]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/sched/core.c
x86: Exception hooks for userspace RCU extended QS
[mirror_ubuntu-artful-kernel.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
1da177e4 75
96f951ed 76#include <asm/switch_to.h>
5517d86b 77#include <asm/tlb.h>
838225b4 78#include <asm/irq_regs.h>
db7e527d 79#include <asm/mutex.h>
e6e6685a
GC
80#ifdef CONFIG_PARAVIRT
81#include <asm/paravirt.h>
82#endif
1da177e4 83
029632fb 84#include "sched.h"
391e43da 85#include "../workqueue_sched.h"
29d5e047 86#include "../smpboot.h"
6e0534f2 87
a8d154b0 88#define CREATE_TRACE_POINTS
ad8d75ff 89#include <trace/events/sched.h>
a8d154b0 90
029632fb 91void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 92{
58088ad0
PT
93 unsigned long delta;
94 ktime_t soft, hard, now;
d0b27fa7 95
58088ad0
PT
96 for (;;) {
97 if (hrtimer_active(period_timer))
98 break;
99
100 now = hrtimer_cb_get_time(period_timer);
101 hrtimer_forward(period_timer, now, period);
d0b27fa7 102
58088ad0
PT
103 soft = hrtimer_get_softexpires(period_timer);
104 hard = hrtimer_get_expires(period_timer);
105 delta = ktime_to_ns(ktime_sub(hard, soft));
106 __hrtimer_start_range_ns(period_timer, soft, delta,
107 HRTIMER_MODE_ABS_PINNED, 0);
108 }
109}
110
029632fb
PZ
111DEFINE_MUTEX(sched_domains_mutex);
112DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 113
fe44d621 114static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 115
029632fb 116void update_rq_clock(struct rq *rq)
3e51f33f 117{
fe44d621 118 s64 delta;
305e6835 119
61eadef6 120 if (rq->skip_clock_update > 0)
f26f9aff 121 return;
aa483808 122
fe44d621
PZ
123 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
124 rq->clock += delta;
125 update_rq_clock_task(rq, delta);
3e51f33f
PZ
126}
127
bf5c91ba
IM
128/*
129 * Debugging: various feature bits
130 */
f00b45c1 131
f00b45c1
PZ
132#define SCHED_FEAT(name, enabled) \
133 (1UL << __SCHED_FEAT_##name) * enabled |
134
bf5c91ba 135const_debug unsigned int sysctl_sched_features =
391e43da 136#include "features.h"
f00b45c1
PZ
137 0;
138
139#undef SCHED_FEAT
140
141#ifdef CONFIG_SCHED_DEBUG
142#define SCHED_FEAT(name, enabled) \
143 #name ,
144
1292531f 145static const char * const sched_feat_names[] = {
391e43da 146#include "features.h"
f00b45c1
PZ
147};
148
149#undef SCHED_FEAT
150
34f3a814 151static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 152{
f00b45c1
PZ
153 int i;
154
f8b6d1cc 155 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
156 if (!(sysctl_sched_features & (1UL << i)))
157 seq_puts(m, "NO_");
158 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 159 }
34f3a814 160 seq_puts(m, "\n");
f00b45c1 161
34f3a814 162 return 0;
f00b45c1
PZ
163}
164
f8b6d1cc
PZ
165#ifdef HAVE_JUMP_LABEL
166
c5905afb
IM
167#define jump_label_key__true STATIC_KEY_INIT_TRUE
168#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
169
170#define SCHED_FEAT(name, enabled) \
171 jump_label_key__##enabled ,
172
c5905afb 173struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
174#include "features.h"
175};
176
177#undef SCHED_FEAT
178
179static void sched_feat_disable(int i)
180{
c5905afb
IM
181 if (static_key_enabled(&sched_feat_keys[i]))
182 static_key_slow_dec(&sched_feat_keys[i]);
f8b6d1cc
PZ
183}
184
185static void sched_feat_enable(int i)
186{
c5905afb
IM
187 if (!static_key_enabled(&sched_feat_keys[i]))
188 static_key_slow_inc(&sched_feat_keys[i]);
f8b6d1cc
PZ
189}
190#else
191static void sched_feat_disable(int i) { };
192static void sched_feat_enable(int i) { };
193#endif /* HAVE_JUMP_LABEL */
194
f00b45c1
PZ
195static ssize_t
196sched_feat_write(struct file *filp, const char __user *ubuf,
197 size_t cnt, loff_t *ppos)
198{
199 char buf[64];
7740191c 200 char *cmp;
f00b45c1
PZ
201 int neg = 0;
202 int i;
203
204 if (cnt > 63)
205 cnt = 63;
206
207 if (copy_from_user(&buf, ubuf, cnt))
208 return -EFAULT;
209
210 buf[cnt] = 0;
7740191c 211 cmp = strstrip(buf);
f00b45c1 212
524429c3 213 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
214 neg = 1;
215 cmp += 3;
216 }
217
f8b6d1cc 218 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 219 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 220 if (neg) {
f00b45c1 221 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
222 sched_feat_disable(i);
223 } else {
f00b45c1 224 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
225 sched_feat_enable(i);
226 }
f00b45c1
PZ
227 break;
228 }
229 }
230
f8b6d1cc 231 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
232 return -EINVAL;
233
42994724 234 *ppos += cnt;
f00b45c1
PZ
235
236 return cnt;
237}
238
34f3a814
LZ
239static int sched_feat_open(struct inode *inode, struct file *filp)
240{
241 return single_open(filp, sched_feat_show, NULL);
242}
243
828c0950 244static const struct file_operations sched_feat_fops = {
34f3a814
LZ
245 .open = sched_feat_open,
246 .write = sched_feat_write,
247 .read = seq_read,
248 .llseek = seq_lseek,
249 .release = single_release,
f00b45c1
PZ
250};
251
252static __init int sched_init_debug(void)
253{
f00b45c1
PZ
254 debugfs_create_file("sched_features", 0644, NULL, NULL,
255 &sched_feat_fops);
256
257 return 0;
258}
259late_initcall(sched_init_debug);
f8b6d1cc 260#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 261
b82d9fdd
PZ
262/*
263 * Number of tasks to iterate in a single balance run.
264 * Limited because this is done with IRQs disabled.
265 */
266const_debug unsigned int sysctl_sched_nr_migrate = 32;
267
e9e9250b
PZ
268/*
269 * period over which we average the RT time consumption, measured
270 * in ms.
271 *
272 * default: 1s
273 */
274const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
275
fa85ae24 276/*
9f0c1e56 277 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
278 * default: 1s
279 */
9f0c1e56 280unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 281
029632fb 282__read_mostly int scheduler_running;
6892b75e 283
9f0c1e56
PZ
284/*
285 * part of the period that we allow rt tasks to run in us.
286 * default: 0.95s
287 */
288int sysctl_sched_rt_runtime = 950000;
fa85ae24 289
fa85ae24 290
1da177e4 291
0970d299 292/*
0122ec5b 293 * __task_rq_lock - lock the rq @p resides on.
b29739f9 294 */
70b97a7f 295static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
296 __acquires(rq->lock)
297{
0970d299
PZ
298 struct rq *rq;
299
0122ec5b
PZ
300 lockdep_assert_held(&p->pi_lock);
301
3a5c359a 302 for (;;) {
0970d299 303 rq = task_rq(p);
05fa785c 304 raw_spin_lock(&rq->lock);
65cc8e48 305 if (likely(rq == task_rq(p)))
3a5c359a 306 return rq;
05fa785c 307 raw_spin_unlock(&rq->lock);
b29739f9 308 }
b29739f9
IM
309}
310
1da177e4 311/*
0122ec5b 312 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 313 */
70b97a7f 314static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 315 __acquires(p->pi_lock)
1da177e4
LT
316 __acquires(rq->lock)
317{
70b97a7f 318 struct rq *rq;
1da177e4 319
3a5c359a 320 for (;;) {
0122ec5b 321 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 322 rq = task_rq(p);
05fa785c 323 raw_spin_lock(&rq->lock);
65cc8e48 324 if (likely(rq == task_rq(p)))
3a5c359a 325 return rq;
0122ec5b
PZ
326 raw_spin_unlock(&rq->lock);
327 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4 328 }
1da177e4
LT
329}
330
a9957449 331static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
332 __releases(rq->lock)
333{
05fa785c 334 raw_spin_unlock(&rq->lock);
b29739f9
IM
335}
336
0122ec5b
PZ
337static inline void
338task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 339 __releases(rq->lock)
0122ec5b 340 __releases(p->pi_lock)
1da177e4 341{
0122ec5b
PZ
342 raw_spin_unlock(&rq->lock);
343 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
344}
345
1da177e4 346/*
cc2a73b5 347 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 348 */
a9957449 349static struct rq *this_rq_lock(void)
1da177e4
LT
350 __acquires(rq->lock)
351{
70b97a7f 352 struct rq *rq;
1da177e4
LT
353
354 local_irq_disable();
355 rq = this_rq();
05fa785c 356 raw_spin_lock(&rq->lock);
1da177e4
LT
357
358 return rq;
359}
360
8f4d37ec
PZ
361#ifdef CONFIG_SCHED_HRTICK
362/*
363 * Use HR-timers to deliver accurate preemption points.
364 *
365 * Its all a bit involved since we cannot program an hrt while holding the
366 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
367 * reschedule event.
368 *
369 * When we get rescheduled we reprogram the hrtick_timer outside of the
370 * rq->lock.
371 */
8f4d37ec 372
8f4d37ec
PZ
373static void hrtick_clear(struct rq *rq)
374{
375 if (hrtimer_active(&rq->hrtick_timer))
376 hrtimer_cancel(&rq->hrtick_timer);
377}
378
8f4d37ec
PZ
379/*
380 * High-resolution timer tick.
381 * Runs from hardirq context with interrupts disabled.
382 */
383static enum hrtimer_restart hrtick(struct hrtimer *timer)
384{
385 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
386
387 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
388
05fa785c 389 raw_spin_lock(&rq->lock);
3e51f33f 390 update_rq_clock(rq);
8f4d37ec 391 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 392 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
393
394 return HRTIMER_NORESTART;
395}
396
95e904c7 397#ifdef CONFIG_SMP
31656519
PZ
398/*
399 * called from hardirq (IPI) context
400 */
401static void __hrtick_start(void *arg)
b328ca18 402{
31656519 403 struct rq *rq = arg;
b328ca18 404
05fa785c 405 raw_spin_lock(&rq->lock);
31656519
PZ
406 hrtimer_restart(&rq->hrtick_timer);
407 rq->hrtick_csd_pending = 0;
05fa785c 408 raw_spin_unlock(&rq->lock);
b328ca18
PZ
409}
410
31656519
PZ
411/*
412 * Called to set the hrtick timer state.
413 *
414 * called with rq->lock held and irqs disabled
415 */
029632fb 416void hrtick_start(struct rq *rq, u64 delay)
b328ca18 417{
31656519
PZ
418 struct hrtimer *timer = &rq->hrtick_timer;
419 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 420
cc584b21 421 hrtimer_set_expires(timer, time);
31656519
PZ
422
423 if (rq == this_rq()) {
424 hrtimer_restart(timer);
425 } else if (!rq->hrtick_csd_pending) {
6e275637 426 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
427 rq->hrtick_csd_pending = 1;
428 }
b328ca18
PZ
429}
430
431static int
432hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
433{
434 int cpu = (int)(long)hcpu;
435
436 switch (action) {
437 case CPU_UP_CANCELED:
438 case CPU_UP_CANCELED_FROZEN:
439 case CPU_DOWN_PREPARE:
440 case CPU_DOWN_PREPARE_FROZEN:
441 case CPU_DEAD:
442 case CPU_DEAD_FROZEN:
31656519 443 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
444 return NOTIFY_OK;
445 }
446
447 return NOTIFY_DONE;
448}
449
fa748203 450static __init void init_hrtick(void)
b328ca18
PZ
451{
452 hotcpu_notifier(hotplug_hrtick, 0);
453}
31656519
PZ
454#else
455/*
456 * Called to set the hrtick timer state.
457 *
458 * called with rq->lock held and irqs disabled
459 */
029632fb 460void hrtick_start(struct rq *rq, u64 delay)
31656519 461{
7f1e2ca9 462 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 463 HRTIMER_MODE_REL_PINNED, 0);
31656519 464}
b328ca18 465
006c75f1 466static inline void init_hrtick(void)
8f4d37ec 467{
8f4d37ec 468}
31656519 469#endif /* CONFIG_SMP */
8f4d37ec 470
31656519 471static void init_rq_hrtick(struct rq *rq)
8f4d37ec 472{
31656519
PZ
473#ifdef CONFIG_SMP
474 rq->hrtick_csd_pending = 0;
8f4d37ec 475
31656519
PZ
476 rq->hrtick_csd.flags = 0;
477 rq->hrtick_csd.func = __hrtick_start;
478 rq->hrtick_csd.info = rq;
479#endif
8f4d37ec 480
31656519
PZ
481 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
482 rq->hrtick_timer.function = hrtick;
8f4d37ec 483}
006c75f1 484#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
485static inline void hrtick_clear(struct rq *rq)
486{
487}
488
8f4d37ec
PZ
489static inline void init_rq_hrtick(struct rq *rq)
490{
491}
492
b328ca18
PZ
493static inline void init_hrtick(void)
494{
495}
006c75f1 496#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 497
c24d20db
IM
498/*
499 * resched_task - mark a task 'to be rescheduled now'.
500 *
501 * On UP this means the setting of the need_resched flag, on SMP it
502 * might also involve a cross-CPU call to trigger the scheduler on
503 * the target CPU.
504 */
505#ifdef CONFIG_SMP
506
507#ifndef tsk_is_polling
508#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
509#endif
510
029632fb 511void resched_task(struct task_struct *p)
c24d20db
IM
512{
513 int cpu;
514
05fa785c 515 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 516
5ed0cec0 517 if (test_tsk_need_resched(p))
c24d20db
IM
518 return;
519
5ed0cec0 520 set_tsk_need_resched(p);
c24d20db
IM
521
522 cpu = task_cpu(p);
523 if (cpu == smp_processor_id())
524 return;
525
526 /* NEED_RESCHED must be visible before we test polling */
527 smp_mb();
528 if (!tsk_is_polling(p))
529 smp_send_reschedule(cpu);
530}
531
029632fb 532void resched_cpu(int cpu)
c24d20db
IM
533{
534 struct rq *rq = cpu_rq(cpu);
535 unsigned long flags;
536
05fa785c 537 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
538 return;
539 resched_task(cpu_curr(cpu));
05fa785c 540 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 541}
06d8308c
TG
542
543#ifdef CONFIG_NO_HZ
83cd4fe2
VP
544/*
545 * In the semi idle case, use the nearest busy cpu for migrating timers
546 * from an idle cpu. This is good for power-savings.
547 *
548 * We don't do similar optimization for completely idle system, as
549 * selecting an idle cpu will add more delays to the timers than intended
550 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
551 */
552int get_nohz_timer_target(void)
553{
554 int cpu = smp_processor_id();
555 int i;
556 struct sched_domain *sd;
557
057f3fad 558 rcu_read_lock();
83cd4fe2 559 for_each_domain(cpu, sd) {
057f3fad
PZ
560 for_each_cpu(i, sched_domain_span(sd)) {
561 if (!idle_cpu(i)) {
562 cpu = i;
563 goto unlock;
564 }
565 }
83cd4fe2 566 }
057f3fad
PZ
567unlock:
568 rcu_read_unlock();
83cd4fe2
VP
569 return cpu;
570}
06d8308c
TG
571/*
572 * When add_timer_on() enqueues a timer into the timer wheel of an
573 * idle CPU then this timer might expire before the next timer event
574 * which is scheduled to wake up that CPU. In case of a completely
575 * idle system the next event might even be infinite time into the
576 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
577 * leaves the inner idle loop so the newly added timer is taken into
578 * account when the CPU goes back to idle and evaluates the timer
579 * wheel for the next timer event.
580 */
581void wake_up_idle_cpu(int cpu)
582{
583 struct rq *rq = cpu_rq(cpu);
584
585 if (cpu == smp_processor_id())
586 return;
587
588 /*
589 * This is safe, as this function is called with the timer
590 * wheel base lock of (cpu) held. When the CPU is on the way
591 * to idle and has not yet set rq->curr to idle then it will
592 * be serialized on the timer wheel base lock and take the new
593 * timer into account automatically.
594 */
595 if (rq->curr != rq->idle)
596 return;
45bf76df 597
45bf76df 598 /*
06d8308c
TG
599 * We can set TIF_RESCHED on the idle task of the other CPU
600 * lockless. The worst case is that the other CPU runs the
601 * idle task through an additional NOOP schedule()
45bf76df 602 */
5ed0cec0 603 set_tsk_need_resched(rq->idle);
45bf76df 604
06d8308c
TG
605 /* NEED_RESCHED must be visible before we test polling */
606 smp_mb();
607 if (!tsk_is_polling(rq->idle))
608 smp_send_reschedule(cpu);
45bf76df
IM
609}
610
ca38062e 611static inline bool got_nohz_idle_kick(void)
45bf76df 612{
1c792db7
SS
613 int cpu = smp_processor_id();
614 return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
45bf76df
IM
615}
616
ca38062e 617#else /* CONFIG_NO_HZ */
45bf76df 618
ca38062e 619static inline bool got_nohz_idle_kick(void)
2069dd75 620{
ca38062e 621 return false;
2069dd75
PZ
622}
623
6d6bc0ad 624#endif /* CONFIG_NO_HZ */
d842de87 625
029632fb 626void sched_avg_update(struct rq *rq)
18d95a28 627{
e9e9250b
PZ
628 s64 period = sched_avg_period();
629
630 while ((s64)(rq->clock - rq->age_stamp) > period) {
0d98bb26
WD
631 /*
632 * Inline assembly required to prevent the compiler
633 * optimising this loop into a divmod call.
634 * See __iter_div_u64_rem() for another example of this.
635 */
636 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
637 rq->age_stamp += period;
638 rq->rt_avg /= 2;
639 }
18d95a28
PZ
640}
641
6d6bc0ad 642#else /* !CONFIG_SMP */
029632fb 643void resched_task(struct task_struct *p)
18d95a28 644{
05fa785c 645 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 646 set_tsk_need_resched(p);
18d95a28 647}
6d6bc0ad 648#endif /* CONFIG_SMP */
18d95a28 649
a790de99
PT
650#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
651 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 652/*
8277434e
PT
653 * Iterate task_group tree rooted at *from, calling @down when first entering a
654 * node and @up when leaving it for the final time.
655 *
656 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 657 */
029632fb 658int walk_tg_tree_from(struct task_group *from,
8277434e 659 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
660{
661 struct task_group *parent, *child;
eb755805 662 int ret;
c09595f6 663
8277434e
PT
664 parent = from;
665
c09595f6 666down:
eb755805
PZ
667 ret = (*down)(parent, data);
668 if (ret)
8277434e 669 goto out;
c09595f6
PZ
670 list_for_each_entry_rcu(child, &parent->children, siblings) {
671 parent = child;
672 goto down;
673
674up:
675 continue;
676 }
eb755805 677 ret = (*up)(parent, data);
8277434e
PT
678 if (ret || parent == from)
679 goto out;
c09595f6
PZ
680
681 child = parent;
682 parent = parent->parent;
683 if (parent)
684 goto up;
8277434e 685out:
eb755805 686 return ret;
c09595f6
PZ
687}
688
029632fb 689int tg_nop(struct task_group *tg, void *data)
eb755805 690{
e2b245f8 691 return 0;
eb755805 692}
18d95a28
PZ
693#endif
694
45bf76df
IM
695static void set_load_weight(struct task_struct *p)
696{
f05998d4
NR
697 int prio = p->static_prio - MAX_RT_PRIO;
698 struct load_weight *load = &p->se.load;
699
dd41f596
IM
700 /*
701 * SCHED_IDLE tasks get minimal weight:
702 */
703 if (p->policy == SCHED_IDLE) {
c8b28116 704 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 705 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
706 return;
707 }
71f8bd46 708
c8b28116 709 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 710 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
711}
712
371fd7e7 713static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 714{
a64692a3 715 update_rq_clock(rq);
dd41f596 716 sched_info_queued(p);
371fd7e7 717 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
718}
719
371fd7e7 720static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 721{
a64692a3 722 update_rq_clock(rq);
46ac22ba 723 sched_info_dequeued(p);
371fd7e7 724 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
725}
726
029632fb 727void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
728{
729 if (task_contributes_to_load(p))
730 rq->nr_uninterruptible--;
731
371fd7e7 732 enqueue_task(rq, p, flags);
1e3c88bd
PZ
733}
734
029632fb 735void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
736{
737 if (task_contributes_to_load(p))
738 rq->nr_uninterruptible++;
739
371fd7e7 740 dequeue_task(rq, p, flags);
1e3c88bd
PZ
741}
742
b52bfee4
VP
743#ifdef CONFIG_IRQ_TIME_ACCOUNTING
744
305e6835
VP
745/*
746 * There are no locks covering percpu hardirq/softirq time.
747 * They are only modified in account_system_vtime, on corresponding CPU
748 * with interrupts disabled. So, writes are safe.
749 * They are read and saved off onto struct rq in update_rq_clock().
750 * This may result in other CPU reading this CPU's irq time and can
751 * race with irq/account_system_vtime on this CPU. We would either get old
8e92c201
PZ
752 * or new value with a side effect of accounting a slice of irq time to wrong
753 * task when irq is in progress while we read rq->clock. That is a worthy
754 * compromise in place of having locks on each irq in account_system_time.
305e6835 755 */
b52bfee4
VP
756static DEFINE_PER_CPU(u64, cpu_hardirq_time);
757static DEFINE_PER_CPU(u64, cpu_softirq_time);
758
759static DEFINE_PER_CPU(u64, irq_start_time);
760static int sched_clock_irqtime;
761
762void enable_sched_clock_irqtime(void)
763{
764 sched_clock_irqtime = 1;
765}
766
767void disable_sched_clock_irqtime(void)
768{
769 sched_clock_irqtime = 0;
770}
771
8e92c201
PZ
772#ifndef CONFIG_64BIT
773static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
774
775static inline void irq_time_write_begin(void)
776{
777 __this_cpu_inc(irq_time_seq.sequence);
778 smp_wmb();
779}
780
781static inline void irq_time_write_end(void)
782{
783 smp_wmb();
784 __this_cpu_inc(irq_time_seq.sequence);
785}
786
787static inline u64 irq_time_read(int cpu)
788{
789 u64 irq_time;
790 unsigned seq;
791
792 do {
793 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
794 irq_time = per_cpu(cpu_softirq_time, cpu) +
795 per_cpu(cpu_hardirq_time, cpu);
796 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
797
798 return irq_time;
799}
800#else /* CONFIG_64BIT */
801static inline void irq_time_write_begin(void)
802{
803}
804
805static inline void irq_time_write_end(void)
806{
807}
808
809static inline u64 irq_time_read(int cpu)
305e6835 810{
305e6835
VP
811 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
812}
8e92c201 813#endif /* CONFIG_64BIT */
305e6835 814
fe44d621
PZ
815/*
816 * Called before incrementing preempt_count on {soft,}irq_enter
817 * and before decrementing preempt_count on {soft,}irq_exit.
818 */
b52bfee4
VP
819void account_system_vtime(struct task_struct *curr)
820{
821 unsigned long flags;
fe44d621 822 s64 delta;
b52bfee4 823 int cpu;
b52bfee4
VP
824
825 if (!sched_clock_irqtime)
826 return;
827
828 local_irq_save(flags);
829
b52bfee4 830 cpu = smp_processor_id();
fe44d621
PZ
831 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
832 __this_cpu_add(irq_start_time, delta);
833
8e92c201 834 irq_time_write_begin();
b52bfee4
VP
835 /*
836 * We do not account for softirq time from ksoftirqd here.
837 * We want to continue accounting softirq time to ksoftirqd thread
838 * in that case, so as not to confuse scheduler with a special task
839 * that do not consume any time, but still wants to run.
840 */
841 if (hardirq_count())
fe44d621 842 __this_cpu_add(cpu_hardirq_time, delta);
4dd53d89 843 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
fe44d621 844 __this_cpu_add(cpu_softirq_time, delta);
b52bfee4 845
8e92c201 846 irq_time_write_end();
b52bfee4
VP
847 local_irq_restore(flags);
848}
b7dadc38 849EXPORT_SYMBOL_GPL(account_system_vtime);
b52bfee4 850
e6e6685a
GC
851#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
852
853#ifdef CONFIG_PARAVIRT
854static inline u64 steal_ticks(u64 steal)
aa483808 855{
e6e6685a
GC
856 if (unlikely(steal > NSEC_PER_SEC))
857 return div_u64(steal, TICK_NSEC);
fe44d621 858
e6e6685a
GC
859 return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
860}
861#endif
862
fe44d621 863static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 864{
095c0aa8
GC
865/*
866 * In theory, the compile should just see 0 here, and optimize out the call
867 * to sched_rt_avg_update. But I don't trust it...
868 */
869#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
870 s64 steal = 0, irq_delta = 0;
871#endif
872#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 873 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
874
875 /*
876 * Since irq_time is only updated on {soft,}irq_exit, we might run into
877 * this case when a previous update_rq_clock() happened inside a
878 * {soft,}irq region.
879 *
880 * When this happens, we stop ->clock_task and only update the
881 * prev_irq_time stamp to account for the part that fit, so that a next
882 * update will consume the rest. This ensures ->clock_task is
883 * monotonic.
884 *
885 * It does however cause some slight miss-attribution of {soft,}irq
886 * time, a more accurate solution would be to update the irq_time using
887 * the current rq->clock timestamp, except that would require using
888 * atomic ops.
889 */
890 if (irq_delta > delta)
891 irq_delta = delta;
892
893 rq->prev_irq_time += irq_delta;
894 delta -= irq_delta;
095c0aa8
GC
895#endif
896#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 897 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
898 u64 st;
899
900 steal = paravirt_steal_clock(cpu_of(rq));
901 steal -= rq->prev_steal_time_rq;
902
903 if (unlikely(steal > delta))
904 steal = delta;
905
906 st = steal_ticks(steal);
907 steal = st * TICK_NSEC;
908
909 rq->prev_steal_time_rq += steal;
910
911 delta -= steal;
912 }
913#endif
914
fe44d621
PZ
915 rq->clock_task += delta;
916
095c0aa8
GC
917#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
918 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
919 sched_rt_avg_update(rq, irq_delta + steal);
920#endif
aa483808
VP
921}
922
095c0aa8 923#ifdef CONFIG_IRQ_TIME_ACCOUNTING
abb74cef
VP
924static int irqtime_account_hi_update(void)
925{
3292beb3 926 u64 *cpustat = kcpustat_this_cpu->cpustat;
abb74cef
VP
927 unsigned long flags;
928 u64 latest_ns;
929 int ret = 0;
930
931 local_irq_save(flags);
932 latest_ns = this_cpu_read(cpu_hardirq_time);
612ef28a 933 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
abb74cef
VP
934 ret = 1;
935 local_irq_restore(flags);
936 return ret;
937}
938
939static int irqtime_account_si_update(void)
940{
3292beb3 941 u64 *cpustat = kcpustat_this_cpu->cpustat;
abb74cef
VP
942 unsigned long flags;
943 u64 latest_ns;
944 int ret = 0;
945
946 local_irq_save(flags);
947 latest_ns = this_cpu_read(cpu_softirq_time);
612ef28a 948 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
abb74cef
VP
949 ret = 1;
950 local_irq_restore(flags);
951 return ret;
952}
953
fe44d621 954#else /* CONFIG_IRQ_TIME_ACCOUNTING */
305e6835 955
abb74cef
VP
956#define sched_clock_irqtime (0)
957
095c0aa8 958#endif
b52bfee4 959
34f971f6
PZ
960void sched_set_stop_task(int cpu, struct task_struct *stop)
961{
962 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
963 struct task_struct *old_stop = cpu_rq(cpu)->stop;
964
965 if (stop) {
966 /*
967 * Make it appear like a SCHED_FIFO task, its something
968 * userspace knows about and won't get confused about.
969 *
970 * Also, it will make PI more or less work without too
971 * much confusion -- but then, stop work should not
972 * rely on PI working anyway.
973 */
974 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
975
976 stop->sched_class = &stop_sched_class;
977 }
978
979 cpu_rq(cpu)->stop = stop;
980
981 if (old_stop) {
982 /*
983 * Reset it back to a normal scheduling class so that
984 * it can die in pieces.
985 */
986 old_stop->sched_class = &rt_sched_class;
987 }
988}
989
14531189 990/*
dd41f596 991 * __normal_prio - return the priority that is based on the static prio
14531189 992 */
14531189
IM
993static inline int __normal_prio(struct task_struct *p)
994{
dd41f596 995 return p->static_prio;
14531189
IM
996}
997
b29739f9
IM
998/*
999 * Calculate the expected normal priority: i.e. priority
1000 * without taking RT-inheritance into account. Might be
1001 * boosted by interactivity modifiers. Changes upon fork,
1002 * setprio syscalls, and whenever the interactivity
1003 * estimator recalculates.
1004 */
36c8b586 1005static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1006{
1007 int prio;
1008
e05606d3 1009 if (task_has_rt_policy(p))
b29739f9
IM
1010 prio = MAX_RT_PRIO-1 - p->rt_priority;
1011 else
1012 prio = __normal_prio(p);
1013 return prio;
1014}
1015
1016/*
1017 * Calculate the current priority, i.e. the priority
1018 * taken into account by the scheduler. This value might
1019 * be boosted by RT tasks, or might be boosted by
1020 * interactivity modifiers. Will be RT if the task got
1021 * RT-boosted. If not then it returns p->normal_prio.
1022 */
36c8b586 1023static int effective_prio(struct task_struct *p)
b29739f9
IM
1024{
1025 p->normal_prio = normal_prio(p);
1026 /*
1027 * If we are RT tasks or we were boosted to RT priority,
1028 * keep the priority unchanged. Otherwise, update priority
1029 * to the normal priority:
1030 */
1031 if (!rt_prio(p->prio))
1032 return p->normal_prio;
1033 return p->prio;
1034}
1035
1da177e4
LT
1036/**
1037 * task_curr - is this task currently executing on a CPU?
1038 * @p: the task in question.
1039 */
36c8b586 1040inline int task_curr(const struct task_struct *p)
1da177e4
LT
1041{
1042 return cpu_curr(task_cpu(p)) == p;
1043}
1044
cb469845
SR
1045static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1046 const struct sched_class *prev_class,
da7a735e 1047 int oldprio)
cb469845
SR
1048{
1049 if (prev_class != p->sched_class) {
1050 if (prev_class->switched_from)
da7a735e
PZ
1051 prev_class->switched_from(rq, p);
1052 p->sched_class->switched_to(rq, p);
1053 } else if (oldprio != p->prio)
1054 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
1055}
1056
029632fb 1057void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
1058{
1059 const struct sched_class *class;
1060
1061 if (p->sched_class == rq->curr->sched_class) {
1062 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1063 } else {
1064 for_each_class(class) {
1065 if (class == rq->curr->sched_class)
1066 break;
1067 if (class == p->sched_class) {
1068 resched_task(rq->curr);
1069 break;
1070 }
1071 }
1072 }
1073
1074 /*
1075 * A queue event has occurred, and we're going to schedule. In
1076 * this case, we can save a useless back to back clock update.
1077 */
fd2f4419 1078 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
1079 rq->skip_clock_update = 1;
1080}
1081
1da177e4 1082#ifdef CONFIG_SMP
dd41f596 1083void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1084{
e2912009
PZ
1085#ifdef CONFIG_SCHED_DEBUG
1086 /*
1087 * We should never call set_task_cpu() on a blocked task,
1088 * ttwu() will sort out the placement.
1089 */
077614ee
PZ
1090 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1091 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
0122ec5b
PZ
1092
1093#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1094 /*
1095 * The caller should hold either p->pi_lock or rq->lock, when changing
1096 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1097 *
1098 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1099 * see task_group().
6c6c54e1
PZ
1100 *
1101 * Furthermore, all task_rq users should acquire both locks, see
1102 * task_rq_lock().
1103 */
0122ec5b
PZ
1104 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1105 lockdep_is_held(&task_rq(p)->lock)));
1106#endif
e2912009
PZ
1107#endif
1108
de1d7286 1109 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1110
0c69774e
PZ
1111 if (task_cpu(p) != new_cpu) {
1112 p->se.nr_migrations++;
a8b0ca17 1113 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
0c69774e 1114 }
dd41f596
IM
1115
1116 __set_task_cpu(p, new_cpu);
c65cc870
IM
1117}
1118
969c7921 1119struct migration_arg {
36c8b586 1120 struct task_struct *task;
1da177e4 1121 int dest_cpu;
70b97a7f 1122};
1da177e4 1123
969c7921
TH
1124static int migration_cpu_stop(void *data);
1125
1da177e4
LT
1126/*
1127 * wait_task_inactive - wait for a thread to unschedule.
1128 *
85ba2d86
RM
1129 * If @match_state is nonzero, it's the @p->state value just checked and
1130 * not expected to change. If it changes, i.e. @p might have woken up,
1131 * then return zero. When we succeed in waiting for @p to be off its CPU,
1132 * we return a positive number (its total switch count). If a second call
1133 * a short while later returns the same number, the caller can be sure that
1134 * @p has remained unscheduled the whole time.
1135 *
1da177e4
LT
1136 * The caller must ensure that the task *will* unschedule sometime soon,
1137 * else this function might spin for a *long* time. This function can't
1138 * be called with interrupts off, or it may introduce deadlock with
1139 * smp_call_function() if an IPI is sent by the same process we are
1140 * waiting to become inactive.
1141 */
85ba2d86 1142unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1143{
1144 unsigned long flags;
dd41f596 1145 int running, on_rq;
85ba2d86 1146 unsigned long ncsw;
70b97a7f 1147 struct rq *rq;
1da177e4 1148
3a5c359a
AK
1149 for (;;) {
1150 /*
1151 * We do the initial early heuristics without holding
1152 * any task-queue locks at all. We'll only try to get
1153 * the runqueue lock when things look like they will
1154 * work out!
1155 */
1156 rq = task_rq(p);
fa490cfd 1157
3a5c359a
AK
1158 /*
1159 * If the task is actively running on another CPU
1160 * still, just relax and busy-wait without holding
1161 * any locks.
1162 *
1163 * NOTE! Since we don't hold any locks, it's not
1164 * even sure that "rq" stays as the right runqueue!
1165 * But we don't care, since "task_running()" will
1166 * return false if the runqueue has changed and p
1167 * is actually now running somewhere else!
1168 */
85ba2d86
RM
1169 while (task_running(rq, p)) {
1170 if (match_state && unlikely(p->state != match_state))
1171 return 0;
3a5c359a 1172 cpu_relax();
85ba2d86 1173 }
fa490cfd 1174
3a5c359a
AK
1175 /*
1176 * Ok, time to look more closely! We need the rq
1177 * lock now, to be *sure*. If we're wrong, we'll
1178 * just go back and repeat.
1179 */
1180 rq = task_rq_lock(p, &flags);
27a9da65 1181 trace_sched_wait_task(p);
3a5c359a 1182 running = task_running(rq, p);
fd2f4419 1183 on_rq = p->on_rq;
85ba2d86 1184 ncsw = 0;
f31e11d8 1185 if (!match_state || p->state == match_state)
93dcf55f 1186 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1187 task_rq_unlock(rq, p, &flags);
fa490cfd 1188
85ba2d86
RM
1189 /*
1190 * If it changed from the expected state, bail out now.
1191 */
1192 if (unlikely(!ncsw))
1193 break;
1194
3a5c359a
AK
1195 /*
1196 * Was it really running after all now that we
1197 * checked with the proper locks actually held?
1198 *
1199 * Oops. Go back and try again..
1200 */
1201 if (unlikely(running)) {
1202 cpu_relax();
1203 continue;
1204 }
fa490cfd 1205
3a5c359a
AK
1206 /*
1207 * It's not enough that it's not actively running,
1208 * it must be off the runqueue _entirely_, and not
1209 * preempted!
1210 *
80dd99b3 1211 * So if it was still runnable (but just not actively
3a5c359a
AK
1212 * running right now), it's preempted, and we should
1213 * yield - it could be a while.
1214 */
1215 if (unlikely(on_rq)) {
8eb90c30
TG
1216 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1217
1218 set_current_state(TASK_UNINTERRUPTIBLE);
1219 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1220 continue;
1221 }
fa490cfd 1222
3a5c359a
AK
1223 /*
1224 * Ahh, all good. It wasn't running, and it wasn't
1225 * runnable, which means that it will never become
1226 * running in the future either. We're all done!
1227 */
1228 break;
1229 }
85ba2d86
RM
1230
1231 return ncsw;
1da177e4
LT
1232}
1233
1234/***
1235 * kick_process - kick a running thread to enter/exit the kernel
1236 * @p: the to-be-kicked thread
1237 *
1238 * Cause a process which is running on another CPU to enter
1239 * kernel-mode, without any delay. (to get signals handled.)
1240 *
25985edc 1241 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1242 * because all it wants to ensure is that the remote task enters
1243 * the kernel. If the IPI races and the task has been migrated
1244 * to another CPU then no harm is done and the purpose has been
1245 * achieved as well.
1246 */
36c8b586 1247void kick_process(struct task_struct *p)
1da177e4
LT
1248{
1249 int cpu;
1250
1251 preempt_disable();
1252 cpu = task_cpu(p);
1253 if ((cpu != smp_processor_id()) && task_curr(p))
1254 smp_send_reschedule(cpu);
1255 preempt_enable();
1256}
b43e3521 1257EXPORT_SYMBOL_GPL(kick_process);
476d139c 1258#endif /* CONFIG_SMP */
1da177e4 1259
970b13ba 1260#ifdef CONFIG_SMP
30da688e 1261/*
013fdb80 1262 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1263 */
5da9a0fb
PZ
1264static int select_fallback_rq(int cpu, struct task_struct *p)
1265{
5da9a0fb 1266 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2baab4e9
PZ
1267 enum { cpuset, possible, fail } state = cpuset;
1268 int dest_cpu;
5da9a0fb
PZ
1269
1270 /* Look for allowed, online CPU in same node. */
e3831edd 1271 for_each_cpu(dest_cpu, nodemask) {
2baab4e9
PZ
1272 if (!cpu_online(dest_cpu))
1273 continue;
1274 if (!cpu_active(dest_cpu))
1275 continue;
fa17b507 1276 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
5da9a0fb 1277 return dest_cpu;
2baab4e9 1278 }
5da9a0fb 1279
2baab4e9
PZ
1280 for (;;) {
1281 /* Any allowed, online CPU? */
e3831edd 1282 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1283 if (!cpu_online(dest_cpu))
1284 continue;
1285 if (!cpu_active(dest_cpu))
1286 continue;
1287 goto out;
1288 }
5da9a0fb 1289
2baab4e9
PZ
1290 switch (state) {
1291 case cpuset:
1292 /* No more Mr. Nice Guy. */
1293 cpuset_cpus_allowed_fallback(p);
1294 state = possible;
1295 break;
1296
1297 case possible:
1298 do_set_cpus_allowed(p, cpu_possible_mask);
1299 state = fail;
1300 break;
1301
1302 case fail:
1303 BUG();
1304 break;
1305 }
1306 }
1307
1308out:
1309 if (state != cpuset) {
1310 /*
1311 * Don't tell them about moving exiting tasks or
1312 * kernel threads (both mm NULL), since they never
1313 * leave kernel.
1314 */
1315 if (p->mm && printk_ratelimit()) {
1316 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1317 task_pid_nr(p), p->comm, cpu);
1318 }
5da9a0fb
PZ
1319 }
1320
1321 return dest_cpu;
1322}
1323
e2912009 1324/*
013fdb80 1325 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1326 */
970b13ba 1327static inline
7608dec2 1328int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 1329{
7608dec2 1330 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
e2912009
PZ
1331
1332 /*
1333 * In order not to call set_task_cpu() on a blocking task we need
1334 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1335 * cpu.
1336 *
1337 * Since this is common to all placement strategies, this lives here.
1338 *
1339 * [ this allows ->select_task() to simply return task_cpu(p) and
1340 * not worry about this generic constraint ]
1341 */
fa17b507 1342 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1343 !cpu_online(cpu)))
5da9a0fb 1344 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1345
1346 return cpu;
970b13ba 1347}
09a40af5
MG
1348
1349static void update_avg(u64 *avg, u64 sample)
1350{
1351 s64 diff = sample - *avg;
1352 *avg += diff >> 3;
1353}
970b13ba
PZ
1354#endif
1355
d7c01d27 1356static void
b84cb5df 1357ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1358{
d7c01d27 1359#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1360 struct rq *rq = this_rq();
1361
d7c01d27
PZ
1362#ifdef CONFIG_SMP
1363 int this_cpu = smp_processor_id();
1364
1365 if (cpu == this_cpu) {
1366 schedstat_inc(rq, ttwu_local);
1367 schedstat_inc(p, se.statistics.nr_wakeups_local);
1368 } else {
1369 struct sched_domain *sd;
1370
1371 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1372 rcu_read_lock();
d7c01d27
PZ
1373 for_each_domain(this_cpu, sd) {
1374 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1375 schedstat_inc(sd, ttwu_wake_remote);
1376 break;
1377 }
1378 }
057f3fad 1379 rcu_read_unlock();
d7c01d27 1380 }
f339b9dc
PZ
1381
1382 if (wake_flags & WF_MIGRATED)
1383 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1384
d7c01d27
PZ
1385#endif /* CONFIG_SMP */
1386
1387 schedstat_inc(rq, ttwu_count);
9ed3811a 1388 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1389
1390 if (wake_flags & WF_SYNC)
9ed3811a 1391 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1392
d7c01d27
PZ
1393#endif /* CONFIG_SCHEDSTATS */
1394}
1395
1396static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1397{
9ed3811a 1398 activate_task(rq, p, en_flags);
fd2f4419 1399 p->on_rq = 1;
c2f7115e
PZ
1400
1401 /* if a worker is waking up, notify workqueue */
1402 if (p->flags & PF_WQ_WORKER)
1403 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1404}
1405
23f41eeb
PZ
1406/*
1407 * Mark the task runnable and perform wakeup-preemption.
1408 */
89363381 1409static void
23f41eeb 1410ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1411{
89363381 1412 trace_sched_wakeup(p, true);
9ed3811a
TH
1413 check_preempt_curr(rq, p, wake_flags);
1414
1415 p->state = TASK_RUNNING;
1416#ifdef CONFIG_SMP
1417 if (p->sched_class->task_woken)
1418 p->sched_class->task_woken(rq, p);
1419
e69c6341 1420 if (rq->idle_stamp) {
9ed3811a
TH
1421 u64 delta = rq->clock - rq->idle_stamp;
1422 u64 max = 2*sysctl_sched_migration_cost;
1423
1424 if (delta > max)
1425 rq->avg_idle = max;
1426 else
1427 update_avg(&rq->avg_idle, delta);
1428 rq->idle_stamp = 0;
1429 }
1430#endif
1431}
1432
c05fbafb
PZ
1433static void
1434ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1435{
1436#ifdef CONFIG_SMP
1437 if (p->sched_contributes_to_load)
1438 rq->nr_uninterruptible--;
1439#endif
1440
1441 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1442 ttwu_do_wakeup(rq, p, wake_flags);
1443}
1444
1445/*
1446 * Called in case the task @p isn't fully descheduled from its runqueue,
1447 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1448 * since all we need to do is flip p->state to TASK_RUNNING, since
1449 * the task is still ->on_rq.
1450 */
1451static int ttwu_remote(struct task_struct *p, int wake_flags)
1452{
1453 struct rq *rq;
1454 int ret = 0;
1455
1456 rq = __task_rq_lock(p);
1457 if (p->on_rq) {
1458 ttwu_do_wakeup(rq, p, wake_flags);
1459 ret = 1;
1460 }
1461 __task_rq_unlock(rq);
1462
1463 return ret;
1464}
1465
317f3941 1466#ifdef CONFIG_SMP
fa14ff4a 1467static void sched_ttwu_pending(void)
317f3941
PZ
1468{
1469 struct rq *rq = this_rq();
fa14ff4a
PZ
1470 struct llist_node *llist = llist_del_all(&rq->wake_list);
1471 struct task_struct *p;
317f3941
PZ
1472
1473 raw_spin_lock(&rq->lock);
1474
fa14ff4a
PZ
1475 while (llist) {
1476 p = llist_entry(llist, struct task_struct, wake_entry);
1477 llist = llist_next(llist);
317f3941
PZ
1478 ttwu_do_activate(rq, p, 0);
1479 }
1480
1481 raw_spin_unlock(&rq->lock);
1482}
1483
1484void scheduler_ipi(void)
1485{
ca38062e 1486 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1487 return;
1488
1489 /*
1490 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1491 * traditionally all their work was done from the interrupt return
1492 * path. Now that we actually do some work, we need to make sure
1493 * we do call them.
1494 *
1495 * Some archs already do call them, luckily irq_enter/exit nest
1496 * properly.
1497 *
1498 * Arguably we should visit all archs and update all handlers,
1499 * however a fair share of IPIs are still resched only so this would
1500 * somewhat pessimize the simple resched case.
1501 */
1502 irq_enter();
fa14ff4a 1503 sched_ttwu_pending();
ca38062e
SS
1504
1505 /*
1506 * Check if someone kicked us for doing the nohz idle load balance.
1507 */
6eb57e0d
SS
1508 if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1509 this_rq()->idle_balance = 1;
ca38062e 1510 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1511 }
c5d753a5 1512 irq_exit();
317f3941
PZ
1513}
1514
1515static void ttwu_queue_remote(struct task_struct *p, int cpu)
1516{
fa14ff4a 1517 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
317f3941
PZ
1518 smp_send_reschedule(cpu);
1519}
d6aa8f85
PZ
1520
1521#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1522static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
1523{
1524 struct rq *rq;
1525 int ret = 0;
1526
1527 rq = __task_rq_lock(p);
1528 if (p->on_cpu) {
1529 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1530 ttwu_do_wakeup(rq, p, wake_flags);
1531 ret = 1;
1532 }
1533 __task_rq_unlock(rq);
1534
1535 return ret;
1536
1537}
1538#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
518cd623 1539
39be3501 1540bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1541{
1542 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1543}
d6aa8f85 1544#endif /* CONFIG_SMP */
317f3941 1545
c05fbafb
PZ
1546static void ttwu_queue(struct task_struct *p, int cpu)
1547{
1548 struct rq *rq = cpu_rq(cpu);
1549
17d9f311 1550#if defined(CONFIG_SMP)
39be3501 1551 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1552 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1553 ttwu_queue_remote(p, cpu);
1554 return;
1555 }
1556#endif
1557
c05fbafb
PZ
1558 raw_spin_lock(&rq->lock);
1559 ttwu_do_activate(rq, p, 0);
1560 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1561}
1562
1563/**
1da177e4 1564 * try_to_wake_up - wake up a thread
9ed3811a 1565 * @p: the thread to be awakened
1da177e4 1566 * @state: the mask of task states that can be woken
9ed3811a 1567 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1568 *
1569 * Put it on the run-queue if it's not already there. The "current"
1570 * thread is always on the run-queue (except when the actual
1571 * re-schedule is in progress), and as such you're allowed to do
1572 * the simpler "current->state = TASK_RUNNING" to mark yourself
1573 * runnable without the overhead of this.
1574 *
9ed3811a
TH
1575 * Returns %true if @p was woken up, %false if it was already running
1576 * or @state didn't match @p's state.
1da177e4 1577 */
e4a52bcb
PZ
1578static int
1579try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1580{
1da177e4 1581 unsigned long flags;
c05fbafb 1582 int cpu, success = 0;
2398f2c6 1583
04e2f174 1584 smp_wmb();
013fdb80 1585 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1586 if (!(p->state & state))
1da177e4
LT
1587 goto out;
1588
c05fbafb 1589 success = 1; /* we're going to change ->state */
1da177e4 1590 cpu = task_cpu(p);
1da177e4 1591
c05fbafb
PZ
1592 if (p->on_rq && ttwu_remote(p, wake_flags))
1593 goto stat;
1da177e4 1594
1da177e4 1595#ifdef CONFIG_SMP
e9c84311 1596 /*
c05fbafb
PZ
1597 * If the owning (remote) cpu is still in the middle of schedule() with
1598 * this task as prev, wait until its done referencing the task.
e9c84311 1599 */
e4a52bcb
PZ
1600 while (p->on_cpu) {
1601#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1602 /*
d6aa8f85
PZ
1603 * In case the architecture enables interrupts in
1604 * context_switch(), we cannot busy wait, since that
1605 * would lead to deadlocks when an interrupt hits and
1606 * tries to wake up @prev. So bail and do a complete
1607 * remote wakeup.
e4a52bcb 1608 */
d6aa8f85 1609 if (ttwu_activate_remote(p, wake_flags))
c05fbafb 1610 goto stat;
d6aa8f85 1611#else
e4a52bcb 1612 cpu_relax();
d6aa8f85 1613#endif
371fd7e7 1614 }
0970d299 1615 /*
e4a52bcb 1616 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1617 */
e4a52bcb 1618 smp_rmb();
1da177e4 1619
a8e4f2ea 1620 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1621 p->state = TASK_WAKING;
e7693a36 1622
e4a52bcb 1623 if (p->sched_class->task_waking)
74f8e4b2 1624 p->sched_class->task_waking(p);
efbbd05a 1625
7608dec2 1626 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1627 if (task_cpu(p) != cpu) {
1628 wake_flags |= WF_MIGRATED;
e4a52bcb 1629 set_task_cpu(p, cpu);
f339b9dc 1630 }
1da177e4 1631#endif /* CONFIG_SMP */
1da177e4 1632
c05fbafb
PZ
1633 ttwu_queue(p, cpu);
1634stat:
b84cb5df 1635 ttwu_stat(p, cpu, wake_flags);
1da177e4 1636out:
013fdb80 1637 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1638
1639 return success;
1640}
1641
21aa9af0
TH
1642/**
1643 * try_to_wake_up_local - try to wake up a local task with rq lock held
1644 * @p: the thread to be awakened
1645 *
2acca55e 1646 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1647 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1648 * the current task.
21aa9af0
TH
1649 */
1650static void try_to_wake_up_local(struct task_struct *p)
1651{
1652 struct rq *rq = task_rq(p);
21aa9af0
TH
1653
1654 BUG_ON(rq != this_rq());
1655 BUG_ON(p == current);
1656 lockdep_assert_held(&rq->lock);
1657
2acca55e
PZ
1658 if (!raw_spin_trylock(&p->pi_lock)) {
1659 raw_spin_unlock(&rq->lock);
1660 raw_spin_lock(&p->pi_lock);
1661 raw_spin_lock(&rq->lock);
1662 }
1663
21aa9af0 1664 if (!(p->state & TASK_NORMAL))
2acca55e 1665 goto out;
21aa9af0 1666
fd2f4419 1667 if (!p->on_rq)
d7c01d27
PZ
1668 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1669
23f41eeb 1670 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1671 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1672out:
1673 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1674}
1675
50fa610a
DH
1676/**
1677 * wake_up_process - Wake up a specific process
1678 * @p: The process to be woken up.
1679 *
1680 * Attempt to wake up the nominated process and move it to the set of runnable
1681 * processes. Returns 1 if the process was woken up, 0 if it was already
1682 * running.
1683 *
1684 * It may be assumed that this function implies a write memory barrier before
1685 * changing the task state if and only if any tasks are woken up.
1686 */
7ad5b3a5 1687int wake_up_process(struct task_struct *p)
1da177e4 1688{
d9514f6c 1689 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 1690}
1da177e4
LT
1691EXPORT_SYMBOL(wake_up_process);
1692
7ad5b3a5 1693int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1694{
1695 return try_to_wake_up(p, state, 0);
1696}
1697
1da177e4
LT
1698/*
1699 * Perform scheduler related setup for a newly forked process p.
1700 * p is forked by current.
dd41f596
IM
1701 *
1702 * __sched_fork() is basic setup used by init_idle() too:
1703 */
1704static void __sched_fork(struct task_struct *p)
1705{
fd2f4419
PZ
1706 p->on_rq = 0;
1707
1708 p->se.on_rq = 0;
dd41f596
IM
1709 p->se.exec_start = 0;
1710 p->se.sum_exec_runtime = 0;
f6cf891c 1711 p->se.prev_sum_exec_runtime = 0;
6c594c21 1712 p->se.nr_migrations = 0;
da7a735e 1713 p->se.vruntime = 0;
fd2f4419 1714 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
1715
1716#ifdef CONFIG_SCHEDSTATS
41acab88 1717 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 1718#endif
476d139c 1719
fa717060 1720 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 1721
e107be36
AK
1722#ifdef CONFIG_PREEMPT_NOTIFIERS
1723 INIT_HLIST_HEAD(&p->preempt_notifiers);
1724#endif
dd41f596
IM
1725}
1726
1727/*
1728 * fork()/clone()-time setup:
1729 */
3e51e3ed 1730void sched_fork(struct task_struct *p)
dd41f596 1731{
0122ec5b 1732 unsigned long flags;
dd41f596
IM
1733 int cpu = get_cpu();
1734
1735 __sched_fork(p);
06b83b5f 1736 /*
0017d735 1737 * We mark the process as running here. This guarantees that
06b83b5f
PZ
1738 * nobody will actually run it, and a signal or other external
1739 * event cannot wake it up and insert it on the runqueue either.
1740 */
0017d735 1741 p->state = TASK_RUNNING;
dd41f596 1742
c350a04e
MG
1743 /*
1744 * Make sure we do not leak PI boosting priority to the child.
1745 */
1746 p->prio = current->normal_prio;
1747
b9dc29e7
MG
1748 /*
1749 * Revert to default priority/policy on fork if requested.
1750 */
1751 if (unlikely(p->sched_reset_on_fork)) {
c350a04e 1752 if (task_has_rt_policy(p)) {
b9dc29e7 1753 p->policy = SCHED_NORMAL;
6c697bdf 1754 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
1755 p->rt_priority = 0;
1756 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1757 p->static_prio = NICE_TO_PRIO(0);
1758
1759 p->prio = p->normal_prio = __normal_prio(p);
1760 set_load_weight(p);
6c697bdf 1761
b9dc29e7
MG
1762 /*
1763 * We don't need the reset flag anymore after the fork. It has
1764 * fulfilled its duty:
1765 */
1766 p->sched_reset_on_fork = 0;
1767 }
ca94c442 1768
2ddbf952
HS
1769 if (!rt_prio(p->prio))
1770 p->sched_class = &fair_sched_class;
b29739f9 1771
cd29fe6f
PZ
1772 if (p->sched_class->task_fork)
1773 p->sched_class->task_fork(p);
1774
86951599
PZ
1775 /*
1776 * The child is not yet in the pid-hash so no cgroup attach races,
1777 * and the cgroup is pinned to this child due to cgroup_fork()
1778 * is ran before sched_fork().
1779 *
1780 * Silence PROVE_RCU.
1781 */
0122ec5b 1782 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 1783 set_task_cpu(p, cpu);
0122ec5b 1784 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 1785
52f17b6c 1786#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1787 if (likely(sched_info_on()))
52f17b6c 1788 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1789#endif
3ca7a440
PZ
1790#if defined(CONFIG_SMP)
1791 p->on_cpu = 0;
4866cde0 1792#endif
bdd4e85d 1793#ifdef CONFIG_PREEMPT_COUNT
4866cde0 1794 /* Want to start with kernel preemption disabled. */
a1261f54 1795 task_thread_info(p)->preempt_count = 1;
1da177e4 1796#endif
806c09a7 1797#ifdef CONFIG_SMP
917b627d 1798 plist_node_init(&p->pushable_tasks, MAX_PRIO);
806c09a7 1799#endif
917b627d 1800
476d139c 1801 put_cpu();
1da177e4
LT
1802}
1803
1804/*
1805 * wake_up_new_task - wake up a newly created task for the first time.
1806 *
1807 * This function will do some initial scheduler statistics housekeeping
1808 * that must be done for every newly created context, then puts the task
1809 * on the runqueue and wakes it.
1810 */
3e51e3ed 1811void wake_up_new_task(struct task_struct *p)
1da177e4
LT
1812{
1813 unsigned long flags;
dd41f596 1814 struct rq *rq;
fabf318e 1815
ab2515c4 1816 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
1817#ifdef CONFIG_SMP
1818 /*
1819 * Fork balancing, do it here and not earlier because:
1820 * - cpus_allowed can change in the fork path
1821 * - any previously selected cpu might disappear through hotplug
fabf318e 1822 */
ab2515c4 1823 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
0017d735
PZ
1824#endif
1825
ab2515c4 1826 rq = __task_rq_lock(p);
cd29fe6f 1827 activate_task(rq, p, 0);
fd2f4419 1828 p->on_rq = 1;
89363381 1829 trace_sched_wakeup_new(p, true);
a7558e01 1830 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 1831#ifdef CONFIG_SMP
efbbd05a
PZ
1832 if (p->sched_class->task_woken)
1833 p->sched_class->task_woken(rq, p);
9a897c5a 1834#endif
0122ec5b 1835 task_rq_unlock(rq, p, &flags);
1da177e4
LT
1836}
1837
e107be36
AK
1838#ifdef CONFIG_PREEMPT_NOTIFIERS
1839
1840/**
80dd99b3 1841 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 1842 * @notifier: notifier struct to register
e107be36
AK
1843 */
1844void preempt_notifier_register(struct preempt_notifier *notifier)
1845{
1846 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1847}
1848EXPORT_SYMBOL_GPL(preempt_notifier_register);
1849
1850/**
1851 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 1852 * @notifier: notifier struct to unregister
e107be36
AK
1853 *
1854 * This is safe to call from within a preemption notifier.
1855 */
1856void preempt_notifier_unregister(struct preempt_notifier *notifier)
1857{
1858 hlist_del(&notifier->link);
1859}
1860EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1861
1862static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1863{
1864 struct preempt_notifier *notifier;
1865 struct hlist_node *node;
1866
1867 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1868 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1869}
1870
1871static void
1872fire_sched_out_preempt_notifiers(struct task_struct *curr,
1873 struct task_struct *next)
1874{
1875 struct preempt_notifier *notifier;
1876 struct hlist_node *node;
1877
1878 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1879 notifier->ops->sched_out(notifier, next);
1880}
1881
6d6bc0ad 1882#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
1883
1884static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1885{
1886}
1887
1888static void
1889fire_sched_out_preempt_notifiers(struct task_struct *curr,
1890 struct task_struct *next)
1891{
1892}
1893
6d6bc0ad 1894#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 1895
4866cde0
NP
1896/**
1897 * prepare_task_switch - prepare to switch tasks
1898 * @rq: the runqueue preparing to switch
421cee29 1899 * @prev: the current task that is being switched out
4866cde0
NP
1900 * @next: the task we are going to switch to.
1901 *
1902 * This is called with the rq lock held and interrupts off. It must
1903 * be paired with a subsequent finish_task_switch after the context
1904 * switch.
1905 *
1906 * prepare_task_switch sets up locking and calls architecture specific
1907 * hooks.
1908 */
e107be36
AK
1909static inline void
1910prepare_task_switch(struct rq *rq, struct task_struct *prev,
1911 struct task_struct *next)
4866cde0 1912{
895dd92c 1913 trace_sched_switch(prev, next);
fe4b04fa
PZ
1914 sched_info_switch(prev, next);
1915 perf_event_task_sched_out(prev, next);
e107be36 1916 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
1917 prepare_lock_switch(rq, next);
1918 prepare_arch_switch(next);
1919}
1920
1da177e4
LT
1921/**
1922 * finish_task_switch - clean up after a task-switch
344babaa 1923 * @rq: runqueue associated with task-switch
1da177e4
LT
1924 * @prev: the thread we just switched away from.
1925 *
4866cde0
NP
1926 * finish_task_switch must be called after the context switch, paired
1927 * with a prepare_task_switch call before the context switch.
1928 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1929 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1930 *
1931 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 1932 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
1933 * with the lock held can cause deadlocks; see schedule() for
1934 * details.)
1935 */
a9957449 1936static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1937 __releases(rq->lock)
1938{
1da177e4 1939 struct mm_struct *mm = rq->prev_mm;
55a101f8 1940 long prev_state;
1da177e4
LT
1941
1942 rq->prev_mm = NULL;
1943
1944 /*
1945 * A task struct has one reference for the use as "current".
c394cc9f 1946 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1947 * schedule one last time. The schedule call will never return, and
1948 * the scheduled task must drop that reference.
c394cc9f 1949 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1950 * still held, otherwise prev could be scheduled on another cpu, die
1951 * there before we look at prev->state, and then the reference would
1952 * be dropped twice.
1953 * Manfred Spraul <manfred@colorfullife.com>
1954 */
55a101f8 1955 prev_state = prev->state;
4866cde0 1956 finish_arch_switch(prev);
8381f65d
JI
1957#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1958 local_irq_disable();
1959#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
a8d757ef 1960 perf_event_task_sched_in(prev, current);
8381f65d
JI
1961#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1962 local_irq_enable();
1963#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
4866cde0 1964 finish_lock_switch(rq, prev);
01f23e16 1965 finish_arch_post_lock_switch();
e8fa1362 1966
e107be36 1967 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
1968 if (mm)
1969 mmdrop(mm);
c394cc9f 1970 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 1971 /*
1972 * Remove function-return probe instances associated with this
1973 * task and put them back on the free list.
9761eea8 1974 */
c6fd91f0 1975 kprobe_flush_task(prev);
1da177e4 1976 put_task_struct(prev);
c6fd91f0 1977 }
1da177e4
LT
1978}
1979
3f029d3c
GH
1980#ifdef CONFIG_SMP
1981
1982/* assumes rq->lock is held */
1983static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1984{
1985 if (prev->sched_class->pre_schedule)
1986 prev->sched_class->pre_schedule(rq, prev);
1987}
1988
1989/* rq->lock is NOT held, but preemption is disabled */
1990static inline void post_schedule(struct rq *rq)
1991{
1992 if (rq->post_schedule) {
1993 unsigned long flags;
1994
05fa785c 1995 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
1996 if (rq->curr->sched_class->post_schedule)
1997 rq->curr->sched_class->post_schedule(rq);
05fa785c 1998 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
1999
2000 rq->post_schedule = 0;
2001 }
2002}
2003
2004#else
da19ab51 2005
3f029d3c
GH
2006static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2007{
2008}
2009
2010static inline void post_schedule(struct rq *rq)
2011{
1da177e4
LT
2012}
2013
3f029d3c
GH
2014#endif
2015
1da177e4
LT
2016/**
2017 * schedule_tail - first thing a freshly forked thread must call.
2018 * @prev: the thread we just switched away from.
2019 */
36c8b586 2020asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2021 __releases(rq->lock)
2022{
70b97a7f
IM
2023 struct rq *rq = this_rq();
2024
4866cde0 2025 finish_task_switch(rq, prev);
da19ab51 2026
3f029d3c
GH
2027 /*
2028 * FIXME: do we need to worry about rq being invalidated by the
2029 * task_switch?
2030 */
2031 post_schedule(rq);
70b97a7f 2032
4866cde0
NP
2033#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2034 /* In this case, finish_task_switch does not reenable preemption */
2035 preempt_enable();
2036#endif
1da177e4 2037 if (current->set_child_tid)
b488893a 2038 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2039}
2040
2041/*
2042 * context_switch - switch to the new MM and the new
2043 * thread's register state.
2044 */
dd41f596 2045static inline void
70b97a7f 2046context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2047 struct task_struct *next)
1da177e4 2048{
dd41f596 2049 struct mm_struct *mm, *oldmm;
1da177e4 2050
e107be36 2051 prepare_task_switch(rq, prev, next);
fe4b04fa 2052
dd41f596
IM
2053 mm = next->mm;
2054 oldmm = prev->active_mm;
9226d125
ZA
2055 /*
2056 * For paravirt, this is coupled with an exit in switch_to to
2057 * combine the page table reload and the switch backend into
2058 * one hypercall.
2059 */
224101ed 2060 arch_start_context_switch(prev);
9226d125 2061
31915ab4 2062 if (!mm) {
1da177e4
LT
2063 next->active_mm = oldmm;
2064 atomic_inc(&oldmm->mm_count);
2065 enter_lazy_tlb(oldmm, next);
2066 } else
2067 switch_mm(oldmm, mm, next);
2068
31915ab4 2069 if (!prev->mm) {
1da177e4 2070 prev->active_mm = NULL;
1da177e4
LT
2071 rq->prev_mm = oldmm;
2072 }
3a5f5e48
IM
2073 /*
2074 * Since the runqueue lock will be released by the next
2075 * task (which is an invalid locking op but in the case
2076 * of the scheduler it's an obvious special-case), so we
2077 * do an early lockdep release here:
2078 */
2079#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2080 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2081#endif
1da177e4
LT
2082
2083 /* Here we just switch the register state and the stack. */
04e7e951 2084 rcu_switch(prev, next);
1da177e4
LT
2085 switch_to(prev, next, prev);
2086
dd41f596
IM
2087 barrier();
2088 /*
2089 * this_rq must be evaluated again because prev may have moved
2090 * CPUs since it called schedule(), thus the 'rq' on its stack
2091 * frame will be invalid.
2092 */
2093 finish_task_switch(this_rq(), prev);
1da177e4
LT
2094}
2095
2096/*
2097 * nr_running, nr_uninterruptible and nr_context_switches:
2098 *
2099 * externally visible scheduler statistics: current number of runnable
2100 * threads, current number of uninterruptible-sleeping threads, total
2101 * number of context switches performed since bootup.
2102 */
2103unsigned long nr_running(void)
2104{
2105 unsigned long i, sum = 0;
2106
2107 for_each_online_cpu(i)
2108 sum += cpu_rq(i)->nr_running;
2109
2110 return sum;
f711f609 2111}
1da177e4
LT
2112
2113unsigned long nr_uninterruptible(void)
f711f609 2114{
1da177e4 2115 unsigned long i, sum = 0;
f711f609 2116
0a945022 2117 for_each_possible_cpu(i)
1da177e4 2118 sum += cpu_rq(i)->nr_uninterruptible;
f711f609
GS
2119
2120 /*
1da177e4
LT
2121 * Since we read the counters lockless, it might be slightly
2122 * inaccurate. Do not allow it to go below zero though:
f711f609 2123 */
1da177e4
LT
2124 if (unlikely((long)sum < 0))
2125 sum = 0;
f711f609 2126
1da177e4 2127 return sum;
f711f609 2128}
f711f609 2129
1da177e4 2130unsigned long long nr_context_switches(void)
46cb4b7c 2131{
cc94abfc
SR
2132 int i;
2133 unsigned long long sum = 0;
46cb4b7c 2134
0a945022 2135 for_each_possible_cpu(i)
1da177e4 2136 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2137
1da177e4
LT
2138 return sum;
2139}
483b4ee6 2140
1da177e4
LT
2141unsigned long nr_iowait(void)
2142{
2143 unsigned long i, sum = 0;
483b4ee6 2144
0a945022 2145 for_each_possible_cpu(i)
1da177e4 2146 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2147
1da177e4
LT
2148 return sum;
2149}
483b4ee6 2150
8c215bd3 2151unsigned long nr_iowait_cpu(int cpu)
69d25870 2152{
8c215bd3 2153 struct rq *this = cpu_rq(cpu);
69d25870
AV
2154 return atomic_read(&this->nr_iowait);
2155}
46cb4b7c 2156
69d25870
AV
2157unsigned long this_cpu_load(void)
2158{
2159 struct rq *this = this_rq();
2160 return this->cpu_load[0];
2161}
e790fb0b 2162
46cb4b7c 2163
5167e8d5
PZ
2164/*
2165 * Global load-average calculations
2166 *
2167 * We take a distributed and async approach to calculating the global load-avg
2168 * in order to minimize overhead.
2169 *
2170 * The global load average is an exponentially decaying average of nr_running +
2171 * nr_uninterruptible.
2172 *
2173 * Once every LOAD_FREQ:
2174 *
2175 * nr_active = 0;
2176 * for_each_possible_cpu(cpu)
2177 * nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
2178 *
2179 * avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
2180 *
2181 * Due to a number of reasons the above turns in the mess below:
2182 *
2183 * - for_each_possible_cpu() is prohibitively expensive on machines with
2184 * serious number of cpus, therefore we need to take a distributed approach
2185 * to calculating nr_active.
2186 *
2187 * \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
2188 * = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
2189 *
2190 * So assuming nr_active := 0 when we start out -- true per definition, we
2191 * can simply take per-cpu deltas and fold those into a global accumulate
2192 * to obtain the same result. See calc_load_fold_active().
2193 *
2194 * Furthermore, in order to avoid synchronizing all per-cpu delta folding
2195 * across the machine, we assume 10 ticks is sufficient time for every
2196 * cpu to have completed this task.
2197 *
2198 * This places an upper-bound on the IRQ-off latency of the machine. Then
2199 * again, being late doesn't loose the delta, just wrecks the sample.
2200 *
2201 * - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
2202 * this would add another cross-cpu cacheline miss and atomic operation
2203 * to the wakeup path. Instead we increment on whatever cpu the task ran
2204 * when it went into uninterruptible state and decrement on whatever cpu
2205 * did the wakeup. This means that only the sum of nr_uninterruptible over
2206 * all cpus yields the correct result.
2207 *
2208 * This covers the NO_HZ=n code, for extra head-aches, see the comment below.
2209 */
2210
dce48a84
TG
2211/* Variables and functions for calc_load */
2212static atomic_long_t calc_load_tasks;
2213static unsigned long calc_load_update;
2214unsigned long avenrun[3];
5167e8d5
PZ
2215EXPORT_SYMBOL(avenrun); /* should be removed */
2216
2217/**
2218 * get_avenrun - get the load average array
2219 * @loads: pointer to dest load array
2220 * @offset: offset to add
2221 * @shift: shift count to shift the result left
2222 *
2223 * These values are estimates at best, so no need for locking.
2224 */
2225void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2226{
2227 loads[0] = (avenrun[0] + offset) << shift;
2228 loads[1] = (avenrun[1] + offset) << shift;
2229 loads[2] = (avenrun[2] + offset) << shift;
2230}
46cb4b7c 2231
74f5187a
PZ
2232static long calc_load_fold_active(struct rq *this_rq)
2233{
2234 long nr_active, delta = 0;
2235
2236 nr_active = this_rq->nr_running;
2237 nr_active += (long) this_rq->nr_uninterruptible;
2238
2239 if (nr_active != this_rq->calc_load_active) {
2240 delta = nr_active - this_rq->calc_load_active;
2241 this_rq->calc_load_active = nr_active;
2242 }
2243
2244 return delta;
2245}
2246
5167e8d5
PZ
2247/*
2248 * a1 = a0 * e + a * (1 - e)
2249 */
0f004f5a
PZ
2250static unsigned long
2251calc_load(unsigned long load, unsigned long exp, unsigned long active)
2252{
2253 load *= exp;
2254 load += active * (FIXED_1 - exp);
2255 load += 1UL << (FSHIFT - 1);
2256 return load >> FSHIFT;
2257}
2258
74f5187a
PZ
2259#ifdef CONFIG_NO_HZ
2260/*
5167e8d5
PZ
2261 * Handle NO_HZ for the global load-average.
2262 *
2263 * Since the above described distributed algorithm to compute the global
2264 * load-average relies on per-cpu sampling from the tick, it is affected by
2265 * NO_HZ.
2266 *
2267 * The basic idea is to fold the nr_active delta into a global idle-delta upon
2268 * entering NO_HZ state such that we can include this as an 'extra' cpu delta
2269 * when we read the global state.
2270 *
2271 * Obviously reality has to ruin such a delightfully simple scheme:
2272 *
2273 * - When we go NO_HZ idle during the window, we can negate our sample
2274 * contribution, causing under-accounting.
2275 *
2276 * We avoid this by keeping two idle-delta counters and flipping them
2277 * when the window starts, thus separating old and new NO_HZ load.
2278 *
2279 * The only trick is the slight shift in index flip for read vs write.
2280 *
2281 * 0s 5s 10s 15s
2282 * +10 +10 +10 +10
2283 * |-|-----------|-|-----------|-|-----------|-|
2284 * r:0 0 1 1 0 0 1 1 0
2285 * w:0 1 1 0 0 1 1 0 0
2286 *
2287 * This ensures we'll fold the old idle contribution in this window while
2288 * accumlating the new one.
2289 *
2290 * - When we wake up from NO_HZ idle during the window, we push up our
2291 * contribution, since we effectively move our sample point to a known
2292 * busy state.
2293 *
2294 * This is solved by pushing the window forward, and thus skipping the
2295 * sample, for this cpu (effectively using the idle-delta for this cpu which
2296 * was in effect at the time the window opened). This also solves the issue
2297 * of having to deal with a cpu having been in NOHZ idle for multiple
2298 * LOAD_FREQ intervals.
74f5187a
PZ
2299 *
2300 * When making the ILB scale, we should try to pull this in as well.
2301 */
5167e8d5
PZ
2302static atomic_long_t calc_load_idle[2];
2303static int calc_load_idx;
74f5187a 2304
5167e8d5 2305static inline int calc_load_write_idx(void)
74f5187a 2306{
5167e8d5
PZ
2307 int idx = calc_load_idx;
2308
2309 /*
2310 * See calc_global_nohz(), if we observe the new index, we also
2311 * need to observe the new update time.
2312 */
2313 smp_rmb();
2314
2315 /*
2316 * If the folding window started, make sure we start writing in the
2317 * next idle-delta.
2318 */
2319 if (!time_before(jiffies, calc_load_update))
2320 idx++;
2321
2322 return idx & 1;
2323}
2324
2325static inline int calc_load_read_idx(void)
2326{
2327 return calc_load_idx & 1;
2328}
2329
2330void calc_load_enter_idle(void)
2331{
2332 struct rq *this_rq = this_rq();
74f5187a
PZ
2333 long delta;
2334
5167e8d5
PZ
2335 /*
2336 * We're going into NOHZ mode, if there's any pending delta, fold it
2337 * into the pending idle delta.
2338 */
74f5187a 2339 delta = calc_load_fold_active(this_rq);
5167e8d5
PZ
2340 if (delta) {
2341 int idx = calc_load_write_idx();
2342 atomic_long_add(delta, &calc_load_idle[idx]);
2343 }
74f5187a
PZ
2344}
2345
5167e8d5 2346void calc_load_exit_idle(void)
74f5187a 2347{
5167e8d5
PZ
2348 struct rq *this_rq = this_rq();
2349
2350 /*
2351 * If we're still before the sample window, we're done.
2352 */
2353 if (time_before(jiffies, this_rq->calc_load_update))
2354 return;
74f5187a
PZ
2355
2356 /*
5167e8d5
PZ
2357 * We woke inside or after the sample window, this means we're already
2358 * accounted through the nohz accounting, so skip the entire deal and
2359 * sync up for the next window.
74f5187a 2360 */
5167e8d5
PZ
2361 this_rq->calc_load_update = calc_load_update;
2362 if (time_before(jiffies, this_rq->calc_load_update + 10))
2363 this_rq->calc_load_update += LOAD_FREQ;
2364}
2365
2366static long calc_load_fold_idle(void)
2367{
2368 int idx = calc_load_read_idx();
2369 long delta = 0;
2370
2371 if (atomic_long_read(&calc_load_idle[idx]))
2372 delta = atomic_long_xchg(&calc_load_idle[idx], 0);
74f5187a
PZ
2373
2374 return delta;
2375}
0f004f5a
PZ
2376
2377/**
2378 * fixed_power_int - compute: x^n, in O(log n) time
2379 *
2380 * @x: base of the power
2381 * @frac_bits: fractional bits of @x
2382 * @n: power to raise @x to.
2383 *
2384 * By exploiting the relation between the definition of the natural power
2385 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2386 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2387 * (where: n_i \elem {0, 1}, the binary vector representing n),
2388 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2389 * of course trivially computable in O(log_2 n), the length of our binary
2390 * vector.
2391 */
2392static unsigned long
2393fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2394{
2395 unsigned long result = 1UL << frac_bits;
2396
2397 if (n) for (;;) {
2398 if (n & 1) {
2399 result *= x;
2400 result += 1UL << (frac_bits - 1);
2401 result >>= frac_bits;
2402 }
2403 n >>= 1;
2404 if (!n)
2405 break;
2406 x *= x;
2407 x += 1UL << (frac_bits - 1);
2408 x >>= frac_bits;
2409 }
2410
2411 return result;
2412}
2413
2414/*
2415 * a1 = a0 * e + a * (1 - e)
2416 *
2417 * a2 = a1 * e + a * (1 - e)
2418 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2419 * = a0 * e^2 + a * (1 - e) * (1 + e)
2420 *
2421 * a3 = a2 * e + a * (1 - e)
2422 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2423 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2424 *
2425 * ...
2426 *
2427 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2428 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2429 * = a0 * e^n + a * (1 - e^n)
2430 *
2431 * [1] application of the geometric series:
2432 *
2433 * n 1 - x^(n+1)
2434 * S_n := \Sum x^i = -------------
2435 * i=0 1 - x
2436 */
2437static unsigned long
2438calc_load_n(unsigned long load, unsigned long exp,
2439 unsigned long active, unsigned int n)
2440{
2441
2442 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2443}
2444
2445/*
2446 * NO_HZ can leave us missing all per-cpu ticks calling
2447 * calc_load_account_active(), but since an idle CPU folds its delta into
2448 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2449 * in the pending idle delta if our idle period crossed a load cycle boundary.
2450 *
2451 * Once we've updated the global active value, we need to apply the exponential
2452 * weights adjusted to the number of cycles missed.
2453 */
c308b56b 2454static void calc_global_nohz(void)
0f004f5a
PZ
2455{
2456 long delta, active, n;
2457
5167e8d5
PZ
2458 if (!time_before(jiffies, calc_load_update + 10)) {
2459 /*
2460 * Catch-up, fold however many we are behind still
2461 */
2462 delta = jiffies - calc_load_update - 10;
2463 n = 1 + (delta / LOAD_FREQ);
0f004f5a 2464
5167e8d5
PZ
2465 active = atomic_long_read(&calc_load_tasks);
2466 active = active > 0 ? active * FIXED_1 : 0;
0f004f5a 2467
5167e8d5
PZ
2468 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2469 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2470 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
0f004f5a 2471
5167e8d5
PZ
2472 calc_load_update += n * LOAD_FREQ;
2473 }
74f5187a 2474
5167e8d5
PZ
2475 /*
2476 * Flip the idle index...
2477 *
2478 * Make sure we first write the new time then flip the index, so that
2479 * calc_load_write_idx() will see the new time when it reads the new
2480 * index, this avoids a double flip messing things up.
2481 */
2482 smp_wmb();
2483 calc_load_idx++;
74f5187a 2484}
5167e8d5 2485#else /* !CONFIG_NO_HZ */
0f004f5a 2486
5167e8d5
PZ
2487static inline long calc_load_fold_idle(void) { return 0; }
2488static inline void calc_global_nohz(void) { }
74f5187a 2489
5167e8d5 2490#endif /* CONFIG_NO_HZ */
46cb4b7c 2491
46cb4b7c 2492/*
dce48a84
TG
2493 * calc_load - update the avenrun load estimates 10 ticks after the
2494 * CPUs have updated calc_load_tasks.
7835b98b 2495 */
0f004f5a 2496void calc_global_load(unsigned long ticks)
7835b98b 2497{
5167e8d5 2498 long active, delta;
1da177e4 2499
0f004f5a 2500 if (time_before(jiffies, calc_load_update + 10))
dce48a84 2501 return;
1da177e4 2502
5167e8d5
PZ
2503 /*
2504 * Fold the 'old' idle-delta to include all NO_HZ cpus.
2505 */
2506 delta = calc_load_fold_idle();
2507 if (delta)
2508 atomic_long_add(delta, &calc_load_tasks);
2509
dce48a84
TG
2510 active = atomic_long_read(&calc_load_tasks);
2511 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 2512
dce48a84
TG
2513 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2514 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2515 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 2516
dce48a84 2517 calc_load_update += LOAD_FREQ;
c308b56b
PZ
2518
2519 /*
5167e8d5 2520 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
c308b56b
PZ
2521 */
2522 calc_global_nohz();
dce48a84 2523}
1da177e4 2524
dce48a84 2525/*
74f5187a
PZ
2526 * Called from update_cpu_load() to periodically update this CPU's
2527 * active count.
dce48a84
TG
2528 */
2529static void calc_load_account_active(struct rq *this_rq)
2530{
74f5187a 2531 long delta;
08c183f3 2532
74f5187a
PZ
2533 if (time_before(jiffies, this_rq->calc_load_update))
2534 return;
783609c6 2535
74f5187a 2536 delta = calc_load_fold_active(this_rq);
74f5187a 2537 if (delta)
dce48a84 2538 atomic_long_add(delta, &calc_load_tasks);
74f5187a
PZ
2539
2540 this_rq->calc_load_update += LOAD_FREQ;
46cb4b7c
SS
2541}
2542
5167e8d5
PZ
2543/*
2544 * End of global load-average stuff
2545 */
2546
fdf3e95d
VP
2547/*
2548 * The exact cpuload at various idx values, calculated at every tick would be
2549 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2550 *
2551 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2552 * on nth tick when cpu may be busy, then we have:
2553 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2554 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2555 *
2556 * decay_load_missed() below does efficient calculation of
2557 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2558 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2559 *
2560 * The calculation is approximated on a 128 point scale.
2561 * degrade_zero_ticks is the number of ticks after which load at any
2562 * particular idx is approximated to be zero.
2563 * degrade_factor is a precomputed table, a row for each load idx.
2564 * Each column corresponds to degradation factor for a power of two ticks,
2565 * based on 128 point scale.
2566 * Example:
2567 * row 2, col 3 (=12) says that the degradation at load idx 2 after
2568 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2569 *
2570 * With this power of 2 load factors, we can degrade the load n times
2571 * by looking at 1 bits in n and doing as many mult/shift instead of
2572 * n mult/shifts needed by the exact degradation.
2573 */
2574#define DEGRADE_SHIFT 7
2575static const unsigned char
2576 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2577static const unsigned char
2578 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2579 {0, 0, 0, 0, 0, 0, 0, 0},
2580 {64, 32, 8, 0, 0, 0, 0, 0},
2581 {96, 72, 40, 12, 1, 0, 0},
2582 {112, 98, 75, 43, 15, 1, 0},
2583 {120, 112, 98, 76, 45, 16, 2} };
2584
2585/*
2586 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2587 * would be when CPU is idle and so we just decay the old load without
2588 * adding any new load.
2589 */
2590static unsigned long
2591decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2592{
2593 int j = 0;
2594
2595 if (!missed_updates)
2596 return load;
2597
2598 if (missed_updates >= degrade_zero_ticks[idx])
2599 return 0;
2600
2601 if (idx == 1)
2602 return load >> missed_updates;
2603
2604 while (missed_updates) {
2605 if (missed_updates % 2)
2606 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2607
2608 missed_updates >>= 1;
2609 j++;
2610 }
2611 return load;
2612}
2613
46cb4b7c 2614/*
dd41f596 2615 * Update rq->cpu_load[] statistics. This function is usually called every
fdf3e95d
VP
2616 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2617 * every tick. We fix it up based on jiffies.
46cb4b7c 2618 */
556061b0
PZ
2619static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
2620 unsigned long pending_updates)
46cb4b7c 2621{
dd41f596 2622 int i, scale;
46cb4b7c 2623
dd41f596 2624 this_rq->nr_load_updates++;
46cb4b7c 2625
dd41f596 2626 /* Update our load: */
fdf3e95d
VP
2627 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2628 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
dd41f596 2629 unsigned long old_load, new_load;
7d1e6a9b 2630
dd41f596 2631 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 2632
dd41f596 2633 old_load = this_rq->cpu_load[i];
fdf3e95d 2634 old_load = decay_load_missed(old_load, pending_updates - 1, i);
dd41f596 2635 new_load = this_load;
a25707f3
IM
2636 /*
2637 * Round up the averaging division if load is increasing. This
2638 * prevents us from getting stuck on 9 if the load is 10, for
2639 * example.
2640 */
2641 if (new_load > old_load)
fdf3e95d
VP
2642 new_load += scale - 1;
2643
2644 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
dd41f596 2645 }
da2b71ed
SS
2646
2647 sched_avg_update(this_rq);
fdf3e95d
VP
2648}
2649
5aaa0b7a
PZ
2650#ifdef CONFIG_NO_HZ
2651/*
2652 * There is no sane way to deal with nohz on smp when using jiffies because the
2653 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
2654 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
2655 *
2656 * Therefore we cannot use the delta approach from the regular tick since that
2657 * would seriously skew the load calculation. However we'll make do for those
2658 * updates happening while idle (nohz_idle_balance) or coming out of idle
2659 * (tick_nohz_idle_exit).
2660 *
2661 * This means we might still be one tick off for nohz periods.
2662 */
2663
556061b0
PZ
2664/*
2665 * Called from nohz_idle_balance() to update the load ratings before doing the
2666 * idle balance.
2667 */
2668void update_idle_cpu_load(struct rq *this_rq)
2669{
5aaa0b7a 2670 unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
556061b0
PZ
2671 unsigned long load = this_rq->load.weight;
2672 unsigned long pending_updates;
2673
2674 /*
5aaa0b7a 2675 * bail if there's load or we're actually up-to-date.
556061b0
PZ
2676 */
2677 if (load || curr_jiffies == this_rq->last_load_update_tick)
2678 return;
2679
2680 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2681 this_rq->last_load_update_tick = curr_jiffies;
2682
2683 __update_cpu_load(this_rq, load, pending_updates);
2684}
2685
5aaa0b7a
PZ
2686/*
2687 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
2688 */
2689void update_cpu_load_nohz(void)
2690{
2691 struct rq *this_rq = this_rq();
2692 unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2693 unsigned long pending_updates;
2694
2695 if (curr_jiffies == this_rq->last_load_update_tick)
2696 return;
2697
2698 raw_spin_lock(&this_rq->lock);
2699 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2700 if (pending_updates) {
2701 this_rq->last_load_update_tick = curr_jiffies;
2702 /*
2703 * We were idle, this means load 0, the current load might be
2704 * !0 due to remote wakeups and the sort.
2705 */
2706 __update_cpu_load(this_rq, 0, pending_updates);
2707 }
2708 raw_spin_unlock(&this_rq->lock);
2709}
2710#endif /* CONFIG_NO_HZ */
2711
556061b0
PZ
2712/*
2713 * Called from scheduler_tick()
2714 */
fdf3e95d
VP
2715static void update_cpu_load_active(struct rq *this_rq)
2716{
556061b0 2717 /*
5aaa0b7a 2718 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
556061b0
PZ
2719 */
2720 this_rq->last_load_update_tick = jiffies;
2721 __update_cpu_load(this_rq, this_rq->load.weight, 1);
46cb4b7c 2722
74f5187a 2723 calc_load_account_active(this_rq);
46cb4b7c
SS
2724}
2725
dd41f596 2726#ifdef CONFIG_SMP
8a0be9ef 2727
46cb4b7c 2728/*
38022906
PZ
2729 * sched_exec - execve() is a valuable balancing opportunity, because at
2730 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2731 */
38022906 2732void sched_exec(void)
46cb4b7c 2733{
38022906 2734 struct task_struct *p = current;
1da177e4 2735 unsigned long flags;
0017d735 2736 int dest_cpu;
46cb4b7c 2737
8f42ced9 2738 raw_spin_lock_irqsave(&p->pi_lock, flags);
7608dec2 2739 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
0017d735
PZ
2740 if (dest_cpu == smp_processor_id())
2741 goto unlock;
38022906 2742
8f42ced9 2743 if (likely(cpu_active(dest_cpu))) {
969c7921 2744 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2745
8f42ced9
PZ
2746 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2747 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2748 return;
2749 }
0017d735 2750unlock:
8f42ced9 2751 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2752}
dd41f596 2753
1da177e4
LT
2754#endif
2755
1da177e4 2756DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2757DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2758
2759EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2760EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4
LT
2761
2762/*
c5f8d995 2763 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 2764 * @p in case that task is currently running.
c5f8d995
HS
2765 *
2766 * Called with task_rq_lock() held on @rq.
1da177e4 2767 */
c5f8d995
HS
2768static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2769{
2770 u64 ns = 0;
2771
2772 if (task_current(rq, p)) {
2773 update_rq_clock(rq);
305e6835 2774 ns = rq->clock_task - p->se.exec_start;
c5f8d995
HS
2775 if ((s64)ns < 0)
2776 ns = 0;
2777 }
2778
2779 return ns;
2780}
2781
bb34d92f 2782unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 2783{
1da177e4 2784 unsigned long flags;
41b86e9c 2785 struct rq *rq;
bb34d92f 2786 u64 ns = 0;
48f24c4d 2787
41b86e9c 2788 rq = task_rq_lock(p, &flags);
c5f8d995 2789 ns = do_task_delta_exec(p, rq);
0122ec5b 2790 task_rq_unlock(rq, p, &flags);
1508487e 2791
c5f8d995
HS
2792 return ns;
2793}
f06febc9 2794
c5f8d995
HS
2795/*
2796 * Return accounted runtime for the task.
2797 * In case the task is currently running, return the runtime plus current's
2798 * pending runtime that have not been accounted yet.
2799 */
2800unsigned long long task_sched_runtime(struct task_struct *p)
2801{
2802 unsigned long flags;
2803 struct rq *rq;
2804 u64 ns = 0;
2805
2806 rq = task_rq_lock(p, &flags);
2807 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 2808 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2809
2810 return ns;
2811}
48f24c4d 2812
54c707e9
GC
2813#ifdef CONFIG_CGROUP_CPUACCT
2814struct cgroup_subsys cpuacct_subsys;
2815struct cpuacct root_cpuacct;
2816#endif
2817
be726ffd
GC
2818static inline void task_group_account_field(struct task_struct *p, int index,
2819 u64 tmp)
54c707e9
GC
2820{
2821#ifdef CONFIG_CGROUP_CPUACCT
2822 struct kernel_cpustat *kcpustat;
2823 struct cpuacct *ca;
2824#endif
2825 /*
2826 * Since all updates are sure to touch the root cgroup, we
2827 * get ourselves ahead and touch it first. If the root cgroup
2828 * is the only cgroup, then nothing else should be necessary.
2829 *
2830 */
2831 __get_cpu_var(kernel_cpustat).cpustat[index] += tmp;
2832
2833#ifdef CONFIG_CGROUP_CPUACCT
2834 if (unlikely(!cpuacct_subsys.active))
2835 return;
2836
2837 rcu_read_lock();
2838 ca = task_ca(p);
2839 while (ca && (ca != &root_cpuacct)) {
2840 kcpustat = this_cpu_ptr(ca->cpustat);
2841 kcpustat->cpustat[index] += tmp;
2842 ca = parent_ca(ca);
2843 }
2844 rcu_read_unlock();
2845#endif
2846}
2847
2848
1da177e4
LT
2849/*
2850 * Account user cpu time to a process.
2851 * @p: the process that the cpu time gets accounted to
1da177e4 2852 * @cputime: the cpu time spent in user space since the last update
457533a7 2853 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 2854 */
457533a7
MS
2855void account_user_time(struct task_struct *p, cputime_t cputime,
2856 cputime_t cputime_scaled)
1da177e4 2857{
3292beb3 2858 int index;
1da177e4 2859
457533a7 2860 /* Add user time to process. */
64861634
MS
2861 p->utime += cputime;
2862 p->utimescaled += cputime_scaled;
f06febc9 2863 account_group_user_time(p, cputime);
1da177e4 2864
3292beb3 2865 index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
ef12fefa 2866
1da177e4 2867 /* Add user time to cpustat. */
612ef28a 2868 task_group_account_field(p, index, (__force u64) cputime);
ef12fefa 2869
49b5cf34
JL
2870 /* Account for user time used */
2871 acct_update_integrals(p);
1da177e4
LT
2872}
2873
94886b84
LV
2874/*
2875 * Account guest cpu time to a process.
2876 * @p: the process that the cpu time gets accounted to
2877 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 2878 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 2879 */
457533a7
MS
2880static void account_guest_time(struct task_struct *p, cputime_t cputime,
2881 cputime_t cputime_scaled)
94886b84 2882{
3292beb3 2883 u64 *cpustat = kcpustat_this_cpu->cpustat;
94886b84 2884
457533a7 2885 /* Add guest time to process. */
64861634
MS
2886 p->utime += cputime;
2887 p->utimescaled += cputime_scaled;
f06febc9 2888 account_group_user_time(p, cputime);
64861634 2889 p->gtime += cputime;
94886b84 2890
457533a7 2891 /* Add guest time to cpustat. */
ce0e7b28 2892 if (TASK_NICE(p) > 0) {
612ef28a
MS
2893 cpustat[CPUTIME_NICE] += (__force u64) cputime;
2894 cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
ce0e7b28 2895 } else {
612ef28a
MS
2896 cpustat[CPUTIME_USER] += (__force u64) cputime;
2897 cpustat[CPUTIME_GUEST] += (__force u64) cputime;
ce0e7b28 2898 }
94886b84
LV
2899}
2900
70a89a66
VP
2901/*
2902 * Account system cpu time to a process and desired cpustat field
2903 * @p: the process that the cpu time gets accounted to
2904 * @cputime: the cpu time spent in kernel space since the last update
2905 * @cputime_scaled: cputime scaled by cpu frequency
2906 * @target_cputime64: pointer to cpustat field that has to be updated
2907 */
2908static inline
2909void __account_system_time(struct task_struct *p, cputime_t cputime,
3292beb3 2910 cputime_t cputime_scaled, int index)
70a89a66 2911{
70a89a66 2912 /* Add system time to process. */
64861634
MS
2913 p->stime += cputime;
2914 p->stimescaled += cputime_scaled;
70a89a66
VP
2915 account_group_system_time(p, cputime);
2916
2917 /* Add system time to cpustat. */
612ef28a 2918 task_group_account_field(p, index, (__force u64) cputime);
70a89a66
VP
2919
2920 /* Account for system time used */
2921 acct_update_integrals(p);
2922}
2923
1da177e4
LT
2924/*
2925 * Account system cpu time to a process.
2926 * @p: the process that the cpu time gets accounted to
2927 * @hardirq_offset: the offset to subtract from hardirq_count()
2928 * @cputime: the cpu time spent in kernel space since the last update
457533a7 2929 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
2930 */
2931void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 2932 cputime_t cputime, cputime_t cputime_scaled)
1da177e4 2933{
3292beb3 2934 int index;
1da177e4 2935
983ed7a6 2936 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 2937 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
2938 return;
2939 }
94886b84 2940
1da177e4 2941 if (hardirq_count() - hardirq_offset)
3292beb3 2942 index = CPUTIME_IRQ;
75e1056f 2943 else if (in_serving_softirq())
3292beb3 2944 index = CPUTIME_SOFTIRQ;
1da177e4 2945 else
3292beb3 2946 index = CPUTIME_SYSTEM;
ef12fefa 2947
3292beb3 2948 __account_system_time(p, cputime, cputime_scaled, index);
1da177e4
LT
2949}
2950
c66f08be 2951/*
1da177e4 2952 * Account for involuntary wait time.
544b4a1f 2953 * @cputime: the cpu time spent in involuntary wait
c66f08be 2954 */
79741dd3 2955void account_steal_time(cputime_t cputime)
c66f08be 2956{
3292beb3 2957 u64 *cpustat = kcpustat_this_cpu->cpustat;
79741dd3 2958
612ef28a 2959 cpustat[CPUTIME_STEAL] += (__force u64) cputime;
c66f08be
MN
2960}
2961
1da177e4 2962/*
79741dd3
MS
2963 * Account for idle time.
2964 * @cputime: the cpu time spent in idle wait
1da177e4 2965 */
79741dd3 2966void account_idle_time(cputime_t cputime)
1da177e4 2967{
3292beb3 2968 u64 *cpustat = kcpustat_this_cpu->cpustat;
70b97a7f 2969 struct rq *rq = this_rq();
1da177e4 2970
79741dd3 2971 if (atomic_read(&rq->nr_iowait) > 0)
612ef28a 2972 cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
79741dd3 2973 else
612ef28a 2974 cpustat[CPUTIME_IDLE] += (__force u64) cputime;
1da177e4
LT
2975}
2976
e6e6685a
GC
2977static __always_inline bool steal_account_process_tick(void)
2978{
2979#ifdef CONFIG_PARAVIRT
c5905afb 2980 if (static_key_false(&paravirt_steal_enabled)) {
e6e6685a
GC
2981 u64 steal, st = 0;
2982
2983 steal = paravirt_steal_clock(smp_processor_id());
2984 steal -= this_rq()->prev_steal_time;
2985
2986 st = steal_ticks(steal);
2987 this_rq()->prev_steal_time += st * TICK_NSEC;
2988
2989 account_steal_time(st);
2990 return st;
2991 }
2992#endif
2993 return false;
2994}
2995
79741dd3
MS
2996#ifndef CONFIG_VIRT_CPU_ACCOUNTING
2997
abb74cef
VP
2998#ifdef CONFIG_IRQ_TIME_ACCOUNTING
2999/*
3000 * Account a tick to a process and cpustat
3001 * @p: the process that the cpu time gets accounted to
3002 * @user_tick: is the tick from userspace
3003 * @rq: the pointer to rq
3004 *
3005 * Tick demultiplexing follows the order
3006 * - pending hardirq update
3007 * - pending softirq update
3008 * - user_time
3009 * - idle_time
3010 * - system time
3011 * - check for guest_time
3012 * - else account as system_time
3013 *
3014 * Check for hardirq is done both for system and user time as there is
3015 * no timer going off while we are on hardirq and hence we may never get an
3016 * opportunity to update it solely in system time.
3017 * p->stime and friends are only updated on system time and not on irq
3018 * softirq as those do not count in task exec_runtime any more.
3019 */
3020static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3021 struct rq *rq)
3022{
3023 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3292beb3 3024 u64 *cpustat = kcpustat_this_cpu->cpustat;
abb74cef 3025
e6e6685a
GC
3026 if (steal_account_process_tick())
3027 return;
3028
abb74cef 3029 if (irqtime_account_hi_update()) {
612ef28a 3030 cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy;
abb74cef 3031 } else if (irqtime_account_si_update()) {
612ef28a 3032 cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy;
414bee9b
VP
3033 } else if (this_cpu_ksoftirqd() == p) {
3034 /*
3035 * ksoftirqd time do not get accounted in cpu_softirq_time.
3036 * So, we have to handle it separately here.
3037 * Also, p->stime needs to be updated for ksoftirqd.
3038 */
3039 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3292beb3 3040 CPUTIME_SOFTIRQ);
abb74cef
VP
3041 } else if (user_tick) {
3042 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3043 } else if (p == rq->idle) {
3044 account_idle_time(cputime_one_jiffy);
3045 } else if (p->flags & PF_VCPU) { /* System time or guest time */
3046 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
3047 } else {
3048 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3292beb3 3049 CPUTIME_SYSTEM);
abb74cef
VP
3050 }
3051}
3052
3053static void irqtime_account_idle_ticks(int ticks)
3054{
3055 int i;
3056 struct rq *rq = this_rq();
3057
3058 for (i = 0; i < ticks; i++)
3059 irqtime_account_process_tick(current, 0, rq);
3060}
544b4a1f 3061#else /* CONFIG_IRQ_TIME_ACCOUNTING */
abb74cef
VP
3062static void irqtime_account_idle_ticks(int ticks) {}
3063static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3064 struct rq *rq) {}
544b4a1f 3065#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
79741dd3
MS
3066
3067/*
3068 * Account a single tick of cpu time.
3069 * @p: the process that the cpu time gets accounted to
3070 * @user_tick: indicates if the tick is a user or a system tick
3071 */
3072void account_process_tick(struct task_struct *p, int user_tick)
3073{
a42548a1 3074 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
3075 struct rq *rq = this_rq();
3076
abb74cef
VP
3077 if (sched_clock_irqtime) {
3078 irqtime_account_process_tick(p, user_tick, rq);
3079 return;
3080 }
3081
e6e6685a
GC
3082 if (steal_account_process_tick())
3083 return;
3084
79741dd3 3085 if (user_tick)
a42548a1 3086 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 3087 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 3088 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
3089 one_jiffy_scaled);
3090 else
a42548a1 3091 account_idle_time(cputime_one_jiffy);
79741dd3
MS
3092}
3093
3094/*
3095 * Account multiple ticks of steal time.
3096 * @p: the process from which the cpu time has been stolen
3097 * @ticks: number of stolen ticks
3098 */
3099void account_steal_ticks(unsigned long ticks)
3100{
3101 account_steal_time(jiffies_to_cputime(ticks));
3102}
3103
3104/*
3105 * Account multiple ticks of idle time.
3106 * @ticks: number of stolen ticks
3107 */
3108void account_idle_ticks(unsigned long ticks)
3109{
abb74cef
VP
3110
3111 if (sched_clock_irqtime) {
3112 irqtime_account_idle_ticks(ticks);
3113 return;
3114 }
3115
79741dd3 3116 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
3117}
3118
79741dd3
MS
3119#endif
3120
49048622
BS
3121/*
3122 * Use precise platform statistics if available:
3123 */
3124#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 3125void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3126{
d99ca3b9
HS
3127 *ut = p->utime;
3128 *st = p->stime;
49048622
BS
3129}
3130
0cf55e1e 3131void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3132{
0cf55e1e
HS
3133 struct task_cputime cputime;
3134
3135 thread_group_cputime(p, &cputime);
3136
3137 *ut = cputime.utime;
3138 *st = cputime.stime;
49048622
BS
3139}
3140#else
761b1d26
HS
3141
3142#ifndef nsecs_to_cputime
b7b20df9 3143# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
3144#endif
3145
bea6832c
SG
3146static cputime_t scale_utime(cputime_t utime, cputime_t rtime, cputime_t total)
3147{
3148 u64 temp = (__force u64) rtime;
3149
3150 temp *= (__force u64) utime;
3151
3152 if (sizeof(cputime_t) == 4)
3153 temp = div_u64(temp, (__force u32) total);
3154 else
3155 temp = div64_u64(temp, (__force u64) total);
3156
3157 return (__force cputime_t) temp;
3158}
3159
d180c5bc 3160void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3161{
64861634 3162 cputime_t rtime, utime = p->utime, total = utime + p->stime;
49048622
BS
3163
3164 /*
3165 * Use CFS's precise accounting:
3166 */
d180c5bc 3167 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622 3168
bea6832c
SG
3169 if (total)
3170 utime = scale_utime(utime, rtime, total);
3171 else
d180c5bc 3172 utime = rtime;
49048622 3173
d180c5bc
HS
3174 /*
3175 * Compare with previous values, to keep monotonicity:
3176 */
761b1d26 3177 p->prev_utime = max(p->prev_utime, utime);
64861634 3178 p->prev_stime = max(p->prev_stime, rtime - p->prev_utime);
49048622 3179
d99ca3b9
HS
3180 *ut = p->prev_utime;
3181 *st = p->prev_stime;
49048622
BS
3182}
3183
0cf55e1e
HS
3184/*
3185 * Must be called with siglock held.
3186 */
3187void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3188{
0cf55e1e
HS
3189 struct signal_struct *sig = p->signal;
3190 struct task_cputime cputime;
3191 cputime_t rtime, utime, total;
49048622 3192
0cf55e1e 3193 thread_group_cputime(p, &cputime);
49048622 3194
64861634 3195 total = cputime.utime + cputime.stime;
0cf55e1e 3196 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 3197
bea6832c
SG
3198 if (total)
3199 utime = scale_utime(cputime.utime, rtime, total);
3200 else
0cf55e1e
HS
3201 utime = rtime;
3202
3203 sig->prev_utime = max(sig->prev_utime, utime);
64861634 3204 sig->prev_stime = max(sig->prev_stime, rtime - sig->prev_utime);
0cf55e1e
HS
3205
3206 *ut = sig->prev_utime;
3207 *st = sig->prev_stime;
49048622 3208}
49048622 3209#endif
49048622 3210
7835b98b
CL
3211/*
3212 * This function gets called by the timer code, with HZ frequency.
3213 * We call it with interrupts disabled.
7835b98b
CL
3214 */
3215void scheduler_tick(void)
3216{
7835b98b
CL
3217 int cpu = smp_processor_id();
3218 struct rq *rq = cpu_rq(cpu);
dd41f596 3219 struct task_struct *curr = rq->curr;
3e51f33f
PZ
3220
3221 sched_clock_tick();
dd41f596 3222
05fa785c 3223 raw_spin_lock(&rq->lock);
3e51f33f 3224 update_rq_clock(rq);
fdf3e95d 3225 update_cpu_load_active(rq);
fa85ae24 3226 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 3227 raw_spin_unlock(&rq->lock);
7835b98b 3228
e9d2b064 3229 perf_event_task_tick();
e220d2dc 3230
e418e1c2 3231#ifdef CONFIG_SMP
6eb57e0d 3232 rq->idle_balance = idle_cpu(cpu);
dd41f596 3233 trigger_load_balance(rq, cpu);
e418e1c2 3234#endif
1da177e4
LT
3235}
3236
132380a0 3237notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
3238{
3239 if (in_lock_functions(addr)) {
3240 addr = CALLER_ADDR2;
3241 if (in_lock_functions(addr))
3242 addr = CALLER_ADDR3;
3243 }
3244 return addr;
3245}
1da177e4 3246
7e49fcce
SR
3247#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3248 defined(CONFIG_PREEMPT_TRACER))
3249
43627582 3250void __kprobes add_preempt_count(int val)
1da177e4 3251{
6cd8a4bb 3252#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3253 /*
3254 * Underflow?
3255 */
9a11b49a
IM
3256 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3257 return;
6cd8a4bb 3258#endif
1da177e4 3259 preempt_count() += val;
6cd8a4bb 3260#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3261 /*
3262 * Spinlock count overflowing soon?
3263 */
33859f7f
MOS
3264 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3265 PREEMPT_MASK - 10);
6cd8a4bb
SR
3266#endif
3267 if (preempt_count() == val)
3268 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3269}
3270EXPORT_SYMBOL(add_preempt_count);
3271
43627582 3272void __kprobes sub_preempt_count(int val)
1da177e4 3273{
6cd8a4bb 3274#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3275 /*
3276 * Underflow?
3277 */
01e3eb82 3278 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3279 return;
1da177e4
LT
3280 /*
3281 * Is the spinlock portion underflowing?
3282 */
9a11b49a
IM
3283 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3284 !(preempt_count() & PREEMPT_MASK)))
3285 return;
6cd8a4bb 3286#endif
9a11b49a 3287
6cd8a4bb
SR
3288 if (preempt_count() == val)
3289 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3290 preempt_count() -= val;
3291}
3292EXPORT_SYMBOL(sub_preempt_count);
3293
3294#endif
3295
3296/*
dd41f596 3297 * Print scheduling while atomic bug:
1da177e4 3298 */
dd41f596 3299static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3300{
664dfa65
DJ
3301 if (oops_in_progress)
3302 return;
3303
3df0fc5b
PZ
3304 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3305 prev->comm, prev->pid, preempt_count());
838225b4 3306
dd41f596 3307 debug_show_held_locks(prev);
e21f5b15 3308 print_modules();
dd41f596
IM
3309 if (irqs_disabled())
3310 print_irqtrace_events(prev);
6135fc1e 3311 dump_stack();
1c2927f1 3312 add_taint(TAINT_WARN);
dd41f596 3313}
1da177e4 3314
dd41f596
IM
3315/*
3316 * Various schedule()-time debugging checks and statistics:
3317 */
3318static inline void schedule_debug(struct task_struct *prev)
3319{
1da177e4 3320 /*
41a2d6cf 3321 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
3322 * schedule() atomically, we ignore that path for now.
3323 * Otherwise, whine if we are scheduling when we should not be.
3324 */
3f33a7ce 3325 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596 3326 __schedule_bug(prev);
b3fbab05 3327 rcu_sleep_check();
dd41f596 3328
1da177e4
LT
3329 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3330
2d72376b 3331 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
3332}
3333
6cecd084 3334static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 3335{
61eadef6 3336 if (prev->on_rq || rq->skip_clock_update < 0)
a64692a3 3337 update_rq_clock(rq);
6cecd084 3338 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
3339}
3340
dd41f596
IM
3341/*
3342 * Pick up the highest-prio task:
3343 */
3344static inline struct task_struct *
b67802ea 3345pick_next_task(struct rq *rq)
dd41f596 3346{
5522d5d5 3347 const struct sched_class *class;
dd41f596 3348 struct task_struct *p;
1da177e4
LT
3349
3350 /*
dd41f596
IM
3351 * Optimization: we know that if all tasks are in
3352 * the fair class we can call that function directly:
1da177e4 3353 */
953bfcd1 3354 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
fb8d4724 3355 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3356 if (likely(p))
3357 return p;
1da177e4
LT
3358 }
3359
34f971f6 3360 for_each_class(class) {
fb8d4724 3361 p = class->pick_next_task(rq);
dd41f596
IM
3362 if (p)
3363 return p;
dd41f596 3364 }
34f971f6
PZ
3365
3366 BUG(); /* the idle class will always have a runnable task */
dd41f596 3367}
1da177e4 3368
dd41f596 3369/*
c259e01a 3370 * __schedule() is the main scheduler function.
dd41f596 3371 */
c259e01a 3372static void __sched __schedule(void)
dd41f596
IM
3373{
3374 struct task_struct *prev, *next;
67ca7bde 3375 unsigned long *switch_count;
dd41f596 3376 struct rq *rq;
31656519 3377 int cpu;
dd41f596 3378
ff743345
PZ
3379need_resched:
3380 preempt_disable();
dd41f596
IM
3381 cpu = smp_processor_id();
3382 rq = cpu_rq(cpu);
25502a6c 3383 rcu_note_context_switch(cpu);
dd41f596 3384 prev = rq->curr;
dd41f596 3385
dd41f596 3386 schedule_debug(prev);
1da177e4 3387
31656519 3388 if (sched_feat(HRTICK))
f333fdc9 3389 hrtick_clear(rq);
8f4d37ec 3390
05fa785c 3391 raw_spin_lock_irq(&rq->lock);
1da177e4 3392
246d86b5 3393 switch_count = &prev->nivcsw;
1da177e4 3394 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 3395 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 3396 prev->state = TASK_RUNNING;
21aa9af0 3397 } else {
2acca55e
PZ
3398 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3399 prev->on_rq = 0;
3400
21aa9af0 3401 /*
2acca55e
PZ
3402 * If a worker went to sleep, notify and ask workqueue
3403 * whether it wants to wake up a task to maintain
3404 * concurrency.
21aa9af0
TH
3405 */
3406 if (prev->flags & PF_WQ_WORKER) {
3407 struct task_struct *to_wakeup;
3408
3409 to_wakeup = wq_worker_sleeping(prev, cpu);
3410 if (to_wakeup)
3411 try_to_wake_up_local(to_wakeup);
3412 }
21aa9af0 3413 }
dd41f596 3414 switch_count = &prev->nvcsw;
1da177e4
LT
3415 }
3416
3f029d3c 3417 pre_schedule(rq, prev);
f65eda4f 3418
dd41f596 3419 if (unlikely(!rq->nr_running))
1da177e4 3420 idle_balance(cpu, rq);
1da177e4 3421
df1c99d4 3422 put_prev_task(rq, prev);
b67802ea 3423 next = pick_next_task(rq);
f26f9aff
MG
3424 clear_tsk_need_resched(prev);
3425 rq->skip_clock_update = 0;
1da177e4 3426
1da177e4 3427 if (likely(prev != next)) {
1da177e4
LT
3428 rq->nr_switches++;
3429 rq->curr = next;
3430 ++*switch_count;
3431
dd41f596 3432 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 3433 /*
246d86b5
ON
3434 * The context switch have flipped the stack from under us
3435 * and restored the local variables which were saved when
3436 * this task called schedule() in the past. prev == current
3437 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
3438 */
3439 cpu = smp_processor_id();
3440 rq = cpu_rq(cpu);
1da177e4 3441 } else
05fa785c 3442 raw_spin_unlock_irq(&rq->lock);
1da177e4 3443
3f029d3c 3444 post_schedule(rq);
1da177e4 3445
ba74c144 3446 sched_preempt_enable_no_resched();
ff743345 3447 if (need_resched())
1da177e4
LT
3448 goto need_resched;
3449}
c259e01a 3450
9c40cef2
TG
3451static inline void sched_submit_work(struct task_struct *tsk)
3452{
3c7d5184 3453 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
3454 return;
3455 /*
3456 * If we are going to sleep and we have plugged IO queued,
3457 * make sure to submit it to avoid deadlocks.
3458 */
3459 if (blk_needs_flush_plug(tsk))
3460 blk_schedule_flush_plug(tsk);
3461}
3462
6ebbe7a0 3463asmlinkage void __sched schedule(void)
c259e01a 3464{
9c40cef2
TG
3465 struct task_struct *tsk = current;
3466
3467 sched_submit_work(tsk);
c259e01a
TG
3468 __schedule();
3469}
1da177e4
LT
3470EXPORT_SYMBOL(schedule);
3471
c5491ea7
TG
3472/**
3473 * schedule_preempt_disabled - called with preemption disabled
3474 *
3475 * Returns with preemption disabled. Note: preempt_count must be 1
3476 */
3477void __sched schedule_preempt_disabled(void)
3478{
ba74c144 3479 sched_preempt_enable_no_resched();
c5491ea7
TG
3480 schedule();
3481 preempt_disable();
3482}
3483
c08f7829 3484#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d 3485
c6eb3dda
PZ
3486static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
3487{
c6eb3dda 3488 if (lock->owner != owner)
307bf980 3489 return false;
0d66bf6d
PZ
3490
3491 /*
c6eb3dda
PZ
3492 * Ensure we emit the owner->on_cpu, dereference _after_ checking
3493 * lock->owner still matches owner, if that fails, owner might
3494 * point to free()d memory, if it still matches, the rcu_read_lock()
3495 * ensures the memory stays valid.
0d66bf6d 3496 */
c6eb3dda 3497 barrier();
0d66bf6d 3498
307bf980 3499 return owner->on_cpu;
c6eb3dda 3500}
0d66bf6d 3501
c6eb3dda
PZ
3502/*
3503 * Look out! "owner" is an entirely speculative pointer
3504 * access and not reliable.
3505 */
3506int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
3507{
3508 if (!sched_feat(OWNER_SPIN))
3509 return 0;
0d66bf6d 3510
307bf980 3511 rcu_read_lock();
c6eb3dda
PZ
3512 while (owner_running(lock, owner)) {
3513 if (need_resched())
307bf980 3514 break;
0d66bf6d 3515
335d7afb 3516 arch_mutex_cpu_relax();
0d66bf6d 3517 }
307bf980 3518 rcu_read_unlock();
4b402210 3519
c6eb3dda 3520 /*
307bf980
TG
3521 * We break out the loop above on need_resched() and when the
3522 * owner changed, which is a sign for heavy contention. Return
3523 * success only when lock->owner is NULL.
c6eb3dda 3524 */
307bf980 3525 return lock->owner == NULL;
0d66bf6d
PZ
3526}
3527#endif
3528
1da177e4
LT
3529#ifdef CONFIG_PREEMPT
3530/*
2ed6e34f 3531 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3532 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3533 * occur there and call schedule directly.
3534 */
d1f74e20 3535asmlinkage void __sched notrace preempt_schedule(void)
1da177e4
LT
3536{
3537 struct thread_info *ti = current_thread_info();
6478d880 3538
1da177e4
LT
3539 /*
3540 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3541 * we do not want to preempt the current task. Just return..
1da177e4 3542 */
beed33a8 3543 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3544 return;
3545
3a5c359a 3546 do {
d1f74e20 3547 add_preempt_count_notrace(PREEMPT_ACTIVE);
c259e01a 3548 __schedule();
d1f74e20 3549 sub_preempt_count_notrace(PREEMPT_ACTIVE);
1da177e4 3550
3a5c359a
AK
3551 /*
3552 * Check again in case we missed a preemption opportunity
3553 * between schedule and now.
3554 */
3555 barrier();
5ed0cec0 3556 } while (need_resched());
1da177e4 3557}
1da177e4
LT
3558EXPORT_SYMBOL(preempt_schedule);
3559
3560/*
2ed6e34f 3561 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3562 * off of irq context.
3563 * Note, that this is called and return with irqs disabled. This will
3564 * protect us against recursive calling from irq.
3565 */
3566asmlinkage void __sched preempt_schedule_irq(void)
3567{
3568 struct thread_info *ti = current_thread_info();
6478d880 3569
2ed6e34f 3570 /* Catch callers which need to be fixed */
1da177e4
LT
3571 BUG_ON(ti->preempt_count || !irqs_disabled());
3572
3a5c359a
AK
3573 do {
3574 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 3575 local_irq_enable();
c259e01a 3576 __schedule();
3a5c359a 3577 local_irq_disable();
3a5c359a 3578 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3579
3a5c359a
AK
3580 /*
3581 * Check again in case we missed a preemption opportunity
3582 * between schedule and now.
3583 */
3584 barrier();
5ed0cec0 3585 } while (need_resched());
1da177e4
LT
3586}
3587
3588#endif /* CONFIG_PREEMPT */
3589
63859d4f 3590int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3591 void *key)
1da177e4 3592{
63859d4f 3593 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3594}
1da177e4
LT
3595EXPORT_SYMBOL(default_wake_function);
3596
3597/*
41a2d6cf
IM
3598 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3599 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
3600 * number) then we wake all the non-exclusive tasks and one exclusive task.
3601 *
3602 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 3603 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
3604 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3605 */
78ddb08f 3606static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 3607 int nr_exclusive, int wake_flags, void *key)
1da177e4 3608{
2e45874c 3609 wait_queue_t *curr, *next;
1da177e4 3610
2e45874c 3611 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
3612 unsigned flags = curr->flags;
3613
63859d4f 3614 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 3615 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3616 break;
3617 }
3618}
3619
3620/**
3621 * __wake_up - wake up threads blocked on a waitqueue.
3622 * @q: the waitqueue
3623 * @mode: which threads
3624 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3625 * @key: is directly passed to the wakeup function
50fa610a
DH
3626 *
3627 * It may be assumed that this function implies a write memory barrier before
3628 * changing the task state if and only if any tasks are woken up.
1da177e4 3629 */
7ad5b3a5 3630void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3631 int nr_exclusive, void *key)
1da177e4
LT
3632{
3633 unsigned long flags;
3634
3635 spin_lock_irqsave(&q->lock, flags);
3636 __wake_up_common(q, mode, nr_exclusive, 0, key);
3637 spin_unlock_irqrestore(&q->lock, flags);
3638}
1da177e4
LT
3639EXPORT_SYMBOL(__wake_up);
3640
3641/*
3642 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3643 */
63b20011 3644void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
1da177e4 3645{
63b20011 3646 __wake_up_common(q, mode, nr, 0, NULL);
1da177e4 3647}
22c43c81 3648EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 3649
4ede816a
DL
3650void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3651{
3652 __wake_up_common(q, mode, 1, 0, key);
3653}
bf294b41 3654EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4ede816a 3655
1da177e4 3656/**
4ede816a 3657 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
3658 * @q: the waitqueue
3659 * @mode: which threads
3660 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 3661 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
3662 *
3663 * The sync wakeup differs that the waker knows that it will schedule
3664 * away soon, so while the target thread will be woken up, it will not
3665 * be migrated to another CPU - ie. the two threads are 'synchronized'
3666 * with each other. This can prevent needless bouncing between CPUs.
3667 *
3668 * On UP it can prevent extra preemption.
50fa610a
DH
3669 *
3670 * It may be assumed that this function implies a write memory barrier before
3671 * changing the task state if and only if any tasks are woken up.
1da177e4 3672 */
4ede816a
DL
3673void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3674 int nr_exclusive, void *key)
1da177e4
LT
3675{
3676 unsigned long flags;
7d478721 3677 int wake_flags = WF_SYNC;
1da177e4
LT
3678
3679 if (unlikely(!q))
3680 return;
3681
3682 if (unlikely(!nr_exclusive))
7d478721 3683 wake_flags = 0;
1da177e4
LT
3684
3685 spin_lock_irqsave(&q->lock, flags);
7d478721 3686 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
3687 spin_unlock_irqrestore(&q->lock, flags);
3688}
4ede816a
DL
3689EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3690
3691/*
3692 * __wake_up_sync - see __wake_up_sync_key()
3693 */
3694void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3695{
3696 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3697}
1da177e4
LT
3698EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3699
65eb3dc6
KD
3700/**
3701 * complete: - signals a single thread waiting on this completion
3702 * @x: holds the state of this particular completion
3703 *
3704 * This will wake up a single thread waiting on this completion. Threads will be
3705 * awakened in the same order in which they were queued.
3706 *
3707 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
3708 *
3709 * It may be assumed that this function implies a write memory barrier before
3710 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3711 */
b15136e9 3712void complete(struct completion *x)
1da177e4
LT
3713{
3714 unsigned long flags;
3715
3716 spin_lock_irqsave(&x->wait.lock, flags);
3717 x->done++;
d9514f6c 3718 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
3719 spin_unlock_irqrestore(&x->wait.lock, flags);
3720}
3721EXPORT_SYMBOL(complete);
3722
65eb3dc6
KD
3723/**
3724 * complete_all: - signals all threads waiting on this completion
3725 * @x: holds the state of this particular completion
3726 *
3727 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
3728 *
3729 * It may be assumed that this function implies a write memory barrier before
3730 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3731 */
b15136e9 3732void complete_all(struct completion *x)
1da177e4
LT
3733{
3734 unsigned long flags;
3735
3736 spin_lock_irqsave(&x->wait.lock, flags);
3737 x->done += UINT_MAX/2;
d9514f6c 3738 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
3739 spin_unlock_irqrestore(&x->wait.lock, flags);
3740}
3741EXPORT_SYMBOL(complete_all);
3742
8cbbe86d
AK
3743static inline long __sched
3744do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3745{
1da177e4
LT
3746 if (!x->done) {
3747 DECLARE_WAITQUEUE(wait, current);
3748
a93d2f17 3749 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 3750 do {
94d3d824 3751 if (signal_pending_state(state, current)) {
ea71a546
ON
3752 timeout = -ERESTARTSYS;
3753 break;
8cbbe86d
AK
3754 }
3755 __set_current_state(state);
1da177e4
LT
3756 spin_unlock_irq(&x->wait.lock);
3757 timeout = schedule_timeout(timeout);
3758 spin_lock_irq(&x->wait.lock);
ea71a546 3759 } while (!x->done && timeout);
1da177e4 3760 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
3761 if (!x->done)
3762 return timeout;
1da177e4
LT
3763 }
3764 x->done--;
ea71a546 3765 return timeout ?: 1;
1da177e4 3766}
1da177e4 3767
8cbbe86d
AK
3768static long __sched
3769wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3770{
1da177e4
LT
3771 might_sleep();
3772
3773 spin_lock_irq(&x->wait.lock);
8cbbe86d 3774 timeout = do_wait_for_common(x, timeout, state);
1da177e4 3775 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
3776 return timeout;
3777}
1da177e4 3778
65eb3dc6
KD
3779/**
3780 * wait_for_completion: - waits for completion of a task
3781 * @x: holds the state of this particular completion
3782 *
3783 * This waits to be signaled for completion of a specific task. It is NOT
3784 * interruptible and there is no timeout.
3785 *
3786 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3787 * and interrupt capability. Also see complete().
3788 */
b15136e9 3789void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
3790{
3791 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 3792}
8cbbe86d 3793EXPORT_SYMBOL(wait_for_completion);
1da177e4 3794
65eb3dc6
KD
3795/**
3796 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3797 * @x: holds the state of this particular completion
3798 * @timeout: timeout value in jiffies
3799 *
3800 * This waits for either a completion of a specific task to be signaled or for a
3801 * specified timeout to expire. The timeout is in jiffies. It is not
3802 * interruptible.
c6dc7f05
BF
3803 *
3804 * The return value is 0 if timed out, and positive (at least 1, or number of
3805 * jiffies left till timeout) if completed.
65eb3dc6 3806 */
b15136e9 3807unsigned long __sched
8cbbe86d 3808wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 3809{
8cbbe86d 3810 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 3811}
8cbbe86d 3812EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 3813
65eb3dc6
KD
3814/**
3815 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3816 * @x: holds the state of this particular completion
3817 *
3818 * This waits for completion of a specific task to be signaled. It is
3819 * interruptible.
c6dc7f05
BF
3820 *
3821 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
65eb3dc6 3822 */
8cbbe86d 3823int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 3824{
51e97990
AK
3825 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3826 if (t == -ERESTARTSYS)
3827 return t;
3828 return 0;
0fec171c 3829}
8cbbe86d 3830EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 3831
65eb3dc6
KD
3832/**
3833 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3834 * @x: holds the state of this particular completion
3835 * @timeout: timeout value in jiffies
3836 *
3837 * This waits for either a completion of a specific task to be signaled or for a
3838 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
c6dc7f05
BF
3839 *
3840 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3841 * positive (at least 1, or number of jiffies left till timeout) if completed.
65eb3dc6 3842 */
6bf41237 3843long __sched
8cbbe86d
AK
3844wait_for_completion_interruptible_timeout(struct completion *x,
3845 unsigned long timeout)
0fec171c 3846{
8cbbe86d 3847 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 3848}
8cbbe86d 3849EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 3850
65eb3dc6
KD
3851/**
3852 * wait_for_completion_killable: - waits for completion of a task (killable)
3853 * @x: holds the state of this particular completion
3854 *
3855 * This waits to be signaled for completion of a specific task. It can be
3856 * interrupted by a kill signal.
c6dc7f05
BF
3857 *
3858 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
65eb3dc6 3859 */
009e577e
MW
3860int __sched wait_for_completion_killable(struct completion *x)
3861{
3862 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3863 if (t == -ERESTARTSYS)
3864 return t;
3865 return 0;
3866}
3867EXPORT_SYMBOL(wait_for_completion_killable);
3868
0aa12fb4
SW
3869/**
3870 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3871 * @x: holds the state of this particular completion
3872 * @timeout: timeout value in jiffies
3873 *
3874 * This waits for either a completion of a specific task to be
3875 * signaled or for a specified timeout to expire. It can be
3876 * interrupted by a kill signal. The timeout is in jiffies.
c6dc7f05
BF
3877 *
3878 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3879 * positive (at least 1, or number of jiffies left till timeout) if completed.
0aa12fb4 3880 */
6bf41237 3881long __sched
0aa12fb4
SW
3882wait_for_completion_killable_timeout(struct completion *x,
3883 unsigned long timeout)
3884{
3885 return wait_for_common(x, timeout, TASK_KILLABLE);
3886}
3887EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3888
be4de352
DC
3889/**
3890 * try_wait_for_completion - try to decrement a completion without blocking
3891 * @x: completion structure
3892 *
3893 * Returns: 0 if a decrement cannot be done without blocking
3894 * 1 if a decrement succeeded.
3895 *
3896 * If a completion is being used as a counting completion,
3897 * attempt to decrement the counter without blocking. This
3898 * enables us to avoid waiting if the resource the completion
3899 * is protecting is not available.
3900 */
3901bool try_wait_for_completion(struct completion *x)
3902{
7539a3b3 3903 unsigned long flags;
be4de352
DC
3904 int ret = 1;
3905
7539a3b3 3906 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
3907 if (!x->done)
3908 ret = 0;
3909 else
3910 x->done--;
7539a3b3 3911 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
3912 return ret;
3913}
3914EXPORT_SYMBOL(try_wait_for_completion);
3915
3916/**
3917 * completion_done - Test to see if a completion has any waiters
3918 * @x: completion structure
3919 *
3920 * Returns: 0 if there are waiters (wait_for_completion() in progress)
3921 * 1 if there are no waiters.
3922 *
3923 */
3924bool completion_done(struct completion *x)
3925{
7539a3b3 3926 unsigned long flags;
be4de352
DC
3927 int ret = 1;
3928
7539a3b3 3929 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
3930 if (!x->done)
3931 ret = 0;
7539a3b3 3932 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
3933 return ret;
3934}
3935EXPORT_SYMBOL(completion_done);
3936
8cbbe86d
AK
3937static long __sched
3938sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 3939{
0fec171c
IM
3940 unsigned long flags;
3941 wait_queue_t wait;
3942
3943 init_waitqueue_entry(&wait, current);
1da177e4 3944
8cbbe86d 3945 __set_current_state(state);
1da177e4 3946
8cbbe86d
AK
3947 spin_lock_irqsave(&q->lock, flags);
3948 __add_wait_queue(q, &wait);
3949 spin_unlock(&q->lock);
3950 timeout = schedule_timeout(timeout);
3951 spin_lock_irq(&q->lock);
3952 __remove_wait_queue(q, &wait);
3953 spin_unlock_irqrestore(&q->lock, flags);
3954
3955 return timeout;
3956}
3957
3958void __sched interruptible_sleep_on(wait_queue_head_t *q)
3959{
3960 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3961}
1da177e4
LT
3962EXPORT_SYMBOL(interruptible_sleep_on);
3963
0fec171c 3964long __sched
95cdf3b7 3965interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3966{
8cbbe86d 3967 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 3968}
1da177e4
LT
3969EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3970
0fec171c 3971void __sched sleep_on(wait_queue_head_t *q)
1da177e4 3972{
8cbbe86d 3973 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3974}
1da177e4
LT
3975EXPORT_SYMBOL(sleep_on);
3976
0fec171c 3977long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3978{
8cbbe86d 3979 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 3980}
1da177e4
LT
3981EXPORT_SYMBOL(sleep_on_timeout);
3982
b29739f9
IM
3983#ifdef CONFIG_RT_MUTEXES
3984
3985/*
3986 * rt_mutex_setprio - set the current priority of a task
3987 * @p: task
3988 * @prio: prio value (kernel-internal form)
3989 *
3990 * This function changes the 'effective' priority of a task. It does
3991 * not touch ->normal_prio like __setscheduler().
3992 *
3993 * Used by the rt_mutex code to implement priority inheritance logic.
3994 */
36c8b586 3995void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3996{
83b699ed 3997 int oldprio, on_rq, running;
70b97a7f 3998 struct rq *rq;
83ab0aa0 3999 const struct sched_class *prev_class;
b29739f9
IM
4000
4001 BUG_ON(prio < 0 || prio > MAX_PRIO);
4002
0122ec5b 4003 rq = __task_rq_lock(p);
b29739f9 4004
1c4dd99b
TG
4005 /*
4006 * Idle task boosting is a nono in general. There is one
4007 * exception, when PREEMPT_RT and NOHZ is active:
4008 *
4009 * The idle task calls get_next_timer_interrupt() and holds
4010 * the timer wheel base->lock on the CPU and another CPU wants
4011 * to access the timer (probably to cancel it). We can safely
4012 * ignore the boosting request, as the idle CPU runs this code
4013 * with interrupts disabled and will complete the lock
4014 * protected section without being interrupted. So there is no
4015 * real need to boost.
4016 */
4017 if (unlikely(p == rq->idle)) {
4018 WARN_ON(p != rq->curr);
4019 WARN_ON(p->pi_blocked_on);
4020 goto out_unlock;
4021 }
4022
a8027073 4023 trace_sched_pi_setprio(p, prio);
d5f9f942 4024 oldprio = p->prio;
83ab0aa0 4025 prev_class = p->sched_class;
fd2f4419 4026 on_rq = p->on_rq;
051a1d1a 4027 running = task_current(rq, p);
0e1f3483 4028 if (on_rq)
69be72c1 4029 dequeue_task(rq, p, 0);
0e1f3483
HS
4030 if (running)
4031 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4032
4033 if (rt_prio(prio))
4034 p->sched_class = &rt_sched_class;
4035 else
4036 p->sched_class = &fair_sched_class;
4037
b29739f9
IM
4038 p->prio = prio;
4039
0e1f3483
HS
4040 if (running)
4041 p->sched_class->set_curr_task(rq);
da7a735e 4042 if (on_rq)
371fd7e7 4043 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845 4044
da7a735e 4045 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 4046out_unlock:
0122ec5b 4047 __task_rq_unlock(rq);
b29739f9 4048}
b29739f9 4049#endif
36c8b586 4050void set_user_nice(struct task_struct *p, long nice)
1da177e4 4051{
dd41f596 4052 int old_prio, delta, on_rq;
1da177e4 4053 unsigned long flags;
70b97a7f 4054 struct rq *rq;
1da177e4
LT
4055
4056 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4057 return;
4058 /*
4059 * We have to be careful, if called from sys_setpriority(),
4060 * the task might be in the middle of scheduling on another CPU.
4061 */
4062 rq = task_rq_lock(p, &flags);
4063 /*
4064 * The RT priorities are set via sched_setscheduler(), but we still
4065 * allow the 'normal' nice value to be set - but as expected
4066 * it wont have any effect on scheduling until the task is
dd41f596 4067 * SCHED_FIFO/SCHED_RR:
1da177e4 4068 */
e05606d3 4069 if (task_has_rt_policy(p)) {
1da177e4
LT
4070 p->static_prio = NICE_TO_PRIO(nice);
4071 goto out_unlock;
4072 }
fd2f4419 4073 on_rq = p->on_rq;
c09595f6 4074 if (on_rq)
69be72c1 4075 dequeue_task(rq, p, 0);
1da177e4 4076
1da177e4 4077 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4078 set_load_weight(p);
b29739f9
IM
4079 old_prio = p->prio;
4080 p->prio = effective_prio(p);
4081 delta = p->prio - old_prio;
1da177e4 4082
dd41f596 4083 if (on_rq) {
371fd7e7 4084 enqueue_task(rq, p, 0);
1da177e4 4085 /*
d5f9f942
AM
4086 * If the task increased its priority or is running and
4087 * lowered its priority, then reschedule its CPU:
1da177e4 4088 */
d5f9f942 4089 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4090 resched_task(rq->curr);
4091 }
4092out_unlock:
0122ec5b 4093 task_rq_unlock(rq, p, &flags);
1da177e4 4094}
1da177e4
LT
4095EXPORT_SYMBOL(set_user_nice);
4096
e43379f1
MM
4097/*
4098 * can_nice - check if a task can reduce its nice value
4099 * @p: task
4100 * @nice: nice value
4101 */
36c8b586 4102int can_nice(const struct task_struct *p, const int nice)
e43379f1 4103{
024f4747
MM
4104 /* convert nice value [19,-20] to rlimit style value [1,40] */
4105 int nice_rlim = 20 - nice;
48f24c4d 4106
78d7d407 4107 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
4108 capable(CAP_SYS_NICE));
4109}
4110
1da177e4
LT
4111#ifdef __ARCH_WANT_SYS_NICE
4112
4113/*
4114 * sys_nice - change the priority of the current process.
4115 * @increment: priority increment
4116 *
4117 * sys_setpriority is a more generic, but much slower function that
4118 * does similar things.
4119 */
5add95d4 4120SYSCALL_DEFINE1(nice, int, increment)
1da177e4 4121{
48f24c4d 4122 long nice, retval;
1da177e4
LT
4123
4124 /*
4125 * Setpriority might change our priority at the same moment.
4126 * We don't have to worry. Conceptually one call occurs first
4127 * and we have a single winner.
4128 */
e43379f1
MM
4129 if (increment < -40)
4130 increment = -40;
1da177e4
LT
4131 if (increment > 40)
4132 increment = 40;
4133
2b8f836f 4134 nice = TASK_NICE(current) + increment;
1da177e4
LT
4135 if (nice < -20)
4136 nice = -20;
4137 if (nice > 19)
4138 nice = 19;
4139
e43379f1
MM
4140 if (increment < 0 && !can_nice(current, nice))
4141 return -EPERM;
4142
1da177e4
LT
4143 retval = security_task_setnice(current, nice);
4144 if (retval)
4145 return retval;
4146
4147 set_user_nice(current, nice);
4148 return 0;
4149}
4150
4151#endif
4152
4153/**
4154 * task_prio - return the priority value of a given task.
4155 * @p: the task in question.
4156 *
4157 * This is the priority value as seen by users in /proc.
4158 * RT tasks are offset by -200. Normal tasks are centered
4159 * around 0, value goes from -16 to +15.
4160 */
36c8b586 4161int task_prio(const struct task_struct *p)
1da177e4
LT
4162{
4163 return p->prio - MAX_RT_PRIO;
4164}
4165
4166/**
4167 * task_nice - return the nice value of a given task.
4168 * @p: the task in question.
4169 */
36c8b586 4170int task_nice(const struct task_struct *p)
1da177e4
LT
4171{
4172 return TASK_NICE(p);
4173}
150d8bed 4174EXPORT_SYMBOL(task_nice);
1da177e4
LT
4175
4176/**
4177 * idle_cpu - is a given cpu idle currently?
4178 * @cpu: the processor in question.
4179 */
4180int idle_cpu(int cpu)
4181{
908a3283
TG
4182 struct rq *rq = cpu_rq(cpu);
4183
4184 if (rq->curr != rq->idle)
4185 return 0;
4186
4187 if (rq->nr_running)
4188 return 0;
4189
4190#ifdef CONFIG_SMP
4191 if (!llist_empty(&rq->wake_list))
4192 return 0;
4193#endif
4194
4195 return 1;
1da177e4
LT
4196}
4197
1da177e4
LT
4198/**
4199 * idle_task - return the idle task for a given cpu.
4200 * @cpu: the processor in question.
4201 */
36c8b586 4202struct task_struct *idle_task(int cpu)
1da177e4
LT
4203{
4204 return cpu_rq(cpu)->idle;
4205}
4206
4207/**
4208 * find_process_by_pid - find a process with a matching PID value.
4209 * @pid: the pid in question.
4210 */
a9957449 4211static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4212{
228ebcbe 4213 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4214}
4215
4216/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4217static void
4218__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4219{
1da177e4
LT
4220 p->policy = policy;
4221 p->rt_priority = prio;
b29739f9
IM
4222 p->normal_prio = normal_prio(p);
4223 /* we are holding p->pi_lock already */
4224 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
4225 if (rt_prio(p->prio))
4226 p->sched_class = &rt_sched_class;
4227 else
4228 p->sched_class = &fair_sched_class;
2dd73a4f 4229 set_load_weight(p);
1da177e4
LT
4230}
4231
c69e8d9c
DH
4232/*
4233 * check the target process has a UID that matches the current process's
4234 */
4235static bool check_same_owner(struct task_struct *p)
4236{
4237 const struct cred *cred = current_cred(), *pcred;
4238 bool match;
4239
4240 rcu_read_lock();
4241 pcred = __task_cred(p);
9c806aa0
EB
4242 match = (uid_eq(cred->euid, pcred->euid) ||
4243 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
4244 rcu_read_unlock();
4245 return match;
4246}
4247
961ccddd 4248static int __sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4249 const struct sched_param *param, bool user)
1da177e4 4250{
83b699ed 4251 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4252 unsigned long flags;
83ab0aa0 4253 const struct sched_class *prev_class;
70b97a7f 4254 struct rq *rq;
ca94c442 4255 int reset_on_fork;
1da177e4 4256
66e5393a
SR
4257 /* may grab non-irq protected spin_locks */
4258 BUG_ON(in_interrupt());
1da177e4
LT
4259recheck:
4260 /* double check policy once rq lock held */
ca94c442
LP
4261 if (policy < 0) {
4262 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4263 policy = oldpolicy = p->policy;
ca94c442
LP
4264 } else {
4265 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4266 policy &= ~SCHED_RESET_ON_FORK;
4267
4268 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4269 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4270 policy != SCHED_IDLE)
4271 return -EINVAL;
4272 }
4273
1da177e4
LT
4274 /*
4275 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4276 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4277 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4278 */
4279 if (param->sched_priority < 0 ||
95cdf3b7 4280 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4281 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4282 return -EINVAL;
e05606d3 4283 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4284 return -EINVAL;
4285
37e4ab3f
OC
4286 /*
4287 * Allow unprivileged RT tasks to decrease priority:
4288 */
961ccddd 4289 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 4290 if (rt_policy(policy)) {
a44702e8
ON
4291 unsigned long rlim_rtprio =
4292 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
4293
4294 /* can't set/change the rt policy */
4295 if (policy != p->policy && !rlim_rtprio)
4296 return -EPERM;
4297
4298 /* can't increase priority */
4299 if (param->sched_priority > p->rt_priority &&
4300 param->sched_priority > rlim_rtprio)
4301 return -EPERM;
4302 }
c02aa73b 4303
dd41f596 4304 /*
c02aa73b
DH
4305 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4306 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 4307 */
c02aa73b
DH
4308 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
4309 if (!can_nice(p, TASK_NICE(p)))
4310 return -EPERM;
4311 }
5fe1d75f 4312
37e4ab3f 4313 /* can't change other user's priorities */
c69e8d9c 4314 if (!check_same_owner(p))
37e4ab3f 4315 return -EPERM;
ca94c442
LP
4316
4317 /* Normal users shall not reset the sched_reset_on_fork flag */
4318 if (p->sched_reset_on_fork && !reset_on_fork)
4319 return -EPERM;
37e4ab3f 4320 }
1da177e4 4321
725aad24 4322 if (user) {
b0ae1981 4323 retval = security_task_setscheduler(p);
725aad24
JF
4324 if (retval)
4325 return retval;
4326 }
4327
b29739f9
IM
4328 /*
4329 * make sure no PI-waiters arrive (or leave) while we are
4330 * changing the priority of the task:
0122ec5b 4331 *
25985edc 4332 * To be able to change p->policy safely, the appropriate
1da177e4
LT
4333 * runqueue lock must be held.
4334 */
0122ec5b 4335 rq = task_rq_lock(p, &flags);
dc61b1d6 4336
34f971f6
PZ
4337 /*
4338 * Changing the policy of the stop threads its a very bad idea
4339 */
4340 if (p == rq->stop) {
0122ec5b 4341 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
4342 return -EINVAL;
4343 }
4344
a51e9198
DF
4345 /*
4346 * If not changing anything there's no need to proceed further:
4347 */
4348 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
4349 param->sched_priority == p->rt_priority))) {
45afb173 4350 task_rq_unlock(rq, p, &flags);
a51e9198
DF
4351 return 0;
4352 }
4353
dc61b1d6
PZ
4354#ifdef CONFIG_RT_GROUP_SCHED
4355 if (user) {
4356 /*
4357 * Do not allow realtime tasks into groups that have no runtime
4358 * assigned.
4359 */
4360 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
4361 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4362 !task_group_is_autogroup(task_group(p))) {
0122ec5b 4363 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
4364 return -EPERM;
4365 }
4366 }
4367#endif
4368
1da177e4
LT
4369 /* recheck policy now with rq lock held */
4370 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4371 policy = oldpolicy = -1;
0122ec5b 4372 task_rq_unlock(rq, p, &flags);
1da177e4
LT
4373 goto recheck;
4374 }
fd2f4419 4375 on_rq = p->on_rq;
051a1d1a 4376 running = task_current(rq, p);
0e1f3483 4377 if (on_rq)
4ca9b72b 4378 dequeue_task(rq, p, 0);
0e1f3483
HS
4379 if (running)
4380 p->sched_class->put_prev_task(rq, p);
f6b53205 4381
ca94c442
LP
4382 p->sched_reset_on_fork = reset_on_fork;
4383
1da177e4 4384 oldprio = p->prio;
83ab0aa0 4385 prev_class = p->sched_class;
dd41f596 4386 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4387
0e1f3483
HS
4388 if (running)
4389 p->sched_class->set_curr_task(rq);
da7a735e 4390 if (on_rq)
4ca9b72b 4391 enqueue_task(rq, p, 0);
cb469845 4392
da7a735e 4393 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 4394 task_rq_unlock(rq, p, &flags);
b29739f9 4395
95e02ca9
TG
4396 rt_mutex_adjust_pi(p);
4397
1da177e4
LT
4398 return 0;
4399}
961ccddd
RR
4400
4401/**
4402 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4403 * @p: the task in question.
4404 * @policy: new policy.
4405 * @param: structure containing the new RT priority.
4406 *
4407 * NOTE that the task may be already dead.
4408 */
4409int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4410 const struct sched_param *param)
961ccddd
RR
4411{
4412 return __sched_setscheduler(p, policy, param, true);
4413}
1da177e4
LT
4414EXPORT_SYMBOL_GPL(sched_setscheduler);
4415
961ccddd
RR
4416/**
4417 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4418 * @p: the task in question.
4419 * @policy: new policy.
4420 * @param: structure containing the new RT priority.
4421 *
4422 * Just like sched_setscheduler, only don't bother checking if the
4423 * current context has permission. For example, this is needed in
4424 * stop_machine(): we create temporary high priority worker threads,
4425 * but our caller might not have that capability.
4426 */
4427int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 4428 const struct sched_param *param)
961ccddd
RR
4429{
4430 return __sched_setscheduler(p, policy, param, false);
4431}
4432
95cdf3b7
IM
4433static int
4434do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4435{
1da177e4
LT
4436 struct sched_param lparam;
4437 struct task_struct *p;
36c8b586 4438 int retval;
1da177e4
LT
4439
4440 if (!param || pid < 0)
4441 return -EINVAL;
4442 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4443 return -EFAULT;
5fe1d75f
ON
4444
4445 rcu_read_lock();
4446 retval = -ESRCH;
1da177e4 4447 p = find_process_by_pid(pid);
5fe1d75f
ON
4448 if (p != NULL)
4449 retval = sched_setscheduler(p, policy, &lparam);
4450 rcu_read_unlock();
36c8b586 4451
1da177e4
LT
4452 return retval;
4453}
4454
4455/**
4456 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4457 * @pid: the pid in question.
4458 * @policy: new policy.
4459 * @param: structure containing the new RT priority.
4460 */
5add95d4
HC
4461SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4462 struct sched_param __user *, param)
1da177e4 4463{
c21761f1
JB
4464 /* negative values for policy are not valid */
4465 if (policy < 0)
4466 return -EINVAL;
4467
1da177e4
LT
4468 return do_sched_setscheduler(pid, policy, param);
4469}
4470
4471/**
4472 * sys_sched_setparam - set/change the RT priority of a thread
4473 * @pid: the pid in question.
4474 * @param: structure containing the new RT priority.
4475 */
5add95d4 4476SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4477{
4478 return do_sched_setscheduler(pid, -1, param);
4479}
4480
4481/**
4482 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4483 * @pid: the pid in question.
4484 */
5add95d4 4485SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4486{
36c8b586 4487 struct task_struct *p;
3a5c359a 4488 int retval;
1da177e4
LT
4489
4490 if (pid < 0)
3a5c359a 4491 return -EINVAL;
1da177e4
LT
4492
4493 retval = -ESRCH;
5fe85be0 4494 rcu_read_lock();
1da177e4
LT
4495 p = find_process_by_pid(pid);
4496 if (p) {
4497 retval = security_task_getscheduler(p);
4498 if (!retval)
ca94c442
LP
4499 retval = p->policy
4500 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4501 }
5fe85be0 4502 rcu_read_unlock();
1da177e4
LT
4503 return retval;
4504}
4505
4506/**
ca94c442 4507 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4508 * @pid: the pid in question.
4509 * @param: structure containing the RT priority.
4510 */
5add95d4 4511SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4512{
4513 struct sched_param lp;
36c8b586 4514 struct task_struct *p;
3a5c359a 4515 int retval;
1da177e4
LT
4516
4517 if (!param || pid < 0)
3a5c359a 4518 return -EINVAL;
1da177e4 4519
5fe85be0 4520 rcu_read_lock();
1da177e4
LT
4521 p = find_process_by_pid(pid);
4522 retval = -ESRCH;
4523 if (!p)
4524 goto out_unlock;
4525
4526 retval = security_task_getscheduler(p);
4527 if (retval)
4528 goto out_unlock;
4529
4530 lp.sched_priority = p->rt_priority;
5fe85be0 4531 rcu_read_unlock();
1da177e4
LT
4532
4533 /*
4534 * This one might sleep, we cannot do it with a spinlock held ...
4535 */
4536 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4537
1da177e4
LT
4538 return retval;
4539
4540out_unlock:
5fe85be0 4541 rcu_read_unlock();
1da177e4
LT
4542 return retval;
4543}
4544
96f874e2 4545long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4546{
5a16f3d3 4547 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4548 struct task_struct *p;
4549 int retval;
1da177e4 4550
95402b38 4551 get_online_cpus();
23f5d142 4552 rcu_read_lock();
1da177e4
LT
4553
4554 p = find_process_by_pid(pid);
4555 if (!p) {
23f5d142 4556 rcu_read_unlock();
95402b38 4557 put_online_cpus();
1da177e4
LT
4558 return -ESRCH;
4559 }
4560
23f5d142 4561 /* Prevent p going away */
1da177e4 4562 get_task_struct(p);
23f5d142 4563 rcu_read_unlock();
1da177e4 4564
5a16f3d3
RR
4565 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4566 retval = -ENOMEM;
4567 goto out_put_task;
4568 }
4569 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4570 retval = -ENOMEM;
4571 goto out_free_cpus_allowed;
4572 }
1da177e4 4573 retval = -EPERM;
f1c84dae 4574 if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE))
1da177e4
LT
4575 goto out_unlock;
4576
b0ae1981 4577 retval = security_task_setscheduler(p);
e7834f8f
DQ
4578 if (retval)
4579 goto out_unlock;
4580
5a16f3d3
RR
4581 cpuset_cpus_allowed(p, cpus_allowed);
4582 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 4583again:
5a16f3d3 4584 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 4585
8707d8b8 4586 if (!retval) {
5a16f3d3
RR
4587 cpuset_cpus_allowed(p, cpus_allowed);
4588 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4589 /*
4590 * We must have raced with a concurrent cpuset
4591 * update. Just reset the cpus_allowed to the
4592 * cpuset's cpus_allowed
4593 */
5a16f3d3 4594 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4595 goto again;
4596 }
4597 }
1da177e4 4598out_unlock:
5a16f3d3
RR
4599 free_cpumask_var(new_mask);
4600out_free_cpus_allowed:
4601 free_cpumask_var(cpus_allowed);
4602out_put_task:
1da177e4 4603 put_task_struct(p);
95402b38 4604 put_online_cpus();
1da177e4
LT
4605 return retval;
4606}
4607
4608static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4609 struct cpumask *new_mask)
1da177e4 4610{
96f874e2
RR
4611 if (len < cpumask_size())
4612 cpumask_clear(new_mask);
4613 else if (len > cpumask_size())
4614 len = cpumask_size();
4615
1da177e4
LT
4616 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4617}
4618
4619/**
4620 * sys_sched_setaffinity - set the cpu affinity of a process
4621 * @pid: pid of the process
4622 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4623 * @user_mask_ptr: user-space pointer to the new cpu mask
4624 */
5add95d4
HC
4625SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4626 unsigned long __user *, user_mask_ptr)
1da177e4 4627{
5a16f3d3 4628 cpumask_var_t new_mask;
1da177e4
LT
4629 int retval;
4630
5a16f3d3
RR
4631 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4632 return -ENOMEM;
1da177e4 4633
5a16f3d3
RR
4634 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4635 if (retval == 0)
4636 retval = sched_setaffinity(pid, new_mask);
4637 free_cpumask_var(new_mask);
4638 return retval;
1da177e4
LT
4639}
4640
96f874e2 4641long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4642{
36c8b586 4643 struct task_struct *p;
31605683 4644 unsigned long flags;
1da177e4 4645 int retval;
1da177e4 4646
95402b38 4647 get_online_cpus();
23f5d142 4648 rcu_read_lock();
1da177e4
LT
4649
4650 retval = -ESRCH;
4651 p = find_process_by_pid(pid);
4652 if (!p)
4653 goto out_unlock;
4654
e7834f8f
DQ
4655 retval = security_task_getscheduler(p);
4656 if (retval)
4657 goto out_unlock;
4658
013fdb80 4659 raw_spin_lock_irqsave(&p->pi_lock, flags);
96f874e2 4660 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
013fdb80 4661 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4662
4663out_unlock:
23f5d142 4664 rcu_read_unlock();
95402b38 4665 put_online_cpus();
1da177e4 4666
9531b62f 4667 return retval;
1da177e4
LT
4668}
4669
4670/**
4671 * sys_sched_getaffinity - get the cpu affinity of a process
4672 * @pid: pid of the process
4673 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4674 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4675 */
5add95d4
HC
4676SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4677 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4678{
4679 int ret;
f17c8607 4680 cpumask_var_t mask;
1da177e4 4681
84fba5ec 4682 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4683 return -EINVAL;
4684 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4685 return -EINVAL;
4686
f17c8607
RR
4687 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4688 return -ENOMEM;
1da177e4 4689
f17c8607
RR
4690 ret = sched_getaffinity(pid, mask);
4691 if (ret == 0) {
8bc037fb 4692 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4693
4694 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4695 ret = -EFAULT;
4696 else
cd3d8031 4697 ret = retlen;
f17c8607
RR
4698 }
4699 free_cpumask_var(mask);
1da177e4 4700
f17c8607 4701 return ret;
1da177e4
LT
4702}
4703
4704/**
4705 * sys_sched_yield - yield the current processor to other threads.
4706 *
dd41f596
IM
4707 * This function yields the current CPU to other tasks. If there are no
4708 * other threads running on this CPU then this function will return.
1da177e4 4709 */
5add95d4 4710SYSCALL_DEFINE0(sched_yield)
1da177e4 4711{
70b97a7f 4712 struct rq *rq = this_rq_lock();
1da177e4 4713
2d72376b 4714 schedstat_inc(rq, yld_count);
4530d7ab 4715 current->sched_class->yield_task(rq);
1da177e4
LT
4716
4717 /*
4718 * Since we are going to call schedule() anyway, there's
4719 * no need to preempt or enable interrupts:
4720 */
4721 __release(rq->lock);
8a25d5de 4722 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4723 do_raw_spin_unlock(&rq->lock);
ba74c144 4724 sched_preempt_enable_no_resched();
1da177e4
LT
4725
4726 schedule();
4727
4728 return 0;
4729}
4730
d86ee480
PZ
4731static inline int should_resched(void)
4732{
4733 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4734}
4735
e7b38404 4736static void __cond_resched(void)
1da177e4 4737{
e7aaaa69 4738 add_preempt_count(PREEMPT_ACTIVE);
c259e01a 4739 __schedule();
e7aaaa69 4740 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
4741}
4742
02b67cc3 4743int __sched _cond_resched(void)
1da177e4 4744{
d86ee480 4745 if (should_resched()) {
1da177e4
LT
4746 __cond_resched();
4747 return 1;
4748 }
4749 return 0;
4750}
02b67cc3 4751EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4752
4753/*
613afbf8 4754 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4755 * call schedule, and on return reacquire the lock.
4756 *
41a2d6cf 4757 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4758 * operations here to prevent schedule() from being called twice (once via
4759 * spin_unlock(), once by hand).
4760 */
613afbf8 4761int __cond_resched_lock(spinlock_t *lock)
1da177e4 4762{
d86ee480 4763 int resched = should_resched();
6df3cecb
JK
4764 int ret = 0;
4765
f607c668
PZ
4766 lockdep_assert_held(lock);
4767
95c354fe 4768 if (spin_needbreak(lock) || resched) {
1da177e4 4769 spin_unlock(lock);
d86ee480 4770 if (resched)
95c354fe
NP
4771 __cond_resched();
4772 else
4773 cpu_relax();
6df3cecb 4774 ret = 1;
1da177e4 4775 spin_lock(lock);
1da177e4 4776 }
6df3cecb 4777 return ret;
1da177e4 4778}
613afbf8 4779EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4780
613afbf8 4781int __sched __cond_resched_softirq(void)
1da177e4
LT
4782{
4783 BUG_ON(!in_softirq());
4784
d86ee480 4785 if (should_resched()) {
98d82567 4786 local_bh_enable();
1da177e4
LT
4787 __cond_resched();
4788 local_bh_disable();
4789 return 1;
4790 }
4791 return 0;
4792}
613afbf8 4793EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4794
1da177e4
LT
4795/**
4796 * yield - yield the current processor to other threads.
4797 *
8e3fabfd
PZ
4798 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4799 *
4800 * The scheduler is at all times free to pick the calling task as the most
4801 * eligible task to run, if removing the yield() call from your code breaks
4802 * it, its already broken.
4803 *
4804 * Typical broken usage is:
4805 *
4806 * while (!event)
4807 * yield();
4808 *
4809 * where one assumes that yield() will let 'the other' process run that will
4810 * make event true. If the current task is a SCHED_FIFO task that will never
4811 * happen. Never use yield() as a progress guarantee!!
4812 *
4813 * If you want to use yield() to wait for something, use wait_event().
4814 * If you want to use yield() to be 'nice' for others, use cond_resched().
4815 * If you still want to use yield(), do not!
1da177e4
LT
4816 */
4817void __sched yield(void)
4818{
4819 set_current_state(TASK_RUNNING);
4820 sys_sched_yield();
4821}
1da177e4
LT
4822EXPORT_SYMBOL(yield);
4823
d95f4122
MG
4824/**
4825 * yield_to - yield the current processor to another thread in
4826 * your thread group, or accelerate that thread toward the
4827 * processor it's on.
16addf95
RD
4828 * @p: target task
4829 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4830 *
4831 * It's the caller's job to ensure that the target task struct
4832 * can't go away on us before we can do any checks.
4833 *
4834 * Returns true if we indeed boosted the target task.
4835 */
4836bool __sched yield_to(struct task_struct *p, bool preempt)
4837{
4838 struct task_struct *curr = current;
4839 struct rq *rq, *p_rq;
4840 unsigned long flags;
4841 bool yielded = 0;
4842
4843 local_irq_save(flags);
4844 rq = this_rq();
4845
4846again:
4847 p_rq = task_rq(p);
4848 double_rq_lock(rq, p_rq);
4849 while (task_rq(p) != p_rq) {
4850 double_rq_unlock(rq, p_rq);
4851 goto again;
4852 }
4853
4854 if (!curr->sched_class->yield_to_task)
4855 goto out;
4856
4857 if (curr->sched_class != p->sched_class)
4858 goto out;
4859
4860 if (task_running(p_rq, p) || p->state)
4861 goto out;
4862
4863 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4864 if (yielded) {
d95f4122 4865 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4866 /*
4867 * Make p's CPU reschedule; pick_next_entity takes care of
4868 * fairness.
4869 */
4870 if (preempt && rq != p_rq)
4871 resched_task(p_rq->curr);
916671c0
MG
4872 } else {
4873 /*
4874 * We might have set it in task_yield_fair(), but are
4875 * not going to schedule(), so don't want to skip
4876 * the next update.
4877 */
4878 rq->skip_clock_update = 0;
6d1cafd8 4879 }
d95f4122
MG
4880
4881out:
4882 double_rq_unlock(rq, p_rq);
4883 local_irq_restore(flags);
4884
4885 if (yielded)
4886 schedule();
4887
4888 return yielded;
4889}
4890EXPORT_SYMBOL_GPL(yield_to);
4891
1da177e4 4892/*
41a2d6cf 4893 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4894 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
4895 */
4896void __sched io_schedule(void)
4897{
54d35f29 4898 struct rq *rq = raw_rq();
1da177e4 4899
0ff92245 4900 delayacct_blkio_start();
1da177e4 4901 atomic_inc(&rq->nr_iowait);
73c10101 4902 blk_flush_plug(current);
8f0dfc34 4903 current->in_iowait = 1;
1da177e4 4904 schedule();
8f0dfc34 4905 current->in_iowait = 0;
1da177e4 4906 atomic_dec(&rq->nr_iowait);
0ff92245 4907 delayacct_blkio_end();
1da177e4 4908}
1da177e4
LT
4909EXPORT_SYMBOL(io_schedule);
4910
4911long __sched io_schedule_timeout(long timeout)
4912{
54d35f29 4913 struct rq *rq = raw_rq();
1da177e4
LT
4914 long ret;
4915
0ff92245 4916 delayacct_blkio_start();
1da177e4 4917 atomic_inc(&rq->nr_iowait);
73c10101 4918 blk_flush_plug(current);
8f0dfc34 4919 current->in_iowait = 1;
1da177e4 4920 ret = schedule_timeout(timeout);
8f0dfc34 4921 current->in_iowait = 0;
1da177e4 4922 atomic_dec(&rq->nr_iowait);
0ff92245 4923 delayacct_blkio_end();
1da177e4
LT
4924 return ret;
4925}
4926
4927/**
4928 * sys_sched_get_priority_max - return maximum RT priority.
4929 * @policy: scheduling class.
4930 *
4931 * this syscall returns the maximum rt_priority that can be used
4932 * by a given scheduling class.
4933 */
5add95d4 4934SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4935{
4936 int ret = -EINVAL;
4937
4938 switch (policy) {
4939 case SCHED_FIFO:
4940 case SCHED_RR:
4941 ret = MAX_USER_RT_PRIO-1;
4942 break;
4943 case SCHED_NORMAL:
b0a9499c 4944 case SCHED_BATCH:
dd41f596 4945 case SCHED_IDLE:
1da177e4
LT
4946 ret = 0;
4947 break;
4948 }
4949 return ret;
4950}
4951
4952/**
4953 * sys_sched_get_priority_min - return minimum RT priority.
4954 * @policy: scheduling class.
4955 *
4956 * this syscall returns the minimum rt_priority that can be used
4957 * by a given scheduling class.
4958 */
5add95d4 4959SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4960{
4961 int ret = -EINVAL;
4962
4963 switch (policy) {
4964 case SCHED_FIFO:
4965 case SCHED_RR:
4966 ret = 1;
4967 break;
4968 case SCHED_NORMAL:
b0a9499c 4969 case SCHED_BATCH:
dd41f596 4970 case SCHED_IDLE:
1da177e4
LT
4971 ret = 0;
4972 }
4973 return ret;
4974}
4975
4976/**
4977 * sys_sched_rr_get_interval - return the default timeslice of a process.
4978 * @pid: pid of the process.
4979 * @interval: userspace pointer to the timeslice value.
4980 *
4981 * this syscall writes the default timeslice value of a given process
4982 * into the user-space timespec buffer. A value of '0' means infinity.
4983 */
17da2bd9 4984SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4985 struct timespec __user *, interval)
1da177e4 4986{
36c8b586 4987 struct task_struct *p;
a4ec24b4 4988 unsigned int time_slice;
dba091b9
TG
4989 unsigned long flags;
4990 struct rq *rq;
3a5c359a 4991 int retval;
1da177e4 4992 struct timespec t;
1da177e4
LT
4993
4994 if (pid < 0)
3a5c359a 4995 return -EINVAL;
1da177e4
LT
4996
4997 retval = -ESRCH;
1a551ae7 4998 rcu_read_lock();
1da177e4
LT
4999 p = find_process_by_pid(pid);
5000 if (!p)
5001 goto out_unlock;
5002
5003 retval = security_task_getscheduler(p);
5004 if (retval)
5005 goto out_unlock;
5006
dba091b9
TG
5007 rq = task_rq_lock(p, &flags);
5008 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 5009 task_rq_unlock(rq, p, &flags);
a4ec24b4 5010
1a551ae7 5011 rcu_read_unlock();
a4ec24b4 5012 jiffies_to_timespec(time_slice, &t);
1da177e4 5013 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5014 return retval;
3a5c359a 5015
1da177e4 5016out_unlock:
1a551ae7 5017 rcu_read_unlock();
1da177e4
LT
5018 return retval;
5019}
5020
7c731e0a 5021static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5022
82a1fcb9 5023void sched_show_task(struct task_struct *p)
1da177e4 5024{
1da177e4 5025 unsigned long free = 0;
36c8b586 5026 unsigned state;
1da177e4 5027
1da177e4 5028 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 5029 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 5030 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5031#if BITS_PER_LONG == 32
1da177e4 5032 if (state == TASK_RUNNING)
3df0fc5b 5033 printk(KERN_CONT " running ");
1da177e4 5034 else
3df0fc5b 5035 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5036#else
5037 if (state == TASK_RUNNING)
3df0fc5b 5038 printk(KERN_CONT " running task ");
1da177e4 5039 else
3df0fc5b 5040 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5041#endif
5042#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5043 free = stack_not_used(p);
1da177e4 5044#endif
3df0fc5b 5045 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
07cde260 5046 task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)),
aa47b7e0 5047 (unsigned long)task_thread_info(p)->flags);
1da177e4 5048
5fb5e6de 5049 show_stack(p, NULL);
1da177e4
LT
5050}
5051
e59e2ae2 5052void show_state_filter(unsigned long state_filter)
1da177e4 5053{
36c8b586 5054 struct task_struct *g, *p;
1da177e4 5055
4bd77321 5056#if BITS_PER_LONG == 32
3df0fc5b
PZ
5057 printk(KERN_INFO
5058 " task PC stack pid father\n");
1da177e4 5059#else
3df0fc5b
PZ
5060 printk(KERN_INFO
5061 " task PC stack pid father\n");
1da177e4 5062#endif
510f5acc 5063 rcu_read_lock();
1da177e4
LT
5064 do_each_thread(g, p) {
5065 /*
5066 * reset the NMI-timeout, listing all files on a slow
25985edc 5067 * console might take a lot of time:
1da177e4
LT
5068 */
5069 touch_nmi_watchdog();
39bc89fd 5070 if (!state_filter || (p->state & state_filter))
82a1fcb9 5071 sched_show_task(p);
1da177e4
LT
5072 } while_each_thread(g, p);
5073
04c9167f
JF
5074 touch_all_softlockup_watchdogs();
5075
dd41f596
IM
5076#ifdef CONFIG_SCHED_DEBUG
5077 sysrq_sched_debug_show();
5078#endif
510f5acc 5079 rcu_read_unlock();
e59e2ae2
IM
5080 /*
5081 * Only show locks if all tasks are dumped:
5082 */
93335a21 5083 if (!state_filter)
e59e2ae2 5084 debug_show_all_locks();
1da177e4
LT
5085}
5086
1df21055
IM
5087void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5088{
dd41f596 5089 idle->sched_class = &idle_sched_class;
1df21055
IM
5090}
5091
f340c0d1
IM
5092/**
5093 * init_idle - set up an idle thread for a given CPU
5094 * @idle: task in question
5095 * @cpu: cpu the idle task belongs to
5096 *
5097 * NOTE: this function does not set the idle thread's NEED_RESCHED
5098 * flag, to make booting more robust.
5099 */
5c1e1767 5100void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5101{
70b97a7f 5102 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5103 unsigned long flags;
5104
05fa785c 5105 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 5106
dd41f596 5107 __sched_fork(idle);
06b83b5f 5108 idle->state = TASK_RUNNING;
dd41f596
IM
5109 idle->se.exec_start = sched_clock();
5110
1e1b6c51 5111 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
5112 /*
5113 * We're having a chicken and egg problem, even though we are
5114 * holding rq->lock, the cpu isn't yet set to this cpu so the
5115 * lockdep check in task_group() will fail.
5116 *
5117 * Similar case to sched_fork(). / Alternatively we could
5118 * use task_rq_lock() here and obtain the other rq->lock.
5119 *
5120 * Silence PROVE_RCU
5121 */
5122 rcu_read_lock();
dd41f596 5123 __set_task_cpu(idle, cpu);
6506cf6c 5124 rcu_read_unlock();
1da177e4 5125
1da177e4 5126 rq->curr = rq->idle = idle;
3ca7a440
PZ
5127#if defined(CONFIG_SMP)
5128 idle->on_cpu = 1;
4866cde0 5129#endif
05fa785c 5130 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5131
5132 /* Set the preempt count _outside_ the spinlocks! */
a1261f54 5133 task_thread_info(idle)->preempt_count = 0;
55cd5340 5134
dd41f596
IM
5135 /*
5136 * The idle tasks have their own, simple scheduling class:
5137 */
5138 idle->sched_class = &idle_sched_class;
868baf07 5139 ftrace_graph_init_idle_task(idle, cpu);
f1c6f1a7
CE
5140#if defined(CONFIG_SMP)
5141 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5142#endif
19978ca6
IM
5143}
5144
1da177e4 5145#ifdef CONFIG_SMP
1e1b6c51
KM
5146void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
5147{
5148 if (p->sched_class && p->sched_class->set_cpus_allowed)
5149 p->sched_class->set_cpus_allowed(p, new_mask);
4939602a
PZ
5150
5151 cpumask_copy(&p->cpus_allowed, new_mask);
29baa747 5152 p->nr_cpus_allowed = cpumask_weight(new_mask);
1e1b6c51
KM
5153}
5154
1da177e4
LT
5155/*
5156 * This is how migration works:
5157 *
969c7921
TH
5158 * 1) we invoke migration_cpu_stop() on the target CPU using
5159 * stop_one_cpu().
5160 * 2) stopper starts to run (implicitly forcing the migrated thread
5161 * off the CPU)
5162 * 3) it checks whether the migrated task is still in the wrong runqueue.
5163 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 5164 * it and puts it into the right queue.
969c7921
TH
5165 * 5) stopper completes and stop_one_cpu() returns and the migration
5166 * is done.
1da177e4
LT
5167 */
5168
5169/*
5170 * Change a given task's CPU affinity. Migrate the thread to a
5171 * proper CPU and schedule it away if the CPU it's executing on
5172 * is removed from the allowed bitmask.
5173 *
5174 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5175 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5176 * call is not atomic; no spinlocks may be held.
5177 */
96f874e2 5178int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
5179{
5180 unsigned long flags;
70b97a7f 5181 struct rq *rq;
969c7921 5182 unsigned int dest_cpu;
48f24c4d 5183 int ret = 0;
1da177e4
LT
5184
5185 rq = task_rq_lock(p, &flags);
e2912009 5186
db44fc01
YZ
5187 if (cpumask_equal(&p->cpus_allowed, new_mask))
5188 goto out;
5189
6ad4c188 5190 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
5191 ret = -EINVAL;
5192 goto out;
5193 }
5194
db44fc01 5195 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
9985b0ba
DR
5196 ret = -EINVAL;
5197 goto out;
5198 }
5199
1e1b6c51 5200 do_set_cpus_allowed(p, new_mask);
73fe6aae 5201
1da177e4 5202 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 5203 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
5204 goto out;
5205
969c7921 5206 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
bd8e7dde 5207 if (p->on_rq) {
969c7921 5208 struct migration_arg arg = { p, dest_cpu };
1da177e4 5209 /* Need help from migration thread: drop lock and wait. */
0122ec5b 5210 task_rq_unlock(rq, p, &flags);
969c7921 5211 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
5212 tlb_migrate_finish(p->mm);
5213 return 0;
5214 }
5215out:
0122ec5b 5216 task_rq_unlock(rq, p, &flags);
48f24c4d 5217
1da177e4
LT
5218 return ret;
5219}
cd8ba7cd 5220EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5221
5222/*
41a2d6cf 5223 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5224 * this because either it can't run here any more (set_cpus_allowed()
5225 * away from this CPU, or CPU going down), or because we're
5226 * attempting to rebalance this task on exec (sched_exec).
5227 *
5228 * So we race with normal scheduler movements, but that's OK, as long
5229 * as the task is no longer on this CPU.
efc30814
KK
5230 *
5231 * Returns non-zero if task was successfully migrated.
1da177e4 5232 */
efc30814 5233static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5234{
70b97a7f 5235 struct rq *rq_dest, *rq_src;
e2912009 5236 int ret = 0;
1da177e4 5237
e761b772 5238 if (unlikely(!cpu_active(dest_cpu)))
efc30814 5239 return ret;
1da177e4
LT
5240
5241 rq_src = cpu_rq(src_cpu);
5242 rq_dest = cpu_rq(dest_cpu);
5243
0122ec5b 5244 raw_spin_lock(&p->pi_lock);
1da177e4
LT
5245 double_rq_lock(rq_src, rq_dest);
5246 /* Already moved. */
5247 if (task_cpu(p) != src_cpu)
b1e38734 5248 goto done;
1da177e4 5249 /* Affinity changed (again). */
fa17b507 5250 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
b1e38734 5251 goto fail;
1da177e4 5252
e2912009
PZ
5253 /*
5254 * If we're not on a rq, the next wake-up will ensure we're
5255 * placed properly.
5256 */
fd2f4419 5257 if (p->on_rq) {
4ca9b72b 5258 dequeue_task(rq_src, p, 0);
e2912009 5259 set_task_cpu(p, dest_cpu);
4ca9b72b 5260 enqueue_task(rq_dest, p, 0);
15afe09b 5261 check_preempt_curr(rq_dest, p, 0);
1da177e4 5262 }
b1e38734 5263done:
efc30814 5264 ret = 1;
b1e38734 5265fail:
1da177e4 5266 double_rq_unlock(rq_src, rq_dest);
0122ec5b 5267 raw_spin_unlock(&p->pi_lock);
efc30814 5268 return ret;
1da177e4
LT
5269}
5270
5271/*
969c7921
TH
5272 * migration_cpu_stop - this will be executed by a highprio stopper thread
5273 * and performs thread migration by bumping thread off CPU then
5274 * 'pushing' onto another runqueue.
1da177e4 5275 */
969c7921 5276static int migration_cpu_stop(void *data)
1da177e4 5277{
969c7921 5278 struct migration_arg *arg = data;
f7b4cddc 5279
969c7921
TH
5280 /*
5281 * The original target cpu might have gone down and we might
5282 * be on another cpu but it doesn't matter.
5283 */
f7b4cddc 5284 local_irq_disable();
969c7921 5285 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 5286 local_irq_enable();
1da177e4 5287 return 0;
f7b4cddc
ON
5288}
5289
1da177e4 5290#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 5291
054b9108 5292/*
48c5ccae
PZ
5293 * Ensures that the idle task is using init_mm right before its cpu goes
5294 * offline.
054b9108 5295 */
48c5ccae 5296void idle_task_exit(void)
1da177e4 5297{
48c5ccae 5298 struct mm_struct *mm = current->active_mm;
e76bd8d9 5299
48c5ccae 5300 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 5301
48c5ccae
PZ
5302 if (mm != &init_mm)
5303 switch_mm(mm, &init_mm, current);
5304 mmdrop(mm);
1da177e4
LT
5305}
5306
5307/*
5d180232
PZ
5308 * Since this CPU is going 'away' for a while, fold any nr_active delta
5309 * we might have. Assumes we're called after migrate_tasks() so that the
5310 * nr_active count is stable.
5311 *
5312 * Also see the comment "Global load-average calculations".
1da177e4 5313 */
5d180232 5314static void calc_load_migrate(struct rq *rq)
1da177e4 5315{
5d180232
PZ
5316 long delta = calc_load_fold_active(rq);
5317 if (delta)
5318 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
5319}
5320
48f24c4d 5321/*
48c5ccae
PZ
5322 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5323 * try_to_wake_up()->select_task_rq().
5324 *
5325 * Called with rq->lock held even though we'er in stop_machine() and
5326 * there's no concurrency possible, we hold the required locks anyway
5327 * because of lock validation efforts.
1da177e4 5328 */
48c5ccae 5329static void migrate_tasks(unsigned int dead_cpu)
1da177e4 5330{
70b97a7f 5331 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
5332 struct task_struct *next, *stop = rq->stop;
5333 int dest_cpu;
1da177e4
LT
5334
5335 /*
48c5ccae
PZ
5336 * Fudge the rq selection such that the below task selection loop
5337 * doesn't get stuck on the currently eligible stop task.
5338 *
5339 * We're currently inside stop_machine() and the rq is either stuck
5340 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5341 * either way we should never end up calling schedule() until we're
5342 * done here.
1da177e4 5343 */
48c5ccae 5344 rq->stop = NULL;
48f24c4d 5345
dd41f596 5346 for ( ; ; ) {
48c5ccae
PZ
5347 /*
5348 * There's this thread running, bail when that's the only
5349 * remaining thread.
5350 */
5351 if (rq->nr_running == 1)
dd41f596 5352 break;
48c5ccae 5353
b67802ea 5354 next = pick_next_task(rq);
48c5ccae 5355 BUG_ON(!next);
79c53799 5356 next->sched_class->put_prev_task(rq, next);
e692ab53 5357
48c5ccae
PZ
5358 /* Find suitable destination for @next, with force if needed. */
5359 dest_cpu = select_fallback_rq(dead_cpu, next);
5360 raw_spin_unlock(&rq->lock);
5361
5362 __migrate_task(next, dead_cpu, dest_cpu);
5363
5364 raw_spin_lock(&rq->lock);
1da177e4 5365 }
dce48a84 5366
48c5ccae 5367 rq->stop = stop;
dce48a84 5368}
48c5ccae 5369
1da177e4
LT
5370#endif /* CONFIG_HOTPLUG_CPU */
5371
e692ab53
NP
5372#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5373
5374static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5375 {
5376 .procname = "sched_domain",
c57baf1e 5377 .mode = 0555,
e0361851 5378 },
56992309 5379 {}
e692ab53
NP
5380};
5381
5382static struct ctl_table sd_ctl_root[] = {
e0361851
AD
5383 {
5384 .procname = "kernel",
c57baf1e 5385 .mode = 0555,
e0361851
AD
5386 .child = sd_ctl_dir,
5387 },
56992309 5388 {}
e692ab53
NP
5389};
5390
5391static struct ctl_table *sd_alloc_ctl_entry(int n)
5392{
5393 struct ctl_table *entry =
5cf9f062 5394 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5395
e692ab53
NP
5396 return entry;
5397}
5398
6382bc90
MM
5399static void sd_free_ctl_entry(struct ctl_table **tablep)
5400{
cd790076 5401 struct ctl_table *entry;
6382bc90 5402
cd790076
MM
5403 /*
5404 * In the intermediate directories, both the child directory and
5405 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5406 * will always be set. In the lowest directory the names are
cd790076
MM
5407 * static strings and all have proc handlers.
5408 */
5409 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5410 if (entry->child)
5411 sd_free_ctl_entry(&entry->child);
cd790076
MM
5412 if (entry->proc_handler == NULL)
5413 kfree(entry->procname);
5414 }
6382bc90
MM
5415
5416 kfree(*tablep);
5417 *tablep = NULL;
5418}
5419
e692ab53 5420static void
e0361851 5421set_table_entry(struct ctl_table *entry,
e692ab53 5422 const char *procname, void *data, int maxlen,
36fcb589 5423 umode_t mode, proc_handler *proc_handler)
e692ab53 5424{
e692ab53
NP
5425 entry->procname = procname;
5426 entry->data = data;
5427 entry->maxlen = maxlen;
5428 entry->mode = mode;
5429 entry->proc_handler = proc_handler;
5430}
5431
5432static struct ctl_table *
5433sd_alloc_ctl_domain_table(struct sched_domain *sd)
5434{
a5d8c348 5435 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 5436
ad1cdc1d
MM
5437 if (table == NULL)
5438 return NULL;
5439
e0361851 5440 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5441 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5442 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5443 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5444 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5445 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5446 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5447 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5448 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5449 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5450 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5451 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5452 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5453 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5454 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5455 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5456 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5457 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5458 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
5459 &sd->cache_nice_tries,
5460 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5461 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 5462 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
5463 set_table_entry(&table[11], "name", sd->name,
5464 CORENAME_MAX_SIZE, 0444, proc_dostring);
5465 /* &table[12] is terminator */
e692ab53
NP
5466
5467 return table;
5468}
5469
9a4e7159 5470static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5471{
5472 struct ctl_table *entry, *table;
5473 struct sched_domain *sd;
5474 int domain_num = 0, i;
5475 char buf[32];
5476
5477 for_each_domain(cpu, sd)
5478 domain_num++;
5479 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5480 if (table == NULL)
5481 return NULL;
e692ab53
NP
5482
5483 i = 0;
5484 for_each_domain(cpu, sd) {
5485 snprintf(buf, 32, "domain%d", i);
e692ab53 5486 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5487 entry->mode = 0555;
e692ab53
NP
5488 entry->child = sd_alloc_ctl_domain_table(sd);
5489 entry++;
5490 i++;
5491 }
5492 return table;
5493}
5494
5495static struct ctl_table_header *sd_sysctl_header;
6382bc90 5496static void register_sched_domain_sysctl(void)
e692ab53 5497{
6ad4c188 5498 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5499 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5500 char buf[32];
5501
7378547f
MM
5502 WARN_ON(sd_ctl_dir[0].child);
5503 sd_ctl_dir[0].child = entry;
5504
ad1cdc1d
MM
5505 if (entry == NULL)
5506 return;
5507
6ad4c188 5508 for_each_possible_cpu(i) {
e692ab53 5509 snprintf(buf, 32, "cpu%d", i);
e692ab53 5510 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5511 entry->mode = 0555;
e692ab53 5512 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5513 entry++;
e692ab53 5514 }
7378547f
MM
5515
5516 WARN_ON(sd_sysctl_header);
e692ab53
NP
5517 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5518}
6382bc90 5519
7378547f 5520/* may be called multiple times per register */
6382bc90
MM
5521static void unregister_sched_domain_sysctl(void)
5522{
7378547f
MM
5523 if (sd_sysctl_header)
5524 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5525 sd_sysctl_header = NULL;
7378547f
MM
5526 if (sd_ctl_dir[0].child)
5527 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5528}
e692ab53 5529#else
6382bc90
MM
5530static void register_sched_domain_sysctl(void)
5531{
5532}
5533static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5534{
5535}
5536#endif
5537
1f11eb6a
GH
5538static void set_rq_online(struct rq *rq)
5539{
5540 if (!rq->online) {
5541 const struct sched_class *class;
5542
c6c4927b 5543 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5544 rq->online = 1;
5545
5546 for_each_class(class) {
5547 if (class->rq_online)
5548 class->rq_online(rq);
5549 }
5550 }
5551}
5552
5553static void set_rq_offline(struct rq *rq)
5554{
5555 if (rq->online) {
5556 const struct sched_class *class;
5557
5558 for_each_class(class) {
5559 if (class->rq_offline)
5560 class->rq_offline(rq);
5561 }
5562
c6c4927b 5563 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5564 rq->online = 0;
5565 }
5566}
5567
1da177e4
LT
5568/*
5569 * migration_call - callback that gets triggered when a CPU is added.
5570 * Here we can start up the necessary migration thread for the new CPU.
5571 */
48f24c4d
IM
5572static int __cpuinit
5573migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5574{
48f24c4d 5575 int cpu = (long)hcpu;
1da177e4 5576 unsigned long flags;
969c7921 5577 struct rq *rq = cpu_rq(cpu);
1da177e4 5578
48c5ccae 5579 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 5580
1da177e4 5581 case CPU_UP_PREPARE:
a468d389 5582 rq->calc_load_update = calc_load_update;
1da177e4 5583 break;
48f24c4d 5584
1da177e4 5585 case CPU_ONLINE:
1f94ef59 5586 /* Update our root-domain */
05fa785c 5587 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5588 if (rq->rd) {
c6c4927b 5589 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5590
5591 set_rq_online(rq);
1f94ef59 5592 }
05fa785c 5593 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5594 break;
48f24c4d 5595
1da177e4 5596#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5597 case CPU_DYING:
317f3941 5598 sched_ttwu_pending();
57d885fe 5599 /* Update our root-domain */
05fa785c 5600 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5601 if (rq->rd) {
c6c4927b 5602 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5603 set_rq_offline(rq);
57d885fe 5604 }
48c5ccae
PZ
5605 migrate_tasks(cpu);
5606 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5607 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 5608 break;
48c5ccae 5609
5d180232 5610 case CPU_DEAD:
f319da0c 5611 calc_load_migrate(rq);
57d885fe 5612 break;
1da177e4
LT
5613#endif
5614 }
49c022e6
PZ
5615
5616 update_max_interval();
5617
1da177e4
LT
5618 return NOTIFY_OK;
5619}
5620
f38b0820
PM
5621/*
5622 * Register at high priority so that task migration (migrate_all_tasks)
5623 * happens before everything else. This has to be lower priority than
cdd6c482 5624 * the notifier in the perf_event subsystem, though.
1da177e4 5625 */
26c2143b 5626static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4 5627 .notifier_call = migration_call,
50a323b7 5628 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5629};
5630
3a101d05
TH
5631static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5632 unsigned long action, void *hcpu)
5633{
5634 switch (action & ~CPU_TASKS_FROZEN) {
5fbd036b 5635 case CPU_STARTING:
3a101d05
TH
5636 case CPU_DOWN_FAILED:
5637 set_cpu_active((long)hcpu, true);
5638 return NOTIFY_OK;
5639 default:
5640 return NOTIFY_DONE;
5641 }
5642}
5643
5644static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5645 unsigned long action, void *hcpu)
5646{
5647 switch (action & ~CPU_TASKS_FROZEN) {
5648 case CPU_DOWN_PREPARE:
5649 set_cpu_active((long)hcpu, false);
5650 return NOTIFY_OK;
5651 default:
5652 return NOTIFY_DONE;
5653 }
5654}
5655
7babe8db 5656static int __init migration_init(void)
1da177e4
LT
5657{
5658 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5659 int err;
48f24c4d 5660
3a101d05 5661 /* Initialize migration for the boot CPU */
07dccf33
AM
5662 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5663 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5664 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5665 register_cpu_notifier(&migration_notifier);
7babe8db 5666
3a101d05
TH
5667 /* Register cpu active notifiers */
5668 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5669 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5670
a004cd42 5671 return 0;
1da177e4 5672}
7babe8db 5673early_initcall(migration_init);
1da177e4
LT
5674#endif
5675
5676#ifdef CONFIG_SMP
476f3534 5677
4cb98839
PZ
5678static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5679
3e9830dc 5680#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5681
d039ac60 5682static __read_mostly int sched_debug_enabled;
f6630114 5683
d039ac60 5684static int __init sched_debug_setup(char *str)
f6630114 5685{
d039ac60 5686 sched_debug_enabled = 1;
f6630114
MT
5687
5688 return 0;
5689}
d039ac60
PZ
5690early_param("sched_debug", sched_debug_setup);
5691
5692static inline bool sched_debug(void)
5693{
5694 return sched_debug_enabled;
5695}
f6630114 5696
7c16ec58 5697static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5698 struct cpumask *groupmask)
1da177e4 5699{
4dcf6aff 5700 struct sched_group *group = sd->groups;
434d53b0 5701 char str[256];
1da177e4 5702
968ea6d8 5703 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 5704 cpumask_clear(groupmask);
4dcf6aff
IM
5705
5706 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5707
5708 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5709 printk("does not load-balance\n");
4dcf6aff 5710 if (sd->parent)
3df0fc5b
PZ
5711 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5712 " has parent");
4dcf6aff 5713 return -1;
41c7ce9a
NP
5714 }
5715
3df0fc5b 5716 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 5717
758b2cdc 5718 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5719 printk(KERN_ERR "ERROR: domain->span does not contain "
5720 "CPU%d\n", cpu);
4dcf6aff 5721 }
758b2cdc 5722 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5723 printk(KERN_ERR "ERROR: domain->groups does not contain"
5724 " CPU%d\n", cpu);
4dcf6aff 5725 }
1da177e4 5726
4dcf6aff 5727 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5728 do {
4dcf6aff 5729 if (!group) {
3df0fc5b
PZ
5730 printk("\n");
5731 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5732 break;
5733 }
5734
c3decf0d
PZ
5735 /*
5736 * Even though we initialize ->power to something semi-sane,
5737 * we leave power_orig unset. This allows us to detect if
5738 * domain iteration is still funny without causing /0 traps.
5739 */
5740 if (!group->sgp->power_orig) {
3df0fc5b
PZ
5741 printk(KERN_CONT "\n");
5742 printk(KERN_ERR "ERROR: domain->cpu_power not "
5743 "set\n");
4dcf6aff
IM
5744 break;
5745 }
1da177e4 5746
758b2cdc 5747 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5748 printk(KERN_CONT "\n");
5749 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5750 break;
5751 }
1da177e4 5752
cb83b629
PZ
5753 if (!(sd->flags & SD_OVERLAP) &&
5754 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5755 printk(KERN_CONT "\n");
5756 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5757 break;
5758 }
1da177e4 5759
758b2cdc 5760 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5761
968ea6d8 5762 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 5763
3df0fc5b 5764 printk(KERN_CONT " %s", str);
9c3f75cb 5765 if (group->sgp->power != SCHED_POWER_SCALE) {
3df0fc5b 5766 printk(KERN_CONT " (cpu_power = %d)",
9c3f75cb 5767 group->sgp->power);
381512cf 5768 }
1da177e4 5769
4dcf6aff
IM
5770 group = group->next;
5771 } while (group != sd->groups);
3df0fc5b 5772 printk(KERN_CONT "\n");
1da177e4 5773
758b2cdc 5774 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5775 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5776
758b2cdc
RR
5777 if (sd->parent &&
5778 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5779 printk(KERN_ERR "ERROR: parent span is not a superset "
5780 "of domain->span\n");
4dcf6aff
IM
5781 return 0;
5782}
1da177e4 5783
4dcf6aff
IM
5784static void sched_domain_debug(struct sched_domain *sd, int cpu)
5785{
5786 int level = 0;
1da177e4 5787
d039ac60 5788 if (!sched_debug_enabled)
f6630114
MT
5789 return;
5790
4dcf6aff
IM
5791 if (!sd) {
5792 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5793 return;
5794 }
1da177e4 5795
4dcf6aff
IM
5796 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5797
5798 for (;;) {
4cb98839 5799 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5800 break;
1da177e4
LT
5801 level++;
5802 sd = sd->parent;
33859f7f 5803 if (!sd)
4dcf6aff
IM
5804 break;
5805 }
1da177e4 5806}
6d6bc0ad 5807#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5808# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5809static inline bool sched_debug(void)
5810{
5811 return false;
5812}
6d6bc0ad 5813#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5814
1a20ff27 5815static int sd_degenerate(struct sched_domain *sd)
245af2c7 5816{
758b2cdc 5817 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5818 return 1;
5819
5820 /* Following flags need at least 2 groups */
5821 if (sd->flags & (SD_LOAD_BALANCE |
5822 SD_BALANCE_NEWIDLE |
5823 SD_BALANCE_FORK |
89c4710e
SS
5824 SD_BALANCE_EXEC |
5825 SD_SHARE_CPUPOWER |
5826 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5827 if (sd->groups != sd->groups->next)
5828 return 0;
5829 }
5830
5831 /* Following flags don't use groups */
c88d5910 5832 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5833 return 0;
5834
5835 return 1;
5836}
5837
48f24c4d
IM
5838static int
5839sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5840{
5841 unsigned long cflags = sd->flags, pflags = parent->flags;
5842
5843 if (sd_degenerate(parent))
5844 return 1;
5845
758b2cdc 5846 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5847 return 0;
5848
245af2c7
SS
5849 /* Flags needing groups don't count if only 1 group in parent */
5850 if (parent->groups == parent->groups->next) {
5851 pflags &= ~(SD_LOAD_BALANCE |
5852 SD_BALANCE_NEWIDLE |
5853 SD_BALANCE_FORK |
89c4710e
SS
5854 SD_BALANCE_EXEC |
5855 SD_SHARE_CPUPOWER |
5856 SD_SHARE_PKG_RESOURCES);
5436499e
KC
5857 if (nr_node_ids == 1)
5858 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5859 }
5860 if (~cflags & pflags)
5861 return 0;
5862
5863 return 1;
5864}
5865
dce840a0 5866static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5867{
dce840a0 5868 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5869
68e74568 5870 cpupri_cleanup(&rd->cpupri);
c6c4927b
RR
5871 free_cpumask_var(rd->rto_mask);
5872 free_cpumask_var(rd->online);
5873 free_cpumask_var(rd->span);
5874 kfree(rd);
5875}
5876
57d885fe
GH
5877static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5878{
a0490fa3 5879 struct root_domain *old_rd = NULL;
57d885fe 5880 unsigned long flags;
57d885fe 5881
05fa785c 5882 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5883
5884 if (rq->rd) {
a0490fa3 5885 old_rd = rq->rd;
57d885fe 5886
c6c4927b 5887 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5888 set_rq_offline(rq);
57d885fe 5889
c6c4927b 5890 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5891
a0490fa3
IM
5892 /*
5893 * If we dont want to free the old_rt yet then
5894 * set old_rd to NULL to skip the freeing later
5895 * in this function:
5896 */
5897 if (!atomic_dec_and_test(&old_rd->refcount))
5898 old_rd = NULL;
57d885fe
GH
5899 }
5900
5901 atomic_inc(&rd->refcount);
5902 rq->rd = rd;
5903
c6c4927b 5904 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5905 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5906 set_rq_online(rq);
57d885fe 5907
05fa785c 5908 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5909
5910 if (old_rd)
dce840a0 5911 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5912}
5913
68c38fc3 5914static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5915{
5916 memset(rd, 0, sizeof(*rd));
5917
68c38fc3 5918 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5919 goto out;
68c38fc3 5920 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5921 goto free_span;
68c38fc3 5922 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 5923 goto free_online;
6e0534f2 5924
68c38fc3 5925 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5926 goto free_rto_mask;
c6c4927b 5927 return 0;
6e0534f2 5928
68e74568
RR
5929free_rto_mask:
5930 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
5931free_online:
5932 free_cpumask_var(rd->online);
5933free_span:
5934 free_cpumask_var(rd->span);
0c910d28 5935out:
c6c4927b 5936 return -ENOMEM;
57d885fe
GH
5937}
5938
029632fb
PZ
5939/*
5940 * By default the system creates a single root-domain with all cpus as
5941 * members (mimicking the global state we have today).
5942 */
5943struct root_domain def_root_domain;
5944
57d885fe
GH
5945static void init_defrootdomain(void)
5946{
68c38fc3 5947 init_rootdomain(&def_root_domain);
c6c4927b 5948
57d885fe
GH
5949 atomic_set(&def_root_domain.refcount, 1);
5950}
5951
dc938520 5952static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5953{
5954 struct root_domain *rd;
5955
5956 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5957 if (!rd)
5958 return NULL;
5959
68c38fc3 5960 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5961 kfree(rd);
5962 return NULL;
5963 }
57d885fe
GH
5964
5965 return rd;
5966}
5967
e3589f6c
PZ
5968static void free_sched_groups(struct sched_group *sg, int free_sgp)
5969{
5970 struct sched_group *tmp, *first;
5971
5972 if (!sg)
5973 return;
5974
5975 first = sg;
5976 do {
5977 tmp = sg->next;
5978
5979 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5980 kfree(sg->sgp);
5981
5982 kfree(sg);
5983 sg = tmp;
5984 } while (sg != first);
5985}
5986
dce840a0
PZ
5987static void free_sched_domain(struct rcu_head *rcu)
5988{
5989 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5990
5991 /*
5992 * If its an overlapping domain it has private groups, iterate and
5993 * nuke them all.
5994 */
5995 if (sd->flags & SD_OVERLAP) {
5996 free_sched_groups(sd->groups, 1);
5997 } else if (atomic_dec_and_test(&sd->groups->ref)) {
9c3f75cb 5998 kfree(sd->groups->sgp);
dce840a0 5999 kfree(sd->groups);
9c3f75cb 6000 }
dce840a0
PZ
6001 kfree(sd);
6002}
6003
6004static void destroy_sched_domain(struct sched_domain *sd, int cpu)
6005{
6006 call_rcu(&sd->rcu, free_sched_domain);
6007}
6008
6009static void destroy_sched_domains(struct sched_domain *sd, int cpu)
6010{
6011 for (; sd; sd = sd->parent)
6012 destroy_sched_domain(sd, cpu);
6013}
6014
518cd623
PZ
6015/*
6016 * Keep a special pointer to the highest sched_domain that has
6017 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
6018 * allows us to avoid some pointer chasing select_idle_sibling().
6019 *
6020 * Also keep a unique ID per domain (we use the first cpu number in
6021 * the cpumask of the domain), this allows us to quickly tell if
39be3501 6022 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
6023 */
6024DEFINE_PER_CPU(struct sched_domain *, sd_llc);
6025DEFINE_PER_CPU(int, sd_llc_id);
6026
6027static void update_top_cache_domain(int cpu)
6028{
6029 struct sched_domain *sd;
6030 int id = cpu;
6031
6032 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
37407ea7 6033 if (sd)
518cd623
PZ
6034 id = cpumask_first(sched_domain_span(sd));
6035
6036 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
6037 per_cpu(sd_llc_id, cpu) = id;
6038}
6039
1da177e4 6040/*
0eab9146 6041 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6042 * hold the hotplug lock.
6043 */
0eab9146
IM
6044static void
6045cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6046{
70b97a7f 6047 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6048 struct sched_domain *tmp;
6049
6050 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6051 for (tmp = sd; tmp; ) {
245af2c7
SS
6052 struct sched_domain *parent = tmp->parent;
6053 if (!parent)
6054 break;
f29c9b1c 6055
1a848870 6056 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6057 tmp->parent = parent->parent;
1a848870
SS
6058 if (parent->parent)
6059 parent->parent->child = tmp;
dce840a0 6060 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
6061 } else
6062 tmp = tmp->parent;
245af2c7
SS
6063 }
6064
1a848870 6065 if (sd && sd_degenerate(sd)) {
dce840a0 6066 tmp = sd;
245af2c7 6067 sd = sd->parent;
dce840a0 6068 destroy_sched_domain(tmp, cpu);
1a848870
SS
6069 if (sd)
6070 sd->child = NULL;
6071 }
1da177e4 6072
4cb98839 6073 sched_domain_debug(sd, cpu);
1da177e4 6074
57d885fe 6075 rq_attach_root(rq, rd);
dce840a0 6076 tmp = rq->sd;
674311d5 6077 rcu_assign_pointer(rq->sd, sd);
dce840a0 6078 destroy_sched_domains(tmp, cpu);
518cd623
PZ
6079
6080 update_top_cache_domain(cpu);
1da177e4
LT
6081}
6082
6083/* cpus with isolated domains */
dcc30a35 6084static cpumask_var_t cpu_isolated_map;
1da177e4
LT
6085
6086/* Setup the mask of cpus configured for isolated domains */
6087static int __init isolated_cpu_setup(char *str)
6088{
bdddd296 6089 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 6090 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
6091 return 1;
6092}
6093
8927f494 6094__setup("isolcpus=", isolated_cpu_setup);
1da177e4 6095
d3081f52
PZ
6096static const struct cpumask *cpu_cpu_mask(int cpu)
6097{
6098 return cpumask_of_node(cpu_to_node(cpu));
6099}
6100
dce840a0
PZ
6101struct sd_data {
6102 struct sched_domain **__percpu sd;
6103 struct sched_group **__percpu sg;
9c3f75cb 6104 struct sched_group_power **__percpu sgp;
dce840a0
PZ
6105};
6106
49a02c51 6107struct s_data {
21d42ccf 6108 struct sched_domain ** __percpu sd;
49a02c51
AH
6109 struct root_domain *rd;
6110};
6111
2109b99e 6112enum s_alloc {
2109b99e 6113 sa_rootdomain,
21d42ccf 6114 sa_sd,
dce840a0 6115 sa_sd_storage,
2109b99e
AH
6116 sa_none,
6117};
6118
54ab4ff4
PZ
6119struct sched_domain_topology_level;
6120
6121typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
eb7a74e6
PZ
6122typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
6123
e3589f6c
PZ
6124#define SDTL_OVERLAP 0x01
6125
eb7a74e6 6126struct sched_domain_topology_level {
2c402dc3
PZ
6127 sched_domain_init_f init;
6128 sched_domain_mask_f mask;
e3589f6c 6129 int flags;
cb83b629 6130 int numa_level;
54ab4ff4 6131 struct sd_data data;
eb7a74e6
PZ
6132};
6133
c1174876
PZ
6134/*
6135 * Build an iteration mask that can exclude certain CPUs from the upwards
6136 * domain traversal.
6137 *
6138 * Asymmetric node setups can result in situations where the domain tree is of
6139 * unequal depth, make sure to skip domains that already cover the entire
6140 * range.
6141 *
6142 * In that case build_sched_domains() will have terminated the iteration early
6143 * and our sibling sd spans will be empty. Domains should always include the
6144 * cpu they're built on, so check that.
6145 *
6146 */
6147static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6148{
6149 const struct cpumask *span = sched_domain_span(sd);
6150 struct sd_data *sdd = sd->private;
6151 struct sched_domain *sibling;
6152 int i;
6153
6154 for_each_cpu(i, span) {
6155 sibling = *per_cpu_ptr(sdd->sd, i);
6156 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6157 continue;
6158
6159 cpumask_set_cpu(i, sched_group_mask(sg));
6160 }
6161}
6162
6163/*
6164 * Return the canonical balance cpu for this group, this is the first cpu
6165 * of this group that's also in the iteration mask.
6166 */
6167int group_balance_cpu(struct sched_group *sg)
6168{
6169 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6170}
6171
e3589f6c
PZ
6172static int
6173build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6174{
6175 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6176 const struct cpumask *span = sched_domain_span(sd);
6177 struct cpumask *covered = sched_domains_tmpmask;
6178 struct sd_data *sdd = sd->private;
6179 struct sched_domain *child;
6180 int i;
6181
6182 cpumask_clear(covered);
6183
6184 for_each_cpu(i, span) {
6185 struct cpumask *sg_span;
6186
6187 if (cpumask_test_cpu(i, covered))
6188 continue;
6189
c1174876
PZ
6190 child = *per_cpu_ptr(sdd->sd, i);
6191
6192 /* See the comment near build_group_mask(). */
6193 if (!cpumask_test_cpu(i, sched_domain_span(child)))
6194 continue;
6195
e3589f6c 6196 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 6197 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
6198
6199 if (!sg)
6200 goto fail;
6201
6202 sg_span = sched_group_cpus(sg);
e3589f6c
PZ
6203 if (child->child) {
6204 child = child->child;
6205 cpumask_copy(sg_span, sched_domain_span(child));
6206 } else
6207 cpumask_set_cpu(i, sg_span);
6208
6209 cpumask_or(covered, covered, sg_span);
6210
74a5ce20 6211 sg->sgp = *per_cpu_ptr(sdd->sgp, i);
c1174876
PZ
6212 if (atomic_inc_return(&sg->sgp->ref) == 1)
6213 build_group_mask(sd, sg);
6214
c3decf0d
PZ
6215 /*
6216 * Initialize sgp->power such that even if we mess up the
6217 * domains and no possible iteration will get us here, we won't
6218 * die on a /0 trap.
6219 */
6220 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
e3589f6c 6221
c1174876
PZ
6222 /*
6223 * Make sure the first group of this domain contains the
6224 * canonical balance cpu. Otherwise the sched_domain iteration
6225 * breaks. See update_sg_lb_stats().
6226 */
74a5ce20 6227 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 6228 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
6229 groups = sg;
6230
6231 if (!first)
6232 first = sg;
6233 if (last)
6234 last->next = sg;
6235 last = sg;
6236 last->next = first;
6237 }
6238 sd->groups = groups;
6239
6240 return 0;
6241
6242fail:
6243 free_sched_groups(first, 0);
6244
6245 return -ENOMEM;
6246}
6247
dce840a0 6248static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 6249{
dce840a0
PZ
6250 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6251 struct sched_domain *child = sd->child;
1da177e4 6252
dce840a0
PZ
6253 if (child)
6254 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 6255
9c3f75cb 6256 if (sg) {
dce840a0 6257 *sg = *per_cpu_ptr(sdd->sg, cpu);
9c3f75cb 6258 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
e3589f6c 6259 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
9c3f75cb 6260 }
dce840a0
PZ
6261
6262 return cpu;
1e9f28fa 6263}
1e9f28fa 6264
01a08546 6265/*
dce840a0
PZ
6266 * build_sched_groups will build a circular linked list of the groups
6267 * covered by the given span, and will set each group's ->cpumask correctly,
6268 * and ->cpu_power to 0.
e3589f6c
PZ
6269 *
6270 * Assumes the sched_domain tree is fully constructed
01a08546 6271 */
e3589f6c
PZ
6272static int
6273build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 6274{
dce840a0
PZ
6275 struct sched_group *first = NULL, *last = NULL;
6276 struct sd_data *sdd = sd->private;
6277 const struct cpumask *span = sched_domain_span(sd);
f96225fd 6278 struct cpumask *covered;
dce840a0 6279 int i;
9c1cfda2 6280
e3589f6c
PZ
6281 get_group(cpu, sdd, &sd->groups);
6282 atomic_inc(&sd->groups->ref);
6283
6284 if (cpu != cpumask_first(sched_domain_span(sd)))
6285 return 0;
6286
f96225fd
PZ
6287 lockdep_assert_held(&sched_domains_mutex);
6288 covered = sched_domains_tmpmask;
6289
dce840a0 6290 cpumask_clear(covered);
6711cab4 6291
dce840a0
PZ
6292 for_each_cpu(i, span) {
6293 struct sched_group *sg;
6294 int group = get_group(i, sdd, &sg);
6295 int j;
6711cab4 6296
dce840a0
PZ
6297 if (cpumask_test_cpu(i, covered))
6298 continue;
6711cab4 6299
dce840a0 6300 cpumask_clear(sched_group_cpus(sg));
9c3f75cb 6301 sg->sgp->power = 0;
c1174876 6302 cpumask_setall(sched_group_mask(sg));
0601a88d 6303
dce840a0
PZ
6304 for_each_cpu(j, span) {
6305 if (get_group(j, sdd, NULL) != group)
6306 continue;
0601a88d 6307
dce840a0
PZ
6308 cpumask_set_cpu(j, covered);
6309 cpumask_set_cpu(j, sched_group_cpus(sg));
6310 }
0601a88d 6311
dce840a0
PZ
6312 if (!first)
6313 first = sg;
6314 if (last)
6315 last->next = sg;
6316 last = sg;
6317 }
6318 last->next = first;
e3589f6c
PZ
6319
6320 return 0;
0601a88d 6321}
51888ca2 6322
89c4710e
SS
6323/*
6324 * Initialize sched groups cpu_power.
6325 *
6326 * cpu_power indicates the capacity of sched group, which is used while
6327 * distributing the load between different sched groups in a sched domain.
6328 * Typically cpu_power for all the groups in a sched domain will be same unless
6329 * there are asymmetries in the topology. If there are asymmetries, group
6330 * having more cpu_power will pickup more load compared to the group having
6331 * less cpu_power.
89c4710e
SS
6332 */
6333static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6334{
e3589f6c 6335 struct sched_group *sg = sd->groups;
89c4710e 6336
e3589f6c
PZ
6337 WARN_ON(!sd || !sg);
6338
6339 do {
6340 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6341 sg = sg->next;
6342 } while (sg != sd->groups);
89c4710e 6343
c1174876 6344 if (cpu != group_balance_cpu(sg))
e3589f6c 6345 return;
aae6d3dd 6346
d274cb30 6347 update_group_power(sd, cpu);
69e1e811 6348 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
89c4710e
SS
6349}
6350
029632fb
PZ
6351int __weak arch_sd_sibling_asym_packing(void)
6352{
6353 return 0*SD_ASYM_PACKING;
89c4710e
SS
6354}
6355
7c16ec58
MT
6356/*
6357 * Initializers for schedule domains
6358 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6359 */
6360
a5d8c348
IM
6361#ifdef CONFIG_SCHED_DEBUG
6362# define SD_INIT_NAME(sd, type) sd->name = #type
6363#else
6364# define SD_INIT_NAME(sd, type) do { } while (0)
6365#endif
6366
54ab4ff4
PZ
6367#define SD_INIT_FUNC(type) \
6368static noinline struct sched_domain * \
6369sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
6370{ \
6371 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
6372 *sd = SD_##type##_INIT; \
54ab4ff4
PZ
6373 SD_INIT_NAME(sd, type); \
6374 sd->private = &tl->data; \
6375 return sd; \
7c16ec58
MT
6376}
6377
6378SD_INIT_FUNC(CPU)
7c16ec58
MT
6379#ifdef CONFIG_SCHED_SMT
6380 SD_INIT_FUNC(SIBLING)
6381#endif
6382#ifdef CONFIG_SCHED_MC
6383 SD_INIT_FUNC(MC)
6384#endif
01a08546
HC
6385#ifdef CONFIG_SCHED_BOOK
6386 SD_INIT_FUNC(BOOK)
6387#endif
7c16ec58 6388
1d3504fc 6389static int default_relax_domain_level = -1;
60495e77 6390int sched_domain_level_max;
1d3504fc
HS
6391
6392static int __init setup_relax_domain_level(char *str)
6393{
a841f8ce
DS
6394 if (kstrtoint(str, 0, &default_relax_domain_level))
6395 pr_warn("Unable to set relax_domain_level\n");
30e0e178 6396
1d3504fc
HS
6397 return 1;
6398}
6399__setup("relax_domain_level=", setup_relax_domain_level);
6400
6401static void set_domain_attribute(struct sched_domain *sd,
6402 struct sched_domain_attr *attr)
6403{
6404 int request;
6405
6406 if (!attr || attr->relax_domain_level < 0) {
6407 if (default_relax_domain_level < 0)
6408 return;
6409 else
6410 request = default_relax_domain_level;
6411 } else
6412 request = attr->relax_domain_level;
6413 if (request < sd->level) {
6414 /* turn off idle balance on this domain */
c88d5910 6415 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6416 } else {
6417 /* turn on idle balance on this domain */
c88d5910 6418 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6419 }
6420}
6421
54ab4ff4
PZ
6422static void __sdt_free(const struct cpumask *cpu_map);
6423static int __sdt_alloc(const struct cpumask *cpu_map);
6424
2109b99e
AH
6425static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6426 const struct cpumask *cpu_map)
6427{
6428 switch (what) {
2109b99e 6429 case sa_rootdomain:
822ff793
PZ
6430 if (!atomic_read(&d->rd->refcount))
6431 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
6432 case sa_sd:
6433 free_percpu(d->sd); /* fall through */
dce840a0 6434 case sa_sd_storage:
54ab4ff4 6435 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
6436 case sa_none:
6437 break;
6438 }
6439}
3404c8d9 6440
2109b99e
AH
6441static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6442 const struct cpumask *cpu_map)
6443{
dce840a0
PZ
6444 memset(d, 0, sizeof(*d));
6445
54ab4ff4
PZ
6446 if (__sdt_alloc(cpu_map))
6447 return sa_sd_storage;
dce840a0
PZ
6448 d->sd = alloc_percpu(struct sched_domain *);
6449 if (!d->sd)
6450 return sa_sd_storage;
2109b99e 6451 d->rd = alloc_rootdomain();
dce840a0 6452 if (!d->rd)
21d42ccf 6453 return sa_sd;
2109b99e
AH
6454 return sa_rootdomain;
6455}
57d885fe 6456
dce840a0
PZ
6457/*
6458 * NULL the sd_data elements we've used to build the sched_domain and
6459 * sched_group structure so that the subsequent __free_domain_allocs()
6460 * will not free the data we're using.
6461 */
6462static void claim_allocations(int cpu, struct sched_domain *sd)
6463{
6464 struct sd_data *sdd = sd->private;
dce840a0
PZ
6465
6466 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6467 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6468
e3589f6c 6469 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 6470 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c
PZ
6471
6472 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
9c3f75cb 6473 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
dce840a0
PZ
6474}
6475
2c402dc3
PZ
6476#ifdef CONFIG_SCHED_SMT
6477static const struct cpumask *cpu_smt_mask(int cpu)
7f4588f3 6478{
2c402dc3 6479 return topology_thread_cpumask(cpu);
3bd65a80 6480}
2c402dc3 6481#endif
7f4588f3 6482
d069b916
PZ
6483/*
6484 * Topology list, bottom-up.
6485 */
2c402dc3 6486static struct sched_domain_topology_level default_topology[] = {
d069b916
PZ
6487#ifdef CONFIG_SCHED_SMT
6488 { sd_init_SIBLING, cpu_smt_mask, },
01a08546 6489#endif
1e9f28fa 6490#ifdef CONFIG_SCHED_MC
2c402dc3 6491 { sd_init_MC, cpu_coregroup_mask, },
1e9f28fa 6492#endif
d069b916
PZ
6493#ifdef CONFIG_SCHED_BOOK
6494 { sd_init_BOOK, cpu_book_mask, },
6495#endif
6496 { sd_init_CPU, cpu_cpu_mask, },
eb7a74e6
PZ
6497 { NULL, },
6498};
6499
6500static struct sched_domain_topology_level *sched_domain_topology = default_topology;
6501
cb83b629
PZ
6502#ifdef CONFIG_NUMA
6503
6504static int sched_domains_numa_levels;
cb83b629
PZ
6505static int *sched_domains_numa_distance;
6506static struct cpumask ***sched_domains_numa_masks;
6507static int sched_domains_curr_level;
6508
cb83b629
PZ
6509static inline int sd_local_flags(int level)
6510{
10717dcd 6511 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
cb83b629
PZ
6512 return 0;
6513
6514 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
6515}
6516
6517static struct sched_domain *
6518sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
6519{
6520 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6521 int level = tl->numa_level;
6522 int sd_weight = cpumask_weight(
6523 sched_domains_numa_masks[level][cpu_to_node(cpu)]);
6524
6525 *sd = (struct sched_domain){
6526 .min_interval = sd_weight,
6527 .max_interval = 2*sd_weight,
6528 .busy_factor = 32,
870a0bb5 6529 .imbalance_pct = 125,
cb83b629
PZ
6530 .cache_nice_tries = 2,
6531 .busy_idx = 3,
6532 .idle_idx = 2,
6533 .newidle_idx = 0,
6534 .wake_idx = 0,
6535 .forkexec_idx = 0,
6536
6537 .flags = 1*SD_LOAD_BALANCE
6538 | 1*SD_BALANCE_NEWIDLE
6539 | 0*SD_BALANCE_EXEC
6540 | 0*SD_BALANCE_FORK
6541 | 0*SD_BALANCE_WAKE
6542 | 0*SD_WAKE_AFFINE
6543 | 0*SD_PREFER_LOCAL
6544 | 0*SD_SHARE_CPUPOWER
cb83b629
PZ
6545 | 0*SD_SHARE_PKG_RESOURCES
6546 | 1*SD_SERIALIZE
6547 | 0*SD_PREFER_SIBLING
6548 | sd_local_flags(level)
6549 ,
6550 .last_balance = jiffies,
6551 .balance_interval = sd_weight,
6552 };
6553 SD_INIT_NAME(sd, NUMA);
6554 sd->private = &tl->data;
6555
6556 /*
6557 * Ugly hack to pass state to sd_numa_mask()...
6558 */
6559 sched_domains_curr_level = tl->numa_level;
6560
6561 return sd;
6562}
6563
6564static const struct cpumask *sd_numa_mask(int cpu)
6565{
6566 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6567}
6568
d039ac60
PZ
6569static void sched_numa_warn(const char *str)
6570{
6571 static int done = false;
6572 int i,j;
6573
6574 if (done)
6575 return;
6576
6577 done = true;
6578
6579 printk(KERN_WARNING "ERROR: %s\n\n", str);
6580
6581 for (i = 0; i < nr_node_ids; i++) {
6582 printk(KERN_WARNING " ");
6583 for (j = 0; j < nr_node_ids; j++)
6584 printk(KERN_CONT "%02d ", node_distance(i,j));
6585 printk(KERN_CONT "\n");
6586 }
6587 printk(KERN_WARNING "\n");
6588}
6589
6590static bool find_numa_distance(int distance)
6591{
6592 int i;
6593
6594 if (distance == node_distance(0, 0))
6595 return true;
6596
6597 for (i = 0; i < sched_domains_numa_levels; i++) {
6598 if (sched_domains_numa_distance[i] == distance)
6599 return true;
6600 }
6601
6602 return false;
6603}
6604
cb83b629
PZ
6605static void sched_init_numa(void)
6606{
6607 int next_distance, curr_distance = node_distance(0, 0);
6608 struct sched_domain_topology_level *tl;
6609 int level = 0;
6610 int i, j, k;
6611
cb83b629
PZ
6612 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6613 if (!sched_domains_numa_distance)
6614 return;
6615
6616 /*
6617 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6618 * unique distances in the node_distance() table.
6619 *
6620 * Assumes node_distance(0,j) includes all distances in
6621 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6622 */
6623 next_distance = curr_distance;
6624 for (i = 0; i < nr_node_ids; i++) {
6625 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6626 for (k = 0; k < nr_node_ids; k++) {
6627 int distance = node_distance(i, k);
6628
6629 if (distance > curr_distance &&
6630 (distance < next_distance ||
6631 next_distance == curr_distance))
6632 next_distance = distance;
6633
6634 /*
6635 * While not a strong assumption it would be nice to know
6636 * about cases where if node A is connected to B, B is not
6637 * equally connected to A.
6638 */
6639 if (sched_debug() && node_distance(k, i) != distance)
6640 sched_numa_warn("Node-distance not symmetric");
6641
6642 if (sched_debug() && i && !find_numa_distance(distance))
6643 sched_numa_warn("Node-0 not representative");
6644 }
6645 if (next_distance != curr_distance) {
6646 sched_domains_numa_distance[level++] = next_distance;
6647 sched_domains_numa_levels = level;
6648 curr_distance = next_distance;
6649 } else break;
cb83b629 6650 }
d039ac60
PZ
6651
6652 /*
6653 * In case of sched_debug() we verify the above assumption.
6654 */
6655 if (!sched_debug())
6656 break;
cb83b629
PZ
6657 }
6658 /*
6659 * 'level' contains the number of unique distances, excluding the
6660 * identity distance node_distance(i,i).
6661 *
6662 * The sched_domains_nume_distance[] array includes the actual distance
6663 * numbers.
6664 */
6665
6666 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6667 if (!sched_domains_numa_masks)
6668 return;
6669
6670 /*
6671 * Now for each level, construct a mask per node which contains all
6672 * cpus of nodes that are that many hops away from us.
6673 */
6674 for (i = 0; i < level; i++) {
6675 sched_domains_numa_masks[i] =
6676 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6677 if (!sched_domains_numa_masks[i])
6678 return;
6679
6680 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6681 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6682 if (!mask)
6683 return;
6684
6685 sched_domains_numa_masks[i][j] = mask;
6686
6687 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 6688 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6689 continue;
6690
6691 cpumask_or(mask, mask, cpumask_of_node(k));
6692 }
6693 }
6694 }
6695
6696 tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6697 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6698 if (!tl)
6699 return;
6700
6701 /*
6702 * Copy the default topology bits..
6703 */
6704 for (i = 0; default_topology[i].init; i++)
6705 tl[i] = default_topology[i];
6706
6707 /*
6708 * .. and append 'j' levels of NUMA goodness.
6709 */
6710 for (j = 0; j < level; i++, j++) {
6711 tl[i] = (struct sched_domain_topology_level){
6712 .init = sd_numa_init,
6713 .mask = sd_numa_mask,
6714 .flags = SDTL_OVERLAP,
6715 .numa_level = j,
6716 };
6717 }
6718
6719 sched_domain_topology = tl;
6720}
6721#else
6722static inline void sched_init_numa(void)
6723{
6724}
6725#endif /* CONFIG_NUMA */
6726
54ab4ff4
PZ
6727static int __sdt_alloc(const struct cpumask *cpu_map)
6728{
6729 struct sched_domain_topology_level *tl;
6730 int j;
6731
6732 for (tl = sched_domain_topology; tl->init; tl++) {
6733 struct sd_data *sdd = &tl->data;
6734
6735 sdd->sd = alloc_percpu(struct sched_domain *);
6736 if (!sdd->sd)
6737 return -ENOMEM;
6738
6739 sdd->sg = alloc_percpu(struct sched_group *);
6740 if (!sdd->sg)
6741 return -ENOMEM;
6742
9c3f75cb
PZ
6743 sdd->sgp = alloc_percpu(struct sched_group_power *);
6744 if (!sdd->sgp)
6745 return -ENOMEM;
6746
54ab4ff4
PZ
6747 for_each_cpu(j, cpu_map) {
6748 struct sched_domain *sd;
6749 struct sched_group *sg;
9c3f75cb 6750 struct sched_group_power *sgp;
54ab4ff4
PZ
6751
6752 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6753 GFP_KERNEL, cpu_to_node(j));
6754 if (!sd)
6755 return -ENOMEM;
6756
6757 *per_cpu_ptr(sdd->sd, j) = sd;
6758
6759 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6760 GFP_KERNEL, cpu_to_node(j));
6761 if (!sg)
6762 return -ENOMEM;
6763
30b4e9eb
IM
6764 sg->next = sg;
6765
54ab4ff4 6766 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6767
c1174876 6768 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
9c3f75cb
PZ
6769 GFP_KERNEL, cpu_to_node(j));
6770 if (!sgp)
6771 return -ENOMEM;
6772
6773 *per_cpu_ptr(sdd->sgp, j) = sgp;
54ab4ff4
PZ
6774 }
6775 }
6776
6777 return 0;
6778}
6779
6780static void __sdt_free(const struct cpumask *cpu_map)
6781{
6782 struct sched_domain_topology_level *tl;
6783 int j;
6784
6785 for (tl = sched_domain_topology; tl->init; tl++) {
6786 struct sd_data *sdd = &tl->data;
6787
6788 for_each_cpu(j, cpu_map) {
fb2cf2c6 6789 struct sched_domain *sd;
6790
6791 if (sdd->sd) {
6792 sd = *per_cpu_ptr(sdd->sd, j);
6793 if (sd && (sd->flags & SD_OVERLAP))
6794 free_sched_groups(sd->groups, 0);
6795 kfree(*per_cpu_ptr(sdd->sd, j));
6796 }
6797
6798 if (sdd->sg)
6799 kfree(*per_cpu_ptr(sdd->sg, j));
6800 if (sdd->sgp)
6801 kfree(*per_cpu_ptr(sdd->sgp, j));
54ab4ff4
PZ
6802 }
6803 free_percpu(sdd->sd);
fb2cf2c6 6804 sdd->sd = NULL;
54ab4ff4 6805 free_percpu(sdd->sg);
fb2cf2c6 6806 sdd->sg = NULL;
9c3f75cb 6807 free_percpu(sdd->sgp);
fb2cf2c6 6808 sdd->sgp = NULL;
54ab4ff4
PZ
6809 }
6810}
6811
2c402dc3
PZ
6812struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6813 struct s_data *d, const struct cpumask *cpu_map,
d069b916 6814 struct sched_domain_attr *attr, struct sched_domain *child,
2c402dc3
PZ
6815 int cpu)
6816{
54ab4ff4 6817 struct sched_domain *sd = tl->init(tl, cpu);
2c402dc3 6818 if (!sd)
d069b916 6819 return child;
2c402dc3 6820
2c402dc3 6821 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6822 if (child) {
6823 sd->level = child->level + 1;
6824 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6825 child->parent = sd;
60495e77 6826 }
d069b916 6827 sd->child = child;
a841f8ce 6828 set_domain_attribute(sd, attr);
2c402dc3
PZ
6829
6830 return sd;
6831}
6832
2109b99e
AH
6833/*
6834 * Build sched domains for a given set of cpus and attach the sched domains
6835 * to the individual cpus
6836 */
dce840a0
PZ
6837static int build_sched_domains(const struct cpumask *cpu_map,
6838 struct sched_domain_attr *attr)
2109b99e
AH
6839{
6840 enum s_alloc alloc_state = sa_none;
dce840a0 6841 struct sched_domain *sd;
2109b99e 6842 struct s_data d;
822ff793 6843 int i, ret = -ENOMEM;
9c1cfda2 6844
2109b99e
AH
6845 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6846 if (alloc_state != sa_rootdomain)
6847 goto error;
9c1cfda2 6848
dce840a0 6849 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6850 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6851 struct sched_domain_topology_level *tl;
6852
3bd65a80 6853 sd = NULL;
e3589f6c 6854 for (tl = sched_domain_topology; tl->init; tl++) {
2c402dc3 6855 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
e3589f6c
PZ
6856 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6857 sd->flags |= SD_OVERLAP;
d110235d
PZ
6858 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6859 break;
e3589f6c 6860 }
d274cb30 6861
d069b916
PZ
6862 while (sd->child)
6863 sd = sd->child;
6864
21d42ccf 6865 *per_cpu_ptr(d.sd, i) = sd;
dce840a0
PZ
6866 }
6867
6868 /* Build the groups for the domains */
6869 for_each_cpu(i, cpu_map) {
6870 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6871 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6872 if (sd->flags & SD_OVERLAP) {
6873 if (build_overlap_sched_groups(sd, i))
6874 goto error;
6875 } else {
6876 if (build_sched_groups(sd, i))
6877 goto error;
6878 }
1cf51902 6879 }
a06dadbe 6880 }
9c1cfda2 6881
1da177e4 6882 /* Calculate CPU power for physical packages and nodes */
a9c9a9b6
PZ
6883 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6884 if (!cpumask_test_cpu(i, cpu_map))
6885 continue;
9c1cfda2 6886
dce840a0
PZ
6887 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6888 claim_allocations(i, sd);
cd4ea6ae 6889 init_sched_groups_power(i, sd);
dce840a0 6890 }
f712c0c7 6891 }
9c1cfda2 6892
1da177e4 6893 /* Attach the domains */
dce840a0 6894 rcu_read_lock();
abcd083a 6895 for_each_cpu(i, cpu_map) {
21d42ccf 6896 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6897 cpu_attach_domain(sd, d.rd, i);
1da177e4 6898 }
dce840a0 6899 rcu_read_unlock();
51888ca2 6900
822ff793 6901 ret = 0;
51888ca2 6902error:
2109b99e 6903 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6904 return ret;
1da177e4 6905}
029190c5 6906
acc3f5d7 6907static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6908static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6909static struct sched_domain_attr *dattr_cur;
6910 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6911
6912/*
6913 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6914 * cpumask) fails, then fallback to a single sched domain,
6915 * as determined by the single cpumask fallback_doms.
029190c5 6916 */
4212823f 6917static cpumask_var_t fallback_doms;
029190c5 6918
ee79d1bd
HC
6919/*
6920 * arch_update_cpu_topology lets virtualized architectures update the
6921 * cpu core maps. It is supposed to return 1 if the topology changed
6922 * or 0 if it stayed the same.
6923 */
6924int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 6925{
ee79d1bd 6926 return 0;
22e52b07
HC
6927}
6928
acc3f5d7
RR
6929cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6930{
6931 int i;
6932 cpumask_var_t *doms;
6933
6934 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6935 if (!doms)
6936 return NULL;
6937 for (i = 0; i < ndoms; i++) {
6938 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6939 free_sched_domains(doms, i);
6940 return NULL;
6941 }
6942 }
6943 return doms;
6944}
6945
6946void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6947{
6948 unsigned int i;
6949 for (i = 0; i < ndoms; i++)
6950 free_cpumask_var(doms[i]);
6951 kfree(doms);
6952}
6953
1a20ff27 6954/*
41a2d6cf 6955 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6956 * For now this just excludes isolated cpus, but could be used to
6957 * exclude other special cases in the future.
1a20ff27 6958 */
c4a8849a 6959static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6960{
7378547f
MM
6961 int err;
6962
22e52b07 6963 arch_update_cpu_topology();
029190c5 6964 ndoms_cur = 1;
acc3f5d7 6965 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6966 if (!doms_cur)
acc3f5d7
RR
6967 doms_cur = &fallback_doms;
6968 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 6969 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6970 register_sched_domain_sysctl();
7378547f
MM
6971
6972 return err;
1a20ff27
DG
6973}
6974
1a20ff27
DG
6975/*
6976 * Detach sched domains from a group of cpus specified in cpu_map
6977 * These cpus will now be attached to the NULL domain
6978 */
96f874e2 6979static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6980{
6981 int i;
6982
dce840a0 6983 rcu_read_lock();
abcd083a 6984 for_each_cpu(i, cpu_map)
57d885fe 6985 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6986 rcu_read_unlock();
1a20ff27
DG
6987}
6988
1d3504fc
HS
6989/* handle null as "default" */
6990static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6991 struct sched_domain_attr *new, int idx_new)
6992{
6993 struct sched_domain_attr tmp;
6994
6995 /* fast path */
6996 if (!new && !cur)
6997 return 1;
6998
6999 tmp = SD_ATTR_INIT;
7000 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7001 new ? (new + idx_new) : &tmp,
7002 sizeof(struct sched_domain_attr));
7003}
7004
029190c5
PJ
7005/*
7006 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7007 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7008 * doms_new[] to the current sched domain partitioning, doms_cur[].
7009 * It destroys each deleted domain and builds each new domain.
7010 *
acc3f5d7 7011 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7012 * The masks don't intersect (don't overlap.) We should setup one
7013 * sched domain for each mask. CPUs not in any of the cpumasks will
7014 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7015 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7016 * it as it is.
7017 *
acc3f5d7
RR
7018 * The passed in 'doms_new' should be allocated using
7019 * alloc_sched_domains. This routine takes ownership of it and will
7020 * free_sched_domains it when done with it. If the caller failed the
7021 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7022 * and partition_sched_domains() will fallback to the single partition
7023 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7024 *
96f874e2 7025 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7026 * ndoms_new == 0 is a special case for destroying existing domains,
7027 * and it will not create the default domain.
dfb512ec 7028 *
029190c5
PJ
7029 * Call with hotplug lock held
7030 */
acc3f5d7 7031void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7032 struct sched_domain_attr *dattr_new)
029190c5 7033{
dfb512ec 7034 int i, j, n;
d65bd5ec 7035 int new_topology;
029190c5 7036
712555ee 7037 mutex_lock(&sched_domains_mutex);
a1835615 7038
7378547f
MM
7039 /* always unregister in case we don't destroy any domains */
7040 unregister_sched_domain_sysctl();
7041
d65bd5ec
HC
7042 /* Let architecture update cpu core mappings. */
7043 new_topology = arch_update_cpu_topology();
7044
dfb512ec 7045 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7046
7047 /* Destroy deleted domains */
7048 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7049 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7050 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7051 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7052 goto match1;
7053 }
7054 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7055 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7056match1:
7057 ;
7058 }
7059
e761b772
MK
7060 if (doms_new == NULL) {
7061 ndoms_cur = 0;
acc3f5d7 7062 doms_new = &fallback_doms;
6ad4c188 7063 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7064 WARN_ON_ONCE(dattr_new);
e761b772
MK
7065 }
7066
029190c5
PJ
7067 /* Build new domains */
7068 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 7069 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 7070 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7071 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7072 goto match2;
7073 }
7074 /* no match - add a new doms_new */
dce840a0 7075 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7076match2:
7077 ;
7078 }
7079
7080 /* Remember the new sched domains */
acc3f5d7
RR
7081 if (doms_cur != &fallback_doms)
7082 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7083 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7084 doms_cur = doms_new;
1d3504fc 7085 dattr_cur = dattr_new;
029190c5 7086 ndoms_cur = ndoms_new;
7378547f
MM
7087
7088 register_sched_domain_sysctl();
a1835615 7089
712555ee 7090 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7091}
7092
d35be8ba
SB
7093static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
7094
1da177e4 7095/*
3a101d05
TH
7096 * Update cpusets according to cpu_active mask. If cpusets are
7097 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7098 * around partition_sched_domains().
d35be8ba
SB
7099 *
7100 * If we come here as part of a suspend/resume, don't touch cpusets because we
7101 * want to restore it back to its original state upon resume anyway.
1da177e4 7102 */
0b2e918a
TH
7103static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7104 void *hcpu)
e761b772 7105{
d35be8ba
SB
7106 switch (action) {
7107 case CPU_ONLINE_FROZEN:
7108 case CPU_DOWN_FAILED_FROZEN:
7109
7110 /*
7111 * num_cpus_frozen tracks how many CPUs are involved in suspend
7112 * resume sequence. As long as this is not the last online
7113 * operation in the resume sequence, just build a single sched
7114 * domain, ignoring cpusets.
7115 */
7116 num_cpus_frozen--;
7117 if (likely(num_cpus_frozen)) {
7118 partition_sched_domains(1, NULL, NULL);
7119 break;
7120 }
7121
7122 /*
7123 * This is the last CPU online operation. So fall through and
7124 * restore the original sched domains by considering the
7125 * cpuset configurations.
7126 */
7127
e761b772 7128 case CPU_ONLINE:
6ad4c188 7129 case CPU_DOWN_FAILED:
7ddf96b0 7130 cpuset_update_active_cpus(true);
d35be8ba 7131 break;
3a101d05
TH
7132 default:
7133 return NOTIFY_DONE;
7134 }
d35be8ba 7135 return NOTIFY_OK;
3a101d05 7136}
e761b772 7137
0b2e918a
TH
7138static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7139 void *hcpu)
3a101d05 7140{
d35be8ba 7141 switch (action) {
3a101d05 7142 case CPU_DOWN_PREPARE:
7ddf96b0 7143 cpuset_update_active_cpus(false);
d35be8ba
SB
7144 break;
7145 case CPU_DOWN_PREPARE_FROZEN:
7146 num_cpus_frozen++;
7147 partition_sched_domains(1, NULL, NULL);
7148 break;
e761b772
MK
7149 default:
7150 return NOTIFY_DONE;
7151 }
d35be8ba 7152 return NOTIFY_OK;
e761b772 7153}
e761b772 7154
1da177e4
LT
7155void __init sched_init_smp(void)
7156{
dcc30a35
RR
7157 cpumask_var_t non_isolated_cpus;
7158
7159 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7160 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7161
cb83b629
PZ
7162 sched_init_numa();
7163
95402b38 7164 get_online_cpus();
712555ee 7165 mutex_lock(&sched_domains_mutex);
c4a8849a 7166 init_sched_domains(cpu_active_mask);
dcc30a35
RR
7167 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7168 if (cpumask_empty(non_isolated_cpus))
7169 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7170 mutex_unlock(&sched_domains_mutex);
95402b38 7171 put_online_cpus();
e761b772 7172
3a101d05
TH
7173 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7174 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772
MK
7175
7176 /* RT runtime code needs to handle some hotplug events */
7177 hotcpu_notifier(update_runtime, 0);
7178
b328ca18 7179 init_hrtick();
5c1e1767
NP
7180
7181 /* Move init over to a non-isolated CPU */
dcc30a35 7182 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7183 BUG();
19978ca6 7184 sched_init_granularity();
dcc30a35 7185 free_cpumask_var(non_isolated_cpus);
4212823f 7186
0e3900e6 7187 init_sched_rt_class();
1da177e4
LT
7188}
7189#else
7190void __init sched_init_smp(void)
7191{
19978ca6 7192 sched_init_granularity();
1da177e4
LT
7193}
7194#endif /* CONFIG_SMP */
7195
cd1bb94b
AB
7196const_debug unsigned int sysctl_timer_migration = 1;
7197
1da177e4
LT
7198int in_sched_functions(unsigned long addr)
7199{
1da177e4
LT
7200 return in_lock_functions(addr) ||
7201 (addr >= (unsigned long)__sched_text_start
7202 && addr < (unsigned long)__sched_text_end);
7203}
7204
029632fb
PZ
7205#ifdef CONFIG_CGROUP_SCHED
7206struct task_group root_task_group;
35cf4e50 7207LIST_HEAD(task_groups);
052f1dc7 7208#endif
6f505b16 7209
029632fb 7210DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
6f505b16 7211
1da177e4
LT
7212void __init sched_init(void)
7213{
dd41f596 7214 int i, j;
434d53b0
MT
7215 unsigned long alloc_size = 0, ptr;
7216
7217#ifdef CONFIG_FAIR_GROUP_SCHED
7218 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7219#endif
7220#ifdef CONFIG_RT_GROUP_SCHED
7221 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 7222#endif
df7c8e84 7223#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 7224 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 7225#endif
434d53b0 7226 if (alloc_size) {
36b7b6d4 7227 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7228
7229#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 7230 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
7231 ptr += nr_cpu_ids * sizeof(void **);
7232
07e06b01 7233 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 7234 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7235
6d6bc0ad 7236#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 7237#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7238 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
7239 ptr += nr_cpu_ids * sizeof(void **);
7240
07e06b01 7241 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7242 ptr += nr_cpu_ids * sizeof(void **);
7243
6d6bc0ad 7244#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
7245#ifdef CONFIG_CPUMASK_OFFSTACK
7246 for_each_possible_cpu(i) {
7247 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7248 ptr += cpumask_size();
7249 }
7250#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 7251 }
dd41f596 7252
57d885fe
GH
7253#ifdef CONFIG_SMP
7254 init_defrootdomain();
7255#endif
7256
d0b27fa7
PZ
7257 init_rt_bandwidth(&def_rt_bandwidth,
7258 global_rt_period(), global_rt_runtime());
7259
7260#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7261 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 7262 global_rt_period(), global_rt_runtime());
6d6bc0ad 7263#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7264
7c941438 7265#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
7266 list_add(&root_task_group.list, &task_groups);
7267 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 7268 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 7269 autogroup_init(&init_task);
54c707e9 7270
7c941438 7271#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7272
54c707e9
GC
7273#ifdef CONFIG_CGROUP_CPUACCT
7274 root_cpuacct.cpustat = &kernel_cpustat;
7275 root_cpuacct.cpuusage = alloc_percpu(u64);
7276 /* Too early, not expected to fail */
7277 BUG_ON(!root_cpuacct.cpuusage);
7278#endif
0a945022 7279 for_each_possible_cpu(i) {
70b97a7f 7280 struct rq *rq;
1da177e4
LT
7281
7282 rq = cpu_rq(i);
05fa785c 7283 raw_spin_lock_init(&rq->lock);
7897986b 7284 rq->nr_running = 0;
dce48a84
TG
7285 rq->calc_load_active = 0;
7286 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 7287 init_cfs_rq(&rq->cfs);
6f505b16 7288 init_rt_rq(&rq->rt, rq);
dd41f596 7289#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 7290 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 7291 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 7292 /*
07e06b01 7293 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
7294 *
7295 * In case of task-groups formed thr' the cgroup filesystem, it
7296 * gets 100% of the cpu resources in the system. This overall
7297 * system cpu resource is divided among the tasks of
07e06b01 7298 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
7299 * based on each entity's (task or task-group's) weight
7300 * (se->load.weight).
7301 *
07e06b01 7302 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
7303 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7304 * then A0's share of the cpu resource is:
7305 *
0d905bca 7306 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 7307 *
07e06b01
YZ
7308 * We achieve this by letting root_task_group's tasks sit
7309 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 7310 */
ab84d31e 7311 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 7312 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
7313#endif /* CONFIG_FAIR_GROUP_SCHED */
7314
7315 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7316#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7317 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
07e06b01 7318 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 7319#endif
1da177e4 7320
dd41f596
IM
7321 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7322 rq->cpu_load[j] = 0;
fdf3e95d
VP
7323
7324 rq->last_load_update_tick = jiffies;
7325
1da177e4 7326#ifdef CONFIG_SMP
41c7ce9a 7327 rq->sd = NULL;
57d885fe 7328 rq->rd = NULL;
1399fa78 7329 rq->cpu_power = SCHED_POWER_SCALE;
3f029d3c 7330 rq->post_schedule = 0;
1da177e4 7331 rq->active_balance = 0;
dd41f596 7332 rq->next_balance = jiffies;
1da177e4 7333 rq->push_cpu = 0;
0a2966b4 7334 rq->cpu = i;
1f11eb6a 7335 rq->online = 0;
eae0c9df
MG
7336 rq->idle_stamp = 0;
7337 rq->avg_idle = 2*sysctl_sched_migration_cost;
367456c7
PZ
7338
7339 INIT_LIST_HEAD(&rq->cfs_tasks);
7340
dc938520 7341 rq_attach_root(rq, &def_root_domain);
83cd4fe2 7342#ifdef CONFIG_NO_HZ
1c792db7 7343 rq->nohz_flags = 0;
83cd4fe2 7344#endif
1da177e4 7345#endif
8f4d37ec 7346 init_rq_hrtick(rq);
1da177e4 7347 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7348 }
7349
2dd73a4f 7350 set_load_weight(&init_task);
b50f60ce 7351
e107be36
AK
7352#ifdef CONFIG_PREEMPT_NOTIFIERS
7353 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7354#endif
7355
b50f60ce 7356#ifdef CONFIG_RT_MUTEXES
732375c6 7357 plist_head_init(&init_task.pi_waiters);
b50f60ce
HC
7358#endif
7359
1da177e4
LT
7360 /*
7361 * The boot idle thread does lazy MMU switching as well:
7362 */
7363 atomic_inc(&init_mm.mm_count);
7364 enter_lazy_tlb(&init_mm, current);
7365
7366 /*
7367 * Make us the idle thread. Technically, schedule() should not be
7368 * called from this thread, however somewhere below it might be,
7369 * but because we are the idle thread, we just pick up running again
7370 * when this runqueue becomes "idle".
7371 */
7372 init_idle(current, smp_processor_id());
dce48a84
TG
7373
7374 calc_load_update = jiffies + LOAD_FREQ;
7375
dd41f596
IM
7376 /*
7377 * During early bootup we pretend to be a normal task:
7378 */
7379 current->sched_class = &fair_sched_class;
6892b75e 7380
bf4d83f6 7381#ifdef CONFIG_SMP
4cb98839 7382 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
7383 /* May be allocated at isolcpus cmdline parse time */
7384 if (cpu_isolated_map == NULL)
7385 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 7386 idle_thread_set_boot_cpu();
029632fb
PZ
7387#endif
7388 init_sched_fair_class();
6a7b3dc3 7389
6892b75e 7390 scheduler_running = 1;
1da177e4
LT
7391}
7392
d902db1e 7393#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
7394static inline int preempt_count_equals(int preempt_offset)
7395{
234da7bc 7396 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 7397
4ba8216c 7398 return (nested == preempt_offset);
e4aafea2
FW
7399}
7400
d894837f 7401void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7402{
1da177e4
LT
7403 static unsigned long prev_jiffy; /* ratelimiting */
7404
b3fbab05 7405 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
e4aafea2
FW
7406 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7407 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7408 return;
7409 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7410 return;
7411 prev_jiffy = jiffies;
7412
3df0fc5b
PZ
7413 printk(KERN_ERR
7414 "BUG: sleeping function called from invalid context at %s:%d\n",
7415 file, line);
7416 printk(KERN_ERR
7417 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7418 in_atomic(), irqs_disabled(),
7419 current->pid, current->comm);
aef745fc
IM
7420
7421 debug_show_held_locks(current);
7422 if (irqs_disabled())
7423 print_irqtrace_events(current);
7424 dump_stack();
1da177e4
LT
7425}
7426EXPORT_SYMBOL(__might_sleep);
7427#endif
7428
7429#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7430static void normalize_task(struct rq *rq, struct task_struct *p)
7431{
da7a735e
PZ
7432 const struct sched_class *prev_class = p->sched_class;
7433 int old_prio = p->prio;
3a5e4dc1 7434 int on_rq;
3e51f33f 7435
fd2f4419 7436 on_rq = p->on_rq;
3a5e4dc1 7437 if (on_rq)
4ca9b72b 7438 dequeue_task(rq, p, 0);
3a5e4dc1
AK
7439 __setscheduler(rq, p, SCHED_NORMAL, 0);
7440 if (on_rq) {
4ca9b72b 7441 enqueue_task(rq, p, 0);
3a5e4dc1
AK
7442 resched_task(rq->curr);
7443 }
da7a735e
PZ
7444
7445 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
7446}
7447
1da177e4
LT
7448void normalize_rt_tasks(void)
7449{
a0f98a1c 7450 struct task_struct *g, *p;
1da177e4 7451 unsigned long flags;
70b97a7f 7452 struct rq *rq;
1da177e4 7453
4cf5d77a 7454 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 7455 do_each_thread(g, p) {
178be793
IM
7456 /*
7457 * Only normalize user tasks:
7458 */
7459 if (!p->mm)
7460 continue;
7461
6cfb0d5d 7462 p->se.exec_start = 0;
6cfb0d5d 7463#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7464 p->se.statistics.wait_start = 0;
7465 p->se.statistics.sleep_start = 0;
7466 p->se.statistics.block_start = 0;
6cfb0d5d 7467#endif
dd41f596
IM
7468
7469 if (!rt_task(p)) {
7470 /*
7471 * Renice negative nice level userspace
7472 * tasks back to 0:
7473 */
7474 if (TASK_NICE(p) < 0 && p->mm)
7475 set_user_nice(p, 0);
1da177e4 7476 continue;
dd41f596 7477 }
1da177e4 7478
1d615482 7479 raw_spin_lock(&p->pi_lock);
b29739f9 7480 rq = __task_rq_lock(p);
1da177e4 7481
178be793 7482 normalize_task(rq, p);
3a5e4dc1 7483
b29739f9 7484 __task_rq_unlock(rq);
1d615482 7485 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
7486 } while_each_thread(g, p);
7487
4cf5d77a 7488 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
7489}
7490
7491#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7492
67fc4e0c 7493#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7494/*
67fc4e0c 7495 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7496 *
7497 * They can only be called when the whole system has been
7498 * stopped - every CPU needs to be quiescent, and no scheduling
7499 * activity can take place. Using them for anything else would
7500 * be a serious bug, and as a result, they aren't even visible
7501 * under any other configuration.
7502 */
7503
7504/**
7505 * curr_task - return the current task for a given cpu.
7506 * @cpu: the processor in question.
7507 *
7508 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7509 */
36c8b586 7510struct task_struct *curr_task(int cpu)
1df5c10a
LT
7511{
7512 return cpu_curr(cpu);
7513}
7514
67fc4e0c
JW
7515#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7516
7517#ifdef CONFIG_IA64
1df5c10a
LT
7518/**
7519 * set_curr_task - set the current task for a given cpu.
7520 * @cpu: the processor in question.
7521 * @p: the task pointer to set.
7522 *
7523 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7524 * are serviced on a separate stack. It allows the architecture to switch the
7525 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7526 * must be called with all CPU's synchronized, and interrupts disabled, the
7527 * and caller must save the original value of the current task (see
7528 * curr_task() above) and restore that value before reenabling interrupts and
7529 * re-starting the system.
7530 *
7531 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7532 */
36c8b586 7533void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7534{
7535 cpu_curr(cpu) = p;
7536}
7537
7538#endif
29f59db3 7539
7c941438 7540#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7541/* task_group_lock serializes the addition/removal of task groups */
7542static DEFINE_SPINLOCK(task_group_lock);
7543
bccbe08a
PZ
7544static void free_sched_group(struct task_group *tg)
7545{
7546 free_fair_sched_group(tg);
7547 free_rt_sched_group(tg);
e9aa1dd1 7548 autogroup_free(tg);
bccbe08a
PZ
7549 kfree(tg);
7550}
7551
7552/* allocate runqueue etc for a new task group */
ec7dc8ac 7553struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7554{
7555 struct task_group *tg;
7556 unsigned long flags;
bccbe08a
PZ
7557
7558 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7559 if (!tg)
7560 return ERR_PTR(-ENOMEM);
7561
ec7dc8ac 7562 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7563 goto err;
7564
ec7dc8ac 7565 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7566 goto err;
7567
8ed36996 7568 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7569 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7570
7571 WARN_ON(!parent); /* root should already exist */
7572
7573 tg->parent = parent;
f473aa5e 7574 INIT_LIST_HEAD(&tg->children);
09f2724a 7575 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7576 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 7577
9b5b7751 7578 return tg;
29f59db3
SV
7579
7580err:
6f505b16 7581 free_sched_group(tg);
29f59db3
SV
7582 return ERR_PTR(-ENOMEM);
7583}
7584
9b5b7751 7585/* rcu callback to free various structures associated with a task group */
6f505b16 7586static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7587{
29f59db3 7588 /* now it should be safe to free those cfs_rqs */
6f505b16 7589 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7590}
7591
9b5b7751 7592/* Destroy runqueue etc associated with a task group */
4cf86d77 7593void sched_destroy_group(struct task_group *tg)
29f59db3 7594{
8ed36996 7595 unsigned long flags;
9b5b7751 7596 int i;
29f59db3 7597
3d4b47b4
PZ
7598 /* end participation in shares distribution */
7599 for_each_possible_cpu(i)
bccbe08a 7600 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
7601
7602 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7603 list_del_rcu(&tg->list);
f473aa5e 7604 list_del_rcu(&tg->siblings);
8ed36996 7605 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 7606
9b5b7751 7607 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 7608 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
7609}
7610
9b5b7751 7611/* change task's runqueue when it moves between groups.
3a252015
IM
7612 * The caller of this function should have put the task in its new group
7613 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7614 * reflect its new group.
9b5b7751
SV
7615 */
7616void sched_move_task(struct task_struct *tsk)
29f59db3 7617{
8323f26c 7618 struct task_group *tg;
29f59db3
SV
7619 int on_rq, running;
7620 unsigned long flags;
7621 struct rq *rq;
7622
7623 rq = task_rq_lock(tsk, &flags);
7624
051a1d1a 7625 running = task_current(rq, tsk);
fd2f4419 7626 on_rq = tsk->on_rq;
29f59db3 7627
0e1f3483 7628 if (on_rq)
29f59db3 7629 dequeue_task(rq, tsk, 0);
0e1f3483
HS
7630 if (unlikely(running))
7631 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 7632
8323f26c
PZ
7633 tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
7634 lockdep_is_held(&tsk->sighand->siglock)),
7635 struct task_group, css);
7636 tg = autogroup_task_group(tsk, tg);
7637 tsk->sched_task_group = tg;
7638
810b3817 7639#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
7640 if (tsk->sched_class->task_move_group)
7641 tsk->sched_class->task_move_group(tsk, on_rq);
7642 else
810b3817 7643#endif
b2b5ce02 7644 set_task_rq(tsk, task_cpu(tsk));
810b3817 7645
0e1f3483
HS
7646 if (unlikely(running))
7647 tsk->sched_class->set_curr_task(rq);
7648 if (on_rq)
371fd7e7 7649 enqueue_task(rq, tsk, 0);
29f59db3 7650
0122ec5b 7651 task_rq_unlock(rq, tsk, &flags);
29f59db3 7652}
7c941438 7653#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7654
a790de99 7655#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
9f0c1e56
PZ
7656static unsigned long to_ratio(u64 period, u64 runtime)
7657{
7658 if (runtime == RUNTIME_INF)
9a7e0b18 7659 return 1ULL << 20;
9f0c1e56 7660
9a7e0b18 7661 return div64_u64(runtime << 20, period);
9f0c1e56 7662}
a790de99
PT
7663#endif
7664
7665#ifdef CONFIG_RT_GROUP_SCHED
7666/*
7667 * Ensure that the real time constraints are schedulable.
7668 */
7669static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7670
9a7e0b18
PZ
7671/* Must be called with tasklist_lock held */
7672static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7673{
9a7e0b18 7674 struct task_struct *g, *p;
b40b2e8e 7675
9a7e0b18 7676 do_each_thread(g, p) {
029632fb 7677 if (rt_task(p) && task_rq(p)->rt.tg == tg)
9a7e0b18
PZ
7678 return 1;
7679 } while_each_thread(g, p);
b40b2e8e 7680
9a7e0b18
PZ
7681 return 0;
7682}
b40b2e8e 7683
9a7e0b18
PZ
7684struct rt_schedulable_data {
7685 struct task_group *tg;
7686 u64 rt_period;
7687 u64 rt_runtime;
7688};
b40b2e8e 7689
a790de99 7690static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7691{
7692 struct rt_schedulable_data *d = data;
7693 struct task_group *child;
7694 unsigned long total, sum = 0;
7695 u64 period, runtime;
b40b2e8e 7696
9a7e0b18
PZ
7697 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7698 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7699
9a7e0b18
PZ
7700 if (tg == d->tg) {
7701 period = d->rt_period;
7702 runtime = d->rt_runtime;
b40b2e8e 7703 }
b40b2e8e 7704
4653f803
PZ
7705 /*
7706 * Cannot have more runtime than the period.
7707 */
7708 if (runtime > period && runtime != RUNTIME_INF)
7709 return -EINVAL;
6f505b16 7710
4653f803
PZ
7711 /*
7712 * Ensure we don't starve existing RT tasks.
7713 */
9a7e0b18
PZ
7714 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7715 return -EBUSY;
6f505b16 7716
9a7e0b18 7717 total = to_ratio(period, runtime);
6f505b16 7718
4653f803
PZ
7719 /*
7720 * Nobody can have more than the global setting allows.
7721 */
7722 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7723 return -EINVAL;
6f505b16 7724
4653f803
PZ
7725 /*
7726 * The sum of our children's runtime should not exceed our own.
7727 */
9a7e0b18
PZ
7728 list_for_each_entry_rcu(child, &tg->children, siblings) {
7729 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7730 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7731
9a7e0b18
PZ
7732 if (child == d->tg) {
7733 period = d->rt_period;
7734 runtime = d->rt_runtime;
7735 }
6f505b16 7736
9a7e0b18 7737 sum += to_ratio(period, runtime);
9f0c1e56 7738 }
6f505b16 7739
9a7e0b18
PZ
7740 if (sum > total)
7741 return -EINVAL;
7742
7743 return 0;
6f505b16
PZ
7744}
7745
9a7e0b18 7746static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7747{
8277434e
PT
7748 int ret;
7749
9a7e0b18
PZ
7750 struct rt_schedulable_data data = {
7751 .tg = tg,
7752 .rt_period = period,
7753 .rt_runtime = runtime,
7754 };
7755
8277434e
PT
7756 rcu_read_lock();
7757 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7758 rcu_read_unlock();
7759
7760 return ret;
521f1a24
DG
7761}
7762
ab84d31e 7763static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7764 u64 rt_period, u64 rt_runtime)
6f505b16 7765{
ac086bc2 7766 int i, err = 0;
9f0c1e56 7767
9f0c1e56 7768 mutex_lock(&rt_constraints_mutex);
521f1a24 7769 read_lock(&tasklist_lock);
9a7e0b18
PZ
7770 err = __rt_schedulable(tg, rt_period, rt_runtime);
7771 if (err)
9f0c1e56 7772 goto unlock;
ac086bc2 7773
0986b11b 7774 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7775 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7776 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7777
7778 for_each_possible_cpu(i) {
7779 struct rt_rq *rt_rq = tg->rt_rq[i];
7780
0986b11b 7781 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7782 rt_rq->rt_runtime = rt_runtime;
0986b11b 7783 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7784 }
0986b11b 7785 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7786unlock:
521f1a24 7787 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7788 mutex_unlock(&rt_constraints_mutex);
7789
7790 return err;
6f505b16
PZ
7791}
7792
d0b27fa7
PZ
7793int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7794{
7795 u64 rt_runtime, rt_period;
7796
7797 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7798 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7799 if (rt_runtime_us < 0)
7800 rt_runtime = RUNTIME_INF;
7801
ab84d31e 7802 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7803}
7804
9f0c1e56
PZ
7805long sched_group_rt_runtime(struct task_group *tg)
7806{
7807 u64 rt_runtime_us;
7808
d0b27fa7 7809 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7810 return -1;
7811
d0b27fa7 7812 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7813 do_div(rt_runtime_us, NSEC_PER_USEC);
7814 return rt_runtime_us;
7815}
d0b27fa7
PZ
7816
7817int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7818{
7819 u64 rt_runtime, rt_period;
7820
7821 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7822 rt_runtime = tg->rt_bandwidth.rt_runtime;
7823
619b0488
R
7824 if (rt_period == 0)
7825 return -EINVAL;
7826
ab84d31e 7827 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7828}
7829
7830long sched_group_rt_period(struct task_group *tg)
7831{
7832 u64 rt_period_us;
7833
7834 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7835 do_div(rt_period_us, NSEC_PER_USEC);
7836 return rt_period_us;
7837}
7838
7839static int sched_rt_global_constraints(void)
7840{
4653f803 7841 u64 runtime, period;
d0b27fa7
PZ
7842 int ret = 0;
7843
ec5d4989
HS
7844 if (sysctl_sched_rt_period <= 0)
7845 return -EINVAL;
7846
4653f803
PZ
7847 runtime = global_rt_runtime();
7848 period = global_rt_period();
7849
7850 /*
7851 * Sanity check on the sysctl variables.
7852 */
7853 if (runtime > period && runtime != RUNTIME_INF)
7854 return -EINVAL;
10b612f4 7855
d0b27fa7 7856 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7857 read_lock(&tasklist_lock);
4653f803 7858 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7859 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7860 mutex_unlock(&rt_constraints_mutex);
7861
7862 return ret;
7863}
54e99124
DG
7864
7865int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7866{
7867 /* Don't accept realtime tasks when there is no way for them to run */
7868 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7869 return 0;
7870
7871 return 1;
7872}
7873
6d6bc0ad 7874#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7875static int sched_rt_global_constraints(void)
7876{
ac086bc2
PZ
7877 unsigned long flags;
7878 int i;
7879
ec5d4989
HS
7880 if (sysctl_sched_rt_period <= 0)
7881 return -EINVAL;
7882
60aa605d
PZ
7883 /*
7884 * There's always some RT tasks in the root group
7885 * -- migration, kstopmachine etc..
7886 */
7887 if (sysctl_sched_rt_runtime == 0)
7888 return -EBUSY;
7889
0986b11b 7890 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7891 for_each_possible_cpu(i) {
7892 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7893
0986b11b 7894 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7895 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7896 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7897 }
0986b11b 7898 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7899
d0b27fa7
PZ
7900 return 0;
7901}
6d6bc0ad 7902#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7903
7904int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7905 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7906 loff_t *ppos)
7907{
7908 int ret;
7909 int old_period, old_runtime;
7910 static DEFINE_MUTEX(mutex);
7911
7912 mutex_lock(&mutex);
7913 old_period = sysctl_sched_rt_period;
7914 old_runtime = sysctl_sched_rt_runtime;
7915
8d65af78 7916 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
7917
7918 if (!ret && write) {
7919 ret = sched_rt_global_constraints();
7920 if (ret) {
7921 sysctl_sched_rt_period = old_period;
7922 sysctl_sched_rt_runtime = old_runtime;
7923 } else {
7924 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7925 def_rt_bandwidth.rt_period =
7926 ns_to_ktime(global_rt_period());
7927 }
7928 }
7929 mutex_unlock(&mutex);
7930
7931 return ret;
7932}
68318b8e 7933
052f1dc7 7934#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
7935
7936/* return corresponding task_group object of a cgroup */
2b01dfe3 7937static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 7938{
2b01dfe3
PM
7939 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7940 struct task_group, css);
68318b8e
SV
7941}
7942
761b3ef5 7943static struct cgroup_subsys_state *cpu_cgroup_create(struct cgroup *cgrp)
68318b8e 7944{
ec7dc8ac 7945 struct task_group *tg, *parent;
68318b8e 7946
2b01dfe3 7947 if (!cgrp->parent) {
68318b8e 7948 /* This is early initialization for the top cgroup */
07e06b01 7949 return &root_task_group.css;
68318b8e
SV
7950 }
7951
ec7dc8ac
DG
7952 parent = cgroup_tg(cgrp->parent);
7953 tg = sched_create_group(parent);
68318b8e
SV
7954 if (IS_ERR(tg))
7955 return ERR_PTR(-ENOMEM);
7956
68318b8e
SV
7957 return &tg->css;
7958}
7959
761b3ef5 7960static void cpu_cgroup_destroy(struct cgroup *cgrp)
68318b8e 7961{
2b01dfe3 7962 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
7963
7964 sched_destroy_group(tg);
7965}
7966
761b3ef5 7967static int cpu_cgroup_can_attach(struct cgroup *cgrp,
bb9d97b6 7968 struct cgroup_taskset *tset)
68318b8e 7969{
bb9d97b6
TH
7970 struct task_struct *task;
7971
7972 cgroup_taskset_for_each(task, cgrp, tset) {
b68aa230 7973#ifdef CONFIG_RT_GROUP_SCHED
bb9d97b6
TH
7974 if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7975 return -EINVAL;
b68aa230 7976#else
bb9d97b6
TH
7977 /* We don't support RT-tasks being in separate groups */
7978 if (task->sched_class != &fair_sched_class)
7979 return -EINVAL;
b68aa230 7980#endif
bb9d97b6 7981 }
be367d09
BB
7982 return 0;
7983}
68318b8e 7984
761b3ef5 7985static void cpu_cgroup_attach(struct cgroup *cgrp,
bb9d97b6 7986 struct cgroup_taskset *tset)
68318b8e 7987{
bb9d97b6
TH
7988 struct task_struct *task;
7989
7990 cgroup_taskset_for_each(task, cgrp, tset)
7991 sched_move_task(task);
68318b8e
SV
7992}
7993
068c5cc5 7994static void
761b3ef5
LZ
7995cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7996 struct task_struct *task)
068c5cc5
PZ
7997{
7998 /*
7999 * cgroup_exit() is called in the copy_process() failure path.
8000 * Ignore this case since the task hasn't ran yet, this avoids
8001 * trying to poke a half freed task state from generic code.
8002 */
8003 if (!(task->flags & PF_EXITING))
8004 return;
8005
8006 sched_move_task(task);
8007}
8008
052f1dc7 8009#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 8010static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 8011 u64 shareval)
68318b8e 8012{
c8b28116 8013 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
68318b8e
SV
8014}
8015
f4c753b7 8016static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 8017{
2b01dfe3 8018 struct task_group *tg = cgroup_tg(cgrp);
68318b8e 8019
c8b28116 8020 return (u64) scale_load_down(tg->shares);
68318b8e 8021}
ab84d31e
PT
8022
8023#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
8024static DEFINE_MUTEX(cfs_constraints_mutex);
8025
ab84d31e
PT
8026const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8027const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8028
a790de99
PT
8029static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8030
ab84d31e
PT
8031static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8032{
56f570e5 8033 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 8034 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
8035
8036 if (tg == &root_task_group)
8037 return -EINVAL;
8038
8039 /*
8040 * Ensure we have at some amount of bandwidth every period. This is
8041 * to prevent reaching a state of large arrears when throttled via
8042 * entity_tick() resulting in prolonged exit starvation.
8043 */
8044 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8045 return -EINVAL;
8046
8047 /*
8048 * Likewise, bound things on the otherside by preventing insane quota
8049 * periods. This also allows us to normalize in computing quota
8050 * feasibility.
8051 */
8052 if (period > max_cfs_quota_period)
8053 return -EINVAL;
8054
a790de99
PT
8055 mutex_lock(&cfs_constraints_mutex);
8056 ret = __cfs_schedulable(tg, period, quota);
8057 if (ret)
8058 goto out_unlock;
8059
58088ad0 8060 runtime_enabled = quota != RUNTIME_INF;
56f570e5
PT
8061 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8062 account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
ab84d31e
PT
8063 raw_spin_lock_irq(&cfs_b->lock);
8064 cfs_b->period = ns_to_ktime(period);
8065 cfs_b->quota = quota;
58088ad0 8066
a9cf55b2 8067 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
8068 /* restart the period timer (if active) to handle new period expiry */
8069 if (runtime_enabled && cfs_b->timer_active) {
8070 /* force a reprogram */
8071 cfs_b->timer_active = 0;
8072 __start_cfs_bandwidth(cfs_b);
8073 }
ab84d31e
PT
8074 raw_spin_unlock_irq(&cfs_b->lock);
8075
8076 for_each_possible_cpu(i) {
8077 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 8078 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
8079
8080 raw_spin_lock_irq(&rq->lock);
58088ad0 8081 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 8082 cfs_rq->runtime_remaining = 0;
671fd9da 8083
029632fb 8084 if (cfs_rq->throttled)
671fd9da 8085 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
8086 raw_spin_unlock_irq(&rq->lock);
8087 }
a790de99
PT
8088out_unlock:
8089 mutex_unlock(&cfs_constraints_mutex);
ab84d31e 8090
a790de99 8091 return ret;
ab84d31e
PT
8092}
8093
8094int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8095{
8096 u64 quota, period;
8097
029632fb 8098 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8099 if (cfs_quota_us < 0)
8100 quota = RUNTIME_INF;
8101 else
8102 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8103
8104 return tg_set_cfs_bandwidth(tg, period, quota);
8105}
8106
8107long tg_get_cfs_quota(struct task_group *tg)
8108{
8109 u64 quota_us;
8110
029632fb 8111 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
8112 return -1;
8113
029632fb 8114 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
8115 do_div(quota_us, NSEC_PER_USEC);
8116
8117 return quota_us;
8118}
8119
8120int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8121{
8122 u64 quota, period;
8123
8124 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 8125 quota = tg->cfs_bandwidth.quota;
ab84d31e 8126
ab84d31e
PT
8127 return tg_set_cfs_bandwidth(tg, period, quota);
8128}
8129
8130long tg_get_cfs_period(struct task_group *tg)
8131{
8132 u64 cfs_period_us;
8133
029632fb 8134 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8135 do_div(cfs_period_us, NSEC_PER_USEC);
8136
8137 return cfs_period_us;
8138}
8139
8140static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
8141{
8142 return tg_get_cfs_quota(cgroup_tg(cgrp));
8143}
8144
8145static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
8146 s64 cfs_quota_us)
8147{
8148 return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
8149}
8150
8151static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
8152{
8153 return tg_get_cfs_period(cgroup_tg(cgrp));
8154}
8155
8156static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8157 u64 cfs_period_us)
8158{
8159 return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
8160}
8161
a790de99
PT
8162struct cfs_schedulable_data {
8163 struct task_group *tg;
8164 u64 period, quota;
8165};
8166
8167/*
8168 * normalize group quota/period to be quota/max_period
8169 * note: units are usecs
8170 */
8171static u64 normalize_cfs_quota(struct task_group *tg,
8172 struct cfs_schedulable_data *d)
8173{
8174 u64 quota, period;
8175
8176 if (tg == d->tg) {
8177 period = d->period;
8178 quota = d->quota;
8179 } else {
8180 period = tg_get_cfs_period(tg);
8181 quota = tg_get_cfs_quota(tg);
8182 }
8183
8184 /* note: these should typically be equivalent */
8185 if (quota == RUNTIME_INF || quota == -1)
8186 return RUNTIME_INF;
8187
8188 return to_ratio(period, quota);
8189}
8190
8191static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8192{
8193 struct cfs_schedulable_data *d = data;
029632fb 8194 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
8195 s64 quota = 0, parent_quota = -1;
8196
8197 if (!tg->parent) {
8198 quota = RUNTIME_INF;
8199 } else {
029632fb 8200 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
8201
8202 quota = normalize_cfs_quota(tg, d);
8203 parent_quota = parent_b->hierarchal_quota;
8204
8205 /*
8206 * ensure max(child_quota) <= parent_quota, inherit when no
8207 * limit is set
8208 */
8209 if (quota == RUNTIME_INF)
8210 quota = parent_quota;
8211 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8212 return -EINVAL;
8213 }
8214 cfs_b->hierarchal_quota = quota;
8215
8216 return 0;
8217}
8218
8219static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8220{
8277434e 8221 int ret;
a790de99
PT
8222 struct cfs_schedulable_data data = {
8223 .tg = tg,
8224 .period = period,
8225 .quota = quota,
8226 };
8227
8228 if (quota != RUNTIME_INF) {
8229 do_div(data.period, NSEC_PER_USEC);
8230 do_div(data.quota, NSEC_PER_USEC);
8231 }
8232
8277434e
PT
8233 rcu_read_lock();
8234 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8235 rcu_read_unlock();
8236
8237 return ret;
a790de99 8238}
e8da1b18
NR
8239
8240static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
8241 struct cgroup_map_cb *cb)
8242{
8243 struct task_group *tg = cgroup_tg(cgrp);
029632fb 8244 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18
NR
8245
8246 cb->fill(cb, "nr_periods", cfs_b->nr_periods);
8247 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
8248 cb->fill(cb, "throttled_time", cfs_b->throttled_time);
8249
8250 return 0;
8251}
ab84d31e 8252#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 8253#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8254
052f1dc7 8255#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 8256static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 8257 s64 val)
6f505b16 8258{
06ecb27c 8259 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
8260}
8261
06ecb27c 8262static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 8263{
06ecb27c 8264 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 8265}
d0b27fa7
PZ
8266
8267static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8268 u64 rt_period_us)
8269{
8270 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8271}
8272
8273static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8274{
8275 return sched_group_rt_period(cgroup_tg(cgrp));
8276}
6d6bc0ad 8277#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8278
fe5c7cc2 8279static struct cftype cpu_files[] = {
052f1dc7 8280#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8281 {
8282 .name = "shares",
f4c753b7
PM
8283 .read_u64 = cpu_shares_read_u64,
8284 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8285 },
052f1dc7 8286#endif
ab84d31e
PT
8287#ifdef CONFIG_CFS_BANDWIDTH
8288 {
8289 .name = "cfs_quota_us",
8290 .read_s64 = cpu_cfs_quota_read_s64,
8291 .write_s64 = cpu_cfs_quota_write_s64,
8292 },
8293 {
8294 .name = "cfs_period_us",
8295 .read_u64 = cpu_cfs_period_read_u64,
8296 .write_u64 = cpu_cfs_period_write_u64,
8297 },
e8da1b18
NR
8298 {
8299 .name = "stat",
8300 .read_map = cpu_stats_show,
8301 },
ab84d31e 8302#endif
052f1dc7 8303#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8304 {
9f0c1e56 8305 .name = "rt_runtime_us",
06ecb27c
PM
8306 .read_s64 = cpu_rt_runtime_read,
8307 .write_s64 = cpu_rt_runtime_write,
6f505b16 8308 },
d0b27fa7
PZ
8309 {
8310 .name = "rt_period_us",
f4c753b7
PM
8311 .read_u64 = cpu_rt_period_read_uint,
8312 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8313 },
052f1dc7 8314#endif
4baf6e33 8315 { } /* terminate */
68318b8e
SV
8316};
8317
68318b8e 8318struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
8319 .name = "cpu",
8320 .create = cpu_cgroup_create,
8321 .destroy = cpu_cgroup_destroy,
bb9d97b6
TH
8322 .can_attach = cpu_cgroup_can_attach,
8323 .attach = cpu_cgroup_attach,
068c5cc5 8324 .exit = cpu_cgroup_exit,
38605cae 8325 .subsys_id = cpu_cgroup_subsys_id,
4baf6e33 8326 .base_cftypes = cpu_files,
68318b8e
SV
8327 .early_init = 1,
8328};
8329
052f1dc7 8330#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
8331
8332#ifdef CONFIG_CGROUP_CPUACCT
8333
8334/*
8335 * CPU accounting code for task groups.
8336 *
8337 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8338 * (balbir@in.ibm.com).
8339 */
8340
d842de87 8341/* create a new cpu accounting group */
761b3ef5 8342static struct cgroup_subsys_state *cpuacct_create(struct cgroup *cgrp)
d842de87 8343{
54c707e9 8344 struct cpuacct *ca;
d842de87 8345
54c707e9
GC
8346 if (!cgrp->parent)
8347 return &root_cpuacct.css;
8348
8349 ca = kzalloc(sizeof(*ca), GFP_KERNEL);
d842de87 8350 if (!ca)
ef12fefa 8351 goto out;
d842de87
SV
8352
8353 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
8354 if (!ca->cpuusage)
8355 goto out_free_ca;
8356
54c707e9
GC
8357 ca->cpustat = alloc_percpu(struct kernel_cpustat);
8358 if (!ca->cpustat)
8359 goto out_free_cpuusage;
934352f2 8360
d842de87 8361 return &ca->css;
ef12fefa 8362
54c707e9 8363out_free_cpuusage:
ef12fefa
BR
8364 free_percpu(ca->cpuusage);
8365out_free_ca:
8366 kfree(ca);
8367out:
8368 return ERR_PTR(-ENOMEM);
d842de87
SV
8369}
8370
8371/* destroy an existing cpu accounting group */
761b3ef5 8372static void cpuacct_destroy(struct cgroup *cgrp)
d842de87 8373{
32cd756a 8374 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87 8375
54c707e9 8376 free_percpu(ca->cpustat);
d842de87
SV
8377 free_percpu(ca->cpuusage);
8378 kfree(ca);
8379}
8380
720f5498
KC
8381static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8382{
b36128c8 8383 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8384 u64 data;
8385
8386#ifndef CONFIG_64BIT
8387 /*
8388 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8389 */
05fa785c 8390 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8391 data = *cpuusage;
05fa785c 8392 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8393#else
8394 data = *cpuusage;
8395#endif
8396
8397 return data;
8398}
8399
8400static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8401{
b36128c8 8402 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8403
8404#ifndef CONFIG_64BIT
8405 /*
8406 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8407 */
05fa785c 8408 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8409 *cpuusage = val;
05fa785c 8410 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8411#else
8412 *cpuusage = val;
8413#endif
8414}
8415
d842de87 8416/* return total cpu usage (in nanoseconds) of a group */
32cd756a 8417static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 8418{
32cd756a 8419 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
8420 u64 totalcpuusage = 0;
8421 int i;
8422
720f5498
KC
8423 for_each_present_cpu(i)
8424 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
8425
8426 return totalcpuusage;
8427}
8428
0297b803
DG
8429static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8430 u64 reset)
8431{
8432 struct cpuacct *ca = cgroup_ca(cgrp);
8433 int err = 0;
8434 int i;
8435
8436 if (reset) {
8437 err = -EINVAL;
8438 goto out;
8439 }
8440
720f5498
KC
8441 for_each_present_cpu(i)
8442 cpuacct_cpuusage_write(ca, i, 0);
0297b803 8443
0297b803
DG
8444out:
8445 return err;
8446}
8447
e9515c3c
KC
8448static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8449 struct seq_file *m)
8450{
8451 struct cpuacct *ca = cgroup_ca(cgroup);
8452 u64 percpu;
8453 int i;
8454
8455 for_each_present_cpu(i) {
8456 percpu = cpuacct_cpuusage_read(ca, i);
8457 seq_printf(m, "%llu ", (unsigned long long) percpu);
8458 }
8459 seq_printf(m, "\n");
8460 return 0;
8461}
8462
ef12fefa
BR
8463static const char *cpuacct_stat_desc[] = {
8464 [CPUACCT_STAT_USER] = "user",
8465 [CPUACCT_STAT_SYSTEM] = "system",
8466};
8467
8468static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
54c707e9 8469 struct cgroup_map_cb *cb)
ef12fefa
BR
8470{
8471 struct cpuacct *ca = cgroup_ca(cgrp);
54c707e9
GC
8472 int cpu;
8473 s64 val = 0;
ef12fefa 8474
54c707e9
GC
8475 for_each_online_cpu(cpu) {
8476 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8477 val += kcpustat->cpustat[CPUTIME_USER];
8478 val += kcpustat->cpustat[CPUTIME_NICE];
ef12fefa 8479 }
54c707e9
GC
8480 val = cputime64_to_clock_t(val);
8481 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
ef12fefa 8482
54c707e9
GC
8483 val = 0;
8484 for_each_online_cpu(cpu) {
8485 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8486 val += kcpustat->cpustat[CPUTIME_SYSTEM];
8487 val += kcpustat->cpustat[CPUTIME_IRQ];
8488 val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
ef12fefa 8489 }
54c707e9
GC
8490
8491 val = cputime64_to_clock_t(val);
8492 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
8493
ef12fefa
BR
8494 return 0;
8495}
8496
d842de87
SV
8497static struct cftype files[] = {
8498 {
8499 .name = "usage",
f4c753b7
PM
8500 .read_u64 = cpuusage_read,
8501 .write_u64 = cpuusage_write,
d842de87 8502 },
e9515c3c
KC
8503 {
8504 .name = "usage_percpu",
8505 .read_seq_string = cpuacct_percpu_seq_read,
8506 },
ef12fefa
BR
8507 {
8508 .name = "stat",
8509 .read_map = cpuacct_stats_show,
8510 },
4baf6e33 8511 { } /* terminate */
d842de87
SV
8512};
8513
d842de87
SV
8514/*
8515 * charge this task's execution time to its accounting group.
8516 *
8517 * called with rq->lock held.
8518 */
029632fb 8519void cpuacct_charge(struct task_struct *tsk, u64 cputime)
d842de87
SV
8520{
8521 struct cpuacct *ca;
934352f2 8522 int cpu;
d842de87 8523
c40c6f85 8524 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
8525 return;
8526
934352f2 8527 cpu = task_cpu(tsk);
a18b83b7
BR
8528
8529 rcu_read_lock();
8530
d842de87 8531 ca = task_ca(tsk);
d842de87 8532
44252e42 8533 for (; ca; ca = parent_ca(ca)) {
b36128c8 8534 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
8535 *cpuusage += cputime;
8536 }
a18b83b7
BR
8537
8538 rcu_read_unlock();
d842de87
SV
8539}
8540
8541struct cgroup_subsys cpuacct_subsys = {
8542 .name = "cpuacct",
8543 .create = cpuacct_create,
8544 .destroy = cpuacct_destroy,
d842de87 8545 .subsys_id = cpuacct_subsys_id,
4baf6e33 8546 .base_cftypes = files,
d842de87
SV
8547};
8548#endif /* CONFIG_CGROUP_CPUACCT */