]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - kernel/sched/core.c
sched/clock: Update static_key usage
[mirror_ubuntu-kernels.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
e1b77c92 29#include <linux/kasan.h>
1da177e4
LT
30#include <linux/mm.h>
31#include <linux/module.h>
32#include <linux/nmi.h>
33#include <linux/init.h>
dff06c15 34#include <linux/uaccess.h>
1da177e4 35#include <linux/highmem.h>
f98db601 36#include <linux/mmu_context.h>
1da177e4 37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
cdd6c482 42#include <linux/perf_event.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
b5aadf7f 58#include <linux/proc_fs.h>
1da177e4 59#include <linux/seq_file.h>
e692ab53 60#include <linux/sysctl.h>
1da177e4
LT
61#include <linux/syscalls.h>
62#include <linux/times.h>
8f0ab514 63#include <linux/tsacct_kern.h>
c6fd91f0 64#include <linux/kprobes.h>
0ff92245 65#include <linux/delayacct.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
30914a58 69#include <linux/tick.h>
f00b45c1 70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
91d1aa43 74#include <linux/context_tracking.h>
52f5684c 75#include <linux/compiler.h>
8e05e96a 76#include <linux/frame.h>
6075620b 77#include <linux/prefetch.h>
3ca0ff57 78#include <linux/mutex.h>
1da177e4 79
96f951ed 80#include <asm/switch_to.h>
5517d86b 81#include <asm/tlb.h>
838225b4 82#include <asm/irq_regs.h>
e6e6685a
GC
83#ifdef CONFIG_PARAVIRT
84#include <asm/paravirt.h>
85#endif
1da177e4 86
029632fb 87#include "sched.h"
ea138446 88#include "../workqueue_internal.h"
29d5e047 89#include "../smpboot.h"
6e0534f2 90
a8d154b0 91#define CREATE_TRACE_POINTS
ad8d75ff 92#include <trace/events/sched.h>
a8d154b0 93
029632fb
PZ
94DEFINE_MUTEX(sched_domains_mutex);
95DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 96
fe44d621 97static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 98
029632fb 99void update_rq_clock(struct rq *rq)
3e51f33f 100{
fe44d621 101 s64 delta;
305e6835 102
9edfbfed
PZ
103 lockdep_assert_held(&rq->lock);
104
cb42c9a3 105 if (rq->clock_update_flags & RQCF_ACT_SKIP)
f26f9aff 106 return;
aa483808 107
cb42c9a3
MF
108#ifdef CONFIG_SCHED_DEBUG
109 rq->clock_update_flags |= RQCF_UPDATED;
110#endif
fe44d621 111 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
4036ac15
MG
112 if (delta < 0)
113 return;
fe44d621
PZ
114 rq->clock += delta;
115 update_rq_clock_task(rq, delta);
3e51f33f
PZ
116}
117
bf5c91ba
IM
118/*
119 * Debugging: various feature bits
120 */
f00b45c1 121
f00b45c1
PZ
122#define SCHED_FEAT(name, enabled) \
123 (1UL << __SCHED_FEAT_##name) * enabled |
124
bf5c91ba 125const_debug unsigned int sysctl_sched_features =
391e43da 126#include "features.h"
f00b45c1
PZ
127 0;
128
129#undef SCHED_FEAT
130
b82d9fdd
PZ
131/*
132 * Number of tasks to iterate in a single balance run.
133 * Limited because this is done with IRQs disabled.
134 */
135const_debug unsigned int sysctl_sched_nr_migrate = 32;
136
e9e9250b
PZ
137/*
138 * period over which we average the RT time consumption, measured
139 * in ms.
140 *
141 * default: 1s
142 */
143const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
144
fa85ae24 145/*
9f0c1e56 146 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
147 * default: 1s
148 */
9f0c1e56 149unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 150
029632fb 151__read_mostly int scheduler_running;
6892b75e 152
9f0c1e56
PZ
153/*
154 * part of the period that we allow rt tasks to run in us.
155 * default: 0.95s
156 */
157int sysctl_sched_rt_runtime = 950000;
fa85ae24 158
3fa0818b
RR
159/* cpus with isolated domains */
160cpumask_var_t cpu_isolated_map;
161
1da177e4 162/*
cc2a73b5 163 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 164 */
a9957449 165static struct rq *this_rq_lock(void)
1da177e4
LT
166 __acquires(rq->lock)
167{
70b97a7f 168 struct rq *rq;
1da177e4
LT
169
170 local_irq_disable();
171 rq = this_rq();
05fa785c 172 raw_spin_lock(&rq->lock);
1da177e4
LT
173
174 return rq;
175}
176
3e71a462
PZ
177/*
178 * __task_rq_lock - lock the rq @p resides on.
179 */
eb580751 180struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
181 __acquires(rq->lock)
182{
183 struct rq *rq;
184
185 lockdep_assert_held(&p->pi_lock);
186
187 for (;;) {
188 rq = task_rq(p);
189 raw_spin_lock(&rq->lock);
190 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 191 rq_pin_lock(rq, rf);
3e71a462
PZ
192 return rq;
193 }
194 raw_spin_unlock(&rq->lock);
195
196 while (unlikely(task_on_rq_migrating(p)))
197 cpu_relax();
198 }
199}
200
201/*
202 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
203 */
eb580751 204struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
205 __acquires(p->pi_lock)
206 __acquires(rq->lock)
207{
208 struct rq *rq;
209
210 for (;;) {
eb580751 211 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
3e71a462
PZ
212 rq = task_rq(p);
213 raw_spin_lock(&rq->lock);
214 /*
215 * move_queued_task() task_rq_lock()
216 *
217 * ACQUIRE (rq->lock)
218 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
219 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
220 * [S] ->cpu = new_cpu [L] task_rq()
221 * [L] ->on_rq
222 * RELEASE (rq->lock)
223 *
224 * If we observe the old cpu in task_rq_lock, the acquire of
225 * the old rq->lock will fully serialize against the stores.
226 *
227 * If we observe the new cpu in task_rq_lock, the acquire will
228 * pair with the WMB to ensure we must then also see migrating.
229 */
230 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 231 rq_pin_lock(rq, rf);
3e71a462
PZ
232 return rq;
233 }
234 raw_spin_unlock(&rq->lock);
eb580751 235 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
3e71a462
PZ
236
237 while (unlikely(task_on_rq_migrating(p)))
238 cpu_relax();
239 }
240}
241
8f4d37ec
PZ
242#ifdef CONFIG_SCHED_HRTICK
243/*
244 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 245 */
8f4d37ec 246
8f4d37ec
PZ
247static void hrtick_clear(struct rq *rq)
248{
249 if (hrtimer_active(&rq->hrtick_timer))
250 hrtimer_cancel(&rq->hrtick_timer);
251}
252
8f4d37ec
PZ
253/*
254 * High-resolution timer tick.
255 * Runs from hardirq context with interrupts disabled.
256 */
257static enum hrtimer_restart hrtick(struct hrtimer *timer)
258{
259 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
260
261 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
262
05fa785c 263 raw_spin_lock(&rq->lock);
3e51f33f 264 update_rq_clock(rq);
8f4d37ec 265 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 266 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
267
268 return HRTIMER_NORESTART;
269}
270
95e904c7 271#ifdef CONFIG_SMP
971ee28c 272
4961b6e1 273static void __hrtick_restart(struct rq *rq)
971ee28c
PZ
274{
275 struct hrtimer *timer = &rq->hrtick_timer;
971ee28c 276
4961b6e1 277 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
971ee28c
PZ
278}
279
31656519
PZ
280/*
281 * called from hardirq (IPI) context
282 */
283static void __hrtick_start(void *arg)
b328ca18 284{
31656519 285 struct rq *rq = arg;
b328ca18 286
05fa785c 287 raw_spin_lock(&rq->lock);
971ee28c 288 __hrtick_restart(rq);
31656519 289 rq->hrtick_csd_pending = 0;
05fa785c 290 raw_spin_unlock(&rq->lock);
b328ca18
PZ
291}
292
31656519
PZ
293/*
294 * Called to set the hrtick timer state.
295 *
296 * called with rq->lock held and irqs disabled
297 */
029632fb 298void hrtick_start(struct rq *rq, u64 delay)
b328ca18 299{
31656519 300 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 301 ktime_t time;
302 s64 delta;
303
304 /*
305 * Don't schedule slices shorter than 10000ns, that just
306 * doesn't make sense and can cause timer DoS.
307 */
308 delta = max_t(s64, delay, 10000LL);
309 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 310
cc584b21 311 hrtimer_set_expires(timer, time);
31656519
PZ
312
313 if (rq == this_rq()) {
971ee28c 314 __hrtick_restart(rq);
31656519 315 } else if (!rq->hrtick_csd_pending) {
c46fff2a 316 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
317 rq->hrtick_csd_pending = 1;
318 }
b328ca18
PZ
319}
320
31656519
PZ
321#else
322/*
323 * Called to set the hrtick timer state.
324 *
325 * called with rq->lock held and irqs disabled
326 */
029632fb 327void hrtick_start(struct rq *rq, u64 delay)
31656519 328{
86893335
WL
329 /*
330 * Don't schedule slices shorter than 10000ns, that just
331 * doesn't make sense. Rely on vruntime for fairness.
332 */
333 delay = max_t(u64, delay, 10000LL);
4961b6e1
TG
334 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
335 HRTIMER_MODE_REL_PINNED);
31656519 336}
31656519 337#endif /* CONFIG_SMP */
8f4d37ec 338
31656519 339static void init_rq_hrtick(struct rq *rq)
8f4d37ec 340{
31656519
PZ
341#ifdef CONFIG_SMP
342 rq->hrtick_csd_pending = 0;
8f4d37ec 343
31656519
PZ
344 rq->hrtick_csd.flags = 0;
345 rq->hrtick_csd.func = __hrtick_start;
346 rq->hrtick_csd.info = rq;
347#endif
8f4d37ec 348
31656519
PZ
349 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
350 rq->hrtick_timer.function = hrtick;
8f4d37ec 351}
006c75f1 352#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
353static inline void hrtick_clear(struct rq *rq)
354{
355}
356
8f4d37ec
PZ
357static inline void init_rq_hrtick(struct rq *rq)
358{
359}
006c75f1 360#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 361
5529578a
FW
362/*
363 * cmpxchg based fetch_or, macro so it works for different integer types
364 */
365#define fetch_or(ptr, mask) \
366 ({ \
367 typeof(ptr) _ptr = (ptr); \
368 typeof(mask) _mask = (mask); \
369 typeof(*_ptr) _old, _val = *_ptr; \
370 \
371 for (;;) { \
372 _old = cmpxchg(_ptr, _val, _val | _mask); \
373 if (_old == _val) \
374 break; \
375 _val = _old; \
376 } \
377 _old; \
378})
379
e3baac47 380#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
381/*
382 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
383 * this avoids any races wrt polling state changes and thereby avoids
384 * spurious IPIs.
385 */
386static bool set_nr_and_not_polling(struct task_struct *p)
387{
388 struct thread_info *ti = task_thread_info(p);
389 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
390}
e3baac47
PZ
391
392/*
393 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
394 *
395 * If this returns true, then the idle task promises to call
396 * sched_ttwu_pending() and reschedule soon.
397 */
398static bool set_nr_if_polling(struct task_struct *p)
399{
400 struct thread_info *ti = task_thread_info(p);
316c1608 401 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
e3baac47
PZ
402
403 for (;;) {
404 if (!(val & _TIF_POLLING_NRFLAG))
405 return false;
406 if (val & _TIF_NEED_RESCHED)
407 return true;
408 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
409 if (old == val)
410 break;
411 val = old;
412 }
413 return true;
414}
415
fd99f91a
PZ
416#else
417static bool set_nr_and_not_polling(struct task_struct *p)
418{
419 set_tsk_need_resched(p);
420 return true;
421}
e3baac47
PZ
422
423#ifdef CONFIG_SMP
424static bool set_nr_if_polling(struct task_struct *p)
425{
426 return false;
427}
428#endif
fd99f91a
PZ
429#endif
430
76751049
PZ
431void wake_q_add(struct wake_q_head *head, struct task_struct *task)
432{
433 struct wake_q_node *node = &task->wake_q;
434
435 /*
436 * Atomically grab the task, if ->wake_q is !nil already it means
437 * its already queued (either by us or someone else) and will get the
438 * wakeup due to that.
439 *
440 * This cmpxchg() implies a full barrier, which pairs with the write
58fe9c46 441 * barrier implied by the wakeup in wake_up_q().
76751049
PZ
442 */
443 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
444 return;
445
446 get_task_struct(task);
447
448 /*
449 * The head is context local, there can be no concurrency.
450 */
451 *head->lastp = node;
452 head->lastp = &node->next;
453}
454
455void wake_up_q(struct wake_q_head *head)
456{
457 struct wake_q_node *node = head->first;
458
459 while (node != WAKE_Q_TAIL) {
460 struct task_struct *task;
461
462 task = container_of(node, struct task_struct, wake_q);
463 BUG_ON(!task);
464 /* task can safely be re-inserted now */
465 node = node->next;
466 task->wake_q.next = NULL;
467
468 /*
469 * wake_up_process() implies a wmb() to pair with the queueing
470 * in wake_q_add() so as not to miss wakeups.
471 */
472 wake_up_process(task);
473 put_task_struct(task);
474 }
475}
476
c24d20db 477/*
8875125e 478 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
479 *
480 * On UP this means the setting of the need_resched flag, on SMP it
481 * might also involve a cross-CPU call to trigger the scheduler on
482 * the target CPU.
483 */
8875125e 484void resched_curr(struct rq *rq)
c24d20db 485{
8875125e 486 struct task_struct *curr = rq->curr;
c24d20db
IM
487 int cpu;
488
8875125e 489 lockdep_assert_held(&rq->lock);
c24d20db 490
8875125e 491 if (test_tsk_need_resched(curr))
c24d20db
IM
492 return;
493
8875125e 494 cpu = cpu_of(rq);
fd99f91a 495
f27dde8d 496 if (cpu == smp_processor_id()) {
8875125e 497 set_tsk_need_resched(curr);
f27dde8d 498 set_preempt_need_resched();
c24d20db 499 return;
f27dde8d 500 }
c24d20db 501
8875125e 502 if (set_nr_and_not_polling(curr))
c24d20db 503 smp_send_reschedule(cpu);
dfc68f29
AL
504 else
505 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
506}
507
029632fb 508void resched_cpu(int cpu)
c24d20db
IM
509{
510 struct rq *rq = cpu_rq(cpu);
511 unsigned long flags;
512
05fa785c 513 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db 514 return;
8875125e 515 resched_curr(rq);
05fa785c 516 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 517}
06d8308c 518
b021fe3e 519#ifdef CONFIG_SMP
3451d024 520#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
521/*
522 * In the semi idle case, use the nearest busy cpu for migrating timers
523 * from an idle cpu. This is good for power-savings.
524 *
525 * We don't do similar optimization for completely idle system, as
526 * selecting an idle cpu will add more delays to the timers than intended
527 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
528 */
bc7a34b8 529int get_nohz_timer_target(void)
83cd4fe2 530{
bc7a34b8 531 int i, cpu = smp_processor_id();
83cd4fe2
VP
532 struct sched_domain *sd;
533
9642d18e 534 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
6201b4d6
VK
535 return cpu;
536
057f3fad 537 rcu_read_lock();
83cd4fe2 538 for_each_domain(cpu, sd) {
057f3fad 539 for_each_cpu(i, sched_domain_span(sd)) {
44496922
WL
540 if (cpu == i)
541 continue;
542
543 if (!idle_cpu(i) && is_housekeeping_cpu(i)) {
057f3fad
PZ
544 cpu = i;
545 goto unlock;
546 }
547 }
83cd4fe2 548 }
9642d18e
VH
549
550 if (!is_housekeeping_cpu(cpu))
551 cpu = housekeeping_any_cpu();
057f3fad
PZ
552unlock:
553 rcu_read_unlock();
83cd4fe2
VP
554 return cpu;
555}
06d8308c
TG
556/*
557 * When add_timer_on() enqueues a timer into the timer wheel of an
558 * idle CPU then this timer might expire before the next timer event
559 * which is scheduled to wake up that CPU. In case of a completely
560 * idle system the next event might even be infinite time into the
561 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
562 * leaves the inner idle loop so the newly added timer is taken into
563 * account when the CPU goes back to idle and evaluates the timer
564 * wheel for the next timer event.
565 */
1c20091e 566static void wake_up_idle_cpu(int cpu)
06d8308c
TG
567{
568 struct rq *rq = cpu_rq(cpu);
569
570 if (cpu == smp_processor_id())
571 return;
572
67b9ca70 573 if (set_nr_and_not_polling(rq->idle))
06d8308c 574 smp_send_reschedule(cpu);
dfc68f29
AL
575 else
576 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
577}
578
c5bfece2 579static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 580{
53c5fa16
FW
581 /*
582 * We just need the target to call irq_exit() and re-evaluate
583 * the next tick. The nohz full kick at least implies that.
584 * If needed we can still optimize that later with an
585 * empty IRQ.
586 */
379d9ecb
PM
587 if (cpu_is_offline(cpu))
588 return true; /* Don't try to wake offline CPUs. */
c5bfece2 589 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
590 if (cpu != smp_processor_id() ||
591 tick_nohz_tick_stopped())
53c5fa16 592 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
593 return true;
594 }
595
596 return false;
597}
598
379d9ecb
PM
599/*
600 * Wake up the specified CPU. If the CPU is going offline, it is the
601 * caller's responsibility to deal with the lost wakeup, for example,
602 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
603 */
1c20091e
FW
604void wake_up_nohz_cpu(int cpu)
605{
c5bfece2 606 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
607 wake_up_idle_cpu(cpu);
608}
609
ca38062e 610static inline bool got_nohz_idle_kick(void)
45bf76df 611{
1c792db7 612 int cpu = smp_processor_id();
873b4c65
VG
613
614 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
615 return false;
616
617 if (idle_cpu(cpu) && !need_resched())
618 return true;
619
620 /*
621 * We can't run Idle Load Balance on this CPU for this time so we
622 * cancel it and clear NOHZ_BALANCE_KICK
623 */
624 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
625 return false;
45bf76df
IM
626}
627
3451d024 628#else /* CONFIG_NO_HZ_COMMON */
45bf76df 629
ca38062e 630static inline bool got_nohz_idle_kick(void)
2069dd75 631{
ca38062e 632 return false;
2069dd75
PZ
633}
634
3451d024 635#endif /* CONFIG_NO_HZ_COMMON */
d842de87 636
ce831b38 637#ifdef CONFIG_NO_HZ_FULL
76d92ac3 638bool sched_can_stop_tick(struct rq *rq)
ce831b38 639{
76d92ac3
FW
640 int fifo_nr_running;
641
642 /* Deadline tasks, even if single, need the tick */
643 if (rq->dl.dl_nr_running)
644 return false;
645
1e78cdbd 646 /*
2548d546
PZ
647 * If there are more than one RR tasks, we need the tick to effect the
648 * actual RR behaviour.
1e78cdbd 649 */
76d92ac3
FW
650 if (rq->rt.rr_nr_running) {
651 if (rq->rt.rr_nr_running == 1)
652 return true;
653 else
654 return false;
1e78cdbd
RR
655 }
656
2548d546
PZ
657 /*
658 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
659 * forced preemption between FIFO tasks.
660 */
661 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
662 if (fifo_nr_running)
663 return true;
664
665 /*
666 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
667 * if there's more than one we need the tick for involuntary
668 * preemption.
669 */
670 if (rq->nr_running > 1)
541b8264 671 return false;
ce831b38 672
541b8264 673 return true;
ce831b38
FW
674}
675#endif /* CONFIG_NO_HZ_FULL */
d842de87 676
029632fb 677void sched_avg_update(struct rq *rq)
18d95a28 678{
e9e9250b
PZ
679 s64 period = sched_avg_period();
680
78becc27 681 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
682 /*
683 * Inline assembly required to prevent the compiler
684 * optimising this loop into a divmod call.
685 * See __iter_div_u64_rem() for another example of this.
686 */
687 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
688 rq->age_stamp += period;
689 rq->rt_avg /= 2;
690 }
18d95a28
PZ
691}
692
6d6bc0ad 693#endif /* CONFIG_SMP */
18d95a28 694
a790de99
PT
695#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
696 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 697/*
8277434e
PT
698 * Iterate task_group tree rooted at *from, calling @down when first entering a
699 * node and @up when leaving it for the final time.
700 *
701 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 702 */
029632fb 703int walk_tg_tree_from(struct task_group *from,
8277434e 704 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
705{
706 struct task_group *parent, *child;
eb755805 707 int ret;
c09595f6 708
8277434e
PT
709 parent = from;
710
c09595f6 711down:
eb755805
PZ
712 ret = (*down)(parent, data);
713 if (ret)
8277434e 714 goto out;
c09595f6
PZ
715 list_for_each_entry_rcu(child, &parent->children, siblings) {
716 parent = child;
717 goto down;
718
719up:
720 continue;
721 }
eb755805 722 ret = (*up)(parent, data);
8277434e
PT
723 if (ret || parent == from)
724 goto out;
c09595f6
PZ
725
726 child = parent;
727 parent = parent->parent;
728 if (parent)
729 goto up;
8277434e 730out:
eb755805 731 return ret;
c09595f6
PZ
732}
733
029632fb 734int tg_nop(struct task_group *tg, void *data)
eb755805 735{
e2b245f8 736 return 0;
eb755805 737}
18d95a28
PZ
738#endif
739
45bf76df
IM
740static void set_load_weight(struct task_struct *p)
741{
f05998d4
NR
742 int prio = p->static_prio - MAX_RT_PRIO;
743 struct load_weight *load = &p->se.load;
744
dd41f596
IM
745 /*
746 * SCHED_IDLE tasks get minimal weight:
747 */
20f9cd2a 748 if (idle_policy(p->policy)) {
c8b28116 749 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 750 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
751 return;
752 }
71f8bd46 753
ed82b8a1
AK
754 load->weight = scale_load(sched_prio_to_weight[prio]);
755 load->inv_weight = sched_prio_to_wmult[prio];
71f8bd46
IM
756}
757
1de64443 758static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 759{
a64692a3 760 update_rq_clock(rq);
1de64443
PZ
761 if (!(flags & ENQUEUE_RESTORE))
762 sched_info_queued(rq, p);
371fd7e7 763 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
764}
765
1de64443 766static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 767{
a64692a3 768 update_rq_clock(rq);
1de64443
PZ
769 if (!(flags & DEQUEUE_SAVE))
770 sched_info_dequeued(rq, p);
371fd7e7 771 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
772}
773
029632fb 774void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
775{
776 if (task_contributes_to_load(p))
777 rq->nr_uninterruptible--;
778
371fd7e7 779 enqueue_task(rq, p, flags);
1e3c88bd
PZ
780}
781
029632fb 782void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
783{
784 if (task_contributes_to_load(p))
785 rq->nr_uninterruptible++;
786
371fd7e7 787 dequeue_task(rq, p, flags);
1e3c88bd
PZ
788}
789
fe44d621 790static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 791{
095c0aa8
GC
792/*
793 * In theory, the compile should just see 0 here, and optimize out the call
794 * to sched_rt_avg_update. But I don't trust it...
795 */
796#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
797 s64 steal = 0, irq_delta = 0;
798#endif
799#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 800 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
801
802 /*
803 * Since irq_time is only updated on {soft,}irq_exit, we might run into
804 * this case when a previous update_rq_clock() happened inside a
805 * {soft,}irq region.
806 *
807 * When this happens, we stop ->clock_task and only update the
808 * prev_irq_time stamp to account for the part that fit, so that a next
809 * update will consume the rest. This ensures ->clock_task is
810 * monotonic.
811 *
812 * It does however cause some slight miss-attribution of {soft,}irq
813 * time, a more accurate solution would be to update the irq_time using
814 * the current rq->clock timestamp, except that would require using
815 * atomic ops.
816 */
817 if (irq_delta > delta)
818 irq_delta = delta;
819
820 rq->prev_irq_time += irq_delta;
821 delta -= irq_delta;
095c0aa8
GC
822#endif
823#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 824 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
825 steal = paravirt_steal_clock(cpu_of(rq));
826 steal -= rq->prev_steal_time_rq;
827
828 if (unlikely(steal > delta))
829 steal = delta;
830
095c0aa8 831 rq->prev_steal_time_rq += steal;
095c0aa8
GC
832 delta -= steal;
833 }
834#endif
835
fe44d621
PZ
836 rq->clock_task += delta;
837
095c0aa8 838#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
5d4dfddd 839 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
095c0aa8
GC
840 sched_rt_avg_update(rq, irq_delta + steal);
841#endif
aa483808
VP
842}
843
34f971f6
PZ
844void sched_set_stop_task(int cpu, struct task_struct *stop)
845{
846 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
847 struct task_struct *old_stop = cpu_rq(cpu)->stop;
848
849 if (stop) {
850 /*
851 * Make it appear like a SCHED_FIFO task, its something
852 * userspace knows about and won't get confused about.
853 *
854 * Also, it will make PI more or less work without too
855 * much confusion -- but then, stop work should not
856 * rely on PI working anyway.
857 */
858 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
859
860 stop->sched_class = &stop_sched_class;
861 }
862
863 cpu_rq(cpu)->stop = stop;
864
865 if (old_stop) {
866 /*
867 * Reset it back to a normal scheduling class so that
868 * it can die in pieces.
869 */
870 old_stop->sched_class = &rt_sched_class;
871 }
872}
873
14531189 874/*
dd41f596 875 * __normal_prio - return the priority that is based on the static prio
14531189 876 */
14531189
IM
877static inline int __normal_prio(struct task_struct *p)
878{
dd41f596 879 return p->static_prio;
14531189
IM
880}
881
b29739f9
IM
882/*
883 * Calculate the expected normal priority: i.e. priority
884 * without taking RT-inheritance into account. Might be
885 * boosted by interactivity modifiers. Changes upon fork,
886 * setprio syscalls, and whenever the interactivity
887 * estimator recalculates.
888 */
36c8b586 889static inline int normal_prio(struct task_struct *p)
b29739f9
IM
890{
891 int prio;
892
aab03e05
DF
893 if (task_has_dl_policy(p))
894 prio = MAX_DL_PRIO-1;
895 else if (task_has_rt_policy(p))
b29739f9
IM
896 prio = MAX_RT_PRIO-1 - p->rt_priority;
897 else
898 prio = __normal_prio(p);
899 return prio;
900}
901
902/*
903 * Calculate the current priority, i.e. the priority
904 * taken into account by the scheduler. This value might
905 * be boosted by RT tasks, or might be boosted by
906 * interactivity modifiers. Will be RT if the task got
907 * RT-boosted. If not then it returns p->normal_prio.
908 */
36c8b586 909static int effective_prio(struct task_struct *p)
b29739f9
IM
910{
911 p->normal_prio = normal_prio(p);
912 /*
913 * If we are RT tasks or we were boosted to RT priority,
914 * keep the priority unchanged. Otherwise, update priority
915 * to the normal priority:
916 */
917 if (!rt_prio(p->prio))
918 return p->normal_prio;
919 return p->prio;
920}
921
1da177e4
LT
922/**
923 * task_curr - is this task currently executing on a CPU?
924 * @p: the task in question.
e69f6186
YB
925 *
926 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 927 */
36c8b586 928inline int task_curr(const struct task_struct *p)
1da177e4
LT
929{
930 return cpu_curr(task_cpu(p)) == p;
931}
932
67dfa1b7 933/*
4c9a4bc8
PZ
934 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
935 * use the balance_callback list if you want balancing.
936 *
937 * this means any call to check_class_changed() must be followed by a call to
938 * balance_callback().
67dfa1b7 939 */
cb469845
SR
940static inline void check_class_changed(struct rq *rq, struct task_struct *p,
941 const struct sched_class *prev_class,
da7a735e 942 int oldprio)
cb469845
SR
943{
944 if (prev_class != p->sched_class) {
945 if (prev_class->switched_from)
da7a735e 946 prev_class->switched_from(rq, p);
4c9a4bc8 947
da7a735e 948 p->sched_class->switched_to(rq, p);
2d3d891d 949 } else if (oldprio != p->prio || dl_task(p))
da7a735e 950 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
951}
952
029632fb 953void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
954{
955 const struct sched_class *class;
956
957 if (p->sched_class == rq->curr->sched_class) {
958 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
959 } else {
960 for_each_class(class) {
961 if (class == rq->curr->sched_class)
962 break;
963 if (class == p->sched_class) {
8875125e 964 resched_curr(rq);
1e5a7405
PZ
965 break;
966 }
967 }
968 }
969
970 /*
971 * A queue event has occurred, and we're going to schedule. In
972 * this case, we can save a useless back to back clock update.
973 */
da0c1e65 974 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
9edfbfed 975 rq_clock_skip_update(rq, true);
1e5a7405
PZ
976}
977
1da177e4 978#ifdef CONFIG_SMP
5cc389bc
PZ
979/*
980 * This is how migration works:
981 *
982 * 1) we invoke migration_cpu_stop() on the target CPU using
983 * stop_one_cpu().
984 * 2) stopper starts to run (implicitly forcing the migrated thread
985 * off the CPU)
986 * 3) it checks whether the migrated task is still in the wrong runqueue.
987 * 4) if it's in the wrong runqueue then the migration thread removes
988 * it and puts it into the right queue.
989 * 5) stopper completes and stop_one_cpu() returns and the migration
990 * is done.
991 */
992
993/*
994 * move_queued_task - move a queued task to new rq.
995 *
996 * Returns (locked) new rq. Old rq's lock is released.
997 */
5e16bbc2 998static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
5cc389bc 999{
5cc389bc
PZ
1000 lockdep_assert_held(&rq->lock);
1001
5cc389bc 1002 p->on_rq = TASK_ON_RQ_MIGRATING;
3ea94de1 1003 dequeue_task(rq, p, 0);
5cc389bc
PZ
1004 set_task_cpu(p, new_cpu);
1005 raw_spin_unlock(&rq->lock);
1006
1007 rq = cpu_rq(new_cpu);
1008
1009 raw_spin_lock(&rq->lock);
1010 BUG_ON(task_cpu(p) != new_cpu);
5cc389bc 1011 enqueue_task(rq, p, 0);
3ea94de1 1012 p->on_rq = TASK_ON_RQ_QUEUED;
5cc389bc
PZ
1013 check_preempt_curr(rq, p, 0);
1014
1015 return rq;
1016}
1017
1018struct migration_arg {
1019 struct task_struct *task;
1020 int dest_cpu;
1021};
1022
1023/*
1024 * Move (not current) task off this cpu, onto dest cpu. We're doing
1025 * this because either it can't run here any more (set_cpus_allowed()
1026 * away from this CPU, or CPU going down), or because we're
1027 * attempting to rebalance this task on exec (sched_exec).
1028 *
1029 * So we race with normal scheduler movements, but that's OK, as long
1030 * as the task is no longer on this CPU.
5cc389bc 1031 */
5e16bbc2 1032static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
5cc389bc 1033{
5cc389bc 1034 if (unlikely(!cpu_active(dest_cpu)))
5e16bbc2 1035 return rq;
5cc389bc
PZ
1036
1037 /* Affinity changed (again). */
1038 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
5e16bbc2 1039 return rq;
5cc389bc 1040
5e16bbc2
PZ
1041 rq = move_queued_task(rq, p, dest_cpu);
1042
1043 return rq;
5cc389bc
PZ
1044}
1045
1046/*
1047 * migration_cpu_stop - this will be executed by a highprio stopper thread
1048 * and performs thread migration by bumping thread off CPU then
1049 * 'pushing' onto another runqueue.
1050 */
1051static int migration_cpu_stop(void *data)
1052{
1053 struct migration_arg *arg = data;
5e16bbc2
PZ
1054 struct task_struct *p = arg->task;
1055 struct rq *rq = this_rq();
5cc389bc
PZ
1056
1057 /*
1058 * The original target cpu might have gone down and we might
1059 * be on another cpu but it doesn't matter.
1060 */
1061 local_irq_disable();
1062 /*
1063 * We need to explicitly wake pending tasks before running
1064 * __migrate_task() such that we will not miss enforcing cpus_allowed
1065 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1066 */
1067 sched_ttwu_pending();
5e16bbc2
PZ
1068
1069 raw_spin_lock(&p->pi_lock);
1070 raw_spin_lock(&rq->lock);
1071 /*
1072 * If task_rq(p) != rq, it cannot be migrated here, because we're
1073 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1074 * we're holding p->pi_lock.
1075 */
bf89a304
CC
1076 if (task_rq(p) == rq) {
1077 if (task_on_rq_queued(p))
1078 rq = __migrate_task(rq, p, arg->dest_cpu);
1079 else
1080 p->wake_cpu = arg->dest_cpu;
1081 }
5e16bbc2
PZ
1082 raw_spin_unlock(&rq->lock);
1083 raw_spin_unlock(&p->pi_lock);
1084
5cc389bc
PZ
1085 local_irq_enable();
1086 return 0;
1087}
1088
c5b28038
PZ
1089/*
1090 * sched_class::set_cpus_allowed must do the below, but is not required to
1091 * actually call this function.
1092 */
1093void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
5cc389bc 1094{
5cc389bc
PZ
1095 cpumask_copy(&p->cpus_allowed, new_mask);
1096 p->nr_cpus_allowed = cpumask_weight(new_mask);
1097}
1098
c5b28038
PZ
1099void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1100{
6c37067e
PZ
1101 struct rq *rq = task_rq(p);
1102 bool queued, running;
1103
c5b28038 1104 lockdep_assert_held(&p->pi_lock);
6c37067e
PZ
1105
1106 queued = task_on_rq_queued(p);
1107 running = task_current(rq, p);
1108
1109 if (queued) {
1110 /*
1111 * Because __kthread_bind() calls this on blocked tasks without
1112 * holding rq->lock.
1113 */
1114 lockdep_assert_held(&rq->lock);
1de64443 1115 dequeue_task(rq, p, DEQUEUE_SAVE);
6c37067e
PZ
1116 }
1117 if (running)
1118 put_prev_task(rq, p);
1119
c5b28038 1120 p->sched_class->set_cpus_allowed(p, new_mask);
6c37067e 1121
6c37067e 1122 if (queued)
1de64443 1123 enqueue_task(rq, p, ENQUEUE_RESTORE);
a399d233 1124 if (running)
b2bf6c31 1125 set_curr_task(rq, p);
c5b28038
PZ
1126}
1127
5cc389bc
PZ
1128/*
1129 * Change a given task's CPU affinity. Migrate the thread to a
1130 * proper CPU and schedule it away if the CPU it's executing on
1131 * is removed from the allowed bitmask.
1132 *
1133 * NOTE: the caller must have a valid reference to the task, the
1134 * task must not exit() & deallocate itself prematurely. The
1135 * call is not atomic; no spinlocks may be held.
1136 */
25834c73
PZ
1137static int __set_cpus_allowed_ptr(struct task_struct *p,
1138 const struct cpumask *new_mask, bool check)
5cc389bc 1139{
e9d867a6 1140 const struct cpumask *cpu_valid_mask = cpu_active_mask;
5cc389bc 1141 unsigned int dest_cpu;
eb580751
PZ
1142 struct rq_flags rf;
1143 struct rq *rq;
5cc389bc
PZ
1144 int ret = 0;
1145
eb580751 1146 rq = task_rq_lock(p, &rf);
5cc389bc 1147
e9d867a6
PZI
1148 if (p->flags & PF_KTHREAD) {
1149 /*
1150 * Kernel threads are allowed on online && !active CPUs
1151 */
1152 cpu_valid_mask = cpu_online_mask;
1153 }
1154
25834c73
PZ
1155 /*
1156 * Must re-check here, to close a race against __kthread_bind(),
1157 * sched_setaffinity() is not guaranteed to observe the flag.
1158 */
1159 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1160 ret = -EINVAL;
1161 goto out;
1162 }
1163
5cc389bc
PZ
1164 if (cpumask_equal(&p->cpus_allowed, new_mask))
1165 goto out;
1166
e9d867a6 1167 if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
5cc389bc
PZ
1168 ret = -EINVAL;
1169 goto out;
1170 }
1171
1172 do_set_cpus_allowed(p, new_mask);
1173
e9d867a6
PZI
1174 if (p->flags & PF_KTHREAD) {
1175 /*
1176 * For kernel threads that do indeed end up on online &&
1177 * !active we want to ensure they are strict per-cpu threads.
1178 */
1179 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1180 !cpumask_intersects(new_mask, cpu_active_mask) &&
1181 p->nr_cpus_allowed != 1);
1182 }
1183
5cc389bc
PZ
1184 /* Can the task run on the task's current CPU? If so, we're done */
1185 if (cpumask_test_cpu(task_cpu(p), new_mask))
1186 goto out;
1187
e9d867a6 1188 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
5cc389bc
PZ
1189 if (task_running(rq, p) || p->state == TASK_WAKING) {
1190 struct migration_arg arg = { p, dest_cpu };
1191 /* Need help from migration thread: drop lock and wait. */
eb580751 1192 task_rq_unlock(rq, p, &rf);
5cc389bc
PZ
1193 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1194 tlb_migrate_finish(p->mm);
1195 return 0;
cbce1a68
PZ
1196 } else if (task_on_rq_queued(p)) {
1197 /*
1198 * OK, since we're going to drop the lock immediately
1199 * afterwards anyway.
1200 */
d8ac8971 1201 rq_unpin_lock(rq, &rf);
5e16bbc2 1202 rq = move_queued_task(rq, p, dest_cpu);
d8ac8971 1203 rq_repin_lock(rq, &rf);
cbce1a68 1204 }
5cc389bc 1205out:
eb580751 1206 task_rq_unlock(rq, p, &rf);
5cc389bc
PZ
1207
1208 return ret;
1209}
25834c73
PZ
1210
1211int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1212{
1213 return __set_cpus_allowed_ptr(p, new_mask, false);
1214}
5cc389bc
PZ
1215EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1216
dd41f596 1217void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1218{
e2912009
PZ
1219#ifdef CONFIG_SCHED_DEBUG
1220 /*
1221 * We should never call set_task_cpu() on a blocked task,
1222 * ttwu() will sort out the placement.
1223 */
077614ee 1224 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
e2336f6e 1225 !p->on_rq);
0122ec5b 1226
3ea94de1
JP
1227 /*
1228 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1229 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1230 * time relying on p->on_rq.
1231 */
1232 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1233 p->sched_class == &fair_sched_class &&
1234 (p->on_rq && !task_on_rq_migrating(p)));
1235
0122ec5b 1236#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1237 /*
1238 * The caller should hold either p->pi_lock or rq->lock, when changing
1239 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1240 *
1241 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1242 * see task_group().
6c6c54e1
PZ
1243 *
1244 * Furthermore, all task_rq users should acquire both locks, see
1245 * task_rq_lock().
1246 */
0122ec5b
PZ
1247 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1248 lockdep_is_held(&task_rq(p)->lock)));
1249#endif
e2912009
PZ
1250#endif
1251
de1d7286 1252 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1253
0c69774e 1254 if (task_cpu(p) != new_cpu) {
0a74bef8 1255 if (p->sched_class->migrate_task_rq)
5a4fd036 1256 p->sched_class->migrate_task_rq(p);
0c69774e 1257 p->se.nr_migrations++;
ff303e66 1258 perf_event_task_migrate(p);
0c69774e 1259 }
dd41f596
IM
1260
1261 __set_task_cpu(p, new_cpu);
c65cc870
IM
1262}
1263
ac66f547
PZ
1264static void __migrate_swap_task(struct task_struct *p, int cpu)
1265{
da0c1e65 1266 if (task_on_rq_queued(p)) {
ac66f547
PZ
1267 struct rq *src_rq, *dst_rq;
1268
1269 src_rq = task_rq(p);
1270 dst_rq = cpu_rq(cpu);
1271
3ea94de1 1272 p->on_rq = TASK_ON_RQ_MIGRATING;
ac66f547
PZ
1273 deactivate_task(src_rq, p, 0);
1274 set_task_cpu(p, cpu);
1275 activate_task(dst_rq, p, 0);
3ea94de1 1276 p->on_rq = TASK_ON_RQ_QUEUED;
ac66f547
PZ
1277 check_preempt_curr(dst_rq, p, 0);
1278 } else {
1279 /*
1280 * Task isn't running anymore; make it appear like we migrated
1281 * it before it went to sleep. This means on wakeup we make the
a1fd4656 1282 * previous cpu our target instead of where it really is.
ac66f547
PZ
1283 */
1284 p->wake_cpu = cpu;
1285 }
1286}
1287
1288struct migration_swap_arg {
1289 struct task_struct *src_task, *dst_task;
1290 int src_cpu, dst_cpu;
1291};
1292
1293static int migrate_swap_stop(void *data)
1294{
1295 struct migration_swap_arg *arg = data;
1296 struct rq *src_rq, *dst_rq;
1297 int ret = -EAGAIN;
1298
62694cd5
PZ
1299 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1300 return -EAGAIN;
1301
ac66f547
PZ
1302 src_rq = cpu_rq(arg->src_cpu);
1303 dst_rq = cpu_rq(arg->dst_cpu);
1304
74602315
PZ
1305 double_raw_lock(&arg->src_task->pi_lock,
1306 &arg->dst_task->pi_lock);
ac66f547 1307 double_rq_lock(src_rq, dst_rq);
62694cd5 1308
ac66f547
PZ
1309 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1310 goto unlock;
1311
1312 if (task_cpu(arg->src_task) != arg->src_cpu)
1313 goto unlock;
1314
1315 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1316 goto unlock;
1317
1318 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1319 goto unlock;
1320
1321 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1322 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1323
1324 ret = 0;
1325
1326unlock:
1327 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1328 raw_spin_unlock(&arg->dst_task->pi_lock);
1329 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1330
1331 return ret;
1332}
1333
1334/*
1335 * Cross migrate two tasks
1336 */
1337int migrate_swap(struct task_struct *cur, struct task_struct *p)
1338{
1339 struct migration_swap_arg arg;
1340 int ret = -EINVAL;
1341
ac66f547
PZ
1342 arg = (struct migration_swap_arg){
1343 .src_task = cur,
1344 .src_cpu = task_cpu(cur),
1345 .dst_task = p,
1346 .dst_cpu = task_cpu(p),
1347 };
1348
1349 if (arg.src_cpu == arg.dst_cpu)
1350 goto out;
1351
6acce3ef
PZ
1352 /*
1353 * These three tests are all lockless; this is OK since all of them
1354 * will be re-checked with proper locks held further down the line.
1355 */
ac66f547
PZ
1356 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1357 goto out;
1358
1359 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1360 goto out;
1361
1362 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1363 goto out;
1364
286549dc 1365 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1366 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1367
1368out:
ac66f547
PZ
1369 return ret;
1370}
1371
1da177e4
LT
1372/*
1373 * wait_task_inactive - wait for a thread to unschedule.
1374 *
85ba2d86
RM
1375 * If @match_state is nonzero, it's the @p->state value just checked and
1376 * not expected to change. If it changes, i.e. @p might have woken up,
1377 * then return zero. When we succeed in waiting for @p to be off its CPU,
1378 * we return a positive number (its total switch count). If a second call
1379 * a short while later returns the same number, the caller can be sure that
1380 * @p has remained unscheduled the whole time.
1381 *
1da177e4
LT
1382 * The caller must ensure that the task *will* unschedule sometime soon,
1383 * else this function might spin for a *long* time. This function can't
1384 * be called with interrupts off, or it may introduce deadlock with
1385 * smp_call_function() if an IPI is sent by the same process we are
1386 * waiting to become inactive.
1387 */
85ba2d86 1388unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4 1389{
da0c1e65 1390 int running, queued;
eb580751 1391 struct rq_flags rf;
85ba2d86 1392 unsigned long ncsw;
70b97a7f 1393 struct rq *rq;
1da177e4 1394
3a5c359a
AK
1395 for (;;) {
1396 /*
1397 * We do the initial early heuristics without holding
1398 * any task-queue locks at all. We'll only try to get
1399 * the runqueue lock when things look like they will
1400 * work out!
1401 */
1402 rq = task_rq(p);
fa490cfd 1403
3a5c359a
AK
1404 /*
1405 * If the task is actively running on another CPU
1406 * still, just relax and busy-wait without holding
1407 * any locks.
1408 *
1409 * NOTE! Since we don't hold any locks, it's not
1410 * even sure that "rq" stays as the right runqueue!
1411 * But we don't care, since "task_running()" will
1412 * return false if the runqueue has changed and p
1413 * is actually now running somewhere else!
1414 */
85ba2d86
RM
1415 while (task_running(rq, p)) {
1416 if (match_state && unlikely(p->state != match_state))
1417 return 0;
3a5c359a 1418 cpu_relax();
85ba2d86 1419 }
fa490cfd 1420
3a5c359a
AK
1421 /*
1422 * Ok, time to look more closely! We need the rq
1423 * lock now, to be *sure*. If we're wrong, we'll
1424 * just go back and repeat.
1425 */
eb580751 1426 rq = task_rq_lock(p, &rf);
27a9da65 1427 trace_sched_wait_task(p);
3a5c359a 1428 running = task_running(rq, p);
da0c1e65 1429 queued = task_on_rq_queued(p);
85ba2d86 1430 ncsw = 0;
f31e11d8 1431 if (!match_state || p->state == match_state)
93dcf55f 1432 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
eb580751 1433 task_rq_unlock(rq, p, &rf);
fa490cfd 1434
85ba2d86
RM
1435 /*
1436 * If it changed from the expected state, bail out now.
1437 */
1438 if (unlikely(!ncsw))
1439 break;
1440
3a5c359a
AK
1441 /*
1442 * Was it really running after all now that we
1443 * checked with the proper locks actually held?
1444 *
1445 * Oops. Go back and try again..
1446 */
1447 if (unlikely(running)) {
1448 cpu_relax();
1449 continue;
1450 }
fa490cfd 1451
3a5c359a
AK
1452 /*
1453 * It's not enough that it's not actively running,
1454 * it must be off the runqueue _entirely_, and not
1455 * preempted!
1456 *
80dd99b3 1457 * So if it was still runnable (but just not actively
3a5c359a
AK
1458 * running right now), it's preempted, and we should
1459 * yield - it could be a while.
1460 */
da0c1e65 1461 if (unlikely(queued)) {
8b0e1953 1462 ktime_t to = NSEC_PER_SEC / HZ;
8eb90c30
TG
1463
1464 set_current_state(TASK_UNINTERRUPTIBLE);
1465 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1466 continue;
1467 }
fa490cfd 1468
3a5c359a
AK
1469 /*
1470 * Ahh, all good. It wasn't running, and it wasn't
1471 * runnable, which means that it will never become
1472 * running in the future either. We're all done!
1473 */
1474 break;
1475 }
85ba2d86
RM
1476
1477 return ncsw;
1da177e4
LT
1478}
1479
1480/***
1481 * kick_process - kick a running thread to enter/exit the kernel
1482 * @p: the to-be-kicked thread
1483 *
1484 * Cause a process which is running on another CPU to enter
1485 * kernel-mode, without any delay. (to get signals handled.)
1486 *
25985edc 1487 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1488 * because all it wants to ensure is that the remote task enters
1489 * the kernel. If the IPI races and the task has been migrated
1490 * to another CPU then no harm is done and the purpose has been
1491 * achieved as well.
1492 */
36c8b586 1493void kick_process(struct task_struct *p)
1da177e4
LT
1494{
1495 int cpu;
1496
1497 preempt_disable();
1498 cpu = task_cpu(p);
1499 if ((cpu != smp_processor_id()) && task_curr(p))
1500 smp_send_reschedule(cpu);
1501 preempt_enable();
1502}
b43e3521 1503EXPORT_SYMBOL_GPL(kick_process);
1da177e4 1504
30da688e 1505/*
013fdb80 1506 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
e9d867a6
PZI
1507 *
1508 * A few notes on cpu_active vs cpu_online:
1509 *
1510 * - cpu_active must be a subset of cpu_online
1511 *
1512 * - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
1513 * see __set_cpus_allowed_ptr(). At this point the newly online
1514 * cpu isn't yet part of the sched domains, and balancing will not
1515 * see it.
1516 *
1517 * - on cpu-down we clear cpu_active() to mask the sched domains and
1518 * avoid the load balancer to place new tasks on the to be removed
1519 * cpu. Existing tasks will remain running there and will be taken
1520 * off.
1521 *
1522 * This means that fallback selection must not select !active CPUs.
1523 * And can assume that any active CPU must be online. Conversely
1524 * select_task_rq() below may allow selection of !active CPUs in order
1525 * to satisfy the above rules.
30da688e 1526 */
5da9a0fb
PZ
1527static int select_fallback_rq(int cpu, struct task_struct *p)
1528{
aa00d89c
TC
1529 int nid = cpu_to_node(cpu);
1530 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1531 enum { cpuset, possible, fail } state = cpuset;
1532 int dest_cpu;
5da9a0fb 1533
aa00d89c
TC
1534 /*
1535 * If the node that the cpu is on has been offlined, cpu_to_node()
1536 * will return -1. There is no cpu on the node, and we should
1537 * select the cpu on the other node.
1538 */
1539 if (nid != -1) {
1540 nodemask = cpumask_of_node(nid);
1541
1542 /* Look for allowed, online CPU in same node. */
1543 for_each_cpu(dest_cpu, nodemask) {
aa00d89c
TC
1544 if (!cpu_active(dest_cpu))
1545 continue;
1546 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1547 return dest_cpu;
1548 }
2baab4e9 1549 }
5da9a0fb 1550
2baab4e9
PZ
1551 for (;;) {
1552 /* Any allowed, online CPU? */
e3831edd 1553 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
feb245e3
TH
1554 if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu))
1555 continue;
1556 if (!cpu_online(dest_cpu))
2baab4e9
PZ
1557 continue;
1558 goto out;
1559 }
5da9a0fb 1560
e73e85f0 1561 /* No more Mr. Nice Guy. */
2baab4e9
PZ
1562 switch (state) {
1563 case cpuset:
e73e85f0
ON
1564 if (IS_ENABLED(CONFIG_CPUSETS)) {
1565 cpuset_cpus_allowed_fallback(p);
1566 state = possible;
1567 break;
1568 }
1569 /* fall-through */
2baab4e9
PZ
1570 case possible:
1571 do_set_cpus_allowed(p, cpu_possible_mask);
1572 state = fail;
1573 break;
1574
1575 case fail:
1576 BUG();
1577 break;
1578 }
1579 }
1580
1581out:
1582 if (state != cpuset) {
1583 /*
1584 * Don't tell them about moving exiting tasks or
1585 * kernel threads (both mm NULL), since they never
1586 * leave kernel.
1587 */
1588 if (p->mm && printk_ratelimit()) {
aac74dc4 1589 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1590 task_pid_nr(p), p->comm, cpu);
1591 }
5da9a0fb
PZ
1592 }
1593
1594 return dest_cpu;
1595}
1596
e2912009 1597/*
013fdb80 1598 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1599 */
970b13ba 1600static inline
ac66f547 1601int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1602{
cbce1a68
PZ
1603 lockdep_assert_held(&p->pi_lock);
1604
50605ffb 1605 if (tsk_nr_cpus_allowed(p) > 1)
6c1d9410 1606 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e9d867a6
PZI
1607 else
1608 cpu = cpumask_any(tsk_cpus_allowed(p));
e2912009
PZ
1609
1610 /*
1611 * In order not to call set_task_cpu() on a blocking task we need
1612 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1613 * cpu.
1614 *
1615 * Since this is common to all placement strategies, this lives here.
1616 *
1617 * [ this allows ->select_task() to simply return task_cpu(p) and
1618 * not worry about this generic constraint ]
1619 */
fa17b507 1620 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1621 !cpu_online(cpu)))
5da9a0fb 1622 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1623
1624 return cpu;
970b13ba 1625}
09a40af5
MG
1626
1627static void update_avg(u64 *avg, u64 sample)
1628{
1629 s64 diff = sample - *avg;
1630 *avg += diff >> 3;
1631}
25834c73
PZ
1632
1633#else
1634
1635static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1636 const struct cpumask *new_mask, bool check)
1637{
1638 return set_cpus_allowed_ptr(p, new_mask);
1639}
1640
5cc389bc 1641#endif /* CONFIG_SMP */
970b13ba 1642
d7c01d27 1643static void
b84cb5df 1644ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1645{
4fa8d299 1646 struct rq *rq;
b84cb5df 1647
4fa8d299
JP
1648 if (!schedstat_enabled())
1649 return;
1650
1651 rq = this_rq();
d7c01d27 1652
4fa8d299
JP
1653#ifdef CONFIG_SMP
1654 if (cpu == rq->cpu) {
ae92882e
JP
1655 schedstat_inc(rq->ttwu_local);
1656 schedstat_inc(p->se.statistics.nr_wakeups_local);
d7c01d27
PZ
1657 } else {
1658 struct sched_domain *sd;
1659
ae92882e 1660 schedstat_inc(p->se.statistics.nr_wakeups_remote);
057f3fad 1661 rcu_read_lock();
4fa8d299 1662 for_each_domain(rq->cpu, sd) {
d7c01d27 1663 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
ae92882e 1664 schedstat_inc(sd->ttwu_wake_remote);
d7c01d27
PZ
1665 break;
1666 }
1667 }
057f3fad 1668 rcu_read_unlock();
d7c01d27 1669 }
f339b9dc
PZ
1670
1671 if (wake_flags & WF_MIGRATED)
ae92882e 1672 schedstat_inc(p->se.statistics.nr_wakeups_migrate);
d7c01d27
PZ
1673#endif /* CONFIG_SMP */
1674
ae92882e
JP
1675 schedstat_inc(rq->ttwu_count);
1676 schedstat_inc(p->se.statistics.nr_wakeups);
d7c01d27
PZ
1677
1678 if (wake_flags & WF_SYNC)
ae92882e 1679 schedstat_inc(p->se.statistics.nr_wakeups_sync);
d7c01d27
PZ
1680}
1681
1de64443 1682static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
d7c01d27 1683{
9ed3811a 1684 activate_task(rq, p, en_flags);
da0c1e65 1685 p->on_rq = TASK_ON_RQ_QUEUED;
c2f7115e
PZ
1686
1687 /* if a worker is waking up, notify workqueue */
1688 if (p->flags & PF_WQ_WORKER)
1689 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1690}
1691
23f41eeb
PZ
1692/*
1693 * Mark the task runnable and perform wakeup-preemption.
1694 */
e7904a28 1695static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
d8ac8971 1696 struct rq_flags *rf)
9ed3811a 1697{
9ed3811a 1698 check_preempt_curr(rq, p, wake_flags);
9ed3811a 1699 p->state = TASK_RUNNING;
fbd705a0
PZ
1700 trace_sched_wakeup(p);
1701
9ed3811a 1702#ifdef CONFIG_SMP
4c9a4bc8
PZ
1703 if (p->sched_class->task_woken) {
1704 /*
cbce1a68
PZ
1705 * Our task @p is fully woken up and running; so its safe to
1706 * drop the rq->lock, hereafter rq is only used for statistics.
4c9a4bc8 1707 */
d8ac8971 1708 rq_unpin_lock(rq, rf);
9ed3811a 1709 p->sched_class->task_woken(rq, p);
d8ac8971 1710 rq_repin_lock(rq, rf);
4c9a4bc8 1711 }
9ed3811a 1712
e69c6341 1713 if (rq->idle_stamp) {
78becc27 1714 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1715 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1716
abfafa54
JL
1717 update_avg(&rq->avg_idle, delta);
1718
1719 if (rq->avg_idle > max)
9ed3811a 1720 rq->avg_idle = max;
abfafa54 1721
9ed3811a
TH
1722 rq->idle_stamp = 0;
1723 }
1724#endif
1725}
1726
c05fbafb 1727static void
e7904a28 1728ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
d8ac8971 1729 struct rq_flags *rf)
c05fbafb 1730{
b5179ac7
PZ
1731 int en_flags = ENQUEUE_WAKEUP;
1732
cbce1a68
PZ
1733 lockdep_assert_held(&rq->lock);
1734
c05fbafb
PZ
1735#ifdef CONFIG_SMP
1736 if (p->sched_contributes_to_load)
1737 rq->nr_uninterruptible--;
b5179ac7 1738
b5179ac7 1739 if (wake_flags & WF_MIGRATED)
59efa0ba 1740 en_flags |= ENQUEUE_MIGRATED;
c05fbafb
PZ
1741#endif
1742
b5179ac7 1743 ttwu_activate(rq, p, en_flags);
d8ac8971 1744 ttwu_do_wakeup(rq, p, wake_flags, rf);
c05fbafb
PZ
1745}
1746
1747/*
1748 * Called in case the task @p isn't fully descheduled from its runqueue,
1749 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1750 * since all we need to do is flip p->state to TASK_RUNNING, since
1751 * the task is still ->on_rq.
1752 */
1753static int ttwu_remote(struct task_struct *p, int wake_flags)
1754{
eb580751 1755 struct rq_flags rf;
c05fbafb
PZ
1756 struct rq *rq;
1757 int ret = 0;
1758
eb580751 1759 rq = __task_rq_lock(p, &rf);
da0c1e65 1760 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
1761 /* check_preempt_curr() may use rq clock */
1762 update_rq_clock(rq);
d8ac8971 1763 ttwu_do_wakeup(rq, p, wake_flags, &rf);
c05fbafb
PZ
1764 ret = 1;
1765 }
eb580751 1766 __task_rq_unlock(rq, &rf);
c05fbafb
PZ
1767
1768 return ret;
1769}
1770
317f3941 1771#ifdef CONFIG_SMP
e3baac47 1772void sched_ttwu_pending(void)
317f3941
PZ
1773{
1774 struct rq *rq = this_rq();
fa14ff4a
PZ
1775 struct llist_node *llist = llist_del_all(&rq->wake_list);
1776 struct task_struct *p;
e3baac47 1777 unsigned long flags;
d8ac8971 1778 struct rq_flags rf;
317f3941 1779
e3baac47
PZ
1780 if (!llist)
1781 return;
1782
1783 raw_spin_lock_irqsave(&rq->lock, flags);
d8ac8971 1784 rq_pin_lock(rq, &rf);
317f3941 1785
fa14ff4a 1786 while (llist) {
b7e7ade3
PZ
1787 int wake_flags = 0;
1788
fa14ff4a
PZ
1789 p = llist_entry(llist, struct task_struct, wake_entry);
1790 llist = llist_next(llist);
b7e7ade3
PZ
1791
1792 if (p->sched_remote_wakeup)
1793 wake_flags = WF_MIGRATED;
1794
d8ac8971 1795 ttwu_do_activate(rq, p, wake_flags, &rf);
317f3941
PZ
1796 }
1797
d8ac8971 1798 rq_unpin_lock(rq, &rf);
e3baac47 1799 raw_spin_unlock_irqrestore(&rq->lock, flags);
317f3941
PZ
1800}
1801
1802void scheduler_ipi(void)
1803{
f27dde8d
PZ
1804 /*
1805 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1806 * TIF_NEED_RESCHED remotely (for the first time) will also send
1807 * this IPI.
1808 */
8cb75e0c 1809 preempt_fold_need_resched();
f27dde8d 1810
fd2ac4f4 1811 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1812 return;
1813
1814 /*
1815 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1816 * traditionally all their work was done from the interrupt return
1817 * path. Now that we actually do some work, we need to make sure
1818 * we do call them.
1819 *
1820 * Some archs already do call them, luckily irq_enter/exit nest
1821 * properly.
1822 *
1823 * Arguably we should visit all archs and update all handlers,
1824 * however a fair share of IPIs are still resched only so this would
1825 * somewhat pessimize the simple resched case.
1826 */
1827 irq_enter();
fa14ff4a 1828 sched_ttwu_pending();
ca38062e
SS
1829
1830 /*
1831 * Check if someone kicked us for doing the nohz idle load balance.
1832 */
873b4c65 1833 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1834 this_rq()->idle_balance = 1;
ca38062e 1835 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1836 }
c5d753a5 1837 irq_exit();
317f3941
PZ
1838}
1839
b7e7ade3 1840static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
317f3941 1841{
e3baac47
PZ
1842 struct rq *rq = cpu_rq(cpu);
1843
b7e7ade3
PZ
1844 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1845
e3baac47
PZ
1846 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1847 if (!set_nr_if_polling(rq->idle))
1848 smp_send_reschedule(cpu);
1849 else
1850 trace_sched_wake_idle_without_ipi(cpu);
1851 }
317f3941 1852}
d6aa8f85 1853
f6be8af1
CL
1854void wake_up_if_idle(int cpu)
1855{
1856 struct rq *rq = cpu_rq(cpu);
1857 unsigned long flags;
1858
fd7de1e8
AL
1859 rcu_read_lock();
1860
1861 if (!is_idle_task(rcu_dereference(rq->curr)))
1862 goto out;
f6be8af1
CL
1863
1864 if (set_nr_if_polling(rq->idle)) {
1865 trace_sched_wake_idle_without_ipi(cpu);
1866 } else {
1867 raw_spin_lock_irqsave(&rq->lock, flags);
1868 if (is_idle_task(rq->curr))
1869 smp_send_reschedule(cpu);
1870 /* Else cpu is not in idle, do nothing here */
1871 raw_spin_unlock_irqrestore(&rq->lock, flags);
1872 }
fd7de1e8
AL
1873
1874out:
1875 rcu_read_unlock();
f6be8af1
CL
1876}
1877
39be3501 1878bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1879{
1880 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1881}
d6aa8f85 1882#endif /* CONFIG_SMP */
317f3941 1883
b5179ac7 1884static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
c05fbafb
PZ
1885{
1886 struct rq *rq = cpu_rq(cpu);
d8ac8971 1887 struct rq_flags rf;
c05fbafb 1888
17d9f311 1889#if defined(CONFIG_SMP)
39be3501 1890 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1891 sched_clock_cpu(cpu); /* sync clocks x-cpu */
b7e7ade3 1892 ttwu_queue_remote(p, cpu, wake_flags);
317f3941
PZ
1893 return;
1894 }
1895#endif
1896
c05fbafb 1897 raw_spin_lock(&rq->lock);
d8ac8971
MF
1898 rq_pin_lock(rq, &rf);
1899 ttwu_do_activate(rq, p, wake_flags, &rf);
1900 rq_unpin_lock(rq, &rf);
c05fbafb 1901 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1902}
1903
8643cda5
PZ
1904/*
1905 * Notes on Program-Order guarantees on SMP systems.
1906 *
1907 * MIGRATION
1908 *
1909 * The basic program-order guarantee on SMP systems is that when a task [t]
1910 * migrates, all its activity on its old cpu [c0] happens-before any subsequent
1911 * execution on its new cpu [c1].
1912 *
1913 * For migration (of runnable tasks) this is provided by the following means:
1914 *
1915 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1916 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1917 * rq(c1)->lock (if not at the same time, then in that order).
1918 * C) LOCK of the rq(c1)->lock scheduling in task
1919 *
1920 * Transitivity guarantees that B happens after A and C after B.
1921 * Note: we only require RCpc transitivity.
1922 * Note: the cpu doing B need not be c0 or c1
1923 *
1924 * Example:
1925 *
1926 * CPU0 CPU1 CPU2
1927 *
1928 * LOCK rq(0)->lock
1929 * sched-out X
1930 * sched-in Y
1931 * UNLOCK rq(0)->lock
1932 *
1933 * LOCK rq(0)->lock // orders against CPU0
1934 * dequeue X
1935 * UNLOCK rq(0)->lock
1936 *
1937 * LOCK rq(1)->lock
1938 * enqueue X
1939 * UNLOCK rq(1)->lock
1940 *
1941 * LOCK rq(1)->lock // orders against CPU2
1942 * sched-out Z
1943 * sched-in X
1944 * UNLOCK rq(1)->lock
1945 *
1946 *
1947 * BLOCKING -- aka. SLEEP + WAKEUP
1948 *
1949 * For blocking we (obviously) need to provide the same guarantee as for
1950 * migration. However the means are completely different as there is no lock
1951 * chain to provide order. Instead we do:
1952 *
1953 * 1) smp_store_release(X->on_cpu, 0)
1f03e8d2 1954 * 2) smp_cond_load_acquire(!X->on_cpu)
8643cda5
PZ
1955 *
1956 * Example:
1957 *
1958 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1959 *
1960 * LOCK rq(0)->lock LOCK X->pi_lock
1961 * dequeue X
1962 * sched-out X
1963 * smp_store_release(X->on_cpu, 0);
1964 *
1f03e8d2 1965 * smp_cond_load_acquire(&X->on_cpu, !VAL);
8643cda5
PZ
1966 * X->state = WAKING
1967 * set_task_cpu(X,2)
1968 *
1969 * LOCK rq(2)->lock
1970 * enqueue X
1971 * X->state = RUNNING
1972 * UNLOCK rq(2)->lock
1973 *
1974 * LOCK rq(2)->lock // orders against CPU1
1975 * sched-out Z
1976 * sched-in X
1977 * UNLOCK rq(2)->lock
1978 *
1979 * UNLOCK X->pi_lock
1980 * UNLOCK rq(0)->lock
1981 *
1982 *
1983 * However; for wakeups there is a second guarantee we must provide, namely we
1984 * must observe the state that lead to our wakeup. That is, not only must our
1985 * task observe its own prior state, it must also observe the stores prior to
1986 * its wakeup.
1987 *
1988 * This means that any means of doing remote wakeups must order the CPU doing
1989 * the wakeup against the CPU the task is going to end up running on. This,
1990 * however, is already required for the regular Program-Order guarantee above,
1f03e8d2 1991 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
8643cda5
PZ
1992 *
1993 */
1994
9ed3811a 1995/**
1da177e4 1996 * try_to_wake_up - wake up a thread
9ed3811a 1997 * @p: the thread to be awakened
1da177e4 1998 * @state: the mask of task states that can be woken
9ed3811a 1999 * @wake_flags: wake modifier flags (WF_*)
1da177e4 2000 *
a2250238 2001 * If (@state & @p->state) @p->state = TASK_RUNNING.
1da177e4 2002 *
a2250238
PZ
2003 * If the task was not queued/runnable, also place it back on a runqueue.
2004 *
2005 * Atomic against schedule() which would dequeue a task, also see
2006 * set_current_state().
2007 *
2008 * Return: %true if @p->state changes (an actual wakeup was done),
2009 * %false otherwise.
1da177e4 2010 */
e4a52bcb
PZ
2011static int
2012try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 2013{
1da177e4 2014 unsigned long flags;
c05fbafb 2015 int cpu, success = 0;
2398f2c6 2016
e0acd0a6
ON
2017 /*
2018 * If we are going to wake up a thread waiting for CONDITION we
2019 * need to ensure that CONDITION=1 done by the caller can not be
2020 * reordered with p->state check below. This pairs with mb() in
2021 * set_current_state() the waiting thread does.
2022 */
2023 smp_mb__before_spinlock();
013fdb80 2024 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 2025 if (!(p->state & state))
1da177e4
LT
2026 goto out;
2027
fbd705a0
PZ
2028 trace_sched_waking(p);
2029
c05fbafb 2030 success = 1; /* we're going to change ->state */
1da177e4 2031 cpu = task_cpu(p);
1da177e4 2032
135e8c92
BS
2033 /*
2034 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2035 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2036 * in smp_cond_load_acquire() below.
2037 *
2038 * sched_ttwu_pending() try_to_wake_up()
2039 * [S] p->on_rq = 1; [L] P->state
2040 * UNLOCK rq->lock -----.
2041 * \
2042 * +--- RMB
2043 * schedule() /
2044 * LOCK rq->lock -----'
2045 * UNLOCK rq->lock
2046 *
2047 * [task p]
2048 * [S] p->state = UNINTERRUPTIBLE [L] p->on_rq
2049 *
2050 * Pairs with the UNLOCK+LOCK on rq->lock from the
2051 * last wakeup of our task and the schedule that got our task
2052 * current.
2053 */
2054 smp_rmb();
c05fbafb
PZ
2055 if (p->on_rq && ttwu_remote(p, wake_flags))
2056 goto stat;
1da177e4 2057
1da177e4 2058#ifdef CONFIG_SMP
ecf7d01c
PZ
2059 /*
2060 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2061 * possible to, falsely, observe p->on_cpu == 0.
2062 *
2063 * One must be running (->on_cpu == 1) in order to remove oneself
2064 * from the runqueue.
2065 *
2066 * [S] ->on_cpu = 1; [L] ->on_rq
2067 * UNLOCK rq->lock
2068 * RMB
2069 * LOCK rq->lock
2070 * [S] ->on_rq = 0; [L] ->on_cpu
2071 *
2072 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2073 * from the consecutive calls to schedule(); the first switching to our
2074 * task, the second putting it to sleep.
2075 */
2076 smp_rmb();
2077
e9c84311 2078 /*
c05fbafb
PZ
2079 * If the owning (remote) cpu is still in the middle of schedule() with
2080 * this task as prev, wait until its done referencing the task.
b75a2253
PZ
2081 *
2082 * Pairs with the smp_store_release() in finish_lock_switch().
2083 *
2084 * This ensures that tasks getting woken will be fully ordered against
2085 * their previous state and preserve Program Order.
0970d299 2086 */
1f03e8d2 2087 smp_cond_load_acquire(&p->on_cpu, !VAL);
1da177e4 2088
a8e4f2ea 2089 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 2090 p->state = TASK_WAKING;
e7693a36 2091
ac66f547 2092 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
2093 if (task_cpu(p) != cpu) {
2094 wake_flags |= WF_MIGRATED;
e4a52bcb 2095 set_task_cpu(p, cpu);
f339b9dc 2096 }
1da177e4 2097#endif /* CONFIG_SMP */
1da177e4 2098
b5179ac7 2099 ttwu_queue(p, cpu, wake_flags);
c05fbafb 2100stat:
4fa8d299 2101 ttwu_stat(p, cpu, wake_flags);
1da177e4 2102out:
013fdb80 2103 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
2104
2105 return success;
2106}
2107
21aa9af0
TH
2108/**
2109 * try_to_wake_up_local - try to wake up a local task with rq lock held
2110 * @p: the thread to be awakened
9279e0d2 2111 * @cookie: context's cookie for pinning
21aa9af0 2112 *
2acca55e 2113 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 2114 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 2115 * the current task.
21aa9af0 2116 */
d8ac8971 2117static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf)
21aa9af0
TH
2118{
2119 struct rq *rq = task_rq(p);
21aa9af0 2120
383efcd0
TH
2121 if (WARN_ON_ONCE(rq != this_rq()) ||
2122 WARN_ON_ONCE(p == current))
2123 return;
2124
21aa9af0
TH
2125 lockdep_assert_held(&rq->lock);
2126
2acca55e 2127 if (!raw_spin_trylock(&p->pi_lock)) {
cbce1a68
PZ
2128 /*
2129 * This is OK, because current is on_cpu, which avoids it being
2130 * picked for load-balance and preemption/IRQs are still
2131 * disabled avoiding further scheduler activity on it and we've
2132 * not yet picked a replacement task.
2133 */
d8ac8971 2134 rq_unpin_lock(rq, rf);
2acca55e
PZ
2135 raw_spin_unlock(&rq->lock);
2136 raw_spin_lock(&p->pi_lock);
2137 raw_spin_lock(&rq->lock);
d8ac8971 2138 rq_repin_lock(rq, rf);
2acca55e
PZ
2139 }
2140
21aa9af0 2141 if (!(p->state & TASK_NORMAL))
2acca55e 2142 goto out;
21aa9af0 2143
fbd705a0
PZ
2144 trace_sched_waking(p);
2145
da0c1e65 2146 if (!task_on_rq_queued(p))
d7c01d27
PZ
2147 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2148
d8ac8971 2149 ttwu_do_wakeup(rq, p, 0, rf);
4fa8d299 2150 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
2151out:
2152 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
2153}
2154
50fa610a
DH
2155/**
2156 * wake_up_process - Wake up a specific process
2157 * @p: The process to be woken up.
2158 *
2159 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
2160 * processes.
2161 *
2162 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
2163 *
2164 * It may be assumed that this function implies a write memory barrier before
2165 * changing the task state if and only if any tasks are woken up.
2166 */
7ad5b3a5 2167int wake_up_process(struct task_struct *p)
1da177e4 2168{
9067ac85 2169 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 2170}
1da177e4
LT
2171EXPORT_SYMBOL(wake_up_process);
2172
7ad5b3a5 2173int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2174{
2175 return try_to_wake_up(p, state, 0);
2176}
2177
a5e7be3b
JL
2178/*
2179 * This function clears the sched_dl_entity static params.
2180 */
2181void __dl_clear_params(struct task_struct *p)
2182{
2183 struct sched_dl_entity *dl_se = &p->dl;
2184
2185 dl_se->dl_runtime = 0;
2186 dl_se->dl_deadline = 0;
2187 dl_se->dl_period = 0;
2188 dl_se->flags = 0;
2189 dl_se->dl_bw = 0;
40767b0d
PZ
2190
2191 dl_se->dl_throttled = 0;
40767b0d 2192 dl_se->dl_yielded = 0;
a5e7be3b
JL
2193}
2194
1da177e4
LT
2195/*
2196 * Perform scheduler related setup for a newly forked process p.
2197 * p is forked by current.
dd41f596
IM
2198 *
2199 * __sched_fork() is basic setup used by init_idle() too:
2200 */
5e1576ed 2201static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2202{
fd2f4419
PZ
2203 p->on_rq = 0;
2204
2205 p->se.on_rq = 0;
dd41f596
IM
2206 p->se.exec_start = 0;
2207 p->se.sum_exec_runtime = 0;
f6cf891c 2208 p->se.prev_sum_exec_runtime = 0;
6c594c21 2209 p->se.nr_migrations = 0;
da7a735e 2210 p->se.vruntime = 0;
fd2f4419 2211 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d 2212
ad936d86
BP
2213#ifdef CONFIG_FAIR_GROUP_SCHED
2214 p->se.cfs_rq = NULL;
2215#endif
2216
6cfb0d5d 2217#ifdef CONFIG_SCHEDSTATS
cb251765 2218 /* Even if schedstat is disabled, there should not be garbage */
41acab88 2219 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2220#endif
476d139c 2221
aab03e05 2222 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 2223 init_dl_task_timer(&p->dl);
a5e7be3b 2224 __dl_clear_params(p);
aab03e05 2225
fa717060 2226 INIT_LIST_HEAD(&p->rt.run_list);
ff77e468
PZ
2227 p->rt.timeout = 0;
2228 p->rt.time_slice = sched_rr_timeslice;
2229 p->rt.on_rq = 0;
2230 p->rt.on_list = 0;
476d139c 2231
e107be36
AK
2232#ifdef CONFIG_PREEMPT_NOTIFIERS
2233 INIT_HLIST_HEAD(&p->preempt_notifiers);
2234#endif
cbee9f88
PZ
2235
2236#ifdef CONFIG_NUMA_BALANCING
2237 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 2238 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
2239 p->mm->numa_scan_seq = 0;
2240 }
2241
5e1576ed
RR
2242 if (clone_flags & CLONE_VM)
2243 p->numa_preferred_nid = current->numa_preferred_nid;
2244 else
2245 p->numa_preferred_nid = -1;
2246
cbee9f88
PZ
2247 p->node_stamp = 0ULL;
2248 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 2249 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 2250 p->numa_work.next = &p->numa_work;
44dba3d5 2251 p->numa_faults = NULL;
7e2703e6
RR
2252 p->last_task_numa_placement = 0;
2253 p->last_sum_exec_runtime = 0;
8c8a743c 2254
8c8a743c 2255 p->numa_group = NULL;
cbee9f88 2256#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
2257}
2258
2a595721
SD
2259DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2260
1a687c2e 2261#ifdef CONFIG_NUMA_BALANCING
c3b9bc5b 2262
1a687c2e
MG
2263void set_numabalancing_state(bool enabled)
2264{
2265 if (enabled)
2a595721 2266 static_branch_enable(&sched_numa_balancing);
1a687c2e 2267 else
2a595721 2268 static_branch_disable(&sched_numa_balancing);
1a687c2e 2269}
54a43d54
AK
2270
2271#ifdef CONFIG_PROC_SYSCTL
2272int sysctl_numa_balancing(struct ctl_table *table, int write,
2273 void __user *buffer, size_t *lenp, loff_t *ppos)
2274{
2275 struct ctl_table t;
2276 int err;
2a595721 2277 int state = static_branch_likely(&sched_numa_balancing);
54a43d54
AK
2278
2279 if (write && !capable(CAP_SYS_ADMIN))
2280 return -EPERM;
2281
2282 t = *table;
2283 t.data = &state;
2284 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2285 if (err < 0)
2286 return err;
2287 if (write)
2288 set_numabalancing_state(state);
2289 return err;
2290}
2291#endif
2292#endif
dd41f596 2293
4698f88c
JP
2294#ifdef CONFIG_SCHEDSTATS
2295
cb251765 2296DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4698f88c 2297static bool __initdata __sched_schedstats = false;
cb251765 2298
cb251765
MG
2299static void set_schedstats(bool enabled)
2300{
2301 if (enabled)
2302 static_branch_enable(&sched_schedstats);
2303 else
2304 static_branch_disable(&sched_schedstats);
2305}
2306
2307void force_schedstat_enabled(void)
2308{
2309 if (!schedstat_enabled()) {
2310 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2311 static_branch_enable(&sched_schedstats);
2312 }
2313}
2314
2315static int __init setup_schedstats(char *str)
2316{
2317 int ret = 0;
2318 if (!str)
2319 goto out;
2320
4698f88c
JP
2321 /*
2322 * This code is called before jump labels have been set up, so we can't
2323 * change the static branch directly just yet. Instead set a temporary
2324 * variable so init_schedstats() can do it later.
2325 */
cb251765 2326 if (!strcmp(str, "enable")) {
4698f88c 2327 __sched_schedstats = true;
cb251765
MG
2328 ret = 1;
2329 } else if (!strcmp(str, "disable")) {
4698f88c 2330 __sched_schedstats = false;
cb251765
MG
2331 ret = 1;
2332 }
2333out:
2334 if (!ret)
2335 pr_warn("Unable to parse schedstats=\n");
2336
2337 return ret;
2338}
2339__setup("schedstats=", setup_schedstats);
2340
4698f88c
JP
2341static void __init init_schedstats(void)
2342{
2343 set_schedstats(__sched_schedstats);
2344}
2345
cb251765
MG
2346#ifdef CONFIG_PROC_SYSCTL
2347int sysctl_schedstats(struct ctl_table *table, int write,
2348 void __user *buffer, size_t *lenp, loff_t *ppos)
2349{
2350 struct ctl_table t;
2351 int err;
2352 int state = static_branch_likely(&sched_schedstats);
2353
2354 if (write && !capable(CAP_SYS_ADMIN))
2355 return -EPERM;
2356
2357 t = *table;
2358 t.data = &state;
2359 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2360 if (err < 0)
2361 return err;
2362 if (write)
2363 set_schedstats(state);
2364 return err;
2365}
4698f88c
JP
2366#endif /* CONFIG_PROC_SYSCTL */
2367#else /* !CONFIG_SCHEDSTATS */
2368static inline void init_schedstats(void) {}
2369#endif /* CONFIG_SCHEDSTATS */
dd41f596
IM
2370
2371/*
2372 * fork()/clone()-time setup:
2373 */
aab03e05 2374int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2375{
0122ec5b 2376 unsigned long flags;
dd41f596
IM
2377 int cpu = get_cpu();
2378
5e1576ed 2379 __sched_fork(clone_flags, p);
06b83b5f 2380 /*
7dc603c9 2381 * We mark the process as NEW here. This guarantees that
06b83b5f
PZ
2382 * nobody will actually run it, and a signal or other external
2383 * event cannot wake it up and insert it on the runqueue either.
2384 */
7dc603c9 2385 p->state = TASK_NEW;
dd41f596 2386
c350a04e
MG
2387 /*
2388 * Make sure we do not leak PI boosting priority to the child.
2389 */
2390 p->prio = current->normal_prio;
2391
b9dc29e7
MG
2392 /*
2393 * Revert to default priority/policy on fork if requested.
2394 */
2395 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 2396 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 2397 p->policy = SCHED_NORMAL;
6c697bdf 2398 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
2399 p->rt_priority = 0;
2400 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2401 p->static_prio = NICE_TO_PRIO(0);
2402
2403 p->prio = p->normal_prio = __normal_prio(p);
2404 set_load_weight(p);
6c697bdf 2405
b9dc29e7
MG
2406 /*
2407 * We don't need the reset flag anymore after the fork. It has
2408 * fulfilled its duty:
2409 */
2410 p->sched_reset_on_fork = 0;
2411 }
ca94c442 2412
aab03e05
DF
2413 if (dl_prio(p->prio)) {
2414 put_cpu();
2415 return -EAGAIN;
2416 } else if (rt_prio(p->prio)) {
2417 p->sched_class = &rt_sched_class;
2418 } else {
2ddbf952 2419 p->sched_class = &fair_sched_class;
aab03e05 2420 }
b29739f9 2421
7dc603c9 2422 init_entity_runnable_average(&p->se);
cd29fe6f 2423
86951599
PZ
2424 /*
2425 * The child is not yet in the pid-hash so no cgroup attach races,
2426 * and the cgroup is pinned to this child due to cgroup_fork()
2427 * is ran before sched_fork().
2428 *
2429 * Silence PROVE_RCU.
2430 */
0122ec5b 2431 raw_spin_lock_irqsave(&p->pi_lock, flags);
e210bffd
PZ
2432 /*
2433 * We're setting the cpu for the first time, we don't migrate,
2434 * so use __set_task_cpu().
2435 */
2436 __set_task_cpu(p, cpu);
2437 if (p->sched_class->task_fork)
2438 p->sched_class->task_fork(p);
0122ec5b 2439 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 2440
f6db8347 2441#ifdef CONFIG_SCHED_INFO
dd41f596 2442 if (likely(sched_info_on()))
52f17b6c 2443 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2444#endif
3ca7a440
PZ
2445#if defined(CONFIG_SMP)
2446 p->on_cpu = 0;
4866cde0 2447#endif
01028747 2448 init_task_preempt_count(p);
806c09a7 2449#ifdef CONFIG_SMP
917b627d 2450 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 2451 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 2452#endif
917b627d 2453
476d139c 2454 put_cpu();
aab03e05 2455 return 0;
1da177e4
LT
2456}
2457
332ac17e
DF
2458unsigned long to_ratio(u64 period, u64 runtime)
2459{
2460 if (runtime == RUNTIME_INF)
2461 return 1ULL << 20;
2462
2463 /*
2464 * Doing this here saves a lot of checks in all
2465 * the calling paths, and returning zero seems
2466 * safe for them anyway.
2467 */
2468 if (period == 0)
2469 return 0;
2470
2471 return div64_u64(runtime << 20, period);
2472}
2473
2474#ifdef CONFIG_SMP
2475inline struct dl_bw *dl_bw_of(int i)
2476{
f78f5b90
PM
2477 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2478 "sched RCU must be held");
332ac17e
DF
2479 return &cpu_rq(i)->rd->dl_bw;
2480}
2481
de212f18 2482static inline int dl_bw_cpus(int i)
332ac17e 2483{
de212f18
PZ
2484 struct root_domain *rd = cpu_rq(i)->rd;
2485 int cpus = 0;
2486
f78f5b90
PM
2487 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2488 "sched RCU must be held");
de212f18
PZ
2489 for_each_cpu_and(i, rd->span, cpu_active_mask)
2490 cpus++;
2491
2492 return cpus;
332ac17e
DF
2493}
2494#else
2495inline struct dl_bw *dl_bw_of(int i)
2496{
2497 return &cpu_rq(i)->dl.dl_bw;
2498}
2499
de212f18 2500static inline int dl_bw_cpus(int i)
332ac17e
DF
2501{
2502 return 1;
2503}
2504#endif
2505
332ac17e
DF
2506/*
2507 * We must be sure that accepting a new task (or allowing changing the
2508 * parameters of an existing one) is consistent with the bandwidth
2509 * constraints. If yes, this function also accordingly updates the currently
2510 * allocated bandwidth to reflect the new situation.
2511 *
2512 * This function is called while holding p's rq->lock.
40767b0d
PZ
2513 *
2514 * XXX we should delay bw change until the task's 0-lag point, see
2515 * __setparam_dl().
332ac17e
DF
2516 */
2517static int dl_overflow(struct task_struct *p, int policy,
2518 const struct sched_attr *attr)
2519{
2520
2521 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
4df1638c 2522 u64 period = attr->sched_period ?: attr->sched_deadline;
332ac17e
DF
2523 u64 runtime = attr->sched_runtime;
2524 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 2525 int cpus, err = -1;
332ac17e 2526
fec148c0
XP
2527 /* !deadline task may carry old deadline bandwidth */
2528 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
332ac17e
DF
2529 return 0;
2530
2531 /*
2532 * Either if a task, enters, leave, or stays -deadline but changes
2533 * its parameters, we may need to update accordingly the total
2534 * allocated bandwidth of the container.
2535 */
2536 raw_spin_lock(&dl_b->lock);
de212f18 2537 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
2538 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2539 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2540 __dl_add(dl_b, new_bw);
2541 err = 0;
2542 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2543 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2544 __dl_clear(dl_b, p->dl.dl_bw);
2545 __dl_add(dl_b, new_bw);
2546 err = 0;
2547 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2548 __dl_clear(dl_b, p->dl.dl_bw);
2549 err = 0;
2550 }
2551 raw_spin_unlock(&dl_b->lock);
2552
2553 return err;
2554}
2555
2556extern void init_dl_bw(struct dl_bw *dl_b);
2557
1da177e4
LT
2558/*
2559 * wake_up_new_task - wake up a newly created task for the first time.
2560 *
2561 * This function will do some initial scheduler statistics housekeeping
2562 * that must be done for every newly created context, then puts the task
2563 * on the runqueue and wakes it.
2564 */
3e51e3ed 2565void wake_up_new_task(struct task_struct *p)
1da177e4 2566{
eb580751 2567 struct rq_flags rf;
dd41f596 2568 struct rq *rq;
fabf318e 2569
eb580751 2570 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
7dc603c9 2571 p->state = TASK_RUNNING;
fabf318e
PZ
2572#ifdef CONFIG_SMP
2573 /*
2574 * Fork balancing, do it here and not earlier because:
2575 * - cpus_allowed can change in the fork path
2576 * - any previously selected cpu might disappear through hotplug
e210bffd
PZ
2577 *
2578 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2579 * as we're not fully set-up yet.
fabf318e 2580 */
e210bffd 2581 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735 2582#endif
b7fa30c9 2583 rq = __task_rq_lock(p, &rf);
4126bad6 2584 update_rq_clock(rq);
2b8c41da 2585 post_init_entity_util_avg(&p->se);
0017d735 2586
cd29fe6f 2587 activate_task(rq, p, 0);
da0c1e65 2588 p->on_rq = TASK_ON_RQ_QUEUED;
fbd705a0 2589 trace_sched_wakeup_new(p);
a7558e01 2590 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2591#ifdef CONFIG_SMP
0aaafaab
PZ
2592 if (p->sched_class->task_woken) {
2593 /*
2594 * Nothing relies on rq->lock after this, so its fine to
2595 * drop it.
2596 */
d8ac8971 2597 rq_unpin_lock(rq, &rf);
efbbd05a 2598 p->sched_class->task_woken(rq, p);
d8ac8971 2599 rq_repin_lock(rq, &rf);
0aaafaab 2600 }
9a897c5a 2601#endif
eb580751 2602 task_rq_unlock(rq, p, &rf);
1da177e4
LT
2603}
2604
e107be36
AK
2605#ifdef CONFIG_PREEMPT_NOTIFIERS
2606
1cde2930
PZ
2607static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2608
2ecd9d29
PZ
2609void preempt_notifier_inc(void)
2610{
2611 static_key_slow_inc(&preempt_notifier_key);
2612}
2613EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2614
2615void preempt_notifier_dec(void)
2616{
2617 static_key_slow_dec(&preempt_notifier_key);
2618}
2619EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2620
e107be36 2621/**
80dd99b3 2622 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2623 * @notifier: notifier struct to register
e107be36
AK
2624 */
2625void preempt_notifier_register(struct preempt_notifier *notifier)
2626{
2ecd9d29
PZ
2627 if (!static_key_false(&preempt_notifier_key))
2628 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2629
e107be36
AK
2630 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2631}
2632EXPORT_SYMBOL_GPL(preempt_notifier_register);
2633
2634/**
2635 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2636 * @notifier: notifier struct to unregister
e107be36 2637 *
d84525a8 2638 * This is *not* safe to call from within a preemption notifier.
e107be36
AK
2639 */
2640void preempt_notifier_unregister(struct preempt_notifier *notifier)
2641{
2642 hlist_del(&notifier->link);
2643}
2644EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2645
1cde2930 2646static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2647{
2648 struct preempt_notifier *notifier;
e107be36 2649
b67bfe0d 2650 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2651 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2652}
2653
1cde2930
PZ
2654static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2655{
2656 if (static_key_false(&preempt_notifier_key))
2657 __fire_sched_in_preempt_notifiers(curr);
2658}
2659
e107be36 2660static void
1cde2930
PZ
2661__fire_sched_out_preempt_notifiers(struct task_struct *curr,
2662 struct task_struct *next)
e107be36
AK
2663{
2664 struct preempt_notifier *notifier;
e107be36 2665
b67bfe0d 2666 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2667 notifier->ops->sched_out(notifier, next);
2668}
2669
1cde2930
PZ
2670static __always_inline void
2671fire_sched_out_preempt_notifiers(struct task_struct *curr,
2672 struct task_struct *next)
2673{
2674 if (static_key_false(&preempt_notifier_key))
2675 __fire_sched_out_preempt_notifiers(curr, next);
2676}
2677
6d6bc0ad 2678#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36 2679
1cde2930 2680static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2681{
2682}
2683
1cde2930 2684static inline void
e107be36
AK
2685fire_sched_out_preempt_notifiers(struct task_struct *curr,
2686 struct task_struct *next)
2687{
2688}
2689
6d6bc0ad 2690#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2691
4866cde0
NP
2692/**
2693 * prepare_task_switch - prepare to switch tasks
2694 * @rq: the runqueue preparing to switch
421cee29 2695 * @prev: the current task that is being switched out
4866cde0
NP
2696 * @next: the task we are going to switch to.
2697 *
2698 * This is called with the rq lock held and interrupts off. It must
2699 * be paired with a subsequent finish_task_switch after the context
2700 * switch.
2701 *
2702 * prepare_task_switch sets up locking and calls architecture specific
2703 * hooks.
2704 */
e107be36
AK
2705static inline void
2706prepare_task_switch(struct rq *rq, struct task_struct *prev,
2707 struct task_struct *next)
4866cde0 2708{
43148951 2709 sched_info_switch(rq, prev, next);
fe4b04fa 2710 perf_event_task_sched_out(prev, next);
e107be36 2711 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2712 prepare_lock_switch(rq, next);
2713 prepare_arch_switch(next);
2714}
2715
1da177e4
LT
2716/**
2717 * finish_task_switch - clean up after a task-switch
2718 * @prev: the thread we just switched away from.
2719 *
4866cde0
NP
2720 * finish_task_switch must be called after the context switch, paired
2721 * with a prepare_task_switch call before the context switch.
2722 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2723 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2724 *
2725 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2726 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2727 * with the lock held can cause deadlocks; see schedule() for
2728 * details.)
dfa50b60
ON
2729 *
2730 * The context switch have flipped the stack from under us and restored the
2731 * local variables which were saved when this task called schedule() in the
2732 * past. prev == current is still correct but we need to recalculate this_rq
2733 * because prev may have moved to another CPU.
1da177e4 2734 */
dfa50b60 2735static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
2736 __releases(rq->lock)
2737{
dfa50b60 2738 struct rq *rq = this_rq();
1da177e4 2739 struct mm_struct *mm = rq->prev_mm;
55a101f8 2740 long prev_state;
1da177e4 2741
609ca066
PZ
2742 /*
2743 * The previous task will have left us with a preempt_count of 2
2744 * because it left us after:
2745 *
2746 * schedule()
2747 * preempt_disable(); // 1
2748 * __schedule()
2749 * raw_spin_lock_irq(&rq->lock) // 2
2750 *
2751 * Also, see FORK_PREEMPT_COUNT.
2752 */
e2bf1c4b
PZ
2753 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2754 "corrupted preempt_count: %s/%d/0x%x\n",
2755 current->comm, current->pid, preempt_count()))
2756 preempt_count_set(FORK_PREEMPT_COUNT);
609ca066 2757
1da177e4
LT
2758 rq->prev_mm = NULL;
2759
2760 /*
2761 * A task struct has one reference for the use as "current".
c394cc9f 2762 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2763 * schedule one last time. The schedule call will never return, and
2764 * the scheduled task must drop that reference.
95913d97
PZ
2765 *
2766 * We must observe prev->state before clearing prev->on_cpu (in
2767 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2768 * running on another CPU and we could rave with its RUNNING -> DEAD
2769 * transition, resulting in a double drop.
1da177e4 2770 */
55a101f8 2771 prev_state = prev->state;
bf9fae9f 2772 vtime_task_switch(prev);
a8d757ef 2773 perf_event_task_sched_in(prev, current);
4866cde0 2774 finish_lock_switch(rq, prev);
01f23e16 2775 finish_arch_post_lock_switch();
e8fa1362 2776
e107be36 2777 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2778 if (mm)
2779 mmdrop(mm);
c394cc9f 2780 if (unlikely(prev_state == TASK_DEAD)) {
e6c390f2
DF
2781 if (prev->sched_class->task_dead)
2782 prev->sched_class->task_dead(prev);
2783
c6fd91f0 2784 /*
2785 * Remove function-return probe instances associated with this
2786 * task and put them back on the free list.
9761eea8 2787 */
c6fd91f0 2788 kprobe_flush_task(prev);
68f24b08
AL
2789
2790 /* Task is done with its stack. */
2791 put_task_stack(prev);
2792
1da177e4 2793 put_task_struct(prev);
c6fd91f0 2794 }
99e5ada9 2795
de734f89 2796 tick_nohz_task_switch();
dfa50b60 2797 return rq;
1da177e4
LT
2798}
2799
3f029d3c
GH
2800#ifdef CONFIG_SMP
2801
3f029d3c 2802/* rq->lock is NOT held, but preemption is disabled */
e3fca9e7 2803static void __balance_callback(struct rq *rq)
3f029d3c 2804{
e3fca9e7
PZ
2805 struct callback_head *head, *next;
2806 void (*func)(struct rq *rq);
2807 unsigned long flags;
3f029d3c 2808
e3fca9e7
PZ
2809 raw_spin_lock_irqsave(&rq->lock, flags);
2810 head = rq->balance_callback;
2811 rq->balance_callback = NULL;
2812 while (head) {
2813 func = (void (*)(struct rq *))head->func;
2814 next = head->next;
2815 head->next = NULL;
2816 head = next;
3f029d3c 2817
e3fca9e7 2818 func(rq);
3f029d3c 2819 }
e3fca9e7
PZ
2820 raw_spin_unlock_irqrestore(&rq->lock, flags);
2821}
2822
2823static inline void balance_callback(struct rq *rq)
2824{
2825 if (unlikely(rq->balance_callback))
2826 __balance_callback(rq);
3f029d3c
GH
2827}
2828
2829#else
da19ab51 2830
e3fca9e7 2831static inline void balance_callback(struct rq *rq)
3f029d3c 2832{
1da177e4
LT
2833}
2834
3f029d3c
GH
2835#endif
2836
1da177e4
LT
2837/**
2838 * schedule_tail - first thing a freshly forked thread must call.
2839 * @prev: the thread we just switched away from.
2840 */
722a9f92 2841asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
2842 __releases(rq->lock)
2843{
1a43a14a 2844 struct rq *rq;
da19ab51 2845
609ca066
PZ
2846 /*
2847 * New tasks start with FORK_PREEMPT_COUNT, see there and
2848 * finish_task_switch() for details.
2849 *
2850 * finish_task_switch() will drop rq->lock() and lower preempt_count
2851 * and the preempt_enable() will end up enabling preemption (on
2852 * PREEMPT_COUNT kernels).
2853 */
2854
dfa50b60 2855 rq = finish_task_switch(prev);
e3fca9e7 2856 balance_callback(rq);
1a43a14a 2857 preempt_enable();
70b97a7f 2858
1da177e4 2859 if (current->set_child_tid)
b488893a 2860 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2861}
2862
2863/*
dfa50b60 2864 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 2865 */
04936948 2866static __always_inline struct rq *
70b97a7f 2867context_switch(struct rq *rq, struct task_struct *prev,
d8ac8971 2868 struct task_struct *next, struct rq_flags *rf)
1da177e4 2869{
dd41f596 2870 struct mm_struct *mm, *oldmm;
1da177e4 2871
e107be36 2872 prepare_task_switch(rq, prev, next);
fe4b04fa 2873
dd41f596
IM
2874 mm = next->mm;
2875 oldmm = prev->active_mm;
9226d125
ZA
2876 /*
2877 * For paravirt, this is coupled with an exit in switch_to to
2878 * combine the page table reload and the switch backend into
2879 * one hypercall.
2880 */
224101ed 2881 arch_start_context_switch(prev);
9226d125 2882
31915ab4 2883 if (!mm) {
1da177e4
LT
2884 next->active_mm = oldmm;
2885 atomic_inc(&oldmm->mm_count);
2886 enter_lazy_tlb(oldmm, next);
2887 } else
f98db601 2888 switch_mm_irqs_off(oldmm, mm, next);
1da177e4 2889
31915ab4 2890 if (!prev->mm) {
1da177e4 2891 prev->active_mm = NULL;
1da177e4
LT
2892 rq->prev_mm = oldmm;
2893 }
92509b73 2894
cb42c9a3 2895 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
92509b73 2896
3a5f5e48
IM
2897 /*
2898 * Since the runqueue lock will be released by the next
2899 * task (which is an invalid locking op but in the case
2900 * of the scheduler it's an obvious special-case), so we
2901 * do an early lockdep release here:
2902 */
d8ac8971 2903 rq_unpin_lock(rq, rf);
8a25d5de 2904 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
2905
2906 /* Here we just switch the register state and the stack. */
2907 switch_to(prev, next, prev);
dd41f596 2908 barrier();
dfa50b60
ON
2909
2910 return finish_task_switch(prev);
1da177e4
LT
2911}
2912
2913/*
1c3e8264 2914 * nr_running and nr_context_switches:
1da177e4
LT
2915 *
2916 * externally visible scheduler statistics: current number of runnable
1c3e8264 2917 * threads, total number of context switches performed since bootup.
1da177e4
LT
2918 */
2919unsigned long nr_running(void)
2920{
2921 unsigned long i, sum = 0;
2922
2923 for_each_online_cpu(i)
2924 sum += cpu_rq(i)->nr_running;
2925
2926 return sum;
f711f609 2927}
1da177e4 2928
2ee507c4
TC
2929/*
2930 * Check if only the current task is running on the cpu.
00cc1633
DD
2931 *
2932 * Caution: this function does not check that the caller has disabled
2933 * preemption, thus the result might have a time-of-check-to-time-of-use
2934 * race. The caller is responsible to use it correctly, for example:
2935 *
2936 * - from a non-preemptable section (of course)
2937 *
2938 * - from a thread that is bound to a single CPU
2939 *
2940 * - in a loop with very short iterations (e.g. a polling loop)
2ee507c4
TC
2941 */
2942bool single_task_running(void)
2943{
00cc1633 2944 return raw_rq()->nr_running == 1;
2ee507c4
TC
2945}
2946EXPORT_SYMBOL(single_task_running);
2947
1da177e4 2948unsigned long long nr_context_switches(void)
46cb4b7c 2949{
cc94abfc
SR
2950 int i;
2951 unsigned long long sum = 0;
46cb4b7c 2952
0a945022 2953 for_each_possible_cpu(i)
1da177e4 2954 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2955
1da177e4
LT
2956 return sum;
2957}
483b4ee6 2958
1da177e4
LT
2959unsigned long nr_iowait(void)
2960{
2961 unsigned long i, sum = 0;
483b4ee6 2962
0a945022 2963 for_each_possible_cpu(i)
1da177e4 2964 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2965
1da177e4
LT
2966 return sum;
2967}
483b4ee6 2968
8c215bd3 2969unsigned long nr_iowait_cpu(int cpu)
69d25870 2970{
8c215bd3 2971 struct rq *this = cpu_rq(cpu);
69d25870
AV
2972 return atomic_read(&this->nr_iowait);
2973}
46cb4b7c 2974
372ba8cb
MG
2975void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2976{
3289bdb4
PZ
2977 struct rq *rq = this_rq();
2978 *nr_waiters = atomic_read(&rq->nr_iowait);
2979 *load = rq->load.weight;
372ba8cb
MG
2980}
2981
dd41f596 2982#ifdef CONFIG_SMP
8a0be9ef 2983
46cb4b7c 2984/*
38022906
PZ
2985 * sched_exec - execve() is a valuable balancing opportunity, because at
2986 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2987 */
38022906 2988void sched_exec(void)
46cb4b7c 2989{
38022906 2990 struct task_struct *p = current;
1da177e4 2991 unsigned long flags;
0017d735 2992 int dest_cpu;
46cb4b7c 2993
8f42ced9 2994 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2995 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2996 if (dest_cpu == smp_processor_id())
2997 goto unlock;
38022906 2998
8f42ced9 2999 if (likely(cpu_active(dest_cpu))) {
969c7921 3000 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 3001
8f42ced9
PZ
3002 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3003 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
3004 return;
3005 }
0017d735 3006unlock:
8f42ced9 3007 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 3008}
dd41f596 3009
1da177e4
LT
3010#endif
3011
1da177e4 3012DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 3013DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
3014
3015EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 3016EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 3017
6075620b
GG
3018/*
3019 * The function fair_sched_class.update_curr accesses the struct curr
3020 * and its field curr->exec_start; when called from task_sched_runtime(),
3021 * we observe a high rate of cache misses in practice.
3022 * Prefetching this data results in improved performance.
3023 */
3024static inline void prefetch_curr_exec_start(struct task_struct *p)
3025{
3026#ifdef CONFIG_FAIR_GROUP_SCHED
3027 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3028#else
3029 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3030#endif
3031 prefetch(curr);
3032 prefetch(&curr->exec_start);
3033}
3034
c5f8d995
HS
3035/*
3036 * Return accounted runtime for the task.
3037 * In case the task is currently running, return the runtime plus current's
3038 * pending runtime that have not been accounted yet.
3039 */
3040unsigned long long task_sched_runtime(struct task_struct *p)
3041{
eb580751 3042 struct rq_flags rf;
c5f8d995 3043 struct rq *rq;
6e998916 3044 u64 ns;
c5f8d995 3045
911b2898
PZ
3046#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3047 /*
3048 * 64-bit doesn't need locks to atomically read a 64bit value.
3049 * So we have a optimization chance when the task's delta_exec is 0.
3050 * Reading ->on_cpu is racy, but this is ok.
3051 *
3052 * If we race with it leaving cpu, we'll take a lock. So we're correct.
3053 * If we race with it entering cpu, unaccounted time is 0. This is
3054 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
3055 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3056 * been accounted, so we're correct here as well.
911b2898 3057 */
da0c1e65 3058 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
3059 return p->se.sum_exec_runtime;
3060#endif
3061
eb580751 3062 rq = task_rq_lock(p, &rf);
6e998916
SG
3063 /*
3064 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3065 * project cycles that may never be accounted to this
3066 * thread, breaking clock_gettime().
3067 */
3068 if (task_current(rq, p) && task_on_rq_queued(p)) {
6075620b 3069 prefetch_curr_exec_start(p);
6e998916
SG
3070 update_rq_clock(rq);
3071 p->sched_class->update_curr(rq);
3072 }
3073 ns = p->se.sum_exec_runtime;
eb580751 3074 task_rq_unlock(rq, p, &rf);
c5f8d995
HS
3075
3076 return ns;
3077}
48f24c4d 3078
7835b98b
CL
3079/*
3080 * This function gets called by the timer code, with HZ frequency.
3081 * We call it with interrupts disabled.
7835b98b
CL
3082 */
3083void scheduler_tick(void)
3084{
7835b98b
CL
3085 int cpu = smp_processor_id();
3086 struct rq *rq = cpu_rq(cpu);
dd41f596 3087 struct task_struct *curr = rq->curr;
3e51f33f
PZ
3088
3089 sched_clock_tick();
dd41f596 3090
05fa785c 3091 raw_spin_lock(&rq->lock);
3e51f33f 3092 update_rq_clock(rq);
fa85ae24 3093 curr->sched_class->task_tick(rq, curr, 0);
cee1afce 3094 cpu_load_update_active(rq);
3289bdb4 3095 calc_global_load_tick(rq);
05fa785c 3096 raw_spin_unlock(&rq->lock);
7835b98b 3097
e9d2b064 3098 perf_event_task_tick();
e220d2dc 3099
e418e1c2 3100#ifdef CONFIG_SMP
6eb57e0d 3101 rq->idle_balance = idle_cpu(cpu);
7caff66f 3102 trigger_load_balance(rq);
e418e1c2 3103#endif
265f22a9 3104 rq_last_tick_reset(rq);
1da177e4
LT
3105}
3106
265f22a9
FW
3107#ifdef CONFIG_NO_HZ_FULL
3108/**
3109 * scheduler_tick_max_deferment
3110 *
3111 * Keep at least one tick per second when a single
3112 * active task is running because the scheduler doesn't
3113 * yet completely support full dynticks environment.
3114 *
3115 * This makes sure that uptime, CFS vruntime, load
3116 * balancing, etc... continue to move forward, even
3117 * with a very low granularity.
e69f6186
YB
3118 *
3119 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
3120 */
3121u64 scheduler_tick_max_deferment(void)
3122{
3123 struct rq *rq = this_rq();
316c1608 3124 unsigned long next, now = READ_ONCE(jiffies);
265f22a9
FW
3125
3126 next = rq->last_sched_tick + HZ;
3127
3128 if (time_before_eq(next, now))
3129 return 0;
3130
8fe8ff09 3131 return jiffies_to_nsecs(next - now);
1da177e4 3132}
265f22a9 3133#endif
1da177e4 3134
7e49fcce
SR
3135#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3136 defined(CONFIG_PREEMPT_TRACER))
47252cfb
SR
3137/*
3138 * If the value passed in is equal to the current preempt count
3139 * then we just disabled preemption. Start timing the latency.
3140 */
3141static inline void preempt_latency_start(int val)
3142{
3143 if (preempt_count() == val) {
3144 unsigned long ip = get_lock_parent_ip();
3145#ifdef CONFIG_DEBUG_PREEMPT
3146 current->preempt_disable_ip = ip;
3147#endif
3148 trace_preempt_off(CALLER_ADDR0, ip);
3149 }
3150}
7e49fcce 3151
edafe3a5 3152void preempt_count_add(int val)
1da177e4 3153{
6cd8a4bb 3154#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3155 /*
3156 * Underflow?
3157 */
9a11b49a
IM
3158 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3159 return;
6cd8a4bb 3160#endif
bdb43806 3161 __preempt_count_add(val);
6cd8a4bb 3162#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3163 /*
3164 * Spinlock count overflowing soon?
3165 */
33859f7f
MOS
3166 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3167 PREEMPT_MASK - 10);
6cd8a4bb 3168#endif
47252cfb 3169 preempt_latency_start(val);
1da177e4 3170}
bdb43806 3171EXPORT_SYMBOL(preempt_count_add);
edafe3a5 3172NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 3173
47252cfb
SR
3174/*
3175 * If the value passed in equals to the current preempt count
3176 * then we just enabled preemption. Stop timing the latency.
3177 */
3178static inline void preempt_latency_stop(int val)
3179{
3180 if (preempt_count() == val)
3181 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3182}
3183
edafe3a5 3184void preempt_count_sub(int val)
1da177e4 3185{
6cd8a4bb 3186#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3187 /*
3188 * Underflow?
3189 */
01e3eb82 3190 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3191 return;
1da177e4
LT
3192 /*
3193 * Is the spinlock portion underflowing?
3194 */
9a11b49a
IM
3195 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3196 !(preempt_count() & PREEMPT_MASK)))
3197 return;
6cd8a4bb 3198#endif
9a11b49a 3199
47252cfb 3200 preempt_latency_stop(val);
bdb43806 3201 __preempt_count_sub(val);
1da177e4 3202}
bdb43806 3203EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 3204NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4 3205
47252cfb
SR
3206#else
3207static inline void preempt_latency_start(int val) { }
3208static inline void preempt_latency_stop(int val) { }
1da177e4
LT
3209#endif
3210
3211/*
dd41f596 3212 * Print scheduling while atomic bug:
1da177e4 3213 */
dd41f596 3214static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3215{
d1c6d149
VN
3216 /* Save this before calling printk(), since that will clobber it */
3217 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3218
664dfa65
DJ
3219 if (oops_in_progress)
3220 return;
3221
3df0fc5b
PZ
3222 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3223 prev->comm, prev->pid, preempt_count());
838225b4 3224
dd41f596 3225 debug_show_held_locks(prev);
e21f5b15 3226 print_modules();
dd41f596
IM
3227 if (irqs_disabled())
3228 print_irqtrace_events(prev);
d1c6d149
VN
3229 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3230 && in_atomic_preempt_off()) {
8f47b187 3231 pr_err("Preemption disabled at:");
d1c6d149 3232 print_ip_sym(preempt_disable_ip);
8f47b187
TG
3233 pr_cont("\n");
3234 }
748c7201
DBO
3235 if (panic_on_warn)
3236 panic("scheduling while atomic\n");
3237
6135fc1e 3238 dump_stack();
373d4d09 3239 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 3240}
1da177e4 3241
dd41f596
IM
3242/*
3243 * Various schedule()-time debugging checks and statistics:
3244 */
3245static inline void schedule_debug(struct task_struct *prev)
3246{
0d9e2632 3247#ifdef CONFIG_SCHED_STACK_END_CHECK
29d64551
JH
3248 if (task_stack_end_corrupted(prev))
3249 panic("corrupted stack end detected inside scheduler\n");
0d9e2632 3250#endif
b99def8b 3251
1dc0fffc 3252 if (unlikely(in_atomic_preempt_off())) {
dd41f596 3253 __schedule_bug(prev);
1dc0fffc
PZ
3254 preempt_count_set(PREEMPT_DISABLED);
3255 }
b3fbab05 3256 rcu_sleep_check();
dd41f596 3257
1da177e4
LT
3258 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3259
ae92882e 3260 schedstat_inc(this_rq()->sched_count);
dd41f596
IM
3261}
3262
3263/*
3264 * Pick up the highest-prio task:
3265 */
3266static inline struct task_struct *
d8ac8971 3267pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
dd41f596 3268{
37e117c0 3269 const struct sched_class *class = &fair_sched_class;
dd41f596 3270 struct task_struct *p;
1da177e4
LT
3271
3272 /*
dd41f596
IM
3273 * Optimization: we know that if all tasks are in
3274 * the fair class we can call that function directly:
1da177e4 3275 */
37e117c0 3276 if (likely(prev->sched_class == class &&
38033c37 3277 rq->nr_running == rq->cfs.h_nr_running)) {
d8ac8971 3278 p = fair_sched_class.pick_next_task(rq, prev, rf);
6ccdc84b
PZ
3279 if (unlikely(p == RETRY_TASK))
3280 goto again;
3281
3282 /* assumes fair_sched_class->next == idle_sched_class */
3283 if (unlikely(!p))
d8ac8971 3284 p = idle_sched_class.pick_next_task(rq, prev, rf);
6ccdc84b
PZ
3285
3286 return p;
1da177e4
LT
3287 }
3288
37e117c0 3289again:
34f971f6 3290 for_each_class(class) {
d8ac8971 3291 p = class->pick_next_task(rq, prev, rf);
37e117c0
PZ
3292 if (p) {
3293 if (unlikely(p == RETRY_TASK))
3294 goto again;
dd41f596 3295 return p;
37e117c0 3296 }
dd41f596 3297 }
34f971f6
PZ
3298
3299 BUG(); /* the idle class will always have a runnable task */
dd41f596 3300}
1da177e4 3301
dd41f596 3302/*
c259e01a 3303 * __schedule() is the main scheduler function.
edde96ea
PE
3304 *
3305 * The main means of driving the scheduler and thus entering this function are:
3306 *
3307 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3308 *
3309 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3310 * paths. For example, see arch/x86/entry_64.S.
3311 *
3312 * To drive preemption between tasks, the scheduler sets the flag in timer
3313 * interrupt handler scheduler_tick().
3314 *
3315 * 3. Wakeups don't really cause entry into schedule(). They add a
3316 * task to the run-queue and that's it.
3317 *
3318 * Now, if the new task added to the run-queue preempts the current
3319 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3320 * called on the nearest possible occasion:
3321 *
3322 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3323 *
3324 * - in syscall or exception context, at the next outmost
3325 * preempt_enable(). (this might be as soon as the wake_up()'s
3326 * spin_unlock()!)
3327 *
3328 * - in IRQ context, return from interrupt-handler to
3329 * preemptible context
3330 *
3331 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3332 * then at the next:
3333 *
3334 * - cond_resched() call
3335 * - explicit schedule() call
3336 * - return from syscall or exception to user-space
3337 * - return from interrupt-handler to user-space
bfd9b2b5 3338 *
b30f0e3f 3339 * WARNING: must be called with preemption disabled!
dd41f596 3340 */
499d7955 3341static void __sched notrace __schedule(bool preempt)
dd41f596
IM
3342{
3343 struct task_struct *prev, *next;
67ca7bde 3344 unsigned long *switch_count;
d8ac8971 3345 struct rq_flags rf;
dd41f596 3346 struct rq *rq;
31656519 3347 int cpu;
dd41f596 3348
dd41f596
IM
3349 cpu = smp_processor_id();
3350 rq = cpu_rq(cpu);
dd41f596 3351 prev = rq->curr;
dd41f596 3352
dd41f596 3353 schedule_debug(prev);
1da177e4 3354
31656519 3355 if (sched_feat(HRTICK))
f333fdc9 3356 hrtick_clear(rq);
8f4d37ec 3357
46a5d164
PM
3358 local_irq_disable();
3359 rcu_note_context_switch();
3360
e0acd0a6
ON
3361 /*
3362 * Make sure that signal_pending_state()->signal_pending() below
3363 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3364 * done by the caller to avoid the race with signal_wake_up().
3365 */
3366 smp_mb__before_spinlock();
46a5d164 3367 raw_spin_lock(&rq->lock);
d8ac8971 3368 rq_pin_lock(rq, &rf);
1da177e4 3369
cb42c9a3 3370 rq->clock_update_flags <<= 1; /* promote REQ to ACT */
9edfbfed 3371
246d86b5 3372 switch_count = &prev->nivcsw;
fc13aeba 3373 if (!preempt && prev->state) {
21aa9af0 3374 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 3375 prev->state = TASK_RUNNING;
21aa9af0 3376 } else {
2acca55e
PZ
3377 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3378 prev->on_rq = 0;
3379
21aa9af0 3380 /*
2acca55e
PZ
3381 * If a worker went to sleep, notify and ask workqueue
3382 * whether it wants to wake up a task to maintain
3383 * concurrency.
21aa9af0
TH
3384 */
3385 if (prev->flags & PF_WQ_WORKER) {
3386 struct task_struct *to_wakeup;
3387
9b7f6597 3388 to_wakeup = wq_worker_sleeping(prev);
21aa9af0 3389 if (to_wakeup)
d8ac8971 3390 try_to_wake_up_local(to_wakeup, &rf);
21aa9af0 3391 }
21aa9af0 3392 }
dd41f596 3393 switch_count = &prev->nvcsw;
1da177e4
LT
3394 }
3395
9edfbfed 3396 if (task_on_rq_queued(prev))
606dba2e
PZ
3397 update_rq_clock(rq);
3398
d8ac8971 3399 next = pick_next_task(rq, prev, &rf);
f26f9aff 3400 clear_tsk_need_resched(prev);
f27dde8d 3401 clear_preempt_need_resched();
1da177e4 3402
1da177e4 3403 if (likely(prev != next)) {
1da177e4
LT
3404 rq->nr_switches++;
3405 rq->curr = next;
3406 ++*switch_count;
3407
c73464b1 3408 trace_sched_switch(preempt, prev, next);
d8ac8971 3409 rq = context_switch(rq, prev, next, &rf); /* unlocks the rq */
cbce1a68 3410 } else {
cb42c9a3 3411 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
d8ac8971 3412 rq_unpin_lock(rq, &rf);
05fa785c 3413 raw_spin_unlock_irq(&rq->lock);
cbce1a68 3414 }
1da177e4 3415
e3fca9e7 3416 balance_callback(rq);
1da177e4 3417}
c259e01a 3418
9af6528e
PZ
3419void __noreturn do_task_dead(void)
3420{
3421 /*
3422 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
3423 * when the following two conditions become true.
3424 * - There is race condition of mmap_sem (It is acquired by
3425 * exit_mm()), and
3426 * - SMI occurs before setting TASK_RUNINNG.
3427 * (or hypervisor of virtual machine switches to other guest)
3428 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD
3429 *
3430 * To avoid it, we have to wait for releasing tsk->pi_lock which
3431 * is held by try_to_wake_up()
3432 */
3433 smp_mb();
3434 raw_spin_unlock_wait(&current->pi_lock);
3435
3436 /* causes final put_task_struct in finish_task_switch(). */
3437 __set_current_state(TASK_DEAD);
3438 current->flags |= PF_NOFREEZE; /* tell freezer to ignore us */
3439 __schedule(false);
3440 BUG();
3441 /* Avoid "noreturn function does return". */
3442 for (;;)
3443 cpu_relax(); /* For when BUG is null */
3444}
3445
9c40cef2
TG
3446static inline void sched_submit_work(struct task_struct *tsk)
3447{
3c7d5184 3448 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
3449 return;
3450 /*
3451 * If we are going to sleep and we have plugged IO queued,
3452 * make sure to submit it to avoid deadlocks.
3453 */
3454 if (blk_needs_flush_plug(tsk))
3455 blk_schedule_flush_plug(tsk);
3456}
3457
722a9f92 3458asmlinkage __visible void __sched schedule(void)
c259e01a 3459{
9c40cef2
TG
3460 struct task_struct *tsk = current;
3461
3462 sched_submit_work(tsk);
bfd9b2b5 3463 do {
b30f0e3f 3464 preempt_disable();
fc13aeba 3465 __schedule(false);
b30f0e3f 3466 sched_preempt_enable_no_resched();
bfd9b2b5 3467 } while (need_resched());
c259e01a 3468}
1da177e4
LT
3469EXPORT_SYMBOL(schedule);
3470
91d1aa43 3471#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 3472asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
3473{
3474 /*
3475 * If we come here after a random call to set_need_resched(),
3476 * or we have been woken up remotely but the IPI has not yet arrived,
3477 * we haven't yet exited the RCU idle mode. Do it here manually until
3478 * we find a better solution.
7cc78f8f
AL
3479 *
3480 * NB: There are buggy callers of this function. Ideally we
c467ea76 3481 * should warn if prev_state != CONTEXT_USER, but that will trigger
7cc78f8f 3482 * too frequently to make sense yet.
20ab65e3 3483 */
7cc78f8f 3484 enum ctx_state prev_state = exception_enter();
20ab65e3 3485 schedule();
7cc78f8f 3486 exception_exit(prev_state);
20ab65e3
FW
3487}
3488#endif
3489
c5491ea7
TG
3490/**
3491 * schedule_preempt_disabled - called with preemption disabled
3492 *
3493 * Returns with preemption disabled. Note: preempt_count must be 1
3494 */
3495void __sched schedule_preempt_disabled(void)
3496{
ba74c144 3497 sched_preempt_enable_no_resched();
c5491ea7
TG
3498 schedule();
3499 preempt_disable();
3500}
3501
06b1f808 3502static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
3503{
3504 do {
47252cfb
SR
3505 /*
3506 * Because the function tracer can trace preempt_count_sub()
3507 * and it also uses preempt_enable/disable_notrace(), if
3508 * NEED_RESCHED is set, the preempt_enable_notrace() called
3509 * by the function tracer will call this function again and
3510 * cause infinite recursion.
3511 *
3512 * Preemption must be disabled here before the function
3513 * tracer can trace. Break up preempt_disable() into two
3514 * calls. One to disable preemption without fear of being
3515 * traced. The other to still record the preemption latency,
3516 * which can also be traced by the function tracer.
3517 */
499d7955 3518 preempt_disable_notrace();
47252cfb 3519 preempt_latency_start(1);
fc13aeba 3520 __schedule(true);
47252cfb 3521 preempt_latency_stop(1);
499d7955 3522 preempt_enable_no_resched_notrace();
a18b5d01
FW
3523
3524 /*
3525 * Check again in case we missed a preemption opportunity
3526 * between schedule and now.
3527 */
a18b5d01
FW
3528 } while (need_resched());
3529}
3530
1da177e4
LT
3531#ifdef CONFIG_PREEMPT
3532/*
2ed6e34f 3533 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3534 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3535 * occur there and call schedule directly.
3536 */
722a9f92 3537asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 3538{
1da177e4
LT
3539 /*
3540 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3541 * we do not want to preempt the current task. Just return..
1da177e4 3542 */
fbb00b56 3543 if (likely(!preemptible()))
1da177e4
LT
3544 return;
3545
a18b5d01 3546 preempt_schedule_common();
1da177e4 3547}
376e2424 3548NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 3549EXPORT_SYMBOL(preempt_schedule);
009f60e2 3550
009f60e2 3551/**
4eaca0a8 3552 * preempt_schedule_notrace - preempt_schedule called by tracing
009f60e2
ON
3553 *
3554 * The tracing infrastructure uses preempt_enable_notrace to prevent
3555 * recursion and tracing preempt enabling caused by the tracing
3556 * infrastructure itself. But as tracing can happen in areas coming
3557 * from userspace or just about to enter userspace, a preempt enable
3558 * can occur before user_exit() is called. This will cause the scheduler
3559 * to be called when the system is still in usermode.
3560 *
3561 * To prevent this, the preempt_enable_notrace will use this function
3562 * instead of preempt_schedule() to exit user context if needed before
3563 * calling the scheduler.
3564 */
4eaca0a8 3565asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
009f60e2
ON
3566{
3567 enum ctx_state prev_ctx;
3568
3569 if (likely(!preemptible()))
3570 return;
3571
3572 do {
47252cfb
SR
3573 /*
3574 * Because the function tracer can trace preempt_count_sub()
3575 * and it also uses preempt_enable/disable_notrace(), if
3576 * NEED_RESCHED is set, the preempt_enable_notrace() called
3577 * by the function tracer will call this function again and
3578 * cause infinite recursion.
3579 *
3580 * Preemption must be disabled here before the function
3581 * tracer can trace. Break up preempt_disable() into two
3582 * calls. One to disable preemption without fear of being
3583 * traced. The other to still record the preemption latency,
3584 * which can also be traced by the function tracer.
3585 */
3d8f74dd 3586 preempt_disable_notrace();
47252cfb 3587 preempt_latency_start(1);
009f60e2
ON
3588 /*
3589 * Needs preempt disabled in case user_exit() is traced
3590 * and the tracer calls preempt_enable_notrace() causing
3591 * an infinite recursion.
3592 */
3593 prev_ctx = exception_enter();
fc13aeba 3594 __schedule(true);
009f60e2
ON
3595 exception_exit(prev_ctx);
3596
47252cfb 3597 preempt_latency_stop(1);
3d8f74dd 3598 preempt_enable_no_resched_notrace();
009f60e2
ON
3599 } while (need_resched());
3600}
4eaca0a8 3601EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
009f60e2 3602
32e475d7 3603#endif /* CONFIG_PREEMPT */
1da177e4
LT
3604
3605/*
2ed6e34f 3606 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3607 * off of irq context.
3608 * Note, that this is called and return with irqs disabled. This will
3609 * protect us against recursive calling from irq.
3610 */
722a9f92 3611asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 3612{
b22366cd 3613 enum ctx_state prev_state;
6478d880 3614
2ed6e34f 3615 /* Catch callers which need to be fixed */
f27dde8d 3616 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 3617
b22366cd
FW
3618 prev_state = exception_enter();
3619
3a5c359a 3620 do {
3d8f74dd 3621 preempt_disable();
3a5c359a 3622 local_irq_enable();
fc13aeba 3623 __schedule(true);
3a5c359a 3624 local_irq_disable();
3d8f74dd 3625 sched_preempt_enable_no_resched();
5ed0cec0 3626 } while (need_resched());
b22366cd
FW
3627
3628 exception_exit(prev_state);
1da177e4
LT
3629}
3630
63859d4f 3631int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3632 void *key)
1da177e4 3633{
63859d4f 3634 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3635}
1da177e4
LT
3636EXPORT_SYMBOL(default_wake_function);
3637
b29739f9
IM
3638#ifdef CONFIG_RT_MUTEXES
3639
3640/*
3641 * rt_mutex_setprio - set the current priority of a task
3642 * @p: task
3643 * @prio: prio value (kernel-internal form)
3644 *
3645 * This function changes the 'effective' priority of a task. It does
3646 * not touch ->normal_prio like __setscheduler().
3647 *
c365c292
TG
3648 * Used by the rt_mutex code to implement priority inheritance
3649 * logic. Call site only calls if the priority of the task changed.
b29739f9 3650 */
36c8b586 3651void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3652{
ff77e468 3653 int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE;
83ab0aa0 3654 const struct sched_class *prev_class;
eb580751
PZ
3655 struct rq_flags rf;
3656 struct rq *rq;
b29739f9 3657
aab03e05 3658 BUG_ON(prio > MAX_PRIO);
b29739f9 3659
eb580751 3660 rq = __task_rq_lock(p, &rf);
80f5c1b8 3661 update_rq_clock(rq);
b29739f9 3662
1c4dd99b
TG
3663 /*
3664 * Idle task boosting is a nono in general. There is one
3665 * exception, when PREEMPT_RT and NOHZ is active:
3666 *
3667 * The idle task calls get_next_timer_interrupt() and holds
3668 * the timer wheel base->lock on the CPU and another CPU wants
3669 * to access the timer (probably to cancel it). We can safely
3670 * ignore the boosting request, as the idle CPU runs this code
3671 * with interrupts disabled and will complete the lock
3672 * protected section without being interrupted. So there is no
3673 * real need to boost.
3674 */
3675 if (unlikely(p == rq->idle)) {
3676 WARN_ON(p != rq->curr);
3677 WARN_ON(p->pi_blocked_on);
3678 goto out_unlock;
3679 }
3680
a8027073 3681 trace_sched_pi_setprio(p, prio);
d5f9f942 3682 oldprio = p->prio;
ff77e468
PZ
3683
3684 if (oldprio == prio)
3685 queue_flag &= ~DEQUEUE_MOVE;
3686
83ab0aa0 3687 prev_class = p->sched_class;
da0c1e65 3688 queued = task_on_rq_queued(p);
051a1d1a 3689 running = task_current(rq, p);
da0c1e65 3690 if (queued)
ff77e468 3691 dequeue_task(rq, p, queue_flag);
0e1f3483 3692 if (running)
f3cd1c4e 3693 put_prev_task(rq, p);
dd41f596 3694
2d3d891d
DF
3695 /*
3696 * Boosting condition are:
3697 * 1. -rt task is running and holds mutex A
3698 * --> -dl task blocks on mutex A
3699 *
3700 * 2. -dl task is running and holds mutex A
3701 * --> -dl task blocks on mutex A and could preempt the
3702 * running task
3703 */
3704 if (dl_prio(prio)) {
466af29b
ON
3705 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3706 if (!dl_prio(p->normal_prio) ||
3707 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d 3708 p->dl.dl_boosted = 1;
ff77e468 3709 queue_flag |= ENQUEUE_REPLENISH;
2d3d891d
DF
3710 } else
3711 p->dl.dl_boosted = 0;
aab03e05 3712 p->sched_class = &dl_sched_class;
2d3d891d
DF
3713 } else if (rt_prio(prio)) {
3714 if (dl_prio(oldprio))
3715 p->dl.dl_boosted = 0;
3716 if (oldprio < prio)
ff77e468 3717 queue_flag |= ENQUEUE_HEAD;
dd41f596 3718 p->sched_class = &rt_sched_class;
2d3d891d
DF
3719 } else {
3720 if (dl_prio(oldprio))
3721 p->dl.dl_boosted = 0;
746db944
BS
3722 if (rt_prio(oldprio))
3723 p->rt.timeout = 0;
dd41f596 3724 p->sched_class = &fair_sched_class;
2d3d891d 3725 }
dd41f596 3726
b29739f9
IM
3727 p->prio = prio;
3728
da0c1e65 3729 if (queued)
ff77e468 3730 enqueue_task(rq, p, queue_flag);
a399d233 3731 if (running)
b2bf6c31 3732 set_curr_task(rq, p);
cb469845 3733
da7a735e 3734 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3735out_unlock:
4c9a4bc8 3736 preempt_disable(); /* avoid rq from going away on us */
eb580751 3737 __task_rq_unlock(rq, &rf);
4c9a4bc8
PZ
3738
3739 balance_callback(rq);
3740 preempt_enable();
b29739f9 3741}
b29739f9 3742#endif
d50dde5a 3743
36c8b586 3744void set_user_nice(struct task_struct *p, long nice)
1da177e4 3745{
49bd21ef
PZ
3746 bool queued, running;
3747 int old_prio, delta;
eb580751 3748 struct rq_flags rf;
70b97a7f 3749 struct rq *rq;
1da177e4 3750
75e45d51 3751 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
3752 return;
3753 /*
3754 * We have to be careful, if called from sys_setpriority(),
3755 * the task might be in the middle of scheduling on another CPU.
3756 */
eb580751 3757 rq = task_rq_lock(p, &rf);
2fb8d367
PZ
3758 update_rq_clock(rq);
3759
1da177e4
LT
3760 /*
3761 * The RT priorities are set via sched_setscheduler(), but we still
3762 * allow the 'normal' nice value to be set - but as expected
3763 * it wont have any effect on scheduling until the task is
aab03e05 3764 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3765 */
aab03e05 3766 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3767 p->static_prio = NICE_TO_PRIO(nice);
3768 goto out_unlock;
3769 }
da0c1e65 3770 queued = task_on_rq_queued(p);
49bd21ef 3771 running = task_current(rq, p);
da0c1e65 3772 if (queued)
1de64443 3773 dequeue_task(rq, p, DEQUEUE_SAVE);
49bd21ef
PZ
3774 if (running)
3775 put_prev_task(rq, p);
1da177e4 3776
1da177e4 3777 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3778 set_load_weight(p);
b29739f9
IM
3779 old_prio = p->prio;
3780 p->prio = effective_prio(p);
3781 delta = p->prio - old_prio;
1da177e4 3782
da0c1e65 3783 if (queued) {
1de64443 3784 enqueue_task(rq, p, ENQUEUE_RESTORE);
1da177e4 3785 /*
d5f9f942
AM
3786 * If the task increased its priority or is running and
3787 * lowered its priority, then reschedule its CPU:
1da177e4 3788 */
d5f9f942 3789 if (delta < 0 || (delta > 0 && task_running(rq, p)))
8875125e 3790 resched_curr(rq);
1da177e4 3791 }
49bd21ef
PZ
3792 if (running)
3793 set_curr_task(rq, p);
1da177e4 3794out_unlock:
eb580751 3795 task_rq_unlock(rq, p, &rf);
1da177e4 3796}
1da177e4
LT
3797EXPORT_SYMBOL(set_user_nice);
3798
e43379f1
MM
3799/*
3800 * can_nice - check if a task can reduce its nice value
3801 * @p: task
3802 * @nice: nice value
3803 */
36c8b586 3804int can_nice(const struct task_struct *p, const int nice)
e43379f1 3805{
024f4747 3806 /* convert nice value [19,-20] to rlimit style value [1,40] */
7aa2c016 3807 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 3808
78d7d407 3809 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3810 capable(CAP_SYS_NICE));
3811}
3812
1da177e4
LT
3813#ifdef __ARCH_WANT_SYS_NICE
3814
3815/*
3816 * sys_nice - change the priority of the current process.
3817 * @increment: priority increment
3818 *
3819 * sys_setpriority is a more generic, but much slower function that
3820 * does similar things.
3821 */
5add95d4 3822SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3823{
48f24c4d 3824 long nice, retval;
1da177e4
LT
3825
3826 /*
3827 * Setpriority might change our priority at the same moment.
3828 * We don't have to worry. Conceptually one call occurs first
3829 * and we have a single winner.
3830 */
a9467fa3 3831 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 3832 nice = task_nice(current) + increment;
1da177e4 3833
a9467fa3 3834 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
3835 if (increment < 0 && !can_nice(current, nice))
3836 return -EPERM;
3837
1da177e4
LT
3838 retval = security_task_setnice(current, nice);
3839 if (retval)
3840 return retval;
3841
3842 set_user_nice(current, nice);
3843 return 0;
3844}
3845
3846#endif
3847
3848/**
3849 * task_prio - return the priority value of a given task.
3850 * @p: the task in question.
3851 *
e69f6186 3852 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3853 * RT tasks are offset by -200. Normal tasks are centered
3854 * around 0, value goes from -16 to +15.
3855 */
36c8b586 3856int task_prio(const struct task_struct *p)
1da177e4
LT
3857{
3858 return p->prio - MAX_RT_PRIO;
3859}
3860
1da177e4
LT
3861/**
3862 * idle_cpu - is a given cpu idle currently?
3863 * @cpu: the processor in question.
e69f6186
YB
3864 *
3865 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3866 */
3867int idle_cpu(int cpu)
3868{
908a3283
TG
3869 struct rq *rq = cpu_rq(cpu);
3870
3871 if (rq->curr != rq->idle)
3872 return 0;
3873
3874 if (rq->nr_running)
3875 return 0;
3876
3877#ifdef CONFIG_SMP
3878 if (!llist_empty(&rq->wake_list))
3879 return 0;
3880#endif
3881
3882 return 1;
1da177e4
LT
3883}
3884
1da177e4
LT
3885/**
3886 * idle_task - return the idle task for a given cpu.
3887 * @cpu: the processor in question.
e69f6186
YB
3888 *
3889 * Return: The idle task for the cpu @cpu.
1da177e4 3890 */
36c8b586 3891struct task_struct *idle_task(int cpu)
1da177e4
LT
3892{
3893 return cpu_rq(cpu)->idle;
3894}
3895
3896/**
3897 * find_process_by_pid - find a process with a matching PID value.
3898 * @pid: the pid in question.
e69f6186
YB
3899 *
3900 * The task of @pid, if found. %NULL otherwise.
1da177e4 3901 */
a9957449 3902static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3903{
228ebcbe 3904 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3905}
3906
aab03e05
DF
3907/*
3908 * This function initializes the sched_dl_entity of a newly becoming
3909 * SCHED_DEADLINE task.
3910 *
3911 * Only the static values are considered here, the actual runtime and the
3912 * absolute deadline will be properly calculated when the task is enqueued
3913 * for the first time with its new policy.
3914 */
3915static void
3916__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3917{
3918 struct sched_dl_entity *dl_se = &p->dl;
3919
aab03e05
DF
3920 dl_se->dl_runtime = attr->sched_runtime;
3921 dl_se->dl_deadline = attr->sched_deadline;
755378a4 3922 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 3923 dl_se->flags = attr->sched_flags;
332ac17e 3924 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
40767b0d
PZ
3925
3926 /*
3927 * Changing the parameters of a task is 'tricky' and we're not doing
3928 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3929 *
3930 * What we SHOULD do is delay the bandwidth release until the 0-lag
3931 * point. This would include retaining the task_struct until that time
3932 * and change dl_overflow() to not immediately decrement the current
3933 * amount.
3934 *
3935 * Instead we retain the current runtime/deadline and let the new
3936 * parameters take effect after the current reservation period lapses.
3937 * This is safe (albeit pessimistic) because the 0-lag point is always
3938 * before the current scheduling deadline.
3939 *
3940 * We can still have temporary overloads because we do not delay the
3941 * change in bandwidth until that time; so admission control is
3942 * not on the safe side. It does however guarantee tasks will never
3943 * consume more than promised.
3944 */
aab03e05
DF
3945}
3946
c13db6b1
SR
3947/*
3948 * sched_setparam() passes in -1 for its policy, to let the functions
3949 * it calls know not to change it.
3950 */
3951#define SETPARAM_POLICY -1
3952
c365c292
TG
3953static void __setscheduler_params(struct task_struct *p,
3954 const struct sched_attr *attr)
1da177e4 3955{
d50dde5a
DF
3956 int policy = attr->sched_policy;
3957
c13db6b1 3958 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
3959 policy = p->policy;
3960
1da177e4 3961 p->policy = policy;
d50dde5a 3962
aab03e05
DF
3963 if (dl_policy(policy))
3964 __setparam_dl(p, attr);
39fd8fd2 3965 else if (fair_policy(policy))
d50dde5a
DF
3966 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3967
39fd8fd2
PZ
3968 /*
3969 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3970 * !rt_policy. Always setting this ensures that things like
3971 * getparam()/getattr() don't report silly values for !rt tasks.
3972 */
3973 p->rt_priority = attr->sched_priority;
383afd09 3974 p->normal_prio = normal_prio(p);
c365c292
TG
3975 set_load_weight(p);
3976}
39fd8fd2 3977
c365c292
TG
3978/* Actually do priority change: must hold pi & rq lock. */
3979static void __setscheduler(struct rq *rq, struct task_struct *p,
0782e63b 3980 const struct sched_attr *attr, bool keep_boost)
c365c292
TG
3981{
3982 __setscheduler_params(p, attr);
d50dde5a 3983
383afd09 3984 /*
0782e63b
TG
3985 * Keep a potential priority boosting if called from
3986 * sched_setscheduler().
383afd09 3987 */
0782e63b
TG
3988 if (keep_boost)
3989 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3990 else
3991 p->prio = normal_prio(p);
383afd09 3992
aab03e05
DF
3993 if (dl_prio(p->prio))
3994 p->sched_class = &dl_sched_class;
3995 else if (rt_prio(p->prio))
ffd44db5
PZ
3996 p->sched_class = &rt_sched_class;
3997 else
3998 p->sched_class = &fair_sched_class;
1da177e4 3999}
aab03e05
DF
4000
4001static void
4002__getparam_dl(struct task_struct *p, struct sched_attr *attr)
4003{
4004 struct sched_dl_entity *dl_se = &p->dl;
4005
4006 attr->sched_priority = p->rt_priority;
4007 attr->sched_runtime = dl_se->dl_runtime;
4008 attr->sched_deadline = dl_se->dl_deadline;
755378a4 4009 attr->sched_period = dl_se->dl_period;
aab03e05
DF
4010 attr->sched_flags = dl_se->flags;
4011}
4012
4013/*
4014 * This function validates the new parameters of a -deadline task.
4015 * We ask for the deadline not being zero, and greater or equal
755378a4 4016 * than the runtime, as well as the period of being zero or
332ac17e 4017 * greater than deadline. Furthermore, we have to be sure that
b0827819
JL
4018 * user parameters are above the internal resolution of 1us (we
4019 * check sched_runtime only since it is always the smaller one) and
4020 * below 2^63 ns (we have to check both sched_deadline and
4021 * sched_period, as the latter can be zero).
aab03e05
DF
4022 */
4023static bool
4024__checkparam_dl(const struct sched_attr *attr)
4025{
b0827819
JL
4026 /* deadline != 0 */
4027 if (attr->sched_deadline == 0)
4028 return false;
4029
4030 /*
4031 * Since we truncate DL_SCALE bits, make sure we're at least
4032 * that big.
4033 */
4034 if (attr->sched_runtime < (1ULL << DL_SCALE))
4035 return false;
4036
4037 /*
4038 * Since we use the MSB for wrap-around and sign issues, make
4039 * sure it's not set (mind that period can be equal to zero).
4040 */
4041 if (attr->sched_deadline & (1ULL << 63) ||
4042 attr->sched_period & (1ULL << 63))
4043 return false;
4044
4045 /* runtime <= deadline <= period (if period != 0) */
4046 if ((attr->sched_period != 0 &&
4047 attr->sched_period < attr->sched_deadline) ||
4048 attr->sched_deadline < attr->sched_runtime)
4049 return false;
4050
4051 return true;
aab03e05
DF
4052}
4053
c69e8d9c
DH
4054/*
4055 * check the target process has a UID that matches the current process's
4056 */
4057static bool check_same_owner(struct task_struct *p)
4058{
4059 const struct cred *cred = current_cred(), *pcred;
4060 bool match;
4061
4062 rcu_read_lock();
4063 pcred = __task_cred(p);
9c806aa0
EB
4064 match = (uid_eq(cred->euid, pcred->euid) ||
4065 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
4066 rcu_read_unlock();
4067 return match;
4068}
4069
75381608
WL
4070static bool dl_param_changed(struct task_struct *p,
4071 const struct sched_attr *attr)
4072{
4073 struct sched_dl_entity *dl_se = &p->dl;
4074
4075 if (dl_se->dl_runtime != attr->sched_runtime ||
4076 dl_se->dl_deadline != attr->sched_deadline ||
4077 dl_se->dl_period != attr->sched_period ||
4078 dl_se->flags != attr->sched_flags)
4079 return true;
4080
4081 return false;
4082}
4083
d50dde5a
DF
4084static int __sched_setscheduler(struct task_struct *p,
4085 const struct sched_attr *attr,
dbc7f069 4086 bool user, bool pi)
1da177e4 4087{
383afd09
SR
4088 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4089 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 4090 int retval, oldprio, oldpolicy = -1, queued, running;
0782e63b 4091 int new_effective_prio, policy = attr->sched_policy;
83ab0aa0 4092 const struct sched_class *prev_class;
eb580751 4093 struct rq_flags rf;
ca94c442 4094 int reset_on_fork;
ff77e468 4095 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
eb580751 4096 struct rq *rq;
1da177e4 4097
66e5393a
SR
4098 /* may grab non-irq protected spin_locks */
4099 BUG_ON(in_interrupt());
1da177e4
LT
4100recheck:
4101 /* double check policy once rq lock held */
ca94c442
LP
4102 if (policy < 0) {
4103 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4104 policy = oldpolicy = p->policy;
ca94c442 4105 } else {
7479f3c9 4106 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 4107
20f9cd2a 4108 if (!valid_policy(policy))
ca94c442
LP
4109 return -EINVAL;
4110 }
4111
7479f3c9
PZ
4112 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
4113 return -EINVAL;
4114
1da177e4
LT
4115 /*
4116 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4117 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4118 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 4119 */
0bb040a4 4120 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 4121 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 4122 return -EINVAL;
aab03e05
DF
4123 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4124 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
4125 return -EINVAL;
4126
37e4ab3f
OC
4127 /*
4128 * Allow unprivileged RT tasks to decrease priority:
4129 */
961ccddd 4130 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 4131 if (fair_policy(policy)) {
d0ea0268 4132 if (attr->sched_nice < task_nice(p) &&
eaad4513 4133 !can_nice(p, attr->sched_nice))
d50dde5a
DF
4134 return -EPERM;
4135 }
4136
e05606d3 4137 if (rt_policy(policy)) {
a44702e8
ON
4138 unsigned long rlim_rtprio =
4139 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
4140
4141 /* can't set/change the rt policy */
4142 if (policy != p->policy && !rlim_rtprio)
4143 return -EPERM;
4144
4145 /* can't increase priority */
d50dde5a
DF
4146 if (attr->sched_priority > p->rt_priority &&
4147 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
4148 return -EPERM;
4149 }
c02aa73b 4150
d44753b8
JL
4151 /*
4152 * Can't set/change SCHED_DEADLINE policy at all for now
4153 * (safest behavior); in the future we would like to allow
4154 * unprivileged DL tasks to increase their relative deadline
4155 * or reduce their runtime (both ways reducing utilization)
4156 */
4157 if (dl_policy(policy))
4158 return -EPERM;
4159
dd41f596 4160 /*
c02aa73b
DH
4161 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4162 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 4163 */
20f9cd2a 4164 if (idle_policy(p->policy) && !idle_policy(policy)) {
d0ea0268 4165 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
4166 return -EPERM;
4167 }
5fe1d75f 4168
37e4ab3f 4169 /* can't change other user's priorities */
c69e8d9c 4170 if (!check_same_owner(p))
37e4ab3f 4171 return -EPERM;
ca94c442
LP
4172
4173 /* Normal users shall not reset the sched_reset_on_fork flag */
4174 if (p->sched_reset_on_fork && !reset_on_fork)
4175 return -EPERM;
37e4ab3f 4176 }
1da177e4 4177
725aad24 4178 if (user) {
b0ae1981 4179 retval = security_task_setscheduler(p);
725aad24
JF
4180 if (retval)
4181 return retval;
4182 }
4183
b29739f9
IM
4184 /*
4185 * make sure no PI-waiters arrive (or leave) while we are
4186 * changing the priority of the task:
0122ec5b 4187 *
25985edc 4188 * To be able to change p->policy safely, the appropriate
1da177e4
LT
4189 * runqueue lock must be held.
4190 */
eb580751 4191 rq = task_rq_lock(p, &rf);
80f5c1b8 4192 update_rq_clock(rq);
dc61b1d6 4193
34f971f6
PZ
4194 /*
4195 * Changing the policy of the stop threads its a very bad idea
4196 */
4197 if (p == rq->stop) {
eb580751 4198 task_rq_unlock(rq, p, &rf);
34f971f6
PZ
4199 return -EINVAL;
4200 }
4201
a51e9198 4202 /*
d6b1e911
TG
4203 * If not changing anything there's no need to proceed further,
4204 * but store a possible modification of reset_on_fork.
a51e9198 4205 */
d50dde5a 4206 if (unlikely(policy == p->policy)) {
d0ea0268 4207 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
4208 goto change;
4209 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4210 goto change;
75381608 4211 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 4212 goto change;
d50dde5a 4213
d6b1e911 4214 p->sched_reset_on_fork = reset_on_fork;
eb580751 4215 task_rq_unlock(rq, p, &rf);
a51e9198
DF
4216 return 0;
4217 }
d50dde5a 4218change:
a51e9198 4219
dc61b1d6 4220 if (user) {
332ac17e 4221#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
4222 /*
4223 * Do not allow realtime tasks into groups that have no runtime
4224 * assigned.
4225 */
4226 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
4227 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4228 !task_group_is_autogroup(task_group(p))) {
eb580751 4229 task_rq_unlock(rq, p, &rf);
dc61b1d6
PZ
4230 return -EPERM;
4231 }
dc61b1d6 4232#endif
332ac17e
DF
4233#ifdef CONFIG_SMP
4234 if (dl_bandwidth_enabled() && dl_policy(policy)) {
4235 cpumask_t *span = rq->rd->span;
332ac17e
DF
4236
4237 /*
4238 * Don't allow tasks with an affinity mask smaller than
4239 * the entire root_domain to become SCHED_DEADLINE. We
4240 * will also fail if there's no bandwidth available.
4241 */
e4099a5e
PZ
4242 if (!cpumask_subset(span, &p->cpus_allowed) ||
4243 rq->rd->dl_bw.bw == 0) {
eb580751 4244 task_rq_unlock(rq, p, &rf);
332ac17e
DF
4245 return -EPERM;
4246 }
4247 }
4248#endif
4249 }
dc61b1d6 4250
1da177e4
LT
4251 /* recheck policy now with rq lock held */
4252 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4253 policy = oldpolicy = -1;
eb580751 4254 task_rq_unlock(rq, p, &rf);
1da177e4
LT
4255 goto recheck;
4256 }
332ac17e
DF
4257
4258 /*
4259 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4260 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4261 * is available.
4262 */
e4099a5e 4263 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
eb580751 4264 task_rq_unlock(rq, p, &rf);
332ac17e
DF
4265 return -EBUSY;
4266 }
4267
c365c292
TG
4268 p->sched_reset_on_fork = reset_on_fork;
4269 oldprio = p->prio;
4270
dbc7f069
PZ
4271 if (pi) {
4272 /*
4273 * Take priority boosted tasks into account. If the new
4274 * effective priority is unchanged, we just store the new
4275 * normal parameters and do not touch the scheduler class and
4276 * the runqueue. This will be done when the task deboost
4277 * itself.
4278 */
4279 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
ff77e468
PZ
4280 if (new_effective_prio == oldprio)
4281 queue_flags &= ~DEQUEUE_MOVE;
c365c292
TG
4282 }
4283
da0c1e65 4284 queued = task_on_rq_queued(p);
051a1d1a 4285 running = task_current(rq, p);
da0c1e65 4286 if (queued)
ff77e468 4287 dequeue_task(rq, p, queue_flags);
0e1f3483 4288 if (running)
f3cd1c4e 4289 put_prev_task(rq, p);
f6b53205 4290
83ab0aa0 4291 prev_class = p->sched_class;
dbc7f069 4292 __setscheduler(rq, p, attr, pi);
f6b53205 4293
da0c1e65 4294 if (queued) {
81a44c54
TG
4295 /*
4296 * We enqueue to tail when the priority of a task is
4297 * increased (user space view).
4298 */
ff77e468
PZ
4299 if (oldprio < p->prio)
4300 queue_flags |= ENQUEUE_HEAD;
1de64443 4301
ff77e468 4302 enqueue_task(rq, p, queue_flags);
81a44c54 4303 }
a399d233 4304 if (running)
b2bf6c31 4305 set_curr_task(rq, p);
cb469845 4306
da7a735e 4307 check_class_changed(rq, p, prev_class, oldprio);
4c9a4bc8 4308 preempt_disable(); /* avoid rq from going away on us */
eb580751 4309 task_rq_unlock(rq, p, &rf);
b29739f9 4310
dbc7f069
PZ
4311 if (pi)
4312 rt_mutex_adjust_pi(p);
95e02ca9 4313
4c9a4bc8
PZ
4314 /*
4315 * Run balance callbacks after we've adjusted the PI chain.
4316 */
4317 balance_callback(rq);
4318 preempt_enable();
95e02ca9 4319
1da177e4
LT
4320 return 0;
4321}
961ccddd 4322
7479f3c9
PZ
4323static int _sched_setscheduler(struct task_struct *p, int policy,
4324 const struct sched_param *param, bool check)
4325{
4326 struct sched_attr attr = {
4327 .sched_policy = policy,
4328 .sched_priority = param->sched_priority,
4329 .sched_nice = PRIO_TO_NICE(p->static_prio),
4330 };
4331
c13db6b1
SR
4332 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4333 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
4334 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4335 policy &= ~SCHED_RESET_ON_FORK;
4336 attr.sched_policy = policy;
4337 }
4338
dbc7f069 4339 return __sched_setscheduler(p, &attr, check, true);
7479f3c9 4340}
961ccddd
RR
4341/**
4342 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4343 * @p: the task in question.
4344 * @policy: new policy.
4345 * @param: structure containing the new RT priority.
4346 *
e69f6186
YB
4347 * Return: 0 on success. An error code otherwise.
4348 *
961ccddd
RR
4349 * NOTE that the task may be already dead.
4350 */
4351int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4352 const struct sched_param *param)
961ccddd 4353{
7479f3c9 4354 return _sched_setscheduler(p, policy, param, true);
961ccddd 4355}
1da177e4
LT
4356EXPORT_SYMBOL_GPL(sched_setscheduler);
4357
d50dde5a
DF
4358int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4359{
dbc7f069 4360 return __sched_setscheduler(p, attr, true, true);
d50dde5a
DF
4361}
4362EXPORT_SYMBOL_GPL(sched_setattr);
4363
961ccddd
RR
4364/**
4365 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4366 * @p: the task in question.
4367 * @policy: new policy.
4368 * @param: structure containing the new RT priority.
4369 *
4370 * Just like sched_setscheduler, only don't bother checking if the
4371 * current context has permission. For example, this is needed in
4372 * stop_machine(): we create temporary high priority worker threads,
4373 * but our caller might not have that capability.
e69f6186
YB
4374 *
4375 * Return: 0 on success. An error code otherwise.
961ccddd
RR
4376 */
4377int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 4378 const struct sched_param *param)
961ccddd 4379{
7479f3c9 4380 return _sched_setscheduler(p, policy, param, false);
961ccddd 4381}
84778472 4382EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
961ccddd 4383
95cdf3b7
IM
4384static int
4385do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4386{
1da177e4
LT
4387 struct sched_param lparam;
4388 struct task_struct *p;
36c8b586 4389 int retval;
1da177e4
LT
4390
4391 if (!param || pid < 0)
4392 return -EINVAL;
4393 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4394 return -EFAULT;
5fe1d75f
ON
4395
4396 rcu_read_lock();
4397 retval = -ESRCH;
1da177e4 4398 p = find_process_by_pid(pid);
5fe1d75f
ON
4399 if (p != NULL)
4400 retval = sched_setscheduler(p, policy, &lparam);
4401 rcu_read_unlock();
36c8b586 4402
1da177e4
LT
4403 return retval;
4404}
4405
d50dde5a
DF
4406/*
4407 * Mimics kernel/events/core.c perf_copy_attr().
4408 */
4409static int sched_copy_attr(struct sched_attr __user *uattr,
4410 struct sched_attr *attr)
4411{
4412 u32 size;
4413 int ret;
4414
4415 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4416 return -EFAULT;
4417
4418 /*
4419 * zero the full structure, so that a short copy will be nice.
4420 */
4421 memset(attr, 0, sizeof(*attr));
4422
4423 ret = get_user(size, &uattr->size);
4424 if (ret)
4425 return ret;
4426
4427 if (size > PAGE_SIZE) /* silly large */
4428 goto err_size;
4429
4430 if (!size) /* abi compat */
4431 size = SCHED_ATTR_SIZE_VER0;
4432
4433 if (size < SCHED_ATTR_SIZE_VER0)
4434 goto err_size;
4435
4436 /*
4437 * If we're handed a bigger struct than we know of,
4438 * ensure all the unknown bits are 0 - i.e. new
4439 * user-space does not rely on any kernel feature
4440 * extensions we dont know about yet.
4441 */
4442 if (size > sizeof(*attr)) {
4443 unsigned char __user *addr;
4444 unsigned char __user *end;
4445 unsigned char val;
4446
4447 addr = (void __user *)uattr + sizeof(*attr);
4448 end = (void __user *)uattr + size;
4449
4450 for (; addr < end; addr++) {
4451 ret = get_user(val, addr);
4452 if (ret)
4453 return ret;
4454 if (val)
4455 goto err_size;
4456 }
4457 size = sizeof(*attr);
4458 }
4459
4460 ret = copy_from_user(attr, uattr, size);
4461 if (ret)
4462 return -EFAULT;
4463
4464 /*
4465 * XXX: do we want to be lenient like existing syscalls; or do we want
4466 * to be strict and return an error on out-of-bounds values?
4467 */
75e45d51 4468 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 4469
e78c7bca 4470 return 0;
d50dde5a
DF
4471
4472err_size:
4473 put_user(sizeof(*attr), &uattr->size);
e78c7bca 4474 return -E2BIG;
d50dde5a
DF
4475}
4476
1da177e4
LT
4477/**
4478 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4479 * @pid: the pid in question.
4480 * @policy: new policy.
4481 * @param: structure containing the new RT priority.
e69f6186
YB
4482 *
4483 * Return: 0 on success. An error code otherwise.
1da177e4 4484 */
5add95d4
HC
4485SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4486 struct sched_param __user *, param)
1da177e4 4487{
c21761f1
JB
4488 /* negative values for policy are not valid */
4489 if (policy < 0)
4490 return -EINVAL;
4491
1da177e4
LT
4492 return do_sched_setscheduler(pid, policy, param);
4493}
4494
4495/**
4496 * sys_sched_setparam - set/change the RT priority of a thread
4497 * @pid: the pid in question.
4498 * @param: structure containing the new RT priority.
e69f6186
YB
4499 *
4500 * Return: 0 on success. An error code otherwise.
1da177e4 4501 */
5add95d4 4502SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4503{
c13db6b1 4504 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
4505}
4506
d50dde5a
DF
4507/**
4508 * sys_sched_setattr - same as above, but with extended sched_attr
4509 * @pid: the pid in question.
5778fccf 4510 * @uattr: structure containing the extended parameters.
db66d756 4511 * @flags: for future extension.
d50dde5a 4512 */
6d35ab48
PZ
4513SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4514 unsigned int, flags)
d50dde5a
DF
4515{
4516 struct sched_attr attr;
4517 struct task_struct *p;
4518 int retval;
4519
6d35ab48 4520 if (!uattr || pid < 0 || flags)
d50dde5a
DF
4521 return -EINVAL;
4522
143cf23d
MK
4523 retval = sched_copy_attr(uattr, &attr);
4524 if (retval)
4525 return retval;
d50dde5a 4526
b14ed2c2 4527 if ((int)attr.sched_policy < 0)
dbdb2275 4528 return -EINVAL;
d50dde5a
DF
4529
4530 rcu_read_lock();
4531 retval = -ESRCH;
4532 p = find_process_by_pid(pid);
4533 if (p != NULL)
4534 retval = sched_setattr(p, &attr);
4535 rcu_read_unlock();
4536
4537 return retval;
4538}
4539
1da177e4
LT
4540/**
4541 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4542 * @pid: the pid in question.
e69f6186
YB
4543 *
4544 * Return: On success, the policy of the thread. Otherwise, a negative error
4545 * code.
1da177e4 4546 */
5add95d4 4547SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4548{
36c8b586 4549 struct task_struct *p;
3a5c359a 4550 int retval;
1da177e4
LT
4551
4552 if (pid < 0)
3a5c359a 4553 return -EINVAL;
1da177e4
LT
4554
4555 retval = -ESRCH;
5fe85be0 4556 rcu_read_lock();
1da177e4
LT
4557 p = find_process_by_pid(pid);
4558 if (p) {
4559 retval = security_task_getscheduler(p);
4560 if (!retval)
ca94c442
LP
4561 retval = p->policy
4562 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4563 }
5fe85be0 4564 rcu_read_unlock();
1da177e4
LT
4565 return retval;
4566}
4567
4568/**
ca94c442 4569 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4570 * @pid: the pid in question.
4571 * @param: structure containing the RT priority.
e69f6186
YB
4572 *
4573 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4574 * code.
1da177e4 4575 */
5add95d4 4576SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4577{
ce5f7f82 4578 struct sched_param lp = { .sched_priority = 0 };
36c8b586 4579 struct task_struct *p;
3a5c359a 4580 int retval;
1da177e4
LT
4581
4582 if (!param || pid < 0)
3a5c359a 4583 return -EINVAL;
1da177e4 4584
5fe85be0 4585 rcu_read_lock();
1da177e4
LT
4586 p = find_process_by_pid(pid);
4587 retval = -ESRCH;
4588 if (!p)
4589 goto out_unlock;
4590
4591 retval = security_task_getscheduler(p);
4592 if (retval)
4593 goto out_unlock;
4594
ce5f7f82
PZ
4595 if (task_has_rt_policy(p))
4596 lp.sched_priority = p->rt_priority;
5fe85be0 4597 rcu_read_unlock();
1da177e4
LT
4598
4599 /*
4600 * This one might sleep, we cannot do it with a spinlock held ...
4601 */
4602 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4603
1da177e4
LT
4604 return retval;
4605
4606out_unlock:
5fe85be0 4607 rcu_read_unlock();
1da177e4
LT
4608 return retval;
4609}
4610
d50dde5a
DF
4611static int sched_read_attr(struct sched_attr __user *uattr,
4612 struct sched_attr *attr,
4613 unsigned int usize)
4614{
4615 int ret;
4616
4617 if (!access_ok(VERIFY_WRITE, uattr, usize))
4618 return -EFAULT;
4619
4620 /*
4621 * If we're handed a smaller struct than we know of,
4622 * ensure all the unknown bits are 0 - i.e. old
4623 * user-space does not get uncomplete information.
4624 */
4625 if (usize < sizeof(*attr)) {
4626 unsigned char *addr;
4627 unsigned char *end;
4628
4629 addr = (void *)attr + usize;
4630 end = (void *)attr + sizeof(*attr);
4631
4632 for (; addr < end; addr++) {
4633 if (*addr)
22400674 4634 return -EFBIG;
d50dde5a
DF
4635 }
4636
4637 attr->size = usize;
4638 }
4639
4efbc454 4640 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
4641 if (ret)
4642 return -EFAULT;
4643
22400674 4644 return 0;
d50dde5a
DF
4645}
4646
4647/**
aab03e05 4648 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 4649 * @pid: the pid in question.
5778fccf 4650 * @uattr: structure containing the extended parameters.
d50dde5a 4651 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 4652 * @flags: for future extension.
d50dde5a 4653 */
6d35ab48
PZ
4654SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4655 unsigned int, size, unsigned int, flags)
d50dde5a
DF
4656{
4657 struct sched_attr attr = {
4658 .size = sizeof(struct sched_attr),
4659 };
4660 struct task_struct *p;
4661 int retval;
4662
4663 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 4664 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
4665 return -EINVAL;
4666
4667 rcu_read_lock();
4668 p = find_process_by_pid(pid);
4669 retval = -ESRCH;
4670 if (!p)
4671 goto out_unlock;
4672
4673 retval = security_task_getscheduler(p);
4674 if (retval)
4675 goto out_unlock;
4676
4677 attr.sched_policy = p->policy;
7479f3c9
PZ
4678 if (p->sched_reset_on_fork)
4679 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
4680 if (task_has_dl_policy(p))
4681 __getparam_dl(p, &attr);
4682 else if (task_has_rt_policy(p))
d50dde5a
DF
4683 attr.sched_priority = p->rt_priority;
4684 else
d0ea0268 4685 attr.sched_nice = task_nice(p);
d50dde5a
DF
4686
4687 rcu_read_unlock();
4688
4689 retval = sched_read_attr(uattr, &attr, size);
4690 return retval;
4691
4692out_unlock:
4693 rcu_read_unlock();
4694 return retval;
4695}
4696
96f874e2 4697long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4698{
5a16f3d3 4699 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4700 struct task_struct *p;
4701 int retval;
1da177e4 4702
23f5d142 4703 rcu_read_lock();
1da177e4
LT
4704
4705 p = find_process_by_pid(pid);
4706 if (!p) {
23f5d142 4707 rcu_read_unlock();
1da177e4
LT
4708 return -ESRCH;
4709 }
4710
23f5d142 4711 /* Prevent p going away */
1da177e4 4712 get_task_struct(p);
23f5d142 4713 rcu_read_unlock();
1da177e4 4714
14a40ffc
TH
4715 if (p->flags & PF_NO_SETAFFINITY) {
4716 retval = -EINVAL;
4717 goto out_put_task;
4718 }
5a16f3d3
RR
4719 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4720 retval = -ENOMEM;
4721 goto out_put_task;
4722 }
4723 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4724 retval = -ENOMEM;
4725 goto out_free_cpus_allowed;
4726 }
1da177e4 4727 retval = -EPERM;
4c44aaaf
EB
4728 if (!check_same_owner(p)) {
4729 rcu_read_lock();
4730 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4731 rcu_read_unlock();
16303ab2 4732 goto out_free_new_mask;
4c44aaaf
EB
4733 }
4734 rcu_read_unlock();
4735 }
1da177e4 4736
b0ae1981 4737 retval = security_task_setscheduler(p);
e7834f8f 4738 if (retval)
16303ab2 4739 goto out_free_new_mask;
e7834f8f 4740
e4099a5e
PZ
4741
4742 cpuset_cpus_allowed(p, cpus_allowed);
4743 cpumask_and(new_mask, in_mask, cpus_allowed);
4744
332ac17e
DF
4745 /*
4746 * Since bandwidth control happens on root_domain basis,
4747 * if admission test is enabled, we only admit -deadline
4748 * tasks allowed to run on all the CPUs in the task's
4749 * root_domain.
4750 */
4751#ifdef CONFIG_SMP
f1e3a093
KT
4752 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4753 rcu_read_lock();
4754 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 4755 retval = -EBUSY;
f1e3a093 4756 rcu_read_unlock();
16303ab2 4757 goto out_free_new_mask;
332ac17e 4758 }
f1e3a093 4759 rcu_read_unlock();
332ac17e
DF
4760 }
4761#endif
49246274 4762again:
25834c73 4763 retval = __set_cpus_allowed_ptr(p, new_mask, true);
1da177e4 4764
8707d8b8 4765 if (!retval) {
5a16f3d3
RR
4766 cpuset_cpus_allowed(p, cpus_allowed);
4767 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4768 /*
4769 * We must have raced with a concurrent cpuset
4770 * update. Just reset the cpus_allowed to the
4771 * cpuset's cpus_allowed
4772 */
5a16f3d3 4773 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4774 goto again;
4775 }
4776 }
16303ab2 4777out_free_new_mask:
5a16f3d3
RR
4778 free_cpumask_var(new_mask);
4779out_free_cpus_allowed:
4780 free_cpumask_var(cpus_allowed);
4781out_put_task:
1da177e4 4782 put_task_struct(p);
1da177e4
LT
4783 return retval;
4784}
4785
4786static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4787 struct cpumask *new_mask)
1da177e4 4788{
96f874e2
RR
4789 if (len < cpumask_size())
4790 cpumask_clear(new_mask);
4791 else if (len > cpumask_size())
4792 len = cpumask_size();
4793
1da177e4
LT
4794 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4795}
4796
4797/**
4798 * sys_sched_setaffinity - set the cpu affinity of a process
4799 * @pid: pid of the process
4800 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4801 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
4802 *
4803 * Return: 0 on success. An error code otherwise.
1da177e4 4804 */
5add95d4
HC
4805SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4806 unsigned long __user *, user_mask_ptr)
1da177e4 4807{
5a16f3d3 4808 cpumask_var_t new_mask;
1da177e4
LT
4809 int retval;
4810
5a16f3d3
RR
4811 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4812 return -ENOMEM;
1da177e4 4813
5a16f3d3
RR
4814 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4815 if (retval == 0)
4816 retval = sched_setaffinity(pid, new_mask);
4817 free_cpumask_var(new_mask);
4818 return retval;
1da177e4
LT
4819}
4820
96f874e2 4821long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4822{
36c8b586 4823 struct task_struct *p;
31605683 4824 unsigned long flags;
1da177e4 4825 int retval;
1da177e4 4826
23f5d142 4827 rcu_read_lock();
1da177e4
LT
4828
4829 retval = -ESRCH;
4830 p = find_process_by_pid(pid);
4831 if (!p)
4832 goto out_unlock;
4833
e7834f8f
DQ
4834 retval = security_task_getscheduler(p);
4835 if (retval)
4836 goto out_unlock;
4837
013fdb80 4838 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4839 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4840 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4841
4842out_unlock:
23f5d142 4843 rcu_read_unlock();
1da177e4 4844
9531b62f 4845 return retval;
1da177e4
LT
4846}
4847
4848/**
4849 * sys_sched_getaffinity - get the cpu affinity of a process
4850 * @pid: pid of the process
4851 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4852 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186 4853 *
599b4840
ZW
4854 * Return: size of CPU mask copied to user_mask_ptr on success. An
4855 * error code otherwise.
1da177e4 4856 */
5add95d4
HC
4857SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4858 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4859{
4860 int ret;
f17c8607 4861 cpumask_var_t mask;
1da177e4 4862
84fba5ec 4863 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4864 return -EINVAL;
4865 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4866 return -EINVAL;
4867
f17c8607
RR
4868 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4869 return -ENOMEM;
1da177e4 4870
f17c8607
RR
4871 ret = sched_getaffinity(pid, mask);
4872 if (ret == 0) {
8bc037fb 4873 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4874
4875 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4876 ret = -EFAULT;
4877 else
cd3d8031 4878 ret = retlen;
f17c8607
RR
4879 }
4880 free_cpumask_var(mask);
1da177e4 4881
f17c8607 4882 return ret;
1da177e4
LT
4883}
4884
4885/**
4886 * sys_sched_yield - yield the current processor to other threads.
4887 *
dd41f596
IM
4888 * This function yields the current CPU to other tasks. If there are no
4889 * other threads running on this CPU then this function will return.
e69f6186
YB
4890 *
4891 * Return: 0.
1da177e4 4892 */
5add95d4 4893SYSCALL_DEFINE0(sched_yield)
1da177e4 4894{
70b97a7f 4895 struct rq *rq = this_rq_lock();
1da177e4 4896
ae92882e 4897 schedstat_inc(rq->yld_count);
4530d7ab 4898 current->sched_class->yield_task(rq);
1da177e4
LT
4899
4900 /*
4901 * Since we are going to call schedule() anyway, there's
4902 * no need to preempt or enable interrupts:
4903 */
4904 __release(rq->lock);
8a25d5de 4905 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4906 do_raw_spin_unlock(&rq->lock);
ba74c144 4907 sched_preempt_enable_no_resched();
1da177e4
LT
4908
4909 schedule();
4910
4911 return 0;
4912}
4913
35a773a0 4914#ifndef CONFIG_PREEMPT
02b67cc3 4915int __sched _cond_resched(void)
1da177e4 4916{
fe32d3cd 4917 if (should_resched(0)) {
a18b5d01 4918 preempt_schedule_common();
1da177e4
LT
4919 return 1;
4920 }
4921 return 0;
4922}
02b67cc3 4923EXPORT_SYMBOL(_cond_resched);
35a773a0 4924#endif
1da177e4
LT
4925
4926/*
613afbf8 4927 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4928 * call schedule, and on return reacquire the lock.
4929 *
41a2d6cf 4930 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4931 * operations here to prevent schedule() from being called twice (once via
4932 * spin_unlock(), once by hand).
4933 */
613afbf8 4934int __cond_resched_lock(spinlock_t *lock)
1da177e4 4935{
fe32d3cd 4936 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6df3cecb
JK
4937 int ret = 0;
4938
f607c668
PZ
4939 lockdep_assert_held(lock);
4940
4a81e832 4941 if (spin_needbreak(lock) || resched) {
1da177e4 4942 spin_unlock(lock);
d86ee480 4943 if (resched)
a18b5d01 4944 preempt_schedule_common();
95c354fe
NP
4945 else
4946 cpu_relax();
6df3cecb 4947 ret = 1;
1da177e4 4948 spin_lock(lock);
1da177e4 4949 }
6df3cecb 4950 return ret;
1da177e4 4951}
613afbf8 4952EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4953
613afbf8 4954int __sched __cond_resched_softirq(void)
1da177e4
LT
4955{
4956 BUG_ON(!in_softirq());
4957
fe32d3cd 4958 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
98d82567 4959 local_bh_enable();
a18b5d01 4960 preempt_schedule_common();
1da177e4
LT
4961 local_bh_disable();
4962 return 1;
4963 }
4964 return 0;
4965}
613afbf8 4966EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4967
1da177e4
LT
4968/**
4969 * yield - yield the current processor to other threads.
4970 *
8e3fabfd
PZ
4971 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4972 *
4973 * The scheduler is at all times free to pick the calling task as the most
4974 * eligible task to run, if removing the yield() call from your code breaks
4975 * it, its already broken.
4976 *
4977 * Typical broken usage is:
4978 *
4979 * while (!event)
4980 * yield();
4981 *
4982 * where one assumes that yield() will let 'the other' process run that will
4983 * make event true. If the current task is a SCHED_FIFO task that will never
4984 * happen. Never use yield() as a progress guarantee!!
4985 *
4986 * If you want to use yield() to wait for something, use wait_event().
4987 * If you want to use yield() to be 'nice' for others, use cond_resched().
4988 * If you still want to use yield(), do not!
1da177e4
LT
4989 */
4990void __sched yield(void)
4991{
4992 set_current_state(TASK_RUNNING);
4993 sys_sched_yield();
4994}
1da177e4
LT
4995EXPORT_SYMBOL(yield);
4996
d95f4122
MG
4997/**
4998 * yield_to - yield the current processor to another thread in
4999 * your thread group, or accelerate that thread toward the
5000 * processor it's on.
16addf95
RD
5001 * @p: target task
5002 * @preempt: whether task preemption is allowed or not
d95f4122
MG
5003 *
5004 * It's the caller's job to ensure that the target task struct
5005 * can't go away on us before we can do any checks.
5006 *
e69f6186 5007 * Return:
7b270f60
PZ
5008 * true (>0) if we indeed boosted the target task.
5009 * false (0) if we failed to boost the target.
5010 * -ESRCH if there's no task to yield to.
d95f4122 5011 */
fa93384f 5012int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
5013{
5014 struct task_struct *curr = current;
5015 struct rq *rq, *p_rq;
5016 unsigned long flags;
c3c18640 5017 int yielded = 0;
d95f4122
MG
5018
5019 local_irq_save(flags);
5020 rq = this_rq();
5021
5022again:
5023 p_rq = task_rq(p);
7b270f60
PZ
5024 /*
5025 * If we're the only runnable task on the rq and target rq also
5026 * has only one task, there's absolutely no point in yielding.
5027 */
5028 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5029 yielded = -ESRCH;
5030 goto out_irq;
5031 }
5032
d95f4122 5033 double_rq_lock(rq, p_rq);
39e24d8f 5034 if (task_rq(p) != p_rq) {
d95f4122
MG
5035 double_rq_unlock(rq, p_rq);
5036 goto again;
5037 }
5038
5039 if (!curr->sched_class->yield_to_task)
7b270f60 5040 goto out_unlock;
d95f4122
MG
5041
5042 if (curr->sched_class != p->sched_class)
7b270f60 5043 goto out_unlock;
d95f4122
MG
5044
5045 if (task_running(p_rq, p) || p->state)
7b270f60 5046 goto out_unlock;
d95f4122
MG
5047
5048 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 5049 if (yielded) {
ae92882e 5050 schedstat_inc(rq->yld_count);
6d1cafd8
VP
5051 /*
5052 * Make p's CPU reschedule; pick_next_entity takes care of
5053 * fairness.
5054 */
5055 if (preempt && rq != p_rq)
8875125e 5056 resched_curr(p_rq);
6d1cafd8 5057 }
d95f4122 5058
7b270f60 5059out_unlock:
d95f4122 5060 double_rq_unlock(rq, p_rq);
7b270f60 5061out_irq:
d95f4122
MG
5062 local_irq_restore(flags);
5063
7b270f60 5064 if (yielded > 0)
d95f4122
MG
5065 schedule();
5066
5067 return yielded;
5068}
5069EXPORT_SYMBOL_GPL(yield_to);
5070
1da177e4 5071/*
41a2d6cf 5072 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5073 * that process accounting knows that this is a task in IO wait state.
1da177e4 5074 */
1da177e4
LT
5075long __sched io_schedule_timeout(long timeout)
5076{
9cff8ade
N
5077 int old_iowait = current->in_iowait;
5078 struct rq *rq;
1da177e4
LT
5079 long ret;
5080
9cff8ade 5081 current->in_iowait = 1;
10d784ea 5082 blk_schedule_flush_plug(current);
9cff8ade 5083
0ff92245 5084 delayacct_blkio_start();
9cff8ade 5085 rq = raw_rq();
1da177e4
LT
5086 atomic_inc(&rq->nr_iowait);
5087 ret = schedule_timeout(timeout);
9cff8ade 5088 current->in_iowait = old_iowait;
1da177e4 5089 atomic_dec(&rq->nr_iowait);
0ff92245 5090 delayacct_blkio_end();
9cff8ade 5091
1da177e4
LT
5092 return ret;
5093}
9cff8ade 5094EXPORT_SYMBOL(io_schedule_timeout);
1da177e4
LT
5095
5096/**
5097 * sys_sched_get_priority_max - return maximum RT priority.
5098 * @policy: scheduling class.
5099 *
e69f6186
YB
5100 * Return: On success, this syscall returns the maximum
5101 * rt_priority that can be used by a given scheduling class.
5102 * On failure, a negative error code is returned.
1da177e4 5103 */
5add95d4 5104SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5105{
5106 int ret = -EINVAL;
5107
5108 switch (policy) {
5109 case SCHED_FIFO:
5110 case SCHED_RR:
5111 ret = MAX_USER_RT_PRIO-1;
5112 break;
aab03e05 5113 case SCHED_DEADLINE:
1da177e4 5114 case SCHED_NORMAL:
b0a9499c 5115 case SCHED_BATCH:
dd41f596 5116 case SCHED_IDLE:
1da177e4
LT
5117 ret = 0;
5118 break;
5119 }
5120 return ret;
5121}
5122
5123/**
5124 * sys_sched_get_priority_min - return minimum RT priority.
5125 * @policy: scheduling class.
5126 *
e69f6186
YB
5127 * Return: On success, this syscall returns the minimum
5128 * rt_priority that can be used by a given scheduling class.
5129 * On failure, a negative error code is returned.
1da177e4 5130 */
5add95d4 5131SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5132{
5133 int ret = -EINVAL;
5134
5135 switch (policy) {
5136 case SCHED_FIFO:
5137 case SCHED_RR:
5138 ret = 1;
5139 break;
aab03e05 5140 case SCHED_DEADLINE:
1da177e4 5141 case SCHED_NORMAL:
b0a9499c 5142 case SCHED_BATCH:
dd41f596 5143 case SCHED_IDLE:
1da177e4
LT
5144 ret = 0;
5145 }
5146 return ret;
5147}
5148
5149/**
5150 * sys_sched_rr_get_interval - return the default timeslice of a process.
5151 * @pid: pid of the process.
5152 * @interval: userspace pointer to the timeslice value.
5153 *
5154 * this syscall writes the default timeslice value of a given process
5155 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
5156 *
5157 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5158 * an error code.
1da177e4 5159 */
17da2bd9 5160SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5161 struct timespec __user *, interval)
1da177e4 5162{
36c8b586 5163 struct task_struct *p;
a4ec24b4 5164 unsigned int time_slice;
eb580751
PZ
5165 struct rq_flags rf;
5166 struct timespec t;
dba091b9 5167 struct rq *rq;
3a5c359a 5168 int retval;
1da177e4
LT
5169
5170 if (pid < 0)
3a5c359a 5171 return -EINVAL;
1da177e4
LT
5172
5173 retval = -ESRCH;
1a551ae7 5174 rcu_read_lock();
1da177e4
LT
5175 p = find_process_by_pid(pid);
5176 if (!p)
5177 goto out_unlock;
5178
5179 retval = security_task_getscheduler(p);
5180 if (retval)
5181 goto out_unlock;
5182
eb580751 5183 rq = task_rq_lock(p, &rf);
a57beec5
PZ
5184 time_slice = 0;
5185 if (p->sched_class->get_rr_interval)
5186 time_slice = p->sched_class->get_rr_interval(rq, p);
eb580751 5187 task_rq_unlock(rq, p, &rf);
a4ec24b4 5188
1a551ae7 5189 rcu_read_unlock();
a4ec24b4 5190 jiffies_to_timespec(time_slice, &t);
1da177e4 5191 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5192 return retval;
3a5c359a 5193
1da177e4 5194out_unlock:
1a551ae7 5195 rcu_read_unlock();
1da177e4
LT
5196 return retval;
5197}
5198
7c731e0a 5199static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5200
82a1fcb9 5201void sched_show_task(struct task_struct *p)
1da177e4 5202{
1da177e4 5203 unsigned long free = 0;
4e79752c 5204 int ppid;
1f8a7633 5205 unsigned long state = p->state;
1da177e4 5206
38200502
TH
5207 if (!try_get_task_stack(p))
5208 return;
1f8a7633
TH
5209 if (state)
5210 state = __ffs(state) + 1;
28d0686c 5211 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 5212 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
1da177e4 5213 if (state == TASK_RUNNING)
3df0fc5b 5214 printk(KERN_CONT " running task ");
1da177e4 5215#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5216 free = stack_not_used(p);
1da177e4 5217#endif
a90e984c 5218 ppid = 0;
4e79752c 5219 rcu_read_lock();
a90e984c
ON
5220 if (pid_alive(p))
5221 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 5222 rcu_read_unlock();
3df0fc5b 5223 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 5224 task_pid_nr(p), ppid,
aa47b7e0 5225 (unsigned long)task_thread_info(p)->flags);
1da177e4 5226
3d1cb205 5227 print_worker_info(KERN_INFO, p);
5fb5e6de 5228 show_stack(p, NULL);
38200502 5229 put_task_stack(p);
1da177e4
LT
5230}
5231
e59e2ae2 5232void show_state_filter(unsigned long state_filter)
1da177e4 5233{
36c8b586 5234 struct task_struct *g, *p;
1da177e4 5235
4bd77321 5236#if BITS_PER_LONG == 32
3df0fc5b
PZ
5237 printk(KERN_INFO
5238 " task PC stack pid father\n");
1da177e4 5239#else
3df0fc5b
PZ
5240 printk(KERN_INFO
5241 " task PC stack pid father\n");
1da177e4 5242#endif
510f5acc 5243 rcu_read_lock();
5d07f420 5244 for_each_process_thread(g, p) {
1da177e4
LT
5245 /*
5246 * reset the NMI-timeout, listing all files on a slow
25985edc 5247 * console might take a lot of time:
57675cb9
AR
5248 * Also, reset softlockup watchdogs on all CPUs, because
5249 * another CPU might be blocked waiting for us to process
5250 * an IPI.
1da177e4
LT
5251 */
5252 touch_nmi_watchdog();
57675cb9 5253 touch_all_softlockup_watchdogs();
39bc89fd 5254 if (!state_filter || (p->state & state_filter))
82a1fcb9 5255 sched_show_task(p);
5d07f420 5256 }
1da177e4 5257
dd41f596 5258#ifdef CONFIG_SCHED_DEBUG
fb90a6e9
RV
5259 if (!state_filter)
5260 sysrq_sched_debug_show();
dd41f596 5261#endif
510f5acc 5262 rcu_read_unlock();
e59e2ae2
IM
5263 /*
5264 * Only show locks if all tasks are dumped:
5265 */
93335a21 5266 if (!state_filter)
e59e2ae2 5267 debug_show_all_locks();
1da177e4
LT
5268}
5269
0db0628d 5270void init_idle_bootup_task(struct task_struct *idle)
1df21055 5271{
dd41f596 5272 idle->sched_class = &idle_sched_class;
1df21055
IM
5273}
5274
f340c0d1
IM
5275/**
5276 * init_idle - set up an idle thread for a given CPU
5277 * @idle: task in question
5278 * @cpu: cpu the idle task belongs to
5279 *
5280 * NOTE: this function does not set the idle thread's NEED_RESCHED
5281 * flag, to make booting more robust.
5282 */
0db0628d 5283void init_idle(struct task_struct *idle, int cpu)
1da177e4 5284{
70b97a7f 5285 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5286 unsigned long flags;
5287
25834c73
PZ
5288 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5289 raw_spin_lock(&rq->lock);
5cbd54ef 5290
5e1576ed 5291 __sched_fork(0, idle);
06b83b5f 5292 idle->state = TASK_RUNNING;
dd41f596 5293 idle->se.exec_start = sched_clock();
c1de45ca 5294 idle->flags |= PF_IDLE;
dd41f596 5295
e1b77c92
MR
5296 kasan_unpoison_task_stack(idle);
5297
de9b8f5d
PZ
5298#ifdef CONFIG_SMP
5299 /*
5300 * Its possible that init_idle() gets called multiple times on a task,
5301 * in that case do_set_cpus_allowed() will not do the right thing.
5302 *
5303 * And since this is boot we can forgo the serialization.
5304 */
5305 set_cpus_allowed_common(idle, cpumask_of(cpu));
5306#endif
6506cf6c
PZ
5307 /*
5308 * We're having a chicken and egg problem, even though we are
5309 * holding rq->lock, the cpu isn't yet set to this cpu so the
5310 * lockdep check in task_group() will fail.
5311 *
5312 * Similar case to sched_fork(). / Alternatively we could
5313 * use task_rq_lock() here and obtain the other rq->lock.
5314 *
5315 * Silence PROVE_RCU
5316 */
5317 rcu_read_lock();
dd41f596 5318 __set_task_cpu(idle, cpu);
6506cf6c 5319 rcu_read_unlock();
1da177e4 5320
1da177e4 5321 rq->curr = rq->idle = idle;
da0c1e65 5322 idle->on_rq = TASK_ON_RQ_QUEUED;
de9b8f5d 5323#ifdef CONFIG_SMP
3ca7a440 5324 idle->on_cpu = 1;
4866cde0 5325#endif
25834c73
PZ
5326 raw_spin_unlock(&rq->lock);
5327 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
1da177e4
LT
5328
5329 /* Set the preempt count _outside_ the spinlocks! */
01028747 5330 init_idle_preempt_count(idle, cpu);
55cd5340 5331
dd41f596
IM
5332 /*
5333 * The idle tasks have their own, simple scheduling class:
5334 */
5335 idle->sched_class = &idle_sched_class;
868baf07 5336 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 5337 vtime_init_idle(idle, cpu);
de9b8f5d 5338#ifdef CONFIG_SMP
f1c6f1a7
CE
5339 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5340#endif
19978ca6
IM
5341}
5342
f82f8042
JL
5343int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5344 const struct cpumask *trial)
5345{
5346 int ret = 1, trial_cpus;
5347 struct dl_bw *cur_dl_b;
5348 unsigned long flags;
5349
bb2bc55a
MG
5350 if (!cpumask_weight(cur))
5351 return ret;
5352
75e23e49 5353 rcu_read_lock_sched();
f82f8042
JL
5354 cur_dl_b = dl_bw_of(cpumask_any(cur));
5355 trial_cpus = cpumask_weight(trial);
5356
5357 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5358 if (cur_dl_b->bw != -1 &&
5359 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5360 ret = 0;
5361 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
75e23e49 5362 rcu_read_unlock_sched();
f82f8042
JL
5363
5364 return ret;
5365}
5366
7f51412a
JL
5367int task_can_attach(struct task_struct *p,
5368 const struct cpumask *cs_cpus_allowed)
5369{
5370 int ret = 0;
5371
5372 /*
5373 * Kthreads which disallow setaffinity shouldn't be moved
5374 * to a new cpuset; we don't want to change their cpu
5375 * affinity and isolating such threads by their set of
5376 * allowed nodes is unnecessary. Thus, cpusets are not
5377 * applicable for such threads. This prevents checking for
5378 * success of set_cpus_allowed_ptr() on all attached tasks
5379 * before cpus_allowed may be changed.
5380 */
5381 if (p->flags & PF_NO_SETAFFINITY) {
5382 ret = -EINVAL;
5383 goto out;
5384 }
5385
5386#ifdef CONFIG_SMP
5387 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5388 cs_cpus_allowed)) {
5389 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5390 cs_cpus_allowed);
75e23e49 5391 struct dl_bw *dl_b;
7f51412a
JL
5392 bool overflow;
5393 int cpus;
5394 unsigned long flags;
5395
75e23e49
JL
5396 rcu_read_lock_sched();
5397 dl_b = dl_bw_of(dest_cpu);
7f51412a
JL
5398 raw_spin_lock_irqsave(&dl_b->lock, flags);
5399 cpus = dl_bw_cpus(dest_cpu);
5400 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5401 if (overflow)
5402 ret = -EBUSY;
5403 else {
5404 /*
5405 * We reserve space for this task in the destination
5406 * root_domain, as we can't fail after this point.
5407 * We will free resources in the source root_domain
5408 * later on (see set_cpus_allowed_dl()).
5409 */
5410 __dl_add(dl_b, p->dl.dl_bw);
5411 }
5412 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
75e23e49 5413 rcu_read_unlock_sched();
7f51412a
JL
5414
5415 }
5416#endif
5417out:
5418 return ret;
5419}
5420
1da177e4 5421#ifdef CONFIG_SMP
1da177e4 5422
e26fbffd
TG
5423static bool sched_smp_initialized __read_mostly;
5424
e6628d5b
MG
5425#ifdef CONFIG_NUMA_BALANCING
5426/* Migrate current task p to target_cpu */
5427int migrate_task_to(struct task_struct *p, int target_cpu)
5428{
5429 struct migration_arg arg = { p, target_cpu };
5430 int curr_cpu = task_cpu(p);
5431
5432 if (curr_cpu == target_cpu)
5433 return 0;
5434
5435 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5436 return -EINVAL;
5437
5438 /* TODO: This is not properly updating schedstats */
5439
286549dc 5440 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
5441 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5442}
0ec8aa00
PZ
5443
5444/*
5445 * Requeue a task on a given node and accurately track the number of NUMA
5446 * tasks on the runqueues
5447 */
5448void sched_setnuma(struct task_struct *p, int nid)
5449{
da0c1e65 5450 bool queued, running;
eb580751
PZ
5451 struct rq_flags rf;
5452 struct rq *rq;
0ec8aa00 5453
eb580751 5454 rq = task_rq_lock(p, &rf);
da0c1e65 5455 queued = task_on_rq_queued(p);
0ec8aa00
PZ
5456 running = task_current(rq, p);
5457
da0c1e65 5458 if (queued)
1de64443 5459 dequeue_task(rq, p, DEQUEUE_SAVE);
0ec8aa00 5460 if (running)
f3cd1c4e 5461 put_prev_task(rq, p);
0ec8aa00
PZ
5462
5463 p->numa_preferred_nid = nid;
0ec8aa00 5464
da0c1e65 5465 if (queued)
1de64443 5466 enqueue_task(rq, p, ENQUEUE_RESTORE);
a399d233 5467 if (running)
b2bf6c31 5468 set_curr_task(rq, p);
eb580751 5469 task_rq_unlock(rq, p, &rf);
0ec8aa00 5470}
5cc389bc 5471#endif /* CONFIG_NUMA_BALANCING */
f7b4cddc 5472
1da177e4 5473#ifdef CONFIG_HOTPLUG_CPU
054b9108 5474/*
48c5ccae
PZ
5475 * Ensures that the idle task is using init_mm right before its cpu goes
5476 * offline.
054b9108 5477 */
48c5ccae 5478void idle_task_exit(void)
1da177e4 5479{
48c5ccae 5480 struct mm_struct *mm = current->active_mm;
e76bd8d9 5481
48c5ccae 5482 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 5483
a53efe5f 5484 if (mm != &init_mm) {
f98db601 5485 switch_mm_irqs_off(mm, &init_mm, current);
a53efe5f
MS
5486 finish_arch_post_lock_switch();
5487 }
48c5ccae 5488 mmdrop(mm);
1da177e4
LT
5489}
5490
5491/*
5d180232
PZ
5492 * Since this CPU is going 'away' for a while, fold any nr_active delta
5493 * we might have. Assumes we're called after migrate_tasks() so that the
d60585c5
TG
5494 * nr_active count is stable. We need to take the teardown thread which
5495 * is calling this into account, so we hand in adjust = 1 to the load
5496 * calculation.
5d180232
PZ
5497 *
5498 * Also see the comment "Global load-average calculations".
1da177e4 5499 */
5d180232 5500static void calc_load_migrate(struct rq *rq)
1da177e4 5501{
d60585c5 5502 long delta = calc_load_fold_active(rq, 1);
5d180232
PZ
5503 if (delta)
5504 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
5505}
5506
3f1d2a31
PZ
5507static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5508{
5509}
5510
5511static const struct sched_class fake_sched_class = {
5512 .put_prev_task = put_prev_task_fake,
5513};
5514
5515static struct task_struct fake_task = {
5516 /*
5517 * Avoid pull_{rt,dl}_task()
5518 */
5519 .prio = MAX_PRIO + 1,
5520 .sched_class = &fake_sched_class,
5521};
5522
48f24c4d 5523/*
48c5ccae
PZ
5524 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5525 * try_to_wake_up()->select_task_rq().
5526 *
5527 * Called with rq->lock held even though we'er in stop_machine() and
5528 * there's no concurrency possible, we hold the required locks anyway
5529 * because of lock validation efforts.
1da177e4 5530 */
5e16bbc2 5531static void migrate_tasks(struct rq *dead_rq)
1da177e4 5532{
5e16bbc2 5533 struct rq *rq = dead_rq;
48c5ccae 5534 struct task_struct *next, *stop = rq->stop;
d8ac8971 5535 struct rq_flags rf;
48c5ccae 5536 int dest_cpu;
1da177e4
LT
5537
5538 /*
48c5ccae
PZ
5539 * Fudge the rq selection such that the below task selection loop
5540 * doesn't get stuck on the currently eligible stop task.
5541 *
5542 * We're currently inside stop_machine() and the rq is either stuck
5543 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5544 * either way we should never end up calling schedule() until we're
5545 * done here.
1da177e4 5546 */
48c5ccae 5547 rq->stop = NULL;
48f24c4d 5548
77bd3970
FW
5549 /*
5550 * put_prev_task() and pick_next_task() sched
5551 * class method both need to have an up-to-date
5552 * value of rq->clock[_task]
5553 */
5554 update_rq_clock(rq);
5555
5e16bbc2 5556 for (;;) {
48c5ccae
PZ
5557 /*
5558 * There's this thread running, bail when that's the only
5559 * remaining thread.
5560 */
5561 if (rq->nr_running == 1)
dd41f596 5562 break;
48c5ccae 5563
cbce1a68 5564 /*
5473e0cc 5565 * pick_next_task assumes pinned rq->lock.
cbce1a68 5566 */
d8ac8971
MF
5567 rq_pin_lock(rq, &rf);
5568 next = pick_next_task(rq, &fake_task, &rf);
48c5ccae 5569 BUG_ON(!next);
79c53799 5570 next->sched_class->put_prev_task(rq, next);
e692ab53 5571
5473e0cc
WL
5572 /*
5573 * Rules for changing task_struct::cpus_allowed are holding
5574 * both pi_lock and rq->lock, such that holding either
5575 * stabilizes the mask.
5576 *
5577 * Drop rq->lock is not quite as disastrous as it usually is
5578 * because !cpu_active at this point, which means load-balance
5579 * will not interfere. Also, stop-machine.
5580 */
d8ac8971 5581 rq_unpin_lock(rq, &rf);
5473e0cc
WL
5582 raw_spin_unlock(&rq->lock);
5583 raw_spin_lock(&next->pi_lock);
5584 raw_spin_lock(&rq->lock);
5585
5586 /*
5587 * Since we're inside stop-machine, _nothing_ should have
5588 * changed the task, WARN if weird stuff happened, because in
5589 * that case the above rq->lock drop is a fail too.
5590 */
5591 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5592 raw_spin_unlock(&next->pi_lock);
5593 continue;
5594 }
5595
48c5ccae 5596 /* Find suitable destination for @next, with force if needed. */
5e16bbc2 5597 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
48c5ccae 5598
5e16bbc2
PZ
5599 rq = __migrate_task(rq, next, dest_cpu);
5600 if (rq != dead_rq) {
5601 raw_spin_unlock(&rq->lock);
5602 rq = dead_rq;
5603 raw_spin_lock(&rq->lock);
5604 }
5473e0cc 5605 raw_spin_unlock(&next->pi_lock);
1da177e4 5606 }
dce48a84 5607
48c5ccae 5608 rq->stop = stop;
dce48a84 5609}
1da177e4
LT
5610#endif /* CONFIG_HOTPLUG_CPU */
5611
1f11eb6a
GH
5612static void set_rq_online(struct rq *rq)
5613{
5614 if (!rq->online) {
5615 const struct sched_class *class;
5616
c6c4927b 5617 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5618 rq->online = 1;
5619
5620 for_each_class(class) {
5621 if (class->rq_online)
5622 class->rq_online(rq);
5623 }
5624 }
5625}
5626
5627static void set_rq_offline(struct rq *rq)
5628{
5629 if (rq->online) {
5630 const struct sched_class *class;
5631
5632 for_each_class(class) {
5633 if (class->rq_offline)
5634 class->rq_offline(rq);
5635 }
5636
c6c4927b 5637 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5638 rq->online = 0;
5639 }
5640}
5641
9cf7243d 5642static void set_cpu_rq_start_time(unsigned int cpu)
1da177e4 5643{
969c7921 5644 struct rq *rq = cpu_rq(cpu);
1da177e4 5645
a803f026
CM
5646 rq->age_stamp = sched_clock_cpu(cpu);
5647}
5648
4cb98839
PZ
5649static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5650
3e9830dc 5651#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5652
d039ac60 5653static __read_mostly int sched_debug_enabled;
f6630114 5654
d039ac60 5655static int __init sched_debug_setup(char *str)
f6630114 5656{
d039ac60 5657 sched_debug_enabled = 1;
f6630114
MT
5658
5659 return 0;
5660}
d039ac60
PZ
5661early_param("sched_debug", sched_debug_setup);
5662
5663static inline bool sched_debug(void)
5664{
5665 return sched_debug_enabled;
5666}
f6630114 5667
7c16ec58 5668static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5669 struct cpumask *groupmask)
1da177e4 5670{
4dcf6aff 5671 struct sched_group *group = sd->groups;
1da177e4 5672
96f874e2 5673 cpumask_clear(groupmask);
4dcf6aff
IM
5674
5675 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5676
5677 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5678 printk("does not load-balance\n");
4dcf6aff 5679 if (sd->parent)
3df0fc5b
PZ
5680 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5681 " has parent");
4dcf6aff 5682 return -1;
41c7ce9a
NP
5683 }
5684
333470ee
TH
5685 printk(KERN_CONT "span %*pbl level %s\n",
5686 cpumask_pr_args(sched_domain_span(sd)), sd->name);
4dcf6aff 5687
758b2cdc 5688 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5689 printk(KERN_ERR "ERROR: domain->span does not contain "
5690 "CPU%d\n", cpu);
4dcf6aff 5691 }
758b2cdc 5692 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5693 printk(KERN_ERR "ERROR: domain->groups does not contain"
5694 " CPU%d\n", cpu);
4dcf6aff 5695 }
1da177e4 5696
4dcf6aff 5697 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5698 do {
4dcf6aff 5699 if (!group) {
3df0fc5b
PZ
5700 printk("\n");
5701 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5702 break;
5703 }
5704
758b2cdc 5705 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5706 printk(KERN_CONT "\n");
5707 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5708 break;
5709 }
1da177e4 5710
cb83b629
PZ
5711 if (!(sd->flags & SD_OVERLAP) &&
5712 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5713 printk(KERN_CONT "\n");
5714 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5715 break;
5716 }
1da177e4 5717
758b2cdc 5718 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5719
333470ee
TH
5720 printk(KERN_CONT " %*pbl",
5721 cpumask_pr_args(sched_group_cpus(group)));
ca8ce3d0 5722 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
bf475ce0 5723 printk(KERN_CONT " (cpu_capacity = %lu)",
63b2ca30 5724 group->sgc->capacity);
381512cf 5725 }
1da177e4 5726
4dcf6aff
IM
5727 group = group->next;
5728 } while (group != sd->groups);
3df0fc5b 5729 printk(KERN_CONT "\n");
1da177e4 5730
758b2cdc 5731 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5732 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5733
758b2cdc
RR
5734 if (sd->parent &&
5735 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5736 printk(KERN_ERR "ERROR: parent span is not a superset "
5737 "of domain->span\n");
4dcf6aff
IM
5738 return 0;
5739}
1da177e4 5740
4dcf6aff
IM
5741static void sched_domain_debug(struct sched_domain *sd, int cpu)
5742{
5743 int level = 0;
1da177e4 5744
d039ac60 5745 if (!sched_debug_enabled)
f6630114
MT
5746 return;
5747
4dcf6aff
IM
5748 if (!sd) {
5749 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5750 return;
5751 }
1da177e4 5752
4dcf6aff
IM
5753 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5754
5755 for (;;) {
4cb98839 5756 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5757 break;
1da177e4
LT
5758 level++;
5759 sd = sd->parent;
33859f7f 5760 if (!sd)
4dcf6aff
IM
5761 break;
5762 }
1da177e4 5763}
6d6bc0ad 5764#else /* !CONFIG_SCHED_DEBUG */
a18a579e
PZ
5765
5766# define sched_debug_enabled 0
48f24c4d 5767# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5768static inline bool sched_debug(void)
5769{
5770 return false;
5771}
6d6bc0ad 5772#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5773
1a20ff27 5774static int sd_degenerate(struct sched_domain *sd)
245af2c7 5775{
758b2cdc 5776 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5777 return 1;
5778
5779 /* Following flags need at least 2 groups */
5780 if (sd->flags & (SD_LOAD_BALANCE |
5781 SD_BALANCE_NEWIDLE |
5782 SD_BALANCE_FORK |
89c4710e 5783 SD_BALANCE_EXEC |
5d4dfddd 5784 SD_SHARE_CPUCAPACITY |
1f6e6c7c 5785 SD_ASYM_CPUCAPACITY |
d77b3ed5
VG
5786 SD_SHARE_PKG_RESOURCES |
5787 SD_SHARE_POWERDOMAIN)) {
245af2c7
SS
5788 if (sd->groups != sd->groups->next)
5789 return 0;
5790 }
5791
5792 /* Following flags don't use groups */
c88d5910 5793 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5794 return 0;
5795
5796 return 1;
5797}
5798
48f24c4d
IM
5799static int
5800sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5801{
5802 unsigned long cflags = sd->flags, pflags = parent->flags;
5803
5804 if (sd_degenerate(parent))
5805 return 1;
5806
758b2cdc 5807 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5808 return 0;
5809
245af2c7
SS
5810 /* Flags needing groups don't count if only 1 group in parent */
5811 if (parent->groups == parent->groups->next) {
5812 pflags &= ~(SD_LOAD_BALANCE |
5813 SD_BALANCE_NEWIDLE |
5814 SD_BALANCE_FORK |
89c4710e 5815 SD_BALANCE_EXEC |
1f6e6c7c 5816 SD_ASYM_CPUCAPACITY |
5d4dfddd 5817 SD_SHARE_CPUCAPACITY |
10866e62 5818 SD_SHARE_PKG_RESOURCES |
d77b3ed5
VG
5819 SD_PREFER_SIBLING |
5820 SD_SHARE_POWERDOMAIN);
5436499e
KC
5821 if (nr_node_ids == 1)
5822 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5823 }
5824 if (~cflags & pflags)
5825 return 0;
5826
5827 return 1;
5828}
5829
dce840a0 5830static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5831{
dce840a0 5832 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5833
68e74568 5834 cpupri_cleanup(&rd->cpupri);
6bfd6d72 5835 cpudl_cleanup(&rd->cpudl);
1baca4ce 5836 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5837 free_cpumask_var(rd->rto_mask);
5838 free_cpumask_var(rd->online);
5839 free_cpumask_var(rd->span);
5840 kfree(rd);
5841}
5842
57d885fe
GH
5843static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5844{
a0490fa3 5845 struct root_domain *old_rd = NULL;
57d885fe 5846 unsigned long flags;
57d885fe 5847
05fa785c 5848 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5849
5850 if (rq->rd) {
a0490fa3 5851 old_rd = rq->rd;
57d885fe 5852
c6c4927b 5853 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5854 set_rq_offline(rq);
57d885fe 5855
c6c4927b 5856 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5857
a0490fa3 5858 /*
0515973f 5859 * If we dont want to free the old_rd yet then
a0490fa3
IM
5860 * set old_rd to NULL to skip the freeing later
5861 * in this function:
5862 */
5863 if (!atomic_dec_and_test(&old_rd->refcount))
5864 old_rd = NULL;
57d885fe
GH
5865 }
5866
5867 atomic_inc(&rd->refcount);
5868 rq->rd = rd;
5869
c6c4927b 5870 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5871 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5872 set_rq_online(rq);
57d885fe 5873
05fa785c 5874 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5875
5876 if (old_rd)
dce840a0 5877 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5878}
5879
68c38fc3 5880static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5881{
5882 memset(rd, 0, sizeof(*rd));
5883
8295c699 5884 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5885 goto out;
8295c699 5886 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5887 goto free_span;
8295c699 5888 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
c6c4927b 5889 goto free_online;
8295c699 5890 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
1baca4ce 5891 goto free_dlo_mask;
6e0534f2 5892
332ac17e 5893 init_dl_bw(&rd->dl_bw);
6bfd6d72
JL
5894 if (cpudl_init(&rd->cpudl) != 0)
5895 goto free_dlo_mask;
332ac17e 5896
68c38fc3 5897 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5898 goto free_rto_mask;
c6c4927b 5899 return 0;
6e0534f2 5900
68e74568
RR
5901free_rto_mask:
5902 free_cpumask_var(rd->rto_mask);
1baca4ce
JL
5903free_dlo_mask:
5904 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5905free_online:
5906 free_cpumask_var(rd->online);
5907free_span:
5908 free_cpumask_var(rd->span);
0c910d28 5909out:
c6c4927b 5910 return -ENOMEM;
57d885fe
GH
5911}
5912
029632fb
PZ
5913/*
5914 * By default the system creates a single root-domain with all cpus as
5915 * members (mimicking the global state we have today).
5916 */
5917struct root_domain def_root_domain;
5918
57d885fe
GH
5919static void init_defrootdomain(void)
5920{
68c38fc3 5921 init_rootdomain(&def_root_domain);
c6c4927b 5922
57d885fe
GH
5923 atomic_set(&def_root_domain.refcount, 1);
5924}
5925
dc938520 5926static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5927{
5928 struct root_domain *rd;
5929
5930 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5931 if (!rd)
5932 return NULL;
5933
68c38fc3 5934 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5935 kfree(rd);
5936 return NULL;
5937 }
57d885fe
GH
5938
5939 return rd;
5940}
5941
63b2ca30 5942static void free_sched_groups(struct sched_group *sg, int free_sgc)
e3589f6c
PZ
5943{
5944 struct sched_group *tmp, *first;
5945
5946 if (!sg)
5947 return;
5948
5949 first = sg;
5950 do {
5951 tmp = sg->next;
5952
63b2ca30
NP
5953 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5954 kfree(sg->sgc);
e3589f6c
PZ
5955
5956 kfree(sg);
5957 sg = tmp;
5958 } while (sg != first);
5959}
5960
16f3ef46 5961static void destroy_sched_domain(struct sched_domain *sd)
dce840a0 5962{
e3589f6c
PZ
5963 /*
5964 * If its an overlapping domain it has private groups, iterate and
5965 * nuke them all.
5966 */
5967 if (sd->flags & SD_OVERLAP) {
5968 free_sched_groups(sd->groups, 1);
5969 } else if (atomic_dec_and_test(&sd->groups->ref)) {
63b2ca30 5970 kfree(sd->groups->sgc);
dce840a0 5971 kfree(sd->groups);
9c3f75cb 5972 }
24fc7edb
PZ
5973 if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
5974 kfree(sd->shared);
dce840a0
PZ
5975 kfree(sd);
5976}
5977
16f3ef46 5978static void destroy_sched_domains_rcu(struct rcu_head *rcu)
dce840a0 5979{
16f3ef46
PZ
5980 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5981
5982 while (sd) {
5983 struct sched_domain *parent = sd->parent;
5984 destroy_sched_domain(sd);
5985 sd = parent;
5986 }
dce840a0
PZ
5987}
5988
f39180ef 5989static void destroy_sched_domains(struct sched_domain *sd)
dce840a0 5990{
16f3ef46
PZ
5991 if (sd)
5992 call_rcu(&sd->rcu, destroy_sched_domains_rcu);
dce840a0
PZ
5993}
5994
518cd623
PZ
5995/*
5996 * Keep a special pointer to the highest sched_domain that has
5997 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5998 * allows us to avoid some pointer chasing select_idle_sibling().
5999 *
6000 * Also keep a unique ID per domain (we use the first cpu number in
6001 * the cpumask of the domain), this allows us to quickly tell if
39be3501 6002 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
6003 */
6004DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 6005DEFINE_PER_CPU(int, sd_llc_size);
518cd623 6006DEFINE_PER_CPU(int, sd_llc_id);
0e369d75 6007DEFINE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
fb13c7ee 6008DEFINE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50 6009DEFINE_PER_CPU(struct sched_domain *, sd_asym);
518cd623
PZ
6010
6011static void update_top_cache_domain(int cpu)
6012{
0e369d75 6013 struct sched_domain_shared *sds = NULL;
518cd623
PZ
6014 struct sched_domain *sd;
6015 int id = cpu;
7d9ffa89 6016 int size = 1;
518cd623
PZ
6017
6018 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 6019 if (sd) {
518cd623 6020 id = cpumask_first(sched_domain_span(sd));
7d9ffa89 6021 size = cpumask_weight(sched_domain_span(sd));
0e369d75 6022 sds = sd->shared;
7d9ffa89 6023 }
518cd623
PZ
6024
6025 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 6026 per_cpu(sd_llc_size, cpu) = size;
518cd623 6027 per_cpu(sd_llc_id, cpu) = id;
0e369d75 6028 rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
fb13c7ee
MG
6029
6030 sd = lowest_flag_domain(cpu, SD_NUMA);
6031 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
37dc6b50
PM
6032
6033 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
6034 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
518cd623
PZ
6035}
6036
1da177e4 6037/*
0eab9146 6038 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6039 * hold the hotplug lock.
6040 */
0eab9146
IM
6041static void
6042cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6043{
70b97a7f 6044 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6045 struct sched_domain *tmp;
6046
6047 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6048 for (tmp = sd; tmp; ) {
245af2c7
SS
6049 struct sched_domain *parent = tmp->parent;
6050 if (!parent)
6051 break;
f29c9b1c 6052
1a848870 6053 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6054 tmp->parent = parent->parent;
1a848870
SS
6055 if (parent->parent)
6056 parent->parent->child = tmp;
10866e62
PZ
6057 /*
6058 * Transfer SD_PREFER_SIBLING down in case of a
6059 * degenerate parent; the spans match for this
6060 * so the property transfers.
6061 */
6062 if (parent->flags & SD_PREFER_SIBLING)
6063 tmp->flags |= SD_PREFER_SIBLING;
f39180ef 6064 destroy_sched_domain(parent);
f29c9b1c
LZ
6065 } else
6066 tmp = tmp->parent;
245af2c7
SS
6067 }
6068
1a848870 6069 if (sd && sd_degenerate(sd)) {
dce840a0 6070 tmp = sd;
245af2c7 6071 sd = sd->parent;
f39180ef 6072 destroy_sched_domain(tmp);
1a848870
SS
6073 if (sd)
6074 sd->child = NULL;
6075 }
1da177e4 6076
4cb98839 6077 sched_domain_debug(sd, cpu);
1da177e4 6078
57d885fe 6079 rq_attach_root(rq, rd);
dce840a0 6080 tmp = rq->sd;
674311d5 6081 rcu_assign_pointer(rq->sd, sd);
f39180ef 6082 destroy_sched_domains(tmp);
518cd623
PZ
6083
6084 update_top_cache_domain(cpu);
1da177e4
LT
6085}
6086
1da177e4
LT
6087/* Setup the mask of cpus configured for isolated domains */
6088static int __init isolated_cpu_setup(char *str)
6089{
a6e4491c
PB
6090 int ret;
6091
bdddd296 6092 alloc_bootmem_cpumask_var(&cpu_isolated_map);
a6e4491c
PB
6093 ret = cpulist_parse(str, cpu_isolated_map);
6094 if (ret) {
6095 pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
6096 return 0;
6097 }
1da177e4
LT
6098 return 1;
6099}
8927f494 6100__setup("isolcpus=", isolated_cpu_setup);
1da177e4 6101
49a02c51 6102struct s_data {
21d42ccf 6103 struct sched_domain ** __percpu sd;
49a02c51
AH
6104 struct root_domain *rd;
6105};
6106
2109b99e 6107enum s_alloc {
2109b99e 6108 sa_rootdomain,
21d42ccf 6109 sa_sd,
dce840a0 6110 sa_sd_storage,
2109b99e
AH
6111 sa_none,
6112};
6113
c1174876
PZ
6114/*
6115 * Build an iteration mask that can exclude certain CPUs from the upwards
6116 * domain traversal.
6117 *
6118 * Asymmetric node setups can result in situations where the domain tree is of
6119 * unequal depth, make sure to skip domains that already cover the entire
6120 * range.
6121 *
6122 * In that case build_sched_domains() will have terminated the iteration early
6123 * and our sibling sd spans will be empty. Domains should always include the
6124 * cpu they're built on, so check that.
6125 *
6126 */
6127static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6128{
6129 const struct cpumask *span = sched_domain_span(sd);
6130 struct sd_data *sdd = sd->private;
6131 struct sched_domain *sibling;
6132 int i;
6133
6134 for_each_cpu(i, span) {
6135 sibling = *per_cpu_ptr(sdd->sd, i);
6136 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6137 continue;
6138
6139 cpumask_set_cpu(i, sched_group_mask(sg));
6140 }
6141}
6142
6143/*
6144 * Return the canonical balance cpu for this group, this is the first cpu
6145 * of this group that's also in the iteration mask.
6146 */
6147int group_balance_cpu(struct sched_group *sg)
6148{
6149 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6150}
6151
e3589f6c
PZ
6152static int
6153build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6154{
6155 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6156 const struct cpumask *span = sched_domain_span(sd);
6157 struct cpumask *covered = sched_domains_tmpmask;
6158 struct sd_data *sdd = sd->private;
aaecac4a 6159 struct sched_domain *sibling;
e3589f6c
PZ
6160 int i;
6161
6162 cpumask_clear(covered);
6163
6164 for_each_cpu(i, span) {
6165 struct cpumask *sg_span;
6166
6167 if (cpumask_test_cpu(i, covered))
6168 continue;
6169
aaecac4a 6170 sibling = *per_cpu_ptr(sdd->sd, i);
c1174876
PZ
6171
6172 /* See the comment near build_group_mask(). */
aaecac4a 6173 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
c1174876
PZ
6174 continue;
6175
e3589f6c 6176 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 6177 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
6178
6179 if (!sg)
6180 goto fail;
6181
6182 sg_span = sched_group_cpus(sg);
aaecac4a
ZZ
6183 if (sibling->child)
6184 cpumask_copy(sg_span, sched_domain_span(sibling->child));
6185 else
e3589f6c
PZ
6186 cpumask_set_cpu(i, sg_span);
6187
6188 cpumask_or(covered, covered, sg_span);
6189
63b2ca30
NP
6190 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6191 if (atomic_inc_return(&sg->sgc->ref) == 1)
c1174876
PZ
6192 build_group_mask(sd, sg);
6193
c3decf0d 6194 /*
63b2ca30 6195 * Initialize sgc->capacity such that even if we mess up the
c3decf0d
PZ
6196 * domains and no possible iteration will get us here, we won't
6197 * die on a /0 trap.
6198 */
ca8ce3d0 6199 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
bf475ce0 6200 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
e3589f6c 6201
c1174876
PZ
6202 /*
6203 * Make sure the first group of this domain contains the
6204 * canonical balance cpu. Otherwise the sched_domain iteration
6205 * breaks. See update_sg_lb_stats().
6206 */
74a5ce20 6207 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 6208 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
6209 groups = sg;
6210
6211 if (!first)
6212 first = sg;
6213 if (last)
6214 last->next = sg;
6215 last = sg;
6216 last->next = first;
6217 }
6218 sd->groups = groups;
6219
6220 return 0;
6221
6222fail:
6223 free_sched_groups(first, 0);
6224
6225 return -ENOMEM;
6226}
6227
dce840a0 6228static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 6229{
dce840a0
PZ
6230 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6231 struct sched_domain *child = sd->child;
1da177e4 6232
dce840a0
PZ
6233 if (child)
6234 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 6235
9c3f75cb 6236 if (sg) {
dce840a0 6237 *sg = *per_cpu_ptr(sdd->sg, cpu);
63b2ca30
NP
6238 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6239 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
9c3f75cb 6240 }
dce840a0
PZ
6241
6242 return cpu;
1e9f28fa 6243}
1e9f28fa 6244
01a08546 6245/*
dce840a0
PZ
6246 * build_sched_groups will build a circular linked list of the groups
6247 * covered by the given span, and will set each group's ->cpumask correctly,
ced549fa 6248 * and ->cpu_capacity to 0.
e3589f6c
PZ
6249 *
6250 * Assumes the sched_domain tree is fully constructed
01a08546 6251 */
e3589f6c
PZ
6252static int
6253build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 6254{
dce840a0
PZ
6255 struct sched_group *first = NULL, *last = NULL;
6256 struct sd_data *sdd = sd->private;
6257 const struct cpumask *span = sched_domain_span(sd);
f96225fd 6258 struct cpumask *covered;
dce840a0 6259 int i;
9c1cfda2 6260
e3589f6c
PZ
6261 get_group(cpu, sdd, &sd->groups);
6262 atomic_inc(&sd->groups->ref);
6263
0936629f 6264 if (cpu != cpumask_first(span))
e3589f6c
PZ
6265 return 0;
6266
f96225fd
PZ
6267 lockdep_assert_held(&sched_domains_mutex);
6268 covered = sched_domains_tmpmask;
6269
dce840a0 6270 cpumask_clear(covered);
6711cab4 6271
dce840a0
PZ
6272 for_each_cpu(i, span) {
6273 struct sched_group *sg;
cd08e923 6274 int group, j;
6711cab4 6275
dce840a0
PZ
6276 if (cpumask_test_cpu(i, covered))
6277 continue;
6711cab4 6278
cd08e923 6279 group = get_group(i, sdd, &sg);
c1174876 6280 cpumask_setall(sched_group_mask(sg));
0601a88d 6281
dce840a0
PZ
6282 for_each_cpu(j, span) {
6283 if (get_group(j, sdd, NULL) != group)
6284 continue;
0601a88d 6285
dce840a0
PZ
6286 cpumask_set_cpu(j, covered);
6287 cpumask_set_cpu(j, sched_group_cpus(sg));
6288 }
0601a88d 6289
dce840a0
PZ
6290 if (!first)
6291 first = sg;
6292 if (last)
6293 last->next = sg;
6294 last = sg;
6295 }
6296 last->next = first;
e3589f6c
PZ
6297
6298 return 0;
0601a88d 6299}
51888ca2 6300
89c4710e 6301/*
63b2ca30 6302 * Initialize sched groups cpu_capacity.
89c4710e 6303 *
63b2ca30 6304 * cpu_capacity indicates the capacity of sched group, which is used while
89c4710e 6305 * distributing the load between different sched groups in a sched domain.
63b2ca30
NP
6306 * Typically cpu_capacity for all the groups in a sched domain will be same
6307 * unless there are asymmetries in the topology. If there are asymmetries,
6308 * group having more cpu_capacity will pickup more load compared to the
6309 * group having less cpu_capacity.
89c4710e 6310 */
63b2ca30 6311static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
89c4710e 6312{
e3589f6c 6313 struct sched_group *sg = sd->groups;
89c4710e 6314
94c95ba6 6315 WARN_ON(!sg);
e3589f6c
PZ
6316
6317 do {
afe06efd
TC
6318 int cpu, max_cpu = -1;
6319
e3589f6c 6320 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
afe06efd
TC
6321
6322 if (!(sd->flags & SD_ASYM_PACKING))
6323 goto next;
6324
6325 for_each_cpu(cpu, sched_group_cpus(sg)) {
6326 if (max_cpu < 0)
6327 max_cpu = cpu;
6328 else if (sched_asym_prefer(cpu, max_cpu))
6329 max_cpu = cpu;
6330 }
6331 sg->asym_prefer_cpu = max_cpu;
6332
6333next:
e3589f6c
PZ
6334 sg = sg->next;
6335 } while (sg != sd->groups);
89c4710e 6336
c1174876 6337 if (cpu != group_balance_cpu(sg))
e3589f6c 6338 return;
aae6d3dd 6339
63b2ca30 6340 update_group_capacity(sd, cpu);
89c4710e
SS
6341}
6342
7c16ec58
MT
6343/*
6344 * Initializers for schedule domains
6345 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6346 */
6347
1d3504fc 6348static int default_relax_domain_level = -1;
60495e77 6349int sched_domain_level_max;
1d3504fc
HS
6350
6351static int __init setup_relax_domain_level(char *str)
6352{
a841f8ce
DS
6353 if (kstrtoint(str, 0, &default_relax_domain_level))
6354 pr_warn("Unable to set relax_domain_level\n");
30e0e178 6355
1d3504fc
HS
6356 return 1;
6357}
6358__setup("relax_domain_level=", setup_relax_domain_level);
6359
6360static void set_domain_attribute(struct sched_domain *sd,
6361 struct sched_domain_attr *attr)
6362{
6363 int request;
6364
6365 if (!attr || attr->relax_domain_level < 0) {
6366 if (default_relax_domain_level < 0)
6367 return;
6368 else
6369 request = default_relax_domain_level;
6370 } else
6371 request = attr->relax_domain_level;
6372 if (request < sd->level) {
6373 /* turn off idle balance on this domain */
c88d5910 6374 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6375 } else {
6376 /* turn on idle balance on this domain */
c88d5910 6377 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6378 }
6379}
6380
54ab4ff4
PZ
6381static void __sdt_free(const struct cpumask *cpu_map);
6382static int __sdt_alloc(const struct cpumask *cpu_map);
6383
2109b99e
AH
6384static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6385 const struct cpumask *cpu_map)
6386{
6387 switch (what) {
2109b99e 6388 case sa_rootdomain:
822ff793
PZ
6389 if (!atomic_read(&d->rd->refcount))
6390 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
6391 case sa_sd:
6392 free_percpu(d->sd); /* fall through */
dce840a0 6393 case sa_sd_storage:
54ab4ff4 6394 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
6395 case sa_none:
6396 break;
6397 }
6398}
3404c8d9 6399
2109b99e
AH
6400static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6401 const struct cpumask *cpu_map)
6402{
dce840a0
PZ
6403 memset(d, 0, sizeof(*d));
6404
54ab4ff4
PZ
6405 if (__sdt_alloc(cpu_map))
6406 return sa_sd_storage;
dce840a0
PZ
6407 d->sd = alloc_percpu(struct sched_domain *);
6408 if (!d->sd)
6409 return sa_sd_storage;
2109b99e 6410 d->rd = alloc_rootdomain();
dce840a0 6411 if (!d->rd)
21d42ccf 6412 return sa_sd;
2109b99e
AH
6413 return sa_rootdomain;
6414}
57d885fe 6415
dce840a0
PZ
6416/*
6417 * NULL the sd_data elements we've used to build the sched_domain and
6418 * sched_group structure so that the subsequent __free_domain_allocs()
6419 * will not free the data we're using.
6420 */
6421static void claim_allocations(int cpu, struct sched_domain *sd)
6422{
6423 struct sd_data *sdd = sd->private;
dce840a0
PZ
6424
6425 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6426 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6427
24fc7edb
PZ
6428 if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
6429 *per_cpu_ptr(sdd->sds, cpu) = NULL;
6430
e3589f6c 6431 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 6432 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c 6433
63b2ca30
NP
6434 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6435 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
dce840a0
PZ
6436}
6437
cb83b629 6438#ifdef CONFIG_NUMA
cb83b629 6439static int sched_domains_numa_levels;
e3fe70b1 6440enum numa_topology_type sched_numa_topology_type;
cb83b629 6441static int *sched_domains_numa_distance;
9942f79b 6442int sched_max_numa_distance;
cb83b629
PZ
6443static struct cpumask ***sched_domains_numa_masks;
6444static int sched_domains_curr_level;
143e1e28 6445#endif
cb83b629 6446
143e1e28
VG
6447/*
6448 * SD_flags allowed in topology descriptions.
6449 *
94f438c8
PZ
6450 * These flags are purely descriptive of the topology and do not prescribe
6451 * behaviour. Behaviour is artificial and mapped in the below sd_init()
6452 * function:
143e1e28 6453 *
94f438c8
PZ
6454 * SD_SHARE_CPUCAPACITY - describes SMT topologies
6455 * SD_SHARE_PKG_RESOURCES - describes shared caches
6456 * SD_NUMA - describes NUMA topologies
6457 * SD_SHARE_POWERDOMAIN - describes shared power domain
1f6e6c7c 6458 * SD_ASYM_CPUCAPACITY - describes mixed capacity topologies
94f438c8
PZ
6459 *
6460 * Odd one out, which beside describing the topology has a quirk also
6461 * prescribes the desired behaviour that goes along with it:
143e1e28 6462 *
94f438c8 6463 * SD_ASYM_PACKING - describes SMT quirks
143e1e28
VG
6464 */
6465#define TOPOLOGY_SD_FLAGS \
5d4dfddd 6466 (SD_SHARE_CPUCAPACITY | \
143e1e28
VG
6467 SD_SHARE_PKG_RESOURCES | \
6468 SD_NUMA | \
d77b3ed5 6469 SD_ASYM_PACKING | \
1f6e6c7c 6470 SD_ASYM_CPUCAPACITY | \
d77b3ed5 6471 SD_SHARE_POWERDOMAIN)
cb83b629
PZ
6472
6473static struct sched_domain *
3676b13e 6474sd_init(struct sched_domain_topology_level *tl,
24fc7edb 6475 const struct cpumask *cpu_map,
3676b13e 6476 struct sched_domain *child, int cpu)
cb83b629 6477{
24fc7edb
PZ
6478 struct sd_data *sdd = &tl->data;
6479 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6480 int sd_id, sd_weight, sd_flags = 0;
143e1e28
VG
6481
6482#ifdef CONFIG_NUMA
6483 /*
6484 * Ugly hack to pass state to sd_numa_mask()...
6485 */
6486 sched_domains_curr_level = tl->numa_level;
6487#endif
6488
6489 sd_weight = cpumask_weight(tl->mask(cpu));
6490
6491 if (tl->sd_flags)
6492 sd_flags = (*tl->sd_flags)();
6493 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6494 "wrong sd_flags in topology description\n"))
6495 sd_flags &= ~TOPOLOGY_SD_FLAGS;
cb83b629
PZ
6496
6497 *sd = (struct sched_domain){
6498 .min_interval = sd_weight,
6499 .max_interval = 2*sd_weight,
6500 .busy_factor = 32,
870a0bb5 6501 .imbalance_pct = 125,
143e1e28
VG
6502
6503 .cache_nice_tries = 0,
6504 .busy_idx = 0,
6505 .idle_idx = 0,
cb83b629
PZ
6506 .newidle_idx = 0,
6507 .wake_idx = 0,
6508 .forkexec_idx = 0,
6509
6510 .flags = 1*SD_LOAD_BALANCE
6511 | 1*SD_BALANCE_NEWIDLE
143e1e28
VG
6512 | 1*SD_BALANCE_EXEC
6513 | 1*SD_BALANCE_FORK
cb83b629 6514 | 0*SD_BALANCE_WAKE
143e1e28 6515 | 1*SD_WAKE_AFFINE
5d4dfddd 6516 | 0*SD_SHARE_CPUCAPACITY
cb83b629 6517 | 0*SD_SHARE_PKG_RESOURCES
143e1e28 6518 | 0*SD_SERIALIZE
cb83b629 6519 | 0*SD_PREFER_SIBLING
143e1e28
VG
6520 | 0*SD_NUMA
6521 | sd_flags
cb83b629 6522 ,
143e1e28 6523
cb83b629
PZ
6524 .last_balance = jiffies,
6525 .balance_interval = sd_weight,
143e1e28 6526 .smt_gain = 0,
2b4cfe64
JL
6527 .max_newidle_lb_cost = 0,
6528 .next_decay_max_lb_cost = jiffies,
3676b13e 6529 .child = child,
143e1e28
VG
6530#ifdef CONFIG_SCHED_DEBUG
6531 .name = tl->name,
6532#endif
cb83b629 6533 };
cb83b629 6534
24fc7edb
PZ
6535 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6536 sd_id = cpumask_first(sched_domain_span(sd));
6537
cb83b629 6538 /*
143e1e28 6539 * Convert topological properties into behaviour.
cb83b629 6540 */
143e1e28 6541
9ee1cda5
MR
6542 if (sd->flags & SD_ASYM_CPUCAPACITY) {
6543 struct sched_domain *t = sd;
6544
6545 for_each_lower_domain(t)
6546 t->flags |= SD_BALANCE_WAKE;
6547 }
6548
5d4dfddd 6549 if (sd->flags & SD_SHARE_CPUCAPACITY) {
caff37ef 6550 sd->flags |= SD_PREFER_SIBLING;
143e1e28
VG
6551 sd->imbalance_pct = 110;
6552 sd->smt_gain = 1178; /* ~15% */
143e1e28
VG
6553
6554 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6555 sd->imbalance_pct = 117;
6556 sd->cache_nice_tries = 1;
6557 sd->busy_idx = 2;
6558
6559#ifdef CONFIG_NUMA
6560 } else if (sd->flags & SD_NUMA) {
6561 sd->cache_nice_tries = 2;
6562 sd->busy_idx = 3;
6563 sd->idle_idx = 2;
6564
6565 sd->flags |= SD_SERIALIZE;
6566 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6567 sd->flags &= ~(SD_BALANCE_EXEC |
6568 SD_BALANCE_FORK |
6569 SD_WAKE_AFFINE);
6570 }
6571
6572#endif
6573 } else {
6574 sd->flags |= SD_PREFER_SIBLING;
6575 sd->cache_nice_tries = 1;
6576 sd->busy_idx = 2;
6577 sd->idle_idx = 1;
6578 }
6579
24fc7edb
PZ
6580 /*
6581 * For all levels sharing cache; connect a sched_domain_shared
6582 * instance.
6583 */
6584 if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6585 sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
6586 atomic_inc(&sd->shared->ref);
0e369d75 6587 atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
24fc7edb
PZ
6588 }
6589
6590 sd->private = sdd;
cb83b629
PZ
6591
6592 return sd;
6593}
6594
143e1e28
VG
6595/*
6596 * Topology list, bottom-up.
6597 */
6598static struct sched_domain_topology_level default_topology[] = {
6599#ifdef CONFIG_SCHED_SMT
6600 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6601#endif
6602#ifdef CONFIG_SCHED_MC
6603 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
143e1e28
VG
6604#endif
6605 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6606 { NULL, },
6607};
6608
c6e1e7b5
JG
6609static struct sched_domain_topology_level *sched_domain_topology =
6610 default_topology;
143e1e28
VG
6611
6612#define for_each_sd_topology(tl) \
6613 for (tl = sched_domain_topology; tl->mask; tl++)
6614
6615void set_sched_topology(struct sched_domain_topology_level *tl)
6616{
8f37961c
TC
6617 if (WARN_ON_ONCE(sched_smp_initialized))
6618 return;
6619
143e1e28
VG
6620 sched_domain_topology = tl;
6621}
6622
6623#ifdef CONFIG_NUMA
6624
cb83b629
PZ
6625static const struct cpumask *sd_numa_mask(int cpu)
6626{
6627 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6628}
6629
d039ac60
PZ
6630static void sched_numa_warn(const char *str)
6631{
6632 static int done = false;
6633 int i,j;
6634
6635 if (done)
6636 return;
6637
6638 done = true;
6639
6640 printk(KERN_WARNING "ERROR: %s\n\n", str);
6641
6642 for (i = 0; i < nr_node_ids; i++) {
6643 printk(KERN_WARNING " ");
6644 for (j = 0; j < nr_node_ids; j++)
6645 printk(KERN_CONT "%02d ", node_distance(i,j));
6646 printk(KERN_CONT "\n");
6647 }
6648 printk(KERN_WARNING "\n");
6649}
6650
9942f79b 6651bool find_numa_distance(int distance)
d039ac60
PZ
6652{
6653 int i;
6654
6655 if (distance == node_distance(0, 0))
6656 return true;
6657
6658 for (i = 0; i < sched_domains_numa_levels; i++) {
6659 if (sched_domains_numa_distance[i] == distance)
6660 return true;
6661 }
6662
6663 return false;
6664}
6665
e3fe70b1
RR
6666/*
6667 * A system can have three types of NUMA topology:
6668 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6669 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6670 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6671 *
6672 * The difference between a glueless mesh topology and a backplane
6673 * topology lies in whether communication between not directly
6674 * connected nodes goes through intermediary nodes (where programs
6675 * could run), or through backplane controllers. This affects
6676 * placement of programs.
6677 *
6678 * The type of topology can be discerned with the following tests:
6679 * - If the maximum distance between any nodes is 1 hop, the system
6680 * is directly connected.
6681 * - If for two nodes A and B, located N > 1 hops away from each other,
6682 * there is an intermediary node C, which is < N hops away from both
6683 * nodes A and B, the system is a glueless mesh.
6684 */
6685static void init_numa_topology_type(void)
6686{
6687 int a, b, c, n;
6688
6689 n = sched_max_numa_distance;
6690
e237882b 6691 if (sched_domains_numa_levels <= 1) {
e3fe70b1 6692 sched_numa_topology_type = NUMA_DIRECT;
e237882b
AG
6693 return;
6694 }
e3fe70b1
RR
6695
6696 for_each_online_node(a) {
6697 for_each_online_node(b) {
6698 /* Find two nodes furthest removed from each other. */
6699 if (node_distance(a, b) < n)
6700 continue;
6701
6702 /* Is there an intermediary node between a and b? */
6703 for_each_online_node(c) {
6704 if (node_distance(a, c) < n &&
6705 node_distance(b, c) < n) {
6706 sched_numa_topology_type =
6707 NUMA_GLUELESS_MESH;
6708 return;
6709 }
6710 }
6711
6712 sched_numa_topology_type = NUMA_BACKPLANE;
6713 return;
6714 }
6715 }
6716}
6717
cb83b629
PZ
6718static void sched_init_numa(void)
6719{
6720 int next_distance, curr_distance = node_distance(0, 0);
6721 struct sched_domain_topology_level *tl;
6722 int level = 0;
6723 int i, j, k;
6724
cb83b629
PZ
6725 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6726 if (!sched_domains_numa_distance)
6727 return;
6728
6729 /*
6730 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6731 * unique distances in the node_distance() table.
6732 *
6733 * Assumes node_distance(0,j) includes all distances in
6734 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6735 */
6736 next_distance = curr_distance;
6737 for (i = 0; i < nr_node_ids; i++) {
6738 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6739 for (k = 0; k < nr_node_ids; k++) {
6740 int distance = node_distance(i, k);
6741
6742 if (distance > curr_distance &&
6743 (distance < next_distance ||
6744 next_distance == curr_distance))
6745 next_distance = distance;
6746
6747 /*
6748 * While not a strong assumption it would be nice to know
6749 * about cases where if node A is connected to B, B is not
6750 * equally connected to A.
6751 */
6752 if (sched_debug() && node_distance(k, i) != distance)
6753 sched_numa_warn("Node-distance not symmetric");
6754
6755 if (sched_debug() && i && !find_numa_distance(distance))
6756 sched_numa_warn("Node-0 not representative");
6757 }
6758 if (next_distance != curr_distance) {
6759 sched_domains_numa_distance[level++] = next_distance;
6760 sched_domains_numa_levels = level;
6761 curr_distance = next_distance;
6762 } else break;
cb83b629 6763 }
d039ac60
PZ
6764
6765 /*
6766 * In case of sched_debug() we verify the above assumption.
6767 */
6768 if (!sched_debug())
6769 break;
cb83b629 6770 }
c123588b
AR
6771
6772 if (!level)
6773 return;
6774
cb83b629
PZ
6775 /*
6776 * 'level' contains the number of unique distances, excluding the
6777 * identity distance node_distance(i,i).
6778 *
28b4a521 6779 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
6780 * numbers.
6781 */
6782
5f7865f3
TC
6783 /*
6784 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6785 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6786 * the array will contain less then 'level' members. This could be
6787 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6788 * in other functions.
6789 *
6790 * We reset it to 'level' at the end of this function.
6791 */
6792 sched_domains_numa_levels = 0;
6793
cb83b629
PZ
6794 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6795 if (!sched_domains_numa_masks)
6796 return;
6797
6798 /*
6799 * Now for each level, construct a mask per node which contains all
6800 * cpus of nodes that are that many hops away from us.
6801 */
6802 for (i = 0; i < level; i++) {
6803 sched_domains_numa_masks[i] =
6804 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6805 if (!sched_domains_numa_masks[i])
6806 return;
6807
6808 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6809 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6810 if (!mask)
6811 return;
6812
6813 sched_domains_numa_masks[i][j] = mask;
6814
9c03ee14 6815 for_each_node(k) {
dd7d8634 6816 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6817 continue;
6818
6819 cpumask_or(mask, mask, cpumask_of_node(k));
6820 }
6821 }
6822 }
6823
143e1e28
VG
6824 /* Compute default topology size */
6825 for (i = 0; sched_domain_topology[i].mask; i++);
6826
c515db8c 6827 tl = kzalloc((i + level + 1) *
cb83b629
PZ
6828 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6829 if (!tl)
6830 return;
6831
6832 /*
6833 * Copy the default topology bits..
6834 */
143e1e28
VG
6835 for (i = 0; sched_domain_topology[i].mask; i++)
6836 tl[i] = sched_domain_topology[i];
cb83b629
PZ
6837
6838 /*
6839 * .. and append 'j' levels of NUMA goodness.
6840 */
6841 for (j = 0; j < level; i++, j++) {
6842 tl[i] = (struct sched_domain_topology_level){
cb83b629 6843 .mask = sd_numa_mask,
143e1e28 6844 .sd_flags = cpu_numa_flags,
cb83b629
PZ
6845 .flags = SDTL_OVERLAP,
6846 .numa_level = j,
143e1e28 6847 SD_INIT_NAME(NUMA)
cb83b629
PZ
6848 };
6849 }
6850
6851 sched_domain_topology = tl;
5f7865f3
TC
6852
6853 sched_domains_numa_levels = level;
9942f79b 6854 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
e3fe70b1
RR
6855
6856 init_numa_topology_type();
cb83b629 6857}
301a5cba 6858
135fb3e1 6859static void sched_domains_numa_masks_set(unsigned int cpu)
301a5cba 6860{
301a5cba 6861 int node = cpu_to_node(cpu);
135fb3e1 6862 int i, j;
301a5cba
TC
6863
6864 for (i = 0; i < sched_domains_numa_levels; i++) {
6865 for (j = 0; j < nr_node_ids; j++) {
6866 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6867 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6868 }
6869 }
6870}
6871
135fb3e1 6872static void sched_domains_numa_masks_clear(unsigned int cpu)
301a5cba
TC
6873{
6874 int i, j;
135fb3e1 6875
301a5cba
TC
6876 for (i = 0; i < sched_domains_numa_levels; i++) {
6877 for (j = 0; j < nr_node_ids; j++)
6878 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6879 }
6880}
6881
cb83b629 6882#else
135fb3e1
TG
6883static inline void sched_init_numa(void) { }
6884static void sched_domains_numa_masks_set(unsigned int cpu) { }
6885static void sched_domains_numa_masks_clear(unsigned int cpu) { }
cb83b629
PZ
6886#endif /* CONFIG_NUMA */
6887
54ab4ff4
PZ
6888static int __sdt_alloc(const struct cpumask *cpu_map)
6889{
6890 struct sched_domain_topology_level *tl;
6891 int j;
6892
27723a68 6893 for_each_sd_topology(tl) {
54ab4ff4
PZ
6894 struct sd_data *sdd = &tl->data;
6895
6896 sdd->sd = alloc_percpu(struct sched_domain *);
6897 if (!sdd->sd)
6898 return -ENOMEM;
6899
24fc7edb
PZ
6900 sdd->sds = alloc_percpu(struct sched_domain_shared *);
6901 if (!sdd->sds)
6902 return -ENOMEM;
6903
54ab4ff4
PZ
6904 sdd->sg = alloc_percpu(struct sched_group *);
6905 if (!sdd->sg)
6906 return -ENOMEM;
6907
63b2ca30
NP
6908 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6909 if (!sdd->sgc)
9c3f75cb
PZ
6910 return -ENOMEM;
6911
54ab4ff4
PZ
6912 for_each_cpu(j, cpu_map) {
6913 struct sched_domain *sd;
24fc7edb 6914 struct sched_domain_shared *sds;
54ab4ff4 6915 struct sched_group *sg;
63b2ca30 6916 struct sched_group_capacity *sgc;
54ab4ff4 6917
5cc389bc 6918 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
54ab4ff4
PZ
6919 GFP_KERNEL, cpu_to_node(j));
6920 if (!sd)
6921 return -ENOMEM;
6922
6923 *per_cpu_ptr(sdd->sd, j) = sd;
6924
24fc7edb
PZ
6925 sds = kzalloc_node(sizeof(struct sched_domain_shared),
6926 GFP_KERNEL, cpu_to_node(j));
6927 if (!sds)
6928 return -ENOMEM;
6929
6930 *per_cpu_ptr(sdd->sds, j) = sds;
6931
54ab4ff4
PZ
6932 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6933 GFP_KERNEL, cpu_to_node(j));
6934 if (!sg)
6935 return -ENOMEM;
6936
30b4e9eb
IM
6937 sg->next = sg;
6938
54ab4ff4 6939 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6940
63b2ca30 6941 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
9c3f75cb 6942 GFP_KERNEL, cpu_to_node(j));
63b2ca30 6943 if (!sgc)
9c3f75cb
PZ
6944 return -ENOMEM;
6945
63b2ca30 6946 *per_cpu_ptr(sdd->sgc, j) = sgc;
54ab4ff4
PZ
6947 }
6948 }
6949
6950 return 0;
6951}
6952
6953static void __sdt_free(const struct cpumask *cpu_map)
6954{
6955 struct sched_domain_topology_level *tl;
6956 int j;
6957
27723a68 6958 for_each_sd_topology(tl) {
54ab4ff4
PZ
6959 struct sd_data *sdd = &tl->data;
6960
6961 for_each_cpu(j, cpu_map) {
fb2cf2c6 6962 struct sched_domain *sd;
6963
6964 if (sdd->sd) {
6965 sd = *per_cpu_ptr(sdd->sd, j);
6966 if (sd && (sd->flags & SD_OVERLAP))
6967 free_sched_groups(sd->groups, 0);
6968 kfree(*per_cpu_ptr(sdd->sd, j));
6969 }
6970
24fc7edb
PZ
6971 if (sdd->sds)
6972 kfree(*per_cpu_ptr(sdd->sds, j));
fb2cf2c6 6973 if (sdd->sg)
6974 kfree(*per_cpu_ptr(sdd->sg, j));
63b2ca30
NP
6975 if (sdd->sgc)
6976 kfree(*per_cpu_ptr(sdd->sgc, j));
54ab4ff4
PZ
6977 }
6978 free_percpu(sdd->sd);
fb2cf2c6 6979 sdd->sd = NULL;
24fc7edb
PZ
6980 free_percpu(sdd->sds);
6981 sdd->sds = NULL;
54ab4ff4 6982 free_percpu(sdd->sg);
fb2cf2c6 6983 sdd->sg = NULL;
63b2ca30
NP
6984 free_percpu(sdd->sgc);
6985 sdd->sgc = NULL;
54ab4ff4
PZ
6986 }
6987}
6988
2c402dc3 6989struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
6990 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6991 struct sched_domain *child, int cpu)
2c402dc3 6992{
24fc7edb 6993 struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu);
2c402dc3 6994
60495e77
PZ
6995 if (child) {
6996 sd->level = child->level + 1;
6997 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6998 child->parent = sd;
6ae72dff
PZ
6999
7000 if (!cpumask_subset(sched_domain_span(child),
7001 sched_domain_span(sd))) {
7002 pr_err("BUG: arch topology borken\n");
7003#ifdef CONFIG_SCHED_DEBUG
7004 pr_err(" the %s domain not a subset of the %s domain\n",
7005 child->name, sd->name);
7006#endif
7007 /* Fixup, ensure @sd has at least @child cpus. */
7008 cpumask_or(sched_domain_span(sd),
7009 sched_domain_span(sd),
7010 sched_domain_span(child));
7011 }
7012
60495e77 7013 }
a841f8ce 7014 set_domain_attribute(sd, attr);
2c402dc3
PZ
7015
7016 return sd;
7017}
7018
2109b99e
AH
7019/*
7020 * Build sched domains for a given set of cpus and attach the sched domains
7021 * to the individual cpus
7022 */
dce840a0
PZ
7023static int build_sched_domains(const struct cpumask *cpu_map,
7024 struct sched_domain_attr *attr)
2109b99e 7025{
1c632169 7026 enum s_alloc alloc_state;
dce840a0 7027 struct sched_domain *sd;
2109b99e 7028 struct s_data d;
cd92bfd3 7029 struct rq *rq = NULL;
822ff793 7030 int i, ret = -ENOMEM;
9c1cfda2 7031
2109b99e
AH
7032 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7033 if (alloc_state != sa_rootdomain)
7034 goto error;
9c1cfda2 7035
dce840a0 7036 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 7037 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
7038 struct sched_domain_topology_level *tl;
7039
3bd65a80 7040 sd = NULL;
27723a68 7041 for_each_sd_topology(tl) {
4a850cbe 7042 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
7043 if (tl == sched_domain_topology)
7044 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
7045 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
7046 sd->flags |= SD_OVERLAP;
d110235d
PZ
7047 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
7048 break;
e3589f6c 7049 }
dce840a0
PZ
7050 }
7051
7052 /* Build the groups for the domains */
7053 for_each_cpu(i, cpu_map) {
7054 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7055 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
7056 if (sd->flags & SD_OVERLAP) {
7057 if (build_overlap_sched_groups(sd, i))
7058 goto error;
7059 } else {
7060 if (build_sched_groups(sd, i))
7061 goto error;
7062 }
1cf51902 7063 }
a06dadbe 7064 }
9c1cfda2 7065
ced549fa 7066 /* Calculate CPU capacity for physical packages and nodes */
a9c9a9b6
PZ
7067 for (i = nr_cpumask_bits-1; i >= 0; i--) {
7068 if (!cpumask_test_cpu(i, cpu_map))
7069 continue;
9c1cfda2 7070
dce840a0
PZ
7071 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7072 claim_allocations(i, sd);
63b2ca30 7073 init_sched_groups_capacity(i, sd);
dce840a0 7074 }
f712c0c7 7075 }
9c1cfda2 7076
1da177e4 7077 /* Attach the domains */
dce840a0 7078 rcu_read_lock();
abcd083a 7079 for_each_cpu(i, cpu_map) {
cd92bfd3 7080 rq = cpu_rq(i);
21d42ccf 7081 sd = *per_cpu_ptr(d.sd, i);
cd92bfd3
DE
7082
7083 /* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
7084 if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
7085 WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
7086
49a02c51 7087 cpu_attach_domain(sd, d.rd, i);
1da177e4 7088 }
dce840a0 7089 rcu_read_unlock();
51888ca2 7090
a18a579e 7091 if (rq && sched_debug_enabled) {
cd92bfd3
DE
7092 pr_info("span: %*pbl (max cpu_capacity = %lu)\n",
7093 cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
7094 }
7095
822ff793 7096 ret = 0;
51888ca2 7097error:
2109b99e 7098 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 7099 return ret;
1da177e4 7100}
029190c5 7101
acc3f5d7 7102static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 7103static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7104static struct sched_domain_attr *dattr_cur;
7105 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7106
7107/*
7108 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7109 * cpumask) fails, then fallback to a single sched domain,
7110 * as determined by the single cpumask fallback_doms.
029190c5 7111 */
4212823f 7112static cpumask_var_t fallback_doms;
029190c5 7113
ee79d1bd
HC
7114/*
7115 * arch_update_cpu_topology lets virtualized architectures update the
7116 * cpu core maps. It is supposed to return 1 if the topology changed
7117 * or 0 if it stayed the same.
7118 */
52f5684c 7119int __weak arch_update_cpu_topology(void)
22e52b07 7120{
ee79d1bd 7121 return 0;
22e52b07
HC
7122}
7123
acc3f5d7
RR
7124cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7125{
7126 int i;
7127 cpumask_var_t *doms;
7128
7129 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7130 if (!doms)
7131 return NULL;
7132 for (i = 0; i < ndoms; i++) {
7133 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7134 free_sched_domains(doms, i);
7135 return NULL;
7136 }
7137 }
7138 return doms;
7139}
7140
7141void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7142{
7143 unsigned int i;
7144 for (i = 0; i < ndoms; i++)
7145 free_cpumask_var(doms[i]);
7146 kfree(doms);
7147}
7148
1a20ff27 7149/*
41a2d6cf 7150 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7151 * For now this just excludes isolated cpus, but could be used to
7152 * exclude other special cases in the future.
1a20ff27 7153 */
c4a8849a 7154static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7155{
7378547f
MM
7156 int err;
7157
22e52b07 7158 arch_update_cpu_topology();
029190c5 7159 ndoms_cur = 1;
acc3f5d7 7160 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7161 if (!doms_cur)
acc3f5d7
RR
7162 doms_cur = &fallback_doms;
7163 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 7164 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 7165 register_sched_domain_sysctl();
7378547f
MM
7166
7167 return err;
1a20ff27
DG
7168}
7169
1a20ff27
DG
7170/*
7171 * Detach sched domains from a group of cpus specified in cpu_map
7172 * These cpus will now be attached to the NULL domain
7173 */
96f874e2 7174static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
7175{
7176 int i;
7177
dce840a0 7178 rcu_read_lock();
abcd083a 7179 for_each_cpu(i, cpu_map)
57d885fe 7180 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 7181 rcu_read_unlock();
1a20ff27
DG
7182}
7183
1d3504fc
HS
7184/* handle null as "default" */
7185static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7186 struct sched_domain_attr *new, int idx_new)
7187{
7188 struct sched_domain_attr tmp;
7189
7190 /* fast path */
7191 if (!new && !cur)
7192 return 1;
7193
7194 tmp = SD_ATTR_INIT;
7195 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7196 new ? (new + idx_new) : &tmp,
7197 sizeof(struct sched_domain_attr));
7198}
7199
029190c5
PJ
7200/*
7201 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7202 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7203 * doms_new[] to the current sched domain partitioning, doms_cur[].
7204 * It destroys each deleted domain and builds each new domain.
7205 *
acc3f5d7 7206 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7207 * The masks don't intersect (don't overlap.) We should setup one
7208 * sched domain for each mask. CPUs not in any of the cpumasks will
7209 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7210 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7211 * it as it is.
7212 *
acc3f5d7
RR
7213 * The passed in 'doms_new' should be allocated using
7214 * alloc_sched_domains. This routine takes ownership of it and will
7215 * free_sched_domains it when done with it. If the caller failed the
7216 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7217 * and partition_sched_domains() will fallback to the single partition
7218 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7219 *
96f874e2 7220 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7221 * ndoms_new == 0 is a special case for destroying existing domains,
7222 * and it will not create the default domain.
dfb512ec 7223 *
029190c5
PJ
7224 * Call with hotplug lock held
7225 */
acc3f5d7 7226void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7227 struct sched_domain_attr *dattr_new)
029190c5 7228{
dfb512ec 7229 int i, j, n;
d65bd5ec 7230 int new_topology;
029190c5 7231
712555ee 7232 mutex_lock(&sched_domains_mutex);
a1835615 7233
7378547f
MM
7234 /* always unregister in case we don't destroy any domains */
7235 unregister_sched_domain_sysctl();
7236
d65bd5ec
HC
7237 /* Let architecture update cpu core mappings. */
7238 new_topology = arch_update_cpu_topology();
7239
dfb512ec 7240 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7241
7242 /* Destroy deleted domains */
7243 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7244 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7245 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7246 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7247 goto match1;
7248 }
7249 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7250 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7251match1:
7252 ;
7253 }
7254
c8d2d47a 7255 n = ndoms_cur;
e761b772 7256 if (doms_new == NULL) {
c8d2d47a 7257 n = 0;
acc3f5d7 7258 doms_new = &fallback_doms;
6ad4c188 7259 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7260 WARN_ON_ONCE(dattr_new);
e761b772
MK
7261 }
7262
029190c5
PJ
7263 /* Build new domains */
7264 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 7265 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7266 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7267 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7268 goto match2;
7269 }
7270 /* no match - add a new doms_new */
dce840a0 7271 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7272match2:
7273 ;
7274 }
7275
7276 /* Remember the new sched domains */
acc3f5d7
RR
7277 if (doms_cur != &fallback_doms)
7278 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7279 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7280 doms_cur = doms_new;
1d3504fc 7281 dattr_cur = dattr_new;
029190c5 7282 ndoms_cur = ndoms_new;
7378547f
MM
7283
7284 register_sched_domain_sysctl();
a1835615 7285
712555ee 7286 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7287}
7288
d35be8ba
SB
7289static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
7290
1da177e4 7291/*
3a101d05
TH
7292 * Update cpusets according to cpu_active mask. If cpusets are
7293 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7294 * around partition_sched_domains().
d35be8ba
SB
7295 *
7296 * If we come here as part of a suspend/resume, don't touch cpusets because we
7297 * want to restore it back to its original state upon resume anyway.
1da177e4 7298 */
40190a78 7299static void cpuset_cpu_active(void)
e761b772 7300{
40190a78 7301 if (cpuhp_tasks_frozen) {
d35be8ba
SB
7302 /*
7303 * num_cpus_frozen tracks how many CPUs are involved in suspend
7304 * resume sequence. As long as this is not the last online
7305 * operation in the resume sequence, just build a single sched
7306 * domain, ignoring cpusets.
7307 */
7308 num_cpus_frozen--;
7309 if (likely(num_cpus_frozen)) {
7310 partition_sched_domains(1, NULL, NULL);
135fb3e1 7311 return;
d35be8ba 7312 }
d35be8ba
SB
7313 /*
7314 * This is the last CPU online operation. So fall through and
7315 * restore the original sched domains by considering the
7316 * cpuset configurations.
7317 */
3a101d05 7318 }
135fb3e1 7319 cpuset_update_active_cpus(true);
3a101d05 7320}
e761b772 7321
40190a78 7322static int cpuset_cpu_inactive(unsigned int cpu)
3a101d05 7323{
3c18d447 7324 unsigned long flags;
3c18d447 7325 struct dl_bw *dl_b;
533445c6
OS
7326 bool overflow;
7327 int cpus;
3c18d447 7328
40190a78 7329 if (!cpuhp_tasks_frozen) {
533445c6
OS
7330 rcu_read_lock_sched();
7331 dl_b = dl_bw_of(cpu);
3c18d447 7332
533445c6
OS
7333 raw_spin_lock_irqsave(&dl_b->lock, flags);
7334 cpus = dl_bw_cpus(cpu);
7335 overflow = __dl_overflow(dl_b, cpus, 0, 0);
7336 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3c18d447 7337
533445c6 7338 rcu_read_unlock_sched();
3c18d447 7339
533445c6 7340 if (overflow)
135fb3e1 7341 return -EBUSY;
7ddf96b0 7342 cpuset_update_active_cpus(false);
135fb3e1 7343 } else {
d35be8ba
SB
7344 num_cpus_frozen++;
7345 partition_sched_domains(1, NULL, NULL);
e761b772 7346 }
135fb3e1 7347 return 0;
e761b772 7348}
e761b772 7349
40190a78 7350int sched_cpu_activate(unsigned int cpu)
135fb3e1 7351{
7d976699
TG
7352 struct rq *rq = cpu_rq(cpu);
7353 unsigned long flags;
7354
40190a78 7355 set_cpu_active(cpu, true);
135fb3e1 7356
40190a78 7357 if (sched_smp_initialized) {
135fb3e1 7358 sched_domains_numa_masks_set(cpu);
40190a78 7359 cpuset_cpu_active();
e761b772 7360 }
7d976699
TG
7361
7362 /*
7363 * Put the rq online, if not already. This happens:
7364 *
7365 * 1) In the early boot process, because we build the real domains
7366 * after all cpus have been brought up.
7367 *
7368 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
7369 * domains.
7370 */
7371 raw_spin_lock_irqsave(&rq->lock, flags);
7372 if (rq->rd) {
7373 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7374 set_rq_online(rq);
7375 }
7376 raw_spin_unlock_irqrestore(&rq->lock, flags);
7377
7378 update_max_interval();
7379
40190a78 7380 return 0;
135fb3e1
TG
7381}
7382
40190a78 7383int sched_cpu_deactivate(unsigned int cpu)
135fb3e1 7384{
135fb3e1
TG
7385 int ret;
7386
40190a78 7387 set_cpu_active(cpu, false);
b2454caa
PZ
7388 /*
7389 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
7390 * users of this state to go away such that all new such users will
7391 * observe it.
7392 *
7393 * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might
7394 * not imply sync_sched(), so wait for both.
7395 *
7396 * Do sync before park smpboot threads to take care the rcu boost case.
7397 */
7398 if (IS_ENABLED(CONFIG_PREEMPT))
7399 synchronize_rcu_mult(call_rcu, call_rcu_sched);
7400 else
7401 synchronize_rcu();
40190a78
TG
7402
7403 if (!sched_smp_initialized)
7404 return 0;
7405
7406 ret = cpuset_cpu_inactive(cpu);
7407 if (ret) {
7408 set_cpu_active(cpu, true);
7409 return ret;
135fb3e1 7410 }
40190a78
TG
7411 sched_domains_numa_masks_clear(cpu);
7412 return 0;
135fb3e1
TG
7413}
7414
94baf7a5
TG
7415static void sched_rq_cpu_starting(unsigned int cpu)
7416{
7417 struct rq *rq = cpu_rq(cpu);
7418
7419 rq->calc_load_update = calc_load_update;
94baf7a5
TG
7420 update_max_interval();
7421}
7422
135fb3e1
TG
7423int sched_cpu_starting(unsigned int cpu)
7424{
7425 set_cpu_rq_start_time(cpu);
94baf7a5 7426 sched_rq_cpu_starting(cpu);
135fb3e1 7427 return 0;
e761b772 7428}
e761b772 7429
f2785ddb
TG
7430#ifdef CONFIG_HOTPLUG_CPU
7431int sched_cpu_dying(unsigned int cpu)
7432{
7433 struct rq *rq = cpu_rq(cpu);
7434 unsigned long flags;
7435
7436 /* Handle pending wakeups and then migrate everything off */
7437 sched_ttwu_pending();
7438 raw_spin_lock_irqsave(&rq->lock, flags);
7439 if (rq->rd) {
7440 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7441 set_rq_offline(rq);
7442 }
7443 migrate_tasks(rq);
7444 BUG_ON(rq->nr_running != 1);
7445 raw_spin_unlock_irqrestore(&rq->lock, flags);
7446 calc_load_migrate(rq);
7447 update_max_interval();
20a5c8cc 7448 nohz_balance_exit_idle(cpu);
e5ef27d0 7449 hrtick_clear(rq);
f2785ddb
TG
7450 return 0;
7451}
7452#endif
7453
1b568f0a
PZ
7454#ifdef CONFIG_SCHED_SMT
7455DEFINE_STATIC_KEY_FALSE(sched_smt_present);
7456
7457static void sched_init_smt(void)
7458{
7459 /*
7460 * We've enumerated all CPUs and will assume that if any CPU
7461 * has SMT siblings, CPU0 will too.
7462 */
7463 if (cpumask_weight(cpu_smt_mask(0)) > 1)
7464 static_branch_enable(&sched_smt_present);
7465}
7466#else
7467static inline void sched_init_smt(void) { }
7468#endif
7469
1da177e4
LT
7470void __init sched_init_smp(void)
7471{
dcc30a35
RR
7472 cpumask_var_t non_isolated_cpus;
7473
7474 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7475 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7476
cb83b629
PZ
7477 sched_init_numa();
7478
6acce3ef
PZ
7479 /*
7480 * There's no userspace yet to cause hotplug operations; hence all the
7481 * cpu masks are stable and all blatant races in the below code cannot
7482 * happen.
7483 */
712555ee 7484 mutex_lock(&sched_domains_mutex);
c4a8849a 7485 init_sched_domains(cpu_active_mask);
dcc30a35
RR
7486 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7487 if (cpumask_empty(non_isolated_cpus))
7488 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7489 mutex_unlock(&sched_domains_mutex);
e761b772 7490
5c1e1767 7491 /* Move init over to a non-isolated CPU */
dcc30a35 7492 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7493 BUG();
19978ca6 7494 sched_init_granularity();
dcc30a35 7495 free_cpumask_var(non_isolated_cpus);
4212823f 7496
0e3900e6 7497 init_sched_rt_class();
1baca4ce 7498 init_sched_dl_class();
1b568f0a
PZ
7499
7500 sched_init_smt();
7501
e26fbffd 7502 sched_smp_initialized = true;
1da177e4 7503}
e26fbffd
TG
7504
7505static int __init migration_init(void)
7506{
94baf7a5 7507 sched_rq_cpu_starting(smp_processor_id());
e26fbffd 7508 return 0;
1da177e4 7509}
e26fbffd
TG
7510early_initcall(migration_init);
7511
1da177e4
LT
7512#else
7513void __init sched_init_smp(void)
7514{
19978ca6 7515 sched_init_granularity();
1da177e4
LT
7516}
7517#endif /* CONFIG_SMP */
7518
7519int in_sched_functions(unsigned long addr)
7520{
1da177e4
LT
7521 return in_lock_functions(addr) ||
7522 (addr >= (unsigned long)__sched_text_start
7523 && addr < (unsigned long)__sched_text_end);
7524}
7525
029632fb 7526#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
7527/*
7528 * Default task group.
7529 * Every task in system belongs to this group at bootup.
7530 */
029632fb 7531struct task_group root_task_group;
35cf4e50 7532LIST_HEAD(task_groups);
b0367629
WL
7533
7534/* Cacheline aligned slab cache for task_group */
7535static struct kmem_cache *task_group_cache __read_mostly;
052f1dc7 7536#endif
6f505b16 7537
e6252c3e 7538DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
10e2f1ac 7539DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
6f505b16 7540
9dcb8b68
LT
7541#define WAIT_TABLE_BITS 8
7542#define WAIT_TABLE_SIZE (1 << WAIT_TABLE_BITS)
7543static wait_queue_head_t bit_wait_table[WAIT_TABLE_SIZE] __cacheline_aligned;
7544
7545wait_queue_head_t *bit_waitqueue(void *word, int bit)
7546{
7547 const int shift = BITS_PER_LONG == 32 ? 5 : 6;
7548 unsigned long val = (unsigned long)word << shift | bit;
7549
7550 return bit_wait_table + hash_long(val, WAIT_TABLE_BITS);
7551}
7552EXPORT_SYMBOL(bit_waitqueue);
7553
1da177e4
LT
7554void __init sched_init(void)
7555{
dd41f596 7556 int i, j;
434d53b0
MT
7557 unsigned long alloc_size = 0, ptr;
7558
9dcb8b68
LT
7559 for (i = 0; i < WAIT_TABLE_SIZE; i++)
7560 init_waitqueue_head(bit_wait_table + i);
7561
434d53b0
MT
7562#ifdef CONFIG_FAIR_GROUP_SCHED
7563 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7564#endif
7565#ifdef CONFIG_RT_GROUP_SCHED
7566 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7567#endif
434d53b0 7568 if (alloc_size) {
36b7b6d4 7569 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7570
7571#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 7572 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
7573 ptr += nr_cpu_ids * sizeof(void **);
7574
07e06b01 7575 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 7576 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7577
6d6bc0ad 7578#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 7579#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7580 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
7581 ptr += nr_cpu_ids * sizeof(void **);
7582
07e06b01 7583 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7584 ptr += nr_cpu_ids * sizeof(void **);
7585
6d6bc0ad 7586#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 7587 }
df7c8e84 7588#ifdef CONFIG_CPUMASK_OFFSTACK
b74e6278
AT
7589 for_each_possible_cpu(i) {
7590 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7591 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
10e2f1ac
PZ
7592 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
7593 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
434d53b0 7594 }
b74e6278 7595#endif /* CONFIG_CPUMASK_OFFSTACK */
dd41f596 7596
332ac17e
DF
7597 init_rt_bandwidth(&def_rt_bandwidth,
7598 global_rt_period(), global_rt_runtime());
7599 init_dl_bandwidth(&def_dl_bandwidth,
1724813d 7600 global_rt_period(), global_rt_runtime());
332ac17e 7601
57d885fe
GH
7602#ifdef CONFIG_SMP
7603 init_defrootdomain();
7604#endif
7605
d0b27fa7 7606#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7607 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 7608 global_rt_period(), global_rt_runtime());
6d6bc0ad 7609#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7610
7c941438 7611#ifdef CONFIG_CGROUP_SCHED
b0367629
WL
7612 task_group_cache = KMEM_CACHE(task_group, 0);
7613
07e06b01
YZ
7614 list_add(&root_task_group.list, &task_groups);
7615 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 7616 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 7617 autogroup_init(&init_task);
7c941438 7618#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7619
0a945022 7620 for_each_possible_cpu(i) {
70b97a7f 7621 struct rq *rq;
1da177e4
LT
7622
7623 rq = cpu_rq(i);
05fa785c 7624 raw_spin_lock_init(&rq->lock);
7897986b 7625 rq->nr_running = 0;
dce48a84
TG
7626 rq->calc_load_active = 0;
7627 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 7628 init_cfs_rq(&rq->cfs);
07c54f7a
AV
7629 init_rt_rq(&rq->rt);
7630 init_dl_rq(&rq->dl);
dd41f596 7631#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 7632 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 7633 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9c2791f9 7634 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
354d60c2 7635 /*
07e06b01 7636 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
7637 *
7638 * In case of task-groups formed thr' the cgroup filesystem, it
7639 * gets 100% of the cpu resources in the system. This overall
7640 * system cpu resource is divided among the tasks of
07e06b01 7641 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
7642 * based on each entity's (task or task-group's) weight
7643 * (se->load.weight).
7644 *
07e06b01 7645 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
7646 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7647 * then A0's share of the cpu resource is:
7648 *
0d905bca 7649 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 7650 *
07e06b01
YZ
7651 * We achieve this by letting root_task_group's tasks sit
7652 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 7653 */
ab84d31e 7654 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 7655 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
7656#endif /* CONFIG_FAIR_GROUP_SCHED */
7657
7658 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7659#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7660 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 7661#endif
1da177e4 7662
dd41f596
IM
7663 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7664 rq->cpu_load[j] = 0;
fdf3e95d 7665
1da177e4 7666#ifdef CONFIG_SMP
41c7ce9a 7667 rq->sd = NULL;
57d885fe 7668 rq->rd = NULL;
ca6d75e6 7669 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
e3fca9e7 7670 rq->balance_callback = NULL;
1da177e4 7671 rq->active_balance = 0;
dd41f596 7672 rq->next_balance = jiffies;
1da177e4 7673 rq->push_cpu = 0;
0a2966b4 7674 rq->cpu = i;
1f11eb6a 7675 rq->online = 0;
eae0c9df
MG
7676 rq->idle_stamp = 0;
7677 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 7678 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
7679
7680 INIT_LIST_HEAD(&rq->cfs_tasks);
7681
dc938520 7682 rq_attach_root(rq, &def_root_domain);
3451d024 7683#ifdef CONFIG_NO_HZ_COMMON
9fd81dd5 7684 rq->last_load_update_tick = jiffies;
1c792db7 7685 rq->nohz_flags = 0;
83cd4fe2 7686#endif
265f22a9
FW
7687#ifdef CONFIG_NO_HZ_FULL
7688 rq->last_sched_tick = 0;
7689#endif
9fd81dd5 7690#endif /* CONFIG_SMP */
8f4d37ec 7691 init_rq_hrtick(rq);
1da177e4 7692 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7693 }
7694
2dd73a4f 7695 set_load_weight(&init_task);
b50f60ce 7696
1da177e4
LT
7697 /*
7698 * The boot idle thread does lazy MMU switching as well:
7699 */
7700 atomic_inc(&init_mm.mm_count);
7701 enter_lazy_tlb(&init_mm, current);
7702
7703 /*
7704 * Make us the idle thread. Technically, schedule() should not be
7705 * called from this thread, however somewhere below it might be,
7706 * but because we are the idle thread, we just pick up running again
7707 * when this runqueue becomes "idle".
7708 */
7709 init_idle(current, smp_processor_id());
dce48a84
TG
7710
7711 calc_load_update = jiffies + LOAD_FREQ;
7712
bf4d83f6 7713#ifdef CONFIG_SMP
4cb98839 7714 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
7715 /* May be allocated at isolcpus cmdline parse time */
7716 if (cpu_isolated_map == NULL)
7717 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 7718 idle_thread_set_boot_cpu();
9cf7243d 7719 set_cpu_rq_start_time(smp_processor_id());
029632fb
PZ
7720#endif
7721 init_sched_fair_class();
6a7b3dc3 7722
4698f88c
JP
7723 init_schedstats();
7724
6892b75e 7725 scheduler_running = 1;
1da177e4
LT
7726}
7727
d902db1e 7728#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
7729static inline int preempt_count_equals(int preempt_offset)
7730{
da7142e2 7731 int nested = preempt_count() + rcu_preempt_depth();
e4aafea2 7732
4ba8216c 7733 return (nested == preempt_offset);
e4aafea2
FW
7734}
7735
d894837f 7736void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7737{
8eb23b9f
PZ
7738 /*
7739 * Blocking primitives will set (and therefore destroy) current->state,
7740 * since we will exit with TASK_RUNNING make sure we enter with it,
7741 * otherwise we will destroy state.
7742 */
00845eb9 7743 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
8eb23b9f
PZ
7744 "do not call blocking ops when !TASK_RUNNING; "
7745 "state=%lx set at [<%p>] %pS\n",
7746 current->state,
7747 (void *)current->task_state_change,
00845eb9 7748 (void *)current->task_state_change);
8eb23b9f 7749
3427445a
PZ
7750 ___might_sleep(file, line, preempt_offset);
7751}
7752EXPORT_SYMBOL(__might_sleep);
7753
7754void ___might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7755{
1da177e4 7756 static unsigned long prev_jiffy; /* ratelimiting */
d1c6d149 7757 unsigned long preempt_disable_ip;
1da177e4 7758
b3fbab05 7759 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
db273be2
TG
7760 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7761 !is_idle_task(current)) ||
e4aafea2 7762 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7763 return;
7764 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7765 return;
7766 prev_jiffy = jiffies;
7767
d1c6d149
VN
7768 /* Save this before calling printk(), since that will clobber it */
7769 preempt_disable_ip = get_preempt_disable_ip(current);
7770
3df0fc5b
PZ
7771 printk(KERN_ERR
7772 "BUG: sleeping function called from invalid context at %s:%d\n",
7773 file, line);
7774 printk(KERN_ERR
7775 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7776 in_atomic(), irqs_disabled(),
7777 current->pid, current->comm);
aef745fc 7778
a8b686b3
ES
7779 if (task_stack_end_corrupted(current))
7780 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7781
aef745fc
IM
7782 debug_show_held_locks(current);
7783 if (irqs_disabled())
7784 print_irqtrace_events(current);
d1c6d149
VN
7785 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
7786 && !preempt_count_equals(preempt_offset)) {
8f47b187 7787 pr_err("Preemption disabled at:");
d1c6d149 7788 print_ip_sym(preempt_disable_ip);
8f47b187
TG
7789 pr_cont("\n");
7790 }
aef745fc 7791 dump_stack();
f0b22e39 7792 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
1da177e4 7793}
3427445a 7794EXPORT_SYMBOL(___might_sleep);
1da177e4
LT
7795#endif
7796
7797#ifdef CONFIG_MAGIC_SYSRQ
dbc7f069 7798void normalize_rt_tasks(void)
3a5e4dc1 7799{
dbc7f069 7800 struct task_struct *g, *p;
d50dde5a
DF
7801 struct sched_attr attr = {
7802 .sched_policy = SCHED_NORMAL,
7803 };
1da177e4 7804
3472eaa1 7805 read_lock(&tasklist_lock);
5d07f420 7806 for_each_process_thread(g, p) {
178be793
IM
7807 /*
7808 * Only normalize user tasks:
7809 */
3472eaa1 7810 if (p->flags & PF_KTHREAD)
178be793
IM
7811 continue;
7812
4fa8d299
JP
7813 p->se.exec_start = 0;
7814 schedstat_set(p->se.statistics.wait_start, 0);
7815 schedstat_set(p->se.statistics.sleep_start, 0);
7816 schedstat_set(p->se.statistics.block_start, 0);
dd41f596 7817
aab03e05 7818 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
7819 /*
7820 * Renice negative nice level userspace
7821 * tasks back to 0:
7822 */
3472eaa1 7823 if (task_nice(p) < 0)
dd41f596 7824 set_user_nice(p, 0);
1da177e4 7825 continue;
dd41f596 7826 }
1da177e4 7827
dbc7f069 7828 __sched_setscheduler(p, &attr, false, false);
5d07f420 7829 }
3472eaa1 7830 read_unlock(&tasklist_lock);
1da177e4
LT
7831}
7832
7833#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7834
67fc4e0c 7835#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7836/*
67fc4e0c 7837 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7838 *
7839 * They can only be called when the whole system has been
7840 * stopped - every CPU needs to be quiescent, and no scheduling
7841 * activity can take place. Using them for anything else would
7842 * be a serious bug, and as a result, they aren't even visible
7843 * under any other configuration.
7844 */
7845
7846/**
7847 * curr_task - return the current task for a given cpu.
7848 * @cpu: the processor in question.
7849 *
7850 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
7851 *
7852 * Return: The current task for @cpu.
1df5c10a 7853 */
36c8b586 7854struct task_struct *curr_task(int cpu)
1df5c10a
LT
7855{
7856 return cpu_curr(cpu);
7857}
7858
67fc4e0c
JW
7859#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7860
7861#ifdef CONFIG_IA64
1df5c10a
LT
7862/**
7863 * set_curr_task - set the current task for a given cpu.
7864 * @cpu: the processor in question.
7865 * @p: the task pointer to set.
7866 *
7867 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7868 * are serviced on a separate stack. It allows the architecture to switch the
7869 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7870 * must be called with all CPU's synchronized, and interrupts disabled, the
7871 * and caller must save the original value of the current task (see
7872 * curr_task() above) and restore that value before reenabling interrupts and
7873 * re-starting the system.
7874 *
7875 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7876 */
a458ae2e 7877void ia64_set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7878{
7879 cpu_curr(cpu) = p;
7880}
7881
7882#endif
29f59db3 7883
7c941438 7884#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7885/* task_group_lock serializes the addition/removal of task groups */
7886static DEFINE_SPINLOCK(task_group_lock);
7887
2f5177f0 7888static void sched_free_group(struct task_group *tg)
bccbe08a
PZ
7889{
7890 free_fair_sched_group(tg);
7891 free_rt_sched_group(tg);
e9aa1dd1 7892 autogroup_free(tg);
b0367629 7893 kmem_cache_free(task_group_cache, tg);
bccbe08a
PZ
7894}
7895
7896/* allocate runqueue etc for a new task group */
ec7dc8ac 7897struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7898{
7899 struct task_group *tg;
bccbe08a 7900
b0367629 7901 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
bccbe08a
PZ
7902 if (!tg)
7903 return ERR_PTR(-ENOMEM);
7904
ec7dc8ac 7905 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7906 goto err;
7907
ec7dc8ac 7908 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7909 goto err;
7910
ace783b9
LZ
7911 return tg;
7912
7913err:
2f5177f0 7914 sched_free_group(tg);
ace783b9
LZ
7915 return ERR_PTR(-ENOMEM);
7916}
7917
7918void sched_online_group(struct task_group *tg, struct task_group *parent)
7919{
7920 unsigned long flags;
7921
8ed36996 7922 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7923 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7924
7925 WARN_ON(!parent); /* root should already exist */
7926
7927 tg->parent = parent;
f473aa5e 7928 INIT_LIST_HEAD(&tg->children);
09f2724a 7929 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7930 spin_unlock_irqrestore(&task_group_lock, flags);
8663e24d
PZ
7931
7932 online_fair_sched_group(tg);
29f59db3
SV
7933}
7934
9b5b7751 7935/* rcu callback to free various structures associated with a task group */
2f5177f0 7936static void sched_free_group_rcu(struct rcu_head *rhp)
29f59db3 7937{
29f59db3 7938 /* now it should be safe to free those cfs_rqs */
2f5177f0 7939 sched_free_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7940}
7941
4cf86d77 7942void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
7943{
7944 /* wait for possible concurrent references to cfs_rqs complete */
2f5177f0 7945 call_rcu(&tg->rcu, sched_free_group_rcu);
ace783b9
LZ
7946}
7947
7948void sched_offline_group(struct task_group *tg)
29f59db3 7949{
8ed36996 7950 unsigned long flags;
29f59db3 7951
3d4b47b4 7952 /* end participation in shares distribution */
6fe1f348 7953 unregister_fair_sched_group(tg);
3d4b47b4
PZ
7954
7955 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7956 list_del_rcu(&tg->list);
f473aa5e 7957 list_del_rcu(&tg->siblings);
8ed36996 7958 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7959}
7960
ea86cb4b 7961static void sched_change_group(struct task_struct *tsk, int type)
29f59db3 7962{
8323f26c 7963 struct task_group *tg;
29f59db3 7964
f7b8a47d
KT
7965 /*
7966 * All callers are synchronized by task_rq_lock(); we do not use RCU
7967 * which is pointless here. Thus, we pass "true" to task_css_check()
7968 * to prevent lockdep warnings.
7969 */
7970 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
7971 struct task_group, css);
7972 tg = autogroup_task_group(tsk, tg);
7973 tsk->sched_task_group = tg;
7974
810b3817 7975#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
7976 if (tsk->sched_class->task_change_group)
7977 tsk->sched_class->task_change_group(tsk, type);
b2b5ce02 7978 else
810b3817 7979#endif
b2b5ce02 7980 set_task_rq(tsk, task_cpu(tsk));
ea86cb4b
VG
7981}
7982
7983/*
7984 * Change task's runqueue when it moves between groups.
7985 *
7986 * The caller of this function should have put the task in its new group by
7987 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
7988 * its new group.
7989 */
7990void sched_move_task(struct task_struct *tsk)
7991{
7992 int queued, running;
7993 struct rq_flags rf;
7994 struct rq *rq;
7995
7996 rq = task_rq_lock(tsk, &rf);
7997
7998 running = task_current(rq, tsk);
7999 queued = task_on_rq_queued(tsk);
8000
8001 if (queued)
8002 dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
8003 if (unlikely(running))
8004 put_prev_task(rq, tsk);
8005
8006 sched_change_group(tsk, TASK_MOVE_GROUP);
810b3817 8007
da0c1e65 8008 if (queued)
ff77e468 8009 enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
a399d233 8010 if (unlikely(running))
b2bf6c31 8011 set_curr_task(rq, tsk);
29f59db3 8012
eb580751 8013 task_rq_unlock(rq, tsk, &rf);
29f59db3 8014}
7c941438 8015#endif /* CONFIG_CGROUP_SCHED */
29f59db3 8016
a790de99
PT
8017#ifdef CONFIG_RT_GROUP_SCHED
8018/*
8019 * Ensure that the real time constraints are schedulable.
8020 */
8021static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 8022
9a7e0b18
PZ
8023/* Must be called with tasklist_lock held */
8024static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 8025{
9a7e0b18 8026 struct task_struct *g, *p;
b40b2e8e 8027
1fe89e1b
PZ
8028 /*
8029 * Autogroups do not have RT tasks; see autogroup_create().
8030 */
8031 if (task_group_is_autogroup(tg))
8032 return 0;
8033
5d07f420 8034 for_each_process_thread(g, p) {
8651c658 8035 if (rt_task(p) && task_group(p) == tg)
9a7e0b18 8036 return 1;
5d07f420 8037 }
b40b2e8e 8038
9a7e0b18
PZ
8039 return 0;
8040}
b40b2e8e 8041
9a7e0b18
PZ
8042struct rt_schedulable_data {
8043 struct task_group *tg;
8044 u64 rt_period;
8045 u64 rt_runtime;
8046};
b40b2e8e 8047
a790de99 8048static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
8049{
8050 struct rt_schedulable_data *d = data;
8051 struct task_group *child;
8052 unsigned long total, sum = 0;
8053 u64 period, runtime;
b40b2e8e 8054
9a7e0b18
PZ
8055 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8056 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 8057
9a7e0b18
PZ
8058 if (tg == d->tg) {
8059 period = d->rt_period;
8060 runtime = d->rt_runtime;
b40b2e8e 8061 }
b40b2e8e 8062
4653f803
PZ
8063 /*
8064 * Cannot have more runtime than the period.
8065 */
8066 if (runtime > period && runtime != RUNTIME_INF)
8067 return -EINVAL;
6f505b16 8068
4653f803
PZ
8069 /*
8070 * Ensure we don't starve existing RT tasks.
8071 */
9a7e0b18
PZ
8072 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8073 return -EBUSY;
6f505b16 8074
9a7e0b18 8075 total = to_ratio(period, runtime);
6f505b16 8076
4653f803
PZ
8077 /*
8078 * Nobody can have more than the global setting allows.
8079 */
8080 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8081 return -EINVAL;
6f505b16 8082
4653f803
PZ
8083 /*
8084 * The sum of our children's runtime should not exceed our own.
8085 */
9a7e0b18
PZ
8086 list_for_each_entry_rcu(child, &tg->children, siblings) {
8087 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8088 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8089
9a7e0b18
PZ
8090 if (child == d->tg) {
8091 period = d->rt_period;
8092 runtime = d->rt_runtime;
8093 }
6f505b16 8094
9a7e0b18 8095 sum += to_ratio(period, runtime);
9f0c1e56 8096 }
6f505b16 8097
9a7e0b18
PZ
8098 if (sum > total)
8099 return -EINVAL;
8100
8101 return 0;
6f505b16
PZ
8102}
8103
9a7e0b18 8104static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8105{
8277434e
PT
8106 int ret;
8107
9a7e0b18
PZ
8108 struct rt_schedulable_data data = {
8109 .tg = tg,
8110 .rt_period = period,
8111 .rt_runtime = runtime,
8112 };
8113
8277434e
PT
8114 rcu_read_lock();
8115 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
8116 rcu_read_unlock();
8117
8118 return ret;
521f1a24
DG
8119}
8120
ab84d31e 8121static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 8122 u64 rt_period, u64 rt_runtime)
6f505b16 8123{
ac086bc2 8124 int i, err = 0;
9f0c1e56 8125
2636ed5f
PZ
8126 /*
8127 * Disallowing the root group RT runtime is BAD, it would disallow the
8128 * kernel creating (and or operating) RT threads.
8129 */
8130 if (tg == &root_task_group && rt_runtime == 0)
8131 return -EINVAL;
8132
8133 /* No period doesn't make any sense. */
8134 if (rt_period == 0)
8135 return -EINVAL;
8136
9f0c1e56 8137 mutex_lock(&rt_constraints_mutex);
521f1a24 8138 read_lock(&tasklist_lock);
9a7e0b18
PZ
8139 err = __rt_schedulable(tg, rt_period, rt_runtime);
8140 if (err)
9f0c1e56 8141 goto unlock;
ac086bc2 8142
0986b11b 8143 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8144 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8145 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8146
8147 for_each_possible_cpu(i) {
8148 struct rt_rq *rt_rq = tg->rt_rq[i];
8149
0986b11b 8150 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8151 rt_rq->rt_runtime = rt_runtime;
0986b11b 8152 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8153 }
0986b11b 8154 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 8155unlock:
521f1a24 8156 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8157 mutex_unlock(&rt_constraints_mutex);
8158
8159 return err;
6f505b16
PZ
8160}
8161
25cc7da7 8162static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
8163{
8164 u64 rt_runtime, rt_period;
8165
8166 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8167 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8168 if (rt_runtime_us < 0)
8169 rt_runtime = RUNTIME_INF;
8170
ab84d31e 8171 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
8172}
8173
25cc7da7 8174static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
8175{
8176 u64 rt_runtime_us;
8177
d0b27fa7 8178 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8179 return -1;
8180
d0b27fa7 8181 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8182 do_div(rt_runtime_us, NSEC_PER_USEC);
8183 return rt_runtime_us;
8184}
d0b27fa7 8185
ce2f5fe4 8186static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
d0b27fa7
PZ
8187{
8188 u64 rt_runtime, rt_period;
8189
ce2f5fe4 8190 rt_period = rt_period_us * NSEC_PER_USEC;
d0b27fa7
PZ
8191 rt_runtime = tg->rt_bandwidth.rt_runtime;
8192
ab84d31e 8193 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
8194}
8195
25cc7da7 8196static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
8197{
8198 u64 rt_period_us;
8199
8200 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8201 do_div(rt_period_us, NSEC_PER_USEC);
8202 return rt_period_us;
8203}
332ac17e 8204#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8205
332ac17e 8206#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
8207static int sched_rt_global_constraints(void)
8208{
8209 int ret = 0;
8210
8211 mutex_lock(&rt_constraints_mutex);
9a7e0b18 8212 read_lock(&tasklist_lock);
4653f803 8213 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 8214 read_unlock(&tasklist_lock);
d0b27fa7
PZ
8215 mutex_unlock(&rt_constraints_mutex);
8216
8217 return ret;
8218}
54e99124 8219
25cc7da7 8220static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
8221{
8222 /* Don't accept realtime tasks when there is no way for them to run */
8223 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8224 return 0;
8225
8226 return 1;
8227}
8228
6d6bc0ad 8229#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8230static int sched_rt_global_constraints(void)
8231{
ac086bc2 8232 unsigned long flags;
8c5e9554 8233 int i;
ec5d4989 8234
0986b11b 8235 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
8236 for_each_possible_cpu(i) {
8237 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8238
0986b11b 8239 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8240 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 8241 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8242 }
0986b11b 8243 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 8244
8c5e9554 8245 return 0;
d0b27fa7 8246}
6d6bc0ad 8247#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8248
a1963b81 8249static int sched_dl_global_validate(void)
332ac17e 8250{
1724813d
PZ
8251 u64 runtime = global_rt_runtime();
8252 u64 period = global_rt_period();
332ac17e 8253 u64 new_bw = to_ratio(period, runtime);
f10e00f4 8254 struct dl_bw *dl_b;
1724813d 8255 int cpu, ret = 0;
49516342 8256 unsigned long flags;
332ac17e
DF
8257
8258 /*
8259 * Here we want to check the bandwidth not being set to some
8260 * value smaller than the currently allocated bandwidth in
8261 * any of the root_domains.
8262 *
8263 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
8264 * cycling on root_domains... Discussion on different/better
8265 * solutions is welcome!
8266 */
1724813d 8267 for_each_possible_cpu(cpu) {
f10e00f4
KT
8268 rcu_read_lock_sched();
8269 dl_b = dl_bw_of(cpu);
332ac17e 8270
49516342 8271 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d
PZ
8272 if (new_bw < dl_b->total_bw)
8273 ret = -EBUSY;
49516342 8274 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
1724813d 8275
f10e00f4
KT
8276 rcu_read_unlock_sched();
8277
1724813d
PZ
8278 if (ret)
8279 break;
332ac17e
DF
8280 }
8281
1724813d 8282 return ret;
332ac17e
DF
8283}
8284
1724813d 8285static void sched_dl_do_global(void)
ce0dbbbb 8286{
1724813d 8287 u64 new_bw = -1;
f10e00f4 8288 struct dl_bw *dl_b;
1724813d 8289 int cpu;
49516342 8290 unsigned long flags;
ce0dbbbb 8291
1724813d
PZ
8292 def_dl_bandwidth.dl_period = global_rt_period();
8293 def_dl_bandwidth.dl_runtime = global_rt_runtime();
8294
8295 if (global_rt_runtime() != RUNTIME_INF)
8296 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
8297
8298 /*
8299 * FIXME: As above...
8300 */
8301 for_each_possible_cpu(cpu) {
f10e00f4
KT
8302 rcu_read_lock_sched();
8303 dl_b = dl_bw_of(cpu);
1724813d 8304
49516342 8305 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d 8306 dl_b->bw = new_bw;
49516342 8307 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
f10e00f4
KT
8308
8309 rcu_read_unlock_sched();
ce0dbbbb 8310 }
1724813d
PZ
8311}
8312
8313static int sched_rt_global_validate(void)
8314{
8315 if (sysctl_sched_rt_period <= 0)
8316 return -EINVAL;
8317
e9e7cb38
JL
8318 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
8319 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
1724813d
PZ
8320 return -EINVAL;
8321
8322 return 0;
8323}
8324
8325static void sched_rt_do_global(void)
8326{
8327 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8328 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
8329}
8330
d0b27fa7 8331int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8332 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8333 loff_t *ppos)
8334{
d0b27fa7
PZ
8335 int old_period, old_runtime;
8336 static DEFINE_MUTEX(mutex);
1724813d 8337 int ret;
d0b27fa7
PZ
8338
8339 mutex_lock(&mutex);
8340 old_period = sysctl_sched_rt_period;
8341 old_runtime = sysctl_sched_rt_runtime;
8342
8d65af78 8343 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
8344
8345 if (!ret && write) {
1724813d
PZ
8346 ret = sched_rt_global_validate();
8347 if (ret)
8348 goto undo;
8349
a1963b81 8350 ret = sched_dl_global_validate();
1724813d
PZ
8351 if (ret)
8352 goto undo;
8353
a1963b81 8354 ret = sched_rt_global_constraints();
1724813d
PZ
8355 if (ret)
8356 goto undo;
8357
8358 sched_rt_do_global();
8359 sched_dl_do_global();
8360 }
8361 if (0) {
8362undo:
8363 sysctl_sched_rt_period = old_period;
8364 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
8365 }
8366 mutex_unlock(&mutex);
8367
8368 return ret;
8369}
68318b8e 8370
1724813d 8371int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
8372 void __user *buffer, size_t *lenp,
8373 loff_t *ppos)
8374{
8375 int ret;
332ac17e 8376 static DEFINE_MUTEX(mutex);
332ac17e
DF
8377
8378 mutex_lock(&mutex);
332ac17e 8379 ret = proc_dointvec(table, write, buffer, lenp, ppos);
1724813d
PZ
8380 /* make sure that internally we keep jiffies */
8381 /* also, writing zero resets timeslice to default */
332ac17e 8382 if (!ret && write) {
1724813d
PZ
8383 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8384 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
332ac17e
DF
8385 }
8386 mutex_unlock(&mutex);
332ac17e
DF
8387 return ret;
8388}
8389
052f1dc7 8390#ifdef CONFIG_CGROUP_SCHED
68318b8e 8391
a7c6d554 8392static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 8393{
a7c6d554 8394 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
8395}
8396
eb95419b
TH
8397static struct cgroup_subsys_state *
8398cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 8399{
eb95419b
TH
8400 struct task_group *parent = css_tg(parent_css);
8401 struct task_group *tg;
68318b8e 8402
eb95419b 8403 if (!parent) {
68318b8e 8404 /* This is early initialization for the top cgroup */
07e06b01 8405 return &root_task_group.css;
68318b8e
SV
8406 }
8407
ec7dc8ac 8408 tg = sched_create_group(parent);
68318b8e
SV
8409 if (IS_ERR(tg))
8410 return ERR_PTR(-ENOMEM);
8411
2f5177f0
PZ
8412 sched_online_group(tg, parent);
8413
68318b8e
SV
8414 return &tg->css;
8415}
8416
2f5177f0 8417static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
ace783b9 8418{
eb95419b 8419 struct task_group *tg = css_tg(css);
ace783b9 8420
2f5177f0 8421 sched_offline_group(tg);
ace783b9
LZ
8422}
8423
eb95419b 8424static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 8425{
eb95419b 8426 struct task_group *tg = css_tg(css);
68318b8e 8427
2f5177f0
PZ
8428 /*
8429 * Relies on the RCU grace period between css_released() and this.
8430 */
8431 sched_free_group(tg);
ace783b9
LZ
8432}
8433
ea86cb4b
VG
8434/*
8435 * This is called before wake_up_new_task(), therefore we really only
8436 * have to set its group bits, all the other stuff does not apply.
8437 */
b53202e6 8438static void cpu_cgroup_fork(struct task_struct *task)
eeb61e53 8439{
ea86cb4b
VG
8440 struct rq_flags rf;
8441 struct rq *rq;
8442
8443 rq = task_rq_lock(task, &rf);
8444
80f5c1b8 8445 update_rq_clock(rq);
ea86cb4b
VG
8446 sched_change_group(task, TASK_SET_GROUP);
8447
8448 task_rq_unlock(rq, task, &rf);
eeb61e53
KT
8449}
8450
1f7dd3e5 8451static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
68318b8e 8452{
bb9d97b6 8453 struct task_struct *task;
1f7dd3e5 8454 struct cgroup_subsys_state *css;
7dc603c9 8455 int ret = 0;
bb9d97b6 8456
1f7dd3e5 8457 cgroup_taskset_for_each(task, css, tset) {
b68aa230 8458#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 8459 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 8460 return -EINVAL;
b68aa230 8461#else
bb9d97b6
TH
8462 /* We don't support RT-tasks being in separate groups */
8463 if (task->sched_class != &fair_sched_class)
8464 return -EINVAL;
b68aa230 8465#endif
7dc603c9
PZ
8466 /*
8467 * Serialize against wake_up_new_task() such that if its
8468 * running, we're sure to observe its full state.
8469 */
8470 raw_spin_lock_irq(&task->pi_lock);
8471 /*
8472 * Avoid calling sched_move_task() before wake_up_new_task()
8473 * has happened. This would lead to problems with PELT, due to
8474 * move wanting to detach+attach while we're not attached yet.
8475 */
8476 if (task->state == TASK_NEW)
8477 ret = -EINVAL;
8478 raw_spin_unlock_irq(&task->pi_lock);
8479
8480 if (ret)
8481 break;
bb9d97b6 8482 }
7dc603c9 8483 return ret;
be367d09 8484}
68318b8e 8485
1f7dd3e5 8486static void cpu_cgroup_attach(struct cgroup_taskset *tset)
68318b8e 8487{
bb9d97b6 8488 struct task_struct *task;
1f7dd3e5 8489 struct cgroup_subsys_state *css;
bb9d97b6 8490
1f7dd3e5 8491 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 8492 sched_move_task(task);
68318b8e
SV
8493}
8494
052f1dc7 8495#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
8496static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8497 struct cftype *cftype, u64 shareval)
68318b8e 8498{
182446d0 8499 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
8500}
8501
182446d0
TH
8502static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8503 struct cftype *cft)
68318b8e 8504{
182446d0 8505 struct task_group *tg = css_tg(css);
68318b8e 8506
c8b28116 8507 return (u64) scale_load_down(tg->shares);
68318b8e 8508}
ab84d31e
PT
8509
8510#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
8511static DEFINE_MUTEX(cfs_constraints_mutex);
8512
ab84d31e
PT
8513const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8514const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8515
a790de99
PT
8516static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8517
ab84d31e
PT
8518static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8519{
56f570e5 8520 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 8521 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
8522
8523 if (tg == &root_task_group)
8524 return -EINVAL;
8525
8526 /*
8527 * Ensure we have at some amount of bandwidth every period. This is
8528 * to prevent reaching a state of large arrears when throttled via
8529 * entity_tick() resulting in prolonged exit starvation.
8530 */
8531 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8532 return -EINVAL;
8533
8534 /*
8535 * Likewise, bound things on the otherside by preventing insane quota
8536 * periods. This also allows us to normalize in computing quota
8537 * feasibility.
8538 */
8539 if (period > max_cfs_quota_period)
8540 return -EINVAL;
8541
0e59bdae
KT
8542 /*
8543 * Prevent race between setting of cfs_rq->runtime_enabled and
8544 * unthrottle_offline_cfs_rqs().
8545 */
8546 get_online_cpus();
a790de99
PT
8547 mutex_lock(&cfs_constraints_mutex);
8548 ret = __cfs_schedulable(tg, period, quota);
8549 if (ret)
8550 goto out_unlock;
8551
58088ad0 8552 runtime_enabled = quota != RUNTIME_INF;
56f570e5 8553 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
8554 /*
8555 * If we need to toggle cfs_bandwidth_used, off->on must occur
8556 * before making related changes, and on->off must occur afterwards
8557 */
8558 if (runtime_enabled && !runtime_was_enabled)
8559 cfs_bandwidth_usage_inc();
ab84d31e
PT
8560 raw_spin_lock_irq(&cfs_b->lock);
8561 cfs_b->period = ns_to_ktime(period);
8562 cfs_b->quota = quota;
58088ad0 8563
a9cf55b2 8564 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 8565 /* restart the period timer (if active) to handle new period expiry */
77a4d1a1
PZ
8566 if (runtime_enabled)
8567 start_cfs_bandwidth(cfs_b);
ab84d31e
PT
8568 raw_spin_unlock_irq(&cfs_b->lock);
8569
0e59bdae 8570 for_each_online_cpu(i) {
ab84d31e 8571 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 8572 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
8573
8574 raw_spin_lock_irq(&rq->lock);
58088ad0 8575 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 8576 cfs_rq->runtime_remaining = 0;
671fd9da 8577
029632fb 8578 if (cfs_rq->throttled)
671fd9da 8579 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
8580 raw_spin_unlock_irq(&rq->lock);
8581 }
1ee14e6c
BS
8582 if (runtime_was_enabled && !runtime_enabled)
8583 cfs_bandwidth_usage_dec();
a790de99
PT
8584out_unlock:
8585 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 8586 put_online_cpus();
ab84d31e 8587
a790de99 8588 return ret;
ab84d31e
PT
8589}
8590
8591int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8592{
8593 u64 quota, period;
8594
029632fb 8595 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8596 if (cfs_quota_us < 0)
8597 quota = RUNTIME_INF;
8598 else
8599 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8600
8601 return tg_set_cfs_bandwidth(tg, period, quota);
8602}
8603
8604long tg_get_cfs_quota(struct task_group *tg)
8605{
8606 u64 quota_us;
8607
029632fb 8608 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
8609 return -1;
8610
029632fb 8611 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
8612 do_div(quota_us, NSEC_PER_USEC);
8613
8614 return quota_us;
8615}
8616
8617int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8618{
8619 u64 quota, period;
8620
8621 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 8622 quota = tg->cfs_bandwidth.quota;
ab84d31e 8623
ab84d31e
PT
8624 return tg_set_cfs_bandwidth(tg, period, quota);
8625}
8626
8627long tg_get_cfs_period(struct task_group *tg)
8628{
8629 u64 cfs_period_us;
8630
029632fb 8631 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8632 do_div(cfs_period_us, NSEC_PER_USEC);
8633
8634 return cfs_period_us;
8635}
8636
182446d0
TH
8637static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8638 struct cftype *cft)
ab84d31e 8639{
182446d0 8640 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
8641}
8642
182446d0
TH
8643static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8644 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 8645{
182446d0 8646 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
8647}
8648
182446d0
TH
8649static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8650 struct cftype *cft)
ab84d31e 8651{
182446d0 8652 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
8653}
8654
182446d0
TH
8655static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8656 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 8657{
182446d0 8658 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
8659}
8660
a790de99
PT
8661struct cfs_schedulable_data {
8662 struct task_group *tg;
8663 u64 period, quota;
8664};
8665
8666/*
8667 * normalize group quota/period to be quota/max_period
8668 * note: units are usecs
8669 */
8670static u64 normalize_cfs_quota(struct task_group *tg,
8671 struct cfs_schedulable_data *d)
8672{
8673 u64 quota, period;
8674
8675 if (tg == d->tg) {
8676 period = d->period;
8677 quota = d->quota;
8678 } else {
8679 period = tg_get_cfs_period(tg);
8680 quota = tg_get_cfs_quota(tg);
8681 }
8682
8683 /* note: these should typically be equivalent */
8684 if (quota == RUNTIME_INF || quota == -1)
8685 return RUNTIME_INF;
8686
8687 return to_ratio(period, quota);
8688}
8689
8690static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8691{
8692 struct cfs_schedulable_data *d = data;
029632fb 8693 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
8694 s64 quota = 0, parent_quota = -1;
8695
8696 if (!tg->parent) {
8697 quota = RUNTIME_INF;
8698 } else {
029632fb 8699 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
8700
8701 quota = normalize_cfs_quota(tg, d);
9c58c79a 8702 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
8703
8704 /*
8705 * ensure max(child_quota) <= parent_quota, inherit when no
8706 * limit is set
8707 */
8708 if (quota == RUNTIME_INF)
8709 quota = parent_quota;
8710 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8711 return -EINVAL;
8712 }
9c58c79a 8713 cfs_b->hierarchical_quota = quota;
a790de99
PT
8714
8715 return 0;
8716}
8717
8718static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8719{
8277434e 8720 int ret;
a790de99
PT
8721 struct cfs_schedulable_data data = {
8722 .tg = tg,
8723 .period = period,
8724 .quota = quota,
8725 };
8726
8727 if (quota != RUNTIME_INF) {
8728 do_div(data.period, NSEC_PER_USEC);
8729 do_div(data.quota, NSEC_PER_USEC);
8730 }
8731
8277434e
PT
8732 rcu_read_lock();
8733 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8734 rcu_read_unlock();
8735
8736 return ret;
a790de99 8737}
e8da1b18 8738
2da8ca82 8739static int cpu_stats_show(struct seq_file *sf, void *v)
e8da1b18 8740{
2da8ca82 8741 struct task_group *tg = css_tg(seq_css(sf));
029632fb 8742 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 8743
44ffc75b
TH
8744 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8745 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8746 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
8747
8748 return 0;
8749}
ab84d31e 8750#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 8751#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8752
052f1dc7 8753#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
8754static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8755 struct cftype *cft, s64 val)
6f505b16 8756{
182446d0 8757 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
8758}
8759
182446d0
TH
8760static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8761 struct cftype *cft)
6f505b16 8762{
182446d0 8763 return sched_group_rt_runtime(css_tg(css));
6f505b16 8764}
d0b27fa7 8765
182446d0
TH
8766static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8767 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 8768{
182446d0 8769 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
8770}
8771
182446d0
TH
8772static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8773 struct cftype *cft)
d0b27fa7 8774{
182446d0 8775 return sched_group_rt_period(css_tg(css));
d0b27fa7 8776}
6d6bc0ad 8777#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8778
fe5c7cc2 8779static struct cftype cpu_files[] = {
052f1dc7 8780#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8781 {
8782 .name = "shares",
f4c753b7
PM
8783 .read_u64 = cpu_shares_read_u64,
8784 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8785 },
052f1dc7 8786#endif
ab84d31e
PT
8787#ifdef CONFIG_CFS_BANDWIDTH
8788 {
8789 .name = "cfs_quota_us",
8790 .read_s64 = cpu_cfs_quota_read_s64,
8791 .write_s64 = cpu_cfs_quota_write_s64,
8792 },
8793 {
8794 .name = "cfs_period_us",
8795 .read_u64 = cpu_cfs_period_read_u64,
8796 .write_u64 = cpu_cfs_period_write_u64,
8797 },
e8da1b18
NR
8798 {
8799 .name = "stat",
2da8ca82 8800 .seq_show = cpu_stats_show,
e8da1b18 8801 },
ab84d31e 8802#endif
052f1dc7 8803#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8804 {
9f0c1e56 8805 .name = "rt_runtime_us",
06ecb27c
PM
8806 .read_s64 = cpu_rt_runtime_read,
8807 .write_s64 = cpu_rt_runtime_write,
6f505b16 8808 },
d0b27fa7
PZ
8809 {
8810 .name = "rt_period_us",
f4c753b7
PM
8811 .read_u64 = cpu_rt_period_read_uint,
8812 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8813 },
052f1dc7 8814#endif
4baf6e33 8815 { } /* terminate */
68318b8e
SV
8816};
8817
073219e9 8818struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748 8819 .css_alloc = cpu_cgroup_css_alloc,
2f5177f0 8820 .css_released = cpu_cgroup_css_released,
92fb9748 8821 .css_free = cpu_cgroup_css_free,
eeb61e53 8822 .fork = cpu_cgroup_fork,
bb9d97b6
TH
8823 .can_attach = cpu_cgroup_can_attach,
8824 .attach = cpu_cgroup_attach,
5577964e 8825 .legacy_cftypes = cpu_files,
b38e42e9 8826 .early_init = true,
68318b8e
SV
8827};
8828
052f1dc7 8829#endif /* CONFIG_CGROUP_SCHED */
d842de87 8830
b637a328
PM
8831void dump_cpu_task(int cpu)
8832{
8833 pr_info("Task dump for CPU %d:\n", cpu);
8834 sched_show_task(cpu_curr(cpu));
8835}
ed82b8a1
AK
8836
8837/*
8838 * Nice levels are multiplicative, with a gentle 10% change for every
8839 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8840 * nice 1, it will get ~10% less CPU time than another CPU-bound task
8841 * that remained on nice 0.
8842 *
8843 * The "10% effect" is relative and cumulative: from _any_ nice level,
8844 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8845 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8846 * If a task goes up by ~10% and another task goes down by ~10% then
8847 * the relative distance between them is ~25%.)
8848 */
8849const int sched_prio_to_weight[40] = {
8850 /* -20 */ 88761, 71755, 56483, 46273, 36291,
8851 /* -15 */ 29154, 23254, 18705, 14949, 11916,
8852 /* -10 */ 9548, 7620, 6100, 4904, 3906,
8853 /* -5 */ 3121, 2501, 1991, 1586, 1277,
8854 /* 0 */ 1024, 820, 655, 526, 423,
8855 /* 5 */ 335, 272, 215, 172, 137,
8856 /* 10 */ 110, 87, 70, 56, 45,
8857 /* 15 */ 36, 29, 23, 18, 15,
8858};
8859
8860/*
8861 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8862 *
8863 * In cases where the weight does not change often, we can use the
8864 * precalculated inverse to speed up arithmetics by turning divisions
8865 * into multiplications:
8866 */
8867const u32 sched_prio_to_wmult[40] = {
8868 /* -20 */ 48388, 59856, 76040, 92818, 118348,
8869 /* -15 */ 147320, 184698, 229616, 287308, 360437,
8870 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
8871 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
8872 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
8873 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
8874 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
8875 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8876};