]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - kernel/sched/core.c
sched/fair: Fix division by zero sysctl_numa_balancing_scan_size
[mirror_ubuntu-zesty-kernel.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
91d1aa43 75#include <linux/context_tracking.h>
52f5684c 76#include <linux/compiler.h>
1da177e4 77
96f951ed 78#include <asm/switch_to.h>
5517d86b 79#include <asm/tlb.h>
838225b4 80#include <asm/irq_regs.h>
db7e527d 81#include <asm/mutex.h>
e6e6685a
GC
82#ifdef CONFIG_PARAVIRT
83#include <asm/paravirt.h>
84#endif
1da177e4 85
029632fb 86#include "sched.h"
ea138446 87#include "../workqueue_internal.h"
29d5e047 88#include "../smpboot.h"
6e0534f2 89
a8d154b0 90#define CREATE_TRACE_POINTS
ad8d75ff 91#include <trace/events/sched.h>
a8d154b0 92
029632fb 93void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 94{
58088ad0
PT
95 unsigned long delta;
96 ktime_t soft, hard, now;
d0b27fa7 97
58088ad0
PT
98 for (;;) {
99 if (hrtimer_active(period_timer))
100 break;
101
102 now = hrtimer_cb_get_time(period_timer);
103 hrtimer_forward(period_timer, now, period);
d0b27fa7 104
58088ad0
PT
105 soft = hrtimer_get_softexpires(period_timer);
106 hard = hrtimer_get_expires(period_timer);
107 delta = ktime_to_ns(ktime_sub(hard, soft));
108 __hrtimer_start_range_ns(period_timer, soft, delta,
109 HRTIMER_MODE_ABS_PINNED, 0);
110 }
111}
112
029632fb
PZ
113DEFINE_MUTEX(sched_domains_mutex);
114DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 115
fe44d621 116static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 117
029632fb 118void update_rq_clock(struct rq *rq)
3e51f33f 119{
fe44d621 120 s64 delta;
305e6835 121
61eadef6 122 if (rq->skip_clock_update > 0)
f26f9aff 123 return;
aa483808 124
fe44d621 125 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
4036ac15
MG
126 if (delta < 0)
127 return;
fe44d621
PZ
128 rq->clock += delta;
129 update_rq_clock_task(rq, delta);
3e51f33f
PZ
130}
131
bf5c91ba
IM
132/*
133 * Debugging: various feature bits
134 */
f00b45c1 135
f00b45c1
PZ
136#define SCHED_FEAT(name, enabled) \
137 (1UL << __SCHED_FEAT_##name) * enabled |
138
bf5c91ba 139const_debug unsigned int sysctl_sched_features =
391e43da 140#include "features.h"
f00b45c1
PZ
141 0;
142
143#undef SCHED_FEAT
144
145#ifdef CONFIG_SCHED_DEBUG
146#define SCHED_FEAT(name, enabled) \
147 #name ,
148
1292531f 149static const char * const sched_feat_names[] = {
391e43da 150#include "features.h"
f00b45c1
PZ
151};
152
153#undef SCHED_FEAT
154
34f3a814 155static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 156{
f00b45c1
PZ
157 int i;
158
f8b6d1cc 159 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
160 if (!(sysctl_sched_features & (1UL << i)))
161 seq_puts(m, "NO_");
162 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 163 }
34f3a814 164 seq_puts(m, "\n");
f00b45c1 165
34f3a814 166 return 0;
f00b45c1
PZ
167}
168
f8b6d1cc
PZ
169#ifdef HAVE_JUMP_LABEL
170
c5905afb
IM
171#define jump_label_key__true STATIC_KEY_INIT_TRUE
172#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
173
174#define SCHED_FEAT(name, enabled) \
175 jump_label_key__##enabled ,
176
c5905afb 177struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
178#include "features.h"
179};
180
181#undef SCHED_FEAT
182
183static void sched_feat_disable(int i)
184{
c5905afb
IM
185 if (static_key_enabled(&sched_feat_keys[i]))
186 static_key_slow_dec(&sched_feat_keys[i]);
f8b6d1cc
PZ
187}
188
189static void sched_feat_enable(int i)
190{
c5905afb
IM
191 if (!static_key_enabled(&sched_feat_keys[i]))
192 static_key_slow_inc(&sched_feat_keys[i]);
f8b6d1cc
PZ
193}
194#else
195static void sched_feat_disable(int i) { };
196static void sched_feat_enable(int i) { };
197#endif /* HAVE_JUMP_LABEL */
198
1a687c2e 199static int sched_feat_set(char *cmp)
f00b45c1 200{
f00b45c1 201 int i;
1a687c2e 202 int neg = 0;
f00b45c1 203
524429c3 204 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
205 neg = 1;
206 cmp += 3;
207 }
208
f8b6d1cc 209 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 210 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 211 if (neg) {
f00b45c1 212 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
213 sched_feat_disable(i);
214 } else {
f00b45c1 215 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
216 sched_feat_enable(i);
217 }
f00b45c1
PZ
218 break;
219 }
220 }
221
1a687c2e
MG
222 return i;
223}
224
225static ssize_t
226sched_feat_write(struct file *filp, const char __user *ubuf,
227 size_t cnt, loff_t *ppos)
228{
229 char buf[64];
230 char *cmp;
231 int i;
5cd08fbf 232 struct inode *inode;
1a687c2e
MG
233
234 if (cnt > 63)
235 cnt = 63;
236
237 if (copy_from_user(&buf, ubuf, cnt))
238 return -EFAULT;
239
240 buf[cnt] = 0;
241 cmp = strstrip(buf);
242
5cd08fbf
JB
243 /* Ensure the static_key remains in a consistent state */
244 inode = file_inode(filp);
245 mutex_lock(&inode->i_mutex);
1a687c2e 246 i = sched_feat_set(cmp);
5cd08fbf 247 mutex_unlock(&inode->i_mutex);
f8b6d1cc 248 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
249 return -EINVAL;
250
42994724 251 *ppos += cnt;
f00b45c1
PZ
252
253 return cnt;
254}
255
34f3a814
LZ
256static int sched_feat_open(struct inode *inode, struct file *filp)
257{
258 return single_open(filp, sched_feat_show, NULL);
259}
260
828c0950 261static const struct file_operations sched_feat_fops = {
34f3a814
LZ
262 .open = sched_feat_open,
263 .write = sched_feat_write,
264 .read = seq_read,
265 .llseek = seq_lseek,
266 .release = single_release,
f00b45c1
PZ
267};
268
269static __init int sched_init_debug(void)
270{
f00b45c1
PZ
271 debugfs_create_file("sched_features", 0644, NULL, NULL,
272 &sched_feat_fops);
273
274 return 0;
275}
276late_initcall(sched_init_debug);
f8b6d1cc 277#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 278
b82d9fdd
PZ
279/*
280 * Number of tasks to iterate in a single balance run.
281 * Limited because this is done with IRQs disabled.
282 */
283const_debug unsigned int sysctl_sched_nr_migrate = 32;
284
e9e9250b
PZ
285/*
286 * period over which we average the RT time consumption, measured
287 * in ms.
288 *
289 * default: 1s
290 */
291const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
292
fa85ae24 293/*
9f0c1e56 294 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
295 * default: 1s
296 */
9f0c1e56 297unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 298
029632fb 299__read_mostly int scheduler_running;
6892b75e 300
9f0c1e56
PZ
301/*
302 * part of the period that we allow rt tasks to run in us.
303 * default: 0.95s
304 */
305int sysctl_sched_rt_runtime = 950000;
fa85ae24 306
0970d299 307/*
0122ec5b 308 * __task_rq_lock - lock the rq @p resides on.
b29739f9 309 */
70b97a7f 310static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
311 __acquires(rq->lock)
312{
0970d299
PZ
313 struct rq *rq;
314
0122ec5b
PZ
315 lockdep_assert_held(&p->pi_lock);
316
3a5c359a 317 for (;;) {
0970d299 318 rq = task_rq(p);
05fa785c 319 raw_spin_lock(&rq->lock);
cca26e80 320 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
3a5c359a 321 return rq;
05fa785c 322 raw_spin_unlock(&rq->lock);
cca26e80
KT
323
324 while (unlikely(task_on_rq_migrating(p)))
325 cpu_relax();
b29739f9 326 }
b29739f9
IM
327}
328
1da177e4 329/*
0122ec5b 330 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 331 */
70b97a7f 332static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 333 __acquires(p->pi_lock)
1da177e4
LT
334 __acquires(rq->lock)
335{
70b97a7f 336 struct rq *rq;
1da177e4 337
3a5c359a 338 for (;;) {
0122ec5b 339 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 340 rq = task_rq(p);
05fa785c 341 raw_spin_lock(&rq->lock);
cca26e80 342 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
3a5c359a 343 return rq;
0122ec5b
PZ
344 raw_spin_unlock(&rq->lock);
345 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
cca26e80
KT
346
347 while (unlikely(task_on_rq_migrating(p)))
348 cpu_relax();
1da177e4 349 }
1da177e4
LT
350}
351
a9957449 352static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
353 __releases(rq->lock)
354{
05fa785c 355 raw_spin_unlock(&rq->lock);
b29739f9
IM
356}
357
0122ec5b
PZ
358static inline void
359task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 360 __releases(rq->lock)
0122ec5b 361 __releases(p->pi_lock)
1da177e4 362{
0122ec5b
PZ
363 raw_spin_unlock(&rq->lock);
364 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
365}
366
1da177e4 367/*
cc2a73b5 368 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 369 */
a9957449 370static struct rq *this_rq_lock(void)
1da177e4
LT
371 __acquires(rq->lock)
372{
70b97a7f 373 struct rq *rq;
1da177e4
LT
374
375 local_irq_disable();
376 rq = this_rq();
05fa785c 377 raw_spin_lock(&rq->lock);
1da177e4
LT
378
379 return rq;
380}
381
8f4d37ec
PZ
382#ifdef CONFIG_SCHED_HRTICK
383/*
384 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 385 */
8f4d37ec 386
8f4d37ec
PZ
387static void hrtick_clear(struct rq *rq)
388{
389 if (hrtimer_active(&rq->hrtick_timer))
390 hrtimer_cancel(&rq->hrtick_timer);
391}
392
8f4d37ec
PZ
393/*
394 * High-resolution timer tick.
395 * Runs from hardirq context with interrupts disabled.
396 */
397static enum hrtimer_restart hrtick(struct hrtimer *timer)
398{
399 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
400
401 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
402
05fa785c 403 raw_spin_lock(&rq->lock);
3e51f33f 404 update_rq_clock(rq);
8f4d37ec 405 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 406 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
407
408 return HRTIMER_NORESTART;
409}
410
95e904c7 411#ifdef CONFIG_SMP
971ee28c
PZ
412
413static int __hrtick_restart(struct rq *rq)
414{
415 struct hrtimer *timer = &rq->hrtick_timer;
416 ktime_t time = hrtimer_get_softexpires(timer);
417
418 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
419}
420
31656519
PZ
421/*
422 * called from hardirq (IPI) context
423 */
424static void __hrtick_start(void *arg)
b328ca18 425{
31656519 426 struct rq *rq = arg;
b328ca18 427
05fa785c 428 raw_spin_lock(&rq->lock);
971ee28c 429 __hrtick_restart(rq);
31656519 430 rq->hrtick_csd_pending = 0;
05fa785c 431 raw_spin_unlock(&rq->lock);
b328ca18
PZ
432}
433
31656519
PZ
434/*
435 * Called to set the hrtick timer state.
436 *
437 * called with rq->lock held and irqs disabled
438 */
029632fb 439void hrtick_start(struct rq *rq, u64 delay)
b328ca18 440{
31656519 441 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 442 ktime_t time;
443 s64 delta;
444
445 /*
446 * Don't schedule slices shorter than 10000ns, that just
447 * doesn't make sense and can cause timer DoS.
448 */
449 delta = max_t(s64, delay, 10000LL);
450 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 451
cc584b21 452 hrtimer_set_expires(timer, time);
31656519
PZ
453
454 if (rq == this_rq()) {
971ee28c 455 __hrtick_restart(rq);
31656519 456 } else if (!rq->hrtick_csd_pending) {
c46fff2a 457 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
458 rq->hrtick_csd_pending = 1;
459 }
b328ca18
PZ
460}
461
462static int
463hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
464{
465 int cpu = (int)(long)hcpu;
466
467 switch (action) {
468 case CPU_UP_CANCELED:
469 case CPU_UP_CANCELED_FROZEN:
470 case CPU_DOWN_PREPARE:
471 case CPU_DOWN_PREPARE_FROZEN:
472 case CPU_DEAD:
473 case CPU_DEAD_FROZEN:
31656519 474 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
475 return NOTIFY_OK;
476 }
477
478 return NOTIFY_DONE;
479}
480
fa748203 481static __init void init_hrtick(void)
b328ca18
PZ
482{
483 hotcpu_notifier(hotplug_hrtick, 0);
484}
31656519
PZ
485#else
486/*
487 * Called to set the hrtick timer state.
488 *
489 * called with rq->lock held and irqs disabled
490 */
029632fb 491void hrtick_start(struct rq *rq, u64 delay)
31656519 492{
7f1e2ca9 493 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 494 HRTIMER_MODE_REL_PINNED, 0);
31656519 495}
b328ca18 496
006c75f1 497static inline void init_hrtick(void)
8f4d37ec 498{
8f4d37ec 499}
31656519 500#endif /* CONFIG_SMP */
8f4d37ec 501
31656519 502static void init_rq_hrtick(struct rq *rq)
8f4d37ec 503{
31656519
PZ
504#ifdef CONFIG_SMP
505 rq->hrtick_csd_pending = 0;
8f4d37ec 506
31656519
PZ
507 rq->hrtick_csd.flags = 0;
508 rq->hrtick_csd.func = __hrtick_start;
509 rq->hrtick_csd.info = rq;
510#endif
8f4d37ec 511
31656519
PZ
512 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
513 rq->hrtick_timer.function = hrtick;
8f4d37ec 514}
006c75f1 515#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
516static inline void hrtick_clear(struct rq *rq)
517{
518}
519
8f4d37ec
PZ
520static inline void init_rq_hrtick(struct rq *rq)
521{
522}
523
b328ca18
PZ
524static inline void init_hrtick(void)
525{
526}
006c75f1 527#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 528
fd99f91a
PZ
529/*
530 * cmpxchg based fetch_or, macro so it works for different integer types
531 */
532#define fetch_or(ptr, val) \
533({ typeof(*(ptr)) __old, __val = *(ptr); \
534 for (;;) { \
535 __old = cmpxchg((ptr), __val, __val | (val)); \
536 if (__old == __val) \
537 break; \
538 __val = __old; \
539 } \
540 __old; \
541})
542
e3baac47 543#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
544/*
545 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
546 * this avoids any races wrt polling state changes and thereby avoids
547 * spurious IPIs.
548 */
549static bool set_nr_and_not_polling(struct task_struct *p)
550{
551 struct thread_info *ti = task_thread_info(p);
552 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
553}
e3baac47
PZ
554
555/*
556 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
557 *
558 * If this returns true, then the idle task promises to call
559 * sched_ttwu_pending() and reschedule soon.
560 */
561static bool set_nr_if_polling(struct task_struct *p)
562{
563 struct thread_info *ti = task_thread_info(p);
564 typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags);
565
566 for (;;) {
567 if (!(val & _TIF_POLLING_NRFLAG))
568 return false;
569 if (val & _TIF_NEED_RESCHED)
570 return true;
571 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
572 if (old == val)
573 break;
574 val = old;
575 }
576 return true;
577}
578
fd99f91a
PZ
579#else
580static bool set_nr_and_not_polling(struct task_struct *p)
581{
582 set_tsk_need_resched(p);
583 return true;
584}
e3baac47
PZ
585
586#ifdef CONFIG_SMP
587static bool set_nr_if_polling(struct task_struct *p)
588{
589 return false;
590}
591#endif
fd99f91a
PZ
592#endif
593
c24d20db 594/*
8875125e 595 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
596 *
597 * On UP this means the setting of the need_resched flag, on SMP it
598 * might also involve a cross-CPU call to trigger the scheduler on
599 * the target CPU.
600 */
8875125e 601void resched_curr(struct rq *rq)
c24d20db 602{
8875125e 603 struct task_struct *curr = rq->curr;
c24d20db
IM
604 int cpu;
605
8875125e 606 lockdep_assert_held(&rq->lock);
c24d20db 607
8875125e 608 if (test_tsk_need_resched(curr))
c24d20db
IM
609 return;
610
8875125e 611 cpu = cpu_of(rq);
fd99f91a 612
f27dde8d 613 if (cpu == smp_processor_id()) {
8875125e 614 set_tsk_need_resched(curr);
f27dde8d 615 set_preempt_need_resched();
c24d20db 616 return;
f27dde8d 617 }
c24d20db 618
8875125e 619 if (set_nr_and_not_polling(curr))
c24d20db 620 smp_send_reschedule(cpu);
dfc68f29
AL
621 else
622 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
623}
624
029632fb 625void resched_cpu(int cpu)
c24d20db
IM
626{
627 struct rq *rq = cpu_rq(cpu);
628 unsigned long flags;
629
05fa785c 630 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db 631 return;
8875125e 632 resched_curr(rq);
05fa785c 633 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 634}
06d8308c 635
b021fe3e 636#ifdef CONFIG_SMP
3451d024 637#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
638/*
639 * In the semi idle case, use the nearest busy cpu for migrating timers
640 * from an idle cpu. This is good for power-savings.
641 *
642 * We don't do similar optimization for completely idle system, as
643 * selecting an idle cpu will add more delays to the timers than intended
644 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
645 */
6201b4d6 646int get_nohz_timer_target(int pinned)
83cd4fe2
VP
647{
648 int cpu = smp_processor_id();
649 int i;
650 struct sched_domain *sd;
651
6201b4d6
VK
652 if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
653 return cpu;
654
057f3fad 655 rcu_read_lock();
83cd4fe2 656 for_each_domain(cpu, sd) {
057f3fad
PZ
657 for_each_cpu(i, sched_domain_span(sd)) {
658 if (!idle_cpu(i)) {
659 cpu = i;
660 goto unlock;
661 }
662 }
83cd4fe2 663 }
057f3fad
PZ
664unlock:
665 rcu_read_unlock();
83cd4fe2
VP
666 return cpu;
667}
06d8308c
TG
668/*
669 * When add_timer_on() enqueues a timer into the timer wheel of an
670 * idle CPU then this timer might expire before the next timer event
671 * which is scheduled to wake up that CPU. In case of a completely
672 * idle system the next event might even be infinite time into the
673 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
674 * leaves the inner idle loop so the newly added timer is taken into
675 * account when the CPU goes back to idle and evaluates the timer
676 * wheel for the next timer event.
677 */
1c20091e 678static void wake_up_idle_cpu(int cpu)
06d8308c
TG
679{
680 struct rq *rq = cpu_rq(cpu);
681
682 if (cpu == smp_processor_id())
683 return;
684
67b9ca70 685 if (set_nr_and_not_polling(rq->idle))
06d8308c 686 smp_send_reschedule(cpu);
dfc68f29
AL
687 else
688 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
689}
690
c5bfece2 691static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 692{
53c5fa16
FW
693 /*
694 * We just need the target to call irq_exit() and re-evaluate
695 * the next tick. The nohz full kick at least implies that.
696 * If needed we can still optimize that later with an
697 * empty IRQ.
698 */
c5bfece2 699 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
700 if (cpu != smp_processor_id() ||
701 tick_nohz_tick_stopped())
53c5fa16 702 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
703 return true;
704 }
705
706 return false;
707}
708
709void wake_up_nohz_cpu(int cpu)
710{
c5bfece2 711 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
712 wake_up_idle_cpu(cpu);
713}
714
ca38062e 715static inline bool got_nohz_idle_kick(void)
45bf76df 716{
1c792db7 717 int cpu = smp_processor_id();
873b4c65
VG
718
719 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
720 return false;
721
722 if (idle_cpu(cpu) && !need_resched())
723 return true;
724
725 /*
726 * We can't run Idle Load Balance on this CPU for this time so we
727 * cancel it and clear NOHZ_BALANCE_KICK
728 */
729 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
730 return false;
45bf76df
IM
731}
732
3451d024 733#else /* CONFIG_NO_HZ_COMMON */
45bf76df 734
ca38062e 735static inline bool got_nohz_idle_kick(void)
2069dd75 736{
ca38062e 737 return false;
2069dd75
PZ
738}
739
3451d024 740#endif /* CONFIG_NO_HZ_COMMON */
d842de87 741
ce831b38
FW
742#ifdef CONFIG_NO_HZ_FULL
743bool sched_can_stop_tick(void)
744{
3882ec64
FW
745 /*
746 * More than one running task need preemption.
747 * nr_running update is assumed to be visible
748 * after IPI is sent from wakers.
749 */
541b8264
VK
750 if (this_rq()->nr_running > 1)
751 return false;
ce831b38 752
541b8264 753 return true;
ce831b38
FW
754}
755#endif /* CONFIG_NO_HZ_FULL */
d842de87 756
029632fb 757void sched_avg_update(struct rq *rq)
18d95a28 758{
e9e9250b
PZ
759 s64 period = sched_avg_period();
760
78becc27 761 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
762 /*
763 * Inline assembly required to prevent the compiler
764 * optimising this loop into a divmod call.
765 * See __iter_div_u64_rem() for another example of this.
766 */
767 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
768 rq->age_stamp += period;
769 rq->rt_avg /= 2;
770 }
18d95a28
PZ
771}
772
6d6bc0ad 773#endif /* CONFIG_SMP */
18d95a28 774
a790de99
PT
775#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
776 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 777/*
8277434e
PT
778 * Iterate task_group tree rooted at *from, calling @down when first entering a
779 * node and @up when leaving it for the final time.
780 *
781 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 782 */
029632fb 783int walk_tg_tree_from(struct task_group *from,
8277434e 784 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
785{
786 struct task_group *parent, *child;
eb755805 787 int ret;
c09595f6 788
8277434e
PT
789 parent = from;
790
c09595f6 791down:
eb755805
PZ
792 ret = (*down)(parent, data);
793 if (ret)
8277434e 794 goto out;
c09595f6
PZ
795 list_for_each_entry_rcu(child, &parent->children, siblings) {
796 parent = child;
797 goto down;
798
799up:
800 continue;
801 }
eb755805 802 ret = (*up)(parent, data);
8277434e
PT
803 if (ret || parent == from)
804 goto out;
c09595f6
PZ
805
806 child = parent;
807 parent = parent->parent;
808 if (parent)
809 goto up;
8277434e 810out:
eb755805 811 return ret;
c09595f6
PZ
812}
813
029632fb 814int tg_nop(struct task_group *tg, void *data)
eb755805 815{
e2b245f8 816 return 0;
eb755805 817}
18d95a28
PZ
818#endif
819
45bf76df
IM
820static void set_load_weight(struct task_struct *p)
821{
f05998d4
NR
822 int prio = p->static_prio - MAX_RT_PRIO;
823 struct load_weight *load = &p->se.load;
824
dd41f596
IM
825 /*
826 * SCHED_IDLE tasks get minimal weight:
827 */
828 if (p->policy == SCHED_IDLE) {
c8b28116 829 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 830 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
831 return;
832 }
71f8bd46 833
c8b28116 834 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 835 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
836}
837
371fd7e7 838static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 839{
a64692a3 840 update_rq_clock(rq);
43148951 841 sched_info_queued(rq, p);
371fd7e7 842 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
843}
844
371fd7e7 845static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 846{
a64692a3 847 update_rq_clock(rq);
43148951 848 sched_info_dequeued(rq, p);
371fd7e7 849 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
850}
851
029632fb 852void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
853{
854 if (task_contributes_to_load(p))
855 rq->nr_uninterruptible--;
856
371fd7e7 857 enqueue_task(rq, p, flags);
1e3c88bd
PZ
858}
859
029632fb 860void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
861{
862 if (task_contributes_to_load(p))
863 rq->nr_uninterruptible++;
864
371fd7e7 865 dequeue_task(rq, p, flags);
1e3c88bd
PZ
866}
867
fe44d621 868static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 869{
095c0aa8
GC
870/*
871 * In theory, the compile should just see 0 here, and optimize out the call
872 * to sched_rt_avg_update. But I don't trust it...
873 */
874#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
875 s64 steal = 0, irq_delta = 0;
876#endif
877#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 878 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
879
880 /*
881 * Since irq_time is only updated on {soft,}irq_exit, we might run into
882 * this case when a previous update_rq_clock() happened inside a
883 * {soft,}irq region.
884 *
885 * When this happens, we stop ->clock_task and only update the
886 * prev_irq_time stamp to account for the part that fit, so that a next
887 * update will consume the rest. This ensures ->clock_task is
888 * monotonic.
889 *
890 * It does however cause some slight miss-attribution of {soft,}irq
891 * time, a more accurate solution would be to update the irq_time using
892 * the current rq->clock timestamp, except that would require using
893 * atomic ops.
894 */
895 if (irq_delta > delta)
896 irq_delta = delta;
897
898 rq->prev_irq_time += irq_delta;
899 delta -= irq_delta;
095c0aa8
GC
900#endif
901#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 902 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
903 steal = paravirt_steal_clock(cpu_of(rq));
904 steal -= rq->prev_steal_time_rq;
905
906 if (unlikely(steal > delta))
907 steal = delta;
908
095c0aa8 909 rq->prev_steal_time_rq += steal;
095c0aa8
GC
910 delta -= steal;
911 }
912#endif
913
fe44d621
PZ
914 rq->clock_task += delta;
915
095c0aa8 916#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
5d4dfddd 917 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
095c0aa8
GC
918 sched_rt_avg_update(rq, irq_delta + steal);
919#endif
aa483808
VP
920}
921
34f971f6
PZ
922void sched_set_stop_task(int cpu, struct task_struct *stop)
923{
924 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
925 struct task_struct *old_stop = cpu_rq(cpu)->stop;
926
927 if (stop) {
928 /*
929 * Make it appear like a SCHED_FIFO task, its something
930 * userspace knows about and won't get confused about.
931 *
932 * Also, it will make PI more or less work without too
933 * much confusion -- but then, stop work should not
934 * rely on PI working anyway.
935 */
936 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
937
938 stop->sched_class = &stop_sched_class;
939 }
940
941 cpu_rq(cpu)->stop = stop;
942
943 if (old_stop) {
944 /*
945 * Reset it back to a normal scheduling class so that
946 * it can die in pieces.
947 */
948 old_stop->sched_class = &rt_sched_class;
949 }
950}
951
14531189 952/*
dd41f596 953 * __normal_prio - return the priority that is based on the static prio
14531189 954 */
14531189
IM
955static inline int __normal_prio(struct task_struct *p)
956{
dd41f596 957 return p->static_prio;
14531189
IM
958}
959
b29739f9
IM
960/*
961 * Calculate the expected normal priority: i.e. priority
962 * without taking RT-inheritance into account. Might be
963 * boosted by interactivity modifiers. Changes upon fork,
964 * setprio syscalls, and whenever the interactivity
965 * estimator recalculates.
966 */
36c8b586 967static inline int normal_prio(struct task_struct *p)
b29739f9
IM
968{
969 int prio;
970
aab03e05
DF
971 if (task_has_dl_policy(p))
972 prio = MAX_DL_PRIO-1;
973 else if (task_has_rt_policy(p))
b29739f9
IM
974 prio = MAX_RT_PRIO-1 - p->rt_priority;
975 else
976 prio = __normal_prio(p);
977 return prio;
978}
979
980/*
981 * Calculate the current priority, i.e. the priority
982 * taken into account by the scheduler. This value might
983 * be boosted by RT tasks, or might be boosted by
984 * interactivity modifiers. Will be RT if the task got
985 * RT-boosted. If not then it returns p->normal_prio.
986 */
36c8b586 987static int effective_prio(struct task_struct *p)
b29739f9
IM
988{
989 p->normal_prio = normal_prio(p);
990 /*
991 * If we are RT tasks or we were boosted to RT priority,
992 * keep the priority unchanged. Otherwise, update priority
993 * to the normal priority:
994 */
995 if (!rt_prio(p->prio))
996 return p->normal_prio;
997 return p->prio;
998}
999
1da177e4
LT
1000/**
1001 * task_curr - is this task currently executing on a CPU?
1002 * @p: the task in question.
e69f6186
YB
1003 *
1004 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 1005 */
36c8b586 1006inline int task_curr(const struct task_struct *p)
1da177e4
LT
1007{
1008 return cpu_curr(task_cpu(p)) == p;
1009}
1010
cb469845
SR
1011static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1012 const struct sched_class *prev_class,
da7a735e 1013 int oldprio)
cb469845
SR
1014{
1015 if (prev_class != p->sched_class) {
1016 if (prev_class->switched_from)
da7a735e
PZ
1017 prev_class->switched_from(rq, p);
1018 p->sched_class->switched_to(rq, p);
2d3d891d 1019 } else if (oldprio != p->prio || dl_task(p))
da7a735e 1020 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
1021}
1022
029632fb 1023void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
1024{
1025 const struct sched_class *class;
1026
1027 if (p->sched_class == rq->curr->sched_class) {
1028 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1029 } else {
1030 for_each_class(class) {
1031 if (class == rq->curr->sched_class)
1032 break;
1033 if (class == p->sched_class) {
8875125e 1034 resched_curr(rq);
1e5a7405
PZ
1035 break;
1036 }
1037 }
1038 }
1039
1040 /*
1041 * A queue event has occurred, and we're going to schedule. In
1042 * this case, we can save a useless back to back clock update.
1043 */
da0c1e65 1044 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
1045 rq->skip_clock_update = 1;
1046}
1047
1da177e4 1048#ifdef CONFIG_SMP
dd41f596 1049void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1050{
e2912009
PZ
1051#ifdef CONFIG_SCHED_DEBUG
1052 /*
1053 * We should never call set_task_cpu() on a blocked task,
1054 * ttwu() will sort out the placement.
1055 */
077614ee 1056 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
01028747 1057 !(task_preempt_count(p) & PREEMPT_ACTIVE));
0122ec5b
PZ
1058
1059#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1060 /*
1061 * The caller should hold either p->pi_lock or rq->lock, when changing
1062 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1063 *
1064 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1065 * see task_group().
6c6c54e1
PZ
1066 *
1067 * Furthermore, all task_rq users should acquire both locks, see
1068 * task_rq_lock().
1069 */
0122ec5b
PZ
1070 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1071 lockdep_is_held(&task_rq(p)->lock)));
1072#endif
e2912009
PZ
1073#endif
1074
de1d7286 1075 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1076
0c69774e 1077 if (task_cpu(p) != new_cpu) {
0a74bef8
PT
1078 if (p->sched_class->migrate_task_rq)
1079 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 1080 p->se.nr_migrations++;
a8b0ca17 1081 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
0c69774e 1082 }
dd41f596
IM
1083
1084 __set_task_cpu(p, new_cpu);
c65cc870
IM
1085}
1086
ac66f547
PZ
1087static void __migrate_swap_task(struct task_struct *p, int cpu)
1088{
da0c1e65 1089 if (task_on_rq_queued(p)) {
ac66f547
PZ
1090 struct rq *src_rq, *dst_rq;
1091
1092 src_rq = task_rq(p);
1093 dst_rq = cpu_rq(cpu);
1094
1095 deactivate_task(src_rq, p, 0);
1096 set_task_cpu(p, cpu);
1097 activate_task(dst_rq, p, 0);
1098 check_preempt_curr(dst_rq, p, 0);
1099 } else {
1100 /*
1101 * Task isn't running anymore; make it appear like we migrated
1102 * it before it went to sleep. This means on wakeup we make the
1103 * previous cpu our targer instead of where it really is.
1104 */
1105 p->wake_cpu = cpu;
1106 }
1107}
1108
1109struct migration_swap_arg {
1110 struct task_struct *src_task, *dst_task;
1111 int src_cpu, dst_cpu;
1112};
1113
1114static int migrate_swap_stop(void *data)
1115{
1116 struct migration_swap_arg *arg = data;
1117 struct rq *src_rq, *dst_rq;
1118 int ret = -EAGAIN;
1119
1120 src_rq = cpu_rq(arg->src_cpu);
1121 dst_rq = cpu_rq(arg->dst_cpu);
1122
74602315
PZ
1123 double_raw_lock(&arg->src_task->pi_lock,
1124 &arg->dst_task->pi_lock);
ac66f547
PZ
1125 double_rq_lock(src_rq, dst_rq);
1126 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1127 goto unlock;
1128
1129 if (task_cpu(arg->src_task) != arg->src_cpu)
1130 goto unlock;
1131
1132 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1133 goto unlock;
1134
1135 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1136 goto unlock;
1137
1138 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1139 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1140
1141 ret = 0;
1142
1143unlock:
1144 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1145 raw_spin_unlock(&arg->dst_task->pi_lock);
1146 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1147
1148 return ret;
1149}
1150
1151/*
1152 * Cross migrate two tasks
1153 */
1154int migrate_swap(struct task_struct *cur, struct task_struct *p)
1155{
1156 struct migration_swap_arg arg;
1157 int ret = -EINVAL;
1158
ac66f547
PZ
1159 arg = (struct migration_swap_arg){
1160 .src_task = cur,
1161 .src_cpu = task_cpu(cur),
1162 .dst_task = p,
1163 .dst_cpu = task_cpu(p),
1164 };
1165
1166 if (arg.src_cpu == arg.dst_cpu)
1167 goto out;
1168
6acce3ef
PZ
1169 /*
1170 * These three tests are all lockless; this is OK since all of them
1171 * will be re-checked with proper locks held further down the line.
1172 */
ac66f547
PZ
1173 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1174 goto out;
1175
1176 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1177 goto out;
1178
1179 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1180 goto out;
1181
286549dc 1182 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1183 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1184
1185out:
ac66f547
PZ
1186 return ret;
1187}
1188
969c7921 1189struct migration_arg {
36c8b586 1190 struct task_struct *task;
1da177e4 1191 int dest_cpu;
70b97a7f 1192};
1da177e4 1193
969c7921
TH
1194static int migration_cpu_stop(void *data);
1195
1da177e4
LT
1196/*
1197 * wait_task_inactive - wait for a thread to unschedule.
1198 *
85ba2d86
RM
1199 * If @match_state is nonzero, it's the @p->state value just checked and
1200 * not expected to change. If it changes, i.e. @p might have woken up,
1201 * then return zero. When we succeed in waiting for @p to be off its CPU,
1202 * we return a positive number (its total switch count). If a second call
1203 * a short while later returns the same number, the caller can be sure that
1204 * @p has remained unscheduled the whole time.
1205 *
1da177e4
LT
1206 * The caller must ensure that the task *will* unschedule sometime soon,
1207 * else this function might spin for a *long* time. This function can't
1208 * be called with interrupts off, or it may introduce deadlock with
1209 * smp_call_function() if an IPI is sent by the same process we are
1210 * waiting to become inactive.
1211 */
85ba2d86 1212unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1213{
1214 unsigned long flags;
da0c1e65 1215 int running, queued;
85ba2d86 1216 unsigned long ncsw;
70b97a7f 1217 struct rq *rq;
1da177e4 1218
3a5c359a
AK
1219 for (;;) {
1220 /*
1221 * We do the initial early heuristics without holding
1222 * any task-queue locks at all. We'll only try to get
1223 * the runqueue lock when things look like they will
1224 * work out!
1225 */
1226 rq = task_rq(p);
fa490cfd 1227
3a5c359a
AK
1228 /*
1229 * If the task is actively running on another CPU
1230 * still, just relax and busy-wait without holding
1231 * any locks.
1232 *
1233 * NOTE! Since we don't hold any locks, it's not
1234 * even sure that "rq" stays as the right runqueue!
1235 * But we don't care, since "task_running()" will
1236 * return false if the runqueue has changed and p
1237 * is actually now running somewhere else!
1238 */
85ba2d86
RM
1239 while (task_running(rq, p)) {
1240 if (match_state && unlikely(p->state != match_state))
1241 return 0;
3a5c359a 1242 cpu_relax();
85ba2d86 1243 }
fa490cfd 1244
3a5c359a
AK
1245 /*
1246 * Ok, time to look more closely! We need the rq
1247 * lock now, to be *sure*. If we're wrong, we'll
1248 * just go back and repeat.
1249 */
1250 rq = task_rq_lock(p, &flags);
27a9da65 1251 trace_sched_wait_task(p);
3a5c359a 1252 running = task_running(rq, p);
da0c1e65 1253 queued = task_on_rq_queued(p);
85ba2d86 1254 ncsw = 0;
f31e11d8 1255 if (!match_state || p->state == match_state)
93dcf55f 1256 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1257 task_rq_unlock(rq, p, &flags);
fa490cfd 1258
85ba2d86
RM
1259 /*
1260 * If it changed from the expected state, bail out now.
1261 */
1262 if (unlikely(!ncsw))
1263 break;
1264
3a5c359a
AK
1265 /*
1266 * Was it really running after all now that we
1267 * checked with the proper locks actually held?
1268 *
1269 * Oops. Go back and try again..
1270 */
1271 if (unlikely(running)) {
1272 cpu_relax();
1273 continue;
1274 }
fa490cfd 1275
3a5c359a
AK
1276 /*
1277 * It's not enough that it's not actively running,
1278 * it must be off the runqueue _entirely_, and not
1279 * preempted!
1280 *
80dd99b3 1281 * So if it was still runnable (but just not actively
3a5c359a
AK
1282 * running right now), it's preempted, and we should
1283 * yield - it could be a while.
1284 */
da0c1e65 1285 if (unlikely(queued)) {
8eb90c30
TG
1286 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1287
1288 set_current_state(TASK_UNINTERRUPTIBLE);
1289 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1290 continue;
1291 }
fa490cfd 1292
3a5c359a
AK
1293 /*
1294 * Ahh, all good. It wasn't running, and it wasn't
1295 * runnable, which means that it will never become
1296 * running in the future either. We're all done!
1297 */
1298 break;
1299 }
85ba2d86
RM
1300
1301 return ncsw;
1da177e4
LT
1302}
1303
1304/***
1305 * kick_process - kick a running thread to enter/exit the kernel
1306 * @p: the to-be-kicked thread
1307 *
1308 * Cause a process which is running on another CPU to enter
1309 * kernel-mode, without any delay. (to get signals handled.)
1310 *
25985edc 1311 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1312 * because all it wants to ensure is that the remote task enters
1313 * the kernel. If the IPI races and the task has been migrated
1314 * to another CPU then no harm is done and the purpose has been
1315 * achieved as well.
1316 */
36c8b586 1317void kick_process(struct task_struct *p)
1da177e4
LT
1318{
1319 int cpu;
1320
1321 preempt_disable();
1322 cpu = task_cpu(p);
1323 if ((cpu != smp_processor_id()) && task_curr(p))
1324 smp_send_reschedule(cpu);
1325 preempt_enable();
1326}
b43e3521 1327EXPORT_SYMBOL_GPL(kick_process);
476d139c 1328#endif /* CONFIG_SMP */
1da177e4 1329
970b13ba 1330#ifdef CONFIG_SMP
30da688e 1331/*
013fdb80 1332 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1333 */
5da9a0fb
PZ
1334static int select_fallback_rq(int cpu, struct task_struct *p)
1335{
aa00d89c
TC
1336 int nid = cpu_to_node(cpu);
1337 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1338 enum { cpuset, possible, fail } state = cpuset;
1339 int dest_cpu;
5da9a0fb 1340
aa00d89c
TC
1341 /*
1342 * If the node that the cpu is on has been offlined, cpu_to_node()
1343 * will return -1. There is no cpu on the node, and we should
1344 * select the cpu on the other node.
1345 */
1346 if (nid != -1) {
1347 nodemask = cpumask_of_node(nid);
1348
1349 /* Look for allowed, online CPU in same node. */
1350 for_each_cpu(dest_cpu, nodemask) {
1351 if (!cpu_online(dest_cpu))
1352 continue;
1353 if (!cpu_active(dest_cpu))
1354 continue;
1355 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1356 return dest_cpu;
1357 }
2baab4e9 1358 }
5da9a0fb 1359
2baab4e9
PZ
1360 for (;;) {
1361 /* Any allowed, online CPU? */
e3831edd 1362 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1363 if (!cpu_online(dest_cpu))
1364 continue;
1365 if (!cpu_active(dest_cpu))
1366 continue;
1367 goto out;
1368 }
5da9a0fb 1369
2baab4e9
PZ
1370 switch (state) {
1371 case cpuset:
1372 /* No more Mr. Nice Guy. */
1373 cpuset_cpus_allowed_fallback(p);
1374 state = possible;
1375 break;
1376
1377 case possible:
1378 do_set_cpus_allowed(p, cpu_possible_mask);
1379 state = fail;
1380 break;
1381
1382 case fail:
1383 BUG();
1384 break;
1385 }
1386 }
1387
1388out:
1389 if (state != cpuset) {
1390 /*
1391 * Don't tell them about moving exiting tasks or
1392 * kernel threads (both mm NULL), since they never
1393 * leave kernel.
1394 */
1395 if (p->mm && printk_ratelimit()) {
aac74dc4 1396 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1397 task_pid_nr(p), p->comm, cpu);
1398 }
5da9a0fb
PZ
1399 }
1400
1401 return dest_cpu;
1402}
1403
e2912009 1404/*
013fdb80 1405 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1406 */
970b13ba 1407static inline
ac66f547 1408int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1409{
ac66f547 1410 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e2912009
PZ
1411
1412 /*
1413 * In order not to call set_task_cpu() on a blocking task we need
1414 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1415 * cpu.
1416 *
1417 * Since this is common to all placement strategies, this lives here.
1418 *
1419 * [ this allows ->select_task() to simply return task_cpu(p) and
1420 * not worry about this generic constraint ]
1421 */
fa17b507 1422 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1423 !cpu_online(cpu)))
5da9a0fb 1424 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1425
1426 return cpu;
970b13ba 1427}
09a40af5
MG
1428
1429static void update_avg(u64 *avg, u64 sample)
1430{
1431 s64 diff = sample - *avg;
1432 *avg += diff >> 3;
1433}
970b13ba
PZ
1434#endif
1435
d7c01d27 1436static void
b84cb5df 1437ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1438{
d7c01d27 1439#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1440 struct rq *rq = this_rq();
1441
d7c01d27
PZ
1442#ifdef CONFIG_SMP
1443 int this_cpu = smp_processor_id();
1444
1445 if (cpu == this_cpu) {
1446 schedstat_inc(rq, ttwu_local);
1447 schedstat_inc(p, se.statistics.nr_wakeups_local);
1448 } else {
1449 struct sched_domain *sd;
1450
1451 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1452 rcu_read_lock();
d7c01d27
PZ
1453 for_each_domain(this_cpu, sd) {
1454 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1455 schedstat_inc(sd, ttwu_wake_remote);
1456 break;
1457 }
1458 }
057f3fad 1459 rcu_read_unlock();
d7c01d27 1460 }
f339b9dc
PZ
1461
1462 if (wake_flags & WF_MIGRATED)
1463 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1464
d7c01d27
PZ
1465#endif /* CONFIG_SMP */
1466
1467 schedstat_inc(rq, ttwu_count);
9ed3811a 1468 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1469
1470 if (wake_flags & WF_SYNC)
9ed3811a 1471 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1472
d7c01d27
PZ
1473#endif /* CONFIG_SCHEDSTATS */
1474}
1475
1476static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1477{
9ed3811a 1478 activate_task(rq, p, en_flags);
da0c1e65 1479 p->on_rq = TASK_ON_RQ_QUEUED;
c2f7115e
PZ
1480
1481 /* if a worker is waking up, notify workqueue */
1482 if (p->flags & PF_WQ_WORKER)
1483 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1484}
1485
23f41eeb
PZ
1486/*
1487 * Mark the task runnable and perform wakeup-preemption.
1488 */
89363381 1489static void
23f41eeb 1490ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1491{
9ed3811a 1492 check_preempt_curr(rq, p, wake_flags);
a8d7ad52 1493 trace_sched_wakeup(p, true);
9ed3811a
TH
1494
1495 p->state = TASK_RUNNING;
1496#ifdef CONFIG_SMP
1497 if (p->sched_class->task_woken)
1498 p->sched_class->task_woken(rq, p);
1499
e69c6341 1500 if (rq->idle_stamp) {
78becc27 1501 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1502 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1503
abfafa54
JL
1504 update_avg(&rq->avg_idle, delta);
1505
1506 if (rq->avg_idle > max)
9ed3811a 1507 rq->avg_idle = max;
abfafa54 1508
9ed3811a
TH
1509 rq->idle_stamp = 0;
1510 }
1511#endif
1512}
1513
c05fbafb
PZ
1514static void
1515ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1516{
1517#ifdef CONFIG_SMP
1518 if (p->sched_contributes_to_load)
1519 rq->nr_uninterruptible--;
1520#endif
1521
1522 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1523 ttwu_do_wakeup(rq, p, wake_flags);
1524}
1525
1526/*
1527 * Called in case the task @p isn't fully descheduled from its runqueue,
1528 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1529 * since all we need to do is flip p->state to TASK_RUNNING, since
1530 * the task is still ->on_rq.
1531 */
1532static int ttwu_remote(struct task_struct *p, int wake_flags)
1533{
1534 struct rq *rq;
1535 int ret = 0;
1536
1537 rq = __task_rq_lock(p);
da0c1e65 1538 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
1539 /* check_preempt_curr() may use rq clock */
1540 update_rq_clock(rq);
c05fbafb
PZ
1541 ttwu_do_wakeup(rq, p, wake_flags);
1542 ret = 1;
1543 }
1544 __task_rq_unlock(rq);
1545
1546 return ret;
1547}
1548
317f3941 1549#ifdef CONFIG_SMP
e3baac47 1550void sched_ttwu_pending(void)
317f3941
PZ
1551{
1552 struct rq *rq = this_rq();
fa14ff4a
PZ
1553 struct llist_node *llist = llist_del_all(&rq->wake_list);
1554 struct task_struct *p;
e3baac47 1555 unsigned long flags;
317f3941 1556
e3baac47
PZ
1557 if (!llist)
1558 return;
1559
1560 raw_spin_lock_irqsave(&rq->lock, flags);
317f3941 1561
fa14ff4a
PZ
1562 while (llist) {
1563 p = llist_entry(llist, struct task_struct, wake_entry);
1564 llist = llist_next(llist);
317f3941
PZ
1565 ttwu_do_activate(rq, p, 0);
1566 }
1567
e3baac47 1568 raw_spin_unlock_irqrestore(&rq->lock, flags);
317f3941
PZ
1569}
1570
1571void scheduler_ipi(void)
1572{
f27dde8d
PZ
1573 /*
1574 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1575 * TIF_NEED_RESCHED remotely (for the first time) will also send
1576 * this IPI.
1577 */
8cb75e0c 1578 preempt_fold_need_resched();
f27dde8d 1579
fd2ac4f4 1580 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1581 return;
1582
1583 /*
1584 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1585 * traditionally all their work was done from the interrupt return
1586 * path. Now that we actually do some work, we need to make sure
1587 * we do call them.
1588 *
1589 * Some archs already do call them, luckily irq_enter/exit nest
1590 * properly.
1591 *
1592 * Arguably we should visit all archs and update all handlers,
1593 * however a fair share of IPIs are still resched only so this would
1594 * somewhat pessimize the simple resched case.
1595 */
1596 irq_enter();
fa14ff4a 1597 sched_ttwu_pending();
ca38062e
SS
1598
1599 /*
1600 * Check if someone kicked us for doing the nohz idle load balance.
1601 */
873b4c65 1602 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1603 this_rq()->idle_balance = 1;
ca38062e 1604 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1605 }
c5d753a5 1606 irq_exit();
317f3941
PZ
1607}
1608
1609static void ttwu_queue_remote(struct task_struct *p, int cpu)
1610{
e3baac47
PZ
1611 struct rq *rq = cpu_rq(cpu);
1612
1613 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1614 if (!set_nr_if_polling(rq->idle))
1615 smp_send_reschedule(cpu);
1616 else
1617 trace_sched_wake_idle_without_ipi(cpu);
1618 }
317f3941 1619}
d6aa8f85 1620
f6be8af1
CL
1621void wake_up_if_idle(int cpu)
1622{
1623 struct rq *rq = cpu_rq(cpu);
1624 unsigned long flags;
1625
1626 if (!is_idle_task(rq->curr))
1627 return;
1628
1629 if (set_nr_if_polling(rq->idle)) {
1630 trace_sched_wake_idle_without_ipi(cpu);
1631 } else {
1632 raw_spin_lock_irqsave(&rq->lock, flags);
1633 if (is_idle_task(rq->curr))
1634 smp_send_reschedule(cpu);
1635 /* Else cpu is not in idle, do nothing here */
1636 raw_spin_unlock_irqrestore(&rq->lock, flags);
1637 }
1638}
1639
39be3501 1640bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1641{
1642 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1643}
d6aa8f85 1644#endif /* CONFIG_SMP */
317f3941 1645
c05fbafb
PZ
1646static void ttwu_queue(struct task_struct *p, int cpu)
1647{
1648 struct rq *rq = cpu_rq(cpu);
1649
17d9f311 1650#if defined(CONFIG_SMP)
39be3501 1651 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1652 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1653 ttwu_queue_remote(p, cpu);
1654 return;
1655 }
1656#endif
1657
c05fbafb
PZ
1658 raw_spin_lock(&rq->lock);
1659 ttwu_do_activate(rq, p, 0);
1660 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1661}
1662
1663/**
1da177e4 1664 * try_to_wake_up - wake up a thread
9ed3811a 1665 * @p: the thread to be awakened
1da177e4 1666 * @state: the mask of task states that can be woken
9ed3811a 1667 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1668 *
1669 * Put it on the run-queue if it's not already there. The "current"
1670 * thread is always on the run-queue (except when the actual
1671 * re-schedule is in progress), and as such you're allowed to do
1672 * the simpler "current->state = TASK_RUNNING" to mark yourself
1673 * runnable without the overhead of this.
1674 *
e69f6186 1675 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1676 * or @state didn't match @p's state.
1da177e4 1677 */
e4a52bcb
PZ
1678static int
1679try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1680{
1da177e4 1681 unsigned long flags;
c05fbafb 1682 int cpu, success = 0;
2398f2c6 1683
e0acd0a6
ON
1684 /*
1685 * If we are going to wake up a thread waiting for CONDITION we
1686 * need to ensure that CONDITION=1 done by the caller can not be
1687 * reordered with p->state check below. This pairs with mb() in
1688 * set_current_state() the waiting thread does.
1689 */
1690 smp_mb__before_spinlock();
013fdb80 1691 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1692 if (!(p->state & state))
1da177e4
LT
1693 goto out;
1694
c05fbafb 1695 success = 1; /* we're going to change ->state */
1da177e4 1696 cpu = task_cpu(p);
1da177e4 1697
c05fbafb
PZ
1698 if (p->on_rq && ttwu_remote(p, wake_flags))
1699 goto stat;
1da177e4 1700
1da177e4 1701#ifdef CONFIG_SMP
e9c84311 1702 /*
c05fbafb
PZ
1703 * If the owning (remote) cpu is still in the middle of schedule() with
1704 * this task as prev, wait until its done referencing the task.
e9c84311 1705 */
f3e94786 1706 while (p->on_cpu)
e4a52bcb 1707 cpu_relax();
0970d299 1708 /*
e4a52bcb 1709 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1710 */
e4a52bcb 1711 smp_rmb();
1da177e4 1712
a8e4f2ea 1713 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1714 p->state = TASK_WAKING;
e7693a36 1715
e4a52bcb 1716 if (p->sched_class->task_waking)
74f8e4b2 1717 p->sched_class->task_waking(p);
efbbd05a 1718
ac66f547 1719 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1720 if (task_cpu(p) != cpu) {
1721 wake_flags |= WF_MIGRATED;
e4a52bcb 1722 set_task_cpu(p, cpu);
f339b9dc 1723 }
1da177e4 1724#endif /* CONFIG_SMP */
1da177e4 1725
c05fbafb
PZ
1726 ttwu_queue(p, cpu);
1727stat:
b84cb5df 1728 ttwu_stat(p, cpu, wake_flags);
1da177e4 1729out:
013fdb80 1730 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1731
1732 return success;
1733}
1734
21aa9af0
TH
1735/**
1736 * try_to_wake_up_local - try to wake up a local task with rq lock held
1737 * @p: the thread to be awakened
1738 *
2acca55e 1739 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1740 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1741 * the current task.
21aa9af0
TH
1742 */
1743static void try_to_wake_up_local(struct task_struct *p)
1744{
1745 struct rq *rq = task_rq(p);
21aa9af0 1746
383efcd0
TH
1747 if (WARN_ON_ONCE(rq != this_rq()) ||
1748 WARN_ON_ONCE(p == current))
1749 return;
1750
21aa9af0
TH
1751 lockdep_assert_held(&rq->lock);
1752
2acca55e
PZ
1753 if (!raw_spin_trylock(&p->pi_lock)) {
1754 raw_spin_unlock(&rq->lock);
1755 raw_spin_lock(&p->pi_lock);
1756 raw_spin_lock(&rq->lock);
1757 }
1758
21aa9af0 1759 if (!(p->state & TASK_NORMAL))
2acca55e 1760 goto out;
21aa9af0 1761
da0c1e65 1762 if (!task_on_rq_queued(p))
d7c01d27
PZ
1763 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1764
23f41eeb 1765 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1766 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1767out:
1768 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1769}
1770
50fa610a
DH
1771/**
1772 * wake_up_process - Wake up a specific process
1773 * @p: The process to be woken up.
1774 *
1775 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
1776 * processes.
1777 *
1778 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
1779 *
1780 * It may be assumed that this function implies a write memory barrier before
1781 * changing the task state if and only if any tasks are woken up.
1782 */
7ad5b3a5 1783int wake_up_process(struct task_struct *p)
1da177e4 1784{
9067ac85
ON
1785 WARN_ON(task_is_stopped_or_traced(p));
1786 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 1787}
1da177e4
LT
1788EXPORT_SYMBOL(wake_up_process);
1789
7ad5b3a5 1790int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1791{
1792 return try_to_wake_up(p, state, 0);
1793}
1794
a5e7be3b
JL
1795/*
1796 * This function clears the sched_dl_entity static params.
1797 */
1798void __dl_clear_params(struct task_struct *p)
1799{
1800 struct sched_dl_entity *dl_se = &p->dl;
1801
1802 dl_se->dl_runtime = 0;
1803 dl_se->dl_deadline = 0;
1804 dl_se->dl_period = 0;
1805 dl_se->flags = 0;
1806 dl_se->dl_bw = 0;
1807}
1808
1da177e4
LT
1809/*
1810 * Perform scheduler related setup for a newly forked process p.
1811 * p is forked by current.
dd41f596
IM
1812 *
1813 * __sched_fork() is basic setup used by init_idle() too:
1814 */
5e1576ed 1815static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1816{
fd2f4419
PZ
1817 p->on_rq = 0;
1818
1819 p->se.on_rq = 0;
dd41f596
IM
1820 p->se.exec_start = 0;
1821 p->se.sum_exec_runtime = 0;
f6cf891c 1822 p->se.prev_sum_exec_runtime = 0;
6c594c21 1823 p->se.nr_migrations = 0;
da7a735e 1824 p->se.vruntime = 0;
fd2f4419 1825 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
1826
1827#ifdef CONFIG_SCHEDSTATS
41acab88 1828 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 1829#endif
476d139c 1830
aab03e05
DF
1831 RB_CLEAR_NODE(&p->dl.rb_node);
1832 hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
a5e7be3b 1833 __dl_clear_params(p);
aab03e05 1834
fa717060 1835 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 1836
e107be36
AK
1837#ifdef CONFIG_PREEMPT_NOTIFIERS
1838 INIT_HLIST_HEAD(&p->preempt_notifiers);
1839#endif
cbee9f88
PZ
1840
1841#ifdef CONFIG_NUMA_BALANCING
1842 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 1843 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
1844 p->mm->numa_scan_seq = 0;
1845 }
1846
5e1576ed
RR
1847 if (clone_flags & CLONE_VM)
1848 p->numa_preferred_nid = current->numa_preferred_nid;
1849 else
1850 p->numa_preferred_nid = -1;
1851
cbee9f88
PZ
1852 p->node_stamp = 0ULL;
1853 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 1854 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 1855 p->numa_work.next = &p->numa_work;
ff1df896
RR
1856 p->numa_faults_memory = NULL;
1857 p->numa_faults_buffer_memory = NULL;
7e2703e6
RR
1858 p->last_task_numa_placement = 0;
1859 p->last_sum_exec_runtime = 0;
8c8a743c
PZ
1860
1861 INIT_LIST_HEAD(&p->numa_entry);
1862 p->numa_group = NULL;
cbee9f88 1863#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1864}
1865
1a687c2e 1866#ifdef CONFIG_NUMA_BALANCING
3105b86a 1867#ifdef CONFIG_SCHED_DEBUG
1a687c2e
MG
1868void set_numabalancing_state(bool enabled)
1869{
1870 if (enabled)
1871 sched_feat_set("NUMA");
1872 else
1873 sched_feat_set("NO_NUMA");
1874}
3105b86a
MG
1875#else
1876__read_mostly bool numabalancing_enabled;
1877
1878void set_numabalancing_state(bool enabled)
1879{
1880 numabalancing_enabled = enabled;
dd41f596 1881}
3105b86a 1882#endif /* CONFIG_SCHED_DEBUG */
54a43d54
AK
1883
1884#ifdef CONFIG_PROC_SYSCTL
1885int sysctl_numa_balancing(struct ctl_table *table, int write,
1886 void __user *buffer, size_t *lenp, loff_t *ppos)
1887{
1888 struct ctl_table t;
1889 int err;
1890 int state = numabalancing_enabled;
1891
1892 if (write && !capable(CAP_SYS_ADMIN))
1893 return -EPERM;
1894
1895 t = *table;
1896 t.data = &state;
1897 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1898 if (err < 0)
1899 return err;
1900 if (write)
1901 set_numabalancing_state(state);
1902 return err;
1903}
1904#endif
1905#endif
dd41f596
IM
1906
1907/*
1908 * fork()/clone()-time setup:
1909 */
aab03e05 1910int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1911{
0122ec5b 1912 unsigned long flags;
dd41f596
IM
1913 int cpu = get_cpu();
1914
5e1576ed 1915 __sched_fork(clone_flags, p);
06b83b5f 1916 /*
0017d735 1917 * We mark the process as running here. This guarantees that
06b83b5f
PZ
1918 * nobody will actually run it, and a signal or other external
1919 * event cannot wake it up and insert it on the runqueue either.
1920 */
0017d735 1921 p->state = TASK_RUNNING;
dd41f596 1922
c350a04e
MG
1923 /*
1924 * Make sure we do not leak PI boosting priority to the child.
1925 */
1926 p->prio = current->normal_prio;
1927
b9dc29e7
MG
1928 /*
1929 * Revert to default priority/policy on fork if requested.
1930 */
1931 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 1932 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 1933 p->policy = SCHED_NORMAL;
6c697bdf 1934 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
1935 p->rt_priority = 0;
1936 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1937 p->static_prio = NICE_TO_PRIO(0);
1938
1939 p->prio = p->normal_prio = __normal_prio(p);
1940 set_load_weight(p);
6c697bdf 1941
b9dc29e7
MG
1942 /*
1943 * We don't need the reset flag anymore after the fork. It has
1944 * fulfilled its duty:
1945 */
1946 p->sched_reset_on_fork = 0;
1947 }
ca94c442 1948
aab03e05
DF
1949 if (dl_prio(p->prio)) {
1950 put_cpu();
1951 return -EAGAIN;
1952 } else if (rt_prio(p->prio)) {
1953 p->sched_class = &rt_sched_class;
1954 } else {
2ddbf952 1955 p->sched_class = &fair_sched_class;
aab03e05 1956 }
b29739f9 1957
cd29fe6f
PZ
1958 if (p->sched_class->task_fork)
1959 p->sched_class->task_fork(p);
1960
86951599
PZ
1961 /*
1962 * The child is not yet in the pid-hash so no cgroup attach races,
1963 * and the cgroup is pinned to this child due to cgroup_fork()
1964 * is ran before sched_fork().
1965 *
1966 * Silence PROVE_RCU.
1967 */
0122ec5b 1968 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 1969 set_task_cpu(p, cpu);
0122ec5b 1970 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 1971
52f17b6c 1972#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1973 if (likely(sched_info_on()))
52f17b6c 1974 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1975#endif
3ca7a440
PZ
1976#if defined(CONFIG_SMP)
1977 p->on_cpu = 0;
4866cde0 1978#endif
01028747 1979 init_task_preempt_count(p);
806c09a7 1980#ifdef CONFIG_SMP
917b627d 1981 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 1982 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 1983#endif
917b627d 1984
476d139c 1985 put_cpu();
aab03e05 1986 return 0;
1da177e4
LT
1987}
1988
332ac17e
DF
1989unsigned long to_ratio(u64 period, u64 runtime)
1990{
1991 if (runtime == RUNTIME_INF)
1992 return 1ULL << 20;
1993
1994 /*
1995 * Doing this here saves a lot of checks in all
1996 * the calling paths, and returning zero seems
1997 * safe for them anyway.
1998 */
1999 if (period == 0)
2000 return 0;
2001
2002 return div64_u64(runtime << 20, period);
2003}
2004
2005#ifdef CONFIG_SMP
2006inline struct dl_bw *dl_bw_of(int i)
2007{
66339c31
KT
2008 rcu_lockdep_assert(rcu_read_lock_sched_held(),
2009 "sched RCU must be held");
332ac17e
DF
2010 return &cpu_rq(i)->rd->dl_bw;
2011}
2012
de212f18 2013static inline int dl_bw_cpus(int i)
332ac17e 2014{
de212f18
PZ
2015 struct root_domain *rd = cpu_rq(i)->rd;
2016 int cpus = 0;
2017
66339c31
KT
2018 rcu_lockdep_assert(rcu_read_lock_sched_held(),
2019 "sched RCU must be held");
de212f18
PZ
2020 for_each_cpu_and(i, rd->span, cpu_active_mask)
2021 cpus++;
2022
2023 return cpus;
332ac17e
DF
2024}
2025#else
2026inline struct dl_bw *dl_bw_of(int i)
2027{
2028 return &cpu_rq(i)->dl.dl_bw;
2029}
2030
de212f18 2031static inline int dl_bw_cpus(int i)
332ac17e
DF
2032{
2033 return 1;
2034}
2035#endif
2036
2037static inline
2038void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
2039{
2040 dl_b->total_bw -= tsk_bw;
2041}
2042
2043static inline
2044void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
2045{
2046 dl_b->total_bw += tsk_bw;
2047}
2048
2049static inline
2050bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
2051{
2052 return dl_b->bw != -1 &&
2053 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
2054}
2055
2056/*
2057 * We must be sure that accepting a new task (or allowing changing the
2058 * parameters of an existing one) is consistent with the bandwidth
2059 * constraints. If yes, this function also accordingly updates the currently
2060 * allocated bandwidth to reflect the new situation.
2061 *
2062 * This function is called while holding p's rq->lock.
2063 */
2064static int dl_overflow(struct task_struct *p, int policy,
2065 const struct sched_attr *attr)
2066{
2067
2068 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
4df1638c 2069 u64 period = attr->sched_period ?: attr->sched_deadline;
332ac17e
DF
2070 u64 runtime = attr->sched_runtime;
2071 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 2072 int cpus, err = -1;
332ac17e
DF
2073
2074 if (new_bw == p->dl.dl_bw)
2075 return 0;
2076
2077 /*
2078 * Either if a task, enters, leave, or stays -deadline but changes
2079 * its parameters, we may need to update accordingly the total
2080 * allocated bandwidth of the container.
2081 */
2082 raw_spin_lock(&dl_b->lock);
de212f18 2083 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
2084 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2085 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2086 __dl_add(dl_b, new_bw);
2087 err = 0;
2088 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2089 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2090 __dl_clear(dl_b, p->dl.dl_bw);
2091 __dl_add(dl_b, new_bw);
2092 err = 0;
2093 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2094 __dl_clear(dl_b, p->dl.dl_bw);
2095 err = 0;
2096 }
2097 raw_spin_unlock(&dl_b->lock);
2098
2099 return err;
2100}
2101
2102extern void init_dl_bw(struct dl_bw *dl_b);
2103
1da177e4
LT
2104/*
2105 * wake_up_new_task - wake up a newly created task for the first time.
2106 *
2107 * This function will do some initial scheduler statistics housekeeping
2108 * that must be done for every newly created context, then puts the task
2109 * on the runqueue and wakes it.
2110 */
3e51e3ed 2111void wake_up_new_task(struct task_struct *p)
1da177e4
LT
2112{
2113 unsigned long flags;
dd41f596 2114 struct rq *rq;
fabf318e 2115
ab2515c4 2116 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
2117#ifdef CONFIG_SMP
2118 /*
2119 * Fork balancing, do it here and not earlier because:
2120 * - cpus_allowed can change in the fork path
2121 * - any previously selected cpu might disappear through hotplug
fabf318e 2122 */
ac66f547 2123 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735
PZ
2124#endif
2125
a75cdaa9
AS
2126 /* Initialize new task's runnable average */
2127 init_task_runnable_average(p);
ab2515c4 2128 rq = __task_rq_lock(p);
cd29fe6f 2129 activate_task(rq, p, 0);
da0c1e65 2130 p->on_rq = TASK_ON_RQ_QUEUED;
89363381 2131 trace_sched_wakeup_new(p, true);
a7558e01 2132 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2133#ifdef CONFIG_SMP
efbbd05a
PZ
2134 if (p->sched_class->task_woken)
2135 p->sched_class->task_woken(rq, p);
9a897c5a 2136#endif
0122ec5b 2137 task_rq_unlock(rq, p, &flags);
1da177e4
LT
2138}
2139
e107be36
AK
2140#ifdef CONFIG_PREEMPT_NOTIFIERS
2141
2142/**
80dd99b3 2143 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2144 * @notifier: notifier struct to register
e107be36
AK
2145 */
2146void preempt_notifier_register(struct preempt_notifier *notifier)
2147{
2148 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2149}
2150EXPORT_SYMBOL_GPL(preempt_notifier_register);
2151
2152/**
2153 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2154 * @notifier: notifier struct to unregister
e107be36
AK
2155 *
2156 * This is safe to call from within a preemption notifier.
2157 */
2158void preempt_notifier_unregister(struct preempt_notifier *notifier)
2159{
2160 hlist_del(&notifier->link);
2161}
2162EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2163
2164static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2165{
2166 struct preempt_notifier *notifier;
e107be36 2167
b67bfe0d 2168 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2169 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2170}
2171
2172static void
2173fire_sched_out_preempt_notifiers(struct task_struct *curr,
2174 struct task_struct *next)
2175{
2176 struct preempt_notifier *notifier;
e107be36 2177
b67bfe0d 2178 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2179 notifier->ops->sched_out(notifier, next);
2180}
2181
6d6bc0ad 2182#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2183
2184static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2185{
2186}
2187
2188static void
2189fire_sched_out_preempt_notifiers(struct task_struct *curr,
2190 struct task_struct *next)
2191{
2192}
2193
6d6bc0ad 2194#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2195
4866cde0
NP
2196/**
2197 * prepare_task_switch - prepare to switch tasks
2198 * @rq: the runqueue preparing to switch
421cee29 2199 * @prev: the current task that is being switched out
4866cde0
NP
2200 * @next: the task we are going to switch to.
2201 *
2202 * This is called with the rq lock held and interrupts off. It must
2203 * be paired with a subsequent finish_task_switch after the context
2204 * switch.
2205 *
2206 * prepare_task_switch sets up locking and calls architecture specific
2207 * hooks.
2208 */
e107be36
AK
2209static inline void
2210prepare_task_switch(struct rq *rq, struct task_struct *prev,
2211 struct task_struct *next)
4866cde0 2212{
895dd92c 2213 trace_sched_switch(prev, next);
43148951 2214 sched_info_switch(rq, prev, next);
fe4b04fa 2215 perf_event_task_sched_out(prev, next);
e107be36 2216 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2217 prepare_lock_switch(rq, next);
2218 prepare_arch_switch(next);
2219}
2220
1da177e4
LT
2221/**
2222 * finish_task_switch - clean up after a task-switch
344babaa 2223 * @rq: runqueue associated with task-switch
1da177e4
LT
2224 * @prev: the thread we just switched away from.
2225 *
4866cde0
NP
2226 * finish_task_switch must be called after the context switch, paired
2227 * with a prepare_task_switch call before the context switch.
2228 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2229 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2230 *
2231 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2232 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2233 * with the lock held can cause deadlocks; see schedule() for
2234 * details.)
2235 */
a9957449 2236static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2237 __releases(rq->lock)
2238{
1da177e4 2239 struct mm_struct *mm = rq->prev_mm;
55a101f8 2240 long prev_state;
1da177e4
LT
2241
2242 rq->prev_mm = NULL;
2243
2244 /*
2245 * A task struct has one reference for the use as "current".
c394cc9f 2246 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2247 * schedule one last time. The schedule call will never return, and
2248 * the scheduled task must drop that reference.
c394cc9f 2249 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2250 * still held, otherwise prev could be scheduled on another cpu, die
2251 * there before we look at prev->state, and then the reference would
2252 * be dropped twice.
2253 * Manfred Spraul <manfred@colorfullife.com>
2254 */
55a101f8 2255 prev_state = prev->state;
bf9fae9f 2256 vtime_task_switch(prev);
4866cde0 2257 finish_arch_switch(prev);
a8d757ef 2258 perf_event_task_sched_in(prev, current);
4866cde0 2259 finish_lock_switch(rq, prev);
01f23e16 2260 finish_arch_post_lock_switch();
e8fa1362 2261
e107be36 2262 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2263 if (mm)
2264 mmdrop(mm);
c394cc9f 2265 if (unlikely(prev_state == TASK_DEAD)) {
e6c390f2
DF
2266 if (prev->sched_class->task_dead)
2267 prev->sched_class->task_dead(prev);
2268
c6fd91f0 2269 /*
2270 * Remove function-return probe instances associated with this
2271 * task and put them back on the free list.
9761eea8 2272 */
c6fd91f0 2273 kprobe_flush_task(prev);
1da177e4 2274 put_task_struct(prev);
c6fd91f0 2275 }
99e5ada9
FW
2276
2277 tick_nohz_task_switch(current);
1da177e4
LT
2278}
2279
3f029d3c
GH
2280#ifdef CONFIG_SMP
2281
3f029d3c
GH
2282/* rq->lock is NOT held, but preemption is disabled */
2283static inline void post_schedule(struct rq *rq)
2284{
2285 if (rq->post_schedule) {
2286 unsigned long flags;
2287
05fa785c 2288 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2289 if (rq->curr->sched_class->post_schedule)
2290 rq->curr->sched_class->post_schedule(rq);
05fa785c 2291 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2292
2293 rq->post_schedule = 0;
2294 }
2295}
2296
2297#else
da19ab51 2298
3f029d3c
GH
2299static inline void post_schedule(struct rq *rq)
2300{
1da177e4
LT
2301}
2302
3f029d3c
GH
2303#endif
2304
1da177e4
LT
2305/**
2306 * schedule_tail - first thing a freshly forked thread must call.
2307 * @prev: the thread we just switched away from.
2308 */
722a9f92 2309asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
2310 __releases(rq->lock)
2311{
70b97a7f
IM
2312 struct rq *rq = this_rq();
2313
4866cde0 2314 finish_task_switch(rq, prev);
da19ab51 2315
3f029d3c
GH
2316 /*
2317 * FIXME: do we need to worry about rq being invalidated by the
2318 * task_switch?
2319 */
2320 post_schedule(rq);
70b97a7f 2321
1da177e4 2322 if (current->set_child_tid)
b488893a 2323 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2324}
2325
2326/*
2327 * context_switch - switch to the new MM and the new
2328 * thread's register state.
2329 */
dd41f596 2330static inline void
70b97a7f 2331context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2332 struct task_struct *next)
1da177e4 2333{
dd41f596 2334 struct mm_struct *mm, *oldmm;
1da177e4 2335
e107be36 2336 prepare_task_switch(rq, prev, next);
fe4b04fa 2337
dd41f596
IM
2338 mm = next->mm;
2339 oldmm = prev->active_mm;
9226d125
ZA
2340 /*
2341 * For paravirt, this is coupled with an exit in switch_to to
2342 * combine the page table reload and the switch backend into
2343 * one hypercall.
2344 */
224101ed 2345 arch_start_context_switch(prev);
9226d125 2346
31915ab4 2347 if (!mm) {
1da177e4
LT
2348 next->active_mm = oldmm;
2349 atomic_inc(&oldmm->mm_count);
2350 enter_lazy_tlb(oldmm, next);
2351 } else
2352 switch_mm(oldmm, mm, next);
2353
31915ab4 2354 if (!prev->mm) {
1da177e4 2355 prev->active_mm = NULL;
1da177e4
LT
2356 rq->prev_mm = oldmm;
2357 }
3a5f5e48
IM
2358 /*
2359 * Since the runqueue lock will be released by the next
2360 * task (which is an invalid locking op but in the case
2361 * of the scheduler it's an obvious special-case), so we
2362 * do an early lockdep release here:
2363 */
8a25d5de 2364 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4 2365
91d1aa43 2366 context_tracking_task_switch(prev, next);
1da177e4
LT
2367 /* Here we just switch the register state and the stack. */
2368 switch_to(prev, next, prev);
2369
dd41f596
IM
2370 barrier();
2371 /*
2372 * this_rq must be evaluated again because prev may have moved
2373 * CPUs since it called schedule(), thus the 'rq' on its stack
2374 * frame will be invalid.
2375 */
2376 finish_task_switch(this_rq(), prev);
1da177e4
LT
2377}
2378
2379/*
1c3e8264 2380 * nr_running and nr_context_switches:
1da177e4
LT
2381 *
2382 * externally visible scheduler statistics: current number of runnable
1c3e8264 2383 * threads, total number of context switches performed since bootup.
1da177e4
LT
2384 */
2385unsigned long nr_running(void)
2386{
2387 unsigned long i, sum = 0;
2388
2389 for_each_online_cpu(i)
2390 sum += cpu_rq(i)->nr_running;
2391
2392 return sum;
f711f609 2393}
1da177e4 2394
2ee507c4
TC
2395/*
2396 * Check if only the current task is running on the cpu.
2397 */
2398bool single_task_running(void)
2399{
2400 if (cpu_rq(smp_processor_id())->nr_running == 1)
2401 return true;
2402 else
2403 return false;
2404}
2405EXPORT_SYMBOL(single_task_running);
2406
1da177e4 2407unsigned long long nr_context_switches(void)
46cb4b7c 2408{
cc94abfc
SR
2409 int i;
2410 unsigned long long sum = 0;
46cb4b7c 2411
0a945022 2412 for_each_possible_cpu(i)
1da177e4 2413 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2414
1da177e4
LT
2415 return sum;
2416}
483b4ee6 2417
1da177e4
LT
2418unsigned long nr_iowait(void)
2419{
2420 unsigned long i, sum = 0;
483b4ee6 2421
0a945022 2422 for_each_possible_cpu(i)
1da177e4 2423 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2424
1da177e4
LT
2425 return sum;
2426}
483b4ee6 2427
8c215bd3 2428unsigned long nr_iowait_cpu(int cpu)
69d25870 2429{
8c215bd3 2430 struct rq *this = cpu_rq(cpu);
69d25870
AV
2431 return atomic_read(&this->nr_iowait);
2432}
46cb4b7c 2433
372ba8cb
MG
2434void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2435{
2436 struct rq *this = this_rq();
2437 *nr_waiters = atomic_read(&this->nr_iowait);
2438 *load = this->cpu_load[0];
2439}
2440
dd41f596 2441#ifdef CONFIG_SMP
8a0be9ef 2442
46cb4b7c 2443/*
38022906
PZ
2444 * sched_exec - execve() is a valuable balancing opportunity, because at
2445 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2446 */
38022906 2447void sched_exec(void)
46cb4b7c 2448{
38022906 2449 struct task_struct *p = current;
1da177e4 2450 unsigned long flags;
0017d735 2451 int dest_cpu;
46cb4b7c 2452
8f42ced9 2453 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2454 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2455 if (dest_cpu == smp_processor_id())
2456 goto unlock;
38022906 2457
8f42ced9 2458 if (likely(cpu_active(dest_cpu))) {
969c7921 2459 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2460
8f42ced9
PZ
2461 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2462 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2463 return;
2464 }
0017d735 2465unlock:
8f42ced9 2466 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2467}
dd41f596 2468
1da177e4
LT
2469#endif
2470
1da177e4 2471DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2472DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2473
2474EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2475EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4
LT
2476
2477/*
c5f8d995 2478 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 2479 * @p in case that task is currently running.
c5f8d995
HS
2480 *
2481 * Called with task_rq_lock() held on @rq.
1da177e4 2482 */
c5f8d995
HS
2483static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2484{
2485 u64 ns = 0;
2486
4036ac15
MG
2487 /*
2488 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2489 * project cycles that may never be accounted to this
2490 * thread, breaking clock_gettime().
2491 */
da0c1e65 2492 if (task_current(rq, p) && task_on_rq_queued(p)) {
c5f8d995 2493 update_rq_clock(rq);
78becc27 2494 ns = rq_clock_task(rq) - p->se.exec_start;
c5f8d995
HS
2495 if ((s64)ns < 0)
2496 ns = 0;
2497 }
2498
2499 return ns;
2500}
2501
bb34d92f 2502unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 2503{
1da177e4 2504 unsigned long flags;
41b86e9c 2505 struct rq *rq;
bb34d92f 2506 u64 ns = 0;
48f24c4d 2507
41b86e9c 2508 rq = task_rq_lock(p, &flags);
c5f8d995 2509 ns = do_task_delta_exec(p, rq);
0122ec5b 2510 task_rq_unlock(rq, p, &flags);
1508487e 2511
c5f8d995
HS
2512 return ns;
2513}
f06febc9 2514
c5f8d995
HS
2515/*
2516 * Return accounted runtime for the task.
2517 * In case the task is currently running, return the runtime plus current's
2518 * pending runtime that have not been accounted yet.
2519 */
2520unsigned long long task_sched_runtime(struct task_struct *p)
2521{
2522 unsigned long flags;
2523 struct rq *rq;
2524 u64 ns = 0;
2525
911b2898
PZ
2526#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2527 /*
2528 * 64-bit doesn't need locks to atomically read a 64bit value.
2529 * So we have a optimization chance when the task's delta_exec is 0.
2530 * Reading ->on_cpu is racy, but this is ok.
2531 *
2532 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2533 * If we race with it entering cpu, unaccounted time is 0. This is
2534 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
2535 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2536 * been accounted, so we're correct here as well.
911b2898 2537 */
da0c1e65 2538 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
2539 return p->se.sum_exec_runtime;
2540#endif
2541
c5f8d995
HS
2542 rq = task_rq_lock(p, &flags);
2543 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 2544 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2545
2546 return ns;
2547}
48f24c4d 2548
7835b98b
CL
2549/*
2550 * This function gets called by the timer code, with HZ frequency.
2551 * We call it with interrupts disabled.
7835b98b
CL
2552 */
2553void scheduler_tick(void)
2554{
7835b98b
CL
2555 int cpu = smp_processor_id();
2556 struct rq *rq = cpu_rq(cpu);
dd41f596 2557 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2558
2559 sched_clock_tick();
dd41f596 2560
05fa785c 2561 raw_spin_lock(&rq->lock);
3e51f33f 2562 update_rq_clock(rq);
fa85ae24 2563 curr->sched_class->task_tick(rq, curr, 0);
83dfd523 2564 update_cpu_load_active(rq);
05fa785c 2565 raw_spin_unlock(&rq->lock);
7835b98b 2566
e9d2b064 2567 perf_event_task_tick();
e220d2dc 2568
e418e1c2 2569#ifdef CONFIG_SMP
6eb57e0d 2570 rq->idle_balance = idle_cpu(cpu);
7caff66f 2571 trigger_load_balance(rq);
e418e1c2 2572#endif
265f22a9 2573 rq_last_tick_reset(rq);
1da177e4
LT
2574}
2575
265f22a9
FW
2576#ifdef CONFIG_NO_HZ_FULL
2577/**
2578 * scheduler_tick_max_deferment
2579 *
2580 * Keep at least one tick per second when a single
2581 * active task is running because the scheduler doesn't
2582 * yet completely support full dynticks environment.
2583 *
2584 * This makes sure that uptime, CFS vruntime, load
2585 * balancing, etc... continue to move forward, even
2586 * with a very low granularity.
e69f6186
YB
2587 *
2588 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
2589 */
2590u64 scheduler_tick_max_deferment(void)
2591{
2592 struct rq *rq = this_rq();
2593 unsigned long next, now = ACCESS_ONCE(jiffies);
2594
2595 next = rq->last_sched_tick + HZ;
2596
2597 if (time_before_eq(next, now))
2598 return 0;
2599
8fe8ff09 2600 return jiffies_to_nsecs(next - now);
1da177e4 2601}
265f22a9 2602#endif
1da177e4 2603
132380a0 2604notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
2605{
2606 if (in_lock_functions(addr)) {
2607 addr = CALLER_ADDR2;
2608 if (in_lock_functions(addr))
2609 addr = CALLER_ADDR3;
2610 }
2611 return addr;
2612}
1da177e4 2613
7e49fcce
SR
2614#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2615 defined(CONFIG_PREEMPT_TRACER))
2616
edafe3a5 2617void preempt_count_add(int val)
1da177e4 2618{
6cd8a4bb 2619#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2620 /*
2621 * Underflow?
2622 */
9a11b49a
IM
2623 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2624 return;
6cd8a4bb 2625#endif
bdb43806 2626 __preempt_count_add(val);
6cd8a4bb 2627#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2628 /*
2629 * Spinlock count overflowing soon?
2630 */
33859f7f
MOS
2631 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2632 PREEMPT_MASK - 10);
6cd8a4bb 2633#endif
8f47b187
TG
2634 if (preempt_count() == val) {
2635 unsigned long ip = get_parent_ip(CALLER_ADDR1);
2636#ifdef CONFIG_DEBUG_PREEMPT
2637 current->preempt_disable_ip = ip;
2638#endif
2639 trace_preempt_off(CALLER_ADDR0, ip);
2640 }
1da177e4 2641}
bdb43806 2642EXPORT_SYMBOL(preempt_count_add);
edafe3a5 2643NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 2644
edafe3a5 2645void preempt_count_sub(int val)
1da177e4 2646{
6cd8a4bb 2647#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2648 /*
2649 * Underflow?
2650 */
01e3eb82 2651 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 2652 return;
1da177e4
LT
2653 /*
2654 * Is the spinlock portion underflowing?
2655 */
9a11b49a
IM
2656 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2657 !(preempt_count() & PREEMPT_MASK)))
2658 return;
6cd8a4bb 2659#endif
9a11b49a 2660
6cd8a4bb
SR
2661 if (preempt_count() == val)
2662 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
bdb43806 2663 __preempt_count_sub(val);
1da177e4 2664}
bdb43806 2665EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 2666NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4
LT
2667
2668#endif
2669
2670/*
dd41f596 2671 * Print scheduling while atomic bug:
1da177e4 2672 */
dd41f596 2673static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 2674{
664dfa65
DJ
2675 if (oops_in_progress)
2676 return;
2677
3df0fc5b
PZ
2678 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2679 prev->comm, prev->pid, preempt_count());
838225b4 2680
dd41f596 2681 debug_show_held_locks(prev);
e21f5b15 2682 print_modules();
dd41f596
IM
2683 if (irqs_disabled())
2684 print_irqtrace_events(prev);
8f47b187
TG
2685#ifdef CONFIG_DEBUG_PREEMPT
2686 if (in_atomic_preempt_off()) {
2687 pr_err("Preemption disabled at:");
2688 print_ip_sym(current->preempt_disable_ip);
2689 pr_cont("\n");
2690 }
2691#endif
6135fc1e 2692 dump_stack();
373d4d09 2693 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 2694}
1da177e4 2695
dd41f596
IM
2696/*
2697 * Various schedule()-time debugging checks and statistics:
2698 */
2699static inline void schedule_debug(struct task_struct *prev)
2700{
0d9e2632
AT
2701#ifdef CONFIG_SCHED_STACK_END_CHECK
2702 BUG_ON(unlikely(task_stack_end_corrupted(prev)));
2703#endif
1da177e4 2704 /*
41a2d6cf 2705 * Test if we are atomic. Since do_exit() needs to call into
192301e7
ON
2706 * schedule() atomically, we ignore that path. Otherwise whine
2707 * if we are scheduling when we should not.
1da177e4 2708 */
192301e7 2709 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
dd41f596 2710 __schedule_bug(prev);
b3fbab05 2711 rcu_sleep_check();
dd41f596 2712
1da177e4
LT
2713 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2714
2d72376b 2715 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
2716}
2717
2718/*
2719 * Pick up the highest-prio task:
2720 */
2721static inline struct task_struct *
606dba2e 2722pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 2723{
37e117c0 2724 const struct sched_class *class = &fair_sched_class;
dd41f596 2725 struct task_struct *p;
1da177e4
LT
2726
2727 /*
dd41f596
IM
2728 * Optimization: we know that if all tasks are in
2729 * the fair class we can call that function directly:
1da177e4 2730 */
37e117c0 2731 if (likely(prev->sched_class == class &&
38033c37 2732 rq->nr_running == rq->cfs.h_nr_running)) {
606dba2e 2733 p = fair_sched_class.pick_next_task(rq, prev);
6ccdc84b
PZ
2734 if (unlikely(p == RETRY_TASK))
2735 goto again;
2736
2737 /* assumes fair_sched_class->next == idle_sched_class */
2738 if (unlikely(!p))
2739 p = idle_sched_class.pick_next_task(rq, prev);
2740
2741 return p;
1da177e4
LT
2742 }
2743
37e117c0 2744again:
34f971f6 2745 for_each_class(class) {
606dba2e 2746 p = class->pick_next_task(rq, prev);
37e117c0
PZ
2747 if (p) {
2748 if (unlikely(p == RETRY_TASK))
2749 goto again;
dd41f596 2750 return p;
37e117c0 2751 }
dd41f596 2752 }
34f971f6
PZ
2753
2754 BUG(); /* the idle class will always have a runnable task */
dd41f596 2755}
1da177e4 2756
dd41f596 2757/*
c259e01a 2758 * __schedule() is the main scheduler function.
edde96ea
PE
2759 *
2760 * The main means of driving the scheduler and thus entering this function are:
2761 *
2762 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2763 *
2764 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2765 * paths. For example, see arch/x86/entry_64.S.
2766 *
2767 * To drive preemption between tasks, the scheduler sets the flag in timer
2768 * interrupt handler scheduler_tick().
2769 *
2770 * 3. Wakeups don't really cause entry into schedule(). They add a
2771 * task to the run-queue and that's it.
2772 *
2773 * Now, if the new task added to the run-queue preempts the current
2774 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2775 * called on the nearest possible occasion:
2776 *
2777 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2778 *
2779 * - in syscall or exception context, at the next outmost
2780 * preempt_enable(). (this might be as soon as the wake_up()'s
2781 * spin_unlock()!)
2782 *
2783 * - in IRQ context, return from interrupt-handler to
2784 * preemptible context
2785 *
2786 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2787 * then at the next:
2788 *
2789 * - cond_resched() call
2790 * - explicit schedule() call
2791 * - return from syscall or exception to user-space
2792 * - return from interrupt-handler to user-space
dd41f596 2793 */
c259e01a 2794static void __sched __schedule(void)
dd41f596
IM
2795{
2796 struct task_struct *prev, *next;
67ca7bde 2797 unsigned long *switch_count;
dd41f596 2798 struct rq *rq;
31656519 2799 int cpu;
dd41f596 2800
ff743345
PZ
2801need_resched:
2802 preempt_disable();
dd41f596
IM
2803 cpu = smp_processor_id();
2804 rq = cpu_rq(cpu);
25502a6c 2805 rcu_note_context_switch(cpu);
dd41f596 2806 prev = rq->curr;
dd41f596 2807
dd41f596 2808 schedule_debug(prev);
1da177e4 2809
31656519 2810 if (sched_feat(HRTICK))
f333fdc9 2811 hrtick_clear(rq);
8f4d37ec 2812
e0acd0a6
ON
2813 /*
2814 * Make sure that signal_pending_state()->signal_pending() below
2815 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2816 * done by the caller to avoid the race with signal_wake_up().
2817 */
2818 smp_mb__before_spinlock();
05fa785c 2819 raw_spin_lock_irq(&rq->lock);
1da177e4 2820
246d86b5 2821 switch_count = &prev->nivcsw;
1da177e4 2822 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 2823 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 2824 prev->state = TASK_RUNNING;
21aa9af0 2825 } else {
2acca55e
PZ
2826 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2827 prev->on_rq = 0;
2828
21aa9af0 2829 /*
2acca55e
PZ
2830 * If a worker went to sleep, notify and ask workqueue
2831 * whether it wants to wake up a task to maintain
2832 * concurrency.
21aa9af0
TH
2833 */
2834 if (prev->flags & PF_WQ_WORKER) {
2835 struct task_struct *to_wakeup;
2836
2837 to_wakeup = wq_worker_sleeping(prev, cpu);
2838 if (to_wakeup)
2839 try_to_wake_up_local(to_wakeup);
2840 }
21aa9af0 2841 }
dd41f596 2842 switch_count = &prev->nvcsw;
1da177e4
LT
2843 }
2844
da0c1e65 2845 if (task_on_rq_queued(prev) || rq->skip_clock_update < 0)
606dba2e
PZ
2846 update_rq_clock(rq);
2847
2848 next = pick_next_task(rq, prev);
f26f9aff 2849 clear_tsk_need_resched(prev);
f27dde8d 2850 clear_preempt_need_resched();
f26f9aff 2851 rq->skip_clock_update = 0;
1da177e4 2852
1da177e4 2853 if (likely(prev != next)) {
1da177e4
LT
2854 rq->nr_switches++;
2855 rq->curr = next;
2856 ++*switch_count;
2857
dd41f596 2858 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 2859 /*
246d86b5
ON
2860 * The context switch have flipped the stack from under us
2861 * and restored the local variables which were saved when
2862 * this task called schedule() in the past. prev == current
2863 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
2864 */
2865 cpu = smp_processor_id();
2866 rq = cpu_rq(cpu);
1da177e4 2867 } else
05fa785c 2868 raw_spin_unlock_irq(&rq->lock);
1da177e4 2869
3f029d3c 2870 post_schedule(rq);
1da177e4 2871
ba74c144 2872 sched_preempt_enable_no_resched();
ff743345 2873 if (need_resched())
1da177e4
LT
2874 goto need_resched;
2875}
c259e01a 2876
9c40cef2
TG
2877static inline void sched_submit_work(struct task_struct *tsk)
2878{
3c7d5184 2879 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
2880 return;
2881 /*
2882 * If we are going to sleep and we have plugged IO queued,
2883 * make sure to submit it to avoid deadlocks.
2884 */
2885 if (blk_needs_flush_plug(tsk))
2886 blk_schedule_flush_plug(tsk);
2887}
2888
722a9f92 2889asmlinkage __visible void __sched schedule(void)
c259e01a 2890{
9c40cef2
TG
2891 struct task_struct *tsk = current;
2892
2893 sched_submit_work(tsk);
c259e01a
TG
2894 __schedule();
2895}
1da177e4
LT
2896EXPORT_SYMBOL(schedule);
2897
91d1aa43 2898#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 2899asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
2900{
2901 /*
2902 * If we come here after a random call to set_need_resched(),
2903 * or we have been woken up remotely but the IPI has not yet arrived,
2904 * we haven't yet exited the RCU idle mode. Do it here manually until
2905 * we find a better solution.
2906 */
91d1aa43 2907 user_exit();
20ab65e3 2908 schedule();
91d1aa43 2909 user_enter();
20ab65e3
FW
2910}
2911#endif
2912
c5491ea7
TG
2913/**
2914 * schedule_preempt_disabled - called with preemption disabled
2915 *
2916 * Returns with preemption disabled. Note: preempt_count must be 1
2917 */
2918void __sched schedule_preempt_disabled(void)
2919{
ba74c144 2920 sched_preempt_enable_no_resched();
c5491ea7
TG
2921 schedule();
2922 preempt_disable();
2923}
2924
1da177e4
LT
2925#ifdef CONFIG_PREEMPT
2926/*
2ed6e34f 2927 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 2928 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
2929 * occur there and call schedule directly.
2930 */
722a9f92 2931asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 2932{
1da177e4
LT
2933 /*
2934 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 2935 * we do not want to preempt the current task. Just return..
1da177e4 2936 */
fbb00b56 2937 if (likely(!preemptible()))
1da177e4
LT
2938 return;
2939
3a5c359a 2940 do {
bdb43806 2941 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 2942 __schedule();
bdb43806 2943 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2944
3a5c359a
AK
2945 /*
2946 * Check again in case we missed a preemption opportunity
2947 * between schedule and now.
2948 */
2949 barrier();
5ed0cec0 2950 } while (need_resched());
1da177e4 2951}
376e2424 2952NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 2953EXPORT_SYMBOL(preempt_schedule);
32e475d7 2954#endif /* CONFIG_PREEMPT */
1da177e4
LT
2955
2956/*
2ed6e34f 2957 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
2958 * off of irq context.
2959 * Note, that this is called and return with irqs disabled. This will
2960 * protect us against recursive calling from irq.
2961 */
722a9f92 2962asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 2963{
b22366cd 2964 enum ctx_state prev_state;
6478d880 2965
2ed6e34f 2966 /* Catch callers which need to be fixed */
f27dde8d 2967 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 2968
b22366cd
FW
2969 prev_state = exception_enter();
2970
3a5c359a 2971 do {
bdb43806 2972 __preempt_count_add(PREEMPT_ACTIVE);
3a5c359a 2973 local_irq_enable();
c259e01a 2974 __schedule();
3a5c359a 2975 local_irq_disable();
bdb43806 2976 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2977
3a5c359a
AK
2978 /*
2979 * Check again in case we missed a preemption opportunity
2980 * between schedule and now.
2981 */
2982 barrier();
5ed0cec0 2983 } while (need_resched());
b22366cd
FW
2984
2985 exception_exit(prev_state);
1da177e4
LT
2986}
2987
63859d4f 2988int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 2989 void *key)
1da177e4 2990{
63859d4f 2991 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 2992}
1da177e4
LT
2993EXPORT_SYMBOL(default_wake_function);
2994
b29739f9
IM
2995#ifdef CONFIG_RT_MUTEXES
2996
2997/*
2998 * rt_mutex_setprio - set the current priority of a task
2999 * @p: task
3000 * @prio: prio value (kernel-internal form)
3001 *
3002 * This function changes the 'effective' priority of a task. It does
3003 * not touch ->normal_prio like __setscheduler().
3004 *
c365c292
TG
3005 * Used by the rt_mutex code to implement priority inheritance
3006 * logic. Call site only calls if the priority of the task changed.
b29739f9 3007 */
36c8b586 3008void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3009{
da0c1e65 3010 int oldprio, queued, running, enqueue_flag = 0;
70b97a7f 3011 struct rq *rq;
83ab0aa0 3012 const struct sched_class *prev_class;
b29739f9 3013
aab03e05 3014 BUG_ON(prio > MAX_PRIO);
b29739f9 3015
0122ec5b 3016 rq = __task_rq_lock(p);
b29739f9 3017
1c4dd99b
TG
3018 /*
3019 * Idle task boosting is a nono in general. There is one
3020 * exception, when PREEMPT_RT and NOHZ is active:
3021 *
3022 * The idle task calls get_next_timer_interrupt() and holds
3023 * the timer wheel base->lock on the CPU and another CPU wants
3024 * to access the timer (probably to cancel it). We can safely
3025 * ignore the boosting request, as the idle CPU runs this code
3026 * with interrupts disabled and will complete the lock
3027 * protected section without being interrupted. So there is no
3028 * real need to boost.
3029 */
3030 if (unlikely(p == rq->idle)) {
3031 WARN_ON(p != rq->curr);
3032 WARN_ON(p->pi_blocked_on);
3033 goto out_unlock;
3034 }
3035
a8027073 3036 trace_sched_pi_setprio(p, prio);
d5f9f942 3037 oldprio = p->prio;
83ab0aa0 3038 prev_class = p->sched_class;
da0c1e65 3039 queued = task_on_rq_queued(p);
051a1d1a 3040 running = task_current(rq, p);
da0c1e65 3041 if (queued)
69be72c1 3042 dequeue_task(rq, p, 0);
0e1f3483 3043 if (running)
f3cd1c4e 3044 put_prev_task(rq, p);
dd41f596 3045
2d3d891d
DF
3046 /*
3047 * Boosting condition are:
3048 * 1. -rt task is running and holds mutex A
3049 * --> -dl task blocks on mutex A
3050 *
3051 * 2. -dl task is running and holds mutex A
3052 * --> -dl task blocks on mutex A and could preempt the
3053 * running task
3054 */
3055 if (dl_prio(prio)) {
466af29b
ON
3056 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3057 if (!dl_prio(p->normal_prio) ||
3058 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d
DF
3059 p->dl.dl_boosted = 1;
3060 p->dl.dl_throttled = 0;
3061 enqueue_flag = ENQUEUE_REPLENISH;
3062 } else
3063 p->dl.dl_boosted = 0;
aab03e05 3064 p->sched_class = &dl_sched_class;
2d3d891d
DF
3065 } else if (rt_prio(prio)) {
3066 if (dl_prio(oldprio))
3067 p->dl.dl_boosted = 0;
3068 if (oldprio < prio)
3069 enqueue_flag = ENQUEUE_HEAD;
dd41f596 3070 p->sched_class = &rt_sched_class;
2d3d891d
DF
3071 } else {
3072 if (dl_prio(oldprio))
3073 p->dl.dl_boosted = 0;
dd41f596 3074 p->sched_class = &fair_sched_class;
2d3d891d 3075 }
dd41f596 3076
b29739f9
IM
3077 p->prio = prio;
3078
0e1f3483
HS
3079 if (running)
3080 p->sched_class->set_curr_task(rq);
da0c1e65 3081 if (queued)
2d3d891d 3082 enqueue_task(rq, p, enqueue_flag);
cb469845 3083
da7a735e 3084 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3085out_unlock:
0122ec5b 3086 __task_rq_unlock(rq);
b29739f9 3087}
b29739f9 3088#endif
d50dde5a 3089
36c8b586 3090void set_user_nice(struct task_struct *p, long nice)
1da177e4 3091{
da0c1e65 3092 int old_prio, delta, queued;
1da177e4 3093 unsigned long flags;
70b97a7f 3094 struct rq *rq;
1da177e4 3095
75e45d51 3096 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
3097 return;
3098 /*
3099 * We have to be careful, if called from sys_setpriority(),
3100 * the task might be in the middle of scheduling on another CPU.
3101 */
3102 rq = task_rq_lock(p, &flags);
3103 /*
3104 * The RT priorities are set via sched_setscheduler(), but we still
3105 * allow the 'normal' nice value to be set - but as expected
3106 * it wont have any effect on scheduling until the task is
aab03e05 3107 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3108 */
aab03e05 3109 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3110 p->static_prio = NICE_TO_PRIO(nice);
3111 goto out_unlock;
3112 }
da0c1e65
KT
3113 queued = task_on_rq_queued(p);
3114 if (queued)
69be72c1 3115 dequeue_task(rq, p, 0);
1da177e4 3116
1da177e4 3117 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3118 set_load_weight(p);
b29739f9
IM
3119 old_prio = p->prio;
3120 p->prio = effective_prio(p);
3121 delta = p->prio - old_prio;
1da177e4 3122
da0c1e65 3123 if (queued) {
371fd7e7 3124 enqueue_task(rq, p, 0);
1da177e4 3125 /*
d5f9f942
AM
3126 * If the task increased its priority or is running and
3127 * lowered its priority, then reschedule its CPU:
1da177e4 3128 */
d5f9f942 3129 if (delta < 0 || (delta > 0 && task_running(rq, p)))
8875125e 3130 resched_curr(rq);
1da177e4
LT
3131 }
3132out_unlock:
0122ec5b 3133 task_rq_unlock(rq, p, &flags);
1da177e4 3134}
1da177e4
LT
3135EXPORT_SYMBOL(set_user_nice);
3136
e43379f1
MM
3137/*
3138 * can_nice - check if a task can reduce its nice value
3139 * @p: task
3140 * @nice: nice value
3141 */
36c8b586 3142int can_nice(const struct task_struct *p, const int nice)
e43379f1 3143{
024f4747 3144 /* convert nice value [19,-20] to rlimit style value [1,40] */
7aa2c016 3145 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 3146
78d7d407 3147 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3148 capable(CAP_SYS_NICE));
3149}
3150
1da177e4
LT
3151#ifdef __ARCH_WANT_SYS_NICE
3152
3153/*
3154 * sys_nice - change the priority of the current process.
3155 * @increment: priority increment
3156 *
3157 * sys_setpriority is a more generic, but much slower function that
3158 * does similar things.
3159 */
5add95d4 3160SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3161{
48f24c4d 3162 long nice, retval;
1da177e4
LT
3163
3164 /*
3165 * Setpriority might change our priority at the same moment.
3166 * We don't have to worry. Conceptually one call occurs first
3167 * and we have a single winner.
3168 */
a9467fa3 3169 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 3170 nice = task_nice(current) + increment;
1da177e4 3171
a9467fa3 3172 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
3173 if (increment < 0 && !can_nice(current, nice))
3174 return -EPERM;
3175
1da177e4
LT
3176 retval = security_task_setnice(current, nice);
3177 if (retval)
3178 return retval;
3179
3180 set_user_nice(current, nice);
3181 return 0;
3182}
3183
3184#endif
3185
3186/**
3187 * task_prio - return the priority value of a given task.
3188 * @p: the task in question.
3189 *
e69f6186 3190 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3191 * RT tasks are offset by -200. Normal tasks are centered
3192 * around 0, value goes from -16 to +15.
3193 */
36c8b586 3194int task_prio(const struct task_struct *p)
1da177e4
LT
3195{
3196 return p->prio - MAX_RT_PRIO;
3197}
3198
1da177e4
LT
3199/**
3200 * idle_cpu - is a given cpu idle currently?
3201 * @cpu: the processor in question.
e69f6186
YB
3202 *
3203 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3204 */
3205int idle_cpu(int cpu)
3206{
908a3283
TG
3207 struct rq *rq = cpu_rq(cpu);
3208
3209 if (rq->curr != rq->idle)
3210 return 0;
3211
3212 if (rq->nr_running)
3213 return 0;
3214
3215#ifdef CONFIG_SMP
3216 if (!llist_empty(&rq->wake_list))
3217 return 0;
3218#endif
3219
3220 return 1;
1da177e4
LT
3221}
3222
1da177e4
LT
3223/**
3224 * idle_task - return the idle task for a given cpu.
3225 * @cpu: the processor in question.
e69f6186
YB
3226 *
3227 * Return: The idle task for the cpu @cpu.
1da177e4 3228 */
36c8b586 3229struct task_struct *idle_task(int cpu)
1da177e4
LT
3230{
3231 return cpu_rq(cpu)->idle;
3232}
3233
3234/**
3235 * find_process_by_pid - find a process with a matching PID value.
3236 * @pid: the pid in question.
e69f6186
YB
3237 *
3238 * The task of @pid, if found. %NULL otherwise.
1da177e4 3239 */
a9957449 3240static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3241{
228ebcbe 3242 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3243}
3244
aab03e05
DF
3245/*
3246 * This function initializes the sched_dl_entity of a newly becoming
3247 * SCHED_DEADLINE task.
3248 *
3249 * Only the static values are considered here, the actual runtime and the
3250 * absolute deadline will be properly calculated when the task is enqueued
3251 * for the first time with its new policy.
3252 */
3253static void
3254__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3255{
3256 struct sched_dl_entity *dl_se = &p->dl;
3257
3258 init_dl_task_timer(dl_se);
3259 dl_se->dl_runtime = attr->sched_runtime;
3260 dl_se->dl_deadline = attr->sched_deadline;
755378a4 3261 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 3262 dl_se->flags = attr->sched_flags;
332ac17e 3263 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
aab03e05
DF
3264 dl_se->dl_throttled = 0;
3265 dl_se->dl_new = 1;
5bfd126e 3266 dl_se->dl_yielded = 0;
aab03e05
DF
3267}
3268
c13db6b1
SR
3269/*
3270 * sched_setparam() passes in -1 for its policy, to let the functions
3271 * it calls know not to change it.
3272 */
3273#define SETPARAM_POLICY -1
3274
c365c292
TG
3275static void __setscheduler_params(struct task_struct *p,
3276 const struct sched_attr *attr)
1da177e4 3277{
d50dde5a
DF
3278 int policy = attr->sched_policy;
3279
c13db6b1 3280 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
3281 policy = p->policy;
3282
1da177e4 3283 p->policy = policy;
d50dde5a 3284
aab03e05
DF
3285 if (dl_policy(policy))
3286 __setparam_dl(p, attr);
39fd8fd2 3287 else if (fair_policy(policy))
d50dde5a
DF
3288 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3289
39fd8fd2
PZ
3290 /*
3291 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3292 * !rt_policy. Always setting this ensures that things like
3293 * getparam()/getattr() don't report silly values for !rt tasks.
3294 */
3295 p->rt_priority = attr->sched_priority;
383afd09 3296 p->normal_prio = normal_prio(p);
c365c292
TG
3297 set_load_weight(p);
3298}
39fd8fd2 3299
c365c292
TG
3300/* Actually do priority change: must hold pi & rq lock. */
3301static void __setscheduler(struct rq *rq, struct task_struct *p,
3302 const struct sched_attr *attr)
3303{
3304 __setscheduler_params(p, attr);
d50dde5a 3305
383afd09
SR
3306 /*
3307 * If we get here, there was no pi waiters boosting the
3308 * task. It is safe to use the normal prio.
3309 */
3310 p->prio = normal_prio(p);
3311
aab03e05
DF
3312 if (dl_prio(p->prio))
3313 p->sched_class = &dl_sched_class;
3314 else if (rt_prio(p->prio))
ffd44db5
PZ
3315 p->sched_class = &rt_sched_class;
3316 else
3317 p->sched_class = &fair_sched_class;
1da177e4 3318}
aab03e05
DF
3319
3320static void
3321__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3322{
3323 struct sched_dl_entity *dl_se = &p->dl;
3324
3325 attr->sched_priority = p->rt_priority;
3326 attr->sched_runtime = dl_se->dl_runtime;
3327 attr->sched_deadline = dl_se->dl_deadline;
755378a4 3328 attr->sched_period = dl_se->dl_period;
aab03e05
DF
3329 attr->sched_flags = dl_se->flags;
3330}
3331
3332/*
3333 * This function validates the new parameters of a -deadline task.
3334 * We ask for the deadline not being zero, and greater or equal
755378a4 3335 * than the runtime, as well as the period of being zero or
332ac17e 3336 * greater than deadline. Furthermore, we have to be sure that
b0827819
JL
3337 * user parameters are above the internal resolution of 1us (we
3338 * check sched_runtime only since it is always the smaller one) and
3339 * below 2^63 ns (we have to check both sched_deadline and
3340 * sched_period, as the latter can be zero).
aab03e05
DF
3341 */
3342static bool
3343__checkparam_dl(const struct sched_attr *attr)
3344{
b0827819
JL
3345 /* deadline != 0 */
3346 if (attr->sched_deadline == 0)
3347 return false;
3348
3349 /*
3350 * Since we truncate DL_SCALE bits, make sure we're at least
3351 * that big.
3352 */
3353 if (attr->sched_runtime < (1ULL << DL_SCALE))
3354 return false;
3355
3356 /*
3357 * Since we use the MSB for wrap-around and sign issues, make
3358 * sure it's not set (mind that period can be equal to zero).
3359 */
3360 if (attr->sched_deadline & (1ULL << 63) ||
3361 attr->sched_period & (1ULL << 63))
3362 return false;
3363
3364 /* runtime <= deadline <= period (if period != 0) */
3365 if ((attr->sched_period != 0 &&
3366 attr->sched_period < attr->sched_deadline) ||
3367 attr->sched_deadline < attr->sched_runtime)
3368 return false;
3369
3370 return true;
aab03e05
DF
3371}
3372
c69e8d9c
DH
3373/*
3374 * check the target process has a UID that matches the current process's
3375 */
3376static bool check_same_owner(struct task_struct *p)
3377{
3378 const struct cred *cred = current_cred(), *pcred;
3379 bool match;
3380
3381 rcu_read_lock();
3382 pcred = __task_cred(p);
9c806aa0
EB
3383 match = (uid_eq(cred->euid, pcred->euid) ||
3384 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3385 rcu_read_unlock();
3386 return match;
3387}
3388
d50dde5a
DF
3389static int __sched_setscheduler(struct task_struct *p,
3390 const struct sched_attr *attr,
3391 bool user)
1da177e4 3392{
383afd09
SR
3393 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3394 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 3395 int retval, oldprio, oldpolicy = -1, queued, running;
d50dde5a 3396 int policy = attr->sched_policy;
1da177e4 3397 unsigned long flags;
83ab0aa0 3398 const struct sched_class *prev_class;
70b97a7f 3399 struct rq *rq;
ca94c442 3400 int reset_on_fork;
1da177e4 3401
66e5393a
SR
3402 /* may grab non-irq protected spin_locks */
3403 BUG_ON(in_interrupt());
1da177e4
LT
3404recheck:
3405 /* double check policy once rq lock held */
ca94c442
LP
3406 if (policy < 0) {
3407 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3408 policy = oldpolicy = p->policy;
ca94c442 3409 } else {
7479f3c9 3410 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 3411
aab03e05
DF
3412 if (policy != SCHED_DEADLINE &&
3413 policy != SCHED_FIFO && policy != SCHED_RR &&
ca94c442
LP
3414 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3415 policy != SCHED_IDLE)
3416 return -EINVAL;
3417 }
3418
7479f3c9
PZ
3419 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3420 return -EINVAL;
3421
1da177e4
LT
3422 /*
3423 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3424 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3425 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 3426 */
0bb040a4 3427 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 3428 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 3429 return -EINVAL;
aab03e05
DF
3430 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3431 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
3432 return -EINVAL;
3433
37e4ab3f
OC
3434 /*
3435 * Allow unprivileged RT tasks to decrease priority:
3436 */
961ccddd 3437 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 3438 if (fair_policy(policy)) {
d0ea0268 3439 if (attr->sched_nice < task_nice(p) &&
eaad4513 3440 !can_nice(p, attr->sched_nice))
d50dde5a
DF
3441 return -EPERM;
3442 }
3443
e05606d3 3444 if (rt_policy(policy)) {
a44702e8
ON
3445 unsigned long rlim_rtprio =
3446 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3447
3448 /* can't set/change the rt policy */
3449 if (policy != p->policy && !rlim_rtprio)
3450 return -EPERM;
3451
3452 /* can't increase priority */
d50dde5a
DF
3453 if (attr->sched_priority > p->rt_priority &&
3454 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
3455 return -EPERM;
3456 }
c02aa73b 3457
d44753b8
JL
3458 /*
3459 * Can't set/change SCHED_DEADLINE policy at all for now
3460 * (safest behavior); in the future we would like to allow
3461 * unprivileged DL tasks to increase their relative deadline
3462 * or reduce their runtime (both ways reducing utilization)
3463 */
3464 if (dl_policy(policy))
3465 return -EPERM;
3466
dd41f596 3467 /*
c02aa73b
DH
3468 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3469 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3470 */
c02aa73b 3471 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
d0ea0268 3472 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
3473 return -EPERM;
3474 }
5fe1d75f 3475
37e4ab3f 3476 /* can't change other user's priorities */
c69e8d9c 3477 if (!check_same_owner(p))
37e4ab3f 3478 return -EPERM;
ca94c442
LP
3479
3480 /* Normal users shall not reset the sched_reset_on_fork flag */
3481 if (p->sched_reset_on_fork && !reset_on_fork)
3482 return -EPERM;
37e4ab3f 3483 }
1da177e4 3484
725aad24 3485 if (user) {
b0ae1981 3486 retval = security_task_setscheduler(p);
725aad24
JF
3487 if (retval)
3488 return retval;
3489 }
3490
b29739f9
IM
3491 /*
3492 * make sure no PI-waiters arrive (or leave) while we are
3493 * changing the priority of the task:
0122ec5b 3494 *
25985edc 3495 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3496 * runqueue lock must be held.
3497 */
0122ec5b 3498 rq = task_rq_lock(p, &flags);
dc61b1d6 3499
34f971f6
PZ
3500 /*
3501 * Changing the policy of the stop threads its a very bad idea
3502 */
3503 if (p == rq->stop) {
0122ec5b 3504 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3505 return -EINVAL;
3506 }
3507
a51e9198 3508 /*
d6b1e911
TG
3509 * If not changing anything there's no need to proceed further,
3510 * but store a possible modification of reset_on_fork.
a51e9198 3511 */
d50dde5a 3512 if (unlikely(policy == p->policy)) {
d0ea0268 3513 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
3514 goto change;
3515 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3516 goto change;
aab03e05
DF
3517 if (dl_policy(policy))
3518 goto change;
d50dde5a 3519
d6b1e911 3520 p->sched_reset_on_fork = reset_on_fork;
45afb173 3521 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3522 return 0;
3523 }
d50dde5a 3524change:
a51e9198 3525
dc61b1d6 3526 if (user) {
332ac17e 3527#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
3528 /*
3529 * Do not allow realtime tasks into groups that have no runtime
3530 * assigned.
3531 */
3532 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3533 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3534 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3535 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3536 return -EPERM;
3537 }
dc61b1d6 3538#endif
332ac17e
DF
3539#ifdef CONFIG_SMP
3540 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3541 cpumask_t *span = rq->rd->span;
332ac17e
DF
3542
3543 /*
3544 * Don't allow tasks with an affinity mask smaller than
3545 * the entire root_domain to become SCHED_DEADLINE. We
3546 * will also fail if there's no bandwidth available.
3547 */
e4099a5e
PZ
3548 if (!cpumask_subset(span, &p->cpus_allowed) ||
3549 rq->rd->dl_bw.bw == 0) {
332ac17e
DF
3550 task_rq_unlock(rq, p, &flags);
3551 return -EPERM;
3552 }
3553 }
3554#endif
3555 }
dc61b1d6 3556
1da177e4
LT
3557 /* recheck policy now with rq lock held */
3558 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3559 policy = oldpolicy = -1;
0122ec5b 3560 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3561 goto recheck;
3562 }
332ac17e
DF
3563
3564 /*
3565 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3566 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3567 * is available.
3568 */
e4099a5e 3569 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
332ac17e
DF
3570 task_rq_unlock(rq, p, &flags);
3571 return -EBUSY;
3572 }
3573
c365c292
TG
3574 p->sched_reset_on_fork = reset_on_fork;
3575 oldprio = p->prio;
3576
3577 /*
3578 * Special case for priority boosted tasks.
3579 *
3580 * If the new priority is lower or equal (user space view)
3581 * than the current (boosted) priority, we just store the new
3582 * normal parameters and do not touch the scheduler class and
3583 * the runqueue. This will be done when the task deboost
3584 * itself.
3585 */
3586 if (rt_mutex_check_prio(p, newprio)) {
3587 __setscheduler_params(p, attr);
3588 task_rq_unlock(rq, p, &flags);
3589 return 0;
3590 }
3591
da0c1e65 3592 queued = task_on_rq_queued(p);
051a1d1a 3593 running = task_current(rq, p);
da0c1e65 3594 if (queued)
4ca9b72b 3595 dequeue_task(rq, p, 0);
0e1f3483 3596 if (running)
f3cd1c4e 3597 put_prev_task(rq, p);
f6b53205 3598
83ab0aa0 3599 prev_class = p->sched_class;
d50dde5a 3600 __setscheduler(rq, p, attr);
f6b53205 3601
0e1f3483
HS
3602 if (running)
3603 p->sched_class->set_curr_task(rq);
da0c1e65 3604 if (queued) {
81a44c54
TG
3605 /*
3606 * We enqueue to tail when the priority of a task is
3607 * increased (user space view).
3608 */
3609 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3610 }
cb469845 3611
da7a735e 3612 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 3613 task_rq_unlock(rq, p, &flags);
b29739f9 3614
95e02ca9
TG
3615 rt_mutex_adjust_pi(p);
3616
1da177e4
LT
3617 return 0;
3618}
961ccddd 3619
7479f3c9
PZ
3620static int _sched_setscheduler(struct task_struct *p, int policy,
3621 const struct sched_param *param, bool check)
3622{
3623 struct sched_attr attr = {
3624 .sched_policy = policy,
3625 .sched_priority = param->sched_priority,
3626 .sched_nice = PRIO_TO_NICE(p->static_prio),
3627 };
3628
c13db6b1
SR
3629 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
3630 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
3631 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3632 policy &= ~SCHED_RESET_ON_FORK;
3633 attr.sched_policy = policy;
3634 }
3635
3636 return __sched_setscheduler(p, &attr, check);
3637}
961ccddd
RR
3638/**
3639 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3640 * @p: the task in question.
3641 * @policy: new policy.
3642 * @param: structure containing the new RT priority.
3643 *
e69f6186
YB
3644 * Return: 0 on success. An error code otherwise.
3645 *
961ccddd
RR
3646 * NOTE that the task may be already dead.
3647 */
3648int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3649 const struct sched_param *param)
961ccddd 3650{
7479f3c9 3651 return _sched_setscheduler(p, policy, param, true);
961ccddd 3652}
1da177e4
LT
3653EXPORT_SYMBOL_GPL(sched_setscheduler);
3654
d50dde5a
DF
3655int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3656{
3657 return __sched_setscheduler(p, attr, true);
3658}
3659EXPORT_SYMBOL_GPL(sched_setattr);
3660
961ccddd
RR
3661/**
3662 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3663 * @p: the task in question.
3664 * @policy: new policy.
3665 * @param: structure containing the new RT priority.
3666 *
3667 * Just like sched_setscheduler, only don't bother checking if the
3668 * current context has permission. For example, this is needed in
3669 * stop_machine(): we create temporary high priority worker threads,
3670 * but our caller might not have that capability.
e69f6186
YB
3671 *
3672 * Return: 0 on success. An error code otherwise.
961ccddd
RR
3673 */
3674int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 3675 const struct sched_param *param)
961ccddd 3676{
7479f3c9 3677 return _sched_setscheduler(p, policy, param, false);
961ccddd
RR
3678}
3679
95cdf3b7
IM
3680static int
3681do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 3682{
1da177e4
LT
3683 struct sched_param lparam;
3684 struct task_struct *p;
36c8b586 3685 int retval;
1da177e4
LT
3686
3687 if (!param || pid < 0)
3688 return -EINVAL;
3689 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3690 return -EFAULT;
5fe1d75f
ON
3691
3692 rcu_read_lock();
3693 retval = -ESRCH;
1da177e4 3694 p = find_process_by_pid(pid);
5fe1d75f
ON
3695 if (p != NULL)
3696 retval = sched_setscheduler(p, policy, &lparam);
3697 rcu_read_unlock();
36c8b586 3698
1da177e4
LT
3699 return retval;
3700}
3701
d50dde5a
DF
3702/*
3703 * Mimics kernel/events/core.c perf_copy_attr().
3704 */
3705static int sched_copy_attr(struct sched_attr __user *uattr,
3706 struct sched_attr *attr)
3707{
3708 u32 size;
3709 int ret;
3710
3711 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3712 return -EFAULT;
3713
3714 /*
3715 * zero the full structure, so that a short copy will be nice.
3716 */
3717 memset(attr, 0, sizeof(*attr));
3718
3719 ret = get_user(size, &uattr->size);
3720 if (ret)
3721 return ret;
3722
3723 if (size > PAGE_SIZE) /* silly large */
3724 goto err_size;
3725
3726 if (!size) /* abi compat */
3727 size = SCHED_ATTR_SIZE_VER0;
3728
3729 if (size < SCHED_ATTR_SIZE_VER0)
3730 goto err_size;
3731
3732 /*
3733 * If we're handed a bigger struct than we know of,
3734 * ensure all the unknown bits are 0 - i.e. new
3735 * user-space does not rely on any kernel feature
3736 * extensions we dont know about yet.
3737 */
3738 if (size > sizeof(*attr)) {
3739 unsigned char __user *addr;
3740 unsigned char __user *end;
3741 unsigned char val;
3742
3743 addr = (void __user *)uattr + sizeof(*attr);
3744 end = (void __user *)uattr + size;
3745
3746 for (; addr < end; addr++) {
3747 ret = get_user(val, addr);
3748 if (ret)
3749 return ret;
3750 if (val)
3751 goto err_size;
3752 }
3753 size = sizeof(*attr);
3754 }
3755
3756 ret = copy_from_user(attr, uattr, size);
3757 if (ret)
3758 return -EFAULT;
3759
3760 /*
3761 * XXX: do we want to be lenient like existing syscalls; or do we want
3762 * to be strict and return an error on out-of-bounds values?
3763 */
75e45d51 3764 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 3765
e78c7bca 3766 return 0;
d50dde5a
DF
3767
3768err_size:
3769 put_user(sizeof(*attr), &uattr->size);
e78c7bca 3770 return -E2BIG;
d50dde5a
DF
3771}
3772
1da177e4
LT
3773/**
3774 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3775 * @pid: the pid in question.
3776 * @policy: new policy.
3777 * @param: structure containing the new RT priority.
e69f6186
YB
3778 *
3779 * Return: 0 on success. An error code otherwise.
1da177e4 3780 */
5add95d4
HC
3781SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3782 struct sched_param __user *, param)
1da177e4 3783{
c21761f1
JB
3784 /* negative values for policy are not valid */
3785 if (policy < 0)
3786 return -EINVAL;
3787
1da177e4
LT
3788 return do_sched_setscheduler(pid, policy, param);
3789}
3790
3791/**
3792 * sys_sched_setparam - set/change the RT priority of a thread
3793 * @pid: the pid in question.
3794 * @param: structure containing the new RT priority.
e69f6186
YB
3795 *
3796 * Return: 0 on success. An error code otherwise.
1da177e4 3797 */
5add95d4 3798SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 3799{
c13db6b1 3800 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
3801}
3802
d50dde5a
DF
3803/**
3804 * sys_sched_setattr - same as above, but with extended sched_attr
3805 * @pid: the pid in question.
5778fccf 3806 * @uattr: structure containing the extended parameters.
db66d756 3807 * @flags: for future extension.
d50dde5a 3808 */
6d35ab48
PZ
3809SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3810 unsigned int, flags)
d50dde5a
DF
3811{
3812 struct sched_attr attr;
3813 struct task_struct *p;
3814 int retval;
3815
6d35ab48 3816 if (!uattr || pid < 0 || flags)
d50dde5a
DF
3817 return -EINVAL;
3818
143cf23d
MK
3819 retval = sched_copy_attr(uattr, &attr);
3820 if (retval)
3821 return retval;
d50dde5a 3822
b14ed2c2 3823 if ((int)attr.sched_policy < 0)
dbdb2275 3824 return -EINVAL;
d50dde5a
DF
3825
3826 rcu_read_lock();
3827 retval = -ESRCH;
3828 p = find_process_by_pid(pid);
3829 if (p != NULL)
3830 retval = sched_setattr(p, &attr);
3831 rcu_read_unlock();
3832
3833 return retval;
3834}
3835
1da177e4
LT
3836/**
3837 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3838 * @pid: the pid in question.
e69f6186
YB
3839 *
3840 * Return: On success, the policy of the thread. Otherwise, a negative error
3841 * code.
1da177e4 3842 */
5add95d4 3843SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 3844{
36c8b586 3845 struct task_struct *p;
3a5c359a 3846 int retval;
1da177e4
LT
3847
3848 if (pid < 0)
3a5c359a 3849 return -EINVAL;
1da177e4
LT
3850
3851 retval = -ESRCH;
5fe85be0 3852 rcu_read_lock();
1da177e4
LT
3853 p = find_process_by_pid(pid);
3854 if (p) {
3855 retval = security_task_getscheduler(p);
3856 if (!retval)
ca94c442
LP
3857 retval = p->policy
3858 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 3859 }
5fe85be0 3860 rcu_read_unlock();
1da177e4
LT
3861 return retval;
3862}
3863
3864/**
ca94c442 3865 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
3866 * @pid: the pid in question.
3867 * @param: structure containing the RT priority.
e69f6186
YB
3868 *
3869 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3870 * code.
1da177e4 3871 */
5add95d4 3872SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 3873{
ce5f7f82 3874 struct sched_param lp = { .sched_priority = 0 };
36c8b586 3875 struct task_struct *p;
3a5c359a 3876 int retval;
1da177e4
LT
3877
3878 if (!param || pid < 0)
3a5c359a 3879 return -EINVAL;
1da177e4 3880
5fe85be0 3881 rcu_read_lock();
1da177e4
LT
3882 p = find_process_by_pid(pid);
3883 retval = -ESRCH;
3884 if (!p)
3885 goto out_unlock;
3886
3887 retval = security_task_getscheduler(p);
3888 if (retval)
3889 goto out_unlock;
3890
ce5f7f82
PZ
3891 if (task_has_rt_policy(p))
3892 lp.sched_priority = p->rt_priority;
5fe85be0 3893 rcu_read_unlock();
1da177e4
LT
3894
3895 /*
3896 * This one might sleep, we cannot do it with a spinlock held ...
3897 */
3898 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3899
1da177e4
LT
3900 return retval;
3901
3902out_unlock:
5fe85be0 3903 rcu_read_unlock();
1da177e4
LT
3904 return retval;
3905}
3906
d50dde5a
DF
3907static int sched_read_attr(struct sched_attr __user *uattr,
3908 struct sched_attr *attr,
3909 unsigned int usize)
3910{
3911 int ret;
3912
3913 if (!access_ok(VERIFY_WRITE, uattr, usize))
3914 return -EFAULT;
3915
3916 /*
3917 * If we're handed a smaller struct than we know of,
3918 * ensure all the unknown bits are 0 - i.e. old
3919 * user-space does not get uncomplete information.
3920 */
3921 if (usize < sizeof(*attr)) {
3922 unsigned char *addr;
3923 unsigned char *end;
3924
3925 addr = (void *)attr + usize;
3926 end = (void *)attr + sizeof(*attr);
3927
3928 for (; addr < end; addr++) {
3929 if (*addr)
22400674 3930 return -EFBIG;
d50dde5a
DF
3931 }
3932
3933 attr->size = usize;
3934 }
3935
4efbc454 3936 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
3937 if (ret)
3938 return -EFAULT;
3939
22400674 3940 return 0;
d50dde5a
DF
3941}
3942
3943/**
aab03e05 3944 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 3945 * @pid: the pid in question.
5778fccf 3946 * @uattr: structure containing the extended parameters.
d50dde5a 3947 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 3948 * @flags: for future extension.
d50dde5a 3949 */
6d35ab48
PZ
3950SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3951 unsigned int, size, unsigned int, flags)
d50dde5a
DF
3952{
3953 struct sched_attr attr = {
3954 .size = sizeof(struct sched_attr),
3955 };
3956 struct task_struct *p;
3957 int retval;
3958
3959 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 3960 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
3961 return -EINVAL;
3962
3963 rcu_read_lock();
3964 p = find_process_by_pid(pid);
3965 retval = -ESRCH;
3966 if (!p)
3967 goto out_unlock;
3968
3969 retval = security_task_getscheduler(p);
3970 if (retval)
3971 goto out_unlock;
3972
3973 attr.sched_policy = p->policy;
7479f3c9
PZ
3974 if (p->sched_reset_on_fork)
3975 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
3976 if (task_has_dl_policy(p))
3977 __getparam_dl(p, &attr);
3978 else if (task_has_rt_policy(p))
d50dde5a
DF
3979 attr.sched_priority = p->rt_priority;
3980 else
d0ea0268 3981 attr.sched_nice = task_nice(p);
d50dde5a
DF
3982
3983 rcu_read_unlock();
3984
3985 retval = sched_read_attr(uattr, &attr, size);
3986 return retval;
3987
3988out_unlock:
3989 rcu_read_unlock();
3990 return retval;
3991}
3992
96f874e2 3993long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 3994{
5a16f3d3 3995 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
3996 struct task_struct *p;
3997 int retval;
1da177e4 3998
23f5d142 3999 rcu_read_lock();
1da177e4
LT
4000
4001 p = find_process_by_pid(pid);
4002 if (!p) {
23f5d142 4003 rcu_read_unlock();
1da177e4
LT
4004 return -ESRCH;
4005 }
4006
23f5d142 4007 /* Prevent p going away */
1da177e4 4008 get_task_struct(p);
23f5d142 4009 rcu_read_unlock();
1da177e4 4010
14a40ffc
TH
4011 if (p->flags & PF_NO_SETAFFINITY) {
4012 retval = -EINVAL;
4013 goto out_put_task;
4014 }
5a16f3d3
RR
4015 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4016 retval = -ENOMEM;
4017 goto out_put_task;
4018 }
4019 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4020 retval = -ENOMEM;
4021 goto out_free_cpus_allowed;
4022 }
1da177e4 4023 retval = -EPERM;
4c44aaaf
EB
4024 if (!check_same_owner(p)) {
4025 rcu_read_lock();
4026 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4027 rcu_read_unlock();
16303ab2 4028 goto out_free_new_mask;
4c44aaaf
EB
4029 }
4030 rcu_read_unlock();
4031 }
1da177e4 4032
b0ae1981 4033 retval = security_task_setscheduler(p);
e7834f8f 4034 if (retval)
16303ab2 4035 goto out_free_new_mask;
e7834f8f 4036
e4099a5e
PZ
4037
4038 cpuset_cpus_allowed(p, cpus_allowed);
4039 cpumask_and(new_mask, in_mask, cpus_allowed);
4040
332ac17e
DF
4041 /*
4042 * Since bandwidth control happens on root_domain basis,
4043 * if admission test is enabled, we only admit -deadline
4044 * tasks allowed to run on all the CPUs in the task's
4045 * root_domain.
4046 */
4047#ifdef CONFIG_SMP
f1e3a093
KT
4048 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4049 rcu_read_lock();
4050 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 4051 retval = -EBUSY;
f1e3a093 4052 rcu_read_unlock();
16303ab2 4053 goto out_free_new_mask;
332ac17e 4054 }
f1e3a093 4055 rcu_read_unlock();
332ac17e
DF
4056 }
4057#endif
49246274 4058again:
5a16f3d3 4059 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 4060
8707d8b8 4061 if (!retval) {
5a16f3d3
RR
4062 cpuset_cpus_allowed(p, cpus_allowed);
4063 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4064 /*
4065 * We must have raced with a concurrent cpuset
4066 * update. Just reset the cpus_allowed to the
4067 * cpuset's cpus_allowed
4068 */
5a16f3d3 4069 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4070 goto again;
4071 }
4072 }
16303ab2 4073out_free_new_mask:
5a16f3d3
RR
4074 free_cpumask_var(new_mask);
4075out_free_cpus_allowed:
4076 free_cpumask_var(cpus_allowed);
4077out_put_task:
1da177e4 4078 put_task_struct(p);
1da177e4
LT
4079 return retval;
4080}
4081
4082static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4083 struct cpumask *new_mask)
1da177e4 4084{
96f874e2
RR
4085 if (len < cpumask_size())
4086 cpumask_clear(new_mask);
4087 else if (len > cpumask_size())
4088 len = cpumask_size();
4089
1da177e4
LT
4090 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4091}
4092
4093/**
4094 * sys_sched_setaffinity - set the cpu affinity of a process
4095 * @pid: pid of the process
4096 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4097 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
4098 *
4099 * Return: 0 on success. An error code otherwise.
1da177e4 4100 */
5add95d4
HC
4101SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4102 unsigned long __user *, user_mask_ptr)
1da177e4 4103{
5a16f3d3 4104 cpumask_var_t new_mask;
1da177e4
LT
4105 int retval;
4106
5a16f3d3
RR
4107 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4108 return -ENOMEM;
1da177e4 4109
5a16f3d3
RR
4110 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4111 if (retval == 0)
4112 retval = sched_setaffinity(pid, new_mask);
4113 free_cpumask_var(new_mask);
4114 return retval;
1da177e4
LT
4115}
4116
96f874e2 4117long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4118{
36c8b586 4119 struct task_struct *p;
31605683 4120 unsigned long flags;
1da177e4 4121 int retval;
1da177e4 4122
23f5d142 4123 rcu_read_lock();
1da177e4
LT
4124
4125 retval = -ESRCH;
4126 p = find_process_by_pid(pid);
4127 if (!p)
4128 goto out_unlock;
4129
e7834f8f
DQ
4130 retval = security_task_getscheduler(p);
4131 if (retval)
4132 goto out_unlock;
4133
013fdb80 4134 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4135 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4136 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4137
4138out_unlock:
23f5d142 4139 rcu_read_unlock();
1da177e4 4140
9531b62f 4141 return retval;
1da177e4
LT
4142}
4143
4144/**
4145 * sys_sched_getaffinity - get the cpu affinity of a process
4146 * @pid: pid of the process
4147 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4148 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186
YB
4149 *
4150 * Return: 0 on success. An error code otherwise.
1da177e4 4151 */
5add95d4
HC
4152SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4153 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4154{
4155 int ret;
f17c8607 4156 cpumask_var_t mask;
1da177e4 4157
84fba5ec 4158 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4159 return -EINVAL;
4160 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4161 return -EINVAL;
4162
f17c8607
RR
4163 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4164 return -ENOMEM;
1da177e4 4165
f17c8607
RR
4166 ret = sched_getaffinity(pid, mask);
4167 if (ret == 0) {
8bc037fb 4168 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4169
4170 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4171 ret = -EFAULT;
4172 else
cd3d8031 4173 ret = retlen;
f17c8607
RR
4174 }
4175 free_cpumask_var(mask);
1da177e4 4176
f17c8607 4177 return ret;
1da177e4
LT
4178}
4179
4180/**
4181 * sys_sched_yield - yield the current processor to other threads.
4182 *
dd41f596
IM
4183 * This function yields the current CPU to other tasks. If there are no
4184 * other threads running on this CPU then this function will return.
e69f6186
YB
4185 *
4186 * Return: 0.
1da177e4 4187 */
5add95d4 4188SYSCALL_DEFINE0(sched_yield)
1da177e4 4189{
70b97a7f 4190 struct rq *rq = this_rq_lock();
1da177e4 4191
2d72376b 4192 schedstat_inc(rq, yld_count);
4530d7ab 4193 current->sched_class->yield_task(rq);
1da177e4
LT
4194
4195 /*
4196 * Since we are going to call schedule() anyway, there's
4197 * no need to preempt or enable interrupts:
4198 */
4199 __release(rq->lock);
8a25d5de 4200 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4201 do_raw_spin_unlock(&rq->lock);
ba74c144 4202 sched_preempt_enable_no_resched();
1da177e4
LT
4203
4204 schedule();
4205
4206 return 0;
4207}
4208
e7b38404 4209static void __cond_resched(void)
1da177e4 4210{
bdb43806 4211 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 4212 __schedule();
bdb43806 4213 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4
LT
4214}
4215
02b67cc3 4216int __sched _cond_resched(void)
1da177e4 4217{
d86ee480 4218 if (should_resched()) {
1da177e4
LT
4219 __cond_resched();
4220 return 1;
4221 }
4222 return 0;
4223}
02b67cc3 4224EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4225
4226/*
613afbf8 4227 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4228 * call schedule, and on return reacquire the lock.
4229 *
41a2d6cf 4230 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4231 * operations here to prevent schedule() from being called twice (once via
4232 * spin_unlock(), once by hand).
4233 */
613afbf8 4234int __cond_resched_lock(spinlock_t *lock)
1da177e4 4235{
d86ee480 4236 int resched = should_resched();
6df3cecb
JK
4237 int ret = 0;
4238
f607c668
PZ
4239 lockdep_assert_held(lock);
4240
4a81e832 4241 if (spin_needbreak(lock) || resched) {
1da177e4 4242 spin_unlock(lock);
d86ee480 4243 if (resched)
95c354fe
NP
4244 __cond_resched();
4245 else
4246 cpu_relax();
6df3cecb 4247 ret = 1;
1da177e4 4248 spin_lock(lock);
1da177e4 4249 }
6df3cecb 4250 return ret;
1da177e4 4251}
613afbf8 4252EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4253
613afbf8 4254int __sched __cond_resched_softirq(void)
1da177e4
LT
4255{
4256 BUG_ON(!in_softirq());
4257
d86ee480 4258 if (should_resched()) {
98d82567 4259 local_bh_enable();
1da177e4
LT
4260 __cond_resched();
4261 local_bh_disable();
4262 return 1;
4263 }
4264 return 0;
4265}
613afbf8 4266EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4267
1da177e4
LT
4268/**
4269 * yield - yield the current processor to other threads.
4270 *
8e3fabfd
PZ
4271 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4272 *
4273 * The scheduler is at all times free to pick the calling task as the most
4274 * eligible task to run, if removing the yield() call from your code breaks
4275 * it, its already broken.
4276 *
4277 * Typical broken usage is:
4278 *
4279 * while (!event)
4280 * yield();
4281 *
4282 * where one assumes that yield() will let 'the other' process run that will
4283 * make event true. If the current task is a SCHED_FIFO task that will never
4284 * happen. Never use yield() as a progress guarantee!!
4285 *
4286 * If you want to use yield() to wait for something, use wait_event().
4287 * If you want to use yield() to be 'nice' for others, use cond_resched().
4288 * If you still want to use yield(), do not!
1da177e4
LT
4289 */
4290void __sched yield(void)
4291{
4292 set_current_state(TASK_RUNNING);
4293 sys_sched_yield();
4294}
1da177e4
LT
4295EXPORT_SYMBOL(yield);
4296
d95f4122
MG
4297/**
4298 * yield_to - yield the current processor to another thread in
4299 * your thread group, or accelerate that thread toward the
4300 * processor it's on.
16addf95
RD
4301 * @p: target task
4302 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4303 *
4304 * It's the caller's job to ensure that the target task struct
4305 * can't go away on us before we can do any checks.
4306 *
e69f6186 4307 * Return:
7b270f60
PZ
4308 * true (>0) if we indeed boosted the target task.
4309 * false (0) if we failed to boost the target.
4310 * -ESRCH if there's no task to yield to.
d95f4122 4311 */
fa93384f 4312int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
4313{
4314 struct task_struct *curr = current;
4315 struct rq *rq, *p_rq;
4316 unsigned long flags;
c3c18640 4317 int yielded = 0;
d95f4122
MG
4318
4319 local_irq_save(flags);
4320 rq = this_rq();
4321
4322again:
4323 p_rq = task_rq(p);
7b270f60
PZ
4324 /*
4325 * If we're the only runnable task on the rq and target rq also
4326 * has only one task, there's absolutely no point in yielding.
4327 */
4328 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4329 yielded = -ESRCH;
4330 goto out_irq;
4331 }
4332
d95f4122 4333 double_rq_lock(rq, p_rq);
39e24d8f 4334 if (task_rq(p) != p_rq) {
d95f4122
MG
4335 double_rq_unlock(rq, p_rq);
4336 goto again;
4337 }
4338
4339 if (!curr->sched_class->yield_to_task)
7b270f60 4340 goto out_unlock;
d95f4122
MG
4341
4342 if (curr->sched_class != p->sched_class)
7b270f60 4343 goto out_unlock;
d95f4122
MG
4344
4345 if (task_running(p_rq, p) || p->state)
7b270f60 4346 goto out_unlock;
d95f4122
MG
4347
4348 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4349 if (yielded) {
d95f4122 4350 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4351 /*
4352 * Make p's CPU reschedule; pick_next_entity takes care of
4353 * fairness.
4354 */
4355 if (preempt && rq != p_rq)
8875125e 4356 resched_curr(p_rq);
6d1cafd8 4357 }
d95f4122 4358
7b270f60 4359out_unlock:
d95f4122 4360 double_rq_unlock(rq, p_rq);
7b270f60 4361out_irq:
d95f4122
MG
4362 local_irq_restore(flags);
4363
7b270f60 4364 if (yielded > 0)
d95f4122
MG
4365 schedule();
4366
4367 return yielded;
4368}
4369EXPORT_SYMBOL_GPL(yield_to);
4370
1da177e4 4371/*
41a2d6cf 4372 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4373 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
4374 */
4375void __sched io_schedule(void)
4376{
54d35f29 4377 struct rq *rq = raw_rq();
1da177e4 4378
0ff92245 4379 delayacct_blkio_start();
1da177e4 4380 atomic_inc(&rq->nr_iowait);
73c10101 4381 blk_flush_plug(current);
8f0dfc34 4382 current->in_iowait = 1;
1da177e4 4383 schedule();
8f0dfc34 4384 current->in_iowait = 0;
1da177e4 4385 atomic_dec(&rq->nr_iowait);
0ff92245 4386 delayacct_blkio_end();
1da177e4 4387}
1da177e4
LT
4388EXPORT_SYMBOL(io_schedule);
4389
4390long __sched io_schedule_timeout(long timeout)
4391{
54d35f29 4392 struct rq *rq = raw_rq();
1da177e4
LT
4393 long ret;
4394
0ff92245 4395 delayacct_blkio_start();
1da177e4 4396 atomic_inc(&rq->nr_iowait);
73c10101 4397 blk_flush_plug(current);
8f0dfc34 4398 current->in_iowait = 1;
1da177e4 4399 ret = schedule_timeout(timeout);
8f0dfc34 4400 current->in_iowait = 0;
1da177e4 4401 atomic_dec(&rq->nr_iowait);
0ff92245 4402 delayacct_blkio_end();
1da177e4
LT
4403 return ret;
4404}
4405
4406/**
4407 * sys_sched_get_priority_max - return maximum RT priority.
4408 * @policy: scheduling class.
4409 *
e69f6186
YB
4410 * Return: On success, this syscall returns the maximum
4411 * rt_priority that can be used by a given scheduling class.
4412 * On failure, a negative error code is returned.
1da177e4 4413 */
5add95d4 4414SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4415{
4416 int ret = -EINVAL;
4417
4418 switch (policy) {
4419 case SCHED_FIFO:
4420 case SCHED_RR:
4421 ret = MAX_USER_RT_PRIO-1;
4422 break;
aab03e05 4423 case SCHED_DEADLINE:
1da177e4 4424 case SCHED_NORMAL:
b0a9499c 4425 case SCHED_BATCH:
dd41f596 4426 case SCHED_IDLE:
1da177e4
LT
4427 ret = 0;
4428 break;
4429 }
4430 return ret;
4431}
4432
4433/**
4434 * sys_sched_get_priority_min - return minimum RT priority.
4435 * @policy: scheduling class.
4436 *
e69f6186
YB
4437 * Return: On success, this syscall returns the minimum
4438 * rt_priority that can be used by a given scheduling class.
4439 * On failure, a negative error code is returned.
1da177e4 4440 */
5add95d4 4441SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4442{
4443 int ret = -EINVAL;
4444
4445 switch (policy) {
4446 case SCHED_FIFO:
4447 case SCHED_RR:
4448 ret = 1;
4449 break;
aab03e05 4450 case SCHED_DEADLINE:
1da177e4 4451 case SCHED_NORMAL:
b0a9499c 4452 case SCHED_BATCH:
dd41f596 4453 case SCHED_IDLE:
1da177e4
LT
4454 ret = 0;
4455 }
4456 return ret;
4457}
4458
4459/**
4460 * sys_sched_rr_get_interval - return the default timeslice of a process.
4461 * @pid: pid of the process.
4462 * @interval: userspace pointer to the timeslice value.
4463 *
4464 * this syscall writes the default timeslice value of a given process
4465 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
4466 *
4467 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4468 * an error code.
1da177e4 4469 */
17da2bd9 4470SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4471 struct timespec __user *, interval)
1da177e4 4472{
36c8b586 4473 struct task_struct *p;
a4ec24b4 4474 unsigned int time_slice;
dba091b9
TG
4475 unsigned long flags;
4476 struct rq *rq;
3a5c359a 4477 int retval;
1da177e4 4478 struct timespec t;
1da177e4
LT
4479
4480 if (pid < 0)
3a5c359a 4481 return -EINVAL;
1da177e4
LT
4482
4483 retval = -ESRCH;
1a551ae7 4484 rcu_read_lock();
1da177e4
LT
4485 p = find_process_by_pid(pid);
4486 if (!p)
4487 goto out_unlock;
4488
4489 retval = security_task_getscheduler(p);
4490 if (retval)
4491 goto out_unlock;
4492
dba091b9 4493 rq = task_rq_lock(p, &flags);
a57beec5
PZ
4494 time_slice = 0;
4495 if (p->sched_class->get_rr_interval)
4496 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4497 task_rq_unlock(rq, p, &flags);
a4ec24b4 4498
1a551ae7 4499 rcu_read_unlock();
a4ec24b4 4500 jiffies_to_timespec(time_slice, &t);
1da177e4 4501 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4502 return retval;
3a5c359a 4503
1da177e4 4504out_unlock:
1a551ae7 4505 rcu_read_unlock();
1da177e4
LT
4506 return retval;
4507}
4508
7c731e0a 4509static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4510
82a1fcb9 4511void sched_show_task(struct task_struct *p)
1da177e4 4512{
1da177e4 4513 unsigned long free = 0;
4e79752c 4514 int ppid;
36c8b586 4515 unsigned state;
1da177e4 4516
1da177e4 4517 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 4518 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4519 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4520#if BITS_PER_LONG == 32
1da177e4 4521 if (state == TASK_RUNNING)
3df0fc5b 4522 printk(KERN_CONT " running ");
1da177e4 4523 else
3df0fc5b 4524 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4525#else
4526 if (state == TASK_RUNNING)
3df0fc5b 4527 printk(KERN_CONT " running task ");
1da177e4 4528 else
3df0fc5b 4529 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4530#endif
4531#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4532 free = stack_not_used(p);
1da177e4 4533#endif
4e79752c
PM
4534 rcu_read_lock();
4535 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4536 rcu_read_unlock();
3df0fc5b 4537 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 4538 task_pid_nr(p), ppid,
aa47b7e0 4539 (unsigned long)task_thread_info(p)->flags);
1da177e4 4540
3d1cb205 4541 print_worker_info(KERN_INFO, p);
5fb5e6de 4542 show_stack(p, NULL);
1da177e4
LT
4543}
4544
e59e2ae2 4545void show_state_filter(unsigned long state_filter)
1da177e4 4546{
36c8b586 4547 struct task_struct *g, *p;
1da177e4 4548
4bd77321 4549#if BITS_PER_LONG == 32
3df0fc5b
PZ
4550 printk(KERN_INFO
4551 " task PC stack pid father\n");
1da177e4 4552#else
3df0fc5b
PZ
4553 printk(KERN_INFO
4554 " task PC stack pid father\n");
1da177e4 4555#endif
510f5acc 4556 rcu_read_lock();
5d07f420 4557 for_each_process_thread(g, p) {
1da177e4
LT
4558 /*
4559 * reset the NMI-timeout, listing all files on a slow
25985edc 4560 * console might take a lot of time:
1da177e4
LT
4561 */
4562 touch_nmi_watchdog();
39bc89fd 4563 if (!state_filter || (p->state & state_filter))
82a1fcb9 4564 sched_show_task(p);
5d07f420 4565 }
1da177e4 4566
04c9167f
JF
4567 touch_all_softlockup_watchdogs();
4568
dd41f596
IM
4569#ifdef CONFIG_SCHED_DEBUG
4570 sysrq_sched_debug_show();
4571#endif
510f5acc 4572 rcu_read_unlock();
e59e2ae2
IM
4573 /*
4574 * Only show locks if all tasks are dumped:
4575 */
93335a21 4576 if (!state_filter)
e59e2ae2 4577 debug_show_all_locks();
1da177e4
LT
4578}
4579
0db0628d 4580void init_idle_bootup_task(struct task_struct *idle)
1df21055 4581{
dd41f596 4582 idle->sched_class = &idle_sched_class;
1df21055
IM
4583}
4584
f340c0d1
IM
4585/**
4586 * init_idle - set up an idle thread for a given CPU
4587 * @idle: task in question
4588 * @cpu: cpu the idle task belongs to
4589 *
4590 * NOTE: this function does not set the idle thread's NEED_RESCHED
4591 * flag, to make booting more robust.
4592 */
0db0628d 4593void init_idle(struct task_struct *idle, int cpu)
1da177e4 4594{
70b97a7f 4595 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4596 unsigned long flags;
4597
05fa785c 4598 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 4599
5e1576ed 4600 __sched_fork(0, idle);
06b83b5f 4601 idle->state = TASK_RUNNING;
dd41f596
IM
4602 idle->se.exec_start = sched_clock();
4603
1e1b6c51 4604 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4605 /*
4606 * We're having a chicken and egg problem, even though we are
4607 * holding rq->lock, the cpu isn't yet set to this cpu so the
4608 * lockdep check in task_group() will fail.
4609 *
4610 * Similar case to sched_fork(). / Alternatively we could
4611 * use task_rq_lock() here and obtain the other rq->lock.
4612 *
4613 * Silence PROVE_RCU
4614 */
4615 rcu_read_lock();
dd41f596 4616 __set_task_cpu(idle, cpu);
6506cf6c 4617 rcu_read_unlock();
1da177e4 4618
1da177e4 4619 rq->curr = rq->idle = idle;
da0c1e65 4620 idle->on_rq = TASK_ON_RQ_QUEUED;
3ca7a440
PZ
4621#if defined(CONFIG_SMP)
4622 idle->on_cpu = 1;
4866cde0 4623#endif
05fa785c 4624 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
4625
4626 /* Set the preempt count _outside_ the spinlocks! */
01028747 4627 init_idle_preempt_count(idle, cpu);
55cd5340 4628
dd41f596
IM
4629 /*
4630 * The idle tasks have their own, simple scheduling class:
4631 */
4632 idle->sched_class = &idle_sched_class;
868baf07 4633 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 4634 vtime_init_idle(idle, cpu);
f1c6f1a7
CE
4635#if defined(CONFIG_SMP)
4636 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4637#endif
19978ca6
IM
4638}
4639
1da177e4 4640#ifdef CONFIG_SMP
a15b12ac
KT
4641/*
4642 * move_queued_task - move a queued task to new rq.
4643 *
4644 * Returns (locked) new rq. Old rq's lock is released.
4645 */
4646static struct rq *move_queued_task(struct task_struct *p, int new_cpu)
4647{
4648 struct rq *rq = task_rq(p);
4649
4650 lockdep_assert_held(&rq->lock);
4651
4652 dequeue_task(rq, p, 0);
4653 p->on_rq = TASK_ON_RQ_MIGRATING;
4654 set_task_cpu(p, new_cpu);
4655 raw_spin_unlock(&rq->lock);
4656
4657 rq = cpu_rq(new_cpu);
4658
4659 raw_spin_lock(&rq->lock);
4660 BUG_ON(task_cpu(p) != new_cpu);
4661 p->on_rq = TASK_ON_RQ_QUEUED;
4662 enqueue_task(rq, p, 0);
4663 check_preempt_curr(rq, p, 0);
4664
4665 return rq;
4666}
4667
1e1b6c51
KM
4668void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4669{
4670 if (p->sched_class && p->sched_class->set_cpus_allowed)
4671 p->sched_class->set_cpus_allowed(p, new_mask);
4939602a
PZ
4672
4673 cpumask_copy(&p->cpus_allowed, new_mask);
29baa747 4674 p->nr_cpus_allowed = cpumask_weight(new_mask);
1e1b6c51
KM
4675}
4676
1da177e4
LT
4677/*
4678 * This is how migration works:
4679 *
969c7921
TH
4680 * 1) we invoke migration_cpu_stop() on the target CPU using
4681 * stop_one_cpu().
4682 * 2) stopper starts to run (implicitly forcing the migrated thread
4683 * off the CPU)
4684 * 3) it checks whether the migrated task is still in the wrong runqueue.
4685 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 4686 * it and puts it into the right queue.
969c7921
TH
4687 * 5) stopper completes and stop_one_cpu() returns and the migration
4688 * is done.
1da177e4
LT
4689 */
4690
4691/*
4692 * Change a given task's CPU affinity. Migrate the thread to a
4693 * proper CPU and schedule it away if the CPU it's executing on
4694 * is removed from the allowed bitmask.
4695 *
4696 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 4697 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
4698 * call is not atomic; no spinlocks may be held.
4699 */
96f874e2 4700int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
4701{
4702 unsigned long flags;
70b97a7f 4703 struct rq *rq;
969c7921 4704 unsigned int dest_cpu;
48f24c4d 4705 int ret = 0;
1da177e4
LT
4706
4707 rq = task_rq_lock(p, &flags);
e2912009 4708
db44fc01
YZ
4709 if (cpumask_equal(&p->cpus_allowed, new_mask))
4710 goto out;
4711
6ad4c188 4712 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
4713 ret = -EINVAL;
4714 goto out;
4715 }
4716
1e1b6c51 4717 do_set_cpus_allowed(p, new_mask);
73fe6aae 4718
1da177e4 4719 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 4720 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
4721 goto out;
4722
969c7921 4723 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
a15b12ac 4724 if (task_running(rq, p) || p->state == TASK_WAKING) {
969c7921 4725 struct migration_arg arg = { p, dest_cpu };
1da177e4 4726 /* Need help from migration thread: drop lock and wait. */
0122ec5b 4727 task_rq_unlock(rq, p, &flags);
969c7921 4728 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
4729 tlb_migrate_finish(p->mm);
4730 return 0;
a15b12ac
KT
4731 } else if (task_on_rq_queued(p))
4732 rq = move_queued_task(p, dest_cpu);
1da177e4 4733out:
0122ec5b 4734 task_rq_unlock(rq, p, &flags);
48f24c4d 4735
1da177e4
LT
4736 return ret;
4737}
cd8ba7cd 4738EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
4739
4740/*
41a2d6cf 4741 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
4742 * this because either it can't run here any more (set_cpus_allowed()
4743 * away from this CPU, or CPU going down), or because we're
4744 * attempting to rebalance this task on exec (sched_exec).
4745 *
4746 * So we race with normal scheduler movements, but that's OK, as long
4747 * as the task is no longer on this CPU.
efc30814
KK
4748 *
4749 * Returns non-zero if task was successfully migrated.
1da177e4 4750 */
efc30814 4751static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4752{
a1e01829 4753 struct rq *rq;
e2912009 4754 int ret = 0;
1da177e4 4755
e761b772 4756 if (unlikely(!cpu_active(dest_cpu)))
efc30814 4757 return ret;
1da177e4 4758
a1e01829 4759 rq = cpu_rq(src_cpu);
1da177e4 4760
0122ec5b 4761 raw_spin_lock(&p->pi_lock);
a1e01829 4762 raw_spin_lock(&rq->lock);
1da177e4
LT
4763 /* Already moved. */
4764 if (task_cpu(p) != src_cpu)
b1e38734 4765 goto done;
a1e01829 4766
1da177e4 4767 /* Affinity changed (again). */
fa17b507 4768 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
b1e38734 4769 goto fail;
1da177e4 4770
e2912009
PZ
4771 /*
4772 * If we're not on a rq, the next wake-up will ensure we're
4773 * placed properly.
4774 */
a15b12ac
KT
4775 if (task_on_rq_queued(p))
4776 rq = move_queued_task(p, dest_cpu);
b1e38734 4777done:
efc30814 4778 ret = 1;
b1e38734 4779fail:
a1e01829 4780 raw_spin_unlock(&rq->lock);
0122ec5b 4781 raw_spin_unlock(&p->pi_lock);
efc30814 4782 return ret;
1da177e4
LT
4783}
4784
e6628d5b
MG
4785#ifdef CONFIG_NUMA_BALANCING
4786/* Migrate current task p to target_cpu */
4787int migrate_task_to(struct task_struct *p, int target_cpu)
4788{
4789 struct migration_arg arg = { p, target_cpu };
4790 int curr_cpu = task_cpu(p);
4791
4792 if (curr_cpu == target_cpu)
4793 return 0;
4794
4795 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4796 return -EINVAL;
4797
4798 /* TODO: This is not properly updating schedstats */
4799
286549dc 4800 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
4801 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4802}
0ec8aa00
PZ
4803
4804/*
4805 * Requeue a task on a given node and accurately track the number of NUMA
4806 * tasks on the runqueues
4807 */
4808void sched_setnuma(struct task_struct *p, int nid)
4809{
4810 struct rq *rq;
4811 unsigned long flags;
da0c1e65 4812 bool queued, running;
0ec8aa00
PZ
4813
4814 rq = task_rq_lock(p, &flags);
da0c1e65 4815 queued = task_on_rq_queued(p);
0ec8aa00
PZ
4816 running = task_current(rq, p);
4817
da0c1e65 4818 if (queued)
0ec8aa00
PZ
4819 dequeue_task(rq, p, 0);
4820 if (running)
f3cd1c4e 4821 put_prev_task(rq, p);
0ec8aa00
PZ
4822
4823 p->numa_preferred_nid = nid;
0ec8aa00
PZ
4824
4825 if (running)
4826 p->sched_class->set_curr_task(rq);
da0c1e65 4827 if (queued)
0ec8aa00
PZ
4828 enqueue_task(rq, p, 0);
4829 task_rq_unlock(rq, p, &flags);
4830}
e6628d5b
MG
4831#endif
4832
1da177e4 4833/*
969c7921
TH
4834 * migration_cpu_stop - this will be executed by a highprio stopper thread
4835 * and performs thread migration by bumping thread off CPU then
4836 * 'pushing' onto another runqueue.
1da177e4 4837 */
969c7921 4838static int migration_cpu_stop(void *data)
1da177e4 4839{
969c7921 4840 struct migration_arg *arg = data;
f7b4cddc 4841
969c7921
TH
4842 /*
4843 * The original target cpu might have gone down and we might
4844 * be on another cpu but it doesn't matter.
4845 */
f7b4cddc 4846 local_irq_disable();
5cd038f5
LJ
4847 /*
4848 * We need to explicitly wake pending tasks before running
4849 * __migrate_task() such that we will not miss enforcing cpus_allowed
4850 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
4851 */
4852 sched_ttwu_pending();
969c7921 4853 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 4854 local_irq_enable();
1da177e4 4855 return 0;
f7b4cddc
ON
4856}
4857
1da177e4 4858#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 4859
054b9108 4860/*
48c5ccae
PZ
4861 * Ensures that the idle task is using init_mm right before its cpu goes
4862 * offline.
054b9108 4863 */
48c5ccae 4864void idle_task_exit(void)
1da177e4 4865{
48c5ccae 4866 struct mm_struct *mm = current->active_mm;
e76bd8d9 4867
48c5ccae 4868 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 4869
a53efe5f 4870 if (mm != &init_mm) {
48c5ccae 4871 switch_mm(mm, &init_mm, current);
a53efe5f
MS
4872 finish_arch_post_lock_switch();
4873 }
48c5ccae 4874 mmdrop(mm);
1da177e4
LT
4875}
4876
4877/*
5d180232
PZ
4878 * Since this CPU is going 'away' for a while, fold any nr_active delta
4879 * we might have. Assumes we're called after migrate_tasks() so that the
4880 * nr_active count is stable.
4881 *
4882 * Also see the comment "Global load-average calculations".
1da177e4 4883 */
5d180232 4884static void calc_load_migrate(struct rq *rq)
1da177e4 4885{
5d180232
PZ
4886 long delta = calc_load_fold_active(rq);
4887 if (delta)
4888 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
4889}
4890
3f1d2a31
PZ
4891static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4892{
4893}
4894
4895static const struct sched_class fake_sched_class = {
4896 .put_prev_task = put_prev_task_fake,
4897};
4898
4899static struct task_struct fake_task = {
4900 /*
4901 * Avoid pull_{rt,dl}_task()
4902 */
4903 .prio = MAX_PRIO + 1,
4904 .sched_class = &fake_sched_class,
4905};
4906
48f24c4d 4907/*
48c5ccae
PZ
4908 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4909 * try_to_wake_up()->select_task_rq().
4910 *
4911 * Called with rq->lock held even though we'er in stop_machine() and
4912 * there's no concurrency possible, we hold the required locks anyway
4913 * because of lock validation efforts.
1da177e4 4914 */
48c5ccae 4915static void migrate_tasks(unsigned int dead_cpu)
1da177e4 4916{
70b97a7f 4917 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
4918 struct task_struct *next, *stop = rq->stop;
4919 int dest_cpu;
1da177e4
LT
4920
4921 /*
48c5ccae
PZ
4922 * Fudge the rq selection such that the below task selection loop
4923 * doesn't get stuck on the currently eligible stop task.
4924 *
4925 * We're currently inside stop_machine() and the rq is either stuck
4926 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4927 * either way we should never end up calling schedule() until we're
4928 * done here.
1da177e4 4929 */
48c5ccae 4930 rq->stop = NULL;
48f24c4d 4931
77bd3970
FW
4932 /*
4933 * put_prev_task() and pick_next_task() sched
4934 * class method both need to have an up-to-date
4935 * value of rq->clock[_task]
4936 */
4937 update_rq_clock(rq);
4938
dd41f596 4939 for ( ; ; ) {
48c5ccae
PZ
4940 /*
4941 * There's this thread running, bail when that's the only
4942 * remaining thread.
4943 */
4944 if (rq->nr_running == 1)
dd41f596 4945 break;
48c5ccae 4946
3f1d2a31 4947 next = pick_next_task(rq, &fake_task);
48c5ccae 4948 BUG_ON(!next);
79c53799 4949 next->sched_class->put_prev_task(rq, next);
e692ab53 4950
48c5ccae
PZ
4951 /* Find suitable destination for @next, with force if needed. */
4952 dest_cpu = select_fallback_rq(dead_cpu, next);
4953 raw_spin_unlock(&rq->lock);
4954
4955 __migrate_task(next, dead_cpu, dest_cpu);
4956
4957 raw_spin_lock(&rq->lock);
1da177e4 4958 }
dce48a84 4959
48c5ccae 4960 rq->stop = stop;
dce48a84 4961}
48c5ccae 4962
1da177e4
LT
4963#endif /* CONFIG_HOTPLUG_CPU */
4964
e692ab53
NP
4965#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4966
4967static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
4968 {
4969 .procname = "sched_domain",
c57baf1e 4970 .mode = 0555,
e0361851 4971 },
56992309 4972 {}
e692ab53
NP
4973};
4974
4975static struct ctl_table sd_ctl_root[] = {
e0361851
AD
4976 {
4977 .procname = "kernel",
c57baf1e 4978 .mode = 0555,
e0361851
AD
4979 .child = sd_ctl_dir,
4980 },
56992309 4981 {}
e692ab53
NP
4982};
4983
4984static struct ctl_table *sd_alloc_ctl_entry(int n)
4985{
4986 struct ctl_table *entry =
5cf9f062 4987 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 4988
e692ab53
NP
4989 return entry;
4990}
4991
6382bc90
MM
4992static void sd_free_ctl_entry(struct ctl_table **tablep)
4993{
cd790076 4994 struct ctl_table *entry;
6382bc90 4995
cd790076
MM
4996 /*
4997 * In the intermediate directories, both the child directory and
4998 * procname are dynamically allocated and could fail but the mode
41a2d6cf 4999 * will always be set. In the lowest directory the names are
cd790076
MM
5000 * static strings and all have proc handlers.
5001 */
5002 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5003 if (entry->child)
5004 sd_free_ctl_entry(&entry->child);
cd790076
MM
5005 if (entry->proc_handler == NULL)
5006 kfree(entry->procname);
5007 }
6382bc90
MM
5008
5009 kfree(*tablep);
5010 *tablep = NULL;
5011}
5012
201c373e 5013static int min_load_idx = 0;
fd9b86d3 5014static int max_load_idx = CPU_LOAD_IDX_MAX-1;
201c373e 5015
e692ab53 5016static void
e0361851 5017set_table_entry(struct ctl_table *entry,
e692ab53 5018 const char *procname, void *data, int maxlen,
201c373e
NK
5019 umode_t mode, proc_handler *proc_handler,
5020 bool load_idx)
e692ab53 5021{
e692ab53
NP
5022 entry->procname = procname;
5023 entry->data = data;
5024 entry->maxlen = maxlen;
5025 entry->mode = mode;
5026 entry->proc_handler = proc_handler;
201c373e
NK
5027
5028 if (load_idx) {
5029 entry->extra1 = &min_load_idx;
5030 entry->extra2 = &max_load_idx;
5031 }
e692ab53
NP
5032}
5033
5034static struct ctl_table *
5035sd_alloc_ctl_domain_table(struct sched_domain *sd)
5036{
37e6bae8 5037 struct ctl_table *table = sd_alloc_ctl_entry(14);
e692ab53 5038
ad1cdc1d
MM
5039 if (table == NULL)
5040 return NULL;
5041
e0361851 5042 set_table_entry(&table[0], "min_interval", &sd->min_interval,
201c373e 5043 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 5044 set_table_entry(&table[1], "max_interval", &sd->max_interval,
201c373e 5045 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 5046 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
201c373e 5047 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5048 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
201c373e 5049 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5050 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
201c373e 5051 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5052 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
201c373e 5053 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5054 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
201c373e 5055 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5056 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
201c373e 5057 sizeof(int), 0644, proc_dointvec_minmax, false);
e0361851 5058 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
201c373e 5059 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 5060 set_table_entry(&table[9], "cache_nice_tries",
e692ab53 5061 &sd->cache_nice_tries,
201c373e 5062 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 5063 set_table_entry(&table[10], "flags", &sd->flags,
201c373e 5064 sizeof(int), 0644, proc_dointvec_minmax, false);
37e6bae8
AS
5065 set_table_entry(&table[11], "max_newidle_lb_cost",
5066 &sd->max_newidle_lb_cost,
5067 sizeof(long), 0644, proc_doulongvec_minmax, false);
5068 set_table_entry(&table[12], "name", sd->name,
201c373e 5069 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
37e6bae8 5070 /* &table[13] is terminator */
e692ab53
NP
5071
5072 return table;
5073}
5074
be7002e6 5075static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5076{
5077 struct ctl_table *entry, *table;
5078 struct sched_domain *sd;
5079 int domain_num = 0, i;
5080 char buf[32];
5081
5082 for_each_domain(cpu, sd)
5083 domain_num++;
5084 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5085 if (table == NULL)
5086 return NULL;
e692ab53
NP
5087
5088 i = 0;
5089 for_each_domain(cpu, sd) {
5090 snprintf(buf, 32, "domain%d", i);
e692ab53 5091 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5092 entry->mode = 0555;
e692ab53
NP
5093 entry->child = sd_alloc_ctl_domain_table(sd);
5094 entry++;
5095 i++;
5096 }
5097 return table;
5098}
5099
5100static struct ctl_table_header *sd_sysctl_header;
6382bc90 5101static void register_sched_domain_sysctl(void)
e692ab53 5102{
6ad4c188 5103 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5104 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5105 char buf[32];
5106
7378547f
MM
5107 WARN_ON(sd_ctl_dir[0].child);
5108 sd_ctl_dir[0].child = entry;
5109
ad1cdc1d
MM
5110 if (entry == NULL)
5111 return;
5112
6ad4c188 5113 for_each_possible_cpu(i) {
e692ab53 5114 snprintf(buf, 32, "cpu%d", i);
e692ab53 5115 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5116 entry->mode = 0555;
e692ab53 5117 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5118 entry++;
e692ab53 5119 }
7378547f
MM
5120
5121 WARN_ON(sd_sysctl_header);
e692ab53
NP
5122 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5123}
6382bc90 5124
7378547f 5125/* may be called multiple times per register */
6382bc90
MM
5126static void unregister_sched_domain_sysctl(void)
5127{
7378547f
MM
5128 if (sd_sysctl_header)
5129 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5130 sd_sysctl_header = NULL;
7378547f
MM
5131 if (sd_ctl_dir[0].child)
5132 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5133}
e692ab53 5134#else
6382bc90
MM
5135static void register_sched_domain_sysctl(void)
5136{
5137}
5138static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5139{
5140}
5141#endif
5142
1f11eb6a
GH
5143static void set_rq_online(struct rq *rq)
5144{
5145 if (!rq->online) {
5146 const struct sched_class *class;
5147
c6c4927b 5148 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5149 rq->online = 1;
5150
5151 for_each_class(class) {
5152 if (class->rq_online)
5153 class->rq_online(rq);
5154 }
5155 }
5156}
5157
5158static void set_rq_offline(struct rq *rq)
5159{
5160 if (rq->online) {
5161 const struct sched_class *class;
5162
5163 for_each_class(class) {
5164 if (class->rq_offline)
5165 class->rq_offline(rq);
5166 }
5167
c6c4927b 5168 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5169 rq->online = 0;
5170 }
5171}
5172
1da177e4
LT
5173/*
5174 * migration_call - callback that gets triggered when a CPU is added.
5175 * Here we can start up the necessary migration thread for the new CPU.
5176 */
0db0628d 5177static int
48f24c4d 5178migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5179{
48f24c4d 5180 int cpu = (long)hcpu;
1da177e4 5181 unsigned long flags;
969c7921 5182 struct rq *rq = cpu_rq(cpu);
1da177e4 5183
48c5ccae 5184 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 5185
1da177e4 5186 case CPU_UP_PREPARE:
a468d389 5187 rq->calc_load_update = calc_load_update;
1da177e4 5188 break;
48f24c4d 5189
1da177e4 5190 case CPU_ONLINE:
1f94ef59 5191 /* Update our root-domain */
05fa785c 5192 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5193 if (rq->rd) {
c6c4927b 5194 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5195
5196 set_rq_online(rq);
1f94ef59 5197 }
05fa785c 5198 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5199 break;
48f24c4d 5200
1da177e4 5201#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5202 case CPU_DYING:
317f3941 5203 sched_ttwu_pending();
57d885fe 5204 /* Update our root-domain */
05fa785c 5205 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5206 if (rq->rd) {
c6c4927b 5207 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5208 set_rq_offline(rq);
57d885fe 5209 }
48c5ccae
PZ
5210 migrate_tasks(cpu);
5211 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5212 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 5213 break;
48c5ccae 5214
5d180232 5215 case CPU_DEAD:
f319da0c 5216 calc_load_migrate(rq);
57d885fe 5217 break;
1da177e4
LT
5218#endif
5219 }
49c022e6
PZ
5220
5221 update_max_interval();
5222
1da177e4
LT
5223 return NOTIFY_OK;
5224}
5225
f38b0820
PM
5226/*
5227 * Register at high priority so that task migration (migrate_all_tasks)
5228 * happens before everything else. This has to be lower priority than
cdd6c482 5229 * the notifier in the perf_event subsystem, though.
1da177e4 5230 */
0db0628d 5231static struct notifier_block migration_notifier = {
1da177e4 5232 .notifier_call = migration_call,
50a323b7 5233 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5234};
5235
a803f026
CM
5236static void __cpuinit set_cpu_rq_start_time(void)
5237{
5238 int cpu = smp_processor_id();
5239 struct rq *rq = cpu_rq(cpu);
5240 rq->age_stamp = sched_clock_cpu(cpu);
5241}
5242
0db0628d 5243static int sched_cpu_active(struct notifier_block *nfb,
3a101d05
TH
5244 unsigned long action, void *hcpu)
5245{
5246 switch (action & ~CPU_TASKS_FROZEN) {
a803f026
CM
5247 case CPU_STARTING:
5248 set_cpu_rq_start_time();
5249 return NOTIFY_OK;
3a101d05
TH
5250 case CPU_DOWN_FAILED:
5251 set_cpu_active((long)hcpu, true);
5252 return NOTIFY_OK;
5253 default:
5254 return NOTIFY_DONE;
5255 }
5256}
5257
0db0628d 5258static int sched_cpu_inactive(struct notifier_block *nfb,
3a101d05
TH
5259 unsigned long action, void *hcpu)
5260{
de212f18
PZ
5261 unsigned long flags;
5262 long cpu = (long)hcpu;
f10e00f4 5263 struct dl_bw *dl_b;
de212f18 5264
3a101d05
TH
5265 switch (action & ~CPU_TASKS_FROZEN) {
5266 case CPU_DOWN_PREPARE:
de212f18
PZ
5267 set_cpu_active(cpu, false);
5268
5269 /* explicitly allow suspend */
5270 if (!(action & CPU_TASKS_FROZEN)) {
de212f18
PZ
5271 bool overflow;
5272 int cpus;
5273
f10e00f4
KT
5274 rcu_read_lock_sched();
5275 dl_b = dl_bw_of(cpu);
5276
de212f18
PZ
5277 raw_spin_lock_irqsave(&dl_b->lock, flags);
5278 cpus = dl_bw_cpus(cpu);
5279 overflow = __dl_overflow(dl_b, cpus, 0, 0);
5280 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5281
f10e00f4
KT
5282 rcu_read_unlock_sched();
5283
de212f18
PZ
5284 if (overflow)
5285 return notifier_from_errno(-EBUSY);
5286 }
3a101d05 5287 return NOTIFY_OK;
3a101d05 5288 }
de212f18
PZ
5289
5290 return NOTIFY_DONE;
3a101d05
TH
5291}
5292
7babe8db 5293static int __init migration_init(void)
1da177e4
LT
5294{
5295 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5296 int err;
48f24c4d 5297
3a101d05 5298 /* Initialize migration for the boot CPU */
07dccf33
AM
5299 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5300 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5301 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5302 register_cpu_notifier(&migration_notifier);
7babe8db 5303
3a101d05
TH
5304 /* Register cpu active notifiers */
5305 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5306 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5307
a004cd42 5308 return 0;
1da177e4 5309}
7babe8db 5310early_initcall(migration_init);
1da177e4
LT
5311#endif
5312
5313#ifdef CONFIG_SMP
476f3534 5314
4cb98839
PZ
5315static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5316
3e9830dc 5317#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5318
d039ac60 5319static __read_mostly int sched_debug_enabled;
f6630114 5320
d039ac60 5321static int __init sched_debug_setup(char *str)
f6630114 5322{
d039ac60 5323 sched_debug_enabled = 1;
f6630114
MT
5324
5325 return 0;
5326}
d039ac60
PZ
5327early_param("sched_debug", sched_debug_setup);
5328
5329static inline bool sched_debug(void)
5330{
5331 return sched_debug_enabled;
5332}
f6630114 5333
7c16ec58 5334static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5335 struct cpumask *groupmask)
1da177e4 5336{
4dcf6aff 5337 struct sched_group *group = sd->groups;
434d53b0 5338 char str[256];
1da177e4 5339
968ea6d8 5340 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 5341 cpumask_clear(groupmask);
4dcf6aff
IM
5342
5343 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5344
5345 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5346 printk("does not load-balance\n");
4dcf6aff 5347 if (sd->parent)
3df0fc5b
PZ
5348 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5349 " has parent");
4dcf6aff 5350 return -1;
41c7ce9a
NP
5351 }
5352
3df0fc5b 5353 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 5354
758b2cdc 5355 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5356 printk(KERN_ERR "ERROR: domain->span does not contain "
5357 "CPU%d\n", cpu);
4dcf6aff 5358 }
758b2cdc 5359 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5360 printk(KERN_ERR "ERROR: domain->groups does not contain"
5361 " CPU%d\n", cpu);
4dcf6aff 5362 }
1da177e4 5363
4dcf6aff 5364 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5365 do {
4dcf6aff 5366 if (!group) {
3df0fc5b
PZ
5367 printk("\n");
5368 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5369 break;
5370 }
5371
c3decf0d 5372 /*
63b2ca30
NP
5373 * Even though we initialize ->capacity to something semi-sane,
5374 * we leave capacity_orig unset. This allows us to detect if
c3decf0d
PZ
5375 * domain iteration is still funny without causing /0 traps.
5376 */
63b2ca30 5377 if (!group->sgc->capacity_orig) {
3df0fc5b 5378 printk(KERN_CONT "\n");
63b2ca30 5379 printk(KERN_ERR "ERROR: domain->cpu_capacity not set\n");
4dcf6aff
IM
5380 break;
5381 }
1da177e4 5382
758b2cdc 5383 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5384 printk(KERN_CONT "\n");
5385 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5386 break;
5387 }
1da177e4 5388
cb83b629
PZ
5389 if (!(sd->flags & SD_OVERLAP) &&
5390 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5391 printk(KERN_CONT "\n");
5392 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5393 break;
5394 }
1da177e4 5395
758b2cdc 5396 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5397
968ea6d8 5398 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 5399
3df0fc5b 5400 printk(KERN_CONT " %s", str);
ca8ce3d0 5401 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
63b2ca30
NP
5402 printk(KERN_CONT " (cpu_capacity = %d)",
5403 group->sgc->capacity);
381512cf 5404 }
1da177e4 5405
4dcf6aff
IM
5406 group = group->next;
5407 } while (group != sd->groups);
3df0fc5b 5408 printk(KERN_CONT "\n");
1da177e4 5409
758b2cdc 5410 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5411 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5412
758b2cdc
RR
5413 if (sd->parent &&
5414 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5415 printk(KERN_ERR "ERROR: parent span is not a superset "
5416 "of domain->span\n");
4dcf6aff
IM
5417 return 0;
5418}
1da177e4 5419
4dcf6aff
IM
5420static void sched_domain_debug(struct sched_domain *sd, int cpu)
5421{
5422 int level = 0;
1da177e4 5423
d039ac60 5424 if (!sched_debug_enabled)
f6630114
MT
5425 return;
5426
4dcf6aff
IM
5427 if (!sd) {
5428 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5429 return;
5430 }
1da177e4 5431
4dcf6aff
IM
5432 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5433
5434 for (;;) {
4cb98839 5435 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5436 break;
1da177e4
LT
5437 level++;
5438 sd = sd->parent;
33859f7f 5439 if (!sd)
4dcf6aff
IM
5440 break;
5441 }
1da177e4 5442}
6d6bc0ad 5443#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5444# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5445static inline bool sched_debug(void)
5446{
5447 return false;
5448}
6d6bc0ad 5449#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5450
1a20ff27 5451static int sd_degenerate(struct sched_domain *sd)
245af2c7 5452{
758b2cdc 5453 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5454 return 1;
5455
5456 /* Following flags need at least 2 groups */
5457 if (sd->flags & (SD_LOAD_BALANCE |
5458 SD_BALANCE_NEWIDLE |
5459 SD_BALANCE_FORK |
89c4710e 5460 SD_BALANCE_EXEC |
5d4dfddd 5461 SD_SHARE_CPUCAPACITY |
d77b3ed5
VG
5462 SD_SHARE_PKG_RESOURCES |
5463 SD_SHARE_POWERDOMAIN)) {
245af2c7
SS
5464 if (sd->groups != sd->groups->next)
5465 return 0;
5466 }
5467
5468 /* Following flags don't use groups */
c88d5910 5469 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5470 return 0;
5471
5472 return 1;
5473}
5474
48f24c4d
IM
5475static int
5476sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5477{
5478 unsigned long cflags = sd->flags, pflags = parent->flags;
5479
5480 if (sd_degenerate(parent))
5481 return 1;
5482
758b2cdc 5483 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5484 return 0;
5485
245af2c7
SS
5486 /* Flags needing groups don't count if only 1 group in parent */
5487 if (parent->groups == parent->groups->next) {
5488 pflags &= ~(SD_LOAD_BALANCE |
5489 SD_BALANCE_NEWIDLE |
5490 SD_BALANCE_FORK |
89c4710e 5491 SD_BALANCE_EXEC |
5d4dfddd 5492 SD_SHARE_CPUCAPACITY |
10866e62 5493 SD_SHARE_PKG_RESOURCES |
d77b3ed5
VG
5494 SD_PREFER_SIBLING |
5495 SD_SHARE_POWERDOMAIN);
5436499e
KC
5496 if (nr_node_ids == 1)
5497 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5498 }
5499 if (~cflags & pflags)
5500 return 0;
5501
5502 return 1;
5503}
5504
dce840a0 5505static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5506{
dce840a0 5507 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5508
68e74568 5509 cpupri_cleanup(&rd->cpupri);
6bfd6d72 5510 cpudl_cleanup(&rd->cpudl);
1baca4ce 5511 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5512 free_cpumask_var(rd->rto_mask);
5513 free_cpumask_var(rd->online);
5514 free_cpumask_var(rd->span);
5515 kfree(rd);
5516}
5517
57d885fe
GH
5518static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5519{
a0490fa3 5520 struct root_domain *old_rd = NULL;
57d885fe 5521 unsigned long flags;
57d885fe 5522
05fa785c 5523 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5524
5525 if (rq->rd) {
a0490fa3 5526 old_rd = rq->rd;
57d885fe 5527
c6c4927b 5528 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5529 set_rq_offline(rq);
57d885fe 5530
c6c4927b 5531 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5532
a0490fa3 5533 /*
0515973f 5534 * If we dont want to free the old_rd yet then
a0490fa3
IM
5535 * set old_rd to NULL to skip the freeing later
5536 * in this function:
5537 */
5538 if (!atomic_dec_and_test(&old_rd->refcount))
5539 old_rd = NULL;
57d885fe
GH
5540 }
5541
5542 atomic_inc(&rd->refcount);
5543 rq->rd = rd;
5544
c6c4927b 5545 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5546 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5547 set_rq_online(rq);
57d885fe 5548
05fa785c 5549 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5550
5551 if (old_rd)
dce840a0 5552 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5553}
5554
68c38fc3 5555static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5556{
5557 memset(rd, 0, sizeof(*rd));
5558
68c38fc3 5559 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5560 goto out;
68c38fc3 5561 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5562 goto free_span;
1baca4ce 5563 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
c6c4927b 5564 goto free_online;
1baca4ce
JL
5565 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5566 goto free_dlo_mask;
6e0534f2 5567
332ac17e 5568 init_dl_bw(&rd->dl_bw);
6bfd6d72
JL
5569 if (cpudl_init(&rd->cpudl) != 0)
5570 goto free_dlo_mask;
332ac17e 5571
68c38fc3 5572 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5573 goto free_rto_mask;
c6c4927b 5574 return 0;
6e0534f2 5575
68e74568
RR
5576free_rto_mask:
5577 free_cpumask_var(rd->rto_mask);
1baca4ce
JL
5578free_dlo_mask:
5579 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5580free_online:
5581 free_cpumask_var(rd->online);
5582free_span:
5583 free_cpumask_var(rd->span);
0c910d28 5584out:
c6c4927b 5585 return -ENOMEM;
57d885fe
GH
5586}
5587
029632fb
PZ
5588/*
5589 * By default the system creates a single root-domain with all cpus as
5590 * members (mimicking the global state we have today).
5591 */
5592struct root_domain def_root_domain;
5593
57d885fe
GH
5594static void init_defrootdomain(void)
5595{
68c38fc3 5596 init_rootdomain(&def_root_domain);
c6c4927b 5597
57d885fe
GH
5598 atomic_set(&def_root_domain.refcount, 1);
5599}
5600
dc938520 5601static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5602{
5603 struct root_domain *rd;
5604
5605 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5606 if (!rd)
5607 return NULL;
5608
68c38fc3 5609 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5610 kfree(rd);
5611 return NULL;
5612 }
57d885fe
GH
5613
5614 return rd;
5615}
5616
63b2ca30 5617static void free_sched_groups(struct sched_group *sg, int free_sgc)
e3589f6c
PZ
5618{
5619 struct sched_group *tmp, *first;
5620
5621 if (!sg)
5622 return;
5623
5624 first = sg;
5625 do {
5626 tmp = sg->next;
5627
63b2ca30
NP
5628 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5629 kfree(sg->sgc);
e3589f6c
PZ
5630
5631 kfree(sg);
5632 sg = tmp;
5633 } while (sg != first);
5634}
5635
dce840a0
PZ
5636static void free_sched_domain(struct rcu_head *rcu)
5637{
5638 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5639
5640 /*
5641 * If its an overlapping domain it has private groups, iterate and
5642 * nuke them all.
5643 */
5644 if (sd->flags & SD_OVERLAP) {
5645 free_sched_groups(sd->groups, 1);
5646 } else if (atomic_dec_and_test(&sd->groups->ref)) {
63b2ca30 5647 kfree(sd->groups->sgc);
dce840a0 5648 kfree(sd->groups);
9c3f75cb 5649 }
dce840a0
PZ
5650 kfree(sd);
5651}
5652
5653static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5654{
5655 call_rcu(&sd->rcu, free_sched_domain);
5656}
5657
5658static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5659{
5660 for (; sd; sd = sd->parent)
5661 destroy_sched_domain(sd, cpu);
5662}
5663
518cd623
PZ
5664/*
5665 * Keep a special pointer to the highest sched_domain that has
5666 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5667 * allows us to avoid some pointer chasing select_idle_sibling().
5668 *
5669 * Also keep a unique ID per domain (we use the first cpu number in
5670 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5671 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5672 */
5673DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5674DEFINE_PER_CPU(int, sd_llc_size);
518cd623 5675DEFINE_PER_CPU(int, sd_llc_id);
fb13c7ee 5676DEFINE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
5677DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5678DEFINE_PER_CPU(struct sched_domain *, sd_asym);
518cd623
PZ
5679
5680static void update_top_cache_domain(int cpu)
5681{
5682 struct sched_domain *sd;
5d4cf996 5683 struct sched_domain *busy_sd = NULL;
518cd623 5684 int id = cpu;
7d9ffa89 5685 int size = 1;
518cd623
PZ
5686
5687 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 5688 if (sd) {
518cd623 5689 id = cpumask_first(sched_domain_span(sd));
7d9ffa89 5690 size = cpumask_weight(sched_domain_span(sd));
5d4cf996 5691 busy_sd = sd->parent; /* sd_busy */
7d9ffa89 5692 }
5d4cf996 5693 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
518cd623
PZ
5694
5695 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 5696 per_cpu(sd_llc_size, cpu) = size;
518cd623 5697 per_cpu(sd_llc_id, cpu) = id;
fb13c7ee
MG
5698
5699 sd = lowest_flag_domain(cpu, SD_NUMA);
5700 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
37dc6b50
PM
5701
5702 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5703 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
518cd623
PZ
5704}
5705
1da177e4 5706/*
0eab9146 5707 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5708 * hold the hotplug lock.
5709 */
0eab9146
IM
5710static void
5711cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5712{
70b97a7f 5713 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5714 struct sched_domain *tmp;
5715
5716 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5717 for (tmp = sd; tmp; ) {
245af2c7
SS
5718 struct sched_domain *parent = tmp->parent;
5719 if (!parent)
5720 break;
f29c9b1c 5721
1a848870 5722 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5723 tmp->parent = parent->parent;
1a848870
SS
5724 if (parent->parent)
5725 parent->parent->child = tmp;
10866e62
PZ
5726 /*
5727 * Transfer SD_PREFER_SIBLING down in case of a
5728 * degenerate parent; the spans match for this
5729 * so the property transfers.
5730 */
5731 if (parent->flags & SD_PREFER_SIBLING)
5732 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 5733 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5734 } else
5735 tmp = tmp->parent;
245af2c7
SS
5736 }
5737
1a848870 5738 if (sd && sd_degenerate(sd)) {
dce840a0 5739 tmp = sd;
245af2c7 5740 sd = sd->parent;
dce840a0 5741 destroy_sched_domain(tmp, cpu);
1a848870
SS
5742 if (sd)
5743 sd->child = NULL;
5744 }
1da177e4 5745
4cb98839 5746 sched_domain_debug(sd, cpu);
1da177e4 5747
57d885fe 5748 rq_attach_root(rq, rd);
dce840a0 5749 tmp = rq->sd;
674311d5 5750 rcu_assign_pointer(rq->sd, sd);
dce840a0 5751 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5752
5753 update_top_cache_domain(cpu);
1da177e4
LT
5754}
5755
5756/* cpus with isolated domains */
dcc30a35 5757static cpumask_var_t cpu_isolated_map;
1da177e4
LT
5758
5759/* Setup the mask of cpus configured for isolated domains */
5760static int __init isolated_cpu_setup(char *str)
5761{
bdddd296 5762 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5763 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5764 return 1;
5765}
5766
8927f494 5767__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5768
49a02c51 5769struct s_data {
21d42ccf 5770 struct sched_domain ** __percpu sd;
49a02c51
AH
5771 struct root_domain *rd;
5772};
5773
2109b99e 5774enum s_alloc {
2109b99e 5775 sa_rootdomain,
21d42ccf 5776 sa_sd,
dce840a0 5777 sa_sd_storage,
2109b99e
AH
5778 sa_none,
5779};
5780
c1174876
PZ
5781/*
5782 * Build an iteration mask that can exclude certain CPUs from the upwards
5783 * domain traversal.
5784 *
5785 * Asymmetric node setups can result in situations where the domain tree is of
5786 * unequal depth, make sure to skip domains that already cover the entire
5787 * range.
5788 *
5789 * In that case build_sched_domains() will have terminated the iteration early
5790 * and our sibling sd spans will be empty. Domains should always include the
5791 * cpu they're built on, so check that.
5792 *
5793 */
5794static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5795{
5796 const struct cpumask *span = sched_domain_span(sd);
5797 struct sd_data *sdd = sd->private;
5798 struct sched_domain *sibling;
5799 int i;
5800
5801 for_each_cpu(i, span) {
5802 sibling = *per_cpu_ptr(sdd->sd, i);
5803 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5804 continue;
5805
5806 cpumask_set_cpu(i, sched_group_mask(sg));
5807 }
5808}
5809
5810/*
5811 * Return the canonical balance cpu for this group, this is the first cpu
5812 * of this group that's also in the iteration mask.
5813 */
5814int group_balance_cpu(struct sched_group *sg)
5815{
5816 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5817}
5818
e3589f6c
PZ
5819static int
5820build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5821{
5822 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5823 const struct cpumask *span = sched_domain_span(sd);
5824 struct cpumask *covered = sched_domains_tmpmask;
5825 struct sd_data *sdd = sd->private;
aaecac4a 5826 struct sched_domain *sibling;
e3589f6c
PZ
5827 int i;
5828
5829 cpumask_clear(covered);
5830
5831 for_each_cpu(i, span) {
5832 struct cpumask *sg_span;
5833
5834 if (cpumask_test_cpu(i, covered))
5835 continue;
5836
aaecac4a 5837 sibling = *per_cpu_ptr(sdd->sd, i);
c1174876
PZ
5838
5839 /* See the comment near build_group_mask(). */
aaecac4a 5840 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
c1174876
PZ
5841 continue;
5842
e3589f6c 5843 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 5844 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
5845
5846 if (!sg)
5847 goto fail;
5848
5849 sg_span = sched_group_cpus(sg);
aaecac4a
ZZ
5850 if (sibling->child)
5851 cpumask_copy(sg_span, sched_domain_span(sibling->child));
5852 else
e3589f6c
PZ
5853 cpumask_set_cpu(i, sg_span);
5854
5855 cpumask_or(covered, covered, sg_span);
5856
63b2ca30
NP
5857 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
5858 if (atomic_inc_return(&sg->sgc->ref) == 1)
c1174876
PZ
5859 build_group_mask(sd, sg);
5860
c3decf0d 5861 /*
63b2ca30 5862 * Initialize sgc->capacity such that even if we mess up the
c3decf0d
PZ
5863 * domains and no possible iteration will get us here, we won't
5864 * die on a /0 trap.
5865 */
ca8ce3d0 5866 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
63b2ca30 5867 sg->sgc->capacity_orig = sg->sgc->capacity;
e3589f6c 5868
c1174876
PZ
5869 /*
5870 * Make sure the first group of this domain contains the
5871 * canonical balance cpu. Otherwise the sched_domain iteration
5872 * breaks. See update_sg_lb_stats().
5873 */
74a5ce20 5874 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 5875 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
5876 groups = sg;
5877
5878 if (!first)
5879 first = sg;
5880 if (last)
5881 last->next = sg;
5882 last = sg;
5883 last->next = first;
5884 }
5885 sd->groups = groups;
5886
5887 return 0;
5888
5889fail:
5890 free_sched_groups(first, 0);
5891
5892 return -ENOMEM;
5893}
5894
dce840a0 5895static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 5896{
dce840a0
PZ
5897 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5898 struct sched_domain *child = sd->child;
1da177e4 5899
dce840a0
PZ
5900 if (child)
5901 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 5902
9c3f75cb 5903 if (sg) {
dce840a0 5904 *sg = *per_cpu_ptr(sdd->sg, cpu);
63b2ca30
NP
5905 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
5906 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
9c3f75cb 5907 }
dce840a0
PZ
5908
5909 return cpu;
1e9f28fa 5910}
1e9f28fa 5911
01a08546 5912/*
dce840a0
PZ
5913 * build_sched_groups will build a circular linked list of the groups
5914 * covered by the given span, and will set each group's ->cpumask correctly,
ced549fa 5915 * and ->cpu_capacity to 0.
e3589f6c
PZ
5916 *
5917 * Assumes the sched_domain tree is fully constructed
01a08546 5918 */
e3589f6c
PZ
5919static int
5920build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 5921{
dce840a0
PZ
5922 struct sched_group *first = NULL, *last = NULL;
5923 struct sd_data *sdd = sd->private;
5924 const struct cpumask *span = sched_domain_span(sd);
f96225fd 5925 struct cpumask *covered;
dce840a0 5926 int i;
9c1cfda2 5927
e3589f6c
PZ
5928 get_group(cpu, sdd, &sd->groups);
5929 atomic_inc(&sd->groups->ref);
5930
0936629f 5931 if (cpu != cpumask_first(span))
e3589f6c
PZ
5932 return 0;
5933
f96225fd
PZ
5934 lockdep_assert_held(&sched_domains_mutex);
5935 covered = sched_domains_tmpmask;
5936
dce840a0 5937 cpumask_clear(covered);
6711cab4 5938
dce840a0
PZ
5939 for_each_cpu(i, span) {
5940 struct sched_group *sg;
cd08e923 5941 int group, j;
6711cab4 5942
dce840a0
PZ
5943 if (cpumask_test_cpu(i, covered))
5944 continue;
6711cab4 5945
cd08e923 5946 group = get_group(i, sdd, &sg);
c1174876 5947 cpumask_setall(sched_group_mask(sg));
0601a88d 5948
dce840a0
PZ
5949 for_each_cpu(j, span) {
5950 if (get_group(j, sdd, NULL) != group)
5951 continue;
0601a88d 5952
dce840a0
PZ
5953 cpumask_set_cpu(j, covered);
5954 cpumask_set_cpu(j, sched_group_cpus(sg));
5955 }
0601a88d 5956
dce840a0
PZ
5957 if (!first)
5958 first = sg;
5959 if (last)
5960 last->next = sg;
5961 last = sg;
5962 }
5963 last->next = first;
e3589f6c
PZ
5964
5965 return 0;
0601a88d 5966}
51888ca2 5967
89c4710e 5968/*
63b2ca30 5969 * Initialize sched groups cpu_capacity.
89c4710e 5970 *
63b2ca30 5971 * cpu_capacity indicates the capacity of sched group, which is used while
89c4710e 5972 * distributing the load between different sched groups in a sched domain.
63b2ca30
NP
5973 * Typically cpu_capacity for all the groups in a sched domain will be same
5974 * unless there are asymmetries in the topology. If there are asymmetries,
5975 * group having more cpu_capacity will pickup more load compared to the
5976 * group having less cpu_capacity.
89c4710e 5977 */
63b2ca30 5978static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
89c4710e 5979{
e3589f6c 5980 struct sched_group *sg = sd->groups;
89c4710e 5981
94c95ba6 5982 WARN_ON(!sg);
e3589f6c
PZ
5983
5984 do {
5985 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5986 sg = sg->next;
5987 } while (sg != sd->groups);
89c4710e 5988
c1174876 5989 if (cpu != group_balance_cpu(sg))
e3589f6c 5990 return;
aae6d3dd 5991
63b2ca30
NP
5992 update_group_capacity(sd, cpu);
5993 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
89c4710e
SS
5994}
5995
7c16ec58
MT
5996/*
5997 * Initializers for schedule domains
5998 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5999 */
6000
1d3504fc 6001static int default_relax_domain_level = -1;
60495e77 6002int sched_domain_level_max;
1d3504fc
HS
6003
6004static int __init setup_relax_domain_level(char *str)
6005{
a841f8ce
DS
6006 if (kstrtoint(str, 0, &default_relax_domain_level))
6007 pr_warn("Unable to set relax_domain_level\n");
30e0e178 6008
1d3504fc
HS
6009 return 1;
6010}
6011__setup("relax_domain_level=", setup_relax_domain_level);
6012
6013static void set_domain_attribute(struct sched_domain *sd,
6014 struct sched_domain_attr *attr)
6015{
6016 int request;
6017
6018 if (!attr || attr->relax_domain_level < 0) {
6019 if (default_relax_domain_level < 0)
6020 return;
6021 else
6022 request = default_relax_domain_level;
6023 } else
6024 request = attr->relax_domain_level;
6025 if (request < sd->level) {
6026 /* turn off idle balance on this domain */
c88d5910 6027 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6028 } else {
6029 /* turn on idle balance on this domain */
c88d5910 6030 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6031 }
6032}
6033
54ab4ff4
PZ
6034static void __sdt_free(const struct cpumask *cpu_map);
6035static int __sdt_alloc(const struct cpumask *cpu_map);
6036
2109b99e
AH
6037static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6038 const struct cpumask *cpu_map)
6039{
6040 switch (what) {
2109b99e 6041 case sa_rootdomain:
822ff793
PZ
6042 if (!atomic_read(&d->rd->refcount))
6043 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
6044 case sa_sd:
6045 free_percpu(d->sd); /* fall through */
dce840a0 6046 case sa_sd_storage:
54ab4ff4 6047 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
6048 case sa_none:
6049 break;
6050 }
6051}
3404c8d9 6052
2109b99e
AH
6053static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6054 const struct cpumask *cpu_map)
6055{
dce840a0
PZ
6056 memset(d, 0, sizeof(*d));
6057
54ab4ff4
PZ
6058 if (__sdt_alloc(cpu_map))
6059 return sa_sd_storage;
dce840a0
PZ
6060 d->sd = alloc_percpu(struct sched_domain *);
6061 if (!d->sd)
6062 return sa_sd_storage;
2109b99e 6063 d->rd = alloc_rootdomain();
dce840a0 6064 if (!d->rd)
21d42ccf 6065 return sa_sd;
2109b99e
AH
6066 return sa_rootdomain;
6067}
57d885fe 6068
dce840a0
PZ
6069/*
6070 * NULL the sd_data elements we've used to build the sched_domain and
6071 * sched_group structure so that the subsequent __free_domain_allocs()
6072 * will not free the data we're using.
6073 */
6074static void claim_allocations(int cpu, struct sched_domain *sd)
6075{
6076 struct sd_data *sdd = sd->private;
dce840a0
PZ
6077
6078 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6079 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6080
e3589f6c 6081 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 6082 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c 6083
63b2ca30
NP
6084 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6085 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
dce840a0
PZ
6086}
6087
cb83b629 6088#ifdef CONFIG_NUMA
cb83b629 6089static int sched_domains_numa_levels;
cb83b629
PZ
6090static int *sched_domains_numa_distance;
6091static struct cpumask ***sched_domains_numa_masks;
6092static int sched_domains_curr_level;
143e1e28 6093#endif
cb83b629 6094
143e1e28
VG
6095/*
6096 * SD_flags allowed in topology descriptions.
6097 *
5d4dfddd 6098 * SD_SHARE_CPUCAPACITY - describes SMT topologies
143e1e28
VG
6099 * SD_SHARE_PKG_RESOURCES - describes shared caches
6100 * SD_NUMA - describes NUMA topologies
d77b3ed5 6101 * SD_SHARE_POWERDOMAIN - describes shared power domain
143e1e28
VG
6102 *
6103 * Odd one out:
6104 * SD_ASYM_PACKING - describes SMT quirks
6105 */
6106#define TOPOLOGY_SD_FLAGS \
5d4dfddd 6107 (SD_SHARE_CPUCAPACITY | \
143e1e28
VG
6108 SD_SHARE_PKG_RESOURCES | \
6109 SD_NUMA | \
d77b3ed5
VG
6110 SD_ASYM_PACKING | \
6111 SD_SHARE_POWERDOMAIN)
cb83b629
PZ
6112
6113static struct sched_domain *
143e1e28 6114sd_init(struct sched_domain_topology_level *tl, int cpu)
cb83b629
PZ
6115{
6116 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
143e1e28
VG
6117 int sd_weight, sd_flags = 0;
6118
6119#ifdef CONFIG_NUMA
6120 /*
6121 * Ugly hack to pass state to sd_numa_mask()...
6122 */
6123 sched_domains_curr_level = tl->numa_level;
6124#endif
6125
6126 sd_weight = cpumask_weight(tl->mask(cpu));
6127
6128 if (tl->sd_flags)
6129 sd_flags = (*tl->sd_flags)();
6130 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6131 "wrong sd_flags in topology description\n"))
6132 sd_flags &= ~TOPOLOGY_SD_FLAGS;
cb83b629
PZ
6133
6134 *sd = (struct sched_domain){
6135 .min_interval = sd_weight,
6136 .max_interval = 2*sd_weight,
6137 .busy_factor = 32,
870a0bb5 6138 .imbalance_pct = 125,
143e1e28
VG
6139
6140 .cache_nice_tries = 0,
6141 .busy_idx = 0,
6142 .idle_idx = 0,
cb83b629
PZ
6143 .newidle_idx = 0,
6144 .wake_idx = 0,
6145 .forkexec_idx = 0,
6146
6147 .flags = 1*SD_LOAD_BALANCE
6148 | 1*SD_BALANCE_NEWIDLE
143e1e28
VG
6149 | 1*SD_BALANCE_EXEC
6150 | 1*SD_BALANCE_FORK
cb83b629 6151 | 0*SD_BALANCE_WAKE
143e1e28 6152 | 1*SD_WAKE_AFFINE
5d4dfddd 6153 | 0*SD_SHARE_CPUCAPACITY
cb83b629 6154 | 0*SD_SHARE_PKG_RESOURCES
143e1e28 6155 | 0*SD_SERIALIZE
cb83b629 6156 | 0*SD_PREFER_SIBLING
143e1e28
VG
6157 | 0*SD_NUMA
6158 | sd_flags
cb83b629 6159 ,
143e1e28 6160
cb83b629
PZ
6161 .last_balance = jiffies,
6162 .balance_interval = sd_weight,
143e1e28 6163 .smt_gain = 0,
2b4cfe64
JL
6164 .max_newidle_lb_cost = 0,
6165 .next_decay_max_lb_cost = jiffies,
143e1e28
VG
6166#ifdef CONFIG_SCHED_DEBUG
6167 .name = tl->name,
6168#endif
cb83b629 6169 };
cb83b629
PZ
6170
6171 /*
143e1e28 6172 * Convert topological properties into behaviour.
cb83b629 6173 */
143e1e28 6174
5d4dfddd 6175 if (sd->flags & SD_SHARE_CPUCAPACITY) {
143e1e28
VG
6176 sd->imbalance_pct = 110;
6177 sd->smt_gain = 1178; /* ~15% */
143e1e28
VG
6178
6179 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6180 sd->imbalance_pct = 117;
6181 sd->cache_nice_tries = 1;
6182 sd->busy_idx = 2;
6183
6184#ifdef CONFIG_NUMA
6185 } else if (sd->flags & SD_NUMA) {
6186 sd->cache_nice_tries = 2;
6187 sd->busy_idx = 3;
6188 sd->idle_idx = 2;
6189
6190 sd->flags |= SD_SERIALIZE;
6191 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6192 sd->flags &= ~(SD_BALANCE_EXEC |
6193 SD_BALANCE_FORK |
6194 SD_WAKE_AFFINE);
6195 }
6196
6197#endif
6198 } else {
6199 sd->flags |= SD_PREFER_SIBLING;
6200 sd->cache_nice_tries = 1;
6201 sd->busy_idx = 2;
6202 sd->idle_idx = 1;
6203 }
6204
6205 sd->private = &tl->data;
cb83b629
PZ
6206
6207 return sd;
6208}
6209
143e1e28
VG
6210/*
6211 * Topology list, bottom-up.
6212 */
6213static struct sched_domain_topology_level default_topology[] = {
6214#ifdef CONFIG_SCHED_SMT
6215 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6216#endif
6217#ifdef CONFIG_SCHED_MC
6218 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
143e1e28
VG
6219#endif
6220 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6221 { NULL, },
6222};
6223
6224struct sched_domain_topology_level *sched_domain_topology = default_topology;
6225
6226#define for_each_sd_topology(tl) \
6227 for (tl = sched_domain_topology; tl->mask; tl++)
6228
6229void set_sched_topology(struct sched_domain_topology_level *tl)
6230{
6231 sched_domain_topology = tl;
6232}
6233
6234#ifdef CONFIG_NUMA
6235
cb83b629
PZ
6236static const struct cpumask *sd_numa_mask(int cpu)
6237{
6238 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6239}
6240
d039ac60
PZ
6241static void sched_numa_warn(const char *str)
6242{
6243 static int done = false;
6244 int i,j;
6245
6246 if (done)
6247 return;
6248
6249 done = true;
6250
6251 printk(KERN_WARNING "ERROR: %s\n\n", str);
6252
6253 for (i = 0; i < nr_node_ids; i++) {
6254 printk(KERN_WARNING " ");
6255 for (j = 0; j < nr_node_ids; j++)
6256 printk(KERN_CONT "%02d ", node_distance(i,j));
6257 printk(KERN_CONT "\n");
6258 }
6259 printk(KERN_WARNING "\n");
6260}
6261
6262static bool find_numa_distance(int distance)
6263{
6264 int i;
6265
6266 if (distance == node_distance(0, 0))
6267 return true;
6268
6269 for (i = 0; i < sched_domains_numa_levels; i++) {
6270 if (sched_domains_numa_distance[i] == distance)
6271 return true;
6272 }
6273
6274 return false;
6275}
6276
cb83b629
PZ
6277static void sched_init_numa(void)
6278{
6279 int next_distance, curr_distance = node_distance(0, 0);
6280 struct sched_domain_topology_level *tl;
6281 int level = 0;
6282 int i, j, k;
6283
cb83b629
PZ
6284 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6285 if (!sched_domains_numa_distance)
6286 return;
6287
6288 /*
6289 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6290 * unique distances in the node_distance() table.
6291 *
6292 * Assumes node_distance(0,j) includes all distances in
6293 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6294 */
6295 next_distance = curr_distance;
6296 for (i = 0; i < nr_node_ids; i++) {
6297 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6298 for (k = 0; k < nr_node_ids; k++) {
6299 int distance = node_distance(i, k);
6300
6301 if (distance > curr_distance &&
6302 (distance < next_distance ||
6303 next_distance == curr_distance))
6304 next_distance = distance;
6305
6306 /*
6307 * While not a strong assumption it would be nice to know
6308 * about cases where if node A is connected to B, B is not
6309 * equally connected to A.
6310 */
6311 if (sched_debug() && node_distance(k, i) != distance)
6312 sched_numa_warn("Node-distance not symmetric");
6313
6314 if (sched_debug() && i && !find_numa_distance(distance))
6315 sched_numa_warn("Node-0 not representative");
6316 }
6317 if (next_distance != curr_distance) {
6318 sched_domains_numa_distance[level++] = next_distance;
6319 sched_domains_numa_levels = level;
6320 curr_distance = next_distance;
6321 } else break;
cb83b629 6322 }
d039ac60
PZ
6323
6324 /*
6325 * In case of sched_debug() we verify the above assumption.
6326 */
6327 if (!sched_debug())
6328 break;
cb83b629
PZ
6329 }
6330 /*
6331 * 'level' contains the number of unique distances, excluding the
6332 * identity distance node_distance(i,i).
6333 *
28b4a521 6334 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
6335 * numbers.
6336 */
6337
5f7865f3
TC
6338 /*
6339 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6340 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6341 * the array will contain less then 'level' members. This could be
6342 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6343 * in other functions.
6344 *
6345 * We reset it to 'level' at the end of this function.
6346 */
6347 sched_domains_numa_levels = 0;
6348
cb83b629
PZ
6349 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6350 if (!sched_domains_numa_masks)
6351 return;
6352
6353 /*
6354 * Now for each level, construct a mask per node which contains all
6355 * cpus of nodes that are that many hops away from us.
6356 */
6357 for (i = 0; i < level; i++) {
6358 sched_domains_numa_masks[i] =
6359 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6360 if (!sched_domains_numa_masks[i])
6361 return;
6362
6363 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6364 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6365 if (!mask)
6366 return;
6367
6368 sched_domains_numa_masks[i][j] = mask;
6369
6370 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 6371 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6372 continue;
6373
6374 cpumask_or(mask, mask, cpumask_of_node(k));
6375 }
6376 }
6377 }
6378
143e1e28
VG
6379 /* Compute default topology size */
6380 for (i = 0; sched_domain_topology[i].mask; i++);
6381
c515db8c 6382 tl = kzalloc((i + level + 1) *
cb83b629
PZ
6383 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6384 if (!tl)
6385 return;
6386
6387 /*
6388 * Copy the default topology bits..
6389 */
143e1e28
VG
6390 for (i = 0; sched_domain_topology[i].mask; i++)
6391 tl[i] = sched_domain_topology[i];
cb83b629
PZ
6392
6393 /*
6394 * .. and append 'j' levels of NUMA goodness.
6395 */
6396 for (j = 0; j < level; i++, j++) {
6397 tl[i] = (struct sched_domain_topology_level){
cb83b629 6398 .mask = sd_numa_mask,
143e1e28 6399 .sd_flags = cpu_numa_flags,
cb83b629
PZ
6400 .flags = SDTL_OVERLAP,
6401 .numa_level = j,
143e1e28 6402 SD_INIT_NAME(NUMA)
cb83b629
PZ
6403 };
6404 }
6405
6406 sched_domain_topology = tl;
5f7865f3
TC
6407
6408 sched_domains_numa_levels = level;
cb83b629 6409}
301a5cba
TC
6410
6411static void sched_domains_numa_masks_set(int cpu)
6412{
6413 int i, j;
6414 int node = cpu_to_node(cpu);
6415
6416 for (i = 0; i < sched_domains_numa_levels; i++) {
6417 for (j = 0; j < nr_node_ids; j++) {
6418 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6419 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6420 }
6421 }
6422}
6423
6424static void sched_domains_numa_masks_clear(int cpu)
6425{
6426 int i, j;
6427 for (i = 0; i < sched_domains_numa_levels; i++) {
6428 for (j = 0; j < nr_node_ids; j++)
6429 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6430 }
6431}
6432
6433/*
6434 * Update sched_domains_numa_masks[level][node] array when new cpus
6435 * are onlined.
6436 */
6437static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6438 unsigned long action,
6439 void *hcpu)
6440{
6441 int cpu = (long)hcpu;
6442
6443 switch (action & ~CPU_TASKS_FROZEN) {
6444 case CPU_ONLINE:
6445 sched_domains_numa_masks_set(cpu);
6446 break;
6447
6448 case CPU_DEAD:
6449 sched_domains_numa_masks_clear(cpu);
6450 break;
6451
6452 default:
6453 return NOTIFY_DONE;
6454 }
6455
6456 return NOTIFY_OK;
cb83b629
PZ
6457}
6458#else
6459static inline void sched_init_numa(void)
6460{
6461}
301a5cba
TC
6462
6463static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6464 unsigned long action,
6465 void *hcpu)
6466{
6467 return 0;
6468}
cb83b629
PZ
6469#endif /* CONFIG_NUMA */
6470
54ab4ff4
PZ
6471static int __sdt_alloc(const struct cpumask *cpu_map)
6472{
6473 struct sched_domain_topology_level *tl;
6474 int j;
6475
27723a68 6476 for_each_sd_topology(tl) {
54ab4ff4
PZ
6477 struct sd_data *sdd = &tl->data;
6478
6479 sdd->sd = alloc_percpu(struct sched_domain *);
6480 if (!sdd->sd)
6481 return -ENOMEM;
6482
6483 sdd->sg = alloc_percpu(struct sched_group *);
6484 if (!sdd->sg)
6485 return -ENOMEM;
6486
63b2ca30
NP
6487 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6488 if (!sdd->sgc)
9c3f75cb
PZ
6489 return -ENOMEM;
6490
54ab4ff4
PZ
6491 for_each_cpu(j, cpu_map) {
6492 struct sched_domain *sd;
6493 struct sched_group *sg;
63b2ca30 6494 struct sched_group_capacity *sgc;
54ab4ff4
PZ
6495
6496 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6497 GFP_KERNEL, cpu_to_node(j));
6498 if (!sd)
6499 return -ENOMEM;
6500
6501 *per_cpu_ptr(sdd->sd, j) = sd;
6502
6503 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6504 GFP_KERNEL, cpu_to_node(j));
6505 if (!sg)
6506 return -ENOMEM;
6507
30b4e9eb
IM
6508 sg->next = sg;
6509
54ab4ff4 6510 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6511
63b2ca30 6512 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
9c3f75cb 6513 GFP_KERNEL, cpu_to_node(j));
63b2ca30 6514 if (!sgc)
9c3f75cb
PZ
6515 return -ENOMEM;
6516
63b2ca30 6517 *per_cpu_ptr(sdd->sgc, j) = sgc;
54ab4ff4
PZ
6518 }
6519 }
6520
6521 return 0;
6522}
6523
6524static void __sdt_free(const struct cpumask *cpu_map)
6525{
6526 struct sched_domain_topology_level *tl;
6527 int j;
6528
27723a68 6529 for_each_sd_topology(tl) {
54ab4ff4
PZ
6530 struct sd_data *sdd = &tl->data;
6531
6532 for_each_cpu(j, cpu_map) {
fb2cf2c6 6533 struct sched_domain *sd;
6534
6535 if (sdd->sd) {
6536 sd = *per_cpu_ptr(sdd->sd, j);
6537 if (sd && (sd->flags & SD_OVERLAP))
6538 free_sched_groups(sd->groups, 0);
6539 kfree(*per_cpu_ptr(sdd->sd, j));
6540 }
6541
6542 if (sdd->sg)
6543 kfree(*per_cpu_ptr(sdd->sg, j));
63b2ca30
NP
6544 if (sdd->sgc)
6545 kfree(*per_cpu_ptr(sdd->sgc, j));
54ab4ff4
PZ
6546 }
6547 free_percpu(sdd->sd);
fb2cf2c6 6548 sdd->sd = NULL;
54ab4ff4 6549 free_percpu(sdd->sg);
fb2cf2c6 6550 sdd->sg = NULL;
63b2ca30
NP
6551 free_percpu(sdd->sgc);
6552 sdd->sgc = NULL;
54ab4ff4
PZ
6553 }
6554}
6555
2c402dc3 6556struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
6557 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6558 struct sched_domain *child, int cpu)
2c402dc3 6559{
143e1e28 6560 struct sched_domain *sd = sd_init(tl, cpu);
2c402dc3 6561 if (!sd)
d069b916 6562 return child;
2c402dc3 6563
2c402dc3 6564 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6565 if (child) {
6566 sd->level = child->level + 1;
6567 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6568 child->parent = sd;
c75e0128 6569 sd->child = child;
6ae72dff
PZ
6570
6571 if (!cpumask_subset(sched_domain_span(child),
6572 sched_domain_span(sd))) {
6573 pr_err("BUG: arch topology borken\n");
6574#ifdef CONFIG_SCHED_DEBUG
6575 pr_err(" the %s domain not a subset of the %s domain\n",
6576 child->name, sd->name);
6577#endif
6578 /* Fixup, ensure @sd has at least @child cpus. */
6579 cpumask_or(sched_domain_span(sd),
6580 sched_domain_span(sd),
6581 sched_domain_span(child));
6582 }
6583
60495e77 6584 }
a841f8ce 6585 set_domain_attribute(sd, attr);
2c402dc3
PZ
6586
6587 return sd;
6588}
6589
2109b99e
AH
6590/*
6591 * Build sched domains for a given set of cpus and attach the sched domains
6592 * to the individual cpus
6593 */
dce840a0
PZ
6594static int build_sched_domains(const struct cpumask *cpu_map,
6595 struct sched_domain_attr *attr)
2109b99e 6596{
1c632169 6597 enum s_alloc alloc_state;
dce840a0 6598 struct sched_domain *sd;
2109b99e 6599 struct s_data d;
822ff793 6600 int i, ret = -ENOMEM;
9c1cfda2 6601
2109b99e
AH
6602 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6603 if (alloc_state != sa_rootdomain)
6604 goto error;
9c1cfda2 6605
dce840a0 6606 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6607 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6608 struct sched_domain_topology_level *tl;
6609
3bd65a80 6610 sd = NULL;
27723a68 6611 for_each_sd_topology(tl) {
4a850cbe 6612 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
6613 if (tl == sched_domain_topology)
6614 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
6615 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6616 sd->flags |= SD_OVERLAP;
d110235d
PZ
6617 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6618 break;
e3589f6c 6619 }
dce840a0
PZ
6620 }
6621
6622 /* Build the groups for the domains */
6623 for_each_cpu(i, cpu_map) {
6624 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6625 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6626 if (sd->flags & SD_OVERLAP) {
6627 if (build_overlap_sched_groups(sd, i))
6628 goto error;
6629 } else {
6630 if (build_sched_groups(sd, i))
6631 goto error;
6632 }
1cf51902 6633 }
a06dadbe 6634 }
9c1cfda2 6635
ced549fa 6636 /* Calculate CPU capacity for physical packages and nodes */
a9c9a9b6
PZ
6637 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6638 if (!cpumask_test_cpu(i, cpu_map))
6639 continue;
9c1cfda2 6640
dce840a0
PZ
6641 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6642 claim_allocations(i, sd);
63b2ca30 6643 init_sched_groups_capacity(i, sd);
dce840a0 6644 }
f712c0c7 6645 }
9c1cfda2 6646
1da177e4 6647 /* Attach the domains */
dce840a0 6648 rcu_read_lock();
abcd083a 6649 for_each_cpu(i, cpu_map) {
21d42ccf 6650 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6651 cpu_attach_domain(sd, d.rd, i);
1da177e4 6652 }
dce840a0 6653 rcu_read_unlock();
51888ca2 6654
822ff793 6655 ret = 0;
51888ca2 6656error:
2109b99e 6657 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6658 return ret;
1da177e4 6659}
029190c5 6660
acc3f5d7 6661static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6662static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6663static struct sched_domain_attr *dattr_cur;
6664 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6665
6666/*
6667 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6668 * cpumask) fails, then fallback to a single sched domain,
6669 * as determined by the single cpumask fallback_doms.
029190c5 6670 */
4212823f 6671static cpumask_var_t fallback_doms;
029190c5 6672
ee79d1bd
HC
6673/*
6674 * arch_update_cpu_topology lets virtualized architectures update the
6675 * cpu core maps. It is supposed to return 1 if the topology changed
6676 * or 0 if it stayed the same.
6677 */
52f5684c 6678int __weak arch_update_cpu_topology(void)
22e52b07 6679{
ee79d1bd 6680 return 0;
22e52b07
HC
6681}
6682
acc3f5d7
RR
6683cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6684{
6685 int i;
6686 cpumask_var_t *doms;
6687
6688 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6689 if (!doms)
6690 return NULL;
6691 for (i = 0; i < ndoms; i++) {
6692 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6693 free_sched_domains(doms, i);
6694 return NULL;
6695 }
6696 }
6697 return doms;
6698}
6699
6700void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6701{
6702 unsigned int i;
6703 for (i = 0; i < ndoms; i++)
6704 free_cpumask_var(doms[i]);
6705 kfree(doms);
6706}
6707
1a20ff27 6708/*
41a2d6cf 6709 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6710 * For now this just excludes isolated cpus, but could be used to
6711 * exclude other special cases in the future.
1a20ff27 6712 */
c4a8849a 6713static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6714{
7378547f
MM
6715 int err;
6716
22e52b07 6717 arch_update_cpu_topology();
029190c5 6718 ndoms_cur = 1;
acc3f5d7 6719 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6720 if (!doms_cur)
acc3f5d7
RR
6721 doms_cur = &fallback_doms;
6722 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 6723 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6724 register_sched_domain_sysctl();
7378547f
MM
6725
6726 return err;
1a20ff27
DG
6727}
6728
1a20ff27
DG
6729/*
6730 * Detach sched domains from a group of cpus specified in cpu_map
6731 * These cpus will now be attached to the NULL domain
6732 */
96f874e2 6733static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6734{
6735 int i;
6736
dce840a0 6737 rcu_read_lock();
abcd083a 6738 for_each_cpu(i, cpu_map)
57d885fe 6739 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6740 rcu_read_unlock();
1a20ff27
DG
6741}
6742
1d3504fc
HS
6743/* handle null as "default" */
6744static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6745 struct sched_domain_attr *new, int idx_new)
6746{
6747 struct sched_domain_attr tmp;
6748
6749 /* fast path */
6750 if (!new && !cur)
6751 return 1;
6752
6753 tmp = SD_ATTR_INIT;
6754 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6755 new ? (new + idx_new) : &tmp,
6756 sizeof(struct sched_domain_attr));
6757}
6758
029190c5
PJ
6759/*
6760 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6761 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6762 * doms_new[] to the current sched domain partitioning, doms_cur[].
6763 * It destroys each deleted domain and builds each new domain.
6764 *
acc3f5d7 6765 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
6766 * The masks don't intersect (don't overlap.) We should setup one
6767 * sched domain for each mask. CPUs not in any of the cpumasks will
6768 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6769 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6770 * it as it is.
6771 *
acc3f5d7
RR
6772 * The passed in 'doms_new' should be allocated using
6773 * alloc_sched_domains. This routine takes ownership of it and will
6774 * free_sched_domains it when done with it. If the caller failed the
6775 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6776 * and partition_sched_domains() will fallback to the single partition
6777 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 6778 *
96f874e2 6779 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
6780 * ndoms_new == 0 is a special case for destroying existing domains,
6781 * and it will not create the default domain.
dfb512ec 6782 *
029190c5
PJ
6783 * Call with hotplug lock held
6784 */
acc3f5d7 6785void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 6786 struct sched_domain_attr *dattr_new)
029190c5 6787{
dfb512ec 6788 int i, j, n;
d65bd5ec 6789 int new_topology;
029190c5 6790
712555ee 6791 mutex_lock(&sched_domains_mutex);
a1835615 6792
7378547f
MM
6793 /* always unregister in case we don't destroy any domains */
6794 unregister_sched_domain_sysctl();
6795
d65bd5ec
HC
6796 /* Let architecture update cpu core mappings. */
6797 new_topology = arch_update_cpu_topology();
6798
dfb512ec 6799 n = doms_new ? ndoms_new : 0;
029190c5
PJ
6800
6801 /* Destroy deleted domains */
6802 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 6803 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6804 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 6805 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
6806 goto match1;
6807 }
6808 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 6809 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
6810match1:
6811 ;
6812 }
6813
c8d2d47a 6814 n = ndoms_cur;
e761b772 6815 if (doms_new == NULL) {
c8d2d47a 6816 n = 0;
acc3f5d7 6817 doms_new = &fallback_doms;
6ad4c188 6818 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 6819 WARN_ON_ONCE(dattr_new);
e761b772
MK
6820 }
6821
029190c5
PJ
6822 /* Build new domains */
6823 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 6824 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6825 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 6826 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
6827 goto match2;
6828 }
6829 /* no match - add a new doms_new */
dce840a0 6830 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
6831match2:
6832 ;
6833 }
6834
6835 /* Remember the new sched domains */
acc3f5d7
RR
6836 if (doms_cur != &fallback_doms)
6837 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 6838 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 6839 doms_cur = doms_new;
1d3504fc 6840 dattr_cur = dattr_new;
029190c5 6841 ndoms_cur = ndoms_new;
7378547f
MM
6842
6843 register_sched_domain_sysctl();
a1835615 6844
712555ee 6845 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
6846}
6847
d35be8ba
SB
6848static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6849
1da177e4 6850/*
3a101d05
TH
6851 * Update cpusets according to cpu_active mask. If cpusets are
6852 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6853 * around partition_sched_domains().
d35be8ba
SB
6854 *
6855 * If we come here as part of a suspend/resume, don't touch cpusets because we
6856 * want to restore it back to its original state upon resume anyway.
1da177e4 6857 */
0b2e918a
TH
6858static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6859 void *hcpu)
e761b772 6860{
d35be8ba
SB
6861 switch (action) {
6862 case CPU_ONLINE_FROZEN:
6863 case CPU_DOWN_FAILED_FROZEN:
6864
6865 /*
6866 * num_cpus_frozen tracks how many CPUs are involved in suspend
6867 * resume sequence. As long as this is not the last online
6868 * operation in the resume sequence, just build a single sched
6869 * domain, ignoring cpusets.
6870 */
6871 num_cpus_frozen--;
6872 if (likely(num_cpus_frozen)) {
6873 partition_sched_domains(1, NULL, NULL);
6874 break;
6875 }
6876
6877 /*
6878 * This is the last CPU online operation. So fall through and
6879 * restore the original sched domains by considering the
6880 * cpuset configurations.
6881 */
6882
e761b772 6883 case CPU_ONLINE:
6ad4c188 6884 case CPU_DOWN_FAILED:
7ddf96b0 6885 cpuset_update_active_cpus(true);
d35be8ba 6886 break;
3a101d05
TH
6887 default:
6888 return NOTIFY_DONE;
6889 }
d35be8ba 6890 return NOTIFY_OK;
3a101d05 6891}
e761b772 6892
0b2e918a
TH
6893static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6894 void *hcpu)
3a101d05 6895{
d35be8ba 6896 switch (action) {
3a101d05 6897 case CPU_DOWN_PREPARE:
7ddf96b0 6898 cpuset_update_active_cpus(false);
d35be8ba
SB
6899 break;
6900 case CPU_DOWN_PREPARE_FROZEN:
6901 num_cpus_frozen++;
6902 partition_sched_domains(1, NULL, NULL);
6903 break;
e761b772
MK
6904 default:
6905 return NOTIFY_DONE;
6906 }
d35be8ba 6907 return NOTIFY_OK;
e761b772 6908}
e761b772 6909
1da177e4
LT
6910void __init sched_init_smp(void)
6911{
dcc30a35
RR
6912 cpumask_var_t non_isolated_cpus;
6913
6914 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 6915 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 6916
cb83b629
PZ
6917 sched_init_numa();
6918
6acce3ef
PZ
6919 /*
6920 * There's no userspace yet to cause hotplug operations; hence all the
6921 * cpu masks are stable and all blatant races in the below code cannot
6922 * happen.
6923 */
712555ee 6924 mutex_lock(&sched_domains_mutex);
c4a8849a 6925 init_sched_domains(cpu_active_mask);
dcc30a35
RR
6926 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6927 if (cpumask_empty(non_isolated_cpus))
6928 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 6929 mutex_unlock(&sched_domains_mutex);
e761b772 6930
301a5cba 6931 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
6932 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6933 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772 6934
b328ca18 6935 init_hrtick();
5c1e1767
NP
6936
6937 /* Move init over to a non-isolated CPU */
dcc30a35 6938 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 6939 BUG();
19978ca6 6940 sched_init_granularity();
dcc30a35 6941 free_cpumask_var(non_isolated_cpus);
4212823f 6942
0e3900e6 6943 init_sched_rt_class();
1baca4ce 6944 init_sched_dl_class();
1da177e4
LT
6945}
6946#else
6947void __init sched_init_smp(void)
6948{
19978ca6 6949 sched_init_granularity();
1da177e4
LT
6950}
6951#endif /* CONFIG_SMP */
6952
cd1bb94b
AB
6953const_debug unsigned int sysctl_timer_migration = 1;
6954
1da177e4
LT
6955int in_sched_functions(unsigned long addr)
6956{
1da177e4
LT
6957 return in_lock_functions(addr) ||
6958 (addr >= (unsigned long)__sched_text_start
6959 && addr < (unsigned long)__sched_text_end);
6960}
6961
029632fb 6962#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
6963/*
6964 * Default task group.
6965 * Every task in system belongs to this group at bootup.
6966 */
029632fb 6967struct task_group root_task_group;
35cf4e50 6968LIST_HEAD(task_groups);
052f1dc7 6969#endif
6f505b16 6970
e6252c3e 6971DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 6972
1da177e4
LT
6973void __init sched_init(void)
6974{
dd41f596 6975 int i, j;
434d53b0
MT
6976 unsigned long alloc_size = 0, ptr;
6977
6978#ifdef CONFIG_FAIR_GROUP_SCHED
6979 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6980#endif
6981#ifdef CONFIG_RT_GROUP_SCHED
6982 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 6983#endif
df7c8e84 6984#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 6985 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 6986#endif
434d53b0 6987 if (alloc_size) {
36b7b6d4 6988 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
6989
6990#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 6991 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
6992 ptr += nr_cpu_ids * sizeof(void **);
6993
07e06b01 6994 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 6995 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 6996
6d6bc0ad 6997#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 6998#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6999 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
7000 ptr += nr_cpu_ids * sizeof(void **);
7001
07e06b01 7002 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7003 ptr += nr_cpu_ids * sizeof(void **);
7004
6d6bc0ad 7005#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
7006#ifdef CONFIG_CPUMASK_OFFSTACK
7007 for_each_possible_cpu(i) {
e6252c3e 7008 per_cpu(load_balance_mask, i) = (void *)ptr;
df7c8e84
RR
7009 ptr += cpumask_size();
7010 }
7011#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 7012 }
dd41f596 7013
332ac17e
DF
7014 init_rt_bandwidth(&def_rt_bandwidth,
7015 global_rt_period(), global_rt_runtime());
7016 init_dl_bandwidth(&def_dl_bandwidth,
1724813d 7017 global_rt_period(), global_rt_runtime());
332ac17e 7018
57d885fe
GH
7019#ifdef CONFIG_SMP
7020 init_defrootdomain();
7021#endif
7022
d0b27fa7 7023#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7024 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 7025 global_rt_period(), global_rt_runtime());
6d6bc0ad 7026#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7027
7c941438 7028#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
7029 list_add(&root_task_group.list, &task_groups);
7030 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 7031 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 7032 autogroup_init(&init_task);
54c707e9 7033
7c941438 7034#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7035
0a945022 7036 for_each_possible_cpu(i) {
70b97a7f 7037 struct rq *rq;
1da177e4
LT
7038
7039 rq = cpu_rq(i);
05fa785c 7040 raw_spin_lock_init(&rq->lock);
7897986b 7041 rq->nr_running = 0;
dce48a84
TG
7042 rq->calc_load_active = 0;
7043 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 7044 init_cfs_rq(&rq->cfs);
6f505b16 7045 init_rt_rq(&rq->rt, rq);
aab03e05 7046 init_dl_rq(&rq->dl, rq);
dd41f596 7047#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 7048 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 7049 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 7050 /*
07e06b01 7051 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
7052 *
7053 * In case of task-groups formed thr' the cgroup filesystem, it
7054 * gets 100% of the cpu resources in the system. This overall
7055 * system cpu resource is divided among the tasks of
07e06b01 7056 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
7057 * based on each entity's (task or task-group's) weight
7058 * (se->load.weight).
7059 *
07e06b01 7060 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
7061 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7062 * then A0's share of the cpu resource is:
7063 *
0d905bca 7064 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 7065 *
07e06b01
YZ
7066 * We achieve this by letting root_task_group's tasks sit
7067 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 7068 */
ab84d31e 7069 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 7070 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
7071#endif /* CONFIG_FAIR_GROUP_SCHED */
7072
7073 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7074#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7075 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 7076#endif
1da177e4 7077
dd41f596
IM
7078 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7079 rq->cpu_load[j] = 0;
fdf3e95d
VP
7080
7081 rq->last_load_update_tick = jiffies;
7082
1da177e4 7083#ifdef CONFIG_SMP
41c7ce9a 7084 rq->sd = NULL;
57d885fe 7085 rq->rd = NULL;
ca8ce3d0 7086 rq->cpu_capacity = SCHED_CAPACITY_SCALE;
3f029d3c 7087 rq->post_schedule = 0;
1da177e4 7088 rq->active_balance = 0;
dd41f596 7089 rq->next_balance = jiffies;
1da177e4 7090 rq->push_cpu = 0;
0a2966b4 7091 rq->cpu = i;
1f11eb6a 7092 rq->online = 0;
eae0c9df
MG
7093 rq->idle_stamp = 0;
7094 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 7095 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
7096
7097 INIT_LIST_HEAD(&rq->cfs_tasks);
7098
dc938520 7099 rq_attach_root(rq, &def_root_domain);
3451d024 7100#ifdef CONFIG_NO_HZ_COMMON
1c792db7 7101 rq->nohz_flags = 0;
83cd4fe2 7102#endif
265f22a9
FW
7103#ifdef CONFIG_NO_HZ_FULL
7104 rq->last_sched_tick = 0;
7105#endif
1da177e4 7106#endif
8f4d37ec 7107 init_rq_hrtick(rq);
1da177e4 7108 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7109 }
7110
2dd73a4f 7111 set_load_weight(&init_task);
b50f60ce 7112
e107be36
AK
7113#ifdef CONFIG_PREEMPT_NOTIFIERS
7114 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7115#endif
7116
1da177e4
LT
7117 /*
7118 * The boot idle thread does lazy MMU switching as well:
7119 */
7120 atomic_inc(&init_mm.mm_count);
7121 enter_lazy_tlb(&init_mm, current);
7122
7123 /*
7124 * Make us the idle thread. Technically, schedule() should not be
7125 * called from this thread, however somewhere below it might be,
7126 * but because we are the idle thread, we just pick up running again
7127 * when this runqueue becomes "idle".
7128 */
7129 init_idle(current, smp_processor_id());
dce48a84
TG
7130
7131 calc_load_update = jiffies + LOAD_FREQ;
7132
dd41f596
IM
7133 /*
7134 * During early bootup we pretend to be a normal task:
7135 */
7136 current->sched_class = &fair_sched_class;
6892b75e 7137
bf4d83f6 7138#ifdef CONFIG_SMP
4cb98839 7139 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
7140 /* May be allocated at isolcpus cmdline parse time */
7141 if (cpu_isolated_map == NULL)
7142 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 7143 idle_thread_set_boot_cpu();
a803f026 7144 set_cpu_rq_start_time();
029632fb
PZ
7145#endif
7146 init_sched_fair_class();
6a7b3dc3 7147
6892b75e 7148 scheduler_running = 1;
1da177e4
LT
7149}
7150
d902db1e 7151#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
7152static inline int preempt_count_equals(int preempt_offset)
7153{
234da7bc 7154 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 7155
4ba8216c 7156 return (nested == preempt_offset);
e4aafea2
FW
7157}
7158
d894837f 7159void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7160{
1da177e4
LT
7161 static unsigned long prev_jiffy; /* ratelimiting */
7162
b3fbab05 7163 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
db273be2
TG
7164 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7165 !is_idle_task(current)) ||
e4aafea2 7166 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7167 return;
7168 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7169 return;
7170 prev_jiffy = jiffies;
7171
3df0fc5b
PZ
7172 printk(KERN_ERR
7173 "BUG: sleeping function called from invalid context at %s:%d\n",
7174 file, line);
7175 printk(KERN_ERR
7176 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7177 in_atomic(), irqs_disabled(),
7178 current->pid, current->comm);
aef745fc
IM
7179
7180 debug_show_held_locks(current);
7181 if (irqs_disabled())
7182 print_irqtrace_events(current);
8f47b187
TG
7183#ifdef CONFIG_DEBUG_PREEMPT
7184 if (!preempt_count_equals(preempt_offset)) {
7185 pr_err("Preemption disabled at:");
7186 print_ip_sym(current->preempt_disable_ip);
7187 pr_cont("\n");
7188 }
7189#endif
aef745fc 7190 dump_stack();
1da177e4
LT
7191}
7192EXPORT_SYMBOL(__might_sleep);
7193#endif
7194
7195#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7196static void normalize_task(struct rq *rq, struct task_struct *p)
7197{
da7a735e 7198 const struct sched_class *prev_class = p->sched_class;
d50dde5a
DF
7199 struct sched_attr attr = {
7200 .sched_policy = SCHED_NORMAL,
7201 };
da7a735e 7202 int old_prio = p->prio;
da0c1e65 7203 int queued;
3e51f33f 7204
da0c1e65
KT
7205 queued = task_on_rq_queued(p);
7206 if (queued)
4ca9b72b 7207 dequeue_task(rq, p, 0);
d50dde5a 7208 __setscheduler(rq, p, &attr);
da0c1e65 7209 if (queued) {
4ca9b72b 7210 enqueue_task(rq, p, 0);
8875125e 7211 resched_curr(rq);
3a5e4dc1 7212 }
da7a735e
PZ
7213
7214 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
7215}
7216
1da177e4
LT
7217void normalize_rt_tasks(void)
7218{
a0f98a1c 7219 struct task_struct *g, *p;
1da177e4 7220 unsigned long flags;
70b97a7f 7221 struct rq *rq;
1da177e4 7222
3472eaa1 7223 read_lock(&tasklist_lock);
5d07f420 7224 for_each_process_thread(g, p) {
178be793
IM
7225 /*
7226 * Only normalize user tasks:
7227 */
3472eaa1 7228 if (p->flags & PF_KTHREAD)
178be793
IM
7229 continue;
7230
6cfb0d5d 7231 p->se.exec_start = 0;
6cfb0d5d 7232#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7233 p->se.statistics.wait_start = 0;
7234 p->se.statistics.sleep_start = 0;
7235 p->se.statistics.block_start = 0;
6cfb0d5d 7236#endif
dd41f596 7237
aab03e05 7238 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
7239 /*
7240 * Renice negative nice level userspace
7241 * tasks back to 0:
7242 */
3472eaa1 7243 if (task_nice(p) < 0)
dd41f596 7244 set_user_nice(p, 0);
1da177e4 7245 continue;
dd41f596 7246 }
1da177e4 7247
3472eaa1 7248 rq = task_rq_lock(p, &flags);
178be793 7249 normalize_task(rq, p);
3472eaa1 7250 task_rq_unlock(rq, p, &flags);
5d07f420 7251 }
3472eaa1 7252 read_unlock(&tasklist_lock);
1da177e4
LT
7253}
7254
7255#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7256
67fc4e0c 7257#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7258/*
67fc4e0c 7259 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7260 *
7261 * They can only be called when the whole system has been
7262 * stopped - every CPU needs to be quiescent, and no scheduling
7263 * activity can take place. Using them for anything else would
7264 * be a serious bug, and as a result, they aren't even visible
7265 * under any other configuration.
7266 */
7267
7268/**
7269 * curr_task - return the current task for a given cpu.
7270 * @cpu: the processor in question.
7271 *
7272 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
7273 *
7274 * Return: The current task for @cpu.
1df5c10a 7275 */
36c8b586 7276struct task_struct *curr_task(int cpu)
1df5c10a
LT
7277{
7278 return cpu_curr(cpu);
7279}
7280
67fc4e0c
JW
7281#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7282
7283#ifdef CONFIG_IA64
1df5c10a
LT
7284/**
7285 * set_curr_task - set the current task for a given cpu.
7286 * @cpu: the processor in question.
7287 * @p: the task pointer to set.
7288 *
7289 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7290 * are serviced on a separate stack. It allows the architecture to switch the
7291 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7292 * must be called with all CPU's synchronized, and interrupts disabled, the
7293 * and caller must save the original value of the current task (see
7294 * curr_task() above) and restore that value before reenabling interrupts and
7295 * re-starting the system.
7296 *
7297 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7298 */
36c8b586 7299void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7300{
7301 cpu_curr(cpu) = p;
7302}
7303
7304#endif
29f59db3 7305
7c941438 7306#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7307/* task_group_lock serializes the addition/removal of task groups */
7308static DEFINE_SPINLOCK(task_group_lock);
7309
bccbe08a
PZ
7310static void free_sched_group(struct task_group *tg)
7311{
7312 free_fair_sched_group(tg);
7313 free_rt_sched_group(tg);
e9aa1dd1 7314 autogroup_free(tg);
bccbe08a
PZ
7315 kfree(tg);
7316}
7317
7318/* allocate runqueue etc for a new task group */
ec7dc8ac 7319struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7320{
7321 struct task_group *tg;
bccbe08a
PZ
7322
7323 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7324 if (!tg)
7325 return ERR_PTR(-ENOMEM);
7326
ec7dc8ac 7327 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7328 goto err;
7329
ec7dc8ac 7330 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7331 goto err;
7332
ace783b9
LZ
7333 return tg;
7334
7335err:
7336 free_sched_group(tg);
7337 return ERR_PTR(-ENOMEM);
7338}
7339
7340void sched_online_group(struct task_group *tg, struct task_group *parent)
7341{
7342 unsigned long flags;
7343
8ed36996 7344 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7345 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7346
7347 WARN_ON(!parent); /* root should already exist */
7348
7349 tg->parent = parent;
f473aa5e 7350 INIT_LIST_HEAD(&tg->children);
09f2724a 7351 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7352 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7353}
7354
9b5b7751 7355/* rcu callback to free various structures associated with a task group */
6f505b16 7356static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7357{
29f59db3 7358 /* now it should be safe to free those cfs_rqs */
6f505b16 7359 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7360}
7361
9b5b7751 7362/* Destroy runqueue etc associated with a task group */
4cf86d77 7363void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
7364{
7365 /* wait for possible concurrent references to cfs_rqs complete */
7366 call_rcu(&tg->rcu, free_sched_group_rcu);
7367}
7368
7369void sched_offline_group(struct task_group *tg)
29f59db3 7370{
8ed36996 7371 unsigned long flags;
9b5b7751 7372 int i;
29f59db3 7373
3d4b47b4
PZ
7374 /* end participation in shares distribution */
7375 for_each_possible_cpu(i)
bccbe08a 7376 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
7377
7378 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7379 list_del_rcu(&tg->list);
f473aa5e 7380 list_del_rcu(&tg->siblings);
8ed36996 7381 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7382}
7383
9b5b7751 7384/* change task's runqueue when it moves between groups.
3a252015
IM
7385 * The caller of this function should have put the task in its new group
7386 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7387 * reflect its new group.
9b5b7751
SV
7388 */
7389void sched_move_task(struct task_struct *tsk)
29f59db3 7390{
8323f26c 7391 struct task_group *tg;
da0c1e65 7392 int queued, running;
29f59db3
SV
7393 unsigned long flags;
7394 struct rq *rq;
7395
7396 rq = task_rq_lock(tsk, &flags);
7397
051a1d1a 7398 running = task_current(rq, tsk);
da0c1e65 7399 queued = task_on_rq_queued(tsk);
29f59db3 7400
da0c1e65 7401 if (queued)
29f59db3 7402 dequeue_task(rq, tsk, 0);
0e1f3483 7403 if (unlikely(running))
f3cd1c4e 7404 put_prev_task(rq, tsk);
29f59db3 7405
073219e9 7406 tg = container_of(task_css_check(tsk, cpu_cgrp_id,
8323f26c
PZ
7407 lockdep_is_held(&tsk->sighand->siglock)),
7408 struct task_group, css);
7409 tg = autogroup_task_group(tsk, tg);
7410 tsk->sched_task_group = tg;
7411
810b3817 7412#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7413 if (tsk->sched_class->task_move_group)
da0c1e65 7414 tsk->sched_class->task_move_group(tsk, queued);
b2b5ce02 7415 else
810b3817 7416#endif
b2b5ce02 7417 set_task_rq(tsk, task_cpu(tsk));
810b3817 7418
0e1f3483
HS
7419 if (unlikely(running))
7420 tsk->sched_class->set_curr_task(rq);
da0c1e65 7421 if (queued)
371fd7e7 7422 enqueue_task(rq, tsk, 0);
29f59db3 7423
0122ec5b 7424 task_rq_unlock(rq, tsk, &flags);
29f59db3 7425}
7c941438 7426#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7427
a790de99
PT
7428#ifdef CONFIG_RT_GROUP_SCHED
7429/*
7430 * Ensure that the real time constraints are schedulable.
7431 */
7432static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7433
9a7e0b18
PZ
7434/* Must be called with tasklist_lock held */
7435static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7436{
9a7e0b18 7437 struct task_struct *g, *p;
b40b2e8e 7438
5d07f420 7439 for_each_process_thread(g, p) {
8651c658 7440 if (rt_task(p) && task_group(p) == tg)
9a7e0b18 7441 return 1;
5d07f420 7442 }
b40b2e8e 7443
9a7e0b18
PZ
7444 return 0;
7445}
b40b2e8e 7446
9a7e0b18
PZ
7447struct rt_schedulable_data {
7448 struct task_group *tg;
7449 u64 rt_period;
7450 u64 rt_runtime;
7451};
b40b2e8e 7452
a790de99 7453static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7454{
7455 struct rt_schedulable_data *d = data;
7456 struct task_group *child;
7457 unsigned long total, sum = 0;
7458 u64 period, runtime;
b40b2e8e 7459
9a7e0b18
PZ
7460 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7461 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7462
9a7e0b18
PZ
7463 if (tg == d->tg) {
7464 period = d->rt_period;
7465 runtime = d->rt_runtime;
b40b2e8e 7466 }
b40b2e8e 7467
4653f803
PZ
7468 /*
7469 * Cannot have more runtime than the period.
7470 */
7471 if (runtime > period && runtime != RUNTIME_INF)
7472 return -EINVAL;
6f505b16 7473
4653f803
PZ
7474 /*
7475 * Ensure we don't starve existing RT tasks.
7476 */
9a7e0b18
PZ
7477 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7478 return -EBUSY;
6f505b16 7479
9a7e0b18 7480 total = to_ratio(period, runtime);
6f505b16 7481
4653f803
PZ
7482 /*
7483 * Nobody can have more than the global setting allows.
7484 */
7485 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7486 return -EINVAL;
6f505b16 7487
4653f803
PZ
7488 /*
7489 * The sum of our children's runtime should not exceed our own.
7490 */
9a7e0b18
PZ
7491 list_for_each_entry_rcu(child, &tg->children, siblings) {
7492 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7493 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7494
9a7e0b18
PZ
7495 if (child == d->tg) {
7496 period = d->rt_period;
7497 runtime = d->rt_runtime;
7498 }
6f505b16 7499
9a7e0b18 7500 sum += to_ratio(period, runtime);
9f0c1e56 7501 }
6f505b16 7502
9a7e0b18
PZ
7503 if (sum > total)
7504 return -EINVAL;
7505
7506 return 0;
6f505b16
PZ
7507}
7508
9a7e0b18 7509static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7510{
8277434e
PT
7511 int ret;
7512
9a7e0b18
PZ
7513 struct rt_schedulable_data data = {
7514 .tg = tg,
7515 .rt_period = period,
7516 .rt_runtime = runtime,
7517 };
7518
8277434e
PT
7519 rcu_read_lock();
7520 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7521 rcu_read_unlock();
7522
7523 return ret;
521f1a24
DG
7524}
7525
ab84d31e 7526static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7527 u64 rt_period, u64 rt_runtime)
6f505b16 7528{
ac086bc2 7529 int i, err = 0;
9f0c1e56 7530
9f0c1e56 7531 mutex_lock(&rt_constraints_mutex);
521f1a24 7532 read_lock(&tasklist_lock);
9a7e0b18
PZ
7533 err = __rt_schedulable(tg, rt_period, rt_runtime);
7534 if (err)
9f0c1e56 7535 goto unlock;
ac086bc2 7536
0986b11b 7537 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7538 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7539 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7540
7541 for_each_possible_cpu(i) {
7542 struct rt_rq *rt_rq = tg->rt_rq[i];
7543
0986b11b 7544 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7545 rt_rq->rt_runtime = rt_runtime;
0986b11b 7546 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7547 }
0986b11b 7548 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7549unlock:
521f1a24 7550 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7551 mutex_unlock(&rt_constraints_mutex);
7552
7553 return err;
6f505b16
PZ
7554}
7555
25cc7da7 7556static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
7557{
7558 u64 rt_runtime, rt_period;
7559
7560 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7561 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7562 if (rt_runtime_us < 0)
7563 rt_runtime = RUNTIME_INF;
7564
ab84d31e 7565 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7566}
7567
25cc7da7 7568static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
7569{
7570 u64 rt_runtime_us;
7571
d0b27fa7 7572 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7573 return -1;
7574
d0b27fa7 7575 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7576 do_div(rt_runtime_us, NSEC_PER_USEC);
7577 return rt_runtime_us;
7578}
d0b27fa7 7579
25cc7da7 7580static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
d0b27fa7
PZ
7581{
7582 u64 rt_runtime, rt_period;
7583
7584 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7585 rt_runtime = tg->rt_bandwidth.rt_runtime;
7586
619b0488
R
7587 if (rt_period == 0)
7588 return -EINVAL;
7589
ab84d31e 7590 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7591}
7592
25cc7da7 7593static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
7594{
7595 u64 rt_period_us;
7596
7597 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7598 do_div(rt_period_us, NSEC_PER_USEC);
7599 return rt_period_us;
7600}
332ac17e 7601#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7602
332ac17e 7603#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
7604static int sched_rt_global_constraints(void)
7605{
7606 int ret = 0;
7607
7608 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7609 read_lock(&tasklist_lock);
4653f803 7610 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7611 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7612 mutex_unlock(&rt_constraints_mutex);
7613
7614 return ret;
7615}
54e99124 7616
25cc7da7 7617static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
7618{
7619 /* Don't accept realtime tasks when there is no way for them to run */
7620 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7621 return 0;
7622
7623 return 1;
7624}
7625
6d6bc0ad 7626#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7627static int sched_rt_global_constraints(void)
7628{
ac086bc2 7629 unsigned long flags;
332ac17e 7630 int i, ret = 0;
ec5d4989 7631
0986b11b 7632 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7633 for_each_possible_cpu(i) {
7634 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7635
0986b11b 7636 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7637 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7638 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7639 }
0986b11b 7640 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7641
332ac17e 7642 return ret;
d0b27fa7 7643}
6d6bc0ad 7644#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7645
332ac17e
DF
7646static int sched_dl_global_constraints(void)
7647{
1724813d
PZ
7648 u64 runtime = global_rt_runtime();
7649 u64 period = global_rt_period();
332ac17e 7650 u64 new_bw = to_ratio(period, runtime);
f10e00f4 7651 struct dl_bw *dl_b;
1724813d 7652 int cpu, ret = 0;
49516342 7653 unsigned long flags;
332ac17e
DF
7654
7655 /*
7656 * Here we want to check the bandwidth not being set to some
7657 * value smaller than the currently allocated bandwidth in
7658 * any of the root_domains.
7659 *
7660 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7661 * cycling on root_domains... Discussion on different/better
7662 * solutions is welcome!
7663 */
1724813d 7664 for_each_possible_cpu(cpu) {
f10e00f4
KT
7665 rcu_read_lock_sched();
7666 dl_b = dl_bw_of(cpu);
332ac17e 7667
49516342 7668 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d
PZ
7669 if (new_bw < dl_b->total_bw)
7670 ret = -EBUSY;
49516342 7671 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
1724813d 7672
f10e00f4
KT
7673 rcu_read_unlock_sched();
7674
1724813d
PZ
7675 if (ret)
7676 break;
332ac17e
DF
7677 }
7678
1724813d 7679 return ret;
332ac17e
DF
7680}
7681
1724813d 7682static void sched_dl_do_global(void)
ce0dbbbb 7683{
1724813d 7684 u64 new_bw = -1;
f10e00f4 7685 struct dl_bw *dl_b;
1724813d 7686 int cpu;
49516342 7687 unsigned long flags;
ce0dbbbb 7688
1724813d
PZ
7689 def_dl_bandwidth.dl_period = global_rt_period();
7690 def_dl_bandwidth.dl_runtime = global_rt_runtime();
7691
7692 if (global_rt_runtime() != RUNTIME_INF)
7693 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7694
7695 /*
7696 * FIXME: As above...
7697 */
7698 for_each_possible_cpu(cpu) {
f10e00f4
KT
7699 rcu_read_lock_sched();
7700 dl_b = dl_bw_of(cpu);
1724813d 7701
49516342 7702 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d 7703 dl_b->bw = new_bw;
49516342 7704 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
f10e00f4
KT
7705
7706 rcu_read_unlock_sched();
ce0dbbbb 7707 }
1724813d
PZ
7708}
7709
7710static int sched_rt_global_validate(void)
7711{
7712 if (sysctl_sched_rt_period <= 0)
7713 return -EINVAL;
7714
e9e7cb38
JL
7715 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7716 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
1724813d
PZ
7717 return -EINVAL;
7718
7719 return 0;
7720}
7721
7722static void sched_rt_do_global(void)
7723{
7724 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7725 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
7726}
7727
d0b27fa7 7728int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7729 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7730 loff_t *ppos)
7731{
d0b27fa7
PZ
7732 int old_period, old_runtime;
7733 static DEFINE_MUTEX(mutex);
1724813d 7734 int ret;
d0b27fa7
PZ
7735
7736 mutex_lock(&mutex);
7737 old_period = sysctl_sched_rt_period;
7738 old_runtime = sysctl_sched_rt_runtime;
7739
8d65af78 7740 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
7741
7742 if (!ret && write) {
1724813d
PZ
7743 ret = sched_rt_global_validate();
7744 if (ret)
7745 goto undo;
7746
d0b27fa7 7747 ret = sched_rt_global_constraints();
1724813d
PZ
7748 if (ret)
7749 goto undo;
7750
7751 ret = sched_dl_global_constraints();
7752 if (ret)
7753 goto undo;
7754
7755 sched_rt_do_global();
7756 sched_dl_do_global();
7757 }
7758 if (0) {
7759undo:
7760 sysctl_sched_rt_period = old_period;
7761 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
7762 }
7763 mutex_unlock(&mutex);
7764
7765 return ret;
7766}
68318b8e 7767
1724813d 7768int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
7769 void __user *buffer, size_t *lenp,
7770 loff_t *ppos)
7771{
7772 int ret;
332ac17e 7773 static DEFINE_MUTEX(mutex);
332ac17e
DF
7774
7775 mutex_lock(&mutex);
332ac17e 7776 ret = proc_dointvec(table, write, buffer, lenp, ppos);
1724813d
PZ
7777 /* make sure that internally we keep jiffies */
7778 /* also, writing zero resets timeslice to default */
332ac17e 7779 if (!ret && write) {
1724813d
PZ
7780 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7781 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
332ac17e
DF
7782 }
7783 mutex_unlock(&mutex);
332ac17e
DF
7784 return ret;
7785}
7786
052f1dc7 7787#ifdef CONFIG_CGROUP_SCHED
68318b8e 7788
a7c6d554 7789static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 7790{
a7c6d554 7791 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
7792}
7793
eb95419b
TH
7794static struct cgroup_subsys_state *
7795cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 7796{
eb95419b
TH
7797 struct task_group *parent = css_tg(parent_css);
7798 struct task_group *tg;
68318b8e 7799
eb95419b 7800 if (!parent) {
68318b8e 7801 /* This is early initialization for the top cgroup */
07e06b01 7802 return &root_task_group.css;
68318b8e
SV
7803 }
7804
ec7dc8ac 7805 tg = sched_create_group(parent);
68318b8e
SV
7806 if (IS_ERR(tg))
7807 return ERR_PTR(-ENOMEM);
7808
68318b8e
SV
7809 return &tg->css;
7810}
7811
eb95419b 7812static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
ace783b9 7813{
eb95419b 7814 struct task_group *tg = css_tg(css);
5c9d535b 7815 struct task_group *parent = css_tg(css->parent);
ace783b9 7816
63876986
TH
7817 if (parent)
7818 sched_online_group(tg, parent);
ace783b9
LZ
7819 return 0;
7820}
7821
eb95419b 7822static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 7823{
eb95419b 7824 struct task_group *tg = css_tg(css);
68318b8e
SV
7825
7826 sched_destroy_group(tg);
7827}
7828
eb95419b 7829static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
ace783b9 7830{
eb95419b 7831 struct task_group *tg = css_tg(css);
ace783b9
LZ
7832
7833 sched_offline_group(tg);
7834}
7835
eeb61e53
KT
7836static void cpu_cgroup_fork(struct task_struct *task)
7837{
7838 sched_move_task(task);
7839}
7840
eb95419b 7841static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
bb9d97b6 7842 struct cgroup_taskset *tset)
68318b8e 7843{
bb9d97b6
TH
7844 struct task_struct *task;
7845
924f0d9a 7846 cgroup_taskset_for_each(task, tset) {
b68aa230 7847#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 7848 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 7849 return -EINVAL;
b68aa230 7850#else
bb9d97b6
TH
7851 /* We don't support RT-tasks being in separate groups */
7852 if (task->sched_class != &fair_sched_class)
7853 return -EINVAL;
b68aa230 7854#endif
bb9d97b6 7855 }
be367d09
BB
7856 return 0;
7857}
68318b8e 7858
eb95419b 7859static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
bb9d97b6 7860 struct cgroup_taskset *tset)
68318b8e 7861{
bb9d97b6
TH
7862 struct task_struct *task;
7863
924f0d9a 7864 cgroup_taskset_for_each(task, tset)
bb9d97b6 7865 sched_move_task(task);
68318b8e
SV
7866}
7867
eb95419b
TH
7868static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7869 struct cgroup_subsys_state *old_css,
7870 struct task_struct *task)
068c5cc5
PZ
7871{
7872 /*
7873 * cgroup_exit() is called in the copy_process() failure path.
7874 * Ignore this case since the task hasn't ran yet, this avoids
7875 * trying to poke a half freed task state from generic code.
7876 */
7877 if (!(task->flags & PF_EXITING))
7878 return;
7879
7880 sched_move_task(task);
7881}
7882
052f1dc7 7883#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
7884static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7885 struct cftype *cftype, u64 shareval)
68318b8e 7886{
182446d0 7887 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
7888}
7889
182446d0
TH
7890static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7891 struct cftype *cft)
68318b8e 7892{
182446d0 7893 struct task_group *tg = css_tg(css);
68318b8e 7894
c8b28116 7895 return (u64) scale_load_down(tg->shares);
68318b8e 7896}
ab84d31e
PT
7897
7898#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
7899static DEFINE_MUTEX(cfs_constraints_mutex);
7900
ab84d31e
PT
7901const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7902const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7903
a790de99
PT
7904static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7905
ab84d31e
PT
7906static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7907{
56f570e5 7908 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 7909 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
7910
7911 if (tg == &root_task_group)
7912 return -EINVAL;
7913
7914 /*
7915 * Ensure we have at some amount of bandwidth every period. This is
7916 * to prevent reaching a state of large arrears when throttled via
7917 * entity_tick() resulting in prolonged exit starvation.
7918 */
7919 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7920 return -EINVAL;
7921
7922 /*
7923 * Likewise, bound things on the otherside by preventing insane quota
7924 * periods. This also allows us to normalize in computing quota
7925 * feasibility.
7926 */
7927 if (period > max_cfs_quota_period)
7928 return -EINVAL;
7929
0e59bdae
KT
7930 /*
7931 * Prevent race between setting of cfs_rq->runtime_enabled and
7932 * unthrottle_offline_cfs_rqs().
7933 */
7934 get_online_cpus();
a790de99
PT
7935 mutex_lock(&cfs_constraints_mutex);
7936 ret = __cfs_schedulable(tg, period, quota);
7937 if (ret)
7938 goto out_unlock;
7939
58088ad0 7940 runtime_enabled = quota != RUNTIME_INF;
56f570e5 7941 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
7942 /*
7943 * If we need to toggle cfs_bandwidth_used, off->on must occur
7944 * before making related changes, and on->off must occur afterwards
7945 */
7946 if (runtime_enabled && !runtime_was_enabled)
7947 cfs_bandwidth_usage_inc();
ab84d31e
PT
7948 raw_spin_lock_irq(&cfs_b->lock);
7949 cfs_b->period = ns_to_ktime(period);
7950 cfs_b->quota = quota;
58088ad0 7951
a9cf55b2 7952 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
7953 /* restart the period timer (if active) to handle new period expiry */
7954 if (runtime_enabled && cfs_b->timer_active) {
7955 /* force a reprogram */
09dc4ab0 7956 __start_cfs_bandwidth(cfs_b, true);
58088ad0 7957 }
ab84d31e
PT
7958 raw_spin_unlock_irq(&cfs_b->lock);
7959
0e59bdae 7960 for_each_online_cpu(i) {
ab84d31e 7961 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 7962 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
7963
7964 raw_spin_lock_irq(&rq->lock);
58088ad0 7965 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 7966 cfs_rq->runtime_remaining = 0;
671fd9da 7967
029632fb 7968 if (cfs_rq->throttled)
671fd9da 7969 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
7970 raw_spin_unlock_irq(&rq->lock);
7971 }
1ee14e6c
BS
7972 if (runtime_was_enabled && !runtime_enabled)
7973 cfs_bandwidth_usage_dec();
a790de99
PT
7974out_unlock:
7975 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 7976 put_online_cpus();
ab84d31e 7977
a790de99 7978 return ret;
ab84d31e
PT
7979}
7980
7981int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7982{
7983 u64 quota, period;
7984
029632fb 7985 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7986 if (cfs_quota_us < 0)
7987 quota = RUNTIME_INF;
7988 else
7989 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7990
7991 return tg_set_cfs_bandwidth(tg, period, quota);
7992}
7993
7994long tg_get_cfs_quota(struct task_group *tg)
7995{
7996 u64 quota_us;
7997
029632fb 7998 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
7999 return -1;
8000
029632fb 8001 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
8002 do_div(quota_us, NSEC_PER_USEC);
8003
8004 return quota_us;
8005}
8006
8007int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8008{
8009 u64 quota, period;
8010
8011 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 8012 quota = tg->cfs_bandwidth.quota;
ab84d31e 8013
ab84d31e
PT
8014 return tg_set_cfs_bandwidth(tg, period, quota);
8015}
8016
8017long tg_get_cfs_period(struct task_group *tg)
8018{
8019 u64 cfs_period_us;
8020
029632fb 8021 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8022 do_div(cfs_period_us, NSEC_PER_USEC);
8023
8024 return cfs_period_us;
8025}
8026
182446d0
TH
8027static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8028 struct cftype *cft)
ab84d31e 8029{
182446d0 8030 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
8031}
8032
182446d0
TH
8033static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8034 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 8035{
182446d0 8036 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
8037}
8038
182446d0
TH
8039static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8040 struct cftype *cft)
ab84d31e 8041{
182446d0 8042 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
8043}
8044
182446d0
TH
8045static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8046 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 8047{
182446d0 8048 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
8049}
8050
a790de99
PT
8051struct cfs_schedulable_data {
8052 struct task_group *tg;
8053 u64 period, quota;
8054};
8055
8056/*
8057 * normalize group quota/period to be quota/max_period
8058 * note: units are usecs
8059 */
8060static u64 normalize_cfs_quota(struct task_group *tg,
8061 struct cfs_schedulable_data *d)
8062{
8063 u64 quota, period;
8064
8065 if (tg == d->tg) {
8066 period = d->period;
8067 quota = d->quota;
8068 } else {
8069 period = tg_get_cfs_period(tg);
8070 quota = tg_get_cfs_quota(tg);
8071 }
8072
8073 /* note: these should typically be equivalent */
8074 if (quota == RUNTIME_INF || quota == -1)
8075 return RUNTIME_INF;
8076
8077 return to_ratio(period, quota);
8078}
8079
8080static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8081{
8082 struct cfs_schedulable_data *d = data;
029632fb 8083 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
8084 s64 quota = 0, parent_quota = -1;
8085
8086 if (!tg->parent) {
8087 quota = RUNTIME_INF;
8088 } else {
029632fb 8089 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
8090
8091 quota = normalize_cfs_quota(tg, d);
9c58c79a 8092 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
8093
8094 /*
8095 * ensure max(child_quota) <= parent_quota, inherit when no
8096 * limit is set
8097 */
8098 if (quota == RUNTIME_INF)
8099 quota = parent_quota;
8100 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8101 return -EINVAL;
8102 }
9c58c79a 8103 cfs_b->hierarchical_quota = quota;
a790de99
PT
8104
8105 return 0;
8106}
8107
8108static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8109{
8277434e 8110 int ret;
a790de99
PT
8111 struct cfs_schedulable_data data = {
8112 .tg = tg,
8113 .period = period,
8114 .quota = quota,
8115 };
8116
8117 if (quota != RUNTIME_INF) {
8118 do_div(data.period, NSEC_PER_USEC);
8119 do_div(data.quota, NSEC_PER_USEC);
8120 }
8121
8277434e
PT
8122 rcu_read_lock();
8123 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8124 rcu_read_unlock();
8125
8126 return ret;
a790de99 8127}
e8da1b18 8128
2da8ca82 8129static int cpu_stats_show(struct seq_file *sf, void *v)
e8da1b18 8130{
2da8ca82 8131 struct task_group *tg = css_tg(seq_css(sf));
029632fb 8132 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 8133
44ffc75b
TH
8134 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8135 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8136 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
8137
8138 return 0;
8139}
ab84d31e 8140#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 8141#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8142
052f1dc7 8143#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
8144static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8145 struct cftype *cft, s64 val)
6f505b16 8146{
182446d0 8147 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
8148}
8149
182446d0
TH
8150static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8151 struct cftype *cft)
6f505b16 8152{
182446d0 8153 return sched_group_rt_runtime(css_tg(css));
6f505b16 8154}
d0b27fa7 8155
182446d0
TH
8156static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8157 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 8158{
182446d0 8159 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
8160}
8161
182446d0
TH
8162static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8163 struct cftype *cft)
d0b27fa7 8164{
182446d0 8165 return sched_group_rt_period(css_tg(css));
d0b27fa7 8166}
6d6bc0ad 8167#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8168
fe5c7cc2 8169static struct cftype cpu_files[] = {
052f1dc7 8170#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8171 {
8172 .name = "shares",
f4c753b7
PM
8173 .read_u64 = cpu_shares_read_u64,
8174 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8175 },
052f1dc7 8176#endif
ab84d31e
PT
8177#ifdef CONFIG_CFS_BANDWIDTH
8178 {
8179 .name = "cfs_quota_us",
8180 .read_s64 = cpu_cfs_quota_read_s64,
8181 .write_s64 = cpu_cfs_quota_write_s64,
8182 },
8183 {
8184 .name = "cfs_period_us",
8185 .read_u64 = cpu_cfs_period_read_u64,
8186 .write_u64 = cpu_cfs_period_write_u64,
8187 },
e8da1b18
NR
8188 {
8189 .name = "stat",
2da8ca82 8190 .seq_show = cpu_stats_show,
e8da1b18 8191 },
ab84d31e 8192#endif
052f1dc7 8193#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8194 {
9f0c1e56 8195 .name = "rt_runtime_us",
06ecb27c
PM
8196 .read_s64 = cpu_rt_runtime_read,
8197 .write_s64 = cpu_rt_runtime_write,
6f505b16 8198 },
d0b27fa7
PZ
8199 {
8200 .name = "rt_period_us",
f4c753b7
PM
8201 .read_u64 = cpu_rt_period_read_uint,
8202 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8203 },
052f1dc7 8204#endif
4baf6e33 8205 { } /* terminate */
68318b8e
SV
8206};
8207
073219e9 8208struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748
TH
8209 .css_alloc = cpu_cgroup_css_alloc,
8210 .css_free = cpu_cgroup_css_free,
ace783b9
LZ
8211 .css_online = cpu_cgroup_css_online,
8212 .css_offline = cpu_cgroup_css_offline,
eeb61e53 8213 .fork = cpu_cgroup_fork,
bb9d97b6
TH
8214 .can_attach = cpu_cgroup_can_attach,
8215 .attach = cpu_cgroup_attach,
068c5cc5 8216 .exit = cpu_cgroup_exit,
5577964e 8217 .legacy_cftypes = cpu_files,
68318b8e
SV
8218 .early_init = 1,
8219};
8220
052f1dc7 8221#endif /* CONFIG_CGROUP_SCHED */
d842de87 8222
b637a328
PM
8223void dump_cpu_task(int cpu)
8224{
8225 pr_info("Task dump for CPU %d:\n", cpu);
8226 sched_show_task(cpu_curr(cpu));
8227}