]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/sched/core.c
init: Introduce SYSTEM_SCHEDULING state
[mirror_ubuntu-artful-kernel.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4 3 *
d1ccc66d 4 * Core kernel scheduler code and related syscalls
1da177e4
LT
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
1da177e4 7 */
004172bd 8#include <linux/sched.h>
e6017571 9#include <linux/sched/clock.h>
ae7e81c0 10#include <uapi/linux/sched/types.h>
4f17722c 11#include <linux/sched/loadavg.h>
ef8bd77f 12#include <linux/sched/hotplug.h>
1da177e4 13#include <linux/cpuset.h>
0ff92245 14#include <linux/delayacct.h>
f1c6f1a7 15#include <linux/init_task.h>
91d1aa43 16#include <linux/context_tracking.h>
f9411ebe 17#include <linux/rcupdate_wait.h>
004172bd
IM
18
19#include <linux/blkdev.h>
20#include <linux/kprobes.h>
21#include <linux/mmu_context.h>
22#include <linux/module.h>
23#include <linux/nmi.h>
6075620b 24#include <linux/prefetch.h>
004172bd
IM
25#include <linux/profile.h>
26#include <linux/security.h>
27#include <linux/syscalls.h>
1da177e4 28
96f951ed 29#include <asm/switch_to.h>
5517d86b 30#include <asm/tlb.h>
fd4a61e0
MB
31#ifdef CONFIG_PARAVIRT
32#include <asm/paravirt.h>
33#endif
1da177e4 34
029632fb 35#include "sched.h"
ea138446 36#include "../workqueue_internal.h"
29d5e047 37#include "../smpboot.h"
6e0534f2 38
a8d154b0 39#define CREATE_TRACE_POINTS
ad8d75ff 40#include <trace/events/sched.h>
a8d154b0 41
029632fb 42DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 43
bf5c91ba
IM
44/*
45 * Debugging: various feature bits
46 */
f00b45c1 47
f00b45c1
PZ
48#define SCHED_FEAT(name, enabled) \
49 (1UL << __SCHED_FEAT_##name) * enabled |
50
bf5c91ba 51const_debug unsigned int sysctl_sched_features =
391e43da 52#include "features.h"
f00b45c1
PZ
53 0;
54
55#undef SCHED_FEAT
56
b82d9fdd
PZ
57/*
58 * Number of tasks to iterate in a single balance run.
59 * Limited because this is done with IRQs disabled.
60 */
61const_debug unsigned int sysctl_sched_nr_migrate = 32;
62
e9e9250b
PZ
63/*
64 * period over which we average the RT time consumption, measured
65 * in ms.
66 *
67 * default: 1s
68 */
69const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
70
fa85ae24 71/*
d1ccc66d 72 * period over which we measure -rt task CPU usage in us.
fa85ae24
PZ
73 * default: 1s
74 */
9f0c1e56 75unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 76
029632fb 77__read_mostly int scheduler_running;
6892b75e 78
9f0c1e56
PZ
79/*
80 * part of the period that we allow rt tasks to run in us.
81 * default: 0.95s
82 */
83int sysctl_sched_rt_runtime = 950000;
fa85ae24 84
d1ccc66d 85/* CPUs with isolated domains */
3fa0818b
RR
86cpumask_var_t cpu_isolated_map;
87
3e71a462
PZ
88/*
89 * __task_rq_lock - lock the rq @p resides on.
90 */
eb580751 91struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
92 __acquires(rq->lock)
93{
94 struct rq *rq;
95
96 lockdep_assert_held(&p->pi_lock);
97
98 for (;;) {
99 rq = task_rq(p);
100 raw_spin_lock(&rq->lock);
101 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 102 rq_pin_lock(rq, rf);
3e71a462
PZ
103 return rq;
104 }
105 raw_spin_unlock(&rq->lock);
106
107 while (unlikely(task_on_rq_migrating(p)))
108 cpu_relax();
109 }
110}
111
112/*
113 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
114 */
eb580751 115struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
116 __acquires(p->pi_lock)
117 __acquires(rq->lock)
118{
119 struct rq *rq;
120
121 for (;;) {
eb580751 122 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
3e71a462
PZ
123 rq = task_rq(p);
124 raw_spin_lock(&rq->lock);
125 /*
126 * move_queued_task() task_rq_lock()
127 *
128 * ACQUIRE (rq->lock)
129 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
130 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
131 * [S] ->cpu = new_cpu [L] task_rq()
132 * [L] ->on_rq
133 * RELEASE (rq->lock)
134 *
135 * If we observe the old cpu in task_rq_lock, the acquire of
136 * the old rq->lock will fully serialize against the stores.
137 *
d1ccc66d 138 * If we observe the new CPU in task_rq_lock, the acquire will
3e71a462
PZ
139 * pair with the WMB to ensure we must then also see migrating.
140 */
141 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 142 rq_pin_lock(rq, rf);
3e71a462
PZ
143 return rq;
144 }
145 raw_spin_unlock(&rq->lock);
eb580751 146 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
3e71a462
PZ
147
148 while (unlikely(task_on_rq_migrating(p)))
149 cpu_relax();
150 }
151}
152
535b9552
IM
153/*
154 * RQ-clock updating methods:
155 */
156
157static void update_rq_clock_task(struct rq *rq, s64 delta)
158{
159/*
160 * In theory, the compile should just see 0 here, and optimize out the call
161 * to sched_rt_avg_update. But I don't trust it...
162 */
163#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
164 s64 steal = 0, irq_delta = 0;
165#endif
166#ifdef CONFIG_IRQ_TIME_ACCOUNTING
167 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
168
169 /*
170 * Since irq_time is only updated on {soft,}irq_exit, we might run into
171 * this case when a previous update_rq_clock() happened inside a
172 * {soft,}irq region.
173 *
174 * When this happens, we stop ->clock_task and only update the
175 * prev_irq_time stamp to account for the part that fit, so that a next
176 * update will consume the rest. This ensures ->clock_task is
177 * monotonic.
178 *
179 * It does however cause some slight miss-attribution of {soft,}irq
180 * time, a more accurate solution would be to update the irq_time using
181 * the current rq->clock timestamp, except that would require using
182 * atomic ops.
183 */
184 if (irq_delta > delta)
185 irq_delta = delta;
186
187 rq->prev_irq_time += irq_delta;
188 delta -= irq_delta;
189#endif
190#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
191 if (static_key_false((&paravirt_steal_rq_enabled))) {
192 steal = paravirt_steal_clock(cpu_of(rq));
193 steal -= rq->prev_steal_time_rq;
194
195 if (unlikely(steal > delta))
196 steal = delta;
197
198 rq->prev_steal_time_rq += steal;
199 delta -= steal;
200 }
201#endif
202
203 rq->clock_task += delta;
204
205#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
206 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
207 sched_rt_avg_update(rq, irq_delta + steal);
208#endif
209}
210
211void update_rq_clock(struct rq *rq)
212{
213 s64 delta;
214
215 lockdep_assert_held(&rq->lock);
216
217 if (rq->clock_update_flags & RQCF_ACT_SKIP)
218 return;
219
220#ifdef CONFIG_SCHED_DEBUG
26ae58d2
PZ
221 if (sched_feat(WARN_DOUBLE_CLOCK))
222 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
535b9552
IM
223 rq->clock_update_flags |= RQCF_UPDATED;
224#endif
26ae58d2 225
535b9552
IM
226 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
227 if (delta < 0)
228 return;
229 rq->clock += delta;
230 update_rq_clock_task(rq, delta);
231}
232
233
8f4d37ec
PZ
234#ifdef CONFIG_SCHED_HRTICK
235/*
236 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 237 */
8f4d37ec 238
8f4d37ec
PZ
239static void hrtick_clear(struct rq *rq)
240{
241 if (hrtimer_active(&rq->hrtick_timer))
242 hrtimer_cancel(&rq->hrtick_timer);
243}
244
8f4d37ec
PZ
245/*
246 * High-resolution timer tick.
247 * Runs from hardirq context with interrupts disabled.
248 */
249static enum hrtimer_restart hrtick(struct hrtimer *timer)
250{
251 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
8a8c69c3 252 struct rq_flags rf;
8f4d37ec
PZ
253
254 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
255
8a8c69c3 256 rq_lock(rq, &rf);
3e51f33f 257 update_rq_clock(rq);
8f4d37ec 258 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
8a8c69c3 259 rq_unlock(rq, &rf);
8f4d37ec
PZ
260
261 return HRTIMER_NORESTART;
262}
263
95e904c7 264#ifdef CONFIG_SMP
971ee28c 265
4961b6e1 266static void __hrtick_restart(struct rq *rq)
971ee28c
PZ
267{
268 struct hrtimer *timer = &rq->hrtick_timer;
971ee28c 269
4961b6e1 270 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
971ee28c
PZ
271}
272
31656519
PZ
273/*
274 * called from hardirq (IPI) context
275 */
276static void __hrtick_start(void *arg)
b328ca18 277{
31656519 278 struct rq *rq = arg;
8a8c69c3 279 struct rq_flags rf;
b328ca18 280
8a8c69c3 281 rq_lock(rq, &rf);
971ee28c 282 __hrtick_restart(rq);
31656519 283 rq->hrtick_csd_pending = 0;
8a8c69c3 284 rq_unlock(rq, &rf);
b328ca18
PZ
285}
286
31656519
PZ
287/*
288 * Called to set the hrtick timer state.
289 *
290 * called with rq->lock held and irqs disabled
291 */
029632fb 292void hrtick_start(struct rq *rq, u64 delay)
b328ca18 293{
31656519 294 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 295 ktime_t time;
296 s64 delta;
297
298 /*
299 * Don't schedule slices shorter than 10000ns, that just
300 * doesn't make sense and can cause timer DoS.
301 */
302 delta = max_t(s64, delay, 10000LL);
303 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 304
cc584b21 305 hrtimer_set_expires(timer, time);
31656519
PZ
306
307 if (rq == this_rq()) {
971ee28c 308 __hrtick_restart(rq);
31656519 309 } else if (!rq->hrtick_csd_pending) {
c46fff2a 310 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
311 rq->hrtick_csd_pending = 1;
312 }
b328ca18
PZ
313}
314
31656519
PZ
315#else
316/*
317 * Called to set the hrtick timer state.
318 *
319 * called with rq->lock held and irqs disabled
320 */
029632fb 321void hrtick_start(struct rq *rq, u64 delay)
31656519 322{
86893335
WL
323 /*
324 * Don't schedule slices shorter than 10000ns, that just
325 * doesn't make sense. Rely on vruntime for fairness.
326 */
327 delay = max_t(u64, delay, 10000LL);
4961b6e1
TG
328 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
329 HRTIMER_MODE_REL_PINNED);
31656519 330}
31656519 331#endif /* CONFIG_SMP */
8f4d37ec 332
31656519 333static void init_rq_hrtick(struct rq *rq)
8f4d37ec 334{
31656519
PZ
335#ifdef CONFIG_SMP
336 rq->hrtick_csd_pending = 0;
8f4d37ec 337
31656519
PZ
338 rq->hrtick_csd.flags = 0;
339 rq->hrtick_csd.func = __hrtick_start;
340 rq->hrtick_csd.info = rq;
341#endif
8f4d37ec 342
31656519
PZ
343 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
344 rq->hrtick_timer.function = hrtick;
8f4d37ec 345}
006c75f1 346#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
347static inline void hrtick_clear(struct rq *rq)
348{
349}
350
8f4d37ec
PZ
351static inline void init_rq_hrtick(struct rq *rq)
352{
353}
006c75f1 354#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 355
5529578a
FW
356/*
357 * cmpxchg based fetch_or, macro so it works for different integer types
358 */
359#define fetch_or(ptr, mask) \
360 ({ \
361 typeof(ptr) _ptr = (ptr); \
362 typeof(mask) _mask = (mask); \
363 typeof(*_ptr) _old, _val = *_ptr; \
364 \
365 for (;;) { \
366 _old = cmpxchg(_ptr, _val, _val | _mask); \
367 if (_old == _val) \
368 break; \
369 _val = _old; \
370 } \
371 _old; \
372})
373
e3baac47 374#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
375/*
376 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
377 * this avoids any races wrt polling state changes and thereby avoids
378 * spurious IPIs.
379 */
380static bool set_nr_and_not_polling(struct task_struct *p)
381{
382 struct thread_info *ti = task_thread_info(p);
383 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
384}
e3baac47
PZ
385
386/*
387 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
388 *
389 * If this returns true, then the idle task promises to call
390 * sched_ttwu_pending() and reschedule soon.
391 */
392static bool set_nr_if_polling(struct task_struct *p)
393{
394 struct thread_info *ti = task_thread_info(p);
316c1608 395 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
e3baac47
PZ
396
397 for (;;) {
398 if (!(val & _TIF_POLLING_NRFLAG))
399 return false;
400 if (val & _TIF_NEED_RESCHED)
401 return true;
402 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
403 if (old == val)
404 break;
405 val = old;
406 }
407 return true;
408}
409
fd99f91a
PZ
410#else
411static bool set_nr_and_not_polling(struct task_struct *p)
412{
413 set_tsk_need_resched(p);
414 return true;
415}
e3baac47
PZ
416
417#ifdef CONFIG_SMP
418static bool set_nr_if_polling(struct task_struct *p)
419{
420 return false;
421}
422#endif
fd99f91a
PZ
423#endif
424
76751049
PZ
425void wake_q_add(struct wake_q_head *head, struct task_struct *task)
426{
427 struct wake_q_node *node = &task->wake_q;
428
429 /*
430 * Atomically grab the task, if ->wake_q is !nil already it means
431 * its already queued (either by us or someone else) and will get the
432 * wakeup due to that.
433 *
434 * This cmpxchg() implies a full barrier, which pairs with the write
58fe9c46 435 * barrier implied by the wakeup in wake_up_q().
76751049
PZ
436 */
437 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
438 return;
439
440 get_task_struct(task);
441
442 /*
443 * The head is context local, there can be no concurrency.
444 */
445 *head->lastp = node;
446 head->lastp = &node->next;
447}
448
449void wake_up_q(struct wake_q_head *head)
450{
451 struct wake_q_node *node = head->first;
452
453 while (node != WAKE_Q_TAIL) {
454 struct task_struct *task;
455
456 task = container_of(node, struct task_struct, wake_q);
457 BUG_ON(!task);
d1ccc66d 458 /* Task can safely be re-inserted now: */
76751049
PZ
459 node = node->next;
460 task->wake_q.next = NULL;
461
462 /*
463 * wake_up_process() implies a wmb() to pair with the queueing
464 * in wake_q_add() so as not to miss wakeups.
465 */
466 wake_up_process(task);
467 put_task_struct(task);
468 }
469}
470
c24d20db 471/*
8875125e 472 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
473 *
474 * On UP this means the setting of the need_resched flag, on SMP it
475 * might also involve a cross-CPU call to trigger the scheduler on
476 * the target CPU.
477 */
8875125e 478void resched_curr(struct rq *rq)
c24d20db 479{
8875125e 480 struct task_struct *curr = rq->curr;
c24d20db
IM
481 int cpu;
482
8875125e 483 lockdep_assert_held(&rq->lock);
c24d20db 484
8875125e 485 if (test_tsk_need_resched(curr))
c24d20db
IM
486 return;
487
8875125e 488 cpu = cpu_of(rq);
fd99f91a 489
f27dde8d 490 if (cpu == smp_processor_id()) {
8875125e 491 set_tsk_need_resched(curr);
f27dde8d 492 set_preempt_need_resched();
c24d20db 493 return;
f27dde8d 494 }
c24d20db 495
8875125e 496 if (set_nr_and_not_polling(curr))
c24d20db 497 smp_send_reschedule(cpu);
dfc68f29
AL
498 else
499 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
500}
501
029632fb 502void resched_cpu(int cpu)
c24d20db
IM
503{
504 struct rq *rq = cpu_rq(cpu);
505 unsigned long flags;
506
05fa785c 507 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db 508 return;
8875125e 509 resched_curr(rq);
05fa785c 510 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 511}
06d8308c 512
b021fe3e 513#ifdef CONFIG_SMP
3451d024 514#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2 515/*
d1ccc66d
IM
516 * In the semi idle case, use the nearest busy CPU for migrating timers
517 * from an idle CPU. This is good for power-savings.
83cd4fe2
VP
518 *
519 * We don't do similar optimization for completely idle system, as
d1ccc66d
IM
520 * selecting an idle CPU will add more delays to the timers than intended
521 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
83cd4fe2 522 */
bc7a34b8 523int get_nohz_timer_target(void)
83cd4fe2 524{
bc7a34b8 525 int i, cpu = smp_processor_id();
83cd4fe2
VP
526 struct sched_domain *sd;
527
9642d18e 528 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
6201b4d6
VK
529 return cpu;
530
057f3fad 531 rcu_read_lock();
83cd4fe2 532 for_each_domain(cpu, sd) {
057f3fad 533 for_each_cpu(i, sched_domain_span(sd)) {
44496922
WL
534 if (cpu == i)
535 continue;
536
537 if (!idle_cpu(i) && is_housekeeping_cpu(i)) {
057f3fad
PZ
538 cpu = i;
539 goto unlock;
540 }
541 }
83cd4fe2 542 }
9642d18e
VH
543
544 if (!is_housekeeping_cpu(cpu))
545 cpu = housekeeping_any_cpu();
057f3fad
PZ
546unlock:
547 rcu_read_unlock();
83cd4fe2
VP
548 return cpu;
549}
d1ccc66d 550
06d8308c
TG
551/*
552 * When add_timer_on() enqueues a timer into the timer wheel of an
553 * idle CPU then this timer might expire before the next timer event
554 * which is scheduled to wake up that CPU. In case of a completely
555 * idle system the next event might even be infinite time into the
556 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
557 * leaves the inner idle loop so the newly added timer is taken into
558 * account when the CPU goes back to idle and evaluates the timer
559 * wheel for the next timer event.
560 */
1c20091e 561static void wake_up_idle_cpu(int cpu)
06d8308c
TG
562{
563 struct rq *rq = cpu_rq(cpu);
564
565 if (cpu == smp_processor_id())
566 return;
567
67b9ca70 568 if (set_nr_and_not_polling(rq->idle))
06d8308c 569 smp_send_reschedule(cpu);
dfc68f29
AL
570 else
571 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
572}
573
c5bfece2 574static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 575{
53c5fa16
FW
576 /*
577 * We just need the target to call irq_exit() and re-evaluate
578 * the next tick. The nohz full kick at least implies that.
579 * If needed we can still optimize that later with an
580 * empty IRQ.
581 */
379d9ecb
PM
582 if (cpu_is_offline(cpu))
583 return true; /* Don't try to wake offline CPUs. */
c5bfece2 584 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
585 if (cpu != smp_processor_id() ||
586 tick_nohz_tick_stopped())
53c5fa16 587 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
588 return true;
589 }
590
591 return false;
592}
593
379d9ecb
PM
594/*
595 * Wake up the specified CPU. If the CPU is going offline, it is the
596 * caller's responsibility to deal with the lost wakeup, for example,
597 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
598 */
1c20091e
FW
599void wake_up_nohz_cpu(int cpu)
600{
c5bfece2 601 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
602 wake_up_idle_cpu(cpu);
603}
604
ca38062e 605static inline bool got_nohz_idle_kick(void)
45bf76df 606{
1c792db7 607 int cpu = smp_processor_id();
873b4c65
VG
608
609 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
610 return false;
611
612 if (idle_cpu(cpu) && !need_resched())
613 return true;
614
615 /*
616 * We can't run Idle Load Balance on this CPU for this time so we
617 * cancel it and clear NOHZ_BALANCE_KICK
618 */
619 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
620 return false;
45bf76df
IM
621}
622
3451d024 623#else /* CONFIG_NO_HZ_COMMON */
45bf76df 624
ca38062e 625static inline bool got_nohz_idle_kick(void)
2069dd75 626{
ca38062e 627 return false;
2069dd75
PZ
628}
629
3451d024 630#endif /* CONFIG_NO_HZ_COMMON */
d842de87 631
ce831b38 632#ifdef CONFIG_NO_HZ_FULL
76d92ac3 633bool sched_can_stop_tick(struct rq *rq)
ce831b38 634{
76d92ac3
FW
635 int fifo_nr_running;
636
637 /* Deadline tasks, even if single, need the tick */
638 if (rq->dl.dl_nr_running)
639 return false;
640
1e78cdbd 641 /*
2548d546
PZ
642 * If there are more than one RR tasks, we need the tick to effect the
643 * actual RR behaviour.
1e78cdbd 644 */
76d92ac3
FW
645 if (rq->rt.rr_nr_running) {
646 if (rq->rt.rr_nr_running == 1)
647 return true;
648 else
649 return false;
1e78cdbd
RR
650 }
651
2548d546
PZ
652 /*
653 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
654 * forced preemption between FIFO tasks.
655 */
656 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
657 if (fifo_nr_running)
658 return true;
659
660 /*
661 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
662 * if there's more than one we need the tick for involuntary
663 * preemption.
664 */
665 if (rq->nr_running > 1)
541b8264 666 return false;
ce831b38 667
541b8264 668 return true;
ce831b38
FW
669}
670#endif /* CONFIG_NO_HZ_FULL */
d842de87 671
029632fb 672void sched_avg_update(struct rq *rq)
18d95a28 673{
e9e9250b
PZ
674 s64 period = sched_avg_period();
675
78becc27 676 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
677 /*
678 * Inline assembly required to prevent the compiler
679 * optimising this loop into a divmod call.
680 * See __iter_div_u64_rem() for another example of this.
681 */
682 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
683 rq->age_stamp += period;
684 rq->rt_avg /= 2;
685 }
18d95a28
PZ
686}
687
6d6bc0ad 688#endif /* CONFIG_SMP */
18d95a28 689
a790de99
PT
690#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
691 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 692/*
8277434e
PT
693 * Iterate task_group tree rooted at *from, calling @down when first entering a
694 * node and @up when leaving it for the final time.
695 *
696 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 697 */
029632fb 698int walk_tg_tree_from(struct task_group *from,
8277434e 699 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
700{
701 struct task_group *parent, *child;
eb755805 702 int ret;
c09595f6 703
8277434e
PT
704 parent = from;
705
c09595f6 706down:
eb755805
PZ
707 ret = (*down)(parent, data);
708 if (ret)
8277434e 709 goto out;
c09595f6
PZ
710 list_for_each_entry_rcu(child, &parent->children, siblings) {
711 parent = child;
712 goto down;
713
714up:
715 continue;
716 }
eb755805 717 ret = (*up)(parent, data);
8277434e
PT
718 if (ret || parent == from)
719 goto out;
c09595f6
PZ
720
721 child = parent;
722 parent = parent->parent;
723 if (parent)
724 goto up;
8277434e 725out:
eb755805 726 return ret;
c09595f6
PZ
727}
728
029632fb 729int tg_nop(struct task_group *tg, void *data)
eb755805 730{
e2b245f8 731 return 0;
eb755805 732}
18d95a28
PZ
733#endif
734
45bf76df
IM
735static void set_load_weight(struct task_struct *p)
736{
f05998d4
NR
737 int prio = p->static_prio - MAX_RT_PRIO;
738 struct load_weight *load = &p->se.load;
739
dd41f596
IM
740 /*
741 * SCHED_IDLE tasks get minimal weight:
742 */
20f9cd2a 743 if (idle_policy(p->policy)) {
c8b28116 744 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 745 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
746 return;
747 }
71f8bd46 748
ed82b8a1
AK
749 load->weight = scale_load(sched_prio_to_weight[prio]);
750 load->inv_weight = sched_prio_to_wmult[prio];
71f8bd46
IM
751}
752
1de64443 753static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 754{
0a67d1ee
PZ
755 if (!(flags & ENQUEUE_NOCLOCK))
756 update_rq_clock(rq);
757
1de64443
PZ
758 if (!(flags & ENQUEUE_RESTORE))
759 sched_info_queued(rq, p);
0a67d1ee 760
371fd7e7 761 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
762}
763
1de64443 764static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 765{
0a67d1ee
PZ
766 if (!(flags & DEQUEUE_NOCLOCK))
767 update_rq_clock(rq);
768
1de64443
PZ
769 if (!(flags & DEQUEUE_SAVE))
770 sched_info_dequeued(rq, p);
0a67d1ee 771
371fd7e7 772 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
773}
774
029632fb 775void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
776{
777 if (task_contributes_to_load(p))
778 rq->nr_uninterruptible--;
779
371fd7e7 780 enqueue_task(rq, p, flags);
1e3c88bd
PZ
781}
782
029632fb 783void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
784{
785 if (task_contributes_to_load(p))
786 rq->nr_uninterruptible++;
787
371fd7e7 788 dequeue_task(rq, p, flags);
1e3c88bd
PZ
789}
790
34f971f6
PZ
791void sched_set_stop_task(int cpu, struct task_struct *stop)
792{
793 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
794 struct task_struct *old_stop = cpu_rq(cpu)->stop;
795
796 if (stop) {
797 /*
798 * Make it appear like a SCHED_FIFO task, its something
799 * userspace knows about and won't get confused about.
800 *
801 * Also, it will make PI more or less work without too
802 * much confusion -- but then, stop work should not
803 * rely on PI working anyway.
804 */
805 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
806
807 stop->sched_class = &stop_sched_class;
808 }
809
810 cpu_rq(cpu)->stop = stop;
811
812 if (old_stop) {
813 /*
814 * Reset it back to a normal scheduling class so that
815 * it can die in pieces.
816 */
817 old_stop->sched_class = &rt_sched_class;
818 }
819}
820
14531189 821/*
dd41f596 822 * __normal_prio - return the priority that is based on the static prio
14531189 823 */
14531189
IM
824static inline int __normal_prio(struct task_struct *p)
825{
dd41f596 826 return p->static_prio;
14531189
IM
827}
828
b29739f9
IM
829/*
830 * Calculate the expected normal priority: i.e. priority
831 * without taking RT-inheritance into account. Might be
832 * boosted by interactivity modifiers. Changes upon fork,
833 * setprio syscalls, and whenever the interactivity
834 * estimator recalculates.
835 */
36c8b586 836static inline int normal_prio(struct task_struct *p)
b29739f9
IM
837{
838 int prio;
839
aab03e05
DF
840 if (task_has_dl_policy(p))
841 prio = MAX_DL_PRIO-1;
842 else if (task_has_rt_policy(p))
b29739f9
IM
843 prio = MAX_RT_PRIO-1 - p->rt_priority;
844 else
845 prio = __normal_prio(p);
846 return prio;
847}
848
849/*
850 * Calculate the current priority, i.e. the priority
851 * taken into account by the scheduler. This value might
852 * be boosted by RT tasks, or might be boosted by
853 * interactivity modifiers. Will be RT if the task got
854 * RT-boosted. If not then it returns p->normal_prio.
855 */
36c8b586 856static int effective_prio(struct task_struct *p)
b29739f9
IM
857{
858 p->normal_prio = normal_prio(p);
859 /*
860 * If we are RT tasks or we were boosted to RT priority,
861 * keep the priority unchanged. Otherwise, update priority
862 * to the normal priority:
863 */
864 if (!rt_prio(p->prio))
865 return p->normal_prio;
866 return p->prio;
867}
868
1da177e4
LT
869/**
870 * task_curr - is this task currently executing on a CPU?
871 * @p: the task in question.
e69f6186
YB
872 *
873 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 874 */
36c8b586 875inline int task_curr(const struct task_struct *p)
1da177e4
LT
876{
877 return cpu_curr(task_cpu(p)) == p;
878}
879
67dfa1b7 880/*
4c9a4bc8
PZ
881 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
882 * use the balance_callback list if you want balancing.
883 *
884 * this means any call to check_class_changed() must be followed by a call to
885 * balance_callback().
67dfa1b7 886 */
cb469845
SR
887static inline void check_class_changed(struct rq *rq, struct task_struct *p,
888 const struct sched_class *prev_class,
da7a735e 889 int oldprio)
cb469845
SR
890{
891 if (prev_class != p->sched_class) {
892 if (prev_class->switched_from)
da7a735e 893 prev_class->switched_from(rq, p);
4c9a4bc8 894
da7a735e 895 p->sched_class->switched_to(rq, p);
2d3d891d 896 } else if (oldprio != p->prio || dl_task(p))
da7a735e 897 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
898}
899
029632fb 900void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
901{
902 const struct sched_class *class;
903
904 if (p->sched_class == rq->curr->sched_class) {
905 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
906 } else {
907 for_each_class(class) {
908 if (class == rq->curr->sched_class)
909 break;
910 if (class == p->sched_class) {
8875125e 911 resched_curr(rq);
1e5a7405
PZ
912 break;
913 }
914 }
915 }
916
917 /*
918 * A queue event has occurred, and we're going to schedule. In
919 * this case, we can save a useless back to back clock update.
920 */
da0c1e65 921 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
9edfbfed 922 rq_clock_skip_update(rq, true);
1e5a7405
PZ
923}
924
1da177e4 925#ifdef CONFIG_SMP
5cc389bc
PZ
926/*
927 * This is how migration works:
928 *
929 * 1) we invoke migration_cpu_stop() on the target CPU using
930 * stop_one_cpu().
931 * 2) stopper starts to run (implicitly forcing the migrated thread
932 * off the CPU)
933 * 3) it checks whether the migrated task is still in the wrong runqueue.
934 * 4) if it's in the wrong runqueue then the migration thread removes
935 * it and puts it into the right queue.
936 * 5) stopper completes and stop_one_cpu() returns and the migration
937 * is done.
938 */
939
940/*
941 * move_queued_task - move a queued task to new rq.
942 *
943 * Returns (locked) new rq. Old rq's lock is released.
944 */
8a8c69c3
PZ
945static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
946 struct task_struct *p, int new_cpu)
5cc389bc 947{
5cc389bc
PZ
948 lockdep_assert_held(&rq->lock);
949
5cc389bc 950 p->on_rq = TASK_ON_RQ_MIGRATING;
15ff991e 951 dequeue_task(rq, p, DEQUEUE_NOCLOCK);
5cc389bc 952 set_task_cpu(p, new_cpu);
8a8c69c3 953 rq_unlock(rq, rf);
5cc389bc
PZ
954
955 rq = cpu_rq(new_cpu);
956
8a8c69c3 957 rq_lock(rq, rf);
5cc389bc 958 BUG_ON(task_cpu(p) != new_cpu);
5cc389bc 959 enqueue_task(rq, p, 0);
3ea94de1 960 p->on_rq = TASK_ON_RQ_QUEUED;
5cc389bc
PZ
961 check_preempt_curr(rq, p, 0);
962
963 return rq;
964}
965
966struct migration_arg {
967 struct task_struct *task;
968 int dest_cpu;
969};
970
971/*
d1ccc66d 972 * Move (not current) task off this CPU, onto the destination CPU. We're doing
5cc389bc
PZ
973 * this because either it can't run here any more (set_cpus_allowed()
974 * away from this CPU, or CPU going down), or because we're
975 * attempting to rebalance this task on exec (sched_exec).
976 *
977 * So we race with normal scheduler movements, but that's OK, as long
978 * as the task is no longer on this CPU.
5cc389bc 979 */
8a8c69c3
PZ
980static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
981 struct task_struct *p, int dest_cpu)
5cc389bc 982{
5cc389bc 983 if (unlikely(!cpu_active(dest_cpu)))
5e16bbc2 984 return rq;
5cc389bc
PZ
985
986 /* Affinity changed (again). */
0c98d344 987 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
5e16bbc2 988 return rq;
5cc389bc 989
15ff991e 990 update_rq_clock(rq);
8a8c69c3 991 rq = move_queued_task(rq, rf, p, dest_cpu);
5e16bbc2
PZ
992
993 return rq;
5cc389bc
PZ
994}
995
996/*
997 * migration_cpu_stop - this will be executed by a highprio stopper thread
998 * and performs thread migration by bumping thread off CPU then
999 * 'pushing' onto another runqueue.
1000 */
1001static int migration_cpu_stop(void *data)
1002{
1003 struct migration_arg *arg = data;
5e16bbc2
PZ
1004 struct task_struct *p = arg->task;
1005 struct rq *rq = this_rq();
8a8c69c3 1006 struct rq_flags rf;
5cc389bc
PZ
1007
1008 /*
d1ccc66d
IM
1009 * The original target CPU might have gone down and we might
1010 * be on another CPU but it doesn't matter.
5cc389bc
PZ
1011 */
1012 local_irq_disable();
1013 /*
1014 * We need to explicitly wake pending tasks before running
1015 * __migrate_task() such that we will not miss enforcing cpus_allowed
1016 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1017 */
1018 sched_ttwu_pending();
5e16bbc2
PZ
1019
1020 raw_spin_lock(&p->pi_lock);
8a8c69c3 1021 rq_lock(rq, &rf);
5e16bbc2
PZ
1022 /*
1023 * If task_rq(p) != rq, it cannot be migrated here, because we're
1024 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1025 * we're holding p->pi_lock.
1026 */
bf89a304
CC
1027 if (task_rq(p) == rq) {
1028 if (task_on_rq_queued(p))
8a8c69c3 1029 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
bf89a304
CC
1030 else
1031 p->wake_cpu = arg->dest_cpu;
1032 }
8a8c69c3 1033 rq_unlock(rq, &rf);
5e16bbc2
PZ
1034 raw_spin_unlock(&p->pi_lock);
1035
5cc389bc
PZ
1036 local_irq_enable();
1037 return 0;
1038}
1039
c5b28038
PZ
1040/*
1041 * sched_class::set_cpus_allowed must do the below, but is not required to
1042 * actually call this function.
1043 */
1044void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
5cc389bc 1045{
5cc389bc
PZ
1046 cpumask_copy(&p->cpus_allowed, new_mask);
1047 p->nr_cpus_allowed = cpumask_weight(new_mask);
1048}
1049
c5b28038
PZ
1050void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1051{
6c37067e
PZ
1052 struct rq *rq = task_rq(p);
1053 bool queued, running;
1054
c5b28038 1055 lockdep_assert_held(&p->pi_lock);
6c37067e
PZ
1056
1057 queued = task_on_rq_queued(p);
1058 running = task_current(rq, p);
1059
1060 if (queued) {
1061 /*
1062 * Because __kthread_bind() calls this on blocked tasks without
1063 * holding rq->lock.
1064 */
1065 lockdep_assert_held(&rq->lock);
7a57f32a 1066 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
6c37067e
PZ
1067 }
1068 if (running)
1069 put_prev_task(rq, p);
1070
c5b28038 1071 p->sched_class->set_cpus_allowed(p, new_mask);
6c37067e 1072
6c37067e 1073 if (queued)
7134b3e9 1074 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
a399d233 1075 if (running)
b2bf6c31 1076 set_curr_task(rq, p);
c5b28038
PZ
1077}
1078
5cc389bc
PZ
1079/*
1080 * Change a given task's CPU affinity. Migrate the thread to a
1081 * proper CPU and schedule it away if the CPU it's executing on
1082 * is removed from the allowed bitmask.
1083 *
1084 * NOTE: the caller must have a valid reference to the task, the
1085 * task must not exit() & deallocate itself prematurely. The
1086 * call is not atomic; no spinlocks may be held.
1087 */
25834c73
PZ
1088static int __set_cpus_allowed_ptr(struct task_struct *p,
1089 const struct cpumask *new_mask, bool check)
5cc389bc 1090{
e9d867a6 1091 const struct cpumask *cpu_valid_mask = cpu_active_mask;
5cc389bc 1092 unsigned int dest_cpu;
eb580751
PZ
1093 struct rq_flags rf;
1094 struct rq *rq;
5cc389bc
PZ
1095 int ret = 0;
1096
eb580751 1097 rq = task_rq_lock(p, &rf);
a499c3ea 1098 update_rq_clock(rq);
5cc389bc 1099
e9d867a6
PZI
1100 if (p->flags & PF_KTHREAD) {
1101 /*
1102 * Kernel threads are allowed on online && !active CPUs
1103 */
1104 cpu_valid_mask = cpu_online_mask;
1105 }
1106
25834c73
PZ
1107 /*
1108 * Must re-check here, to close a race against __kthread_bind(),
1109 * sched_setaffinity() is not guaranteed to observe the flag.
1110 */
1111 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1112 ret = -EINVAL;
1113 goto out;
1114 }
1115
5cc389bc
PZ
1116 if (cpumask_equal(&p->cpus_allowed, new_mask))
1117 goto out;
1118
e9d867a6 1119 if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
5cc389bc
PZ
1120 ret = -EINVAL;
1121 goto out;
1122 }
1123
1124 do_set_cpus_allowed(p, new_mask);
1125
e9d867a6
PZI
1126 if (p->flags & PF_KTHREAD) {
1127 /*
1128 * For kernel threads that do indeed end up on online &&
d1ccc66d 1129 * !active we want to ensure they are strict per-CPU threads.
e9d867a6
PZI
1130 */
1131 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1132 !cpumask_intersects(new_mask, cpu_active_mask) &&
1133 p->nr_cpus_allowed != 1);
1134 }
1135
5cc389bc
PZ
1136 /* Can the task run on the task's current CPU? If so, we're done */
1137 if (cpumask_test_cpu(task_cpu(p), new_mask))
1138 goto out;
1139
e9d867a6 1140 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
5cc389bc
PZ
1141 if (task_running(rq, p) || p->state == TASK_WAKING) {
1142 struct migration_arg arg = { p, dest_cpu };
1143 /* Need help from migration thread: drop lock and wait. */
eb580751 1144 task_rq_unlock(rq, p, &rf);
5cc389bc
PZ
1145 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1146 tlb_migrate_finish(p->mm);
1147 return 0;
cbce1a68
PZ
1148 } else if (task_on_rq_queued(p)) {
1149 /*
1150 * OK, since we're going to drop the lock immediately
1151 * afterwards anyway.
1152 */
8a8c69c3 1153 rq = move_queued_task(rq, &rf, p, dest_cpu);
cbce1a68 1154 }
5cc389bc 1155out:
eb580751 1156 task_rq_unlock(rq, p, &rf);
5cc389bc
PZ
1157
1158 return ret;
1159}
25834c73
PZ
1160
1161int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1162{
1163 return __set_cpus_allowed_ptr(p, new_mask, false);
1164}
5cc389bc
PZ
1165EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1166
dd41f596 1167void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1168{
e2912009
PZ
1169#ifdef CONFIG_SCHED_DEBUG
1170 /*
1171 * We should never call set_task_cpu() on a blocked task,
1172 * ttwu() will sort out the placement.
1173 */
077614ee 1174 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
e2336f6e 1175 !p->on_rq);
0122ec5b 1176
3ea94de1
JP
1177 /*
1178 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1179 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1180 * time relying on p->on_rq.
1181 */
1182 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1183 p->sched_class == &fair_sched_class &&
1184 (p->on_rq && !task_on_rq_migrating(p)));
1185
0122ec5b 1186#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1187 /*
1188 * The caller should hold either p->pi_lock or rq->lock, when changing
1189 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1190 *
1191 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1192 * see task_group().
6c6c54e1
PZ
1193 *
1194 * Furthermore, all task_rq users should acquire both locks, see
1195 * task_rq_lock().
1196 */
0122ec5b
PZ
1197 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1198 lockdep_is_held(&task_rq(p)->lock)));
1199#endif
e2912009
PZ
1200#endif
1201
de1d7286 1202 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1203
0c69774e 1204 if (task_cpu(p) != new_cpu) {
0a74bef8 1205 if (p->sched_class->migrate_task_rq)
5a4fd036 1206 p->sched_class->migrate_task_rq(p);
0c69774e 1207 p->se.nr_migrations++;
ff303e66 1208 perf_event_task_migrate(p);
0c69774e 1209 }
dd41f596
IM
1210
1211 __set_task_cpu(p, new_cpu);
c65cc870
IM
1212}
1213
ac66f547
PZ
1214static void __migrate_swap_task(struct task_struct *p, int cpu)
1215{
da0c1e65 1216 if (task_on_rq_queued(p)) {
ac66f547 1217 struct rq *src_rq, *dst_rq;
8a8c69c3 1218 struct rq_flags srf, drf;
ac66f547
PZ
1219
1220 src_rq = task_rq(p);
1221 dst_rq = cpu_rq(cpu);
1222
8a8c69c3
PZ
1223 rq_pin_lock(src_rq, &srf);
1224 rq_pin_lock(dst_rq, &drf);
1225
3ea94de1 1226 p->on_rq = TASK_ON_RQ_MIGRATING;
ac66f547
PZ
1227 deactivate_task(src_rq, p, 0);
1228 set_task_cpu(p, cpu);
1229 activate_task(dst_rq, p, 0);
3ea94de1 1230 p->on_rq = TASK_ON_RQ_QUEUED;
ac66f547 1231 check_preempt_curr(dst_rq, p, 0);
8a8c69c3
PZ
1232
1233 rq_unpin_lock(dst_rq, &drf);
1234 rq_unpin_lock(src_rq, &srf);
1235
ac66f547
PZ
1236 } else {
1237 /*
1238 * Task isn't running anymore; make it appear like we migrated
1239 * it before it went to sleep. This means on wakeup we make the
d1ccc66d 1240 * previous CPU our target instead of where it really is.
ac66f547
PZ
1241 */
1242 p->wake_cpu = cpu;
1243 }
1244}
1245
1246struct migration_swap_arg {
1247 struct task_struct *src_task, *dst_task;
1248 int src_cpu, dst_cpu;
1249};
1250
1251static int migrate_swap_stop(void *data)
1252{
1253 struct migration_swap_arg *arg = data;
1254 struct rq *src_rq, *dst_rq;
1255 int ret = -EAGAIN;
1256
62694cd5
PZ
1257 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1258 return -EAGAIN;
1259
ac66f547
PZ
1260 src_rq = cpu_rq(arg->src_cpu);
1261 dst_rq = cpu_rq(arg->dst_cpu);
1262
74602315
PZ
1263 double_raw_lock(&arg->src_task->pi_lock,
1264 &arg->dst_task->pi_lock);
ac66f547 1265 double_rq_lock(src_rq, dst_rq);
62694cd5 1266
ac66f547
PZ
1267 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1268 goto unlock;
1269
1270 if (task_cpu(arg->src_task) != arg->src_cpu)
1271 goto unlock;
1272
0c98d344 1273 if (!cpumask_test_cpu(arg->dst_cpu, &arg->src_task->cpus_allowed))
ac66f547
PZ
1274 goto unlock;
1275
0c98d344 1276 if (!cpumask_test_cpu(arg->src_cpu, &arg->dst_task->cpus_allowed))
ac66f547
PZ
1277 goto unlock;
1278
1279 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1280 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1281
1282 ret = 0;
1283
1284unlock:
1285 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1286 raw_spin_unlock(&arg->dst_task->pi_lock);
1287 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1288
1289 return ret;
1290}
1291
1292/*
1293 * Cross migrate two tasks
1294 */
1295int migrate_swap(struct task_struct *cur, struct task_struct *p)
1296{
1297 struct migration_swap_arg arg;
1298 int ret = -EINVAL;
1299
ac66f547
PZ
1300 arg = (struct migration_swap_arg){
1301 .src_task = cur,
1302 .src_cpu = task_cpu(cur),
1303 .dst_task = p,
1304 .dst_cpu = task_cpu(p),
1305 };
1306
1307 if (arg.src_cpu == arg.dst_cpu)
1308 goto out;
1309
6acce3ef
PZ
1310 /*
1311 * These three tests are all lockless; this is OK since all of them
1312 * will be re-checked with proper locks held further down the line.
1313 */
ac66f547
PZ
1314 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1315 goto out;
1316
0c98d344 1317 if (!cpumask_test_cpu(arg.dst_cpu, &arg.src_task->cpus_allowed))
ac66f547
PZ
1318 goto out;
1319
0c98d344 1320 if (!cpumask_test_cpu(arg.src_cpu, &arg.dst_task->cpus_allowed))
ac66f547
PZ
1321 goto out;
1322
286549dc 1323 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1324 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1325
1326out:
ac66f547
PZ
1327 return ret;
1328}
1329
1da177e4
LT
1330/*
1331 * wait_task_inactive - wait for a thread to unschedule.
1332 *
85ba2d86
RM
1333 * If @match_state is nonzero, it's the @p->state value just checked and
1334 * not expected to change. If it changes, i.e. @p might have woken up,
1335 * then return zero. When we succeed in waiting for @p to be off its CPU,
1336 * we return a positive number (its total switch count). If a second call
1337 * a short while later returns the same number, the caller can be sure that
1338 * @p has remained unscheduled the whole time.
1339 *
1da177e4
LT
1340 * The caller must ensure that the task *will* unschedule sometime soon,
1341 * else this function might spin for a *long* time. This function can't
1342 * be called with interrupts off, or it may introduce deadlock with
1343 * smp_call_function() if an IPI is sent by the same process we are
1344 * waiting to become inactive.
1345 */
85ba2d86 1346unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4 1347{
da0c1e65 1348 int running, queued;
eb580751 1349 struct rq_flags rf;
85ba2d86 1350 unsigned long ncsw;
70b97a7f 1351 struct rq *rq;
1da177e4 1352
3a5c359a
AK
1353 for (;;) {
1354 /*
1355 * We do the initial early heuristics without holding
1356 * any task-queue locks at all. We'll only try to get
1357 * the runqueue lock when things look like they will
1358 * work out!
1359 */
1360 rq = task_rq(p);
fa490cfd 1361
3a5c359a
AK
1362 /*
1363 * If the task is actively running on another CPU
1364 * still, just relax and busy-wait without holding
1365 * any locks.
1366 *
1367 * NOTE! Since we don't hold any locks, it's not
1368 * even sure that "rq" stays as the right runqueue!
1369 * But we don't care, since "task_running()" will
1370 * return false if the runqueue has changed and p
1371 * is actually now running somewhere else!
1372 */
85ba2d86
RM
1373 while (task_running(rq, p)) {
1374 if (match_state && unlikely(p->state != match_state))
1375 return 0;
3a5c359a 1376 cpu_relax();
85ba2d86 1377 }
fa490cfd 1378
3a5c359a
AK
1379 /*
1380 * Ok, time to look more closely! We need the rq
1381 * lock now, to be *sure*. If we're wrong, we'll
1382 * just go back and repeat.
1383 */
eb580751 1384 rq = task_rq_lock(p, &rf);
27a9da65 1385 trace_sched_wait_task(p);
3a5c359a 1386 running = task_running(rq, p);
da0c1e65 1387 queued = task_on_rq_queued(p);
85ba2d86 1388 ncsw = 0;
f31e11d8 1389 if (!match_state || p->state == match_state)
93dcf55f 1390 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
eb580751 1391 task_rq_unlock(rq, p, &rf);
fa490cfd 1392
85ba2d86
RM
1393 /*
1394 * If it changed from the expected state, bail out now.
1395 */
1396 if (unlikely(!ncsw))
1397 break;
1398
3a5c359a
AK
1399 /*
1400 * Was it really running after all now that we
1401 * checked with the proper locks actually held?
1402 *
1403 * Oops. Go back and try again..
1404 */
1405 if (unlikely(running)) {
1406 cpu_relax();
1407 continue;
1408 }
fa490cfd 1409
3a5c359a
AK
1410 /*
1411 * It's not enough that it's not actively running,
1412 * it must be off the runqueue _entirely_, and not
1413 * preempted!
1414 *
80dd99b3 1415 * So if it was still runnable (but just not actively
3a5c359a
AK
1416 * running right now), it's preempted, and we should
1417 * yield - it could be a while.
1418 */
da0c1e65 1419 if (unlikely(queued)) {
8b0e1953 1420 ktime_t to = NSEC_PER_SEC / HZ;
8eb90c30
TG
1421
1422 set_current_state(TASK_UNINTERRUPTIBLE);
1423 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1424 continue;
1425 }
fa490cfd 1426
3a5c359a
AK
1427 /*
1428 * Ahh, all good. It wasn't running, and it wasn't
1429 * runnable, which means that it will never become
1430 * running in the future either. We're all done!
1431 */
1432 break;
1433 }
85ba2d86
RM
1434
1435 return ncsw;
1da177e4
LT
1436}
1437
1438/***
1439 * kick_process - kick a running thread to enter/exit the kernel
1440 * @p: the to-be-kicked thread
1441 *
1442 * Cause a process which is running on another CPU to enter
1443 * kernel-mode, without any delay. (to get signals handled.)
1444 *
25985edc 1445 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1446 * because all it wants to ensure is that the remote task enters
1447 * the kernel. If the IPI races and the task has been migrated
1448 * to another CPU then no harm is done and the purpose has been
1449 * achieved as well.
1450 */
36c8b586 1451void kick_process(struct task_struct *p)
1da177e4
LT
1452{
1453 int cpu;
1454
1455 preempt_disable();
1456 cpu = task_cpu(p);
1457 if ((cpu != smp_processor_id()) && task_curr(p))
1458 smp_send_reschedule(cpu);
1459 preempt_enable();
1460}
b43e3521 1461EXPORT_SYMBOL_GPL(kick_process);
1da177e4 1462
30da688e 1463/*
013fdb80 1464 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
e9d867a6
PZI
1465 *
1466 * A few notes on cpu_active vs cpu_online:
1467 *
1468 * - cpu_active must be a subset of cpu_online
1469 *
1470 * - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
1471 * see __set_cpus_allowed_ptr(). At this point the newly online
d1ccc66d 1472 * CPU isn't yet part of the sched domains, and balancing will not
e9d867a6
PZI
1473 * see it.
1474 *
d1ccc66d 1475 * - on CPU-down we clear cpu_active() to mask the sched domains and
e9d867a6 1476 * avoid the load balancer to place new tasks on the to be removed
d1ccc66d 1477 * CPU. Existing tasks will remain running there and will be taken
e9d867a6
PZI
1478 * off.
1479 *
1480 * This means that fallback selection must not select !active CPUs.
1481 * And can assume that any active CPU must be online. Conversely
1482 * select_task_rq() below may allow selection of !active CPUs in order
1483 * to satisfy the above rules.
30da688e 1484 */
5da9a0fb
PZ
1485static int select_fallback_rq(int cpu, struct task_struct *p)
1486{
aa00d89c
TC
1487 int nid = cpu_to_node(cpu);
1488 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1489 enum { cpuset, possible, fail } state = cpuset;
1490 int dest_cpu;
5da9a0fb 1491
aa00d89c 1492 /*
d1ccc66d
IM
1493 * If the node that the CPU is on has been offlined, cpu_to_node()
1494 * will return -1. There is no CPU on the node, and we should
1495 * select the CPU on the other node.
aa00d89c
TC
1496 */
1497 if (nid != -1) {
1498 nodemask = cpumask_of_node(nid);
1499
1500 /* Look for allowed, online CPU in same node. */
1501 for_each_cpu(dest_cpu, nodemask) {
aa00d89c
TC
1502 if (!cpu_active(dest_cpu))
1503 continue;
0c98d344 1504 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
aa00d89c
TC
1505 return dest_cpu;
1506 }
2baab4e9 1507 }
5da9a0fb 1508
2baab4e9
PZ
1509 for (;;) {
1510 /* Any allowed, online CPU? */
0c98d344 1511 for_each_cpu(dest_cpu, &p->cpus_allowed) {
feb245e3
TH
1512 if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu))
1513 continue;
1514 if (!cpu_online(dest_cpu))
2baab4e9
PZ
1515 continue;
1516 goto out;
1517 }
5da9a0fb 1518
e73e85f0 1519 /* No more Mr. Nice Guy. */
2baab4e9
PZ
1520 switch (state) {
1521 case cpuset:
e73e85f0
ON
1522 if (IS_ENABLED(CONFIG_CPUSETS)) {
1523 cpuset_cpus_allowed_fallback(p);
1524 state = possible;
1525 break;
1526 }
d1ccc66d 1527 /* Fall-through */
2baab4e9
PZ
1528 case possible:
1529 do_set_cpus_allowed(p, cpu_possible_mask);
1530 state = fail;
1531 break;
1532
1533 case fail:
1534 BUG();
1535 break;
1536 }
1537 }
1538
1539out:
1540 if (state != cpuset) {
1541 /*
1542 * Don't tell them about moving exiting tasks or
1543 * kernel threads (both mm NULL), since they never
1544 * leave kernel.
1545 */
1546 if (p->mm && printk_ratelimit()) {
aac74dc4 1547 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1548 task_pid_nr(p), p->comm, cpu);
1549 }
5da9a0fb
PZ
1550 }
1551
1552 return dest_cpu;
1553}
1554
e2912009 1555/*
013fdb80 1556 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1557 */
970b13ba 1558static inline
ac66f547 1559int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1560{
cbce1a68
PZ
1561 lockdep_assert_held(&p->pi_lock);
1562
4b53a341 1563 if (p->nr_cpus_allowed > 1)
6c1d9410 1564 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e9d867a6 1565 else
0c98d344 1566 cpu = cpumask_any(&p->cpus_allowed);
e2912009
PZ
1567
1568 /*
1569 * In order not to call set_task_cpu() on a blocking task we need
1570 * to rely on ttwu() to place the task on a valid ->cpus_allowed
d1ccc66d 1571 * CPU.
e2912009
PZ
1572 *
1573 * Since this is common to all placement strategies, this lives here.
1574 *
1575 * [ this allows ->select_task() to simply return task_cpu(p) and
1576 * not worry about this generic constraint ]
1577 */
0c98d344 1578 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
70f11205 1579 !cpu_online(cpu)))
5da9a0fb 1580 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1581
1582 return cpu;
970b13ba 1583}
09a40af5
MG
1584
1585static void update_avg(u64 *avg, u64 sample)
1586{
1587 s64 diff = sample - *avg;
1588 *avg += diff >> 3;
1589}
25834c73
PZ
1590
1591#else
1592
1593static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1594 const struct cpumask *new_mask, bool check)
1595{
1596 return set_cpus_allowed_ptr(p, new_mask);
1597}
1598
5cc389bc 1599#endif /* CONFIG_SMP */
970b13ba 1600
d7c01d27 1601static void
b84cb5df 1602ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1603{
4fa8d299 1604 struct rq *rq;
b84cb5df 1605
4fa8d299
JP
1606 if (!schedstat_enabled())
1607 return;
1608
1609 rq = this_rq();
d7c01d27 1610
4fa8d299
JP
1611#ifdef CONFIG_SMP
1612 if (cpu == rq->cpu) {
ae92882e
JP
1613 schedstat_inc(rq->ttwu_local);
1614 schedstat_inc(p->se.statistics.nr_wakeups_local);
d7c01d27
PZ
1615 } else {
1616 struct sched_domain *sd;
1617
ae92882e 1618 schedstat_inc(p->se.statistics.nr_wakeups_remote);
057f3fad 1619 rcu_read_lock();
4fa8d299 1620 for_each_domain(rq->cpu, sd) {
d7c01d27 1621 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
ae92882e 1622 schedstat_inc(sd->ttwu_wake_remote);
d7c01d27
PZ
1623 break;
1624 }
1625 }
057f3fad 1626 rcu_read_unlock();
d7c01d27 1627 }
f339b9dc
PZ
1628
1629 if (wake_flags & WF_MIGRATED)
ae92882e 1630 schedstat_inc(p->se.statistics.nr_wakeups_migrate);
d7c01d27
PZ
1631#endif /* CONFIG_SMP */
1632
ae92882e
JP
1633 schedstat_inc(rq->ttwu_count);
1634 schedstat_inc(p->se.statistics.nr_wakeups);
d7c01d27
PZ
1635
1636 if (wake_flags & WF_SYNC)
ae92882e 1637 schedstat_inc(p->se.statistics.nr_wakeups_sync);
d7c01d27
PZ
1638}
1639
1de64443 1640static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
d7c01d27 1641{
9ed3811a 1642 activate_task(rq, p, en_flags);
da0c1e65 1643 p->on_rq = TASK_ON_RQ_QUEUED;
c2f7115e 1644
d1ccc66d 1645 /* If a worker is waking up, notify the workqueue: */
c2f7115e
PZ
1646 if (p->flags & PF_WQ_WORKER)
1647 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1648}
1649
23f41eeb
PZ
1650/*
1651 * Mark the task runnable and perform wakeup-preemption.
1652 */
e7904a28 1653static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
d8ac8971 1654 struct rq_flags *rf)
9ed3811a 1655{
9ed3811a 1656 check_preempt_curr(rq, p, wake_flags);
9ed3811a 1657 p->state = TASK_RUNNING;
fbd705a0
PZ
1658 trace_sched_wakeup(p);
1659
9ed3811a 1660#ifdef CONFIG_SMP
4c9a4bc8
PZ
1661 if (p->sched_class->task_woken) {
1662 /*
cbce1a68
PZ
1663 * Our task @p is fully woken up and running; so its safe to
1664 * drop the rq->lock, hereafter rq is only used for statistics.
4c9a4bc8 1665 */
d8ac8971 1666 rq_unpin_lock(rq, rf);
9ed3811a 1667 p->sched_class->task_woken(rq, p);
d8ac8971 1668 rq_repin_lock(rq, rf);
4c9a4bc8 1669 }
9ed3811a 1670
e69c6341 1671 if (rq->idle_stamp) {
78becc27 1672 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1673 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1674
abfafa54
JL
1675 update_avg(&rq->avg_idle, delta);
1676
1677 if (rq->avg_idle > max)
9ed3811a 1678 rq->avg_idle = max;
abfafa54 1679
9ed3811a
TH
1680 rq->idle_stamp = 0;
1681 }
1682#endif
1683}
1684
c05fbafb 1685static void
e7904a28 1686ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
d8ac8971 1687 struct rq_flags *rf)
c05fbafb 1688{
77558e4d 1689 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
b5179ac7 1690
cbce1a68
PZ
1691 lockdep_assert_held(&rq->lock);
1692
c05fbafb
PZ
1693#ifdef CONFIG_SMP
1694 if (p->sched_contributes_to_load)
1695 rq->nr_uninterruptible--;
b5179ac7 1696
b5179ac7 1697 if (wake_flags & WF_MIGRATED)
59efa0ba 1698 en_flags |= ENQUEUE_MIGRATED;
c05fbafb
PZ
1699#endif
1700
b5179ac7 1701 ttwu_activate(rq, p, en_flags);
d8ac8971 1702 ttwu_do_wakeup(rq, p, wake_flags, rf);
c05fbafb
PZ
1703}
1704
1705/*
1706 * Called in case the task @p isn't fully descheduled from its runqueue,
1707 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1708 * since all we need to do is flip p->state to TASK_RUNNING, since
1709 * the task is still ->on_rq.
1710 */
1711static int ttwu_remote(struct task_struct *p, int wake_flags)
1712{
eb580751 1713 struct rq_flags rf;
c05fbafb
PZ
1714 struct rq *rq;
1715 int ret = 0;
1716
eb580751 1717 rq = __task_rq_lock(p, &rf);
da0c1e65 1718 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
1719 /* check_preempt_curr() may use rq clock */
1720 update_rq_clock(rq);
d8ac8971 1721 ttwu_do_wakeup(rq, p, wake_flags, &rf);
c05fbafb
PZ
1722 ret = 1;
1723 }
eb580751 1724 __task_rq_unlock(rq, &rf);
c05fbafb
PZ
1725
1726 return ret;
1727}
1728
317f3941 1729#ifdef CONFIG_SMP
e3baac47 1730void sched_ttwu_pending(void)
317f3941
PZ
1731{
1732 struct rq *rq = this_rq();
fa14ff4a 1733 struct llist_node *llist = llist_del_all(&rq->wake_list);
73215849 1734 struct task_struct *p, *t;
d8ac8971 1735 struct rq_flags rf;
317f3941 1736
e3baac47
PZ
1737 if (!llist)
1738 return;
1739
8a8c69c3 1740 rq_lock_irqsave(rq, &rf);
77558e4d 1741 update_rq_clock(rq);
317f3941 1742
73215849
BP
1743 llist_for_each_entry_safe(p, t, llist, wake_entry)
1744 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
317f3941 1745
8a8c69c3 1746 rq_unlock_irqrestore(rq, &rf);
317f3941
PZ
1747}
1748
1749void scheduler_ipi(void)
1750{
f27dde8d
PZ
1751 /*
1752 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1753 * TIF_NEED_RESCHED remotely (for the first time) will also send
1754 * this IPI.
1755 */
8cb75e0c 1756 preempt_fold_need_resched();
f27dde8d 1757
fd2ac4f4 1758 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1759 return;
1760
1761 /*
1762 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1763 * traditionally all their work was done from the interrupt return
1764 * path. Now that we actually do some work, we need to make sure
1765 * we do call them.
1766 *
1767 * Some archs already do call them, luckily irq_enter/exit nest
1768 * properly.
1769 *
1770 * Arguably we should visit all archs and update all handlers,
1771 * however a fair share of IPIs are still resched only so this would
1772 * somewhat pessimize the simple resched case.
1773 */
1774 irq_enter();
fa14ff4a 1775 sched_ttwu_pending();
ca38062e
SS
1776
1777 /*
1778 * Check if someone kicked us for doing the nohz idle load balance.
1779 */
873b4c65 1780 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1781 this_rq()->idle_balance = 1;
ca38062e 1782 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1783 }
c5d753a5 1784 irq_exit();
317f3941
PZ
1785}
1786
b7e7ade3 1787static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
317f3941 1788{
e3baac47
PZ
1789 struct rq *rq = cpu_rq(cpu);
1790
b7e7ade3
PZ
1791 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1792
e3baac47
PZ
1793 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1794 if (!set_nr_if_polling(rq->idle))
1795 smp_send_reschedule(cpu);
1796 else
1797 trace_sched_wake_idle_without_ipi(cpu);
1798 }
317f3941 1799}
d6aa8f85 1800
f6be8af1
CL
1801void wake_up_if_idle(int cpu)
1802{
1803 struct rq *rq = cpu_rq(cpu);
8a8c69c3 1804 struct rq_flags rf;
f6be8af1 1805
fd7de1e8
AL
1806 rcu_read_lock();
1807
1808 if (!is_idle_task(rcu_dereference(rq->curr)))
1809 goto out;
f6be8af1
CL
1810
1811 if (set_nr_if_polling(rq->idle)) {
1812 trace_sched_wake_idle_without_ipi(cpu);
1813 } else {
8a8c69c3 1814 rq_lock_irqsave(rq, &rf);
f6be8af1
CL
1815 if (is_idle_task(rq->curr))
1816 smp_send_reschedule(cpu);
d1ccc66d 1817 /* Else CPU is not idle, do nothing here: */
8a8c69c3 1818 rq_unlock_irqrestore(rq, &rf);
f6be8af1 1819 }
fd7de1e8
AL
1820
1821out:
1822 rcu_read_unlock();
f6be8af1
CL
1823}
1824
39be3501 1825bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1826{
1827 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1828}
d6aa8f85 1829#endif /* CONFIG_SMP */
317f3941 1830
b5179ac7 1831static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
c05fbafb
PZ
1832{
1833 struct rq *rq = cpu_rq(cpu);
d8ac8971 1834 struct rq_flags rf;
c05fbafb 1835
17d9f311 1836#if defined(CONFIG_SMP)
39be3501 1837 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
d1ccc66d 1838 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
b7e7ade3 1839 ttwu_queue_remote(p, cpu, wake_flags);
317f3941
PZ
1840 return;
1841 }
1842#endif
1843
8a8c69c3 1844 rq_lock(rq, &rf);
77558e4d 1845 update_rq_clock(rq);
d8ac8971 1846 ttwu_do_activate(rq, p, wake_flags, &rf);
8a8c69c3 1847 rq_unlock(rq, &rf);
9ed3811a
TH
1848}
1849
8643cda5
PZ
1850/*
1851 * Notes on Program-Order guarantees on SMP systems.
1852 *
1853 * MIGRATION
1854 *
1855 * The basic program-order guarantee on SMP systems is that when a task [t]
d1ccc66d
IM
1856 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
1857 * execution on its new CPU [c1].
8643cda5
PZ
1858 *
1859 * For migration (of runnable tasks) this is provided by the following means:
1860 *
1861 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1862 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1863 * rq(c1)->lock (if not at the same time, then in that order).
1864 * C) LOCK of the rq(c1)->lock scheduling in task
1865 *
1866 * Transitivity guarantees that B happens after A and C after B.
1867 * Note: we only require RCpc transitivity.
d1ccc66d 1868 * Note: the CPU doing B need not be c0 or c1
8643cda5
PZ
1869 *
1870 * Example:
1871 *
1872 * CPU0 CPU1 CPU2
1873 *
1874 * LOCK rq(0)->lock
1875 * sched-out X
1876 * sched-in Y
1877 * UNLOCK rq(0)->lock
1878 *
1879 * LOCK rq(0)->lock // orders against CPU0
1880 * dequeue X
1881 * UNLOCK rq(0)->lock
1882 *
1883 * LOCK rq(1)->lock
1884 * enqueue X
1885 * UNLOCK rq(1)->lock
1886 *
1887 * LOCK rq(1)->lock // orders against CPU2
1888 * sched-out Z
1889 * sched-in X
1890 * UNLOCK rq(1)->lock
1891 *
1892 *
1893 * BLOCKING -- aka. SLEEP + WAKEUP
1894 *
1895 * For blocking we (obviously) need to provide the same guarantee as for
1896 * migration. However the means are completely different as there is no lock
1897 * chain to provide order. Instead we do:
1898 *
1899 * 1) smp_store_release(X->on_cpu, 0)
1f03e8d2 1900 * 2) smp_cond_load_acquire(!X->on_cpu)
8643cda5
PZ
1901 *
1902 * Example:
1903 *
1904 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1905 *
1906 * LOCK rq(0)->lock LOCK X->pi_lock
1907 * dequeue X
1908 * sched-out X
1909 * smp_store_release(X->on_cpu, 0);
1910 *
1f03e8d2 1911 * smp_cond_load_acquire(&X->on_cpu, !VAL);
8643cda5
PZ
1912 * X->state = WAKING
1913 * set_task_cpu(X,2)
1914 *
1915 * LOCK rq(2)->lock
1916 * enqueue X
1917 * X->state = RUNNING
1918 * UNLOCK rq(2)->lock
1919 *
1920 * LOCK rq(2)->lock // orders against CPU1
1921 * sched-out Z
1922 * sched-in X
1923 * UNLOCK rq(2)->lock
1924 *
1925 * UNLOCK X->pi_lock
1926 * UNLOCK rq(0)->lock
1927 *
1928 *
1929 * However; for wakeups there is a second guarantee we must provide, namely we
1930 * must observe the state that lead to our wakeup. That is, not only must our
1931 * task observe its own prior state, it must also observe the stores prior to
1932 * its wakeup.
1933 *
1934 * This means that any means of doing remote wakeups must order the CPU doing
1935 * the wakeup against the CPU the task is going to end up running on. This,
1936 * however, is already required for the regular Program-Order guarantee above,
1f03e8d2 1937 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
8643cda5
PZ
1938 *
1939 */
1940
9ed3811a 1941/**
1da177e4 1942 * try_to_wake_up - wake up a thread
9ed3811a 1943 * @p: the thread to be awakened
1da177e4 1944 * @state: the mask of task states that can be woken
9ed3811a 1945 * @wake_flags: wake modifier flags (WF_*)
1da177e4 1946 *
a2250238 1947 * If (@state & @p->state) @p->state = TASK_RUNNING.
1da177e4 1948 *
a2250238
PZ
1949 * If the task was not queued/runnable, also place it back on a runqueue.
1950 *
1951 * Atomic against schedule() which would dequeue a task, also see
1952 * set_current_state().
1953 *
1954 * Return: %true if @p->state changes (an actual wakeup was done),
1955 * %false otherwise.
1da177e4 1956 */
e4a52bcb
PZ
1957static int
1958try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1959{
1da177e4 1960 unsigned long flags;
c05fbafb 1961 int cpu, success = 0;
2398f2c6 1962
e0acd0a6
ON
1963 /*
1964 * If we are going to wake up a thread waiting for CONDITION we
1965 * need to ensure that CONDITION=1 done by the caller can not be
1966 * reordered with p->state check below. This pairs with mb() in
1967 * set_current_state() the waiting thread does.
1968 */
1969 smp_mb__before_spinlock();
013fdb80 1970 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1971 if (!(p->state & state))
1da177e4
LT
1972 goto out;
1973
fbd705a0
PZ
1974 trace_sched_waking(p);
1975
d1ccc66d
IM
1976 /* We're going to change ->state: */
1977 success = 1;
1da177e4 1978 cpu = task_cpu(p);
1da177e4 1979
135e8c92
BS
1980 /*
1981 * Ensure we load p->on_rq _after_ p->state, otherwise it would
1982 * be possible to, falsely, observe p->on_rq == 0 and get stuck
1983 * in smp_cond_load_acquire() below.
1984 *
1985 * sched_ttwu_pending() try_to_wake_up()
1986 * [S] p->on_rq = 1; [L] P->state
1987 * UNLOCK rq->lock -----.
1988 * \
1989 * +--- RMB
1990 * schedule() /
1991 * LOCK rq->lock -----'
1992 * UNLOCK rq->lock
1993 *
1994 * [task p]
1995 * [S] p->state = UNINTERRUPTIBLE [L] p->on_rq
1996 *
1997 * Pairs with the UNLOCK+LOCK on rq->lock from the
1998 * last wakeup of our task and the schedule that got our task
1999 * current.
2000 */
2001 smp_rmb();
c05fbafb
PZ
2002 if (p->on_rq && ttwu_remote(p, wake_flags))
2003 goto stat;
1da177e4 2004
1da177e4 2005#ifdef CONFIG_SMP
ecf7d01c
PZ
2006 /*
2007 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2008 * possible to, falsely, observe p->on_cpu == 0.
2009 *
2010 * One must be running (->on_cpu == 1) in order to remove oneself
2011 * from the runqueue.
2012 *
2013 * [S] ->on_cpu = 1; [L] ->on_rq
2014 * UNLOCK rq->lock
2015 * RMB
2016 * LOCK rq->lock
2017 * [S] ->on_rq = 0; [L] ->on_cpu
2018 *
2019 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2020 * from the consecutive calls to schedule(); the first switching to our
2021 * task, the second putting it to sleep.
2022 */
2023 smp_rmb();
2024
e9c84311 2025 /*
d1ccc66d 2026 * If the owning (remote) CPU is still in the middle of schedule() with
c05fbafb 2027 * this task as prev, wait until its done referencing the task.
b75a2253
PZ
2028 *
2029 * Pairs with the smp_store_release() in finish_lock_switch().
2030 *
2031 * This ensures that tasks getting woken will be fully ordered against
2032 * their previous state and preserve Program Order.
0970d299 2033 */
1f03e8d2 2034 smp_cond_load_acquire(&p->on_cpu, !VAL);
1da177e4 2035
a8e4f2ea 2036 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 2037 p->state = TASK_WAKING;
e7693a36 2038
e33a9bba
TH
2039 if (p->in_iowait) {
2040 delayacct_blkio_end();
2041 atomic_dec(&task_rq(p)->nr_iowait);
2042 }
2043
ac66f547 2044 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
2045 if (task_cpu(p) != cpu) {
2046 wake_flags |= WF_MIGRATED;
e4a52bcb 2047 set_task_cpu(p, cpu);
f339b9dc 2048 }
e33a9bba
TH
2049
2050#else /* CONFIG_SMP */
2051
2052 if (p->in_iowait) {
2053 delayacct_blkio_end();
2054 atomic_dec(&task_rq(p)->nr_iowait);
2055 }
2056
1da177e4 2057#endif /* CONFIG_SMP */
1da177e4 2058
b5179ac7 2059 ttwu_queue(p, cpu, wake_flags);
c05fbafb 2060stat:
4fa8d299 2061 ttwu_stat(p, cpu, wake_flags);
1da177e4 2062out:
013fdb80 2063 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
2064
2065 return success;
2066}
2067
21aa9af0
TH
2068/**
2069 * try_to_wake_up_local - try to wake up a local task with rq lock held
2070 * @p: the thread to be awakened
9279e0d2 2071 * @cookie: context's cookie for pinning
21aa9af0 2072 *
2acca55e 2073 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 2074 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 2075 * the current task.
21aa9af0 2076 */
d8ac8971 2077static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf)
21aa9af0
TH
2078{
2079 struct rq *rq = task_rq(p);
21aa9af0 2080
383efcd0
TH
2081 if (WARN_ON_ONCE(rq != this_rq()) ||
2082 WARN_ON_ONCE(p == current))
2083 return;
2084
21aa9af0
TH
2085 lockdep_assert_held(&rq->lock);
2086
2acca55e 2087 if (!raw_spin_trylock(&p->pi_lock)) {
cbce1a68
PZ
2088 /*
2089 * This is OK, because current is on_cpu, which avoids it being
2090 * picked for load-balance and preemption/IRQs are still
2091 * disabled avoiding further scheduler activity on it and we've
2092 * not yet picked a replacement task.
2093 */
8a8c69c3 2094 rq_unlock(rq, rf);
2acca55e 2095 raw_spin_lock(&p->pi_lock);
8a8c69c3 2096 rq_relock(rq, rf);
2acca55e
PZ
2097 }
2098
21aa9af0 2099 if (!(p->state & TASK_NORMAL))
2acca55e 2100 goto out;
21aa9af0 2101
fbd705a0
PZ
2102 trace_sched_waking(p);
2103
e33a9bba
TH
2104 if (!task_on_rq_queued(p)) {
2105 if (p->in_iowait) {
2106 delayacct_blkio_end();
2107 atomic_dec(&rq->nr_iowait);
2108 }
bce4dc80 2109 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK);
e33a9bba 2110 }
d7c01d27 2111
d8ac8971 2112 ttwu_do_wakeup(rq, p, 0, rf);
4fa8d299 2113 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
2114out:
2115 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
2116}
2117
50fa610a
DH
2118/**
2119 * wake_up_process - Wake up a specific process
2120 * @p: The process to be woken up.
2121 *
2122 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
2123 * processes.
2124 *
2125 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
2126 *
2127 * It may be assumed that this function implies a write memory barrier before
2128 * changing the task state if and only if any tasks are woken up.
2129 */
7ad5b3a5 2130int wake_up_process(struct task_struct *p)
1da177e4 2131{
9067ac85 2132 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 2133}
1da177e4
LT
2134EXPORT_SYMBOL(wake_up_process);
2135
7ad5b3a5 2136int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2137{
2138 return try_to_wake_up(p, state, 0);
2139}
2140
a5e7be3b
JL
2141/*
2142 * This function clears the sched_dl_entity static params.
2143 */
2144void __dl_clear_params(struct task_struct *p)
2145{
2146 struct sched_dl_entity *dl_se = &p->dl;
2147
2148 dl_se->dl_runtime = 0;
2149 dl_se->dl_deadline = 0;
2150 dl_se->dl_period = 0;
2151 dl_se->flags = 0;
2152 dl_se->dl_bw = 0;
40767b0d
PZ
2153
2154 dl_se->dl_throttled = 0;
40767b0d 2155 dl_se->dl_yielded = 0;
a5e7be3b
JL
2156}
2157
1da177e4
LT
2158/*
2159 * Perform scheduler related setup for a newly forked process p.
2160 * p is forked by current.
dd41f596
IM
2161 *
2162 * __sched_fork() is basic setup used by init_idle() too:
2163 */
5e1576ed 2164static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2165{
fd2f4419
PZ
2166 p->on_rq = 0;
2167
2168 p->se.on_rq = 0;
dd41f596
IM
2169 p->se.exec_start = 0;
2170 p->se.sum_exec_runtime = 0;
f6cf891c 2171 p->se.prev_sum_exec_runtime = 0;
6c594c21 2172 p->se.nr_migrations = 0;
da7a735e 2173 p->se.vruntime = 0;
fd2f4419 2174 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d 2175
ad936d86
BP
2176#ifdef CONFIG_FAIR_GROUP_SCHED
2177 p->se.cfs_rq = NULL;
2178#endif
2179
6cfb0d5d 2180#ifdef CONFIG_SCHEDSTATS
cb251765 2181 /* Even if schedstat is disabled, there should not be garbage */
41acab88 2182 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2183#endif
476d139c 2184
aab03e05 2185 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 2186 init_dl_task_timer(&p->dl);
a5e7be3b 2187 __dl_clear_params(p);
aab03e05 2188
fa717060 2189 INIT_LIST_HEAD(&p->rt.run_list);
ff77e468
PZ
2190 p->rt.timeout = 0;
2191 p->rt.time_slice = sched_rr_timeslice;
2192 p->rt.on_rq = 0;
2193 p->rt.on_list = 0;
476d139c 2194
e107be36
AK
2195#ifdef CONFIG_PREEMPT_NOTIFIERS
2196 INIT_HLIST_HEAD(&p->preempt_notifiers);
2197#endif
cbee9f88
PZ
2198
2199#ifdef CONFIG_NUMA_BALANCING
2200 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 2201 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
2202 p->mm->numa_scan_seq = 0;
2203 }
2204
5e1576ed
RR
2205 if (clone_flags & CLONE_VM)
2206 p->numa_preferred_nid = current->numa_preferred_nid;
2207 else
2208 p->numa_preferred_nid = -1;
2209
cbee9f88
PZ
2210 p->node_stamp = 0ULL;
2211 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 2212 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 2213 p->numa_work.next = &p->numa_work;
44dba3d5 2214 p->numa_faults = NULL;
7e2703e6
RR
2215 p->last_task_numa_placement = 0;
2216 p->last_sum_exec_runtime = 0;
8c8a743c 2217
8c8a743c 2218 p->numa_group = NULL;
cbee9f88 2219#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
2220}
2221
2a595721
SD
2222DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2223
1a687c2e 2224#ifdef CONFIG_NUMA_BALANCING
c3b9bc5b 2225
1a687c2e
MG
2226void set_numabalancing_state(bool enabled)
2227{
2228 if (enabled)
2a595721 2229 static_branch_enable(&sched_numa_balancing);
1a687c2e 2230 else
2a595721 2231 static_branch_disable(&sched_numa_balancing);
1a687c2e 2232}
54a43d54
AK
2233
2234#ifdef CONFIG_PROC_SYSCTL
2235int sysctl_numa_balancing(struct ctl_table *table, int write,
2236 void __user *buffer, size_t *lenp, loff_t *ppos)
2237{
2238 struct ctl_table t;
2239 int err;
2a595721 2240 int state = static_branch_likely(&sched_numa_balancing);
54a43d54
AK
2241
2242 if (write && !capable(CAP_SYS_ADMIN))
2243 return -EPERM;
2244
2245 t = *table;
2246 t.data = &state;
2247 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2248 if (err < 0)
2249 return err;
2250 if (write)
2251 set_numabalancing_state(state);
2252 return err;
2253}
2254#endif
2255#endif
dd41f596 2256
4698f88c
JP
2257#ifdef CONFIG_SCHEDSTATS
2258
cb251765 2259DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4698f88c 2260static bool __initdata __sched_schedstats = false;
cb251765 2261
cb251765
MG
2262static void set_schedstats(bool enabled)
2263{
2264 if (enabled)
2265 static_branch_enable(&sched_schedstats);
2266 else
2267 static_branch_disable(&sched_schedstats);
2268}
2269
2270void force_schedstat_enabled(void)
2271{
2272 if (!schedstat_enabled()) {
2273 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2274 static_branch_enable(&sched_schedstats);
2275 }
2276}
2277
2278static int __init setup_schedstats(char *str)
2279{
2280 int ret = 0;
2281 if (!str)
2282 goto out;
2283
4698f88c
JP
2284 /*
2285 * This code is called before jump labels have been set up, so we can't
2286 * change the static branch directly just yet. Instead set a temporary
2287 * variable so init_schedstats() can do it later.
2288 */
cb251765 2289 if (!strcmp(str, "enable")) {
4698f88c 2290 __sched_schedstats = true;
cb251765
MG
2291 ret = 1;
2292 } else if (!strcmp(str, "disable")) {
4698f88c 2293 __sched_schedstats = false;
cb251765
MG
2294 ret = 1;
2295 }
2296out:
2297 if (!ret)
2298 pr_warn("Unable to parse schedstats=\n");
2299
2300 return ret;
2301}
2302__setup("schedstats=", setup_schedstats);
2303
4698f88c
JP
2304static void __init init_schedstats(void)
2305{
2306 set_schedstats(__sched_schedstats);
2307}
2308
cb251765
MG
2309#ifdef CONFIG_PROC_SYSCTL
2310int sysctl_schedstats(struct ctl_table *table, int write,
2311 void __user *buffer, size_t *lenp, loff_t *ppos)
2312{
2313 struct ctl_table t;
2314 int err;
2315 int state = static_branch_likely(&sched_schedstats);
2316
2317 if (write && !capable(CAP_SYS_ADMIN))
2318 return -EPERM;
2319
2320 t = *table;
2321 t.data = &state;
2322 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2323 if (err < 0)
2324 return err;
2325 if (write)
2326 set_schedstats(state);
2327 return err;
2328}
4698f88c
JP
2329#endif /* CONFIG_PROC_SYSCTL */
2330#else /* !CONFIG_SCHEDSTATS */
2331static inline void init_schedstats(void) {}
2332#endif /* CONFIG_SCHEDSTATS */
dd41f596
IM
2333
2334/*
2335 * fork()/clone()-time setup:
2336 */
aab03e05 2337int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2338{
0122ec5b 2339 unsigned long flags;
dd41f596
IM
2340 int cpu = get_cpu();
2341
5e1576ed 2342 __sched_fork(clone_flags, p);
06b83b5f 2343 /*
7dc603c9 2344 * We mark the process as NEW here. This guarantees that
06b83b5f
PZ
2345 * nobody will actually run it, and a signal or other external
2346 * event cannot wake it up and insert it on the runqueue either.
2347 */
7dc603c9 2348 p->state = TASK_NEW;
dd41f596 2349
c350a04e
MG
2350 /*
2351 * Make sure we do not leak PI boosting priority to the child.
2352 */
2353 p->prio = current->normal_prio;
2354
b9dc29e7
MG
2355 /*
2356 * Revert to default priority/policy on fork if requested.
2357 */
2358 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 2359 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 2360 p->policy = SCHED_NORMAL;
6c697bdf 2361 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
2362 p->rt_priority = 0;
2363 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2364 p->static_prio = NICE_TO_PRIO(0);
2365
2366 p->prio = p->normal_prio = __normal_prio(p);
2367 set_load_weight(p);
6c697bdf 2368
b9dc29e7
MG
2369 /*
2370 * We don't need the reset flag anymore after the fork. It has
2371 * fulfilled its duty:
2372 */
2373 p->sched_reset_on_fork = 0;
2374 }
ca94c442 2375
aab03e05
DF
2376 if (dl_prio(p->prio)) {
2377 put_cpu();
2378 return -EAGAIN;
2379 } else if (rt_prio(p->prio)) {
2380 p->sched_class = &rt_sched_class;
2381 } else {
2ddbf952 2382 p->sched_class = &fair_sched_class;
aab03e05 2383 }
b29739f9 2384
7dc603c9 2385 init_entity_runnable_average(&p->se);
cd29fe6f 2386
86951599
PZ
2387 /*
2388 * The child is not yet in the pid-hash so no cgroup attach races,
2389 * and the cgroup is pinned to this child due to cgroup_fork()
2390 * is ran before sched_fork().
2391 *
2392 * Silence PROVE_RCU.
2393 */
0122ec5b 2394 raw_spin_lock_irqsave(&p->pi_lock, flags);
e210bffd 2395 /*
d1ccc66d 2396 * We're setting the CPU for the first time, we don't migrate,
e210bffd
PZ
2397 * so use __set_task_cpu().
2398 */
2399 __set_task_cpu(p, cpu);
2400 if (p->sched_class->task_fork)
2401 p->sched_class->task_fork(p);
0122ec5b 2402 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 2403
f6db8347 2404#ifdef CONFIG_SCHED_INFO
dd41f596 2405 if (likely(sched_info_on()))
52f17b6c 2406 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2407#endif
3ca7a440
PZ
2408#if defined(CONFIG_SMP)
2409 p->on_cpu = 0;
4866cde0 2410#endif
01028747 2411 init_task_preempt_count(p);
806c09a7 2412#ifdef CONFIG_SMP
917b627d 2413 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 2414 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 2415#endif
917b627d 2416
476d139c 2417 put_cpu();
aab03e05 2418 return 0;
1da177e4
LT
2419}
2420
332ac17e
DF
2421unsigned long to_ratio(u64 period, u64 runtime)
2422{
2423 if (runtime == RUNTIME_INF)
2424 return 1ULL << 20;
2425
2426 /*
2427 * Doing this here saves a lot of checks in all
2428 * the calling paths, and returning zero seems
2429 * safe for them anyway.
2430 */
2431 if (period == 0)
2432 return 0;
2433
2434 return div64_u64(runtime << 20, period);
2435}
2436
2437#ifdef CONFIG_SMP
2438inline struct dl_bw *dl_bw_of(int i)
2439{
f78f5b90
PM
2440 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2441 "sched RCU must be held");
332ac17e
DF
2442 return &cpu_rq(i)->rd->dl_bw;
2443}
2444
de212f18 2445static inline int dl_bw_cpus(int i)
332ac17e 2446{
de212f18
PZ
2447 struct root_domain *rd = cpu_rq(i)->rd;
2448 int cpus = 0;
2449
f78f5b90
PM
2450 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2451 "sched RCU must be held");
de212f18
PZ
2452 for_each_cpu_and(i, rd->span, cpu_active_mask)
2453 cpus++;
2454
2455 return cpus;
332ac17e
DF
2456}
2457#else
2458inline struct dl_bw *dl_bw_of(int i)
2459{
2460 return &cpu_rq(i)->dl.dl_bw;
2461}
2462
de212f18 2463static inline int dl_bw_cpus(int i)
332ac17e
DF
2464{
2465 return 1;
2466}
2467#endif
2468
332ac17e
DF
2469/*
2470 * We must be sure that accepting a new task (or allowing changing the
2471 * parameters of an existing one) is consistent with the bandwidth
2472 * constraints. If yes, this function also accordingly updates the currently
2473 * allocated bandwidth to reflect the new situation.
2474 *
2475 * This function is called while holding p's rq->lock.
40767b0d
PZ
2476 *
2477 * XXX we should delay bw change until the task's 0-lag point, see
2478 * __setparam_dl().
332ac17e
DF
2479 */
2480static int dl_overflow(struct task_struct *p, int policy,
2481 const struct sched_attr *attr)
2482{
2483
2484 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
4df1638c 2485 u64 period = attr->sched_period ?: attr->sched_deadline;
332ac17e
DF
2486 u64 runtime = attr->sched_runtime;
2487 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 2488 int cpus, err = -1;
332ac17e 2489
fec148c0
XP
2490 /* !deadline task may carry old deadline bandwidth */
2491 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
332ac17e
DF
2492 return 0;
2493
2494 /*
2495 * Either if a task, enters, leave, or stays -deadline but changes
2496 * its parameters, we may need to update accordingly the total
2497 * allocated bandwidth of the container.
2498 */
2499 raw_spin_lock(&dl_b->lock);
de212f18 2500 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
2501 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2502 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2503 __dl_add(dl_b, new_bw);
2504 err = 0;
2505 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2506 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2507 __dl_clear(dl_b, p->dl.dl_bw);
2508 __dl_add(dl_b, new_bw);
2509 err = 0;
2510 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2511 __dl_clear(dl_b, p->dl.dl_bw);
2512 err = 0;
2513 }
2514 raw_spin_unlock(&dl_b->lock);
2515
2516 return err;
2517}
2518
2519extern void init_dl_bw(struct dl_bw *dl_b);
2520
1da177e4
LT
2521/*
2522 * wake_up_new_task - wake up a newly created task for the first time.
2523 *
2524 * This function will do some initial scheduler statistics housekeeping
2525 * that must be done for every newly created context, then puts the task
2526 * on the runqueue and wakes it.
2527 */
3e51e3ed 2528void wake_up_new_task(struct task_struct *p)
1da177e4 2529{
eb580751 2530 struct rq_flags rf;
dd41f596 2531 struct rq *rq;
fabf318e 2532
eb580751 2533 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
7dc603c9 2534 p->state = TASK_RUNNING;
fabf318e
PZ
2535#ifdef CONFIG_SMP
2536 /*
2537 * Fork balancing, do it here and not earlier because:
2538 * - cpus_allowed can change in the fork path
d1ccc66d 2539 * - any previously selected CPU might disappear through hotplug
e210bffd
PZ
2540 *
2541 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2542 * as we're not fully set-up yet.
fabf318e 2543 */
e210bffd 2544 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735 2545#endif
b7fa30c9 2546 rq = __task_rq_lock(p, &rf);
4126bad6 2547 update_rq_clock(rq);
2b8c41da 2548 post_init_entity_util_avg(&p->se);
0017d735 2549
7a57f32a 2550 activate_task(rq, p, ENQUEUE_NOCLOCK);
da0c1e65 2551 p->on_rq = TASK_ON_RQ_QUEUED;
fbd705a0 2552 trace_sched_wakeup_new(p);
a7558e01 2553 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2554#ifdef CONFIG_SMP
0aaafaab
PZ
2555 if (p->sched_class->task_woken) {
2556 /*
2557 * Nothing relies on rq->lock after this, so its fine to
2558 * drop it.
2559 */
d8ac8971 2560 rq_unpin_lock(rq, &rf);
efbbd05a 2561 p->sched_class->task_woken(rq, p);
d8ac8971 2562 rq_repin_lock(rq, &rf);
0aaafaab 2563 }
9a897c5a 2564#endif
eb580751 2565 task_rq_unlock(rq, p, &rf);
1da177e4
LT
2566}
2567
e107be36
AK
2568#ifdef CONFIG_PREEMPT_NOTIFIERS
2569
1cde2930
PZ
2570static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2571
2ecd9d29
PZ
2572void preempt_notifier_inc(void)
2573{
2574 static_key_slow_inc(&preempt_notifier_key);
2575}
2576EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2577
2578void preempt_notifier_dec(void)
2579{
2580 static_key_slow_dec(&preempt_notifier_key);
2581}
2582EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2583
e107be36 2584/**
80dd99b3 2585 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2586 * @notifier: notifier struct to register
e107be36
AK
2587 */
2588void preempt_notifier_register(struct preempt_notifier *notifier)
2589{
2ecd9d29
PZ
2590 if (!static_key_false(&preempt_notifier_key))
2591 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2592
e107be36
AK
2593 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2594}
2595EXPORT_SYMBOL_GPL(preempt_notifier_register);
2596
2597/**
2598 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2599 * @notifier: notifier struct to unregister
e107be36 2600 *
d84525a8 2601 * This is *not* safe to call from within a preemption notifier.
e107be36
AK
2602 */
2603void preempt_notifier_unregister(struct preempt_notifier *notifier)
2604{
2605 hlist_del(&notifier->link);
2606}
2607EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2608
1cde2930 2609static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2610{
2611 struct preempt_notifier *notifier;
e107be36 2612
b67bfe0d 2613 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2614 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2615}
2616
1cde2930
PZ
2617static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2618{
2619 if (static_key_false(&preempt_notifier_key))
2620 __fire_sched_in_preempt_notifiers(curr);
2621}
2622
e107be36 2623static void
1cde2930
PZ
2624__fire_sched_out_preempt_notifiers(struct task_struct *curr,
2625 struct task_struct *next)
e107be36
AK
2626{
2627 struct preempt_notifier *notifier;
e107be36 2628
b67bfe0d 2629 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2630 notifier->ops->sched_out(notifier, next);
2631}
2632
1cde2930
PZ
2633static __always_inline void
2634fire_sched_out_preempt_notifiers(struct task_struct *curr,
2635 struct task_struct *next)
2636{
2637 if (static_key_false(&preempt_notifier_key))
2638 __fire_sched_out_preempt_notifiers(curr, next);
2639}
2640
6d6bc0ad 2641#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36 2642
1cde2930 2643static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2644{
2645}
2646
1cde2930 2647static inline void
e107be36
AK
2648fire_sched_out_preempt_notifiers(struct task_struct *curr,
2649 struct task_struct *next)
2650{
2651}
2652
6d6bc0ad 2653#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2654
4866cde0
NP
2655/**
2656 * prepare_task_switch - prepare to switch tasks
2657 * @rq: the runqueue preparing to switch
421cee29 2658 * @prev: the current task that is being switched out
4866cde0
NP
2659 * @next: the task we are going to switch to.
2660 *
2661 * This is called with the rq lock held and interrupts off. It must
2662 * be paired with a subsequent finish_task_switch after the context
2663 * switch.
2664 *
2665 * prepare_task_switch sets up locking and calls architecture specific
2666 * hooks.
2667 */
e107be36
AK
2668static inline void
2669prepare_task_switch(struct rq *rq, struct task_struct *prev,
2670 struct task_struct *next)
4866cde0 2671{
43148951 2672 sched_info_switch(rq, prev, next);
fe4b04fa 2673 perf_event_task_sched_out(prev, next);
e107be36 2674 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2675 prepare_lock_switch(rq, next);
2676 prepare_arch_switch(next);
2677}
2678
1da177e4
LT
2679/**
2680 * finish_task_switch - clean up after a task-switch
2681 * @prev: the thread we just switched away from.
2682 *
4866cde0
NP
2683 * finish_task_switch must be called after the context switch, paired
2684 * with a prepare_task_switch call before the context switch.
2685 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2686 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2687 *
2688 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2689 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2690 * with the lock held can cause deadlocks; see schedule() for
2691 * details.)
dfa50b60
ON
2692 *
2693 * The context switch have flipped the stack from under us and restored the
2694 * local variables which were saved when this task called schedule() in the
2695 * past. prev == current is still correct but we need to recalculate this_rq
2696 * because prev may have moved to another CPU.
1da177e4 2697 */
dfa50b60 2698static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
2699 __releases(rq->lock)
2700{
dfa50b60 2701 struct rq *rq = this_rq();
1da177e4 2702 struct mm_struct *mm = rq->prev_mm;
55a101f8 2703 long prev_state;
1da177e4 2704
609ca066
PZ
2705 /*
2706 * The previous task will have left us with a preempt_count of 2
2707 * because it left us after:
2708 *
2709 * schedule()
2710 * preempt_disable(); // 1
2711 * __schedule()
2712 * raw_spin_lock_irq(&rq->lock) // 2
2713 *
2714 * Also, see FORK_PREEMPT_COUNT.
2715 */
e2bf1c4b
PZ
2716 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2717 "corrupted preempt_count: %s/%d/0x%x\n",
2718 current->comm, current->pid, preempt_count()))
2719 preempt_count_set(FORK_PREEMPT_COUNT);
609ca066 2720
1da177e4
LT
2721 rq->prev_mm = NULL;
2722
2723 /*
2724 * A task struct has one reference for the use as "current".
c394cc9f 2725 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2726 * schedule one last time. The schedule call will never return, and
2727 * the scheduled task must drop that reference.
95913d97
PZ
2728 *
2729 * We must observe prev->state before clearing prev->on_cpu (in
2730 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2731 * running on another CPU and we could rave with its RUNNING -> DEAD
2732 * transition, resulting in a double drop.
1da177e4 2733 */
55a101f8 2734 prev_state = prev->state;
bf9fae9f 2735 vtime_task_switch(prev);
a8d757ef 2736 perf_event_task_sched_in(prev, current);
4866cde0 2737 finish_lock_switch(rq, prev);
01f23e16 2738 finish_arch_post_lock_switch();
e8fa1362 2739
e107be36 2740 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2741 if (mm)
2742 mmdrop(mm);
c394cc9f 2743 if (unlikely(prev_state == TASK_DEAD)) {
e6c390f2
DF
2744 if (prev->sched_class->task_dead)
2745 prev->sched_class->task_dead(prev);
2746
c6fd91f0 2747 /*
2748 * Remove function-return probe instances associated with this
2749 * task and put them back on the free list.
9761eea8 2750 */
c6fd91f0 2751 kprobe_flush_task(prev);
68f24b08
AL
2752
2753 /* Task is done with its stack. */
2754 put_task_stack(prev);
2755
1da177e4 2756 put_task_struct(prev);
c6fd91f0 2757 }
99e5ada9 2758
de734f89 2759 tick_nohz_task_switch();
dfa50b60 2760 return rq;
1da177e4
LT
2761}
2762
3f029d3c
GH
2763#ifdef CONFIG_SMP
2764
3f029d3c 2765/* rq->lock is NOT held, but preemption is disabled */
e3fca9e7 2766static void __balance_callback(struct rq *rq)
3f029d3c 2767{
e3fca9e7
PZ
2768 struct callback_head *head, *next;
2769 void (*func)(struct rq *rq);
2770 unsigned long flags;
3f029d3c 2771
e3fca9e7
PZ
2772 raw_spin_lock_irqsave(&rq->lock, flags);
2773 head = rq->balance_callback;
2774 rq->balance_callback = NULL;
2775 while (head) {
2776 func = (void (*)(struct rq *))head->func;
2777 next = head->next;
2778 head->next = NULL;
2779 head = next;
3f029d3c 2780
e3fca9e7 2781 func(rq);
3f029d3c 2782 }
e3fca9e7
PZ
2783 raw_spin_unlock_irqrestore(&rq->lock, flags);
2784}
2785
2786static inline void balance_callback(struct rq *rq)
2787{
2788 if (unlikely(rq->balance_callback))
2789 __balance_callback(rq);
3f029d3c
GH
2790}
2791
2792#else
da19ab51 2793
e3fca9e7 2794static inline void balance_callback(struct rq *rq)
3f029d3c 2795{
1da177e4
LT
2796}
2797
3f029d3c
GH
2798#endif
2799
1da177e4
LT
2800/**
2801 * schedule_tail - first thing a freshly forked thread must call.
2802 * @prev: the thread we just switched away from.
2803 */
722a9f92 2804asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
2805 __releases(rq->lock)
2806{
1a43a14a 2807 struct rq *rq;
da19ab51 2808
609ca066
PZ
2809 /*
2810 * New tasks start with FORK_PREEMPT_COUNT, see there and
2811 * finish_task_switch() for details.
2812 *
2813 * finish_task_switch() will drop rq->lock() and lower preempt_count
2814 * and the preempt_enable() will end up enabling preemption (on
2815 * PREEMPT_COUNT kernels).
2816 */
2817
dfa50b60 2818 rq = finish_task_switch(prev);
e3fca9e7 2819 balance_callback(rq);
1a43a14a 2820 preempt_enable();
70b97a7f 2821
1da177e4 2822 if (current->set_child_tid)
b488893a 2823 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2824}
2825
2826/*
dfa50b60 2827 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 2828 */
04936948 2829static __always_inline struct rq *
70b97a7f 2830context_switch(struct rq *rq, struct task_struct *prev,
d8ac8971 2831 struct task_struct *next, struct rq_flags *rf)
1da177e4 2832{
dd41f596 2833 struct mm_struct *mm, *oldmm;
1da177e4 2834
e107be36 2835 prepare_task_switch(rq, prev, next);
fe4b04fa 2836
dd41f596
IM
2837 mm = next->mm;
2838 oldmm = prev->active_mm;
9226d125
ZA
2839 /*
2840 * For paravirt, this is coupled with an exit in switch_to to
2841 * combine the page table reload and the switch backend into
2842 * one hypercall.
2843 */
224101ed 2844 arch_start_context_switch(prev);
9226d125 2845
31915ab4 2846 if (!mm) {
1da177e4 2847 next->active_mm = oldmm;
f1f10076 2848 mmgrab(oldmm);
1da177e4
LT
2849 enter_lazy_tlb(oldmm, next);
2850 } else
f98db601 2851 switch_mm_irqs_off(oldmm, mm, next);
1da177e4 2852
31915ab4 2853 if (!prev->mm) {
1da177e4 2854 prev->active_mm = NULL;
1da177e4
LT
2855 rq->prev_mm = oldmm;
2856 }
92509b73 2857
cb42c9a3 2858 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
92509b73 2859
3a5f5e48
IM
2860 /*
2861 * Since the runqueue lock will be released by the next
2862 * task (which is an invalid locking op but in the case
2863 * of the scheduler it's an obvious special-case), so we
2864 * do an early lockdep release here:
2865 */
d8ac8971 2866 rq_unpin_lock(rq, rf);
8a25d5de 2867 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
2868
2869 /* Here we just switch the register state and the stack. */
2870 switch_to(prev, next, prev);
dd41f596 2871 barrier();
dfa50b60
ON
2872
2873 return finish_task_switch(prev);
1da177e4
LT
2874}
2875
2876/*
1c3e8264 2877 * nr_running and nr_context_switches:
1da177e4
LT
2878 *
2879 * externally visible scheduler statistics: current number of runnable
1c3e8264 2880 * threads, total number of context switches performed since bootup.
1da177e4
LT
2881 */
2882unsigned long nr_running(void)
2883{
2884 unsigned long i, sum = 0;
2885
2886 for_each_online_cpu(i)
2887 sum += cpu_rq(i)->nr_running;
2888
2889 return sum;
f711f609 2890}
1da177e4 2891
2ee507c4 2892/*
d1ccc66d 2893 * Check if only the current task is running on the CPU.
00cc1633
DD
2894 *
2895 * Caution: this function does not check that the caller has disabled
2896 * preemption, thus the result might have a time-of-check-to-time-of-use
2897 * race. The caller is responsible to use it correctly, for example:
2898 *
2899 * - from a non-preemptable section (of course)
2900 *
2901 * - from a thread that is bound to a single CPU
2902 *
2903 * - in a loop with very short iterations (e.g. a polling loop)
2ee507c4
TC
2904 */
2905bool single_task_running(void)
2906{
00cc1633 2907 return raw_rq()->nr_running == 1;
2ee507c4
TC
2908}
2909EXPORT_SYMBOL(single_task_running);
2910
1da177e4 2911unsigned long long nr_context_switches(void)
46cb4b7c 2912{
cc94abfc
SR
2913 int i;
2914 unsigned long long sum = 0;
46cb4b7c 2915
0a945022 2916 for_each_possible_cpu(i)
1da177e4 2917 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2918
1da177e4
LT
2919 return sum;
2920}
483b4ee6 2921
e33a9bba
TH
2922/*
2923 * IO-wait accounting, and how its mostly bollocks (on SMP).
2924 *
2925 * The idea behind IO-wait account is to account the idle time that we could
2926 * have spend running if it were not for IO. That is, if we were to improve the
2927 * storage performance, we'd have a proportional reduction in IO-wait time.
2928 *
2929 * This all works nicely on UP, where, when a task blocks on IO, we account
2930 * idle time as IO-wait, because if the storage were faster, it could've been
2931 * running and we'd not be idle.
2932 *
2933 * This has been extended to SMP, by doing the same for each CPU. This however
2934 * is broken.
2935 *
2936 * Imagine for instance the case where two tasks block on one CPU, only the one
2937 * CPU will have IO-wait accounted, while the other has regular idle. Even
2938 * though, if the storage were faster, both could've ran at the same time,
2939 * utilising both CPUs.
2940 *
2941 * This means, that when looking globally, the current IO-wait accounting on
2942 * SMP is a lower bound, by reason of under accounting.
2943 *
2944 * Worse, since the numbers are provided per CPU, they are sometimes
2945 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
2946 * associated with any one particular CPU, it can wake to another CPU than it
2947 * blocked on. This means the per CPU IO-wait number is meaningless.
2948 *
2949 * Task CPU affinities can make all that even more 'interesting'.
2950 */
2951
1da177e4
LT
2952unsigned long nr_iowait(void)
2953{
2954 unsigned long i, sum = 0;
483b4ee6 2955
0a945022 2956 for_each_possible_cpu(i)
1da177e4 2957 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2958
1da177e4
LT
2959 return sum;
2960}
483b4ee6 2961
e33a9bba
TH
2962/*
2963 * Consumers of these two interfaces, like for example the cpufreq menu
2964 * governor are using nonsensical data. Boosting frequency for a CPU that has
2965 * IO-wait which might not even end up running the task when it does become
2966 * runnable.
2967 */
2968
8c215bd3 2969unsigned long nr_iowait_cpu(int cpu)
69d25870 2970{
8c215bd3 2971 struct rq *this = cpu_rq(cpu);
69d25870
AV
2972 return atomic_read(&this->nr_iowait);
2973}
46cb4b7c 2974
372ba8cb
MG
2975void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2976{
3289bdb4
PZ
2977 struct rq *rq = this_rq();
2978 *nr_waiters = atomic_read(&rq->nr_iowait);
2979 *load = rq->load.weight;
372ba8cb
MG
2980}
2981
dd41f596 2982#ifdef CONFIG_SMP
8a0be9ef 2983
46cb4b7c 2984/*
38022906
PZ
2985 * sched_exec - execve() is a valuable balancing opportunity, because at
2986 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2987 */
38022906 2988void sched_exec(void)
46cb4b7c 2989{
38022906 2990 struct task_struct *p = current;
1da177e4 2991 unsigned long flags;
0017d735 2992 int dest_cpu;
46cb4b7c 2993
8f42ced9 2994 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2995 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2996 if (dest_cpu == smp_processor_id())
2997 goto unlock;
38022906 2998
8f42ced9 2999 if (likely(cpu_active(dest_cpu))) {
969c7921 3000 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 3001
8f42ced9
PZ
3002 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3003 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
3004 return;
3005 }
0017d735 3006unlock:
8f42ced9 3007 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 3008}
dd41f596 3009
1da177e4
LT
3010#endif
3011
1da177e4 3012DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 3013DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
3014
3015EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 3016EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 3017
6075620b
GG
3018/*
3019 * The function fair_sched_class.update_curr accesses the struct curr
3020 * and its field curr->exec_start; when called from task_sched_runtime(),
3021 * we observe a high rate of cache misses in practice.
3022 * Prefetching this data results in improved performance.
3023 */
3024static inline void prefetch_curr_exec_start(struct task_struct *p)
3025{
3026#ifdef CONFIG_FAIR_GROUP_SCHED
3027 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3028#else
3029 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3030#endif
3031 prefetch(curr);
3032 prefetch(&curr->exec_start);
3033}
3034
c5f8d995
HS
3035/*
3036 * Return accounted runtime for the task.
3037 * In case the task is currently running, return the runtime plus current's
3038 * pending runtime that have not been accounted yet.
3039 */
3040unsigned long long task_sched_runtime(struct task_struct *p)
3041{
eb580751 3042 struct rq_flags rf;
c5f8d995 3043 struct rq *rq;
6e998916 3044 u64 ns;
c5f8d995 3045
911b2898
PZ
3046#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3047 /*
3048 * 64-bit doesn't need locks to atomically read a 64bit value.
3049 * So we have a optimization chance when the task's delta_exec is 0.
3050 * Reading ->on_cpu is racy, but this is ok.
3051 *
d1ccc66d
IM
3052 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3053 * If we race with it entering CPU, unaccounted time is 0. This is
911b2898 3054 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
3055 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3056 * been accounted, so we're correct here as well.
911b2898 3057 */
da0c1e65 3058 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
3059 return p->se.sum_exec_runtime;
3060#endif
3061
eb580751 3062 rq = task_rq_lock(p, &rf);
6e998916
SG
3063 /*
3064 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3065 * project cycles that may never be accounted to this
3066 * thread, breaking clock_gettime().
3067 */
3068 if (task_current(rq, p) && task_on_rq_queued(p)) {
6075620b 3069 prefetch_curr_exec_start(p);
6e998916
SG
3070 update_rq_clock(rq);
3071 p->sched_class->update_curr(rq);
3072 }
3073 ns = p->se.sum_exec_runtime;
eb580751 3074 task_rq_unlock(rq, p, &rf);
c5f8d995
HS
3075
3076 return ns;
3077}
48f24c4d 3078
7835b98b
CL
3079/*
3080 * This function gets called by the timer code, with HZ frequency.
3081 * We call it with interrupts disabled.
7835b98b
CL
3082 */
3083void scheduler_tick(void)
3084{
7835b98b
CL
3085 int cpu = smp_processor_id();
3086 struct rq *rq = cpu_rq(cpu);
dd41f596 3087 struct task_struct *curr = rq->curr;
8a8c69c3 3088 struct rq_flags rf;
3e51f33f
PZ
3089
3090 sched_clock_tick();
dd41f596 3091
8a8c69c3
PZ
3092 rq_lock(rq, &rf);
3093
3e51f33f 3094 update_rq_clock(rq);
fa85ae24 3095 curr->sched_class->task_tick(rq, curr, 0);
cee1afce 3096 cpu_load_update_active(rq);
3289bdb4 3097 calc_global_load_tick(rq);
8a8c69c3
PZ
3098
3099 rq_unlock(rq, &rf);
7835b98b 3100
e9d2b064 3101 perf_event_task_tick();
e220d2dc 3102
e418e1c2 3103#ifdef CONFIG_SMP
6eb57e0d 3104 rq->idle_balance = idle_cpu(cpu);
7caff66f 3105 trigger_load_balance(rq);
e418e1c2 3106#endif
265f22a9 3107 rq_last_tick_reset(rq);
1da177e4
LT
3108}
3109
265f22a9
FW
3110#ifdef CONFIG_NO_HZ_FULL
3111/**
3112 * scheduler_tick_max_deferment
3113 *
3114 * Keep at least one tick per second when a single
3115 * active task is running because the scheduler doesn't
3116 * yet completely support full dynticks environment.
3117 *
3118 * This makes sure that uptime, CFS vruntime, load
3119 * balancing, etc... continue to move forward, even
3120 * with a very low granularity.
e69f6186
YB
3121 *
3122 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
3123 */
3124u64 scheduler_tick_max_deferment(void)
3125{
3126 struct rq *rq = this_rq();
316c1608 3127 unsigned long next, now = READ_ONCE(jiffies);
265f22a9
FW
3128
3129 next = rq->last_sched_tick + HZ;
3130
3131 if (time_before_eq(next, now))
3132 return 0;
3133
8fe8ff09 3134 return jiffies_to_nsecs(next - now);
1da177e4 3135}
265f22a9 3136#endif
1da177e4 3137
7e49fcce
SR
3138#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3139 defined(CONFIG_PREEMPT_TRACER))
47252cfb
SR
3140/*
3141 * If the value passed in is equal to the current preempt count
3142 * then we just disabled preemption. Start timing the latency.
3143 */
3144static inline void preempt_latency_start(int val)
3145{
3146 if (preempt_count() == val) {
3147 unsigned long ip = get_lock_parent_ip();
3148#ifdef CONFIG_DEBUG_PREEMPT
3149 current->preempt_disable_ip = ip;
3150#endif
3151 trace_preempt_off(CALLER_ADDR0, ip);
3152 }
3153}
7e49fcce 3154
edafe3a5 3155void preempt_count_add(int val)
1da177e4 3156{
6cd8a4bb 3157#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3158 /*
3159 * Underflow?
3160 */
9a11b49a
IM
3161 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3162 return;
6cd8a4bb 3163#endif
bdb43806 3164 __preempt_count_add(val);
6cd8a4bb 3165#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3166 /*
3167 * Spinlock count overflowing soon?
3168 */
33859f7f
MOS
3169 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3170 PREEMPT_MASK - 10);
6cd8a4bb 3171#endif
47252cfb 3172 preempt_latency_start(val);
1da177e4 3173}
bdb43806 3174EXPORT_SYMBOL(preempt_count_add);
edafe3a5 3175NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 3176
47252cfb
SR
3177/*
3178 * If the value passed in equals to the current preempt count
3179 * then we just enabled preemption. Stop timing the latency.
3180 */
3181static inline void preempt_latency_stop(int val)
3182{
3183 if (preempt_count() == val)
3184 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3185}
3186
edafe3a5 3187void preempt_count_sub(int val)
1da177e4 3188{
6cd8a4bb 3189#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3190 /*
3191 * Underflow?
3192 */
01e3eb82 3193 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3194 return;
1da177e4
LT
3195 /*
3196 * Is the spinlock portion underflowing?
3197 */
9a11b49a
IM
3198 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3199 !(preempt_count() & PREEMPT_MASK)))
3200 return;
6cd8a4bb 3201#endif
9a11b49a 3202
47252cfb 3203 preempt_latency_stop(val);
bdb43806 3204 __preempt_count_sub(val);
1da177e4 3205}
bdb43806 3206EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 3207NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4 3208
47252cfb
SR
3209#else
3210static inline void preempt_latency_start(int val) { }
3211static inline void preempt_latency_stop(int val) { }
1da177e4
LT
3212#endif
3213
59ddbcb2
IM
3214static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3215{
3216#ifdef CONFIG_DEBUG_PREEMPT
3217 return p->preempt_disable_ip;
3218#else
3219 return 0;
3220#endif
3221}
3222
1da177e4 3223/*
dd41f596 3224 * Print scheduling while atomic bug:
1da177e4 3225 */
dd41f596 3226static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3227{
d1c6d149
VN
3228 /* Save this before calling printk(), since that will clobber it */
3229 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3230
664dfa65
DJ
3231 if (oops_in_progress)
3232 return;
3233
3df0fc5b
PZ
3234 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3235 prev->comm, prev->pid, preempt_count());
838225b4 3236
dd41f596 3237 debug_show_held_locks(prev);
e21f5b15 3238 print_modules();
dd41f596
IM
3239 if (irqs_disabled())
3240 print_irqtrace_events(prev);
d1c6d149
VN
3241 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3242 && in_atomic_preempt_off()) {
8f47b187 3243 pr_err("Preemption disabled at:");
d1c6d149 3244 print_ip_sym(preempt_disable_ip);
8f47b187
TG
3245 pr_cont("\n");
3246 }
748c7201
DBO
3247 if (panic_on_warn)
3248 panic("scheduling while atomic\n");
3249
6135fc1e 3250 dump_stack();
373d4d09 3251 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 3252}
1da177e4 3253
dd41f596
IM
3254/*
3255 * Various schedule()-time debugging checks and statistics:
3256 */
3257static inline void schedule_debug(struct task_struct *prev)
3258{
0d9e2632 3259#ifdef CONFIG_SCHED_STACK_END_CHECK
29d64551
JH
3260 if (task_stack_end_corrupted(prev))
3261 panic("corrupted stack end detected inside scheduler\n");
0d9e2632 3262#endif
b99def8b 3263
1dc0fffc 3264 if (unlikely(in_atomic_preempt_off())) {
dd41f596 3265 __schedule_bug(prev);
1dc0fffc
PZ
3266 preempt_count_set(PREEMPT_DISABLED);
3267 }
b3fbab05 3268 rcu_sleep_check();
dd41f596 3269
1da177e4
LT
3270 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3271
ae92882e 3272 schedstat_inc(this_rq()->sched_count);
dd41f596
IM
3273}
3274
3275/*
3276 * Pick up the highest-prio task:
3277 */
3278static inline struct task_struct *
d8ac8971 3279pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
dd41f596 3280{
49ee5768 3281 const struct sched_class *class;
dd41f596 3282 struct task_struct *p;
1da177e4
LT
3283
3284 /*
0ba87bb2
PZ
3285 * Optimization: we know that if all tasks are in the fair class we can
3286 * call that function directly, but only if the @prev task wasn't of a
3287 * higher scheduling class, because otherwise those loose the
3288 * opportunity to pull in more work from other CPUs.
1da177e4 3289 */
0ba87bb2
PZ
3290 if (likely((prev->sched_class == &idle_sched_class ||
3291 prev->sched_class == &fair_sched_class) &&
3292 rq->nr_running == rq->cfs.h_nr_running)) {
3293
d8ac8971 3294 p = fair_sched_class.pick_next_task(rq, prev, rf);
6ccdc84b
PZ
3295 if (unlikely(p == RETRY_TASK))
3296 goto again;
3297
d1ccc66d 3298 /* Assumes fair_sched_class->next == idle_sched_class */
6ccdc84b 3299 if (unlikely(!p))
d8ac8971 3300 p = idle_sched_class.pick_next_task(rq, prev, rf);
6ccdc84b
PZ
3301
3302 return p;
1da177e4
LT
3303 }
3304
37e117c0 3305again:
34f971f6 3306 for_each_class(class) {
d8ac8971 3307 p = class->pick_next_task(rq, prev, rf);
37e117c0
PZ
3308 if (p) {
3309 if (unlikely(p == RETRY_TASK))
3310 goto again;
dd41f596 3311 return p;
37e117c0 3312 }
dd41f596 3313 }
34f971f6 3314
d1ccc66d
IM
3315 /* The idle class should always have a runnable task: */
3316 BUG();
dd41f596 3317}
1da177e4 3318
dd41f596 3319/*
c259e01a 3320 * __schedule() is the main scheduler function.
edde96ea
PE
3321 *
3322 * The main means of driving the scheduler and thus entering this function are:
3323 *
3324 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3325 *
3326 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3327 * paths. For example, see arch/x86/entry_64.S.
3328 *
3329 * To drive preemption between tasks, the scheduler sets the flag in timer
3330 * interrupt handler scheduler_tick().
3331 *
3332 * 3. Wakeups don't really cause entry into schedule(). They add a
3333 * task to the run-queue and that's it.
3334 *
3335 * Now, if the new task added to the run-queue preempts the current
3336 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3337 * called on the nearest possible occasion:
3338 *
3339 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3340 *
3341 * - in syscall or exception context, at the next outmost
3342 * preempt_enable(). (this might be as soon as the wake_up()'s
3343 * spin_unlock()!)
3344 *
3345 * - in IRQ context, return from interrupt-handler to
3346 * preemptible context
3347 *
3348 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3349 * then at the next:
3350 *
3351 * - cond_resched() call
3352 * - explicit schedule() call
3353 * - return from syscall or exception to user-space
3354 * - return from interrupt-handler to user-space
bfd9b2b5 3355 *
b30f0e3f 3356 * WARNING: must be called with preemption disabled!
dd41f596 3357 */
499d7955 3358static void __sched notrace __schedule(bool preempt)
dd41f596
IM
3359{
3360 struct task_struct *prev, *next;
67ca7bde 3361 unsigned long *switch_count;
d8ac8971 3362 struct rq_flags rf;
dd41f596 3363 struct rq *rq;
31656519 3364 int cpu;
dd41f596 3365
dd41f596
IM
3366 cpu = smp_processor_id();
3367 rq = cpu_rq(cpu);
dd41f596 3368 prev = rq->curr;
dd41f596 3369
dd41f596 3370 schedule_debug(prev);
1da177e4 3371
31656519 3372 if (sched_feat(HRTICK))
f333fdc9 3373 hrtick_clear(rq);
8f4d37ec 3374
46a5d164 3375 local_irq_disable();
bcbfdd01 3376 rcu_note_context_switch(preempt);
46a5d164 3377
e0acd0a6
ON
3378 /*
3379 * Make sure that signal_pending_state()->signal_pending() below
3380 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3381 * done by the caller to avoid the race with signal_wake_up().
3382 */
3383 smp_mb__before_spinlock();
8a8c69c3 3384 rq_lock(rq, &rf);
1da177e4 3385
d1ccc66d
IM
3386 /* Promote REQ to ACT */
3387 rq->clock_update_flags <<= 1;
bce4dc80 3388 update_rq_clock(rq);
9edfbfed 3389
246d86b5 3390 switch_count = &prev->nivcsw;
fc13aeba 3391 if (!preempt && prev->state) {
21aa9af0 3392 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 3393 prev->state = TASK_RUNNING;
21aa9af0 3394 } else {
bce4dc80 3395 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
2acca55e
PZ
3396 prev->on_rq = 0;
3397
e33a9bba
TH
3398 if (prev->in_iowait) {
3399 atomic_inc(&rq->nr_iowait);
3400 delayacct_blkio_start();
3401 }
3402
21aa9af0 3403 /*
2acca55e
PZ
3404 * If a worker went to sleep, notify and ask workqueue
3405 * whether it wants to wake up a task to maintain
3406 * concurrency.
21aa9af0
TH
3407 */
3408 if (prev->flags & PF_WQ_WORKER) {
3409 struct task_struct *to_wakeup;
3410
9b7f6597 3411 to_wakeup = wq_worker_sleeping(prev);
21aa9af0 3412 if (to_wakeup)
d8ac8971 3413 try_to_wake_up_local(to_wakeup, &rf);
21aa9af0 3414 }
21aa9af0 3415 }
dd41f596 3416 switch_count = &prev->nvcsw;
1da177e4
LT
3417 }
3418
d8ac8971 3419 next = pick_next_task(rq, prev, &rf);
f26f9aff 3420 clear_tsk_need_resched(prev);
f27dde8d 3421 clear_preempt_need_resched();
1da177e4 3422
1da177e4 3423 if (likely(prev != next)) {
1da177e4
LT
3424 rq->nr_switches++;
3425 rq->curr = next;
3426 ++*switch_count;
3427
c73464b1 3428 trace_sched_switch(preempt, prev, next);
d1ccc66d
IM
3429
3430 /* Also unlocks the rq: */
3431 rq = context_switch(rq, prev, next, &rf);
cbce1a68 3432 } else {
cb42c9a3 3433 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
8a8c69c3 3434 rq_unlock_irq(rq, &rf);
cbce1a68 3435 }
1da177e4 3436
e3fca9e7 3437 balance_callback(rq);
1da177e4 3438}
c259e01a 3439
9af6528e
PZ
3440void __noreturn do_task_dead(void)
3441{
3442 /*
3443 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
3444 * when the following two conditions become true.
3445 * - There is race condition of mmap_sem (It is acquired by
3446 * exit_mm()), and
3447 * - SMI occurs before setting TASK_RUNINNG.
3448 * (or hypervisor of virtual machine switches to other guest)
3449 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD
3450 *
3451 * To avoid it, we have to wait for releasing tsk->pi_lock which
3452 * is held by try_to_wake_up()
3453 */
3454 smp_mb();
3455 raw_spin_unlock_wait(&current->pi_lock);
3456
d1ccc66d 3457 /* Causes final put_task_struct in finish_task_switch(): */
9af6528e 3458 __set_current_state(TASK_DEAD);
d1ccc66d
IM
3459
3460 /* Tell freezer to ignore us: */
3461 current->flags |= PF_NOFREEZE;
3462
9af6528e
PZ
3463 __schedule(false);
3464 BUG();
d1ccc66d
IM
3465
3466 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
9af6528e 3467 for (;;)
d1ccc66d 3468 cpu_relax();
9af6528e
PZ
3469}
3470
9c40cef2
TG
3471static inline void sched_submit_work(struct task_struct *tsk)
3472{
3c7d5184 3473 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
3474 return;
3475 /*
3476 * If we are going to sleep and we have plugged IO queued,
3477 * make sure to submit it to avoid deadlocks.
3478 */
3479 if (blk_needs_flush_plug(tsk))
3480 blk_schedule_flush_plug(tsk);
3481}
3482
722a9f92 3483asmlinkage __visible void __sched schedule(void)
c259e01a 3484{
9c40cef2
TG
3485 struct task_struct *tsk = current;
3486
3487 sched_submit_work(tsk);
bfd9b2b5 3488 do {
b30f0e3f 3489 preempt_disable();
fc13aeba 3490 __schedule(false);
b30f0e3f 3491 sched_preempt_enable_no_resched();
bfd9b2b5 3492 } while (need_resched());
c259e01a 3493}
1da177e4
LT
3494EXPORT_SYMBOL(schedule);
3495
8663effb
SRV
3496/*
3497 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
3498 * state (have scheduled out non-voluntarily) by making sure that all
3499 * tasks have either left the run queue or have gone into user space.
3500 * As idle tasks do not do either, they must not ever be preempted
3501 * (schedule out non-voluntarily).
3502 *
3503 * schedule_idle() is similar to schedule_preempt_disable() except that it
3504 * never enables preemption because it does not call sched_submit_work().
3505 */
3506void __sched schedule_idle(void)
3507{
3508 /*
3509 * As this skips calling sched_submit_work(), which the idle task does
3510 * regardless because that function is a nop when the task is in a
3511 * TASK_RUNNING state, make sure this isn't used someplace that the
3512 * current task can be in any other state. Note, idle is always in the
3513 * TASK_RUNNING state.
3514 */
3515 WARN_ON_ONCE(current->state);
3516 do {
3517 __schedule(false);
3518 } while (need_resched());
3519}
3520
91d1aa43 3521#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 3522asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
3523{
3524 /*
3525 * If we come here after a random call to set_need_resched(),
3526 * or we have been woken up remotely but the IPI has not yet arrived,
3527 * we haven't yet exited the RCU idle mode. Do it here manually until
3528 * we find a better solution.
7cc78f8f
AL
3529 *
3530 * NB: There are buggy callers of this function. Ideally we
c467ea76 3531 * should warn if prev_state != CONTEXT_USER, but that will trigger
7cc78f8f 3532 * too frequently to make sense yet.
20ab65e3 3533 */
7cc78f8f 3534 enum ctx_state prev_state = exception_enter();
20ab65e3 3535 schedule();
7cc78f8f 3536 exception_exit(prev_state);
20ab65e3
FW
3537}
3538#endif
3539
c5491ea7
TG
3540/**
3541 * schedule_preempt_disabled - called with preemption disabled
3542 *
3543 * Returns with preemption disabled. Note: preempt_count must be 1
3544 */
3545void __sched schedule_preempt_disabled(void)
3546{
ba74c144 3547 sched_preempt_enable_no_resched();
c5491ea7
TG
3548 schedule();
3549 preempt_disable();
3550}
3551
06b1f808 3552static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
3553{
3554 do {
47252cfb
SR
3555 /*
3556 * Because the function tracer can trace preempt_count_sub()
3557 * and it also uses preempt_enable/disable_notrace(), if
3558 * NEED_RESCHED is set, the preempt_enable_notrace() called
3559 * by the function tracer will call this function again and
3560 * cause infinite recursion.
3561 *
3562 * Preemption must be disabled here before the function
3563 * tracer can trace. Break up preempt_disable() into two
3564 * calls. One to disable preemption without fear of being
3565 * traced. The other to still record the preemption latency,
3566 * which can also be traced by the function tracer.
3567 */
499d7955 3568 preempt_disable_notrace();
47252cfb 3569 preempt_latency_start(1);
fc13aeba 3570 __schedule(true);
47252cfb 3571 preempt_latency_stop(1);
499d7955 3572 preempt_enable_no_resched_notrace();
a18b5d01
FW
3573
3574 /*
3575 * Check again in case we missed a preemption opportunity
3576 * between schedule and now.
3577 */
a18b5d01
FW
3578 } while (need_resched());
3579}
3580
1da177e4
LT
3581#ifdef CONFIG_PREEMPT
3582/*
2ed6e34f 3583 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3584 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3585 * occur there and call schedule directly.
3586 */
722a9f92 3587asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 3588{
1da177e4
LT
3589 /*
3590 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3591 * we do not want to preempt the current task. Just return..
1da177e4 3592 */
fbb00b56 3593 if (likely(!preemptible()))
1da177e4
LT
3594 return;
3595
a18b5d01 3596 preempt_schedule_common();
1da177e4 3597}
376e2424 3598NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 3599EXPORT_SYMBOL(preempt_schedule);
009f60e2 3600
009f60e2 3601/**
4eaca0a8 3602 * preempt_schedule_notrace - preempt_schedule called by tracing
009f60e2
ON
3603 *
3604 * The tracing infrastructure uses preempt_enable_notrace to prevent
3605 * recursion and tracing preempt enabling caused by the tracing
3606 * infrastructure itself. But as tracing can happen in areas coming
3607 * from userspace or just about to enter userspace, a preempt enable
3608 * can occur before user_exit() is called. This will cause the scheduler
3609 * to be called when the system is still in usermode.
3610 *
3611 * To prevent this, the preempt_enable_notrace will use this function
3612 * instead of preempt_schedule() to exit user context if needed before
3613 * calling the scheduler.
3614 */
4eaca0a8 3615asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
009f60e2
ON
3616{
3617 enum ctx_state prev_ctx;
3618
3619 if (likely(!preemptible()))
3620 return;
3621
3622 do {
47252cfb
SR
3623 /*
3624 * Because the function tracer can trace preempt_count_sub()
3625 * and it also uses preempt_enable/disable_notrace(), if
3626 * NEED_RESCHED is set, the preempt_enable_notrace() called
3627 * by the function tracer will call this function again and
3628 * cause infinite recursion.
3629 *
3630 * Preemption must be disabled here before the function
3631 * tracer can trace. Break up preempt_disable() into two
3632 * calls. One to disable preemption without fear of being
3633 * traced. The other to still record the preemption latency,
3634 * which can also be traced by the function tracer.
3635 */
3d8f74dd 3636 preempt_disable_notrace();
47252cfb 3637 preempt_latency_start(1);
009f60e2
ON
3638 /*
3639 * Needs preempt disabled in case user_exit() is traced
3640 * and the tracer calls preempt_enable_notrace() causing
3641 * an infinite recursion.
3642 */
3643 prev_ctx = exception_enter();
fc13aeba 3644 __schedule(true);
009f60e2
ON
3645 exception_exit(prev_ctx);
3646
47252cfb 3647 preempt_latency_stop(1);
3d8f74dd 3648 preempt_enable_no_resched_notrace();
009f60e2
ON
3649 } while (need_resched());
3650}
4eaca0a8 3651EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
009f60e2 3652
32e475d7 3653#endif /* CONFIG_PREEMPT */
1da177e4
LT
3654
3655/*
2ed6e34f 3656 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3657 * off of irq context.
3658 * Note, that this is called and return with irqs disabled. This will
3659 * protect us against recursive calling from irq.
3660 */
722a9f92 3661asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 3662{
b22366cd 3663 enum ctx_state prev_state;
6478d880 3664
2ed6e34f 3665 /* Catch callers which need to be fixed */
f27dde8d 3666 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 3667
b22366cd
FW
3668 prev_state = exception_enter();
3669
3a5c359a 3670 do {
3d8f74dd 3671 preempt_disable();
3a5c359a 3672 local_irq_enable();
fc13aeba 3673 __schedule(true);
3a5c359a 3674 local_irq_disable();
3d8f74dd 3675 sched_preempt_enable_no_resched();
5ed0cec0 3676 } while (need_resched());
b22366cd
FW
3677
3678 exception_exit(prev_state);
1da177e4
LT
3679}
3680
63859d4f 3681int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3682 void *key)
1da177e4 3683{
63859d4f 3684 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3685}
1da177e4
LT
3686EXPORT_SYMBOL(default_wake_function);
3687
b29739f9
IM
3688#ifdef CONFIG_RT_MUTEXES
3689
acd58620
PZ
3690static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
3691{
3692 if (pi_task)
3693 prio = min(prio, pi_task->prio);
3694
3695 return prio;
3696}
3697
3698static inline int rt_effective_prio(struct task_struct *p, int prio)
3699{
3700 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3701
3702 return __rt_effective_prio(pi_task, prio);
3703}
3704
b29739f9
IM
3705/*
3706 * rt_mutex_setprio - set the current priority of a task
acd58620
PZ
3707 * @p: task to boost
3708 * @pi_task: donor task
b29739f9
IM
3709 *
3710 * This function changes the 'effective' priority of a task. It does
3711 * not touch ->normal_prio like __setscheduler().
3712 *
c365c292
TG
3713 * Used by the rt_mutex code to implement priority inheritance
3714 * logic. Call site only calls if the priority of the task changed.
b29739f9 3715 */
acd58620 3716void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
b29739f9 3717{
acd58620 3718 int prio, oldprio, queued, running, queue_flag =
7a57f32a 3719 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
83ab0aa0 3720 const struct sched_class *prev_class;
eb580751
PZ
3721 struct rq_flags rf;
3722 struct rq *rq;
b29739f9 3723
acd58620
PZ
3724 /* XXX used to be waiter->prio, not waiter->task->prio */
3725 prio = __rt_effective_prio(pi_task, p->normal_prio);
3726
3727 /*
3728 * If nothing changed; bail early.
3729 */
3730 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
3731 return;
b29739f9 3732
eb580751 3733 rq = __task_rq_lock(p, &rf);
80f5c1b8 3734 update_rq_clock(rq);
acd58620
PZ
3735 /*
3736 * Set under pi_lock && rq->lock, such that the value can be used under
3737 * either lock.
3738 *
3739 * Note that there is loads of tricky to make this pointer cache work
3740 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
3741 * ensure a task is de-boosted (pi_task is set to NULL) before the
3742 * task is allowed to run again (and can exit). This ensures the pointer
3743 * points to a blocked task -- which guaratees the task is present.
3744 */
3745 p->pi_top_task = pi_task;
3746
3747 /*
3748 * For FIFO/RR we only need to set prio, if that matches we're done.
3749 */
3750 if (prio == p->prio && !dl_prio(prio))
3751 goto out_unlock;
b29739f9 3752
1c4dd99b
TG
3753 /*
3754 * Idle task boosting is a nono in general. There is one
3755 * exception, when PREEMPT_RT and NOHZ is active:
3756 *
3757 * The idle task calls get_next_timer_interrupt() and holds
3758 * the timer wheel base->lock on the CPU and another CPU wants
3759 * to access the timer (probably to cancel it). We can safely
3760 * ignore the boosting request, as the idle CPU runs this code
3761 * with interrupts disabled and will complete the lock
3762 * protected section without being interrupted. So there is no
3763 * real need to boost.
3764 */
3765 if (unlikely(p == rq->idle)) {
3766 WARN_ON(p != rq->curr);
3767 WARN_ON(p->pi_blocked_on);
3768 goto out_unlock;
3769 }
3770
b91473ff 3771 trace_sched_pi_setprio(p, pi_task);
d5f9f942 3772 oldprio = p->prio;
ff77e468
PZ
3773
3774 if (oldprio == prio)
3775 queue_flag &= ~DEQUEUE_MOVE;
3776
83ab0aa0 3777 prev_class = p->sched_class;
da0c1e65 3778 queued = task_on_rq_queued(p);
051a1d1a 3779 running = task_current(rq, p);
da0c1e65 3780 if (queued)
ff77e468 3781 dequeue_task(rq, p, queue_flag);
0e1f3483 3782 if (running)
f3cd1c4e 3783 put_prev_task(rq, p);
dd41f596 3784
2d3d891d
DF
3785 /*
3786 * Boosting condition are:
3787 * 1. -rt task is running and holds mutex A
3788 * --> -dl task blocks on mutex A
3789 *
3790 * 2. -dl task is running and holds mutex A
3791 * --> -dl task blocks on mutex A and could preempt the
3792 * running task
3793 */
3794 if (dl_prio(prio)) {
466af29b
ON
3795 if (!dl_prio(p->normal_prio) ||
3796 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d 3797 p->dl.dl_boosted = 1;
ff77e468 3798 queue_flag |= ENQUEUE_REPLENISH;
2d3d891d
DF
3799 } else
3800 p->dl.dl_boosted = 0;
aab03e05 3801 p->sched_class = &dl_sched_class;
2d3d891d
DF
3802 } else if (rt_prio(prio)) {
3803 if (dl_prio(oldprio))
3804 p->dl.dl_boosted = 0;
3805 if (oldprio < prio)
ff77e468 3806 queue_flag |= ENQUEUE_HEAD;
dd41f596 3807 p->sched_class = &rt_sched_class;
2d3d891d
DF
3808 } else {
3809 if (dl_prio(oldprio))
3810 p->dl.dl_boosted = 0;
746db944
BS
3811 if (rt_prio(oldprio))
3812 p->rt.timeout = 0;
dd41f596 3813 p->sched_class = &fair_sched_class;
2d3d891d 3814 }
dd41f596 3815
b29739f9
IM
3816 p->prio = prio;
3817
da0c1e65 3818 if (queued)
ff77e468 3819 enqueue_task(rq, p, queue_flag);
a399d233 3820 if (running)
b2bf6c31 3821 set_curr_task(rq, p);
cb469845 3822
da7a735e 3823 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3824out_unlock:
d1ccc66d
IM
3825 /* Avoid rq from going away on us: */
3826 preempt_disable();
eb580751 3827 __task_rq_unlock(rq, &rf);
4c9a4bc8
PZ
3828
3829 balance_callback(rq);
3830 preempt_enable();
b29739f9 3831}
acd58620
PZ
3832#else
3833static inline int rt_effective_prio(struct task_struct *p, int prio)
3834{
3835 return prio;
3836}
b29739f9 3837#endif
d50dde5a 3838
36c8b586 3839void set_user_nice(struct task_struct *p, long nice)
1da177e4 3840{
49bd21ef
PZ
3841 bool queued, running;
3842 int old_prio, delta;
eb580751 3843 struct rq_flags rf;
70b97a7f 3844 struct rq *rq;
1da177e4 3845
75e45d51 3846 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
3847 return;
3848 /*
3849 * We have to be careful, if called from sys_setpriority(),
3850 * the task might be in the middle of scheduling on another CPU.
3851 */
eb580751 3852 rq = task_rq_lock(p, &rf);
2fb8d367
PZ
3853 update_rq_clock(rq);
3854
1da177e4
LT
3855 /*
3856 * The RT priorities are set via sched_setscheduler(), but we still
3857 * allow the 'normal' nice value to be set - but as expected
3858 * it wont have any effect on scheduling until the task is
aab03e05 3859 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3860 */
aab03e05 3861 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3862 p->static_prio = NICE_TO_PRIO(nice);
3863 goto out_unlock;
3864 }
da0c1e65 3865 queued = task_on_rq_queued(p);
49bd21ef 3866 running = task_current(rq, p);
da0c1e65 3867 if (queued)
7a57f32a 3868 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
49bd21ef
PZ
3869 if (running)
3870 put_prev_task(rq, p);
1da177e4 3871
1da177e4 3872 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3873 set_load_weight(p);
b29739f9
IM
3874 old_prio = p->prio;
3875 p->prio = effective_prio(p);
3876 delta = p->prio - old_prio;
1da177e4 3877
da0c1e65 3878 if (queued) {
7134b3e9 3879 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1da177e4 3880 /*
d5f9f942
AM
3881 * If the task increased its priority or is running and
3882 * lowered its priority, then reschedule its CPU:
1da177e4 3883 */
d5f9f942 3884 if (delta < 0 || (delta > 0 && task_running(rq, p)))
8875125e 3885 resched_curr(rq);
1da177e4 3886 }
49bd21ef
PZ
3887 if (running)
3888 set_curr_task(rq, p);
1da177e4 3889out_unlock:
eb580751 3890 task_rq_unlock(rq, p, &rf);
1da177e4 3891}
1da177e4
LT
3892EXPORT_SYMBOL(set_user_nice);
3893
e43379f1
MM
3894/*
3895 * can_nice - check if a task can reduce its nice value
3896 * @p: task
3897 * @nice: nice value
3898 */
36c8b586 3899int can_nice(const struct task_struct *p, const int nice)
e43379f1 3900{
d1ccc66d 3901 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
7aa2c016 3902 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 3903
78d7d407 3904 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3905 capable(CAP_SYS_NICE));
3906}
3907
1da177e4
LT
3908#ifdef __ARCH_WANT_SYS_NICE
3909
3910/*
3911 * sys_nice - change the priority of the current process.
3912 * @increment: priority increment
3913 *
3914 * sys_setpriority is a more generic, but much slower function that
3915 * does similar things.
3916 */
5add95d4 3917SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3918{
48f24c4d 3919 long nice, retval;
1da177e4
LT
3920
3921 /*
3922 * Setpriority might change our priority at the same moment.
3923 * We don't have to worry. Conceptually one call occurs first
3924 * and we have a single winner.
3925 */
a9467fa3 3926 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 3927 nice = task_nice(current) + increment;
1da177e4 3928
a9467fa3 3929 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
3930 if (increment < 0 && !can_nice(current, nice))
3931 return -EPERM;
3932
1da177e4
LT
3933 retval = security_task_setnice(current, nice);
3934 if (retval)
3935 return retval;
3936
3937 set_user_nice(current, nice);
3938 return 0;
3939}
3940
3941#endif
3942
3943/**
3944 * task_prio - return the priority value of a given task.
3945 * @p: the task in question.
3946 *
e69f6186 3947 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3948 * RT tasks are offset by -200. Normal tasks are centered
3949 * around 0, value goes from -16 to +15.
3950 */
36c8b586 3951int task_prio(const struct task_struct *p)
1da177e4
LT
3952{
3953 return p->prio - MAX_RT_PRIO;
3954}
3955
1da177e4 3956/**
d1ccc66d 3957 * idle_cpu - is a given CPU idle currently?
1da177e4 3958 * @cpu: the processor in question.
e69f6186
YB
3959 *
3960 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3961 */
3962int idle_cpu(int cpu)
3963{
908a3283
TG
3964 struct rq *rq = cpu_rq(cpu);
3965
3966 if (rq->curr != rq->idle)
3967 return 0;
3968
3969 if (rq->nr_running)
3970 return 0;
3971
3972#ifdef CONFIG_SMP
3973 if (!llist_empty(&rq->wake_list))
3974 return 0;
3975#endif
3976
3977 return 1;
1da177e4
LT
3978}
3979
1da177e4 3980/**
d1ccc66d 3981 * idle_task - return the idle task for a given CPU.
1da177e4 3982 * @cpu: the processor in question.
e69f6186 3983 *
d1ccc66d 3984 * Return: The idle task for the CPU @cpu.
1da177e4 3985 */
36c8b586 3986struct task_struct *idle_task(int cpu)
1da177e4
LT
3987{
3988 return cpu_rq(cpu)->idle;
3989}
3990
3991/**
3992 * find_process_by_pid - find a process with a matching PID value.
3993 * @pid: the pid in question.
e69f6186
YB
3994 *
3995 * The task of @pid, if found. %NULL otherwise.
1da177e4 3996 */
a9957449 3997static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3998{
228ebcbe 3999 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4000}
4001
aab03e05
DF
4002/*
4003 * This function initializes the sched_dl_entity of a newly becoming
4004 * SCHED_DEADLINE task.
4005 *
4006 * Only the static values are considered here, the actual runtime and the
4007 * absolute deadline will be properly calculated when the task is enqueued
4008 * for the first time with its new policy.
4009 */
4010static void
4011__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
4012{
4013 struct sched_dl_entity *dl_se = &p->dl;
4014
aab03e05
DF
4015 dl_se->dl_runtime = attr->sched_runtime;
4016 dl_se->dl_deadline = attr->sched_deadline;
755378a4 4017 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 4018 dl_se->flags = attr->sched_flags;
332ac17e 4019 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
40767b0d
PZ
4020
4021 /*
4022 * Changing the parameters of a task is 'tricky' and we're not doing
4023 * the correct thing -- also see task_dead_dl() and switched_from_dl().
4024 *
4025 * What we SHOULD do is delay the bandwidth release until the 0-lag
4026 * point. This would include retaining the task_struct until that time
4027 * and change dl_overflow() to not immediately decrement the current
4028 * amount.
4029 *
4030 * Instead we retain the current runtime/deadline and let the new
4031 * parameters take effect after the current reservation period lapses.
4032 * This is safe (albeit pessimistic) because the 0-lag point is always
4033 * before the current scheduling deadline.
4034 *
4035 * We can still have temporary overloads because we do not delay the
4036 * change in bandwidth until that time; so admission control is
4037 * not on the safe side. It does however guarantee tasks will never
4038 * consume more than promised.
4039 */
aab03e05
DF
4040}
4041
c13db6b1
SR
4042/*
4043 * sched_setparam() passes in -1 for its policy, to let the functions
4044 * it calls know not to change it.
4045 */
4046#define SETPARAM_POLICY -1
4047
c365c292
TG
4048static void __setscheduler_params(struct task_struct *p,
4049 const struct sched_attr *attr)
1da177e4 4050{
d50dde5a
DF
4051 int policy = attr->sched_policy;
4052
c13db6b1 4053 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
4054 policy = p->policy;
4055
1da177e4 4056 p->policy = policy;
d50dde5a 4057
aab03e05
DF
4058 if (dl_policy(policy))
4059 __setparam_dl(p, attr);
39fd8fd2 4060 else if (fair_policy(policy))
d50dde5a
DF
4061 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
4062
39fd8fd2
PZ
4063 /*
4064 * __sched_setscheduler() ensures attr->sched_priority == 0 when
4065 * !rt_policy. Always setting this ensures that things like
4066 * getparam()/getattr() don't report silly values for !rt tasks.
4067 */
4068 p->rt_priority = attr->sched_priority;
383afd09 4069 p->normal_prio = normal_prio(p);
c365c292
TG
4070 set_load_weight(p);
4071}
39fd8fd2 4072
c365c292
TG
4073/* Actually do priority change: must hold pi & rq lock. */
4074static void __setscheduler(struct rq *rq, struct task_struct *p,
0782e63b 4075 const struct sched_attr *attr, bool keep_boost)
c365c292
TG
4076{
4077 __setscheduler_params(p, attr);
d50dde5a 4078
383afd09 4079 /*
0782e63b
TG
4080 * Keep a potential priority boosting if called from
4081 * sched_setscheduler().
383afd09 4082 */
acd58620 4083 p->prio = normal_prio(p);
0782e63b 4084 if (keep_boost)
acd58620 4085 p->prio = rt_effective_prio(p, p->prio);
383afd09 4086
aab03e05
DF
4087 if (dl_prio(p->prio))
4088 p->sched_class = &dl_sched_class;
4089 else if (rt_prio(p->prio))
ffd44db5
PZ
4090 p->sched_class = &rt_sched_class;
4091 else
4092 p->sched_class = &fair_sched_class;
1da177e4 4093}
aab03e05
DF
4094
4095static void
4096__getparam_dl(struct task_struct *p, struct sched_attr *attr)
4097{
4098 struct sched_dl_entity *dl_se = &p->dl;
4099
4100 attr->sched_priority = p->rt_priority;
4101 attr->sched_runtime = dl_se->dl_runtime;
4102 attr->sched_deadline = dl_se->dl_deadline;
755378a4 4103 attr->sched_period = dl_se->dl_period;
aab03e05
DF
4104 attr->sched_flags = dl_se->flags;
4105}
4106
4107/*
4108 * This function validates the new parameters of a -deadline task.
4109 * We ask for the deadline not being zero, and greater or equal
755378a4 4110 * than the runtime, as well as the period of being zero or
332ac17e 4111 * greater than deadline. Furthermore, we have to be sure that
b0827819
JL
4112 * user parameters are above the internal resolution of 1us (we
4113 * check sched_runtime only since it is always the smaller one) and
4114 * below 2^63 ns (we have to check both sched_deadline and
4115 * sched_period, as the latter can be zero).
aab03e05
DF
4116 */
4117static bool
4118__checkparam_dl(const struct sched_attr *attr)
4119{
b0827819
JL
4120 /* deadline != 0 */
4121 if (attr->sched_deadline == 0)
4122 return false;
4123
4124 /*
4125 * Since we truncate DL_SCALE bits, make sure we're at least
4126 * that big.
4127 */
4128 if (attr->sched_runtime < (1ULL << DL_SCALE))
4129 return false;
4130
4131 /*
4132 * Since we use the MSB for wrap-around and sign issues, make
4133 * sure it's not set (mind that period can be equal to zero).
4134 */
4135 if (attr->sched_deadline & (1ULL << 63) ||
4136 attr->sched_period & (1ULL << 63))
4137 return false;
4138
4139 /* runtime <= deadline <= period (if period != 0) */
4140 if ((attr->sched_period != 0 &&
4141 attr->sched_period < attr->sched_deadline) ||
4142 attr->sched_deadline < attr->sched_runtime)
4143 return false;
4144
4145 return true;
aab03e05
DF
4146}
4147
c69e8d9c 4148/*
d1ccc66d 4149 * Check the target process has a UID that matches the current process's:
c69e8d9c
DH
4150 */
4151static bool check_same_owner(struct task_struct *p)
4152{
4153 const struct cred *cred = current_cred(), *pcred;
4154 bool match;
4155
4156 rcu_read_lock();
4157 pcred = __task_cred(p);
9c806aa0
EB
4158 match = (uid_eq(cred->euid, pcred->euid) ||
4159 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
4160 rcu_read_unlock();
4161 return match;
4162}
4163
d1ccc66d 4164static bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
75381608
WL
4165{
4166 struct sched_dl_entity *dl_se = &p->dl;
4167
4168 if (dl_se->dl_runtime != attr->sched_runtime ||
4169 dl_se->dl_deadline != attr->sched_deadline ||
4170 dl_se->dl_period != attr->sched_period ||
4171 dl_se->flags != attr->sched_flags)
4172 return true;
4173
4174 return false;
4175}
4176
d50dde5a
DF
4177static int __sched_setscheduler(struct task_struct *p,
4178 const struct sched_attr *attr,
dbc7f069 4179 bool user, bool pi)
1da177e4 4180{
383afd09
SR
4181 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4182 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 4183 int retval, oldprio, oldpolicy = -1, queued, running;
0782e63b 4184 int new_effective_prio, policy = attr->sched_policy;
83ab0aa0 4185 const struct sched_class *prev_class;
eb580751 4186 struct rq_flags rf;
ca94c442 4187 int reset_on_fork;
7a57f32a 4188 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
eb580751 4189 struct rq *rq;
1da177e4 4190
896bbb25
SRV
4191 /* The pi code expects interrupts enabled */
4192 BUG_ON(pi && in_interrupt());
1da177e4 4193recheck:
d1ccc66d 4194 /* Double check policy once rq lock held: */
ca94c442
LP
4195 if (policy < 0) {
4196 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4197 policy = oldpolicy = p->policy;
ca94c442 4198 } else {
7479f3c9 4199 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 4200
20f9cd2a 4201 if (!valid_policy(policy))
ca94c442
LP
4202 return -EINVAL;
4203 }
4204
7479f3c9
PZ
4205 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
4206 return -EINVAL;
4207
1da177e4
LT
4208 /*
4209 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4210 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4211 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 4212 */
0bb040a4 4213 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 4214 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 4215 return -EINVAL;
aab03e05
DF
4216 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4217 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
4218 return -EINVAL;
4219
37e4ab3f
OC
4220 /*
4221 * Allow unprivileged RT tasks to decrease priority:
4222 */
961ccddd 4223 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 4224 if (fair_policy(policy)) {
d0ea0268 4225 if (attr->sched_nice < task_nice(p) &&
eaad4513 4226 !can_nice(p, attr->sched_nice))
d50dde5a
DF
4227 return -EPERM;
4228 }
4229
e05606d3 4230 if (rt_policy(policy)) {
a44702e8
ON
4231 unsigned long rlim_rtprio =
4232 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909 4233
d1ccc66d 4234 /* Can't set/change the rt policy: */
8dc3e909
ON
4235 if (policy != p->policy && !rlim_rtprio)
4236 return -EPERM;
4237
d1ccc66d 4238 /* Can't increase priority: */
d50dde5a
DF
4239 if (attr->sched_priority > p->rt_priority &&
4240 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
4241 return -EPERM;
4242 }
c02aa73b 4243
d44753b8
JL
4244 /*
4245 * Can't set/change SCHED_DEADLINE policy at all for now
4246 * (safest behavior); in the future we would like to allow
4247 * unprivileged DL tasks to increase their relative deadline
4248 * or reduce their runtime (both ways reducing utilization)
4249 */
4250 if (dl_policy(policy))
4251 return -EPERM;
4252
dd41f596 4253 /*
c02aa73b
DH
4254 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4255 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 4256 */
20f9cd2a 4257 if (idle_policy(p->policy) && !idle_policy(policy)) {
d0ea0268 4258 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
4259 return -EPERM;
4260 }
5fe1d75f 4261
d1ccc66d 4262 /* Can't change other user's priorities: */
c69e8d9c 4263 if (!check_same_owner(p))
37e4ab3f 4264 return -EPERM;
ca94c442 4265
d1ccc66d 4266 /* Normal users shall not reset the sched_reset_on_fork flag: */
ca94c442
LP
4267 if (p->sched_reset_on_fork && !reset_on_fork)
4268 return -EPERM;
37e4ab3f 4269 }
1da177e4 4270
725aad24 4271 if (user) {
b0ae1981 4272 retval = security_task_setscheduler(p);
725aad24
JF
4273 if (retval)
4274 return retval;
4275 }
4276
b29739f9 4277 /*
d1ccc66d 4278 * Make sure no PI-waiters arrive (or leave) while we are
b29739f9 4279 * changing the priority of the task:
0122ec5b 4280 *
25985edc 4281 * To be able to change p->policy safely, the appropriate
1da177e4
LT
4282 * runqueue lock must be held.
4283 */
eb580751 4284 rq = task_rq_lock(p, &rf);
80f5c1b8 4285 update_rq_clock(rq);
dc61b1d6 4286
34f971f6 4287 /*
d1ccc66d 4288 * Changing the policy of the stop threads its a very bad idea:
34f971f6
PZ
4289 */
4290 if (p == rq->stop) {
eb580751 4291 task_rq_unlock(rq, p, &rf);
34f971f6
PZ
4292 return -EINVAL;
4293 }
4294
a51e9198 4295 /*
d6b1e911
TG
4296 * If not changing anything there's no need to proceed further,
4297 * but store a possible modification of reset_on_fork.
a51e9198 4298 */
d50dde5a 4299 if (unlikely(policy == p->policy)) {
d0ea0268 4300 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
4301 goto change;
4302 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4303 goto change;
75381608 4304 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 4305 goto change;
d50dde5a 4306
d6b1e911 4307 p->sched_reset_on_fork = reset_on_fork;
eb580751 4308 task_rq_unlock(rq, p, &rf);
a51e9198
DF
4309 return 0;
4310 }
d50dde5a 4311change:
a51e9198 4312
dc61b1d6 4313 if (user) {
332ac17e 4314#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
4315 /*
4316 * Do not allow realtime tasks into groups that have no runtime
4317 * assigned.
4318 */
4319 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
4320 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4321 !task_group_is_autogroup(task_group(p))) {
eb580751 4322 task_rq_unlock(rq, p, &rf);
dc61b1d6
PZ
4323 return -EPERM;
4324 }
dc61b1d6 4325#endif
332ac17e
DF
4326#ifdef CONFIG_SMP
4327 if (dl_bandwidth_enabled() && dl_policy(policy)) {
4328 cpumask_t *span = rq->rd->span;
332ac17e
DF
4329
4330 /*
4331 * Don't allow tasks with an affinity mask smaller than
4332 * the entire root_domain to become SCHED_DEADLINE. We
4333 * will also fail if there's no bandwidth available.
4334 */
e4099a5e
PZ
4335 if (!cpumask_subset(span, &p->cpus_allowed) ||
4336 rq->rd->dl_bw.bw == 0) {
eb580751 4337 task_rq_unlock(rq, p, &rf);
332ac17e
DF
4338 return -EPERM;
4339 }
4340 }
4341#endif
4342 }
dc61b1d6 4343
d1ccc66d 4344 /* Re-check policy now with rq lock held: */
1da177e4
LT
4345 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4346 policy = oldpolicy = -1;
eb580751 4347 task_rq_unlock(rq, p, &rf);
1da177e4
LT
4348 goto recheck;
4349 }
332ac17e
DF
4350
4351 /*
4352 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4353 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4354 * is available.
4355 */
e4099a5e 4356 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
eb580751 4357 task_rq_unlock(rq, p, &rf);
332ac17e
DF
4358 return -EBUSY;
4359 }
4360
c365c292
TG
4361 p->sched_reset_on_fork = reset_on_fork;
4362 oldprio = p->prio;
4363
dbc7f069
PZ
4364 if (pi) {
4365 /*
4366 * Take priority boosted tasks into account. If the new
4367 * effective priority is unchanged, we just store the new
4368 * normal parameters and do not touch the scheduler class and
4369 * the runqueue. This will be done when the task deboost
4370 * itself.
4371 */
acd58620 4372 new_effective_prio = rt_effective_prio(p, newprio);
ff77e468
PZ
4373 if (new_effective_prio == oldprio)
4374 queue_flags &= ~DEQUEUE_MOVE;
c365c292
TG
4375 }
4376
da0c1e65 4377 queued = task_on_rq_queued(p);
051a1d1a 4378 running = task_current(rq, p);
da0c1e65 4379 if (queued)
ff77e468 4380 dequeue_task(rq, p, queue_flags);
0e1f3483 4381 if (running)
f3cd1c4e 4382 put_prev_task(rq, p);
f6b53205 4383
83ab0aa0 4384 prev_class = p->sched_class;
dbc7f069 4385 __setscheduler(rq, p, attr, pi);
f6b53205 4386
da0c1e65 4387 if (queued) {
81a44c54
TG
4388 /*
4389 * We enqueue to tail when the priority of a task is
4390 * increased (user space view).
4391 */
ff77e468
PZ
4392 if (oldprio < p->prio)
4393 queue_flags |= ENQUEUE_HEAD;
1de64443 4394
ff77e468 4395 enqueue_task(rq, p, queue_flags);
81a44c54 4396 }
a399d233 4397 if (running)
b2bf6c31 4398 set_curr_task(rq, p);
cb469845 4399
da7a735e 4400 check_class_changed(rq, p, prev_class, oldprio);
d1ccc66d
IM
4401
4402 /* Avoid rq from going away on us: */
4403 preempt_disable();
eb580751 4404 task_rq_unlock(rq, p, &rf);
b29739f9 4405
dbc7f069
PZ
4406 if (pi)
4407 rt_mutex_adjust_pi(p);
95e02ca9 4408
d1ccc66d 4409 /* Run balance callbacks after we've adjusted the PI chain: */
4c9a4bc8
PZ
4410 balance_callback(rq);
4411 preempt_enable();
95e02ca9 4412
1da177e4
LT
4413 return 0;
4414}
961ccddd 4415
7479f3c9
PZ
4416static int _sched_setscheduler(struct task_struct *p, int policy,
4417 const struct sched_param *param, bool check)
4418{
4419 struct sched_attr attr = {
4420 .sched_policy = policy,
4421 .sched_priority = param->sched_priority,
4422 .sched_nice = PRIO_TO_NICE(p->static_prio),
4423 };
4424
c13db6b1
SR
4425 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4426 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
4427 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4428 policy &= ~SCHED_RESET_ON_FORK;
4429 attr.sched_policy = policy;
4430 }
4431
dbc7f069 4432 return __sched_setscheduler(p, &attr, check, true);
7479f3c9 4433}
961ccddd
RR
4434/**
4435 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4436 * @p: the task in question.
4437 * @policy: new policy.
4438 * @param: structure containing the new RT priority.
4439 *
e69f6186
YB
4440 * Return: 0 on success. An error code otherwise.
4441 *
961ccddd
RR
4442 * NOTE that the task may be already dead.
4443 */
4444int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4445 const struct sched_param *param)
961ccddd 4446{
7479f3c9 4447 return _sched_setscheduler(p, policy, param, true);
961ccddd 4448}
1da177e4
LT
4449EXPORT_SYMBOL_GPL(sched_setscheduler);
4450
d50dde5a
DF
4451int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4452{
dbc7f069 4453 return __sched_setscheduler(p, attr, true, true);
d50dde5a
DF
4454}
4455EXPORT_SYMBOL_GPL(sched_setattr);
4456
961ccddd
RR
4457/**
4458 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4459 * @p: the task in question.
4460 * @policy: new policy.
4461 * @param: structure containing the new RT priority.
4462 *
4463 * Just like sched_setscheduler, only don't bother checking if the
4464 * current context has permission. For example, this is needed in
4465 * stop_machine(): we create temporary high priority worker threads,
4466 * but our caller might not have that capability.
e69f6186
YB
4467 *
4468 * Return: 0 on success. An error code otherwise.
961ccddd
RR
4469 */
4470int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 4471 const struct sched_param *param)
961ccddd 4472{
7479f3c9 4473 return _sched_setscheduler(p, policy, param, false);
961ccddd 4474}
84778472 4475EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
961ccddd 4476
95cdf3b7
IM
4477static int
4478do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4479{
1da177e4
LT
4480 struct sched_param lparam;
4481 struct task_struct *p;
36c8b586 4482 int retval;
1da177e4
LT
4483
4484 if (!param || pid < 0)
4485 return -EINVAL;
4486 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4487 return -EFAULT;
5fe1d75f
ON
4488
4489 rcu_read_lock();
4490 retval = -ESRCH;
1da177e4 4491 p = find_process_by_pid(pid);
5fe1d75f
ON
4492 if (p != NULL)
4493 retval = sched_setscheduler(p, policy, &lparam);
4494 rcu_read_unlock();
36c8b586 4495
1da177e4
LT
4496 return retval;
4497}
4498
d50dde5a
DF
4499/*
4500 * Mimics kernel/events/core.c perf_copy_attr().
4501 */
d1ccc66d 4502static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
d50dde5a
DF
4503{
4504 u32 size;
4505 int ret;
4506
4507 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4508 return -EFAULT;
4509
d1ccc66d 4510 /* Zero the full structure, so that a short copy will be nice: */
d50dde5a
DF
4511 memset(attr, 0, sizeof(*attr));
4512
4513 ret = get_user(size, &uattr->size);
4514 if (ret)
4515 return ret;
4516
d1ccc66d
IM
4517 /* Bail out on silly large: */
4518 if (size > PAGE_SIZE)
d50dde5a
DF
4519 goto err_size;
4520
d1ccc66d
IM
4521 /* ABI compatibility quirk: */
4522 if (!size)
d50dde5a
DF
4523 size = SCHED_ATTR_SIZE_VER0;
4524
4525 if (size < SCHED_ATTR_SIZE_VER0)
4526 goto err_size;
4527
4528 /*
4529 * If we're handed a bigger struct than we know of,
4530 * ensure all the unknown bits are 0 - i.e. new
4531 * user-space does not rely on any kernel feature
4532 * extensions we dont know about yet.
4533 */
4534 if (size > sizeof(*attr)) {
4535 unsigned char __user *addr;
4536 unsigned char __user *end;
4537 unsigned char val;
4538
4539 addr = (void __user *)uattr + sizeof(*attr);
4540 end = (void __user *)uattr + size;
4541
4542 for (; addr < end; addr++) {
4543 ret = get_user(val, addr);
4544 if (ret)
4545 return ret;
4546 if (val)
4547 goto err_size;
4548 }
4549 size = sizeof(*attr);
4550 }
4551
4552 ret = copy_from_user(attr, uattr, size);
4553 if (ret)
4554 return -EFAULT;
4555
4556 /*
d1ccc66d 4557 * XXX: Do we want to be lenient like existing syscalls; or do we want
d50dde5a
DF
4558 * to be strict and return an error on out-of-bounds values?
4559 */
75e45d51 4560 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 4561
e78c7bca 4562 return 0;
d50dde5a
DF
4563
4564err_size:
4565 put_user(sizeof(*attr), &uattr->size);
e78c7bca 4566 return -E2BIG;
d50dde5a
DF
4567}
4568
1da177e4
LT
4569/**
4570 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4571 * @pid: the pid in question.
4572 * @policy: new policy.
4573 * @param: structure containing the new RT priority.
e69f6186
YB
4574 *
4575 * Return: 0 on success. An error code otherwise.
1da177e4 4576 */
d1ccc66d 4577SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
1da177e4 4578{
c21761f1
JB
4579 if (policy < 0)
4580 return -EINVAL;
4581
1da177e4
LT
4582 return do_sched_setscheduler(pid, policy, param);
4583}
4584
4585/**
4586 * sys_sched_setparam - set/change the RT priority of a thread
4587 * @pid: the pid in question.
4588 * @param: structure containing the new RT priority.
e69f6186
YB
4589 *
4590 * Return: 0 on success. An error code otherwise.
1da177e4 4591 */
5add95d4 4592SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4593{
c13db6b1 4594 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
4595}
4596
d50dde5a
DF
4597/**
4598 * sys_sched_setattr - same as above, but with extended sched_attr
4599 * @pid: the pid in question.
5778fccf 4600 * @uattr: structure containing the extended parameters.
db66d756 4601 * @flags: for future extension.
d50dde5a 4602 */
6d35ab48
PZ
4603SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4604 unsigned int, flags)
d50dde5a
DF
4605{
4606 struct sched_attr attr;
4607 struct task_struct *p;
4608 int retval;
4609
6d35ab48 4610 if (!uattr || pid < 0 || flags)
d50dde5a
DF
4611 return -EINVAL;
4612
143cf23d
MK
4613 retval = sched_copy_attr(uattr, &attr);
4614 if (retval)
4615 return retval;
d50dde5a 4616
b14ed2c2 4617 if ((int)attr.sched_policy < 0)
dbdb2275 4618 return -EINVAL;
d50dde5a
DF
4619
4620 rcu_read_lock();
4621 retval = -ESRCH;
4622 p = find_process_by_pid(pid);
4623 if (p != NULL)
4624 retval = sched_setattr(p, &attr);
4625 rcu_read_unlock();
4626
4627 return retval;
4628}
4629
1da177e4
LT
4630/**
4631 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4632 * @pid: the pid in question.
e69f6186
YB
4633 *
4634 * Return: On success, the policy of the thread. Otherwise, a negative error
4635 * code.
1da177e4 4636 */
5add95d4 4637SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4638{
36c8b586 4639 struct task_struct *p;
3a5c359a 4640 int retval;
1da177e4
LT
4641
4642 if (pid < 0)
3a5c359a 4643 return -EINVAL;
1da177e4
LT
4644
4645 retval = -ESRCH;
5fe85be0 4646 rcu_read_lock();
1da177e4
LT
4647 p = find_process_by_pid(pid);
4648 if (p) {
4649 retval = security_task_getscheduler(p);
4650 if (!retval)
ca94c442
LP
4651 retval = p->policy
4652 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4653 }
5fe85be0 4654 rcu_read_unlock();
1da177e4
LT
4655 return retval;
4656}
4657
4658/**
ca94c442 4659 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4660 * @pid: the pid in question.
4661 * @param: structure containing the RT priority.
e69f6186
YB
4662 *
4663 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4664 * code.
1da177e4 4665 */
5add95d4 4666SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4667{
ce5f7f82 4668 struct sched_param lp = { .sched_priority = 0 };
36c8b586 4669 struct task_struct *p;
3a5c359a 4670 int retval;
1da177e4
LT
4671
4672 if (!param || pid < 0)
3a5c359a 4673 return -EINVAL;
1da177e4 4674
5fe85be0 4675 rcu_read_lock();
1da177e4
LT
4676 p = find_process_by_pid(pid);
4677 retval = -ESRCH;
4678 if (!p)
4679 goto out_unlock;
4680
4681 retval = security_task_getscheduler(p);
4682 if (retval)
4683 goto out_unlock;
4684
ce5f7f82
PZ
4685 if (task_has_rt_policy(p))
4686 lp.sched_priority = p->rt_priority;
5fe85be0 4687 rcu_read_unlock();
1da177e4
LT
4688
4689 /*
4690 * This one might sleep, we cannot do it with a spinlock held ...
4691 */
4692 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4693
1da177e4
LT
4694 return retval;
4695
4696out_unlock:
5fe85be0 4697 rcu_read_unlock();
1da177e4
LT
4698 return retval;
4699}
4700
d50dde5a
DF
4701static int sched_read_attr(struct sched_attr __user *uattr,
4702 struct sched_attr *attr,
4703 unsigned int usize)
4704{
4705 int ret;
4706
4707 if (!access_ok(VERIFY_WRITE, uattr, usize))
4708 return -EFAULT;
4709
4710 /*
4711 * If we're handed a smaller struct than we know of,
4712 * ensure all the unknown bits are 0 - i.e. old
4713 * user-space does not get uncomplete information.
4714 */
4715 if (usize < sizeof(*attr)) {
4716 unsigned char *addr;
4717 unsigned char *end;
4718
4719 addr = (void *)attr + usize;
4720 end = (void *)attr + sizeof(*attr);
4721
4722 for (; addr < end; addr++) {
4723 if (*addr)
22400674 4724 return -EFBIG;
d50dde5a
DF
4725 }
4726
4727 attr->size = usize;
4728 }
4729
4efbc454 4730 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
4731 if (ret)
4732 return -EFAULT;
4733
22400674 4734 return 0;
d50dde5a
DF
4735}
4736
4737/**
aab03e05 4738 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 4739 * @pid: the pid in question.
5778fccf 4740 * @uattr: structure containing the extended parameters.
d50dde5a 4741 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 4742 * @flags: for future extension.
d50dde5a 4743 */
6d35ab48
PZ
4744SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4745 unsigned int, size, unsigned int, flags)
d50dde5a
DF
4746{
4747 struct sched_attr attr = {
4748 .size = sizeof(struct sched_attr),
4749 };
4750 struct task_struct *p;
4751 int retval;
4752
4753 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 4754 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
4755 return -EINVAL;
4756
4757 rcu_read_lock();
4758 p = find_process_by_pid(pid);
4759 retval = -ESRCH;
4760 if (!p)
4761 goto out_unlock;
4762
4763 retval = security_task_getscheduler(p);
4764 if (retval)
4765 goto out_unlock;
4766
4767 attr.sched_policy = p->policy;
7479f3c9
PZ
4768 if (p->sched_reset_on_fork)
4769 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
4770 if (task_has_dl_policy(p))
4771 __getparam_dl(p, &attr);
4772 else if (task_has_rt_policy(p))
d50dde5a
DF
4773 attr.sched_priority = p->rt_priority;
4774 else
d0ea0268 4775 attr.sched_nice = task_nice(p);
d50dde5a
DF
4776
4777 rcu_read_unlock();
4778
4779 retval = sched_read_attr(uattr, &attr, size);
4780 return retval;
4781
4782out_unlock:
4783 rcu_read_unlock();
4784 return retval;
4785}
4786
96f874e2 4787long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4788{
5a16f3d3 4789 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4790 struct task_struct *p;
4791 int retval;
1da177e4 4792
23f5d142 4793 rcu_read_lock();
1da177e4
LT
4794
4795 p = find_process_by_pid(pid);
4796 if (!p) {
23f5d142 4797 rcu_read_unlock();
1da177e4
LT
4798 return -ESRCH;
4799 }
4800
23f5d142 4801 /* Prevent p going away */
1da177e4 4802 get_task_struct(p);
23f5d142 4803 rcu_read_unlock();
1da177e4 4804
14a40ffc
TH
4805 if (p->flags & PF_NO_SETAFFINITY) {
4806 retval = -EINVAL;
4807 goto out_put_task;
4808 }
5a16f3d3
RR
4809 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4810 retval = -ENOMEM;
4811 goto out_put_task;
4812 }
4813 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4814 retval = -ENOMEM;
4815 goto out_free_cpus_allowed;
4816 }
1da177e4 4817 retval = -EPERM;
4c44aaaf
EB
4818 if (!check_same_owner(p)) {
4819 rcu_read_lock();
4820 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4821 rcu_read_unlock();
16303ab2 4822 goto out_free_new_mask;
4c44aaaf
EB
4823 }
4824 rcu_read_unlock();
4825 }
1da177e4 4826
b0ae1981 4827 retval = security_task_setscheduler(p);
e7834f8f 4828 if (retval)
16303ab2 4829 goto out_free_new_mask;
e7834f8f 4830
e4099a5e
PZ
4831
4832 cpuset_cpus_allowed(p, cpus_allowed);
4833 cpumask_and(new_mask, in_mask, cpus_allowed);
4834
332ac17e
DF
4835 /*
4836 * Since bandwidth control happens on root_domain basis,
4837 * if admission test is enabled, we only admit -deadline
4838 * tasks allowed to run on all the CPUs in the task's
4839 * root_domain.
4840 */
4841#ifdef CONFIG_SMP
f1e3a093
KT
4842 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4843 rcu_read_lock();
4844 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 4845 retval = -EBUSY;
f1e3a093 4846 rcu_read_unlock();
16303ab2 4847 goto out_free_new_mask;
332ac17e 4848 }
f1e3a093 4849 rcu_read_unlock();
332ac17e
DF
4850 }
4851#endif
49246274 4852again:
25834c73 4853 retval = __set_cpus_allowed_ptr(p, new_mask, true);
1da177e4 4854
8707d8b8 4855 if (!retval) {
5a16f3d3
RR
4856 cpuset_cpus_allowed(p, cpus_allowed);
4857 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4858 /*
4859 * We must have raced with a concurrent cpuset
4860 * update. Just reset the cpus_allowed to the
4861 * cpuset's cpus_allowed
4862 */
5a16f3d3 4863 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4864 goto again;
4865 }
4866 }
16303ab2 4867out_free_new_mask:
5a16f3d3
RR
4868 free_cpumask_var(new_mask);
4869out_free_cpus_allowed:
4870 free_cpumask_var(cpus_allowed);
4871out_put_task:
1da177e4 4872 put_task_struct(p);
1da177e4
LT
4873 return retval;
4874}
4875
4876static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4877 struct cpumask *new_mask)
1da177e4 4878{
96f874e2
RR
4879 if (len < cpumask_size())
4880 cpumask_clear(new_mask);
4881 else if (len > cpumask_size())
4882 len = cpumask_size();
4883
1da177e4
LT
4884 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4885}
4886
4887/**
d1ccc66d 4888 * sys_sched_setaffinity - set the CPU affinity of a process
1da177e4
LT
4889 * @pid: pid of the process
4890 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
d1ccc66d 4891 * @user_mask_ptr: user-space pointer to the new CPU mask
e69f6186
YB
4892 *
4893 * Return: 0 on success. An error code otherwise.
1da177e4 4894 */
5add95d4
HC
4895SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4896 unsigned long __user *, user_mask_ptr)
1da177e4 4897{
5a16f3d3 4898 cpumask_var_t new_mask;
1da177e4
LT
4899 int retval;
4900
5a16f3d3
RR
4901 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4902 return -ENOMEM;
1da177e4 4903
5a16f3d3
RR
4904 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4905 if (retval == 0)
4906 retval = sched_setaffinity(pid, new_mask);
4907 free_cpumask_var(new_mask);
4908 return retval;
1da177e4
LT
4909}
4910
96f874e2 4911long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4912{
36c8b586 4913 struct task_struct *p;
31605683 4914 unsigned long flags;
1da177e4 4915 int retval;
1da177e4 4916
23f5d142 4917 rcu_read_lock();
1da177e4
LT
4918
4919 retval = -ESRCH;
4920 p = find_process_by_pid(pid);
4921 if (!p)
4922 goto out_unlock;
4923
e7834f8f
DQ
4924 retval = security_task_getscheduler(p);
4925 if (retval)
4926 goto out_unlock;
4927
013fdb80 4928 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4929 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4930 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4931
4932out_unlock:
23f5d142 4933 rcu_read_unlock();
1da177e4 4934
9531b62f 4935 return retval;
1da177e4
LT
4936}
4937
4938/**
d1ccc66d 4939 * sys_sched_getaffinity - get the CPU affinity of a process
1da177e4
LT
4940 * @pid: pid of the process
4941 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
d1ccc66d 4942 * @user_mask_ptr: user-space pointer to hold the current CPU mask
e69f6186 4943 *
599b4840
ZW
4944 * Return: size of CPU mask copied to user_mask_ptr on success. An
4945 * error code otherwise.
1da177e4 4946 */
5add95d4
HC
4947SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4948 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4949{
4950 int ret;
f17c8607 4951 cpumask_var_t mask;
1da177e4 4952
84fba5ec 4953 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4954 return -EINVAL;
4955 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4956 return -EINVAL;
4957
f17c8607
RR
4958 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4959 return -ENOMEM;
1da177e4 4960
f17c8607
RR
4961 ret = sched_getaffinity(pid, mask);
4962 if (ret == 0) {
8bc037fb 4963 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4964
4965 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4966 ret = -EFAULT;
4967 else
cd3d8031 4968 ret = retlen;
f17c8607
RR
4969 }
4970 free_cpumask_var(mask);
1da177e4 4971
f17c8607 4972 return ret;
1da177e4
LT
4973}
4974
4975/**
4976 * sys_sched_yield - yield the current processor to other threads.
4977 *
dd41f596
IM
4978 * This function yields the current CPU to other tasks. If there are no
4979 * other threads running on this CPU then this function will return.
e69f6186
YB
4980 *
4981 * Return: 0.
1da177e4 4982 */
5add95d4 4983SYSCALL_DEFINE0(sched_yield)
1da177e4 4984{
8a8c69c3
PZ
4985 struct rq_flags rf;
4986 struct rq *rq;
4987
4988 local_irq_disable();
4989 rq = this_rq();
4990 rq_lock(rq, &rf);
1da177e4 4991
ae92882e 4992 schedstat_inc(rq->yld_count);
4530d7ab 4993 current->sched_class->yield_task(rq);
1da177e4
LT
4994
4995 /*
4996 * Since we are going to call schedule() anyway, there's
4997 * no need to preempt or enable interrupts:
4998 */
8a8c69c3
PZ
4999 preempt_disable();
5000 rq_unlock(rq, &rf);
ba74c144 5001 sched_preempt_enable_no_resched();
1da177e4
LT
5002
5003 schedule();
5004
5005 return 0;
5006}
5007
35a773a0 5008#ifndef CONFIG_PREEMPT
02b67cc3 5009int __sched _cond_resched(void)
1da177e4 5010{
fe32d3cd 5011 if (should_resched(0)) {
a18b5d01 5012 preempt_schedule_common();
1da177e4
LT
5013 return 1;
5014 }
5015 return 0;
5016}
02b67cc3 5017EXPORT_SYMBOL(_cond_resched);
35a773a0 5018#endif
1da177e4
LT
5019
5020/*
613afbf8 5021 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
5022 * call schedule, and on return reacquire the lock.
5023 *
41a2d6cf 5024 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5025 * operations here to prevent schedule() from being called twice (once via
5026 * spin_unlock(), once by hand).
5027 */
613afbf8 5028int __cond_resched_lock(spinlock_t *lock)
1da177e4 5029{
fe32d3cd 5030 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6df3cecb
JK
5031 int ret = 0;
5032
f607c668
PZ
5033 lockdep_assert_held(lock);
5034
4a81e832 5035 if (spin_needbreak(lock) || resched) {
1da177e4 5036 spin_unlock(lock);
d86ee480 5037 if (resched)
a18b5d01 5038 preempt_schedule_common();
95c354fe
NP
5039 else
5040 cpu_relax();
6df3cecb 5041 ret = 1;
1da177e4 5042 spin_lock(lock);
1da177e4 5043 }
6df3cecb 5044 return ret;
1da177e4 5045}
613afbf8 5046EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 5047
613afbf8 5048int __sched __cond_resched_softirq(void)
1da177e4
LT
5049{
5050 BUG_ON(!in_softirq());
5051
fe32d3cd 5052 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
98d82567 5053 local_bh_enable();
a18b5d01 5054 preempt_schedule_common();
1da177e4
LT
5055 local_bh_disable();
5056 return 1;
5057 }
5058 return 0;
5059}
613afbf8 5060EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 5061
1da177e4
LT
5062/**
5063 * yield - yield the current processor to other threads.
5064 *
8e3fabfd
PZ
5065 * Do not ever use this function, there's a 99% chance you're doing it wrong.
5066 *
5067 * The scheduler is at all times free to pick the calling task as the most
5068 * eligible task to run, if removing the yield() call from your code breaks
5069 * it, its already broken.
5070 *
5071 * Typical broken usage is:
5072 *
5073 * while (!event)
d1ccc66d 5074 * yield();
8e3fabfd
PZ
5075 *
5076 * where one assumes that yield() will let 'the other' process run that will
5077 * make event true. If the current task is a SCHED_FIFO task that will never
5078 * happen. Never use yield() as a progress guarantee!!
5079 *
5080 * If you want to use yield() to wait for something, use wait_event().
5081 * If you want to use yield() to be 'nice' for others, use cond_resched().
5082 * If you still want to use yield(), do not!
1da177e4
LT
5083 */
5084void __sched yield(void)
5085{
5086 set_current_state(TASK_RUNNING);
5087 sys_sched_yield();
5088}
1da177e4
LT
5089EXPORT_SYMBOL(yield);
5090
d95f4122
MG
5091/**
5092 * yield_to - yield the current processor to another thread in
5093 * your thread group, or accelerate that thread toward the
5094 * processor it's on.
16addf95
RD
5095 * @p: target task
5096 * @preempt: whether task preemption is allowed or not
d95f4122
MG
5097 *
5098 * It's the caller's job to ensure that the target task struct
5099 * can't go away on us before we can do any checks.
5100 *
e69f6186 5101 * Return:
7b270f60
PZ
5102 * true (>0) if we indeed boosted the target task.
5103 * false (0) if we failed to boost the target.
5104 * -ESRCH if there's no task to yield to.
d95f4122 5105 */
fa93384f 5106int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
5107{
5108 struct task_struct *curr = current;
5109 struct rq *rq, *p_rq;
5110 unsigned long flags;
c3c18640 5111 int yielded = 0;
d95f4122
MG
5112
5113 local_irq_save(flags);
5114 rq = this_rq();
5115
5116again:
5117 p_rq = task_rq(p);
7b270f60
PZ
5118 /*
5119 * If we're the only runnable task on the rq and target rq also
5120 * has only one task, there's absolutely no point in yielding.
5121 */
5122 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5123 yielded = -ESRCH;
5124 goto out_irq;
5125 }
5126
d95f4122 5127 double_rq_lock(rq, p_rq);
39e24d8f 5128 if (task_rq(p) != p_rq) {
d95f4122
MG
5129 double_rq_unlock(rq, p_rq);
5130 goto again;
5131 }
5132
5133 if (!curr->sched_class->yield_to_task)
7b270f60 5134 goto out_unlock;
d95f4122
MG
5135
5136 if (curr->sched_class != p->sched_class)
7b270f60 5137 goto out_unlock;
d95f4122
MG
5138
5139 if (task_running(p_rq, p) || p->state)
7b270f60 5140 goto out_unlock;
d95f4122
MG
5141
5142 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 5143 if (yielded) {
ae92882e 5144 schedstat_inc(rq->yld_count);
6d1cafd8
VP
5145 /*
5146 * Make p's CPU reschedule; pick_next_entity takes care of
5147 * fairness.
5148 */
5149 if (preempt && rq != p_rq)
8875125e 5150 resched_curr(p_rq);
6d1cafd8 5151 }
d95f4122 5152
7b270f60 5153out_unlock:
d95f4122 5154 double_rq_unlock(rq, p_rq);
7b270f60 5155out_irq:
d95f4122
MG
5156 local_irq_restore(flags);
5157
7b270f60 5158 if (yielded > 0)
d95f4122
MG
5159 schedule();
5160
5161 return yielded;
5162}
5163EXPORT_SYMBOL_GPL(yield_to);
5164
10ab5643
TH
5165int io_schedule_prepare(void)
5166{
5167 int old_iowait = current->in_iowait;
5168
5169 current->in_iowait = 1;
5170 blk_schedule_flush_plug(current);
5171
5172 return old_iowait;
5173}
5174
5175void io_schedule_finish(int token)
5176{
5177 current->in_iowait = token;
5178}
5179
1da177e4 5180/*
41a2d6cf 5181 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5182 * that process accounting knows that this is a task in IO wait state.
1da177e4 5183 */
1da177e4
LT
5184long __sched io_schedule_timeout(long timeout)
5185{
10ab5643 5186 int token;
1da177e4
LT
5187 long ret;
5188
10ab5643 5189 token = io_schedule_prepare();
1da177e4 5190 ret = schedule_timeout(timeout);
10ab5643 5191 io_schedule_finish(token);
9cff8ade 5192
1da177e4
LT
5193 return ret;
5194}
9cff8ade 5195EXPORT_SYMBOL(io_schedule_timeout);
1da177e4 5196
10ab5643
TH
5197void io_schedule(void)
5198{
5199 int token;
5200
5201 token = io_schedule_prepare();
5202 schedule();
5203 io_schedule_finish(token);
5204}
5205EXPORT_SYMBOL(io_schedule);
5206
1da177e4
LT
5207/**
5208 * sys_sched_get_priority_max - return maximum RT priority.
5209 * @policy: scheduling class.
5210 *
e69f6186
YB
5211 * Return: On success, this syscall returns the maximum
5212 * rt_priority that can be used by a given scheduling class.
5213 * On failure, a negative error code is returned.
1da177e4 5214 */
5add95d4 5215SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5216{
5217 int ret = -EINVAL;
5218
5219 switch (policy) {
5220 case SCHED_FIFO:
5221 case SCHED_RR:
5222 ret = MAX_USER_RT_PRIO-1;
5223 break;
aab03e05 5224 case SCHED_DEADLINE:
1da177e4 5225 case SCHED_NORMAL:
b0a9499c 5226 case SCHED_BATCH:
dd41f596 5227 case SCHED_IDLE:
1da177e4
LT
5228 ret = 0;
5229 break;
5230 }
5231 return ret;
5232}
5233
5234/**
5235 * sys_sched_get_priority_min - return minimum RT priority.
5236 * @policy: scheduling class.
5237 *
e69f6186
YB
5238 * Return: On success, this syscall returns the minimum
5239 * rt_priority that can be used by a given scheduling class.
5240 * On failure, a negative error code is returned.
1da177e4 5241 */
5add95d4 5242SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5243{
5244 int ret = -EINVAL;
5245
5246 switch (policy) {
5247 case SCHED_FIFO:
5248 case SCHED_RR:
5249 ret = 1;
5250 break;
aab03e05 5251 case SCHED_DEADLINE:
1da177e4 5252 case SCHED_NORMAL:
b0a9499c 5253 case SCHED_BATCH:
dd41f596 5254 case SCHED_IDLE:
1da177e4
LT
5255 ret = 0;
5256 }
5257 return ret;
5258}
5259
5260/**
5261 * sys_sched_rr_get_interval - return the default timeslice of a process.
5262 * @pid: pid of the process.
5263 * @interval: userspace pointer to the timeslice value.
5264 *
5265 * this syscall writes the default timeslice value of a given process
5266 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
5267 *
5268 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5269 * an error code.
1da177e4 5270 */
17da2bd9 5271SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5272 struct timespec __user *, interval)
1da177e4 5273{
36c8b586 5274 struct task_struct *p;
a4ec24b4 5275 unsigned int time_slice;
eb580751
PZ
5276 struct rq_flags rf;
5277 struct timespec t;
dba091b9 5278 struct rq *rq;
3a5c359a 5279 int retval;
1da177e4
LT
5280
5281 if (pid < 0)
3a5c359a 5282 return -EINVAL;
1da177e4
LT
5283
5284 retval = -ESRCH;
1a551ae7 5285 rcu_read_lock();
1da177e4
LT
5286 p = find_process_by_pid(pid);
5287 if (!p)
5288 goto out_unlock;
5289
5290 retval = security_task_getscheduler(p);
5291 if (retval)
5292 goto out_unlock;
5293
eb580751 5294 rq = task_rq_lock(p, &rf);
a57beec5
PZ
5295 time_slice = 0;
5296 if (p->sched_class->get_rr_interval)
5297 time_slice = p->sched_class->get_rr_interval(rq, p);
eb580751 5298 task_rq_unlock(rq, p, &rf);
a4ec24b4 5299
1a551ae7 5300 rcu_read_unlock();
a4ec24b4 5301 jiffies_to_timespec(time_slice, &t);
1da177e4 5302 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5303 return retval;
3a5c359a 5304
1da177e4 5305out_unlock:
1a551ae7 5306 rcu_read_unlock();
1da177e4
LT
5307 return retval;
5308}
5309
7c731e0a 5310static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5311
82a1fcb9 5312void sched_show_task(struct task_struct *p)
1da177e4 5313{
1da177e4 5314 unsigned long free = 0;
4e79752c 5315 int ppid;
1f8a7633 5316 unsigned long state = p->state;
1da177e4 5317
c930b2c0
IM
5318 /* Make sure the string lines up properly with the number of task states: */
5319 BUILD_BUG_ON(sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1);
5320
38200502
TH
5321 if (!try_get_task_stack(p))
5322 return;
1f8a7633
TH
5323 if (state)
5324 state = __ffs(state) + 1;
28d0686c 5325 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 5326 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
1da177e4 5327 if (state == TASK_RUNNING)
3df0fc5b 5328 printk(KERN_CONT " running task ");
1da177e4 5329#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5330 free = stack_not_used(p);
1da177e4 5331#endif
a90e984c 5332 ppid = 0;
4e79752c 5333 rcu_read_lock();
a90e984c
ON
5334 if (pid_alive(p))
5335 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 5336 rcu_read_unlock();
3df0fc5b 5337 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 5338 task_pid_nr(p), ppid,
aa47b7e0 5339 (unsigned long)task_thread_info(p)->flags);
1da177e4 5340
3d1cb205 5341 print_worker_info(KERN_INFO, p);
5fb5e6de 5342 show_stack(p, NULL);
38200502 5343 put_task_stack(p);
1da177e4
LT
5344}
5345
e59e2ae2 5346void show_state_filter(unsigned long state_filter)
1da177e4 5347{
36c8b586 5348 struct task_struct *g, *p;
1da177e4 5349
4bd77321 5350#if BITS_PER_LONG == 32
3df0fc5b
PZ
5351 printk(KERN_INFO
5352 " task PC stack pid father\n");
1da177e4 5353#else
3df0fc5b
PZ
5354 printk(KERN_INFO
5355 " task PC stack pid father\n");
1da177e4 5356#endif
510f5acc 5357 rcu_read_lock();
5d07f420 5358 for_each_process_thread(g, p) {
1da177e4
LT
5359 /*
5360 * reset the NMI-timeout, listing all files on a slow
25985edc 5361 * console might take a lot of time:
57675cb9
AR
5362 * Also, reset softlockup watchdogs on all CPUs, because
5363 * another CPU might be blocked waiting for us to process
5364 * an IPI.
1da177e4
LT
5365 */
5366 touch_nmi_watchdog();
57675cb9 5367 touch_all_softlockup_watchdogs();
39bc89fd 5368 if (!state_filter || (p->state & state_filter))
82a1fcb9 5369 sched_show_task(p);
5d07f420 5370 }
1da177e4 5371
dd41f596 5372#ifdef CONFIG_SCHED_DEBUG
fb90a6e9
RV
5373 if (!state_filter)
5374 sysrq_sched_debug_show();
dd41f596 5375#endif
510f5acc 5376 rcu_read_unlock();
e59e2ae2
IM
5377 /*
5378 * Only show locks if all tasks are dumped:
5379 */
93335a21 5380 if (!state_filter)
e59e2ae2 5381 debug_show_all_locks();
1da177e4
LT
5382}
5383
0db0628d 5384void init_idle_bootup_task(struct task_struct *idle)
1df21055 5385{
dd41f596 5386 idle->sched_class = &idle_sched_class;
1df21055
IM
5387}
5388
f340c0d1
IM
5389/**
5390 * init_idle - set up an idle thread for a given CPU
5391 * @idle: task in question
d1ccc66d 5392 * @cpu: CPU the idle task belongs to
f340c0d1
IM
5393 *
5394 * NOTE: this function does not set the idle thread's NEED_RESCHED
5395 * flag, to make booting more robust.
5396 */
0db0628d 5397void init_idle(struct task_struct *idle, int cpu)
1da177e4 5398{
70b97a7f 5399 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5400 unsigned long flags;
5401
25834c73
PZ
5402 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5403 raw_spin_lock(&rq->lock);
5cbd54ef 5404
5e1576ed 5405 __sched_fork(0, idle);
06b83b5f 5406 idle->state = TASK_RUNNING;
dd41f596 5407 idle->se.exec_start = sched_clock();
c1de45ca 5408 idle->flags |= PF_IDLE;
dd41f596 5409
e1b77c92
MR
5410 kasan_unpoison_task_stack(idle);
5411
de9b8f5d
PZ
5412#ifdef CONFIG_SMP
5413 /*
5414 * Its possible that init_idle() gets called multiple times on a task,
5415 * in that case do_set_cpus_allowed() will not do the right thing.
5416 *
5417 * And since this is boot we can forgo the serialization.
5418 */
5419 set_cpus_allowed_common(idle, cpumask_of(cpu));
5420#endif
6506cf6c
PZ
5421 /*
5422 * We're having a chicken and egg problem, even though we are
d1ccc66d 5423 * holding rq->lock, the CPU isn't yet set to this CPU so the
6506cf6c
PZ
5424 * lockdep check in task_group() will fail.
5425 *
5426 * Similar case to sched_fork(). / Alternatively we could
5427 * use task_rq_lock() here and obtain the other rq->lock.
5428 *
5429 * Silence PROVE_RCU
5430 */
5431 rcu_read_lock();
dd41f596 5432 __set_task_cpu(idle, cpu);
6506cf6c 5433 rcu_read_unlock();
1da177e4 5434
1da177e4 5435 rq->curr = rq->idle = idle;
da0c1e65 5436 idle->on_rq = TASK_ON_RQ_QUEUED;
de9b8f5d 5437#ifdef CONFIG_SMP
3ca7a440 5438 idle->on_cpu = 1;
4866cde0 5439#endif
25834c73
PZ
5440 raw_spin_unlock(&rq->lock);
5441 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
1da177e4
LT
5442
5443 /* Set the preempt count _outside_ the spinlocks! */
01028747 5444 init_idle_preempt_count(idle, cpu);
55cd5340 5445
dd41f596
IM
5446 /*
5447 * The idle tasks have their own, simple scheduling class:
5448 */
5449 idle->sched_class = &idle_sched_class;
868baf07 5450 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 5451 vtime_init_idle(idle, cpu);
de9b8f5d 5452#ifdef CONFIG_SMP
f1c6f1a7
CE
5453 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5454#endif
19978ca6
IM
5455}
5456
f82f8042
JL
5457int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5458 const struct cpumask *trial)
5459{
5460 int ret = 1, trial_cpus;
5461 struct dl_bw *cur_dl_b;
5462 unsigned long flags;
5463
bb2bc55a
MG
5464 if (!cpumask_weight(cur))
5465 return ret;
5466
75e23e49 5467 rcu_read_lock_sched();
f82f8042
JL
5468 cur_dl_b = dl_bw_of(cpumask_any(cur));
5469 trial_cpus = cpumask_weight(trial);
5470
5471 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5472 if (cur_dl_b->bw != -1 &&
5473 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5474 ret = 0;
5475 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
75e23e49 5476 rcu_read_unlock_sched();
f82f8042
JL
5477
5478 return ret;
5479}
5480
7f51412a
JL
5481int task_can_attach(struct task_struct *p,
5482 const struct cpumask *cs_cpus_allowed)
5483{
5484 int ret = 0;
5485
5486 /*
5487 * Kthreads which disallow setaffinity shouldn't be moved
d1ccc66d 5488 * to a new cpuset; we don't want to change their CPU
7f51412a
JL
5489 * affinity and isolating such threads by their set of
5490 * allowed nodes is unnecessary. Thus, cpusets are not
5491 * applicable for such threads. This prevents checking for
5492 * success of set_cpus_allowed_ptr() on all attached tasks
5493 * before cpus_allowed may be changed.
5494 */
5495 if (p->flags & PF_NO_SETAFFINITY) {
5496 ret = -EINVAL;
5497 goto out;
5498 }
5499
5500#ifdef CONFIG_SMP
5501 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5502 cs_cpus_allowed)) {
5503 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5504 cs_cpus_allowed);
75e23e49 5505 struct dl_bw *dl_b;
7f51412a
JL
5506 bool overflow;
5507 int cpus;
5508 unsigned long flags;
5509
75e23e49
JL
5510 rcu_read_lock_sched();
5511 dl_b = dl_bw_of(dest_cpu);
7f51412a
JL
5512 raw_spin_lock_irqsave(&dl_b->lock, flags);
5513 cpus = dl_bw_cpus(dest_cpu);
5514 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5515 if (overflow)
5516 ret = -EBUSY;
5517 else {
5518 /*
5519 * We reserve space for this task in the destination
5520 * root_domain, as we can't fail after this point.
5521 * We will free resources in the source root_domain
5522 * later on (see set_cpus_allowed_dl()).
5523 */
5524 __dl_add(dl_b, p->dl.dl_bw);
5525 }
5526 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
75e23e49 5527 rcu_read_unlock_sched();
7f51412a
JL
5528
5529 }
5530#endif
5531out:
5532 return ret;
5533}
5534
1da177e4 5535#ifdef CONFIG_SMP
1da177e4 5536
f2cb1360 5537bool sched_smp_initialized __read_mostly;
e26fbffd 5538
e6628d5b
MG
5539#ifdef CONFIG_NUMA_BALANCING
5540/* Migrate current task p to target_cpu */
5541int migrate_task_to(struct task_struct *p, int target_cpu)
5542{
5543 struct migration_arg arg = { p, target_cpu };
5544 int curr_cpu = task_cpu(p);
5545
5546 if (curr_cpu == target_cpu)
5547 return 0;
5548
0c98d344 5549 if (!cpumask_test_cpu(target_cpu, &p->cpus_allowed))
e6628d5b
MG
5550 return -EINVAL;
5551
5552 /* TODO: This is not properly updating schedstats */
5553
286549dc 5554 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
5555 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5556}
0ec8aa00
PZ
5557
5558/*
5559 * Requeue a task on a given node and accurately track the number of NUMA
5560 * tasks on the runqueues
5561 */
5562void sched_setnuma(struct task_struct *p, int nid)
5563{
da0c1e65 5564 bool queued, running;
eb580751
PZ
5565 struct rq_flags rf;
5566 struct rq *rq;
0ec8aa00 5567
eb580751 5568 rq = task_rq_lock(p, &rf);
da0c1e65 5569 queued = task_on_rq_queued(p);
0ec8aa00
PZ
5570 running = task_current(rq, p);
5571
da0c1e65 5572 if (queued)
1de64443 5573 dequeue_task(rq, p, DEQUEUE_SAVE);
0ec8aa00 5574 if (running)
f3cd1c4e 5575 put_prev_task(rq, p);
0ec8aa00
PZ
5576
5577 p->numa_preferred_nid = nid;
0ec8aa00 5578
da0c1e65 5579 if (queued)
7134b3e9 5580 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
a399d233 5581 if (running)
b2bf6c31 5582 set_curr_task(rq, p);
eb580751 5583 task_rq_unlock(rq, p, &rf);
0ec8aa00 5584}
5cc389bc 5585#endif /* CONFIG_NUMA_BALANCING */
f7b4cddc 5586
1da177e4 5587#ifdef CONFIG_HOTPLUG_CPU
054b9108 5588/*
d1ccc66d 5589 * Ensure that the idle task is using init_mm right before its CPU goes
48c5ccae 5590 * offline.
054b9108 5591 */
48c5ccae 5592void idle_task_exit(void)
1da177e4 5593{
48c5ccae 5594 struct mm_struct *mm = current->active_mm;
e76bd8d9 5595
48c5ccae 5596 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 5597
a53efe5f 5598 if (mm != &init_mm) {
f98db601 5599 switch_mm_irqs_off(mm, &init_mm, current);
a53efe5f
MS
5600 finish_arch_post_lock_switch();
5601 }
48c5ccae 5602 mmdrop(mm);
1da177e4
LT
5603}
5604
5605/*
5d180232
PZ
5606 * Since this CPU is going 'away' for a while, fold any nr_active delta
5607 * we might have. Assumes we're called after migrate_tasks() so that the
d60585c5
TG
5608 * nr_active count is stable. We need to take the teardown thread which
5609 * is calling this into account, so we hand in adjust = 1 to the load
5610 * calculation.
5d180232
PZ
5611 *
5612 * Also see the comment "Global load-average calculations".
1da177e4 5613 */
5d180232 5614static void calc_load_migrate(struct rq *rq)
1da177e4 5615{
d60585c5 5616 long delta = calc_load_fold_active(rq, 1);
5d180232
PZ
5617 if (delta)
5618 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
5619}
5620
3f1d2a31
PZ
5621static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5622{
5623}
5624
5625static const struct sched_class fake_sched_class = {
5626 .put_prev_task = put_prev_task_fake,
5627};
5628
5629static struct task_struct fake_task = {
5630 /*
5631 * Avoid pull_{rt,dl}_task()
5632 */
5633 .prio = MAX_PRIO + 1,
5634 .sched_class = &fake_sched_class,
5635};
5636
48f24c4d 5637/*
48c5ccae
PZ
5638 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5639 * try_to_wake_up()->select_task_rq().
5640 *
5641 * Called with rq->lock held even though we'er in stop_machine() and
5642 * there's no concurrency possible, we hold the required locks anyway
5643 * because of lock validation efforts.
1da177e4 5644 */
8a8c69c3 5645static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
1da177e4 5646{
5e16bbc2 5647 struct rq *rq = dead_rq;
48c5ccae 5648 struct task_struct *next, *stop = rq->stop;
8a8c69c3 5649 struct rq_flags orf = *rf;
48c5ccae 5650 int dest_cpu;
1da177e4
LT
5651
5652 /*
48c5ccae
PZ
5653 * Fudge the rq selection such that the below task selection loop
5654 * doesn't get stuck on the currently eligible stop task.
5655 *
5656 * We're currently inside stop_machine() and the rq is either stuck
5657 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5658 * either way we should never end up calling schedule() until we're
5659 * done here.
1da177e4 5660 */
48c5ccae 5661 rq->stop = NULL;
48f24c4d 5662
77bd3970
FW
5663 /*
5664 * put_prev_task() and pick_next_task() sched
5665 * class method both need to have an up-to-date
5666 * value of rq->clock[_task]
5667 */
5668 update_rq_clock(rq);
5669
5e16bbc2 5670 for (;;) {
48c5ccae
PZ
5671 /*
5672 * There's this thread running, bail when that's the only
d1ccc66d 5673 * remaining thread:
48c5ccae
PZ
5674 */
5675 if (rq->nr_running == 1)
dd41f596 5676 break;
48c5ccae 5677
cbce1a68 5678 /*
d1ccc66d 5679 * pick_next_task() assumes pinned rq->lock:
cbce1a68 5680 */
8a8c69c3 5681 next = pick_next_task(rq, &fake_task, rf);
48c5ccae 5682 BUG_ON(!next);
79c53799 5683 next->sched_class->put_prev_task(rq, next);
e692ab53 5684
5473e0cc
WL
5685 /*
5686 * Rules for changing task_struct::cpus_allowed are holding
5687 * both pi_lock and rq->lock, such that holding either
5688 * stabilizes the mask.
5689 *
5690 * Drop rq->lock is not quite as disastrous as it usually is
5691 * because !cpu_active at this point, which means load-balance
5692 * will not interfere. Also, stop-machine.
5693 */
8a8c69c3 5694 rq_unlock(rq, rf);
5473e0cc 5695 raw_spin_lock(&next->pi_lock);
8a8c69c3 5696 rq_relock(rq, rf);
5473e0cc
WL
5697
5698 /*
5699 * Since we're inside stop-machine, _nothing_ should have
5700 * changed the task, WARN if weird stuff happened, because in
5701 * that case the above rq->lock drop is a fail too.
5702 */
5703 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5704 raw_spin_unlock(&next->pi_lock);
5705 continue;
5706 }
5707
48c5ccae 5708 /* Find suitable destination for @next, with force if needed. */
5e16bbc2 5709 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
8a8c69c3 5710 rq = __migrate_task(rq, rf, next, dest_cpu);
5e16bbc2 5711 if (rq != dead_rq) {
8a8c69c3 5712 rq_unlock(rq, rf);
5e16bbc2 5713 rq = dead_rq;
8a8c69c3
PZ
5714 *rf = orf;
5715 rq_relock(rq, rf);
5e16bbc2 5716 }
5473e0cc 5717 raw_spin_unlock(&next->pi_lock);
1da177e4 5718 }
dce48a84 5719
48c5ccae 5720 rq->stop = stop;
dce48a84 5721}
1da177e4
LT
5722#endif /* CONFIG_HOTPLUG_CPU */
5723
f2cb1360 5724void set_rq_online(struct rq *rq)
1f11eb6a
GH
5725{
5726 if (!rq->online) {
5727 const struct sched_class *class;
5728
c6c4927b 5729 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5730 rq->online = 1;
5731
5732 for_each_class(class) {
5733 if (class->rq_online)
5734 class->rq_online(rq);
5735 }
5736 }
5737}
5738
f2cb1360 5739void set_rq_offline(struct rq *rq)
1f11eb6a
GH
5740{
5741 if (rq->online) {
5742 const struct sched_class *class;
5743
5744 for_each_class(class) {
5745 if (class->rq_offline)
5746 class->rq_offline(rq);
5747 }
5748
c6c4927b 5749 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5750 rq->online = 0;
5751 }
5752}
5753
9cf7243d 5754static void set_cpu_rq_start_time(unsigned int cpu)
1da177e4 5755{
969c7921 5756 struct rq *rq = cpu_rq(cpu);
1da177e4 5757
a803f026
CM
5758 rq->age_stamp = sched_clock_cpu(cpu);
5759}
5760
d1ccc66d
IM
5761/*
5762 * used to mark begin/end of suspend/resume:
5763 */
5764static int num_cpus_frozen;
d35be8ba 5765
1da177e4 5766/*
3a101d05
TH
5767 * Update cpusets according to cpu_active mask. If cpusets are
5768 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
5769 * around partition_sched_domains().
d35be8ba
SB
5770 *
5771 * If we come here as part of a suspend/resume, don't touch cpusets because we
5772 * want to restore it back to its original state upon resume anyway.
1da177e4 5773 */
40190a78 5774static void cpuset_cpu_active(void)
e761b772 5775{
40190a78 5776 if (cpuhp_tasks_frozen) {
d35be8ba
SB
5777 /*
5778 * num_cpus_frozen tracks how many CPUs are involved in suspend
5779 * resume sequence. As long as this is not the last online
5780 * operation in the resume sequence, just build a single sched
5781 * domain, ignoring cpusets.
5782 */
5783 num_cpus_frozen--;
5784 if (likely(num_cpus_frozen)) {
5785 partition_sched_domains(1, NULL, NULL);
135fb3e1 5786 return;
d35be8ba 5787 }
d35be8ba
SB
5788 /*
5789 * This is the last CPU online operation. So fall through and
5790 * restore the original sched domains by considering the
5791 * cpuset configurations.
5792 */
3a101d05 5793 }
30e03acd 5794 cpuset_update_active_cpus();
3a101d05 5795}
e761b772 5796
40190a78 5797static int cpuset_cpu_inactive(unsigned int cpu)
3a101d05 5798{
3c18d447 5799 unsigned long flags;
3c18d447 5800 struct dl_bw *dl_b;
533445c6
OS
5801 bool overflow;
5802 int cpus;
3c18d447 5803
40190a78 5804 if (!cpuhp_tasks_frozen) {
533445c6
OS
5805 rcu_read_lock_sched();
5806 dl_b = dl_bw_of(cpu);
3c18d447 5807
533445c6
OS
5808 raw_spin_lock_irqsave(&dl_b->lock, flags);
5809 cpus = dl_bw_cpus(cpu);
5810 overflow = __dl_overflow(dl_b, cpus, 0, 0);
5811 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3c18d447 5812
533445c6 5813 rcu_read_unlock_sched();
3c18d447 5814
533445c6 5815 if (overflow)
135fb3e1 5816 return -EBUSY;
30e03acd 5817 cpuset_update_active_cpus();
135fb3e1 5818 } else {
d35be8ba
SB
5819 num_cpus_frozen++;
5820 partition_sched_domains(1, NULL, NULL);
e761b772 5821 }
135fb3e1 5822 return 0;
e761b772 5823}
e761b772 5824
40190a78 5825int sched_cpu_activate(unsigned int cpu)
135fb3e1 5826{
7d976699 5827 struct rq *rq = cpu_rq(cpu);
8a8c69c3 5828 struct rq_flags rf;
7d976699 5829
40190a78 5830 set_cpu_active(cpu, true);
135fb3e1 5831
40190a78 5832 if (sched_smp_initialized) {
135fb3e1 5833 sched_domains_numa_masks_set(cpu);
40190a78 5834 cpuset_cpu_active();
e761b772 5835 }
7d976699
TG
5836
5837 /*
5838 * Put the rq online, if not already. This happens:
5839 *
5840 * 1) In the early boot process, because we build the real domains
d1ccc66d 5841 * after all CPUs have been brought up.
7d976699
TG
5842 *
5843 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
5844 * domains.
5845 */
8a8c69c3 5846 rq_lock_irqsave(rq, &rf);
7d976699
TG
5847 if (rq->rd) {
5848 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5849 set_rq_online(rq);
5850 }
8a8c69c3 5851 rq_unlock_irqrestore(rq, &rf);
7d976699
TG
5852
5853 update_max_interval();
5854
40190a78 5855 return 0;
135fb3e1
TG
5856}
5857
40190a78 5858int sched_cpu_deactivate(unsigned int cpu)
135fb3e1 5859{
135fb3e1
TG
5860 int ret;
5861
40190a78 5862 set_cpu_active(cpu, false);
b2454caa
PZ
5863 /*
5864 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
5865 * users of this state to go away such that all new such users will
5866 * observe it.
5867 *
5868 * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might
5869 * not imply sync_sched(), so wait for both.
5870 *
5871 * Do sync before park smpboot threads to take care the rcu boost case.
5872 */
5873 if (IS_ENABLED(CONFIG_PREEMPT))
5874 synchronize_rcu_mult(call_rcu, call_rcu_sched);
5875 else
5876 synchronize_rcu();
40190a78
TG
5877
5878 if (!sched_smp_initialized)
5879 return 0;
5880
5881 ret = cpuset_cpu_inactive(cpu);
5882 if (ret) {
5883 set_cpu_active(cpu, true);
5884 return ret;
135fb3e1 5885 }
40190a78
TG
5886 sched_domains_numa_masks_clear(cpu);
5887 return 0;
135fb3e1
TG
5888}
5889
94baf7a5
TG
5890static void sched_rq_cpu_starting(unsigned int cpu)
5891{
5892 struct rq *rq = cpu_rq(cpu);
5893
5894 rq->calc_load_update = calc_load_update;
94baf7a5
TG
5895 update_max_interval();
5896}
5897
135fb3e1
TG
5898int sched_cpu_starting(unsigned int cpu)
5899{
5900 set_cpu_rq_start_time(cpu);
94baf7a5 5901 sched_rq_cpu_starting(cpu);
135fb3e1 5902 return 0;
e761b772 5903}
e761b772 5904
f2785ddb
TG
5905#ifdef CONFIG_HOTPLUG_CPU
5906int sched_cpu_dying(unsigned int cpu)
5907{
5908 struct rq *rq = cpu_rq(cpu);
8a8c69c3 5909 struct rq_flags rf;
f2785ddb
TG
5910
5911 /* Handle pending wakeups and then migrate everything off */
5912 sched_ttwu_pending();
8a8c69c3
PZ
5913
5914 rq_lock_irqsave(rq, &rf);
f2785ddb
TG
5915 if (rq->rd) {
5916 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5917 set_rq_offline(rq);
5918 }
8a8c69c3 5919 migrate_tasks(rq, &rf);
f2785ddb 5920 BUG_ON(rq->nr_running != 1);
8a8c69c3
PZ
5921 rq_unlock_irqrestore(rq, &rf);
5922
f2785ddb
TG
5923 calc_load_migrate(rq);
5924 update_max_interval();
20a5c8cc 5925 nohz_balance_exit_idle(cpu);
e5ef27d0 5926 hrtick_clear(rq);
f2785ddb
TG
5927 return 0;
5928}
5929#endif
5930
1b568f0a
PZ
5931#ifdef CONFIG_SCHED_SMT
5932DEFINE_STATIC_KEY_FALSE(sched_smt_present);
5933
5934static void sched_init_smt(void)
5935{
5936 /*
5937 * We've enumerated all CPUs and will assume that if any CPU
5938 * has SMT siblings, CPU0 will too.
5939 */
5940 if (cpumask_weight(cpu_smt_mask(0)) > 1)
5941 static_branch_enable(&sched_smt_present);
5942}
5943#else
5944static inline void sched_init_smt(void) { }
5945#endif
5946
1da177e4
LT
5947void __init sched_init_smp(void)
5948{
dcc30a35
RR
5949 cpumask_var_t non_isolated_cpus;
5950
5951 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
5c1e1767 5952
cb83b629
PZ
5953 sched_init_numa();
5954
6acce3ef
PZ
5955 /*
5956 * There's no userspace yet to cause hotplug operations; hence all the
d1ccc66d 5957 * CPU masks are stable and all blatant races in the below code cannot
6acce3ef
PZ
5958 * happen.
5959 */
712555ee 5960 mutex_lock(&sched_domains_mutex);
8d5dc512 5961 sched_init_domains(cpu_active_mask);
dcc30a35
RR
5962 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
5963 if (cpumask_empty(non_isolated_cpus))
5964 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 5965 mutex_unlock(&sched_domains_mutex);
e761b772 5966
5c1e1767 5967 /* Move init over to a non-isolated CPU */
dcc30a35 5968 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 5969 BUG();
19978ca6 5970 sched_init_granularity();
dcc30a35 5971 free_cpumask_var(non_isolated_cpus);
4212823f 5972
0e3900e6 5973 init_sched_rt_class();
1baca4ce 5974 init_sched_dl_class();
1b568f0a
PZ
5975
5976 sched_init_smt();
5977
e26fbffd 5978 sched_smp_initialized = true;
1da177e4 5979}
e26fbffd
TG
5980
5981static int __init migration_init(void)
5982{
94baf7a5 5983 sched_rq_cpu_starting(smp_processor_id());
e26fbffd 5984 return 0;
1da177e4 5985}
e26fbffd
TG
5986early_initcall(migration_init);
5987
1da177e4
LT
5988#else
5989void __init sched_init_smp(void)
5990{
19978ca6 5991 sched_init_granularity();
1da177e4
LT
5992}
5993#endif /* CONFIG_SMP */
5994
5995int in_sched_functions(unsigned long addr)
5996{
1da177e4
LT
5997 return in_lock_functions(addr) ||
5998 (addr >= (unsigned long)__sched_text_start
5999 && addr < (unsigned long)__sched_text_end);
6000}
6001
029632fb 6002#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
6003/*
6004 * Default task group.
6005 * Every task in system belongs to this group at bootup.
6006 */
029632fb 6007struct task_group root_task_group;
35cf4e50 6008LIST_HEAD(task_groups);
b0367629
WL
6009
6010/* Cacheline aligned slab cache for task_group */
6011static struct kmem_cache *task_group_cache __read_mostly;
052f1dc7 6012#endif
6f505b16 6013
e6252c3e 6014DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
10e2f1ac 6015DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
6f505b16 6016
9dcb8b68
LT
6017#define WAIT_TABLE_BITS 8
6018#define WAIT_TABLE_SIZE (1 << WAIT_TABLE_BITS)
6019static wait_queue_head_t bit_wait_table[WAIT_TABLE_SIZE] __cacheline_aligned;
6020
6021wait_queue_head_t *bit_waitqueue(void *word, int bit)
6022{
6023 const int shift = BITS_PER_LONG == 32 ? 5 : 6;
6024 unsigned long val = (unsigned long)word << shift | bit;
6025
6026 return bit_wait_table + hash_long(val, WAIT_TABLE_BITS);
6027}
6028EXPORT_SYMBOL(bit_waitqueue);
6029
1da177e4
LT
6030void __init sched_init(void)
6031{
dd41f596 6032 int i, j;
434d53b0
MT
6033 unsigned long alloc_size = 0, ptr;
6034
9881b024
PZ
6035 sched_clock_init();
6036
9dcb8b68
LT
6037 for (i = 0; i < WAIT_TABLE_SIZE; i++)
6038 init_waitqueue_head(bit_wait_table + i);
6039
434d53b0
MT
6040#ifdef CONFIG_FAIR_GROUP_SCHED
6041 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6042#endif
6043#ifdef CONFIG_RT_GROUP_SCHED
6044 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6045#endif
434d53b0 6046 if (alloc_size) {
36b7b6d4 6047 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
6048
6049#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 6050 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
6051 ptr += nr_cpu_ids * sizeof(void **);
6052
07e06b01 6053 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 6054 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 6055
6d6bc0ad 6056#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 6057#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6058 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
6059 ptr += nr_cpu_ids * sizeof(void **);
6060
07e06b01 6061 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
6062 ptr += nr_cpu_ids * sizeof(void **);
6063
6d6bc0ad 6064#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 6065 }
df7c8e84 6066#ifdef CONFIG_CPUMASK_OFFSTACK
b74e6278
AT
6067 for_each_possible_cpu(i) {
6068 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
6069 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
10e2f1ac
PZ
6070 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
6071 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
434d53b0 6072 }
b74e6278 6073#endif /* CONFIG_CPUMASK_OFFSTACK */
dd41f596 6074
d1ccc66d
IM
6075 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
6076 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
332ac17e 6077
57d885fe
GH
6078#ifdef CONFIG_SMP
6079 init_defrootdomain();
6080#endif
6081
d0b27fa7 6082#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6083 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 6084 global_rt_period(), global_rt_runtime());
6d6bc0ad 6085#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6086
7c941438 6087#ifdef CONFIG_CGROUP_SCHED
b0367629
WL
6088 task_group_cache = KMEM_CACHE(task_group, 0);
6089
07e06b01
YZ
6090 list_add(&root_task_group.list, &task_groups);
6091 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 6092 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 6093 autogroup_init(&init_task);
7c941438 6094#endif /* CONFIG_CGROUP_SCHED */
6f505b16 6095
0a945022 6096 for_each_possible_cpu(i) {
70b97a7f 6097 struct rq *rq;
1da177e4
LT
6098
6099 rq = cpu_rq(i);
05fa785c 6100 raw_spin_lock_init(&rq->lock);
7897986b 6101 rq->nr_running = 0;
dce48a84
TG
6102 rq->calc_load_active = 0;
6103 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 6104 init_cfs_rq(&rq->cfs);
07c54f7a
AV
6105 init_rt_rq(&rq->rt);
6106 init_dl_rq(&rq->dl);
dd41f596 6107#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 6108 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 6109 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9c2791f9 6110 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
354d60c2 6111 /*
d1ccc66d 6112 * How much CPU bandwidth does root_task_group get?
354d60c2
DG
6113 *
6114 * In case of task-groups formed thr' the cgroup filesystem, it
d1ccc66d
IM
6115 * gets 100% of the CPU resources in the system. This overall
6116 * system CPU resource is divided among the tasks of
07e06b01 6117 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
6118 * based on each entity's (task or task-group's) weight
6119 * (se->load.weight).
6120 *
07e06b01 6121 * In other words, if root_task_group has 10 tasks of weight
354d60c2 6122 * 1024) and two child groups A0 and A1 (of weight 1024 each),
d1ccc66d 6123 * then A0's share of the CPU resource is:
354d60c2 6124 *
0d905bca 6125 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 6126 *
07e06b01
YZ
6127 * We achieve this by letting root_task_group's tasks sit
6128 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 6129 */
ab84d31e 6130 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 6131 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
6132#endif /* CONFIG_FAIR_GROUP_SCHED */
6133
6134 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 6135#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6136 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 6137#endif
1da177e4 6138
dd41f596
IM
6139 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6140 rq->cpu_load[j] = 0;
fdf3e95d 6141
1da177e4 6142#ifdef CONFIG_SMP
41c7ce9a 6143 rq->sd = NULL;
57d885fe 6144 rq->rd = NULL;
ca6d75e6 6145 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
e3fca9e7 6146 rq->balance_callback = NULL;
1da177e4 6147 rq->active_balance = 0;
dd41f596 6148 rq->next_balance = jiffies;
1da177e4 6149 rq->push_cpu = 0;
0a2966b4 6150 rq->cpu = i;
1f11eb6a 6151 rq->online = 0;
eae0c9df
MG
6152 rq->idle_stamp = 0;
6153 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 6154 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
6155
6156 INIT_LIST_HEAD(&rq->cfs_tasks);
6157
dc938520 6158 rq_attach_root(rq, &def_root_domain);
3451d024 6159#ifdef CONFIG_NO_HZ_COMMON
9fd81dd5 6160 rq->last_load_update_tick = jiffies;
1c792db7 6161 rq->nohz_flags = 0;
83cd4fe2 6162#endif
265f22a9
FW
6163#ifdef CONFIG_NO_HZ_FULL
6164 rq->last_sched_tick = 0;
6165#endif
9fd81dd5 6166#endif /* CONFIG_SMP */
8f4d37ec 6167 init_rq_hrtick(rq);
1da177e4 6168 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
6169 }
6170
2dd73a4f 6171 set_load_weight(&init_task);
b50f60ce 6172
1da177e4
LT
6173 /*
6174 * The boot idle thread does lazy MMU switching as well:
6175 */
f1f10076 6176 mmgrab(&init_mm);
1da177e4
LT
6177 enter_lazy_tlb(&init_mm, current);
6178
6179 /*
6180 * Make us the idle thread. Technically, schedule() should not be
6181 * called from this thread, however somewhere below it might be,
6182 * but because we are the idle thread, we just pick up running again
6183 * when this runqueue becomes "idle".
6184 */
6185 init_idle(current, smp_processor_id());
dce48a84
TG
6186
6187 calc_load_update = jiffies + LOAD_FREQ;
6188
bf4d83f6 6189#ifdef CONFIG_SMP
bdddd296
RR
6190 /* May be allocated at isolcpus cmdline parse time */
6191 if (cpu_isolated_map == NULL)
6192 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 6193 idle_thread_set_boot_cpu();
9cf7243d 6194 set_cpu_rq_start_time(smp_processor_id());
029632fb
PZ
6195#endif
6196 init_sched_fair_class();
6a7b3dc3 6197
4698f88c
JP
6198 init_schedstats();
6199
6892b75e 6200 scheduler_running = 1;
1da177e4
LT
6201}
6202
d902db1e 6203#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
6204static inline int preempt_count_equals(int preempt_offset)
6205{
da7142e2 6206 int nested = preempt_count() + rcu_preempt_depth();
e4aafea2 6207
4ba8216c 6208 return (nested == preempt_offset);
e4aafea2
FW
6209}
6210
d894837f 6211void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6212{
8eb23b9f
PZ
6213 /*
6214 * Blocking primitives will set (and therefore destroy) current->state,
6215 * since we will exit with TASK_RUNNING make sure we enter with it,
6216 * otherwise we will destroy state.
6217 */
00845eb9 6218 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
8eb23b9f
PZ
6219 "do not call blocking ops when !TASK_RUNNING; "
6220 "state=%lx set at [<%p>] %pS\n",
6221 current->state,
6222 (void *)current->task_state_change,
00845eb9 6223 (void *)current->task_state_change);
8eb23b9f 6224
3427445a
PZ
6225 ___might_sleep(file, line, preempt_offset);
6226}
6227EXPORT_SYMBOL(__might_sleep);
6228
6229void ___might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6230{
d1ccc66d
IM
6231 /* Ratelimiting timestamp: */
6232 static unsigned long prev_jiffy;
6233
d1c6d149 6234 unsigned long preempt_disable_ip;
1da177e4 6235
d1ccc66d
IM
6236 /* WARN_ON_ONCE() by default, no rate limit required: */
6237 rcu_sleep_check();
6238
db273be2
TG
6239 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6240 !is_idle_task(current)) ||
e4aafea2 6241 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
6242 return;
6243 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6244 return;
6245 prev_jiffy = jiffies;
6246
d1ccc66d 6247 /* Save this before calling printk(), since that will clobber it: */
d1c6d149
VN
6248 preempt_disable_ip = get_preempt_disable_ip(current);
6249
3df0fc5b
PZ
6250 printk(KERN_ERR
6251 "BUG: sleeping function called from invalid context at %s:%d\n",
6252 file, line);
6253 printk(KERN_ERR
6254 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6255 in_atomic(), irqs_disabled(),
6256 current->pid, current->comm);
aef745fc 6257
a8b686b3
ES
6258 if (task_stack_end_corrupted(current))
6259 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6260
aef745fc
IM
6261 debug_show_held_locks(current);
6262 if (irqs_disabled())
6263 print_irqtrace_events(current);
d1c6d149
VN
6264 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6265 && !preempt_count_equals(preempt_offset)) {
8f47b187 6266 pr_err("Preemption disabled at:");
d1c6d149 6267 print_ip_sym(preempt_disable_ip);
8f47b187
TG
6268 pr_cont("\n");
6269 }
aef745fc 6270 dump_stack();
f0b22e39 6271 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
1da177e4 6272}
3427445a 6273EXPORT_SYMBOL(___might_sleep);
1da177e4
LT
6274#endif
6275
6276#ifdef CONFIG_MAGIC_SYSRQ
dbc7f069 6277void normalize_rt_tasks(void)
3a5e4dc1 6278{
dbc7f069 6279 struct task_struct *g, *p;
d50dde5a
DF
6280 struct sched_attr attr = {
6281 .sched_policy = SCHED_NORMAL,
6282 };
1da177e4 6283
3472eaa1 6284 read_lock(&tasklist_lock);
5d07f420 6285 for_each_process_thread(g, p) {
178be793
IM
6286 /*
6287 * Only normalize user tasks:
6288 */
3472eaa1 6289 if (p->flags & PF_KTHREAD)
178be793
IM
6290 continue;
6291
4fa8d299
JP
6292 p->se.exec_start = 0;
6293 schedstat_set(p->se.statistics.wait_start, 0);
6294 schedstat_set(p->se.statistics.sleep_start, 0);
6295 schedstat_set(p->se.statistics.block_start, 0);
dd41f596 6296
aab03e05 6297 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
6298 /*
6299 * Renice negative nice level userspace
6300 * tasks back to 0:
6301 */
3472eaa1 6302 if (task_nice(p) < 0)
dd41f596 6303 set_user_nice(p, 0);
1da177e4 6304 continue;
dd41f596 6305 }
1da177e4 6306
dbc7f069 6307 __sched_setscheduler(p, &attr, false, false);
5d07f420 6308 }
3472eaa1 6309 read_unlock(&tasklist_lock);
1da177e4
LT
6310}
6311
6312#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 6313
67fc4e0c 6314#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 6315/*
67fc4e0c 6316 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
6317 *
6318 * They can only be called when the whole system has been
6319 * stopped - every CPU needs to be quiescent, and no scheduling
6320 * activity can take place. Using them for anything else would
6321 * be a serious bug, and as a result, they aren't even visible
6322 * under any other configuration.
6323 */
6324
6325/**
d1ccc66d 6326 * curr_task - return the current task for a given CPU.
1df5c10a
LT
6327 * @cpu: the processor in question.
6328 *
6329 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
6330 *
6331 * Return: The current task for @cpu.
1df5c10a 6332 */
36c8b586 6333struct task_struct *curr_task(int cpu)
1df5c10a
LT
6334{
6335 return cpu_curr(cpu);
6336}
6337
67fc4e0c
JW
6338#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6339
6340#ifdef CONFIG_IA64
1df5c10a 6341/**
d1ccc66d 6342 * set_curr_task - set the current task for a given CPU.
1df5c10a
LT
6343 * @cpu: the processor in question.
6344 * @p: the task pointer to set.
6345 *
6346 * Description: This function must only be used when non-maskable interrupts
41a2d6cf 6347 * are serviced on a separate stack. It allows the architecture to switch the
d1ccc66d 6348 * notion of the current task on a CPU in a non-blocking manner. This function
1df5c10a
LT
6349 * must be called with all CPU's synchronized, and interrupts disabled, the
6350 * and caller must save the original value of the current task (see
6351 * curr_task() above) and restore that value before reenabling interrupts and
6352 * re-starting the system.
6353 *
6354 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6355 */
a458ae2e 6356void ia64_set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
6357{
6358 cpu_curr(cpu) = p;
6359}
6360
6361#endif
29f59db3 6362
7c941438 6363#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
6364/* task_group_lock serializes the addition/removal of task groups */
6365static DEFINE_SPINLOCK(task_group_lock);
6366
2f5177f0 6367static void sched_free_group(struct task_group *tg)
bccbe08a
PZ
6368{
6369 free_fair_sched_group(tg);
6370 free_rt_sched_group(tg);
e9aa1dd1 6371 autogroup_free(tg);
b0367629 6372 kmem_cache_free(task_group_cache, tg);
bccbe08a
PZ
6373}
6374
6375/* allocate runqueue etc for a new task group */
ec7dc8ac 6376struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
6377{
6378 struct task_group *tg;
bccbe08a 6379
b0367629 6380 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
bccbe08a
PZ
6381 if (!tg)
6382 return ERR_PTR(-ENOMEM);
6383
ec7dc8ac 6384 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
6385 goto err;
6386
ec7dc8ac 6387 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
6388 goto err;
6389
ace783b9
LZ
6390 return tg;
6391
6392err:
2f5177f0 6393 sched_free_group(tg);
ace783b9
LZ
6394 return ERR_PTR(-ENOMEM);
6395}
6396
6397void sched_online_group(struct task_group *tg, struct task_group *parent)
6398{
6399 unsigned long flags;
6400
8ed36996 6401 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 6402 list_add_rcu(&tg->list, &task_groups);
f473aa5e 6403
d1ccc66d
IM
6404 /* Root should already exist: */
6405 WARN_ON(!parent);
f473aa5e
PZ
6406
6407 tg->parent = parent;
f473aa5e 6408 INIT_LIST_HEAD(&tg->children);
09f2724a 6409 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 6410 spin_unlock_irqrestore(&task_group_lock, flags);
8663e24d
PZ
6411
6412 online_fair_sched_group(tg);
29f59db3
SV
6413}
6414
9b5b7751 6415/* rcu callback to free various structures associated with a task group */
2f5177f0 6416static void sched_free_group_rcu(struct rcu_head *rhp)
29f59db3 6417{
d1ccc66d 6418 /* Now it should be safe to free those cfs_rqs: */
2f5177f0 6419 sched_free_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
6420}
6421
4cf86d77 6422void sched_destroy_group(struct task_group *tg)
ace783b9 6423{
d1ccc66d 6424 /* Wait for possible concurrent references to cfs_rqs complete: */
2f5177f0 6425 call_rcu(&tg->rcu, sched_free_group_rcu);
ace783b9
LZ
6426}
6427
6428void sched_offline_group(struct task_group *tg)
29f59db3 6429{
8ed36996 6430 unsigned long flags;
29f59db3 6431
d1ccc66d 6432 /* End participation in shares distribution: */
6fe1f348 6433 unregister_fair_sched_group(tg);
3d4b47b4
PZ
6434
6435 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 6436 list_del_rcu(&tg->list);
f473aa5e 6437 list_del_rcu(&tg->siblings);
8ed36996 6438 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
6439}
6440
ea86cb4b 6441static void sched_change_group(struct task_struct *tsk, int type)
29f59db3 6442{
8323f26c 6443 struct task_group *tg;
29f59db3 6444
f7b8a47d
KT
6445 /*
6446 * All callers are synchronized by task_rq_lock(); we do not use RCU
6447 * which is pointless here. Thus, we pass "true" to task_css_check()
6448 * to prevent lockdep warnings.
6449 */
6450 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
6451 struct task_group, css);
6452 tg = autogroup_task_group(tsk, tg);
6453 tsk->sched_task_group = tg;
6454
810b3817 6455#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
6456 if (tsk->sched_class->task_change_group)
6457 tsk->sched_class->task_change_group(tsk, type);
b2b5ce02 6458 else
810b3817 6459#endif
b2b5ce02 6460 set_task_rq(tsk, task_cpu(tsk));
ea86cb4b
VG
6461}
6462
6463/*
6464 * Change task's runqueue when it moves between groups.
6465 *
6466 * The caller of this function should have put the task in its new group by
6467 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
6468 * its new group.
6469 */
6470void sched_move_task(struct task_struct *tsk)
6471{
7a57f32a
PZ
6472 int queued, running, queue_flags =
6473 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
ea86cb4b
VG
6474 struct rq_flags rf;
6475 struct rq *rq;
6476
6477 rq = task_rq_lock(tsk, &rf);
1b1d6225 6478 update_rq_clock(rq);
ea86cb4b
VG
6479
6480 running = task_current(rq, tsk);
6481 queued = task_on_rq_queued(tsk);
6482
6483 if (queued)
7a57f32a 6484 dequeue_task(rq, tsk, queue_flags);
bb3bac2c 6485 if (running)
ea86cb4b
VG
6486 put_prev_task(rq, tsk);
6487
6488 sched_change_group(tsk, TASK_MOVE_GROUP);
810b3817 6489
da0c1e65 6490 if (queued)
7a57f32a 6491 enqueue_task(rq, tsk, queue_flags);
bb3bac2c 6492 if (running)
b2bf6c31 6493 set_curr_task(rq, tsk);
29f59db3 6494
eb580751 6495 task_rq_unlock(rq, tsk, &rf);
29f59db3 6496}
7c941438 6497#endif /* CONFIG_CGROUP_SCHED */
29f59db3 6498
a790de99
PT
6499#ifdef CONFIG_RT_GROUP_SCHED
6500/*
6501 * Ensure that the real time constraints are schedulable.
6502 */
6503static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 6504
9a7e0b18
PZ
6505/* Must be called with tasklist_lock held */
6506static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 6507{
9a7e0b18 6508 struct task_struct *g, *p;
b40b2e8e 6509
1fe89e1b
PZ
6510 /*
6511 * Autogroups do not have RT tasks; see autogroup_create().
6512 */
6513 if (task_group_is_autogroup(tg))
6514 return 0;
6515
5d07f420 6516 for_each_process_thread(g, p) {
8651c658 6517 if (rt_task(p) && task_group(p) == tg)
9a7e0b18 6518 return 1;
5d07f420 6519 }
b40b2e8e 6520
9a7e0b18
PZ
6521 return 0;
6522}
b40b2e8e 6523
9a7e0b18
PZ
6524struct rt_schedulable_data {
6525 struct task_group *tg;
6526 u64 rt_period;
6527 u64 rt_runtime;
6528};
b40b2e8e 6529
a790de99 6530static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
6531{
6532 struct rt_schedulable_data *d = data;
6533 struct task_group *child;
6534 unsigned long total, sum = 0;
6535 u64 period, runtime;
b40b2e8e 6536
9a7e0b18
PZ
6537 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6538 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 6539
9a7e0b18
PZ
6540 if (tg == d->tg) {
6541 period = d->rt_period;
6542 runtime = d->rt_runtime;
b40b2e8e 6543 }
b40b2e8e 6544
4653f803
PZ
6545 /*
6546 * Cannot have more runtime than the period.
6547 */
6548 if (runtime > period && runtime != RUNTIME_INF)
6549 return -EINVAL;
6f505b16 6550
4653f803
PZ
6551 /*
6552 * Ensure we don't starve existing RT tasks.
6553 */
9a7e0b18
PZ
6554 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
6555 return -EBUSY;
6f505b16 6556
9a7e0b18 6557 total = to_ratio(period, runtime);
6f505b16 6558
4653f803
PZ
6559 /*
6560 * Nobody can have more than the global setting allows.
6561 */
6562 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
6563 return -EINVAL;
6f505b16 6564
4653f803
PZ
6565 /*
6566 * The sum of our children's runtime should not exceed our own.
6567 */
9a7e0b18
PZ
6568 list_for_each_entry_rcu(child, &tg->children, siblings) {
6569 period = ktime_to_ns(child->rt_bandwidth.rt_period);
6570 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 6571
9a7e0b18
PZ
6572 if (child == d->tg) {
6573 period = d->rt_period;
6574 runtime = d->rt_runtime;
6575 }
6f505b16 6576
9a7e0b18 6577 sum += to_ratio(period, runtime);
9f0c1e56 6578 }
6f505b16 6579
9a7e0b18
PZ
6580 if (sum > total)
6581 return -EINVAL;
6582
6583 return 0;
6f505b16
PZ
6584}
6585
9a7e0b18 6586static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 6587{
8277434e
PT
6588 int ret;
6589
9a7e0b18
PZ
6590 struct rt_schedulable_data data = {
6591 .tg = tg,
6592 .rt_period = period,
6593 .rt_runtime = runtime,
6594 };
6595
8277434e
PT
6596 rcu_read_lock();
6597 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
6598 rcu_read_unlock();
6599
6600 return ret;
521f1a24
DG
6601}
6602
ab84d31e 6603static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 6604 u64 rt_period, u64 rt_runtime)
6f505b16 6605{
ac086bc2 6606 int i, err = 0;
9f0c1e56 6607
2636ed5f
PZ
6608 /*
6609 * Disallowing the root group RT runtime is BAD, it would disallow the
6610 * kernel creating (and or operating) RT threads.
6611 */
6612 if (tg == &root_task_group && rt_runtime == 0)
6613 return -EINVAL;
6614
6615 /* No period doesn't make any sense. */
6616 if (rt_period == 0)
6617 return -EINVAL;
6618
9f0c1e56 6619 mutex_lock(&rt_constraints_mutex);
521f1a24 6620 read_lock(&tasklist_lock);
9a7e0b18
PZ
6621 err = __rt_schedulable(tg, rt_period, rt_runtime);
6622 if (err)
9f0c1e56 6623 goto unlock;
ac086bc2 6624
0986b11b 6625 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
6626 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
6627 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
6628
6629 for_each_possible_cpu(i) {
6630 struct rt_rq *rt_rq = tg->rt_rq[i];
6631
0986b11b 6632 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 6633 rt_rq->rt_runtime = rt_runtime;
0986b11b 6634 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 6635 }
0986b11b 6636 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 6637unlock:
521f1a24 6638 read_unlock(&tasklist_lock);
9f0c1e56
PZ
6639 mutex_unlock(&rt_constraints_mutex);
6640
6641 return err;
6f505b16
PZ
6642}
6643
25cc7da7 6644static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
6645{
6646 u64 rt_runtime, rt_period;
6647
6648 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6649 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
6650 if (rt_runtime_us < 0)
6651 rt_runtime = RUNTIME_INF;
6652
ab84d31e 6653 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
6654}
6655
25cc7da7 6656static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
6657{
6658 u64 rt_runtime_us;
6659
d0b27fa7 6660 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
6661 return -1;
6662
d0b27fa7 6663 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
6664 do_div(rt_runtime_us, NSEC_PER_USEC);
6665 return rt_runtime_us;
6666}
d0b27fa7 6667
ce2f5fe4 6668static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
d0b27fa7
PZ
6669{
6670 u64 rt_runtime, rt_period;
6671
ce2f5fe4 6672 rt_period = rt_period_us * NSEC_PER_USEC;
d0b27fa7
PZ
6673 rt_runtime = tg->rt_bandwidth.rt_runtime;
6674
ab84d31e 6675 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
6676}
6677
25cc7da7 6678static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
6679{
6680 u64 rt_period_us;
6681
6682 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
6683 do_div(rt_period_us, NSEC_PER_USEC);
6684 return rt_period_us;
6685}
332ac17e 6686#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6687
332ac17e 6688#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
6689static int sched_rt_global_constraints(void)
6690{
6691 int ret = 0;
6692
6693 mutex_lock(&rt_constraints_mutex);
9a7e0b18 6694 read_lock(&tasklist_lock);
4653f803 6695 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 6696 read_unlock(&tasklist_lock);
d0b27fa7
PZ
6697 mutex_unlock(&rt_constraints_mutex);
6698
6699 return ret;
6700}
54e99124 6701
25cc7da7 6702static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
6703{
6704 /* Don't accept realtime tasks when there is no way for them to run */
6705 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
6706 return 0;
6707
6708 return 1;
6709}
6710
6d6bc0ad 6711#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
6712static int sched_rt_global_constraints(void)
6713{
ac086bc2 6714 unsigned long flags;
8c5e9554 6715 int i;
ec5d4989 6716
0986b11b 6717 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
6718 for_each_possible_cpu(i) {
6719 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
6720
0986b11b 6721 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 6722 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 6723 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 6724 }
0986b11b 6725 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 6726
8c5e9554 6727 return 0;
d0b27fa7 6728}
6d6bc0ad 6729#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6730
a1963b81 6731static int sched_dl_global_validate(void)
332ac17e 6732{
1724813d
PZ
6733 u64 runtime = global_rt_runtime();
6734 u64 period = global_rt_period();
332ac17e 6735 u64 new_bw = to_ratio(period, runtime);
f10e00f4 6736 struct dl_bw *dl_b;
1724813d 6737 int cpu, ret = 0;
49516342 6738 unsigned long flags;
332ac17e
DF
6739
6740 /*
6741 * Here we want to check the bandwidth not being set to some
6742 * value smaller than the currently allocated bandwidth in
6743 * any of the root_domains.
6744 *
6745 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
6746 * cycling on root_domains... Discussion on different/better
6747 * solutions is welcome!
6748 */
1724813d 6749 for_each_possible_cpu(cpu) {
f10e00f4
KT
6750 rcu_read_lock_sched();
6751 dl_b = dl_bw_of(cpu);
332ac17e 6752
49516342 6753 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d
PZ
6754 if (new_bw < dl_b->total_bw)
6755 ret = -EBUSY;
49516342 6756 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
1724813d 6757
f10e00f4
KT
6758 rcu_read_unlock_sched();
6759
1724813d
PZ
6760 if (ret)
6761 break;
332ac17e
DF
6762 }
6763
1724813d 6764 return ret;
332ac17e
DF
6765}
6766
1724813d 6767static void sched_dl_do_global(void)
ce0dbbbb 6768{
1724813d 6769 u64 new_bw = -1;
f10e00f4 6770 struct dl_bw *dl_b;
1724813d 6771 int cpu;
49516342 6772 unsigned long flags;
ce0dbbbb 6773
1724813d
PZ
6774 def_dl_bandwidth.dl_period = global_rt_period();
6775 def_dl_bandwidth.dl_runtime = global_rt_runtime();
6776
6777 if (global_rt_runtime() != RUNTIME_INF)
6778 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
6779
6780 /*
6781 * FIXME: As above...
6782 */
6783 for_each_possible_cpu(cpu) {
f10e00f4
KT
6784 rcu_read_lock_sched();
6785 dl_b = dl_bw_of(cpu);
1724813d 6786
49516342 6787 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d 6788 dl_b->bw = new_bw;
49516342 6789 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
f10e00f4
KT
6790
6791 rcu_read_unlock_sched();
ce0dbbbb 6792 }
1724813d
PZ
6793}
6794
6795static int sched_rt_global_validate(void)
6796{
6797 if (sysctl_sched_rt_period <= 0)
6798 return -EINVAL;
6799
e9e7cb38
JL
6800 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
6801 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
1724813d
PZ
6802 return -EINVAL;
6803
6804 return 0;
6805}
6806
6807static void sched_rt_do_global(void)
6808{
6809 def_rt_bandwidth.rt_runtime = global_rt_runtime();
6810 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
6811}
6812
d0b27fa7 6813int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 6814 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
6815 loff_t *ppos)
6816{
d0b27fa7
PZ
6817 int old_period, old_runtime;
6818 static DEFINE_MUTEX(mutex);
1724813d 6819 int ret;
d0b27fa7
PZ
6820
6821 mutex_lock(&mutex);
6822 old_period = sysctl_sched_rt_period;
6823 old_runtime = sysctl_sched_rt_runtime;
6824
8d65af78 6825 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
6826
6827 if (!ret && write) {
1724813d
PZ
6828 ret = sched_rt_global_validate();
6829 if (ret)
6830 goto undo;
6831
a1963b81 6832 ret = sched_dl_global_validate();
1724813d
PZ
6833 if (ret)
6834 goto undo;
6835
a1963b81 6836 ret = sched_rt_global_constraints();
1724813d
PZ
6837 if (ret)
6838 goto undo;
6839
6840 sched_rt_do_global();
6841 sched_dl_do_global();
6842 }
6843 if (0) {
6844undo:
6845 sysctl_sched_rt_period = old_period;
6846 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
6847 }
6848 mutex_unlock(&mutex);
6849
6850 return ret;
6851}
68318b8e 6852
1724813d 6853int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
6854 void __user *buffer, size_t *lenp,
6855 loff_t *ppos)
6856{
6857 int ret;
332ac17e 6858 static DEFINE_MUTEX(mutex);
332ac17e
DF
6859
6860 mutex_lock(&mutex);
332ac17e 6861 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d1ccc66d
IM
6862 /*
6863 * Make sure that internally we keep jiffies.
6864 * Also, writing zero resets the timeslice to default:
6865 */
332ac17e 6866 if (!ret && write) {
975e155e
SZ
6867 sched_rr_timeslice =
6868 sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
6869 msecs_to_jiffies(sysctl_sched_rr_timeslice);
332ac17e
DF
6870 }
6871 mutex_unlock(&mutex);
332ac17e
DF
6872 return ret;
6873}
6874
052f1dc7 6875#ifdef CONFIG_CGROUP_SCHED
68318b8e 6876
a7c6d554 6877static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 6878{
a7c6d554 6879 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
6880}
6881
eb95419b
TH
6882static struct cgroup_subsys_state *
6883cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 6884{
eb95419b
TH
6885 struct task_group *parent = css_tg(parent_css);
6886 struct task_group *tg;
68318b8e 6887
eb95419b 6888 if (!parent) {
68318b8e 6889 /* This is early initialization for the top cgroup */
07e06b01 6890 return &root_task_group.css;
68318b8e
SV
6891 }
6892
ec7dc8ac 6893 tg = sched_create_group(parent);
68318b8e
SV
6894 if (IS_ERR(tg))
6895 return ERR_PTR(-ENOMEM);
6896
68318b8e
SV
6897 return &tg->css;
6898}
6899
96b77745
KK
6900/* Expose task group only after completing cgroup initialization */
6901static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
6902{
6903 struct task_group *tg = css_tg(css);
6904 struct task_group *parent = css_tg(css->parent);
6905
6906 if (parent)
6907 sched_online_group(tg, parent);
6908 return 0;
6909}
6910
2f5177f0 6911static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
ace783b9 6912{
eb95419b 6913 struct task_group *tg = css_tg(css);
ace783b9 6914
2f5177f0 6915 sched_offline_group(tg);
ace783b9
LZ
6916}
6917
eb95419b 6918static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 6919{
eb95419b 6920 struct task_group *tg = css_tg(css);
68318b8e 6921
2f5177f0
PZ
6922 /*
6923 * Relies on the RCU grace period between css_released() and this.
6924 */
6925 sched_free_group(tg);
ace783b9
LZ
6926}
6927
ea86cb4b
VG
6928/*
6929 * This is called before wake_up_new_task(), therefore we really only
6930 * have to set its group bits, all the other stuff does not apply.
6931 */
b53202e6 6932static void cpu_cgroup_fork(struct task_struct *task)
eeb61e53 6933{
ea86cb4b
VG
6934 struct rq_flags rf;
6935 struct rq *rq;
6936
6937 rq = task_rq_lock(task, &rf);
6938
80f5c1b8 6939 update_rq_clock(rq);
ea86cb4b
VG
6940 sched_change_group(task, TASK_SET_GROUP);
6941
6942 task_rq_unlock(rq, task, &rf);
eeb61e53
KT
6943}
6944
1f7dd3e5 6945static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
68318b8e 6946{
bb9d97b6 6947 struct task_struct *task;
1f7dd3e5 6948 struct cgroup_subsys_state *css;
7dc603c9 6949 int ret = 0;
bb9d97b6 6950
1f7dd3e5 6951 cgroup_taskset_for_each(task, css, tset) {
b68aa230 6952#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 6953 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 6954 return -EINVAL;
b68aa230 6955#else
bb9d97b6
TH
6956 /* We don't support RT-tasks being in separate groups */
6957 if (task->sched_class != &fair_sched_class)
6958 return -EINVAL;
b68aa230 6959#endif
7dc603c9
PZ
6960 /*
6961 * Serialize against wake_up_new_task() such that if its
6962 * running, we're sure to observe its full state.
6963 */
6964 raw_spin_lock_irq(&task->pi_lock);
6965 /*
6966 * Avoid calling sched_move_task() before wake_up_new_task()
6967 * has happened. This would lead to problems with PELT, due to
6968 * move wanting to detach+attach while we're not attached yet.
6969 */
6970 if (task->state == TASK_NEW)
6971 ret = -EINVAL;
6972 raw_spin_unlock_irq(&task->pi_lock);
6973
6974 if (ret)
6975 break;
bb9d97b6 6976 }
7dc603c9 6977 return ret;
be367d09 6978}
68318b8e 6979
1f7dd3e5 6980static void cpu_cgroup_attach(struct cgroup_taskset *tset)
68318b8e 6981{
bb9d97b6 6982 struct task_struct *task;
1f7dd3e5 6983 struct cgroup_subsys_state *css;
bb9d97b6 6984
1f7dd3e5 6985 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 6986 sched_move_task(task);
68318b8e
SV
6987}
6988
052f1dc7 6989#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
6990static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
6991 struct cftype *cftype, u64 shareval)
68318b8e 6992{
182446d0 6993 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
6994}
6995
182446d0
TH
6996static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
6997 struct cftype *cft)
68318b8e 6998{
182446d0 6999 struct task_group *tg = css_tg(css);
68318b8e 7000
c8b28116 7001 return (u64) scale_load_down(tg->shares);
68318b8e 7002}
ab84d31e
PT
7003
7004#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
7005static DEFINE_MUTEX(cfs_constraints_mutex);
7006
ab84d31e
PT
7007const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7008const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7009
a790de99
PT
7010static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7011
ab84d31e
PT
7012static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7013{
56f570e5 7014 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 7015 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
7016
7017 if (tg == &root_task_group)
7018 return -EINVAL;
7019
7020 /*
7021 * Ensure we have at some amount of bandwidth every period. This is
7022 * to prevent reaching a state of large arrears when throttled via
7023 * entity_tick() resulting in prolonged exit starvation.
7024 */
7025 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7026 return -EINVAL;
7027
7028 /*
7029 * Likewise, bound things on the otherside by preventing insane quota
7030 * periods. This also allows us to normalize in computing quota
7031 * feasibility.
7032 */
7033 if (period > max_cfs_quota_period)
7034 return -EINVAL;
7035
0e59bdae
KT
7036 /*
7037 * Prevent race between setting of cfs_rq->runtime_enabled and
7038 * unthrottle_offline_cfs_rqs().
7039 */
7040 get_online_cpus();
a790de99
PT
7041 mutex_lock(&cfs_constraints_mutex);
7042 ret = __cfs_schedulable(tg, period, quota);
7043 if (ret)
7044 goto out_unlock;
7045
58088ad0 7046 runtime_enabled = quota != RUNTIME_INF;
56f570e5 7047 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
7048 /*
7049 * If we need to toggle cfs_bandwidth_used, off->on must occur
7050 * before making related changes, and on->off must occur afterwards
7051 */
7052 if (runtime_enabled && !runtime_was_enabled)
7053 cfs_bandwidth_usage_inc();
ab84d31e
PT
7054 raw_spin_lock_irq(&cfs_b->lock);
7055 cfs_b->period = ns_to_ktime(period);
7056 cfs_b->quota = quota;
58088ad0 7057
a9cf55b2 7058 __refill_cfs_bandwidth_runtime(cfs_b);
d1ccc66d
IM
7059
7060 /* Restart the period timer (if active) to handle new period expiry: */
77a4d1a1
PZ
7061 if (runtime_enabled)
7062 start_cfs_bandwidth(cfs_b);
d1ccc66d 7063
ab84d31e
PT
7064 raw_spin_unlock_irq(&cfs_b->lock);
7065
0e59bdae 7066 for_each_online_cpu(i) {
ab84d31e 7067 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 7068 struct rq *rq = cfs_rq->rq;
8a8c69c3 7069 struct rq_flags rf;
ab84d31e 7070
8a8c69c3 7071 rq_lock_irq(rq, &rf);
58088ad0 7072 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 7073 cfs_rq->runtime_remaining = 0;
671fd9da 7074
029632fb 7075 if (cfs_rq->throttled)
671fd9da 7076 unthrottle_cfs_rq(cfs_rq);
8a8c69c3 7077 rq_unlock_irq(rq, &rf);
ab84d31e 7078 }
1ee14e6c
BS
7079 if (runtime_was_enabled && !runtime_enabled)
7080 cfs_bandwidth_usage_dec();
a790de99
PT
7081out_unlock:
7082 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 7083 put_online_cpus();
ab84d31e 7084
a790de99 7085 return ret;
ab84d31e
PT
7086}
7087
7088int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7089{
7090 u64 quota, period;
7091
029632fb 7092 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7093 if (cfs_quota_us < 0)
7094 quota = RUNTIME_INF;
7095 else
7096 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7097
7098 return tg_set_cfs_bandwidth(tg, period, quota);
7099}
7100
7101long tg_get_cfs_quota(struct task_group *tg)
7102{
7103 u64 quota_us;
7104
029632fb 7105 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
7106 return -1;
7107
029632fb 7108 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
7109 do_div(quota_us, NSEC_PER_USEC);
7110
7111 return quota_us;
7112}
7113
7114int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7115{
7116 u64 quota, period;
7117
7118 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 7119 quota = tg->cfs_bandwidth.quota;
ab84d31e 7120
ab84d31e
PT
7121 return tg_set_cfs_bandwidth(tg, period, quota);
7122}
7123
7124long tg_get_cfs_period(struct task_group *tg)
7125{
7126 u64 cfs_period_us;
7127
029632fb 7128 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7129 do_div(cfs_period_us, NSEC_PER_USEC);
7130
7131 return cfs_period_us;
7132}
7133
182446d0
TH
7134static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7135 struct cftype *cft)
ab84d31e 7136{
182446d0 7137 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
7138}
7139
182446d0
TH
7140static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7141 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 7142{
182446d0 7143 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
7144}
7145
182446d0
TH
7146static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7147 struct cftype *cft)
ab84d31e 7148{
182446d0 7149 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
7150}
7151
182446d0
TH
7152static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7153 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 7154{
182446d0 7155 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
7156}
7157
a790de99
PT
7158struct cfs_schedulable_data {
7159 struct task_group *tg;
7160 u64 period, quota;
7161};
7162
7163/*
7164 * normalize group quota/period to be quota/max_period
7165 * note: units are usecs
7166 */
7167static u64 normalize_cfs_quota(struct task_group *tg,
7168 struct cfs_schedulable_data *d)
7169{
7170 u64 quota, period;
7171
7172 if (tg == d->tg) {
7173 period = d->period;
7174 quota = d->quota;
7175 } else {
7176 period = tg_get_cfs_period(tg);
7177 quota = tg_get_cfs_quota(tg);
7178 }
7179
7180 /* note: these should typically be equivalent */
7181 if (quota == RUNTIME_INF || quota == -1)
7182 return RUNTIME_INF;
7183
7184 return to_ratio(period, quota);
7185}
7186
7187static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7188{
7189 struct cfs_schedulable_data *d = data;
029632fb 7190 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
7191 s64 quota = 0, parent_quota = -1;
7192
7193 if (!tg->parent) {
7194 quota = RUNTIME_INF;
7195 } else {
029632fb 7196 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
7197
7198 quota = normalize_cfs_quota(tg, d);
9c58c79a 7199 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
7200
7201 /*
d1ccc66d
IM
7202 * Ensure max(child_quota) <= parent_quota, inherit when no
7203 * limit is set:
a790de99
PT
7204 */
7205 if (quota == RUNTIME_INF)
7206 quota = parent_quota;
7207 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7208 return -EINVAL;
7209 }
9c58c79a 7210 cfs_b->hierarchical_quota = quota;
a790de99
PT
7211
7212 return 0;
7213}
7214
7215static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7216{
8277434e 7217 int ret;
a790de99
PT
7218 struct cfs_schedulable_data data = {
7219 .tg = tg,
7220 .period = period,
7221 .quota = quota,
7222 };
7223
7224 if (quota != RUNTIME_INF) {
7225 do_div(data.period, NSEC_PER_USEC);
7226 do_div(data.quota, NSEC_PER_USEC);
7227 }
7228
8277434e
PT
7229 rcu_read_lock();
7230 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7231 rcu_read_unlock();
7232
7233 return ret;
a790de99 7234}
e8da1b18 7235
2da8ca82 7236static int cpu_stats_show(struct seq_file *sf, void *v)
e8da1b18 7237{
2da8ca82 7238 struct task_group *tg = css_tg(seq_css(sf));
029632fb 7239 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 7240
44ffc75b
TH
7241 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7242 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7243 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
7244
7245 return 0;
7246}
ab84d31e 7247#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 7248#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 7249
052f1dc7 7250#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
7251static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7252 struct cftype *cft, s64 val)
6f505b16 7253{
182446d0 7254 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
7255}
7256
182446d0
TH
7257static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7258 struct cftype *cft)
6f505b16 7259{
182446d0 7260 return sched_group_rt_runtime(css_tg(css));
6f505b16 7261}
d0b27fa7 7262
182446d0
TH
7263static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7264 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 7265{
182446d0 7266 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
7267}
7268
182446d0
TH
7269static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7270 struct cftype *cft)
d0b27fa7 7271{
182446d0 7272 return sched_group_rt_period(css_tg(css));
d0b27fa7 7273}
6d6bc0ad 7274#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 7275
fe5c7cc2 7276static struct cftype cpu_files[] = {
052f1dc7 7277#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
7278 {
7279 .name = "shares",
f4c753b7
PM
7280 .read_u64 = cpu_shares_read_u64,
7281 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 7282 },
052f1dc7 7283#endif
ab84d31e
PT
7284#ifdef CONFIG_CFS_BANDWIDTH
7285 {
7286 .name = "cfs_quota_us",
7287 .read_s64 = cpu_cfs_quota_read_s64,
7288 .write_s64 = cpu_cfs_quota_write_s64,
7289 },
7290 {
7291 .name = "cfs_period_us",
7292 .read_u64 = cpu_cfs_period_read_u64,
7293 .write_u64 = cpu_cfs_period_write_u64,
7294 },
e8da1b18
NR
7295 {
7296 .name = "stat",
2da8ca82 7297 .seq_show = cpu_stats_show,
e8da1b18 7298 },
ab84d31e 7299#endif
052f1dc7 7300#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7301 {
9f0c1e56 7302 .name = "rt_runtime_us",
06ecb27c
PM
7303 .read_s64 = cpu_rt_runtime_read,
7304 .write_s64 = cpu_rt_runtime_write,
6f505b16 7305 },
d0b27fa7
PZ
7306 {
7307 .name = "rt_period_us",
f4c753b7
PM
7308 .read_u64 = cpu_rt_period_read_uint,
7309 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 7310 },
052f1dc7 7311#endif
d1ccc66d 7312 { } /* Terminate */
68318b8e
SV
7313};
7314
073219e9 7315struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748 7316 .css_alloc = cpu_cgroup_css_alloc,
96b77745 7317 .css_online = cpu_cgroup_css_online,
2f5177f0 7318 .css_released = cpu_cgroup_css_released,
92fb9748 7319 .css_free = cpu_cgroup_css_free,
eeb61e53 7320 .fork = cpu_cgroup_fork,
bb9d97b6
TH
7321 .can_attach = cpu_cgroup_can_attach,
7322 .attach = cpu_cgroup_attach,
5577964e 7323 .legacy_cftypes = cpu_files,
b38e42e9 7324 .early_init = true,
68318b8e
SV
7325};
7326
052f1dc7 7327#endif /* CONFIG_CGROUP_SCHED */
d842de87 7328
b637a328
PM
7329void dump_cpu_task(int cpu)
7330{
7331 pr_info("Task dump for CPU %d:\n", cpu);
7332 sched_show_task(cpu_curr(cpu));
7333}
ed82b8a1
AK
7334
7335/*
7336 * Nice levels are multiplicative, with a gentle 10% change for every
7337 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
7338 * nice 1, it will get ~10% less CPU time than another CPU-bound task
7339 * that remained on nice 0.
7340 *
7341 * The "10% effect" is relative and cumulative: from _any_ nice level,
7342 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
7343 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
7344 * If a task goes up by ~10% and another task goes down by ~10% then
7345 * the relative distance between them is ~25%.)
7346 */
7347const int sched_prio_to_weight[40] = {
7348 /* -20 */ 88761, 71755, 56483, 46273, 36291,
7349 /* -15 */ 29154, 23254, 18705, 14949, 11916,
7350 /* -10 */ 9548, 7620, 6100, 4904, 3906,
7351 /* -5 */ 3121, 2501, 1991, 1586, 1277,
7352 /* 0 */ 1024, 820, 655, 526, 423,
7353 /* 5 */ 335, 272, 215, 172, 137,
7354 /* 10 */ 110, 87, 70, 56, 45,
7355 /* 15 */ 36, 29, 23, 18, 15,
7356};
7357
7358/*
7359 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
7360 *
7361 * In cases where the weight does not change often, we can use the
7362 * precalculated inverse to speed up arithmetics by turning divisions
7363 * into multiplications:
7364 */
7365const u32 sched_prio_to_wmult[40] = {
7366 /* -20 */ 48388, 59856, 76040, 92818, 118348,
7367 /* -15 */ 147320, 184698, 229616, 287308, 360437,
7368 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
7369 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
7370 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
7371 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
7372 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
7373 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
7374};