]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - kernel/sched/core.c
arm64: scs: Use 'scs_sp' register alias for x18
[mirror_ubuntu-hirsute-kernel.git] / kernel / sched / core.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4 2/*
391e43da 3 * kernel/sched/core.c
1da177e4 4 *
d1ccc66d 5 * Core kernel scheduler code and related syscalls
1da177e4
LT
6 *
7 * Copyright (C) 1991-2002 Linus Torvalds
1da177e4 8 */
325ea10c 9#include "sched.h"
1da177e4 10
7281c8de 11#include <linux/nospec.h>
85f1abe0 12
0ed557aa 13#include <linux/kcov.h>
d08b9f0c 14#include <linux/scs.h>
0ed557aa 15
96f951ed 16#include <asm/switch_to.h>
5517d86b 17#include <asm/tlb.h>
1da177e4 18
ea138446 19#include "../workqueue_internal.h"
771b53d0 20#include "../../fs/io-wq.h"
29d5e047 21#include "../smpboot.h"
6e0534f2 22
91c27493
VG
23#include "pelt.h"
24
a8d154b0 25#define CREATE_TRACE_POINTS
ad8d75ff 26#include <trace/events/sched.h>
a8d154b0 27
a056a5be
QY
28/*
29 * Export tracepoints that act as a bare tracehook (ie: have no trace event
30 * associated with them) to allow external modules to probe them.
31 */
32EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
33EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
34EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
35EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
36EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
37EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
38
029632fb 39DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 40
e9666d10 41#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL)
bf5c91ba
IM
42/*
43 * Debugging: various feature bits
765cc3a4
PB
44 *
45 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
46 * sysctl_sched_features, defined in sched.h, to allow constants propagation
47 * at compile time and compiler optimization based on features default.
bf5c91ba 48 */
f00b45c1
PZ
49#define SCHED_FEAT(name, enabled) \
50 (1UL << __SCHED_FEAT_##name) * enabled |
bf5c91ba 51const_debug unsigned int sysctl_sched_features =
391e43da 52#include "features.h"
f00b45c1 53 0;
f00b45c1 54#undef SCHED_FEAT
765cc3a4 55#endif
f00b45c1 56
b82d9fdd
PZ
57/*
58 * Number of tasks to iterate in a single balance run.
59 * Limited because this is done with IRQs disabled.
60 */
61const_debug unsigned int sysctl_sched_nr_migrate = 32;
62
fa85ae24 63/*
d1ccc66d 64 * period over which we measure -rt task CPU usage in us.
fa85ae24
PZ
65 * default: 1s
66 */
9f0c1e56 67unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 68
029632fb 69__read_mostly int scheduler_running;
6892b75e 70
9f0c1e56
PZ
71/*
72 * part of the period that we allow rt tasks to run in us.
73 * default: 0.95s
74 */
75int sysctl_sched_rt_runtime = 950000;
fa85ae24 76
3e71a462
PZ
77/*
78 * __task_rq_lock - lock the rq @p resides on.
79 */
eb580751 80struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
81 __acquires(rq->lock)
82{
83 struct rq *rq;
84
85 lockdep_assert_held(&p->pi_lock);
86
87 for (;;) {
88 rq = task_rq(p);
89 raw_spin_lock(&rq->lock);
90 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 91 rq_pin_lock(rq, rf);
3e71a462
PZ
92 return rq;
93 }
94 raw_spin_unlock(&rq->lock);
95
96 while (unlikely(task_on_rq_migrating(p)))
97 cpu_relax();
98 }
99}
100
101/*
102 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
103 */
eb580751 104struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
105 __acquires(p->pi_lock)
106 __acquires(rq->lock)
107{
108 struct rq *rq;
109
110 for (;;) {
eb580751 111 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
3e71a462
PZ
112 rq = task_rq(p);
113 raw_spin_lock(&rq->lock);
114 /*
115 * move_queued_task() task_rq_lock()
116 *
117 * ACQUIRE (rq->lock)
118 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
119 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
120 * [S] ->cpu = new_cpu [L] task_rq()
121 * [L] ->on_rq
122 * RELEASE (rq->lock)
123 *
c546951d 124 * If we observe the old CPU in task_rq_lock(), the acquire of
3e71a462
PZ
125 * the old rq->lock will fully serialize against the stores.
126 *
c546951d
AP
127 * If we observe the new CPU in task_rq_lock(), the address
128 * dependency headed by '[L] rq = task_rq()' and the acquire
129 * will pair with the WMB to ensure we then also see migrating.
3e71a462
PZ
130 */
131 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 132 rq_pin_lock(rq, rf);
3e71a462
PZ
133 return rq;
134 }
135 raw_spin_unlock(&rq->lock);
eb580751 136 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
3e71a462
PZ
137
138 while (unlikely(task_on_rq_migrating(p)))
139 cpu_relax();
140 }
141}
142
535b9552
IM
143/*
144 * RQ-clock updating methods:
145 */
146
147static void update_rq_clock_task(struct rq *rq, s64 delta)
148{
149/*
150 * In theory, the compile should just see 0 here, and optimize out the call
151 * to sched_rt_avg_update. But I don't trust it...
152 */
11d4afd4
VG
153 s64 __maybe_unused steal = 0, irq_delta = 0;
154
535b9552
IM
155#ifdef CONFIG_IRQ_TIME_ACCOUNTING
156 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
157
158 /*
159 * Since irq_time is only updated on {soft,}irq_exit, we might run into
160 * this case when a previous update_rq_clock() happened inside a
161 * {soft,}irq region.
162 *
163 * When this happens, we stop ->clock_task and only update the
164 * prev_irq_time stamp to account for the part that fit, so that a next
165 * update will consume the rest. This ensures ->clock_task is
166 * monotonic.
167 *
168 * It does however cause some slight miss-attribution of {soft,}irq
169 * time, a more accurate solution would be to update the irq_time using
170 * the current rq->clock timestamp, except that would require using
171 * atomic ops.
172 */
173 if (irq_delta > delta)
174 irq_delta = delta;
175
176 rq->prev_irq_time += irq_delta;
177 delta -= irq_delta;
178#endif
179#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
180 if (static_key_false((&paravirt_steal_rq_enabled))) {
181 steal = paravirt_steal_clock(cpu_of(rq));
182 steal -= rq->prev_steal_time_rq;
183
184 if (unlikely(steal > delta))
185 steal = delta;
186
187 rq->prev_steal_time_rq += steal;
188 delta -= steal;
189 }
190#endif
191
192 rq->clock_task += delta;
193
11d4afd4 194#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
535b9552 195 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
91c27493 196 update_irq_load_avg(rq, irq_delta + steal);
535b9552 197#endif
23127296 198 update_rq_clock_pelt(rq, delta);
535b9552
IM
199}
200
201void update_rq_clock(struct rq *rq)
202{
203 s64 delta;
204
205 lockdep_assert_held(&rq->lock);
206
207 if (rq->clock_update_flags & RQCF_ACT_SKIP)
208 return;
209
210#ifdef CONFIG_SCHED_DEBUG
26ae58d2
PZ
211 if (sched_feat(WARN_DOUBLE_CLOCK))
212 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
535b9552
IM
213 rq->clock_update_flags |= RQCF_UPDATED;
214#endif
26ae58d2 215
535b9552
IM
216 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
217 if (delta < 0)
218 return;
219 rq->clock += delta;
220 update_rq_clock_task(rq, delta);
221}
222
223
8f4d37ec
PZ
224#ifdef CONFIG_SCHED_HRTICK
225/*
226 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 227 */
8f4d37ec 228
8f4d37ec
PZ
229static void hrtick_clear(struct rq *rq)
230{
231 if (hrtimer_active(&rq->hrtick_timer))
232 hrtimer_cancel(&rq->hrtick_timer);
233}
234
8f4d37ec
PZ
235/*
236 * High-resolution timer tick.
237 * Runs from hardirq context with interrupts disabled.
238 */
239static enum hrtimer_restart hrtick(struct hrtimer *timer)
240{
241 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
8a8c69c3 242 struct rq_flags rf;
8f4d37ec
PZ
243
244 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
245
8a8c69c3 246 rq_lock(rq, &rf);
3e51f33f 247 update_rq_clock(rq);
8f4d37ec 248 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
8a8c69c3 249 rq_unlock(rq, &rf);
8f4d37ec
PZ
250
251 return HRTIMER_NORESTART;
252}
253
95e904c7 254#ifdef CONFIG_SMP
971ee28c 255
4961b6e1 256static void __hrtick_restart(struct rq *rq)
971ee28c
PZ
257{
258 struct hrtimer *timer = &rq->hrtick_timer;
971ee28c 259
d5096aa6 260 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
971ee28c
PZ
261}
262
31656519
PZ
263/*
264 * called from hardirq (IPI) context
265 */
266static void __hrtick_start(void *arg)
b328ca18 267{
31656519 268 struct rq *rq = arg;
8a8c69c3 269 struct rq_flags rf;
b328ca18 270
8a8c69c3 271 rq_lock(rq, &rf);
971ee28c 272 __hrtick_restart(rq);
8a8c69c3 273 rq_unlock(rq, &rf);
b328ca18
PZ
274}
275
31656519
PZ
276/*
277 * Called to set the hrtick timer state.
278 *
279 * called with rq->lock held and irqs disabled
280 */
029632fb 281void hrtick_start(struct rq *rq, u64 delay)
b328ca18 282{
31656519 283 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 284 ktime_t time;
285 s64 delta;
286
287 /*
288 * Don't schedule slices shorter than 10000ns, that just
289 * doesn't make sense and can cause timer DoS.
290 */
291 delta = max_t(s64, delay, 10000LL);
292 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 293
cc584b21 294 hrtimer_set_expires(timer, time);
31656519 295
fd3eafda 296 if (rq == this_rq())
971ee28c 297 __hrtick_restart(rq);
fd3eafda 298 else
c46fff2a 299 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
b328ca18
PZ
300}
301
31656519
PZ
302#else
303/*
304 * Called to set the hrtick timer state.
305 *
306 * called with rq->lock held and irqs disabled
307 */
029632fb 308void hrtick_start(struct rq *rq, u64 delay)
31656519 309{
86893335
WL
310 /*
311 * Don't schedule slices shorter than 10000ns, that just
312 * doesn't make sense. Rely on vruntime for fairness.
313 */
314 delay = max_t(u64, delay, 10000LL);
4961b6e1 315 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
d5096aa6 316 HRTIMER_MODE_REL_PINNED_HARD);
31656519 317}
31656519 318#endif /* CONFIG_SMP */
8f4d37ec 319
77a021be 320static void hrtick_rq_init(struct rq *rq)
8f4d37ec 321{
31656519 322#ifdef CONFIG_SMP
31656519
PZ
323 rq->hrtick_csd.flags = 0;
324 rq->hrtick_csd.func = __hrtick_start;
325 rq->hrtick_csd.info = rq;
326#endif
8f4d37ec 327
d5096aa6 328 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
31656519 329 rq->hrtick_timer.function = hrtick;
8f4d37ec 330}
006c75f1 331#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
332static inline void hrtick_clear(struct rq *rq)
333{
334}
335
77a021be 336static inline void hrtick_rq_init(struct rq *rq)
8f4d37ec
PZ
337{
338}
006c75f1 339#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 340
5529578a
FW
341/*
342 * cmpxchg based fetch_or, macro so it works for different integer types
343 */
344#define fetch_or(ptr, mask) \
345 ({ \
346 typeof(ptr) _ptr = (ptr); \
347 typeof(mask) _mask = (mask); \
348 typeof(*_ptr) _old, _val = *_ptr; \
349 \
350 for (;;) { \
351 _old = cmpxchg(_ptr, _val, _val | _mask); \
352 if (_old == _val) \
353 break; \
354 _val = _old; \
355 } \
356 _old; \
357})
358
e3baac47 359#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
360/*
361 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
362 * this avoids any races wrt polling state changes and thereby avoids
363 * spurious IPIs.
364 */
365static bool set_nr_and_not_polling(struct task_struct *p)
366{
367 struct thread_info *ti = task_thread_info(p);
368 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
369}
e3baac47
PZ
370
371/*
372 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
373 *
374 * If this returns true, then the idle task promises to call
375 * sched_ttwu_pending() and reschedule soon.
376 */
377static bool set_nr_if_polling(struct task_struct *p)
378{
379 struct thread_info *ti = task_thread_info(p);
316c1608 380 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
e3baac47
PZ
381
382 for (;;) {
383 if (!(val & _TIF_POLLING_NRFLAG))
384 return false;
385 if (val & _TIF_NEED_RESCHED)
386 return true;
387 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
388 if (old == val)
389 break;
390 val = old;
391 }
392 return true;
393}
394
fd99f91a
PZ
395#else
396static bool set_nr_and_not_polling(struct task_struct *p)
397{
398 set_tsk_need_resched(p);
399 return true;
400}
e3baac47
PZ
401
402#ifdef CONFIG_SMP
403static bool set_nr_if_polling(struct task_struct *p)
404{
405 return false;
406}
407#endif
fd99f91a
PZ
408#endif
409
07879c6a 410static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
76751049
PZ
411{
412 struct wake_q_node *node = &task->wake_q;
413
414 /*
415 * Atomically grab the task, if ->wake_q is !nil already it means
416 * its already queued (either by us or someone else) and will get the
417 * wakeup due to that.
418 *
4c4e3731
PZ
419 * In order to ensure that a pending wakeup will observe our pending
420 * state, even in the failed case, an explicit smp_mb() must be used.
76751049 421 */
4c4e3731 422 smp_mb__before_atomic();
87ff19cb 423 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
07879c6a 424 return false;
76751049
PZ
425
426 /*
427 * The head is context local, there can be no concurrency.
428 */
429 *head->lastp = node;
430 head->lastp = &node->next;
07879c6a
DB
431 return true;
432}
433
434/**
435 * wake_q_add() - queue a wakeup for 'later' waking.
436 * @head: the wake_q_head to add @task to
437 * @task: the task to queue for 'later' wakeup
438 *
439 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
440 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
441 * instantly.
442 *
443 * This function must be used as-if it were wake_up_process(); IOW the task
444 * must be ready to be woken at this location.
445 */
446void wake_q_add(struct wake_q_head *head, struct task_struct *task)
447{
448 if (__wake_q_add(head, task))
449 get_task_struct(task);
450}
451
452/**
453 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
454 * @head: the wake_q_head to add @task to
455 * @task: the task to queue for 'later' wakeup
456 *
457 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
458 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
459 * instantly.
460 *
461 * This function must be used as-if it were wake_up_process(); IOW the task
462 * must be ready to be woken at this location.
463 *
464 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
465 * that already hold reference to @task can call the 'safe' version and trust
466 * wake_q to do the right thing depending whether or not the @task is already
467 * queued for wakeup.
468 */
469void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
470{
471 if (!__wake_q_add(head, task))
472 put_task_struct(task);
76751049
PZ
473}
474
475void wake_up_q(struct wake_q_head *head)
476{
477 struct wake_q_node *node = head->first;
478
479 while (node != WAKE_Q_TAIL) {
480 struct task_struct *task;
481
482 task = container_of(node, struct task_struct, wake_q);
483 BUG_ON(!task);
d1ccc66d 484 /* Task can safely be re-inserted now: */
76751049
PZ
485 node = node->next;
486 task->wake_q.next = NULL;
487
488 /*
7696f991
AP
489 * wake_up_process() executes a full barrier, which pairs with
490 * the queueing in wake_q_add() so as not to miss wakeups.
76751049
PZ
491 */
492 wake_up_process(task);
493 put_task_struct(task);
494 }
495}
496
c24d20db 497/*
8875125e 498 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
499 *
500 * On UP this means the setting of the need_resched flag, on SMP it
501 * might also involve a cross-CPU call to trigger the scheduler on
502 * the target CPU.
503 */
8875125e 504void resched_curr(struct rq *rq)
c24d20db 505{
8875125e 506 struct task_struct *curr = rq->curr;
c24d20db
IM
507 int cpu;
508
8875125e 509 lockdep_assert_held(&rq->lock);
c24d20db 510
8875125e 511 if (test_tsk_need_resched(curr))
c24d20db
IM
512 return;
513
8875125e 514 cpu = cpu_of(rq);
fd99f91a 515
f27dde8d 516 if (cpu == smp_processor_id()) {
8875125e 517 set_tsk_need_resched(curr);
f27dde8d 518 set_preempt_need_resched();
c24d20db 519 return;
f27dde8d 520 }
c24d20db 521
8875125e 522 if (set_nr_and_not_polling(curr))
c24d20db 523 smp_send_reschedule(cpu);
dfc68f29
AL
524 else
525 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
526}
527
029632fb 528void resched_cpu(int cpu)
c24d20db
IM
529{
530 struct rq *rq = cpu_rq(cpu);
531 unsigned long flags;
532
7c2102e5 533 raw_spin_lock_irqsave(&rq->lock, flags);
a0982dfa
PM
534 if (cpu_online(cpu) || cpu == smp_processor_id())
535 resched_curr(rq);
05fa785c 536 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 537}
06d8308c 538
b021fe3e 539#ifdef CONFIG_SMP
3451d024 540#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2 541/*
d1ccc66d
IM
542 * In the semi idle case, use the nearest busy CPU for migrating timers
543 * from an idle CPU. This is good for power-savings.
83cd4fe2
VP
544 *
545 * We don't do similar optimization for completely idle system, as
d1ccc66d
IM
546 * selecting an idle CPU will add more delays to the timers than intended
547 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
83cd4fe2 548 */
bc7a34b8 549int get_nohz_timer_target(void)
83cd4fe2 550{
e938b9c9 551 int i, cpu = smp_processor_id(), default_cpu = -1;
83cd4fe2
VP
552 struct sched_domain *sd;
553
e938b9c9
WL
554 if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) {
555 if (!idle_cpu(cpu))
556 return cpu;
557 default_cpu = cpu;
558 }
6201b4d6 559
057f3fad 560 rcu_read_lock();
83cd4fe2 561 for_each_domain(cpu, sd) {
e938b9c9
WL
562 for_each_cpu_and(i, sched_domain_span(sd),
563 housekeeping_cpumask(HK_FLAG_TIMER)) {
44496922
WL
564 if (cpu == i)
565 continue;
566
e938b9c9 567 if (!idle_cpu(i)) {
057f3fad
PZ
568 cpu = i;
569 goto unlock;
570 }
571 }
83cd4fe2 572 }
9642d18e 573
e938b9c9
WL
574 if (default_cpu == -1)
575 default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
576 cpu = default_cpu;
057f3fad
PZ
577unlock:
578 rcu_read_unlock();
83cd4fe2
VP
579 return cpu;
580}
d1ccc66d 581
06d8308c
TG
582/*
583 * When add_timer_on() enqueues a timer into the timer wheel of an
584 * idle CPU then this timer might expire before the next timer event
585 * which is scheduled to wake up that CPU. In case of a completely
586 * idle system the next event might even be infinite time into the
587 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
588 * leaves the inner idle loop so the newly added timer is taken into
589 * account when the CPU goes back to idle and evaluates the timer
590 * wheel for the next timer event.
591 */
1c20091e 592static void wake_up_idle_cpu(int cpu)
06d8308c
TG
593{
594 struct rq *rq = cpu_rq(cpu);
595
596 if (cpu == smp_processor_id())
597 return;
598
67b9ca70 599 if (set_nr_and_not_polling(rq->idle))
06d8308c 600 smp_send_reschedule(cpu);
dfc68f29
AL
601 else
602 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
603}
604
c5bfece2 605static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 606{
53c5fa16
FW
607 /*
608 * We just need the target to call irq_exit() and re-evaluate
609 * the next tick. The nohz full kick at least implies that.
610 * If needed we can still optimize that later with an
611 * empty IRQ.
612 */
379d9ecb
PM
613 if (cpu_is_offline(cpu))
614 return true; /* Don't try to wake offline CPUs. */
c5bfece2 615 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
616 if (cpu != smp_processor_id() ||
617 tick_nohz_tick_stopped())
53c5fa16 618 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
619 return true;
620 }
621
622 return false;
623}
624
379d9ecb
PM
625/*
626 * Wake up the specified CPU. If the CPU is going offline, it is the
627 * caller's responsibility to deal with the lost wakeup, for example,
628 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
629 */
1c20091e
FW
630void wake_up_nohz_cpu(int cpu)
631{
c5bfece2 632 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
633 wake_up_idle_cpu(cpu);
634}
635
ca38062e 636static inline bool got_nohz_idle_kick(void)
45bf76df 637{
1c792db7 638 int cpu = smp_processor_id();
873b4c65 639
b7031a02 640 if (!(atomic_read(nohz_flags(cpu)) & NOHZ_KICK_MASK))
873b4c65
VG
641 return false;
642
643 if (idle_cpu(cpu) && !need_resched())
644 return true;
645
646 /*
647 * We can't run Idle Load Balance on this CPU for this time so we
648 * cancel it and clear NOHZ_BALANCE_KICK
649 */
b7031a02 650 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
873b4c65 651 return false;
45bf76df
IM
652}
653
3451d024 654#else /* CONFIG_NO_HZ_COMMON */
45bf76df 655
ca38062e 656static inline bool got_nohz_idle_kick(void)
2069dd75 657{
ca38062e 658 return false;
2069dd75
PZ
659}
660
3451d024 661#endif /* CONFIG_NO_HZ_COMMON */
d842de87 662
ce831b38 663#ifdef CONFIG_NO_HZ_FULL
76d92ac3 664bool sched_can_stop_tick(struct rq *rq)
ce831b38 665{
76d92ac3
FW
666 int fifo_nr_running;
667
668 /* Deadline tasks, even if single, need the tick */
669 if (rq->dl.dl_nr_running)
670 return false;
671
1e78cdbd 672 /*
2548d546
PZ
673 * If there are more than one RR tasks, we need the tick to effect the
674 * actual RR behaviour.
1e78cdbd 675 */
76d92ac3
FW
676 if (rq->rt.rr_nr_running) {
677 if (rq->rt.rr_nr_running == 1)
678 return true;
679 else
680 return false;
1e78cdbd
RR
681 }
682
2548d546
PZ
683 /*
684 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
685 * forced preemption between FIFO tasks.
686 */
687 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
688 if (fifo_nr_running)
689 return true;
690
691 /*
692 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
693 * if there's more than one we need the tick for involuntary
694 * preemption.
695 */
696 if (rq->nr_running > 1)
541b8264 697 return false;
ce831b38 698
541b8264 699 return true;
ce831b38
FW
700}
701#endif /* CONFIG_NO_HZ_FULL */
6d6bc0ad 702#endif /* CONFIG_SMP */
18d95a28 703
a790de99
PT
704#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
705 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 706/*
8277434e
PT
707 * Iterate task_group tree rooted at *from, calling @down when first entering a
708 * node and @up when leaving it for the final time.
709 *
710 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 711 */
029632fb 712int walk_tg_tree_from(struct task_group *from,
8277434e 713 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
714{
715 struct task_group *parent, *child;
eb755805 716 int ret;
c09595f6 717
8277434e
PT
718 parent = from;
719
c09595f6 720down:
eb755805
PZ
721 ret = (*down)(parent, data);
722 if (ret)
8277434e 723 goto out;
c09595f6
PZ
724 list_for_each_entry_rcu(child, &parent->children, siblings) {
725 parent = child;
726 goto down;
727
728up:
729 continue;
730 }
eb755805 731 ret = (*up)(parent, data);
8277434e
PT
732 if (ret || parent == from)
733 goto out;
c09595f6
PZ
734
735 child = parent;
736 parent = parent->parent;
737 if (parent)
738 goto up;
8277434e 739out:
eb755805 740 return ret;
c09595f6
PZ
741}
742
029632fb 743int tg_nop(struct task_group *tg, void *data)
eb755805 744{
e2b245f8 745 return 0;
eb755805 746}
18d95a28
PZ
747#endif
748
9059393e 749static void set_load_weight(struct task_struct *p, bool update_load)
45bf76df 750{
f05998d4
NR
751 int prio = p->static_prio - MAX_RT_PRIO;
752 struct load_weight *load = &p->se.load;
753
dd41f596
IM
754 /*
755 * SCHED_IDLE tasks get minimal weight:
756 */
1da1843f 757 if (task_has_idle_policy(p)) {
c8b28116 758 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 759 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
760 return;
761 }
71f8bd46 762
9059393e
VG
763 /*
764 * SCHED_OTHER tasks have to update their load when changing their
765 * weight
766 */
767 if (update_load && p->sched_class == &fair_sched_class) {
768 reweight_task(p, prio);
769 } else {
770 load->weight = scale_load(sched_prio_to_weight[prio]);
771 load->inv_weight = sched_prio_to_wmult[prio];
772 }
71f8bd46
IM
773}
774
69842cba 775#ifdef CONFIG_UCLAMP_TASK
2480c093
PB
776/*
777 * Serializes updates of utilization clamp values
778 *
779 * The (slow-path) user-space triggers utilization clamp value updates which
780 * can require updates on (fast-path) scheduler's data structures used to
781 * support enqueue/dequeue operations.
782 * While the per-CPU rq lock protects fast-path update operations, user-space
783 * requests are serialized using a mutex to reduce the risk of conflicting
784 * updates or API abuses.
785 */
786static DEFINE_MUTEX(uclamp_mutex);
787
e8f14172
PB
788/* Max allowed minimum utilization */
789unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
790
791/* Max allowed maximum utilization */
792unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
793
794/* All clamps are required to be less or equal than these values */
795static struct uclamp_se uclamp_default[UCLAMP_CNT];
69842cba
PB
796
797/* Integer rounded range for each bucket */
798#define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
799
800#define for_each_clamp_id(clamp_id) \
801 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
802
803static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
804{
805 return clamp_value / UCLAMP_BUCKET_DELTA;
806}
807
60daf9c1
PB
808static inline unsigned int uclamp_bucket_base_value(unsigned int clamp_value)
809{
810 return UCLAMP_BUCKET_DELTA * uclamp_bucket_id(clamp_value);
811}
812
7763baac 813static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
69842cba
PB
814{
815 if (clamp_id == UCLAMP_MIN)
816 return 0;
817 return SCHED_CAPACITY_SCALE;
818}
819
a509a7cd
PB
820static inline void uclamp_se_set(struct uclamp_se *uc_se,
821 unsigned int value, bool user_defined)
69842cba
PB
822{
823 uc_se->value = value;
824 uc_se->bucket_id = uclamp_bucket_id(value);
a509a7cd 825 uc_se->user_defined = user_defined;
69842cba
PB
826}
827
e496187d 828static inline unsigned int
0413d7f3 829uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
e496187d
PB
830 unsigned int clamp_value)
831{
832 /*
833 * Avoid blocked utilization pushing up the frequency when we go
834 * idle (which drops the max-clamp) by retaining the last known
835 * max-clamp.
836 */
837 if (clamp_id == UCLAMP_MAX) {
838 rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
839 return clamp_value;
840 }
841
842 return uclamp_none(UCLAMP_MIN);
843}
844
0413d7f3 845static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
e496187d
PB
846 unsigned int clamp_value)
847{
848 /* Reset max-clamp retention only on idle exit */
849 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
850 return;
851
852 WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
853}
854
69842cba 855static inline
7763baac 856unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
0413d7f3 857 unsigned int clamp_value)
69842cba
PB
858{
859 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
860 int bucket_id = UCLAMP_BUCKETS - 1;
861
862 /*
863 * Since both min and max clamps are max aggregated, find the
864 * top most bucket with tasks in.
865 */
866 for ( ; bucket_id >= 0; bucket_id--) {
867 if (!bucket[bucket_id].tasks)
868 continue;
869 return bucket[bucket_id].value;
870 }
871
872 /* No tasks -- default clamp values */
e496187d 873 return uclamp_idle_value(rq, clamp_id, clamp_value);
69842cba
PB
874}
875
3eac870a 876static inline struct uclamp_se
0413d7f3 877uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
3eac870a
PB
878{
879 struct uclamp_se uc_req = p->uclamp_req[clamp_id];
880#ifdef CONFIG_UCLAMP_TASK_GROUP
881 struct uclamp_se uc_max;
882
883 /*
884 * Tasks in autogroups or root task group will be
885 * restricted by system defaults.
886 */
887 if (task_group_is_autogroup(task_group(p)))
888 return uc_req;
889 if (task_group(p) == &root_task_group)
890 return uc_req;
891
892 uc_max = task_group(p)->uclamp[clamp_id];
893 if (uc_req.value > uc_max.value || !uc_req.user_defined)
894 return uc_max;
895#endif
896
897 return uc_req;
898}
899
e8f14172
PB
900/*
901 * The effective clamp bucket index of a task depends on, by increasing
902 * priority:
903 * - the task specific clamp value, when explicitly requested from userspace
3eac870a
PB
904 * - the task group effective clamp value, for tasks not either in the root
905 * group or in an autogroup
e8f14172
PB
906 * - the system default clamp value, defined by the sysadmin
907 */
908static inline struct uclamp_se
0413d7f3 909uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
e8f14172 910{
3eac870a 911 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
e8f14172
PB
912 struct uclamp_se uc_max = uclamp_default[clamp_id];
913
914 /* System default restrictions always apply */
915 if (unlikely(uc_req.value > uc_max.value))
916 return uc_max;
917
918 return uc_req;
919}
920
686516b5 921unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
9d20ad7d
PB
922{
923 struct uclamp_se uc_eff;
924
925 /* Task currently refcounted: use back-annotated (effective) value */
926 if (p->uclamp[clamp_id].active)
686516b5 927 return (unsigned long)p->uclamp[clamp_id].value;
9d20ad7d
PB
928
929 uc_eff = uclamp_eff_get(p, clamp_id);
930
686516b5 931 return (unsigned long)uc_eff.value;
9d20ad7d
PB
932}
933
69842cba
PB
934/*
935 * When a task is enqueued on a rq, the clamp bucket currently defined by the
936 * task's uclamp::bucket_id is refcounted on that rq. This also immediately
937 * updates the rq's clamp value if required.
60daf9c1
PB
938 *
939 * Tasks can have a task-specific value requested from user-space, track
940 * within each bucket the maximum value for tasks refcounted in it.
941 * This "local max aggregation" allows to track the exact "requested" value
942 * for each bucket when all its RUNNABLE tasks require the same clamp.
69842cba
PB
943 */
944static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
0413d7f3 945 enum uclamp_id clamp_id)
69842cba
PB
946{
947 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
948 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
949 struct uclamp_bucket *bucket;
950
951 lockdep_assert_held(&rq->lock);
952
e8f14172
PB
953 /* Update task effective clamp */
954 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
955
69842cba
PB
956 bucket = &uc_rq->bucket[uc_se->bucket_id];
957 bucket->tasks++;
e8f14172 958 uc_se->active = true;
69842cba 959
e496187d
PB
960 uclamp_idle_reset(rq, clamp_id, uc_se->value);
961
60daf9c1
PB
962 /*
963 * Local max aggregation: rq buckets always track the max
964 * "requested" clamp value of its RUNNABLE tasks.
965 */
966 if (bucket->tasks == 1 || uc_se->value > bucket->value)
967 bucket->value = uc_se->value;
968
69842cba 969 if (uc_se->value > READ_ONCE(uc_rq->value))
60daf9c1 970 WRITE_ONCE(uc_rq->value, uc_se->value);
69842cba
PB
971}
972
973/*
974 * When a task is dequeued from a rq, the clamp bucket refcounted by the task
975 * is released. If this is the last task reference counting the rq's max
976 * active clamp value, then the rq's clamp value is updated.
977 *
978 * Both refcounted tasks and rq's cached clamp values are expected to be
979 * always valid. If it's detected they are not, as defensive programming,
980 * enforce the expected state and warn.
981 */
982static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
0413d7f3 983 enum uclamp_id clamp_id)
69842cba
PB
984{
985 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
986 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
987 struct uclamp_bucket *bucket;
e496187d 988 unsigned int bkt_clamp;
69842cba
PB
989 unsigned int rq_clamp;
990
991 lockdep_assert_held(&rq->lock);
992
993 bucket = &uc_rq->bucket[uc_se->bucket_id];
994 SCHED_WARN_ON(!bucket->tasks);
995 if (likely(bucket->tasks))
996 bucket->tasks--;
e8f14172 997 uc_se->active = false;
69842cba 998
60daf9c1
PB
999 /*
1000 * Keep "local max aggregation" simple and accept to (possibly)
1001 * overboost some RUNNABLE tasks in the same bucket.
1002 * The rq clamp bucket value is reset to its base value whenever
1003 * there are no more RUNNABLE tasks refcounting it.
1004 */
69842cba
PB
1005 if (likely(bucket->tasks))
1006 return;
1007
1008 rq_clamp = READ_ONCE(uc_rq->value);
1009 /*
1010 * Defensive programming: this should never happen. If it happens,
1011 * e.g. due to future modification, warn and fixup the expected value.
1012 */
1013 SCHED_WARN_ON(bucket->value > rq_clamp);
e496187d
PB
1014 if (bucket->value >= rq_clamp) {
1015 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1016 WRITE_ONCE(uc_rq->value, bkt_clamp);
1017 }
69842cba
PB
1018}
1019
1020static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1021{
0413d7f3 1022 enum uclamp_id clamp_id;
69842cba
PB
1023
1024 if (unlikely(!p->sched_class->uclamp_enabled))
1025 return;
1026
1027 for_each_clamp_id(clamp_id)
1028 uclamp_rq_inc_id(rq, p, clamp_id);
e496187d
PB
1029
1030 /* Reset clamp idle holding when there is one RUNNABLE task */
1031 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1032 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
69842cba
PB
1033}
1034
1035static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1036{
0413d7f3 1037 enum uclamp_id clamp_id;
69842cba
PB
1038
1039 if (unlikely(!p->sched_class->uclamp_enabled))
1040 return;
1041
1042 for_each_clamp_id(clamp_id)
1043 uclamp_rq_dec_id(rq, p, clamp_id);
1044}
1045
babbe170 1046static inline void
0413d7f3 1047uclamp_update_active(struct task_struct *p, enum uclamp_id clamp_id)
babbe170
PB
1048{
1049 struct rq_flags rf;
1050 struct rq *rq;
1051
1052 /*
1053 * Lock the task and the rq where the task is (or was) queued.
1054 *
1055 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1056 * price to pay to safely serialize util_{min,max} updates with
1057 * enqueues, dequeues and migration operations.
1058 * This is the same locking schema used by __set_cpus_allowed_ptr().
1059 */
1060 rq = task_rq_lock(p, &rf);
1061
1062 /*
1063 * Setting the clamp bucket is serialized by task_rq_lock().
1064 * If the task is not yet RUNNABLE and its task_struct is not
1065 * affecting a valid clamp bucket, the next time it's enqueued,
1066 * it will already see the updated clamp bucket value.
1067 */
6e1ff077 1068 if (p->uclamp[clamp_id].active) {
babbe170
PB
1069 uclamp_rq_dec_id(rq, p, clamp_id);
1070 uclamp_rq_inc_id(rq, p, clamp_id);
1071 }
1072
1073 task_rq_unlock(rq, p, &rf);
1074}
1075
e3b8b6a0 1076#ifdef CONFIG_UCLAMP_TASK_GROUP
babbe170
PB
1077static inline void
1078uclamp_update_active_tasks(struct cgroup_subsys_state *css,
1079 unsigned int clamps)
1080{
0413d7f3 1081 enum uclamp_id clamp_id;
babbe170
PB
1082 struct css_task_iter it;
1083 struct task_struct *p;
babbe170
PB
1084
1085 css_task_iter_start(css, 0, &it);
1086 while ((p = css_task_iter_next(&it))) {
1087 for_each_clamp_id(clamp_id) {
1088 if ((0x1 << clamp_id) & clamps)
1089 uclamp_update_active(p, clamp_id);
1090 }
1091 }
1092 css_task_iter_end(&it);
1093}
1094
7274a5c1
PB
1095static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1096static void uclamp_update_root_tg(void)
1097{
1098 struct task_group *tg = &root_task_group;
1099
1100 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1101 sysctl_sched_uclamp_util_min, false);
1102 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1103 sysctl_sched_uclamp_util_max, false);
1104
1105 rcu_read_lock();
1106 cpu_util_update_eff(&root_task_group.css);
1107 rcu_read_unlock();
1108}
1109#else
1110static void uclamp_update_root_tg(void) { }
1111#endif
1112
e8f14172
PB
1113int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1114 void __user *buffer, size_t *lenp,
1115 loff_t *ppos)
1116{
7274a5c1 1117 bool update_root_tg = false;
e8f14172 1118 int old_min, old_max;
e8f14172
PB
1119 int result;
1120
2480c093 1121 mutex_lock(&uclamp_mutex);
e8f14172
PB
1122 old_min = sysctl_sched_uclamp_util_min;
1123 old_max = sysctl_sched_uclamp_util_max;
1124
1125 result = proc_dointvec(table, write, buffer, lenp, ppos);
1126 if (result)
1127 goto undo;
1128 if (!write)
1129 goto done;
1130
1131 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1132 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE) {
1133 result = -EINVAL;
1134 goto undo;
1135 }
1136
1137 if (old_min != sysctl_sched_uclamp_util_min) {
1138 uclamp_se_set(&uclamp_default[UCLAMP_MIN],
a509a7cd 1139 sysctl_sched_uclamp_util_min, false);
7274a5c1 1140 update_root_tg = true;
e8f14172
PB
1141 }
1142 if (old_max != sysctl_sched_uclamp_util_max) {
1143 uclamp_se_set(&uclamp_default[UCLAMP_MAX],
a509a7cd 1144 sysctl_sched_uclamp_util_max, false);
7274a5c1 1145 update_root_tg = true;
e8f14172
PB
1146 }
1147
7274a5c1
PB
1148 if (update_root_tg)
1149 uclamp_update_root_tg();
1150
e8f14172 1151 /*
7274a5c1
PB
1152 * We update all RUNNABLE tasks only when task groups are in use.
1153 * Otherwise, keep it simple and do just a lazy update at each next
1154 * task enqueue time.
e8f14172 1155 */
7274a5c1 1156
e8f14172
PB
1157 goto done;
1158
1159undo:
1160 sysctl_sched_uclamp_util_min = old_min;
1161 sysctl_sched_uclamp_util_max = old_max;
1162done:
2480c093 1163 mutex_unlock(&uclamp_mutex);
e8f14172
PB
1164
1165 return result;
1166}
1167
a509a7cd
PB
1168static int uclamp_validate(struct task_struct *p,
1169 const struct sched_attr *attr)
1170{
1171 unsigned int lower_bound = p->uclamp_req[UCLAMP_MIN].value;
1172 unsigned int upper_bound = p->uclamp_req[UCLAMP_MAX].value;
1173
1174 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN)
1175 lower_bound = attr->sched_util_min;
1176 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX)
1177 upper_bound = attr->sched_util_max;
1178
1179 if (lower_bound > upper_bound)
1180 return -EINVAL;
1181 if (upper_bound > SCHED_CAPACITY_SCALE)
1182 return -EINVAL;
1183
1184 return 0;
1185}
1186
1187static void __setscheduler_uclamp(struct task_struct *p,
1188 const struct sched_attr *attr)
1189{
0413d7f3 1190 enum uclamp_id clamp_id;
1a00d999
PB
1191
1192 /*
1193 * On scheduling class change, reset to default clamps for tasks
1194 * without a task-specific value.
1195 */
1196 for_each_clamp_id(clamp_id) {
1197 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1198 unsigned int clamp_value = uclamp_none(clamp_id);
1199
1200 /* Keep using defined clamps across class changes */
1201 if (uc_se->user_defined)
1202 continue;
1203
1204 /* By default, RT tasks always get 100% boost */
1205 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1206 clamp_value = uclamp_none(UCLAMP_MAX);
1207
1208 uclamp_se_set(uc_se, clamp_value, false);
1209 }
1210
a509a7cd
PB
1211 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1212 return;
1213
1214 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1215 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1216 attr->sched_util_min, true);
1217 }
1218
1219 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1220 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1221 attr->sched_util_max, true);
1222 }
1223}
1224
e8f14172
PB
1225static void uclamp_fork(struct task_struct *p)
1226{
0413d7f3 1227 enum uclamp_id clamp_id;
e8f14172
PB
1228
1229 for_each_clamp_id(clamp_id)
1230 p->uclamp[clamp_id].active = false;
a87498ac
PB
1231
1232 if (likely(!p->sched_reset_on_fork))
1233 return;
1234
1235 for_each_clamp_id(clamp_id) {
eaf5a92e
QP
1236 uclamp_se_set(&p->uclamp_req[clamp_id],
1237 uclamp_none(clamp_id), false);
a87498ac 1238 }
e8f14172
PB
1239}
1240
69842cba
PB
1241static void __init init_uclamp(void)
1242{
e8f14172 1243 struct uclamp_se uc_max = {};
0413d7f3 1244 enum uclamp_id clamp_id;
69842cba
PB
1245 int cpu;
1246
2480c093
PB
1247 mutex_init(&uclamp_mutex);
1248
e496187d 1249 for_each_possible_cpu(cpu) {
dcd6dffb
LG
1250 memset(&cpu_rq(cpu)->uclamp, 0,
1251 sizeof(struct uclamp_rq)*UCLAMP_CNT);
e496187d
PB
1252 cpu_rq(cpu)->uclamp_flags = 0;
1253 }
69842cba 1254
69842cba 1255 for_each_clamp_id(clamp_id) {
e8f14172 1256 uclamp_se_set(&init_task.uclamp_req[clamp_id],
a509a7cd 1257 uclamp_none(clamp_id), false);
69842cba 1258 }
e8f14172
PB
1259
1260 /* System defaults allow max clamp values for both indexes */
a509a7cd 1261 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
2480c093 1262 for_each_clamp_id(clamp_id) {
e8f14172 1263 uclamp_default[clamp_id] = uc_max;
2480c093
PB
1264#ifdef CONFIG_UCLAMP_TASK_GROUP
1265 root_task_group.uclamp_req[clamp_id] = uc_max;
0b60ba2d 1266 root_task_group.uclamp[clamp_id] = uc_max;
2480c093
PB
1267#endif
1268 }
69842cba
PB
1269}
1270
1271#else /* CONFIG_UCLAMP_TASK */
1272static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
1273static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
a509a7cd
PB
1274static inline int uclamp_validate(struct task_struct *p,
1275 const struct sched_attr *attr)
1276{
1277 return -EOPNOTSUPP;
1278}
1279static void __setscheduler_uclamp(struct task_struct *p,
1280 const struct sched_attr *attr) { }
e8f14172 1281static inline void uclamp_fork(struct task_struct *p) { }
69842cba
PB
1282static inline void init_uclamp(void) { }
1283#endif /* CONFIG_UCLAMP_TASK */
1284
1de64443 1285static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 1286{
0a67d1ee
PZ
1287 if (!(flags & ENQUEUE_NOCLOCK))
1288 update_rq_clock(rq);
1289
eb414681 1290 if (!(flags & ENQUEUE_RESTORE)) {
1de64443 1291 sched_info_queued(rq, p);
eb414681
JW
1292 psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1293 }
0a67d1ee 1294
69842cba 1295 uclamp_rq_inc(rq, p);
371fd7e7 1296 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
1297}
1298
1de64443 1299static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 1300{
0a67d1ee
PZ
1301 if (!(flags & DEQUEUE_NOCLOCK))
1302 update_rq_clock(rq);
1303
eb414681 1304 if (!(flags & DEQUEUE_SAVE)) {
1de64443 1305 sched_info_dequeued(rq, p);
eb414681
JW
1306 psi_dequeue(p, flags & DEQUEUE_SLEEP);
1307 }
0a67d1ee 1308
69842cba 1309 uclamp_rq_dec(rq, p);
371fd7e7 1310 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
1311}
1312
029632fb 1313void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1314{
1315 if (task_contributes_to_load(p))
1316 rq->nr_uninterruptible--;
1317
371fd7e7 1318 enqueue_task(rq, p, flags);
7dd77884
PZ
1319
1320 p->on_rq = TASK_ON_RQ_QUEUED;
1e3c88bd
PZ
1321}
1322
029632fb 1323void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd 1324{
7dd77884
PZ
1325 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
1326
1e3c88bd
PZ
1327 if (task_contributes_to_load(p))
1328 rq->nr_uninterruptible++;
1329
371fd7e7 1330 dequeue_task(rq, p, flags);
1e3c88bd
PZ
1331}
1332
14531189 1333/*
dd41f596 1334 * __normal_prio - return the priority that is based on the static prio
14531189 1335 */
14531189
IM
1336static inline int __normal_prio(struct task_struct *p)
1337{
dd41f596 1338 return p->static_prio;
14531189
IM
1339}
1340
b29739f9
IM
1341/*
1342 * Calculate the expected normal priority: i.e. priority
1343 * without taking RT-inheritance into account. Might be
1344 * boosted by interactivity modifiers. Changes upon fork,
1345 * setprio syscalls, and whenever the interactivity
1346 * estimator recalculates.
1347 */
36c8b586 1348static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1349{
1350 int prio;
1351
aab03e05
DF
1352 if (task_has_dl_policy(p))
1353 prio = MAX_DL_PRIO-1;
1354 else if (task_has_rt_policy(p))
b29739f9
IM
1355 prio = MAX_RT_PRIO-1 - p->rt_priority;
1356 else
1357 prio = __normal_prio(p);
1358 return prio;
1359}
1360
1361/*
1362 * Calculate the current priority, i.e. the priority
1363 * taken into account by the scheduler. This value might
1364 * be boosted by RT tasks, or might be boosted by
1365 * interactivity modifiers. Will be RT if the task got
1366 * RT-boosted. If not then it returns p->normal_prio.
1367 */
36c8b586 1368static int effective_prio(struct task_struct *p)
b29739f9
IM
1369{
1370 p->normal_prio = normal_prio(p);
1371 /*
1372 * If we are RT tasks or we were boosted to RT priority,
1373 * keep the priority unchanged. Otherwise, update priority
1374 * to the normal priority:
1375 */
1376 if (!rt_prio(p->prio))
1377 return p->normal_prio;
1378 return p->prio;
1379}
1380
1da177e4
LT
1381/**
1382 * task_curr - is this task currently executing on a CPU?
1383 * @p: the task in question.
e69f6186
YB
1384 *
1385 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 1386 */
36c8b586 1387inline int task_curr(const struct task_struct *p)
1da177e4
LT
1388{
1389 return cpu_curr(task_cpu(p)) == p;
1390}
1391
67dfa1b7 1392/*
4c9a4bc8
PZ
1393 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1394 * use the balance_callback list if you want balancing.
1395 *
1396 * this means any call to check_class_changed() must be followed by a call to
1397 * balance_callback().
67dfa1b7 1398 */
cb469845
SR
1399static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1400 const struct sched_class *prev_class,
da7a735e 1401 int oldprio)
cb469845
SR
1402{
1403 if (prev_class != p->sched_class) {
1404 if (prev_class->switched_from)
da7a735e 1405 prev_class->switched_from(rq, p);
4c9a4bc8 1406
da7a735e 1407 p->sched_class->switched_to(rq, p);
2d3d891d 1408 } else if (oldprio != p->prio || dl_task(p))
da7a735e 1409 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
1410}
1411
029632fb 1412void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
1413{
1414 const struct sched_class *class;
1415
1416 if (p->sched_class == rq->curr->sched_class) {
1417 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1418 } else {
1419 for_each_class(class) {
1420 if (class == rq->curr->sched_class)
1421 break;
1422 if (class == p->sched_class) {
8875125e 1423 resched_curr(rq);
1e5a7405
PZ
1424 break;
1425 }
1426 }
1427 }
1428
1429 /*
1430 * A queue event has occurred, and we're going to schedule. In
1431 * this case, we can save a useless back to back clock update.
1432 */
da0c1e65 1433 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
adcc8da8 1434 rq_clock_skip_update(rq);
1e5a7405
PZ
1435}
1436
1da177e4 1437#ifdef CONFIG_SMP
175f0e25 1438
175f0e25 1439/*
bee98539 1440 * Per-CPU kthreads are allowed to run on !active && online CPUs, see
175f0e25
PZ
1441 * __set_cpus_allowed_ptr() and select_fallback_rq().
1442 */
1443static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
1444{
3bd37062 1445 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
175f0e25
PZ
1446 return false;
1447
1448 if (is_per_cpu_kthread(p))
1449 return cpu_online(cpu);
1450
1451 return cpu_active(cpu);
1452}
1453
5cc389bc
PZ
1454/*
1455 * This is how migration works:
1456 *
1457 * 1) we invoke migration_cpu_stop() on the target CPU using
1458 * stop_one_cpu().
1459 * 2) stopper starts to run (implicitly forcing the migrated thread
1460 * off the CPU)
1461 * 3) it checks whether the migrated task is still in the wrong runqueue.
1462 * 4) if it's in the wrong runqueue then the migration thread removes
1463 * it and puts it into the right queue.
1464 * 5) stopper completes and stop_one_cpu() returns and the migration
1465 * is done.
1466 */
1467
1468/*
1469 * move_queued_task - move a queued task to new rq.
1470 *
1471 * Returns (locked) new rq. Old rq's lock is released.
1472 */
8a8c69c3
PZ
1473static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
1474 struct task_struct *p, int new_cpu)
5cc389bc 1475{
5cc389bc
PZ
1476 lockdep_assert_held(&rq->lock);
1477
c546951d 1478 WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING);
15ff991e 1479 dequeue_task(rq, p, DEQUEUE_NOCLOCK);
5cc389bc 1480 set_task_cpu(p, new_cpu);
8a8c69c3 1481 rq_unlock(rq, rf);
5cc389bc
PZ
1482
1483 rq = cpu_rq(new_cpu);
1484
8a8c69c3 1485 rq_lock(rq, rf);
5cc389bc 1486 BUG_ON(task_cpu(p) != new_cpu);
5cc389bc 1487 enqueue_task(rq, p, 0);
3ea94de1 1488 p->on_rq = TASK_ON_RQ_QUEUED;
5cc389bc
PZ
1489 check_preempt_curr(rq, p, 0);
1490
1491 return rq;
1492}
1493
1494struct migration_arg {
1495 struct task_struct *task;
1496 int dest_cpu;
1497};
1498
1499/*
d1ccc66d 1500 * Move (not current) task off this CPU, onto the destination CPU. We're doing
5cc389bc
PZ
1501 * this because either it can't run here any more (set_cpus_allowed()
1502 * away from this CPU, or CPU going down), or because we're
1503 * attempting to rebalance this task on exec (sched_exec).
1504 *
1505 * So we race with normal scheduler movements, but that's OK, as long
1506 * as the task is no longer on this CPU.
5cc389bc 1507 */
8a8c69c3
PZ
1508static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
1509 struct task_struct *p, int dest_cpu)
5cc389bc 1510{
5cc389bc 1511 /* Affinity changed (again). */
175f0e25 1512 if (!is_cpu_allowed(p, dest_cpu))
5e16bbc2 1513 return rq;
5cc389bc 1514
15ff991e 1515 update_rq_clock(rq);
8a8c69c3 1516 rq = move_queued_task(rq, rf, p, dest_cpu);
5e16bbc2
PZ
1517
1518 return rq;
5cc389bc
PZ
1519}
1520
1521/*
1522 * migration_cpu_stop - this will be executed by a highprio stopper thread
1523 * and performs thread migration by bumping thread off CPU then
1524 * 'pushing' onto another runqueue.
1525 */
1526static int migration_cpu_stop(void *data)
1527{
1528 struct migration_arg *arg = data;
5e16bbc2
PZ
1529 struct task_struct *p = arg->task;
1530 struct rq *rq = this_rq();
8a8c69c3 1531 struct rq_flags rf;
5cc389bc
PZ
1532
1533 /*
d1ccc66d
IM
1534 * The original target CPU might have gone down and we might
1535 * be on another CPU but it doesn't matter.
5cc389bc
PZ
1536 */
1537 local_irq_disable();
1538 /*
1539 * We need to explicitly wake pending tasks before running
3bd37062 1540 * __migrate_task() such that we will not miss enforcing cpus_ptr
5cc389bc
PZ
1541 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1542 */
1543 sched_ttwu_pending();
5e16bbc2
PZ
1544
1545 raw_spin_lock(&p->pi_lock);
8a8c69c3 1546 rq_lock(rq, &rf);
5e16bbc2
PZ
1547 /*
1548 * If task_rq(p) != rq, it cannot be migrated here, because we're
1549 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1550 * we're holding p->pi_lock.
1551 */
bf89a304
CC
1552 if (task_rq(p) == rq) {
1553 if (task_on_rq_queued(p))
8a8c69c3 1554 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
bf89a304
CC
1555 else
1556 p->wake_cpu = arg->dest_cpu;
1557 }
8a8c69c3 1558 rq_unlock(rq, &rf);
5e16bbc2
PZ
1559 raw_spin_unlock(&p->pi_lock);
1560
5cc389bc
PZ
1561 local_irq_enable();
1562 return 0;
1563}
1564
c5b28038
PZ
1565/*
1566 * sched_class::set_cpus_allowed must do the below, but is not required to
1567 * actually call this function.
1568 */
1569void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
5cc389bc 1570{
3bd37062 1571 cpumask_copy(&p->cpus_mask, new_mask);
5cc389bc
PZ
1572 p->nr_cpus_allowed = cpumask_weight(new_mask);
1573}
1574
c5b28038
PZ
1575void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1576{
6c37067e
PZ
1577 struct rq *rq = task_rq(p);
1578 bool queued, running;
1579
c5b28038 1580 lockdep_assert_held(&p->pi_lock);
6c37067e
PZ
1581
1582 queued = task_on_rq_queued(p);
1583 running = task_current(rq, p);
1584
1585 if (queued) {
1586 /*
1587 * Because __kthread_bind() calls this on blocked tasks without
1588 * holding rq->lock.
1589 */
1590 lockdep_assert_held(&rq->lock);
7a57f32a 1591 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
6c37067e
PZ
1592 }
1593 if (running)
1594 put_prev_task(rq, p);
1595
c5b28038 1596 p->sched_class->set_cpus_allowed(p, new_mask);
6c37067e 1597
6c37067e 1598 if (queued)
7134b3e9 1599 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
a399d233 1600 if (running)
03b7fad1 1601 set_next_task(rq, p);
c5b28038
PZ
1602}
1603
5cc389bc
PZ
1604/*
1605 * Change a given task's CPU affinity. Migrate the thread to a
1606 * proper CPU and schedule it away if the CPU it's executing on
1607 * is removed from the allowed bitmask.
1608 *
1609 * NOTE: the caller must have a valid reference to the task, the
1610 * task must not exit() & deallocate itself prematurely. The
1611 * call is not atomic; no spinlocks may be held.
1612 */
25834c73
PZ
1613static int __set_cpus_allowed_ptr(struct task_struct *p,
1614 const struct cpumask *new_mask, bool check)
5cc389bc 1615{
e9d867a6 1616 const struct cpumask *cpu_valid_mask = cpu_active_mask;
5cc389bc 1617 unsigned int dest_cpu;
eb580751
PZ
1618 struct rq_flags rf;
1619 struct rq *rq;
5cc389bc
PZ
1620 int ret = 0;
1621
eb580751 1622 rq = task_rq_lock(p, &rf);
a499c3ea 1623 update_rq_clock(rq);
5cc389bc 1624
e9d867a6
PZI
1625 if (p->flags & PF_KTHREAD) {
1626 /*
1627 * Kernel threads are allowed on online && !active CPUs
1628 */
1629 cpu_valid_mask = cpu_online_mask;
1630 }
1631
25834c73
PZ
1632 /*
1633 * Must re-check here, to close a race against __kthread_bind(),
1634 * sched_setaffinity() is not guaranteed to observe the flag.
1635 */
1636 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1637 ret = -EINVAL;
1638 goto out;
1639 }
1640
3bd37062 1641 if (cpumask_equal(p->cpus_ptr, new_mask))
5cc389bc
PZ
1642 goto out;
1643
46a87b38
PT
1644 /*
1645 * Picking a ~random cpu helps in cases where we are changing affinity
1646 * for groups of tasks (ie. cpuset), so that load balancing is not
1647 * immediately required to distribute the tasks within their new mask.
1648 */
1649 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask);
714e501e 1650 if (dest_cpu >= nr_cpu_ids) {
5cc389bc
PZ
1651 ret = -EINVAL;
1652 goto out;
1653 }
1654
1655 do_set_cpus_allowed(p, new_mask);
1656
e9d867a6
PZI
1657 if (p->flags & PF_KTHREAD) {
1658 /*
1659 * For kernel threads that do indeed end up on online &&
d1ccc66d 1660 * !active we want to ensure they are strict per-CPU threads.
e9d867a6
PZI
1661 */
1662 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1663 !cpumask_intersects(new_mask, cpu_active_mask) &&
1664 p->nr_cpus_allowed != 1);
1665 }
1666
5cc389bc
PZ
1667 /* Can the task run on the task's current CPU? If so, we're done */
1668 if (cpumask_test_cpu(task_cpu(p), new_mask))
1669 goto out;
1670
5cc389bc
PZ
1671 if (task_running(rq, p) || p->state == TASK_WAKING) {
1672 struct migration_arg arg = { p, dest_cpu };
1673 /* Need help from migration thread: drop lock and wait. */
eb580751 1674 task_rq_unlock(rq, p, &rf);
5cc389bc 1675 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
5cc389bc 1676 return 0;
cbce1a68
PZ
1677 } else if (task_on_rq_queued(p)) {
1678 /*
1679 * OK, since we're going to drop the lock immediately
1680 * afterwards anyway.
1681 */
8a8c69c3 1682 rq = move_queued_task(rq, &rf, p, dest_cpu);
cbce1a68 1683 }
5cc389bc 1684out:
eb580751 1685 task_rq_unlock(rq, p, &rf);
5cc389bc
PZ
1686
1687 return ret;
1688}
25834c73
PZ
1689
1690int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1691{
1692 return __set_cpus_allowed_ptr(p, new_mask, false);
1693}
5cc389bc
PZ
1694EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1695
dd41f596 1696void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1697{
e2912009
PZ
1698#ifdef CONFIG_SCHED_DEBUG
1699 /*
1700 * We should never call set_task_cpu() on a blocked task,
1701 * ttwu() will sort out the placement.
1702 */
077614ee 1703 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
e2336f6e 1704 !p->on_rq);
0122ec5b 1705
3ea94de1
JP
1706 /*
1707 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1708 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1709 * time relying on p->on_rq.
1710 */
1711 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1712 p->sched_class == &fair_sched_class &&
1713 (p->on_rq && !task_on_rq_migrating(p)));
1714
0122ec5b 1715#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1716 /*
1717 * The caller should hold either p->pi_lock or rq->lock, when changing
1718 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1719 *
1720 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1721 * see task_group().
6c6c54e1
PZ
1722 *
1723 * Furthermore, all task_rq users should acquire both locks, see
1724 * task_rq_lock().
1725 */
0122ec5b
PZ
1726 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1727 lockdep_is_held(&task_rq(p)->lock)));
1728#endif
4ff9083b
PZ
1729 /*
1730 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1731 */
1732 WARN_ON_ONCE(!cpu_online(new_cpu));
e2912009
PZ
1733#endif
1734
de1d7286 1735 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1736
0c69774e 1737 if (task_cpu(p) != new_cpu) {
0a74bef8 1738 if (p->sched_class->migrate_task_rq)
1327237a 1739 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 1740 p->se.nr_migrations++;
d7822b1e 1741 rseq_migrate(p);
ff303e66 1742 perf_event_task_migrate(p);
0c69774e 1743 }
dd41f596
IM
1744
1745 __set_task_cpu(p, new_cpu);
c65cc870
IM
1746}
1747
0ad4e3df 1748#ifdef CONFIG_NUMA_BALANCING
ac66f547
PZ
1749static void __migrate_swap_task(struct task_struct *p, int cpu)
1750{
da0c1e65 1751 if (task_on_rq_queued(p)) {
ac66f547 1752 struct rq *src_rq, *dst_rq;
8a8c69c3 1753 struct rq_flags srf, drf;
ac66f547
PZ
1754
1755 src_rq = task_rq(p);
1756 dst_rq = cpu_rq(cpu);
1757
8a8c69c3
PZ
1758 rq_pin_lock(src_rq, &srf);
1759 rq_pin_lock(dst_rq, &drf);
1760
ac66f547
PZ
1761 deactivate_task(src_rq, p, 0);
1762 set_task_cpu(p, cpu);
1763 activate_task(dst_rq, p, 0);
1764 check_preempt_curr(dst_rq, p, 0);
8a8c69c3
PZ
1765
1766 rq_unpin_lock(dst_rq, &drf);
1767 rq_unpin_lock(src_rq, &srf);
1768
ac66f547
PZ
1769 } else {
1770 /*
1771 * Task isn't running anymore; make it appear like we migrated
1772 * it before it went to sleep. This means on wakeup we make the
d1ccc66d 1773 * previous CPU our target instead of where it really is.
ac66f547
PZ
1774 */
1775 p->wake_cpu = cpu;
1776 }
1777}
1778
1779struct migration_swap_arg {
1780 struct task_struct *src_task, *dst_task;
1781 int src_cpu, dst_cpu;
1782};
1783
1784static int migrate_swap_stop(void *data)
1785{
1786 struct migration_swap_arg *arg = data;
1787 struct rq *src_rq, *dst_rq;
1788 int ret = -EAGAIN;
1789
62694cd5
PZ
1790 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1791 return -EAGAIN;
1792
ac66f547
PZ
1793 src_rq = cpu_rq(arg->src_cpu);
1794 dst_rq = cpu_rq(arg->dst_cpu);
1795
74602315
PZ
1796 double_raw_lock(&arg->src_task->pi_lock,
1797 &arg->dst_task->pi_lock);
ac66f547 1798 double_rq_lock(src_rq, dst_rq);
62694cd5 1799
ac66f547
PZ
1800 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1801 goto unlock;
1802
1803 if (task_cpu(arg->src_task) != arg->src_cpu)
1804 goto unlock;
1805
3bd37062 1806 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
ac66f547
PZ
1807 goto unlock;
1808
3bd37062 1809 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
ac66f547
PZ
1810 goto unlock;
1811
1812 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1813 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1814
1815 ret = 0;
1816
1817unlock:
1818 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1819 raw_spin_unlock(&arg->dst_task->pi_lock);
1820 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1821
1822 return ret;
1823}
1824
1825/*
1826 * Cross migrate two tasks
1827 */
0ad4e3df
SD
1828int migrate_swap(struct task_struct *cur, struct task_struct *p,
1829 int target_cpu, int curr_cpu)
ac66f547
PZ
1830{
1831 struct migration_swap_arg arg;
1832 int ret = -EINVAL;
1833
ac66f547
PZ
1834 arg = (struct migration_swap_arg){
1835 .src_task = cur,
0ad4e3df 1836 .src_cpu = curr_cpu,
ac66f547 1837 .dst_task = p,
0ad4e3df 1838 .dst_cpu = target_cpu,
ac66f547
PZ
1839 };
1840
1841 if (arg.src_cpu == arg.dst_cpu)
1842 goto out;
1843
6acce3ef
PZ
1844 /*
1845 * These three tests are all lockless; this is OK since all of them
1846 * will be re-checked with proper locks held further down the line.
1847 */
ac66f547
PZ
1848 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1849 goto out;
1850
3bd37062 1851 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
ac66f547
PZ
1852 goto out;
1853
3bd37062 1854 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
ac66f547
PZ
1855 goto out;
1856
286549dc 1857 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1858 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1859
1860out:
ac66f547
PZ
1861 return ret;
1862}
0ad4e3df 1863#endif /* CONFIG_NUMA_BALANCING */
ac66f547 1864
1da177e4
LT
1865/*
1866 * wait_task_inactive - wait for a thread to unschedule.
1867 *
85ba2d86
RM
1868 * If @match_state is nonzero, it's the @p->state value just checked and
1869 * not expected to change. If it changes, i.e. @p might have woken up,
1870 * then return zero. When we succeed in waiting for @p to be off its CPU,
1871 * we return a positive number (its total switch count). If a second call
1872 * a short while later returns the same number, the caller can be sure that
1873 * @p has remained unscheduled the whole time.
1874 *
1da177e4
LT
1875 * The caller must ensure that the task *will* unschedule sometime soon,
1876 * else this function might spin for a *long* time. This function can't
1877 * be called with interrupts off, or it may introduce deadlock with
1878 * smp_call_function() if an IPI is sent by the same process we are
1879 * waiting to become inactive.
1880 */
85ba2d86 1881unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4 1882{
da0c1e65 1883 int running, queued;
eb580751 1884 struct rq_flags rf;
85ba2d86 1885 unsigned long ncsw;
70b97a7f 1886 struct rq *rq;
1da177e4 1887
3a5c359a
AK
1888 for (;;) {
1889 /*
1890 * We do the initial early heuristics without holding
1891 * any task-queue locks at all. We'll only try to get
1892 * the runqueue lock when things look like they will
1893 * work out!
1894 */
1895 rq = task_rq(p);
fa490cfd 1896
3a5c359a
AK
1897 /*
1898 * If the task is actively running on another CPU
1899 * still, just relax and busy-wait without holding
1900 * any locks.
1901 *
1902 * NOTE! Since we don't hold any locks, it's not
1903 * even sure that "rq" stays as the right runqueue!
1904 * But we don't care, since "task_running()" will
1905 * return false if the runqueue has changed and p
1906 * is actually now running somewhere else!
1907 */
85ba2d86
RM
1908 while (task_running(rq, p)) {
1909 if (match_state && unlikely(p->state != match_state))
1910 return 0;
3a5c359a 1911 cpu_relax();
85ba2d86 1912 }
fa490cfd 1913
3a5c359a
AK
1914 /*
1915 * Ok, time to look more closely! We need the rq
1916 * lock now, to be *sure*. If we're wrong, we'll
1917 * just go back and repeat.
1918 */
eb580751 1919 rq = task_rq_lock(p, &rf);
27a9da65 1920 trace_sched_wait_task(p);
3a5c359a 1921 running = task_running(rq, p);
da0c1e65 1922 queued = task_on_rq_queued(p);
85ba2d86 1923 ncsw = 0;
f31e11d8 1924 if (!match_state || p->state == match_state)
93dcf55f 1925 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
eb580751 1926 task_rq_unlock(rq, p, &rf);
fa490cfd 1927
85ba2d86
RM
1928 /*
1929 * If it changed from the expected state, bail out now.
1930 */
1931 if (unlikely(!ncsw))
1932 break;
1933
3a5c359a
AK
1934 /*
1935 * Was it really running after all now that we
1936 * checked with the proper locks actually held?
1937 *
1938 * Oops. Go back and try again..
1939 */
1940 if (unlikely(running)) {
1941 cpu_relax();
1942 continue;
1943 }
fa490cfd 1944
3a5c359a
AK
1945 /*
1946 * It's not enough that it's not actively running,
1947 * it must be off the runqueue _entirely_, and not
1948 * preempted!
1949 *
80dd99b3 1950 * So if it was still runnable (but just not actively
3a5c359a
AK
1951 * running right now), it's preempted, and we should
1952 * yield - it could be a while.
1953 */
da0c1e65 1954 if (unlikely(queued)) {
8b0e1953 1955 ktime_t to = NSEC_PER_SEC / HZ;
8eb90c30
TG
1956
1957 set_current_state(TASK_UNINTERRUPTIBLE);
1958 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1959 continue;
1960 }
fa490cfd 1961
3a5c359a
AK
1962 /*
1963 * Ahh, all good. It wasn't running, and it wasn't
1964 * runnable, which means that it will never become
1965 * running in the future either. We're all done!
1966 */
1967 break;
1968 }
85ba2d86
RM
1969
1970 return ncsw;
1da177e4
LT
1971}
1972
1973/***
1974 * kick_process - kick a running thread to enter/exit the kernel
1975 * @p: the to-be-kicked thread
1976 *
1977 * Cause a process which is running on another CPU to enter
1978 * kernel-mode, without any delay. (to get signals handled.)
1979 *
25985edc 1980 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1981 * because all it wants to ensure is that the remote task enters
1982 * the kernel. If the IPI races and the task has been migrated
1983 * to another CPU then no harm is done and the purpose has been
1984 * achieved as well.
1985 */
36c8b586 1986void kick_process(struct task_struct *p)
1da177e4
LT
1987{
1988 int cpu;
1989
1990 preempt_disable();
1991 cpu = task_cpu(p);
1992 if ((cpu != smp_processor_id()) && task_curr(p))
1993 smp_send_reschedule(cpu);
1994 preempt_enable();
1995}
b43e3521 1996EXPORT_SYMBOL_GPL(kick_process);
1da177e4 1997
30da688e 1998/*
3bd37062 1999 * ->cpus_ptr is protected by both rq->lock and p->pi_lock
e9d867a6
PZI
2000 *
2001 * A few notes on cpu_active vs cpu_online:
2002 *
2003 * - cpu_active must be a subset of cpu_online
2004 *
97fb7a0a 2005 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
e9d867a6 2006 * see __set_cpus_allowed_ptr(). At this point the newly online
d1ccc66d 2007 * CPU isn't yet part of the sched domains, and balancing will not
e9d867a6
PZI
2008 * see it.
2009 *
d1ccc66d 2010 * - on CPU-down we clear cpu_active() to mask the sched domains and
e9d867a6 2011 * avoid the load balancer to place new tasks on the to be removed
d1ccc66d 2012 * CPU. Existing tasks will remain running there and will be taken
e9d867a6
PZI
2013 * off.
2014 *
2015 * This means that fallback selection must not select !active CPUs.
2016 * And can assume that any active CPU must be online. Conversely
2017 * select_task_rq() below may allow selection of !active CPUs in order
2018 * to satisfy the above rules.
30da688e 2019 */
5da9a0fb
PZ
2020static int select_fallback_rq(int cpu, struct task_struct *p)
2021{
aa00d89c
TC
2022 int nid = cpu_to_node(cpu);
2023 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
2024 enum { cpuset, possible, fail } state = cpuset;
2025 int dest_cpu;
5da9a0fb 2026
aa00d89c 2027 /*
d1ccc66d
IM
2028 * If the node that the CPU is on has been offlined, cpu_to_node()
2029 * will return -1. There is no CPU on the node, and we should
2030 * select the CPU on the other node.
aa00d89c
TC
2031 */
2032 if (nid != -1) {
2033 nodemask = cpumask_of_node(nid);
2034
2035 /* Look for allowed, online CPU in same node. */
2036 for_each_cpu(dest_cpu, nodemask) {
aa00d89c
TC
2037 if (!cpu_active(dest_cpu))
2038 continue;
3bd37062 2039 if (cpumask_test_cpu(dest_cpu, p->cpus_ptr))
aa00d89c
TC
2040 return dest_cpu;
2041 }
2baab4e9 2042 }
5da9a0fb 2043
2baab4e9
PZ
2044 for (;;) {
2045 /* Any allowed, online CPU? */
3bd37062 2046 for_each_cpu(dest_cpu, p->cpus_ptr) {
175f0e25 2047 if (!is_cpu_allowed(p, dest_cpu))
2baab4e9 2048 continue;
175f0e25 2049
2baab4e9
PZ
2050 goto out;
2051 }
5da9a0fb 2052
e73e85f0 2053 /* No more Mr. Nice Guy. */
2baab4e9
PZ
2054 switch (state) {
2055 case cpuset:
e73e85f0
ON
2056 if (IS_ENABLED(CONFIG_CPUSETS)) {
2057 cpuset_cpus_allowed_fallback(p);
2058 state = possible;
2059 break;
2060 }
d1ccc66d 2061 /* Fall-through */
2baab4e9
PZ
2062 case possible:
2063 do_set_cpus_allowed(p, cpu_possible_mask);
2064 state = fail;
2065 break;
2066
2067 case fail:
2068 BUG();
2069 break;
2070 }
2071 }
2072
2073out:
2074 if (state != cpuset) {
2075 /*
2076 * Don't tell them about moving exiting tasks or
2077 * kernel threads (both mm NULL), since they never
2078 * leave kernel.
2079 */
2080 if (p->mm && printk_ratelimit()) {
aac74dc4 2081 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
2082 task_pid_nr(p), p->comm, cpu);
2083 }
5da9a0fb
PZ
2084 }
2085
2086 return dest_cpu;
2087}
2088
e2912009 2089/*
3bd37062 2090 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
e2912009 2091 */
970b13ba 2092static inline
ac66f547 2093int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 2094{
cbce1a68
PZ
2095 lockdep_assert_held(&p->pi_lock);
2096
4b53a341 2097 if (p->nr_cpus_allowed > 1)
6c1d9410 2098 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e9d867a6 2099 else
3bd37062 2100 cpu = cpumask_any(p->cpus_ptr);
e2912009
PZ
2101
2102 /*
2103 * In order not to call set_task_cpu() on a blocking task we need
3bd37062 2104 * to rely on ttwu() to place the task on a valid ->cpus_ptr
d1ccc66d 2105 * CPU.
e2912009
PZ
2106 *
2107 * Since this is common to all placement strategies, this lives here.
2108 *
2109 * [ this allows ->select_task() to simply return task_cpu(p) and
2110 * not worry about this generic constraint ]
2111 */
7af443ee 2112 if (unlikely(!is_cpu_allowed(p, cpu)))
5da9a0fb 2113 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2114
2115 return cpu;
970b13ba 2116}
09a40af5 2117
f5832c19
NP
2118void sched_set_stop_task(int cpu, struct task_struct *stop)
2119{
2120 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2121 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2122
2123 if (stop) {
2124 /*
2125 * Make it appear like a SCHED_FIFO task, its something
2126 * userspace knows about and won't get confused about.
2127 *
2128 * Also, it will make PI more or less work without too
2129 * much confusion -- but then, stop work should not
2130 * rely on PI working anyway.
2131 */
2132 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2133
2134 stop->sched_class = &stop_sched_class;
2135 }
2136
2137 cpu_rq(cpu)->stop = stop;
2138
2139 if (old_stop) {
2140 /*
2141 * Reset it back to a normal scheduling class so that
2142 * it can die in pieces.
2143 */
2144 old_stop->sched_class = &rt_sched_class;
2145 }
2146}
2147
25834c73
PZ
2148#else
2149
2150static inline int __set_cpus_allowed_ptr(struct task_struct *p,
2151 const struct cpumask *new_mask, bool check)
2152{
2153 return set_cpus_allowed_ptr(p, new_mask);
2154}
2155
5cc389bc 2156#endif /* CONFIG_SMP */
970b13ba 2157
d7c01d27 2158static void
b84cb5df 2159ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 2160{
4fa8d299 2161 struct rq *rq;
b84cb5df 2162
4fa8d299
JP
2163 if (!schedstat_enabled())
2164 return;
2165
2166 rq = this_rq();
d7c01d27 2167
4fa8d299
JP
2168#ifdef CONFIG_SMP
2169 if (cpu == rq->cpu) {
b85c8b71
PZ
2170 __schedstat_inc(rq->ttwu_local);
2171 __schedstat_inc(p->se.statistics.nr_wakeups_local);
d7c01d27
PZ
2172 } else {
2173 struct sched_domain *sd;
2174
b85c8b71 2175 __schedstat_inc(p->se.statistics.nr_wakeups_remote);
057f3fad 2176 rcu_read_lock();
4fa8d299 2177 for_each_domain(rq->cpu, sd) {
d7c01d27 2178 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
b85c8b71 2179 __schedstat_inc(sd->ttwu_wake_remote);
d7c01d27
PZ
2180 break;
2181 }
2182 }
057f3fad 2183 rcu_read_unlock();
d7c01d27 2184 }
f339b9dc
PZ
2185
2186 if (wake_flags & WF_MIGRATED)
b85c8b71 2187 __schedstat_inc(p->se.statistics.nr_wakeups_migrate);
d7c01d27
PZ
2188#endif /* CONFIG_SMP */
2189
b85c8b71
PZ
2190 __schedstat_inc(rq->ttwu_count);
2191 __schedstat_inc(p->se.statistics.nr_wakeups);
d7c01d27
PZ
2192
2193 if (wake_flags & WF_SYNC)
b85c8b71 2194 __schedstat_inc(p->se.statistics.nr_wakeups_sync);
d7c01d27
PZ
2195}
2196
23f41eeb
PZ
2197/*
2198 * Mark the task runnable and perform wakeup-preemption.
2199 */
e7904a28 2200static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
d8ac8971 2201 struct rq_flags *rf)
9ed3811a 2202{
9ed3811a 2203 check_preempt_curr(rq, p, wake_flags);
9ed3811a 2204 p->state = TASK_RUNNING;
fbd705a0
PZ
2205 trace_sched_wakeup(p);
2206
9ed3811a 2207#ifdef CONFIG_SMP
4c9a4bc8
PZ
2208 if (p->sched_class->task_woken) {
2209 /*
cbce1a68
PZ
2210 * Our task @p is fully woken up and running; so its safe to
2211 * drop the rq->lock, hereafter rq is only used for statistics.
4c9a4bc8 2212 */
d8ac8971 2213 rq_unpin_lock(rq, rf);
9ed3811a 2214 p->sched_class->task_woken(rq, p);
d8ac8971 2215 rq_repin_lock(rq, rf);
4c9a4bc8 2216 }
9ed3811a 2217
e69c6341 2218 if (rq->idle_stamp) {
78becc27 2219 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 2220 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 2221
abfafa54
JL
2222 update_avg(&rq->avg_idle, delta);
2223
2224 if (rq->avg_idle > max)
9ed3811a 2225 rq->avg_idle = max;
abfafa54 2226
9ed3811a
TH
2227 rq->idle_stamp = 0;
2228 }
2229#endif
2230}
2231
c05fbafb 2232static void
e7904a28 2233ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
d8ac8971 2234 struct rq_flags *rf)
c05fbafb 2235{
77558e4d 2236 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
b5179ac7 2237
cbce1a68
PZ
2238 lockdep_assert_held(&rq->lock);
2239
c05fbafb
PZ
2240#ifdef CONFIG_SMP
2241 if (p->sched_contributes_to_load)
2242 rq->nr_uninterruptible--;
b5179ac7 2243
b5179ac7 2244 if (wake_flags & WF_MIGRATED)
59efa0ba 2245 en_flags |= ENQUEUE_MIGRATED;
c05fbafb
PZ
2246#endif
2247
1b174a2c 2248 activate_task(rq, p, en_flags);
d8ac8971 2249 ttwu_do_wakeup(rq, p, wake_flags, rf);
c05fbafb
PZ
2250}
2251
2252/*
2253 * Called in case the task @p isn't fully descheduled from its runqueue,
2254 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
2255 * since all we need to do is flip p->state to TASK_RUNNING, since
2256 * the task is still ->on_rq.
2257 */
2258static int ttwu_remote(struct task_struct *p, int wake_flags)
2259{
eb580751 2260 struct rq_flags rf;
c05fbafb
PZ
2261 struct rq *rq;
2262 int ret = 0;
2263
eb580751 2264 rq = __task_rq_lock(p, &rf);
da0c1e65 2265 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
2266 /* check_preempt_curr() may use rq clock */
2267 update_rq_clock(rq);
d8ac8971 2268 ttwu_do_wakeup(rq, p, wake_flags, &rf);
c05fbafb
PZ
2269 ret = 1;
2270 }
eb580751 2271 __task_rq_unlock(rq, &rf);
c05fbafb
PZ
2272
2273 return ret;
2274}
2275
317f3941 2276#ifdef CONFIG_SMP
e3baac47 2277void sched_ttwu_pending(void)
317f3941
PZ
2278{
2279 struct rq *rq = this_rq();
fa14ff4a 2280 struct llist_node *llist = llist_del_all(&rq->wake_list);
73215849 2281 struct task_struct *p, *t;
d8ac8971 2282 struct rq_flags rf;
317f3941 2283
e3baac47
PZ
2284 if (!llist)
2285 return;
2286
8a8c69c3 2287 rq_lock_irqsave(rq, &rf);
77558e4d 2288 update_rq_clock(rq);
317f3941 2289
73215849
BP
2290 llist_for_each_entry_safe(p, t, llist, wake_entry)
2291 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
317f3941 2292
8a8c69c3 2293 rq_unlock_irqrestore(rq, &rf);
317f3941
PZ
2294}
2295
2296void scheduler_ipi(void)
2297{
f27dde8d
PZ
2298 /*
2299 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
2300 * TIF_NEED_RESCHED remotely (for the first time) will also send
2301 * this IPI.
2302 */
8cb75e0c 2303 preempt_fold_need_resched();
f27dde8d 2304
fd2ac4f4 2305 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
2306 return;
2307
2308 /*
2309 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
2310 * traditionally all their work was done from the interrupt return
2311 * path. Now that we actually do some work, we need to make sure
2312 * we do call them.
2313 *
2314 * Some archs already do call them, luckily irq_enter/exit nest
2315 * properly.
2316 *
2317 * Arguably we should visit all archs and update all handlers,
2318 * however a fair share of IPIs are still resched only so this would
2319 * somewhat pessimize the simple resched case.
2320 */
2321 irq_enter();
fa14ff4a 2322 sched_ttwu_pending();
ca38062e
SS
2323
2324 /*
2325 * Check if someone kicked us for doing the nohz idle load balance.
2326 */
873b4c65 2327 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 2328 this_rq()->idle_balance = 1;
ca38062e 2329 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 2330 }
c5d753a5 2331 irq_exit();
317f3941
PZ
2332}
2333
b7e7ade3 2334static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
317f3941 2335{
e3baac47
PZ
2336 struct rq *rq = cpu_rq(cpu);
2337
b7e7ade3
PZ
2338 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
2339
e3baac47
PZ
2340 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
2341 if (!set_nr_if_polling(rq->idle))
2342 smp_send_reschedule(cpu);
2343 else
2344 trace_sched_wake_idle_without_ipi(cpu);
2345 }
317f3941 2346}
d6aa8f85 2347
f6be8af1
CL
2348void wake_up_if_idle(int cpu)
2349{
2350 struct rq *rq = cpu_rq(cpu);
8a8c69c3 2351 struct rq_flags rf;
f6be8af1 2352
fd7de1e8
AL
2353 rcu_read_lock();
2354
2355 if (!is_idle_task(rcu_dereference(rq->curr)))
2356 goto out;
f6be8af1
CL
2357
2358 if (set_nr_if_polling(rq->idle)) {
2359 trace_sched_wake_idle_without_ipi(cpu);
2360 } else {
8a8c69c3 2361 rq_lock_irqsave(rq, &rf);
f6be8af1
CL
2362 if (is_idle_task(rq->curr))
2363 smp_send_reschedule(cpu);
d1ccc66d 2364 /* Else CPU is not idle, do nothing here: */
8a8c69c3 2365 rq_unlock_irqrestore(rq, &rf);
f6be8af1 2366 }
fd7de1e8
AL
2367
2368out:
2369 rcu_read_unlock();
f6be8af1
CL
2370}
2371
39be3501 2372bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
2373{
2374 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
2375}
d6aa8f85 2376#endif /* CONFIG_SMP */
317f3941 2377
b5179ac7 2378static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
c05fbafb
PZ
2379{
2380 struct rq *rq = cpu_rq(cpu);
d8ac8971 2381 struct rq_flags rf;
c05fbafb 2382
17d9f311 2383#if defined(CONFIG_SMP)
39be3501 2384 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
d1ccc66d 2385 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
b7e7ade3 2386 ttwu_queue_remote(p, cpu, wake_flags);
317f3941
PZ
2387 return;
2388 }
2389#endif
2390
8a8c69c3 2391 rq_lock(rq, &rf);
77558e4d 2392 update_rq_clock(rq);
d8ac8971 2393 ttwu_do_activate(rq, p, wake_flags, &rf);
8a8c69c3 2394 rq_unlock(rq, &rf);
9ed3811a
TH
2395}
2396
8643cda5
PZ
2397/*
2398 * Notes on Program-Order guarantees on SMP systems.
2399 *
2400 * MIGRATION
2401 *
2402 * The basic program-order guarantee on SMP systems is that when a task [t]
d1ccc66d
IM
2403 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
2404 * execution on its new CPU [c1].
8643cda5
PZ
2405 *
2406 * For migration (of runnable tasks) this is provided by the following means:
2407 *
2408 * A) UNLOCK of the rq(c0)->lock scheduling out task t
2409 * B) migration for t is required to synchronize *both* rq(c0)->lock and
2410 * rq(c1)->lock (if not at the same time, then in that order).
2411 * C) LOCK of the rq(c1)->lock scheduling in task
2412 *
7696f991 2413 * Release/acquire chaining guarantees that B happens after A and C after B.
d1ccc66d 2414 * Note: the CPU doing B need not be c0 or c1
8643cda5
PZ
2415 *
2416 * Example:
2417 *
2418 * CPU0 CPU1 CPU2
2419 *
2420 * LOCK rq(0)->lock
2421 * sched-out X
2422 * sched-in Y
2423 * UNLOCK rq(0)->lock
2424 *
2425 * LOCK rq(0)->lock // orders against CPU0
2426 * dequeue X
2427 * UNLOCK rq(0)->lock
2428 *
2429 * LOCK rq(1)->lock
2430 * enqueue X
2431 * UNLOCK rq(1)->lock
2432 *
2433 * LOCK rq(1)->lock // orders against CPU2
2434 * sched-out Z
2435 * sched-in X
2436 * UNLOCK rq(1)->lock
2437 *
2438 *
2439 * BLOCKING -- aka. SLEEP + WAKEUP
2440 *
2441 * For blocking we (obviously) need to provide the same guarantee as for
2442 * migration. However the means are completely different as there is no lock
2443 * chain to provide order. Instead we do:
2444 *
2445 * 1) smp_store_release(X->on_cpu, 0)
1f03e8d2 2446 * 2) smp_cond_load_acquire(!X->on_cpu)
8643cda5
PZ
2447 *
2448 * Example:
2449 *
2450 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
2451 *
2452 * LOCK rq(0)->lock LOCK X->pi_lock
2453 * dequeue X
2454 * sched-out X
2455 * smp_store_release(X->on_cpu, 0);
2456 *
1f03e8d2 2457 * smp_cond_load_acquire(&X->on_cpu, !VAL);
8643cda5
PZ
2458 * X->state = WAKING
2459 * set_task_cpu(X,2)
2460 *
2461 * LOCK rq(2)->lock
2462 * enqueue X
2463 * X->state = RUNNING
2464 * UNLOCK rq(2)->lock
2465 *
2466 * LOCK rq(2)->lock // orders against CPU1
2467 * sched-out Z
2468 * sched-in X
2469 * UNLOCK rq(2)->lock
2470 *
2471 * UNLOCK X->pi_lock
2472 * UNLOCK rq(0)->lock
2473 *
2474 *
7696f991
AP
2475 * However, for wakeups there is a second guarantee we must provide, namely we
2476 * must ensure that CONDITION=1 done by the caller can not be reordered with
2477 * accesses to the task state; see try_to_wake_up() and set_current_state().
8643cda5
PZ
2478 */
2479
9ed3811a 2480/**
1da177e4 2481 * try_to_wake_up - wake up a thread
9ed3811a 2482 * @p: the thread to be awakened
1da177e4 2483 * @state: the mask of task states that can be woken
9ed3811a 2484 * @wake_flags: wake modifier flags (WF_*)
1da177e4 2485 *
a2250238 2486 * If (@state & @p->state) @p->state = TASK_RUNNING.
1da177e4 2487 *
a2250238
PZ
2488 * If the task was not queued/runnable, also place it back on a runqueue.
2489 *
2490 * Atomic against schedule() which would dequeue a task, also see
2491 * set_current_state().
2492 *
7696f991
AP
2493 * This function executes a full memory barrier before accessing the task
2494 * state; see set_current_state().
2495 *
a2250238
PZ
2496 * Return: %true if @p->state changes (an actual wakeup was done),
2497 * %false otherwise.
1da177e4 2498 */
e4a52bcb
PZ
2499static int
2500try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 2501{
1da177e4 2502 unsigned long flags;
c05fbafb 2503 int cpu, success = 0;
2398f2c6 2504
e3d85487 2505 preempt_disable();
aacedf26
PZ
2506 if (p == current) {
2507 /*
2508 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
2509 * == smp_processor_id()'. Together this means we can special
2510 * case the whole 'p->on_rq && ttwu_remote()' case below
2511 * without taking any locks.
2512 *
2513 * In particular:
2514 * - we rely on Program-Order guarantees for all the ordering,
2515 * - we're serialized against set_special_state() by virtue of
2516 * it disabling IRQs (this allows not taking ->pi_lock).
2517 */
2518 if (!(p->state & state))
e3d85487 2519 goto out;
aacedf26
PZ
2520
2521 success = 1;
2522 cpu = task_cpu(p);
2523 trace_sched_waking(p);
2524 p->state = TASK_RUNNING;
2525 trace_sched_wakeup(p);
2526 goto out;
2527 }
2528
e0acd0a6
ON
2529 /*
2530 * If we are going to wake up a thread waiting for CONDITION we
2531 * need to ensure that CONDITION=1 done by the caller can not be
2532 * reordered with p->state check below. This pairs with mb() in
2533 * set_current_state() the waiting thread does.
2534 */
013fdb80 2535 raw_spin_lock_irqsave(&p->pi_lock, flags);
d89e588c 2536 smp_mb__after_spinlock();
e9c84311 2537 if (!(p->state & state))
aacedf26 2538 goto unlock;
1da177e4 2539
fbd705a0
PZ
2540 trace_sched_waking(p);
2541
d1ccc66d
IM
2542 /* We're going to change ->state: */
2543 success = 1;
1da177e4 2544 cpu = task_cpu(p);
1da177e4 2545
135e8c92
BS
2546 /*
2547 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2548 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2549 * in smp_cond_load_acquire() below.
2550 *
3d85b270
AP
2551 * sched_ttwu_pending() try_to_wake_up()
2552 * STORE p->on_rq = 1 LOAD p->state
2553 * UNLOCK rq->lock
2554 *
2555 * __schedule() (switch to task 'p')
2556 * LOCK rq->lock smp_rmb();
2557 * smp_mb__after_spinlock();
2558 * UNLOCK rq->lock
135e8c92
BS
2559 *
2560 * [task p]
3d85b270 2561 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
135e8c92 2562 *
3d85b270
AP
2563 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2564 * __schedule(). See the comment for smp_mb__after_spinlock().
135e8c92
BS
2565 */
2566 smp_rmb();
c05fbafb 2567 if (p->on_rq && ttwu_remote(p, wake_flags))
aacedf26 2568 goto unlock;
1da177e4 2569
1da177e4 2570#ifdef CONFIG_SMP
ecf7d01c
PZ
2571 /*
2572 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2573 * possible to, falsely, observe p->on_cpu == 0.
2574 *
2575 * One must be running (->on_cpu == 1) in order to remove oneself
2576 * from the runqueue.
2577 *
3d85b270
AP
2578 * __schedule() (switch to task 'p') try_to_wake_up()
2579 * STORE p->on_cpu = 1 LOAD p->on_rq
2580 * UNLOCK rq->lock
2581 *
2582 * __schedule() (put 'p' to sleep)
2583 * LOCK rq->lock smp_rmb();
2584 * smp_mb__after_spinlock();
2585 * STORE p->on_rq = 0 LOAD p->on_cpu
ecf7d01c 2586 *
3d85b270
AP
2587 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2588 * __schedule(). See the comment for smp_mb__after_spinlock().
ecf7d01c
PZ
2589 */
2590 smp_rmb();
2591
e9c84311 2592 /*
d1ccc66d 2593 * If the owning (remote) CPU is still in the middle of schedule() with
c05fbafb 2594 * this task as prev, wait until its done referencing the task.
b75a2253 2595 *
31cb1bc0 2596 * Pairs with the smp_store_release() in finish_task().
b75a2253
PZ
2597 *
2598 * This ensures that tasks getting woken will be fully ordered against
2599 * their previous state and preserve Program Order.
0970d299 2600 */
1f03e8d2 2601 smp_cond_load_acquire(&p->on_cpu, !VAL);
1da177e4 2602
a8e4f2ea 2603 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 2604 p->state = TASK_WAKING;
e7693a36 2605
e33a9bba 2606 if (p->in_iowait) {
c96f5471 2607 delayacct_blkio_end(p);
e33a9bba
TH
2608 atomic_dec(&task_rq(p)->nr_iowait);
2609 }
2610
ac66f547 2611 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
2612 if (task_cpu(p) != cpu) {
2613 wake_flags |= WF_MIGRATED;
eb414681 2614 psi_ttwu_dequeue(p);
e4a52bcb 2615 set_task_cpu(p, cpu);
f339b9dc 2616 }
e33a9bba
TH
2617
2618#else /* CONFIG_SMP */
2619
2620 if (p->in_iowait) {
c96f5471 2621 delayacct_blkio_end(p);
e33a9bba
TH
2622 atomic_dec(&task_rq(p)->nr_iowait);
2623 }
2624
1da177e4 2625#endif /* CONFIG_SMP */
1da177e4 2626
b5179ac7 2627 ttwu_queue(p, cpu, wake_flags);
aacedf26 2628unlock:
013fdb80 2629 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
aacedf26
PZ
2630out:
2631 if (success)
2632 ttwu_stat(p, cpu, wake_flags);
e3d85487 2633 preempt_enable();
1da177e4
LT
2634
2635 return success;
2636}
2637
50fa610a
DH
2638/**
2639 * wake_up_process - Wake up a specific process
2640 * @p: The process to be woken up.
2641 *
2642 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
2643 * processes.
2644 *
2645 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a 2646 *
7696f991 2647 * This function executes a full memory barrier before accessing the task state.
50fa610a 2648 */
7ad5b3a5 2649int wake_up_process(struct task_struct *p)
1da177e4 2650{
9067ac85 2651 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 2652}
1da177e4
LT
2653EXPORT_SYMBOL(wake_up_process);
2654
7ad5b3a5 2655int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2656{
2657 return try_to_wake_up(p, state, 0);
2658}
2659
1da177e4
LT
2660/*
2661 * Perform scheduler related setup for a newly forked process p.
2662 * p is forked by current.
dd41f596
IM
2663 *
2664 * __sched_fork() is basic setup used by init_idle() too:
2665 */
5e1576ed 2666static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2667{
fd2f4419
PZ
2668 p->on_rq = 0;
2669
2670 p->se.on_rq = 0;
dd41f596
IM
2671 p->se.exec_start = 0;
2672 p->se.sum_exec_runtime = 0;
f6cf891c 2673 p->se.prev_sum_exec_runtime = 0;
6c594c21 2674 p->se.nr_migrations = 0;
da7a735e 2675 p->se.vruntime = 0;
fd2f4419 2676 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d 2677
ad936d86
BP
2678#ifdef CONFIG_FAIR_GROUP_SCHED
2679 p->se.cfs_rq = NULL;
2680#endif
2681
6cfb0d5d 2682#ifdef CONFIG_SCHEDSTATS
cb251765 2683 /* Even if schedstat is disabled, there should not be garbage */
41acab88 2684 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2685#endif
476d139c 2686
aab03e05 2687 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 2688 init_dl_task_timer(&p->dl);
209a0cbd 2689 init_dl_inactive_task_timer(&p->dl);
a5e7be3b 2690 __dl_clear_params(p);
aab03e05 2691
fa717060 2692 INIT_LIST_HEAD(&p->rt.run_list);
ff77e468
PZ
2693 p->rt.timeout = 0;
2694 p->rt.time_slice = sched_rr_timeslice;
2695 p->rt.on_rq = 0;
2696 p->rt.on_list = 0;
476d139c 2697
e107be36
AK
2698#ifdef CONFIG_PREEMPT_NOTIFIERS
2699 INIT_HLIST_HEAD(&p->preempt_notifiers);
2700#endif
cbee9f88 2701
5e1f0f09
MG
2702#ifdef CONFIG_COMPACTION
2703 p->capture_control = NULL;
2704#endif
13784475 2705 init_numa_balancing(clone_flags, p);
dd41f596
IM
2706}
2707
2a595721
SD
2708DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2709
1a687c2e 2710#ifdef CONFIG_NUMA_BALANCING
c3b9bc5b 2711
1a687c2e
MG
2712void set_numabalancing_state(bool enabled)
2713{
2714 if (enabled)
2a595721 2715 static_branch_enable(&sched_numa_balancing);
1a687c2e 2716 else
2a595721 2717 static_branch_disable(&sched_numa_balancing);
1a687c2e 2718}
54a43d54
AK
2719
2720#ifdef CONFIG_PROC_SYSCTL
2721int sysctl_numa_balancing(struct ctl_table *table, int write,
2722 void __user *buffer, size_t *lenp, loff_t *ppos)
2723{
2724 struct ctl_table t;
2725 int err;
2a595721 2726 int state = static_branch_likely(&sched_numa_balancing);
54a43d54
AK
2727
2728 if (write && !capable(CAP_SYS_ADMIN))
2729 return -EPERM;
2730
2731 t = *table;
2732 t.data = &state;
2733 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2734 if (err < 0)
2735 return err;
2736 if (write)
2737 set_numabalancing_state(state);
2738 return err;
2739}
2740#endif
2741#endif
dd41f596 2742
4698f88c
JP
2743#ifdef CONFIG_SCHEDSTATS
2744
cb251765 2745DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4698f88c 2746static bool __initdata __sched_schedstats = false;
cb251765 2747
cb251765
MG
2748static void set_schedstats(bool enabled)
2749{
2750 if (enabled)
2751 static_branch_enable(&sched_schedstats);
2752 else
2753 static_branch_disable(&sched_schedstats);
2754}
2755
2756void force_schedstat_enabled(void)
2757{
2758 if (!schedstat_enabled()) {
2759 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2760 static_branch_enable(&sched_schedstats);
2761 }
2762}
2763
2764static int __init setup_schedstats(char *str)
2765{
2766 int ret = 0;
2767 if (!str)
2768 goto out;
2769
4698f88c
JP
2770 /*
2771 * This code is called before jump labels have been set up, so we can't
2772 * change the static branch directly just yet. Instead set a temporary
2773 * variable so init_schedstats() can do it later.
2774 */
cb251765 2775 if (!strcmp(str, "enable")) {
4698f88c 2776 __sched_schedstats = true;
cb251765
MG
2777 ret = 1;
2778 } else if (!strcmp(str, "disable")) {
4698f88c 2779 __sched_schedstats = false;
cb251765
MG
2780 ret = 1;
2781 }
2782out:
2783 if (!ret)
2784 pr_warn("Unable to parse schedstats=\n");
2785
2786 return ret;
2787}
2788__setup("schedstats=", setup_schedstats);
2789
4698f88c
JP
2790static void __init init_schedstats(void)
2791{
2792 set_schedstats(__sched_schedstats);
2793}
2794
cb251765
MG
2795#ifdef CONFIG_PROC_SYSCTL
2796int sysctl_schedstats(struct ctl_table *table, int write,
2797 void __user *buffer, size_t *lenp, loff_t *ppos)
2798{
2799 struct ctl_table t;
2800 int err;
2801 int state = static_branch_likely(&sched_schedstats);
2802
2803 if (write && !capable(CAP_SYS_ADMIN))
2804 return -EPERM;
2805
2806 t = *table;
2807 t.data = &state;
2808 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2809 if (err < 0)
2810 return err;
2811 if (write)
2812 set_schedstats(state);
2813 return err;
2814}
4698f88c
JP
2815#endif /* CONFIG_PROC_SYSCTL */
2816#else /* !CONFIG_SCHEDSTATS */
2817static inline void init_schedstats(void) {}
2818#endif /* CONFIG_SCHEDSTATS */
dd41f596
IM
2819
2820/*
2821 * fork()/clone()-time setup:
2822 */
aab03e05 2823int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2824{
0122ec5b 2825 unsigned long flags;
dd41f596 2826
5e1576ed 2827 __sched_fork(clone_flags, p);
06b83b5f 2828 /*
7dc603c9 2829 * We mark the process as NEW here. This guarantees that
06b83b5f
PZ
2830 * nobody will actually run it, and a signal or other external
2831 * event cannot wake it up and insert it on the runqueue either.
2832 */
7dc603c9 2833 p->state = TASK_NEW;
dd41f596 2834
c350a04e
MG
2835 /*
2836 * Make sure we do not leak PI boosting priority to the child.
2837 */
2838 p->prio = current->normal_prio;
2839
e8f14172
PB
2840 uclamp_fork(p);
2841
b9dc29e7
MG
2842 /*
2843 * Revert to default priority/policy on fork if requested.
2844 */
2845 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 2846 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 2847 p->policy = SCHED_NORMAL;
6c697bdf 2848 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
2849 p->rt_priority = 0;
2850 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2851 p->static_prio = NICE_TO_PRIO(0);
2852
2853 p->prio = p->normal_prio = __normal_prio(p);
9059393e 2854 set_load_weight(p, false);
6c697bdf 2855
b9dc29e7
MG
2856 /*
2857 * We don't need the reset flag anymore after the fork. It has
2858 * fulfilled its duty:
2859 */
2860 p->sched_reset_on_fork = 0;
2861 }
ca94c442 2862
af0fffd9 2863 if (dl_prio(p->prio))
aab03e05 2864 return -EAGAIN;
af0fffd9 2865 else if (rt_prio(p->prio))
aab03e05 2866 p->sched_class = &rt_sched_class;
af0fffd9 2867 else
2ddbf952 2868 p->sched_class = &fair_sched_class;
b29739f9 2869
7dc603c9 2870 init_entity_runnable_average(&p->se);
cd29fe6f 2871
86951599
PZ
2872 /*
2873 * The child is not yet in the pid-hash so no cgroup attach races,
2874 * and the cgroup is pinned to this child due to cgroup_fork()
2875 * is ran before sched_fork().
2876 *
2877 * Silence PROVE_RCU.
2878 */
0122ec5b 2879 raw_spin_lock_irqsave(&p->pi_lock, flags);
e210bffd 2880 /*
d1ccc66d 2881 * We're setting the CPU for the first time, we don't migrate,
e210bffd
PZ
2882 * so use __set_task_cpu().
2883 */
af0fffd9 2884 __set_task_cpu(p, smp_processor_id());
e210bffd
PZ
2885 if (p->sched_class->task_fork)
2886 p->sched_class->task_fork(p);
0122ec5b 2887 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 2888
f6db8347 2889#ifdef CONFIG_SCHED_INFO
dd41f596 2890 if (likely(sched_info_on()))
52f17b6c 2891 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2892#endif
3ca7a440
PZ
2893#if defined(CONFIG_SMP)
2894 p->on_cpu = 0;
4866cde0 2895#endif
01028747 2896 init_task_preempt_count(p);
806c09a7 2897#ifdef CONFIG_SMP
917b627d 2898 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 2899 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 2900#endif
aab03e05 2901 return 0;
1da177e4
LT
2902}
2903
332ac17e
DF
2904unsigned long to_ratio(u64 period, u64 runtime)
2905{
2906 if (runtime == RUNTIME_INF)
c52f14d3 2907 return BW_UNIT;
332ac17e
DF
2908
2909 /*
2910 * Doing this here saves a lot of checks in all
2911 * the calling paths, and returning zero seems
2912 * safe for them anyway.
2913 */
2914 if (period == 0)
2915 return 0;
2916
c52f14d3 2917 return div64_u64(runtime << BW_SHIFT, period);
332ac17e
DF
2918}
2919
1da177e4
LT
2920/*
2921 * wake_up_new_task - wake up a newly created task for the first time.
2922 *
2923 * This function will do some initial scheduler statistics housekeeping
2924 * that must be done for every newly created context, then puts the task
2925 * on the runqueue and wakes it.
2926 */
3e51e3ed 2927void wake_up_new_task(struct task_struct *p)
1da177e4 2928{
eb580751 2929 struct rq_flags rf;
dd41f596 2930 struct rq *rq;
fabf318e 2931
eb580751 2932 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
7dc603c9 2933 p->state = TASK_RUNNING;
fabf318e
PZ
2934#ifdef CONFIG_SMP
2935 /*
2936 * Fork balancing, do it here and not earlier because:
3bd37062 2937 * - cpus_ptr can change in the fork path
d1ccc66d 2938 * - any previously selected CPU might disappear through hotplug
e210bffd
PZ
2939 *
2940 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2941 * as we're not fully set-up yet.
fabf318e 2942 */
32e839dd 2943 p->recent_used_cpu = task_cpu(p);
e210bffd 2944 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735 2945#endif
b7fa30c9 2946 rq = __task_rq_lock(p, &rf);
4126bad6 2947 update_rq_clock(rq);
d0fe0b9c 2948 post_init_entity_util_avg(p);
0017d735 2949
7a57f32a 2950 activate_task(rq, p, ENQUEUE_NOCLOCK);
fbd705a0 2951 trace_sched_wakeup_new(p);
a7558e01 2952 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2953#ifdef CONFIG_SMP
0aaafaab
PZ
2954 if (p->sched_class->task_woken) {
2955 /*
2956 * Nothing relies on rq->lock after this, so its fine to
2957 * drop it.
2958 */
d8ac8971 2959 rq_unpin_lock(rq, &rf);
efbbd05a 2960 p->sched_class->task_woken(rq, p);
d8ac8971 2961 rq_repin_lock(rq, &rf);
0aaafaab 2962 }
9a897c5a 2963#endif
eb580751 2964 task_rq_unlock(rq, p, &rf);
1da177e4
LT
2965}
2966
e107be36
AK
2967#ifdef CONFIG_PREEMPT_NOTIFIERS
2968
b7203428 2969static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
1cde2930 2970
2ecd9d29
PZ
2971void preempt_notifier_inc(void)
2972{
b7203428 2973 static_branch_inc(&preempt_notifier_key);
2ecd9d29
PZ
2974}
2975EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2976
2977void preempt_notifier_dec(void)
2978{
b7203428 2979 static_branch_dec(&preempt_notifier_key);
2ecd9d29
PZ
2980}
2981EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2982
e107be36 2983/**
80dd99b3 2984 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2985 * @notifier: notifier struct to register
e107be36
AK
2986 */
2987void preempt_notifier_register(struct preempt_notifier *notifier)
2988{
b7203428 2989 if (!static_branch_unlikely(&preempt_notifier_key))
2ecd9d29
PZ
2990 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2991
e107be36
AK
2992 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2993}
2994EXPORT_SYMBOL_GPL(preempt_notifier_register);
2995
2996/**
2997 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2998 * @notifier: notifier struct to unregister
e107be36 2999 *
d84525a8 3000 * This is *not* safe to call from within a preemption notifier.
e107be36
AK
3001 */
3002void preempt_notifier_unregister(struct preempt_notifier *notifier)
3003{
3004 hlist_del(&notifier->link);
3005}
3006EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
3007
1cde2930 3008static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
3009{
3010 struct preempt_notifier *notifier;
e107be36 3011
b67bfe0d 3012 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
3013 notifier->ops->sched_in(notifier, raw_smp_processor_id());
3014}
3015
1cde2930
PZ
3016static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3017{
b7203428 3018 if (static_branch_unlikely(&preempt_notifier_key))
1cde2930
PZ
3019 __fire_sched_in_preempt_notifiers(curr);
3020}
3021
e107be36 3022static void
1cde2930
PZ
3023__fire_sched_out_preempt_notifiers(struct task_struct *curr,
3024 struct task_struct *next)
e107be36
AK
3025{
3026 struct preempt_notifier *notifier;
e107be36 3027
b67bfe0d 3028 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
3029 notifier->ops->sched_out(notifier, next);
3030}
3031
1cde2930
PZ
3032static __always_inline void
3033fire_sched_out_preempt_notifiers(struct task_struct *curr,
3034 struct task_struct *next)
3035{
b7203428 3036 if (static_branch_unlikely(&preempt_notifier_key))
1cde2930
PZ
3037 __fire_sched_out_preempt_notifiers(curr, next);
3038}
3039
6d6bc0ad 3040#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36 3041
1cde2930 3042static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
3043{
3044}
3045
1cde2930 3046static inline void
e107be36
AK
3047fire_sched_out_preempt_notifiers(struct task_struct *curr,
3048 struct task_struct *next)
3049{
3050}
3051
6d6bc0ad 3052#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 3053
31cb1bc0 3054static inline void prepare_task(struct task_struct *next)
3055{
3056#ifdef CONFIG_SMP
3057 /*
3058 * Claim the task as running, we do this before switching to it
3059 * such that any running task will have this set.
3060 */
3061 next->on_cpu = 1;
3062#endif
3063}
3064
3065static inline void finish_task(struct task_struct *prev)
3066{
3067#ifdef CONFIG_SMP
3068 /*
3069 * After ->on_cpu is cleared, the task can be moved to a different CPU.
3070 * We must ensure this doesn't happen until the switch is completely
3071 * finished.
3072 *
3073 * In particular, the load of prev->state in finish_task_switch() must
3074 * happen before this.
3075 *
3076 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
3077 */
3078 smp_store_release(&prev->on_cpu, 0);
3079#endif
3080}
3081
269d5992
PZ
3082static inline void
3083prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
31cb1bc0 3084{
269d5992
PZ
3085 /*
3086 * Since the runqueue lock will be released by the next
3087 * task (which is an invalid locking op but in the case
3088 * of the scheduler it's an obvious special-case), so we
3089 * do an early lockdep release here:
3090 */
3091 rq_unpin_lock(rq, rf);
5facae4f 3092 spin_release(&rq->lock.dep_map, _THIS_IP_);
31cb1bc0 3093#ifdef CONFIG_DEBUG_SPINLOCK
3094 /* this is a valid case when another task releases the spinlock */
269d5992 3095 rq->lock.owner = next;
31cb1bc0 3096#endif
269d5992
PZ
3097}
3098
3099static inline void finish_lock_switch(struct rq *rq)
3100{
31cb1bc0 3101 /*
3102 * If we are tracking spinlock dependencies then we have to
3103 * fix up the runqueue lock - which gets 'carried over' from
3104 * prev into current:
3105 */
3106 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
31cb1bc0 3107 raw_spin_unlock_irq(&rq->lock);
3108}
3109
325ea10c
IM
3110/*
3111 * NOP if the arch has not defined these:
3112 */
3113
3114#ifndef prepare_arch_switch
3115# define prepare_arch_switch(next) do { } while (0)
3116#endif
3117
3118#ifndef finish_arch_post_lock_switch
3119# define finish_arch_post_lock_switch() do { } while (0)
3120#endif
3121
4866cde0
NP
3122/**
3123 * prepare_task_switch - prepare to switch tasks
3124 * @rq: the runqueue preparing to switch
421cee29 3125 * @prev: the current task that is being switched out
4866cde0
NP
3126 * @next: the task we are going to switch to.
3127 *
3128 * This is called with the rq lock held and interrupts off. It must
3129 * be paired with a subsequent finish_task_switch after the context
3130 * switch.
3131 *
3132 * prepare_task_switch sets up locking and calls architecture specific
3133 * hooks.
3134 */
e107be36
AK
3135static inline void
3136prepare_task_switch(struct rq *rq, struct task_struct *prev,
3137 struct task_struct *next)
4866cde0 3138{
0ed557aa 3139 kcov_prepare_switch(prev);
43148951 3140 sched_info_switch(rq, prev, next);
fe4b04fa 3141 perf_event_task_sched_out(prev, next);
d7822b1e 3142 rseq_preempt(prev);
e107be36 3143 fire_sched_out_preempt_notifiers(prev, next);
31cb1bc0 3144 prepare_task(next);
4866cde0
NP
3145 prepare_arch_switch(next);
3146}
3147
1da177e4
LT
3148/**
3149 * finish_task_switch - clean up after a task-switch
3150 * @prev: the thread we just switched away from.
3151 *
4866cde0
NP
3152 * finish_task_switch must be called after the context switch, paired
3153 * with a prepare_task_switch call before the context switch.
3154 * finish_task_switch will reconcile locking set up by prepare_task_switch,
3155 * and do any other architecture-specific cleanup actions.
1da177e4
LT
3156 *
3157 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 3158 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
3159 * with the lock held can cause deadlocks; see schedule() for
3160 * details.)
dfa50b60
ON
3161 *
3162 * The context switch have flipped the stack from under us and restored the
3163 * local variables which were saved when this task called schedule() in the
3164 * past. prev == current is still correct but we need to recalculate this_rq
3165 * because prev may have moved to another CPU.
1da177e4 3166 */
dfa50b60 3167static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
3168 __releases(rq->lock)
3169{
dfa50b60 3170 struct rq *rq = this_rq();
1da177e4 3171 struct mm_struct *mm = rq->prev_mm;
55a101f8 3172 long prev_state;
1da177e4 3173
609ca066
PZ
3174 /*
3175 * The previous task will have left us with a preempt_count of 2
3176 * because it left us after:
3177 *
3178 * schedule()
3179 * preempt_disable(); // 1
3180 * __schedule()
3181 * raw_spin_lock_irq(&rq->lock) // 2
3182 *
3183 * Also, see FORK_PREEMPT_COUNT.
3184 */
e2bf1c4b
PZ
3185 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
3186 "corrupted preempt_count: %s/%d/0x%x\n",
3187 current->comm, current->pid, preempt_count()))
3188 preempt_count_set(FORK_PREEMPT_COUNT);
609ca066 3189
1da177e4
LT
3190 rq->prev_mm = NULL;
3191
3192 /*
3193 * A task struct has one reference for the use as "current".
c394cc9f 3194 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
3195 * schedule one last time. The schedule call will never return, and
3196 * the scheduled task must drop that reference.
95913d97
PZ
3197 *
3198 * We must observe prev->state before clearing prev->on_cpu (in
31cb1bc0 3199 * finish_task), otherwise a concurrent wakeup can get prev
95913d97
PZ
3200 * running on another CPU and we could rave with its RUNNING -> DEAD
3201 * transition, resulting in a double drop.
1da177e4 3202 */
55a101f8 3203 prev_state = prev->state;
bf9fae9f 3204 vtime_task_switch(prev);
a8d757ef 3205 perf_event_task_sched_in(prev, current);
31cb1bc0 3206 finish_task(prev);
3207 finish_lock_switch(rq);
01f23e16 3208 finish_arch_post_lock_switch();
0ed557aa 3209 kcov_finish_switch(current);
e8fa1362 3210
e107be36 3211 fire_sched_in_preempt_notifiers(current);
306e0604 3212 /*
70216e18
MD
3213 * When switching through a kernel thread, the loop in
3214 * membarrier_{private,global}_expedited() may have observed that
3215 * kernel thread and not issued an IPI. It is therefore possible to
3216 * schedule between user->kernel->user threads without passing though
3217 * switch_mm(). Membarrier requires a barrier after storing to
3218 * rq->curr, before returning to userspace, so provide them here:
3219 *
3220 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
3221 * provided by mmdrop(),
3222 * - a sync_core for SYNC_CORE.
306e0604 3223 */
70216e18
MD
3224 if (mm) {
3225 membarrier_mm_sync_core_before_usermode(mm);
1da177e4 3226 mmdrop(mm);
70216e18 3227 }
1cef1150
PZ
3228 if (unlikely(prev_state == TASK_DEAD)) {
3229 if (prev->sched_class->task_dead)
3230 prev->sched_class->task_dead(prev);
68f24b08 3231
1cef1150
PZ
3232 /*
3233 * Remove function-return probe instances associated with this
3234 * task and put them back on the free list.
3235 */
3236 kprobe_flush_task(prev);
3237
3238 /* Task is done with its stack. */
3239 put_task_stack(prev);
3240
0ff7b2cf 3241 put_task_struct_rcu_user(prev);
c6fd91f0 3242 }
99e5ada9 3243
de734f89 3244 tick_nohz_task_switch();
dfa50b60 3245 return rq;
1da177e4
LT
3246}
3247
3f029d3c
GH
3248#ifdef CONFIG_SMP
3249
3f029d3c 3250/* rq->lock is NOT held, but preemption is disabled */
e3fca9e7 3251static void __balance_callback(struct rq *rq)
3f029d3c 3252{
e3fca9e7
PZ
3253 struct callback_head *head, *next;
3254 void (*func)(struct rq *rq);
3255 unsigned long flags;
3f029d3c 3256
e3fca9e7
PZ
3257 raw_spin_lock_irqsave(&rq->lock, flags);
3258 head = rq->balance_callback;
3259 rq->balance_callback = NULL;
3260 while (head) {
3261 func = (void (*)(struct rq *))head->func;
3262 next = head->next;
3263 head->next = NULL;
3264 head = next;
3f029d3c 3265
e3fca9e7 3266 func(rq);
3f029d3c 3267 }
e3fca9e7
PZ
3268 raw_spin_unlock_irqrestore(&rq->lock, flags);
3269}
3270
3271static inline void balance_callback(struct rq *rq)
3272{
3273 if (unlikely(rq->balance_callback))
3274 __balance_callback(rq);
3f029d3c
GH
3275}
3276
3277#else
da19ab51 3278
e3fca9e7 3279static inline void balance_callback(struct rq *rq)
3f029d3c 3280{
1da177e4
LT
3281}
3282
3f029d3c
GH
3283#endif
3284
1da177e4
LT
3285/**
3286 * schedule_tail - first thing a freshly forked thread must call.
3287 * @prev: the thread we just switched away from.
3288 */
722a9f92 3289asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
3290 __releases(rq->lock)
3291{
1a43a14a 3292 struct rq *rq;
da19ab51 3293
609ca066
PZ
3294 /*
3295 * New tasks start with FORK_PREEMPT_COUNT, see there and
3296 * finish_task_switch() for details.
3297 *
3298 * finish_task_switch() will drop rq->lock() and lower preempt_count
3299 * and the preempt_enable() will end up enabling preemption (on
3300 * PREEMPT_COUNT kernels).
3301 */
3302
dfa50b60 3303 rq = finish_task_switch(prev);
e3fca9e7 3304 balance_callback(rq);
1a43a14a 3305 preempt_enable();
70b97a7f 3306
1da177e4 3307 if (current->set_child_tid)
b488893a 3308 put_user(task_pid_vnr(current), current->set_child_tid);
088fe47c
EB
3309
3310 calculate_sigpending();
1da177e4
LT
3311}
3312
3313/*
dfa50b60 3314 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 3315 */
04936948 3316static __always_inline struct rq *
70b97a7f 3317context_switch(struct rq *rq, struct task_struct *prev,
d8ac8971 3318 struct task_struct *next, struct rq_flags *rf)
1da177e4 3319{
e107be36 3320 prepare_task_switch(rq, prev, next);
fe4b04fa 3321
9226d125
ZA
3322 /*
3323 * For paravirt, this is coupled with an exit in switch_to to
3324 * combine the page table reload and the switch backend into
3325 * one hypercall.
3326 */
224101ed 3327 arch_start_context_switch(prev);
9226d125 3328
306e0604 3329 /*
139d025c
PZ
3330 * kernel -> kernel lazy + transfer active
3331 * user -> kernel lazy + mmgrab() active
3332 *
3333 * kernel -> user switch + mmdrop() active
3334 * user -> user switch
306e0604 3335 */
139d025c
PZ
3336 if (!next->mm) { // to kernel
3337 enter_lazy_tlb(prev->active_mm, next);
3338
3339 next->active_mm = prev->active_mm;
3340 if (prev->mm) // from user
3341 mmgrab(prev->active_mm);
3342 else
3343 prev->active_mm = NULL;
3344 } else { // to user
227a4aad 3345 membarrier_switch_mm(rq, prev->active_mm, next->mm);
139d025c
PZ
3346 /*
3347 * sys_membarrier() requires an smp_mb() between setting
227a4aad 3348 * rq->curr / membarrier_switch_mm() and returning to userspace.
139d025c
PZ
3349 *
3350 * The below provides this either through switch_mm(), or in
3351 * case 'prev->active_mm == next->mm' through
3352 * finish_task_switch()'s mmdrop().
3353 */
139d025c 3354 switch_mm_irqs_off(prev->active_mm, next->mm, next);
1da177e4 3355
139d025c
PZ
3356 if (!prev->mm) { // from kernel
3357 /* will mmdrop() in finish_task_switch(). */
3358 rq->prev_mm = prev->active_mm;
3359 prev->active_mm = NULL;
3360 }
1da177e4 3361 }
92509b73 3362
cb42c9a3 3363 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
92509b73 3364
269d5992 3365 prepare_lock_switch(rq, next, rf);
1da177e4
LT
3366
3367 /* Here we just switch the register state and the stack. */
3368 switch_to(prev, next, prev);
dd41f596 3369 barrier();
dfa50b60
ON
3370
3371 return finish_task_switch(prev);
1da177e4
LT
3372}
3373
3374/*
1c3e8264 3375 * nr_running and nr_context_switches:
1da177e4
LT
3376 *
3377 * externally visible scheduler statistics: current number of runnable
1c3e8264 3378 * threads, total number of context switches performed since bootup.
1da177e4
LT
3379 */
3380unsigned long nr_running(void)
3381{
3382 unsigned long i, sum = 0;
3383
3384 for_each_online_cpu(i)
3385 sum += cpu_rq(i)->nr_running;
3386
3387 return sum;
f711f609 3388}
1da177e4 3389
2ee507c4 3390/*
d1ccc66d 3391 * Check if only the current task is running on the CPU.
00cc1633
DD
3392 *
3393 * Caution: this function does not check that the caller has disabled
3394 * preemption, thus the result might have a time-of-check-to-time-of-use
3395 * race. The caller is responsible to use it correctly, for example:
3396 *
dfcb245e 3397 * - from a non-preemptible section (of course)
00cc1633
DD
3398 *
3399 * - from a thread that is bound to a single CPU
3400 *
3401 * - in a loop with very short iterations (e.g. a polling loop)
2ee507c4
TC
3402 */
3403bool single_task_running(void)
3404{
00cc1633 3405 return raw_rq()->nr_running == 1;
2ee507c4
TC
3406}
3407EXPORT_SYMBOL(single_task_running);
3408
1da177e4 3409unsigned long long nr_context_switches(void)
46cb4b7c 3410{
cc94abfc
SR
3411 int i;
3412 unsigned long long sum = 0;
46cb4b7c 3413
0a945022 3414 for_each_possible_cpu(i)
1da177e4 3415 sum += cpu_rq(i)->nr_switches;
46cb4b7c 3416
1da177e4
LT
3417 return sum;
3418}
483b4ee6 3419
145d952a
DL
3420/*
3421 * Consumers of these two interfaces, like for example the cpuidle menu
3422 * governor, are using nonsensical data. Preferring shallow idle state selection
3423 * for a CPU that has IO-wait which might not even end up running the task when
3424 * it does become runnable.
3425 */
3426
3427unsigned long nr_iowait_cpu(int cpu)
3428{
3429 return atomic_read(&cpu_rq(cpu)->nr_iowait);
3430}
3431
e33a9bba
TH
3432/*
3433 * IO-wait accounting, and how its mostly bollocks (on SMP).
3434 *
3435 * The idea behind IO-wait account is to account the idle time that we could
3436 * have spend running if it were not for IO. That is, if we were to improve the
3437 * storage performance, we'd have a proportional reduction in IO-wait time.
3438 *
3439 * This all works nicely on UP, where, when a task blocks on IO, we account
3440 * idle time as IO-wait, because if the storage were faster, it could've been
3441 * running and we'd not be idle.
3442 *
3443 * This has been extended to SMP, by doing the same for each CPU. This however
3444 * is broken.
3445 *
3446 * Imagine for instance the case where two tasks block on one CPU, only the one
3447 * CPU will have IO-wait accounted, while the other has regular idle. Even
3448 * though, if the storage were faster, both could've ran at the same time,
3449 * utilising both CPUs.
3450 *
3451 * This means, that when looking globally, the current IO-wait accounting on
3452 * SMP is a lower bound, by reason of under accounting.
3453 *
3454 * Worse, since the numbers are provided per CPU, they are sometimes
3455 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
3456 * associated with any one particular CPU, it can wake to another CPU than it
3457 * blocked on. This means the per CPU IO-wait number is meaningless.
3458 *
3459 * Task CPU affinities can make all that even more 'interesting'.
3460 */
3461
1da177e4
LT
3462unsigned long nr_iowait(void)
3463{
3464 unsigned long i, sum = 0;
483b4ee6 3465
0a945022 3466 for_each_possible_cpu(i)
145d952a 3467 sum += nr_iowait_cpu(i);
46cb4b7c 3468
1da177e4
LT
3469 return sum;
3470}
483b4ee6 3471
dd41f596 3472#ifdef CONFIG_SMP
8a0be9ef 3473
46cb4b7c 3474/*
38022906
PZ
3475 * sched_exec - execve() is a valuable balancing opportunity, because at
3476 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 3477 */
38022906 3478void sched_exec(void)
46cb4b7c 3479{
38022906 3480 struct task_struct *p = current;
1da177e4 3481 unsigned long flags;
0017d735 3482 int dest_cpu;
46cb4b7c 3483
8f42ced9 3484 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 3485 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
3486 if (dest_cpu == smp_processor_id())
3487 goto unlock;
38022906 3488
8f42ced9 3489 if (likely(cpu_active(dest_cpu))) {
969c7921 3490 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 3491
8f42ced9
PZ
3492 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3493 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
3494 return;
3495 }
0017d735 3496unlock:
8f42ced9 3497 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 3498}
dd41f596 3499
1da177e4
LT
3500#endif
3501
1da177e4 3502DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 3503DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
3504
3505EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 3506EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 3507
6075620b
GG
3508/*
3509 * The function fair_sched_class.update_curr accesses the struct curr
3510 * and its field curr->exec_start; when called from task_sched_runtime(),
3511 * we observe a high rate of cache misses in practice.
3512 * Prefetching this data results in improved performance.
3513 */
3514static inline void prefetch_curr_exec_start(struct task_struct *p)
3515{
3516#ifdef CONFIG_FAIR_GROUP_SCHED
3517 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3518#else
3519 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3520#endif
3521 prefetch(curr);
3522 prefetch(&curr->exec_start);
3523}
3524
c5f8d995
HS
3525/*
3526 * Return accounted runtime for the task.
3527 * In case the task is currently running, return the runtime plus current's
3528 * pending runtime that have not been accounted yet.
3529 */
3530unsigned long long task_sched_runtime(struct task_struct *p)
3531{
eb580751 3532 struct rq_flags rf;
c5f8d995 3533 struct rq *rq;
6e998916 3534 u64 ns;
c5f8d995 3535
911b2898
PZ
3536#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3537 /*
97fb7a0a 3538 * 64-bit doesn't need locks to atomically read a 64-bit value.
911b2898
PZ
3539 * So we have a optimization chance when the task's delta_exec is 0.
3540 * Reading ->on_cpu is racy, but this is ok.
3541 *
d1ccc66d
IM
3542 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3543 * If we race with it entering CPU, unaccounted time is 0. This is
911b2898 3544 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
3545 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3546 * been accounted, so we're correct here as well.
911b2898 3547 */
da0c1e65 3548 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
3549 return p->se.sum_exec_runtime;
3550#endif
3551
eb580751 3552 rq = task_rq_lock(p, &rf);
6e998916
SG
3553 /*
3554 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3555 * project cycles that may never be accounted to this
3556 * thread, breaking clock_gettime().
3557 */
3558 if (task_current(rq, p) && task_on_rq_queued(p)) {
6075620b 3559 prefetch_curr_exec_start(p);
6e998916
SG
3560 update_rq_clock(rq);
3561 p->sched_class->update_curr(rq);
3562 }
3563 ns = p->se.sum_exec_runtime;
eb580751 3564 task_rq_unlock(rq, p, &rf);
c5f8d995
HS
3565
3566 return ns;
3567}
48f24c4d 3568
14533a16
IM
3569DEFINE_PER_CPU(unsigned long, thermal_pressure);
3570
3571void arch_set_thermal_pressure(struct cpumask *cpus,
3572 unsigned long th_pressure)
3573{
3574 int cpu;
3575
3576 for_each_cpu(cpu, cpus)
3577 WRITE_ONCE(per_cpu(thermal_pressure, cpu), th_pressure);
3578}
3579
7835b98b
CL
3580/*
3581 * This function gets called by the timer code, with HZ frequency.
3582 * We call it with interrupts disabled.
7835b98b
CL
3583 */
3584void scheduler_tick(void)
3585{
7835b98b
CL
3586 int cpu = smp_processor_id();
3587 struct rq *rq = cpu_rq(cpu);
dd41f596 3588 struct task_struct *curr = rq->curr;
8a8c69c3 3589 struct rq_flags rf;
b4eccf5f 3590 unsigned long thermal_pressure;
3e51f33f 3591
1567c3e3 3592 arch_scale_freq_tick();
3e51f33f 3593 sched_clock_tick();
dd41f596 3594
8a8c69c3
PZ
3595 rq_lock(rq, &rf);
3596
3e51f33f 3597 update_rq_clock(rq);
b4eccf5f 3598 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
05289b90 3599 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
fa85ae24 3600 curr->sched_class->task_tick(rq, curr, 0);
3289bdb4 3601 calc_global_load_tick(rq);
eb414681 3602 psi_task_tick(rq);
8a8c69c3
PZ
3603
3604 rq_unlock(rq, &rf);
7835b98b 3605
e9d2b064 3606 perf_event_task_tick();
e220d2dc 3607
e418e1c2 3608#ifdef CONFIG_SMP
6eb57e0d 3609 rq->idle_balance = idle_cpu(cpu);
7caff66f 3610 trigger_load_balance(rq);
e418e1c2 3611#endif
1da177e4
LT
3612}
3613
265f22a9 3614#ifdef CONFIG_NO_HZ_FULL
d84b3131
FW
3615
3616struct tick_work {
3617 int cpu;
b55bd585 3618 atomic_t state;
d84b3131
FW
3619 struct delayed_work work;
3620};
b55bd585
PM
3621/* Values for ->state, see diagram below. */
3622#define TICK_SCHED_REMOTE_OFFLINE 0
3623#define TICK_SCHED_REMOTE_OFFLINING 1
3624#define TICK_SCHED_REMOTE_RUNNING 2
3625
3626/*
3627 * State diagram for ->state:
3628 *
3629 *
3630 * TICK_SCHED_REMOTE_OFFLINE
3631 * | ^
3632 * | |
3633 * | | sched_tick_remote()
3634 * | |
3635 * | |
3636 * +--TICK_SCHED_REMOTE_OFFLINING
3637 * | ^
3638 * | |
3639 * sched_tick_start() | | sched_tick_stop()
3640 * | |
3641 * V |
3642 * TICK_SCHED_REMOTE_RUNNING
3643 *
3644 *
3645 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
3646 * and sched_tick_start() are happy to leave the state in RUNNING.
3647 */
d84b3131
FW
3648
3649static struct tick_work __percpu *tick_work_cpu;
3650
3651static void sched_tick_remote(struct work_struct *work)
3652{
3653 struct delayed_work *dwork = to_delayed_work(work);
3654 struct tick_work *twork = container_of(dwork, struct tick_work, work);
3655 int cpu = twork->cpu;
3656 struct rq *rq = cpu_rq(cpu);
d9c0ffca 3657 struct task_struct *curr;
d84b3131 3658 struct rq_flags rf;
d9c0ffca 3659 u64 delta;
b55bd585 3660 int os;
d84b3131
FW
3661
3662 /*
3663 * Handle the tick only if it appears the remote CPU is running in full
3664 * dynticks mode. The check is racy by nature, but missing a tick or
3665 * having one too much is no big deal because the scheduler tick updates
3666 * statistics and checks timeslices in a time-independent way, regardless
3667 * of when exactly it is running.
3668 */
488603b8 3669 if (!tick_nohz_tick_stopped_cpu(cpu))
d9c0ffca 3670 goto out_requeue;
d84b3131 3671
d9c0ffca
FW
3672 rq_lock_irq(rq, &rf);
3673 curr = rq->curr;
488603b8 3674 if (cpu_is_offline(cpu))
d9c0ffca 3675 goto out_unlock;
d84b3131 3676
d9c0ffca 3677 update_rq_clock(rq);
d9c0ffca 3678
488603b8
SW
3679 if (!is_idle_task(curr)) {
3680 /*
3681 * Make sure the next tick runs within a reasonable
3682 * amount of time.
3683 */
3684 delta = rq_clock_task(rq) - curr->se.exec_start;
3685 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
3686 }
d9c0ffca
FW
3687 curr->sched_class->task_tick(rq, curr, 0);
3688
ebc0f83c 3689 calc_load_nohz_remote(rq);
d9c0ffca
FW
3690out_unlock:
3691 rq_unlock_irq(rq, &rf);
d9c0ffca 3692out_requeue:
ebc0f83c 3693
d84b3131
FW
3694 /*
3695 * Run the remote tick once per second (1Hz). This arbitrary
3696 * frequency is large enough to avoid overload but short enough
b55bd585
PM
3697 * to keep scheduler internal stats reasonably up to date. But
3698 * first update state to reflect hotplug activity if required.
d84b3131 3699 */
b55bd585
PM
3700 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
3701 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
3702 if (os == TICK_SCHED_REMOTE_RUNNING)
3703 queue_delayed_work(system_unbound_wq, dwork, HZ);
d84b3131
FW
3704}
3705
3706static void sched_tick_start(int cpu)
3707{
b55bd585 3708 int os;
d84b3131
FW
3709 struct tick_work *twork;
3710
3711 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3712 return;
3713
3714 WARN_ON_ONCE(!tick_work_cpu);
3715
3716 twork = per_cpu_ptr(tick_work_cpu, cpu);
b55bd585
PM
3717 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
3718 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
3719 if (os == TICK_SCHED_REMOTE_OFFLINE) {
3720 twork->cpu = cpu;
3721 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
3722 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
3723 }
d84b3131
FW
3724}
3725
3726#ifdef CONFIG_HOTPLUG_CPU
3727static void sched_tick_stop(int cpu)
3728{
3729 struct tick_work *twork;
b55bd585 3730 int os;
d84b3131
FW
3731
3732 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3733 return;
3734
3735 WARN_ON_ONCE(!tick_work_cpu);
3736
3737 twork = per_cpu_ptr(tick_work_cpu, cpu);
b55bd585
PM
3738 /* There cannot be competing actions, but don't rely on stop-machine. */
3739 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
3740 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
3741 /* Don't cancel, as this would mess up the state machine. */
d84b3131
FW
3742}
3743#endif /* CONFIG_HOTPLUG_CPU */
3744
3745int __init sched_tick_offload_init(void)
3746{
3747 tick_work_cpu = alloc_percpu(struct tick_work);
3748 BUG_ON(!tick_work_cpu);
d84b3131
FW
3749 return 0;
3750}
3751
3752#else /* !CONFIG_NO_HZ_FULL */
3753static inline void sched_tick_start(int cpu) { }
3754static inline void sched_tick_stop(int cpu) { }
265f22a9 3755#endif
1da177e4 3756
c1a280b6 3757#if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
c3bc8fd6 3758 defined(CONFIG_TRACE_PREEMPT_TOGGLE))
47252cfb
SR
3759/*
3760 * If the value passed in is equal to the current preempt count
3761 * then we just disabled preemption. Start timing the latency.
3762 */
3763static inline void preempt_latency_start(int val)
3764{
3765 if (preempt_count() == val) {
3766 unsigned long ip = get_lock_parent_ip();
3767#ifdef CONFIG_DEBUG_PREEMPT
3768 current->preempt_disable_ip = ip;
3769#endif
3770 trace_preempt_off(CALLER_ADDR0, ip);
3771 }
3772}
7e49fcce 3773
edafe3a5 3774void preempt_count_add(int val)
1da177e4 3775{
6cd8a4bb 3776#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3777 /*
3778 * Underflow?
3779 */
9a11b49a
IM
3780 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3781 return;
6cd8a4bb 3782#endif
bdb43806 3783 __preempt_count_add(val);
6cd8a4bb 3784#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3785 /*
3786 * Spinlock count overflowing soon?
3787 */
33859f7f
MOS
3788 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3789 PREEMPT_MASK - 10);
6cd8a4bb 3790#endif
47252cfb 3791 preempt_latency_start(val);
1da177e4 3792}
bdb43806 3793EXPORT_SYMBOL(preempt_count_add);
edafe3a5 3794NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 3795
47252cfb
SR
3796/*
3797 * If the value passed in equals to the current preempt count
3798 * then we just enabled preemption. Stop timing the latency.
3799 */
3800static inline void preempt_latency_stop(int val)
3801{
3802 if (preempt_count() == val)
3803 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3804}
3805
edafe3a5 3806void preempt_count_sub(int val)
1da177e4 3807{
6cd8a4bb 3808#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3809 /*
3810 * Underflow?
3811 */
01e3eb82 3812 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3813 return;
1da177e4
LT
3814 /*
3815 * Is the spinlock portion underflowing?
3816 */
9a11b49a
IM
3817 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3818 !(preempt_count() & PREEMPT_MASK)))
3819 return;
6cd8a4bb 3820#endif
9a11b49a 3821
47252cfb 3822 preempt_latency_stop(val);
bdb43806 3823 __preempt_count_sub(val);
1da177e4 3824}
bdb43806 3825EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 3826NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4 3827
47252cfb
SR
3828#else
3829static inline void preempt_latency_start(int val) { }
3830static inline void preempt_latency_stop(int val) { }
1da177e4
LT
3831#endif
3832
59ddbcb2
IM
3833static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3834{
3835#ifdef CONFIG_DEBUG_PREEMPT
3836 return p->preempt_disable_ip;
3837#else
3838 return 0;
3839#endif
3840}
3841
1da177e4 3842/*
dd41f596 3843 * Print scheduling while atomic bug:
1da177e4 3844 */
dd41f596 3845static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3846{
d1c6d149
VN
3847 /* Save this before calling printk(), since that will clobber it */
3848 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3849
664dfa65
DJ
3850 if (oops_in_progress)
3851 return;
3852
3df0fc5b
PZ
3853 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3854 prev->comm, prev->pid, preempt_count());
838225b4 3855
dd41f596 3856 debug_show_held_locks(prev);
e21f5b15 3857 print_modules();
dd41f596
IM
3858 if (irqs_disabled())
3859 print_irqtrace_events(prev);
d1c6d149
VN
3860 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3861 && in_atomic_preempt_off()) {
8f47b187 3862 pr_err("Preemption disabled at:");
d1c6d149 3863 print_ip_sym(preempt_disable_ip);
8f47b187
TG
3864 pr_cont("\n");
3865 }
748c7201
DBO
3866 if (panic_on_warn)
3867 panic("scheduling while atomic\n");
3868
6135fc1e 3869 dump_stack();
373d4d09 3870 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 3871}
1da177e4 3872
dd41f596
IM
3873/*
3874 * Various schedule()-time debugging checks and statistics:
3875 */
312364f3 3876static inline void schedule_debug(struct task_struct *prev, bool preempt)
dd41f596 3877{
0d9e2632 3878#ifdef CONFIG_SCHED_STACK_END_CHECK
29d64551
JH
3879 if (task_stack_end_corrupted(prev))
3880 panic("corrupted stack end detected inside scheduler\n");
0d9e2632 3881#endif
b99def8b 3882
312364f3
DV
3883#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
3884 if (!preempt && prev->state && prev->non_block_count) {
3885 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
3886 prev->comm, prev->pid, prev->non_block_count);
3887 dump_stack();
3888 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3889 }
3890#endif
3891
1dc0fffc 3892 if (unlikely(in_atomic_preempt_off())) {
dd41f596 3893 __schedule_bug(prev);
1dc0fffc
PZ
3894 preempt_count_set(PREEMPT_DISABLED);
3895 }
b3fbab05 3896 rcu_sleep_check();
dd41f596 3897
1da177e4
LT
3898 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3899
ae92882e 3900 schedstat_inc(this_rq()->sched_count);
dd41f596
IM
3901}
3902
3903/*
3904 * Pick up the highest-prio task:
3905 */
3906static inline struct task_struct *
d8ac8971 3907pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
dd41f596 3908{
49ee5768 3909 const struct sched_class *class;
dd41f596 3910 struct task_struct *p;
1da177e4
LT
3911
3912 /*
0ba87bb2
PZ
3913 * Optimization: we know that if all tasks are in the fair class we can
3914 * call that function directly, but only if the @prev task wasn't of a
3915 * higher scheduling class, because otherwise those loose the
3916 * opportunity to pull in more work from other CPUs.
1da177e4 3917 */
0ba87bb2
PZ
3918 if (likely((prev->sched_class == &idle_sched_class ||
3919 prev->sched_class == &fair_sched_class) &&
3920 rq->nr_running == rq->cfs.h_nr_running)) {
3921
5d7d6056 3922 p = pick_next_task_fair(rq, prev, rf);
6ccdc84b 3923 if (unlikely(p == RETRY_TASK))
67692435 3924 goto restart;
6ccdc84b 3925
d1ccc66d 3926 /* Assumes fair_sched_class->next == idle_sched_class */
5d7d6056 3927 if (!p) {
f488e105 3928 put_prev_task(rq, prev);
98c2f700 3929 p = pick_next_task_idle(rq);
f488e105 3930 }
6ccdc84b
PZ
3931
3932 return p;
1da177e4
LT
3933 }
3934
67692435 3935restart:
6e2df058 3936#ifdef CONFIG_SMP
67692435 3937 /*
6e2df058
PZ
3938 * We must do the balancing pass before put_next_task(), such
3939 * that when we release the rq->lock the task is in the same
3940 * state as before we took rq->lock.
3941 *
3942 * We can terminate the balance pass as soon as we know there is
3943 * a runnable task of @class priority or higher.
67692435 3944 */
6e2df058
PZ
3945 for_class_range(class, prev->sched_class, &idle_sched_class) {
3946 if (class->balance(rq, prev, rf))
3947 break;
3948 }
3949#endif
3950
3951 put_prev_task(rq, prev);
67692435 3952
34f971f6 3953 for_each_class(class) {
98c2f700 3954 p = class->pick_next_task(rq);
67692435 3955 if (p)
dd41f596 3956 return p;
dd41f596 3957 }
34f971f6 3958
d1ccc66d
IM
3959 /* The idle class should always have a runnable task: */
3960 BUG();
dd41f596 3961}
1da177e4 3962
dd41f596 3963/*
c259e01a 3964 * __schedule() is the main scheduler function.
edde96ea
PE
3965 *
3966 * The main means of driving the scheduler and thus entering this function are:
3967 *
3968 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3969 *
3970 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3971 * paths. For example, see arch/x86/entry_64.S.
3972 *
3973 * To drive preemption between tasks, the scheduler sets the flag in timer
3974 * interrupt handler scheduler_tick().
3975 *
3976 * 3. Wakeups don't really cause entry into schedule(). They add a
3977 * task to the run-queue and that's it.
3978 *
3979 * Now, if the new task added to the run-queue preempts the current
3980 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3981 * called on the nearest possible occasion:
3982 *
c1a280b6 3983 * - If the kernel is preemptible (CONFIG_PREEMPTION=y):
edde96ea
PE
3984 *
3985 * - in syscall or exception context, at the next outmost
3986 * preempt_enable(). (this might be as soon as the wake_up()'s
3987 * spin_unlock()!)
3988 *
3989 * - in IRQ context, return from interrupt-handler to
3990 * preemptible context
3991 *
c1a280b6 3992 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
edde96ea
PE
3993 * then at the next:
3994 *
3995 * - cond_resched() call
3996 * - explicit schedule() call
3997 * - return from syscall or exception to user-space
3998 * - return from interrupt-handler to user-space
bfd9b2b5 3999 *
b30f0e3f 4000 * WARNING: must be called with preemption disabled!
dd41f596 4001 */
499d7955 4002static void __sched notrace __schedule(bool preempt)
dd41f596
IM
4003{
4004 struct task_struct *prev, *next;
67ca7bde 4005 unsigned long *switch_count;
d8ac8971 4006 struct rq_flags rf;
dd41f596 4007 struct rq *rq;
31656519 4008 int cpu;
dd41f596 4009
dd41f596
IM
4010 cpu = smp_processor_id();
4011 rq = cpu_rq(cpu);
dd41f596 4012 prev = rq->curr;
dd41f596 4013
312364f3 4014 schedule_debug(prev, preempt);
1da177e4 4015
31656519 4016 if (sched_feat(HRTICK))
f333fdc9 4017 hrtick_clear(rq);
8f4d37ec 4018
46a5d164 4019 local_irq_disable();
bcbfdd01 4020 rcu_note_context_switch(preempt);
46a5d164 4021
e0acd0a6
ON
4022 /*
4023 * Make sure that signal_pending_state()->signal_pending() below
4024 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
4025 * done by the caller to avoid the race with signal_wake_up().
306e0604
MD
4026 *
4027 * The membarrier system call requires a full memory barrier
4028 * after coming from user-space, before storing to rq->curr.
e0acd0a6 4029 */
8a8c69c3 4030 rq_lock(rq, &rf);
d89e588c 4031 smp_mb__after_spinlock();
1da177e4 4032
d1ccc66d
IM
4033 /* Promote REQ to ACT */
4034 rq->clock_update_flags <<= 1;
bce4dc80 4035 update_rq_clock(rq);
9edfbfed 4036
246d86b5 4037 switch_count = &prev->nivcsw;
fc13aeba 4038 if (!preempt && prev->state) {
34ec35ad 4039 if (signal_pending_state(prev->state, prev)) {
1da177e4 4040 prev->state = TASK_RUNNING;
21aa9af0 4041 } else {
bce4dc80 4042 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
2acca55e 4043
e33a9bba
TH
4044 if (prev->in_iowait) {
4045 atomic_inc(&rq->nr_iowait);
4046 delayacct_blkio_start();
4047 }
21aa9af0 4048 }
dd41f596 4049 switch_count = &prev->nvcsw;
1da177e4
LT
4050 }
4051
d8ac8971 4052 next = pick_next_task(rq, prev, &rf);
f26f9aff 4053 clear_tsk_need_resched(prev);
f27dde8d 4054 clear_preempt_need_resched();
1da177e4 4055
1da177e4 4056 if (likely(prev != next)) {
1da177e4 4057 rq->nr_switches++;
5311a98f
EB
4058 /*
4059 * RCU users of rcu_dereference(rq->curr) may not see
4060 * changes to task_struct made by pick_next_task().
4061 */
4062 RCU_INIT_POINTER(rq->curr, next);
22e4ebb9
MD
4063 /*
4064 * The membarrier system call requires each architecture
4065 * to have a full memory barrier after updating
306e0604
MD
4066 * rq->curr, before returning to user-space.
4067 *
4068 * Here are the schemes providing that barrier on the
4069 * various architectures:
4070 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
4071 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
4072 * - finish_lock_switch() for weakly-ordered
4073 * architectures where spin_unlock is a full barrier,
4074 * - switch_to() for arm64 (weakly-ordered, spin_unlock
4075 * is a RELEASE barrier),
22e4ebb9 4076 */
1da177e4
LT
4077 ++*switch_count;
4078
b05e75d6
JW
4079 psi_sched_switch(prev, next, !task_on_rq_queued(prev));
4080
c73464b1 4081 trace_sched_switch(preempt, prev, next);
d1ccc66d
IM
4082
4083 /* Also unlocks the rq: */
4084 rq = context_switch(rq, prev, next, &rf);
cbce1a68 4085 } else {
cb42c9a3 4086 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
8a8c69c3 4087 rq_unlock_irq(rq, &rf);
cbce1a68 4088 }
1da177e4 4089
e3fca9e7 4090 balance_callback(rq);
1da177e4 4091}
c259e01a 4092
9af6528e
PZ
4093void __noreturn do_task_dead(void)
4094{
d1ccc66d 4095 /* Causes final put_task_struct in finish_task_switch(): */
b5bf9a90 4096 set_special_state(TASK_DEAD);
d1ccc66d
IM
4097
4098 /* Tell freezer to ignore us: */
4099 current->flags |= PF_NOFREEZE;
4100
9af6528e
PZ
4101 __schedule(false);
4102 BUG();
d1ccc66d
IM
4103
4104 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
9af6528e 4105 for (;;)
d1ccc66d 4106 cpu_relax();
9af6528e
PZ
4107}
4108
9c40cef2
TG
4109static inline void sched_submit_work(struct task_struct *tsk)
4110{
b0fdc013 4111 if (!tsk->state)
9c40cef2 4112 return;
6d25be57
TG
4113
4114 /*
4115 * If a worker went to sleep, notify and ask workqueue whether
4116 * it wants to wake up a task to maintain concurrency.
4117 * As this function is called inside the schedule() context,
4118 * we disable preemption to avoid it calling schedule() again
62849a96
SAS
4119 * in the possible wakeup of a kworker and because wq_worker_sleeping()
4120 * requires it.
6d25be57 4121 */
771b53d0 4122 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6d25be57 4123 preempt_disable();
771b53d0
JA
4124 if (tsk->flags & PF_WQ_WORKER)
4125 wq_worker_sleeping(tsk);
4126 else
4127 io_wq_worker_sleeping(tsk);
6d25be57
TG
4128 preempt_enable_no_resched();
4129 }
4130
b0fdc013
SAS
4131 if (tsk_is_pi_blocked(tsk))
4132 return;
4133
9c40cef2
TG
4134 /*
4135 * If we are going to sleep and we have plugged IO queued,
4136 * make sure to submit it to avoid deadlocks.
4137 */
4138 if (blk_needs_flush_plug(tsk))
4139 blk_schedule_flush_plug(tsk);
4140}
4141
6d25be57
TG
4142static void sched_update_worker(struct task_struct *tsk)
4143{
771b53d0
JA
4144 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
4145 if (tsk->flags & PF_WQ_WORKER)
4146 wq_worker_running(tsk);
4147 else
4148 io_wq_worker_running(tsk);
4149 }
6d25be57
TG
4150}
4151
722a9f92 4152asmlinkage __visible void __sched schedule(void)
c259e01a 4153{
9c40cef2
TG
4154 struct task_struct *tsk = current;
4155
4156 sched_submit_work(tsk);
bfd9b2b5 4157 do {
b30f0e3f 4158 preempt_disable();
fc13aeba 4159 __schedule(false);
b30f0e3f 4160 sched_preempt_enable_no_resched();
bfd9b2b5 4161 } while (need_resched());
6d25be57 4162 sched_update_worker(tsk);
c259e01a 4163}
1da177e4
LT
4164EXPORT_SYMBOL(schedule);
4165
8663effb
SRV
4166/*
4167 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
4168 * state (have scheduled out non-voluntarily) by making sure that all
4169 * tasks have either left the run queue or have gone into user space.
4170 * As idle tasks do not do either, they must not ever be preempted
4171 * (schedule out non-voluntarily).
4172 *
4173 * schedule_idle() is similar to schedule_preempt_disable() except that it
4174 * never enables preemption because it does not call sched_submit_work().
4175 */
4176void __sched schedule_idle(void)
4177{
4178 /*
4179 * As this skips calling sched_submit_work(), which the idle task does
4180 * regardless because that function is a nop when the task is in a
4181 * TASK_RUNNING state, make sure this isn't used someplace that the
4182 * current task can be in any other state. Note, idle is always in the
4183 * TASK_RUNNING state.
4184 */
4185 WARN_ON_ONCE(current->state);
4186 do {
4187 __schedule(false);
4188 } while (need_resched());
4189}
4190
91d1aa43 4191#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 4192asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
4193{
4194 /*
4195 * If we come here after a random call to set_need_resched(),
4196 * or we have been woken up remotely but the IPI has not yet arrived,
4197 * we haven't yet exited the RCU idle mode. Do it here manually until
4198 * we find a better solution.
7cc78f8f
AL
4199 *
4200 * NB: There are buggy callers of this function. Ideally we
c467ea76 4201 * should warn if prev_state != CONTEXT_USER, but that will trigger
7cc78f8f 4202 * too frequently to make sense yet.
20ab65e3 4203 */
7cc78f8f 4204 enum ctx_state prev_state = exception_enter();
20ab65e3 4205 schedule();
7cc78f8f 4206 exception_exit(prev_state);
20ab65e3
FW
4207}
4208#endif
4209
c5491ea7
TG
4210/**
4211 * schedule_preempt_disabled - called with preemption disabled
4212 *
4213 * Returns with preemption disabled. Note: preempt_count must be 1
4214 */
4215void __sched schedule_preempt_disabled(void)
4216{
ba74c144 4217 sched_preempt_enable_no_resched();
c5491ea7
TG
4218 schedule();
4219 preempt_disable();
4220}
4221
06b1f808 4222static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
4223{
4224 do {
47252cfb
SR
4225 /*
4226 * Because the function tracer can trace preempt_count_sub()
4227 * and it also uses preempt_enable/disable_notrace(), if
4228 * NEED_RESCHED is set, the preempt_enable_notrace() called
4229 * by the function tracer will call this function again and
4230 * cause infinite recursion.
4231 *
4232 * Preemption must be disabled here before the function
4233 * tracer can trace. Break up preempt_disable() into two
4234 * calls. One to disable preemption without fear of being
4235 * traced. The other to still record the preemption latency,
4236 * which can also be traced by the function tracer.
4237 */
499d7955 4238 preempt_disable_notrace();
47252cfb 4239 preempt_latency_start(1);
fc13aeba 4240 __schedule(true);
47252cfb 4241 preempt_latency_stop(1);
499d7955 4242 preempt_enable_no_resched_notrace();
a18b5d01
FW
4243
4244 /*
4245 * Check again in case we missed a preemption opportunity
4246 * between schedule and now.
4247 */
a18b5d01
FW
4248 } while (need_resched());
4249}
4250
c1a280b6 4251#ifdef CONFIG_PREEMPTION
1da177e4 4252/*
a49b4f40
VS
4253 * This is the entry point to schedule() from in-kernel preemption
4254 * off of preempt_enable.
1da177e4 4255 */
722a9f92 4256asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 4257{
1da177e4
LT
4258 /*
4259 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4260 * we do not want to preempt the current task. Just return..
1da177e4 4261 */
fbb00b56 4262 if (likely(!preemptible()))
1da177e4
LT
4263 return;
4264
a18b5d01 4265 preempt_schedule_common();
1da177e4 4266}
376e2424 4267NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 4268EXPORT_SYMBOL(preempt_schedule);
009f60e2 4269
009f60e2 4270/**
4eaca0a8 4271 * preempt_schedule_notrace - preempt_schedule called by tracing
009f60e2
ON
4272 *
4273 * The tracing infrastructure uses preempt_enable_notrace to prevent
4274 * recursion and tracing preempt enabling caused by the tracing
4275 * infrastructure itself. But as tracing can happen in areas coming
4276 * from userspace or just about to enter userspace, a preempt enable
4277 * can occur before user_exit() is called. This will cause the scheduler
4278 * to be called when the system is still in usermode.
4279 *
4280 * To prevent this, the preempt_enable_notrace will use this function
4281 * instead of preempt_schedule() to exit user context if needed before
4282 * calling the scheduler.
4283 */
4eaca0a8 4284asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
009f60e2
ON
4285{
4286 enum ctx_state prev_ctx;
4287
4288 if (likely(!preemptible()))
4289 return;
4290
4291 do {
47252cfb
SR
4292 /*
4293 * Because the function tracer can trace preempt_count_sub()
4294 * and it also uses preempt_enable/disable_notrace(), if
4295 * NEED_RESCHED is set, the preempt_enable_notrace() called
4296 * by the function tracer will call this function again and
4297 * cause infinite recursion.
4298 *
4299 * Preemption must be disabled here before the function
4300 * tracer can trace. Break up preempt_disable() into two
4301 * calls. One to disable preemption without fear of being
4302 * traced. The other to still record the preemption latency,
4303 * which can also be traced by the function tracer.
4304 */
3d8f74dd 4305 preempt_disable_notrace();
47252cfb 4306 preempt_latency_start(1);
009f60e2
ON
4307 /*
4308 * Needs preempt disabled in case user_exit() is traced
4309 * and the tracer calls preempt_enable_notrace() causing
4310 * an infinite recursion.
4311 */
4312 prev_ctx = exception_enter();
fc13aeba 4313 __schedule(true);
009f60e2
ON
4314 exception_exit(prev_ctx);
4315
47252cfb 4316 preempt_latency_stop(1);
3d8f74dd 4317 preempt_enable_no_resched_notrace();
009f60e2
ON
4318 } while (need_resched());
4319}
4eaca0a8 4320EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
009f60e2 4321
c1a280b6 4322#endif /* CONFIG_PREEMPTION */
1da177e4
LT
4323
4324/*
a49b4f40 4325 * This is the entry point to schedule() from kernel preemption
1da177e4
LT
4326 * off of irq context.
4327 * Note, that this is called and return with irqs disabled. This will
4328 * protect us against recursive calling from irq.
4329 */
722a9f92 4330asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 4331{
b22366cd 4332 enum ctx_state prev_state;
6478d880 4333
2ed6e34f 4334 /* Catch callers which need to be fixed */
f27dde8d 4335 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 4336
b22366cd
FW
4337 prev_state = exception_enter();
4338
3a5c359a 4339 do {
3d8f74dd 4340 preempt_disable();
3a5c359a 4341 local_irq_enable();
fc13aeba 4342 __schedule(true);
3a5c359a 4343 local_irq_disable();
3d8f74dd 4344 sched_preempt_enable_no_resched();
5ed0cec0 4345 } while (need_resched());
b22366cd
FW
4346
4347 exception_exit(prev_state);
1da177e4
LT
4348}
4349
ac6424b9 4350int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
95cdf3b7 4351 void *key)
1da177e4 4352{
63859d4f 4353 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 4354}
1da177e4
LT
4355EXPORT_SYMBOL(default_wake_function);
4356
b29739f9
IM
4357#ifdef CONFIG_RT_MUTEXES
4358
acd58620
PZ
4359static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
4360{
4361 if (pi_task)
4362 prio = min(prio, pi_task->prio);
4363
4364 return prio;
4365}
4366
4367static inline int rt_effective_prio(struct task_struct *p, int prio)
4368{
4369 struct task_struct *pi_task = rt_mutex_get_top_task(p);
4370
4371 return __rt_effective_prio(pi_task, prio);
4372}
4373
b29739f9
IM
4374/*
4375 * rt_mutex_setprio - set the current priority of a task
acd58620
PZ
4376 * @p: task to boost
4377 * @pi_task: donor task
b29739f9
IM
4378 *
4379 * This function changes the 'effective' priority of a task. It does
4380 * not touch ->normal_prio like __setscheduler().
4381 *
c365c292
TG
4382 * Used by the rt_mutex code to implement priority inheritance
4383 * logic. Call site only calls if the priority of the task changed.
b29739f9 4384 */
acd58620 4385void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
b29739f9 4386{
acd58620 4387 int prio, oldprio, queued, running, queue_flag =
7a57f32a 4388 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
83ab0aa0 4389 const struct sched_class *prev_class;
eb580751
PZ
4390 struct rq_flags rf;
4391 struct rq *rq;
b29739f9 4392
acd58620
PZ
4393 /* XXX used to be waiter->prio, not waiter->task->prio */
4394 prio = __rt_effective_prio(pi_task, p->normal_prio);
4395
4396 /*
4397 * If nothing changed; bail early.
4398 */
4399 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
4400 return;
b29739f9 4401
eb580751 4402 rq = __task_rq_lock(p, &rf);
80f5c1b8 4403 update_rq_clock(rq);
acd58620
PZ
4404 /*
4405 * Set under pi_lock && rq->lock, such that the value can be used under
4406 * either lock.
4407 *
4408 * Note that there is loads of tricky to make this pointer cache work
4409 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
4410 * ensure a task is de-boosted (pi_task is set to NULL) before the
4411 * task is allowed to run again (and can exit). This ensures the pointer
4412 * points to a blocked task -- which guaratees the task is present.
4413 */
4414 p->pi_top_task = pi_task;
4415
4416 /*
4417 * For FIFO/RR we only need to set prio, if that matches we're done.
4418 */
4419 if (prio == p->prio && !dl_prio(prio))
4420 goto out_unlock;
b29739f9 4421
1c4dd99b
TG
4422 /*
4423 * Idle task boosting is a nono in general. There is one
4424 * exception, when PREEMPT_RT and NOHZ is active:
4425 *
4426 * The idle task calls get_next_timer_interrupt() and holds
4427 * the timer wheel base->lock on the CPU and another CPU wants
4428 * to access the timer (probably to cancel it). We can safely
4429 * ignore the boosting request, as the idle CPU runs this code
4430 * with interrupts disabled and will complete the lock
4431 * protected section without being interrupted. So there is no
4432 * real need to boost.
4433 */
4434 if (unlikely(p == rq->idle)) {
4435 WARN_ON(p != rq->curr);
4436 WARN_ON(p->pi_blocked_on);
4437 goto out_unlock;
4438 }
4439
b91473ff 4440 trace_sched_pi_setprio(p, pi_task);
d5f9f942 4441 oldprio = p->prio;
ff77e468
PZ
4442
4443 if (oldprio == prio)
4444 queue_flag &= ~DEQUEUE_MOVE;
4445
83ab0aa0 4446 prev_class = p->sched_class;
da0c1e65 4447 queued = task_on_rq_queued(p);
051a1d1a 4448 running = task_current(rq, p);
da0c1e65 4449 if (queued)
ff77e468 4450 dequeue_task(rq, p, queue_flag);
0e1f3483 4451 if (running)
f3cd1c4e 4452 put_prev_task(rq, p);
dd41f596 4453
2d3d891d
DF
4454 /*
4455 * Boosting condition are:
4456 * 1. -rt task is running and holds mutex A
4457 * --> -dl task blocks on mutex A
4458 *
4459 * 2. -dl task is running and holds mutex A
4460 * --> -dl task blocks on mutex A and could preempt the
4461 * running task
4462 */
4463 if (dl_prio(prio)) {
466af29b
ON
4464 if (!dl_prio(p->normal_prio) ||
4465 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d 4466 p->dl.dl_boosted = 1;
ff77e468 4467 queue_flag |= ENQUEUE_REPLENISH;
2d3d891d
DF
4468 } else
4469 p->dl.dl_boosted = 0;
aab03e05 4470 p->sched_class = &dl_sched_class;
2d3d891d
DF
4471 } else if (rt_prio(prio)) {
4472 if (dl_prio(oldprio))
4473 p->dl.dl_boosted = 0;
4474 if (oldprio < prio)
ff77e468 4475 queue_flag |= ENQUEUE_HEAD;
dd41f596 4476 p->sched_class = &rt_sched_class;
2d3d891d
DF
4477 } else {
4478 if (dl_prio(oldprio))
4479 p->dl.dl_boosted = 0;
746db944
BS
4480 if (rt_prio(oldprio))
4481 p->rt.timeout = 0;
dd41f596 4482 p->sched_class = &fair_sched_class;
2d3d891d 4483 }
dd41f596 4484
b29739f9
IM
4485 p->prio = prio;
4486
da0c1e65 4487 if (queued)
ff77e468 4488 enqueue_task(rq, p, queue_flag);
a399d233 4489 if (running)
03b7fad1 4490 set_next_task(rq, p);
cb469845 4491
da7a735e 4492 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 4493out_unlock:
d1ccc66d
IM
4494 /* Avoid rq from going away on us: */
4495 preempt_disable();
eb580751 4496 __task_rq_unlock(rq, &rf);
4c9a4bc8
PZ
4497
4498 balance_callback(rq);
4499 preempt_enable();
b29739f9 4500}
acd58620
PZ
4501#else
4502static inline int rt_effective_prio(struct task_struct *p, int prio)
4503{
4504 return prio;
4505}
b29739f9 4506#endif
d50dde5a 4507
36c8b586 4508void set_user_nice(struct task_struct *p, long nice)
1da177e4 4509{
49bd21ef 4510 bool queued, running;
53a23364 4511 int old_prio;
eb580751 4512 struct rq_flags rf;
70b97a7f 4513 struct rq *rq;
1da177e4 4514
75e45d51 4515 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
4516 return;
4517 /*
4518 * We have to be careful, if called from sys_setpriority(),
4519 * the task might be in the middle of scheduling on another CPU.
4520 */
eb580751 4521 rq = task_rq_lock(p, &rf);
2fb8d367
PZ
4522 update_rq_clock(rq);
4523
1da177e4
LT
4524 /*
4525 * The RT priorities are set via sched_setscheduler(), but we still
4526 * allow the 'normal' nice value to be set - but as expected
4527 * it wont have any effect on scheduling until the task is
aab03e05 4528 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 4529 */
aab03e05 4530 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
4531 p->static_prio = NICE_TO_PRIO(nice);
4532 goto out_unlock;
4533 }
da0c1e65 4534 queued = task_on_rq_queued(p);
49bd21ef 4535 running = task_current(rq, p);
da0c1e65 4536 if (queued)
7a57f32a 4537 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
49bd21ef
PZ
4538 if (running)
4539 put_prev_task(rq, p);
1da177e4 4540
1da177e4 4541 p->static_prio = NICE_TO_PRIO(nice);
9059393e 4542 set_load_weight(p, true);
b29739f9
IM
4543 old_prio = p->prio;
4544 p->prio = effective_prio(p);
1da177e4 4545
5443a0be 4546 if (queued)
7134b3e9 4547 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
49bd21ef 4548 if (running)
03b7fad1 4549 set_next_task(rq, p);
5443a0be
FW
4550
4551 /*
4552 * If the task increased its priority or is running and
4553 * lowered its priority, then reschedule its CPU:
4554 */
4555 p->sched_class->prio_changed(rq, p, old_prio);
4556
1da177e4 4557out_unlock:
eb580751 4558 task_rq_unlock(rq, p, &rf);
1da177e4 4559}
1da177e4
LT
4560EXPORT_SYMBOL(set_user_nice);
4561
e43379f1
MM
4562/*
4563 * can_nice - check if a task can reduce its nice value
4564 * @p: task
4565 * @nice: nice value
4566 */
36c8b586 4567int can_nice(const struct task_struct *p, const int nice)
e43379f1 4568{
d1ccc66d 4569 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
7aa2c016 4570 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 4571
78d7d407 4572 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
4573 capable(CAP_SYS_NICE));
4574}
4575
1da177e4
LT
4576#ifdef __ARCH_WANT_SYS_NICE
4577
4578/*
4579 * sys_nice - change the priority of the current process.
4580 * @increment: priority increment
4581 *
4582 * sys_setpriority is a more generic, but much slower function that
4583 * does similar things.
4584 */
5add95d4 4585SYSCALL_DEFINE1(nice, int, increment)
1da177e4 4586{
48f24c4d 4587 long nice, retval;
1da177e4
LT
4588
4589 /*
4590 * Setpriority might change our priority at the same moment.
4591 * We don't have to worry. Conceptually one call occurs first
4592 * and we have a single winner.
4593 */
a9467fa3 4594 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 4595 nice = task_nice(current) + increment;
1da177e4 4596
a9467fa3 4597 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
4598 if (increment < 0 && !can_nice(current, nice))
4599 return -EPERM;
4600
1da177e4
LT
4601 retval = security_task_setnice(current, nice);
4602 if (retval)
4603 return retval;
4604
4605 set_user_nice(current, nice);
4606 return 0;
4607}
4608
4609#endif
4610
4611/**
4612 * task_prio - return the priority value of a given task.
4613 * @p: the task in question.
4614 *
e69f6186 4615 * Return: The priority value as seen by users in /proc.
1da177e4
LT
4616 * RT tasks are offset by -200. Normal tasks are centered
4617 * around 0, value goes from -16 to +15.
4618 */
36c8b586 4619int task_prio(const struct task_struct *p)
1da177e4
LT
4620{
4621 return p->prio - MAX_RT_PRIO;
4622}
4623
1da177e4 4624/**
d1ccc66d 4625 * idle_cpu - is a given CPU idle currently?
1da177e4 4626 * @cpu: the processor in question.
e69f6186
YB
4627 *
4628 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
4629 */
4630int idle_cpu(int cpu)
4631{
908a3283
TG
4632 struct rq *rq = cpu_rq(cpu);
4633
4634 if (rq->curr != rq->idle)
4635 return 0;
4636
4637 if (rq->nr_running)
4638 return 0;
4639
4640#ifdef CONFIG_SMP
4641 if (!llist_empty(&rq->wake_list))
4642 return 0;
4643#endif
4644
4645 return 1;
1da177e4
LT
4646}
4647
943d355d
RJ
4648/**
4649 * available_idle_cpu - is a given CPU idle for enqueuing work.
4650 * @cpu: the CPU in question.
4651 *
4652 * Return: 1 if the CPU is currently idle. 0 otherwise.
4653 */
4654int available_idle_cpu(int cpu)
4655{
4656 if (!idle_cpu(cpu))
4657 return 0;
4658
247f2f6f
RJ
4659 if (vcpu_is_preempted(cpu))
4660 return 0;
4661
908a3283 4662 return 1;
1da177e4
LT
4663}
4664
1da177e4 4665/**
d1ccc66d 4666 * idle_task - return the idle task for a given CPU.
1da177e4 4667 * @cpu: the processor in question.
e69f6186 4668 *
d1ccc66d 4669 * Return: The idle task for the CPU @cpu.
1da177e4 4670 */
36c8b586 4671struct task_struct *idle_task(int cpu)
1da177e4
LT
4672{
4673 return cpu_rq(cpu)->idle;
4674}
4675
4676/**
4677 * find_process_by_pid - find a process with a matching PID value.
4678 * @pid: the pid in question.
e69f6186
YB
4679 *
4680 * The task of @pid, if found. %NULL otherwise.
1da177e4 4681 */
a9957449 4682static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4683{
228ebcbe 4684 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4685}
4686
c13db6b1
SR
4687/*
4688 * sched_setparam() passes in -1 for its policy, to let the functions
4689 * it calls know not to change it.
4690 */
4691#define SETPARAM_POLICY -1
4692
c365c292
TG
4693static void __setscheduler_params(struct task_struct *p,
4694 const struct sched_attr *attr)
1da177e4 4695{
d50dde5a
DF
4696 int policy = attr->sched_policy;
4697
c13db6b1 4698 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
4699 policy = p->policy;
4700
1da177e4 4701 p->policy = policy;
d50dde5a 4702
aab03e05
DF
4703 if (dl_policy(policy))
4704 __setparam_dl(p, attr);
39fd8fd2 4705 else if (fair_policy(policy))
d50dde5a
DF
4706 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
4707
39fd8fd2
PZ
4708 /*
4709 * __sched_setscheduler() ensures attr->sched_priority == 0 when
4710 * !rt_policy. Always setting this ensures that things like
4711 * getparam()/getattr() don't report silly values for !rt tasks.
4712 */
4713 p->rt_priority = attr->sched_priority;
383afd09 4714 p->normal_prio = normal_prio(p);
9059393e 4715 set_load_weight(p, true);
c365c292 4716}
39fd8fd2 4717
c365c292
TG
4718/* Actually do priority change: must hold pi & rq lock. */
4719static void __setscheduler(struct rq *rq, struct task_struct *p,
0782e63b 4720 const struct sched_attr *attr, bool keep_boost)
c365c292 4721{
a509a7cd
PB
4722 /*
4723 * If params can't change scheduling class changes aren't allowed
4724 * either.
4725 */
4726 if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)
4727 return;
4728
c365c292 4729 __setscheduler_params(p, attr);
d50dde5a 4730
383afd09 4731 /*
0782e63b
TG
4732 * Keep a potential priority boosting if called from
4733 * sched_setscheduler().
383afd09 4734 */
acd58620 4735 p->prio = normal_prio(p);
0782e63b 4736 if (keep_boost)
acd58620 4737 p->prio = rt_effective_prio(p, p->prio);
383afd09 4738
aab03e05
DF
4739 if (dl_prio(p->prio))
4740 p->sched_class = &dl_sched_class;
4741 else if (rt_prio(p->prio))
ffd44db5
PZ
4742 p->sched_class = &rt_sched_class;
4743 else
4744 p->sched_class = &fair_sched_class;
1da177e4 4745}
aab03e05 4746
c69e8d9c 4747/*
d1ccc66d 4748 * Check the target process has a UID that matches the current process's:
c69e8d9c
DH
4749 */
4750static bool check_same_owner(struct task_struct *p)
4751{
4752 const struct cred *cred = current_cred(), *pcred;
4753 bool match;
4754
4755 rcu_read_lock();
4756 pcred = __task_cred(p);
9c806aa0
EB
4757 match = (uid_eq(cred->euid, pcred->euid) ||
4758 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
4759 rcu_read_unlock();
4760 return match;
4761}
4762
d50dde5a
DF
4763static int __sched_setscheduler(struct task_struct *p,
4764 const struct sched_attr *attr,
dbc7f069 4765 bool user, bool pi)
1da177e4 4766{
383afd09
SR
4767 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4768 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 4769 int retval, oldprio, oldpolicy = -1, queued, running;
0782e63b 4770 int new_effective_prio, policy = attr->sched_policy;
83ab0aa0 4771 const struct sched_class *prev_class;
eb580751 4772 struct rq_flags rf;
ca94c442 4773 int reset_on_fork;
7a57f32a 4774 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
eb580751 4775 struct rq *rq;
1da177e4 4776
896bbb25
SRV
4777 /* The pi code expects interrupts enabled */
4778 BUG_ON(pi && in_interrupt());
1da177e4 4779recheck:
d1ccc66d 4780 /* Double check policy once rq lock held: */
ca94c442
LP
4781 if (policy < 0) {
4782 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4783 policy = oldpolicy = p->policy;
ca94c442 4784 } else {
7479f3c9 4785 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 4786
20f9cd2a 4787 if (!valid_policy(policy))
ca94c442
LP
4788 return -EINVAL;
4789 }
4790
794a56eb 4791 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
7479f3c9
PZ
4792 return -EINVAL;
4793
1da177e4
LT
4794 /*
4795 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4796 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4797 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 4798 */
0bb040a4 4799 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 4800 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 4801 return -EINVAL;
aab03e05
DF
4802 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4803 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
4804 return -EINVAL;
4805
37e4ab3f
OC
4806 /*
4807 * Allow unprivileged RT tasks to decrease priority:
4808 */
961ccddd 4809 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 4810 if (fair_policy(policy)) {
d0ea0268 4811 if (attr->sched_nice < task_nice(p) &&
eaad4513 4812 !can_nice(p, attr->sched_nice))
d50dde5a
DF
4813 return -EPERM;
4814 }
4815
e05606d3 4816 if (rt_policy(policy)) {
a44702e8
ON
4817 unsigned long rlim_rtprio =
4818 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909 4819
d1ccc66d 4820 /* Can't set/change the rt policy: */
8dc3e909
ON
4821 if (policy != p->policy && !rlim_rtprio)
4822 return -EPERM;
4823
d1ccc66d 4824 /* Can't increase priority: */
d50dde5a
DF
4825 if (attr->sched_priority > p->rt_priority &&
4826 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
4827 return -EPERM;
4828 }
c02aa73b 4829
d44753b8
JL
4830 /*
4831 * Can't set/change SCHED_DEADLINE policy at all for now
4832 * (safest behavior); in the future we would like to allow
4833 * unprivileged DL tasks to increase their relative deadline
4834 * or reduce their runtime (both ways reducing utilization)
4835 */
4836 if (dl_policy(policy))
4837 return -EPERM;
4838
dd41f596 4839 /*
c02aa73b
DH
4840 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4841 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 4842 */
1da1843f 4843 if (task_has_idle_policy(p) && !idle_policy(policy)) {
d0ea0268 4844 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
4845 return -EPERM;
4846 }
5fe1d75f 4847
d1ccc66d 4848 /* Can't change other user's priorities: */
c69e8d9c 4849 if (!check_same_owner(p))
37e4ab3f 4850 return -EPERM;
ca94c442 4851
d1ccc66d 4852 /* Normal users shall not reset the sched_reset_on_fork flag: */
ca94c442
LP
4853 if (p->sched_reset_on_fork && !reset_on_fork)
4854 return -EPERM;
37e4ab3f 4855 }
1da177e4 4856
725aad24 4857 if (user) {
794a56eb
JL
4858 if (attr->sched_flags & SCHED_FLAG_SUGOV)
4859 return -EINVAL;
4860
b0ae1981 4861 retval = security_task_setscheduler(p);
725aad24
JF
4862 if (retval)
4863 return retval;
4864 }
4865
a509a7cd
PB
4866 /* Update task specific "requested" clamps */
4867 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
4868 retval = uclamp_validate(p, attr);
4869 if (retval)
4870 return retval;
4871 }
4872
710da3c8
JL
4873 if (pi)
4874 cpuset_read_lock();
4875
b29739f9 4876 /*
d1ccc66d 4877 * Make sure no PI-waiters arrive (or leave) while we are
b29739f9 4878 * changing the priority of the task:
0122ec5b 4879 *
25985edc 4880 * To be able to change p->policy safely, the appropriate
1da177e4
LT
4881 * runqueue lock must be held.
4882 */
eb580751 4883 rq = task_rq_lock(p, &rf);
80f5c1b8 4884 update_rq_clock(rq);
dc61b1d6 4885
34f971f6 4886 /*
d1ccc66d 4887 * Changing the policy of the stop threads its a very bad idea:
34f971f6
PZ
4888 */
4889 if (p == rq->stop) {
4b211f2b
MP
4890 retval = -EINVAL;
4891 goto unlock;
34f971f6
PZ
4892 }
4893
a51e9198 4894 /*
d6b1e911
TG
4895 * If not changing anything there's no need to proceed further,
4896 * but store a possible modification of reset_on_fork.
a51e9198 4897 */
d50dde5a 4898 if (unlikely(policy == p->policy)) {
d0ea0268 4899 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
4900 goto change;
4901 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4902 goto change;
75381608 4903 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 4904 goto change;
a509a7cd
PB
4905 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
4906 goto change;
d50dde5a 4907
d6b1e911 4908 p->sched_reset_on_fork = reset_on_fork;
4b211f2b
MP
4909 retval = 0;
4910 goto unlock;
a51e9198 4911 }
d50dde5a 4912change:
a51e9198 4913
dc61b1d6 4914 if (user) {
332ac17e 4915#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
4916 /*
4917 * Do not allow realtime tasks into groups that have no runtime
4918 * assigned.
4919 */
4920 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
4921 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4922 !task_group_is_autogroup(task_group(p))) {
4b211f2b
MP
4923 retval = -EPERM;
4924 goto unlock;
dc61b1d6 4925 }
dc61b1d6 4926#endif
332ac17e 4927#ifdef CONFIG_SMP
794a56eb
JL
4928 if (dl_bandwidth_enabled() && dl_policy(policy) &&
4929 !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
332ac17e 4930 cpumask_t *span = rq->rd->span;
332ac17e
DF
4931
4932 /*
4933 * Don't allow tasks with an affinity mask smaller than
4934 * the entire root_domain to become SCHED_DEADLINE. We
4935 * will also fail if there's no bandwidth available.
4936 */
3bd37062 4937 if (!cpumask_subset(span, p->cpus_ptr) ||
e4099a5e 4938 rq->rd->dl_bw.bw == 0) {
4b211f2b
MP
4939 retval = -EPERM;
4940 goto unlock;
332ac17e
DF
4941 }
4942 }
4943#endif
4944 }
dc61b1d6 4945
d1ccc66d 4946 /* Re-check policy now with rq lock held: */
1da177e4
LT
4947 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4948 policy = oldpolicy = -1;
eb580751 4949 task_rq_unlock(rq, p, &rf);
710da3c8
JL
4950 if (pi)
4951 cpuset_read_unlock();
1da177e4
LT
4952 goto recheck;
4953 }
332ac17e
DF
4954
4955 /*
4956 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4957 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4958 * is available.
4959 */
06a76fe0 4960 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
4b211f2b
MP
4961 retval = -EBUSY;
4962 goto unlock;
332ac17e
DF
4963 }
4964
c365c292
TG
4965 p->sched_reset_on_fork = reset_on_fork;
4966 oldprio = p->prio;
4967
dbc7f069
PZ
4968 if (pi) {
4969 /*
4970 * Take priority boosted tasks into account. If the new
4971 * effective priority is unchanged, we just store the new
4972 * normal parameters and do not touch the scheduler class and
4973 * the runqueue. This will be done when the task deboost
4974 * itself.
4975 */
acd58620 4976 new_effective_prio = rt_effective_prio(p, newprio);
ff77e468
PZ
4977 if (new_effective_prio == oldprio)
4978 queue_flags &= ~DEQUEUE_MOVE;
c365c292
TG
4979 }
4980
da0c1e65 4981 queued = task_on_rq_queued(p);
051a1d1a 4982 running = task_current(rq, p);
da0c1e65 4983 if (queued)
ff77e468 4984 dequeue_task(rq, p, queue_flags);
0e1f3483 4985 if (running)
f3cd1c4e 4986 put_prev_task(rq, p);
f6b53205 4987
83ab0aa0 4988 prev_class = p->sched_class;
a509a7cd 4989
dbc7f069 4990 __setscheduler(rq, p, attr, pi);
a509a7cd 4991 __setscheduler_uclamp(p, attr);
f6b53205 4992
da0c1e65 4993 if (queued) {
81a44c54
TG
4994 /*
4995 * We enqueue to tail when the priority of a task is
4996 * increased (user space view).
4997 */
ff77e468
PZ
4998 if (oldprio < p->prio)
4999 queue_flags |= ENQUEUE_HEAD;
1de64443 5000
ff77e468 5001 enqueue_task(rq, p, queue_flags);
81a44c54 5002 }
a399d233 5003 if (running)
03b7fad1 5004 set_next_task(rq, p);
cb469845 5005
da7a735e 5006 check_class_changed(rq, p, prev_class, oldprio);
d1ccc66d
IM
5007
5008 /* Avoid rq from going away on us: */
5009 preempt_disable();
eb580751 5010 task_rq_unlock(rq, p, &rf);
b29739f9 5011
710da3c8
JL
5012 if (pi) {
5013 cpuset_read_unlock();
dbc7f069 5014 rt_mutex_adjust_pi(p);
710da3c8 5015 }
95e02ca9 5016
d1ccc66d 5017 /* Run balance callbacks after we've adjusted the PI chain: */
4c9a4bc8
PZ
5018 balance_callback(rq);
5019 preempt_enable();
95e02ca9 5020
1da177e4 5021 return 0;
4b211f2b
MP
5022
5023unlock:
5024 task_rq_unlock(rq, p, &rf);
710da3c8
JL
5025 if (pi)
5026 cpuset_read_unlock();
4b211f2b 5027 return retval;
1da177e4 5028}
961ccddd 5029
7479f3c9
PZ
5030static int _sched_setscheduler(struct task_struct *p, int policy,
5031 const struct sched_param *param, bool check)
5032{
5033 struct sched_attr attr = {
5034 .sched_policy = policy,
5035 .sched_priority = param->sched_priority,
5036 .sched_nice = PRIO_TO_NICE(p->static_prio),
5037 };
5038
c13db6b1
SR
5039 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
5040 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
5041 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5042 policy &= ~SCHED_RESET_ON_FORK;
5043 attr.sched_policy = policy;
5044 }
5045
dbc7f069 5046 return __sched_setscheduler(p, &attr, check, true);
7479f3c9 5047}
961ccddd
RR
5048/**
5049 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5050 * @p: the task in question.
5051 * @policy: new policy.
5052 * @param: structure containing the new RT priority.
5053 *
e69f6186
YB
5054 * Return: 0 on success. An error code otherwise.
5055 *
961ccddd
RR
5056 * NOTE that the task may be already dead.
5057 */
5058int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 5059 const struct sched_param *param)
961ccddd 5060{
7479f3c9 5061 return _sched_setscheduler(p, policy, param, true);
961ccddd 5062}
1da177e4
LT
5063EXPORT_SYMBOL_GPL(sched_setscheduler);
5064
d50dde5a
DF
5065int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
5066{
dbc7f069 5067 return __sched_setscheduler(p, attr, true, true);
d50dde5a
DF
5068}
5069EXPORT_SYMBOL_GPL(sched_setattr);
5070
794a56eb
JL
5071int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
5072{
5073 return __sched_setscheduler(p, attr, false, true);
5074}
5075
961ccddd
RR
5076/**
5077 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5078 * @p: the task in question.
5079 * @policy: new policy.
5080 * @param: structure containing the new RT priority.
5081 *
5082 * Just like sched_setscheduler, only don't bother checking if the
5083 * current context has permission. For example, this is needed in
5084 * stop_machine(): we create temporary high priority worker threads,
5085 * but our caller might not have that capability.
e69f6186
YB
5086 *
5087 * Return: 0 on success. An error code otherwise.
961ccddd
RR
5088 */
5089int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 5090 const struct sched_param *param)
961ccddd 5091{
7479f3c9 5092 return _sched_setscheduler(p, policy, param, false);
961ccddd 5093}
84778472 5094EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
961ccddd 5095
95cdf3b7
IM
5096static int
5097do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5098{
1da177e4
LT
5099 struct sched_param lparam;
5100 struct task_struct *p;
36c8b586 5101 int retval;
1da177e4
LT
5102
5103 if (!param || pid < 0)
5104 return -EINVAL;
5105 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5106 return -EFAULT;
5fe1d75f
ON
5107
5108 rcu_read_lock();
5109 retval = -ESRCH;
1da177e4 5110 p = find_process_by_pid(pid);
710da3c8
JL
5111 if (likely(p))
5112 get_task_struct(p);
5fe1d75f 5113 rcu_read_unlock();
36c8b586 5114
710da3c8
JL
5115 if (likely(p)) {
5116 retval = sched_setscheduler(p, policy, &lparam);
5117 put_task_struct(p);
5118 }
5119
1da177e4
LT
5120 return retval;
5121}
5122
d50dde5a
DF
5123/*
5124 * Mimics kernel/events/core.c perf_copy_attr().
5125 */
d1ccc66d 5126static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
d50dde5a
DF
5127{
5128 u32 size;
5129 int ret;
5130
d1ccc66d 5131 /* Zero the full structure, so that a short copy will be nice: */
d50dde5a
DF
5132 memset(attr, 0, sizeof(*attr));
5133
5134 ret = get_user(size, &uattr->size);
5135 if (ret)
5136 return ret;
5137
d1ccc66d
IM
5138 /* ABI compatibility quirk: */
5139 if (!size)
d50dde5a 5140 size = SCHED_ATTR_SIZE_VER0;
dff3a85f 5141 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
d50dde5a
DF
5142 goto err_size;
5143
dff3a85f
AS
5144 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
5145 if (ret) {
5146 if (ret == -E2BIG)
5147 goto err_size;
5148 return ret;
d50dde5a
DF
5149 }
5150
a509a7cd
PB
5151 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
5152 size < SCHED_ATTR_SIZE_VER1)
5153 return -EINVAL;
5154
d50dde5a 5155 /*
d1ccc66d 5156 * XXX: Do we want to be lenient like existing syscalls; or do we want
d50dde5a
DF
5157 * to be strict and return an error on out-of-bounds values?
5158 */
75e45d51 5159 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 5160
e78c7bca 5161 return 0;
d50dde5a
DF
5162
5163err_size:
5164 put_user(sizeof(*attr), &uattr->size);
e78c7bca 5165 return -E2BIG;
d50dde5a
DF
5166}
5167
1da177e4
LT
5168/**
5169 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5170 * @pid: the pid in question.
5171 * @policy: new policy.
5172 * @param: structure containing the new RT priority.
e69f6186
YB
5173 *
5174 * Return: 0 on success. An error code otherwise.
1da177e4 5175 */
d1ccc66d 5176SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
1da177e4 5177{
c21761f1
JB
5178 if (policy < 0)
5179 return -EINVAL;
5180
1da177e4
LT
5181 return do_sched_setscheduler(pid, policy, param);
5182}
5183
5184/**
5185 * sys_sched_setparam - set/change the RT priority of a thread
5186 * @pid: the pid in question.
5187 * @param: structure containing the new RT priority.
e69f6186
YB
5188 *
5189 * Return: 0 on success. An error code otherwise.
1da177e4 5190 */
5add95d4 5191SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 5192{
c13db6b1 5193 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
5194}
5195
d50dde5a
DF
5196/**
5197 * sys_sched_setattr - same as above, but with extended sched_attr
5198 * @pid: the pid in question.
5778fccf 5199 * @uattr: structure containing the extended parameters.
db66d756 5200 * @flags: for future extension.
d50dde5a 5201 */
6d35ab48
PZ
5202SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
5203 unsigned int, flags)
d50dde5a
DF
5204{
5205 struct sched_attr attr;
5206 struct task_struct *p;
5207 int retval;
5208
6d35ab48 5209 if (!uattr || pid < 0 || flags)
d50dde5a
DF
5210 return -EINVAL;
5211
143cf23d
MK
5212 retval = sched_copy_attr(uattr, &attr);
5213 if (retval)
5214 return retval;
d50dde5a 5215
b14ed2c2 5216 if ((int)attr.sched_policy < 0)
dbdb2275 5217 return -EINVAL;
1d6362fa
PB
5218 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
5219 attr.sched_policy = SETPARAM_POLICY;
d50dde5a
DF
5220
5221 rcu_read_lock();
5222 retval = -ESRCH;
5223 p = find_process_by_pid(pid);
a509a7cd
PB
5224 if (likely(p))
5225 get_task_struct(p);
d50dde5a
DF
5226 rcu_read_unlock();
5227
a509a7cd
PB
5228 if (likely(p)) {
5229 retval = sched_setattr(p, &attr);
5230 put_task_struct(p);
5231 }
5232
d50dde5a
DF
5233 return retval;
5234}
5235
1da177e4
LT
5236/**
5237 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5238 * @pid: the pid in question.
e69f6186
YB
5239 *
5240 * Return: On success, the policy of the thread. Otherwise, a negative error
5241 * code.
1da177e4 5242 */
5add95d4 5243SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 5244{
36c8b586 5245 struct task_struct *p;
3a5c359a 5246 int retval;
1da177e4
LT
5247
5248 if (pid < 0)
3a5c359a 5249 return -EINVAL;
1da177e4
LT
5250
5251 retval = -ESRCH;
5fe85be0 5252 rcu_read_lock();
1da177e4
LT
5253 p = find_process_by_pid(pid);
5254 if (p) {
5255 retval = security_task_getscheduler(p);
5256 if (!retval)
ca94c442
LP
5257 retval = p->policy
5258 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 5259 }
5fe85be0 5260 rcu_read_unlock();
1da177e4
LT
5261 return retval;
5262}
5263
5264/**
ca94c442 5265 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
5266 * @pid: the pid in question.
5267 * @param: structure containing the RT priority.
e69f6186
YB
5268 *
5269 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
5270 * code.
1da177e4 5271 */
5add95d4 5272SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 5273{
ce5f7f82 5274 struct sched_param lp = { .sched_priority = 0 };
36c8b586 5275 struct task_struct *p;
3a5c359a 5276 int retval;
1da177e4
LT
5277
5278 if (!param || pid < 0)
3a5c359a 5279 return -EINVAL;
1da177e4 5280
5fe85be0 5281 rcu_read_lock();
1da177e4
LT
5282 p = find_process_by_pid(pid);
5283 retval = -ESRCH;
5284 if (!p)
5285 goto out_unlock;
5286
5287 retval = security_task_getscheduler(p);
5288 if (retval)
5289 goto out_unlock;
5290
ce5f7f82
PZ
5291 if (task_has_rt_policy(p))
5292 lp.sched_priority = p->rt_priority;
5fe85be0 5293 rcu_read_unlock();
1da177e4
LT
5294
5295 /*
5296 * This one might sleep, we cannot do it with a spinlock held ...
5297 */
5298 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5299
1da177e4
LT
5300 return retval;
5301
5302out_unlock:
5fe85be0 5303 rcu_read_unlock();
1da177e4
LT
5304 return retval;
5305}
5306
1251201c
IM
5307/*
5308 * Copy the kernel size attribute structure (which might be larger
5309 * than what user-space knows about) to user-space.
5310 *
5311 * Note that all cases are valid: user-space buffer can be larger or
5312 * smaller than the kernel-space buffer. The usual case is that both
5313 * have the same size.
5314 */
5315static int
5316sched_attr_copy_to_user(struct sched_attr __user *uattr,
5317 struct sched_attr *kattr,
5318 unsigned int usize)
d50dde5a 5319{
1251201c 5320 unsigned int ksize = sizeof(*kattr);
d50dde5a 5321
96d4f267 5322 if (!access_ok(uattr, usize))
d50dde5a
DF
5323 return -EFAULT;
5324
5325 /*
1251201c
IM
5326 * sched_getattr() ABI forwards and backwards compatibility:
5327 *
5328 * If usize == ksize then we just copy everything to user-space and all is good.
5329 *
5330 * If usize < ksize then we only copy as much as user-space has space for,
5331 * this keeps ABI compatibility as well. We skip the rest.
5332 *
5333 * If usize > ksize then user-space is using a newer version of the ABI,
5334 * which part the kernel doesn't know about. Just ignore it - tooling can
5335 * detect the kernel's knowledge of attributes from the attr->size value
5336 * which is set to ksize in this case.
d50dde5a 5337 */
1251201c 5338 kattr->size = min(usize, ksize);
d50dde5a 5339
1251201c 5340 if (copy_to_user(uattr, kattr, kattr->size))
d50dde5a
DF
5341 return -EFAULT;
5342
22400674 5343 return 0;
d50dde5a
DF
5344}
5345
5346/**
aab03e05 5347 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 5348 * @pid: the pid in question.
5778fccf 5349 * @uattr: structure containing the extended parameters.
dff3a85f 5350 * @usize: sizeof(attr) for fwd/bwd comp.
db66d756 5351 * @flags: for future extension.
d50dde5a 5352 */
6d35ab48 5353SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
1251201c 5354 unsigned int, usize, unsigned int, flags)
d50dde5a 5355{
1251201c 5356 struct sched_attr kattr = { };
d50dde5a
DF
5357 struct task_struct *p;
5358 int retval;
5359
1251201c
IM
5360 if (!uattr || pid < 0 || usize > PAGE_SIZE ||
5361 usize < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
5362 return -EINVAL;
5363
5364 rcu_read_lock();
5365 p = find_process_by_pid(pid);
5366 retval = -ESRCH;
5367 if (!p)
5368 goto out_unlock;
5369
5370 retval = security_task_getscheduler(p);
5371 if (retval)
5372 goto out_unlock;
5373
1251201c 5374 kattr.sched_policy = p->policy;
7479f3c9 5375 if (p->sched_reset_on_fork)
1251201c 5376 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05 5377 if (task_has_dl_policy(p))
1251201c 5378 __getparam_dl(p, &kattr);
aab03e05 5379 else if (task_has_rt_policy(p))
1251201c 5380 kattr.sched_priority = p->rt_priority;
d50dde5a 5381 else
1251201c 5382 kattr.sched_nice = task_nice(p);
d50dde5a 5383
a509a7cd 5384#ifdef CONFIG_UCLAMP_TASK
1251201c
IM
5385 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
5386 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
a509a7cd
PB
5387#endif
5388
d50dde5a
DF
5389 rcu_read_unlock();
5390
1251201c 5391 return sched_attr_copy_to_user(uattr, &kattr, usize);
d50dde5a
DF
5392
5393out_unlock:
5394 rcu_read_unlock();
5395 return retval;
5396}
5397
96f874e2 5398long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 5399{
5a16f3d3 5400 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
5401 struct task_struct *p;
5402 int retval;
1da177e4 5403
23f5d142 5404 rcu_read_lock();
1da177e4
LT
5405
5406 p = find_process_by_pid(pid);
5407 if (!p) {
23f5d142 5408 rcu_read_unlock();
1da177e4
LT
5409 return -ESRCH;
5410 }
5411
23f5d142 5412 /* Prevent p going away */
1da177e4 5413 get_task_struct(p);
23f5d142 5414 rcu_read_unlock();
1da177e4 5415
14a40ffc
TH
5416 if (p->flags & PF_NO_SETAFFINITY) {
5417 retval = -EINVAL;
5418 goto out_put_task;
5419 }
5a16f3d3
RR
5420 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5421 retval = -ENOMEM;
5422 goto out_put_task;
5423 }
5424 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5425 retval = -ENOMEM;
5426 goto out_free_cpus_allowed;
5427 }
1da177e4 5428 retval = -EPERM;
4c44aaaf
EB
5429 if (!check_same_owner(p)) {
5430 rcu_read_lock();
5431 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
5432 rcu_read_unlock();
16303ab2 5433 goto out_free_new_mask;
4c44aaaf
EB
5434 }
5435 rcu_read_unlock();
5436 }
1da177e4 5437
b0ae1981 5438 retval = security_task_setscheduler(p);
e7834f8f 5439 if (retval)
16303ab2 5440 goto out_free_new_mask;
e7834f8f 5441
e4099a5e
PZ
5442
5443 cpuset_cpus_allowed(p, cpus_allowed);
5444 cpumask_and(new_mask, in_mask, cpus_allowed);
5445
332ac17e
DF
5446 /*
5447 * Since bandwidth control happens on root_domain basis,
5448 * if admission test is enabled, we only admit -deadline
5449 * tasks allowed to run on all the CPUs in the task's
5450 * root_domain.
5451 */
5452#ifdef CONFIG_SMP
f1e3a093
KT
5453 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
5454 rcu_read_lock();
5455 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 5456 retval = -EBUSY;
f1e3a093 5457 rcu_read_unlock();
16303ab2 5458 goto out_free_new_mask;
332ac17e 5459 }
f1e3a093 5460 rcu_read_unlock();
332ac17e
DF
5461 }
5462#endif
49246274 5463again:
25834c73 5464 retval = __set_cpus_allowed_ptr(p, new_mask, true);
1da177e4 5465
8707d8b8 5466 if (!retval) {
5a16f3d3
RR
5467 cpuset_cpus_allowed(p, cpus_allowed);
5468 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
5469 /*
5470 * We must have raced with a concurrent cpuset
5471 * update. Just reset the cpus_allowed to the
5472 * cpuset's cpus_allowed
5473 */
5a16f3d3 5474 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
5475 goto again;
5476 }
5477 }
16303ab2 5478out_free_new_mask:
5a16f3d3
RR
5479 free_cpumask_var(new_mask);
5480out_free_cpus_allowed:
5481 free_cpumask_var(cpus_allowed);
5482out_put_task:
1da177e4 5483 put_task_struct(p);
1da177e4
LT
5484 return retval;
5485}
5486
5487static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 5488 struct cpumask *new_mask)
1da177e4 5489{
96f874e2
RR
5490 if (len < cpumask_size())
5491 cpumask_clear(new_mask);
5492 else if (len > cpumask_size())
5493 len = cpumask_size();
5494
1da177e4
LT
5495 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5496}
5497
5498/**
d1ccc66d 5499 * sys_sched_setaffinity - set the CPU affinity of a process
1da177e4
LT
5500 * @pid: pid of the process
5501 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
d1ccc66d 5502 * @user_mask_ptr: user-space pointer to the new CPU mask
e69f6186
YB
5503 *
5504 * Return: 0 on success. An error code otherwise.
1da177e4 5505 */
5add95d4
HC
5506SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5507 unsigned long __user *, user_mask_ptr)
1da177e4 5508{
5a16f3d3 5509 cpumask_var_t new_mask;
1da177e4
LT
5510 int retval;
5511
5a16f3d3
RR
5512 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5513 return -ENOMEM;
1da177e4 5514
5a16f3d3
RR
5515 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5516 if (retval == 0)
5517 retval = sched_setaffinity(pid, new_mask);
5518 free_cpumask_var(new_mask);
5519 return retval;
1da177e4
LT
5520}
5521
96f874e2 5522long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 5523{
36c8b586 5524 struct task_struct *p;
31605683 5525 unsigned long flags;
1da177e4 5526 int retval;
1da177e4 5527
23f5d142 5528 rcu_read_lock();
1da177e4
LT
5529
5530 retval = -ESRCH;
5531 p = find_process_by_pid(pid);
5532 if (!p)
5533 goto out_unlock;
5534
e7834f8f
DQ
5535 retval = security_task_getscheduler(p);
5536 if (retval)
5537 goto out_unlock;
5538
013fdb80 5539 raw_spin_lock_irqsave(&p->pi_lock, flags);
3bd37062 5540 cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
013fdb80 5541 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5542
5543out_unlock:
23f5d142 5544 rcu_read_unlock();
1da177e4 5545
9531b62f 5546 return retval;
1da177e4
LT
5547}
5548
5549/**
d1ccc66d 5550 * sys_sched_getaffinity - get the CPU affinity of a process
1da177e4
LT
5551 * @pid: pid of the process
5552 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
d1ccc66d 5553 * @user_mask_ptr: user-space pointer to hold the current CPU mask
e69f6186 5554 *
599b4840
ZW
5555 * Return: size of CPU mask copied to user_mask_ptr on success. An
5556 * error code otherwise.
1da177e4 5557 */
5add95d4
HC
5558SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5559 unsigned long __user *, user_mask_ptr)
1da177e4
LT
5560{
5561 int ret;
f17c8607 5562 cpumask_var_t mask;
1da177e4 5563
84fba5ec 5564 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
5565 return -EINVAL;
5566 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
5567 return -EINVAL;
5568
f17c8607
RR
5569 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5570 return -ENOMEM;
1da177e4 5571
f17c8607
RR
5572 ret = sched_getaffinity(pid, mask);
5573 if (ret == 0) {
4de373a1 5574 unsigned int retlen = min(len, cpumask_size());
cd3d8031
KM
5575
5576 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
5577 ret = -EFAULT;
5578 else
cd3d8031 5579 ret = retlen;
f17c8607
RR
5580 }
5581 free_cpumask_var(mask);
1da177e4 5582
f17c8607 5583 return ret;
1da177e4
LT
5584}
5585
5586/**
5587 * sys_sched_yield - yield the current processor to other threads.
5588 *
dd41f596
IM
5589 * This function yields the current CPU to other tasks. If there are no
5590 * other threads running on this CPU then this function will return.
e69f6186
YB
5591 *
5592 * Return: 0.
1da177e4 5593 */
7d4dd4f1 5594static void do_sched_yield(void)
1da177e4 5595{
8a8c69c3
PZ
5596 struct rq_flags rf;
5597 struct rq *rq;
5598
246b3b33 5599 rq = this_rq_lock_irq(&rf);
1da177e4 5600
ae92882e 5601 schedstat_inc(rq->yld_count);
4530d7ab 5602 current->sched_class->yield_task(rq);
1da177e4
LT
5603
5604 /*
5605 * Since we are going to call schedule() anyway, there's
5606 * no need to preempt or enable interrupts:
5607 */
8a8c69c3
PZ
5608 preempt_disable();
5609 rq_unlock(rq, &rf);
ba74c144 5610 sched_preempt_enable_no_resched();
1da177e4
LT
5611
5612 schedule();
7d4dd4f1 5613}
1da177e4 5614
7d4dd4f1
DB
5615SYSCALL_DEFINE0(sched_yield)
5616{
5617 do_sched_yield();
1da177e4
LT
5618 return 0;
5619}
5620
c1a280b6 5621#ifndef CONFIG_PREEMPTION
02b67cc3 5622int __sched _cond_resched(void)
1da177e4 5623{
fe32d3cd 5624 if (should_resched(0)) {
a18b5d01 5625 preempt_schedule_common();
1da177e4
LT
5626 return 1;
5627 }
f79c3ad6 5628 rcu_all_qs();
1da177e4
LT
5629 return 0;
5630}
02b67cc3 5631EXPORT_SYMBOL(_cond_resched);
35a773a0 5632#endif
1da177e4
LT
5633
5634/*
613afbf8 5635 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
5636 * call schedule, and on return reacquire the lock.
5637 *
c1a280b6 5638 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
1da177e4
LT
5639 * operations here to prevent schedule() from being called twice (once via
5640 * spin_unlock(), once by hand).
5641 */
613afbf8 5642int __cond_resched_lock(spinlock_t *lock)
1da177e4 5643{
fe32d3cd 5644 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6df3cecb
JK
5645 int ret = 0;
5646
f607c668
PZ
5647 lockdep_assert_held(lock);
5648
4a81e832 5649 if (spin_needbreak(lock) || resched) {
1da177e4 5650 spin_unlock(lock);
d86ee480 5651 if (resched)
a18b5d01 5652 preempt_schedule_common();
95c354fe
NP
5653 else
5654 cpu_relax();
6df3cecb 5655 ret = 1;
1da177e4 5656 spin_lock(lock);
1da177e4 5657 }
6df3cecb 5658 return ret;
1da177e4 5659}
613afbf8 5660EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 5661
1da177e4
LT
5662/**
5663 * yield - yield the current processor to other threads.
5664 *
8e3fabfd
PZ
5665 * Do not ever use this function, there's a 99% chance you're doing it wrong.
5666 *
5667 * The scheduler is at all times free to pick the calling task as the most
5668 * eligible task to run, if removing the yield() call from your code breaks
5669 * it, its already broken.
5670 *
5671 * Typical broken usage is:
5672 *
5673 * while (!event)
d1ccc66d 5674 * yield();
8e3fabfd
PZ
5675 *
5676 * where one assumes that yield() will let 'the other' process run that will
5677 * make event true. If the current task is a SCHED_FIFO task that will never
5678 * happen. Never use yield() as a progress guarantee!!
5679 *
5680 * If you want to use yield() to wait for something, use wait_event().
5681 * If you want to use yield() to be 'nice' for others, use cond_resched().
5682 * If you still want to use yield(), do not!
1da177e4
LT
5683 */
5684void __sched yield(void)
5685{
5686 set_current_state(TASK_RUNNING);
7d4dd4f1 5687 do_sched_yield();
1da177e4 5688}
1da177e4
LT
5689EXPORT_SYMBOL(yield);
5690
d95f4122
MG
5691/**
5692 * yield_to - yield the current processor to another thread in
5693 * your thread group, or accelerate that thread toward the
5694 * processor it's on.
16addf95
RD
5695 * @p: target task
5696 * @preempt: whether task preemption is allowed or not
d95f4122
MG
5697 *
5698 * It's the caller's job to ensure that the target task struct
5699 * can't go away on us before we can do any checks.
5700 *
e69f6186 5701 * Return:
7b270f60
PZ
5702 * true (>0) if we indeed boosted the target task.
5703 * false (0) if we failed to boost the target.
5704 * -ESRCH if there's no task to yield to.
d95f4122 5705 */
fa93384f 5706int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
5707{
5708 struct task_struct *curr = current;
5709 struct rq *rq, *p_rq;
5710 unsigned long flags;
c3c18640 5711 int yielded = 0;
d95f4122
MG
5712
5713 local_irq_save(flags);
5714 rq = this_rq();
5715
5716again:
5717 p_rq = task_rq(p);
7b270f60
PZ
5718 /*
5719 * If we're the only runnable task on the rq and target rq also
5720 * has only one task, there's absolutely no point in yielding.
5721 */
5722 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5723 yielded = -ESRCH;
5724 goto out_irq;
5725 }
5726
d95f4122 5727 double_rq_lock(rq, p_rq);
39e24d8f 5728 if (task_rq(p) != p_rq) {
d95f4122
MG
5729 double_rq_unlock(rq, p_rq);
5730 goto again;
5731 }
5732
5733 if (!curr->sched_class->yield_to_task)
7b270f60 5734 goto out_unlock;
d95f4122
MG
5735
5736 if (curr->sched_class != p->sched_class)
7b270f60 5737 goto out_unlock;
d95f4122
MG
5738
5739 if (task_running(p_rq, p) || p->state)
7b270f60 5740 goto out_unlock;
d95f4122
MG
5741
5742 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 5743 if (yielded) {
ae92882e 5744 schedstat_inc(rq->yld_count);
6d1cafd8
VP
5745 /*
5746 * Make p's CPU reschedule; pick_next_entity takes care of
5747 * fairness.
5748 */
5749 if (preempt && rq != p_rq)
8875125e 5750 resched_curr(p_rq);
6d1cafd8 5751 }
d95f4122 5752
7b270f60 5753out_unlock:
d95f4122 5754 double_rq_unlock(rq, p_rq);
7b270f60 5755out_irq:
d95f4122
MG
5756 local_irq_restore(flags);
5757
7b270f60 5758 if (yielded > 0)
d95f4122
MG
5759 schedule();
5760
5761 return yielded;
5762}
5763EXPORT_SYMBOL_GPL(yield_to);
5764
10ab5643
TH
5765int io_schedule_prepare(void)
5766{
5767 int old_iowait = current->in_iowait;
5768
5769 current->in_iowait = 1;
5770 blk_schedule_flush_plug(current);
5771
5772 return old_iowait;
5773}
5774
5775void io_schedule_finish(int token)
5776{
5777 current->in_iowait = token;
5778}
5779
1da177e4 5780/*
41a2d6cf 5781 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5782 * that process accounting knows that this is a task in IO wait state.
1da177e4 5783 */
1da177e4
LT
5784long __sched io_schedule_timeout(long timeout)
5785{
10ab5643 5786 int token;
1da177e4
LT
5787 long ret;
5788
10ab5643 5789 token = io_schedule_prepare();
1da177e4 5790 ret = schedule_timeout(timeout);
10ab5643 5791 io_schedule_finish(token);
9cff8ade 5792
1da177e4
LT
5793 return ret;
5794}
9cff8ade 5795EXPORT_SYMBOL(io_schedule_timeout);
1da177e4 5796
e3b929b0 5797void __sched io_schedule(void)
10ab5643
TH
5798{
5799 int token;
5800
5801 token = io_schedule_prepare();
5802 schedule();
5803 io_schedule_finish(token);
5804}
5805EXPORT_SYMBOL(io_schedule);
5806
1da177e4
LT
5807/**
5808 * sys_sched_get_priority_max - return maximum RT priority.
5809 * @policy: scheduling class.
5810 *
e69f6186
YB
5811 * Return: On success, this syscall returns the maximum
5812 * rt_priority that can be used by a given scheduling class.
5813 * On failure, a negative error code is returned.
1da177e4 5814 */
5add95d4 5815SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5816{
5817 int ret = -EINVAL;
5818
5819 switch (policy) {
5820 case SCHED_FIFO:
5821 case SCHED_RR:
5822 ret = MAX_USER_RT_PRIO-1;
5823 break;
aab03e05 5824 case SCHED_DEADLINE:
1da177e4 5825 case SCHED_NORMAL:
b0a9499c 5826 case SCHED_BATCH:
dd41f596 5827 case SCHED_IDLE:
1da177e4
LT
5828 ret = 0;
5829 break;
5830 }
5831 return ret;
5832}
5833
5834/**
5835 * sys_sched_get_priority_min - return minimum RT priority.
5836 * @policy: scheduling class.
5837 *
e69f6186
YB
5838 * Return: On success, this syscall returns the minimum
5839 * rt_priority that can be used by a given scheduling class.
5840 * On failure, a negative error code is returned.
1da177e4 5841 */
5add95d4 5842SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5843{
5844 int ret = -EINVAL;
5845
5846 switch (policy) {
5847 case SCHED_FIFO:
5848 case SCHED_RR:
5849 ret = 1;
5850 break;
aab03e05 5851 case SCHED_DEADLINE:
1da177e4 5852 case SCHED_NORMAL:
b0a9499c 5853 case SCHED_BATCH:
dd41f596 5854 case SCHED_IDLE:
1da177e4
LT
5855 ret = 0;
5856 }
5857 return ret;
5858}
5859
abca5fc5 5860static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
1da177e4 5861{
36c8b586 5862 struct task_struct *p;
a4ec24b4 5863 unsigned int time_slice;
eb580751 5864 struct rq_flags rf;
dba091b9 5865 struct rq *rq;
3a5c359a 5866 int retval;
1da177e4
LT
5867
5868 if (pid < 0)
3a5c359a 5869 return -EINVAL;
1da177e4
LT
5870
5871 retval = -ESRCH;
1a551ae7 5872 rcu_read_lock();
1da177e4
LT
5873 p = find_process_by_pid(pid);
5874 if (!p)
5875 goto out_unlock;
5876
5877 retval = security_task_getscheduler(p);
5878 if (retval)
5879 goto out_unlock;
5880
eb580751 5881 rq = task_rq_lock(p, &rf);
a57beec5
PZ
5882 time_slice = 0;
5883 if (p->sched_class->get_rr_interval)
5884 time_slice = p->sched_class->get_rr_interval(rq, p);
eb580751 5885 task_rq_unlock(rq, p, &rf);
a4ec24b4 5886
1a551ae7 5887 rcu_read_unlock();
abca5fc5
AV
5888 jiffies_to_timespec64(time_slice, t);
5889 return 0;
3a5c359a 5890
1da177e4 5891out_unlock:
1a551ae7 5892 rcu_read_unlock();
1da177e4
LT
5893 return retval;
5894}
5895
2064a5ab
RD
5896/**
5897 * sys_sched_rr_get_interval - return the default timeslice of a process.
5898 * @pid: pid of the process.
5899 * @interval: userspace pointer to the timeslice value.
5900 *
5901 * this syscall writes the default timeslice value of a given process
5902 * into the user-space timespec buffer. A value of '0' means infinity.
5903 *
5904 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5905 * an error code.
5906 */
abca5fc5 5907SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
474b9c77 5908 struct __kernel_timespec __user *, interval)
abca5fc5
AV
5909{
5910 struct timespec64 t;
5911 int retval = sched_rr_get_interval(pid, &t);
5912
5913 if (retval == 0)
5914 retval = put_timespec64(&t, interval);
5915
5916 return retval;
5917}
5918
474b9c77 5919#ifdef CONFIG_COMPAT_32BIT_TIME
8dabe724
AB
5920SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
5921 struct old_timespec32 __user *, interval)
abca5fc5
AV
5922{
5923 struct timespec64 t;
5924 int retval = sched_rr_get_interval(pid, &t);
5925
5926 if (retval == 0)
9afc5eee 5927 retval = put_old_timespec32(&t, interval);
abca5fc5
AV
5928 return retval;
5929}
5930#endif
5931
82a1fcb9 5932void sched_show_task(struct task_struct *p)
1da177e4 5933{
1da177e4 5934 unsigned long free = 0;
4e79752c 5935 int ppid;
c930b2c0 5936
38200502
TH
5937 if (!try_get_task_stack(p))
5938 return;
20435d84
XX
5939
5940 printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));
5941
5942 if (p->state == TASK_RUNNING)
3df0fc5b 5943 printk(KERN_CONT " running task ");
1da177e4 5944#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5945 free = stack_not_used(p);
1da177e4 5946#endif
a90e984c 5947 ppid = 0;
4e79752c 5948 rcu_read_lock();
a90e984c
ON
5949 if (pid_alive(p))
5950 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 5951 rcu_read_unlock();
3df0fc5b 5952 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 5953 task_pid_nr(p), ppid,
aa47b7e0 5954 (unsigned long)task_thread_info(p)->flags);
1da177e4 5955
3d1cb205 5956 print_worker_info(KERN_INFO, p);
5fb5e6de 5957 show_stack(p, NULL);
38200502 5958 put_task_stack(p);
1da177e4 5959}
0032f4e8 5960EXPORT_SYMBOL_GPL(sched_show_task);
1da177e4 5961
5d68cc95
PZ
5962static inline bool
5963state_filter_match(unsigned long state_filter, struct task_struct *p)
5964{
5965 /* no filter, everything matches */
5966 if (!state_filter)
5967 return true;
5968
5969 /* filter, but doesn't match */
5970 if (!(p->state & state_filter))
5971 return false;
5972
5973 /*
5974 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
5975 * TASK_KILLABLE).
5976 */
5977 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
5978 return false;
5979
5980 return true;
5981}
5982
5983
e59e2ae2 5984void show_state_filter(unsigned long state_filter)
1da177e4 5985{
36c8b586 5986 struct task_struct *g, *p;
1da177e4 5987
4bd77321 5988#if BITS_PER_LONG == 32
3df0fc5b
PZ
5989 printk(KERN_INFO
5990 " task PC stack pid father\n");
1da177e4 5991#else
3df0fc5b
PZ
5992 printk(KERN_INFO
5993 " task PC stack pid father\n");
1da177e4 5994#endif
510f5acc 5995 rcu_read_lock();
5d07f420 5996 for_each_process_thread(g, p) {
1da177e4
LT
5997 /*
5998 * reset the NMI-timeout, listing all files on a slow
25985edc 5999 * console might take a lot of time:
57675cb9
AR
6000 * Also, reset softlockup watchdogs on all CPUs, because
6001 * another CPU might be blocked waiting for us to process
6002 * an IPI.
1da177e4
LT
6003 */
6004 touch_nmi_watchdog();
57675cb9 6005 touch_all_softlockup_watchdogs();
5d68cc95 6006 if (state_filter_match(state_filter, p))
82a1fcb9 6007 sched_show_task(p);
5d07f420 6008 }
1da177e4 6009
dd41f596 6010#ifdef CONFIG_SCHED_DEBUG
fb90a6e9
RV
6011 if (!state_filter)
6012 sysrq_sched_debug_show();
dd41f596 6013#endif
510f5acc 6014 rcu_read_unlock();
e59e2ae2
IM
6015 /*
6016 * Only show locks if all tasks are dumped:
6017 */
93335a21 6018 if (!state_filter)
e59e2ae2 6019 debug_show_all_locks();
1da177e4
LT
6020}
6021
f340c0d1
IM
6022/**
6023 * init_idle - set up an idle thread for a given CPU
6024 * @idle: task in question
d1ccc66d 6025 * @cpu: CPU the idle task belongs to
f340c0d1
IM
6026 *
6027 * NOTE: this function does not set the idle thread's NEED_RESCHED
6028 * flag, to make booting more robust.
6029 */
0db0628d 6030void init_idle(struct task_struct *idle, int cpu)
1da177e4 6031{
70b97a7f 6032 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
6033 unsigned long flags;
6034
ff51ff84
PZ
6035 __sched_fork(0, idle);
6036
25834c73
PZ
6037 raw_spin_lock_irqsave(&idle->pi_lock, flags);
6038 raw_spin_lock(&rq->lock);
5cbd54ef 6039
06b83b5f 6040 idle->state = TASK_RUNNING;
dd41f596 6041 idle->se.exec_start = sched_clock();
c1de45ca 6042 idle->flags |= PF_IDLE;
dd41f596 6043
d08b9f0c 6044 scs_task_reset(idle);
e1b77c92
MR
6045 kasan_unpoison_task_stack(idle);
6046
de9b8f5d
PZ
6047#ifdef CONFIG_SMP
6048 /*
6049 * Its possible that init_idle() gets called multiple times on a task,
6050 * in that case do_set_cpus_allowed() will not do the right thing.
6051 *
6052 * And since this is boot we can forgo the serialization.
6053 */
6054 set_cpus_allowed_common(idle, cpumask_of(cpu));
6055#endif
6506cf6c
PZ
6056 /*
6057 * We're having a chicken and egg problem, even though we are
d1ccc66d 6058 * holding rq->lock, the CPU isn't yet set to this CPU so the
6506cf6c
PZ
6059 * lockdep check in task_group() will fail.
6060 *
6061 * Similar case to sched_fork(). / Alternatively we could
6062 * use task_rq_lock() here and obtain the other rq->lock.
6063 *
6064 * Silence PROVE_RCU
6065 */
6066 rcu_read_lock();
dd41f596 6067 __set_task_cpu(idle, cpu);
6506cf6c 6068 rcu_read_unlock();
1da177e4 6069
5311a98f
EB
6070 rq->idle = idle;
6071 rcu_assign_pointer(rq->curr, idle);
da0c1e65 6072 idle->on_rq = TASK_ON_RQ_QUEUED;
de9b8f5d 6073#ifdef CONFIG_SMP
3ca7a440 6074 idle->on_cpu = 1;
4866cde0 6075#endif
25834c73
PZ
6076 raw_spin_unlock(&rq->lock);
6077 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
1da177e4
LT
6078
6079 /* Set the preempt count _outside_ the spinlocks! */
01028747 6080 init_idle_preempt_count(idle, cpu);
55cd5340 6081
dd41f596
IM
6082 /*
6083 * The idle tasks have their own, simple scheduling class:
6084 */
6085 idle->sched_class = &idle_sched_class;
868baf07 6086 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 6087 vtime_init_idle(idle, cpu);
de9b8f5d 6088#ifdef CONFIG_SMP
f1c6f1a7
CE
6089 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
6090#endif
19978ca6
IM
6091}
6092
e1d4eeec
NP
6093#ifdef CONFIG_SMP
6094
f82f8042
JL
6095int cpuset_cpumask_can_shrink(const struct cpumask *cur,
6096 const struct cpumask *trial)
6097{
06a76fe0 6098 int ret = 1;
f82f8042 6099
bb2bc55a
MG
6100 if (!cpumask_weight(cur))
6101 return ret;
6102
06a76fe0 6103 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
f82f8042
JL
6104
6105 return ret;
6106}
6107
7f51412a
JL
6108int task_can_attach(struct task_struct *p,
6109 const struct cpumask *cs_cpus_allowed)
6110{
6111 int ret = 0;
6112
6113 /*
6114 * Kthreads which disallow setaffinity shouldn't be moved
d1ccc66d 6115 * to a new cpuset; we don't want to change their CPU
7f51412a
JL
6116 * affinity and isolating such threads by their set of
6117 * allowed nodes is unnecessary. Thus, cpusets are not
6118 * applicable for such threads. This prevents checking for
6119 * success of set_cpus_allowed_ptr() on all attached tasks
3bd37062 6120 * before cpus_mask may be changed.
7f51412a
JL
6121 */
6122 if (p->flags & PF_NO_SETAFFINITY) {
6123 ret = -EINVAL;
6124 goto out;
6125 }
6126
7f51412a 6127 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
06a76fe0
NP
6128 cs_cpus_allowed))
6129 ret = dl_task_can_attach(p, cs_cpus_allowed);
7f51412a 6130
7f51412a
JL
6131out:
6132 return ret;
6133}
6134
f2cb1360 6135bool sched_smp_initialized __read_mostly;
e26fbffd 6136
e6628d5b
MG
6137#ifdef CONFIG_NUMA_BALANCING
6138/* Migrate current task p to target_cpu */
6139int migrate_task_to(struct task_struct *p, int target_cpu)
6140{
6141 struct migration_arg arg = { p, target_cpu };
6142 int curr_cpu = task_cpu(p);
6143
6144 if (curr_cpu == target_cpu)
6145 return 0;
6146
3bd37062 6147 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
e6628d5b
MG
6148 return -EINVAL;
6149
6150 /* TODO: This is not properly updating schedstats */
6151
286549dc 6152 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
6153 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
6154}
0ec8aa00
PZ
6155
6156/*
6157 * Requeue a task on a given node and accurately track the number of NUMA
6158 * tasks on the runqueues
6159 */
6160void sched_setnuma(struct task_struct *p, int nid)
6161{
da0c1e65 6162 bool queued, running;
eb580751
PZ
6163 struct rq_flags rf;
6164 struct rq *rq;
0ec8aa00 6165
eb580751 6166 rq = task_rq_lock(p, &rf);
da0c1e65 6167 queued = task_on_rq_queued(p);
0ec8aa00
PZ
6168 running = task_current(rq, p);
6169
da0c1e65 6170 if (queued)
1de64443 6171 dequeue_task(rq, p, DEQUEUE_SAVE);
0ec8aa00 6172 if (running)
f3cd1c4e 6173 put_prev_task(rq, p);
0ec8aa00
PZ
6174
6175 p->numa_preferred_nid = nid;
0ec8aa00 6176
da0c1e65 6177 if (queued)
7134b3e9 6178 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
a399d233 6179 if (running)
03b7fad1 6180 set_next_task(rq, p);
eb580751 6181 task_rq_unlock(rq, p, &rf);
0ec8aa00 6182}
5cc389bc 6183#endif /* CONFIG_NUMA_BALANCING */
f7b4cddc 6184
1da177e4 6185#ifdef CONFIG_HOTPLUG_CPU
054b9108 6186/*
d1ccc66d 6187 * Ensure that the idle task is using init_mm right before its CPU goes
48c5ccae 6188 * offline.
054b9108 6189 */
48c5ccae 6190void idle_task_exit(void)
1da177e4 6191{
48c5ccae 6192 struct mm_struct *mm = current->active_mm;
e76bd8d9 6193
48c5ccae 6194 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 6195
a53efe5f 6196 if (mm != &init_mm) {
252d2a41 6197 switch_mm(mm, &init_mm, current);
3eda69c9 6198 current->active_mm = &init_mm;
a53efe5f
MS
6199 finish_arch_post_lock_switch();
6200 }
48c5ccae 6201 mmdrop(mm);
1da177e4
LT
6202}
6203
6204/*
5d180232
PZ
6205 * Since this CPU is going 'away' for a while, fold any nr_active delta
6206 * we might have. Assumes we're called after migrate_tasks() so that the
d60585c5
TG
6207 * nr_active count is stable. We need to take the teardown thread which
6208 * is calling this into account, so we hand in adjust = 1 to the load
6209 * calculation.
5d180232
PZ
6210 *
6211 * Also see the comment "Global load-average calculations".
1da177e4 6212 */
5d180232 6213static void calc_load_migrate(struct rq *rq)
1da177e4 6214{
d60585c5 6215 long delta = calc_load_fold_active(rq, 1);
5d180232
PZ
6216 if (delta)
6217 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
6218}
6219
10e7071b 6220static struct task_struct *__pick_migrate_task(struct rq *rq)
3f1d2a31 6221{
10e7071b
PZ
6222 const struct sched_class *class;
6223 struct task_struct *next;
3f1d2a31 6224
10e7071b 6225 for_each_class(class) {
98c2f700 6226 next = class->pick_next_task(rq);
10e7071b 6227 if (next) {
6e2df058 6228 next->sched_class->put_prev_task(rq, next);
10e7071b
PZ
6229 return next;
6230 }
6231 }
3f1d2a31 6232
10e7071b
PZ
6233 /* The idle class should always have a runnable task */
6234 BUG();
6235}
3f1d2a31 6236
48f24c4d 6237/*
48c5ccae
PZ
6238 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6239 * try_to_wake_up()->select_task_rq().
6240 *
6241 * Called with rq->lock held even though we'er in stop_machine() and
6242 * there's no concurrency possible, we hold the required locks anyway
6243 * because of lock validation efforts.
1da177e4 6244 */
8a8c69c3 6245static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
1da177e4 6246{
5e16bbc2 6247 struct rq *rq = dead_rq;
48c5ccae 6248 struct task_struct *next, *stop = rq->stop;
8a8c69c3 6249 struct rq_flags orf = *rf;
48c5ccae 6250 int dest_cpu;
1da177e4
LT
6251
6252 /*
48c5ccae
PZ
6253 * Fudge the rq selection such that the below task selection loop
6254 * doesn't get stuck on the currently eligible stop task.
6255 *
6256 * We're currently inside stop_machine() and the rq is either stuck
6257 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6258 * either way we should never end up calling schedule() until we're
6259 * done here.
1da177e4 6260 */
48c5ccae 6261 rq->stop = NULL;
48f24c4d 6262
77bd3970
FW
6263 /*
6264 * put_prev_task() and pick_next_task() sched
6265 * class method both need to have an up-to-date
6266 * value of rq->clock[_task]
6267 */
6268 update_rq_clock(rq);
6269
5e16bbc2 6270 for (;;) {
48c5ccae
PZ
6271 /*
6272 * There's this thread running, bail when that's the only
d1ccc66d 6273 * remaining thread:
48c5ccae
PZ
6274 */
6275 if (rq->nr_running == 1)
dd41f596 6276 break;
48c5ccae 6277
10e7071b 6278 next = __pick_migrate_task(rq);
e692ab53 6279
5473e0cc 6280 /*
3bd37062 6281 * Rules for changing task_struct::cpus_mask are holding
5473e0cc
WL
6282 * both pi_lock and rq->lock, such that holding either
6283 * stabilizes the mask.
6284 *
6285 * Drop rq->lock is not quite as disastrous as it usually is
6286 * because !cpu_active at this point, which means load-balance
6287 * will not interfere. Also, stop-machine.
6288 */
8a8c69c3 6289 rq_unlock(rq, rf);
5473e0cc 6290 raw_spin_lock(&next->pi_lock);
8a8c69c3 6291 rq_relock(rq, rf);
5473e0cc
WL
6292
6293 /*
6294 * Since we're inside stop-machine, _nothing_ should have
6295 * changed the task, WARN if weird stuff happened, because in
6296 * that case the above rq->lock drop is a fail too.
6297 */
6298 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
6299 raw_spin_unlock(&next->pi_lock);
6300 continue;
6301 }
6302
48c5ccae 6303 /* Find suitable destination for @next, with force if needed. */
5e16bbc2 6304 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
8a8c69c3 6305 rq = __migrate_task(rq, rf, next, dest_cpu);
5e16bbc2 6306 if (rq != dead_rq) {
8a8c69c3 6307 rq_unlock(rq, rf);
5e16bbc2 6308 rq = dead_rq;
8a8c69c3
PZ
6309 *rf = orf;
6310 rq_relock(rq, rf);
5e16bbc2 6311 }
5473e0cc 6312 raw_spin_unlock(&next->pi_lock);
1da177e4 6313 }
dce48a84 6314
48c5ccae 6315 rq->stop = stop;
dce48a84 6316}
1da177e4
LT
6317#endif /* CONFIG_HOTPLUG_CPU */
6318
f2cb1360 6319void set_rq_online(struct rq *rq)
1f11eb6a
GH
6320{
6321 if (!rq->online) {
6322 const struct sched_class *class;
6323
c6c4927b 6324 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6325 rq->online = 1;
6326
6327 for_each_class(class) {
6328 if (class->rq_online)
6329 class->rq_online(rq);
6330 }
6331 }
6332}
6333
f2cb1360 6334void set_rq_offline(struct rq *rq)
1f11eb6a
GH
6335{
6336 if (rq->online) {
6337 const struct sched_class *class;
6338
6339 for_each_class(class) {
6340 if (class->rq_offline)
6341 class->rq_offline(rq);
6342 }
6343
c6c4927b 6344 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6345 rq->online = 0;
6346 }
6347}
6348
d1ccc66d
IM
6349/*
6350 * used to mark begin/end of suspend/resume:
6351 */
6352static int num_cpus_frozen;
d35be8ba 6353
1da177e4 6354/*
3a101d05
TH
6355 * Update cpusets according to cpu_active mask. If cpusets are
6356 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6357 * around partition_sched_domains().
d35be8ba
SB
6358 *
6359 * If we come here as part of a suspend/resume, don't touch cpusets because we
6360 * want to restore it back to its original state upon resume anyway.
1da177e4 6361 */
40190a78 6362static void cpuset_cpu_active(void)
e761b772 6363{
40190a78 6364 if (cpuhp_tasks_frozen) {
d35be8ba
SB
6365 /*
6366 * num_cpus_frozen tracks how many CPUs are involved in suspend
6367 * resume sequence. As long as this is not the last online
6368 * operation in the resume sequence, just build a single sched
6369 * domain, ignoring cpusets.
6370 */
50e76632
PZ
6371 partition_sched_domains(1, NULL, NULL);
6372 if (--num_cpus_frozen)
135fb3e1 6373 return;
d35be8ba
SB
6374 /*
6375 * This is the last CPU online operation. So fall through and
6376 * restore the original sched domains by considering the
6377 * cpuset configurations.
6378 */
50e76632 6379 cpuset_force_rebuild();
3a101d05 6380 }
30e03acd 6381 cpuset_update_active_cpus();
3a101d05 6382}
e761b772 6383
40190a78 6384static int cpuset_cpu_inactive(unsigned int cpu)
3a101d05 6385{
40190a78 6386 if (!cpuhp_tasks_frozen) {
06a76fe0 6387 if (dl_cpu_busy(cpu))
135fb3e1 6388 return -EBUSY;
30e03acd 6389 cpuset_update_active_cpus();
135fb3e1 6390 } else {
d35be8ba
SB
6391 num_cpus_frozen++;
6392 partition_sched_domains(1, NULL, NULL);
e761b772 6393 }
135fb3e1 6394 return 0;
e761b772 6395}
e761b772 6396
40190a78 6397int sched_cpu_activate(unsigned int cpu)
135fb3e1 6398{
7d976699 6399 struct rq *rq = cpu_rq(cpu);
8a8c69c3 6400 struct rq_flags rf;
7d976699 6401
ba2591a5
PZ
6402#ifdef CONFIG_SCHED_SMT
6403 /*
c5511d03 6404 * When going up, increment the number of cores with SMT present.
ba2591a5 6405 */
c5511d03
PZI
6406 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6407 static_branch_inc_cpuslocked(&sched_smt_present);
ba2591a5 6408#endif
40190a78 6409 set_cpu_active(cpu, true);
135fb3e1 6410
40190a78 6411 if (sched_smp_initialized) {
135fb3e1 6412 sched_domains_numa_masks_set(cpu);
40190a78 6413 cpuset_cpu_active();
e761b772 6414 }
7d976699
TG
6415
6416 /*
6417 * Put the rq online, if not already. This happens:
6418 *
6419 * 1) In the early boot process, because we build the real domains
d1ccc66d 6420 * after all CPUs have been brought up.
7d976699
TG
6421 *
6422 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
6423 * domains.
6424 */
8a8c69c3 6425 rq_lock_irqsave(rq, &rf);
7d976699
TG
6426 if (rq->rd) {
6427 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6428 set_rq_online(rq);
6429 }
8a8c69c3 6430 rq_unlock_irqrestore(rq, &rf);
7d976699 6431
40190a78 6432 return 0;
135fb3e1
TG
6433}
6434
40190a78 6435int sched_cpu_deactivate(unsigned int cpu)
135fb3e1 6436{
135fb3e1
TG
6437 int ret;
6438
40190a78 6439 set_cpu_active(cpu, false);
b2454caa
PZ
6440 /*
6441 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
6442 * users of this state to go away such that all new such users will
6443 * observe it.
6444 *
b2454caa
PZ
6445 * Do sync before park smpboot threads to take care the rcu boost case.
6446 */
309ba859 6447 synchronize_rcu();
40190a78 6448
c5511d03
PZI
6449#ifdef CONFIG_SCHED_SMT
6450 /*
6451 * When going down, decrement the number of cores with SMT present.
6452 */
6453 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6454 static_branch_dec_cpuslocked(&sched_smt_present);
6455#endif
6456
40190a78
TG
6457 if (!sched_smp_initialized)
6458 return 0;
6459
6460 ret = cpuset_cpu_inactive(cpu);
6461 if (ret) {
6462 set_cpu_active(cpu, true);
6463 return ret;
135fb3e1 6464 }
40190a78
TG
6465 sched_domains_numa_masks_clear(cpu);
6466 return 0;
135fb3e1
TG
6467}
6468
94baf7a5
TG
6469static void sched_rq_cpu_starting(unsigned int cpu)
6470{
6471 struct rq *rq = cpu_rq(cpu);
6472
6473 rq->calc_load_update = calc_load_update;
94baf7a5
TG
6474 update_max_interval();
6475}
6476
135fb3e1
TG
6477int sched_cpu_starting(unsigned int cpu)
6478{
94baf7a5 6479 sched_rq_cpu_starting(cpu);
d84b3131 6480 sched_tick_start(cpu);
135fb3e1 6481 return 0;
e761b772 6482}
e761b772 6483
f2785ddb
TG
6484#ifdef CONFIG_HOTPLUG_CPU
6485int sched_cpu_dying(unsigned int cpu)
6486{
6487 struct rq *rq = cpu_rq(cpu);
8a8c69c3 6488 struct rq_flags rf;
f2785ddb
TG
6489
6490 /* Handle pending wakeups and then migrate everything off */
6491 sched_ttwu_pending();
d84b3131 6492 sched_tick_stop(cpu);
8a8c69c3
PZ
6493
6494 rq_lock_irqsave(rq, &rf);
f2785ddb
TG
6495 if (rq->rd) {
6496 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6497 set_rq_offline(rq);
6498 }
8a8c69c3 6499 migrate_tasks(rq, &rf);
f2785ddb 6500 BUG_ON(rq->nr_running != 1);
8a8c69c3
PZ
6501 rq_unlock_irqrestore(rq, &rf);
6502
f2785ddb
TG
6503 calc_load_migrate(rq);
6504 update_max_interval();
00357f5e 6505 nohz_balance_exit_idle(rq);
e5ef27d0 6506 hrtick_clear(rq);
f2785ddb
TG
6507 return 0;
6508}
6509#endif
6510
1da177e4
LT
6511void __init sched_init_smp(void)
6512{
cb83b629
PZ
6513 sched_init_numa();
6514
6acce3ef
PZ
6515 /*
6516 * There's no userspace yet to cause hotplug operations; hence all the
d1ccc66d 6517 * CPU masks are stable and all blatant races in the below code cannot
b5a4e2bb 6518 * happen.
6acce3ef 6519 */
712555ee 6520 mutex_lock(&sched_domains_mutex);
8d5dc512 6521 sched_init_domains(cpu_active_mask);
712555ee 6522 mutex_unlock(&sched_domains_mutex);
e761b772 6523
5c1e1767 6524 /* Move init over to a non-isolated CPU */
edb93821 6525 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
5c1e1767 6526 BUG();
19978ca6 6527 sched_init_granularity();
4212823f 6528
0e3900e6 6529 init_sched_rt_class();
1baca4ce 6530 init_sched_dl_class();
1b568f0a 6531
e26fbffd 6532 sched_smp_initialized = true;
1da177e4 6533}
e26fbffd
TG
6534
6535static int __init migration_init(void)
6536{
77a5352b 6537 sched_cpu_starting(smp_processor_id());
e26fbffd 6538 return 0;
1da177e4 6539}
e26fbffd
TG
6540early_initcall(migration_init);
6541
1da177e4
LT
6542#else
6543void __init sched_init_smp(void)
6544{
19978ca6 6545 sched_init_granularity();
1da177e4
LT
6546}
6547#endif /* CONFIG_SMP */
6548
6549int in_sched_functions(unsigned long addr)
6550{
1da177e4
LT
6551 return in_lock_functions(addr) ||
6552 (addr >= (unsigned long)__sched_text_start
6553 && addr < (unsigned long)__sched_text_end);
6554}
6555
029632fb 6556#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
6557/*
6558 * Default task group.
6559 * Every task in system belongs to this group at bootup.
6560 */
029632fb 6561struct task_group root_task_group;
35cf4e50 6562LIST_HEAD(task_groups);
b0367629
WL
6563
6564/* Cacheline aligned slab cache for task_group */
6565static struct kmem_cache *task_group_cache __read_mostly;
052f1dc7 6566#endif
6f505b16 6567
e6252c3e 6568DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
10e2f1ac 6569DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
6f505b16 6570
1da177e4
LT
6571void __init sched_init(void)
6572{
a1dc0446 6573 unsigned long ptr = 0;
55627e3c 6574 int i;
434d53b0 6575
5822a454 6576 wait_bit_init();
9dcb8b68 6577
434d53b0 6578#ifdef CONFIG_FAIR_GROUP_SCHED
a1dc0446 6579 ptr += 2 * nr_cpu_ids * sizeof(void **);
434d53b0
MT
6580#endif
6581#ifdef CONFIG_RT_GROUP_SCHED
a1dc0446 6582 ptr += 2 * nr_cpu_ids * sizeof(void **);
434d53b0 6583#endif
a1dc0446
QC
6584 if (ptr) {
6585 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
434d53b0
MT
6586
6587#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 6588 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
6589 ptr += nr_cpu_ids * sizeof(void **);
6590
07e06b01 6591 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 6592 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 6593
6d6bc0ad 6594#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 6595#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6596 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
6597 ptr += nr_cpu_ids * sizeof(void **);
6598
07e06b01 6599 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
6600 ptr += nr_cpu_ids * sizeof(void **);
6601
6d6bc0ad 6602#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 6603 }
df7c8e84 6604#ifdef CONFIG_CPUMASK_OFFSTACK
b74e6278
AT
6605 for_each_possible_cpu(i) {
6606 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
6607 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
10e2f1ac
PZ
6608 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
6609 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
434d53b0 6610 }
b74e6278 6611#endif /* CONFIG_CPUMASK_OFFSTACK */
dd41f596 6612
d1ccc66d
IM
6613 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
6614 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
332ac17e 6615
57d885fe
GH
6616#ifdef CONFIG_SMP
6617 init_defrootdomain();
6618#endif
6619
d0b27fa7 6620#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6621 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 6622 global_rt_period(), global_rt_runtime());
6d6bc0ad 6623#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6624
7c941438 6625#ifdef CONFIG_CGROUP_SCHED
b0367629
WL
6626 task_group_cache = KMEM_CACHE(task_group, 0);
6627
07e06b01
YZ
6628 list_add(&root_task_group.list, &task_groups);
6629 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 6630 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 6631 autogroup_init(&init_task);
7c941438 6632#endif /* CONFIG_CGROUP_SCHED */
6f505b16 6633
0a945022 6634 for_each_possible_cpu(i) {
70b97a7f 6635 struct rq *rq;
1da177e4
LT
6636
6637 rq = cpu_rq(i);
05fa785c 6638 raw_spin_lock_init(&rq->lock);
7897986b 6639 rq->nr_running = 0;
dce48a84
TG
6640 rq->calc_load_active = 0;
6641 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 6642 init_cfs_rq(&rq->cfs);
07c54f7a
AV
6643 init_rt_rq(&rq->rt);
6644 init_dl_rq(&rq->dl);
dd41f596 6645#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 6646 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 6647 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9c2791f9 6648 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
354d60c2 6649 /*
d1ccc66d 6650 * How much CPU bandwidth does root_task_group get?
354d60c2
DG
6651 *
6652 * In case of task-groups formed thr' the cgroup filesystem, it
d1ccc66d
IM
6653 * gets 100% of the CPU resources in the system. This overall
6654 * system CPU resource is divided among the tasks of
07e06b01 6655 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
6656 * based on each entity's (task or task-group's) weight
6657 * (se->load.weight).
6658 *
07e06b01 6659 * In other words, if root_task_group has 10 tasks of weight
354d60c2 6660 * 1024) and two child groups A0 and A1 (of weight 1024 each),
d1ccc66d 6661 * then A0's share of the CPU resource is:
354d60c2 6662 *
0d905bca 6663 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 6664 *
07e06b01
YZ
6665 * We achieve this by letting root_task_group's tasks sit
6666 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 6667 */
ab84d31e 6668 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 6669 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
6670#endif /* CONFIG_FAIR_GROUP_SCHED */
6671
6672 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 6673#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6674 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 6675#endif
1da177e4 6676#ifdef CONFIG_SMP
41c7ce9a 6677 rq->sd = NULL;
57d885fe 6678 rq->rd = NULL;
ca6d75e6 6679 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
e3fca9e7 6680 rq->balance_callback = NULL;
1da177e4 6681 rq->active_balance = 0;
dd41f596 6682 rq->next_balance = jiffies;
1da177e4 6683 rq->push_cpu = 0;
0a2966b4 6684 rq->cpu = i;
1f11eb6a 6685 rq->online = 0;
eae0c9df
MG
6686 rq->idle_stamp = 0;
6687 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 6688 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
6689
6690 INIT_LIST_HEAD(&rq->cfs_tasks);
6691
dc938520 6692 rq_attach_root(rq, &def_root_domain);
3451d024 6693#ifdef CONFIG_NO_HZ_COMMON
e022e0d3 6694 rq->last_blocked_load_update_tick = jiffies;
a22e47a4 6695 atomic_set(&rq->nohz_flags, 0);
83cd4fe2 6696#endif
9fd81dd5 6697#endif /* CONFIG_SMP */
77a021be 6698 hrtick_rq_init(rq);
1da177e4 6699 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
6700 }
6701
9059393e 6702 set_load_weight(&init_task, false);
b50f60ce 6703
1da177e4
LT
6704 /*
6705 * The boot idle thread does lazy MMU switching as well:
6706 */
f1f10076 6707 mmgrab(&init_mm);
1da177e4
LT
6708 enter_lazy_tlb(&init_mm, current);
6709
6710 /*
6711 * Make us the idle thread. Technically, schedule() should not be
6712 * called from this thread, however somewhere below it might be,
6713 * but because we are the idle thread, we just pick up running again
6714 * when this runqueue becomes "idle".
6715 */
6716 init_idle(current, smp_processor_id());
dce48a84
TG
6717
6718 calc_load_update = jiffies + LOAD_FREQ;
6719
bf4d83f6 6720#ifdef CONFIG_SMP
29d5e047 6721 idle_thread_set_boot_cpu();
029632fb
PZ
6722#endif
6723 init_sched_fair_class();
6a7b3dc3 6724
4698f88c
JP
6725 init_schedstats();
6726
eb414681
JW
6727 psi_init();
6728
69842cba
PB
6729 init_uclamp();
6730
6892b75e 6731 scheduler_running = 1;
1da177e4
LT
6732}
6733
d902db1e 6734#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
6735static inline int preempt_count_equals(int preempt_offset)
6736{
da7142e2 6737 int nested = preempt_count() + rcu_preempt_depth();
e4aafea2 6738
4ba8216c 6739 return (nested == preempt_offset);
e4aafea2
FW
6740}
6741
d894837f 6742void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6743{
8eb23b9f
PZ
6744 /*
6745 * Blocking primitives will set (and therefore destroy) current->state,
6746 * since we will exit with TASK_RUNNING make sure we enter with it,
6747 * otherwise we will destroy state.
6748 */
00845eb9 6749 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
8eb23b9f
PZ
6750 "do not call blocking ops when !TASK_RUNNING; "
6751 "state=%lx set at [<%p>] %pS\n",
6752 current->state,
6753 (void *)current->task_state_change,
00845eb9 6754 (void *)current->task_state_change);
8eb23b9f 6755
3427445a
PZ
6756 ___might_sleep(file, line, preempt_offset);
6757}
6758EXPORT_SYMBOL(__might_sleep);
6759
6760void ___might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6761{
d1ccc66d
IM
6762 /* Ratelimiting timestamp: */
6763 static unsigned long prev_jiffy;
6764
d1c6d149 6765 unsigned long preempt_disable_ip;
1da177e4 6766
d1ccc66d
IM
6767 /* WARN_ON_ONCE() by default, no rate limit required: */
6768 rcu_sleep_check();
6769
db273be2 6770 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
312364f3 6771 !is_idle_task(current) && !current->non_block_count) ||
1c3c5eab
TG
6772 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
6773 oops_in_progress)
aef745fc 6774 return;
1c3c5eab 6775
aef745fc
IM
6776 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6777 return;
6778 prev_jiffy = jiffies;
6779
d1ccc66d 6780 /* Save this before calling printk(), since that will clobber it: */
d1c6d149
VN
6781 preempt_disable_ip = get_preempt_disable_ip(current);
6782
3df0fc5b
PZ
6783 printk(KERN_ERR
6784 "BUG: sleeping function called from invalid context at %s:%d\n",
6785 file, line);
6786 printk(KERN_ERR
312364f3
DV
6787 "in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
6788 in_atomic(), irqs_disabled(), current->non_block_count,
3df0fc5b 6789 current->pid, current->comm);
aef745fc 6790
a8b686b3
ES
6791 if (task_stack_end_corrupted(current))
6792 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6793
aef745fc
IM
6794 debug_show_held_locks(current);
6795 if (irqs_disabled())
6796 print_irqtrace_events(current);
d1c6d149
VN
6797 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6798 && !preempt_count_equals(preempt_offset)) {
8f47b187 6799 pr_err("Preemption disabled at:");
d1c6d149 6800 print_ip_sym(preempt_disable_ip);
8f47b187
TG
6801 pr_cont("\n");
6802 }
aef745fc 6803 dump_stack();
f0b22e39 6804 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
1da177e4 6805}
3427445a 6806EXPORT_SYMBOL(___might_sleep);
568f1967
PZ
6807
6808void __cant_sleep(const char *file, int line, int preempt_offset)
6809{
6810 static unsigned long prev_jiffy;
6811
6812 if (irqs_disabled())
6813 return;
6814
6815 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
6816 return;
6817
6818 if (preempt_count() > preempt_offset)
6819 return;
6820
6821 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6822 return;
6823 prev_jiffy = jiffies;
6824
6825 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
6826 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6827 in_atomic(), irqs_disabled(),
6828 current->pid, current->comm);
6829
6830 debug_show_held_locks(current);
6831 dump_stack();
6832 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6833}
6834EXPORT_SYMBOL_GPL(__cant_sleep);
1da177e4
LT
6835#endif
6836
6837#ifdef CONFIG_MAGIC_SYSRQ
dbc7f069 6838void normalize_rt_tasks(void)
3a5e4dc1 6839{
dbc7f069 6840 struct task_struct *g, *p;
d50dde5a
DF
6841 struct sched_attr attr = {
6842 .sched_policy = SCHED_NORMAL,
6843 };
1da177e4 6844
3472eaa1 6845 read_lock(&tasklist_lock);
5d07f420 6846 for_each_process_thread(g, p) {
178be793
IM
6847 /*
6848 * Only normalize user tasks:
6849 */
3472eaa1 6850 if (p->flags & PF_KTHREAD)
178be793
IM
6851 continue;
6852
4fa8d299
JP
6853 p->se.exec_start = 0;
6854 schedstat_set(p->se.statistics.wait_start, 0);
6855 schedstat_set(p->se.statistics.sleep_start, 0);
6856 schedstat_set(p->se.statistics.block_start, 0);
dd41f596 6857
aab03e05 6858 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
6859 /*
6860 * Renice negative nice level userspace
6861 * tasks back to 0:
6862 */
3472eaa1 6863 if (task_nice(p) < 0)
dd41f596 6864 set_user_nice(p, 0);
1da177e4 6865 continue;
dd41f596 6866 }
1da177e4 6867
dbc7f069 6868 __sched_setscheduler(p, &attr, false, false);
5d07f420 6869 }
3472eaa1 6870 read_unlock(&tasklist_lock);
1da177e4
LT
6871}
6872
6873#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 6874
67fc4e0c 6875#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 6876/*
67fc4e0c 6877 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
6878 *
6879 * They can only be called when the whole system has been
6880 * stopped - every CPU needs to be quiescent, and no scheduling
6881 * activity can take place. Using them for anything else would
6882 * be a serious bug, and as a result, they aren't even visible
6883 * under any other configuration.
6884 */
6885
6886/**
d1ccc66d 6887 * curr_task - return the current task for a given CPU.
1df5c10a
LT
6888 * @cpu: the processor in question.
6889 *
6890 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
6891 *
6892 * Return: The current task for @cpu.
1df5c10a 6893 */
36c8b586 6894struct task_struct *curr_task(int cpu)
1df5c10a
LT
6895{
6896 return cpu_curr(cpu);
6897}
6898
67fc4e0c
JW
6899#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6900
6901#ifdef CONFIG_IA64
1df5c10a 6902/**
5feeb783 6903 * ia64_set_curr_task - set the current task for a given CPU.
1df5c10a
LT
6904 * @cpu: the processor in question.
6905 * @p: the task pointer to set.
6906 *
6907 * Description: This function must only be used when non-maskable interrupts
41a2d6cf 6908 * are serviced on a separate stack. It allows the architecture to switch the
d1ccc66d 6909 * notion of the current task on a CPU in a non-blocking manner. This function
1df5c10a
LT
6910 * must be called with all CPU's synchronized, and interrupts disabled, the
6911 * and caller must save the original value of the current task (see
6912 * curr_task() above) and restore that value before reenabling interrupts and
6913 * re-starting the system.
6914 *
6915 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6916 */
a458ae2e 6917void ia64_set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
6918{
6919 cpu_curr(cpu) = p;
6920}
6921
6922#endif
29f59db3 6923
7c941438 6924#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
6925/* task_group_lock serializes the addition/removal of task groups */
6926static DEFINE_SPINLOCK(task_group_lock);
6927
2480c093
PB
6928static inline void alloc_uclamp_sched_group(struct task_group *tg,
6929 struct task_group *parent)
6930{
6931#ifdef CONFIG_UCLAMP_TASK_GROUP
0413d7f3 6932 enum uclamp_id clamp_id;
2480c093
PB
6933
6934 for_each_clamp_id(clamp_id) {
6935 uclamp_se_set(&tg->uclamp_req[clamp_id],
6936 uclamp_none(clamp_id), false);
0b60ba2d 6937 tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
2480c093
PB
6938 }
6939#endif
6940}
6941
2f5177f0 6942static void sched_free_group(struct task_group *tg)
bccbe08a
PZ
6943{
6944 free_fair_sched_group(tg);
6945 free_rt_sched_group(tg);
e9aa1dd1 6946 autogroup_free(tg);
b0367629 6947 kmem_cache_free(task_group_cache, tg);
bccbe08a
PZ
6948}
6949
6950/* allocate runqueue etc for a new task group */
ec7dc8ac 6951struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
6952{
6953 struct task_group *tg;
bccbe08a 6954
b0367629 6955 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
bccbe08a
PZ
6956 if (!tg)
6957 return ERR_PTR(-ENOMEM);
6958
ec7dc8ac 6959 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
6960 goto err;
6961
ec7dc8ac 6962 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
6963 goto err;
6964
2480c093
PB
6965 alloc_uclamp_sched_group(tg, parent);
6966
ace783b9
LZ
6967 return tg;
6968
6969err:
2f5177f0 6970 sched_free_group(tg);
ace783b9
LZ
6971 return ERR_PTR(-ENOMEM);
6972}
6973
6974void sched_online_group(struct task_group *tg, struct task_group *parent)
6975{
6976 unsigned long flags;
6977
8ed36996 6978 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 6979 list_add_rcu(&tg->list, &task_groups);
f473aa5e 6980
d1ccc66d
IM
6981 /* Root should already exist: */
6982 WARN_ON(!parent);
f473aa5e
PZ
6983
6984 tg->parent = parent;
f473aa5e 6985 INIT_LIST_HEAD(&tg->children);
09f2724a 6986 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 6987 spin_unlock_irqrestore(&task_group_lock, flags);
8663e24d
PZ
6988
6989 online_fair_sched_group(tg);
29f59db3
SV
6990}
6991
9b5b7751 6992/* rcu callback to free various structures associated with a task group */
2f5177f0 6993static void sched_free_group_rcu(struct rcu_head *rhp)
29f59db3 6994{
d1ccc66d 6995 /* Now it should be safe to free those cfs_rqs: */
2f5177f0 6996 sched_free_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
6997}
6998
4cf86d77 6999void sched_destroy_group(struct task_group *tg)
ace783b9 7000{
d1ccc66d 7001 /* Wait for possible concurrent references to cfs_rqs complete: */
2f5177f0 7002 call_rcu(&tg->rcu, sched_free_group_rcu);
ace783b9
LZ
7003}
7004
7005void sched_offline_group(struct task_group *tg)
29f59db3 7006{
8ed36996 7007 unsigned long flags;
29f59db3 7008
d1ccc66d 7009 /* End participation in shares distribution: */
6fe1f348 7010 unregister_fair_sched_group(tg);
3d4b47b4
PZ
7011
7012 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7013 list_del_rcu(&tg->list);
f473aa5e 7014 list_del_rcu(&tg->siblings);
8ed36996 7015 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7016}
7017
ea86cb4b 7018static void sched_change_group(struct task_struct *tsk, int type)
29f59db3 7019{
8323f26c 7020 struct task_group *tg;
29f59db3 7021
f7b8a47d
KT
7022 /*
7023 * All callers are synchronized by task_rq_lock(); we do not use RCU
7024 * which is pointless here. Thus, we pass "true" to task_css_check()
7025 * to prevent lockdep warnings.
7026 */
7027 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
7028 struct task_group, css);
7029 tg = autogroup_task_group(tsk, tg);
7030 tsk->sched_task_group = tg;
7031
810b3817 7032#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
7033 if (tsk->sched_class->task_change_group)
7034 tsk->sched_class->task_change_group(tsk, type);
b2b5ce02 7035 else
810b3817 7036#endif
b2b5ce02 7037 set_task_rq(tsk, task_cpu(tsk));
ea86cb4b
VG
7038}
7039
7040/*
7041 * Change task's runqueue when it moves between groups.
7042 *
7043 * The caller of this function should have put the task in its new group by
7044 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
7045 * its new group.
7046 */
7047void sched_move_task(struct task_struct *tsk)
7048{
7a57f32a
PZ
7049 int queued, running, queue_flags =
7050 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
ea86cb4b
VG
7051 struct rq_flags rf;
7052 struct rq *rq;
7053
7054 rq = task_rq_lock(tsk, &rf);
1b1d6225 7055 update_rq_clock(rq);
ea86cb4b
VG
7056
7057 running = task_current(rq, tsk);
7058 queued = task_on_rq_queued(tsk);
7059
7060 if (queued)
7a57f32a 7061 dequeue_task(rq, tsk, queue_flags);
bb3bac2c 7062 if (running)
ea86cb4b
VG
7063 put_prev_task(rq, tsk);
7064
7065 sched_change_group(tsk, TASK_MOVE_GROUP);
810b3817 7066
da0c1e65 7067 if (queued)
7a57f32a 7068 enqueue_task(rq, tsk, queue_flags);
2a4b03ff 7069 if (running) {
03b7fad1 7070 set_next_task(rq, tsk);
2a4b03ff
VG
7071 /*
7072 * After changing group, the running task may have joined a
7073 * throttled one but it's still the running task. Trigger a
7074 * resched to make sure that task can still run.
7075 */
7076 resched_curr(rq);
7077 }
29f59db3 7078
eb580751 7079 task_rq_unlock(rq, tsk, &rf);
29f59db3 7080}
68318b8e 7081
a7c6d554 7082static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 7083{
a7c6d554 7084 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
7085}
7086
eb95419b
TH
7087static struct cgroup_subsys_state *
7088cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 7089{
eb95419b
TH
7090 struct task_group *parent = css_tg(parent_css);
7091 struct task_group *tg;
68318b8e 7092
eb95419b 7093 if (!parent) {
68318b8e 7094 /* This is early initialization for the top cgroup */
07e06b01 7095 return &root_task_group.css;
68318b8e
SV
7096 }
7097
ec7dc8ac 7098 tg = sched_create_group(parent);
68318b8e
SV
7099 if (IS_ERR(tg))
7100 return ERR_PTR(-ENOMEM);
7101
68318b8e
SV
7102 return &tg->css;
7103}
7104
96b77745
KK
7105/* Expose task group only after completing cgroup initialization */
7106static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7107{
7108 struct task_group *tg = css_tg(css);
7109 struct task_group *parent = css_tg(css->parent);
7110
7111 if (parent)
7112 sched_online_group(tg, parent);
7226017a
QY
7113
7114#ifdef CONFIG_UCLAMP_TASK_GROUP
7115 /* Propagate the effective uclamp value for the new group */
7116 cpu_util_update_eff(css);
7117#endif
7118
96b77745
KK
7119 return 0;
7120}
7121
2f5177f0 7122static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
ace783b9 7123{
eb95419b 7124 struct task_group *tg = css_tg(css);
ace783b9 7125
2f5177f0 7126 sched_offline_group(tg);
ace783b9
LZ
7127}
7128
eb95419b 7129static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 7130{
eb95419b 7131 struct task_group *tg = css_tg(css);
68318b8e 7132
2f5177f0
PZ
7133 /*
7134 * Relies on the RCU grace period between css_released() and this.
7135 */
7136 sched_free_group(tg);
ace783b9
LZ
7137}
7138
ea86cb4b
VG
7139/*
7140 * This is called before wake_up_new_task(), therefore we really only
7141 * have to set its group bits, all the other stuff does not apply.
7142 */
b53202e6 7143static void cpu_cgroup_fork(struct task_struct *task)
eeb61e53 7144{
ea86cb4b
VG
7145 struct rq_flags rf;
7146 struct rq *rq;
7147
7148 rq = task_rq_lock(task, &rf);
7149
80f5c1b8 7150 update_rq_clock(rq);
ea86cb4b
VG
7151 sched_change_group(task, TASK_SET_GROUP);
7152
7153 task_rq_unlock(rq, task, &rf);
eeb61e53
KT
7154}
7155
1f7dd3e5 7156static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
68318b8e 7157{
bb9d97b6 7158 struct task_struct *task;
1f7dd3e5 7159 struct cgroup_subsys_state *css;
7dc603c9 7160 int ret = 0;
bb9d97b6 7161
1f7dd3e5 7162 cgroup_taskset_for_each(task, css, tset) {
b68aa230 7163#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 7164 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 7165 return -EINVAL;
b68aa230 7166#endif
7dc603c9
PZ
7167 /*
7168 * Serialize against wake_up_new_task() such that if its
7169 * running, we're sure to observe its full state.
7170 */
7171 raw_spin_lock_irq(&task->pi_lock);
7172 /*
7173 * Avoid calling sched_move_task() before wake_up_new_task()
7174 * has happened. This would lead to problems with PELT, due to
7175 * move wanting to detach+attach while we're not attached yet.
7176 */
7177 if (task->state == TASK_NEW)
7178 ret = -EINVAL;
7179 raw_spin_unlock_irq(&task->pi_lock);
7180
7181 if (ret)
7182 break;
bb9d97b6 7183 }
7dc603c9 7184 return ret;
be367d09 7185}
68318b8e 7186
1f7dd3e5 7187static void cpu_cgroup_attach(struct cgroup_taskset *tset)
68318b8e 7188{
bb9d97b6 7189 struct task_struct *task;
1f7dd3e5 7190 struct cgroup_subsys_state *css;
bb9d97b6 7191
1f7dd3e5 7192 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 7193 sched_move_task(task);
68318b8e
SV
7194}
7195
2480c093 7196#ifdef CONFIG_UCLAMP_TASK_GROUP
0b60ba2d
PB
7197static void cpu_util_update_eff(struct cgroup_subsys_state *css)
7198{
7199 struct cgroup_subsys_state *top_css = css;
7200 struct uclamp_se *uc_parent = NULL;
7201 struct uclamp_se *uc_se = NULL;
7202 unsigned int eff[UCLAMP_CNT];
0413d7f3 7203 enum uclamp_id clamp_id;
0b60ba2d
PB
7204 unsigned int clamps;
7205
7206 css_for_each_descendant_pre(css, top_css) {
7207 uc_parent = css_tg(css)->parent
7208 ? css_tg(css)->parent->uclamp : NULL;
7209
7210 for_each_clamp_id(clamp_id) {
7211 /* Assume effective clamps matches requested clamps */
7212 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
7213 /* Cap effective clamps with parent's effective clamps */
7214 if (uc_parent &&
7215 eff[clamp_id] > uc_parent[clamp_id].value) {
7216 eff[clamp_id] = uc_parent[clamp_id].value;
7217 }
7218 }
7219 /* Ensure protection is always capped by limit */
7220 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
7221
7222 /* Propagate most restrictive effective clamps */
7223 clamps = 0x0;
7224 uc_se = css_tg(css)->uclamp;
7225 for_each_clamp_id(clamp_id) {
7226 if (eff[clamp_id] == uc_se[clamp_id].value)
7227 continue;
7228 uc_se[clamp_id].value = eff[clamp_id];
7229 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
7230 clamps |= (0x1 << clamp_id);
7231 }
babbe170 7232 if (!clamps) {
0b60ba2d 7233 css = css_rightmost_descendant(css);
babbe170
PB
7234 continue;
7235 }
7236
7237 /* Immediately update descendants RUNNABLE tasks */
7238 uclamp_update_active_tasks(css, clamps);
0b60ba2d
PB
7239 }
7240}
2480c093
PB
7241
7242/*
7243 * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
7244 * C expression. Since there is no way to convert a macro argument (N) into a
7245 * character constant, use two levels of macros.
7246 */
7247#define _POW10(exp) ((unsigned int)1e##exp)
7248#define POW10(exp) _POW10(exp)
7249
7250struct uclamp_request {
7251#define UCLAMP_PERCENT_SHIFT 2
7252#define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT))
7253 s64 percent;
7254 u64 util;
7255 int ret;
7256};
7257
7258static inline struct uclamp_request
7259capacity_from_percent(char *buf)
7260{
7261 struct uclamp_request req = {
7262 .percent = UCLAMP_PERCENT_SCALE,
7263 .util = SCHED_CAPACITY_SCALE,
7264 .ret = 0,
7265 };
7266
7267 buf = strim(buf);
7268 if (strcmp(buf, "max")) {
7269 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
7270 &req.percent);
7271 if (req.ret)
7272 return req;
b562d140 7273 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
2480c093
PB
7274 req.ret = -ERANGE;
7275 return req;
7276 }
7277
7278 req.util = req.percent << SCHED_CAPACITY_SHIFT;
7279 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
7280 }
7281
7282 return req;
7283}
7284
7285static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
7286 size_t nbytes, loff_t off,
7287 enum uclamp_id clamp_id)
7288{
7289 struct uclamp_request req;
7290 struct task_group *tg;
7291
7292 req = capacity_from_percent(buf);
7293 if (req.ret)
7294 return req.ret;
7295
7296 mutex_lock(&uclamp_mutex);
7297 rcu_read_lock();
7298
7299 tg = css_tg(of_css(of));
7300 if (tg->uclamp_req[clamp_id].value != req.util)
7301 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
7302
7303 /*
7304 * Because of not recoverable conversion rounding we keep track of the
7305 * exact requested value
7306 */
7307 tg->uclamp_pct[clamp_id] = req.percent;
7308
0b60ba2d
PB
7309 /* Update effective clamps to track the most restrictive value */
7310 cpu_util_update_eff(of_css(of));
7311
2480c093
PB
7312 rcu_read_unlock();
7313 mutex_unlock(&uclamp_mutex);
7314
7315 return nbytes;
7316}
7317
7318static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
7319 char *buf, size_t nbytes,
7320 loff_t off)
7321{
7322 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
7323}
7324
7325static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
7326 char *buf, size_t nbytes,
7327 loff_t off)
7328{
7329 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
7330}
7331
7332static inline void cpu_uclamp_print(struct seq_file *sf,
7333 enum uclamp_id clamp_id)
7334{
7335 struct task_group *tg;
7336 u64 util_clamp;
7337 u64 percent;
7338 u32 rem;
7339
7340 rcu_read_lock();
7341 tg = css_tg(seq_css(sf));
7342 util_clamp = tg->uclamp_req[clamp_id].value;
7343 rcu_read_unlock();
7344
7345 if (util_clamp == SCHED_CAPACITY_SCALE) {
7346 seq_puts(sf, "max\n");
7347 return;
7348 }
7349
7350 percent = tg->uclamp_pct[clamp_id];
7351 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
7352 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
7353}
7354
7355static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
7356{
7357 cpu_uclamp_print(sf, UCLAMP_MIN);
7358 return 0;
7359}
7360
7361static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
7362{
7363 cpu_uclamp_print(sf, UCLAMP_MAX);
7364 return 0;
7365}
7366#endif /* CONFIG_UCLAMP_TASK_GROUP */
7367
052f1dc7 7368#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
7369static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7370 struct cftype *cftype, u64 shareval)
68318b8e 7371{
5b61d50a
KK
7372 if (shareval > scale_load_down(ULONG_MAX))
7373 shareval = MAX_SHARES;
182446d0 7374 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
7375}
7376
182446d0
TH
7377static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7378 struct cftype *cft)
68318b8e 7379{
182446d0 7380 struct task_group *tg = css_tg(css);
68318b8e 7381
c8b28116 7382 return (u64) scale_load_down(tg->shares);
68318b8e 7383}
ab84d31e
PT
7384
7385#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
7386static DEFINE_MUTEX(cfs_constraints_mutex);
7387
ab84d31e 7388const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
b1546edc 7389static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
ab84d31e 7390
a790de99
PT
7391static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7392
ab84d31e
PT
7393static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7394{
56f570e5 7395 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 7396 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
7397
7398 if (tg == &root_task_group)
7399 return -EINVAL;
7400
7401 /*
7402 * Ensure we have at some amount of bandwidth every period. This is
7403 * to prevent reaching a state of large arrears when throttled via
7404 * entity_tick() resulting in prolonged exit starvation.
7405 */
7406 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7407 return -EINVAL;
7408
7409 /*
7410 * Likewise, bound things on the otherside by preventing insane quota
7411 * periods. This also allows us to normalize in computing quota
7412 * feasibility.
7413 */
7414 if (period > max_cfs_quota_period)
7415 return -EINVAL;
7416
0e59bdae
KT
7417 /*
7418 * Prevent race between setting of cfs_rq->runtime_enabled and
7419 * unthrottle_offline_cfs_rqs().
7420 */
7421 get_online_cpus();
a790de99
PT
7422 mutex_lock(&cfs_constraints_mutex);
7423 ret = __cfs_schedulable(tg, period, quota);
7424 if (ret)
7425 goto out_unlock;
7426
58088ad0 7427 runtime_enabled = quota != RUNTIME_INF;
56f570e5 7428 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
7429 /*
7430 * If we need to toggle cfs_bandwidth_used, off->on must occur
7431 * before making related changes, and on->off must occur afterwards
7432 */
7433 if (runtime_enabled && !runtime_was_enabled)
7434 cfs_bandwidth_usage_inc();
ab84d31e
PT
7435 raw_spin_lock_irq(&cfs_b->lock);
7436 cfs_b->period = ns_to_ktime(period);
7437 cfs_b->quota = quota;
58088ad0 7438
a9cf55b2 7439 __refill_cfs_bandwidth_runtime(cfs_b);
d1ccc66d
IM
7440
7441 /* Restart the period timer (if active) to handle new period expiry: */
77a4d1a1
PZ
7442 if (runtime_enabled)
7443 start_cfs_bandwidth(cfs_b);
d1ccc66d 7444
ab84d31e
PT
7445 raw_spin_unlock_irq(&cfs_b->lock);
7446
0e59bdae 7447 for_each_online_cpu(i) {
ab84d31e 7448 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 7449 struct rq *rq = cfs_rq->rq;
8a8c69c3 7450 struct rq_flags rf;
ab84d31e 7451
8a8c69c3 7452 rq_lock_irq(rq, &rf);
58088ad0 7453 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 7454 cfs_rq->runtime_remaining = 0;
671fd9da 7455
029632fb 7456 if (cfs_rq->throttled)
671fd9da 7457 unthrottle_cfs_rq(cfs_rq);
8a8c69c3 7458 rq_unlock_irq(rq, &rf);
ab84d31e 7459 }
1ee14e6c
BS
7460 if (runtime_was_enabled && !runtime_enabled)
7461 cfs_bandwidth_usage_dec();
a790de99
PT
7462out_unlock:
7463 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 7464 put_online_cpus();
ab84d31e 7465
a790de99 7466 return ret;
ab84d31e
PT
7467}
7468
b1546edc 7469static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
ab84d31e
PT
7470{
7471 u64 quota, period;
7472
029632fb 7473 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7474 if (cfs_quota_us < 0)
7475 quota = RUNTIME_INF;
1a8b4540 7476 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
ab84d31e 7477 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
1a8b4540
KK
7478 else
7479 return -EINVAL;
ab84d31e
PT
7480
7481 return tg_set_cfs_bandwidth(tg, period, quota);
7482}
7483
b1546edc 7484static long tg_get_cfs_quota(struct task_group *tg)
ab84d31e
PT
7485{
7486 u64 quota_us;
7487
029632fb 7488 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
7489 return -1;
7490
029632fb 7491 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
7492 do_div(quota_us, NSEC_PER_USEC);
7493
7494 return quota_us;
7495}
7496
b1546edc 7497static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
ab84d31e
PT
7498{
7499 u64 quota, period;
7500
1a8b4540
KK
7501 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
7502 return -EINVAL;
7503
ab84d31e 7504 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 7505 quota = tg->cfs_bandwidth.quota;
ab84d31e 7506
ab84d31e
PT
7507 return tg_set_cfs_bandwidth(tg, period, quota);
7508}
7509
b1546edc 7510static long tg_get_cfs_period(struct task_group *tg)
ab84d31e
PT
7511{
7512 u64 cfs_period_us;
7513
029632fb 7514 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7515 do_div(cfs_period_us, NSEC_PER_USEC);
7516
7517 return cfs_period_us;
7518}
7519
182446d0
TH
7520static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7521 struct cftype *cft)
ab84d31e 7522{
182446d0 7523 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
7524}
7525
182446d0
TH
7526static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7527 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 7528{
182446d0 7529 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
7530}
7531
182446d0
TH
7532static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7533 struct cftype *cft)
ab84d31e 7534{
182446d0 7535 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
7536}
7537
182446d0
TH
7538static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7539 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 7540{
182446d0 7541 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
7542}
7543
a790de99
PT
7544struct cfs_schedulable_data {
7545 struct task_group *tg;
7546 u64 period, quota;
7547};
7548
7549/*
7550 * normalize group quota/period to be quota/max_period
7551 * note: units are usecs
7552 */
7553static u64 normalize_cfs_quota(struct task_group *tg,
7554 struct cfs_schedulable_data *d)
7555{
7556 u64 quota, period;
7557
7558 if (tg == d->tg) {
7559 period = d->period;
7560 quota = d->quota;
7561 } else {
7562 period = tg_get_cfs_period(tg);
7563 quota = tg_get_cfs_quota(tg);
7564 }
7565
7566 /* note: these should typically be equivalent */
7567 if (quota == RUNTIME_INF || quota == -1)
7568 return RUNTIME_INF;
7569
7570 return to_ratio(period, quota);
7571}
7572
7573static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7574{
7575 struct cfs_schedulable_data *d = data;
029632fb 7576 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
7577 s64 quota = 0, parent_quota = -1;
7578
7579 if (!tg->parent) {
7580 quota = RUNTIME_INF;
7581 } else {
029632fb 7582 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
7583
7584 quota = normalize_cfs_quota(tg, d);
9c58c79a 7585 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
7586
7587 /*
c53593e5
TH
7588 * Ensure max(child_quota) <= parent_quota. On cgroup2,
7589 * always take the min. On cgroup1, only inherit when no
d1ccc66d 7590 * limit is set:
a790de99 7591 */
c53593e5
TH
7592 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
7593 quota = min(quota, parent_quota);
7594 } else {
7595 if (quota == RUNTIME_INF)
7596 quota = parent_quota;
7597 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7598 return -EINVAL;
7599 }
a790de99 7600 }
9c58c79a 7601 cfs_b->hierarchical_quota = quota;
a790de99
PT
7602
7603 return 0;
7604}
7605
7606static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7607{
8277434e 7608 int ret;
a790de99
PT
7609 struct cfs_schedulable_data data = {
7610 .tg = tg,
7611 .period = period,
7612 .quota = quota,
7613 };
7614
7615 if (quota != RUNTIME_INF) {
7616 do_div(data.period, NSEC_PER_USEC);
7617 do_div(data.quota, NSEC_PER_USEC);
7618 }
7619
8277434e
PT
7620 rcu_read_lock();
7621 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7622 rcu_read_unlock();
7623
7624 return ret;
a790de99 7625}
e8da1b18 7626
a1f7164c 7627static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
e8da1b18 7628{
2da8ca82 7629 struct task_group *tg = css_tg(seq_css(sf));
029632fb 7630 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 7631
44ffc75b
TH
7632 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7633 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7634 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18 7635
3d6c50c2
YW
7636 if (schedstat_enabled() && tg != &root_task_group) {
7637 u64 ws = 0;
7638 int i;
7639
7640 for_each_possible_cpu(i)
7641 ws += schedstat_val(tg->se[i]->statistics.wait_sum);
7642
7643 seq_printf(sf, "wait_sum %llu\n", ws);
7644 }
7645
e8da1b18
NR
7646 return 0;
7647}
ab84d31e 7648#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 7649#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 7650
052f1dc7 7651#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
7652static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7653 struct cftype *cft, s64 val)
6f505b16 7654{
182446d0 7655 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
7656}
7657
182446d0
TH
7658static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7659 struct cftype *cft)
6f505b16 7660{
182446d0 7661 return sched_group_rt_runtime(css_tg(css));
6f505b16 7662}
d0b27fa7 7663
182446d0
TH
7664static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7665 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 7666{
182446d0 7667 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
7668}
7669
182446d0
TH
7670static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7671 struct cftype *cft)
d0b27fa7 7672{
182446d0 7673 return sched_group_rt_period(css_tg(css));
d0b27fa7 7674}
6d6bc0ad 7675#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 7676
a1f7164c 7677static struct cftype cpu_legacy_files[] = {
052f1dc7 7678#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
7679 {
7680 .name = "shares",
f4c753b7
PM
7681 .read_u64 = cpu_shares_read_u64,
7682 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 7683 },
052f1dc7 7684#endif
ab84d31e
PT
7685#ifdef CONFIG_CFS_BANDWIDTH
7686 {
7687 .name = "cfs_quota_us",
7688 .read_s64 = cpu_cfs_quota_read_s64,
7689 .write_s64 = cpu_cfs_quota_write_s64,
7690 },
7691 {
7692 .name = "cfs_period_us",
7693 .read_u64 = cpu_cfs_period_read_u64,
7694 .write_u64 = cpu_cfs_period_write_u64,
7695 },
e8da1b18
NR
7696 {
7697 .name = "stat",
a1f7164c 7698 .seq_show = cpu_cfs_stat_show,
e8da1b18 7699 },
ab84d31e 7700#endif
052f1dc7 7701#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7702 {
9f0c1e56 7703 .name = "rt_runtime_us",
06ecb27c
PM
7704 .read_s64 = cpu_rt_runtime_read,
7705 .write_s64 = cpu_rt_runtime_write,
6f505b16 7706 },
d0b27fa7
PZ
7707 {
7708 .name = "rt_period_us",
f4c753b7
PM
7709 .read_u64 = cpu_rt_period_read_uint,
7710 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 7711 },
2480c093
PB
7712#endif
7713#ifdef CONFIG_UCLAMP_TASK_GROUP
7714 {
7715 .name = "uclamp.min",
7716 .flags = CFTYPE_NOT_ON_ROOT,
7717 .seq_show = cpu_uclamp_min_show,
7718 .write = cpu_uclamp_min_write,
7719 },
7720 {
7721 .name = "uclamp.max",
7722 .flags = CFTYPE_NOT_ON_ROOT,
7723 .seq_show = cpu_uclamp_max_show,
7724 .write = cpu_uclamp_max_write,
7725 },
052f1dc7 7726#endif
d1ccc66d 7727 { } /* Terminate */
68318b8e
SV
7728};
7729
d41bf8c9
TH
7730static int cpu_extra_stat_show(struct seq_file *sf,
7731 struct cgroup_subsys_state *css)
0d593634 7732{
0d593634
TH
7733#ifdef CONFIG_CFS_BANDWIDTH
7734 {
d41bf8c9 7735 struct task_group *tg = css_tg(css);
0d593634
TH
7736 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7737 u64 throttled_usec;
7738
7739 throttled_usec = cfs_b->throttled_time;
7740 do_div(throttled_usec, NSEC_PER_USEC);
7741
7742 seq_printf(sf, "nr_periods %d\n"
7743 "nr_throttled %d\n"
7744 "throttled_usec %llu\n",
7745 cfs_b->nr_periods, cfs_b->nr_throttled,
7746 throttled_usec);
7747 }
7748#endif
7749 return 0;
7750}
7751
7752#ifdef CONFIG_FAIR_GROUP_SCHED
7753static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
7754 struct cftype *cft)
7755{
7756 struct task_group *tg = css_tg(css);
7757 u64 weight = scale_load_down(tg->shares);
7758
7759 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
7760}
7761
7762static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
7763 struct cftype *cft, u64 weight)
7764{
7765 /*
7766 * cgroup weight knobs should use the common MIN, DFL and MAX
7767 * values which are 1, 100 and 10000 respectively. While it loses
7768 * a bit of range on both ends, it maps pretty well onto the shares
7769 * value used by scheduler and the round-trip conversions preserve
7770 * the original value over the entire range.
7771 */
7772 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
7773 return -ERANGE;
7774
7775 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
7776
7777 return sched_group_set_shares(css_tg(css), scale_load(weight));
7778}
7779
7780static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
7781 struct cftype *cft)
7782{
7783 unsigned long weight = scale_load_down(css_tg(css)->shares);
7784 int last_delta = INT_MAX;
7785 int prio, delta;
7786
7787 /* find the closest nice value to the current weight */
7788 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
7789 delta = abs(sched_prio_to_weight[prio] - weight);
7790 if (delta >= last_delta)
7791 break;
7792 last_delta = delta;
7793 }
7794
7795 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
7796}
7797
7798static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
7799 struct cftype *cft, s64 nice)
7800{
7801 unsigned long weight;
7281c8de 7802 int idx;
0d593634
TH
7803
7804 if (nice < MIN_NICE || nice > MAX_NICE)
7805 return -ERANGE;
7806
7281c8de
PZ
7807 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
7808 idx = array_index_nospec(idx, 40);
7809 weight = sched_prio_to_weight[idx];
7810
0d593634
TH
7811 return sched_group_set_shares(css_tg(css), scale_load(weight));
7812}
7813#endif
7814
7815static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
7816 long period, long quota)
7817{
7818 if (quota < 0)
7819 seq_puts(sf, "max");
7820 else
7821 seq_printf(sf, "%ld", quota);
7822
7823 seq_printf(sf, " %ld\n", period);
7824}
7825
7826/* caller should put the current value in *@periodp before calling */
7827static int __maybe_unused cpu_period_quota_parse(char *buf,
7828 u64 *periodp, u64 *quotap)
7829{
7830 char tok[21]; /* U64_MAX */
7831
4c47acd8 7832 if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
0d593634
TH
7833 return -EINVAL;
7834
7835 *periodp *= NSEC_PER_USEC;
7836
7837 if (sscanf(tok, "%llu", quotap))
7838 *quotap *= NSEC_PER_USEC;
7839 else if (!strcmp(tok, "max"))
7840 *quotap = RUNTIME_INF;
7841 else
7842 return -EINVAL;
7843
7844 return 0;
7845}
7846
7847#ifdef CONFIG_CFS_BANDWIDTH
7848static int cpu_max_show(struct seq_file *sf, void *v)
7849{
7850 struct task_group *tg = css_tg(seq_css(sf));
7851
7852 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
7853 return 0;
7854}
7855
7856static ssize_t cpu_max_write(struct kernfs_open_file *of,
7857 char *buf, size_t nbytes, loff_t off)
7858{
7859 struct task_group *tg = css_tg(of_css(of));
7860 u64 period = tg_get_cfs_period(tg);
7861 u64 quota;
7862 int ret;
7863
7864 ret = cpu_period_quota_parse(buf, &period, &quota);
7865 if (!ret)
7866 ret = tg_set_cfs_bandwidth(tg, period, quota);
7867 return ret ?: nbytes;
7868}
7869#endif
7870
7871static struct cftype cpu_files[] = {
0d593634
TH
7872#ifdef CONFIG_FAIR_GROUP_SCHED
7873 {
7874 .name = "weight",
7875 .flags = CFTYPE_NOT_ON_ROOT,
7876 .read_u64 = cpu_weight_read_u64,
7877 .write_u64 = cpu_weight_write_u64,
7878 },
7879 {
7880 .name = "weight.nice",
7881 .flags = CFTYPE_NOT_ON_ROOT,
7882 .read_s64 = cpu_weight_nice_read_s64,
7883 .write_s64 = cpu_weight_nice_write_s64,
7884 },
7885#endif
7886#ifdef CONFIG_CFS_BANDWIDTH
7887 {
7888 .name = "max",
7889 .flags = CFTYPE_NOT_ON_ROOT,
7890 .seq_show = cpu_max_show,
7891 .write = cpu_max_write,
7892 },
2480c093
PB
7893#endif
7894#ifdef CONFIG_UCLAMP_TASK_GROUP
7895 {
7896 .name = "uclamp.min",
7897 .flags = CFTYPE_NOT_ON_ROOT,
7898 .seq_show = cpu_uclamp_min_show,
7899 .write = cpu_uclamp_min_write,
7900 },
7901 {
7902 .name = "uclamp.max",
7903 .flags = CFTYPE_NOT_ON_ROOT,
7904 .seq_show = cpu_uclamp_max_show,
7905 .write = cpu_uclamp_max_write,
7906 },
0d593634
TH
7907#endif
7908 { } /* terminate */
7909};
7910
073219e9 7911struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748 7912 .css_alloc = cpu_cgroup_css_alloc,
96b77745 7913 .css_online = cpu_cgroup_css_online,
2f5177f0 7914 .css_released = cpu_cgroup_css_released,
92fb9748 7915 .css_free = cpu_cgroup_css_free,
d41bf8c9 7916 .css_extra_stat_show = cpu_extra_stat_show,
eeb61e53 7917 .fork = cpu_cgroup_fork,
bb9d97b6
TH
7918 .can_attach = cpu_cgroup_can_attach,
7919 .attach = cpu_cgroup_attach,
a1f7164c 7920 .legacy_cftypes = cpu_legacy_files,
0d593634 7921 .dfl_cftypes = cpu_files,
b38e42e9 7922 .early_init = true,
0d593634 7923 .threaded = true,
68318b8e
SV
7924};
7925
052f1dc7 7926#endif /* CONFIG_CGROUP_SCHED */
d842de87 7927
b637a328
PM
7928void dump_cpu_task(int cpu)
7929{
7930 pr_info("Task dump for CPU %d:\n", cpu);
7931 sched_show_task(cpu_curr(cpu));
7932}
ed82b8a1
AK
7933
7934/*
7935 * Nice levels are multiplicative, with a gentle 10% change for every
7936 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
7937 * nice 1, it will get ~10% less CPU time than another CPU-bound task
7938 * that remained on nice 0.
7939 *
7940 * The "10% effect" is relative and cumulative: from _any_ nice level,
7941 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
7942 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
7943 * If a task goes up by ~10% and another task goes down by ~10% then
7944 * the relative distance between them is ~25%.)
7945 */
7946const int sched_prio_to_weight[40] = {
7947 /* -20 */ 88761, 71755, 56483, 46273, 36291,
7948 /* -15 */ 29154, 23254, 18705, 14949, 11916,
7949 /* -10 */ 9548, 7620, 6100, 4904, 3906,
7950 /* -5 */ 3121, 2501, 1991, 1586, 1277,
7951 /* 0 */ 1024, 820, 655, 526, 423,
7952 /* 5 */ 335, 272, 215, 172, 137,
7953 /* 10 */ 110, 87, 70, 56, 45,
7954 /* 15 */ 36, 29, 23, 18, 15,
7955};
7956
7957/*
7958 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
7959 *
7960 * In cases where the weight does not change often, we can use the
7961 * precalculated inverse to speed up arithmetics by turning divisions
7962 * into multiplications:
7963 */
7964const u32 sched_prio_to_wmult[40] = {
7965 /* -20 */ 48388, 59856, 76040, 92818, 118348,
7966 /* -15 */ 147320, 184698, 229616, 287308, 360437,
7967 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
7968 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
7969 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
7970 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
7971 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
7972 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
7973};
14a7405b
IM
7974
7975#undef CREATE_TRACE_POINTS