]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/sched/core.c
sched/core: Add rq->lock wrappers
[mirror_ubuntu-artful-kernel.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4 3 *
d1ccc66d 4 * Core kernel scheduler code and related syscalls
1da177e4
LT
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
1da177e4 7 */
004172bd 8#include <linux/sched.h>
e6017571 9#include <linux/sched/clock.h>
ae7e81c0 10#include <uapi/linux/sched/types.h>
4f17722c 11#include <linux/sched/loadavg.h>
ef8bd77f 12#include <linux/sched/hotplug.h>
1da177e4 13#include <linux/cpuset.h>
0ff92245 14#include <linux/delayacct.h>
f1c6f1a7 15#include <linux/init_task.h>
91d1aa43 16#include <linux/context_tracking.h>
f9411ebe 17#include <linux/rcupdate_wait.h>
004172bd
IM
18
19#include <linux/blkdev.h>
20#include <linux/kprobes.h>
21#include <linux/mmu_context.h>
22#include <linux/module.h>
23#include <linux/nmi.h>
6075620b 24#include <linux/prefetch.h>
004172bd
IM
25#include <linux/profile.h>
26#include <linux/security.h>
27#include <linux/syscalls.h>
1da177e4 28
96f951ed 29#include <asm/switch_to.h>
5517d86b 30#include <asm/tlb.h>
fd4a61e0
MB
31#ifdef CONFIG_PARAVIRT
32#include <asm/paravirt.h>
33#endif
1da177e4 34
029632fb 35#include "sched.h"
ea138446 36#include "../workqueue_internal.h"
29d5e047 37#include "../smpboot.h"
6e0534f2 38
a8d154b0 39#define CREATE_TRACE_POINTS
ad8d75ff 40#include <trace/events/sched.h>
a8d154b0 41
029632fb 42DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 43
bf5c91ba
IM
44/*
45 * Debugging: various feature bits
46 */
f00b45c1 47
f00b45c1
PZ
48#define SCHED_FEAT(name, enabled) \
49 (1UL << __SCHED_FEAT_##name) * enabled |
50
bf5c91ba 51const_debug unsigned int sysctl_sched_features =
391e43da 52#include "features.h"
f00b45c1
PZ
53 0;
54
55#undef SCHED_FEAT
56
b82d9fdd
PZ
57/*
58 * Number of tasks to iterate in a single balance run.
59 * Limited because this is done with IRQs disabled.
60 */
61const_debug unsigned int sysctl_sched_nr_migrate = 32;
62
e9e9250b
PZ
63/*
64 * period over which we average the RT time consumption, measured
65 * in ms.
66 *
67 * default: 1s
68 */
69const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
70
fa85ae24 71/*
d1ccc66d 72 * period over which we measure -rt task CPU usage in us.
fa85ae24
PZ
73 * default: 1s
74 */
9f0c1e56 75unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 76
029632fb 77__read_mostly int scheduler_running;
6892b75e 78
9f0c1e56
PZ
79/*
80 * part of the period that we allow rt tasks to run in us.
81 * default: 0.95s
82 */
83int sysctl_sched_rt_runtime = 950000;
fa85ae24 84
d1ccc66d 85/* CPUs with isolated domains */
3fa0818b
RR
86cpumask_var_t cpu_isolated_map;
87
3e71a462
PZ
88/*
89 * __task_rq_lock - lock the rq @p resides on.
90 */
eb580751 91struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
92 __acquires(rq->lock)
93{
94 struct rq *rq;
95
96 lockdep_assert_held(&p->pi_lock);
97
98 for (;;) {
99 rq = task_rq(p);
100 raw_spin_lock(&rq->lock);
101 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 102 rq_pin_lock(rq, rf);
3e71a462
PZ
103 return rq;
104 }
105 raw_spin_unlock(&rq->lock);
106
107 while (unlikely(task_on_rq_migrating(p)))
108 cpu_relax();
109 }
110}
111
112/*
113 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
114 */
eb580751 115struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
116 __acquires(p->pi_lock)
117 __acquires(rq->lock)
118{
119 struct rq *rq;
120
121 for (;;) {
eb580751 122 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
3e71a462
PZ
123 rq = task_rq(p);
124 raw_spin_lock(&rq->lock);
125 /*
126 * move_queued_task() task_rq_lock()
127 *
128 * ACQUIRE (rq->lock)
129 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
130 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
131 * [S] ->cpu = new_cpu [L] task_rq()
132 * [L] ->on_rq
133 * RELEASE (rq->lock)
134 *
135 * If we observe the old cpu in task_rq_lock, the acquire of
136 * the old rq->lock will fully serialize against the stores.
137 *
d1ccc66d 138 * If we observe the new CPU in task_rq_lock, the acquire will
3e71a462
PZ
139 * pair with the WMB to ensure we must then also see migrating.
140 */
141 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 142 rq_pin_lock(rq, rf);
3e71a462
PZ
143 return rq;
144 }
145 raw_spin_unlock(&rq->lock);
eb580751 146 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
3e71a462
PZ
147
148 while (unlikely(task_on_rq_migrating(p)))
149 cpu_relax();
150 }
151}
152
535b9552
IM
153/*
154 * RQ-clock updating methods:
155 */
156
157static void update_rq_clock_task(struct rq *rq, s64 delta)
158{
159/*
160 * In theory, the compile should just see 0 here, and optimize out the call
161 * to sched_rt_avg_update. But I don't trust it...
162 */
163#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
164 s64 steal = 0, irq_delta = 0;
165#endif
166#ifdef CONFIG_IRQ_TIME_ACCOUNTING
167 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
168
169 /*
170 * Since irq_time is only updated on {soft,}irq_exit, we might run into
171 * this case when a previous update_rq_clock() happened inside a
172 * {soft,}irq region.
173 *
174 * When this happens, we stop ->clock_task and only update the
175 * prev_irq_time stamp to account for the part that fit, so that a next
176 * update will consume the rest. This ensures ->clock_task is
177 * monotonic.
178 *
179 * It does however cause some slight miss-attribution of {soft,}irq
180 * time, a more accurate solution would be to update the irq_time using
181 * the current rq->clock timestamp, except that would require using
182 * atomic ops.
183 */
184 if (irq_delta > delta)
185 irq_delta = delta;
186
187 rq->prev_irq_time += irq_delta;
188 delta -= irq_delta;
189#endif
190#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
191 if (static_key_false((&paravirt_steal_rq_enabled))) {
192 steal = paravirt_steal_clock(cpu_of(rq));
193 steal -= rq->prev_steal_time_rq;
194
195 if (unlikely(steal > delta))
196 steal = delta;
197
198 rq->prev_steal_time_rq += steal;
199 delta -= steal;
200 }
201#endif
202
203 rq->clock_task += delta;
204
205#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
206 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
207 sched_rt_avg_update(rq, irq_delta + steal);
208#endif
209}
210
211void update_rq_clock(struct rq *rq)
212{
213 s64 delta;
214
215 lockdep_assert_held(&rq->lock);
216
217 if (rq->clock_update_flags & RQCF_ACT_SKIP)
218 return;
219
220#ifdef CONFIG_SCHED_DEBUG
26ae58d2
PZ
221 if (sched_feat(WARN_DOUBLE_CLOCK))
222 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
535b9552
IM
223 rq->clock_update_flags |= RQCF_UPDATED;
224#endif
26ae58d2 225
535b9552
IM
226 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
227 if (delta < 0)
228 return;
229 rq->clock += delta;
230 update_rq_clock_task(rq, delta);
231}
232
233
8f4d37ec
PZ
234#ifdef CONFIG_SCHED_HRTICK
235/*
236 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 237 */
8f4d37ec 238
8f4d37ec
PZ
239static void hrtick_clear(struct rq *rq)
240{
241 if (hrtimer_active(&rq->hrtick_timer))
242 hrtimer_cancel(&rq->hrtick_timer);
243}
244
8f4d37ec
PZ
245/*
246 * High-resolution timer tick.
247 * Runs from hardirq context with interrupts disabled.
248 */
249static enum hrtimer_restart hrtick(struct hrtimer *timer)
250{
251 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
8a8c69c3 252 struct rq_flags rf;
8f4d37ec
PZ
253
254 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
255
8a8c69c3 256 rq_lock(rq, &rf);
3e51f33f 257 update_rq_clock(rq);
8f4d37ec 258 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
8a8c69c3 259 rq_unlock(rq, &rf);
8f4d37ec
PZ
260
261 return HRTIMER_NORESTART;
262}
263
95e904c7 264#ifdef CONFIG_SMP
971ee28c 265
4961b6e1 266static void __hrtick_restart(struct rq *rq)
971ee28c
PZ
267{
268 struct hrtimer *timer = &rq->hrtick_timer;
971ee28c 269
4961b6e1 270 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
971ee28c
PZ
271}
272
31656519
PZ
273/*
274 * called from hardirq (IPI) context
275 */
276static void __hrtick_start(void *arg)
b328ca18 277{
31656519 278 struct rq *rq = arg;
8a8c69c3 279 struct rq_flags rf;
b328ca18 280
8a8c69c3 281 rq_lock(rq, &rf);
971ee28c 282 __hrtick_restart(rq);
31656519 283 rq->hrtick_csd_pending = 0;
8a8c69c3 284 rq_unlock(rq, &rf);
b328ca18
PZ
285}
286
31656519
PZ
287/*
288 * Called to set the hrtick timer state.
289 *
290 * called with rq->lock held and irqs disabled
291 */
029632fb 292void hrtick_start(struct rq *rq, u64 delay)
b328ca18 293{
31656519 294 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 295 ktime_t time;
296 s64 delta;
297
298 /*
299 * Don't schedule slices shorter than 10000ns, that just
300 * doesn't make sense and can cause timer DoS.
301 */
302 delta = max_t(s64, delay, 10000LL);
303 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 304
cc584b21 305 hrtimer_set_expires(timer, time);
31656519
PZ
306
307 if (rq == this_rq()) {
971ee28c 308 __hrtick_restart(rq);
31656519 309 } else if (!rq->hrtick_csd_pending) {
c46fff2a 310 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
311 rq->hrtick_csd_pending = 1;
312 }
b328ca18
PZ
313}
314
31656519
PZ
315#else
316/*
317 * Called to set the hrtick timer state.
318 *
319 * called with rq->lock held and irqs disabled
320 */
029632fb 321void hrtick_start(struct rq *rq, u64 delay)
31656519 322{
86893335
WL
323 /*
324 * Don't schedule slices shorter than 10000ns, that just
325 * doesn't make sense. Rely on vruntime for fairness.
326 */
327 delay = max_t(u64, delay, 10000LL);
4961b6e1
TG
328 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
329 HRTIMER_MODE_REL_PINNED);
31656519 330}
31656519 331#endif /* CONFIG_SMP */
8f4d37ec 332
31656519 333static void init_rq_hrtick(struct rq *rq)
8f4d37ec 334{
31656519
PZ
335#ifdef CONFIG_SMP
336 rq->hrtick_csd_pending = 0;
8f4d37ec 337
31656519
PZ
338 rq->hrtick_csd.flags = 0;
339 rq->hrtick_csd.func = __hrtick_start;
340 rq->hrtick_csd.info = rq;
341#endif
8f4d37ec 342
31656519
PZ
343 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
344 rq->hrtick_timer.function = hrtick;
8f4d37ec 345}
006c75f1 346#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
347static inline void hrtick_clear(struct rq *rq)
348{
349}
350
8f4d37ec
PZ
351static inline void init_rq_hrtick(struct rq *rq)
352{
353}
006c75f1 354#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 355
5529578a
FW
356/*
357 * cmpxchg based fetch_or, macro so it works for different integer types
358 */
359#define fetch_or(ptr, mask) \
360 ({ \
361 typeof(ptr) _ptr = (ptr); \
362 typeof(mask) _mask = (mask); \
363 typeof(*_ptr) _old, _val = *_ptr; \
364 \
365 for (;;) { \
366 _old = cmpxchg(_ptr, _val, _val | _mask); \
367 if (_old == _val) \
368 break; \
369 _val = _old; \
370 } \
371 _old; \
372})
373
e3baac47 374#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
375/*
376 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
377 * this avoids any races wrt polling state changes and thereby avoids
378 * spurious IPIs.
379 */
380static bool set_nr_and_not_polling(struct task_struct *p)
381{
382 struct thread_info *ti = task_thread_info(p);
383 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
384}
e3baac47
PZ
385
386/*
387 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
388 *
389 * If this returns true, then the idle task promises to call
390 * sched_ttwu_pending() and reschedule soon.
391 */
392static bool set_nr_if_polling(struct task_struct *p)
393{
394 struct thread_info *ti = task_thread_info(p);
316c1608 395 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
e3baac47
PZ
396
397 for (;;) {
398 if (!(val & _TIF_POLLING_NRFLAG))
399 return false;
400 if (val & _TIF_NEED_RESCHED)
401 return true;
402 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
403 if (old == val)
404 break;
405 val = old;
406 }
407 return true;
408}
409
fd99f91a
PZ
410#else
411static bool set_nr_and_not_polling(struct task_struct *p)
412{
413 set_tsk_need_resched(p);
414 return true;
415}
e3baac47
PZ
416
417#ifdef CONFIG_SMP
418static bool set_nr_if_polling(struct task_struct *p)
419{
420 return false;
421}
422#endif
fd99f91a
PZ
423#endif
424
76751049
PZ
425void wake_q_add(struct wake_q_head *head, struct task_struct *task)
426{
427 struct wake_q_node *node = &task->wake_q;
428
429 /*
430 * Atomically grab the task, if ->wake_q is !nil already it means
431 * its already queued (either by us or someone else) and will get the
432 * wakeup due to that.
433 *
434 * This cmpxchg() implies a full barrier, which pairs with the write
58fe9c46 435 * barrier implied by the wakeup in wake_up_q().
76751049
PZ
436 */
437 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
438 return;
439
440 get_task_struct(task);
441
442 /*
443 * The head is context local, there can be no concurrency.
444 */
445 *head->lastp = node;
446 head->lastp = &node->next;
447}
448
449void wake_up_q(struct wake_q_head *head)
450{
451 struct wake_q_node *node = head->first;
452
453 while (node != WAKE_Q_TAIL) {
454 struct task_struct *task;
455
456 task = container_of(node, struct task_struct, wake_q);
457 BUG_ON(!task);
d1ccc66d 458 /* Task can safely be re-inserted now: */
76751049
PZ
459 node = node->next;
460 task->wake_q.next = NULL;
461
462 /*
463 * wake_up_process() implies a wmb() to pair with the queueing
464 * in wake_q_add() so as not to miss wakeups.
465 */
466 wake_up_process(task);
467 put_task_struct(task);
468 }
469}
470
c24d20db 471/*
8875125e 472 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
473 *
474 * On UP this means the setting of the need_resched flag, on SMP it
475 * might also involve a cross-CPU call to trigger the scheduler on
476 * the target CPU.
477 */
8875125e 478void resched_curr(struct rq *rq)
c24d20db 479{
8875125e 480 struct task_struct *curr = rq->curr;
c24d20db
IM
481 int cpu;
482
8875125e 483 lockdep_assert_held(&rq->lock);
c24d20db 484
8875125e 485 if (test_tsk_need_resched(curr))
c24d20db
IM
486 return;
487
8875125e 488 cpu = cpu_of(rq);
fd99f91a 489
f27dde8d 490 if (cpu == smp_processor_id()) {
8875125e 491 set_tsk_need_resched(curr);
f27dde8d 492 set_preempt_need_resched();
c24d20db 493 return;
f27dde8d 494 }
c24d20db 495
8875125e 496 if (set_nr_and_not_polling(curr))
c24d20db 497 smp_send_reschedule(cpu);
dfc68f29
AL
498 else
499 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
500}
501
029632fb 502void resched_cpu(int cpu)
c24d20db
IM
503{
504 struct rq *rq = cpu_rq(cpu);
505 unsigned long flags;
506
05fa785c 507 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db 508 return;
8875125e 509 resched_curr(rq);
05fa785c 510 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 511}
06d8308c 512
b021fe3e 513#ifdef CONFIG_SMP
3451d024 514#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2 515/*
d1ccc66d
IM
516 * In the semi idle case, use the nearest busy CPU for migrating timers
517 * from an idle CPU. This is good for power-savings.
83cd4fe2
VP
518 *
519 * We don't do similar optimization for completely idle system, as
d1ccc66d
IM
520 * selecting an idle CPU will add more delays to the timers than intended
521 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
83cd4fe2 522 */
bc7a34b8 523int get_nohz_timer_target(void)
83cd4fe2 524{
bc7a34b8 525 int i, cpu = smp_processor_id();
83cd4fe2
VP
526 struct sched_domain *sd;
527
9642d18e 528 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
6201b4d6
VK
529 return cpu;
530
057f3fad 531 rcu_read_lock();
83cd4fe2 532 for_each_domain(cpu, sd) {
057f3fad 533 for_each_cpu(i, sched_domain_span(sd)) {
44496922
WL
534 if (cpu == i)
535 continue;
536
537 if (!idle_cpu(i) && is_housekeeping_cpu(i)) {
057f3fad
PZ
538 cpu = i;
539 goto unlock;
540 }
541 }
83cd4fe2 542 }
9642d18e
VH
543
544 if (!is_housekeeping_cpu(cpu))
545 cpu = housekeeping_any_cpu();
057f3fad
PZ
546unlock:
547 rcu_read_unlock();
83cd4fe2
VP
548 return cpu;
549}
d1ccc66d 550
06d8308c
TG
551/*
552 * When add_timer_on() enqueues a timer into the timer wheel of an
553 * idle CPU then this timer might expire before the next timer event
554 * which is scheduled to wake up that CPU. In case of a completely
555 * idle system the next event might even be infinite time into the
556 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
557 * leaves the inner idle loop so the newly added timer is taken into
558 * account when the CPU goes back to idle and evaluates the timer
559 * wheel for the next timer event.
560 */
1c20091e 561static void wake_up_idle_cpu(int cpu)
06d8308c
TG
562{
563 struct rq *rq = cpu_rq(cpu);
564
565 if (cpu == smp_processor_id())
566 return;
567
67b9ca70 568 if (set_nr_and_not_polling(rq->idle))
06d8308c 569 smp_send_reschedule(cpu);
dfc68f29
AL
570 else
571 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
572}
573
c5bfece2 574static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 575{
53c5fa16
FW
576 /*
577 * We just need the target to call irq_exit() and re-evaluate
578 * the next tick. The nohz full kick at least implies that.
579 * If needed we can still optimize that later with an
580 * empty IRQ.
581 */
379d9ecb
PM
582 if (cpu_is_offline(cpu))
583 return true; /* Don't try to wake offline CPUs. */
c5bfece2 584 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
585 if (cpu != smp_processor_id() ||
586 tick_nohz_tick_stopped())
53c5fa16 587 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
588 return true;
589 }
590
591 return false;
592}
593
379d9ecb
PM
594/*
595 * Wake up the specified CPU. If the CPU is going offline, it is the
596 * caller's responsibility to deal with the lost wakeup, for example,
597 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
598 */
1c20091e
FW
599void wake_up_nohz_cpu(int cpu)
600{
c5bfece2 601 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
602 wake_up_idle_cpu(cpu);
603}
604
ca38062e 605static inline bool got_nohz_idle_kick(void)
45bf76df 606{
1c792db7 607 int cpu = smp_processor_id();
873b4c65
VG
608
609 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
610 return false;
611
612 if (idle_cpu(cpu) && !need_resched())
613 return true;
614
615 /*
616 * We can't run Idle Load Balance on this CPU for this time so we
617 * cancel it and clear NOHZ_BALANCE_KICK
618 */
619 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
620 return false;
45bf76df
IM
621}
622
3451d024 623#else /* CONFIG_NO_HZ_COMMON */
45bf76df 624
ca38062e 625static inline bool got_nohz_idle_kick(void)
2069dd75 626{
ca38062e 627 return false;
2069dd75
PZ
628}
629
3451d024 630#endif /* CONFIG_NO_HZ_COMMON */
d842de87 631
ce831b38 632#ifdef CONFIG_NO_HZ_FULL
76d92ac3 633bool sched_can_stop_tick(struct rq *rq)
ce831b38 634{
76d92ac3
FW
635 int fifo_nr_running;
636
637 /* Deadline tasks, even if single, need the tick */
638 if (rq->dl.dl_nr_running)
639 return false;
640
1e78cdbd 641 /*
2548d546
PZ
642 * If there are more than one RR tasks, we need the tick to effect the
643 * actual RR behaviour.
1e78cdbd 644 */
76d92ac3
FW
645 if (rq->rt.rr_nr_running) {
646 if (rq->rt.rr_nr_running == 1)
647 return true;
648 else
649 return false;
1e78cdbd
RR
650 }
651
2548d546
PZ
652 /*
653 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
654 * forced preemption between FIFO tasks.
655 */
656 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
657 if (fifo_nr_running)
658 return true;
659
660 /*
661 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
662 * if there's more than one we need the tick for involuntary
663 * preemption.
664 */
665 if (rq->nr_running > 1)
541b8264 666 return false;
ce831b38 667
541b8264 668 return true;
ce831b38
FW
669}
670#endif /* CONFIG_NO_HZ_FULL */
d842de87 671
029632fb 672void sched_avg_update(struct rq *rq)
18d95a28 673{
e9e9250b
PZ
674 s64 period = sched_avg_period();
675
78becc27 676 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
677 /*
678 * Inline assembly required to prevent the compiler
679 * optimising this loop into a divmod call.
680 * See __iter_div_u64_rem() for another example of this.
681 */
682 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
683 rq->age_stamp += period;
684 rq->rt_avg /= 2;
685 }
18d95a28
PZ
686}
687
6d6bc0ad 688#endif /* CONFIG_SMP */
18d95a28 689
a790de99
PT
690#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
691 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 692/*
8277434e
PT
693 * Iterate task_group tree rooted at *from, calling @down when first entering a
694 * node and @up when leaving it for the final time.
695 *
696 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 697 */
029632fb 698int walk_tg_tree_from(struct task_group *from,
8277434e 699 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
700{
701 struct task_group *parent, *child;
eb755805 702 int ret;
c09595f6 703
8277434e
PT
704 parent = from;
705
c09595f6 706down:
eb755805
PZ
707 ret = (*down)(parent, data);
708 if (ret)
8277434e 709 goto out;
c09595f6
PZ
710 list_for_each_entry_rcu(child, &parent->children, siblings) {
711 parent = child;
712 goto down;
713
714up:
715 continue;
716 }
eb755805 717 ret = (*up)(parent, data);
8277434e
PT
718 if (ret || parent == from)
719 goto out;
c09595f6
PZ
720
721 child = parent;
722 parent = parent->parent;
723 if (parent)
724 goto up;
8277434e 725out:
eb755805 726 return ret;
c09595f6
PZ
727}
728
029632fb 729int tg_nop(struct task_group *tg, void *data)
eb755805 730{
e2b245f8 731 return 0;
eb755805 732}
18d95a28
PZ
733#endif
734
45bf76df
IM
735static void set_load_weight(struct task_struct *p)
736{
f05998d4
NR
737 int prio = p->static_prio - MAX_RT_PRIO;
738 struct load_weight *load = &p->se.load;
739
dd41f596
IM
740 /*
741 * SCHED_IDLE tasks get minimal weight:
742 */
20f9cd2a 743 if (idle_policy(p->policy)) {
c8b28116 744 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 745 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
746 return;
747 }
71f8bd46 748
ed82b8a1
AK
749 load->weight = scale_load(sched_prio_to_weight[prio]);
750 load->inv_weight = sched_prio_to_wmult[prio];
71f8bd46
IM
751}
752
1de64443 753static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 754{
a64692a3 755 update_rq_clock(rq);
1de64443
PZ
756 if (!(flags & ENQUEUE_RESTORE))
757 sched_info_queued(rq, p);
371fd7e7 758 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
759}
760
1de64443 761static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 762{
a64692a3 763 update_rq_clock(rq);
1de64443
PZ
764 if (!(flags & DEQUEUE_SAVE))
765 sched_info_dequeued(rq, p);
371fd7e7 766 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
767}
768
029632fb 769void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
770{
771 if (task_contributes_to_load(p))
772 rq->nr_uninterruptible--;
773
371fd7e7 774 enqueue_task(rq, p, flags);
1e3c88bd
PZ
775}
776
029632fb 777void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
778{
779 if (task_contributes_to_load(p))
780 rq->nr_uninterruptible++;
781
371fd7e7 782 dequeue_task(rq, p, flags);
1e3c88bd
PZ
783}
784
34f971f6
PZ
785void sched_set_stop_task(int cpu, struct task_struct *stop)
786{
787 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
788 struct task_struct *old_stop = cpu_rq(cpu)->stop;
789
790 if (stop) {
791 /*
792 * Make it appear like a SCHED_FIFO task, its something
793 * userspace knows about and won't get confused about.
794 *
795 * Also, it will make PI more or less work without too
796 * much confusion -- but then, stop work should not
797 * rely on PI working anyway.
798 */
799 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
800
801 stop->sched_class = &stop_sched_class;
802 }
803
804 cpu_rq(cpu)->stop = stop;
805
806 if (old_stop) {
807 /*
808 * Reset it back to a normal scheduling class so that
809 * it can die in pieces.
810 */
811 old_stop->sched_class = &rt_sched_class;
812 }
813}
814
14531189 815/*
dd41f596 816 * __normal_prio - return the priority that is based on the static prio
14531189 817 */
14531189
IM
818static inline int __normal_prio(struct task_struct *p)
819{
dd41f596 820 return p->static_prio;
14531189
IM
821}
822
b29739f9
IM
823/*
824 * Calculate the expected normal priority: i.e. priority
825 * without taking RT-inheritance into account. Might be
826 * boosted by interactivity modifiers. Changes upon fork,
827 * setprio syscalls, and whenever the interactivity
828 * estimator recalculates.
829 */
36c8b586 830static inline int normal_prio(struct task_struct *p)
b29739f9
IM
831{
832 int prio;
833
aab03e05
DF
834 if (task_has_dl_policy(p))
835 prio = MAX_DL_PRIO-1;
836 else if (task_has_rt_policy(p))
b29739f9
IM
837 prio = MAX_RT_PRIO-1 - p->rt_priority;
838 else
839 prio = __normal_prio(p);
840 return prio;
841}
842
843/*
844 * Calculate the current priority, i.e. the priority
845 * taken into account by the scheduler. This value might
846 * be boosted by RT tasks, or might be boosted by
847 * interactivity modifiers. Will be RT if the task got
848 * RT-boosted. If not then it returns p->normal_prio.
849 */
36c8b586 850static int effective_prio(struct task_struct *p)
b29739f9
IM
851{
852 p->normal_prio = normal_prio(p);
853 /*
854 * If we are RT tasks or we were boosted to RT priority,
855 * keep the priority unchanged. Otherwise, update priority
856 * to the normal priority:
857 */
858 if (!rt_prio(p->prio))
859 return p->normal_prio;
860 return p->prio;
861}
862
1da177e4
LT
863/**
864 * task_curr - is this task currently executing on a CPU?
865 * @p: the task in question.
e69f6186
YB
866 *
867 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 868 */
36c8b586 869inline int task_curr(const struct task_struct *p)
1da177e4
LT
870{
871 return cpu_curr(task_cpu(p)) == p;
872}
873
67dfa1b7 874/*
4c9a4bc8
PZ
875 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
876 * use the balance_callback list if you want balancing.
877 *
878 * this means any call to check_class_changed() must be followed by a call to
879 * balance_callback().
67dfa1b7 880 */
cb469845
SR
881static inline void check_class_changed(struct rq *rq, struct task_struct *p,
882 const struct sched_class *prev_class,
da7a735e 883 int oldprio)
cb469845
SR
884{
885 if (prev_class != p->sched_class) {
886 if (prev_class->switched_from)
da7a735e 887 prev_class->switched_from(rq, p);
4c9a4bc8 888
da7a735e 889 p->sched_class->switched_to(rq, p);
2d3d891d 890 } else if (oldprio != p->prio || dl_task(p))
da7a735e 891 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
892}
893
029632fb 894void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
895{
896 const struct sched_class *class;
897
898 if (p->sched_class == rq->curr->sched_class) {
899 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
900 } else {
901 for_each_class(class) {
902 if (class == rq->curr->sched_class)
903 break;
904 if (class == p->sched_class) {
8875125e 905 resched_curr(rq);
1e5a7405
PZ
906 break;
907 }
908 }
909 }
910
911 /*
912 * A queue event has occurred, and we're going to schedule. In
913 * this case, we can save a useless back to back clock update.
914 */
da0c1e65 915 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
9edfbfed 916 rq_clock_skip_update(rq, true);
1e5a7405
PZ
917}
918
1da177e4 919#ifdef CONFIG_SMP
5cc389bc
PZ
920/*
921 * This is how migration works:
922 *
923 * 1) we invoke migration_cpu_stop() on the target CPU using
924 * stop_one_cpu().
925 * 2) stopper starts to run (implicitly forcing the migrated thread
926 * off the CPU)
927 * 3) it checks whether the migrated task is still in the wrong runqueue.
928 * 4) if it's in the wrong runqueue then the migration thread removes
929 * it and puts it into the right queue.
930 * 5) stopper completes and stop_one_cpu() returns and the migration
931 * is done.
932 */
933
934/*
935 * move_queued_task - move a queued task to new rq.
936 *
937 * Returns (locked) new rq. Old rq's lock is released.
938 */
8a8c69c3
PZ
939static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
940 struct task_struct *p, int new_cpu)
5cc389bc 941{
5cc389bc
PZ
942 lockdep_assert_held(&rq->lock);
943
5cc389bc 944 p->on_rq = TASK_ON_RQ_MIGRATING;
3ea94de1 945 dequeue_task(rq, p, 0);
5cc389bc 946 set_task_cpu(p, new_cpu);
8a8c69c3 947 rq_unlock(rq, rf);
5cc389bc
PZ
948
949 rq = cpu_rq(new_cpu);
950
8a8c69c3 951 rq_lock(rq, rf);
5cc389bc 952 BUG_ON(task_cpu(p) != new_cpu);
5cc389bc 953 enqueue_task(rq, p, 0);
3ea94de1 954 p->on_rq = TASK_ON_RQ_QUEUED;
5cc389bc
PZ
955 check_preempt_curr(rq, p, 0);
956
957 return rq;
958}
959
960struct migration_arg {
961 struct task_struct *task;
962 int dest_cpu;
963};
964
965/*
d1ccc66d 966 * Move (not current) task off this CPU, onto the destination CPU. We're doing
5cc389bc
PZ
967 * this because either it can't run here any more (set_cpus_allowed()
968 * away from this CPU, or CPU going down), or because we're
969 * attempting to rebalance this task on exec (sched_exec).
970 *
971 * So we race with normal scheduler movements, but that's OK, as long
972 * as the task is no longer on this CPU.
5cc389bc 973 */
8a8c69c3
PZ
974static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
975 struct task_struct *p, int dest_cpu)
5cc389bc 976{
5cc389bc 977 if (unlikely(!cpu_active(dest_cpu)))
5e16bbc2 978 return rq;
5cc389bc
PZ
979
980 /* Affinity changed (again). */
0c98d344 981 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
5e16bbc2 982 return rq;
5cc389bc 983
8a8c69c3 984 rq = move_queued_task(rq, rf, p, dest_cpu);
5e16bbc2
PZ
985
986 return rq;
5cc389bc
PZ
987}
988
989/*
990 * migration_cpu_stop - this will be executed by a highprio stopper thread
991 * and performs thread migration by bumping thread off CPU then
992 * 'pushing' onto another runqueue.
993 */
994static int migration_cpu_stop(void *data)
995{
996 struct migration_arg *arg = data;
5e16bbc2
PZ
997 struct task_struct *p = arg->task;
998 struct rq *rq = this_rq();
8a8c69c3 999 struct rq_flags rf;
5cc389bc
PZ
1000
1001 /*
d1ccc66d
IM
1002 * The original target CPU might have gone down and we might
1003 * be on another CPU but it doesn't matter.
5cc389bc
PZ
1004 */
1005 local_irq_disable();
1006 /*
1007 * We need to explicitly wake pending tasks before running
1008 * __migrate_task() such that we will not miss enforcing cpus_allowed
1009 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1010 */
1011 sched_ttwu_pending();
5e16bbc2
PZ
1012
1013 raw_spin_lock(&p->pi_lock);
8a8c69c3 1014 rq_lock(rq, &rf);
5e16bbc2
PZ
1015 /*
1016 * If task_rq(p) != rq, it cannot be migrated here, because we're
1017 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1018 * we're holding p->pi_lock.
1019 */
bf89a304
CC
1020 if (task_rq(p) == rq) {
1021 if (task_on_rq_queued(p))
8a8c69c3 1022 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
bf89a304
CC
1023 else
1024 p->wake_cpu = arg->dest_cpu;
1025 }
8a8c69c3 1026 rq_unlock(rq, &rf);
5e16bbc2
PZ
1027 raw_spin_unlock(&p->pi_lock);
1028
5cc389bc
PZ
1029 local_irq_enable();
1030 return 0;
1031}
1032
c5b28038
PZ
1033/*
1034 * sched_class::set_cpus_allowed must do the below, but is not required to
1035 * actually call this function.
1036 */
1037void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
5cc389bc 1038{
5cc389bc
PZ
1039 cpumask_copy(&p->cpus_allowed, new_mask);
1040 p->nr_cpus_allowed = cpumask_weight(new_mask);
1041}
1042
c5b28038
PZ
1043void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1044{
6c37067e
PZ
1045 struct rq *rq = task_rq(p);
1046 bool queued, running;
1047
c5b28038 1048 lockdep_assert_held(&p->pi_lock);
6c37067e
PZ
1049
1050 queued = task_on_rq_queued(p);
1051 running = task_current(rq, p);
1052
1053 if (queued) {
1054 /*
1055 * Because __kthread_bind() calls this on blocked tasks without
1056 * holding rq->lock.
1057 */
1058 lockdep_assert_held(&rq->lock);
1de64443 1059 dequeue_task(rq, p, DEQUEUE_SAVE);
6c37067e
PZ
1060 }
1061 if (running)
1062 put_prev_task(rq, p);
1063
c5b28038 1064 p->sched_class->set_cpus_allowed(p, new_mask);
6c37067e 1065
6c37067e 1066 if (queued)
1de64443 1067 enqueue_task(rq, p, ENQUEUE_RESTORE);
a399d233 1068 if (running)
b2bf6c31 1069 set_curr_task(rq, p);
c5b28038
PZ
1070}
1071
5cc389bc
PZ
1072/*
1073 * Change a given task's CPU affinity. Migrate the thread to a
1074 * proper CPU and schedule it away if the CPU it's executing on
1075 * is removed from the allowed bitmask.
1076 *
1077 * NOTE: the caller must have a valid reference to the task, the
1078 * task must not exit() & deallocate itself prematurely. The
1079 * call is not atomic; no spinlocks may be held.
1080 */
25834c73
PZ
1081static int __set_cpus_allowed_ptr(struct task_struct *p,
1082 const struct cpumask *new_mask, bool check)
5cc389bc 1083{
e9d867a6 1084 const struct cpumask *cpu_valid_mask = cpu_active_mask;
5cc389bc 1085 unsigned int dest_cpu;
eb580751
PZ
1086 struct rq_flags rf;
1087 struct rq *rq;
5cc389bc
PZ
1088 int ret = 0;
1089
eb580751 1090 rq = task_rq_lock(p, &rf);
a499c3ea 1091 update_rq_clock(rq);
5cc389bc 1092
e9d867a6
PZI
1093 if (p->flags & PF_KTHREAD) {
1094 /*
1095 * Kernel threads are allowed on online && !active CPUs
1096 */
1097 cpu_valid_mask = cpu_online_mask;
1098 }
1099
25834c73
PZ
1100 /*
1101 * Must re-check here, to close a race against __kthread_bind(),
1102 * sched_setaffinity() is not guaranteed to observe the flag.
1103 */
1104 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1105 ret = -EINVAL;
1106 goto out;
1107 }
1108
5cc389bc
PZ
1109 if (cpumask_equal(&p->cpus_allowed, new_mask))
1110 goto out;
1111
e9d867a6 1112 if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
5cc389bc
PZ
1113 ret = -EINVAL;
1114 goto out;
1115 }
1116
1117 do_set_cpus_allowed(p, new_mask);
1118
e9d867a6
PZI
1119 if (p->flags & PF_KTHREAD) {
1120 /*
1121 * For kernel threads that do indeed end up on online &&
d1ccc66d 1122 * !active we want to ensure they are strict per-CPU threads.
e9d867a6
PZI
1123 */
1124 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1125 !cpumask_intersects(new_mask, cpu_active_mask) &&
1126 p->nr_cpus_allowed != 1);
1127 }
1128
5cc389bc
PZ
1129 /* Can the task run on the task's current CPU? If so, we're done */
1130 if (cpumask_test_cpu(task_cpu(p), new_mask))
1131 goto out;
1132
e9d867a6 1133 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
5cc389bc
PZ
1134 if (task_running(rq, p) || p->state == TASK_WAKING) {
1135 struct migration_arg arg = { p, dest_cpu };
1136 /* Need help from migration thread: drop lock and wait. */
eb580751 1137 task_rq_unlock(rq, p, &rf);
5cc389bc
PZ
1138 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1139 tlb_migrate_finish(p->mm);
1140 return 0;
cbce1a68
PZ
1141 } else if (task_on_rq_queued(p)) {
1142 /*
1143 * OK, since we're going to drop the lock immediately
1144 * afterwards anyway.
1145 */
8a8c69c3 1146 rq = move_queued_task(rq, &rf, p, dest_cpu);
cbce1a68 1147 }
5cc389bc 1148out:
eb580751 1149 task_rq_unlock(rq, p, &rf);
5cc389bc
PZ
1150
1151 return ret;
1152}
25834c73
PZ
1153
1154int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1155{
1156 return __set_cpus_allowed_ptr(p, new_mask, false);
1157}
5cc389bc
PZ
1158EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1159
dd41f596 1160void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1161{
e2912009
PZ
1162#ifdef CONFIG_SCHED_DEBUG
1163 /*
1164 * We should never call set_task_cpu() on a blocked task,
1165 * ttwu() will sort out the placement.
1166 */
077614ee 1167 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
e2336f6e 1168 !p->on_rq);
0122ec5b 1169
3ea94de1
JP
1170 /*
1171 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1172 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1173 * time relying on p->on_rq.
1174 */
1175 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1176 p->sched_class == &fair_sched_class &&
1177 (p->on_rq && !task_on_rq_migrating(p)));
1178
0122ec5b 1179#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1180 /*
1181 * The caller should hold either p->pi_lock or rq->lock, when changing
1182 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1183 *
1184 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1185 * see task_group().
6c6c54e1
PZ
1186 *
1187 * Furthermore, all task_rq users should acquire both locks, see
1188 * task_rq_lock().
1189 */
0122ec5b
PZ
1190 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1191 lockdep_is_held(&task_rq(p)->lock)));
1192#endif
e2912009
PZ
1193#endif
1194
de1d7286 1195 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1196
0c69774e 1197 if (task_cpu(p) != new_cpu) {
0a74bef8 1198 if (p->sched_class->migrate_task_rq)
5a4fd036 1199 p->sched_class->migrate_task_rq(p);
0c69774e 1200 p->se.nr_migrations++;
ff303e66 1201 perf_event_task_migrate(p);
0c69774e 1202 }
dd41f596
IM
1203
1204 __set_task_cpu(p, new_cpu);
c65cc870
IM
1205}
1206
ac66f547
PZ
1207static void __migrate_swap_task(struct task_struct *p, int cpu)
1208{
da0c1e65 1209 if (task_on_rq_queued(p)) {
ac66f547 1210 struct rq *src_rq, *dst_rq;
8a8c69c3 1211 struct rq_flags srf, drf;
ac66f547
PZ
1212
1213 src_rq = task_rq(p);
1214 dst_rq = cpu_rq(cpu);
1215
8a8c69c3
PZ
1216 rq_pin_lock(src_rq, &srf);
1217 rq_pin_lock(dst_rq, &drf);
1218
3ea94de1 1219 p->on_rq = TASK_ON_RQ_MIGRATING;
ac66f547
PZ
1220 deactivate_task(src_rq, p, 0);
1221 set_task_cpu(p, cpu);
1222 activate_task(dst_rq, p, 0);
3ea94de1 1223 p->on_rq = TASK_ON_RQ_QUEUED;
ac66f547 1224 check_preempt_curr(dst_rq, p, 0);
8a8c69c3
PZ
1225
1226 rq_unpin_lock(dst_rq, &drf);
1227 rq_unpin_lock(src_rq, &srf);
1228
ac66f547
PZ
1229 } else {
1230 /*
1231 * Task isn't running anymore; make it appear like we migrated
1232 * it before it went to sleep. This means on wakeup we make the
d1ccc66d 1233 * previous CPU our target instead of where it really is.
ac66f547
PZ
1234 */
1235 p->wake_cpu = cpu;
1236 }
1237}
1238
1239struct migration_swap_arg {
1240 struct task_struct *src_task, *dst_task;
1241 int src_cpu, dst_cpu;
1242};
1243
1244static int migrate_swap_stop(void *data)
1245{
1246 struct migration_swap_arg *arg = data;
1247 struct rq *src_rq, *dst_rq;
1248 int ret = -EAGAIN;
1249
62694cd5
PZ
1250 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1251 return -EAGAIN;
1252
ac66f547
PZ
1253 src_rq = cpu_rq(arg->src_cpu);
1254 dst_rq = cpu_rq(arg->dst_cpu);
1255
74602315
PZ
1256 double_raw_lock(&arg->src_task->pi_lock,
1257 &arg->dst_task->pi_lock);
ac66f547 1258 double_rq_lock(src_rq, dst_rq);
62694cd5 1259
ac66f547
PZ
1260 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1261 goto unlock;
1262
1263 if (task_cpu(arg->src_task) != arg->src_cpu)
1264 goto unlock;
1265
0c98d344 1266 if (!cpumask_test_cpu(arg->dst_cpu, &arg->src_task->cpus_allowed))
ac66f547
PZ
1267 goto unlock;
1268
0c98d344 1269 if (!cpumask_test_cpu(arg->src_cpu, &arg->dst_task->cpus_allowed))
ac66f547
PZ
1270 goto unlock;
1271
1272 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1273 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1274
1275 ret = 0;
1276
1277unlock:
1278 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1279 raw_spin_unlock(&arg->dst_task->pi_lock);
1280 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1281
1282 return ret;
1283}
1284
1285/*
1286 * Cross migrate two tasks
1287 */
1288int migrate_swap(struct task_struct *cur, struct task_struct *p)
1289{
1290 struct migration_swap_arg arg;
1291 int ret = -EINVAL;
1292
ac66f547
PZ
1293 arg = (struct migration_swap_arg){
1294 .src_task = cur,
1295 .src_cpu = task_cpu(cur),
1296 .dst_task = p,
1297 .dst_cpu = task_cpu(p),
1298 };
1299
1300 if (arg.src_cpu == arg.dst_cpu)
1301 goto out;
1302
6acce3ef
PZ
1303 /*
1304 * These three tests are all lockless; this is OK since all of them
1305 * will be re-checked with proper locks held further down the line.
1306 */
ac66f547
PZ
1307 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1308 goto out;
1309
0c98d344 1310 if (!cpumask_test_cpu(arg.dst_cpu, &arg.src_task->cpus_allowed))
ac66f547
PZ
1311 goto out;
1312
0c98d344 1313 if (!cpumask_test_cpu(arg.src_cpu, &arg.dst_task->cpus_allowed))
ac66f547
PZ
1314 goto out;
1315
286549dc 1316 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1317 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1318
1319out:
ac66f547
PZ
1320 return ret;
1321}
1322
1da177e4
LT
1323/*
1324 * wait_task_inactive - wait for a thread to unschedule.
1325 *
85ba2d86
RM
1326 * If @match_state is nonzero, it's the @p->state value just checked and
1327 * not expected to change. If it changes, i.e. @p might have woken up,
1328 * then return zero. When we succeed in waiting for @p to be off its CPU,
1329 * we return a positive number (its total switch count). If a second call
1330 * a short while later returns the same number, the caller can be sure that
1331 * @p has remained unscheduled the whole time.
1332 *
1da177e4
LT
1333 * The caller must ensure that the task *will* unschedule sometime soon,
1334 * else this function might spin for a *long* time. This function can't
1335 * be called with interrupts off, or it may introduce deadlock with
1336 * smp_call_function() if an IPI is sent by the same process we are
1337 * waiting to become inactive.
1338 */
85ba2d86 1339unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4 1340{
da0c1e65 1341 int running, queued;
eb580751 1342 struct rq_flags rf;
85ba2d86 1343 unsigned long ncsw;
70b97a7f 1344 struct rq *rq;
1da177e4 1345
3a5c359a
AK
1346 for (;;) {
1347 /*
1348 * We do the initial early heuristics without holding
1349 * any task-queue locks at all. We'll only try to get
1350 * the runqueue lock when things look like they will
1351 * work out!
1352 */
1353 rq = task_rq(p);
fa490cfd 1354
3a5c359a
AK
1355 /*
1356 * If the task is actively running on another CPU
1357 * still, just relax and busy-wait without holding
1358 * any locks.
1359 *
1360 * NOTE! Since we don't hold any locks, it's not
1361 * even sure that "rq" stays as the right runqueue!
1362 * But we don't care, since "task_running()" will
1363 * return false if the runqueue has changed and p
1364 * is actually now running somewhere else!
1365 */
85ba2d86
RM
1366 while (task_running(rq, p)) {
1367 if (match_state && unlikely(p->state != match_state))
1368 return 0;
3a5c359a 1369 cpu_relax();
85ba2d86 1370 }
fa490cfd 1371
3a5c359a
AK
1372 /*
1373 * Ok, time to look more closely! We need the rq
1374 * lock now, to be *sure*. If we're wrong, we'll
1375 * just go back and repeat.
1376 */
eb580751 1377 rq = task_rq_lock(p, &rf);
27a9da65 1378 trace_sched_wait_task(p);
3a5c359a 1379 running = task_running(rq, p);
da0c1e65 1380 queued = task_on_rq_queued(p);
85ba2d86 1381 ncsw = 0;
f31e11d8 1382 if (!match_state || p->state == match_state)
93dcf55f 1383 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
eb580751 1384 task_rq_unlock(rq, p, &rf);
fa490cfd 1385
85ba2d86
RM
1386 /*
1387 * If it changed from the expected state, bail out now.
1388 */
1389 if (unlikely(!ncsw))
1390 break;
1391
3a5c359a
AK
1392 /*
1393 * Was it really running after all now that we
1394 * checked with the proper locks actually held?
1395 *
1396 * Oops. Go back and try again..
1397 */
1398 if (unlikely(running)) {
1399 cpu_relax();
1400 continue;
1401 }
fa490cfd 1402
3a5c359a
AK
1403 /*
1404 * It's not enough that it's not actively running,
1405 * it must be off the runqueue _entirely_, and not
1406 * preempted!
1407 *
80dd99b3 1408 * So if it was still runnable (but just not actively
3a5c359a
AK
1409 * running right now), it's preempted, and we should
1410 * yield - it could be a while.
1411 */
da0c1e65 1412 if (unlikely(queued)) {
8b0e1953 1413 ktime_t to = NSEC_PER_SEC / HZ;
8eb90c30
TG
1414
1415 set_current_state(TASK_UNINTERRUPTIBLE);
1416 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1417 continue;
1418 }
fa490cfd 1419
3a5c359a
AK
1420 /*
1421 * Ahh, all good. It wasn't running, and it wasn't
1422 * runnable, which means that it will never become
1423 * running in the future either. We're all done!
1424 */
1425 break;
1426 }
85ba2d86
RM
1427
1428 return ncsw;
1da177e4
LT
1429}
1430
1431/***
1432 * kick_process - kick a running thread to enter/exit the kernel
1433 * @p: the to-be-kicked thread
1434 *
1435 * Cause a process which is running on another CPU to enter
1436 * kernel-mode, without any delay. (to get signals handled.)
1437 *
25985edc 1438 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1439 * because all it wants to ensure is that the remote task enters
1440 * the kernel. If the IPI races and the task has been migrated
1441 * to another CPU then no harm is done and the purpose has been
1442 * achieved as well.
1443 */
36c8b586 1444void kick_process(struct task_struct *p)
1da177e4
LT
1445{
1446 int cpu;
1447
1448 preempt_disable();
1449 cpu = task_cpu(p);
1450 if ((cpu != smp_processor_id()) && task_curr(p))
1451 smp_send_reschedule(cpu);
1452 preempt_enable();
1453}
b43e3521 1454EXPORT_SYMBOL_GPL(kick_process);
1da177e4 1455
30da688e 1456/*
013fdb80 1457 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
e9d867a6
PZI
1458 *
1459 * A few notes on cpu_active vs cpu_online:
1460 *
1461 * - cpu_active must be a subset of cpu_online
1462 *
1463 * - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
1464 * see __set_cpus_allowed_ptr(). At this point the newly online
d1ccc66d 1465 * CPU isn't yet part of the sched domains, and balancing will not
e9d867a6
PZI
1466 * see it.
1467 *
d1ccc66d 1468 * - on CPU-down we clear cpu_active() to mask the sched domains and
e9d867a6 1469 * avoid the load balancer to place new tasks on the to be removed
d1ccc66d 1470 * CPU. Existing tasks will remain running there and will be taken
e9d867a6
PZI
1471 * off.
1472 *
1473 * This means that fallback selection must not select !active CPUs.
1474 * And can assume that any active CPU must be online. Conversely
1475 * select_task_rq() below may allow selection of !active CPUs in order
1476 * to satisfy the above rules.
30da688e 1477 */
5da9a0fb
PZ
1478static int select_fallback_rq(int cpu, struct task_struct *p)
1479{
aa00d89c
TC
1480 int nid = cpu_to_node(cpu);
1481 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1482 enum { cpuset, possible, fail } state = cpuset;
1483 int dest_cpu;
5da9a0fb 1484
aa00d89c 1485 /*
d1ccc66d
IM
1486 * If the node that the CPU is on has been offlined, cpu_to_node()
1487 * will return -1. There is no CPU on the node, and we should
1488 * select the CPU on the other node.
aa00d89c
TC
1489 */
1490 if (nid != -1) {
1491 nodemask = cpumask_of_node(nid);
1492
1493 /* Look for allowed, online CPU in same node. */
1494 for_each_cpu(dest_cpu, nodemask) {
aa00d89c
TC
1495 if (!cpu_active(dest_cpu))
1496 continue;
0c98d344 1497 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
aa00d89c
TC
1498 return dest_cpu;
1499 }
2baab4e9 1500 }
5da9a0fb 1501
2baab4e9
PZ
1502 for (;;) {
1503 /* Any allowed, online CPU? */
0c98d344 1504 for_each_cpu(dest_cpu, &p->cpus_allowed) {
feb245e3
TH
1505 if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu))
1506 continue;
1507 if (!cpu_online(dest_cpu))
2baab4e9
PZ
1508 continue;
1509 goto out;
1510 }
5da9a0fb 1511
e73e85f0 1512 /* No more Mr. Nice Guy. */
2baab4e9
PZ
1513 switch (state) {
1514 case cpuset:
e73e85f0
ON
1515 if (IS_ENABLED(CONFIG_CPUSETS)) {
1516 cpuset_cpus_allowed_fallback(p);
1517 state = possible;
1518 break;
1519 }
d1ccc66d 1520 /* Fall-through */
2baab4e9
PZ
1521 case possible:
1522 do_set_cpus_allowed(p, cpu_possible_mask);
1523 state = fail;
1524 break;
1525
1526 case fail:
1527 BUG();
1528 break;
1529 }
1530 }
1531
1532out:
1533 if (state != cpuset) {
1534 /*
1535 * Don't tell them about moving exiting tasks or
1536 * kernel threads (both mm NULL), since they never
1537 * leave kernel.
1538 */
1539 if (p->mm && printk_ratelimit()) {
aac74dc4 1540 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1541 task_pid_nr(p), p->comm, cpu);
1542 }
5da9a0fb
PZ
1543 }
1544
1545 return dest_cpu;
1546}
1547
e2912009 1548/*
013fdb80 1549 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1550 */
970b13ba 1551static inline
ac66f547 1552int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1553{
cbce1a68
PZ
1554 lockdep_assert_held(&p->pi_lock);
1555
4b53a341 1556 if (p->nr_cpus_allowed > 1)
6c1d9410 1557 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e9d867a6 1558 else
0c98d344 1559 cpu = cpumask_any(&p->cpus_allowed);
e2912009
PZ
1560
1561 /*
1562 * In order not to call set_task_cpu() on a blocking task we need
1563 * to rely on ttwu() to place the task on a valid ->cpus_allowed
d1ccc66d 1564 * CPU.
e2912009
PZ
1565 *
1566 * Since this is common to all placement strategies, this lives here.
1567 *
1568 * [ this allows ->select_task() to simply return task_cpu(p) and
1569 * not worry about this generic constraint ]
1570 */
0c98d344 1571 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
70f11205 1572 !cpu_online(cpu)))
5da9a0fb 1573 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1574
1575 return cpu;
970b13ba 1576}
09a40af5
MG
1577
1578static void update_avg(u64 *avg, u64 sample)
1579{
1580 s64 diff = sample - *avg;
1581 *avg += diff >> 3;
1582}
25834c73
PZ
1583
1584#else
1585
1586static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1587 const struct cpumask *new_mask, bool check)
1588{
1589 return set_cpus_allowed_ptr(p, new_mask);
1590}
1591
5cc389bc 1592#endif /* CONFIG_SMP */
970b13ba 1593
d7c01d27 1594static void
b84cb5df 1595ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1596{
4fa8d299 1597 struct rq *rq;
b84cb5df 1598
4fa8d299
JP
1599 if (!schedstat_enabled())
1600 return;
1601
1602 rq = this_rq();
d7c01d27 1603
4fa8d299
JP
1604#ifdef CONFIG_SMP
1605 if (cpu == rq->cpu) {
ae92882e
JP
1606 schedstat_inc(rq->ttwu_local);
1607 schedstat_inc(p->se.statistics.nr_wakeups_local);
d7c01d27
PZ
1608 } else {
1609 struct sched_domain *sd;
1610
ae92882e 1611 schedstat_inc(p->se.statistics.nr_wakeups_remote);
057f3fad 1612 rcu_read_lock();
4fa8d299 1613 for_each_domain(rq->cpu, sd) {
d7c01d27 1614 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
ae92882e 1615 schedstat_inc(sd->ttwu_wake_remote);
d7c01d27
PZ
1616 break;
1617 }
1618 }
057f3fad 1619 rcu_read_unlock();
d7c01d27 1620 }
f339b9dc
PZ
1621
1622 if (wake_flags & WF_MIGRATED)
ae92882e 1623 schedstat_inc(p->se.statistics.nr_wakeups_migrate);
d7c01d27
PZ
1624#endif /* CONFIG_SMP */
1625
ae92882e
JP
1626 schedstat_inc(rq->ttwu_count);
1627 schedstat_inc(p->se.statistics.nr_wakeups);
d7c01d27
PZ
1628
1629 if (wake_flags & WF_SYNC)
ae92882e 1630 schedstat_inc(p->se.statistics.nr_wakeups_sync);
d7c01d27
PZ
1631}
1632
1de64443 1633static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
d7c01d27 1634{
9ed3811a 1635 activate_task(rq, p, en_flags);
da0c1e65 1636 p->on_rq = TASK_ON_RQ_QUEUED;
c2f7115e 1637
d1ccc66d 1638 /* If a worker is waking up, notify the workqueue: */
c2f7115e
PZ
1639 if (p->flags & PF_WQ_WORKER)
1640 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1641}
1642
23f41eeb
PZ
1643/*
1644 * Mark the task runnable and perform wakeup-preemption.
1645 */
e7904a28 1646static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
d8ac8971 1647 struct rq_flags *rf)
9ed3811a 1648{
9ed3811a 1649 check_preempt_curr(rq, p, wake_flags);
9ed3811a 1650 p->state = TASK_RUNNING;
fbd705a0
PZ
1651 trace_sched_wakeup(p);
1652
9ed3811a 1653#ifdef CONFIG_SMP
4c9a4bc8
PZ
1654 if (p->sched_class->task_woken) {
1655 /*
cbce1a68
PZ
1656 * Our task @p is fully woken up and running; so its safe to
1657 * drop the rq->lock, hereafter rq is only used for statistics.
4c9a4bc8 1658 */
d8ac8971 1659 rq_unpin_lock(rq, rf);
9ed3811a 1660 p->sched_class->task_woken(rq, p);
d8ac8971 1661 rq_repin_lock(rq, rf);
4c9a4bc8 1662 }
9ed3811a 1663
e69c6341 1664 if (rq->idle_stamp) {
78becc27 1665 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1666 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1667
abfafa54
JL
1668 update_avg(&rq->avg_idle, delta);
1669
1670 if (rq->avg_idle > max)
9ed3811a 1671 rq->avg_idle = max;
abfafa54 1672
9ed3811a
TH
1673 rq->idle_stamp = 0;
1674 }
1675#endif
1676}
1677
c05fbafb 1678static void
e7904a28 1679ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
d8ac8971 1680 struct rq_flags *rf)
c05fbafb 1681{
b5179ac7
PZ
1682 int en_flags = ENQUEUE_WAKEUP;
1683
cbce1a68
PZ
1684 lockdep_assert_held(&rq->lock);
1685
c05fbafb
PZ
1686#ifdef CONFIG_SMP
1687 if (p->sched_contributes_to_load)
1688 rq->nr_uninterruptible--;
b5179ac7 1689
b5179ac7 1690 if (wake_flags & WF_MIGRATED)
59efa0ba 1691 en_flags |= ENQUEUE_MIGRATED;
c05fbafb
PZ
1692#endif
1693
b5179ac7 1694 ttwu_activate(rq, p, en_flags);
d8ac8971 1695 ttwu_do_wakeup(rq, p, wake_flags, rf);
c05fbafb
PZ
1696}
1697
1698/*
1699 * Called in case the task @p isn't fully descheduled from its runqueue,
1700 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1701 * since all we need to do is flip p->state to TASK_RUNNING, since
1702 * the task is still ->on_rq.
1703 */
1704static int ttwu_remote(struct task_struct *p, int wake_flags)
1705{
eb580751 1706 struct rq_flags rf;
c05fbafb
PZ
1707 struct rq *rq;
1708 int ret = 0;
1709
eb580751 1710 rq = __task_rq_lock(p, &rf);
da0c1e65 1711 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
1712 /* check_preempt_curr() may use rq clock */
1713 update_rq_clock(rq);
d8ac8971 1714 ttwu_do_wakeup(rq, p, wake_flags, &rf);
c05fbafb
PZ
1715 ret = 1;
1716 }
eb580751 1717 __task_rq_unlock(rq, &rf);
c05fbafb
PZ
1718
1719 return ret;
1720}
1721
317f3941 1722#ifdef CONFIG_SMP
e3baac47 1723void sched_ttwu_pending(void)
317f3941
PZ
1724{
1725 struct rq *rq = this_rq();
fa14ff4a
PZ
1726 struct llist_node *llist = llist_del_all(&rq->wake_list);
1727 struct task_struct *p;
d8ac8971 1728 struct rq_flags rf;
317f3941 1729
e3baac47
PZ
1730 if (!llist)
1731 return;
1732
8a8c69c3 1733 rq_lock_irqsave(rq, &rf);
317f3941 1734
fa14ff4a 1735 while (llist) {
b7e7ade3
PZ
1736 int wake_flags = 0;
1737
fa14ff4a
PZ
1738 p = llist_entry(llist, struct task_struct, wake_entry);
1739 llist = llist_next(llist);
b7e7ade3
PZ
1740
1741 if (p->sched_remote_wakeup)
1742 wake_flags = WF_MIGRATED;
1743
d8ac8971 1744 ttwu_do_activate(rq, p, wake_flags, &rf);
317f3941
PZ
1745 }
1746
8a8c69c3 1747 rq_unlock_irqrestore(rq, &rf);
317f3941
PZ
1748}
1749
1750void scheduler_ipi(void)
1751{
f27dde8d
PZ
1752 /*
1753 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1754 * TIF_NEED_RESCHED remotely (for the first time) will also send
1755 * this IPI.
1756 */
8cb75e0c 1757 preempt_fold_need_resched();
f27dde8d 1758
fd2ac4f4 1759 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1760 return;
1761
1762 /*
1763 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1764 * traditionally all their work was done from the interrupt return
1765 * path. Now that we actually do some work, we need to make sure
1766 * we do call them.
1767 *
1768 * Some archs already do call them, luckily irq_enter/exit nest
1769 * properly.
1770 *
1771 * Arguably we should visit all archs and update all handlers,
1772 * however a fair share of IPIs are still resched only so this would
1773 * somewhat pessimize the simple resched case.
1774 */
1775 irq_enter();
fa14ff4a 1776 sched_ttwu_pending();
ca38062e
SS
1777
1778 /*
1779 * Check if someone kicked us for doing the nohz idle load balance.
1780 */
873b4c65 1781 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1782 this_rq()->idle_balance = 1;
ca38062e 1783 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1784 }
c5d753a5 1785 irq_exit();
317f3941
PZ
1786}
1787
b7e7ade3 1788static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
317f3941 1789{
e3baac47
PZ
1790 struct rq *rq = cpu_rq(cpu);
1791
b7e7ade3
PZ
1792 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1793
e3baac47
PZ
1794 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1795 if (!set_nr_if_polling(rq->idle))
1796 smp_send_reschedule(cpu);
1797 else
1798 trace_sched_wake_idle_without_ipi(cpu);
1799 }
317f3941 1800}
d6aa8f85 1801
f6be8af1
CL
1802void wake_up_if_idle(int cpu)
1803{
1804 struct rq *rq = cpu_rq(cpu);
8a8c69c3 1805 struct rq_flags rf;
f6be8af1 1806
fd7de1e8
AL
1807 rcu_read_lock();
1808
1809 if (!is_idle_task(rcu_dereference(rq->curr)))
1810 goto out;
f6be8af1
CL
1811
1812 if (set_nr_if_polling(rq->idle)) {
1813 trace_sched_wake_idle_without_ipi(cpu);
1814 } else {
8a8c69c3 1815 rq_lock_irqsave(rq, &rf);
f6be8af1
CL
1816 if (is_idle_task(rq->curr))
1817 smp_send_reschedule(cpu);
d1ccc66d 1818 /* Else CPU is not idle, do nothing here: */
8a8c69c3 1819 rq_unlock_irqrestore(rq, &rf);
f6be8af1 1820 }
fd7de1e8
AL
1821
1822out:
1823 rcu_read_unlock();
f6be8af1
CL
1824}
1825
39be3501 1826bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1827{
1828 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1829}
d6aa8f85 1830#endif /* CONFIG_SMP */
317f3941 1831
b5179ac7 1832static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
c05fbafb
PZ
1833{
1834 struct rq *rq = cpu_rq(cpu);
d8ac8971 1835 struct rq_flags rf;
c05fbafb 1836
17d9f311 1837#if defined(CONFIG_SMP)
39be3501 1838 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
d1ccc66d 1839 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
b7e7ade3 1840 ttwu_queue_remote(p, cpu, wake_flags);
317f3941
PZ
1841 return;
1842 }
1843#endif
1844
8a8c69c3 1845 rq_lock(rq, &rf);
d8ac8971 1846 ttwu_do_activate(rq, p, wake_flags, &rf);
8a8c69c3 1847 rq_unlock(rq, &rf);
9ed3811a
TH
1848}
1849
8643cda5
PZ
1850/*
1851 * Notes on Program-Order guarantees on SMP systems.
1852 *
1853 * MIGRATION
1854 *
1855 * The basic program-order guarantee on SMP systems is that when a task [t]
d1ccc66d
IM
1856 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
1857 * execution on its new CPU [c1].
8643cda5
PZ
1858 *
1859 * For migration (of runnable tasks) this is provided by the following means:
1860 *
1861 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1862 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1863 * rq(c1)->lock (if not at the same time, then in that order).
1864 * C) LOCK of the rq(c1)->lock scheduling in task
1865 *
1866 * Transitivity guarantees that B happens after A and C after B.
1867 * Note: we only require RCpc transitivity.
d1ccc66d 1868 * Note: the CPU doing B need not be c0 or c1
8643cda5
PZ
1869 *
1870 * Example:
1871 *
1872 * CPU0 CPU1 CPU2
1873 *
1874 * LOCK rq(0)->lock
1875 * sched-out X
1876 * sched-in Y
1877 * UNLOCK rq(0)->lock
1878 *
1879 * LOCK rq(0)->lock // orders against CPU0
1880 * dequeue X
1881 * UNLOCK rq(0)->lock
1882 *
1883 * LOCK rq(1)->lock
1884 * enqueue X
1885 * UNLOCK rq(1)->lock
1886 *
1887 * LOCK rq(1)->lock // orders against CPU2
1888 * sched-out Z
1889 * sched-in X
1890 * UNLOCK rq(1)->lock
1891 *
1892 *
1893 * BLOCKING -- aka. SLEEP + WAKEUP
1894 *
1895 * For blocking we (obviously) need to provide the same guarantee as for
1896 * migration. However the means are completely different as there is no lock
1897 * chain to provide order. Instead we do:
1898 *
1899 * 1) smp_store_release(X->on_cpu, 0)
1f03e8d2 1900 * 2) smp_cond_load_acquire(!X->on_cpu)
8643cda5
PZ
1901 *
1902 * Example:
1903 *
1904 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1905 *
1906 * LOCK rq(0)->lock LOCK X->pi_lock
1907 * dequeue X
1908 * sched-out X
1909 * smp_store_release(X->on_cpu, 0);
1910 *
1f03e8d2 1911 * smp_cond_load_acquire(&X->on_cpu, !VAL);
8643cda5
PZ
1912 * X->state = WAKING
1913 * set_task_cpu(X,2)
1914 *
1915 * LOCK rq(2)->lock
1916 * enqueue X
1917 * X->state = RUNNING
1918 * UNLOCK rq(2)->lock
1919 *
1920 * LOCK rq(2)->lock // orders against CPU1
1921 * sched-out Z
1922 * sched-in X
1923 * UNLOCK rq(2)->lock
1924 *
1925 * UNLOCK X->pi_lock
1926 * UNLOCK rq(0)->lock
1927 *
1928 *
1929 * However; for wakeups there is a second guarantee we must provide, namely we
1930 * must observe the state that lead to our wakeup. That is, not only must our
1931 * task observe its own prior state, it must also observe the stores prior to
1932 * its wakeup.
1933 *
1934 * This means that any means of doing remote wakeups must order the CPU doing
1935 * the wakeup against the CPU the task is going to end up running on. This,
1936 * however, is already required for the regular Program-Order guarantee above,
1f03e8d2 1937 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
8643cda5
PZ
1938 *
1939 */
1940
9ed3811a 1941/**
1da177e4 1942 * try_to_wake_up - wake up a thread
9ed3811a 1943 * @p: the thread to be awakened
1da177e4 1944 * @state: the mask of task states that can be woken
9ed3811a 1945 * @wake_flags: wake modifier flags (WF_*)
1da177e4 1946 *
a2250238 1947 * If (@state & @p->state) @p->state = TASK_RUNNING.
1da177e4 1948 *
a2250238
PZ
1949 * If the task was not queued/runnable, also place it back on a runqueue.
1950 *
1951 * Atomic against schedule() which would dequeue a task, also see
1952 * set_current_state().
1953 *
1954 * Return: %true if @p->state changes (an actual wakeup was done),
1955 * %false otherwise.
1da177e4 1956 */
e4a52bcb
PZ
1957static int
1958try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1959{
1da177e4 1960 unsigned long flags;
c05fbafb 1961 int cpu, success = 0;
2398f2c6 1962
e0acd0a6
ON
1963 /*
1964 * If we are going to wake up a thread waiting for CONDITION we
1965 * need to ensure that CONDITION=1 done by the caller can not be
1966 * reordered with p->state check below. This pairs with mb() in
1967 * set_current_state() the waiting thread does.
1968 */
1969 smp_mb__before_spinlock();
013fdb80 1970 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1971 if (!(p->state & state))
1da177e4
LT
1972 goto out;
1973
fbd705a0
PZ
1974 trace_sched_waking(p);
1975
d1ccc66d
IM
1976 /* We're going to change ->state: */
1977 success = 1;
1da177e4 1978 cpu = task_cpu(p);
1da177e4 1979
135e8c92
BS
1980 /*
1981 * Ensure we load p->on_rq _after_ p->state, otherwise it would
1982 * be possible to, falsely, observe p->on_rq == 0 and get stuck
1983 * in smp_cond_load_acquire() below.
1984 *
1985 * sched_ttwu_pending() try_to_wake_up()
1986 * [S] p->on_rq = 1; [L] P->state
1987 * UNLOCK rq->lock -----.
1988 * \
1989 * +--- RMB
1990 * schedule() /
1991 * LOCK rq->lock -----'
1992 * UNLOCK rq->lock
1993 *
1994 * [task p]
1995 * [S] p->state = UNINTERRUPTIBLE [L] p->on_rq
1996 *
1997 * Pairs with the UNLOCK+LOCK on rq->lock from the
1998 * last wakeup of our task and the schedule that got our task
1999 * current.
2000 */
2001 smp_rmb();
c05fbafb
PZ
2002 if (p->on_rq && ttwu_remote(p, wake_flags))
2003 goto stat;
1da177e4 2004
1da177e4 2005#ifdef CONFIG_SMP
ecf7d01c
PZ
2006 /*
2007 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2008 * possible to, falsely, observe p->on_cpu == 0.
2009 *
2010 * One must be running (->on_cpu == 1) in order to remove oneself
2011 * from the runqueue.
2012 *
2013 * [S] ->on_cpu = 1; [L] ->on_rq
2014 * UNLOCK rq->lock
2015 * RMB
2016 * LOCK rq->lock
2017 * [S] ->on_rq = 0; [L] ->on_cpu
2018 *
2019 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2020 * from the consecutive calls to schedule(); the first switching to our
2021 * task, the second putting it to sleep.
2022 */
2023 smp_rmb();
2024
e9c84311 2025 /*
d1ccc66d 2026 * If the owning (remote) CPU is still in the middle of schedule() with
c05fbafb 2027 * this task as prev, wait until its done referencing the task.
b75a2253
PZ
2028 *
2029 * Pairs with the smp_store_release() in finish_lock_switch().
2030 *
2031 * This ensures that tasks getting woken will be fully ordered against
2032 * their previous state and preserve Program Order.
0970d299 2033 */
1f03e8d2 2034 smp_cond_load_acquire(&p->on_cpu, !VAL);
1da177e4 2035
a8e4f2ea 2036 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 2037 p->state = TASK_WAKING;
e7693a36 2038
e33a9bba
TH
2039 if (p->in_iowait) {
2040 delayacct_blkio_end();
2041 atomic_dec(&task_rq(p)->nr_iowait);
2042 }
2043
ac66f547 2044 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
2045 if (task_cpu(p) != cpu) {
2046 wake_flags |= WF_MIGRATED;
e4a52bcb 2047 set_task_cpu(p, cpu);
f339b9dc 2048 }
e33a9bba
TH
2049
2050#else /* CONFIG_SMP */
2051
2052 if (p->in_iowait) {
2053 delayacct_blkio_end();
2054 atomic_dec(&task_rq(p)->nr_iowait);
2055 }
2056
1da177e4 2057#endif /* CONFIG_SMP */
1da177e4 2058
b5179ac7 2059 ttwu_queue(p, cpu, wake_flags);
c05fbafb 2060stat:
4fa8d299 2061 ttwu_stat(p, cpu, wake_flags);
1da177e4 2062out:
013fdb80 2063 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
2064
2065 return success;
2066}
2067
21aa9af0
TH
2068/**
2069 * try_to_wake_up_local - try to wake up a local task with rq lock held
2070 * @p: the thread to be awakened
9279e0d2 2071 * @cookie: context's cookie for pinning
21aa9af0 2072 *
2acca55e 2073 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 2074 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 2075 * the current task.
21aa9af0 2076 */
d8ac8971 2077static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf)
21aa9af0
TH
2078{
2079 struct rq *rq = task_rq(p);
21aa9af0 2080
383efcd0
TH
2081 if (WARN_ON_ONCE(rq != this_rq()) ||
2082 WARN_ON_ONCE(p == current))
2083 return;
2084
21aa9af0
TH
2085 lockdep_assert_held(&rq->lock);
2086
2acca55e 2087 if (!raw_spin_trylock(&p->pi_lock)) {
cbce1a68
PZ
2088 /*
2089 * This is OK, because current is on_cpu, which avoids it being
2090 * picked for load-balance and preemption/IRQs are still
2091 * disabled avoiding further scheduler activity on it and we've
2092 * not yet picked a replacement task.
2093 */
8a8c69c3 2094 rq_unlock(rq, rf);
2acca55e 2095 raw_spin_lock(&p->pi_lock);
8a8c69c3 2096 rq_relock(rq, rf);
2acca55e
PZ
2097 }
2098
21aa9af0 2099 if (!(p->state & TASK_NORMAL))
2acca55e 2100 goto out;
21aa9af0 2101
fbd705a0
PZ
2102 trace_sched_waking(p);
2103
e33a9bba
TH
2104 if (!task_on_rq_queued(p)) {
2105 if (p->in_iowait) {
2106 delayacct_blkio_end();
2107 atomic_dec(&rq->nr_iowait);
2108 }
d7c01d27 2109 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
e33a9bba 2110 }
d7c01d27 2111
d8ac8971 2112 ttwu_do_wakeup(rq, p, 0, rf);
4fa8d299 2113 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
2114out:
2115 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
2116}
2117
50fa610a
DH
2118/**
2119 * wake_up_process - Wake up a specific process
2120 * @p: The process to be woken up.
2121 *
2122 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
2123 * processes.
2124 *
2125 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
2126 *
2127 * It may be assumed that this function implies a write memory barrier before
2128 * changing the task state if and only if any tasks are woken up.
2129 */
7ad5b3a5 2130int wake_up_process(struct task_struct *p)
1da177e4 2131{
9067ac85 2132 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 2133}
1da177e4
LT
2134EXPORT_SYMBOL(wake_up_process);
2135
7ad5b3a5 2136int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2137{
2138 return try_to_wake_up(p, state, 0);
2139}
2140
a5e7be3b
JL
2141/*
2142 * This function clears the sched_dl_entity static params.
2143 */
2144void __dl_clear_params(struct task_struct *p)
2145{
2146 struct sched_dl_entity *dl_se = &p->dl;
2147
2148 dl_se->dl_runtime = 0;
2149 dl_se->dl_deadline = 0;
2150 dl_se->dl_period = 0;
2151 dl_se->flags = 0;
2152 dl_se->dl_bw = 0;
40767b0d
PZ
2153
2154 dl_se->dl_throttled = 0;
40767b0d 2155 dl_se->dl_yielded = 0;
a5e7be3b
JL
2156}
2157
1da177e4
LT
2158/*
2159 * Perform scheduler related setup for a newly forked process p.
2160 * p is forked by current.
dd41f596
IM
2161 *
2162 * __sched_fork() is basic setup used by init_idle() too:
2163 */
5e1576ed 2164static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2165{
fd2f4419
PZ
2166 p->on_rq = 0;
2167
2168 p->se.on_rq = 0;
dd41f596
IM
2169 p->se.exec_start = 0;
2170 p->se.sum_exec_runtime = 0;
f6cf891c 2171 p->se.prev_sum_exec_runtime = 0;
6c594c21 2172 p->se.nr_migrations = 0;
da7a735e 2173 p->se.vruntime = 0;
fd2f4419 2174 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d 2175
ad936d86
BP
2176#ifdef CONFIG_FAIR_GROUP_SCHED
2177 p->se.cfs_rq = NULL;
2178#endif
2179
6cfb0d5d 2180#ifdef CONFIG_SCHEDSTATS
cb251765 2181 /* Even if schedstat is disabled, there should not be garbage */
41acab88 2182 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2183#endif
476d139c 2184
aab03e05 2185 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 2186 init_dl_task_timer(&p->dl);
a5e7be3b 2187 __dl_clear_params(p);
aab03e05 2188
fa717060 2189 INIT_LIST_HEAD(&p->rt.run_list);
ff77e468
PZ
2190 p->rt.timeout = 0;
2191 p->rt.time_slice = sched_rr_timeslice;
2192 p->rt.on_rq = 0;
2193 p->rt.on_list = 0;
476d139c 2194
e107be36
AK
2195#ifdef CONFIG_PREEMPT_NOTIFIERS
2196 INIT_HLIST_HEAD(&p->preempt_notifiers);
2197#endif
cbee9f88
PZ
2198
2199#ifdef CONFIG_NUMA_BALANCING
2200 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 2201 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
2202 p->mm->numa_scan_seq = 0;
2203 }
2204
5e1576ed
RR
2205 if (clone_flags & CLONE_VM)
2206 p->numa_preferred_nid = current->numa_preferred_nid;
2207 else
2208 p->numa_preferred_nid = -1;
2209
cbee9f88
PZ
2210 p->node_stamp = 0ULL;
2211 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 2212 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 2213 p->numa_work.next = &p->numa_work;
44dba3d5 2214 p->numa_faults = NULL;
7e2703e6
RR
2215 p->last_task_numa_placement = 0;
2216 p->last_sum_exec_runtime = 0;
8c8a743c 2217
8c8a743c 2218 p->numa_group = NULL;
cbee9f88 2219#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
2220}
2221
2a595721
SD
2222DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2223
1a687c2e 2224#ifdef CONFIG_NUMA_BALANCING
c3b9bc5b 2225
1a687c2e
MG
2226void set_numabalancing_state(bool enabled)
2227{
2228 if (enabled)
2a595721 2229 static_branch_enable(&sched_numa_balancing);
1a687c2e 2230 else
2a595721 2231 static_branch_disable(&sched_numa_balancing);
1a687c2e 2232}
54a43d54
AK
2233
2234#ifdef CONFIG_PROC_SYSCTL
2235int sysctl_numa_balancing(struct ctl_table *table, int write,
2236 void __user *buffer, size_t *lenp, loff_t *ppos)
2237{
2238 struct ctl_table t;
2239 int err;
2a595721 2240 int state = static_branch_likely(&sched_numa_balancing);
54a43d54
AK
2241
2242 if (write && !capable(CAP_SYS_ADMIN))
2243 return -EPERM;
2244
2245 t = *table;
2246 t.data = &state;
2247 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2248 if (err < 0)
2249 return err;
2250 if (write)
2251 set_numabalancing_state(state);
2252 return err;
2253}
2254#endif
2255#endif
dd41f596 2256
4698f88c
JP
2257#ifdef CONFIG_SCHEDSTATS
2258
cb251765 2259DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4698f88c 2260static bool __initdata __sched_schedstats = false;
cb251765 2261
cb251765
MG
2262static void set_schedstats(bool enabled)
2263{
2264 if (enabled)
2265 static_branch_enable(&sched_schedstats);
2266 else
2267 static_branch_disable(&sched_schedstats);
2268}
2269
2270void force_schedstat_enabled(void)
2271{
2272 if (!schedstat_enabled()) {
2273 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2274 static_branch_enable(&sched_schedstats);
2275 }
2276}
2277
2278static int __init setup_schedstats(char *str)
2279{
2280 int ret = 0;
2281 if (!str)
2282 goto out;
2283
4698f88c
JP
2284 /*
2285 * This code is called before jump labels have been set up, so we can't
2286 * change the static branch directly just yet. Instead set a temporary
2287 * variable so init_schedstats() can do it later.
2288 */
cb251765 2289 if (!strcmp(str, "enable")) {
4698f88c 2290 __sched_schedstats = true;
cb251765
MG
2291 ret = 1;
2292 } else if (!strcmp(str, "disable")) {
4698f88c 2293 __sched_schedstats = false;
cb251765
MG
2294 ret = 1;
2295 }
2296out:
2297 if (!ret)
2298 pr_warn("Unable to parse schedstats=\n");
2299
2300 return ret;
2301}
2302__setup("schedstats=", setup_schedstats);
2303
4698f88c
JP
2304static void __init init_schedstats(void)
2305{
2306 set_schedstats(__sched_schedstats);
2307}
2308
cb251765
MG
2309#ifdef CONFIG_PROC_SYSCTL
2310int sysctl_schedstats(struct ctl_table *table, int write,
2311 void __user *buffer, size_t *lenp, loff_t *ppos)
2312{
2313 struct ctl_table t;
2314 int err;
2315 int state = static_branch_likely(&sched_schedstats);
2316
2317 if (write && !capable(CAP_SYS_ADMIN))
2318 return -EPERM;
2319
2320 t = *table;
2321 t.data = &state;
2322 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2323 if (err < 0)
2324 return err;
2325 if (write)
2326 set_schedstats(state);
2327 return err;
2328}
4698f88c
JP
2329#endif /* CONFIG_PROC_SYSCTL */
2330#else /* !CONFIG_SCHEDSTATS */
2331static inline void init_schedstats(void) {}
2332#endif /* CONFIG_SCHEDSTATS */
dd41f596
IM
2333
2334/*
2335 * fork()/clone()-time setup:
2336 */
aab03e05 2337int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2338{
0122ec5b 2339 unsigned long flags;
dd41f596
IM
2340 int cpu = get_cpu();
2341
5e1576ed 2342 __sched_fork(clone_flags, p);
06b83b5f 2343 /*
7dc603c9 2344 * We mark the process as NEW here. This guarantees that
06b83b5f
PZ
2345 * nobody will actually run it, and a signal or other external
2346 * event cannot wake it up and insert it on the runqueue either.
2347 */
7dc603c9 2348 p->state = TASK_NEW;
dd41f596 2349
c350a04e
MG
2350 /*
2351 * Make sure we do not leak PI boosting priority to the child.
2352 */
2353 p->prio = current->normal_prio;
2354
b9dc29e7
MG
2355 /*
2356 * Revert to default priority/policy on fork if requested.
2357 */
2358 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 2359 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 2360 p->policy = SCHED_NORMAL;
6c697bdf 2361 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
2362 p->rt_priority = 0;
2363 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2364 p->static_prio = NICE_TO_PRIO(0);
2365
2366 p->prio = p->normal_prio = __normal_prio(p);
2367 set_load_weight(p);
6c697bdf 2368
b9dc29e7
MG
2369 /*
2370 * We don't need the reset flag anymore after the fork. It has
2371 * fulfilled its duty:
2372 */
2373 p->sched_reset_on_fork = 0;
2374 }
ca94c442 2375
aab03e05
DF
2376 if (dl_prio(p->prio)) {
2377 put_cpu();
2378 return -EAGAIN;
2379 } else if (rt_prio(p->prio)) {
2380 p->sched_class = &rt_sched_class;
2381 } else {
2ddbf952 2382 p->sched_class = &fair_sched_class;
aab03e05 2383 }
b29739f9 2384
7dc603c9 2385 init_entity_runnable_average(&p->se);
cd29fe6f 2386
86951599
PZ
2387 /*
2388 * The child is not yet in the pid-hash so no cgroup attach races,
2389 * and the cgroup is pinned to this child due to cgroup_fork()
2390 * is ran before sched_fork().
2391 *
2392 * Silence PROVE_RCU.
2393 */
0122ec5b 2394 raw_spin_lock_irqsave(&p->pi_lock, flags);
e210bffd 2395 /*
d1ccc66d 2396 * We're setting the CPU for the first time, we don't migrate,
e210bffd
PZ
2397 * so use __set_task_cpu().
2398 */
2399 __set_task_cpu(p, cpu);
2400 if (p->sched_class->task_fork)
2401 p->sched_class->task_fork(p);
0122ec5b 2402 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 2403
f6db8347 2404#ifdef CONFIG_SCHED_INFO
dd41f596 2405 if (likely(sched_info_on()))
52f17b6c 2406 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2407#endif
3ca7a440
PZ
2408#if defined(CONFIG_SMP)
2409 p->on_cpu = 0;
4866cde0 2410#endif
01028747 2411 init_task_preempt_count(p);
806c09a7 2412#ifdef CONFIG_SMP
917b627d 2413 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 2414 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 2415#endif
917b627d 2416
476d139c 2417 put_cpu();
aab03e05 2418 return 0;
1da177e4
LT
2419}
2420
332ac17e
DF
2421unsigned long to_ratio(u64 period, u64 runtime)
2422{
2423 if (runtime == RUNTIME_INF)
2424 return 1ULL << 20;
2425
2426 /*
2427 * Doing this here saves a lot of checks in all
2428 * the calling paths, and returning zero seems
2429 * safe for them anyway.
2430 */
2431 if (period == 0)
2432 return 0;
2433
2434 return div64_u64(runtime << 20, period);
2435}
2436
2437#ifdef CONFIG_SMP
2438inline struct dl_bw *dl_bw_of(int i)
2439{
f78f5b90
PM
2440 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2441 "sched RCU must be held");
332ac17e
DF
2442 return &cpu_rq(i)->rd->dl_bw;
2443}
2444
de212f18 2445static inline int dl_bw_cpus(int i)
332ac17e 2446{
de212f18
PZ
2447 struct root_domain *rd = cpu_rq(i)->rd;
2448 int cpus = 0;
2449
f78f5b90
PM
2450 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2451 "sched RCU must be held");
de212f18
PZ
2452 for_each_cpu_and(i, rd->span, cpu_active_mask)
2453 cpus++;
2454
2455 return cpus;
332ac17e
DF
2456}
2457#else
2458inline struct dl_bw *dl_bw_of(int i)
2459{
2460 return &cpu_rq(i)->dl.dl_bw;
2461}
2462
de212f18 2463static inline int dl_bw_cpus(int i)
332ac17e
DF
2464{
2465 return 1;
2466}
2467#endif
2468
332ac17e
DF
2469/*
2470 * We must be sure that accepting a new task (or allowing changing the
2471 * parameters of an existing one) is consistent with the bandwidth
2472 * constraints. If yes, this function also accordingly updates the currently
2473 * allocated bandwidth to reflect the new situation.
2474 *
2475 * This function is called while holding p's rq->lock.
40767b0d
PZ
2476 *
2477 * XXX we should delay bw change until the task's 0-lag point, see
2478 * __setparam_dl().
332ac17e
DF
2479 */
2480static int dl_overflow(struct task_struct *p, int policy,
2481 const struct sched_attr *attr)
2482{
2483
2484 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
4df1638c 2485 u64 period = attr->sched_period ?: attr->sched_deadline;
332ac17e
DF
2486 u64 runtime = attr->sched_runtime;
2487 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 2488 int cpus, err = -1;
332ac17e 2489
fec148c0
XP
2490 /* !deadline task may carry old deadline bandwidth */
2491 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
332ac17e
DF
2492 return 0;
2493
2494 /*
2495 * Either if a task, enters, leave, or stays -deadline but changes
2496 * its parameters, we may need to update accordingly the total
2497 * allocated bandwidth of the container.
2498 */
2499 raw_spin_lock(&dl_b->lock);
de212f18 2500 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
2501 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2502 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2503 __dl_add(dl_b, new_bw);
2504 err = 0;
2505 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2506 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2507 __dl_clear(dl_b, p->dl.dl_bw);
2508 __dl_add(dl_b, new_bw);
2509 err = 0;
2510 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2511 __dl_clear(dl_b, p->dl.dl_bw);
2512 err = 0;
2513 }
2514 raw_spin_unlock(&dl_b->lock);
2515
2516 return err;
2517}
2518
2519extern void init_dl_bw(struct dl_bw *dl_b);
2520
1da177e4
LT
2521/*
2522 * wake_up_new_task - wake up a newly created task for the first time.
2523 *
2524 * This function will do some initial scheduler statistics housekeeping
2525 * that must be done for every newly created context, then puts the task
2526 * on the runqueue and wakes it.
2527 */
3e51e3ed 2528void wake_up_new_task(struct task_struct *p)
1da177e4 2529{
eb580751 2530 struct rq_flags rf;
dd41f596 2531 struct rq *rq;
fabf318e 2532
eb580751 2533 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
7dc603c9 2534 p->state = TASK_RUNNING;
fabf318e
PZ
2535#ifdef CONFIG_SMP
2536 /*
2537 * Fork balancing, do it here and not earlier because:
2538 * - cpus_allowed can change in the fork path
d1ccc66d 2539 * - any previously selected CPU might disappear through hotplug
e210bffd
PZ
2540 *
2541 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2542 * as we're not fully set-up yet.
fabf318e 2543 */
e210bffd 2544 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735 2545#endif
b7fa30c9 2546 rq = __task_rq_lock(p, &rf);
4126bad6 2547 update_rq_clock(rq);
2b8c41da 2548 post_init_entity_util_avg(&p->se);
0017d735 2549
cd29fe6f 2550 activate_task(rq, p, 0);
da0c1e65 2551 p->on_rq = TASK_ON_RQ_QUEUED;
fbd705a0 2552 trace_sched_wakeup_new(p);
a7558e01 2553 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2554#ifdef CONFIG_SMP
0aaafaab
PZ
2555 if (p->sched_class->task_woken) {
2556 /*
2557 * Nothing relies on rq->lock after this, so its fine to
2558 * drop it.
2559 */
d8ac8971 2560 rq_unpin_lock(rq, &rf);
efbbd05a 2561 p->sched_class->task_woken(rq, p);
d8ac8971 2562 rq_repin_lock(rq, &rf);
0aaafaab 2563 }
9a897c5a 2564#endif
eb580751 2565 task_rq_unlock(rq, p, &rf);
1da177e4
LT
2566}
2567
e107be36
AK
2568#ifdef CONFIG_PREEMPT_NOTIFIERS
2569
1cde2930
PZ
2570static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2571
2ecd9d29
PZ
2572void preempt_notifier_inc(void)
2573{
2574 static_key_slow_inc(&preempt_notifier_key);
2575}
2576EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2577
2578void preempt_notifier_dec(void)
2579{
2580 static_key_slow_dec(&preempt_notifier_key);
2581}
2582EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2583
e107be36 2584/**
80dd99b3 2585 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2586 * @notifier: notifier struct to register
e107be36
AK
2587 */
2588void preempt_notifier_register(struct preempt_notifier *notifier)
2589{
2ecd9d29
PZ
2590 if (!static_key_false(&preempt_notifier_key))
2591 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2592
e107be36
AK
2593 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2594}
2595EXPORT_SYMBOL_GPL(preempt_notifier_register);
2596
2597/**
2598 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2599 * @notifier: notifier struct to unregister
e107be36 2600 *
d84525a8 2601 * This is *not* safe to call from within a preemption notifier.
e107be36
AK
2602 */
2603void preempt_notifier_unregister(struct preempt_notifier *notifier)
2604{
2605 hlist_del(&notifier->link);
2606}
2607EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2608
1cde2930 2609static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2610{
2611 struct preempt_notifier *notifier;
e107be36 2612
b67bfe0d 2613 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2614 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2615}
2616
1cde2930
PZ
2617static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2618{
2619 if (static_key_false(&preempt_notifier_key))
2620 __fire_sched_in_preempt_notifiers(curr);
2621}
2622
e107be36 2623static void
1cde2930
PZ
2624__fire_sched_out_preempt_notifiers(struct task_struct *curr,
2625 struct task_struct *next)
e107be36
AK
2626{
2627 struct preempt_notifier *notifier;
e107be36 2628
b67bfe0d 2629 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2630 notifier->ops->sched_out(notifier, next);
2631}
2632
1cde2930
PZ
2633static __always_inline void
2634fire_sched_out_preempt_notifiers(struct task_struct *curr,
2635 struct task_struct *next)
2636{
2637 if (static_key_false(&preempt_notifier_key))
2638 __fire_sched_out_preempt_notifiers(curr, next);
2639}
2640
6d6bc0ad 2641#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36 2642
1cde2930 2643static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2644{
2645}
2646
1cde2930 2647static inline void
e107be36
AK
2648fire_sched_out_preempt_notifiers(struct task_struct *curr,
2649 struct task_struct *next)
2650{
2651}
2652
6d6bc0ad 2653#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2654
4866cde0
NP
2655/**
2656 * prepare_task_switch - prepare to switch tasks
2657 * @rq: the runqueue preparing to switch
421cee29 2658 * @prev: the current task that is being switched out
4866cde0
NP
2659 * @next: the task we are going to switch to.
2660 *
2661 * This is called with the rq lock held and interrupts off. It must
2662 * be paired with a subsequent finish_task_switch after the context
2663 * switch.
2664 *
2665 * prepare_task_switch sets up locking and calls architecture specific
2666 * hooks.
2667 */
e107be36
AK
2668static inline void
2669prepare_task_switch(struct rq *rq, struct task_struct *prev,
2670 struct task_struct *next)
4866cde0 2671{
43148951 2672 sched_info_switch(rq, prev, next);
fe4b04fa 2673 perf_event_task_sched_out(prev, next);
e107be36 2674 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2675 prepare_lock_switch(rq, next);
2676 prepare_arch_switch(next);
2677}
2678
1da177e4
LT
2679/**
2680 * finish_task_switch - clean up after a task-switch
2681 * @prev: the thread we just switched away from.
2682 *
4866cde0
NP
2683 * finish_task_switch must be called after the context switch, paired
2684 * with a prepare_task_switch call before the context switch.
2685 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2686 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2687 *
2688 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2689 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2690 * with the lock held can cause deadlocks; see schedule() for
2691 * details.)
dfa50b60
ON
2692 *
2693 * The context switch have flipped the stack from under us and restored the
2694 * local variables which were saved when this task called schedule() in the
2695 * past. prev == current is still correct but we need to recalculate this_rq
2696 * because prev may have moved to another CPU.
1da177e4 2697 */
dfa50b60 2698static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
2699 __releases(rq->lock)
2700{
dfa50b60 2701 struct rq *rq = this_rq();
1da177e4 2702 struct mm_struct *mm = rq->prev_mm;
55a101f8 2703 long prev_state;
1da177e4 2704
609ca066
PZ
2705 /*
2706 * The previous task will have left us with a preempt_count of 2
2707 * because it left us after:
2708 *
2709 * schedule()
2710 * preempt_disable(); // 1
2711 * __schedule()
2712 * raw_spin_lock_irq(&rq->lock) // 2
2713 *
2714 * Also, see FORK_PREEMPT_COUNT.
2715 */
e2bf1c4b
PZ
2716 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2717 "corrupted preempt_count: %s/%d/0x%x\n",
2718 current->comm, current->pid, preempt_count()))
2719 preempt_count_set(FORK_PREEMPT_COUNT);
609ca066 2720
1da177e4
LT
2721 rq->prev_mm = NULL;
2722
2723 /*
2724 * A task struct has one reference for the use as "current".
c394cc9f 2725 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2726 * schedule one last time. The schedule call will never return, and
2727 * the scheduled task must drop that reference.
95913d97
PZ
2728 *
2729 * We must observe prev->state before clearing prev->on_cpu (in
2730 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2731 * running on another CPU and we could rave with its RUNNING -> DEAD
2732 * transition, resulting in a double drop.
1da177e4 2733 */
55a101f8 2734 prev_state = prev->state;
bf9fae9f 2735 vtime_task_switch(prev);
a8d757ef 2736 perf_event_task_sched_in(prev, current);
4866cde0 2737 finish_lock_switch(rq, prev);
01f23e16 2738 finish_arch_post_lock_switch();
e8fa1362 2739
e107be36 2740 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2741 if (mm)
2742 mmdrop(mm);
c394cc9f 2743 if (unlikely(prev_state == TASK_DEAD)) {
e6c390f2
DF
2744 if (prev->sched_class->task_dead)
2745 prev->sched_class->task_dead(prev);
2746
c6fd91f0 2747 /*
2748 * Remove function-return probe instances associated with this
2749 * task and put them back on the free list.
9761eea8 2750 */
c6fd91f0 2751 kprobe_flush_task(prev);
68f24b08
AL
2752
2753 /* Task is done with its stack. */
2754 put_task_stack(prev);
2755
1da177e4 2756 put_task_struct(prev);
c6fd91f0 2757 }
99e5ada9 2758
de734f89 2759 tick_nohz_task_switch();
dfa50b60 2760 return rq;
1da177e4
LT
2761}
2762
3f029d3c
GH
2763#ifdef CONFIG_SMP
2764
3f029d3c 2765/* rq->lock is NOT held, but preemption is disabled */
e3fca9e7 2766static void __balance_callback(struct rq *rq)
3f029d3c 2767{
e3fca9e7
PZ
2768 struct callback_head *head, *next;
2769 void (*func)(struct rq *rq);
8a8c69c3 2770 struct rq_flags rf;
3f029d3c 2771
8a8c69c3 2772 rq_lock_irqsave(rq, &rf);
e3fca9e7
PZ
2773 head = rq->balance_callback;
2774 rq->balance_callback = NULL;
2775 while (head) {
2776 func = (void (*)(struct rq *))head->func;
2777 next = head->next;
2778 head->next = NULL;
2779 head = next;
3f029d3c 2780
e3fca9e7 2781 func(rq);
3f029d3c 2782 }
8a8c69c3 2783 rq_unlock_irqrestore(rq, &rf);
e3fca9e7
PZ
2784}
2785
2786static inline void balance_callback(struct rq *rq)
2787{
2788 if (unlikely(rq->balance_callback))
2789 __balance_callback(rq);
3f029d3c
GH
2790}
2791
2792#else
da19ab51 2793
e3fca9e7 2794static inline void balance_callback(struct rq *rq)
3f029d3c 2795{
1da177e4
LT
2796}
2797
3f029d3c
GH
2798#endif
2799
1da177e4
LT
2800/**
2801 * schedule_tail - first thing a freshly forked thread must call.
2802 * @prev: the thread we just switched away from.
2803 */
722a9f92 2804asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
2805 __releases(rq->lock)
2806{
1a43a14a 2807 struct rq *rq;
da19ab51 2808
609ca066
PZ
2809 /*
2810 * New tasks start with FORK_PREEMPT_COUNT, see there and
2811 * finish_task_switch() for details.
2812 *
2813 * finish_task_switch() will drop rq->lock() and lower preempt_count
2814 * and the preempt_enable() will end up enabling preemption (on
2815 * PREEMPT_COUNT kernels).
2816 */
2817
dfa50b60 2818 rq = finish_task_switch(prev);
e3fca9e7 2819 balance_callback(rq);
1a43a14a 2820 preempt_enable();
70b97a7f 2821
1da177e4 2822 if (current->set_child_tid)
b488893a 2823 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2824}
2825
2826/*
dfa50b60 2827 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 2828 */
04936948 2829static __always_inline struct rq *
70b97a7f 2830context_switch(struct rq *rq, struct task_struct *prev,
d8ac8971 2831 struct task_struct *next, struct rq_flags *rf)
1da177e4 2832{
dd41f596 2833 struct mm_struct *mm, *oldmm;
1da177e4 2834
e107be36 2835 prepare_task_switch(rq, prev, next);
fe4b04fa 2836
dd41f596
IM
2837 mm = next->mm;
2838 oldmm = prev->active_mm;
9226d125
ZA
2839 /*
2840 * For paravirt, this is coupled with an exit in switch_to to
2841 * combine the page table reload and the switch backend into
2842 * one hypercall.
2843 */
224101ed 2844 arch_start_context_switch(prev);
9226d125 2845
31915ab4 2846 if (!mm) {
1da177e4 2847 next->active_mm = oldmm;
f1f10076 2848 mmgrab(oldmm);
1da177e4
LT
2849 enter_lazy_tlb(oldmm, next);
2850 } else
f98db601 2851 switch_mm_irqs_off(oldmm, mm, next);
1da177e4 2852
31915ab4 2853 if (!prev->mm) {
1da177e4 2854 prev->active_mm = NULL;
1da177e4
LT
2855 rq->prev_mm = oldmm;
2856 }
92509b73 2857
cb42c9a3 2858 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
92509b73 2859
3a5f5e48
IM
2860 /*
2861 * Since the runqueue lock will be released by the next
2862 * task (which is an invalid locking op but in the case
2863 * of the scheduler it's an obvious special-case), so we
2864 * do an early lockdep release here:
2865 */
d8ac8971 2866 rq_unpin_lock(rq, rf);
8a25d5de 2867 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
2868
2869 /* Here we just switch the register state and the stack. */
2870 switch_to(prev, next, prev);
dd41f596 2871 barrier();
dfa50b60
ON
2872
2873 return finish_task_switch(prev);
1da177e4
LT
2874}
2875
2876/*
1c3e8264 2877 * nr_running and nr_context_switches:
1da177e4
LT
2878 *
2879 * externally visible scheduler statistics: current number of runnable
1c3e8264 2880 * threads, total number of context switches performed since bootup.
1da177e4
LT
2881 */
2882unsigned long nr_running(void)
2883{
2884 unsigned long i, sum = 0;
2885
2886 for_each_online_cpu(i)
2887 sum += cpu_rq(i)->nr_running;
2888
2889 return sum;
f711f609 2890}
1da177e4 2891
2ee507c4 2892/*
d1ccc66d 2893 * Check if only the current task is running on the CPU.
00cc1633
DD
2894 *
2895 * Caution: this function does not check that the caller has disabled
2896 * preemption, thus the result might have a time-of-check-to-time-of-use
2897 * race. The caller is responsible to use it correctly, for example:
2898 *
2899 * - from a non-preemptable section (of course)
2900 *
2901 * - from a thread that is bound to a single CPU
2902 *
2903 * - in a loop with very short iterations (e.g. a polling loop)
2ee507c4
TC
2904 */
2905bool single_task_running(void)
2906{
00cc1633 2907 return raw_rq()->nr_running == 1;
2ee507c4
TC
2908}
2909EXPORT_SYMBOL(single_task_running);
2910
1da177e4 2911unsigned long long nr_context_switches(void)
46cb4b7c 2912{
cc94abfc
SR
2913 int i;
2914 unsigned long long sum = 0;
46cb4b7c 2915
0a945022 2916 for_each_possible_cpu(i)
1da177e4 2917 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2918
1da177e4
LT
2919 return sum;
2920}
483b4ee6 2921
e33a9bba
TH
2922/*
2923 * IO-wait accounting, and how its mostly bollocks (on SMP).
2924 *
2925 * The idea behind IO-wait account is to account the idle time that we could
2926 * have spend running if it were not for IO. That is, if we were to improve the
2927 * storage performance, we'd have a proportional reduction in IO-wait time.
2928 *
2929 * This all works nicely on UP, where, when a task blocks on IO, we account
2930 * idle time as IO-wait, because if the storage were faster, it could've been
2931 * running and we'd not be idle.
2932 *
2933 * This has been extended to SMP, by doing the same for each CPU. This however
2934 * is broken.
2935 *
2936 * Imagine for instance the case where two tasks block on one CPU, only the one
2937 * CPU will have IO-wait accounted, while the other has regular idle. Even
2938 * though, if the storage were faster, both could've ran at the same time,
2939 * utilising both CPUs.
2940 *
2941 * This means, that when looking globally, the current IO-wait accounting on
2942 * SMP is a lower bound, by reason of under accounting.
2943 *
2944 * Worse, since the numbers are provided per CPU, they are sometimes
2945 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
2946 * associated with any one particular CPU, it can wake to another CPU than it
2947 * blocked on. This means the per CPU IO-wait number is meaningless.
2948 *
2949 * Task CPU affinities can make all that even more 'interesting'.
2950 */
2951
1da177e4
LT
2952unsigned long nr_iowait(void)
2953{
2954 unsigned long i, sum = 0;
483b4ee6 2955
0a945022 2956 for_each_possible_cpu(i)
1da177e4 2957 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2958
1da177e4
LT
2959 return sum;
2960}
483b4ee6 2961
e33a9bba
TH
2962/*
2963 * Consumers of these two interfaces, like for example the cpufreq menu
2964 * governor are using nonsensical data. Boosting frequency for a CPU that has
2965 * IO-wait which might not even end up running the task when it does become
2966 * runnable.
2967 */
2968
8c215bd3 2969unsigned long nr_iowait_cpu(int cpu)
69d25870 2970{
8c215bd3 2971 struct rq *this = cpu_rq(cpu);
69d25870
AV
2972 return atomic_read(&this->nr_iowait);
2973}
46cb4b7c 2974
372ba8cb
MG
2975void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2976{
3289bdb4
PZ
2977 struct rq *rq = this_rq();
2978 *nr_waiters = atomic_read(&rq->nr_iowait);
2979 *load = rq->load.weight;
372ba8cb
MG
2980}
2981
dd41f596 2982#ifdef CONFIG_SMP
8a0be9ef 2983
46cb4b7c 2984/*
38022906
PZ
2985 * sched_exec - execve() is a valuable balancing opportunity, because at
2986 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2987 */
38022906 2988void sched_exec(void)
46cb4b7c 2989{
38022906 2990 struct task_struct *p = current;
1da177e4 2991 unsigned long flags;
0017d735 2992 int dest_cpu;
46cb4b7c 2993
8f42ced9 2994 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2995 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2996 if (dest_cpu == smp_processor_id())
2997 goto unlock;
38022906 2998
8f42ced9 2999 if (likely(cpu_active(dest_cpu))) {
969c7921 3000 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 3001
8f42ced9
PZ
3002 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3003 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
3004 return;
3005 }
0017d735 3006unlock:
8f42ced9 3007 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 3008}
dd41f596 3009
1da177e4
LT
3010#endif
3011
1da177e4 3012DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 3013DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
3014
3015EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 3016EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 3017
6075620b
GG
3018/*
3019 * The function fair_sched_class.update_curr accesses the struct curr
3020 * and its field curr->exec_start; when called from task_sched_runtime(),
3021 * we observe a high rate of cache misses in practice.
3022 * Prefetching this data results in improved performance.
3023 */
3024static inline void prefetch_curr_exec_start(struct task_struct *p)
3025{
3026#ifdef CONFIG_FAIR_GROUP_SCHED
3027 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3028#else
3029 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3030#endif
3031 prefetch(curr);
3032 prefetch(&curr->exec_start);
3033}
3034
c5f8d995
HS
3035/*
3036 * Return accounted runtime for the task.
3037 * In case the task is currently running, return the runtime plus current's
3038 * pending runtime that have not been accounted yet.
3039 */
3040unsigned long long task_sched_runtime(struct task_struct *p)
3041{
eb580751 3042 struct rq_flags rf;
c5f8d995 3043 struct rq *rq;
6e998916 3044 u64 ns;
c5f8d995 3045
911b2898
PZ
3046#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3047 /*
3048 * 64-bit doesn't need locks to atomically read a 64bit value.
3049 * So we have a optimization chance when the task's delta_exec is 0.
3050 * Reading ->on_cpu is racy, but this is ok.
3051 *
d1ccc66d
IM
3052 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3053 * If we race with it entering CPU, unaccounted time is 0. This is
911b2898 3054 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
3055 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3056 * been accounted, so we're correct here as well.
911b2898 3057 */
da0c1e65 3058 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
3059 return p->se.sum_exec_runtime;
3060#endif
3061
eb580751 3062 rq = task_rq_lock(p, &rf);
6e998916
SG
3063 /*
3064 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3065 * project cycles that may never be accounted to this
3066 * thread, breaking clock_gettime().
3067 */
3068 if (task_current(rq, p) && task_on_rq_queued(p)) {
6075620b 3069 prefetch_curr_exec_start(p);
6e998916
SG
3070 update_rq_clock(rq);
3071 p->sched_class->update_curr(rq);
3072 }
3073 ns = p->se.sum_exec_runtime;
eb580751 3074 task_rq_unlock(rq, p, &rf);
c5f8d995
HS
3075
3076 return ns;
3077}
48f24c4d 3078
7835b98b
CL
3079/*
3080 * This function gets called by the timer code, with HZ frequency.
3081 * We call it with interrupts disabled.
7835b98b
CL
3082 */
3083void scheduler_tick(void)
3084{
7835b98b
CL
3085 int cpu = smp_processor_id();
3086 struct rq *rq = cpu_rq(cpu);
dd41f596 3087 struct task_struct *curr = rq->curr;
8a8c69c3 3088 struct rq_flags rf;
3e51f33f
PZ
3089
3090 sched_clock_tick();
dd41f596 3091
8a8c69c3
PZ
3092 rq_lock(rq, &rf);
3093
3e51f33f 3094 update_rq_clock(rq);
fa85ae24 3095 curr->sched_class->task_tick(rq, curr, 0);
cee1afce 3096 cpu_load_update_active(rq);
3289bdb4 3097 calc_global_load_tick(rq);
8a8c69c3
PZ
3098
3099 rq_unlock(rq, &rf);
7835b98b 3100
e9d2b064 3101 perf_event_task_tick();
e220d2dc 3102
e418e1c2 3103#ifdef CONFIG_SMP
6eb57e0d 3104 rq->idle_balance = idle_cpu(cpu);
7caff66f 3105 trigger_load_balance(rq);
e418e1c2 3106#endif
265f22a9 3107 rq_last_tick_reset(rq);
1da177e4
LT
3108}
3109
265f22a9
FW
3110#ifdef CONFIG_NO_HZ_FULL
3111/**
3112 * scheduler_tick_max_deferment
3113 *
3114 * Keep at least one tick per second when a single
3115 * active task is running because the scheduler doesn't
3116 * yet completely support full dynticks environment.
3117 *
3118 * This makes sure that uptime, CFS vruntime, load
3119 * balancing, etc... continue to move forward, even
3120 * with a very low granularity.
e69f6186
YB
3121 *
3122 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
3123 */
3124u64 scheduler_tick_max_deferment(void)
3125{
3126 struct rq *rq = this_rq();
316c1608 3127 unsigned long next, now = READ_ONCE(jiffies);
265f22a9
FW
3128
3129 next = rq->last_sched_tick + HZ;
3130
3131 if (time_before_eq(next, now))
3132 return 0;
3133
8fe8ff09 3134 return jiffies_to_nsecs(next - now);
1da177e4 3135}
265f22a9 3136#endif
1da177e4 3137
7e49fcce
SR
3138#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3139 defined(CONFIG_PREEMPT_TRACER))
47252cfb
SR
3140/*
3141 * If the value passed in is equal to the current preempt count
3142 * then we just disabled preemption. Start timing the latency.
3143 */
3144static inline void preempt_latency_start(int val)
3145{
3146 if (preempt_count() == val) {
3147 unsigned long ip = get_lock_parent_ip();
3148#ifdef CONFIG_DEBUG_PREEMPT
3149 current->preempt_disable_ip = ip;
3150#endif
3151 trace_preempt_off(CALLER_ADDR0, ip);
3152 }
3153}
7e49fcce 3154
edafe3a5 3155void preempt_count_add(int val)
1da177e4 3156{
6cd8a4bb 3157#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3158 /*
3159 * Underflow?
3160 */
9a11b49a
IM
3161 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3162 return;
6cd8a4bb 3163#endif
bdb43806 3164 __preempt_count_add(val);
6cd8a4bb 3165#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3166 /*
3167 * Spinlock count overflowing soon?
3168 */
33859f7f
MOS
3169 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3170 PREEMPT_MASK - 10);
6cd8a4bb 3171#endif
47252cfb 3172 preempt_latency_start(val);
1da177e4 3173}
bdb43806 3174EXPORT_SYMBOL(preempt_count_add);
edafe3a5 3175NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 3176
47252cfb
SR
3177/*
3178 * If the value passed in equals to the current preempt count
3179 * then we just enabled preemption. Stop timing the latency.
3180 */
3181static inline void preempt_latency_stop(int val)
3182{
3183 if (preempt_count() == val)
3184 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3185}
3186
edafe3a5 3187void preempt_count_sub(int val)
1da177e4 3188{
6cd8a4bb 3189#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3190 /*
3191 * Underflow?
3192 */
01e3eb82 3193 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3194 return;
1da177e4
LT
3195 /*
3196 * Is the spinlock portion underflowing?
3197 */
9a11b49a
IM
3198 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3199 !(preempt_count() & PREEMPT_MASK)))
3200 return;
6cd8a4bb 3201#endif
9a11b49a 3202
47252cfb 3203 preempt_latency_stop(val);
bdb43806 3204 __preempt_count_sub(val);
1da177e4 3205}
bdb43806 3206EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 3207NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4 3208
47252cfb
SR
3209#else
3210static inline void preempt_latency_start(int val) { }
3211static inline void preempt_latency_stop(int val) { }
1da177e4
LT
3212#endif
3213
59ddbcb2
IM
3214static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3215{
3216#ifdef CONFIG_DEBUG_PREEMPT
3217 return p->preempt_disable_ip;
3218#else
3219 return 0;
3220#endif
3221}
3222
1da177e4 3223/*
dd41f596 3224 * Print scheduling while atomic bug:
1da177e4 3225 */
dd41f596 3226static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3227{
d1c6d149
VN
3228 /* Save this before calling printk(), since that will clobber it */
3229 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3230
664dfa65
DJ
3231 if (oops_in_progress)
3232 return;
3233
3df0fc5b
PZ
3234 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3235 prev->comm, prev->pid, preempt_count());
838225b4 3236
dd41f596 3237 debug_show_held_locks(prev);
e21f5b15 3238 print_modules();
dd41f596
IM
3239 if (irqs_disabled())
3240 print_irqtrace_events(prev);
d1c6d149
VN
3241 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3242 && in_atomic_preempt_off()) {
8f47b187 3243 pr_err("Preemption disabled at:");
d1c6d149 3244 print_ip_sym(preempt_disable_ip);
8f47b187
TG
3245 pr_cont("\n");
3246 }
748c7201
DBO
3247 if (panic_on_warn)
3248 panic("scheduling while atomic\n");
3249
6135fc1e 3250 dump_stack();
373d4d09 3251 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 3252}
1da177e4 3253
dd41f596
IM
3254/*
3255 * Various schedule()-time debugging checks and statistics:
3256 */
3257static inline void schedule_debug(struct task_struct *prev)
3258{
0d9e2632 3259#ifdef CONFIG_SCHED_STACK_END_CHECK
29d64551
JH
3260 if (task_stack_end_corrupted(prev))
3261 panic("corrupted stack end detected inside scheduler\n");
0d9e2632 3262#endif
b99def8b 3263
1dc0fffc 3264 if (unlikely(in_atomic_preempt_off())) {
dd41f596 3265 __schedule_bug(prev);
1dc0fffc
PZ
3266 preempt_count_set(PREEMPT_DISABLED);
3267 }
b3fbab05 3268 rcu_sleep_check();
dd41f596 3269
1da177e4
LT
3270 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3271
ae92882e 3272 schedstat_inc(this_rq()->sched_count);
dd41f596
IM
3273}
3274
3275/*
3276 * Pick up the highest-prio task:
3277 */
3278static inline struct task_struct *
d8ac8971 3279pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
dd41f596 3280{
49ee5768 3281 const struct sched_class *class;
dd41f596 3282 struct task_struct *p;
1da177e4
LT
3283
3284 /*
0ba87bb2
PZ
3285 * Optimization: we know that if all tasks are in the fair class we can
3286 * call that function directly, but only if the @prev task wasn't of a
3287 * higher scheduling class, because otherwise those loose the
3288 * opportunity to pull in more work from other CPUs.
1da177e4 3289 */
0ba87bb2
PZ
3290 if (likely((prev->sched_class == &idle_sched_class ||
3291 prev->sched_class == &fair_sched_class) &&
3292 rq->nr_running == rq->cfs.h_nr_running)) {
3293
d8ac8971 3294 p = fair_sched_class.pick_next_task(rq, prev, rf);
6ccdc84b
PZ
3295 if (unlikely(p == RETRY_TASK))
3296 goto again;
3297
d1ccc66d 3298 /* Assumes fair_sched_class->next == idle_sched_class */
6ccdc84b 3299 if (unlikely(!p))
d8ac8971 3300 p = idle_sched_class.pick_next_task(rq, prev, rf);
6ccdc84b
PZ
3301
3302 return p;
1da177e4
LT
3303 }
3304
37e117c0 3305again:
34f971f6 3306 for_each_class(class) {
d8ac8971 3307 p = class->pick_next_task(rq, prev, rf);
37e117c0
PZ
3308 if (p) {
3309 if (unlikely(p == RETRY_TASK))
3310 goto again;
dd41f596 3311 return p;
37e117c0 3312 }
dd41f596 3313 }
34f971f6 3314
d1ccc66d
IM
3315 /* The idle class should always have a runnable task: */
3316 BUG();
dd41f596 3317}
1da177e4 3318
dd41f596 3319/*
c259e01a 3320 * __schedule() is the main scheduler function.
edde96ea
PE
3321 *
3322 * The main means of driving the scheduler and thus entering this function are:
3323 *
3324 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3325 *
3326 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3327 * paths. For example, see arch/x86/entry_64.S.
3328 *
3329 * To drive preemption between tasks, the scheduler sets the flag in timer
3330 * interrupt handler scheduler_tick().
3331 *
3332 * 3. Wakeups don't really cause entry into schedule(). They add a
3333 * task to the run-queue and that's it.
3334 *
3335 * Now, if the new task added to the run-queue preempts the current
3336 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3337 * called on the nearest possible occasion:
3338 *
3339 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3340 *
3341 * - in syscall or exception context, at the next outmost
3342 * preempt_enable(). (this might be as soon as the wake_up()'s
3343 * spin_unlock()!)
3344 *
3345 * - in IRQ context, return from interrupt-handler to
3346 * preemptible context
3347 *
3348 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3349 * then at the next:
3350 *
3351 * - cond_resched() call
3352 * - explicit schedule() call
3353 * - return from syscall or exception to user-space
3354 * - return from interrupt-handler to user-space
bfd9b2b5 3355 *
b30f0e3f 3356 * WARNING: must be called with preemption disabled!
dd41f596 3357 */
499d7955 3358static void __sched notrace __schedule(bool preempt)
dd41f596
IM
3359{
3360 struct task_struct *prev, *next;
67ca7bde 3361 unsigned long *switch_count;
d8ac8971 3362 struct rq_flags rf;
dd41f596 3363 struct rq *rq;
31656519 3364 int cpu;
dd41f596 3365
dd41f596
IM
3366 cpu = smp_processor_id();
3367 rq = cpu_rq(cpu);
dd41f596 3368 prev = rq->curr;
dd41f596 3369
dd41f596 3370 schedule_debug(prev);
1da177e4 3371
31656519 3372 if (sched_feat(HRTICK))
f333fdc9 3373 hrtick_clear(rq);
8f4d37ec 3374
46a5d164
PM
3375 local_irq_disable();
3376 rcu_note_context_switch();
3377
e0acd0a6
ON
3378 /*
3379 * Make sure that signal_pending_state()->signal_pending() below
3380 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3381 * done by the caller to avoid the race with signal_wake_up().
3382 */
3383 smp_mb__before_spinlock();
8a8c69c3 3384 rq_lock(rq, &rf);
1da177e4 3385
d1ccc66d
IM
3386 /* Promote REQ to ACT */
3387 rq->clock_update_flags <<= 1;
9edfbfed 3388
246d86b5 3389 switch_count = &prev->nivcsw;
fc13aeba 3390 if (!preempt && prev->state) {
21aa9af0 3391 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 3392 prev->state = TASK_RUNNING;
21aa9af0 3393 } else {
2acca55e
PZ
3394 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3395 prev->on_rq = 0;
3396
e33a9bba
TH
3397 if (prev->in_iowait) {
3398 atomic_inc(&rq->nr_iowait);
3399 delayacct_blkio_start();
3400 }
3401
21aa9af0 3402 /*
2acca55e
PZ
3403 * If a worker went to sleep, notify and ask workqueue
3404 * whether it wants to wake up a task to maintain
3405 * concurrency.
21aa9af0
TH
3406 */
3407 if (prev->flags & PF_WQ_WORKER) {
3408 struct task_struct *to_wakeup;
3409
9b7f6597 3410 to_wakeup = wq_worker_sleeping(prev);
21aa9af0 3411 if (to_wakeup)
d8ac8971 3412 try_to_wake_up_local(to_wakeup, &rf);
21aa9af0 3413 }
21aa9af0 3414 }
dd41f596 3415 switch_count = &prev->nvcsw;
1da177e4
LT
3416 }
3417
9edfbfed 3418 if (task_on_rq_queued(prev))
606dba2e
PZ
3419 update_rq_clock(rq);
3420
d8ac8971 3421 next = pick_next_task(rq, prev, &rf);
f26f9aff 3422 clear_tsk_need_resched(prev);
f27dde8d 3423 clear_preempt_need_resched();
1da177e4 3424
1da177e4 3425 if (likely(prev != next)) {
1da177e4
LT
3426 rq->nr_switches++;
3427 rq->curr = next;
3428 ++*switch_count;
3429
c73464b1 3430 trace_sched_switch(preempt, prev, next);
d1ccc66d
IM
3431
3432 /* Also unlocks the rq: */
3433 rq = context_switch(rq, prev, next, &rf);
cbce1a68 3434 } else {
cb42c9a3 3435 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
8a8c69c3 3436 rq_unlock_irq(rq, &rf);
cbce1a68 3437 }
1da177e4 3438
e3fca9e7 3439 balance_callback(rq);
1da177e4 3440}
c259e01a 3441
9af6528e
PZ
3442void __noreturn do_task_dead(void)
3443{
3444 /*
3445 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
3446 * when the following two conditions become true.
3447 * - There is race condition of mmap_sem (It is acquired by
3448 * exit_mm()), and
3449 * - SMI occurs before setting TASK_RUNINNG.
3450 * (or hypervisor of virtual machine switches to other guest)
3451 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD
3452 *
3453 * To avoid it, we have to wait for releasing tsk->pi_lock which
3454 * is held by try_to_wake_up()
3455 */
3456 smp_mb();
3457 raw_spin_unlock_wait(&current->pi_lock);
3458
d1ccc66d 3459 /* Causes final put_task_struct in finish_task_switch(): */
9af6528e 3460 __set_current_state(TASK_DEAD);
d1ccc66d
IM
3461
3462 /* Tell freezer to ignore us: */
3463 current->flags |= PF_NOFREEZE;
3464
9af6528e
PZ
3465 __schedule(false);
3466 BUG();
d1ccc66d
IM
3467
3468 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
9af6528e 3469 for (;;)
d1ccc66d 3470 cpu_relax();
9af6528e
PZ
3471}
3472
9c40cef2
TG
3473static inline void sched_submit_work(struct task_struct *tsk)
3474{
3c7d5184 3475 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
3476 return;
3477 /*
3478 * If we are going to sleep and we have plugged IO queued,
3479 * make sure to submit it to avoid deadlocks.
3480 */
3481 if (blk_needs_flush_plug(tsk))
3482 blk_schedule_flush_plug(tsk);
3483}
3484
722a9f92 3485asmlinkage __visible void __sched schedule(void)
c259e01a 3486{
9c40cef2
TG
3487 struct task_struct *tsk = current;
3488
3489 sched_submit_work(tsk);
bfd9b2b5 3490 do {
b30f0e3f 3491 preempt_disable();
fc13aeba 3492 __schedule(false);
b30f0e3f 3493 sched_preempt_enable_no_resched();
bfd9b2b5 3494 } while (need_resched());
c259e01a 3495}
1da177e4
LT
3496EXPORT_SYMBOL(schedule);
3497
91d1aa43 3498#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 3499asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
3500{
3501 /*
3502 * If we come here after a random call to set_need_resched(),
3503 * or we have been woken up remotely but the IPI has not yet arrived,
3504 * we haven't yet exited the RCU idle mode. Do it here manually until
3505 * we find a better solution.
7cc78f8f
AL
3506 *
3507 * NB: There are buggy callers of this function. Ideally we
c467ea76 3508 * should warn if prev_state != CONTEXT_USER, but that will trigger
7cc78f8f 3509 * too frequently to make sense yet.
20ab65e3 3510 */
7cc78f8f 3511 enum ctx_state prev_state = exception_enter();
20ab65e3 3512 schedule();
7cc78f8f 3513 exception_exit(prev_state);
20ab65e3
FW
3514}
3515#endif
3516
c5491ea7
TG
3517/**
3518 * schedule_preempt_disabled - called with preemption disabled
3519 *
3520 * Returns with preemption disabled. Note: preempt_count must be 1
3521 */
3522void __sched schedule_preempt_disabled(void)
3523{
ba74c144 3524 sched_preempt_enable_no_resched();
c5491ea7
TG
3525 schedule();
3526 preempt_disable();
3527}
3528
06b1f808 3529static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
3530{
3531 do {
47252cfb
SR
3532 /*
3533 * Because the function tracer can trace preempt_count_sub()
3534 * and it also uses preempt_enable/disable_notrace(), if
3535 * NEED_RESCHED is set, the preempt_enable_notrace() called
3536 * by the function tracer will call this function again and
3537 * cause infinite recursion.
3538 *
3539 * Preemption must be disabled here before the function
3540 * tracer can trace. Break up preempt_disable() into two
3541 * calls. One to disable preemption without fear of being
3542 * traced. The other to still record the preemption latency,
3543 * which can also be traced by the function tracer.
3544 */
499d7955 3545 preempt_disable_notrace();
47252cfb 3546 preempt_latency_start(1);
fc13aeba 3547 __schedule(true);
47252cfb 3548 preempt_latency_stop(1);
499d7955 3549 preempt_enable_no_resched_notrace();
a18b5d01
FW
3550
3551 /*
3552 * Check again in case we missed a preemption opportunity
3553 * between schedule and now.
3554 */
a18b5d01
FW
3555 } while (need_resched());
3556}
3557
1da177e4
LT
3558#ifdef CONFIG_PREEMPT
3559/*
2ed6e34f 3560 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3561 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3562 * occur there and call schedule directly.
3563 */
722a9f92 3564asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 3565{
1da177e4
LT
3566 /*
3567 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3568 * we do not want to preempt the current task. Just return..
1da177e4 3569 */
fbb00b56 3570 if (likely(!preemptible()))
1da177e4
LT
3571 return;
3572
a18b5d01 3573 preempt_schedule_common();
1da177e4 3574}
376e2424 3575NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 3576EXPORT_SYMBOL(preempt_schedule);
009f60e2 3577
009f60e2 3578/**
4eaca0a8 3579 * preempt_schedule_notrace - preempt_schedule called by tracing
009f60e2
ON
3580 *
3581 * The tracing infrastructure uses preempt_enable_notrace to prevent
3582 * recursion and tracing preempt enabling caused by the tracing
3583 * infrastructure itself. But as tracing can happen in areas coming
3584 * from userspace or just about to enter userspace, a preempt enable
3585 * can occur before user_exit() is called. This will cause the scheduler
3586 * to be called when the system is still in usermode.
3587 *
3588 * To prevent this, the preempt_enable_notrace will use this function
3589 * instead of preempt_schedule() to exit user context if needed before
3590 * calling the scheduler.
3591 */
4eaca0a8 3592asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
009f60e2
ON
3593{
3594 enum ctx_state prev_ctx;
3595
3596 if (likely(!preemptible()))
3597 return;
3598
3599 do {
47252cfb
SR
3600 /*
3601 * Because the function tracer can trace preempt_count_sub()
3602 * and it also uses preempt_enable/disable_notrace(), if
3603 * NEED_RESCHED is set, the preempt_enable_notrace() called
3604 * by the function tracer will call this function again and
3605 * cause infinite recursion.
3606 *
3607 * Preemption must be disabled here before the function
3608 * tracer can trace. Break up preempt_disable() into two
3609 * calls. One to disable preemption without fear of being
3610 * traced. The other to still record the preemption latency,
3611 * which can also be traced by the function tracer.
3612 */
3d8f74dd 3613 preempt_disable_notrace();
47252cfb 3614 preempt_latency_start(1);
009f60e2
ON
3615 /*
3616 * Needs preempt disabled in case user_exit() is traced
3617 * and the tracer calls preempt_enable_notrace() causing
3618 * an infinite recursion.
3619 */
3620 prev_ctx = exception_enter();
fc13aeba 3621 __schedule(true);
009f60e2
ON
3622 exception_exit(prev_ctx);
3623
47252cfb 3624 preempt_latency_stop(1);
3d8f74dd 3625 preempt_enable_no_resched_notrace();
009f60e2
ON
3626 } while (need_resched());
3627}
4eaca0a8 3628EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
009f60e2 3629
32e475d7 3630#endif /* CONFIG_PREEMPT */
1da177e4
LT
3631
3632/*
2ed6e34f 3633 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3634 * off of irq context.
3635 * Note, that this is called and return with irqs disabled. This will
3636 * protect us against recursive calling from irq.
3637 */
722a9f92 3638asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 3639{
b22366cd 3640 enum ctx_state prev_state;
6478d880 3641
2ed6e34f 3642 /* Catch callers which need to be fixed */
f27dde8d 3643 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 3644
b22366cd
FW
3645 prev_state = exception_enter();
3646
3a5c359a 3647 do {
3d8f74dd 3648 preempt_disable();
3a5c359a 3649 local_irq_enable();
fc13aeba 3650 __schedule(true);
3a5c359a 3651 local_irq_disable();
3d8f74dd 3652 sched_preempt_enable_no_resched();
5ed0cec0 3653 } while (need_resched());
b22366cd
FW
3654
3655 exception_exit(prev_state);
1da177e4
LT
3656}
3657
63859d4f 3658int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3659 void *key)
1da177e4 3660{
63859d4f 3661 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3662}
1da177e4
LT
3663EXPORT_SYMBOL(default_wake_function);
3664
b29739f9
IM
3665#ifdef CONFIG_RT_MUTEXES
3666
3667/*
3668 * rt_mutex_setprio - set the current priority of a task
3669 * @p: task
3670 * @prio: prio value (kernel-internal form)
3671 *
3672 * This function changes the 'effective' priority of a task. It does
3673 * not touch ->normal_prio like __setscheduler().
3674 *
c365c292
TG
3675 * Used by the rt_mutex code to implement priority inheritance
3676 * logic. Call site only calls if the priority of the task changed.
b29739f9 3677 */
36c8b586 3678void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3679{
ff77e468 3680 int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE;
83ab0aa0 3681 const struct sched_class *prev_class;
eb580751
PZ
3682 struct rq_flags rf;
3683 struct rq *rq;
b29739f9 3684
aab03e05 3685 BUG_ON(prio > MAX_PRIO);
b29739f9 3686
eb580751 3687 rq = __task_rq_lock(p, &rf);
80f5c1b8 3688 update_rq_clock(rq);
b29739f9 3689
1c4dd99b
TG
3690 /*
3691 * Idle task boosting is a nono in general. There is one
3692 * exception, when PREEMPT_RT and NOHZ is active:
3693 *
3694 * The idle task calls get_next_timer_interrupt() and holds
3695 * the timer wheel base->lock on the CPU and another CPU wants
3696 * to access the timer (probably to cancel it). We can safely
3697 * ignore the boosting request, as the idle CPU runs this code
3698 * with interrupts disabled and will complete the lock
3699 * protected section without being interrupted. So there is no
3700 * real need to boost.
3701 */
3702 if (unlikely(p == rq->idle)) {
3703 WARN_ON(p != rq->curr);
3704 WARN_ON(p->pi_blocked_on);
3705 goto out_unlock;
3706 }
3707
a8027073 3708 trace_sched_pi_setprio(p, prio);
d5f9f942 3709 oldprio = p->prio;
ff77e468
PZ
3710
3711 if (oldprio == prio)
3712 queue_flag &= ~DEQUEUE_MOVE;
3713
83ab0aa0 3714 prev_class = p->sched_class;
da0c1e65 3715 queued = task_on_rq_queued(p);
051a1d1a 3716 running = task_current(rq, p);
da0c1e65 3717 if (queued)
ff77e468 3718 dequeue_task(rq, p, queue_flag);
0e1f3483 3719 if (running)
f3cd1c4e 3720 put_prev_task(rq, p);
dd41f596 3721
2d3d891d
DF
3722 /*
3723 * Boosting condition are:
3724 * 1. -rt task is running and holds mutex A
3725 * --> -dl task blocks on mutex A
3726 *
3727 * 2. -dl task is running and holds mutex A
3728 * --> -dl task blocks on mutex A and could preempt the
3729 * running task
3730 */
3731 if (dl_prio(prio)) {
466af29b
ON
3732 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3733 if (!dl_prio(p->normal_prio) ||
3734 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d 3735 p->dl.dl_boosted = 1;
ff77e468 3736 queue_flag |= ENQUEUE_REPLENISH;
2d3d891d
DF
3737 } else
3738 p->dl.dl_boosted = 0;
aab03e05 3739 p->sched_class = &dl_sched_class;
2d3d891d
DF
3740 } else if (rt_prio(prio)) {
3741 if (dl_prio(oldprio))
3742 p->dl.dl_boosted = 0;
3743 if (oldprio < prio)
ff77e468 3744 queue_flag |= ENQUEUE_HEAD;
dd41f596 3745 p->sched_class = &rt_sched_class;
2d3d891d
DF
3746 } else {
3747 if (dl_prio(oldprio))
3748 p->dl.dl_boosted = 0;
746db944
BS
3749 if (rt_prio(oldprio))
3750 p->rt.timeout = 0;
dd41f596 3751 p->sched_class = &fair_sched_class;
2d3d891d 3752 }
dd41f596 3753
b29739f9
IM
3754 p->prio = prio;
3755
da0c1e65 3756 if (queued)
ff77e468 3757 enqueue_task(rq, p, queue_flag);
a399d233 3758 if (running)
b2bf6c31 3759 set_curr_task(rq, p);
cb469845 3760
da7a735e 3761 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3762out_unlock:
d1ccc66d
IM
3763 /* Avoid rq from going away on us: */
3764 preempt_disable();
eb580751 3765 __task_rq_unlock(rq, &rf);
4c9a4bc8
PZ
3766
3767 balance_callback(rq);
3768 preempt_enable();
b29739f9 3769}
b29739f9 3770#endif
d50dde5a 3771
36c8b586 3772void set_user_nice(struct task_struct *p, long nice)
1da177e4 3773{
49bd21ef
PZ
3774 bool queued, running;
3775 int old_prio, delta;
eb580751 3776 struct rq_flags rf;
70b97a7f 3777 struct rq *rq;
1da177e4 3778
75e45d51 3779 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
3780 return;
3781 /*
3782 * We have to be careful, if called from sys_setpriority(),
3783 * the task might be in the middle of scheduling on another CPU.
3784 */
eb580751 3785 rq = task_rq_lock(p, &rf);
2fb8d367
PZ
3786 update_rq_clock(rq);
3787
1da177e4
LT
3788 /*
3789 * The RT priorities are set via sched_setscheduler(), but we still
3790 * allow the 'normal' nice value to be set - but as expected
3791 * it wont have any effect on scheduling until the task is
aab03e05 3792 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3793 */
aab03e05 3794 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3795 p->static_prio = NICE_TO_PRIO(nice);
3796 goto out_unlock;
3797 }
da0c1e65 3798 queued = task_on_rq_queued(p);
49bd21ef 3799 running = task_current(rq, p);
da0c1e65 3800 if (queued)
1de64443 3801 dequeue_task(rq, p, DEQUEUE_SAVE);
49bd21ef
PZ
3802 if (running)
3803 put_prev_task(rq, p);
1da177e4 3804
1da177e4 3805 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3806 set_load_weight(p);
b29739f9
IM
3807 old_prio = p->prio;
3808 p->prio = effective_prio(p);
3809 delta = p->prio - old_prio;
1da177e4 3810
da0c1e65 3811 if (queued) {
1de64443 3812 enqueue_task(rq, p, ENQUEUE_RESTORE);
1da177e4 3813 /*
d5f9f942
AM
3814 * If the task increased its priority or is running and
3815 * lowered its priority, then reschedule its CPU:
1da177e4 3816 */
d5f9f942 3817 if (delta < 0 || (delta > 0 && task_running(rq, p)))
8875125e 3818 resched_curr(rq);
1da177e4 3819 }
49bd21ef
PZ
3820 if (running)
3821 set_curr_task(rq, p);
1da177e4 3822out_unlock:
eb580751 3823 task_rq_unlock(rq, p, &rf);
1da177e4 3824}
1da177e4
LT
3825EXPORT_SYMBOL(set_user_nice);
3826
e43379f1
MM
3827/*
3828 * can_nice - check if a task can reduce its nice value
3829 * @p: task
3830 * @nice: nice value
3831 */
36c8b586 3832int can_nice(const struct task_struct *p, const int nice)
e43379f1 3833{
d1ccc66d 3834 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
7aa2c016 3835 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 3836
78d7d407 3837 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3838 capable(CAP_SYS_NICE));
3839}
3840
1da177e4
LT
3841#ifdef __ARCH_WANT_SYS_NICE
3842
3843/*
3844 * sys_nice - change the priority of the current process.
3845 * @increment: priority increment
3846 *
3847 * sys_setpriority is a more generic, but much slower function that
3848 * does similar things.
3849 */
5add95d4 3850SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3851{
48f24c4d 3852 long nice, retval;
1da177e4
LT
3853
3854 /*
3855 * Setpriority might change our priority at the same moment.
3856 * We don't have to worry. Conceptually one call occurs first
3857 * and we have a single winner.
3858 */
a9467fa3 3859 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 3860 nice = task_nice(current) + increment;
1da177e4 3861
a9467fa3 3862 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
3863 if (increment < 0 && !can_nice(current, nice))
3864 return -EPERM;
3865
1da177e4
LT
3866 retval = security_task_setnice(current, nice);
3867 if (retval)
3868 return retval;
3869
3870 set_user_nice(current, nice);
3871 return 0;
3872}
3873
3874#endif
3875
3876/**
3877 * task_prio - return the priority value of a given task.
3878 * @p: the task in question.
3879 *
e69f6186 3880 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3881 * RT tasks are offset by -200. Normal tasks are centered
3882 * around 0, value goes from -16 to +15.
3883 */
36c8b586 3884int task_prio(const struct task_struct *p)
1da177e4
LT
3885{
3886 return p->prio - MAX_RT_PRIO;
3887}
3888
1da177e4 3889/**
d1ccc66d 3890 * idle_cpu - is a given CPU idle currently?
1da177e4 3891 * @cpu: the processor in question.
e69f6186
YB
3892 *
3893 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3894 */
3895int idle_cpu(int cpu)
3896{
908a3283
TG
3897 struct rq *rq = cpu_rq(cpu);
3898
3899 if (rq->curr != rq->idle)
3900 return 0;
3901
3902 if (rq->nr_running)
3903 return 0;
3904
3905#ifdef CONFIG_SMP
3906 if (!llist_empty(&rq->wake_list))
3907 return 0;
3908#endif
3909
3910 return 1;
1da177e4
LT
3911}
3912
1da177e4 3913/**
d1ccc66d 3914 * idle_task - return the idle task for a given CPU.
1da177e4 3915 * @cpu: the processor in question.
e69f6186 3916 *
d1ccc66d 3917 * Return: The idle task for the CPU @cpu.
1da177e4 3918 */
36c8b586 3919struct task_struct *idle_task(int cpu)
1da177e4
LT
3920{
3921 return cpu_rq(cpu)->idle;
3922}
3923
3924/**
3925 * find_process_by_pid - find a process with a matching PID value.
3926 * @pid: the pid in question.
e69f6186
YB
3927 *
3928 * The task of @pid, if found. %NULL otherwise.
1da177e4 3929 */
a9957449 3930static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3931{
228ebcbe 3932 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3933}
3934
aab03e05
DF
3935/*
3936 * This function initializes the sched_dl_entity of a newly becoming
3937 * SCHED_DEADLINE task.
3938 *
3939 * Only the static values are considered here, the actual runtime and the
3940 * absolute deadline will be properly calculated when the task is enqueued
3941 * for the first time with its new policy.
3942 */
3943static void
3944__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3945{
3946 struct sched_dl_entity *dl_se = &p->dl;
3947
aab03e05
DF
3948 dl_se->dl_runtime = attr->sched_runtime;
3949 dl_se->dl_deadline = attr->sched_deadline;
755378a4 3950 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 3951 dl_se->flags = attr->sched_flags;
332ac17e 3952 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
40767b0d
PZ
3953
3954 /*
3955 * Changing the parameters of a task is 'tricky' and we're not doing
3956 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3957 *
3958 * What we SHOULD do is delay the bandwidth release until the 0-lag
3959 * point. This would include retaining the task_struct until that time
3960 * and change dl_overflow() to not immediately decrement the current
3961 * amount.
3962 *
3963 * Instead we retain the current runtime/deadline and let the new
3964 * parameters take effect after the current reservation period lapses.
3965 * This is safe (albeit pessimistic) because the 0-lag point is always
3966 * before the current scheduling deadline.
3967 *
3968 * We can still have temporary overloads because we do not delay the
3969 * change in bandwidth until that time; so admission control is
3970 * not on the safe side. It does however guarantee tasks will never
3971 * consume more than promised.
3972 */
aab03e05
DF
3973}
3974
c13db6b1
SR
3975/*
3976 * sched_setparam() passes in -1 for its policy, to let the functions
3977 * it calls know not to change it.
3978 */
3979#define SETPARAM_POLICY -1
3980
c365c292
TG
3981static void __setscheduler_params(struct task_struct *p,
3982 const struct sched_attr *attr)
1da177e4 3983{
d50dde5a
DF
3984 int policy = attr->sched_policy;
3985
c13db6b1 3986 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
3987 policy = p->policy;
3988
1da177e4 3989 p->policy = policy;
d50dde5a 3990
aab03e05
DF
3991 if (dl_policy(policy))
3992 __setparam_dl(p, attr);
39fd8fd2 3993 else if (fair_policy(policy))
d50dde5a
DF
3994 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3995
39fd8fd2
PZ
3996 /*
3997 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3998 * !rt_policy. Always setting this ensures that things like
3999 * getparam()/getattr() don't report silly values for !rt tasks.
4000 */
4001 p->rt_priority = attr->sched_priority;
383afd09 4002 p->normal_prio = normal_prio(p);
c365c292
TG
4003 set_load_weight(p);
4004}
39fd8fd2 4005
c365c292
TG
4006/* Actually do priority change: must hold pi & rq lock. */
4007static void __setscheduler(struct rq *rq, struct task_struct *p,
0782e63b 4008 const struct sched_attr *attr, bool keep_boost)
c365c292
TG
4009{
4010 __setscheduler_params(p, attr);
d50dde5a 4011
383afd09 4012 /*
0782e63b
TG
4013 * Keep a potential priority boosting if called from
4014 * sched_setscheduler().
383afd09 4015 */
0782e63b
TG
4016 if (keep_boost)
4017 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
4018 else
4019 p->prio = normal_prio(p);
383afd09 4020
aab03e05
DF
4021 if (dl_prio(p->prio))
4022 p->sched_class = &dl_sched_class;
4023 else if (rt_prio(p->prio))
ffd44db5
PZ
4024 p->sched_class = &rt_sched_class;
4025 else
4026 p->sched_class = &fair_sched_class;
1da177e4 4027}
aab03e05
DF
4028
4029static void
4030__getparam_dl(struct task_struct *p, struct sched_attr *attr)
4031{
4032 struct sched_dl_entity *dl_se = &p->dl;
4033
4034 attr->sched_priority = p->rt_priority;
4035 attr->sched_runtime = dl_se->dl_runtime;
4036 attr->sched_deadline = dl_se->dl_deadline;
755378a4 4037 attr->sched_period = dl_se->dl_period;
aab03e05
DF
4038 attr->sched_flags = dl_se->flags;
4039}
4040
4041/*
4042 * This function validates the new parameters of a -deadline task.
4043 * We ask for the deadline not being zero, and greater or equal
755378a4 4044 * than the runtime, as well as the period of being zero or
332ac17e 4045 * greater than deadline. Furthermore, we have to be sure that
b0827819
JL
4046 * user parameters are above the internal resolution of 1us (we
4047 * check sched_runtime only since it is always the smaller one) and
4048 * below 2^63 ns (we have to check both sched_deadline and
4049 * sched_period, as the latter can be zero).
aab03e05
DF
4050 */
4051static bool
4052__checkparam_dl(const struct sched_attr *attr)
4053{
b0827819
JL
4054 /* deadline != 0 */
4055 if (attr->sched_deadline == 0)
4056 return false;
4057
4058 /*
4059 * Since we truncate DL_SCALE bits, make sure we're at least
4060 * that big.
4061 */
4062 if (attr->sched_runtime < (1ULL << DL_SCALE))
4063 return false;
4064
4065 /*
4066 * Since we use the MSB for wrap-around and sign issues, make
4067 * sure it's not set (mind that period can be equal to zero).
4068 */
4069 if (attr->sched_deadline & (1ULL << 63) ||
4070 attr->sched_period & (1ULL << 63))
4071 return false;
4072
4073 /* runtime <= deadline <= period (if period != 0) */
4074 if ((attr->sched_period != 0 &&
4075 attr->sched_period < attr->sched_deadline) ||
4076 attr->sched_deadline < attr->sched_runtime)
4077 return false;
4078
4079 return true;
aab03e05
DF
4080}
4081
c69e8d9c 4082/*
d1ccc66d 4083 * Check the target process has a UID that matches the current process's:
c69e8d9c
DH
4084 */
4085static bool check_same_owner(struct task_struct *p)
4086{
4087 const struct cred *cred = current_cred(), *pcred;
4088 bool match;
4089
4090 rcu_read_lock();
4091 pcred = __task_cred(p);
9c806aa0
EB
4092 match = (uid_eq(cred->euid, pcred->euid) ||
4093 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
4094 rcu_read_unlock();
4095 return match;
4096}
4097
d1ccc66d 4098static bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
75381608
WL
4099{
4100 struct sched_dl_entity *dl_se = &p->dl;
4101
4102 if (dl_se->dl_runtime != attr->sched_runtime ||
4103 dl_se->dl_deadline != attr->sched_deadline ||
4104 dl_se->dl_period != attr->sched_period ||
4105 dl_se->flags != attr->sched_flags)
4106 return true;
4107
4108 return false;
4109}
4110
d50dde5a
DF
4111static int __sched_setscheduler(struct task_struct *p,
4112 const struct sched_attr *attr,
dbc7f069 4113 bool user, bool pi)
1da177e4 4114{
383afd09
SR
4115 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4116 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 4117 int retval, oldprio, oldpolicy = -1, queued, running;
0782e63b 4118 int new_effective_prio, policy = attr->sched_policy;
83ab0aa0 4119 const struct sched_class *prev_class;
eb580751 4120 struct rq_flags rf;
ca94c442 4121 int reset_on_fork;
ff77e468 4122 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
eb580751 4123 struct rq *rq;
1da177e4 4124
d1ccc66d 4125 /* May grab non-irq protected spin_locks: */
66e5393a 4126 BUG_ON(in_interrupt());
1da177e4 4127recheck:
d1ccc66d 4128 /* Double check policy once rq lock held: */
ca94c442
LP
4129 if (policy < 0) {
4130 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4131 policy = oldpolicy = p->policy;
ca94c442 4132 } else {
7479f3c9 4133 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 4134
20f9cd2a 4135 if (!valid_policy(policy))
ca94c442
LP
4136 return -EINVAL;
4137 }
4138
7479f3c9
PZ
4139 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
4140 return -EINVAL;
4141
1da177e4
LT
4142 /*
4143 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4144 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4145 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 4146 */
0bb040a4 4147 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 4148 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 4149 return -EINVAL;
aab03e05
DF
4150 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4151 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
4152 return -EINVAL;
4153
37e4ab3f
OC
4154 /*
4155 * Allow unprivileged RT tasks to decrease priority:
4156 */
961ccddd 4157 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 4158 if (fair_policy(policy)) {
d0ea0268 4159 if (attr->sched_nice < task_nice(p) &&
eaad4513 4160 !can_nice(p, attr->sched_nice))
d50dde5a
DF
4161 return -EPERM;
4162 }
4163
e05606d3 4164 if (rt_policy(policy)) {
a44702e8
ON
4165 unsigned long rlim_rtprio =
4166 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909 4167
d1ccc66d 4168 /* Can't set/change the rt policy: */
8dc3e909
ON
4169 if (policy != p->policy && !rlim_rtprio)
4170 return -EPERM;
4171
d1ccc66d 4172 /* Can't increase priority: */
d50dde5a
DF
4173 if (attr->sched_priority > p->rt_priority &&
4174 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
4175 return -EPERM;
4176 }
c02aa73b 4177
d44753b8
JL
4178 /*
4179 * Can't set/change SCHED_DEADLINE policy at all for now
4180 * (safest behavior); in the future we would like to allow
4181 * unprivileged DL tasks to increase their relative deadline
4182 * or reduce their runtime (both ways reducing utilization)
4183 */
4184 if (dl_policy(policy))
4185 return -EPERM;
4186
dd41f596 4187 /*
c02aa73b
DH
4188 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4189 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 4190 */
20f9cd2a 4191 if (idle_policy(p->policy) && !idle_policy(policy)) {
d0ea0268 4192 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
4193 return -EPERM;
4194 }
5fe1d75f 4195
d1ccc66d 4196 /* Can't change other user's priorities: */
c69e8d9c 4197 if (!check_same_owner(p))
37e4ab3f 4198 return -EPERM;
ca94c442 4199
d1ccc66d 4200 /* Normal users shall not reset the sched_reset_on_fork flag: */
ca94c442
LP
4201 if (p->sched_reset_on_fork && !reset_on_fork)
4202 return -EPERM;
37e4ab3f 4203 }
1da177e4 4204
725aad24 4205 if (user) {
b0ae1981 4206 retval = security_task_setscheduler(p);
725aad24
JF
4207 if (retval)
4208 return retval;
4209 }
4210
b29739f9 4211 /*
d1ccc66d 4212 * Make sure no PI-waiters arrive (or leave) while we are
b29739f9 4213 * changing the priority of the task:
0122ec5b 4214 *
25985edc 4215 * To be able to change p->policy safely, the appropriate
1da177e4
LT
4216 * runqueue lock must be held.
4217 */
eb580751 4218 rq = task_rq_lock(p, &rf);
80f5c1b8 4219 update_rq_clock(rq);
dc61b1d6 4220
34f971f6 4221 /*
d1ccc66d 4222 * Changing the policy of the stop threads its a very bad idea:
34f971f6
PZ
4223 */
4224 if (p == rq->stop) {
eb580751 4225 task_rq_unlock(rq, p, &rf);
34f971f6
PZ
4226 return -EINVAL;
4227 }
4228
a51e9198 4229 /*
d6b1e911
TG
4230 * If not changing anything there's no need to proceed further,
4231 * but store a possible modification of reset_on_fork.
a51e9198 4232 */
d50dde5a 4233 if (unlikely(policy == p->policy)) {
d0ea0268 4234 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
4235 goto change;
4236 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4237 goto change;
75381608 4238 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 4239 goto change;
d50dde5a 4240
d6b1e911 4241 p->sched_reset_on_fork = reset_on_fork;
eb580751 4242 task_rq_unlock(rq, p, &rf);
a51e9198
DF
4243 return 0;
4244 }
d50dde5a 4245change:
a51e9198 4246
dc61b1d6 4247 if (user) {
332ac17e 4248#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
4249 /*
4250 * Do not allow realtime tasks into groups that have no runtime
4251 * assigned.
4252 */
4253 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
4254 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4255 !task_group_is_autogroup(task_group(p))) {
eb580751 4256 task_rq_unlock(rq, p, &rf);
dc61b1d6
PZ
4257 return -EPERM;
4258 }
dc61b1d6 4259#endif
332ac17e
DF
4260#ifdef CONFIG_SMP
4261 if (dl_bandwidth_enabled() && dl_policy(policy)) {
4262 cpumask_t *span = rq->rd->span;
332ac17e
DF
4263
4264 /*
4265 * Don't allow tasks with an affinity mask smaller than
4266 * the entire root_domain to become SCHED_DEADLINE. We
4267 * will also fail if there's no bandwidth available.
4268 */
e4099a5e
PZ
4269 if (!cpumask_subset(span, &p->cpus_allowed) ||
4270 rq->rd->dl_bw.bw == 0) {
eb580751 4271 task_rq_unlock(rq, p, &rf);
332ac17e
DF
4272 return -EPERM;
4273 }
4274 }
4275#endif
4276 }
dc61b1d6 4277
d1ccc66d 4278 /* Re-check policy now with rq lock held: */
1da177e4
LT
4279 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4280 policy = oldpolicy = -1;
eb580751 4281 task_rq_unlock(rq, p, &rf);
1da177e4
LT
4282 goto recheck;
4283 }
332ac17e
DF
4284
4285 /*
4286 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4287 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4288 * is available.
4289 */
e4099a5e 4290 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
eb580751 4291 task_rq_unlock(rq, p, &rf);
332ac17e
DF
4292 return -EBUSY;
4293 }
4294
c365c292
TG
4295 p->sched_reset_on_fork = reset_on_fork;
4296 oldprio = p->prio;
4297
dbc7f069
PZ
4298 if (pi) {
4299 /*
4300 * Take priority boosted tasks into account. If the new
4301 * effective priority is unchanged, we just store the new
4302 * normal parameters and do not touch the scheduler class and
4303 * the runqueue. This will be done when the task deboost
4304 * itself.
4305 */
4306 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
ff77e468
PZ
4307 if (new_effective_prio == oldprio)
4308 queue_flags &= ~DEQUEUE_MOVE;
c365c292
TG
4309 }
4310
da0c1e65 4311 queued = task_on_rq_queued(p);
051a1d1a 4312 running = task_current(rq, p);
da0c1e65 4313 if (queued)
ff77e468 4314 dequeue_task(rq, p, queue_flags);
0e1f3483 4315 if (running)
f3cd1c4e 4316 put_prev_task(rq, p);
f6b53205 4317
83ab0aa0 4318 prev_class = p->sched_class;
dbc7f069 4319 __setscheduler(rq, p, attr, pi);
f6b53205 4320
da0c1e65 4321 if (queued) {
81a44c54
TG
4322 /*
4323 * We enqueue to tail when the priority of a task is
4324 * increased (user space view).
4325 */
ff77e468
PZ
4326 if (oldprio < p->prio)
4327 queue_flags |= ENQUEUE_HEAD;
1de64443 4328
ff77e468 4329 enqueue_task(rq, p, queue_flags);
81a44c54 4330 }
a399d233 4331 if (running)
b2bf6c31 4332 set_curr_task(rq, p);
cb469845 4333
da7a735e 4334 check_class_changed(rq, p, prev_class, oldprio);
d1ccc66d
IM
4335
4336 /* Avoid rq from going away on us: */
4337 preempt_disable();
eb580751 4338 task_rq_unlock(rq, p, &rf);
b29739f9 4339
dbc7f069
PZ
4340 if (pi)
4341 rt_mutex_adjust_pi(p);
95e02ca9 4342
d1ccc66d 4343 /* Run balance callbacks after we've adjusted the PI chain: */
4c9a4bc8
PZ
4344 balance_callback(rq);
4345 preempt_enable();
95e02ca9 4346
1da177e4
LT
4347 return 0;
4348}
961ccddd 4349
7479f3c9
PZ
4350static int _sched_setscheduler(struct task_struct *p, int policy,
4351 const struct sched_param *param, bool check)
4352{
4353 struct sched_attr attr = {
4354 .sched_policy = policy,
4355 .sched_priority = param->sched_priority,
4356 .sched_nice = PRIO_TO_NICE(p->static_prio),
4357 };
4358
c13db6b1
SR
4359 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4360 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
4361 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4362 policy &= ~SCHED_RESET_ON_FORK;
4363 attr.sched_policy = policy;
4364 }
4365
dbc7f069 4366 return __sched_setscheduler(p, &attr, check, true);
7479f3c9 4367}
961ccddd
RR
4368/**
4369 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4370 * @p: the task in question.
4371 * @policy: new policy.
4372 * @param: structure containing the new RT priority.
4373 *
e69f6186
YB
4374 * Return: 0 on success. An error code otherwise.
4375 *
961ccddd
RR
4376 * NOTE that the task may be already dead.
4377 */
4378int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4379 const struct sched_param *param)
961ccddd 4380{
7479f3c9 4381 return _sched_setscheduler(p, policy, param, true);
961ccddd 4382}
1da177e4
LT
4383EXPORT_SYMBOL_GPL(sched_setscheduler);
4384
d50dde5a
DF
4385int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4386{
dbc7f069 4387 return __sched_setscheduler(p, attr, true, true);
d50dde5a
DF
4388}
4389EXPORT_SYMBOL_GPL(sched_setattr);
4390
961ccddd
RR
4391/**
4392 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4393 * @p: the task in question.
4394 * @policy: new policy.
4395 * @param: structure containing the new RT priority.
4396 *
4397 * Just like sched_setscheduler, only don't bother checking if the
4398 * current context has permission. For example, this is needed in
4399 * stop_machine(): we create temporary high priority worker threads,
4400 * but our caller might not have that capability.
e69f6186
YB
4401 *
4402 * Return: 0 on success. An error code otherwise.
961ccddd
RR
4403 */
4404int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 4405 const struct sched_param *param)
961ccddd 4406{
7479f3c9 4407 return _sched_setscheduler(p, policy, param, false);
961ccddd 4408}
84778472 4409EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
961ccddd 4410
95cdf3b7
IM
4411static int
4412do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4413{
1da177e4
LT
4414 struct sched_param lparam;
4415 struct task_struct *p;
36c8b586 4416 int retval;
1da177e4
LT
4417
4418 if (!param || pid < 0)
4419 return -EINVAL;
4420 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4421 return -EFAULT;
5fe1d75f
ON
4422
4423 rcu_read_lock();
4424 retval = -ESRCH;
1da177e4 4425 p = find_process_by_pid(pid);
5fe1d75f
ON
4426 if (p != NULL)
4427 retval = sched_setscheduler(p, policy, &lparam);
4428 rcu_read_unlock();
36c8b586 4429
1da177e4
LT
4430 return retval;
4431}
4432
d50dde5a
DF
4433/*
4434 * Mimics kernel/events/core.c perf_copy_attr().
4435 */
d1ccc66d 4436static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
d50dde5a
DF
4437{
4438 u32 size;
4439 int ret;
4440
4441 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4442 return -EFAULT;
4443
d1ccc66d 4444 /* Zero the full structure, so that a short copy will be nice: */
d50dde5a
DF
4445 memset(attr, 0, sizeof(*attr));
4446
4447 ret = get_user(size, &uattr->size);
4448 if (ret)
4449 return ret;
4450
d1ccc66d
IM
4451 /* Bail out on silly large: */
4452 if (size > PAGE_SIZE)
d50dde5a
DF
4453 goto err_size;
4454
d1ccc66d
IM
4455 /* ABI compatibility quirk: */
4456 if (!size)
d50dde5a
DF
4457 size = SCHED_ATTR_SIZE_VER0;
4458
4459 if (size < SCHED_ATTR_SIZE_VER0)
4460 goto err_size;
4461
4462 /*
4463 * If we're handed a bigger struct than we know of,
4464 * ensure all the unknown bits are 0 - i.e. new
4465 * user-space does not rely on any kernel feature
4466 * extensions we dont know about yet.
4467 */
4468 if (size > sizeof(*attr)) {
4469 unsigned char __user *addr;
4470 unsigned char __user *end;
4471 unsigned char val;
4472
4473 addr = (void __user *)uattr + sizeof(*attr);
4474 end = (void __user *)uattr + size;
4475
4476 for (; addr < end; addr++) {
4477 ret = get_user(val, addr);
4478 if (ret)
4479 return ret;
4480 if (val)
4481 goto err_size;
4482 }
4483 size = sizeof(*attr);
4484 }
4485
4486 ret = copy_from_user(attr, uattr, size);
4487 if (ret)
4488 return -EFAULT;
4489
4490 /*
d1ccc66d 4491 * XXX: Do we want to be lenient like existing syscalls; or do we want
d50dde5a
DF
4492 * to be strict and return an error on out-of-bounds values?
4493 */
75e45d51 4494 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 4495
e78c7bca 4496 return 0;
d50dde5a
DF
4497
4498err_size:
4499 put_user(sizeof(*attr), &uattr->size);
e78c7bca 4500 return -E2BIG;
d50dde5a
DF
4501}
4502
1da177e4
LT
4503/**
4504 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4505 * @pid: the pid in question.
4506 * @policy: new policy.
4507 * @param: structure containing the new RT priority.
e69f6186
YB
4508 *
4509 * Return: 0 on success. An error code otherwise.
1da177e4 4510 */
d1ccc66d 4511SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
1da177e4 4512{
c21761f1
JB
4513 if (policy < 0)
4514 return -EINVAL;
4515
1da177e4
LT
4516 return do_sched_setscheduler(pid, policy, param);
4517}
4518
4519/**
4520 * sys_sched_setparam - set/change the RT priority of a thread
4521 * @pid: the pid in question.
4522 * @param: structure containing the new RT priority.
e69f6186
YB
4523 *
4524 * Return: 0 on success. An error code otherwise.
1da177e4 4525 */
5add95d4 4526SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4527{
c13db6b1 4528 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
4529}
4530
d50dde5a
DF
4531/**
4532 * sys_sched_setattr - same as above, but with extended sched_attr
4533 * @pid: the pid in question.
5778fccf 4534 * @uattr: structure containing the extended parameters.
db66d756 4535 * @flags: for future extension.
d50dde5a 4536 */
6d35ab48
PZ
4537SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4538 unsigned int, flags)
d50dde5a
DF
4539{
4540 struct sched_attr attr;
4541 struct task_struct *p;
4542 int retval;
4543
6d35ab48 4544 if (!uattr || pid < 0 || flags)
d50dde5a
DF
4545 return -EINVAL;
4546
143cf23d
MK
4547 retval = sched_copy_attr(uattr, &attr);
4548 if (retval)
4549 return retval;
d50dde5a 4550
b14ed2c2 4551 if ((int)attr.sched_policy < 0)
dbdb2275 4552 return -EINVAL;
d50dde5a
DF
4553
4554 rcu_read_lock();
4555 retval = -ESRCH;
4556 p = find_process_by_pid(pid);
4557 if (p != NULL)
4558 retval = sched_setattr(p, &attr);
4559 rcu_read_unlock();
4560
4561 return retval;
4562}
4563
1da177e4
LT
4564/**
4565 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4566 * @pid: the pid in question.
e69f6186
YB
4567 *
4568 * Return: On success, the policy of the thread. Otherwise, a negative error
4569 * code.
1da177e4 4570 */
5add95d4 4571SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4572{
36c8b586 4573 struct task_struct *p;
3a5c359a 4574 int retval;
1da177e4
LT
4575
4576 if (pid < 0)
3a5c359a 4577 return -EINVAL;
1da177e4
LT
4578
4579 retval = -ESRCH;
5fe85be0 4580 rcu_read_lock();
1da177e4
LT
4581 p = find_process_by_pid(pid);
4582 if (p) {
4583 retval = security_task_getscheduler(p);
4584 if (!retval)
ca94c442
LP
4585 retval = p->policy
4586 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4587 }
5fe85be0 4588 rcu_read_unlock();
1da177e4
LT
4589 return retval;
4590}
4591
4592/**
ca94c442 4593 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4594 * @pid: the pid in question.
4595 * @param: structure containing the RT priority.
e69f6186
YB
4596 *
4597 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4598 * code.
1da177e4 4599 */
5add95d4 4600SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4601{
ce5f7f82 4602 struct sched_param lp = { .sched_priority = 0 };
36c8b586 4603 struct task_struct *p;
3a5c359a 4604 int retval;
1da177e4
LT
4605
4606 if (!param || pid < 0)
3a5c359a 4607 return -EINVAL;
1da177e4 4608
5fe85be0 4609 rcu_read_lock();
1da177e4
LT
4610 p = find_process_by_pid(pid);
4611 retval = -ESRCH;
4612 if (!p)
4613 goto out_unlock;
4614
4615 retval = security_task_getscheduler(p);
4616 if (retval)
4617 goto out_unlock;
4618
ce5f7f82
PZ
4619 if (task_has_rt_policy(p))
4620 lp.sched_priority = p->rt_priority;
5fe85be0 4621 rcu_read_unlock();
1da177e4
LT
4622
4623 /*
4624 * This one might sleep, we cannot do it with a spinlock held ...
4625 */
4626 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4627
1da177e4
LT
4628 return retval;
4629
4630out_unlock:
5fe85be0 4631 rcu_read_unlock();
1da177e4
LT
4632 return retval;
4633}
4634
d50dde5a
DF
4635static int sched_read_attr(struct sched_attr __user *uattr,
4636 struct sched_attr *attr,
4637 unsigned int usize)
4638{
4639 int ret;
4640
4641 if (!access_ok(VERIFY_WRITE, uattr, usize))
4642 return -EFAULT;
4643
4644 /*
4645 * If we're handed a smaller struct than we know of,
4646 * ensure all the unknown bits are 0 - i.e. old
4647 * user-space does not get uncomplete information.
4648 */
4649 if (usize < sizeof(*attr)) {
4650 unsigned char *addr;
4651 unsigned char *end;
4652
4653 addr = (void *)attr + usize;
4654 end = (void *)attr + sizeof(*attr);
4655
4656 for (; addr < end; addr++) {
4657 if (*addr)
22400674 4658 return -EFBIG;
d50dde5a
DF
4659 }
4660
4661 attr->size = usize;
4662 }
4663
4efbc454 4664 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
4665 if (ret)
4666 return -EFAULT;
4667
22400674 4668 return 0;
d50dde5a
DF
4669}
4670
4671/**
aab03e05 4672 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 4673 * @pid: the pid in question.
5778fccf 4674 * @uattr: structure containing the extended parameters.
d50dde5a 4675 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 4676 * @flags: for future extension.
d50dde5a 4677 */
6d35ab48
PZ
4678SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4679 unsigned int, size, unsigned int, flags)
d50dde5a
DF
4680{
4681 struct sched_attr attr = {
4682 .size = sizeof(struct sched_attr),
4683 };
4684 struct task_struct *p;
4685 int retval;
4686
4687 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 4688 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
4689 return -EINVAL;
4690
4691 rcu_read_lock();
4692 p = find_process_by_pid(pid);
4693 retval = -ESRCH;
4694 if (!p)
4695 goto out_unlock;
4696
4697 retval = security_task_getscheduler(p);
4698 if (retval)
4699 goto out_unlock;
4700
4701 attr.sched_policy = p->policy;
7479f3c9
PZ
4702 if (p->sched_reset_on_fork)
4703 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
4704 if (task_has_dl_policy(p))
4705 __getparam_dl(p, &attr);
4706 else if (task_has_rt_policy(p))
d50dde5a
DF
4707 attr.sched_priority = p->rt_priority;
4708 else
d0ea0268 4709 attr.sched_nice = task_nice(p);
d50dde5a
DF
4710
4711 rcu_read_unlock();
4712
4713 retval = sched_read_attr(uattr, &attr, size);
4714 return retval;
4715
4716out_unlock:
4717 rcu_read_unlock();
4718 return retval;
4719}
4720
96f874e2 4721long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4722{
5a16f3d3 4723 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4724 struct task_struct *p;
4725 int retval;
1da177e4 4726
23f5d142 4727 rcu_read_lock();
1da177e4
LT
4728
4729 p = find_process_by_pid(pid);
4730 if (!p) {
23f5d142 4731 rcu_read_unlock();
1da177e4
LT
4732 return -ESRCH;
4733 }
4734
23f5d142 4735 /* Prevent p going away */
1da177e4 4736 get_task_struct(p);
23f5d142 4737 rcu_read_unlock();
1da177e4 4738
14a40ffc
TH
4739 if (p->flags & PF_NO_SETAFFINITY) {
4740 retval = -EINVAL;
4741 goto out_put_task;
4742 }
5a16f3d3
RR
4743 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4744 retval = -ENOMEM;
4745 goto out_put_task;
4746 }
4747 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4748 retval = -ENOMEM;
4749 goto out_free_cpus_allowed;
4750 }
1da177e4 4751 retval = -EPERM;
4c44aaaf
EB
4752 if (!check_same_owner(p)) {
4753 rcu_read_lock();
4754 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4755 rcu_read_unlock();
16303ab2 4756 goto out_free_new_mask;
4c44aaaf
EB
4757 }
4758 rcu_read_unlock();
4759 }
1da177e4 4760
b0ae1981 4761 retval = security_task_setscheduler(p);
e7834f8f 4762 if (retval)
16303ab2 4763 goto out_free_new_mask;
e7834f8f 4764
e4099a5e
PZ
4765
4766 cpuset_cpus_allowed(p, cpus_allowed);
4767 cpumask_and(new_mask, in_mask, cpus_allowed);
4768
332ac17e
DF
4769 /*
4770 * Since bandwidth control happens on root_domain basis,
4771 * if admission test is enabled, we only admit -deadline
4772 * tasks allowed to run on all the CPUs in the task's
4773 * root_domain.
4774 */
4775#ifdef CONFIG_SMP
f1e3a093
KT
4776 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4777 rcu_read_lock();
4778 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 4779 retval = -EBUSY;
f1e3a093 4780 rcu_read_unlock();
16303ab2 4781 goto out_free_new_mask;
332ac17e 4782 }
f1e3a093 4783 rcu_read_unlock();
332ac17e
DF
4784 }
4785#endif
49246274 4786again:
25834c73 4787 retval = __set_cpus_allowed_ptr(p, new_mask, true);
1da177e4 4788
8707d8b8 4789 if (!retval) {
5a16f3d3
RR
4790 cpuset_cpus_allowed(p, cpus_allowed);
4791 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4792 /*
4793 * We must have raced with a concurrent cpuset
4794 * update. Just reset the cpus_allowed to the
4795 * cpuset's cpus_allowed
4796 */
5a16f3d3 4797 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4798 goto again;
4799 }
4800 }
16303ab2 4801out_free_new_mask:
5a16f3d3
RR
4802 free_cpumask_var(new_mask);
4803out_free_cpus_allowed:
4804 free_cpumask_var(cpus_allowed);
4805out_put_task:
1da177e4 4806 put_task_struct(p);
1da177e4
LT
4807 return retval;
4808}
4809
4810static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4811 struct cpumask *new_mask)
1da177e4 4812{
96f874e2
RR
4813 if (len < cpumask_size())
4814 cpumask_clear(new_mask);
4815 else if (len > cpumask_size())
4816 len = cpumask_size();
4817
1da177e4
LT
4818 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4819}
4820
4821/**
d1ccc66d 4822 * sys_sched_setaffinity - set the CPU affinity of a process
1da177e4
LT
4823 * @pid: pid of the process
4824 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
d1ccc66d 4825 * @user_mask_ptr: user-space pointer to the new CPU mask
e69f6186
YB
4826 *
4827 * Return: 0 on success. An error code otherwise.
1da177e4 4828 */
5add95d4
HC
4829SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4830 unsigned long __user *, user_mask_ptr)
1da177e4 4831{
5a16f3d3 4832 cpumask_var_t new_mask;
1da177e4
LT
4833 int retval;
4834
5a16f3d3
RR
4835 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4836 return -ENOMEM;
1da177e4 4837
5a16f3d3
RR
4838 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4839 if (retval == 0)
4840 retval = sched_setaffinity(pid, new_mask);
4841 free_cpumask_var(new_mask);
4842 return retval;
1da177e4
LT
4843}
4844
96f874e2 4845long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4846{
36c8b586 4847 struct task_struct *p;
31605683 4848 unsigned long flags;
1da177e4 4849 int retval;
1da177e4 4850
23f5d142 4851 rcu_read_lock();
1da177e4
LT
4852
4853 retval = -ESRCH;
4854 p = find_process_by_pid(pid);
4855 if (!p)
4856 goto out_unlock;
4857
e7834f8f
DQ
4858 retval = security_task_getscheduler(p);
4859 if (retval)
4860 goto out_unlock;
4861
013fdb80 4862 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4863 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4864 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4865
4866out_unlock:
23f5d142 4867 rcu_read_unlock();
1da177e4 4868
9531b62f 4869 return retval;
1da177e4
LT
4870}
4871
4872/**
d1ccc66d 4873 * sys_sched_getaffinity - get the CPU affinity of a process
1da177e4
LT
4874 * @pid: pid of the process
4875 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
d1ccc66d 4876 * @user_mask_ptr: user-space pointer to hold the current CPU mask
e69f6186 4877 *
599b4840
ZW
4878 * Return: size of CPU mask copied to user_mask_ptr on success. An
4879 * error code otherwise.
1da177e4 4880 */
5add95d4
HC
4881SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4882 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4883{
4884 int ret;
f17c8607 4885 cpumask_var_t mask;
1da177e4 4886
84fba5ec 4887 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4888 return -EINVAL;
4889 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4890 return -EINVAL;
4891
f17c8607
RR
4892 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4893 return -ENOMEM;
1da177e4 4894
f17c8607
RR
4895 ret = sched_getaffinity(pid, mask);
4896 if (ret == 0) {
8bc037fb 4897 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4898
4899 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4900 ret = -EFAULT;
4901 else
cd3d8031 4902 ret = retlen;
f17c8607
RR
4903 }
4904 free_cpumask_var(mask);
1da177e4 4905
f17c8607 4906 return ret;
1da177e4
LT
4907}
4908
4909/**
4910 * sys_sched_yield - yield the current processor to other threads.
4911 *
dd41f596
IM
4912 * This function yields the current CPU to other tasks. If there are no
4913 * other threads running on this CPU then this function will return.
e69f6186
YB
4914 *
4915 * Return: 0.
1da177e4 4916 */
5add95d4 4917SYSCALL_DEFINE0(sched_yield)
1da177e4 4918{
8a8c69c3
PZ
4919 struct rq_flags rf;
4920 struct rq *rq;
4921
4922 local_irq_disable();
4923 rq = this_rq();
4924 rq_lock(rq, &rf);
1da177e4 4925
ae92882e 4926 schedstat_inc(rq->yld_count);
4530d7ab 4927 current->sched_class->yield_task(rq);
1da177e4
LT
4928
4929 /*
4930 * Since we are going to call schedule() anyway, there's
4931 * no need to preempt or enable interrupts:
4932 */
8a8c69c3
PZ
4933 preempt_disable();
4934 rq_unlock(rq, &rf);
ba74c144 4935 sched_preempt_enable_no_resched();
1da177e4
LT
4936
4937 schedule();
4938
4939 return 0;
4940}
4941
35a773a0 4942#ifndef CONFIG_PREEMPT
02b67cc3 4943int __sched _cond_resched(void)
1da177e4 4944{
fe32d3cd 4945 if (should_resched(0)) {
a18b5d01 4946 preempt_schedule_common();
1da177e4
LT
4947 return 1;
4948 }
4949 return 0;
4950}
02b67cc3 4951EXPORT_SYMBOL(_cond_resched);
35a773a0 4952#endif
1da177e4
LT
4953
4954/*
613afbf8 4955 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4956 * call schedule, and on return reacquire the lock.
4957 *
41a2d6cf 4958 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4959 * operations here to prevent schedule() from being called twice (once via
4960 * spin_unlock(), once by hand).
4961 */
613afbf8 4962int __cond_resched_lock(spinlock_t *lock)
1da177e4 4963{
fe32d3cd 4964 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6df3cecb
JK
4965 int ret = 0;
4966
f607c668
PZ
4967 lockdep_assert_held(lock);
4968
4a81e832 4969 if (spin_needbreak(lock) || resched) {
1da177e4 4970 spin_unlock(lock);
d86ee480 4971 if (resched)
a18b5d01 4972 preempt_schedule_common();
95c354fe
NP
4973 else
4974 cpu_relax();
6df3cecb 4975 ret = 1;
1da177e4 4976 spin_lock(lock);
1da177e4 4977 }
6df3cecb 4978 return ret;
1da177e4 4979}
613afbf8 4980EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4981
613afbf8 4982int __sched __cond_resched_softirq(void)
1da177e4
LT
4983{
4984 BUG_ON(!in_softirq());
4985
fe32d3cd 4986 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
98d82567 4987 local_bh_enable();
a18b5d01 4988 preempt_schedule_common();
1da177e4
LT
4989 local_bh_disable();
4990 return 1;
4991 }
4992 return 0;
4993}
613afbf8 4994EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4995
1da177e4
LT
4996/**
4997 * yield - yield the current processor to other threads.
4998 *
8e3fabfd
PZ
4999 * Do not ever use this function, there's a 99% chance you're doing it wrong.
5000 *
5001 * The scheduler is at all times free to pick the calling task as the most
5002 * eligible task to run, if removing the yield() call from your code breaks
5003 * it, its already broken.
5004 *
5005 * Typical broken usage is:
5006 *
5007 * while (!event)
d1ccc66d 5008 * yield();
8e3fabfd
PZ
5009 *
5010 * where one assumes that yield() will let 'the other' process run that will
5011 * make event true. If the current task is a SCHED_FIFO task that will never
5012 * happen. Never use yield() as a progress guarantee!!
5013 *
5014 * If you want to use yield() to wait for something, use wait_event().
5015 * If you want to use yield() to be 'nice' for others, use cond_resched().
5016 * If you still want to use yield(), do not!
1da177e4
LT
5017 */
5018void __sched yield(void)
5019{
5020 set_current_state(TASK_RUNNING);
5021 sys_sched_yield();
5022}
1da177e4
LT
5023EXPORT_SYMBOL(yield);
5024
d95f4122
MG
5025/**
5026 * yield_to - yield the current processor to another thread in
5027 * your thread group, or accelerate that thread toward the
5028 * processor it's on.
16addf95
RD
5029 * @p: target task
5030 * @preempt: whether task preemption is allowed or not
d95f4122
MG
5031 *
5032 * It's the caller's job to ensure that the target task struct
5033 * can't go away on us before we can do any checks.
5034 *
e69f6186 5035 * Return:
7b270f60
PZ
5036 * true (>0) if we indeed boosted the target task.
5037 * false (0) if we failed to boost the target.
5038 * -ESRCH if there's no task to yield to.
d95f4122 5039 */
fa93384f 5040int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
5041{
5042 struct task_struct *curr = current;
5043 struct rq *rq, *p_rq;
5044 unsigned long flags;
c3c18640 5045 int yielded = 0;
d95f4122
MG
5046
5047 local_irq_save(flags);
5048 rq = this_rq();
5049
5050again:
5051 p_rq = task_rq(p);
7b270f60
PZ
5052 /*
5053 * If we're the only runnable task on the rq and target rq also
5054 * has only one task, there's absolutely no point in yielding.
5055 */
5056 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5057 yielded = -ESRCH;
5058 goto out_irq;
5059 }
5060
d95f4122 5061 double_rq_lock(rq, p_rq);
39e24d8f 5062 if (task_rq(p) != p_rq) {
d95f4122
MG
5063 double_rq_unlock(rq, p_rq);
5064 goto again;
5065 }
5066
5067 if (!curr->sched_class->yield_to_task)
7b270f60 5068 goto out_unlock;
d95f4122
MG
5069
5070 if (curr->sched_class != p->sched_class)
7b270f60 5071 goto out_unlock;
d95f4122
MG
5072
5073 if (task_running(p_rq, p) || p->state)
7b270f60 5074 goto out_unlock;
d95f4122
MG
5075
5076 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 5077 if (yielded) {
ae92882e 5078 schedstat_inc(rq->yld_count);
6d1cafd8
VP
5079 /*
5080 * Make p's CPU reschedule; pick_next_entity takes care of
5081 * fairness.
5082 */
5083 if (preempt && rq != p_rq)
8875125e 5084 resched_curr(p_rq);
6d1cafd8 5085 }
d95f4122 5086
7b270f60 5087out_unlock:
d95f4122 5088 double_rq_unlock(rq, p_rq);
7b270f60 5089out_irq:
d95f4122
MG
5090 local_irq_restore(flags);
5091
7b270f60 5092 if (yielded > 0)
d95f4122
MG
5093 schedule();
5094
5095 return yielded;
5096}
5097EXPORT_SYMBOL_GPL(yield_to);
5098
10ab5643
TH
5099int io_schedule_prepare(void)
5100{
5101 int old_iowait = current->in_iowait;
5102
5103 current->in_iowait = 1;
5104 blk_schedule_flush_plug(current);
5105
5106 return old_iowait;
5107}
5108
5109void io_schedule_finish(int token)
5110{
5111 current->in_iowait = token;
5112}
5113
1da177e4 5114/*
41a2d6cf 5115 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5116 * that process accounting knows that this is a task in IO wait state.
1da177e4 5117 */
1da177e4
LT
5118long __sched io_schedule_timeout(long timeout)
5119{
10ab5643 5120 int token;
1da177e4
LT
5121 long ret;
5122
10ab5643 5123 token = io_schedule_prepare();
1da177e4 5124 ret = schedule_timeout(timeout);
10ab5643 5125 io_schedule_finish(token);
9cff8ade 5126
1da177e4
LT
5127 return ret;
5128}
9cff8ade 5129EXPORT_SYMBOL(io_schedule_timeout);
1da177e4 5130
10ab5643
TH
5131void io_schedule(void)
5132{
5133 int token;
5134
5135 token = io_schedule_prepare();
5136 schedule();
5137 io_schedule_finish(token);
5138}
5139EXPORT_SYMBOL(io_schedule);
5140
1da177e4
LT
5141/**
5142 * sys_sched_get_priority_max - return maximum RT priority.
5143 * @policy: scheduling class.
5144 *
e69f6186
YB
5145 * Return: On success, this syscall returns the maximum
5146 * rt_priority that can be used by a given scheduling class.
5147 * On failure, a negative error code is returned.
1da177e4 5148 */
5add95d4 5149SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5150{
5151 int ret = -EINVAL;
5152
5153 switch (policy) {
5154 case SCHED_FIFO:
5155 case SCHED_RR:
5156 ret = MAX_USER_RT_PRIO-1;
5157 break;
aab03e05 5158 case SCHED_DEADLINE:
1da177e4 5159 case SCHED_NORMAL:
b0a9499c 5160 case SCHED_BATCH:
dd41f596 5161 case SCHED_IDLE:
1da177e4
LT
5162 ret = 0;
5163 break;
5164 }
5165 return ret;
5166}
5167
5168/**
5169 * sys_sched_get_priority_min - return minimum RT priority.
5170 * @policy: scheduling class.
5171 *
e69f6186
YB
5172 * Return: On success, this syscall returns the minimum
5173 * rt_priority that can be used by a given scheduling class.
5174 * On failure, a negative error code is returned.
1da177e4 5175 */
5add95d4 5176SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5177{
5178 int ret = -EINVAL;
5179
5180 switch (policy) {
5181 case SCHED_FIFO:
5182 case SCHED_RR:
5183 ret = 1;
5184 break;
aab03e05 5185 case SCHED_DEADLINE:
1da177e4 5186 case SCHED_NORMAL:
b0a9499c 5187 case SCHED_BATCH:
dd41f596 5188 case SCHED_IDLE:
1da177e4
LT
5189 ret = 0;
5190 }
5191 return ret;
5192}
5193
5194/**
5195 * sys_sched_rr_get_interval - return the default timeslice of a process.
5196 * @pid: pid of the process.
5197 * @interval: userspace pointer to the timeslice value.
5198 *
5199 * this syscall writes the default timeslice value of a given process
5200 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
5201 *
5202 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5203 * an error code.
1da177e4 5204 */
17da2bd9 5205SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5206 struct timespec __user *, interval)
1da177e4 5207{
36c8b586 5208 struct task_struct *p;
a4ec24b4 5209 unsigned int time_slice;
eb580751
PZ
5210 struct rq_flags rf;
5211 struct timespec t;
dba091b9 5212 struct rq *rq;
3a5c359a 5213 int retval;
1da177e4
LT
5214
5215 if (pid < 0)
3a5c359a 5216 return -EINVAL;
1da177e4
LT
5217
5218 retval = -ESRCH;
1a551ae7 5219 rcu_read_lock();
1da177e4
LT
5220 p = find_process_by_pid(pid);
5221 if (!p)
5222 goto out_unlock;
5223
5224 retval = security_task_getscheduler(p);
5225 if (retval)
5226 goto out_unlock;
5227
eb580751 5228 rq = task_rq_lock(p, &rf);
a57beec5
PZ
5229 time_slice = 0;
5230 if (p->sched_class->get_rr_interval)
5231 time_slice = p->sched_class->get_rr_interval(rq, p);
eb580751 5232 task_rq_unlock(rq, p, &rf);
a4ec24b4 5233
1a551ae7 5234 rcu_read_unlock();
a4ec24b4 5235 jiffies_to_timespec(time_slice, &t);
1da177e4 5236 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5237 return retval;
3a5c359a 5238
1da177e4 5239out_unlock:
1a551ae7 5240 rcu_read_unlock();
1da177e4
LT
5241 return retval;
5242}
5243
7c731e0a 5244static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5245
82a1fcb9 5246void sched_show_task(struct task_struct *p)
1da177e4 5247{
1da177e4 5248 unsigned long free = 0;
4e79752c 5249 int ppid;
1f8a7633 5250 unsigned long state = p->state;
1da177e4 5251
c930b2c0
IM
5252 /* Make sure the string lines up properly with the number of task states: */
5253 BUILD_BUG_ON(sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1);
5254
38200502
TH
5255 if (!try_get_task_stack(p))
5256 return;
1f8a7633
TH
5257 if (state)
5258 state = __ffs(state) + 1;
28d0686c 5259 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 5260 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
1da177e4 5261 if (state == TASK_RUNNING)
3df0fc5b 5262 printk(KERN_CONT " running task ");
1da177e4 5263#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5264 free = stack_not_used(p);
1da177e4 5265#endif
a90e984c 5266 ppid = 0;
4e79752c 5267 rcu_read_lock();
a90e984c
ON
5268 if (pid_alive(p))
5269 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 5270 rcu_read_unlock();
3df0fc5b 5271 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 5272 task_pid_nr(p), ppid,
aa47b7e0 5273 (unsigned long)task_thread_info(p)->flags);
1da177e4 5274
3d1cb205 5275 print_worker_info(KERN_INFO, p);
5fb5e6de 5276 show_stack(p, NULL);
38200502 5277 put_task_stack(p);
1da177e4
LT
5278}
5279
e59e2ae2 5280void show_state_filter(unsigned long state_filter)
1da177e4 5281{
36c8b586 5282 struct task_struct *g, *p;
1da177e4 5283
4bd77321 5284#if BITS_PER_LONG == 32
3df0fc5b
PZ
5285 printk(KERN_INFO
5286 " task PC stack pid father\n");
1da177e4 5287#else
3df0fc5b
PZ
5288 printk(KERN_INFO
5289 " task PC stack pid father\n");
1da177e4 5290#endif
510f5acc 5291 rcu_read_lock();
5d07f420 5292 for_each_process_thread(g, p) {
1da177e4
LT
5293 /*
5294 * reset the NMI-timeout, listing all files on a slow
25985edc 5295 * console might take a lot of time:
57675cb9
AR
5296 * Also, reset softlockup watchdogs on all CPUs, because
5297 * another CPU might be blocked waiting for us to process
5298 * an IPI.
1da177e4
LT
5299 */
5300 touch_nmi_watchdog();
57675cb9 5301 touch_all_softlockup_watchdogs();
39bc89fd 5302 if (!state_filter || (p->state & state_filter))
82a1fcb9 5303 sched_show_task(p);
5d07f420 5304 }
1da177e4 5305
dd41f596 5306#ifdef CONFIG_SCHED_DEBUG
fb90a6e9
RV
5307 if (!state_filter)
5308 sysrq_sched_debug_show();
dd41f596 5309#endif
510f5acc 5310 rcu_read_unlock();
e59e2ae2
IM
5311 /*
5312 * Only show locks if all tasks are dumped:
5313 */
93335a21 5314 if (!state_filter)
e59e2ae2 5315 debug_show_all_locks();
1da177e4
LT
5316}
5317
0db0628d 5318void init_idle_bootup_task(struct task_struct *idle)
1df21055 5319{
dd41f596 5320 idle->sched_class = &idle_sched_class;
1df21055
IM
5321}
5322
f340c0d1
IM
5323/**
5324 * init_idle - set up an idle thread for a given CPU
5325 * @idle: task in question
d1ccc66d 5326 * @cpu: CPU the idle task belongs to
f340c0d1
IM
5327 *
5328 * NOTE: this function does not set the idle thread's NEED_RESCHED
5329 * flag, to make booting more robust.
5330 */
0db0628d 5331void init_idle(struct task_struct *idle, int cpu)
1da177e4 5332{
70b97a7f 5333 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5334 unsigned long flags;
5335
25834c73
PZ
5336 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5337 raw_spin_lock(&rq->lock);
5cbd54ef 5338
5e1576ed 5339 __sched_fork(0, idle);
06b83b5f 5340 idle->state = TASK_RUNNING;
dd41f596 5341 idle->se.exec_start = sched_clock();
c1de45ca 5342 idle->flags |= PF_IDLE;
dd41f596 5343
e1b77c92
MR
5344 kasan_unpoison_task_stack(idle);
5345
de9b8f5d
PZ
5346#ifdef CONFIG_SMP
5347 /*
5348 * Its possible that init_idle() gets called multiple times on a task,
5349 * in that case do_set_cpus_allowed() will not do the right thing.
5350 *
5351 * And since this is boot we can forgo the serialization.
5352 */
5353 set_cpus_allowed_common(idle, cpumask_of(cpu));
5354#endif
6506cf6c
PZ
5355 /*
5356 * We're having a chicken and egg problem, even though we are
d1ccc66d 5357 * holding rq->lock, the CPU isn't yet set to this CPU so the
6506cf6c
PZ
5358 * lockdep check in task_group() will fail.
5359 *
5360 * Similar case to sched_fork(). / Alternatively we could
5361 * use task_rq_lock() here and obtain the other rq->lock.
5362 *
5363 * Silence PROVE_RCU
5364 */
5365 rcu_read_lock();
dd41f596 5366 __set_task_cpu(idle, cpu);
6506cf6c 5367 rcu_read_unlock();
1da177e4 5368
1da177e4 5369 rq->curr = rq->idle = idle;
da0c1e65 5370 idle->on_rq = TASK_ON_RQ_QUEUED;
de9b8f5d 5371#ifdef CONFIG_SMP
3ca7a440 5372 idle->on_cpu = 1;
4866cde0 5373#endif
25834c73
PZ
5374 raw_spin_unlock(&rq->lock);
5375 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
1da177e4
LT
5376
5377 /* Set the preempt count _outside_ the spinlocks! */
01028747 5378 init_idle_preempt_count(idle, cpu);
55cd5340 5379
dd41f596
IM
5380 /*
5381 * The idle tasks have their own, simple scheduling class:
5382 */
5383 idle->sched_class = &idle_sched_class;
868baf07 5384 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 5385 vtime_init_idle(idle, cpu);
de9b8f5d 5386#ifdef CONFIG_SMP
f1c6f1a7
CE
5387 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5388#endif
19978ca6
IM
5389}
5390
f82f8042
JL
5391int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5392 const struct cpumask *trial)
5393{
5394 int ret = 1, trial_cpus;
5395 struct dl_bw *cur_dl_b;
5396 unsigned long flags;
5397
bb2bc55a
MG
5398 if (!cpumask_weight(cur))
5399 return ret;
5400
75e23e49 5401 rcu_read_lock_sched();
f82f8042
JL
5402 cur_dl_b = dl_bw_of(cpumask_any(cur));
5403 trial_cpus = cpumask_weight(trial);
5404
5405 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5406 if (cur_dl_b->bw != -1 &&
5407 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5408 ret = 0;
5409 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
75e23e49 5410 rcu_read_unlock_sched();
f82f8042
JL
5411
5412 return ret;
5413}
5414
7f51412a
JL
5415int task_can_attach(struct task_struct *p,
5416 const struct cpumask *cs_cpus_allowed)
5417{
5418 int ret = 0;
5419
5420 /*
5421 * Kthreads which disallow setaffinity shouldn't be moved
d1ccc66d 5422 * to a new cpuset; we don't want to change their CPU
7f51412a
JL
5423 * affinity and isolating such threads by their set of
5424 * allowed nodes is unnecessary. Thus, cpusets are not
5425 * applicable for such threads. This prevents checking for
5426 * success of set_cpus_allowed_ptr() on all attached tasks
5427 * before cpus_allowed may be changed.
5428 */
5429 if (p->flags & PF_NO_SETAFFINITY) {
5430 ret = -EINVAL;
5431 goto out;
5432 }
5433
5434#ifdef CONFIG_SMP
5435 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5436 cs_cpus_allowed)) {
5437 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5438 cs_cpus_allowed);
75e23e49 5439 struct dl_bw *dl_b;
7f51412a
JL
5440 bool overflow;
5441 int cpus;
5442 unsigned long flags;
5443
75e23e49
JL
5444 rcu_read_lock_sched();
5445 dl_b = dl_bw_of(dest_cpu);
7f51412a
JL
5446 raw_spin_lock_irqsave(&dl_b->lock, flags);
5447 cpus = dl_bw_cpus(dest_cpu);
5448 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5449 if (overflow)
5450 ret = -EBUSY;
5451 else {
5452 /*
5453 * We reserve space for this task in the destination
5454 * root_domain, as we can't fail after this point.
5455 * We will free resources in the source root_domain
5456 * later on (see set_cpus_allowed_dl()).
5457 */
5458 __dl_add(dl_b, p->dl.dl_bw);
5459 }
5460 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
75e23e49 5461 rcu_read_unlock_sched();
7f51412a
JL
5462
5463 }
5464#endif
5465out:
5466 return ret;
5467}
5468
1da177e4 5469#ifdef CONFIG_SMP
1da177e4 5470
f2cb1360 5471bool sched_smp_initialized __read_mostly;
e26fbffd 5472
e6628d5b
MG
5473#ifdef CONFIG_NUMA_BALANCING
5474/* Migrate current task p to target_cpu */
5475int migrate_task_to(struct task_struct *p, int target_cpu)
5476{
5477 struct migration_arg arg = { p, target_cpu };
5478 int curr_cpu = task_cpu(p);
5479
5480 if (curr_cpu == target_cpu)
5481 return 0;
5482
0c98d344 5483 if (!cpumask_test_cpu(target_cpu, &p->cpus_allowed))
e6628d5b
MG
5484 return -EINVAL;
5485
5486 /* TODO: This is not properly updating schedstats */
5487
286549dc 5488 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
5489 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5490}
0ec8aa00
PZ
5491
5492/*
5493 * Requeue a task on a given node and accurately track the number of NUMA
5494 * tasks on the runqueues
5495 */
5496void sched_setnuma(struct task_struct *p, int nid)
5497{
da0c1e65 5498 bool queued, running;
eb580751
PZ
5499 struct rq_flags rf;
5500 struct rq *rq;
0ec8aa00 5501
eb580751 5502 rq = task_rq_lock(p, &rf);
da0c1e65 5503 queued = task_on_rq_queued(p);
0ec8aa00
PZ
5504 running = task_current(rq, p);
5505
da0c1e65 5506 if (queued)
1de64443 5507 dequeue_task(rq, p, DEQUEUE_SAVE);
0ec8aa00 5508 if (running)
f3cd1c4e 5509 put_prev_task(rq, p);
0ec8aa00
PZ
5510
5511 p->numa_preferred_nid = nid;
0ec8aa00 5512
da0c1e65 5513 if (queued)
1de64443 5514 enqueue_task(rq, p, ENQUEUE_RESTORE);
a399d233 5515 if (running)
b2bf6c31 5516 set_curr_task(rq, p);
eb580751 5517 task_rq_unlock(rq, p, &rf);
0ec8aa00 5518}
5cc389bc 5519#endif /* CONFIG_NUMA_BALANCING */
f7b4cddc 5520
1da177e4 5521#ifdef CONFIG_HOTPLUG_CPU
054b9108 5522/*
d1ccc66d 5523 * Ensure that the idle task is using init_mm right before its CPU goes
48c5ccae 5524 * offline.
054b9108 5525 */
48c5ccae 5526void idle_task_exit(void)
1da177e4 5527{
48c5ccae 5528 struct mm_struct *mm = current->active_mm;
e76bd8d9 5529
48c5ccae 5530 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 5531
a53efe5f 5532 if (mm != &init_mm) {
f98db601 5533 switch_mm_irqs_off(mm, &init_mm, current);
a53efe5f
MS
5534 finish_arch_post_lock_switch();
5535 }
48c5ccae 5536 mmdrop(mm);
1da177e4
LT
5537}
5538
5539/*
5d180232
PZ
5540 * Since this CPU is going 'away' for a while, fold any nr_active delta
5541 * we might have. Assumes we're called after migrate_tasks() so that the
d60585c5
TG
5542 * nr_active count is stable. We need to take the teardown thread which
5543 * is calling this into account, so we hand in adjust = 1 to the load
5544 * calculation.
5d180232
PZ
5545 *
5546 * Also see the comment "Global load-average calculations".
1da177e4 5547 */
5d180232 5548static void calc_load_migrate(struct rq *rq)
1da177e4 5549{
d60585c5 5550 long delta = calc_load_fold_active(rq, 1);
5d180232
PZ
5551 if (delta)
5552 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
5553}
5554
3f1d2a31
PZ
5555static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5556{
5557}
5558
5559static const struct sched_class fake_sched_class = {
5560 .put_prev_task = put_prev_task_fake,
5561};
5562
5563static struct task_struct fake_task = {
5564 /*
5565 * Avoid pull_{rt,dl}_task()
5566 */
5567 .prio = MAX_PRIO + 1,
5568 .sched_class = &fake_sched_class,
5569};
5570
48f24c4d 5571/*
48c5ccae
PZ
5572 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5573 * try_to_wake_up()->select_task_rq().
5574 *
5575 * Called with rq->lock held even though we'er in stop_machine() and
5576 * there's no concurrency possible, we hold the required locks anyway
5577 * because of lock validation efforts.
1da177e4 5578 */
8a8c69c3 5579static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
1da177e4 5580{
5e16bbc2 5581 struct rq *rq = dead_rq;
48c5ccae 5582 struct task_struct *next, *stop = rq->stop;
8a8c69c3 5583 struct rq_flags orf = *rf;
48c5ccae 5584 int dest_cpu;
1da177e4
LT
5585
5586 /*
48c5ccae
PZ
5587 * Fudge the rq selection such that the below task selection loop
5588 * doesn't get stuck on the currently eligible stop task.
5589 *
5590 * We're currently inside stop_machine() and the rq is either stuck
5591 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5592 * either way we should never end up calling schedule() until we're
5593 * done here.
1da177e4 5594 */
48c5ccae 5595 rq->stop = NULL;
48f24c4d 5596
77bd3970
FW
5597 /*
5598 * put_prev_task() and pick_next_task() sched
5599 * class method both need to have an up-to-date
5600 * value of rq->clock[_task]
5601 */
5602 update_rq_clock(rq);
5603
5e16bbc2 5604 for (;;) {
48c5ccae
PZ
5605 /*
5606 * There's this thread running, bail when that's the only
d1ccc66d 5607 * remaining thread:
48c5ccae
PZ
5608 */
5609 if (rq->nr_running == 1)
dd41f596 5610 break;
48c5ccae 5611
cbce1a68 5612 /*
d1ccc66d 5613 * pick_next_task() assumes pinned rq->lock:
cbce1a68 5614 */
8a8c69c3 5615 next = pick_next_task(rq, &fake_task, rf);
48c5ccae 5616 BUG_ON(!next);
79c53799 5617 next->sched_class->put_prev_task(rq, next);
e692ab53 5618
5473e0cc
WL
5619 /*
5620 * Rules for changing task_struct::cpus_allowed are holding
5621 * both pi_lock and rq->lock, such that holding either
5622 * stabilizes the mask.
5623 *
5624 * Drop rq->lock is not quite as disastrous as it usually is
5625 * because !cpu_active at this point, which means load-balance
5626 * will not interfere. Also, stop-machine.
5627 */
8a8c69c3 5628 rq_unlock(rq, rf);
5473e0cc 5629 raw_spin_lock(&next->pi_lock);
8a8c69c3 5630 rq_relock(rq, rf);
5473e0cc
WL
5631
5632 /*
5633 * Since we're inside stop-machine, _nothing_ should have
5634 * changed the task, WARN if weird stuff happened, because in
5635 * that case the above rq->lock drop is a fail too.
5636 */
5637 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5638 raw_spin_unlock(&next->pi_lock);
5639 continue;
5640 }
5641
48c5ccae 5642 /* Find suitable destination for @next, with force if needed. */
5e16bbc2 5643 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
8a8c69c3 5644 rq = __migrate_task(rq, rf, next, dest_cpu);
5e16bbc2 5645 if (rq != dead_rq) {
8a8c69c3 5646 rq_unlock(rq, rf);
5e16bbc2 5647 rq = dead_rq;
8a8c69c3
PZ
5648 *rf = orf;
5649 rq_relock(rq, rf);
5e16bbc2 5650 }
5473e0cc 5651 raw_spin_unlock(&next->pi_lock);
1da177e4 5652 }
dce48a84 5653
48c5ccae 5654 rq->stop = stop;
dce48a84 5655}
1da177e4
LT
5656#endif /* CONFIG_HOTPLUG_CPU */
5657
f2cb1360 5658void set_rq_online(struct rq *rq)
1f11eb6a
GH
5659{
5660 if (!rq->online) {
5661 const struct sched_class *class;
5662
c6c4927b 5663 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5664 rq->online = 1;
5665
5666 for_each_class(class) {
5667 if (class->rq_online)
5668 class->rq_online(rq);
5669 }
5670 }
5671}
5672
f2cb1360 5673void set_rq_offline(struct rq *rq)
1f11eb6a
GH
5674{
5675 if (rq->online) {
5676 const struct sched_class *class;
5677
5678 for_each_class(class) {
5679 if (class->rq_offline)
5680 class->rq_offline(rq);
5681 }
5682
c6c4927b 5683 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5684 rq->online = 0;
5685 }
5686}
5687
9cf7243d 5688static void set_cpu_rq_start_time(unsigned int cpu)
1da177e4 5689{
969c7921 5690 struct rq *rq = cpu_rq(cpu);
1da177e4 5691
a803f026
CM
5692 rq->age_stamp = sched_clock_cpu(cpu);
5693}
5694
d1ccc66d
IM
5695/*
5696 * used to mark begin/end of suspend/resume:
5697 */
5698static int num_cpus_frozen;
d35be8ba 5699
1da177e4 5700/*
3a101d05
TH
5701 * Update cpusets according to cpu_active mask. If cpusets are
5702 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
5703 * around partition_sched_domains().
d35be8ba
SB
5704 *
5705 * If we come here as part of a suspend/resume, don't touch cpusets because we
5706 * want to restore it back to its original state upon resume anyway.
1da177e4 5707 */
40190a78 5708static void cpuset_cpu_active(void)
e761b772 5709{
40190a78 5710 if (cpuhp_tasks_frozen) {
d35be8ba
SB
5711 /*
5712 * num_cpus_frozen tracks how many CPUs are involved in suspend
5713 * resume sequence. As long as this is not the last online
5714 * operation in the resume sequence, just build a single sched
5715 * domain, ignoring cpusets.
5716 */
5717 num_cpus_frozen--;
5718 if (likely(num_cpus_frozen)) {
5719 partition_sched_domains(1, NULL, NULL);
135fb3e1 5720 return;
d35be8ba 5721 }
d35be8ba
SB
5722 /*
5723 * This is the last CPU online operation. So fall through and
5724 * restore the original sched domains by considering the
5725 * cpuset configurations.
5726 */
3a101d05 5727 }
135fb3e1 5728 cpuset_update_active_cpus(true);
3a101d05 5729}
e761b772 5730
40190a78 5731static int cpuset_cpu_inactive(unsigned int cpu)
3a101d05 5732{
3c18d447 5733 unsigned long flags;
3c18d447 5734 struct dl_bw *dl_b;
533445c6
OS
5735 bool overflow;
5736 int cpus;
3c18d447 5737
40190a78 5738 if (!cpuhp_tasks_frozen) {
533445c6
OS
5739 rcu_read_lock_sched();
5740 dl_b = dl_bw_of(cpu);
3c18d447 5741
533445c6
OS
5742 raw_spin_lock_irqsave(&dl_b->lock, flags);
5743 cpus = dl_bw_cpus(cpu);
5744 overflow = __dl_overflow(dl_b, cpus, 0, 0);
5745 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3c18d447 5746
533445c6 5747 rcu_read_unlock_sched();
3c18d447 5748
533445c6 5749 if (overflow)
135fb3e1 5750 return -EBUSY;
7ddf96b0 5751 cpuset_update_active_cpus(false);
135fb3e1 5752 } else {
d35be8ba
SB
5753 num_cpus_frozen++;
5754 partition_sched_domains(1, NULL, NULL);
e761b772 5755 }
135fb3e1 5756 return 0;
e761b772 5757}
e761b772 5758
40190a78 5759int sched_cpu_activate(unsigned int cpu)
135fb3e1 5760{
7d976699 5761 struct rq *rq = cpu_rq(cpu);
8a8c69c3 5762 struct rq_flags rf;
7d976699 5763
40190a78 5764 set_cpu_active(cpu, true);
135fb3e1 5765
40190a78 5766 if (sched_smp_initialized) {
135fb3e1 5767 sched_domains_numa_masks_set(cpu);
40190a78 5768 cpuset_cpu_active();
e761b772 5769 }
7d976699
TG
5770
5771 /*
5772 * Put the rq online, if not already. This happens:
5773 *
5774 * 1) In the early boot process, because we build the real domains
d1ccc66d 5775 * after all CPUs have been brought up.
7d976699
TG
5776 *
5777 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
5778 * domains.
5779 */
8a8c69c3 5780 rq_lock_irqsave(rq, &rf);
7d976699
TG
5781 if (rq->rd) {
5782 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5783 set_rq_online(rq);
5784 }
8a8c69c3 5785 rq_unlock_irqrestore(rq, &rf);
7d976699
TG
5786
5787 update_max_interval();
5788
40190a78 5789 return 0;
135fb3e1
TG
5790}
5791
40190a78 5792int sched_cpu_deactivate(unsigned int cpu)
135fb3e1 5793{
135fb3e1
TG
5794 int ret;
5795
40190a78 5796 set_cpu_active(cpu, false);
b2454caa
PZ
5797 /*
5798 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
5799 * users of this state to go away such that all new such users will
5800 * observe it.
5801 *
5802 * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might
5803 * not imply sync_sched(), so wait for both.
5804 *
5805 * Do sync before park smpboot threads to take care the rcu boost case.
5806 */
5807 if (IS_ENABLED(CONFIG_PREEMPT))
5808 synchronize_rcu_mult(call_rcu, call_rcu_sched);
5809 else
5810 synchronize_rcu();
40190a78
TG
5811
5812 if (!sched_smp_initialized)
5813 return 0;
5814
5815 ret = cpuset_cpu_inactive(cpu);
5816 if (ret) {
5817 set_cpu_active(cpu, true);
5818 return ret;
135fb3e1 5819 }
40190a78
TG
5820 sched_domains_numa_masks_clear(cpu);
5821 return 0;
135fb3e1
TG
5822}
5823
94baf7a5
TG
5824static void sched_rq_cpu_starting(unsigned int cpu)
5825{
5826 struct rq *rq = cpu_rq(cpu);
5827
5828 rq->calc_load_update = calc_load_update;
94baf7a5
TG
5829 update_max_interval();
5830}
5831
135fb3e1
TG
5832int sched_cpu_starting(unsigned int cpu)
5833{
5834 set_cpu_rq_start_time(cpu);
94baf7a5 5835 sched_rq_cpu_starting(cpu);
135fb3e1 5836 return 0;
e761b772 5837}
e761b772 5838
f2785ddb
TG
5839#ifdef CONFIG_HOTPLUG_CPU
5840int sched_cpu_dying(unsigned int cpu)
5841{
5842 struct rq *rq = cpu_rq(cpu);
8a8c69c3 5843 struct rq_flags rf;
f2785ddb
TG
5844
5845 /* Handle pending wakeups and then migrate everything off */
5846 sched_ttwu_pending();
8a8c69c3
PZ
5847
5848 rq_lock_irqsave(rq, &rf);
f2785ddb
TG
5849 if (rq->rd) {
5850 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5851 set_rq_offline(rq);
5852 }
8a8c69c3 5853 migrate_tasks(rq, &rf);
f2785ddb 5854 BUG_ON(rq->nr_running != 1);
8a8c69c3
PZ
5855 rq_unlock_irqrestore(rq, &rf);
5856
f2785ddb
TG
5857 calc_load_migrate(rq);
5858 update_max_interval();
20a5c8cc 5859 nohz_balance_exit_idle(cpu);
e5ef27d0 5860 hrtick_clear(rq);
f2785ddb
TG
5861 return 0;
5862}
5863#endif
5864
1b568f0a
PZ
5865#ifdef CONFIG_SCHED_SMT
5866DEFINE_STATIC_KEY_FALSE(sched_smt_present);
5867
5868static void sched_init_smt(void)
5869{
5870 /*
5871 * We've enumerated all CPUs and will assume that if any CPU
5872 * has SMT siblings, CPU0 will too.
5873 */
5874 if (cpumask_weight(cpu_smt_mask(0)) > 1)
5875 static_branch_enable(&sched_smt_present);
5876}
5877#else
5878static inline void sched_init_smt(void) { }
5879#endif
5880
1da177e4
LT
5881void __init sched_init_smp(void)
5882{
dcc30a35
RR
5883 cpumask_var_t non_isolated_cpus;
5884
5885 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 5886 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 5887
cb83b629
PZ
5888 sched_init_numa();
5889
6acce3ef
PZ
5890 /*
5891 * There's no userspace yet to cause hotplug operations; hence all the
d1ccc66d 5892 * CPU masks are stable and all blatant races in the below code cannot
6acce3ef
PZ
5893 * happen.
5894 */
712555ee 5895 mutex_lock(&sched_domains_mutex);
c4a8849a 5896 init_sched_domains(cpu_active_mask);
dcc30a35
RR
5897 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
5898 if (cpumask_empty(non_isolated_cpus))
5899 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 5900 mutex_unlock(&sched_domains_mutex);
e761b772 5901
5c1e1767 5902 /* Move init over to a non-isolated CPU */
dcc30a35 5903 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 5904 BUG();
19978ca6 5905 sched_init_granularity();
dcc30a35 5906 free_cpumask_var(non_isolated_cpus);
4212823f 5907
0e3900e6 5908 init_sched_rt_class();
1baca4ce 5909 init_sched_dl_class();
1b568f0a
PZ
5910
5911 sched_init_smt();
9881b024 5912 sched_clock_init_late();
1b568f0a 5913
e26fbffd 5914 sched_smp_initialized = true;
1da177e4 5915}
e26fbffd
TG
5916
5917static int __init migration_init(void)
5918{
94baf7a5 5919 sched_rq_cpu_starting(smp_processor_id());
e26fbffd 5920 return 0;
1da177e4 5921}
e26fbffd
TG
5922early_initcall(migration_init);
5923
1da177e4
LT
5924#else
5925void __init sched_init_smp(void)
5926{
19978ca6 5927 sched_init_granularity();
9881b024 5928 sched_clock_init_late();
1da177e4
LT
5929}
5930#endif /* CONFIG_SMP */
5931
5932int in_sched_functions(unsigned long addr)
5933{
1da177e4
LT
5934 return in_lock_functions(addr) ||
5935 (addr >= (unsigned long)__sched_text_start
5936 && addr < (unsigned long)__sched_text_end);
5937}
5938
029632fb 5939#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
5940/*
5941 * Default task group.
5942 * Every task in system belongs to this group at bootup.
5943 */
029632fb 5944struct task_group root_task_group;
35cf4e50 5945LIST_HEAD(task_groups);
b0367629
WL
5946
5947/* Cacheline aligned slab cache for task_group */
5948static struct kmem_cache *task_group_cache __read_mostly;
052f1dc7 5949#endif
6f505b16 5950
e6252c3e 5951DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
10e2f1ac 5952DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
6f505b16 5953
9dcb8b68
LT
5954#define WAIT_TABLE_BITS 8
5955#define WAIT_TABLE_SIZE (1 << WAIT_TABLE_BITS)
5956static wait_queue_head_t bit_wait_table[WAIT_TABLE_SIZE] __cacheline_aligned;
5957
5958wait_queue_head_t *bit_waitqueue(void *word, int bit)
5959{
5960 const int shift = BITS_PER_LONG == 32 ? 5 : 6;
5961 unsigned long val = (unsigned long)word << shift | bit;
5962
5963 return bit_wait_table + hash_long(val, WAIT_TABLE_BITS);
5964}
5965EXPORT_SYMBOL(bit_waitqueue);
5966
1da177e4
LT
5967void __init sched_init(void)
5968{
dd41f596 5969 int i, j;
434d53b0
MT
5970 unsigned long alloc_size = 0, ptr;
5971
9881b024
PZ
5972 sched_clock_init();
5973
9dcb8b68
LT
5974 for (i = 0; i < WAIT_TABLE_SIZE; i++)
5975 init_waitqueue_head(bit_wait_table + i);
5976
434d53b0
MT
5977#ifdef CONFIG_FAIR_GROUP_SCHED
5978 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5979#endif
5980#ifdef CONFIG_RT_GROUP_SCHED
5981 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5982#endif
434d53b0 5983 if (alloc_size) {
36b7b6d4 5984 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
5985
5986#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 5987 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
5988 ptr += nr_cpu_ids * sizeof(void **);
5989
07e06b01 5990 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 5991 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 5992
6d6bc0ad 5993#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 5994#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 5995 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
5996 ptr += nr_cpu_ids * sizeof(void **);
5997
07e06b01 5998 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
5999 ptr += nr_cpu_ids * sizeof(void **);
6000
6d6bc0ad 6001#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 6002 }
df7c8e84 6003#ifdef CONFIG_CPUMASK_OFFSTACK
b74e6278
AT
6004 for_each_possible_cpu(i) {
6005 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
6006 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
10e2f1ac
PZ
6007 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
6008 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
434d53b0 6009 }
b74e6278 6010#endif /* CONFIG_CPUMASK_OFFSTACK */
dd41f596 6011
d1ccc66d
IM
6012 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
6013 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
332ac17e 6014
57d885fe
GH
6015#ifdef CONFIG_SMP
6016 init_defrootdomain();
6017#endif
6018
d0b27fa7 6019#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6020 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 6021 global_rt_period(), global_rt_runtime());
6d6bc0ad 6022#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6023
7c941438 6024#ifdef CONFIG_CGROUP_SCHED
b0367629
WL
6025 task_group_cache = KMEM_CACHE(task_group, 0);
6026
07e06b01
YZ
6027 list_add(&root_task_group.list, &task_groups);
6028 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 6029 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 6030 autogroup_init(&init_task);
7c941438 6031#endif /* CONFIG_CGROUP_SCHED */
6f505b16 6032
0a945022 6033 for_each_possible_cpu(i) {
70b97a7f 6034 struct rq *rq;
1da177e4
LT
6035
6036 rq = cpu_rq(i);
05fa785c 6037 raw_spin_lock_init(&rq->lock);
7897986b 6038 rq->nr_running = 0;
dce48a84
TG
6039 rq->calc_load_active = 0;
6040 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 6041 init_cfs_rq(&rq->cfs);
07c54f7a
AV
6042 init_rt_rq(&rq->rt);
6043 init_dl_rq(&rq->dl);
dd41f596 6044#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 6045 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 6046 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9c2791f9 6047 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
354d60c2 6048 /*
d1ccc66d 6049 * How much CPU bandwidth does root_task_group get?
354d60c2
DG
6050 *
6051 * In case of task-groups formed thr' the cgroup filesystem, it
d1ccc66d
IM
6052 * gets 100% of the CPU resources in the system. This overall
6053 * system CPU resource is divided among the tasks of
07e06b01 6054 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
6055 * based on each entity's (task or task-group's) weight
6056 * (se->load.weight).
6057 *
07e06b01 6058 * In other words, if root_task_group has 10 tasks of weight
354d60c2 6059 * 1024) and two child groups A0 and A1 (of weight 1024 each),
d1ccc66d 6060 * then A0's share of the CPU resource is:
354d60c2 6061 *
0d905bca 6062 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 6063 *
07e06b01
YZ
6064 * We achieve this by letting root_task_group's tasks sit
6065 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 6066 */
ab84d31e 6067 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 6068 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
6069#endif /* CONFIG_FAIR_GROUP_SCHED */
6070
6071 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 6072#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6073 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 6074#endif
1da177e4 6075
dd41f596
IM
6076 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6077 rq->cpu_load[j] = 0;
fdf3e95d 6078
1da177e4 6079#ifdef CONFIG_SMP
41c7ce9a 6080 rq->sd = NULL;
57d885fe 6081 rq->rd = NULL;
ca6d75e6 6082 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
e3fca9e7 6083 rq->balance_callback = NULL;
1da177e4 6084 rq->active_balance = 0;
dd41f596 6085 rq->next_balance = jiffies;
1da177e4 6086 rq->push_cpu = 0;
0a2966b4 6087 rq->cpu = i;
1f11eb6a 6088 rq->online = 0;
eae0c9df
MG
6089 rq->idle_stamp = 0;
6090 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 6091 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
6092
6093 INIT_LIST_HEAD(&rq->cfs_tasks);
6094
dc938520 6095 rq_attach_root(rq, &def_root_domain);
3451d024 6096#ifdef CONFIG_NO_HZ_COMMON
9fd81dd5 6097 rq->last_load_update_tick = jiffies;
1c792db7 6098 rq->nohz_flags = 0;
83cd4fe2 6099#endif
265f22a9
FW
6100#ifdef CONFIG_NO_HZ_FULL
6101 rq->last_sched_tick = 0;
6102#endif
9fd81dd5 6103#endif /* CONFIG_SMP */
8f4d37ec 6104 init_rq_hrtick(rq);
1da177e4 6105 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
6106 }
6107
2dd73a4f 6108 set_load_weight(&init_task);
b50f60ce 6109
1da177e4
LT
6110 /*
6111 * The boot idle thread does lazy MMU switching as well:
6112 */
f1f10076 6113 mmgrab(&init_mm);
1da177e4
LT
6114 enter_lazy_tlb(&init_mm, current);
6115
6116 /*
6117 * Make us the idle thread. Technically, schedule() should not be
6118 * called from this thread, however somewhere below it might be,
6119 * but because we are the idle thread, we just pick up running again
6120 * when this runqueue becomes "idle".
6121 */
6122 init_idle(current, smp_processor_id());
dce48a84
TG
6123
6124 calc_load_update = jiffies + LOAD_FREQ;
6125
bf4d83f6 6126#ifdef CONFIG_SMP
4cb98839 6127 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
6128 /* May be allocated at isolcpus cmdline parse time */
6129 if (cpu_isolated_map == NULL)
6130 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 6131 idle_thread_set_boot_cpu();
9cf7243d 6132 set_cpu_rq_start_time(smp_processor_id());
029632fb
PZ
6133#endif
6134 init_sched_fair_class();
6a7b3dc3 6135
4698f88c
JP
6136 init_schedstats();
6137
6892b75e 6138 scheduler_running = 1;
1da177e4
LT
6139}
6140
d902db1e 6141#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
6142static inline int preempt_count_equals(int preempt_offset)
6143{
da7142e2 6144 int nested = preempt_count() + rcu_preempt_depth();
e4aafea2 6145
4ba8216c 6146 return (nested == preempt_offset);
e4aafea2
FW
6147}
6148
d894837f 6149void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6150{
8eb23b9f
PZ
6151 /*
6152 * Blocking primitives will set (and therefore destroy) current->state,
6153 * since we will exit with TASK_RUNNING make sure we enter with it,
6154 * otherwise we will destroy state.
6155 */
00845eb9 6156 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
8eb23b9f
PZ
6157 "do not call blocking ops when !TASK_RUNNING; "
6158 "state=%lx set at [<%p>] %pS\n",
6159 current->state,
6160 (void *)current->task_state_change,
00845eb9 6161 (void *)current->task_state_change);
8eb23b9f 6162
3427445a
PZ
6163 ___might_sleep(file, line, preempt_offset);
6164}
6165EXPORT_SYMBOL(__might_sleep);
6166
6167void ___might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6168{
d1ccc66d
IM
6169 /* Ratelimiting timestamp: */
6170 static unsigned long prev_jiffy;
6171
d1c6d149 6172 unsigned long preempt_disable_ip;
1da177e4 6173
d1ccc66d
IM
6174 /* WARN_ON_ONCE() by default, no rate limit required: */
6175 rcu_sleep_check();
6176
db273be2
TG
6177 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6178 !is_idle_task(current)) ||
e4aafea2 6179 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
6180 return;
6181 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6182 return;
6183 prev_jiffy = jiffies;
6184
d1ccc66d 6185 /* Save this before calling printk(), since that will clobber it: */
d1c6d149
VN
6186 preempt_disable_ip = get_preempt_disable_ip(current);
6187
3df0fc5b
PZ
6188 printk(KERN_ERR
6189 "BUG: sleeping function called from invalid context at %s:%d\n",
6190 file, line);
6191 printk(KERN_ERR
6192 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6193 in_atomic(), irqs_disabled(),
6194 current->pid, current->comm);
aef745fc 6195
a8b686b3
ES
6196 if (task_stack_end_corrupted(current))
6197 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6198
aef745fc
IM
6199 debug_show_held_locks(current);
6200 if (irqs_disabled())
6201 print_irqtrace_events(current);
d1c6d149
VN
6202 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6203 && !preempt_count_equals(preempt_offset)) {
8f47b187 6204 pr_err("Preemption disabled at:");
d1c6d149 6205 print_ip_sym(preempt_disable_ip);
8f47b187
TG
6206 pr_cont("\n");
6207 }
aef745fc 6208 dump_stack();
f0b22e39 6209 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
1da177e4 6210}
3427445a 6211EXPORT_SYMBOL(___might_sleep);
1da177e4
LT
6212#endif
6213
6214#ifdef CONFIG_MAGIC_SYSRQ
dbc7f069 6215void normalize_rt_tasks(void)
3a5e4dc1 6216{
dbc7f069 6217 struct task_struct *g, *p;
d50dde5a
DF
6218 struct sched_attr attr = {
6219 .sched_policy = SCHED_NORMAL,
6220 };
1da177e4 6221
3472eaa1 6222 read_lock(&tasklist_lock);
5d07f420 6223 for_each_process_thread(g, p) {
178be793
IM
6224 /*
6225 * Only normalize user tasks:
6226 */
3472eaa1 6227 if (p->flags & PF_KTHREAD)
178be793
IM
6228 continue;
6229
4fa8d299
JP
6230 p->se.exec_start = 0;
6231 schedstat_set(p->se.statistics.wait_start, 0);
6232 schedstat_set(p->se.statistics.sleep_start, 0);
6233 schedstat_set(p->se.statistics.block_start, 0);
dd41f596 6234
aab03e05 6235 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
6236 /*
6237 * Renice negative nice level userspace
6238 * tasks back to 0:
6239 */
3472eaa1 6240 if (task_nice(p) < 0)
dd41f596 6241 set_user_nice(p, 0);
1da177e4 6242 continue;
dd41f596 6243 }
1da177e4 6244
dbc7f069 6245 __sched_setscheduler(p, &attr, false, false);
5d07f420 6246 }
3472eaa1 6247 read_unlock(&tasklist_lock);
1da177e4
LT
6248}
6249
6250#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 6251
67fc4e0c 6252#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 6253/*
67fc4e0c 6254 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
6255 *
6256 * They can only be called when the whole system has been
6257 * stopped - every CPU needs to be quiescent, and no scheduling
6258 * activity can take place. Using them for anything else would
6259 * be a serious bug, and as a result, they aren't even visible
6260 * under any other configuration.
6261 */
6262
6263/**
d1ccc66d 6264 * curr_task - return the current task for a given CPU.
1df5c10a
LT
6265 * @cpu: the processor in question.
6266 *
6267 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
6268 *
6269 * Return: The current task for @cpu.
1df5c10a 6270 */
36c8b586 6271struct task_struct *curr_task(int cpu)
1df5c10a
LT
6272{
6273 return cpu_curr(cpu);
6274}
6275
67fc4e0c
JW
6276#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6277
6278#ifdef CONFIG_IA64
1df5c10a 6279/**
d1ccc66d 6280 * set_curr_task - set the current task for a given CPU.
1df5c10a
LT
6281 * @cpu: the processor in question.
6282 * @p: the task pointer to set.
6283 *
6284 * Description: This function must only be used when non-maskable interrupts
41a2d6cf 6285 * are serviced on a separate stack. It allows the architecture to switch the
d1ccc66d 6286 * notion of the current task on a CPU in a non-blocking manner. This function
1df5c10a
LT
6287 * must be called with all CPU's synchronized, and interrupts disabled, the
6288 * and caller must save the original value of the current task (see
6289 * curr_task() above) and restore that value before reenabling interrupts and
6290 * re-starting the system.
6291 *
6292 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6293 */
a458ae2e 6294void ia64_set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
6295{
6296 cpu_curr(cpu) = p;
6297}
6298
6299#endif
29f59db3 6300
7c941438 6301#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
6302/* task_group_lock serializes the addition/removal of task groups */
6303static DEFINE_SPINLOCK(task_group_lock);
6304
2f5177f0 6305static void sched_free_group(struct task_group *tg)
bccbe08a
PZ
6306{
6307 free_fair_sched_group(tg);
6308 free_rt_sched_group(tg);
e9aa1dd1 6309 autogroup_free(tg);
b0367629 6310 kmem_cache_free(task_group_cache, tg);
bccbe08a
PZ
6311}
6312
6313/* allocate runqueue etc for a new task group */
ec7dc8ac 6314struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
6315{
6316 struct task_group *tg;
bccbe08a 6317
b0367629 6318 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
bccbe08a
PZ
6319 if (!tg)
6320 return ERR_PTR(-ENOMEM);
6321
ec7dc8ac 6322 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
6323 goto err;
6324
ec7dc8ac 6325 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
6326 goto err;
6327
ace783b9
LZ
6328 return tg;
6329
6330err:
2f5177f0 6331 sched_free_group(tg);
ace783b9
LZ
6332 return ERR_PTR(-ENOMEM);
6333}
6334
6335void sched_online_group(struct task_group *tg, struct task_group *parent)
6336{
6337 unsigned long flags;
6338
8ed36996 6339 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 6340 list_add_rcu(&tg->list, &task_groups);
f473aa5e 6341
d1ccc66d
IM
6342 /* Root should already exist: */
6343 WARN_ON(!parent);
f473aa5e
PZ
6344
6345 tg->parent = parent;
f473aa5e 6346 INIT_LIST_HEAD(&tg->children);
09f2724a 6347 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 6348 spin_unlock_irqrestore(&task_group_lock, flags);
8663e24d
PZ
6349
6350 online_fair_sched_group(tg);
29f59db3
SV
6351}
6352
9b5b7751 6353/* rcu callback to free various structures associated with a task group */
2f5177f0 6354static void sched_free_group_rcu(struct rcu_head *rhp)
29f59db3 6355{
d1ccc66d 6356 /* Now it should be safe to free those cfs_rqs: */
2f5177f0 6357 sched_free_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
6358}
6359
4cf86d77 6360void sched_destroy_group(struct task_group *tg)
ace783b9 6361{
d1ccc66d 6362 /* Wait for possible concurrent references to cfs_rqs complete: */
2f5177f0 6363 call_rcu(&tg->rcu, sched_free_group_rcu);
ace783b9
LZ
6364}
6365
6366void sched_offline_group(struct task_group *tg)
29f59db3 6367{
8ed36996 6368 unsigned long flags;
29f59db3 6369
d1ccc66d 6370 /* End participation in shares distribution: */
6fe1f348 6371 unregister_fair_sched_group(tg);
3d4b47b4
PZ
6372
6373 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 6374 list_del_rcu(&tg->list);
f473aa5e 6375 list_del_rcu(&tg->siblings);
8ed36996 6376 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
6377}
6378
ea86cb4b 6379static void sched_change_group(struct task_struct *tsk, int type)
29f59db3 6380{
8323f26c 6381 struct task_group *tg;
29f59db3 6382
f7b8a47d
KT
6383 /*
6384 * All callers are synchronized by task_rq_lock(); we do not use RCU
6385 * which is pointless here. Thus, we pass "true" to task_css_check()
6386 * to prevent lockdep warnings.
6387 */
6388 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
6389 struct task_group, css);
6390 tg = autogroup_task_group(tsk, tg);
6391 tsk->sched_task_group = tg;
6392
810b3817 6393#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
6394 if (tsk->sched_class->task_change_group)
6395 tsk->sched_class->task_change_group(tsk, type);
b2b5ce02 6396 else
810b3817 6397#endif
b2b5ce02 6398 set_task_rq(tsk, task_cpu(tsk));
ea86cb4b
VG
6399}
6400
6401/*
6402 * Change task's runqueue when it moves between groups.
6403 *
6404 * The caller of this function should have put the task in its new group by
6405 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
6406 * its new group.
6407 */
6408void sched_move_task(struct task_struct *tsk)
6409{
6410 int queued, running;
6411 struct rq_flags rf;
6412 struct rq *rq;
6413
6414 rq = task_rq_lock(tsk, &rf);
1b1d6225 6415 update_rq_clock(rq);
ea86cb4b
VG
6416
6417 running = task_current(rq, tsk);
6418 queued = task_on_rq_queued(tsk);
6419
6420 if (queued)
6421 dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
bb3bac2c 6422 if (running)
ea86cb4b
VG
6423 put_prev_task(rq, tsk);
6424
6425 sched_change_group(tsk, TASK_MOVE_GROUP);
810b3817 6426
da0c1e65 6427 if (queued)
ff77e468 6428 enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
bb3bac2c 6429 if (running)
b2bf6c31 6430 set_curr_task(rq, tsk);
29f59db3 6431
eb580751 6432 task_rq_unlock(rq, tsk, &rf);
29f59db3 6433}
7c941438 6434#endif /* CONFIG_CGROUP_SCHED */
29f59db3 6435
a790de99
PT
6436#ifdef CONFIG_RT_GROUP_SCHED
6437/*
6438 * Ensure that the real time constraints are schedulable.
6439 */
6440static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 6441
9a7e0b18
PZ
6442/* Must be called with tasklist_lock held */
6443static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 6444{
9a7e0b18 6445 struct task_struct *g, *p;
b40b2e8e 6446
1fe89e1b
PZ
6447 /*
6448 * Autogroups do not have RT tasks; see autogroup_create().
6449 */
6450 if (task_group_is_autogroup(tg))
6451 return 0;
6452
5d07f420 6453 for_each_process_thread(g, p) {
8651c658 6454 if (rt_task(p) && task_group(p) == tg)
9a7e0b18 6455 return 1;
5d07f420 6456 }
b40b2e8e 6457
9a7e0b18
PZ
6458 return 0;
6459}
b40b2e8e 6460
9a7e0b18
PZ
6461struct rt_schedulable_data {
6462 struct task_group *tg;
6463 u64 rt_period;
6464 u64 rt_runtime;
6465};
b40b2e8e 6466
a790de99 6467static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
6468{
6469 struct rt_schedulable_data *d = data;
6470 struct task_group *child;
6471 unsigned long total, sum = 0;
6472 u64 period, runtime;
b40b2e8e 6473
9a7e0b18
PZ
6474 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6475 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 6476
9a7e0b18
PZ
6477 if (tg == d->tg) {
6478 period = d->rt_period;
6479 runtime = d->rt_runtime;
b40b2e8e 6480 }
b40b2e8e 6481
4653f803
PZ
6482 /*
6483 * Cannot have more runtime than the period.
6484 */
6485 if (runtime > period && runtime != RUNTIME_INF)
6486 return -EINVAL;
6f505b16 6487
4653f803
PZ
6488 /*
6489 * Ensure we don't starve existing RT tasks.
6490 */
9a7e0b18
PZ
6491 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
6492 return -EBUSY;
6f505b16 6493
9a7e0b18 6494 total = to_ratio(period, runtime);
6f505b16 6495
4653f803
PZ
6496 /*
6497 * Nobody can have more than the global setting allows.
6498 */
6499 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
6500 return -EINVAL;
6f505b16 6501
4653f803
PZ
6502 /*
6503 * The sum of our children's runtime should not exceed our own.
6504 */
9a7e0b18
PZ
6505 list_for_each_entry_rcu(child, &tg->children, siblings) {
6506 period = ktime_to_ns(child->rt_bandwidth.rt_period);
6507 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 6508
9a7e0b18
PZ
6509 if (child == d->tg) {
6510 period = d->rt_period;
6511 runtime = d->rt_runtime;
6512 }
6f505b16 6513
9a7e0b18 6514 sum += to_ratio(period, runtime);
9f0c1e56 6515 }
6f505b16 6516
9a7e0b18
PZ
6517 if (sum > total)
6518 return -EINVAL;
6519
6520 return 0;
6f505b16
PZ
6521}
6522
9a7e0b18 6523static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 6524{
8277434e
PT
6525 int ret;
6526
9a7e0b18
PZ
6527 struct rt_schedulable_data data = {
6528 .tg = tg,
6529 .rt_period = period,
6530 .rt_runtime = runtime,
6531 };
6532
8277434e
PT
6533 rcu_read_lock();
6534 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
6535 rcu_read_unlock();
6536
6537 return ret;
521f1a24
DG
6538}
6539
ab84d31e 6540static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 6541 u64 rt_period, u64 rt_runtime)
6f505b16 6542{
ac086bc2 6543 int i, err = 0;
9f0c1e56 6544
2636ed5f
PZ
6545 /*
6546 * Disallowing the root group RT runtime is BAD, it would disallow the
6547 * kernel creating (and or operating) RT threads.
6548 */
6549 if (tg == &root_task_group && rt_runtime == 0)
6550 return -EINVAL;
6551
6552 /* No period doesn't make any sense. */
6553 if (rt_period == 0)
6554 return -EINVAL;
6555
9f0c1e56 6556 mutex_lock(&rt_constraints_mutex);
521f1a24 6557 read_lock(&tasklist_lock);
9a7e0b18
PZ
6558 err = __rt_schedulable(tg, rt_period, rt_runtime);
6559 if (err)
9f0c1e56 6560 goto unlock;
ac086bc2 6561
0986b11b 6562 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
6563 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
6564 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
6565
6566 for_each_possible_cpu(i) {
6567 struct rt_rq *rt_rq = tg->rt_rq[i];
6568
0986b11b 6569 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 6570 rt_rq->rt_runtime = rt_runtime;
0986b11b 6571 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 6572 }
0986b11b 6573 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 6574unlock:
521f1a24 6575 read_unlock(&tasklist_lock);
9f0c1e56
PZ
6576 mutex_unlock(&rt_constraints_mutex);
6577
6578 return err;
6f505b16
PZ
6579}
6580
25cc7da7 6581static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
6582{
6583 u64 rt_runtime, rt_period;
6584
6585 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6586 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
6587 if (rt_runtime_us < 0)
6588 rt_runtime = RUNTIME_INF;
6589
ab84d31e 6590 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
6591}
6592
25cc7da7 6593static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
6594{
6595 u64 rt_runtime_us;
6596
d0b27fa7 6597 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
6598 return -1;
6599
d0b27fa7 6600 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
6601 do_div(rt_runtime_us, NSEC_PER_USEC);
6602 return rt_runtime_us;
6603}
d0b27fa7 6604
ce2f5fe4 6605static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
d0b27fa7
PZ
6606{
6607 u64 rt_runtime, rt_period;
6608
ce2f5fe4 6609 rt_period = rt_period_us * NSEC_PER_USEC;
d0b27fa7
PZ
6610 rt_runtime = tg->rt_bandwidth.rt_runtime;
6611
ab84d31e 6612 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
6613}
6614
25cc7da7 6615static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
6616{
6617 u64 rt_period_us;
6618
6619 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
6620 do_div(rt_period_us, NSEC_PER_USEC);
6621 return rt_period_us;
6622}
332ac17e 6623#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6624
332ac17e 6625#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
6626static int sched_rt_global_constraints(void)
6627{
6628 int ret = 0;
6629
6630 mutex_lock(&rt_constraints_mutex);
9a7e0b18 6631 read_lock(&tasklist_lock);
4653f803 6632 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 6633 read_unlock(&tasklist_lock);
d0b27fa7
PZ
6634 mutex_unlock(&rt_constraints_mutex);
6635
6636 return ret;
6637}
54e99124 6638
25cc7da7 6639static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
6640{
6641 /* Don't accept realtime tasks when there is no way for them to run */
6642 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
6643 return 0;
6644
6645 return 1;
6646}
6647
6d6bc0ad 6648#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
6649static int sched_rt_global_constraints(void)
6650{
ac086bc2 6651 unsigned long flags;
8c5e9554 6652 int i;
ec5d4989 6653
0986b11b 6654 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
6655 for_each_possible_cpu(i) {
6656 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
6657
0986b11b 6658 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 6659 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 6660 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 6661 }
0986b11b 6662 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 6663
8c5e9554 6664 return 0;
d0b27fa7 6665}
6d6bc0ad 6666#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6667
a1963b81 6668static int sched_dl_global_validate(void)
332ac17e 6669{
1724813d
PZ
6670 u64 runtime = global_rt_runtime();
6671 u64 period = global_rt_period();
332ac17e 6672 u64 new_bw = to_ratio(period, runtime);
f10e00f4 6673 struct dl_bw *dl_b;
1724813d 6674 int cpu, ret = 0;
49516342 6675 unsigned long flags;
332ac17e
DF
6676
6677 /*
6678 * Here we want to check the bandwidth not being set to some
6679 * value smaller than the currently allocated bandwidth in
6680 * any of the root_domains.
6681 *
6682 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
6683 * cycling on root_domains... Discussion on different/better
6684 * solutions is welcome!
6685 */
1724813d 6686 for_each_possible_cpu(cpu) {
f10e00f4
KT
6687 rcu_read_lock_sched();
6688 dl_b = dl_bw_of(cpu);
332ac17e 6689
49516342 6690 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d
PZ
6691 if (new_bw < dl_b->total_bw)
6692 ret = -EBUSY;
49516342 6693 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
1724813d 6694
f10e00f4
KT
6695 rcu_read_unlock_sched();
6696
1724813d
PZ
6697 if (ret)
6698 break;
332ac17e
DF
6699 }
6700
1724813d 6701 return ret;
332ac17e
DF
6702}
6703
1724813d 6704static void sched_dl_do_global(void)
ce0dbbbb 6705{
1724813d 6706 u64 new_bw = -1;
f10e00f4 6707 struct dl_bw *dl_b;
1724813d 6708 int cpu;
49516342 6709 unsigned long flags;
ce0dbbbb 6710
1724813d
PZ
6711 def_dl_bandwidth.dl_period = global_rt_period();
6712 def_dl_bandwidth.dl_runtime = global_rt_runtime();
6713
6714 if (global_rt_runtime() != RUNTIME_INF)
6715 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
6716
6717 /*
6718 * FIXME: As above...
6719 */
6720 for_each_possible_cpu(cpu) {
f10e00f4
KT
6721 rcu_read_lock_sched();
6722 dl_b = dl_bw_of(cpu);
1724813d 6723
49516342 6724 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d 6725 dl_b->bw = new_bw;
49516342 6726 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
f10e00f4
KT
6727
6728 rcu_read_unlock_sched();
ce0dbbbb 6729 }
1724813d
PZ
6730}
6731
6732static int sched_rt_global_validate(void)
6733{
6734 if (sysctl_sched_rt_period <= 0)
6735 return -EINVAL;
6736
e9e7cb38
JL
6737 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
6738 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
1724813d
PZ
6739 return -EINVAL;
6740
6741 return 0;
6742}
6743
6744static void sched_rt_do_global(void)
6745{
6746 def_rt_bandwidth.rt_runtime = global_rt_runtime();
6747 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
6748}
6749
d0b27fa7 6750int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 6751 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
6752 loff_t *ppos)
6753{
d0b27fa7
PZ
6754 int old_period, old_runtime;
6755 static DEFINE_MUTEX(mutex);
1724813d 6756 int ret;
d0b27fa7
PZ
6757
6758 mutex_lock(&mutex);
6759 old_period = sysctl_sched_rt_period;
6760 old_runtime = sysctl_sched_rt_runtime;
6761
8d65af78 6762 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
6763
6764 if (!ret && write) {
1724813d
PZ
6765 ret = sched_rt_global_validate();
6766 if (ret)
6767 goto undo;
6768
a1963b81 6769 ret = sched_dl_global_validate();
1724813d
PZ
6770 if (ret)
6771 goto undo;
6772
a1963b81 6773 ret = sched_rt_global_constraints();
1724813d
PZ
6774 if (ret)
6775 goto undo;
6776
6777 sched_rt_do_global();
6778 sched_dl_do_global();
6779 }
6780 if (0) {
6781undo:
6782 sysctl_sched_rt_period = old_period;
6783 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
6784 }
6785 mutex_unlock(&mutex);
6786
6787 return ret;
6788}
68318b8e 6789
1724813d 6790int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
6791 void __user *buffer, size_t *lenp,
6792 loff_t *ppos)
6793{
6794 int ret;
332ac17e 6795 static DEFINE_MUTEX(mutex);
332ac17e
DF
6796
6797 mutex_lock(&mutex);
332ac17e 6798 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d1ccc66d
IM
6799 /*
6800 * Make sure that internally we keep jiffies.
6801 * Also, writing zero resets the timeslice to default:
6802 */
332ac17e 6803 if (!ret && write) {
975e155e
SZ
6804 sched_rr_timeslice =
6805 sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
6806 msecs_to_jiffies(sysctl_sched_rr_timeslice);
332ac17e
DF
6807 }
6808 mutex_unlock(&mutex);
332ac17e
DF
6809 return ret;
6810}
6811
052f1dc7 6812#ifdef CONFIG_CGROUP_SCHED
68318b8e 6813
a7c6d554 6814static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 6815{
a7c6d554 6816 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
6817}
6818
eb95419b
TH
6819static struct cgroup_subsys_state *
6820cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 6821{
eb95419b
TH
6822 struct task_group *parent = css_tg(parent_css);
6823 struct task_group *tg;
68318b8e 6824
eb95419b 6825 if (!parent) {
68318b8e 6826 /* This is early initialization for the top cgroup */
07e06b01 6827 return &root_task_group.css;
68318b8e
SV
6828 }
6829
ec7dc8ac 6830 tg = sched_create_group(parent);
68318b8e
SV
6831 if (IS_ERR(tg))
6832 return ERR_PTR(-ENOMEM);
6833
68318b8e
SV
6834 return &tg->css;
6835}
6836
96b77745
KK
6837/* Expose task group only after completing cgroup initialization */
6838static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
6839{
6840 struct task_group *tg = css_tg(css);
6841 struct task_group *parent = css_tg(css->parent);
6842
6843 if (parent)
6844 sched_online_group(tg, parent);
6845 return 0;
6846}
6847
2f5177f0 6848static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
ace783b9 6849{
eb95419b 6850 struct task_group *tg = css_tg(css);
ace783b9 6851
2f5177f0 6852 sched_offline_group(tg);
ace783b9
LZ
6853}
6854
eb95419b 6855static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 6856{
eb95419b 6857 struct task_group *tg = css_tg(css);
68318b8e 6858
2f5177f0
PZ
6859 /*
6860 * Relies on the RCU grace period between css_released() and this.
6861 */
6862 sched_free_group(tg);
ace783b9
LZ
6863}
6864
ea86cb4b
VG
6865/*
6866 * This is called before wake_up_new_task(), therefore we really only
6867 * have to set its group bits, all the other stuff does not apply.
6868 */
b53202e6 6869static void cpu_cgroup_fork(struct task_struct *task)
eeb61e53 6870{
ea86cb4b
VG
6871 struct rq_flags rf;
6872 struct rq *rq;
6873
6874 rq = task_rq_lock(task, &rf);
6875
80f5c1b8 6876 update_rq_clock(rq);
ea86cb4b
VG
6877 sched_change_group(task, TASK_SET_GROUP);
6878
6879 task_rq_unlock(rq, task, &rf);
eeb61e53
KT
6880}
6881
1f7dd3e5 6882static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
68318b8e 6883{
bb9d97b6 6884 struct task_struct *task;
1f7dd3e5 6885 struct cgroup_subsys_state *css;
7dc603c9 6886 int ret = 0;
bb9d97b6 6887
1f7dd3e5 6888 cgroup_taskset_for_each(task, css, tset) {
b68aa230 6889#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 6890 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 6891 return -EINVAL;
b68aa230 6892#else
bb9d97b6
TH
6893 /* We don't support RT-tasks being in separate groups */
6894 if (task->sched_class != &fair_sched_class)
6895 return -EINVAL;
b68aa230 6896#endif
7dc603c9
PZ
6897 /*
6898 * Serialize against wake_up_new_task() such that if its
6899 * running, we're sure to observe its full state.
6900 */
6901 raw_spin_lock_irq(&task->pi_lock);
6902 /*
6903 * Avoid calling sched_move_task() before wake_up_new_task()
6904 * has happened. This would lead to problems with PELT, due to
6905 * move wanting to detach+attach while we're not attached yet.
6906 */
6907 if (task->state == TASK_NEW)
6908 ret = -EINVAL;
6909 raw_spin_unlock_irq(&task->pi_lock);
6910
6911 if (ret)
6912 break;
bb9d97b6 6913 }
7dc603c9 6914 return ret;
be367d09 6915}
68318b8e 6916
1f7dd3e5 6917static void cpu_cgroup_attach(struct cgroup_taskset *tset)
68318b8e 6918{
bb9d97b6 6919 struct task_struct *task;
1f7dd3e5 6920 struct cgroup_subsys_state *css;
bb9d97b6 6921
1f7dd3e5 6922 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 6923 sched_move_task(task);
68318b8e
SV
6924}
6925
052f1dc7 6926#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
6927static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
6928 struct cftype *cftype, u64 shareval)
68318b8e 6929{
182446d0 6930 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
6931}
6932
182446d0
TH
6933static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
6934 struct cftype *cft)
68318b8e 6935{
182446d0 6936 struct task_group *tg = css_tg(css);
68318b8e 6937
c8b28116 6938 return (u64) scale_load_down(tg->shares);
68318b8e 6939}
ab84d31e
PT
6940
6941#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
6942static DEFINE_MUTEX(cfs_constraints_mutex);
6943
ab84d31e
PT
6944const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
6945const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
6946
a790de99
PT
6947static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
6948
ab84d31e
PT
6949static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
6950{
56f570e5 6951 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 6952 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
6953
6954 if (tg == &root_task_group)
6955 return -EINVAL;
6956
6957 /*
6958 * Ensure we have at some amount of bandwidth every period. This is
6959 * to prevent reaching a state of large arrears when throttled via
6960 * entity_tick() resulting in prolonged exit starvation.
6961 */
6962 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
6963 return -EINVAL;
6964
6965 /*
6966 * Likewise, bound things on the otherside by preventing insane quota
6967 * periods. This also allows us to normalize in computing quota
6968 * feasibility.
6969 */
6970 if (period > max_cfs_quota_period)
6971 return -EINVAL;
6972
0e59bdae
KT
6973 /*
6974 * Prevent race between setting of cfs_rq->runtime_enabled and
6975 * unthrottle_offline_cfs_rqs().
6976 */
6977 get_online_cpus();
a790de99
PT
6978 mutex_lock(&cfs_constraints_mutex);
6979 ret = __cfs_schedulable(tg, period, quota);
6980 if (ret)
6981 goto out_unlock;
6982
58088ad0 6983 runtime_enabled = quota != RUNTIME_INF;
56f570e5 6984 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
6985 /*
6986 * If we need to toggle cfs_bandwidth_used, off->on must occur
6987 * before making related changes, and on->off must occur afterwards
6988 */
6989 if (runtime_enabled && !runtime_was_enabled)
6990 cfs_bandwidth_usage_inc();
ab84d31e
PT
6991 raw_spin_lock_irq(&cfs_b->lock);
6992 cfs_b->period = ns_to_ktime(period);
6993 cfs_b->quota = quota;
58088ad0 6994
a9cf55b2 6995 __refill_cfs_bandwidth_runtime(cfs_b);
d1ccc66d
IM
6996
6997 /* Restart the period timer (if active) to handle new period expiry: */
77a4d1a1
PZ
6998 if (runtime_enabled)
6999 start_cfs_bandwidth(cfs_b);
d1ccc66d 7000
ab84d31e
PT
7001 raw_spin_unlock_irq(&cfs_b->lock);
7002
0e59bdae 7003 for_each_online_cpu(i) {
ab84d31e 7004 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 7005 struct rq *rq = cfs_rq->rq;
8a8c69c3 7006 struct rq_flags rf;
ab84d31e 7007
8a8c69c3 7008 rq_lock_irq(rq, &rf);
58088ad0 7009 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 7010 cfs_rq->runtime_remaining = 0;
671fd9da 7011
029632fb 7012 if (cfs_rq->throttled)
671fd9da 7013 unthrottle_cfs_rq(cfs_rq);
8a8c69c3 7014 rq_unlock_irq(rq, &rf);
ab84d31e 7015 }
1ee14e6c
BS
7016 if (runtime_was_enabled && !runtime_enabled)
7017 cfs_bandwidth_usage_dec();
a790de99
PT
7018out_unlock:
7019 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 7020 put_online_cpus();
ab84d31e 7021
a790de99 7022 return ret;
ab84d31e
PT
7023}
7024
7025int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7026{
7027 u64 quota, period;
7028
029632fb 7029 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7030 if (cfs_quota_us < 0)
7031 quota = RUNTIME_INF;
7032 else
7033 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7034
7035 return tg_set_cfs_bandwidth(tg, period, quota);
7036}
7037
7038long tg_get_cfs_quota(struct task_group *tg)
7039{
7040 u64 quota_us;
7041
029632fb 7042 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
7043 return -1;
7044
029632fb 7045 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
7046 do_div(quota_us, NSEC_PER_USEC);
7047
7048 return quota_us;
7049}
7050
7051int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7052{
7053 u64 quota, period;
7054
7055 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 7056 quota = tg->cfs_bandwidth.quota;
ab84d31e 7057
ab84d31e
PT
7058 return tg_set_cfs_bandwidth(tg, period, quota);
7059}
7060
7061long tg_get_cfs_period(struct task_group *tg)
7062{
7063 u64 cfs_period_us;
7064
029632fb 7065 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7066 do_div(cfs_period_us, NSEC_PER_USEC);
7067
7068 return cfs_period_us;
7069}
7070
182446d0
TH
7071static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7072 struct cftype *cft)
ab84d31e 7073{
182446d0 7074 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
7075}
7076
182446d0
TH
7077static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7078 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 7079{
182446d0 7080 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
7081}
7082
182446d0
TH
7083static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7084 struct cftype *cft)
ab84d31e 7085{
182446d0 7086 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
7087}
7088
182446d0
TH
7089static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7090 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 7091{
182446d0 7092 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
7093}
7094
a790de99
PT
7095struct cfs_schedulable_data {
7096 struct task_group *tg;
7097 u64 period, quota;
7098};
7099
7100/*
7101 * normalize group quota/period to be quota/max_period
7102 * note: units are usecs
7103 */
7104static u64 normalize_cfs_quota(struct task_group *tg,
7105 struct cfs_schedulable_data *d)
7106{
7107 u64 quota, period;
7108
7109 if (tg == d->tg) {
7110 period = d->period;
7111 quota = d->quota;
7112 } else {
7113 period = tg_get_cfs_period(tg);
7114 quota = tg_get_cfs_quota(tg);
7115 }
7116
7117 /* note: these should typically be equivalent */
7118 if (quota == RUNTIME_INF || quota == -1)
7119 return RUNTIME_INF;
7120
7121 return to_ratio(period, quota);
7122}
7123
7124static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7125{
7126 struct cfs_schedulable_data *d = data;
029632fb 7127 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
7128 s64 quota = 0, parent_quota = -1;
7129
7130 if (!tg->parent) {
7131 quota = RUNTIME_INF;
7132 } else {
029632fb 7133 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
7134
7135 quota = normalize_cfs_quota(tg, d);
9c58c79a 7136 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
7137
7138 /*
d1ccc66d
IM
7139 * Ensure max(child_quota) <= parent_quota, inherit when no
7140 * limit is set:
a790de99
PT
7141 */
7142 if (quota == RUNTIME_INF)
7143 quota = parent_quota;
7144 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7145 return -EINVAL;
7146 }
9c58c79a 7147 cfs_b->hierarchical_quota = quota;
a790de99
PT
7148
7149 return 0;
7150}
7151
7152static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7153{
8277434e 7154 int ret;
a790de99
PT
7155 struct cfs_schedulable_data data = {
7156 .tg = tg,
7157 .period = period,
7158 .quota = quota,
7159 };
7160
7161 if (quota != RUNTIME_INF) {
7162 do_div(data.period, NSEC_PER_USEC);
7163 do_div(data.quota, NSEC_PER_USEC);
7164 }
7165
8277434e
PT
7166 rcu_read_lock();
7167 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7168 rcu_read_unlock();
7169
7170 return ret;
a790de99 7171}
e8da1b18 7172
2da8ca82 7173static int cpu_stats_show(struct seq_file *sf, void *v)
e8da1b18 7174{
2da8ca82 7175 struct task_group *tg = css_tg(seq_css(sf));
029632fb 7176 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 7177
44ffc75b
TH
7178 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7179 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7180 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
7181
7182 return 0;
7183}
ab84d31e 7184#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 7185#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 7186
052f1dc7 7187#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
7188static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7189 struct cftype *cft, s64 val)
6f505b16 7190{
182446d0 7191 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
7192}
7193
182446d0
TH
7194static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7195 struct cftype *cft)
6f505b16 7196{
182446d0 7197 return sched_group_rt_runtime(css_tg(css));
6f505b16 7198}
d0b27fa7 7199
182446d0
TH
7200static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7201 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 7202{
182446d0 7203 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
7204}
7205
182446d0
TH
7206static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7207 struct cftype *cft)
d0b27fa7 7208{
182446d0 7209 return sched_group_rt_period(css_tg(css));
d0b27fa7 7210}
6d6bc0ad 7211#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 7212
fe5c7cc2 7213static struct cftype cpu_files[] = {
052f1dc7 7214#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
7215 {
7216 .name = "shares",
f4c753b7
PM
7217 .read_u64 = cpu_shares_read_u64,
7218 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 7219 },
052f1dc7 7220#endif
ab84d31e
PT
7221#ifdef CONFIG_CFS_BANDWIDTH
7222 {
7223 .name = "cfs_quota_us",
7224 .read_s64 = cpu_cfs_quota_read_s64,
7225 .write_s64 = cpu_cfs_quota_write_s64,
7226 },
7227 {
7228 .name = "cfs_period_us",
7229 .read_u64 = cpu_cfs_period_read_u64,
7230 .write_u64 = cpu_cfs_period_write_u64,
7231 },
e8da1b18
NR
7232 {
7233 .name = "stat",
2da8ca82 7234 .seq_show = cpu_stats_show,
e8da1b18 7235 },
ab84d31e 7236#endif
052f1dc7 7237#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7238 {
9f0c1e56 7239 .name = "rt_runtime_us",
06ecb27c
PM
7240 .read_s64 = cpu_rt_runtime_read,
7241 .write_s64 = cpu_rt_runtime_write,
6f505b16 7242 },
d0b27fa7
PZ
7243 {
7244 .name = "rt_period_us",
f4c753b7
PM
7245 .read_u64 = cpu_rt_period_read_uint,
7246 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 7247 },
052f1dc7 7248#endif
d1ccc66d 7249 { } /* Terminate */
68318b8e
SV
7250};
7251
073219e9 7252struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748 7253 .css_alloc = cpu_cgroup_css_alloc,
96b77745 7254 .css_online = cpu_cgroup_css_online,
2f5177f0 7255 .css_released = cpu_cgroup_css_released,
92fb9748 7256 .css_free = cpu_cgroup_css_free,
eeb61e53 7257 .fork = cpu_cgroup_fork,
bb9d97b6
TH
7258 .can_attach = cpu_cgroup_can_attach,
7259 .attach = cpu_cgroup_attach,
5577964e 7260 .legacy_cftypes = cpu_files,
b38e42e9 7261 .early_init = true,
68318b8e
SV
7262};
7263
052f1dc7 7264#endif /* CONFIG_CGROUP_SCHED */
d842de87 7265
b637a328
PM
7266void dump_cpu_task(int cpu)
7267{
7268 pr_info("Task dump for CPU %d:\n", cpu);
7269 sched_show_task(cpu_curr(cpu));
7270}
ed82b8a1
AK
7271
7272/*
7273 * Nice levels are multiplicative, with a gentle 10% change for every
7274 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
7275 * nice 1, it will get ~10% less CPU time than another CPU-bound task
7276 * that remained on nice 0.
7277 *
7278 * The "10% effect" is relative and cumulative: from _any_ nice level,
7279 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
7280 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
7281 * If a task goes up by ~10% and another task goes down by ~10% then
7282 * the relative distance between them is ~25%.)
7283 */
7284const int sched_prio_to_weight[40] = {
7285 /* -20 */ 88761, 71755, 56483, 46273, 36291,
7286 /* -15 */ 29154, 23254, 18705, 14949, 11916,
7287 /* -10 */ 9548, 7620, 6100, 4904, 3906,
7288 /* -5 */ 3121, 2501, 1991, 1586, 1277,
7289 /* 0 */ 1024, 820, 655, 526, 423,
7290 /* 5 */ 335, 272, 215, 172, 137,
7291 /* 10 */ 110, 87, 70, 56, 45,
7292 /* 15 */ 36, 29, 23, 18, 15,
7293};
7294
7295/*
7296 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
7297 *
7298 * In cases where the weight does not change often, we can use the
7299 * precalculated inverse to speed up arithmetics by turning divisions
7300 * into multiplications:
7301 */
7302const u32 sched_prio_to_wmult[40] = {
7303 /* -20 */ 48388, 59856, 76040, 92818, 118348,
7304 /* -15 */ 147320, 184698, 229616, 287308, 360437,
7305 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
7306 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
7307 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
7308 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
7309 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
7310 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
7311};