
1da177e4 5549#ifdef CONFIG_HOTPLUG_CPU
054b9108 5550/*
48c5ccae
PZ
5551 * Ensures that the idle task is using init_mm right before its cpu goes
5552 * offline.
054b9108 5553 */
48c5ccae 5554void idle_task_exit(void)
1da177e4 5555{
48c5ccae 5556 struct mm_struct *mm = current->active_mm;
e76bd8d9 5557
48c5ccae 5558 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 5559
a53efe5f 5560 if (mm != &init_mm) {
f98db601 5561 switch_mm_irqs_off(mm, &init_mm, current);
a53efe5f
MS
5562 finish_arch_post_lock_switch();
5563 }
48c5ccae 5564 mmdrop(mm);
1da177e4
LT
5565}
5566
5567/*
5d180232
PZ
5568 * Since this CPU is going 'away' for a while, fold any nr_active delta
5569 * we might have. Assumes we're called after migrate_tasks() so that the
d60585c5
TG
5570 * nr_active count is stable. We need to take the teardown thread which
5571 * is calling this into account, so we hand in adjust = 1 to the load
5572 * calculation.
5d180232
PZ
5573 *
5574 * Also see the comment "Global load-average calculations".
1da177e4 5575 */
5d180232 5576static void calc_load_migrate(struct rq *rq)
1da177e4 5577{
d60585c5 5578 long delta = calc_load_fold_active(rq, 1);
5d180232
PZ
5579 if (delta)
5580 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
5581}
5582
3f1d2a31
PZ
5583static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5584{
5585}
5586
5587static const struct sched_class fake_sched_class = {
5588 .put_prev_task = put_prev_task_fake,
5589};
5590
5591static struct task_struct fake_task = {
5592 /*
5593 * Avoid pull_{rt,dl}_task()
5594 */
5595 .prio = MAX_PRIO + 1,
5596 .sched_class = &fake_sched_class,
5597};
5598
48f24c4d 5599/*
48c5ccae
PZ
5600 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5601 * try_to_wake_up()->select_task_rq().
5602 *
5603 * Called with rq->lock held even though we'er in stop_machine() and
5604 * there's no concurrency possible, we hold the required locks anyway
5605 * because of lock validation efforts.
1da177e4 5606 */
5e16bbc2 5607static void migrate_tasks(struct rq *dead_rq)
1da177e4 5608{
5e16bbc2 5609 struct rq *rq = dead_rq;
48c5ccae 5610 struct task_struct *next, *stop = rq->stop;
4d25b35e 5611 struct rq_flags rf, old_rf;
48c5ccae 5612 int dest_cpu;
1da177e4
LT
5613
5614 /*
48c5ccae
PZ
5615 * Fudge the rq selection such that the below task selection loop
5616 * doesn't get stuck on the currently eligible stop task.
5617 *
5618 * We're currently inside stop_machine() and the rq is either stuck
5619 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5620 * either way we should never end up calling schedule() until we're
5621 * done here.
1da177e4 5622 */
48c5ccae 5623 rq->stop = NULL;
48f24c4d 5624
77bd3970
FW
5625 /*
5626 * put_prev_task() and pick_next_task() sched
5627 * class method both need to have an up-to-date
5628 * value of rq->clock[_task]
5629 */
5630 update_rq_clock(rq);
5631
5e16bbc2 5632 for (;;) {
48c5ccae
PZ
5633 /*
5634 * There's this thread running, bail when that's the only
5635 * remaining thread.
5636 */
5637 if (rq->nr_running == 1)
dd41f596 5638 break;
48c5ccae 5639
cbce1a68 5640 /*
5473e0cc 5641 * pick_next_task assumes pinned rq->lock.
cbce1a68 5642 */
d8ac8971
MF
5643 rq_pin_lock(rq, &rf);
5644 next = pick_next_task(rq, &fake_task, &rf);
48c5ccae 5645 BUG_ON(!next);
79c53799 5646 next->sched_class->put_prev_task(rq, next);
e692ab53 5647
5473e0cc
WL
5648 /*
5649 * Rules for changing task_struct::cpus_allowed are holding
5650 * both pi_lock and rq->lock, such that holding either
5651 * stabilizes the mask.
5652 *
5653 * Drop rq->lock is not quite as disastrous as it usually is
5654 * because !cpu_active at this point, which means load-balance
5655 * will not interfere. Also, stop-machine.
5656 */
d8ac8971 5657 rq_unpin_lock(rq, &rf);
5473e0cc
WL
5658 raw_spin_unlock(&rq->lock);
5659 raw_spin_lock(&next->pi_lock);
5660 raw_spin_lock(&rq->lock);
5661
5662 /*
5663 * Since we're inside stop-machine, _nothing_ should have
5664 * changed the task, WARN if weird stuff happened, because in
5665 * that case the above rq->lock drop is a fail too.
5666 */
5667 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5668 raw_spin_unlock(&next->pi_lock);
5669 continue;
5670 }
5671
4d25b35e
MF
5672 /*
5673 * __migrate_task() may return with a different
5674 * rq->lock held and a new cookie in 'rf', but we need
5675 * to preserve rf::clock_update_flags for 'dead_rq'.
5676 */
5677 old_rf = rf;
5678
48c5ccae 5679 /* Find suitable destination for @next, with force if needed. */
5e16bbc2 5680 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
48c5ccae 5681
5e16bbc2
PZ
5682 rq = __migrate_task(rq, next, dest_cpu);
5683 if (rq != dead_rq) {
5684 raw_spin_unlock(&rq->lock);
5685 rq = dead_rq;
5686 raw_spin_lock(&rq->lock);
4d25b35e 5687 rf = old_rf;
5e16bbc2 5688 }
5473e0cc 5689 raw_spin_unlock(&next->pi_lock);
1da177e4 5690 }
dce48a84 5691
48c5ccae 5692 rq->stop = stop;
dce48a84 5693}
1da177e4
LT
5694#endif /* CONFIG_HOTPLUG_CPU */
5695
1f11eb6a
GH
5696static void set_rq_online(struct rq *rq)
5697{
5698 if (!rq->online) {
5699 const struct sched_class *class;
5700
c6c4927b 5701 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5702 rq->online = 1;
5703
5704 for_each_class(class) {
5705 if (class->rq_online)
5706 class->rq_online(rq);
5707 }
5708 }
5709}
5710
5711static void set_rq_offline(struct rq *rq)
5712{
5713 if (rq->online) {
5714 const struct sched_class *class;
5715
5716 for_each_class(class) {
5717 if (class->rq_offline)
5718 class->rq_offline(rq);
5719 }
5720
c6c4927b 5721 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5722 rq->online = 0;
5723 }
5724}
5725
9cf7243d 5726static void set_cpu_rq_start_time(unsigned int cpu)
1da177e4 5727{
969c7921 5728 struct rq *rq = cpu_rq(cpu);
1da177e4 5729
a803f026
CM
5730 rq->age_stamp = sched_clock_cpu(cpu);
5731}
5732
4cb98839
PZ
5733static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5734
3e9830dc 5735#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5736
d039ac60 5737static __read_mostly int sched_debug_enabled;
f6630114 5738
d039ac60 5739static int __init sched_debug_setup(char *str)
f6630114 5740{
d039ac60 5741 sched_debug_enabled = 1;
f6630114
MT
5742
5743 return 0;
5744}
d039ac60
PZ
5745early_param("sched_debug", sched_debug_setup);
5746
5747static inline bool sched_debug(void)
5748{
5749 return sched_debug_enabled;
5750}
f6630114 5751
7c16ec58 5752static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5753 struct cpumask *groupmask)
1da177e4 5754{
4dcf6aff 5755 struct sched_group *group = sd->groups;
1da177e4 5756
96f874e2 5757 cpumask_clear(groupmask);
4dcf6aff
IM
5758
5759 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5760
5761 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5762 printk("does not load-balance\n");
4dcf6aff 5763 if (sd->parent)
3df0fc5b
PZ
5764 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5765 " has parent");
4dcf6aff 5766 return -1;
41c7ce9a
NP
5767 }
5768
333470ee
TH
5769 printk(KERN_CONT "span %*pbl level %s\n",
5770 cpumask_pr_args(sched_domain_span(sd)), sd->name);
4dcf6aff 5771
758b2cdc 5772 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5773 printk(KERN_ERR "ERROR: domain->span does not contain "
5774 "CPU%d\n", cpu);
4dcf6aff 5775 }
758b2cdc 5776 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5777 printk(KERN_ERR "ERROR: domain->groups does not contain"
5778 " CPU%d\n", cpu);
4dcf6aff 5779 }
1da177e4 5780
4dcf6aff 5781 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5782 do {
4dcf6aff 5783 if (!group) {
3df0fc5b
PZ
5784 printk("\n");
5785 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5786 break;
5787 }
5788
758b2cdc 5789 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5790 printk(KERN_CONT "\n");
5791 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5792 break;
5793 }
1da177e4 5794
cb83b629
PZ
5795 if (!(sd->flags & SD_OVERLAP) &&
5796 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5797 printk(KERN_CONT "\n");
5798 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5799 break;
5800 }
1da177e4 5801
758b2cdc 5802 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5803
333470ee
TH
5804 printk(KERN_CONT " %*pbl",
5805 cpumask_pr_args(sched_group_cpus(group)));
ca8ce3d0 5806 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
bf475ce0 5807 printk(KERN_CONT " (cpu_capacity = %lu)",
63b2ca30 5808 group->sgc->capacity);
381512cf 5809 }
1da177e4 5810
4dcf6aff
IM
5811 group = group->next;
5812 } while (group != sd->groups);
3df0fc5b 5813 printk(KERN_CONT "\n");
1da177e4 5814
758b2cdc 5815 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5816 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5817
758b2cdc
RR
5818 if (sd->parent &&
5819 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5820 printk(KERN_ERR "ERROR: parent span is not a superset "
5821 "of domain->span\n");
4dcf6aff
IM
5822 return 0;
5823}
1da177e4 5824
4dcf6aff
IM
5825static void sched_domain_debug(struct sched_domain *sd, int cpu)
5826{
5827 int level = 0;
1da177e4 5828
d039ac60 5829 if (!sched_debug_enabled)
f6630114
MT
5830 return;
5831
4dcf6aff
IM
5832 if (!sd) {
5833 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5834 return;
5835 }
1da177e4 5836
4dcf6aff
IM
5837 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5838
5839 for (;;) {
4cb98839 5840 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5841 break;
1da177e4
LT
5842 level++;
5843 sd = sd->parent;
33859f7f 5844 if (!sd)
4dcf6aff
IM
5845 break;
5846 }
1da177e4 5847}
6d6bc0ad 5848#else /* !CONFIG_SCHED_DEBUG */
a18a579e
PZ
5849
5850# define sched_debug_enabled 0
48f24c4d 5851# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5852static inline bool sched_debug(void)
5853{
5854 return false;
5855}
6d6bc0ad 5856#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5857
1a20ff27 5858static int sd_degenerate(struct sched_domain *sd)
245af2c7 5859{
758b2cdc 5860 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5861 return 1;
5862
5863 /* Following flags need at least 2 groups */
5864 if (sd->flags & (SD_LOAD_BALANCE |
5865 SD_BALANCE_NEWIDLE |
5866 SD_BALANCE_FORK |
89c4710e 5867 SD_BALANCE_EXEC |
5d4dfddd 5868 SD_SHARE_CPUCAPACITY |
1f6e6c7c 5869 SD_ASYM_CPUCAPACITY |
d77b3ed5
VG
5870 SD_SHARE_PKG_RESOURCES |
5871 SD_SHARE_POWERDOMAIN)) {
245af2c7
SS
5872 if (sd->groups != sd->groups->next)
5873 return 0;
5874 }
5875
5876 /* Following flags don't use groups */
c88d5910 5877 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5878 return 0;
5879
5880 return 1;
5881}
5882
48f24c4d
IM
5883static int
5884sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5885{
5886 unsigned long cflags = sd->flags, pflags = parent->flags;
5887
5888 if (sd_degenerate(parent))
5889 return 1;
5890
758b2cdc 5891 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5892 return 0;
5893
245af2c7
SS
5894 /* Flags needing groups don't count if only 1 group in parent */
5895 if (parent->groups == parent->groups->next) {
5896 pflags &= ~(SD_LOAD_BALANCE |
5897 SD_BALANCE_NEWIDLE |
5898 SD_BALANCE_FORK |
89c4710e 5899 SD_BALANCE_EXEC |
1f6e6c7c 5900 SD_ASYM_CPUCAPACITY |
5d4dfddd 5901 SD_SHARE_CPUCAPACITY |
10866e62 5902 SD_SHARE_PKG_RESOURCES |
d77b3ed5
VG
5903 SD_PREFER_SIBLING |
5904 SD_SHARE_POWERDOMAIN);
5436499e
KC
5905 if (nr_node_ids == 1)
5906 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5907 }
5908 if (~cflags & pflags)
5909 return 0;
5910
5911 return 1;
5912}
5913
dce840a0 5914static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5915{
dce840a0 5916 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5917
68e74568 5918 cpupri_cleanup(&rd->cpupri);
6bfd6d72 5919 cpudl_cleanup(&rd->cpudl);
1baca4ce 5920 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5921 free_cpumask_var(rd->rto_mask);
5922 free_cpumask_var(rd->online);
5923 free_cpumask_var(rd->span);
5924 kfree(rd);
5925}
5926
57d885fe
GH
5927static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5928{
a0490fa3 5929 struct root_domain *old_rd = NULL;
57d885fe 5930 unsigned long flags;
57d885fe 5931
05fa785c 5932 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5933
5934 if (rq->rd) {
a0490fa3 5935 old_rd = rq->rd;
57d885fe 5936
c6c4927b 5937 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5938 set_rq_offline(rq);
57d885fe 5939
c6c4927b 5940 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5941
a0490fa3 5942 /*
0515973f 5943 * If we dont want to free the old_rd yet then
a0490fa3
IM
5944 * set old_rd to NULL to skip the freeing later
5945 * in this function:
5946 */
5947 if (!atomic_dec_and_test(&old_rd->refcount))
5948 old_rd = NULL;
57d885fe
GH
5949 }
5950
5951 atomic_inc(&rd->refcount);
5952 rq->rd = rd;
5953
c6c4927b 5954 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5955 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5956 set_rq_online(rq);
57d885fe 5957
05fa785c 5958 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5959
5960 if (old_rd)
dce840a0 5961 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5962}
5963
68c38fc3 5964static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5965{
5966 memset(rd, 0, sizeof(*rd));
5967
8295c699 5968 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5969 goto out;
8295c699 5970 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5971 goto free_span;
8295c699 5972 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
c6c4927b 5973 goto free_online;
8295c699 5974 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
1baca4ce 5975 goto free_dlo_mask;
6e0534f2 5976
332ac17e 5977 init_dl_bw(&rd->dl_bw);
6bfd6d72
JL
5978 if (cpudl_init(&rd->cpudl) != 0)
5979 goto free_dlo_mask;
332ac17e 5980
68c38fc3 5981 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5982 goto free_rto_mask;
c6c4927b 5983 return 0;
6e0534f2 5984
68e74568
RR
5985free_rto_mask:
5986 free_cpumask_var(rd->rto_mask);
1baca4ce
JL
5987free_dlo_mask:
5988 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5989free_online:
5990 free_cpumask_var(rd->online);
5991free_span:
5992 free_cpumask_var(rd->span);
0c910d28 5993out:
c6c4927b 5994 return -ENOMEM;
57d885fe
GH
5995}
5996
029632fb
PZ
5997/*
5998 * By default the system creates a single root-domain with all cpus as
5999 * members (mimicking the global state we have today).
6000 */
6001struct root_domain def_root_domain;
6002
57d885fe
GH
6003static void init_defrootdomain(void)
6004{
68c38fc3 6005 init_rootdomain(&def_root_domain);
c6c4927b 6006
57d885fe
GH
6007 atomic_set(&def_root_domain.refcount, 1);
6008}
6009
dc938520 6010static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6011{
6012 struct root_domain *rd;
6013
6014 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6015 if (!rd)
6016 return NULL;
6017
68c38fc3 6018 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
6019 kfree(rd);
6020 return NULL;
6021 }
57d885fe
GH
6022
6023 return rd;
6024}
6025
63b2ca30 6026static void free_sched_groups(struct sched_group *sg, int free_sgc)
e3589f6c
PZ
6027{
6028 struct sched_group *tmp, *first;
6029
6030 if (!sg)
6031 return;
6032
6033 first = sg;
6034 do {
6035 tmp = sg->next;
6036
63b2ca30
NP
6037 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
6038 kfree(sg->sgc);
e3589f6c
PZ
6039
6040 kfree(sg);
6041 sg = tmp;
6042 } while (sg != first);
6043}
6044
16f3ef46 6045static void destroy_sched_domain(struct sched_domain *sd)
dce840a0 6046{
e3589f6c
PZ
6047 /*
6048 * If its an overlapping domain it has private groups, iterate and
6049 * nuke them all.
6050 */
6051 if (sd->flags & SD_OVERLAP) {
6052 free_sched_groups(sd->groups, 1);
6053 } else if (atomic_dec_and_test(&sd->groups->ref)) {
63b2ca30 6054 kfree(sd->groups->sgc);
dce840a0 6055 kfree(sd->groups);
9c3f75cb 6056 }
24fc7edb
PZ
6057 if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
6058 kfree(sd->shared);
dce840a0
PZ
6059 kfree(sd);
6060}
6061
16f3ef46 6062static void destroy_sched_domains_rcu(struct rcu_head *rcu)
dce840a0 6063{
16f3ef46
PZ
6064 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
6065
6066 while (sd) {
6067 struct sched_domain *parent = sd->parent;
6068 destroy_sched_domain(sd);
6069 sd = parent;
6070 }
dce840a0
PZ
6071}
6072
f39180ef 6073static void destroy_sched_domains(struct sched_domain *sd)
dce840a0 6074{
16f3ef46
PZ
6075 if (sd)
6076 call_rcu(&sd->rcu, destroy_sched_domains_rcu);
dce840a0
PZ
6077}
6078
518cd623
PZ
6079/*
6080 * Keep a special pointer to the highest sched_domain that has
6081 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
6082 * allows us to avoid some pointer chasing select_idle_sibling().
6083 *
6084 * Also keep a unique ID per domain (we use the first cpu number in
6085 * the cpumask of the domain), this allows us to quickly tell if
39be3501 6086 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
6087 */
6088DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 6089DEFINE_PER_CPU(int, sd_llc_size);
518cd623 6090DEFINE_PER_CPU(int, sd_llc_id);
0e369d75 6091DEFINE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
fb13c7ee 6092DEFINE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50 6093DEFINE_PER_CPU(struct sched_domain *, sd_asym);
518cd623
PZ
6094
6095static void update_top_cache_domain(int cpu)
6096{
0e369d75 6097 struct sched_domain_shared *sds = NULL;
518cd623
PZ
6098 struct sched_domain *sd;
6099 int id = cpu;
7d9ffa89 6100 int size = 1;
518cd623
PZ
6101
6102 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 6103 if (sd) {
518cd623 6104 id = cpumask_first(sched_domain_span(sd));
7d9ffa89 6105 size = cpumask_weight(sched_domain_span(sd));
0e369d75 6106 sds = sd->shared;
7d9ffa89 6107 }
518cd623
PZ
6108
6109 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 6110 per_cpu(sd_llc_size, cpu) = size;
518cd623 6111 per_cpu(sd_llc_id, cpu) = id;
0e369d75 6112 rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
fb13c7ee
MG
6113
6114 sd = lowest_flag_domain(cpu, SD_NUMA);
6115 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
37dc6b50
PM
6116
6117 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
6118 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
518cd623
PZ
6119}
6120
1da177e4 6121/*
0eab9146 6122 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6123 * hold the hotplug lock.
6124 */
0eab9146
IM
6125static void
6126cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6127{
70b97a7f 6128 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6129 struct sched_domain *tmp;
6130
6131 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6132 for (tmp = sd; tmp; ) {
245af2c7
SS
6133 struct sched_domain *parent = tmp->parent;
6134 if (!parent)
6135 break;
f29c9b1c 6136
1a848870 6137 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6138 tmp->parent = parent->parent;
1a848870
SS
6139 if (parent->parent)
6140 parent->parent->child = tmp;
10866e62
PZ
6141 /*
6142 * Transfer SD_PREFER_SIBLING down in case of a
6143 * degenerate parent; the spans match for this
6144 * so the property transfers.
6145 */
6146 if (parent->flags & SD_PREFER_SIBLING)
6147 tmp->flags |= SD_PREFER_SIBLING;
f39180ef 6148 destroy_sched_domain(parent);
f29c9b1c
LZ
6149 } else
6150 tmp = tmp->parent;
245af2c7
SS
6151 }
6152
1a848870 6153 if (sd && sd_degenerate(sd)) {
dce840a0 6154 tmp = sd;
245af2c7 6155 sd = sd->parent;
f39180ef 6156 destroy_sched_domain(tmp);
1a848870
SS
6157 if (sd)
6158 sd->child = NULL;
6159 }
1da177e4 6160
4cb98839 6161 sched_domain_debug(sd, cpu);
1da177e4 6162
57d885fe 6163 rq_attach_root(rq, rd);
dce840a0 6164 tmp = rq->sd;
674311d5 6165 rcu_assign_pointer(rq->sd, sd);
f39180ef 6166 destroy_sched_domains(tmp);
518cd623
PZ
6167
6168 update_top_cache_domain(cpu);
1da177e4
LT
6169}
6170
1da177e4
LT
6171/* Setup the mask of cpus configured for isolated domains */
6172static int __init isolated_cpu_setup(char *str)
6173{
a6e4491c
PB
6174 int ret;
6175
bdddd296 6176 alloc_bootmem_cpumask_var(&cpu_isolated_map);
a6e4491c
PB
6177 ret = cpulist_parse(str, cpu_isolated_map);
6178 if (ret) {
6179 pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
6180 return 0;
6181 }
1da177e4
LT
6182 return 1;
6183}
8927f494 6184__setup("isolcpus=", isolated_cpu_setup);
1da177e4 6185
49a02c51 6186struct s_data {
21d42ccf 6187 struct sched_domain ** __percpu sd;
49a02c51
AH
6188 struct root_domain *rd;
6189};
6190
2109b99e 6191enum s_alloc {
2109b99e 6192 sa_rootdomain,
21d42ccf 6193 sa_sd,
dce840a0 6194 sa_sd_storage,
2109b99e
AH
6195 sa_none,
6196};
6197
c1174876
PZ
6198/*
6199 * Build an iteration mask that can exclude certain CPUs from the upwards
6200 * domain traversal.
6201 *
6202 * Asymmetric node setups can result in situations where the domain tree is of
6203 * unequal depth, make sure to skip domains that already cover the entire
6204 * range.
6205 *
6206 * In that case build_sched_domains() will have terminated the iteration early
6207 * and our sibling sd spans will be empty. Domains should always include the
6208 * cpu they're built on, so check that.
6209 *
6210 */
6211static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6212{
6213 const struct cpumask *span = sched_domain_span(sd);
6214 struct sd_data *sdd = sd->private;
6215 struct sched_domain *sibling;
6216 int i;
6217
6218 for_each_cpu(i, span) {
6219 sibling = *per_cpu_ptr(sdd->sd, i);
6220 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6221 continue;
6222
6223 cpumask_set_cpu(i, sched_group_mask(sg));
6224 }
6225}
6226
6227/*
6228 * Return the canonical balance cpu for this group, this is the first cpu
6229 * of this group that's also in the iteration mask.
6230 */
6231int group_balance_cpu(struct sched_group *sg)
6232{
6233 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6234}
6235
e3589f6c
PZ
6236static int
6237build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6238{
6239 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6240 const struct cpumask *span = sched_domain_span(sd);
6241 struct cpumask *covered = sched_domains_tmpmask;
6242 struct sd_data *sdd = sd->private;
aaecac4a 6243 struct sched_domain *sibling;
e3589f6c
PZ
6244 int i;
6245
6246 cpumask_clear(covered);
6247
6248 for_each_cpu(i, span) {
6249 struct cpumask *sg_span;
6250
6251 if (cpumask_test_cpu(i, covered))
6252 continue;
6253
aaecac4a 6254 sibling = *per_cpu_ptr(sdd->sd, i);
c1174876
PZ
6255
6256 /* See the comment near build_group_mask(). */
aaecac4a 6257 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
c1174876
PZ
6258 continue;
6259
e3589f6c 6260 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 6261 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
6262
6263 if (!sg)
6264 goto fail;
6265
6266 sg_span = sched_group_cpus(sg);
aaecac4a
ZZ
6267 if (sibling->child)
6268 cpumask_copy(sg_span, sched_domain_span(sibling->child));
6269 else
e3589f6c
PZ
6270 cpumask_set_cpu(i, sg_span);
6271
6272 cpumask_or(covered, covered, sg_span);
6273
63b2ca30
NP
6274 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6275 if (atomic_inc_return(&sg->sgc->ref) == 1)
c1174876
PZ
6276 build_group_mask(sd, sg);
6277
c3decf0d 6278 /*
63b2ca30 6279 * Initialize sgc->capacity such that even if we mess up the
c3decf0d
PZ
6280 * domains and no possible iteration will get us here, we won't
6281 * die on a /0 trap.
6282 */
ca8ce3d0 6283 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
bf475ce0 6284 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
e3589f6c 6285
c1174876
PZ
6286 /*
6287 * Make sure the first group of this domain contains the
6288 * canonical balance cpu. Otherwise the sched_domain iteration
6289 * breaks. See update_sg_lb_stats().
6290 */
74a5ce20 6291 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 6292 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
6293 groups = sg;
6294
6295 if (!first)
6296 first = sg;
6297 if (last)
6298 last->next = sg;
6299 last = sg;
6300 last->next = first;
6301 }
6302 sd->groups = groups;
6303
6304 return 0;
6305
6306fail:
6307 free_sched_groups(first, 0);
6308
6309 return -ENOMEM;
6310}
6311
dce840a0 6312static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 6313{
dce840a0
PZ
6314 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6315 struct sched_domain *child = sd->child;
1da177e4 6316
dce840a0
PZ
6317 if (child)
6318 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 6319
9c3f75cb 6320 if (sg) {
dce840a0 6321 *sg = *per_cpu_ptr(sdd->sg, cpu);
63b2ca30
NP
6322 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6323 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
9c3f75cb 6324 }
dce840a0
PZ
6325
6326 return cpu;
1e9f28fa 6327}
1e9f28fa 6328
01a08546 6329/*
dce840a0
PZ
6330 * build_sched_groups will build a circular linked list of the groups
6331 * covered by the given span, and will set each group's ->cpumask correctly,
ced549fa 6332 * and ->cpu_capacity to 0.
e3589f6c
PZ
6333 *
6334 * Assumes the sched_domain tree is fully constructed
01a08546 6335 */
e3589f6c
PZ
6336static int
6337build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 6338{
dce840a0
PZ
6339 struct sched_group *first = NULL, *last = NULL;
6340 struct sd_data *sdd = sd->private;
6341 const struct cpumask *span = sched_domain_span(sd);
f96225fd 6342 struct cpumask *covered;
dce840a0 6343 int i;
9c1cfda2 6344
e3589f6c
PZ
6345 get_group(cpu, sdd, &sd->groups);
6346 atomic_inc(&sd->groups->ref);
6347
0936629f 6348 if (cpu != cpumask_first(span))
e3589f6c
PZ
6349 return 0;
6350
f96225fd
PZ
6351 lockdep_assert_held(&sched_domains_mutex);
6352 covered = sched_domains_tmpmask;
6353
dce840a0 6354 cpumask_clear(covered);
6711cab4 6355
dce840a0
PZ
6356 for_each_cpu(i, span) {
6357 struct sched_group *sg;
cd08e923 6358 int group, j;
6711cab4 6359
dce840a0
PZ
6360 if (cpumask_test_cpu(i, covered))
6361 continue;
6711cab4 6362
cd08e923 6363 group = get_group(i, sdd, &sg);
c1174876 6364 cpumask_setall(sched_group_mask(sg));
0601a88d 6365
dce840a0
PZ
6366 for_each_cpu(j, span) {
6367 if (get_group(j, sdd, NULL) != group)
6368 continue;
0601a88d 6369
dce840a0
PZ
6370 cpumask_set_cpu(j, covered);
6371 cpumask_set_cpu(j, sched_group_cpus(sg));
6372 }
0601a88d 6373
dce840a0
PZ
6374 if (!first)
6375 first = sg;
6376 if (last)
6377 last->next = sg;
6378 last = sg;
6379 }
6380 last->next = first;
e3589f6c
PZ
6381
6382 return 0;
0601a88d 6383}
51888ca2 6384
89c4710e 6385/*
63b2ca30 6386 * Initialize sched groups cpu_capacity.
89c4710e 6387 *
63b2ca30 6388 * cpu_capacity indicates the capacity of sched group, which is used while
89c4710e 6389 * distributing the load between different sched groups in a sched domain.
63b2ca30
NP
6390 * Typically cpu_capacity for all the groups in a sched domain will be same
6391 * unless there are asymmetries in the topology. If there are asymmetries,
6392 * group having more cpu_capacity will pickup more load compared to the
6393 * group having less cpu_capacity.
89c4710e 6394 */
63b2ca30 6395static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
89c4710e 6396{
e3589f6c 6397 struct sched_group *sg = sd->groups;
89c4710e 6398
94c95ba6 6399 WARN_ON(!sg);
e3589f6c
PZ
6400
6401 do {
afe06efd
TC
6402 int cpu, max_cpu = -1;
6403
e3589f6c 6404 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
afe06efd
TC
6405
6406 if (!(sd->flags & SD_ASYM_PACKING))
6407 goto next;
6408
6409 for_each_cpu(cpu, sched_group_cpus(sg)) {
6410 if (max_cpu < 0)
6411 max_cpu = cpu;
6412 else if (sched_asym_prefer(cpu, max_cpu))
6413 max_cpu = cpu;
6414 }
6415 sg->asym_prefer_cpu = max_cpu;
6416
6417next:
e3589f6c
PZ
6418 sg = sg->next;
6419 } while (sg != sd->groups);
89c4710e 6420
c1174876 6421 if (cpu != group_balance_cpu(sg))
e3589f6c 6422 return;
aae6d3dd 6423
63b2ca30 6424 update_group_capacity(sd, cpu);
89c4710e
SS
6425}
6426
7c16ec58
MT
6427/*
6428 * Initializers for schedule domains
6429 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6430 */
6431
1d3504fc 6432static int default_relax_domain_level = -1;
60495e77 6433int sched_domain_level_max;
1d3504fc
HS
6434
6435static int __init setup_relax_domain_level(char *str)
6436{
a841f8ce
DS
6437 if (kstrtoint(str, 0, &default_relax_domain_level))
6438 pr_warn("Unable to set relax_domain_level\n");
30e0e178 6439
1d3504fc
HS
6440 return 1;
6441}
6442__setup("relax_domain_level=", setup_relax_domain_level);
6443
6444static void set_domain_attribute(struct sched_domain *sd,
6445 struct sched_domain_attr *attr)
6446{
6447 int request;
6448
6449 if (!attr || attr->relax_domain_level < 0) {
6450 if (default_relax_domain_level < 0)
6451 return;
6452 else
6453 request = default_relax_domain_level;
6454 } else
6455 request = attr->relax_domain_level;
6456 if (request < sd->level) {
6457 /* turn off idle balance on this domain */
c88d5910 6458 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6459 } else {
6460 /* turn on idle balance on this domain */
c88d5910 6461 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6462 }
6463}
6464
54ab4ff4
PZ
6465static void __sdt_free(const struct cpumask *cpu_map);
6466static int __sdt_alloc(const struct cpumask *cpu_map);
6467
2109b99e
AH
6468static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6469 const struct cpumask *cpu_map)
6470{
6471 switch (what) {
2109b99e 6472 case sa_rootdomain:
822ff793
PZ
6473 if (!atomic_read(&d->rd->refcount))
6474 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
6475 case sa_sd:
6476 free_percpu(d->sd); /* fall through */
dce840a0 6477 case sa_sd_storage:
54ab4ff4 6478 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
6479 case sa_none:
6480 break;
6481 }
6482}
3404c8d9 6483
2109b99e
AH
6484static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6485 const struct cpumask *cpu_map)
6486{
dce840a0
PZ
6487 memset(d, 0, sizeof(*d));
6488
54ab4ff4
PZ
6489 if (__sdt_alloc(cpu_map))
6490 return sa_sd_storage;
dce840a0
PZ
6491 d->sd = alloc_percpu(struct sched_domain *);
6492 if (!d->sd)
6493 return sa_sd_storage;
2109b99e 6494 d->rd = alloc_rootdomain();
dce840a0 6495 if (!d->rd)
21d42ccf 6496 return sa_sd;
2109b99e
AH
6497 return sa_rootdomain;
6498}
57d885fe 6499
dce840a0
PZ
6500/*
6501 * NULL the sd_data elements we've used to build the sched_domain and
6502 * sched_group structure so that the subsequent __free_domain_allocs()
6503 * will not free the data we're using.
6504 */
6505static void claim_allocations(int cpu, struct sched_domain *sd)
6506{
6507 struct sd_data *sdd = sd->private;
dce840a0
PZ
6508
6509 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6510 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6511
24fc7edb
PZ
6512 if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
6513 *per_cpu_ptr(sdd->sds, cpu) = NULL;
6514
e3589f6c 6515 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 6516 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c 6517
63b2ca30
NP
6518 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6519 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
dce840a0
PZ
6520}
6521
cb83b629 6522#ifdef CONFIG_NUMA
cb83b629 6523static int sched_domains_numa_levels;
e3fe70b1 6524enum numa_topology_type sched_numa_topology_type;
cb83b629 6525static int *sched_domains_numa_distance;
9942f79b 6526int sched_max_numa_distance;
cb83b629
PZ
6527static struct cpumask ***sched_domains_numa_masks;
6528static int sched_domains_curr_level;
143e1e28 6529#endif
cb83b629 6530
143e1e28
VG
6531/*
6532 * SD_flags allowed in topology descriptions.
6533 *
94f438c8
PZ
6534 * These flags are purely descriptive of the topology and do not prescribe
6535 * behaviour. Behaviour is artificial and mapped in the below sd_init()
6536 * function:
143e1e28 6537 *
94f438c8
PZ
6538 * SD_SHARE_CPUCAPACITY - describes SMT topologies
6539 * SD_SHARE_PKG_RESOURCES - describes shared caches
6540 * SD_NUMA - describes NUMA topologies
6541 * SD_SHARE_POWERDOMAIN - describes shared power domain
1f6e6c7c 6542 * SD_ASYM_CPUCAPACITY - describes mixed capacity topologies
94f438c8
PZ
6543 *
6544 * Odd one out, which beside describing the topology has a quirk also
6545 * prescribes the desired behaviour that goes along with it:
143e1e28 6546 *
94f438c8 6547 * SD_ASYM_PACKING - describes SMT quirks
143e1e28
VG
6548 */
6549#define TOPOLOGY_SD_FLAGS \
5d4dfddd 6550 (SD_SHARE_CPUCAPACITY | \
143e1e28
VG
6551 SD_SHARE_PKG_RESOURCES | \
6552 SD_NUMA | \
d77b3ed5 6553 SD_ASYM_PACKING | \
1f6e6c7c 6554 SD_ASYM_CPUCAPACITY | \
d77b3ed5 6555 SD_SHARE_POWERDOMAIN)
cb83b629
PZ
6556
6557static struct sched_domain *
3676b13e 6558sd_init(struct sched_domain_topology_level *tl,
24fc7edb 6559 const struct cpumask *cpu_map,
3676b13e 6560 struct sched_domain *child, int cpu)
cb83b629 6561{
24fc7edb
PZ
6562 struct sd_data *sdd = &tl->data;
6563 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6564 int sd_id, sd_weight, sd_flags = 0;
143e1e28
VG
6565
6566#ifdef CONFIG_NUMA
6567 /*
6568 * Ugly hack to pass state to sd_numa_mask()...
6569 */
6570 sched_domains_curr_level = tl->numa_level;
6571#endif
6572
6573 sd_weight = cpumask_weight(tl->mask(cpu));
6574
6575 if (tl->sd_flags)
6576 sd_flags = (*tl->sd_flags)();
6577 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6578 "wrong sd_flags in topology description\n"))
6579 sd_flags &= ~TOPOLOGY_SD_FLAGS;
cb83b629
PZ
6580
6581 *sd = (struct sched_domain){
6582 .min_interval = sd_weight,
6583 .max_interval = 2*sd_weight,
6584 .busy_factor = 32,
870a0bb5 6585 .imbalance_pct = 125,
143e1e28
VG
6586
6587 .cache_nice_tries = 0,
6588 .busy_idx = 0,
6589 .idle_idx = 0,
cb83b629
PZ
6590 .newidle_idx = 0,
6591 .wake_idx = 0,
6592 .forkexec_idx = 0,
6593
6594 .flags = 1*SD_LOAD_BALANCE
6595 | 1*SD_BALANCE_NEWIDLE
143e1e28
VG
6596 | 1*SD_BALANCE_EXEC
6597 | 1*SD_BALANCE_FORK
cb83b629 6598 | 0*SD_BALANCE_WAKE
143e1e28 6599 | 1*SD_WAKE_AFFINE
5d4dfddd 6600 | 0*SD_SHARE_CPUCAPACITY
cb83b629 6601 | 0*SD_SHARE_PKG_RESOURCES
143e1e28 6602 | 0*SD_SERIALIZE
cb83b629 6603 | 0*SD_PREFER_SIBLING
143e1e28
VG
6604 | 0*SD_NUMA
6605 | sd_flags
cb83b629 6606 ,
143e1e28 6607
cb83b629
PZ
6608 .last_balance = jiffies,
6609 .balance_interval = sd_weight,
143e1e28 6610 .smt_gain = 0,
2b4cfe64
JL
6611 .max_newidle_lb_cost = 0,
6612 .next_decay_max_lb_cost = jiffies,
3676b13e 6613 .child = child,
143e1e28
VG
6614#ifdef CONFIG_SCHED_DEBUG
6615 .name = tl->name,
6616#endif
cb83b629 6617 };
cb83b629 6618
24fc7edb
PZ
6619 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6620 sd_id = cpumask_first(sched_domain_span(sd));
6621
cb83b629 6622 /*
143e1e28 6623 * Convert topological properties into behaviour.
cb83b629 6624 */
143e1e28 6625
9ee1cda5
MR
6626 if (sd->flags & SD_ASYM_CPUCAPACITY) {
6627 struct sched_domain *t = sd;
6628
6629 for_each_lower_domain(t)
6630 t->flags |= SD_BALANCE_WAKE;
6631 }
6632
5d4dfddd 6633 if (sd->flags & SD_SHARE_CPUCAPACITY) {
caff37ef 6634 sd->flags |= SD_PREFER_SIBLING;
143e1e28
VG
6635 sd->imbalance_pct = 110;
6636 sd->smt_gain = 1178; /* ~15% */
143e1e28
VG
6637
6638 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6639 sd->imbalance_pct = 117;
6640 sd->cache_nice_tries = 1;
6641 sd->busy_idx = 2;
6642
6643#ifdef CONFIG_NUMA
6644 } else if (sd->flags & SD_NUMA) {
6645 sd->cache_nice_tries = 2;
6646 sd->busy_idx = 3;
6647 sd->idle_idx = 2;
6648
6649 sd->flags |= SD_SERIALIZE;
6650 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6651 sd->flags &= ~(SD_BALANCE_EXEC |
6652 SD_BALANCE_FORK |
6653 SD_WAKE_AFFINE);
6654 }
6655
6656#endif
6657 } else {
6658 sd->flags |= SD_PREFER_SIBLING;
6659 sd->cache_nice_tries = 1;
6660 sd->busy_idx = 2;
6661 sd->idle_idx = 1;
6662 }
6663
24fc7edb
PZ
6664 /*
6665 * For all levels sharing cache; connect a sched_domain_shared
6666 * instance.
6667 */
6668 if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6669 sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
6670 atomic_inc(&sd->shared->ref);
0e369d75 6671 atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
24fc7edb
PZ
6672 }
6673
6674 sd->private = sdd;
cb83b629
PZ
6675
6676 return sd;
6677}
6678
143e1e28
VG
6679/*
6680 * Topology list, bottom-up.
6681 */
6682static struct sched_domain_topology_level default_topology[] = {
6683#ifdef CONFIG_SCHED_SMT
6684 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6685#endif
6686#ifdef CONFIG_SCHED_MC
6687 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
143e1e28
VG
6688#endif
6689 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6690 { NULL, },
6691};
6692
c6e1e7b5
JG
6693static struct sched_domain_topology_level *sched_domain_topology =
6694 default_topology;
143e1e28
VG
6695
6696#define for_each_sd_topology(tl) \
6697 for (tl = sched_domain_topology; tl->mask; tl++)
6698
6699void set_sched_topology(struct sched_domain_topology_level *tl)
6700{
8f37961c
TC
6701 if (WARN_ON_ONCE(sched_smp_initialized))
6702 return;
6703
143e1e28
VG
6704 sched_domain_topology = tl;
6705}
6706
6707#ifdef CONFIG_NUMA
6708
cb83b629
PZ
6709static const struct cpumask *sd_numa_mask(int cpu)
6710{
6711 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6712}
6713
d039ac60
PZ
6714static void sched_numa_warn(const char *str)
6715{
6716 static int done = false;
6717 int i,j;
6718
6719 if (done)
6720 return;
6721
6722 done = true;
6723
6724 printk(KERN_WARNING "ERROR: %s\n\n", str);
6725
6726 for (i = 0; i < nr_node_ids; i++) {
6727 printk(KERN_WARNING " ");
6728 for (j = 0; j < nr_node_ids; j++)
6729 printk(KERN_CONT "%02d ", node_distance(i,j));
6730 printk(KERN_CONT "\n");
6731 }
6732 printk(KERN_WARNING "\n");
6733}
6734
9942f79b 6735bool find_numa_distance(int distance)
d039ac60
PZ
6736{
6737 int i;
6738
6739 if (distance == node_distance(0, 0))
6740 return true;
6741
6742 for (i = 0; i < sched_domains_numa_levels; i++) {
6743 if (sched_domains_numa_distance[i] == distance)
6744 return true;
6745 }
6746
6747 return false;
6748}
6749
e3fe70b1
RR
6750/*
6751 * A system can have three types of NUMA topology:
6752 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6753 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6754 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6755 *
6756 * The difference between a glueless mesh topology and a backplane
6757 * topology lies in whether communication between not directly
6758 * connected nodes goes through intermediary nodes (where programs
6759 * could run), or through backplane controllers. This affects
6760 * placement of programs.
6761 *
6762 * The type of topology can be discerned with the following tests:
6763 * - If the maximum distance between any nodes is 1 hop, the system
6764 * is directly connected.
6765 * - If for two nodes A and B, located N > 1 hops away from each other,
6766 * there is an intermediary node C, which is < N hops away from both
6767 * nodes A and B, the system is a glueless mesh.
6768 */
6769static void init_numa_topology_type(void)
6770{
6771 int a, b, c, n;
6772
6773 n = sched_max_numa_distance;
6774
e237882b 6775 if (sched_domains_numa_levels <= 1) {
e3fe70b1 6776 sched_numa_topology_type = NUMA_DIRECT;
e237882b
AG
6777 return;
6778 }
e3fe70b1
RR
6779
6780 for_each_online_node(a) {
6781 for_each_online_node(b) {
6782 /* Find two nodes furthest removed from each other. */
6783 if (node_distance(a, b) < n)
6784 continue;
6785
6786 /* Is there an intermediary node between a and b? */
6787 for_each_online_node(c) {
6788 if (node_distance(a, c) < n &&
6789 node_distance(b, c) < n) {
6790 sched_numa_topology_type =
6791 NUMA_GLUELESS_MESH;
6792 return;
6793 }
6794 }
6795
6796 sched_numa_topology_type = NUMA_BACKPLANE;
6797 return;
6798 }
6799 }
6800}
6801
cb83b629
PZ
6802static void sched_init_numa(void)
6803{
6804 int next_distance, curr_distance = node_distance(0, 0);
6805 struct sched_domain_topology_level *tl;
6806 int level = 0;
6807 int i, j, k;
6808
cb83b629
PZ
6809 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6810 if (!sched_domains_numa_distance)
6811 return;
6812
6813 /*
6814 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6815 * unique distances in the node_distance() table.
6816 *
6817 * Assumes node_distance(0,j) includes all distances in
6818 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6819 */
6820 next_distance = curr_distance;
6821 for (i = 0; i < nr_node_ids; i++) {
6822 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6823 for (k = 0; k < nr_node_ids; k++) {
6824 int distance = node_distance(i, k);
6825
6826 if (distance > curr_distance &&
6827 (distance < next_distance ||
6828 next_distance == curr_distance))
6829 next_distance = distance;
6830
6831 /*
6832 * While not a strong assumption it would be nice to know
6833 * about cases where if node A is connected to B, B is not
6834 * equally connected to A.
6835 */
6836 if (sched_debug() && node_distance(k, i) != distance)
6837 sched_numa_warn("Node-distance not symmetric");
6838
6839 if (sched_debug() && i && !find_numa_distance(distance))
6840 sched_numa_warn("Node-0 not representative");
6841 }
6842 if (next_distance != curr_distance) {
6843 sched_domains_numa_distance[level++] = next_distance;
6844 sched_domains_numa_levels = level;
6845 curr_distance = next_distance;
6846 } else break;
cb83b629 6847 }
d039ac60
PZ
6848
6849 /*
6850 * In case of sched_debug() we verify the above assumption.
6851 */
6852 if (!sched_debug())
6853 break;
cb83b629 6854 }
c123588b
AR
6855
6856 if (!level)
6857 return;
6858
cb83b629
PZ
6859 /*
6860 * 'level' contains the number of unique distances, excluding the
6861 * identity distance node_distance(i,i).
6862 *
28b4a521 6863 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
6864 * numbers.
6865 */
6866
5f7865f3
TC
6867 /*
6868 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6869 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6870 * the array will contain less then 'level' members. This could be
6871 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6872 * in other functions.
6873 *
6874 * We reset it to 'level' at the end of this function.
6875 */
6876 sched_domains_numa_levels = 0;
6877
cb83b629
PZ
6878 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6879 if (!sched_domains_numa_masks)
6880 return;
6881
6882 /*
6883 * Now for each level, construct a mask per node which contains all
6884 * cpus of nodes that are that many hops away from us.
6885 */
6886 for (i = 0; i < level; i++) {
6887 sched_domains_numa_masks[i] =
6888 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6889 if (!sched_domains_numa_masks[i])
6890 return;
6891
6892 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6893 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6894 if (!mask)
6895 return;
6896
6897 sched_domains_numa_masks[i][j] = mask;
6898
9c03ee14 6899 for_each_node(k) {
dd7d8634 6900 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6901 continue;
6902
6903 cpumask_or(mask, mask, cpumask_of_node(k));
6904 }
6905 }
6906 }
6907
143e1e28
VG
6908 /* Compute default topology size */
6909 for (i = 0; sched_domain_topology[i].mask; i++);
6910
c515db8c 6911 tl = kzalloc((i + level + 1) *
cb83b629
PZ
6912 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6913 if (!tl)
6914 return;
6915
6916 /*
6917 * Copy the default topology bits..
6918 */
143e1e28
VG
6919 for (i = 0; sched_domain_topology[i].mask; i++)
6920 tl[i] = sched_domain_topology[i];
cb83b629
PZ
6921
6922 /*
6923 * .. and append 'j' levels of NUMA goodness.
6924 */
6925 for (j = 0; j < level; i++, j++) {
6926 tl[i] = (struct sched_domain_topology_level){
cb83b629 6927 .mask = sd_numa_mask,
143e1e28 6928 .sd_flags = cpu_numa_flags,
cb83b629
PZ
6929 .flags = SDTL_OVERLAP,
6930 .numa_level = j,
143e1e28 6931 SD_INIT_NAME(NUMA)
cb83b629
PZ
6932 };
6933 }
6934
6935 sched_domain_topology = tl;
5f7865f3
TC
6936
6937 sched_domains_numa_levels = level;
9942f79b 6938 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
e3fe70b1
RR
6939
6940 init_numa_topology_type();
cb83b629 6941}
301a5cba 6942
135fb3e1 6943static void sched_domains_numa_masks_set(unsigned int cpu)
301a5cba 6944{
301a5cba 6945 int node = cpu_to_node(cpu);
135fb3e1 6946 int i, j;
301a5cba
TC
6947
6948 for (i = 0; i < sched_domains_numa_levels; i++) {
6949 for (j = 0; j < nr_node_ids; j++) {
6950 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6951 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6952 }
6953 }
6954}
6955
135fb3e1 6956static void sched_domains_numa_masks_clear(unsigned int cpu)
301a5cba
TC
6957{
6958 int i, j;
135fb3e1 6959
301a5cba
TC
6960 for (i = 0; i < sched_domains_numa_levels; i++) {
6961 for (j = 0; j < nr_node_ids; j++)
6962 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6963 }
6964}
6965
cb83b629 6966#else
135fb3e1
TG
6967static inline void sched_init_numa(void) { }
6968static void sched_domains_numa_masks_set(unsigned int cpu) { }
6969static void sched_domains_numa_masks_clear(unsigned int cpu) { }
cb83b629
PZ
6970#endif /* CONFIG_NUMA */
6971
54ab4ff4
PZ
6972static int __sdt_alloc(const struct cpumask *cpu_map)
6973{
6974 struct sched_domain_topology_level *tl;
6975 int j;
6976
27723a68 6977 for_each_sd_topology(tl) {
54ab4ff4
PZ
6978 struct sd_data *sdd = &tl->data;
6979
6980 sdd->sd = alloc_percpu(struct sched_domain *);
6981 if (!sdd->sd)
6982 return -ENOMEM;
6983
24fc7edb
PZ
6984 sdd->sds = alloc_percpu(struct sched_domain_shared *);
6985 if (!sdd->sds)
6986 return -ENOMEM;
6987
54ab4ff4
PZ
6988 sdd->sg = alloc_percpu(struct sched_group *);
6989 if (!sdd->sg)
6990 return -ENOMEM;
6991
63b2ca30
NP
6992 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6993 if (!sdd->sgc)
9c3f75cb
PZ
6994 return -ENOMEM;
6995
54ab4ff4
PZ
6996 for_each_cpu(j, cpu_map) {
6997 struct sched_domain *sd;
24fc7edb 6998 struct sched_domain_shared *sds;
54ab4ff4 6999 struct sched_group *sg;
63b2ca30 7000 struct sched_group_capacity *sgc;
54ab4ff4 7001
5cc389bc 7002 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
54ab4ff4
PZ
7003 GFP_KERNEL, cpu_to_node(j));
7004 if (!sd)
7005 return -ENOMEM;
7006
7007 *per_cpu_ptr(sdd->sd, j) = sd;
7008
24fc7edb
PZ
7009 sds = kzalloc_node(sizeof(struct sched_domain_shared),
7010 GFP_KERNEL, cpu_to_node(j));
7011 if (!sds)
7012 return -ENOMEM;
7013
7014 *per_cpu_ptr(sdd->sds, j) = sds;
7015
54ab4ff4
PZ
7016 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
7017 GFP_KERNEL, cpu_to_node(j));
7018 if (!sg)
7019 return -ENOMEM;
7020
30b4e9eb
IM
7021 sg->next = sg;
7022
54ab4ff4 7023 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 7024
63b2ca30 7025 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
9c3f75cb 7026 GFP_KERNEL, cpu_to_node(j));
63b2ca30 7027 if (!sgc)
9c3f75cb
PZ
7028 return -ENOMEM;
7029
63b2ca30 7030 *per_cpu_ptr(sdd->sgc, j) = sgc;
54ab4ff4
PZ
7031 }
7032 }
7033
7034 return 0;
7035}
7036
7037static void __sdt_free(const struct cpumask *cpu_map)
7038{
7039 struct sched_domain_topology_level *tl;
7040 int j;
7041
27723a68 7042 for_each_sd_topology(tl) {
54ab4ff4
PZ
7043 struct sd_data *sdd = &tl->data;
7044
7045 for_each_cpu(j, cpu_map) {
fb2cf2c6 7046 struct sched_domain *sd;
7047
7048 if (sdd->sd) {
7049 sd = *per_cpu_ptr(sdd->sd, j);
7050 if (sd && (sd->flags & SD_OVERLAP))
7051 free_sched_groups(sd->groups, 0);
7052 kfree(*per_cpu_ptr(sdd->sd, j));
7053 }
7054
24fc7edb
PZ
7055 if (sdd->sds)
7056 kfree(*per_cpu_ptr(sdd->sds, j));
fb2cf2c6 7057 if (sdd->sg)
7058 kfree(*per_cpu_ptr(sdd->sg, j));
63b2ca30
NP
7059 if (sdd->sgc)
7060 kfree(*per_cpu_ptr(sdd->sgc, j));
54ab4ff4
PZ
7061 }
7062 free_percpu(sdd->sd);
fb2cf2c6 7063 sdd->sd = NULL;
24fc7edb
PZ
7064 free_percpu(sdd->sds);
7065 sdd->sds = NULL;
54ab4ff4 7066 free_percpu(sdd->sg);
fb2cf2c6 7067 sdd->sg = NULL;
63b2ca30
NP
7068 free_percpu(sdd->sgc);
7069 sdd->sgc = NULL;
54ab4ff4
PZ
7070 }
7071}
7072
2c402dc3 7073struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
7074 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7075 struct sched_domain *child, int cpu)
2c402dc3 7076{
24fc7edb 7077 struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu);
2c402dc3 7078
60495e77
PZ
7079 if (child) {
7080 sd->level = child->level + 1;
7081 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 7082 child->parent = sd;
6ae72dff
PZ
7083
7084 if (!cpumask_subset(sched_domain_span(child),
7085 sched_domain_span(sd))) {
7086 pr_err("BUG: arch topology borken\n");
7087#ifdef CONFIG_SCHED_DEBUG
7088 pr_err(" the %s domain not a subset of the %s domain\n",
7089 child->name, sd->name);
7090#endif
7091 /* Fixup, ensure @sd has at least @child cpus. */
7092 cpumask_or(sched_domain_span(sd),
7093 sched_domain_span(sd),
7094 sched_domain_span(child));
7095 }
7096
60495e77 7097 }
a841f8ce 7098 set_domain_attribute(sd, attr);
2c402dc3
PZ
7099
7100 return sd;
7101}
7102
2109b99e
AH
7103/*
7104 * Build sched domains for a given set of cpus and attach the sched domains
7105 * to the individual cpus
7106 */
dce840a0
PZ
7107static int build_sched_domains(const struct cpumask *cpu_map,
7108 struct sched_domain_attr *attr)
2109b99e 7109{
1c632169 7110 enum s_alloc alloc_state;
dce840a0 7111 struct sched_domain *sd;
2109b99e 7112 struct s_data d;
cd92bfd3 7113 struct rq *rq = NULL;
822ff793 7114 int i, ret = -ENOMEM;
9c1cfda2 7115
2109b99e
AH
7116 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7117 if (alloc_state != sa_rootdomain)
7118 goto error;
9c1cfda2 7119
dce840a0 7120 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 7121 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
7122 struct sched_domain_topology_level *tl;
7123
3bd65a80 7124 sd = NULL;
27723a68 7125 for_each_sd_topology(tl) {
4a850cbe 7126 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
7127 if (tl == sched_domain_topology)
7128 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
7129 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
7130 sd->flags |= SD_OVERLAP;
d110235d
PZ
7131 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
7132 break;
e3589f6c 7133 }
dce840a0
PZ
7134 }
7135
7136 /* Build the groups for the domains */
7137 for_each_cpu(i, cpu_map) {
7138 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7139 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
7140 if (sd->flags & SD_OVERLAP) {
7141 if (build_overlap_sched_groups(sd, i))
7142 goto error;
7143 } else {
7144 if (build_sched_groups(sd, i))
7145 goto error;
7146 }
1cf51902 7147 }
a06dadbe 7148 }
9c1cfda2 7149
ced549fa 7150 /* Calculate CPU capacity for physical packages and nodes */
a9c9a9b6
PZ
7151 for (i = nr_cpumask_bits-1; i >= 0; i--) {
7152 if (!cpumask_test_cpu(i, cpu_map))
7153 continue;
9c1cfda2 7154
dce840a0
PZ
7155 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7156 claim_allocations(i, sd);
63b2ca30 7157 init_sched_groups_capacity(i, sd);
dce840a0 7158 }
f712c0c7 7159 }
9c1cfda2 7160
1da177e4 7161 /* Attach the domains */
dce840a0 7162 rcu_read_lock();
abcd083a 7163 for_each_cpu(i, cpu_map) {
cd92bfd3 7164 rq = cpu_rq(i);
21d42ccf 7165 sd = *per_cpu_ptr(d.sd, i);
cd92bfd3
DE
7166
7167 /* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
7168 if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
7169 WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
7170
49a02c51 7171 cpu_attach_domain(sd, d.rd, i);
1da177e4 7172 }
dce840a0 7173 rcu_read_unlock();
51888ca2 7174
a18a579e 7175 if (rq && sched_debug_enabled) {
cd92bfd3
DE
7176 pr_info("span: %*pbl (max cpu_capacity = %lu)\n",
7177 cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
7178 }
7179
822ff793 7180 ret = 0;
51888ca2 7181error:
2109b99e 7182 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 7183 return ret;
1da177e4 7184}
029190c5 7185
acc3f5d7 7186static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 7187static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7188static struct sched_domain_attr *dattr_cur;
7189 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7190
7191/*
7192 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7193 * cpumask) fails, then fallback to a single sched domain,
7194 * as determined by the single cpumask fallback_doms.
029190c5 7195 */
4212823f 7196static cpumask_var_t fallback_doms;
029190c5 7197
ee79d1bd
HC
7198/*
7199 * arch_update_cpu_topology lets virtualized architectures update the
7200 * cpu core maps. It is supposed to return 1 if the topology changed
7201 * or 0 if it stayed the same.
7202 */
52f5684c 7203int __weak arch_update_cpu_topology(void)
22e52b07 7204{
ee79d1bd 7205 return 0;
22e52b07
HC
7206}
7207
acc3f5d7
RR
7208cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7209{
7210 int i;
7211 cpumask_var_t *doms;
7212
7213 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7214 if (!doms)
7215 return NULL;
7216 for (i = 0; i < ndoms; i++) {
7217 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7218 free_sched_domains(doms, i);
7219 return NULL;
7220 }
7221 }
7222 return doms;
7223}
7224
7225void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7226{
7227 unsigned int i;
7228 for (i = 0; i < ndoms; i++)
7229 free_cpumask_var(doms[i]);
7230 kfree(doms);
7231}
7232
1a20ff27 7233/*
41a2d6cf 7234 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7235 * For now this just excludes isolated cpus, but could be used to
7236 * exclude other special cases in the future.
1a20ff27 7237 */
c4a8849a 7238static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7239{
7378547f
MM
7240 int err;
7241
22e52b07 7242 arch_update_cpu_topology();
029190c5 7243 ndoms_cur = 1;
acc3f5d7 7244 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7245 if (!doms_cur)
acc3f5d7
RR
7246 doms_cur = &fallback_doms;
7247 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 7248 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 7249 register_sched_domain_sysctl();
7378547f
MM
7250
7251 return err;
1a20ff27
DG
7252}
7253
1a20ff27
DG
7254/*
7255 * Detach sched domains from a group of cpus specified in cpu_map
7256 * These cpus will now be attached to the NULL domain
7257 */
96f874e2 7258static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
7259{
7260 int i;
7261
dce840a0 7262 rcu_read_lock();
abcd083a 7263 for_each_cpu(i, cpu_map)
57d885fe 7264 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 7265 rcu_read_unlock();
1a20ff27
DG
7266}
7267
1d3504fc
HS
7268/* handle null as "default" */
7269static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7270 struct sched_domain_attr *new, int idx_new)
7271{
7272 struct sched_domain_attr tmp;
7273
7274 /* fast path */
7275 if (!new && !cur)
7276 return 1;
7277
7278 tmp = SD_ATTR_INIT;
7279 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7280 new ? (new + idx_new) : &tmp,
7281 sizeof(struct sched_domain_attr));
7282}
7283
029190c5
PJ
7284/*
7285 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7286 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7287 * doms_new[] to the current sched domain partitioning, doms_cur[].
7288 * It destroys each deleted domain and builds each new domain.
7289 *
acc3f5d7 7290 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7291 * The masks don't intersect (don't overlap.) We should setup one
7292 * sched domain for each mask. CPUs not in any of the cpumasks will
7293 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7294 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7295 * it as it is.
7296 *
acc3f5d7
RR
7297 * The passed in 'doms_new' should be allocated using
7298 * alloc_sched_domains. This routine takes ownership of it and will
7299 * free_sched_domains it when done with it. If the caller failed the
7300 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7301 * and partition_sched_domains() will fallback to the single partition
7302 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7303 *
96f874e2 7304 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7305 * ndoms_new == 0 is a special case for destroying existing domains,
7306 * and it will not create the default domain.
dfb512ec 7307 *
029190c5
PJ
7308 * Call with hotplug lock held
7309 */
acc3f5d7 7310void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7311 struct sched_domain_attr *dattr_new)
029190c5 7312{
dfb512ec 7313 int i, j, n;
d65bd5ec 7314 int new_topology;
029190c5 7315
712555ee 7316 mutex_lock(&sched_domains_mutex);
a1835615 7317
7378547f
MM
7318 /* always unregister in case we don't destroy any domains */
7319 unregister_sched_domain_sysctl();
7320
d65bd5ec
HC
7321 /* Let architecture update cpu core mappings. */
7322 new_topology = arch_update_cpu_topology();
7323
dfb512ec 7324 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7325
7326 /* Destroy deleted domains */
7327 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7328 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7329 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7330 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7331 goto match1;
7332 }
7333 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7334 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7335match1:
7336 ;
7337 }
7338
c8d2d47a 7339 n = ndoms_cur;
e761b772 7340 if (doms_new == NULL) {
c8d2d47a 7341 n = 0;
acc3f5d7 7342 doms_new = &fallback_doms;
6ad4c188 7343 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7344 WARN_ON_ONCE(dattr_new);
e761b772
MK
7345 }
7346
029190c5
PJ
7347 /* Build new domains */
7348 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 7349 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7350 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7351 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7352 goto match2;
7353 }
7354 /* no match - add a new doms_new */
dce840a0 7355 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7356match2:
7357 ;
7358 }
7359
7360 /* Remember the new sched domains */
acc3f5d7
RR
7361 if (doms_cur != &fallback_doms)
7362 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7363 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7364 doms_cur = doms_new;
1d3504fc 7365 dattr_cur = dattr_new;
029190c5 7366 ndoms_cur = ndoms_new;
7378547f
MM
7367
7368 register_sched_domain_sysctl();
a1835615 7369
712555ee 7370 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7371}
7372
d35be8ba
SB
7373static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
7374
1da177e4 7375/*
3a101d05
TH
7376 * Update cpusets according to cpu_active mask. If cpusets are
7377 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7378 * around partition_sched_domains().
d35be8ba
SB
7379 *
7380 * If we come here as part of a suspend/resume, don't touch cpusets because we
7381 * want to restore it back to its original state upon resume anyway.
1da177e4 7382 */
40190a78 7383static void cpuset_cpu_active(void)
e761b772 7384{
40190a78 7385 if (cpuhp_tasks_frozen) {
d35be8ba
SB
7386 /*
7387 * num_cpus_frozen tracks how many CPUs are involved in suspend
7388 * resume sequence. As long as this is not the last online
7389 * operation in the resume sequence, just build a single sched
7390 * domain, ignoring cpusets.
7391 */
7392 num_cpus_frozen--;
7393 if (likely(num_cpus_frozen)) {
7394 partition_sched_domains(1, NULL, NULL);
135fb3e1 7395 return;
d35be8ba 7396 }
d35be8ba
SB
7397 /*
7398 * This is the last CPU online operation. So fall through and
7399 * restore the original sched domains by considering the
7400 * cpuset configurations.
7401 */
3a101d05 7402 }
135fb3e1 7403 cpuset_update_active_cpus(true);
3a101d05 7404}
e761b772 7405
40190a78 7406static int cpuset_cpu_inactive(unsigned int cpu)
3a101d05 7407{
3c18d447 7408 unsigned long flags;
3c18d447 7409 struct dl_bw *dl_b;
533445c6
OS
7410 bool overflow;
7411 int cpus;
3c18d447 7412
40190a78 7413 if (!cpuhp_tasks_frozen) {
533445c6
OS
7414 rcu_read_lock_sched();
7415 dl_b = dl_bw_of(cpu);
3c18d447 7416
533445c6
OS
7417 raw_spin_lock_irqsave(&dl_b->lock, flags);
7418 cpus = dl_bw_cpus(cpu);
7419 overflow = __dl_overflow(dl_b, cpus, 0, 0);
7420 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3c18d447 7421
533445c6 7422 rcu_read_unlock_sched();
3c18d447 7423
533445c6 7424 if (overflow)
135fb3e1 7425 return -EBUSY;
7ddf96b0 7426 cpuset_update_active_cpus(false);
135fb3e1 7427 } else {
d35be8ba
SB
7428 num_cpus_frozen++;
7429 partition_sched_domains(1, NULL, NULL);
e761b772 7430 }
135fb3e1 7431 return 0;
e761b772 7432}
e761b772 7433
40190a78 7434int sched_cpu_activate(unsigned int cpu)
135fb3e1 7435{
7d976699
TG
7436 struct rq *rq = cpu_rq(cpu);
7437 unsigned long flags;
7438
40190a78 7439 set_cpu_active(cpu, true);
135fb3e1 7440
40190a78 7441 if (sched_smp_initialized) {
135fb3e1 7442 sched_domains_numa_masks_set(cpu);
40190a78 7443 cpuset_cpu_active();
e761b772 7444 }
7d976699
TG
7445
7446 /*
7447 * Put the rq online, if not already. This happens:
7448 *
7449 * 1) In the early boot process, because we build the real domains
7450 * after all cpus have been brought up.
7451 *
7452 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
7453 * domains.
7454 */
7455 raw_spin_lock_irqsave(&rq->lock, flags);
7456 if (rq->rd) {
7457 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7458 set_rq_online(rq);
7459 }
7460 raw_spin_unlock_irqrestore(&rq->lock, flags);
7461
7462 update_max_interval();
7463
40190a78 7464 return 0;
135fb3e1
TG
7465}
7466
40190a78 7467int sched_cpu_deactivate(unsigned int cpu)
135fb3e1 7468{
135fb3e1
TG
7469 int ret;
7470
40190a78 7471 set_cpu_active(cpu, false);
b2454caa
PZ
7472 /*
7473 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
7474 * users of this state to go away such that all new such users will
7475 * observe it.
7476 *
7477 * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might
7478 * not imply sync_sched(), so wait for both.
7479 *
7480 * Do sync before park smpboot threads to take care the rcu boost case.
7481 */
7482 if (IS_ENABLED(CONFIG_PREEMPT))
7483 synchronize_rcu_mult(call_rcu, call_rcu_sched);
7484 else
7485 synchronize_rcu();
40190a78
TG
7486
7487 if (!sched_smp_initialized)
7488 return 0;
7489
7490 ret = cpuset_cpu_inactive(cpu);
7491 if (ret) {
7492 set_cpu_active(cpu, true);
7493 return ret;
135fb3e1 7494 }
40190a78
TG
7495 sched_domains_numa_masks_clear(cpu);
7496 return 0;
135fb3e1
TG
7497}
7498
94baf7a5
TG
7499static void sched_rq_cpu_starting(unsigned int cpu)
7500{
7501 struct rq *rq = cpu_rq(cpu);
7502
7503 rq->calc_load_update = calc_load_update;
94baf7a5
TG
7504 update_max_interval();
7505}
7506
135fb3e1
TG
7507int sched_cpu_starting(unsigned int cpu)
7508{
7509 set_cpu_rq_start_time(cpu);
94baf7a5 7510 sched_rq_cpu_starting(cpu);
135fb3e1 7511 return 0;
e761b772 7512}
e761b772 7513
f2785ddb
TG
7514#ifdef CONFIG_HOTPLUG_CPU
7515int sched_cpu_dying(unsigned int cpu)
7516{
7517 struct rq *rq = cpu_rq(cpu);
7518 unsigned long flags;
7519
7520 /* Handle pending wakeups and then migrate everything off */
7521 sched_ttwu_pending();
7522 raw_spin_lock_irqsave(&rq->lock, flags);
7523 if (rq->rd) {
7524 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7525 set_rq_offline(rq);
7526 }
7527 migrate_tasks(rq);
7528 BUG_ON(rq->nr_running != 1);
7529 raw_spin_unlock_irqrestore(&rq->lock, flags);
7530 calc_load_migrate(rq);
7531 update_max_interval();
20a5c8cc 7532 nohz_balance_exit_idle(cpu);
e5ef27d0 7533 hrtick_clear(rq);
f2785ddb
TG
7534 return 0;
7535}
7536#endif
7537
1b568f0a
PZ
7538#ifdef CONFIG_SCHED_SMT
7539DEFINE_STATIC_KEY_FALSE(sched_smt_present);
7540
7541static void sched_init_smt(void)
7542{
7543 /*
7544 * We've enumerated all CPUs and will assume that if any CPU
7545 * has SMT siblings, CPU0 will too.
7546 */
7547 if (cpumask_weight(cpu_smt_mask(0)) > 1)
7548 static_branch_enable(&sched_smt_present);
7549}
7550#else
7551static inline void sched_init_smt(void) { }
7552#endif
7553
1da177e4
LT
7554void __init sched_init_smp(void)
7555{
dcc30a35
RR
7556 cpumask_var_t non_isolated_cpus;
7557
7558 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7559 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7560
cb83b629
PZ
7561 sched_init_numa();
7562
6acce3ef
PZ
7563 /*
7564 * There's no userspace yet to cause hotplug operations; hence all the
7565 * cpu masks are stable and all blatant races in the below code cannot
7566 * happen.
7567 */
712555ee 7568 mutex_lock(&sched_domains_mutex);
c4a8849a 7569 init_sched_domains(cpu_active_mask);
dcc30a35
RR
7570 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7571 if (cpumask_empty(non_isolated_cpus))
7572 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7573 mutex_unlock(&sched_domains_mutex);
e761b772 7574
5c1e1767 7575 /* Move init over to a non-isolated CPU */
dcc30a35 7576 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7577 BUG();
19978ca6 7578 sched_init_granularity();
dcc30a35 7579 free_cpumask_var(non_isolated_cpus);
4212823f 7580
0e3900e6 7581 init_sched_rt_class();
1baca4ce 7582 init_sched_dl_class();
1b568f0a
PZ
7583
7584 sched_init_smt();
9881b024 7585 sched_clock_init_late();
1b568f0a 7586
e26fbffd 7587 sched_smp_initialized = true;
1da177e4 7588}
e26fbffd
TG
7589
7590static int __init migration_init(void)
7591{
94baf7a5 7592 sched_rq_cpu_starting(smp_processor_id());
e26fbffd 7593 return 0;
1da177e4 7594}
e26fbffd
TG
7595early_initcall(migration_init);
7596
1da177e4
LT
7597#else
7598void __init sched_init_smp(void)
7599{
19978ca6 7600 sched_init_granularity();
9881b024 7601 sched_clock_init_late();
1da177e4
LT
7602}
7603#endif /* CONFIG_SMP */
7604
7605int in_sched_functions(unsigned long addr)
7606{
1da177e4
LT
7607 return in_lock_functions(addr) ||
7608 (addr >= (unsigned long)__sched_text_start
7609 && addr < (unsigned long)__sched_text_end);
7610}
7611
029632fb 7612#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
7613/*
7614 * Default task group.
7615 * Every task in system belongs to this group at bootup.
7616 */
029632fb 7617struct task_group root_task_group;
35cf4e50 7618LIST_HEAD(task_groups);
b0367629
WL
7619
7620/* Cacheline aligned slab cache for task_group */
7621static struct kmem_cache *task_group_cache __read_mostly;
052f1dc7 7622#endif
6f505b16 7623
e6252c3e 7624DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
10e2f1ac 7625DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
6f505b16 7626
9dcb8b68
LT
7627#define WAIT_TABLE_BITS 8
7628#define WAIT_TABLE_SIZE (1 << WAIT_TABLE_BITS)
7629static wait_queue_head_t bit_wait_table[WAIT_TABLE_SIZE] __cacheline_aligned;
7630
7631wait_queue_head_t *bit_waitqueue(void *word, int bit)
7632{
7633 const int shift = BITS_PER_LONG == 32 ? 5 : 6;
7634 unsigned long val = (unsigned long)word << shift | bit;
7635
7636 return bit_wait_table + hash_long(val, WAIT_TABLE_BITS);
7637}
7638EXPORT_SYMBOL(bit_waitqueue);
7639
1da177e4
LT
7640void __init sched_init(void)
7641{
dd41f596 7642 int i, j;
434d53b0
MT
7643 unsigned long alloc_size = 0, ptr;
7644
9881b024
PZ
7645 sched_clock_init();
7646
9dcb8b68
LT
7647 for (i = 0; i < WAIT_TABLE_SIZE; i++)
7648 init_waitqueue_head(bit_wait_table + i);
7649
434d53b0
MT
7650#ifdef CONFIG_FAIR_GROUP_SCHED
7651 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7652#endif
7653#ifdef CONFIG_RT_GROUP_SCHED
7654 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7655#endif
434d53b0 7656 if (alloc_size) {
36b7b6d4 7657 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7658
7659#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 7660 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
7661 ptr += nr_cpu_ids * sizeof(void **);
7662
07e06b01 7663 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 7664 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7665
6d6bc0ad 7666#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 7667#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7668 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
7669 ptr += nr_cpu_ids * sizeof(void **);
7670
07e06b01 7671 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7672 ptr += nr_cpu_ids * sizeof(void **);
7673
6d6bc0ad 7674#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 7675 }
df7c8e84 7676#ifdef CONFIG_CPUMASK_OFFSTACK
b74e6278
AT
7677 for_each_possible_cpu(i) {
7678 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7679 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
10e2f1ac
PZ
7680 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
7681 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
434d53b0 7682 }
b74e6278 7683#endif /* CONFIG_CPUMASK_OFFSTACK */
dd41f596 7684
332ac17e
DF
7685 init_rt_bandwidth(&def_rt_bandwidth,
7686 global_rt_period(), global_rt_runtime());
7687 init_dl_bandwidth(&def_dl_bandwidth,
1724813d 7688 global_rt_period(), global_rt_runtime());
332ac17e 7689
57d885fe
GH
7690#ifdef CONFIG_SMP
7691 init_defrootdomain();
7692#endif
7693
d0b27fa7 7694#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7695 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 7696 global_rt_period(), global_rt_runtime());
6d6bc0ad 7697#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7698
7c941438 7699#ifdef CONFIG_CGROUP_SCHED
b0367629
WL
7700 task_group_cache = KMEM_CACHE(task_group, 0);
7701
07e06b01
YZ
7702 list_add(&root_task_group.list, &task_groups);
7703 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 7704 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 7705 autogroup_init(&init_task);
7c941438 7706#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7707
0a945022 7708 for_each_possible_cpu(i) {
70b97a7f 7709 struct rq *rq;
1da177e4
LT
7710
7711 rq = cpu_rq(i);
05fa785c 7712 raw_spin_lock_init(&rq->lock);
7897986b 7713 rq->nr_running = 0;
dce48a84
TG
7714 rq->calc_load_active = 0;
7715 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 7716 init_cfs_rq(&rq->cfs);
07c54f7a
AV
7717 init_rt_rq(&rq->rt);
7718 init_dl_rq(&rq->dl);
dd41f596 7719#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 7720 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 7721 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9c2791f9 7722 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
354d60c2 7723 /*
07e06b01 7724 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
7725 *
7726 * In case of task-groups formed thr' the cgroup filesystem, it
7727 * gets 100% of the cpu resources in the system. This overall
7728 * system cpu resource is divided among the tasks of
07e06b01 7729 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
7730 * based on each entity's (task or task-group's) weight
7731 * (se->load.weight).
7732 *
07e06b01 7733 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
7734 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7735 * then A0's share of the cpu resource is:
7736 *
0d905bca 7737 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 7738 *
07e06b01
YZ
7739 * We achieve this by letting root_task_group's tasks sit
7740 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 7741 */
ab84d31e 7742 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 7743 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
7744#endif /* CONFIG_FAIR_GROUP_SCHED */
7745
7746 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7747#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7748 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 7749#endif
1da177e4 7750
dd41f596
IM
7751 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7752 rq->cpu_load[j] = 0;
fdf3e95d 7753
1da177e4 7754#ifdef CONFIG_SMP
41c7ce9a 7755 rq->sd = NULL;
57d885fe 7756 rq->rd = NULL;
ca6d75e6 7757 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
e3fca9e7 7758 rq->balance_callback = NULL;
1da177e4 7759 rq->active_balance = 0;
dd41f596 7760 rq->next_balance = jiffies;
1da177e4 7761 rq->push_cpu = 0;
0a2966b4 7762 rq->cpu = i;
1f11eb6a 7763 rq->online = 0;
eae0c9df
MG
7764 rq->idle_stamp = 0;
7765 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 7766 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
7767
7768 INIT_LIST_HEAD(&rq->cfs_tasks);
7769
dc938520 7770 rq_attach_root(rq, &def_root_domain);
3451d024 7771#ifdef CONFIG_NO_HZ_COMMON
9fd81dd5 7772 rq->last_load_update_tick = jiffies;
1c792db7 7773 rq->nohz_flags = 0;
83cd4fe2 7774#endif
265f22a9
FW
7775#ifdef CONFIG_NO_HZ_FULL
7776 rq->last_sched_tick = 0;
7777#endif
9fd81dd5 7778#endif /* CONFIG_SMP */
8f4d37ec 7779 init_rq_hrtick(rq);
1da177e4 7780 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7781 }
7782
2dd73a4f 7783 set_load_weight(&init_task);
b50f60ce 7784
1da177e4
LT
7785 /*
7786 * The boot idle thread does lazy MMU switching as well:
7787 */
7788 atomic_inc(&init_mm.mm_count);
7789 enter_lazy_tlb(&init_mm, current);
7790
7791 /*
7792 * Make us the idle thread. Technically, schedule() should not be
7793 * called from this thread, however somewhere below it might be,
7794 * but because we are the idle thread, we just pick up running again
7795 * when this runqueue becomes "idle".
7796 */
7797 init_idle(current, smp_processor_id());
dce48a84
TG
7798
7799 calc_load_update = jiffies + LOAD_FREQ;
7800
bf4d83f6 7801#ifdef CONFIG_SMP
4cb98839 7802 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
7803 /* May be allocated at isolcpus cmdline parse time */
7804 if (cpu_isolated_map == NULL)
7805 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 7806 idle_thread_set_boot_cpu();
9cf7243d 7807 set_cpu_rq_start_time(smp_processor_id());
029632fb
PZ
7808#endif
7809 init_sched_fair_class();
6a7b3dc3 7810
4698f88c
JP
7811 init_schedstats();
7812
6892b75e 7813 scheduler_running = 1;
1da177e4
LT
7814}
7815
d902db1e 7816#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
7817static inline int preempt_count_equals(int preempt_offset)
7818{
da7142e2 7819 int nested = preempt_count() + rcu_preempt_depth();
e4aafea2 7820
4ba8216c 7821 return (nested == preempt_offset);
e4aafea2
FW
7822}
7823
d894837f 7824void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7825{
8eb23b9f
PZ
7826 /*
7827 * Blocking primitives will set (and therefore destroy) current->state,
7828 * since we will exit with TASK_RUNNING make sure we enter with it,
7829 * otherwise we will destroy state.
7830 */
00845eb9 7831 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
8eb23b9f
PZ
7832 "do not call blocking ops when !TASK_RUNNING; "
7833 "state=%lx set at [<%p>] %pS\n",
7834 current->state,
7835 (void *)current->task_state_change,
00845eb9 7836 (void *)current->task_state_change);
8eb23b9f 7837
3427445a
PZ
7838 ___might_sleep(file, line, preempt_offset);
7839}
7840EXPORT_SYMBOL(__might_sleep);
7841
7842void ___might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7843{
1da177e4 7844 static unsigned long prev_jiffy; /* ratelimiting */
d1c6d149 7845 unsigned long preempt_disable_ip;
1da177e4 7846
b3fbab05 7847 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
db273be2
TG
7848 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7849 !is_idle_task(current)) ||
e4aafea2 7850 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7851 return;
7852 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7853 return;
7854 prev_jiffy = jiffies;
7855
d1c6d149
VN
7856 /* Save this before calling printk(), since that will clobber it */
7857 preempt_disable_ip = get_preempt_disable_ip(current);
7858
3df0fc5b
PZ
7859 printk(KERN_ERR
7860 "BUG: sleeping function called from invalid context at %s:%d\n",
7861 file, line);
7862 printk(KERN_ERR
7863 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7864 in_atomic(), irqs_disabled(),
7865 current->pid, current->comm);
aef745fc 7866
a8b686b3
ES
7867 if (task_stack_end_corrupted(current))
7868 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7869
aef745fc
IM
7870 debug_show_held_locks(current);
7871 if (irqs_disabled())
7872 print_irqtrace_events(current);
d1c6d149
VN
7873 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
7874 && !preempt_count_equals(preempt_offset)) {
8f47b187 7875 pr_err("Preemption disabled at:");
d1c6d149 7876 print_ip_sym(preempt_disable_ip);
8f47b187
TG
7877 pr_cont("\n");
7878 }
aef745fc 7879 dump_stack();
f0b22e39 7880 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
1da177e4 7881}
3427445a 7882EXPORT_SYMBOL(___might_sleep);
1da177e4
LT
7883#endif
7884
7885#ifdef CONFIG_MAGIC_SYSRQ
dbc7f069 7886void normalize_rt_tasks(void)
3a5e4dc1 7887{
dbc7f069 7888 struct task_struct *g, *p;
d50dde5a
DF
7889 struct sched_attr attr = {
7890 .sched_policy = SCHED_NORMAL,
7891 };
1da177e4 7892
3472eaa1 7893 read_lock(&tasklist_lock);
5d07f420 7894 for_each_process_thread(g, p) {
178be793
IM
7895 /*
7896 * Only normalize user tasks:
7897 */
3472eaa1 7898 if (p->flags & PF_KTHREAD)
178be793
IM
7899 continue;
7900
4fa8d299
JP
7901 p->se.exec_start = 0;
7902 schedstat_set(p->se.statistics.wait_start, 0);
7903 schedstat_set(p->se.statistics.sleep_start, 0);
7904 schedstat_set(p->se.statistics.block_start, 0);
dd41f596 7905
aab03e05 7906 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
7907 /*
7908 * Renice negative nice level userspace
7909 * tasks back to 0:
7910 */
3472eaa1 7911 if (task_nice(p) < 0)
dd41f596 7912 set_user_nice(p, 0);
1da177e4 7913 continue;
dd41f596 7914 }
1da177e4 7915
dbc7f069 7916 __sched_setscheduler(p, &attr, false, false);
5d07f420 7917 }
3472eaa1 7918 read_unlock(&tasklist_lock);
1da177e4
LT
7919}
7920
7921#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7922
67fc4e0c 7923#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7924/*
67fc4e0c 7925 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7926 *
7927 * They can only be called when the whole system has been
7928 * stopped - every CPU needs to be quiescent, and no scheduling
7929 * activity can take place. Using them for anything else would
7930 * be a serious bug, and as a result, they aren't even visible
7931 * under any other configuration.
7932 */
7933
7934/**
7935 * curr_task - return the current task for a given cpu.
7936 * @cpu: the processor in question.
7937 *
7938 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
7939 *
7940 * Return: The current task for @cpu.
1df5c10a 7941 */
36c8b586 7942struct task_struct *curr_task(int cpu)
1df5c10a
LT
7943{
7944 return cpu_curr(cpu);
7945}
7946
67fc4e0c
JW
7947#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7948
7949#ifdef CONFIG_IA64
1df5c10a
LT
7950/**
7951 * set_curr_task - set the current task for a given cpu.
7952 * @cpu: the processor in question.
7953 * @p: the task pointer to set.
7954 *
7955 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7956 * are serviced on a separate stack. It allows the architecture to switch the
7957 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7958 * must be called with all CPU's synchronized, and interrupts disabled, the
7959 * and caller must save the original value of the current task (see
7960 * curr_task() above) and restore that value before reenabling interrupts and
7961 * re-starting the system.
7962 *
7963 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7964 */
a458ae2e 7965void ia64_set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7966{
7967 cpu_curr(cpu) = p;
7968}
7969
7970#endif
29f59db3 7971
7c941438 7972#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7973/* task_group_lock serializes the addition/removal of task groups */
7974static DEFINE_SPINLOCK(task_group_lock);
7975
2f5177f0 7976static void sched_free_group(struct task_group *tg)
bccbe08a
PZ
7977{
7978 free_fair_sched_group(tg);
7979 free_rt_sched_group(tg);
e9aa1dd1 7980 autogroup_free(tg);
b0367629 7981 kmem_cache_free(task_group_cache, tg);
bccbe08a
PZ
7982}
7983
7984/* allocate runqueue etc for a new task group */
ec7dc8ac 7985struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7986{
7987 struct task_group *tg;
bccbe08a 7988
b0367629 7989 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
bccbe08a
PZ
7990 if (!tg)
7991 return ERR_PTR(-ENOMEM);
7992
ec7dc8ac 7993 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7994 goto err;
7995
ec7dc8ac 7996 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7997 goto err;
7998
ace783b9
LZ
7999 return tg;
8000
8001err:
2f5177f0 8002 sched_free_group(tg);
ace783b9
LZ
8003 return ERR_PTR(-ENOMEM);
8004}
8005
8006void sched_online_group(struct task_group *tg, struct task_group *parent)
8007{
8008 unsigned long flags;
8009
8ed36996 8010 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 8011 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8012
8013 WARN_ON(!parent); /* root should already exist */
8014
8015 tg->parent = parent;
f473aa5e 8016 INIT_LIST_HEAD(&tg->children);
09f2724a 8017 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8018 spin_unlock_irqrestore(&task_group_lock, flags);
8663e24d
PZ
8019
8020 online_fair_sched_group(tg);
29f59db3
SV
8021}
8022
9b5b7751 8023/* rcu callback to free various structures associated with a task group */
2f5177f0 8024static void sched_free_group_rcu(struct rcu_head *rhp)
29f59db3 8025{
29f59db3 8026 /* now it should be safe to free those cfs_rqs */
2f5177f0 8027 sched_free_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8028}
8029
4cf86d77 8030void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
8031{
8032 /* wait for possible concurrent references to cfs_rqs complete */
2f5177f0 8033 call_rcu(&tg->rcu, sched_free_group_rcu);
ace783b9
LZ
8034}
8035
8036void sched_offline_group(struct task_group *tg)
29f59db3 8037{
8ed36996 8038 unsigned long flags;
29f59db3 8039
3d4b47b4 8040 /* end participation in shares distribution */
6fe1f348 8041 unregister_fair_sched_group(tg);
3d4b47b4
PZ
8042
8043 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 8044 list_del_rcu(&tg->list);
f473aa5e 8045 list_del_rcu(&tg->siblings);
8ed36996 8046 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
8047}
8048
ea86cb4b 8049static void sched_change_group(struct task_struct *tsk, int type)
29f59db3 8050{
8323f26c 8051 struct task_group *tg;
29f59db3 8052
f7b8a47d
KT
8053 /*
8054 * All callers are synchronized by task_rq_lock(); we do not use RCU
8055 * which is pointless here. Thus, we pass "true" to task_css_check()
8056 * to prevent lockdep warnings.
8057 */
8058 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
8059 struct task_group, css);
8060 tg = autogroup_task_group(tsk, tg);
8061 tsk->sched_task_group = tg;
8062
810b3817 8063#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
8064 if (tsk->sched_class->task_change_group)
8065 tsk->sched_class->task_change_group(tsk, type);
b2b5ce02 8066 else
810b3817 8067#endif
b2b5ce02 8068 set_task_rq(tsk, task_cpu(tsk));
ea86cb4b
VG
8069}
8070
8071/*
8072 * Change task's runqueue when it moves between groups.
8073 *
8074 * The caller of this function should have put the task in its new group by
8075 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
8076 * its new group.
8077 */
8078void sched_move_task(struct task_struct *tsk)
8079{
8080 int queued, running;
8081 struct rq_flags rf;
8082 struct rq *rq;
8083
8084 rq = task_rq_lock(tsk, &rf);
1b1d6225 8085 update_rq_clock(rq);
ea86cb4b
VG
8086
8087 running = task_current(rq, tsk);
8088 queued = task_on_rq_queued(tsk);
8089
8090 if (queued)
8091 dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
8092 if (unlikely(running))
8093 put_prev_task(rq, tsk);
8094
8095 sched_change_group(tsk, TASK_MOVE_GROUP);
810b3817 8096
da0c1e65 8097 if (queued)
ff77e468 8098 enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
a399d233 8099 if (unlikely(running))
b2bf6c31 8100 set_curr_task(rq, tsk);
29f59db3 8101
eb580751 8102 task_rq_unlock(rq, tsk, &rf);
29f59db3 8103}
7c941438 8104#endif /* CONFIG_CGROUP_SCHED */
29f59db3 8105
a790de99
PT
8106#ifdef CONFIG_RT_GROUP_SCHED
8107/*
8108 * Ensure that the real time constraints are schedulable.
8109 */
8110static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 8111
9a7e0b18
PZ
8112/* Must be called with tasklist_lock held */
8113static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 8114{
9a7e0b18 8115 struct task_struct *g, *p;
b40b2e8e 8116
1fe89e1b
PZ
8117 /*
8118 * Autogroups do not have RT tasks; see autogroup_create().
8119 */
8120 if (task_group_is_autogroup(tg))
8121 return 0;
8122
5d07f420 8123 for_each_process_thread(g, p) {
8651c658 8124 if (rt_task(p) && task_group(p) == tg)
9a7e0b18 8125 return 1;
5d07f420 8126 }
b40b2e8e 8127
9a7e0b18
PZ
8128 return 0;
8129}
b40b2e8e 8130
9a7e0b18
PZ
8131struct rt_schedulable_data {
8132 struct task_group *tg;
8133 u64 rt_period;
8134 u64 rt_runtime;
8135};
b40b2e8e 8136
a790de99 8137static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
8138{
8139 struct rt_schedulable_data *d = data;
8140 struct task_group *child;
8141 unsigned long total, sum = 0;
8142 u64 period, runtime;
b40b2e8e 8143
9a7e0b18
PZ
8144 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8145 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 8146
9a7e0b18
PZ
8147 if (tg == d->tg) {
8148 period = d->rt_period;
8149 runtime = d->rt_runtime;
b40b2e8e 8150 }
b40b2e8e 8151
4653f803
PZ
8152 /*
8153 * Cannot have more runtime than the period.
8154 */
8155 if (runtime > period && runtime != RUNTIME_INF)
8156 return -EINVAL;
6f505b16 8157
4653f803
PZ
8158 /*
8159 * Ensure we don't starve existing RT tasks.
8160 */
9a7e0b18
PZ
8161 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8162 return -EBUSY;
6f505b16 8163
9a7e0b18 8164 total = to_ratio(period, runtime);
6f505b16 8165
4653f803
PZ
8166 /*
8167 * Nobody can have more than the global setting allows.
8168 */
8169 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8170 return -EINVAL;
6f505b16 8171
4653f803
PZ
8172 /*
8173 * The sum of our children's runtime should not exceed our own.
8174 */
9a7e0b18
PZ
8175 list_for_each_entry_rcu(child, &tg->children, siblings) {
8176 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8177 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8178
9a7e0b18
PZ
8179 if (child == d->tg) {
8180 period = d->rt_period;
8181 runtime = d->rt_runtime;
8182 }
6f505b16 8183
9a7e0b18 8184 sum += to_ratio(period, runtime);
9f0c1e56 8185 }
6f505b16 8186
9a7e0b18
PZ
8187 if (sum > total)
8188 return -EINVAL;
8189
8190 return 0;
6f505b16
PZ
8191}
8192
9a7e0b18 8193static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8194{
8277434e
PT
8195 int ret;
8196
9a7e0b18
PZ
8197 struct rt_schedulable_data data = {
8198 .tg = tg,
8199 .rt_period = period,
8200 .rt_runtime = runtime,
8201 };
8202
8277434e
PT
8203 rcu_read_lock();
8204 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
8205 rcu_read_unlock();
8206
8207 return ret;
521f1a24
DG
8208}
8209
ab84d31e 8210static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 8211 u64 rt_period, u64 rt_runtime)
6f505b16 8212{
ac086bc2 8213 int i, err = 0;
9f0c1e56 8214
2636ed5f
PZ
8215 /*
8216 * Disallowing the root group RT runtime is BAD, it would disallow the
8217 * kernel creating (and or operating) RT threads.
8218 */
8219 if (tg == &root_task_group && rt_runtime == 0)
8220 return -EINVAL;
8221
8222 /* No period doesn't make any sense. */
8223 if (rt_period == 0)
8224 return -EINVAL;
8225
9f0c1e56 8226 mutex_lock(&rt_constraints_mutex);
521f1a24 8227 read_lock(&tasklist_lock);
9a7e0b18
PZ
8228 err = __rt_schedulable(tg, rt_period, rt_runtime);
8229 if (err)
9f0c1e56 8230 goto unlock;
ac086bc2 8231
0986b11b 8232 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8233 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8234 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8235
8236 for_each_possible_cpu(i) {
8237 struct rt_rq *rt_rq = tg->rt_rq[i];
8238
0986b11b 8239 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8240 rt_rq->rt_runtime = rt_runtime;
0986b11b 8241 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8242 }
0986b11b 8243 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 8244unlock:
521f1a24 8245 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8246 mutex_unlock(&rt_constraints_mutex);
8247
8248 return err;
6f505b16
PZ
8249}
8250
25cc7da7 8251static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
8252{
8253 u64 rt_runtime, rt_period;
8254
8255 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8256 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8257 if (rt_runtime_us < 0)
8258 rt_runtime = RUNTIME_INF;
8259
ab84d31e 8260 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
8261}
8262
25cc7da7 8263static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
8264{
8265 u64 rt_runtime_us;
8266
d0b27fa7 8267 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8268 return -1;
8269
d0b27fa7 8270 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8271 do_div(rt_runtime_us, NSEC_PER_USEC);
8272 return rt_runtime_us;
8273}
d0b27fa7 8274
ce2f5fe4 8275static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
d0b27fa7
PZ
8276{
8277 u64 rt_runtime, rt_period;
8278
ce2f5fe4 8279 rt_period = rt_period_us * NSEC_PER_USEC;
d0b27fa7
PZ
8280 rt_runtime = tg->rt_bandwidth.rt_runtime;
8281
ab84d31e 8282 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
8283}
8284
25cc7da7 8285static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
8286{
8287 u64 rt_period_us;
8288
8289 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8290 do_div(rt_period_us, NSEC_PER_USEC);
8291 return rt_period_us;
8292}
332ac17e 8293#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8294
332ac17e 8295#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
8296static int sched_rt_global_constraints(void)
8297{
8298 int ret = 0;
8299
8300 mutex_lock(&rt_constraints_mutex);
9a7e0b18 8301 read_lock(&tasklist_lock);
4653f803 8302 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 8303 read_unlock(&tasklist_lock);
d0b27fa7
PZ
8304 mutex_unlock(&rt_constraints_mutex);
8305
8306 return ret;
8307}
54e99124 8308
25cc7da7 8309static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
8310{
8311 /* Don't accept realtime tasks when there is no way for them to run */
8312 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8313 return 0;
8314
8315 return 1;
8316}
8317
6d6bc0ad 8318#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8319static int sched_rt_global_constraints(void)
8320{
ac086bc2 8321 unsigned long flags;
8c5e9554 8322 int i;
ec5d4989 8323
0986b11b 8324 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
8325 for_each_possible_cpu(i) {
8326 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8327
0986b11b 8328 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8329 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 8330 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8331 }
0986b11b 8332 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 8333
8c5e9554 8334 return 0;
d0b27fa7 8335}
6d6bc0ad 8336#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8337
a1963b81 8338static int sched_dl_global_validate(void)
332ac17e 8339{
1724813d
PZ
8340 u64 runtime = global_rt_runtime();
8341 u64 period = global_rt_period();
332ac17e 8342 u64 new_bw = to_ratio(period, runtime);
f10e00f4 8343 struct dl_bw *dl_b;
1724813d 8344 int cpu, ret = 0;
49516342 8345 unsigned long flags;
332ac17e
DF
8346
8347 /*
8348 * Here we want to check the bandwidth not being set to some
8349 * value smaller than the currently allocated bandwidth in
8350 * any of the root_domains.
8351 *
8352 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
8353 * cycling on root_domains... Discussion on different/better
8354 * solutions is welcome!
8355 */
1724813d 8356 for_each_possible_cpu(cpu) {
f10e00f4
KT
8357 rcu_read_lock_sched();
8358 dl_b = dl_bw_of(cpu);
332ac17e 8359
49516342 8360 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d
PZ
8361 if (new_bw < dl_b->total_bw)
8362 ret = -EBUSY;
49516342 8363 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
1724813d 8364
f10e00f4
KT
8365 rcu_read_unlock_sched();
8366
1724813d
PZ
8367 if (ret)
8368 break;
332ac17e
DF
8369 }
8370
1724813d 8371 return ret;
332ac17e
DF
8372}
8373
1724813d 8374static void sched_dl_do_global(void)
ce0dbbbb 8375{
1724813d 8376 u64 new_bw = -1;
f10e00f4 8377 struct dl_bw *dl_b;
1724813d 8378 int cpu;
49516342 8379 unsigned long flags;
ce0dbbbb 8380
1724813d
PZ
8381 def_dl_bandwidth.dl_period = global_rt_period();
8382 def_dl_bandwidth.dl_runtime = global_rt_runtime();
8383
8384 if (global_rt_runtime() != RUNTIME_INF)
8385 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
8386
8387 /*
8388 * FIXME: As above...
8389 */
8390 for_each_possible_cpu(cpu) {
f10e00f4
KT
8391 rcu_read_lock_sched();
8392 dl_b = dl_bw_of(cpu);
1724813d 8393
49516342 8394 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d 8395 dl_b->bw = new_bw;
49516342 8396 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
f10e00f4
KT
8397
8398 rcu_read_unlock_sched();
ce0dbbbb 8399 }
1724813d
PZ
8400}
8401
8402static int sched_rt_global_validate(void)
8403{
8404 if (sysctl_sched_rt_period <= 0)
8405 return -EINVAL;
8406
e9e7cb38
JL
8407 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
8408 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
1724813d
PZ
8409 return -EINVAL;
8410
8411 return 0;
8412}
8413
8414static void sched_rt_do_global(void)
8415{
8416 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8417 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
8418}
8419
d0b27fa7 8420int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8421 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8422 loff_t *ppos)
8423{
d0b27fa7
PZ
8424 int old_period, old_runtime;
8425 static DEFINE_MUTEX(mutex);
1724813d 8426 int ret;
d0b27fa7
PZ
8427
8428 mutex_lock(&mutex);
8429 old_period = sysctl_sched_rt_period;
8430 old_runtime = sysctl_sched_rt_runtime;
8431
8d65af78 8432 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
8433
8434 if (!ret && write) {
1724813d
PZ
8435 ret = sched_rt_global_validate();
8436 if (ret)
8437 goto undo;
8438
a1963b81 8439 ret = sched_dl_global_validate();
1724813d
PZ
8440 if (ret)
8441 goto undo;
8442
a1963b81 8443 ret = sched_rt_global_constraints();
1724813d
PZ
8444 if (ret)
8445 goto undo;
8446
8447 sched_rt_do_global();
8448 sched_dl_do_global();
8449 }
8450 if (0) {
8451undo:
8452 sysctl_sched_rt_period = old_period;
8453 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
8454 }
8455 mutex_unlock(&mutex);
8456
8457 return ret;
8458}
68318b8e 8459
1724813d 8460int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
8461 void __user *buffer, size_t *lenp,
8462 loff_t *ppos)
8463{
8464 int ret;
332ac17e 8465 static DEFINE_MUTEX(mutex);
332ac17e
DF
8466
8467 mutex_lock(&mutex);
332ac17e 8468 ret = proc_dointvec(table, write, buffer, lenp, ppos);
1724813d
PZ
8469 /* make sure that internally we keep jiffies */
8470 /* also, writing zero resets timeslice to default */
332ac17e 8471 if (!ret && write) {
1724813d
PZ
8472 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8473 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
332ac17e
DF
8474 }
8475 mutex_unlock(&mutex);
332ac17e
DF
8476 return ret;
8477}
8478
052f1dc7 8479#ifdef CONFIG_CGROUP_SCHED
68318b8e 8480
a7c6d554 8481static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 8482{
a7c6d554 8483 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
8484}
8485
eb95419b
TH
8486static struct cgroup_subsys_state *
8487cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 8488{
eb95419b
TH
8489 struct task_group *parent = css_tg(parent_css);
8490 struct task_group *tg;
68318b8e 8491
eb95419b 8492 if (!parent) {
68318b8e 8493 /* This is early initialization for the top cgroup */
07e06b01 8494 return &root_task_group.css;
68318b8e
SV
8495 }
8496
ec7dc8ac 8497 tg = sched_create_group(parent);
68318b8e
SV
8498 if (IS_ERR(tg))
8499 return ERR_PTR(-ENOMEM);
8500
2f5177f0
PZ
8501 sched_online_group(tg, parent);
8502
68318b8e
SV
8503 return &tg->css;
8504}
8505
2f5177f0 8506static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
ace783b9 8507{
eb95419b 8508 struct task_group *tg = css_tg(css);
ace783b9 8509
2f5177f0 8510 sched_offline_group(tg);
ace783b9
LZ
8511}
8512
eb95419b 8513static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 8514{
eb95419b 8515 struct task_group *tg = css_tg(css);
68318b8e 8516
2f5177f0
PZ
8517 /*
8518 * Relies on the RCU grace period between css_released() and this.
8519 */
8520 sched_free_group(tg);
ace783b9
LZ
8521}
8522
ea86cb4b
VG
8523/*
8524 * This is called before wake_up_new_task(), therefore we really only
8525 * have to set its group bits, all the other stuff does not apply.
8526 */
b53202e6 8527static void cpu_cgroup_fork(struct task_struct *task)
eeb61e53 8528{
ea86cb4b
VG
8529 struct rq_flags rf;
8530 struct rq *rq;
8531
8532 rq = task_rq_lock(task, &rf);
8533
80f5c1b8 8534 update_rq_clock(rq);
ea86cb4b
VG
8535 sched_change_group(task, TASK_SET_GROUP);
8536
8537 task_rq_unlock(rq, task, &rf);
eeb61e53
KT
8538}
8539
1f7dd3e5 8540static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
68318b8e 8541{
bb9d97b6 8542 struct task_struct *task;
1f7dd3e5 8543 struct cgroup_subsys_state *css;
7dc603c9 8544 int ret = 0;
bb9d97b6 8545
1f7dd3e5 8546 cgroup_taskset_for_each(task, css, tset) {
b68aa230 8547#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 8548 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 8549 return -EINVAL;
b68aa230 8550#else
bb9d97b6
TH
8551 /* We don't support RT-tasks being in separate groups */
8552 if (task->sched_class != &fair_sched_class)
8553 return -EINVAL;
b68aa230 8554#endif
7dc603c9
PZ
8555 /*
8556 * Serialize against wake_up_new_task() such that if its
8557 * running, we're sure to observe its full state.
8558 */
8559 raw_spin_lock_irq(&task->pi_lock);
8560 /*
8561 * Avoid calling sched_move_task() before wake_up_new_task()
8562 * has happened. This would lead to problems with PELT, due to
8563 * move wanting to detach+attach while we're not attached yet.
8564 */
8565 if (task->state == TASK_NEW)
8566 ret = -EINVAL;
8567 raw_spin_unlock_irq(&task->pi_lock);
8568
8569 if (ret)
8570 break;
bb9d97b6 8571 }
7dc603c9 8572 return ret;
be367d09 8573}
68318b8e 8574
1f7dd3e5 8575static void cpu_cgroup_attach(struct cgroup_taskset *tset)
68318b8e 8576{
bb9d97b6 8577 struct task_struct *task;
1f7dd3e5 8578 struct cgroup_subsys_state *css;
bb9d97b6 8579
1f7dd3e5 8580 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 8581 sched_move_task(task);
68318b8e
SV
8582}
8583
052f1dc7 8584#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
8585static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8586 struct cftype *cftype, u64 shareval)
68318b8e 8587{
182446d0 8588 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
8589}
8590
182446d0
TH
8591static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8592 struct cftype *cft)
68318b8e 8593{
182446d0 8594 struct task_group *tg = css_tg(css);
68318b8e 8595
c8b28116 8596 return (u64) scale_load_down(tg->shares);
68318b8e 8597}
ab84d31e
PT
8598
8599#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
8600static DEFINE_MUTEX(cfs_constraints_mutex);
8601
ab84d31e
PT
8602const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8603const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8604
a790de99
PT
8605static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8606
ab84d31e
PT
8607static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8608{
56f570e5 8609 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 8610 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
8611
8612 if (tg == &root_task_group)
8613 return -EINVAL;
8614
8615 /*
8616 * Ensure we have at some amount of bandwidth every period. This is
8617 * to prevent reaching a state of large arrears when throttled via
8618 * entity_tick() resulting in prolonged exit starvation.
8619 */
8620 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8621 return -EINVAL;
8622
8623 /*
8624 * Likewise, bound things on the otherside by preventing insane quota
8625 * periods. This also allows us to normalize in computing quota
8626 * feasibility.
8627 */
8628 if (period > max_cfs_quota_period)
8629 return -EINVAL;
8630
0e59bdae
KT
8631 /*
8632 * Prevent race between setting of cfs_rq->runtime_enabled and
8633 * unthrottle_offline_cfs_rqs().
8634 */
8635 get_online_cpus();
a790de99
PT
8636 mutex_lock(&cfs_constraints_mutex);
8637 ret = __cfs_schedulable(tg, period, quota);
8638 if (ret)
8639 goto out_unlock;
8640
58088ad0 8641 runtime_enabled = quota != RUNTIME_INF;
56f570e5 8642 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
8643 /*
8644 * If we need to toggle cfs_bandwidth_used, off->on must occur
8645 * before making related changes, and on->off must occur afterwards
8646 */
8647 if (runtime_enabled && !runtime_was_enabled)
8648 cfs_bandwidth_usage_inc();
ab84d31e
PT
8649 raw_spin_lock_irq(&cfs_b->lock);
8650 cfs_b->period = ns_to_ktime(period);
8651 cfs_b->quota = quota;
58088ad0 8652
a9cf55b2 8653 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 8654 /* restart the period timer (if active) to handle new period expiry */
77a4d1a1
PZ
8655 if (runtime_enabled)
8656 start_cfs_bandwidth(cfs_b);
ab84d31e
PT
8657 raw_spin_unlock_irq(&cfs_b->lock);
8658
0e59bdae 8659 for_each_online_cpu(i) {
ab84d31e 8660 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 8661 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
8662
8663 raw_spin_lock_irq(&rq->lock);
58088ad0 8664 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 8665 cfs_rq->runtime_remaining = 0;
671fd9da 8666
029632fb 8667 if (cfs_rq->throttled)
671fd9da 8668 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
8669 raw_spin_unlock_irq(&rq->lock);
8670 }
1ee14e6c
BS
8671 if (runtime_was_enabled && !runtime_enabled)
8672 cfs_bandwidth_usage_dec();
a790de99
PT
8673out_unlock:
8674 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 8675 put_online_cpus();
ab84d31e 8676
a790de99 8677 return ret;
ab84d31e
PT
8678}
8679
8680int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8681{
8682 u64 quota, period;
8683
029632fb 8684 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8685 if (cfs_quota_us < 0)
8686 quota = RUNTIME_INF;
8687 else
8688 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8689
8690 return tg_set_cfs_bandwidth(tg, period, quota);
8691}
8692
8693long tg_get_cfs_quota(struct task_group *tg)
8694{
8695 u64 quota_us;
8696
029632fb 8697 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
8698 return -1;
8699
029632fb 8700 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
8701 do_div(quota_us, NSEC_PER_USEC);
8702
8703 return quota_us;
8704}
8705
8706int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8707{
8708 u64 quota, period;
8709
8710 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 8711 quota = tg->cfs_bandwidth.quota;
ab84d31e 8712
ab84d31e
PT
8713 return tg_set_cfs_bandwidth(tg, period, quota);
8714}
8715
8716long tg_get_cfs_period(struct task_group *tg)
8717{
8718 u64 cfs_period_us;
8719
029632fb 8720 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8721 do_div(cfs_period_us, NSEC_PER_USEC);
8722
8723 return cfs_period_us;
8724}
8725
182446d0
TH
8726static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8727 struct cftype *cft)
ab84d31e 8728{
182446d0 8729 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
8730}
8731
182446d0
TH
8732static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8733 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 8734{
182446d0 8735 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
8736}
8737
182446d0
TH
8738static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8739 struct cftype *cft)
ab84d31e 8740{
182446d0 8741 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
8742}
8743
182446d0
TH
8744static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8745 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 8746{
182446d0 8747 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
8748}
8749
a790de99
PT
8750struct cfs_schedulable_data {
8751 struct task_group *tg;
8752 u64 period, quota;
8753};
8754
8755/*
8756 * normalize group quota/period to be quota/max_period
8757 * note: units are usecs
8758 */
8759static u64 normalize_cfs_quota(struct task_group *tg,
8760 struct cfs_schedulable_data *d)
8761{
8762 u64 quota, period;
8763
8764 if (tg == d->tg) {
8765 period = d->period;
8766 quota = d->quota;
8767 } else {
8768 period = tg_get_cfs_period(tg);
8769 quota = tg_get_cfs_quota(tg);
8770 }
8771
8772 /* note: these should typically be equivalent */
8773 if (quota == RUNTIME_INF || quota == -1)
8774 return RUNTIME_INF;
8775
8776 return to_ratio(period, quota);
8777}
8778
8779static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8780{
8781 struct cfs_schedulable_data *d = data;
029632fb 8782 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
8783 s64 quota = 0, parent_quota = -1;
8784
8785 if (!tg->parent) {
8786 quota = RUNTIME_INF;
8787 } else {
029632fb 8788 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
8789
8790 quota = normalize_cfs_quota(tg, d);
9c58c79a 8791 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
8792
8793 /*
8794 * ensure max(child_quota) <= parent_quota, inherit when no
8795 * limit is set
8796 */
8797 if (quota == RUNTIME_INF)
8798 quota = parent_quota;
8799 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8800 return -EINVAL;
8801 }
9c58c79a 8802 cfs_b->hierarchical_quota = quota;
a790de99
PT
8803
8804 return 0;
8805}
8806
8807static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8808{
8277434e 8809 int ret;
a790de99
PT
8810 struct cfs_schedulable_data data = {
8811 .tg = tg,
8812 .period = period,
8813 .quota = quota,
8814 };
8815
8816 if (quota != RUNTIME_INF) {
8817 do_div(data.period, NSEC_PER_USEC);
8818 do_div(data.quota, NSEC_PER_USEC);
8819 }
8820
8277434e
PT
8821 rcu_read_lock();
8822 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8823 rcu_read_unlock();
8824
8825 return ret;
a790de99 8826}
e8da1b18 8827
2da8ca82 8828static int cpu_stats_show(struct seq_file *sf, void *v)
e8da1b18 8829{
2da8ca82 8830 struct task_group *tg = css_tg(seq_css(sf));
029632fb 8831 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 8832
44ffc75b
TH
8833 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8834 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8835 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
8836
8837 return 0;
8838}
ab84d31e 8839#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 8840#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8841
052f1dc7 8842#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
8843static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8844 struct cftype *cft, s64 val)
6f505b16 8845{
182446d0 8846 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
8847}
8848
182446d0
TH
8849static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8850 struct cftype *cft)
6f505b16 8851{
182446d0 8852 return sched_group_rt_runtime(css_tg(css));
6f505b16 8853}
d0b27fa7 8854
182446d0
TH
8855static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8856 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 8857{
182446d0 8858 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
8859}
8860
182446d0
TH
8861static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8862 struct cftype *cft)
d0b27fa7 8863{
182446d0 8864 return sched_group_rt_period(css_tg(css));
d0b27fa7 8865}
6d6bc0ad 8866#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8867
fe5c7cc2 8868static struct cftype cpu_files[] = {
052f1dc7 8869#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8870 {
8871 .name = "shares",
f4c753b7
PM
8872 .read_u64 = cpu_shares_read_u64,
8873 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8874 },
052f1dc7 8875#endif
ab84d31e
PT
8876#ifdef CONFIG_CFS_BANDWIDTH
8877 {
8878 .name = "cfs_quota_us",
8879 .read_s64 = cpu_cfs_quota_read_s64,
8880 .write_s64 = cpu_cfs_quota_write_s64,
8881 },
8882 {
8883 .name = "cfs_period_us",
8884 .read_u64 = cpu_cfs_period_read_u64,
8885 .write_u64 = cpu_cfs_period_write_u64,
8886 },
e8da1b18
NR
8887 {
8888 .name = "stat",
2da8ca82 8889 .seq_show = cpu_stats_show,
e8da1b18 8890 },
ab84d31e 8891#endif
052f1dc7 8892#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8893 {
9f0c1e56 8894 .name = "rt_runtime_us",
06ecb27c
PM
8895 .read_s64 = cpu_rt_runtime_read,
8896 .write_s64 = cpu_rt_runtime_write,
6f505b16 8897 },
d0b27fa7
PZ
8898 {
8899 .name = "rt_period_us",
f4c753b7
PM
8900 .read_u64 = cpu_rt_period_read_uint,
8901 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8902 },
052f1dc7 8903#endif
4baf6e33 8904 { } /* terminate */
68318b8e
SV
8905};
8906
073219e9 8907struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748 8908 .css_alloc = cpu_cgroup_css_alloc,
2f5177f0 8909 .css_released = cpu_cgroup_css_released,
92fb9748 8910 .css_free = cpu_cgroup_css_free,
eeb61e53 8911 .fork = cpu_cgroup_fork,
bb9d97b6
TH
8912 .can_attach = cpu_cgroup_can_attach,
8913 .attach = cpu_cgroup_attach,
5577964e 8914 .legacy_cftypes = cpu_files,
b38e42e9 8915 .early_init = true,
68318b8e
SV
8916};
8917
052f1dc7 8918#endif /* CONFIG_CGROUP_SCHED */
d842de87 8919
b637a328
PM
8920void dump_cpu_task(int cpu)
8921{
8922 pr_info("Task dump for CPU %d:\n", cpu);
8923 sched_show_task(cpu_curr(cpu));
8924}
ed82b8a1
AK
8925
8926/*
8927 * Nice levels are multiplicative, with a gentle 10% change for every
8928 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8929 * nice 1, it will get ~10% less CPU time than another CPU-bound task
8930 * that remained on nice 0.
8931 *
8932 * The "10% effect" is relative and cumulative: from _any_ nice level,
8933 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8934 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8935 * If a task goes up by ~10% and another task goes down by ~10% then
8936 * the relative distance between them is ~25%.)
8937 */
8938const int sched_prio_to_weight[40] = {
8939 /* -20 */ 88761, 71755, 56483, 46273, 36291,
8940 /* -15 */ 29154, 23254, 18705, 14949, 11916,
8941 /* -10 */ 9548, 7620, 6100, 4904, 3906,
8942 /* -5 */ 3121, 2501, 1991, 1586, 1277,
8943 /* 0 */ 1024, 820, 655, 526, 423,
8944 /* 5 */ 335, 272, 215, 172, 137,
8945 /* 10 */ 110, 87, 70, 56, 45,
8946 /* 15 */ 36, 29, 23, 18, 15,
8947};
8948
8949/*
8950 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8951 *
8952 * In cases where the weight does not change often, we can use the
8953 * precalculated inverse to speed up arithmetics by turning divisions
8954 * into multiplications:
8955 */
8956const u32 sched_prio_to_wmult[40] = {
8957 /* -20 */ 48388, 59856, 76040, 92818, 118348,
8958 /* -15 */ 147320, 184698, 229616, 287308, 360437,
8959 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
8960 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
8961 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
8962 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
8963 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
8964 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8965};