]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/sched/core.c
sched/fair: Remove duplicate code from can_migrate_task()
[mirror_ubuntu-jammy-kernel.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
91d1aa43 75#include <linux/context_tracking.h>
52f5684c 76#include <linux/compiler.h>
1da177e4 77
96f951ed 78#include <asm/switch_to.h>
5517d86b 79#include <asm/tlb.h>
838225b4 80#include <asm/irq_regs.h>
db7e527d 81#include <asm/mutex.h>
e6e6685a
GC
82#ifdef CONFIG_PARAVIRT
83#include <asm/paravirt.h>
84#endif
1da177e4 85
029632fb 86#include "sched.h"
ea138446 87#include "../workqueue_internal.h"
29d5e047 88#include "../smpboot.h"
6e0534f2 89
a8d154b0 90#define CREATE_TRACE_POINTS
ad8d75ff 91#include <trace/events/sched.h>
a8d154b0 92
febdbfe8
PZ
93#ifdef smp_mb__before_atomic
94void __smp_mb__before_atomic(void)
95{
96 smp_mb__before_atomic();
97}
98EXPORT_SYMBOL(__smp_mb__before_atomic);
99#endif
100
101#ifdef smp_mb__after_atomic
102void __smp_mb__after_atomic(void)
103{
104 smp_mb__after_atomic();
105}
106EXPORT_SYMBOL(__smp_mb__after_atomic);
107#endif
108
029632fb 109void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 110{
58088ad0
PT
111 unsigned long delta;
112 ktime_t soft, hard, now;
d0b27fa7 113
58088ad0
PT
114 for (;;) {
115 if (hrtimer_active(period_timer))
116 break;
117
118 now = hrtimer_cb_get_time(period_timer);
119 hrtimer_forward(period_timer, now, period);
d0b27fa7 120
58088ad0
PT
121 soft = hrtimer_get_softexpires(period_timer);
122 hard = hrtimer_get_expires(period_timer);
123 delta = ktime_to_ns(ktime_sub(hard, soft));
124 __hrtimer_start_range_ns(period_timer, soft, delta,
125 HRTIMER_MODE_ABS_PINNED, 0);
126 }
127}
128
029632fb
PZ
129DEFINE_MUTEX(sched_domains_mutex);
130DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 131
fe44d621 132static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 133
029632fb 134void update_rq_clock(struct rq *rq)
3e51f33f 135{
fe44d621 136 s64 delta;
305e6835 137
61eadef6 138 if (rq->skip_clock_update > 0)
f26f9aff 139 return;
aa483808 140
fe44d621 141 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
4036ac15
MG
142 if (delta < 0)
143 return;
fe44d621
PZ
144 rq->clock += delta;
145 update_rq_clock_task(rq, delta);
3e51f33f
PZ
146}
147
bf5c91ba
IM
148/*
149 * Debugging: various feature bits
150 */
f00b45c1 151
f00b45c1
PZ
152#define SCHED_FEAT(name, enabled) \
153 (1UL << __SCHED_FEAT_##name) * enabled |
154
bf5c91ba 155const_debug unsigned int sysctl_sched_features =
391e43da 156#include "features.h"
f00b45c1
PZ
157 0;
158
159#undef SCHED_FEAT
160
161#ifdef CONFIG_SCHED_DEBUG
162#define SCHED_FEAT(name, enabled) \
163 #name ,
164
1292531f 165static const char * const sched_feat_names[] = {
391e43da 166#include "features.h"
f00b45c1
PZ
167};
168
169#undef SCHED_FEAT
170
34f3a814 171static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 172{
f00b45c1
PZ
173 int i;
174
f8b6d1cc 175 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
176 if (!(sysctl_sched_features & (1UL << i)))
177 seq_puts(m, "NO_");
178 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 179 }
34f3a814 180 seq_puts(m, "\n");
f00b45c1 181
34f3a814 182 return 0;
f00b45c1
PZ
183}
184
f8b6d1cc
PZ
185#ifdef HAVE_JUMP_LABEL
186
c5905afb
IM
187#define jump_label_key__true STATIC_KEY_INIT_TRUE
188#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
189
190#define SCHED_FEAT(name, enabled) \
191 jump_label_key__##enabled ,
192
c5905afb 193struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
194#include "features.h"
195};
196
197#undef SCHED_FEAT
198
199static void sched_feat_disable(int i)
200{
c5905afb
IM
201 if (static_key_enabled(&sched_feat_keys[i]))
202 static_key_slow_dec(&sched_feat_keys[i]);
f8b6d1cc
PZ
203}
204
205static void sched_feat_enable(int i)
206{
c5905afb
IM
207 if (!static_key_enabled(&sched_feat_keys[i]))
208 static_key_slow_inc(&sched_feat_keys[i]);
f8b6d1cc
PZ
209}
210#else
211static void sched_feat_disable(int i) { };
212static void sched_feat_enable(int i) { };
213#endif /* HAVE_JUMP_LABEL */
214
1a687c2e 215static int sched_feat_set(char *cmp)
f00b45c1 216{
f00b45c1 217 int i;
1a687c2e 218 int neg = 0;
f00b45c1 219
524429c3 220 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
221 neg = 1;
222 cmp += 3;
223 }
224
f8b6d1cc 225 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 226 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 227 if (neg) {
f00b45c1 228 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
229 sched_feat_disable(i);
230 } else {
f00b45c1 231 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
232 sched_feat_enable(i);
233 }
f00b45c1
PZ
234 break;
235 }
236 }
237
1a687c2e
MG
238 return i;
239}
240
241static ssize_t
242sched_feat_write(struct file *filp, const char __user *ubuf,
243 size_t cnt, loff_t *ppos)
244{
245 char buf[64];
246 char *cmp;
247 int i;
5cd08fbf 248 struct inode *inode;
1a687c2e
MG
249
250 if (cnt > 63)
251 cnt = 63;
252
253 if (copy_from_user(&buf, ubuf, cnt))
254 return -EFAULT;
255
256 buf[cnt] = 0;
257 cmp = strstrip(buf);
258
5cd08fbf
JB
259 /* Ensure the static_key remains in a consistent state */
260 inode = file_inode(filp);
261 mutex_lock(&inode->i_mutex);
1a687c2e 262 i = sched_feat_set(cmp);
5cd08fbf 263 mutex_unlock(&inode->i_mutex);
f8b6d1cc 264 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
265 return -EINVAL;
266
42994724 267 *ppos += cnt;
f00b45c1
PZ
268
269 return cnt;
270}
271
34f3a814
LZ
272static int sched_feat_open(struct inode *inode, struct file *filp)
273{
274 return single_open(filp, sched_feat_show, NULL);
275}
276
828c0950 277static const struct file_operations sched_feat_fops = {
34f3a814
LZ
278 .open = sched_feat_open,
279 .write = sched_feat_write,
280 .read = seq_read,
281 .llseek = seq_lseek,
282 .release = single_release,
f00b45c1
PZ
283};
284
285static __init int sched_init_debug(void)
286{
f00b45c1
PZ
287 debugfs_create_file("sched_features", 0644, NULL, NULL,
288 &sched_feat_fops);
289
290 return 0;
291}
292late_initcall(sched_init_debug);
f8b6d1cc 293#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 294
b82d9fdd
PZ
295/*
296 * Number of tasks to iterate in a single balance run.
297 * Limited because this is done with IRQs disabled.
298 */
299const_debug unsigned int sysctl_sched_nr_migrate = 32;
300
e9e9250b
PZ
301/*
302 * period over which we average the RT time consumption, measured
303 * in ms.
304 *
305 * default: 1s
306 */
307const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
308
fa85ae24 309/*
9f0c1e56 310 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
311 * default: 1s
312 */
9f0c1e56 313unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 314
029632fb 315__read_mostly int scheduler_running;
6892b75e 316
9f0c1e56
PZ
317/*
318 * part of the period that we allow rt tasks to run in us.
319 * default: 0.95s
320 */
321int sysctl_sched_rt_runtime = 950000;
fa85ae24 322
0970d299 323/*
0122ec5b 324 * __task_rq_lock - lock the rq @p resides on.
b29739f9 325 */
70b97a7f 326static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
327 __acquires(rq->lock)
328{
0970d299
PZ
329 struct rq *rq;
330
0122ec5b
PZ
331 lockdep_assert_held(&p->pi_lock);
332
3a5c359a 333 for (;;) {
0970d299 334 rq = task_rq(p);
05fa785c 335 raw_spin_lock(&rq->lock);
cca26e80 336 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
3a5c359a 337 return rq;
05fa785c 338 raw_spin_unlock(&rq->lock);
cca26e80
KT
339
340 while (unlikely(task_on_rq_migrating(p)))
341 cpu_relax();
b29739f9 342 }
b29739f9
IM
343}
344
1da177e4 345/*
0122ec5b 346 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 347 */
70b97a7f 348static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 349 __acquires(p->pi_lock)
1da177e4
LT
350 __acquires(rq->lock)
351{
70b97a7f 352 struct rq *rq;
1da177e4 353
3a5c359a 354 for (;;) {
0122ec5b 355 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 356 rq = task_rq(p);
05fa785c 357 raw_spin_lock(&rq->lock);
cca26e80 358 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
3a5c359a 359 return rq;
0122ec5b
PZ
360 raw_spin_unlock(&rq->lock);
361 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
cca26e80
KT
362
363 while (unlikely(task_on_rq_migrating(p)))
364 cpu_relax();
1da177e4 365 }
1da177e4
LT
366}
367
a9957449 368static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
369 __releases(rq->lock)
370{
05fa785c 371 raw_spin_unlock(&rq->lock);
b29739f9
IM
372}
373
0122ec5b
PZ
374static inline void
375task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 376 __releases(rq->lock)
0122ec5b 377 __releases(p->pi_lock)
1da177e4 378{
0122ec5b
PZ
379 raw_spin_unlock(&rq->lock);
380 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
381}
382
1da177e4 383/*
cc2a73b5 384 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 385 */
a9957449 386static struct rq *this_rq_lock(void)
1da177e4
LT
387 __acquires(rq->lock)
388{
70b97a7f 389 struct rq *rq;
1da177e4
LT
390
391 local_irq_disable();
392 rq = this_rq();
05fa785c 393 raw_spin_lock(&rq->lock);
1da177e4
LT
394
395 return rq;
396}
397
8f4d37ec
PZ
398#ifdef CONFIG_SCHED_HRTICK
399/*
400 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 401 */
8f4d37ec 402
8f4d37ec
PZ
403static void hrtick_clear(struct rq *rq)
404{
405 if (hrtimer_active(&rq->hrtick_timer))
406 hrtimer_cancel(&rq->hrtick_timer);
407}
408
8f4d37ec
PZ
409/*
410 * High-resolution timer tick.
411 * Runs from hardirq context with interrupts disabled.
412 */
413static enum hrtimer_restart hrtick(struct hrtimer *timer)
414{
415 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
416
417 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
418
05fa785c 419 raw_spin_lock(&rq->lock);
3e51f33f 420 update_rq_clock(rq);
8f4d37ec 421 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 422 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
423
424 return HRTIMER_NORESTART;
425}
426
95e904c7 427#ifdef CONFIG_SMP
971ee28c
PZ
428
429static int __hrtick_restart(struct rq *rq)
430{
431 struct hrtimer *timer = &rq->hrtick_timer;
432 ktime_t time = hrtimer_get_softexpires(timer);
433
434 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
435}
436
31656519
PZ
437/*
438 * called from hardirq (IPI) context
439 */
440static void __hrtick_start(void *arg)
b328ca18 441{
31656519 442 struct rq *rq = arg;
b328ca18 443
05fa785c 444 raw_spin_lock(&rq->lock);
971ee28c 445 __hrtick_restart(rq);
31656519 446 rq->hrtick_csd_pending = 0;
05fa785c 447 raw_spin_unlock(&rq->lock);
b328ca18
PZ
448}
449
31656519
PZ
450/*
451 * Called to set the hrtick timer state.
452 *
453 * called with rq->lock held and irqs disabled
454 */
029632fb 455void hrtick_start(struct rq *rq, u64 delay)
b328ca18 456{
31656519 457 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 458 ktime_t time;
459 s64 delta;
460
461 /*
462 * Don't schedule slices shorter than 10000ns, that just
463 * doesn't make sense and can cause timer DoS.
464 */
465 delta = max_t(s64, delay, 10000LL);
466 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 467
cc584b21 468 hrtimer_set_expires(timer, time);
31656519
PZ
469
470 if (rq == this_rq()) {
971ee28c 471 __hrtick_restart(rq);
31656519 472 } else if (!rq->hrtick_csd_pending) {
c46fff2a 473 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
474 rq->hrtick_csd_pending = 1;
475 }
b328ca18
PZ
476}
477
478static int
479hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
480{
481 int cpu = (int)(long)hcpu;
482
483 switch (action) {
484 case CPU_UP_CANCELED:
485 case CPU_UP_CANCELED_FROZEN:
486 case CPU_DOWN_PREPARE:
487 case CPU_DOWN_PREPARE_FROZEN:
488 case CPU_DEAD:
489 case CPU_DEAD_FROZEN:
31656519 490 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
491 return NOTIFY_OK;
492 }
493
494 return NOTIFY_DONE;
495}
496
fa748203 497static __init void init_hrtick(void)
b328ca18
PZ
498{
499 hotcpu_notifier(hotplug_hrtick, 0);
500}
31656519
PZ
501#else
502/*
503 * Called to set the hrtick timer state.
504 *
505 * called with rq->lock held and irqs disabled
506 */
029632fb 507void hrtick_start(struct rq *rq, u64 delay)
31656519 508{
7f1e2ca9 509 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 510 HRTIMER_MODE_REL_PINNED, 0);
31656519 511}
b328ca18 512
006c75f1 513static inline void init_hrtick(void)
8f4d37ec 514{
8f4d37ec 515}
31656519 516#endif /* CONFIG_SMP */
8f4d37ec 517
31656519 518static void init_rq_hrtick(struct rq *rq)
8f4d37ec 519{
31656519
PZ
520#ifdef CONFIG_SMP
521 rq->hrtick_csd_pending = 0;
8f4d37ec 522
31656519
PZ
523 rq->hrtick_csd.flags = 0;
524 rq->hrtick_csd.func = __hrtick_start;
525 rq->hrtick_csd.info = rq;
526#endif
8f4d37ec 527
31656519
PZ
528 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
529 rq->hrtick_timer.function = hrtick;
8f4d37ec 530}
006c75f1 531#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
532static inline void hrtick_clear(struct rq *rq)
533{
534}
535
8f4d37ec
PZ
536static inline void init_rq_hrtick(struct rq *rq)
537{
538}
539
b328ca18
PZ
540static inline void init_hrtick(void)
541{
542}
006c75f1 543#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 544
fd99f91a
PZ
545/*
546 * cmpxchg based fetch_or, macro so it works for different integer types
547 */
548#define fetch_or(ptr, val) \
549({ typeof(*(ptr)) __old, __val = *(ptr); \
550 for (;;) { \
551 __old = cmpxchg((ptr), __val, __val | (val)); \
552 if (__old == __val) \
553 break; \
554 __val = __old; \
555 } \
556 __old; \
557})
558
e3baac47 559#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
560/*
561 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
562 * this avoids any races wrt polling state changes and thereby avoids
563 * spurious IPIs.
564 */
565static bool set_nr_and_not_polling(struct task_struct *p)
566{
567 struct thread_info *ti = task_thread_info(p);
568 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
569}
e3baac47
PZ
570
571/*
572 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
573 *
574 * If this returns true, then the idle task promises to call
575 * sched_ttwu_pending() and reschedule soon.
576 */
577static bool set_nr_if_polling(struct task_struct *p)
578{
579 struct thread_info *ti = task_thread_info(p);
580 typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags);
581
582 for (;;) {
583 if (!(val & _TIF_POLLING_NRFLAG))
584 return false;
585 if (val & _TIF_NEED_RESCHED)
586 return true;
587 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
588 if (old == val)
589 break;
590 val = old;
591 }
592 return true;
593}
594
fd99f91a
PZ
595#else
596static bool set_nr_and_not_polling(struct task_struct *p)
597{
598 set_tsk_need_resched(p);
599 return true;
600}
e3baac47
PZ
601
602#ifdef CONFIG_SMP
603static bool set_nr_if_polling(struct task_struct *p)
604{
605 return false;
606}
607#endif
fd99f91a
PZ
608#endif
609
c24d20db 610/*
8875125e 611 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
612 *
613 * On UP this means the setting of the need_resched flag, on SMP it
614 * might also involve a cross-CPU call to trigger the scheduler on
615 * the target CPU.
616 */
8875125e 617void resched_curr(struct rq *rq)
c24d20db 618{
8875125e 619 struct task_struct *curr = rq->curr;
c24d20db
IM
620 int cpu;
621
8875125e 622 lockdep_assert_held(&rq->lock);
c24d20db 623
8875125e 624 if (test_tsk_need_resched(curr))
c24d20db
IM
625 return;
626
8875125e 627 cpu = cpu_of(rq);
fd99f91a 628
f27dde8d 629 if (cpu == smp_processor_id()) {
8875125e 630 set_tsk_need_resched(curr);
f27dde8d 631 set_preempt_need_resched();
c24d20db 632 return;
f27dde8d 633 }
c24d20db 634
8875125e 635 if (set_nr_and_not_polling(curr))
c24d20db 636 smp_send_reschedule(cpu);
dfc68f29
AL
637 else
638 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
639}
640
029632fb 641void resched_cpu(int cpu)
c24d20db
IM
642{
643 struct rq *rq = cpu_rq(cpu);
644 unsigned long flags;
645
05fa785c 646 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db 647 return;
8875125e 648 resched_curr(rq);
05fa785c 649 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 650}
06d8308c 651
b021fe3e 652#ifdef CONFIG_SMP
3451d024 653#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
654/*
655 * In the semi idle case, use the nearest busy cpu for migrating timers
656 * from an idle cpu. This is good for power-savings.
657 *
658 * We don't do similar optimization for completely idle system, as
659 * selecting an idle cpu will add more delays to the timers than intended
660 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
661 */
6201b4d6 662int get_nohz_timer_target(int pinned)
83cd4fe2
VP
663{
664 int cpu = smp_processor_id();
665 int i;
666 struct sched_domain *sd;
667
6201b4d6
VK
668 if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
669 return cpu;
670
057f3fad 671 rcu_read_lock();
83cd4fe2 672 for_each_domain(cpu, sd) {
057f3fad
PZ
673 for_each_cpu(i, sched_domain_span(sd)) {
674 if (!idle_cpu(i)) {
675 cpu = i;
676 goto unlock;
677 }
678 }
83cd4fe2 679 }
057f3fad
PZ
680unlock:
681 rcu_read_unlock();
83cd4fe2
VP
682 return cpu;
683}
06d8308c
TG
684/*
685 * When add_timer_on() enqueues a timer into the timer wheel of an
686 * idle CPU then this timer might expire before the next timer event
687 * which is scheduled to wake up that CPU. In case of a completely
688 * idle system the next event might even be infinite time into the
689 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
690 * leaves the inner idle loop so the newly added timer is taken into
691 * account when the CPU goes back to idle and evaluates the timer
692 * wheel for the next timer event.
693 */
1c20091e 694static void wake_up_idle_cpu(int cpu)
06d8308c
TG
695{
696 struct rq *rq = cpu_rq(cpu);
697
698 if (cpu == smp_processor_id())
699 return;
700
67b9ca70 701 if (set_nr_and_not_polling(rq->idle))
06d8308c 702 smp_send_reschedule(cpu);
dfc68f29
AL
703 else
704 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
705}
706
c5bfece2 707static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 708{
53c5fa16
FW
709 /*
710 * We just need the target to call irq_exit() and re-evaluate
711 * the next tick. The nohz full kick at least implies that.
712 * If needed we can still optimize that later with an
713 * empty IRQ.
714 */
c5bfece2 715 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
716 if (cpu != smp_processor_id() ||
717 tick_nohz_tick_stopped())
53c5fa16 718 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
719 return true;
720 }
721
722 return false;
723}
724
725void wake_up_nohz_cpu(int cpu)
726{
c5bfece2 727 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
728 wake_up_idle_cpu(cpu);
729}
730
ca38062e 731static inline bool got_nohz_idle_kick(void)
45bf76df 732{
1c792db7 733 int cpu = smp_processor_id();
873b4c65
VG
734
735 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
736 return false;
737
738 if (idle_cpu(cpu) && !need_resched())
739 return true;
740
741 /*
742 * We can't run Idle Load Balance on this CPU for this time so we
743 * cancel it and clear NOHZ_BALANCE_KICK
744 */
745 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
746 return false;
45bf76df
IM
747}
748
3451d024 749#else /* CONFIG_NO_HZ_COMMON */
45bf76df 750
ca38062e 751static inline bool got_nohz_idle_kick(void)
2069dd75 752{
ca38062e 753 return false;
2069dd75
PZ
754}
755
3451d024 756#endif /* CONFIG_NO_HZ_COMMON */
d842de87 757
ce831b38
FW
758#ifdef CONFIG_NO_HZ_FULL
759bool sched_can_stop_tick(void)
760{
3882ec64
FW
761 /*
762 * More than one running task need preemption.
763 * nr_running update is assumed to be visible
764 * after IPI is sent from wakers.
765 */
541b8264
VK
766 if (this_rq()->nr_running > 1)
767 return false;
ce831b38 768
541b8264 769 return true;
ce831b38
FW
770}
771#endif /* CONFIG_NO_HZ_FULL */
d842de87 772
029632fb 773void sched_avg_update(struct rq *rq)
18d95a28 774{
e9e9250b
PZ
775 s64 period = sched_avg_period();
776
78becc27 777 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
778 /*
779 * Inline assembly required to prevent the compiler
780 * optimising this loop into a divmod call.
781 * See __iter_div_u64_rem() for another example of this.
782 */
783 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
784 rq->age_stamp += period;
785 rq->rt_avg /= 2;
786 }
18d95a28
PZ
787}
788
6d6bc0ad 789#endif /* CONFIG_SMP */
18d95a28 790
a790de99
PT
791#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
792 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 793/*
8277434e
PT
794 * Iterate task_group tree rooted at *from, calling @down when first entering a
795 * node and @up when leaving it for the final time.
796 *
797 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 798 */
029632fb 799int walk_tg_tree_from(struct task_group *from,
8277434e 800 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
801{
802 struct task_group *parent, *child;
eb755805 803 int ret;
c09595f6 804
8277434e
PT
805 parent = from;
806
c09595f6 807down:
eb755805
PZ
808 ret = (*down)(parent, data);
809 if (ret)
8277434e 810 goto out;
c09595f6
PZ
811 list_for_each_entry_rcu(child, &parent->children, siblings) {
812 parent = child;
813 goto down;
814
815up:
816 continue;
817 }
eb755805 818 ret = (*up)(parent, data);
8277434e
PT
819 if (ret || parent == from)
820 goto out;
c09595f6
PZ
821
822 child = parent;
823 parent = parent->parent;
824 if (parent)
825 goto up;
8277434e 826out:
eb755805 827 return ret;
c09595f6
PZ
828}
829
029632fb 830int tg_nop(struct task_group *tg, void *data)
eb755805 831{
e2b245f8 832 return 0;
eb755805 833}
18d95a28
PZ
834#endif
835
45bf76df
IM
836static void set_load_weight(struct task_struct *p)
837{
f05998d4
NR
838 int prio = p->static_prio - MAX_RT_PRIO;
839 struct load_weight *load = &p->se.load;
840
dd41f596
IM
841 /*
842 * SCHED_IDLE tasks get minimal weight:
843 */
844 if (p->policy == SCHED_IDLE) {
c8b28116 845 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 846 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
847 return;
848 }
71f8bd46 849
c8b28116 850 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 851 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
852}
853
371fd7e7 854static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 855{
a64692a3 856 update_rq_clock(rq);
43148951 857 sched_info_queued(rq, p);
371fd7e7 858 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
859}
860
371fd7e7 861static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 862{
a64692a3 863 update_rq_clock(rq);
43148951 864 sched_info_dequeued(rq, p);
371fd7e7 865 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
866}
867
029632fb 868void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
869{
870 if (task_contributes_to_load(p))
871 rq->nr_uninterruptible--;
872
371fd7e7 873 enqueue_task(rq, p, flags);
1e3c88bd
PZ
874}
875
029632fb 876void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
877{
878 if (task_contributes_to_load(p))
879 rq->nr_uninterruptible++;
880
371fd7e7 881 dequeue_task(rq, p, flags);
1e3c88bd
PZ
882}
883
fe44d621 884static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 885{
095c0aa8
GC
886/*
887 * In theory, the compile should just see 0 here, and optimize out the call
888 * to sched_rt_avg_update. But I don't trust it...
889 */
890#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
891 s64 steal = 0, irq_delta = 0;
892#endif
893#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 894 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
895
896 /*
897 * Since irq_time is only updated on {soft,}irq_exit, we might run into
898 * this case when a previous update_rq_clock() happened inside a
899 * {soft,}irq region.
900 *
901 * When this happens, we stop ->clock_task and only update the
902 * prev_irq_time stamp to account for the part that fit, so that a next
903 * update will consume the rest. This ensures ->clock_task is
904 * monotonic.
905 *
906 * It does however cause some slight miss-attribution of {soft,}irq
907 * time, a more accurate solution would be to update the irq_time using
908 * the current rq->clock timestamp, except that would require using
909 * atomic ops.
910 */
911 if (irq_delta > delta)
912 irq_delta = delta;
913
914 rq->prev_irq_time += irq_delta;
915 delta -= irq_delta;
095c0aa8
GC
916#endif
917#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 918 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
919 steal = paravirt_steal_clock(cpu_of(rq));
920 steal -= rq->prev_steal_time_rq;
921
922 if (unlikely(steal > delta))
923 steal = delta;
924
095c0aa8 925 rq->prev_steal_time_rq += steal;
095c0aa8
GC
926 delta -= steal;
927 }
928#endif
929
fe44d621
PZ
930 rq->clock_task += delta;
931
095c0aa8 932#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
5d4dfddd 933 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
095c0aa8
GC
934 sched_rt_avg_update(rq, irq_delta + steal);
935#endif
aa483808
VP
936}
937
34f971f6
PZ
938void sched_set_stop_task(int cpu, struct task_struct *stop)
939{
940 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
941 struct task_struct *old_stop = cpu_rq(cpu)->stop;
942
943 if (stop) {
944 /*
945 * Make it appear like a SCHED_FIFO task, its something
946 * userspace knows about and won't get confused about.
947 *
948 * Also, it will make PI more or less work without too
949 * much confusion -- but then, stop work should not
950 * rely on PI working anyway.
951 */
952 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
953
954 stop->sched_class = &stop_sched_class;
955 }
956
957 cpu_rq(cpu)->stop = stop;
958
959 if (old_stop) {
960 /*
961 * Reset it back to a normal scheduling class so that
962 * it can die in pieces.
963 */
964 old_stop->sched_class = &rt_sched_class;
965 }
966}
967
14531189 968/*
dd41f596 969 * __normal_prio - return the priority that is based on the static prio
14531189 970 */
14531189
IM
971static inline int __normal_prio(struct task_struct *p)
972{
dd41f596 973 return p->static_prio;
14531189
IM
974}
975
b29739f9
IM
976/*
977 * Calculate the expected normal priority: i.e. priority
978 * without taking RT-inheritance into account. Might be
979 * boosted by interactivity modifiers. Changes upon fork,
980 * setprio syscalls, and whenever the interactivity
981 * estimator recalculates.
982 */
36c8b586 983static inline int normal_prio(struct task_struct *p)
b29739f9
IM
984{
985 int prio;
986
aab03e05
DF
987 if (task_has_dl_policy(p))
988 prio = MAX_DL_PRIO-1;
989 else if (task_has_rt_policy(p))
b29739f9
IM
990 prio = MAX_RT_PRIO-1 - p->rt_priority;
991 else
992 prio = __normal_prio(p);
993 return prio;
994}
995
996/*
997 * Calculate the current priority, i.e. the priority
998 * taken into account by the scheduler. This value might
999 * be boosted by RT tasks, or might be boosted by
1000 * interactivity modifiers. Will be RT if the task got
1001 * RT-boosted. If not then it returns p->normal_prio.
1002 */
36c8b586 1003static int effective_prio(struct task_struct *p)
b29739f9
IM
1004{
1005 p->normal_prio = normal_prio(p);
1006 /*
1007 * If we are RT tasks or we were boosted to RT priority,
1008 * keep the priority unchanged. Otherwise, update priority
1009 * to the normal priority:
1010 */
1011 if (!rt_prio(p->prio))
1012 return p->normal_prio;
1013 return p->prio;
1014}
1015
1da177e4
LT
1016/**
1017 * task_curr - is this task currently executing on a CPU?
1018 * @p: the task in question.
e69f6186
YB
1019 *
1020 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 1021 */
36c8b586 1022inline int task_curr(const struct task_struct *p)
1da177e4
LT
1023{
1024 return cpu_curr(task_cpu(p)) == p;
1025}
1026
cb469845
SR
1027static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1028 const struct sched_class *prev_class,
da7a735e 1029 int oldprio)
cb469845
SR
1030{
1031 if (prev_class != p->sched_class) {
1032 if (prev_class->switched_from)
da7a735e
PZ
1033 prev_class->switched_from(rq, p);
1034 p->sched_class->switched_to(rq, p);
2d3d891d 1035 } else if (oldprio != p->prio || dl_task(p))
da7a735e 1036 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
1037}
1038
029632fb 1039void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
1040{
1041 const struct sched_class *class;
1042
1043 if (p->sched_class == rq->curr->sched_class) {
1044 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1045 } else {
1046 for_each_class(class) {
1047 if (class == rq->curr->sched_class)
1048 break;
1049 if (class == p->sched_class) {
8875125e 1050 resched_curr(rq);
1e5a7405
PZ
1051 break;
1052 }
1053 }
1054 }
1055
1056 /*
1057 * A queue event has occurred, and we're going to schedule. In
1058 * this case, we can save a useless back to back clock update.
1059 */
da0c1e65 1060 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
1061 rq->skip_clock_update = 1;
1062}
1063
1da177e4 1064#ifdef CONFIG_SMP
dd41f596 1065void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1066{
e2912009
PZ
1067#ifdef CONFIG_SCHED_DEBUG
1068 /*
1069 * We should never call set_task_cpu() on a blocked task,
1070 * ttwu() will sort out the placement.
1071 */
077614ee 1072 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
01028747 1073 !(task_preempt_count(p) & PREEMPT_ACTIVE));
0122ec5b
PZ
1074
1075#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1076 /*
1077 * The caller should hold either p->pi_lock or rq->lock, when changing
1078 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1079 *
1080 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1081 * see task_group().
6c6c54e1
PZ
1082 *
1083 * Furthermore, all task_rq users should acquire both locks, see
1084 * task_rq_lock().
1085 */
0122ec5b
PZ
1086 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1087 lockdep_is_held(&task_rq(p)->lock)));
1088#endif
e2912009
PZ
1089#endif
1090
de1d7286 1091 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1092
0c69774e 1093 if (task_cpu(p) != new_cpu) {
0a74bef8
PT
1094 if (p->sched_class->migrate_task_rq)
1095 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 1096 p->se.nr_migrations++;
a8b0ca17 1097 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
0c69774e 1098 }
dd41f596
IM
1099
1100 __set_task_cpu(p, new_cpu);
c65cc870
IM
1101}
1102
ac66f547
PZ
1103static void __migrate_swap_task(struct task_struct *p, int cpu)
1104{
da0c1e65 1105 if (task_on_rq_queued(p)) {
ac66f547
PZ
1106 struct rq *src_rq, *dst_rq;
1107
1108 src_rq = task_rq(p);
1109 dst_rq = cpu_rq(cpu);
1110
1111 deactivate_task(src_rq, p, 0);
1112 set_task_cpu(p, cpu);
1113 activate_task(dst_rq, p, 0);
1114 check_preempt_curr(dst_rq, p, 0);
1115 } else {
1116 /*
1117 * Task isn't running anymore; make it appear like we migrated
1118 * it before it went to sleep. This means on wakeup we make the
1119 * previous cpu our targer instead of where it really is.
1120 */
1121 p->wake_cpu = cpu;
1122 }
1123}
1124
1125struct migration_swap_arg {
1126 struct task_struct *src_task, *dst_task;
1127 int src_cpu, dst_cpu;
1128};
1129
1130static int migrate_swap_stop(void *data)
1131{
1132 struct migration_swap_arg *arg = data;
1133 struct rq *src_rq, *dst_rq;
1134 int ret = -EAGAIN;
1135
1136 src_rq = cpu_rq(arg->src_cpu);
1137 dst_rq = cpu_rq(arg->dst_cpu);
1138
74602315
PZ
1139 double_raw_lock(&arg->src_task->pi_lock,
1140 &arg->dst_task->pi_lock);
ac66f547
PZ
1141 double_rq_lock(src_rq, dst_rq);
1142 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1143 goto unlock;
1144
1145 if (task_cpu(arg->src_task) != arg->src_cpu)
1146 goto unlock;
1147
1148 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1149 goto unlock;
1150
1151 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1152 goto unlock;
1153
1154 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1155 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1156
1157 ret = 0;
1158
1159unlock:
1160 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1161 raw_spin_unlock(&arg->dst_task->pi_lock);
1162 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1163
1164 return ret;
1165}
1166
1167/*
1168 * Cross migrate two tasks
1169 */
1170int migrate_swap(struct task_struct *cur, struct task_struct *p)
1171{
1172 struct migration_swap_arg arg;
1173 int ret = -EINVAL;
1174
ac66f547
PZ
1175 arg = (struct migration_swap_arg){
1176 .src_task = cur,
1177 .src_cpu = task_cpu(cur),
1178 .dst_task = p,
1179 .dst_cpu = task_cpu(p),
1180 };
1181
1182 if (arg.src_cpu == arg.dst_cpu)
1183 goto out;
1184
6acce3ef
PZ
1185 /*
1186 * These three tests are all lockless; this is OK since all of them
1187 * will be re-checked with proper locks held further down the line.
1188 */
ac66f547
PZ
1189 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1190 goto out;
1191
1192 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1193 goto out;
1194
1195 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1196 goto out;
1197
286549dc 1198 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1199 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1200
1201out:
ac66f547
PZ
1202 return ret;
1203}
1204
969c7921 1205struct migration_arg {
36c8b586 1206 struct task_struct *task;
1da177e4 1207 int dest_cpu;
70b97a7f 1208};
1da177e4 1209
969c7921
TH
1210static int migration_cpu_stop(void *data);
1211
1da177e4
LT
1212/*
1213 * wait_task_inactive - wait for a thread to unschedule.
1214 *
85ba2d86
RM
1215 * If @match_state is nonzero, it's the @p->state value just checked and
1216 * not expected to change. If it changes, i.e. @p might have woken up,
1217 * then return zero. When we succeed in waiting for @p to be off its CPU,
1218 * we return a positive number (its total switch count). If a second call
1219 * a short while later returns the same number, the caller can be sure that
1220 * @p has remained unscheduled the whole time.
1221 *
1da177e4
LT
1222 * The caller must ensure that the task *will* unschedule sometime soon,
1223 * else this function might spin for a *long* time. This function can't
1224 * be called with interrupts off, or it may introduce deadlock with
1225 * smp_call_function() if an IPI is sent by the same process we are
1226 * waiting to become inactive.
1227 */
85ba2d86 1228unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1229{
1230 unsigned long flags;
da0c1e65 1231 int running, queued;
85ba2d86 1232 unsigned long ncsw;
70b97a7f 1233 struct rq *rq;
1da177e4 1234
3a5c359a
AK
1235 for (;;) {
1236 /*
1237 * We do the initial early heuristics without holding
1238 * any task-queue locks at all. We'll only try to get
1239 * the runqueue lock when things look like they will
1240 * work out!
1241 */
1242 rq = task_rq(p);
fa490cfd 1243
3a5c359a
AK
1244 /*
1245 * If the task is actively running on another CPU
1246 * still, just relax and busy-wait without holding
1247 * any locks.
1248 *
1249 * NOTE! Since we don't hold any locks, it's not
1250 * even sure that "rq" stays as the right runqueue!
1251 * But we don't care, since "task_running()" will
1252 * return false if the runqueue has changed and p
1253 * is actually now running somewhere else!
1254 */
85ba2d86
RM
1255 while (task_running(rq, p)) {
1256 if (match_state && unlikely(p->state != match_state))
1257 return 0;
3a5c359a 1258 cpu_relax();
85ba2d86 1259 }
fa490cfd 1260
3a5c359a
AK
1261 /*
1262 * Ok, time to look more closely! We need the rq
1263 * lock now, to be *sure*. If we're wrong, we'll
1264 * just go back and repeat.
1265 */
1266 rq = task_rq_lock(p, &flags);
27a9da65 1267 trace_sched_wait_task(p);
3a5c359a 1268 running = task_running(rq, p);
da0c1e65 1269 queued = task_on_rq_queued(p);
85ba2d86 1270 ncsw = 0;
f31e11d8 1271 if (!match_state || p->state == match_state)
93dcf55f 1272 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1273 task_rq_unlock(rq, p, &flags);
fa490cfd 1274
85ba2d86
RM
1275 /*
1276 * If it changed from the expected state, bail out now.
1277 */
1278 if (unlikely(!ncsw))
1279 break;
1280
3a5c359a
AK
1281 /*
1282 * Was it really running after all now that we
1283 * checked with the proper locks actually held?
1284 *
1285 * Oops. Go back and try again..
1286 */
1287 if (unlikely(running)) {
1288 cpu_relax();
1289 continue;
1290 }
fa490cfd 1291
3a5c359a
AK
1292 /*
1293 * It's not enough that it's not actively running,
1294 * it must be off the runqueue _entirely_, and not
1295 * preempted!
1296 *
80dd99b3 1297 * So if it was still runnable (but just not actively
3a5c359a
AK
1298 * running right now), it's preempted, and we should
1299 * yield - it could be a while.
1300 */
da0c1e65 1301 if (unlikely(queued)) {
8eb90c30
TG
1302 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1303
1304 set_current_state(TASK_UNINTERRUPTIBLE);
1305 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1306 continue;
1307 }
fa490cfd 1308
3a5c359a
AK
1309 /*
1310 * Ahh, all good. It wasn't running, and it wasn't
1311 * runnable, which means that it will never become
1312 * running in the future either. We're all done!
1313 */
1314 break;
1315 }
85ba2d86
RM
1316
1317 return ncsw;
1da177e4
LT
1318}
1319
1320/***
1321 * kick_process - kick a running thread to enter/exit the kernel
1322 * @p: the to-be-kicked thread
1323 *
1324 * Cause a process which is running on another CPU to enter
1325 * kernel-mode, without any delay. (to get signals handled.)
1326 *
25985edc 1327 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1328 * because all it wants to ensure is that the remote task enters
1329 * the kernel. If the IPI races and the task has been migrated
1330 * to another CPU then no harm is done and the purpose has been
1331 * achieved as well.
1332 */
36c8b586 1333void kick_process(struct task_struct *p)
1da177e4
LT
1334{
1335 int cpu;
1336
1337 preempt_disable();
1338 cpu = task_cpu(p);
1339 if ((cpu != smp_processor_id()) && task_curr(p))
1340 smp_send_reschedule(cpu);
1341 preempt_enable();
1342}
b43e3521 1343EXPORT_SYMBOL_GPL(kick_process);
476d139c 1344#endif /* CONFIG_SMP */
1da177e4 1345
970b13ba 1346#ifdef CONFIG_SMP
30da688e 1347/*
013fdb80 1348 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1349 */
5da9a0fb
PZ
1350static int select_fallback_rq(int cpu, struct task_struct *p)
1351{
aa00d89c
TC
1352 int nid = cpu_to_node(cpu);
1353 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1354 enum { cpuset, possible, fail } state = cpuset;
1355 int dest_cpu;
5da9a0fb 1356
aa00d89c
TC
1357 /*
1358 * If the node that the cpu is on has been offlined, cpu_to_node()
1359 * will return -1. There is no cpu on the node, and we should
1360 * select the cpu on the other node.
1361 */
1362 if (nid != -1) {
1363 nodemask = cpumask_of_node(nid);
1364
1365 /* Look for allowed, online CPU in same node. */
1366 for_each_cpu(dest_cpu, nodemask) {
1367 if (!cpu_online(dest_cpu))
1368 continue;
1369 if (!cpu_active(dest_cpu))
1370 continue;
1371 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1372 return dest_cpu;
1373 }
2baab4e9 1374 }
5da9a0fb 1375
2baab4e9
PZ
1376 for (;;) {
1377 /* Any allowed, online CPU? */
e3831edd 1378 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1379 if (!cpu_online(dest_cpu))
1380 continue;
1381 if (!cpu_active(dest_cpu))
1382 continue;
1383 goto out;
1384 }
5da9a0fb 1385
2baab4e9
PZ
1386 switch (state) {
1387 case cpuset:
1388 /* No more Mr. Nice Guy. */
1389 cpuset_cpus_allowed_fallback(p);
1390 state = possible;
1391 break;
1392
1393 case possible:
1394 do_set_cpus_allowed(p, cpu_possible_mask);
1395 state = fail;
1396 break;
1397
1398 case fail:
1399 BUG();
1400 break;
1401 }
1402 }
1403
1404out:
1405 if (state != cpuset) {
1406 /*
1407 * Don't tell them about moving exiting tasks or
1408 * kernel threads (both mm NULL), since they never
1409 * leave kernel.
1410 */
1411 if (p->mm && printk_ratelimit()) {
aac74dc4 1412 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1413 task_pid_nr(p), p->comm, cpu);
1414 }
5da9a0fb
PZ
1415 }
1416
1417 return dest_cpu;
1418}
1419
e2912009 1420/*
013fdb80 1421 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1422 */
970b13ba 1423static inline
ac66f547 1424int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1425{
ac66f547 1426 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e2912009
PZ
1427
1428 /*
1429 * In order not to call set_task_cpu() on a blocking task we need
1430 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1431 * cpu.
1432 *
1433 * Since this is common to all placement strategies, this lives here.
1434 *
1435 * [ this allows ->select_task() to simply return task_cpu(p) and
1436 * not worry about this generic constraint ]
1437 */
fa17b507 1438 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1439 !cpu_online(cpu)))
5da9a0fb 1440 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1441
1442 return cpu;
970b13ba 1443}
09a40af5
MG
1444
1445static void update_avg(u64 *avg, u64 sample)
1446{
1447 s64 diff = sample - *avg;
1448 *avg += diff >> 3;
1449}
970b13ba
PZ
1450#endif
1451
d7c01d27 1452static void
b84cb5df 1453ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1454{
d7c01d27 1455#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1456 struct rq *rq = this_rq();
1457
d7c01d27
PZ
1458#ifdef CONFIG_SMP
1459 int this_cpu = smp_processor_id();
1460
1461 if (cpu == this_cpu) {
1462 schedstat_inc(rq, ttwu_local);
1463 schedstat_inc(p, se.statistics.nr_wakeups_local);
1464 } else {
1465 struct sched_domain *sd;
1466
1467 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1468 rcu_read_lock();
d7c01d27
PZ
1469 for_each_domain(this_cpu, sd) {
1470 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1471 schedstat_inc(sd, ttwu_wake_remote);
1472 break;
1473 }
1474 }
057f3fad 1475 rcu_read_unlock();
d7c01d27 1476 }
f339b9dc
PZ
1477
1478 if (wake_flags & WF_MIGRATED)
1479 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1480
d7c01d27
PZ
1481#endif /* CONFIG_SMP */
1482
1483 schedstat_inc(rq, ttwu_count);
9ed3811a 1484 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1485
1486 if (wake_flags & WF_SYNC)
9ed3811a 1487 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1488
d7c01d27
PZ
1489#endif /* CONFIG_SCHEDSTATS */
1490}
1491
1492static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1493{
9ed3811a 1494 activate_task(rq, p, en_flags);
da0c1e65 1495 p->on_rq = TASK_ON_RQ_QUEUED;
c2f7115e
PZ
1496
1497 /* if a worker is waking up, notify workqueue */
1498 if (p->flags & PF_WQ_WORKER)
1499 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1500}
1501
23f41eeb
PZ
1502/*
1503 * Mark the task runnable and perform wakeup-preemption.
1504 */
89363381 1505static void
23f41eeb 1506ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1507{
9ed3811a 1508 check_preempt_curr(rq, p, wake_flags);
a8d7ad52 1509 trace_sched_wakeup(p, true);
9ed3811a
TH
1510
1511 p->state = TASK_RUNNING;
1512#ifdef CONFIG_SMP
1513 if (p->sched_class->task_woken)
1514 p->sched_class->task_woken(rq, p);
1515
e69c6341 1516 if (rq->idle_stamp) {
78becc27 1517 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1518 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1519
abfafa54
JL
1520 update_avg(&rq->avg_idle, delta);
1521
1522 if (rq->avg_idle > max)
9ed3811a 1523 rq->avg_idle = max;
abfafa54 1524
9ed3811a
TH
1525 rq->idle_stamp = 0;
1526 }
1527#endif
1528}
1529
c05fbafb
PZ
1530static void
1531ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1532{
1533#ifdef CONFIG_SMP
1534 if (p->sched_contributes_to_load)
1535 rq->nr_uninterruptible--;
1536#endif
1537
1538 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1539 ttwu_do_wakeup(rq, p, wake_flags);
1540}
1541
1542/*
1543 * Called in case the task @p isn't fully descheduled from its runqueue,
1544 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1545 * since all we need to do is flip p->state to TASK_RUNNING, since
1546 * the task is still ->on_rq.
1547 */
1548static int ttwu_remote(struct task_struct *p, int wake_flags)
1549{
1550 struct rq *rq;
1551 int ret = 0;
1552
1553 rq = __task_rq_lock(p);
da0c1e65 1554 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
1555 /* check_preempt_curr() may use rq clock */
1556 update_rq_clock(rq);
c05fbafb
PZ
1557 ttwu_do_wakeup(rq, p, wake_flags);
1558 ret = 1;
1559 }
1560 __task_rq_unlock(rq);
1561
1562 return ret;
1563}
1564
317f3941 1565#ifdef CONFIG_SMP
e3baac47 1566void sched_ttwu_pending(void)
317f3941
PZ
1567{
1568 struct rq *rq = this_rq();
fa14ff4a
PZ
1569 struct llist_node *llist = llist_del_all(&rq->wake_list);
1570 struct task_struct *p;
e3baac47 1571 unsigned long flags;
317f3941 1572
e3baac47
PZ
1573 if (!llist)
1574 return;
1575
1576 raw_spin_lock_irqsave(&rq->lock, flags);
317f3941 1577
fa14ff4a
PZ
1578 while (llist) {
1579 p = llist_entry(llist, struct task_struct, wake_entry);
1580 llist = llist_next(llist);
317f3941
PZ
1581 ttwu_do_activate(rq, p, 0);
1582 }
1583
e3baac47 1584 raw_spin_unlock_irqrestore(&rq->lock, flags);
317f3941
PZ
1585}
1586
1587void scheduler_ipi(void)
1588{
f27dde8d
PZ
1589 /*
1590 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1591 * TIF_NEED_RESCHED remotely (for the first time) will also send
1592 * this IPI.
1593 */
8cb75e0c 1594 preempt_fold_need_resched();
f27dde8d 1595
fd2ac4f4 1596 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1597 return;
1598
1599 /*
1600 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1601 * traditionally all their work was done from the interrupt return
1602 * path. Now that we actually do some work, we need to make sure
1603 * we do call them.
1604 *
1605 * Some archs already do call them, luckily irq_enter/exit nest
1606 * properly.
1607 *
1608 * Arguably we should visit all archs and update all handlers,
1609 * however a fair share of IPIs are still resched only so this would
1610 * somewhat pessimize the simple resched case.
1611 */
1612 irq_enter();
fa14ff4a 1613 sched_ttwu_pending();
ca38062e
SS
1614
1615 /*
1616 * Check if someone kicked us for doing the nohz idle load balance.
1617 */
873b4c65 1618 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1619 this_rq()->idle_balance = 1;
ca38062e 1620 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1621 }
c5d753a5 1622 irq_exit();
317f3941
PZ
1623}
1624
1625static void ttwu_queue_remote(struct task_struct *p, int cpu)
1626{
e3baac47
PZ
1627 struct rq *rq = cpu_rq(cpu);
1628
1629 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1630 if (!set_nr_if_polling(rq->idle))
1631 smp_send_reschedule(cpu);
1632 else
1633 trace_sched_wake_idle_without_ipi(cpu);
1634 }
317f3941 1635}
d6aa8f85 1636
f6be8af1
CL
1637void wake_up_if_idle(int cpu)
1638{
1639 struct rq *rq = cpu_rq(cpu);
1640 unsigned long flags;
1641
1642 if (!is_idle_task(rq->curr))
1643 return;
1644
1645 if (set_nr_if_polling(rq->idle)) {
1646 trace_sched_wake_idle_without_ipi(cpu);
1647 } else {
1648 raw_spin_lock_irqsave(&rq->lock, flags);
1649 if (is_idle_task(rq->curr))
1650 smp_send_reschedule(cpu);
1651 /* Else cpu is not in idle, do nothing here */
1652 raw_spin_unlock_irqrestore(&rq->lock, flags);
1653 }
1654}
1655
39be3501 1656bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1657{
1658 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1659}
d6aa8f85 1660#endif /* CONFIG_SMP */
317f3941 1661
c05fbafb
PZ
1662static void ttwu_queue(struct task_struct *p, int cpu)
1663{
1664 struct rq *rq = cpu_rq(cpu);
1665
17d9f311 1666#if defined(CONFIG_SMP)
39be3501 1667 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1668 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1669 ttwu_queue_remote(p, cpu);
1670 return;
1671 }
1672#endif
1673
c05fbafb
PZ
1674 raw_spin_lock(&rq->lock);
1675 ttwu_do_activate(rq, p, 0);
1676 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1677}
1678
1679/**
1da177e4 1680 * try_to_wake_up - wake up a thread
9ed3811a 1681 * @p: the thread to be awakened
1da177e4 1682 * @state: the mask of task states that can be woken
9ed3811a 1683 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1684 *
1685 * Put it on the run-queue if it's not already there. The "current"
1686 * thread is always on the run-queue (except when the actual
1687 * re-schedule is in progress), and as such you're allowed to do
1688 * the simpler "current->state = TASK_RUNNING" to mark yourself
1689 * runnable without the overhead of this.
1690 *
e69f6186 1691 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1692 * or @state didn't match @p's state.
1da177e4 1693 */
e4a52bcb
PZ
1694static int
1695try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1696{
1da177e4 1697 unsigned long flags;
c05fbafb 1698 int cpu, success = 0;
2398f2c6 1699
e0acd0a6
ON
1700 /*
1701 * If we are going to wake up a thread waiting for CONDITION we
1702 * need to ensure that CONDITION=1 done by the caller can not be
1703 * reordered with p->state check below. This pairs with mb() in
1704 * set_current_state() the waiting thread does.
1705 */
1706 smp_mb__before_spinlock();
013fdb80 1707 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1708 if (!(p->state & state))
1da177e4
LT
1709 goto out;
1710
c05fbafb 1711 success = 1; /* we're going to change ->state */
1da177e4 1712 cpu = task_cpu(p);
1da177e4 1713
cca26e80 1714 if (p->on_rq && ttwu_remote(p, wake_flags))
c05fbafb 1715 goto stat;
1da177e4 1716
1da177e4 1717#ifdef CONFIG_SMP
e9c84311 1718 /*
c05fbafb
PZ
1719 * If the owning (remote) cpu is still in the middle of schedule() with
1720 * this task as prev, wait until its done referencing the task.
e9c84311 1721 */
f3e94786 1722 while (p->on_cpu)
e4a52bcb 1723 cpu_relax();
0970d299 1724 /*
e4a52bcb 1725 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1726 */
e4a52bcb 1727 smp_rmb();
1da177e4 1728
a8e4f2ea 1729 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1730 p->state = TASK_WAKING;
e7693a36 1731
e4a52bcb 1732 if (p->sched_class->task_waking)
74f8e4b2 1733 p->sched_class->task_waking(p);
efbbd05a 1734
ac66f547 1735 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1736 if (task_cpu(p) != cpu) {
1737 wake_flags |= WF_MIGRATED;
e4a52bcb 1738 set_task_cpu(p, cpu);
f339b9dc 1739 }
1da177e4 1740#endif /* CONFIG_SMP */
1da177e4 1741
c05fbafb
PZ
1742 ttwu_queue(p, cpu);
1743stat:
b84cb5df 1744 ttwu_stat(p, cpu, wake_flags);
1da177e4 1745out:
013fdb80 1746 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1747
1748 return success;
1749}
1750
21aa9af0
TH
1751/**
1752 * try_to_wake_up_local - try to wake up a local task with rq lock held
1753 * @p: the thread to be awakened
1754 *
2acca55e 1755 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1756 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1757 * the current task.
21aa9af0
TH
1758 */
1759static void try_to_wake_up_local(struct task_struct *p)
1760{
1761 struct rq *rq = task_rq(p);
21aa9af0 1762
383efcd0
TH
1763 if (WARN_ON_ONCE(rq != this_rq()) ||
1764 WARN_ON_ONCE(p == current))
1765 return;
1766
21aa9af0
TH
1767 lockdep_assert_held(&rq->lock);
1768
2acca55e
PZ
1769 if (!raw_spin_trylock(&p->pi_lock)) {
1770 raw_spin_unlock(&rq->lock);
1771 raw_spin_lock(&p->pi_lock);
1772 raw_spin_lock(&rq->lock);
1773 }
1774
21aa9af0 1775 if (!(p->state & TASK_NORMAL))
2acca55e 1776 goto out;
21aa9af0 1777
da0c1e65 1778 if (!task_on_rq_queued(p))
d7c01d27
PZ
1779 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1780
23f41eeb 1781 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1782 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1783out:
1784 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1785}
1786
50fa610a
DH
1787/**
1788 * wake_up_process - Wake up a specific process
1789 * @p: The process to be woken up.
1790 *
1791 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
1792 * processes.
1793 *
1794 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
1795 *
1796 * It may be assumed that this function implies a write memory barrier before
1797 * changing the task state if and only if any tasks are woken up.
1798 */
7ad5b3a5 1799int wake_up_process(struct task_struct *p)
1da177e4 1800{
9067ac85
ON
1801 WARN_ON(task_is_stopped_or_traced(p));
1802 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 1803}
1da177e4
LT
1804EXPORT_SYMBOL(wake_up_process);
1805
7ad5b3a5 1806int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1807{
1808 return try_to_wake_up(p, state, 0);
1809}
1810
a5e7be3b
JL
1811/*
1812 * This function clears the sched_dl_entity static params.
1813 */
1814void __dl_clear_params(struct task_struct *p)
1815{
1816 struct sched_dl_entity *dl_se = &p->dl;
1817
1818 dl_se->dl_runtime = 0;
1819 dl_se->dl_deadline = 0;
1820 dl_se->dl_period = 0;
1821 dl_se->flags = 0;
1822 dl_se->dl_bw = 0;
1823}
1824
1da177e4
LT
1825/*
1826 * Perform scheduler related setup for a newly forked process p.
1827 * p is forked by current.
dd41f596
IM
1828 *
1829 * __sched_fork() is basic setup used by init_idle() too:
1830 */
5e1576ed 1831static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1832{
fd2f4419
PZ
1833 p->on_rq = 0;
1834
1835 p->se.on_rq = 0;
dd41f596
IM
1836 p->se.exec_start = 0;
1837 p->se.sum_exec_runtime = 0;
f6cf891c 1838 p->se.prev_sum_exec_runtime = 0;
6c594c21 1839 p->se.nr_migrations = 0;
da7a735e 1840 p->se.vruntime = 0;
fd2f4419 1841 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
1842
1843#ifdef CONFIG_SCHEDSTATS
41acab88 1844 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 1845#endif
476d139c 1846
aab03e05
DF
1847 RB_CLEAR_NODE(&p->dl.rb_node);
1848 hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
a5e7be3b 1849 __dl_clear_params(p);
aab03e05 1850
fa717060 1851 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 1852
e107be36
AK
1853#ifdef CONFIG_PREEMPT_NOTIFIERS
1854 INIT_HLIST_HEAD(&p->preempt_notifiers);
1855#endif
cbee9f88
PZ
1856
1857#ifdef CONFIG_NUMA_BALANCING
1858 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 1859 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
1860 p->mm->numa_scan_seq = 0;
1861 }
1862
5e1576ed
RR
1863 if (clone_flags & CLONE_VM)
1864 p->numa_preferred_nid = current->numa_preferred_nid;
1865 else
1866 p->numa_preferred_nid = -1;
1867
cbee9f88
PZ
1868 p->node_stamp = 0ULL;
1869 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 1870 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 1871 p->numa_work.next = &p->numa_work;
ff1df896
RR
1872 p->numa_faults_memory = NULL;
1873 p->numa_faults_buffer_memory = NULL;
7e2703e6
RR
1874 p->last_task_numa_placement = 0;
1875 p->last_sum_exec_runtime = 0;
8c8a743c
PZ
1876
1877 INIT_LIST_HEAD(&p->numa_entry);
1878 p->numa_group = NULL;
cbee9f88 1879#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1880}
1881
1a687c2e 1882#ifdef CONFIG_NUMA_BALANCING
3105b86a 1883#ifdef CONFIG_SCHED_DEBUG
1a687c2e
MG
1884void set_numabalancing_state(bool enabled)
1885{
1886 if (enabled)
1887 sched_feat_set("NUMA");
1888 else
1889 sched_feat_set("NO_NUMA");
1890}
3105b86a
MG
1891#else
1892__read_mostly bool numabalancing_enabled;
1893
1894void set_numabalancing_state(bool enabled)
1895{
1896 numabalancing_enabled = enabled;
dd41f596 1897}
3105b86a 1898#endif /* CONFIG_SCHED_DEBUG */
54a43d54
AK
1899
1900#ifdef CONFIG_PROC_SYSCTL
1901int sysctl_numa_balancing(struct ctl_table *table, int write,
1902 void __user *buffer, size_t *lenp, loff_t *ppos)
1903{
1904 struct ctl_table t;
1905 int err;
1906 int state = numabalancing_enabled;
1907
1908 if (write && !capable(CAP_SYS_ADMIN))
1909 return -EPERM;
1910
1911 t = *table;
1912 t.data = &state;
1913 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1914 if (err < 0)
1915 return err;
1916 if (write)
1917 set_numabalancing_state(state);
1918 return err;
1919}
1920#endif
1921#endif
dd41f596
IM
1922
1923/*
1924 * fork()/clone()-time setup:
1925 */
aab03e05 1926int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1927{
0122ec5b 1928 unsigned long flags;
dd41f596
IM
1929 int cpu = get_cpu();
1930
5e1576ed 1931 __sched_fork(clone_flags, p);
06b83b5f 1932 /*
0017d735 1933 * We mark the process as running here. This guarantees that
06b83b5f
PZ
1934 * nobody will actually run it, and a signal or other external
1935 * event cannot wake it up and insert it on the runqueue either.
1936 */
0017d735 1937 p->state = TASK_RUNNING;
dd41f596 1938
c350a04e
MG
1939 /*
1940 * Make sure we do not leak PI boosting priority to the child.
1941 */
1942 p->prio = current->normal_prio;
1943
b9dc29e7
MG
1944 /*
1945 * Revert to default priority/policy on fork if requested.
1946 */
1947 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 1948 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 1949 p->policy = SCHED_NORMAL;
6c697bdf 1950 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
1951 p->rt_priority = 0;
1952 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1953 p->static_prio = NICE_TO_PRIO(0);
1954
1955 p->prio = p->normal_prio = __normal_prio(p);
1956 set_load_weight(p);
6c697bdf 1957
b9dc29e7
MG
1958 /*
1959 * We don't need the reset flag anymore after the fork. It has
1960 * fulfilled its duty:
1961 */
1962 p->sched_reset_on_fork = 0;
1963 }
ca94c442 1964
aab03e05
DF
1965 if (dl_prio(p->prio)) {
1966 put_cpu();
1967 return -EAGAIN;
1968 } else if (rt_prio(p->prio)) {
1969 p->sched_class = &rt_sched_class;
1970 } else {
2ddbf952 1971 p->sched_class = &fair_sched_class;
aab03e05 1972 }
b29739f9 1973
cd29fe6f
PZ
1974 if (p->sched_class->task_fork)
1975 p->sched_class->task_fork(p);
1976
86951599
PZ
1977 /*
1978 * The child is not yet in the pid-hash so no cgroup attach races,
1979 * and the cgroup is pinned to this child due to cgroup_fork()
1980 * is ran before sched_fork().
1981 *
1982 * Silence PROVE_RCU.
1983 */
0122ec5b 1984 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 1985 set_task_cpu(p, cpu);
0122ec5b 1986 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 1987
52f17b6c 1988#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1989 if (likely(sched_info_on()))
52f17b6c 1990 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1991#endif
3ca7a440
PZ
1992#if defined(CONFIG_SMP)
1993 p->on_cpu = 0;
4866cde0 1994#endif
01028747 1995 init_task_preempt_count(p);
806c09a7 1996#ifdef CONFIG_SMP
917b627d 1997 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 1998 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 1999#endif
917b627d 2000
476d139c 2001 put_cpu();
aab03e05 2002 return 0;
1da177e4
LT
2003}
2004
332ac17e
DF
2005unsigned long to_ratio(u64 period, u64 runtime)
2006{
2007 if (runtime == RUNTIME_INF)
2008 return 1ULL << 20;
2009
2010 /*
2011 * Doing this here saves a lot of checks in all
2012 * the calling paths, and returning zero seems
2013 * safe for them anyway.
2014 */
2015 if (period == 0)
2016 return 0;
2017
2018 return div64_u64(runtime << 20, period);
2019}
2020
2021#ifdef CONFIG_SMP
2022inline struct dl_bw *dl_bw_of(int i)
2023{
2024 return &cpu_rq(i)->rd->dl_bw;
2025}
2026
de212f18 2027static inline int dl_bw_cpus(int i)
332ac17e 2028{
de212f18
PZ
2029 struct root_domain *rd = cpu_rq(i)->rd;
2030 int cpus = 0;
2031
2032 for_each_cpu_and(i, rd->span, cpu_active_mask)
2033 cpus++;
2034
2035 return cpus;
332ac17e
DF
2036}
2037#else
2038inline struct dl_bw *dl_bw_of(int i)
2039{
2040 return &cpu_rq(i)->dl.dl_bw;
2041}
2042
de212f18 2043static inline int dl_bw_cpus(int i)
332ac17e
DF
2044{
2045 return 1;
2046}
2047#endif
2048
2049static inline
2050void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
2051{
2052 dl_b->total_bw -= tsk_bw;
2053}
2054
2055static inline
2056void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
2057{
2058 dl_b->total_bw += tsk_bw;
2059}
2060
2061static inline
2062bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
2063{
2064 return dl_b->bw != -1 &&
2065 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
2066}
2067
2068/*
2069 * We must be sure that accepting a new task (or allowing changing the
2070 * parameters of an existing one) is consistent with the bandwidth
2071 * constraints. If yes, this function also accordingly updates the currently
2072 * allocated bandwidth to reflect the new situation.
2073 *
2074 * This function is called while holding p's rq->lock.
2075 */
2076static int dl_overflow(struct task_struct *p, int policy,
2077 const struct sched_attr *attr)
2078{
2079
2080 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
4df1638c 2081 u64 period = attr->sched_period ?: attr->sched_deadline;
332ac17e
DF
2082 u64 runtime = attr->sched_runtime;
2083 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 2084 int cpus, err = -1;
332ac17e
DF
2085
2086 if (new_bw == p->dl.dl_bw)
2087 return 0;
2088
2089 /*
2090 * Either if a task, enters, leave, or stays -deadline but changes
2091 * its parameters, we may need to update accordingly the total
2092 * allocated bandwidth of the container.
2093 */
2094 raw_spin_lock(&dl_b->lock);
de212f18 2095 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
2096 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2097 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2098 __dl_add(dl_b, new_bw);
2099 err = 0;
2100 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2101 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2102 __dl_clear(dl_b, p->dl.dl_bw);
2103 __dl_add(dl_b, new_bw);
2104 err = 0;
2105 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2106 __dl_clear(dl_b, p->dl.dl_bw);
2107 err = 0;
2108 }
2109 raw_spin_unlock(&dl_b->lock);
2110
2111 return err;
2112}
2113
2114extern void init_dl_bw(struct dl_bw *dl_b);
2115
1da177e4
LT
2116/*
2117 * wake_up_new_task - wake up a newly created task for the first time.
2118 *
2119 * This function will do some initial scheduler statistics housekeeping
2120 * that must be done for every newly created context, then puts the task
2121 * on the runqueue and wakes it.
2122 */
3e51e3ed 2123void wake_up_new_task(struct task_struct *p)
1da177e4
LT
2124{
2125 unsigned long flags;
dd41f596 2126 struct rq *rq;
fabf318e 2127
ab2515c4 2128 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
2129#ifdef CONFIG_SMP
2130 /*
2131 * Fork balancing, do it here and not earlier because:
2132 * - cpus_allowed can change in the fork path
2133 * - any previously selected cpu might disappear through hotplug
fabf318e 2134 */
ac66f547 2135 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735
PZ
2136#endif
2137
a75cdaa9
AS
2138 /* Initialize new task's runnable average */
2139 init_task_runnable_average(p);
ab2515c4 2140 rq = __task_rq_lock(p);
cd29fe6f 2141 activate_task(rq, p, 0);
da0c1e65 2142 p->on_rq = TASK_ON_RQ_QUEUED;
89363381 2143 trace_sched_wakeup_new(p, true);
a7558e01 2144 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2145#ifdef CONFIG_SMP
efbbd05a
PZ
2146 if (p->sched_class->task_woken)
2147 p->sched_class->task_woken(rq, p);
9a897c5a 2148#endif
0122ec5b 2149 task_rq_unlock(rq, p, &flags);
1da177e4
LT
2150}
2151
e107be36
AK
2152#ifdef CONFIG_PREEMPT_NOTIFIERS
2153
2154/**
80dd99b3 2155 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2156 * @notifier: notifier struct to register
e107be36
AK
2157 */
2158void preempt_notifier_register(struct preempt_notifier *notifier)
2159{
2160 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2161}
2162EXPORT_SYMBOL_GPL(preempt_notifier_register);
2163
2164/**
2165 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2166 * @notifier: notifier struct to unregister
e107be36
AK
2167 *
2168 * This is safe to call from within a preemption notifier.
2169 */
2170void preempt_notifier_unregister(struct preempt_notifier *notifier)
2171{
2172 hlist_del(&notifier->link);
2173}
2174EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2175
2176static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2177{
2178 struct preempt_notifier *notifier;
e107be36 2179
b67bfe0d 2180 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2181 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2182}
2183
2184static void
2185fire_sched_out_preempt_notifiers(struct task_struct *curr,
2186 struct task_struct *next)
2187{
2188 struct preempt_notifier *notifier;
e107be36 2189
b67bfe0d 2190 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2191 notifier->ops->sched_out(notifier, next);
2192}
2193
6d6bc0ad 2194#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2195
2196static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2197{
2198}
2199
2200static void
2201fire_sched_out_preempt_notifiers(struct task_struct *curr,
2202 struct task_struct *next)
2203{
2204}
2205
6d6bc0ad 2206#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2207
4866cde0
NP
2208/**
2209 * prepare_task_switch - prepare to switch tasks
2210 * @rq: the runqueue preparing to switch
421cee29 2211 * @prev: the current task that is being switched out
4866cde0
NP
2212 * @next: the task we are going to switch to.
2213 *
2214 * This is called with the rq lock held and interrupts off. It must
2215 * be paired with a subsequent finish_task_switch after the context
2216 * switch.
2217 *
2218 * prepare_task_switch sets up locking and calls architecture specific
2219 * hooks.
2220 */
e107be36
AK
2221static inline void
2222prepare_task_switch(struct rq *rq, struct task_struct *prev,
2223 struct task_struct *next)
4866cde0 2224{
895dd92c 2225 trace_sched_switch(prev, next);
43148951 2226 sched_info_switch(rq, prev, next);
fe4b04fa 2227 perf_event_task_sched_out(prev, next);
e107be36 2228 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2229 prepare_lock_switch(rq, next);
2230 prepare_arch_switch(next);
2231}
2232
1da177e4
LT
2233/**
2234 * finish_task_switch - clean up after a task-switch
344babaa 2235 * @rq: runqueue associated with task-switch
1da177e4
LT
2236 * @prev: the thread we just switched away from.
2237 *
4866cde0
NP
2238 * finish_task_switch must be called after the context switch, paired
2239 * with a prepare_task_switch call before the context switch.
2240 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2241 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2242 *
2243 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2244 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2245 * with the lock held can cause deadlocks; see schedule() for
2246 * details.)
2247 */
a9957449 2248static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2249 __releases(rq->lock)
2250{
1da177e4 2251 struct mm_struct *mm = rq->prev_mm;
55a101f8 2252 long prev_state;
1da177e4
LT
2253
2254 rq->prev_mm = NULL;
2255
2256 /*
2257 * A task struct has one reference for the use as "current".
c394cc9f 2258 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2259 * schedule one last time. The schedule call will never return, and
2260 * the scheduled task must drop that reference.
c394cc9f 2261 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2262 * still held, otherwise prev could be scheduled on another cpu, die
2263 * there before we look at prev->state, and then the reference would
2264 * be dropped twice.
2265 * Manfred Spraul <manfred@colorfullife.com>
2266 */
55a101f8 2267 prev_state = prev->state;
bf9fae9f 2268 vtime_task_switch(prev);
4866cde0 2269 finish_arch_switch(prev);
a8d757ef 2270 perf_event_task_sched_in(prev, current);
4866cde0 2271 finish_lock_switch(rq, prev);
01f23e16 2272 finish_arch_post_lock_switch();
e8fa1362 2273
e107be36 2274 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2275 if (mm)
2276 mmdrop(mm);
c394cc9f 2277 if (unlikely(prev_state == TASK_DEAD)) {
e6c390f2
DF
2278 if (prev->sched_class->task_dead)
2279 prev->sched_class->task_dead(prev);
2280
c6fd91f0 2281 /*
2282 * Remove function-return probe instances associated with this
2283 * task and put them back on the free list.
9761eea8 2284 */
c6fd91f0 2285 kprobe_flush_task(prev);
1da177e4 2286 put_task_struct(prev);
c6fd91f0 2287 }
99e5ada9
FW
2288
2289 tick_nohz_task_switch(current);
1da177e4
LT
2290}
2291
3f029d3c
GH
2292#ifdef CONFIG_SMP
2293
3f029d3c
GH
2294/* rq->lock is NOT held, but preemption is disabled */
2295static inline void post_schedule(struct rq *rq)
2296{
2297 if (rq->post_schedule) {
2298 unsigned long flags;
2299
05fa785c 2300 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2301 if (rq->curr->sched_class->post_schedule)
2302 rq->curr->sched_class->post_schedule(rq);
05fa785c 2303 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2304
2305 rq->post_schedule = 0;
2306 }
2307}
2308
2309#else
da19ab51 2310
3f029d3c
GH
2311static inline void post_schedule(struct rq *rq)
2312{
1da177e4
LT
2313}
2314
3f029d3c
GH
2315#endif
2316
1da177e4
LT
2317/**
2318 * schedule_tail - first thing a freshly forked thread must call.
2319 * @prev: the thread we just switched away from.
2320 */
722a9f92 2321asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
2322 __releases(rq->lock)
2323{
70b97a7f
IM
2324 struct rq *rq = this_rq();
2325
4866cde0 2326 finish_task_switch(rq, prev);
da19ab51 2327
3f029d3c
GH
2328 /*
2329 * FIXME: do we need to worry about rq being invalidated by the
2330 * task_switch?
2331 */
2332 post_schedule(rq);
70b97a7f 2333
1da177e4 2334 if (current->set_child_tid)
b488893a 2335 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2336}
2337
2338/*
2339 * context_switch - switch to the new MM and the new
2340 * thread's register state.
2341 */
dd41f596 2342static inline void
70b97a7f 2343context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2344 struct task_struct *next)
1da177e4 2345{
dd41f596 2346 struct mm_struct *mm, *oldmm;
1da177e4 2347
e107be36 2348 prepare_task_switch(rq, prev, next);
fe4b04fa 2349
dd41f596
IM
2350 mm = next->mm;
2351 oldmm = prev->active_mm;
9226d125
ZA
2352 /*
2353 * For paravirt, this is coupled with an exit in switch_to to
2354 * combine the page table reload and the switch backend into
2355 * one hypercall.
2356 */
224101ed 2357 arch_start_context_switch(prev);
9226d125 2358
31915ab4 2359 if (!mm) {
1da177e4
LT
2360 next->active_mm = oldmm;
2361 atomic_inc(&oldmm->mm_count);
2362 enter_lazy_tlb(oldmm, next);
2363 } else
2364 switch_mm(oldmm, mm, next);
2365
31915ab4 2366 if (!prev->mm) {
1da177e4 2367 prev->active_mm = NULL;
1da177e4
LT
2368 rq->prev_mm = oldmm;
2369 }
3a5f5e48
IM
2370 /*
2371 * Since the runqueue lock will be released by the next
2372 * task (which is an invalid locking op but in the case
2373 * of the scheduler it's an obvious special-case), so we
2374 * do an early lockdep release here:
2375 */
8a25d5de 2376 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4 2377
91d1aa43 2378 context_tracking_task_switch(prev, next);
1da177e4
LT
2379 /* Here we just switch the register state and the stack. */
2380 switch_to(prev, next, prev);
2381
dd41f596
IM
2382 barrier();
2383 /*
2384 * this_rq must be evaluated again because prev may have moved
2385 * CPUs since it called schedule(), thus the 'rq' on its stack
2386 * frame will be invalid.
2387 */
2388 finish_task_switch(this_rq(), prev);
1da177e4
LT
2389}
2390
2391/*
1c3e8264 2392 * nr_running and nr_context_switches:
1da177e4
LT
2393 *
2394 * externally visible scheduler statistics: current number of runnable
1c3e8264 2395 * threads, total number of context switches performed since bootup.
1da177e4
LT
2396 */
2397unsigned long nr_running(void)
2398{
2399 unsigned long i, sum = 0;
2400
2401 for_each_online_cpu(i)
2402 sum += cpu_rq(i)->nr_running;
2403
2404 return sum;
f711f609 2405}
1da177e4 2406
1da177e4 2407unsigned long long nr_context_switches(void)
46cb4b7c 2408{
cc94abfc
SR
2409 int i;
2410 unsigned long long sum = 0;
46cb4b7c 2411
0a945022 2412 for_each_possible_cpu(i)
1da177e4 2413 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2414
1da177e4
LT
2415 return sum;
2416}
483b4ee6 2417
1da177e4
LT
2418unsigned long nr_iowait(void)
2419{
2420 unsigned long i, sum = 0;
483b4ee6 2421
0a945022 2422 for_each_possible_cpu(i)
1da177e4 2423 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2424
1da177e4
LT
2425 return sum;
2426}
483b4ee6 2427
8c215bd3 2428unsigned long nr_iowait_cpu(int cpu)
69d25870 2429{
8c215bd3 2430 struct rq *this = cpu_rq(cpu);
69d25870
AV
2431 return atomic_read(&this->nr_iowait);
2432}
46cb4b7c 2433
372ba8cb
MG
2434void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2435{
2436 struct rq *this = this_rq();
2437 *nr_waiters = atomic_read(&this->nr_iowait);
2438 *load = this->cpu_load[0];
2439}
2440
dd41f596 2441#ifdef CONFIG_SMP
8a0be9ef 2442
46cb4b7c 2443/*
38022906
PZ
2444 * sched_exec - execve() is a valuable balancing opportunity, because at
2445 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2446 */
38022906 2447void sched_exec(void)
46cb4b7c 2448{
38022906 2449 struct task_struct *p = current;
1da177e4 2450 unsigned long flags;
0017d735 2451 int dest_cpu;
46cb4b7c 2452
8f42ced9 2453 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2454 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2455 if (dest_cpu == smp_processor_id())
2456 goto unlock;
38022906 2457
8f42ced9 2458 if (likely(cpu_active(dest_cpu))) {
969c7921 2459 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2460
8f42ced9
PZ
2461 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2462 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2463 return;
2464 }
0017d735 2465unlock:
8f42ced9 2466 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2467}
dd41f596 2468
1da177e4
LT
2469#endif
2470
1da177e4 2471DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2472DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2473
2474EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2475EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4
LT
2476
2477/*
c5f8d995 2478 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 2479 * @p in case that task is currently running.
c5f8d995
HS
2480 *
2481 * Called with task_rq_lock() held on @rq.
1da177e4 2482 */
c5f8d995
HS
2483static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2484{
2485 u64 ns = 0;
2486
4036ac15
MG
2487 /*
2488 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2489 * project cycles that may never be accounted to this
2490 * thread, breaking clock_gettime().
2491 */
da0c1e65 2492 if (task_current(rq, p) && task_on_rq_queued(p)) {
c5f8d995 2493 update_rq_clock(rq);
78becc27 2494 ns = rq_clock_task(rq) - p->se.exec_start;
c5f8d995
HS
2495 if ((s64)ns < 0)
2496 ns = 0;
2497 }
2498
2499 return ns;
2500}
2501
bb34d92f 2502unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 2503{
1da177e4 2504 unsigned long flags;
41b86e9c 2505 struct rq *rq;
bb34d92f 2506 u64 ns = 0;
48f24c4d 2507
41b86e9c 2508 rq = task_rq_lock(p, &flags);
c5f8d995 2509 ns = do_task_delta_exec(p, rq);
0122ec5b 2510 task_rq_unlock(rq, p, &flags);
1508487e 2511
c5f8d995
HS
2512 return ns;
2513}
f06febc9 2514
c5f8d995
HS
2515/*
2516 * Return accounted runtime for the task.
2517 * In case the task is currently running, return the runtime plus current's
2518 * pending runtime that have not been accounted yet.
2519 */
2520unsigned long long task_sched_runtime(struct task_struct *p)
2521{
2522 unsigned long flags;
2523 struct rq *rq;
2524 u64 ns = 0;
2525
911b2898
PZ
2526#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2527 /*
2528 * 64-bit doesn't need locks to atomically read a 64bit value.
2529 * So we have a optimization chance when the task's delta_exec is 0.
2530 * Reading ->on_cpu is racy, but this is ok.
2531 *
2532 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2533 * If we race with it entering cpu, unaccounted time is 0. This is
2534 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
2535 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2536 * been accounted, so we're correct here as well.
911b2898 2537 */
da0c1e65 2538 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
2539 return p->se.sum_exec_runtime;
2540#endif
2541
c5f8d995
HS
2542 rq = task_rq_lock(p, &flags);
2543 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 2544 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2545
2546 return ns;
2547}
48f24c4d 2548
7835b98b
CL
2549/*
2550 * This function gets called by the timer code, with HZ frequency.
2551 * We call it with interrupts disabled.
7835b98b
CL
2552 */
2553void scheduler_tick(void)
2554{
7835b98b
CL
2555 int cpu = smp_processor_id();
2556 struct rq *rq = cpu_rq(cpu);
dd41f596 2557 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2558
2559 sched_clock_tick();
dd41f596 2560
05fa785c 2561 raw_spin_lock(&rq->lock);
3e51f33f 2562 update_rq_clock(rq);
fa85ae24 2563 curr->sched_class->task_tick(rq, curr, 0);
83dfd523 2564 update_cpu_load_active(rq);
05fa785c 2565 raw_spin_unlock(&rq->lock);
7835b98b 2566
e9d2b064 2567 perf_event_task_tick();
e220d2dc 2568
e418e1c2 2569#ifdef CONFIG_SMP
6eb57e0d 2570 rq->idle_balance = idle_cpu(cpu);
7caff66f 2571 trigger_load_balance(rq);
e418e1c2 2572#endif
265f22a9 2573 rq_last_tick_reset(rq);
1da177e4
LT
2574}
2575
265f22a9
FW
2576#ifdef CONFIG_NO_HZ_FULL
2577/**
2578 * scheduler_tick_max_deferment
2579 *
2580 * Keep at least one tick per second when a single
2581 * active task is running because the scheduler doesn't
2582 * yet completely support full dynticks environment.
2583 *
2584 * This makes sure that uptime, CFS vruntime, load
2585 * balancing, etc... continue to move forward, even
2586 * with a very low granularity.
e69f6186
YB
2587 *
2588 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
2589 */
2590u64 scheduler_tick_max_deferment(void)
2591{
2592 struct rq *rq = this_rq();
2593 unsigned long next, now = ACCESS_ONCE(jiffies);
2594
2595 next = rq->last_sched_tick + HZ;
2596
2597 if (time_before_eq(next, now))
2598 return 0;
2599
8fe8ff09 2600 return jiffies_to_nsecs(next - now);
1da177e4 2601}
265f22a9 2602#endif
1da177e4 2603
132380a0 2604notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
2605{
2606 if (in_lock_functions(addr)) {
2607 addr = CALLER_ADDR2;
2608 if (in_lock_functions(addr))
2609 addr = CALLER_ADDR3;
2610 }
2611 return addr;
2612}
1da177e4 2613
7e49fcce
SR
2614#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2615 defined(CONFIG_PREEMPT_TRACER))
2616
edafe3a5 2617void preempt_count_add(int val)
1da177e4 2618{
6cd8a4bb 2619#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2620 /*
2621 * Underflow?
2622 */
9a11b49a
IM
2623 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2624 return;
6cd8a4bb 2625#endif
bdb43806 2626 __preempt_count_add(val);
6cd8a4bb 2627#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2628 /*
2629 * Spinlock count overflowing soon?
2630 */
33859f7f
MOS
2631 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2632 PREEMPT_MASK - 10);
6cd8a4bb 2633#endif
8f47b187
TG
2634 if (preempt_count() == val) {
2635 unsigned long ip = get_parent_ip(CALLER_ADDR1);
2636#ifdef CONFIG_DEBUG_PREEMPT
2637 current->preempt_disable_ip = ip;
2638#endif
2639 trace_preempt_off(CALLER_ADDR0, ip);
2640 }
1da177e4 2641}
bdb43806 2642EXPORT_SYMBOL(preempt_count_add);
edafe3a5 2643NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 2644
edafe3a5 2645void preempt_count_sub(int val)
1da177e4 2646{
6cd8a4bb 2647#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2648 /*
2649 * Underflow?
2650 */
01e3eb82 2651 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 2652 return;
1da177e4
LT
2653 /*
2654 * Is the spinlock portion underflowing?
2655 */
9a11b49a
IM
2656 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2657 !(preempt_count() & PREEMPT_MASK)))
2658 return;
6cd8a4bb 2659#endif
9a11b49a 2660
6cd8a4bb
SR
2661 if (preempt_count() == val)
2662 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
bdb43806 2663 __preempt_count_sub(val);
1da177e4 2664}
bdb43806 2665EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 2666NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4
LT
2667
2668#endif
2669
2670/*
dd41f596 2671 * Print scheduling while atomic bug:
1da177e4 2672 */
dd41f596 2673static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 2674{
664dfa65
DJ
2675 if (oops_in_progress)
2676 return;
2677
3df0fc5b
PZ
2678 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2679 prev->comm, prev->pid, preempt_count());
838225b4 2680
dd41f596 2681 debug_show_held_locks(prev);
e21f5b15 2682 print_modules();
dd41f596
IM
2683 if (irqs_disabled())
2684 print_irqtrace_events(prev);
8f47b187
TG
2685#ifdef CONFIG_DEBUG_PREEMPT
2686 if (in_atomic_preempt_off()) {
2687 pr_err("Preemption disabled at:");
2688 print_ip_sym(current->preempt_disable_ip);
2689 pr_cont("\n");
2690 }
2691#endif
6135fc1e 2692 dump_stack();
373d4d09 2693 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 2694}
1da177e4 2695
dd41f596
IM
2696/*
2697 * Various schedule()-time debugging checks and statistics:
2698 */
2699static inline void schedule_debug(struct task_struct *prev)
2700{
0d9e2632
AT
2701#ifdef CONFIG_SCHED_STACK_END_CHECK
2702 BUG_ON(unlikely(task_stack_end_corrupted(prev)));
2703#endif
1da177e4 2704 /*
41a2d6cf 2705 * Test if we are atomic. Since do_exit() needs to call into
192301e7
ON
2706 * schedule() atomically, we ignore that path. Otherwise whine
2707 * if we are scheduling when we should not.
1da177e4 2708 */
192301e7 2709 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
dd41f596 2710 __schedule_bug(prev);
b3fbab05 2711 rcu_sleep_check();
dd41f596 2712
1da177e4
LT
2713 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2714
2d72376b 2715 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
2716}
2717
2718/*
2719 * Pick up the highest-prio task:
2720 */
2721static inline struct task_struct *
606dba2e 2722pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 2723{
37e117c0 2724 const struct sched_class *class = &fair_sched_class;
dd41f596 2725 struct task_struct *p;
1da177e4
LT
2726
2727 /*
dd41f596
IM
2728 * Optimization: we know that if all tasks are in
2729 * the fair class we can call that function directly:
1da177e4 2730 */
37e117c0 2731 if (likely(prev->sched_class == class &&
38033c37 2732 rq->nr_running == rq->cfs.h_nr_running)) {
606dba2e 2733 p = fair_sched_class.pick_next_task(rq, prev);
6ccdc84b
PZ
2734 if (unlikely(p == RETRY_TASK))
2735 goto again;
2736
2737 /* assumes fair_sched_class->next == idle_sched_class */
2738 if (unlikely(!p))
2739 p = idle_sched_class.pick_next_task(rq, prev);
2740
2741 return p;
1da177e4
LT
2742 }
2743
37e117c0 2744again:
34f971f6 2745 for_each_class(class) {
606dba2e 2746 p = class->pick_next_task(rq, prev);
37e117c0
PZ
2747 if (p) {
2748 if (unlikely(p == RETRY_TASK))
2749 goto again;
dd41f596 2750 return p;
37e117c0 2751 }
dd41f596 2752 }
34f971f6
PZ
2753
2754 BUG(); /* the idle class will always have a runnable task */
dd41f596 2755}
1da177e4 2756
dd41f596 2757/*
c259e01a 2758 * __schedule() is the main scheduler function.
edde96ea
PE
2759 *
2760 * The main means of driving the scheduler and thus entering this function are:
2761 *
2762 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2763 *
2764 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2765 * paths. For example, see arch/x86/entry_64.S.
2766 *
2767 * To drive preemption between tasks, the scheduler sets the flag in timer
2768 * interrupt handler scheduler_tick().
2769 *
2770 * 3. Wakeups don't really cause entry into schedule(). They add a
2771 * task to the run-queue and that's it.
2772 *
2773 * Now, if the new task added to the run-queue preempts the current
2774 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2775 * called on the nearest possible occasion:
2776 *
2777 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2778 *
2779 * - in syscall or exception context, at the next outmost
2780 * preempt_enable(). (this might be as soon as the wake_up()'s
2781 * spin_unlock()!)
2782 *
2783 * - in IRQ context, return from interrupt-handler to
2784 * preemptible context
2785 *
2786 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2787 * then at the next:
2788 *
2789 * - cond_resched() call
2790 * - explicit schedule() call
2791 * - return from syscall or exception to user-space
2792 * - return from interrupt-handler to user-space
dd41f596 2793 */
c259e01a 2794static void __sched __schedule(void)
dd41f596
IM
2795{
2796 struct task_struct *prev, *next;
67ca7bde 2797 unsigned long *switch_count;
dd41f596 2798 struct rq *rq;
31656519 2799 int cpu;
dd41f596 2800
ff743345
PZ
2801need_resched:
2802 preempt_disable();
dd41f596
IM
2803 cpu = smp_processor_id();
2804 rq = cpu_rq(cpu);
25502a6c 2805 rcu_note_context_switch(cpu);
dd41f596 2806 prev = rq->curr;
dd41f596 2807
dd41f596 2808 schedule_debug(prev);
1da177e4 2809
31656519 2810 if (sched_feat(HRTICK))
f333fdc9 2811 hrtick_clear(rq);
8f4d37ec 2812
e0acd0a6
ON
2813 /*
2814 * Make sure that signal_pending_state()->signal_pending() below
2815 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2816 * done by the caller to avoid the race with signal_wake_up().
2817 */
2818 smp_mb__before_spinlock();
05fa785c 2819 raw_spin_lock_irq(&rq->lock);
1da177e4 2820
246d86b5 2821 switch_count = &prev->nivcsw;
1da177e4 2822 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 2823 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 2824 prev->state = TASK_RUNNING;
21aa9af0 2825 } else {
2acca55e
PZ
2826 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2827 prev->on_rq = 0;
2828
21aa9af0 2829 /*
2acca55e
PZ
2830 * If a worker went to sleep, notify and ask workqueue
2831 * whether it wants to wake up a task to maintain
2832 * concurrency.
21aa9af0
TH
2833 */
2834 if (prev->flags & PF_WQ_WORKER) {
2835 struct task_struct *to_wakeup;
2836
2837 to_wakeup = wq_worker_sleeping(prev, cpu);
2838 if (to_wakeup)
2839 try_to_wake_up_local(to_wakeup);
2840 }
21aa9af0 2841 }
dd41f596 2842 switch_count = &prev->nvcsw;
1da177e4
LT
2843 }
2844
da0c1e65 2845 if (task_on_rq_queued(prev) || rq->skip_clock_update < 0)
606dba2e
PZ
2846 update_rq_clock(rq);
2847
2848 next = pick_next_task(rq, prev);
f26f9aff 2849 clear_tsk_need_resched(prev);
f27dde8d 2850 clear_preempt_need_resched();
f26f9aff 2851 rq->skip_clock_update = 0;
1da177e4 2852
1da177e4 2853 if (likely(prev != next)) {
1da177e4
LT
2854 rq->nr_switches++;
2855 rq->curr = next;
2856 ++*switch_count;
2857
dd41f596 2858 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 2859 /*
246d86b5
ON
2860 * The context switch have flipped the stack from under us
2861 * and restored the local variables which were saved when
2862 * this task called schedule() in the past. prev == current
2863 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
2864 */
2865 cpu = smp_processor_id();
2866 rq = cpu_rq(cpu);
1da177e4 2867 } else
05fa785c 2868 raw_spin_unlock_irq(&rq->lock);
1da177e4 2869
3f029d3c 2870 post_schedule(rq);
1da177e4 2871
ba74c144 2872 sched_preempt_enable_no_resched();
ff743345 2873 if (need_resched())
1da177e4
LT
2874 goto need_resched;
2875}
c259e01a 2876
9c40cef2
TG
2877static inline void sched_submit_work(struct task_struct *tsk)
2878{
3c7d5184 2879 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
2880 return;
2881 /*
2882 * If we are going to sleep and we have plugged IO queued,
2883 * make sure to submit it to avoid deadlocks.
2884 */
2885 if (blk_needs_flush_plug(tsk))
2886 blk_schedule_flush_plug(tsk);
2887}
2888
722a9f92 2889asmlinkage __visible void __sched schedule(void)
c259e01a 2890{
9c40cef2
TG
2891 struct task_struct *tsk = current;
2892
2893 sched_submit_work(tsk);
c259e01a
TG
2894 __schedule();
2895}
1da177e4
LT
2896EXPORT_SYMBOL(schedule);
2897
91d1aa43 2898#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 2899asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
2900{
2901 /*
2902 * If we come here after a random call to set_need_resched(),
2903 * or we have been woken up remotely but the IPI has not yet arrived,
2904 * we haven't yet exited the RCU idle mode. Do it here manually until
2905 * we find a better solution.
2906 */
91d1aa43 2907 user_exit();
20ab65e3 2908 schedule();
91d1aa43 2909 user_enter();
20ab65e3
FW
2910}
2911#endif
2912
c5491ea7
TG
2913/**
2914 * schedule_preempt_disabled - called with preemption disabled
2915 *
2916 * Returns with preemption disabled. Note: preempt_count must be 1
2917 */
2918void __sched schedule_preempt_disabled(void)
2919{
ba74c144 2920 sched_preempt_enable_no_resched();
c5491ea7
TG
2921 schedule();
2922 preempt_disable();
2923}
2924
1da177e4
LT
2925#ifdef CONFIG_PREEMPT
2926/*
2ed6e34f 2927 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 2928 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
2929 * occur there and call schedule directly.
2930 */
722a9f92 2931asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 2932{
1da177e4
LT
2933 /*
2934 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 2935 * we do not want to preempt the current task. Just return..
1da177e4 2936 */
fbb00b56 2937 if (likely(!preemptible()))
1da177e4
LT
2938 return;
2939
3a5c359a 2940 do {
bdb43806 2941 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 2942 __schedule();
bdb43806 2943 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2944
3a5c359a
AK
2945 /*
2946 * Check again in case we missed a preemption opportunity
2947 * between schedule and now.
2948 */
2949 barrier();
5ed0cec0 2950 } while (need_resched());
1da177e4 2951}
376e2424 2952NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 2953EXPORT_SYMBOL(preempt_schedule);
32e475d7 2954#endif /* CONFIG_PREEMPT */
1da177e4
LT
2955
2956/*
2ed6e34f 2957 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
2958 * off of irq context.
2959 * Note, that this is called and return with irqs disabled. This will
2960 * protect us against recursive calling from irq.
2961 */
722a9f92 2962asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 2963{
b22366cd 2964 enum ctx_state prev_state;
6478d880 2965
2ed6e34f 2966 /* Catch callers which need to be fixed */
f27dde8d 2967 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 2968
b22366cd
FW
2969 prev_state = exception_enter();
2970
3a5c359a 2971 do {
bdb43806 2972 __preempt_count_add(PREEMPT_ACTIVE);
3a5c359a 2973 local_irq_enable();
c259e01a 2974 __schedule();
3a5c359a 2975 local_irq_disable();
bdb43806 2976 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2977
3a5c359a
AK
2978 /*
2979 * Check again in case we missed a preemption opportunity
2980 * between schedule and now.
2981 */
2982 barrier();
5ed0cec0 2983 } while (need_resched());
b22366cd
FW
2984
2985 exception_exit(prev_state);
1da177e4
LT
2986}
2987
63859d4f 2988int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 2989 void *key)
1da177e4 2990{
63859d4f 2991 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 2992}
1da177e4
LT
2993EXPORT_SYMBOL(default_wake_function);
2994
b29739f9
IM
2995#ifdef CONFIG_RT_MUTEXES
2996
2997/*
2998 * rt_mutex_setprio - set the current priority of a task
2999 * @p: task
3000 * @prio: prio value (kernel-internal form)
3001 *
3002 * This function changes the 'effective' priority of a task. It does
3003 * not touch ->normal_prio like __setscheduler().
3004 *
c365c292
TG
3005 * Used by the rt_mutex code to implement priority inheritance
3006 * logic. Call site only calls if the priority of the task changed.
b29739f9 3007 */
36c8b586 3008void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3009{
da0c1e65 3010 int oldprio, queued, running, enqueue_flag = 0;
70b97a7f 3011 struct rq *rq;
83ab0aa0 3012 const struct sched_class *prev_class;
b29739f9 3013
aab03e05 3014 BUG_ON(prio > MAX_PRIO);
b29739f9 3015
0122ec5b 3016 rq = __task_rq_lock(p);
b29739f9 3017
1c4dd99b
TG
3018 /*
3019 * Idle task boosting is a nono in general. There is one
3020 * exception, when PREEMPT_RT and NOHZ is active:
3021 *
3022 * The idle task calls get_next_timer_interrupt() and holds
3023 * the timer wheel base->lock on the CPU and another CPU wants
3024 * to access the timer (probably to cancel it). We can safely
3025 * ignore the boosting request, as the idle CPU runs this code
3026 * with interrupts disabled and will complete the lock
3027 * protected section without being interrupted. So there is no
3028 * real need to boost.
3029 */
3030 if (unlikely(p == rq->idle)) {
3031 WARN_ON(p != rq->curr);
3032 WARN_ON(p->pi_blocked_on);
3033 goto out_unlock;
3034 }
3035
a8027073 3036 trace_sched_pi_setprio(p, prio);
d5f9f942 3037 oldprio = p->prio;
83ab0aa0 3038 prev_class = p->sched_class;
da0c1e65 3039 queued = task_on_rq_queued(p);
051a1d1a 3040 running = task_current(rq, p);
da0c1e65 3041 if (queued)
69be72c1 3042 dequeue_task(rq, p, 0);
0e1f3483 3043 if (running)
f3cd1c4e 3044 put_prev_task(rq, p);
dd41f596 3045
2d3d891d
DF
3046 /*
3047 * Boosting condition are:
3048 * 1. -rt task is running and holds mutex A
3049 * --> -dl task blocks on mutex A
3050 *
3051 * 2. -dl task is running and holds mutex A
3052 * --> -dl task blocks on mutex A and could preempt the
3053 * running task
3054 */
3055 if (dl_prio(prio)) {
466af29b
ON
3056 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3057 if (!dl_prio(p->normal_prio) ||
3058 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d
DF
3059 p->dl.dl_boosted = 1;
3060 p->dl.dl_throttled = 0;
3061 enqueue_flag = ENQUEUE_REPLENISH;
3062 } else
3063 p->dl.dl_boosted = 0;
aab03e05 3064 p->sched_class = &dl_sched_class;
2d3d891d
DF
3065 } else if (rt_prio(prio)) {
3066 if (dl_prio(oldprio))
3067 p->dl.dl_boosted = 0;
3068 if (oldprio < prio)
3069 enqueue_flag = ENQUEUE_HEAD;
dd41f596 3070 p->sched_class = &rt_sched_class;
2d3d891d
DF
3071 } else {
3072 if (dl_prio(oldprio))
3073 p->dl.dl_boosted = 0;
dd41f596 3074 p->sched_class = &fair_sched_class;
2d3d891d 3075 }
dd41f596 3076
b29739f9
IM
3077 p->prio = prio;
3078
0e1f3483
HS
3079 if (running)
3080 p->sched_class->set_curr_task(rq);
da0c1e65 3081 if (queued)
2d3d891d 3082 enqueue_task(rq, p, enqueue_flag);
cb469845 3083
da7a735e 3084 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3085out_unlock:
0122ec5b 3086 __task_rq_unlock(rq);
b29739f9 3087}
b29739f9 3088#endif
d50dde5a 3089
36c8b586 3090void set_user_nice(struct task_struct *p, long nice)
1da177e4 3091{
da0c1e65 3092 int old_prio, delta, queued;
1da177e4 3093 unsigned long flags;
70b97a7f 3094 struct rq *rq;
1da177e4 3095
75e45d51 3096 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
3097 return;
3098 /*
3099 * We have to be careful, if called from sys_setpriority(),
3100 * the task might be in the middle of scheduling on another CPU.
3101 */
3102 rq = task_rq_lock(p, &flags);
3103 /*
3104 * The RT priorities are set via sched_setscheduler(), but we still
3105 * allow the 'normal' nice value to be set - but as expected
3106 * it wont have any effect on scheduling until the task is
aab03e05 3107 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3108 */
aab03e05 3109 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3110 p->static_prio = NICE_TO_PRIO(nice);
3111 goto out_unlock;
3112 }
da0c1e65
KT
3113 queued = task_on_rq_queued(p);
3114 if (queued)
69be72c1 3115 dequeue_task(rq, p, 0);
1da177e4 3116
1da177e4 3117 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3118 set_load_weight(p);
b29739f9
IM
3119 old_prio = p->prio;
3120 p->prio = effective_prio(p);
3121 delta = p->prio - old_prio;
1da177e4 3122
da0c1e65 3123 if (queued) {
371fd7e7 3124 enqueue_task(rq, p, 0);
1da177e4 3125 /*
d5f9f942
AM
3126 * If the task increased its priority or is running and
3127 * lowered its priority, then reschedule its CPU:
1da177e4 3128 */
d5f9f942 3129 if (delta < 0 || (delta > 0 && task_running(rq, p)))
8875125e 3130 resched_curr(rq);
1da177e4
LT
3131 }
3132out_unlock:
0122ec5b 3133 task_rq_unlock(rq, p, &flags);
1da177e4 3134}
1da177e4
LT
3135EXPORT_SYMBOL(set_user_nice);
3136
e43379f1
MM
3137/*
3138 * can_nice - check if a task can reduce its nice value
3139 * @p: task
3140 * @nice: nice value
3141 */
36c8b586 3142int can_nice(const struct task_struct *p, const int nice)
e43379f1 3143{
024f4747 3144 /* convert nice value [19,-20] to rlimit style value [1,40] */
7aa2c016 3145 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 3146
78d7d407 3147 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3148 capable(CAP_SYS_NICE));
3149}
3150
1da177e4
LT
3151#ifdef __ARCH_WANT_SYS_NICE
3152
3153/*
3154 * sys_nice - change the priority of the current process.
3155 * @increment: priority increment
3156 *
3157 * sys_setpriority is a more generic, but much slower function that
3158 * does similar things.
3159 */
5add95d4 3160SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3161{
48f24c4d 3162 long nice, retval;
1da177e4
LT
3163
3164 /*
3165 * Setpriority might change our priority at the same moment.
3166 * We don't have to worry. Conceptually one call occurs first
3167 * and we have a single winner.
3168 */
a9467fa3 3169 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 3170 nice = task_nice(current) + increment;
1da177e4 3171
a9467fa3 3172 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
3173 if (increment < 0 && !can_nice(current, nice))
3174 return -EPERM;
3175
1da177e4
LT
3176 retval = security_task_setnice(current, nice);
3177 if (retval)
3178 return retval;
3179
3180 set_user_nice(current, nice);
3181 return 0;
3182}
3183
3184#endif
3185
3186/**
3187 * task_prio - return the priority value of a given task.
3188 * @p: the task in question.
3189 *
e69f6186 3190 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3191 * RT tasks are offset by -200. Normal tasks are centered
3192 * around 0, value goes from -16 to +15.
3193 */
36c8b586 3194int task_prio(const struct task_struct *p)
1da177e4
LT
3195{
3196 return p->prio - MAX_RT_PRIO;
3197}
3198
1da177e4
LT
3199/**
3200 * idle_cpu - is a given cpu idle currently?
3201 * @cpu: the processor in question.
e69f6186
YB
3202 *
3203 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3204 */
3205int idle_cpu(int cpu)
3206{
908a3283
TG
3207 struct rq *rq = cpu_rq(cpu);
3208
3209 if (rq->curr != rq->idle)
3210 return 0;
3211
3212 if (rq->nr_running)
3213 return 0;
3214
3215#ifdef CONFIG_SMP
3216 if (!llist_empty(&rq->wake_list))
3217 return 0;
3218#endif
3219
3220 return 1;
1da177e4
LT
3221}
3222
1da177e4
LT
3223/**
3224 * idle_task - return the idle task for a given cpu.
3225 * @cpu: the processor in question.
e69f6186
YB
3226 *
3227 * Return: The idle task for the cpu @cpu.
1da177e4 3228 */
36c8b586 3229struct task_struct *idle_task(int cpu)
1da177e4
LT
3230{
3231 return cpu_rq(cpu)->idle;
3232}
3233
3234/**
3235 * find_process_by_pid - find a process with a matching PID value.
3236 * @pid: the pid in question.
e69f6186
YB
3237 *
3238 * The task of @pid, if found. %NULL otherwise.
1da177e4 3239 */
a9957449 3240static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3241{
228ebcbe 3242 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3243}
3244
aab03e05
DF
3245/*
3246 * This function initializes the sched_dl_entity of a newly becoming
3247 * SCHED_DEADLINE task.
3248 *
3249 * Only the static values are considered here, the actual runtime and the
3250 * absolute deadline will be properly calculated when the task is enqueued
3251 * for the first time with its new policy.
3252 */
3253static void
3254__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3255{
3256 struct sched_dl_entity *dl_se = &p->dl;
3257
3258 init_dl_task_timer(dl_se);
3259 dl_se->dl_runtime = attr->sched_runtime;
3260 dl_se->dl_deadline = attr->sched_deadline;
755378a4 3261 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 3262 dl_se->flags = attr->sched_flags;
332ac17e 3263 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
aab03e05
DF
3264 dl_se->dl_throttled = 0;
3265 dl_se->dl_new = 1;
5bfd126e 3266 dl_se->dl_yielded = 0;
aab03e05
DF
3267}
3268
c13db6b1
SR
3269/*
3270 * sched_setparam() passes in -1 for its policy, to let the functions
3271 * it calls know not to change it.
3272 */
3273#define SETPARAM_POLICY -1
3274
c365c292
TG
3275static void __setscheduler_params(struct task_struct *p,
3276 const struct sched_attr *attr)
1da177e4 3277{
d50dde5a
DF
3278 int policy = attr->sched_policy;
3279
c13db6b1 3280 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
3281 policy = p->policy;
3282
1da177e4 3283 p->policy = policy;
d50dde5a 3284
aab03e05
DF
3285 if (dl_policy(policy))
3286 __setparam_dl(p, attr);
39fd8fd2 3287 else if (fair_policy(policy))
d50dde5a
DF
3288 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3289
39fd8fd2
PZ
3290 /*
3291 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3292 * !rt_policy. Always setting this ensures that things like
3293 * getparam()/getattr() don't report silly values for !rt tasks.
3294 */
3295 p->rt_priority = attr->sched_priority;
383afd09 3296 p->normal_prio = normal_prio(p);
c365c292
TG
3297 set_load_weight(p);
3298}
39fd8fd2 3299
c365c292
TG
3300/* Actually do priority change: must hold pi & rq lock. */
3301static void __setscheduler(struct rq *rq, struct task_struct *p,
3302 const struct sched_attr *attr)
3303{
3304 __setscheduler_params(p, attr);
d50dde5a 3305
383afd09
SR
3306 /*
3307 * If we get here, there was no pi waiters boosting the
3308 * task. It is safe to use the normal prio.
3309 */
3310 p->prio = normal_prio(p);
3311
aab03e05
DF
3312 if (dl_prio(p->prio))
3313 p->sched_class = &dl_sched_class;
3314 else if (rt_prio(p->prio))
ffd44db5
PZ
3315 p->sched_class = &rt_sched_class;
3316 else
3317 p->sched_class = &fair_sched_class;
1da177e4 3318}
aab03e05
DF
3319
3320static void
3321__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3322{
3323 struct sched_dl_entity *dl_se = &p->dl;
3324
3325 attr->sched_priority = p->rt_priority;
3326 attr->sched_runtime = dl_se->dl_runtime;
3327 attr->sched_deadline = dl_se->dl_deadline;
755378a4 3328 attr->sched_period = dl_se->dl_period;
aab03e05
DF
3329 attr->sched_flags = dl_se->flags;
3330}
3331
3332/*
3333 * This function validates the new parameters of a -deadline task.
3334 * We ask for the deadline not being zero, and greater or equal
755378a4 3335 * than the runtime, as well as the period of being zero or
332ac17e 3336 * greater than deadline. Furthermore, we have to be sure that
b0827819
JL
3337 * user parameters are above the internal resolution of 1us (we
3338 * check sched_runtime only since it is always the smaller one) and
3339 * below 2^63 ns (we have to check both sched_deadline and
3340 * sched_period, as the latter can be zero).
aab03e05
DF
3341 */
3342static bool
3343__checkparam_dl(const struct sched_attr *attr)
3344{
b0827819
JL
3345 /* deadline != 0 */
3346 if (attr->sched_deadline == 0)
3347 return false;
3348
3349 /*
3350 * Since we truncate DL_SCALE bits, make sure we're at least
3351 * that big.
3352 */
3353 if (attr->sched_runtime < (1ULL << DL_SCALE))
3354 return false;
3355
3356 /*
3357 * Since we use the MSB for wrap-around and sign issues, make
3358 * sure it's not set (mind that period can be equal to zero).
3359 */
3360 if (attr->sched_deadline & (1ULL << 63) ||
3361 attr->sched_period & (1ULL << 63))
3362 return false;
3363
3364 /* runtime <= deadline <= period (if period != 0) */
3365 if ((attr->sched_period != 0 &&
3366 attr->sched_period < attr->sched_deadline) ||
3367 attr->sched_deadline < attr->sched_runtime)
3368 return false;
3369
3370 return true;
aab03e05
DF
3371}
3372
c69e8d9c
DH
3373/*
3374 * check the target process has a UID that matches the current process's
3375 */
3376static bool check_same_owner(struct task_struct *p)
3377{
3378 const struct cred *cred = current_cred(), *pcred;
3379 bool match;
3380
3381 rcu_read_lock();
3382 pcred = __task_cred(p);
9c806aa0
EB
3383 match = (uid_eq(cred->euid, pcred->euid) ||
3384 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3385 rcu_read_unlock();
3386 return match;
3387}
3388
d50dde5a
DF
3389static int __sched_setscheduler(struct task_struct *p,
3390 const struct sched_attr *attr,
3391 bool user)
1da177e4 3392{
383afd09
SR
3393 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3394 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 3395 int retval, oldprio, oldpolicy = -1, queued, running;
d50dde5a 3396 int policy = attr->sched_policy;
1da177e4 3397 unsigned long flags;
83ab0aa0 3398 const struct sched_class *prev_class;
70b97a7f 3399 struct rq *rq;
ca94c442 3400 int reset_on_fork;
1da177e4 3401
66e5393a
SR
3402 /* may grab non-irq protected spin_locks */
3403 BUG_ON(in_interrupt());
1da177e4
LT
3404recheck:
3405 /* double check policy once rq lock held */
ca94c442
LP
3406 if (policy < 0) {
3407 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3408 policy = oldpolicy = p->policy;
ca94c442 3409 } else {
7479f3c9 3410 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 3411
aab03e05
DF
3412 if (policy != SCHED_DEADLINE &&
3413 policy != SCHED_FIFO && policy != SCHED_RR &&
ca94c442
LP
3414 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3415 policy != SCHED_IDLE)
3416 return -EINVAL;
3417 }
3418
7479f3c9
PZ
3419 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3420 return -EINVAL;
3421
1da177e4
LT
3422 /*
3423 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3424 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3425 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 3426 */
0bb040a4 3427 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 3428 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 3429 return -EINVAL;
aab03e05
DF
3430 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3431 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
3432 return -EINVAL;
3433
37e4ab3f
OC
3434 /*
3435 * Allow unprivileged RT tasks to decrease priority:
3436 */
961ccddd 3437 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 3438 if (fair_policy(policy)) {
d0ea0268 3439 if (attr->sched_nice < task_nice(p) &&
eaad4513 3440 !can_nice(p, attr->sched_nice))
d50dde5a
DF
3441 return -EPERM;
3442 }
3443
e05606d3 3444 if (rt_policy(policy)) {
a44702e8
ON
3445 unsigned long rlim_rtprio =
3446 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3447
3448 /* can't set/change the rt policy */
3449 if (policy != p->policy && !rlim_rtprio)
3450 return -EPERM;
3451
3452 /* can't increase priority */
d50dde5a
DF
3453 if (attr->sched_priority > p->rt_priority &&
3454 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
3455 return -EPERM;
3456 }
c02aa73b 3457
d44753b8
JL
3458 /*
3459 * Can't set/change SCHED_DEADLINE policy at all for now
3460 * (safest behavior); in the future we would like to allow
3461 * unprivileged DL tasks to increase their relative deadline
3462 * or reduce their runtime (both ways reducing utilization)
3463 */
3464 if (dl_policy(policy))
3465 return -EPERM;
3466
dd41f596 3467 /*
c02aa73b
DH
3468 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3469 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3470 */
c02aa73b 3471 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
d0ea0268 3472 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
3473 return -EPERM;
3474 }
5fe1d75f 3475
37e4ab3f 3476 /* can't change other user's priorities */
c69e8d9c 3477 if (!check_same_owner(p))
37e4ab3f 3478 return -EPERM;
ca94c442
LP
3479
3480 /* Normal users shall not reset the sched_reset_on_fork flag */
3481 if (p->sched_reset_on_fork && !reset_on_fork)
3482 return -EPERM;
37e4ab3f 3483 }
1da177e4 3484
725aad24 3485 if (user) {
b0ae1981 3486 retval = security_task_setscheduler(p);
725aad24
JF
3487 if (retval)
3488 return retval;
3489 }
3490
b29739f9
IM
3491 /*
3492 * make sure no PI-waiters arrive (or leave) while we are
3493 * changing the priority of the task:
0122ec5b 3494 *
25985edc 3495 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3496 * runqueue lock must be held.
3497 */
0122ec5b 3498 rq = task_rq_lock(p, &flags);
dc61b1d6 3499
34f971f6
PZ
3500 /*
3501 * Changing the policy of the stop threads its a very bad idea
3502 */
3503 if (p == rq->stop) {
0122ec5b 3504 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3505 return -EINVAL;
3506 }
3507
a51e9198 3508 /*
d6b1e911
TG
3509 * If not changing anything there's no need to proceed further,
3510 * but store a possible modification of reset_on_fork.
a51e9198 3511 */
d50dde5a 3512 if (unlikely(policy == p->policy)) {
d0ea0268 3513 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
3514 goto change;
3515 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3516 goto change;
aab03e05
DF
3517 if (dl_policy(policy))
3518 goto change;
d50dde5a 3519
d6b1e911 3520 p->sched_reset_on_fork = reset_on_fork;
45afb173 3521 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3522 return 0;
3523 }
d50dde5a 3524change:
a51e9198 3525
dc61b1d6 3526 if (user) {
332ac17e 3527#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
3528 /*
3529 * Do not allow realtime tasks into groups that have no runtime
3530 * assigned.
3531 */
3532 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3533 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3534 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3535 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3536 return -EPERM;
3537 }
dc61b1d6 3538#endif
332ac17e
DF
3539#ifdef CONFIG_SMP
3540 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3541 cpumask_t *span = rq->rd->span;
332ac17e
DF
3542
3543 /*
3544 * Don't allow tasks with an affinity mask smaller than
3545 * the entire root_domain to become SCHED_DEADLINE. We
3546 * will also fail if there's no bandwidth available.
3547 */
e4099a5e
PZ
3548 if (!cpumask_subset(span, &p->cpus_allowed) ||
3549 rq->rd->dl_bw.bw == 0) {
332ac17e
DF
3550 task_rq_unlock(rq, p, &flags);
3551 return -EPERM;
3552 }
3553 }
3554#endif
3555 }
dc61b1d6 3556
1da177e4
LT
3557 /* recheck policy now with rq lock held */
3558 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3559 policy = oldpolicy = -1;
0122ec5b 3560 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3561 goto recheck;
3562 }
332ac17e
DF
3563
3564 /*
3565 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3566 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3567 * is available.
3568 */
e4099a5e 3569 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
332ac17e
DF
3570 task_rq_unlock(rq, p, &flags);
3571 return -EBUSY;
3572 }
3573
c365c292
TG
3574 p->sched_reset_on_fork = reset_on_fork;
3575 oldprio = p->prio;
3576
3577 /*
3578 * Special case for priority boosted tasks.
3579 *
3580 * If the new priority is lower or equal (user space view)
3581 * than the current (boosted) priority, we just store the new
3582 * normal parameters and do not touch the scheduler class and
3583 * the runqueue. This will be done when the task deboost
3584 * itself.
3585 */
3586 if (rt_mutex_check_prio(p, newprio)) {
3587 __setscheduler_params(p, attr);
3588 task_rq_unlock(rq, p, &flags);
3589 return 0;
3590 }
3591
da0c1e65 3592 queued = task_on_rq_queued(p);
051a1d1a 3593 running = task_current(rq, p);
da0c1e65 3594 if (queued)
4ca9b72b 3595 dequeue_task(rq, p, 0);
0e1f3483 3596 if (running)
f3cd1c4e 3597 put_prev_task(rq, p);
f6b53205 3598
83ab0aa0 3599 prev_class = p->sched_class;
d50dde5a 3600 __setscheduler(rq, p, attr);
f6b53205 3601
0e1f3483
HS
3602 if (running)
3603 p->sched_class->set_curr_task(rq);
da0c1e65 3604 if (queued) {
81a44c54
TG
3605 /*
3606 * We enqueue to tail when the priority of a task is
3607 * increased (user space view).
3608 */
3609 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3610 }
cb469845 3611
da7a735e 3612 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 3613 task_rq_unlock(rq, p, &flags);
b29739f9 3614
95e02ca9
TG
3615 rt_mutex_adjust_pi(p);
3616
1da177e4
LT
3617 return 0;
3618}
961ccddd 3619
7479f3c9
PZ
3620static int _sched_setscheduler(struct task_struct *p, int policy,
3621 const struct sched_param *param, bool check)
3622{
3623 struct sched_attr attr = {
3624 .sched_policy = policy,
3625 .sched_priority = param->sched_priority,
3626 .sched_nice = PRIO_TO_NICE(p->static_prio),
3627 };
3628
c13db6b1
SR
3629 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
3630 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
3631 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3632 policy &= ~SCHED_RESET_ON_FORK;
3633 attr.sched_policy = policy;
3634 }
3635
3636 return __sched_setscheduler(p, &attr, check);
3637}
961ccddd
RR
3638/**
3639 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3640 * @p: the task in question.
3641 * @policy: new policy.
3642 * @param: structure containing the new RT priority.
3643 *
e69f6186
YB
3644 * Return: 0 on success. An error code otherwise.
3645 *
961ccddd
RR
3646 * NOTE that the task may be already dead.
3647 */
3648int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3649 const struct sched_param *param)
961ccddd 3650{
7479f3c9 3651 return _sched_setscheduler(p, policy, param, true);
961ccddd 3652}
1da177e4
LT
3653EXPORT_SYMBOL_GPL(sched_setscheduler);
3654
d50dde5a
DF
3655int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3656{
3657 return __sched_setscheduler(p, attr, true);
3658}
3659EXPORT_SYMBOL_GPL(sched_setattr);
3660
961ccddd
RR
3661/**
3662 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3663 * @p: the task in question.
3664 * @policy: new policy.
3665 * @param: structure containing the new RT priority.
3666 *
3667 * Just like sched_setscheduler, only don't bother checking if the
3668 * current context has permission. For example, this is needed in
3669 * stop_machine(): we create temporary high priority worker threads,
3670 * but our caller might not have that capability.
e69f6186
YB
3671 *
3672 * Return: 0 on success. An error code otherwise.
961ccddd
RR
3673 */
3674int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 3675 const struct sched_param *param)
961ccddd 3676{
7479f3c9 3677 return _sched_setscheduler(p, policy, param, false);
961ccddd
RR
3678}
3679
95cdf3b7
IM
3680static int
3681do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 3682{
1da177e4
LT
3683 struct sched_param lparam;
3684 struct task_struct *p;
36c8b586 3685 int retval;
1da177e4
LT
3686
3687 if (!param || pid < 0)
3688 return -EINVAL;
3689 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3690 return -EFAULT;
5fe1d75f
ON
3691
3692 rcu_read_lock();
3693 retval = -ESRCH;
1da177e4 3694 p = find_process_by_pid(pid);
5fe1d75f
ON
3695 if (p != NULL)
3696 retval = sched_setscheduler(p, policy, &lparam);
3697 rcu_read_unlock();
36c8b586 3698
1da177e4
LT
3699 return retval;
3700}
3701
d50dde5a
DF
3702/*
3703 * Mimics kernel/events/core.c perf_copy_attr().
3704 */
3705static int sched_copy_attr(struct sched_attr __user *uattr,
3706 struct sched_attr *attr)
3707{
3708 u32 size;
3709 int ret;
3710
3711 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3712 return -EFAULT;
3713
3714 /*
3715 * zero the full structure, so that a short copy will be nice.
3716 */
3717 memset(attr, 0, sizeof(*attr));
3718
3719 ret = get_user(size, &uattr->size);
3720 if (ret)
3721 return ret;
3722
3723 if (size > PAGE_SIZE) /* silly large */
3724 goto err_size;
3725
3726 if (!size) /* abi compat */
3727 size = SCHED_ATTR_SIZE_VER0;
3728
3729 if (size < SCHED_ATTR_SIZE_VER0)
3730 goto err_size;
3731
3732 /*
3733 * If we're handed a bigger struct than we know of,
3734 * ensure all the unknown bits are 0 - i.e. new
3735 * user-space does not rely on any kernel feature
3736 * extensions we dont know about yet.
3737 */
3738 if (size > sizeof(*attr)) {
3739 unsigned char __user *addr;
3740 unsigned char __user *end;
3741 unsigned char val;
3742
3743 addr = (void __user *)uattr + sizeof(*attr);
3744 end = (void __user *)uattr + size;
3745
3746 for (; addr < end; addr++) {
3747 ret = get_user(val, addr);
3748 if (ret)
3749 return ret;
3750 if (val)
3751 goto err_size;
3752 }
3753 size = sizeof(*attr);
3754 }
3755
3756 ret = copy_from_user(attr, uattr, size);
3757 if (ret)
3758 return -EFAULT;
3759
3760 /*
3761 * XXX: do we want to be lenient like existing syscalls; or do we want
3762 * to be strict and return an error on out-of-bounds values?
3763 */
75e45d51 3764 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 3765
e78c7bca 3766 return 0;
d50dde5a
DF
3767
3768err_size:
3769 put_user(sizeof(*attr), &uattr->size);
e78c7bca 3770 return -E2BIG;
d50dde5a
DF
3771}
3772
1da177e4
LT
3773/**
3774 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3775 * @pid: the pid in question.
3776 * @policy: new policy.
3777 * @param: structure containing the new RT priority.
e69f6186
YB
3778 *
3779 * Return: 0 on success. An error code otherwise.
1da177e4 3780 */
5add95d4
HC
3781SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3782 struct sched_param __user *, param)
1da177e4 3783{
c21761f1
JB
3784 /* negative values for policy are not valid */
3785 if (policy < 0)
3786 return -EINVAL;
3787
1da177e4
LT
3788 return do_sched_setscheduler(pid, policy, param);
3789}
3790
3791/**
3792 * sys_sched_setparam - set/change the RT priority of a thread
3793 * @pid: the pid in question.
3794 * @param: structure containing the new RT priority.
e69f6186
YB
3795 *
3796 * Return: 0 on success. An error code otherwise.
1da177e4 3797 */
5add95d4 3798SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 3799{
c13db6b1 3800 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
3801}
3802
d50dde5a
DF
3803/**
3804 * sys_sched_setattr - same as above, but with extended sched_attr
3805 * @pid: the pid in question.
5778fccf 3806 * @uattr: structure containing the extended parameters.
db66d756 3807 * @flags: for future extension.
d50dde5a 3808 */
6d35ab48
PZ
3809SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3810 unsigned int, flags)
d50dde5a
DF
3811{
3812 struct sched_attr attr;
3813 struct task_struct *p;
3814 int retval;
3815
6d35ab48 3816 if (!uattr || pid < 0 || flags)
d50dde5a
DF
3817 return -EINVAL;
3818
143cf23d
MK
3819 retval = sched_copy_attr(uattr, &attr);
3820 if (retval)
3821 return retval;
d50dde5a 3822
b14ed2c2 3823 if ((int)attr.sched_policy < 0)
dbdb2275 3824 return -EINVAL;
d50dde5a
DF
3825
3826 rcu_read_lock();
3827 retval = -ESRCH;
3828 p = find_process_by_pid(pid);
3829 if (p != NULL)
3830 retval = sched_setattr(p, &attr);
3831 rcu_read_unlock();
3832
3833 return retval;
3834}
3835
1da177e4
LT
3836/**
3837 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3838 * @pid: the pid in question.
e69f6186
YB
3839 *
3840 * Return: On success, the policy of the thread. Otherwise, a negative error
3841 * code.
1da177e4 3842 */
5add95d4 3843SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 3844{
36c8b586 3845 struct task_struct *p;
3a5c359a 3846 int retval;
1da177e4
LT
3847
3848 if (pid < 0)
3a5c359a 3849 return -EINVAL;
1da177e4
LT
3850
3851 retval = -ESRCH;
5fe85be0 3852 rcu_read_lock();
1da177e4
LT
3853 p = find_process_by_pid(pid);
3854 if (p) {
3855 retval = security_task_getscheduler(p);
3856 if (!retval)
ca94c442
LP
3857 retval = p->policy
3858 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 3859 }
5fe85be0 3860 rcu_read_unlock();
1da177e4
LT
3861 return retval;
3862}
3863
3864/**
ca94c442 3865 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
3866 * @pid: the pid in question.
3867 * @param: structure containing the RT priority.
e69f6186
YB
3868 *
3869 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3870 * code.
1da177e4 3871 */
5add95d4 3872SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 3873{
ce5f7f82 3874 struct sched_param lp = { .sched_priority = 0 };
36c8b586 3875 struct task_struct *p;
3a5c359a 3876 int retval;
1da177e4
LT
3877
3878 if (!param || pid < 0)
3a5c359a 3879 return -EINVAL;
1da177e4 3880
5fe85be0 3881 rcu_read_lock();
1da177e4
LT
3882 p = find_process_by_pid(pid);
3883 retval = -ESRCH;
3884 if (!p)
3885 goto out_unlock;
3886
3887 retval = security_task_getscheduler(p);
3888 if (retval)
3889 goto out_unlock;
3890
ce5f7f82
PZ
3891 if (task_has_rt_policy(p))
3892 lp.sched_priority = p->rt_priority;
5fe85be0 3893 rcu_read_unlock();
1da177e4
LT
3894
3895 /*
3896 * This one might sleep, we cannot do it with a spinlock held ...
3897 */
3898 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3899
1da177e4
LT
3900 return retval;
3901
3902out_unlock:
5fe85be0 3903 rcu_read_unlock();
1da177e4
LT
3904 return retval;
3905}
3906
d50dde5a
DF
3907static int sched_read_attr(struct sched_attr __user *uattr,
3908 struct sched_attr *attr,
3909 unsigned int usize)
3910{
3911 int ret;
3912
3913 if (!access_ok(VERIFY_WRITE, uattr, usize))
3914 return -EFAULT;
3915
3916 /*
3917 * If we're handed a smaller struct than we know of,
3918 * ensure all the unknown bits are 0 - i.e. old
3919 * user-space does not get uncomplete information.
3920 */
3921 if (usize < sizeof(*attr)) {
3922 unsigned char *addr;
3923 unsigned char *end;
3924
3925 addr = (void *)attr + usize;
3926 end = (void *)attr + sizeof(*attr);
3927
3928 for (; addr < end; addr++) {
3929 if (*addr)
22400674 3930 return -EFBIG;
d50dde5a
DF
3931 }
3932
3933 attr->size = usize;
3934 }
3935
4efbc454 3936 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
3937 if (ret)
3938 return -EFAULT;
3939
22400674 3940 return 0;
d50dde5a
DF
3941}
3942
3943/**
aab03e05 3944 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 3945 * @pid: the pid in question.
5778fccf 3946 * @uattr: structure containing the extended parameters.
d50dde5a 3947 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 3948 * @flags: for future extension.
d50dde5a 3949 */
6d35ab48
PZ
3950SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3951 unsigned int, size, unsigned int, flags)
d50dde5a
DF
3952{
3953 struct sched_attr attr = {
3954 .size = sizeof(struct sched_attr),
3955 };
3956 struct task_struct *p;
3957 int retval;
3958
3959 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 3960 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
3961 return -EINVAL;
3962
3963 rcu_read_lock();
3964 p = find_process_by_pid(pid);
3965 retval = -ESRCH;
3966 if (!p)
3967 goto out_unlock;
3968
3969 retval = security_task_getscheduler(p);
3970 if (retval)
3971 goto out_unlock;
3972
3973 attr.sched_policy = p->policy;
7479f3c9
PZ
3974 if (p->sched_reset_on_fork)
3975 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
3976 if (task_has_dl_policy(p))
3977 __getparam_dl(p, &attr);
3978 else if (task_has_rt_policy(p))
d50dde5a
DF
3979 attr.sched_priority = p->rt_priority;
3980 else
d0ea0268 3981 attr.sched_nice = task_nice(p);
d50dde5a
DF
3982
3983 rcu_read_unlock();
3984
3985 retval = sched_read_attr(uattr, &attr, size);
3986 return retval;
3987
3988out_unlock:
3989 rcu_read_unlock();
3990 return retval;
3991}
3992
96f874e2 3993long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 3994{
5a16f3d3 3995 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
3996 struct task_struct *p;
3997 int retval;
1da177e4 3998
23f5d142 3999 rcu_read_lock();
1da177e4
LT
4000
4001 p = find_process_by_pid(pid);
4002 if (!p) {
23f5d142 4003 rcu_read_unlock();
1da177e4
LT
4004 return -ESRCH;
4005 }
4006
23f5d142 4007 /* Prevent p going away */
1da177e4 4008 get_task_struct(p);
23f5d142 4009 rcu_read_unlock();
1da177e4 4010
14a40ffc
TH
4011 if (p->flags & PF_NO_SETAFFINITY) {
4012 retval = -EINVAL;
4013 goto out_put_task;
4014 }
5a16f3d3
RR
4015 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4016 retval = -ENOMEM;
4017 goto out_put_task;
4018 }
4019 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4020 retval = -ENOMEM;
4021 goto out_free_cpus_allowed;
4022 }
1da177e4 4023 retval = -EPERM;
4c44aaaf
EB
4024 if (!check_same_owner(p)) {
4025 rcu_read_lock();
4026 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4027 rcu_read_unlock();
4028 goto out_unlock;
4029 }
4030 rcu_read_unlock();
4031 }
1da177e4 4032
b0ae1981 4033 retval = security_task_setscheduler(p);
e7834f8f
DQ
4034 if (retval)
4035 goto out_unlock;
4036
e4099a5e
PZ
4037
4038 cpuset_cpus_allowed(p, cpus_allowed);
4039 cpumask_and(new_mask, in_mask, cpus_allowed);
4040
332ac17e
DF
4041 /*
4042 * Since bandwidth control happens on root_domain basis,
4043 * if admission test is enabled, we only admit -deadline
4044 * tasks allowed to run on all the CPUs in the task's
4045 * root_domain.
4046 */
4047#ifdef CONFIG_SMP
4048 if (task_has_dl_policy(p)) {
4049 const struct cpumask *span = task_rq(p)->rd->span;
4050
e4099a5e 4051 if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) {
332ac17e
DF
4052 retval = -EBUSY;
4053 goto out_unlock;
4054 }
4055 }
4056#endif
49246274 4057again:
5a16f3d3 4058 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 4059
8707d8b8 4060 if (!retval) {
5a16f3d3
RR
4061 cpuset_cpus_allowed(p, cpus_allowed);
4062 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4063 /*
4064 * We must have raced with a concurrent cpuset
4065 * update. Just reset the cpus_allowed to the
4066 * cpuset's cpus_allowed
4067 */
5a16f3d3 4068 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4069 goto again;
4070 }
4071 }
1da177e4 4072out_unlock:
5a16f3d3
RR
4073 free_cpumask_var(new_mask);
4074out_free_cpus_allowed:
4075 free_cpumask_var(cpus_allowed);
4076out_put_task:
1da177e4 4077 put_task_struct(p);
1da177e4
LT
4078 return retval;
4079}
4080
4081static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4082 struct cpumask *new_mask)
1da177e4 4083{
96f874e2
RR
4084 if (len < cpumask_size())
4085 cpumask_clear(new_mask);
4086 else if (len > cpumask_size())
4087 len = cpumask_size();
4088
1da177e4
LT
4089 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4090}
4091
4092/**
4093 * sys_sched_setaffinity - set the cpu affinity of a process
4094 * @pid: pid of the process
4095 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4096 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
4097 *
4098 * Return: 0 on success. An error code otherwise.
1da177e4 4099 */
5add95d4
HC
4100SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4101 unsigned long __user *, user_mask_ptr)
1da177e4 4102{
5a16f3d3 4103 cpumask_var_t new_mask;
1da177e4
LT
4104 int retval;
4105
5a16f3d3
RR
4106 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4107 return -ENOMEM;
1da177e4 4108
5a16f3d3
RR
4109 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4110 if (retval == 0)
4111 retval = sched_setaffinity(pid, new_mask);
4112 free_cpumask_var(new_mask);
4113 return retval;
1da177e4
LT
4114}
4115
96f874e2 4116long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4117{
36c8b586 4118 struct task_struct *p;
31605683 4119 unsigned long flags;
1da177e4 4120 int retval;
1da177e4 4121
23f5d142 4122 rcu_read_lock();
1da177e4
LT
4123
4124 retval = -ESRCH;
4125 p = find_process_by_pid(pid);
4126 if (!p)
4127 goto out_unlock;
4128
e7834f8f
DQ
4129 retval = security_task_getscheduler(p);
4130 if (retval)
4131 goto out_unlock;
4132
013fdb80 4133 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4134 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4135 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4136
4137out_unlock:
23f5d142 4138 rcu_read_unlock();
1da177e4 4139
9531b62f 4140 return retval;
1da177e4
LT
4141}
4142
4143/**
4144 * sys_sched_getaffinity - get the cpu affinity of a process
4145 * @pid: pid of the process
4146 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4147 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186
YB
4148 *
4149 * Return: 0 on success. An error code otherwise.
1da177e4 4150 */
5add95d4
HC
4151SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4152 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4153{
4154 int ret;
f17c8607 4155 cpumask_var_t mask;
1da177e4 4156
84fba5ec 4157 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4158 return -EINVAL;
4159 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4160 return -EINVAL;
4161
f17c8607
RR
4162 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4163 return -ENOMEM;
1da177e4 4164
f17c8607
RR
4165 ret = sched_getaffinity(pid, mask);
4166 if (ret == 0) {
8bc037fb 4167 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4168
4169 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4170 ret = -EFAULT;
4171 else
cd3d8031 4172 ret = retlen;
f17c8607
RR
4173 }
4174 free_cpumask_var(mask);
1da177e4 4175
f17c8607 4176 return ret;
1da177e4
LT
4177}
4178
4179/**
4180 * sys_sched_yield - yield the current processor to other threads.
4181 *
dd41f596
IM
4182 * This function yields the current CPU to other tasks. If there are no
4183 * other threads running on this CPU then this function will return.
e69f6186
YB
4184 *
4185 * Return: 0.
1da177e4 4186 */
5add95d4 4187SYSCALL_DEFINE0(sched_yield)
1da177e4 4188{
70b97a7f 4189 struct rq *rq = this_rq_lock();
1da177e4 4190
2d72376b 4191 schedstat_inc(rq, yld_count);
4530d7ab 4192 current->sched_class->yield_task(rq);
1da177e4
LT
4193
4194 /*
4195 * Since we are going to call schedule() anyway, there's
4196 * no need to preempt or enable interrupts:
4197 */
4198 __release(rq->lock);
8a25d5de 4199 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4200 do_raw_spin_unlock(&rq->lock);
ba74c144 4201 sched_preempt_enable_no_resched();
1da177e4
LT
4202
4203 schedule();
4204
4205 return 0;
4206}
4207
e7b38404 4208static void __cond_resched(void)
1da177e4 4209{
bdb43806 4210 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 4211 __schedule();
bdb43806 4212 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4
LT
4213}
4214
02b67cc3 4215int __sched _cond_resched(void)
1da177e4 4216{
d86ee480 4217 if (should_resched()) {
1da177e4
LT
4218 __cond_resched();
4219 return 1;
4220 }
4221 return 0;
4222}
02b67cc3 4223EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4224
4225/*
613afbf8 4226 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4227 * call schedule, and on return reacquire the lock.
4228 *
41a2d6cf 4229 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4230 * operations here to prevent schedule() from being called twice (once via
4231 * spin_unlock(), once by hand).
4232 */
613afbf8 4233int __cond_resched_lock(spinlock_t *lock)
1da177e4 4234{
d86ee480 4235 int resched = should_resched();
6df3cecb
JK
4236 int ret = 0;
4237
f607c668
PZ
4238 lockdep_assert_held(lock);
4239
4a81e832 4240 if (spin_needbreak(lock) || resched) {
1da177e4 4241 spin_unlock(lock);
d86ee480 4242 if (resched)
95c354fe
NP
4243 __cond_resched();
4244 else
4245 cpu_relax();
6df3cecb 4246 ret = 1;
1da177e4 4247 spin_lock(lock);
1da177e4 4248 }
6df3cecb 4249 return ret;
1da177e4 4250}
613afbf8 4251EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4252
613afbf8 4253int __sched __cond_resched_softirq(void)
1da177e4
LT
4254{
4255 BUG_ON(!in_softirq());
4256
d86ee480 4257 if (should_resched()) {
98d82567 4258 local_bh_enable();
1da177e4
LT
4259 __cond_resched();
4260 local_bh_disable();
4261 return 1;
4262 }
4263 return 0;
4264}
613afbf8 4265EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4266
1da177e4
LT
4267/**
4268 * yield - yield the current processor to other threads.
4269 *
8e3fabfd
PZ
4270 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4271 *
4272 * The scheduler is at all times free to pick the calling task as the most
4273 * eligible task to run, if removing the yield() call from your code breaks
4274 * it, its already broken.
4275 *
4276 * Typical broken usage is:
4277 *
4278 * while (!event)
4279 * yield();
4280 *
4281 * where one assumes that yield() will let 'the other' process run that will
4282 * make event true. If the current task is a SCHED_FIFO task that will never
4283 * happen. Never use yield() as a progress guarantee!!
4284 *
4285 * If you want to use yield() to wait for something, use wait_event().
4286 * If you want to use yield() to be 'nice' for others, use cond_resched().
4287 * If you still want to use yield(), do not!
1da177e4
LT
4288 */
4289void __sched yield(void)
4290{
4291 set_current_state(TASK_RUNNING);
4292 sys_sched_yield();
4293}
1da177e4
LT
4294EXPORT_SYMBOL(yield);
4295
d95f4122
MG
4296/**
4297 * yield_to - yield the current processor to another thread in
4298 * your thread group, or accelerate that thread toward the
4299 * processor it's on.
16addf95
RD
4300 * @p: target task
4301 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4302 *
4303 * It's the caller's job to ensure that the target task struct
4304 * can't go away on us before we can do any checks.
4305 *
e69f6186 4306 * Return:
7b270f60
PZ
4307 * true (>0) if we indeed boosted the target task.
4308 * false (0) if we failed to boost the target.
4309 * -ESRCH if there's no task to yield to.
d95f4122 4310 */
fa93384f 4311int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
4312{
4313 struct task_struct *curr = current;
4314 struct rq *rq, *p_rq;
4315 unsigned long flags;
c3c18640 4316 int yielded = 0;
d95f4122
MG
4317
4318 local_irq_save(flags);
4319 rq = this_rq();
4320
4321again:
4322 p_rq = task_rq(p);
7b270f60
PZ
4323 /*
4324 * If we're the only runnable task on the rq and target rq also
4325 * has only one task, there's absolutely no point in yielding.
4326 */
4327 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4328 yielded = -ESRCH;
4329 goto out_irq;
4330 }
4331
d95f4122 4332 double_rq_lock(rq, p_rq);
39e24d8f 4333 if (task_rq(p) != p_rq) {
d95f4122
MG
4334 double_rq_unlock(rq, p_rq);
4335 goto again;
4336 }
4337
4338 if (!curr->sched_class->yield_to_task)
7b270f60 4339 goto out_unlock;
d95f4122
MG
4340
4341 if (curr->sched_class != p->sched_class)
7b270f60 4342 goto out_unlock;
d95f4122
MG
4343
4344 if (task_running(p_rq, p) || p->state)
7b270f60 4345 goto out_unlock;
d95f4122
MG
4346
4347 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4348 if (yielded) {
d95f4122 4349 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4350 /*
4351 * Make p's CPU reschedule; pick_next_entity takes care of
4352 * fairness.
4353 */
4354 if (preempt && rq != p_rq)
8875125e 4355 resched_curr(p_rq);
6d1cafd8 4356 }
d95f4122 4357
7b270f60 4358out_unlock:
d95f4122 4359 double_rq_unlock(rq, p_rq);
7b270f60 4360out_irq:
d95f4122
MG
4361 local_irq_restore(flags);
4362
7b270f60 4363 if (yielded > 0)
d95f4122
MG
4364 schedule();
4365
4366 return yielded;
4367}
4368EXPORT_SYMBOL_GPL(yield_to);
4369
1da177e4 4370/*
41a2d6cf 4371 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4372 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
4373 */
4374void __sched io_schedule(void)
4375{
54d35f29 4376 struct rq *rq = raw_rq();
1da177e4 4377
0ff92245 4378 delayacct_blkio_start();
1da177e4 4379 atomic_inc(&rq->nr_iowait);
73c10101 4380 blk_flush_plug(current);
8f0dfc34 4381 current->in_iowait = 1;
1da177e4 4382 schedule();
8f0dfc34 4383 current->in_iowait = 0;
1da177e4 4384 atomic_dec(&rq->nr_iowait);
0ff92245 4385 delayacct_blkio_end();
1da177e4 4386}
1da177e4
LT
4387EXPORT_SYMBOL(io_schedule);
4388
4389long __sched io_schedule_timeout(long timeout)
4390{
54d35f29 4391 struct rq *rq = raw_rq();
1da177e4
LT
4392 long ret;
4393
0ff92245 4394 delayacct_blkio_start();
1da177e4 4395 atomic_inc(&rq->nr_iowait);
73c10101 4396 blk_flush_plug(current);
8f0dfc34 4397 current->in_iowait = 1;
1da177e4 4398 ret = schedule_timeout(timeout);
8f0dfc34 4399 current->in_iowait = 0;
1da177e4 4400 atomic_dec(&rq->nr_iowait);
0ff92245 4401 delayacct_blkio_end();
1da177e4
LT
4402 return ret;
4403}
4404
4405/**
4406 * sys_sched_get_priority_max - return maximum RT priority.
4407 * @policy: scheduling class.
4408 *
e69f6186
YB
4409 * Return: On success, this syscall returns the maximum
4410 * rt_priority that can be used by a given scheduling class.
4411 * On failure, a negative error code is returned.
1da177e4 4412 */
5add95d4 4413SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4414{
4415 int ret = -EINVAL;
4416
4417 switch (policy) {
4418 case SCHED_FIFO:
4419 case SCHED_RR:
4420 ret = MAX_USER_RT_PRIO-1;
4421 break;
aab03e05 4422 case SCHED_DEADLINE:
1da177e4 4423 case SCHED_NORMAL:
b0a9499c 4424 case SCHED_BATCH:
dd41f596 4425 case SCHED_IDLE:
1da177e4
LT
4426 ret = 0;
4427 break;
4428 }
4429 return ret;
4430}
4431
4432/**
4433 * sys_sched_get_priority_min - return minimum RT priority.
4434 * @policy: scheduling class.
4435 *
e69f6186
YB
4436 * Return: On success, this syscall returns the minimum
4437 * rt_priority that can be used by a given scheduling class.
4438 * On failure, a negative error code is returned.
1da177e4 4439 */
5add95d4 4440SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4441{
4442 int ret = -EINVAL;
4443
4444 switch (policy) {
4445 case SCHED_FIFO:
4446 case SCHED_RR:
4447 ret = 1;
4448 break;
aab03e05 4449 case SCHED_DEADLINE:
1da177e4 4450 case SCHED_NORMAL:
b0a9499c 4451 case SCHED_BATCH:
dd41f596 4452 case SCHED_IDLE:
1da177e4
LT
4453 ret = 0;
4454 }
4455 return ret;
4456}
4457
4458/**
4459 * sys_sched_rr_get_interval - return the default timeslice of a process.
4460 * @pid: pid of the process.
4461 * @interval: userspace pointer to the timeslice value.
4462 *
4463 * this syscall writes the default timeslice value of a given process
4464 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
4465 *
4466 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4467 * an error code.
1da177e4 4468 */
17da2bd9 4469SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4470 struct timespec __user *, interval)
1da177e4 4471{
36c8b586 4472 struct task_struct *p;
a4ec24b4 4473 unsigned int time_slice;
dba091b9
TG
4474 unsigned long flags;
4475 struct rq *rq;
3a5c359a 4476 int retval;
1da177e4 4477 struct timespec t;
1da177e4
LT
4478
4479 if (pid < 0)
3a5c359a 4480 return -EINVAL;
1da177e4
LT
4481
4482 retval = -ESRCH;
1a551ae7 4483 rcu_read_lock();
1da177e4
LT
4484 p = find_process_by_pid(pid);
4485 if (!p)
4486 goto out_unlock;
4487
4488 retval = security_task_getscheduler(p);
4489 if (retval)
4490 goto out_unlock;
4491
dba091b9 4492 rq = task_rq_lock(p, &flags);
a57beec5
PZ
4493 time_slice = 0;
4494 if (p->sched_class->get_rr_interval)
4495 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4496 task_rq_unlock(rq, p, &flags);
a4ec24b4 4497
1a551ae7 4498 rcu_read_unlock();
a4ec24b4 4499 jiffies_to_timespec(time_slice, &t);
1da177e4 4500 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4501 return retval;
3a5c359a 4502
1da177e4 4503out_unlock:
1a551ae7 4504 rcu_read_unlock();
1da177e4
LT
4505 return retval;
4506}
4507
7c731e0a 4508static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4509
82a1fcb9 4510void sched_show_task(struct task_struct *p)
1da177e4 4511{
1da177e4 4512 unsigned long free = 0;
4e79752c 4513 int ppid;
36c8b586 4514 unsigned state;
1da177e4 4515
1da177e4 4516 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 4517 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4518 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4519#if BITS_PER_LONG == 32
1da177e4 4520 if (state == TASK_RUNNING)
3df0fc5b 4521 printk(KERN_CONT " running ");
1da177e4 4522 else
3df0fc5b 4523 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4524#else
4525 if (state == TASK_RUNNING)
3df0fc5b 4526 printk(KERN_CONT " running task ");
1da177e4 4527 else
3df0fc5b 4528 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4529#endif
4530#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4531 free = stack_not_used(p);
1da177e4 4532#endif
4e79752c
PM
4533 rcu_read_lock();
4534 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4535 rcu_read_unlock();
3df0fc5b 4536 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 4537 task_pid_nr(p), ppid,
aa47b7e0 4538 (unsigned long)task_thread_info(p)->flags);
1da177e4 4539
3d1cb205 4540 print_worker_info(KERN_INFO, p);
5fb5e6de 4541 show_stack(p, NULL);
1da177e4
LT
4542}
4543
e59e2ae2 4544void show_state_filter(unsigned long state_filter)
1da177e4 4545{
36c8b586 4546 struct task_struct *g, *p;
1da177e4 4547
4bd77321 4548#if BITS_PER_LONG == 32
3df0fc5b
PZ
4549 printk(KERN_INFO
4550 " task PC stack pid father\n");
1da177e4 4551#else
3df0fc5b
PZ
4552 printk(KERN_INFO
4553 " task PC stack pid father\n");
1da177e4 4554#endif
510f5acc 4555 rcu_read_lock();
5d07f420 4556 for_each_process_thread(g, p) {
1da177e4
LT
4557 /*
4558 * reset the NMI-timeout, listing all files on a slow
25985edc 4559 * console might take a lot of time:
1da177e4
LT
4560 */
4561 touch_nmi_watchdog();
39bc89fd 4562 if (!state_filter || (p->state & state_filter))
82a1fcb9 4563 sched_show_task(p);
5d07f420 4564 }
1da177e4 4565
04c9167f
JF
4566 touch_all_softlockup_watchdogs();
4567
dd41f596
IM
4568#ifdef CONFIG_SCHED_DEBUG
4569 sysrq_sched_debug_show();
4570#endif
510f5acc 4571 rcu_read_unlock();
e59e2ae2
IM
4572 /*
4573 * Only show locks if all tasks are dumped:
4574 */
93335a21 4575 if (!state_filter)
e59e2ae2 4576 debug_show_all_locks();
1da177e4
LT
4577}
4578
0db0628d 4579void init_idle_bootup_task(struct task_struct *idle)
1df21055 4580{
dd41f596 4581 idle->sched_class = &idle_sched_class;
1df21055
IM
4582}
4583
f340c0d1
IM
4584/**
4585 * init_idle - set up an idle thread for a given CPU
4586 * @idle: task in question
4587 * @cpu: cpu the idle task belongs to
4588 *
4589 * NOTE: this function does not set the idle thread's NEED_RESCHED
4590 * flag, to make booting more robust.
4591 */
0db0628d 4592void init_idle(struct task_struct *idle, int cpu)
1da177e4 4593{
70b97a7f 4594 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4595 unsigned long flags;
4596
05fa785c 4597 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 4598
5e1576ed 4599 __sched_fork(0, idle);
06b83b5f 4600 idle->state = TASK_RUNNING;
dd41f596
IM
4601 idle->se.exec_start = sched_clock();
4602
1e1b6c51 4603 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4604 /*
4605 * We're having a chicken and egg problem, even though we are
4606 * holding rq->lock, the cpu isn't yet set to this cpu so the
4607 * lockdep check in task_group() will fail.
4608 *
4609 * Similar case to sched_fork(). / Alternatively we could
4610 * use task_rq_lock() here and obtain the other rq->lock.
4611 *
4612 * Silence PROVE_RCU
4613 */
4614 rcu_read_lock();
dd41f596 4615 __set_task_cpu(idle, cpu);
6506cf6c 4616 rcu_read_unlock();
1da177e4 4617
1da177e4 4618 rq->curr = rq->idle = idle;
da0c1e65 4619 idle->on_rq = TASK_ON_RQ_QUEUED;
3ca7a440
PZ
4620#if defined(CONFIG_SMP)
4621 idle->on_cpu = 1;
4866cde0 4622#endif
05fa785c 4623 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
4624
4625 /* Set the preempt count _outside_ the spinlocks! */
01028747 4626 init_idle_preempt_count(idle, cpu);
55cd5340 4627
dd41f596
IM
4628 /*
4629 * The idle tasks have their own, simple scheduling class:
4630 */
4631 idle->sched_class = &idle_sched_class;
868baf07 4632 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 4633 vtime_init_idle(idle, cpu);
f1c6f1a7
CE
4634#if defined(CONFIG_SMP)
4635 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4636#endif
19978ca6
IM
4637}
4638
1da177e4 4639#ifdef CONFIG_SMP
a15b12ac
KT
4640/*
4641 * move_queued_task - move a queued task to new rq.
4642 *
4643 * Returns (locked) new rq. Old rq's lock is released.
4644 */
4645static struct rq *move_queued_task(struct task_struct *p, int new_cpu)
4646{
4647 struct rq *rq = task_rq(p);
4648
4649 lockdep_assert_held(&rq->lock);
4650
4651 dequeue_task(rq, p, 0);
4652 p->on_rq = TASK_ON_RQ_MIGRATING;
4653 set_task_cpu(p, new_cpu);
4654 raw_spin_unlock(&rq->lock);
4655
4656 rq = cpu_rq(new_cpu);
4657
4658 raw_spin_lock(&rq->lock);
4659 BUG_ON(task_cpu(p) != new_cpu);
4660 p->on_rq = TASK_ON_RQ_QUEUED;
4661 enqueue_task(rq, p, 0);
4662 check_preempt_curr(rq, p, 0);
4663
4664 return rq;
4665}
4666
1e1b6c51
KM
4667void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4668{
4669 if (p->sched_class && p->sched_class->set_cpus_allowed)
4670 p->sched_class->set_cpus_allowed(p, new_mask);
4939602a
PZ
4671
4672 cpumask_copy(&p->cpus_allowed, new_mask);
29baa747 4673 p->nr_cpus_allowed = cpumask_weight(new_mask);
1e1b6c51
KM
4674}
4675
1da177e4
LT
4676/*
4677 * This is how migration works:
4678 *
969c7921
TH
4679 * 1) we invoke migration_cpu_stop() on the target CPU using
4680 * stop_one_cpu().
4681 * 2) stopper starts to run (implicitly forcing the migrated thread
4682 * off the CPU)
4683 * 3) it checks whether the migrated task is still in the wrong runqueue.
4684 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 4685 * it and puts it into the right queue.
969c7921
TH
4686 * 5) stopper completes and stop_one_cpu() returns and the migration
4687 * is done.
1da177e4
LT
4688 */
4689
4690/*
4691 * Change a given task's CPU affinity. Migrate the thread to a
4692 * proper CPU and schedule it away if the CPU it's executing on
4693 * is removed from the allowed bitmask.
4694 *
4695 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 4696 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
4697 * call is not atomic; no spinlocks may be held.
4698 */
96f874e2 4699int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
4700{
4701 unsigned long flags;
70b97a7f 4702 struct rq *rq;
969c7921 4703 unsigned int dest_cpu;
48f24c4d 4704 int ret = 0;
1da177e4
LT
4705
4706 rq = task_rq_lock(p, &flags);
e2912009 4707
db44fc01
YZ
4708 if (cpumask_equal(&p->cpus_allowed, new_mask))
4709 goto out;
4710
6ad4c188 4711 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
4712 ret = -EINVAL;
4713 goto out;
4714 }
4715
1e1b6c51 4716 do_set_cpus_allowed(p, new_mask);
73fe6aae 4717
1da177e4 4718 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 4719 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
4720 goto out;
4721
969c7921 4722 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
a15b12ac 4723 if (task_running(rq, p) || p->state == TASK_WAKING) {
969c7921 4724 struct migration_arg arg = { p, dest_cpu };
1da177e4 4725 /* Need help from migration thread: drop lock and wait. */
0122ec5b 4726 task_rq_unlock(rq, p, &flags);
969c7921 4727 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
4728 tlb_migrate_finish(p->mm);
4729 return 0;
a15b12ac
KT
4730 } else if (task_on_rq_queued(p))
4731 rq = move_queued_task(p, dest_cpu);
1da177e4 4732out:
0122ec5b 4733 task_rq_unlock(rq, p, &flags);
48f24c4d 4734
1da177e4
LT
4735 return ret;
4736}
cd8ba7cd 4737EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
4738
4739/*
41a2d6cf 4740 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
4741 * this because either it can't run here any more (set_cpus_allowed()
4742 * away from this CPU, or CPU going down), or because we're
4743 * attempting to rebalance this task on exec (sched_exec).
4744 *
4745 * So we race with normal scheduler movements, but that's OK, as long
4746 * as the task is no longer on this CPU.
efc30814
KK
4747 *
4748 * Returns non-zero if task was successfully migrated.
1da177e4 4749 */
efc30814 4750static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4751{
a1e01829 4752 struct rq *rq;
e2912009 4753 int ret = 0;
1da177e4 4754
e761b772 4755 if (unlikely(!cpu_active(dest_cpu)))
efc30814 4756 return ret;
1da177e4 4757
a1e01829 4758 rq = cpu_rq(src_cpu);
1da177e4 4759
0122ec5b 4760 raw_spin_lock(&p->pi_lock);
a1e01829 4761 raw_spin_lock(&rq->lock);
1da177e4
LT
4762 /* Already moved. */
4763 if (task_cpu(p) != src_cpu)
b1e38734 4764 goto done;
a1e01829 4765
1da177e4 4766 /* Affinity changed (again). */
fa17b507 4767 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
b1e38734 4768 goto fail;
1da177e4 4769
e2912009
PZ
4770 /*
4771 * If we're not on a rq, the next wake-up will ensure we're
4772 * placed properly.
4773 */
a15b12ac
KT
4774 if (task_on_rq_queued(p))
4775 rq = move_queued_task(p, dest_cpu);
b1e38734 4776done:
efc30814 4777 ret = 1;
b1e38734 4778fail:
a1e01829 4779 raw_spin_unlock(&rq->lock);
0122ec5b 4780 raw_spin_unlock(&p->pi_lock);
efc30814 4781 return ret;
1da177e4
LT
4782}
4783
e6628d5b
MG
4784#ifdef CONFIG_NUMA_BALANCING
4785/* Migrate current task p to target_cpu */
4786int migrate_task_to(struct task_struct *p, int target_cpu)
4787{
4788 struct migration_arg arg = { p, target_cpu };
4789 int curr_cpu = task_cpu(p);
4790
4791 if (curr_cpu == target_cpu)
4792 return 0;
4793
4794 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4795 return -EINVAL;
4796
4797 /* TODO: This is not properly updating schedstats */
4798
286549dc 4799 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
4800 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4801}
0ec8aa00
PZ
4802
4803/*
4804 * Requeue a task on a given node and accurately track the number of NUMA
4805 * tasks on the runqueues
4806 */
4807void sched_setnuma(struct task_struct *p, int nid)
4808{
4809 struct rq *rq;
4810 unsigned long flags;
da0c1e65 4811 bool queued, running;
0ec8aa00
PZ
4812
4813 rq = task_rq_lock(p, &flags);
da0c1e65 4814 queued = task_on_rq_queued(p);
0ec8aa00
PZ
4815 running = task_current(rq, p);
4816
da0c1e65 4817 if (queued)
0ec8aa00
PZ
4818 dequeue_task(rq, p, 0);
4819 if (running)
f3cd1c4e 4820 put_prev_task(rq, p);
0ec8aa00
PZ
4821
4822 p->numa_preferred_nid = nid;
0ec8aa00
PZ
4823
4824 if (running)
4825 p->sched_class->set_curr_task(rq);
da0c1e65 4826 if (queued)
0ec8aa00
PZ
4827 enqueue_task(rq, p, 0);
4828 task_rq_unlock(rq, p, &flags);
4829}
e6628d5b
MG
4830#endif
4831
1da177e4 4832/*
969c7921
TH
4833 * migration_cpu_stop - this will be executed by a highprio stopper thread
4834 * and performs thread migration by bumping thread off CPU then
4835 * 'pushing' onto another runqueue.
1da177e4 4836 */
969c7921 4837static int migration_cpu_stop(void *data)
1da177e4 4838{
969c7921 4839 struct migration_arg *arg = data;
f7b4cddc 4840
969c7921
TH
4841 /*
4842 * The original target cpu might have gone down and we might
4843 * be on another cpu but it doesn't matter.
4844 */
f7b4cddc 4845 local_irq_disable();
5cd038f5
LJ
4846 /*
4847 * We need to explicitly wake pending tasks before running
4848 * __migrate_task() such that we will not miss enforcing cpus_allowed
4849 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
4850 */
4851 sched_ttwu_pending();
969c7921 4852 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 4853 local_irq_enable();
1da177e4 4854 return 0;
f7b4cddc
ON
4855}
4856
1da177e4 4857#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 4858
054b9108 4859/*
48c5ccae
PZ
4860 * Ensures that the idle task is using init_mm right before its cpu goes
4861 * offline.
054b9108 4862 */
48c5ccae 4863void idle_task_exit(void)
1da177e4 4864{
48c5ccae 4865 struct mm_struct *mm = current->active_mm;
e76bd8d9 4866
48c5ccae 4867 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 4868
a53efe5f 4869 if (mm != &init_mm) {
48c5ccae 4870 switch_mm(mm, &init_mm, current);
a53efe5f
MS
4871 finish_arch_post_lock_switch();
4872 }
48c5ccae 4873 mmdrop(mm);
1da177e4
LT
4874}
4875
4876/*
5d180232
PZ
4877 * Since this CPU is going 'away' for a while, fold any nr_active delta
4878 * we might have. Assumes we're called after migrate_tasks() so that the
4879 * nr_active count is stable.
4880 *
4881 * Also see the comment "Global load-average calculations".
1da177e4 4882 */
5d180232 4883static void calc_load_migrate(struct rq *rq)
1da177e4 4884{
5d180232
PZ
4885 long delta = calc_load_fold_active(rq);
4886 if (delta)
4887 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
4888}
4889
3f1d2a31
PZ
4890static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4891{
4892}
4893
4894static const struct sched_class fake_sched_class = {
4895 .put_prev_task = put_prev_task_fake,
4896};
4897
4898static struct task_struct fake_task = {
4899 /*
4900 * Avoid pull_{rt,dl}_task()
4901 */
4902 .prio = MAX_PRIO + 1,
4903 .sched_class = &fake_sched_class,
4904};
4905
48f24c4d 4906/*
48c5ccae
PZ
4907 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4908 * try_to_wake_up()->select_task_rq().
4909 *
4910 * Called with rq->lock held even though we'er in stop_machine() and
4911 * there's no concurrency possible, we hold the required locks anyway
4912 * because of lock validation efforts.
1da177e4 4913 */
48c5ccae 4914static void migrate_tasks(unsigned int dead_cpu)
1da177e4 4915{
70b97a7f 4916 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
4917 struct task_struct *next, *stop = rq->stop;
4918 int dest_cpu;
1da177e4
LT
4919
4920 /*
48c5ccae
PZ
4921 * Fudge the rq selection such that the below task selection loop
4922 * doesn't get stuck on the currently eligible stop task.
4923 *
4924 * We're currently inside stop_machine() and the rq is either stuck
4925 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4926 * either way we should never end up calling schedule() until we're
4927 * done here.
1da177e4 4928 */
48c5ccae 4929 rq->stop = NULL;
48f24c4d 4930
77bd3970
FW
4931 /*
4932 * put_prev_task() and pick_next_task() sched
4933 * class method both need to have an up-to-date
4934 * value of rq->clock[_task]
4935 */
4936 update_rq_clock(rq);
4937
dd41f596 4938 for ( ; ; ) {
48c5ccae
PZ
4939 /*
4940 * There's this thread running, bail when that's the only
4941 * remaining thread.
4942 */
4943 if (rq->nr_running == 1)
dd41f596 4944 break;
48c5ccae 4945
3f1d2a31 4946 next = pick_next_task(rq, &fake_task);
48c5ccae 4947 BUG_ON(!next);
79c53799 4948 next->sched_class->put_prev_task(rq, next);
e692ab53 4949
48c5ccae
PZ
4950 /* Find suitable destination for @next, with force if needed. */
4951 dest_cpu = select_fallback_rq(dead_cpu, next);
4952 raw_spin_unlock(&rq->lock);
4953
4954 __migrate_task(next, dead_cpu, dest_cpu);
4955
4956 raw_spin_lock(&rq->lock);
1da177e4 4957 }
dce48a84 4958
48c5ccae 4959 rq->stop = stop;
dce48a84 4960}
48c5ccae 4961
1da177e4
LT
4962#endif /* CONFIG_HOTPLUG_CPU */
4963
e692ab53
NP
4964#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4965
4966static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
4967 {
4968 .procname = "sched_domain",
c57baf1e 4969 .mode = 0555,
e0361851 4970 },
56992309 4971 {}
e692ab53
NP
4972};
4973
4974static struct ctl_table sd_ctl_root[] = {
e0361851
AD
4975 {
4976 .procname = "kernel",
c57baf1e 4977 .mode = 0555,
e0361851
AD
4978 .child = sd_ctl_dir,
4979 },
56992309 4980 {}
e692ab53
NP
4981};
4982
4983static struct ctl_table *sd_alloc_ctl_entry(int n)
4984{
4985 struct ctl_table *entry =
5cf9f062 4986 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 4987
e692ab53
NP
4988 return entry;
4989}
4990
6382bc90
MM
4991static void sd_free_ctl_entry(struct ctl_table **tablep)
4992{
cd790076 4993 struct ctl_table *entry;
6382bc90 4994
cd790076
MM
4995 /*
4996 * In the intermediate directories, both the child directory and
4997 * procname are dynamically allocated and could fail but the mode
41a2d6cf 4998 * will always be set. In the lowest directory the names are
cd790076
MM
4999 * static strings and all have proc handlers.
5000 */
5001 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5002 if (entry->child)
5003 sd_free_ctl_entry(&entry->child);
cd790076
MM
5004 if (entry->proc_handler == NULL)
5005 kfree(entry->procname);
5006 }
6382bc90
MM
5007
5008 kfree(*tablep);
5009 *tablep = NULL;
5010}
5011
201c373e 5012static int min_load_idx = 0;
fd9b86d3 5013static int max_load_idx = CPU_LOAD_IDX_MAX-1;
201c373e 5014
e692ab53 5015static void
e0361851 5016set_table_entry(struct ctl_table *entry,
e692ab53 5017 const char *procname, void *data, int maxlen,
201c373e
NK
5018 umode_t mode, proc_handler *proc_handler,
5019 bool load_idx)
e692ab53 5020{
e692ab53
NP
5021 entry->procname = procname;
5022 entry->data = data;
5023 entry->maxlen = maxlen;
5024 entry->mode = mode;
5025 entry->proc_handler = proc_handler;
201c373e
NK
5026
5027 if (load_idx) {
5028 entry->extra1 = &min_load_idx;
5029 entry->extra2 = &max_load_idx;
5030 }
e692ab53
NP
5031}
5032
5033static struct ctl_table *
5034sd_alloc_ctl_domain_table(struct sched_domain *sd)
5035{
37e6bae8 5036 struct ctl_table *table = sd_alloc_ctl_entry(14);
e692ab53 5037
ad1cdc1d
MM
5038 if (table == NULL)
5039 return NULL;
5040
e0361851 5041 set_table_entry(&table[0], "min_interval", &sd->min_interval,
201c373e 5042 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 5043 set_table_entry(&table[1], "max_interval", &sd->max_interval,
201c373e 5044 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 5045 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
201c373e 5046 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5047 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
201c373e 5048 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5049 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
201c373e 5050 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5051 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
201c373e 5052 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5053 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
201c373e 5054 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5055 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
201c373e 5056 sizeof(int), 0644, proc_dointvec_minmax, false);
e0361851 5057 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
201c373e 5058 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 5059 set_table_entry(&table[9], "cache_nice_tries",
e692ab53 5060 &sd->cache_nice_tries,
201c373e 5061 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 5062 set_table_entry(&table[10], "flags", &sd->flags,
201c373e 5063 sizeof(int), 0644, proc_dointvec_minmax, false);
37e6bae8
AS
5064 set_table_entry(&table[11], "max_newidle_lb_cost",
5065 &sd->max_newidle_lb_cost,
5066 sizeof(long), 0644, proc_doulongvec_minmax, false);
5067 set_table_entry(&table[12], "name", sd->name,
201c373e 5068 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
37e6bae8 5069 /* &table[13] is terminator */
e692ab53
NP
5070
5071 return table;
5072}
5073
be7002e6 5074static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5075{
5076 struct ctl_table *entry, *table;
5077 struct sched_domain *sd;
5078 int domain_num = 0, i;
5079 char buf[32];
5080
5081 for_each_domain(cpu, sd)
5082 domain_num++;
5083 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5084 if (table == NULL)
5085 return NULL;
e692ab53
NP
5086
5087 i = 0;
5088 for_each_domain(cpu, sd) {
5089 snprintf(buf, 32, "domain%d", i);
e692ab53 5090 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5091 entry->mode = 0555;
e692ab53
NP
5092 entry->child = sd_alloc_ctl_domain_table(sd);
5093 entry++;
5094 i++;
5095 }
5096 return table;
5097}
5098
5099static struct ctl_table_header *sd_sysctl_header;
6382bc90 5100static void register_sched_domain_sysctl(void)
e692ab53 5101{
6ad4c188 5102 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5103 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5104 char buf[32];
5105
7378547f
MM
5106 WARN_ON(sd_ctl_dir[0].child);
5107 sd_ctl_dir[0].child = entry;
5108
ad1cdc1d
MM
5109 if (entry == NULL)
5110 return;
5111
6ad4c188 5112 for_each_possible_cpu(i) {
e692ab53 5113 snprintf(buf, 32, "cpu%d", i);
e692ab53 5114 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5115 entry->mode = 0555;
e692ab53 5116 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5117 entry++;
e692ab53 5118 }
7378547f
MM
5119
5120 WARN_ON(sd_sysctl_header);
e692ab53
NP
5121 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5122}
6382bc90 5123
7378547f 5124/* may be called multiple times per register */
6382bc90
MM
5125static void unregister_sched_domain_sysctl(void)
5126{
7378547f
MM
5127 if (sd_sysctl_header)
5128 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5129 sd_sysctl_header = NULL;
7378547f
MM
5130 if (sd_ctl_dir[0].child)
5131 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5132}
e692ab53 5133#else
6382bc90
MM
5134static void register_sched_domain_sysctl(void)
5135{
5136}
5137static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5138{
5139}
5140#endif
5141
1f11eb6a
GH
5142static void set_rq_online(struct rq *rq)
5143{
5144 if (!rq->online) {
5145 const struct sched_class *class;
5146
c6c4927b 5147 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5148 rq->online = 1;
5149
5150 for_each_class(class) {
5151 if (class->rq_online)
5152 class->rq_online(rq);
5153 }
5154 }
5155}
5156
5157static void set_rq_offline(struct rq *rq)
5158{
5159 if (rq->online) {
5160 const struct sched_class *class;
5161
5162 for_each_class(class) {
5163 if (class->rq_offline)
5164 class->rq_offline(rq);
5165 }
5166
c6c4927b 5167 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5168 rq->online = 0;
5169 }
5170}
5171
1da177e4
LT
5172/*
5173 * migration_call - callback that gets triggered when a CPU is added.
5174 * Here we can start up the necessary migration thread for the new CPU.
5175 */
0db0628d 5176static int
48f24c4d 5177migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5178{
48f24c4d 5179 int cpu = (long)hcpu;
1da177e4 5180 unsigned long flags;
969c7921 5181 struct rq *rq = cpu_rq(cpu);
1da177e4 5182
48c5ccae 5183 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 5184
1da177e4 5185 case CPU_UP_PREPARE:
a468d389 5186 rq->calc_load_update = calc_load_update;
1da177e4 5187 break;
48f24c4d 5188
1da177e4 5189 case CPU_ONLINE:
1f94ef59 5190 /* Update our root-domain */
05fa785c 5191 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5192 if (rq->rd) {
c6c4927b 5193 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5194
5195 set_rq_online(rq);
1f94ef59 5196 }
05fa785c 5197 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5198 break;
48f24c4d 5199
1da177e4 5200#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5201 case CPU_DYING:
317f3941 5202 sched_ttwu_pending();
57d885fe 5203 /* Update our root-domain */
05fa785c 5204 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5205 if (rq->rd) {
c6c4927b 5206 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5207 set_rq_offline(rq);
57d885fe 5208 }
48c5ccae
PZ
5209 migrate_tasks(cpu);
5210 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5211 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 5212 break;
48c5ccae 5213
5d180232 5214 case CPU_DEAD:
f319da0c 5215 calc_load_migrate(rq);
57d885fe 5216 break;
1da177e4
LT
5217#endif
5218 }
49c022e6
PZ
5219
5220 update_max_interval();
5221
1da177e4
LT
5222 return NOTIFY_OK;
5223}
5224
f38b0820
PM
5225/*
5226 * Register at high priority so that task migration (migrate_all_tasks)
5227 * happens before everything else. This has to be lower priority than
cdd6c482 5228 * the notifier in the perf_event subsystem, though.
1da177e4 5229 */
0db0628d 5230static struct notifier_block migration_notifier = {
1da177e4 5231 .notifier_call = migration_call,
50a323b7 5232 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5233};
5234
a803f026
CM
5235static void __cpuinit set_cpu_rq_start_time(void)
5236{
5237 int cpu = smp_processor_id();
5238 struct rq *rq = cpu_rq(cpu);
5239 rq->age_stamp = sched_clock_cpu(cpu);
5240}
5241
0db0628d 5242static int sched_cpu_active(struct notifier_block *nfb,
3a101d05
TH
5243 unsigned long action, void *hcpu)
5244{
5245 switch (action & ~CPU_TASKS_FROZEN) {
a803f026
CM
5246 case CPU_STARTING:
5247 set_cpu_rq_start_time();
5248 return NOTIFY_OK;
3a101d05
TH
5249 case CPU_DOWN_FAILED:
5250 set_cpu_active((long)hcpu, true);
5251 return NOTIFY_OK;
5252 default:
5253 return NOTIFY_DONE;
5254 }
5255}
5256
0db0628d 5257static int sched_cpu_inactive(struct notifier_block *nfb,
3a101d05
TH
5258 unsigned long action, void *hcpu)
5259{
de212f18
PZ
5260 unsigned long flags;
5261 long cpu = (long)hcpu;
5262
3a101d05
TH
5263 switch (action & ~CPU_TASKS_FROZEN) {
5264 case CPU_DOWN_PREPARE:
de212f18
PZ
5265 set_cpu_active(cpu, false);
5266
5267 /* explicitly allow suspend */
5268 if (!(action & CPU_TASKS_FROZEN)) {
5269 struct dl_bw *dl_b = dl_bw_of(cpu);
5270 bool overflow;
5271 int cpus;
5272
5273 raw_spin_lock_irqsave(&dl_b->lock, flags);
5274 cpus = dl_bw_cpus(cpu);
5275 overflow = __dl_overflow(dl_b, cpus, 0, 0);
5276 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5277
5278 if (overflow)
5279 return notifier_from_errno(-EBUSY);
5280 }
3a101d05 5281 return NOTIFY_OK;
3a101d05 5282 }
de212f18
PZ
5283
5284 return NOTIFY_DONE;
3a101d05
TH
5285}
5286
7babe8db 5287static int __init migration_init(void)
1da177e4
LT
5288{
5289 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5290 int err;
48f24c4d 5291
3a101d05 5292 /* Initialize migration for the boot CPU */
07dccf33
AM
5293 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5294 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5295 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5296 register_cpu_notifier(&migration_notifier);
7babe8db 5297
3a101d05
TH
5298 /* Register cpu active notifiers */
5299 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5300 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5301
a004cd42 5302 return 0;
1da177e4 5303}
7babe8db 5304early_initcall(migration_init);
1da177e4
LT
5305#endif
5306
5307#ifdef CONFIG_SMP
476f3534 5308
4cb98839
PZ
5309static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5310
3e9830dc 5311#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5312
d039ac60 5313static __read_mostly int sched_debug_enabled;
f6630114 5314
d039ac60 5315static int __init sched_debug_setup(char *str)
f6630114 5316{
d039ac60 5317 sched_debug_enabled = 1;
f6630114
MT
5318
5319 return 0;
5320}
d039ac60
PZ
5321early_param("sched_debug", sched_debug_setup);
5322
5323static inline bool sched_debug(void)
5324{
5325 return sched_debug_enabled;
5326}
f6630114 5327
7c16ec58 5328static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5329 struct cpumask *groupmask)
1da177e4 5330{
4dcf6aff 5331 struct sched_group *group = sd->groups;
434d53b0 5332 char str[256];
1da177e4 5333
968ea6d8 5334 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 5335 cpumask_clear(groupmask);
4dcf6aff
IM
5336
5337 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5338
5339 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5340 printk("does not load-balance\n");
4dcf6aff 5341 if (sd->parent)
3df0fc5b
PZ
5342 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5343 " has parent");
4dcf6aff 5344 return -1;
41c7ce9a
NP
5345 }
5346
3df0fc5b 5347 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 5348
758b2cdc 5349 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5350 printk(KERN_ERR "ERROR: domain->span does not contain "
5351 "CPU%d\n", cpu);
4dcf6aff 5352 }
758b2cdc 5353 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5354 printk(KERN_ERR "ERROR: domain->groups does not contain"
5355 " CPU%d\n", cpu);
4dcf6aff 5356 }
1da177e4 5357
4dcf6aff 5358 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5359 do {
4dcf6aff 5360 if (!group) {
3df0fc5b
PZ
5361 printk("\n");
5362 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5363 break;
5364 }
5365
c3decf0d 5366 /*
63b2ca30
NP
5367 * Even though we initialize ->capacity to something semi-sane,
5368 * we leave capacity_orig unset. This allows us to detect if
c3decf0d
PZ
5369 * domain iteration is still funny without causing /0 traps.
5370 */
63b2ca30 5371 if (!group->sgc->capacity_orig) {
3df0fc5b 5372 printk(KERN_CONT "\n");
63b2ca30 5373 printk(KERN_ERR "ERROR: domain->cpu_capacity not set\n");
4dcf6aff
IM
5374 break;
5375 }
1da177e4 5376
758b2cdc 5377 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5378 printk(KERN_CONT "\n");
5379 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5380 break;
5381 }
1da177e4 5382
cb83b629
PZ
5383 if (!(sd->flags & SD_OVERLAP) &&
5384 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5385 printk(KERN_CONT "\n");
5386 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5387 break;
5388 }
1da177e4 5389
758b2cdc 5390 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5391
968ea6d8 5392 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 5393
3df0fc5b 5394 printk(KERN_CONT " %s", str);
ca8ce3d0 5395 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
63b2ca30
NP
5396 printk(KERN_CONT " (cpu_capacity = %d)",
5397 group->sgc->capacity);
381512cf 5398 }
1da177e4 5399
4dcf6aff
IM
5400 group = group->next;
5401 } while (group != sd->groups);
3df0fc5b 5402 printk(KERN_CONT "\n");
1da177e4 5403
758b2cdc 5404 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5405 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5406
758b2cdc
RR
5407 if (sd->parent &&
5408 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5409 printk(KERN_ERR "ERROR: parent span is not a superset "
5410 "of domain->span\n");
4dcf6aff
IM
5411 return 0;
5412}
1da177e4 5413
4dcf6aff
IM
5414static void sched_domain_debug(struct sched_domain *sd, int cpu)
5415{
5416 int level = 0;
1da177e4 5417
d039ac60 5418 if (!sched_debug_enabled)
f6630114
MT
5419 return;
5420
4dcf6aff
IM
5421 if (!sd) {
5422 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5423 return;
5424 }
1da177e4 5425
4dcf6aff
IM
5426 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5427
5428 for (;;) {
4cb98839 5429 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5430 break;
1da177e4
LT
5431 level++;
5432 sd = sd->parent;
33859f7f 5433 if (!sd)
4dcf6aff
IM
5434 break;
5435 }
1da177e4 5436}
6d6bc0ad 5437#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5438# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5439static inline bool sched_debug(void)
5440{
5441 return false;
5442}
6d6bc0ad 5443#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5444
1a20ff27 5445static int sd_degenerate(struct sched_domain *sd)
245af2c7 5446{
758b2cdc 5447 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5448 return 1;
5449
5450 /* Following flags need at least 2 groups */
5451 if (sd->flags & (SD_LOAD_BALANCE |
5452 SD_BALANCE_NEWIDLE |
5453 SD_BALANCE_FORK |
89c4710e 5454 SD_BALANCE_EXEC |
5d4dfddd 5455 SD_SHARE_CPUCAPACITY |
d77b3ed5
VG
5456 SD_SHARE_PKG_RESOURCES |
5457 SD_SHARE_POWERDOMAIN)) {
245af2c7
SS
5458 if (sd->groups != sd->groups->next)
5459 return 0;
5460 }
5461
5462 /* Following flags don't use groups */
c88d5910 5463 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5464 return 0;
5465
5466 return 1;
5467}
5468
48f24c4d
IM
5469static int
5470sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5471{
5472 unsigned long cflags = sd->flags, pflags = parent->flags;
5473
5474 if (sd_degenerate(parent))
5475 return 1;
5476
758b2cdc 5477 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5478 return 0;
5479
245af2c7
SS
5480 /* Flags needing groups don't count if only 1 group in parent */
5481 if (parent->groups == parent->groups->next) {
5482 pflags &= ~(SD_LOAD_BALANCE |
5483 SD_BALANCE_NEWIDLE |
5484 SD_BALANCE_FORK |
89c4710e 5485 SD_BALANCE_EXEC |
5d4dfddd 5486 SD_SHARE_CPUCAPACITY |
10866e62 5487 SD_SHARE_PKG_RESOURCES |
d77b3ed5
VG
5488 SD_PREFER_SIBLING |
5489 SD_SHARE_POWERDOMAIN);
5436499e
KC
5490 if (nr_node_ids == 1)
5491 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5492 }
5493 if (~cflags & pflags)
5494 return 0;
5495
5496 return 1;
5497}
5498
dce840a0 5499static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5500{
dce840a0 5501 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5502
68e74568 5503 cpupri_cleanup(&rd->cpupri);
6bfd6d72 5504 cpudl_cleanup(&rd->cpudl);
1baca4ce 5505 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5506 free_cpumask_var(rd->rto_mask);
5507 free_cpumask_var(rd->online);
5508 free_cpumask_var(rd->span);
5509 kfree(rd);
5510}
5511
57d885fe
GH
5512static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5513{
a0490fa3 5514 struct root_domain *old_rd = NULL;
57d885fe 5515 unsigned long flags;
57d885fe 5516
05fa785c 5517 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5518
5519 if (rq->rd) {
a0490fa3 5520 old_rd = rq->rd;
57d885fe 5521
c6c4927b 5522 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5523 set_rq_offline(rq);
57d885fe 5524
c6c4927b 5525 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5526
a0490fa3 5527 /*
0515973f 5528 * If we dont want to free the old_rd yet then
a0490fa3
IM
5529 * set old_rd to NULL to skip the freeing later
5530 * in this function:
5531 */
5532 if (!atomic_dec_and_test(&old_rd->refcount))
5533 old_rd = NULL;
57d885fe
GH
5534 }
5535
5536 atomic_inc(&rd->refcount);
5537 rq->rd = rd;
5538
c6c4927b 5539 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5540 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5541 set_rq_online(rq);
57d885fe 5542
05fa785c 5543 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5544
5545 if (old_rd)
dce840a0 5546 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5547}
5548
68c38fc3 5549static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5550{
5551 memset(rd, 0, sizeof(*rd));
5552
68c38fc3 5553 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5554 goto out;
68c38fc3 5555 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5556 goto free_span;
1baca4ce 5557 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
c6c4927b 5558 goto free_online;
1baca4ce
JL
5559 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5560 goto free_dlo_mask;
6e0534f2 5561
332ac17e 5562 init_dl_bw(&rd->dl_bw);
6bfd6d72
JL
5563 if (cpudl_init(&rd->cpudl) != 0)
5564 goto free_dlo_mask;
332ac17e 5565
68c38fc3 5566 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5567 goto free_rto_mask;
c6c4927b 5568 return 0;
6e0534f2 5569
68e74568
RR
5570free_rto_mask:
5571 free_cpumask_var(rd->rto_mask);
1baca4ce
JL
5572free_dlo_mask:
5573 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5574free_online:
5575 free_cpumask_var(rd->online);
5576free_span:
5577 free_cpumask_var(rd->span);
0c910d28 5578out:
c6c4927b 5579 return -ENOMEM;
57d885fe
GH
5580}
5581
029632fb
PZ
5582/*
5583 * By default the system creates a single root-domain with all cpus as
5584 * members (mimicking the global state we have today).
5585 */
5586struct root_domain def_root_domain;
5587
57d885fe
GH
5588static void init_defrootdomain(void)
5589{
68c38fc3 5590 init_rootdomain(&def_root_domain);
c6c4927b 5591
57d885fe
GH
5592 atomic_set(&def_root_domain.refcount, 1);
5593}
5594
dc938520 5595static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5596{
5597 struct root_domain *rd;
5598
5599 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5600 if (!rd)
5601 return NULL;
5602
68c38fc3 5603 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5604 kfree(rd);
5605 return NULL;
5606 }
57d885fe
GH
5607
5608 return rd;
5609}
5610
63b2ca30 5611static void free_sched_groups(struct sched_group *sg, int free_sgc)
e3589f6c
PZ
5612{
5613 struct sched_group *tmp, *first;
5614
5615 if (!sg)
5616 return;
5617
5618 first = sg;
5619 do {
5620 tmp = sg->next;
5621
63b2ca30
NP
5622 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5623 kfree(sg->sgc);
e3589f6c
PZ
5624
5625 kfree(sg);
5626 sg = tmp;
5627 } while (sg != first);
5628}
5629
dce840a0
PZ
5630static void free_sched_domain(struct rcu_head *rcu)
5631{
5632 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5633
5634 /*
5635 * If its an overlapping domain it has private groups, iterate and
5636 * nuke them all.
5637 */
5638 if (sd->flags & SD_OVERLAP) {
5639 free_sched_groups(sd->groups, 1);
5640 } else if (atomic_dec_and_test(&sd->groups->ref)) {
63b2ca30 5641 kfree(sd->groups->sgc);
dce840a0 5642 kfree(sd->groups);
9c3f75cb 5643 }
dce840a0
PZ
5644 kfree(sd);
5645}
5646
5647static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5648{
5649 call_rcu(&sd->rcu, free_sched_domain);
5650}
5651
5652static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5653{
5654 for (; sd; sd = sd->parent)
5655 destroy_sched_domain(sd, cpu);
5656}
5657
518cd623
PZ
5658/*
5659 * Keep a special pointer to the highest sched_domain that has
5660 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5661 * allows us to avoid some pointer chasing select_idle_sibling().
5662 *
5663 * Also keep a unique ID per domain (we use the first cpu number in
5664 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5665 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5666 */
5667DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5668DEFINE_PER_CPU(int, sd_llc_size);
518cd623 5669DEFINE_PER_CPU(int, sd_llc_id);
fb13c7ee 5670DEFINE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
5671DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5672DEFINE_PER_CPU(struct sched_domain *, sd_asym);
518cd623
PZ
5673
5674static void update_top_cache_domain(int cpu)
5675{
5676 struct sched_domain *sd;
5d4cf996 5677 struct sched_domain *busy_sd = NULL;
518cd623 5678 int id = cpu;
7d9ffa89 5679 int size = 1;
518cd623
PZ
5680
5681 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 5682 if (sd) {
518cd623 5683 id = cpumask_first(sched_domain_span(sd));
7d9ffa89 5684 size = cpumask_weight(sched_domain_span(sd));
5d4cf996 5685 busy_sd = sd->parent; /* sd_busy */
7d9ffa89 5686 }
5d4cf996 5687 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
518cd623
PZ
5688
5689 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 5690 per_cpu(sd_llc_size, cpu) = size;
518cd623 5691 per_cpu(sd_llc_id, cpu) = id;
fb13c7ee
MG
5692
5693 sd = lowest_flag_domain(cpu, SD_NUMA);
5694 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
37dc6b50
PM
5695
5696 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5697 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
518cd623
PZ
5698}
5699
1da177e4 5700/*
0eab9146 5701 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5702 * hold the hotplug lock.
5703 */
0eab9146
IM
5704static void
5705cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5706{
70b97a7f 5707 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5708 struct sched_domain *tmp;
5709
5710 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5711 for (tmp = sd; tmp; ) {
245af2c7
SS
5712 struct sched_domain *parent = tmp->parent;
5713 if (!parent)
5714 break;
f29c9b1c 5715
1a848870 5716 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5717 tmp->parent = parent->parent;
1a848870
SS
5718 if (parent->parent)
5719 parent->parent->child = tmp;
10866e62
PZ
5720 /*
5721 * Transfer SD_PREFER_SIBLING down in case of a
5722 * degenerate parent; the spans match for this
5723 * so the property transfers.
5724 */
5725 if (parent->flags & SD_PREFER_SIBLING)
5726 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 5727 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5728 } else
5729 tmp = tmp->parent;
245af2c7
SS
5730 }
5731
1a848870 5732 if (sd && sd_degenerate(sd)) {
dce840a0 5733 tmp = sd;
245af2c7 5734 sd = sd->parent;
dce840a0 5735 destroy_sched_domain(tmp, cpu);
1a848870
SS
5736 if (sd)
5737 sd->child = NULL;
5738 }
1da177e4 5739
4cb98839 5740 sched_domain_debug(sd, cpu);
1da177e4 5741
57d885fe 5742 rq_attach_root(rq, rd);
dce840a0 5743 tmp = rq->sd;
674311d5 5744 rcu_assign_pointer(rq->sd, sd);
dce840a0 5745 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5746
5747 update_top_cache_domain(cpu);
1da177e4
LT
5748}
5749
5750/* cpus with isolated domains */
dcc30a35 5751static cpumask_var_t cpu_isolated_map;
1da177e4
LT
5752
5753/* Setup the mask of cpus configured for isolated domains */
5754static int __init isolated_cpu_setup(char *str)
5755{
bdddd296 5756 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5757 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5758 return 1;
5759}
5760
8927f494 5761__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5762
49a02c51 5763struct s_data {
21d42ccf 5764 struct sched_domain ** __percpu sd;
49a02c51
AH
5765 struct root_domain *rd;
5766};
5767
2109b99e 5768enum s_alloc {
2109b99e 5769 sa_rootdomain,
21d42ccf 5770 sa_sd,
dce840a0 5771 sa_sd_storage,
2109b99e
AH
5772 sa_none,
5773};
5774
c1174876
PZ
5775/*
5776 * Build an iteration mask that can exclude certain CPUs from the upwards
5777 * domain traversal.
5778 *
5779 * Asymmetric node setups can result in situations where the domain tree is of
5780 * unequal depth, make sure to skip domains that already cover the entire
5781 * range.
5782 *
5783 * In that case build_sched_domains() will have terminated the iteration early
5784 * and our sibling sd spans will be empty. Domains should always include the
5785 * cpu they're built on, so check that.
5786 *
5787 */
5788static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5789{
5790 const struct cpumask *span = sched_domain_span(sd);
5791 struct sd_data *sdd = sd->private;
5792 struct sched_domain *sibling;
5793 int i;
5794
5795 for_each_cpu(i, span) {
5796 sibling = *per_cpu_ptr(sdd->sd, i);
5797 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5798 continue;
5799
5800 cpumask_set_cpu(i, sched_group_mask(sg));
5801 }
5802}
5803
5804/*
5805 * Return the canonical balance cpu for this group, this is the first cpu
5806 * of this group that's also in the iteration mask.
5807 */
5808int group_balance_cpu(struct sched_group *sg)
5809{
5810 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5811}
5812
e3589f6c
PZ
5813static int
5814build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5815{
5816 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5817 const struct cpumask *span = sched_domain_span(sd);
5818 struct cpumask *covered = sched_domains_tmpmask;
5819 struct sd_data *sdd = sd->private;
aaecac4a 5820 struct sched_domain *sibling;
e3589f6c
PZ
5821 int i;
5822
5823 cpumask_clear(covered);
5824
5825 for_each_cpu(i, span) {
5826 struct cpumask *sg_span;
5827
5828 if (cpumask_test_cpu(i, covered))
5829 continue;
5830
aaecac4a 5831 sibling = *per_cpu_ptr(sdd->sd, i);
c1174876
PZ
5832
5833 /* See the comment near build_group_mask(). */
aaecac4a 5834 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
c1174876
PZ
5835 continue;
5836
e3589f6c 5837 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 5838 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
5839
5840 if (!sg)
5841 goto fail;
5842
5843 sg_span = sched_group_cpus(sg);
aaecac4a
ZZ
5844 if (sibling->child)
5845 cpumask_copy(sg_span, sched_domain_span(sibling->child));
5846 else
e3589f6c
PZ
5847 cpumask_set_cpu(i, sg_span);
5848
5849 cpumask_or(covered, covered, sg_span);
5850
63b2ca30
NP
5851 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
5852 if (atomic_inc_return(&sg->sgc->ref) == 1)
c1174876
PZ
5853 build_group_mask(sd, sg);
5854
c3decf0d 5855 /*
63b2ca30 5856 * Initialize sgc->capacity such that even if we mess up the
c3decf0d
PZ
5857 * domains and no possible iteration will get us here, we won't
5858 * die on a /0 trap.
5859 */
ca8ce3d0 5860 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
63b2ca30 5861 sg->sgc->capacity_orig = sg->sgc->capacity;
e3589f6c 5862
c1174876
PZ
5863 /*
5864 * Make sure the first group of this domain contains the
5865 * canonical balance cpu. Otherwise the sched_domain iteration
5866 * breaks. See update_sg_lb_stats().
5867 */
74a5ce20 5868 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 5869 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
5870 groups = sg;
5871
5872 if (!first)
5873 first = sg;
5874 if (last)
5875 last->next = sg;
5876 last = sg;
5877 last->next = first;
5878 }
5879 sd->groups = groups;
5880
5881 return 0;
5882
5883fail:
5884 free_sched_groups(first, 0);
5885
5886 return -ENOMEM;
5887}
5888
dce840a0 5889static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 5890{
dce840a0
PZ
5891 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5892 struct sched_domain *child = sd->child;
1da177e4 5893
dce840a0
PZ
5894 if (child)
5895 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 5896
9c3f75cb 5897 if (sg) {
dce840a0 5898 *sg = *per_cpu_ptr(sdd->sg, cpu);
63b2ca30
NP
5899 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
5900 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
9c3f75cb 5901 }
dce840a0
PZ
5902
5903 return cpu;
1e9f28fa 5904}
1e9f28fa 5905
01a08546 5906/*
dce840a0
PZ
5907 * build_sched_groups will build a circular linked list of the groups
5908 * covered by the given span, and will set each group's ->cpumask correctly,
ced549fa 5909 * and ->cpu_capacity to 0.
e3589f6c
PZ
5910 *
5911 * Assumes the sched_domain tree is fully constructed
01a08546 5912 */
e3589f6c
PZ
5913static int
5914build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 5915{
dce840a0
PZ
5916 struct sched_group *first = NULL, *last = NULL;
5917 struct sd_data *sdd = sd->private;
5918 const struct cpumask *span = sched_domain_span(sd);
f96225fd 5919 struct cpumask *covered;
dce840a0 5920 int i;
9c1cfda2 5921
e3589f6c
PZ
5922 get_group(cpu, sdd, &sd->groups);
5923 atomic_inc(&sd->groups->ref);
5924
0936629f 5925 if (cpu != cpumask_first(span))
e3589f6c
PZ
5926 return 0;
5927
f96225fd
PZ
5928 lockdep_assert_held(&sched_domains_mutex);
5929 covered = sched_domains_tmpmask;
5930
dce840a0 5931 cpumask_clear(covered);
6711cab4 5932
dce840a0
PZ
5933 for_each_cpu(i, span) {
5934 struct sched_group *sg;
cd08e923 5935 int group, j;
6711cab4 5936
dce840a0
PZ
5937 if (cpumask_test_cpu(i, covered))
5938 continue;
6711cab4 5939
cd08e923 5940 group = get_group(i, sdd, &sg);
c1174876 5941 cpumask_setall(sched_group_mask(sg));
0601a88d 5942
dce840a0
PZ
5943 for_each_cpu(j, span) {
5944 if (get_group(j, sdd, NULL) != group)
5945 continue;
0601a88d 5946
dce840a0
PZ
5947 cpumask_set_cpu(j, covered);
5948 cpumask_set_cpu(j, sched_group_cpus(sg));
5949 }
0601a88d 5950
dce840a0
PZ
5951 if (!first)
5952 first = sg;
5953 if (last)
5954 last->next = sg;
5955 last = sg;
5956 }
5957 last->next = first;
e3589f6c
PZ
5958
5959 return 0;
0601a88d 5960}
51888ca2 5961
89c4710e 5962/*
63b2ca30 5963 * Initialize sched groups cpu_capacity.
89c4710e 5964 *
63b2ca30 5965 * cpu_capacity indicates the capacity of sched group, which is used while
89c4710e 5966 * distributing the load between different sched groups in a sched domain.
63b2ca30
NP
5967 * Typically cpu_capacity for all the groups in a sched domain will be same
5968 * unless there are asymmetries in the topology. If there are asymmetries,
5969 * group having more cpu_capacity will pickup more load compared to the
5970 * group having less cpu_capacity.
89c4710e 5971 */
63b2ca30 5972static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
89c4710e 5973{
e3589f6c 5974 struct sched_group *sg = sd->groups;
89c4710e 5975
94c95ba6 5976 WARN_ON(!sg);
e3589f6c
PZ
5977
5978 do {
5979 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5980 sg = sg->next;
5981 } while (sg != sd->groups);
89c4710e 5982
c1174876 5983 if (cpu != group_balance_cpu(sg))
e3589f6c 5984 return;
aae6d3dd 5985
63b2ca30
NP
5986 update_group_capacity(sd, cpu);
5987 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
89c4710e
SS
5988}
5989
7c16ec58
MT
5990/*
5991 * Initializers for schedule domains
5992 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5993 */
5994
1d3504fc 5995static int default_relax_domain_level = -1;
60495e77 5996int sched_domain_level_max;
1d3504fc
HS
5997
5998static int __init setup_relax_domain_level(char *str)
5999{
a841f8ce
DS
6000 if (kstrtoint(str, 0, &default_relax_domain_level))
6001 pr_warn("Unable to set relax_domain_level\n");
30e0e178 6002
1d3504fc
HS
6003 return 1;
6004}
6005__setup("relax_domain_level=", setup_relax_domain_level);
6006
6007static void set_domain_attribute(struct sched_domain *sd,
6008 struct sched_domain_attr *attr)
6009{
6010 int request;
6011
6012 if (!attr || attr->relax_domain_level < 0) {
6013 if (default_relax_domain_level < 0)
6014 return;
6015 else
6016 request = default_relax_domain_level;
6017 } else
6018 request = attr->relax_domain_level;
6019 if (request < sd->level) {
6020 /* turn off idle balance on this domain */
c88d5910 6021 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6022 } else {
6023 /* turn on idle balance on this domain */
c88d5910 6024 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6025 }
6026}
6027
54ab4ff4
PZ
6028static void __sdt_free(const struct cpumask *cpu_map);
6029static int __sdt_alloc(const struct cpumask *cpu_map);
6030
2109b99e
AH
6031static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6032 const struct cpumask *cpu_map)
6033{
6034 switch (what) {
2109b99e 6035 case sa_rootdomain:
822ff793
PZ
6036 if (!atomic_read(&d->rd->refcount))
6037 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
6038 case sa_sd:
6039 free_percpu(d->sd); /* fall through */
dce840a0 6040 case sa_sd_storage:
54ab4ff4 6041 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
6042 case sa_none:
6043 break;
6044 }
6045}
3404c8d9 6046
2109b99e
AH
6047static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6048 const struct cpumask *cpu_map)
6049{
dce840a0
PZ
6050 memset(d, 0, sizeof(*d));
6051
54ab4ff4
PZ
6052 if (__sdt_alloc(cpu_map))
6053 return sa_sd_storage;
dce840a0
PZ
6054 d->sd = alloc_percpu(struct sched_domain *);
6055 if (!d->sd)
6056 return sa_sd_storage;
2109b99e 6057 d->rd = alloc_rootdomain();
dce840a0 6058 if (!d->rd)
21d42ccf 6059 return sa_sd;
2109b99e
AH
6060 return sa_rootdomain;
6061}
57d885fe 6062
dce840a0
PZ
6063/*
6064 * NULL the sd_data elements we've used to build the sched_domain and
6065 * sched_group structure so that the subsequent __free_domain_allocs()
6066 * will not free the data we're using.
6067 */
6068static void claim_allocations(int cpu, struct sched_domain *sd)
6069{
6070 struct sd_data *sdd = sd->private;
dce840a0
PZ
6071
6072 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6073 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6074
e3589f6c 6075 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 6076 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c 6077
63b2ca30
NP
6078 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6079 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
dce840a0
PZ
6080}
6081
cb83b629 6082#ifdef CONFIG_NUMA
cb83b629 6083static int sched_domains_numa_levels;
cb83b629
PZ
6084static int *sched_domains_numa_distance;
6085static struct cpumask ***sched_domains_numa_masks;
6086static int sched_domains_curr_level;
143e1e28 6087#endif
cb83b629 6088
143e1e28
VG
6089/*
6090 * SD_flags allowed in topology descriptions.
6091 *
5d4dfddd 6092 * SD_SHARE_CPUCAPACITY - describes SMT topologies
143e1e28
VG
6093 * SD_SHARE_PKG_RESOURCES - describes shared caches
6094 * SD_NUMA - describes NUMA topologies
d77b3ed5 6095 * SD_SHARE_POWERDOMAIN - describes shared power domain
143e1e28
VG
6096 *
6097 * Odd one out:
6098 * SD_ASYM_PACKING - describes SMT quirks
6099 */
6100#define TOPOLOGY_SD_FLAGS \
5d4dfddd 6101 (SD_SHARE_CPUCAPACITY | \
143e1e28
VG
6102 SD_SHARE_PKG_RESOURCES | \
6103 SD_NUMA | \
d77b3ed5
VG
6104 SD_ASYM_PACKING | \
6105 SD_SHARE_POWERDOMAIN)
cb83b629
PZ
6106
6107static struct sched_domain *
143e1e28 6108sd_init(struct sched_domain_topology_level *tl, int cpu)
cb83b629
PZ
6109{
6110 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
143e1e28
VG
6111 int sd_weight, sd_flags = 0;
6112
6113#ifdef CONFIG_NUMA
6114 /*
6115 * Ugly hack to pass state to sd_numa_mask()...
6116 */
6117 sched_domains_curr_level = tl->numa_level;
6118#endif
6119
6120 sd_weight = cpumask_weight(tl->mask(cpu));
6121
6122 if (tl->sd_flags)
6123 sd_flags = (*tl->sd_flags)();
6124 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6125 "wrong sd_flags in topology description\n"))
6126 sd_flags &= ~TOPOLOGY_SD_FLAGS;
cb83b629
PZ
6127
6128 *sd = (struct sched_domain){
6129 .min_interval = sd_weight,
6130 .max_interval = 2*sd_weight,
6131 .busy_factor = 32,
870a0bb5 6132 .imbalance_pct = 125,
143e1e28
VG
6133
6134 .cache_nice_tries = 0,
6135 .busy_idx = 0,
6136 .idle_idx = 0,
cb83b629
PZ
6137 .newidle_idx = 0,
6138 .wake_idx = 0,
6139 .forkexec_idx = 0,
6140
6141 .flags = 1*SD_LOAD_BALANCE
6142 | 1*SD_BALANCE_NEWIDLE
143e1e28
VG
6143 | 1*SD_BALANCE_EXEC
6144 | 1*SD_BALANCE_FORK
cb83b629 6145 | 0*SD_BALANCE_WAKE
143e1e28 6146 | 1*SD_WAKE_AFFINE
5d4dfddd 6147 | 0*SD_SHARE_CPUCAPACITY
cb83b629 6148 | 0*SD_SHARE_PKG_RESOURCES
143e1e28 6149 | 0*SD_SERIALIZE
cb83b629 6150 | 0*SD_PREFER_SIBLING
143e1e28
VG
6151 | 0*SD_NUMA
6152 | sd_flags
cb83b629 6153 ,
143e1e28 6154
cb83b629
PZ
6155 .last_balance = jiffies,
6156 .balance_interval = sd_weight,
143e1e28 6157 .smt_gain = 0,
2b4cfe64
JL
6158 .max_newidle_lb_cost = 0,
6159 .next_decay_max_lb_cost = jiffies,
143e1e28
VG
6160#ifdef CONFIG_SCHED_DEBUG
6161 .name = tl->name,
6162#endif
cb83b629 6163 };
cb83b629
PZ
6164
6165 /*
143e1e28 6166 * Convert topological properties into behaviour.
cb83b629 6167 */
143e1e28 6168
5d4dfddd 6169 if (sd->flags & SD_SHARE_CPUCAPACITY) {
143e1e28
VG
6170 sd->imbalance_pct = 110;
6171 sd->smt_gain = 1178; /* ~15% */
143e1e28
VG
6172
6173 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6174 sd->imbalance_pct = 117;
6175 sd->cache_nice_tries = 1;
6176 sd->busy_idx = 2;
6177
6178#ifdef CONFIG_NUMA
6179 } else if (sd->flags & SD_NUMA) {
6180 sd->cache_nice_tries = 2;
6181 sd->busy_idx = 3;
6182 sd->idle_idx = 2;
6183
6184 sd->flags |= SD_SERIALIZE;
6185 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6186 sd->flags &= ~(SD_BALANCE_EXEC |
6187 SD_BALANCE_FORK |
6188 SD_WAKE_AFFINE);
6189 }
6190
6191#endif
6192 } else {
6193 sd->flags |= SD_PREFER_SIBLING;
6194 sd->cache_nice_tries = 1;
6195 sd->busy_idx = 2;
6196 sd->idle_idx = 1;
6197 }
6198
6199 sd->private = &tl->data;
cb83b629
PZ
6200
6201 return sd;
6202}
6203
143e1e28
VG
6204/*
6205 * Topology list, bottom-up.
6206 */
6207static struct sched_domain_topology_level default_topology[] = {
6208#ifdef CONFIG_SCHED_SMT
6209 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6210#endif
6211#ifdef CONFIG_SCHED_MC
6212 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
143e1e28
VG
6213#endif
6214 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6215 { NULL, },
6216};
6217
6218struct sched_domain_topology_level *sched_domain_topology = default_topology;
6219
6220#define for_each_sd_topology(tl) \
6221 for (tl = sched_domain_topology; tl->mask; tl++)
6222
6223void set_sched_topology(struct sched_domain_topology_level *tl)
6224{
6225 sched_domain_topology = tl;
6226}
6227
6228#ifdef CONFIG_NUMA
6229
cb83b629
PZ
6230static const struct cpumask *sd_numa_mask(int cpu)
6231{
6232 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6233}
6234
d039ac60
PZ
6235static void sched_numa_warn(const char *str)
6236{
6237 static int done = false;
6238 int i,j;
6239
6240 if (done)
6241 return;
6242
6243 done = true;
6244
6245 printk(KERN_WARNING "ERROR: %s\n\n", str);
6246
6247 for (i = 0; i < nr_node_ids; i++) {
6248 printk(KERN_WARNING " ");
6249 for (j = 0; j < nr_node_ids; j++)
6250 printk(KERN_CONT "%02d ", node_distance(i,j));
6251 printk(KERN_CONT "\n");
6252 }
6253 printk(KERN_WARNING "\n");
6254}
6255
6256static bool find_numa_distance(int distance)
6257{
6258 int i;
6259
6260 if (distance == node_distance(0, 0))
6261 return true;
6262
6263 for (i = 0; i < sched_domains_numa_levels; i++) {
6264 if (sched_domains_numa_distance[i] == distance)
6265 return true;
6266 }
6267
6268 return false;
6269}
6270
cb83b629
PZ
6271static void sched_init_numa(void)
6272{
6273 int next_distance, curr_distance = node_distance(0, 0);
6274 struct sched_domain_topology_level *tl;
6275 int level = 0;
6276 int i, j, k;
6277
cb83b629
PZ
6278 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6279 if (!sched_domains_numa_distance)
6280 return;
6281
6282 /*
6283 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6284 * unique distances in the node_distance() table.
6285 *
6286 * Assumes node_distance(0,j) includes all distances in
6287 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6288 */
6289 next_distance = curr_distance;
6290 for (i = 0; i < nr_node_ids; i++) {
6291 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6292 for (k = 0; k < nr_node_ids; k++) {
6293 int distance = node_distance(i, k);
6294
6295 if (distance > curr_distance &&
6296 (distance < next_distance ||
6297 next_distance == curr_distance))
6298 next_distance = distance;
6299
6300 /*
6301 * While not a strong assumption it would be nice to know
6302 * about cases where if node A is connected to B, B is not
6303 * equally connected to A.
6304 */
6305 if (sched_debug() && node_distance(k, i) != distance)
6306 sched_numa_warn("Node-distance not symmetric");
6307
6308 if (sched_debug() && i && !find_numa_distance(distance))
6309 sched_numa_warn("Node-0 not representative");
6310 }
6311 if (next_distance != curr_distance) {
6312 sched_domains_numa_distance[level++] = next_distance;
6313 sched_domains_numa_levels = level;
6314 curr_distance = next_distance;
6315 } else break;
cb83b629 6316 }
d039ac60
PZ
6317
6318 /*
6319 * In case of sched_debug() we verify the above assumption.
6320 */
6321 if (!sched_debug())
6322 break;
cb83b629
PZ
6323 }
6324 /*
6325 * 'level' contains the number of unique distances, excluding the
6326 * identity distance node_distance(i,i).
6327 *
28b4a521 6328 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
6329 * numbers.
6330 */
6331
5f7865f3
TC
6332 /*
6333 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6334 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6335 * the array will contain less then 'level' members. This could be
6336 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6337 * in other functions.
6338 *
6339 * We reset it to 'level' at the end of this function.
6340 */
6341 sched_domains_numa_levels = 0;
6342
cb83b629
PZ
6343 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6344 if (!sched_domains_numa_masks)
6345 return;
6346
6347 /*
6348 * Now for each level, construct a mask per node which contains all
6349 * cpus of nodes that are that many hops away from us.
6350 */
6351 for (i = 0; i < level; i++) {
6352 sched_domains_numa_masks[i] =
6353 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6354 if (!sched_domains_numa_masks[i])
6355 return;
6356
6357 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6358 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6359 if (!mask)
6360 return;
6361
6362 sched_domains_numa_masks[i][j] = mask;
6363
6364 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 6365 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6366 continue;
6367
6368 cpumask_or(mask, mask, cpumask_of_node(k));
6369 }
6370 }
6371 }
6372
143e1e28
VG
6373 /* Compute default topology size */
6374 for (i = 0; sched_domain_topology[i].mask; i++);
6375
c515db8c 6376 tl = kzalloc((i + level + 1) *
cb83b629
PZ
6377 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6378 if (!tl)
6379 return;
6380
6381 /*
6382 * Copy the default topology bits..
6383 */
143e1e28
VG
6384 for (i = 0; sched_domain_topology[i].mask; i++)
6385 tl[i] = sched_domain_topology[i];
cb83b629
PZ
6386
6387 /*
6388 * .. and append 'j' levels of NUMA goodness.
6389 */
6390 for (j = 0; j < level; i++, j++) {
6391 tl[i] = (struct sched_domain_topology_level){
cb83b629 6392 .mask = sd_numa_mask,
143e1e28 6393 .sd_flags = cpu_numa_flags,
cb83b629
PZ
6394 .flags = SDTL_OVERLAP,
6395 .numa_level = j,
143e1e28 6396 SD_INIT_NAME(NUMA)
cb83b629
PZ
6397 };
6398 }
6399
6400 sched_domain_topology = tl;
5f7865f3
TC
6401
6402 sched_domains_numa_levels = level;
cb83b629 6403}
301a5cba
TC
6404
6405static void sched_domains_numa_masks_set(int cpu)
6406{
6407 int i, j;
6408 int node = cpu_to_node(cpu);
6409
6410 for (i = 0; i < sched_domains_numa_levels; i++) {
6411 for (j = 0; j < nr_node_ids; j++) {
6412 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6413 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6414 }
6415 }
6416}
6417
6418static void sched_domains_numa_masks_clear(int cpu)
6419{
6420 int i, j;
6421 for (i = 0; i < sched_domains_numa_levels; i++) {
6422 for (j = 0; j < nr_node_ids; j++)
6423 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6424 }
6425}
6426
6427/*
6428 * Update sched_domains_numa_masks[level][node] array when new cpus
6429 * are onlined.
6430 */
6431static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6432 unsigned long action,
6433 void *hcpu)
6434{
6435 int cpu = (long)hcpu;
6436
6437 switch (action & ~CPU_TASKS_FROZEN) {
6438 case CPU_ONLINE:
6439 sched_domains_numa_masks_set(cpu);
6440 break;
6441
6442 case CPU_DEAD:
6443 sched_domains_numa_masks_clear(cpu);
6444 break;
6445
6446 default:
6447 return NOTIFY_DONE;
6448 }
6449
6450 return NOTIFY_OK;
cb83b629
PZ
6451}
6452#else
6453static inline void sched_init_numa(void)
6454{
6455}
301a5cba
TC
6456
6457static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6458 unsigned long action,
6459 void *hcpu)
6460{
6461 return 0;
6462}
cb83b629
PZ
6463#endif /* CONFIG_NUMA */
6464
54ab4ff4
PZ
6465static int __sdt_alloc(const struct cpumask *cpu_map)
6466{
6467 struct sched_domain_topology_level *tl;
6468 int j;
6469
27723a68 6470 for_each_sd_topology(tl) {
54ab4ff4
PZ
6471 struct sd_data *sdd = &tl->data;
6472
6473 sdd->sd = alloc_percpu(struct sched_domain *);
6474 if (!sdd->sd)
6475 return -ENOMEM;
6476
6477 sdd->sg = alloc_percpu(struct sched_group *);
6478 if (!sdd->sg)
6479 return -ENOMEM;
6480
63b2ca30
NP
6481 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6482 if (!sdd->sgc)
9c3f75cb
PZ
6483 return -ENOMEM;
6484
54ab4ff4
PZ
6485 for_each_cpu(j, cpu_map) {
6486 struct sched_domain *sd;
6487 struct sched_group *sg;
63b2ca30 6488 struct sched_group_capacity *sgc;
54ab4ff4
PZ
6489
6490 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6491 GFP_KERNEL, cpu_to_node(j));
6492 if (!sd)
6493 return -ENOMEM;
6494
6495 *per_cpu_ptr(sdd->sd, j) = sd;
6496
6497 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6498 GFP_KERNEL, cpu_to_node(j));
6499 if (!sg)
6500 return -ENOMEM;
6501
30b4e9eb
IM
6502 sg->next = sg;
6503
54ab4ff4 6504 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6505
63b2ca30 6506 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
9c3f75cb 6507 GFP_KERNEL, cpu_to_node(j));
63b2ca30 6508 if (!sgc)
9c3f75cb
PZ
6509 return -ENOMEM;
6510
63b2ca30 6511 *per_cpu_ptr(sdd->sgc, j) = sgc;
54ab4ff4
PZ
6512 }
6513 }
6514
6515 return 0;
6516}
6517
6518static void __sdt_free(const struct cpumask *cpu_map)
6519{
6520 struct sched_domain_topology_level *tl;
6521 int j;
6522
27723a68 6523 for_each_sd_topology(tl) {
54ab4ff4
PZ
6524 struct sd_data *sdd = &tl->data;
6525
6526 for_each_cpu(j, cpu_map) {
fb2cf2c6 6527 struct sched_domain *sd;
6528
6529 if (sdd->sd) {
6530 sd = *per_cpu_ptr(sdd->sd, j);
6531 if (sd && (sd->flags & SD_OVERLAP))
6532 free_sched_groups(sd->groups, 0);
6533 kfree(*per_cpu_ptr(sdd->sd, j));
6534 }
6535
6536 if (sdd->sg)
6537 kfree(*per_cpu_ptr(sdd->sg, j));
63b2ca30
NP
6538 if (sdd->sgc)
6539 kfree(*per_cpu_ptr(sdd->sgc, j));
54ab4ff4
PZ
6540 }
6541 free_percpu(sdd->sd);
fb2cf2c6 6542 sdd->sd = NULL;
54ab4ff4 6543 free_percpu(sdd->sg);
fb2cf2c6 6544 sdd->sg = NULL;
63b2ca30
NP
6545 free_percpu(sdd->sgc);
6546 sdd->sgc = NULL;
54ab4ff4
PZ
6547 }
6548}
6549
2c402dc3 6550struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
6551 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6552 struct sched_domain *child, int cpu)
2c402dc3 6553{
143e1e28 6554 struct sched_domain *sd = sd_init(tl, cpu);
2c402dc3 6555 if (!sd)
d069b916 6556 return child;
2c402dc3 6557
2c402dc3 6558 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6559 if (child) {
6560 sd->level = child->level + 1;
6561 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6562 child->parent = sd;
c75e0128 6563 sd->child = child;
6ae72dff
PZ
6564
6565 if (!cpumask_subset(sched_domain_span(child),
6566 sched_domain_span(sd))) {
6567 pr_err("BUG: arch topology borken\n");
6568#ifdef CONFIG_SCHED_DEBUG
6569 pr_err(" the %s domain not a subset of the %s domain\n",
6570 child->name, sd->name);
6571#endif
6572 /* Fixup, ensure @sd has at least @child cpus. */
6573 cpumask_or(sched_domain_span(sd),
6574 sched_domain_span(sd),
6575 sched_domain_span(child));
6576 }
6577
60495e77 6578 }
a841f8ce 6579 set_domain_attribute(sd, attr);
2c402dc3
PZ
6580
6581 return sd;
6582}
6583
2109b99e
AH
6584/*
6585 * Build sched domains for a given set of cpus and attach the sched domains
6586 * to the individual cpus
6587 */
dce840a0
PZ
6588static int build_sched_domains(const struct cpumask *cpu_map,
6589 struct sched_domain_attr *attr)
2109b99e 6590{
1c632169 6591 enum s_alloc alloc_state;
dce840a0 6592 struct sched_domain *sd;
2109b99e 6593 struct s_data d;
822ff793 6594 int i, ret = -ENOMEM;
9c1cfda2 6595
2109b99e
AH
6596 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6597 if (alloc_state != sa_rootdomain)
6598 goto error;
9c1cfda2 6599
dce840a0 6600 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6601 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6602 struct sched_domain_topology_level *tl;
6603
3bd65a80 6604 sd = NULL;
27723a68 6605 for_each_sd_topology(tl) {
4a850cbe 6606 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
6607 if (tl == sched_domain_topology)
6608 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
6609 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6610 sd->flags |= SD_OVERLAP;
d110235d
PZ
6611 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6612 break;
e3589f6c 6613 }
dce840a0
PZ
6614 }
6615
6616 /* Build the groups for the domains */
6617 for_each_cpu(i, cpu_map) {
6618 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6619 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6620 if (sd->flags & SD_OVERLAP) {
6621 if (build_overlap_sched_groups(sd, i))
6622 goto error;
6623 } else {
6624 if (build_sched_groups(sd, i))
6625 goto error;
6626 }
1cf51902 6627 }
a06dadbe 6628 }
9c1cfda2 6629
ced549fa 6630 /* Calculate CPU capacity for physical packages and nodes */
a9c9a9b6
PZ
6631 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6632 if (!cpumask_test_cpu(i, cpu_map))
6633 continue;
9c1cfda2 6634
dce840a0
PZ
6635 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6636 claim_allocations(i, sd);
63b2ca30 6637 init_sched_groups_capacity(i, sd);
dce840a0 6638 }
f712c0c7 6639 }
9c1cfda2 6640
1da177e4 6641 /* Attach the domains */
dce840a0 6642 rcu_read_lock();
abcd083a 6643 for_each_cpu(i, cpu_map) {
21d42ccf 6644 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6645 cpu_attach_domain(sd, d.rd, i);
1da177e4 6646 }
dce840a0 6647 rcu_read_unlock();
51888ca2 6648
822ff793 6649 ret = 0;
51888ca2 6650error:
2109b99e 6651 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6652 return ret;
1da177e4 6653}
029190c5 6654
acc3f5d7 6655static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6656static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6657static struct sched_domain_attr *dattr_cur;
6658 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6659
6660/*
6661 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6662 * cpumask) fails, then fallback to a single sched domain,
6663 * as determined by the single cpumask fallback_doms.
029190c5 6664 */
4212823f 6665static cpumask_var_t fallback_doms;
029190c5 6666
ee79d1bd
HC
6667/*
6668 * arch_update_cpu_topology lets virtualized architectures update the
6669 * cpu core maps. It is supposed to return 1 if the topology changed
6670 * or 0 if it stayed the same.
6671 */
52f5684c 6672int __weak arch_update_cpu_topology(void)
22e52b07 6673{
ee79d1bd 6674 return 0;
22e52b07
HC
6675}
6676
acc3f5d7
RR
6677cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6678{
6679 int i;
6680 cpumask_var_t *doms;
6681
6682 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6683 if (!doms)
6684 return NULL;
6685 for (i = 0; i < ndoms; i++) {
6686 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6687 free_sched_domains(doms, i);
6688 return NULL;
6689 }
6690 }
6691 return doms;
6692}
6693
6694void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6695{
6696 unsigned int i;
6697 for (i = 0; i < ndoms; i++)
6698 free_cpumask_var(doms[i]);
6699 kfree(doms);
6700}
6701
1a20ff27 6702/*
41a2d6cf 6703 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6704 * For now this just excludes isolated cpus, but could be used to
6705 * exclude other special cases in the future.
1a20ff27 6706 */
c4a8849a 6707static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6708{
7378547f
MM
6709 int err;
6710
22e52b07 6711 arch_update_cpu_topology();
029190c5 6712 ndoms_cur = 1;
acc3f5d7 6713 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6714 if (!doms_cur)
acc3f5d7
RR
6715 doms_cur = &fallback_doms;
6716 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 6717 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6718 register_sched_domain_sysctl();
7378547f
MM
6719
6720 return err;
1a20ff27
DG
6721}
6722
1a20ff27
DG
6723/*
6724 * Detach sched domains from a group of cpus specified in cpu_map
6725 * These cpus will now be attached to the NULL domain
6726 */
96f874e2 6727static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6728{
6729 int i;
6730
dce840a0 6731 rcu_read_lock();
abcd083a 6732 for_each_cpu(i, cpu_map)
57d885fe 6733 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6734 rcu_read_unlock();
1a20ff27
DG
6735}
6736
1d3504fc
HS
6737/* handle null as "default" */
6738static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6739 struct sched_domain_attr *new, int idx_new)
6740{
6741 struct sched_domain_attr tmp;
6742
6743 /* fast path */
6744 if (!new && !cur)
6745 return 1;
6746
6747 tmp = SD_ATTR_INIT;
6748 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6749 new ? (new + idx_new) : &tmp,
6750 sizeof(struct sched_domain_attr));
6751}
6752
029190c5
PJ
6753/*
6754 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6755 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6756 * doms_new[] to the current sched domain partitioning, doms_cur[].
6757 * It destroys each deleted domain and builds each new domain.
6758 *
acc3f5d7 6759 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
6760 * The masks don't intersect (don't overlap.) We should setup one
6761 * sched domain for each mask. CPUs not in any of the cpumasks will
6762 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6763 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6764 * it as it is.
6765 *
acc3f5d7
RR
6766 * The passed in 'doms_new' should be allocated using
6767 * alloc_sched_domains. This routine takes ownership of it and will
6768 * free_sched_domains it when done with it. If the caller failed the
6769 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6770 * and partition_sched_domains() will fallback to the single partition
6771 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 6772 *
96f874e2 6773 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
6774 * ndoms_new == 0 is a special case for destroying existing domains,
6775 * and it will not create the default domain.
dfb512ec 6776 *
029190c5
PJ
6777 * Call with hotplug lock held
6778 */
acc3f5d7 6779void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 6780 struct sched_domain_attr *dattr_new)
029190c5 6781{
dfb512ec 6782 int i, j, n;
d65bd5ec 6783 int new_topology;
029190c5 6784
712555ee 6785 mutex_lock(&sched_domains_mutex);
a1835615 6786
7378547f
MM
6787 /* always unregister in case we don't destroy any domains */
6788 unregister_sched_domain_sysctl();
6789
d65bd5ec
HC
6790 /* Let architecture update cpu core mappings. */
6791 new_topology = arch_update_cpu_topology();
6792
dfb512ec 6793 n = doms_new ? ndoms_new : 0;
029190c5
PJ
6794
6795 /* Destroy deleted domains */
6796 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 6797 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6798 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 6799 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
6800 goto match1;
6801 }
6802 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 6803 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
6804match1:
6805 ;
6806 }
6807
c8d2d47a 6808 n = ndoms_cur;
e761b772 6809 if (doms_new == NULL) {
c8d2d47a 6810 n = 0;
acc3f5d7 6811 doms_new = &fallback_doms;
6ad4c188 6812 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 6813 WARN_ON_ONCE(dattr_new);
e761b772
MK
6814 }
6815
029190c5
PJ
6816 /* Build new domains */
6817 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 6818 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6819 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 6820 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
6821 goto match2;
6822 }
6823 /* no match - add a new doms_new */
dce840a0 6824 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
6825match2:
6826 ;
6827 }
6828
6829 /* Remember the new sched domains */
acc3f5d7
RR
6830 if (doms_cur != &fallback_doms)
6831 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 6832 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 6833 doms_cur = doms_new;
1d3504fc 6834 dattr_cur = dattr_new;
029190c5 6835 ndoms_cur = ndoms_new;
7378547f
MM
6836
6837 register_sched_domain_sysctl();
a1835615 6838
712555ee 6839 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
6840}
6841
d35be8ba
SB
6842static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6843
1da177e4 6844/*
3a101d05
TH
6845 * Update cpusets according to cpu_active mask. If cpusets are
6846 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6847 * around partition_sched_domains().
d35be8ba
SB
6848 *
6849 * If we come here as part of a suspend/resume, don't touch cpusets because we
6850 * want to restore it back to its original state upon resume anyway.
1da177e4 6851 */
0b2e918a
TH
6852static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6853 void *hcpu)
e761b772 6854{
d35be8ba
SB
6855 switch (action) {
6856 case CPU_ONLINE_FROZEN:
6857 case CPU_DOWN_FAILED_FROZEN:
6858
6859 /*
6860 * num_cpus_frozen tracks how many CPUs are involved in suspend
6861 * resume sequence. As long as this is not the last online
6862 * operation in the resume sequence, just build a single sched
6863 * domain, ignoring cpusets.
6864 */
6865 num_cpus_frozen--;
6866 if (likely(num_cpus_frozen)) {
6867 partition_sched_domains(1, NULL, NULL);
6868 break;
6869 }
6870
6871 /*
6872 * This is the last CPU online operation. So fall through and
6873 * restore the original sched domains by considering the
6874 * cpuset configurations.
6875 */
6876
e761b772 6877 case CPU_ONLINE:
6ad4c188 6878 case CPU_DOWN_FAILED:
7ddf96b0 6879 cpuset_update_active_cpus(true);
d35be8ba 6880 break;
3a101d05
TH
6881 default:
6882 return NOTIFY_DONE;
6883 }
d35be8ba 6884 return NOTIFY_OK;
3a101d05 6885}
e761b772 6886
0b2e918a
TH
6887static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6888 void *hcpu)
3a101d05 6889{
d35be8ba 6890 switch (action) {
3a101d05 6891 case CPU_DOWN_PREPARE:
7ddf96b0 6892 cpuset_update_active_cpus(false);
d35be8ba
SB
6893 break;
6894 case CPU_DOWN_PREPARE_FROZEN:
6895 num_cpus_frozen++;
6896 partition_sched_domains(1, NULL, NULL);
6897 break;
e761b772
MK
6898 default:
6899 return NOTIFY_DONE;
6900 }
d35be8ba 6901 return NOTIFY_OK;
e761b772 6902}
e761b772 6903
1da177e4
LT
6904void __init sched_init_smp(void)
6905{
dcc30a35
RR
6906 cpumask_var_t non_isolated_cpus;
6907
6908 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 6909 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 6910
cb83b629
PZ
6911 sched_init_numa();
6912
6acce3ef
PZ
6913 /*
6914 * There's no userspace yet to cause hotplug operations; hence all the
6915 * cpu masks are stable and all blatant races in the below code cannot
6916 * happen.
6917 */
712555ee 6918 mutex_lock(&sched_domains_mutex);
c4a8849a 6919 init_sched_domains(cpu_active_mask);
dcc30a35
RR
6920 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6921 if (cpumask_empty(non_isolated_cpus))
6922 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 6923 mutex_unlock(&sched_domains_mutex);
e761b772 6924
301a5cba 6925 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
6926 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6927 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772 6928
b328ca18 6929 init_hrtick();
5c1e1767
NP
6930
6931 /* Move init over to a non-isolated CPU */
dcc30a35 6932 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 6933 BUG();
19978ca6 6934 sched_init_granularity();
dcc30a35 6935 free_cpumask_var(non_isolated_cpus);
4212823f 6936
0e3900e6 6937 init_sched_rt_class();
1baca4ce 6938 init_sched_dl_class();
1da177e4
LT
6939}
6940#else
6941void __init sched_init_smp(void)
6942{
19978ca6 6943 sched_init_granularity();
1da177e4
LT
6944}
6945#endif /* CONFIG_SMP */
6946
cd1bb94b
AB
6947const_debug unsigned int sysctl_timer_migration = 1;
6948
1da177e4
LT
6949int in_sched_functions(unsigned long addr)
6950{
1da177e4
LT
6951 return in_lock_functions(addr) ||
6952 (addr >= (unsigned long)__sched_text_start
6953 && addr < (unsigned long)__sched_text_end);
6954}
6955
029632fb 6956#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
6957/*
6958 * Default task group.
6959 * Every task in system belongs to this group at bootup.
6960 */
029632fb 6961struct task_group root_task_group;
35cf4e50 6962LIST_HEAD(task_groups);
052f1dc7 6963#endif
6f505b16 6964
e6252c3e 6965DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 6966
1da177e4
LT
6967void __init sched_init(void)
6968{
dd41f596 6969 int i, j;
434d53b0
MT
6970 unsigned long alloc_size = 0, ptr;
6971
6972#ifdef CONFIG_FAIR_GROUP_SCHED
6973 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6974#endif
6975#ifdef CONFIG_RT_GROUP_SCHED
6976 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 6977#endif
df7c8e84 6978#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 6979 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 6980#endif
434d53b0 6981 if (alloc_size) {
36b7b6d4 6982 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
6983
6984#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 6985 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
6986 ptr += nr_cpu_ids * sizeof(void **);
6987
07e06b01 6988 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 6989 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 6990
6d6bc0ad 6991#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 6992#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6993 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
6994 ptr += nr_cpu_ids * sizeof(void **);
6995
07e06b01 6996 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
6997 ptr += nr_cpu_ids * sizeof(void **);
6998
6d6bc0ad 6999#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
7000#ifdef CONFIG_CPUMASK_OFFSTACK
7001 for_each_possible_cpu(i) {
e6252c3e 7002 per_cpu(load_balance_mask, i) = (void *)ptr;
df7c8e84
RR
7003 ptr += cpumask_size();
7004 }
7005#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 7006 }
dd41f596 7007
332ac17e
DF
7008 init_rt_bandwidth(&def_rt_bandwidth,
7009 global_rt_period(), global_rt_runtime());
7010 init_dl_bandwidth(&def_dl_bandwidth,
1724813d 7011 global_rt_period(), global_rt_runtime());
332ac17e 7012
57d885fe
GH
7013#ifdef CONFIG_SMP
7014 init_defrootdomain();
7015#endif
7016
d0b27fa7 7017#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7018 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 7019 global_rt_period(), global_rt_runtime());
6d6bc0ad 7020#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7021
7c941438 7022#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
7023 list_add(&root_task_group.list, &task_groups);
7024 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 7025 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 7026 autogroup_init(&init_task);
54c707e9 7027
7c941438 7028#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7029
0a945022 7030 for_each_possible_cpu(i) {
70b97a7f 7031 struct rq *rq;
1da177e4
LT
7032
7033 rq = cpu_rq(i);
05fa785c 7034 raw_spin_lock_init(&rq->lock);
7897986b 7035 rq->nr_running = 0;
dce48a84
TG
7036 rq->calc_load_active = 0;
7037 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 7038 init_cfs_rq(&rq->cfs);
6f505b16 7039 init_rt_rq(&rq->rt, rq);
aab03e05 7040 init_dl_rq(&rq->dl, rq);
dd41f596 7041#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 7042 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 7043 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 7044 /*
07e06b01 7045 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
7046 *
7047 * In case of task-groups formed thr' the cgroup filesystem, it
7048 * gets 100% of the cpu resources in the system. This overall
7049 * system cpu resource is divided among the tasks of
07e06b01 7050 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
7051 * based on each entity's (task or task-group's) weight
7052 * (se->load.weight).
7053 *
07e06b01 7054 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
7055 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7056 * then A0's share of the cpu resource is:
7057 *
0d905bca 7058 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 7059 *
07e06b01
YZ
7060 * We achieve this by letting root_task_group's tasks sit
7061 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 7062 */
ab84d31e 7063 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 7064 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
7065#endif /* CONFIG_FAIR_GROUP_SCHED */
7066
7067 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7068#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7069 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 7070#endif
1da177e4 7071
dd41f596
IM
7072 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7073 rq->cpu_load[j] = 0;
fdf3e95d
VP
7074
7075 rq->last_load_update_tick = jiffies;
7076
1da177e4 7077#ifdef CONFIG_SMP
41c7ce9a 7078 rq->sd = NULL;
57d885fe 7079 rq->rd = NULL;
ca8ce3d0 7080 rq->cpu_capacity = SCHED_CAPACITY_SCALE;
3f029d3c 7081 rq->post_schedule = 0;
1da177e4 7082 rq->active_balance = 0;
dd41f596 7083 rq->next_balance = jiffies;
1da177e4 7084 rq->push_cpu = 0;
0a2966b4 7085 rq->cpu = i;
1f11eb6a 7086 rq->online = 0;
eae0c9df
MG
7087 rq->idle_stamp = 0;
7088 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 7089 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
7090
7091 INIT_LIST_HEAD(&rq->cfs_tasks);
7092
dc938520 7093 rq_attach_root(rq, &def_root_domain);
3451d024 7094#ifdef CONFIG_NO_HZ_COMMON
1c792db7 7095 rq->nohz_flags = 0;
83cd4fe2 7096#endif
265f22a9
FW
7097#ifdef CONFIG_NO_HZ_FULL
7098 rq->last_sched_tick = 0;
7099#endif
1da177e4 7100#endif
8f4d37ec 7101 init_rq_hrtick(rq);
1da177e4 7102 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7103 }
7104
2dd73a4f 7105 set_load_weight(&init_task);
b50f60ce 7106
e107be36
AK
7107#ifdef CONFIG_PREEMPT_NOTIFIERS
7108 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7109#endif
7110
1da177e4
LT
7111 /*
7112 * The boot idle thread does lazy MMU switching as well:
7113 */
7114 atomic_inc(&init_mm.mm_count);
7115 enter_lazy_tlb(&init_mm, current);
7116
7117 /*
7118 * Make us the idle thread. Technically, schedule() should not be
7119 * called from this thread, however somewhere below it might be,
7120 * but because we are the idle thread, we just pick up running again
7121 * when this runqueue becomes "idle".
7122 */
7123 init_idle(current, smp_processor_id());
dce48a84
TG
7124
7125 calc_load_update = jiffies + LOAD_FREQ;
7126
dd41f596
IM
7127 /*
7128 * During early bootup we pretend to be a normal task:
7129 */
7130 current->sched_class = &fair_sched_class;
6892b75e 7131
bf4d83f6 7132#ifdef CONFIG_SMP
4cb98839 7133 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
7134 /* May be allocated at isolcpus cmdline parse time */
7135 if (cpu_isolated_map == NULL)
7136 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 7137 idle_thread_set_boot_cpu();
a803f026 7138 set_cpu_rq_start_time();
029632fb
PZ
7139#endif
7140 init_sched_fair_class();
6a7b3dc3 7141
6892b75e 7142 scheduler_running = 1;
1da177e4
LT
7143}
7144
d902db1e 7145#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
7146static inline int preempt_count_equals(int preempt_offset)
7147{
234da7bc 7148 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 7149
4ba8216c 7150 return (nested == preempt_offset);
e4aafea2
FW
7151}
7152
d894837f 7153void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7154{
1da177e4
LT
7155 static unsigned long prev_jiffy; /* ratelimiting */
7156
b3fbab05 7157 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
db273be2
TG
7158 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7159 !is_idle_task(current)) ||
e4aafea2 7160 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7161 return;
7162 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7163 return;
7164 prev_jiffy = jiffies;
7165
3df0fc5b
PZ
7166 printk(KERN_ERR
7167 "BUG: sleeping function called from invalid context at %s:%d\n",
7168 file, line);
7169 printk(KERN_ERR
7170 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7171 in_atomic(), irqs_disabled(),
7172 current->pid, current->comm);
aef745fc
IM
7173
7174 debug_show_held_locks(current);
7175 if (irqs_disabled())
7176 print_irqtrace_events(current);
8f47b187
TG
7177#ifdef CONFIG_DEBUG_PREEMPT
7178 if (!preempt_count_equals(preempt_offset)) {
7179 pr_err("Preemption disabled at:");
7180 print_ip_sym(current->preempt_disable_ip);
7181 pr_cont("\n");
7182 }
7183#endif
aef745fc 7184 dump_stack();
1da177e4
LT
7185}
7186EXPORT_SYMBOL(__might_sleep);
7187#endif
7188
7189#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7190static void normalize_task(struct rq *rq, struct task_struct *p)
7191{
da7a735e 7192 const struct sched_class *prev_class = p->sched_class;
d50dde5a
DF
7193 struct sched_attr attr = {
7194 .sched_policy = SCHED_NORMAL,
7195 };
da7a735e 7196 int old_prio = p->prio;
da0c1e65 7197 int queued;
3e51f33f 7198
da0c1e65
KT
7199 queued = task_on_rq_queued(p);
7200 if (queued)
4ca9b72b 7201 dequeue_task(rq, p, 0);
d50dde5a 7202 __setscheduler(rq, p, &attr);
da0c1e65 7203 if (queued) {
4ca9b72b 7204 enqueue_task(rq, p, 0);
8875125e 7205 resched_curr(rq);
3a5e4dc1 7206 }
da7a735e
PZ
7207
7208 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
7209}
7210
1da177e4
LT
7211void normalize_rt_tasks(void)
7212{
a0f98a1c 7213 struct task_struct *g, *p;
1da177e4 7214 unsigned long flags;
70b97a7f 7215 struct rq *rq;
1da177e4 7216
3472eaa1 7217 read_lock(&tasklist_lock);
5d07f420 7218 for_each_process_thread(g, p) {
178be793
IM
7219 /*
7220 * Only normalize user tasks:
7221 */
3472eaa1 7222 if (p->flags & PF_KTHREAD)
178be793
IM
7223 continue;
7224
6cfb0d5d 7225 p->se.exec_start = 0;
6cfb0d5d 7226#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7227 p->se.statistics.wait_start = 0;
7228 p->se.statistics.sleep_start = 0;
7229 p->se.statistics.block_start = 0;
6cfb0d5d 7230#endif
dd41f596 7231
aab03e05 7232 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
7233 /*
7234 * Renice negative nice level userspace
7235 * tasks back to 0:
7236 */
3472eaa1 7237 if (task_nice(p) < 0)
dd41f596 7238 set_user_nice(p, 0);
1da177e4 7239 continue;
dd41f596 7240 }
1da177e4 7241
3472eaa1 7242 rq = task_rq_lock(p, &flags);
178be793 7243 normalize_task(rq, p);
3472eaa1 7244 task_rq_unlock(rq, p, &flags);
5d07f420 7245 }
3472eaa1 7246 read_unlock(&tasklist_lock);
1da177e4
LT
7247}
7248
7249#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7250
67fc4e0c 7251#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7252/*
67fc4e0c 7253 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7254 *
7255 * They can only be called when the whole system has been
7256 * stopped - every CPU needs to be quiescent, and no scheduling
7257 * activity can take place. Using them for anything else would
7258 * be a serious bug, and as a result, they aren't even visible
7259 * under any other configuration.
7260 */
7261
7262/**
7263 * curr_task - return the current task for a given cpu.
7264 * @cpu: the processor in question.
7265 *
7266 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
7267 *
7268 * Return: The current task for @cpu.
1df5c10a 7269 */
36c8b586 7270struct task_struct *curr_task(int cpu)
1df5c10a
LT
7271{
7272 return cpu_curr(cpu);
7273}
7274
67fc4e0c
JW
7275#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7276
7277#ifdef CONFIG_IA64
1df5c10a
LT
7278/**
7279 * set_curr_task - set the current task for a given cpu.
7280 * @cpu: the processor in question.
7281 * @p: the task pointer to set.
7282 *
7283 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7284 * are serviced on a separate stack. It allows the architecture to switch the
7285 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7286 * must be called with all CPU's synchronized, and interrupts disabled, the
7287 * and caller must save the original value of the current task (see
7288 * curr_task() above) and restore that value before reenabling interrupts and
7289 * re-starting the system.
7290 *
7291 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7292 */
36c8b586 7293void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7294{
7295 cpu_curr(cpu) = p;
7296}
7297
7298#endif
29f59db3 7299
7c941438 7300#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7301/* task_group_lock serializes the addition/removal of task groups */
7302static DEFINE_SPINLOCK(task_group_lock);
7303
bccbe08a
PZ
7304static void free_sched_group(struct task_group *tg)
7305{
7306 free_fair_sched_group(tg);
7307 free_rt_sched_group(tg);
e9aa1dd1 7308 autogroup_free(tg);
bccbe08a
PZ
7309 kfree(tg);
7310}
7311
7312/* allocate runqueue etc for a new task group */
ec7dc8ac 7313struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7314{
7315 struct task_group *tg;
bccbe08a
PZ
7316
7317 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7318 if (!tg)
7319 return ERR_PTR(-ENOMEM);
7320
ec7dc8ac 7321 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7322 goto err;
7323
ec7dc8ac 7324 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7325 goto err;
7326
ace783b9
LZ
7327 return tg;
7328
7329err:
7330 free_sched_group(tg);
7331 return ERR_PTR(-ENOMEM);
7332}
7333
7334void sched_online_group(struct task_group *tg, struct task_group *parent)
7335{
7336 unsigned long flags;
7337
8ed36996 7338 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7339 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7340
7341 WARN_ON(!parent); /* root should already exist */
7342
7343 tg->parent = parent;
f473aa5e 7344 INIT_LIST_HEAD(&tg->children);
09f2724a 7345 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7346 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7347}
7348
9b5b7751 7349/* rcu callback to free various structures associated with a task group */
6f505b16 7350static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7351{
29f59db3 7352 /* now it should be safe to free those cfs_rqs */
6f505b16 7353 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7354}
7355
9b5b7751 7356/* Destroy runqueue etc associated with a task group */
4cf86d77 7357void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
7358{
7359 /* wait for possible concurrent references to cfs_rqs complete */
7360 call_rcu(&tg->rcu, free_sched_group_rcu);
7361}
7362
7363void sched_offline_group(struct task_group *tg)
29f59db3 7364{
8ed36996 7365 unsigned long flags;
9b5b7751 7366 int i;
29f59db3 7367
3d4b47b4
PZ
7368 /* end participation in shares distribution */
7369 for_each_possible_cpu(i)
bccbe08a 7370 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
7371
7372 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7373 list_del_rcu(&tg->list);
f473aa5e 7374 list_del_rcu(&tg->siblings);
8ed36996 7375 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7376}
7377
9b5b7751 7378/* change task's runqueue when it moves between groups.
3a252015
IM
7379 * The caller of this function should have put the task in its new group
7380 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7381 * reflect its new group.
9b5b7751
SV
7382 */
7383void sched_move_task(struct task_struct *tsk)
29f59db3 7384{
8323f26c 7385 struct task_group *tg;
da0c1e65 7386 int queued, running;
29f59db3
SV
7387 unsigned long flags;
7388 struct rq *rq;
7389
7390 rq = task_rq_lock(tsk, &flags);
7391
051a1d1a 7392 running = task_current(rq, tsk);
da0c1e65 7393 queued = task_on_rq_queued(tsk);
29f59db3 7394
da0c1e65 7395 if (queued)
29f59db3 7396 dequeue_task(rq, tsk, 0);
0e1f3483 7397 if (unlikely(running))
f3cd1c4e 7398 put_prev_task(rq, tsk);
29f59db3 7399
073219e9 7400 tg = container_of(task_css_check(tsk, cpu_cgrp_id,
8323f26c
PZ
7401 lockdep_is_held(&tsk->sighand->siglock)),
7402 struct task_group, css);
7403 tg = autogroup_task_group(tsk, tg);
7404 tsk->sched_task_group = tg;
7405
810b3817 7406#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7407 if (tsk->sched_class->task_move_group)
da0c1e65 7408 tsk->sched_class->task_move_group(tsk, queued);
b2b5ce02 7409 else
810b3817 7410#endif
b2b5ce02 7411 set_task_rq(tsk, task_cpu(tsk));
810b3817 7412
0e1f3483
HS
7413 if (unlikely(running))
7414 tsk->sched_class->set_curr_task(rq);
da0c1e65 7415 if (queued)
371fd7e7 7416 enqueue_task(rq, tsk, 0);
29f59db3 7417
0122ec5b 7418 task_rq_unlock(rq, tsk, &flags);
29f59db3 7419}
7c941438 7420#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7421
a790de99
PT
7422#ifdef CONFIG_RT_GROUP_SCHED
7423/*
7424 * Ensure that the real time constraints are schedulable.
7425 */
7426static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7427
9a7e0b18
PZ
7428/* Must be called with tasklist_lock held */
7429static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7430{
9a7e0b18 7431 struct task_struct *g, *p;
b40b2e8e 7432
5d07f420 7433 for_each_process_thread(g, p) {
8651c658 7434 if (rt_task(p) && task_group(p) == tg)
9a7e0b18 7435 return 1;
5d07f420 7436 }
b40b2e8e 7437
9a7e0b18
PZ
7438 return 0;
7439}
b40b2e8e 7440
9a7e0b18
PZ
7441struct rt_schedulable_data {
7442 struct task_group *tg;
7443 u64 rt_period;
7444 u64 rt_runtime;
7445};
b40b2e8e 7446
a790de99 7447static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7448{
7449 struct rt_schedulable_data *d = data;
7450 struct task_group *child;
7451 unsigned long total, sum = 0;
7452 u64 period, runtime;
b40b2e8e 7453
9a7e0b18
PZ
7454 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7455 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7456
9a7e0b18
PZ
7457 if (tg == d->tg) {
7458 period = d->rt_period;
7459 runtime = d->rt_runtime;
b40b2e8e 7460 }
b40b2e8e 7461
4653f803
PZ
7462 /*
7463 * Cannot have more runtime than the period.
7464 */
7465 if (runtime > period && runtime != RUNTIME_INF)
7466 return -EINVAL;
6f505b16 7467
4653f803
PZ
7468 /*
7469 * Ensure we don't starve existing RT tasks.
7470 */
9a7e0b18
PZ
7471 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7472 return -EBUSY;
6f505b16 7473
9a7e0b18 7474 total = to_ratio(period, runtime);
6f505b16 7475
4653f803
PZ
7476 /*
7477 * Nobody can have more than the global setting allows.
7478 */
7479 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7480 return -EINVAL;
6f505b16 7481
4653f803
PZ
7482 /*
7483 * The sum of our children's runtime should not exceed our own.
7484 */
9a7e0b18
PZ
7485 list_for_each_entry_rcu(child, &tg->children, siblings) {
7486 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7487 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7488
9a7e0b18
PZ
7489 if (child == d->tg) {
7490 period = d->rt_period;
7491 runtime = d->rt_runtime;
7492 }
6f505b16 7493
9a7e0b18 7494 sum += to_ratio(period, runtime);
9f0c1e56 7495 }
6f505b16 7496
9a7e0b18
PZ
7497 if (sum > total)
7498 return -EINVAL;
7499
7500 return 0;
6f505b16
PZ
7501}
7502
9a7e0b18 7503static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7504{
8277434e
PT
7505 int ret;
7506
9a7e0b18
PZ
7507 struct rt_schedulable_data data = {
7508 .tg = tg,
7509 .rt_period = period,
7510 .rt_runtime = runtime,
7511 };
7512
8277434e
PT
7513 rcu_read_lock();
7514 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7515 rcu_read_unlock();
7516
7517 return ret;
521f1a24
DG
7518}
7519
ab84d31e 7520static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7521 u64 rt_period, u64 rt_runtime)
6f505b16 7522{
ac086bc2 7523 int i, err = 0;
9f0c1e56 7524
9f0c1e56 7525 mutex_lock(&rt_constraints_mutex);
521f1a24 7526 read_lock(&tasklist_lock);
9a7e0b18
PZ
7527 err = __rt_schedulable(tg, rt_period, rt_runtime);
7528 if (err)
9f0c1e56 7529 goto unlock;
ac086bc2 7530
0986b11b 7531 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7532 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7533 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7534
7535 for_each_possible_cpu(i) {
7536 struct rt_rq *rt_rq = tg->rt_rq[i];
7537
0986b11b 7538 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7539 rt_rq->rt_runtime = rt_runtime;
0986b11b 7540 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7541 }
0986b11b 7542 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7543unlock:
521f1a24 7544 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7545 mutex_unlock(&rt_constraints_mutex);
7546
7547 return err;
6f505b16
PZ
7548}
7549
25cc7da7 7550static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
7551{
7552 u64 rt_runtime, rt_period;
7553
7554 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7555 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7556 if (rt_runtime_us < 0)
7557 rt_runtime = RUNTIME_INF;
7558
ab84d31e 7559 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7560}
7561
25cc7da7 7562static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
7563{
7564 u64 rt_runtime_us;
7565
d0b27fa7 7566 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7567 return -1;
7568
d0b27fa7 7569 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7570 do_div(rt_runtime_us, NSEC_PER_USEC);
7571 return rt_runtime_us;
7572}
d0b27fa7 7573
25cc7da7 7574static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
d0b27fa7
PZ
7575{
7576 u64 rt_runtime, rt_period;
7577
7578 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7579 rt_runtime = tg->rt_bandwidth.rt_runtime;
7580
619b0488
R
7581 if (rt_period == 0)
7582 return -EINVAL;
7583
ab84d31e 7584 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7585}
7586
25cc7da7 7587static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
7588{
7589 u64 rt_period_us;
7590
7591 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7592 do_div(rt_period_us, NSEC_PER_USEC);
7593 return rt_period_us;
7594}
332ac17e 7595#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7596
332ac17e 7597#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
7598static int sched_rt_global_constraints(void)
7599{
7600 int ret = 0;
7601
7602 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7603 read_lock(&tasklist_lock);
4653f803 7604 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7605 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7606 mutex_unlock(&rt_constraints_mutex);
7607
7608 return ret;
7609}
54e99124 7610
25cc7da7 7611static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
7612{
7613 /* Don't accept realtime tasks when there is no way for them to run */
7614 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7615 return 0;
7616
7617 return 1;
7618}
7619
6d6bc0ad 7620#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7621static int sched_rt_global_constraints(void)
7622{
ac086bc2 7623 unsigned long flags;
332ac17e 7624 int i, ret = 0;
ec5d4989 7625
0986b11b 7626 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7627 for_each_possible_cpu(i) {
7628 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7629
0986b11b 7630 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7631 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7632 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7633 }
0986b11b 7634 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7635
332ac17e 7636 return ret;
d0b27fa7 7637}
6d6bc0ad 7638#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7639
332ac17e
DF
7640static int sched_dl_global_constraints(void)
7641{
1724813d
PZ
7642 u64 runtime = global_rt_runtime();
7643 u64 period = global_rt_period();
332ac17e 7644 u64 new_bw = to_ratio(period, runtime);
1724813d 7645 int cpu, ret = 0;
49516342 7646 unsigned long flags;
332ac17e
DF
7647
7648 /*
7649 * Here we want to check the bandwidth not being set to some
7650 * value smaller than the currently allocated bandwidth in
7651 * any of the root_domains.
7652 *
7653 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7654 * cycling on root_domains... Discussion on different/better
7655 * solutions is welcome!
7656 */
1724813d
PZ
7657 for_each_possible_cpu(cpu) {
7658 struct dl_bw *dl_b = dl_bw_of(cpu);
332ac17e 7659
49516342 7660 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d
PZ
7661 if (new_bw < dl_b->total_bw)
7662 ret = -EBUSY;
49516342 7663 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
1724813d
PZ
7664
7665 if (ret)
7666 break;
332ac17e
DF
7667 }
7668
1724813d 7669 return ret;
332ac17e
DF
7670}
7671
1724813d 7672static void sched_dl_do_global(void)
ce0dbbbb 7673{
1724813d
PZ
7674 u64 new_bw = -1;
7675 int cpu;
49516342 7676 unsigned long flags;
ce0dbbbb 7677
1724813d
PZ
7678 def_dl_bandwidth.dl_period = global_rt_period();
7679 def_dl_bandwidth.dl_runtime = global_rt_runtime();
7680
7681 if (global_rt_runtime() != RUNTIME_INF)
7682 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7683
7684 /*
7685 * FIXME: As above...
7686 */
7687 for_each_possible_cpu(cpu) {
7688 struct dl_bw *dl_b = dl_bw_of(cpu);
7689
49516342 7690 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d 7691 dl_b->bw = new_bw;
49516342 7692 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
ce0dbbbb 7693 }
1724813d
PZ
7694}
7695
7696static int sched_rt_global_validate(void)
7697{
7698 if (sysctl_sched_rt_period <= 0)
7699 return -EINVAL;
7700
e9e7cb38
JL
7701 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7702 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
1724813d
PZ
7703 return -EINVAL;
7704
7705 return 0;
7706}
7707
7708static void sched_rt_do_global(void)
7709{
7710 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7711 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
7712}
7713
d0b27fa7 7714int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7715 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7716 loff_t *ppos)
7717{
d0b27fa7
PZ
7718 int old_period, old_runtime;
7719 static DEFINE_MUTEX(mutex);
1724813d 7720 int ret;
d0b27fa7
PZ
7721
7722 mutex_lock(&mutex);
7723 old_period = sysctl_sched_rt_period;
7724 old_runtime = sysctl_sched_rt_runtime;
7725
8d65af78 7726 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
7727
7728 if (!ret && write) {
1724813d
PZ
7729 ret = sched_rt_global_validate();
7730 if (ret)
7731 goto undo;
7732
d0b27fa7 7733 ret = sched_rt_global_constraints();
1724813d
PZ
7734 if (ret)
7735 goto undo;
7736
7737 ret = sched_dl_global_constraints();
7738 if (ret)
7739 goto undo;
7740
7741 sched_rt_do_global();
7742 sched_dl_do_global();
7743 }
7744 if (0) {
7745undo:
7746 sysctl_sched_rt_period = old_period;
7747 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
7748 }
7749 mutex_unlock(&mutex);
7750
7751 return ret;
7752}
68318b8e 7753
1724813d 7754int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
7755 void __user *buffer, size_t *lenp,
7756 loff_t *ppos)
7757{
7758 int ret;
332ac17e 7759 static DEFINE_MUTEX(mutex);
332ac17e
DF
7760
7761 mutex_lock(&mutex);
332ac17e 7762 ret = proc_dointvec(table, write, buffer, lenp, ppos);
1724813d
PZ
7763 /* make sure that internally we keep jiffies */
7764 /* also, writing zero resets timeslice to default */
332ac17e 7765 if (!ret && write) {
1724813d
PZ
7766 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7767 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
332ac17e
DF
7768 }
7769 mutex_unlock(&mutex);
332ac17e
DF
7770 return ret;
7771}
7772
052f1dc7 7773#ifdef CONFIG_CGROUP_SCHED
68318b8e 7774
a7c6d554 7775static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 7776{
a7c6d554 7777 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
7778}
7779
eb95419b
TH
7780static struct cgroup_subsys_state *
7781cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 7782{
eb95419b
TH
7783 struct task_group *parent = css_tg(parent_css);
7784 struct task_group *tg;
68318b8e 7785
eb95419b 7786 if (!parent) {
68318b8e 7787 /* This is early initialization for the top cgroup */
07e06b01 7788 return &root_task_group.css;
68318b8e
SV
7789 }
7790
ec7dc8ac 7791 tg = sched_create_group(parent);
68318b8e
SV
7792 if (IS_ERR(tg))
7793 return ERR_PTR(-ENOMEM);
7794
68318b8e
SV
7795 return &tg->css;
7796}
7797
eb95419b 7798static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
ace783b9 7799{
eb95419b 7800 struct task_group *tg = css_tg(css);
5c9d535b 7801 struct task_group *parent = css_tg(css->parent);
ace783b9 7802
63876986
TH
7803 if (parent)
7804 sched_online_group(tg, parent);
ace783b9
LZ
7805 return 0;
7806}
7807
eb95419b 7808static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 7809{
eb95419b 7810 struct task_group *tg = css_tg(css);
68318b8e
SV
7811
7812 sched_destroy_group(tg);
7813}
7814
eb95419b 7815static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
ace783b9 7816{
eb95419b 7817 struct task_group *tg = css_tg(css);
ace783b9
LZ
7818
7819 sched_offline_group(tg);
7820}
7821
eb95419b 7822static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
bb9d97b6 7823 struct cgroup_taskset *tset)
68318b8e 7824{
bb9d97b6
TH
7825 struct task_struct *task;
7826
924f0d9a 7827 cgroup_taskset_for_each(task, tset) {
b68aa230 7828#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 7829 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 7830 return -EINVAL;
b68aa230 7831#else
bb9d97b6
TH
7832 /* We don't support RT-tasks being in separate groups */
7833 if (task->sched_class != &fair_sched_class)
7834 return -EINVAL;
b68aa230 7835#endif
bb9d97b6 7836 }
be367d09
BB
7837 return 0;
7838}
68318b8e 7839
eb95419b 7840static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
bb9d97b6 7841 struct cgroup_taskset *tset)
68318b8e 7842{
bb9d97b6
TH
7843 struct task_struct *task;
7844
924f0d9a 7845 cgroup_taskset_for_each(task, tset)
bb9d97b6 7846 sched_move_task(task);
68318b8e
SV
7847}
7848
eb95419b
TH
7849static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7850 struct cgroup_subsys_state *old_css,
7851 struct task_struct *task)
068c5cc5
PZ
7852{
7853 /*
7854 * cgroup_exit() is called in the copy_process() failure path.
7855 * Ignore this case since the task hasn't ran yet, this avoids
7856 * trying to poke a half freed task state from generic code.
7857 */
7858 if (!(task->flags & PF_EXITING))
7859 return;
7860
7861 sched_move_task(task);
7862}
7863
052f1dc7 7864#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
7865static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7866 struct cftype *cftype, u64 shareval)
68318b8e 7867{
182446d0 7868 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
7869}
7870
182446d0
TH
7871static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7872 struct cftype *cft)
68318b8e 7873{
182446d0 7874 struct task_group *tg = css_tg(css);
68318b8e 7875
c8b28116 7876 return (u64) scale_load_down(tg->shares);
68318b8e 7877}
ab84d31e
PT
7878
7879#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
7880static DEFINE_MUTEX(cfs_constraints_mutex);
7881
ab84d31e
PT
7882const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7883const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7884
a790de99
PT
7885static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7886
ab84d31e
PT
7887static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7888{
56f570e5 7889 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 7890 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
7891
7892 if (tg == &root_task_group)
7893 return -EINVAL;
7894
7895 /*
7896 * Ensure we have at some amount of bandwidth every period. This is
7897 * to prevent reaching a state of large arrears when throttled via
7898 * entity_tick() resulting in prolonged exit starvation.
7899 */
7900 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7901 return -EINVAL;
7902
7903 /*
7904 * Likewise, bound things on the otherside by preventing insane quota
7905 * periods. This also allows us to normalize in computing quota
7906 * feasibility.
7907 */
7908 if (period > max_cfs_quota_period)
7909 return -EINVAL;
7910
0e59bdae
KT
7911 /*
7912 * Prevent race between setting of cfs_rq->runtime_enabled and
7913 * unthrottle_offline_cfs_rqs().
7914 */
7915 get_online_cpus();
a790de99
PT
7916 mutex_lock(&cfs_constraints_mutex);
7917 ret = __cfs_schedulable(tg, period, quota);
7918 if (ret)
7919 goto out_unlock;
7920
58088ad0 7921 runtime_enabled = quota != RUNTIME_INF;
56f570e5 7922 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
7923 /*
7924 * If we need to toggle cfs_bandwidth_used, off->on must occur
7925 * before making related changes, and on->off must occur afterwards
7926 */
7927 if (runtime_enabled && !runtime_was_enabled)
7928 cfs_bandwidth_usage_inc();
ab84d31e
PT
7929 raw_spin_lock_irq(&cfs_b->lock);
7930 cfs_b->period = ns_to_ktime(period);
7931 cfs_b->quota = quota;
58088ad0 7932
a9cf55b2 7933 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
7934 /* restart the period timer (if active) to handle new period expiry */
7935 if (runtime_enabled && cfs_b->timer_active) {
7936 /* force a reprogram */
09dc4ab0 7937 __start_cfs_bandwidth(cfs_b, true);
58088ad0 7938 }
ab84d31e
PT
7939 raw_spin_unlock_irq(&cfs_b->lock);
7940
0e59bdae 7941 for_each_online_cpu(i) {
ab84d31e 7942 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 7943 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
7944
7945 raw_spin_lock_irq(&rq->lock);
58088ad0 7946 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 7947 cfs_rq->runtime_remaining = 0;
671fd9da 7948
029632fb 7949 if (cfs_rq->throttled)
671fd9da 7950 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
7951 raw_spin_unlock_irq(&rq->lock);
7952 }
1ee14e6c
BS
7953 if (runtime_was_enabled && !runtime_enabled)
7954 cfs_bandwidth_usage_dec();
a790de99
PT
7955out_unlock:
7956 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 7957 put_online_cpus();
ab84d31e 7958
a790de99 7959 return ret;
ab84d31e
PT
7960}
7961
7962int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7963{
7964 u64 quota, period;
7965
029632fb 7966 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7967 if (cfs_quota_us < 0)
7968 quota = RUNTIME_INF;
7969 else
7970 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7971
7972 return tg_set_cfs_bandwidth(tg, period, quota);
7973}
7974
7975long tg_get_cfs_quota(struct task_group *tg)
7976{
7977 u64 quota_us;
7978
029632fb 7979 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
7980 return -1;
7981
029632fb 7982 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
7983 do_div(quota_us, NSEC_PER_USEC);
7984
7985 return quota_us;
7986}
7987
7988int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7989{
7990 u64 quota, period;
7991
7992 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 7993 quota = tg->cfs_bandwidth.quota;
ab84d31e 7994
ab84d31e
PT
7995 return tg_set_cfs_bandwidth(tg, period, quota);
7996}
7997
7998long tg_get_cfs_period(struct task_group *tg)
7999{
8000 u64 cfs_period_us;
8001
029632fb 8002 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8003 do_div(cfs_period_us, NSEC_PER_USEC);
8004
8005 return cfs_period_us;
8006}
8007
182446d0
TH
8008static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8009 struct cftype *cft)
ab84d31e 8010{
182446d0 8011 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
8012}
8013
182446d0
TH
8014static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8015 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 8016{
182446d0 8017 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
8018}
8019
182446d0
TH
8020static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8021 struct cftype *cft)
ab84d31e 8022{
182446d0 8023 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
8024}
8025
182446d0
TH
8026static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8027 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 8028{
182446d0 8029 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
8030}
8031
a790de99
PT
8032struct cfs_schedulable_data {
8033 struct task_group *tg;
8034 u64 period, quota;
8035};
8036
8037/*
8038 * normalize group quota/period to be quota/max_period
8039 * note: units are usecs
8040 */
8041static u64 normalize_cfs_quota(struct task_group *tg,
8042 struct cfs_schedulable_data *d)
8043{
8044 u64 quota, period;
8045
8046 if (tg == d->tg) {
8047 period = d->period;
8048 quota = d->quota;
8049 } else {
8050 period = tg_get_cfs_period(tg);
8051 quota = tg_get_cfs_quota(tg);
8052 }
8053
8054 /* note: these should typically be equivalent */
8055 if (quota == RUNTIME_INF || quota == -1)
8056 return RUNTIME_INF;
8057
8058 return to_ratio(period, quota);
8059}
8060
8061static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8062{
8063 struct cfs_schedulable_data *d = data;
029632fb 8064 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
8065 s64 quota = 0, parent_quota = -1;
8066
8067 if (!tg->parent) {
8068 quota = RUNTIME_INF;
8069 } else {
029632fb 8070 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
8071
8072 quota = normalize_cfs_quota(tg, d);
9c58c79a 8073 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
8074
8075 /*
8076 * ensure max(child_quota) <= parent_quota, inherit when no
8077 * limit is set
8078 */
8079 if (quota == RUNTIME_INF)
8080 quota = parent_quota;
8081 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8082 return -EINVAL;
8083 }
9c58c79a 8084 cfs_b->hierarchical_quota = quota;
a790de99
PT
8085
8086 return 0;
8087}
8088
8089static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8090{
8277434e 8091 int ret;
a790de99
PT
8092 struct cfs_schedulable_data data = {
8093 .tg = tg,
8094 .period = period,
8095 .quota = quota,
8096 };
8097
8098 if (quota != RUNTIME_INF) {
8099 do_div(data.period, NSEC_PER_USEC);
8100 do_div(data.quota, NSEC_PER_USEC);
8101 }
8102
8277434e
PT
8103 rcu_read_lock();
8104 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8105 rcu_read_unlock();
8106
8107 return ret;
a790de99 8108}
e8da1b18 8109
2da8ca82 8110static int cpu_stats_show(struct seq_file *sf, void *v)
e8da1b18 8111{
2da8ca82 8112 struct task_group *tg = css_tg(seq_css(sf));
029632fb 8113 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 8114
44ffc75b
TH
8115 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8116 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8117 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
8118
8119 return 0;
8120}
ab84d31e 8121#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 8122#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8123
052f1dc7 8124#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
8125static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8126 struct cftype *cft, s64 val)
6f505b16 8127{
182446d0 8128 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
8129}
8130
182446d0
TH
8131static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8132 struct cftype *cft)
6f505b16 8133{
182446d0 8134 return sched_group_rt_runtime(css_tg(css));
6f505b16 8135}
d0b27fa7 8136
182446d0
TH
8137static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8138 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 8139{
182446d0 8140 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
8141}
8142
182446d0
TH
8143static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8144 struct cftype *cft)
d0b27fa7 8145{
182446d0 8146 return sched_group_rt_period(css_tg(css));
d0b27fa7 8147}
6d6bc0ad 8148#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8149
fe5c7cc2 8150static struct cftype cpu_files[] = {
052f1dc7 8151#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8152 {
8153 .name = "shares",
f4c753b7
PM
8154 .read_u64 = cpu_shares_read_u64,
8155 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8156 },
052f1dc7 8157#endif
ab84d31e
PT
8158#ifdef CONFIG_CFS_BANDWIDTH
8159 {
8160 .name = "cfs_quota_us",
8161 .read_s64 = cpu_cfs_quota_read_s64,
8162 .write_s64 = cpu_cfs_quota_write_s64,
8163 },
8164 {
8165 .name = "cfs_period_us",
8166 .read_u64 = cpu_cfs_period_read_u64,
8167 .write_u64 = cpu_cfs_period_write_u64,
8168 },
e8da1b18
NR
8169 {
8170 .name = "stat",
2da8ca82 8171 .seq_show = cpu_stats_show,
e8da1b18 8172 },
ab84d31e 8173#endif
052f1dc7 8174#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8175 {
9f0c1e56 8176 .name = "rt_runtime_us",
06ecb27c
PM
8177 .read_s64 = cpu_rt_runtime_read,
8178 .write_s64 = cpu_rt_runtime_write,
6f505b16 8179 },
d0b27fa7
PZ
8180 {
8181 .name = "rt_period_us",
f4c753b7
PM
8182 .read_u64 = cpu_rt_period_read_uint,
8183 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8184 },
052f1dc7 8185#endif
4baf6e33 8186 { } /* terminate */
68318b8e
SV
8187};
8188
073219e9 8189struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748
TH
8190 .css_alloc = cpu_cgroup_css_alloc,
8191 .css_free = cpu_cgroup_css_free,
ace783b9
LZ
8192 .css_online = cpu_cgroup_css_online,
8193 .css_offline = cpu_cgroup_css_offline,
bb9d97b6
TH
8194 .can_attach = cpu_cgroup_can_attach,
8195 .attach = cpu_cgroup_attach,
068c5cc5 8196 .exit = cpu_cgroup_exit,
5577964e 8197 .legacy_cftypes = cpu_files,
68318b8e
SV
8198 .early_init = 1,
8199};
8200
052f1dc7 8201#endif /* CONFIG_CGROUP_SCHED */
d842de87 8202
b637a328
PM
8203void dump_cpu_task(int cpu)
8204{
8205 pr_info("Task dump for CPU %d:\n", cpu);
8206 sched_show_task(cpu_curr(cpu));
8207}