]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/sched/core.c
sched: Fix race in migrate_swap_stop()
[mirror_ubuntu-jammy-kernel.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
91d1aa43 75#include <linux/context_tracking.h>
1da177e4 76
96f951ed 77#include <asm/switch_to.h>
5517d86b 78#include <asm/tlb.h>
838225b4 79#include <asm/irq_regs.h>
db7e527d 80#include <asm/mutex.h>
e6e6685a
GC
81#ifdef CONFIG_PARAVIRT
82#include <asm/paravirt.h>
83#endif
1da177e4 84
029632fb 85#include "sched.h"
ea138446 86#include "../workqueue_internal.h"
29d5e047 87#include "../smpboot.h"
6e0534f2 88
a8d154b0 89#define CREATE_TRACE_POINTS
ad8d75ff 90#include <trace/events/sched.h>
a8d154b0 91
029632fb 92void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 93{
58088ad0
PT
94 unsigned long delta;
95 ktime_t soft, hard, now;
d0b27fa7 96
58088ad0
PT
97 for (;;) {
98 if (hrtimer_active(period_timer))
99 break;
100
101 now = hrtimer_cb_get_time(period_timer);
102 hrtimer_forward(period_timer, now, period);
d0b27fa7 103
58088ad0
PT
104 soft = hrtimer_get_softexpires(period_timer);
105 hard = hrtimer_get_expires(period_timer);
106 delta = ktime_to_ns(ktime_sub(hard, soft));
107 __hrtimer_start_range_ns(period_timer, soft, delta,
108 HRTIMER_MODE_ABS_PINNED, 0);
109 }
110}
111
029632fb
PZ
112DEFINE_MUTEX(sched_domains_mutex);
113DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 114
fe44d621 115static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 116
029632fb 117void update_rq_clock(struct rq *rq)
3e51f33f 118{
fe44d621 119 s64 delta;
305e6835 120
61eadef6 121 if (rq->skip_clock_update > 0)
f26f9aff 122 return;
aa483808 123
fe44d621
PZ
124 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125 rq->clock += delta;
126 update_rq_clock_task(rq, delta);
3e51f33f
PZ
127}
128
bf5c91ba
IM
129/*
130 * Debugging: various feature bits
131 */
f00b45c1 132
f00b45c1
PZ
133#define SCHED_FEAT(name, enabled) \
134 (1UL << __SCHED_FEAT_##name) * enabled |
135
bf5c91ba 136const_debug unsigned int sysctl_sched_features =
391e43da 137#include "features.h"
f00b45c1
PZ
138 0;
139
140#undef SCHED_FEAT
141
142#ifdef CONFIG_SCHED_DEBUG
143#define SCHED_FEAT(name, enabled) \
144 #name ,
145
1292531f 146static const char * const sched_feat_names[] = {
391e43da 147#include "features.h"
f00b45c1
PZ
148};
149
150#undef SCHED_FEAT
151
34f3a814 152static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 153{
f00b45c1
PZ
154 int i;
155
f8b6d1cc 156 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
157 if (!(sysctl_sched_features & (1UL << i)))
158 seq_puts(m, "NO_");
159 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 160 }
34f3a814 161 seq_puts(m, "\n");
f00b45c1 162
34f3a814 163 return 0;
f00b45c1
PZ
164}
165
f8b6d1cc
PZ
166#ifdef HAVE_JUMP_LABEL
167
c5905afb
IM
168#define jump_label_key__true STATIC_KEY_INIT_TRUE
169#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
170
171#define SCHED_FEAT(name, enabled) \
172 jump_label_key__##enabled ,
173
c5905afb 174struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
175#include "features.h"
176};
177
178#undef SCHED_FEAT
179
180static void sched_feat_disable(int i)
181{
c5905afb
IM
182 if (static_key_enabled(&sched_feat_keys[i]))
183 static_key_slow_dec(&sched_feat_keys[i]);
f8b6d1cc
PZ
184}
185
186static void sched_feat_enable(int i)
187{
c5905afb
IM
188 if (!static_key_enabled(&sched_feat_keys[i]))
189 static_key_slow_inc(&sched_feat_keys[i]);
f8b6d1cc
PZ
190}
191#else
192static void sched_feat_disable(int i) { };
193static void sched_feat_enable(int i) { };
194#endif /* HAVE_JUMP_LABEL */
195
1a687c2e 196static int sched_feat_set(char *cmp)
f00b45c1 197{
f00b45c1 198 int i;
1a687c2e 199 int neg = 0;
f00b45c1 200
524429c3 201 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
202 neg = 1;
203 cmp += 3;
204 }
205
f8b6d1cc 206 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 207 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 208 if (neg) {
f00b45c1 209 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
210 sched_feat_disable(i);
211 } else {
f00b45c1 212 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
213 sched_feat_enable(i);
214 }
f00b45c1
PZ
215 break;
216 }
217 }
218
1a687c2e
MG
219 return i;
220}
221
222static ssize_t
223sched_feat_write(struct file *filp, const char __user *ubuf,
224 size_t cnt, loff_t *ppos)
225{
226 char buf[64];
227 char *cmp;
228 int i;
229
230 if (cnt > 63)
231 cnt = 63;
232
233 if (copy_from_user(&buf, ubuf, cnt))
234 return -EFAULT;
235
236 buf[cnt] = 0;
237 cmp = strstrip(buf);
238
239 i = sched_feat_set(cmp);
f8b6d1cc 240 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
241 return -EINVAL;
242
42994724 243 *ppos += cnt;
f00b45c1
PZ
244
245 return cnt;
246}
247
34f3a814
LZ
248static int sched_feat_open(struct inode *inode, struct file *filp)
249{
250 return single_open(filp, sched_feat_show, NULL);
251}
252
828c0950 253static const struct file_operations sched_feat_fops = {
34f3a814
LZ
254 .open = sched_feat_open,
255 .write = sched_feat_write,
256 .read = seq_read,
257 .llseek = seq_lseek,
258 .release = single_release,
f00b45c1
PZ
259};
260
261static __init int sched_init_debug(void)
262{
f00b45c1
PZ
263 debugfs_create_file("sched_features", 0644, NULL, NULL,
264 &sched_feat_fops);
265
266 return 0;
267}
268late_initcall(sched_init_debug);
f8b6d1cc 269#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 270
b82d9fdd
PZ
271/*
272 * Number of tasks to iterate in a single balance run.
273 * Limited because this is done with IRQs disabled.
274 */
275const_debug unsigned int sysctl_sched_nr_migrate = 32;
276
e9e9250b
PZ
277/*
278 * period over which we average the RT time consumption, measured
279 * in ms.
280 *
281 * default: 1s
282 */
283const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284
fa85ae24 285/*
9f0c1e56 286 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
287 * default: 1s
288 */
9f0c1e56 289unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 290
029632fb 291__read_mostly int scheduler_running;
6892b75e 292
9f0c1e56
PZ
293/*
294 * part of the period that we allow rt tasks to run in us.
295 * default: 0.95s
296 */
297int sysctl_sched_rt_runtime = 950000;
fa85ae24 298
fa85ae24 299
1da177e4 300
0970d299 301/*
0122ec5b 302 * __task_rq_lock - lock the rq @p resides on.
b29739f9 303 */
70b97a7f 304static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
305 __acquires(rq->lock)
306{
0970d299
PZ
307 struct rq *rq;
308
0122ec5b
PZ
309 lockdep_assert_held(&p->pi_lock);
310
3a5c359a 311 for (;;) {
0970d299 312 rq = task_rq(p);
05fa785c 313 raw_spin_lock(&rq->lock);
65cc8e48 314 if (likely(rq == task_rq(p)))
3a5c359a 315 return rq;
05fa785c 316 raw_spin_unlock(&rq->lock);
b29739f9 317 }
b29739f9
IM
318}
319
1da177e4 320/*
0122ec5b 321 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 322 */
70b97a7f 323static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 324 __acquires(p->pi_lock)
1da177e4
LT
325 __acquires(rq->lock)
326{
70b97a7f 327 struct rq *rq;
1da177e4 328
3a5c359a 329 for (;;) {
0122ec5b 330 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 331 rq = task_rq(p);
05fa785c 332 raw_spin_lock(&rq->lock);
65cc8e48 333 if (likely(rq == task_rq(p)))
3a5c359a 334 return rq;
0122ec5b
PZ
335 raw_spin_unlock(&rq->lock);
336 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4 337 }
1da177e4
LT
338}
339
a9957449 340static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
341 __releases(rq->lock)
342{
05fa785c 343 raw_spin_unlock(&rq->lock);
b29739f9
IM
344}
345
0122ec5b
PZ
346static inline void
347task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 348 __releases(rq->lock)
0122ec5b 349 __releases(p->pi_lock)
1da177e4 350{
0122ec5b
PZ
351 raw_spin_unlock(&rq->lock);
352 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
353}
354
1da177e4 355/*
cc2a73b5 356 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 357 */
a9957449 358static struct rq *this_rq_lock(void)
1da177e4
LT
359 __acquires(rq->lock)
360{
70b97a7f 361 struct rq *rq;
1da177e4
LT
362
363 local_irq_disable();
364 rq = this_rq();
05fa785c 365 raw_spin_lock(&rq->lock);
1da177e4
LT
366
367 return rq;
368}
369
8f4d37ec
PZ
370#ifdef CONFIG_SCHED_HRTICK
371/*
372 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 373 */
8f4d37ec 374
8f4d37ec
PZ
375static void hrtick_clear(struct rq *rq)
376{
377 if (hrtimer_active(&rq->hrtick_timer))
378 hrtimer_cancel(&rq->hrtick_timer);
379}
380
8f4d37ec
PZ
381/*
382 * High-resolution timer tick.
383 * Runs from hardirq context with interrupts disabled.
384 */
385static enum hrtimer_restart hrtick(struct hrtimer *timer)
386{
387 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
388
389 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
390
05fa785c 391 raw_spin_lock(&rq->lock);
3e51f33f 392 update_rq_clock(rq);
8f4d37ec 393 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 394 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
395
396 return HRTIMER_NORESTART;
397}
398
95e904c7 399#ifdef CONFIG_SMP
971ee28c
PZ
400
401static int __hrtick_restart(struct rq *rq)
402{
403 struct hrtimer *timer = &rq->hrtick_timer;
404 ktime_t time = hrtimer_get_softexpires(timer);
405
406 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
407}
408
31656519
PZ
409/*
410 * called from hardirq (IPI) context
411 */
412static void __hrtick_start(void *arg)
b328ca18 413{
31656519 414 struct rq *rq = arg;
b328ca18 415
05fa785c 416 raw_spin_lock(&rq->lock);
971ee28c 417 __hrtick_restart(rq);
31656519 418 rq->hrtick_csd_pending = 0;
05fa785c 419 raw_spin_unlock(&rq->lock);
b328ca18
PZ
420}
421
31656519
PZ
422/*
423 * Called to set the hrtick timer state.
424 *
425 * called with rq->lock held and irqs disabled
426 */
029632fb 427void hrtick_start(struct rq *rq, u64 delay)
b328ca18 428{
31656519
PZ
429 struct hrtimer *timer = &rq->hrtick_timer;
430 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 431
cc584b21 432 hrtimer_set_expires(timer, time);
31656519
PZ
433
434 if (rq == this_rq()) {
971ee28c 435 __hrtick_restart(rq);
31656519 436 } else if (!rq->hrtick_csd_pending) {
6e275637 437 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
438 rq->hrtick_csd_pending = 1;
439 }
b328ca18
PZ
440}
441
442static int
443hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
444{
445 int cpu = (int)(long)hcpu;
446
447 switch (action) {
448 case CPU_UP_CANCELED:
449 case CPU_UP_CANCELED_FROZEN:
450 case CPU_DOWN_PREPARE:
451 case CPU_DOWN_PREPARE_FROZEN:
452 case CPU_DEAD:
453 case CPU_DEAD_FROZEN:
31656519 454 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
455 return NOTIFY_OK;
456 }
457
458 return NOTIFY_DONE;
459}
460
fa748203 461static __init void init_hrtick(void)
b328ca18
PZ
462{
463 hotcpu_notifier(hotplug_hrtick, 0);
464}
31656519
PZ
465#else
466/*
467 * Called to set the hrtick timer state.
468 *
469 * called with rq->lock held and irqs disabled
470 */
029632fb 471void hrtick_start(struct rq *rq, u64 delay)
31656519 472{
7f1e2ca9 473 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 474 HRTIMER_MODE_REL_PINNED, 0);
31656519 475}
b328ca18 476
006c75f1 477static inline void init_hrtick(void)
8f4d37ec 478{
8f4d37ec 479}
31656519 480#endif /* CONFIG_SMP */
8f4d37ec 481
31656519 482static void init_rq_hrtick(struct rq *rq)
8f4d37ec 483{
31656519
PZ
484#ifdef CONFIG_SMP
485 rq->hrtick_csd_pending = 0;
8f4d37ec 486
31656519
PZ
487 rq->hrtick_csd.flags = 0;
488 rq->hrtick_csd.func = __hrtick_start;
489 rq->hrtick_csd.info = rq;
490#endif
8f4d37ec 491
31656519
PZ
492 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
493 rq->hrtick_timer.function = hrtick;
8f4d37ec 494}
006c75f1 495#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
496static inline void hrtick_clear(struct rq *rq)
497{
498}
499
8f4d37ec
PZ
500static inline void init_rq_hrtick(struct rq *rq)
501{
502}
503
b328ca18
PZ
504static inline void init_hrtick(void)
505{
506}
006c75f1 507#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 508
c24d20db
IM
509/*
510 * resched_task - mark a task 'to be rescheduled now'.
511 *
512 * On UP this means the setting of the need_resched flag, on SMP it
513 * might also involve a cross-CPU call to trigger the scheduler on
514 * the target CPU.
515 */
029632fb 516void resched_task(struct task_struct *p)
c24d20db
IM
517{
518 int cpu;
519
b021fe3e 520 lockdep_assert_held(&task_rq(p)->lock);
c24d20db 521
5ed0cec0 522 if (test_tsk_need_resched(p))
c24d20db
IM
523 return;
524
5ed0cec0 525 set_tsk_need_resched(p);
c24d20db
IM
526
527 cpu = task_cpu(p);
f27dde8d
PZ
528 if (cpu == smp_processor_id()) {
529 set_preempt_need_resched();
c24d20db 530 return;
f27dde8d 531 }
c24d20db
IM
532
533 /* NEED_RESCHED must be visible before we test polling */
534 smp_mb();
535 if (!tsk_is_polling(p))
536 smp_send_reschedule(cpu);
537}
538
029632fb 539void resched_cpu(int cpu)
c24d20db
IM
540{
541 struct rq *rq = cpu_rq(cpu);
542 unsigned long flags;
543
05fa785c 544 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
545 return;
546 resched_task(cpu_curr(cpu));
05fa785c 547 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 548}
06d8308c 549
b021fe3e 550#ifdef CONFIG_SMP
3451d024 551#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
552/*
553 * In the semi idle case, use the nearest busy cpu for migrating timers
554 * from an idle cpu. This is good for power-savings.
555 *
556 * We don't do similar optimization for completely idle system, as
557 * selecting an idle cpu will add more delays to the timers than intended
558 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
559 */
560int get_nohz_timer_target(void)
561{
562 int cpu = smp_processor_id();
563 int i;
564 struct sched_domain *sd;
565
057f3fad 566 rcu_read_lock();
83cd4fe2 567 for_each_domain(cpu, sd) {
057f3fad
PZ
568 for_each_cpu(i, sched_domain_span(sd)) {
569 if (!idle_cpu(i)) {
570 cpu = i;
571 goto unlock;
572 }
573 }
83cd4fe2 574 }
057f3fad
PZ
575unlock:
576 rcu_read_unlock();
83cd4fe2
VP
577 return cpu;
578}
06d8308c
TG
579/*
580 * When add_timer_on() enqueues a timer into the timer wheel of an
581 * idle CPU then this timer might expire before the next timer event
582 * which is scheduled to wake up that CPU. In case of a completely
583 * idle system the next event might even be infinite time into the
584 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
585 * leaves the inner idle loop so the newly added timer is taken into
586 * account when the CPU goes back to idle and evaluates the timer
587 * wheel for the next timer event.
588 */
1c20091e 589static void wake_up_idle_cpu(int cpu)
06d8308c
TG
590{
591 struct rq *rq = cpu_rq(cpu);
592
593 if (cpu == smp_processor_id())
594 return;
595
596 /*
597 * This is safe, as this function is called with the timer
598 * wheel base lock of (cpu) held. When the CPU is on the way
599 * to idle and has not yet set rq->curr to idle then it will
600 * be serialized on the timer wheel base lock and take the new
601 * timer into account automatically.
602 */
603 if (rq->curr != rq->idle)
604 return;
45bf76df 605
45bf76df 606 /*
06d8308c
TG
607 * We can set TIF_RESCHED on the idle task of the other CPU
608 * lockless. The worst case is that the other CPU runs the
609 * idle task through an additional NOOP schedule()
45bf76df 610 */
5ed0cec0 611 set_tsk_need_resched(rq->idle);
45bf76df 612
06d8308c
TG
613 /* NEED_RESCHED must be visible before we test polling */
614 smp_mb();
615 if (!tsk_is_polling(rq->idle))
616 smp_send_reschedule(cpu);
45bf76df
IM
617}
618
c5bfece2 619static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 620{
c5bfece2 621 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
622 if (cpu != smp_processor_id() ||
623 tick_nohz_tick_stopped())
624 smp_send_reschedule(cpu);
625 return true;
626 }
627
628 return false;
629}
630
631void wake_up_nohz_cpu(int cpu)
632{
c5bfece2 633 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
634 wake_up_idle_cpu(cpu);
635}
636
ca38062e 637static inline bool got_nohz_idle_kick(void)
45bf76df 638{
1c792db7 639 int cpu = smp_processor_id();
873b4c65
VG
640
641 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
642 return false;
643
644 if (idle_cpu(cpu) && !need_resched())
645 return true;
646
647 /*
648 * We can't run Idle Load Balance on this CPU for this time so we
649 * cancel it and clear NOHZ_BALANCE_KICK
650 */
651 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
652 return false;
45bf76df
IM
653}
654
3451d024 655#else /* CONFIG_NO_HZ_COMMON */
45bf76df 656
ca38062e 657static inline bool got_nohz_idle_kick(void)
2069dd75 658{
ca38062e 659 return false;
2069dd75
PZ
660}
661
3451d024 662#endif /* CONFIG_NO_HZ_COMMON */
d842de87 663
ce831b38
FW
664#ifdef CONFIG_NO_HZ_FULL
665bool sched_can_stop_tick(void)
666{
667 struct rq *rq;
668
669 rq = this_rq();
670
671 /* Make sure rq->nr_running update is visible after the IPI */
672 smp_rmb();
673
674 /* More than one running task need preemption */
675 if (rq->nr_running > 1)
676 return false;
677
678 return true;
679}
680#endif /* CONFIG_NO_HZ_FULL */
d842de87 681
029632fb 682void sched_avg_update(struct rq *rq)
18d95a28 683{
e9e9250b
PZ
684 s64 period = sched_avg_period();
685
78becc27 686 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
687 /*
688 * Inline assembly required to prevent the compiler
689 * optimising this loop into a divmod call.
690 * See __iter_div_u64_rem() for another example of this.
691 */
692 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
693 rq->age_stamp += period;
694 rq->rt_avg /= 2;
695 }
18d95a28
PZ
696}
697
6d6bc0ad 698#endif /* CONFIG_SMP */
18d95a28 699
a790de99
PT
700#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
701 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 702/*
8277434e
PT
703 * Iterate task_group tree rooted at *from, calling @down when first entering a
704 * node and @up when leaving it for the final time.
705 *
706 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 707 */
029632fb 708int walk_tg_tree_from(struct task_group *from,
8277434e 709 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
710{
711 struct task_group *parent, *child;
eb755805 712 int ret;
c09595f6 713
8277434e
PT
714 parent = from;
715
c09595f6 716down:
eb755805
PZ
717 ret = (*down)(parent, data);
718 if (ret)
8277434e 719 goto out;
c09595f6
PZ
720 list_for_each_entry_rcu(child, &parent->children, siblings) {
721 parent = child;
722 goto down;
723
724up:
725 continue;
726 }
eb755805 727 ret = (*up)(parent, data);
8277434e
PT
728 if (ret || parent == from)
729 goto out;
c09595f6
PZ
730
731 child = parent;
732 parent = parent->parent;
733 if (parent)
734 goto up;
8277434e 735out:
eb755805 736 return ret;
c09595f6
PZ
737}
738
029632fb 739int tg_nop(struct task_group *tg, void *data)
eb755805 740{
e2b245f8 741 return 0;
eb755805 742}
18d95a28
PZ
743#endif
744
45bf76df
IM
745static void set_load_weight(struct task_struct *p)
746{
f05998d4
NR
747 int prio = p->static_prio - MAX_RT_PRIO;
748 struct load_weight *load = &p->se.load;
749
dd41f596
IM
750 /*
751 * SCHED_IDLE tasks get minimal weight:
752 */
753 if (p->policy == SCHED_IDLE) {
c8b28116 754 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 755 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
756 return;
757 }
71f8bd46 758
c8b28116 759 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 760 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
761}
762
371fd7e7 763static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 764{
a64692a3 765 update_rq_clock(rq);
43148951 766 sched_info_queued(rq, p);
371fd7e7 767 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
768}
769
371fd7e7 770static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 771{
a64692a3 772 update_rq_clock(rq);
43148951 773 sched_info_dequeued(rq, p);
371fd7e7 774 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
775}
776
029632fb 777void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
778{
779 if (task_contributes_to_load(p))
780 rq->nr_uninterruptible--;
781
371fd7e7 782 enqueue_task(rq, p, flags);
1e3c88bd
PZ
783}
784
029632fb 785void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
786{
787 if (task_contributes_to_load(p))
788 rq->nr_uninterruptible++;
789
371fd7e7 790 dequeue_task(rq, p, flags);
1e3c88bd
PZ
791}
792
fe44d621 793static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 794{
095c0aa8
GC
795/*
796 * In theory, the compile should just see 0 here, and optimize out the call
797 * to sched_rt_avg_update. But I don't trust it...
798 */
799#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
800 s64 steal = 0, irq_delta = 0;
801#endif
802#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 803 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
804
805 /*
806 * Since irq_time is only updated on {soft,}irq_exit, we might run into
807 * this case when a previous update_rq_clock() happened inside a
808 * {soft,}irq region.
809 *
810 * When this happens, we stop ->clock_task and only update the
811 * prev_irq_time stamp to account for the part that fit, so that a next
812 * update will consume the rest. This ensures ->clock_task is
813 * monotonic.
814 *
815 * It does however cause some slight miss-attribution of {soft,}irq
816 * time, a more accurate solution would be to update the irq_time using
817 * the current rq->clock timestamp, except that would require using
818 * atomic ops.
819 */
820 if (irq_delta > delta)
821 irq_delta = delta;
822
823 rq->prev_irq_time += irq_delta;
824 delta -= irq_delta;
095c0aa8
GC
825#endif
826#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 827 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
828 u64 st;
829
830 steal = paravirt_steal_clock(cpu_of(rq));
831 steal -= rq->prev_steal_time_rq;
832
833 if (unlikely(steal > delta))
834 steal = delta;
835
836 st = steal_ticks(steal);
837 steal = st * TICK_NSEC;
838
839 rq->prev_steal_time_rq += steal;
840
841 delta -= steal;
842 }
843#endif
844
fe44d621
PZ
845 rq->clock_task += delta;
846
095c0aa8
GC
847#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
848 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
849 sched_rt_avg_update(rq, irq_delta + steal);
850#endif
aa483808
VP
851}
852
34f971f6
PZ
853void sched_set_stop_task(int cpu, struct task_struct *stop)
854{
855 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
856 struct task_struct *old_stop = cpu_rq(cpu)->stop;
857
858 if (stop) {
859 /*
860 * Make it appear like a SCHED_FIFO task, its something
861 * userspace knows about and won't get confused about.
862 *
863 * Also, it will make PI more or less work without too
864 * much confusion -- but then, stop work should not
865 * rely on PI working anyway.
866 */
867 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
868
869 stop->sched_class = &stop_sched_class;
870 }
871
872 cpu_rq(cpu)->stop = stop;
873
874 if (old_stop) {
875 /*
876 * Reset it back to a normal scheduling class so that
877 * it can die in pieces.
878 */
879 old_stop->sched_class = &rt_sched_class;
880 }
881}
882
14531189 883/*
dd41f596 884 * __normal_prio - return the priority that is based on the static prio
14531189 885 */
14531189
IM
886static inline int __normal_prio(struct task_struct *p)
887{
dd41f596 888 return p->static_prio;
14531189
IM
889}
890
b29739f9
IM
891/*
892 * Calculate the expected normal priority: i.e. priority
893 * without taking RT-inheritance into account. Might be
894 * boosted by interactivity modifiers. Changes upon fork,
895 * setprio syscalls, and whenever the interactivity
896 * estimator recalculates.
897 */
36c8b586 898static inline int normal_prio(struct task_struct *p)
b29739f9
IM
899{
900 int prio;
901
e05606d3 902 if (task_has_rt_policy(p))
b29739f9
IM
903 prio = MAX_RT_PRIO-1 - p->rt_priority;
904 else
905 prio = __normal_prio(p);
906 return prio;
907}
908
909/*
910 * Calculate the current priority, i.e. the priority
911 * taken into account by the scheduler. This value might
912 * be boosted by RT tasks, or might be boosted by
913 * interactivity modifiers. Will be RT if the task got
914 * RT-boosted. If not then it returns p->normal_prio.
915 */
36c8b586 916static int effective_prio(struct task_struct *p)
b29739f9
IM
917{
918 p->normal_prio = normal_prio(p);
919 /*
920 * If we are RT tasks or we were boosted to RT priority,
921 * keep the priority unchanged. Otherwise, update priority
922 * to the normal priority:
923 */
924 if (!rt_prio(p->prio))
925 return p->normal_prio;
926 return p->prio;
927}
928
1da177e4
LT
929/**
930 * task_curr - is this task currently executing on a CPU?
931 * @p: the task in question.
e69f6186
YB
932 *
933 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 934 */
36c8b586 935inline int task_curr(const struct task_struct *p)
1da177e4
LT
936{
937 return cpu_curr(task_cpu(p)) == p;
938}
939
cb469845
SR
940static inline void check_class_changed(struct rq *rq, struct task_struct *p,
941 const struct sched_class *prev_class,
da7a735e 942 int oldprio)
cb469845
SR
943{
944 if (prev_class != p->sched_class) {
945 if (prev_class->switched_from)
da7a735e
PZ
946 prev_class->switched_from(rq, p);
947 p->sched_class->switched_to(rq, p);
948 } else if (oldprio != p->prio)
949 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
950}
951
029632fb 952void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
953{
954 const struct sched_class *class;
955
956 if (p->sched_class == rq->curr->sched_class) {
957 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
958 } else {
959 for_each_class(class) {
960 if (class == rq->curr->sched_class)
961 break;
962 if (class == p->sched_class) {
963 resched_task(rq->curr);
964 break;
965 }
966 }
967 }
968
969 /*
970 * A queue event has occurred, and we're going to schedule. In
971 * this case, we can save a useless back to back clock update.
972 */
fd2f4419 973 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
974 rq->skip_clock_update = 1;
975}
976
1da177e4 977#ifdef CONFIG_SMP
dd41f596 978void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 979{
e2912009
PZ
980#ifdef CONFIG_SCHED_DEBUG
981 /*
982 * We should never call set_task_cpu() on a blocked task,
983 * ttwu() will sort out the placement.
984 */
077614ee 985 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
01028747 986 !(task_preempt_count(p) & PREEMPT_ACTIVE));
0122ec5b
PZ
987
988#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
989 /*
990 * The caller should hold either p->pi_lock or rq->lock, when changing
991 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
992 *
993 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 994 * see task_group().
6c6c54e1
PZ
995 *
996 * Furthermore, all task_rq users should acquire both locks, see
997 * task_rq_lock().
998 */
0122ec5b
PZ
999 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1000 lockdep_is_held(&task_rq(p)->lock)));
1001#endif
e2912009
PZ
1002#endif
1003
de1d7286 1004 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1005
0c69774e 1006 if (task_cpu(p) != new_cpu) {
0a74bef8
PT
1007 if (p->sched_class->migrate_task_rq)
1008 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 1009 p->se.nr_migrations++;
a8b0ca17 1010 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
0c69774e 1011 }
dd41f596
IM
1012
1013 __set_task_cpu(p, new_cpu);
c65cc870
IM
1014}
1015
ac66f547
PZ
1016static void __migrate_swap_task(struct task_struct *p, int cpu)
1017{
1018 if (p->on_rq) {
1019 struct rq *src_rq, *dst_rq;
1020
1021 src_rq = task_rq(p);
1022 dst_rq = cpu_rq(cpu);
1023
1024 deactivate_task(src_rq, p, 0);
1025 set_task_cpu(p, cpu);
1026 activate_task(dst_rq, p, 0);
1027 check_preempt_curr(dst_rq, p, 0);
1028 } else {
1029 /*
1030 * Task isn't running anymore; make it appear like we migrated
1031 * it before it went to sleep. This means on wakeup we make the
1032 * previous cpu our targer instead of where it really is.
1033 */
1034 p->wake_cpu = cpu;
1035 }
1036}
1037
1038struct migration_swap_arg {
1039 struct task_struct *src_task, *dst_task;
1040 int src_cpu, dst_cpu;
1041};
1042
1043static int migrate_swap_stop(void *data)
1044{
1045 struct migration_swap_arg *arg = data;
1046 struct rq *src_rq, *dst_rq;
1047 int ret = -EAGAIN;
1048
1049 src_rq = cpu_rq(arg->src_cpu);
1050 dst_rq = cpu_rq(arg->dst_cpu);
1051
74602315
PZ
1052 double_raw_lock(&arg->src_task->pi_lock,
1053 &arg->dst_task->pi_lock);
ac66f547
PZ
1054 double_rq_lock(src_rq, dst_rq);
1055 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1056 goto unlock;
1057
1058 if (task_cpu(arg->src_task) != arg->src_cpu)
1059 goto unlock;
1060
1061 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1062 goto unlock;
1063
1064 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1065 goto unlock;
1066
1067 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1068 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1069
1070 ret = 0;
1071
1072unlock:
1073 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1074 raw_spin_unlock(&arg->dst_task->pi_lock);
1075 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1076
1077 return ret;
1078}
1079
1080/*
1081 * Cross migrate two tasks
1082 */
1083int migrate_swap(struct task_struct *cur, struct task_struct *p)
1084{
1085 struct migration_swap_arg arg;
1086 int ret = -EINVAL;
1087
1088 get_online_cpus();
1089
1090 arg = (struct migration_swap_arg){
1091 .src_task = cur,
1092 .src_cpu = task_cpu(cur),
1093 .dst_task = p,
1094 .dst_cpu = task_cpu(p),
1095 };
1096
1097 if (arg.src_cpu == arg.dst_cpu)
1098 goto out;
1099
1100 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1101 goto out;
1102
1103 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1104 goto out;
1105
1106 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1107 goto out;
1108
1109 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1110
1111out:
1112 put_online_cpus();
1113 return ret;
1114}
1115
969c7921 1116struct migration_arg {
36c8b586 1117 struct task_struct *task;
1da177e4 1118 int dest_cpu;
70b97a7f 1119};
1da177e4 1120
969c7921
TH
1121static int migration_cpu_stop(void *data);
1122
1da177e4
LT
1123/*
1124 * wait_task_inactive - wait for a thread to unschedule.
1125 *
85ba2d86
RM
1126 * If @match_state is nonzero, it's the @p->state value just checked and
1127 * not expected to change. If it changes, i.e. @p might have woken up,
1128 * then return zero. When we succeed in waiting for @p to be off its CPU,
1129 * we return a positive number (its total switch count). If a second call
1130 * a short while later returns the same number, the caller can be sure that
1131 * @p has remained unscheduled the whole time.
1132 *
1da177e4
LT
1133 * The caller must ensure that the task *will* unschedule sometime soon,
1134 * else this function might spin for a *long* time. This function can't
1135 * be called with interrupts off, or it may introduce deadlock with
1136 * smp_call_function() if an IPI is sent by the same process we are
1137 * waiting to become inactive.
1138 */
85ba2d86 1139unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1140{
1141 unsigned long flags;
dd41f596 1142 int running, on_rq;
85ba2d86 1143 unsigned long ncsw;
70b97a7f 1144 struct rq *rq;
1da177e4 1145
3a5c359a
AK
1146 for (;;) {
1147 /*
1148 * We do the initial early heuristics without holding
1149 * any task-queue locks at all. We'll only try to get
1150 * the runqueue lock when things look like they will
1151 * work out!
1152 */
1153 rq = task_rq(p);
fa490cfd 1154
3a5c359a
AK
1155 /*
1156 * If the task is actively running on another CPU
1157 * still, just relax and busy-wait without holding
1158 * any locks.
1159 *
1160 * NOTE! Since we don't hold any locks, it's not
1161 * even sure that "rq" stays as the right runqueue!
1162 * But we don't care, since "task_running()" will
1163 * return false if the runqueue has changed and p
1164 * is actually now running somewhere else!
1165 */
85ba2d86
RM
1166 while (task_running(rq, p)) {
1167 if (match_state && unlikely(p->state != match_state))
1168 return 0;
3a5c359a 1169 cpu_relax();
85ba2d86 1170 }
fa490cfd 1171
3a5c359a
AK
1172 /*
1173 * Ok, time to look more closely! We need the rq
1174 * lock now, to be *sure*. If we're wrong, we'll
1175 * just go back and repeat.
1176 */
1177 rq = task_rq_lock(p, &flags);
27a9da65 1178 trace_sched_wait_task(p);
3a5c359a 1179 running = task_running(rq, p);
fd2f4419 1180 on_rq = p->on_rq;
85ba2d86 1181 ncsw = 0;
f31e11d8 1182 if (!match_state || p->state == match_state)
93dcf55f 1183 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1184 task_rq_unlock(rq, p, &flags);
fa490cfd 1185
85ba2d86
RM
1186 /*
1187 * If it changed from the expected state, bail out now.
1188 */
1189 if (unlikely(!ncsw))
1190 break;
1191
3a5c359a
AK
1192 /*
1193 * Was it really running after all now that we
1194 * checked with the proper locks actually held?
1195 *
1196 * Oops. Go back and try again..
1197 */
1198 if (unlikely(running)) {
1199 cpu_relax();
1200 continue;
1201 }
fa490cfd 1202
3a5c359a
AK
1203 /*
1204 * It's not enough that it's not actively running,
1205 * it must be off the runqueue _entirely_, and not
1206 * preempted!
1207 *
80dd99b3 1208 * So if it was still runnable (but just not actively
3a5c359a
AK
1209 * running right now), it's preempted, and we should
1210 * yield - it could be a while.
1211 */
1212 if (unlikely(on_rq)) {
8eb90c30
TG
1213 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1214
1215 set_current_state(TASK_UNINTERRUPTIBLE);
1216 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1217 continue;
1218 }
fa490cfd 1219
3a5c359a
AK
1220 /*
1221 * Ahh, all good. It wasn't running, and it wasn't
1222 * runnable, which means that it will never become
1223 * running in the future either. We're all done!
1224 */
1225 break;
1226 }
85ba2d86
RM
1227
1228 return ncsw;
1da177e4
LT
1229}
1230
1231/***
1232 * kick_process - kick a running thread to enter/exit the kernel
1233 * @p: the to-be-kicked thread
1234 *
1235 * Cause a process which is running on another CPU to enter
1236 * kernel-mode, without any delay. (to get signals handled.)
1237 *
25985edc 1238 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1239 * because all it wants to ensure is that the remote task enters
1240 * the kernel. If the IPI races and the task has been migrated
1241 * to another CPU then no harm is done and the purpose has been
1242 * achieved as well.
1243 */
36c8b586 1244void kick_process(struct task_struct *p)
1da177e4
LT
1245{
1246 int cpu;
1247
1248 preempt_disable();
1249 cpu = task_cpu(p);
1250 if ((cpu != smp_processor_id()) && task_curr(p))
1251 smp_send_reschedule(cpu);
1252 preempt_enable();
1253}
b43e3521 1254EXPORT_SYMBOL_GPL(kick_process);
476d139c 1255#endif /* CONFIG_SMP */
1da177e4 1256
970b13ba 1257#ifdef CONFIG_SMP
30da688e 1258/*
013fdb80 1259 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1260 */
5da9a0fb
PZ
1261static int select_fallback_rq(int cpu, struct task_struct *p)
1262{
aa00d89c
TC
1263 int nid = cpu_to_node(cpu);
1264 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1265 enum { cpuset, possible, fail } state = cpuset;
1266 int dest_cpu;
5da9a0fb 1267
aa00d89c
TC
1268 /*
1269 * If the node that the cpu is on has been offlined, cpu_to_node()
1270 * will return -1. There is no cpu on the node, and we should
1271 * select the cpu on the other node.
1272 */
1273 if (nid != -1) {
1274 nodemask = cpumask_of_node(nid);
1275
1276 /* Look for allowed, online CPU in same node. */
1277 for_each_cpu(dest_cpu, nodemask) {
1278 if (!cpu_online(dest_cpu))
1279 continue;
1280 if (!cpu_active(dest_cpu))
1281 continue;
1282 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1283 return dest_cpu;
1284 }
2baab4e9 1285 }
5da9a0fb 1286
2baab4e9
PZ
1287 for (;;) {
1288 /* Any allowed, online CPU? */
e3831edd 1289 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1290 if (!cpu_online(dest_cpu))
1291 continue;
1292 if (!cpu_active(dest_cpu))
1293 continue;
1294 goto out;
1295 }
5da9a0fb 1296
2baab4e9
PZ
1297 switch (state) {
1298 case cpuset:
1299 /* No more Mr. Nice Guy. */
1300 cpuset_cpus_allowed_fallback(p);
1301 state = possible;
1302 break;
1303
1304 case possible:
1305 do_set_cpus_allowed(p, cpu_possible_mask);
1306 state = fail;
1307 break;
1308
1309 case fail:
1310 BUG();
1311 break;
1312 }
1313 }
1314
1315out:
1316 if (state != cpuset) {
1317 /*
1318 * Don't tell them about moving exiting tasks or
1319 * kernel threads (both mm NULL), since they never
1320 * leave kernel.
1321 */
1322 if (p->mm && printk_ratelimit()) {
1323 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1324 task_pid_nr(p), p->comm, cpu);
1325 }
5da9a0fb
PZ
1326 }
1327
1328 return dest_cpu;
1329}
1330
e2912009 1331/*
013fdb80 1332 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1333 */
970b13ba 1334static inline
ac66f547 1335int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1336{
ac66f547 1337 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e2912009
PZ
1338
1339 /*
1340 * In order not to call set_task_cpu() on a blocking task we need
1341 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1342 * cpu.
1343 *
1344 * Since this is common to all placement strategies, this lives here.
1345 *
1346 * [ this allows ->select_task() to simply return task_cpu(p) and
1347 * not worry about this generic constraint ]
1348 */
fa17b507 1349 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1350 !cpu_online(cpu)))
5da9a0fb 1351 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1352
1353 return cpu;
970b13ba 1354}
09a40af5
MG
1355
1356static void update_avg(u64 *avg, u64 sample)
1357{
1358 s64 diff = sample - *avg;
1359 *avg += diff >> 3;
1360}
970b13ba
PZ
1361#endif
1362
d7c01d27 1363static void
b84cb5df 1364ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1365{
d7c01d27 1366#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1367 struct rq *rq = this_rq();
1368
d7c01d27
PZ
1369#ifdef CONFIG_SMP
1370 int this_cpu = smp_processor_id();
1371
1372 if (cpu == this_cpu) {
1373 schedstat_inc(rq, ttwu_local);
1374 schedstat_inc(p, se.statistics.nr_wakeups_local);
1375 } else {
1376 struct sched_domain *sd;
1377
1378 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1379 rcu_read_lock();
d7c01d27
PZ
1380 for_each_domain(this_cpu, sd) {
1381 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1382 schedstat_inc(sd, ttwu_wake_remote);
1383 break;
1384 }
1385 }
057f3fad 1386 rcu_read_unlock();
d7c01d27 1387 }
f339b9dc
PZ
1388
1389 if (wake_flags & WF_MIGRATED)
1390 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1391
d7c01d27
PZ
1392#endif /* CONFIG_SMP */
1393
1394 schedstat_inc(rq, ttwu_count);
9ed3811a 1395 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1396
1397 if (wake_flags & WF_SYNC)
9ed3811a 1398 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1399
d7c01d27
PZ
1400#endif /* CONFIG_SCHEDSTATS */
1401}
1402
1403static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1404{
9ed3811a 1405 activate_task(rq, p, en_flags);
fd2f4419 1406 p->on_rq = 1;
c2f7115e
PZ
1407
1408 /* if a worker is waking up, notify workqueue */
1409 if (p->flags & PF_WQ_WORKER)
1410 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1411}
1412
23f41eeb
PZ
1413/*
1414 * Mark the task runnable and perform wakeup-preemption.
1415 */
89363381 1416static void
23f41eeb 1417ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1418{
9ed3811a 1419 check_preempt_curr(rq, p, wake_flags);
a8d7ad52 1420 trace_sched_wakeup(p, true);
9ed3811a
TH
1421
1422 p->state = TASK_RUNNING;
1423#ifdef CONFIG_SMP
1424 if (p->sched_class->task_woken)
1425 p->sched_class->task_woken(rq, p);
1426
e69c6341 1427 if (rq->idle_stamp) {
78becc27 1428 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1429 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1430
abfafa54
JL
1431 update_avg(&rq->avg_idle, delta);
1432
1433 if (rq->avg_idle > max)
9ed3811a 1434 rq->avg_idle = max;
abfafa54 1435
9ed3811a
TH
1436 rq->idle_stamp = 0;
1437 }
1438#endif
1439}
1440
c05fbafb
PZ
1441static void
1442ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1443{
1444#ifdef CONFIG_SMP
1445 if (p->sched_contributes_to_load)
1446 rq->nr_uninterruptible--;
1447#endif
1448
1449 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1450 ttwu_do_wakeup(rq, p, wake_flags);
1451}
1452
1453/*
1454 * Called in case the task @p isn't fully descheduled from its runqueue,
1455 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1456 * since all we need to do is flip p->state to TASK_RUNNING, since
1457 * the task is still ->on_rq.
1458 */
1459static int ttwu_remote(struct task_struct *p, int wake_flags)
1460{
1461 struct rq *rq;
1462 int ret = 0;
1463
1464 rq = __task_rq_lock(p);
1465 if (p->on_rq) {
1ad4ec0d
FW
1466 /* check_preempt_curr() may use rq clock */
1467 update_rq_clock(rq);
c05fbafb
PZ
1468 ttwu_do_wakeup(rq, p, wake_flags);
1469 ret = 1;
1470 }
1471 __task_rq_unlock(rq);
1472
1473 return ret;
1474}
1475
317f3941 1476#ifdef CONFIG_SMP
fa14ff4a 1477static void sched_ttwu_pending(void)
317f3941
PZ
1478{
1479 struct rq *rq = this_rq();
fa14ff4a
PZ
1480 struct llist_node *llist = llist_del_all(&rq->wake_list);
1481 struct task_struct *p;
317f3941
PZ
1482
1483 raw_spin_lock(&rq->lock);
1484
fa14ff4a
PZ
1485 while (llist) {
1486 p = llist_entry(llist, struct task_struct, wake_entry);
1487 llist = llist_next(llist);
317f3941
PZ
1488 ttwu_do_activate(rq, p, 0);
1489 }
1490
1491 raw_spin_unlock(&rq->lock);
1492}
1493
1494void scheduler_ipi(void)
1495{
f27dde8d
PZ
1496 /*
1497 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1498 * TIF_NEED_RESCHED remotely (for the first time) will also send
1499 * this IPI.
1500 */
1501 if (tif_need_resched())
1502 set_preempt_need_resched();
1503
873b4c65
VG
1504 if (llist_empty(&this_rq()->wake_list)
1505 && !tick_nohz_full_cpu(smp_processor_id())
1506 && !got_nohz_idle_kick())
c5d753a5
PZ
1507 return;
1508
1509 /*
1510 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1511 * traditionally all their work was done from the interrupt return
1512 * path. Now that we actually do some work, we need to make sure
1513 * we do call them.
1514 *
1515 * Some archs already do call them, luckily irq_enter/exit nest
1516 * properly.
1517 *
1518 * Arguably we should visit all archs and update all handlers,
1519 * however a fair share of IPIs are still resched only so this would
1520 * somewhat pessimize the simple resched case.
1521 */
1522 irq_enter();
ff442c51 1523 tick_nohz_full_check();
fa14ff4a 1524 sched_ttwu_pending();
ca38062e
SS
1525
1526 /*
1527 * Check if someone kicked us for doing the nohz idle load balance.
1528 */
873b4c65 1529 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1530 this_rq()->idle_balance = 1;
ca38062e 1531 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1532 }
c5d753a5 1533 irq_exit();
317f3941
PZ
1534}
1535
1536static void ttwu_queue_remote(struct task_struct *p, int cpu)
1537{
fa14ff4a 1538 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
317f3941
PZ
1539 smp_send_reschedule(cpu);
1540}
d6aa8f85 1541
39be3501 1542bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1543{
1544 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1545}
d6aa8f85 1546#endif /* CONFIG_SMP */
317f3941 1547
c05fbafb
PZ
1548static void ttwu_queue(struct task_struct *p, int cpu)
1549{
1550 struct rq *rq = cpu_rq(cpu);
1551
17d9f311 1552#if defined(CONFIG_SMP)
39be3501 1553 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1554 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1555 ttwu_queue_remote(p, cpu);
1556 return;
1557 }
1558#endif
1559
c05fbafb
PZ
1560 raw_spin_lock(&rq->lock);
1561 ttwu_do_activate(rq, p, 0);
1562 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1563}
1564
1565/**
1da177e4 1566 * try_to_wake_up - wake up a thread
9ed3811a 1567 * @p: the thread to be awakened
1da177e4 1568 * @state: the mask of task states that can be woken
9ed3811a 1569 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1570 *
1571 * Put it on the run-queue if it's not already there. The "current"
1572 * thread is always on the run-queue (except when the actual
1573 * re-schedule is in progress), and as such you're allowed to do
1574 * the simpler "current->state = TASK_RUNNING" to mark yourself
1575 * runnable without the overhead of this.
1576 *
e69f6186 1577 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1578 * or @state didn't match @p's state.
1da177e4 1579 */
e4a52bcb
PZ
1580static int
1581try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1582{
1da177e4 1583 unsigned long flags;
c05fbafb 1584 int cpu, success = 0;
2398f2c6 1585
e0acd0a6
ON
1586 /*
1587 * If we are going to wake up a thread waiting for CONDITION we
1588 * need to ensure that CONDITION=1 done by the caller can not be
1589 * reordered with p->state check below. This pairs with mb() in
1590 * set_current_state() the waiting thread does.
1591 */
1592 smp_mb__before_spinlock();
013fdb80 1593 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1594 if (!(p->state & state))
1da177e4
LT
1595 goto out;
1596
c05fbafb 1597 success = 1; /* we're going to change ->state */
1da177e4 1598 cpu = task_cpu(p);
1da177e4 1599
c05fbafb
PZ
1600 if (p->on_rq && ttwu_remote(p, wake_flags))
1601 goto stat;
1da177e4 1602
1da177e4 1603#ifdef CONFIG_SMP
e9c84311 1604 /*
c05fbafb
PZ
1605 * If the owning (remote) cpu is still in the middle of schedule() with
1606 * this task as prev, wait until its done referencing the task.
e9c84311 1607 */
f3e94786 1608 while (p->on_cpu)
e4a52bcb 1609 cpu_relax();
0970d299 1610 /*
e4a52bcb 1611 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1612 */
e4a52bcb 1613 smp_rmb();
1da177e4 1614
a8e4f2ea 1615 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1616 p->state = TASK_WAKING;
e7693a36 1617
e4a52bcb 1618 if (p->sched_class->task_waking)
74f8e4b2 1619 p->sched_class->task_waking(p);
efbbd05a 1620
ac66f547 1621 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1622 if (task_cpu(p) != cpu) {
1623 wake_flags |= WF_MIGRATED;
e4a52bcb 1624 set_task_cpu(p, cpu);
f339b9dc 1625 }
1da177e4 1626#endif /* CONFIG_SMP */
1da177e4 1627
c05fbafb
PZ
1628 ttwu_queue(p, cpu);
1629stat:
b84cb5df 1630 ttwu_stat(p, cpu, wake_flags);
1da177e4 1631out:
013fdb80 1632 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1633
1634 return success;
1635}
1636
21aa9af0
TH
1637/**
1638 * try_to_wake_up_local - try to wake up a local task with rq lock held
1639 * @p: the thread to be awakened
1640 *
2acca55e 1641 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1642 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1643 * the current task.
21aa9af0
TH
1644 */
1645static void try_to_wake_up_local(struct task_struct *p)
1646{
1647 struct rq *rq = task_rq(p);
21aa9af0 1648
383efcd0
TH
1649 if (WARN_ON_ONCE(rq != this_rq()) ||
1650 WARN_ON_ONCE(p == current))
1651 return;
1652
21aa9af0
TH
1653 lockdep_assert_held(&rq->lock);
1654
2acca55e
PZ
1655 if (!raw_spin_trylock(&p->pi_lock)) {
1656 raw_spin_unlock(&rq->lock);
1657 raw_spin_lock(&p->pi_lock);
1658 raw_spin_lock(&rq->lock);
1659 }
1660
21aa9af0 1661 if (!(p->state & TASK_NORMAL))
2acca55e 1662 goto out;
21aa9af0 1663
fd2f4419 1664 if (!p->on_rq)
d7c01d27
PZ
1665 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1666
23f41eeb 1667 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1668 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1669out:
1670 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1671}
1672
50fa610a
DH
1673/**
1674 * wake_up_process - Wake up a specific process
1675 * @p: The process to be woken up.
1676 *
1677 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
1678 * processes.
1679 *
1680 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
1681 *
1682 * It may be assumed that this function implies a write memory barrier before
1683 * changing the task state if and only if any tasks are woken up.
1684 */
7ad5b3a5 1685int wake_up_process(struct task_struct *p)
1da177e4 1686{
9067ac85
ON
1687 WARN_ON(task_is_stopped_or_traced(p));
1688 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 1689}
1da177e4
LT
1690EXPORT_SYMBOL(wake_up_process);
1691
7ad5b3a5 1692int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1693{
1694 return try_to_wake_up(p, state, 0);
1695}
1696
1da177e4
LT
1697/*
1698 * Perform scheduler related setup for a newly forked process p.
1699 * p is forked by current.
dd41f596
IM
1700 *
1701 * __sched_fork() is basic setup used by init_idle() too:
1702 */
5e1576ed 1703static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1704{
fd2f4419
PZ
1705 p->on_rq = 0;
1706
1707 p->se.on_rq = 0;
dd41f596
IM
1708 p->se.exec_start = 0;
1709 p->se.sum_exec_runtime = 0;
f6cf891c 1710 p->se.prev_sum_exec_runtime = 0;
6c594c21 1711 p->se.nr_migrations = 0;
da7a735e 1712 p->se.vruntime = 0;
fd2f4419 1713 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
1714
1715#ifdef CONFIG_SCHEDSTATS
41acab88 1716 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 1717#endif
476d139c 1718
fa717060 1719 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 1720
e107be36
AK
1721#ifdef CONFIG_PREEMPT_NOTIFIERS
1722 INIT_HLIST_HEAD(&p->preempt_notifiers);
1723#endif
cbee9f88
PZ
1724
1725#ifdef CONFIG_NUMA_BALANCING
1726 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 1727 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
1728 p->mm->numa_scan_seq = 0;
1729 }
1730
5e1576ed
RR
1731 if (clone_flags & CLONE_VM)
1732 p->numa_preferred_nid = current->numa_preferred_nid;
1733 else
1734 p->numa_preferred_nid = -1;
1735
cbee9f88
PZ
1736 p->node_stamp = 0ULL;
1737 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 1738 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 1739 p->numa_work.next = &p->numa_work;
f809ca9a 1740 p->numa_faults = NULL;
745d6147 1741 p->numa_faults_buffer = NULL;
8c8a743c
PZ
1742
1743 INIT_LIST_HEAD(&p->numa_entry);
1744 p->numa_group = NULL;
cbee9f88 1745#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1746}
1747
1a687c2e 1748#ifdef CONFIG_NUMA_BALANCING
3105b86a 1749#ifdef CONFIG_SCHED_DEBUG
1a687c2e
MG
1750void set_numabalancing_state(bool enabled)
1751{
1752 if (enabled)
1753 sched_feat_set("NUMA");
1754 else
1755 sched_feat_set("NO_NUMA");
1756}
3105b86a
MG
1757#else
1758__read_mostly bool numabalancing_enabled;
1759
1760void set_numabalancing_state(bool enabled)
1761{
1762 numabalancing_enabled = enabled;
dd41f596 1763}
3105b86a 1764#endif /* CONFIG_SCHED_DEBUG */
1a687c2e 1765#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1766
1767/*
1768 * fork()/clone()-time setup:
1769 */
5e1576ed 1770void sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1771{
0122ec5b 1772 unsigned long flags;
dd41f596
IM
1773 int cpu = get_cpu();
1774
5e1576ed 1775 __sched_fork(clone_flags, p);
06b83b5f 1776 /*
0017d735 1777 * We mark the process as running here. This guarantees that
06b83b5f
PZ
1778 * nobody will actually run it, and a signal or other external
1779 * event cannot wake it up and insert it on the runqueue either.
1780 */
0017d735 1781 p->state = TASK_RUNNING;
dd41f596 1782
c350a04e
MG
1783 /*
1784 * Make sure we do not leak PI boosting priority to the child.
1785 */
1786 p->prio = current->normal_prio;
1787
b9dc29e7
MG
1788 /*
1789 * Revert to default priority/policy on fork if requested.
1790 */
1791 if (unlikely(p->sched_reset_on_fork)) {
c350a04e 1792 if (task_has_rt_policy(p)) {
b9dc29e7 1793 p->policy = SCHED_NORMAL;
6c697bdf 1794 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
1795 p->rt_priority = 0;
1796 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1797 p->static_prio = NICE_TO_PRIO(0);
1798
1799 p->prio = p->normal_prio = __normal_prio(p);
1800 set_load_weight(p);
6c697bdf 1801
b9dc29e7
MG
1802 /*
1803 * We don't need the reset flag anymore after the fork. It has
1804 * fulfilled its duty:
1805 */
1806 p->sched_reset_on_fork = 0;
1807 }
ca94c442 1808
2ddbf952
HS
1809 if (!rt_prio(p->prio))
1810 p->sched_class = &fair_sched_class;
b29739f9 1811
cd29fe6f
PZ
1812 if (p->sched_class->task_fork)
1813 p->sched_class->task_fork(p);
1814
86951599
PZ
1815 /*
1816 * The child is not yet in the pid-hash so no cgroup attach races,
1817 * and the cgroup is pinned to this child due to cgroup_fork()
1818 * is ran before sched_fork().
1819 *
1820 * Silence PROVE_RCU.
1821 */
0122ec5b 1822 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 1823 set_task_cpu(p, cpu);
0122ec5b 1824 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 1825
52f17b6c 1826#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1827 if (likely(sched_info_on()))
52f17b6c 1828 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1829#endif
3ca7a440
PZ
1830#if defined(CONFIG_SMP)
1831 p->on_cpu = 0;
4866cde0 1832#endif
01028747 1833 init_task_preempt_count(p);
806c09a7 1834#ifdef CONFIG_SMP
917b627d 1835 plist_node_init(&p->pushable_tasks, MAX_PRIO);
806c09a7 1836#endif
917b627d 1837
476d139c 1838 put_cpu();
1da177e4
LT
1839}
1840
1841/*
1842 * wake_up_new_task - wake up a newly created task for the first time.
1843 *
1844 * This function will do some initial scheduler statistics housekeeping
1845 * that must be done for every newly created context, then puts the task
1846 * on the runqueue and wakes it.
1847 */
3e51e3ed 1848void wake_up_new_task(struct task_struct *p)
1da177e4
LT
1849{
1850 unsigned long flags;
dd41f596 1851 struct rq *rq;
fabf318e 1852
ab2515c4 1853 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
1854#ifdef CONFIG_SMP
1855 /*
1856 * Fork balancing, do it here and not earlier because:
1857 * - cpus_allowed can change in the fork path
1858 * - any previously selected cpu might disappear through hotplug
fabf318e 1859 */
ac66f547 1860 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735
PZ
1861#endif
1862
a75cdaa9
AS
1863 /* Initialize new task's runnable average */
1864 init_task_runnable_average(p);
ab2515c4 1865 rq = __task_rq_lock(p);
cd29fe6f 1866 activate_task(rq, p, 0);
fd2f4419 1867 p->on_rq = 1;
89363381 1868 trace_sched_wakeup_new(p, true);
a7558e01 1869 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 1870#ifdef CONFIG_SMP
efbbd05a
PZ
1871 if (p->sched_class->task_woken)
1872 p->sched_class->task_woken(rq, p);
9a897c5a 1873#endif
0122ec5b 1874 task_rq_unlock(rq, p, &flags);
1da177e4
LT
1875}
1876
e107be36
AK
1877#ifdef CONFIG_PREEMPT_NOTIFIERS
1878
1879/**
80dd99b3 1880 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 1881 * @notifier: notifier struct to register
e107be36
AK
1882 */
1883void preempt_notifier_register(struct preempt_notifier *notifier)
1884{
1885 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1886}
1887EXPORT_SYMBOL_GPL(preempt_notifier_register);
1888
1889/**
1890 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 1891 * @notifier: notifier struct to unregister
e107be36
AK
1892 *
1893 * This is safe to call from within a preemption notifier.
1894 */
1895void preempt_notifier_unregister(struct preempt_notifier *notifier)
1896{
1897 hlist_del(&notifier->link);
1898}
1899EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1900
1901static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1902{
1903 struct preempt_notifier *notifier;
e107be36 1904
b67bfe0d 1905 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
1906 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1907}
1908
1909static void
1910fire_sched_out_preempt_notifiers(struct task_struct *curr,
1911 struct task_struct *next)
1912{
1913 struct preempt_notifier *notifier;
e107be36 1914
b67bfe0d 1915 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
1916 notifier->ops->sched_out(notifier, next);
1917}
1918
6d6bc0ad 1919#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
1920
1921static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1922{
1923}
1924
1925static void
1926fire_sched_out_preempt_notifiers(struct task_struct *curr,
1927 struct task_struct *next)
1928{
1929}
1930
6d6bc0ad 1931#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 1932
4866cde0
NP
1933/**
1934 * prepare_task_switch - prepare to switch tasks
1935 * @rq: the runqueue preparing to switch
421cee29 1936 * @prev: the current task that is being switched out
4866cde0
NP
1937 * @next: the task we are going to switch to.
1938 *
1939 * This is called with the rq lock held and interrupts off. It must
1940 * be paired with a subsequent finish_task_switch after the context
1941 * switch.
1942 *
1943 * prepare_task_switch sets up locking and calls architecture specific
1944 * hooks.
1945 */
e107be36
AK
1946static inline void
1947prepare_task_switch(struct rq *rq, struct task_struct *prev,
1948 struct task_struct *next)
4866cde0 1949{
895dd92c 1950 trace_sched_switch(prev, next);
43148951 1951 sched_info_switch(rq, prev, next);
fe4b04fa 1952 perf_event_task_sched_out(prev, next);
e107be36 1953 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
1954 prepare_lock_switch(rq, next);
1955 prepare_arch_switch(next);
1956}
1957
1da177e4
LT
1958/**
1959 * finish_task_switch - clean up after a task-switch
344babaa 1960 * @rq: runqueue associated with task-switch
1da177e4
LT
1961 * @prev: the thread we just switched away from.
1962 *
4866cde0
NP
1963 * finish_task_switch must be called after the context switch, paired
1964 * with a prepare_task_switch call before the context switch.
1965 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1966 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1967 *
1968 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 1969 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
1970 * with the lock held can cause deadlocks; see schedule() for
1971 * details.)
1972 */
a9957449 1973static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1974 __releases(rq->lock)
1975{
1da177e4 1976 struct mm_struct *mm = rq->prev_mm;
55a101f8 1977 long prev_state;
1da177e4
LT
1978
1979 rq->prev_mm = NULL;
1980
1981 /*
1982 * A task struct has one reference for the use as "current".
c394cc9f 1983 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1984 * schedule one last time. The schedule call will never return, and
1985 * the scheduled task must drop that reference.
c394cc9f 1986 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1987 * still held, otherwise prev could be scheduled on another cpu, die
1988 * there before we look at prev->state, and then the reference would
1989 * be dropped twice.
1990 * Manfred Spraul <manfred@colorfullife.com>
1991 */
55a101f8 1992 prev_state = prev->state;
bf9fae9f 1993 vtime_task_switch(prev);
4866cde0 1994 finish_arch_switch(prev);
a8d757ef 1995 perf_event_task_sched_in(prev, current);
4866cde0 1996 finish_lock_switch(rq, prev);
01f23e16 1997 finish_arch_post_lock_switch();
e8fa1362 1998
e107be36 1999 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2000 if (mm)
2001 mmdrop(mm);
c394cc9f 2002 if (unlikely(prev_state == TASK_DEAD)) {
f809ca9a
MG
2003 task_numa_free(prev);
2004
c6fd91f0 2005 /*
2006 * Remove function-return probe instances associated with this
2007 * task and put them back on the free list.
9761eea8 2008 */
c6fd91f0 2009 kprobe_flush_task(prev);
1da177e4 2010 put_task_struct(prev);
c6fd91f0 2011 }
99e5ada9
FW
2012
2013 tick_nohz_task_switch(current);
1da177e4
LT
2014}
2015
3f029d3c
GH
2016#ifdef CONFIG_SMP
2017
2018/* assumes rq->lock is held */
2019static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2020{
2021 if (prev->sched_class->pre_schedule)
2022 prev->sched_class->pre_schedule(rq, prev);
2023}
2024
2025/* rq->lock is NOT held, but preemption is disabled */
2026static inline void post_schedule(struct rq *rq)
2027{
2028 if (rq->post_schedule) {
2029 unsigned long flags;
2030
05fa785c 2031 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2032 if (rq->curr->sched_class->post_schedule)
2033 rq->curr->sched_class->post_schedule(rq);
05fa785c 2034 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2035
2036 rq->post_schedule = 0;
2037 }
2038}
2039
2040#else
da19ab51 2041
3f029d3c
GH
2042static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2043{
2044}
2045
2046static inline void post_schedule(struct rq *rq)
2047{
1da177e4
LT
2048}
2049
3f029d3c
GH
2050#endif
2051
1da177e4
LT
2052/**
2053 * schedule_tail - first thing a freshly forked thread must call.
2054 * @prev: the thread we just switched away from.
2055 */
36c8b586 2056asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2057 __releases(rq->lock)
2058{
70b97a7f
IM
2059 struct rq *rq = this_rq();
2060
4866cde0 2061 finish_task_switch(rq, prev);
da19ab51 2062
3f029d3c
GH
2063 /*
2064 * FIXME: do we need to worry about rq being invalidated by the
2065 * task_switch?
2066 */
2067 post_schedule(rq);
70b97a7f 2068
4866cde0
NP
2069#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2070 /* In this case, finish_task_switch does not reenable preemption */
2071 preempt_enable();
2072#endif
1da177e4 2073 if (current->set_child_tid)
b488893a 2074 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2075}
2076
2077/*
2078 * context_switch - switch to the new MM and the new
2079 * thread's register state.
2080 */
dd41f596 2081static inline void
70b97a7f 2082context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2083 struct task_struct *next)
1da177e4 2084{
dd41f596 2085 struct mm_struct *mm, *oldmm;
1da177e4 2086
e107be36 2087 prepare_task_switch(rq, prev, next);
fe4b04fa 2088
dd41f596
IM
2089 mm = next->mm;
2090 oldmm = prev->active_mm;
9226d125
ZA
2091 /*
2092 * For paravirt, this is coupled with an exit in switch_to to
2093 * combine the page table reload and the switch backend into
2094 * one hypercall.
2095 */
224101ed 2096 arch_start_context_switch(prev);
9226d125 2097
31915ab4 2098 if (!mm) {
1da177e4
LT
2099 next->active_mm = oldmm;
2100 atomic_inc(&oldmm->mm_count);
2101 enter_lazy_tlb(oldmm, next);
2102 } else
2103 switch_mm(oldmm, mm, next);
2104
31915ab4 2105 if (!prev->mm) {
1da177e4 2106 prev->active_mm = NULL;
1da177e4
LT
2107 rq->prev_mm = oldmm;
2108 }
3a5f5e48
IM
2109 /*
2110 * Since the runqueue lock will be released by the next
2111 * task (which is an invalid locking op but in the case
2112 * of the scheduler it's an obvious special-case), so we
2113 * do an early lockdep release here:
2114 */
2115#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2116 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2117#endif
1da177e4 2118
91d1aa43 2119 context_tracking_task_switch(prev, next);
1da177e4
LT
2120 /* Here we just switch the register state and the stack. */
2121 switch_to(prev, next, prev);
2122
dd41f596
IM
2123 barrier();
2124 /*
2125 * this_rq must be evaluated again because prev may have moved
2126 * CPUs since it called schedule(), thus the 'rq' on its stack
2127 * frame will be invalid.
2128 */
2129 finish_task_switch(this_rq(), prev);
1da177e4
LT
2130}
2131
2132/*
1c3e8264 2133 * nr_running and nr_context_switches:
1da177e4
LT
2134 *
2135 * externally visible scheduler statistics: current number of runnable
1c3e8264 2136 * threads, total number of context switches performed since bootup.
1da177e4
LT
2137 */
2138unsigned long nr_running(void)
2139{
2140 unsigned long i, sum = 0;
2141
2142 for_each_online_cpu(i)
2143 sum += cpu_rq(i)->nr_running;
2144
2145 return sum;
f711f609 2146}
1da177e4 2147
1da177e4 2148unsigned long long nr_context_switches(void)
46cb4b7c 2149{
cc94abfc
SR
2150 int i;
2151 unsigned long long sum = 0;
46cb4b7c 2152
0a945022 2153 for_each_possible_cpu(i)
1da177e4 2154 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2155
1da177e4
LT
2156 return sum;
2157}
483b4ee6 2158
1da177e4
LT
2159unsigned long nr_iowait(void)
2160{
2161 unsigned long i, sum = 0;
483b4ee6 2162
0a945022 2163 for_each_possible_cpu(i)
1da177e4 2164 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2165
1da177e4
LT
2166 return sum;
2167}
483b4ee6 2168
8c215bd3 2169unsigned long nr_iowait_cpu(int cpu)
69d25870 2170{
8c215bd3 2171 struct rq *this = cpu_rq(cpu);
69d25870
AV
2172 return atomic_read(&this->nr_iowait);
2173}
46cb4b7c 2174
dd41f596 2175#ifdef CONFIG_SMP
8a0be9ef 2176
46cb4b7c 2177/*
38022906
PZ
2178 * sched_exec - execve() is a valuable balancing opportunity, because at
2179 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2180 */
38022906 2181void sched_exec(void)
46cb4b7c 2182{
38022906 2183 struct task_struct *p = current;
1da177e4 2184 unsigned long flags;
0017d735 2185 int dest_cpu;
46cb4b7c 2186
8f42ced9 2187 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2188 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2189 if (dest_cpu == smp_processor_id())
2190 goto unlock;
38022906 2191
8f42ced9 2192 if (likely(cpu_active(dest_cpu))) {
969c7921 2193 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2194
8f42ced9
PZ
2195 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2196 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2197 return;
2198 }
0017d735 2199unlock:
8f42ced9 2200 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2201}
dd41f596 2202
1da177e4
LT
2203#endif
2204
1da177e4 2205DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2206DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2207
2208EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2209EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4
LT
2210
2211/*
c5f8d995 2212 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 2213 * @p in case that task is currently running.
c5f8d995
HS
2214 *
2215 * Called with task_rq_lock() held on @rq.
1da177e4 2216 */
c5f8d995
HS
2217static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2218{
2219 u64 ns = 0;
2220
2221 if (task_current(rq, p)) {
2222 update_rq_clock(rq);
78becc27 2223 ns = rq_clock_task(rq) - p->se.exec_start;
c5f8d995
HS
2224 if ((s64)ns < 0)
2225 ns = 0;
2226 }
2227
2228 return ns;
2229}
2230
bb34d92f 2231unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 2232{
1da177e4 2233 unsigned long flags;
41b86e9c 2234 struct rq *rq;
bb34d92f 2235 u64 ns = 0;
48f24c4d 2236
41b86e9c 2237 rq = task_rq_lock(p, &flags);
c5f8d995 2238 ns = do_task_delta_exec(p, rq);
0122ec5b 2239 task_rq_unlock(rq, p, &flags);
1508487e 2240
c5f8d995
HS
2241 return ns;
2242}
f06febc9 2243
c5f8d995
HS
2244/*
2245 * Return accounted runtime for the task.
2246 * In case the task is currently running, return the runtime plus current's
2247 * pending runtime that have not been accounted yet.
2248 */
2249unsigned long long task_sched_runtime(struct task_struct *p)
2250{
2251 unsigned long flags;
2252 struct rq *rq;
2253 u64 ns = 0;
2254
2255 rq = task_rq_lock(p, &flags);
2256 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 2257 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2258
2259 return ns;
2260}
48f24c4d 2261
7835b98b
CL
2262/*
2263 * This function gets called by the timer code, with HZ frequency.
2264 * We call it with interrupts disabled.
7835b98b
CL
2265 */
2266void scheduler_tick(void)
2267{
7835b98b
CL
2268 int cpu = smp_processor_id();
2269 struct rq *rq = cpu_rq(cpu);
dd41f596 2270 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2271
2272 sched_clock_tick();
dd41f596 2273
05fa785c 2274 raw_spin_lock(&rq->lock);
3e51f33f 2275 update_rq_clock(rq);
fa85ae24 2276 curr->sched_class->task_tick(rq, curr, 0);
83dfd523 2277 update_cpu_load_active(rq);
05fa785c 2278 raw_spin_unlock(&rq->lock);
7835b98b 2279
e9d2b064 2280 perf_event_task_tick();
e220d2dc 2281
e418e1c2 2282#ifdef CONFIG_SMP
6eb57e0d 2283 rq->idle_balance = idle_cpu(cpu);
dd41f596 2284 trigger_load_balance(rq, cpu);
e418e1c2 2285#endif
265f22a9 2286 rq_last_tick_reset(rq);
1da177e4
LT
2287}
2288
265f22a9
FW
2289#ifdef CONFIG_NO_HZ_FULL
2290/**
2291 * scheduler_tick_max_deferment
2292 *
2293 * Keep at least one tick per second when a single
2294 * active task is running because the scheduler doesn't
2295 * yet completely support full dynticks environment.
2296 *
2297 * This makes sure that uptime, CFS vruntime, load
2298 * balancing, etc... continue to move forward, even
2299 * with a very low granularity.
e69f6186
YB
2300 *
2301 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
2302 */
2303u64 scheduler_tick_max_deferment(void)
2304{
2305 struct rq *rq = this_rq();
2306 unsigned long next, now = ACCESS_ONCE(jiffies);
2307
2308 next = rq->last_sched_tick + HZ;
2309
2310 if (time_before_eq(next, now))
2311 return 0;
2312
2313 return jiffies_to_usecs(next - now) * NSEC_PER_USEC;
1da177e4 2314}
265f22a9 2315#endif
1da177e4 2316
132380a0 2317notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
2318{
2319 if (in_lock_functions(addr)) {
2320 addr = CALLER_ADDR2;
2321 if (in_lock_functions(addr))
2322 addr = CALLER_ADDR3;
2323 }
2324 return addr;
2325}
1da177e4 2326
7e49fcce
SR
2327#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2328 defined(CONFIG_PREEMPT_TRACER))
2329
bdb43806 2330void __kprobes preempt_count_add(int val)
1da177e4 2331{
6cd8a4bb 2332#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2333 /*
2334 * Underflow?
2335 */
9a11b49a
IM
2336 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2337 return;
6cd8a4bb 2338#endif
bdb43806 2339 __preempt_count_add(val);
6cd8a4bb 2340#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2341 /*
2342 * Spinlock count overflowing soon?
2343 */
33859f7f
MOS
2344 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2345 PREEMPT_MASK - 10);
6cd8a4bb
SR
2346#endif
2347 if (preempt_count() == val)
2348 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4 2349}
bdb43806 2350EXPORT_SYMBOL(preempt_count_add);
1da177e4 2351
bdb43806 2352void __kprobes preempt_count_sub(int val)
1da177e4 2353{
6cd8a4bb 2354#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2355 /*
2356 * Underflow?
2357 */
01e3eb82 2358 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 2359 return;
1da177e4
LT
2360 /*
2361 * Is the spinlock portion underflowing?
2362 */
9a11b49a
IM
2363 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2364 !(preempt_count() & PREEMPT_MASK)))
2365 return;
6cd8a4bb 2366#endif
9a11b49a 2367
6cd8a4bb
SR
2368 if (preempt_count() == val)
2369 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
bdb43806 2370 __preempt_count_sub(val);
1da177e4 2371}
bdb43806 2372EXPORT_SYMBOL(preempt_count_sub);
1da177e4
LT
2373
2374#endif
2375
2376/*
dd41f596 2377 * Print scheduling while atomic bug:
1da177e4 2378 */
dd41f596 2379static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 2380{
664dfa65
DJ
2381 if (oops_in_progress)
2382 return;
2383
3df0fc5b
PZ
2384 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2385 prev->comm, prev->pid, preempt_count());
838225b4 2386
dd41f596 2387 debug_show_held_locks(prev);
e21f5b15 2388 print_modules();
dd41f596
IM
2389 if (irqs_disabled())
2390 print_irqtrace_events(prev);
6135fc1e 2391 dump_stack();
373d4d09 2392 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 2393}
1da177e4 2394
dd41f596
IM
2395/*
2396 * Various schedule()-time debugging checks and statistics:
2397 */
2398static inline void schedule_debug(struct task_struct *prev)
2399{
1da177e4 2400 /*
41a2d6cf 2401 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
2402 * schedule() atomically, we ignore that path for now.
2403 * Otherwise, whine if we are scheduling when we should not be.
2404 */
3f33a7ce 2405 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596 2406 __schedule_bug(prev);
b3fbab05 2407 rcu_sleep_check();
dd41f596 2408
1da177e4
LT
2409 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2410
2d72376b 2411 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
2412}
2413
6cecd084 2414static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 2415{
61eadef6 2416 if (prev->on_rq || rq->skip_clock_update < 0)
a64692a3 2417 update_rq_clock(rq);
6cecd084 2418 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
2419}
2420
dd41f596
IM
2421/*
2422 * Pick up the highest-prio task:
2423 */
2424static inline struct task_struct *
b67802ea 2425pick_next_task(struct rq *rq)
dd41f596 2426{
5522d5d5 2427 const struct sched_class *class;
dd41f596 2428 struct task_struct *p;
1da177e4
LT
2429
2430 /*
dd41f596
IM
2431 * Optimization: we know that if all tasks are in
2432 * the fair class we can call that function directly:
1da177e4 2433 */
953bfcd1 2434 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
fb8d4724 2435 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
2436 if (likely(p))
2437 return p;
1da177e4
LT
2438 }
2439
34f971f6 2440 for_each_class(class) {
fb8d4724 2441 p = class->pick_next_task(rq);
dd41f596
IM
2442 if (p)
2443 return p;
dd41f596 2444 }
34f971f6
PZ
2445
2446 BUG(); /* the idle class will always have a runnable task */
dd41f596 2447}
1da177e4 2448
dd41f596 2449/*
c259e01a 2450 * __schedule() is the main scheduler function.
edde96ea
PE
2451 *
2452 * The main means of driving the scheduler and thus entering this function are:
2453 *
2454 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2455 *
2456 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2457 * paths. For example, see arch/x86/entry_64.S.
2458 *
2459 * To drive preemption between tasks, the scheduler sets the flag in timer
2460 * interrupt handler scheduler_tick().
2461 *
2462 * 3. Wakeups don't really cause entry into schedule(). They add a
2463 * task to the run-queue and that's it.
2464 *
2465 * Now, if the new task added to the run-queue preempts the current
2466 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2467 * called on the nearest possible occasion:
2468 *
2469 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2470 *
2471 * - in syscall or exception context, at the next outmost
2472 * preempt_enable(). (this might be as soon as the wake_up()'s
2473 * spin_unlock()!)
2474 *
2475 * - in IRQ context, return from interrupt-handler to
2476 * preemptible context
2477 *
2478 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2479 * then at the next:
2480 *
2481 * - cond_resched() call
2482 * - explicit schedule() call
2483 * - return from syscall or exception to user-space
2484 * - return from interrupt-handler to user-space
dd41f596 2485 */
c259e01a 2486static void __sched __schedule(void)
dd41f596
IM
2487{
2488 struct task_struct *prev, *next;
67ca7bde 2489 unsigned long *switch_count;
dd41f596 2490 struct rq *rq;
31656519 2491 int cpu;
dd41f596 2492
ff743345
PZ
2493need_resched:
2494 preempt_disable();
dd41f596
IM
2495 cpu = smp_processor_id();
2496 rq = cpu_rq(cpu);
25502a6c 2497 rcu_note_context_switch(cpu);
dd41f596 2498 prev = rq->curr;
dd41f596 2499
dd41f596 2500 schedule_debug(prev);
1da177e4 2501
31656519 2502 if (sched_feat(HRTICK))
f333fdc9 2503 hrtick_clear(rq);
8f4d37ec 2504
e0acd0a6
ON
2505 /*
2506 * Make sure that signal_pending_state()->signal_pending() below
2507 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2508 * done by the caller to avoid the race with signal_wake_up().
2509 */
2510 smp_mb__before_spinlock();
05fa785c 2511 raw_spin_lock_irq(&rq->lock);
1da177e4 2512
246d86b5 2513 switch_count = &prev->nivcsw;
1da177e4 2514 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 2515 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 2516 prev->state = TASK_RUNNING;
21aa9af0 2517 } else {
2acca55e
PZ
2518 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2519 prev->on_rq = 0;
2520
21aa9af0 2521 /*
2acca55e
PZ
2522 * If a worker went to sleep, notify and ask workqueue
2523 * whether it wants to wake up a task to maintain
2524 * concurrency.
21aa9af0
TH
2525 */
2526 if (prev->flags & PF_WQ_WORKER) {
2527 struct task_struct *to_wakeup;
2528
2529 to_wakeup = wq_worker_sleeping(prev, cpu);
2530 if (to_wakeup)
2531 try_to_wake_up_local(to_wakeup);
2532 }
21aa9af0 2533 }
dd41f596 2534 switch_count = &prev->nvcsw;
1da177e4
LT
2535 }
2536
3f029d3c 2537 pre_schedule(rq, prev);
f65eda4f 2538
dd41f596 2539 if (unlikely(!rq->nr_running))
1da177e4 2540 idle_balance(cpu, rq);
1da177e4 2541
df1c99d4 2542 put_prev_task(rq, prev);
b67802ea 2543 next = pick_next_task(rq);
f26f9aff 2544 clear_tsk_need_resched(prev);
f27dde8d 2545 clear_preempt_need_resched();
f26f9aff 2546 rq->skip_clock_update = 0;
1da177e4 2547
1da177e4 2548 if (likely(prev != next)) {
1da177e4
LT
2549 rq->nr_switches++;
2550 rq->curr = next;
2551 ++*switch_count;
2552
dd41f596 2553 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 2554 /*
246d86b5
ON
2555 * The context switch have flipped the stack from under us
2556 * and restored the local variables which were saved when
2557 * this task called schedule() in the past. prev == current
2558 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
2559 */
2560 cpu = smp_processor_id();
2561 rq = cpu_rq(cpu);
1da177e4 2562 } else
05fa785c 2563 raw_spin_unlock_irq(&rq->lock);
1da177e4 2564
3f029d3c 2565 post_schedule(rq);
1da177e4 2566
ba74c144 2567 sched_preempt_enable_no_resched();
ff743345 2568 if (need_resched())
1da177e4
LT
2569 goto need_resched;
2570}
c259e01a 2571
9c40cef2
TG
2572static inline void sched_submit_work(struct task_struct *tsk)
2573{
3c7d5184 2574 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
2575 return;
2576 /*
2577 * If we are going to sleep and we have plugged IO queued,
2578 * make sure to submit it to avoid deadlocks.
2579 */
2580 if (blk_needs_flush_plug(tsk))
2581 blk_schedule_flush_plug(tsk);
2582}
2583
6ebbe7a0 2584asmlinkage void __sched schedule(void)
c259e01a 2585{
9c40cef2
TG
2586 struct task_struct *tsk = current;
2587
2588 sched_submit_work(tsk);
c259e01a
TG
2589 __schedule();
2590}
1da177e4
LT
2591EXPORT_SYMBOL(schedule);
2592
91d1aa43 2593#ifdef CONFIG_CONTEXT_TRACKING
20ab65e3
FW
2594asmlinkage void __sched schedule_user(void)
2595{
2596 /*
2597 * If we come here after a random call to set_need_resched(),
2598 * or we have been woken up remotely but the IPI has not yet arrived,
2599 * we haven't yet exited the RCU idle mode. Do it here manually until
2600 * we find a better solution.
2601 */
91d1aa43 2602 user_exit();
20ab65e3 2603 schedule();
91d1aa43 2604 user_enter();
20ab65e3
FW
2605}
2606#endif
2607
c5491ea7
TG
2608/**
2609 * schedule_preempt_disabled - called with preemption disabled
2610 *
2611 * Returns with preemption disabled. Note: preempt_count must be 1
2612 */
2613void __sched schedule_preempt_disabled(void)
2614{
ba74c144 2615 sched_preempt_enable_no_resched();
c5491ea7
TG
2616 schedule();
2617 preempt_disable();
2618}
2619
1da177e4
LT
2620#ifdef CONFIG_PREEMPT
2621/*
2ed6e34f 2622 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 2623 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
2624 * occur there and call schedule directly.
2625 */
d1f74e20 2626asmlinkage void __sched notrace preempt_schedule(void)
1da177e4 2627{
1da177e4
LT
2628 /*
2629 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 2630 * we do not want to preempt the current task. Just return..
1da177e4 2631 */
fbb00b56 2632 if (likely(!preemptible()))
1da177e4
LT
2633 return;
2634
3a5c359a 2635 do {
bdb43806 2636 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 2637 __schedule();
bdb43806 2638 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2639
3a5c359a
AK
2640 /*
2641 * Check again in case we missed a preemption opportunity
2642 * between schedule and now.
2643 */
2644 barrier();
5ed0cec0 2645 } while (need_resched());
1da177e4 2646}
1da177e4
LT
2647EXPORT_SYMBOL(preempt_schedule);
2648
2649/*
2ed6e34f 2650 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
2651 * off of irq context.
2652 * Note, that this is called and return with irqs disabled. This will
2653 * protect us against recursive calling from irq.
2654 */
2655asmlinkage void __sched preempt_schedule_irq(void)
2656{
b22366cd 2657 enum ctx_state prev_state;
6478d880 2658
2ed6e34f 2659 /* Catch callers which need to be fixed */
f27dde8d 2660 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 2661
b22366cd
FW
2662 prev_state = exception_enter();
2663
3a5c359a 2664 do {
bdb43806 2665 __preempt_count_add(PREEMPT_ACTIVE);
3a5c359a 2666 local_irq_enable();
c259e01a 2667 __schedule();
3a5c359a 2668 local_irq_disable();
bdb43806 2669 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2670
3a5c359a
AK
2671 /*
2672 * Check again in case we missed a preemption opportunity
2673 * between schedule and now.
2674 */
2675 barrier();
5ed0cec0 2676 } while (need_resched());
b22366cd
FW
2677
2678 exception_exit(prev_state);
1da177e4
LT
2679}
2680
2681#endif /* CONFIG_PREEMPT */
2682
63859d4f 2683int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 2684 void *key)
1da177e4 2685{
63859d4f 2686 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 2687}
1da177e4
LT
2688EXPORT_SYMBOL(default_wake_function);
2689
2690/*
41a2d6cf
IM
2691 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
2692 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
2693 * number) then we wake all the non-exclusive tasks and one exclusive task.
2694 *
2695 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 2696 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
2697 * zero in this (rare) case, and we handle it by continuing to scan the queue.
2698 */
78ddb08f 2699static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 2700 int nr_exclusive, int wake_flags, void *key)
1da177e4 2701{
2e45874c 2702 wait_queue_t *curr, *next;
1da177e4 2703
2e45874c 2704 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
2705 unsigned flags = curr->flags;
2706
63859d4f 2707 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 2708 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
2709 break;
2710 }
2711}
2712
2713/**
2714 * __wake_up - wake up threads blocked on a waitqueue.
2715 * @q: the waitqueue
2716 * @mode: which threads
2717 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 2718 * @key: is directly passed to the wakeup function
50fa610a
DH
2719 *
2720 * It may be assumed that this function implies a write memory barrier before
2721 * changing the task state if and only if any tasks are woken up.
1da177e4 2722 */
7ad5b3a5 2723void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 2724 int nr_exclusive, void *key)
1da177e4
LT
2725{
2726 unsigned long flags;
2727
2728 spin_lock_irqsave(&q->lock, flags);
2729 __wake_up_common(q, mode, nr_exclusive, 0, key);
2730 spin_unlock_irqrestore(&q->lock, flags);
2731}
1da177e4
LT
2732EXPORT_SYMBOL(__wake_up);
2733
2734/*
2735 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
2736 */
63b20011 2737void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
1da177e4 2738{
63b20011 2739 __wake_up_common(q, mode, nr, 0, NULL);
1da177e4 2740}
22c43c81 2741EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 2742
4ede816a
DL
2743void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
2744{
2745 __wake_up_common(q, mode, 1, 0, key);
2746}
bf294b41 2747EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4ede816a 2748
1da177e4 2749/**
4ede816a 2750 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
2751 * @q: the waitqueue
2752 * @mode: which threads
2753 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 2754 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
2755 *
2756 * The sync wakeup differs that the waker knows that it will schedule
2757 * away soon, so while the target thread will be woken up, it will not
2758 * be migrated to another CPU - ie. the two threads are 'synchronized'
2759 * with each other. This can prevent needless bouncing between CPUs.
2760 *
2761 * On UP it can prevent extra preemption.
50fa610a
DH
2762 *
2763 * It may be assumed that this function implies a write memory barrier before
2764 * changing the task state if and only if any tasks are woken up.
1da177e4 2765 */
4ede816a
DL
2766void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
2767 int nr_exclusive, void *key)
1da177e4
LT
2768{
2769 unsigned long flags;
7d478721 2770 int wake_flags = WF_SYNC;
1da177e4
LT
2771
2772 if (unlikely(!q))
2773 return;
2774
cedce3e7 2775 if (unlikely(nr_exclusive != 1))
7d478721 2776 wake_flags = 0;
1da177e4
LT
2777
2778 spin_lock_irqsave(&q->lock, flags);
7d478721 2779 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
2780 spin_unlock_irqrestore(&q->lock, flags);
2781}
4ede816a
DL
2782EXPORT_SYMBOL_GPL(__wake_up_sync_key);
2783
2784/*
2785 * __wake_up_sync - see __wake_up_sync_key()
2786 */
2787void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
2788{
2789 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
2790}
1da177e4
LT
2791EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
2792
65eb3dc6
KD
2793/**
2794 * complete: - signals a single thread waiting on this completion
2795 * @x: holds the state of this particular completion
2796 *
2797 * This will wake up a single thread waiting on this completion. Threads will be
2798 * awakened in the same order in which they were queued.
2799 *
2800 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
2801 *
2802 * It may be assumed that this function implies a write memory barrier before
2803 * changing the task state if and only if any tasks are woken up.
65eb3dc6 2804 */
b15136e9 2805void complete(struct completion *x)
1da177e4
LT
2806{
2807 unsigned long flags;
2808
2809 spin_lock_irqsave(&x->wait.lock, flags);
2810 x->done++;
d9514f6c 2811 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
2812 spin_unlock_irqrestore(&x->wait.lock, flags);
2813}
2814EXPORT_SYMBOL(complete);
2815
65eb3dc6
KD
2816/**
2817 * complete_all: - signals all threads waiting on this completion
2818 * @x: holds the state of this particular completion
2819 *
2820 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
2821 *
2822 * It may be assumed that this function implies a write memory barrier before
2823 * changing the task state if and only if any tasks are woken up.
65eb3dc6 2824 */
b15136e9 2825void complete_all(struct completion *x)
1da177e4
LT
2826{
2827 unsigned long flags;
2828
2829 spin_lock_irqsave(&x->wait.lock, flags);
2830 x->done += UINT_MAX/2;
d9514f6c 2831 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
2832 spin_unlock_irqrestore(&x->wait.lock, flags);
2833}
2834EXPORT_SYMBOL(complete_all);
2835
8cbbe86d 2836static inline long __sched
686855f5
VD
2837do_wait_for_common(struct completion *x,
2838 long (*action)(long), long timeout, int state)
1da177e4 2839{
1da177e4
LT
2840 if (!x->done) {
2841 DECLARE_WAITQUEUE(wait, current);
2842
a93d2f17 2843 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 2844 do {
94d3d824 2845 if (signal_pending_state(state, current)) {
ea71a546
ON
2846 timeout = -ERESTARTSYS;
2847 break;
8cbbe86d
AK
2848 }
2849 __set_current_state(state);
1da177e4 2850 spin_unlock_irq(&x->wait.lock);
686855f5 2851 timeout = action(timeout);
1da177e4 2852 spin_lock_irq(&x->wait.lock);
ea71a546 2853 } while (!x->done && timeout);
1da177e4 2854 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
2855 if (!x->done)
2856 return timeout;
1da177e4
LT
2857 }
2858 x->done--;
ea71a546 2859 return timeout ?: 1;
1da177e4 2860}
1da177e4 2861
686855f5
VD
2862static inline long __sched
2863__wait_for_common(struct completion *x,
2864 long (*action)(long), long timeout, int state)
1da177e4 2865{
1da177e4
LT
2866 might_sleep();
2867
2868 spin_lock_irq(&x->wait.lock);
686855f5 2869 timeout = do_wait_for_common(x, action, timeout, state);
1da177e4 2870 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
2871 return timeout;
2872}
1da177e4 2873
686855f5
VD
2874static long __sched
2875wait_for_common(struct completion *x, long timeout, int state)
2876{
2877 return __wait_for_common(x, schedule_timeout, timeout, state);
2878}
2879
2880static long __sched
2881wait_for_common_io(struct completion *x, long timeout, int state)
2882{
2883 return __wait_for_common(x, io_schedule_timeout, timeout, state);
2884}
2885
65eb3dc6
KD
2886/**
2887 * wait_for_completion: - waits for completion of a task
2888 * @x: holds the state of this particular completion
2889 *
2890 * This waits to be signaled for completion of a specific task. It is NOT
2891 * interruptible and there is no timeout.
2892 *
2893 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
2894 * and interrupt capability. Also see complete().
2895 */
b15136e9 2896void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
2897{
2898 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 2899}
8cbbe86d 2900EXPORT_SYMBOL(wait_for_completion);
1da177e4 2901
65eb3dc6
KD
2902/**
2903 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
2904 * @x: holds the state of this particular completion
2905 * @timeout: timeout value in jiffies
2906 *
2907 * This waits for either a completion of a specific task to be signaled or for a
2908 * specified timeout to expire. The timeout is in jiffies. It is not
2909 * interruptible.
c6dc7f05 2910 *
e69f6186
YB
2911 * Return: 0 if timed out, and positive (at least 1, or number of jiffies left
2912 * till timeout) if completed.
65eb3dc6 2913 */
b15136e9 2914unsigned long __sched
8cbbe86d 2915wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 2916{
8cbbe86d 2917 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 2918}
8cbbe86d 2919EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 2920
686855f5
VD
2921/**
2922 * wait_for_completion_io: - waits for completion of a task
2923 * @x: holds the state of this particular completion
2924 *
2925 * This waits to be signaled for completion of a specific task. It is NOT
2926 * interruptible and there is no timeout. The caller is accounted as waiting
2927 * for IO.
2928 */
2929void __sched wait_for_completion_io(struct completion *x)
2930{
2931 wait_for_common_io(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
2932}
2933EXPORT_SYMBOL(wait_for_completion_io);
2934
2935/**
2936 * wait_for_completion_io_timeout: - waits for completion of a task (w/timeout)
2937 * @x: holds the state of this particular completion
2938 * @timeout: timeout value in jiffies
2939 *
2940 * This waits for either a completion of a specific task to be signaled or for a
2941 * specified timeout to expire. The timeout is in jiffies. It is not
2942 * interruptible. The caller is accounted as waiting for IO.
2943 *
e69f6186
YB
2944 * Return: 0 if timed out, and positive (at least 1, or number of jiffies left
2945 * till timeout) if completed.
686855f5
VD
2946 */
2947unsigned long __sched
2948wait_for_completion_io_timeout(struct completion *x, unsigned long timeout)
2949{
2950 return wait_for_common_io(x, timeout, TASK_UNINTERRUPTIBLE);
2951}
2952EXPORT_SYMBOL(wait_for_completion_io_timeout);
2953
65eb3dc6
KD
2954/**
2955 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
2956 * @x: holds the state of this particular completion
2957 *
2958 * This waits for completion of a specific task to be signaled. It is
2959 * interruptible.
c6dc7f05 2960 *
e69f6186 2961 * Return: -ERESTARTSYS if interrupted, 0 if completed.
65eb3dc6 2962 */
8cbbe86d 2963int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 2964{
51e97990
AK
2965 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
2966 if (t == -ERESTARTSYS)
2967 return t;
2968 return 0;
0fec171c 2969}
8cbbe86d 2970EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 2971
65eb3dc6
KD
2972/**
2973 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
2974 * @x: holds the state of this particular completion
2975 * @timeout: timeout value in jiffies
2976 *
2977 * This waits for either a completion of a specific task to be signaled or for a
2978 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
c6dc7f05 2979 *
e69f6186
YB
2980 * Return: -ERESTARTSYS if interrupted, 0 if timed out, positive (at least 1,
2981 * or number of jiffies left till timeout) if completed.
65eb3dc6 2982 */
6bf41237 2983long __sched
8cbbe86d
AK
2984wait_for_completion_interruptible_timeout(struct completion *x,
2985 unsigned long timeout)
0fec171c 2986{
8cbbe86d 2987 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 2988}
8cbbe86d 2989EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 2990
65eb3dc6
KD
2991/**
2992 * wait_for_completion_killable: - waits for completion of a task (killable)
2993 * @x: holds the state of this particular completion
2994 *
2995 * This waits to be signaled for completion of a specific task. It can be
2996 * interrupted by a kill signal.
c6dc7f05 2997 *
e69f6186 2998 * Return: -ERESTARTSYS if interrupted, 0 if completed.
65eb3dc6 2999 */
009e577e
MW
3000int __sched wait_for_completion_killable(struct completion *x)
3001{
3002 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3003 if (t == -ERESTARTSYS)
3004 return t;
3005 return 0;
3006}
3007EXPORT_SYMBOL(wait_for_completion_killable);
3008
0aa12fb4
SW
3009/**
3010 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3011 * @x: holds the state of this particular completion
3012 * @timeout: timeout value in jiffies
3013 *
3014 * This waits for either a completion of a specific task to be
3015 * signaled or for a specified timeout to expire. It can be
3016 * interrupted by a kill signal. The timeout is in jiffies.
c6dc7f05 3017 *
e69f6186
YB
3018 * Return: -ERESTARTSYS if interrupted, 0 if timed out, positive (at least 1,
3019 * or number of jiffies left till timeout) if completed.
0aa12fb4 3020 */
6bf41237 3021long __sched
0aa12fb4
SW
3022wait_for_completion_killable_timeout(struct completion *x,
3023 unsigned long timeout)
3024{
3025 return wait_for_common(x, timeout, TASK_KILLABLE);
3026}
3027EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3028
be4de352
DC
3029/**
3030 * try_wait_for_completion - try to decrement a completion without blocking
3031 * @x: completion structure
3032 *
e69f6186 3033 * Return: 0 if a decrement cannot be done without blocking
be4de352
DC
3034 * 1 if a decrement succeeded.
3035 *
3036 * If a completion is being used as a counting completion,
3037 * attempt to decrement the counter without blocking. This
3038 * enables us to avoid waiting if the resource the completion
3039 * is protecting is not available.
3040 */
3041bool try_wait_for_completion(struct completion *x)
3042{
7539a3b3 3043 unsigned long flags;
be4de352
DC
3044 int ret = 1;
3045
7539a3b3 3046 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
3047 if (!x->done)
3048 ret = 0;
3049 else
3050 x->done--;
7539a3b3 3051 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
3052 return ret;
3053}
3054EXPORT_SYMBOL(try_wait_for_completion);
3055
3056/**
3057 * completion_done - Test to see if a completion has any waiters
3058 * @x: completion structure
3059 *
e69f6186 3060 * Return: 0 if there are waiters (wait_for_completion() in progress)
be4de352
DC
3061 * 1 if there are no waiters.
3062 *
3063 */
3064bool completion_done(struct completion *x)
3065{
7539a3b3 3066 unsigned long flags;
be4de352
DC
3067 int ret = 1;
3068
7539a3b3 3069 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
3070 if (!x->done)
3071 ret = 0;
7539a3b3 3072 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
3073 return ret;
3074}
3075EXPORT_SYMBOL(completion_done);
3076
8cbbe86d
AK
3077static long __sched
3078sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 3079{
0fec171c
IM
3080 unsigned long flags;
3081 wait_queue_t wait;
3082
3083 init_waitqueue_entry(&wait, current);
1da177e4 3084
8cbbe86d 3085 __set_current_state(state);
1da177e4 3086
8cbbe86d
AK
3087 spin_lock_irqsave(&q->lock, flags);
3088 __add_wait_queue(q, &wait);
3089 spin_unlock(&q->lock);
3090 timeout = schedule_timeout(timeout);
3091 spin_lock_irq(&q->lock);
3092 __remove_wait_queue(q, &wait);
3093 spin_unlock_irqrestore(&q->lock, flags);
3094
3095 return timeout;
3096}
3097
3098void __sched interruptible_sleep_on(wait_queue_head_t *q)
3099{
3100 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3101}
1da177e4
LT
3102EXPORT_SYMBOL(interruptible_sleep_on);
3103
0fec171c 3104long __sched
95cdf3b7 3105interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3106{
8cbbe86d 3107 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 3108}
1da177e4
LT
3109EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3110
0fec171c 3111void __sched sleep_on(wait_queue_head_t *q)
1da177e4 3112{
8cbbe86d 3113 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3114}
1da177e4
LT
3115EXPORT_SYMBOL(sleep_on);
3116
0fec171c 3117long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3118{
8cbbe86d 3119 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 3120}
1da177e4
LT
3121EXPORT_SYMBOL(sleep_on_timeout);
3122
b29739f9
IM
3123#ifdef CONFIG_RT_MUTEXES
3124
3125/*
3126 * rt_mutex_setprio - set the current priority of a task
3127 * @p: task
3128 * @prio: prio value (kernel-internal form)
3129 *
3130 * This function changes the 'effective' priority of a task. It does
3131 * not touch ->normal_prio like __setscheduler().
3132 *
3133 * Used by the rt_mutex code to implement priority inheritance logic.
3134 */
36c8b586 3135void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3136{
83b699ed 3137 int oldprio, on_rq, running;
70b97a7f 3138 struct rq *rq;
83ab0aa0 3139 const struct sched_class *prev_class;
b29739f9
IM
3140
3141 BUG_ON(prio < 0 || prio > MAX_PRIO);
3142
0122ec5b 3143 rq = __task_rq_lock(p);
b29739f9 3144
1c4dd99b
TG
3145 /*
3146 * Idle task boosting is a nono in general. There is one
3147 * exception, when PREEMPT_RT and NOHZ is active:
3148 *
3149 * The idle task calls get_next_timer_interrupt() and holds
3150 * the timer wheel base->lock on the CPU and another CPU wants
3151 * to access the timer (probably to cancel it). We can safely
3152 * ignore the boosting request, as the idle CPU runs this code
3153 * with interrupts disabled and will complete the lock
3154 * protected section without being interrupted. So there is no
3155 * real need to boost.
3156 */
3157 if (unlikely(p == rq->idle)) {
3158 WARN_ON(p != rq->curr);
3159 WARN_ON(p->pi_blocked_on);
3160 goto out_unlock;
3161 }
3162
a8027073 3163 trace_sched_pi_setprio(p, prio);
d5f9f942 3164 oldprio = p->prio;
83ab0aa0 3165 prev_class = p->sched_class;
fd2f4419 3166 on_rq = p->on_rq;
051a1d1a 3167 running = task_current(rq, p);
0e1f3483 3168 if (on_rq)
69be72c1 3169 dequeue_task(rq, p, 0);
0e1f3483
HS
3170 if (running)
3171 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
3172
3173 if (rt_prio(prio))
3174 p->sched_class = &rt_sched_class;
3175 else
3176 p->sched_class = &fair_sched_class;
3177
b29739f9
IM
3178 p->prio = prio;
3179
0e1f3483
HS
3180 if (running)
3181 p->sched_class->set_curr_task(rq);
da7a735e 3182 if (on_rq)
371fd7e7 3183 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845 3184
da7a735e 3185 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3186out_unlock:
0122ec5b 3187 __task_rq_unlock(rq);
b29739f9 3188}
b29739f9 3189#endif
36c8b586 3190void set_user_nice(struct task_struct *p, long nice)
1da177e4 3191{
dd41f596 3192 int old_prio, delta, on_rq;
1da177e4 3193 unsigned long flags;
70b97a7f 3194 struct rq *rq;
1da177e4
LT
3195
3196 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3197 return;
3198 /*
3199 * We have to be careful, if called from sys_setpriority(),
3200 * the task might be in the middle of scheduling on another CPU.
3201 */
3202 rq = task_rq_lock(p, &flags);
3203 /*
3204 * The RT priorities are set via sched_setscheduler(), but we still
3205 * allow the 'normal' nice value to be set - but as expected
3206 * it wont have any effect on scheduling until the task is
dd41f596 3207 * SCHED_FIFO/SCHED_RR:
1da177e4 3208 */
e05606d3 3209 if (task_has_rt_policy(p)) {
1da177e4
LT
3210 p->static_prio = NICE_TO_PRIO(nice);
3211 goto out_unlock;
3212 }
fd2f4419 3213 on_rq = p->on_rq;
c09595f6 3214 if (on_rq)
69be72c1 3215 dequeue_task(rq, p, 0);
1da177e4 3216
1da177e4 3217 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3218 set_load_weight(p);
b29739f9
IM
3219 old_prio = p->prio;
3220 p->prio = effective_prio(p);
3221 delta = p->prio - old_prio;
1da177e4 3222
dd41f596 3223 if (on_rq) {
371fd7e7 3224 enqueue_task(rq, p, 0);
1da177e4 3225 /*
d5f9f942
AM
3226 * If the task increased its priority or is running and
3227 * lowered its priority, then reschedule its CPU:
1da177e4 3228 */
d5f9f942 3229 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
3230 resched_task(rq->curr);
3231 }
3232out_unlock:
0122ec5b 3233 task_rq_unlock(rq, p, &flags);
1da177e4 3234}
1da177e4
LT
3235EXPORT_SYMBOL(set_user_nice);
3236
e43379f1
MM
3237/*
3238 * can_nice - check if a task can reduce its nice value
3239 * @p: task
3240 * @nice: nice value
3241 */
36c8b586 3242int can_nice(const struct task_struct *p, const int nice)
e43379f1 3243{
024f4747
MM
3244 /* convert nice value [19,-20] to rlimit style value [1,40] */
3245 int nice_rlim = 20 - nice;
48f24c4d 3246
78d7d407 3247 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3248 capable(CAP_SYS_NICE));
3249}
3250
1da177e4
LT
3251#ifdef __ARCH_WANT_SYS_NICE
3252
3253/*
3254 * sys_nice - change the priority of the current process.
3255 * @increment: priority increment
3256 *
3257 * sys_setpriority is a more generic, but much slower function that
3258 * does similar things.
3259 */
5add95d4 3260SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3261{
48f24c4d 3262 long nice, retval;
1da177e4
LT
3263
3264 /*
3265 * Setpriority might change our priority at the same moment.
3266 * We don't have to worry. Conceptually one call occurs first
3267 * and we have a single winner.
3268 */
e43379f1
MM
3269 if (increment < -40)
3270 increment = -40;
1da177e4
LT
3271 if (increment > 40)
3272 increment = 40;
3273
2b8f836f 3274 nice = TASK_NICE(current) + increment;
1da177e4
LT
3275 if (nice < -20)
3276 nice = -20;
3277 if (nice > 19)
3278 nice = 19;
3279
e43379f1
MM
3280 if (increment < 0 && !can_nice(current, nice))
3281 return -EPERM;
3282
1da177e4
LT
3283 retval = security_task_setnice(current, nice);
3284 if (retval)
3285 return retval;
3286
3287 set_user_nice(current, nice);
3288 return 0;
3289}
3290
3291#endif
3292
3293/**
3294 * task_prio - return the priority value of a given task.
3295 * @p: the task in question.
3296 *
e69f6186 3297 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3298 * RT tasks are offset by -200. Normal tasks are centered
3299 * around 0, value goes from -16 to +15.
3300 */
36c8b586 3301int task_prio(const struct task_struct *p)
1da177e4
LT
3302{
3303 return p->prio - MAX_RT_PRIO;
3304}
3305
3306/**
3307 * task_nice - return the nice value of a given task.
3308 * @p: the task in question.
e69f6186
YB
3309 *
3310 * Return: The nice value [ -20 ... 0 ... 19 ].
1da177e4 3311 */
36c8b586 3312int task_nice(const struct task_struct *p)
1da177e4
LT
3313{
3314 return TASK_NICE(p);
3315}
150d8bed 3316EXPORT_SYMBOL(task_nice);
1da177e4
LT
3317
3318/**
3319 * idle_cpu - is a given cpu idle currently?
3320 * @cpu: the processor in question.
e69f6186
YB
3321 *
3322 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3323 */
3324int idle_cpu(int cpu)
3325{
908a3283
TG
3326 struct rq *rq = cpu_rq(cpu);
3327
3328 if (rq->curr != rq->idle)
3329 return 0;
3330
3331 if (rq->nr_running)
3332 return 0;
3333
3334#ifdef CONFIG_SMP
3335 if (!llist_empty(&rq->wake_list))
3336 return 0;
3337#endif
3338
3339 return 1;
1da177e4
LT
3340}
3341
1da177e4
LT
3342/**
3343 * idle_task - return the idle task for a given cpu.
3344 * @cpu: the processor in question.
e69f6186
YB
3345 *
3346 * Return: The idle task for the cpu @cpu.
1da177e4 3347 */
36c8b586 3348struct task_struct *idle_task(int cpu)
1da177e4
LT
3349{
3350 return cpu_rq(cpu)->idle;
3351}
3352
3353/**
3354 * find_process_by_pid - find a process with a matching PID value.
3355 * @pid: the pid in question.
e69f6186
YB
3356 *
3357 * The task of @pid, if found. %NULL otherwise.
1da177e4 3358 */
a9957449 3359static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3360{
228ebcbe 3361 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3362}
3363
3364/* Actually do priority change: must hold rq lock. */
dd41f596
IM
3365static void
3366__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 3367{
1da177e4
LT
3368 p->policy = policy;
3369 p->rt_priority = prio;
b29739f9
IM
3370 p->normal_prio = normal_prio(p);
3371 /* we are holding p->pi_lock already */
3372 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
3373 if (rt_prio(p->prio))
3374 p->sched_class = &rt_sched_class;
3375 else
3376 p->sched_class = &fair_sched_class;
2dd73a4f 3377 set_load_weight(p);
1da177e4
LT
3378}
3379
c69e8d9c
DH
3380/*
3381 * check the target process has a UID that matches the current process's
3382 */
3383static bool check_same_owner(struct task_struct *p)
3384{
3385 const struct cred *cred = current_cred(), *pcred;
3386 bool match;
3387
3388 rcu_read_lock();
3389 pcred = __task_cred(p);
9c806aa0
EB
3390 match = (uid_eq(cred->euid, pcred->euid) ||
3391 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3392 rcu_read_unlock();
3393 return match;
3394}
3395
961ccddd 3396static int __sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3397 const struct sched_param *param, bool user)
1da177e4 3398{
83b699ed 3399 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 3400 unsigned long flags;
83ab0aa0 3401 const struct sched_class *prev_class;
70b97a7f 3402 struct rq *rq;
ca94c442 3403 int reset_on_fork;
1da177e4 3404
66e5393a
SR
3405 /* may grab non-irq protected spin_locks */
3406 BUG_ON(in_interrupt());
1da177e4
LT
3407recheck:
3408 /* double check policy once rq lock held */
ca94c442
LP
3409 if (policy < 0) {
3410 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3411 policy = oldpolicy = p->policy;
ca94c442
LP
3412 } else {
3413 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3414 policy &= ~SCHED_RESET_ON_FORK;
3415
3416 if (policy != SCHED_FIFO && policy != SCHED_RR &&
3417 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3418 policy != SCHED_IDLE)
3419 return -EINVAL;
3420 }
3421
1da177e4
LT
3422 /*
3423 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3424 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3425 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
3426 */
3427 if (param->sched_priority < 0 ||
95cdf3b7 3428 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 3429 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 3430 return -EINVAL;
e05606d3 3431 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
3432 return -EINVAL;
3433
37e4ab3f
OC
3434 /*
3435 * Allow unprivileged RT tasks to decrease priority:
3436 */
961ccddd 3437 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 3438 if (rt_policy(policy)) {
a44702e8
ON
3439 unsigned long rlim_rtprio =
3440 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3441
3442 /* can't set/change the rt policy */
3443 if (policy != p->policy && !rlim_rtprio)
3444 return -EPERM;
3445
3446 /* can't increase priority */
3447 if (param->sched_priority > p->rt_priority &&
3448 param->sched_priority > rlim_rtprio)
3449 return -EPERM;
3450 }
c02aa73b 3451
dd41f596 3452 /*
c02aa73b
DH
3453 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3454 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3455 */
c02aa73b
DH
3456 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3457 if (!can_nice(p, TASK_NICE(p)))
3458 return -EPERM;
3459 }
5fe1d75f 3460
37e4ab3f 3461 /* can't change other user's priorities */
c69e8d9c 3462 if (!check_same_owner(p))
37e4ab3f 3463 return -EPERM;
ca94c442
LP
3464
3465 /* Normal users shall not reset the sched_reset_on_fork flag */
3466 if (p->sched_reset_on_fork && !reset_on_fork)
3467 return -EPERM;
37e4ab3f 3468 }
1da177e4 3469
725aad24 3470 if (user) {
b0ae1981 3471 retval = security_task_setscheduler(p);
725aad24
JF
3472 if (retval)
3473 return retval;
3474 }
3475
b29739f9
IM
3476 /*
3477 * make sure no PI-waiters arrive (or leave) while we are
3478 * changing the priority of the task:
0122ec5b 3479 *
25985edc 3480 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3481 * runqueue lock must be held.
3482 */
0122ec5b 3483 rq = task_rq_lock(p, &flags);
dc61b1d6 3484
34f971f6
PZ
3485 /*
3486 * Changing the policy of the stop threads its a very bad idea
3487 */
3488 if (p == rq->stop) {
0122ec5b 3489 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3490 return -EINVAL;
3491 }
3492
a51e9198
DF
3493 /*
3494 * If not changing anything there's no need to proceed further:
3495 */
3496 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
3497 param->sched_priority == p->rt_priority))) {
45afb173 3498 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3499 return 0;
3500 }
3501
dc61b1d6
PZ
3502#ifdef CONFIG_RT_GROUP_SCHED
3503 if (user) {
3504 /*
3505 * Do not allow realtime tasks into groups that have no runtime
3506 * assigned.
3507 */
3508 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3509 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3510 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3511 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3512 return -EPERM;
3513 }
3514 }
3515#endif
3516
1da177e4
LT
3517 /* recheck policy now with rq lock held */
3518 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3519 policy = oldpolicy = -1;
0122ec5b 3520 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3521 goto recheck;
3522 }
fd2f4419 3523 on_rq = p->on_rq;
051a1d1a 3524 running = task_current(rq, p);
0e1f3483 3525 if (on_rq)
4ca9b72b 3526 dequeue_task(rq, p, 0);
0e1f3483
HS
3527 if (running)
3528 p->sched_class->put_prev_task(rq, p);
f6b53205 3529
ca94c442
LP
3530 p->sched_reset_on_fork = reset_on_fork;
3531
1da177e4 3532 oldprio = p->prio;
83ab0aa0 3533 prev_class = p->sched_class;
dd41f596 3534 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 3535
0e1f3483
HS
3536 if (running)
3537 p->sched_class->set_curr_task(rq);
da7a735e 3538 if (on_rq)
4ca9b72b 3539 enqueue_task(rq, p, 0);
cb469845 3540
da7a735e 3541 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 3542 task_rq_unlock(rq, p, &flags);
b29739f9 3543
95e02ca9
TG
3544 rt_mutex_adjust_pi(p);
3545
1da177e4
LT
3546 return 0;
3547}
961ccddd
RR
3548
3549/**
3550 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3551 * @p: the task in question.
3552 * @policy: new policy.
3553 * @param: structure containing the new RT priority.
3554 *
e69f6186
YB
3555 * Return: 0 on success. An error code otherwise.
3556 *
961ccddd
RR
3557 * NOTE that the task may be already dead.
3558 */
3559int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3560 const struct sched_param *param)
961ccddd
RR
3561{
3562 return __sched_setscheduler(p, policy, param, true);
3563}
1da177e4
LT
3564EXPORT_SYMBOL_GPL(sched_setscheduler);
3565
961ccddd
RR
3566/**
3567 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3568 * @p: the task in question.
3569 * @policy: new policy.
3570 * @param: structure containing the new RT priority.
3571 *
3572 * Just like sched_setscheduler, only don't bother checking if the
3573 * current context has permission. For example, this is needed in
3574 * stop_machine(): we create temporary high priority worker threads,
3575 * but our caller might not have that capability.
e69f6186
YB
3576 *
3577 * Return: 0 on success. An error code otherwise.
961ccddd
RR
3578 */
3579int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 3580 const struct sched_param *param)
961ccddd
RR
3581{
3582 return __sched_setscheduler(p, policy, param, false);
3583}
3584
95cdf3b7
IM
3585static int
3586do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 3587{
1da177e4
LT
3588 struct sched_param lparam;
3589 struct task_struct *p;
36c8b586 3590 int retval;
1da177e4
LT
3591
3592 if (!param || pid < 0)
3593 return -EINVAL;
3594 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3595 return -EFAULT;
5fe1d75f
ON
3596
3597 rcu_read_lock();
3598 retval = -ESRCH;
1da177e4 3599 p = find_process_by_pid(pid);
5fe1d75f
ON
3600 if (p != NULL)
3601 retval = sched_setscheduler(p, policy, &lparam);
3602 rcu_read_unlock();
36c8b586 3603
1da177e4
LT
3604 return retval;
3605}
3606
3607/**
3608 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3609 * @pid: the pid in question.
3610 * @policy: new policy.
3611 * @param: structure containing the new RT priority.
e69f6186
YB
3612 *
3613 * Return: 0 on success. An error code otherwise.
1da177e4 3614 */
5add95d4
HC
3615SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3616 struct sched_param __user *, param)
1da177e4 3617{
c21761f1
JB
3618 /* negative values for policy are not valid */
3619 if (policy < 0)
3620 return -EINVAL;
3621
1da177e4
LT
3622 return do_sched_setscheduler(pid, policy, param);
3623}
3624
3625/**
3626 * sys_sched_setparam - set/change the RT priority of a thread
3627 * @pid: the pid in question.
3628 * @param: structure containing the new RT priority.
e69f6186
YB
3629 *
3630 * Return: 0 on success. An error code otherwise.
1da177e4 3631 */
5add95d4 3632SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
3633{
3634 return do_sched_setscheduler(pid, -1, param);
3635}
3636
3637/**
3638 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3639 * @pid: the pid in question.
e69f6186
YB
3640 *
3641 * Return: On success, the policy of the thread. Otherwise, a negative error
3642 * code.
1da177e4 3643 */
5add95d4 3644SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 3645{
36c8b586 3646 struct task_struct *p;
3a5c359a 3647 int retval;
1da177e4
LT
3648
3649 if (pid < 0)
3a5c359a 3650 return -EINVAL;
1da177e4
LT
3651
3652 retval = -ESRCH;
5fe85be0 3653 rcu_read_lock();
1da177e4
LT
3654 p = find_process_by_pid(pid);
3655 if (p) {
3656 retval = security_task_getscheduler(p);
3657 if (!retval)
ca94c442
LP
3658 retval = p->policy
3659 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 3660 }
5fe85be0 3661 rcu_read_unlock();
1da177e4
LT
3662 return retval;
3663}
3664
3665/**
ca94c442 3666 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
3667 * @pid: the pid in question.
3668 * @param: structure containing the RT priority.
e69f6186
YB
3669 *
3670 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3671 * code.
1da177e4 3672 */
5add95d4 3673SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
3674{
3675 struct sched_param lp;
36c8b586 3676 struct task_struct *p;
3a5c359a 3677 int retval;
1da177e4
LT
3678
3679 if (!param || pid < 0)
3a5c359a 3680 return -EINVAL;
1da177e4 3681
5fe85be0 3682 rcu_read_lock();
1da177e4
LT
3683 p = find_process_by_pid(pid);
3684 retval = -ESRCH;
3685 if (!p)
3686 goto out_unlock;
3687
3688 retval = security_task_getscheduler(p);
3689 if (retval)
3690 goto out_unlock;
3691
3692 lp.sched_priority = p->rt_priority;
5fe85be0 3693 rcu_read_unlock();
1da177e4
LT
3694
3695 /*
3696 * This one might sleep, we cannot do it with a spinlock held ...
3697 */
3698 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3699
1da177e4
LT
3700 return retval;
3701
3702out_unlock:
5fe85be0 3703 rcu_read_unlock();
1da177e4
LT
3704 return retval;
3705}
3706
96f874e2 3707long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 3708{
5a16f3d3 3709 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
3710 struct task_struct *p;
3711 int retval;
1da177e4 3712
95402b38 3713 get_online_cpus();
23f5d142 3714 rcu_read_lock();
1da177e4
LT
3715
3716 p = find_process_by_pid(pid);
3717 if (!p) {
23f5d142 3718 rcu_read_unlock();
95402b38 3719 put_online_cpus();
1da177e4
LT
3720 return -ESRCH;
3721 }
3722
23f5d142 3723 /* Prevent p going away */
1da177e4 3724 get_task_struct(p);
23f5d142 3725 rcu_read_unlock();
1da177e4 3726
14a40ffc
TH
3727 if (p->flags & PF_NO_SETAFFINITY) {
3728 retval = -EINVAL;
3729 goto out_put_task;
3730 }
5a16f3d3
RR
3731 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3732 retval = -ENOMEM;
3733 goto out_put_task;
3734 }
3735 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3736 retval = -ENOMEM;
3737 goto out_free_cpus_allowed;
3738 }
1da177e4 3739 retval = -EPERM;
4c44aaaf
EB
3740 if (!check_same_owner(p)) {
3741 rcu_read_lock();
3742 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3743 rcu_read_unlock();
3744 goto out_unlock;
3745 }
3746 rcu_read_unlock();
3747 }
1da177e4 3748
b0ae1981 3749 retval = security_task_setscheduler(p);
e7834f8f
DQ
3750 if (retval)
3751 goto out_unlock;
3752
5a16f3d3
RR
3753 cpuset_cpus_allowed(p, cpus_allowed);
3754 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 3755again:
5a16f3d3 3756 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 3757
8707d8b8 3758 if (!retval) {
5a16f3d3
RR
3759 cpuset_cpus_allowed(p, cpus_allowed);
3760 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
3761 /*
3762 * We must have raced with a concurrent cpuset
3763 * update. Just reset the cpus_allowed to the
3764 * cpuset's cpus_allowed
3765 */
5a16f3d3 3766 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
3767 goto again;
3768 }
3769 }
1da177e4 3770out_unlock:
5a16f3d3
RR
3771 free_cpumask_var(new_mask);
3772out_free_cpus_allowed:
3773 free_cpumask_var(cpus_allowed);
3774out_put_task:
1da177e4 3775 put_task_struct(p);
95402b38 3776 put_online_cpus();
1da177e4
LT
3777 return retval;
3778}
3779
3780static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 3781 struct cpumask *new_mask)
1da177e4 3782{
96f874e2
RR
3783 if (len < cpumask_size())
3784 cpumask_clear(new_mask);
3785 else if (len > cpumask_size())
3786 len = cpumask_size();
3787
1da177e4
LT
3788 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3789}
3790
3791/**
3792 * sys_sched_setaffinity - set the cpu affinity of a process
3793 * @pid: pid of the process
3794 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3795 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
3796 *
3797 * Return: 0 on success. An error code otherwise.
1da177e4 3798 */
5add95d4
HC
3799SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
3800 unsigned long __user *, user_mask_ptr)
1da177e4 3801{
5a16f3d3 3802 cpumask_var_t new_mask;
1da177e4
LT
3803 int retval;
3804
5a16f3d3
RR
3805 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3806 return -ENOMEM;
1da177e4 3807
5a16f3d3
RR
3808 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
3809 if (retval == 0)
3810 retval = sched_setaffinity(pid, new_mask);
3811 free_cpumask_var(new_mask);
3812 return retval;
1da177e4
LT
3813}
3814
96f874e2 3815long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 3816{
36c8b586 3817 struct task_struct *p;
31605683 3818 unsigned long flags;
1da177e4 3819 int retval;
1da177e4 3820
95402b38 3821 get_online_cpus();
23f5d142 3822 rcu_read_lock();
1da177e4
LT
3823
3824 retval = -ESRCH;
3825 p = find_process_by_pid(pid);
3826 if (!p)
3827 goto out_unlock;
3828
e7834f8f
DQ
3829 retval = security_task_getscheduler(p);
3830 if (retval)
3831 goto out_unlock;
3832
013fdb80 3833 raw_spin_lock_irqsave(&p->pi_lock, flags);
96f874e2 3834 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
013fdb80 3835 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
3836
3837out_unlock:
23f5d142 3838 rcu_read_unlock();
95402b38 3839 put_online_cpus();
1da177e4 3840
9531b62f 3841 return retval;
1da177e4
LT
3842}
3843
3844/**
3845 * sys_sched_getaffinity - get the cpu affinity of a process
3846 * @pid: pid of the process
3847 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3848 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186
YB
3849 *
3850 * Return: 0 on success. An error code otherwise.
1da177e4 3851 */
5add95d4
HC
3852SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
3853 unsigned long __user *, user_mask_ptr)
1da177e4
LT
3854{
3855 int ret;
f17c8607 3856 cpumask_var_t mask;
1da177e4 3857
84fba5ec 3858 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
3859 return -EINVAL;
3860 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
3861 return -EINVAL;
3862
f17c8607
RR
3863 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
3864 return -ENOMEM;
1da177e4 3865
f17c8607
RR
3866 ret = sched_getaffinity(pid, mask);
3867 if (ret == 0) {
8bc037fb 3868 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
3869
3870 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
3871 ret = -EFAULT;
3872 else
cd3d8031 3873 ret = retlen;
f17c8607
RR
3874 }
3875 free_cpumask_var(mask);
1da177e4 3876
f17c8607 3877 return ret;
1da177e4
LT
3878}
3879
3880/**
3881 * sys_sched_yield - yield the current processor to other threads.
3882 *
dd41f596
IM
3883 * This function yields the current CPU to other tasks. If there are no
3884 * other threads running on this CPU then this function will return.
e69f6186
YB
3885 *
3886 * Return: 0.
1da177e4 3887 */
5add95d4 3888SYSCALL_DEFINE0(sched_yield)
1da177e4 3889{
70b97a7f 3890 struct rq *rq = this_rq_lock();
1da177e4 3891
2d72376b 3892 schedstat_inc(rq, yld_count);
4530d7ab 3893 current->sched_class->yield_task(rq);
1da177e4
LT
3894
3895 /*
3896 * Since we are going to call schedule() anyway, there's
3897 * no need to preempt or enable interrupts:
3898 */
3899 __release(rq->lock);
8a25d5de 3900 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 3901 do_raw_spin_unlock(&rq->lock);
ba74c144 3902 sched_preempt_enable_no_resched();
1da177e4
LT
3903
3904 schedule();
3905
3906 return 0;
3907}
3908
e7b38404 3909static void __cond_resched(void)
1da177e4 3910{
bdb43806 3911 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 3912 __schedule();
bdb43806 3913 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4
LT
3914}
3915
02b67cc3 3916int __sched _cond_resched(void)
1da177e4 3917{
d86ee480 3918 if (should_resched()) {
1da177e4
LT
3919 __cond_resched();
3920 return 1;
3921 }
3922 return 0;
3923}
02b67cc3 3924EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
3925
3926/*
613afbf8 3927 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
3928 * call schedule, and on return reacquire the lock.
3929 *
41a2d6cf 3930 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
3931 * operations here to prevent schedule() from being called twice (once via
3932 * spin_unlock(), once by hand).
3933 */
613afbf8 3934int __cond_resched_lock(spinlock_t *lock)
1da177e4 3935{
d86ee480 3936 int resched = should_resched();
6df3cecb
JK
3937 int ret = 0;
3938
f607c668
PZ
3939 lockdep_assert_held(lock);
3940
95c354fe 3941 if (spin_needbreak(lock) || resched) {
1da177e4 3942 spin_unlock(lock);
d86ee480 3943 if (resched)
95c354fe
NP
3944 __cond_resched();
3945 else
3946 cpu_relax();
6df3cecb 3947 ret = 1;
1da177e4 3948 spin_lock(lock);
1da177e4 3949 }
6df3cecb 3950 return ret;
1da177e4 3951}
613afbf8 3952EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 3953
613afbf8 3954int __sched __cond_resched_softirq(void)
1da177e4
LT
3955{
3956 BUG_ON(!in_softirq());
3957
d86ee480 3958 if (should_resched()) {
98d82567 3959 local_bh_enable();
1da177e4
LT
3960 __cond_resched();
3961 local_bh_disable();
3962 return 1;
3963 }
3964 return 0;
3965}
613afbf8 3966EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 3967
1da177e4
LT
3968/**
3969 * yield - yield the current processor to other threads.
3970 *
8e3fabfd
PZ
3971 * Do not ever use this function, there's a 99% chance you're doing it wrong.
3972 *
3973 * The scheduler is at all times free to pick the calling task as the most
3974 * eligible task to run, if removing the yield() call from your code breaks
3975 * it, its already broken.
3976 *
3977 * Typical broken usage is:
3978 *
3979 * while (!event)
3980 * yield();
3981 *
3982 * where one assumes that yield() will let 'the other' process run that will
3983 * make event true. If the current task is a SCHED_FIFO task that will never
3984 * happen. Never use yield() as a progress guarantee!!
3985 *
3986 * If you want to use yield() to wait for something, use wait_event().
3987 * If you want to use yield() to be 'nice' for others, use cond_resched().
3988 * If you still want to use yield(), do not!
1da177e4
LT
3989 */
3990void __sched yield(void)
3991{
3992 set_current_state(TASK_RUNNING);
3993 sys_sched_yield();
3994}
1da177e4
LT
3995EXPORT_SYMBOL(yield);
3996
d95f4122
MG
3997/**
3998 * yield_to - yield the current processor to another thread in
3999 * your thread group, or accelerate that thread toward the
4000 * processor it's on.
16addf95
RD
4001 * @p: target task
4002 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4003 *
4004 * It's the caller's job to ensure that the target task struct
4005 * can't go away on us before we can do any checks.
4006 *
e69f6186 4007 * Return:
7b270f60
PZ
4008 * true (>0) if we indeed boosted the target task.
4009 * false (0) if we failed to boost the target.
4010 * -ESRCH if there's no task to yield to.
d95f4122
MG
4011 */
4012bool __sched yield_to(struct task_struct *p, bool preempt)
4013{
4014 struct task_struct *curr = current;
4015 struct rq *rq, *p_rq;
4016 unsigned long flags;
c3c18640 4017 int yielded = 0;
d95f4122
MG
4018
4019 local_irq_save(flags);
4020 rq = this_rq();
4021
4022again:
4023 p_rq = task_rq(p);
7b270f60
PZ
4024 /*
4025 * If we're the only runnable task on the rq and target rq also
4026 * has only one task, there's absolutely no point in yielding.
4027 */
4028 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4029 yielded = -ESRCH;
4030 goto out_irq;
4031 }
4032
d95f4122
MG
4033 double_rq_lock(rq, p_rq);
4034 while (task_rq(p) != p_rq) {
4035 double_rq_unlock(rq, p_rq);
4036 goto again;
4037 }
4038
4039 if (!curr->sched_class->yield_to_task)
7b270f60 4040 goto out_unlock;
d95f4122
MG
4041
4042 if (curr->sched_class != p->sched_class)
7b270f60 4043 goto out_unlock;
d95f4122
MG
4044
4045 if (task_running(p_rq, p) || p->state)
7b270f60 4046 goto out_unlock;
d95f4122
MG
4047
4048 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4049 if (yielded) {
d95f4122 4050 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4051 /*
4052 * Make p's CPU reschedule; pick_next_entity takes care of
4053 * fairness.
4054 */
4055 if (preempt && rq != p_rq)
4056 resched_task(p_rq->curr);
4057 }
d95f4122 4058
7b270f60 4059out_unlock:
d95f4122 4060 double_rq_unlock(rq, p_rq);
7b270f60 4061out_irq:
d95f4122
MG
4062 local_irq_restore(flags);
4063
7b270f60 4064 if (yielded > 0)
d95f4122
MG
4065 schedule();
4066
4067 return yielded;
4068}
4069EXPORT_SYMBOL_GPL(yield_to);
4070
1da177e4 4071/*
41a2d6cf 4072 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4073 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
4074 */
4075void __sched io_schedule(void)
4076{
54d35f29 4077 struct rq *rq = raw_rq();
1da177e4 4078
0ff92245 4079 delayacct_blkio_start();
1da177e4 4080 atomic_inc(&rq->nr_iowait);
73c10101 4081 blk_flush_plug(current);
8f0dfc34 4082 current->in_iowait = 1;
1da177e4 4083 schedule();
8f0dfc34 4084 current->in_iowait = 0;
1da177e4 4085 atomic_dec(&rq->nr_iowait);
0ff92245 4086 delayacct_blkio_end();
1da177e4 4087}
1da177e4
LT
4088EXPORT_SYMBOL(io_schedule);
4089
4090long __sched io_schedule_timeout(long timeout)
4091{
54d35f29 4092 struct rq *rq = raw_rq();
1da177e4
LT
4093 long ret;
4094
0ff92245 4095 delayacct_blkio_start();
1da177e4 4096 atomic_inc(&rq->nr_iowait);
73c10101 4097 blk_flush_plug(current);
8f0dfc34 4098 current->in_iowait = 1;
1da177e4 4099 ret = schedule_timeout(timeout);
8f0dfc34 4100 current->in_iowait = 0;
1da177e4 4101 atomic_dec(&rq->nr_iowait);
0ff92245 4102 delayacct_blkio_end();
1da177e4
LT
4103 return ret;
4104}
4105
4106/**
4107 * sys_sched_get_priority_max - return maximum RT priority.
4108 * @policy: scheduling class.
4109 *
e69f6186
YB
4110 * Return: On success, this syscall returns the maximum
4111 * rt_priority that can be used by a given scheduling class.
4112 * On failure, a negative error code is returned.
1da177e4 4113 */
5add95d4 4114SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4115{
4116 int ret = -EINVAL;
4117
4118 switch (policy) {
4119 case SCHED_FIFO:
4120 case SCHED_RR:
4121 ret = MAX_USER_RT_PRIO-1;
4122 break;
4123 case SCHED_NORMAL:
b0a9499c 4124 case SCHED_BATCH:
dd41f596 4125 case SCHED_IDLE:
1da177e4
LT
4126 ret = 0;
4127 break;
4128 }
4129 return ret;
4130}
4131
4132/**
4133 * sys_sched_get_priority_min - return minimum RT priority.
4134 * @policy: scheduling class.
4135 *
e69f6186
YB
4136 * Return: On success, this syscall returns the minimum
4137 * rt_priority that can be used by a given scheduling class.
4138 * On failure, a negative error code is returned.
1da177e4 4139 */
5add95d4 4140SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4141{
4142 int ret = -EINVAL;
4143
4144 switch (policy) {
4145 case SCHED_FIFO:
4146 case SCHED_RR:
4147 ret = 1;
4148 break;
4149 case SCHED_NORMAL:
b0a9499c 4150 case SCHED_BATCH:
dd41f596 4151 case SCHED_IDLE:
1da177e4
LT
4152 ret = 0;
4153 }
4154 return ret;
4155}
4156
4157/**
4158 * sys_sched_rr_get_interval - return the default timeslice of a process.
4159 * @pid: pid of the process.
4160 * @interval: userspace pointer to the timeslice value.
4161 *
4162 * this syscall writes the default timeslice value of a given process
4163 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
4164 *
4165 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4166 * an error code.
1da177e4 4167 */
17da2bd9 4168SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4169 struct timespec __user *, interval)
1da177e4 4170{
36c8b586 4171 struct task_struct *p;
a4ec24b4 4172 unsigned int time_slice;
dba091b9
TG
4173 unsigned long flags;
4174 struct rq *rq;
3a5c359a 4175 int retval;
1da177e4 4176 struct timespec t;
1da177e4
LT
4177
4178 if (pid < 0)
3a5c359a 4179 return -EINVAL;
1da177e4
LT
4180
4181 retval = -ESRCH;
1a551ae7 4182 rcu_read_lock();
1da177e4
LT
4183 p = find_process_by_pid(pid);
4184 if (!p)
4185 goto out_unlock;
4186
4187 retval = security_task_getscheduler(p);
4188 if (retval)
4189 goto out_unlock;
4190
dba091b9
TG
4191 rq = task_rq_lock(p, &flags);
4192 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4193 task_rq_unlock(rq, p, &flags);
a4ec24b4 4194
1a551ae7 4195 rcu_read_unlock();
a4ec24b4 4196 jiffies_to_timespec(time_slice, &t);
1da177e4 4197 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4198 return retval;
3a5c359a 4199
1da177e4 4200out_unlock:
1a551ae7 4201 rcu_read_unlock();
1da177e4
LT
4202 return retval;
4203}
4204
7c731e0a 4205static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4206
82a1fcb9 4207void sched_show_task(struct task_struct *p)
1da177e4 4208{
1da177e4 4209 unsigned long free = 0;
4e79752c 4210 int ppid;
36c8b586 4211 unsigned state;
1da177e4 4212
1da177e4 4213 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 4214 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4215 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4216#if BITS_PER_LONG == 32
1da177e4 4217 if (state == TASK_RUNNING)
3df0fc5b 4218 printk(KERN_CONT " running ");
1da177e4 4219 else
3df0fc5b 4220 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4221#else
4222 if (state == TASK_RUNNING)
3df0fc5b 4223 printk(KERN_CONT " running task ");
1da177e4 4224 else
3df0fc5b 4225 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4226#endif
4227#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4228 free = stack_not_used(p);
1da177e4 4229#endif
4e79752c
PM
4230 rcu_read_lock();
4231 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4232 rcu_read_unlock();
3df0fc5b 4233 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 4234 task_pid_nr(p), ppid,
aa47b7e0 4235 (unsigned long)task_thread_info(p)->flags);
1da177e4 4236
3d1cb205 4237 print_worker_info(KERN_INFO, p);
5fb5e6de 4238 show_stack(p, NULL);
1da177e4
LT
4239}
4240
e59e2ae2 4241void show_state_filter(unsigned long state_filter)
1da177e4 4242{
36c8b586 4243 struct task_struct *g, *p;
1da177e4 4244
4bd77321 4245#if BITS_PER_LONG == 32
3df0fc5b
PZ
4246 printk(KERN_INFO
4247 " task PC stack pid father\n");
1da177e4 4248#else
3df0fc5b
PZ
4249 printk(KERN_INFO
4250 " task PC stack pid father\n");
1da177e4 4251#endif
510f5acc 4252 rcu_read_lock();
1da177e4
LT
4253 do_each_thread(g, p) {
4254 /*
4255 * reset the NMI-timeout, listing all files on a slow
25985edc 4256 * console might take a lot of time:
1da177e4
LT
4257 */
4258 touch_nmi_watchdog();
39bc89fd 4259 if (!state_filter || (p->state & state_filter))
82a1fcb9 4260 sched_show_task(p);
1da177e4
LT
4261 } while_each_thread(g, p);
4262
04c9167f
JF
4263 touch_all_softlockup_watchdogs();
4264
dd41f596
IM
4265#ifdef CONFIG_SCHED_DEBUG
4266 sysrq_sched_debug_show();
4267#endif
510f5acc 4268 rcu_read_unlock();
e59e2ae2
IM
4269 /*
4270 * Only show locks if all tasks are dumped:
4271 */
93335a21 4272 if (!state_filter)
e59e2ae2 4273 debug_show_all_locks();
1da177e4
LT
4274}
4275
0db0628d 4276void init_idle_bootup_task(struct task_struct *idle)
1df21055 4277{
dd41f596 4278 idle->sched_class = &idle_sched_class;
1df21055
IM
4279}
4280
f340c0d1
IM
4281/**
4282 * init_idle - set up an idle thread for a given CPU
4283 * @idle: task in question
4284 * @cpu: cpu the idle task belongs to
4285 *
4286 * NOTE: this function does not set the idle thread's NEED_RESCHED
4287 * flag, to make booting more robust.
4288 */
0db0628d 4289void init_idle(struct task_struct *idle, int cpu)
1da177e4 4290{
70b97a7f 4291 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4292 unsigned long flags;
4293
05fa785c 4294 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 4295
5e1576ed 4296 __sched_fork(0, idle);
06b83b5f 4297 idle->state = TASK_RUNNING;
dd41f596
IM
4298 idle->se.exec_start = sched_clock();
4299
1e1b6c51 4300 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4301 /*
4302 * We're having a chicken and egg problem, even though we are
4303 * holding rq->lock, the cpu isn't yet set to this cpu so the
4304 * lockdep check in task_group() will fail.
4305 *
4306 * Similar case to sched_fork(). / Alternatively we could
4307 * use task_rq_lock() here and obtain the other rq->lock.
4308 *
4309 * Silence PROVE_RCU
4310 */
4311 rcu_read_lock();
dd41f596 4312 __set_task_cpu(idle, cpu);
6506cf6c 4313 rcu_read_unlock();
1da177e4 4314
1da177e4 4315 rq->curr = rq->idle = idle;
3ca7a440
PZ
4316#if defined(CONFIG_SMP)
4317 idle->on_cpu = 1;
4866cde0 4318#endif
05fa785c 4319 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
4320
4321 /* Set the preempt count _outside_ the spinlocks! */
01028747 4322 init_idle_preempt_count(idle, cpu);
55cd5340 4323
dd41f596
IM
4324 /*
4325 * The idle tasks have their own, simple scheduling class:
4326 */
4327 idle->sched_class = &idle_sched_class;
868baf07 4328 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 4329 vtime_init_idle(idle, cpu);
f1c6f1a7
CE
4330#if defined(CONFIG_SMP)
4331 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4332#endif
19978ca6
IM
4333}
4334
1da177e4 4335#ifdef CONFIG_SMP
1e1b6c51
KM
4336void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4337{
4338 if (p->sched_class && p->sched_class->set_cpus_allowed)
4339 p->sched_class->set_cpus_allowed(p, new_mask);
4939602a
PZ
4340
4341 cpumask_copy(&p->cpus_allowed, new_mask);
29baa747 4342 p->nr_cpus_allowed = cpumask_weight(new_mask);
1e1b6c51
KM
4343}
4344
1da177e4
LT
4345/*
4346 * This is how migration works:
4347 *
969c7921
TH
4348 * 1) we invoke migration_cpu_stop() on the target CPU using
4349 * stop_one_cpu().
4350 * 2) stopper starts to run (implicitly forcing the migrated thread
4351 * off the CPU)
4352 * 3) it checks whether the migrated task is still in the wrong runqueue.
4353 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 4354 * it and puts it into the right queue.
969c7921
TH
4355 * 5) stopper completes and stop_one_cpu() returns and the migration
4356 * is done.
1da177e4
LT
4357 */
4358
4359/*
4360 * Change a given task's CPU affinity. Migrate the thread to a
4361 * proper CPU and schedule it away if the CPU it's executing on
4362 * is removed from the allowed bitmask.
4363 *
4364 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 4365 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
4366 * call is not atomic; no spinlocks may be held.
4367 */
96f874e2 4368int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
4369{
4370 unsigned long flags;
70b97a7f 4371 struct rq *rq;
969c7921 4372 unsigned int dest_cpu;
48f24c4d 4373 int ret = 0;
1da177e4
LT
4374
4375 rq = task_rq_lock(p, &flags);
e2912009 4376
db44fc01
YZ
4377 if (cpumask_equal(&p->cpus_allowed, new_mask))
4378 goto out;
4379
6ad4c188 4380 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
4381 ret = -EINVAL;
4382 goto out;
4383 }
4384
1e1b6c51 4385 do_set_cpus_allowed(p, new_mask);
73fe6aae 4386
1da177e4 4387 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 4388 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
4389 goto out;
4390
969c7921 4391 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
bd8e7dde 4392 if (p->on_rq) {
969c7921 4393 struct migration_arg arg = { p, dest_cpu };
1da177e4 4394 /* Need help from migration thread: drop lock and wait. */
0122ec5b 4395 task_rq_unlock(rq, p, &flags);
969c7921 4396 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
4397 tlb_migrate_finish(p->mm);
4398 return 0;
4399 }
4400out:
0122ec5b 4401 task_rq_unlock(rq, p, &flags);
48f24c4d 4402
1da177e4
LT
4403 return ret;
4404}
cd8ba7cd 4405EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
4406
4407/*
41a2d6cf 4408 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
4409 * this because either it can't run here any more (set_cpus_allowed()
4410 * away from this CPU, or CPU going down), or because we're
4411 * attempting to rebalance this task on exec (sched_exec).
4412 *
4413 * So we race with normal scheduler movements, but that's OK, as long
4414 * as the task is no longer on this CPU.
efc30814
KK
4415 *
4416 * Returns non-zero if task was successfully migrated.
1da177e4 4417 */
efc30814 4418static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4419{
70b97a7f 4420 struct rq *rq_dest, *rq_src;
e2912009 4421 int ret = 0;
1da177e4 4422
e761b772 4423 if (unlikely(!cpu_active(dest_cpu)))
efc30814 4424 return ret;
1da177e4
LT
4425
4426 rq_src = cpu_rq(src_cpu);
4427 rq_dest = cpu_rq(dest_cpu);
4428
0122ec5b 4429 raw_spin_lock(&p->pi_lock);
1da177e4
LT
4430 double_rq_lock(rq_src, rq_dest);
4431 /* Already moved. */
4432 if (task_cpu(p) != src_cpu)
b1e38734 4433 goto done;
1da177e4 4434 /* Affinity changed (again). */
fa17b507 4435 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
b1e38734 4436 goto fail;
1da177e4 4437
e2912009
PZ
4438 /*
4439 * If we're not on a rq, the next wake-up will ensure we're
4440 * placed properly.
4441 */
fd2f4419 4442 if (p->on_rq) {
4ca9b72b 4443 dequeue_task(rq_src, p, 0);
e2912009 4444 set_task_cpu(p, dest_cpu);
4ca9b72b 4445 enqueue_task(rq_dest, p, 0);
15afe09b 4446 check_preempt_curr(rq_dest, p, 0);
1da177e4 4447 }
b1e38734 4448done:
efc30814 4449 ret = 1;
b1e38734 4450fail:
1da177e4 4451 double_rq_unlock(rq_src, rq_dest);
0122ec5b 4452 raw_spin_unlock(&p->pi_lock);
efc30814 4453 return ret;
1da177e4
LT
4454}
4455
e6628d5b
MG
4456#ifdef CONFIG_NUMA_BALANCING
4457/* Migrate current task p to target_cpu */
4458int migrate_task_to(struct task_struct *p, int target_cpu)
4459{
4460 struct migration_arg arg = { p, target_cpu };
4461 int curr_cpu = task_cpu(p);
4462
4463 if (curr_cpu == target_cpu)
4464 return 0;
4465
4466 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4467 return -EINVAL;
4468
4469 /* TODO: This is not properly updating schedstats */
4470
4471 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4472}
0ec8aa00
PZ
4473
4474/*
4475 * Requeue a task on a given node and accurately track the number of NUMA
4476 * tasks on the runqueues
4477 */
4478void sched_setnuma(struct task_struct *p, int nid)
4479{
4480 struct rq *rq;
4481 unsigned long flags;
4482 bool on_rq, running;
4483
4484 rq = task_rq_lock(p, &flags);
4485 on_rq = p->on_rq;
4486 running = task_current(rq, p);
4487
4488 if (on_rq)
4489 dequeue_task(rq, p, 0);
4490 if (running)
4491 p->sched_class->put_prev_task(rq, p);
4492
4493 p->numa_preferred_nid = nid;
0ec8aa00
PZ
4494
4495 if (running)
4496 p->sched_class->set_curr_task(rq);
4497 if (on_rq)
4498 enqueue_task(rq, p, 0);
4499 task_rq_unlock(rq, p, &flags);
4500}
e6628d5b
MG
4501#endif
4502
1da177e4 4503/*
969c7921
TH
4504 * migration_cpu_stop - this will be executed by a highprio stopper thread
4505 * and performs thread migration by bumping thread off CPU then
4506 * 'pushing' onto another runqueue.
1da177e4 4507 */
969c7921 4508static int migration_cpu_stop(void *data)
1da177e4 4509{
969c7921 4510 struct migration_arg *arg = data;
f7b4cddc 4511
969c7921
TH
4512 /*
4513 * The original target cpu might have gone down and we might
4514 * be on another cpu but it doesn't matter.
4515 */
f7b4cddc 4516 local_irq_disable();
969c7921 4517 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 4518 local_irq_enable();
1da177e4 4519 return 0;
f7b4cddc
ON
4520}
4521
1da177e4 4522#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 4523
054b9108 4524/*
48c5ccae
PZ
4525 * Ensures that the idle task is using init_mm right before its cpu goes
4526 * offline.
054b9108 4527 */
48c5ccae 4528void idle_task_exit(void)
1da177e4 4529{
48c5ccae 4530 struct mm_struct *mm = current->active_mm;
e76bd8d9 4531
48c5ccae 4532 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 4533
48c5ccae
PZ
4534 if (mm != &init_mm)
4535 switch_mm(mm, &init_mm, current);
4536 mmdrop(mm);
1da177e4
LT
4537}
4538
4539/*
5d180232
PZ
4540 * Since this CPU is going 'away' for a while, fold any nr_active delta
4541 * we might have. Assumes we're called after migrate_tasks() so that the
4542 * nr_active count is stable.
4543 *
4544 * Also see the comment "Global load-average calculations".
1da177e4 4545 */
5d180232 4546static void calc_load_migrate(struct rq *rq)
1da177e4 4547{
5d180232
PZ
4548 long delta = calc_load_fold_active(rq);
4549 if (delta)
4550 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
4551}
4552
48f24c4d 4553/*
48c5ccae
PZ
4554 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4555 * try_to_wake_up()->select_task_rq().
4556 *
4557 * Called with rq->lock held even though we'er in stop_machine() and
4558 * there's no concurrency possible, we hold the required locks anyway
4559 * because of lock validation efforts.
1da177e4 4560 */
48c5ccae 4561static void migrate_tasks(unsigned int dead_cpu)
1da177e4 4562{
70b97a7f 4563 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
4564 struct task_struct *next, *stop = rq->stop;
4565 int dest_cpu;
1da177e4
LT
4566
4567 /*
48c5ccae
PZ
4568 * Fudge the rq selection such that the below task selection loop
4569 * doesn't get stuck on the currently eligible stop task.
4570 *
4571 * We're currently inside stop_machine() and the rq is either stuck
4572 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4573 * either way we should never end up calling schedule() until we're
4574 * done here.
1da177e4 4575 */
48c5ccae 4576 rq->stop = NULL;
48f24c4d 4577
77bd3970
FW
4578 /*
4579 * put_prev_task() and pick_next_task() sched
4580 * class method both need to have an up-to-date
4581 * value of rq->clock[_task]
4582 */
4583 update_rq_clock(rq);
4584
dd41f596 4585 for ( ; ; ) {
48c5ccae
PZ
4586 /*
4587 * There's this thread running, bail when that's the only
4588 * remaining thread.
4589 */
4590 if (rq->nr_running == 1)
dd41f596 4591 break;
48c5ccae 4592
b67802ea 4593 next = pick_next_task(rq);
48c5ccae 4594 BUG_ON(!next);
79c53799 4595 next->sched_class->put_prev_task(rq, next);
e692ab53 4596
48c5ccae
PZ
4597 /* Find suitable destination for @next, with force if needed. */
4598 dest_cpu = select_fallback_rq(dead_cpu, next);
4599 raw_spin_unlock(&rq->lock);
4600
4601 __migrate_task(next, dead_cpu, dest_cpu);
4602
4603 raw_spin_lock(&rq->lock);
1da177e4 4604 }
dce48a84 4605
48c5ccae 4606 rq->stop = stop;
dce48a84 4607}
48c5ccae 4608
1da177e4
LT
4609#endif /* CONFIG_HOTPLUG_CPU */
4610
e692ab53
NP
4611#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4612
4613static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
4614 {
4615 .procname = "sched_domain",
c57baf1e 4616 .mode = 0555,
e0361851 4617 },
56992309 4618 {}
e692ab53
NP
4619};
4620
4621static struct ctl_table sd_ctl_root[] = {
e0361851
AD
4622 {
4623 .procname = "kernel",
c57baf1e 4624 .mode = 0555,
e0361851
AD
4625 .child = sd_ctl_dir,
4626 },
56992309 4627 {}
e692ab53
NP
4628};
4629
4630static struct ctl_table *sd_alloc_ctl_entry(int n)
4631{
4632 struct ctl_table *entry =
5cf9f062 4633 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 4634
e692ab53
NP
4635 return entry;
4636}
4637
6382bc90
MM
4638static void sd_free_ctl_entry(struct ctl_table **tablep)
4639{
cd790076 4640 struct ctl_table *entry;
6382bc90 4641
cd790076
MM
4642 /*
4643 * In the intermediate directories, both the child directory and
4644 * procname are dynamically allocated and could fail but the mode
41a2d6cf 4645 * will always be set. In the lowest directory the names are
cd790076
MM
4646 * static strings and all have proc handlers.
4647 */
4648 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
4649 if (entry->child)
4650 sd_free_ctl_entry(&entry->child);
cd790076
MM
4651 if (entry->proc_handler == NULL)
4652 kfree(entry->procname);
4653 }
6382bc90
MM
4654
4655 kfree(*tablep);
4656 *tablep = NULL;
4657}
4658
201c373e 4659static int min_load_idx = 0;
fd9b86d3 4660static int max_load_idx = CPU_LOAD_IDX_MAX-1;
201c373e 4661
e692ab53 4662static void
e0361851 4663set_table_entry(struct ctl_table *entry,
e692ab53 4664 const char *procname, void *data, int maxlen,
201c373e
NK
4665 umode_t mode, proc_handler *proc_handler,
4666 bool load_idx)
e692ab53 4667{
e692ab53
NP
4668 entry->procname = procname;
4669 entry->data = data;
4670 entry->maxlen = maxlen;
4671 entry->mode = mode;
4672 entry->proc_handler = proc_handler;
201c373e
NK
4673
4674 if (load_idx) {
4675 entry->extra1 = &min_load_idx;
4676 entry->extra2 = &max_load_idx;
4677 }
e692ab53
NP
4678}
4679
4680static struct ctl_table *
4681sd_alloc_ctl_domain_table(struct sched_domain *sd)
4682{
a5d8c348 4683 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 4684
ad1cdc1d
MM
4685 if (table == NULL)
4686 return NULL;
4687
e0361851 4688 set_table_entry(&table[0], "min_interval", &sd->min_interval,
201c373e 4689 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4690 set_table_entry(&table[1], "max_interval", &sd->max_interval,
201c373e 4691 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4692 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
201c373e 4693 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4694 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
201c373e 4695 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4696 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
201c373e 4697 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4698 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
201c373e 4699 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4700 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
201c373e 4701 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4702 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
201c373e 4703 sizeof(int), 0644, proc_dointvec_minmax, false);
e0361851 4704 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
201c373e 4705 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4706 set_table_entry(&table[9], "cache_nice_tries",
e692ab53 4707 &sd->cache_nice_tries,
201c373e 4708 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4709 set_table_entry(&table[10], "flags", &sd->flags,
201c373e 4710 sizeof(int), 0644, proc_dointvec_minmax, false);
a5d8c348 4711 set_table_entry(&table[11], "name", sd->name,
201c373e 4712 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
a5d8c348 4713 /* &table[12] is terminator */
e692ab53
NP
4714
4715 return table;
4716}
4717
be7002e6 4718static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
4719{
4720 struct ctl_table *entry, *table;
4721 struct sched_domain *sd;
4722 int domain_num = 0, i;
4723 char buf[32];
4724
4725 for_each_domain(cpu, sd)
4726 domain_num++;
4727 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
4728 if (table == NULL)
4729 return NULL;
e692ab53
NP
4730
4731 i = 0;
4732 for_each_domain(cpu, sd) {
4733 snprintf(buf, 32, "domain%d", i);
e692ab53 4734 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 4735 entry->mode = 0555;
e692ab53
NP
4736 entry->child = sd_alloc_ctl_domain_table(sd);
4737 entry++;
4738 i++;
4739 }
4740 return table;
4741}
4742
4743static struct ctl_table_header *sd_sysctl_header;
6382bc90 4744static void register_sched_domain_sysctl(void)
e692ab53 4745{
6ad4c188 4746 int i, cpu_num = num_possible_cpus();
e692ab53
NP
4747 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4748 char buf[32];
4749
7378547f
MM
4750 WARN_ON(sd_ctl_dir[0].child);
4751 sd_ctl_dir[0].child = entry;
4752
ad1cdc1d
MM
4753 if (entry == NULL)
4754 return;
4755
6ad4c188 4756 for_each_possible_cpu(i) {
e692ab53 4757 snprintf(buf, 32, "cpu%d", i);
e692ab53 4758 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 4759 entry->mode = 0555;
e692ab53 4760 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 4761 entry++;
e692ab53 4762 }
7378547f
MM
4763
4764 WARN_ON(sd_sysctl_header);
e692ab53
NP
4765 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4766}
6382bc90 4767
7378547f 4768/* may be called multiple times per register */
6382bc90
MM
4769static void unregister_sched_domain_sysctl(void)
4770{
7378547f
MM
4771 if (sd_sysctl_header)
4772 unregister_sysctl_table(sd_sysctl_header);
6382bc90 4773 sd_sysctl_header = NULL;
7378547f
MM
4774 if (sd_ctl_dir[0].child)
4775 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 4776}
e692ab53 4777#else
6382bc90
MM
4778static void register_sched_domain_sysctl(void)
4779{
4780}
4781static void unregister_sched_domain_sysctl(void)
e692ab53
NP
4782{
4783}
4784#endif
4785
1f11eb6a
GH
4786static void set_rq_online(struct rq *rq)
4787{
4788 if (!rq->online) {
4789 const struct sched_class *class;
4790
c6c4927b 4791 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
4792 rq->online = 1;
4793
4794 for_each_class(class) {
4795 if (class->rq_online)
4796 class->rq_online(rq);
4797 }
4798 }
4799}
4800
4801static void set_rq_offline(struct rq *rq)
4802{
4803 if (rq->online) {
4804 const struct sched_class *class;
4805
4806 for_each_class(class) {
4807 if (class->rq_offline)
4808 class->rq_offline(rq);
4809 }
4810
c6c4927b 4811 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
4812 rq->online = 0;
4813 }
4814}
4815
1da177e4
LT
4816/*
4817 * migration_call - callback that gets triggered when a CPU is added.
4818 * Here we can start up the necessary migration thread for the new CPU.
4819 */
0db0628d 4820static int
48f24c4d 4821migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 4822{
48f24c4d 4823 int cpu = (long)hcpu;
1da177e4 4824 unsigned long flags;
969c7921 4825 struct rq *rq = cpu_rq(cpu);
1da177e4 4826
48c5ccae 4827 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 4828
1da177e4 4829 case CPU_UP_PREPARE:
a468d389 4830 rq->calc_load_update = calc_load_update;
1da177e4 4831 break;
48f24c4d 4832
1da177e4 4833 case CPU_ONLINE:
1f94ef59 4834 /* Update our root-domain */
05fa785c 4835 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 4836 if (rq->rd) {
c6c4927b 4837 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
4838
4839 set_rq_online(rq);
1f94ef59 4840 }
05fa785c 4841 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 4842 break;
48f24c4d 4843
1da177e4 4844#ifdef CONFIG_HOTPLUG_CPU
08f503b0 4845 case CPU_DYING:
317f3941 4846 sched_ttwu_pending();
57d885fe 4847 /* Update our root-domain */
05fa785c 4848 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 4849 if (rq->rd) {
c6c4927b 4850 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 4851 set_rq_offline(rq);
57d885fe 4852 }
48c5ccae
PZ
4853 migrate_tasks(cpu);
4854 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 4855 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 4856 break;
48c5ccae 4857
5d180232 4858 case CPU_DEAD:
f319da0c 4859 calc_load_migrate(rq);
57d885fe 4860 break;
1da177e4
LT
4861#endif
4862 }
49c022e6
PZ
4863
4864 update_max_interval();
4865
1da177e4
LT
4866 return NOTIFY_OK;
4867}
4868
f38b0820
PM
4869/*
4870 * Register at high priority so that task migration (migrate_all_tasks)
4871 * happens before everything else. This has to be lower priority than
cdd6c482 4872 * the notifier in the perf_event subsystem, though.
1da177e4 4873 */
0db0628d 4874static struct notifier_block migration_notifier = {
1da177e4 4875 .notifier_call = migration_call,
50a323b7 4876 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
4877};
4878
0db0628d 4879static int sched_cpu_active(struct notifier_block *nfb,
3a101d05
TH
4880 unsigned long action, void *hcpu)
4881{
4882 switch (action & ~CPU_TASKS_FROZEN) {
5fbd036b 4883 case CPU_STARTING:
3a101d05
TH
4884 case CPU_DOWN_FAILED:
4885 set_cpu_active((long)hcpu, true);
4886 return NOTIFY_OK;
4887 default:
4888 return NOTIFY_DONE;
4889 }
4890}
4891
0db0628d 4892static int sched_cpu_inactive(struct notifier_block *nfb,
3a101d05
TH
4893 unsigned long action, void *hcpu)
4894{
4895 switch (action & ~CPU_TASKS_FROZEN) {
4896 case CPU_DOWN_PREPARE:
4897 set_cpu_active((long)hcpu, false);
4898 return NOTIFY_OK;
4899 default:
4900 return NOTIFY_DONE;
4901 }
4902}
4903
7babe8db 4904static int __init migration_init(void)
1da177e4
LT
4905{
4906 void *cpu = (void *)(long)smp_processor_id();
07dccf33 4907 int err;
48f24c4d 4908
3a101d05 4909 /* Initialize migration for the boot CPU */
07dccf33
AM
4910 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4911 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
4912 migration_call(&migration_notifier, CPU_ONLINE, cpu);
4913 register_cpu_notifier(&migration_notifier);
7babe8db 4914
3a101d05
TH
4915 /* Register cpu active notifiers */
4916 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
4917 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
4918
a004cd42 4919 return 0;
1da177e4 4920}
7babe8db 4921early_initcall(migration_init);
1da177e4
LT
4922#endif
4923
4924#ifdef CONFIG_SMP
476f3534 4925
4cb98839
PZ
4926static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
4927
3e9830dc 4928#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 4929
d039ac60 4930static __read_mostly int sched_debug_enabled;
f6630114 4931
d039ac60 4932static int __init sched_debug_setup(char *str)
f6630114 4933{
d039ac60 4934 sched_debug_enabled = 1;
f6630114
MT
4935
4936 return 0;
4937}
d039ac60
PZ
4938early_param("sched_debug", sched_debug_setup);
4939
4940static inline bool sched_debug(void)
4941{
4942 return sched_debug_enabled;
4943}
f6630114 4944
7c16ec58 4945static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 4946 struct cpumask *groupmask)
1da177e4 4947{
4dcf6aff 4948 struct sched_group *group = sd->groups;
434d53b0 4949 char str[256];
1da177e4 4950
968ea6d8 4951 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 4952 cpumask_clear(groupmask);
4dcf6aff
IM
4953
4954 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
4955
4956 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 4957 printk("does not load-balance\n");
4dcf6aff 4958 if (sd->parent)
3df0fc5b
PZ
4959 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
4960 " has parent");
4dcf6aff 4961 return -1;
41c7ce9a
NP
4962 }
4963
3df0fc5b 4964 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 4965
758b2cdc 4966 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
4967 printk(KERN_ERR "ERROR: domain->span does not contain "
4968 "CPU%d\n", cpu);
4dcf6aff 4969 }
758b2cdc 4970 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
4971 printk(KERN_ERR "ERROR: domain->groups does not contain"
4972 " CPU%d\n", cpu);
4dcf6aff 4973 }
1da177e4 4974
4dcf6aff 4975 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 4976 do {
4dcf6aff 4977 if (!group) {
3df0fc5b
PZ
4978 printk("\n");
4979 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
4980 break;
4981 }
4982
c3decf0d
PZ
4983 /*
4984 * Even though we initialize ->power to something semi-sane,
4985 * we leave power_orig unset. This allows us to detect if
4986 * domain iteration is still funny without causing /0 traps.
4987 */
4988 if (!group->sgp->power_orig) {
3df0fc5b
PZ
4989 printk(KERN_CONT "\n");
4990 printk(KERN_ERR "ERROR: domain->cpu_power not "
4991 "set\n");
4dcf6aff
IM
4992 break;
4993 }
1da177e4 4994
758b2cdc 4995 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
4996 printk(KERN_CONT "\n");
4997 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
4998 break;
4999 }
1da177e4 5000
cb83b629
PZ
5001 if (!(sd->flags & SD_OVERLAP) &&
5002 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5003 printk(KERN_CONT "\n");
5004 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5005 break;
5006 }
1da177e4 5007
758b2cdc 5008 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5009
968ea6d8 5010 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 5011
3df0fc5b 5012 printk(KERN_CONT " %s", str);
9c3f75cb 5013 if (group->sgp->power != SCHED_POWER_SCALE) {
3df0fc5b 5014 printk(KERN_CONT " (cpu_power = %d)",
9c3f75cb 5015 group->sgp->power);
381512cf 5016 }
1da177e4 5017
4dcf6aff
IM
5018 group = group->next;
5019 } while (group != sd->groups);
3df0fc5b 5020 printk(KERN_CONT "\n");
1da177e4 5021
758b2cdc 5022 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5023 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5024
758b2cdc
RR
5025 if (sd->parent &&
5026 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5027 printk(KERN_ERR "ERROR: parent span is not a superset "
5028 "of domain->span\n");
4dcf6aff
IM
5029 return 0;
5030}
1da177e4 5031
4dcf6aff
IM
5032static void sched_domain_debug(struct sched_domain *sd, int cpu)
5033{
5034 int level = 0;
1da177e4 5035
d039ac60 5036 if (!sched_debug_enabled)
f6630114
MT
5037 return;
5038
4dcf6aff
IM
5039 if (!sd) {
5040 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5041 return;
5042 }
1da177e4 5043
4dcf6aff
IM
5044 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5045
5046 for (;;) {
4cb98839 5047 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5048 break;
1da177e4
LT
5049 level++;
5050 sd = sd->parent;
33859f7f 5051 if (!sd)
4dcf6aff
IM
5052 break;
5053 }
1da177e4 5054}
6d6bc0ad 5055#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5056# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5057static inline bool sched_debug(void)
5058{
5059 return false;
5060}
6d6bc0ad 5061#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5062
1a20ff27 5063static int sd_degenerate(struct sched_domain *sd)
245af2c7 5064{
758b2cdc 5065 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5066 return 1;
5067
5068 /* Following flags need at least 2 groups */
5069 if (sd->flags & (SD_LOAD_BALANCE |
5070 SD_BALANCE_NEWIDLE |
5071 SD_BALANCE_FORK |
89c4710e
SS
5072 SD_BALANCE_EXEC |
5073 SD_SHARE_CPUPOWER |
5074 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5075 if (sd->groups != sd->groups->next)
5076 return 0;
5077 }
5078
5079 /* Following flags don't use groups */
c88d5910 5080 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5081 return 0;
5082
5083 return 1;
5084}
5085
48f24c4d
IM
5086static int
5087sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5088{
5089 unsigned long cflags = sd->flags, pflags = parent->flags;
5090
5091 if (sd_degenerate(parent))
5092 return 1;
5093
758b2cdc 5094 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5095 return 0;
5096
245af2c7
SS
5097 /* Flags needing groups don't count if only 1 group in parent */
5098 if (parent->groups == parent->groups->next) {
5099 pflags &= ~(SD_LOAD_BALANCE |
5100 SD_BALANCE_NEWIDLE |
5101 SD_BALANCE_FORK |
89c4710e
SS
5102 SD_BALANCE_EXEC |
5103 SD_SHARE_CPUPOWER |
10866e62
PZ
5104 SD_SHARE_PKG_RESOURCES |
5105 SD_PREFER_SIBLING);
5436499e
KC
5106 if (nr_node_ids == 1)
5107 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5108 }
5109 if (~cflags & pflags)
5110 return 0;
5111
5112 return 1;
5113}
5114
dce840a0 5115static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5116{
dce840a0 5117 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5118
68e74568 5119 cpupri_cleanup(&rd->cpupri);
c6c4927b
RR
5120 free_cpumask_var(rd->rto_mask);
5121 free_cpumask_var(rd->online);
5122 free_cpumask_var(rd->span);
5123 kfree(rd);
5124}
5125
57d885fe
GH
5126static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5127{
a0490fa3 5128 struct root_domain *old_rd = NULL;
57d885fe 5129 unsigned long flags;
57d885fe 5130
05fa785c 5131 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5132
5133 if (rq->rd) {
a0490fa3 5134 old_rd = rq->rd;
57d885fe 5135
c6c4927b 5136 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5137 set_rq_offline(rq);
57d885fe 5138
c6c4927b 5139 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5140
a0490fa3
IM
5141 /*
5142 * If we dont want to free the old_rt yet then
5143 * set old_rd to NULL to skip the freeing later
5144 * in this function:
5145 */
5146 if (!atomic_dec_and_test(&old_rd->refcount))
5147 old_rd = NULL;
57d885fe
GH
5148 }
5149
5150 atomic_inc(&rd->refcount);
5151 rq->rd = rd;
5152
c6c4927b 5153 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5154 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5155 set_rq_online(rq);
57d885fe 5156
05fa785c 5157 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5158
5159 if (old_rd)
dce840a0 5160 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5161}
5162
68c38fc3 5163static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5164{
5165 memset(rd, 0, sizeof(*rd));
5166
68c38fc3 5167 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5168 goto out;
68c38fc3 5169 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5170 goto free_span;
68c38fc3 5171 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 5172 goto free_online;
6e0534f2 5173
68c38fc3 5174 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5175 goto free_rto_mask;
c6c4927b 5176 return 0;
6e0534f2 5177
68e74568
RR
5178free_rto_mask:
5179 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
5180free_online:
5181 free_cpumask_var(rd->online);
5182free_span:
5183 free_cpumask_var(rd->span);
0c910d28 5184out:
c6c4927b 5185 return -ENOMEM;
57d885fe
GH
5186}
5187
029632fb
PZ
5188/*
5189 * By default the system creates a single root-domain with all cpus as
5190 * members (mimicking the global state we have today).
5191 */
5192struct root_domain def_root_domain;
5193
57d885fe
GH
5194static void init_defrootdomain(void)
5195{
68c38fc3 5196 init_rootdomain(&def_root_domain);
c6c4927b 5197
57d885fe
GH
5198 atomic_set(&def_root_domain.refcount, 1);
5199}
5200
dc938520 5201static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5202{
5203 struct root_domain *rd;
5204
5205 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5206 if (!rd)
5207 return NULL;
5208
68c38fc3 5209 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5210 kfree(rd);
5211 return NULL;
5212 }
57d885fe
GH
5213
5214 return rd;
5215}
5216
e3589f6c
PZ
5217static void free_sched_groups(struct sched_group *sg, int free_sgp)
5218{
5219 struct sched_group *tmp, *first;
5220
5221 if (!sg)
5222 return;
5223
5224 first = sg;
5225 do {
5226 tmp = sg->next;
5227
5228 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5229 kfree(sg->sgp);
5230
5231 kfree(sg);
5232 sg = tmp;
5233 } while (sg != first);
5234}
5235
dce840a0
PZ
5236static void free_sched_domain(struct rcu_head *rcu)
5237{
5238 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5239
5240 /*
5241 * If its an overlapping domain it has private groups, iterate and
5242 * nuke them all.
5243 */
5244 if (sd->flags & SD_OVERLAP) {
5245 free_sched_groups(sd->groups, 1);
5246 } else if (atomic_dec_and_test(&sd->groups->ref)) {
9c3f75cb 5247 kfree(sd->groups->sgp);
dce840a0 5248 kfree(sd->groups);
9c3f75cb 5249 }
dce840a0
PZ
5250 kfree(sd);
5251}
5252
5253static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5254{
5255 call_rcu(&sd->rcu, free_sched_domain);
5256}
5257
5258static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5259{
5260 for (; sd; sd = sd->parent)
5261 destroy_sched_domain(sd, cpu);
5262}
5263
518cd623
PZ
5264/*
5265 * Keep a special pointer to the highest sched_domain that has
5266 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5267 * allows us to avoid some pointer chasing select_idle_sibling().
5268 *
5269 * Also keep a unique ID per domain (we use the first cpu number in
5270 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5271 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5272 */
5273DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5274DEFINE_PER_CPU(int, sd_llc_size);
518cd623 5275DEFINE_PER_CPU(int, sd_llc_id);
fb13c7ee 5276DEFINE_PER_CPU(struct sched_domain *, sd_numa);
518cd623
PZ
5277
5278static void update_top_cache_domain(int cpu)
5279{
5280 struct sched_domain *sd;
5281 int id = cpu;
7d9ffa89 5282 int size = 1;
518cd623
PZ
5283
5284 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 5285 if (sd) {
518cd623 5286 id = cpumask_first(sched_domain_span(sd));
7d9ffa89
PZ
5287 size = cpumask_weight(sched_domain_span(sd));
5288 }
518cd623
PZ
5289
5290 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 5291 per_cpu(sd_llc_size, cpu) = size;
518cd623 5292 per_cpu(sd_llc_id, cpu) = id;
fb13c7ee
MG
5293
5294 sd = lowest_flag_domain(cpu, SD_NUMA);
5295 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
518cd623
PZ
5296}
5297
1da177e4 5298/*
0eab9146 5299 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5300 * hold the hotplug lock.
5301 */
0eab9146
IM
5302static void
5303cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5304{
70b97a7f 5305 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5306 struct sched_domain *tmp;
5307
5308 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5309 for (tmp = sd; tmp; ) {
245af2c7
SS
5310 struct sched_domain *parent = tmp->parent;
5311 if (!parent)
5312 break;
f29c9b1c 5313
1a848870 5314 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5315 tmp->parent = parent->parent;
1a848870
SS
5316 if (parent->parent)
5317 parent->parent->child = tmp;
10866e62
PZ
5318 /*
5319 * Transfer SD_PREFER_SIBLING down in case of a
5320 * degenerate parent; the spans match for this
5321 * so the property transfers.
5322 */
5323 if (parent->flags & SD_PREFER_SIBLING)
5324 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 5325 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5326 } else
5327 tmp = tmp->parent;
245af2c7
SS
5328 }
5329
1a848870 5330 if (sd && sd_degenerate(sd)) {
dce840a0 5331 tmp = sd;
245af2c7 5332 sd = sd->parent;
dce840a0 5333 destroy_sched_domain(tmp, cpu);
1a848870
SS
5334 if (sd)
5335 sd->child = NULL;
5336 }
1da177e4 5337
4cb98839 5338 sched_domain_debug(sd, cpu);
1da177e4 5339
57d885fe 5340 rq_attach_root(rq, rd);
dce840a0 5341 tmp = rq->sd;
674311d5 5342 rcu_assign_pointer(rq->sd, sd);
dce840a0 5343 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5344
5345 update_top_cache_domain(cpu);
1da177e4
LT
5346}
5347
5348/* cpus with isolated domains */
dcc30a35 5349static cpumask_var_t cpu_isolated_map;
1da177e4
LT
5350
5351/* Setup the mask of cpus configured for isolated domains */
5352static int __init isolated_cpu_setup(char *str)
5353{
bdddd296 5354 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5355 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5356 return 1;
5357}
5358
8927f494 5359__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5360
d3081f52
PZ
5361static const struct cpumask *cpu_cpu_mask(int cpu)
5362{
5363 return cpumask_of_node(cpu_to_node(cpu));
5364}
5365
dce840a0
PZ
5366struct sd_data {
5367 struct sched_domain **__percpu sd;
5368 struct sched_group **__percpu sg;
9c3f75cb 5369 struct sched_group_power **__percpu sgp;
dce840a0
PZ
5370};
5371
49a02c51 5372struct s_data {
21d42ccf 5373 struct sched_domain ** __percpu sd;
49a02c51
AH
5374 struct root_domain *rd;
5375};
5376
2109b99e 5377enum s_alloc {
2109b99e 5378 sa_rootdomain,
21d42ccf 5379 sa_sd,
dce840a0 5380 sa_sd_storage,
2109b99e
AH
5381 sa_none,
5382};
5383
54ab4ff4
PZ
5384struct sched_domain_topology_level;
5385
5386typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
eb7a74e6
PZ
5387typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5388
e3589f6c
PZ
5389#define SDTL_OVERLAP 0x01
5390
eb7a74e6 5391struct sched_domain_topology_level {
2c402dc3
PZ
5392 sched_domain_init_f init;
5393 sched_domain_mask_f mask;
e3589f6c 5394 int flags;
cb83b629 5395 int numa_level;
54ab4ff4 5396 struct sd_data data;
eb7a74e6
PZ
5397};
5398
c1174876
PZ
5399/*
5400 * Build an iteration mask that can exclude certain CPUs from the upwards
5401 * domain traversal.
5402 *
5403 * Asymmetric node setups can result in situations where the domain tree is of
5404 * unequal depth, make sure to skip domains that already cover the entire
5405 * range.
5406 *
5407 * In that case build_sched_domains() will have terminated the iteration early
5408 * and our sibling sd spans will be empty. Domains should always include the
5409 * cpu they're built on, so check that.
5410 *
5411 */
5412static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5413{
5414 const struct cpumask *span = sched_domain_span(sd);
5415 struct sd_data *sdd = sd->private;
5416 struct sched_domain *sibling;
5417 int i;
5418
5419 for_each_cpu(i, span) {
5420 sibling = *per_cpu_ptr(sdd->sd, i);
5421 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5422 continue;
5423
5424 cpumask_set_cpu(i, sched_group_mask(sg));
5425 }
5426}
5427
5428/*
5429 * Return the canonical balance cpu for this group, this is the first cpu
5430 * of this group that's also in the iteration mask.
5431 */
5432int group_balance_cpu(struct sched_group *sg)
5433{
5434 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5435}
5436
e3589f6c
PZ
5437static int
5438build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5439{
5440 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5441 const struct cpumask *span = sched_domain_span(sd);
5442 struct cpumask *covered = sched_domains_tmpmask;
5443 struct sd_data *sdd = sd->private;
5444 struct sched_domain *child;
5445 int i;
5446
5447 cpumask_clear(covered);
5448
5449 for_each_cpu(i, span) {
5450 struct cpumask *sg_span;
5451
5452 if (cpumask_test_cpu(i, covered))
5453 continue;
5454
c1174876
PZ
5455 child = *per_cpu_ptr(sdd->sd, i);
5456
5457 /* See the comment near build_group_mask(). */
5458 if (!cpumask_test_cpu(i, sched_domain_span(child)))
5459 continue;
5460
e3589f6c 5461 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 5462 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
5463
5464 if (!sg)
5465 goto fail;
5466
5467 sg_span = sched_group_cpus(sg);
e3589f6c
PZ
5468 if (child->child) {
5469 child = child->child;
5470 cpumask_copy(sg_span, sched_domain_span(child));
5471 } else
5472 cpumask_set_cpu(i, sg_span);
5473
5474 cpumask_or(covered, covered, sg_span);
5475
74a5ce20 5476 sg->sgp = *per_cpu_ptr(sdd->sgp, i);
c1174876
PZ
5477 if (atomic_inc_return(&sg->sgp->ref) == 1)
5478 build_group_mask(sd, sg);
5479
c3decf0d
PZ
5480 /*
5481 * Initialize sgp->power such that even if we mess up the
5482 * domains and no possible iteration will get us here, we won't
5483 * die on a /0 trap.
5484 */
5485 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
e3589f6c 5486
c1174876
PZ
5487 /*
5488 * Make sure the first group of this domain contains the
5489 * canonical balance cpu. Otherwise the sched_domain iteration
5490 * breaks. See update_sg_lb_stats().
5491 */
74a5ce20 5492 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 5493 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
5494 groups = sg;
5495
5496 if (!first)
5497 first = sg;
5498 if (last)
5499 last->next = sg;
5500 last = sg;
5501 last->next = first;
5502 }
5503 sd->groups = groups;
5504
5505 return 0;
5506
5507fail:
5508 free_sched_groups(first, 0);
5509
5510 return -ENOMEM;
5511}
5512
dce840a0 5513static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 5514{
dce840a0
PZ
5515 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5516 struct sched_domain *child = sd->child;
1da177e4 5517
dce840a0
PZ
5518 if (child)
5519 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 5520
9c3f75cb 5521 if (sg) {
dce840a0 5522 *sg = *per_cpu_ptr(sdd->sg, cpu);
9c3f75cb 5523 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
e3589f6c 5524 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
9c3f75cb 5525 }
dce840a0
PZ
5526
5527 return cpu;
1e9f28fa 5528}
1e9f28fa 5529
01a08546 5530/*
dce840a0
PZ
5531 * build_sched_groups will build a circular linked list of the groups
5532 * covered by the given span, and will set each group's ->cpumask correctly,
5533 * and ->cpu_power to 0.
e3589f6c
PZ
5534 *
5535 * Assumes the sched_domain tree is fully constructed
01a08546 5536 */
e3589f6c
PZ
5537static int
5538build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 5539{
dce840a0
PZ
5540 struct sched_group *first = NULL, *last = NULL;
5541 struct sd_data *sdd = sd->private;
5542 const struct cpumask *span = sched_domain_span(sd);
f96225fd 5543 struct cpumask *covered;
dce840a0 5544 int i;
9c1cfda2 5545
e3589f6c
PZ
5546 get_group(cpu, sdd, &sd->groups);
5547 atomic_inc(&sd->groups->ref);
5548
0936629f 5549 if (cpu != cpumask_first(span))
e3589f6c
PZ
5550 return 0;
5551
f96225fd
PZ
5552 lockdep_assert_held(&sched_domains_mutex);
5553 covered = sched_domains_tmpmask;
5554
dce840a0 5555 cpumask_clear(covered);
6711cab4 5556
dce840a0
PZ
5557 for_each_cpu(i, span) {
5558 struct sched_group *sg;
cd08e923 5559 int group, j;
6711cab4 5560
dce840a0
PZ
5561 if (cpumask_test_cpu(i, covered))
5562 continue;
6711cab4 5563
cd08e923 5564 group = get_group(i, sdd, &sg);
dce840a0 5565 cpumask_clear(sched_group_cpus(sg));
9c3f75cb 5566 sg->sgp->power = 0;
c1174876 5567 cpumask_setall(sched_group_mask(sg));
0601a88d 5568
dce840a0
PZ
5569 for_each_cpu(j, span) {
5570 if (get_group(j, sdd, NULL) != group)
5571 continue;
0601a88d 5572
dce840a0
PZ
5573 cpumask_set_cpu(j, covered);
5574 cpumask_set_cpu(j, sched_group_cpus(sg));
5575 }
0601a88d 5576
dce840a0
PZ
5577 if (!first)
5578 first = sg;
5579 if (last)
5580 last->next = sg;
5581 last = sg;
5582 }
5583 last->next = first;
e3589f6c
PZ
5584
5585 return 0;
0601a88d 5586}
51888ca2 5587
89c4710e
SS
5588/*
5589 * Initialize sched groups cpu_power.
5590 *
5591 * cpu_power indicates the capacity of sched group, which is used while
5592 * distributing the load between different sched groups in a sched domain.
5593 * Typically cpu_power for all the groups in a sched domain will be same unless
5594 * there are asymmetries in the topology. If there are asymmetries, group
5595 * having more cpu_power will pickup more load compared to the group having
5596 * less cpu_power.
89c4710e
SS
5597 */
5598static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5599{
e3589f6c 5600 struct sched_group *sg = sd->groups;
89c4710e 5601
94c95ba6 5602 WARN_ON(!sg);
e3589f6c
PZ
5603
5604 do {
5605 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5606 sg = sg->next;
5607 } while (sg != sd->groups);
89c4710e 5608
c1174876 5609 if (cpu != group_balance_cpu(sg))
e3589f6c 5610 return;
aae6d3dd 5611
d274cb30 5612 update_group_power(sd, cpu);
69e1e811 5613 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
89c4710e
SS
5614}
5615
029632fb
PZ
5616int __weak arch_sd_sibling_asym_packing(void)
5617{
5618 return 0*SD_ASYM_PACKING;
89c4710e
SS
5619}
5620
7c16ec58
MT
5621/*
5622 * Initializers for schedule domains
5623 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5624 */
5625
a5d8c348
IM
5626#ifdef CONFIG_SCHED_DEBUG
5627# define SD_INIT_NAME(sd, type) sd->name = #type
5628#else
5629# define SD_INIT_NAME(sd, type) do { } while (0)
5630#endif
5631
54ab4ff4
PZ
5632#define SD_INIT_FUNC(type) \
5633static noinline struct sched_domain * \
5634sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
5635{ \
5636 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
5637 *sd = SD_##type##_INIT; \
54ab4ff4
PZ
5638 SD_INIT_NAME(sd, type); \
5639 sd->private = &tl->data; \
5640 return sd; \
7c16ec58
MT
5641}
5642
5643SD_INIT_FUNC(CPU)
7c16ec58
MT
5644#ifdef CONFIG_SCHED_SMT
5645 SD_INIT_FUNC(SIBLING)
5646#endif
5647#ifdef CONFIG_SCHED_MC
5648 SD_INIT_FUNC(MC)
5649#endif
01a08546
HC
5650#ifdef CONFIG_SCHED_BOOK
5651 SD_INIT_FUNC(BOOK)
5652#endif
7c16ec58 5653
1d3504fc 5654static int default_relax_domain_level = -1;
60495e77 5655int sched_domain_level_max;
1d3504fc
HS
5656
5657static int __init setup_relax_domain_level(char *str)
5658{
a841f8ce
DS
5659 if (kstrtoint(str, 0, &default_relax_domain_level))
5660 pr_warn("Unable to set relax_domain_level\n");
30e0e178 5661
1d3504fc
HS
5662 return 1;
5663}
5664__setup("relax_domain_level=", setup_relax_domain_level);
5665
5666static void set_domain_attribute(struct sched_domain *sd,
5667 struct sched_domain_attr *attr)
5668{
5669 int request;
5670
5671 if (!attr || attr->relax_domain_level < 0) {
5672 if (default_relax_domain_level < 0)
5673 return;
5674 else
5675 request = default_relax_domain_level;
5676 } else
5677 request = attr->relax_domain_level;
5678 if (request < sd->level) {
5679 /* turn off idle balance on this domain */
c88d5910 5680 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5681 } else {
5682 /* turn on idle balance on this domain */
c88d5910 5683 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5684 }
5685}
5686
54ab4ff4
PZ
5687static void __sdt_free(const struct cpumask *cpu_map);
5688static int __sdt_alloc(const struct cpumask *cpu_map);
5689
2109b99e
AH
5690static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5691 const struct cpumask *cpu_map)
5692{
5693 switch (what) {
2109b99e 5694 case sa_rootdomain:
822ff793
PZ
5695 if (!atomic_read(&d->rd->refcount))
5696 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
5697 case sa_sd:
5698 free_percpu(d->sd); /* fall through */
dce840a0 5699 case sa_sd_storage:
54ab4ff4 5700 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
5701 case sa_none:
5702 break;
5703 }
5704}
3404c8d9 5705
2109b99e
AH
5706static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5707 const struct cpumask *cpu_map)
5708{
dce840a0
PZ
5709 memset(d, 0, sizeof(*d));
5710
54ab4ff4
PZ
5711 if (__sdt_alloc(cpu_map))
5712 return sa_sd_storage;
dce840a0
PZ
5713 d->sd = alloc_percpu(struct sched_domain *);
5714 if (!d->sd)
5715 return sa_sd_storage;
2109b99e 5716 d->rd = alloc_rootdomain();
dce840a0 5717 if (!d->rd)
21d42ccf 5718 return sa_sd;
2109b99e
AH
5719 return sa_rootdomain;
5720}
57d885fe 5721
dce840a0
PZ
5722/*
5723 * NULL the sd_data elements we've used to build the sched_domain and
5724 * sched_group structure so that the subsequent __free_domain_allocs()
5725 * will not free the data we're using.
5726 */
5727static void claim_allocations(int cpu, struct sched_domain *sd)
5728{
5729 struct sd_data *sdd = sd->private;
dce840a0
PZ
5730
5731 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5732 *per_cpu_ptr(sdd->sd, cpu) = NULL;
5733
e3589f6c 5734 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 5735 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c
PZ
5736
5737 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
9c3f75cb 5738 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
dce840a0
PZ
5739}
5740
2c402dc3
PZ
5741#ifdef CONFIG_SCHED_SMT
5742static const struct cpumask *cpu_smt_mask(int cpu)
7f4588f3 5743{
2c402dc3 5744 return topology_thread_cpumask(cpu);
3bd65a80 5745}
2c402dc3 5746#endif
7f4588f3 5747
d069b916
PZ
5748/*
5749 * Topology list, bottom-up.
5750 */
2c402dc3 5751static struct sched_domain_topology_level default_topology[] = {
d069b916
PZ
5752#ifdef CONFIG_SCHED_SMT
5753 { sd_init_SIBLING, cpu_smt_mask, },
01a08546 5754#endif
1e9f28fa 5755#ifdef CONFIG_SCHED_MC
2c402dc3 5756 { sd_init_MC, cpu_coregroup_mask, },
1e9f28fa 5757#endif
d069b916
PZ
5758#ifdef CONFIG_SCHED_BOOK
5759 { sd_init_BOOK, cpu_book_mask, },
5760#endif
5761 { sd_init_CPU, cpu_cpu_mask, },
eb7a74e6
PZ
5762 { NULL, },
5763};
5764
5765static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5766
27723a68
VK
5767#define for_each_sd_topology(tl) \
5768 for (tl = sched_domain_topology; tl->init; tl++)
5769
cb83b629
PZ
5770#ifdef CONFIG_NUMA
5771
5772static int sched_domains_numa_levels;
cb83b629
PZ
5773static int *sched_domains_numa_distance;
5774static struct cpumask ***sched_domains_numa_masks;
5775static int sched_domains_curr_level;
5776
cb83b629
PZ
5777static inline int sd_local_flags(int level)
5778{
10717dcd 5779 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
cb83b629
PZ
5780 return 0;
5781
5782 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
5783}
5784
5785static struct sched_domain *
5786sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
5787{
5788 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
5789 int level = tl->numa_level;
5790 int sd_weight = cpumask_weight(
5791 sched_domains_numa_masks[level][cpu_to_node(cpu)]);
5792
5793 *sd = (struct sched_domain){
5794 .min_interval = sd_weight,
5795 .max_interval = 2*sd_weight,
5796 .busy_factor = 32,
870a0bb5 5797 .imbalance_pct = 125,
cb83b629
PZ
5798 .cache_nice_tries = 2,
5799 .busy_idx = 3,
5800 .idle_idx = 2,
5801 .newidle_idx = 0,
5802 .wake_idx = 0,
5803 .forkexec_idx = 0,
5804
5805 .flags = 1*SD_LOAD_BALANCE
5806 | 1*SD_BALANCE_NEWIDLE
5807 | 0*SD_BALANCE_EXEC
5808 | 0*SD_BALANCE_FORK
5809 | 0*SD_BALANCE_WAKE
5810 | 0*SD_WAKE_AFFINE
cb83b629 5811 | 0*SD_SHARE_CPUPOWER
cb83b629
PZ
5812 | 0*SD_SHARE_PKG_RESOURCES
5813 | 1*SD_SERIALIZE
5814 | 0*SD_PREFER_SIBLING
3a7053b3 5815 | 1*SD_NUMA
cb83b629
PZ
5816 | sd_local_flags(level)
5817 ,
5818 .last_balance = jiffies,
5819 .balance_interval = sd_weight,
5820 };
5821 SD_INIT_NAME(sd, NUMA);
5822 sd->private = &tl->data;
5823
5824 /*
5825 * Ugly hack to pass state to sd_numa_mask()...
5826 */
5827 sched_domains_curr_level = tl->numa_level;
5828
5829 return sd;
5830}
5831
5832static const struct cpumask *sd_numa_mask(int cpu)
5833{
5834 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
5835}
5836
d039ac60
PZ
5837static void sched_numa_warn(const char *str)
5838{
5839 static int done = false;
5840 int i,j;
5841
5842 if (done)
5843 return;
5844
5845 done = true;
5846
5847 printk(KERN_WARNING "ERROR: %s\n\n", str);
5848
5849 for (i = 0; i < nr_node_ids; i++) {
5850 printk(KERN_WARNING " ");
5851 for (j = 0; j < nr_node_ids; j++)
5852 printk(KERN_CONT "%02d ", node_distance(i,j));
5853 printk(KERN_CONT "\n");
5854 }
5855 printk(KERN_WARNING "\n");
5856}
5857
5858static bool find_numa_distance(int distance)
5859{
5860 int i;
5861
5862 if (distance == node_distance(0, 0))
5863 return true;
5864
5865 for (i = 0; i < sched_domains_numa_levels; i++) {
5866 if (sched_domains_numa_distance[i] == distance)
5867 return true;
5868 }
5869
5870 return false;
5871}
5872
cb83b629
PZ
5873static void sched_init_numa(void)
5874{
5875 int next_distance, curr_distance = node_distance(0, 0);
5876 struct sched_domain_topology_level *tl;
5877 int level = 0;
5878 int i, j, k;
5879
cb83b629
PZ
5880 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
5881 if (!sched_domains_numa_distance)
5882 return;
5883
5884 /*
5885 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
5886 * unique distances in the node_distance() table.
5887 *
5888 * Assumes node_distance(0,j) includes all distances in
5889 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
5890 */
5891 next_distance = curr_distance;
5892 for (i = 0; i < nr_node_ids; i++) {
5893 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
5894 for (k = 0; k < nr_node_ids; k++) {
5895 int distance = node_distance(i, k);
5896
5897 if (distance > curr_distance &&
5898 (distance < next_distance ||
5899 next_distance == curr_distance))
5900 next_distance = distance;
5901
5902 /*
5903 * While not a strong assumption it would be nice to know
5904 * about cases where if node A is connected to B, B is not
5905 * equally connected to A.
5906 */
5907 if (sched_debug() && node_distance(k, i) != distance)
5908 sched_numa_warn("Node-distance not symmetric");
5909
5910 if (sched_debug() && i && !find_numa_distance(distance))
5911 sched_numa_warn("Node-0 not representative");
5912 }
5913 if (next_distance != curr_distance) {
5914 sched_domains_numa_distance[level++] = next_distance;
5915 sched_domains_numa_levels = level;
5916 curr_distance = next_distance;
5917 } else break;
cb83b629 5918 }
d039ac60
PZ
5919
5920 /*
5921 * In case of sched_debug() we verify the above assumption.
5922 */
5923 if (!sched_debug())
5924 break;
cb83b629
PZ
5925 }
5926 /*
5927 * 'level' contains the number of unique distances, excluding the
5928 * identity distance node_distance(i,i).
5929 *
28b4a521 5930 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
5931 * numbers.
5932 */
5933
5f7865f3
TC
5934 /*
5935 * Here, we should temporarily reset sched_domains_numa_levels to 0.
5936 * If it fails to allocate memory for array sched_domains_numa_masks[][],
5937 * the array will contain less then 'level' members. This could be
5938 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
5939 * in other functions.
5940 *
5941 * We reset it to 'level' at the end of this function.
5942 */
5943 sched_domains_numa_levels = 0;
5944
cb83b629
PZ
5945 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
5946 if (!sched_domains_numa_masks)
5947 return;
5948
5949 /*
5950 * Now for each level, construct a mask per node which contains all
5951 * cpus of nodes that are that many hops away from us.
5952 */
5953 for (i = 0; i < level; i++) {
5954 sched_domains_numa_masks[i] =
5955 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
5956 if (!sched_domains_numa_masks[i])
5957 return;
5958
5959 for (j = 0; j < nr_node_ids; j++) {
2ea45800 5960 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
5961 if (!mask)
5962 return;
5963
5964 sched_domains_numa_masks[i][j] = mask;
5965
5966 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 5967 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
5968 continue;
5969
5970 cpumask_or(mask, mask, cpumask_of_node(k));
5971 }
5972 }
5973 }
5974
5975 tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
5976 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
5977 if (!tl)
5978 return;
5979
5980 /*
5981 * Copy the default topology bits..
5982 */
5983 for (i = 0; default_topology[i].init; i++)
5984 tl[i] = default_topology[i];
5985
5986 /*
5987 * .. and append 'j' levels of NUMA goodness.
5988 */
5989 for (j = 0; j < level; i++, j++) {
5990 tl[i] = (struct sched_domain_topology_level){
5991 .init = sd_numa_init,
5992 .mask = sd_numa_mask,
5993 .flags = SDTL_OVERLAP,
5994 .numa_level = j,
5995 };
5996 }
5997
5998 sched_domain_topology = tl;
5f7865f3
TC
5999
6000 sched_domains_numa_levels = level;
cb83b629 6001}
301a5cba
TC
6002
6003static void sched_domains_numa_masks_set(int cpu)
6004{
6005 int i, j;
6006 int node = cpu_to_node(cpu);
6007
6008 for (i = 0; i < sched_domains_numa_levels; i++) {
6009 for (j = 0; j < nr_node_ids; j++) {
6010 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6011 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6012 }
6013 }
6014}
6015
6016static void sched_domains_numa_masks_clear(int cpu)
6017{
6018 int i, j;
6019 for (i = 0; i < sched_domains_numa_levels; i++) {
6020 for (j = 0; j < nr_node_ids; j++)
6021 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6022 }
6023}
6024
6025/*
6026 * Update sched_domains_numa_masks[level][node] array when new cpus
6027 * are onlined.
6028 */
6029static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6030 unsigned long action,
6031 void *hcpu)
6032{
6033 int cpu = (long)hcpu;
6034
6035 switch (action & ~CPU_TASKS_FROZEN) {
6036 case CPU_ONLINE:
6037 sched_domains_numa_masks_set(cpu);
6038 break;
6039
6040 case CPU_DEAD:
6041 sched_domains_numa_masks_clear(cpu);
6042 break;
6043
6044 default:
6045 return NOTIFY_DONE;
6046 }
6047
6048 return NOTIFY_OK;
cb83b629
PZ
6049}
6050#else
6051static inline void sched_init_numa(void)
6052{
6053}
301a5cba
TC
6054
6055static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6056 unsigned long action,
6057 void *hcpu)
6058{
6059 return 0;
6060}
cb83b629
PZ
6061#endif /* CONFIG_NUMA */
6062
54ab4ff4
PZ
6063static int __sdt_alloc(const struct cpumask *cpu_map)
6064{
6065 struct sched_domain_topology_level *tl;
6066 int j;
6067
27723a68 6068 for_each_sd_topology(tl) {
54ab4ff4
PZ
6069 struct sd_data *sdd = &tl->data;
6070
6071 sdd->sd = alloc_percpu(struct sched_domain *);
6072 if (!sdd->sd)
6073 return -ENOMEM;
6074
6075 sdd->sg = alloc_percpu(struct sched_group *);
6076 if (!sdd->sg)
6077 return -ENOMEM;
6078
9c3f75cb
PZ
6079 sdd->sgp = alloc_percpu(struct sched_group_power *);
6080 if (!sdd->sgp)
6081 return -ENOMEM;
6082
54ab4ff4
PZ
6083 for_each_cpu(j, cpu_map) {
6084 struct sched_domain *sd;
6085 struct sched_group *sg;
9c3f75cb 6086 struct sched_group_power *sgp;
54ab4ff4
PZ
6087
6088 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6089 GFP_KERNEL, cpu_to_node(j));
6090 if (!sd)
6091 return -ENOMEM;
6092
6093 *per_cpu_ptr(sdd->sd, j) = sd;
6094
6095 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6096 GFP_KERNEL, cpu_to_node(j));
6097 if (!sg)
6098 return -ENOMEM;
6099
30b4e9eb
IM
6100 sg->next = sg;
6101
54ab4ff4 6102 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6103
c1174876 6104 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
9c3f75cb
PZ
6105 GFP_KERNEL, cpu_to_node(j));
6106 if (!sgp)
6107 return -ENOMEM;
6108
6109 *per_cpu_ptr(sdd->sgp, j) = sgp;
54ab4ff4
PZ
6110 }
6111 }
6112
6113 return 0;
6114}
6115
6116static void __sdt_free(const struct cpumask *cpu_map)
6117{
6118 struct sched_domain_topology_level *tl;
6119 int j;
6120
27723a68 6121 for_each_sd_topology(tl) {
54ab4ff4
PZ
6122 struct sd_data *sdd = &tl->data;
6123
6124 for_each_cpu(j, cpu_map) {
fb2cf2c6 6125 struct sched_domain *sd;
6126
6127 if (sdd->sd) {
6128 sd = *per_cpu_ptr(sdd->sd, j);
6129 if (sd && (sd->flags & SD_OVERLAP))
6130 free_sched_groups(sd->groups, 0);
6131 kfree(*per_cpu_ptr(sdd->sd, j));
6132 }
6133
6134 if (sdd->sg)
6135 kfree(*per_cpu_ptr(sdd->sg, j));
6136 if (sdd->sgp)
6137 kfree(*per_cpu_ptr(sdd->sgp, j));
54ab4ff4
PZ
6138 }
6139 free_percpu(sdd->sd);
fb2cf2c6 6140 sdd->sd = NULL;
54ab4ff4 6141 free_percpu(sdd->sg);
fb2cf2c6 6142 sdd->sg = NULL;
9c3f75cb 6143 free_percpu(sdd->sgp);
fb2cf2c6 6144 sdd->sgp = NULL;
54ab4ff4
PZ
6145 }
6146}
6147
2c402dc3 6148struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
6149 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6150 struct sched_domain *child, int cpu)
2c402dc3 6151{
54ab4ff4 6152 struct sched_domain *sd = tl->init(tl, cpu);
2c402dc3 6153 if (!sd)
d069b916 6154 return child;
2c402dc3 6155
2c402dc3 6156 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6157 if (child) {
6158 sd->level = child->level + 1;
6159 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6160 child->parent = sd;
c75e0128 6161 sd->child = child;
60495e77 6162 }
a841f8ce 6163 set_domain_attribute(sd, attr);
2c402dc3
PZ
6164
6165 return sd;
6166}
6167
2109b99e
AH
6168/*
6169 * Build sched domains for a given set of cpus and attach the sched domains
6170 * to the individual cpus
6171 */
dce840a0
PZ
6172static int build_sched_domains(const struct cpumask *cpu_map,
6173 struct sched_domain_attr *attr)
2109b99e 6174{
1c632169 6175 enum s_alloc alloc_state;
dce840a0 6176 struct sched_domain *sd;
2109b99e 6177 struct s_data d;
822ff793 6178 int i, ret = -ENOMEM;
9c1cfda2 6179
2109b99e
AH
6180 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6181 if (alloc_state != sa_rootdomain)
6182 goto error;
9c1cfda2 6183
dce840a0 6184 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6185 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6186 struct sched_domain_topology_level *tl;
6187
3bd65a80 6188 sd = NULL;
27723a68 6189 for_each_sd_topology(tl) {
4a850cbe 6190 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
6191 if (tl == sched_domain_topology)
6192 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
6193 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6194 sd->flags |= SD_OVERLAP;
d110235d
PZ
6195 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6196 break;
e3589f6c 6197 }
dce840a0
PZ
6198 }
6199
6200 /* Build the groups for the domains */
6201 for_each_cpu(i, cpu_map) {
6202 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6203 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6204 if (sd->flags & SD_OVERLAP) {
6205 if (build_overlap_sched_groups(sd, i))
6206 goto error;
6207 } else {
6208 if (build_sched_groups(sd, i))
6209 goto error;
6210 }
1cf51902 6211 }
a06dadbe 6212 }
9c1cfda2 6213
1da177e4 6214 /* Calculate CPU power for physical packages and nodes */
a9c9a9b6
PZ
6215 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6216 if (!cpumask_test_cpu(i, cpu_map))
6217 continue;
9c1cfda2 6218
dce840a0
PZ
6219 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6220 claim_allocations(i, sd);
cd4ea6ae 6221 init_sched_groups_power(i, sd);
dce840a0 6222 }
f712c0c7 6223 }
9c1cfda2 6224
1da177e4 6225 /* Attach the domains */
dce840a0 6226 rcu_read_lock();
abcd083a 6227 for_each_cpu(i, cpu_map) {
21d42ccf 6228 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6229 cpu_attach_domain(sd, d.rd, i);
1da177e4 6230 }
dce840a0 6231 rcu_read_unlock();
51888ca2 6232
822ff793 6233 ret = 0;
51888ca2 6234error:
2109b99e 6235 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6236 return ret;
1da177e4 6237}
029190c5 6238
acc3f5d7 6239static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6240static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6241static struct sched_domain_attr *dattr_cur;
6242 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6243
6244/*
6245 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6246 * cpumask) fails, then fallback to a single sched domain,
6247 * as determined by the single cpumask fallback_doms.
029190c5 6248 */
4212823f 6249static cpumask_var_t fallback_doms;
029190c5 6250
ee79d1bd
HC
6251/*
6252 * arch_update_cpu_topology lets virtualized architectures update the
6253 * cpu core maps. It is supposed to return 1 if the topology changed
6254 * or 0 if it stayed the same.
6255 */
6256int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 6257{
ee79d1bd 6258 return 0;
22e52b07
HC
6259}
6260
acc3f5d7
RR
6261cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6262{
6263 int i;
6264 cpumask_var_t *doms;
6265
6266 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6267 if (!doms)
6268 return NULL;
6269 for (i = 0; i < ndoms; i++) {
6270 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6271 free_sched_domains(doms, i);
6272 return NULL;
6273 }
6274 }
6275 return doms;
6276}
6277
6278void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6279{
6280 unsigned int i;
6281 for (i = 0; i < ndoms; i++)
6282 free_cpumask_var(doms[i]);
6283 kfree(doms);
6284}
6285
1a20ff27 6286/*
41a2d6cf 6287 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6288 * For now this just excludes isolated cpus, but could be used to
6289 * exclude other special cases in the future.
1a20ff27 6290 */
c4a8849a 6291static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6292{
7378547f
MM
6293 int err;
6294
22e52b07 6295 arch_update_cpu_topology();
029190c5 6296 ndoms_cur = 1;
acc3f5d7 6297 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6298 if (!doms_cur)
acc3f5d7
RR
6299 doms_cur = &fallback_doms;
6300 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 6301 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6302 register_sched_domain_sysctl();
7378547f
MM
6303
6304 return err;
1a20ff27
DG
6305}
6306
1a20ff27
DG
6307/*
6308 * Detach sched domains from a group of cpus specified in cpu_map
6309 * These cpus will now be attached to the NULL domain
6310 */
96f874e2 6311static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6312{
6313 int i;
6314
dce840a0 6315 rcu_read_lock();
abcd083a 6316 for_each_cpu(i, cpu_map)
57d885fe 6317 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6318 rcu_read_unlock();
1a20ff27
DG
6319}
6320
1d3504fc
HS
6321/* handle null as "default" */
6322static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6323 struct sched_domain_attr *new, int idx_new)
6324{
6325 struct sched_domain_attr tmp;
6326
6327 /* fast path */
6328 if (!new && !cur)
6329 return 1;
6330
6331 tmp = SD_ATTR_INIT;
6332 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6333 new ? (new + idx_new) : &tmp,
6334 sizeof(struct sched_domain_attr));
6335}
6336
029190c5
PJ
6337/*
6338 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6339 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6340 * doms_new[] to the current sched domain partitioning, doms_cur[].
6341 * It destroys each deleted domain and builds each new domain.
6342 *
acc3f5d7 6343 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
6344 * The masks don't intersect (don't overlap.) We should setup one
6345 * sched domain for each mask. CPUs not in any of the cpumasks will
6346 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6347 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6348 * it as it is.
6349 *
acc3f5d7
RR
6350 * The passed in 'doms_new' should be allocated using
6351 * alloc_sched_domains. This routine takes ownership of it and will
6352 * free_sched_domains it when done with it. If the caller failed the
6353 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6354 * and partition_sched_domains() will fallback to the single partition
6355 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 6356 *
96f874e2 6357 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
6358 * ndoms_new == 0 is a special case for destroying existing domains,
6359 * and it will not create the default domain.
dfb512ec 6360 *
029190c5
PJ
6361 * Call with hotplug lock held
6362 */
acc3f5d7 6363void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 6364 struct sched_domain_attr *dattr_new)
029190c5 6365{
dfb512ec 6366 int i, j, n;
d65bd5ec 6367 int new_topology;
029190c5 6368
712555ee 6369 mutex_lock(&sched_domains_mutex);
a1835615 6370
7378547f
MM
6371 /* always unregister in case we don't destroy any domains */
6372 unregister_sched_domain_sysctl();
6373
d65bd5ec
HC
6374 /* Let architecture update cpu core mappings. */
6375 new_topology = arch_update_cpu_topology();
6376
dfb512ec 6377 n = doms_new ? ndoms_new : 0;
029190c5
PJ
6378
6379 /* Destroy deleted domains */
6380 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 6381 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6382 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 6383 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
6384 goto match1;
6385 }
6386 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 6387 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
6388match1:
6389 ;
6390 }
6391
c8d2d47a 6392 n = ndoms_cur;
e761b772 6393 if (doms_new == NULL) {
c8d2d47a 6394 n = 0;
acc3f5d7 6395 doms_new = &fallback_doms;
6ad4c188 6396 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 6397 WARN_ON_ONCE(dattr_new);
e761b772
MK
6398 }
6399
029190c5
PJ
6400 /* Build new domains */
6401 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 6402 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6403 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 6404 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
6405 goto match2;
6406 }
6407 /* no match - add a new doms_new */
dce840a0 6408 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
6409match2:
6410 ;
6411 }
6412
6413 /* Remember the new sched domains */
acc3f5d7
RR
6414 if (doms_cur != &fallback_doms)
6415 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 6416 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 6417 doms_cur = doms_new;
1d3504fc 6418 dattr_cur = dattr_new;
029190c5 6419 ndoms_cur = ndoms_new;
7378547f
MM
6420
6421 register_sched_domain_sysctl();
a1835615 6422
712555ee 6423 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
6424}
6425
d35be8ba
SB
6426static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6427
1da177e4 6428/*
3a101d05
TH
6429 * Update cpusets according to cpu_active mask. If cpusets are
6430 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6431 * around partition_sched_domains().
d35be8ba
SB
6432 *
6433 * If we come here as part of a suspend/resume, don't touch cpusets because we
6434 * want to restore it back to its original state upon resume anyway.
1da177e4 6435 */
0b2e918a
TH
6436static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6437 void *hcpu)
e761b772 6438{
d35be8ba
SB
6439 switch (action) {
6440 case CPU_ONLINE_FROZEN:
6441 case CPU_DOWN_FAILED_FROZEN:
6442
6443 /*
6444 * num_cpus_frozen tracks how many CPUs are involved in suspend
6445 * resume sequence. As long as this is not the last online
6446 * operation in the resume sequence, just build a single sched
6447 * domain, ignoring cpusets.
6448 */
6449 num_cpus_frozen--;
6450 if (likely(num_cpus_frozen)) {
6451 partition_sched_domains(1, NULL, NULL);
6452 break;
6453 }
6454
6455 /*
6456 * This is the last CPU online operation. So fall through and
6457 * restore the original sched domains by considering the
6458 * cpuset configurations.
6459 */
6460
e761b772 6461 case CPU_ONLINE:
6ad4c188 6462 case CPU_DOWN_FAILED:
7ddf96b0 6463 cpuset_update_active_cpus(true);
d35be8ba 6464 break;
3a101d05
TH
6465 default:
6466 return NOTIFY_DONE;
6467 }
d35be8ba 6468 return NOTIFY_OK;
3a101d05 6469}
e761b772 6470
0b2e918a
TH
6471static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6472 void *hcpu)
3a101d05 6473{
d35be8ba 6474 switch (action) {
3a101d05 6475 case CPU_DOWN_PREPARE:
7ddf96b0 6476 cpuset_update_active_cpus(false);
d35be8ba
SB
6477 break;
6478 case CPU_DOWN_PREPARE_FROZEN:
6479 num_cpus_frozen++;
6480 partition_sched_domains(1, NULL, NULL);
6481 break;
e761b772
MK
6482 default:
6483 return NOTIFY_DONE;
6484 }
d35be8ba 6485 return NOTIFY_OK;
e761b772 6486}
e761b772 6487
1da177e4
LT
6488void __init sched_init_smp(void)
6489{
dcc30a35
RR
6490 cpumask_var_t non_isolated_cpus;
6491
6492 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 6493 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 6494
cb83b629
PZ
6495 sched_init_numa();
6496
95402b38 6497 get_online_cpus();
712555ee 6498 mutex_lock(&sched_domains_mutex);
c4a8849a 6499 init_sched_domains(cpu_active_mask);
dcc30a35
RR
6500 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6501 if (cpumask_empty(non_isolated_cpus))
6502 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 6503 mutex_unlock(&sched_domains_mutex);
95402b38 6504 put_online_cpus();
e761b772 6505
301a5cba 6506 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
6507 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6508 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772 6509
b328ca18 6510 init_hrtick();
5c1e1767
NP
6511
6512 /* Move init over to a non-isolated CPU */
dcc30a35 6513 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 6514 BUG();
19978ca6 6515 sched_init_granularity();
dcc30a35 6516 free_cpumask_var(non_isolated_cpus);
4212823f 6517
0e3900e6 6518 init_sched_rt_class();
1da177e4
LT
6519}
6520#else
6521void __init sched_init_smp(void)
6522{
19978ca6 6523 sched_init_granularity();
1da177e4
LT
6524}
6525#endif /* CONFIG_SMP */
6526
cd1bb94b
AB
6527const_debug unsigned int sysctl_timer_migration = 1;
6528
1da177e4
LT
6529int in_sched_functions(unsigned long addr)
6530{
1da177e4
LT
6531 return in_lock_functions(addr) ||
6532 (addr >= (unsigned long)__sched_text_start
6533 && addr < (unsigned long)__sched_text_end);
6534}
6535
029632fb 6536#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
6537/*
6538 * Default task group.
6539 * Every task in system belongs to this group at bootup.
6540 */
029632fb 6541struct task_group root_task_group;
35cf4e50 6542LIST_HEAD(task_groups);
052f1dc7 6543#endif
6f505b16 6544
e6252c3e 6545DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 6546
1da177e4
LT
6547void __init sched_init(void)
6548{
dd41f596 6549 int i, j;
434d53b0
MT
6550 unsigned long alloc_size = 0, ptr;
6551
6552#ifdef CONFIG_FAIR_GROUP_SCHED
6553 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6554#endif
6555#ifdef CONFIG_RT_GROUP_SCHED
6556 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 6557#endif
df7c8e84 6558#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 6559 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 6560#endif
434d53b0 6561 if (alloc_size) {
36b7b6d4 6562 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
6563
6564#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 6565 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
6566 ptr += nr_cpu_ids * sizeof(void **);
6567
07e06b01 6568 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 6569 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 6570
6d6bc0ad 6571#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 6572#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6573 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
6574 ptr += nr_cpu_ids * sizeof(void **);
6575
07e06b01 6576 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
6577 ptr += nr_cpu_ids * sizeof(void **);
6578
6d6bc0ad 6579#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
6580#ifdef CONFIG_CPUMASK_OFFSTACK
6581 for_each_possible_cpu(i) {
e6252c3e 6582 per_cpu(load_balance_mask, i) = (void *)ptr;
df7c8e84
RR
6583 ptr += cpumask_size();
6584 }
6585#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 6586 }
dd41f596 6587
57d885fe
GH
6588#ifdef CONFIG_SMP
6589 init_defrootdomain();
6590#endif
6591
d0b27fa7
PZ
6592 init_rt_bandwidth(&def_rt_bandwidth,
6593 global_rt_period(), global_rt_runtime());
6594
6595#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6596 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 6597 global_rt_period(), global_rt_runtime());
6d6bc0ad 6598#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6599
7c941438 6600#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
6601 list_add(&root_task_group.list, &task_groups);
6602 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 6603 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 6604 autogroup_init(&init_task);
54c707e9 6605
7c941438 6606#endif /* CONFIG_CGROUP_SCHED */
6f505b16 6607
0a945022 6608 for_each_possible_cpu(i) {
70b97a7f 6609 struct rq *rq;
1da177e4
LT
6610
6611 rq = cpu_rq(i);
05fa785c 6612 raw_spin_lock_init(&rq->lock);
7897986b 6613 rq->nr_running = 0;
dce48a84
TG
6614 rq->calc_load_active = 0;
6615 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 6616 init_cfs_rq(&rq->cfs);
6f505b16 6617 init_rt_rq(&rq->rt, rq);
dd41f596 6618#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 6619 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 6620 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 6621 /*
07e06b01 6622 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
6623 *
6624 * In case of task-groups formed thr' the cgroup filesystem, it
6625 * gets 100% of the cpu resources in the system. This overall
6626 * system cpu resource is divided among the tasks of
07e06b01 6627 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
6628 * based on each entity's (task or task-group's) weight
6629 * (se->load.weight).
6630 *
07e06b01 6631 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
6632 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6633 * then A0's share of the cpu resource is:
6634 *
0d905bca 6635 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 6636 *
07e06b01
YZ
6637 * We achieve this by letting root_task_group's tasks sit
6638 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 6639 */
ab84d31e 6640 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 6641 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
6642#endif /* CONFIG_FAIR_GROUP_SCHED */
6643
6644 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 6645#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 6646 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
07e06b01 6647 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 6648#endif
1da177e4 6649
dd41f596
IM
6650 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6651 rq->cpu_load[j] = 0;
fdf3e95d
VP
6652
6653 rq->last_load_update_tick = jiffies;
6654
1da177e4 6655#ifdef CONFIG_SMP
41c7ce9a 6656 rq->sd = NULL;
57d885fe 6657 rq->rd = NULL;
1399fa78 6658 rq->cpu_power = SCHED_POWER_SCALE;
3f029d3c 6659 rq->post_schedule = 0;
1da177e4 6660 rq->active_balance = 0;
dd41f596 6661 rq->next_balance = jiffies;
1da177e4 6662 rq->push_cpu = 0;
0a2966b4 6663 rq->cpu = i;
1f11eb6a 6664 rq->online = 0;
eae0c9df
MG
6665 rq->idle_stamp = 0;
6666 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 6667 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
6668
6669 INIT_LIST_HEAD(&rq->cfs_tasks);
6670
dc938520 6671 rq_attach_root(rq, &def_root_domain);
3451d024 6672#ifdef CONFIG_NO_HZ_COMMON
1c792db7 6673 rq->nohz_flags = 0;
83cd4fe2 6674#endif
265f22a9
FW
6675#ifdef CONFIG_NO_HZ_FULL
6676 rq->last_sched_tick = 0;
6677#endif
1da177e4 6678#endif
8f4d37ec 6679 init_rq_hrtick(rq);
1da177e4 6680 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
6681 }
6682
2dd73a4f 6683 set_load_weight(&init_task);
b50f60ce 6684
e107be36
AK
6685#ifdef CONFIG_PREEMPT_NOTIFIERS
6686 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6687#endif
6688
b50f60ce 6689#ifdef CONFIG_RT_MUTEXES
732375c6 6690 plist_head_init(&init_task.pi_waiters);
b50f60ce
HC
6691#endif
6692
1da177e4
LT
6693 /*
6694 * The boot idle thread does lazy MMU switching as well:
6695 */
6696 atomic_inc(&init_mm.mm_count);
6697 enter_lazy_tlb(&init_mm, current);
6698
6699 /*
6700 * Make us the idle thread. Technically, schedule() should not be
6701 * called from this thread, however somewhere below it might be,
6702 * but because we are the idle thread, we just pick up running again
6703 * when this runqueue becomes "idle".
6704 */
6705 init_idle(current, smp_processor_id());
dce48a84
TG
6706
6707 calc_load_update = jiffies + LOAD_FREQ;
6708
dd41f596
IM
6709 /*
6710 * During early bootup we pretend to be a normal task:
6711 */
6712 current->sched_class = &fair_sched_class;
6892b75e 6713
bf4d83f6 6714#ifdef CONFIG_SMP
4cb98839 6715 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
6716 /* May be allocated at isolcpus cmdline parse time */
6717 if (cpu_isolated_map == NULL)
6718 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 6719 idle_thread_set_boot_cpu();
029632fb
PZ
6720#endif
6721 init_sched_fair_class();
6a7b3dc3 6722
6892b75e 6723 scheduler_running = 1;
1da177e4
LT
6724}
6725
d902db1e 6726#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
6727static inline int preempt_count_equals(int preempt_offset)
6728{
234da7bc 6729 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 6730
4ba8216c 6731 return (nested == preempt_offset);
e4aafea2
FW
6732}
6733
d894837f 6734void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6735{
1da177e4
LT
6736 static unsigned long prev_jiffy; /* ratelimiting */
6737
b3fbab05 6738 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
e4aafea2
FW
6739 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
6740 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
6741 return;
6742 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6743 return;
6744 prev_jiffy = jiffies;
6745
3df0fc5b
PZ
6746 printk(KERN_ERR
6747 "BUG: sleeping function called from invalid context at %s:%d\n",
6748 file, line);
6749 printk(KERN_ERR
6750 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6751 in_atomic(), irqs_disabled(),
6752 current->pid, current->comm);
aef745fc
IM
6753
6754 debug_show_held_locks(current);
6755 if (irqs_disabled())
6756 print_irqtrace_events(current);
6757 dump_stack();
1da177e4
LT
6758}
6759EXPORT_SYMBOL(__might_sleep);
6760#endif
6761
6762#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
6763static void normalize_task(struct rq *rq, struct task_struct *p)
6764{
da7a735e
PZ
6765 const struct sched_class *prev_class = p->sched_class;
6766 int old_prio = p->prio;
3a5e4dc1 6767 int on_rq;
3e51f33f 6768
fd2f4419 6769 on_rq = p->on_rq;
3a5e4dc1 6770 if (on_rq)
4ca9b72b 6771 dequeue_task(rq, p, 0);
3a5e4dc1
AK
6772 __setscheduler(rq, p, SCHED_NORMAL, 0);
6773 if (on_rq) {
4ca9b72b 6774 enqueue_task(rq, p, 0);
3a5e4dc1
AK
6775 resched_task(rq->curr);
6776 }
da7a735e
PZ
6777
6778 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
6779}
6780
1da177e4
LT
6781void normalize_rt_tasks(void)
6782{
a0f98a1c 6783 struct task_struct *g, *p;
1da177e4 6784 unsigned long flags;
70b97a7f 6785 struct rq *rq;
1da177e4 6786
4cf5d77a 6787 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 6788 do_each_thread(g, p) {
178be793
IM
6789 /*
6790 * Only normalize user tasks:
6791 */
6792 if (!p->mm)
6793 continue;
6794
6cfb0d5d 6795 p->se.exec_start = 0;
6cfb0d5d 6796#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
6797 p->se.statistics.wait_start = 0;
6798 p->se.statistics.sleep_start = 0;
6799 p->se.statistics.block_start = 0;
6cfb0d5d 6800#endif
dd41f596
IM
6801
6802 if (!rt_task(p)) {
6803 /*
6804 * Renice negative nice level userspace
6805 * tasks back to 0:
6806 */
6807 if (TASK_NICE(p) < 0 && p->mm)
6808 set_user_nice(p, 0);
1da177e4 6809 continue;
dd41f596 6810 }
1da177e4 6811
1d615482 6812 raw_spin_lock(&p->pi_lock);
b29739f9 6813 rq = __task_rq_lock(p);
1da177e4 6814
178be793 6815 normalize_task(rq, p);
3a5e4dc1 6816
b29739f9 6817 __task_rq_unlock(rq);
1d615482 6818 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
6819 } while_each_thread(g, p);
6820
4cf5d77a 6821 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
6822}
6823
6824#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 6825
67fc4e0c 6826#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 6827/*
67fc4e0c 6828 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
6829 *
6830 * They can only be called when the whole system has been
6831 * stopped - every CPU needs to be quiescent, and no scheduling
6832 * activity can take place. Using them for anything else would
6833 * be a serious bug, and as a result, they aren't even visible
6834 * under any other configuration.
6835 */
6836
6837/**
6838 * curr_task - return the current task for a given cpu.
6839 * @cpu: the processor in question.
6840 *
6841 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
6842 *
6843 * Return: The current task for @cpu.
1df5c10a 6844 */
36c8b586 6845struct task_struct *curr_task(int cpu)
1df5c10a
LT
6846{
6847 return cpu_curr(cpu);
6848}
6849
67fc4e0c
JW
6850#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6851
6852#ifdef CONFIG_IA64
1df5c10a
LT
6853/**
6854 * set_curr_task - set the current task for a given cpu.
6855 * @cpu: the processor in question.
6856 * @p: the task pointer to set.
6857 *
6858 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
6859 * are serviced on a separate stack. It allows the architecture to switch the
6860 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
6861 * must be called with all CPU's synchronized, and interrupts disabled, the
6862 * and caller must save the original value of the current task (see
6863 * curr_task() above) and restore that value before reenabling interrupts and
6864 * re-starting the system.
6865 *
6866 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6867 */
36c8b586 6868void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
6869{
6870 cpu_curr(cpu) = p;
6871}
6872
6873#endif
29f59db3 6874
7c941438 6875#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
6876/* task_group_lock serializes the addition/removal of task groups */
6877static DEFINE_SPINLOCK(task_group_lock);
6878
bccbe08a
PZ
6879static void free_sched_group(struct task_group *tg)
6880{
6881 free_fair_sched_group(tg);
6882 free_rt_sched_group(tg);
e9aa1dd1 6883 autogroup_free(tg);
bccbe08a
PZ
6884 kfree(tg);
6885}
6886
6887/* allocate runqueue etc for a new task group */
ec7dc8ac 6888struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
6889{
6890 struct task_group *tg;
bccbe08a
PZ
6891
6892 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
6893 if (!tg)
6894 return ERR_PTR(-ENOMEM);
6895
ec7dc8ac 6896 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
6897 goto err;
6898
ec7dc8ac 6899 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
6900 goto err;
6901
ace783b9
LZ
6902 return tg;
6903
6904err:
6905 free_sched_group(tg);
6906 return ERR_PTR(-ENOMEM);
6907}
6908
6909void sched_online_group(struct task_group *tg, struct task_group *parent)
6910{
6911 unsigned long flags;
6912
8ed36996 6913 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 6914 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
6915
6916 WARN_ON(!parent); /* root should already exist */
6917
6918 tg->parent = parent;
f473aa5e 6919 INIT_LIST_HEAD(&tg->children);
09f2724a 6920 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 6921 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
6922}
6923
9b5b7751 6924/* rcu callback to free various structures associated with a task group */
6f505b16 6925static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 6926{
29f59db3 6927 /* now it should be safe to free those cfs_rqs */
6f505b16 6928 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
6929}
6930
9b5b7751 6931/* Destroy runqueue etc associated with a task group */
4cf86d77 6932void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
6933{
6934 /* wait for possible concurrent references to cfs_rqs complete */
6935 call_rcu(&tg->rcu, free_sched_group_rcu);
6936}
6937
6938void sched_offline_group(struct task_group *tg)
29f59db3 6939{
8ed36996 6940 unsigned long flags;
9b5b7751 6941 int i;
29f59db3 6942
3d4b47b4
PZ
6943 /* end participation in shares distribution */
6944 for_each_possible_cpu(i)
bccbe08a 6945 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
6946
6947 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 6948 list_del_rcu(&tg->list);
f473aa5e 6949 list_del_rcu(&tg->siblings);
8ed36996 6950 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
6951}
6952
9b5b7751 6953/* change task's runqueue when it moves between groups.
3a252015
IM
6954 * The caller of this function should have put the task in its new group
6955 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
6956 * reflect its new group.
9b5b7751
SV
6957 */
6958void sched_move_task(struct task_struct *tsk)
29f59db3 6959{
8323f26c 6960 struct task_group *tg;
29f59db3
SV
6961 int on_rq, running;
6962 unsigned long flags;
6963 struct rq *rq;
6964
6965 rq = task_rq_lock(tsk, &flags);
6966
051a1d1a 6967 running = task_current(rq, tsk);
fd2f4419 6968 on_rq = tsk->on_rq;
29f59db3 6969
0e1f3483 6970 if (on_rq)
29f59db3 6971 dequeue_task(rq, tsk, 0);
0e1f3483
HS
6972 if (unlikely(running))
6973 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 6974
8af01f56 6975 tg = container_of(task_css_check(tsk, cpu_cgroup_subsys_id,
8323f26c
PZ
6976 lockdep_is_held(&tsk->sighand->siglock)),
6977 struct task_group, css);
6978 tg = autogroup_task_group(tsk, tg);
6979 tsk->sched_task_group = tg;
6980
810b3817 6981#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
6982 if (tsk->sched_class->task_move_group)
6983 tsk->sched_class->task_move_group(tsk, on_rq);
6984 else
810b3817 6985#endif
b2b5ce02 6986 set_task_rq(tsk, task_cpu(tsk));
810b3817 6987
0e1f3483
HS
6988 if (unlikely(running))
6989 tsk->sched_class->set_curr_task(rq);
6990 if (on_rq)
371fd7e7 6991 enqueue_task(rq, tsk, 0);
29f59db3 6992
0122ec5b 6993 task_rq_unlock(rq, tsk, &flags);
29f59db3 6994}
7c941438 6995#endif /* CONFIG_CGROUP_SCHED */
29f59db3 6996
a790de99 6997#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
9f0c1e56
PZ
6998static unsigned long to_ratio(u64 period, u64 runtime)
6999{
7000 if (runtime == RUNTIME_INF)
9a7e0b18 7001 return 1ULL << 20;
9f0c1e56 7002
9a7e0b18 7003 return div64_u64(runtime << 20, period);
9f0c1e56 7004}
a790de99
PT
7005#endif
7006
7007#ifdef CONFIG_RT_GROUP_SCHED
7008/*
7009 * Ensure that the real time constraints are schedulable.
7010 */
7011static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7012
9a7e0b18
PZ
7013/* Must be called with tasklist_lock held */
7014static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7015{
9a7e0b18 7016 struct task_struct *g, *p;
b40b2e8e 7017
9a7e0b18 7018 do_each_thread(g, p) {
029632fb 7019 if (rt_task(p) && task_rq(p)->rt.tg == tg)
9a7e0b18
PZ
7020 return 1;
7021 } while_each_thread(g, p);
b40b2e8e 7022
9a7e0b18
PZ
7023 return 0;
7024}
b40b2e8e 7025
9a7e0b18
PZ
7026struct rt_schedulable_data {
7027 struct task_group *tg;
7028 u64 rt_period;
7029 u64 rt_runtime;
7030};
b40b2e8e 7031
a790de99 7032static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7033{
7034 struct rt_schedulable_data *d = data;
7035 struct task_group *child;
7036 unsigned long total, sum = 0;
7037 u64 period, runtime;
b40b2e8e 7038
9a7e0b18
PZ
7039 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7040 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7041
9a7e0b18
PZ
7042 if (tg == d->tg) {
7043 period = d->rt_period;
7044 runtime = d->rt_runtime;
b40b2e8e 7045 }
b40b2e8e 7046
4653f803
PZ
7047 /*
7048 * Cannot have more runtime than the period.
7049 */
7050 if (runtime > period && runtime != RUNTIME_INF)
7051 return -EINVAL;
6f505b16 7052
4653f803
PZ
7053 /*
7054 * Ensure we don't starve existing RT tasks.
7055 */
9a7e0b18
PZ
7056 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7057 return -EBUSY;
6f505b16 7058
9a7e0b18 7059 total = to_ratio(period, runtime);
6f505b16 7060
4653f803
PZ
7061 /*
7062 * Nobody can have more than the global setting allows.
7063 */
7064 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7065 return -EINVAL;
6f505b16 7066
4653f803
PZ
7067 /*
7068 * The sum of our children's runtime should not exceed our own.
7069 */
9a7e0b18
PZ
7070 list_for_each_entry_rcu(child, &tg->children, siblings) {
7071 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7072 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7073
9a7e0b18
PZ
7074 if (child == d->tg) {
7075 period = d->rt_period;
7076 runtime = d->rt_runtime;
7077 }
6f505b16 7078
9a7e0b18 7079 sum += to_ratio(period, runtime);
9f0c1e56 7080 }
6f505b16 7081
9a7e0b18
PZ
7082 if (sum > total)
7083 return -EINVAL;
7084
7085 return 0;
6f505b16
PZ
7086}
7087
9a7e0b18 7088static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7089{
8277434e
PT
7090 int ret;
7091
9a7e0b18
PZ
7092 struct rt_schedulable_data data = {
7093 .tg = tg,
7094 .rt_period = period,
7095 .rt_runtime = runtime,
7096 };
7097
8277434e
PT
7098 rcu_read_lock();
7099 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7100 rcu_read_unlock();
7101
7102 return ret;
521f1a24
DG
7103}
7104
ab84d31e 7105static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7106 u64 rt_period, u64 rt_runtime)
6f505b16 7107{
ac086bc2 7108 int i, err = 0;
9f0c1e56 7109
9f0c1e56 7110 mutex_lock(&rt_constraints_mutex);
521f1a24 7111 read_lock(&tasklist_lock);
9a7e0b18
PZ
7112 err = __rt_schedulable(tg, rt_period, rt_runtime);
7113 if (err)
9f0c1e56 7114 goto unlock;
ac086bc2 7115
0986b11b 7116 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7117 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7118 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7119
7120 for_each_possible_cpu(i) {
7121 struct rt_rq *rt_rq = tg->rt_rq[i];
7122
0986b11b 7123 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7124 rt_rq->rt_runtime = rt_runtime;
0986b11b 7125 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7126 }
0986b11b 7127 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7128unlock:
521f1a24 7129 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7130 mutex_unlock(&rt_constraints_mutex);
7131
7132 return err;
6f505b16
PZ
7133}
7134
25cc7da7 7135static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
7136{
7137 u64 rt_runtime, rt_period;
7138
7139 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7140 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7141 if (rt_runtime_us < 0)
7142 rt_runtime = RUNTIME_INF;
7143
ab84d31e 7144 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7145}
7146
25cc7da7 7147static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
7148{
7149 u64 rt_runtime_us;
7150
d0b27fa7 7151 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7152 return -1;
7153
d0b27fa7 7154 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7155 do_div(rt_runtime_us, NSEC_PER_USEC);
7156 return rt_runtime_us;
7157}
d0b27fa7 7158
25cc7da7 7159static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
d0b27fa7
PZ
7160{
7161 u64 rt_runtime, rt_period;
7162
7163 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7164 rt_runtime = tg->rt_bandwidth.rt_runtime;
7165
619b0488
R
7166 if (rt_period == 0)
7167 return -EINVAL;
7168
ab84d31e 7169 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7170}
7171
25cc7da7 7172static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
7173{
7174 u64 rt_period_us;
7175
7176 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7177 do_div(rt_period_us, NSEC_PER_USEC);
7178 return rt_period_us;
7179}
7180
7181static int sched_rt_global_constraints(void)
7182{
4653f803 7183 u64 runtime, period;
d0b27fa7
PZ
7184 int ret = 0;
7185
ec5d4989
HS
7186 if (sysctl_sched_rt_period <= 0)
7187 return -EINVAL;
7188
4653f803
PZ
7189 runtime = global_rt_runtime();
7190 period = global_rt_period();
7191
7192 /*
7193 * Sanity check on the sysctl variables.
7194 */
7195 if (runtime > period && runtime != RUNTIME_INF)
7196 return -EINVAL;
10b612f4 7197
d0b27fa7 7198 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7199 read_lock(&tasklist_lock);
4653f803 7200 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7201 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7202 mutex_unlock(&rt_constraints_mutex);
7203
7204 return ret;
7205}
54e99124 7206
25cc7da7 7207static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
7208{
7209 /* Don't accept realtime tasks when there is no way for them to run */
7210 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7211 return 0;
7212
7213 return 1;
7214}
7215
6d6bc0ad 7216#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7217static int sched_rt_global_constraints(void)
7218{
ac086bc2
PZ
7219 unsigned long flags;
7220 int i;
7221
ec5d4989
HS
7222 if (sysctl_sched_rt_period <= 0)
7223 return -EINVAL;
7224
60aa605d
PZ
7225 /*
7226 * There's always some RT tasks in the root group
7227 * -- migration, kstopmachine etc..
7228 */
7229 if (sysctl_sched_rt_runtime == 0)
7230 return -EBUSY;
7231
0986b11b 7232 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7233 for_each_possible_cpu(i) {
7234 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7235
0986b11b 7236 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7237 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7238 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7239 }
0986b11b 7240 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7241
d0b27fa7
PZ
7242 return 0;
7243}
6d6bc0ad 7244#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7245
ce0dbbbb
CW
7246int sched_rr_handler(struct ctl_table *table, int write,
7247 void __user *buffer, size_t *lenp,
7248 loff_t *ppos)
7249{
7250 int ret;
7251 static DEFINE_MUTEX(mutex);
7252
7253 mutex_lock(&mutex);
7254 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7255 /* make sure that internally we keep jiffies */
7256 /* also, writing zero resets timeslice to default */
7257 if (!ret && write) {
7258 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7259 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7260 }
7261 mutex_unlock(&mutex);
7262 return ret;
7263}
7264
d0b27fa7 7265int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7266 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7267 loff_t *ppos)
7268{
7269 int ret;
7270 int old_period, old_runtime;
7271 static DEFINE_MUTEX(mutex);
7272
7273 mutex_lock(&mutex);
7274 old_period = sysctl_sched_rt_period;
7275 old_runtime = sysctl_sched_rt_runtime;
7276
8d65af78 7277 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
7278
7279 if (!ret && write) {
7280 ret = sched_rt_global_constraints();
7281 if (ret) {
7282 sysctl_sched_rt_period = old_period;
7283 sysctl_sched_rt_runtime = old_runtime;
7284 } else {
7285 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7286 def_rt_bandwidth.rt_period =
7287 ns_to_ktime(global_rt_period());
7288 }
7289 }
7290 mutex_unlock(&mutex);
7291
7292 return ret;
7293}
68318b8e 7294
052f1dc7 7295#ifdef CONFIG_CGROUP_SCHED
68318b8e 7296
a7c6d554 7297static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 7298{
a7c6d554 7299 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
7300}
7301
eb95419b
TH
7302static struct cgroup_subsys_state *
7303cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 7304{
eb95419b
TH
7305 struct task_group *parent = css_tg(parent_css);
7306 struct task_group *tg;
68318b8e 7307
eb95419b 7308 if (!parent) {
68318b8e 7309 /* This is early initialization for the top cgroup */
07e06b01 7310 return &root_task_group.css;
68318b8e
SV
7311 }
7312
ec7dc8ac 7313 tg = sched_create_group(parent);
68318b8e
SV
7314 if (IS_ERR(tg))
7315 return ERR_PTR(-ENOMEM);
7316
68318b8e
SV
7317 return &tg->css;
7318}
7319
eb95419b 7320static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
ace783b9 7321{
eb95419b
TH
7322 struct task_group *tg = css_tg(css);
7323 struct task_group *parent = css_tg(css_parent(css));
ace783b9 7324
63876986
TH
7325 if (parent)
7326 sched_online_group(tg, parent);
ace783b9
LZ
7327 return 0;
7328}
7329
eb95419b 7330static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 7331{
eb95419b 7332 struct task_group *tg = css_tg(css);
68318b8e
SV
7333
7334 sched_destroy_group(tg);
7335}
7336
eb95419b 7337static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
ace783b9 7338{
eb95419b 7339 struct task_group *tg = css_tg(css);
ace783b9
LZ
7340
7341 sched_offline_group(tg);
7342}
7343
eb95419b 7344static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
bb9d97b6 7345 struct cgroup_taskset *tset)
68318b8e 7346{
bb9d97b6
TH
7347 struct task_struct *task;
7348
d99c8727 7349 cgroup_taskset_for_each(task, css, tset) {
b68aa230 7350#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 7351 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 7352 return -EINVAL;
b68aa230 7353#else
bb9d97b6
TH
7354 /* We don't support RT-tasks being in separate groups */
7355 if (task->sched_class != &fair_sched_class)
7356 return -EINVAL;
b68aa230 7357#endif
bb9d97b6 7358 }
be367d09
BB
7359 return 0;
7360}
68318b8e 7361
eb95419b 7362static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
bb9d97b6 7363 struct cgroup_taskset *tset)
68318b8e 7364{
bb9d97b6
TH
7365 struct task_struct *task;
7366
d99c8727 7367 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 7368 sched_move_task(task);
68318b8e
SV
7369}
7370
eb95419b
TH
7371static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7372 struct cgroup_subsys_state *old_css,
7373 struct task_struct *task)
068c5cc5
PZ
7374{
7375 /*
7376 * cgroup_exit() is called in the copy_process() failure path.
7377 * Ignore this case since the task hasn't ran yet, this avoids
7378 * trying to poke a half freed task state from generic code.
7379 */
7380 if (!(task->flags & PF_EXITING))
7381 return;
7382
7383 sched_move_task(task);
7384}
7385
052f1dc7 7386#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
7387static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7388 struct cftype *cftype, u64 shareval)
68318b8e 7389{
182446d0 7390 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
7391}
7392
182446d0
TH
7393static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7394 struct cftype *cft)
68318b8e 7395{
182446d0 7396 struct task_group *tg = css_tg(css);
68318b8e 7397
c8b28116 7398 return (u64) scale_load_down(tg->shares);
68318b8e 7399}
ab84d31e
PT
7400
7401#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
7402static DEFINE_MUTEX(cfs_constraints_mutex);
7403
ab84d31e
PT
7404const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7405const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7406
a790de99
PT
7407static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7408
ab84d31e
PT
7409static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7410{
56f570e5 7411 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 7412 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
7413
7414 if (tg == &root_task_group)
7415 return -EINVAL;
7416
7417 /*
7418 * Ensure we have at some amount of bandwidth every period. This is
7419 * to prevent reaching a state of large arrears when throttled via
7420 * entity_tick() resulting in prolonged exit starvation.
7421 */
7422 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7423 return -EINVAL;
7424
7425 /*
7426 * Likewise, bound things on the otherside by preventing insane quota
7427 * periods. This also allows us to normalize in computing quota
7428 * feasibility.
7429 */
7430 if (period > max_cfs_quota_period)
7431 return -EINVAL;
7432
a790de99
PT
7433 mutex_lock(&cfs_constraints_mutex);
7434 ret = __cfs_schedulable(tg, period, quota);
7435 if (ret)
7436 goto out_unlock;
7437
58088ad0 7438 runtime_enabled = quota != RUNTIME_INF;
56f570e5
PT
7439 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7440 account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
ab84d31e
PT
7441 raw_spin_lock_irq(&cfs_b->lock);
7442 cfs_b->period = ns_to_ktime(period);
7443 cfs_b->quota = quota;
58088ad0 7444
a9cf55b2 7445 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
7446 /* restart the period timer (if active) to handle new period expiry */
7447 if (runtime_enabled && cfs_b->timer_active) {
7448 /* force a reprogram */
7449 cfs_b->timer_active = 0;
7450 __start_cfs_bandwidth(cfs_b);
7451 }
ab84d31e
PT
7452 raw_spin_unlock_irq(&cfs_b->lock);
7453
7454 for_each_possible_cpu(i) {
7455 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 7456 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
7457
7458 raw_spin_lock_irq(&rq->lock);
58088ad0 7459 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 7460 cfs_rq->runtime_remaining = 0;
671fd9da 7461
029632fb 7462 if (cfs_rq->throttled)
671fd9da 7463 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
7464 raw_spin_unlock_irq(&rq->lock);
7465 }
a790de99
PT
7466out_unlock:
7467 mutex_unlock(&cfs_constraints_mutex);
ab84d31e 7468
a790de99 7469 return ret;
ab84d31e
PT
7470}
7471
7472int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7473{
7474 u64 quota, period;
7475
029632fb 7476 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7477 if (cfs_quota_us < 0)
7478 quota = RUNTIME_INF;
7479 else
7480 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7481
7482 return tg_set_cfs_bandwidth(tg, period, quota);
7483}
7484
7485long tg_get_cfs_quota(struct task_group *tg)
7486{
7487 u64 quota_us;
7488
029632fb 7489 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
7490 return -1;
7491
029632fb 7492 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
7493 do_div(quota_us, NSEC_PER_USEC);
7494
7495 return quota_us;
7496}
7497
7498int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7499{
7500 u64 quota, period;
7501
7502 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 7503 quota = tg->cfs_bandwidth.quota;
ab84d31e 7504
ab84d31e
PT
7505 return tg_set_cfs_bandwidth(tg, period, quota);
7506}
7507
7508long tg_get_cfs_period(struct task_group *tg)
7509{
7510 u64 cfs_period_us;
7511
029632fb 7512 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7513 do_div(cfs_period_us, NSEC_PER_USEC);
7514
7515 return cfs_period_us;
7516}
7517
182446d0
TH
7518static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7519 struct cftype *cft)
ab84d31e 7520{
182446d0 7521 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
7522}
7523
182446d0
TH
7524static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7525 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 7526{
182446d0 7527 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
7528}
7529
182446d0
TH
7530static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7531 struct cftype *cft)
ab84d31e 7532{
182446d0 7533 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
7534}
7535
182446d0
TH
7536static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7537 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 7538{
182446d0 7539 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
7540}
7541
a790de99
PT
7542struct cfs_schedulable_data {
7543 struct task_group *tg;
7544 u64 period, quota;
7545};
7546
7547/*
7548 * normalize group quota/period to be quota/max_period
7549 * note: units are usecs
7550 */
7551static u64 normalize_cfs_quota(struct task_group *tg,
7552 struct cfs_schedulable_data *d)
7553{
7554 u64 quota, period;
7555
7556 if (tg == d->tg) {
7557 period = d->period;
7558 quota = d->quota;
7559 } else {
7560 period = tg_get_cfs_period(tg);
7561 quota = tg_get_cfs_quota(tg);
7562 }
7563
7564 /* note: these should typically be equivalent */
7565 if (quota == RUNTIME_INF || quota == -1)
7566 return RUNTIME_INF;
7567
7568 return to_ratio(period, quota);
7569}
7570
7571static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7572{
7573 struct cfs_schedulable_data *d = data;
029632fb 7574 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
7575 s64 quota = 0, parent_quota = -1;
7576
7577 if (!tg->parent) {
7578 quota = RUNTIME_INF;
7579 } else {
029632fb 7580 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
7581
7582 quota = normalize_cfs_quota(tg, d);
7583 parent_quota = parent_b->hierarchal_quota;
7584
7585 /*
7586 * ensure max(child_quota) <= parent_quota, inherit when no
7587 * limit is set
7588 */
7589 if (quota == RUNTIME_INF)
7590 quota = parent_quota;
7591 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7592 return -EINVAL;
7593 }
7594 cfs_b->hierarchal_quota = quota;
7595
7596 return 0;
7597}
7598
7599static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7600{
8277434e 7601 int ret;
a790de99
PT
7602 struct cfs_schedulable_data data = {
7603 .tg = tg,
7604 .period = period,
7605 .quota = quota,
7606 };
7607
7608 if (quota != RUNTIME_INF) {
7609 do_div(data.period, NSEC_PER_USEC);
7610 do_div(data.quota, NSEC_PER_USEC);
7611 }
7612
8277434e
PT
7613 rcu_read_lock();
7614 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7615 rcu_read_unlock();
7616
7617 return ret;
a790de99 7618}
e8da1b18 7619
182446d0 7620static int cpu_stats_show(struct cgroup_subsys_state *css, struct cftype *cft,
e8da1b18
NR
7621 struct cgroup_map_cb *cb)
7622{
182446d0 7623 struct task_group *tg = css_tg(css);
029632fb 7624 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18
NR
7625
7626 cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7627 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7628 cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7629
7630 return 0;
7631}
ab84d31e 7632#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 7633#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 7634
052f1dc7 7635#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
7636static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7637 struct cftype *cft, s64 val)
6f505b16 7638{
182446d0 7639 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
7640}
7641
182446d0
TH
7642static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7643 struct cftype *cft)
6f505b16 7644{
182446d0 7645 return sched_group_rt_runtime(css_tg(css));
6f505b16 7646}
d0b27fa7 7647
182446d0
TH
7648static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7649 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 7650{
182446d0 7651 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
7652}
7653
182446d0
TH
7654static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7655 struct cftype *cft)
d0b27fa7 7656{
182446d0 7657 return sched_group_rt_period(css_tg(css));
d0b27fa7 7658}
6d6bc0ad 7659#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 7660
fe5c7cc2 7661static struct cftype cpu_files[] = {
052f1dc7 7662#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
7663 {
7664 .name = "shares",
f4c753b7
PM
7665 .read_u64 = cpu_shares_read_u64,
7666 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 7667 },
052f1dc7 7668#endif
ab84d31e
PT
7669#ifdef CONFIG_CFS_BANDWIDTH
7670 {
7671 .name = "cfs_quota_us",
7672 .read_s64 = cpu_cfs_quota_read_s64,
7673 .write_s64 = cpu_cfs_quota_write_s64,
7674 },
7675 {
7676 .name = "cfs_period_us",
7677 .read_u64 = cpu_cfs_period_read_u64,
7678 .write_u64 = cpu_cfs_period_write_u64,
7679 },
e8da1b18
NR
7680 {
7681 .name = "stat",
7682 .read_map = cpu_stats_show,
7683 },
ab84d31e 7684#endif
052f1dc7 7685#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7686 {
9f0c1e56 7687 .name = "rt_runtime_us",
06ecb27c
PM
7688 .read_s64 = cpu_rt_runtime_read,
7689 .write_s64 = cpu_rt_runtime_write,
6f505b16 7690 },
d0b27fa7
PZ
7691 {
7692 .name = "rt_period_us",
f4c753b7
PM
7693 .read_u64 = cpu_rt_period_read_uint,
7694 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 7695 },
052f1dc7 7696#endif
4baf6e33 7697 { } /* terminate */
68318b8e
SV
7698};
7699
68318b8e 7700struct cgroup_subsys cpu_cgroup_subsys = {
38605cae 7701 .name = "cpu",
92fb9748
TH
7702 .css_alloc = cpu_cgroup_css_alloc,
7703 .css_free = cpu_cgroup_css_free,
ace783b9
LZ
7704 .css_online = cpu_cgroup_css_online,
7705 .css_offline = cpu_cgroup_css_offline,
bb9d97b6
TH
7706 .can_attach = cpu_cgroup_can_attach,
7707 .attach = cpu_cgroup_attach,
068c5cc5 7708 .exit = cpu_cgroup_exit,
38605cae 7709 .subsys_id = cpu_cgroup_subsys_id,
4baf6e33 7710 .base_cftypes = cpu_files,
68318b8e
SV
7711 .early_init = 1,
7712};
7713
052f1dc7 7714#endif /* CONFIG_CGROUP_SCHED */
d842de87 7715
b637a328
PM
7716void dump_cpu_task(int cpu)
7717{
7718 pr_info("Task dump for CPU %d:\n", cpu);
7719 sched_show_task(cpu_curr(cpu));
7720}