]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/sched/core.c
sched/core: Simplify INIT_PREEMPT_COUNT
[mirror_ubuntu-artful-kernel.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
91d1aa43 75#include <linux/context_tracking.h>
52f5684c 76#include <linux/compiler.h>
1da177e4 77
96f951ed 78#include <asm/switch_to.h>
5517d86b 79#include <asm/tlb.h>
838225b4 80#include <asm/irq_regs.h>
db7e527d 81#include <asm/mutex.h>
e6e6685a
GC
82#ifdef CONFIG_PARAVIRT
83#include <asm/paravirt.h>
84#endif
1da177e4 85
029632fb 86#include "sched.h"
ea138446 87#include "../workqueue_internal.h"
29d5e047 88#include "../smpboot.h"
6e0534f2 89
a8d154b0 90#define CREATE_TRACE_POINTS
ad8d75ff 91#include <trace/events/sched.h>
a8d154b0 92
029632fb
PZ
93DEFINE_MUTEX(sched_domains_mutex);
94DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 95
fe44d621 96static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 97
029632fb 98void update_rq_clock(struct rq *rq)
3e51f33f 99{
fe44d621 100 s64 delta;
305e6835 101
9edfbfed
PZ
102 lockdep_assert_held(&rq->lock);
103
104 if (rq->clock_skip_update & RQCF_ACT_SKIP)
f26f9aff 105 return;
aa483808 106
fe44d621 107 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
4036ac15
MG
108 if (delta < 0)
109 return;
fe44d621
PZ
110 rq->clock += delta;
111 update_rq_clock_task(rq, delta);
3e51f33f
PZ
112}
113
bf5c91ba
IM
114/*
115 * Debugging: various feature bits
116 */
f00b45c1 117
f00b45c1
PZ
118#define SCHED_FEAT(name, enabled) \
119 (1UL << __SCHED_FEAT_##name) * enabled |
120
bf5c91ba 121const_debug unsigned int sysctl_sched_features =
391e43da 122#include "features.h"
f00b45c1
PZ
123 0;
124
125#undef SCHED_FEAT
126
127#ifdef CONFIG_SCHED_DEBUG
128#define SCHED_FEAT(name, enabled) \
129 #name ,
130
1292531f 131static const char * const sched_feat_names[] = {
391e43da 132#include "features.h"
f00b45c1
PZ
133};
134
135#undef SCHED_FEAT
136
34f3a814 137static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 138{
f00b45c1
PZ
139 int i;
140
f8b6d1cc 141 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
142 if (!(sysctl_sched_features & (1UL << i)))
143 seq_puts(m, "NO_");
144 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 145 }
34f3a814 146 seq_puts(m, "\n");
f00b45c1 147
34f3a814 148 return 0;
f00b45c1
PZ
149}
150
f8b6d1cc
PZ
151#ifdef HAVE_JUMP_LABEL
152
c5905afb
IM
153#define jump_label_key__true STATIC_KEY_INIT_TRUE
154#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
155
156#define SCHED_FEAT(name, enabled) \
157 jump_label_key__##enabled ,
158
c5905afb 159struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
160#include "features.h"
161};
162
163#undef SCHED_FEAT
164
165static void sched_feat_disable(int i)
166{
e33886b3 167 static_key_disable(&sched_feat_keys[i]);
f8b6d1cc
PZ
168}
169
170static void sched_feat_enable(int i)
171{
e33886b3 172 static_key_enable(&sched_feat_keys[i]);
f8b6d1cc
PZ
173}
174#else
175static void sched_feat_disable(int i) { };
176static void sched_feat_enable(int i) { };
177#endif /* HAVE_JUMP_LABEL */
178
1a687c2e 179static int sched_feat_set(char *cmp)
f00b45c1 180{
f00b45c1 181 int i;
1a687c2e 182 int neg = 0;
f00b45c1 183
524429c3 184 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
185 neg = 1;
186 cmp += 3;
187 }
188
f8b6d1cc 189 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 190 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 191 if (neg) {
f00b45c1 192 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
193 sched_feat_disable(i);
194 } else {
f00b45c1 195 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
196 sched_feat_enable(i);
197 }
f00b45c1
PZ
198 break;
199 }
200 }
201
1a687c2e
MG
202 return i;
203}
204
205static ssize_t
206sched_feat_write(struct file *filp, const char __user *ubuf,
207 size_t cnt, loff_t *ppos)
208{
209 char buf[64];
210 char *cmp;
211 int i;
5cd08fbf 212 struct inode *inode;
1a687c2e
MG
213
214 if (cnt > 63)
215 cnt = 63;
216
217 if (copy_from_user(&buf, ubuf, cnt))
218 return -EFAULT;
219
220 buf[cnt] = 0;
221 cmp = strstrip(buf);
222
5cd08fbf
JB
223 /* Ensure the static_key remains in a consistent state */
224 inode = file_inode(filp);
225 mutex_lock(&inode->i_mutex);
1a687c2e 226 i = sched_feat_set(cmp);
5cd08fbf 227 mutex_unlock(&inode->i_mutex);
f8b6d1cc 228 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
229 return -EINVAL;
230
42994724 231 *ppos += cnt;
f00b45c1
PZ
232
233 return cnt;
234}
235
34f3a814
LZ
236static int sched_feat_open(struct inode *inode, struct file *filp)
237{
238 return single_open(filp, sched_feat_show, NULL);
239}
240
828c0950 241static const struct file_operations sched_feat_fops = {
34f3a814
LZ
242 .open = sched_feat_open,
243 .write = sched_feat_write,
244 .read = seq_read,
245 .llseek = seq_lseek,
246 .release = single_release,
f00b45c1
PZ
247};
248
249static __init int sched_init_debug(void)
250{
f00b45c1
PZ
251 debugfs_create_file("sched_features", 0644, NULL, NULL,
252 &sched_feat_fops);
253
254 return 0;
255}
256late_initcall(sched_init_debug);
f8b6d1cc 257#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 258
b82d9fdd
PZ
259/*
260 * Number of tasks to iterate in a single balance run.
261 * Limited because this is done with IRQs disabled.
262 */
263const_debug unsigned int sysctl_sched_nr_migrate = 32;
264
e9e9250b
PZ
265/*
266 * period over which we average the RT time consumption, measured
267 * in ms.
268 *
269 * default: 1s
270 */
271const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
272
fa85ae24 273/*
9f0c1e56 274 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
275 * default: 1s
276 */
9f0c1e56 277unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 278
029632fb 279__read_mostly int scheduler_running;
6892b75e 280
9f0c1e56
PZ
281/*
282 * part of the period that we allow rt tasks to run in us.
283 * default: 0.95s
284 */
285int sysctl_sched_rt_runtime = 950000;
fa85ae24 286
3fa0818b
RR
287/* cpus with isolated domains */
288cpumask_var_t cpu_isolated_map;
289
1da177e4 290/*
cc2a73b5 291 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 292 */
a9957449 293static struct rq *this_rq_lock(void)
1da177e4
LT
294 __acquires(rq->lock)
295{
70b97a7f 296 struct rq *rq;
1da177e4
LT
297
298 local_irq_disable();
299 rq = this_rq();
05fa785c 300 raw_spin_lock(&rq->lock);
1da177e4
LT
301
302 return rq;
303}
304
8f4d37ec
PZ
305#ifdef CONFIG_SCHED_HRTICK
306/*
307 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 308 */
8f4d37ec 309
8f4d37ec
PZ
310static void hrtick_clear(struct rq *rq)
311{
312 if (hrtimer_active(&rq->hrtick_timer))
313 hrtimer_cancel(&rq->hrtick_timer);
314}
315
8f4d37ec
PZ
316/*
317 * High-resolution timer tick.
318 * Runs from hardirq context with interrupts disabled.
319 */
320static enum hrtimer_restart hrtick(struct hrtimer *timer)
321{
322 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
323
324 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
325
05fa785c 326 raw_spin_lock(&rq->lock);
3e51f33f 327 update_rq_clock(rq);
8f4d37ec 328 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 329 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
330
331 return HRTIMER_NORESTART;
332}
333
95e904c7 334#ifdef CONFIG_SMP
971ee28c 335
4961b6e1 336static void __hrtick_restart(struct rq *rq)
971ee28c
PZ
337{
338 struct hrtimer *timer = &rq->hrtick_timer;
971ee28c 339
4961b6e1 340 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
971ee28c
PZ
341}
342
31656519
PZ
343/*
344 * called from hardirq (IPI) context
345 */
346static void __hrtick_start(void *arg)
b328ca18 347{
31656519 348 struct rq *rq = arg;
b328ca18 349
05fa785c 350 raw_spin_lock(&rq->lock);
971ee28c 351 __hrtick_restart(rq);
31656519 352 rq->hrtick_csd_pending = 0;
05fa785c 353 raw_spin_unlock(&rq->lock);
b328ca18
PZ
354}
355
31656519
PZ
356/*
357 * Called to set the hrtick timer state.
358 *
359 * called with rq->lock held and irqs disabled
360 */
029632fb 361void hrtick_start(struct rq *rq, u64 delay)
b328ca18 362{
31656519 363 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 364 ktime_t time;
365 s64 delta;
366
367 /*
368 * Don't schedule slices shorter than 10000ns, that just
369 * doesn't make sense and can cause timer DoS.
370 */
371 delta = max_t(s64, delay, 10000LL);
372 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 373
cc584b21 374 hrtimer_set_expires(timer, time);
31656519
PZ
375
376 if (rq == this_rq()) {
971ee28c 377 __hrtick_restart(rq);
31656519 378 } else if (!rq->hrtick_csd_pending) {
c46fff2a 379 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
380 rq->hrtick_csd_pending = 1;
381 }
b328ca18
PZ
382}
383
384static int
385hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
386{
387 int cpu = (int)(long)hcpu;
388
389 switch (action) {
390 case CPU_UP_CANCELED:
391 case CPU_UP_CANCELED_FROZEN:
392 case CPU_DOWN_PREPARE:
393 case CPU_DOWN_PREPARE_FROZEN:
394 case CPU_DEAD:
395 case CPU_DEAD_FROZEN:
31656519 396 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
397 return NOTIFY_OK;
398 }
399
400 return NOTIFY_DONE;
401}
402
fa748203 403static __init void init_hrtick(void)
b328ca18
PZ
404{
405 hotcpu_notifier(hotplug_hrtick, 0);
406}
31656519
PZ
407#else
408/*
409 * Called to set the hrtick timer state.
410 *
411 * called with rq->lock held and irqs disabled
412 */
029632fb 413void hrtick_start(struct rq *rq, u64 delay)
31656519 414{
86893335
WL
415 /*
416 * Don't schedule slices shorter than 10000ns, that just
417 * doesn't make sense. Rely on vruntime for fairness.
418 */
419 delay = max_t(u64, delay, 10000LL);
4961b6e1
TG
420 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
421 HRTIMER_MODE_REL_PINNED);
31656519 422}
b328ca18 423
006c75f1 424static inline void init_hrtick(void)
8f4d37ec 425{
8f4d37ec 426}
31656519 427#endif /* CONFIG_SMP */
8f4d37ec 428
31656519 429static void init_rq_hrtick(struct rq *rq)
8f4d37ec 430{
31656519
PZ
431#ifdef CONFIG_SMP
432 rq->hrtick_csd_pending = 0;
8f4d37ec 433
31656519
PZ
434 rq->hrtick_csd.flags = 0;
435 rq->hrtick_csd.func = __hrtick_start;
436 rq->hrtick_csd.info = rq;
437#endif
8f4d37ec 438
31656519
PZ
439 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
440 rq->hrtick_timer.function = hrtick;
8f4d37ec 441}
006c75f1 442#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
443static inline void hrtick_clear(struct rq *rq)
444{
445}
446
8f4d37ec
PZ
447static inline void init_rq_hrtick(struct rq *rq)
448{
449}
450
b328ca18
PZ
451static inline void init_hrtick(void)
452{
453}
006c75f1 454#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 455
fd99f91a
PZ
456/*
457 * cmpxchg based fetch_or, macro so it works for different integer types
458 */
459#define fetch_or(ptr, val) \
460({ typeof(*(ptr)) __old, __val = *(ptr); \
461 for (;;) { \
462 __old = cmpxchg((ptr), __val, __val | (val)); \
463 if (__old == __val) \
464 break; \
465 __val = __old; \
466 } \
467 __old; \
468})
469
e3baac47 470#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
471/*
472 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
473 * this avoids any races wrt polling state changes and thereby avoids
474 * spurious IPIs.
475 */
476static bool set_nr_and_not_polling(struct task_struct *p)
477{
478 struct thread_info *ti = task_thread_info(p);
479 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
480}
e3baac47
PZ
481
482/*
483 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
484 *
485 * If this returns true, then the idle task promises to call
486 * sched_ttwu_pending() and reschedule soon.
487 */
488static bool set_nr_if_polling(struct task_struct *p)
489{
490 struct thread_info *ti = task_thread_info(p);
316c1608 491 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
e3baac47
PZ
492
493 for (;;) {
494 if (!(val & _TIF_POLLING_NRFLAG))
495 return false;
496 if (val & _TIF_NEED_RESCHED)
497 return true;
498 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
499 if (old == val)
500 break;
501 val = old;
502 }
503 return true;
504}
505
fd99f91a
PZ
506#else
507static bool set_nr_and_not_polling(struct task_struct *p)
508{
509 set_tsk_need_resched(p);
510 return true;
511}
e3baac47
PZ
512
513#ifdef CONFIG_SMP
514static bool set_nr_if_polling(struct task_struct *p)
515{
516 return false;
517}
518#endif
fd99f91a
PZ
519#endif
520
76751049
PZ
521void wake_q_add(struct wake_q_head *head, struct task_struct *task)
522{
523 struct wake_q_node *node = &task->wake_q;
524
525 /*
526 * Atomically grab the task, if ->wake_q is !nil already it means
527 * its already queued (either by us or someone else) and will get the
528 * wakeup due to that.
529 *
530 * This cmpxchg() implies a full barrier, which pairs with the write
531 * barrier implied by the wakeup in wake_up_list().
532 */
533 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
534 return;
535
536 get_task_struct(task);
537
538 /*
539 * The head is context local, there can be no concurrency.
540 */
541 *head->lastp = node;
542 head->lastp = &node->next;
543}
544
545void wake_up_q(struct wake_q_head *head)
546{
547 struct wake_q_node *node = head->first;
548
549 while (node != WAKE_Q_TAIL) {
550 struct task_struct *task;
551
552 task = container_of(node, struct task_struct, wake_q);
553 BUG_ON(!task);
554 /* task can safely be re-inserted now */
555 node = node->next;
556 task->wake_q.next = NULL;
557
558 /*
559 * wake_up_process() implies a wmb() to pair with the queueing
560 * in wake_q_add() so as not to miss wakeups.
561 */
562 wake_up_process(task);
563 put_task_struct(task);
564 }
565}
566
c24d20db 567/*
8875125e 568 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
569 *
570 * On UP this means the setting of the need_resched flag, on SMP it
571 * might also involve a cross-CPU call to trigger the scheduler on
572 * the target CPU.
573 */
8875125e 574void resched_curr(struct rq *rq)
c24d20db 575{
8875125e 576 struct task_struct *curr = rq->curr;
c24d20db
IM
577 int cpu;
578
8875125e 579 lockdep_assert_held(&rq->lock);
c24d20db 580
8875125e 581 if (test_tsk_need_resched(curr))
c24d20db
IM
582 return;
583
8875125e 584 cpu = cpu_of(rq);
fd99f91a 585
f27dde8d 586 if (cpu == smp_processor_id()) {
8875125e 587 set_tsk_need_resched(curr);
f27dde8d 588 set_preempt_need_resched();
c24d20db 589 return;
f27dde8d 590 }
c24d20db 591
8875125e 592 if (set_nr_and_not_polling(curr))
c24d20db 593 smp_send_reschedule(cpu);
dfc68f29
AL
594 else
595 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
596}
597
029632fb 598void resched_cpu(int cpu)
c24d20db
IM
599{
600 struct rq *rq = cpu_rq(cpu);
601 unsigned long flags;
602
05fa785c 603 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db 604 return;
8875125e 605 resched_curr(rq);
05fa785c 606 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 607}
06d8308c 608
b021fe3e 609#ifdef CONFIG_SMP
3451d024 610#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
611/*
612 * In the semi idle case, use the nearest busy cpu for migrating timers
613 * from an idle cpu. This is good for power-savings.
614 *
615 * We don't do similar optimization for completely idle system, as
616 * selecting an idle cpu will add more delays to the timers than intended
617 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
618 */
bc7a34b8 619int get_nohz_timer_target(void)
83cd4fe2 620{
bc7a34b8 621 int i, cpu = smp_processor_id();
83cd4fe2
VP
622 struct sched_domain *sd;
623
9642d18e 624 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
6201b4d6
VK
625 return cpu;
626
057f3fad 627 rcu_read_lock();
83cd4fe2 628 for_each_domain(cpu, sd) {
057f3fad 629 for_each_cpu(i, sched_domain_span(sd)) {
9642d18e 630 if (!idle_cpu(i) && is_housekeeping_cpu(cpu)) {
057f3fad
PZ
631 cpu = i;
632 goto unlock;
633 }
634 }
83cd4fe2 635 }
9642d18e
VH
636
637 if (!is_housekeeping_cpu(cpu))
638 cpu = housekeeping_any_cpu();
057f3fad
PZ
639unlock:
640 rcu_read_unlock();
83cd4fe2
VP
641 return cpu;
642}
06d8308c
TG
643/*
644 * When add_timer_on() enqueues a timer into the timer wheel of an
645 * idle CPU then this timer might expire before the next timer event
646 * which is scheduled to wake up that CPU. In case of a completely
647 * idle system the next event might even be infinite time into the
648 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
649 * leaves the inner idle loop so the newly added timer is taken into
650 * account when the CPU goes back to idle and evaluates the timer
651 * wheel for the next timer event.
652 */
1c20091e 653static void wake_up_idle_cpu(int cpu)
06d8308c
TG
654{
655 struct rq *rq = cpu_rq(cpu);
656
657 if (cpu == smp_processor_id())
658 return;
659
67b9ca70 660 if (set_nr_and_not_polling(rq->idle))
06d8308c 661 smp_send_reschedule(cpu);
dfc68f29
AL
662 else
663 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
664}
665
c5bfece2 666static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 667{
53c5fa16
FW
668 /*
669 * We just need the target to call irq_exit() and re-evaluate
670 * the next tick. The nohz full kick at least implies that.
671 * If needed we can still optimize that later with an
672 * empty IRQ.
673 */
c5bfece2 674 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
675 if (cpu != smp_processor_id() ||
676 tick_nohz_tick_stopped())
53c5fa16 677 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
678 return true;
679 }
680
681 return false;
682}
683
684void wake_up_nohz_cpu(int cpu)
685{
c5bfece2 686 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
687 wake_up_idle_cpu(cpu);
688}
689
ca38062e 690static inline bool got_nohz_idle_kick(void)
45bf76df 691{
1c792db7 692 int cpu = smp_processor_id();
873b4c65
VG
693
694 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
695 return false;
696
697 if (idle_cpu(cpu) && !need_resched())
698 return true;
699
700 /*
701 * We can't run Idle Load Balance on this CPU for this time so we
702 * cancel it and clear NOHZ_BALANCE_KICK
703 */
704 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
705 return false;
45bf76df
IM
706}
707
3451d024 708#else /* CONFIG_NO_HZ_COMMON */
45bf76df 709
ca38062e 710static inline bool got_nohz_idle_kick(void)
2069dd75 711{
ca38062e 712 return false;
2069dd75
PZ
713}
714
3451d024 715#endif /* CONFIG_NO_HZ_COMMON */
d842de87 716
ce831b38
FW
717#ifdef CONFIG_NO_HZ_FULL
718bool sched_can_stop_tick(void)
719{
1e78cdbd
RR
720 /*
721 * FIFO realtime policy runs the highest priority task. Other runnable
722 * tasks are of a lower priority. The scheduler tick does nothing.
723 */
724 if (current->policy == SCHED_FIFO)
725 return true;
726
727 /*
728 * Round-robin realtime tasks time slice with other tasks at the same
729 * realtime priority. Is this task the only one at this priority?
730 */
731 if (current->policy == SCHED_RR) {
732 struct sched_rt_entity *rt_se = &current->rt;
733
734 return rt_se->run_list.prev == rt_se->run_list.next;
735 }
736
3882ec64
FW
737 /*
738 * More than one running task need preemption.
739 * nr_running update is assumed to be visible
740 * after IPI is sent from wakers.
741 */
541b8264
VK
742 if (this_rq()->nr_running > 1)
743 return false;
ce831b38 744
541b8264 745 return true;
ce831b38
FW
746}
747#endif /* CONFIG_NO_HZ_FULL */
d842de87 748
029632fb 749void sched_avg_update(struct rq *rq)
18d95a28 750{
e9e9250b
PZ
751 s64 period = sched_avg_period();
752
78becc27 753 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
754 /*
755 * Inline assembly required to prevent the compiler
756 * optimising this loop into a divmod call.
757 * See __iter_div_u64_rem() for another example of this.
758 */
759 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
760 rq->age_stamp += period;
761 rq->rt_avg /= 2;
762 }
18d95a28
PZ
763}
764
6d6bc0ad 765#endif /* CONFIG_SMP */
18d95a28 766
a790de99
PT
767#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
768 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 769/*
8277434e
PT
770 * Iterate task_group tree rooted at *from, calling @down when first entering a
771 * node and @up when leaving it for the final time.
772 *
773 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 774 */
029632fb 775int walk_tg_tree_from(struct task_group *from,
8277434e 776 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
777{
778 struct task_group *parent, *child;
eb755805 779 int ret;
c09595f6 780
8277434e
PT
781 parent = from;
782
c09595f6 783down:
eb755805
PZ
784 ret = (*down)(parent, data);
785 if (ret)
8277434e 786 goto out;
c09595f6
PZ
787 list_for_each_entry_rcu(child, &parent->children, siblings) {
788 parent = child;
789 goto down;
790
791up:
792 continue;
793 }
eb755805 794 ret = (*up)(parent, data);
8277434e
PT
795 if (ret || parent == from)
796 goto out;
c09595f6
PZ
797
798 child = parent;
799 parent = parent->parent;
800 if (parent)
801 goto up;
8277434e 802out:
eb755805 803 return ret;
c09595f6
PZ
804}
805
029632fb 806int tg_nop(struct task_group *tg, void *data)
eb755805 807{
e2b245f8 808 return 0;
eb755805 809}
18d95a28
PZ
810#endif
811
45bf76df
IM
812static void set_load_weight(struct task_struct *p)
813{
f05998d4
NR
814 int prio = p->static_prio - MAX_RT_PRIO;
815 struct load_weight *load = &p->se.load;
816
dd41f596
IM
817 /*
818 * SCHED_IDLE tasks get minimal weight:
819 */
20f9cd2a 820 if (idle_policy(p->policy)) {
c8b28116 821 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 822 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
823 return;
824 }
71f8bd46 825
c8b28116 826 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 827 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
828}
829
371fd7e7 830static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 831{
a64692a3 832 update_rq_clock(rq);
43148951 833 sched_info_queued(rq, p);
371fd7e7 834 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
835}
836
371fd7e7 837static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 838{
a64692a3 839 update_rq_clock(rq);
43148951 840 sched_info_dequeued(rq, p);
371fd7e7 841 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
842}
843
029632fb 844void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
845{
846 if (task_contributes_to_load(p))
847 rq->nr_uninterruptible--;
848
371fd7e7 849 enqueue_task(rq, p, flags);
1e3c88bd
PZ
850}
851
029632fb 852void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
853{
854 if (task_contributes_to_load(p))
855 rq->nr_uninterruptible++;
856
371fd7e7 857 dequeue_task(rq, p, flags);
1e3c88bd
PZ
858}
859
fe44d621 860static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 861{
095c0aa8
GC
862/*
863 * In theory, the compile should just see 0 here, and optimize out the call
864 * to sched_rt_avg_update. But I don't trust it...
865 */
866#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
867 s64 steal = 0, irq_delta = 0;
868#endif
869#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 870 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
871
872 /*
873 * Since irq_time is only updated on {soft,}irq_exit, we might run into
874 * this case when a previous update_rq_clock() happened inside a
875 * {soft,}irq region.
876 *
877 * When this happens, we stop ->clock_task and only update the
878 * prev_irq_time stamp to account for the part that fit, so that a next
879 * update will consume the rest. This ensures ->clock_task is
880 * monotonic.
881 *
882 * It does however cause some slight miss-attribution of {soft,}irq
883 * time, a more accurate solution would be to update the irq_time using
884 * the current rq->clock timestamp, except that would require using
885 * atomic ops.
886 */
887 if (irq_delta > delta)
888 irq_delta = delta;
889
890 rq->prev_irq_time += irq_delta;
891 delta -= irq_delta;
095c0aa8
GC
892#endif
893#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 894 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
895 steal = paravirt_steal_clock(cpu_of(rq));
896 steal -= rq->prev_steal_time_rq;
897
898 if (unlikely(steal > delta))
899 steal = delta;
900
095c0aa8 901 rq->prev_steal_time_rq += steal;
095c0aa8
GC
902 delta -= steal;
903 }
904#endif
905
fe44d621
PZ
906 rq->clock_task += delta;
907
095c0aa8 908#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
5d4dfddd 909 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
095c0aa8
GC
910 sched_rt_avg_update(rq, irq_delta + steal);
911#endif
aa483808
VP
912}
913
34f971f6
PZ
914void sched_set_stop_task(int cpu, struct task_struct *stop)
915{
916 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
917 struct task_struct *old_stop = cpu_rq(cpu)->stop;
918
919 if (stop) {
920 /*
921 * Make it appear like a SCHED_FIFO task, its something
922 * userspace knows about and won't get confused about.
923 *
924 * Also, it will make PI more or less work without too
925 * much confusion -- but then, stop work should not
926 * rely on PI working anyway.
927 */
928 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
929
930 stop->sched_class = &stop_sched_class;
931 }
932
933 cpu_rq(cpu)->stop = stop;
934
935 if (old_stop) {
936 /*
937 * Reset it back to a normal scheduling class so that
938 * it can die in pieces.
939 */
940 old_stop->sched_class = &rt_sched_class;
941 }
942}
943
14531189 944/*
dd41f596 945 * __normal_prio - return the priority that is based on the static prio
14531189 946 */
14531189
IM
947static inline int __normal_prio(struct task_struct *p)
948{
dd41f596 949 return p->static_prio;
14531189
IM
950}
951
b29739f9
IM
952/*
953 * Calculate the expected normal priority: i.e. priority
954 * without taking RT-inheritance into account. Might be
955 * boosted by interactivity modifiers. Changes upon fork,
956 * setprio syscalls, and whenever the interactivity
957 * estimator recalculates.
958 */
36c8b586 959static inline int normal_prio(struct task_struct *p)
b29739f9
IM
960{
961 int prio;
962
aab03e05
DF
963 if (task_has_dl_policy(p))
964 prio = MAX_DL_PRIO-1;
965 else if (task_has_rt_policy(p))
b29739f9
IM
966 prio = MAX_RT_PRIO-1 - p->rt_priority;
967 else
968 prio = __normal_prio(p);
969 return prio;
970}
971
972/*
973 * Calculate the current priority, i.e. the priority
974 * taken into account by the scheduler. This value might
975 * be boosted by RT tasks, or might be boosted by
976 * interactivity modifiers. Will be RT if the task got
977 * RT-boosted. If not then it returns p->normal_prio.
978 */
36c8b586 979static int effective_prio(struct task_struct *p)
b29739f9
IM
980{
981 p->normal_prio = normal_prio(p);
982 /*
983 * If we are RT tasks or we were boosted to RT priority,
984 * keep the priority unchanged. Otherwise, update priority
985 * to the normal priority:
986 */
987 if (!rt_prio(p->prio))
988 return p->normal_prio;
989 return p->prio;
990}
991
1da177e4
LT
992/**
993 * task_curr - is this task currently executing on a CPU?
994 * @p: the task in question.
e69f6186
YB
995 *
996 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 997 */
36c8b586 998inline int task_curr(const struct task_struct *p)
1da177e4
LT
999{
1000 return cpu_curr(task_cpu(p)) == p;
1001}
1002
67dfa1b7 1003/*
4c9a4bc8
PZ
1004 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1005 * use the balance_callback list if you want balancing.
1006 *
1007 * this means any call to check_class_changed() must be followed by a call to
1008 * balance_callback().
67dfa1b7 1009 */
cb469845
SR
1010static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1011 const struct sched_class *prev_class,
da7a735e 1012 int oldprio)
cb469845
SR
1013{
1014 if (prev_class != p->sched_class) {
1015 if (prev_class->switched_from)
da7a735e 1016 prev_class->switched_from(rq, p);
4c9a4bc8 1017
da7a735e 1018 p->sched_class->switched_to(rq, p);
2d3d891d 1019 } else if (oldprio != p->prio || dl_task(p))
da7a735e 1020 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
1021}
1022
029632fb 1023void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
1024{
1025 const struct sched_class *class;
1026
1027 if (p->sched_class == rq->curr->sched_class) {
1028 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1029 } else {
1030 for_each_class(class) {
1031 if (class == rq->curr->sched_class)
1032 break;
1033 if (class == p->sched_class) {
8875125e 1034 resched_curr(rq);
1e5a7405
PZ
1035 break;
1036 }
1037 }
1038 }
1039
1040 /*
1041 * A queue event has occurred, and we're going to schedule. In
1042 * this case, we can save a useless back to back clock update.
1043 */
da0c1e65 1044 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
9edfbfed 1045 rq_clock_skip_update(rq, true);
1e5a7405
PZ
1046}
1047
1da177e4 1048#ifdef CONFIG_SMP
5cc389bc
PZ
1049/*
1050 * This is how migration works:
1051 *
1052 * 1) we invoke migration_cpu_stop() on the target CPU using
1053 * stop_one_cpu().
1054 * 2) stopper starts to run (implicitly forcing the migrated thread
1055 * off the CPU)
1056 * 3) it checks whether the migrated task is still in the wrong runqueue.
1057 * 4) if it's in the wrong runqueue then the migration thread removes
1058 * it and puts it into the right queue.
1059 * 5) stopper completes and stop_one_cpu() returns and the migration
1060 * is done.
1061 */
1062
1063/*
1064 * move_queued_task - move a queued task to new rq.
1065 *
1066 * Returns (locked) new rq. Old rq's lock is released.
1067 */
5e16bbc2 1068static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
5cc389bc 1069{
5cc389bc
PZ
1070 lockdep_assert_held(&rq->lock);
1071
1072 dequeue_task(rq, p, 0);
1073 p->on_rq = TASK_ON_RQ_MIGRATING;
1074 set_task_cpu(p, new_cpu);
1075 raw_spin_unlock(&rq->lock);
1076
1077 rq = cpu_rq(new_cpu);
1078
1079 raw_spin_lock(&rq->lock);
1080 BUG_ON(task_cpu(p) != new_cpu);
1081 p->on_rq = TASK_ON_RQ_QUEUED;
1082 enqueue_task(rq, p, 0);
1083 check_preempt_curr(rq, p, 0);
1084
1085 return rq;
1086}
1087
1088struct migration_arg {
1089 struct task_struct *task;
1090 int dest_cpu;
1091};
1092
1093/*
1094 * Move (not current) task off this cpu, onto dest cpu. We're doing
1095 * this because either it can't run here any more (set_cpus_allowed()
1096 * away from this CPU, or CPU going down), or because we're
1097 * attempting to rebalance this task on exec (sched_exec).
1098 *
1099 * So we race with normal scheduler movements, but that's OK, as long
1100 * as the task is no longer on this CPU.
5cc389bc 1101 */
5e16bbc2 1102static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
5cc389bc 1103{
5cc389bc 1104 if (unlikely(!cpu_active(dest_cpu)))
5e16bbc2 1105 return rq;
5cc389bc
PZ
1106
1107 /* Affinity changed (again). */
1108 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
5e16bbc2 1109 return rq;
5cc389bc 1110
5e16bbc2
PZ
1111 rq = move_queued_task(rq, p, dest_cpu);
1112
1113 return rq;
5cc389bc
PZ
1114}
1115
1116/*
1117 * migration_cpu_stop - this will be executed by a highprio stopper thread
1118 * and performs thread migration by bumping thread off CPU then
1119 * 'pushing' onto another runqueue.
1120 */
1121static int migration_cpu_stop(void *data)
1122{
1123 struct migration_arg *arg = data;
5e16bbc2
PZ
1124 struct task_struct *p = arg->task;
1125 struct rq *rq = this_rq();
5cc389bc
PZ
1126
1127 /*
1128 * The original target cpu might have gone down and we might
1129 * be on another cpu but it doesn't matter.
1130 */
1131 local_irq_disable();
1132 /*
1133 * We need to explicitly wake pending tasks before running
1134 * __migrate_task() such that we will not miss enforcing cpus_allowed
1135 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1136 */
1137 sched_ttwu_pending();
5e16bbc2
PZ
1138
1139 raw_spin_lock(&p->pi_lock);
1140 raw_spin_lock(&rq->lock);
1141 /*
1142 * If task_rq(p) != rq, it cannot be migrated here, because we're
1143 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1144 * we're holding p->pi_lock.
1145 */
1146 if (task_rq(p) == rq && task_on_rq_queued(p))
1147 rq = __migrate_task(rq, p, arg->dest_cpu);
1148 raw_spin_unlock(&rq->lock);
1149 raw_spin_unlock(&p->pi_lock);
1150
5cc389bc
PZ
1151 local_irq_enable();
1152 return 0;
1153}
1154
c5b28038
PZ
1155/*
1156 * sched_class::set_cpus_allowed must do the below, but is not required to
1157 * actually call this function.
1158 */
1159void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
5cc389bc 1160{
5cc389bc
PZ
1161 cpumask_copy(&p->cpus_allowed, new_mask);
1162 p->nr_cpus_allowed = cpumask_weight(new_mask);
1163}
1164
c5b28038
PZ
1165void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1166{
6c37067e
PZ
1167 struct rq *rq = task_rq(p);
1168 bool queued, running;
1169
c5b28038 1170 lockdep_assert_held(&p->pi_lock);
6c37067e
PZ
1171
1172 queued = task_on_rq_queued(p);
1173 running = task_current(rq, p);
1174
1175 if (queued) {
1176 /*
1177 * Because __kthread_bind() calls this on blocked tasks without
1178 * holding rq->lock.
1179 */
1180 lockdep_assert_held(&rq->lock);
1181 dequeue_task(rq, p, 0);
1182 }
1183 if (running)
1184 put_prev_task(rq, p);
1185
c5b28038 1186 p->sched_class->set_cpus_allowed(p, new_mask);
6c37067e
PZ
1187
1188 if (running)
1189 p->sched_class->set_curr_task(rq);
1190 if (queued)
1191 enqueue_task(rq, p, 0);
c5b28038
PZ
1192}
1193
5cc389bc
PZ
1194/*
1195 * Change a given task's CPU affinity. Migrate the thread to a
1196 * proper CPU and schedule it away if the CPU it's executing on
1197 * is removed from the allowed bitmask.
1198 *
1199 * NOTE: the caller must have a valid reference to the task, the
1200 * task must not exit() & deallocate itself prematurely. The
1201 * call is not atomic; no spinlocks may be held.
1202 */
25834c73
PZ
1203static int __set_cpus_allowed_ptr(struct task_struct *p,
1204 const struct cpumask *new_mask, bool check)
5cc389bc
PZ
1205{
1206 unsigned long flags;
1207 struct rq *rq;
1208 unsigned int dest_cpu;
1209 int ret = 0;
1210
1211 rq = task_rq_lock(p, &flags);
1212
25834c73
PZ
1213 /*
1214 * Must re-check here, to close a race against __kthread_bind(),
1215 * sched_setaffinity() is not guaranteed to observe the flag.
1216 */
1217 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1218 ret = -EINVAL;
1219 goto out;
1220 }
1221
5cc389bc
PZ
1222 if (cpumask_equal(&p->cpus_allowed, new_mask))
1223 goto out;
1224
1225 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1226 ret = -EINVAL;
1227 goto out;
1228 }
1229
1230 do_set_cpus_allowed(p, new_mask);
1231
1232 /* Can the task run on the task's current CPU? If so, we're done */
1233 if (cpumask_test_cpu(task_cpu(p), new_mask))
1234 goto out;
1235
1236 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
1237 if (task_running(rq, p) || p->state == TASK_WAKING) {
1238 struct migration_arg arg = { p, dest_cpu };
1239 /* Need help from migration thread: drop lock and wait. */
1240 task_rq_unlock(rq, p, &flags);
1241 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1242 tlb_migrate_finish(p->mm);
1243 return 0;
cbce1a68
PZ
1244 } else if (task_on_rq_queued(p)) {
1245 /*
1246 * OK, since we're going to drop the lock immediately
1247 * afterwards anyway.
1248 */
1249 lockdep_unpin_lock(&rq->lock);
5e16bbc2 1250 rq = move_queued_task(rq, p, dest_cpu);
cbce1a68
PZ
1251 lockdep_pin_lock(&rq->lock);
1252 }
5cc389bc
PZ
1253out:
1254 task_rq_unlock(rq, p, &flags);
1255
1256 return ret;
1257}
25834c73
PZ
1258
1259int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1260{
1261 return __set_cpus_allowed_ptr(p, new_mask, false);
1262}
5cc389bc
PZ
1263EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1264
dd41f596 1265void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1266{
e2912009
PZ
1267#ifdef CONFIG_SCHED_DEBUG
1268 /*
1269 * We should never call set_task_cpu() on a blocked task,
1270 * ttwu() will sort out the placement.
1271 */
077614ee 1272 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
e2336f6e 1273 !p->on_rq);
0122ec5b
PZ
1274
1275#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1276 /*
1277 * The caller should hold either p->pi_lock or rq->lock, when changing
1278 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1279 *
1280 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1281 * see task_group().
6c6c54e1
PZ
1282 *
1283 * Furthermore, all task_rq users should acquire both locks, see
1284 * task_rq_lock().
1285 */
0122ec5b
PZ
1286 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1287 lockdep_is_held(&task_rq(p)->lock)));
1288#endif
e2912009
PZ
1289#endif
1290
de1d7286 1291 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1292
0c69774e 1293 if (task_cpu(p) != new_cpu) {
0a74bef8
PT
1294 if (p->sched_class->migrate_task_rq)
1295 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 1296 p->se.nr_migrations++;
ff303e66 1297 perf_event_task_migrate(p);
0c69774e 1298 }
dd41f596
IM
1299
1300 __set_task_cpu(p, new_cpu);
c65cc870
IM
1301}
1302
ac66f547
PZ
1303static void __migrate_swap_task(struct task_struct *p, int cpu)
1304{
da0c1e65 1305 if (task_on_rq_queued(p)) {
ac66f547
PZ
1306 struct rq *src_rq, *dst_rq;
1307
1308 src_rq = task_rq(p);
1309 dst_rq = cpu_rq(cpu);
1310
1311 deactivate_task(src_rq, p, 0);
1312 set_task_cpu(p, cpu);
1313 activate_task(dst_rq, p, 0);
1314 check_preempt_curr(dst_rq, p, 0);
1315 } else {
1316 /*
1317 * Task isn't running anymore; make it appear like we migrated
1318 * it before it went to sleep. This means on wakeup we make the
1319 * previous cpu our targer instead of where it really is.
1320 */
1321 p->wake_cpu = cpu;
1322 }
1323}
1324
1325struct migration_swap_arg {
1326 struct task_struct *src_task, *dst_task;
1327 int src_cpu, dst_cpu;
1328};
1329
1330static int migrate_swap_stop(void *data)
1331{
1332 struct migration_swap_arg *arg = data;
1333 struct rq *src_rq, *dst_rq;
1334 int ret = -EAGAIN;
1335
1336 src_rq = cpu_rq(arg->src_cpu);
1337 dst_rq = cpu_rq(arg->dst_cpu);
1338
74602315
PZ
1339 double_raw_lock(&arg->src_task->pi_lock,
1340 &arg->dst_task->pi_lock);
ac66f547
PZ
1341 double_rq_lock(src_rq, dst_rq);
1342 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1343 goto unlock;
1344
1345 if (task_cpu(arg->src_task) != arg->src_cpu)
1346 goto unlock;
1347
1348 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1349 goto unlock;
1350
1351 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1352 goto unlock;
1353
1354 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1355 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1356
1357 ret = 0;
1358
1359unlock:
1360 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1361 raw_spin_unlock(&arg->dst_task->pi_lock);
1362 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1363
1364 return ret;
1365}
1366
1367/*
1368 * Cross migrate two tasks
1369 */
1370int migrate_swap(struct task_struct *cur, struct task_struct *p)
1371{
1372 struct migration_swap_arg arg;
1373 int ret = -EINVAL;
1374
ac66f547
PZ
1375 arg = (struct migration_swap_arg){
1376 .src_task = cur,
1377 .src_cpu = task_cpu(cur),
1378 .dst_task = p,
1379 .dst_cpu = task_cpu(p),
1380 };
1381
1382 if (arg.src_cpu == arg.dst_cpu)
1383 goto out;
1384
6acce3ef
PZ
1385 /*
1386 * These three tests are all lockless; this is OK since all of them
1387 * will be re-checked with proper locks held further down the line.
1388 */
ac66f547
PZ
1389 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1390 goto out;
1391
1392 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1393 goto out;
1394
1395 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1396 goto out;
1397
286549dc 1398 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1399 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1400
1401out:
ac66f547
PZ
1402 return ret;
1403}
1404
1da177e4
LT
1405/*
1406 * wait_task_inactive - wait for a thread to unschedule.
1407 *
85ba2d86
RM
1408 * If @match_state is nonzero, it's the @p->state value just checked and
1409 * not expected to change. If it changes, i.e. @p might have woken up,
1410 * then return zero. When we succeed in waiting for @p to be off its CPU,
1411 * we return a positive number (its total switch count). If a second call
1412 * a short while later returns the same number, the caller can be sure that
1413 * @p has remained unscheduled the whole time.
1414 *
1da177e4
LT
1415 * The caller must ensure that the task *will* unschedule sometime soon,
1416 * else this function might spin for a *long* time. This function can't
1417 * be called with interrupts off, or it may introduce deadlock with
1418 * smp_call_function() if an IPI is sent by the same process we are
1419 * waiting to become inactive.
1420 */
85ba2d86 1421unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1422{
1423 unsigned long flags;
da0c1e65 1424 int running, queued;
85ba2d86 1425 unsigned long ncsw;
70b97a7f 1426 struct rq *rq;
1da177e4 1427
3a5c359a
AK
1428 for (;;) {
1429 /*
1430 * We do the initial early heuristics without holding
1431 * any task-queue locks at all. We'll only try to get
1432 * the runqueue lock when things look like they will
1433 * work out!
1434 */
1435 rq = task_rq(p);
fa490cfd 1436
3a5c359a
AK
1437 /*
1438 * If the task is actively running on another CPU
1439 * still, just relax and busy-wait without holding
1440 * any locks.
1441 *
1442 * NOTE! Since we don't hold any locks, it's not
1443 * even sure that "rq" stays as the right runqueue!
1444 * But we don't care, since "task_running()" will
1445 * return false if the runqueue has changed and p
1446 * is actually now running somewhere else!
1447 */
85ba2d86
RM
1448 while (task_running(rq, p)) {
1449 if (match_state && unlikely(p->state != match_state))
1450 return 0;
3a5c359a 1451 cpu_relax();
85ba2d86 1452 }
fa490cfd 1453
3a5c359a
AK
1454 /*
1455 * Ok, time to look more closely! We need the rq
1456 * lock now, to be *sure*. If we're wrong, we'll
1457 * just go back and repeat.
1458 */
1459 rq = task_rq_lock(p, &flags);
27a9da65 1460 trace_sched_wait_task(p);
3a5c359a 1461 running = task_running(rq, p);
da0c1e65 1462 queued = task_on_rq_queued(p);
85ba2d86 1463 ncsw = 0;
f31e11d8 1464 if (!match_state || p->state == match_state)
93dcf55f 1465 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1466 task_rq_unlock(rq, p, &flags);
fa490cfd 1467
85ba2d86
RM
1468 /*
1469 * If it changed from the expected state, bail out now.
1470 */
1471 if (unlikely(!ncsw))
1472 break;
1473
3a5c359a
AK
1474 /*
1475 * Was it really running after all now that we
1476 * checked with the proper locks actually held?
1477 *
1478 * Oops. Go back and try again..
1479 */
1480 if (unlikely(running)) {
1481 cpu_relax();
1482 continue;
1483 }
fa490cfd 1484
3a5c359a
AK
1485 /*
1486 * It's not enough that it's not actively running,
1487 * it must be off the runqueue _entirely_, and not
1488 * preempted!
1489 *
80dd99b3 1490 * So if it was still runnable (but just not actively
3a5c359a
AK
1491 * running right now), it's preempted, and we should
1492 * yield - it could be a while.
1493 */
da0c1e65 1494 if (unlikely(queued)) {
8eb90c30
TG
1495 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1496
1497 set_current_state(TASK_UNINTERRUPTIBLE);
1498 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1499 continue;
1500 }
fa490cfd 1501
3a5c359a
AK
1502 /*
1503 * Ahh, all good. It wasn't running, and it wasn't
1504 * runnable, which means that it will never become
1505 * running in the future either. We're all done!
1506 */
1507 break;
1508 }
85ba2d86
RM
1509
1510 return ncsw;
1da177e4
LT
1511}
1512
1513/***
1514 * kick_process - kick a running thread to enter/exit the kernel
1515 * @p: the to-be-kicked thread
1516 *
1517 * Cause a process which is running on another CPU to enter
1518 * kernel-mode, without any delay. (to get signals handled.)
1519 *
25985edc 1520 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1521 * because all it wants to ensure is that the remote task enters
1522 * the kernel. If the IPI races and the task has been migrated
1523 * to another CPU then no harm is done and the purpose has been
1524 * achieved as well.
1525 */
36c8b586 1526void kick_process(struct task_struct *p)
1da177e4
LT
1527{
1528 int cpu;
1529
1530 preempt_disable();
1531 cpu = task_cpu(p);
1532 if ((cpu != smp_processor_id()) && task_curr(p))
1533 smp_send_reschedule(cpu);
1534 preempt_enable();
1535}
b43e3521 1536EXPORT_SYMBOL_GPL(kick_process);
1da177e4 1537
30da688e 1538/*
013fdb80 1539 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1540 */
5da9a0fb
PZ
1541static int select_fallback_rq(int cpu, struct task_struct *p)
1542{
aa00d89c
TC
1543 int nid = cpu_to_node(cpu);
1544 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1545 enum { cpuset, possible, fail } state = cpuset;
1546 int dest_cpu;
5da9a0fb 1547
aa00d89c
TC
1548 /*
1549 * If the node that the cpu is on has been offlined, cpu_to_node()
1550 * will return -1. There is no cpu on the node, and we should
1551 * select the cpu on the other node.
1552 */
1553 if (nid != -1) {
1554 nodemask = cpumask_of_node(nid);
1555
1556 /* Look for allowed, online CPU in same node. */
1557 for_each_cpu(dest_cpu, nodemask) {
1558 if (!cpu_online(dest_cpu))
1559 continue;
1560 if (!cpu_active(dest_cpu))
1561 continue;
1562 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1563 return dest_cpu;
1564 }
2baab4e9 1565 }
5da9a0fb 1566
2baab4e9
PZ
1567 for (;;) {
1568 /* Any allowed, online CPU? */
e3831edd 1569 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1570 if (!cpu_online(dest_cpu))
1571 continue;
1572 if (!cpu_active(dest_cpu))
1573 continue;
1574 goto out;
1575 }
5da9a0fb 1576
2baab4e9
PZ
1577 switch (state) {
1578 case cpuset:
1579 /* No more Mr. Nice Guy. */
1580 cpuset_cpus_allowed_fallback(p);
1581 state = possible;
1582 break;
1583
1584 case possible:
1585 do_set_cpus_allowed(p, cpu_possible_mask);
1586 state = fail;
1587 break;
1588
1589 case fail:
1590 BUG();
1591 break;
1592 }
1593 }
1594
1595out:
1596 if (state != cpuset) {
1597 /*
1598 * Don't tell them about moving exiting tasks or
1599 * kernel threads (both mm NULL), since they never
1600 * leave kernel.
1601 */
1602 if (p->mm && printk_ratelimit()) {
aac74dc4 1603 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1604 task_pid_nr(p), p->comm, cpu);
1605 }
5da9a0fb
PZ
1606 }
1607
1608 return dest_cpu;
1609}
1610
e2912009 1611/*
013fdb80 1612 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1613 */
970b13ba 1614static inline
ac66f547 1615int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1616{
cbce1a68
PZ
1617 lockdep_assert_held(&p->pi_lock);
1618
6c1d9410
WL
1619 if (p->nr_cpus_allowed > 1)
1620 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e2912009
PZ
1621
1622 /*
1623 * In order not to call set_task_cpu() on a blocking task we need
1624 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1625 * cpu.
1626 *
1627 * Since this is common to all placement strategies, this lives here.
1628 *
1629 * [ this allows ->select_task() to simply return task_cpu(p) and
1630 * not worry about this generic constraint ]
1631 */
fa17b507 1632 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1633 !cpu_online(cpu)))
5da9a0fb 1634 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1635
1636 return cpu;
970b13ba 1637}
09a40af5
MG
1638
1639static void update_avg(u64 *avg, u64 sample)
1640{
1641 s64 diff = sample - *avg;
1642 *avg += diff >> 3;
1643}
25834c73
PZ
1644
1645#else
1646
1647static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1648 const struct cpumask *new_mask, bool check)
1649{
1650 return set_cpus_allowed_ptr(p, new_mask);
1651}
1652
5cc389bc 1653#endif /* CONFIG_SMP */
970b13ba 1654
d7c01d27 1655static void
b84cb5df 1656ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1657{
d7c01d27 1658#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1659 struct rq *rq = this_rq();
1660
d7c01d27
PZ
1661#ifdef CONFIG_SMP
1662 int this_cpu = smp_processor_id();
1663
1664 if (cpu == this_cpu) {
1665 schedstat_inc(rq, ttwu_local);
1666 schedstat_inc(p, se.statistics.nr_wakeups_local);
1667 } else {
1668 struct sched_domain *sd;
1669
1670 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1671 rcu_read_lock();
d7c01d27
PZ
1672 for_each_domain(this_cpu, sd) {
1673 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1674 schedstat_inc(sd, ttwu_wake_remote);
1675 break;
1676 }
1677 }
057f3fad 1678 rcu_read_unlock();
d7c01d27 1679 }
f339b9dc
PZ
1680
1681 if (wake_flags & WF_MIGRATED)
1682 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1683
d7c01d27
PZ
1684#endif /* CONFIG_SMP */
1685
1686 schedstat_inc(rq, ttwu_count);
9ed3811a 1687 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1688
1689 if (wake_flags & WF_SYNC)
9ed3811a 1690 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1691
d7c01d27
PZ
1692#endif /* CONFIG_SCHEDSTATS */
1693}
1694
1695static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1696{
9ed3811a 1697 activate_task(rq, p, en_flags);
da0c1e65 1698 p->on_rq = TASK_ON_RQ_QUEUED;
c2f7115e
PZ
1699
1700 /* if a worker is waking up, notify workqueue */
1701 if (p->flags & PF_WQ_WORKER)
1702 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1703}
1704
23f41eeb
PZ
1705/*
1706 * Mark the task runnable and perform wakeup-preemption.
1707 */
89363381 1708static void
23f41eeb 1709ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1710{
9ed3811a 1711 check_preempt_curr(rq, p, wake_flags);
9ed3811a 1712 p->state = TASK_RUNNING;
fbd705a0
PZ
1713 trace_sched_wakeup(p);
1714
9ed3811a 1715#ifdef CONFIG_SMP
4c9a4bc8
PZ
1716 if (p->sched_class->task_woken) {
1717 /*
cbce1a68
PZ
1718 * Our task @p is fully woken up and running; so its safe to
1719 * drop the rq->lock, hereafter rq is only used for statistics.
4c9a4bc8 1720 */
cbce1a68 1721 lockdep_unpin_lock(&rq->lock);
9ed3811a 1722 p->sched_class->task_woken(rq, p);
cbce1a68 1723 lockdep_pin_lock(&rq->lock);
4c9a4bc8 1724 }
9ed3811a 1725
e69c6341 1726 if (rq->idle_stamp) {
78becc27 1727 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1728 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1729
abfafa54
JL
1730 update_avg(&rq->avg_idle, delta);
1731
1732 if (rq->avg_idle > max)
9ed3811a 1733 rq->avg_idle = max;
abfafa54 1734
9ed3811a
TH
1735 rq->idle_stamp = 0;
1736 }
1737#endif
1738}
1739
c05fbafb
PZ
1740static void
1741ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1742{
cbce1a68
PZ
1743 lockdep_assert_held(&rq->lock);
1744
c05fbafb
PZ
1745#ifdef CONFIG_SMP
1746 if (p->sched_contributes_to_load)
1747 rq->nr_uninterruptible--;
1748#endif
1749
1750 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1751 ttwu_do_wakeup(rq, p, wake_flags);
1752}
1753
1754/*
1755 * Called in case the task @p isn't fully descheduled from its runqueue,
1756 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1757 * since all we need to do is flip p->state to TASK_RUNNING, since
1758 * the task is still ->on_rq.
1759 */
1760static int ttwu_remote(struct task_struct *p, int wake_flags)
1761{
1762 struct rq *rq;
1763 int ret = 0;
1764
1765 rq = __task_rq_lock(p);
da0c1e65 1766 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
1767 /* check_preempt_curr() may use rq clock */
1768 update_rq_clock(rq);
c05fbafb
PZ
1769 ttwu_do_wakeup(rq, p, wake_flags);
1770 ret = 1;
1771 }
1772 __task_rq_unlock(rq);
1773
1774 return ret;
1775}
1776
317f3941 1777#ifdef CONFIG_SMP
e3baac47 1778void sched_ttwu_pending(void)
317f3941
PZ
1779{
1780 struct rq *rq = this_rq();
fa14ff4a
PZ
1781 struct llist_node *llist = llist_del_all(&rq->wake_list);
1782 struct task_struct *p;
e3baac47 1783 unsigned long flags;
317f3941 1784
e3baac47
PZ
1785 if (!llist)
1786 return;
1787
1788 raw_spin_lock_irqsave(&rq->lock, flags);
cbce1a68 1789 lockdep_pin_lock(&rq->lock);
317f3941 1790
fa14ff4a
PZ
1791 while (llist) {
1792 p = llist_entry(llist, struct task_struct, wake_entry);
1793 llist = llist_next(llist);
317f3941
PZ
1794 ttwu_do_activate(rq, p, 0);
1795 }
1796
cbce1a68 1797 lockdep_unpin_lock(&rq->lock);
e3baac47 1798 raw_spin_unlock_irqrestore(&rq->lock, flags);
317f3941
PZ
1799}
1800
1801void scheduler_ipi(void)
1802{
f27dde8d
PZ
1803 /*
1804 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1805 * TIF_NEED_RESCHED remotely (for the first time) will also send
1806 * this IPI.
1807 */
8cb75e0c 1808 preempt_fold_need_resched();
f27dde8d 1809
fd2ac4f4 1810 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1811 return;
1812
1813 /*
1814 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1815 * traditionally all their work was done from the interrupt return
1816 * path. Now that we actually do some work, we need to make sure
1817 * we do call them.
1818 *
1819 * Some archs already do call them, luckily irq_enter/exit nest
1820 * properly.
1821 *
1822 * Arguably we should visit all archs and update all handlers,
1823 * however a fair share of IPIs are still resched only so this would
1824 * somewhat pessimize the simple resched case.
1825 */
1826 irq_enter();
fa14ff4a 1827 sched_ttwu_pending();
ca38062e
SS
1828
1829 /*
1830 * Check if someone kicked us for doing the nohz idle load balance.
1831 */
873b4c65 1832 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1833 this_rq()->idle_balance = 1;
ca38062e 1834 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1835 }
c5d753a5 1836 irq_exit();
317f3941
PZ
1837}
1838
1839static void ttwu_queue_remote(struct task_struct *p, int cpu)
1840{
e3baac47
PZ
1841 struct rq *rq = cpu_rq(cpu);
1842
1843 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1844 if (!set_nr_if_polling(rq->idle))
1845 smp_send_reschedule(cpu);
1846 else
1847 trace_sched_wake_idle_without_ipi(cpu);
1848 }
317f3941 1849}
d6aa8f85 1850
f6be8af1
CL
1851void wake_up_if_idle(int cpu)
1852{
1853 struct rq *rq = cpu_rq(cpu);
1854 unsigned long flags;
1855
fd7de1e8
AL
1856 rcu_read_lock();
1857
1858 if (!is_idle_task(rcu_dereference(rq->curr)))
1859 goto out;
f6be8af1
CL
1860
1861 if (set_nr_if_polling(rq->idle)) {
1862 trace_sched_wake_idle_without_ipi(cpu);
1863 } else {
1864 raw_spin_lock_irqsave(&rq->lock, flags);
1865 if (is_idle_task(rq->curr))
1866 smp_send_reschedule(cpu);
1867 /* Else cpu is not in idle, do nothing here */
1868 raw_spin_unlock_irqrestore(&rq->lock, flags);
1869 }
fd7de1e8
AL
1870
1871out:
1872 rcu_read_unlock();
f6be8af1
CL
1873}
1874
39be3501 1875bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1876{
1877 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1878}
d6aa8f85 1879#endif /* CONFIG_SMP */
317f3941 1880
c05fbafb
PZ
1881static void ttwu_queue(struct task_struct *p, int cpu)
1882{
1883 struct rq *rq = cpu_rq(cpu);
1884
17d9f311 1885#if defined(CONFIG_SMP)
39be3501 1886 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1887 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1888 ttwu_queue_remote(p, cpu);
1889 return;
1890 }
1891#endif
1892
c05fbafb 1893 raw_spin_lock(&rq->lock);
cbce1a68 1894 lockdep_pin_lock(&rq->lock);
c05fbafb 1895 ttwu_do_activate(rq, p, 0);
cbce1a68 1896 lockdep_unpin_lock(&rq->lock);
c05fbafb 1897 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1898}
1899
1900/**
1da177e4 1901 * try_to_wake_up - wake up a thread
9ed3811a 1902 * @p: the thread to be awakened
1da177e4 1903 * @state: the mask of task states that can be woken
9ed3811a 1904 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1905 *
1906 * Put it on the run-queue if it's not already there. The "current"
1907 * thread is always on the run-queue (except when the actual
1908 * re-schedule is in progress), and as such you're allowed to do
1909 * the simpler "current->state = TASK_RUNNING" to mark yourself
1910 * runnable without the overhead of this.
1911 *
e69f6186 1912 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1913 * or @state didn't match @p's state.
1da177e4 1914 */
e4a52bcb
PZ
1915static int
1916try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1917{
1da177e4 1918 unsigned long flags;
c05fbafb 1919 int cpu, success = 0;
2398f2c6 1920
e0acd0a6
ON
1921 /*
1922 * If we are going to wake up a thread waiting for CONDITION we
1923 * need to ensure that CONDITION=1 done by the caller can not be
1924 * reordered with p->state check below. This pairs with mb() in
1925 * set_current_state() the waiting thread does.
1926 */
1927 smp_mb__before_spinlock();
013fdb80 1928 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1929 if (!(p->state & state))
1da177e4
LT
1930 goto out;
1931
fbd705a0
PZ
1932 trace_sched_waking(p);
1933
c05fbafb 1934 success = 1; /* we're going to change ->state */
1da177e4 1935 cpu = task_cpu(p);
1da177e4 1936
c05fbafb
PZ
1937 if (p->on_rq && ttwu_remote(p, wake_flags))
1938 goto stat;
1da177e4 1939
1da177e4 1940#ifdef CONFIG_SMP
e9c84311 1941 /*
c05fbafb
PZ
1942 * If the owning (remote) cpu is still in the middle of schedule() with
1943 * this task as prev, wait until its done referencing the task.
e9c84311 1944 */
f3e94786 1945 while (p->on_cpu)
e4a52bcb 1946 cpu_relax();
0970d299 1947 /*
e4a52bcb 1948 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1949 */
e4a52bcb 1950 smp_rmb();
1da177e4 1951
a8e4f2ea 1952 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1953 p->state = TASK_WAKING;
e7693a36 1954
e4a52bcb 1955 if (p->sched_class->task_waking)
74f8e4b2 1956 p->sched_class->task_waking(p);
efbbd05a 1957
ac66f547 1958 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1959 if (task_cpu(p) != cpu) {
1960 wake_flags |= WF_MIGRATED;
e4a52bcb 1961 set_task_cpu(p, cpu);
f339b9dc 1962 }
1da177e4 1963#endif /* CONFIG_SMP */
1da177e4 1964
c05fbafb
PZ
1965 ttwu_queue(p, cpu);
1966stat:
b84cb5df 1967 ttwu_stat(p, cpu, wake_flags);
1da177e4 1968out:
013fdb80 1969 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1970
1971 return success;
1972}
1973
21aa9af0
TH
1974/**
1975 * try_to_wake_up_local - try to wake up a local task with rq lock held
1976 * @p: the thread to be awakened
1977 *
2acca55e 1978 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1979 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1980 * the current task.
21aa9af0
TH
1981 */
1982static void try_to_wake_up_local(struct task_struct *p)
1983{
1984 struct rq *rq = task_rq(p);
21aa9af0 1985
383efcd0
TH
1986 if (WARN_ON_ONCE(rq != this_rq()) ||
1987 WARN_ON_ONCE(p == current))
1988 return;
1989
21aa9af0
TH
1990 lockdep_assert_held(&rq->lock);
1991
2acca55e 1992 if (!raw_spin_trylock(&p->pi_lock)) {
cbce1a68
PZ
1993 /*
1994 * This is OK, because current is on_cpu, which avoids it being
1995 * picked for load-balance and preemption/IRQs are still
1996 * disabled avoiding further scheduler activity on it and we've
1997 * not yet picked a replacement task.
1998 */
1999 lockdep_unpin_lock(&rq->lock);
2acca55e
PZ
2000 raw_spin_unlock(&rq->lock);
2001 raw_spin_lock(&p->pi_lock);
2002 raw_spin_lock(&rq->lock);
cbce1a68 2003 lockdep_pin_lock(&rq->lock);
2acca55e
PZ
2004 }
2005
21aa9af0 2006 if (!(p->state & TASK_NORMAL))
2acca55e 2007 goto out;
21aa9af0 2008
fbd705a0
PZ
2009 trace_sched_waking(p);
2010
da0c1e65 2011 if (!task_on_rq_queued(p))
d7c01d27
PZ
2012 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2013
23f41eeb 2014 ttwu_do_wakeup(rq, p, 0);
b84cb5df 2015 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
2016out:
2017 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
2018}
2019
50fa610a
DH
2020/**
2021 * wake_up_process - Wake up a specific process
2022 * @p: The process to be woken up.
2023 *
2024 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
2025 * processes.
2026 *
2027 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
2028 *
2029 * It may be assumed that this function implies a write memory barrier before
2030 * changing the task state if and only if any tasks are woken up.
2031 */
7ad5b3a5 2032int wake_up_process(struct task_struct *p)
1da177e4 2033{
9067ac85
ON
2034 WARN_ON(task_is_stopped_or_traced(p));
2035 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 2036}
1da177e4
LT
2037EXPORT_SYMBOL(wake_up_process);
2038
7ad5b3a5 2039int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2040{
2041 return try_to_wake_up(p, state, 0);
2042}
2043
a5e7be3b
JL
2044/*
2045 * This function clears the sched_dl_entity static params.
2046 */
2047void __dl_clear_params(struct task_struct *p)
2048{
2049 struct sched_dl_entity *dl_se = &p->dl;
2050
2051 dl_se->dl_runtime = 0;
2052 dl_se->dl_deadline = 0;
2053 dl_se->dl_period = 0;
2054 dl_se->flags = 0;
2055 dl_se->dl_bw = 0;
40767b0d
PZ
2056
2057 dl_se->dl_throttled = 0;
2058 dl_se->dl_new = 1;
2059 dl_se->dl_yielded = 0;
a5e7be3b
JL
2060}
2061
1da177e4
LT
2062/*
2063 * Perform scheduler related setup for a newly forked process p.
2064 * p is forked by current.
dd41f596
IM
2065 *
2066 * __sched_fork() is basic setup used by init_idle() too:
2067 */
5e1576ed 2068static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2069{
fd2f4419
PZ
2070 p->on_rq = 0;
2071
2072 p->se.on_rq = 0;
dd41f596
IM
2073 p->se.exec_start = 0;
2074 p->se.sum_exec_runtime = 0;
f6cf891c 2075 p->se.prev_sum_exec_runtime = 0;
6c594c21 2076 p->se.nr_migrations = 0;
da7a735e 2077 p->se.vruntime = 0;
fd2f4419 2078 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
2079
2080#ifdef CONFIG_SCHEDSTATS
41acab88 2081 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2082#endif
476d139c 2083
aab03e05 2084 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 2085 init_dl_task_timer(&p->dl);
a5e7be3b 2086 __dl_clear_params(p);
aab03e05 2087
fa717060 2088 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 2089
e107be36
AK
2090#ifdef CONFIG_PREEMPT_NOTIFIERS
2091 INIT_HLIST_HEAD(&p->preempt_notifiers);
2092#endif
cbee9f88
PZ
2093
2094#ifdef CONFIG_NUMA_BALANCING
2095 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 2096 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
2097 p->mm->numa_scan_seq = 0;
2098 }
2099
5e1576ed
RR
2100 if (clone_flags & CLONE_VM)
2101 p->numa_preferred_nid = current->numa_preferred_nid;
2102 else
2103 p->numa_preferred_nid = -1;
2104
cbee9f88
PZ
2105 p->node_stamp = 0ULL;
2106 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 2107 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 2108 p->numa_work.next = &p->numa_work;
44dba3d5 2109 p->numa_faults = NULL;
7e2703e6
RR
2110 p->last_task_numa_placement = 0;
2111 p->last_sum_exec_runtime = 0;
8c8a743c 2112
8c8a743c 2113 p->numa_group = NULL;
cbee9f88 2114#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
2115}
2116
2a595721
SD
2117DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2118
1a687c2e 2119#ifdef CONFIG_NUMA_BALANCING
c3b9bc5b 2120
1a687c2e
MG
2121void set_numabalancing_state(bool enabled)
2122{
2a595721
SD
2123 if (enabled)
2124 static_branch_enable(&sched_numa_balancing);
2125 else
2126 static_branch_disable(&sched_numa_balancing);
c3b9bc5b 2127}
54a43d54
AK
2128
2129#ifdef CONFIG_PROC_SYSCTL
2130int sysctl_numa_balancing(struct ctl_table *table, int write,
2131 void __user *buffer, size_t *lenp, loff_t *ppos)
2132{
2133 struct ctl_table t;
2134 int err;
2a595721 2135 int state = static_branch_likely(&sched_numa_balancing);
54a43d54
AK
2136
2137 if (write && !capable(CAP_SYS_ADMIN))
2138 return -EPERM;
2139
2140 t = *table;
2141 t.data = &state;
2142 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2143 if (err < 0)
2144 return err;
2145 if (write)
2146 set_numabalancing_state(state);
2147 return err;
2148}
2149#endif
2150#endif
dd41f596
IM
2151
2152/*
2153 * fork()/clone()-time setup:
2154 */
aab03e05 2155int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2156{
0122ec5b 2157 unsigned long flags;
dd41f596
IM
2158 int cpu = get_cpu();
2159
5e1576ed 2160 __sched_fork(clone_flags, p);
06b83b5f 2161 /*
0017d735 2162 * We mark the process as running here. This guarantees that
06b83b5f
PZ
2163 * nobody will actually run it, and a signal or other external
2164 * event cannot wake it up and insert it on the runqueue either.
2165 */
0017d735 2166 p->state = TASK_RUNNING;
dd41f596 2167
c350a04e
MG
2168 /*
2169 * Make sure we do not leak PI boosting priority to the child.
2170 */
2171 p->prio = current->normal_prio;
2172
b9dc29e7
MG
2173 /*
2174 * Revert to default priority/policy on fork if requested.
2175 */
2176 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 2177 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 2178 p->policy = SCHED_NORMAL;
6c697bdf 2179 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
2180 p->rt_priority = 0;
2181 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2182 p->static_prio = NICE_TO_PRIO(0);
2183
2184 p->prio = p->normal_prio = __normal_prio(p);
2185 set_load_weight(p);
6c697bdf 2186
b9dc29e7
MG
2187 /*
2188 * We don't need the reset flag anymore after the fork. It has
2189 * fulfilled its duty:
2190 */
2191 p->sched_reset_on_fork = 0;
2192 }
ca94c442 2193
aab03e05
DF
2194 if (dl_prio(p->prio)) {
2195 put_cpu();
2196 return -EAGAIN;
2197 } else if (rt_prio(p->prio)) {
2198 p->sched_class = &rt_sched_class;
2199 } else {
2ddbf952 2200 p->sched_class = &fair_sched_class;
aab03e05 2201 }
b29739f9 2202
cd29fe6f
PZ
2203 if (p->sched_class->task_fork)
2204 p->sched_class->task_fork(p);
2205
86951599
PZ
2206 /*
2207 * The child is not yet in the pid-hash so no cgroup attach races,
2208 * and the cgroup is pinned to this child due to cgroup_fork()
2209 * is ran before sched_fork().
2210 *
2211 * Silence PROVE_RCU.
2212 */
0122ec5b 2213 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 2214 set_task_cpu(p, cpu);
0122ec5b 2215 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 2216
f6db8347 2217#ifdef CONFIG_SCHED_INFO
dd41f596 2218 if (likely(sched_info_on()))
52f17b6c 2219 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2220#endif
3ca7a440
PZ
2221#if defined(CONFIG_SMP)
2222 p->on_cpu = 0;
4866cde0 2223#endif
01028747 2224 init_task_preempt_count(p);
806c09a7 2225#ifdef CONFIG_SMP
917b627d 2226 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 2227 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 2228#endif
917b627d 2229
476d139c 2230 put_cpu();
aab03e05 2231 return 0;
1da177e4
LT
2232}
2233
332ac17e
DF
2234unsigned long to_ratio(u64 period, u64 runtime)
2235{
2236 if (runtime == RUNTIME_INF)
2237 return 1ULL << 20;
2238
2239 /*
2240 * Doing this here saves a lot of checks in all
2241 * the calling paths, and returning zero seems
2242 * safe for them anyway.
2243 */
2244 if (period == 0)
2245 return 0;
2246
2247 return div64_u64(runtime << 20, period);
2248}
2249
2250#ifdef CONFIG_SMP
2251inline struct dl_bw *dl_bw_of(int i)
2252{
f78f5b90
PM
2253 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2254 "sched RCU must be held");
332ac17e
DF
2255 return &cpu_rq(i)->rd->dl_bw;
2256}
2257
de212f18 2258static inline int dl_bw_cpus(int i)
332ac17e 2259{
de212f18
PZ
2260 struct root_domain *rd = cpu_rq(i)->rd;
2261 int cpus = 0;
2262
f78f5b90
PM
2263 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2264 "sched RCU must be held");
de212f18
PZ
2265 for_each_cpu_and(i, rd->span, cpu_active_mask)
2266 cpus++;
2267
2268 return cpus;
332ac17e
DF
2269}
2270#else
2271inline struct dl_bw *dl_bw_of(int i)
2272{
2273 return &cpu_rq(i)->dl.dl_bw;
2274}
2275
de212f18 2276static inline int dl_bw_cpus(int i)
332ac17e
DF
2277{
2278 return 1;
2279}
2280#endif
2281
332ac17e
DF
2282/*
2283 * We must be sure that accepting a new task (or allowing changing the
2284 * parameters of an existing one) is consistent with the bandwidth
2285 * constraints. If yes, this function also accordingly updates the currently
2286 * allocated bandwidth to reflect the new situation.
2287 *
2288 * This function is called while holding p's rq->lock.
40767b0d
PZ
2289 *
2290 * XXX we should delay bw change until the task's 0-lag point, see
2291 * __setparam_dl().
332ac17e
DF
2292 */
2293static int dl_overflow(struct task_struct *p, int policy,
2294 const struct sched_attr *attr)
2295{
2296
2297 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
4df1638c 2298 u64 period = attr->sched_period ?: attr->sched_deadline;
332ac17e
DF
2299 u64 runtime = attr->sched_runtime;
2300 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 2301 int cpus, err = -1;
332ac17e
DF
2302
2303 if (new_bw == p->dl.dl_bw)
2304 return 0;
2305
2306 /*
2307 * Either if a task, enters, leave, or stays -deadline but changes
2308 * its parameters, we may need to update accordingly the total
2309 * allocated bandwidth of the container.
2310 */
2311 raw_spin_lock(&dl_b->lock);
de212f18 2312 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
2313 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2314 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2315 __dl_add(dl_b, new_bw);
2316 err = 0;
2317 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2318 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2319 __dl_clear(dl_b, p->dl.dl_bw);
2320 __dl_add(dl_b, new_bw);
2321 err = 0;
2322 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2323 __dl_clear(dl_b, p->dl.dl_bw);
2324 err = 0;
2325 }
2326 raw_spin_unlock(&dl_b->lock);
2327
2328 return err;
2329}
2330
2331extern void init_dl_bw(struct dl_bw *dl_b);
2332
1da177e4
LT
2333/*
2334 * wake_up_new_task - wake up a newly created task for the first time.
2335 *
2336 * This function will do some initial scheduler statistics housekeeping
2337 * that must be done for every newly created context, then puts the task
2338 * on the runqueue and wakes it.
2339 */
3e51e3ed 2340void wake_up_new_task(struct task_struct *p)
1da177e4
LT
2341{
2342 unsigned long flags;
dd41f596 2343 struct rq *rq;
fabf318e 2344
ab2515c4 2345 raw_spin_lock_irqsave(&p->pi_lock, flags);
98d8fd81
MR
2346 /* Initialize new task's runnable average */
2347 init_entity_runnable_average(&p->se);
fabf318e
PZ
2348#ifdef CONFIG_SMP
2349 /*
2350 * Fork balancing, do it here and not earlier because:
2351 * - cpus_allowed can change in the fork path
2352 * - any previously selected cpu might disappear through hotplug
fabf318e 2353 */
ac66f547 2354 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735
PZ
2355#endif
2356
ab2515c4 2357 rq = __task_rq_lock(p);
cd29fe6f 2358 activate_task(rq, p, 0);
da0c1e65 2359 p->on_rq = TASK_ON_RQ_QUEUED;
fbd705a0 2360 trace_sched_wakeup_new(p);
a7558e01 2361 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2362#ifdef CONFIG_SMP
efbbd05a
PZ
2363 if (p->sched_class->task_woken)
2364 p->sched_class->task_woken(rq, p);
9a897c5a 2365#endif
0122ec5b 2366 task_rq_unlock(rq, p, &flags);
1da177e4
LT
2367}
2368
e107be36
AK
2369#ifdef CONFIG_PREEMPT_NOTIFIERS
2370
1cde2930
PZ
2371static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2372
2ecd9d29
PZ
2373void preempt_notifier_inc(void)
2374{
2375 static_key_slow_inc(&preempt_notifier_key);
2376}
2377EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2378
2379void preempt_notifier_dec(void)
2380{
2381 static_key_slow_dec(&preempt_notifier_key);
2382}
2383EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2384
e107be36 2385/**
80dd99b3 2386 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2387 * @notifier: notifier struct to register
e107be36
AK
2388 */
2389void preempt_notifier_register(struct preempt_notifier *notifier)
2390{
2ecd9d29
PZ
2391 if (!static_key_false(&preempt_notifier_key))
2392 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2393
e107be36
AK
2394 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2395}
2396EXPORT_SYMBOL_GPL(preempt_notifier_register);
2397
2398/**
2399 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2400 * @notifier: notifier struct to unregister
e107be36 2401 *
d84525a8 2402 * This is *not* safe to call from within a preemption notifier.
e107be36
AK
2403 */
2404void preempt_notifier_unregister(struct preempt_notifier *notifier)
2405{
2406 hlist_del(&notifier->link);
2407}
2408EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2409
1cde2930 2410static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2411{
2412 struct preempt_notifier *notifier;
e107be36 2413
b67bfe0d 2414 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2415 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2416}
2417
1cde2930
PZ
2418static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2419{
2420 if (static_key_false(&preempt_notifier_key))
2421 __fire_sched_in_preempt_notifiers(curr);
2422}
2423
e107be36 2424static void
1cde2930
PZ
2425__fire_sched_out_preempt_notifiers(struct task_struct *curr,
2426 struct task_struct *next)
e107be36
AK
2427{
2428 struct preempt_notifier *notifier;
e107be36 2429
b67bfe0d 2430 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2431 notifier->ops->sched_out(notifier, next);
2432}
2433
1cde2930
PZ
2434static __always_inline void
2435fire_sched_out_preempt_notifiers(struct task_struct *curr,
2436 struct task_struct *next)
2437{
2438 if (static_key_false(&preempt_notifier_key))
2439 __fire_sched_out_preempt_notifiers(curr, next);
2440}
2441
6d6bc0ad 2442#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36 2443
1cde2930 2444static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2445{
2446}
2447
1cde2930 2448static inline void
e107be36
AK
2449fire_sched_out_preempt_notifiers(struct task_struct *curr,
2450 struct task_struct *next)
2451{
2452}
2453
6d6bc0ad 2454#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2455
4866cde0
NP
2456/**
2457 * prepare_task_switch - prepare to switch tasks
2458 * @rq: the runqueue preparing to switch
421cee29 2459 * @prev: the current task that is being switched out
4866cde0
NP
2460 * @next: the task we are going to switch to.
2461 *
2462 * This is called with the rq lock held and interrupts off. It must
2463 * be paired with a subsequent finish_task_switch after the context
2464 * switch.
2465 *
2466 * prepare_task_switch sets up locking and calls architecture specific
2467 * hooks.
2468 */
e107be36
AK
2469static inline void
2470prepare_task_switch(struct rq *rq, struct task_struct *prev,
2471 struct task_struct *next)
4866cde0 2472{
895dd92c 2473 trace_sched_switch(prev, next);
43148951 2474 sched_info_switch(rq, prev, next);
fe4b04fa 2475 perf_event_task_sched_out(prev, next);
e107be36 2476 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2477 prepare_lock_switch(rq, next);
2478 prepare_arch_switch(next);
2479}
2480
1da177e4
LT
2481/**
2482 * finish_task_switch - clean up after a task-switch
2483 * @prev: the thread we just switched away from.
2484 *
4866cde0
NP
2485 * finish_task_switch must be called after the context switch, paired
2486 * with a prepare_task_switch call before the context switch.
2487 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2488 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2489 *
2490 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2491 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2492 * with the lock held can cause deadlocks; see schedule() for
2493 * details.)
dfa50b60
ON
2494 *
2495 * The context switch have flipped the stack from under us and restored the
2496 * local variables which were saved when this task called schedule() in the
2497 * past. prev == current is still correct but we need to recalculate this_rq
2498 * because prev may have moved to another CPU.
1da177e4 2499 */
dfa50b60 2500static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
2501 __releases(rq->lock)
2502{
dfa50b60 2503 struct rq *rq = this_rq();
1da177e4 2504 struct mm_struct *mm = rq->prev_mm;
55a101f8 2505 long prev_state;
1da177e4
LT
2506
2507 rq->prev_mm = NULL;
2508
2509 /*
2510 * A task struct has one reference for the use as "current".
c394cc9f 2511 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2512 * schedule one last time. The schedule call will never return, and
2513 * the scheduled task must drop that reference.
95913d97
PZ
2514 *
2515 * We must observe prev->state before clearing prev->on_cpu (in
2516 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2517 * running on another CPU and we could rave with its RUNNING -> DEAD
2518 * transition, resulting in a double drop.
1da177e4 2519 */
55a101f8 2520 prev_state = prev->state;
bf9fae9f 2521 vtime_task_switch(prev);
a8d757ef 2522 perf_event_task_sched_in(prev, current);
4866cde0 2523 finish_lock_switch(rq, prev);
01f23e16 2524 finish_arch_post_lock_switch();
e8fa1362 2525
e107be36 2526 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2527 if (mm)
2528 mmdrop(mm);
c394cc9f 2529 if (unlikely(prev_state == TASK_DEAD)) {
e6c390f2
DF
2530 if (prev->sched_class->task_dead)
2531 prev->sched_class->task_dead(prev);
2532
c6fd91f0 2533 /*
2534 * Remove function-return probe instances associated with this
2535 * task and put them back on the free list.
9761eea8 2536 */
c6fd91f0 2537 kprobe_flush_task(prev);
1da177e4 2538 put_task_struct(prev);
c6fd91f0 2539 }
99e5ada9 2540
de734f89 2541 tick_nohz_task_switch();
dfa50b60 2542 return rq;
1da177e4
LT
2543}
2544
3f029d3c
GH
2545#ifdef CONFIG_SMP
2546
3f029d3c 2547/* rq->lock is NOT held, but preemption is disabled */
e3fca9e7 2548static void __balance_callback(struct rq *rq)
3f029d3c 2549{
e3fca9e7
PZ
2550 struct callback_head *head, *next;
2551 void (*func)(struct rq *rq);
2552 unsigned long flags;
3f029d3c 2553
e3fca9e7
PZ
2554 raw_spin_lock_irqsave(&rq->lock, flags);
2555 head = rq->balance_callback;
2556 rq->balance_callback = NULL;
2557 while (head) {
2558 func = (void (*)(struct rq *))head->func;
2559 next = head->next;
2560 head->next = NULL;
2561 head = next;
3f029d3c 2562
e3fca9e7 2563 func(rq);
3f029d3c 2564 }
e3fca9e7
PZ
2565 raw_spin_unlock_irqrestore(&rq->lock, flags);
2566}
2567
2568static inline void balance_callback(struct rq *rq)
2569{
2570 if (unlikely(rq->balance_callback))
2571 __balance_callback(rq);
3f029d3c
GH
2572}
2573
2574#else
da19ab51 2575
e3fca9e7 2576static inline void balance_callback(struct rq *rq)
3f029d3c 2577{
1da177e4
LT
2578}
2579
3f029d3c
GH
2580#endif
2581
1da177e4
LT
2582/**
2583 * schedule_tail - first thing a freshly forked thread must call.
2584 * @prev: the thread we just switched away from.
2585 */
722a9f92 2586asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
2587 __releases(rq->lock)
2588{
1a43a14a 2589 struct rq *rq;
da19ab51 2590
1a43a14a
ON
2591 /* finish_task_switch() drops rq->lock and enables preemtion */
2592 preempt_disable();
dfa50b60 2593 rq = finish_task_switch(prev);
e3fca9e7 2594 balance_callback(rq);
1a43a14a 2595 preempt_enable();
70b97a7f 2596
1da177e4 2597 if (current->set_child_tid)
b488893a 2598 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2599}
2600
2601/*
dfa50b60 2602 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 2603 */
dfa50b60 2604static inline struct rq *
70b97a7f 2605context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2606 struct task_struct *next)
1da177e4 2607{
dd41f596 2608 struct mm_struct *mm, *oldmm;
1da177e4 2609
e107be36 2610 prepare_task_switch(rq, prev, next);
fe4b04fa 2611
dd41f596
IM
2612 mm = next->mm;
2613 oldmm = prev->active_mm;
9226d125
ZA
2614 /*
2615 * For paravirt, this is coupled with an exit in switch_to to
2616 * combine the page table reload and the switch backend into
2617 * one hypercall.
2618 */
224101ed 2619 arch_start_context_switch(prev);
9226d125 2620
31915ab4 2621 if (!mm) {
1da177e4
LT
2622 next->active_mm = oldmm;
2623 atomic_inc(&oldmm->mm_count);
2624 enter_lazy_tlb(oldmm, next);
2625 } else
2626 switch_mm(oldmm, mm, next);
2627
31915ab4 2628 if (!prev->mm) {
1da177e4 2629 prev->active_mm = NULL;
1da177e4
LT
2630 rq->prev_mm = oldmm;
2631 }
3a5f5e48
IM
2632 /*
2633 * Since the runqueue lock will be released by the next
2634 * task (which is an invalid locking op but in the case
2635 * of the scheduler it's an obvious special-case), so we
2636 * do an early lockdep release here:
2637 */
cbce1a68 2638 lockdep_unpin_lock(&rq->lock);
8a25d5de 2639 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
2640
2641 /* Here we just switch the register state and the stack. */
2642 switch_to(prev, next, prev);
dd41f596 2643 barrier();
dfa50b60
ON
2644
2645 return finish_task_switch(prev);
1da177e4
LT
2646}
2647
2648/*
1c3e8264 2649 * nr_running and nr_context_switches:
1da177e4
LT
2650 *
2651 * externally visible scheduler statistics: current number of runnable
1c3e8264 2652 * threads, total number of context switches performed since bootup.
1da177e4
LT
2653 */
2654unsigned long nr_running(void)
2655{
2656 unsigned long i, sum = 0;
2657
2658 for_each_online_cpu(i)
2659 sum += cpu_rq(i)->nr_running;
2660
2661 return sum;
f711f609 2662}
1da177e4 2663
2ee507c4
TC
2664/*
2665 * Check if only the current task is running on the cpu.
00cc1633
DD
2666 *
2667 * Caution: this function does not check that the caller has disabled
2668 * preemption, thus the result might have a time-of-check-to-time-of-use
2669 * race. The caller is responsible to use it correctly, for example:
2670 *
2671 * - from a non-preemptable section (of course)
2672 *
2673 * - from a thread that is bound to a single CPU
2674 *
2675 * - in a loop with very short iterations (e.g. a polling loop)
2ee507c4
TC
2676 */
2677bool single_task_running(void)
2678{
00cc1633 2679 return raw_rq()->nr_running == 1;
2ee507c4
TC
2680}
2681EXPORT_SYMBOL(single_task_running);
2682
1da177e4 2683unsigned long long nr_context_switches(void)
46cb4b7c 2684{
cc94abfc
SR
2685 int i;
2686 unsigned long long sum = 0;
46cb4b7c 2687
0a945022 2688 for_each_possible_cpu(i)
1da177e4 2689 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2690
1da177e4
LT
2691 return sum;
2692}
483b4ee6 2693
1da177e4
LT
2694unsigned long nr_iowait(void)
2695{
2696 unsigned long i, sum = 0;
483b4ee6 2697
0a945022 2698 for_each_possible_cpu(i)
1da177e4 2699 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2700
1da177e4
LT
2701 return sum;
2702}
483b4ee6 2703
8c215bd3 2704unsigned long nr_iowait_cpu(int cpu)
69d25870 2705{
8c215bd3 2706 struct rq *this = cpu_rq(cpu);
69d25870
AV
2707 return atomic_read(&this->nr_iowait);
2708}
46cb4b7c 2709
372ba8cb
MG
2710void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2711{
3289bdb4
PZ
2712 struct rq *rq = this_rq();
2713 *nr_waiters = atomic_read(&rq->nr_iowait);
2714 *load = rq->load.weight;
372ba8cb
MG
2715}
2716
dd41f596 2717#ifdef CONFIG_SMP
8a0be9ef 2718
46cb4b7c 2719/*
38022906
PZ
2720 * sched_exec - execve() is a valuable balancing opportunity, because at
2721 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2722 */
38022906 2723void sched_exec(void)
46cb4b7c 2724{
38022906 2725 struct task_struct *p = current;
1da177e4 2726 unsigned long flags;
0017d735 2727 int dest_cpu;
46cb4b7c 2728
8f42ced9 2729 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2730 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2731 if (dest_cpu == smp_processor_id())
2732 goto unlock;
38022906 2733
8f42ced9 2734 if (likely(cpu_active(dest_cpu))) {
969c7921 2735 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2736
8f42ced9
PZ
2737 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2738 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2739 return;
2740 }
0017d735 2741unlock:
8f42ced9 2742 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2743}
dd41f596 2744
1da177e4
LT
2745#endif
2746
1da177e4 2747DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2748DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2749
2750EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2751EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 2752
c5f8d995
HS
2753/*
2754 * Return accounted runtime for the task.
2755 * In case the task is currently running, return the runtime plus current's
2756 * pending runtime that have not been accounted yet.
2757 */
2758unsigned long long task_sched_runtime(struct task_struct *p)
2759{
2760 unsigned long flags;
2761 struct rq *rq;
6e998916 2762 u64 ns;
c5f8d995 2763
911b2898
PZ
2764#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2765 /*
2766 * 64-bit doesn't need locks to atomically read a 64bit value.
2767 * So we have a optimization chance when the task's delta_exec is 0.
2768 * Reading ->on_cpu is racy, but this is ok.
2769 *
2770 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2771 * If we race with it entering cpu, unaccounted time is 0. This is
2772 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
2773 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2774 * been accounted, so we're correct here as well.
911b2898 2775 */
da0c1e65 2776 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
2777 return p->se.sum_exec_runtime;
2778#endif
2779
c5f8d995 2780 rq = task_rq_lock(p, &flags);
6e998916
SG
2781 /*
2782 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2783 * project cycles that may never be accounted to this
2784 * thread, breaking clock_gettime().
2785 */
2786 if (task_current(rq, p) && task_on_rq_queued(p)) {
2787 update_rq_clock(rq);
2788 p->sched_class->update_curr(rq);
2789 }
2790 ns = p->se.sum_exec_runtime;
0122ec5b 2791 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2792
2793 return ns;
2794}
48f24c4d 2795
7835b98b
CL
2796/*
2797 * This function gets called by the timer code, with HZ frequency.
2798 * We call it with interrupts disabled.
7835b98b
CL
2799 */
2800void scheduler_tick(void)
2801{
7835b98b
CL
2802 int cpu = smp_processor_id();
2803 struct rq *rq = cpu_rq(cpu);
dd41f596 2804 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2805
2806 sched_clock_tick();
dd41f596 2807
05fa785c 2808 raw_spin_lock(&rq->lock);
3e51f33f 2809 update_rq_clock(rq);
fa85ae24 2810 curr->sched_class->task_tick(rq, curr, 0);
83dfd523 2811 update_cpu_load_active(rq);
3289bdb4 2812 calc_global_load_tick(rq);
05fa785c 2813 raw_spin_unlock(&rq->lock);
7835b98b 2814
e9d2b064 2815 perf_event_task_tick();
e220d2dc 2816
e418e1c2 2817#ifdef CONFIG_SMP
6eb57e0d 2818 rq->idle_balance = idle_cpu(cpu);
7caff66f 2819 trigger_load_balance(rq);
e418e1c2 2820#endif
265f22a9 2821 rq_last_tick_reset(rq);
1da177e4
LT
2822}
2823
265f22a9
FW
2824#ifdef CONFIG_NO_HZ_FULL
2825/**
2826 * scheduler_tick_max_deferment
2827 *
2828 * Keep at least one tick per second when a single
2829 * active task is running because the scheduler doesn't
2830 * yet completely support full dynticks environment.
2831 *
2832 * This makes sure that uptime, CFS vruntime, load
2833 * balancing, etc... continue to move forward, even
2834 * with a very low granularity.
e69f6186
YB
2835 *
2836 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
2837 */
2838u64 scheduler_tick_max_deferment(void)
2839{
2840 struct rq *rq = this_rq();
316c1608 2841 unsigned long next, now = READ_ONCE(jiffies);
265f22a9
FW
2842
2843 next = rq->last_sched_tick + HZ;
2844
2845 if (time_before_eq(next, now))
2846 return 0;
2847
8fe8ff09 2848 return jiffies_to_nsecs(next - now);
1da177e4 2849}
265f22a9 2850#endif
1da177e4 2851
132380a0 2852notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
2853{
2854 if (in_lock_functions(addr)) {
2855 addr = CALLER_ADDR2;
2856 if (in_lock_functions(addr))
2857 addr = CALLER_ADDR3;
2858 }
2859 return addr;
2860}
1da177e4 2861
7e49fcce
SR
2862#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2863 defined(CONFIG_PREEMPT_TRACER))
2864
edafe3a5 2865void preempt_count_add(int val)
1da177e4 2866{
6cd8a4bb 2867#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2868 /*
2869 * Underflow?
2870 */
9a11b49a
IM
2871 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2872 return;
6cd8a4bb 2873#endif
bdb43806 2874 __preempt_count_add(val);
6cd8a4bb 2875#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2876 /*
2877 * Spinlock count overflowing soon?
2878 */
33859f7f
MOS
2879 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2880 PREEMPT_MASK - 10);
6cd8a4bb 2881#endif
8f47b187
TG
2882 if (preempt_count() == val) {
2883 unsigned long ip = get_parent_ip(CALLER_ADDR1);
2884#ifdef CONFIG_DEBUG_PREEMPT
2885 current->preempt_disable_ip = ip;
2886#endif
2887 trace_preempt_off(CALLER_ADDR0, ip);
2888 }
1da177e4 2889}
bdb43806 2890EXPORT_SYMBOL(preempt_count_add);
edafe3a5 2891NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 2892
edafe3a5 2893void preempt_count_sub(int val)
1da177e4 2894{
6cd8a4bb 2895#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2896 /*
2897 * Underflow?
2898 */
01e3eb82 2899 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 2900 return;
1da177e4
LT
2901 /*
2902 * Is the spinlock portion underflowing?
2903 */
9a11b49a
IM
2904 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2905 !(preempt_count() & PREEMPT_MASK)))
2906 return;
6cd8a4bb 2907#endif
9a11b49a 2908
6cd8a4bb
SR
2909 if (preempt_count() == val)
2910 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
bdb43806 2911 __preempt_count_sub(val);
1da177e4 2912}
bdb43806 2913EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 2914NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4
LT
2915
2916#endif
2917
2918/*
dd41f596 2919 * Print scheduling while atomic bug:
1da177e4 2920 */
dd41f596 2921static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 2922{
664dfa65
DJ
2923 if (oops_in_progress)
2924 return;
2925
3df0fc5b
PZ
2926 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2927 prev->comm, prev->pid, preempt_count());
838225b4 2928
dd41f596 2929 debug_show_held_locks(prev);
e21f5b15 2930 print_modules();
dd41f596
IM
2931 if (irqs_disabled())
2932 print_irqtrace_events(prev);
8f47b187
TG
2933#ifdef CONFIG_DEBUG_PREEMPT
2934 if (in_atomic_preempt_off()) {
2935 pr_err("Preemption disabled at:");
2936 print_ip_sym(current->preempt_disable_ip);
2937 pr_cont("\n");
2938 }
2939#endif
6135fc1e 2940 dump_stack();
373d4d09 2941 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 2942}
1da177e4 2943
dd41f596
IM
2944/*
2945 * Various schedule()-time debugging checks and statistics:
2946 */
2947static inline void schedule_debug(struct task_struct *prev)
2948{
0d9e2632
AT
2949#ifdef CONFIG_SCHED_STACK_END_CHECK
2950 BUG_ON(unlikely(task_stack_end_corrupted(prev)));
2951#endif
1da177e4 2952 /*
41a2d6cf 2953 * Test if we are atomic. Since do_exit() needs to call into
192301e7
ON
2954 * schedule() atomically, we ignore that path. Otherwise whine
2955 * if we are scheduling when we should not.
1da177e4 2956 */
192301e7 2957 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
dd41f596 2958 __schedule_bug(prev);
b3fbab05 2959 rcu_sleep_check();
dd41f596 2960
1da177e4
LT
2961 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2962
2d72376b 2963 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
2964}
2965
2966/*
2967 * Pick up the highest-prio task:
2968 */
2969static inline struct task_struct *
606dba2e 2970pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 2971{
37e117c0 2972 const struct sched_class *class = &fair_sched_class;
dd41f596 2973 struct task_struct *p;
1da177e4
LT
2974
2975 /*
dd41f596
IM
2976 * Optimization: we know that if all tasks are in
2977 * the fair class we can call that function directly:
1da177e4 2978 */
37e117c0 2979 if (likely(prev->sched_class == class &&
38033c37 2980 rq->nr_running == rq->cfs.h_nr_running)) {
606dba2e 2981 p = fair_sched_class.pick_next_task(rq, prev);
6ccdc84b
PZ
2982 if (unlikely(p == RETRY_TASK))
2983 goto again;
2984
2985 /* assumes fair_sched_class->next == idle_sched_class */
2986 if (unlikely(!p))
2987 p = idle_sched_class.pick_next_task(rq, prev);
2988
2989 return p;
1da177e4
LT
2990 }
2991
37e117c0 2992again:
34f971f6 2993 for_each_class(class) {
606dba2e 2994 p = class->pick_next_task(rq, prev);
37e117c0
PZ
2995 if (p) {
2996 if (unlikely(p == RETRY_TASK))
2997 goto again;
dd41f596 2998 return p;
37e117c0 2999 }
dd41f596 3000 }
34f971f6
PZ
3001
3002 BUG(); /* the idle class will always have a runnable task */
dd41f596 3003}
1da177e4 3004
dd41f596 3005/*
c259e01a 3006 * __schedule() is the main scheduler function.
edde96ea
PE
3007 *
3008 * The main means of driving the scheduler and thus entering this function are:
3009 *
3010 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3011 *
3012 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3013 * paths. For example, see arch/x86/entry_64.S.
3014 *
3015 * To drive preemption between tasks, the scheduler sets the flag in timer
3016 * interrupt handler scheduler_tick().
3017 *
3018 * 3. Wakeups don't really cause entry into schedule(). They add a
3019 * task to the run-queue and that's it.
3020 *
3021 * Now, if the new task added to the run-queue preempts the current
3022 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3023 * called on the nearest possible occasion:
3024 *
3025 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3026 *
3027 * - in syscall or exception context, at the next outmost
3028 * preempt_enable(). (this might be as soon as the wake_up()'s
3029 * spin_unlock()!)
3030 *
3031 * - in IRQ context, return from interrupt-handler to
3032 * preemptible context
3033 *
3034 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3035 * then at the next:
3036 *
3037 * - cond_resched() call
3038 * - explicit schedule() call
3039 * - return from syscall or exception to user-space
3040 * - return from interrupt-handler to user-space
bfd9b2b5 3041 *
b30f0e3f 3042 * WARNING: must be called with preemption disabled!
dd41f596 3043 */
c259e01a 3044static void __sched __schedule(void)
dd41f596
IM
3045{
3046 struct task_struct *prev, *next;
67ca7bde 3047 unsigned long *switch_count;
dd41f596 3048 struct rq *rq;
31656519 3049 int cpu;
dd41f596 3050
dd41f596
IM
3051 cpu = smp_processor_id();
3052 rq = cpu_rq(cpu);
38200cf2 3053 rcu_note_context_switch();
dd41f596 3054 prev = rq->curr;
dd41f596 3055
dd41f596 3056 schedule_debug(prev);
1da177e4 3057
31656519 3058 if (sched_feat(HRTICK))
f333fdc9 3059 hrtick_clear(rq);
8f4d37ec 3060
e0acd0a6
ON
3061 /*
3062 * Make sure that signal_pending_state()->signal_pending() below
3063 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3064 * done by the caller to avoid the race with signal_wake_up().
3065 */
3066 smp_mb__before_spinlock();
05fa785c 3067 raw_spin_lock_irq(&rq->lock);
cbce1a68 3068 lockdep_pin_lock(&rq->lock);
1da177e4 3069
9edfbfed
PZ
3070 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3071
246d86b5 3072 switch_count = &prev->nivcsw;
1da177e4 3073 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 3074 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 3075 prev->state = TASK_RUNNING;
21aa9af0 3076 } else {
2acca55e
PZ
3077 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3078 prev->on_rq = 0;
3079
21aa9af0 3080 /*
2acca55e
PZ
3081 * If a worker went to sleep, notify and ask workqueue
3082 * whether it wants to wake up a task to maintain
3083 * concurrency.
21aa9af0
TH
3084 */
3085 if (prev->flags & PF_WQ_WORKER) {
3086 struct task_struct *to_wakeup;
3087
3088 to_wakeup = wq_worker_sleeping(prev, cpu);
3089 if (to_wakeup)
3090 try_to_wake_up_local(to_wakeup);
3091 }
21aa9af0 3092 }
dd41f596 3093 switch_count = &prev->nvcsw;
1da177e4
LT
3094 }
3095
9edfbfed 3096 if (task_on_rq_queued(prev))
606dba2e
PZ
3097 update_rq_clock(rq);
3098
3099 next = pick_next_task(rq, prev);
f26f9aff 3100 clear_tsk_need_resched(prev);
f27dde8d 3101 clear_preempt_need_resched();
9edfbfed 3102 rq->clock_skip_update = 0;
1da177e4 3103
1da177e4 3104 if (likely(prev != next)) {
1da177e4
LT
3105 rq->nr_switches++;
3106 rq->curr = next;
3107 ++*switch_count;
3108
dfa50b60
ON
3109 rq = context_switch(rq, prev, next); /* unlocks the rq */
3110 cpu = cpu_of(rq);
cbce1a68
PZ
3111 } else {
3112 lockdep_unpin_lock(&rq->lock);
05fa785c 3113 raw_spin_unlock_irq(&rq->lock);
cbce1a68 3114 }
1da177e4 3115
e3fca9e7 3116 balance_callback(rq);
1da177e4 3117}
c259e01a 3118
9c40cef2
TG
3119static inline void sched_submit_work(struct task_struct *tsk)
3120{
3c7d5184 3121 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
3122 return;
3123 /*
3124 * If we are going to sleep and we have plugged IO queued,
3125 * make sure to submit it to avoid deadlocks.
3126 */
3127 if (blk_needs_flush_plug(tsk))
3128 blk_schedule_flush_plug(tsk);
3129}
3130
722a9f92 3131asmlinkage __visible void __sched schedule(void)
c259e01a 3132{
9c40cef2
TG
3133 struct task_struct *tsk = current;
3134
3135 sched_submit_work(tsk);
bfd9b2b5 3136 do {
b30f0e3f 3137 preempt_disable();
bfd9b2b5 3138 __schedule();
b30f0e3f 3139 sched_preempt_enable_no_resched();
bfd9b2b5 3140 } while (need_resched());
c259e01a 3141}
1da177e4
LT
3142EXPORT_SYMBOL(schedule);
3143
91d1aa43 3144#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 3145asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
3146{
3147 /*
3148 * If we come here after a random call to set_need_resched(),
3149 * or we have been woken up remotely but the IPI has not yet arrived,
3150 * we haven't yet exited the RCU idle mode. Do it here manually until
3151 * we find a better solution.
7cc78f8f
AL
3152 *
3153 * NB: There are buggy callers of this function. Ideally we
c467ea76 3154 * should warn if prev_state != CONTEXT_USER, but that will trigger
7cc78f8f 3155 * too frequently to make sense yet.
20ab65e3 3156 */
7cc78f8f 3157 enum ctx_state prev_state = exception_enter();
20ab65e3 3158 schedule();
7cc78f8f 3159 exception_exit(prev_state);
20ab65e3
FW
3160}
3161#endif
3162
c5491ea7
TG
3163/**
3164 * schedule_preempt_disabled - called with preemption disabled
3165 *
3166 * Returns with preemption disabled. Note: preempt_count must be 1
3167 */
3168void __sched schedule_preempt_disabled(void)
3169{
ba74c144 3170 sched_preempt_enable_no_resched();
c5491ea7
TG
3171 schedule();
3172 preempt_disable();
3173}
3174
06b1f808 3175static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
3176{
3177 do {
b30f0e3f 3178 preempt_active_enter();
a18b5d01 3179 __schedule();
b30f0e3f 3180 preempt_active_exit();
a18b5d01
FW
3181
3182 /*
3183 * Check again in case we missed a preemption opportunity
3184 * between schedule and now.
3185 */
a18b5d01
FW
3186 } while (need_resched());
3187}
3188
1da177e4
LT
3189#ifdef CONFIG_PREEMPT
3190/*
2ed6e34f 3191 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3192 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3193 * occur there and call schedule directly.
3194 */
722a9f92 3195asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 3196{
1da177e4
LT
3197 /*
3198 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3199 * we do not want to preempt the current task. Just return..
1da177e4 3200 */
fbb00b56 3201 if (likely(!preemptible()))
1da177e4
LT
3202 return;
3203
a18b5d01 3204 preempt_schedule_common();
1da177e4 3205}
376e2424 3206NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 3207EXPORT_SYMBOL(preempt_schedule);
009f60e2 3208
009f60e2 3209/**
4eaca0a8 3210 * preempt_schedule_notrace - preempt_schedule called by tracing
009f60e2
ON
3211 *
3212 * The tracing infrastructure uses preempt_enable_notrace to prevent
3213 * recursion and tracing preempt enabling caused by the tracing
3214 * infrastructure itself. But as tracing can happen in areas coming
3215 * from userspace or just about to enter userspace, a preempt enable
3216 * can occur before user_exit() is called. This will cause the scheduler
3217 * to be called when the system is still in usermode.
3218 *
3219 * To prevent this, the preempt_enable_notrace will use this function
3220 * instead of preempt_schedule() to exit user context if needed before
3221 * calling the scheduler.
3222 */
4eaca0a8 3223asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
009f60e2
ON
3224{
3225 enum ctx_state prev_ctx;
3226
3227 if (likely(!preemptible()))
3228 return;
3229
3230 do {
be690035
FW
3231 /*
3232 * Use raw __prempt_count() ops that don't call function.
3233 * We can't call functions before disabling preemption which
3234 * disarm preemption tracing recursions.
3235 */
3236 __preempt_count_add(PREEMPT_ACTIVE + PREEMPT_DISABLE_OFFSET);
3237 barrier();
009f60e2
ON
3238 /*
3239 * Needs preempt disabled in case user_exit() is traced
3240 * and the tracer calls preempt_enable_notrace() causing
3241 * an infinite recursion.
3242 */
3243 prev_ctx = exception_enter();
3244 __schedule();
3245 exception_exit(prev_ctx);
3246
009f60e2 3247 barrier();
be690035 3248 __preempt_count_sub(PREEMPT_ACTIVE + PREEMPT_DISABLE_OFFSET);
009f60e2
ON
3249 } while (need_resched());
3250}
4eaca0a8 3251EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
009f60e2 3252
32e475d7 3253#endif /* CONFIG_PREEMPT */
1da177e4
LT
3254
3255/*
2ed6e34f 3256 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3257 * off of irq context.
3258 * Note, that this is called and return with irqs disabled. This will
3259 * protect us against recursive calling from irq.
3260 */
722a9f92 3261asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 3262{
b22366cd 3263 enum ctx_state prev_state;
6478d880 3264
2ed6e34f 3265 /* Catch callers which need to be fixed */
f27dde8d 3266 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 3267
b22366cd
FW
3268 prev_state = exception_enter();
3269
3a5c359a 3270 do {
b30f0e3f 3271 preempt_active_enter();
3a5c359a 3272 local_irq_enable();
c259e01a 3273 __schedule();
3a5c359a 3274 local_irq_disable();
b30f0e3f 3275 preempt_active_exit();
5ed0cec0 3276 } while (need_resched());
b22366cd
FW
3277
3278 exception_exit(prev_state);
1da177e4
LT
3279}
3280
63859d4f 3281int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3282 void *key)
1da177e4 3283{
63859d4f 3284 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3285}
1da177e4
LT
3286EXPORT_SYMBOL(default_wake_function);
3287
b29739f9
IM
3288#ifdef CONFIG_RT_MUTEXES
3289
3290/*
3291 * rt_mutex_setprio - set the current priority of a task
3292 * @p: task
3293 * @prio: prio value (kernel-internal form)
3294 *
3295 * This function changes the 'effective' priority of a task. It does
3296 * not touch ->normal_prio like __setscheduler().
3297 *
c365c292
TG
3298 * Used by the rt_mutex code to implement priority inheritance
3299 * logic. Call site only calls if the priority of the task changed.
b29739f9 3300 */
36c8b586 3301void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3302{
da0c1e65 3303 int oldprio, queued, running, enqueue_flag = 0;
70b97a7f 3304 struct rq *rq;
83ab0aa0 3305 const struct sched_class *prev_class;
b29739f9 3306
aab03e05 3307 BUG_ON(prio > MAX_PRIO);
b29739f9 3308
0122ec5b 3309 rq = __task_rq_lock(p);
b29739f9 3310
1c4dd99b
TG
3311 /*
3312 * Idle task boosting is a nono in general. There is one
3313 * exception, when PREEMPT_RT and NOHZ is active:
3314 *
3315 * The idle task calls get_next_timer_interrupt() and holds
3316 * the timer wheel base->lock on the CPU and another CPU wants
3317 * to access the timer (probably to cancel it). We can safely
3318 * ignore the boosting request, as the idle CPU runs this code
3319 * with interrupts disabled and will complete the lock
3320 * protected section without being interrupted. So there is no
3321 * real need to boost.
3322 */
3323 if (unlikely(p == rq->idle)) {
3324 WARN_ON(p != rq->curr);
3325 WARN_ON(p->pi_blocked_on);
3326 goto out_unlock;
3327 }
3328
a8027073 3329 trace_sched_pi_setprio(p, prio);
d5f9f942 3330 oldprio = p->prio;
83ab0aa0 3331 prev_class = p->sched_class;
da0c1e65 3332 queued = task_on_rq_queued(p);
051a1d1a 3333 running = task_current(rq, p);
da0c1e65 3334 if (queued)
69be72c1 3335 dequeue_task(rq, p, 0);
0e1f3483 3336 if (running)
f3cd1c4e 3337 put_prev_task(rq, p);
dd41f596 3338
2d3d891d
DF
3339 /*
3340 * Boosting condition are:
3341 * 1. -rt task is running and holds mutex A
3342 * --> -dl task blocks on mutex A
3343 *
3344 * 2. -dl task is running and holds mutex A
3345 * --> -dl task blocks on mutex A and could preempt the
3346 * running task
3347 */
3348 if (dl_prio(prio)) {
466af29b
ON
3349 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3350 if (!dl_prio(p->normal_prio) ||
3351 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d 3352 p->dl.dl_boosted = 1;
2d3d891d
DF
3353 enqueue_flag = ENQUEUE_REPLENISH;
3354 } else
3355 p->dl.dl_boosted = 0;
aab03e05 3356 p->sched_class = &dl_sched_class;
2d3d891d
DF
3357 } else if (rt_prio(prio)) {
3358 if (dl_prio(oldprio))
3359 p->dl.dl_boosted = 0;
3360 if (oldprio < prio)
3361 enqueue_flag = ENQUEUE_HEAD;
dd41f596 3362 p->sched_class = &rt_sched_class;
2d3d891d
DF
3363 } else {
3364 if (dl_prio(oldprio))
3365 p->dl.dl_boosted = 0;
746db944
BS
3366 if (rt_prio(oldprio))
3367 p->rt.timeout = 0;
dd41f596 3368 p->sched_class = &fair_sched_class;
2d3d891d 3369 }
dd41f596 3370
b29739f9
IM
3371 p->prio = prio;
3372
0e1f3483
HS
3373 if (running)
3374 p->sched_class->set_curr_task(rq);
da0c1e65 3375 if (queued)
2d3d891d 3376 enqueue_task(rq, p, enqueue_flag);
cb469845 3377
da7a735e 3378 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3379out_unlock:
4c9a4bc8 3380 preempt_disable(); /* avoid rq from going away on us */
0122ec5b 3381 __task_rq_unlock(rq);
4c9a4bc8
PZ
3382
3383 balance_callback(rq);
3384 preempt_enable();
b29739f9 3385}
b29739f9 3386#endif
d50dde5a 3387
36c8b586 3388void set_user_nice(struct task_struct *p, long nice)
1da177e4 3389{
da0c1e65 3390 int old_prio, delta, queued;
1da177e4 3391 unsigned long flags;
70b97a7f 3392 struct rq *rq;
1da177e4 3393
75e45d51 3394 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
3395 return;
3396 /*
3397 * We have to be careful, if called from sys_setpriority(),
3398 * the task might be in the middle of scheduling on another CPU.
3399 */
3400 rq = task_rq_lock(p, &flags);
3401 /*
3402 * The RT priorities are set via sched_setscheduler(), but we still
3403 * allow the 'normal' nice value to be set - but as expected
3404 * it wont have any effect on scheduling until the task is
aab03e05 3405 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3406 */
aab03e05 3407 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3408 p->static_prio = NICE_TO_PRIO(nice);
3409 goto out_unlock;
3410 }
da0c1e65
KT
3411 queued = task_on_rq_queued(p);
3412 if (queued)
69be72c1 3413 dequeue_task(rq, p, 0);
1da177e4 3414
1da177e4 3415 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3416 set_load_weight(p);
b29739f9
IM
3417 old_prio = p->prio;
3418 p->prio = effective_prio(p);
3419 delta = p->prio - old_prio;
1da177e4 3420
da0c1e65 3421 if (queued) {
371fd7e7 3422 enqueue_task(rq, p, 0);
1da177e4 3423 /*
d5f9f942
AM
3424 * If the task increased its priority or is running and
3425 * lowered its priority, then reschedule its CPU:
1da177e4 3426 */
d5f9f942 3427 if (delta < 0 || (delta > 0 && task_running(rq, p)))
8875125e 3428 resched_curr(rq);
1da177e4
LT
3429 }
3430out_unlock:
0122ec5b 3431 task_rq_unlock(rq, p, &flags);
1da177e4 3432}
1da177e4
LT
3433EXPORT_SYMBOL(set_user_nice);
3434
e43379f1
MM
3435/*
3436 * can_nice - check if a task can reduce its nice value
3437 * @p: task
3438 * @nice: nice value
3439 */
36c8b586 3440int can_nice(const struct task_struct *p, const int nice)
e43379f1 3441{
024f4747 3442 /* convert nice value [19,-20] to rlimit style value [1,40] */
7aa2c016 3443 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 3444
78d7d407 3445 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3446 capable(CAP_SYS_NICE));
3447}
3448
1da177e4
LT
3449#ifdef __ARCH_WANT_SYS_NICE
3450
3451/*
3452 * sys_nice - change the priority of the current process.
3453 * @increment: priority increment
3454 *
3455 * sys_setpriority is a more generic, but much slower function that
3456 * does similar things.
3457 */
5add95d4 3458SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3459{
48f24c4d 3460 long nice, retval;
1da177e4
LT
3461
3462 /*
3463 * Setpriority might change our priority at the same moment.
3464 * We don't have to worry. Conceptually one call occurs first
3465 * and we have a single winner.
3466 */
a9467fa3 3467 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 3468 nice = task_nice(current) + increment;
1da177e4 3469
a9467fa3 3470 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
3471 if (increment < 0 && !can_nice(current, nice))
3472 return -EPERM;
3473
1da177e4
LT
3474 retval = security_task_setnice(current, nice);
3475 if (retval)
3476 return retval;
3477
3478 set_user_nice(current, nice);
3479 return 0;
3480}
3481
3482#endif
3483
3484/**
3485 * task_prio - return the priority value of a given task.
3486 * @p: the task in question.
3487 *
e69f6186 3488 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3489 * RT tasks are offset by -200. Normal tasks are centered
3490 * around 0, value goes from -16 to +15.
3491 */
36c8b586 3492int task_prio(const struct task_struct *p)
1da177e4
LT
3493{
3494 return p->prio - MAX_RT_PRIO;
3495}
3496
1da177e4
LT
3497/**
3498 * idle_cpu - is a given cpu idle currently?
3499 * @cpu: the processor in question.
e69f6186
YB
3500 *
3501 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3502 */
3503int idle_cpu(int cpu)
3504{
908a3283
TG
3505 struct rq *rq = cpu_rq(cpu);
3506
3507 if (rq->curr != rq->idle)
3508 return 0;
3509
3510 if (rq->nr_running)
3511 return 0;
3512
3513#ifdef CONFIG_SMP
3514 if (!llist_empty(&rq->wake_list))
3515 return 0;
3516#endif
3517
3518 return 1;
1da177e4
LT
3519}
3520
1da177e4
LT
3521/**
3522 * idle_task - return the idle task for a given cpu.
3523 * @cpu: the processor in question.
e69f6186
YB
3524 *
3525 * Return: The idle task for the cpu @cpu.
1da177e4 3526 */
36c8b586 3527struct task_struct *idle_task(int cpu)
1da177e4
LT
3528{
3529 return cpu_rq(cpu)->idle;
3530}
3531
3532/**
3533 * find_process_by_pid - find a process with a matching PID value.
3534 * @pid: the pid in question.
e69f6186
YB
3535 *
3536 * The task of @pid, if found. %NULL otherwise.
1da177e4 3537 */
a9957449 3538static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3539{
228ebcbe 3540 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3541}
3542
aab03e05
DF
3543/*
3544 * This function initializes the sched_dl_entity of a newly becoming
3545 * SCHED_DEADLINE task.
3546 *
3547 * Only the static values are considered here, the actual runtime and the
3548 * absolute deadline will be properly calculated when the task is enqueued
3549 * for the first time with its new policy.
3550 */
3551static void
3552__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3553{
3554 struct sched_dl_entity *dl_se = &p->dl;
3555
aab03e05
DF
3556 dl_se->dl_runtime = attr->sched_runtime;
3557 dl_se->dl_deadline = attr->sched_deadline;
755378a4 3558 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 3559 dl_se->flags = attr->sched_flags;
332ac17e 3560 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
40767b0d
PZ
3561
3562 /*
3563 * Changing the parameters of a task is 'tricky' and we're not doing
3564 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3565 *
3566 * What we SHOULD do is delay the bandwidth release until the 0-lag
3567 * point. This would include retaining the task_struct until that time
3568 * and change dl_overflow() to not immediately decrement the current
3569 * amount.
3570 *
3571 * Instead we retain the current runtime/deadline and let the new
3572 * parameters take effect after the current reservation period lapses.
3573 * This is safe (albeit pessimistic) because the 0-lag point is always
3574 * before the current scheduling deadline.
3575 *
3576 * We can still have temporary overloads because we do not delay the
3577 * change in bandwidth until that time; so admission control is
3578 * not on the safe side. It does however guarantee tasks will never
3579 * consume more than promised.
3580 */
aab03e05
DF
3581}
3582
c13db6b1
SR
3583/*
3584 * sched_setparam() passes in -1 for its policy, to let the functions
3585 * it calls know not to change it.
3586 */
3587#define SETPARAM_POLICY -1
3588
c365c292
TG
3589static void __setscheduler_params(struct task_struct *p,
3590 const struct sched_attr *attr)
1da177e4 3591{
d50dde5a
DF
3592 int policy = attr->sched_policy;
3593
c13db6b1 3594 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
3595 policy = p->policy;
3596
1da177e4 3597 p->policy = policy;
d50dde5a 3598
aab03e05
DF
3599 if (dl_policy(policy))
3600 __setparam_dl(p, attr);
39fd8fd2 3601 else if (fair_policy(policy))
d50dde5a
DF
3602 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3603
39fd8fd2
PZ
3604 /*
3605 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3606 * !rt_policy. Always setting this ensures that things like
3607 * getparam()/getattr() don't report silly values for !rt tasks.
3608 */
3609 p->rt_priority = attr->sched_priority;
383afd09 3610 p->normal_prio = normal_prio(p);
c365c292
TG
3611 set_load_weight(p);
3612}
39fd8fd2 3613
c365c292
TG
3614/* Actually do priority change: must hold pi & rq lock. */
3615static void __setscheduler(struct rq *rq, struct task_struct *p,
0782e63b 3616 const struct sched_attr *attr, bool keep_boost)
c365c292
TG
3617{
3618 __setscheduler_params(p, attr);
d50dde5a 3619
383afd09 3620 /*
0782e63b
TG
3621 * Keep a potential priority boosting if called from
3622 * sched_setscheduler().
383afd09 3623 */
0782e63b
TG
3624 if (keep_boost)
3625 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3626 else
3627 p->prio = normal_prio(p);
383afd09 3628
aab03e05
DF
3629 if (dl_prio(p->prio))
3630 p->sched_class = &dl_sched_class;
3631 else if (rt_prio(p->prio))
ffd44db5
PZ
3632 p->sched_class = &rt_sched_class;
3633 else
3634 p->sched_class = &fair_sched_class;
1da177e4 3635}
aab03e05
DF
3636
3637static void
3638__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3639{
3640 struct sched_dl_entity *dl_se = &p->dl;
3641
3642 attr->sched_priority = p->rt_priority;
3643 attr->sched_runtime = dl_se->dl_runtime;
3644 attr->sched_deadline = dl_se->dl_deadline;
755378a4 3645 attr->sched_period = dl_se->dl_period;
aab03e05
DF
3646 attr->sched_flags = dl_se->flags;
3647}
3648
3649/*
3650 * This function validates the new parameters of a -deadline task.
3651 * We ask for the deadline not being zero, and greater or equal
755378a4 3652 * than the runtime, as well as the period of being zero or
332ac17e 3653 * greater than deadline. Furthermore, we have to be sure that
b0827819
JL
3654 * user parameters are above the internal resolution of 1us (we
3655 * check sched_runtime only since it is always the smaller one) and
3656 * below 2^63 ns (we have to check both sched_deadline and
3657 * sched_period, as the latter can be zero).
aab03e05
DF
3658 */
3659static bool
3660__checkparam_dl(const struct sched_attr *attr)
3661{
b0827819
JL
3662 /* deadline != 0 */
3663 if (attr->sched_deadline == 0)
3664 return false;
3665
3666 /*
3667 * Since we truncate DL_SCALE bits, make sure we're at least
3668 * that big.
3669 */
3670 if (attr->sched_runtime < (1ULL << DL_SCALE))
3671 return false;
3672
3673 /*
3674 * Since we use the MSB for wrap-around and sign issues, make
3675 * sure it's not set (mind that period can be equal to zero).
3676 */
3677 if (attr->sched_deadline & (1ULL << 63) ||
3678 attr->sched_period & (1ULL << 63))
3679 return false;
3680
3681 /* runtime <= deadline <= period (if period != 0) */
3682 if ((attr->sched_period != 0 &&
3683 attr->sched_period < attr->sched_deadline) ||
3684 attr->sched_deadline < attr->sched_runtime)
3685 return false;
3686
3687 return true;
aab03e05
DF
3688}
3689
c69e8d9c
DH
3690/*
3691 * check the target process has a UID that matches the current process's
3692 */
3693static bool check_same_owner(struct task_struct *p)
3694{
3695 const struct cred *cred = current_cred(), *pcred;
3696 bool match;
3697
3698 rcu_read_lock();
3699 pcred = __task_cred(p);
9c806aa0
EB
3700 match = (uid_eq(cred->euid, pcred->euid) ||
3701 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3702 rcu_read_unlock();
3703 return match;
3704}
3705
75381608
WL
3706static bool dl_param_changed(struct task_struct *p,
3707 const struct sched_attr *attr)
3708{
3709 struct sched_dl_entity *dl_se = &p->dl;
3710
3711 if (dl_se->dl_runtime != attr->sched_runtime ||
3712 dl_se->dl_deadline != attr->sched_deadline ||
3713 dl_se->dl_period != attr->sched_period ||
3714 dl_se->flags != attr->sched_flags)
3715 return true;
3716
3717 return false;
3718}
3719
d50dde5a
DF
3720static int __sched_setscheduler(struct task_struct *p,
3721 const struct sched_attr *attr,
dbc7f069 3722 bool user, bool pi)
1da177e4 3723{
383afd09
SR
3724 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3725 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 3726 int retval, oldprio, oldpolicy = -1, queued, running;
0782e63b 3727 int new_effective_prio, policy = attr->sched_policy;
1da177e4 3728 unsigned long flags;
83ab0aa0 3729 const struct sched_class *prev_class;
70b97a7f 3730 struct rq *rq;
ca94c442 3731 int reset_on_fork;
1da177e4 3732
66e5393a
SR
3733 /* may grab non-irq protected spin_locks */
3734 BUG_ON(in_interrupt());
1da177e4
LT
3735recheck:
3736 /* double check policy once rq lock held */
ca94c442
LP
3737 if (policy < 0) {
3738 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3739 policy = oldpolicy = p->policy;
ca94c442 3740 } else {
7479f3c9 3741 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 3742
20f9cd2a 3743 if (!valid_policy(policy))
ca94c442
LP
3744 return -EINVAL;
3745 }
3746
7479f3c9
PZ
3747 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3748 return -EINVAL;
3749
1da177e4
LT
3750 /*
3751 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3752 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3753 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 3754 */
0bb040a4 3755 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 3756 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 3757 return -EINVAL;
aab03e05
DF
3758 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3759 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
3760 return -EINVAL;
3761
37e4ab3f
OC
3762 /*
3763 * Allow unprivileged RT tasks to decrease priority:
3764 */
961ccddd 3765 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 3766 if (fair_policy(policy)) {
d0ea0268 3767 if (attr->sched_nice < task_nice(p) &&
eaad4513 3768 !can_nice(p, attr->sched_nice))
d50dde5a
DF
3769 return -EPERM;
3770 }
3771
e05606d3 3772 if (rt_policy(policy)) {
a44702e8
ON
3773 unsigned long rlim_rtprio =
3774 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3775
3776 /* can't set/change the rt policy */
3777 if (policy != p->policy && !rlim_rtprio)
3778 return -EPERM;
3779
3780 /* can't increase priority */
d50dde5a
DF
3781 if (attr->sched_priority > p->rt_priority &&
3782 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
3783 return -EPERM;
3784 }
c02aa73b 3785
d44753b8
JL
3786 /*
3787 * Can't set/change SCHED_DEADLINE policy at all for now
3788 * (safest behavior); in the future we would like to allow
3789 * unprivileged DL tasks to increase their relative deadline
3790 * or reduce their runtime (both ways reducing utilization)
3791 */
3792 if (dl_policy(policy))
3793 return -EPERM;
3794
dd41f596 3795 /*
c02aa73b
DH
3796 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3797 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3798 */
20f9cd2a 3799 if (idle_policy(p->policy) && !idle_policy(policy)) {
d0ea0268 3800 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
3801 return -EPERM;
3802 }
5fe1d75f 3803
37e4ab3f 3804 /* can't change other user's priorities */
c69e8d9c 3805 if (!check_same_owner(p))
37e4ab3f 3806 return -EPERM;
ca94c442
LP
3807
3808 /* Normal users shall not reset the sched_reset_on_fork flag */
3809 if (p->sched_reset_on_fork && !reset_on_fork)
3810 return -EPERM;
37e4ab3f 3811 }
1da177e4 3812
725aad24 3813 if (user) {
b0ae1981 3814 retval = security_task_setscheduler(p);
725aad24
JF
3815 if (retval)
3816 return retval;
3817 }
3818
b29739f9
IM
3819 /*
3820 * make sure no PI-waiters arrive (or leave) while we are
3821 * changing the priority of the task:
0122ec5b 3822 *
25985edc 3823 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3824 * runqueue lock must be held.
3825 */
0122ec5b 3826 rq = task_rq_lock(p, &flags);
dc61b1d6 3827
34f971f6
PZ
3828 /*
3829 * Changing the policy of the stop threads its a very bad idea
3830 */
3831 if (p == rq->stop) {
0122ec5b 3832 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3833 return -EINVAL;
3834 }
3835
a51e9198 3836 /*
d6b1e911
TG
3837 * If not changing anything there's no need to proceed further,
3838 * but store a possible modification of reset_on_fork.
a51e9198 3839 */
d50dde5a 3840 if (unlikely(policy == p->policy)) {
d0ea0268 3841 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
3842 goto change;
3843 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3844 goto change;
75381608 3845 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 3846 goto change;
d50dde5a 3847
d6b1e911 3848 p->sched_reset_on_fork = reset_on_fork;
45afb173 3849 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3850 return 0;
3851 }
d50dde5a 3852change:
a51e9198 3853
dc61b1d6 3854 if (user) {
332ac17e 3855#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
3856 /*
3857 * Do not allow realtime tasks into groups that have no runtime
3858 * assigned.
3859 */
3860 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3861 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3862 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3863 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3864 return -EPERM;
3865 }
dc61b1d6 3866#endif
332ac17e
DF
3867#ifdef CONFIG_SMP
3868 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3869 cpumask_t *span = rq->rd->span;
332ac17e
DF
3870
3871 /*
3872 * Don't allow tasks with an affinity mask smaller than
3873 * the entire root_domain to become SCHED_DEADLINE. We
3874 * will also fail if there's no bandwidth available.
3875 */
e4099a5e
PZ
3876 if (!cpumask_subset(span, &p->cpus_allowed) ||
3877 rq->rd->dl_bw.bw == 0) {
332ac17e
DF
3878 task_rq_unlock(rq, p, &flags);
3879 return -EPERM;
3880 }
3881 }
3882#endif
3883 }
dc61b1d6 3884
1da177e4
LT
3885 /* recheck policy now with rq lock held */
3886 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3887 policy = oldpolicy = -1;
0122ec5b 3888 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3889 goto recheck;
3890 }
332ac17e
DF
3891
3892 /*
3893 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3894 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3895 * is available.
3896 */
e4099a5e 3897 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
332ac17e
DF
3898 task_rq_unlock(rq, p, &flags);
3899 return -EBUSY;
3900 }
3901
c365c292
TG
3902 p->sched_reset_on_fork = reset_on_fork;
3903 oldprio = p->prio;
3904
dbc7f069
PZ
3905 if (pi) {
3906 /*
3907 * Take priority boosted tasks into account. If the new
3908 * effective priority is unchanged, we just store the new
3909 * normal parameters and do not touch the scheduler class and
3910 * the runqueue. This will be done when the task deboost
3911 * itself.
3912 */
3913 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
3914 if (new_effective_prio == oldprio) {
3915 __setscheduler_params(p, attr);
3916 task_rq_unlock(rq, p, &flags);
3917 return 0;
3918 }
c365c292
TG
3919 }
3920
da0c1e65 3921 queued = task_on_rq_queued(p);
051a1d1a 3922 running = task_current(rq, p);
da0c1e65 3923 if (queued)
4ca9b72b 3924 dequeue_task(rq, p, 0);
0e1f3483 3925 if (running)
f3cd1c4e 3926 put_prev_task(rq, p);
f6b53205 3927
83ab0aa0 3928 prev_class = p->sched_class;
dbc7f069 3929 __setscheduler(rq, p, attr, pi);
f6b53205 3930
0e1f3483
HS
3931 if (running)
3932 p->sched_class->set_curr_task(rq);
da0c1e65 3933 if (queued) {
81a44c54
TG
3934 /*
3935 * We enqueue to tail when the priority of a task is
3936 * increased (user space view).
3937 */
3938 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3939 }
cb469845 3940
da7a735e 3941 check_class_changed(rq, p, prev_class, oldprio);
4c9a4bc8 3942 preempt_disable(); /* avoid rq from going away on us */
0122ec5b 3943 task_rq_unlock(rq, p, &flags);
b29739f9 3944
dbc7f069
PZ
3945 if (pi)
3946 rt_mutex_adjust_pi(p);
95e02ca9 3947
4c9a4bc8
PZ
3948 /*
3949 * Run balance callbacks after we've adjusted the PI chain.
3950 */
3951 balance_callback(rq);
3952 preempt_enable();
95e02ca9 3953
1da177e4
LT
3954 return 0;
3955}
961ccddd 3956
7479f3c9
PZ
3957static int _sched_setscheduler(struct task_struct *p, int policy,
3958 const struct sched_param *param, bool check)
3959{
3960 struct sched_attr attr = {
3961 .sched_policy = policy,
3962 .sched_priority = param->sched_priority,
3963 .sched_nice = PRIO_TO_NICE(p->static_prio),
3964 };
3965
c13db6b1
SR
3966 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
3967 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
3968 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3969 policy &= ~SCHED_RESET_ON_FORK;
3970 attr.sched_policy = policy;
3971 }
3972
dbc7f069 3973 return __sched_setscheduler(p, &attr, check, true);
7479f3c9 3974}
961ccddd
RR
3975/**
3976 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3977 * @p: the task in question.
3978 * @policy: new policy.
3979 * @param: structure containing the new RT priority.
3980 *
e69f6186
YB
3981 * Return: 0 on success. An error code otherwise.
3982 *
961ccddd
RR
3983 * NOTE that the task may be already dead.
3984 */
3985int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3986 const struct sched_param *param)
961ccddd 3987{
7479f3c9 3988 return _sched_setscheduler(p, policy, param, true);
961ccddd 3989}
1da177e4
LT
3990EXPORT_SYMBOL_GPL(sched_setscheduler);
3991
d50dde5a
DF
3992int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3993{
dbc7f069 3994 return __sched_setscheduler(p, attr, true, true);
d50dde5a
DF
3995}
3996EXPORT_SYMBOL_GPL(sched_setattr);
3997
961ccddd
RR
3998/**
3999 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4000 * @p: the task in question.
4001 * @policy: new policy.
4002 * @param: structure containing the new RT priority.
4003 *
4004 * Just like sched_setscheduler, only don't bother checking if the
4005 * current context has permission. For example, this is needed in
4006 * stop_machine(): we create temporary high priority worker threads,
4007 * but our caller might not have that capability.
e69f6186
YB
4008 *
4009 * Return: 0 on success. An error code otherwise.
961ccddd
RR
4010 */
4011int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 4012 const struct sched_param *param)
961ccddd 4013{
7479f3c9 4014 return _sched_setscheduler(p, policy, param, false);
961ccddd
RR
4015}
4016
95cdf3b7
IM
4017static int
4018do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4019{
1da177e4
LT
4020 struct sched_param lparam;
4021 struct task_struct *p;
36c8b586 4022 int retval;
1da177e4
LT
4023
4024 if (!param || pid < 0)
4025 return -EINVAL;
4026 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4027 return -EFAULT;
5fe1d75f
ON
4028
4029 rcu_read_lock();
4030 retval = -ESRCH;
1da177e4 4031 p = find_process_by_pid(pid);
5fe1d75f
ON
4032 if (p != NULL)
4033 retval = sched_setscheduler(p, policy, &lparam);
4034 rcu_read_unlock();
36c8b586 4035
1da177e4
LT
4036 return retval;
4037}
4038
d50dde5a
DF
4039/*
4040 * Mimics kernel/events/core.c perf_copy_attr().
4041 */
4042static int sched_copy_attr(struct sched_attr __user *uattr,
4043 struct sched_attr *attr)
4044{
4045 u32 size;
4046 int ret;
4047
4048 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4049 return -EFAULT;
4050
4051 /*
4052 * zero the full structure, so that a short copy will be nice.
4053 */
4054 memset(attr, 0, sizeof(*attr));
4055
4056 ret = get_user(size, &uattr->size);
4057 if (ret)
4058 return ret;
4059
4060 if (size > PAGE_SIZE) /* silly large */
4061 goto err_size;
4062
4063 if (!size) /* abi compat */
4064 size = SCHED_ATTR_SIZE_VER0;
4065
4066 if (size < SCHED_ATTR_SIZE_VER0)
4067 goto err_size;
4068
4069 /*
4070 * If we're handed a bigger struct than we know of,
4071 * ensure all the unknown bits are 0 - i.e. new
4072 * user-space does not rely on any kernel feature
4073 * extensions we dont know about yet.
4074 */
4075 if (size > sizeof(*attr)) {
4076 unsigned char __user *addr;
4077 unsigned char __user *end;
4078 unsigned char val;
4079
4080 addr = (void __user *)uattr + sizeof(*attr);
4081 end = (void __user *)uattr + size;
4082
4083 for (; addr < end; addr++) {
4084 ret = get_user(val, addr);
4085 if (ret)
4086 return ret;
4087 if (val)
4088 goto err_size;
4089 }
4090 size = sizeof(*attr);
4091 }
4092
4093 ret = copy_from_user(attr, uattr, size);
4094 if (ret)
4095 return -EFAULT;
4096
4097 /*
4098 * XXX: do we want to be lenient like existing syscalls; or do we want
4099 * to be strict and return an error on out-of-bounds values?
4100 */
75e45d51 4101 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 4102
e78c7bca 4103 return 0;
d50dde5a
DF
4104
4105err_size:
4106 put_user(sizeof(*attr), &uattr->size);
e78c7bca 4107 return -E2BIG;
d50dde5a
DF
4108}
4109
1da177e4
LT
4110/**
4111 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4112 * @pid: the pid in question.
4113 * @policy: new policy.
4114 * @param: structure containing the new RT priority.
e69f6186
YB
4115 *
4116 * Return: 0 on success. An error code otherwise.
1da177e4 4117 */
5add95d4
HC
4118SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4119 struct sched_param __user *, param)
1da177e4 4120{
c21761f1
JB
4121 /* negative values for policy are not valid */
4122 if (policy < 0)
4123 return -EINVAL;
4124
1da177e4
LT
4125 return do_sched_setscheduler(pid, policy, param);
4126}
4127
4128/**
4129 * sys_sched_setparam - set/change the RT priority of a thread
4130 * @pid: the pid in question.
4131 * @param: structure containing the new RT priority.
e69f6186
YB
4132 *
4133 * Return: 0 on success. An error code otherwise.
1da177e4 4134 */
5add95d4 4135SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4136{
c13db6b1 4137 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
4138}
4139
d50dde5a
DF
4140/**
4141 * sys_sched_setattr - same as above, but with extended sched_attr
4142 * @pid: the pid in question.
5778fccf 4143 * @uattr: structure containing the extended parameters.
db66d756 4144 * @flags: for future extension.
d50dde5a 4145 */
6d35ab48
PZ
4146SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4147 unsigned int, flags)
d50dde5a
DF
4148{
4149 struct sched_attr attr;
4150 struct task_struct *p;
4151 int retval;
4152
6d35ab48 4153 if (!uattr || pid < 0 || flags)
d50dde5a
DF
4154 return -EINVAL;
4155
143cf23d
MK
4156 retval = sched_copy_attr(uattr, &attr);
4157 if (retval)
4158 return retval;
d50dde5a 4159
b14ed2c2 4160 if ((int)attr.sched_policy < 0)
dbdb2275 4161 return -EINVAL;
d50dde5a
DF
4162
4163 rcu_read_lock();
4164 retval = -ESRCH;
4165 p = find_process_by_pid(pid);
4166 if (p != NULL)
4167 retval = sched_setattr(p, &attr);
4168 rcu_read_unlock();
4169
4170 return retval;
4171}
4172
1da177e4
LT
4173/**
4174 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4175 * @pid: the pid in question.
e69f6186
YB
4176 *
4177 * Return: On success, the policy of the thread. Otherwise, a negative error
4178 * code.
1da177e4 4179 */
5add95d4 4180SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4181{
36c8b586 4182 struct task_struct *p;
3a5c359a 4183 int retval;
1da177e4
LT
4184
4185 if (pid < 0)
3a5c359a 4186 return -EINVAL;
1da177e4
LT
4187
4188 retval = -ESRCH;
5fe85be0 4189 rcu_read_lock();
1da177e4
LT
4190 p = find_process_by_pid(pid);
4191 if (p) {
4192 retval = security_task_getscheduler(p);
4193 if (!retval)
ca94c442
LP
4194 retval = p->policy
4195 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4196 }
5fe85be0 4197 rcu_read_unlock();
1da177e4
LT
4198 return retval;
4199}
4200
4201/**
ca94c442 4202 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4203 * @pid: the pid in question.
4204 * @param: structure containing the RT priority.
e69f6186
YB
4205 *
4206 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4207 * code.
1da177e4 4208 */
5add95d4 4209SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4210{
ce5f7f82 4211 struct sched_param lp = { .sched_priority = 0 };
36c8b586 4212 struct task_struct *p;
3a5c359a 4213 int retval;
1da177e4
LT
4214
4215 if (!param || pid < 0)
3a5c359a 4216 return -EINVAL;
1da177e4 4217
5fe85be0 4218 rcu_read_lock();
1da177e4
LT
4219 p = find_process_by_pid(pid);
4220 retval = -ESRCH;
4221 if (!p)
4222 goto out_unlock;
4223
4224 retval = security_task_getscheduler(p);
4225 if (retval)
4226 goto out_unlock;
4227
ce5f7f82
PZ
4228 if (task_has_rt_policy(p))
4229 lp.sched_priority = p->rt_priority;
5fe85be0 4230 rcu_read_unlock();
1da177e4
LT
4231
4232 /*
4233 * This one might sleep, we cannot do it with a spinlock held ...
4234 */
4235 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4236
1da177e4
LT
4237 return retval;
4238
4239out_unlock:
5fe85be0 4240 rcu_read_unlock();
1da177e4
LT
4241 return retval;
4242}
4243
d50dde5a
DF
4244static int sched_read_attr(struct sched_attr __user *uattr,
4245 struct sched_attr *attr,
4246 unsigned int usize)
4247{
4248 int ret;
4249
4250 if (!access_ok(VERIFY_WRITE, uattr, usize))
4251 return -EFAULT;
4252
4253 /*
4254 * If we're handed a smaller struct than we know of,
4255 * ensure all the unknown bits are 0 - i.e. old
4256 * user-space does not get uncomplete information.
4257 */
4258 if (usize < sizeof(*attr)) {
4259 unsigned char *addr;
4260 unsigned char *end;
4261
4262 addr = (void *)attr + usize;
4263 end = (void *)attr + sizeof(*attr);
4264
4265 for (; addr < end; addr++) {
4266 if (*addr)
22400674 4267 return -EFBIG;
d50dde5a
DF
4268 }
4269
4270 attr->size = usize;
4271 }
4272
4efbc454 4273 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
4274 if (ret)
4275 return -EFAULT;
4276
22400674 4277 return 0;
d50dde5a
DF
4278}
4279
4280/**
aab03e05 4281 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 4282 * @pid: the pid in question.
5778fccf 4283 * @uattr: structure containing the extended parameters.
d50dde5a 4284 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 4285 * @flags: for future extension.
d50dde5a 4286 */
6d35ab48
PZ
4287SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4288 unsigned int, size, unsigned int, flags)
d50dde5a
DF
4289{
4290 struct sched_attr attr = {
4291 .size = sizeof(struct sched_attr),
4292 };
4293 struct task_struct *p;
4294 int retval;
4295
4296 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 4297 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
4298 return -EINVAL;
4299
4300 rcu_read_lock();
4301 p = find_process_by_pid(pid);
4302 retval = -ESRCH;
4303 if (!p)
4304 goto out_unlock;
4305
4306 retval = security_task_getscheduler(p);
4307 if (retval)
4308 goto out_unlock;
4309
4310 attr.sched_policy = p->policy;
7479f3c9
PZ
4311 if (p->sched_reset_on_fork)
4312 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
4313 if (task_has_dl_policy(p))
4314 __getparam_dl(p, &attr);
4315 else if (task_has_rt_policy(p))
d50dde5a
DF
4316 attr.sched_priority = p->rt_priority;
4317 else
d0ea0268 4318 attr.sched_nice = task_nice(p);
d50dde5a
DF
4319
4320 rcu_read_unlock();
4321
4322 retval = sched_read_attr(uattr, &attr, size);
4323 return retval;
4324
4325out_unlock:
4326 rcu_read_unlock();
4327 return retval;
4328}
4329
96f874e2 4330long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4331{
5a16f3d3 4332 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4333 struct task_struct *p;
4334 int retval;
1da177e4 4335
23f5d142 4336 rcu_read_lock();
1da177e4
LT
4337
4338 p = find_process_by_pid(pid);
4339 if (!p) {
23f5d142 4340 rcu_read_unlock();
1da177e4
LT
4341 return -ESRCH;
4342 }
4343
23f5d142 4344 /* Prevent p going away */
1da177e4 4345 get_task_struct(p);
23f5d142 4346 rcu_read_unlock();
1da177e4 4347
14a40ffc
TH
4348 if (p->flags & PF_NO_SETAFFINITY) {
4349 retval = -EINVAL;
4350 goto out_put_task;
4351 }
5a16f3d3
RR
4352 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4353 retval = -ENOMEM;
4354 goto out_put_task;
4355 }
4356 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4357 retval = -ENOMEM;
4358 goto out_free_cpus_allowed;
4359 }
1da177e4 4360 retval = -EPERM;
4c44aaaf
EB
4361 if (!check_same_owner(p)) {
4362 rcu_read_lock();
4363 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4364 rcu_read_unlock();
16303ab2 4365 goto out_free_new_mask;
4c44aaaf
EB
4366 }
4367 rcu_read_unlock();
4368 }
1da177e4 4369
b0ae1981 4370 retval = security_task_setscheduler(p);
e7834f8f 4371 if (retval)
16303ab2 4372 goto out_free_new_mask;
e7834f8f 4373
e4099a5e
PZ
4374
4375 cpuset_cpus_allowed(p, cpus_allowed);
4376 cpumask_and(new_mask, in_mask, cpus_allowed);
4377
332ac17e
DF
4378 /*
4379 * Since bandwidth control happens on root_domain basis,
4380 * if admission test is enabled, we only admit -deadline
4381 * tasks allowed to run on all the CPUs in the task's
4382 * root_domain.
4383 */
4384#ifdef CONFIG_SMP
f1e3a093
KT
4385 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4386 rcu_read_lock();
4387 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 4388 retval = -EBUSY;
f1e3a093 4389 rcu_read_unlock();
16303ab2 4390 goto out_free_new_mask;
332ac17e 4391 }
f1e3a093 4392 rcu_read_unlock();
332ac17e
DF
4393 }
4394#endif
49246274 4395again:
25834c73 4396 retval = __set_cpus_allowed_ptr(p, new_mask, true);
1da177e4 4397
8707d8b8 4398 if (!retval) {
5a16f3d3
RR
4399 cpuset_cpus_allowed(p, cpus_allowed);
4400 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4401 /*
4402 * We must have raced with a concurrent cpuset
4403 * update. Just reset the cpus_allowed to the
4404 * cpuset's cpus_allowed
4405 */
5a16f3d3 4406 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4407 goto again;
4408 }
4409 }
16303ab2 4410out_free_new_mask:
5a16f3d3
RR
4411 free_cpumask_var(new_mask);
4412out_free_cpus_allowed:
4413 free_cpumask_var(cpus_allowed);
4414out_put_task:
1da177e4 4415 put_task_struct(p);
1da177e4
LT
4416 return retval;
4417}
4418
4419static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4420 struct cpumask *new_mask)
1da177e4 4421{
96f874e2
RR
4422 if (len < cpumask_size())
4423 cpumask_clear(new_mask);
4424 else if (len > cpumask_size())
4425 len = cpumask_size();
4426
1da177e4
LT
4427 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4428}
4429
4430/**
4431 * sys_sched_setaffinity - set the cpu affinity of a process
4432 * @pid: pid of the process
4433 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4434 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
4435 *
4436 * Return: 0 on success. An error code otherwise.
1da177e4 4437 */
5add95d4
HC
4438SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4439 unsigned long __user *, user_mask_ptr)
1da177e4 4440{
5a16f3d3 4441 cpumask_var_t new_mask;
1da177e4
LT
4442 int retval;
4443
5a16f3d3
RR
4444 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4445 return -ENOMEM;
1da177e4 4446
5a16f3d3
RR
4447 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4448 if (retval == 0)
4449 retval = sched_setaffinity(pid, new_mask);
4450 free_cpumask_var(new_mask);
4451 return retval;
1da177e4
LT
4452}
4453
96f874e2 4454long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4455{
36c8b586 4456 struct task_struct *p;
31605683 4457 unsigned long flags;
1da177e4 4458 int retval;
1da177e4 4459
23f5d142 4460 rcu_read_lock();
1da177e4
LT
4461
4462 retval = -ESRCH;
4463 p = find_process_by_pid(pid);
4464 if (!p)
4465 goto out_unlock;
4466
e7834f8f
DQ
4467 retval = security_task_getscheduler(p);
4468 if (retval)
4469 goto out_unlock;
4470
013fdb80 4471 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4472 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4473 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4474
4475out_unlock:
23f5d142 4476 rcu_read_unlock();
1da177e4 4477
9531b62f 4478 return retval;
1da177e4
LT
4479}
4480
4481/**
4482 * sys_sched_getaffinity - get the cpu affinity of a process
4483 * @pid: pid of the process
4484 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4485 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186
YB
4486 *
4487 * Return: 0 on success. An error code otherwise.
1da177e4 4488 */
5add95d4
HC
4489SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4490 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4491{
4492 int ret;
f17c8607 4493 cpumask_var_t mask;
1da177e4 4494
84fba5ec 4495 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4496 return -EINVAL;
4497 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4498 return -EINVAL;
4499
f17c8607
RR
4500 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4501 return -ENOMEM;
1da177e4 4502
f17c8607
RR
4503 ret = sched_getaffinity(pid, mask);
4504 if (ret == 0) {
8bc037fb 4505 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4506
4507 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4508 ret = -EFAULT;
4509 else
cd3d8031 4510 ret = retlen;
f17c8607
RR
4511 }
4512 free_cpumask_var(mask);
1da177e4 4513
f17c8607 4514 return ret;
1da177e4
LT
4515}
4516
4517/**
4518 * sys_sched_yield - yield the current processor to other threads.
4519 *
dd41f596
IM
4520 * This function yields the current CPU to other tasks. If there are no
4521 * other threads running on this CPU then this function will return.
e69f6186
YB
4522 *
4523 * Return: 0.
1da177e4 4524 */
5add95d4 4525SYSCALL_DEFINE0(sched_yield)
1da177e4 4526{
70b97a7f 4527 struct rq *rq = this_rq_lock();
1da177e4 4528
2d72376b 4529 schedstat_inc(rq, yld_count);
4530d7ab 4530 current->sched_class->yield_task(rq);
1da177e4
LT
4531
4532 /*
4533 * Since we are going to call schedule() anyway, there's
4534 * no need to preempt or enable interrupts:
4535 */
4536 __release(rq->lock);
8a25d5de 4537 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4538 do_raw_spin_unlock(&rq->lock);
ba74c144 4539 sched_preempt_enable_no_resched();
1da177e4
LT
4540
4541 schedule();
4542
4543 return 0;
4544}
4545
02b67cc3 4546int __sched _cond_resched(void)
1da177e4 4547{
fe32d3cd 4548 if (should_resched(0)) {
a18b5d01 4549 preempt_schedule_common();
1da177e4
LT
4550 return 1;
4551 }
4552 return 0;
4553}
02b67cc3 4554EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4555
4556/*
613afbf8 4557 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4558 * call schedule, and on return reacquire the lock.
4559 *
41a2d6cf 4560 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4561 * operations here to prevent schedule() from being called twice (once via
4562 * spin_unlock(), once by hand).
4563 */
613afbf8 4564int __cond_resched_lock(spinlock_t *lock)
1da177e4 4565{
fe32d3cd 4566 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6df3cecb
JK
4567 int ret = 0;
4568
f607c668
PZ
4569 lockdep_assert_held(lock);
4570
4a81e832 4571 if (spin_needbreak(lock) || resched) {
1da177e4 4572 spin_unlock(lock);
d86ee480 4573 if (resched)
a18b5d01 4574 preempt_schedule_common();
95c354fe
NP
4575 else
4576 cpu_relax();
6df3cecb 4577 ret = 1;
1da177e4 4578 spin_lock(lock);
1da177e4 4579 }
6df3cecb 4580 return ret;
1da177e4 4581}
613afbf8 4582EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4583
613afbf8 4584int __sched __cond_resched_softirq(void)
1da177e4
LT
4585{
4586 BUG_ON(!in_softirq());
4587
fe32d3cd 4588 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
98d82567 4589 local_bh_enable();
a18b5d01 4590 preempt_schedule_common();
1da177e4
LT
4591 local_bh_disable();
4592 return 1;
4593 }
4594 return 0;
4595}
613afbf8 4596EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4597
1da177e4
LT
4598/**
4599 * yield - yield the current processor to other threads.
4600 *
8e3fabfd
PZ
4601 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4602 *
4603 * The scheduler is at all times free to pick the calling task as the most
4604 * eligible task to run, if removing the yield() call from your code breaks
4605 * it, its already broken.
4606 *
4607 * Typical broken usage is:
4608 *
4609 * while (!event)
4610 * yield();
4611 *
4612 * where one assumes that yield() will let 'the other' process run that will
4613 * make event true. If the current task is a SCHED_FIFO task that will never
4614 * happen. Never use yield() as a progress guarantee!!
4615 *
4616 * If you want to use yield() to wait for something, use wait_event().
4617 * If you want to use yield() to be 'nice' for others, use cond_resched().
4618 * If you still want to use yield(), do not!
1da177e4
LT
4619 */
4620void __sched yield(void)
4621{
4622 set_current_state(TASK_RUNNING);
4623 sys_sched_yield();
4624}
1da177e4
LT
4625EXPORT_SYMBOL(yield);
4626
d95f4122
MG
4627/**
4628 * yield_to - yield the current processor to another thread in
4629 * your thread group, or accelerate that thread toward the
4630 * processor it's on.
16addf95
RD
4631 * @p: target task
4632 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4633 *
4634 * It's the caller's job to ensure that the target task struct
4635 * can't go away on us before we can do any checks.
4636 *
e69f6186 4637 * Return:
7b270f60
PZ
4638 * true (>0) if we indeed boosted the target task.
4639 * false (0) if we failed to boost the target.
4640 * -ESRCH if there's no task to yield to.
d95f4122 4641 */
fa93384f 4642int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
4643{
4644 struct task_struct *curr = current;
4645 struct rq *rq, *p_rq;
4646 unsigned long flags;
c3c18640 4647 int yielded = 0;
d95f4122
MG
4648
4649 local_irq_save(flags);
4650 rq = this_rq();
4651
4652again:
4653 p_rq = task_rq(p);
7b270f60
PZ
4654 /*
4655 * If we're the only runnable task on the rq and target rq also
4656 * has only one task, there's absolutely no point in yielding.
4657 */
4658 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4659 yielded = -ESRCH;
4660 goto out_irq;
4661 }
4662
d95f4122 4663 double_rq_lock(rq, p_rq);
39e24d8f 4664 if (task_rq(p) != p_rq) {
d95f4122
MG
4665 double_rq_unlock(rq, p_rq);
4666 goto again;
4667 }
4668
4669 if (!curr->sched_class->yield_to_task)
7b270f60 4670 goto out_unlock;
d95f4122
MG
4671
4672 if (curr->sched_class != p->sched_class)
7b270f60 4673 goto out_unlock;
d95f4122
MG
4674
4675 if (task_running(p_rq, p) || p->state)
7b270f60 4676 goto out_unlock;
d95f4122
MG
4677
4678 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4679 if (yielded) {
d95f4122 4680 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4681 /*
4682 * Make p's CPU reschedule; pick_next_entity takes care of
4683 * fairness.
4684 */
4685 if (preempt && rq != p_rq)
8875125e 4686 resched_curr(p_rq);
6d1cafd8 4687 }
d95f4122 4688
7b270f60 4689out_unlock:
d95f4122 4690 double_rq_unlock(rq, p_rq);
7b270f60 4691out_irq:
d95f4122
MG
4692 local_irq_restore(flags);
4693
7b270f60 4694 if (yielded > 0)
d95f4122
MG
4695 schedule();
4696
4697 return yielded;
4698}
4699EXPORT_SYMBOL_GPL(yield_to);
4700
1da177e4 4701/*
41a2d6cf 4702 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4703 * that process accounting knows that this is a task in IO wait state.
1da177e4 4704 */
1da177e4
LT
4705long __sched io_schedule_timeout(long timeout)
4706{
9cff8ade
N
4707 int old_iowait = current->in_iowait;
4708 struct rq *rq;
1da177e4
LT
4709 long ret;
4710
9cff8ade 4711 current->in_iowait = 1;
10d784ea 4712 blk_schedule_flush_plug(current);
9cff8ade 4713
0ff92245 4714 delayacct_blkio_start();
9cff8ade 4715 rq = raw_rq();
1da177e4
LT
4716 atomic_inc(&rq->nr_iowait);
4717 ret = schedule_timeout(timeout);
9cff8ade 4718 current->in_iowait = old_iowait;
1da177e4 4719 atomic_dec(&rq->nr_iowait);
0ff92245 4720 delayacct_blkio_end();
9cff8ade 4721
1da177e4
LT
4722 return ret;
4723}
9cff8ade 4724EXPORT_SYMBOL(io_schedule_timeout);
1da177e4
LT
4725
4726/**
4727 * sys_sched_get_priority_max - return maximum RT priority.
4728 * @policy: scheduling class.
4729 *
e69f6186
YB
4730 * Return: On success, this syscall returns the maximum
4731 * rt_priority that can be used by a given scheduling class.
4732 * On failure, a negative error code is returned.
1da177e4 4733 */
5add95d4 4734SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4735{
4736 int ret = -EINVAL;
4737
4738 switch (policy) {
4739 case SCHED_FIFO:
4740 case SCHED_RR:
4741 ret = MAX_USER_RT_PRIO-1;
4742 break;
aab03e05 4743 case SCHED_DEADLINE:
1da177e4 4744 case SCHED_NORMAL:
b0a9499c 4745 case SCHED_BATCH:
dd41f596 4746 case SCHED_IDLE:
1da177e4
LT
4747 ret = 0;
4748 break;
4749 }
4750 return ret;
4751}
4752
4753/**
4754 * sys_sched_get_priority_min - return minimum RT priority.
4755 * @policy: scheduling class.
4756 *
e69f6186
YB
4757 * Return: On success, this syscall returns the minimum
4758 * rt_priority that can be used by a given scheduling class.
4759 * On failure, a negative error code is returned.
1da177e4 4760 */
5add95d4 4761SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4762{
4763 int ret = -EINVAL;
4764
4765 switch (policy) {
4766 case SCHED_FIFO:
4767 case SCHED_RR:
4768 ret = 1;
4769 break;
aab03e05 4770 case SCHED_DEADLINE:
1da177e4 4771 case SCHED_NORMAL:
b0a9499c 4772 case SCHED_BATCH:
dd41f596 4773 case SCHED_IDLE:
1da177e4
LT
4774 ret = 0;
4775 }
4776 return ret;
4777}
4778
4779/**
4780 * sys_sched_rr_get_interval - return the default timeslice of a process.
4781 * @pid: pid of the process.
4782 * @interval: userspace pointer to the timeslice value.
4783 *
4784 * this syscall writes the default timeslice value of a given process
4785 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
4786 *
4787 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4788 * an error code.
1da177e4 4789 */
17da2bd9 4790SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4791 struct timespec __user *, interval)
1da177e4 4792{
36c8b586 4793 struct task_struct *p;
a4ec24b4 4794 unsigned int time_slice;
dba091b9
TG
4795 unsigned long flags;
4796 struct rq *rq;
3a5c359a 4797 int retval;
1da177e4 4798 struct timespec t;
1da177e4
LT
4799
4800 if (pid < 0)
3a5c359a 4801 return -EINVAL;
1da177e4
LT
4802
4803 retval = -ESRCH;
1a551ae7 4804 rcu_read_lock();
1da177e4
LT
4805 p = find_process_by_pid(pid);
4806 if (!p)
4807 goto out_unlock;
4808
4809 retval = security_task_getscheduler(p);
4810 if (retval)
4811 goto out_unlock;
4812
dba091b9 4813 rq = task_rq_lock(p, &flags);
a57beec5
PZ
4814 time_slice = 0;
4815 if (p->sched_class->get_rr_interval)
4816 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4817 task_rq_unlock(rq, p, &flags);
a4ec24b4 4818
1a551ae7 4819 rcu_read_unlock();
a4ec24b4 4820 jiffies_to_timespec(time_slice, &t);
1da177e4 4821 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4822 return retval;
3a5c359a 4823
1da177e4 4824out_unlock:
1a551ae7 4825 rcu_read_unlock();
1da177e4
LT
4826 return retval;
4827}
4828
7c731e0a 4829static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4830
82a1fcb9 4831void sched_show_task(struct task_struct *p)
1da177e4 4832{
1da177e4 4833 unsigned long free = 0;
4e79752c 4834 int ppid;
1f8a7633 4835 unsigned long state = p->state;
1da177e4 4836
1f8a7633
TH
4837 if (state)
4838 state = __ffs(state) + 1;
28d0686c 4839 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4840 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4841#if BITS_PER_LONG == 32
1da177e4 4842 if (state == TASK_RUNNING)
3df0fc5b 4843 printk(KERN_CONT " running ");
1da177e4 4844 else
3df0fc5b 4845 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4846#else
4847 if (state == TASK_RUNNING)
3df0fc5b 4848 printk(KERN_CONT " running task ");
1da177e4 4849 else
3df0fc5b 4850 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4851#endif
4852#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4853 free = stack_not_used(p);
1da177e4 4854#endif
a90e984c 4855 ppid = 0;
4e79752c 4856 rcu_read_lock();
a90e984c
ON
4857 if (pid_alive(p))
4858 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 4859 rcu_read_unlock();
3df0fc5b 4860 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 4861 task_pid_nr(p), ppid,
aa47b7e0 4862 (unsigned long)task_thread_info(p)->flags);
1da177e4 4863
3d1cb205 4864 print_worker_info(KERN_INFO, p);
5fb5e6de 4865 show_stack(p, NULL);
1da177e4
LT
4866}
4867
e59e2ae2 4868void show_state_filter(unsigned long state_filter)
1da177e4 4869{
36c8b586 4870 struct task_struct *g, *p;
1da177e4 4871
4bd77321 4872#if BITS_PER_LONG == 32
3df0fc5b
PZ
4873 printk(KERN_INFO
4874 " task PC stack pid father\n");
1da177e4 4875#else
3df0fc5b
PZ
4876 printk(KERN_INFO
4877 " task PC stack pid father\n");
1da177e4 4878#endif
510f5acc 4879 rcu_read_lock();
5d07f420 4880 for_each_process_thread(g, p) {
1da177e4
LT
4881 /*
4882 * reset the NMI-timeout, listing all files on a slow
25985edc 4883 * console might take a lot of time:
1da177e4
LT
4884 */
4885 touch_nmi_watchdog();
39bc89fd 4886 if (!state_filter || (p->state & state_filter))
82a1fcb9 4887 sched_show_task(p);
5d07f420 4888 }
1da177e4 4889
04c9167f
JF
4890 touch_all_softlockup_watchdogs();
4891
dd41f596
IM
4892#ifdef CONFIG_SCHED_DEBUG
4893 sysrq_sched_debug_show();
4894#endif
510f5acc 4895 rcu_read_unlock();
e59e2ae2
IM
4896 /*
4897 * Only show locks if all tasks are dumped:
4898 */
93335a21 4899 if (!state_filter)
e59e2ae2 4900 debug_show_all_locks();
1da177e4
LT
4901}
4902
0db0628d 4903void init_idle_bootup_task(struct task_struct *idle)
1df21055 4904{
dd41f596 4905 idle->sched_class = &idle_sched_class;
1df21055
IM
4906}
4907
f340c0d1
IM
4908/**
4909 * init_idle - set up an idle thread for a given CPU
4910 * @idle: task in question
4911 * @cpu: cpu the idle task belongs to
4912 *
4913 * NOTE: this function does not set the idle thread's NEED_RESCHED
4914 * flag, to make booting more robust.
4915 */
0db0628d 4916void init_idle(struct task_struct *idle, int cpu)
1da177e4 4917{
70b97a7f 4918 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4919 unsigned long flags;
4920
25834c73
PZ
4921 raw_spin_lock_irqsave(&idle->pi_lock, flags);
4922 raw_spin_lock(&rq->lock);
5cbd54ef 4923
5e1576ed 4924 __sched_fork(0, idle);
06b83b5f 4925 idle->state = TASK_RUNNING;
dd41f596
IM
4926 idle->se.exec_start = sched_clock();
4927
de9b8f5d
PZ
4928#ifdef CONFIG_SMP
4929 /*
4930 * Its possible that init_idle() gets called multiple times on a task,
4931 * in that case do_set_cpus_allowed() will not do the right thing.
4932 *
4933 * And since this is boot we can forgo the serialization.
4934 */
4935 set_cpus_allowed_common(idle, cpumask_of(cpu));
4936#endif
6506cf6c
PZ
4937 /*
4938 * We're having a chicken and egg problem, even though we are
4939 * holding rq->lock, the cpu isn't yet set to this cpu so the
4940 * lockdep check in task_group() will fail.
4941 *
4942 * Similar case to sched_fork(). / Alternatively we could
4943 * use task_rq_lock() here and obtain the other rq->lock.
4944 *
4945 * Silence PROVE_RCU
4946 */
4947 rcu_read_lock();
dd41f596 4948 __set_task_cpu(idle, cpu);
6506cf6c 4949 rcu_read_unlock();
1da177e4 4950
1da177e4 4951 rq->curr = rq->idle = idle;
da0c1e65 4952 idle->on_rq = TASK_ON_RQ_QUEUED;
de9b8f5d 4953#ifdef CONFIG_SMP
3ca7a440 4954 idle->on_cpu = 1;
4866cde0 4955#endif
25834c73
PZ
4956 raw_spin_unlock(&rq->lock);
4957 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
1da177e4
LT
4958
4959 /* Set the preempt count _outside_ the spinlocks! */
01028747 4960 init_idle_preempt_count(idle, cpu);
55cd5340 4961
dd41f596
IM
4962 /*
4963 * The idle tasks have their own, simple scheduling class:
4964 */
4965 idle->sched_class = &idle_sched_class;
868baf07 4966 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 4967 vtime_init_idle(idle, cpu);
de9b8f5d 4968#ifdef CONFIG_SMP
f1c6f1a7
CE
4969 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4970#endif
19978ca6
IM
4971}
4972
f82f8042
JL
4973int cpuset_cpumask_can_shrink(const struct cpumask *cur,
4974 const struct cpumask *trial)
4975{
4976 int ret = 1, trial_cpus;
4977 struct dl_bw *cur_dl_b;
4978 unsigned long flags;
4979
bb2bc55a
MG
4980 if (!cpumask_weight(cur))
4981 return ret;
4982
75e23e49 4983 rcu_read_lock_sched();
f82f8042
JL
4984 cur_dl_b = dl_bw_of(cpumask_any(cur));
4985 trial_cpus = cpumask_weight(trial);
4986
4987 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
4988 if (cur_dl_b->bw != -1 &&
4989 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
4990 ret = 0;
4991 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
75e23e49 4992 rcu_read_unlock_sched();
f82f8042
JL
4993
4994 return ret;
4995}
4996
7f51412a
JL
4997int task_can_attach(struct task_struct *p,
4998 const struct cpumask *cs_cpus_allowed)
4999{
5000 int ret = 0;
5001
5002 /*
5003 * Kthreads which disallow setaffinity shouldn't be moved
5004 * to a new cpuset; we don't want to change their cpu
5005 * affinity and isolating such threads by their set of
5006 * allowed nodes is unnecessary. Thus, cpusets are not
5007 * applicable for such threads. This prevents checking for
5008 * success of set_cpus_allowed_ptr() on all attached tasks
5009 * before cpus_allowed may be changed.
5010 */
5011 if (p->flags & PF_NO_SETAFFINITY) {
5012 ret = -EINVAL;
5013 goto out;
5014 }
5015
5016#ifdef CONFIG_SMP
5017 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5018 cs_cpus_allowed)) {
5019 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5020 cs_cpus_allowed);
75e23e49 5021 struct dl_bw *dl_b;
7f51412a
JL
5022 bool overflow;
5023 int cpus;
5024 unsigned long flags;
5025
75e23e49
JL
5026 rcu_read_lock_sched();
5027 dl_b = dl_bw_of(dest_cpu);
7f51412a
JL
5028 raw_spin_lock_irqsave(&dl_b->lock, flags);
5029 cpus = dl_bw_cpus(dest_cpu);
5030 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5031 if (overflow)
5032 ret = -EBUSY;
5033 else {
5034 /*
5035 * We reserve space for this task in the destination
5036 * root_domain, as we can't fail after this point.
5037 * We will free resources in the source root_domain
5038 * later on (see set_cpus_allowed_dl()).
5039 */
5040 __dl_add(dl_b, p->dl.dl_bw);
5041 }
5042 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
75e23e49 5043 rcu_read_unlock_sched();
7f51412a
JL
5044
5045 }
5046#endif
5047out:
5048 return ret;
5049}
5050
1da177e4 5051#ifdef CONFIG_SMP
1da177e4 5052
e6628d5b
MG
5053#ifdef CONFIG_NUMA_BALANCING
5054/* Migrate current task p to target_cpu */
5055int migrate_task_to(struct task_struct *p, int target_cpu)
5056{
5057 struct migration_arg arg = { p, target_cpu };
5058 int curr_cpu = task_cpu(p);
5059
5060 if (curr_cpu == target_cpu)
5061 return 0;
5062
5063 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5064 return -EINVAL;
5065
5066 /* TODO: This is not properly updating schedstats */
5067
286549dc 5068 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
5069 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5070}
0ec8aa00
PZ
5071
5072/*
5073 * Requeue a task on a given node and accurately track the number of NUMA
5074 * tasks on the runqueues
5075 */
5076void sched_setnuma(struct task_struct *p, int nid)
5077{
5078 struct rq *rq;
5079 unsigned long flags;
da0c1e65 5080 bool queued, running;
0ec8aa00
PZ
5081
5082 rq = task_rq_lock(p, &flags);
da0c1e65 5083 queued = task_on_rq_queued(p);
0ec8aa00
PZ
5084 running = task_current(rq, p);
5085
da0c1e65 5086 if (queued)
0ec8aa00
PZ
5087 dequeue_task(rq, p, 0);
5088 if (running)
f3cd1c4e 5089 put_prev_task(rq, p);
0ec8aa00
PZ
5090
5091 p->numa_preferred_nid = nid;
0ec8aa00
PZ
5092
5093 if (running)
5094 p->sched_class->set_curr_task(rq);
da0c1e65 5095 if (queued)
0ec8aa00
PZ
5096 enqueue_task(rq, p, 0);
5097 task_rq_unlock(rq, p, &flags);
5098}
5cc389bc 5099#endif /* CONFIG_NUMA_BALANCING */
f7b4cddc 5100
1da177e4 5101#ifdef CONFIG_HOTPLUG_CPU
054b9108 5102/*
48c5ccae
PZ
5103 * Ensures that the idle task is using init_mm right before its cpu goes
5104 * offline.
054b9108 5105 */
48c5ccae 5106void idle_task_exit(void)
1da177e4 5107{
48c5ccae 5108 struct mm_struct *mm = current->active_mm;
e76bd8d9 5109
48c5ccae 5110 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 5111
a53efe5f 5112 if (mm != &init_mm) {
48c5ccae 5113 switch_mm(mm, &init_mm, current);
a53efe5f
MS
5114 finish_arch_post_lock_switch();
5115 }
48c5ccae 5116 mmdrop(mm);
1da177e4
LT
5117}
5118
5119/*
5d180232
PZ
5120 * Since this CPU is going 'away' for a while, fold any nr_active delta
5121 * we might have. Assumes we're called after migrate_tasks() so that the
5122 * nr_active count is stable.
5123 *
5124 * Also see the comment "Global load-average calculations".
1da177e4 5125 */
5d180232 5126static void calc_load_migrate(struct rq *rq)
1da177e4 5127{
5d180232
PZ
5128 long delta = calc_load_fold_active(rq);
5129 if (delta)
5130 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
5131}
5132
3f1d2a31
PZ
5133static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5134{
5135}
5136
5137static const struct sched_class fake_sched_class = {
5138 .put_prev_task = put_prev_task_fake,
5139};
5140
5141static struct task_struct fake_task = {
5142 /*
5143 * Avoid pull_{rt,dl}_task()
5144 */
5145 .prio = MAX_PRIO + 1,
5146 .sched_class = &fake_sched_class,
5147};
5148
48f24c4d 5149/*
48c5ccae
PZ
5150 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5151 * try_to_wake_up()->select_task_rq().
5152 *
5153 * Called with rq->lock held even though we'er in stop_machine() and
5154 * there's no concurrency possible, we hold the required locks anyway
5155 * because of lock validation efforts.
1da177e4 5156 */
5e16bbc2 5157static void migrate_tasks(struct rq *dead_rq)
1da177e4 5158{
5e16bbc2 5159 struct rq *rq = dead_rq;
48c5ccae
PZ
5160 struct task_struct *next, *stop = rq->stop;
5161 int dest_cpu;
1da177e4
LT
5162
5163 /*
48c5ccae
PZ
5164 * Fudge the rq selection such that the below task selection loop
5165 * doesn't get stuck on the currently eligible stop task.
5166 *
5167 * We're currently inside stop_machine() and the rq is either stuck
5168 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5169 * either way we should never end up calling schedule() until we're
5170 * done here.
1da177e4 5171 */
48c5ccae 5172 rq->stop = NULL;
48f24c4d 5173
77bd3970
FW
5174 /*
5175 * put_prev_task() and pick_next_task() sched
5176 * class method both need to have an up-to-date
5177 * value of rq->clock[_task]
5178 */
5179 update_rq_clock(rq);
5180
5e16bbc2 5181 for (;;) {
48c5ccae
PZ
5182 /*
5183 * There's this thread running, bail when that's the only
5184 * remaining thread.
5185 */
5186 if (rq->nr_running == 1)
dd41f596 5187 break;
48c5ccae 5188
cbce1a68 5189 /*
5473e0cc 5190 * pick_next_task assumes pinned rq->lock.
cbce1a68
PZ
5191 */
5192 lockdep_pin_lock(&rq->lock);
3f1d2a31 5193 next = pick_next_task(rq, &fake_task);
48c5ccae 5194 BUG_ON(!next);
79c53799 5195 next->sched_class->put_prev_task(rq, next);
e692ab53 5196
5473e0cc
WL
5197 /*
5198 * Rules for changing task_struct::cpus_allowed are holding
5199 * both pi_lock and rq->lock, such that holding either
5200 * stabilizes the mask.
5201 *
5202 * Drop rq->lock is not quite as disastrous as it usually is
5203 * because !cpu_active at this point, which means load-balance
5204 * will not interfere. Also, stop-machine.
5205 */
5206 lockdep_unpin_lock(&rq->lock);
5207 raw_spin_unlock(&rq->lock);
5208 raw_spin_lock(&next->pi_lock);
5209 raw_spin_lock(&rq->lock);
5210
5211 /*
5212 * Since we're inside stop-machine, _nothing_ should have
5213 * changed the task, WARN if weird stuff happened, because in
5214 * that case the above rq->lock drop is a fail too.
5215 */
5216 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5217 raw_spin_unlock(&next->pi_lock);
5218 continue;
5219 }
5220
48c5ccae 5221 /* Find suitable destination for @next, with force if needed. */
5e16bbc2 5222 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
48c5ccae 5223
5e16bbc2
PZ
5224 rq = __migrate_task(rq, next, dest_cpu);
5225 if (rq != dead_rq) {
5226 raw_spin_unlock(&rq->lock);
5227 rq = dead_rq;
5228 raw_spin_lock(&rq->lock);
5229 }
5473e0cc 5230 raw_spin_unlock(&next->pi_lock);
1da177e4 5231 }
dce48a84 5232
48c5ccae 5233 rq->stop = stop;
dce48a84 5234}
1da177e4
LT
5235#endif /* CONFIG_HOTPLUG_CPU */
5236
e692ab53
NP
5237#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5238
5239static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5240 {
5241 .procname = "sched_domain",
c57baf1e 5242 .mode = 0555,
e0361851 5243 },
56992309 5244 {}
e692ab53
NP
5245};
5246
5247static struct ctl_table sd_ctl_root[] = {
e0361851
AD
5248 {
5249 .procname = "kernel",
c57baf1e 5250 .mode = 0555,
e0361851
AD
5251 .child = sd_ctl_dir,
5252 },
56992309 5253 {}
e692ab53
NP
5254};
5255
5256static struct ctl_table *sd_alloc_ctl_entry(int n)
5257{
5258 struct ctl_table *entry =
5cf9f062 5259 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5260
e692ab53
NP
5261 return entry;
5262}
5263
6382bc90
MM
5264static void sd_free_ctl_entry(struct ctl_table **tablep)
5265{
cd790076 5266 struct ctl_table *entry;
6382bc90 5267
cd790076
MM
5268 /*
5269 * In the intermediate directories, both the child directory and
5270 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5271 * will always be set. In the lowest directory the names are
cd790076
MM
5272 * static strings and all have proc handlers.
5273 */
5274 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5275 if (entry->child)
5276 sd_free_ctl_entry(&entry->child);
cd790076
MM
5277 if (entry->proc_handler == NULL)
5278 kfree(entry->procname);
5279 }
6382bc90
MM
5280
5281 kfree(*tablep);
5282 *tablep = NULL;
5283}
5284
201c373e 5285static int min_load_idx = 0;
fd9b86d3 5286static int max_load_idx = CPU_LOAD_IDX_MAX-1;
201c373e 5287
e692ab53 5288static void
e0361851 5289set_table_entry(struct ctl_table *entry,
e692ab53 5290 const char *procname, void *data, int maxlen,
201c373e
NK
5291 umode_t mode, proc_handler *proc_handler,
5292 bool load_idx)
e692ab53 5293{
e692ab53
NP
5294 entry->procname = procname;
5295 entry->data = data;
5296 entry->maxlen = maxlen;
5297 entry->mode = mode;
5298 entry->proc_handler = proc_handler;
201c373e
NK
5299
5300 if (load_idx) {
5301 entry->extra1 = &min_load_idx;
5302 entry->extra2 = &max_load_idx;
5303 }
e692ab53
NP
5304}
5305
5306static struct ctl_table *
5307sd_alloc_ctl_domain_table(struct sched_domain *sd)
5308{
37e6bae8 5309 struct ctl_table *table = sd_alloc_ctl_entry(14);
e692ab53 5310
ad1cdc1d
MM
5311 if (table == NULL)
5312 return NULL;
5313
e0361851 5314 set_table_entry(&table[0], "min_interval", &sd->min_interval,
201c373e 5315 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 5316 set_table_entry(&table[1], "max_interval", &sd->max_interval,
201c373e 5317 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 5318 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
201c373e 5319 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5320 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
201c373e 5321 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5322 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
201c373e 5323 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5324 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
201c373e 5325 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5326 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
201c373e 5327 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5328 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
201c373e 5329 sizeof(int), 0644, proc_dointvec_minmax, false);
e0361851 5330 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
201c373e 5331 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 5332 set_table_entry(&table[9], "cache_nice_tries",
e692ab53 5333 &sd->cache_nice_tries,
201c373e 5334 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 5335 set_table_entry(&table[10], "flags", &sd->flags,
201c373e 5336 sizeof(int), 0644, proc_dointvec_minmax, false);
37e6bae8
AS
5337 set_table_entry(&table[11], "max_newidle_lb_cost",
5338 &sd->max_newidle_lb_cost,
5339 sizeof(long), 0644, proc_doulongvec_minmax, false);
5340 set_table_entry(&table[12], "name", sd->name,
201c373e 5341 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
37e6bae8 5342 /* &table[13] is terminator */
e692ab53
NP
5343
5344 return table;
5345}
5346
be7002e6 5347static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5348{
5349 struct ctl_table *entry, *table;
5350 struct sched_domain *sd;
5351 int domain_num = 0, i;
5352 char buf[32];
5353
5354 for_each_domain(cpu, sd)
5355 domain_num++;
5356 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5357 if (table == NULL)
5358 return NULL;
e692ab53
NP
5359
5360 i = 0;
5361 for_each_domain(cpu, sd) {
5362 snprintf(buf, 32, "domain%d", i);
e692ab53 5363 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5364 entry->mode = 0555;
e692ab53
NP
5365 entry->child = sd_alloc_ctl_domain_table(sd);
5366 entry++;
5367 i++;
5368 }
5369 return table;
5370}
5371
5372static struct ctl_table_header *sd_sysctl_header;
6382bc90 5373static void register_sched_domain_sysctl(void)
e692ab53 5374{
6ad4c188 5375 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5376 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5377 char buf[32];
5378
7378547f
MM
5379 WARN_ON(sd_ctl_dir[0].child);
5380 sd_ctl_dir[0].child = entry;
5381
ad1cdc1d
MM
5382 if (entry == NULL)
5383 return;
5384
6ad4c188 5385 for_each_possible_cpu(i) {
e692ab53 5386 snprintf(buf, 32, "cpu%d", i);
e692ab53 5387 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5388 entry->mode = 0555;
e692ab53 5389 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5390 entry++;
e692ab53 5391 }
7378547f
MM
5392
5393 WARN_ON(sd_sysctl_header);
e692ab53
NP
5394 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5395}
6382bc90 5396
7378547f 5397/* may be called multiple times per register */
6382bc90
MM
5398static void unregister_sched_domain_sysctl(void)
5399{
781b0203 5400 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5401 sd_sysctl_header = NULL;
7378547f
MM
5402 if (sd_ctl_dir[0].child)
5403 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5404}
e692ab53 5405#else
6382bc90
MM
5406static void register_sched_domain_sysctl(void)
5407{
5408}
5409static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5410{
5411}
5cc389bc 5412#endif /* CONFIG_SCHED_DEBUG && CONFIG_SYSCTL */
e692ab53 5413
1f11eb6a
GH
5414static void set_rq_online(struct rq *rq)
5415{
5416 if (!rq->online) {
5417 const struct sched_class *class;
5418
c6c4927b 5419 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5420 rq->online = 1;
5421
5422 for_each_class(class) {
5423 if (class->rq_online)
5424 class->rq_online(rq);
5425 }
5426 }
5427}
5428
5429static void set_rq_offline(struct rq *rq)
5430{
5431 if (rq->online) {
5432 const struct sched_class *class;
5433
5434 for_each_class(class) {
5435 if (class->rq_offline)
5436 class->rq_offline(rq);
5437 }
5438
c6c4927b 5439 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5440 rq->online = 0;
5441 }
5442}
5443
1da177e4
LT
5444/*
5445 * migration_call - callback that gets triggered when a CPU is added.
5446 * Here we can start up the necessary migration thread for the new CPU.
5447 */
0db0628d 5448static int
48f24c4d 5449migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5450{
48f24c4d 5451 int cpu = (long)hcpu;
1da177e4 5452 unsigned long flags;
969c7921 5453 struct rq *rq = cpu_rq(cpu);
1da177e4 5454
48c5ccae 5455 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 5456
1da177e4 5457 case CPU_UP_PREPARE:
a468d389 5458 rq->calc_load_update = calc_load_update;
1da177e4 5459 break;
48f24c4d 5460
1da177e4 5461 case CPU_ONLINE:
1f94ef59 5462 /* Update our root-domain */
05fa785c 5463 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5464 if (rq->rd) {
c6c4927b 5465 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5466
5467 set_rq_online(rq);
1f94ef59 5468 }
05fa785c 5469 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5470 break;
48f24c4d 5471
1da177e4 5472#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5473 case CPU_DYING:
317f3941 5474 sched_ttwu_pending();
57d885fe 5475 /* Update our root-domain */
05fa785c 5476 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5477 if (rq->rd) {
c6c4927b 5478 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5479 set_rq_offline(rq);
57d885fe 5480 }
5e16bbc2 5481 migrate_tasks(rq);
48c5ccae 5482 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5483 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 5484 break;
48c5ccae 5485
5d180232 5486 case CPU_DEAD:
f319da0c 5487 calc_load_migrate(rq);
57d885fe 5488 break;
1da177e4
LT
5489#endif
5490 }
49c022e6
PZ
5491
5492 update_max_interval();
5493
1da177e4
LT
5494 return NOTIFY_OK;
5495}
5496
f38b0820
PM
5497/*
5498 * Register at high priority so that task migration (migrate_all_tasks)
5499 * happens before everything else. This has to be lower priority than
cdd6c482 5500 * the notifier in the perf_event subsystem, though.
1da177e4 5501 */
0db0628d 5502static struct notifier_block migration_notifier = {
1da177e4 5503 .notifier_call = migration_call,
50a323b7 5504 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5505};
5506
6a82b60d 5507static void set_cpu_rq_start_time(void)
a803f026
CM
5508{
5509 int cpu = smp_processor_id();
5510 struct rq *rq = cpu_rq(cpu);
5511 rq->age_stamp = sched_clock_cpu(cpu);
5512}
5513
0db0628d 5514static int sched_cpu_active(struct notifier_block *nfb,
3a101d05
TH
5515 unsigned long action, void *hcpu)
5516{
5517 switch (action & ~CPU_TASKS_FROZEN) {
a803f026
CM
5518 case CPU_STARTING:
5519 set_cpu_rq_start_time();
5520 return NOTIFY_OK;
dd9d3843
JS
5521 case CPU_ONLINE:
5522 /*
5523 * At this point a starting CPU has marked itself as online via
5524 * set_cpu_online(). But it might not yet have marked itself
5525 * as active, which is essential from here on.
5526 *
5527 * Thus, fall-through and help the starting CPU along.
5528 */
3a101d05
TH
5529 case CPU_DOWN_FAILED:
5530 set_cpu_active((long)hcpu, true);
5531 return NOTIFY_OK;
5532 default:
5533 return NOTIFY_DONE;
5534 }
5535}
5536
0db0628d 5537static int sched_cpu_inactive(struct notifier_block *nfb,
3a101d05
TH
5538 unsigned long action, void *hcpu)
5539{
5540 switch (action & ~CPU_TASKS_FROZEN) {
5541 case CPU_DOWN_PREPARE:
3c18d447 5542 set_cpu_active((long)hcpu, false);
3a101d05 5543 return NOTIFY_OK;
3c18d447
JL
5544 default:
5545 return NOTIFY_DONE;
3a101d05
TH
5546 }
5547}
5548
7babe8db 5549static int __init migration_init(void)
1da177e4
LT
5550{
5551 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5552 int err;
48f24c4d 5553
3a101d05 5554 /* Initialize migration for the boot CPU */
07dccf33
AM
5555 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5556 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5557 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5558 register_cpu_notifier(&migration_notifier);
7babe8db 5559
3a101d05
TH
5560 /* Register cpu active notifiers */
5561 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5562 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5563
a004cd42 5564 return 0;
1da177e4 5565}
7babe8db 5566early_initcall(migration_init);
476f3534 5567
4cb98839
PZ
5568static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5569
3e9830dc 5570#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5571
d039ac60 5572static __read_mostly int sched_debug_enabled;
f6630114 5573
d039ac60 5574static int __init sched_debug_setup(char *str)
f6630114 5575{
d039ac60 5576 sched_debug_enabled = 1;
f6630114
MT
5577
5578 return 0;
5579}
d039ac60
PZ
5580early_param("sched_debug", sched_debug_setup);
5581
5582static inline bool sched_debug(void)
5583{
5584 return sched_debug_enabled;
5585}
f6630114 5586
7c16ec58 5587static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5588 struct cpumask *groupmask)
1da177e4 5589{
4dcf6aff 5590 struct sched_group *group = sd->groups;
1da177e4 5591
96f874e2 5592 cpumask_clear(groupmask);
4dcf6aff
IM
5593
5594 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5595
5596 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5597 printk("does not load-balance\n");
4dcf6aff 5598 if (sd->parent)
3df0fc5b
PZ
5599 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5600 " has parent");
4dcf6aff 5601 return -1;
41c7ce9a
NP
5602 }
5603
333470ee
TH
5604 printk(KERN_CONT "span %*pbl level %s\n",
5605 cpumask_pr_args(sched_domain_span(sd)), sd->name);
4dcf6aff 5606
758b2cdc 5607 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5608 printk(KERN_ERR "ERROR: domain->span does not contain "
5609 "CPU%d\n", cpu);
4dcf6aff 5610 }
758b2cdc 5611 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5612 printk(KERN_ERR "ERROR: domain->groups does not contain"
5613 " CPU%d\n", cpu);
4dcf6aff 5614 }
1da177e4 5615
4dcf6aff 5616 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5617 do {
4dcf6aff 5618 if (!group) {
3df0fc5b
PZ
5619 printk("\n");
5620 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5621 break;
5622 }
5623
758b2cdc 5624 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5625 printk(KERN_CONT "\n");
5626 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5627 break;
5628 }
1da177e4 5629
cb83b629
PZ
5630 if (!(sd->flags & SD_OVERLAP) &&
5631 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5632 printk(KERN_CONT "\n");
5633 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5634 break;
5635 }
1da177e4 5636
758b2cdc 5637 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5638
333470ee
TH
5639 printk(KERN_CONT " %*pbl",
5640 cpumask_pr_args(sched_group_cpus(group)));
ca8ce3d0 5641 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
63b2ca30
NP
5642 printk(KERN_CONT " (cpu_capacity = %d)",
5643 group->sgc->capacity);
381512cf 5644 }
1da177e4 5645
4dcf6aff
IM
5646 group = group->next;
5647 } while (group != sd->groups);
3df0fc5b 5648 printk(KERN_CONT "\n");
1da177e4 5649
758b2cdc 5650 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5651 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5652
758b2cdc
RR
5653 if (sd->parent &&
5654 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5655 printk(KERN_ERR "ERROR: parent span is not a superset "
5656 "of domain->span\n");
4dcf6aff
IM
5657 return 0;
5658}
1da177e4 5659
4dcf6aff
IM
5660static void sched_domain_debug(struct sched_domain *sd, int cpu)
5661{
5662 int level = 0;
1da177e4 5663
d039ac60 5664 if (!sched_debug_enabled)
f6630114
MT
5665 return;
5666
4dcf6aff
IM
5667 if (!sd) {
5668 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5669 return;
5670 }
1da177e4 5671
4dcf6aff
IM
5672 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5673
5674 for (;;) {
4cb98839 5675 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5676 break;
1da177e4
LT
5677 level++;
5678 sd = sd->parent;
33859f7f 5679 if (!sd)
4dcf6aff
IM
5680 break;
5681 }
1da177e4 5682}
6d6bc0ad 5683#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5684# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5685static inline bool sched_debug(void)
5686{
5687 return false;
5688}
6d6bc0ad 5689#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5690
1a20ff27 5691static int sd_degenerate(struct sched_domain *sd)
245af2c7 5692{
758b2cdc 5693 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5694 return 1;
5695
5696 /* Following flags need at least 2 groups */
5697 if (sd->flags & (SD_LOAD_BALANCE |
5698 SD_BALANCE_NEWIDLE |
5699 SD_BALANCE_FORK |
89c4710e 5700 SD_BALANCE_EXEC |
5d4dfddd 5701 SD_SHARE_CPUCAPACITY |
d77b3ed5
VG
5702 SD_SHARE_PKG_RESOURCES |
5703 SD_SHARE_POWERDOMAIN)) {
245af2c7
SS
5704 if (sd->groups != sd->groups->next)
5705 return 0;
5706 }
5707
5708 /* Following flags don't use groups */
c88d5910 5709 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5710 return 0;
5711
5712 return 1;
5713}
5714
48f24c4d
IM
5715static int
5716sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5717{
5718 unsigned long cflags = sd->flags, pflags = parent->flags;
5719
5720 if (sd_degenerate(parent))
5721 return 1;
5722
758b2cdc 5723 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5724 return 0;
5725
245af2c7
SS
5726 /* Flags needing groups don't count if only 1 group in parent */
5727 if (parent->groups == parent->groups->next) {
5728 pflags &= ~(SD_LOAD_BALANCE |
5729 SD_BALANCE_NEWIDLE |
5730 SD_BALANCE_FORK |
89c4710e 5731 SD_BALANCE_EXEC |
5d4dfddd 5732 SD_SHARE_CPUCAPACITY |
10866e62 5733 SD_SHARE_PKG_RESOURCES |
d77b3ed5
VG
5734 SD_PREFER_SIBLING |
5735 SD_SHARE_POWERDOMAIN);
5436499e
KC
5736 if (nr_node_ids == 1)
5737 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5738 }
5739 if (~cflags & pflags)
5740 return 0;
5741
5742 return 1;
5743}
5744
dce840a0 5745static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5746{
dce840a0 5747 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5748
68e74568 5749 cpupri_cleanup(&rd->cpupri);
6bfd6d72 5750 cpudl_cleanup(&rd->cpudl);
1baca4ce 5751 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5752 free_cpumask_var(rd->rto_mask);
5753 free_cpumask_var(rd->online);
5754 free_cpumask_var(rd->span);
5755 kfree(rd);
5756}
5757
57d885fe
GH
5758static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5759{
a0490fa3 5760 struct root_domain *old_rd = NULL;
57d885fe 5761 unsigned long flags;
57d885fe 5762
05fa785c 5763 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5764
5765 if (rq->rd) {
a0490fa3 5766 old_rd = rq->rd;
57d885fe 5767
c6c4927b 5768 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5769 set_rq_offline(rq);
57d885fe 5770
c6c4927b 5771 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5772
a0490fa3 5773 /*
0515973f 5774 * If we dont want to free the old_rd yet then
a0490fa3
IM
5775 * set old_rd to NULL to skip the freeing later
5776 * in this function:
5777 */
5778 if (!atomic_dec_and_test(&old_rd->refcount))
5779 old_rd = NULL;
57d885fe
GH
5780 }
5781
5782 atomic_inc(&rd->refcount);
5783 rq->rd = rd;
5784
c6c4927b 5785 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5786 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5787 set_rq_online(rq);
57d885fe 5788
05fa785c 5789 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5790
5791 if (old_rd)
dce840a0 5792 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5793}
5794
68c38fc3 5795static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5796{
5797 memset(rd, 0, sizeof(*rd));
5798
68c38fc3 5799 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5800 goto out;
68c38fc3 5801 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5802 goto free_span;
1baca4ce 5803 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
c6c4927b 5804 goto free_online;
1baca4ce
JL
5805 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5806 goto free_dlo_mask;
6e0534f2 5807
332ac17e 5808 init_dl_bw(&rd->dl_bw);
6bfd6d72
JL
5809 if (cpudl_init(&rd->cpudl) != 0)
5810 goto free_dlo_mask;
332ac17e 5811
68c38fc3 5812 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5813 goto free_rto_mask;
c6c4927b 5814 return 0;
6e0534f2 5815
68e74568
RR
5816free_rto_mask:
5817 free_cpumask_var(rd->rto_mask);
1baca4ce
JL
5818free_dlo_mask:
5819 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5820free_online:
5821 free_cpumask_var(rd->online);
5822free_span:
5823 free_cpumask_var(rd->span);
0c910d28 5824out:
c6c4927b 5825 return -ENOMEM;
57d885fe
GH
5826}
5827
029632fb
PZ
5828/*
5829 * By default the system creates a single root-domain with all cpus as
5830 * members (mimicking the global state we have today).
5831 */
5832struct root_domain def_root_domain;
5833
57d885fe
GH
5834static void init_defrootdomain(void)
5835{
68c38fc3 5836 init_rootdomain(&def_root_domain);
c6c4927b 5837
57d885fe
GH
5838 atomic_set(&def_root_domain.refcount, 1);
5839}
5840
dc938520 5841static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5842{
5843 struct root_domain *rd;
5844
5845 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5846 if (!rd)
5847 return NULL;
5848
68c38fc3 5849 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5850 kfree(rd);
5851 return NULL;
5852 }
57d885fe
GH
5853
5854 return rd;
5855}
5856
63b2ca30 5857static void free_sched_groups(struct sched_group *sg, int free_sgc)
e3589f6c
PZ
5858{
5859 struct sched_group *tmp, *first;
5860
5861 if (!sg)
5862 return;
5863
5864 first = sg;
5865 do {
5866 tmp = sg->next;
5867
63b2ca30
NP
5868 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5869 kfree(sg->sgc);
e3589f6c
PZ
5870
5871 kfree(sg);
5872 sg = tmp;
5873 } while (sg != first);
5874}
5875
dce840a0
PZ
5876static void free_sched_domain(struct rcu_head *rcu)
5877{
5878 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5879
5880 /*
5881 * If its an overlapping domain it has private groups, iterate and
5882 * nuke them all.
5883 */
5884 if (sd->flags & SD_OVERLAP) {
5885 free_sched_groups(sd->groups, 1);
5886 } else if (atomic_dec_and_test(&sd->groups->ref)) {
63b2ca30 5887 kfree(sd->groups->sgc);
dce840a0 5888 kfree(sd->groups);
9c3f75cb 5889 }
dce840a0
PZ
5890 kfree(sd);
5891}
5892
5893static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5894{
5895 call_rcu(&sd->rcu, free_sched_domain);
5896}
5897
5898static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5899{
5900 for (; sd; sd = sd->parent)
5901 destroy_sched_domain(sd, cpu);
5902}
5903
518cd623
PZ
5904/*
5905 * Keep a special pointer to the highest sched_domain that has
5906 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5907 * allows us to avoid some pointer chasing select_idle_sibling().
5908 *
5909 * Also keep a unique ID per domain (we use the first cpu number in
5910 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5911 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5912 */
5913DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5914DEFINE_PER_CPU(int, sd_llc_size);
518cd623 5915DEFINE_PER_CPU(int, sd_llc_id);
fb13c7ee 5916DEFINE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
5917DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5918DEFINE_PER_CPU(struct sched_domain *, sd_asym);
518cd623
PZ
5919
5920static void update_top_cache_domain(int cpu)
5921{
5922 struct sched_domain *sd;
5d4cf996 5923 struct sched_domain *busy_sd = NULL;
518cd623 5924 int id = cpu;
7d9ffa89 5925 int size = 1;
518cd623
PZ
5926
5927 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 5928 if (sd) {
518cd623 5929 id = cpumask_first(sched_domain_span(sd));
7d9ffa89 5930 size = cpumask_weight(sched_domain_span(sd));
5d4cf996 5931 busy_sd = sd->parent; /* sd_busy */
7d9ffa89 5932 }
5d4cf996 5933 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
518cd623
PZ
5934
5935 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 5936 per_cpu(sd_llc_size, cpu) = size;
518cd623 5937 per_cpu(sd_llc_id, cpu) = id;
fb13c7ee
MG
5938
5939 sd = lowest_flag_domain(cpu, SD_NUMA);
5940 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
37dc6b50
PM
5941
5942 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5943 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
518cd623
PZ
5944}
5945
1da177e4 5946/*
0eab9146 5947 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5948 * hold the hotplug lock.
5949 */
0eab9146
IM
5950static void
5951cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5952{
70b97a7f 5953 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5954 struct sched_domain *tmp;
5955
5956 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5957 for (tmp = sd; tmp; ) {
245af2c7
SS
5958 struct sched_domain *parent = tmp->parent;
5959 if (!parent)
5960 break;
f29c9b1c 5961
1a848870 5962 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5963 tmp->parent = parent->parent;
1a848870
SS
5964 if (parent->parent)
5965 parent->parent->child = tmp;
10866e62
PZ
5966 /*
5967 * Transfer SD_PREFER_SIBLING down in case of a
5968 * degenerate parent; the spans match for this
5969 * so the property transfers.
5970 */
5971 if (parent->flags & SD_PREFER_SIBLING)
5972 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 5973 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5974 } else
5975 tmp = tmp->parent;
245af2c7
SS
5976 }
5977
1a848870 5978 if (sd && sd_degenerate(sd)) {
dce840a0 5979 tmp = sd;
245af2c7 5980 sd = sd->parent;
dce840a0 5981 destroy_sched_domain(tmp, cpu);
1a848870
SS
5982 if (sd)
5983 sd->child = NULL;
5984 }
1da177e4 5985
4cb98839 5986 sched_domain_debug(sd, cpu);
1da177e4 5987
57d885fe 5988 rq_attach_root(rq, rd);
dce840a0 5989 tmp = rq->sd;
674311d5 5990 rcu_assign_pointer(rq->sd, sd);
dce840a0 5991 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5992
5993 update_top_cache_domain(cpu);
1da177e4
LT
5994}
5995
1da177e4
LT
5996/* Setup the mask of cpus configured for isolated domains */
5997static int __init isolated_cpu_setup(char *str)
5998{
bdddd296 5999 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 6000 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
6001 return 1;
6002}
6003
8927f494 6004__setup("isolcpus=", isolated_cpu_setup);
1da177e4 6005
49a02c51 6006struct s_data {
21d42ccf 6007 struct sched_domain ** __percpu sd;
49a02c51
AH
6008 struct root_domain *rd;
6009};
6010
2109b99e 6011enum s_alloc {
2109b99e 6012 sa_rootdomain,
21d42ccf 6013 sa_sd,
dce840a0 6014 sa_sd_storage,
2109b99e
AH
6015 sa_none,
6016};
6017
c1174876
PZ
6018/*
6019 * Build an iteration mask that can exclude certain CPUs from the upwards
6020 * domain traversal.
6021 *
6022 * Asymmetric node setups can result in situations where the domain tree is of
6023 * unequal depth, make sure to skip domains that already cover the entire
6024 * range.
6025 *
6026 * In that case build_sched_domains() will have terminated the iteration early
6027 * and our sibling sd spans will be empty. Domains should always include the
6028 * cpu they're built on, so check that.
6029 *
6030 */
6031static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6032{
6033 const struct cpumask *span = sched_domain_span(sd);
6034 struct sd_data *sdd = sd->private;
6035 struct sched_domain *sibling;
6036 int i;
6037
6038 for_each_cpu(i, span) {
6039 sibling = *per_cpu_ptr(sdd->sd, i);
6040 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6041 continue;
6042
6043 cpumask_set_cpu(i, sched_group_mask(sg));
6044 }
6045}
6046
6047/*
6048 * Return the canonical balance cpu for this group, this is the first cpu
6049 * of this group that's also in the iteration mask.
6050 */
6051int group_balance_cpu(struct sched_group *sg)
6052{
6053 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6054}
6055
e3589f6c
PZ
6056static int
6057build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6058{
6059 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6060 const struct cpumask *span = sched_domain_span(sd);
6061 struct cpumask *covered = sched_domains_tmpmask;
6062 struct sd_data *sdd = sd->private;
aaecac4a 6063 struct sched_domain *sibling;
e3589f6c
PZ
6064 int i;
6065
6066 cpumask_clear(covered);
6067
6068 for_each_cpu(i, span) {
6069 struct cpumask *sg_span;
6070
6071 if (cpumask_test_cpu(i, covered))
6072 continue;
6073
aaecac4a 6074 sibling = *per_cpu_ptr(sdd->sd, i);
c1174876
PZ
6075
6076 /* See the comment near build_group_mask(). */
aaecac4a 6077 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
c1174876
PZ
6078 continue;
6079
e3589f6c 6080 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 6081 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
6082
6083 if (!sg)
6084 goto fail;
6085
6086 sg_span = sched_group_cpus(sg);
aaecac4a
ZZ
6087 if (sibling->child)
6088 cpumask_copy(sg_span, sched_domain_span(sibling->child));
6089 else
e3589f6c
PZ
6090 cpumask_set_cpu(i, sg_span);
6091
6092 cpumask_or(covered, covered, sg_span);
6093
63b2ca30
NP
6094 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6095 if (atomic_inc_return(&sg->sgc->ref) == 1)
c1174876
PZ
6096 build_group_mask(sd, sg);
6097
c3decf0d 6098 /*
63b2ca30 6099 * Initialize sgc->capacity such that even if we mess up the
c3decf0d
PZ
6100 * domains and no possible iteration will get us here, we won't
6101 * die on a /0 trap.
6102 */
ca8ce3d0 6103 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
e3589f6c 6104
c1174876
PZ
6105 /*
6106 * Make sure the first group of this domain contains the
6107 * canonical balance cpu. Otherwise the sched_domain iteration
6108 * breaks. See update_sg_lb_stats().
6109 */
74a5ce20 6110 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 6111 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
6112 groups = sg;
6113
6114 if (!first)
6115 first = sg;
6116 if (last)
6117 last->next = sg;
6118 last = sg;
6119 last->next = first;
6120 }
6121 sd->groups = groups;
6122
6123 return 0;
6124
6125fail:
6126 free_sched_groups(first, 0);
6127
6128 return -ENOMEM;
6129}
6130
dce840a0 6131static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 6132{
dce840a0
PZ
6133 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6134 struct sched_domain *child = sd->child;
1da177e4 6135
dce840a0
PZ
6136 if (child)
6137 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 6138
9c3f75cb 6139 if (sg) {
dce840a0 6140 *sg = *per_cpu_ptr(sdd->sg, cpu);
63b2ca30
NP
6141 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6142 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
9c3f75cb 6143 }
dce840a0
PZ
6144
6145 return cpu;
1e9f28fa 6146}
1e9f28fa 6147
01a08546 6148/*
dce840a0
PZ
6149 * build_sched_groups will build a circular linked list of the groups
6150 * covered by the given span, and will set each group's ->cpumask correctly,
ced549fa 6151 * and ->cpu_capacity to 0.
e3589f6c
PZ
6152 *
6153 * Assumes the sched_domain tree is fully constructed
01a08546 6154 */
e3589f6c
PZ
6155static int
6156build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 6157{
dce840a0
PZ
6158 struct sched_group *first = NULL, *last = NULL;
6159 struct sd_data *sdd = sd->private;
6160 const struct cpumask *span = sched_domain_span(sd);
f96225fd 6161 struct cpumask *covered;
dce840a0 6162 int i;
9c1cfda2 6163
e3589f6c
PZ
6164 get_group(cpu, sdd, &sd->groups);
6165 atomic_inc(&sd->groups->ref);
6166
0936629f 6167 if (cpu != cpumask_first(span))
e3589f6c
PZ
6168 return 0;
6169
f96225fd
PZ
6170 lockdep_assert_held(&sched_domains_mutex);
6171 covered = sched_domains_tmpmask;
6172
dce840a0 6173 cpumask_clear(covered);
6711cab4 6174
dce840a0
PZ
6175 for_each_cpu(i, span) {
6176 struct sched_group *sg;
cd08e923 6177 int group, j;
6711cab4 6178
dce840a0
PZ
6179 if (cpumask_test_cpu(i, covered))
6180 continue;
6711cab4 6181
cd08e923 6182 group = get_group(i, sdd, &sg);
c1174876 6183 cpumask_setall(sched_group_mask(sg));
0601a88d 6184
dce840a0
PZ
6185 for_each_cpu(j, span) {
6186 if (get_group(j, sdd, NULL) != group)
6187 continue;
0601a88d 6188
dce840a0
PZ
6189 cpumask_set_cpu(j, covered);
6190 cpumask_set_cpu(j, sched_group_cpus(sg));
6191 }
0601a88d 6192
dce840a0
PZ
6193 if (!first)
6194 first = sg;
6195 if (last)
6196 last->next = sg;
6197 last = sg;
6198 }
6199 last->next = first;
e3589f6c
PZ
6200
6201 return 0;
0601a88d 6202}
51888ca2 6203
89c4710e 6204/*
63b2ca30 6205 * Initialize sched groups cpu_capacity.
89c4710e 6206 *
63b2ca30 6207 * cpu_capacity indicates the capacity of sched group, which is used while
89c4710e 6208 * distributing the load between different sched groups in a sched domain.
63b2ca30
NP
6209 * Typically cpu_capacity for all the groups in a sched domain will be same
6210 * unless there are asymmetries in the topology. If there are asymmetries,
6211 * group having more cpu_capacity will pickup more load compared to the
6212 * group having less cpu_capacity.
89c4710e 6213 */
63b2ca30 6214static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
89c4710e 6215{
e3589f6c 6216 struct sched_group *sg = sd->groups;
89c4710e 6217
94c95ba6 6218 WARN_ON(!sg);
e3589f6c
PZ
6219
6220 do {
6221 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6222 sg = sg->next;
6223 } while (sg != sd->groups);
89c4710e 6224
c1174876 6225 if (cpu != group_balance_cpu(sg))
e3589f6c 6226 return;
aae6d3dd 6227
63b2ca30
NP
6228 update_group_capacity(sd, cpu);
6229 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
89c4710e
SS
6230}
6231
7c16ec58
MT
6232/*
6233 * Initializers for schedule domains
6234 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6235 */
6236
1d3504fc 6237static int default_relax_domain_level = -1;
60495e77 6238int sched_domain_level_max;
1d3504fc
HS
6239
6240static int __init setup_relax_domain_level(char *str)
6241{
a841f8ce
DS
6242 if (kstrtoint(str, 0, &default_relax_domain_level))
6243 pr_warn("Unable to set relax_domain_level\n");
30e0e178 6244
1d3504fc
HS
6245 return 1;
6246}
6247__setup("relax_domain_level=", setup_relax_domain_level);
6248
6249static void set_domain_attribute(struct sched_domain *sd,
6250 struct sched_domain_attr *attr)
6251{
6252 int request;
6253
6254 if (!attr || attr->relax_domain_level < 0) {
6255 if (default_relax_domain_level < 0)
6256 return;
6257 else
6258 request = default_relax_domain_level;
6259 } else
6260 request = attr->relax_domain_level;
6261 if (request < sd->level) {
6262 /* turn off idle balance on this domain */
c88d5910 6263 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6264 } else {
6265 /* turn on idle balance on this domain */
c88d5910 6266 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6267 }
6268}
6269
54ab4ff4
PZ
6270static void __sdt_free(const struct cpumask *cpu_map);
6271static int __sdt_alloc(const struct cpumask *cpu_map);
6272
2109b99e
AH
6273static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6274 const struct cpumask *cpu_map)
6275{
6276 switch (what) {
2109b99e 6277 case sa_rootdomain:
822ff793
PZ
6278 if (!atomic_read(&d->rd->refcount))
6279 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
6280 case sa_sd:
6281 free_percpu(d->sd); /* fall through */
dce840a0 6282 case sa_sd_storage:
54ab4ff4 6283 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
6284 case sa_none:
6285 break;
6286 }
6287}
3404c8d9 6288
2109b99e
AH
6289static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6290 const struct cpumask *cpu_map)
6291{
dce840a0
PZ
6292 memset(d, 0, sizeof(*d));
6293
54ab4ff4
PZ
6294 if (__sdt_alloc(cpu_map))
6295 return sa_sd_storage;
dce840a0
PZ
6296 d->sd = alloc_percpu(struct sched_domain *);
6297 if (!d->sd)
6298 return sa_sd_storage;
2109b99e 6299 d->rd = alloc_rootdomain();
dce840a0 6300 if (!d->rd)
21d42ccf 6301 return sa_sd;
2109b99e
AH
6302 return sa_rootdomain;
6303}
57d885fe 6304
dce840a0
PZ
6305/*
6306 * NULL the sd_data elements we've used to build the sched_domain and
6307 * sched_group structure so that the subsequent __free_domain_allocs()
6308 * will not free the data we're using.
6309 */
6310static void claim_allocations(int cpu, struct sched_domain *sd)
6311{
6312 struct sd_data *sdd = sd->private;
dce840a0
PZ
6313
6314 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6315 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6316
e3589f6c 6317 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 6318 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c 6319
63b2ca30
NP
6320 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6321 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
dce840a0
PZ
6322}
6323
cb83b629 6324#ifdef CONFIG_NUMA
cb83b629 6325static int sched_domains_numa_levels;
e3fe70b1 6326enum numa_topology_type sched_numa_topology_type;
cb83b629 6327static int *sched_domains_numa_distance;
9942f79b 6328int sched_max_numa_distance;
cb83b629
PZ
6329static struct cpumask ***sched_domains_numa_masks;
6330static int sched_domains_curr_level;
143e1e28 6331#endif
cb83b629 6332
143e1e28
VG
6333/*
6334 * SD_flags allowed in topology descriptions.
6335 *
5d4dfddd 6336 * SD_SHARE_CPUCAPACITY - describes SMT topologies
143e1e28
VG
6337 * SD_SHARE_PKG_RESOURCES - describes shared caches
6338 * SD_NUMA - describes NUMA topologies
d77b3ed5 6339 * SD_SHARE_POWERDOMAIN - describes shared power domain
143e1e28
VG
6340 *
6341 * Odd one out:
6342 * SD_ASYM_PACKING - describes SMT quirks
6343 */
6344#define TOPOLOGY_SD_FLAGS \
5d4dfddd 6345 (SD_SHARE_CPUCAPACITY | \
143e1e28
VG
6346 SD_SHARE_PKG_RESOURCES | \
6347 SD_NUMA | \
d77b3ed5
VG
6348 SD_ASYM_PACKING | \
6349 SD_SHARE_POWERDOMAIN)
cb83b629
PZ
6350
6351static struct sched_domain *
143e1e28 6352sd_init(struct sched_domain_topology_level *tl, int cpu)
cb83b629
PZ
6353{
6354 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
143e1e28
VG
6355 int sd_weight, sd_flags = 0;
6356
6357#ifdef CONFIG_NUMA
6358 /*
6359 * Ugly hack to pass state to sd_numa_mask()...
6360 */
6361 sched_domains_curr_level = tl->numa_level;
6362#endif
6363
6364 sd_weight = cpumask_weight(tl->mask(cpu));
6365
6366 if (tl->sd_flags)
6367 sd_flags = (*tl->sd_flags)();
6368 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6369 "wrong sd_flags in topology description\n"))
6370 sd_flags &= ~TOPOLOGY_SD_FLAGS;
cb83b629
PZ
6371
6372 *sd = (struct sched_domain){
6373 .min_interval = sd_weight,
6374 .max_interval = 2*sd_weight,
6375 .busy_factor = 32,
870a0bb5 6376 .imbalance_pct = 125,
143e1e28
VG
6377
6378 .cache_nice_tries = 0,
6379 .busy_idx = 0,
6380 .idle_idx = 0,
cb83b629
PZ
6381 .newidle_idx = 0,
6382 .wake_idx = 0,
6383 .forkexec_idx = 0,
6384
6385 .flags = 1*SD_LOAD_BALANCE
6386 | 1*SD_BALANCE_NEWIDLE
143e1e28
VG
6387 | 1*SD_BALANCE_EXEC
6388 | 1*SD_BALANCE_FORK
cb83b629 6389 | 0*SD_BALANCE_WAKE
143e1e28 6390 | 1*SD_WAKE_AFFINE
5d4dfddd 6391 | 0*SD_SHARE_CPUCAPACITY
cb83b629 6392 | 0*SD_SHARE_PKG_RESOURCES
143e1e28 6393 | 0*SD_SERIALIZE
cb83b629 6394 | 0*SD_PREFER_SIBLING
143e1e28
VG
6395 | 0*SD_NUMA
6396 | sd_flags
cb83b629 6397 ,
143e1e28 6398
cb83b629
PZ
6399 .last_balance = jiffies,
6400 .balance_interval = sd_weight,
143e1e28 6401 .smt_gain = 0,
2b4cfe64
JL
6402 .max_newidle_lb_cost = 0,
6403 .next_decay_max_lb_cost = jiffies,
143e1e28
VG
6404#ifdef CONFIG_SCHED_DEBUG
6405 .name = tl->name,
6406#endif
cb83b629 6407 };
cb83b629
PZ
6408
6409 /*
143e1e28 6410 * Convert topological properties into behaviour.
cb83b629 6411 */
143e1e28 6412
5d4dfddd 6413 if (sd->flags & SD_SHARE_CPUCAPACITY) {
caff37ef 6414 sd->flags |= SD_PREFER_SIBLING;
143e1e28
VG
6415 sd->imbalance_pct = 110;
6416 sd->smt_gain = 1178; /* ~15% */
143e1e28
VG
6417
6418 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6419 sd->imbalance_pct = 117;
6420 sd->cache_nice_tries = 1;
6421 sd->busy_idx = 2;
6422
6423#ifdef CONFIG_NUMA
6424 } else if (sd->flags & SD_NUMA) {
6425 sd->cache_nice_tries = 2;
6426 sd->busy_idx = 3;
6427 sd->idle_idx = 2;
6428
6429 sd->flags |= SD_SERIALIZE;
6430 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6431 sd->flags &= ~(SD_BALANCE_EXEC |
6432 SD_BALANCE_FORK |
6433 SD_WAKE_AFFINE);
6434 }
6435
6436#endif
6437 } else {
6438 sd->flags |= SD_PREFER_SIBLING;
6439 sd->cache_nice_tries = 1;
6440 sd->busy_idx = 2;
6441 sd->idle_idx = 1;
6442 }
6443
6444 sd->private = &tl->data;
cb83b629
PZ
6445
6446 return sd;
6447}
6448
143e1e28
VG
6449/*
6450 * Topology list, bottom-up.
6451 */
6452static struct sched_domain_topology_level default_topology[] = {
6453#ifdef CONFIG_SCHED_SMT
6454 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6455#endif
6456#ifdef CONFIG_SCHED_MC
6457 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
143e1e28
VG
6458#endif
6459 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6460 { NULL, },
6461};
6462
c6e1e7b5
JG
6463static struct sched_domain_topology_level *sched_domain_topology =
6464 default_topology;
143e1e28
VG
6465
6466#define for_each_sd_topology(tl) \
6467 for (tl = sched_domain_topology; tl->mask; tl++)
6468
6469void set_sched_topology(struct sched_domain_topology_level *tl)
6470{
6471 sched_domain_topology = tl;
6472}
6473
6474#ifdef CONFIG_NUMA
6475
cb83b629
PZ
6476static const struct cpumask *sd_numa_mask(int cpu)
6477{
6478 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6479}
6480
d039ac60
PZ
6481static void sched_numa_warn(const char *str)
6482{
6483 static int done = false;
6484 int i,j;
6485
6486 if (done)
6487 return;
6488
6489 done = true;
6490
6491 printk(KERN_WARNING "ERROR: %s\n\n", str);
6492
6493 for (i = 0; i < nr_node_ids; i++) {
6494 printk(KERN_WARNING " ");
6495 for (j = 0; j < nr_node_ids; j++)
6496 printk(KERN_CONT "%02d ", node_distance(i,j));
6497 printk(KERN_CONT "\n");
6498 }
6499 printk(KERN_WARNING "\n");
6500}
6501
9942f79b 6502bool find_numa_distance(int distance)
d039ac60
PZ
6503{
6504 int i;
6505
6506 if (distance == node_distance(0, 0))
6507 return true;
6508
6509 for (i = 0; i < sched_domains_numa_levels; i++) {
6510 if (sched_domains_numa_distance[i] == distance)
6511 return true;
6512 }
6513
6514 return false;
6515}
6516
e3fe70b1
RR
6517/*
6518 * A system can have three types of NUMA topology:
6519 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6520 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6521 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6522 *
6523 * The difference between a glueless mesh topology and a backplane
6524 * topology lies in whether communication between not directly
6525 * connected nodes goes through intermediary nodes (where programs
6526 * could run), or through backplane controllers. This affects
6527 * placement of programs.
6528 *
6529 * The type of topology can be discerned with the following tests:
6530 * - If the maximum distance between any nodes is 1 hop, the system
6531 * is directly connected.
6532 * - If for two nodes A and B, located N > 1 hops away from each other,
6533 * there is an intermediary node C, which is < N hops away from both
6534 * nodes A and B, the system is a glueless mesh.
6535 */
6536static void init_numa_topology_type(void)
6537{
6538 int a, b, c, n;
6539
6540 n = sched_max_numa_distance;
6541
e237882b 6542 if (sched_domains_numa_levels <= 1) {
e3fe70b1 6543 sched_numa_topology_type = NUMA_DIRECT;
e237882b
AG
6544 return;
6545 }
e3fe70b1
RR
6546
6547 for_each_online_node(a) {
6548 for_each_online_node(b) {
6549 /* Find two nodes furthest removed from each other. */
6550 if (node_distance(a, b) < n)
6551 continue;
6552
6553 /* Is there an intermediary node between a and b? */
6554 for_each_online_node(c) {
6555 if (node_distance(a, c) < n &&
6556 node_distance(b, c) < n) {
6557 sched_numa_topology_type =
6558 NUMA_GLUELESS_MESH;
6559 return;
6560 }
6561 }
6562
6563 sched_numa_topology_type = NUMA_BACKPLANE;
6564 return;
6565 }
6566 }
6567}
6568
cb83b629
PZ
6569static void sched_init_numa(void)
6570{
6571 int next_distance, curr_distance = node_distance(0, 0);
6572 struct sched_domain_topology_level *tl;
6573 int level = 0;
6574 int i, j, k;
6575
cb83b629
PZ
6576 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6577 if (!sched_domains_numa_distance)
6578 return;
6579
6580 /*
6581 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6582 * unique distances in the node_distance() table.
6583 *
6584 * Assumes node_distance(0,j) includes all distances in
6585 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6586 */
6587 next_distance = curr_distance;
6588 for (i = 0; i < nr_node_ids; i++) {
6589 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6590 for (k = 0; k < nr_node_ids; k++) {
6591 int distance = node_distance(i, k);
6592
6593 if (distance > curr_distance &&
6594 (distance < next_distance ||
6595 next_distance == curr_distance))
6596 next_distance = distance;
6597
6598 /*
6599 * While not a strong assumption it would be nice to know
6600 * about cases where if node A is connected to B, B is not
6601 * equally connected to A.
6602 */
6603 if (sched_debug() && node_distance(k, i) != distance)
6604 sched_numa_warn("Node-distance not symmetric");
6605
6606 if (sched_debug() && i && !find_numa_distance(distance))
6607 sched_numa_warn("Node-0 not representative");
6608 }
6609 if (next_distance != curr_distance) {
6610 sched_domains_numa_distance[level++] = next_distance;
6611 sched_domains_numa_levels = level;
6612 curr_distance = next_distance;
6613 } else break;
cb83b629 6614 }
d039ac60
PZ
6615
6616 /*
6617 * In case of sched_debug() we verify the above assumption.
6618 */
6619 if (!sched_debug())
6620 break;
cb83b629 6621 }
c123588b
AR
6622
6623 if (!level)
6624 return;
6625
cb83b629
PZ
6626 /*
6627 * 'level' contains the number of unique distances, excluding the
6628 * identity distance node_distance(i,i).
6629 *
28b4a521 6630 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
6631 * numbers.
6632 */
6633
5f7865f3
TC
6634 /*
6635 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6636 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6637 * the array will contain less then 'level' members. This could be
6638 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6639 * in other functions.
6640 *
6641 * We reset it to 'level' at the end of this function.
6642 */
6643 sched_domains_numa_levels = 0;
6644
cb83b629
PZ
6645 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6646 if (!sched_domains_numa_masks)
6647 return;
6648
6649 /*
6650 * Now for each level, construct a mask per node which contains all
6651 * cpus of nodes that are that many hops away from us.
6652 */
6653 for (i = 0; i < level; i++) {
6654 sched_domains_numa_masks[i] =
6655 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6656 if (!sched_domains_numa_masks[i])
6657 return;
6658
6659 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6660 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6661 if (!mask)
6662 return;
6663
6664 sched_domains_numa_masks[i][j] = mask;
6665
6666 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 6667 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6668 continue;
6669
6670 cpumask_or(mask, mask, cpumask_of_node(k));
6671 }
6672 }
6673 }
6674
143e1e28
VG
6675 /* Compute default topology size */
6676 for (i = 0; sched_domain_topology[i].mask; i++);
6677
c515db8c 6678 tl = kzalloc((i + level + 1) *
cb83b629
PZ
6679 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6680 if (!tl)
6681 return;
6682
6683 /*
6684 * Copy the default topology bits..
6685 */
143e1e28
VG
6686 for (i = 0; sched_domain_topology[i].mask; i++)
6687 tl[i] = sched_domain_topology[i];
cb83b629
PZ
6688
6689 /*
6690 * .. and append 'j' levels of NUMA goodness.
6691 */
6692 for (j = 0; j < level; i++, j++) {
6693 tl[i] = (struct sched_domain_topology_level){
cb83b629 6694 .mask = sd_numa_mask,
143e1e28 6695 .sd_flags = cpu_numa_flags,
cb83b629
PZ
6696 .flags = SDTL_OVERLAP,
6697 .numa_level = j,
143e1e28 6698 SD_INIT_NAME(NUMA)
cb83b629
PZ
6699 };
6700 }
6701
6702 sched_domain_topology = tl;
5f7865f3
TC
6703
6704 sched_domains_numa_levels = level;
9942f79b 6705 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
e3fe70b1
RR
6706
6707 init_numa_topology_type();
cb83b629 6708}
301a5cba
TC
6709
6710static void sched_domains_numa_masks_set(int cpu)
6711{
6712 int i, j;
6713 int node = cpu_to_node(cpu);
6714
6715 for (i = 0; i < sched_domains_numa_levels; i++) {
6716 for (j = 0; j < nr_node_ids; j++) {
6717 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6718 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6719 }
6720 }
6721}
6722
6723static void sched_domains_numa_masks_clear(int cpu)
6724{
6725 int i, j;
6726 for (i = 0; i < sched_domains_numa_levels; i++) {
6727 for (j = 0; j < nr_node_ids; j++)
6728 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6729 }
6730}
6731
6732/*
6733 * Update sched_domains_numa_masks[level][node] array when new cpus
6734 * are onlined.
6735 */
6736static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6737 unsigned long action,
6738 void *hcpu)
6739{
6740 int cpu = (long)hcpu;
6741
6742 switch (action & ~CPU_TASKS_FROZEN) {
6743 case CPU_ONLINE:
6744 sched_domains_numa_masks_set(cpu);
6745 break;
6746
6747 case CPU_DEAD:
6748 sched_domains_numa_masks_clear(cpu);
6749 break;
6750
6751 default:
6752 return NOTIFY_DONE;
6753 }
6754
6755 return NOTIFY_OK;
cb83b629
PZ
6756}
6757#else
6758static inline void sched_init_numa(void)
6759{
6760}
301a5cba
TC
6761
6762static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6763 unsigned long action,
6764 void *hcpu)
6765{
6766 return 0;
6767}
cb83b629
PZ
6768#endif /* CONFIG_NUMA */
6769
54ab4ff4
PZ
6770static int __sdt_alloc(const struct cpumask *cpu_map)
6771{
6772 struct sched_domain_topology_level *tl;
6773 int j;
6774
27723a68 6775 for_each_sd_topology(tl) {
54ab4ff4
PZ
6776 struct sd_data *sdd = &tl->data;
6777
6778 sdd->sd = alloc_percpu(struct sched_domain *);
6779 if (!sdd->sd)
6780 return -ENOMEM;
6781
6782 sdd->sg = alloc_percpu(struct sched_group *);
6783 if (!sdd->sg)
6784 return -ENOMEM;
6785
63b2ca30
NP
6786 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6787 if (!sdd->sgc)
9c3f75cb
PZ
6788 return -ENOMEM;
6789
54ab4ff4
PZ
6790 for_each_cpu(j, cpu_map) {
6791 struct sched_domain *sd;
6792 struct sched_group *sg;
63b2ca30 6793 struct sched_group_capacity *sgc;
54ab4ff4 6794
5cc389bc 6795 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
54ab4ff4
PZ
6796 GFP_KERNEL, cpu_to_node(j));
6797 if (!sd)
6798 return -ENOMEM;
6799
6800 *per_cpu_ptr(sdd->sd, j) = sd;
6801
6802 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6803 GFP_KERNEL, cpu_to_node(j));
6804 if (!sg)
6805 return -ENOMEM;
6806
30b4e9eb
IM
6807 sg->next = sg;
6808
54ab4ff4 6809 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6810
63b2ca30 6811 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
9c3f75cb 6812 GFP_KERNEL, cpu_to_node(j));
63b2ca30 6813 if (!sgc)
9c3f75cb
PZ
6814 return -ENOMEM;
6815
63b2ca30 6816 *per_cpu_ptr(sdd->sgc, j) = sgc;
54ab4ff4
PZ
6817 }
6818 }
6819
6820 return 0;
6821}
6822
6823static void __sdt_free(const struct cpumask *cpu_map)
6824{
6825 struct sched_domain_topology_level *tl;
6826 int j;
6827
27723a68 6828 for_each_sd_topology(tl) {
54ab4ff4
PZ
6829 struct sd_data *sdd = &tl->data;
6830
6831 for_each_cpu(j, cpu_map) {
fb2cf2c6 6832 struct sched_domain *sd;
6833
6834 if (sdd->sd) {
6835 sd = *per_cpu_ptr(sdd->sd, j);
6836 if (sd && (sd->flags & SD_OVERLAP))
6837 free_sched_groups(sd->groups, 0);
6838 kfree(*per_cpu_ptr(sdd->sd, j));
6839 }
6840
6841 if (sdd->sg)
6842 kfree(*per_cpu_ptr(sdd->sg, j));
63b2ca30
NP
6843 if (sdd->sgc)
6844 kfree(*per_cpu_ptr(sdd->sgc, j));
54ab4ff4
PZ
6845 }
6846 free_percpu(sdd->sd);
fb2cf2c6 6847 sdd->sd = NULL;
54ab4ff4 6848 free_percpu(sdd->sg);
fb2cf2c6 6849 sdd->sg = NULL;
63b2ca30
NP
6850 free_percpu(sdd->sgc);
6851 sdd->sgc = NULL;
54ab4ff4
PZ
6852 }
6853}
6854
2c402dc3 6855struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
6856 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6857 struct sched_domain *child, int cpu)
2c402dc3 6858{
143e1e28 6859 struct sched_domain *sd = sd_init(tl, cpu);
2c402dc3 6860 if (!sd)
d069b916 6861 return child;
2c402dc3 6862
2c402dc3 6863 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6864 if (child) {
6865 sd->level = child->level + 1;
6866 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6867 child->parent = sd;
c75e0128 6868 sd->child = child;
6ae72dff
PZ
6869
6870 if (!cpumask_subset(sched_domain_span(child),
6871 sched_domain_span(sd))) {
6872 pr_err("BUG: arch topology borken\n");
6873#ifdef CONFIG_SCHED_DEBUG
6874 pr_err(" the %s domain not a subset of the %s domain\n",
6875 child->name, sd->name);
6876#endif
6877 /* Fixup, ensure @sd has at least @child cpus. */
6878 cpumask_or(sched_domain_span(sd),
6879 sched_domain_span(sd),
6880 sched_domain_span(child));
6881 }
6882
60495e77 6883 }
a841f8ce 6884 set_domain_attribute(sd, attr);
2c402dc3
PZ
6885
6886 return sd;
6887}
6888
2109b99e
AH
6889/*
6890 * Build sched domains for a given set of cpus and attach the sched domains
6891 * to the individual cpus
6892 */
dce840a0
PZ
6893static int build_sched_domains(const struct cpumask *cpu_map,
6894 struct sched_domain_attr *attr)
2109b99e 6895{
1c632169 6896 enum s_alloc alloc_state;
dce840a0 6897 struct sched_domain *sd;
2109b99e 6898 struct s_data d;
822ff793 6899 int i, ret = -ENOMEM;
9c1cfda2 6900
2109b99e
AH
6901 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6902 if (alloc_state != sa_rootdomain)
6903 goto error;
9c1cfda2 6904
dce840a0 6905 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6906 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6907 struct sched_domain_topology_level *tl;
6908
3bd65a80 6909 sd = NULL;
27723a68 6910 for_each_sd_topology(tl) {
4a850cbe 6911 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
6912 if (tl == sched_domain_topology)
6913 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
6914 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6915 sd->flags |= SD_OVERLAP;
d110235d
PZ
6916 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6917 break;
e3589f6c 6918 }
dce840a0
PZ
6919 }
6920
6921 /* Build the groups for the domains */
6922 for_each_cpu(i, cpu_map) {
6923 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6924 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6925 if (sd->flags & SD_OVERLAP) {
6926 if (build_overlap_sched_groups(sd, i))
6927 goto error;
6928 } else {
6929 if (build_sched_groups(sd, i))
6930 goto error;
6931 }
1cf51902 6932 }
a06dadbe 6933 }
9c1cfda2 6934
ced549fa 6935 /* Calculate CPU capacity for physical packages and nodes */
a9c9a9b6
PZ
6936 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6937 if (!cpumask_test_cpu(i, cpu_map))
6938 continue;
9c1cfda2 6939
dce840a0
PZ
6940 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6941 claim_allocations(i, sd);
63b2ca30 6942 init_sched_groups_capacity(i, sd);
dce840a0 6943 }
f712c0c7 6944 }
9c1cfda2 6945
1da177e4 6946 /* Attach the domains */
dce840a0 6947 rcu_read_lock();
abcd083a 6948 for_each_cpu(i, cpu_map) {
21d42ccf 6949 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6950 cpu_attach_domain(sd, d.rd, i);
1da177e4 6951 }
dce840a0 6952 rcu_read_unlock();
51888ca2 6953
822ff793 6954 ret = 0;
51888ca2 6955error:
2109b99e 6956 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6957 return ret;
1da177e4 6958}
029190c5 6959
acc3f5d7 6960static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6961static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6962static struct sched_domain_attr *dattr_cur;
6963 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6964
6965/*
6966 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6967 * cpumask) fails, then fallback to a single sched domain,
6968 * as determined by the single cpumask fallback_doms.
029190c5 6969 */
4212823f 6970static cpumask_var_t fallback_doms;
029190c5 6971
ee79d1bd
HC
6972/*
6973 * arch_update_cpu_topology lets virtualized architectures update the
6974 * cpu core maps. It is supposed to return 1 if the topology changed
6975 * or 0 if it stayed the same.
6976 */
52f5684c 6977int __weak arch_update_cpu_topology(void)
22e52b07 6978{
ee79d1bd 6979 return 0;
22e52b07
HC
6980}
6981
acc3f5d7
RR
6982cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6983{
6984 int i;
6985 cpumask_var_t *doms;
6986
6987 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6988 if (!doms)
6989 return NULL;
6990 for (i = 0; i < ndoms; i++) {
6991 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6992 free_sched_domains(doms, i);
6993 return NULL;
6994 }
6995 }
6996 return doms;
6997}
6998
6999void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7000{
7001 unsigned int i;
7002 for (i = 0; i < ndoms; i++)
7003 free_cpumask_var(doms[i]);
7004 kfree(doms);
7005}
7006
1a20ff27 7007/*
41a2d6cf 7008 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7009 * For now this just excludes isolated cpus, but could be used to
7010 * exclude other special cases in the future.
1a20ff27 7011 */
c4a8849a 7012static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7013{
7378547f
MM
7014 int err;
7015
22e52b07 7016 arch_update_cpu_topology();
029190c5 7017 ndoms_cur = 1;
acc3f5d7 7018 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7019 if (!doms_cur)
acc3f5d7
RR
7020 doms_cur = &fallback_doms;
7021 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 7022 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 7023 register_sched_domain_sysctl();
7378547f
MM
7024
7025 return err;
1a20ff27
DG
7026}
7027
1a20ff27
DG
7028/*
7029 * Detach sched domains from a group of cpus specified in cpu_map
7030 * These cpus will now be attached to the NULL domain
7031 */
96f874e2 7032static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
7033{
7034 int i;
7035
dce840a0 7036 rcu_read_lock();
abcd083a 7037 for_each_cpu(i, cpu_map)
57d885fe 7038 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 7039 rcu_read_unlock();
1a20ff27
DG
7040}
7041
1d3504fc
HS
7042/* handle null as "default" */
7043static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7044 struct sched_domain_attr *new, int idx_new)
7045{
7046 struct sched_domain_attr tmp;
7047
7048 /* fast path */
7049 if (!new && !cur)
7050 return 1;
7051
7052 tmp = SD_ATTR_INIT;
7053 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7054 new ? (new + idx_new) : &tmp,
7055 sizeof(struct sched_domain_attr));
7056}
7057
029190c5
PJ
7058/*
7059 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7060 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7061 * doms_new[] to the current sched domain partitioning, doms_cur[].
7062 * It destroys each deleted domain and builds each new domain.
7063 *
acc3f5d7 7064 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7065 * The masks don't intersect (don't overlap.) We should setup one
7066 * sched domain for each mask. CPUs not in any of the cpumasks will
7067 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7068 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7069 * it as it is.
7070 *
acc3f5d7
RR
7071 * The passed in 'doms_new' should be allocated using
7072 * alloc_sched_domains. This routine takes ownership of it and will
7073 * free_sched_domains it when done with it. If the caller failed the
7074 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7075 * and partition_sched_domains() will fallback to the single partition
7076 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7077 *
96f874e2 7078 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7079 * ndoms_new == 0 is a special case for destroying existing domains,
7080 * and it will not create the default domain.
dfb512ec 7081 *
029190c5
PJ
7082 * Call with hotplug lock held
7083 */
acc3f5d7 7084void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7085 struct sched_domain_attr *dattr_new)
029190c5 7086{
dfb512ec 7087 int i, j, n;
d65bd5ec 7088 int new_topology;
029190c5 7089
712555ee 7090 mutex_lock(&sched_domains_mutex);
a1835615 7091
7378547f
MM
7092 /* always unregister in case we don't destroy any domains */
7093 unregister_sched_domain_sysctl();
7094
d65bd5ec
HC
7095 /* Let architecture update cpu core mappings. */
7096 new_topology = arch_update_cpu_topology();
7097
dfb512ec 7098 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7099
7100 /* Destroy deleted domains */
7101 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7102 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7103 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7104 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7105 goto match1;
7106 }
7107 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7108 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7109match1:
7110 ;
7111 }
7112
c8d2d47a 7113 n = ndoms_cur;
e761b772 7114 if (doms_new == NULL) {
c8d2d47a 7115 n = 0;
acc3f5d7 7116 doms_new = &fallback_doms;
6ad4c188 7117 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7118 WARN_ON_ONCE(dattr_new);
e761b772
MK
7119 }
7120
029190c5
PJ
7121 /* Build new domains */
7122 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 7123 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7124 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7125 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7126 goto match2;
7127 }
7128 /* no match - add a new doms_new */
dce840a0 7129 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7130match2:
7131 ;
7132 }
7133
7134 /* Remember the new sched domains */
acc3f5d7
RR
7135 if (doms_cur != &fallback_doms)
7136 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7137 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7138 doms_cur = doms_new;
1d3504fc 7139 dattr_cur = dattr_new;
029190c5 7140 ndoms_cur = ndoms_new;
7378547f
MM
7141
7142 register_sched_domain_sysctl();
a1835615 7143
712555ee 7144 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7145}
7146
d35be8ba
SB
7147static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
7148
1da177e4 7149/*
3a101d05
TH
7150 * Update cpusets according to cpu_active mask. If cpusets are
7151 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7152 * around partition_sched_domains().
d35be8ba
SB
7153 *
7154 * If we come here as part of a suspend/resume, don't touch cpusets because we
7155 * want to restore it back to its original state upon resume anyway.
1da177e4 7156 */
0b2e918a
TH
7157static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7158 void *hcpu)
e761b772 7159{
d35be8ba
SB
7160 switch (action) {
7161 case CPU_ONLINE_FROZEN:
7162 case CPU_DOWN_FAILED_FROZEN:
7163
7164 /*
7165 * num_cpus_frozen tracks how many CPUs are involved in suspend
7166 * resume sequence. As long as this is not the last online
7167 * operation in the resume sequence, just build a single sched
7168 * domain, ignoring cpusets.
7169 */
7170 num_cpus_frozen--;
7171 if (likely(num_cpus_frozen)) {
7172 partition_sched_domains(1, NULL, NULL);
7173 break;
7174 }
7175
7176 /*
7177 * This is the last CPU online operation. So fall through and
7178 * restore the original sched domains by considering the
7179 * cpuset configurations.
7180 */
7181
e761b772 7182 case CPU_ONLINE:
7ddf96b0 7183 cpuset_update_active_cpus(true);
d35be8ba 7184 break;
3a101d05
TH
7185 default:
7186 return NOTIFY_DONE;
7187 }
d35be8ba 7188 return NOTIFY_OK;
3a101d05 7189}
e761b772 7190
0b2e918a
TH
7191static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7192 void *hcpu)
3a101d05 7193{
3c18d447
JL
7194 unsigned long flags;
7195 long cpu = (long)hcpu;
7196 struct dl_bw *dl_b;
533445c6
OS
7197 bool overflow;
7198 int cpus;
3c18d447 7199
533445c6 7200 switch (action) {
3a101d05 7201 case CPU_DOWN_PREPARE:
533445c6
OS
7202 rcu_read_lock_sched();
7203 dl_b = dl_bw_of(cpu);
3c18d447 7204
533445c6
OS
7205 raw_spin_lock_irqsave(&dl_b->lock, flags);
7206 cpus = dl_bw_cpus(cpu);
7207 overflow = __dl_overflow(dl_b, cpus, 0, 0);
7208 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3c18d447 7209
533445c6 7210 rcu_read_unlock_sched();
3c18d447 7211
533445c6
OS
7212 if (overflow)
7213 return notifier_from_errno(-EBUSY);
7ddf96b0 7214 cpuset_update_active_cpus(false);
d35be8ba
SB
7215 break;
7216 case CPU_DOWN_PREPARE_FROZEN:
7217 num_cpus_frozen++;
7218 partition_sched_domains(1, NULL, NULL);
7219 break;
e761b772
MK
7220 default:
7221 return NOTIFY_DONE;
7222 }
d35be8ba 7223 return NOTIFY_OK;
e761b772 7224}
e761b772 7225
1da177e4
LT
7226void __init sched_init_smp(void)
7227{
dcc30a35
RR
7228 cpumask_var_t non_isolated_cpus;
7229
7230 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7231 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7232
8cb9764f
CM
7233 /* nohz_full won't take effect without isolating the cpus. */
7234 tick_nohz_full_add_cpus_to(cpu_isolated_map);
7235
cb83b629
PZ
7236 sched_init_numa();
7237
6acce3ef
PZ
7238 /*
7239 * There's no userspace yet to cause hotplug operations; hence all the
7240 * cpu masks are stable and all blatant races in the below code cannot
7241 * happen.
7242 */
712555ee 7243 mutex_lock(&sched_domains_mutex);
c4a8849a 7244 init_sched_domains(cpu_active_mask);
dcc30a35
RR
7245 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7246 if (cpumask_empty(non_isolated_cpus))
7247 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7248 mutex_unlock(&sched_domains_mutex);
e761b772 7249
301a5cba 7250 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
7251 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7252 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772 7253
b328ca18 7254 init_hrtick();
5c1e1767
NP
7255
7256 /* Move init over to a non-isolated CPU */
dcc30a35 7257 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7258 BUG();
19978ca6 7259 sched_init_granularity();
dcc30a35 7260 free_cpumask_var(non_isolated_cpus);
4212823f 7261
0e3900e6 7262 init_sched_rt_class();
1baca4ce 7263 init_sched_dl_class();
1da177e4
LT
7264}
7265#else
7266void __init sched_init_smp(void)
7267{
19978ca6 7268 sched_init_granularity();
1da177e4
LT
7269}
7270#endif /* CONFIG_SMP */
7271
7272int in_sched_functions(unsigned long addr)
7273{
1da177e4
LT
7274 return in_lock_functions(addr) ||
7275 (addr >= (unsigned long)__sched_text_start
7276 && addr < (unsigned long)__sched_text_end);
7277}
7278
029632fb 7279#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
7280/*
7281 * Default task group.
7282 * Every task in system belongs to this group at bootup.
7283 */
029632fb 7284struct task_group root_task_group;
35cf4e50 7285LIST_HEAD(task_groups);
052f1dc7 7286#endif
6f505b16 7287
e6252c3e 7288DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 7289
1da177e4
LT
7290void __init sched_init(void)
7291{
dd41f596 7292 int i, j;
434d53b0
MT
7293 unsigned long alloc_size = 0, ptr;
7294
7295#ifdef CONFIG_FAIR_GROUP_SCHED
7296 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7297#endif
7298#ifdef CONFIG_RT_GROUP_SCHED
7299 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7300#endif
434d53b0 7301 if (alloc_size) {
36b7b6d4 7302 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7303
7304#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 7305 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
7306 ptr += nr_cpu_ids * sizeof(void **);
7307
07e06b01 7308 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 7309 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7310
6d6bc0ad 7311#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 7312#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7313 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
7314 ptr += nr_cpu_ids * sizeof(void **);
7315
07e06b01 7316 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7317 ptr += nr_cpu_ids * sizeof(void **);
7318
6d6bc0ad 7319#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 7320 }
df7c8e84 7321#ifdef CONFIG_CPUMASK_OFFSTACK
b74e6278
AT
7322 for_each_possible_cpu(i) {
7323 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7324 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
434d53b0 7325 }
b74e6278 7326#endif /* CONFIG_CPUMASK_OFFSTACK */
dd41f596 7327
332ac17e
DF
7328 init_rt_bandwidth(&def_rt_bandwidth,
7329 global_rt_period(), global_rt_runtime());
7330 init_dl_bandwidth(&def_dl_bandwidth,
1724813d 7331 global_rt_period(), global_rt_runtime());
332ac17e 7332
57d885fe
GH
7333#ifdef CONFIG_SMP
7334 init_defrootdomain();
7335#endif
7336
d0b27fa7 7337#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7338 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 7339 global_rt_period(), global_rt_runtime());
6d6bc0ad 7340#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7341
7c941438 7342#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
7343 list_add(&root_task_group.list, &task_groups);
7344 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 7345 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 7346 autogroup_init(&init_task);
54c707e9 7347
7c941438 7348#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7349
0a945022 7350 for_each_possible_cpu(i) {
70b97a7f 7351 struct rq *rq;
1da177e4
LT
7352
7353 rq = cpu_rq(i);
05fa785c 7354 raw_spin_lock_init(&rq->lock);
7897986b 7355 rq->nr_running = 0;
dce48a84
TG
7356 rq->calc_load_active = 0;
7357 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 7358 init_cfs_rq(&rq->cfs);
07c54f7a
AV
7359 init_rt_rq(&rq->rt);
7360 init_dl_rq(&rq->dl);
dd41f596 7361#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 7362 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 7363 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 7364 /*
07e06b01 7365 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
7366 *
7367 * In case of task-groups formed thr' the cgroup filesystem, it
7368 * gets 100% of the cpu resources in the system. This overall
7369 * system cpu resource is divided among the tasks of
07e06b01 7370 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
7371 * based on each entity's (task or task-group's) weight
7372 * (se->load.weight).
7373 *
07e06b01 7374 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
7375 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7376 * then A0's share of the cpu resource is:
7377 *
0d905bca 7378 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 7379 *
07e06b01
YZ
7380 * We achieve this by letting root_task_group's tasks sit
7381 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 7382 */
ab84d31e 7383 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 7384 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
7385#endif /* CONFIG_FAIR_GROUP_SCHED */
7386
7387 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7388#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7389 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 7390#endif
1da177e4 7391
dd41f596
IM
7392 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7393 rq->cpu_load[j] = 0;
fdf3e95d
VP
7394
7395 rq->last_load_update_tick = jiffies;
7396
1da177e4 7397#ifdef CONFIG_SMP
41c7ce9a 7398 rq->sd = NULL;
57d885fe 7399 rq->rd = NULL;
ca6d75e6 7400 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
e3fca9e7 7401 rq->balance_callback = NULL;
1da177e4 7402 rq->active_balance = 0;
dd41f596 7403 rq->next_balance = jiffies;
1da177e4 7404 rq->push_cpu = 0;
0a2966b4 7405 rq->cpu = i;
1f11eb6a 7406 rq->online = 0;
eae0c9df
MG
7407 rq->idle_stamp = 0;
7408 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 7409 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
7410
7411 INIT_LIST_HEAD(&rq->cfs_tasks);
7412
dc938520 7413 rq_attach_root(rq, &def_root_domain);
3451d024 7414#ifdef CONFIG_NO_HZ_COMMON
1c792db7 7415 rq->nohz_flags = 0;
83cd4fe2 7416#endif
265f22a9
FW
7417#ifdef CONFIG_NO_HZ_FULL
7418 rq->last_sched_tick = 0;
7419#endif
1da177e4 7420#endif
8f4d37ec 7421 init_rq_hrtick(rq);
1da177e4 7422 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7423 }
7424
2dd73a4f 7425 set_load_weight(&init_task);
b50f60ce 7426
e107be36
AK
7427#ifdef CONFIG_PREEMPT_NOTIFIERS
7428 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7429#endif
7430
1da177e4
LT
7431 /*
7432 * The boot idle thread does lazy MMU switching as well:
7433 */
7434 atomic_inc(&init_mm.mm_count);
7435 enter_lazy_tlb(&init_mm, current);
7436
1b537c7d
YD
7437 /*
7438 * During early bootup we pretend to be a normal task:
7439 */
7440 current->sched_class = &fair_sched_class;
7441
1da177e4
LT
7442 /*
7443 * Make us the idle thread. Technically, schedule() should not be
7444 * called from this thread, however somewhere below it might be,
7445 * but because we are the idle thread, we just pick up running again
7446 * when this runqueue becomes "idle".
7447 */
7448 init_idle(current, smp_processor_id());
dce48a84
TG
7449
7450 calc_load_update = jiffies + LOAD_FREQ;
7451
bf4d83f6 7452#ifdef CONFIG_SMP
4cb98839 7453 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
7454 /* May be allocated at isolcpus cmdline parse time */
7455 if (cpu_isolated_map == NULL)
7456 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 7457 idle_thread_set_boot_cpu();
a803f026 7458 set_cpu_rq_start_time();
029632fb
PZ
7459#endif
7460 init_sched_fair_class();
6a7b3dc3 7461
6892b75e 7462 scheduler_running = 1;
1da177e4
LT
7463}
7464
d902db1e 7465#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
7466static inline int preempt_count_equals(int preempt_offset)
7467{
234da7bc 7468 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 7469
4ba8216c 7470 return (nested == preempt_offset);
e4aafea2
FW
7471}
7472
d894837f 7473void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7474{
8eb23b9f
PZ
7475 /*
7476 * Blocking primitives will set (and therefore destroy) current->state,
7477 * since we will exit with TASK_RUNNING make sure we enter with it,
7478 * otherwise we will destroy state.
7479 */
00845eb9 7480 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
8eb23b9f
PZ
7481 "do not call blocking ops when !TASK_RUNNING; "
7482 "state=%lx set at [<%p>] %pS\n",
7483 current->state,
7484 (void *)current->task_state_change,
00845eb9 7485 (void *)current->task_state_change);
8eb23b9f 7486
3427445a
PZ
7487 ___might_sleep(file, line, preempt_offset);
7488}
7489EXPORT_SYMBOL(__might_sleep);
7490
7491void ___might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7492{
1da177e4
LT
7493 static unsigned long prev_jiffy; /* ratelimiting */
7494
b3fbab05 7495 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
db273be2
TG
7496 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7497 !is_idle_task(current)) ||
e4aafea2 7498 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7499 return;
7500 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7501 return;
7502 prev_jiffy = jiffies;
7503
3df0fc5b
PZ
7504 printk(KERN_ERR
7505 "BUG: sleeping function called from invalid context at %s:%d\n",
7506 file, line);
7507 printk(KERN_ERR
7508 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7509 in_atomic(), irqs_disabled(),
7510 current->pid, current->comm);
aef745fc 7511
a8b686b3
ES
7512 if (task_stack_end_corrupted(current))
7513 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7514
aef745fc
IM
7515 debug_show_held_locks(current);
7516 if (irqs_disabled())
7517 print_irqtrace_events(current);
8f47b187
TG
7518#ifdef CONFIG_DEBUG_PREEMPT
7519 if (!preempt_count_equals(preempt_offset)) {
7520 pr_err("Preemption disabled at:");
7521 print_ip_sym(current->preempt_disable_ip);
7522 pr_cont("\n");
7523 }
7524#endif
aef745fc 7525 dump_stack();
1da177e4 7526}
3427445a 7527EXPORT_SYMBOL(___might_sleep);
1da177e4
LT
7528#endif
7529
7530#ifdef CONFIG_MAGIC_SYSRQ
dbc7f069 7531void normalize_rt_tasks(void)
3a5e4dc1 7532{
dbc7f069 7533 struct task_struct *g, *p;
d50dde5a
DF
7534 struct sched_attr attr = {
7535 .sched_policy = SCHED_NORMAL,
7536 };
1da177e4 7537
3472eaa1 7538 read_lock(&tasklist_lock);
5d07f420 7539 for_each_process_thread(g, p) {
178be793
IM
7540 /*
7541 * Only normalize user tasks:
7542 */
3472eaa1 7543 if (p->flags & PF_KTHREAD)
178be793
IM
7544 continue;
7545
6cfb0d5d 7546 p->se.exec_start = 0;
6cfb0d5d 7547#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7548 p->se.statistics.wait_start = 0;
7549 p->se.statistics.sleep_start = 0;
7550 p->se.statistics.block_start = 0;
6cfb0d5d 7551#endif
dd41f596 7552
aab03e05 7553 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
7554 /*
7555 * Renice negative nice level userspace
7556 * tasks back to 0:
7557 */
3472eaa1 7558 if (task_nice(p) < 0)
dd41f596 7559 set_user_nice(p, 0);
1da177e4 7560 continue;
dd41f596 7561 }
1da177e4 7562
dbc7f069 7563 __sched_setscheduler(p, &attr, false, false);
5d07f420 7564 }
3472eaa1 7565 read_unlock(&tasklist_lock);
1da177e4
LT
7566}
7567
7568#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7569
67fc4e0c 7570#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7571/*
67fc4e0c 7572 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7573 *
7574 * They can only be called when the whole system has been
7575 * stopped - every CPU needs to be quiescent, and no scheduling
7576 * activity can take place. Using them for anything else would
7577 * be a serious bug, and as a result, they aren't even visible
7578 * under any other configuration.
7579 */
7580
7581/**
7582 * curr_task - return the current task for a given cpu.
7583 * @cpu: the processor in question.
7584 *
7585 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
7586 *
7587 * Return: The current task for @cpu.
1df5c10a 7588 */
36c8b586 7589struct task_struct *curr_task(int cpu)
1df5c10a
LT
7590{
7591 return cpu_curr(cpu);
7592}
7593
67fc4e0c
JW
7594#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7595
7596#ifdef CONFIG_IA64
1df5c10a
LT
7597/**
7598 * set_curr_task - set the current task for a given cpu.
7599 * @cpu: the processor in question.
7600 * @p: the task pointer to set.
7601 *
7602 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7603 * are serviced on a separate stack. It allows the architecture to switch the
7604 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7605 * must be called with all CPU's synchronized, and interrupts disabled, the
7606 * and caller must save the original value of the current task (see
7607 * curr_task() above) and restore that value before reenabling interrupts and
7608 * re-starting the system.
7609 *
7610 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7611 */
36c8b586 7612void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7613{
7614 cpu_curr(cpu) = p;
7615}
7616
7617#endif
29f59db3 7618
7c941438 7619#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7620/* task_group_lock serializes the addition/removal of task groups */
7621static DEFINE_SPINLOCK(task_group_lock);
7622
bccbe08a
PZ
7623static void free_sched_group(struct task_group *tg)
7624{
7625 free_fair_sched_group(tg);
7626 free_rt_sched_group(tg);
e9aa1dd1 7627 autogroup_free(tg);
bccbe08a
PZ
7628 kfree(tg);
7629}
7630
7631/* allocate runqueue etc for a new task group */
ec7dc8ac 7632struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7633{
7634 struct task_group *tg;
bccbe08a
PZ
7635
7636 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7637 if (!tg)
7638 return ERR_PTR(-ENOMEM);
7639
ec7dc8ac 7640 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7641 goto err;
7642
ec7dc8ac 7643 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7644 goto err;
7645
ace783b9
LZ
7646 return tg;
7647
7648err:
7649 free_sched_group(tg);
7650 return ERR_PTR(-ENOMEM);
7651}
7652
7653void sched_online_group(struct task_group *tg, struct task_group *parent)
7654{
7655 unsigned long flags;
7656
8ed36996 7657 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7658 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7659
7660 WARN_ON(!parent); /* root should already exist */
7661
7662 tg->parent = parent;
f473aa5e 7663 INIT_LIST_HEAD(&tg->children);
09f2724a 7664 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7665 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7666}
7667
9b5b7751 7668/* rcu callback to free various structures associated with a task group */
6f505b16 7669static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7670{
29f59db3 7671 /* now it should be safe to free those cfs_rqs */
6f505b16 7672 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7673}
7674
9b5b7751 7675/* Destroy runqueue etc associated with a task group */
4cf86d77 7676void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
7677{
7678 /* wait for possible concurrent references to cfs_rqs complete */
7679 call_rcu(&tg->rcu, free_sched_group_rcu);
7680}
7681
7682void sched_offline_group(struct task_group *tg)
29f59db3 7683{
8ed36996 7684 unsigned long flags;
9b5b7751 7685 int i;
29f59db3 7686
3d4b47b4
PZ
7687 /* end participation in shares distribution */
7688 for_each_possible_cpu(i)
bccbe08a 7689 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
7690
7691 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7692 list_del_rcu(&tg->list);
f473aa5e 7693 list_del_rcu(&tg->siblings);
8ed36996 7694 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7695}
7696
9b5b7751 7697/* change task's runqueue when it moves between groups.
3a252015
IM
7698 * The caller of this function should have put the task in its new group
7699 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7700 * reflect its new group.
9b5b7751
SV
7701 */
7702void sched_move_task(struct task_struct *tsk)
29f59db3 7703{
8323f26c 7704 struct task_group *tg;
da0c1e65 7705 int queued, running;
29f59db3
SV
7706 unsigned long flags;
7707 struct rq *rq;
7708
7709 rq = task_rq_lock(tsk, &flags);
7710
051a1d1a 7711 running = task_current(rq, tsk);
da0c1e65 7712 queued = task_on_rq_queued(tsk);
29f59db3 7713
da0c1e65 7714 if (queued)
29f59db3 7715 dequeue_task(rq, tsk, 0);
0e1f3483 7716 if (unlikely(running))
f3cd1c4e 7717 put_prev_task(rq, tsk);
29f59db3 7718
f7b8a47d
KT
7719 /*
7720 * All callers are synchronized by task_rq_lock(); we do not use RCU
7721 * which is pointless here. Thus, we pass "true" to task_css_check()
7722 * to prevent lockdep warnings.
7723 */
7724 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
7725 struct task_group, css);
7726 tg = autogroup_task_group(tsk, tg);
7727 tsk->sched_task_group = tg;
7728
810b3817 7729#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7730 if (tsk->sched_class->task_move_group)
bc54da21 7731 tsk->sched_class->task_move_group(tsk);
b2b5ce02 7732 else
810b3817 7733#endif
b2b5ce02 7734 set_task_rq(tsk, task_cpu(tsk));
810b3817 7735
0e1f3483
HS
7736 if (unlikely(running))
7737 tsk->sched_class->set_curr_task(rq);
da0c1e65 7738 if (queued)
371fd7e7 7739 enqueue_task(rq, tsk, 0);
29f59db3 7740
0122ec5b 7741 task_rq_unlock(rq, tsk, &flags);
29f59db3 7742}
7c941438 7743#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7744
a790de99
PT
7745#ifdef CONFIG_RT_GROUP_SCHED
7746/*
7747 * Ensure that the real time constraints are schedulable.
7748 */
7749static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7750
9a7e0b18
PZ
7751/* Must be called with tasklist_lock held */
7752static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7753{
9a7e0b18 7754 struct task_struct *g, *p;
b40b2e8e 7755
1fe89e1b
PZ
7756 /*
7757 * Autogroups do not have RT tasks; see autogroup_create().
7758 */
7759 if (task_group_is_autogroup(tg))
7760 return 0;
7761
5d07f420 7762 for_each_process_thread(g, p) {
8651c658 7763 if (rt_task(p) && task_group(p) == tg)
9a7e0b18 7764 return 1;
5d07f420 7765 }
b40b2e8e 7766
9a7e0b18
PZ
7767 return 0;
7768}
b40b2e8e 7769
9a7e0b18
PZ
7770struct rt_schedulable_data {
7771 struct task_group *tg;
7772 u64 rt_period;
7773 u64 rt_runtime;
7774};
b40b2e8e 7775
a790de99 7776static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7777{
7778 struct rt_schedulable_data *d = data;
7779 struct task_group *child;
7780 unsigned long total, sum = 0;
7781 u64 period, runtime;
b40b2e8e 7782
9a7e0b18
PZ
7783 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7784 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7785
9a7e0b18
PZ
7786 if (tg == d->tg) {
7787 period = d->rt_period;
7788 runtime = d->rt_runtime;
b40b2e8e 7789 }
b40b2e8e 7790
4653f803
PZ
7791 /*
7792 * Cannot have more runtime than the period.
7793 */
7794 if (runtime > period && runtime != RUNTIME_INF)
7795 return -EINVAL;
6f505b16 7796
4653f803
PZ
7797 /*
7798 * Ensure we don't starve existing RT tasks.
7799 */
9a7e0b18
PZ
7800 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7801 return -EBUSY;
6f505b16 7802
9a7e0b18 7803 total = to_ratio(period, runtime);
6f505b16 7804
4653f803
PZ
7805 /*
7806 * Nobody can have more than the global setting allows.
7807 */
7808 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7809 return -EINVAL;
6f505b16 7810
4653f803
PZ
7811 /*
7812 * The sum of our children's runtime should not exceed our own.
7813 */
9a7e0b18
PZ
7814 list_for_each_entry_rcu(child, &tg->children, siblings) {
7815 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7816 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7817
9a7e0b18
PZ
7818 if (child == d->tg) {
7819 period = d->rt_period;
7820 runtime = d->rt_runtime;
7821 }
6f505b16 7822
9a7e0b18 7823 sum += to_ratio(period, runtime);
9f0c1e56 7824 }
6f505b16 7825
9a7e0b18
PZ
7826 if (sum > total)
7827 return -EINVAL;
7828
7829 return 0;
6f505b16
PZ
7830}
7831
9a7e0b18 7832static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7833{
8277434e
PT
7834 int ret;
7835
9a7e0b18
PZ
7836 struct rt_schedulable_data data = {
7837 .tg = tg,
7838 .rt_period = period,
7839 .rt_runtime = runtime,
7840 };
7841
8277434e
PT
7842 rcu_read_lock();
7843 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7844 rcu_read_unlock();
7845
7846 return ret;
521f1a24
DG
7847}
7848
ab84d31e 7849static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7850 u64 rt_period, u64 rt_runtime)
6f505b16 7851{
ac086bc2 7852 int i, err = 0;
9f0c1e56 7853
2636ed5f
PZ
7854 /*
7855 * Disallowing the root group RT runtime is BAD, it would disallow the
7856 * kernel creating (and or operating) RT threads.
7857 */
7858 if (tg == &root_task_group && rt_runtime == 0)
7859 return -EINVAL;
7860
7861 /* No period doesn't make any sense. */
7862 if (rt_period == 0)
7863 return -EINVAL;
7864
9f0c1e56 7865 mutex_lock(&rt_constraints_mutex);
521f1a24 7866 read_lock(&tasklist_lock);
9a7e0b18
PZ
7867 err = __rt_schedulable(tg, rt_period, rt_runtime);
7868 if (err)
9f0c1e56 7869 goto unlock;
ac086bc2 7870
0986b11b 7871 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7872 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7873 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7874
7875 for_each_possible_cpu(i) {
7876 struct rt_rq *rt_rq = tg->rt_rq[i];
7877
0986b11b 7878 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7879 rt_rq->rt_runtime = rt_runtime;
0986b11b 7880 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7881 }
0986b11b 7882 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7883unlock:
521f1a24 7884 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7885 mutex_unlock(&rt_constraints_mutex);
7886
7887 return err;
6f505b16
PZ
7888}
7889
25cc7da7 7890static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
7891{
7892 u64 rt_runtime, rt_period;
7893
7894 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7895 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7896 if (rt_runtime_us < 0)
7897 rt_runtime = RUNTIME_INF;
7898
ab84d31e 7899 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7900}
7901
25cc7da7 7902static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
7903{
7904 u64 rt_runtime_us;
7905
d0b27fa7 7906 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7907 return -1;
7908
d0b27fa7 7909 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7910 do_div(rt_runtime_us, NSEC_PER_USEC);
7911 return rt_runtime_us;
7912}
d0b27fa7 7913
ce2f5fe4 7914static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
d0b27fa7
PZ
7915{
7916 u64 rt_runtime, rt_period;
7917
ce2f5fe4 7918 rt_period = rt_period_us * NSEC_PER_USEC;
d0b27fa7
PZ
7919 rt_runtime = tg->rt_bandwidth.rt_runtime;
7920
ab84d31e 7921 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7922}
7923
25cc7da7 7924static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
7925{
7926 u64 rt_period_us;
7927
7928 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7929 do_div(rt_period_us, NSEC_PER_USEC);
7930 return rt_period_us;
7931}
332ac17e 7932#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7933
332ac17e 7934#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
7935static int sched_rt_global_constraints(void)
7936{
7937 int ret = 0;
7938
7939 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7940 read_lock(&tasklist_lock);
4653f803 7941 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7942 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7943 mutex_unlock(&rt_constraints_mutex);
7944
7945 return ret;
7946}
54e99124 7947
25cc7da7 7948static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
7949{
7950 /* Don't accept realtime tasks when there is no way for them to run */
7951 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7952 return 0;
7953
7954 return 1;
7955}
7956
6d6bc0ad 7957#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7958static int sched_rt_global_constraints(void)
7959{
ac086bc2 7960 unsigned long flags;
332ac17e 7961 int i, ret = 0;
ec5d4989 7962
0986b11b 7963 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7964 for_each_possible_cpu(i) {
7965 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7966
0986b11b 7967 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7968 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7969 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7970 }
0986b11b 7971 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7972
332ac17e 7973 return ret;
d0b27fa7 7974}
6d6bc0ad 7975#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7976
a1963b81 7977static int sched_dl_global_validate(void)
332ac17e 7978{
1724813d
PZ
7979 u64 runtime = global_rt_runtime();
7980 u64 period = global_rt_period();
332ac17e 7981 u64 new_bw = to_ratio(period, runtime);
f10e00f4 7982 struct dl_bw *dl_b;
1724813d 7983 int cpu, ret = 0;
49516342 7984 unsigned long flags;
332ac17e
DF
7985
7986 /*
7987 * Here we want to check the bandwidth not being set to some
7988 * value smaller than the currently allocated bandwidth in
7989 * any of the root_domains.
7990 *
7991 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7992 * cycling on root_domains... Discussion on different/better
7993 * solutions is welcome!
7994 */
1724813d 7995 for_each_possible_cpu(cpu) {
f10e00f4
KT
7996 rcu_read_lock_sched();
7997 dl_b = dl_bw_of(cpu);
332ac17e 7998
49516342 7999 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d
PZ
8000 if (new_bw < dl_b->total_bw)
8001 ret = -EBUSY;
49516342 8002 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
1724813d 8003
f10e00f4
KT
8004 rcu_read_unlock_sched();
8005
1724813d
PZ
8006 if (ret)
8007 break;
332ac17e
DF
8008 }
8009
1724813d 8010 return ret;
332ac17e
DF
8011}
8012
1724813d 8013static void sched_dl_do_global(void)
ce0dbbbb 8014{
1724813d 8015 u64 new_bw = -1;
f10e00f4 8016 struct dl_bw *dl_b;
1724813d 8017 int cpu;
49516342 8018 unsigned long flags;
ce0dbbbb 8019
1724813d
PZ
8020 def_dl_bandwidth.dl_period = global_rt_period();
8021 def_dl_bandwidth.dl_runtime = global_rt_runtime();
8022
8023 if (global_rt_runtime() != RUNTIME_INF)
8024 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
8025
8026 /*
8027 * FIXME: As above...
8028 */
8029 for_each_possible_cpu(cpu) {
f10e00f4
KT
8030 rcu_read_lock_sched();
8031 dl_b = dl_bw_of(cpu);
1724813d 8032
49516342 8033 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d 8034 dl_b->bw = new_bw;
49516342 8035 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
f10e00f4
KT
8036
8037 rcu_read_unlock_sched();
ce0dbbbb 8038 }
1724813d
PZ
8039}
8040
8041static int sched_rt_global_validate(void)
8042{
8043 if (sysctl_sched_rt_period <= 0)
8044 return -EINVAL;
8045
e9e7cb38
JL
8046 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
8047 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
1724813d
PZ
8048 return -EINVAL;
8049
8050 return 0;
8051}
8052
8053static void sched_rt_do_global(void)
8054{
8055 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8056 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
8057}
8058
d0b27fa7 8059int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8060 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8061 loff_t *ppos)
8062{
d0b27fa7
PZ
8063 int old_period, old_runtime;
8064 static DEFINE_MUTEX(mutex);
1724813d 8065 int ret;
d0b27fa7
PZ
8066
8067 mutex_lock(&mutex);
8068 old_period = sysctl_sched_rt_period;
8069 old_runtime = sysctl_sched_rt_runtime;
8070
8d65af78 8071 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
8072
8073 if (!ret && write) {
1724813d
PZ
8074 ret = sched_rt_global_validate();
8075 if (ret)
8076 goto undo;
8077
a1963b81 8078 ret = sched_dl_global_validate();
1724813d
PZ
8079 if (ret)
8080 goto undo;
8081
a1963b81 8082 ret = sched_rt_global_constraints();
1724813d
PZ
8083 if (ret)
8084 goto undo;
8085
8086 sched_rt_do_global();
8087 sched_dl_do_global();
8088 }
8089 if (0) {
8090undo:
8091 sysctl_sched_rt_period = old_period;
8092 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
8093 }
8094 mutex_unlock(&mutex);
8095
8096 return ret;
8097}
68318b8e 8098
1724813d 8099int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
8100 void __user *buffer, size_t *lenp,
8101 loff_t *ppos)
8102{
8103 int ret;
332ac17e 8104 static DEFINE_MUTEX(mutex);
332ac17e
DF
8105
8106 mutex_lock(&mutex);
332ac17e 8107 ret = proc_dointvec(table, write, buffer, lenp, ppos);
1724813d
PZ
8108 /* make sure that internally we keep jiffies */
8109 /* also, writing zero resets timeslice to default */
332ac17e 8110 if (!ret && write) {
1724813d
PZ
8111 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8112 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
332ac17e
DF
8113 }
8114 mutex_unlock(&mutex);
332ac17e
DF
8115 return ret;
8116}
8117
052f1dc7 8118#ifdef CONFIG_CGROUP_SCHED
68318b8e 8119
a7c6d554 8120static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 8121{
a7c6d554 8122 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
8123}
8124
eb95419b
TH
8125static struct cgroup_subsys_state *
8126cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 8127{
eb95419b
TH
8128 struct task_group *parent = css_tg(parent_css);
8129 struct task_group *tg;
68318b8e 8130
eb95419b 8131 if (!parent) {
68318b8e 8132 /* This is early initialization for the top cgroup */
07e06b01 8133 return &root_task_group.css;
68318b8e
SV
8134 }
8135
ec7dc8ac 8136 tg = sched_create_group(parent);
68318b8e
SV
8137 if (IS_ERR(tg))
8138 return ERR_PTR(-ENOMEM);
8139
68318b8e
SV
8140 return &tg->css;
8141}
8142
eb95419b 8143static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
ace783b9 8144{
eb95419b 8145 struct task_group *tg = css_tg(css);
5c9d535b 8146 struct task_group *parent = css_tg(css->parent);
ace783b9 8147
63876986
TH
8148 if (parent)
8149 sched_online_group(tg, parent);
ace783b9
LZ
8150 return 0;
8151}
8152
eb95419b 8153static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 8154{
eb95419b 8155 struct task_group *tg = css_tg(css);
68318b8e
SV
8156
8157 sched_destroy_group(tg);
8158}
8159
eb95419b 8160static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
ace783b9 8161{
eb95419b 8162 struct task_group *tg = css_tg(css);
ace783b9
LZ
8163
8164 sched_offline_group(tg);
8165}
8166
7e47682e 8167static void cpu_cgroup_fork(struct task_struct *task, void *private)
eeb61e53
KT
8168{
8169 sched_move_task(task);
8170}
8171
eb95419b 8172static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
bb9d97b6 8173 struct cgroup_taskset *tset)
68318b8e 8174{
bb9d97b6
TH
8175 struct task_struct *task;
8176
924f0d9a 8177 cgroup_taskset_for_each(task, tset) {
b68aa230 8178#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 8179 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 8180 return -EINVAL;
b68aa230 8181#else
bb9d97b6
TH
8182 /* We don't support RT-tasks being in separate groups */
8183 if (task->sched_class != &fair_sched_class)
8184 return -EINVAL;
b68aa230 8185#endif
bb9d97b6 8186 }
be367d09
BB
8187 return 0;
8188}
68318b8e 8189
eb95419b 8190static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
bb9d97b6 8191 struct cgroup_taskset *tset)
68318b8e 8192{
bb9d97b6
TH
8193 struct task_struct *task;
8194
924f0d9a 8195 cgroup_taskset_for_each(task, tset)
bb9d97b6 8196 sched_move_task(task);
68318b8e
SV
8197}
8198
eb95419b
TH
8199static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
8200 struct cgroup_subsys_state *old_css,
8201 struct task_struct *task)
068c5cc5 8202{
068c5cc5
PZ
8203 sched_move_task(task);
8204}
8205
052f1dc7 8206#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
8207static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8208 struct cftype *cftype, u64 shareval)
68318b8e 8209{
182446d0 8210 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
8211}
8212
182446d0
TH
8213static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8214 struct cftype *cft)
68318b8e 8215{
182446d0 8216 struct task_group *tg = css_tg(css);
68318b8e 8217
c8b28116 8218 return (u64) scale_load_down(tg->shares);
68318b8e 8219}
ab84d31e
PT
8220
8221#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
8222static DEFINE_MUTEX(cfs_constraints_mutex);
8223
ab84d31e
PT
8224const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8225const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8226
a790de99
PT
8227static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8228
ab84d31e
PT
8229static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8230{
56f570e5 8231 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 8232 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
8233
8234 if (tg == &root_task_group)
8235 return -EINVAL;
8236
8237 /*
8238 * Ensure we have at some amount of bandwidth every period. This is
8239 * to prevent reaching a state of large arrears when throttled via
8240 * entity_tick() resulting in prolonged exit starvation.
8241 */
8242 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8243 return -EINVAL;
8244
8245 /*
8246 * Likewise, bound things on the otherside by preventing insane quota
8247 * periods. This also allows us to normalize in computing quota
8248 * feasibility.
8249 */
8250 if (period > max_cfs_quota_period)
8251 return -EINVAL;
8252
0e59bdae
KT
8253 /*
8254 * Prevent race between setting of cfs_rq->runtime_enabled and
8255 * unthrottle_offline_cfs_rqs().
8256 */
8257 get_online_cpus();
a790de99
PT
8258 mutex_lock(&cfs_constraints_mutex);
8259 ret = __cfs_schedulable(tg, period, quota);
8260 if (ret)
8261 goto out_unlock;
8262
58088ad0 8263 runtime_enabled = quota != RUNTIME_INF;
56f570e5 8264 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
8265 /*
8266 * If we need to toggle cfs_bandwidth_used, off->on must occur
8267 * before making related changes, and on->off must occur afterwards
8268 */
8269 if (runtime_enabled && !runtime_was_enabled)
8270 cfs_bandwidth_usage_inc();
ab84d31e
PT
8271 raw_spin_lock_irq(&cfs_b->lock);
8272 cfs_b->period = ns_to_ktime(period);
8273 cfs_b->quota = quota;
58088ad0 8274
a9cf55b2 8275 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 8276 /* restart the period timer (if active) to handle new period expiry */
77a4d1a1
PZ
8277 if (runtime_enabled)
8278 start_cfs_bandwidth(cfs_b);
ab84d31e
PT
8279 raw_spin_unlock_irq(&cfs_b->lock);
8280
0e59bdae 8281 for_each_online_cpu(i) {
ab84d31e 8282 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 8283 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
8284
8285 raw_spin_lock_irq(&rq->lock);
58088ad0 8286 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 8287 cfs_rq->runtime_remaining = 0;
671fd9da 8288
029632fb 8289 if (cfs_rq->throttled)
671fd9da 8290 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
8291 raw_spin_unlock_irq(&rq->lock);
8292 }
1ee14e6c
BS
8293 if (runtime_was_enabled && !runtime_enabled)
8294 cfs_bandwidth_usage_dec();
a790de99
PT
8295out_unlock:
8296 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 8297 put_online_cpus();
ab84d31e 8298
a790de99 8299 return ret;
ab84d31e
PT
8300}
8301
8302int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8303{
8304 u64 quota, period;
8305
029632fb 8306 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8307 if (cfs_quota_us < 0)
8308 quota = RUNTIME_INF;
8309 else
8310 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8311
8312 return tg_set_cfs_bandwidth(tg, period, quota);
8313}
8314
8315long tg_get_cfs_quota(struct task_group *tg)
8316{
8317 u64 quota_us;
8318
029632fb 8319 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
8320 return -1;
8321
029632fb 8322 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
8323 do_div(quota_us, NSEC_PER_USEC);
8324
8325 return quota_us;
8326}
8327
8328int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8329{
8330 u64 quota, period;
8331
8332 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 8333 quota = tg->cfs_bandwidth.quota;
ab84d31e 8334
ab84d31e
PT
8335 return tg_set_cfs_bandwidth(tg, period, quota);
8336}
8337
8338long tg_get_cfs_period(struct task_group *tg)
8339{
8340 u64 cfs_period_us;
8341
029632fb 8342 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8343 do_div(cfs_period_us, NSEC_PER_USEC);
8344
8345 return cfs_period_us;
8346}
8347
182446d0
TH
8348static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8349 struct cftype *cft)
ab84d31e 8350{
182446d0 8351 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
8352}
8353
182446d0
TH
8354static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8355 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 8356{
182446d0 8357 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
8358}
8359
182446d0
TH
8360static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8361 struct cftype *cft)
ab84d31e 8362{
182446d0 8363 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
8364}
8365
182446d0
TH
8366static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8367 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 8368{
182446d0 8369 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
8370}
8371
a790de99
PT
8372struct cfs_schedulable_data {
8373 struct task_group *tg;
8374 u64 period, quota;
8375};
8376
8377/*
8378 * normalize group quota/period to be quota/max_period
8379 * note: units are usecs
8380 */
8381static u64 normalize_cfs_quota(struct task_group *tg,
8382 struct cfs_schedulable_data *d)
8383{
8384 u64 quota, period;
8385
8386 if (tg == d->tg) {
8387 period = d->period;
8388 quota = d->quota;
8389 } else {
8390 period = tg_get_cfs_period(tg);
8391 quota = tg_get_cfs_quota(tg);
8392 }
8393
8394 /* note: these should typically be equivalent */
8395 if (quota == RUNTIME_INF || quota == -1)
8396 return RUNTIME_INF;
8397
8398 return to_ratio(period, quota);
8399}
8400
8401static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8402{
8403 struct cfs_schedulable_data *d = data;
029632fb 8404 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
8405 s64 quota = 0, parent_quota = -1;
8406
8407 if (!tg->parent) {
8408 quota = RUNTIME_INF;
8409 } else {
029632fb 8410 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
8411
8412 quota = normalize_cfs_quota(tg, d);
9c58c79a 8413 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
8414
8415 /*
8416 * ensure max(child_quota) <= parent_quota, inherit when no
8417 * limit is set
8418 */
8419 if (quota == RUNTIME_INF)
8420 quota = parent_quota;
8421 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8422 return -EINVAL;
8423 }
9c58c79a 8424 cfs_b->hierarchical_quota = quota;
a790de99
PT
8425
8426 return 0;
8427}
8428
8429static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8430{
8277434e 8431 int ret;
a790de99
PT
8432 struct cfs_schedulable_data data = {
8433 .tg = tg,
8434 .period = period,
8435 .quota = quota,
8436 };
8437
8438 if (quota != RUNTIME_INF) {
8439 do_div(data.period, NSEC_PER_USEC);
8440 do_div(data.quota, NSEC_PER_USEC);
8441 }
8442
8277434e
PT
8443 rcu_read_lock();
8444 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8445 rcu_read_unlock();
8446
8447 return ret;
a790de99 8448}
e8da1b18 8449
2da8ca82 8450static int cpu_stats_show(struct seq_file *sf, void *v)
e8da1b18 8451{
2da8ca82 8452 struct task_group *tg = css_tg(seq_css(sf));
029632fb 8453 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 8454
44ffc75b
TH
8455 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8456 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8457 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
8458
8459 return 0;
8460}
ab84d31e 8461#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 8462#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8463
052f1dc7 8464#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
8465static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8466 struct cftype *cft, s64 val)
6f505b16 8467{
182446d0 8468 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
8469}
8470
182446d0
TH
8471static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8472 struct cftype *cft)
6f505b16 8473{
182446d0 8474 return sched_group_rt_runtime(css_tg(css));
6f505b16 8475}
d0b27fa7 8476
182446d0
TH
8477static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8478 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 8479{
182446d0 8480 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
8481}
8482
182446d0
TH
8483static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8484 struct cftype *cft)
d0b27fa7 8485{
182446d0 8486 return sched_group_rt_period(css_tg(css));
d0b27fa7 8487}
6d6bc0ad 8488#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8489
fe5c7cc2 8490static struct cftype cpu_files[] = {
052f1dc7 8491#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8492 {
8493 .name = "shares",
f4c753b7
PM
8494 .read_u64 = cpu_shares_read_u64,
8495 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8496 },
052f1dc7 8497#endif
ab84d31e
PT
8498#ifdef CONFIG_CFS_BANDWIDTH
8499 {
8500 .name = "cfs_quota_us",
8501 .read_s64 = cpu_cfs_quota_read_s64,
8502 .write_s64 = cpu_cfs_quota_write_s64,
8503 },
8504 {
8505 .name = "cfs_period_us",
8506 .read_u64 = cpu_cfs_period_read_u64,
8507 .write_u64 = cpu_cfs_period_write_u64,
8508 },
e8da1b18
NR
8509 {
8510 .name = "stat",
2da8ca82 8511 .seq_show = cpu_stats_show,
e8da1b18 8512 },
ab84d31e 8513#endif
052f1dc7 8514#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8515 {
9f0c1e56 8516 .name = "rt_runtime_us",
06ecb27c
PM
8517 .read_s64 = cpu_rt_runtime_read,
8518 .write_s64 = cpu_rt_runtime_write,
6f505b16 8519 },
d0b27fa7
PZ
8520 {
8521 .name = "rt_period_us",
f4c753b7
PM
8522 .read_u64 = cpu_rt_period_read_uint,
8523 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8524 },
052f1dc7 8525#endif
4baf6e33 8526 { } /* terminate */
68318b8e
SV
8527};
8528
073219e9 8529struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748
TH
8530 .css_alloc = cpu_cgroup_css_alloc,
8531 .css_free = cpu_cgroup_css_free,
ace783b9
LZ
8532 .css_online = cpu_cgroup_css_online,
8533 .css_offline = cpu_cgroup_css_offline,
eeb61e53 8534 .fork = cpu_cgroup_fork,
bb9d97b6
TH
8535 .can_attach = cpu_cgroup_can_attach,
8536 .attach = cpu_cgroup_attach,
068c5cc5 8537 .exit = cpu_cgroup_exit,
5577964e 8538 .legacy_cftypes = cpu_files,
68318b8e
SV
8539 .early_init = 1,
8540};
8541
052f1dc7 8542#endif /* CONFIG_CGROUP_SCHED */
d842de87 8543
b637a328
PM
8544void dump_cpu_task(int cpu)
8545{
8546 pr_info("Task dump for CPU %d:\n", cpu);
8547 sched_show_task(cpu_curr(cpu));
8548}