]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - kernel/sched/core.c
sched: Fix cgroup movement of waking process
[mirror_ubuntu-kernels.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
1da177e4 74
5517d86b 75#include <asm/tlb.h>
838225b4 76#include <asm/irq_regs.h>
e6e6685a
GC
77#ifdef CONFIG_PARAVIRT
78#include <asm/paravirt.h>
79#endif
1da177e4 80
029632fb 81#include "sched.h"
391e43da 82#include "../workqueue_sched.h"
6e0534f2 83
a8d154b0 84#define CREATE_TRACE_POINTS
ad8d75ff 85#include <trace/events/sched.h>
a8d154b0 86
029632fb 87void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 88{
58088ad0
PT
89 unsigned long delta;
90 ktime_t soft, hard, now;
d0b27fa7 91
58088ad0
PT
92 for (;;) {
93 if (hrtimer_active(period_timer))
94 break;
95
96 now = hrtimer_cb_get_time(period_timer);
97 hrtimer_forward(period_timer, now, period);
d0b27fa7 98
58088ad0
PT
99 soft = hrtimer_get_softexpires(period_timer);
100 hard = hrtimer_get_expires(period_timer);
101 delta = ktime_to_ns(ktime_sub(hard, soft));
102 __hrtimer_start_range_ns(period_timer, soft, delta,
103 HRTIMER_MODE_ABS_PINNED, 0);
104 }
105}
106
029632fb
PZ
107DEFINE_MUTEX(sched_domains_mutex);
108DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 109
fe44d621 110static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 111
029632fb 112void update_rq_clock(struct rq *rq)
3e51f33f 113{
fe44d621 114 s64 delta;
305e6835 115
61eadef6 116 if (rq->skip_clock_update > 0)
f26f9aff 117 return;
aa483808 118
fe44d621
PZ
119 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
120 rq->clock += delta;
121 update_rq_clock_task(rq, delta);
3e51f33f
PZ
122}
123
bf5c91ba
IM
124/*
125 * Debugging: various feature bits
126 */
f00b45c1 127
f00b45c1
PZ
128#define SCHED_FEAT(name, enabled) \
129 (1UL << __SCHED_FEAT_##name) * enabled |
130
bf5c91ba 131const_debug unsigned int sysctl_sched_features =
391e43da 132#include "features.h"
f00b45c1
PZ
133 0;
134
135#undef SCHED_FEAT
136
137#ifdef CONFIG_SCHED_DEBUG
138#define SCHED_FEAT(name, enabled) \
139 #name ,
140
983ed7a6 141static __read_mostly char *sched_feat_names[] = {
391e43da 142#include "features.h"
f00b45c1
PZ
143 NULL
144};
145
146#undef SCHED_FEAT
147
34f3a814 148static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 149{
f00b45c1
PZ
150 int i;
151
f8b6d1cc 152 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
153 if (!(sysctl_sched_features & (1UL << i)))
154 seq_puts(m, "NO_");
155 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 156 }
34f3a814 157 seq_puts(m, "\n");
f00b45c1 158
34f3a814 159 return 0;
f00b45c1
PZ
160}
161
f8b6d1cc
PZ
162#ifdef HAVE_JUMP_LABEL
163
164#define jump_label_key__true jump_label_key_enabled
165#define jump_label_key__false jump_label_key_disabled
166
167#define SCHED_FEAT(name, enabled) \
168 jump_label_key__##enabled ,
169
170struct jump_label_key sched_feat_keys[__SCHED_FEAT_NR] = {
171#include "features.h"
172};
173
174#undef SCHED_FEAT
175
176static void sched_feat_disable(int i)
177{
178 if (jump_label_enabled(&sched_feat_keys[i]))
179 jump_label_dec(&sched_feat_keys[i]);
180}
181
182static void sched_feat_enable(int i)
183{
184 if (!jump_label_enabled(&sched_feat_keys[i]))
185 jump_label_inc(&sched_feat_keys[i]);
186}
187#else
188static void sched_feat_disable(int i) { };
189static void sched_feat_enable(int i) { };
190#endif /* HAVE_JUMP_LABEL */
191
f00b45c1
PZ
192static ssize_t
193sched_feat_write(struct file *filp, const char __user *ubuf,
194 size_t cnt, loff_t *ppos)
195{
196 char buf[64];
7740191c 197 char *cmp;
f00b45c1
PZ
198 int neg = 0;
199 int i;
200
201 if (cnt > 63)
202 cnt = 63;
203
204 if (copy_from_user(&buf, ubuf, cnt))
205 return -EFAULT;
206
207 buf[cnt] = 0;
7740191c 208 cmp = strstrip(buf);
f00b45c1 209
524429c3 210 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
211 neg = 1;
212 cmp += 3;
213 }
214
f8b6d1cc 215 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 216 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 217 if (neg) {
f00b45c1 218 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
219 sched_feat_disable(i);
220 } else {
f00b45c1 221 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
222 sched_feat_enable(i);
223 }
f00b45c1
PZ
224 break;
225 }
226 }
227
f8b6d1cc 228 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
229 return -EINVAL;
230
42994724 231 *ppos += cnt;
f00b45c1
PZ
232
233 return cnt;
234}
235
34f3a814
LZ
236static int sched_feat_open(struct inode *inode, struct file *filp)
237{
238 return single_open(filp, sched_feat_show, NULL);
239}
240
828c0950 241static const struct file_operations sched_feat_fops = {
34f3a814
LZ
242 .open = sched_feat_open,
243 .write = sched_feat_write,
244 .read = seq_read,
245 .llseek = seq_lseek,
246 .release = single_release,
f00b45c1
PZ
247};
248
249static __init int sched_init_debug(void)
250{
f00b45c1
PZ
251 debugfs_create_file("sched_features", 0644, NULL, NULL,
252 &sched_feat_fops);
253
254 return 0;
255}
256late_initcall(sched_init_debug);
f8b6d1cc 257#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 258
b82d9fdd
PZ
259/*
260 * Number of tasks to iterate in a single balance run.
261 * Limited because this is done with IRQs disabled.
262 */
263const_debug unsigned int sysctl_sched_nr_migrate = 32;
264
e9e9250b
PZ
265/*
266 * period over which we average the RT time consumption, measured
267 * in ms.
268 *
269 * default: 1s
270 */
271const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
272
fa85ae24 273/*
9f0c1e56 274 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
275 * default: 1s
276 */
9f0c1e56 277unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 278
029632fb 279__read_mostly int scheduler_running;
6892b75e 280
9f0c1e56
PZ
281/*
282 * part of the period that we allow rt tasks to run in us.
283 * default: 0.95s
284 */
285int sysctl_sched_rt_runtime = 950000;
fa85ae24 286
fa85ae24 287
1da177e4 288
0970d299 289/*
0122ec5b 290 * __task_rq_lock - lock the rq @p resides on.
b29739f9 291 */
70b97a7f 292static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
293 __acquires(rq->lock)
294{
0970d299
PZ
295 struct rq *rq;
296
0122ec5b
PZ
297 lockdep_assert_held(&p->pi_lock);
298
3a5c359a 299 for (;;) {
0970d299 300 rq = task_rq(p);
05fa785c 301 raw_spin_lock(&rq->lock);
65cc8e48 302 if (likely(rq == task_rq(p)))
3a5c359a 303 return rq;
05fa785c 304 raw_spin_unlock(&rq->lock);
b29739f9 305 }
b29739f9
IM
306}
307
1da177e4 308/*
0122ec5b 309 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 310 */
70b97a7f 311static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 312 __acquires(p->pi_lock)
1da177e4
LT
313 __acquires(rq->lock)
314{
70b97a7f 315 struct rq *rq;
1da177e4 316
3a5c359a 317 for (;;) {
0122ec5b 318 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 319 rq = task_rq(p);
05fa785c 320 raw_spin_lock(&rq->lock);
65cc8e48 321 if (likely(rq == task_rq(p)))
3a5c359a 322 return rq;
0122ec5b
PZ
323 raw_spin_unlock(&rq->lock);
324 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4 325 }
1da177e4
LT
326}
327
a9957449 328static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
329 __releases(rq->lock)
330{
05fa785c 331 raw_spin_unlock(&rq->lock);
b29739f9
IM
332}
333
0122ec5b
PZ
334static inline void
335task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 336 __releases(rq->lock)
0122ec5b 337 __releases(p->pi_lock)
1da177e4 338{
0122ec5b
PZ
339 raw_spin_unlock(&rq->lock);
340 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
341}
342
1da177e4 343/*
cc2a73b5 344 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 345 */
a9957449 346static struct rq *this_rq_lock(void)
1da177e4
LT
347 __acquires(rq->lock)
348{
70b97a7f 349 struct rq *rq;
1da177e4
LT
350
351 local_irq_disable();
352 rq = this_rq();
05fa785c 353 raw_spin_lock(&rq->lock);
1da177e4
LT
354
355 return rq;
356}
357
8f4d37ec
PZ
358#ifdef CONFIG_SCHED_HRTICK
359/*
360 * Use HR-timers to deliver accurate preemption points.
361 *
362 * Its all a bit involved since we cannot program an hrt while holding the
363 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
364 * reschedule event.
365 *
366 * When we get rescheduled we reprogram the hrtick_timer outside of the
367 * rq->lock.
368 */
8f4d37ec 369
8f4d37ec
PZ
370static void hrtick_clear(struct rq *rq)
371{
372 if (hrtimer_active(&rq->hrtick_timer))
373 hrtimer_cancel(&rq->hrtick_timer);
374}
375
8f4d37ec
PZ
376/*
377 * High-resolution timer tick.
378 * Runs from hardirq context with interrupts disabled.
379 */
380static enum hrtimer_restart hrtick(struct hrtimer *timer)
381{
382 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
383
384 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
385
05fa785c 386 raw_spin_lock(&rq->lock);
3e51f33f 387 update_rq_clock(rq);
8f4d37ec 388 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 389 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
390
391 return HRTIMER_NORESTART;
392}
393
95e904c7 394#ifdef CONFIG_SMP
31656519
PZ
395/*
396 * called from hardirq (IPI) context
397 */
398static void __hrtick_start(void *arg)
b328ca18 399{
31656519 400 struct rq *rq = arg;
b328ca18 401
05fa785c 402 raw_spin_lock(&rq->lock);
31656519
PZ
403 hrtimer_restart(&rq->hrtick_timer);
404 rq->hrtick_csd_pending = 0;
05fa785c 405 raw_spin_unlock(&rq->lock);
b328ca18
PZ
406}
407
31656519
PZ
408/*
409 * Called to set the hrtick timer state.
410 *
411 * called with rq->lock held and irqs disabled
412 */
029632fb 413void hrtick_start(struct rq *rq, u64 delay)
b328ca18 414{
31656519
PZ
415 struct hrtimer *timer = &rq->hrtick_timer;
416 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 417
cc584b21 418 hrtimer_set_expires(timer, time);
31656519
PZ
419
420 if (rq == this_rq()) {
421 hrtimer_restart(timer);
422 } else if (!rq->hrtick_csd_pending) {
6e275637 423 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
424 rq->hrtick_csd_pending = 1;
425 }
b328ca18
PZ
426}
427
428static int
429hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
430{
431 int cpu = (int)(long)hcpu;
432
433 switch (action) {
434 case CPU_UP_CANCELED:
435 case CPU_UP_CANCELED_FROZEN:
436 case CPU_DOWN_PREPARE:
437 case CPU_DOWN_PREPARE_FROZEN:
438 case CPU_DEAD:
439 case CPU_DEAD_FROZEN:
31656519 440 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
441 return NOTIFY_OK;
442 }
443
444 return NOTIFY_DONE;
445}
446
fa748203 447static __init void init_hrtick(void)
b328ca18
PZ
448{
449 hotcpu_notifier(hotplug_hrtick, 0);
450}
31656519
PZ
451#else
452/*
453 * Called to set the hrtick timer state.
454 *
455 * called with rq->lock held and irqs disabled
456 */
029632fb 457void hrtick_start(struct rq *rq, u64 delay)
31656519 458{
7f1e2ca9 459 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 460 HRTIMER_MODE_REL_PINNED, 0);
31656519 461}
b328ca18 462
006c75f1 463static inline void init_hrtick(void)
8f4d37ec 464{
8f4d37ec 465}
31656519 466#endif /* CONFIG_SMP */
8f4d37ec 467
31656519 468static void init_rq_hrtick(struct rq *rq)
8f4d37ec 469{
31656519
PZ
470#ifdef CONFIG_SMP
471 rq->hrtick_csd_pending = 0;
8f4d37ec 472
31656519
PZ
473 rq->hrtick_csd.flags = 0;
474 rq->hrtick_csd.func = __hrtick_start;
475 rq->hrtick_csd.info = rq;
476#endif
8f4d37ec 477
31656519
PZ
478 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
479 rq->hrtick_timer.function = hrtick;
8f4d37ec 480}
006c75f1 481#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
482static inline void hrtick_clear(struct rq *rq)
483{
484}
485
8f4d37ec
PZ
486static inline void init_rq_hrtick(struct rq *rq)
487{
488}
489
b328ca18
PZ
490static inline void init_hrtick(void)
491{
492}
006c75f1 493#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 494
c24d20db
IM
495/*
496 * resched_task - mark a task 'to be rescheduled now'.
497 *
498 * On UP this means the setting of the need_resched flag, on SMP it
499 * might also involve a cross-CPU call to trigger the scheduler on
500 * the target CPU.
501 */
502#ifdef CONFIG_SMP
503
504#ifndef tsk_is_polling
505#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
506#endif
507
029632fb 508void resched_task(struct task_struct *p)
c24d20db
IM
509{
510 int cpu;
511
05fa785c 512 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 513
5ed0cec0 514 if (test_tsk_need_resched(p))
c24d20db
IM
515 return;
516
5ed0cec0 517 set_tsk_need_resched(p);
c24d20db
IM
518
519 cpu = task_cpu(p);
520 if (cpu == smp_processor_id())
521 return;
522
523 /* NEED_RESCHED must be visible before we test polling */
524 smp_mb();
525 if (!tsk_is_polling(p))
526 smp_send_reschedule(cpu);
527}
528
029632fb 529void resched_cpu(int cpu)
c24d20db
IM
530{
531 struct rq *rq = cpu_rq(cpu);
532 unsigned long flags;
533
05fa785c 534 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
535 return;
536 resched_task(cpu_curr(cpu));
05fa785c 537 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 538}
06d8308c
TG
539
540#ifdef CONFIG_NO_HZ
83cd4fe2
VP
541/*
542 * In the semi idle case, use the nearest busy cpu for migrating timers
543 * from an idle cpu. This is good for power-savings.
544 *
545 * We don't do similar optimization for completely idle system, as
546 * selecting an idle cpu will add more delays to the timers than intended
547 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
548 */
549int get_nohz_timer_target(void)
550{
551 int cpu = smp_processor_id();
552 int i;
553 struct sched_domain *sd;
554
057f3fad 555 rcu_read_lock();
83cd4fe2 556 for_each_domain(cpu, sd) {
057f3fad
PZ
557 for_each_cpu(i, sched_domain_span(sd)) {
558 if (!idle_cpu(i)) {
559 cpu = i;
560 goto unlock;
561 }
562 }
83cd4fe2 563 }
057f3fad
PZ
564unlock:
565 rcu_read_unlock();
83cd4fe2
VP
566 return cpu;
567}
06d8308c
TG
568/*
569 * When add_timer_on() enqueues a timer into the timer wheel of an
570 * idle CPU then this timer might expire before the next timer event
571 * which is scheduled to wake up that CPU. In case of a completely
572 * idle system the next event might even be infinite time into the
573 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
574 * leaves the inner idle loop so the newly added timer is taken into
575 * account when the CPU goes back to idle and evaluates the timer
576 * wheel for the next timer event.
577 */
578void wake_up_idle_cpu(int cpu)
579{
580 struct rq *rq = cpu_rq(cpu);
581
582 if (cpu == smp_processor_id())
583 return;
584
585 /*
586 * This is safe, as this function is called with the timer
587 * wheel base lock of (cpu) held. When the CPU is on the way
588 * to idle and has not yet set rq->curr to idle then it will
589 * be serialized on the timer wheel base lock and take the new
590 * timer into account automatically.
591 */
592 if (rq->curr != rq->idle)
593 return;
45bf76df 594
45bf76df 595 /*
06d8308c
TG
596 * We can set TIF_RESCHED on the idle task of the other CPU
597 * lockless. The worst case is that the other CPU runs the
598 * idle task through an additional NOOP schedule()
45bf76df 599 */
5ed0cec0 600 set_tsk_need_resched(rq->idle);
45bf76df 601
06d8308c
TG
602 /* NEED_RESCHED must be visible before we test polling */
603 smp_mb();
604 if (!tsk_is_polling(rq->idle))
605 smp_send_reschedule(cpu);
45bf76df
IM
606}
607
ca38062e 608static inline bool got_nohz_idle_kick(void)
45bf76df 609{
1c792db7
SS
610 int cpu = smp_processor_id();
611 return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
45bf76df
IM
612}
613
ca38062e 614#else /* CONFIG_NO_HZ */
45bf76df 615
ca38062e 616static inline bool got_nohz_idle_kick(void)
2069dd75 617{
ca38062e 618 return false;
2069dd75
PZ
619}
620
6d6bc0ad 621#endif /* CONFIG_NO_HZ */
d842de87 622
029632fb 623void sched_avg_update(struct rq *rq)
18d95a28 624{
e9e9250b
PZ
625 s64 period = sched_avg_period();
626
627 while ((s64)(rq->clock - rq->age_stamp) > period) {
0d98bb26
WD
628 /*
629 * Inline assembly required to prevent the compiler
630 * optimising this loop into a divmod call.
631 * See __iter_div_u64_rem() for another example of this.
632 */
633 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
634 rq->age_stamp += period;
635 rq->rt_avg /= 2;
636 }
18d95a28
PZ
637}
638
6d6bc0ad 639#else /* !CONFIG_SMP */
029632fb 640void resched_task(struct task_struct *p)
18d95a28 641{
05fa785c 642 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 643 set_tsk_need_resched(p);
18d95a28 644}
6d6bc0ad 645#endif /* CONFIG_SMP */
18d95a28 646
a790de99
PT
647#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
648 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 649/*
8277434e
PT
650 * Iterate task_group tree rooted at *from, calling @down when first entering a
651 * node and @up when leaving it for the final time.
652 *
653 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 654 */
029632fb 655int walk_tg_tree_from(struct task_group *from,
8277434e 656 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
657{
658 struct task_group *parent, *child;
eb755805 659 int ret;
c09595f6 660
8277434e
PT
661 parent = from;
662
c09595f6 663down:
eb755805
PZ
664 ret = (*down)(parent, data);
665 if (ret)
8277434e 666 goto out;
c09595f6
PZ
667 list_for_each_entry_rcu(child, &parent->children, siblings) {
668 parent = child;
669 goto down;
670
671up:
672 continue;
673 }
eb755805 674 ret = (*up)(parent, data);
8277434e
PT
675 if (ret || parent == from)
676 goto out;
c09595f6
PZ
677
678 child = parent;
679 parent = parent->parent;
680 if (parent)
681 goto up;
8277434e 682out:
eb755805 683 return ret;
c09595f6
PZ
684}
685
029632fb 686int tg_nop(struct task_group *tg, void *data)
eb755805 687{
e2b245f8 688 return 0;
eb755805 689}
18d95a28
PZ
690#endif
691
029632fb 692void update_cpu_load(struct rq *this_rq);
9c217245 693
45bf76df
IM
694static void set_load_weight(struct task_struct *p)
695{
f05998d4
NR
696 int prio = p->static_prio - MAX_RT_PRIO;
697 struct load_weight *load = &p->se.load;
698
dd41f596
IM
699 /*
700 * SCHED_IDLE tasks get minimal weight:
701 */
702 if (p->policy == SCHED_IDLE) {
c8b28116 703 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 704 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
705 return;
706 }
71f8bd46 707
c8b28116 708 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 709 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
710}
711
371fd7e7 712static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 713{
a64692a3 714 update_rq_clock(rq);
dd41f596 715 sched_info_queued(p);
371fd7e7 716 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
717}
718
371fd7e7 719static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 720{
a64692a3 721 update_rq_clock(rq);
46ac22ba 722 sched_info_dequeued(p);
371fd7e7 723 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
724}
725
1e3c88bd
PZ
726/*
727 * activate_task - move a task to the runqueue.
728 */
029632fb 729void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
730{
731 if (task_contributes_to_load(p))
732 rq->nr_uninterruptible--;
733
371fd7e7 734 enqueue_task(rq, p, flags);
1e3c88bd
PZ
735}
736
737/*
738 * deactivate_task - remove a task from the runqueue.
739 */
029632fb 740void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
741{
742 if (task_contributes_to_load(p))
743 rq->nr_uninterruptible++;
744
371fd7e7 745 dequeue_task(rq, p, flags);
1e3c88bd
PZ
746}
747
b52bfee4
VP
748#ifdef CONFIG_IRQ_TIME_ACCOUNTING
749
305e6835
VP
750/*
751 * There are no locks covering percpu hardirq/softirq time.
752 * They are only modified in account_system_vtime, on corresponding CPU
753 * with interrupts disabled. So, writes are safe.
754 * They are read and saved off onto struct rq in update_rq_clock().
755 * This may result in other CPU reading this CPU's irq time and can
756 * race with irq/account_system_vtime on this CPU. We would either get old
8e92c201
PZ
757 * or new value with a side effect of accounting a slice of irq time to wrong
758 * task when irq is in progress while we read rq->clock. That is a worthy
759 * compromise in place of having locks on each irq in account_system_time.
305e6835 760 */
b52bfee4
VP
761static DEFINE_PER_CPU(u64, cpu_hardirq_time);
762static DEFINE_PER_CPU(u64, cpu_softirq_time);
763
764static DEFINE_PER_CPU(u64, irq_start_time);
765static int sched_clock_irqtime;
766
767void enable_sched_clock_irqtime(void)
768{
769 sched_clock_irqtime = 1;
770}
771
772void disable_sched_clock_irqtime(void)
773{
774 sched_clock_irqtime = 0;
775}
776
8e92c201
PZ
777#ifndef CONFIG_64BIT
778static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
779
780static inline void irq_time_write_begin(void)
781{
782 __this_cpu_inc(irq_time_seq.sequence);
783 smp_wmb();
784}
785
786static inline void irq_time_write_end(void)
787{
788 smp_wmb();
789 __this_cpu_inc(irq_time_seq.sequence);
790}
791
792static inline u64 irq_time_read(int cpu)
793{
794 u64 irq_time;
795 unsigned seq;
796
797 do {
798 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
799 irq_time = per_cpu(cpu_softirq_time, cpu) +
800 per_cpu(cpu_hardirq_time, cpu);
801 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
802
803 return irq_time;
804}
805#else /* CONFIG_64BIT */
806static inline void irq_time_write_begin(void)
807{
808}
809
810static inline void irq_time_write_end(void)
811{
812}
813
814static inline u64 irq_time_read(int cpu)
305e6835 815{
305e6835
VP
816 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
817}
8e92c201 818#endif /* CONFIG_64BIT */
305e6835 819
fe44d621
PZ
820/*
821 * Called before incrementing preempt_count on {soft,}irq_enter
822 * and before decrementing preempt_count on {soft,}irq_exit.
823 */
b52bfee4
VP
824void account_system_vtime(struct task_struct *curr)
825{
826 unsigned long flags;
fe44d621 827 s64 delta;
b52bfee4 828 int cpu;
b52bfee4
VP
829
830 if (!sched_clock_irqtime)
831 return;
832
833 local_irq_save(flags);
834
b52bfee4 835 cpu = smp_processor_id();
fe44d621
PZ
836 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
837 __this_cpu_add(irq_start_time, delta);
838
8e92c201 839 irq_time_write_begin();
b52bfee4
VP
840 /*
841 * We do not account for softirq time from ksoftirqd here.
842 * We want to continue accounting softirq time to ksoftirqd thread
843 * in that case, so as not to confuse scheduler with a special task
844 * that do not consume any time, but still wants to run.
845 */
846 if (hardirq_count())
fe44d621 847 __this_cpu_add(cpu_hardirq_time, delta);
4dd53d89 848 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
fe44d621 849 __this_cpu_add(cpu_softirq_time, delta);
b52bfee4 850
8e92c201 851 irq_time_write_end();
b52bfee4
VP
852 local_irq_restore(flags);
853}
b7dadc38 854EXPORT_SYMBOL_GPL(account_system_vtime);
b52bfee4 855
e6e6685a
GC
856#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
857
858#ifdef CONFIG_PARAVIRT
859static inline u64 steal_ticks(u64 steal)
aa483808 860{
e6e6685a
GC
861 if (unlikely(steal > NSEC_PER_SEC))
862 return div_u64(steal, TICK_NSEC);
fe44d621 863
e6e6685a
GC
864 return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
865}
866#endif
867
fe44d621 868static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 869{
095c0aa8
GC
870/*
871 * In theory, the compile should just see 0 here, and optimize out the call
872 * to sched_rt_avg_update. But I don't trust it...
873 */
874#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
875 s64 steal = 0, irq_delta = 0;
876#endif
877#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 878 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
879
880 /*
881 * Since irq_time is only updated on {soft,}irq_exit, we might run into
882 * this case when a previous update_rq_clock() happened inside a
883 * {soft,}irq region.
884 *
885 * When this happens, we stop ->clock_task and only update the
886 * prev_irq_time stamp to account for the part that fit, so that a next
887 * update will consume the rest. This ensures ->clock_task is
888 * monotonic.
889 *
890 * It does however cause some slight miss-attribution of {soft,}irq
891 * time, a more accurate solution would be to update the irq_time using
892 * the current rq->clock timestamp, except that would require using
893 * atomic ops.
894 */
895 if (irq_delta > delta)
896 irq_delta = delta;
897
898 rq->prev_irq_time += irq_delta;
899 delta -= irq_delta;
095c0aa8
GC
900#endif
901#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
902 if (static_branch((&paravirt_steal_rq_enabled))) {
903 u64 st;
904
905 steal = paravirt_steal_clock(cpu_of(rq));
906 steal -= rq->prev_steal_time_rq;
907
908 if (unlikely(steal > delta))
909 steal = delta;
910
911 st = steal_ticks(steal);
912 steal = st * TICK_NSEC;
913
914 rq->prev_steal_time_rq += steal;
915
916 delta -= steal;
917 }
918#endif
919
fe44d621
PZ
920 rq->clock_task += delta;
921
095c0aa8
GC
922#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
923 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
924 sched_rt_avg_update(rq, irq_delta + steal);
925#endif
aa483808
VP
926}
927
095c0aa8 928#ifdef CONFIG_IRQ_TIME_ACCOUNTING
abb74cef
VP
929static int irqtime_account_hi_update(void)
930{
3292beb3 931 u64 *cpustat = kcpustat_this_cpu->cpustat;
abb74cef
VP
932 unsigned long flags;
933 u64 latest_ns;
934 int ret = 0;
935
936 local_irq_save(flags);
937 latest_ns = this_cpu_read(cpu_hardirq_time);
612ef28a 938 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
abb74cef
VP
939 ret = 1;
940 local_irq_restore(flags);
941 return ret;
942}
943
944static int irqtime_account_si_update(void)
945{
3292beb3 946 u64 *cpustat = kcpustat_this_cpu->cpustat;
abb74cef
VP
947 unsigned long flags;
948 u64 latest_ns;
949 int ret = 0;
950
951 local_irq_save(flags);
952 latest_ns = this_cpu_read(cpu_softirq_time);
612ef28a 953 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
abb74cef
VP
954 ret = 1;
955 local_irq_restore(flags);
956 return ret;
957}
958
fe44d621 959#else /* CONFIG_IRQ_TIME_ACCOUNTING */
305e6835 960
abb74cef
VP
961#define sched_clock_irqtime (0)
962
095c0aa8 963#endif
b52bfee4 964
34f971f6
PZ
965void sched_set_stop_task(int cpu, struct task_struct *stop)
966{
967 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
968 struct task_struct *old_stop = cpu_rq(cpu)->stop;
969
970 if (stop) {
971 /*
972 * Make it appear like a SCHED_FIFO task, its something
973 * userspace knows about and won't get confused about.
974 *
975 * Also, it will make PI more or less work without too
976 * much confusion -- but then, stop work should not
977 * rely on PI working anyway.
978 */
979 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
980
981 stop->sched_class = &stop_sched_class;
982 }
983
984 cpu_rq(cpu)->stop = stop;
985
986 if (old_stop) {
987 /*
988 * Reset it back to a normal scheduling class so that
989 * it can die in pieces.
990 */
991 old_stop->sched_class = &rt_sched_class;
992 }
993}
994
14531189 995/*
dd41f596 996 * __normal_prio - return the priority that is based on the static prio
14531189 997 */
14531189
IM
998static inline int __normal_prio(struct task_struct *p)
999{
dd41f596 1000 return p->static_prio;
14531189
IM
1001}
1002
b29739f9
IM
1003/*
1004 * Calculate the expected normal priority: i.e. priority
1005 * without taking RT-inheritance into account. Might be
1006 * boosted by interactivity modifiers. Changes upon fork,
1007 * setprio syscalls, and whenever the interactivity
1008 * estimator recalculates.
1009 */
36c8b586 1010static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1011{
1012 int prio;
1013
e05606d3 1014 if (task_has_rt_policy(p))
b29739f9
IM
1015 prio = MAX_RT_PRIO-1 - p->rt_priority;
1016 else
1017 prio = __normal_prio(p);
1018 return prio;
1019}
1020
1021/*
1022 * Calculate the current priority, i.e. the priority
1023 * taken into account by the scheduler. This value might
1024 * be boosted by RT tasks, or might be boosted by
1025 * interactivity modifiers. Will be RT if the task got
1026 * RT-boosted. If not then it returns p->normal_prio.
1027 */
36c8b586 1028static int effective_prio(struct task_struct *p)
b29739f9
IM
1029{
1030 p->normal_prio = normal_prio(p);
1031 /*
1032 * If we are RT tasks or we were boosted to RT priority,
1033 * keep the priority unchanged. Otherwise, update priority
1034 * to the normal priority:
1035 */
1036 if (!rt_prio(p->prio))
1037 return p->normal_prio;
1038 return p->prio;
1039}
1040
1da177e4
LT
1041/**
1042 * task_curr - is this task currently executing on a CPU?
1043 * @p: the task in question.
1044 */
36c8b586 1045inline int task_curr(const struct task_struct *p)
1da177e4
LT
1046{
1047 return cpu_curr(task_cpu(p)) == p;
1048}
1049
cb469845
SR
1050static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1051 const struct sched_class *prev_class,
da7a735e 1052 int oldprio)
cb469845
SR
1053{
1054 if (prev_class != p->sched_class) {
1055 if (prev_class->switched_from)
da7a735e
PZ
1056 prev_class->switched_from(rq, p);
1057 p->sched_class->switched_to(rq, p);
1058 } else if (oldprio != p->prio)
1059 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
1060}
1061
029632fb 1062void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
1063{
1064 const struct sched_class *class;
1065
1066 if (p->sched_class == rq->curr->sched_class) {
1067 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1068 } else {
1069 for_each_class(class) {
1070 if (class == rq->curr->sched_class)
1071 break;
1072 if (class == p->sched_class) {
1073 resched_task(rq->curr);
1074 break;
1075 }
1076 }
1077 }
1078
1079 /*
1080 * A queue event has occurred, and we're going to schedule. In
1081 * this case, we can save a useless back to back clock update.
1082 */
fd2f4419 1083 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
1084 rq->skip_clock_update = 1;
1085}
1086
1da177e4 1087#ifdef CONFIG_SMP
dd41f596 1088void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1089{
e2912009
PZ
1090#ifdef CONFIG_SCHED_DEBUG
1091 /*
1092 * We should never call set_task_cpu() on a blocked task,
1093 * ttwu() will sort out the placement.
1094 */
077614ee
PZ
1095 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1096 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
0122ec5b
PZ
1097
1098#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1099 /*
1100 * The caller should hold either p->pi_lock or rq->lock, when changing
1101 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1102 *
1103 * sched_move_task() holds both and thus holding either pins the cgroup,
1104 * see set_task_rq().
1105 *
1106 * Furthermore, all task_rq users should acquire both locks, see
1107 * task_rq_lock().
1108 */
0122ec5b
PZ
1109 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1110 lockdep_is_held(&task_rq(p)->lock)));
1111#endif
e2912009
PZ
1112#endif
1113
de1d7286 1114 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1115
0c69774e
PZ
1116 if (task_cpu(p) != new_cpu) {
1117 p->se.nr_migrations++;
a8b0ca17 1118 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
0c69774e 1119 }
dd41f596
IM
1120
1121 __set_task_cpu(p, new_cpu);
c65cc870
IM
1122}
1123
969c7921 1124struct migration_arg {
36c8b586 1125 struct task_struct *task;
1da177e4 1126 int dest_cpu;
70b97a7f 1127};
1da177e4 1128
969c7921
TH
1129static int migration_cpu_stop(void *data);
1130
1da177e4
LT
1131/*
1132 * wait_task_inactive - wait for a thread to unschedule.
1133 *
85ba2d86
RM
1134 * If @match_state is nonzero, it's the @p->state value just checked and
1135 * not expected to change. If it changes, i.e. @p might have woken up,
1136 * then return zero. When we succeed in waiting for @p to be off its CPU,
1137 * we return a positive number (its total switch count). If a second call
1138 * a short while later returns the same number, the caller can be sure that
1139 * @p has remained unscheduled the whole time.
1140 *
1da177e4
LT
1141 * The caller must ensure that the task *will* unschedule sometime soon,
1142 * else this function might spin for a *long* time. This function can't
1143 * be called with interrupts off, or it may introduce deadlock with
1144 * smp_call_function() if an IPI is sent by the same process we are
1145 * waiting to become inactive.
1146 */
85ba2d86 1147unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1148{
1149 unsigned long flags;
dd41f596 1150 int running, on_rq;
85ba2d86 1151 unsigned long ncsw;
70b97a7f 1152 struct rq *rq;
1da177e4 1153
3a5c359a
AK
1154 for (;;) {
1155 /*
1156 * We do the initial early heuristics without holding
1157 * any task-queue locks at all. We'll only try to get
1158 * the runqueue lock when things look like they will
1159 * work out!
1160 */
1161 rq = task_rq(p);
fa490cfd 1162
3a5c359a
AK
1163 /*
1164 * If the task is actively running on another CPU
1165 * still, just relax and busy-wait without holding
1166 * any locks.
1167 *
1168 * NOTE! Since we don't hold any locks, it's not
1169 * even sure that "rq" stays as the right runqueue!
1170 * But we don't care, since "task_running()" will
1171 * return false if the runqueue has changed and p
1172 * is actually now running somewhere else!
1173 */
85ba2d86
RM
1174 while (task_running(rq, p)) {
1175 if (match_state && unlikely(p->state != match_state))
1176 return 0;
3a5c359a 1177 cpu_relax();
85ba2d86 1178 }
fa490cfd 1179
3a5c359a
AK
1180 /*
1181 * Ok, time to look more closely! We need the rq
1182 * lock now, to be *sure*. If we're wrong, we'll
1183 * just go back and repeat.
1184 */
1185 rq = task_rq_lock(p, &flags);
27a9da65 1186 trace_sched_wait_task(p);
3a5c359a 1187 running = task_running(rq, p);
fd2f4419 1188 on_rq = p->on_rq;
85ba2d86 1189 ncsw = 0;
f31e11d8 1190 if (!match_state || p->state == match_state)
93dcf55f 1191 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1192 task_rq_unlock(rq, p, &flags);
fa490cfd 1193
85ba2d86
RM
1194 /*
1195 * If it changed from the expected state, bail out now.
1196 */
1197 if (unlikely(!ncsw))
1198 break;
1199
3a5c359a
AK
1200 /*
1201 * Was it really running after all now that we
1202 * checked with the proper locks actually held?
1203 *
1204 * Oops. Go back and try again..
1205 */
1206 if (unlikely(running)) {
1207 cpu_relax();
1208 continue;
1209 }
fa490cfd 1210
3a5c359a
AK
1211 /*
1212 * It's not enough that it's not actively running,
1213 * it must be off the runqueue _entirely_, and not
1214 * preempted!
1215 *
80dd99b3 1216 * So if it was still runnable (but just not actively
3a5c359a
AK
1217 * running right now), it's preempted, and we should
1218 * yield - it could be a while.
1219 */
1220 if (unlikely(on_rq)) {
8eb90c30
TG
1221 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1222
1223 set_current_state(TASK_UNINTERRUPTIBLE);
1224 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1225 continue;
1226 }
fa490cfd 1227
3a5c359a
AK
1228 /*
1229 * Ahh, all good. It wasn't running, and it wasn't
1230 * runnable, which means that it will never become
1231 * running in the future either. We're all done!
1232 */
1233 break;
1234 }
85ba2d86
RM
1235
1236 return ncsw;
1da177e4
LT
1237}
1238
1239/***
1240 * kick_process - kick a running thread to enter/exit the kernel
1241 * @p: the to-be-kicked thread
1242 *
1243 * Cause a process which is running on another CPU to enter
1244 * kernel-mode, without any delay. (to get signals handled.)
1245 *
25985edc 1246 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1247 * because all it wants to ensure is that the remote task enters
1248 * the kernel. If the IPI races and the task has been migrated
1249 * to another CPU then no harm is done and the purpose has been
1250 * achieved as well.
1251 */
36c8b586 1252void kick_process(struct task_struct *p)
1da177e4
LT
1253{
1254 int cpu;
1255
1256 preempt_disable();
1257 cpu = task_cpu(p);
1258 if ((cpu != smp_processor_id()) && task_curr(p))
1259 smp_send_reschedule(cpu);
1260 preempt_enable();
1261}
b43e3521 1262EXPORT_SYMBOL_GPL(kick_process);
476d139c 1263#endif /* CONFIG_SMP */
1da177e4 1264
970b13ba 1265#ifdef CONFIG_SMP
30da688e 1266/*
013fdb80 1267 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1268 */
5da9a0fb
PZ
1269static int select_fallback_rq(int cpu, struct task_struct *p)
1270{
1271 int dest_cpu;
1272 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
1273
1274 /* Look for allowed, online CPU in same node. */
1275 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
fa17b507 1276 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
5da9a0fb
PZ
1277 return dest_cpu;
1278
1279 /* Any allowed, online CPU? */
fa17b507 1280 dest_cpu = cpumask_any_and(tsk_cpus_allowed(p), cpu_active_mask);
5da9a0fb
PZ
1281 if (dest_cpu < nr_cpu_ids)
1282 return dest_cpu;
1283
1284 /* No more Mr. Nice Guy. */
48c5ccae
PZ
1285 dest_cpu = cpuset_cpus_allowed_fallback(p);
1286 /*
1287 * Don't tell them about moving exiting tasks or
1288 * kernel threads (both mm NULL), since they never
1289 * leave kernel.
1290 */
1291 if (p->mm && printk_ratelimit()) {
1292 printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
1293 task_pid_nr(p), p->comm, cpu);
5da9a0fb
PZ
1294 }
1295
1296 return dest_cpu;
1297}
1298
e2912009 1299/*
013fdb80 1300 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1301 */
970b13ba 1302static inline
7608dec2 1303int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 1304{
7608dec2 1305 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
e2912009
PZ
1306
1307 /*
1308 * In order not to call set_task_cpu() on a blocking task we need
1309 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1310 * cpu.
1311 *
1312 * Since this is common to all placement strategies, this lives here.
1313 *
1314 * [ this allows ->select_task() to simply return task_cpu(p) and
1315 * not worry about this generic constraint ]
1316 */
fa17b507 1317 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1318 !cpu_online(cpu)))
5da9a0fb 1319 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1320
1321 return cpu;
970b13ba 1322}
09a40af5
MG
1323
1324static void update_avg(u64 *avg, u64 sample)
1325{
1326 s64 diff = sample - *avg;
1327 *avg += diff >> 3;
1328}
970b13ba
PZ
1329#endif
1330
d7c01d27 1331static void
b84cb5df 1332ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1333{
d7c01d27 1334#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1335 struct rq *rq = this_rq();
1336
d7c01d27
PZ
1337#ifdef CONFIG_SMP
1338 int this_cpu = smp_processor_id();
1339
1340 if (cpu == this_cpu) {
1341 schedstat_inc(rq, ttwu_local);
1342 schedstat_inc(p, se.statistics.nr_wakeups_local);
1343 } else {
1344 struct sched_domain *sd;
1345
1346 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1347 rcu_read_lock();
d7c01d27
PZ
1348 for_each_domain(this_cpu, sd) {
1349 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1350 schedstat_inc(sd, ttwu_wake_remote);
1351 break;
1352 }
1353 }
057f3fad 1354 rcu_read_unlock();
d7c01d27 1355 }
f339b9dc
PZ
1356
1357 if (wake_flags & WF_MIGRATED)
1358 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1359
d7c01d27
PZ
1360#endif /* CONFIG_SMP */
1361
1362 schedstat_inc(rq, ttwu_count);
9ed3811a 1363 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1364
1365 if (wake_flags & WF_SYNC)
9ed3811a 1366 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1367
d7c01d27
PZ
1368#endif /* CONFIG_SCHEDSTATS */
1369}
1370
1371static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1372{
9ed3811a 1373 activate_task(rq, p, en_flags);
fd2f4419 1374 p->on_rq = 1;
c2f7115e
PZ
1375
1376 /* if a worker is waking up, notify workqueue */
1377 if (p->flags & PF_WQ_WORKER)
1378 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1379}
1380
23f41eeb
PZ
1381/*
1382 * Mark the task runnable and perform wakeup-preemption.
1383 */
89363381 1384static void
23f41eeb 1385ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1386{
89363381 1387 trace_sched_wakeup(p, true);
9ed3811a
TH
1388 check_preempt_curr(rq, p, wake_flags);
1389
1390 p->state = TASK_RUNNING;
1391#ifdef CONFIG_SMP
1392 if (p->sched_class->task_woken)
1393 p->sched_class->task_woken(rq, p);
1394
e69c6341 1395 if (rq->idle_stamp) {
9ed3811a
TH
1396 u64 delta = rq->clock - rq->idle_stamp;
1397 u64 max = 2*sysctl_sched_migration_cost;
1398
1399 if (delta > max)
1400 rq->avg_idle = max;
1401 else
1402 update_avg(&rq->avg_idle, delta);
1403 rq->idle_stamp = 0;
1404 }
1405#endif
1406}
1407
c05fbafb
PZ
1408static void
1409ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1410{
1411#ifdef CONFIG_SMP
1412 if (p->sched_contributes_to_load)
1413 rq->nr_uninterruptible--;
1414#endif
1415
1416 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1417 ttwu_do_wakeup(rq, p, wake_flags);
1418}
1419
1420/*
1421 * Called in case the task @p isn't fully descheduled from its runqueue,
1422 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1423 * since all we need to do is flip p->state to TASK_RUNNING, since
1424 * the task is still ->on_rq.
1425 */
1426static int ttwu_remote(struct task_struct *p, int wake_flags)
1427{
1428 struct rq *rq;
1429 int ret = 0;
1430
1431 rq = __task_rq_lock(p);
1432 if (p->on_rq) {
1433 ttwu_do_wakeup(rq, p, wake_flags);
1434 ret = 1;
1435 }
1436 __task_rq_unlock(rq);
1437
1438 return ret;
1439}
1440
317f3941 1441#ifdef CONFIG_SMP
fa14ff4a 1442static void sched_ttwu_pending(void)
317f3941
PZ
1443{
1444 struct rq *rq = this_rq();
fa14ff4a
PZ
1445 struct llist_node *llist = llist_del_all(&rq->wake_list);
1446 struct task_struct *p;
317f3941
PZ
1447
1448 raw_spin_lock(&rq->lock);
1449
fa14ff4a
PZ
1450 while (llist) {
1451 p = llist_entry(llist, struct task_struct, wake_entry);
1452 llist = llist_next(llist);
317f3941
PZ
1453 ttwu_do_activate(rq, p, 0);
1454 }
1455
1456 raw_spin_unlock(&rq->lock);
1457}
1458
1459void scheduler_ipi(void)
1460{
ca38062e 1461 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1462 return;
1463
1464 /*
1465 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1466 * traditionally all their work was done from the interrupt return
1467 * path. Now that we actually do some work, we need to make sure
1468 * we do call them.
1469 *
1470 * Some archs already do call them, luckily irq_enter/exit nest
1471 * properly.
1472 *
1473 * Arguably we should visit all archs and update all handlers,
1474 * however a fair share of IPIs are still resched only so this would
1475 * somewhat pessimize the simple resched case.
1476 */
1477 irq_enter();
fa14ff4a 1478 sched_ttwu_pending();
ca38062e
SS
1479
1480 /*
1481 * Check if someone kicked us for doing the nohz idle load balance.
1482 */
6eb57e0d
SS
1483 if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1484 this_rq()->idle_balance = 1;
ca38062e 1485 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1486 }
c5d753a5 1487 irq_exit();
317f3941
PZ
1488}
1489
1490static void ttwu_queue_remote(struct task_struct *p, int cpu)
1491{
fa14ff4a 1492 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
317f3941
PZ
1493 smp_send_reschedule(cpu);
1494}
d6aa8f85
PZ
1495
1496#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1497static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
1498{
1499 struct rq *rq;
1500 int ret = 0;
1501
1502 rq = __task_rq_lock(p);
1503 if (p->on_cpu) {
1504 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1505 ttwu_do_wakeup(rq, p, wake_flags);
1506 ret = 1;
1507 }
1508 __task_rq_unlock(rq);
1509
1510 return ret;
1511
1512}
1513#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
518cd623
PZ
1514
1515static inline int ttwu_share_cache(int this_cpu, int that_cpu)
1516{
1517 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1518}
d6aa8f85 1519#endif /* CONFIG_SMP */
317f3941 1520
c05fbafb
PZ
1521static void ttwu_queue(struct task_struct *p, int cpu)
1522{
1523 struct rq *rq = cpu_rq(cpu);
1524
17d9f311 1525#if defined(CONFIG_SMP)
518cd623 1526 if (sched_feat(TTWU_QUEUE) && !ttwu_share_cache(smp_processor_id(), cpu)) {
f01114cb 1527 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1528 ttwu_queue_remote(p, cpu);
1529 return;
1530 }
1531#endif
1532
c05fbafb
PZ
1533 raw_spin_lock(&rq->lock);
1534 ttwu_do_activate(rq, p, 0);
1535 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1536}
1537
1538/**
1da177e4 1539 * try_to_wake_up - wake up a thread
9ed3811a 1540 * @p: the thread to be awakened
1da177e4 1541 * @state: the mask of task states that can be woken
9ed3811a 1542 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1543 *
1544 * Put it on the run-queue if it's not already there. The "current"
1545 * thread is always on the run-queue (except when the actual
1546 * re-schedule is in progress), and as such you're allowed to do
1547 * the simpler "current->state = TASK_RUNNING" to mark yourself
1548 * runnable without the overhead of this.
1549 *
9ed3811a
TH
1550 * Returns %true if @p was woken up, %false if it was already running
1551 * or @state didn't match @p's state.
1da177e4 1552 */
e4a52bcb
PZ
1553static int
1554try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1555{
1da177e4 1556 unsigned long flags;
c05fbafb 1557 int cpu, success = 0;
2398f2c6 1558
04e2f174 1559 smp_wmb();
013fdb80 1560 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1561 if (!(p->state & state))
1da177e4
LT
1562 goto out;
1563
c05fbafb 1564 success = 1; /* we're going to change ->state */
1da177e4 1565 cpu = task_cpu(p);
1da177e4 1566
c05fbafb
PZ
1567 if (p->on_rq && ttwu_remote(p, wake_flags))
1568 goto stat;
1da177e4 1569
1da177e4 1570#ifdef CONFIG_SMP
e9c84311 1571 /*
c05fbafb
PZ
1572 * If the owning (remote) cpu is still in the middle of schedule() with
1573 * this task as prev, wait until its done referencing the task.
e9c84311 1574 */
e4a52bcb
PZ
1575 while (p->on_cpu) {
1576#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1577 /*
d6aa8f85
PZ
1578 * In case the architecture enables interrupts in
1579 * context_switch(), we cannot busy wait, since that
1580 * would lead to deadlocks when an interrupt hits and
1581 * tries to wake up @prev. So bail and do a complete
1582 * remote wakeup.
e4a52bcb 1583 */
d6aa8f85 1584 if (ttwu_activate_remote(p, wake_flags))
c05fbafb 1585 goto stat;
d6aa8f85 1586#else
e4a52bcb 1587 cpu_relax();
d6aa8f85 1588#endif
371fd7e7 1589 }
0970d299 1590 /*
e4a52bcb 1591 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1592 */
e4a52bcb 1593 smp_rmb();
1da177e4 1594
a8e4f2ea 1595 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1596 p->state = TASK_WAKING;
e7693a36 1597
e4a52bcb 1598 if (p->sched_class->task_waking)
74f8e4b2 1599 p->sched_class->task_waking(p);
efbbd05a 1600
7608dec2 1601 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1602 if (task_cpu(p) != cpu) {
1603 wake_flags |= WF_MIGRATED;
e4a52bcb 1604 set_task_cpu(p, cpu);
f339b9dc 1605 }
1da177e4 1606#endif /* CONFIG_SMP */
1da177e4 1607
c05fbafb
PZ
1608 ttwu_queue(p, cpu);
1609stat:
b84cb5df 1610 ttwu_stat(p, cpu, wake_flags);
1da177e4 1611out:
013fdb80 1612 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1613
1614 return success;
1615}
1616
21aa9af0
TH
1617/**
1618 * try_to_wake_up_local - try to wake up a local task with rq lock held
1619 * @p: the thread to be awakened
1620 *
2acca55e 1621 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1622 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1623 * the current task.
21aa9af0
TH
1624 */
1625static void try_to_wake_up_local(struct task_struct *p)
1626{
1627 struct rq *rq = task_rq(p);
21aa9af0
TH
1628
1629 BUG_ON(rq != this_rq());
1630 BUG_ON(p == current);
1631 lockdep_assert_held(&rq->lock);
1632
2acca55e
PZ
1633 if (!raw_spin_trylock(&p->pi_lock)) {
1634 raw_spin_unlock(&rq->lock);
1635 raw_spin_lock(&p->pi_lock);
1636 raw_spin_lock(&rq->lock);
1637 }
1638
21aa9af0 1639 if (!(p->state & TASK_NORMAL))
2acca55e 1640 goto out;
21aa9af0 1641
fd2f4419 1642 if (!p->on_rq)
d7c01d27
PZ
1643 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1644
23f41eeb 1645 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1646 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1647out:
1648 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1649}
1650
50fa610a
DH
1651/**
1652 * wake_up_process - Wake up a specific process
1653 * @p: The process to be woken up.
1654 *
1655 * Attempt to wake up the nominated process and move it to the set of runnable
1656 * processes. Returns 1 if the process was woken up, 0 if it was already
1657 * running.
1658 *
1659 * It may be assumed that this function implies a write memory barrier before
1660 * changing the task state if and only if any tasks are woken up.
1661 */
7ad5b3a5 1662int wake_up_process(struct task_struct *p)
1da177e4 1663{
d9514f6c 1664 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 1665}
1da177e4
LT
1666EXPORT_SYMBOL(wake_up_process);
1667
7ad5b3a5 1668int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1669{
1670 return try_to_wake_up(p, state, 0);
1671}
1672
1da177e4
LT
1673/*
1674 * Perform scheduler related setup for a newly forked process p.
1675 * p is forked by current.
dd41f596
IM
1676 *
1677 * __sched_fork() is basic setup used by init_idle() too:
1678 */
1679static void __sched_fork(struct task_struct *p)
1680{
fd2f4419
PZ
1681 p->on_rq = 0;
1682
1683 p->se.on_rq = 0;
dd41f596
IM
1684 p->se.exec_start = 0;
1685 p->se.sum_exec_runtime = 0;
f6cf891c 1686 p->se.prev_sum_exec_runtime = 0;
6c594c21 1687 p->se.nr_migrations = 0;
da7a735e 1688 p->se.vruntime = 0;
fd2f4419 1689 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
1690
1691#ifdef CONFIG_SCHEDSTATS
41acab88 1692 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 1693#endif
476d139c 1694
fa717060 1695 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 1696
e107be36
AK
1697#ifdef CONFIG_PREEMPT_NOTIFIERS
1698 INIT_HLIST_HEAD(&p->preempt_notifiers);
1699#endif
dd41f596
IM
1700}
1701
1702/*
1703 * fork()/clone()-time setup:
1704 */
3e51e3ed 1705void sched_fork(struct task_struct *p)
dd41f596 1706{
0122ec5b 1707 unsigned long flags;
dd41f596
IM
1708 int cpu = get_cpu();
1709
1710 __sched_fork(p);
06b83b5f 1711 /*
0017d735 1712 * We mark the process as running here. This guarantees that
06b83b5f
PZ
1713 * nobody will actually run it, and a signal or other external
1714 * event cannot wake it up and insert it on the runqueue either.
1715 */
0017d735 1716 p->state = TASK_RUNNING;
dd41f596 1717
c350a04e
MG
1718 /*
1719 * Make sure we do not leak PI boosting priority to the child.
1720 */
1721 p->prio = current->normal_prio;
1722
b9dc29e7
MG
1723 /*
1724 * Revert to default priority/policy on fork if requested.
1725 */
1726 if (unlikely(p->sched_reset_on_fork)) {
c350a04e 1727 if (task_has_rt_policy(p)) {
b9dc29e7 1728 p->policy = SCHED_NORMAL;
6c697bdf 1729 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
1730 p->rt_priority = 0;
1731 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1732 p->static_prio = NICE_TO_PRIO(0);
1733
1734 p->prio = p->normal_prio = __normal_prio(p);
1735 set_load_weight(p);
6c697bdf 1736
b9dc29e7
MG
1737 /*
1738 * We don't need the reset flag anymore after the fork. It has
1739 * fulfilled its duty:
1740 */
1741 p->sched_reset_on_fork = 0;
1742 }
ca94c442 1743
2ddbf952
HS
1744 if (!rt_prio(p->prio))
1745 p->sched_class = &fair_sched_class;
b29739f9 1746
cd29fe6f
PZ
1747 if (p->sched_class->task_fork)
1748 p->sched_class->task_fork(p);
1749
86951599
PZ
1750 /*
1751 * The child is not yet in the pid-hash so no cgroup attach races,
1752 * and the cgroup is pinned to this child due to cgroup_fork()
1753 * is ran before sched_fork().
1754 *
1755 * Silence PROVE_RCU.
1756 */
0122ec5b 1757 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 1758 set_task_cpu(p, cpu);
0122ec5b 1759 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 1760
52f17b6c 1761#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1762 if (likely(sched_info_on()))
52f17b6c 1763 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1764#endif
3ca7a440
PZ
1765#if defined(CONFIG_SMP)
1766 p->on_cpu = 0;
4866cde0 1767#endif
bdd4e85d 1768#ifdef CONFIG_PREEMPT_COUNT
4866cde0 1769 /* Want to start with kernel preemption disabled. */
a1261f54 1770 task_thread_info(p)->preempt_count = 1;
1da177e4 1771#endif
806c09a7 1772#ifdef CONFIG_SMP
917b627d 1773 plist_node_init(&p->pushable_tasks, MAX_PRIO);
806c09a7 1774#endif
917b627d 1775
476d139c 1776 put_cpu();
1da177e4
LT
1777}
1778
1779/*
1780 * wake_up_new_task - wake up a newly created task for the first time.
1781 *
1782 * This function will do some initial scheduler statistics housekeeping
1783 * that must be done for every newly created context, then puts the task
1784 * on the runqueue and wakes it.
1785 */
3e51e3ed 1786void wake_up_new_task(struct task_struct *p)
1da177e4
LT
1787{
1788 unsigned long flags;
dd41f596 1789 struct rq *rq;
fabf318e 1790
ab2515c4 1791 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
1792#ifdef CONFIG_SMP
1793 /*
1794 * Fork balancing, do it here and not earlier because:
1795 * - cpus_allowed can change in the fork path
1796 * - any previously selected cpu might disappear through hotplug
fabf318e 1797 */
ab2515c4 1798 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
0017d735
PZ
1799#endif
1800
ab2515c4 1801 rq = __task_rq_lock(p);
cd29fe6f 1802 activate_task(rq, p, 0);
fd2f4419 1803 p->on_rq = 1;
89363381 1804 trace_sched_wakeup_new(p, true);
a7558e01 1805 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 1806#ifdef CONFIG_SMP
efbbd05a
PZ
1807 if (p->sched_class->task_woken)
1808 p->sched_class->task_woken(rq, p);
9a897c5a 1809#endif
0122ec5b 1810 task_rq_unlock(rq, p, &flags);
1da177e4
LT
1811}
1812
e107be36
AK
1813#ifdef CONFIG_PREEMPT_NOTIFIERS
1814
1815/**
80dd99b3 1816 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 1817 * @notifier: notifier struct to register
e107be36
AK
1818 */
1819void preempt_notifier_register(struct preempt_notifier *notifier)
1820{
1821 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1822}
1823EXPORT_SYMBOL_GPL(preempt_notifier_register);
1824
1825/**
1826 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 1827 * @notifier: notifier struct to unregister
e107be36
AK
1828 *
1829 * This is safe to call from within a preemption notifier.
1830 */
1831void preempt_notifier_unregister(struct preempt_notifier *notifier)
1832{
1833 hlist_del(&notifier->link);
1834}
1835EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1836
1837static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1838{
1839 struct preempt_notifier *notifier;
1840 struct hlist_node *node;
1841
1842 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1843 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1844}
1845
1846static void
1847fire_sched_out_preempt_notifiers(struct task_struct *curr,
1848 struct task_struct *next)
1849{
1850 struct preempt_notifier *notifier;
1851 struct hlist_node *node;
1852
1853 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1854 notifier->ops->sched_out(notifier, next);
1855}
1856
6d6bc0ad 1857#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
1858
1859static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1860{
1861}
1862
1863static void
1864fire_sched_out_preempt_notifiers(struct task_struct *curr,
1865 struct task_struct *next)
1866{
1867}
1868
6d6bc0ad 1869#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 1870
4866cde0
NP
1871/**
1872 * prepare_task_switch - prepare to switch tasks
1873 * @rq: the runqueue preparing to switch
421cee29 1874 * @prev: the current task that is being switched out
4866cde0
NP
1875 * @next: the task we are going to switch to.
1876 *
1877 * This is called with the rq lock held and interrupts off. It must
1878 * be paired with a subsequent finish_task_switch after the context
1879 * switch.
1880 *
1881 * prepare_task_switch sets up locking and calls architecture specific
1882 * hooks.
1883 */
e107be36
AK
1884static inline void
1885prepare_task_switch(struct rq *rq, struct task_struct *prev,
1886 struct task_struct *next)
4866cde0 1887{
fe4b04fa
PZ
1888 sched_info_switch(prev, next);
1889 perf_event_task_sched_out(prev, next);
e107be36 1890 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
1891 prepare_lock_switch(rq, next);
1892 prepare_arch_switch(next);
fe4b04fa 1893 trace_sched_switch(prev, next);
4866cde0
NP
1894}
1895
1da177e4
LT
1896/**
1897 * finish_task_switch - clean up after a task-switch
344babaa 1898 * @rq: runqueue associated with task-switch
1da177e4
LT
1899 * @prev: the thread we just switched away from.
1900 *
4866cde0
NP
1901 * finish_task_switch must be called after the context switch, paired
1902 * with a prepare_task_switch call before the context switch.
1903 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1904 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1905 *
1906 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 1907 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
1908 * with the lock held can cause deadlocks; see schedule() for
1909 * details.)
1910 */
a9957449 1911static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1912 __releases(rq->lock)
1913{
1da177e4 1914 struct mm_struct *mm = rq->prev_mm;
55a101f8 1915 long prev_state;
1da177e4
LT
1916
1917 rq->prev_mm = NULL;
1918
1919 /*
1920 * A task struct has one reference for the use as "current".
c394cc9f 1921 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1922 * schedule one last time. The schedule call will never return, and
1923 * the scheduled task must drop that reference.
c394cc9f 1924 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1925 * still held, otherwise prev could be scheduled on another cpu, die
1926 * there before we look at prev->state, and then the reference would
1927 * be dropped twice.
1928 * Manfred Spraul <manfred@colorfullife.com>
1929 */
55a101f8 1930 prev_state = prev->state;
4866cde0 1931 finish_arch_switch(prev);
8381f65d
JI
1932#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1933 local_irq_disable();
1934#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
a8d757ef 1935 perf_event_task_sched_in(prev, current);
8381f65d
JI
1936#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1937 local_irq_enable();
1938#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
4866cde0 1939 finish_lock_switch(rq, prev);
e8fa1362 1940
e107be36 1941 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
1942 if (mm)
1943 mmdrop(mm);
c394cc9f 1944 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 1945 /*
1946 * Remove function-return probe instances associated with this
1947 * task and put them back on the free list.
9761eea8 1948 */
c6fd91f0 1949 kprobe_flush_task(prev);
1da177e4 1950 put_task_struct(prev);
c6fd91f0 1951 }
1da177e4
LT
1952}
1953
3f029d3c
GH
1954#ifdef CONFIG_SMP
1955
1956/* assumes rq->lock is held */
1957static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1958{
1959 if (prev->sched_class->pre_schedule)
1960 prev->sched_class->pre_schedule(rq, prev);
1961}
1962
1963/* rq->lock is NOT held, but preemption is disabled */
1964static inline void post_schedule(struct rq *rq)
1965{
1966 if (rq->post_schedule) {
1967 unsigned long flags;
1968
05fa785c 1969 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
1970 if (rq->curr->sched_class->post_schedule)
1971 rq->curr->sched_class->post_schedule(rq);
05fa785c 1972 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
1973
1974 rq->post_schedule = 0;
1975 }
1976}
1977
1978#else
da19ab51 1979
3f029d3c
GH
1980static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1981{
1982}
1983
1984static inline void post_schedule(struct rq *rq)
1985{
1da177e4
LT
1986}
1987
3f029d3c
GH
1988#endif
1989
1da177e4
LT
1990/**
1991 * schedule_tail - first thing a freshly forked thread must call.
1992 * @prev: the thread we just switched away from.
1993 */
36c8b586 1994asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
1995 __releases(rq->lock)
1996{
70b97a7f
IM
1997 struct rq *rq = this_rq();
1998
4866cde0 1999 finish_task_switch(rq, prev);
da19ab51 2000
3f029d3c
GH
2001 /*
2002 * FIXME: do we need to worry about rq being invalidated by the
2003 * task_switch?
2004 */
2005 post_schedule(rq);
70b97a7f 2006
4866cde0
NP
2007#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2008 /* In this case, finish_task_switch does not reenable preemption */
2009 preempt_enable();
2010#endif
1da177e4 2011 if (current->set_child_tid)
b488893a 2012 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2013}
2014
2015/*
2016 * context_switch - switch to the new MM and the new
2017 * thread's register state.
2018 */
dd41f596 2019static inline void
70b97a7f 2020context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2021 struct task_struct *next)
1da177e4 2022{
dd41f596 2023 struct mm_struct *mm, *oldmm;
1da177e4 2024
e107be36 2025 prepare_task_switch(rq, prev, next);
fe4b04fa 2026
dd41f596
IM
2027 mm = next->mm;
2028 oldmm = prev->active_mm;
9226d125
ZA
2029 /*
2030 * For paravirt, this is coupled with an exit in switch_to to
2031 * combine the page table reload and the switch backend into
2032 * one hypercall.
2033 */
224101ed 2034 arch_start_context_switch(prev);
9226d125 2035
31915ab4 2036 if (!mm) {
1da177e4
LT
2037 next->active_mm = oldmm;
2038 atomic_inc(&oldmm->mm_count);
2039 enter_lazy_tlb(oldmm, next);
2040 } else
2041 switch_mm(oldmm, mm, next);
2042
31915ab4 2043 if (!prev->mm) {
1da177e4 2044 prev->active_mm = NULL;
1da177e4
LT
2045 rq->prev_mm = oldmm;
2046 }
3a5f5e48
IM
2047 /*
2048 * Since the runqueue lock will be released by the next
2049 * task (which is an invalid locking op but in the case
2050 * of the scheduler it's an obvious special-case), so we
2051 * do an early lockdep release here:
2052 */
2053#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2054 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2055#endif
1da177e4
LT
2056
2057 /* Here we just switch the register state and the stack. */
2058 switch_to(prev, next, prev);
2059
dd41f596
IM
2060 barrier();
2061 /*
2062 * this_rq must be evaluated again because prev may have moved
2063 * CPUs since it called schedule(), thus the 'rq' on its stack
2064 * frame will be invalid.
2065 */
2066 finish_task_switch(this_rq(), prev);
1da177e4
LT
2067}
2068
2069/*
2070 * nr_running, nr_uninterruptible and nr_context_switches:
2071 *
2072 * externally visible scheduler statistics: current number of runnable
2073 * threads, current number of uninterruptible-sleeping threads, total
2074 * number of context switches performed since bootup.
2075 */
2076unsigned long nr_running(void)
2077{
2078 unsigned long i, sum = 0;
2079
2080 for_each_online_cpu(i)
2081 sum += cpu_rq(i)->nr_running;
2082
2083 return sum;
f711f609 2084}
1da177e4
LT
2085
2086unsigned long nr_uninterruptible(void)
f711f609 2087{
1da177e4 2088 unsigned long i, sum = 0;
f711f609 2089
0a945022 2090 for_each_possible_cpu(i)
1da177e4 2091 sum += cpu_rq(i)->nr_uninterruptible;
f711f609
GS
2092
2093 /*
1da177e4
LT
2094 * Since we read the counters lockless, it might be slightly
2095 * inaccurate. Do not allow it to go below zero though:
f711f609 2096 */
1da177e4
LT
2097 if (unlikely((long)sum < 0))
2098 sum = 0;
f711f609 2099
1da177e4 2100 return sum;
f711f609 2101}
f711f609 2102
1da177e4 2103unsigned long long nr_context_switches(void)
46cb4b7c 2104{
cc94abfc
SR
2105 int i;
2106 unsigned long long sum = 0;
46cb4b7c 2107
0a945022 2108 for_each_possible_cpu(i)
1da177e4 2109 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2110
1da177e4
LT
2111 return sum;
2112}
483b4ee6 2113
1da177e4
LT
2114unsigned long nr_iowait(void)
2115{
2116 unsigned long i, sum = 0;
483b4ee6 2117
0a945022 2118 for_each_possible_cpu(i)
1da177e4 2119 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2120
1da177e4
LT
2121 return sum;
2122}
483b4ee6 2123
8c215bd3 2124unsigned long nr_iowait_cpu(int cpu)
69d25870 2125{
8c215bd3 2126 struct rq *this = cpu_rq(cpu);
69d25870
AV
2127 return atomic_read(&this->nr_iowait);
2128}
46cb4b7c 2129
69d25870
AV
2130unsigned long this_cpu_load(void)
2131{
2132 struct rq *this = this_rq();
2133 return this->cpu_load[0];
2134}
e790fb0b 2135
46cb4b7c 2136
dce48a84
TG
2137/* Variables and functions for calc_load */
2138static atomic_long_t calc_load_tasks;
2139static unsigned long calc_load_update;
2140unsigned long avenrun[3];
2141EXPORT_SYMBOL(avenrun);
46cb4b7c 2142
74f5187a
PZ
2143static long calc_load_fold_active(struct rq *this_rq)
2144{
2145 long nr_active, delta = 0;
2146
2147 nr_active = this_rq->nr_running;
2148 nr_active += (long) this_rq->nr_uninterruptible;
2149
2150 if (nr_active != this_rq->calc_load_active) {
2151 delta = nr_active - this_rq->calc_load_active;
2152 this_rq->calc_load_active = nr_active;
2153 }
2154
2155 return delta;
2156}
2157
0f004f5a
PZ
2158static unsigned long
2159calc_load(unsigned long load, unsigned long exp, unsigned long active)
2160{
2161 load *= exp;
2162 load += active * (FIXED_1 - exp);
2163 load += 1UL << (FSHIFT - 1);
2164 return load >> FSHIFT;
2165}
2166
74f5187a
PZ
2167#ifdef CONFIG_NO_HZ
2168/*
2169 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
2170 *
2171 * When making the ILB scale, we should try to pull this in as well.
2172 */
2173static atomic_long_t calc_load_tasks_idle;
2174
029632fb 2175void calc_load_account_idle(struct rq *this_rq)
74f5187a
PZ
2176{
2177 long delta;
2178
2179 delta = calc_load_fold_active(this_rq);
2180 if (delta)
2181 atomic_long_add(delta, &calc_load_tasks_idle);
2182}
2183
2184static long calc_load_fold_idle(void)
2185{
2186 long delta = 0;
2187
2188 /*
2189 * Its got a race, we don't care...
2190 */
2191 if (atomic_long_read(&calc_load_tasks_idle))
2192 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
2193
2194 return delta;
2195}
0f004f5a
PZ
2196
2197/**
2198 * fixed_power_int - compute: x^n, in O(log n) time
2199 *
2200 * @x: base of the power
2201 * @frac_bits: fractional bits of @x
2202 * @n: power to raise @x to.
2203 *
2204 * By exploiting the relation between the definition of the natural power
2205 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2206 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2207 * (where: n_i \elem {0, 1}, the binary vector representing n),
2208 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2209 * of course trivially computable in O(log_2 n), the length of our binary
2210 * vector.
2211 */
2212static unsigned long
2213fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2214{
2215 unsigned long result = 1UL << frac_bits;
2216
2217 if (n) for (;;) {
2218 if (n & 1) {
2219 result *= x;
2220 result += 1UL << (frac_bits - 1);
2221 result >>= frac_bits;
2222 }
2223 n >>= 1;
2224 if (!n)
2225 break;
2226 x *= x;
2227 x += 1UL << (frac_bits - 1);
2228 x >>= frac_bits;
2229 }
2230
2231 return result;
2232}
2233
2234/*
2235 * a1 = a0 * e + a * (1 - e)
2236 *
2237 * a2 = a1 * e + a * (1 - e)
2238 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2239 * = a0 * e^2 + a * (1 - e) * (1 + e)
2240 *
2241 * a3 = a2 * e + a * (1 - e)
2242 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2243 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2244 *
2245 * ...
2246 *
2247 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2248 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2249 * = a0 * e^n + a * (1 - e^n)
2250 *
2251 * [1] application of the geometric series:
2252 *
2253 * n 1 - x^(n+1)
2254 * S_n := \Sum x^i = -------------
2255 * i=0 1 - x
2256 */
2257static unsigned long
2258calc_load_n(unsigned long load, unsigned long exp,
2259 unsigned long active, unsigned int n)
2260{
2261
2262 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2263}
2264
2265/*
2266 * NO_HZ can leave us missing all per-cpu ticks calling
2267 * calc_load_account_active(), but since an idle CPU folds its delta into
2268 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2269 * in the pending idle delta if our idle period crossed a load cycle boundary.
2270 *
2271 * Once we've updated the global active value, we need to apply the exponential
2272 * weights adjusted to the number of cycles missed.
2273 */
2274static void calc_global_nohz(unsigned long ticks)
2275{
2276 long delta, active, n;
2277
2278 if (time_before(jiffies, calc_load_update))
2279 return;
2280
2281 /*
2282 * If we crossed a calc_load_update boundary, make sure to fold
2283 * any pending idle changes, the respective CPUs might have
2284 * missed the tick driven calc_load_account_active() update
2285 * due to NO_HZ.
2286 */
2287 delta = calc_load_fold_idle();
2288 if (delta)
2289 atomic_long_add(delta, &calc_load_tasks);
2290
2291 /*
2292 * If we were idle for multiple load cycles, apply them.
2293 */
2294 if (ticks >= LOAD_FREQ) {
2295 n = ticks / LOAD_FREQ;
2296
2297 active = atomic_long_read(&calc_load_tasks);
2298 active = active > 0 ? active * FIXED_1 : 0;
2299
2300 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2301 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2302 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2303
2304 calc_load_update += n * LOAD_FREQ;
2305 }
2306
2307 /*
2308 * Its possible the remainder of the above division also crosses
2309 * a LOAD_FREQ period, the regular check in calc_global_load()
2310 * which comes after this will take care of that.
2311 *
2312 * Consider us being 11 ticks before a cycle completion, and us
2313 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
2314 * age us 4 cycles, and the test in calc_global_load() will
2315 * pick up the final one.
2316 */
2317}
74f5187a 2318#else
029632fb 2319void calc_load_account_idle(struct rq *this_rq)
74f5187a
PZ
2320{
2321}
2322
2323static inline long calc_load_fold_idle(void)
2324{
2325 return 0;
2326}
0f004f5a
PZ
2327
2328static void calc_global_nohz(unsigned long ticks)
2329{
2330}
74f5187a
PZ
2331#endif
2332
2d02494f
TG
2333/**
2334 * get_avenrun - get the load average array
2335 * @loads: pointer to dest load array
2336 * @offset: offset to add
2337 * @shift: shift count to shift the result left
2338 *
2339 * These values are estimates at best, so no need for locking.
2340 */
2341void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2342{
2343 loads[0] = (avenrun[0] + offset) << shift;
2344 loads[1] = (avenrun[1] + offset) << shift;
2345 loads[2] = (avenrun[2] + offset) << shift;
46cb4b7c 2346}
46cb4b7c 2347
46cb4b7c 2348/*
dce48a84
TG
2349 * calc_load - update the avenrun load estimates 10 ticks after the
2350 * CPUs have updated calc_load_tasks.
7835b98b 2351 */
0f004f5a 2352void calc_global_load(unsigned long ticks)
7835b98b 2353{
dce48a84 2354 long active;
1da177e4 2355
0f004f5a
PZ
2356 calc_global_nohz(ticks);
2357
2358 if (time_before(jiffies, calc_load_update + 10))
dce48a84 2359 return;
1da177e4 2360
dce48a84
TG
2361 active = atomic_long_read(&calc_load_tasks);
2362 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 2363
dce48a84
TG
2364 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2365 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2366 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 2367
dce48a84
TG
2368 calc_load_update += LOAD_FREQ;
2369}
1da177e4 2370
dce48a84 2371/*
74f5187a
PZ
2372 * Called from update_cpu_load() to periodically update this CPU's
2373 * active count.
dce48a84
TG
2374 */
2375static void calc_load_account_active(struct rq *this_rq)
2376{
74f5187a 2377 long delta;
08c183f3 2378
74f5187a
PZ
2379 if (time_before(jiffies, this_rq->calc_load_update))
2380 return;
783609c6 2381
74f5187a
PZ
2382 delta = calc_load_fold_active(this_rq);
2383 delta += calc_load_fold_idle();
2384 if (delta)
dce48a84 2385 atomic_long_add(delta, &calc_load_tasks);
74f5187a
PZ
2386
2387 this_rq->calc_load_update += LOAD_FREQ;
46cb4b7c
SS
2388}
2389
fdf3e95d
VP
2390/*
2391 * The exact cpuload at various idx values, calculated at every tick would be
2392 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2393 *
2394 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2395 * on nth tick when cpu may be busy, then we have:
2396 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2397 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2398 *
2399 * decay_load_missed() below does efficient calculation of
2400 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2401 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2402 *
2403 * The calculation is approximated on a 128 point scale.
2404 * degrade_zero_ticks is the number of ticks after which load at any
2405 * particular idx is approximated to be zero.
2406 * degrade_factor is a precomputed table, a row for each load idx.
2407 * Each column corresponds to degradation factor for a power of two ticks,
2408 * based on 128 point scale.
2409 * Example:
2410 * row 2, col 3 (=12) says that the degradation at load idx 2 after
2411 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2412 *
2413 * With this power of 2 load factors, we can degrade the load n times
2414 * by looking at 1 bits in n and doing as many mult/shift instead of
2415 * n mult/shifts needed by the exact degradation.
2416 */
2417#define DEGRADE_SHIFT 7
2418static const unsigned char
2419 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2420static const unsigned char
2421 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2422 {0, 0, 0, 0, 0, 0, 0, 0},
2423 {64, 32, 8, 0, 0, 0, 0, 0},
2424 {96, 72, 40, 12, 1, 0, 0},
2425 {112, 98, 75, 43, 15, 1, 0},
2426 {120, 112, 98, 76, 45, 16, 2} };
2427
2428/*
2429 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2430 * would be when CPU is idle and so we just decay the old load without
2431 * adding any new load.
2432 */
2433static unsigned long
2434decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2435{
2436 int j = 0;
2437
2438 if (!missed_updates)
2439 return load;
2440
2441 if (missed_updates >= degrade_zero_ticks[idx])
2442 return 0;
2443
2444 if (idx == 1)
2445 return load >> missed_updates;
2446
2447 while (missed_updates) {
2448 if (missed_updates % 2)
2449 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2450
2451 missed_updates >>= 1;
2452 j++;
2453 }
2454 return load;
2455}
2456
46cb4b7c 2457/*
dd41f596 2458 * Update rq->cpu_load[] statistics. This function is usually called every
fdf3e95d
VP
2459 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2460 * every tick. We fix it up based on jiffies.
46cb4b7c 2461 */
029632fb 2462void update_cpu_load(struct rq *this_rq)
46cb4b7c 2463{
495eca49 2464 unsigned long this_load = this_rq->load.weight;
fdf3e95d
VP
2465 unsigned long curr_jiffies = jiffies;
2466 unsigned long pending_updates;
dd41f596 2467 int i, scale;
46cb4b7c 2468
dd41f596 2469 this_rq->nr_load_updates++;
46cb4b7c 2470
fdf3e95d
VP
2471 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
2472 if (curr_jiffies == this_rq->last_load_update_tick)
2473 return;
2474
2475 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2476 this_rq->last_load_update_tick = curr_jiffies;
2477
dd41f596 2478 /* Update our load: */
fdf3e95d
VP
2479 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2480 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
dd41f596 2481 unsigned long old_load, new_load;
7d1e6a9b 2482
dd41f596 2483 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 2484
dd41f596 2485 old_load = this_rq->cpu_load[i];
fdf3e95d 2486 old_load = decay_load_missed(old_load, pending_updates - 1, i);
dd41f596 2487 new_load = this_load;
a25707f3
IM
2488 /*
2489 * Round up the averaging division if load is increasing. This
2490 * prevents us from getting stuck on 9 if the load is 10, for
2491 * example.
2492 */
2493 if (new_load > old_load)
fdf3e95d
VP
2494 new_load += scale - 1;
2495
2496 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
dd41f596 2497 }
da2b71ed
SS
2498
2499 sched_avg_update(this_rq);
fdf3e95d
VP
2500}
2501
2502static void update_cpu_load_active(struct rq *this_rq)
2503{
2504 update_cpu_load(this_rq);
46cb4b7c 2505
74f5187a 2506 calc_load_account_active(this_rq);
46cb4b7c
SS
2507}
2508
dd41f596 2509#ifdef CONFIG_SMP
8a0be9ef 2510
46cb4b7c 2511/*
38022906
PZ
2512 * sched_exec - execve() is a valuable balancing opportunity, because at
2513 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2514 */
38022906 2515void sched_exec(void)
46cb4b7c 2516{
38022906 2517 struct task_struct *p = current;
1da177e4 2518 unsigned long flags;
0017d735 2519 int dest_cpu;
46cb4b7c 2520
8f42ced9 2521 raw_spin_lock_irqsave(&p->pi_lock, flags);
7608dec2 2522 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
0017d735
PZ
2523 if (dest_cpu == smp_processor_id())
2524 goto unlock;
38022906 2525
8f42ced9 2526 if (likely(cpu_active(dest_cpu))) {
969c7921 2527 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2528
8f42ced9
PZ
2529 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2530 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2531 return;
2532 }
0017d735 2533unlock:
8f42ced9 2534 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2535}
dd41f596 2536
1da177e4
LT
2537#endif
2538
1da177e4 2539DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2540DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2541
2542EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2543EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4
LT
2544
2545/*
c5f8d995 2546 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 2547 * @p in case that task is currently running.
c5f8d995
HS
2548 *
2549 * Called with task_rq_lock() held on @rq.
1da177e4 2550 */
c5f8d995
HS
2551static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2552{
2553 u64 ns = 0;
2554
2555 if (task_current(rq, p)) {
2556 update_rq_clock(rq);
305e6835 2557 ns = rq->clock_task - p->se.exec_start;
c5f8d995
HS
2558 if ((s64)ns < 0)
2559 ns = 0;
2560 }
2561
2562 return ns;
2563}
2564
bb34d92f 2565unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 2566{
1da177e4 2567 unsigned long flags;
41b86e9c 2568 struct rq *rq;
bb34d92f 2569 u64 ns = 0;
48f24c4d 2570
41b86e9c 2571 rq = task_rq_lock(p, &flags);
c5f8d995 2572 ns = do_task_delta_exec(p, rq);
0122ec5b 2573 task_rq_unlock(rq, p, &flags);
1508487e 2574
c5f8d995
HS
2575 return ns;
2576}
f06febc9 2577
c5f8d995
HS
2578/*
2579 * Return accounted runtime for the task.
2580 * In case the task is currently running, return the runtime plus current's
2581 * pending runtime that have not been accounted yet.
2582 */
2583unsigned long long task_sched_runtime(struct task_struct *p)
2584{
2585 unsigned long flags;
2586 struct rq *rq;
2587 u64 ns = 0;
2588
2589 rq = task_rq_lock(p, &flags);
2590 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 2591 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2592
2593 return ns;
2594}
48f24c4d 2595
54c707e9
GC
2596#ifdef CONFIG_CGROUP_CPUACCT
2597struct cgroup_subsys cpuacct_subsys;
2598struct cpuacct root_cpuacct;
2599#endif
2600
be726ffd
GC
2601static inline void task_group_account_field(struct task_struct *p, int index,
2602 u64 tmp)
54c707e9
GC
2603{
2604#ifdef CONFIG_CGROUP_CPUACCT
2605 struct kernel_cpustat *kcpustat;
2606 struct cpuacct *ca;
2607#endif
2608 /*
2609 * Since all updates are sure to touch the root cgroup, we
2610 * get ourselves ahead and touch it first. If the root cgroup
2611 * is the only cgroup, then nothing else should be necessary.
2612 *
2613 */
2614 __get_cpu_var(kernel_cpustat).cpustat[index] += tmp;
2615
2616#ifdef CONFIG_CGROUP_CPUACCT
2617 if (unlikely(!cpuacct_subsys.active))
2618 return;
2619
2620 rcu_read_lock();
2621 ca = task_ca(p);
2622 while (ca && (ca != &root_cpuacct)) {
2623 kcpustat = this_cpu_ptr(ca->cpustat);
2624 kcpustat->cpustat[index] += tmp;
2625 ca = parent_ca(ca);
2626 }
2627 rcu_read_unlock();
2628#endif
2629}
2630
2631
1da177e4
LT
2632/*
2633 * Account user cpu time to a process.
2634 * @p: the process that the cpu time gets accounted to
1da177e4 2635 * @cputime: the cpu time spent in user space since the last update
457533a7 2636 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 2637 */
457533a7
MS
2638void account_user_time(struct task_struct *p, cputime_t cputime,
2639 cputime_t cputime_scaled)
1da177e4 2640{
3292beb3 2641 int index;
1da177e4 2642
457533a7 2643 /* Add user time to process. */
64861634
MS
2644 p->utime += cputime;
2645 p->utimescaled += cputime_scaled;
f06febc9 2646 account_group_user_time(p, cputime);
1da177e4 2647
3292beb3 2648 index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
ef12fefa 2649
1da177e4 2650 /* Add user time to cpustat. */
612ef28a 2651 task_group_account_field(p, index, (__force u64) cputime);
ef12fefa 2652
49b5cf34
JL
2653 /* Account for user time used */
2654 acct_update_integrals(p);
1da177e4
LT
2655}
2656
94886b84
LV
2657/*
2658 * Account guest cpu time to a process.
2659 * @p: the process that the cpu time gets accounted to
2660 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 2661 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 2662 */
457533a7
MS
2663static void account_guest_time(struct task_struct *p, cputime_t cputime,
2664 cputime_t cputime_scaled)
94886b84 2665{
3292beb3 2666 u64 *cpustat = kcpustat_this_cpu->cpustat;
94886b84 2667
457533a7 2668 /* Add guest time to process. */
64861634
MS
2669 p->utime += cputime;
2670 p->utimescaled += cputime_scaled;
f06febc9 2671 account_group_user_time(p, cputime);
64861634 2672 p->gtime += cputime;
94886b84 2673
457533a7 2674 /* Add guest time to cpustat. */
ce0e7b28 2675 if (TASK_NICE(p) > 0) {
612ef28a
MS
2676 cpustat[CPUTIME_NICE] += (__force u64) cputime;
2677 cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
ce0e7b28 2678 } else {
612ef28a
MS
2679 cpustat[CPUTIME_USER] += (__force u64) cputime;
2680 cpustat[CPUTIME_GUEST] += (__force u64) cputime;
ce0e7b28 2681 }
94886b84
LV
2682}
2683
70a89a66
VP
2684/*
2685 * Account system cpu time to a process and desired cpustat field
2686 * @p: the process that the cpu time gets accounted to
2687 * @cputime: the cpu time spent in kernel space since the last update
2688 * @cputime_scaled: cputime scaled by cpu frequency
2689 * @target_cputime64: pointer to cpustat field that has to be updated
2690 */
2691static inline
2692void __account_system_time(struct task_struct *p, cputime_t cputime,
3292beb3 2693 cputime_t cputime_scaled, int index)
70a89a66 2694{
70a89a66 2695 /* Add system time to process. */
64861634
MS
2696 p->stime += cputime;
2697 p->stimescaled += cputime_scaled;
70a89a66
VP
2698 account_group_system_time(p, cputime);
2699
2700 /* Add system time to cpustat. */
612ef28a 2701 task_group_account_field(p, index, (__force u64) cputime);
70a89a66
VP
2702
2703 /* Account for system time used */
2704 acct_update_integrals(p);
2705}
2706
1da177e4
LT
2707/*
2708 * Account system cpu time to a process.
2709 * @p: the process that the cpu time gets accounted to
2710 * @hardirq_offset: the offset to subtract from hardirq_count()
2711 * @cputime: the cpu time spent in kernel space since the last update
457533a7 2712 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
2713 */
2714void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 2715 cputime_t cputime, cputime_t cputime_scaled)
1da177e4 2716{
3292beb3 2717 int index;
1da177e4 2718
983ed7a6 2719 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 2720 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
2721 return;
2722 }
94886b84 2723
1da177e4 2724 if (hardirq_count() - hardirq_offset)
3292beb3 2725 index = CPUTIME_IRQ;
75e1056f 2726 else if (in_serving_softirq())
3292beb3 2727 index = CPUTIME_SOFTIRQ;
1da177e4 2728 else
3292beb3 2729 index = CPUTIME_SYSTEM;
ef12fefa 2730
3292beb3 2731 __account_system_time(p, cputime, cputime_scaled, index);
1da177e4
LT
2732}
2733
c66f08be 2734/*
1da177e4 2735 * Account for involuntary wait time.
544b4a1f 2736 * @cputime: the cpu time spent in involuntary wait
c66f08be 2737 */
79741dd3 2738void account_steal_time(cputime_t cputime)
c66f08be 2739{
3292beb3 2740 u64 *cpustat = kcpustat_this_cpu->cpustat;
79741dd3 2741
612ef28a 2742 cpustat[CPUTIME_STEAL] += (__force u64) cputime;
c66f08be
MN
2743}
2744
1da177e4 2745/*
79741dd3
MS
2746 * Account for idle time.
2747 * @cputime: the cpu time spent in idle wait
1da177e4 2748 */
79741dd3 2749void account_idle_time(cputime_t cputime)
1da177e4 2750{
3292beb3 2751 u64 *cpustat = kcpustat_this_cpu->cpustat;
70b97a7f 2752 struct rq *rq = this_rq();
1da177e4 2753
79741dd3 2754 if (atomic_read(&rq->nr_iowait) > 0)
612ef28a 2755 cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
79741dd3 2756 else
612ef28a 2757 cpustat[CPUTIME_IDLE] += (__force u64) cputime;
1da177e4
LT
2758}
2759
e6e6685a
GC
2760static __always_inline bool steal_account_process_tick(void)
2761{
2762#ifdef CONFIG_PARAVIRT
2763 if (static_branch(&paravirt_steal_enabled)) {
2764 u64 steal, st = 0;
2765
2766 steal = paravirt_steal_clock(smp_processor_id());
2767 steal -= this_rq()->prev_steal_time;
2768
2769 st = steal_ticks(steal);
2770 this_rq()->prev_steal_time += st * TICK_NSEC;
2771
2772 account_steal_time(st);
2773 return st;
2774 }
2775#endif
2776 return false;
2777}
2778
79741dd3
MS
2779#ifndef CONFIG_VIRT_CPU_ACCOUNTING
2780
abb74cef
VP
2781#ifdef CONFIG_IRQ_TIME_ACCOUNTING
2782/*
2783 * Account a tick to a process and cpustat
2784 * @p: the process that the cpu time gets accounted to
2785 * @user_tick: is the tick from userspace
2786 * @rq: the pointer to rq
2787 *
2788 * Tick demultiplexing follows the order
2789 * - pending hardirq update
2790 * - pending softirq update
2791 * - user_time
2792 * - idle_time
2793 * - system time
2794 * - check for guest_time
2795 * - else account as system_time
2796 *
2797 * Check for hardirq is done both for system and user time as there is
2798 * no timer going off while we are on hardirq and hence we may never get an
2799 * opportunity to update it solely in system time.
2800 * p->stime and friends are only updated on system time and not on irq
2801 * softirq as those do not count in task exec_runtime any more.
2802 */
2803static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
2804 struct rq *rq)
2805{
2806 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3292beb3 2807 u64 *cpustat = kcpustat_this_cpu->cpustat;
abb74cef 2808
e6e6685a
GC
2809 if (steal_account_process_tick())
2810 return;
2811
abb74cef 2812 if (irqtime_account_hi_update()) {
612ef28a 2813 cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy;
abb74cef 2814 } else if (irqtime_account_si_update()) {
612ef28a 2815 cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy;
414bee9b
VP
2816 } else if (this_cpu_ksoftirqd() == p) {
2817 /*
2818 * ksoftirqd time do not get accounted in cpu_softirq_time.
2819 * So, we have to handle it separately here.
2820 * Also, p->stime needs to be updated for ksoftirqd.
2821 */
2822 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3292beb3 2823 CPUTIME_SOFTIRQ);
abb74cef
VP
2824 } else if (user_tick) {
2825 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
2826 } else if (p == rq->idle) {
2827 account_idle_time(cputime_one_jiffy);
2828 } else if (p->flags & PF_VCPU) { /* System time or guest time */
2829 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
2830 } else {
2831 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3292beb3 2832 CPUTIME_SYSTEM);
abb74cef
VP
2833 }
2834}
2835
2836static void irqtime_account_idle_ticks(int ticks)
2837{
2838 int i;
2839 struct rq *rq = this_rq();
2840
2841 for (i = 0; i < ticks; i++)
2842 irqtime_account_process_tick(current, 0, rq);
2843}
544b4a1f 2844#else /* CONFIG_IRQ_TIME_ACCOUNTING */
abb74cef
VP
2845static void irqtime_account_idle_ticks(int ticks) {}
2846static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
2847 struct rq *rq) {}
544b4a1f 2848#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
79741dd3
MS
2849
2850/*
2851 * Account a single tick of cpu time.
2852 * @p: the process that the cpu time gets accounted to
2853 * @user_tick: indicates if the tick is a user or a system tick
2854 */
2855void account_process_tick(struct task_struct *p, int user_tick)
2856{
a42548a1 2857 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
2858 struct rq *rq = this_rq();
2859
abb74cef
VP
2860 if (sched_clock_irqtime) {
2861 irqtime_account_process_tick(p, user_tick, rq);
2862 return;
2863 }
2864
e6e6685a
GC
2865 if (steal_account_process_tick())
2866 return;
2867
79741dd3 2868 if (user_tick)
a42548a1 2869 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 2870 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 2871 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
2872 one_jiffy_scaled);
2873 else
a42548a1 2874 account_idle_time(cputime_one_jiffy);
79741dd3
MS
2875}
2876
2877/*
2878 * Account multiple ticks of steal time.
2879 * @p: the process from which the cpu time has been stolen
2880 * @ticks: number of stolen ticks
2881 */
2882void account_steal_ticks(unsigned long ticks)
2883{
2884 account_steal_time(jiffies_to_cputime(ticks));
2885}
2886
2887/*
2888 * Account multiple ticks of idle time.
2889 * @ticks: number of stolen ticks
2890 */
2891void account_idle_ticks(unsigned long ticks)
2892{
abb74cef
VP
2893
2894 if (sched_clock_irqtime) {
2895 irqtime_account_idle_ticks(ticks);
2896 return;
2897 }
2898
79741dd3 2899 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
2900}
2901
79741dd3
MS
2902#endif
2903
49048622
BS
2904/*
2905 * Use precise platform statistics if available:
2906 */
2907#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 2908void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 2909{
d99ca3b9
HS
2910 *ut = p->utime;
2911 *st = p->stime;
49048622
BS
2912}
2913
0cf55e1e 2914void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 2915{
0cf55e1e
HS
2916 struct task_cputime cputime;
2917
2918 thread_group_cputime(p, &cputime);
2919
2920 *ut = cputime.utime;
2921 *st = cputime.stime;
49048622
BS
2922}
2923#else
761b1d26
HS
2924
2925#ifndef nsecs_to_cputime
b7b20df9 2926# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
2927#endif
2928
d180c5bc 2929void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 2930{
64861634 2931 cputime_t rtime, utime = p->utime, total = utime + p->stime;
49048622
BS
2932
2933 /*
2934 * Use CFS's precise accounting:
2935 */
d180c5bc 2936 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
2937
2938 if (total) {
64861634 2939 u64 temp = (__force u64) rtime;
d180c5bc 2940
64861634
MS
2941 temp *= (__force u64) utime;
2942 do_div(temp, (__force u32) total);
2943 utime = (__force cputime_t) temp;
d180c5bc
HS
2944 } else
2945 utime = rtime;
49048622 2946
d180c5bc
HS
2947 /*
2948 * Compare with previous values, to keep monotonicity:
2949 */
761b1d26 2950 p->prev_utime = max(p->prev_utime, utime);
64861634 2951 p->prev_stime = max(p->prev_stime, rtime - p->prev_utime);
49048622 2952
d99ca3b9
HS
2953 *ut = p->prev_utime;
2954 *st = p->prev_stime;
49048622
BS
2955}
2956
0cf55e1e
HS
2957/*
2958 * Must be called with siglock held.
2959 */
2960void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 2961{
0cf55e1e
HS
2962 struct signal_struct *sig = p->signal;
2963 struct task_cputime cputime;
2964 cputime_t rtime, utime, total;
49048622 2965
0cf55e1e 2966 thread_group_cputime(p, &cputime);
49048622 2967
64861634 2968 total = cputime.utime + cputime.stime;
0cf55e1e 2969 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 2970
0cf55e1e 2971 if (total) {
64861634 2972 u64 temp = (__force u64) rtime;
49048622 2973
64861634
MS
2974 temp *= (__force u64) cputime.utime;
2975 do_div(temp, (__force u32) total);
2976 utime = (__force cputime_t) temp;
0cf55e1e
HS
2977 } else
2978 utime = rtime;
2979
2980 sig->prev_utime = max(sig->prev_utime, utime);
64861634 2981 sig->prev_stime = max(sig->prev_stime, rtime - sig->prev_utime);
0cf55e1e
HS
2982
2983 *ut = sig->prev_utime;
2984 *st = sig->prev_stime;
49048622 2985}
49048622 2986#endif
49048622 2987
7835b98b
CL
2988/*
2989 * This function gets called by the timer code, with HZ frequency.
2990 * We call it with interrupts disabled.
7835b98b
CL
2991 */
2992void scheduler_tick(void)
2993{
7835b98b
CL
2994 int cpu = smp_processor_id();
2995 struct rq *rq = cpu_rq(cpu);
dd41f596 2996 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2997
2998 sched_clock_tick();
dd41f596 2999
05fa785c 3000 raw_spin_lock(&rq->lock);
3e51f33f 3001 update_rq_clock(rq);
fdf3e95d 3002 update_cpu_load_active(rq);
fa85ae24 3003 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 3004 raw_spin_unlock(&rq->lock);
7835b98b 3005
e9d2b064 3006 perf_event_task_tick();
e220d2dc 3007
e418e1c2 3008#ifdef CONFIG_SMP
6eb57e0d 3009 rq->idle_balance = idle_cpu(cpu);
dd41f596 3010 trigger_load_balance(rq, cpu);
e418e1c2 3011#endif
1da177e4
LT
3012}
3013
132380a0 3014notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
3015{
3016 if (in_lock_functions(addr)) {
3017 addr = CALLER_ADDR2;
3018 if (in_lock_functions(addr))
3019 addr = CALLER_ADDR3;
3020 }
3021 return addr;
3022}
1da177e4 3023
7e49fcce
SR
3024#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3025 defined(CONFIG_PREEMPT_TRACER))
3026
43627582 3027void __kprobes add_preempt_count(int val)
1da177e4 3028{
6cd8a4bb 3029#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3030 /*
3031 * Underflow?
3032 */
9a11b49a
IM
3033 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3034 return;
6cd8a4bb 3035#endif
1da177e4 3036 preempt_count() += val;
6cd8a4bb 3037#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3038 /*
3039 * Spinlock count overflowing soon?
3040 */
33859f7f
MOS
3041 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3042 PREEMPT_MASK - 10);
6cd8a4bb
SR
3043#endif
3044 if (preempt_count() == val)
3045 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3046}
3047EXPORT_SYMBOL(add_preempt_count);
3048
43627582 3049void __kprobes sub_preempt_count(int val)
1da177e4 3050{
6cd8a4bb 3051#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3052 /*
3053 * Underflow?
3054 */
01e3eb82 3055 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3056 return;
1da177e4
LT
3057 /*
3058 * Is the spinlock portion underflowing?
3059 */
9a11b49a
IM
3060 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3061 !(preempt_count() & PREEMPT_MASK)))
3062 return;
6cd8a4bb 3063#endif
9a11b49a 3064
6cd8a4bb
SR
3065 if (preempt_count() == val)
3066 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3067 preempt_count() -= val;
3068}
3069EXPORT_SYMBOL(sub_preempt_count);
3070
3071#endif
3072
3073/*
dd41f596 3074 * Print scheduling while atomic bug:
1da177e4 3075 */
dd41f596 3076static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3077{
838225b4
SS
3078 struct pt_regs *regs = get_irq_regs();
3079
3df0fc5b
PZ
3080 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3081 prev->comm, prev->pid, preempt_count());
838225b4 3082
dd41f596 3083 debug_show_held_locks(prev);
e21f5b15 3084 print_modules();
dd41f596
IM
3085 if (irqs_disabled())
3086 print_irqtrace_events(prev);
838225b4
SS
3087
3088 if (regs)
3089 show_regs(regs);
3090 else
3091 dump_stack();
dd41f596 3092}
1da177e4 3093
dd41f596
IM
3094/*
3095 * Various schedule()-time debugging checks and statistics:
3096 */
3097static inline void schedule_debug(struct task_struct *prev)
3098{
1da177e4 3099 /*
41a2d6cf 3100 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
3101 * schedule() atomically, we ignore that path for now.
3102 * Otherwise, whine if we are scheduling when we should not be.
3103 */
3f33a7ce 3104 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596 3105 __schedule_bug(prev);
b3fbab05 3106 rcu_sleep_check();
dd41f596 3107
1da177e4
LT
3108 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3109
2d72376b 3110 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
3111}
3112
6cecd084 3113static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 3114{
61eadef6 3115 if (prev->on_rq || rq->skip_clock_update < 0)
a64692a3 3116 update_rq_clock(rq);
6cecd084 3117 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
3118}
3119
dd41f596
IM
3120/*
3121 * Pick up the highest-prio task:
3122 */
3123static inline struct task_struct *
b67802ea 3124pick_next_task(struct rq *rq)
dd41f596 3125{
5522d5d5 3126 const struct sched_class *class;
dd41f596 3127 struct task_struct *p;
1da177e4
LT
3128
3129 /*
dd41f596
IM
3130 * Optimization: we know that if all tasks are in
3131 * the fair class we can call that function directly:
1da177e4 3132 */
953bfcd1 3133 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
fb8d4724 3134 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3135 if (likely(p))
3136 return p;
1da177e4
LT
3137 }
3138
34f971f6 3139 for_each_class(class) {
fb8d4724 3140 p = class->pick_next_task(rq);
dd41f596
IM
3141 if (p)
3142 return p;
dd41f596 3143 }
34f971f6
PZ
3144
3145 BUG(); /* the idle class will always have a runnable task */
dd41f596 3146}
1da177e4 3147
dd41f596 3148/*
c259e01a 3149 * __schedule() is the main scheduler function.
dd41f596 3150 */
c259e01a 3151static void __sched __schedule(void)
dd41f596
IM
3152{
3153 struct task_struct *prev, *next;
67ca7bde 3154 unsigned long *switch_count;
dd41f596 3155 struct rq *rq;
31656519 3156 int cpu;
dd41f596 3157
ff743345
PZ
3158need_resched:
3159 preempt_disable();
dd41f596
IM
3160 cpu = smp_processor_id();
3161 rq = cpu_rq(cpu);
25502a6c 3162 rcu_note_context_switch(cpu);
dd41f596 3163 prev = rq->curr;
dd41f596 3164
dd41f596 3165 schedule_debug(prev);
1da177e4 3166
31656519 3167 if (sched_feat(HRTICK))
f333fdc9 3168 hrtick_clear(rq);
8f4d37ec 3169
05fa785c 3170 raw_spin_lock_irq(&rq->lock);
1da177e4 3171
246d86b5 3172 switch_count = &prev->nivcsw;
1da177e4 3173 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 3174 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 3175 prev->state = TASK_RUNNING;
21aa9af0 3176 } else {
2acca55e
PZ
3177 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3178 prev->on_rq = 0;
3179
21aa9af0 3180 /*
2acca55e
PZ
3181 * If a worker went to sleep, notify and ask workqueue
3182 * whether it wants to wake up a task to maintain
3183 * concurrency.
21aa9af0
TH
3184 */
3185 if (prev->flags & PF_WQ_WORKER) {
3186 struct task_struct *to_wakeup;
3187
3188 to_wakeup = wq_worker_sleeping(prev, cpu);
3189 if (to_wakeup)
3190 try_to_wake_up_local(to_wakeup);
3191 }
21aa9af0 3192 }
dd41f596 3193 switch_count = &prev->nvcsw;
1da177e4
LT
3194 }
3195
3f029d3c 3196 pre_schedule(rq, prev);
f65eda4f 3197
dd41f596 3198 if (unlikely(!rq->nr_running))
1da177e4 3199 idle_balance(cpu, rq);
1da177e4 3200
df1c99d4 3201 put_prev_task(rq, prev);
b67802ea 3202 next = pick_next_task(rq);
f26f9aff
MG
3203 clear_tsk_need_resched(prev);
3204 rq->skip_clock_update = 0;
1da177e4 3205
1da177e4 3206 if (likely(prev != next)) {
1da177e4
LT
3207 rq->nr_switches++;
3208 rq->curr = next;
3209 ++*switch_count;
3210
dd41f596 3211 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 3212 /*
246d86b5
ON
3213 * The context switch have flipped the stack from under us
3214 * and restored the local variables which were saved when
3215 * this task called schedule() in the past. prev == current
3216 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
3217 */
3218 cpu = smp_processor_id();
3219 rq = cpu_rq(cpu);
1da177e4 3220 } else
05fa785c 3221 raw_spin_unlock_irq(&rq->lock);
1da177e4 3222
3f029d3c 3223 post_schedule(rq);
1da177e4 3224
1da177e4 3225 preempt_enable_no_resched();
ff743345 3226 if (need_resched())
1da177e4
LT
3227 goto need_resched;
3228}
c259e01a 3229
9c40cef2
TG
3230static inline void sched_submit_work(struct task_struct *tsk)
3231{
3232 if (!tsk->state)
3233 return;
3234 /*
3235 * If we are going to sleep and we have plugged IO queued,
3236 * make sure to submit it to avoid deadlocks.
3237 */
3238 if (blk_needs_flush_plug(tsk))
3239 blk_schedule_flush_plug(tsk);
3240}
3241
6ebbe7a0 3242asmlinkage void __sched schedule(void)
c259e01a 3243{
9c40cef2
TG
3244 struct task_struct *tsk = current;
3245
3246 sched_submit_work(tsk);
c259e01a
TG
3247 __schedule();
3248}
1da177e4
LT
3249EXPORT_SYMBOL(schedule);
3250
c08f7829 3251#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d 3252
c6eb3dda
PZ
3253static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
3254{
c6eb3dda 3255 if (lock->owner != owner)
307bf980 3256 return false;
0d66bf6d
PZ
3257
3258 /*
c6eb3dda
PZ
3259 * Ensure we emit the owner->on_cpu, dereference _after_ checking
3260 * lock->owner still matches owner, if that fails, owner might
3261 * point to free()d memory, if it still matches, the rcu_read_lock()
3262 * ensures the memory stays valid.
0d66bf6d 3263 */
c6eb3dda 3264 barrier();
0d66bf6d 3265
307bf980 3266 return owner->on_cpu;
c6eb3dda 3267}
0d66bf6d 3268
c6eb3dda
PZ
3269/*
3270 * Look out! "owner" is an entirely speculative pointer
3271 * access and not reliable.
3272 */
3273int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
3274{
3275 if (!sched_feat(OWNER_SPIN))
3276 return 0;
0d66bf6d 3277
307bf980 3278 rcu_read_lock();
c6eb3dda
PZ
3279 while (owner_running(lock, owner)) {
3280 if (need_resched())
307bf980 3281 break;
0d66bf6d 3282
335d7afb 3283 arch_mutex_cpu_relax();
0d66bf6d 3284 }
307bf980 3285 rcu_read_unlock();
4b402210 3286
c6eb3dda 3287 /*
307bf980
TG
3288 * We break out the loop above on need_resched() and when the
3289 * owner changed, which is a sign for heavy contention. Return
3290 * success only when lock->owner is NULL.
c6eb3dda 3291 */
307bf980 3292 return lock->owner == NULL;
0d66bf6d
PZ
3293}
3294#endif
3295
1da177e4
LT
3296#ifdef CONFIG_PREEMPT
3297/*
2ed6e34f 3298 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3299 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3300 * occur there and call schedule directly.
3301 */
d1f74e20 3302asmlinkage void __sched notrace preempt_schedule(void)
1da177e4
LT
3303{
3304 struct thread_info *ti = current_thread_info();
6478d880 3305
1da177e4
LT
3306 /*
3307 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3308 * we do not want to preempt the current task. Just return..
1da177e4 3309 */
beed33a8 3310 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3311 return;
3312
3a5c359a 3313 do {
d1f74e20 3314 add_preempt_count_notrace(PREEMPT_ACTIVE);
c259e01a 3315 __schedule();
d1f74e20 3316 sub_preempt_count_notrace(PREEMPT_ACTIVE);
1da177e4 3317
3a5c359a
AK
3318 /*
3319 * Check again in case we missed a preemption opportunity
3320 * between schedule and now.
3321 */
3322 barrier();
5ed0cec0 3323 } while (need_resched());
1da177e4 3324}
1da177e4
LT
3325EXPORT_SYMBOL(preempt_schedule);
3326
3327/*
2ed6e34f 3328 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3329 * off of irq context.
3330 * Note, that this is called and return with irqs disabled. This will
3331 * protect us against recursive calling from irq.
3332 */
3333asmlinkage void __sched preempt_schedule_irq(void)
3334{
3335 struct thread_info *ti = current_thread_info();
6478d880 3336
2ed6e34f 3337 /* Catch callers which need to be fixed */
1da177e4
LT
3338 BUG_ON(ti->preempt_count || !irqs_disabled());
3339
3a5c359a
AK
3340 do {
3341 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 3342 local_irq_enable();
c259e01a 3343 __schedule();
3a5c359a 3344 local_irq_disable();
3a5c359a 3345 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3346
3a5c359a
AK
3347 /*
3348 * Check again in case we missed a preemption opportunity
3349 * between schedule and now.
3350 */
3351 barrier();
5ed0cec0 3352 } while (need_resched());
1da177e4
LT
3353}
3354
3355#endif /* CONFIG_PREEMPT */
3356
63859d4f 3357int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3358 void *key)
1da177e4 3359{
63859d4f 3360 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3361}
1da177e4
LT
3362EXPORT_SYMBOL(default_wake_function);
3363
3364/*
41a2d6cf
IM
3365 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3366 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
3367 * number) then we wake all the non-exclusive tasks and one exclusive task.
3368 *
3369 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 3370 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
3371 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3372 */
78ddb08f 3373static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 3374 int nr_exclusive, int wake_flags, void *key)
1da177e4 3375{
2e45874c 3376 wait_queue_t *curr, *next;
1da177e4 3377
2e45874c 3378 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
3379 unsigned flags = curr->flags;
3380
63859d4f 3381 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 3382 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3383 break;
3384 }
3385}
3386
3387/**
3388 * __wake_up - wake up threads blocked on a waitqueue.
3389 * @q: the waitqueue
3390 * @mode: which threads
3391 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3392 * @key: is directly passed to the wakeup function
50fa610a
DH
3393 *
3394 * It may be assumed that this function implies a write memory barrier before
3395 * changing the task state if and only if any tasks are woken up.
1da177e4 3396 */
7ad5b3a5 3397void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3398 int nr_exclusive, void *key)
1da177e4
LT
3399{
3400 unsigned long flags;
3401
3402 spin_lock_irqsave(&q->lock, flags);
3403 __wake_up_common(q, mode, nr_exclusive, 0, key);
3404 spin_unlock_irqrestore(&q->lock, flags);
3405}
1da177e4
LT
3406EXPORT_SYMBOL(__wake_up);
3407
3408/*
3409 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3410 */
7ad5b3a5 3411void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
3412{
3413 __wake_up_common(q, mode, 1, 0, NULL);
3414}
22c43c81 3415EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 3416
4ede816a
DL
3417void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3418{
3419 __wake_up_common(q, mode, 1, 0, key);
3420}
bf294b41 3421EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4ede816a 3422
1da177e4 3423/**
4ede816a 3424 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
3425 * @q: the waitqueue
3426 * @mode: which threads
3427 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 3428 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
3429 *
3430 * The sync wakeup differs that the waker knows that it will schedule
3431 * away soon, so while the target thread will be woken up, it will not
3432 * be migrated to another CPU - ie. the two threads are 'synchronized'
3433 * with each other. This can prevent needless bouncing between CPUs.
3434 *
3435 * On UP it can prevent extra preemption.
50fa610a
DH
3436 *
3437 * It may be assumed that this function implies a write memory barrier before
3438 * changing the task state if and only if any tasks are woken up.
1da177e4 3439 */
4ede816a
DL
3440void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3441 int nr_exclusive, void *key)
1da177e4
LT
3442{
3443 unsigned long flags;
7d478721 3444 int wake_flags = WF_SYNC;
1da177e4
LT
3445
3446 if (unlikely(!q))
3447 return;
3448
3449 if (unlikely(!nr_exclusive))
7d478721 3450 wake_flags = 0;
1da177e4
LT
3451
3452 spin_lock_irqsave(&q->lock, flags);
7d478721 3453 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
3454 spin_unlock_irqrestore(&q->lock, flags);
3455}
4ede816a
DL
3456EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3457
3458/*
3459 * __wake_up_sync - see __wake_up_sync_key()
3460 */
3461void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3462{
3463 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3464}
1da177e4
LT
3465EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3466
65eb3dc6
KD
3467/**
3468 * complete: - signals a single thread waiting on this completion
3469 * @x: holds the state of this particular completion
3470 *
3471 * This will wake up a single thread waiting on this completion. Threads will be
3472 * awakened in the same order in which they were queued.
3473 *
3474 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
3475 *
3476 * It may be assumed that this function implies a write memory barrier before
3477 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3478 */
b15136e9 3479void complete(struct completion *x)
1da177e4
LT
3480{
3481 unsigned long flags;
3482
3483 spin_lock_irqsave(&x->wait.lock, flags);
3484 x->done++;
d9514f6c 3485 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
3486 spin_unlock_irqrestore(&x->wait.lock, flags);
3487}
3488EXPORT_SYMBOL(complete);
3489
65eb3dc6
KD
3490/**
3491 * complete_all: - signals all threads waiting on this completion
3492 * @x: holds the state of this particular completion
3493 *
3494 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
3495 *
3496 * It may be assumed that this function implies a write memory barrier before
3497 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3498 */
b15136e9 3499void complete_all(struct completion *x)
1da177e4
LT
3500{
3501 unsigned long flags;
3502
3503 spin_lock_irqsave(&x->wait.lock, flags);
3504 x->done += UINT_MAX/2;
d9514f6c 3505 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
3506 spin_unlock_irqrestore(&x->wait.lock, flags);
3507}
3508EXPORT_SYMBOL(complete_all);
3509
8cbbe86d
AK
3510static inline long __sched
3511do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3512{
1da177e4
LT
3513 if (!x->done) {
3514 DECLARE_WAITQUEUE(wait, current);
3515
a93d2f17 3516 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 3517 do {
94d3d824 3518 if (signal_pending_state(state, current)) {
ea71a546
ON
3519 timeout = -ERESTARTSYS;
3520 break;
8cbbe86d
AK
3521 }
3522 __set_current_state(state);
1da177e4
LT
3523 spin_unlock_irq(&x->wait.lock);
3524 timeout = schedule_timeout(timeout);
3525 spin_lock_irq(&x->wait.lock);
ea71a546 3526 } while (!x->done && timeout);
1da177e4 3527 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
3528 if (!x->done)
3529 return timeout;
1da177e4
LT
3530 }
3531 x->done--;
ea71a546 3532 return timeout ?: 1;
1da177e4 3533}
1da177e4 3534
8cbbe86d
AK
3535static long __sched
3536wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3537{
1da177e4
LT
3538 might_sleep();
3539
3540 spin_lock_irq(&x->wait.lock);
8cbbe86d 3541 timeout = do_wait_for_common(x, timeout, state);
1da177e4 3542 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
3543 return timeout;
3544}
1da177e4 3545
65eb3dc6
KD
3546/**
3547 * wait_for_completion: - waits for completion of a task
3548 * @x: holds the state of this particular completion
3549 *
3550 * This waits to be signaled for completion of a specific task. It is NOT
3551 * interruptible and there is no timeout.
3552 *
3553 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3554 * and interrupt capability. Also see complete().
3555 */
b15136e9 3556void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
3557{
3558 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 3559}
8cbbe86d 3560EXPORT_SYMBOL(wait_for_completion);
1da177e4 3561
65eb3dc6
KD
3562/**
3563 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3564 * @x: holds the state of this particular completion
3565 * @timeout: timeout value in jiffies
3566 *
3567 * This waits for either a completion of a specific task to be signaled or for a
3568 * specified timeout to expire. The timeout is in jiffies. It is not
3569 * interruptible.
c6dc7f05
BF
3570 *
3571 * The return value is 0 if timed out, and positive (at least 1, or number of
3572 * jiffies left till timeout) if completed.
65eb3dc6 3573 */
b15136e9 3574unsigned long __sched
8cbbe86d 3575wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 3576{
8cbbe86d 3577 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 3578}
8cbbe86d 3579EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 3580
65eb3dc6
KD
3581/**
3582 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3583 * @x: holds the state of this particular completion
3584 *
3585 * This waits for completion of a specific task to be signaled. It is
3586 * interruptible.
c6dc7f05
BF
3587 *
3588 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
65eb3dc6 3589 */
8cbbe86d 3590int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 3591{
51e97990
AK
3592 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3593 if (t == -ERESTARTSYS)
3594 return t;
3595 return 0;
0fec171c 3596}
8cbbe86d 3597EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 3598
65eb3dc6
KD
3599/**
3600 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3601 * @x: holds the state of this particular completion
3602 * @timeout: timeout value in jiffies
3603 *
3604 * This waits for either a completion of a specific task to be signaled or for a
3605 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
c6dc7f05
BF
3606 *
3607 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3608 * positive (at least 1, or number of jiffies left till timeout) if completed.
65eb3dc6 3609 */
6bf41237 3610long __sched
8cbbe86d
AK
3611wait_for_completion_interruptible_timeout(struct completion *x,
3612 unsigned long timeout)
0fec171c 3613{
8cbbe86d 3614 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 3615}
8cbbe86d 3616EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 3617
65eb3dc6
KD
3618/**
3619 * wait_for_completion_killable: - waits for completion of a task (killable)
3620 * @x: holds the state of this particular completion
3621 *
3622 * This waits to be signaled for completion of a specific task. It can be
3623 * interrupted by a kill signal.
c6dc7f05
BF
3624 *
3625 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
65eb3dc6 3626 */
009e577e
MW
3627int __sched wait_for_completion_killable(struct completion *x)
3628{
3629 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3630 if (t == -ERESTARTSYS)
3631 return t;
3632 return 0;
3633}
3634EXPORT_SYMBOL(wait_for_completion_killable);
3635
0aa12fb4
SW
3636/**
3637 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3638 * @x: holds the state of this particular completion
3639 * @timeout: timeout value in jiffies
3640 *
3641 * This waits for either a completion of a specific task to be
3642 * signaled or for a specified timeout to expire. It can be
3643 * interrupted by a kill signal. The timeout is in jiffies.
c6dc7f05
BF
3644 *
3645 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3646 * positive (at least 1, or number of jiffies left till timeout) if completed.
0aa12fb4 3647 */
6bf41237 3648long __sched
0aa12fb4
SW
3649wait_for_completion_killable_timeout(struct completion *x,
3650 unsigned long timeout)
3651{
3652 return wait_for_common(x, timeout, TASK_KILLABLE);
3653}
3654EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3655
be4de352
DC
3656/**
3657 * try_wait_for_completion - try to decrement a completion without blocking
3658 * @x: completion structure
3659 *
3660 * Returns: 0 if a decrement cannot be done without blocking
3661 * 1 if a decrement succeeded.
3662 *
3663 * If a completion is being used as a counting completion,
3664 * attempt to decrement the counter without blocking. This
3665 * enables us to avoid waiting if the resource the completion
3666 * is protecting is not available.
3667 */
3668bool try_wait_for_completion(struct completion *x)
3669{
7539a3b3 3670 unsigned long flags;
be4de352
DC
3671 int ret = 1;
3672
7539a3b3 3673 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
3674 if (!x->done)
3675 ret = 0;
3676 else
3677 x->done--;
7539a3b3 3678 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
3679 return ret;
3680}
3681EXPORT_SYMBOL(try_wait_for_completion);
3682
3683/**
3684 * completion_done - Test to see if a completion has any waiters
3685 * @x: completion structure
3686 *
3687 * Returns: 0 if there are waiters (wait_for_completion() in progress)
3688 * 1 if there are no waiters.
3689 *
3690 */
3691bool completion_done(struct completion *x)
3692{
7539a3b3 3693 unsigned long flags;
be4de352
DC
3694 int ret = 1;
3695
7539a3b3 3696 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
3697 if (!x->done)
3698 ret = 0;
7539a3b3 3699 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
3700 return ret;
3701}
3702EXPORT_SYMBOL(completion_done);
3703
8cbbe86d
AK
3704static long __sched
3705sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 3706{
0fec171c
IM
3707 unsigned long flags;
3708 wait_queue_t wait;
3709
3710 init_waitqueue_entry(&wait, current);
1da177e4 3711
8cbbe86d 3712 __set_current_state(state);
1da177e4 3713
8cbbe86d
AK
3714 spin_lock_irqsave(&q->lock, flags);
3715 __add_wait_queue(q, &wait);
3716 spin_unlock(&q->lock);
3717 timeout = schedule_timeout(timeout);
3718 spin_lock_irq(&q->lock);
3719 __remove_wait_queue(q, &wait);
3720 spin_unlock_irqrestore(&q->lock, flags);
3721
3722 return timeout;
3723}
3724
3725void __sched interruptible_sleep_on(wait_queue_head_t *q)
3726{
3727 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3728}
1da177e4
LT
3729EXPORT_SYMBOL(interruptible_sleep_on);
3730
0fec171c 3731long __sched
95cdf3b7 3732interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3733{
8cbbe86d 3734 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 3735}
1da177e4
LT
3736EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3737
0fec171c 3738void __sched sleep_on(wait_queue_head_t *q)
1da177e4 3739{
8cbbe86d 3740 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3741}
1da177e4
LT
3742EXPORT_SYMBOL(sleep_on);
3743
0fec171c 3744long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3745{
8cbbe86d 3746 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 3747}
1da177e4
LT
3748EXPORT_SYMBOL(sleep_on_timeout);
3749
b29739f9
IM
3750#ifdef CONFIG_RT_MUTEXES
3751
3752/*
3753 * rt_mutex_setprio - set the current priority of a task
3754 * @p: task
3755 * @prio: prio value (kernel-internal form)
3756 *
3757 * This function changes the 'effective' priority of a task. It does
3758 * not touch ->normal_prio like __setscheduler().
3759 *
3760 * Used by the rt_mutex code to implement priority inheritance logic.
3761 */
36c8b586 3762void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3763{
83b699ed 3764 int oldprio, on_rq, running;
70b97a7f 3765 struct rq *rq;
83ab0aa0 3766 const struct sched_class *prev_class;
b29739f9
IM
3767
3768 BUG_ON(prio < 0 || prio > MAX_PRIO);
3769
0122ec5b 3770 rq = __task_rq_lock(p);
b29739f9 3771
a8027073 3772 trace_sched_pi_setprio(p, prio);
d5f9f942 3773 oldprio = p->prio;
83ab0aa0 3774 prev_class = p->sched_class;
fd2f4419 3775 on_rq = p->on_rq;
051a1d1a 3776 running = task_current(rq, p);
0e1f3483 3777 if (on_rq)
69be72c1 3778 dequeue_task(rq, p, 0);
0e1f3483
HS
3779 if (running)
3780 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
3781
3782 if (rt_prio(prio))
3783 p->sched_class = &rt_sched_class;
3784 else
3785 p->sched_class = &fair_sched_class;
3786
b29739f9
IM
3787 p->prio = prio;
3788
0e1f3483
HS
3789 if (running)
3790 p->sched_class->set_curr_task(rq);
da7a735e 3791 if (on_rq)
371fd7e7 3792 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845 3793
da7a735e 3794 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 3795 __task_rq_unlock(rq);
b29739f9
IM
3796}
3797
3798#endif
3799
36c8b586 3800void set_user_nice(struct task_struct *p, long nice)
1da177e4 3801{
dd41f596 3802 int old_prio, delta, on_rq;
1da177e4 3803 unsigned long flags;
70b97a7f 3804 struct rq *rq;
1da177e4
LT
3805
3806 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3807 return;
3808 /*
3809 * We have to be careful, if called from sys_setpriority(),
3810 * the task might be in the middle of scheduling on another CPU.
3811 */
3812 rq = task_rq_lock(p, &flags);
3813 /*
3814 * The RT priorities are set via sched_setscheduler(), but we still
3815 * allow the 'normal' nice value to be set - but as expected
3816 * it wont have any effect on scheduling until the task is
dd41f596 3817 * SCHED_FIFO/SCHED_RR:
1da177e4 3818 */
e05606d3 3819 if (task_has_rt_policy(p)) {
1da177e4
LT
3820 p->static_prio = NICE_TO_PRIO(nice);
3821 goto out_unlock;
3822 }
fd2f4419 3823 on_rq = p->on_rq;
c09595f6 3824 if (on_rq)
69be72c1 3825 dequeue_task(rq, p, 0);
1da177e4 3826
1da177e4 3827 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3828 set_load_weight(p);
b29739f9
IM
3829 old_prio = p->prio;
3830 p->prio = effective_prio(p);
3831 delta = p->prio - old_prio;
1da177e4 3832
dd41f596 3833 if (on_rq) {
371fd7e7 3834 enqueue_task(rq, p, 0);
1da177e4 3835 /*
d5f9f942
AM
3836 * If the task increased its priority or is running and
3837 * lowered its priority, then reschedule its CPU:
1da177e4 3838 */
d5f9f942 3839 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
3840 resched_task(rq->curr);
3841 }
3842out_unlock:
0122ec5b 3843 task_rq_unlock(rq, p, &flags);
1da177e4 3844}
1da177e4
LT
3845EXPORT_SYMBOL(set_user_nice);
3846
e43379f1
MM
3847/*
3848 * can_nice - check if a task can reduce its nice value
3849 * @p: task
3850 * @nice: nice value
3851 */
36c8b586 3852int can_nice(const struct task_struct *p, const int nice)
e43379f1 3853{
024f4747
MM
3854 /* convert nice value [19,-20] to rlimit style value [1,40] */
3855 int nice_rlim = 20 - nice;
48f24c4d 3856
78d7d407 3857 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3858 capable(CAP_SYS_NICE));
3859}
3860
1da177e4
LT
3861#ifdef __ARCH_WANT_SYS_NICE
3862
3863/*
3864 * sys_nice - change the priority of the current process.
3865 * @increment: priority increment
3866 *
3867 * sys_setpriority is a more generic, but much slower function that
3868 * does similar things.
3869 */
5add95d4 3870SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3871{
48f24c4d 3872 long nice, retval;
1da177e4
LT
3873
3874 /*
3875 * Setpriority might change our priority at the same moment.
3876 * We don't have to worry. Conceptually one call occurs first
3877 * and we have a single winner.
3878 */
e43379f1
MM
3879 if (increment < -40)
3880 increment = -40;
1da177e4
LT
3881 if (increment > 40)
3882 increment = 40;
3883
2b8f836f 3884 nice = TASK_NICE(current) + increment;
1da177e4
LT
3885 if (nice < -20)
3886 nice = -20;
3887 if (nice > 19)
3888 nice = 19;
3889
e43379f1
MM
3890 if (increment < 0 && !can_nice(current, nice))
3891 return -EPERM;
3892
1da177e4
LT
3893 retval = security_task_setnice(current, nice);
3894 if (retval)
3895 return retval;
3896
3897 set_user_nice(current, nice);
3898 return 0;
3899}
3900
3901#endif
3902
3903/**
3904 * task_prio - return the priority value of a given task.
3905 * @p: the task in question.
3906 *
3907 * This is the priority value as seen by users in /proc.
3908 * RT tasks are offset by -200. Normal tasks are centered
3909 * around 0, value goes from -16 to +15.
3910 */
36c8b586 3911int task_prio(const struct task_struct *p)
1da177e4
LT
3912{
3913 return p->prio - MAX_RT_PRIO;
3914}
3915
3916/**
3917 * task_nice - return the nice value of a given task.
3918 * @p: the task in question.
3919 */
36c8b586 3920int task_nice(const struct task_struct *p)
1da177e4
LT
3921{
3922 return TASK_NICE(p);
3923}
150d8bed 3924EXPORT_SYMBOL(task_nice);
1da177e4
LT
3925
3926/**
3927 * idle_cpu - is a given cpu idle currently?
3928 * @cpu: the processor in question.
3929 */
3930int idle_cpu(int cpu)
3931{
908a3283
TG
3932 struct rq *rq = cpu_rq(cpu);
3933
3934 if (rq->curr != rq->idle)
3935 return 0;
3936
3937 if (rq->nr_running)
3938 return 0;
3939
3940#ifdef CONFIG_SMP
3941 if (!llist_empty(&rq->wake_list))
3942 return 0;
3943#endif
3944
3945 return 1;
1da177e4
LT
3946}
3947
1da177e4
LT
3948/**
3949 * idle_task - return the idle task for a given cpu.
3950 * @cpu: the processor in question.
3951 */
36c8b586 3952struct task_struct *idle_task(int cpu)
1da177e4
LT
3953{
3954 return cpu_rq(cpu)->idle;
3955}
3956
3957/**
3958 * find_process_by_pid - find a process with a matching PID value.
3959 * @pid: the pid in question.
3960 */
a9957449 3961static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3962{
228ebcbe 3963 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3964}
3965
3966/* Actually do priority change: must hold rq lock. */
dd41f596
IM
3967static void
3968__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 3969{
1da177e4
LT
3970 p->policy = policy;
3971 p->rt_priority = prio;
b29739f9
IM
3972 p->normal_prio = normal_prio(p);
3973 /* we are holding p->pi_lock already */
3974 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
3975 if (rt_prio(p->prio))
3976 p->sched_class = &rt_sched_class;
3977 else
3978 p->sched_class = &fair_sched_class;
2dd73a4f 3979 set_load_weight(p);
1da177e4
LT
3980}
3981
c69e8d9c
DH
3982/*
3983 * check the target process has a UID that matches the current process's
3984 */
3985static bool check_same_owner(struct task_struct *p)
3986{
3987 const struct cred *cred = current_cred(), *pcred;
3988 bool match;
3989
3990 rcu_read_lock();
3991 pcred = __task_cred(p);
b0e77598
SH
3992 if (cred->user->user_ns == pcred->user->user_ns)
3993 match = (cred->euid == pcred->euid ||
3994 cred->euid == pcred->uid);
3995 else
3996 match = false;
c69e8d9c
DH
3997 rcu_read_unlock();
3998 return match;
3999}
4000
961ccddd 4001static int __sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4002 const struct sched_param *param, bool user)
1da177e4 4003{
83b699ed 4004 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4005 unsigned long flags;
83ab0aa0 4006 const struct sched_class *prev_class;
70b97a7f 4007 struct rq *rq;
ca94c442 4008 int reset_on_fork;
1da177e4 4009
66e5393a
SR
4010 /* may grab non-irq protected spin_locks */
4011 BUG_ON(in_interrupt());
1da177e4
LT
4012recheck:
4013 /* double check policy once rq lock held */
ca94c442
LP
4014 if (policy < 0) {
4015 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4016 policy = oldpolicy = p->policy;
ca94c442
LP
4017 } else {
4018 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4019 policy &= ~SCHED_RESET_ON_FORK;
4020
4021 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4022 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4023 policy != SCHED_IDLE)
4024 return -EINVAL;
4025 }
4026
1da177e4
LT
4027 /*
4028 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4029 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4030 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4031 */
4032 if (param->sched_priority < 0 ||
95cdf3b7 4033 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4034 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4035 return -EINVAL;
e05606d3 4036 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4037 return -EINVAL;
4038
37e4ab3f
OC
4039 /*
4040 * Allow unprivileged RT tasks to decrease priority:
4041 */
961ccddd 4042 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 4043 if (rt_policy(policy)) {
a44702e8
ON
4044 unsigned long rlim_rtprio =
4045 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
4046
4047 /* can't set/change the rt policy */
4048 if (policy != p->policy && !rlim_rtprio)
4049 return -EPERM;
4050
4051 /* can't increase priority */
4052 if (param->sched_priority > p->rt_priority &&
4053 param->sched_priority > rlim_rtprio)
4054 return -EPERM;
4055 }
c02aa73b 4056
dd41f596 4057 /*
c02aa73b
DH
4058 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4059 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 4060 */
c02aa73b
DH
4061 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
4062 if (!can_nice(p, TASK_NICE(p)))
4063 return -EPERM;
4064 }
5fe1d75f 4065
37e4ab3f 4066 /* can't change other user's priorities */
c69e8d9c 4067 if (!check_same_owner(p))
37e4ab3f 4068 return -EPERM;
ca94c442
LP
4069
4070 /* Normal users shall not reset the sched_reset_on_fork flag */
4071 if (p->sched_reset_on_fork && !reset_on_fork)
4072 return -EPERM;
37e4ab3f 4073 }
1da177e4 4074
725aad24 4075 if (user) {
b0ae1981 4076 retval = security_task_setscheduler(p);
725aad24
JF
4077 if (retval)
4078 return retval;
4079 }
4080
b29739f9
IM
4081 /*
4082 * make sure no PI-waiters arrive (or leave) while we are
4083 * changing the priority of the task:
0122ec5b 4084 *
25985edc 4085 * To be able to change p->policy safely, the appropriate
1da177e4
LT
4086 * runqueue lock must be held.
4087 */
0122ec5b 4088 rq = task_rq_lock(p, &flags);
dc61b1d6 4089
34f971f6
PZ
4090 /*
4091 * Changing the policy of the stop threads its a very bad idea
4092 */
4093 if (p == rq->stop) {
0122ec5b 4094 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
4095 return -EINVAL;
4096 }
4097
a51e9198
DF
4098 /*
4099 * If not changing anything there's no need to proceed further:
4100 */
4101 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
4102 param->sched_priority == p->rt_priority))) {
4103
4104 __task_rq_unlock(rq);
4105 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4106 return 0;
4107 }
4108
dc61b1d6
PZ
4109#ifdef CONFIG_RT_GROUP_SCHED
4110 if (user) {
4111 /*
4112 * Do not allow realtime tasks into groups that have no runtime
4113 * assigned.
4114 */
4115 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
4116 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4117 !task_group_is_autogroup(task_group(p))) {
0122ec5b 4118 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
4119 return -EPERM;
4120 }
4121 }
4122#endif
4123
1da177e4
LT
4124 /* recheck policy now with rq lock held */
4125 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4126 policy = oldpolicy = -1;
0122ec5b 4127 task_rq_unlock(rq, p, &flags);
1da177e4
LT
4128 goto recheck;
4129 }
fd2f4419 4130 on_rq = p->on_rq;
051a1d1a 4131 running = task_current(rq, p);
0e1f3483 4132 if (on_rq)
2e1cb74a 4133 deactivate_task(rq, p, 0);
0e1f3483
HS
4134 if (running)
4135 p->sched_class->put_prev_task(rq, p);
f6b53205 4136
ca94c442
LP
4137 p->sched_reset_on_fork = reset_on_fork;
4138
1da177e4 4139 oldprio = p->prio;
83ab0aa0 4140 prev_class = p->sched_class;
dd41f596 4141 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4142
0e1f3483
HS
4143 if (running)
4144 p->sched_class->set_curr_task(rq);
da7a735e 4145 if (on_rq)
dd41f596 4146 activate_task(rq, p, 0);
cb469845 4147
da7a735e 4148 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 4149 task_rq_unlock(rq, p, &flags);
b29739f9 4150
95e02ca9
TG
4151 rt_mutex_adjust_pi(p);
4152
1da177e4
LT
4153 return 0;
4154}
961ccddd
RR
4155
4156/**
4157 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4158 * @p: the task in question.
4159 * @policy: new policy.
4160 * @param: structure containing the new RT priority.
4161 *
4162 * NOTE that the task may be already dead.
4163 */
4164int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4165 const struct sched_param *param)
961ccddd
RR
4166{
4167 return __sched_setscheduler(p, policy, param, true);
4168}
1da177e4
LT
4169EXPORT_SYMBOL_GPL(sched_setscheduler);
4170
961ccddd
RR
4171/**
4172 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4173 * @p: the task in question.
4174 * @policy: new policy.
4175 * @param: structure containing the new RT priority.
4176 *
4177 * Just like sched_setscheduler, only don't bother checking if the
4178 * current context has permission. For example, this is needed in
4179 * stop_machine(): we create temporary high priority worker threads,
4180 * but our caller might not have that capability.
4181 */
4182int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 4183 const struct sched_param *param)
961ccddd
RR
4184{
4185 return __sched_setscheduler(p, policy, param, false);
4186}
4187
95cdf3b7
IM
4188static int
4189do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4190{
1da177e4
LT
4191 struct sched_param lparam;
4192 struct task_struct *p;
36c8b586 4193 int retval;
1da177e4
LT
4194
4195 if (!param || pid < 0)
4196 return -EINVAL;
4197 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4198 return -EFAULT;
5fe1d75f
ON
4199
4200 rcu_read_lock();
4201 retval = -ESRCH;
1da177e4 4202 p = find_process_by_pid(pid);
5fe1d75f
ON
4203 if (p != NULL)
4204 retval = sched_setscheduler(p, policy, &lparam);
4205 rcu_read_unlock();
36c8b586 4206
1da177e4
LT
4207 return retval;
4208}
4209
4210/**
4211 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4212 * @pid: the pid in question.
4213 * @policy: new policy.
4214 * @param: structure containing the new RT priority.
4215 */
5add95d4
HC
4216SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4217 struct sched_param __user *, param)
1da177e4 4218{
c21761f1
JB
4219 /* negative values for policy are not valid */
4220 if (policy < 0)
4221 return -EINVAL;
4222
1da177e4
LT
4223 return do_sched_setscheduler(pid, policy, param);
4224}
4225
4226/**
4227 * sys_sched_setparam - set/change the RT priority of a thread
4228 * @pid: the pid in question.
4229 * @param: structure containing the new RT priority.
4230 */
5add95d4 4231SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4232{
4233 return do_sched_setscheduler(pid, -1, param);
4234}
4235
4236/**
4237 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4238 * @pid: the pid in question.
4239 */
5add95d4 4240SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4241{
36c8b586 4242 struct task_struct *p;
3a5c359a 4243 int retval;
1da177e4
LT
4244
4245 if (pid < 0)
3a5c359a 4246 return -EINVAL;
1da177e4
LT
4247
4248 retval = -ESRCH;
5fe85be0 4249 rcu_read_lock();
1da177e4
LT
4250 p = find_process_by_pid(pid);
4251 if (p) {
4252 retval = security_task_getscheduler(p);
4253 if (!retval)
ca94c442
LP
4254 retval = p->policy
4255 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4256 }
5fe85be0 4257 rcu_read_unlock();
1da177e4
LT
4258 return retval;
4259}
4260
4261/**
ca94c442 4262 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4263 * @pid: the pid in question.
4264 * @param: structure containing the RT priority.
4265 */
5add95d4 4266SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4267{
4268 struct sched_param lp;
36c8b586 4269 struct task_struct *p;
3a5c359a 4270 int retval;
1da177e4
LT
4271
4272 if (!param || pid < 0)
3a5c359a 4273 return -EINVAL;
1da177e4 4274
5fe85be0 4275 rcu_read_lock();
1da177e4
LT
4276 p = find_process_by_pid(pid);
4277 retval = -ESRCH;
4278 if (!p)
4279 goto out_unlock;
4280
4281 retval = security_task_getscheduler(p);
4282 if (retval)
4283 goto out_unlock;
4284
4285 lp.sched_priority = p->rt_priority;
5fe85be0 4286 rcu_read_unlock();
1da177e4
LT
4287
4288 /*
4289 * This one might sleep, we cannot do it with a spinlock held ...
4290 */
4291 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4292
1da177e4
LT
4293 return retval;
4294
4295out_unlock:
5fe85be0 4296 rcu_read_unlock();
1da177e4
LT
4297 return retval;
4298}
4299
96f874e2 4300long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4301{
5a16f3d3 4302 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4303 struct task_struct *p;
4304 int retval;
1da177e4 4305
95402b38 4306 get_online_cpus();
23f5d142 4307 rcu_read_lock();
1da177e4
LT
4308
4309 p = find_process_by_pid(pid);
4310 if (!p) {
23f5d142 4311 rcu_read_unlock();
95402b38 4312 put_online_cpus();
1da177e4
LT
4313 return -ESRCH;
4314 }
4315
23f5d142 4316 /* Prevent p going away */
1da177e4 4317 get_task_struct(p);
23f5d142 4318 rcu_read_unlock();
1da177e4 4319
5a16f3d3
RR
4320 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4321 retval = -ENOMEM;
4322 goto out_put_task;
4323 }
4324 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4325 retval = -ENOMEM;
4326 goto out_free_cpus_allowed;
4327 }
1da177e4 4328 retval = -EPERM;
b0e77598 4329 if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
1da177e4
LT
4330 goto out_unlock;
4331
b0ae1981 4332 retval = security_task_setscheduler(p);
e7834f8f
DQ
4333 if (retval)
4334 goto out_unlock;
4335
5a16f3d3
RR
4336 cpuset_cpus_allowed(p, cpus_allowed);
4337 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 4338again:
5a16f3d3 4339 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 4340
8707d8b8 4341 if (!retval) {
5a16f3d3
RR
4342 cpuset_cpus_allowed(p, cpus_allowed);
4343 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4344 /*
4345 * We must have raced with a concurrent cpuset
4346 * update. Just reset the cpus_allowed to the
4347 * cpuset's cpus_allowed
4348 */
5a16f3d3 4349 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4350 goto again;
4351 }
4352 }
1da177e4 4353out_unlock:
5a16f3d3
RR
4354 free_cpumask_var(new_mask);
4355out_free_cpus_allowed:
4356 free_cpumask_var(cpus_allowed);
4357out_put_task:
1da177e4 4358 put_task_struct(p);
95402b38 4359 put_online_cpus();
1da177e4
LT
4360 return retval;
4361}
4362
4363static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4364 struct cpumask *new_mask)
1da177e4 4365{
96f874e2
RR
4366 if (len < cpumask_size())
4367 cpumask_clear(new_mask);
4368 else if (len > cpumask_size())
4369 len = cpumask_size();
4370
1da177e4
LT
4371 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4372}
4373
4374/**
4375 * sys_sched_setaffinity - set the cpu affinity of a process
4376 * @pid: pid of the process
4377 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4378 * @user_mask_ptr: user-space pointer to the new cpu mask
4379 */
5add95d4
HC
4380SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4381 unsigned long __user *, user_mask_ptr)
1da177e4 4382{
5a16f3d3 4383 cpumask_var_t new_mask;
1da177e4
LT
4384 int retval;
4385
5a16f3d3
RR
4386 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4387 return -ENOMEM;
1da177e4 4388
5a16f3d3
RR
4389 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4390 if (retval == 0)
4391 retval = sched_setaffinity(pid, new_mask);
4392 free_cpumask_var(new_mask);
4393 return retval;
1da177e4
LT
4394}
4395
96f874e2 4396long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4397{
36c8b586 4398 struct task_struct *p;
31605683 4399 unsigned long flags;
1da177e4 4400 int retval;
1da177e4 4401
95402b38 4402 get_online_cpus();
23f5d142 4403 rcu_read_lock();
1da177e4
LT
4404
4405 retval = -ESRCH;
4406 p = find_process_by_pid(pid);
4407 if (!p)
4408 goto out_unlock;
4409
e7834f8f
DQ
4410 retval = security_task_getscheduler(p);
4411 if (retval)
4412 goto out_unlock;
4413
013fdb80 4414 raw_spin_lock_irqsave(&p->pi_lock, flags);
96f874e2 4415 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
013fdb80 4416 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4417
4418out_unlock:
23f5d142 4419 rcu_read_unlock();
95402b38 4420 put_online_cpus();
1da177e4 4421
9531b62f 4422 return retval;
1da177e4
LT
4423}
4424
4425/**
4426 * sys_sched_getaffinity - get the cpu affinity of a process
4427 * @pid: pid of the process
4428 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4429 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4430 */
5add95d4
HC
4431SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4432 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4433{
4434 int ret;
f17c8607 4435 cpumask_var_t mask;
1da177e4 4436
84fba5ec 4437 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4438 return -EINVAL;
4439 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4440 return -EINVAL;
4441
f17c8607
RR
4442 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4443 return -ENOMEM;
1da177e4 4444
f17c8607
RR
4445 ret = sched_getaffinity(pid, mask);
4446 if (ret == 0) {
8bc037fb 4447 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4448
4449 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4450 ret = -EFAULT;
4451 else
cd3d8031 4452 ret = retlen;
f17c8607
RR
4453 }
4454 free_cpumask_var(mask);
1da177e4 4455
f17c8607 4456 return ret;
1da177e4
LT
4457}
4458
4459/**
4460 * sys_sched_yield - yield the current processor to other threads.
4461 *
dd41f596
IM
4462 * This function yields the current CPU to other tasks. If there are no
4463 * other threads running on this CPU then this function will return.
1da177e4 4464 */
5add95d4 4465SYSCALL_DEFINE0(sched_yield)
1da177e4 4466{
70b97a7f 4467 struct rq *rq = this_rq_lock();
1da177e4 4468
2d72376b 4469 schedstat_inc(rq, yld_count);
4530d7ab 4470 current->sched_class->yield_task(rq);
1da177e4
LT
4471
4472 /*
4473 * Since we are going to call schedule() anyway, there's
4474 * no need to preempt or enable interrupts:
4475 */
4476 __release(rq->lock);
8a25d5de 4477 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4478 do_raw_spin_unlock(&rq->lock);
1da177e4
LT
4479 preempt_enable_no_resched();
4480
4481 schedule();
4482
4483 return 0;
4484}
4485
d86ee480
PZ
4486static inline int should_resched(void)
4487{
4488 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4489}
4490
e7b38404 4491static void __cond_resched(void)
1da177e4 4492{
e7aaaa69 4493 add_preempt_count(PREEMPT_ACTIVE);
c259e01a 4494 __schedule();
e7aaaa69 4495 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
4496}
4497
02b67cc3 4498int __sched _cond_resched(void)
1da177e4 4499{
d86ee480 4500 if (should_resched()) {
1da177e4
LT
4501 __cond_resched();
4502 return 1;
4503 }
4504 return 0;
4505}
02b67cc3 4506EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4507
4508/*
613afbf8 4509 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4510 * call schedule, and on return reacquire the lock.
4511 *
41a2d6cf 4512 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4513 * operations here to prevent schedule() from being called twice (once via
4514 * spin_unlock(), once by hand).
4515 */
613afbf8 4516int __cond_resched_lock(spinlock_t *lock)
1da177e4 4517{
d86ee480 4518 int resched = should_resched();
6df3cecb
JK
4519 int ret = 0;
4520
f607c668
PZ
4521 lockdep_assert_held(lock);
4522
95c354fe 4523 if (spin_needbreak(lock) || resched) {
1da177e4 4524 spin_unlock(lock);
d86ee480 4525 if (resched)
95c354fe
NP
4526 __cond_resched();
4527 else
4528 cpu_relax();
6df3cecb 4529 ret = 1;
1da177e4 4530 spin_lock(lock);
1da177e4 4531 }
6df3cecb 4532 return ret;
1da177e4 4533}
613afbf8 4534EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4535
613afbf8 4536int __sched __cond_resched_softirq(void)
1da177e4
LT
4537{
4538 BUG_ON(!in_softirq());
4539
d86ee480 4540 if (should_resched()) {
98d82567 4541 local_bh_enable();
1da177e4
LT
4542 __cond_resched();
4543 local_bh_disable();
4544 return 1;
4545 }
4546 return 0;
4547}
613afbf8 4548EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4549
1da177e4
LT
4550/**
4551 * yield - yield the current processor to other threads.
4552 *
72fd4a35 4553 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
4554 * thread runnable and calls sys_sched_yield().
4555 */
4556void __sched yield(void)
4557{
4558 set_current_state(TASK_RUNNING);
4559 sys_sched_yield();
4560}
1da177e4
LT
4561EXPORT_SYMBOL(yield);
4562
d95f4122
MG
4563/**
4564 * yield_to - yield the current processor to another thread in
4565 * your thread group, or accelerate that thread toward the
4566 * processor it's on.
16addf95
RD
4567 * @p: target task
4568 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4569 *
4570 * It's the caller's job to ensure that the target task struct
4571 * can't go away on us before we can do any checks.
4572 *
4573 * Returns true if we indeed boosted the target task.
4574 */
4575bool __sched yield_to(struct task_struct *p, bool preempt)
4576{
4577 struct task_struct *curr = current;
4578 struct rq *rq, *p_rq;
4579 unsigned long flags;
4580 bool yielded = 0;
4581
4582 local_irq_save(flags);
4583 rq = this_rq();
4584
4585again:
4586 p_rq = task_rq(p);
4587 double_rq_lock(rq, p_rq);
4588 while (task_rq(p) != p_rq) {
4589 double_rq_unlock(rq, p_rq);
4590 goto again;
4591 }
4592
4593 if (!curr->sched_class->yield_to_task)
4594 goto out;
4595
4596 if (curr->sched_class != p->sched_class)
4597 goto out;
4598
4599 if (task_running(p_rq, p) || p->state)
4600 goto out;
4601
4602 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4603 if (yielded) {
d95f4122 4604 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4605 /*
4606 * Make p's CPU reschedule; pick_next_entity takes care of
4607 * fairness.
4608 */
4609 if (preempt && rq != p_rq)
4610 resched_task(p_rq->curr);
916671c0
MG
4611 } else {
4612 /*
4613 * We might have set it in task_yield_fair(), but are
4614 * not going to schedule(), so don't want to skip
4615 * the next update.
4616 */
4617 rq->skip_clock_update = 0;
6d1cafd8 4618 }
d95f4122
MG
4619
4620out:
4621 double_rq_unlock(rq, p_rq);
4622 local_irq_restore(flags);
4623
4624 if (yielded)
4625 schedule();
4626
4627 return yielded;
4628}
4629EXPORT_SYMBOL_GPL(yield_to);
4630
1da177e4 4631/*
41a2d6cf 4632 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4633 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
4634 */
4635void __sched io_schedule(void)
4636{
54d35f29 4637 struct rq *rq = raw_rq();
1da177e4 4638
0ff92245 4639 delayacct_blkio_start();
1da177e4 4640 atomic_inc(&rq->nr_iowait);
73c10101 4641 blk_flush_plug(current);
8f0dfc34 4642 current->in_iowait = 1;
1da177e4 4643 schedule();
8f0dfc34 4644 current->in_iowait = 0;
1da177e4 4645 atomic_dec(&rq->nr_iowait);
0ff92245 4646 delayacct_blkio_end();
1da177e4 4647}
1da177e4
LT
4648EXPORT_SYMBOL(io_schedule);
4649
4650long __sched io_schedule_timeout(long timeout)
4651{
54d35f29 4652 struct rq *rq = raw_rq();
1da177e4
LT
4653 long ret;
4654
0ff92245 4655 delayacct_blkio_start();
1da177e4 4656 atomic_inc(&rq->nr_iowait);
73c10101 4657 blk_flush_plug(current);
8f0dfc34 4658 current->in_iowait = 1;
1da177e4 4659 ret = schedule_timeout(timeout);
8f0dfc34 4660 current->in_iowait = 0;
1da177e4 4661 atomic_dec(&rq->nr_iowait);
0ff92245 4662 delayacct_blkio_end();
1da177e4
LT
4663 return ret;
4664}
4665
4666/**
4667 * sys_sched_get_priority_max - return maximum RT priority.
4668 * @policy: scheduling class.
4669 *
4670 * this syscall returns the maximum rt_priority that can be used
4671 * by a given scheduling class.
4672 */
5add95d4 4673SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4674{
4675 int ret = -EINVAL;
4676
4677 switch (policy) {
4678 case SCHED_FIFO:
4679 case SCHED_RR:
4680 ret = MAX_USER_RT_PRIO-1;
4681 break;
4682 case SCHED_NORMAL:
b0a9499c 4683 case SCHED_BATCH:
dd41f596 4684 case SCHED_IDLE:
1da177e4
LT
4685 ret = 0;
4686 break;
4687 }
4688 return ret;
4689}
4690
4691/**
4692 * sys_sched_get_priority_min - return minimum RT priority.
4693 * @policy: scheduling class.
4694 *
4695 * this syscall returns the minimum rt_priority that can be used
4696 * by a given scheduling class.
4697 */
5add95d4 4698SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4699{
4700 int ret = -EINVAL;
4701
4702 switch (policy) {
4703 case SCHED_FIFO:
4704 case SCHED_RR:
4705 ret = 1;
4706 break;
4707 case SCHED_NORMAL:
b0a9499c 4708 case SCHED_BATCH:
dd41f596 4709 case SCHED_IDLE:
1da177e4
LT
4710 ret = 0;
4711 }
4712 return ret;
4713}
4714
4715/**
4716 * sys_sched_rr_get_interval - return the default timeslice of a process.
4717 * @pid: pid of the process.
4718 * @interval: userspace pointer to the timeslice value.
4719 *
4720 * this syscall writes the default timeslice value of a given process
4721 * into the user-space timespec buffer. A value of '0' means infinity.
4722 */
17da2bd9 4723SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4724 struct timespec __user *, interval)
1da177e4 4725{
36c8b586 4726 struct task_struct *p;
a4ec24b4 4727 unsigned int time_slice;
dba091b9
TG
4728 unsigned long flags;
4729 struct rq *rq;
3a5c359a 4730 int retval;
1da177e4 4731 struct timespec t;
1da177e4
LT
4732
4733 if (pid < 0)
3a5c359a 4734 return -EINVAL;
1da177e4
LT
4735
4736 retval = -ESRCH;
1a551ae7 4737 rcu_read_lock();
1da177e4
LT
4738 p = find_process_by_pid(pid);
4739 if (!p)
4740 goto out_unlock;
4741
4742 retval = security_task_getscheduler(p);
4743 if (retval)
4744 goto out_unlock;
4745
dba091b9
TG
4746 rq = task_rq_lock(p, &flags);
4747 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4748 task_rq_unlock(rq, p, &flags);
a4ec24b4 4749
1a551ae7 4750 rcu_read_unlock();
a4ec24b4 4751 jiffies_to_timespec(time_slice, &t);
1da177e4 4752 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4753 return retval;
3a5c359a 4754
1da177e4 4755out_unlock:
1a551ae7 4756 rcu_read_unlock();
1da177e4
LT
4757 return retval;
4758}
4759
7c731e0a 4760static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4761
82a1fcb9 4762void sched_show_task(struct task_struct *p)
1da177e4 4763{
1da177e4 4764 unsigned long free = 0;
36c8b586 4765 unsigned state;
1da177e4 4766
1da177e4 4767 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 4768 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4769 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4770#if BITS_PER_LONG == 32
1da177e4 4771 if (state == TASK_RUNNING)
3df0fc5b 4772 printk(KERN_CONT " running ");
1da177e4 4773 else
3df0fc5b 4774 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4775#else
4776 if (state == TASK_RUNNING)
3df0fc5b 4777 printk(KERN_CONT " running task ");
1da177e4 4778 else
3df0fc5b 4779 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4780#endif
4781#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4782 free = stack_not_used(p);
1da177e4 4783#endif
3df0fc5b 4784 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
07cde260 4785 task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)),
aa47b7e0 4786 (unsigned long)task_thread_info(p)->flags);
1da177e4 4787
5fb5e6de 4788 show_stack(p, NULL);
1da177e4
LT
4789}
4790
e59e2ae2 4791void show_state_filter(unsigned long state_filter)
1da177e4 4792{
36c8b586 4793 struct task_struct *g, *p;
1da177e4 4794
4bd77321 4795#if BITS_PER_LONG == 32
3df0fc5b
PZ
4796 printk(KERN_INFO
4797 " task PC stack pid father\n");
1da177e4 4798#else
3df0fc5b
PZ
4799 printk(KERN_INFO
4800 " task PC stack pid father\n");
1da177e4 4801#endif
510f5acc 4802 rcu_read_lock();
1da177e4
LT
4803 do_each_thread(g, p) {
4804 /*
4805 * reset the NMI-timeout, listing all files on a slow
25985edc 4806 * console might take a lot of time:
1da177e4
LT
4807 */
4808 touch_nmi_watchdog();
39bc89fd 4809 if (!state_filter || (p->state & state_filter))
82a1fcb9 4810 sched_show_task(p);
1da177e4
LT
4811 } while_each_thread(g, p);
4812
04c9167f
JF
4813 touch_all_softlockup_watchdogs();
4814
dd41f596
IM
4815#ifdef CONFIG_SCHED_DEBUG
4816 sysrq_sched_debug_show();
4817#endif
510f5acc 4818 rcu_read_unlock();
e59e2ae2
IM
4819 /*
4820 * Only show locks if all tasks are dumped:
4821 */
93335a21 4822 if (!state_filter)
e59e2ae2 4823 debug_show_all_locks();
1da177e4
LT
4824}
4825
1df21055
IM
4826void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4827{
dd41f596 4828 idle->sched_class = &idle_sched_class;
1df21055
IM
4829}
4830
f340c0d1
IM
4831/**
4832 * init_idle - set up an idle thread for a given CPU
4833 * @idle: task in question
4834 * @cpu: cpu the idle task belongs to
4835 *
4836 * NOTE: this function does not set the idle thread's NEED_RESCHED
4837 * flag, to make booting more robust.
4838 */
5c1e1767 4839void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 4840{
70b97a7f 4841 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4842 unsigned long flags;
4843
05fa785c 4844 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 4845
dd41f596 4846 __sched_fork(idle);
06b83b5f 4847 idle->state = TASK_RUNNING;
dd41f596
IM
4848 idle->se.exec_start = sched_clock();
4849
1e1b6c51 4850 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4851 /*
4852 * We're having a chicken and egg problem, even though we are
4853 * holding rq->lock, the cpu isn't yet set to this cpu so the
4854 * lockdep check in task_group() will fail.
4855 *
4856 * Similar case to sched_fork(). / Alternatively we could
4857 * use task_rq_lock() here and obtain the other rq->lock.
4858 *
4859 * Silence PROVE_RCU
4860 */
4861 rcu_read_lock();
dd41f596 4862 __set_task_cpu(idle, cpu);
6506cf6c 4863 rcu_read_unlock();
1da177e4 4864
1da177e4 4865 rq->curr = rq->idle = idle;
3ca7a440
PZ
4866#if defined(CONFIG_SMP)
4867 idle->on_cpu = 1;
4866cde0 4868#endif
05fa785c 4869 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
4870
4871 /* Set the preempt count _outside_ the spinlocks! */
a1261f54 4872 task_thread_info(idle)->preempt_count = 0;
55cd5340 4873
dd41f596
IM
4874 /*
4875 * The idle tasks have their own, simple scheduling class:
4876 */
4877 idle->sched_class = &idle_sched_class;
868baf07 4878 ftrace_graph_init_idle_task(idle, cpu);
f1c6f1a7
CE
4879#if defined(CONFIG_SMP)
4880 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4881#endif
19978ca6
IM
4882}
4883
1da177e4 4884#ifdef CONFIG_SMP
1e1b6c51
KM
4885void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4886{
4887 if (p->sched_class && p->sched_class->set_cpus_allowed)
4888 p->sched_class->set_cpus_allowed(p, new_mask);
4939602a
PZ
4889
4890 cpumask_copy(&p->cpus_allowed, new_mask);
4891 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
1e1b6c51
KM
4892}
4893
1da177e4
LT
4894/*
4895 * This is how migration works:
4896 *
969c7921
TH
4897 * 1) we invoke migration_cpu_stop() on the target CPU using
4898 * stop_one_cpu().
4899 * 2) stopper starts to run (implicitly forcing the migrated thread
4900 * off the CPU)
4901 * 3) it checks whether the migrated task is still in the wrong runqueue.
4902 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 4903 * it and puts it into the right queue.
969c7921
TH
4904 * 5) stopper completes and stop_one_cpu() returns and the migration
4905 * is done.
1da177e4
LT
4906 */
4907
4908/*
4909 * Change a given task's CPU affinity. Migrate the thread to a
4910 * proper CPU and schedule it away if the CPU it's executing on
4911 * is removed from the allowed bitmask.
4912 *
4913 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 4914 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
4915 * call is not atomic; no spinlocks may be held.
4916 */
96f874e2 4917int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
4918{
4919 unsigned long flags;
70b97a7f 4920 struct rq *rq;
969c7921 4921 unsigned int dest_cpu;
48f24c4d 4922 int ret = 0;
1da177e4
LT
4923
4924 rq = task_rq_lock(p, &flags);
e2912009 4925
db44fc01
YZ
4926 if (cpumask_equal(&p->cpus_allowed, new_mask))
4927 goto out;
4928
6ad4c188 4929 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
4930 ret = -EINVAL;
4931 goto out;
4932 }
4933
db44fc01 4934 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
9985b0ba
DR
4935 ret = -EINVAL;
4936 goto out;
4937 }
4938
1e1b6c51 4939 do_set_cpus_allowed(p, new_mask);
73fe6aae 4940
1da177e4 4941 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 4942 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
4943 goto out;
4944
969c7921 4945 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
bd8e7dde 4946 if (p->on_rq) {
969c7921 4947 struct migration_arg arg = { p, dest_cpu };
1da177e4 4948 /* Need help from migration thread: drop lock and wait. */
0122ec5b 4949 task_rq_unlock(rq, p, &flags);
969c7921 4950 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
4951 tlb_migrate_finish(p->mm);
4952 return 0;
4953 }
4954out:
0122ec5b 4955 task_rq_unlock(rq, p, &flags);
48f24c4d 4956
1da177e4
LT
4957 return ret;
4958}
cd8ba7cd 4959EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
4960
4961/*
41a2d6cf 4962 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
4963 * this because either it can't run here any more (set_cpus_allowed()
4964 * away from this CPU, or CPU going down), or because we're
4965 * attempting to rebalance this task on exec (sched_exec).
4966 *
4967 * So we race with normal scheduler movements, but that's OK, as long
4968 * as the task is no longer on this CPU.
efc30814
KK
4969 *
4970 * Returns non-zero if task was successfully migrated.
1da177e4 4971 */
efc30814 4972static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4973{
70b97a7f 4974 struct rq *rq_dest, *rq_src;
e2912009 4975 int ret = 0;
1da177e4 4976
e761b772 4977 if (unlikely(!cpu_active(dest_cpu)))
efc30814 4978 return ret;
1da177e4
LT
4979
4980 rq_src = cpu_rq(src_cpu);
4981 rq_dest = cpu_rq(dest_cpu);
4982
0122ec5b 4983 raw_spin_lock(&p->pi_lock);
1da177e4
LT
4984 double_rq_lock(rq_src, rq_dest);
4985 /* Already moved. */
4986 if (task_cpu(p) != src_cpu)
b1e38734 4987 goto done;
1da177e4 4988 /* Affinity changed (again). */
fa17b507 4989 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
b1e38734 4990 goto fail;
1da177e4 4991
e2912009
PZ
4992 /*
4993 * If we're not on a rq, the next wake-up will ensure we're
4994 * placed properly.
4995 */
fd2f4419 4996 if (p->on_rq) {
2e1cb74a 4997 deactivate_task(rq_src, p, 0);
e2912009 4998 set_task_cpu(p, dest_cpu);
dd41f596 4999 activate_task(rq_dest, p, 0);
15afe09b 5000 check_preempt_curr(rq_dest, p, 0);
1da177e4 5001 }
b1e38734 5002done:
efc30814 5003 ret = 1;
b1e38734 5004fail:
1da177e4 5005 double_rq_unlock(rq_src, rq_dest);
0122ec5b 5006 raw_spin_unlock(&p->pi_lock);
efc30814 5007 return ret;
1da177e4
LT
5008}
5009
5010/*
969c7921
TH
5011 * migration_cpu_stop - this will be executed by a highprio stopper thread
5012 * and performs thread migration by bumping thread off CPU then
5013 * 'pushing' onto another runqueue.
1da177e4 5014 */
969c7921 5015static int migration_cpu_stop(void *data)
1da177e4 5016{
969c7921 5017 struct migration_arg *arg = data;
f7b4cddc 5018
969c7921
TH
5019 /*
5020 * The original target cpu might have gone down and we might
5021 * be on another cpu but it doesn't matter.
5022 */
f7b4cddc 5023 local_irq_disable();
969c7921 5024 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 5025 local_irq_enable();
1da177e4 5026 return 0;
f7b4cddc
ON
5027}
5028
1da177e4 5029#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 5030
054b9108 5031/*
48c5ccae
PZ
5032 * Ensures that the idle task is using init_mm right before its cpu goes
5033 * offline.
054b9108 5034 */
48c5ccae 5035void idle_task_exit(void)
1da177e4 5036{
48c5ccae 5037 struct mm_struct *mm = current->active_mm;
e76bd8d9 5038
48c5ccae 5039 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 5040
48c5ccae
PZ
5041 if (mm != &init_mm)
5042 switch_mm(mm, &init_mm, current);
5043 mmdrop(mm);
1da177e4
LT
5044}
5045
5046/*
5047 * While a dead CPU has no uninterruptible tasks queued at this point,
5048 * it might still have a nonzero ->nr_uninterruptible counter, because
5049 * for performance reasons the counter is not stricly tracking tasks to
5050 * their home CPUs. So we just add the counter to another CPU's counter,
5051 * to keep the global sum constant after CPU-down:
5052 */
70b97a7f 5053static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5054{
6ad4c188 5055 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4 5056
1da177e4
LT
5057 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5058 rq_src->nr_uninterruptible = 0;
1da177e4
LT
5059}
5060
dd41f596 5061/*
48c5ccae 5062 * remove the tasks which were accounted by rq from calc_load_tasks.
1da177e4 5063 */
48c5ccae 5064static void calc_global_load_remove(struct rq *rq)
1da177e4 5065{
48c5ccae
PZ
5066 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5067 rq->calc_load_active = 0;
1da177e4
LT
5068}
5069
48f24c4d 5070/*
48c5ccae
PZ
5071 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5072 * try_to_wake_up()->select_task_rq().
5073 *
5074 * Called with rq->lock held even though we'er in stop_machine() and
5075 * there's no concurrency possible, we hold the required locks anyway
5076 * because of lock validation efforts.
1da177e4 5077 */
48c5ccae 5078static void migrate_tasks(unsigned int dead_cpu)
1da177e4 5079{
70b97a7f 5080 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
5081 struct task_struct *next, *stop = rq->stop;
5082 int dest_cpu;
1da177e4
LT
5083
5084 /*
48c5ccae
PZ
5085 * Fudge the rq selection such that the below task selection loop
5086 * doesn't get stuck on the currently eligible stop task.
5087 *
5088 * We're currently inside stop_machine() and the rq is either stuck
5089 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5090 * either way we should never end up calling schedule() until we're
5091 * done here.
1da177e4 5092 */
48c5ccae 5093 rq->stop = NULL;
48f24c4d 5094
8cb120d3
PT
5095 /* Ensure any throttled groups are reachable by pick_next_task */
5096 unthrottle_offline_cfs_rqs(rq);
5097
dd41f596 5098 for ( ; ; ) {
48c5ccae
PZ
5099 /*
5100 * There's this thread running, bail when that's the only
5101 * remaining thread.
5102 */
5103 if (rq->nr_running == 1)
dd41f596 5104 break;
48c5ccae 5105
b67802ea 5106 next = pick_next_task(rq);
48c5ccae 5107 BUG_ON(!next);
79c53799 5108 next->sched_class->put_prev_task(rq, next);
e692ab53 5109
48c5ccae
PZ
5110 /* Find suitable destination for @next, with force if needed. */
5111 dest_cpu = select_fallback_rq(dead_cpu, next);
5112 raw_spin_unlock(&rq->lock);
5113
5114 __migrate_task(next, dead_cpu, dest_cpu);
5115
5116 raw_spin_lock(&rq->lock);
1da177e4 5117 }
dce48a84 5118
48c5ccae 5119 rq->stop = stop;
dce48a84 5120}
48c5ccae 5121
1da177e4
LT
5122#endif /* CONFIG_HOTPLUG_CPU */
5123
e692ab53
NP
5124#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5125
5126static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5127 {
5128 .procname = "sched_domain",
c57baf1e 5129 .mode = 0555,
e0361851 5130 },
56992309 5131 {}
e692ab53
NP
5132};
5133
5134static struct ctl_table sd_ctl_root[] = {
e0361851
AD
5135 {
5136 .procname = "kernel",
c57baf1e 5137 .mode = 0555,
e0361851
AD
5138 .child = sd_ctl_dir,
5139 },
56992309 5140 {}
e692ab53
NP
5141};
5142
5143static struct ctl_table *sd_alloc_ctl_entry(int n)
5144{
5145 struct ctl_table *entry =
5cf9f062 5146 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5147
e692ab53
NP
5148 return entry;
5149}
5150
6382bc90
MM
5151static void sd_free_ctl_entry(struct ctl_table **tablep)
5152{
cd790076 5153 struct ctl_table *entry;
6382bc90 5154
cd790076
MM
5155 /*
5156 * In the intermediate directories, both the child directory and
5157 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5158 * will always be set. In the lowest directory the names are
cd790076
MM
5159 * static strings and all have proc handlers.
5160 */
5161 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5162 if (entry->child)
5163 sd_free_ctl_entry(&entry->child);
cd790076
MM
5164 if (entry->proc_handler == NULL)
5165 kfree(entry->procname);
5166 }
6382bc90
MM
5167
5168 kfree(*tablep);
5169 *tablep = NULL;
5170}
5171
e692ab53 5172static void
e0361851 5173set_table_entry(struct ctl_table *entry,
e692ab53
NP
5174 const char *procname, void *data, int maxlen,
5175 mode_t mode, proc_handler *proc_handler)
5176{
e692ab53
NP
5177 entry->procname = procname;
5178 entry->data = data;
5179 entry->maxlen = maxlen;
5180 entry->mode = mode;
5181 entry->proc_handler = proc_handler;
5182}
5183
5184static struct ctl_table *
5185sd_alloc_ctl_domain_table(struct sched_domain *sd)
5186{
a5d8c348 5187 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 5188
ad1cdc1d
MM
5189 if (table == NULL)
5190 return NULL;
5191
e0361851 5192 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5193 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5194 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5195 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5196 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5197 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5198 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5199 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5200 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5201 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5202 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5203 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5204 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5205 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5206 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5207 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5208 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5209 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5210 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
5211 &sd->cache_nice_tries,
5212 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5213 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 5214 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
5215 set_table_entry(&table[11], "name", sd->name,
5216 CORENAME_MAX_SIZE, 0444, proc_dostring);
5217 /* &table[12] is terminator */
e692ab53
NP
5218
5219 return table;
5220}
5221
9a4e7159 5222static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5223{
5224 struct ctl_table *entry, *table;
5225 struct sched_domain *sd;
5226 int domain_num = 0, i;
5227 char buf[32];
5228
5229 for_each_domain(cpu, sd)
5230 domain_num++;
5231 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5232 if (table == NULL)
5233 return NULL;
e692ab53
NP
5234
5235 i = 0;
5236 for_each_domain(cpu, sd) {
5237 snprintf(buf, 32, "domain%d", i);
e692ab53 5238 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5239 entry->mode = 0555;
e692ab53
NP
5240 entry->child = sd_alloc_ctl_domain_table(sd);
5241 entry++;
5242 i++;
5243 }
5244 return table;
5245}
5246
5247static struct ctl_table_header *sd_sysctl_header;
6382bc90 5248static void register_sched_domain_sysctl(void)
e692ab53 5249{
6ad4c188 5250 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5251 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5252 char buf[32];
5253
7378547f
MM
5254 WARN_ON(sd_ctl_dir[0].child);
5255 sd_ctl_dir[0].child = entry;
5256
ad1cdc1d
MM
5257 if (entry == NULL)
5258 return;
5259
6ad4c188 5260 for_each_possible_cpu(i) {
e692ab53 5261 snprintf(buf, 32, "cpu%d", i);
e692ab53 5262 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5263 entry->mode = 0555;
e692ab53 5264 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5265 entry++;
e692ab53 5266 }
7378547f
MM
5267
5268 WARN_ON(sd_sysctl_header);
e692ab53
NP
5269 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5270}
6382bc90 5271
7378547f 5272/* may be called multiple times per register */
6382bc90
MM
5273static void unregister_sched_domain_sysctl(void)
5274{
7378547f
MM
5275 if (sd_sysctl_header)
5276 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5277 sd_sysctl_header = NULL;
7378547f
MM
5278 if (sd_ctl_dir[0].child)
5279 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5280}
e692ab53 5281#else
6382bc90
MM
5282static void register_sched_domain_sysctl(void)
5283{
5284}
5285static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5286{
5287}
5288#endif
5289
1f11eb6a
GH
5290static void set_rq_online(struct rq *rq)
5291{
5292 if (!rq->online) {
5293 const struct sched_class *class;
5294
c6c4927b 5295 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5296 rq->online = 1;
5297
5298 for_each_class(class) {
5299 if (class->rq_online)
5300 class->rq_online(rq);
5301 }
5302 }
5303}
5304
5305static void set_rq_offline(struct rq *rq)
5306{
5307 if (rq->online) {
5308 const struct sched_class *class;
5309
5310 for_each_class(class) {
5311 if (class->rq_offline)
5312 class->rq_offline(rq);
5313 }
5314
c6c4927b 5315 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5316 rq->online = 0;
5317 }
5318}
5319
1da177e4
LT
5320/*
5321 * migration_call - callback that gets triggered when a CPU is added.
5322 * Here we can start up the necessary migration thread for the new CPU.
5323 */
48f24c4d
IM
5324static int __cpuinit
5325migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5326{
48f24c4d 5327 int cpu = (long)hcpu;
1da177e4 5328 unsigned long flags;
969c7921 5329 struct rq *rq = cpu_rq(cpu);
1da177e4 5330
48c5ccae 5331 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 5332
1da177e4 5333 case CPU_UP_PREPARE:
a468d389 5334 rq->calc_load_update = calc_load_update;
1da177e4 5335 break;
48f24c4d 5336
1da177e4 5337 case CPU_ONLINE:
1f94ef59 5338 /* Update our root-domain */
05fa785c 5339 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5340 if (rq->rd) {
c6c4927b 5341 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5342
5343 set_rq_online(rq);
1f94ef59 5344 }
05fa785c 5345 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5346 break;
48f24c4d 5347
1da177e4 5348#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5349 case CPU_DYING:
317f3941 5350 sched_ttwu_pending();
57d885fe 5351 /* Update our root-domain */
05fa785c 5352 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5353 if (rq->rd) {
c6c4927b 5354 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5355 set_rq_offline(rq);
57d885fe 5356 }
48c5ccae
PZ
5357 migrate_tasks(cpu);
5358 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5359 raw_spin_unlock_irqrestore(&rq->lock, flags);
48c5ccae
PZ
5360
5361 migrate_nr_uninterruptible(rq);
5362 calc_global_load_remove(rq);
57d885fe 5363 break;
1da177e4
LT
5364#endif
5365 }
49c022e6
PZ
5366
5367 update_max_interval();
5368
1da177e4
LT
5369 return NOTIFY_OK;
5370}
5371
f38b0820
PM
5372/*
5373 * Register at high priority so that task migration (migrate_all_tasks)
5374 * happens before everything else. This has to be lower priority than
cdd6c482 5375 * the notifier in the perf_event subsystem, though.
1da177e4 5376 */
26c2143b 5377static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4 5378 .notifier_call = migration_call,
50a323b7 5379 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5380};
5381
3a101d05
TH
5382static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5383 unsigned long action, void *hcpu)
5384{
5385 switch (action & ~CPU_TASKS_FROZEN) {
5386 case CPU_ONLINE:
5387 case CPU_DOWN_FAILED:
5388 set_cpu_active((long)hcpu, true);
5389 return NOTIFY_OK;
5390 default:
5391 return NOTIFY_DONE;
5392 }
5393}
5394
5395static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5396 unsigned long action, void *hcpu)
5397{
5398 switch (action & ~CPU_TASKS_FROZEN) {
5399 case CPU_DOWN_PREPARE:
5400 set_cpu_active((long)hcpu, false);
5401 return NOTIFY_OK;
5402 default:
5403 return NOTIFY_DONE;
5404 }
5405}
5406
7babe8db 5407static int __init migration_init(void)
1da177e4
LT
5408{
5409 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5410 int err;
48f24c4d 5411
3a101d05 5412 /* Initialize migration for the boot CPU */
07dccf33
AM
5413 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5414 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5415 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5416 register_cpu_notifier(&migration_notifier);
7babe8db 5417
3a101d05
TH
5418 /* Register cpu active notifiers */
5419 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5420 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5421
a004cd42 5422 return 0;
1da177e4 5423}
7babe8db 5424early_initcall(migration_init);
1da177e4
LT
5425#endif
5426
5427#ifdef CONFIG_SMP
476f3534 5428
4cb98839
PZ
5429static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5430
3e9830dc 5431#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5432
f6630114
MT
5433static __read_mostly int sched_domain_debug_enabled;
5434
5435static int __init sched_domain_debug_setup(char *str)
5436{
5437 sched_domain_debug_enabled = 1;
5438
5439 return 0;
5440}
5441early_param("sched_debug", sched_domain_debug_setup);
5442
7c16ec58 5443static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5444 struct cpumask *groupmask)
1da177e4 5445{
4dcf6aff 5446 struct sched_group *group = sd->groups;
434d53b0 5447 char str[256];
1da177e4 5448
968ea6d8 5449 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 5450 cpumask_clear(groupmask);
4dcf6aff
IM
5451
5452 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5453
5454 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5455 printk("does not load-balance\n");
4dcf6aff 5456 if (sd->parent)
3df0fc5b
PZ
5457 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5458 " has parent");
4dcf6aff 5459 return -1;
41c7ce9a
NP
5460 }
5461
3df0fc5b 5462 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 5463
758b2cdc 5464 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5465 printk(KERN_ERR "ERROR: domain->span does not contain "
5466 "CPU%d\n", cpu);
4dcf6aff 5467 }
758b2cdc 5468 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5469 printk(KERN_ERR "ERROR: domain->groups does not contain"
5470 " CPU%d\n", cpu);
4dcf6aff 5471 }
1da177e4 5472
4dcf6aff 5473 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5474 do {
4dcf6aff 5475 if (!group) {
3df0fc5b
PZ
5476 printk("\n");
5477 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5478 break;
5479 }
5480
9c3f75cb 5481 if (!group->sgp->power) {
3df0fc5b
PZ
5482 printk(KERN_CONT "\n");
5483 printk(KERN_ERR "ERROR: domain->cpu_power not "
5484 "set\n");
4dcf6aff
IM
5485 break;
5486 }
1da177e4 5487
758b2cdc 5488 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5489 printk(KERN_CONT "\n");
5490 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5491 break;
5492 }
1da177e4 5493
758b2cdc 5494 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5495 printk(KERN_CONT "\n");
5496 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5497 break;
5498 }
1da177e4 5499
758b2cdc 5500 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5501
968ea6d8 5502 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 5503
3df0fc5b 5504 printk(KERN_CONT " %s", str);
9c3f75cb 5505 if (group->sgp->power != SCHED_POWER_SCALE) {
3df0fc5b 5506 printk(KERN_CONT " (cpu_power = %d)",
9c3f75cb 5507 group->sgp->power);
381512cf 5508 }
1da177e4 5509
4dcf6aff
IM
5510 group = group->next;
5511 } while (group != sd->groups);
3df0fc5b 5512 printk(KERN_CONT "\n");
1da177e4 5513
758b2cdc 5514 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5515 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5516
758b2cdc
RR
5517 if (sd->parent &&
5518 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5519 printk(KERN_ERR "ERROR: parent span is not a superset "
5520 "of domain->span\n");
4dcf6aff
IM
5521 return 0;
5522}
1da177e4 5523
4dcf6aff
IM
5524static void sched_domain_debug(struct sched_domain *sd, int cpu)
5525{
5526 int level = 0;
1da177e4 5527
f6630114
MT
5528 if (!sched_domain_debug_enabled)
5529 return;
5530
4dcf6aff
IM
5531 if (!sd) {
5532 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5533 return;
5534 }
1da177e4 5535
4dcf6aff
IM
5536 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5537
5538 for (;;) {
4cb98839 5539 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5540 break;
1da177e4
LT
5541 level++;
5542 sd = sd->parent;
33859f7f 5543 if (!sd)
4dcf6aff
IM
5544 break;
5545 }
1da177e4 5546}
6d6bc0ad 5547#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5548# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 5549#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5550
1a20ff27 5551static int sd_degenerate(struct sched_domain *sd)
245af2c7 5552{
758b2cdc 5553 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5554 return 1;
5555
5556 /* Following flags need at least 2 groups */
5557 if (sd->flags & (SD_LOAD_BALANCE |
5558 SD_BALANCE_NEWIDLE |
5559 SD_BALANCE_FORK |
89c4710e
SS
5560 SD_BALANCE_EXEC |
5561 SD_SHARE_CPUPOWER |
5562 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5563 if (sd->groups != sd->groups->next)
5564 return 0;
5565 }
5566
5567 /* Following flags don't use groups */
c88d5910 5568 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5569 return 0;
5570
5571 return 1;
5572}
5573
48f24c4d
IM
5574static int
5575sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5576{
5577 unsigned long cflags = sd->flags, pflags = parent->flags;
5578
5579 if (sd_degenerate(parent))
5580 return 1;
5581
758b2cdc 5582 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5583 return 0;
5584
245af2c7
SS
5585 /* Flags needing groups don't count if only 1 group in parent */
5586 if (parent->groups == parent->groups->next) {
5587 pflags &= ~(SD_LOAD_BALANCE |
5588 SD_BALANCE_NEWIDLE |
5589 SD_BALANCE_FORK |
89c4710e
SS
5590 SD_BALANCE_EXEC |
5591 SD_SHARE_CPUPOWER |
5592 SD_SHARE_PKG_RESOURCES);
5436499e
KC
5593 if (nr_node_ids == 1)
5594 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5595 }
5596 if (~cflags & pflags)
5597 return 0;
5598
5599 return 1;
5600}
5601
dce840a0 5602static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5603{
dce840a0 5604 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5605
68e74568 5606 cpupri_cleanup(&rd->cpupri);
c6c4927b
RR
5607 free_cpumask_var(rd->rto_mask);
5608 free_cpumask_var(rd->online);
5609 free_cpumask_var(rd->span);
5610 kfree(rd);
5611}
5612
57d885fe
GH
5613static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5614{
a0490fa3 5615 struct root_domain *old_rd = NULL;
57d885fe 5616 unsigned long flags;
57d885fe 5617
05fa785c 5618 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5619
5620 if (rq->rd) {
a0490fa3 5621 old_rd = rq->rd;
57d885fe 5622
c6c4927b 5623 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5624 set_rq_offline(rq);
57d885fe 5625
c6c4927b 5626 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5627
a0490fa3
IM
5628 /*
5629 * If we dont want to free the old_rt yet then
5630 * set old_rd to NULL to skip the freeing later
5631 * in this function:
5632 */
5633 if (!atomic_dec_and_test(&old_rd->refcount))
5634 old_rd = NULL;
57d885fe
GH
5635 }
5636
5637 atomic_inc(&rd->refcount);
5638 rq->rd = rd;
5639
c6c4927b 5640 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5641 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5642 set_rq_online(rq);
57d885fe 5643
05fa785c 5644 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5645
5646 if (old_rd)
dce840a0 5647 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5648}
5649
68c38fc3 5650static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5651{
5652 memset(rd, 0, sizeof(*rd));
5653
68c38fc3 5654 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5655 goto out;
68c38fc3 5656 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5657 goto free_span;
68c38fc3 5658 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 5659 goto free_online;
6e0534f2 5660
68c38fc3 5661 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5662 goto free_rto_mask;
c6c4927b 5663 return 0;
6e0534f2 5664
68e74568
RR
5665free_rto_mask:
5666 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
5667free_online:
5668 free_cpumask_var(rd->online);
5669free_span:
5670 free_cpumask_var(rd->span);
0c910d28 5671out:
c6c4927b 5672 return -ENOMEM;
57d885fe
GH
5673}
5674
029632fb
PZ
5675/*
5676 * By default the system creates a single root-domain with all cpus as
5677 * members (mimicking the global state we have today).
5678 */
5679struct root_domain def_root_domain;
5680
57d885fe
GH
5681static void init_defrootdomain(void)
5682{
68c38fc3 5683 init_rootdomain(&def_root_domain);
c6c4927b 5684
57d885fe
GH
5685 atomic_set(&def_root_domain.refcount, 1);
5686}
5687
dc938520 5688static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5689{
5690 struct root_domain *rd;
5691
5692 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5693 if (!rd)
5694 return NULL;
5695
68c38fc3 5696 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5697 kfree(rd);
5698 return NULL;
5699 }
57d885fe
GH
5700
5701 return rd;
5702}
5703
e3589f6c
PZ
5704static void free_sched_groups(struct sched_group *sg, int free_sgp)
5705{
5706 struct sched_group *tmp, *first;
5707
5708 if (!sg)
5709 return;
5710
5711 first = sg;
5712 do {
5713 tmp = sg->next;
5714
5715 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5716 kfree(sg->sgp);
5717
5718 kfree(sg);
5719 sg = tmp;
5720 } while (sg != first);
5721}
5722
dce840a0
PZ
5723static void free_sched_domain(struct rcu_head *rcu)
5724{
5725 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5726
5727 /*
5728 * If its an overlapping domain it has private groups, iterate and
5729 * nuke them all.
5730 */
5731 if (sd->flags & SD_OVERLAP) {
5732 free_sched_groups(sd->groups, 1);
5733 } else if (atomic_dec_and_test(&sd->groups->ref)) {
9c3f75cb 5734 kfree(sd->groups->sgp);
dce840a0 5735 kfree(sd->groups);
9c3f75cb 5736 }
dce840a0
PZ
5737 kfree(sd);
5738}
5739
5740static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5741{
5742 call_rcu(&sd->rcu, free_sched_domain);
5743}
5744
5745static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5746{
5747 for (; sd; sd = sd->parent)
5748 destroy_sched_domain(sd, cpu);
5749}
5750
518cd623
PZ
5751/*
5752 * Keep a special pointer to the highest sched_domain that has
5753 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5754 * allows us to avoid some pointer chasing select_idle_sibling().
5755 *
5756 * Also keep a unique ID per domain (we use the first cpu number in
5757 * the cpumask of the domain), this allows us to quickly tell if
5758 * two cpus are in the same cache domain, see ttwu_share_cache().
5759 */
5760DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5761DEFINE_PER_CPU(int, sd_llc_id);
5762
5763static void update_top_cache_domain(int cpu)
5764{
5765 struct sched_domain *sd;
5766 int id = cpu;
5767
5768 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5769 if (sd)
5770 id = cpumask_first(sched_domain_span(sd));
5771
5772 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5773 per_cpu(sd_llc_id, cpu) = id;
5774}
5775
1da177e4 5776/*
0eab9146 5777 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5778 * hold the hotplug lock.
5779 */
0eab9146
IM
5780static void
5781cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5782{
70b97a7f 5783 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5784 struct sched_domain *tmp;
5785
5786 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5787 for (tmp = sd; tmp; ) {
245af2c7
SS
5788 struct sched_domain *parent = tmp->parent;
5789 if (!parent)
5790 break;
f29c9b1c 5791
1a848870 5792 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5793 tmp->parent = parent->parent;
1a848870
SS
5794 if (parent->parent)
5795 parent->parent->child = tmp;
dce840a0 5796 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5797 } else
5798 tmp = tmp->parent;
245af2c7
SS
5799 }
5800
1a848870 5801 if (sd && sd_degenerate(sd)) {
dce840a0 5802 tmp = sd;
245af2c7 5803 sd = sd->parent;
dce840a0 5804 destroy_sched_domain(tmp, cpu);
1a848870
SS
5805 if (sd)
5806 sd->child = NULL;
5807 }
1da177e4 5808
4cb98839 5809 sched_domain_debug(sd, cpu);
1da177e4 5810
57d885fe 5811 rq_attach_root(rq, rd);
dce840a0 5812 tmp = rq->sd;
674311d5 5813 rcu_assign_pointer(rq->sd, sd);
dce840a0 5814 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5815
5816 update_top_cache_domain(cpu);
1da177e4
LT
5817}
5818
5819/* cpus with isolated domains */
dcc30a35 5820static cpumask_var_t cpu_isolated_map;
1da177e4
LT
5821
5822/* Setup the mask of cpus configured for isolated domains */
5823static int __init isolated_cpu_setup(char *str)
5824{
bdddd296 5825 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5826 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5827 return 1;
5828}
5829
8927f494 5830__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5831
9c1cfda2 5832#ifdef CONFIG_NUMA
198e2f18 5833
9c1cfda2
JH
5834/**
5835 * find_next_best_node - find the next node to include in a sched_domain
5836 * @node: node whose sched_domain we're building
5837 * @used_nodes: nodes already in the sched_domain
5838 *
41a2d6cf 5839 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
5840 * finds the closest node not already in the @used_nodes map.
5841 *
5842 * Should use nodemask_t.
5843 */
c5f59f08 5844static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2 5845{
7142d17e 5846 int i, n, val, min_val, best_node = -1;
9c1cfda2
JH
5847
5848 min_val = INT_MAX;
5849
076ac2af 5850 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 5851 /* Start at @node */
076ac2af 5852 n = (node + i) % nr_node_ids;
9c1cfda2
JH
5853
5854 if (!nr_cpus_node(n))
5855 continue;
5856
5857 /* Skip already used nodes */
c5f59f08 5858 if (node_isset(n, *used_nodes))
9c1cfda2
JH
5859 continue;
5860
5861 /* Simple min distance search */
5862 val = node_distance(node, n);
5863
5864 if (val < min_val) {
5865 min_val = val;
5866 best_node = n;
5867 }
5868 }
5869
7142d17e
HD
5870 if (best_node != -1)
5871 node_set(best_node, *used_nodes);
9c1cfda2
JH
5872 return best_node;
5873}
5874
5875/**
5876 * sched_domain_node_span - get a cpumask for a node's sched_domain
5877 * @node: node whose cpumask we're constructing
73486722 5878 * @span: resulting cpumask
9c1cfda2 5879 *
41a2d6cf 5880 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
5881 * should be one that prevents unnecessary balancing, but also spreads tasks
5882 * out optimally.
5883 */
96f874e2 5884static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 5885{
c5f59f08 5886 nodemask_t used_nodes;
48f24c4d 5887 int i;
9c1cfda2 5888
6ca09dfc 5889 cpumask_clear(span);
c5f59f08 5890 nodes_clear(used_nodes);
9c1cfda2 5891
6ca09dfc 5892 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 5893 node_set(node, used_nodes);
9c1cfda2
JH
5894
5895 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 5896 int next_node = find_next_best_node(node, &used_nodes);
7142d17e
HD
5897 if (next_node < 0)
5898 break;
6ca09dfc 5899 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 5900 }
9c1cfda2 5901}
d3081f52
PZ
5902
5903static const struct cpumask *cpu_node_mask(int cpu)
5904{
5905 lockdep_assert_held(&sched_domains_mutex);
5906
5907 sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);
5908
5909 return sched_domains_tmpmask;
5910}
2c402dc3
PZ
5911
5912static const struct cpumask *cpu_allnodes_mask(int cpu)
5913{
5914 return cpu_possible_mask;
5915}
6d6bc0ad 5916#endif /* CONFIG_NUMA */
9c1cfda2 5917
d3081f52
PZ
5918static const struct cpumask *cpu_cpu_mask(int cpu)
5919{
5920 return cpumask_of_node(cpu_to_node(cpu));
5921}
5922
5c45bf27 5923int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 5924
dce840a0
PZ
5925struct sd_data {
5926 struct sched_domain **__percpu sd;
5927 struct sched_group **__percpu sg;
9c3f75cb 5928 struct sched_group_power **__percpu sgp;
dce840a0
PZ
5929};
5930
49a02c51 5931struct s_data {
21d42ccf 5932 struct sched_domain ** __percpu sd;
49a02c51
AH
5933 struct root_domain *rd;
5934};
5935
2109b99e 5936enum s_alloc {
2109b99e 5937 sa_rootdomain,
21d42ccf 5938 sa_sd,
dce840a0 5939 sa_sd_storage,
2109b99e
AH
5940 sa_none,
5941};
5942
54ab4ff4
PZ
5943struct sched_domain_topology_level;
5944
5945typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
eb7a74e6
PZ
5946typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5947
e3589f6c
PZ
5948#define SDTL_OVERLAP 0x01
5949
eb7a74e6 5950struct sched_domain_topology_level {
2c402dc3
PZ
5951 sched_domain_init_f init;
5952 sched_domain_mask_f mask;
e3589f6c 5953 int flags;
54ab4ff4 5954 struct sd_data data;
eb7a74e6
PZ
5955};
5956
e3589f6c
PZ
5957static int
5958build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5959{
5960 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5961 const struct cpumask *span = sched_domain_span(sd);
5962 struct cpumask *covered = sched_domains_tmpmask;
5963 struct sd_data *sdd = sd->private;
5964 struct sched_domain *child;
5965 int i;
5966
5967 cpumask_clear(covered);
5968
5969 for_each_cpu(i, span) {
5970 struct cpumask *sg_span;
5971
5972 if (cpumask_test_cpu(i, covered))
5973 continue;
5974
5975 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 5976 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
5977
5978 if (!sg)
5979 goto fail;
5980
5981 sg_span = sched_group_cpus(sg);
5982
5983 child = *per_cpu_ptr(sdd->sd, i);
5984 if (child->child) {
5985 child = child->child;
5986 cpumask_copy(sg_span, sched_domain_span(child));
5987 } else
5988 cpumask_set_cpu(i, sg_span);
5989
5990 cpumask_or(covered, covered, sg_span);
5991
5992 sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span));
5993 atomic_inc(&sg->sgp->ref);
5994
5995 if (cpumask_test_cpu(cpu, sg_span))
5996 groups = sg;
5997
5998 if (!first)
5999 first = sg;
6000 if (last)
6001 last->next = sg;
6002 last = sg;
6003 last->next = first;
6004 }
6005 sd->groups = groups;
6006
6007 return 0;
6008
6009fail:
6010 free_sched_groups(first, 0);
6011
6012 return -ENOMEM;
6013}
6014
dce840a0 6015static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 6016{
dce840a0
PZ
6017 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6018 struct sched_domain *child = sd->child;
1da177e4 6019
dce840a0
PZ
6020 if (child)
6021 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 6022
9c3f75cb 6023 if (sg) {
dce840a0 6024 *sg = *per_cpu_ptr(sdd->sg, cpu);
9c3f75cb 6025 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
e3589f6c 6026 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
9c3f75cb 6027 }
dce840a0
PZ
6028
6029 return cpu;
1e9f28fa 6030}
1e9f28fa 6031
01a08546 6032/*
dce840a0
PZ
6033 * build_sched_groups will build a circular linked list of the groups
6034 * covered by the given span, and will set each group's ->cpumask correctly,
6035 * and ->cpu_power to 0.
e3589f6c
PZ
6036 *
6037 * Assumes the sched_domain tree is fully constructed
01a08546 6038 */
e3589f6c
PZ
6039static int
6040build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 6041{
dce840a0
PZ
6042 struct sched_group *first = NULL, *last = NULL;
6043 struct sd_data *sdd = sd->private;
6044 const struct cpumask *span = sched_domain_span(sd);
f96225fd 6045 struct cpumask *covered;
dce840a0 6046 int i;
9c1cfda2 6047
e3589f6c
PZ
6048 get_group(cpu, sdd, &sd->groups);
6049 atomic_inc(&sd->groups->ref);
6050
6051 if (cpu != cpumask_first(sched_domain_span(sd)))
6052 return 0;
6053
f96225fd
PZ
6054 lockdep_assert_held(&sched_domains_mutex);
6055 covered = sched_domains_tmpmask;
6056
dce840a0 6057 cpumask_clear(covered);
6711cab4 6058
dce840a0
PZ
6059 for_each_cpu(i, span) {
6060 struct sched_group *sg;
6061 int group = get_group(i, sdd, &sg);
6062 int j;
6711cab4 6063
dce840a0
PZ
6064 if (cpumask_test_cpu(i, covered))
6065 continue;
6711cab4 6066
dce840a0 6067 cpumask_clear(sched_group_cpus(sg));
9c3f75cb 6068 sg->sgp->power = 0;
0601a88d 6069
dce840a0
PZ
6070 for_each_cpu(j, span) {
6071 if (get_group(j, sdd, NULL) != group)
6072 continue;
0601a88d 6073
dce840a0
PZ
6074 cpumask_set_cpu(j, covered);
6075 cpumask_set_cpu(j, sched_group_cpus(sg));
6076 }
0601a88d 6077
dce840a0
PZ
6078 if (!first)
6079 first = sg;
6080 if (last)
6081 last->next = sg;
6082 last = sg;
6083 }
6084 last->next = first;
e3589f6c
PZ
6085
6086 return 0;
0601a88d 6087}
51888ca2 6088
89c4710e
SS
6089/*
6090 * Initialize sched groups cpu_power.
6091 *
6092 * cpu_power indicates the capacity of sched group, which is used while
6093 * distributing the load between different sched groups in a sched domain.
6094 * Typically cpu_power for all the groups in a sched domain will be same unless
6095 * there are asymmetries in the topology. If there are asymmetries, group
6096 * having more cpu_power will pickup more load compared to the group having
6097 * less cpu_power.
89c4710e
SS
6098 */
6099static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6100{
e3589f6c 6101 struct sched_group *sg = sd->groups;
89c4710e 6102
e3589f6c
PZ
6103 WARN_ON(!sd || !sg);
6104
6105 do {
6106 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6107 sg = sg->next;
6108 } while (sg != sd->groups);
89c4710e 6109
e3589f6c
PZ
6110 if (cpu != group_first_cpu(sg))
6111 return;
aae6d3dd 6112
d274cb30 6113 update_group_power(sd, cpu);
69e1e811 6114 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
89c4710e
SS
6115}
6116
029632fb
PZ
6117int __weak arch_sd_sibling_asym_packing(void)
6118{
6119 return 0*SD_ASYM_PACKING;
89c4710e
SS
6120}
6121
7c16ec58
MT
6122/*
6123 * Initializers for schedule domains
6124 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6125 */
6126
a5d8c348
IM
6127#ifdef CONFIG_SCHED_DEBUG
6128# define SD_INIT_NAME(sd, type) sd->name = #type
6129#else
6130# define SD_INIT_NAME(sd, type) do { } while (0)
6131#endif
6132
54ab4ff4
PZ
6133#define SD_INIT_FUNC(type) \
6134static noinline struct sched_domain * \
6135sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
6136{ \
6137 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
6138 *sd = SD_##type##_INIT; \
54ab4ff4
PZ
6139 SD_INIT_NAME(sd, type); \
6140 sd->private = &tl->data; \
6141 return sd; \
7c16ec58
MT
6142}
6143
6144SD_INIT_FUNC(CPU)
6145#ifdef CONFIG_NUMA
6146 SD_INIT_FUNC(ALLNODES)
6147 SD_INIT_FUNC(NODE)
6148#endif
6149#ifdef CONFIG_SCHED_SMT
6150 SD_INIT_FUNC(SIBLING)
6151#endif
6152#ifdef CONFIG_SCHED_MC
6153 SD_INIT_FUNC(MC)
6154#endif
01a08546
HC
6155#ifdef CONFIG_SCHED_BOOK
6156 SD_INIT_FUNC(BOOK)
6157#endif
7c16ec58 6158
1d3504fc 6159static int default_relax_domain_level = -1;
60495e77 6160int sched_domain_level_max;
1d3504fc
HS
6161
6162static int __init setup_relax_domain_level(char *str)
6163{
30e0e178
LZ
6164 unsigned long val;
6165
6166 val = simple_strtoul(str, NULL, 0);
60495e77 6167 if (val < sched_domain_level_max)
30e0e178
LZ
6168 default_relax_domain_level = val;
6169
1d3504fc
HS
6170 return 1;
6171}
6172__setup("relax_domain_level=", setup_relax_domain_level);
6173
6174static void set_domain_attribute(struct sched_domain *sd,
6175 struct sched_domain_attr *attr)
6176{
6177 int request;
6178
6179 if (!attr || attr->relax_domain_level < 0) {
6180 if (default_relax_domain_level < 0)
6181 return;
6182 else
6183 request = default_relax_domain_level;
6184 } else
6185 request = attr->relax_domain_level;
6186 if (request < sd->level) {
6187 /* turn off idle balance on this domain */
c88d5910 6188 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6189 } else {
6190 /* turn on idle balance on this domain */
c88d5910 6191 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6192 }
6193}
6194
54ab4ff4
PZ
6195static void __sdt_free(const struct cpumask *cpu_map);
6196static int __sdt_alloc(const struct cpumask *cpu_map);
6197
2109b99e
AH
6198static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6199 const struct cpumask *cpu_map)
6200{
6201 switch (what) {
2109b99e 6202 case sa_rootdomain:
822ff793
PZ
6203 if (!atomic_read(&d->rd->refcount))
6204 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
6205 case sa_sd:
6206 free_percpu(d->sd); /* fall through */
dce840a0 6207 case sa_sd_storage:
54ab4ff4 6208 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
6209 case sa_none:
6210 break;
6211 }
6212}
3404c8d9 6213
2109b99e
AH
6214static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6215 const struct cpumask *cpu_map)
6216{
dce840a0
PZ
6217 memset(d, 0, sizeof(*d));
6218
54ab4ff4
PZ
6219 if (__sdt_alloc(cpu_map))
6220 return sa_sd_storage;
dce840a0
PZ
6221 d->sd = alloc_percpu(struct sched_domain *);
6222 if (!d->sd)
6223 return sa_sd_storage;
2109b99e 6224 d->rd = alloc_rootdomain();
dce840a0 6225 if (!d->rd)
21d42ccf 6226 return sa_sd;
2109b99e
AH
6227 return sa_rootdomain;
6228}
57d885fe 6229
dce840a0
PZ
6230/*
6231 * NULL the sd_data elements we've used to build the sched_domain and
6232 * sched_group structure so that the subsequent __free_domain_allocs()
6233 * will not free the data we're using.
6234 */
6235static void claim_allocations(int cpu, struct sched_domain *sd)
6236{
6237 struct sd_data *sdd = sd->private;
dce840a0
PZ
6238
6239 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6240 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6241
e3589f6c 6242 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 6243 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c
PZ
6244
6245 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
9c3f75cb 6246 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
dce840a0
PZ
6247}
6248
2c402dc3
PZ
6249#ifdef CONFIG_SCHED_SMT
6250static const struct cpumask *cpu_smt_mask(int cpu)
7f4588f3 6251{
2c402dc3 6252 return topology_thread_cpumask(cpu);
3bd65a80 6253}
2c402dc3 6254#endif
7f4588f3 6255
d069b916
PZ
6256/*
6257 * Topology list, bottom-up.
6258 */
2c402dc3 6259static struct sched_domain_topology_level default_topology[] = {
d069b916
PZ
6260#ifdef CONFIG_SCHED_SMT
6261 { sd_init_SIBLING, cpu_smt_mask, },
01a08546 6262#endif
1e9f28fa 6263#ifdef CONFIG_SCHED_MC
2c402dc3 6264 { sd_init_MC, cpu_coregroup_mask, },
1e9f28fa 6265#endif
d069b916
PZ
6266#ifdef CONFIG_SCHED_BOOK
6267 { sd_init_BOOK, cpu_book_mask, },
6268#endif
6269 { sd_init_CPU, cpu_cpu_mask, },
6270#ifdef CONFIG_NUMA
e3589f6c 6271 { sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, },
d069b916 6272 { sd_init_ALLNODES, cpu_allnodes_mask, },
1da177e4 6273#endif
eb7a74e6
PZ
6274 { NULL, },
6275};
6276
6277static struct sched_domain_topology_level *sched_domain_topology = default_topology;
6278
54ab4ff4
PZ
6279static int __sdt_alloc(const struct cpumask *cpu_map)
6280{
6281 struct sched_domain_topology_level *tl;
6282 int j;
6283
6284 for (tl = sched_domain_topology; tl->init; tl++) {
6285 struct sd_data *sdd = &tl->data;
6286
6287 sdd->sd = alloc_percpu(struct sched_domain *);
6288 if (!sdd->sd)
6289 return -ENOMEM;
6290
6291 sdd->sg = alloc_percpu(struct sched_group *);
6292 if (!sdd->sg)
6293 return -ENOMEM;
6294
9c3f75cb
PZ
6295 sdd->sgp = alloc_percpu(struct sched_group_power *);
6296 if (!sdd->sgp)
6297 return -ENOMEM;
6298
54ab4ff4
PZ
6299 for_each_cpu(j, cpu_map) {
6300 struct sched_domain *sd;
6301 struct sched_group *sg;
9c3f75cb 6302 struct sched_group_power *sgp;
54ab4ff4
PZ
6303
6304 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6305 GFP_KERNEL, cpu_to_node(j));
6306 if (!sd)
6307 return -ENOMEM;
6308
6309 *per_cpu_ptr(sdd->sd, j) = sd;
6310
6311 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6312 GFP_KERNEL, cpu_to_node(j));
6313 if (!sg)
6314 return -ENOMEM;
6315
6316 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb
PZ
6317
6318 sgp = kzalloc_node(sizeof(struct sched_group_power),
6319 GFP_KERNEL, cpu_to_node(j));
6320 if (!sgp)
6321 return -ENOMEM;
6322
6323 *per_cpu_ptr(sdd->sgp, j) = sgp;
54ab4ff4
PZ
6324 }
6325 }
6326
6327 return 0;
6328}
6329
6330static void __sdt_free(const struct cpumask *cpu_map)
6331{
6332 struct sched_domain_topology_level *tl;
6333 int j;
6334
6335 for (tl = sched_domain_topology; tl->init; tl++) {
6336 struct sd_data *sdd = &tl->data;
6337
6338 for_each_cpu(j, cpu_map) {
e3589f6c
PZ
6339 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, j);
6340 if (sd && (sd->flags & SD_OVERLAP))
6341 free_sched_groups(sd->groups, 0);
feff8fa0 6342 kfree(*per_cpu_ptr(sdd->sd, j));
54ab4ff4 6343 kfree(*per_cpu_ptr(sdd->sg, j));
9c3f75cb 6344 kfree(*per_cpu_ptr(sdd->sgp, j));
54ab4ff4
PZ
6345 }
6346 free_percpu(sdd->sd);
6347 free_percpu(sdd->sg);
9c3f75cb 6348 free_percpu(sdd->sgp);
54ab4ff4
PZ
6349 }
6350}
6351
2c402dc3
PZ
6352struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6353 struct s_data *d, const struct cpumask *cpu_map,
d069b916 6354 struct sched_domain_attr *attr, struct sched_domain *child,
2c402dc3
PZ
6355 int cpu)
6356{
54ab4ff4 6357 struct sched_domain *sd = tl->init(tl, cpu);
2c402dc3 6358 if (!sd)
d069b916 6359 return child;
2c402dc3
PZ
6360
6361 set_domain_attribute(sd, attr);
6362 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6363 if (child) {
6364 sd->level = child->level + 1;
6365 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6366 child->parent = sd;
60495e77 6367 }
d069b916 6368 sd->child = child;
2c402dc3
PZ
6369
6370 return sd;
6371}
6372
2109b99e
AH
6373/*
6374 * Build sched domains for a given set of cpus and attach the sched domains
6375 * to the individual cpus
6376 */
dce840a0
PZ
6377static int build_sched_domains(const struct cpumask *cpu_map,
6378 struct sched_domain_attr *attr)
2109b99e
AH
6379{
6380 enum s_alloc alloc_state = sa_none;
dce840a0 6381 struct sched_domain *sd;
2109b99e 6382 struct s_data d;
822ff793 6383 int i, ret = -ENOMEM;
9c1cfda2 6384
2109b99e
AH
6385 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6386 if (alloc_state != sa_rootdomain)
6387 goto error;
9c1cfda2 6388
dce840a0 6389 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6390 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6391 struct sched_domain_topology_level *tl;
6392
3bd65a80 6393 sd = NULL;
e3589f6c 6394 for (tl = sched_domain_topology; tl->init; tl++) {
2c402dc3 6395 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
e3589f6c
PZ
6396 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6397 sd->flags |= SD_OVERLAP;
d110235d
PZ
6398 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6399 break;
e3589f6c 6400 }
d274cb30 6401
d069b916
PZ
6402 while (sd->child)
6403 sd = sd->child;
6404
21d42ccf 6405 *per_cpu_ptr(d.sd, i) = sd;
dce840a0
PZ
6406 }
6407
6408 /* Build the groups for the domains */
6409 for_each_cpu(i, cpu_map) {
6410 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6411 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6412 if (sd->flags & SD_OVERLAP) {
6413 if (build_overlap_sched_groups(sd, i))
6414 goto error;
6415 } else {
6416 if (build_sched_groups(sd, i))
6417 goto error;
6418 }
1cf51902 6419 }
a06dadbe 6420 }
9c1cfda2 6421
1da177e4 6422 /* Calculate CPU power for physical packages and nodes */
a9c9a9b6
PZ
6423 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6424 if (!cpumask_test_cpu(i, cpu_map))
6425 continue;
9c1cfda2 6426
dce840a0
PZ
6427 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6428 claim_allocations(i, sd);
cd4ea6ae 6429 init_sched_groups_power(i, sd);
dce840a0 6430 }
f712c0c7 6431 }
9c1cfda2 6432
1da177e4 6433 /* Attach the domains */
dce840a0 6434 rcu_read_lock();
abcd083a 6435 for_each_cpu(i, cpu_map) {
21d42ccf 6436 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6437 cpu_attach_domain(sd, d.rd, i);
1da177e4 6438 }
dce840a0 6439 rcu_read_unlock();
51888ca2 6440
822ff793 6441 ret = 0;
51888ca2 6442error:
2109b99e 6443 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6444 return ret;
1da177e4 6445}
029190c5 6446
acc3f5d7 6447static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6448static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6449static struct sched_domain_attr *dattr_cur;
6450 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6451
6452/*
6453 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6454 * cpumask) fails, then fallback to a single sched domain,
6455 * as determined by the single cpumask fallback_doms.
029190c5 6456 */
4212823f 6457static cpumask_var_t fallback_doms;
029190c5 6458
ee79d1bd
HC
6459/*
6460 * arch_update_cpu_topology lets virtualized architectures update the
6461 * cpu core maps. It is supposed to return 1 if the topology changed
6462 * or 0 if it stayed the same.
6463 */
6464int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 6465{
ee79d1bd 6466 return 0;
22e52b07
HC
6467}
6468
acc3f5d7
RR
6469cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6470{
6471 int i;
6472 cpumask_var_t *doms;
6473
6474 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6475 if (!doms)
6476 return NULL;
6477 for (i = 0; i < ndoms; i++) {
6478 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6479 free_sched_domains(doms, i);
6480 return NULL;
6481 }
6482 }
6483 return doms;
6484}
6485
6486void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6487{
6488 unsigned int i;
6489 for (i = 0; i < ndoms; i++)
6490 free_cpumask_var(doms[i]);
6491 kfree(doms);
6492}
6493
1a20ff27 6494/*
41a2d6cf 6495 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6496 * For now this just excludes isolated cpus, but could be used to
6497 * exclude other special cases in the future.
1a20ff27 6498 */
c4a8849a 6499static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6500{
7378547f
MM
6501 int err;
6502
22e52b07 6503 arch_update_cpu_topology();
029190c5 6504 ndoms_cur = 1;
acc3f5d7 6505 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6506 if (!doms_cur)
acc3f5d7
RR
6507 doms_cur = &fallback_doms;
6508 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 6509 dattr_cur = NULL;
dce840a0 6510 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6511 register_sched_domain_sysctl();
7378547f
MM
6512
6513 return err;
1a20ff27
DG
6514}
6515
1a20ff27
DG
6516/*
6517 * Detach sched domains from a group of cpus specified in cpu_map
6518 * These cpus will now be attached to the NULL domain
6519 */
96f874e2 6520static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6521{
6522 int i;
6523
dce840a0 6524 rcu_read_lock();
abcd083a 6525 for_each_cpu(i, cpu_map)
57d885fe 6526 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6527 rcu_read_unlock();
1a20ff27
DG
6528}
6529
1d3504fc
HS
6530/* handle null as "default" */
6531static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6532 struct sched_domain_attr *new, int idx_new)
6533{
6534 struct sched_domain_attr tmp;
6535
6536 /* fast path */
6537 if (!new && !cur)
6538 return 1;
6539
6540 tmp = SD_ATTR_INIT;
6541 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6542 new ? (new + idx_new) : &tmp,
6543 sizeof(struct sched_domain_attr));
6544}
6545
029190c5
PJ
6546/*
6547 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6548 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6549 * doms_new[] to the current sched domain partitioning, doms_cur[].
6550 * It destroys each deleted domain and builds each new domain.
6551 *
acc3f5d7 6552 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
6553 * The masks don't intersect (don't overlap.) We should setup one
6554 * sched domain for each mask. CPUs not in any of the cpumasks will
6555 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6556 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6557 * it as it is.
6558 *
acc3f5d7
RR
6559 * The passed in 'doms_new' should be allocated using
6560 * alloc_sched_domains. This routine takes ownership of it and will
6561 * free_sched_domains it when done with it. If the caller failed the
6562 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6563 * and partition_sched_domains() will fallback to the single partition
6564 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 6565 *
96f874e2 6566 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
6567 * ndoms_new == 0 is a special case for destroying existing domains,
6568 * and it will not create the default domain.
dfb512ec 6569 *
029190c5
PJ
6570 * Call with hotplug lock held
6571 */
acc3f5d7 6572void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 6573 struct sched_domain_attr *dattr_new)
029190c5 6574{
dfb512ec 6575 int i, j, n;
d65bd5ec 6576 int new_topology;
029190c5 6577
712555ee 6578 mutex_lock(&sched_domains_mutex);
a1835615 6579
7378547f
MM
6580 /* always unregister in case we don't destroy any domains */
6581 unregister_sched_domain_sysctl();
6582
d65bd5ec
HC
6583 /* Let architecture update cpu core mappings. */
6584 new_topology = arch_update_cpu_topology();
6585
dfb512ec 6586 n = doms_new ? ndoms_new : 0;
029190c5
PJ
6587
6588 /* Destroy deleted domains */
6589 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 6590 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6591 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 6592 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
6593 goto match1;
6594 }
6595 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 6596 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
6597match1:
6598 ;
6599 }
6600
e761b772
MK
6601 if (doms_new == NULL) {
6602 ndoms_cur = 0;
acc3f5d7 6603 doms_new = &fallback_doms;
6ad4c188 6604 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 6605 WARN_ON_ONCE(dattr_new);
e761b772
MK
6606 }
6607
029190c5
PJ
6608 /* Build new domains */
6609 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 6610 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 6611 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 6612 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
6613 goto match2;
6614 }
6615 /* no match - add a new doms_new */
dce840a0 6616 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
6617match2:
6618 ;
6619 }
6620
6621 /* Remember the new sched domains */
acc3f5d7
RR
6622 if (doms_cur != &fallback_doms)
6623 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 6624 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 6625 doms_cur = doms_new;
1d3504fc 6626 dattr_cur = dattr_new;
029190c5 6627 ndoms_cur = ndoms_new;
7378547f
MM
6628
6629 register_sched_domain_sysctl();
a1835615 6630
712555ee 6631 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
6632}
6633
5c45bf27 6634#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c4a8849a 6635static void reinit_sched_domains(void)
5c45bf27 6636{
95402b38 6637 get_online_cpus();
dfb512ec
MK
6638
6639 /* Destroy domains first to force the rebuild */
6640 partition_sched_domains(0, NULL, NULL);
6641
e761b772 6642 rebuild_sched_domains();
95402b38 6643 put_online_cpus();
5c45bf27
SS
6644}
6645
6646static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6647{
afb8a9b7 6648 unsigned int level = 0;
5c45bf27 6649
afb8a9b7
GS
6650 if (sscanf(buf, "%u", &level) != 1)
6651 return -EINVAL;
6652
6653 /*
6654 * level is always be positive so don't check for
6655 * level < POWERSAVINGS_BALANCE_NONE which is 0
6656 * What happens on 0 or 1 byte write,
6657 * need to check for count as well?
6658 */
6659
6660 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
6661 return -EINVAL;
6662
6663 if (smt)
afb8a9b7 6664 sched_smt_power_savings = level;
5c45bf27 6665 else
afb8a9b7 6666 sched_mc_power_savings = level;
5c45bf27 6667
c4a8849a 6668 reinit_sched_domains();
5c45bf27 6669
c70f22d2 6670 return count;
5c45bf27
SS
6671}
6672
5c45bf27 6673#ifdef CONFIG_SCHED_MC
f718cd4a 6674static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
c9be0a36 6675 struct sysdev_class_attribute *attr,
f718cd4a 6676 char *page)
5c45bf27
SS
6677{
6678 return sprintf(page, "%u\n", sched_mc_power_savings);
6679}
f718cd4a 6680static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
c9be0a36 6681 struct sysdev_class_attribute *attr,
48f24c4d 6682 const char *buf, size_t count)
5c45bf27
SS
6683{
6684 return sched_power_savings_store(buf, count, 0);
6685}
f718cd4a
AK
6686static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
6687 sched_mc_power_savings_show,
6688 sched_mc_power_savings_store);
5c45bf27
SS
6689#endif
6690
6691#ifdef CONFIG_SCHED_SMT
f718cd4a 6692static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
c9be0a36 6693 struct sysdev_class_attribute *attr,
f718cd4a 6694 char *page)
5c45bf27
SS
6695{
6696 return sprintf(page, "%u\n", sched_smt_power_savings);
6697}
f718cd4a 6698static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
c9be0a36 6699 struct sysdev_class_attribute *attr,
48f24c4d 6700 const char *buf, size_t count)
5c45bf27
SS
6701{
6702 return sched_power_savings_store(buf, count, 1);
6703}
f718cd4a
AK
6704static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
6705 sched_smt_power_savings_show,
6707de00
AB
6706 sched_smt_power_savings_store);
6707#endif
6708
39aac648 6709int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
6710{
6711 int err = 0;
6712
6713#ifdef CONFIG_SCHED_SMT
6714 if (smt_capable())
6715 err = sysfs_create_file(&cls->kset.kobj,
6716 &attr_sched_smt_power_savings.attr);
6717#endif
6718#ifdef CONFIG_SCHED_MC
6719 if (!err && mc_capable())
6720 err = sysfs_create_file(&cls->kset.kobj,
6721 &attr_sched_mc_power_savings.attr);
6722#endif
6723 return err;
6724}
6d6bc0ad 6725#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 6726
1da177e4 6727/*
3a101d05
TH
6728 * Update cpusets according to cpu_active mask. If cpusets are
6729 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6730 * around partition_sched_domains().
1da177e4 6731 */
0b2e918a
TH
6732static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6733 void *hcpu)
e761b772 6734{
3a101d05 6735 switch (action & ~CPU_TASKS_FROZEN) {
e761b772 6736 case CPU_ONLINE:
6ad4c188 6737 case CPU_DOWN_FAILED:
3a101d05 6738 cpuset_update_active_cpus();
e761b772 6739 return NOTIFY_OK;
3a101d05
TH
6740 default:
6741 return NOTIFY_DONE;
6742 }
6743}
e761b772 6744
0b2e918a
TH
6745static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6746 void *hcpu)
3a101d05
TH
6747{
6748 switch (action & ~CPU_TASKS_FROZEN) {
6749 case CPU_DOWN_PREPARE:
6750 cpuset_update_active_cpus();
6751 return NOTIFY_OK;
e761b772
MK
6752 default:
6753 return NOTIFY_DONE;
6754 }
6755}
e761b772 6756
1da177e4
LT
6757void __init sched_init_smp(void)
6758{
dcc30a35
RR
6759 cpumask_var_t non_isolated_cpus;
6760
6761 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 6762 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 6763
95402b38 6764 get_online_cpus();
712555ee 6765 mutex_lock(&sched_domains_mutex);
c4a8849a 6766 init_sched_domains(cpu_active_mask);
dcc30a35
RR
6767 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6768 if (cpumask_empty(non_isolated_cpus))
6769 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 6770 mutex_unlock(&sched_domains_mutex);
95402b38 6771 put_online_cpus();
e761b772 6772
3a101d05
TH
6773 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6774 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772
MK
6775
6776 /* RT runtime code needs to handle some hotplug events */
6777 hotcpu_notifier(update_runtime, 0);
6778
b328ca18 6779 init_hrtick();
5c1e1767
NP
6780
6781 /* Move init over to a non-isolated CPU */
dcc30a35 6782 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 6783 BUG();
19978ca6 6784 sched_init_granularity();
dcc30a35 6785 free_cpumask_var(non_isolated_cpus);
4212823f 6786
0e3900e6 6787 init_sched_rt_class();
1da177e4
LT
6788}
6789#else
6790void __init sched_init_smp(void)
6791{
19978ca6 6792 sched_init_granularity();
1da177e4
LT
6793}
6794#endif /* CONFIG_SMP */
6795
cd1bb94b
AB
6796const_debug unsigned int sysctl_timer_migration = 1;
6797
1da177e4
LT
6798int in_sched_functions(unsigned long addr)
6799{
1da177e4
LT
6800 return in_lock_functions(addr) ||
6801 (addr >= (unsigned long)__sched_text_start
6802 && addr < (unsigned long)__sched_text_end);
6803}
6804
029632fb
PZ
6805#ifdef CONFIG_CGROUP_SCHED
6806struct task_group root_task_group;
052f1dc7 6807#endif
6f505b16 6808
029632fb 6809DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
6f505b16 6810
1da177e4
LT
6811void __init sched_init(void)
6812{
dd41f596 6813 int i, j;
434d53b0
MT
6814 unsigned long alloc_size = 0, ptr;
6815
6816#ifdef CONFIG_FAIR_GROUP_SCHED
6817 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6818#endif
6819#ifdef CONFIG_RT_GROUP_SCHED
6820 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 6821#endif
df7c8e84 6822#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 6823 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 6824#endif
434d53b0 6825 if (alloc_size) {
36b7b6d4 6826 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
6827
6828#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 6829 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
6830 ptr += nr_cpu_ids * sizeof(void **);
6831
07e06b01 6832 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 6833 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 6834
6d6bc0ad 6835#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 6836#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6837 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
6838 ptr += nr_cpu_ids * sizeof(void **);
6839
07e06b01 6840 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
6841 ptr += nr_cpu_ids * sizeof(void **);
6842
6d6bc0ad 6843#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
6844#ifdef CONFIG_CPUMASK_OFFSTACK
6845 for_each_possible_cpu(i) {
6846 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
6847 ptr += cpumask_size();
6848 }
6849#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 6850 }
dd41f596 6851
57d885fe
GH
6852#ifdef CONFIG_SMP
6853 init_defrootdomain();
6854#endif
6855
d0b27fa7
PZ
6856 init_rt_bandwidth(&def_rt_bandwidth,
6857 global_rt_period(), global_rt_runtime());
6858
6859#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6860 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 6861 global_rt_period(), global_rt_runtime());
6d6bc0ad 6862#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6863
7c941438 6864#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
6865 list_add(&root_task_group.list, &task_groups);
6866 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 6867 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 6868 autogroup_init(&init_task);
54c707e9 6869
7c941438 6870#endif /* CONFIG_CGROUP_SCHED */
6f505b16 6871
54c707e9
GC
6872#ifdef CONFIG_CGROUP_CPUACCT
6873 root_cpuacct.cpustat = &kernel_cpustat;
6874 root_cpuacct.cpuusage = alloc_percpu(u64);
6875 /* Too early, not expected to fail */
6876 BUG_ON(!root_cpuacct.cpuusage);
6877#endif
0a945022 6878 for_each_possible_cpu(i) {
70b97a7f 6879 struct rq *rq;
1da177e4
LT
6880
6881 rq = cpu_rq(i);
05fa785c 6882 raw_spin_lock_init(&rq->lock);
7897986b 6883 rq->nr_running = 0;
dce48a84
TG
6884 rq->calc_load_active = 0;
6885 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 6886 init_cfs_rq(&rq->cfs);
6f505b16 6887 init_rt_rq(&rq->rt, rq);
dd41f596 6888#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 6889 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 6890 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 6891 /*
07e06b01 6892 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
6893 *
6894 * In case of task-groups formed thr' the cgroup filesystem, it
6895 * gets 100% of the cpu resources in the system. This overall
6896 * system cpu resource is divided among the tasks of
07e06b01 6897 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
6898 * based on each entity's (task or task-group's) weight
6899 * (se->load.weight).
6900 *
07e06b01 6901 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
6902 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6903 * then A0's share of the cpu resource is:
6904 *
0d905bca 6905 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 6906 *
07e06b01
YZ
6907 * We achieve this by letting root_task_group's tasks sit
6908 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 6909 */
ab84d31e 6910 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 6911 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
6912#endif /* CONFIG_FAIR_GROUP_SCHED */
6913
6914 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 6915#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 6916 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
07e06b01 6917 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 6918#endif
1da177e4 6919
dd41f596
IM
6920 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6921 rq->cpu_load[j] = 0;
fdf3e95d
VP
6922
6923 rq->last_load_update_tick = jiffies;
6924
1da177e4 6925#ifdef CONFIG_SMP
41c7ce9a 6926 rq->sd = NULL;
57d885fe 6927 rq->rd = NULL;
1399fa78 6928 rq->cpu_power = SCHED_POWER_SCALE;
3f029d3c 6929 rq->post_schedule = 0;
1da177e4 6930 rq->active_balance = 0;
dd41f596 6931 rq->next_balance = jiffies;
1da177e4 6932 rq->push_cpu = 0;
0a2966b4 6933 rq->cpu = i;
1f11eb6a 6934 rq->online = 0;
eae0c9df
MG
6935 rq->idle_stamp = 0;
6936 rq->avg_idle = 2*sysctl_sched_migration_cost;
dc938520 6937 rq_attach_root(rq, &def_root_domain);
83cd4fe2 6938#ifdef CONFIG_NO_HZ
1c792db7 6939 rq->nohz_flags = 0;
83cd4fe2 6940#endif
1da177e4 6941#endif
8f4d37ec 6942 init_rq_hrtick(rq);
1da177e4 6943 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
6944 }
6945
2dd73a4f 6946 set_load_weight(&init_task);
b50f60ce 6947
e107be36
AK
6948#ifdef CONFIG_PREEMPT_NOTIFIERS
6949 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6950#endif
6951
b50f60ce 6952#ifdef CONFIG_RT_MUTEXES
732375c6 6953 plist_head_init(&init_task.pi_waiters);
b50f60ce
HC
6954#endif
6955
1da177e4
LT
6956 /*
6957 * The boot idle thread does lazy MMU switching as well:
6958 */
6959 atomic_inc(&init_mm.mm_count);
6960 enter_lazy_tlb(&init_mm, current);
6961
6962 /*
6963 * Make us the idle thread. Technically, schedule() should not be
6964 * called from this thread, however somewhere below it might be,
6965 * but because we are the idle thread, we just pick up running again
6966 * when this runqueue becomes "idle".
6967 */
6968 init_idle(current, smp_processor_id());
dce48a84
TG
6969
6970 calc_load_update = jiffies + LOAD_FREQ;
6971
dd41f596
IM
6972 /*
6973 * During early bootup we pretend to be a normal task:
6974 */
6975 current->sched_class = &fair_sched_class;
6892b75e 6976
bf4d83f6 6977#ifdef CONFIG_SMP
4cb98839 6978 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
6979 /* May be allocated at isolcpus cmdline parse time */
6980 if (cpu_isolated_map == NULL)
6981 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
029632fb
PZ
6982#endif
6983 init_sched_fair_class();
6a7b3dc3 6984
6892b75e 6985 scheduler_running = 1;
1da177e4
LT
6986}
6987
d902db1e 6988#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
6989static inline int preempt_count_equals(int preempt_offset)
6990{
234da7bc 6991 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 6992
4ba8216c 6993 return (nested == preempt_offset);
e4aafea2
FW
6994}
6995
d894837f 6996void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6997{
1da177e4
LT
6998 static unsigned long prev_jiffy; /* ratelimiting */
6999
b3fbab05 7000 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
e4aafea2
FW
7001 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7002 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7003 return;
7004 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7005 return;
7006 prev_jiffy = jiffies;
7007
3df0fc5b
PZ
7008 printk(KERN_ERR
7009 "BUG: sleeping function called from invalid context at %s:%d\n",
7010 file, line);
7011 printk(KERN_ERR
7012 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7013 in_atomic(), irqs_disabled(),
7014 current->pid, current->comm);
aef745fc
IM
7015
7016 debug_show_held_locks(current);
7017 if (irqs_disabled())
7018 print_irqtrace_events(current);
7019 dump_stack();
1da177e4
LT
7020}
7021EXPORT_SYMBOL(__might_sleep);
7022#endif
7023
7024#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7025static void normalize_task(struct rq *rq, struct task_struct *p)
7026{
da7a735e
PZ
7027 const struct sched_class *prev_class = p->sched_class;
7028 int old_prio = p->prio;
3a5e4dc1 7029 int on_rq;
3e51f33f 7030
fd2f4419 7031 on_rq = p->on_rq;
3a5e4dc1
AK
7032 if (on_rq)
7033 deactivate_task(rq, p, 0);
7034 __setscheduler(rq, p, SCHED_NORMAL, 0);
7035 if (on_rq) {
7036 activate_task(rq, p, 0);
7037 resched_task(rq->curr);
7038 }
da7a735e
PZ
7039
7040 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
7041}
7042
1da177e4
LT
7043void normalize_rt_tasks(void)
7044{
a0f98a1c 7045 struct task_struct *g, *p;
1da177e4 7046 unsigned long flags;
70b97a7f 7047 struct rq *rq;
1da177e4 7048
4cf5d77a 7049 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 7050 do_each_thread(g, p) {
178be793
IM
7051 /*
7052 * Only normalize user tasks:
7053 */
7054 if (!p->mm)
7055 continue;
7056
6cfb0d5d 7057 p->se.exec_start = 0;
6cfb0d5d 7058#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7059 p->se.statistics.wait_start = 0;
7060 p->se.statistics.sleep_start = 0;
7061 p->se.statistics.block_start = 0;
6cfb0d5d 7062#endif
dd41f596
IM
7063
7064 if (!rt_task(p)) {
7065 /*
7066 * Renice negative nice level userspace
7067 * tasks back to 0:
7068 */
7069 if (TASK_NICE(p) < 0 && p->mm)
7070 set_user_nice(p, 0);
1da177e4 7071 continue;
dd41f596 7072 }
1da177e4 7073
1d615482 7074 raw_spin_lock(&p->pi_lock);
b29739f9 7075 rq = __task_rq_lock(p);
1da177e4 7076
178be793 7077 normalize_task(rq, p);
3a5e4dc1 7078
b29739f9 7079 __task_rq_unlock(rq);
1d615482 7080 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
7081 } while_each_thread(g, p);
7082
4cf5d77a 7083 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
7084}
7085
7086#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7087
67fc4e0c 7088#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7089/*
67fc4e0c 7090 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7091 *
7092 * They can only be called when the whole system has been
7093 * stopped - every CPU needs to be quiescent, and no scheduling
7094 * activity can take place. Using them for anything else would
7095 * be a serious bug, and as a result, they aren't even visible
7096 * under any other configuration.
7097 */
7098
7099/**
7100 * curr_task - return the current task for a given cpu.
7101 * @cpu: the processor in question.
7102 *
7103 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7104 */
36c8b586 7105struct task_struct *curr_task(int cpu)
1df5c10a
LT
7106{
7107 return cpu_curr(cpu);
7108}
7109
67fc4e0c
JW
7110#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7111
7112#ifdef CONFIG_IA64
1df5c10a
LT
7113/**
7114 * set_curr_task - set the current task for a given cpu.
7115 * @cpu: the processor in question.
7116 * @p: the task pointer to set.
7117 *
7118 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7119 * are serviced on a separate stack. It allows the architecture to switch the
7120 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7121 * must be called with all CPU's synchronized, and interrupts disabled, the
7122 * and caller must save the original value of the current task (see
7123 * curr_task() above) and restore that value before reenabling interrupts and
7124 * re-starting the system.
7125 *
7126 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7127 */
36c8b586 7128void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7129{
7130 cpu_curr(cpu) = p;
7131}
7132
7133#endif
29f59db3 7134
052f1dc7 7135#ifdef CONFIG_RT_GROUP_SCHED
6d6bc0ad 7136#else /* !CONFIG_RT_GROUP_SCHED */
6d6bc0ad 7137#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 7138
7c941438 7139#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7140/* task_group_lock serializes the addition/removal of task groups */
7141static DEFINE_SPINLOCK(task_group_lock);
7142
bccbe08a
PZ
7143static void free_sched_group(struct task_group *tg)
7144{
7145 free_fair_sched_group(tg);
7146 free_rt_sched_group(tg);
e9aa1dd1 7147 autogroup_free(tg);
bccbe08a
PZ
7148 kfree(tg);
7149}
7150
7151/* allocate runqueue etc for a new task group */
ec7dc8ac 7152struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7153{
7154 struct task_group *tg;
7155 unsigned long flags;
bccbe08a
PZ
7156
7157 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7158 if (!tg)
7159 return ERR_PTR(-ENOMEM);
7160
ec7dc8ac 7161 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7162 goto err;
7163
ec7dc8ac 7164 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7165 goto err;
7166
8ed36996 7167 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7168 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7169
7170 WARN_ON(!parent); /* root should already exist */
7171
7172 tg->parent = parent;
f473aa5e 7173 INIT_LIST_HEAD(&tg->children);
09f2724a 7174 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7175 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 7176
9b5b7751 7177 return tg;
29f59db3
SV
7178
7179err:
6f505b16 7180 free_sched_group(tg);
29f59db3
SV
7181 return ERR_PTR(-ENOMEM);
7182}
7183
9b5b7751 7184/* rcu callback to free various structures associated with a task group */
6f505b16 7185static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7186{
29f59db3 7187 /* now it should be safe to free those cfs_rqs */
6f505b16 7188 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7189}
7190
9b5b7751 7191/* Destroy runqueue etc associated with a task group */
4cf86d77 7192void sched_destroy_group(struct task_group *tg)
29f59db3 7193{
8ed36996 7194 unsigned long flags;
9b5b7751 7195 int i;
29f59db3 7196
3d4b47b4
PZ
7197 /* end participation in shares distribution */
7198 for_each_possible_cpu(i)
bccbe08a 7199 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
7200
7201 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7202 list_del_rcu(&tg->list);
f473aa5e 7203 list_del_rcu(&tg->siblings);
8ed36996 7204 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 7205
9b5b7751 7206 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 7207 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
7208}
7209
9b5b7751 7210/* change task's runqueue when it moves between groups.
3a252015
IM
7211 * The caller of this function should have put the task in its new group
7212 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7213 * reflect its new group.
9b5b7751
SV
7214 */
7215void sched_move_task(struct task_struct *tsk)
29f59db3
SV
7216{
7217 int on_rq, running;
7218 unsigned long flags;
7219 struct rq *rq;
7220
7221 rq = task_rq_lock(tsk, &flags);
7222
051a1d1a 7223 running = task_current(rq, tsk);
fd2f4419 7224 on_rq = tsk->on_rq;
29f59db3 7225
0e1f3483 7226 if (on_rq)
29f59db3 7227 dequeue_task(rq, tsk, 0);
0e1f3483
HS
7228 if (unlikely(running))
7229 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 7230
810b3817 7231#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
7232 if (tsk->sched_class->task_move_group)
7233 tsk->sched_class->task_move_group(tsk, on_rq);
7234 else
810b3817 7235#endif
b2b5ce02 7236 set_task_rq(tsk, task_cpu(tsk));
810b3817 7237
0e1f3483
HS
7238 if (unlikely(running))
7239 tsk->sched_class->set_curr_task(rq);
7240 if (on_rq)
371fd7e7 7241 enqueue_task(rq, tsk, 0);
29f59db3 7242
0122ec5b 7243 task_rq_unlock(rq, tsk, &flags);
29f59db3 7244}
7c941438 7245#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7246
052f1dc7 7247#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7 7248#endif
5cb350ba 7249
a790de99 7250#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
9f0c1e56
PZ
7251static unsigned long to_ratio(u64 period, u64 runtime)
7252{
7253 if (runtime == RUNTIME_INF)
9a7e0b18 7254 return 1ULL << 20;
9f0c1e56 7255
9a7e0b18 7256 return div64_u64(runtime << 20, period);
9f0c1e56 7257}
a790de99
PT
7258#endif
7259
7260#ifdef CONFIG_RT_GROUP_SCHED
7261/*
7262 * Ensure that the real time constraints are schedulable.
7263 */
7264static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7265
9a7e0b18
PZ
7266/* Must be called with tasklist_lock held */
7267static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7268{
9a7e0b18 7269 struct task_struct *g, *p;
b40b2e8e 7270
9a7e0b18 7271 do_each_thread(g, p) {
029632fb 7272 if (rt_task(p) && task_rq(p)->rt.tg == tg)
9a7e0b18
PZ
7273 return 1;
7274 } while_each_thread(g, p);
b40b2e8e 7275
9a7e0b18
PZ
7276 return 0;
7277}
b40b2e8e 7278
9a7e0b18
PZ
7279struct rt_schedulable_data {
7280 struct task_group *tg;
7281 u64 rt_period;
7282 u64 rt_runtime;
7283};
b40b2e8e 7284
a790de99 7285static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7286{
7287 struct rt_schedulable_data *d = data;
7288 struct task_group *child;
7289 unsigned long total, sum = 0;
7290 u64 period, runtime;
b40b2e8e 7291
9a7e0b18
PZ
7292 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7293 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7294
9a7e0b18
PZ
7295 if (tg == d->tg) {
7296 period = d->rt_period;
7297 runtime = d->rt_runtime;
b40b2e8e 7298 }
b40b2e8e 7299
4653f803
PZ
7300 /*
7301 * Cannot have more runtime than the period.
7302 */
7303 if (runtime > period && runtime != RUNTIME_INF)
7304 return -EINVAL;
6f505b16 7305
4653f803
PZ
7306 /*
7307 * Ensure we don't starve existing RT tasks.
7308 */
9a7e0b18
PZ
7309 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7310 return -EBUSY;
6f505b16 7311
9a7e0b18 7312 total = to_ratio(period, runtime);
6f505b16 7313
4653f803
PZ
7314 /*
7315 * Nobody can have more than the global setting allows.
7316 */
7317 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7318 return -EINVAL;
6f505b16 7319
4653f803
PZ
7320 /*
7321 * The sum of our children's runtime should not exceed our own.
7322 */
9a7e0b18
PZ
7323 list_for_each_entry_rcu(child, &tg->children, siblings) {
7324 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7325 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7326
9a7e0b18
PZ
7327 if (child == d->tg) {
7328 period = d->rt_period;
7329 runtime = d->rt_runtime;
7330 }
6f505b16 7331
9a7e0b18 7332 sum += to_ratio(period, runtime);
9f0c1e56 7333 }
6f505b16 7334
9a7e0b18
PZ
7335 if (sum > total)
7336 return -EINVAL;
7337
7338 return 0;
6f505b16
PZ
7339}
7340
9a7e0b18 7341static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7342{
8277434e
PT
7343 int ret;
7344
9a7e0b18
PZ
7345 struct rt_schedulable_data data = {
7346 .tg = tg,
7347 .rt_period = period,
7348 .rt_runtime = runtime,
7349 };
7350
8277434e
PT
7351 rcu_read_lock();
7352 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7353 rcu_read_unlock();
7354
7355 return ret;
521f1a24
DG
7356}
7357
ab84d31e 7358static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7359 u64 rt_period, u64 rt_runtime)
6f505b16 7360{
ac086bc2 7361 int i, err = 0;
9f0c1e56 7362
9f0c1e56 7363 mutex_lock(&rt_constraints_mutex);
521f1a24 7364 read_lock(&tasklist_lock);
9a7e0b18
PZ
7365 err = __rt_schedulable(tg, rt_period, rt_runtime);
7366 if (err)
9f0c1e56 7367 goto unlock;
ac086bc2 7368
0986b11b 7369 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7370 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7371 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7372
7373 for_each_possible_cpu(i) {
7374 struct rt_rq *rt_rq = tg->rt_rq[i];
7375
0986b11b 7376 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7377 rt_rq->rt_runtime = rt_runtime;
0986b11b 7378 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7379 }
0986b11b 7380 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7381unlock:
521f1a24 7382 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7383 mutex_unlock(&rt_constraints_mutex);
7384
7385 return err;
6f505b16
PZ
7386}
7387
d0b27fa7
PZ
7388int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7389{
7390 u64 rt_runtime, rt_period;
7391
7392 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7393 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7394 if (rt_runtime_us < 0)
7395 rt_runtime = RUNTIME_INF;
7396
ab84d31e 7397 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7398}
7399
9f0c1e56
PZ
7400long sched_group_rt_runtime(struct task_group *tg)
7401{
7402 u64 rt_runtime_us;
7403
d0b27fa7 7404 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7405 return -1;
7406
d0b27fa7 7407 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7408 do_div(rt_runtime_us, NSEC_PER_USEC);
7409 return rt_runtime_us;
7410}
d0b27fa7
PZ
7411
7412int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7413{
7414 u64 rt_runtime, rt_period;
7415
7416 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7417 rt_runtime = tg->rt_bandwidth.rt_runtime;
7418
619b0488
R
7419 if (rt_period == 0)
7420 return -EINVAL;
7421
ab84d31e 7422 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7423}
7424
7425long sched_group_rt_period(struct task_group *tg)
7426{
7427 u64 rt_period_us;
7428
7429 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7430 do_div(rt_period_us, NSEC_PER_USEC);
7431 return rt_period_us;
7432}
7433
7434static int sched_rt_global_constraints(void)
7435{
4653f803 7436 u64 runtime, period;
d0b27fa7
PZ
7437 int ret = 0;
7438
ec5d4989
HS
7439 if (sysctl_sched_rt_period <= 0)
7440 return -EINVAL;
7441
4653f803
PZ
7442 runtime = global_rt_runtime();
7443 period = global_rt_period();
7444
7445 /*
7446 * Sanity check on the sysctl variables.
7447 */
7448 if (runtime > period && runtime != RUNTIME_INF)
7449 return -EINVAL;
10b612f4 7450
d0b27fa7 7451 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7452 read_lock(&tasklist_lock);
4653f803 7453 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7454 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7455 mutex_unlock(&rt_constraints_mutex);
7456
7457 return ret;
7458}
54e99124
DG
7459
7460int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7461{
7462 /* Don't accept realtime tasks when there is no way for them to run */
7463 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7464 return 0;
7465
7466 return 1;
7467}
7468
6d6bc0ad 7469#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7470static int sched_rt_global_constraints(void)
7471{
ac086bc2
PZ
7472 unsigned long flags;
7473 int i;
7474
ec5d4989
HS
7475 if (sysctl_sched_rt_period <= 0)
7476 return -EINVAL;
7477
60aa605d
PZ
7478 /*
7479 * There's always some RT tasks in the root group
7480 * -- migration, kstopmachine etc..
7481 */
7482 if (sysctl_sched_rt_runtime == 0)
7483 return -EBUSY;
7484
0986b11b 7485 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7486 for_each_possible_cpu(i) {
7487 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7488
0986b11b 7489 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7490 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7491 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7492 }
0986b11b 7493 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7494
d0b27fa7
PZ
7495 return 0;
7496}
6d6bc0ad 7497#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7498
7499int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7500 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7501 loff_t *ppos)
7502{
7503 int ret;
7504 int old_period, old_runtime;
7505 static DEFINE_MUTEX(mutex);
7506
7507 mutex_lock(&mutex);
7508 old_period = sysctl_sched_rt_period;
7509 old_runtime = sysctl_sched_rt_runtime;
7510
8d65af78 7511 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
7512
7513 if (!ret && write) {
7514 ret = sched_rt_global_constraints();
7515 if (ret) {
7516 sysctl_sched_rt_period = old_period;
7517 sysctl_sched_rt_runtime = old_runtime;
7518 } else {
7519 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7520 def_rt_bandwidth.rt_period =
7521 ns_to_ktime(global_rt_period());
7522 }
7523 }
7524 mutex_unlock(&mutex);
7525
7526 return ret;
7527}
68318b8e 7528
052f1dc7 7529#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
7530
7531/* return corresponding task_group object of a cgroup */
2b01dfe3 7532static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 7533{
2b01dfe3
PM
7534 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7535 struct task_group, css);
68318b8e
SV
7536}
7537
7538static struct cgroup_subsys_state *
2b01dfe3 7539cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 7540{
ec7dc8ac 7541 struct task_group *tg, *parent;
68318b8e 7542
2b01dfe3 7543 if (!cgrp->parent) {
68318b8e 7544 /* This is early initialization for the top cgroup */
07e06b01 7545 return &root_task_group.css;
68318b8e
SV
7546 }
7547
ec7dc8ac
DG
7548 parent = cgroup_tg(cgrp->parent);
7549 tg = sched_create_group(parent);
68318b8e
SV
7550 if (IS_ERR(tg))
7551 return ERR_PTR(-ENOMEM);
7552
68318b8e
SV
7553 return &tg->css;
7554}
7555
41a2d6cf
IM
7556static void
7557cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 7558{
2b01dfe3 7559 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
7560
7561 sched_destroy_group(tg);
7562}
7563
41a2d6cf 7564static int
be367d09 7565cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 7566{
b68aa230 7567#ifdef CONFIG_RT_GROUP_SCHED
54e99124 7568 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
7569 return -EINVAL;
7570#else
68318b8e
SV
7571 /* We don't support RT-tasks being in separate groups */
7572 if (tsk->sched_class != &fair_sched_class)
7573 return -EINVAL;
b68aa230 7574#endif
be367d09
BB
7575 return 0;
7576}
68318b8e 7577
68318b8e 7578static void
f780bdb7 7579cpu_cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e
SV
7580{
7581 sched_move_task(tsk);
7582}
7583
068c5cc5 7584static void
d41d5a01
PZ
7585cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
7586 struct cgroup *old_cgrp, struct task_struct *task)
068c5cc5
PZ
7587{
7588 /*
7589 * cgroup_exit() is called in the copy_process() failure path.
7590 * Ignore this case since the task hasn't ran yet, this avoids
7591 * trying to poke a half freed task state from generic code.
7592 */
7593 if (!(task->flags & PF_EXITING))
7594 return;
7595
7596 sched_move_task(task);
7597}
7598
052f1dc7 7599#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 7600static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 7601 u64 shareval)
68318b8e 7602{
c8b28116 7603 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
68318b8e
SV
7604}
7605
f4c753b7 7606static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 7607{
2b01dfe3 7608 struct task_group *tg = cgroup_tg(cgrp);
68318b8e 7609
c8b28116 7610 return (u64) scale_load_down(tg->shares);
68318b8e 7611}
ab84d31e
PT
7612
7613#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
7614static DEFINE_MUTEX(cfs_constraints_mutex);
7615
ab84d31e
PT
7616const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7617const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7618
a790de99
PT
7619static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7620
ab84d31e
PT
7621static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7622{
56f570e5 7623 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 7624 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
7625
7626 if (tg == &root_task_group)
7627 return -EINVAL;
7628
7629 /*
7630 * Ensure we have at some amount of bandwidth every period. This is
7631 * to prevent reaching a state of large arrears when throttled via
7632 * entity_tick() resulting in prolonged exit starvation.
7633 */
7634 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7635 return -EINVAL;
7636
7637 /*
7638 * Likewise, bound things on the otherside by preventing insane quota
7639 * periods. This also allows us to normalize in computing quota
7640 * feasibility.
7641 */
7642 if (period > max_cfs_quota_period)
7643 return -EINVAL;
7644
a790de99
PT
7645 mutex_lock(&cfs_constraints_mutex);
7646 ret = __cfs_schedulable(tg, period, quota);
7647 if (ret)
7648 goto out_unlock;
7649
58088ad0 7650 runtime_enabled = quota != RUNTIME_INF;
56f570e5
PT
7651 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7652 account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
ab84d31e
PT
7653 raw_spin_lock_irq(&cfs_b->lock);
7654 cfs_b->period = ns_to_ktime(period);
7655 cfs_b->quota = quota;
58088ad0 7656
a9cf55b2 7657 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
7658 /* restart the period timer (if active) to handle new period expiry */
7659 if (runtime_enabled && cfs_b->timer_active) {
7660 /* force a reprogram */
7661 cfs_b->timer_active = 0;
7662 __start_cfs_bandwidth(cfs_b);
7663 }
ab84d31e
PT
7664 raw_spin_unlock_irq(&cfs_b->lock);
7665
7666 for_each_possible_cpu(i) {
7667 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 7668 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
7669
7670 raw_spin_lock_irq(&rq->lock);
58088ad0 7671 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 7672 cfs_rq->runtime_remaining = 0;
671fd9da 7673
029632fb 7674 if (cfs_rq->throttled)
671fd9da 7675 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
7676 raw_spin_unlock_irq(&rq->lock);
7677 }
a790de99
PT
7678out_unlock:
7679 mutex_unlock(&cfs_constraints_mutex);
ab84d31e 7680
a790de99 7681 return ret;
ab84d31e
PT
7682}
7683
7684int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7685{
7686 u64 quota, period;
7687
029632fb 7688 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7689 if (cfs_quota_us < 0)
7690 quota = RUNTIME_INF;
7691 else
7692 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7693
7694 return tg_set_cfs_bandwidth(tg, period, quota);
7695}
7696
7697long tg_get_cfs_quota(struct task_group *tg)
7698{
7699 u64 quota_us;
7700
029632fb 7701 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
7702 return -1;
7703
029632fb 7704 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
7705 do_div(quota_us, NSEC_PER_USEC);
7706
7707 return quota_us;
7708}
7709
7710int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7711{
7712 u64 quota, period;
7713
7714 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 7715 quota = tg->cfs_bandwidth.quota;
ab84d31e 7716
ab84d31e
PT
7717 return tg_set_cfs_bandwidth(tg, period, quota);
7718}
7719
7720long tg_get_cfs_period(struct task_group *tg)
7721{
7722 u64 cfs_period_us;
7723
029632fb 7724 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7725 do_div(cfs_period_us, NSEC_PER_USEC);
7726
7727 return cfs_period_us;
7728}
7729
7730static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7731{
7732 return tg_get_cfs_quota(cgroup_tg(cgrp));
7733}
7734
7735static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7736 s64 cfs_quota_us)
7737{
7738 return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7739}
7740
7741static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7742{
7743 return tg_get_cfs_period(cgroup_tg(cgrp));
7744}
7745
7746static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7747 u64 cfs_period_us)
7748{
7749 return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7750}
7751
a790de99
PT
7752struct cfs_schedulable_data {
7753 struct task_group *tg;
7754 u64 period, quota;
7755};
7756
7757/*
7758 * normalize group quota/period to be quota/max_period
7759 * note: units are usecs
7760 */
7761static u64 normalize_cfs_quota(struct task_group *tg,
7762 struct cfs_schedulable_data *d)
7763{
7764 u64 quota, period;
7765
7766 if (tg == d->tg) {
7767 period = d->period;
7768 quota = d->quota;
7769 } else {
7770 period = tg_get_cfs_period(tg);
7771 quota = tg_get_cfs_quota(tg);
7772 }
7773
7774 /* note: these should typically be equivalent */
7775 if (quota == RUNTIME_INF || quota == -1)
7776 return RUNTIME_INF;
7777
7778 return to_ratio(period, quota);
7779}
7780
7781static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7782{
7783 struct cfs_schedulable_data *d = data;
029632fb 7784 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
7785 s64 quota = 0, parent_quota = -1;
7786
7787 if (!tg->parent) {
7788 quota = RUNTIME_INF;
7789 } else {
029632fb 7790 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
7791
7792 quota = normalize_cfs_quota(tg, d);
7793 parent_quota = parent_b->hierarchal_quota;
7794
7795 /*
7796 * ensure max(child_quota) <= parent_quota, inherit when no
7797 * limit is set
7798 */
7799 if (quota == RUNTIME_INF)
7800 quota = parent_quota;
7801 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7802 return -EINVAL;
7803 }
7804 cfs_b->hierarchal_quota = quota;
7805
7806 return 0;
7807}
7808
7809static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7810{
8277434e 7811 int ret;
a790de99
PT
7812 struct cfs_schedulable_data data = {
7813 .tg = tg,
7814 .period = period,
7815 .quota = quota,
7816 };
7817
7818 if (quota != RUNTIME_INF) {
7819 do_div(data.period, NSEC_PER_USEC);
7820 do_div(data.quota, NSEC_PER_USEC);
7821 }
7822
8277434e
PT
7823 rcu_read_lock();
7824 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7825 rcu_read_unlock();
7826
7827 return ret;
a790de99 7828}
e8da1b18
NR
7829
7830static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
7831 struct cgroup_map_cb *cb)
7832{
7833 struct task_group *tg = cgroup_tg(cgrp);
029632fb 7834 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18
NR
7835
7836 cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7837 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7838 cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7839
7840 return 0;
7841}
ab84d31e 7842#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 7843#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 7844
052f1dc7 7845#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 7846static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 7847 s64 val)
6f505b16 7848{
06ecb27c 7849 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
7850}
7851
06ecb27c 7852static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 7853{
06ecb27c 7854 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 7855}
d0b27fa7
PZ
7856
7857static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7858 u64 rt_period_us)
7859{
7860 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
7861}
7862
7863static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
7864{
7865 return sched_group_rt_period(cgroup_tg(cgrp));
7866}
6d6bc0ad 7867#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 7868
fe5c7cc2 7869static struct cftype cpu_files[] = {
052f1dc7 7870#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
7871 {
7872 .name = "shares",
f4c753b7
PM
7873 .read_u64 = cpu_shares_read_u64,
7874 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 7875 },
052f1dc7 7876#endif
ab84d31e
PT
7877#ifdef CONFIG_CFS_BANDWIDTH
7878 {
7879 .name = "cfs_quota_us",
7880 .read_s64 = cpu_cfs_quota_read_s64,
7881 .write_s64 = cpu_cfs_quota_write_s64,
7882 },
7883 {
7884 .name = "cfs_period_us",
7885 .read_u64 = cpu_cfs_period_read_u64,
7886 .write_u64 = cpu_cfs_period_write_u64,
7887 },
e8da1b18
NR
7888 {
7889 .name = "stat",
7890 .read_map = cpu_stats_show,
7891 },
ab84d31e 7892#endif
052f1dc7 7893#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7894 {
9f0c1e56 7895 .name = "rt_runtime_us",
06ecb27c
PM
7896 .read_s64 = cpu_rt_runtime_read,
7897 .write_s64 = cpu_rt_runtime_write,
6f505b16 7898 },
d0b27fa7
PZ
7899 {
7900 .name = "rt_period_us",
f4c753b7
PM
7901 .read_u64 = cpu_rt_period_read_uint,
7902 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 7903 },
052f1dc7 7904#endif
68318b8e
SV
7905};
7906
7907static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7908{
fe5c7cc2 7909 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
7910}
7911
7912struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
7913 .name = "cpu",
7914 .create = cpu_cgroup_create,
7915 .destroy = cpu_cgroup_destroy,
f780bdb7
BB
7916 .can_attach_task = cpu_cgroup_can_attach_task,
7917 .attach_task = cpu_cgroup_attach_task,
068c5cc5 7918 .exit = cpu_cgroup_exit,
38605cae
IM
7919 .populate = cpu_cgroup_populate,
7920 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
7921 .early_init = 1,
7922};
7923
052f1dc7 7924#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
7925
7926#ifdef CONFIG_CGROUP_CPUACCT
7927
7928/*
7929 * CPU accounting code for task groups.
7930 *
7931 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
7932 * (balbir@in.ibm.com).
7933 */
7934
d842de87
SV
7935/* create a new cpu accounting group */
7936static struct cgroup_subsys_state *cpuacct_create(
32cd756a 7937 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 7938{
54c707e9 7939 struct cpuacct *ca;
d842de87 7940
54c707e9
GC
7941 if (!cgrp->parent)
7942 return &root_cpuacct.css;
7943
7944 ca = kzalloc(sizeof(*ca), GFP_KERNEL);
d842de87 7945 if (!ca)
ef12fefa 7946 goto out;
d842de87
SV
7947
7948 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
7949 if (!ca->cpuusage)
7950 goto out_free_ca;
7951
54c707e9
GC
7952 ca->cpustat = alloc_percpu(struct kernel_cpustat);
7953 if (!ca->cpustat)
7954 goto out_free_cpuusage;
934352f2 7955
d842de87 7956 return &ca->css;
ef12fefa 7957
54c707e9 7958out_free_cpuusage:
ef12fefa
BR
7959 free_percpu(ca->cpuusage);
7960out_free_ca:
7961 kfree(ca);
7962out:
7963 return ERR_PTR(-ENOMEM);
d842de87
SV
7964}
7965
7966/* destroy an existing cpu accounting group */
41a2d6cf 7967static void
32cd756a 7968cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 7969{
32cd756a 7970 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87 7971
54c707e9 7972 free_percpu(ca->cpustat);
d842de87
SV
7973 free_percpu(ca->cpuusage);
7974 kfree(ca);
7975}
7976
720f5498
KC
7977static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
7978{
b36128c8 7979 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
7980 u64 data;
7981
7982#ifndef CONFIG_64BIT
7983 /*
7984 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
7985 */
05fa785c 7986 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 7987 data = *cpuusage;
05fa785c 7988 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
7989#else
7990 data = *cpuusage;
7991#endif
7992
7993 return data;
7994}
7995
7996static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
7997{
b36128c8 7998 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
7999
8000#ifndef CONFIG_64BIT
8001 /*
8002 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8003 */
05fa785c 8004 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8005 *cpuusage = val;
05fa785c 8006 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8007#else
8008 *cpuusage = val;
8009#endif
8010}
8011
d842de87 8012/* return total cpu usage (in nanoseconds) of a group */
32cd756a 8013static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 8014{
32cd756a 8015 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
8016 u64 totalcpuusage = 0;
8017 int i;
8018
720f5498
KC
8019 for_each_present_cpu(i)
8020 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
8021
8022 return totalcpuusage;
8023}
8024
0297b803
DG
8025static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8026 u64 reset)
8027{
8028 struct cpuacct *ca = cgroup_ca(cgrp);
8029 int err = 0;
8030 int i;
8031
8032 if (reset) {
8033 err = -EINVAL;
8034 goto out;
8035 }
8036
720f5498
KC
8037 for_each_present_cpu(i)
8038 cpuacct_cpuusage_write(ca, i, 0);
0297b803 8039
0297b803
DG
8040out:
8041 return err;
8042}
8043
e9515c3c
KC
8044static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8045 struct seq_file *m)
8046{
8047 struct cpuacct *ca = cgroup_ca(cgroup);
8048 u64 percpu;
8049 int i;
8050
8051 for_each_present_cpu(i) {
8052 percpu = cpuacct_cpuusage_read(ca, i);
8053 seq_printf(m, "%llu ", (unsigned long long) percpu);
8054 }
8055 seq_printf(m, "\n");
8056 return 0;
8057}
8058
ef12fefa
BR
8059static const char *cpuacct_stat_desc[] = {
8060 [CPUACCT_STAT_USER] = "user",
8061 [CPUACCT_STAT_SYSTEM] = "system",
8062};
8063
8064static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
54c707e9 8065 struct cgroup_map_cb *cb)
ef12fefa
BR
8066{
8067 struct cpuacct *ca = cgroup_ca(cgrp);
54c707e9
GC
8068 int cpu;
8069 s64 val = 0;
ef12fefa 8070
54c707e9
GC
8071 for_each_online_cpu(cpu) {
8072 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8073 val += kcpustat->cpustat[CPUTIME_USER];
8074 val += kcpustat->cpustat[CPUTIME_NICE];
ef12fefa 8075 }
54c707e9
GC
8076 val = cputime64_to_clock_t(val);
8077 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
ef12fefa 8078
54c707e9
GC
8079 val = 0;
8080 for_each_online_cpu(cpu) {
8081 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8082 val += kcpustat->cpustat[CPUTIME_SYSTEM];
8083 val += kcpustat->cpustat[CPUTIME_IRQ];
8084 val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
ef12fefa 8085 }
54c707e9
GC
8086
8087 val = cputime64_to_clock_t(val);
8088 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
8089
ef12fefa
BR
8090 return 0;
8091}
8092
d842de87
SV
8093static struct cftype files[] = {
8094 {
8095 .name = "usage",
f4c753b7
PM
8096 .read_u64 = cpuusage_read,
8097 .write_u64 = cpuusage_write,
d842de87 8098 },
e9515c3c
KC
8099 {
8100 .name = "usage_percpu",
8101 .read_seq_string = cpuacct_percpu_seq_read,
8102 },
ef12fefa
BR
8103 {
8104 .name = "stat",
8105 .read_map = cpuacct_stats_show,
8106 },
d842de87
SV
8107};
8108
32cd756a 8109static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8110{
32cd756a 8111 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
8112}
8113
8114/*
8115 * charge this task's execution time to its accounting group.
8116 *
8117 * called with rq->lock held.
8118 */
029632fb 8119void cpuacct_charge(struct task_struct *tsk, u64 cputime)
d842de87
SV
8120{
8121 struct cpuacct *ca;
934352f2 8122 int cpu;
d842de87 8123
c40c6f85 8124 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
8125 return;
8126
934352f2 8127 cpu = task_cpu(tsk);
a18b83b7
BR
8128
8129 rcu_read_lock();
8130
d842de87 8131 ca = task_ca(tsk);
d842de87 8132
44252e42 8133 for (; ca; ca = parent_ca(ca)) {
b36128c8 8134 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
8135 *cpuusage += cputime;
8136 }
a18b83b7
BR
8137
8138 rcu_read_unlock();
d842de87
SV
8139}
8140
8141struct cgroup_subsys cpuacct_subsys = {
8142 .name = "cpuacct",
8143 .create = cpuacct_create,
8144 .destroy = cpuacct_destroy,
8145 .populate = cpuacct_populate,
8146 .subsys_id = cpuacct_subsys_id,
8147};
8148#endif /* CONFIG_CGROUP_CPUACCT */