]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/sched/core.c
sched/core: Remove unused variable
[mirror_ubuntu-bionic-kernel.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
e1b77c92 29#include <linux/kasan.h>
1da177e4
LT
30#include <linux/mm.h>
31#include <linux/module.h>
32#include <linux/nmi.h>
33#include <linux/init.h>
dff06c15 34#include <linux/uaccess.h>
1da177e4 35#include <linux/highmem.h>
f98db601 36#include <linux/mmu_context.h>
1da177e4 37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
cdd6c482 42#include <linux/perf_event.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
b5aadf7f 58#include <linux/proc_fs.h>
1da177e4 59#include <linux/seq_file.h>
e692ab53 60#include <linux/sysctl.h>
1da177e4
LT
61#include <linux/syscalls.h>
62#include <linux/times.h>
8f0ab514 63#include <linux/tsacct_kern.h>
c6fd91f0 64#include <linux/kprobes.h>
0ff92245 65#include <linux/delayacct.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
30914a58 69#include <linux/tick.h>
f00b45c1 70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
91d1aa43 74#include <linux/context_tracking.h>
52f5684c 75#include <linux/compiler.h>
8e05e96a 76#include <linux/frame.h>
1da177e4 77
96f951ed 78#include <asm/switch_to.h>
5517d86b 79#include <asm/tlb.h>
838225b4 80#include <asm/irq_regs.h>
db7e527d 81#include <asm/mutex.h>
e6e6685a
GC
82#ifdef CONFIG_PARAVIRT
83#include <asm/paravirt.h>
84#endif
1da177e4 85
029632fb 86#include "sched.h"
ea138446 87#include "../workqueue_internal.h"
29d5e047 88#include "../smpboot.h"
6e0534f2 89
a8d154b0 90#define CREATE_TRACE_POINTS
ad8d75ff 91#include <trace/events/sched.h>
a8d154b0 92
029632fb
PZ
93DEFINE_MUTEX(sched_domains_mutex);
94DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 95
fe44d621 96static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 97
029632fb 98void update_rq_clock(struct rq *rq)
3e51f33f 99{
fe44d621 100 s64 delta;
305e6835 101
9edfbfed
PZ
102 lockdep_assert_held(&rq->lock);
103
104 if (rq->clock_skip_update & RQCF_ACT_SKIP)
f26f9aff 105 return;
aa483808 106
fe44d621 107 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
4036ac15
MG
108 if (delta < 0)
109 return;
fe44d621
PZ
110 rq->clock += delta;
111 update_rq_clock_task(rq, delta);
3e51f33f
PZ
112}
113
bf5c91ba
IM
114/*
115 * Debugging: various feature bits
116 */
f00b45c1 117
f00b45c1
PZ
118#define SCHED_FEAT(name, enabled) \
119 (1UL << __SCHED_FEAT_##name) * enabled |
120
bf5c91ba 121const_debug unsigned int sysctl_sched_features =
391e43da 122#include "features.h"
f00b45c1
PZ
123 0;
124
125#undef SCHED_FEAT
126
b82d9fdd
PZ
127/*
128 * Number of tasks to iterate in a single balance run.
129 * Limited because this is done with IRQs disabled.
130 */
131const_debug unsigned int sysctl_sched_nr_migrate = 32;
132
e9e9250b
PZ
133/*
134 * period over which we average the RT time consumption, measured
135 * in ms.
136 *
137 * default: 1s
138 */
139const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
140
fa85ae24 141/*
9f0c1e56 142 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
143 * default: 1s
144 */
9f0c1e56 145unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 146
029632fb 147__read_mostly int scheduler_running;
6892b75e 148
9f0c1e56
PZ
149/*
150 * part of the period that we allow rt tasks to run in us.
151 * default: 0.95s
152 */
153int sysctl_sched_rt_runtime = 950000;
fa85ae24 154
3fa0818b
RR
155/* cpus with isolated domains */
156cpumask_var_t cpu_isolated_map;
157
1da177e4 158/*
cc2a73b5 159 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 160 */
a9957449 161static struct rq *this_rq_lock(void)
1da177e4
LT
162 __acquires(rq->lock)
163{
70b97a7f 164 struct rq *rq;
1da177e4
LT
165
166 local_irq_disable();
167 rq = this_rq();
05fa785c 168 raw_spin_lock(&rq->lock);
1da177e4
LT
169
170 return rq;
171}
172
3e71a462
PZ
173/*
174 * __task_rq_lock - lock the rq @p resides on.
175 */
eb580751 176struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
177 __acquires(rq->lock)
178{
179 struct rq *rq;
180
181 lockdep_assert_held(&p->pi_lock);
182
183 for (;;) {
184 rq = task_rq(p);
185 raw_spin_lock(&rq->lock);
186 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
e7904a28 187 rf->cookie = lockdep_pin_lock(&rq->lock);
3e71a462
PZ
188 return rq;
189 }
190 raw_spin_unlock(&rq->lock);
191
192 while (unlikely(task_on_rq_migrating(p)))
193 cpu_relax();
194 }
195}
196
197/*
198 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
199 */
eb580751 200struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
201 __acquires(p->pi_lock)
202 __acquires(rq->lock)
203{
204 struct rq *rq;
205
206 for (;;) {
eb580751 207 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
3e71a462
PZ
208 rq = task_rq(p);
209 raw_spin_lock(&rq->lock);
210 /*
211 * move_queued_task() task_rq_lock()
212 *
213 * ACQUIRE (rq->lock)
214 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
215 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
216 * [S] ->cpu = new_cpu [L] task_rq()
217 * [L] ->on_rq
218 * RELEASE (rq->lock)
219 *
220 * If we observe the old cpu in task_rq_lock, the acquire of
221 * the old rq->lock will fully serialize against the stores.
222 *
223 * If we observe the new cpu in task_rq_lock, the acquire will
224 * pair with the WMB to ensure we must then also see migrating.
225 */
226 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
e7904a28 227 rf->cookie = lockdep_pin_lock(&rq->lock);
3e71a462
PZ
228 return rq;
229 }
230 raw_spin_unlock(&rq->lock);
eb580751 231 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
3e71a462
PZ
232
233 while (unlikely(task_on_rq_migrating(p)))
234 cpu_relax();
235 }
236}
237
8f4d37ec
PZ
238#ifdef CONFIG_SCHED_HRTICK
239/*
240 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 241 */
8f4d37ec 242
8f4d37ec
PZ
243static void hrtick_clear(struct rq *rq)
244{
245 if (hrtimer_active(&rq->hrtick_timer))
246 hrtimer_cancel(&rq->hrtick_timer);
247}
248
8f4d37ec
PZ
249/*
250 * High-resolution timer tick.
251 * Runs from hardirq context with interrupts disabled.
252 */
253static enum hrtimer_restart hrtick(struct hrtimer *timer)
254{
255 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
256
257 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
258
05fa785c 259 raw_spin_lock(&rq->lock);
3e51f33f 260 update_rq_clock(rq);
8f4d37ec 261 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 262 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
263
264 return HRTIMER_NORESTART;
265}
266
95e904c7 267#ifdef CONFIG_SMP
971ee28c 268
4961b6e1 269static void __hrtick_restart(struct rq *rq)
971ee28c
PZ
270{
271 struct hrtimer *timer = &rq->hrtick_timer;
971ee28c 272
4961b6e1 273 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
971ee28c
PZ
274}
275
31656519
PZ
276/*
277 * called from hardirq (IPI) context
278 */
279static void __hrtick_start(void *arg)
b328ca18 280{
31656519 281 struct rq *rq = arg;
b328ca18 282
05fa785c 283 raw_spin_lock(&rq->lock);
971ee28c 284 __hrtick_restart(rq);
31656519 285 rq->hrtick_csd_pending = 0;
05fa785c 286 raw_spin_unlock(&rq->lock);
b328ca18
PZ
287}
288
31656519
PZ
289/*
290 * Called to set the hrtick timer state.
291 *
292 * called with rq->lock held and irqs disabled
293 */
029632fb 294void hrtick_start(struct rq *rq, u64 delay)
b328ca18 295{
31656519 296 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 297 ktime_t time;
298 s64 delta;
299
300 /*
301 * Don't schedule slices shorter than 10000ns, that just
302 * doesn't make sense and can cause timer DoS.
303 */
304 delta = max_t(s64, delay, 10000LL);
305 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 306
cc584b21 307 hrtimer_set_expires(timer, time);
31656519
PZ
308
309 if (rq == this_rq()) {
971ee28c 310 __hrtick_restart(rq);
31656519 311 } else if (!rq->hrtick_csd_pending) {
c46fff2a 312 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
313 rq->hrtick_csd_pending = 1;
314 }
b328ca18
PZ
315}
316
317static int
318hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
319{
320 int cpu = (int)(long)hcpu;
321
322 switch (action) {
323 case CPU_UP_CANCELED:
324 case CPU_UP_CANCELED_FROZEN:
325 case CPU_DOWN_PREPARE:
326 case CPU_DOWN_PREPARE_FROZEN:
327 case CPU_DEAD:
328 case CPU_DEAD_FROZEN:
31656519 329 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
330 return NOTIFY_OK;
331 }
332
333 return NOTIFY_DONE;
334}
335
fa748203 336static __init void init_hrtick(void)
b328ca18
PZ
337{
338 hotcpu_notifier(hotplug_hrtick, 0);
339}
31656519
PZ
340#else
341/*
342 * Called to set the hrtick timer state.
343 *
344 * called with rq->lock held and irqs disabled
345 */
029632fb 346void hrtick_start(struct rq *rq, u64 delay)
31656519 347{
86893335
WL
348 /*
349 * Don't schedule slices shorter than 10000ns, that just
350 * doesn't make sense. Rely on vruntime for fairness.
351 */
352 delay = max_t(u64, delay, 10000LL);
4961b6e1
TG
353 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
354 HRTIMER_MODE_REL_PINNED);
31656519 355}
b328ca18 356
006c75f1 357static inline void init_hrtick(void)
8f4d37ec 358{
8f4d37ec 359}
31656519 360#endif /* CONFIG_SMP */
8f4d37ec 361
31656519 362static void init_rq_hrtick(struct rq *rq)
8f4d37ec 363{
31656519
PZ
364#ifdef CONFIG_SMP
365 rq->hrtick_csd_pending = 0;
8f4d37ec 366
31656519
PZ
367 rq->hrtick_csd.flags = 0;
368 rq->hrtick_csd.func = __hrtick_start;
369 rq->hrtick_csd.info = rq;
370#endif
8f4d37ec 371
31656519
PZ
372 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
373 rq->hrtick_timer.function = hrtick;
8f4d37ec 374}
006c75f1 375#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
376static inline void hrtick_clear(struct rq *rq)
377{
378}
379
8f4d37ec
PZ
380static inline void init_rq_hrtick(struct rq *rq)
381{
382}
383
b328ca18
PZ
384static inline void init_hrtick(void)
385{
386}
006c75f1 387#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 388
5529578a
FW
389/*
390 * cmpxchg based fetch_or, macro so it works for different integer types
391 */
392#define fetch_or(ptr, mask) \
393 ({ \
394 typeof(ptr) _ptr = (ptr); \
395 typeof(mask) _mask = (mask); \
396 typeof(*_ptr) _old, _val = *_ptr; \
397 \
398 for (;;) { \
399 _old = cmpxchg(_ptr, _val, _val | _mask); \
400 if (_old == _val) \
401 break; \
402 _val = _old; \
403 } \
404 _old; \
405})
406
e3baac47 407#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
408/*
409 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
410 * this avoids any races wrt polling state changes and thereby avoids
411 * spurious IPIs.
412 */
413static bool set_nr_and_not_polling(struct task_struct *p)
414{
415 struct thread_info *ti = task_thread_info(p);
416 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
417}
e3baac47
PZ
418
419/*
420 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
421 *
422 * If this returns true, then the idle task promises to call
423 * sched_ttwu_pending() and reschedule soon.
424 */
425static bool set_nr_if_polling(struct task_struct *p)
426{
427 struct thread_info *ti = task_thread_info(p);
316c1608 428 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
e3baac47
PZ
429
430 for (;;) {
431 if (!(val & _TIF_POLLING_NRFLAG))
432 return false;
433 if (val & _TIF_NEED_RESCHED)
434 return true;
435 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
436 if (old == val)
437 break;
438 val = old;
439 }
440 return true;
441}
442
fd99f91a
PZ
443#else
444static bool set_nr_and_not_polling(struct task_struct *p)
445{
446 set_tsk_need_resched(p);
447 return true;
448}
e3baac47
PZ
449
450#ifdef CONFIG_SMP
451static bool set_nr_if_polling(struct task_struct *p)
452{
453 return false;
454}
455#endif
fd99f91a
PZ
456#endif
457
76751049
PZ
458void wake_q_add(struct wake_q_head *head, struct task_struct *task)
459{
460 struct wake_q_node *node = &task->wake_q;
461
462 /*
463 * Atomically grab the task, if ->wake_q is !nil already it means
464 * its already queued (either by us or someone else) and will get the
465 * wakeup due to that.
466 *
467 * This cmpxchg() implies a full barrier, which pairs with the write
468 * barrier implied by the wakeup in wake_up_list().
469 */
470 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
471 return;
472
473 get_task_struct(task);
474
475 /*
476 * The head is context local, there can be no concurrency.
477 */
478 *head->lastp = node;
479 head->lastp = &node->next;
480}
481
482void wake_up_q(struct wake_q_head *head)
483{
484 struct wake_q_node *node = head->first;
485
486 while (node != WAKE_Q_TAIL) {
487 struct task_struct *task;
488
489 task = container_of(node, struct task_struct, wake_q);
490 BUG_ON(!task);
491 /* task can safely be re-inserted now */
492 node = node->next;
493 task->wake_q.next = NULL;
494
495 /*
496 * wake_up_process() implies a wmb() to pair with the queueing
497 * in wake_q_add() so as not to miss wakeups.
498 */
499 wake_up_process(task);
500 put_task_struct(task);
501 }
502}
503
c24d20db 504/*
8875125e 505 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
506 *
507 * On UP this means the setting of the need_resched flag, on SMP it
508 * might also involve a cross-CPU call to trigger the scheduler on
509 * the target CPU.
510 */
8875125e 511void resched_curr(struct rq *rq)
c24d20db 512{
8875125e 513 struct task_struct *curr = rq->curr;
c24d20db
IM
514 int cpu;
515
8875125e 516 lockdep_assert_held(&rq->lock);
c24d20db 517
8875125e 518 if (test_tsk_need_resched(curr))
c24d20db
IM
519 return;
520
8875125e 521 cpu = cpu_of(rq);
fd99f91a 522
f27dde8d 523 if (cpu == smp_processor_id()) {
8875125e 524 set_tsk_need_resched(curr);
f27dde8d 525 set_preempt_need_resched();
c24d20db 526 return;
f27dde8d 527 }
c24d20db 528
8875125e 529 if (set_nr_and_not_polling(curr))
c24d20db 530 smp_send_reschedule(cpu);
dfc68f29
AL
531 else
532 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
533}
534
029632fb 535void resched_cpu(int cpu)
c24d20db
IM
536{
537 struct rq *rq = cpu_rq(cpu);
538 unsigned long flags;
539
05fa785c 540 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db 541 return;
8875125e 542 resched_curr(rq);
05fa785c 543 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 544}
06d8308c 545
b021fe3e 546#ifdef CONFIG_SMP
3451d024 547#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
548/*
549 * In the semi idle case, use the nearest busy cpu for migrating timers
550 * from an idle cpu. This is good for power-savings.
551 *
552 * We don't do similar optimization for completely idle system, as
553 * selecting an idle cpu will add more delays to the timers than intended
554 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
555 */
bc7a34b8 556int get_nohz_timer_target(void)
83cd4fe2 557{
bc7a34b8 558 int i, cpu = smp_processor_id();
83cd4fe2
VP
559 struct sched_domain *sd;
560
9642d18e 561 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
6201b4d6
VK
562 return cpu;
563
057f3fad 564 rcu_read_lock();
83cd4fe2 565 for_each_domain(cpu, sd) {
057f3fad 566 for_each_cpu(i, sched_domain_span(sd)) {
9642d18e 567 if (!idle_cpu(i) && is_housekeeping_cpu(cpu)) {
057f3fad
PZ
568 cpu = i;
569 goto unlock;
570 }
571 }
83cd4fe2 572 }
9642d18e
VH
573
574 if (!is_housekeeping_cpu(cpu))
575 cpu = housekeeping_any_cpu();
057f3fad
PZ
576unlock:
577 rcu_read_unlock();
83cd4fe2
VP
578 return cpu;
579}
06d8308c
TG
580/*
581 * When add_timer_on() enqueues a timer into the timer wheel of an
582 * idle CPU then this timer might expire before the next timer event
583 * which is scheduled to wake up that CPU. In case of a completely
584 * idle system the next event might even be infinite time into the
585 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
586 * leaves the inner idle loop so the newly added timer is taken into
587 * account when the CPU goes back to idle and evaluates the timer
588 * wheel for the next timer event.
589 */
1c20091e 590static void wake_up_idle_cpu(int cpu)
06d8308c
TG
591{
592 struct rq *rq = cpu_rq(cpu);
593
594 if (cpu == smp_processor_id())
595 return;
596
67b9ca70 597 if (set_nr_and_not_polling(rq->idle))
06d8308c 598 smp_send_reschedule(cpu);
dfc68f29
AL
599 else
600 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
601}
602
c5bfece2 603static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 604{
53c5fa16
FW
605 /*
606 * We just need the target to call irq_exit() and re-evaluate
607 * the next tick. The nohz full kick at least implies that.
608 * If needed we can still optimize that later with an
609 * empty IRQ.
610 */
c5bfece2 611 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
612 if (cpu != smp_processor_id() ||
613 tick_nohz_tick_stopped())
53c5fa16 614 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
615 return true;
616 }
617
618 return false;
619}
620
621void wake_up_nohz_cpu(int cpu)
622{
c5bfece2 623 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
624 wake_up_idle_cpu(cpu);
625}
626
ca38062e 627static inline bool got_nohz_idle_kick(void)
45bf76df 628{
1c792db7 629 int cpu = smp_processor_id();
873b4c65
VG
630
631 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
632 return false;
633
634 if (idle_cpu(cpu) && !need_resched())
635 return true;
636
637 /*
638 * We can't run Idle Load Balance on this CPU for this time so we
639 * cancel it and clear NOHZ_BALANCE_KICK
640 */
641 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
642 return false;
45bf76df
IM
643}
644
3451d024 645#else /* CONFIG_NO_HZ_COMMON */
45bf76df 646
ca38062e 647static inline bool got_nohz_idle_kick(void)
2069dd75 648{
ca38062e 649 return false;
2069dd75
PZ
650}
651
3451d024 652#endif /* CONFIG_NO_HZ_COMMON */
d842de87 653
ce831b38 654#ifdef CONFIG_NO_HZ_FULL
76d92ac3 655bool sched_can_stop_tick(struct rq *rq)
ce831b38 656{
76d92ac3
FW
657 int fifo_nr_running;
658
659 /* Deadline tasks, even if single, need the tick */
660 if (rq->dl.dl_nr_running)
661 return false;
662
1e78cdbd 663 /*
2548d546
PZ
664 * If there are more than one RR tasks, we need the tick to effect the
665 * actual RR behaviour.
1e78cdbd 666 */
76d92ac3
FW
667 if (rq->rt.rr_nr_running) {
668 if (rq->rt.rr_nr_running == 1)
669 return true;
670 else
671 return false;
1e78cdbd
RR
672 }
673
2548d546
PZ
674 /*
675 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
676 * forced preemption between FIFO tasks.
677 */
678 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
679 if (fifo_nr_running)
680 return true;
681
682 /*
683 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
684 * if there's more than one we need the tick for involuntary
685 * preemption.
686 */
687 if (rq->nr_running > 1)
541b8264 688 return false;
ce831b38 689
541b8264 690 return true;
ce831b38
FW
691}
692#endif /* CONFIG_NO_HZ_FULL */
d842de87 693
029632fb 694void sched_avg_update(struct rq *rq)
18d95a28 695{
e9e9250b
PZ
696 s64 period = sched_avg_period();
697
78becc27 698 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
699 /*
700 * Inline assembly required to prevent the compiler
701 * optimising this loop into a divmod call.
702 * See __iter_div_u64_rem() for another example of this.
703 */
704 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
705 rq->age_stamp += period;
706 rq->rt_avg /= 2;
707 }
18d95a28
PZ
708}
709
6d6bc0ad 710#endif /* CONFIG_SMP */
18d95a28 711
a790de99
PT
712#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
713 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 714/*
8277434e
PT
715 * Iterate task_group tree rooted at *from, calling @down when first entering a
716 * node and @up when leaving it for the final time.
717 *
718 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 719 */
029632fb 720int walk_tg_tree_from(struct task_group *from,
8277434e 721 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
722{
723 struct task_group *parent, *child;
eb755805 724 int ret;
c09595f6 725
8277434e
PT
726 parent = from;
727
c09595f6 728down:
eb755805
PZ
729 ret = (*down)(parent, data);
730 if (ret)
8277434e 731 goto out;
c09595f6
PZ
732 list_for_each_entry_rcu(child, &parent->children, siblings) {
733 parent = child;
734 goto down;
735
736up:
737 continue;
738 }
eb755805 739 ret = (*up)(parent, data);
8277434e
PT
740 if (ret || parent == from)
741 goto out;
c09595f6
PZ
742
743 child = parent;
744 parent = parent->parent;
745 if (parent)
746 goto up;
8277434e 747out:
eb755805 748 return ret;
c09595f6
PZ
749}
750
029632fb 751int tg_nop(struct task_group *tg, void *data)
eb755805 752{
e2b245f8 753 return 0;
eb755805 754}
18d95a28
PZ
755#endif
756
45bf76df
IM
757static void set_load_weight(struct task_struct *p)
758{
f05998d4
NR
759 int prio = p->static_prio - MAX_RT_PRIO;
760 struct load_weight *load = &p->se.load;
761
dd41f596
IM
762 /*
763 * SCHED_IDLE tasks get minimal weight:
764 */
20f9cd2a 765 if (idle_policy(p->policy)) {
c8b28116 766 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 767 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
768 return;
769 }
71f8bd46 770
ed82b8a1
AK
771 load->weight = scale_load(sched_prio_to_weight[prio]);
772 load->inv_weight = sched_prio_to_wmult[prio];
71f8bd46
IM
773}
774
1de64443 775static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 776{
a64692a3 777 update_rq_clock(rq);
1de64443
PZ
778 if (!(flags & ENQUEUE_RESTORE))
779 sched_info_queued(rq, p);
371fd7e7 780 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
781}
782
1de64443 783static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 784{
a64692a3 785 update_rq_clock(rq);
1de64443
PZ
786 if (!(flags & DEQUEUE_SAVE))
787 sched_info_dequeued(rq, p);
371fd7e7 788 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
789}
790
029632fb 791void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
792{
793 if (task_contributes_to_load(p))
794 rq->nr_uninterruptible--;
795
371fd7e7 796 enqueue_task(rq, p, flags);
1e3c88bd
PZ
797}
798
029632fb 799void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
800{
801 if (task_contributes_to_load(p))
802 rq->nr_uninterruptible++;
803
371fd7e7 804 dequeue_task(rq, p, flags);
1e3c88bd
PZ
805}
806
fe44d621 807static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 808{
095c0aa8
GC
809/*
810 * In theory, the compile should just see 0 here, and optimize out the call
811 * to sched_rt_avg_update. But I don't trust it...
812 */
813#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
814 s64 steal = 0, irq_delta = 0;
815#endif
816#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 817 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
818
819 /*
820 * Since irq_time is only updated on {soft,}irq_exit, we might run into
821 * this case when a previous update_rq_clock() happened inside a
822 * {soft,}irq region.
823 *
824 * When this happens, we stop ->clock_task and only update the
825 * prev_irq_time stamp to account for the part that fit, so that a next
826 * update will consume the rest. This ensures ->clock_task is
827 * monotonic.
828 *
829 * It does however cause some slight miss-attribution of {soft,}irq
830 * time, a more accurate solution would be to update the irq_time using
831 * the current rq->clock timestamp, except that would require using
832 * atomic ops.
833 */
834 if (irq_delta > delta)
835 irq_delta = delta;
836
837 rq->prev_irq_time += irq_delta;
838 delta -= irq_delta;
095c0aa8
GC
839#endif
840#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 841 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
842 steal = paravirt_steal_clock(cpu_of(rq));
843 steal -= rq->prev_steal_time_rq;
844
845 if (unlikely(steal > delta))
846 steal = delta;
847
095c0aa8 848 rq->prev_steal_time_rq += steal;
095c0aa8
GC
849 delta -= steal;
850 }
851#endif
852
fe44d621
PZ
853 rq->clock_task += delta;
854
095c0aa8 855#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
5d4dfddd 856 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
095c0aa8
GC
857 sched_rt_avg_update(rq, irq_delta + steal);
858#endif
aa483808
VP
859}
860
34f971f6
PZ
861void sched_set_stop_task(int cpu, struct task_struct *stop)
862{
863 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
864 struct task_struct *old_stop = cpu_rq(cpu)->stop;
865
866 if (stop) {
867 /*
868 * Make it appear like a SCHED_FIFO task, its something
869 * userspace knows about and won't get confused about.
870 *
871 * Also, it will make PI more or less work without too
872 * much confusion -- but then, stop work should not
873 * rely on PI working anyway.
874 */
875 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
876
877 stop->sched_class = &stop_sched_class;
878 }
879
880 cpu_rq(cpu)->stop = stop;
881
882 if (old_stop) {
883 /*
884 * Reset it back to a normal scheduling class so that
885 * it can die in pieces.
886 */
887 old_stop->sched_class = &rt_sched_class;
888 }
889}
890
14531189 891/*
dd41f596 892 * __normal_prio - return the priority that is based on the static prio
14531189 893 */
14531189
IM
894static inline int __normal_prio(struct task_struct *p)
895{
dd41f596 896 return p->static_prio;
14531189
IM
897}
898
b29739f9
IM
899/*
900 * Calculate the expected normal priority: i.e. priority
901 * without taking RT-inheritance into account. Might be
902 * boosted by interactivity modifiers. Changes upon fork,
903 * setprio syscalls, and whenever the interactivity
904 * estimator recalculates.
905 */
36c8b586 906static inline int normal_prio(struct task_struct *p)
b29739f9
IM
907{
908 int prio;
909
aab03e05
DF
910 if (task_has_dl_policy(p))
911 prio = MAX_DL_PRIO-1;
912 else if (task_has_rt_policy(p))
b29739f9
IM
913 prio = MAX_RT_PRIO-1 - p->rt_priority;
914 else
915 prio = __normal_prio(p);
916 return prio;
917}
918
919/*
920 * Calculate the current priority, i.e. the priority
921 * taken into account by the scheduler. This value might
922 * be boosted by RT tasks, or might be boosted by
923 * interactivity modifiers. Will be RT if the task got
924 * RT-boosted. If not then it returns p->normal_prio.
925 */
36c8b586 926static int effective_prio(struct task_struct *p)
b29739f9
IM
927{
928 p->normal_prio = normal_prio(p);
929 /*
930 * If we are RT tasks or we were boosted to RT priority,
931 * keep the priority unchanged. Otherwise, update priority
932 * to the normal priority:
933 */
934 if (!rt_prio(p->prio))
935 return p->normal_prio;
936 return p->prio;
937}
938
1da177e4
LT
939/**
940 * task_curr - is this task currently executing on a CPU?
941 * @p: the task in question.
e69f6186
YB
942 *
943 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 944 */
36c8b586 945inline int task_curr(const struct task_struct *p)
1da177e4
LT
946{
947 return cpu_curr(task_cpu(p)) == p;
948}
949
67dfa1b7 950/*
4c9a4bc8
PZ
951 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
952 * use the balance_callback list if you want balancing.
953 *
954 * this means any call to check_class_changed() must be followed by a call to
955 * balance_callback().
67dfa1b7 956 */
cb469845
SR
957static inline void check_class_changed(struct rq *rq, struct task_struct *p,
958 const struct sched_class *prev_class,
da7a735e 959 int oldprio)
cb469845
SR
960{
961 if (prev_class != p->sched_class) {
962 if (prev_class->switched_from)
da7a735e 963 prev_class->switched_from(rq, p);
4c9a4bc8 964
da7a735e 965 p->sched_class->switched_to(rq, p);
2d3d891d 966 } else if (oldprio != p->prio || dl_task(p))
da7a735e 967 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
968}
969
029632fb 970void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
971{
972 const struct sched_class *class;
973
974 if (p->sched_class == rq->curr->sched_class) {
975 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
976 } else {
977 for_each_class(class) {
978 if (class == rq->curr->sched_class)
979 break;
980 if (class == p->sched_class) {
8875125e 981 resched_curr(rq);
1e5a7405
PZ
982 break;
983 }
984 }
985 }
986
987 /*
988 * A queue event has occurred, and we're going to schedule. In
989 * this case, we can save a useless back to back clock update.
990 */
da0c1e65 991 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
9edfbfed 992 rq_clock_skip_update(rq, true);
1e5a7405
PZ
993}
994
1da177e4 995#ifdef CONFIG_SMP
5cc389bc
PZ
996/*
997 * This is how migration works:
998 *
999 * 1) we invoke migration_cpu_stop() on the target CPU using
1000 * stop_one_cpu().
1001 * 2) stopper starts to run (implicitly forcing the migrated thread
1002 * off the CPU)
1003 * 3) it checks whether the migrated task is still in the wrong runqueue.
1004 * 4) if it's in the wrong runqueue then the migration thread removes
1005 * it and puts it into the right queue.
1006 * 5) stopper completes and stop_one_cpu() returns and the migration
1007 * is done.
1008 */
1009
1010/*
1011 * move_queued_task - move a queued task to new rq.
1012 *
1013 * Returns (locked) new rq. Old rq's lock is released.
1014 */
5e16bbc2 1015static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
5cc389bc 1016{
5cc389bc
PZ
1017 lockdep_assert_held(&rq->lock);
1018
5cc389bc 1019 p->on_rq = TASK_ON_RQ_MIGRATING;
3ea94de1 1020 dequeue_task(rq, p, 0);
5cc389bc
PZ
1021 set_task_cpu(p, new_cpu);
1022 raw_spin_unlock(&rq->lock);
1023
1024 rq = cpu_rq(new_cpu);
1025
1026 raw_spin_lock(&rq->lock);
1027 BUG_ON(task_cpu(p) != new_cpu);
5cc389bc 1028 enqueue_task(rq, p, 0);
3ea94de1 1029 p->on_rq = TASK_ON_RQ_QUEUED;
5cc389bc
PZ
1030 check_preempt_curr(rq, p, 0);
1031
1032 return rq;
1033}
1034
1035struct migration_arg {
1036 struct task_struct *task;
1037 int dest_cpu;
1038};
1039
1040/*
1041 * Move (not current) task off this cpu, onto dest cpu. We're doing
1042 * this because either it can't run here any more (set_cpus_allowed()
1043 * away from this CPU, or CPU going down), or because we're
1044 * attempting to rebalance this task on exec (sched_exec).
1045 *
1046 * So we race with normal scheduler movements, but that's OK, as long
1047 * as the task is no longer on this CPU.
5cc389bc 1048 */
5e16bbc2 1049static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
5cc389bc 1050{
5cc389bc 1051 if (unlikely(!cpu_active(dest_cpu)))
5e16bbc2 1052 return rq;
5cc389bc
PZ
1053
1054 /* Affinity changed (again). */
1055 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
5e16bbc2 1056 return rq;
5cc389bc 1057
5e16bbc2
PZ
1058 rq = move_queued_task(rq, p, dest_cpu);
1059
1060 return rq;
5cc389bc
PZ
1061}
1062
1063/*
1064 * migration_cpu_stop - this will be executed by a highprio stopper thread
1065 * and performs thread migration by bumping thread off CPU then
1066 * 'pushing' onto another runqueue.
1067 */
1068static int migration_cpu_stop(void *data)
1069{
1070 struct migration_arg *arg = data;
5e16bbc2
PZ
1071 struct task_struct *p = arg->task;
1072 struct rq *rq = this_rq();
5cc389bc
PZ
1073
1074 /*
1075 * The original target cpu might have gone down and we might
1076 * be on another cpu but it doesn't matter.
1077 */
1078 local_irq_disable();
1079 /*
1080 * We need to explicitly wake pending tasks before running
1081 * __migrate_task() such that we will not miss enforcing cpus_allowed
1082 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1083 */
1084 sched_ttwu_pending();
5e16bbc2
PZ
1085
1086 raw_spin_lock(&p->pi_lock);
1087 raw_spin_lock(&rq->lock);
1088 /*
1089 * If task_rq(p) != rq, it cannot be migrated here, because we're
1090 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1091 * we're holding p->pi_lock.
1092 */
1093 if (task_rq(p) == rq && task_on_rq_queued(p))
1094 rq = __migrate_task(rq, p, arg->dest_cpu);
1095 raw_spin_unlock(&rq->lock);
1096 raw_spin_unlock(&p->pi_lock);
1097
5cc389bc
PZ
1098 local_irq_enable();
1099 return 0;
1100}
1101
c5b28038
PZ
1102/*
1103 * sched_class::set_cpus_allowed must do the below, but is not required to
1104 * actually call this function.
1105 */
1106void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
5cc389bc 1107{
5cc389bc
PZ
1108 cpumask_copy(&p->cpus_allowed, new_mask);
1109 p->nr_cpus_allowed = cpumask_weight(new_mask);
1110}
1111
c5b28038
PZ
1112void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1113{
6c37067e
PZ
1114 struct rq *rq = task_rq(p);
1115 bool queued, running;
1116
c5b28038 1117 lockdep_assert_held(&p->pi_lock);
6c37067e
PZ
1118
1119 queued = task_on_rq_queued(p);
1120 running = task_current(rq, p);
1121
1122 if (queued) {
1123 /*
1124 * Because __kthread_bind() calls this on blocked tasks without
1125 * holding rq->lock.
1126 */
1127 lockdep_assert_held(&rq->lock);
1de64443 1128 dequeue_task(rq, p, DEQUEUE_SAVE);
6c37067e
PZ
1129 }
1130 if (running)
1131 put_prev_task(rq, p);
1132
c5b28038 1133 p->sched_class->set_cpus_allowed(p, new_mask);
6c37067e
PZ
1134
1135 if (running)
1136 p->sched_class->set_curr_task(rq);
1137 if (queued)
1de64443 1138 enqueue_task(rq, p, ENQUEUE_RESTORE);
c5b28038
PZ
1139}
1140
5cc389bc
PZ
1141/*
1142 * Change a given task's CPU affinity. Migrate the thread to a
1143 * proper CPU and schedule it away if the CPU it's executing on
1144 * is removed from the allowed bitmask.
1145 *
1146 * NOTE: the caller must have a valid reference to the task, the
1147 * task must not exit() & deallocate itself prematurely. The
1148 * call is not atomic; no spinlocks may be held.
1149 */
25834c73
PZ
1150static int __set_cpus_allowed_ptr(struct task_struct *p,
1151 const struct cpumask *new_mask, bool check)
5cc389bc 1152{
5cc389bc 1153 unsigned int dest_cpu;
eb580751
PZ
1154 struct rq_flags rf;
1155 struct rq *rq;
5cc389bc
PZ
1156 int ret = 0;
1157
eb580751 1158 rq = task_rq_lock(p, &rf);
5cc389bc 1159
25834c73
PZ
1160 /*
1161 * Must re-check here, to close a race against __kthread_bind(),
1162 * sched_setaffinity() is not guaranteed to observe the flag.
1163 */
1164 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1165 ret = -EINVAL;
1166 goto out;
1167 }
1168
5cc389bc
PZ
1169 if (cpumask_equal(&p->cpus_allowed, new_mask))
1170 goto out;
1171
1172 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1173 ret = -EINVAL;
1174 goto out;
1175 }
1176
1177 do_set_cpus_allowed(p, new_mask);
1178
1179 /* Can the task run on the task's current CPU? If so, we're done */
1180 if (cpumask_test_cpu(task_cpu(p), new_mask))
1181 goto out;
1182
1183 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
1184 if (task_running(rq, p) || p->state == TASK_WAKING) {
1185 struct migration_arg arg = { p, dest_cpu };
1186 /* Need help from migration thread: drop lock and wait. */
eb580751 1187 task_rq_unlock(rq, p, &rf);
5cc389bc
PZ
1188 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1189 tlb_migrate_finish(p->mm);
1190 return 0;
cbce1a68
PZ
1191 } else if (task_on_rq_queued(p)) {
1192 /*
1193 * OK, since we're going to drop the lock immediately
1194 * afterwards anyway.
1195 */
e7904a28 1196 lockdep_unpin_lock(&rq->lock, rf.cookie);
5e16bbc2 1197 rq = move_queued_task(rq, p, dest_cpu);
e7904a28 1198 lockdep_repin_lock(&rq->lock, rf.cookie);
cbce1a68 1199 }
5cc389bc 1200out:
eb580751 1201 task_rq_unlock(rq, p, &rf);
5cc389bc
PZ
1202
1203 return ret;
1204}
25834c73
PZ
1205
1206int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1207{
1208 return __set_cpus_allowed_ptr(p, new_mask, false);
1209}
5cc389bc
PZ
1210EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1211
dd41f596 1212void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1213{
e2912009
PZ
1214#ifdef CONFIG_SCHED_DEBUG
1215 /*
1216 * We should never call set_task_cpu() on a blocked task,
1217 * ttwu() will sort out the placement.
1218 */
077614ee 1219 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
e2336f6e 1220 !p->on_rq);
0122ec5b 1221
3ea94de1
JP
1222 /*
1223 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1224 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1225 * time relying on p->on_rq.
1226 */
1227 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1228 p->sched_class == &fair_sched_class &&
1229 (p->on_rq && !task_on_rq_migrating(p)));
1230
0122ec5b 1231#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1232 /*
1233 * The caller should hold either p->pi_lock or rq->lock, when changing
1234 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1235 *
1236 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1237 * see task_group().
6c6c54e1
PZ
1238 *
1239 * Furthermore, all task_rq users should acquire both locks, see
1240 * task_rq_lock().
1241 */
0122ec5b
PZ
1242 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1243 lockdep_is_held(&task_rq(p)->lock)));
1244#endif
e2912009
PZ
1245#endif
1246
de1d7286 1247 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1248
0c69774e 1249 if (task_cpu(p) != new_cpu) {
0a74bef8 1250 if (p->sched_class->migrate_task_rq)
5a4fd036 1251 p->sched_class->migrate_task_rq(p);
0c69774e 1252 p->se.nr_migrations++;
ff303e66 1253 perf_event_task_migrate(p);
0c69774e 1254 }
dd41f596
IM
1255
1256 __set_task_cpu(p, new_cpu);
c65cc870
IM
1257}
1258
ac66f547
PZ
1259static void __migrate_swap_task(struct task_struct *p, int cpu)
1260{
da0c1e65 1261 if (task_on_rq_queued(p)) {
ac66f547
PZ
1262 struct rq *src_rq, *dst_rq;
1263
1264 src_rq = task_rq(p);
1265 dst_rq = cpu_rq(cpu);
1266
3ea94de1 1267 p->on_rq = TASK_ON_RQ_MIGRATING;
ac66f547
PZ
1268 deactivate_task(src_rq, p, 0);
1269 set_task_cpu(p, cpu);
1270 activate_task(dst_rq, p, 0);
3ea94de1 1271 p->on_rq = TASK_ON_RQ_QUEUED;
ac66f547
PZ
1272 check_preempt_curr(dst_rq, p, 0);
1273 } else {
1274 /*
1275 * Task isn't running anymore; make it appear like we migrated
1276 * it before it went to sleep. This means on wakeup we make the
1277 * previous cpu our targer instead of where it really is.
1278 */
1279 p->wake_cpu = cpu;
1280 }
1281}
1282
1283struct migration_swap_arg {
1284 struct task_struct *src_task, *dst_task;
1285 int src_cpu, dst_cpu;
1286};
1287
1288static int migrate_swap_stop(void *data)
1289{
1290 struct migration_swap_arg *arg = data;
1291 struct rq *src_rq, *dst_rq;
1292 int ret = -EAGAIN;
1293
62694cd5
PZ
1294 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1295 return -EAGAIN;
1296
ac66f547
PZ
1297 src_rq = cpu_rq(arg->src_cpu);
1298 dst_rq = cpu_rq(arg->dst_cpu);
1299
74602315
PZ
1300 double_raw_lock(&arg->src_task->pi_lock,
1301 &arg->dst_task->pi_lock);
ac66f547 1302 double_rq_lock(src_rq, dst_rq);
62694cd5 1303
ac66f547
PZ
1304 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1305 goto unlock;
1306
1307 if (task_cpu(arg->src_task) != arg->src_cpu)
1308 goto unlock;
1309
1310 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1311 goto unlock;
1312
1313 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1314 goto unlock;
1315
1316 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1317 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1318
1319 ret = 0;
1320
1321unlock:
1322 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1323 raw_spin_unlock(&arg->dst_task->pi_lock);
1324 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1325
1326 return ret;
1327}
1328
1329/*
1330 * Cross migrate two tasks
1331 */
1332int migrate_swap(struct task_struct *cur, struct task_struct *p)
1333{
1334 struct migration_swap_arg arg;
1335 int ret = -EINVAL;
1336
ac66f547
PZ
1337 arg = (struct migration_swap_arg){
1338 .src_task = cur,
1339 .src_cpu = task_cpu(cur),
1340 .dst_task = p,
1341 .dst_cpu = task_cpu(p),
1342 };
1343
1344 if (arg.src_cpu == arg.dst_cpu)
1345 goto out;
1346
6acce3ef
PZ
1347 /*
1348 * These three tests are all lockless; this is OK since all of them
1349 * will be re-checked with proper locks held further down the line.
1350 */
ac66f547
PZ
1351 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1352 goto out;
1353
1354 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1355 goto out;
1356
1357 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1358 goto out;
1359
286549dc 1360 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1361 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1362
1363out:
ac66f547
PZ
1364 return ret;
1365}
1366
1da177e4
LT
1367/*
1368 * wait_task_inactive - wait for a thread to unschedule.
1369 *
85ba2d86
RM
1370 * If @match_state is nonzero, it's the @p->state value just checked and
1371 * not expected to change. If it changes, i.e. @p might have woken up,
1372 * then return zero. When we succeed in waiting for @p to be off its CPU,
1373 * we return a positive number (its total switch count). If a second call
1374 * a short while later returns the same number, the caller can be sure that
1375 * @p has remained unscheduled the whole time.
1376 *
1da177e4
LT
1377 * The caller must ensure that the task *will* unschedule sometime soon,
1378 * else this function might spin for a *long* time. This function can't
1379 * be called with interrupts off, or it may introduce deadlock with
1380 * smp_call_function() if an IPI is sent by the same process we are
1381 * waiting to become inactive.
1382 */
85ba2d86 1383unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4 1384{
da0c1e65 1385 int running, queued;
eb580751 1386 struct rq_flags rf;
85ba2d86 1387 unsigned long ncsw;
70b97a7f 1388 struct rq *rq;
1da177e4 1389
3a5c359a
AK
1390 for (;;) {
1391 /*
1392 * We do the initial early heuristics without holding
1393 * any task-queue locks at all. We'll only try to get
1394 * the runqueue lock when things look like they will
1395 * work out!
1396 */
1397 rq = task_rq(p);
fa490cfd 1398
3a5c359a
AK
1399 /*
1400 * If the task is actively running on another CPU
1401 * still, just relax and busy-wait without holding
1402 * any locks.
1403 *
1404 * NOTE! Since we don't hold any locks, it's not
1405 * even sure that "rq" stays as the right runqueue!
1406 * But we don't care, since "task_running()" will
1407 * return false if the runqueue has changed and p
1408 * is actually now running somewhere else!
1409 */
85ba2d86
RM
1410 while (task_running(rq, p)) {
1411 if (match_state && unlikely(p->state != match_state))
1412 return 0;
3a5c359a 1413 cpu_relax();
85ba2d86 1414 }
fa490cfd 1415
3a5c359a
AK
1416 /*
1417 * Ok, time to look more closely! We need the rq
1418 * lock now, to be *sure*. If we're wrong, we'll
1419 * just go back and repeat.
1420 */
eb580751 1421 rq = task_rq_lock(p, &rf);
27a9da65 1422 trace_sched_wait_task(p);
3a5c359a 1423 running = task_running(rq, p);
da0c1e65 1424 queued = task_on_rq_queued(p);
85ba2d86 1425 ncsw = 0;
f31e11d8 1426 if (!match_state || p->state == match_state)
93dcf55f 1427 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
eb580751 1428 task_rq_unlock(rq, p, &rf);
fa490cfd 1429
85ba2d86
RM
1430 /*
1431 * If it changed from the expected state, bail out now.
1432 */
1433 if (unlikely(!ncsw))
1434 break;
1435
3a5c359a
AK
1436 /*
1437 * Was it really running after all now that we
1438 * checked with the proper locks actually held?
1439 *
1440 * Oops. Go back and try again..
1441 */
1442 if (unlikely(running)) {
1443 cpu_relax();
1444 continue;
1445 }
fa490cfd 1446
3a5c359a
AK
1447 /*
1448 * It's not enough that it's not actively running,
1449 * it must be off the runqueue _entirely_, and not
1450 * preempted!
1451 *
80dd99b3 1452 * So if it was still runnable (but just not actively
3a5c359a
AK
1453 * running right now), it's preempted, and we should
1454 * yield - it could be a while.
1455 */
da0c1e65 1456 if (unlikely(queued)) {
8eb90c30
TG
1457 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1458
1459 set_current_state(TASK_UNINTERRUPTIBLE);
1460 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1461 continue;
1462 }
fa490cfd 1463
3a5c359a
AK
1464 /*
1465 * Ahh, all good. It wasn't running, and it wasn't
1466 * runnable, which means that it will never become
1467 * running in the future either. We're all done!
1468 */
1469 break;
1470 }
85ba2d86
RM
1471
1472 return ncsw;
1da177e4
LT
1473}
1474
1475/***
1476 * kick_process - kick a running thread to enter/exit the kernel
1477 * @p: the to-be-kicked thread
1478 *
1479 * Cause a process which is running on another CPU to enter
1480 * kernel-mode, without any delay. (to get signals handled.)
1481 *
25985edc 1482 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1483 * because all it wants to ensure is that the remote task enters
1484 * the kernel. If the IPI races and the task has been migrated
1485 * to another CPU then no harm is done and the purpose has been
1486 * achieved as well.
1487 */
36c8b586 1488void kick_process(struct task_struct *p)
1da177e4
LT
1489{
1490 int cpu;
1491
1492 preempt_disable();
1493 cpu = task_cpu(p);
1494 if ((cpu != smp_processor_id()) && task_curr(p))
1495 smp_send_reschedule(cpu);
1496 preempt_enable();
1497}
b43e3521 1498EXPORT_SYMBOL_GPL(kick_process);
1da177e4 1499
30da688e 1500/*
013fdb80 1501 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1502 */
5da9a0fb
PZ
1503static int select_fallback_rq(int cpu, struct task_struct *p)
1504{
aa00d89c
TC
1505 int nid = cpu_to_node(cpu);
1506 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1507 enum { cpuset, possible, fail } state = cpuset;
1508 int dest_cpu;
5da9a0fb 1509
aa00d89c
TC
1510 /*
1511 * If the node that the cpu is on has been offlined, cpu_to_node()
1512 * will return -1. There is no cpu on the node, and we should
1513 * select the cpu on the other node.
1514 */
1515 if (nid != -1) {
1516 nodemask = cpumask_of_node(nid);
1517
1518 /* Look for allowed, online CPU in same node. */
1519 for_each_cpu(dest_cpu, nodemask) {
1520 if (!cpu_online(dest_cpu))
1521 continue;
1522 if (!cpu_active(dest_cpu))
1523 continue;
1524 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1525 return dest_cpu;
1526 }
2baab4e9 1527 }
5da9a0fb 1528
2baab4e9
PZ
1529 for (;;) {
1530 /* Any allowed, online CPU? */
e3831edd 1531 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1532 if (!cpu_online(dest_cpu))
1533 continue;
1534 if (!cpu_active(dest_cpu))
1535 continue;
1536 goto out;
1537 }
5da9a0fb 1538
e73e85f0 1539 /* No more Mr. Nice Guy. */
2baab4e9
PZ
1540 switch (state) {
1541 case cpuset:
e73e85f0
ON
1542 if (IS_ENABLED(CONFIG_CPUSETS)) {
1543 cpuset_cpus_allowed_fallback(p);
1544 state = possible;
1545 break;
1546 }
1547 /* fall-through */
2baab4e9
PZ
1548 case possible:
1549 do_set_cpus_allowed(p, cpu_possible_mask);
1550 state = fail;
1551 break;
1552
1553 case fail:
1554 BUG();
1555 break;
1556 }
1557 }
1558
1559out:
1560 if (state != cpuset) {
1561 /*
1562 * Don't tell them about moving exiting tasks or
1563 * kernel threads (both mm NULL), since they never
1564 * leave kernel.
1565 */
1566 if (p->mm && printk_ratelimit()) {
aac74dc4 1567 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1568 task_pid_nr(p), p->comm, cpu);
1569 }
5da9a0fb
PZ
1570 }
1571
1572 return dest_cpu;
1573}
1574
e2912009 1575/*
013fdb80 1576 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1577 */
970b13ba 1578static inline
ac66f547 1579int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1580{
cbce1a68
PZ
1581 lockdep_assert_held(&p->pi_lock);
1582
6c1d9410
WL
1583 if (p->nr_cpus_allowed > 1)
1584 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e2912009
PZ
1585
1586 /*
1587 * In order not to call set_task_cpu() on a blocking task we need
1588 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1589 * cpu.
1590 *
1591 * Since this is common to all placement strategies, this lives here.
1592 *
1593 * [ this allows ->select_task() to simply return task_cpu(p) and
1594 * not worry about this generic constraint ]
1595 */
fa17b507 1596 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1597 !cpu_online(cpu)))
5da9a0fb 1598 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1599
1600 return cpu;
970b13ba 1601}
09a40af5
MG
1602
1603static void update_avg(u64 *avg, u64 sample)
1604{
1605 s64 diff = sample - *avg;
1606 *avg += diff >> 3;
1607}
25834c73
PZ
1608
1609#else
1610
1611static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1612 const struct cpumask *new_mask, bool check)
1613{
1614 return set_cpus_allowed_ptr(p, new_mask);
1615}
1616
5cc389bc 1617#endif /* CONFIG_SMP */
970b13ba 1618
d7c01d27 1619static void
b84cb5df 1620ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1621{
d7c01d27 1622#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1623 struct rq *rq = this_rq();
1624
d7c01d27
PZ
1625#ifdef CONFIG_SMP
1626 int this_cpu = smp_processor_id();
1627
1628 if (cpu == this_cpu) {
1629 schedstat_inc(rq, ttwu_local);
1630 schedstat_inc(p, se.statistics.nr_wakeups_local);
1631 } else {
1632 struct sched_domain *sd;
1633
1634 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1635 rcu_read_lock();
d7c01d27
PZ
1636 for_each_domain(this_cpu, sd) {
1637 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1638 schedstat_inc(sd, ttwu_wake_remote);
1639 break;
1640 }
1641 }
057f3fad 1642 rcu_read_unlock();
d7c01d27 1643 }
f339b9dc
PZ
1644
1645 if (wake_flags & WF_MIGRATED)
1646 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1647
d7c01d27
PZ
1648#endif /* CONFIG_SMP */
1649
1650 schedstat_inc(rq, ttwu_count);
9ed3811a 1651 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1652
1653 if (wake_flags & WF_SYNC)
9ed3811a 1654 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1655
d7c01d27
PZ
1656#endif /* CONFIG_SCHEDSTATS */
1657}
1658
1de64443 1659static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
d7c01d27 1660{
9ed3811a 1661 activate_task(rq, p, en_flags);
da0c1e65 1662 p->on_rq = TASK_ON_RQ_QUEUED;
c2f7115e
PZ
1663
1664 /* if a worker is waking up, notify workqueue */
1665 if (p->flags & PF_WQ_WORKER)
1666 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1667}
1668
23f41eeb
PZ
1669/*
1670 * Mark the task runnable and perform wakeup-preemption.
1671 */
e7904a28
PZ
1672static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1673 struct pin_cookie cookie)
9ed3811a 1674{
9ed3811a 1675 check_preempt_curr(rq, p, wake_flags);
9ed3811a 1676 p->state = TASK_RUNNING;
fbd705a0
PZ
1677 trace_sched_wakeup(p);
1678
9ed3811a 1679#ifdef CONFIG_SMP
4c9a4bc8
PZ
1680 if (p->sched_class->task_woken) {
1681 /*
cbce1a68
PZ
1682 * Our task @p is fully woken up and running; so its safe to
1683 * drop the rq->lock, hereafter rq is only used for statistics.
4c9a4bc8 1684 */
e7904a28 1685 lockdep_unpin_lock(&rq->lock, cookie);
9ed3811a 1686 p->sched_class->task_woken(rq, p);
e7904a28 1687 lockdep_repin_lock(&rq->lock, cookie);
4c9a4bc8 1688 }
9ed3811a 1689
e69c6341 1690 if (rq->idle_stamp) {
78becc27 1691 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1692 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1693
abfafa54
JL
1694 update_avg(&rq->avg_idle, delta);
1695
1696 if (rq->avg_idle > max)
9ed3811a 1697 rq->avg_idle = max;
abfafa54 1698
9ed3811a
TH
1699 rq->idle_stamp = 0;
1700 }
1701#endif
1702}
1703
c05fbafb 1704static void
e7904a28
PZ
1705ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1706 struct pin_cookie cookie)
c05fbafb 1707{
cbce1a68
PZ
1708 lockdep_assert_held(&rq->lock);
1709
c05fbafb
PZ
1710#ifdef CONFIG_SMP
1711 if (p->sched_contributes_to_load)
1712 rq->nr_uninterruptible--;
1713#endif
1714
1715 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
e7904a28 1716 ttwu_do_wakeup(rq, p, wake_flags, cookie);
c05fbafb
PZ
1717}
1718
1719/*
1720 * Called in case the task @p isn't fully descheduled from its runqueue,
1721 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1722 * since all we need to do is flip p->state to TASK_RUNNING, since
1723 * the task is still ->on_rq.
1724 */
1725static int ttwu_remote(struct task_struct *p, int wake_flags)
1726{
eb580751 1727 struct rq_flags rf;
c05fbafb
PZ
1728 struct rq *rq;
1729 int ret = 0;
1730
eb580751 1731 rq = __task_rq_lock(p, &rf);
da0c1e65 1732 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
1733 /* check_preempt_curr() may use rq clock */
1734 update_rq_clock(rq);
e7904a28 1735 ttwu_do_wakeup(rq, p, wake_flags, rf.cookie);
c05fbafb
PZ
1736 ret = 1;
1737 }
eb580751 1738 __task_rq_unlock(rq, &rf);
c05fbafb
PZ
1739
1740 return ret;
1741}
1742
317f3941 1743#ifdef CONFIG_SMP
e3baac47 1744void sched_ttwu_pending(void)
317f3941
PZ
1745{
1746 struct rq *rq = this_rq();
fa14ff4a 1747 struct llist_node *llist = llist_del_all(&rq->wake_list);
e7904a28 1748 struct pin_cookie cookie;
fa14ff4a 1749 struct task_struct *p;
e3baac47 1750 unsigned long flags;
317f3941 1751
e3baac47
PZ
1752 if (!llist)
1753 return;
1754
1755 raw_spin_lock_irqsave(&rq->lock, flags);
e7904a28 1756 cookie = lockdep_pin_lock(&rq->lock);
317f3941 1757
fa14ff4a
PZ
1758 while (llist) {
1759 p = llist_entry(llist, struct task_struct, wake_entry);
1760 llist = llist_next(llist);
e7904a28 1761 ttwu_do_activate(rq, p, 0, cookie);
317f3941
PZ
1762 }
1763
e7904a28 1764 lockdep_unpin_lock(&rq->lock, cookie);
e3baac47 1765 raw_spin_unlock_irqrestore(&rq->lock, flags);
317f3941
PZ
1766}
1767
1768void scheduler_ipi(void)
1769{
f27dde8d
PZ
1770 /*
1771 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1772 * TIF_NEED_RESCHED remotely (for the first time) will also send
1773 * this IPI.
1774 */
8cb75e0c 1775 preempt_fold_need_resched();
f27dde8d 1776
fd2ac4f4 1777 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1778 return;
1779
1780 /*
1781 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1782 * traditionally all their work was done from the interrupt return
1783 * path. Now that we actually do some work, we need to make sure
1784 * we do call them.
1785 *
1786 * Some archs already do call them, luckily irq_enter/exit nest
1787 * properly.
1788 *
1789 * Arguably we should visit all archs and update all handlers,
1790 * however a fair share of IPIs are still resched only so this would
1791 * somewhat pessimize the simple resched case.
1792 */
1793 irq_enter();
fa14ff4a 1794 sched_ttwu_pending();
ca38062e
SS
1795
1796 /*
1797 * Check if someone kicked us for doing the nohz idle load balance.
1798 */
873b4c65 1799 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1800 this_rq()->idle_balance = 1;
ca38062e 1801 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1802 }
c5d753a5 1803 irq_exit();
317f3941
PZ
1804}
1805
1806static void ttwu_queue_remote(struct task_struct *p, int cpu)
1807{
e3baac47
PZ
1808 struct rq *rq = cpu_rq(cpu);
1809
1810 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1811 if (!set_nr_if_polling(rq->idle))
1812 smp_send_reschedule(cpu);
1813 else
1814 trace_sched_wake_idle_without_ipi(cpu);
1815 }
317f3941 1816}
d6aa8f85 1817
f6be8af1
CL
1818void wake_up_if_idle(int cpu)
1819{
1820 struct rq *rq = cpu_rq(cpu);
1821 unsigned long flags;
1822
fd7de1e8
AL
1823 rcu_read_lock();
1824
1825 if (!is_idle_task(rcu_dereference(rq->curr)))
1826 goto out;
f6be8af1
CL
1827
1828 if (set_nr_if_polling(rq->idle)) {
1829 trace_sched_wake_idle_without_ipi(cpu);
1830 } else {
1831 raw_spin_lock_irqsave(&rq->lock, flags);
1832 if (is_idle_task(rq->curr))
1833 smp_send_reschedule(cpu);
1834 /* Else cpu is not in idle, do nothing here */
1835 raw_spin_unlock_irqrestore(&rq->lock, flags);
1836 }
fd7de1e8
AL
1837
1838out:
1839 rcu_read_unlock();
f6be8af1
CL
1840}
1841
39be3501 1842bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1843{
1844 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1845}
d6aa8f85 1846#endif /* CONFIG_SMP */
317f3941 1847
c05fbafb
PZ
1848static void ttwu_queue(struct task_struct *p, int cpu)
1849{
1850 struct rq *rq = cpu_rq(cpu);
e7904a28 1851 struct pin_cookie cookie;
c05fbafb 1852
17d9f311 1853#if defined(CONFIG_SMP)
39be3501 1854 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1855 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1856 ttwu_queue_remote(p, cpu);
1857 return;
1858 }
1859#endif
1860
c05fbafb 1861 raw_spin_lock(&rq->lock);
e7904a28
PZ
1862 cookie = lockdep_pin_lock(&rq->lock);
1863 ttwu_do_activate(rq, p, 0, cookie);
1864 lockdep_unpin_lock(&rq->lock, cookie);
c05fbafb 1865 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1866}
1867
8643cda5
PZ
1868/*
1869 * Notes on Program-Order guarantees on SMP systems.
1870 *
1871 * MIGRATION
1872 *
1873 * The basic program-order guarantee on SMP systems is that when a task [t]
1874 * migrates, all its activity on its old cpu [c0] happens-before any subsequent
1875 * execution on its new cpu [c1].
1876 *
1877 * For migration (of runnable tasks) this is provided by the following means:
1878 *
1879 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1880 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1881 * rq(c1)->lock (if not at the same time, then in that order).
1882 * C) LOCK of the rq(c1)->lock scheduling in task
1883 *
1884 * Transitivity guarantees that B happens after A and C after B.
1885 * Note: we only require RCpc transitivity.
1886 * Note: the cpu doing B need not be c0 or c1
1887 *
1888 * Example:
1889 *
1890 * CPU0 CPU1 CPU2
1891 *
1892 * LOCK rq(0)->lock
1893 * sched-out X
1894 * sched-in Y
1895 * UNLOCK rq(0)->lock
1896 *
1897 * LOCK rq(0)->lock // orders against CPU0
1898 * dequeue X
1899 * UNLOCK rq(0)->lock
1900 *
1901 * LOCK rq(1)->lock
1902 * enqueue X
1903 * UNLOCK rq(1)->lock
1904 *
1905 * LOCK rq(1)->lock // orders against CPU2
1906 * sched-out Z
1907 * sched-in X
1908 * UNLOCK rq(1)->lock
1909 *
1910 *
1911 * BLOCKING -- aka. SLEEP + WAKEUP
1912 *
1913 * For blocking we (obviously) need to provide the same guarantee as for
1914 * migration. However the means are completely different as there is no lock
1915 * chain to provide order. Instead we do:
1916 *
1917 * 1) smp_store_release(X->on_cpu, 0)
1918 * 2) smp_cond_acquire(!X->on_cpu)
1919 *
1920 * Example:
1921 *
1922 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1923 *
1924 * LOCK rq(0)->lock LOCK X->pi_lock
1925 * dequeue X
1926 * sched-out X
1927 * smp_store_release(X->on_cpu, 0);
1928 *
1929 * smp_cond_acquire(!X->on_cpu);
1930 * X->state = WAKING
1931 * set_task_cpu(X,2)
1932 *
1933 * LOCK rq(2)->lock
1934 * enqueue X
1935 * X->state = RUNNING
1936 * UNLOCK rq(2)->lock
1937 *
1938 * LOCK rq(2)->lock // orders against CPU1
1939 * sched-out Z
1940 * sched-in X
1941 * UNLOCK rq(2)->lock
1942 *
1943 * UNLOCK X->pi_lock
1944 * UNLOCK rq(0)->lock
1945 *
1946 *
1947 * However; for wakeups there is a second guarantee we must provide, namely we
1948 * must observe the state that lead to our wakeup. That is, not only must our
1949 * task observe its own prior state, it must also observe the stores prior to
1950 * its wakeup.
1951 *
1952 * This means that any means of doing remote wakeups must order the CPU doing
1953 * the wakeup against the CPU the task is going to end up running on. This,
1954 * however, is already required for the regular Program-Order guarantee above,
1955 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_acquire).
1956 *
1957 */
1958
9ed3811a 1959/**
1da177e4 1960 * try_to_wake_up - wake up a thread
9ed3811a 1961 * @p: the thread to be awakened
1da177e4 1962 * @state: the mask of task states that can be woken
9ed3811a 1963 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1964 *
1965 * Put it on the run-queue if it's not already there. The "current"
1966 * thread is always on the run-queue (except when the actual
1967 * re-schedule is in progress), and as such you're allowed to do
1968 * the simpler "current->state = TASK_RUNNING" to mark yourself
1969 * runnable without the overhead of this.
1970 *
e69f6186 1971 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1972 * or @state didn't match @p's state.
1da177e4 1973 */
e4a52bcb
PZ
1974static int
1975try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1976{
1da177e4 1977 unsigned long flags;
c05fbafb 1978 int cpu, success = 0;
2398f2c6 1979
e0acd0a6
ON
1980 /*
1981 * If we are going to wake up a thread waiting for CONDITION we
1982 * need to ensure that CONDITION=1 done by the caller can not be
1983 * reordered with p->state check below. This pairs with mb() in
1984 * set_current_state() the waiting thread does.
1985 */
1986 smp_mb__before_spinlock();
013fdb80 1987 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1988 if (!(p->state & state))
1da177e4
LT
1989 goto out;
1990
fbd705a0
PZ
1991 trace_sched_waking(p);
1992
c05fbafb 1993 success = 1; /* we're going to change ->state */
1da177e4 1994 cpu = task_cpu(p);
1da177e4 1995
c05fbafb
PZ
1996 if (p->on_rq && ttwu_remote(p, wake_flags))
1997 goto stat;
1da177e4 1998
1da177e4 1999#ifdef CONFIG_SMP
ecf7d01c
PZ
2000 /*
2001 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2002 * possible to, falsely, observe p->on_cpu == 0.
2003 *
2004 * One must be running (->on_cpu == 1) in order to remove oneself
2005 * from the runqueue.
2006 *
2007 * [S] ->on_cpu = 1; [L] ->on_rq
2008 * UNLOCK rq->lock
2009 * RMB
2010 * LOCK rq->lock
2011 * [S] ->on_rq = 0; [L] ->on_cpu
2012 *
2013 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2014 * from the consecutive calls to schedule(); the first switching to our
2015 * task, the second putting it to sleep.
2016 */
2017 smp_rmb();
2018
e9c84311 2019 /*
c05fbafb
PZ
2020 * If the owning (remote) cpu is still in the middle of schedule() with
2021 * this task as prev, wait until its done referencing the task.
b75a2253
PZ
2022 *
2023 * Pairs with the smp_store_release() in finish_lock_switch().
2024 *
2025 * This ensures that tasks getting woken will be fully ordered against
2026 * their previous state and preserve Program Order.
0970d299 2027 */
b3e0b1b6 2028 smp_cond_acquire(!p->on_cpu);
1da177e4 2029
a8e4f2ea 2030 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 2031 p->state = TASK_WAKING;
e7693a36 2032
e4a52bcb 2033 if (p->sched_class->task_waking)
74f8e4b2 2034 p->sched_class->task_waking(p);
efbbd05a 2035
ac66f547 2036 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
2037 if (task_cpu(p) != cpu) {
2038 wake_flags |= WF_MIGRATED;
e4a52bcb 2039 set_task_cpu(p, cpu);
f339b9dc 2040 }
1da177e4 2041#endif /* CONFIG_SMP */
1da177e4 2042
c05fbafb
PZ
2043 ttwu_queue(p, cpu);
2044stat:
cb251765
MG
2045 if (schedstat_enabled())
2046 ttwu_stat(p, cpu, wake_flags);
1da177e4 2047out:
013fdb80 2048 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
2049
2050 return success;
2051}
2052
21aa9af0
TH
2053/**
2054 * try_to_wake_up_local - try to wake up a local task with rq lock held
2055 * @p: the thread to be awakened
2056 *
2acca55e 2057 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 2058 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 2059 * the current task.
21aa9af0 2060 */
e7904a28 2061static void try_to_wake_up_local(struct task_struct *p, struct pin_cookie cookie)
21aa9af0
TH
2062{
2063 struct rq *rq = task_rq(p);
21aa9af0 2064
383efcd0
TH
2065 if (WARN_ON_ONCE(rq != this_rq()) ||
2066 WARN_ON_ONCE(p == current))
2067 return;
2068
21aa9af0
TH
2069 lockdep_assert_held(&rq->lock);
2070
2acca55e 2071 if (!raw_spin_trylock(&p->pi_lock)) {
cbce1a68
PZ
2072 /*
2073 * This is OK, because current is on_cpu, which avoids it being
2074 * picked for load-balance and preemption/IRQs are still
2075 * disabled avoiding further scheduler activity on it and we've
2076 * not yet picked a replacement task.
2077 */
e7904a28 2078 lockdep_unpin_lock(&rq->lock, cookie);
2acca55e
PZ
2079 raw_spin_unlock(&rq->lock);
2080 raw_spin_lock(&p->pi_lock);
2081 raw_spin_lock(&rq->lock);
e7904a28 2082 lockdep_repin_lock(&rq->lock, cookie);
2acca55e
PZ
2083 }
2084
21aa9af0 2085 if (!(p->state & TASK_NORMAL))
2acca55e 2086 goto out;
21aa9af0 2087
fbd705a0
PZ
2088 trace_sched_waking(p);
2089
da0c1e65 2090 if (!task_on_rq_queued(p))
d7c01d27
PZ
2091 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2092
e7904a28 2093 ttwu_do_wakeup(rq, p, 0, cookie);
cb251765
MG
2094 if (schedstat_enabled())
2095 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
2096out:
2097 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
2098}
2099
50fa610a
DH
2100/**
2101 * wake_up_process - Wake up a specific process
2102 * @p: The process to be woken up.
2103 *
2104 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
2105 * processes.
2106 *
2107 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
2108 *
2109 * It may be assumed that this function implies a write memory barrier before
2110 * changing the task state if and only if any tasks are woken up.
2111 */
7ad5b3a5 2112int wake_up_process(struct task_struct *p)
1da177e4 2113{
9067ac85 2114 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 2115}
1da177e4
LT
2116EXPORT_SYMBOL(wake_up_process);
2117
7ad5b3a5 2118int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2119{
2120 return try_to_wake_up(p, state, 0);
2121}
2122
a5e7be3b
JL
2123/*
2124 * This function clears the sched_dl_entity static params.
2125 */
2126void __dl_clear_params(struct task_struct *p)
2127{
2128 struct sched_dl_entity *dl_se = &p->dl;
2129
2130 dl_se->dl_runtime = 0;
2131 dl_se->dl_deadline = 0;
2132 dl_se->dl_period = 0;
2133 dl_se->flags = 0;
2134 dl_se->dl_bw = 0;
40767b0d
PZ
2135
2136 dl_se->dl_throttled = 0;
40767b0d 2137 dl_se->dl_yielded = 0;
a5e7be3b
JL
2138}
2139
1da177e4
LT
2140/*
2141 * Perform scheduler related setup for a newly forked process p.
2142 * p is forked by current.
dd41f596
IM
2143 *
2144 * __sched_fork() is basic setup used by init_idle() too:
2145 */
5e1576ed 2146static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2147{
fd2f4419
PZ
2148 p->on_rq = 0;
2149
2150 p->se.on_rq = 0;
dd41f596
IM
2151 p->se.exec_start = 0;
2152 p->se.sum_exec_runtime = 0;
f6cf891c 2153 p->se.prev_sum_exec_runtime = 0;
6c594c21 2154 p->se.nr_migrations = 0;
da7a735e 2155 p->se.vruntime = 0;
fd2f4419 2156 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d 2157
ad936d86
BP
2158#ifdef CONFIG_FAIR_GROUP_SCHED
2159 p->se.cfs_rq = NULL;
2160#endif
2161
6cfb0d5d 2162#ifdef CONFIG_SCHEDSTATS
cb251765 2163 /* Even if schedstat is disabled, there should not be garbage */
41acab88 2164 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2165#endif
476d139c 2166
aab03e05 2167 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 2168 init_dl_task_timer(&p->dl);
a5e7be3b 2169 __dl_clear_params(p);
aab03e05 2170
fa717060 2171 INIT_LIST_HEAD(&p->rt.run_list);
ff77e468
PZ
2172 p->rt.timeout = 0;
2173 p->rt.time_slice = sched_rr_timeslice;
2174 p->rt.on_rq = 0;
2175 p->rt.on_list = 0;
476d139c 2176
e107be36
AK
2177#ifdef CONFIG_PREEMPT_NOTIFIERS
2178 INIT_HLIST_HEAD(&p->preempt_notifiers);
2179#endif
cbee9f88
PZ
2180
2181#ifdef CONFIG_NUMA_BALANCING
2182 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 2183 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
2184 p->mm->numa_scan_seq = 0;
2185 }
2186
5e1576ed
RR
2187 if (clone_flags & CLONE_VM)
2188 p->numa_preferred_nid = current->numa_preferred_nid;
2189 else
2190 p->numa_preferred_nid = -1;
2191
cbee9f88
PZ
2192 p->node_stamp = 0ULL;
2193 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 2194 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 2195 p->numa_work.next = &p->numa_work;
44dba3d5 2196 p->numa_faults = NULL;
7e2703e6
RR
2197 p->last_task_numa_placement = 0;
2198 p->last_sum_exec_runtime = 0;
8c8a743c 2199
8c8a743c 2200 p->numa_group = NULL;
cbee9f88 2201#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
2202}
2203
2a595721
SD
2204DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2205
1a687c2e 2206#ifdef CONFIG_NUMA_BALANCING
c3b9bc5b 2207
1a687c2e
MG
2208void set_numabalancing_state(bool enabled)
2209{
2210 if (enabled)
2a595721 2211 static_branch_enable(&sched_numa_balancing);
1a687c2e 2212 else
2a595721 2213 static_branch_disable(&sched_numa_balancing);
1a687c2e 2214}
54a43d54
AK
2215
2216#ifdef CONFIG_PROC_SYSCTL
2217int sysctl_numa_balancing(struct ctl_table *table, int write,
2218 void __user *buffer, size_t *lenp, loff_t *ppos)
2219{
2220 struct ctl_table t;
2221 int err;
2a595721 2222 int state = static_branch_likely(&sched_numa_balancing);
54a43d54
AK
2223
2224 if (write && !capable(CAP_SYS_ADMIN))
2225 return -EPERM;
2226
2227 t = *table;
2228 t.data = &state;
2229 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2230 if (err < 0)
2231 return err;
2232 if (write)
2233 set_numabalancing_state(state);
2234 return err;
2235}
2236#endif
2237#endif
dd41f596 2238
cb251765
MG
2239DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2240
2241#ifdef CONFIG_SCHEDSTATS
2242static void set_schedstats(bool enabled)
2243{
2244 if (enabled)
2245 static_branch_enable(&sched_schedstats);
2246 else
2247 static_branch_disable(&sched_schedstats);
2248}
2249
2250void force_schedstat_enabled(void)
2251{
2252 if (!schedstat_enabled()) {
2253 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2254 static_branch_enable(&sched_schedstats);
2255 }
2256}
2257
2258static int __init setup_schedstats(char *str)
2259{
2260 int ret = 0;
2261 if (!str)
2262 goto out;
2263
2264 if (!strcmp(str, "enable")) {
2265 set_schedstats(true);
2266 ret = 1;
2267 } else if (!strcmp(str, "disable")) {
2268 set_schedstats(false);
2269 ret = 1;
2270 }
2271out:
2272 if (!ret)
2273 pr_warn("Unable to parse schedstats=\n");
2274
2275 return ret;
2276}
2277__setup("schedstats=", setup_schedstats);
2278
2279#ifdef CONFIG_PROC_SYSCTL
2280int sysctl_schedstats(struct ctl_table *table, int write,
2281 void __user *buffer, size_t *lenp, loff_t *ppos)
2282{
2283 struct ctl_table t;
2284 int err;
2285 int state = static_branch_likely(&sched_schedstats);
2286
2287 if (write && !capable(CAP_SYS_ADMIN))
2288 return -EPERM;
2289
2290 t = *table;
2291 t.data = &state;
2292 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2293 if (err < 0)
2294 return err;
2295 if (write)
2296 set_schedstats(state);
2297 return err;
2298}
2299#endif
2300#endif
dd41f596
IM
2301
2302/*
2303 * fork()/clone()-time setup:
2304 */
aab03e05 2305int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2306{
0122ec5b 2307 unsigned long flags;
dd41f596
IM
2308 int cpu = get_cpu();
2309
5e1576ed 2310 __sched_fork(clone_flags, p);
06b83b5f 2311 /*
0017d735 2312 * We mark the process as running here. This guarantees that
06b83b5f
PZ
2313 * nobody will actually run it, and a signal or other external
2314 * event cannot wake it up and insert it on the runqueue either.
2315 */
0017d735 2316 p->state = TASK_RUNNING;
dd41f596 2317
c350a04e
MG
2318 /*
2319 * Make sure we do not leak PI boosting priority to the child.
2320 */
2321 p->prio = current->normal_prio;
2322
b9dc29e7
MG
2323 /*
2324 * Revert to default priority/policy on fork if requested.
2325 */
2326 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 2327 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 2328 p->policy = SCHED_NORMAL;
6c697bdf 2329 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
2330 p->rt_priority = 0;
2331 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2332 p->static_prio = NICE_TO_PRIO(0);
2333
2334 p->prio = p->normal_prio = __normal_prio(p);
2335 set_load_weight(p);
6c697bdf 2336
b9dc29e7
MG
2337 /*
2338 * We don't need the reset flag anymore after the fork. It has
2339 * fulfilled its duty:
2340 */
2341 p->sched_reset_on_fork = 0;
2342 }
ca94c442 2343
aab03e05
DF
2344 if (dl_prio(p->prio)) {
2345 put_cpu();
2346 return -EAGAIN;
2347 } else if (rt_prio(p->prio)) {
2348 p->sched_class = &rt_sched_class;
2349 } else {
2ddbf952 2350 p->sched_class = &fair_sched_class;
aab03e05 2351 }
b29739f9 2352
cd29fe6f
PZ
2353 if (p->sched_class->task_fork)
2354 p->sched_class->task_fork(p);
2355
86951599
PZ
2356 /*
2357 * The child is not yet in the pid-hash so no cgroup attach races,
2358 * and the cgroup is pinned to this child due to cgroup_fork()
2359 * is ran before sched_fork().
2360 *
2361 * Silence PROVE_RCU.
2362 */
0122ec5b 2363 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 2364 set_task_cpu(p, cpu);
0122ec5b 2365 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 2366
f6db8347 2367#ifdef CONFIG_SCHED_INFO
dd41f596 2368 if (likely(sched_info_on()))
52f17b6c 2369 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2370#endif
3ca7a440
PZ
2371#if defined(CONFIG_SMP)
2372 p->on_cpu = 0;
4866cde0 2373#endif
01028747 2374 init_task_preempt_count(p);
806c09a7 2375#ifdef CONFIG_SMP
917b627d 2376 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 2377 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 2378#endif
917b627d 2379
476d139c 2380 put_cpu();
aab03e05 2381 return 0;
1da177e4
LT
2382}
2383
332ac17e
DF
2384unsigned long to_ratio(u64 period, u64 runtime)
2385{
2386 if (runtime == RUNTIME_INF)
2387 return 1ULL << 20;
2388
2389 /*
2390 * Doing this here saves a lot of checks in all
2391 * the calling paths, and returning zero seems
2392 * safe for them anyway.
2393 */
2394 if (period == 0)
2395 return 0;
2396
2397 return div64_u64(runtime << 20, period);
2398}
2399
2400#ifdef CONFIG_SMP
2401inline struct dl_bw *dl_bw_of(int i)
2402{
f78f5b90
PM
2403 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2404 "sched RCU must be held");
332ac17e
DF
2405 return &cpu_rq(i)->rd->dl_bw;
2406}
2407
de212f18 2408static inline int dl_bw_cpus(int i)
332ac17e 2409{
de212f18
PZ
2410 struct root_domain *rd = cpu_rq(i)->rd;
2411 int cpus = 0;
2412
f78f5b90
PM
2413 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2414 "sched RCU must be held");
de212f18
PZ
2415 for_each_cpu_and(i, rd->span, cpu_active_mask)
2416 cpus++;
2417
2418 return cpus;
332ac17e
DF
2419}
2420#else
2421inline struct dl_bw *dl_bw_of(int i)
2422{
2423 return &cpu_rq(i)->dl.dl_bw;
2424}
2425
de212f18 2426static inline int dl_bw_cpus(int i)
332ac17e
DF
2427{
2428 return 1;
2429}
2430#endif
2431
332ac17e
DF
2432/*
2433 * We must be sure that accepting a new task (or allowing changing the
2434 * parameters of an existing one) is consistent with the bandwidth
2435 * constraints. If yes, this function also accordingly updates the currently
2436 * allocated bandwidth to reflect the new situation.
2437 *
2438 * This function is called while holding p's rq->lock.
40767b0d
PZ
2439 *
2440 * XXX we should delay bw change until the task's 0-lag point, see
2441 * __setparam_dl().
332ac17e
DF
2442 */
2443static int dl_overflow(struct task_struct *p, int policy,
2444 const struct sched_attr *attr)
2445{
2446
2447 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
4df1638c 2448 u64 period = attr->sched_period ?: attr->sched_deadline;
332ac17e
DF
2449 u64 runtime = attr->sched_runtime;
2450 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 2451 int cpus, err = -1;
332ac17e 2452
fec148c0
XP
2453 /* !deadline task may carry old deadline bandwidth */
2454 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
332ac17e
DF
2455 return 0;
2456
2457 /*
2458 * Either if a task, enters, leave, or stays -deadline but changes
2459 * its parameters, we may need to update accordingly the total
2460 * allocated bandwidth of the container.
2461 */
2462 raw_spin_lock(&dl_b->lock);
de212f18 2463 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
2464 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2465 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2466 __dl_add(dl_b, new_bw);
2467 err = 0;
2468 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2469 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2470 __dl_clear(dl_b, p->dl.dl_bw);
2471 __dl_add(dl_b, new_bw);
2472 err = 0;
2473 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2474 __dl_clear(dl_b, p->dl.dl_bw);
2475 err = 0;
2476 }
2477 raw_spin_unlock(&dl_b->lock);
2478
2479 return err;
2480}
2481
2482extern void init_dl_bw(struct dl_bw *dl_b);
2483
1da177e4
LT
2484/*
2485 * wake_up_new_task - wake up a newly created task for the first time.
2486 *
2487 * This function will do some initial scheduler statistics housekeeping
2488 * that must be done for every newly created context, then puts the task
2489 * on the runqueue and wakes it.
2490 */
3e51e3ed 2491void wake_up_new_task(struct task_struct *p)
1da177e4 2492{
eb580751 2493 struct rq_flags rf;
dd41f596 2494 struct rq *rq;
fabf318e 2495
98d8fd81
MR
2496 /* Initialize new task's runnable average */
2497 init_entity_runnable_average(&p->se);
eb580751 2498 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
fabf318e
PZ
2499#ifdef CONFIG_SMP
2500 /*
2501 * Fork balancing, do it here and not earlier because:
2502 * - cpus_allowed can change in the fork path
2503 * - any previously selected cpu might disappear through hotplug
fabf318e 2504 */
ac66f547 2505 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735 2506#endif
2b8c41da
YD
2507 /* Post initialize new task's util average when its cfs_rq is set */
2508 post_init_entity_util_avg(&p->se);
0017d735 2509
eb580751 2510 rq = __task_rq_lock(p, &rf);
cd29fe6f 2511 activate_task(rq, p, 0);
da0c1e65 2512 p->on_rq = TASK_ON_RQ_QUEUED;
fbd705a0 2513 trace_sched_wakeup_new(p);
a7558e01 2514 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2515#ifdef CONFIG_SMP
0aaafaab
PZ
2516 if (p->sched_class->task_woken) {
2517 /*
2518 * Nothing relies on rq->lock after this, so its fine to
2519 * drop it.
2520 */
e7904a28 2521 lockdep_unpin_lock(&rq->lock, rf.cookie);
efbbd05a 2522 p->sched_class->task_woken(rq, p);
e7904a28 2523 lockdep_repin_lock(&rq->lock, rf.cookie);
0aaafaab 2524 }
9a897c5a 2525#endif
eb580751 2526 task_rq_unlock(rq, p, &rf);
1da177e4
LT
2527}
2528
e107be36
AK
2529#ifdef CONFIG_PREEMPT_NOTIFIERS
2530
1cde2930
PZ
2531static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2532
2ecd9d29
PZ
2533void preempt_notifier_inc(void)
2534{
2535 static_key_slow_inc(&preempt_notifier_key);
2536}
2537EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2538
2539void preempt_notifier_dec(void)
2540{
2541 static_key_slow_dec(&preempt_notifier_key);
2542}
2543EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2544
e107be36 2545/**
80dd99b3 2546 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2547 * @notifier: notifier struct to register
e107be36
AK
2548 */
2549void preempt_notifier_register(struct preempt_notifier *notifier)
2550{
2ecd9d29
PZ
2551 if (!static_key_false(&preempt_notifier_key))
2552 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2553
e107be36
AK
2554 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2555}
2556EXPORT_SYMBOL_GPL(preempt_notifier_register);
2557
2558/**
2559 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2560 * @notifier: notifier struct to unregister
e107be36 2561 *
d84525a8 2562 * This is *not* safe to call from within a preemption notifier.
e107be36
AK
2563 */
2564void preempt_notifier_unregister(struct preempt_notifier *notifier)
2565{
2566 hlist_del(&notifier->link);
2567}
2568EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2569
1cde2930 2570static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2571{
2572 struct preempt_notifier *notifier;
e107be36 2573
b67bfe0d 2574 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2575 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2576}
2577
1cde2930
PZ
2578static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2579{
2580 if (static_key_false(&preempt_notifier_key))
2581 __fire_sched_in_preempt_notifiers(curr);
2582}
2583
e107be36 2584static void
1cde2930
PZ
2585__fire_sched_out_preempt_notifiers(struct task_struct *curr,
2586 struct task_struct *next)
e107be36
AK
2587{
2588 struct preempt_notifier *notifier;
e107be36 2589
b67bfe0d 2590 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2591 notifier->ops->sched_out(notifier, next);
2592}
2593
1cde2930
PZ
2594static __always_inline void
2595fire_sched_out_preempt_notifiers(struct task_struct *curr,
2596 struct task_struct *next)
2597{
2598 if (static_key_false(&preempt_notifier_key))
2599 __fire_sched_out_preempt_notifiers(curr, next);
2600}
2601
6d6bc0ad 2602#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36 2603
1cde2930 2604static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2605{
2606}
2607
1cde2930 2608static inline void
e107be36
AK
2609fire_sched_out_preempt_notifiers(struct task_struct *curr,
2610 struct task_struct *next)
2611{
2612}
2613
6d6bc0ad 2614#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2615
4866cde0
NP
2616/**
2617 * prepare_task_switch - prepare to switch tasks
2618 * @rq: the runqueue preparing to switch
421cee29 2619 * @prev: the current task that is being switched out
4866cde0
NP
2620 * @next: the task we are going to switch to.
2621 *
2622 * This is called with the rq lock held and interrupts off. It must
2623 * be paired with a subsequent finish_task_switch after the context
2624 * switch.
2625 *
2626 * prepare_task_switch sets up locking and calls architecture specific
2627 * hooks.
2628 */
e107be36
AK
2629static inline void
2630prepare_task_switch(struct rq *rq, struct task_struct *prev,
2631 struct task_struct *next)
4866cde0 2632{
43148951 2633 sched_info_switch(rq, prev, next);
fe4b04fa 2634 perf_event_task_sched_out(prev, next);
e107be36 2635 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2636 prepare_lock_switch(rq, next);
2637 prepare_arch_switch(next);
2638}
2639
1da177e4
LT
2640/**
2641 * finish_task_switch - clean up after a task-switch
2642 * @prev: the thread we just switched away from.
2643 *
4866cde0
NP
2644 * finish_task_switch must be called after the context switch, paired
2645 * with a prepare_task_switch call before the context switch.
2646 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2647 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2648 *
2649 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2650 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2651 * with the lock held can cause deadlocks; see schedule() for
2652 * details.)
dfa50b60
ON
2653 *
2654 * The context switch have flipped the stack from under us and restored the
2655 * local variables which were saved when this task called schedule() in the
2656 * past. prev == current is still correct but we need to recalculate this_rq
2657 * because prev may have moved to another CPU.
1da177e4 2658 */
dfa50b60 2659static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
2660 __releases(rq->lock)
2661{
dfa50b60 2662 struct rq *rq = this_rq();
1da177e4 2663 struct mm_struct *mm = rq->prev_mm;
55a101f8 2664 long prev_state;
1da177e4 2665
609ca066
PZ
2666 /*
2667 * The previous task will have left us with a preempt_count of 2
2668 * because it left us after:
2669 *
2670 * schedule()
2671 * preempt_disable(); // 1
2672 * __schedule()
2673 * raw_spin_lock_irq(&rq->lock) // 2
2674 *
2675 * Also, see FORK_PREEMPT_COUNT.
2676 */
e2bf1c4b
PZ
2677 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2678 "corrupted preempt_count: %s/%d/0x%x\n",
2679 current->comm, current->pid, preempt_count()))
2680 preempt_count_set(FORK_PREEMPT_COUNT);
609ca066 2681
1da177e4
LT
2682 rq->prev_mm = NULL;
2683
2684 /*
2685 * A task struct has one reference for the use as "current".
c394cc9f 2686 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2687 * schedule one last time. The schedule call will never return, and
2688 * the scheduled task must drop that reference.
95913d97
PZ
2689 *
2690 * We must observe prev->state before clearing prev->on_cpu (in
2691 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2692 * running on another CPU and we could rave with its RUNNING -> DEAD
2693 * transition, resulting in a double drop.
1da177e4 2694 */
55a101f8 2695 prev_state = prev->state;
bf9fae9f 2696 vtime_task_switch(prev);
a8d757ef 2697 perf_event_task_sched_in(prev, current);
4866cde0 2698 finish_lock_switch(rq, prev);
01f23e16 2699 finish_arch_post_lock_switch();
e8fa1362 2700
e107be36 2701 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2702 if (mm)
2703 mmdrop(mm);
c394cc9f 2704 if (unlikely(prev_state == TASK_DEAD)) {
e6c390f2
DF
2705 if (prev->sched_class->task_dead)
2706 prev->sched_class->task_dead(prev);
2707
c6fd91f0 2708 /*
2709 * Remove function-return probe instances associated with this
2710 * task and put them back on the free list.
9761eea8 2711 */
c6fd91f0 2712 kprobe_flush_task(prev);
1da177e4 2713 put_task_struct(prev);
c6fd91f0 2714 }
99e5ada9 2715
de734f89 2716 tick_nohz_task_switch();
dfa50b60 2717 return rq;
1da177e4
LT
2718}
2719
3f029d3c
GH
2720#ifdef CONFIG_SMP
2721
3f029d3c 2722/* rq->lock is NOT held, but preemption is disabled */
e3fca9e7 2723static void __balance_callback(struct rq *rq)
3f029d3c 2724{
e3fca9e7
PZ
2725 struct callback_head *head, *next;
2726 void (*func)(struct rq *rq);
2727 unsigned long flags;
3f029d3c 2728
e3fca9e7
PZ
2729 raw_spin_lock_irqsave(&rq->lock, flags);
2730 head = rq->balance_callback;
2731 rq->balance_callback = NULL;
2732 while (head) {
2733 func = (void (*)(struct rq *))head->func;
2734 next = head->next;
2735 head->next = NULL;
2736 head = next;
3f029d3c 2737
e3fca9e7 2738 func(rq);
3f029d3c 2739 }
e3fca9e7
PZ
2740 raw_spin_unlock_irqrestore(&rq->lock, flags);
2741}
2742
2743static inline void balance_callback(struct rq *rq)
2744{
2745 if (unlikely(rq->balance_callback))
2746 __balance_callback(rq);
3f029d3c
GH
2747}
2748
2749#else
da19ab51 2750
e3fca9e7 2751static inline void balance_callback(struct rq *rq)
3f029d3c 2752{
1da177e4
LT
2753}
2754
3f029d3c
GH
2755#endif
2756
1da177e4
LT
2757/**
2758 * schedule_tail - first thing a freshly forked thread must call.
2759 * @prev: the thread we just switched away from.
2760 */
722a9f92 2761asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
2762 __releases(rq->lock)
2763{
1a43a14a 2764 struct rq *rq;
da19ab51 2765
609ca066
PZ
2766 /*
2767 * New tasks start with FORK_PREEMPT_COUNT, see there and
2768 * finish_task_switch() for details.
2769 *
2770 * finish_task_switch() will drop rq->lock() and lower preempt_count
2771 * and the preempt_enable() will end up enabling preemption (on
2772 * PREEMPT_COUNT kernels).
2773 */
2774
dfa50b60 2775 rq = finish_task_switch(prev);
e3fca9e7 2776 balance_callback(rq);
1a43a14a 2777 preempt_enable();
70b97a7f 2778
1da177e4 2779 if (current->set_child_tid)
b488893a 2780 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2781}
2782
2783/*
dfa50b60 2784 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 2785 */
04936948 2786static __always_inline struct rq *
70b97a7f 2787context_switch(struct rq *rq, struct task_struct *prev,
e7904a28 2788 struct task_struct *next, struct pin_cookie cookie)
1da177e4 2789{
dd41f596 2790 struct mm_struct *mm, *oldmm;
1da177e4 2791
e107be36 2792 prepare_task_switch(rq, prev, next);
fe4b04fa 2793
dd41f596
IM
2794 mm = next->mm;
2795 oldmm = prev->active_mm;
9226d125
ZA
2796 /*
2797 * For paravirt, this is coupled with an exit in switch_to to
2798 * combine the page table reload and the switch backend into
2799 * one hypercall.
2800 */
224101ed 2801 arch_start_context_switch(prev);
9226d125 2802
31915ab4 2803 if (!mm) {
1da177e4
LT
2804 next->active_mm = oldmm;
2805 atomic_inc(&oldmm->mm_count);
2806 enter_lazy_tlb(oldmm, next);
2807 } else
f98db601 2808 switch_mm_irqs_off(oldmm, mm, next);
1da177e4 2809
31915ab4 2810 if (!prev->mm) {
1da177e4 2811 prev->active_mm = NULL;
1da177e4
LT
2812 rq->prev_mm = oldmm;
2813 }
3a5f5e48
IM
2814 /*
2815 * Since the runqueue lock will be released by the next
2816 * task (which is an invalid locking op but in the case
2817 * of the scheduler it's an obvious special-case), so we
2818 * do an early lockdep release here:
2819 */
e7904a28 2820 lockdep_unpin_lock(&rq->lock, cookie);
8a25d5de 2821 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
2822
2823 /* Here we just switch the register state and the stack. */
2824 switch_to(prev, next, prev);
dd41f596 2825 barrier();
dfa50b60
ON
2826
2827 return finish_task_switch(prev);
1da177e4
LT
2828}
2829
2830/*
1c3e8264 2831 * nr_running and nr_context_switches:
1da177e4
LT
2832 *
2833 * externally visible scheduler statistics: current number of runnable
1c3e8264 2834 * threads, total number of context switches performed since bootup.
1da177e4
LT
2835 */
2836unsigned long nr_running(void)
2837{
2838 unsigned long i, sum = 0;
2839
2840 for_each_online_cpu(i)
2841 sum += cpu_rq(i)->nr_running;
2842
2843 return sum;
f711f609 2844}
1da177e4 2845
2ee507c4
TC
2846/*
2847 * Check if only the current task is running on the cpu.
00cc1633
DD
2848 *
2849 * Caution: this function does not check that the caller has disabled
2850 * preemption, thus the result might have a time-of-check-to-time-of-use
2851 * race. The caller is responsible to use it correctly, for example:
2852 *
2853 * - from a non-preemptable section (of course)
2854 *
2855 * - from a thread that is bound to a single CPU
2856 *
2857 * - in a loop with very short iterations (e.g. a polling loop)
2ee507c4
TC
2858 */
2859bool single_task_running(void)
2860{
00cc1633 2861 return raw_rq()->nr_running == 1;
2ee507c4
TC
2862}
2863EXPORT_SYMBOL(single_task_running);
2864
1da177e4 2865unsigned long long nr_context_switches(void)
46cb4b7c 2866{
cc94abfc
SR
2867 int i;
2868 unsigned long long sum = 0;
46cb4b7c 2869
0a945022 2870 for_each_possible_cpu(i)
1da177e4 2871 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2872
1da177e4
LT
2873 return sum;
2874}
483b4ee6 2875
1da177e4
LT
2876unsigned long nr_iowait(void)
2877{
2878 unsigned long i, sum = 0;
483b4ee6 2879
0a945022 2880 for_each_possible_cpu(i)
1da177e4 2881 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2882
1da177e4
LT
2883 return sum;
2884}
483b4ee6 2885
8c215bd3 2886unsigned long nr_iowait_cpu(int cpu)
69d25870 2887{
8c215bd3 2888 struct rq *this = cpu_rq(cpu);
69d25870
AV
2889 return atomic_read(&this->nr_iowait);
2890}
46cb4b7c 2891
372ba8cb
MG
2892void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2893{
3289bdb4
PZ
2894 struct rq *rq = this_rq();
2895 *nr_waiters = atomic_read(&rq->nr_iowait);
2896 *load = rq->load.weight;
372ba8cb
MG
2897}
2898
dd41f596 2899#ifdef CONFIG_SMP
8a0be9ef 2900
46cb4b7c 2901/*
38022906
PZ
2902 * sched_exec - execve() is a valuable balancing opportunity, because at
2903 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2904 */
38022906 2905void sched_exec(void)
46cb4b7c 2906{
38022906 2907 struct task_struct *p = current;
1da177e4 2908 unsigned long flags;
0017d735 2909 int dest_cpu;
46cb4b7c 2910
8f42ced9 2911 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2912 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2913 if (dest_cpu == smp_processor_id())
2914 goto unlock;
38022906 2915
8f42ced9 2916 if (likely(cpu_active(dest_cpu))) {
969c7921 2917 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2918
8f42ced9
PZ
2919 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2920 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2921 return;
2922 }
0017d735 2923unlock:
8f42ced9 2924 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2925}
dd41f596 2926
1da177e4
LT
2927#endif
2928
1da177e4 2929DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2930DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2931
2932EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2933EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 2934
c5f8d995
HS
2935/*
2936 * Return accounted runtime for the task.
2937 * In case the task is currently running, return the runtime plus current's
2938 * pending runtime that have not been accounted yet.
2939 */
2940unsigned long long task_sched_runtime(struct task_struct *p)
2941{
eb580751 2942 struct rq_flags rf;
c5f8d995 2943 struct rq *rq;
6e998916 2944 u64 ns;
c5f8d995 2945
911b2898
PZ
2946#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2947 /*
2948 * 64-bit doesn't need locks to atomically read a 64bit value.
2949 * So we have a optimization chance when the task's delta_exec is 0.
2950 * Reading ->on_cpu is racy, but this is ok.
2951 *
2952 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2953 * If we race with it entering cpu, unaccounted time is 0. This is
2954 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
2955 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2956 * been accounted, so we're correct here as well.
911b2898 2957 */
da0c1e65 2958 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
2959 return p->se.sum_exec_runtime;
2960#endif
2961
eb580751 2962 rq = task_rq_lock(p, &rf);
6e998916
SG
2963 /*
2964 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2965 * project cycles that may never be accounted to this
2966 * thread, breaking clock_gettime().
2967 */
2968 if (task_current(rq, p) && task_on_rq_queued(p)) {
2969 update_rq_clock(rq);
2970 p->sched_class->update_curr(rq);
2971 }
2972 ns = p->se.sum_exec_runtime;
eb580751 2973 task_rq_unlock(rq, p, &rf);
c5f8d995
HS
2974
2975 return ns;
2976}
48f24c4d 2977
7835b98b
CL
2978/*
2979 * This function gets called by the timer code, with HZ frequency.
2980 * We call it with interrupts disabled.
7835b98b
CL
2981 */
2982void scheduler_tick(void)
2983{
7835b98b
CL
2984 int cpu = smp_processor_id();
2985 struct rq *rq = cpu_rq(cpu);
dd41f596 2986 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2987
2988 sched_clock_tick();
dd41f596 2989
05fa785c 2990 raw_spin_lock(&rq->lock);
3e51f33f 2991 update_rq_clock(rq);
fa85ae24 2992 curr->sched_class->task_tick(rq, curr, 0);
cee1afce 2993 cpu_load_update_active(rq);
3289bdb4 2994 calc_global_load_tick(rq);
05fa785c 2995 raw_spin_unlock(&rq->lock);
7835b98b 2996
e9d2b064 2997 perf_event_task_tick();
e220d2dc 2998
e418e1c2 2999#ifdef CONFIG_SMP
6eb57e0d 3000 rq->idle_balance = idle_cpu(cpu);
7caff66f 3001 trigger_load_balance(rq);
e418e1c2 3002#endif
265f22a9 3003 rq_last_tick_reset(rq);
1da177e4
LT
3004}
3005
265f22a9
FW
3006#ifdef CONFIG_NO_HZ_FULL
3007/**
3008 * scheduler_tick_max_deferment
3009 *
3010 * Keep at least one tick per second when a single
3011 * active task is running because the scheduler doesn't
3012 * yet completely support full dynticks environment.
3013 *
3014 * This makes sure that uptime, CFS vruntime, load
3015 * balancing, etc... continue to move forward, even
3016 * with a very low granularity.
e69f6186
YB
3017 *
3018 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
3019 */
3020u64 scheduler_tick_max_deferment(void)
3021{
3022 struct rq *rq = this_rq();
316c1608 3023 unsigned long next, now = READ_ONCE(jiffies);
265f22a9
FW
3024
3025 next = rq->last_sched_tick + HZ;
3026
3027 if (time_before_eq(next, now))
3028 return 0;
3029
8fe8ff09 3030 return jiffies_to_nsecs(next - now);
1da177e4 3031}
265f22a9 3032#endif
1da177e4 3033
7e49fcce
SR
3034#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3035 defined(CONFIG_PREEMPT_TRACER))
47252cfb
SR
3036/*
3037 * If the value passed in is equal to the current preempt count
3038 * then we just disabled preemption. Start timing the latency.
3039 */
3040static inline void preempt_latency_start(int val)
3041{
3042 if (preempt_count() == val) {
3043 unsigned long ip = get_lock_parent_ip();
3044#ifdef CONFIG_DEBUG_PREEMPT
3045 current->preempt_disable_ip = ip;
3046#endif
3047 trace_preempt_off(CALLER_ADDR0, ip);
3048 }
3049}
7e49fcce 3050
edafe3a5 3051void preempt_count_add(int val)
1da177e4 3052{
6cd8a4bb 3053#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3054 /*
3055 * Underflow?
3056 */
9a11b49a
IM
3057 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3058 return;
6cd8a4bb 3059#endif
bdb43806 3060 __preempt_count_add(val);
6cd8a4bb 3061#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3062 /*
3063 * Spinlock count overflowing soon?
3064 */
33859f7f
MOS
3065 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3066 PREEMPT_MASK - 10);
6cd8a4bb 3067#endif
47252cfb 3068 preempt_latency_start(val);
1da177e4 3069}
bdb43806 3070EXPORT_SYMBOL(preempt_count_add);
edafe3a5 3071NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 3072
47252cfb
SR
3073/*
3074 * If the value passed in equals to the current preempt count
3075 * then we just enabled preemption. Stop timing the latency.
3076 */
3077static inline void preempt_latency_stop(int val)
3078{
3079 if (preempt_count() == val)
3080 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3081}
3082
edafe3a5 3083void preempt_count_sub(int val)
1da177e4 3084{
6cd8a4bb 3085#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3086 /*
3087 * Underflow?
3088 */
01e3eb82 3089 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3090 return;
1da177e4
LT
3091 /*
3092 * Is the spinlock portion underflowing?
3093 */
9a11b49a
IM
3094 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3095 !(preempt_count() & PREEMPT_MASK)))
3096 return;
6cd8a4bb 3097#endif
9a11b49a 3098
47252cfb 3099 preempt_latency_stop(val);
bdb43806 3100 __preempt_count_sub(val);
1da177e4 3101}
bdb43806 3102EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 3103NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4 3104
47252cfb
SR
3105#else
3106static inline void preempt_latency_start(int val) { }
3107static inline void preempt_latency_stop(int val) { }
1da177e4
LT
3108#endif
3109
3110/*
dd41f596 3111 * Print scheduling while atomic bug:
1da177e4 3112 */
dd41f596 3113static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3114{
664dfa65
DJ
3115 if (oops_in_progress)
3116 return;
3117
3df0fc5b
PZ
3118 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3119 prev->comm, prev->pid, preempt_count());
838225b4 3120
dd41f596 3121 debug_show_held_locks(prev);
e21f5b15 3122 print_modules();
dd41f596
IM
3123 if (irqs_disabled())
3124 print_irqtrace_events(prev);
8f47b187
TG
3125#ifdef CONFIG_DEBUG_PREEMPT
3126 if (in_atomic_preempt_off()) {
3127 pr_err("Preemption disabled at:");
3128 print_ip_sym(current->preempt_disable_ip);
3129 pr_cont("\n");
3130 }
3131#endif
6135fc1e 3132 dump_stack();
373d4d09 3133 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 3134}
1da177e4 3135
dd41f596
IM
3136/*
3137 * Various schedule()-time debugging checks and statistics:
3138 */
3139static inline void schedule_debug(struct task_struct *prev)
3140{
0d9e2632 3141#ifdef CONFIG_SCHED_STACK_END_CHECK
ce03e413 3142 BUG_ON(task_stack_end_corrupted(prev));
0d9e2632 3143#endif
b99def8b 3144
1dc0fffc 3145 if (unlikely(in_atomic_preempt_off())) {
dd41f596 3146 __schedule_bug(prev);
1dc0fffc
PZ
3147 preempt_count_set(PREEMPT_DISABLED);
3148 }
b3fbab05 3149 rcu_sleep_check();
dd41f596 3150
1da177e4
LT
3151 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3152
2d72376b 3153 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
3154}
3155
3156/*
3157 * Pick up the highest-prio task:
3158 */
3159static inline struct task_struct *
e7904a28 3160pick_next_task(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
dd41f596 3161{
37e117c0 3162 const struct sched_class *class = &fair_sched_class;
dd41f596 3163 struct task_struct *p;
1da177e4
LT
3164
3165 /*
dd41f596
IM
3166 * Optimization: we know that if all tasks are in
3167 * the fair class we can call that function directly:
1da177e4 3168 */
37e117c0 3169 if (likely(prev->sched_class == class &&
38033c37 3170 rq->nr_running == rq->cfs.h_nr_running)) {
e7904a28 3171 p = fair_sched_class.pick_next_task(rq, prev, cookie);
6ccdc84b
PZ
3172 if (unlikely(p == RETRY_TASK))
3173 goto again;
3174
3175 /* assumes fair_sched_class->next == idle_sched_class */
3176 if (unlikely(!p))
e7904a28 3177 p = idle_sched_class.pick_next_task(rq, prev, cookie);
6ccdc84b
PZ
3178
3179 return p;
1da177e4
LT
3180 }
3181
37e117c0 3182again:
34f971f6 3183 for_each_class(class) {
e7904a28 3184 p = class->pick_next_task(rq, prev, cookie);
37e117c0
PZ
3185 if (p) {
3186 if (unlikely(p == RETRY_TASK))
3187 goto again;
dd41f596 3188 return p;
37e117c0 3189 }
dd41f596 3190 }
34f971f6
PZ
3191
3192 BUG(); /* the idle class will always have a runnable task */
dd41f596 3193}
1da177e4 3194
dd41f596 3195/*
c259e01a 3196 * __schedule() is the main scheduler function.
edde96ea
PE
3197 *
3198 * The main means of driving the scheduler and thus entering this function are:
3199 *
3200 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3201 *
3202 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3203 * paths. For example, see arch/x86/entry_64.S.
3204 *
3205 * To drive preemption between tasks, the scheduler sets the flag in timer
3206 * interrupt handler scheduler_tick().
3207 *
3208 * 3. Wakeups don't really cause entry into schedule(). They add a
3209 * task to the run-queue and that's it.
3210 *
3211 * Now, if the new task added to the run-queue preempts the current
3212 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3213 * called on the nearest possible occasion:
3214 *
3215 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3216 *
3217 * - in syscall or exception context, at the next outmost
3218 * preempt_enable(). (this might be as soon as the wake_up()'s
3219 * spin_unlock()!)
3220 *
3221 * - in IRQ context, return from interrupt-handler to
3222 * preemptible context
3223 *
3224 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3225 * then at the next:
3226 *
3227 * - cond_resched() call
3228 * - explicit schedule() call
3229 * - return from syscall or exception to user-space
3230 * - return from interrupt-handler to user-space
bfd9b2b5 3231 *
b30f0e3f 3232 * WARNING: must be called with preemption disabled!
dd41f596 3233 */
499d7955 3234static void __sched notrace __schedule(bool preempt)
dd41f596
IM
3235{
3236 struct task_struct *prev, *next;
67ca7bde 3237 unsigned long *switch_count;
e7904a28 3238 struct pin_cookie cookie;
dd41f596 3239 struct rq *rq;
31656519 3240 int cpu;
dd41f596 3241
dd41f596
IM
3242 cpu = smp_processor_id();
3243 rq = cpu_rq(cpu);
dd41f596 3244 prev = rq->curr;
dd41f596 3245
b99def8b
PZ
3246 /*
3247 * do_exit() calls schedule() with preemption disabled as an exception;
3248 * however we must fix that up, otherwise the next task will see an
3249 * inconsistent (higher) preempt count.
3250 *
3251 * It also avoids the below schedule_debug() test from complaining
3252 * about this.
3253 */
3254 if (unlikely(prev->state == TASK_DEAD))
3255 preempt_enable_no_resched_notrace();
3256
dd41f596 3257 schedule_debug(prev);
1da177e4 3258
31656519 3259 if (sched_feat(HRTICK))
f333fdc9 3260 hrtick_clear(rq);
8f4d37ec 3261
46a5d164
PM
3262 local_irq_disable();
3263 rcu_note_context_switch();
3264
e0acd0a6
ON
3265 /*
3266 * Make sure that signal_pending_state()->signal_pending() below
3267 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3268 * done by the caller to avoid the race with signal_wake_up().
3269 */
3270 smp_mb__before_spinlock();
46a5d164 3271 raw_spin_lock(&rq->lock);
e7904a28 3272 cookie = lockdep_pin_lock(&rq->lock);
1da177e4 3273
9edfbfed
PZ
3274 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3275
246d86b5 3276 switch_count = &prev->nivcsw;
fc13aeba 3277 if (!preempt && prev->state) {
21aa9af0 3278 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 3279 prev->state = TASK_RUNNING;
21aa9af0 3280 } else {
2acca55e
PZ
3281 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3282 prev->on_rq = 0;
3283
21aa9af0 3284 /*
2acca55e
PZ
3285 * If a worker went to sleep, notify and ask workqueue
3286 * whether it wants to wake up a task to maintain
3287 * concurrency.
21aa9af0
TH
3288 */
3289 if (prev->flags & PF_WQ_WORKER) {
3290 struct task_struct *to_wakeup;
3291
9b7f6597 3292 to_wakeup = wq_worker_sleeping(prev);
21aa9af0 3293 if (to_wakeup)
e7904a28 3294 try_to_wake_up_local(to_wakeup, cookie);
21aa9af0 3295 }
21aa9af0 3296 }
dd41f596 3297 switch_count = &prev->nvcsw;
1da177e4
LT
3298 }
3299
9edfbfed 3300 if (task_on_rq_queued(prev))
606dba2e
PZ
3301 update_rq_clock(rq);
3302
e7904a28 3303 next = pick_next_task(rq, prev, cookie);
f26f9aff 3304 clear_tsk_need_resched(prev);
f27dde8d 3305 clear_preempt_need_resched();
9edfbfed 3306 rq->clock_skip_update = 0;
1da177e4 3307
1da177e4 3308 if (likely(prev != next)) {
1da177e4
LT
3309 rq->nr_switches++;
3310 rq->curr = next;
3311 ++*switch_count;
3312
c73464b1 3313 trace_sched_switch(preempt, prev, next);
e7904a28 3314 rq = context_switch(rq, prev, next, cookie); /* unlocks the rq */
cbce1a68 3315 } else {
e7904a28 3316 lockdep_unpin_lock(&rq->lock, cookie);
05fa785c 3317 raw_spin_unlock_irq(&rq->lock);
cbce1a68 3318 }
1da177e4 3319
e3fca9e7 3320 balance_callback(rq);
1da177e4 3321}
8e05e96a 3322STACK_FRAME_NON_STANDARD(__schedule); /* switch_to() */
c259e01a 3323
9c40cef2
TG
3324static inline void sched_submit_work(struct task_struct *tsk)
3325{
3c7d5184 3326 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
3327 return;
3328 /*
3329 * If we are going to sleep and we have plugged IO queued,
3330 * make sure to submit it to avoid deadlocks.
3331 */
3332 if (blk_needs_flush_plug(tsk))
3333 blk_schedule_flush_plug(tsk);
3334}
3335
722a9f92 3336asmlinkage __visible void __sched schedule(void)
c259e01a 3337{
9c40cef2
TG
3338 struct task_struct *tsk = current;
3339
3340 sched_submit_work(tsk);
bfd9b2b5 3341 do {
b30f0e3f 3342 preempt_disable();
fc13aeba 3343 __schedule(false);
b30f0e3f 3344 sched_preempt_enable_no_resched();
bfd9b2b5 3345 } while (need_resched());
c259e01a 3346}
1da177e4
LT
3347EXPORT_SYMBOL(schedule);
3348
91d1aa43 3349#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 3350asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
3351{
3352 /*
3353 * If we come here after a random call to set_need_resched(),
3354 * or we have been woken up remotely but the IPI has not yet arrived,
3355 * we haven't yet exited the RCU idle mode. Do it here manually until
3356 * we find a better solution.
7cc78f8f
AL
3357 *
3358 * NB: There are buggy callers of this function. Ideally we
c467ea76 3359 * should warn if prev_state != CONTEXT_USER, but that will trigger
7cc78f8f 3360 * too frequently to make sense yet.
20ab65e3 3361 */
7cc78f8f 3362 enum ctx_state prev_state = exception_enter();
20ab65e3 3363 schedule();
7cc78f8f 3364 exception_exit(prev_state);
20ab65e3
FW
3365}
3366#endif
3367
c5491ea7
TG
3368/**
3369 * schedule_preempt_disabled - called with preemption disabled
3370 *
3371 * Returns with preemption disabled. Note: preempt_count must be 1
3372 */
3373void __sched schedule_preempt_disabled(void)
3374{
ba74c144 3375 sched_preempt_enable_no_resched();
c5491ea7
TG
3376 schedule();
3377 preempt_disable();
3378}
3379
06b1f808 3380static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
3381{
3382 do {
47252cfb
SR
3383 /*
3384 * Because the function tracer can trace preempt_count_sub()
3385 * and it also uses preempt_enable/disable_notrace(), if
3386 * NEED_RESCHED is set, the preempt_enable_notrace() called
3387 * by the function tracer will call this function again and
3388 * cause infinite recursion.
3389 *
3390 * Preemption must be disabled here before the function
3391 * tracer can trace. Break up preempt_disable() into two
3392 * calls. One to disable preemption without fear of being
3393 * traced. The other to still record the preemption latency,
3394 * which can also be traced by the function tracer.
3395 */
499d7955 3396 preempt_disable_notrace();
47252cfb 3397 preempt_latency_start(1);
fc13aeba 3398 __schedule(true);
47252cfb 3399 preempt_latency_stop(1);
499d7955 3400 preempt_enable_no_resched_notrace();
a18b5d01
FW
3401
3402 /*
3403 * Check again in case we missed a preemption opportunity
3404 * between schedule and now.
3405 */
a18b5d01
FW
3406 } while (need_resched());
3407}
3408
1da177e4
LT
3409#ifdef CONFIG_PREEMPT
3410/*
2ed6e34f 3411 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3412 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3413 * occur there and call schedule directly.
3414 */
722a9f92 3415asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 3416{
1da177e4
LT
3417 /*
3418 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3419 * we do not want to preempt the current task. Just return..
1da177e4 3420 */
fbb00b56 3421 if (likely(!preemptible()))
1da177e4
LT
3422 return;
3423
a18b5d01 3424 preempt_schedule_common();
1da177e4 3425}
376e2424 3426NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 3427EXPORT_SYMBOL(preempt_schedule);
009f60e2 3428
009f60e2 3429/**
4eaca0a8 3430 * preempt_schedule_notrace - preempt_schedule called by tracing
009f60e2
ON
3431 *
3432 * The tracing infrastructure uses preempt_enable_notrace to prevent
3433 * recursion and tracing preempt enabling caused by the tracing
3434 * infrastructure itself. But as tracing can happen in areas coming
3435 * from userspace or just about to enter userspace, a preempt enable
3436 * can occur before user_exit() is called. This will cause the scheduler
3437 * to be called when the system is still in usermode.
3438 *
3439 * To prevent this, the preempt_enable_notrace will use this function
3440 * instead of preempt_schedule() to exit user context if needed before
3441 * calling the scheduler.
3442 */
4eaca0a8 3443asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
009f60e2
ON
3444{
3445 enum ctx_state prev_ctx;
3446
3447 if (likely(!preemptible()))
3448 return;
3449
3450 do {
47252cfb
SR
3451 /*
3452 * Because the function tracer can trace preempt_count_sub()
3453 * and it also uses preempt_enable/disable_notrace(), if
3454 * NEED_RESCHED is set, the preempt_enable_notrace() called
3455 * by the function tracer will call this function again and
3456 * cause infinite recursion.
3457 *
3458 * Preemption must be disabled here before the function
3459 * tracer can trace. Break up preempt_disable() into two
3460 * calls. One to disable preemption without fear of being
3461 * traced. The other to still record the preemption latency,
3462 * which can also be traced by the function tracer.
3463 */
3d8f74dd 3464 preempt_disable_notrace();
47252cfb 3465 preempt_latency_start(1);
009f60e2
ON
3466 /*
3467 * Needs preempt disabled in case user_exit() is traced
3468 * and the tracer calls preempt_enable_notrace() causing
3469 * an infinite recursion.
3470 */
3471 prev_ctx = exception_enter();
fc13aeba 3472 __schedule(true);
009f60e2
ON
3473 exception_exit(prev_ctx);
3474
47252cfb 3475 preempt_latency_stop(1);
3d8f74dd 3476 preempt_enable_no_resched_notrace();
009f60e2
ON
3477 } while (need_resched());
3478}
4eaca0a8 3479EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
009f60e2 3480
32e475d7 3481#endif /* CONFIG_PREEMPT */
1da177e4
LT
3482
3483/*
2ed6e34f 3484 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3485 * off of irq context.
3486 * Note, that this is called and return with irqs disabled. This will
3487 * protect us against recursive calling from irq.
3488 */
722a9f92 3489asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 3490{
b22366cd 3491 enum ctx_state prev_state;
6478d880 3492
2ed6e34f 3493 /* Catch callers which need to be fixed */
f27dde8d 3494 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 3495
b22366cd
FW
3496 prev_state = exception_enter();
3497
3a5c359a 3498 do {
3d8f74dd 3499 preempt_disable();
3a5c359a 3500 local_irq_enable();
fc13aeba 3501 __schedule(true);
3a5c359a 3502 local_irq_disable();
3d8f74dd 3503 sched_preempt_enable_no_resched();
5ed0cec0 3504 } while (need_resched());
b22366cd
FW
3505
3506 exception_exit(prev_state);
1da177e4
LT
3507}
3508
63859d4f 3509int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3510 void *key)
1da177e4 3511{
63859d4f 3512 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3513}
1da177e4
LT
3514EXPORT_SYMBOL(default_wake_function);
3515
b29739f9
IM
3516#ifdef CONFIG_RT_MUTEXES
3517
3518/*
3519 * rt_mutex_setprio - set the current priority of a task
3520 * @p: task
3521 * @prio: prio value (kernel-internal form)
3522 *
3523 * This function changes the 'effective' priority of a task. It does
3524 * not touch ->normal_prio like __setscheduler().
3525 *
c365c292
TG
3526 * Used by the rt_mutex code to implement priority inheritance
3527 * logic. Call site only calls if the priority of the task changed.
b29739f9 3528 */
36c8b586 3529void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3530{
ff77e468 3531 int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE;
83ab0aa0 3532 const struct sched_class *prev_class;
eb580751
PZ
3533 struct rq_flags rf;
3534 struct rq *rq;
b29739f9 3535
aab03e05 3536 BUG_ON(prio > MAX_PRIO);
b29739f9 3537
eb580751 3538 rq = __task_rq_lock(p, &rf);
b29739f9 3539
1c4dd99b
TG
3540 /*
3541 * Idle task boosting is a nono in general. There is one
3542 * exception, when PREEMPT_RT and NOHZ is active:
3543 *
3544 * The idle task calls get_next_timer_interrupt() and holds
3545 * the timer wheel base->lock on the CPU and another CPU wants
3546 * to access the timer (probably to cancel it). We can safely
3547 * ignore the boosting request, as the idle CPU runs this code
3548 * with interrupts disabled and will complete the lock
3549 * protected section without being interrupted. So there is no
3550 * real need to boost.
3551 */
3552 if (unlikely(p == rq->idle)) {
3553 WARN_ON(p != rq->curr);
3554 WARN_ON(p->pi_blocked_on);
3555 goto out_unlock;
3556 }
3557
a8027073 3558 trace_sched_pi_setprio(p, prio);
d5f9f942 3559 oldprio = p->prio;
ff77e468
PZ
3560
3561 if (oldprio == prio)
3562 queue_flag &= ~DEQUEUE_MOVE;
3563
83ab0aa0 3564 prev_class = p->sched_class;
da0c1e65 3565 queued = task_on_rq_queued(p);
051a1d1a 3566 running = task_current(rq, p);
da0c1e65 3567 if (queued)
ff77e468 3568 dequeue_task(rq, p, queue_flag);
0e1f3483 3569 if (running)
f3cd1c4e 3570 put_prev_task(rq, p);
dd41f596 3571
2d3d891d
DF
3572 /*
3573 * Boosting condition are:
3574 * 1. -rt task is running and holds mutex A
3575 * --> -dl task blocks on mutex A
3576 *
3577 * 2. -dl task is running and holds mutex A
3578 * --> -dl task blocks on mutex A and could preempt the
3579 * running task
3580 */
3581 if (dl_prio(prio)) {
466af29b
ON
3582 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3583 if (!dl_prio(p->normal_prio) ||
3584 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d 3585 p->dl.dl_boosted = 1;
ff77e468 3586 queue_flag |= ENQUEUE_REPLENISH;
2d3d891d
DF
3587 } else
3588 p->dl.dl_boosted = 0;
aab03e05 3589 p->sched_class = &dl_sched_class;
2d3d891d
DF
3590 } else if (rt_prio(prio)) {
3591 if (dl_prio(oldprio))
3592 p->dl.dl_boosted = 0;
3593 if (oldprio < prio)
ff77e468 3594 queue_flag |= ENQUEUE_HEAD;
dd41f596 3595 p->sched_class = &rt_sched_class;
2d3d891d
DF
3596 } else {
3597 if (dl_prio(oldprio))
3598 p->dl.dl_boosted = 0;
746db944
BS
3599 if (rt_prio(oldprio))
3600 p->rt.timeout = 0;
dd41f596 3601 p->sched_class = &fair_sched_class;
2d3d891d 3602 }
dd41f596 3603
b29739f9
IM
3604 p->prio = prio;
3605
0e1f3483
HS
3606 if (running)
3607 p->sched_class->set_curr_task(rq);
da0c1e65 3608 if (queued)
ff77e468 3609 enqueue_task(rq, p, queue_flag);
cb469845 3610
da7a735e 3611 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3612out_unlock:
4c9a4bc8 3613 preempt_disable(); /* avoid rq from going away on us */
eb580751 3614 __task_rq_unlock(rq, &rf);
4c9a4bc8
PZ
3615
3616 balance_callback(rq);
3617 preempt_enable();
b29739f9 3618}
b29739f9 3619#endif
d50dde5a 3620
36c8b586 3621void set_user_nice(struct task_struct *p, long nice)
1da177e4 3622{
da0c1e65 3623 int old_prio, delta, queued;
eb580751 3624 struct rq_flags rf;
70b97a7f 3625 struct rq *rq;
1da177e4 3626
75e45d51 3627 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
3628 return;
3629 /*
3630 * We have to be careful, if called from sys_setpriority(),
3631 * the task might be in the middle of scheduling on another CPU.
3632 */
eb580751 3633 rq = task_rq_lock(p, &rf);
1da177e4
LT
3634 /*
3635 * The RT priorities are set via sched_setscheduler(), but we still
3636 * allow the 'normal' nice value to be set - but as expected
3637 * it wont have any effect on scheduling until the task is
aab03e05 3638 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3639 */
aab03e05 3640 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3641 p->static_prio = NICE_TO_PRIO(nice);
3642 goto out_unlock;
3643 }
da0c1e65
KT
3644 queued = task_on_rq_queued(p);
3645 if (queued)
1de64443 3646 dequeue_task(rq, p, DEQUEUE_SAVE);
1da177e4 3647
1da177e4 3648 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3649 set_load_weight(p);
b29739f9
IM
3650 old_prio = p->prio;
3651 p->prio = effective_prio(p);
3652 delta = p->prio - old_prio;
1da177e4 3653
da0c1e65 3654 if (queued) {
1de64443 3655 enqueue_task(rq, p, ENQUEUE_RESTORE);
1da177e4 3656 /*
d5f9f942
AM
3657 * If the task increased its priority or is running and
3658 * lowered its priority, then reschedule its CPU:
1da177e4 3659 */
d5f9f942 3660 if (delta < 0 || (delta > 0 && task_running(rq, p)))
8875125e 3661 resched_curr(rq);
1da177e4
LT
3662 }
3663out_unlock:
eb580751 3664 task_rq_unlock(rq, p, &rf);
1da177e4 3665}
1da177e4
LT
3666EXPORT_SYMBOL(set_user_nice);
3667
e43379f1
MM
3668/*
3669 * can_nice - check if a task can reduce its nice value
3670 * @p: task
3671 * @nice: nice value
3672 */
36c8b586 3673int can_nice(const struct task_struct *p, const int nice)
e43379f1 3674{
024f4747 3675 /* convert nice value [19,-20] to rlimit style value [1,40] */
7aa2c016 3676 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 3677
78d7d407 3678 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3679 capable(CAP_SYS_NICE));
3680}
3681
1da177e4
LT
3682#ifdef __ARCH_WANT_SYS_NICE
3683
3684/*
3685 * sys_nice - change the priority of the current process.
3686 * @increment: priority increment
3687 *
3688 * sys_setpriority is a more generic, but much slower function that
3689 * does similar things.
3690 */
5add95d4 3691SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3692{
48f24c4d 3693 long nice, retval;
1da177e4
LT
3694
3695 /*
3696 * Setpriority might change our priority at the same moment.
3697 * We don't have to worry. Conceptually one call occurs first
3698 * and we have a single winner.
3699 */
a9467fa3 3700 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 3701 nice = task_nice(current) + increment;
1da177e4 3702
a9467fa3 3703 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
3704 if (increment < 0 && !can_nice(current, nice))
3705 return -EPERM;
3706
1da177e4
LT
3707 retval = security_task_setnice(current, nice);
3708 if (retval)
3709 return retval;
3710
3711 set_user_nice(current, nice);
3712 return 0;
3713}
3714
3715#endif
3716
3717/**
3718 * task_prio - return the priority value of a given task.
3719 * @p: the task in question.
3720 *
e69f6186 3721 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3722 * RT tasks are offset by -200. Normal tasks are centered
3723 * around 0, value goes from -16 to +15.
3724 */
36c8b586 3725int task_prio(const struct task_struct *p)
1da177e4
LT
3726{
3727 return p->prio - MAX_RT_PRIO;
3728}
3729
1da177e4
LT
3730/**
3731 * idle_cpu - is a given cpu idle currently?
3732 * @cpu: the processor in question.
e69f6186
YB
3733 *
3734 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3735 */
3736int idle_cpu(int cpu)
3737{
908a3283
TG
3738 struct rq *rq = cpu_rq(cpu);
3739
3740 if (rq->curr != rq->idle)
3741 return 0;
3742
3743 if (rq->nr_running)
3744 return 0;
3745
3746#ifdef CONFIG_SMP
3747 if (!llist_empty(&rq->wake_list))
3748 return 0;
3749#endif
3750
3751 return 1;
1da177e4
LT
3752}
3753
1da177e4
LT
3754/**
3755 * idle_task - return the idle task for a given cpu.
3756 * @cpu: the processor in question.
e69f6186
YB
3757 *
3758 * Return: The idle task for the cpu @cpu.
1da177e4 3759 */
36c8b586 3760struct task_struct *idle_task(int cpu)
1da177e4
LT
3761{
3762 return cpu_rq(cpu)->idle;
3763}
3764
3765/**
3766 * find_process_by_pid - find a process with a matching PID value.
3767 * @pid: the pid in question.
e69f6186
YB
3768 *
3769 * The task of @pid, if found. %NULL otherwise.
1da177e4 3770 */
a9957449 3771static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3772{
228ebcbe 3773 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3774}
3775
aab03e05
DF
3776/*
3777 * This function initializes the sched_dl_entity of a newly becoming
3778 * SCHED_DEADLINE task.
3779 *
3780 * Only the static values are considered here, the actual runtime and the
3781 * absolute deadline will be properly calculated when the task is enqueued
3782 * for the first time with its new policy.
3783 */
3784static void
3785__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3786{
3787 struct sched_dl_entity *dl_se = &p->dl;
3788
aab03e05
DF
3789 dl_se->dl_runtime = attr->sched_runtime;
3790 dl_se->dl_deadline = attr->sched_deadline;
755378a4 3791 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 3792 dl_se->flags = attr->sched_flags;
332ac17e 3793 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
40767b0d
PZ
3794
3795 /*
3796 * Changing the parameters of a task is 'tricky' and we're not doing
3797 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3798 *
3799 * What we SHOULD do is delay the bandwidth release until the 0-lag
3800 * point. This would include retaining the task_struct until that time
3801 * and change dl_overflow() to not immediately decrement the current
3802 * amount.
3803 *
3804 * Instead we retain the current runtime/deadline and let the new
3805 * parameters take effect after the current reservation period lapses.
3806 * This is safe (albeit pessimistic) because the 0-lag point is always
3807 * before the current scheduling deadline.
3808 *
3809 * We can still have temporary overloads because we do not delay the
3810 * change in bandwidth until that time; so admission control is
3811 * not on the safe side. It does however guarantee tasks will never
3812 * consume more than promised.
3813 */
aab03e05
DF
3814}
3815
c13db6b1
SR
3816/*
3817 * sched_setparam() passes in -1 for its policy, to let the functions
3818 * it calls know not to change it.
3819 */
3820#define SETPARAM_POLICY -1
3821
c365c292
TG
3822static void __setscheduler_params(struct task_struct *p,
3823 const struct sched_attr *attr)
1da177e4 3824{
d50dde5a
DF
3825 int policy = attr->sched_policy;
3826
c13db6b1 3827 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
3828 policy = p->policy;
3829
1da177e4 3830 p->policy = policy;
d50dde5a 3831
aab03e05
DF
3832 if (dl_policy(policy))
3833 __setparam_dl(p, attr);
39fd8fd2 3834 else if (fair_policy(policy))
d50dde5a
DF
3835 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3836
39fd8fd2
PZ
3837 /*
3838 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3839 * !rt_policy. Always setting this ensures that things like
3840 * getparam()/getattr() don't report silly values for !rt tasks.
3841 */
3842 p->rt_priority = attr->sched_priority;
383afd09 3843 p->normal_prio = normal_prio(p);
c365c292
TG
3844 set_load_weight(p);
3845}
39fd8fd2 3846
c365c292
TG
3847/* Actually do priority change: must hold pi & rq lock. */
3848static void __setscheduler(struct rq *rq, struct task_struct *p,
0782e63b 3849 const struct sched_attr *attr, bool keep_boost)
c365c292
TG
3850{
3851 __setscheduler_params(p, attr);
d50dde5a 3852
383afd09 3853 /*
0782e63b
TG
3854 * Keep a potential priority boosting if called from
3855 * sched_setscheduler().
383afd09 3856 */
0782e63b
TG
3857 if (keep_boost)
3858 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3859 else
3860 p->prio = normal_prio(p);
383afd09 3861
aab03e05
DF
3862 if (dl_prio(p->prio))
3863 p->sched_class = &dl_sched_class;
3864 else if (rt_prio(p->prio))
ffd44db5
PZ
3865 p->sched_class = &rt_sched_class;
3866 else
3867 p->sched_class = &fair_sched_class;
1da177e4 3868}
aab03e05
DF
3869
3870static void
3871__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3872{
3873 struct sched_dl_entity *dl_se = &p->dl;
3874
3875 attr->sched_priority = p->rt_priority;
3876 attr->sched_runtime = dl_se->dl_runtime;
3877 attr->sched_deadline = dl_se->dl_deadline;
755378a4 3878 attr->sched_period = dl_se->dl_period;
aab03e05
DF
3879 attr->sched_flags = dl_se->flags;
3880}
3881
3882/*
3883 * This function validates the new parameters of a -deadline task.
3884 * We ask for the deadline not being zero, and greater or equal
755378a4 3885 * than the runtime, as well as the period of being zero or
332ac17e 3886 * greater than deadline. Furthermore, we have to be sure that
b0827819
JL
3887 * user parameters are above the internal resolution of 1us (we
3888 * check sched_runtime only since it is always the smaller one) and
3889 * below 2^63 ns (we have to check both sched_deadline and
3890 * sched_period, as the latter can be zero).
aab03e05
DF
3891 */
3892static bool
3893__checkparam_dl(const struct sched_attr *attr)
3894{
b0827819
JL
3895 /* deadline != 0 */
3896 if (attr->sched_deadline == 0)
3897 return false;
3898
3899 /*
3900 * Since we truncate DL_SCALE bits, make sure we're at least
3901 * that big.
3902 */
3903 if (attr->sched_runtime < (1ULL << DL_SCALE))
3904 return false;
3905
3906 /*
3907 * Since we use the MSB for wrap-around and sign issues, make
3908 * sure it's not set (mind that period can be equal to zero).
3909 */
3910 if (attr->sched_deadline & (1ULL << 63) ||
3911 attr->sched_period & (1ULL << 63))
3912 return false;
3913
3914 /* runtime <= deadline <= period (if period != 0) */
3915 if ((attr->sched_period != 0 &&
3916 attr->sched_period < attr->sched_deadline) ||
3917 attr->sched_deadline < attr->sched_runtime)
3918 return false;
3919
3920 return true;
aab03e05
DF
3921}
3922
c69e8d9c
DH
3923/*
3924 * check the target process has a UID that matches the current process's
3925 */
3926static bool check_same_owner(struct task_struct *p)
3927{
3928 const struct cred *cred = current_cred(), *pcred;
3929 bool match;
3930
3931 rcu_read_lock();
3932 pcred = __task_cred(p);
9c806aa0
EB
3933 match = (uid_eq(cred->euid, pcred->euid) ||
3934 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3935 rcu_read_unlock();
3936 return match;
3937}
3938
75381608
WL
3939static bool dl_param_changed(struct task_struct *p,
3940 const struct sched_attr *attr)
3941{
3942 struct sched_dl_entity *dl_se = &p->dl;
3943
3944 if (dl_se->dl_runtime != attr->sched_runtime ||
3945 dl_se->dl_deadline != attr->sched_deadline ||
3946 dl_se->dl_period != attr->sched_period ||
3947 dl_se->flags != attr->sched_flags)
3948 return true;
3949
3950 return false;
3951}
3952
d50dde5a
DF
3953static int __sched_setscheduler(struct task_struct *p,
3954 const struct sched_attr *attr,
dbc7f069 3955 bool user, bool pi)
1da177e4 3956{
383afd09
SR
3957 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3958 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 3959 int retval, oldprio, oldpolicy = -1, queued, running;
0782e63b 3960 int new_effective_prio, policy = attr->sched_policy;
83ab0aa0 3961 const struct sched_class *prev_class;
eb580751 3962 struct rq_flags rf;
ca94c442 3963 int reset_on_fork;
ff77e468 3964 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
eb580751 3965 struct rq *rq;
1da177e4 3966
66e5393a
SR
3967 /* may grab non-irq protected spin_locks */
3968 BUG_ON(in_interrupt());
1da177e4
LT
3969recheck:
3970 /* double check policy once rq lock held */
ca94c442
LP
3971 if (policy < 0) {
3972 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3973 policy = oldpolicy = p->policy;
ca94c442 3974 } else {
7479f3c9 3975 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 3976
20f9cd2a 3977 if (!valid_policy(policy))
ca94c442
LP
3978 return -EINVAL;
3979 }
3980
7479f3c9
PZ
3981 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3982 return -EINVAL;
3983
1da177e4
LT
3984 /*
3985 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3986 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3987 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 3988 */
0bb040a4 3989 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 3990 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 3991 return -EINVAL;
aab03e05
DF
3992 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3993 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
3994 return -EINVAL;
3995
37e4ab3f
OC
3996 /*
3997 * Allow unprivileged RT tasks to decrease priority:
3998 */
961ccddd 3999 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 4000 if (fair_policy(policy)) {
d0ea0268 4001 if (attr->sched_nice < task_nice(p) &&
eaad4513 4002 !can_nice(p, attr->sched_nice))
d50dde5a
DF
4003 return -EPERM;
4004 }
4005
e05606d3 4006 if (rt_policy(policy)) {
a44702e8
ON
4007 unsigned long rlim_rtprio =
4008 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
4009
4010 /* can't set/change the rt policy */
4011 if (policy != p->policy && !rlim_rtprio)
4012 return -EPERM;
4013
4014 /* can't increase priority */
d50dde5a
DF
4015 if (attr->sched_priority > p->rt_priority &&
4016 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
4017 return -EPERM;
4018 }
c02aa73b 4019
d44753b8
JL
4020 /*
4021 * Can't set/change SCHED_DEADLINE policy at all for now
4022 * (safest behavior); in the future we would like to allow
4023 * unprivileged DL tasks to increase their relative deadline
4024 * or reduce their runtime (both ways reducing utilization)
4025 */
4026 if (dl_policy(policy))
4027 return -EPERM;
4028
dd41f596 4029 /*
c02aa73b
DH
4030 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4031 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 4032 */
20f9cd2a 4033 if (idle_policy(p->policy) && !idle_policy(policy)) {
d0ea0268 4034 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
4035 return -EPERM;
4036 }
5fe1d75f 4037
37e4ab3f 4038 /* can't change other user's priorities */
c69e8d9c 4039 if (!check_same_owner(p))
37e4ab3f 4040 return -EPERM;
ca94c442
LP
4041
4042 /* Normal users shall not reset the sched_reset_on_fork flag */
4043 if (p->sched_reset_on_fork && !reset_on_fork)
4044 return -EPERM;
37e4ab3f 4045 }
1da177e4 4046
725aad24 4047 if (user) {
b0ae1981 4048 retval = security_task_setscheduler(p);
725aad24
JF
4049 if (retval)
4050 return retval;
4051 }
4052
b29739f9
IM
4053 /*
4054 * make sure no PI-waiters arrive (or leave) while we are
4055 * changing the priority of the task:
0122ec5b 4056 *
25985edc 4057 * To be able to change p->policy safely, the appropriate
1da177e4
LT
4058 * runqueue lock must be held.
4059 */
eb580751 4060 rq = task_rq_lock(p, &rf);
dc61b1d6 4061
34f971f6
PZ
4062 /*
4063 * Changing the policy of the stop threads its a very bad idea
4064 */
4065 if (p == rq->stop) {
eb580751 4066 task_rq_unlock(rq, p, &rf);
34f971f6
PZ
4067 return -EINVAL;
4068 }
4069
a51e9198 4070 /*
d6b1e911
TG
4071 * If not changing anything there's no need to proceed further,
4072 * but store a possible modification of reset_on_fork.
a51e9198 4073 */
d50dde5a 4074 if (unlikely(policy == p->policy)) {
d0ea0268 4075 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
4076 goto change;
4077 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4078 goto change;
75381608 4079 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 4080 goto change;
d50dde5a 4081
d6b1e911 4082 p->sched_reset_on_fork = reset_on_fork;
eb580751 4083 task_rq_unlock(rq, p, &rf);
a51e9198
DF
4084 return 0;
4085 }
d50dde5a 4086change:
a51e9198 4087
dc61b1d6 4088 if (user) {
332ac17e 4089#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
4090 /*
4091 * Do not allow realtime tasks into groups that have no runtime
4092 * assigned.
4093 */
4094 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
4095 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4096 !task_group_is_autogroup(task_group(p))) {
eb580751 4097 task_rq_unlock(rq, p, &rf);
dc61b1d6
PZ
4098 return -EPERM;
4099 }
dc61b1d6 4100#endif
332ac17e
DF
4101#ifdef CONFIG_SMP
4102 if (dl_bandwidth_enabled() && dl_policy(policy)) {
4103 cpumask_t *span = rq->rd->span;
332ac17e
DF
4104
4105 /*
4106 * Don't allow tasks with an affinity mask smaller than
4107 * the entire root_domain to become SCHED_DEADLINE. We
4108 * will also fail if there's no bandwidth available.
4109 */
e4099a5e
PZ
4110 if (!cpumask_subset(span, &p->cpus_allowed) ||
4111 rq->rd->dl_bw.bw == 0) {
eb580751 4112 task_rq_unlock(rq, p, &rf);
332ac17e
DF
4113 return -EPERM;
4114 }
4115 }
4116#endif
4117 }
dc61b1d6 4118
1da177e4
LT
4119 /* recheck policy now with rq lock held */
4120 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4121 policy = oldpolicy = -1;
eb580751 4122 task_rq_unlock(rq, p, &rf);
1da177e4
LT
4123 goto recheck;
4124 }
332ac17e
DF
4125
4126 /*
4127 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4128 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4129 * is available.
4130 */
e4099a5e 4131 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
eb580751 4132 task_rq_unlock(rq, p, &rf);
332ac17e
DF
4133 return -EBUSY;
4134 }
4135
c365c292
TG
4136 p->sched_reset_on_fork = reset_on_fork;
4137 oldprio = p->prio;
4138
dbc7f069
PZ
4139 if (pi) {
4140 /*
4141 * Take priority boosted tasks into account. If the new
4142 * effective priority is unchanged, we just store the new
4143 * normal parameters and do not touch the scheduler class and
4144 * the runqueue. This will be done when the task deboost
4145 * itself.
4146 */
4147 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
ff77e468
PZ
4148 if (new_effective_prio == oldprio)
4149 queue_flags &= ~DEQUEUE_MOVE;
c365c292
TG
4150 }
4151
da0c1e65 4152 queued = task_on_rq_queued(p);
051a1d1a 4153 running = task_current(rq, p);
da0c1e65 4154 if (queued)
ff77e468 4155 dequeue_task(rq, p, queue_flags);
0e1f3483 4156 if (running)
f3cd1c4e 4157 put_prev_task(rq, p);
f6b53205 4158
83ab0aa0 4159 prev_class = p->sched_class;
dbc7f069 4160 __setscheduler(rq, p, attr, pi);
f6b53205 4161
0e1f3483
HS
4162 if (running)
4163 p->sched_class->set_curr_task(rq);
da0c1e65 4164 if (queued) {
81a44c54
TG
4165 /*
4166 * We enqueue to tail when the priority of a task is
4167 * increased (user space view).
4168 */
ff77e468
PZ
4169 if (oldprio < p->prio)
4170 queue_flags |= ENQUEUE_HEAD;
1de64443 4171
ff77e468 4172 enqueue_task(rq, p, queue_flags);
81a44c54 4173 }
cb469845 4174
da7a735e 4175 check_class_changed(rq, p, prev_class, oldprio);
4c9a4bc8 4176 preempt_disable(); /* avoid rq from going away on us */
eb580751 4177 task_rq_unlock(rq, p, &rf);
b29739f9 4178
dbc7f069
PZ
4179 if (pi)
4180 rt_mutex_adjust_pi(p);
95e02ca9 4181
4c9a4bc8
PZ
4182 /*
4183 * Run balance callbacks after we've adjusted the PI chain.
4184 */
4185 balance_callback(rq);
4186 preempt_enable();
95e02ca9 4187
1da177e4
LT
4188 return 0;
4189}
961ccddd 4190
7479f3c9
PZ
4191static int _sched_setscheduler(struct task_struct *p, int policy,
4192 const struct sched_param *param, bool check)
4193{
4194 struct sched_attr attr = {
4195 .sched_policy = policy,
4196 .sched_priority = param->sched_priority,
4197 .sched_nice = PRIO_TO_NICE(p->static_prio),
4198 };
4199
c13db6b1
SR
4200 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4201 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
4202 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4203 policy &= ~SCHED_RESET_ON_FORK;
4204 attr.sched_policy = policy;
4205 }
4206
dbc7f069 4207 return __sched_setscheduler(p, &attr, check, true);
7479f3c9 4208}
961ccddd
RR
4209/**
4210 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4211 * @p: the task in question.
4212 * @policy: new policy.
4213 * @param: structure containing the new RT priority.
4214 *
e69f6186
YB
4215 * Return: 0 on success. An error code otherwise.
4216 *
961ccddd
RR
4217 * NOTE that the task may be already dead.
4218 */
4219int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4220 const struct sched_param *param)
961ccddd 4221{
7479f3c9 4222 return _sched_setscheduler(p, policy, param, true);
961ccddd 4223}
1da177e4
LT
4224EXPORT_SYMBOL_GPL(sched_setscheduler);
4225
d50dde5a
DF
4226int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4227{
dbc7f069 4228 return __sched_setscheduler(p, attr, true, true);
d50dde5a
DF
4229}
4230EXPORT_SYMBOL_GPL(sched_setattr);
4231
961ccddd
RR
4232/**
4233 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4234 * @p: the task in question.
4235 * @policy: new policy.
4236 * @param: structure containing the new RT priority.
4237 *
4238 * Just like sched_setscheduler, only don't bother checking if the
4239 * current context has permission. For example, this is needed in
4240 * stop_machine(): we create temporary high priority worker threads,
4241 * but our caller might not have that capability.
e69f6186
YB
4242 *
4243 * Return: 0 on success. An error code otherwise.
961ccddd
RR
4244 */
4245int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 4246 const struct sched_param *param)
961ccddd 4247{
7479f3c9 4248 return _sched_setscheduler(p, policy, param, false);
961ccddd 4249}
84778472 4250EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
961ccddd 4251
95cdf3b7
IM
4252static int
4253do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4254{
1da177e4
LT
4255 struct sched_param lparam;
4256 struct task_struct *p;
36c8b586 4257 int retval;
1da177e4
LT
4258
4259 if (!param || pid < 0)
4260 return -EINVAL;
4261 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4262 return -EFAULT;
5fe1d75f
ON
4263
4264 rcu_read_lock();
4265 retval = -ESRCH;
1da177e4 4266 p = find_process_by_pid(pid);
5fe1d75f
ON
4267 if (p != NULL)
4268 retval = sched_setscheduler(p, policy, &lparam);
4269 rcu_read_unlock();
36c8b586 4270
1da177e4
LT
4271 return retval;
4272}
4273
d50dde5a
DF
4274/*
4275 * Mimics kernel/events/core.c perf_copy_attr().
4276 */
4277static int sched_copy_attr(struct sched_attr __user *uattr,
4278 struct sched_attr *attr)
4279{
4280 u32 size;
4281 int ret;
4282
4283 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4284 return -EFAULT;
4285
4286 /*
4287 * zero the full structure, so that a short copy will be nice.
4288 */
4289 memset(attr, 0, sizeof(*attr));
4290
4291 ret = get_user(size, &uattr->size);
4292 if (ret)
4293 return ret;
4294
4295 if (size > PAGE_SIZE) /* silly large */
4296 goto err_size;
4297
4298 if (!size) /* abi compat */
4299 size = SCHED_ATTR_SIZE_VER0;
4300
4301 if (size < SCHED_ATTR_SIZE_VER0)
4302 goto err_size;
4303
4304 /*
4305 * If we're handed a bigger struct than we know of,
4306 * ensure all the unknown bits are 0 - i.e. new
4307 * user-space does not rely on any kernel feature
4308 * extensions we dont know about yet.
4309 */
4310 if (size > sizeof(*attr)) {
4311 unsigned char __user *addr;
4312 unsigned char __user *end;
4313 unsigned char val;
4314
4315 addr = (void __user *)uattr + sizeof(*attr);
4316 end = (void __user *)uattr + size;
4317
4318 for (; addr < end; addr++) {
4319 ret = get_user(val, addr);
4320 if (ret)
4321 return ret;
4322 if (val)
4323 goto err_size;
4324 }
4325 size = sizeof(*attr);
4326 }
4327
4328 ret = copy_from_user(attr, uattr, size);
4329 if (ret)
4330 return -EFAULT;
4331
4332 /*
4333 * XXX: do we want to be lenient like existing syscalls; or do we want
4334 * to be strict and return an error on out-of-bounds values?
4335 */
75e45d51 4336 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 4337
e78c7bca 4338 return 0;
d50dde5a
DF
4339
4340err_size:
4341 put_user(sizeof(*attr), &uattr->size);
e78c7bca 4342 return -E2BIG;
d50dde5a
DF
4343}
4344
1da177e4
LT
4345/**
4346 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4347 * @pid: the pid in question.
4348 * @policy: new policy.
4349 * @param: structure containing the new RT priority.
e69f6186
YB
4350 *
4351 * Return: 0 on success. An error code otherwise.
1da177e4 4352 */
5add95d4
HC
4353SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4354 struct sched_param __user *, param)
1da177e4 4355{
c21761f1
JB
4356 /* negative values for policy are not valid */
4357 if (policy < 0)
4358 return -EINVAL;
4359
1da177e4
LT
4360 return do_sched_setscheduler(pid, policy, param);
4361}
4362
4363/**
4364 * sys_sched_setparam - set/change the RT priority of a thread
4365 * @pid: the pid in question.
4366 * @param: structure containing the new RT priority.
e69f6186
YB
4367 *
4368 * Return: 0 on success. An error code otherwise.
1da177e4 4369 */
5add95d4 4370SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4371{
c13db6b1 4372 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
4373}
4374
d50dde5a
DF
4375/**
4376 * sys_sched_setattr - same as above, but with extended sched_attr
4377 * @pid: the pid in question.
5778fccf 4378 * @uattr: structure containing the extended parameters.
db66d756 4379 * @flags: for future extension.
d50dde5a 4380 */
6d35ab48
PZ
4381SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4382 unsigned int, flags)
d50dde5a
DF
4383{
4384 struct sched_attr attr;
4385 struct task_struct *p;
4386 int retval;
4387
6d35ab48 4388 if (!uattr || pid < 0 || flags)
d50dde5a
DF
4389 return -EINVAL;
4390
143cf23d
MK
4391 retval = sched_copy_attr(uattr, &attr);
4392 if (retval)
4393 return retval;
d50dde5a 4394
b14ed2c2 4395 if ((int)attr.sched_policy < 0)
dbdb2275 4396 return -EINVAL;
d50dde5a
DF
4397
4398 rcu_read_lock();
4399 retval = -ESRCH;
4400 p = find_process_by_pid(pid);
4401 if (p != NULL)
4402 retval = sched_setattr(p, &attr);
4403 rcu_read_unlock();
4404
4405 return retval;
4406}
4407
1da177e4
LT
4408/**
4409 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4410 * @pid: the pid in question.
e69f6186
YB
4411 *
4412 * Return: On success, the policy of the thread. Otherwise, a negative error
4413 * code.
1da177e4 4414 */
5add95d4 4415SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4416{
36c8b586 4417 struct task_struct *p;
3a5c359a 4418 int retval;
1da177e4
LT
4419
4420 if (pid < 0)
3a5c359a 4421 return -EINVAL;
1da177e4
LT
4422
4423 retval = -ESRCH;
5fe85be0 4424 rcu_read_lock();
1da177e4
LT
4425 p = find_process_by_pid(pid);
4426 if (p) {
4427 retval = security_task_getscheduler(p);
4428 if (!retval)
ca94c442
LP
4429 retval = p->policy
4430 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4431 }
5fe85be0 4432 rcu_read_unlock();
1da177e4
LT
4433 return retval;
4434}
4435
4436/**
ca94c442 4437 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4438 * @pid: the pid in question.
4439 * @param: structure containing the RT priority.
e69f6186
YB
4440 *
4441 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4442 * code.
1da177e4 4443 */
5add95d4 4444SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4445{
ce5f7f82 4446 struct sched_param lp = { .sched_priority = 0 };
36c8b586 4447 struct task_struct *p;
3a5c359a 4448 int retval;
1da177e4
LT
4449
4450 if (!param || pid < 0)
3a5c359a 4451 return -EINVAL;
1da177e4 4452
5fe85be0 4453 rcu_read_lock();
1da177e4
LT
4454 p = find_process_by_pid(pid);
4455 retval = -ESRCH;
4456 if (!p)
4457 goto out_unlock;
4458
4459 retval = security_task_getscheduler(p);
4460 if (retval)
4461 goto out_unlock;
4462
ce5f7f82
PZ
4463 if (task_has_rt_policy(p))
4464 lp.sched_priority = p->rt_priority;
5fe85be0 4465 rcu_read_unlock();
1da177e4
LT
4466
4467 /*
4468 * This one might sleep, we cannot do it with a spinlock held ...
4469 */
4470 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4471
1da177e4
LT
4472 return retval;
4473
4474out_unlock:
5fe85be0 4475 rcu_read_unlock();
1da177e4
LT
4476 return retval;
4477}
4478
d50dde5a
DF
4479static int sched_read_attr(struct sched_attr __user *uattr,
4480 struct sched_attr *attr,
4481 unsigned int usize)
4482{
4483 int ret;
4484
4485 if (!access_ok(VERIFY_WRITE, uattr, usize))
4486 return -EFAULT;
4487
4488 /*
4489 * If we're handed a smaller struct than we know of,
4490 * ensure all the unknown bits are 0 - i.e. old
4491 * user-space does not get uncomplete information.
4492 */
4493 if (usize < sizeof(*attr)) {
4494 unsigned char *addr;
4495 unsigned char *end;
4496
4497 addr = (void *)attr + usize;
4498 end = (void *)attr + sizeof(*attr);
4499
4500 for (; addr < end; addr++) {
4501 if (*addr)
22400674 4502 return -EFBIG;
d50dde5a
DF
4503 }
4504
4505 attr->size = usize;
4506 }
4507
4efbc454 4508 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
4509 if (ret)
4510 return -EFAULT;
4511
22400674 4512 return 0;
d50dde5a
DF
4513}
4514
4515/**
aab03e05 4516 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 4517 * @pid: the pid in question.
5778fccf 4518 * @uattr: structure containing the extended parameters.
d50dde5a 4519 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 4520 * @flags: for future extension.
d50dde5a 4521 */
6d35ab48
PZ
4522SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4523 unsigned int, size, unsigned int, flags)
d50dde5a
DF
4524{
4525 struct sched_attr attr = {
4526 .size = sizeof(struct sched_attr),
4527 };
4528 struct task_struct *p;
4529 int retval;
4530
4531 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 4532 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
4533 return -EINVAL;
4534
4535 rcu_read_lock();
4536 p = find_process_by_pid(pid);
4537 retval = -ESRCH;
4538 if (!p)
4539 goto out_unlock;
4540
4541 retval = security_task_getscheduler(p);
4542 if (retval)
4543 goto out_unlock;
4544
4545 attr.sched_policy = p->policy;
7479f3c9
PZ
4546 if (p->sched_reset_on_fork)
4547 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
4548 if (task_has_dl_policy(p))
4549 __getparam_dl(p, &attr);
4550 else if (task_has_rt_policy(p))
d50dde5a
DF
4551 attr.sched_priority = p->rt_priority;
4552 else
d0ea0268 4553 attr.sched_nice = task_nice(p);
d50dde5a
DF
4554
4555 rcu_read_unlock();
4556
4557 retval = sched_read_attr(uattr, &attr, size);
4558 return retval;
4559
4560out_unlock:
4561 rcu_read_unlock();
4562 return retval;
4563}
4564
96f874e2 4565long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4566{
5a16f3d3 4567 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4568 struct task_struct *p;
4569 int retval;
1da177e4 4570
23f5d142 4571 rcu_read_lock();
1da177e4
LT
4572
4573 p = find_process_by_pid(pid);
4574 if (!p) {
23f5d142 4575 rcu_read_unlock();
1da177e4
LT
4576 return -ESRCH;
4577 }
4578
23f5d142 4579 /* Prevent p going away */
1da177e4 4580 get_task_struct(p);
23f5d142 4581 rcu_read_unlock();
1da177e4 4582
14a40ffc
TH
4583 if (p->flags & PF_NO_SETAFFINITY) {
4584 retval = -EINVAL;
4585 goto out_put_task;
4586 }
5a16f3d3
RR
4587 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4588 retval = -ENOMEM;
4589 goto out_put_task;
4590 }
4591 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4592 retval = -ENOMEM;
4593 goto out_free_cpus_allowed;
4594 }
1da177e4 4595 retval = -EPERM;
4c44aaaf
EB
4596 if (!check_same_owner(p)) {
4597 rcu_read_lock();
4598 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4599 rcu_read_unlock();
16303ab2 4600 goto out_free_new_mask;
4c44aaaf
EB
4601 }
4602 rcu_read_unlock();
4603 }
1da177e4 4604
b0ae1981 4605 retval = security_task_setscheduler(p);
e7834f8f 4606 if (retval)
16303ab2 4607 goto out_free_new_mask;
e7834f8f 4608
e4099a5e
PZ
4609
4610 cpuset_cpus_allowed(p, cpus_allowed);
4611 cpumask_and(new_mask, in_mask, cpus_allowed);
4612
332ac17e
DF
4613 /*
4614 * Since bandwidth control happens on root_domain basis,
4615 * if admission test is enabled, we only admit -deadline
4616 * tasks allowed to run on all the CPUs in the task's
4617 * root_domain.
4618 */
4619#ifdef CONFIG_SMP
f1e3a093
KT
4620 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4621 rcu_read_lock();
4622 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 4623 retval = -EBUSY;
f1e3a093 4624 rcu_read_unlock();
16303ab2 4625 goto out_free_new_mask;
332ac17e 4626 }
f1e3a093 4627 rcu_read_unlock();
332ac17e
DF
4628 }
4629#endif
49246274 4630again:
25834c73 4631 retval = __set_cpus_allowed_ptr(p, new_mask, true);
1da177e4 4632
8707d8b8 4633 if (!retval) {
5a16f3d3
RR
4634 cpuset_cpus_allowed(p, cpus_allowed);
4635 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4636 /*
4637 * We must have raced with a concurrent cpuset
4638 * update. Just reset the cpus_allowed to the
4639 * cpuset's cpus_allowed
4640 */
5a16f3d3 4641 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4642 goto again;
4643 }
4644 }
16303ab2 4645out_free_new_mask:
5a16f3d3
RR
4646 free_cpumask_var(new_mask);
4647out_free_cpus_allowed:
4648 free_cpumask_var(cpus_allowed);
4649out_put_task:
1da177e4 4650 put_task_struct(p);
1da177e4
LT
4651 return retval;
4652}
4653
4654static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4655 struct cpumask *new_mask)
1da177e4 4656{
96f874e2
RR
4657 if (len < cpumask_size())
4658 cpumask_clear(new_mask);
4659 else if (len > cpumask_size())
4660 len = cpumask_size();
4661
1da177e4
LT
4662 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4663}
4664
4665/**
4666 * sys_sched_setaffinity - set the cpu affinity of a process
4667 * @pid: pid of the process
4668 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4669 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
4670 *
4671 * Return: 0 on success. An error code otherwise.
1da177e4 4672 */
5add95d4
HC
4673SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4674 unsigned long __user *, user_mask_ptr)
1da177e4 4675{
5a16f3d3 4676 cpumask_var_t new_mask;
1da177e4
LT
4677 int retval;
4678
5a16f3d3
RR
4679 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4680 return -ENOMEM;
1da177e4 4681
5a16f3d3
RR
4682 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4683 if (retval == 0)
4684 retval = sched_setaffinity(pid, new_mask);
4685 free_cpumask_var(new_mask);
4686 return retval;
1da177e4
LT
4687}
4688
96f874e2 4689long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4690{
36c8b586 4691 struct task_struct *p;
31605683 4692 unsigned long flags;
1da177e4 4693 int retval;
1da177e4 4694
23f5d142 4695 rcu_read_lock();
1da177e4
LT
4696
4697 retval = -ESRCH;
4698 p = find_process_by_pid(pid);
4699 if (!p)
4700 goto out_unlock;
4701
e7834f8f
DQ
4702 retval = security_task_getscheduler(p);
4703 if (retval)
4704 goto out_unlock;
4705
013fdb80 4706 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4707 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4708 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4709
4710out_unlock:
23f5d142 4711 rcu_read_unlock();
1da177e4 4712
9531b62f 4713 return retval;
1da177e4
LT
4714}
4715
4716/**
4717 * sys_sched_getaffinity - get the cpu affinity of a process
4718 * @pid: pid of the process
4719 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4720 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186
YB
4721 *
4722 * Return: 0 on success. An error code otherwise.
1da177e4 4723 */
5add95d4
HC
4724SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4725 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4726{
4727 int ret;
f17c8607 4728 cpumask_var_t mask;
1da177e4 4729
84fba5ec 4730 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4731 return -EINVAL;
4732 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4733 return -EINVAL;
4734
f17c8607
RR
4735 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4736 return -ENOMEM;
1da177e4 4737
f17c8607
RR
4738 ret = sched_getaffinity(pid, mask);
4739 if (ret == 0) {
8bc037fb 4740 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4741
4742 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4743 ret = -EFAULT;
4744 else
cd3d8031 4745 ret = retlen;
f17c8607
RR
4746 }
4747 free_cpumask_var(mask);
1da177e4 4748
f17c8607 4749 return ret;
1da177e4
LT
4750}
4751
4752/**
4753 * sys_sched_yield - yield the current processor to other threads.
4754 *
dd41f596
IM
4755 * This function yields the current CPU to other tasks. If there are no
4756 * other threads running on this CPU then this function will return.
e69f6186
YB
4757 *
4758 * Return: 0.
1da177e4 4759 */
5add95d4 4760SYSCALL_DEFINE0(sched_yield)
1da177e4 4761{
70b97a7f 4762 struct rq *rq = this_rq_lock();
1da177e4 4763
2d72376b 4764 schedstat_inc(rq, yld_count);
4530d7ab 4765 current->sched_class->yield_task(rq);
1da177e4
LT
4766
4767 /*
4768 * Since we are going to call schedule() anyway, there's
4769 * no need to preempt or enable interrupts:
4770 */
4771 __release(rq->lock);
8a25d5de 4772 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4773 do_raw_spin_unlock(&rq->lock);
ba74c144 4774 sched_preempt_enable_no_resched();
1da177e4
LT
4775
4776 schedule();
4777
4778 return 0;
4779}
4780
02b67cc3 4781int __sched _cond_resched(void)
1da177e4 4782{
fe32d3cd 4783 if (should_resched(0)) {
a18b5d01 4784 preempt_schedule_common();
1da177e4
LT
4785 return 1;
4786 }
4787 return 0;
4788}
02b67cc3 4789EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4790
4791/*
613afbf8 4792 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4793 * call schedule, and on return reacquire the lock.
4794 *
41a2d6cf 4795 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4796 * operations here to prevent schedule() from being called twice (once via
4797 * spin_unlock(), once by hand).
4798 */
613afbf8 4799int __cond_resched_lock(spinlock_t *lock)
1da177e4 4800{
fe32d3cd 4801 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6df3cecb
JK
4802 int ret = 0;
4803
f607c668
PZ
4804 lockdep_assert_held(lock);
4805
4a81e832 4806 if (spin_needbreak(lock) || resched) {
1da177e4 4807 spin_unlock(lock);
d86ee480 4808 if (resched)
a18b5d01 4809 preempt_schedule_common();
95c354fe
NP
4810 else
4811 cpu_relax();
6df3cecb 4812 ret = 1;
1da177e4 4813 spin_lock(lock);
1da177e4 4814 }
6df3cecb 4815 return ret;
1da177e4 4816}
613afbf8 4817EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4818
613afbf8 4819int __sched __cond_resched_softirq(void)
1da177e4
LT
4820{
4821 BUG_ON(!in_softirq());
4822
fe32d3cd 4823 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
98d82567 4824 local_bh_enable();
a18b5d01 4825 preempt_schedule_common();
1da177e4
LT
4826 local_bh_disable();
4827 return 1;
4828 }
4829 return 0;
4830}
613afbf8 4831EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4832
1da177e4
LT
4833/**
4834 * yield - yield the current processor to other threads.
4835 *
8e3fabfd
PZ
4836 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4837 *
4838 * The scheduler is at all times free to pick the calling task as the most
4839 * eligible task to run, if removing the yield() call from your code breaks
4840 * it, its already broken.
4841 *
4842 * Typical broken usage is:
4843 *
4844 * while (!event)
4845 * yield();
4846 *
4847 * where one assumes that yield() will let 'the other' process run that will
4848 * make event true. If the current task is a SCHED_FIFO task that will never
4849 * happen. Never use yield() as a progress guarantee!!
4850 *
4851 * If you want to use yield() to wait for something, use wait_event().
4852 * If you want to use yield() to be 'nice' for others, use cond_resched().
4853 * If you still want to use yield(), do not!
1da177e4
LT
4854 */
4855void __sched yield(void)
4856{
4857 set_current_state(TASK_RUNNING);
4858 sys_sched_yield();
4859}
1da177e4
LT
4860EXPORT_SYMBOL(yield);
4861
d95f4122
MG
4862/**
4863 * yield_to - yield the current processor to another thread in
4864 * your thread group, or accelerate that thread toward the
4865 * processor it's on.
16addf95
RD
4866 * @p: target task
4867 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4868 *
4869 * It's the caller's job to ensure that the target task struct
4870 * can't go away on us before we can do any checks.
4871 *
e69f6186 4872 * Return:
7b270f60
PZ
4873 * true (>0) if we indeed boosted the target task.
4874 * false (0) if we failed to boost the target.
4875 * -ESRCH if there's no task to yield to.
d95f4122 4876 */
fa93384f 4877int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
4878{
4879 struct task_struct *curr = current;
4880 struct rq *rq, *p_rq;
4881 unsigned long flags;
c3c18640 4882 int yielded = 0;
d95f4122
MG
4883
4884 local_irq_save(flags);
4885 rq = this_rq();
4886
4887again:
4888 p_rq = task_rq(p);
7b270f60
PZ
4889 /*
4890 * If we're the only runnable task on the rq and target rq also
4891 * has only one task, there's absolutely no point in yielding.
4892 */
4893 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4894 yielded = -ESRCH;
4895 goto out_irq;
4896 }
4897
d95f4122 4898 double_rq_lock(rq, p_rq);
39e24d8f 4899 if (task_rq(p) != p_rq) {
d95f4122
MG
4900 double_rq_unlock(rq, p_rq);
4901 goto again;
4902 }
4903
4904 if (!curr->sched_class->yield_to_task)
7b270f60 4905 goto out_unlock;
d95f4122
MG
4906
4907 if (curr->sched_class != p->sched_class)
7b270f60 4908 goto out_unlock;
d95f4122
MG
4909
4910 if (task_running(p_rq, p) || p->state)
7b270f60 4911 goto out_unlock;
d95f4122
MG
4912
4913 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4914 if (yielded) {
d95f4122 4915 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4916 /*
4917 * Make p's CPU reschedule; pick_next_entity takes care of
4918 * fairness.
4919 */
4920 if (preempt && rq != p_rq)
8875125e 4921 resched_curr(p_rq);
6d1cafd8 4922 }
d95f4122 4923
7b270f60 4924out_unlock:
d95f4122 4925 double_rq_unlock(rq, p_rq);
7b270f60 4926out_irq:
d95f4122
MG
4927 local_irq_restore(flags);
4928
7b270f60 4929 if (yielded > 0)
d95f4122
MG
4930 schedule();
4931
4932 return yielded;
4933}
4934EXPORT_SYMBOL_GPL(yield_to);
4935
1da177e4 4936/*
41a2d6cf 4937 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4938 * that process accounting knows that this is a task in IO wait state.
1da177e4 4939 */
1da177e4
LT
4940long __sched io_schedule_timeout(long timeout)
4941{
9cff8ade
N
4942 int old_iowait = current->in_iowait;
4943 struct rq *rq;
1da177e4
LT
4944 long ret;
4945
9cff8ade 4946 current->in_iowait = 1;
10d784ea 4947 blk_schedule_flush_plug(current);
9cff8ade 4948
0ff92245 4949 delayacct_blkio_start();
9cff8ade 4950 rq = raw_rq();
1da177e4
LT
4951 atomic_inc(&rq->nr_iowait);
4952 ret = schedule_timeout(timeout);
9cff8ade 4953 current->in_iowait = old_iowait;
1da177e4 4954 atomic_dec(&rq->nr_iowait);
0ff92245 4955 delayacct_blkio_end();
9cff8ade 4956
1da177e4
LT
4957 return ret;
4958}
9cff8ade 4959EXPORT_SYMBOL(io_schedule_timeout);
1da177e4
LT
4960
4961/**
4962 * sys_sched_get_priority_max - return maximum RT priority.
4963 * @policy: scheduling class.
4964 *
e69f6186
YB
4965 * Return: On success, this syscall returns the maximum
4966 * rt_priority that can be used by a given scheduling class.
4967 * On failure, a negative error code is returned.
1da177e4 4968 */
5add95d4 4969SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4970{
4971 int ret = -EINVAL;
4972
4973 switch (policy) {
4974 case SCHED_FIFO:
4975 case SCHED_RR:
4976 ret = MAX_USER_RT_PRIO-1;
4977 break;
aab03e05 4978 case SCHED_DEADLINE:
1da177e4 4979 case SCHED_NORMAL:
b0a9499c 4980 case SCHED_BATCH:
dd41f596 4981 case SCHED_IDLE:
1da177e4
LT
4982 ret = 0;
4983 break;
4984 }
4985 return ret;
4986}
4987
4988/**
4989 * sys_sched_get_priority_min - return minimum RT priority.
4990 * @policy: scheduling class.
4991 *
e69f6186
YB
4992 * Return: On success, this syscall returns the minimum
4993 * rt_priority that can be used by a given scheduling class.
4994 * On failure, a negative error code is returned.
1da177e4 4995 */
5add95d4 4996SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4997{
4998 int ret = -EINVAL;
4999
5000 switch (policy) {
5001 case SCHED_FIFO:
5002 case SCHED_RR:
5003 ret = 1;
5004 break;
aab03e05 5005 case SCHED_DEADLINE:
1da177e4 5006 case SCHED_NORMAL:
b0a9499c 5007 case SCHED_BATCH:
dd41f596 5008 case SCHED_IDLE:
1da177e4
LT
5009 ret = 0;
5010 }
5011 return ret;
5012}
5013
5014/**
5015 * sys_sched_rr_get_interval - return the default timeslice of a process.
5016 * @pid: pid of the process.
5017 * @interval: userspace pointer to the timeslice value.
5018 *
5019 * this syscall writes the default timeslice value of a given process
5020 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
5021 *
5022 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5023 * an error code.
1da177e4 5024 */
17da2bd9 5025SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5026 struct timespec __user *, interval)
1da177e4 5027{
36c8b586 5028 struct task_struct *p;
a4ec24b4 5029 unsigned int time_slice;
eb580751
PZ
5030 struct rq_flags rf;
5031 struct timespec t;
dba091b9 5032 struct rq *rq;
3a5c359a 5033 int retval;
1da177e4
LT
5034
5035 if (pid < 0)
3a5c359a 5036 return -EINVAL;
1da177e4
LT
5037
5038 retval = -ESRCH;
1a551ae7 5039 rcu_read_lock();
1da177e4
LT
5040 p = find_process_by_pid(pid);
5041 if (!p)
5042 goto out_unlock;
5043
5044 retval = security_task_getscheduler(p);
5045 if (retval)
5046 goto out_unlock;
5047
eb580751 5048 rq = task_rq_lock(p, &rf);
a57beec5
PZ
5049 time_slice = 0;
5050 if (p->sched_class->get_rr_interval)
5051 time_slice = p->sched_class->get_rr_interval(rq, p);
eb580751 5052 task_rq_unlock(rq, p, &rf);
a4ec24b4 5053
1a551ae7 5054 rcu_read_unlock();
a4ec24b4 5055 jiffies_to_timespec(time_slice, &t);
1da177e4 5056 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5057 return retval;
3a5c359a 5058
1da177e4 5059out_unlock:
1a551ae7 5060 rcu_read_unlock();
1da177e4
LT
5061 return retval;
5062}
5063
7c731e0a 5064static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5065
82a1fcb9 5066void sched_show_task(struct task_struct *p)
1da177e4 5067{
1da177e4 5068 unsigned long free = 0;
4e79752c 5069 int ppid;
1f8a7633 5070 unsigned long state = p->state;
1da177e4 5071
1f8a7633
TH
5072 if (state)
5073 state = __ffs(state) + 1;
28d0686c 5074 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 5075 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5076#if BITS_PER_LONG == 32
1da177e4 5077 if (state == TASK_RUNNING)
3df0fc5b 5078 printk(KERN_CONT " running ");
1da177e4 5079 else
3df0fc5b 5080 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5081#else
5082 if (state == TASK_RUNNING)
3df0fc5b 5083 printk(KERN_CONT " running task ");
1da177e4 5084 else
3df0fc5b 5085 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5086#endif
5087#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5088 free = stack_not_used(p);
1da177e4 5089#endif
a90e984c 5090 ppid = 0;
4e79752c 5091 rcu_read_lock();
a90e984c
ON
5092 if (pid_alive(p))
5093 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 5094 rcu_read_unlock();
3df0fc5b 5095 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 5096 task_pid_nr(p), ppid,
aa47b7e0 5097 (unsigned long)task_thread_info(p)->flags);
1da177e4 5098
3d1cb205 5099 print_worker_info(KERN_INFO, p);
5fb5e6de 5100 show_stack(p, NULL);
1da177e4
LT
5101}
5102
e59e2ae2 5103void show_state_filter(unsigned long state_filter)
1da177e4 5104{
36c8b586 5105 struct task_struct *g, *p;
1da177e4 5106
4bd77321 5107#if BITS_PER_LONG == 32
3df0fc5b
PZ
5108 printk(KERN_INFO
5109 " task PC stack pid father\n");
1da177e4 5110#else
3df0fc5b
PZ
5111 printk(KERN_INFO
5112 " task PC stack pid father\n");
1da177e4 5113#endif
510f5acc 5114 rcu_read_lock();
5d07f420 5115 for_each_process_thread(g, p) {
1da177e4
LT
5116 /*
5117 * reset the NMI-timeout, listing all files on a slow
25985edc 5118 * console might take a lot of time:
1da177e4
LT
5119 */
5120 touch_nmi_watchdog();
39bc89fd 5121 if (!state_filter || (p->state & state_filter))
82a1fcb9 5122 sched_show_task(p);
5d07f420 5123 }
1da177e4 5124
04c9167f
JF
5125 touch_all_softlockup_watchdogs();
5126
dd41f596 5127#ifdef CONFIG_SCHED_DEBUG
fb90a6e9
RV
5128 if (!state_filter)
5129 sysrq_sched_debug_show();
dd41f596 5130#endif
510f5acc 5131 rcu_read_unlock();
e59e2ae2
IM
5132 /*
5133 * Only show locks if all tasks are dumped:
5134 */
93335a21 5135 if (!state_filter)
e59e2ae2 5136 debug_show_all_locks();
1da177e4
LT
5137}
5138
0db0628d 5139void init_idle_bootup_task(struct task_struct *idle)
1df21055 5140{
dd41f596 5141 idle->sched_class = &idle_sched_class;
1df21055
IM
5142}
5143
f340c0d1
IM
5144/**
5145 * init_idle - set up an idle thread for a given CPU
5146 * @idle: task in question
5147 * @cpu: cpu the idle task belongs to
5148 *
5149 * NOTE: this function does not set the idle thread's NEED_RESCHED
5150 * flag, to make booting more robust.
5151 */
0db0628d 5152void init_idle(struct task_struct *idle, int cpu)
1da177e4 5153{
70b97a7f 5154 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5155 unsigned long flags;
5156
25834c73
PZ
5157 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5158 raw_spin_lock(&rq->lock);
5cbd54ef 5159
5e1576ed 5160 __sched_fork(0, idle);
06b83b5f 5161 idle->state = TASK_RUNNING;
dd41f596
IM
5162 idle->se.exec_start = sched_clock();
5163
e1b77c92
MR
5164 kasan_unpoison_task_stack(idle);
5165
de9b8f5d
PZ
5166#ifdef CONFIG_SMP
5167 /*
5168 * Its possible that init_idle() gets called multiple times on a task,
5169 * in that case do_set_cpus_allowed() will not do the right thing.
5170 *
5171 * And since this is boot we can forgo the serialization.
5172 */
5173 set_cpus_allowed_common(idle, cpumask_of(cpu));
5174#endif
6506cf6c
PZ
5175 /*
5176 * We're having a chicken and egg problem, even though we are
5177 * holding rq->lock, the cpu isn't yet set to this cpu so the
5178 * lockdep check in task_group() will fail.
5179 *
5180 * Similar case to sched_fork(). / Alternatively we could
5181 * use task_rq_lock() here and obtain the other rq->lock.
5182 *
5183 * Silence PROVE_RCU
5184 */
5185 rcu_read_lock();
dd41f596 5186 __set_task_cpu(idle, cpu);
6506cf6c 5187 rcu_read_unlock();
1da177e4 5188
1da177e4 5189 rq->curr = rq->idle = idle;
da0c1e65 5190 idle->on_rq = TASK_ON_RQ_QUEUED;
de9b8f5d 5191#ifdef CONFIG_SMP
3ca7a440 5192 idle->on_cpu = 1;
4866cde0 5193#endif
25834c73
PZ
5194 raw_spin_unlock(&rq->lock);
5195 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
1da177e4
LT
5196
5197 /* Set the preempt count _outside_ the spinlocks! */
01028747 5198 init_idle_preempt_count(idle, cpu);
55cd5340 5199
dd41f596
IM
5200 /*
5201 * The idle tasks have their own, simple scheduling class:
5202 */
5203 idle->sched_class = &idle_sched_class;
868baf07 5204 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 5205 vtime_init_idle(idle, cpu);
de9b8f5d 5206#ifdef CONFIG_SMP
f1c6f1a7
CE
5207 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5208#endif
19978ca6
IM
5209}
5210
f82f8042
JL
5211int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5212 const struct cpumask *trial)
5213{
5214 int ret = 1, trial_cpus;
5215 struct dl_bw *cur_dl_b;
5216 unsigned long flags;
5217
bb2bc55a
MG
5218 if (!cpumask_weight(cur))
5219 return ret;
5220
75e23e49 5221 rcu_read_lock_sched();
f82f8042
JL
5222 cur_dl_b = dl_bw_of(cpumask_any(cur));
5223 trial_cpus = cpumask_weight(trial);
5224
5225 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5226 if (cur_dl_b->bw != -1 &&
5227 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5228 ret = 0;
5229 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
75e23e49 5230 rcu_read_unlock_sched();
f82f8042
JL
5231
5232 return ret;
5233}
5234
7f51412a
JL
5235int task_can_attach(struct task_struct *p,
5236 const struct cpumask *cs_cpus_allowed)
5237{
5238 int ret = 0;
5239
5240 /*
5241 * Kthreads which disallow setaffinity shouldn't be moved
5242 * to a new cpuset; we don't want to change their cpu
5243 * affinity and isolating such threads by their set of
5244 * allowed nodes is unnecessary. Thus, cpusets are not
5245 * applicable for such threads. This prevents checking for
5246 * success of set_cpus_allowed_ptr() on all attached tasks
5247 * before cpus_allowed may be changed.
5248 */
5249 if (p->flags & PF_NO_SETAFFINITY) {
5250 ret = -EINVAL;
5251 goto out;
5252 }
5253
5254#ifdef CONFIG_SMP
5255 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5256 cs_cpus_allowed)) {
5257 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5258 cs_cpus_allowed);
75e23e49 5259 struct dl_bw *dl_b;
7f51412a
JL
5260 bool overflow;
5261 int cpus;
5262 unsigned long flags;
5263
75e23e49
JL
5264 rcu_read_lock_sched();
5265 dl_b = dl_bw_of(dest_cpu);
7f51412a
JL
5266 raw_spin_lock_irqsave(&dl_b->lock, flags);
5267 cpus = dl_bw_cpus(dest_cpu);
5268 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5269 if (overflow)
5270 ret = -EBUSY;
5271 else {
5272 /*
5273 * We reserve space for this task in the destination
5274 * root_domain, as we can't fail after this point.
5275 * We will free resources in the source root_domain
5276 * later on (see set_cpus_allowed_dl()).
5277 */
5278 __dl_add(dl_b, p->dl.dl_bw);
5279 }
5280 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
75e23e49 5281 rcu_read_unlock_sched();
7f51412a
JL
5282
5283 }
5284#endif
5285out:
5286 return ret;
5287}
5288
1da177e4 5289#ifdef CONFIG_SMP
1da177e4 5290
e6628d5b
MG
5291#ifdef CONFIG_NUMA_BALANCING
5292/* Migrate current task p to target_cpu */
5293int migrate_task_to(struct task_struct *p, int target_cpu)
5294{
5295 struct migration_arg arg = { p, target_cpu };
5296 int curr_cpu = task_cpu(p);
5297
5298 if (curr_cpu == target_cpu)
5299 return 0;
5300
5301 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5302 return -EINVAL;
5303
5304 /* TODO: This is not properly updating schedstats */
5305
286549dc 5306 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
5307 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5308}
0ec8aa00
PZ
5309
5310/*
5311 * Requeue a task on a given node and accurately track the number of NUMA
5312 * tasks on the runqueues
5313 */
5314void sched_setnuma(struct task_struct *p, int nid)
5315{
da0c1e65 5316 bool queued, running;
eb580751
PZ
5317 struct rq_flags rf;
5318 struct rq *rq;
0ec8aa00 5319
eb580751 5320 rq = task_rq_lock(p, &rf);
da0c1e65 5321 queued = task_on_rq_queued(p);
0ec8aa00
PZ
5322 running = task_current(rq, p);
5323
da0c1e65 5324 if (queued)
1de64443 5325 dequeue_task(rq, p, DEQUEUE_SAVE);
0ec8aa00 5326 if (running)
f3cd1c4e 5327 put_prev_task(rq, p);
0ec8aa00
PZ
5328
5329 p->numa_preferred_nid = nid;
0ec8aa00
PZ
5330
5331 if (running)
5332 p->sched_class->set_curr_task(rq);
da0c1e65 5333 if (queued)
1de64443 5334 enqueue_task(rq, p, ENQUEUE_RESTORE);
eb580751 5335 task_rq_unlock(rq, p, &rf);
0ec8aa00 5336}
5cc389bc 5337#endif /* CONFIG_NUMA_BALANCING */
f7b4cddc 5338
1da177e4 5339#ifdef CONFIG_HOTPLUG_CPU
054b9108 5340/*
48c5ccae
PZ
5341 * Ensures that the idle task is using init_mm right before its cpu goes
5342 * offline.
054b9108 5343 */
48c5ccae 5344void idle_task_exit(void)
1da177e4 5345{
48c5ccae 5346 struct mm_struct *mm = current->active_mm;
e76bd8d9 5347
48c5ccae 5348 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 5349
a53efe5f 5350 if (mm != &init_mm) {
f98db601 5351 switch_mm_irqs_off(mm, &init_mm, current);
a53efe5f
MS
5352 finish_arch_post_lock_switch();
5353 }
48c5ccae 5354 mmdrop(mm);
1da177e4
LT
5355}
5356
5357/*
5d180232
PZ
5358 * Since this CPU is going 'away' for a while, fold any nr_active delta
5359 * we might have. Assumes we're called after migrate_tasks() so that the
5360 * nr_active count is stable.
5361 *
5362 * Also see the comment "Global load-average calculations".
1da177e4 5363 */
5d180232 5364static void calc_load_migrate(struct rq *rq)
1da177e4 5365{
5d180232
PZ
5366 long delta = calc_load_fold_active(rq);
5367 if (delta)
5368 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
5369}
5370
3f1d2a31
PZ
5371static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5372{
5373}
5374
5375static const struct sched_class fake_sched_class = {
5376 .put_prev_task = put_prev_task_fake,
5377};
5378
5379static struct task_struct fake_task = {
5380 /*
5381 * Avoid pull_{rt,dl}_task()
5382 */
5383 .prio = MAX_PRIO + 1,
5384 .sched_class = &fake_sched_class,
5385};
5386
48f24c4d 5387/*
48c5ccae
PZ
5388 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5389 * try_to_wake_up()->select_task_rq().
5390 *
5391 * Called with rq->lock held even though we'er in stop_machine() and
5392 * there's no concurrency possible, we hold the required locks anyway
5393 * because of lock validation efforts.
1da177e4 5394 */
5e16bbc2 5395static void migrate_tasks(struct rq *dead_rq)
1da177e4 5396{
5e16bbc2 5397 struct rq *rq = dead_rq;
48c5ccae 5398 struct task_struct *next, *stop = rq->stop;
e7904a28 5399 struct pin_cookie cookie;
48c5ccae 5400 int dest_cpu;
1da177e4
LT
5401
5402 /*
48c5ccae
PZ
5403 * Fudge the rq selection such that the below task selection loop
5404 * doesn't get stuck on the currently eligible stop task.
5405 *
5406 * We're currently inside stop_machine() and the rq is either stuck
5407 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5408 * either way we should never end up calling schedule() until we're
5409 * done here.
1da177e4 5410 */
48c5ccae 5411 rq->stop = NULL;
48f24c4d 5412
77bd3970
FW
5413 /*
5414 * put_prev_task() and pick_next_task() sched
5415 * class method both need to have an up-to-date
5416 * value of rq->clock[_task]
5417 */
5418 update_rq_clock(rq);
5419
5e16bbc2 5420 for (;;) {
48c5ccae
PZ
5421 /*
5422 * There's this thread running, bail when that's the only
5423 * remaining thread.
5424 */
5425 if (rq->nr_running == 1)
dd41f596 5426 break;
48c5ccae 5427
cbce1a68 5428 /*
5473e0cc 5429 * pick_next_task assumes pinned rq->lock.
cbce1a68 5430 */
e7904a28
PZ
5431 cookie = lockdep_pin_lock(&rq->lock);
5432 next = pick_next_task(rq, &fake_task, cookie);
48c5ccae 5433 BUG_ON(!next);
79c53799 5434 next->sched_class->put_prev_task(rq, next);
e692ab53 5435
5473e0cc
WL
5436 /*
5437 * Rules for changing task_struct::cpus_allowed are holding
5438 * both pi_lock and rq->lock, such that holding either
5439 * stabilizes the mask.
5440 *
5441 * Drop rq->lock is not quite as disastrous as it usually is
5442 * because !cpu_active at this point, which means load-balance
5443 * will not interfere. Also, stop-machine.
5444 */
e7904a28 5445 lockdep_unpin_lock(&rq->lock, cookie);
5473e0cc
WL
5446 raw_spin_unlock(&rq->lock);
5447 raw_spin_lock(&next->pi_lock);
5448 raw_spin_lock(&rq->lock);
5449
5450 /*
5451 * Since we're inside stop-machine, _nothing_ should have
5452 * changed the task, WARN if weird stuff happened, because in
5453 * that case the above rq->lock drop is a fail too.
5454 */
5455 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5456 raw_spin_unlock(&next->pi_lock);
5457 continue;
5458 }
5459
48c5ccae 5460 /* Find suitable destination for @next, with force if needed. */
5e16bbc2 5461 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
48c5ccae 5462
5e16bbc2
PZ
5463 rq = __migrate_task(rq, next, dest_cpu);
5464 if (rq != dead_rq) {
5465 raw_spin_unlock(&rq->lock);
5466 rq = dead_rq;
5467 raw_spin_lock(&rq->lock);
5468 }
5473e0cc 5469 raw_spin_unlock(&next->pi_lock);
1da177e4 5470 }
dce48a84 5471
48c5ccae 5472 rq->stop = stop;
dce48a84 5473}
1da177e4
LT
5474#endif /* CONFIG_HOTPLUG_CPU */
5475
1f11eb6a
GH
5476static void set_rq_online(struct rq *rq)
5477{
5478 if (!rq->online) {
5479 const struct sched_class *class;
5480
c6c4927b 5481 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5482 rq->online = 1;
5483
5484 for_each_class(class) {
5485 if (class->rq_online)
5486 class->rq_online(rq);
5487 }
5488 }
5489}
5490
5491static void set_rq_offline(struct rq *rq)
5492{
5493 if (rq->online) {
5494 const struct sched_class *class;
5495
5496 for_each_class(class) {
5497 if (class->rq_offline)
5498 class->rq_offline(rq);
5499 }
5500
c6c4927b 5501 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5502 rq->online = 0;
5503 }
5504}
5505
1da177e4
LT
5506/*
5507 * migration_call - callback that gets triggered when a CPU is added.
5508 * Here we can start up the necessary migration thread for the new CPU.
5509 */
0db0628d 5510static int
48f24c4d 5511migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5512{
48f24c4d 5513 int cpu = (long)hcpu;
1da177e4 5514 unsigned long flags;
969c7921 5515 struct rq *rq = cpu_rq(cpu);
1da177e4 5516
48c5ccae 5517 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 5518
1da177e4 5519 case CPU_UP_PREPARE:
a468d389 5520 rq->calc_load_update = calc_load_update;
e9532e69 5521 account_reset_rq(rq);
1da177e4 5522 break;
48f24c4d 5523
1da177e4 5524 case CPU_ONLINE:
1f94ef59 5525 /* Update our root-domain */
05fa785c 5526 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5527 if (rq->rd) {
c6c4927b 5528 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5529
5530 set_rq_online(rq);
1f94ef59 5531 }
05fa785c 5532 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5533 break;
48f24c4d 5534
1da177e4 5535#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5536 case CPU_DYING:
317f3941 5537 sched_ttwu_pending();
57d885fe 5538 /* Update our root-domain */
05fa785c 5539 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5540 if (rq->rd) {
c6c4927b 5541 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5542 set_rq_offline(rq);
57d885fe 5543 }
5e16bbc2 5544 migrate_tasks(rq);
48c5ccae 5545 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5546 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 5547 break;
48c5ccae 5548
5d180232 5549 case CPU_DEAD:
f319da0c 5550 calc_load_migrate(rq);
57d885fe 5551 break;
1da177e4
LT
5552#endif
5553 }
49c022e6
PZ
5554
5555 update_max_interval();
5556
1da177e4
LT
5557 return NOTIFY_OK;
5558}
5559
f38b0820
PM
5560/*
5561 * Register at high priority so that task migration (migrate_all_tasks)
5562 * happens before everything else. This has to be lower priority than
cdd6c482 5563 * the notifier in the perf_event subsystem, though.
1da177e4 5564 */
0db0628d 5565static struct notifier_block migration_notifier = {
1da177e4 5566 .notifier_call = migration_call,
50a323b7 5567 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5568};
5569
6a82b60d 5570static void set_cpu_rq_start_time(void)
a803f026
CM
5571{
5572 int cpu = smp_processor_id();
5573 struct rq *rq = cpu_rq(cpu);
5574 rq->age_stamp = sched_clock_cpu(cpu);
5575}
5576
0db0628d 5577static int sched_cpu_active(struct notifier_block *nfb,
3a101d05
TH
5578 unsigned long action, void *hcpu)
5579{
07f06cb3
PZ
5580 int cpu = (long)hcpu;
5581
3a101d05 5582 switch (action & ~CPU_TASKS_FROZEN) {
a803f026
CM
5583 case CPU_STARTING:
5584 set_cpu_rq_start_time();
5585 return NOTIFY_OK;
07f06cb3 5586
3a101d05 5587 case CPU_DOWN_FAILED:
07f06cb3 5588 set_cpu_active(cpu, true);
3a101d05 5589 return NOTIFY_OK;
07f06cb3 5590
3a101d05
TH
5591 default:
5592 return NOTIFY_DONE;
5593 }
5594}
5595
0db0628d 5596static int sched_cpu_inactive(struct notifier_block *nfb,
3a101d05
TH
5597 unsigned long action, void *hcpu)
5598{
5599 switch (action & ~CPU_TASKS_FROZEN) {
5600 case CPU_DOWN_PREPARE:
3c18d447 5601 set_cpu_active((long)hcpu, false);
3a101d05 5602 return NOTIFY_OK;
3c18d447
JL
5603 default:
5604 return NOTIFY_DONE;
3a101d05
TH
5605 }
5606}
5607
7babe8db 5608static int __init migration_init(void)
1da177e4
LT
5609{
5610 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5611 int err;
48f24c4d 5612
3a101d05 5613 /* Initialize migration for the boot CPU */
07dccf33
AM
5614 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5615 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5616 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5617 register_cpu_notifier(&migration_notifier);
7babe8db 5618
3a101d05
TH
5619 /* Register cpu active notifiers */
5620 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5621 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5622
a004cd42 5623 return 0;
1da177e4 5624}
7babe8db 5625early_initcall(migration_init);
476f3534 5626
4cb98839
PZ
5627static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5628
3e9830dc 5629#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5630
d039ac60 5631static __read_mostly int sched_debug_enabled;
f6630114 5632
d039ac60 5633static int __init sched_debug_setup(char *str)
f6630114 5634{
d039ac60 5635 sched_debug_enabled = 1;
f6630114
MT
5636
5637 return 0;
5638}
d039ac60
PZ
5639early_param("sched_debug", sched_debug_setup);
5640
5641static inline bool sched_debug(void)
5642{
5643 return sched_debug_enabled;
5644}
f6630114 5645
7c16ec58 5646static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5647 struct cpumask *groupmask)
1da177e4 5648{
4dcf6aff 5649 struct sched_group *group = sd->groups;
1da177e4 5650
96f874e2 5651 cpumask_clear(groupmask);
4dcf6aff
IM
5652
5653 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5654
5655 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5656 printk("does not load-balance\n");
4dcf6aff 5657 if (sd->parent)
3df0fc5b
PZ
5658 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5659 " has parent");
4dcf6aff 5660 return -1;
41c7ce9a
NP
5661 }
5662
333470ee
TH
5663 printk(KERN_CONT "span %*pbl level %s\n",
5664 cpumask_pr_args(sched_domain_span(sd)), sd->name);
4dcf6aff 5665
758b2cdc 5666 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5667 printk(KERN_ERR "ERROR: domain->span does not contain "
5668 "CPU%d\n", cpu);
4dcf6aff 5669 }
758b2cdc 5670 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5671 printk(KERN_ERR "ERROR: domain->groups does not contain"
5672 " CPU%d\n", cpu);
4dcf6aff 5673 }
1da177e4 5674
4dcf6aff 5675 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5676 do {
4dcf6aff 5677 if (!group) {
3df0fc5b
PZ
5678 printk("\n");
5679 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5680 break;
5681 }
5682
758b2cdc 5683 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5684 printk(KERN_CONT "\n");
5685 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5686 break;
5687 }
1da177e4 5688
cb83b629
PZ
5689 if (!(sd->flags & SD_OVERLAP) &&
5690 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5691 printk(KERN_CONT "\n");
5692 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5693 break;
5694 }
1da177e4 5695
758b2cdc 5696 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5697
333470ee
TH
5698 printk(KERN_CONT " %*pbl",
5699 cpumask_pr_args(sched_group_cpus(group)));
ca8ce3d0 5700 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
63b2ca30
NP
5701 printk(KERN_CONT " (cpu_capacity = %d)",
5702 group->sgc->capacity);
381512cf 5703 }
1da177e4 5704
4dcf6aff
IM
5705 group = group->next;
5706 } while (group != sd->groups);
3df0fc5b 5707 printk(KERN_CONT "\n");
1da177e4 5708
758b2cdc 5709 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5710 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5711
758b2cdc
RR
5712 if (sd->parent &&
5713 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5714 printk(KERN_ERR "ERROR: parent span is not a superset "
5715 "of domain->span\n");
4dcf6aff
IM
5716 return 0;
5717}
1da177e4 5718
4dcf6aff
IM
5719static void sched_domain_debug(struct sched_domain *sd, int cpu)
5720{
5721 int level = 0;
1da177e4 5722
d039ac60 5723 if (!sched_debug_enabled)
f6630114
MT
5724 return;
5725
4dcf6aff
IM
5726 if (!sd) {
5727 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5728 return;
5729 }
1da177e4 5730
4dcf6aff
IM
5731 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5732
5733 for (;;) {
4cb98839 5734 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5735 break;
1da177e4
LT
5736 level++;
5737 sd = sd->parent;
33859f7f 5738 if (!sd)
4dcf6aff
IM
5739 break;
5740 }
1da177e4 5741}
6d6bc0ad 5742#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5743# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5744static inline bool sched_debug(void)
5745{
5746 return false;
5747}
6d6bc0ad 5748#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5749
1a20ff27 5750static int sd_degenerate(struct sched_domain *sd)
245af2c7 5751{
758b2cdc 5752 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5753 return 1;
5754
5755 /* Following flags need at least 2 groups */
5756 if (sd->flags & (SD_LOAD_BALANCE |
5757 SD_BALANCE_NEWIDLE |
5758 SD_BALANCE_FORK |
89c4710e 5759 SD_BALANCE_EXEC |
5d4dfddd 5760 SD_SHARE_CPUCAPACITY |
d77b3ed5
VG
5761 SD_SHARE_PKG_RESOURCES |
5762 SD_SHARE_POWERDOMAIN)) {
245af2c7
SS
5763 if (sd->groups != sd->groups->next)
5764 return 0;
5765 }
5766
5767 /* Following flags don't use groups */
c88d5910 5768 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5769 return 0;
5770
5771 return 1;
5772}
5773
48f24c4d
IM
5774static int
5775sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5776{
5777 unsigned long cflags = sd->flags, pflags = parent->flags;
5778
5779 if (sd_degenerate(parent))
5780 return 1;
5781
758b2cdc 5782 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5783 return 0;
5784
245af2c7
SS
5785 /* Flags needing groups don't count if only 1 group in parent */
5786 if (parent->groups == parent->groups->next) {
5787 pflags &= ~(SD_LOAD_BALANCE |
5788 SD_BALANCE_NEWIDLE |
5789 SD_BALANCE_FORK |
89c4710e 5790 SD_BALANCE_EXEC |
5d4dfddd 5791 SD_SHARE_CPUCAPACITY |
10866e62 5792 SD_SHARE_PKG_RESOURCES |
d77b3ed5
VG
5793 SD_PREFER_SIBLING |
5794 SD_SHARE_POWERDOMAIN);
5436499e
KC
5795 if (nr_node_ids == 1)
5796 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5797 }
5798 if (~cflags & pflags)
5799 return 0;
5800
5801 return 1;
5802}
5803
dce840a0 5804static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5805{
dce840a0 5806 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5807
68e74568 5808 cpupri_cleanup(&rd->cpupri);
6bfd6d72 5809 cpudl_cleanup(&rd->cpudl);
1baca4ce 5810 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5811 free_cpumask_var(rd->rto_mask);
5812 free_cpumask_var(rd->online);
5813 free_cpumask_var(rd->span);
5814 kfree(rd);
5815}
5816
57d885fe
GH
5817static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5818{
a0490fa3 5819 struct root_domain *old_rd = NULL;
57d885fe 5820 unsigned long flags;
57d885fe 5821
05fa785c 5822 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5823
5824 if (rq->rd) {
a0490fa3 5825 old_rd = rq->rd;
57d885fe 5826
c6c4927b 5827 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5828 set_rq_offline(rq);
57d885fe 5829
c6c4927b 5830 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5831
a0490fa3 5832 /*
0515973f 5833 * If we dont want to free the old_rd yet then
a0490fa3
IM
5834 * set old_rd to NULL to skip the freeing later
5835 * in this function:
5836 */
5837 if (!atomic_dec_and_test(&old_rd->refcount))
5838 old_rd = NULL;
57d885fe
GH
5839 }
5840
5841 atomic_inc(&rd->refcount);
5842 rq->rd = rd;
5843
c6c4927b 5844 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5845 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5846 set_rq_online(rq);
57d885fe 5847
05fa785c 5848 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5849
5850 if (old_rd)
dce840a0 5851 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5852}
5853
68c38fc3 5854static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5855{
5856 memset(rd, 0, sizeof(*rd));
5857
8295c699 5858 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5859 goto out;
8295c699 5860 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5861 goto free_span;
8295c699 5862 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
c6c4927b 5863 goto free_online;
8295c699 5864 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
1baca4ce 5865 goto free_dlo_mask;
6e0534f2 5866
332ac17e 5867 init_dl_bw(&rd->dl_bw);
6bfd6d72
JL
5868 if (cpudl_init(&rd->cpudl) != 0)
5869 goto free_dlo_mask;
332ac17e 5870
68c38fc3 5871 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5872 goto free_rto_mask;
c6c4927b 5873 return 0;
6e0534f2 5874
68e74568
RR
5875free_rto_mask:
5876 free_cpumask_var(rd->rto_mask);
1baca4ce
JL
5877free_dlo_mask:
5878 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5879free_online:
5880 free_cpumask_var(rd->online);
5881free_span:
5882 free_cpumask_var(rd->span);
0c910d28 5883out:
c6c4927b 5884 return -ENOMEM;
57d885fe
GH
5885}
5886
029632fb
PZ
5887/*
5888 * By default the system creates a single root-domain with all cpus as
5889 * members (mimicking the global state we have today).
5890 */
5891struct root_domain def_root_domain;
5892
57d885fe
GH
5893static void init_defrootdomain(void)
5894{
68c38fc3 5895 init_rootdomain(&def_root_domain);
c6c4927b 5896
57d885fe
GH
5897 atomic_set(&def_root_domain.refcount, 1);
5898}
5899
dc938520 5900static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5901{
5902 struct root_domain *rd;
5903
5904 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5905 if (!rd)
5906 return NULL;
5907
68c38fc3 5908 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5909 kfree(rd);
5910 return NULL;
5911 }
57d885fe
GH
5912
5913 return rd;
5914}
5915
63b2ca30 5916static void free_sched_groups(struct sched_group *sg, int free_sgc)
e3589f6c
PZ
5917{
5918 struct sched_group *tmp, *first;
5919
5920 if (!sg)
5921 return;
5922
5923 first = sg;
5924 do {
5925 tmp = sg->next;
5926
63b2ca30
NP
5927 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5928 kfree(sg->sgc);
e3589f6c
PZ
5929
5930 kfree(sg);
5931 sg = tmp;
5932 } while (sg != first);
5933}
5934
dce840a0
PZ
5935static void free_sched_domain(struct rcu_head *rcu)
5936{
5937 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5938
5939 /*
5940 * If its an overlapping domain it has private groups, iterate and
5941 * nuke them all.
5942 */
5943 if (sd->flags & SD_OVERLAP) {
5944 free_sched_groups(sd->groups, 1);
5945 } else if (atomic_dec_and_test(&sd->groups->ref)) {
63b2ca30 5946 kfree(sd->groups->sgc);
dce840a0 5947 kfree(sd->groups);
9c3f75cb 5948 }
dce840a0
PZ
5949 kfree(sd);
5950}
5951
5952static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5953{
5954 call_rcu(&sd->rcu, free_sched_domain);
5955}
5956
5957static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5958{
5959 for (; sd; sd = sd->parent)
5960 destroy_sched_domain(sd, cpu);
5961}
5962
518cd623
PZ
5963/*
5964 * Keep a special pointer to the highest sched_domain that has
5965 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5966 * allows us to avoid some pointer chasing select_idle_sibling().
5967 *
5968 * Also keep a unique ID per domain (we use the first cpu number in
5969 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5970 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5971 */
5972DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5973DEFINE_PER_CPU(int, sd_llc_size);
518cd623 5974DEFINE_PER_CPU(int, sd_llc_id);
fb13c7ee 5975DEFINE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
5976DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5977DEFINE_PER_CPU(struct sched_domain *, sd_asym);
518cd623
PZ
5978
5979static void update_top_cache_domain(int cpu)
5980{
5981 struct sched_domain *sd;
5d4cf996 5982 struct sched_domain *busy_sd = NULL;
518cd623 5983 int id = cpu;
7d9ffa89 5984 int size = 1;
518cd623
PZ
5985
5986 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 5987 if (sd) {
518cd623 5988 id = cpumask_first(sched_domain_span(sd));
7d9ffa89 5989 size = cpumask_weight(sched_domain_span(sd));
5d4cf996 5990 busy_sd = sd->parent; /* sd_busy */
7d9ffa89 5991 }
5d4cf996 5992 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
518cd623
PZ
5993
5994 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 5995 per_cpu(sd_llc_size, cpu) = size;
518cd623 5996 per_cpu(sd_llc_id, cpu) = id;
fb13c7ee
MG
5997
5998 sd = lowest_flag_domain(cpu, SD_NUMA);
5999 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
37dc6b50
PM
6000
6001 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
6002 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
518cd623
PZ
6003}
6004
1da177e4 6005/*
0eab9146 6006 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6007 * hold the hotplug lock.
6008 */
0eab9146
IM
6009static void
6010cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6011{
70b97a7f 6012 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6013 struct sched_domain *tmp;
6014
6015 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6016 for (tmp = sd; tmp; ) {
245af2c7
SS
6017 struct sched_domain *parent = tmp->parent;
6018 if (!parent)
6019 break;
f29c9b1c 6020
1a848870 6021 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6022 tmp->parent = parent->parent;
1a848870
SS
6023 if (parent->parent)
6024 parent->parent->child = tmp;
10866e62
PZ
6025 /*
6026 * Transfer SD_PREFER_SIBLING down in case of a
6027 * degenerate parent; the spans match for this
6028 * so the property transfers.
6029 */
6030 if (parent->flags & SD_PREFER_SIBLING)
6031 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 6032 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
6033 } else
6034 tmp = tmp->parent;
245af2c7
SS
6035 }
6036
1a848870 6037 if (sd && sd_degenerate(sd)) {
dce840a0 6038 tmp = sd;
245af2c7 6039 sd = sd->parent;
dce840a0 6040 destroy_sched_domain(tmp, cpu);
1a848870
SS
6041 if (sd)
6042 sd->child = NULL;
6043 }
1da177e4 6044
4cb98839 6045 sched_domain_debug(sd, cpu);
1da177e4 6046
57d885fe 6047 rq_attach_root(rq, rd);
dce840a0 6048 tmp = rq->sd;
674311d5 6049 rcu_assign_pointer(rq->sd, sd);
dce840a0 6050 destroy_sched_domains(tmp, cpu);
518cd623
PZ
6051
6052 update_top_cache_domain(cpu);
1da177e4
LT
6053}
6054
1da177e4
LT
6055/* Setup the mask of cpus configured for isolated domains */
6056static int __init isolated_cpu_setup(char *str)
6057{
a6e4491c
PB
6058 int ret;
6059
bdddd296 6060 alloc_bootmem_cpumask_var(&cpu_isolated_map);
a6e4491c
PB
6061 ret = cpulist_parse(str, cpu_isolated_map);
6062 if (ret) {
6063 pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
6064 return 0;
6065 }
1da177e4
LT
6066 return 1;
6067}
8927f494 6068__setup("isolcpus=", isolated_cpu_setup);
1da177e4 6069
49a02c51 6070struct s_data {
21d42ccf 6071 struct sched_domain ** __percpu sd;
49a02c51
AH
6072 struct root_domain *rd;
6073};
6074
2109b99e 6075enum s_alloc {
2109b99e 6076 sa_rootdomain,
21d42ccf 6077 sa_sd,
dce840a0 6078 sa_sd_storage,
2109b99e
AH
6079 sa_none,
6080};
6081
c1174876
PZ
6082/*
6083 * Build an iteration mask that can exclude certain CPUs from the upwards
6084 * domain traversal.
6085 *
6086 * Asymmetric node setups can result in situations where the domain tree is of
6087 * unequal depth, make sure to skip domains that already cover the entire
6088 * range.
6089 *
6090 * In that case build_sched_domains() will have terminated the iteration early
6091 * and our sibling sd spans will be empty. Domains should always include the
6092 * cpu they're built on, so check that.
6093 *
6094 */
6095static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6096{
6097 const struct cpumask *span = sched_domain_span(sd);
6098 struct sd_data *sdd = sd->private;
6099 struct sched_domain *sibling;
6100 int i;
6101
6102 for_each_cpu(i, span) {
6103 sibling = *per_cpu_ptr(sdd->sd, i);
6104 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6105 continue;
6106
6107 cpumask_set_cpu(i, sched_group_mask(sg));
6108 }
6109}
6110
6111/*
6112 * Return the canonical balance cpu for this group, this is the first cpu
6113 * of this group that's also in the iteration mask.
6114 */
6115int group_balance_cpu(struct sched_group *sg)
6116{
6117 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6118}
6119
e3589f6c
PZ
6120static int
6121build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6122{
6123 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6124 const struct cpumask *span = sched_domain_span(sd);
6125 struct cpumask *covered = sched_domains_tmpmask;
6126 struct sd_data *sdd = sd->private;
aaecac4a 6127 struct sched_domain *sibling;
e3589f6c
PZ
6128 int i;
6129
6130 cpumask_clear(covered);
6131
6132 for_each_cpu(i, span) {
6133 struct cpumask *sg_span;
6134
6135 if (cpumask_test_cpu(i, covered))
6136 continue;
6137
aaecac4a 6138 sibling = *per_cpu_ptr(sdd->sd, i);
c1174876
PZ
6139
6140 /* See the comment near build_group_mask(). */
aaecac4a 6141 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
c1174876
PZ
6142 continue;
6143
e3589f6c 6144 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 6145 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
6146
6147 if (!sg)
6148 goto fail;
6149
6150 sg_span = sched_group_cpus(sg);
aaecac4a
ZZ
6151 if (sibling->child)
6152 cpumask_copy(sg_span, sched_domain_span(sibling->child));
6153 else
e3589f6c
PZ
6154 cpumask_set_cpu(i, sg_span);
6155
6156 cpumask_or(covered, covered, sg_span);
6157
63b2ca30
NP
6158 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6159 if (atomic_inc_return(&sg->sgc->ref) == 1)
c1174876
PZ
6160 build_group_mask(sd, sg);
6161
c3decf0d 6162 /*
63b2ca30 6163 * Initialize sgc->capacity such that even if we mess up the
c3decf0d
PZ
6164 * domains and no possible iteration will get us here, we won't
6165 * die on a /0 trap.
6166 */
ca8ce3d0 6167 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
e3589f6c 6168
c1174876
PZ
6169 /*
6170 * Make sure the first group of this domain contains the
6171 * canonical balance cpu. Otherwise the sched_domain iteration
6172 * breaks. See update_sg_lb_stats().
6173 */
74a5ce20 6174 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 6175 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
6176 groups = sg;
6177
6178 if (!first)
6179 first = sg;
6180 if (last)
6181 last->next = sg;
6182 last = sg;
6183 last->next = first;
6184 }
6185 sd->groups = groups;
6186
6187 return 0;
6188
6189fail:
6190 free_sched_groups(first, 0);
6191
6192 return -ENOMEM;
6193}
6194
dce840a0 6195static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 6196{
dce840a0
PZ
6197 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6198 struct sched_domain *child = sd->child;
1da177e4 6199
dce840a0
PZ
6200 if (child)
6201 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 6202
9c3f75cb 6203 if (sg) {
dce840a0 6204 *sg = *per_cpu_ptr(sdd->sg, cpu);
63b2ca30
NP
6205 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6206 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
9c3f75cb 6207 }
dce840a0
PZ
6208
6209 return cpu;
1e9f28fa 6210}
1e9f28fa 6211
01a08546 6212/*
dce840a0
PZ
6213 * build_sched_groups will build a circular linked list of the groups
6214 * covered by the given span, and will set each group's ->cpumask correctly,
ced549fa 6215 * and ->cpu_capacity to 0.
e3589f6c
PZ
6216 *
6217 * Assumes the sched_domain tree is fully constructed
01a08546 6218 */
e3589f6c
PZ
6219static int
6220build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 6221{
dce840a0
PZ
6222 struct sched_group *first = NULL, *last = NULL;
6223 struct sd_data *sdd = sd->private;
6224 const struct cpumask *span = sched_domain_span(sd);
f96225fd 6225 struct cpumask *covered;
dce840a0 6226 int i;
9c1cfda2 6227
e3589f6c
PZ
6228 get_group(cpu, sdd, &sd->groups);
6229 atomic_inc(&sd->groups->ref);
6230
0936629f 6231 if (cpu != cpumask_first(span))
e3589f6c
PZ
6232 return 0;
6233
f96225fd
PZ
6234 lockdep_assert_held(&sched_domains_mutex);
6235 covered = sched_domains_tmpmask;
6236
dce840a0 6237 cpumask_clear(covered);
6711cab4 6238
dce840a0
PZ
6239 for_each_cpu(i, span) {
6240 struct sched_group *sg;
cd08e923 6241 int group, j;
6711cab4 6242
dce840a0
PZ
6243 if (cpumask_test_cpu(i, covered))
6244 continue;
6711cab4 6245
cd08e923 6246 group = get_group(i, sdd, &sg);
c1174876 6247 cpumask_setall(sched_group_mask(sg));
0601a88d 6248
dce840a0
PZ
6249 for_each_cpu(j, span) {
6250 if (get_group(j, sdd, NULL) != group)
6251 continue;
0601a88d 6252
dce840a0
PZ
6253 cpumask_set_cpu(j, covered);
6254 cpumask_set_cpu(j, sched_group_cpus(sg));
6255 }
0601a88d 6256
dce840a0
PZ
6257 if (!first)
6258 first = sg;
6259 if (last)
6260 last->next = sg;
6261 last = sg;
6262 }
6263 last->next = first;
e3589f6c
PZ
6264
6265 return 0;
0601a88d 6266}
51888ca2 6267
89c4710e 6268/*
63b2ca30 6269 * Initialize sched groups cpu_capacity.
89c4710e 6270 *
63b2ca30 6271 * cpu_capacity indicates the capacity of sched group, which is used while
89c4710e 6272 * distributing the load between different sched groups in a sched domain.
63b2ca30
NP
6273 * Typically cpu_capacity for all the groups in a sched domain will be same
6274 * unless there are asymmetries in the topology. If there are asymmetries,
6275 * group having more cpu_capacity will pickup more load compared to the
6276 * group having less cpu_capacity.
89c4710e 6277 */
63b2ca30 6278static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
89c4710e 6279{
e3589f6c 6280 struct sched_group *sg = sd->groups;
89c4710e 6281
94c95ba6 6282 WARN_ON(!sg);
e3589f6c
PZ
6283
6284 do {
6285 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6286 sg = sg->next;
6287 } while (sg != sd->groups);
89c4710e 6288
c1174876 6289 if (cpu != group_balance_cpu(sg))
e3589f6c 6290 return;
aae6d3dd 6291
63b2ca30
NP
6292 update_group_capacity(sd, cpu);
6293 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
89c4710e
SS
6294}
6295
7c16ec58
MT
6296/*
6297 * Initializers for schedule domains
6298 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6299 */
6300
1d3504fc 6301static int default_relax_domain_level = -1;
60495e77 6302int sched_domain_level_max;
1d3504fc
HS
6303
6304static int __init setup_relax_domain_level(char *str)
6305{
a841f8ce
DS
6306 if (kstrtoint(str, 0, &default_relax_domain_level))
6307 pr_warn("Unable to set relax_domain_level\n");
30e0e178 6308
1d3504fc
HS
6309 return 1;
6310}
6311__setup("relax_domain_level=", setup_relax_domain_level);
6312
6313static void set_domain_attribute(struct sched_domain *sd,
6314 struct sched_domain_attr *attr)
6315{
6316 int request;
6317
6318 if (!attr || attr->relax_domain_level < 0) {
6319 if (default_relax_domain_level < 0)
6320 return;
6321 else
6322 request = default_relax_domain_level;
6323 } else
6324 request = attr->relax_domain_level;
6325 if (request < sd->level) {
6326 /* turn off idle balance on this domain */
c88d5910 6327 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6328 } else {
6329 /* turn on idle balance on this domain */
c88d5910 6330 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6331 }
6332}
6333
54ab4ff4
PZ
6334static void __sdt_free(const struct cpumask *cpu_map);
6335static int __sdt_alloc(const struct cpumask *cpu_map);
6336
2109b99e
AH
6337static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6338 const struct cpumask *cpu_map)
6339{
6340 switch (what) {
2109b99e 6341 case sa_rootdomain:
822ff793
PZ
6342 if (!atomic_read(&d->rd->refcount))
6343 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
6344 case sa_sd:
6345 free_percpu(d->sd); /* fall through */
dce840a0 6346 case sa_sd_storage:
54ab4ff4 6347 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
6348 case sa_none:
6349 break;
6350 }
6351}
3404c8d9 6352
2109b99e
AH
6353static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6354 const struct cpumask *cpu_map)
6355{
dce840a0
PZ
6356 memset(d, 0, sizeof(*d));
6357
54ab4ff4
PZ
6358 if (__sdt_alloc(cpu_map))
6359 return sa_sd_storage;
dce840a0
PZ
6360 d->sd = alloc_percpu(struct sched_domain *);
6361 if (!d->sd)
6362 return sa_sd_storage;
2109b99e 6363 d->rd = alloc_rootdomain();
dce840a0 6364 if (!d->rd)
21d42ccf 6365 return sa_sd;
2109b99e
AH
6366 return sa_rootdomain;
6367}
57d885fe 6368
dce840a0
PZ
6369/*
6370 * NULL the sd_data elements we've used to build the sched_domain and
6371 * sched_group structure so that the subsequent __free_domain_allocs()
6372 * will not free the data we're using.
6373 */
6374static void claim_allocations(int cpu, struct sched_domain *sd)
6375{
6376 struct sd_data *sdd = sd->private;
dce840a0
PZ
6377
6378 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6379 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6380
e3589f6c 6381 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 6382 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c 6383
63b2ca30
NP
6384 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6385 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
dce840a0
PZ
6386}
6387
cb83b629 6388#ifdef CONFIG_NUMA
cb83b629 6389static int sched_domains_numa_levels;
e3fe70b1 6390enum numa_topology_type sched_numa_topology_type;
cb83b629 6391static int *sched_domains_numa_distance;
9942f79b 6392int sched_max_numa_distance;
cb83b629
PZ
6393static struct cpumask ***sched_domains_numa_masks;
6394static int sched_domains_curr_level;
143e1e28 6395#endif
cb83b629 6396
143e1e28
VG
6397/*
6398 * SD_flags allowed in topology descriptions.
6399 *
5d4dfddd 6400 * SD_SHARE_CPUCAPACITY - describes SMT topologies
143e1e28
VG
6401 * SD_SHARE_PKG_RESOURCES - describes shared caches
6402 * SD_NUMA - describes NUMA topologies
d77b3ed5 6403 * SD_SHARE_POWERDOMAIN - describes shared power domain
143e1e28
VG
6404 *
6405 * Odd one out:
6406 * SD_ASYM_PACKING - describes SMT quirks
6407 */
6408#define TOPOLOGY_SD_FLAGS \
5d4dfddd 6409 (SD_SHARE_CPUCAPACITY | \
143e1e28
VG
6410 SD_SHARE_PKG_RESOURCES | \
6411 SD_NUMA | \
d77b3ed5
VG
6412 SD_ASYM_PACKING | \
6413 SD_SHARE_POWERDOMAIN)
cb83b629
PZ
6414
6415static struct sched_domain *
143e1e28 6416sd_init(struct sched_domain_topology_level *tl, int cpu)
cb83b629
PZ
6417{
6418 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
143e1e28
VG
6419 int sd_weight, sd_flags = 0;
6420
6421#ifdef CONFIG_NUMA
6422 /*
6423 * Ugly hack to pass state to sd_numa_mask()...
6424 */
6425 sched_domains_curr_level = tl->numa_level;
6426#endif
6427
6428 sd_weight = cpumask_weight(tl->mask(cpu));
6429
6430 if (tl->sd_flags)
6431 sd_flags = (*tl->sd_flags)();
6432 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6433 "wrong sd_flags in topology description\n"))
6434 sd_flags &= ~TOPOLOGY_SD_FLAGS;
cb83b629
PZ
6435
6436 *sd = (struct sched_domain){
6437 .min_interval = sd_weight,
6438 .max_interval = 2*sd_weight,
6439 .busy_factor = 32,
870a0bb5 6440 .imbalance_pct = 125,
143e1e28
VG
6441
6442 .cache_nice_tries = 0,
6443 .busy_idx = 0,
6444 .idle_idx = 0,
cb83b629
PZ
6445 .newidle_idx = 0,
6446 .wake_idx = 0,
6447 .forkexec_idx = 0,
6448
6449 .flags = 1*SD_LOAD_BALANCE
6450 | 1*SD_BALANCE_NEWIDLE
143e1e28
VG
6451 | 1*SD_BALANCE_EXEC
6452 | 1*SD_BALANCE_FORK
cb83b629 6453 | 0*SD_BALANCE_WAKE
143e1e28 6454 | 1*SD_WAKE_AFFINE
5d4dfddd 6455 | 0*SD_SHARE_CPUCAPACITY
cb83b629 6456 | 0*SD_SHARE_PKG_RESOURCES
143e1e28 6457 | 0*SD_SERIALIZE
cb83b629 6458 | 0*SD_PREFER_SIBLING
143e1e28
VG
6459 | 0*SD_NUMA
6460 | sd_flags
cb83b629 6461 ,
143e1e28 6462
cb83b629
PZ
6463 .last_balance = jiffies,
6464 .balance_interval = sd_weight,
143e1e28 6465 .smt_gain = 0,
2b4cfe64
JL
6466 .max_newidle_lb_cost = 0,
6467 .next_decay_max_lb_cost = jiffies,
143e1e28
VG
6468#ifdef CONFIG_SCHED_DEBUG
6469 .name = tl->name,
6470#endif
cb83b629 6471 };
cb83b629
PZ
6472
6473 /*
143e1e28 6474 * Convert topological properties into behaviour.
cb83b629 6475 */
143e1e28 6476
5d4dfddd 6477 if (sd->flags & SD_SHARE_CPUCAPACITY) {
caff37ef 6478 sd->flags |= SD_PREFER_SIBLING;
143e1e28
VG
6479 sd->imbalance_pct = 110;
6480 sd->smt_gain = 1178; /* ~15% */
143e1e28
VG
6481
6482 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6483 sd->imbalance_pct = 117;
6484 sd->cache_nice_tries = 1;
6485 sd->busy_idx = 2;
6486
6487#ifdef CONFIG_NUMA
6488 } else if (sd->flags & SD_NUMA) {
6489 sd->cache_nice_tries = 2;
6490 sd->busy_idx = 3;
6491 sd->idle_idx = 2;
6492
6493 sd->flags |= SD_SERIALIZE;
6494 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6495 sd->flags &= ~(SD_BALANCE_EXEC |
6496 SD_BALANCE_FORK |
6497 SD_WAKE_AFFINE);
6498 }
6499
6500#endif
6501 } else {
6502 sd->flags |= SD_PREFER_SIBLING;
6503 sd->cache_nice_tries = 1;
6504 sd->busy_idx = 2;
6505 sd->idle_idx = 1;
6506 }
6507
6508 sd->private = &tl->data;
cb83b629
PZ
6509
6510 return sd;
6511}
6512
143e1e28
VG
6513/*
6514 * Topology list, bottom-up.
6515 */
6516static struct sched_domain_topology_level default_topology[] = {
6517#ifdef CONFIG_SCHED_SMT
6518 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6519#endif
6520#ifdef CONFIG_SCHED_MC
6521 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
143e1e28
VG
6522#endif
6523 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6524 { NULL, },
6525};
6526
c6e1e7b5
JG
6527static struct sched_domain_topology_level *sched_domain_topology =
6528 default_topology;
143e1e28
VG
6529
6530#define for_each_sd_topology(tl) \
6531 for (tl = sched_domain_topology; tl->mask; tl++)
6532
6533void set_sched_topology(struct sched_domain_topology_level *tl)
6534{
6535 sched_domain_topology = tl;
6536}
6537
6538#ifdef CONFIG_NUMA
6539
cb83b629
PZ
6540static const struct cpumask *sd_numa_mask(int cpu)
6541{
6542 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6543}
6544
d039ac60
PZ
6545static void sched_numa_warn(const char *str)
6546{
6547 static int done = false;
6548 int i,j;
6549
6550 if (done)
6551 return;
6552
6553 done = true;
6554
6555 printk(KERN_WARNING "ERROR: %s\n\n", str);
6556
6557 for (i = 0; i < nr_node_ids; i++) {
6558 printk(KERN_WARNING " ");
6559 for (j = 0; j < nr_node_ids; j++)
6560 printk(KERN_CONT "%02d ", node_distance(i,j));
6561 printk(KERN_CONT "\n");
6562 }
6563 printk(KERN_WARNING "\n");
6564}
6565
9942f79b 6566bool find_numa_distance(int distance)
d039ac60
PZ
6567{
6568 int i;
6569
6570 if (distance == node_distance(0, 0))
6571 return true;
6572
6573 for (i = 0; i < sched_domains_numa_levels; i++) {
6574 if (sched_domains_numa_distance[i] == distance)
6575 return true;
6576 }
6577
6578 return false;
6579}
6580
e3fe70b1
RR
6581/*
6582 * A system can have three types of NUMA topology:
6583 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6584 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6585 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6586 *
6587 * The difference between a glueless mesh topology and a backplane
6588 * topology lies in whether communication between not directly
6589 * connected nodes goes through intermediary nodes (where programs
6590 * could run), or through backplane controllers. This affects
6591 * placement of programs.
6592 *
6593 * The type of topology can be discerned with the following tests:
6594 * - If the maximum distance between any nodes is 1 hop, the system
6595 * is directly connected.
6596 * - If for two nodes A and B, located N > 1 hops away from each other,
6597 * there is an intermediary node C, which is < N hops away from both
6598 * nodes A and B, the system is a glueless mesh.
6599 */
6600static void init_numa_topology_type(void)
6601{
6602 int a, b, c, n;
6603
6604 n = sched_max_numa_distance;
6605
e237882b 6606 if (sched_domains_numa_levels <= 1) {
e3fe70b1 6607 sched_numa_topology_type = NUMA_DIRECT;
e237882b
AG
6608 return;
6609 }
e3fe70b1
RR
6610
6611 for_each_online_node(a) {
6612 for_each_online_node(b) {
6613 /* Find two nodes furthest removed from each other. */
6614 if (node_distance(a, b) < n)
6615 continue;
6616
6617 /* Is there an intermediary node between a and b? */
6618 for_each_online_node(c) {
6619 if (node_distance(a, c) < n &&
6620 node_distance(b, c) < n) {
6621 sched_numa_topology_type =
6622 NUMA_GLUELESS_MESH;
6623 return;
6624 }
6625 }
6626
6627 sched_numa_topology_type = NUMA_BACKPLANE;
6628 return;
6629 }
6630 }
6631}
6632
cb83b629
PZ
6633static void sched_init_numa(void)
6634{
6635 int next_distance, curr_distance = node_distance(0, 0);
6636 struct sched_domain_topology_level *tl;
6637 int level = 0;
6638 int i, j, k;
6639
cb83b629
PZ
6640 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6641 if (!sched_domains_numa_distance)
6642 return;
6643
6644 /*
6645 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6646 * unique distances in the node_distance() table.
6647 *
6648 * Assumes node_distance(0,j) includes all distances in
6649 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6650 */
6651 next_distance = curr_distance;
6652 for (i = 0; i < nr_node_ids; i++) {
6653 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6654 for (k = 0; k < nr_node_ids; k++) {
6655 int distance = node_distance(i, k);
6656
6657 if (distance > curr_distance &&
6658 (distance < next_distance ||
6659 next_distance == curr_distance))
6660 next_distance = distance;
6661
6662 /*
6663 * While not a strong assumption it would be nice to know
6664 * about cases where if node A is connected to B, B is not
6665 * equally connected to A.
6666 */
6667 if (sched_debug() && node_distance(k, i) != distance)
6668 sched_numa_warn("Node-distance not symmetric");
6669
6670 if (sched_debug() && i && !find_numa_distance(distance))
6671 sched_numa_warn("Node-0 not representative");
6672 }
6673 if (next_distance != curr_distance) {
6674 sched_domains_numa_distance[level++] = next_distance;
6675 sched_domains_numa_levels = level;
6676 curr_distance = next_distance;
6677 } else break;
cb83b629 6678 }
d039ac60
PZ
6679
6680 /*
6681 * In case of sched_debug() we verify the above assumption.
6682 */
6683 if (!sched_debug())
6684 break;
cb83b629 6685 }
c123588b
AR
6686
6687 if (!level)
6688 return;
6689
cb83b629
PZ
6690 /*
6691 * 'level' contains the number of unique distances, excluding the
6692 * identity distance node_distance(i,i).
6693 *
28b4a521 6694 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
6695 * numbers.
6696 */
6697
5f7865f3
TC
6698 /*
6699 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6700 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6701 * the array will contain less then 'level' members. This could be
6702 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6703 * in other functions.
6704 *
6705 * We reset it to 'level' at the end of this function.
6706 */
6707 sched_domains_numa_levels = 0;
6708
cb83b629
PZ
6709 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6710 if (!sched_domains_numa_masks)
6711 return;
6712
6713 /*
6714 * Now for each level, construct a mask per node which contains all
6715 * cpus of nodes that are that many hops away from us.
6716 */
6717 for (i = 0; i < level; i++) {
6718 sched_domains_numa_masks[i] =
6719 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6720 if (!sched_domains_numa_masks[i])
6721 return;
6722
6723 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6724 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6725 if (!mask)
6726 return;
6727
6728 sched_domains_numa_masks[i][j] = mask;
6729
9c03ee14 6730 for_each_node(k) {
dd7d8634 6731 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6732 continue;
6733
6734 cpumask_or(mask, mask, cpumask_of_node(k));
6735 }
6736 }
6737 }
6738
143e1e28
VG
6739 /* Compute default topology size */
6740 for (i = 0; sched_domain_topology[i].mask; i++);
6741
c515db8c 6742 tl = kzalloc((i + level + 1) *
cb83b629
PZ
6743 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6744 if (!tl)
6745 return;
6746
6747 /*
6748 * Copy the default topology bits..
6749 */
143e1e28
VG
6750 for (i = 0; sched_domain_topology[i].mask; i++)
6751 tl[i] = sched_domain_topology[i];
cb83b629
PZ
6752
6753 /*
6754 * .. and append 'j' levels of NUMA goodness.
6755 */
6756 for (j = 0; j < level; i++, j++) {
6757 tl[i] = (struct sched_domain_topology_level){
cb83b629 6758 .mask = sd_numa_mask,
143e1e28 6759 .sd_flags = cpu_numa_flags,
cb83b629
PZ
6760 .flags = SDTL_OVERLAP,
6761 .numa_level = j,
143e1e28 6762 SD_INIT_NAME(NUMA)
cb83b629
PZ
6763 };
6764 }
6765
6766 sched_domain_topology = tl;
5f7865f3
TC
6767
6768 sched_domains_numa_levels = level;
9942f79b 6769 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
e3fe70b1
RR
6770
6771 init_numa_topology_type();
cb83b629 6772}
301a5cba
TC
6773
6774static void sched_domains_numa_masks_set(int cpu)
6775{
6776 int i, j;
6777 int node = cpu_to_node(cpu);
6778
6779 for (i = 0; i < sched_domains_numa_levels; i++) {
6780 for (j = 0; j < nr_node_ids; j++) {
6781 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6782 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6783 }
6784 }
6785}
6786
6787static void sched_domains_numa_masks_clear(int cpu)
6788{
6789 int i, j;
6790 for (i = 0; i < sched_domains_numa_levels; i++) {
6791 for (j = 0; j < nr_node_ids; j++)
6792 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6793 }
6794}
6795
6796/*
6797 * Update sched_domains_numa_masks[level][node] array when new cpus
6798 * are onlined.
6799 */
6800static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6801 unsigned long action,
6802 void *hcpu)
6803{
6804 int cpu = (long)hcpu;
6805
6806 switch (action & ~CPU_TASKS_FROZEN) {
6807 case CPU_ONLINE:
6808 sched_domains_numa_masks_set(cpu);
6809 break;
6810
6811 case CPU_DEAD:
6812 sched_domains_numa_masks_clear(cpu);
6813 break;
6814
6815 default:
6816 return NOTIFY_DONE;
6817 }
6818
6819 return NOTIFY_OK;
cb83b629
PZ
6820}
6821#else
6822static inline void sched_init_numa(void)
6823{
6824}
301a5cba
TC
6825
6826static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6827 unsigned long action,
6828 void *hcpu)
6829{
6830 return 0;
6831}
cb83b629
PZ
6832#endif /* CONFIG_NUMA */
6833
54ab4ff4
PZ
6834static int __sdt_alloc(const struct cpumask *cpu_map)
6835{
6836 struct sched_domain_topology_level *tl;
6837 int j;
6838
27723a68 6839 for_each_sd_topology(tl) {
54ab4ff4
PZ
6840 struct sd_data *sdd = &tl->data;
6841
6842 sdd->sd = alloc_percpu(struct sched_domain *);
6843 if (!sdd->sd)
6844 return -ENOMEM;
6845
6846 sdd->sg = alloc_percpu(struct sched_group *);
6847 if (!sdd->sg)
6848 return -ENOMEM;
6849
63b2ca30
NP
6850 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6851 if (!sdd->sgc)
9c3f75cb
PZ
6852 return -ENOMEM;
6853
54ab4ff4
PZ
6854 for_each_cpu(j, cpu_map) {
6855 struct sched_domain *sd;
6856 struct sched_group *sg;
63b2ca30 6857 struct sched_group_capacity *sgc;
54ab4ff4 6858
5cc389bc 6859 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
54ab4ff4
PZ
6860 GFP_KERNEL, cpu_to_node(j));
6861 if (!sd)
6862 return -ENOMEM;
6863
6864 *per_cpu_ptr(sdd->sd, j) = sd;
6865
6866 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6867 GFP_KERNEL, cpu_to_node(j));
6868 if (!sg)
6869 return -ENOMEM;
6870
30b4e9eb
IM
6871 sg->next = sg;
6872
54ab4ff4 6873 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6874
63b2ca30 6875 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
9c3f75cb 6876 GFP_KERNEL, cpu_to_node(j));
63b2ca30 6877 if (!sgc)
9c3f75cb
PZ
6878 return -ENOMEM;
6879
63b2ca30 6880 *per_cpu_ptr(sdd->sgc, j) = sgc;
54ab4ff4
PZ
6881 }
6882 }
6883
6884 return 0;
6885}
6886
6887static void __sdt_free(const struct cpumask *cpu_map)
6888{
6889 struct sched_domain_topology_level *tl;
6890 int j;
6891
27723a68 6892 for_each_sd_topology(tl) {
54ab4ff4
PZ
6893 struct sd_data *sdd = &tl->data;
6894
6895 for_each_cpu(j, cpu_map) {
fb2cf2c6 6896 struct sched_domain *sd;
6897
6898 if (sdd->sd) {
6899 sd = *per_cpu_ptr(sdd->sd, j);
6900 if (sd && (sd->flags & SD_OVERLAP))
6901 free_sched_groups(sd->groups, 0);
6902 kfree(*per_cpu_ptr(sdd->sd, j));
6903 }
6904
6905 if (sdd->sg)
6906 kfree(*per_cpu_ptr(sdd->sg, j));
63b2ca30
NP
6907 if (sdd->sgc)
6908 kfree(*per_cpu_ptr(sdd->sgc, j));
54ab4ff4
PZ
6909 }
6910 free_percpu(sdd->sd);
fb2cf2c6 6911 sdd->sd = NULL;
54ab4ff4 6912 free_percpu(sdd->sg);
fb2cf2c6 6913 sdd->sg = NULL;
63b2ca30
NP
6914 free_percpu(sdd->sgc);
6915 sdd->sgc = NULL;
54ab4ff4
PZ
6916 }
6917}
6918
2c402dc3 6919struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
6920 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6921 struct sched_domain *child, int cpu)
2c402dc3 6922{
143e1e28 6923 struct sched_domain *sd = sd_init(tl, cpu);
2c402dc3 6924 if (!sd)
d069b916 6925 return child;
2c402dc3 6926
2c402dc3 6927 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6928 if (child) {
6929 sd->level = child->level + 1;
6930 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6931 child->parent = sd;
c75e0128 6932 sd->child = child;
6ae72dff
PZ
6933
6934 if (!cpumask_subset(sched_domain_span(child),
6935 sched_domain_span(sd))) {
6936 pr_err("BUG: arch topology borken\n");
6937#ifdef CONFIG_SCHED_DEBUG
6938 pr_err(" the %s domain not a subset of the %s domain\n",
6939 child->name, sd->name);
6940#endif
6941 /* Fixup, ensure @sd has at least @child cpus. */
6942 cpumask_or(sched_domain_span(sd),
6943 sched_domain_span(sd),
6944 sched_domain_span(child));
6945 }
6946
60495e77 6947 }
a841f8ce 6948 set_domain_attribute(sd, attr);
2c402dc3
PZ
6949
6950 return sd;
6951}
6952
2109b99e
AH
6953/*
6954 * Build sched domains for a given set of cpus and attach the sched domains
6955 * to the individual cpus
6956 */
dce840a0
PZ
6957static int build_sched_domains(const struct cpumask *cpu_map,
6958 struct sched_domain_attr *attr)
2109b99e 6959{
1c632169 6960 enum s_alloc alloc_state;
dce840a0 6961 struct sched_domain *sd;
2109b99e 6962 struct s_data d;
822ff793 6963 int i, ret = -ENOMEM;
9c1cfda2 6964
2109b99e
AH
6965 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6966 if (alloc_state != sa_rootdomain)
6967 goto error;
9c1cfda2 6968
dce840a0 6969 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6970 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6971 struct sched_domain_topology_level *tl;
6972
3bd65a80 6973 sd = NULL;
27723a68 6974 for_each_sd_topology(tl) {
4a850cbe 6975 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
6976 if (tl == sched_domain_topology)
6977 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
6978 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6979 sd->flags |= SD_OVERLAP;
d110235d
PZ
6980 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6981 break;
e3589f6c 6982 }
dce840a0
PZ
6983 }
6984
6985 /* Build the groups for the domains */
6986 for_each_cpu(i, cpu_map) {
6987 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6988 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6989 if (sd->flags & SD_OVERLAP) {
6990 if (build_overlap_sched_groups(sd, i))
6991 goto error;
6992 } else {
6993 if (build_sched_groups(sd, i))
6994 goto error;
6995 }
1cf51902 6996 }
a06dadbe 6997 }
9c1cfda2 6998
ced549fa 6999 /* Calculate CPU capacity for physical packages and nodes */
a9c9a9b6
PZ
7000 for (i = nr_cpumask_bits-1; i >= 0; i--) {
7001 if (!cpumask_test_cpu(i, cpu_map))
7002 continue;
9c1cfda2 7003
dce840a0
PZ
7004 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7005 claim_allocations(i, sd);
63b2ca30 7006 init_sched_groups_capacity(i, sd);
dce840a0 7007 }
f712c0c7 7008 }
9c1cfda2 7009
1da177e4 7010 /* Attach the domains */
dce840a0 7011 rcu_read_lock();
abcd083a 7012 for_each_cpu(i, cpu_map) {
21d42ccf 7013 sd = *per_cpu_ptr(d.sd, i);
49a02c51 7014 cpu_attach_domain(sd, d.rd, i);
1da177e4 7015 }
dce840a0 7016 rcu_read_unlock();
51888ca2 7017
822ff793 7018 ret = 0;
51888ca2 7019error:
2109b99e 7020 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 7021 return ret;
1da177e4 7022}
029190c5 7023
acc3f5d7 7024static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 7025static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7026static struct sched_domain_attr *dattr_cur;
7027 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7028
7029/*
7030 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7031 * cpumask) fails, then fallback to a single sched domain,
7032 * as determined by the single cpumask fallback_doms.
029190c5 7033 */
4212823f 7034static cpumask_var_t fallback_doms;
029190c5 7035
ee79d1bd
HC
7036/*
7037 * arch_update_cpu_topology lets virtualized architectures update the
7038 * cpu core maps. It is supposed to return 1 if the topology changed
7039 * or 0 if it stayed the same.
7040 */
52f5684c 7041int __weak arch_update_cpu_topology(void)
22e52b07 7042{
ee79d1bd 7043 return 0;
22e52b07
HC
7044}
7045
acc3f5d7
RR
7046cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7047{
7048 int i;
7049 cpumask_var_t *doms;
7050
7051 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7052 if (!doms)
7053 return NULL;
7054 for (i = 0; i < ndoms; i++) {
7055 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7056 free_sched_domains(doms, i);
7057 return NULL;
7058 }
7059 }
7060 return doms;
7061}
7062
7063void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7064{
7065 unsigned int i;
7066 for (i = 0; i < ndoms; i++)
7067 free_cpumask_var(doms[i]);
7068 kfree(doms);
7069}
7070
1a20ff27 7071/*
41a2d6cf 7072 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7073 * For now this just excludes isolated cpus, but could be used to
7074 * exclude other special cases in the future.
1a20ff27 7075 */
c4a8849a 7076static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7077{
7378547f
MM
7078 int err;
7079
22e52b07 7080 arch_update_cpu_topology();
029190c5 7081 ndoms_cur = 1;
acc3f5d7 7082 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7083 if (!doms_cur)
acc3f5d7
RR
7084 doms_cur = &fallback_doms;
7085 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 7086 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 7087 register_sched_domain_sysctl();
7378547f
MM
7088
7089 return err;
1a20ff27
DG
7090}
7091
1a20ff27
DG
7092/*
7093 * Detach sched domains from a group of cpus specified in cpu_map
7094 * These cpus will now be attached to the NULL domain
7095 */
96f874e2 7096static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
7097{
7098 int i;
7099
dce840a0 7100 rcu_read_lock();
abcd083a 7101 for_each_cpu(i, cpu_map)
57d885fe 7102 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 7103 rcu_read_unlock();
1a20ff27
DG
7104}
7105
1d3504fc
HS
7106/* handle null as "default" */
7107static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7108 struct sched_domain_attr *new, int idx_new)
7109{
7110 struct sched_domain_attr tmp;
7111
7112 /* fast path */
7113 if (!new && !cur)
7114 return 1;
7115
7116 tmp = SD_ATTR_INIT;
7117 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7118 new ? (new + idx_new) : &tmp,
7119 sizeof(struct sched_domain_attr));
7120}
7121
029190c5
PJ
7122/*
7123 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7124 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7125 * doms_new[] to the current sched domain partitioning, doms_cur[].
7126 * It destroys each deleted domain and builds each new domain.
7127 *
acc3f5d7 7128 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7129 * The masks don't intersect (don't overlap.) We should setup one
7130 * sched domain for each mask. CPUs not in any of the cpumasks will
7131 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7132 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7133 * it as it is.
7134 *
acc3f5d7
RR
7135 * The passed in 'doms_new' should be allocated using
7136 * alloc_sched_domains. This routine takes ownership of it and will
7137 * free_sched_domains it when done with it. If the caller failed the
7138 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7139 * and partition_sched_domains() will fallback to the single partition
7140 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7141 *
96f874e2 7142 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7143 * ndoms_new == 0 is a special case for destroying existing domains,
7144 * and it will not create the default domain.
dfb512ec 7145 *
029190c5
PJ
7146 * Call with hotplug lock held
7147 */
acc3f5d7 7148void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7149 struct sched_domain_attr *dattr_new)
029190c5 7150{
dfb512ec 7151 int i, j, n;
d65bd5ec 7152 int new_topology;
029190c5 7153
712555ee 7154 mutex_lock(&sched_domains_mutex);
a1835615 7155
7378547f
MM
7156 /* always unregister in case we don't destroy any domains */
7157 unregister_sched_domain_sysctl();
7158
d65bd5ec
HC
7159 /* Let architecture update cpu core mappings. */
7160 new_topology = arch_update_cpu_topology();
7161
dfb512ec 7162 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7163
7164 /* Destroy deleted domains */
7165 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7166 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7167 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7168 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7169 goto match1;
7170 }
7171 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7172 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7173match1:
7174 ;
7175 }
7176
c8d2d47a 7177 n = ndoms_cur;
e761b772 7178 if (doms_new == NULL) {
c8d2d47a 7179 n = 0;
acc3f5d7 7180 doms_new = &fallback_doms;
6ad4c188 7181 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7182 WARN_ON_ONCE(dattr_new);
e761b772
MK
7183 }
7184
029190c5
PJ
7185 /* Build new domains */
7186 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 7187 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7188 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7189 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7190 goto match2;
7191 }
7192 /* no match - add a new doms_new */
dce840a0 7193 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7194match2:
7195 ;
7196 }
7197
7198 /* Remember the new sched domains */
acc3f5d7
RR
7199 if (doms_cur != &fallback_doms)
7200 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7201 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7202 doms_cur = doms_new;
1d3504fc 7203 dattr_cur = dattr_new;
029190c5 7204 ndoms_cur = ndoms_new;
7378547f
MM
7205
7206 register_sched_domain_sysctl();
a1835615 7207
712555ee 7208 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7209}
7210
d35be8ba
SB
7211static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
7212
1da177e4 7213/*
3a101d05
TH
7214 * Update cpusets according to cpu_active mask. If cpusets are
7215 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7216 * around partition_sched_domains().
d35be8ba
SB
7217 *
7218 * If we come here as part of a suspend/resume, don't touch cpusets because we
7219 * want to restore it back to its original state upon resume anyway.
1da177e4 7220 */
0b2e918a
TH
7221static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7222 void *hcpu)
e761b772 7223{
d35be8ba
SB
7224 switch (action) {
7225 case CPU_ONLINE_FROZEN:
7226 case CPU_DOWN_FAILED_FROZEN:
7227
7228 /*
7229 * num_cpus_frozen tracks how many CPUs are involved in suspend
7230 * resume sequence. As long as this is not the last online
7231 * operation in the resume sequence, just build a single sched
7232 * domain, ignoring cpusets.
7233 */
7234 num_cpus_frozen--;
7235 if (likely(num_cpus_frozen)) {
7236 partition_sched_domains(1, NULL, NULL);
7237 break;
7238 }
7239
7240 /*
7241 * This is the last CPU online operation. So fall through and
7242 * restore the original sched domains by considering the
7243 * cpuset configurations.
7244 */
7245
e761b772 7246 case CPU_ONLINE:
7ddf96b0 7247 cpuset_update_active_cpus(true);
d35be8ba 7248 break;
3a101d05
TH
7249 default:
7250 return NOTIFY_DONE;
7251 }
d35be8ba 7252 return NOTIFY_OK;
3a101d05 7253}
e761b772 7254
0b2e918a
TH
7255static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7256 void *hcpu)
3a101d05 7257{
3c18d447
JL
7258 unsigned long flags;
7259 long cpu = (long)hcpu;
7260 struct dl_bw *dl_b;
533445c6
OS
7261 bool overflow;
7262 int cpus;
3c18d447 7263
533445c6 7264 switch (action) {
3a101d05 7265 case CPU_DOWN_PREPARE:
533445c6
OS
7266 rcu_read_lock_sched();
7267 dl_b = dl_bw_of(cpu);
3c18d447 7268
533445c6
OS
7269 raw_spin_lock_irqsave(&dl_b->lock, flags);
7270 cpus = dl_bw_cpus(cpu);
7271 overflow = __dl_overflow(dl_b, cpus, 0, 0);
7272 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3c18d447 7273
533445c6 7274 rcu_read_unlock_sched();
3c18d447 7275
533445c6
OS
7276 if (overflow)
7277 return notifier_from_errno(-EBUSY);
7ddf96b0 7278 cpuset_update_active_cpus(false);
d35be8ba
SB
7279 break;
7280 case CPU_DOWN_PREPARE_FROZEN:
7281 num_cpus_frozen++;
7282 partition_sched_domains(1, NULL, NULL);
7283 break;
e761b772
MK
7284 default:
7285 return NOTIFY_DONE;
7286 }
d35be8ba 7287 return NOTIFY_OK;
e761b772 7288}
e761b772 7289
1da177e4
LT
7290void __init sched_init_smp(void)
7291{
dcc30a35
RR
7292 cpumask_var_t non_isolated_cpus;
7293
7294 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7295 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7296
cb83b629
PZ
7297 sched_init_numa();
7298
6acce3ef
PZ
7299 /*
7300 * There's no userspace yet to cause hotplug operations; hence all the
7301 * cpu masks are stable and all blatant races in the below code cannot
7302 * happen.
7303 */
712555ee 7304 mutex_lock(&sched_domains_mutex);
c4a8849a 7305 init_sched_domains(cpu_active_mask);
dcc30a35
RR
7306 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7307 if (cpumask_empty(non_isolated_cpus))
7308 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7309 mutex_unlock(&sched_domains_mutex);
e761b772 7310
301a5cba 7311 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
7312 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7313 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772 7314
b328ca18 7315 init_hrtick();
5c1e1767
NP
7316
7317 /* Move init over to a non-isolated CPU */
dcc30a35 7318 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7319 BUG();
19978ca6 7320 sched_init_granularity();
dcc30a35 7321 free_cpumask_var(non_isolated_cpus);
4212823f 7322
0e3900e6 7323 init_sched_rt_class();
1baca4ce 7324 init_sched_dl_class();
1da177e4
LT
7325}
7326#else
7327void __init sched_init_smp(void)
7328{
19978ca6 7329 sched_init_granularity();
1da177e4
LT
7330}
7331#endif /* CONFIG_SMP */
7332
7333int in_sched_functions(unsigned long addr)
7334{
1da177e4
LT
7335 return in_lock_functions(addr) ||
7336 (addr >= (unsigned long)__sched_text_start
7337 && addr < (unsigned long)__sched_text_end);
7338}
7339
029632fb 7340#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
7341/*
7342 * Default task group.
7343 * Every task in system belongs to this group at bootup.
7344 */
029632fb 7345struct task_group root_task_group;
35cf4e50 7346LIST_HEAD(task_groups);
b0367629
WL
7347
7348/* Cacheline aligned slab cache for task_group */
7349static struct kmem_cache *task_group_cache __read_mostly;
052f1dc7 7350#endif
6f505b16 7351
e6252c3e 7352DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 7353
1da177e4
LT
7354void __init sched_init(void)
7355{
dd41f596 7356 int i, j;
434d53b0
MT
7357 unsigned long alloc_size = 0, ptr;
7358
7359#ifdef CONFIG_FAIR_GROUP_SCHED
7360 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7361#endif
7362#ifdef CONFIG_RT_GROUP_SCHED
7363 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7364#endif
434d53b0 7365 if (alloc_size) {
36b7b6d4 7366 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7367
7368#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 7369 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
7370 ptr += nr_cpu_ids * sizeof(void **);
7371
07e06b01 7372 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 7373 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7374
6d6bc0ad 7375#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 7376#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7377 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
7378 ptr += nr_cpu_ids * sizeof(void **);
7379
07e06b01 7380 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7381 ptr += nr_cpu_ids * sizeof(void **);
7382
6d6bc0ad 7383#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 7384 }
df7c8e84 7385#ifdef CONFIG_CPUMASK_OFFSTACK
b74e6278
AT
7386 for_each_possible_cpu(i) {
7387 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7388 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
434d53b0 7389 }
b74e6278 7390#endif /* CONFIG_CPUMASK_OFFSTACK */
dd41f596 7391
332ac17e
DF
7392 init_rt_bandwidth(&def_rt_bandwidth,
7393 global_rt_period(), global_rt_runtime());
7394 init_dl_bandwidth(&def_dl_bandwidth,
1724813d 7395 global_rt_period(), global_rt_runtime());
332ac17e 7396
57d885fe
GH
7397#ifdef CONFIG_SMP
7398 init_defrootdomain();
7399#endif
7400
d0b27fa7 7401#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7402 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 7403 global_rt_period(), global_rt_runtime());
6d6bc0ad 7404#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7405
7c941438 7406#ifdef CONFIG_CGROUP_SCHED
b0367629
WL
7407 task_group_cache = KMEM_CACHE(task_group, 0);
7408
07e06b01
YZ
7409 list_add(&root_task_group.list, &task_groups);
7410 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 7411 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 7412 autogroup_init(&init_task);
7c941438 7413#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7414
0a945022 7415 for_each_possible_cpu(i) {
70b97a7f 7416 struct rq *rq;
1da177e4
LT
7417
7418 rq = cpu_rq(i);
05fa785c 7419 raw_spin_lock_init(&rq->lock);
7897986b 7420 rq->nr_running = 0;
dce48a84
TG
7421 rq->calc_load_active = 0;
7422 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 7423 init_cfs_rq(&rq->cfs);
07c54f7a
AV
7424 init_rt_rq(&rq->rt);
7425 init_dl_rq(&rq->dl);
dd41f596 7426#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 7427 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 7428 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 7429 /*
07e06b01 7430 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
7431 *
7432 * In case of task-groups formed thr' the cgroup filesystem, it
7433 * gets 100% of the cpu resources in the system. This overall
7434 * system cpu resource is divided among the tasks of
07e06b01 7435 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
7436 * based on each entity's (task or task-group's) weight
7437 * (se->load.weight).
7438 *
07e06b01 7439 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
7440 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7441 * then A0's share of the cpu resource is:
7442 *
0d905bca 7443 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 7444 *
07e06b01
YZ
7445 * We achieve this by letting root_task_group's tasks sit
7446 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 7447 */
ab84d31e 7448 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 7449 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
7450#endif /* CONFIG_FAIR_GROUP_SCHED */
7451
7452 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7453#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7454 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 7455#endif
1da177e4 7456
dd41f596
IM
7457 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7458 rq->cpu_load[j] = 0;
fdf3e95d 7459
1da177e4 7460#ifdef CONFIG_SMP
41c7ce9a 7461 rq->sd = NULL;
57d885fe 7462 rq->rd = NULL;
ca6d75e6 7463 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
e3fca9e7 7464 rq->balance_callback = NULL;
1da177e4 7465 rq->active_balance = 0;
dd41f596 7466 rq->next_balance = jiffies;
1da177e4 7467 rq->push_cpu = 0;
0a2966b4 7468 rq->cpu = i;
1f11eb6a 7469 rq->online = 0;
eae0c9df
MG
7470 rq->idle_stamp = 0;
7471 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 7472 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
7473
7474 INIT_LIST_HEAD(&rq->cfs_tasks);
7475
dc938520 7476 rq_attach_root(rq, &def_root_domain);
3451d024 7477#ifdef CONFIG_NO_HZ_COMMON
9fd81dd5 7478 rq->last_load_update_tick = jiffies;
1c792db7 7479 rq->nohz_flags = 0;
83cd4fe2 7480#endif
265f22a9
FW
7481#ifdef CONFIG_NO_HZ_FULL
7482 rq->last_sched_tick = 0;
7483#endif
9fd81dd5 7484#endif /* CONFIG_SMP */
8f4d37ec 7485 init_rq_hrtick(rq);
1da177e4 7486 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7487 }
7488
2dd73a4f 7489 set_load_weight(&init_task);
b50f60ce 7490
e107be36
AK
7491#ifdef CONFIG_PREEMPT_NOTIFIERS
7492 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7493#endif
7494
1da177e4
LT
7495 /*
7496 * The boot idle thread does lazy MMU switching as well:
7497 */
7498 atomic_inc(&init_mm.mm_count);
7499 enter_lazy_tlb(&init_mm, current);
7500
1b537c7d
YD
7501 /*
7502 * During early bootup we pretend to be a normal task:
7503 */
7504 current->sched_class = &fair_sched_class;
7505
1da177e4
LT
7506 /*
7507 * Make us the idle thread. Technically, schedule() should not be
7508 * called from this thread, however somewhere below it might be,
7509 * but because we are the idle thread, we just pick up running again
7510 * when this runqueue becomes "idle".
7511 */
7512 init_idle(current, smp_processor_id());
dce48a84
TG
7513
7514 calc_load_update = jiffies + LOAD_FREQ;
7515
bf4d83f6 7516#ifdef CONFIG_SMP
4cb98839 7517 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
7518 /* May be allocated at isolcpus cmdline parse time */
7519 if (cpu_isolated_map == NULL)
7520 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 7521 idle_thread_set_boot_cpu();
a803f026 7522 set_cpu_rq_start_time();
029632fb
PZ
7523#endif
7524 init_sched_fair_class();
6a7b3dc3 7525
6892b75e 7526 scheduler_running = 1;
1da177e4
LT
7527}
7528
d902db1e 7529#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
7530static inline int preempt_count_equals(int preempt_offset)
7531{
da7142e2 7532 int nested = preempt_count() + rcu_preempt_depth();
e4aafea2 7533
4ba8216c 7534 return (nested == preempt_offset);
e4aafea2
FW
7535}
7536
d894837f 7537void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7538{
8eb23b9f
PZ
7539 /*
7540 * Blocking primitives will set (and therefore destroy) current->state,
7541 * since we will exit with TASK_RUNNING make sure we enter with it,
7542 * otherwise we will destroy state.
7543 */
00845eb9 7544 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
8eb23b9f
PZ
7545 "do not call blocking ops when !TASK_RUNNING; "
7546 "state=%lx set at [<%p>] %pS\n",
7547 current->state,
7548 (void *)current->task_state_change,
00845eb9 7549 (void *)current->task_state_change);
8eb23b9f 7550
3427445a
PZ
7551 ___might_sleep(file, line, preempt_offset);
7552}
7553EXPORT_SYMBOL(__might_sleep);
7554
7555void ___might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7556{
1da177e4
LT
7557 static unsigned long prev_jiffy; /* ratelimiting */
7558
b3fbab05 7559 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
db273be2
TG
7560 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7561 !is_idle_task(current)) ||
e4aafea2 7562 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7563 return;
7564 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7565 return;
7566 prev_jiffy = jiffies;
7567
3df0fc5b
PZ
7568 printk(KERN_ERR
7569 "BUG: sleeping function called from invalid context at %s:%d\n",
7570 file, line);
7571 printk(KERN_ERR
7572 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7573 in_atomic(), irqs_disabled(),
7574 current->pid, current->comm);
aef745fc 7575
a8b686b3
ES
7576 if (task_stack_end_corrupted(current))
7577 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7578
aef745fc
IM
7579 debug_show_held_locks(current);
7580 if (irqs_disabled())
7581 print_irqtrace_events(current);
8f47b187
TG
7582#ifdef CONFIG_DEBUG_PREEMPT
7583 if (!preempt_count_equals(preempt_offset)) {
7584 pr_err("Preemption disabled at:");
7585 print_ip_sym(current->preempt_disable_ip);
7586 pr_cont("\n");
7587 }
7588#endif
aef745fc 7589 dump_stack();
1da177e4 7590}
3427445a 7591EXPORT_SYMBOL(___might_sleep);
1da177e4
LT
7592#endif
7593
7594#ifdef CONFIG_MAGIC_SYSRQ
dbc7f069 7595void normalize_rt_tasks(void)
3a5e4dc1 7596{
dbc7f069 7597 struct task_struct *g, *p;
d50dde5a
DF
7598 struct sched_attr attr = {
7599 .sched_policy = SCHED_NORMAL,
7600 };
1da177e4 7601
3472eaa1 7602 read_lock(&tasklist_lock);
5d07f420 7603 for_each_process_thread(g, p) {
178be793
IM
7604 /*
7605 * Only normalize user tasks:
7606 */
3472eaa1 7607 if (p->flags & PF_KTHREAD)
178be793
IM
7608 continue;
7609
6cfb0d5d 7610 p->se.exec_start = 0;
6cfb0d5d 7611#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7612 p->se.statistics.wait_start = 0;
7613 p->se.statistics.sleep_start = 0;
7614 p->se.statistics.block_start = 0;
6cfb0d5d 7615#endif
dd41f596 7616
aab03e05 7617 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
7618 /*
7619 * Renice negative nice level userspace
7620 * tasks back to 0:
7621 */
3472eaa1 7622 if (task_nice(p) < 0)
dd41f596 7623 set_user_nice(p, 0);
1da177e4 7624 continue;
dd41f596 7625 }
1da177e4 7626
dbc7f069 7627 __sched_setscheduler(p, &attr, false, false);
5d07f420 7628 }
3472eaa1 7629 read_unlock(&tasklist_lock);
1da177e4
LT
7630}
7631
7632#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7633
67fc4e0c 7634#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7635/*
67fc4e0c 7636 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7637 *
7638 * They can only be called when the whole system has been
7639 * stopped - every CPU needs to be quiescent, and no scheduling
7640 * activity can take place. Using them for anything else would
7641 * be a serious bug, and as a result, they aren't even visible
7642 * under any other configuration.
7643 */
7644
7645/**
7646 * curr_task - return the current task for a given cpu.
7647 * @cpu: the processor in question.
7648 *
7649 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
7650 *
7651 * Return: The current task for @cpu.
1df5c10a 7652 */
36c8b586 7653struct task_struct *curr_task(int cpu)
1df5c10a
LT
7654{
7655 return cpu_curr(cpu);
7656}
7657
67fc4e0c
JW
7658#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7659
7660#ifdef CONFIG_IA64
1df5c10a
LT
7661/**
7662 * set_curr_task - set the current task for a given cpu.
7663 * @cpu: the processor in question.
7664 * @p: the task pointer to set.
7665 *
7666 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7667 * are serviced on a separate stack. It allows the architecture to switch the
7668 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7669 * must be called with all CPU's synchronized, and interrupts disabled, the
7670 * and caller must save the original value of the current task (see
7671 * curr_task() above) and restore that value before reenabling interrupts and
7672 * re-starting the system.
7673 *
7674 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7675 */
36c8b586 7676void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7677{
7678 cpu_curr(cpu) = p;
7679}
7680
7681#endif
29f59db3 7682
7c941438 7683#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7684/* task_group_lock serializes the addition/removal of task groups */
7685static DEFINE_SPINLOCK(task_group_lock);
7686
2f5177f0 7687static void sched_free_group(struct task_group *tg)
bccbe08a
PZ
7688{
7689 free_fair_sched_group(tg);
7690 free_rt_sched_group(tg);
e9aa1dd1 7691 autogroup_free(tg);
b0367629 7692 kmem_cache_free(task_group_cache, tg);
bccbe08a
PZ
7693}
7694
7695/* allocate runqueue etc for a new task group */
ec7dc8ac 7696struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7697{
7698 struct task_group *tg;
bccbe08a 7699
b0367629 7700 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
bccbe08a
PZ
7701 if (!tg)
7702 return ERR_PTR(-ENOMEM);
7703
ec7dc8ac 7704 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7705 goto err;
7706
ec7dc8ac 7707 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7708 goto err;
7709
ace783b9
LZ
7710 return tg;
7711
7712err:
2f5177f0 7713 sched_free_group(tg);
ace783b9
LZ
7714 return ERR_PTR(-ENOMEM);
7715}
7716
7717void sched_online_group(struct task_group *tg, struct task_group *parent)
7718{
7719 unsigned long flags;
7720
8ed36996 7721 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7722 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7723
7724 WARN_ON(!parent); /* root should already exist */
7725
7726 tg->parent = parent;
f473aa5e 7727 INIT_LIST_HEAD(&tg->children);
09f2724a 7728 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7729 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7730}
7731
9b5b7751 7732/* rcu callback to free various structures associated with a task group */
2f5177f0 7733static void sched_free_group_rcu(struct rcu_head *rhp)
29f59db3 7734{
29f59db3 7735 /* now it should be safe to free those cfs_rqs */
2f5177f0 7736 sched_free_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7737}
7738
4cf86d77 7739void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
7740{
7741 /* wait for possible concurrent references to cfs_rqs complete */
2f5177f0 7742 call_rcu(&tg->rcu, sched_free_group_rcu);
ace783b9
LZ
7743}
7744
7745void sched_offline_group(struct task_group *tg)
29f59db3 7746{
8ed36996 7747 unsigned long flags;
29f59db3 7748
3d4b47b4 7749 /* end participation in shares distribution */
6fe1f348 7750 unregister_fair_sched_group(tg);
3d4b47b4
PZ
7751
7752 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7753 list_del_rcu(&tg->list);
f473aa5e 7754 list_del_rcu(&tg->siblings);
8ed36996 7755 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7756}
7757
9b5b7751 7758/* change task's runqueue when it moves between groups.
3a252015
IM
7759 * The caller of this function should have put the task in its new group
7760 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7761 * reflect its new group.
9b5b7751
SV
7762 */
7763void sched_move_task(struct task_struct *tsk)
29f59db3 7764{
8323f26c 7765 struct task_group *tg;
da0c1e65 7766 int queued, running;
eb580751 7767 struct rq_flags rf;
29f59db3
SV
7768 struct rq *rq;
7769
eb580751 7770 rq = task_rq_lock(tsk, &rf);
29f59db3 7771
051a1d1a 7772 running = task_current(rq, tsk);
da0c1e65 7773 queued = task_on_rq_queued(tsk);
29f59db3 7774
da0c1e65 7775 if (queued)
ff77e468 7776 dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
0e1f3483 7777 if (unlikely(running))
f3cd1c4e 7778 put_prev_task(rq, tsk);
29f59db3 7779
f7b8a47d
KT
7780 /*
7781 * All callers are synchronized by task_rq_lock(); we do not use RCU
7782 * which is pointless here. Thus, we pass "true" to task_css_check()
7783 * to prevent lockdep warnings.
7784 */
7785 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
7786 struct task_group, css);
7787 tg = autogroup_task_group(tsk, tg);
7788 tsk->sched_task_group = tg;
7789
810b3817 7790#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7791 if (tsk->sched_class->task_move_group)
bc54da21 7792 tsk->sched_class->task_move_group(tsk);
b2b5ce02 7793 else
810b3817 7794#endif
b2b5ce02 7795 set_task_rq(tsk, task_cpu(tsk));
810b3817 7796
0e1f3483
HS
7797 if (unlikely(running))
7798 tsk->sched_class->set_curr_task(rq);
da0c1e65 7799 if (queued)
ff77e468 7800 enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
29f59db3 7801
eb580751 7802 task_rq_unlock(rq, tsk, &rf);
29f59db3 7803}
7c941438 7804#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7805
a790de99
PT
7806#ifdef CONFIG_RT_GROUP_SCHED
7807/*
7808 * Ensure that the real time constraints are schedulable.
7809 */
7810static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7811
9a7e0b18
PZ
7812/* Must be called with tasklist_lock held */
7813static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7814{
9a7e0b18 7815 struct task_struct *g, *p;
b40b2e8e 7816
1fe89e1b
PZ
7817 /*
7818 * Autogroups do not have RT tasks; see autogroup_create().
7819 */
7820 if (task_group_is_autogroup(tg))
7821 return 0;
7822
5d07f420 7823 for_each_process_thread(g, p) {
8651c658 7824 if (rt_task(p) && task_group(p) == tg)
9a7e0b18 7825 return 1;
5d07f420 7826 }
b40b2e8e 7827
9a7e0b18
PZ
7828 return 0;
7829}
b40b2e8e 7830
9a7e0b18
PZ
7831struct rt_schedulable_data {
7832 struct task_group *tg;
7833 u64 rt_period;
7834 u64 rt_runtime;
7835};
b40b2e8e 7836
a790de99 7837static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7838{
7839 struct rt_schedulable_data *d = data;
7840 struct task_group *child;
7841 unsigned long total, sum = 0;
7842 u64 period, runtime;
b40b2e8e 7843
9a7e0b18
PZ
7844 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7845 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7846
9a7e0b18
PZ
7847 if (tg == d->tg) {
7848 period = d->rt_period;
7849 runtime = d->rt_runtime;
b40b2e8e 7850 }
b40b2e8e 7851
4653f803
PZ
7852 /*
7853 * Cannot have more runtime than the period.
7854 */
7855 if (runtime > period && runtime != RUNTIME_INF)
7856 return -EINVAL;
6f505b16 7857
4653f803
PZ
7858 /*
7859 * Ensure we don't starve existing RT tasks.
7860 */
9a7e0b18
PZ
7861 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7862 return -EBUSY;
6f505b16 7863
9a7e0b18 7864 total = to_ratio(period, runtime);
6f505b16 7865
4653f803
PZ
7866 /*
7867 * Nobody can have more than the global setting allows.
7868 */
7869 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7870 return -EINVAL;
6f505b16 7871
4653f803
PZ
7872 /*
7873 * The sum of our children's runtime should not exceed our own.
7874 */
9a7e0b18
PZ
7875 list_for_each_entry_rcu(child, &tg->children, siblings) {
7876 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7877 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7878
9a7e0b18
PZ
7879 if (child == d->tg) {
7880 period = d->rt_period;
7881 runtime = d->rt_runtime;
7882 }
6f505b16 7883
9a7e0b18 7884 sum += to_ratio(period, runtime);
9f0c1e56 7885 }
6f505b16 7886
9a7e0b18
PZ
7887 if (sum > total)
7888 return -EINVAL;
7889
7890 return 0;
6f505b16
PZ
7891}
7892
9a7e0b18 7893static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7894{
8277434e
PT
7895 int ret;
7896
9a7e0b18
PZ
7897 struct rt_schedulable_data data = {
7898 .tg = tg,
7899 .rt_period = period,
7900 .rt_runtime = runtime,
7901 };
7902
8277434e
PT
7903 rcu_read_lock();
7904 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7905 rcu_read_unlock();
7906
7907 return ret;
521f1a24
DG
7908}
7909
ab84d31e 7910static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7911 u64 rt_period, u64 rt_runtime)
6f505b16 7912{
ac086bc2 7913 int i, err = 0;
9f0c1e56 7914
2636ed5f
PZ
7915 /*
7916 * Disallowing the root group RT runtime is BAD, it would disallow the
7917 * kernel creating (and or operating) RT threads.
7918 */
7919 if (tg == &root_task_group && rt_runtime == 0)
7920 return -EINVAL;
7921
7922 /* No period doesn't make any sense. */
7923 if (rt_period == 0)
7924 return -EINVAL;
7925
9f0c1e56 7926 mutex_lock(&rt_constraints_mutex);
521f1a24 7927 read_lock(&tasklist_lock);
9a7e0b18
PZ
7928 err = __rt_schedulable(tg, rt_period, rt_runtime);
7929 if (err)
9f0c1e56 7930 goto unlock;
ac086bc2 7931
0986b11b 7932 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7933 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7934 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7935
7936 for_each_possible_cpu(i) {
7937 struct rt_rq *rt_rq = tg->rt_rq[i];
7938
0986b11b 7939 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7940 rt_rq->rt_runtime = rt_runtime;
0986b11b 7941 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7942 }
0986b11b 7943 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7944unlock:
521f1a24 7945 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7946 mutex_unlock(&rt_constraints_mutex);
7947
7948 return err;
6f505b16
PZ
7949}
7950
25cc7da7 7951static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
7952{
7953 u64 rt_runtime, rt_period;
7954
7955 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7956 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7957 if (rt_runtime_us < 0)
7958 rt_runtime = RUNTIME_INF;
7959
ab84d31e 7960 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7961}
7962
25cc7da7 7963static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
7964{
7965 u64 rt_runtime_us;
7966
d0b27fa7 7967 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7968 return -1;
7969
d0b27fa7 7970 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7971 do_div(rt_runtime_us, NSEC_PER_USEC);
7972 return rt_runtime_us;
7973}
d0b27fa7 7974
ce2f5fe4 7975static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
d0b27fa7
PZ
7976{
7977 u64 rt_runtime, rt_period;
7978
ce2f5fe4 7979 rt_period = rt_period_us * NSEC_PER_USEC;
d0b27fa7
PZ
7980 rt_runtime = tg->rt_bandwidth.rt_runtime;
7981
ab84d31e 7982 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7983}
7984
25cc7da7 7985static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
7986{
7987 u64 rt_period_us;
7988
7989 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7990 do_div(rt_period_us, NSEC_PER_USEC);
7991 return rt_period_us;
7992}
332ac17e 7993#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7994
332ac17e 7995#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
7996static int sched_rt_global_constraints(void)
7997{
7998 int ret = 0;
7999
8000 mutex_lock(&rt_constraints_mutex);
9a7e0b18 8001 read_lock(&tasklist_lock);
4653f803 8002 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 8003 read_unlock(&tasklist_lock);
d0b27fa7
PZ
8004 mutex_unlock(&rt_constraints_mutex);
8005
8006 return ret;
8007}
54e99124 8008
25cc7da7 8009static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
8010{
8011 /* Don't accept realtime tasks when there is no way for them to run */
8012 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8013 return 0;
8014
8015 return 1;
8016}
8017
6d6bc0ad 8018#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8019static int sched_rt_global_constraints(void)
8020{
ac086bc2 8021 unsigned long flags;
8c5e9554 8022 int i;
ec5d4989 8023
0986b11b 8024 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
8025 for_each_possible_cpu(i) {
8026 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8027
0986b11b 8028 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8029 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 8030 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8031 }
0986b11b 8032 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 8033
8c5e9554 8034 return 0;
d0b27fa7 8035}
6d6bc0ad 8036#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8037
a1963b81 8038static int sched_dl_global_validate(void)
332ac17e 8039{
1724813d
PZ
8040 u64 runtime = global_rt_runtime();
8041 u64 period = global_rt_period();
332ac17e 8042 u64 new_bw = to_ratio(period, runtime);
f10e00f4 8043 struct dl_bw *dl_b;
1724813d 8044 int cpu, ret = 0;
49516342 8045 unsigned long flags;
332ac17e
DF
8046
8047 /*
8048 * Here we want to check the bandwidth not being set to some
8049 * value smaller than the currently allocated bandwidth in
8050 * any of the root_domains.
8051 *
8052 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
8053 * cycling on root_domains... Discussion on different/better
8054 * solutions is welcome!
8055 */
1724813d 8056 for_each_possible_cpu(cpu) {
f10e00f4
KT
8057 rcu_read_lock_sched();
8058 dl_b = dl_bw_of(cpu);
332ac17e 8059
49516342 8060 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d
PZ
8061 if (new_bw < dl_b->total_bw)
8062 ret = -EBUSY;
49516342 8063 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
1724813d 8064
f10e00f4
KT
8065 rcu_read_unlock_sched();
8066
1724813d
PZ
8067 if (ret)
8068 break;
332ac17e
DF
8069 }
8070
1724813d 8071 return ret;
332ac17e
DF
8072}
8073
1724813d 8074static void sched_dl_do_global(void)
ce0dbbbb 8075{
1724813d 8076 u64 new_bw = -1;
f10e00f4 8077 struct dl_bw *dl_b;
1724813d 8078 int cpu;
49516342 8079 unsigned long flags;
ce0dbbbb 8080
1724813d
PZ
8081 def_dl_bandwidth.dl_period = global_rt_period();
8082 def_dl_bandwidth.dl_runtime = global_rt_runtime();
8083
8084 if (global_rt_runtime() != RUNTIME_INF)
8085 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
8086
8087 /*
8088 * FIXME: As above...
8089 */
8090 for_each_possible_cpu(cpu) {
f10e00f4
KT
8091 rcu_read_lock_sched();
8092 dl_b = dl_bw_of(cpu);
1724813d 8093
49516342 8094 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d 8095 dl_b->bw = new_bw;
49516342 8096 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
f10e00f4
KT
8097
8098 rcu_read_unlock_sched();
ce0dbbbb 8099 }
1724813d
PZ
8100}
8101
8102static int sched_rt_global_validate(void)
8103{
8104 if (sysctl_sched_rt_period <= 0)
8105 return -EINVAL;
8106
e9e7cb38
JL
8107 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
8108 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
1724813d
PZ
8109 return -EINVAL;
8110
8111 return 0;
8112}
8113
8114static void sched_rt_do_global(void)
8115{
8116 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8117 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
8118}
8119
d0b27fa7 8120int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8121 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8122 loff_t *ppos)
8123{
d0b27fa7
PZ
8124 int old_period, old_runtime;
8125 static DEFINE_MUTEX(mutex);
1724813d 8126 int ret;
d0b27fa7
PZ
8127
8128 mutex_lock(&mutex);
8129 old_period = sysctl_sched_rt_period;
8130 old_runtime = sysctl_sched_rt_runtime;
8131
8d65af78 8132 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
8133
8134 if (!ret && write) {
1724813d
PZ
8135 ret = sched_rt_global_validate();
8136 if (ret)
8137 goto undo;
8138
a1963b81 8139 ret = sched_dl_global_validate();
1724813d
PZ
8140 if (ret)
8141 goto undo;
8142
a1963b81 8143 ret = sched_rt_global_constraints();
1724813d
PZ
8144 if (ret)
8145 goto undo;
8146
8147 sched_rt_do_global();
8148 sched_dl_do_global();
8149 }
8150 if (0) {
8151undo:
8152 sysctl_sched_rt_period = old_period;
8153 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
8154 }
8155 mutex_unlock(&mutex);
8156
8157 return ret;
8158}
68318b8e 8159
1724813d 8160int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
8161 void __user *buffer, size_t *lenp,
8162 loff_t *ppos)
8163{
8164 int ret;
332ac17e 8165 static DEFINE_MUTEX(mutex);
332ac17e
DF
8166
8167 mutex_lock(&mutex);
332ac17e 8168 ret = proc_dointvec(table, write, buffer, lenp, ppos);
1724813d
PZ
8169 /* make sure that internally we keep jiffies */
8170 /* also, writing zero resets timeslice to default */
332ac17e 8171 if (!ret && write) {
1724813d
PZ
8172 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8173 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
332ac17e
DF
8174 }
8175 mutex_unlock(&mutex);
332ac17e
DF
8176 return ret;
8177}
8178
052f1dc7 8179#ifdef CONFIG_CGROUP_SCHED
68318b8e 8180
a7c6d554 8181static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 8182{
a7c6d554 8183 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
8184}
8185
eb95419b
TH
8186static struct cgroup_subsys_state *
8187cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 8188{
eb95419b
TH
8189 struct task_group *parent = css_tg(parent_css);
8190 struct task_group *tg;
68318b8e 8191
eb95419b 8192 if (!parent) {
68318b8e 8193 /* This is early initialization for the top cgroup */
07e06b01 8194 return &root_task_group.css;
68318b8e
SV
8195 }
8196
ec7dc8ac 8197 tg = sched_create_group(parent);
68318b8e
SV
8198 if (IS_ERR(tg))
8199 return ERR_PTR(-ENOMEM);
8200
2f5177f0
PZ
8201 sched_online_group(tg, parent);
8202
68318b8e
SV
8203 return &tg->css;
8204}
8205
2f5177f0 8206static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
ace783b9 8207{
eb95419b 8208 struct task_group *tg = css_tg(css);
ace783b9 8209
2f5177f0 8210 sched_offline_group(tg);
ace783b9
LZ
8211}
8212
eb95419b 8213static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 8214{
eb95419b 8215 struct task_group *tg = css_tg(css);
68318b8e 8216
2f5177f0
PZ
8217 /*
8218 * Relies on the RCU grace period between css_released() and this.
8219 */
8220 sched_free_group(tg);
ace783b9
LZ
8221}
8222
b53202e6 8223static void cpu_cgroup_fork(struct task_struct *task)
eeb61e53
KT
8224{
8225 sched_move_task(task);
8226}
8227
1f7dd3e5 8228static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
68318b8e 8229{
bb9d97b6 8230 struct task_struct *task;
1f7dd3e5 8231 struct cgroup_subsys_state *css;
bb9d97b6 8232
1f7dd3e5 8233 cgroup_taskset_for_each(task, css, tset) {
b68aa230 8234#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 8235 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 8236 return -EINVAL;
b68aa230 8237#else
bb9d97b6
TH
8238 /* We don't support RT-tasks being in separate groups */
8239 if (task->sched_class != &fair_sched_class)
8240 return -EINVAL;
b68aa230 8241#endif
bb9d97b6 8242 }
be367d09
BB
8243 return 0;
8244}
68318b8e 8245
1f7dd3e5 8246static void cpu_cgroup_attach(struct cgroup_taskset *tset)
68318b8e 8247{
bb9d97b6 8248 struct task_struct *task;
1f7dd3e5 8249 struct cgroup_subsys_state *css;
bb9d97b6 8250
1f7dd3e5 8251 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 8252 sched_move_task(task);
68318b8e
SV
8253}
8254
052f1dc7 8255#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
8256static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8257 struct cftype *cftype, u64 shareval)
68318b8e 8258{
182446d0 8259 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
8260}
8261
182446d0
TH
8262static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8263 struct cftype *cft)
68318b8e 8264{
182446d0 8265 struct task_group *tg = css_tg(css);
68318b8e 8266
c8b28116 8267 return (u64) scale_load_down(tg->shares);
68318b8e 8268}
ab84d31e
PT
8269
8270#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
8271static DEFINE_MUTEX(cfs_constraints_mutex);
8272
ab84d31e
PT
8273const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8274const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8275
a790de99
PT
8276static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8277
ab84d31e
PT
8278static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8279{
56f570e5 8280 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 8281 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
8282
8283 if (tg == &root_task_group)
8284 return -EINVAL;
8285
8286 /*
8287 * Ensure we have at some amount of bandwidth every period. This is
8288 * to prevent reaching a state of large arrears when throttled via
8289 * entity_tick() resulting in prolonged exit starvation.
8290 */
8291 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8292 return -EINVAL;
8293
8294 /*
8295 * Likewise, bound things on the otherside by preventing insane quota
8296 * periods. This also allows us to normalize in computing quota
8297 * feasibility.
8298 */
8299 if (period > max_cfs_quota_period)
8300 return -EINVAL;
8301
0e59bdae
KT
8302 /*
8303 * Prevent race between setting of cfs_rq->runtime_enabled and
8304 * unthrottle_offline_cfs_rqs().
8305 */
8306 get_online_cpus();
a790de99
PT
8307 mutex_lock(&cfs_constraints_mutex);
8308 ret = __cfs_schedulable(tg, period, quota);
8309 if (ret)
8310 goto out_unlock;
8311
58088ad0 8312 runtime_enabled = quota != RUNTIME_INF;
56f570e5 8313 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
8314 /*
8315 * If we need to toggle cfs_bandwidth_used, off->on must occur
8316 * before making related changes, and on->off must occur afterwards
8317 */
8318 if (runtime_enabled && !runtime_was_enabled)
8319 cfs_bandwidth_usage_inc();
ab84d31e
PT
8320 raw_spin_lock_irq(&cfs_b->lock);
8321 cfs_b->period = ns_to_ktime(period);
8322 cfs_b->quota = quota;
58088ad0 8323
a9cf55b2 8324 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 8325 /* restart the period timer (if active) to handle new period expiry */
77a4d1a1
PZ
8326 if (runtime_enabled)
8327 start_cfs_bandwidth(cfs_b);
ab84d31e
PT
8328 raw_spin_unlock_irq(&cfs_b->lock);
8329
0e59bdae 8330 for_each_online_cpu(i) {
ab84d31e 8331 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 8332 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
8333
8334 raw_spin_lock_irq(&rq->lock);
58088ad0 8335 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 8336 cfs_rq->runtime_remaining = 0;
671fd9da 8337
029632fb 8338 if (cfs_rq->throttled)
671fd9da 8339 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
8340 raw_spin_unlock_irq(&rq->lock);
8341 }
1ee14e6c
BS
8342 if (runtime_was_enabled && !runtime_enabled)
8343 cfs_bandwidth_usage_dec();
a790de99
PT
8344out_unlock:
8345 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 8346 put_online_cpus();
ab84d31e 8347
a790de99 8348 return ret;
ab84d31e
PT
8349}
8350
8351int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8352{
8353 u64 quota, period;
8354
029632fb 8355 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8356 if (cfs_quota_us < 0)
8357 quota = RUNTIME_INF;
8358 else
8359 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8360
8361 return tg_set_cfs_bandwidth(tg, period, quota);
8362}
8363
8364long tg_get_cfs_quota(struct task_group *tg)
8365{
8366 u64 quota_us;
8367
029632fb 8368 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
8369 return -1;
8370
029632fb 8371 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
8372 do_div(quota_us, NSEC_PER_USEC);
8373
8374 return quota_us;
8375}
8376
8377int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8378{
8379 u64 quota, period;
8380
8381 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 8382 quota = tg->cfs_bandwidth.quota;
ab84d31e 8383
ab84d31e
PT
8384 return tg_set_cfs_bandwidth(tg, period, quota);
8385}
8386
8387long tg_get_cfs_period(struct task_group *tg)
8388{
8389 u64 cfs_period_us;
8390
029632fb 8391 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8392 do_div(cfs_period_us, NSEC_PER_USEC);
8393
8394 return cfs_period_us;
8395}
8396
182446d0
TH
8397static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8398 struct cftype *cft)
ab84d31e 8399{
182446d0 8400 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
8401}
8402
182446d0
TH
8403static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8404 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 8405{
182446d0 8406 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
8407}
8408
182446d0
TH
8409static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8410 struct cftype *cft)
ab84d31e 8411{
182446d0 8412 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
8413}
8414
182446d0
TH
8415static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8416 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 8417{
182446d0 8418 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
8419}
8420
a790de99
PT
8421struct cfs_schedulable_data {
8422 struct task_group *tg;
8423 u64 period, quota;
8424};
8425
8426/*
8427 * normalize group quota/period to be quota/max_period
8428 * note: units are usecs
8429 */
8430static u64 normalize_cfs_quota(struct task_group *tg,
8431 struct cfs_schedulable_data *d)
8432{
8433 u64 quota, period;
8434
8435 if (tg == d->tg) {
8436 period = d->period;
8437 quota = d->quota;
8438 } else {
8439 period = tg_get_cfs_period(tg);
8440 quota = tg_get_cfs_quota(tg);
8441 }
8442
8443 /* note: these should typically be equivalent */
8444 if (quota == RUNTIME_INF || quota == -1)
8445 return RUNTIME_INF;
8446
8447 return to_ratio(period, quota);
8448}
8449
8450static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8451{
8452 struct cfs_schedulable_data *d = data;
029632fb 8453 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
8454 s64 quota = 0, parent_quota = -1;
8455
8456 if (!tg->parent) {
8457 quota = RUNTIME_INF;
8458 } else {
029632fb 8459 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
8460
8461 quota = normalize_cfs_quota(tg, d);
9c58c79a 8462 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
8463
8464 /*
8465 * ensure max(child_quota) <= parent_quota, inherit when no
8466 * limit is set
8467 */
8468 if (quota == RUNTIME_INF)
8469 quota = parent_quota;
8470 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8471 return -EINVAL;
8472 }
9c58c79a 8473 cfs_b->hierarchical_quota = quota;
a790de99
PT
8474
8475 return 0;
8476}
8477
8478static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8479{
8277434e 8480 int ret;
a790de99
PT
8481 struct cfs_schedulable_data data = {
8482 .tg = tg,
8483 .period = period,
8484 .quota = quota,
8485 };
8486
8487 if (quota != RUNTIME_INF) {
8488 do_div(data.period, NSEC_PER_USEC);
8489 do_div(data.quota, NSEC_PER_USEC);
8490 }
8491
8277434e
PT
8492 rcu_read_lock();
8493 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8494 rcu_read_unlock();
8495
8496 return ret;
a790de99 8497}
e8da1b18 8498
2da8ca82 8499static int cpu_stats_show(struct seq_file *sf, void *v)
e8da1b18 8500{
2da8ca82 8501 struct task_group *tg = css_tg(seq_css(sf));
029632fb 8502 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 8503
44ffc75b
TH
8504 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8505 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8506 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
8507
8508 return 0;
8509}
ab84d31e 8510#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 8511#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8512
052f1dc7 8513#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
8514static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8515 struct cftype *cft, s64 val)
6f505b16 8516{
182446d0 8517 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
8518}
8519
182446d0
TH
8520static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8521 struct cftype *cft)
6f505b16 8522{
182446d0 8523 return sched_group_rt_runtime(css_tg(css));
6f505b16 8524}
d0b27fa7 8525
182446d0
TH
8526static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8527 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 8528{
182446d0 8529 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
8530}
8531
182446d0
TH
8532static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8533 struct cftype *cft)
d0b27fa7 8534{
182446d0 8535 return sched_group_rt_period(css_tg(css));
d0b27fa7 8536}
6d6bc0ad 8537#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8538
fe5c7cc2 8539static struct cftype cpu_files[] = {
052f1dc7 8540#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8541 {
8542 .name = "shares",
f4c753b7
PM
8543 .read_u64 = cpu_shares_read_u64,
8544 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8545 },
052f1dc7 8546#endif
ab84d31e
PT
8547#ifdef CONFIG_CFS_BANDWIDTH
8548 {
8549 .name = "cfs_quota_us",
8550 .read_s64 = cpu_cfs_quota_read_s64,
8551 .write_s64 = cpu_cfs_quota_write_s64,
8552 },
8553 {
8554 .name = "cfs_period_us",
8555 .read_u64 = cpu_cfs_period_read_u64,
8556 .write_u64 = cpu_cfs_period_write_u64,
8557 },
e8da1b18
NR
8558 {
8559 .name = "stat",
2da8ca82 8560 .seq_show = cpu_stats_show,
e8da1b18 8561 },
ab84d31e 8562#endif
052f1dc7 8563#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8564 {
9f0c1e56 8565 .name = "rt_runtime_us",
06ecb27c
PM
8566 .read_s64 = cpu_rt_runtime_read,
8567 .write_s64 = cpu_rt_runtime_write,
6f505b16 8568 },
d0b27fa7
PZ
8569 {
8570 .name = "rt_period_us",
f4c753b7
PM
8571 .read_u64 = cpu_rt_period_read_uint,
8572 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8573 },
052f1dc7 8574#endif
4baf6e33 8575 { } /* terminate */
68318b8e
SV
8576};
8577
073219e9 8578struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748 8579 .css_alloc = cpu_cgroup_css_alloc,
2f5177f0 8580 .css_released = cpu_cgroup_css_released,
92fb9748 8581 .css_free = cpu_cgroup_css_free,
eeb61e53 8582 .fork = cpu_cgroup_fork,
bb9d97b6
TH
8583 .can_attach = cpu_cgroup_can_attach,
8584 .attach = cpu_cgroup_attach,
5577964e 8585 .legacy_cftypes = cpu_files,
b38e42e9 8586 .early_init = true,
68318b8e
SV
8587};
8588
052f1dc7 8589#endif /* CONFIG_CGROUP_SCHED */
d842de87 8590
b637a328
PM
8591void dump_cpu_task(int cpu)
8592{
8593 pr_info("Task dump for CPU %d:\n", cpu);
8594 sched_show_task(cpu_curr(cpu));
8595}
ed82b8a1
AK
8596
8597/*
8598 * Nice levels are multiplicative, with a gentle 10% change for every
8599 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8600 * nice 1, it will get ~10% less CPU time than another CPU-bound task
8601 * that remained on nice 0.
8602 *
8603 * The "10% effect" is relative and cumulative: from _any_ nice level,
8604 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8605 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8606 * If a task goes up by ~10% and another task goes down by ~10% then
8607 * the relative distance between them is ~25%.)
8608 */
8609const int sched_prio_to_weight[40] = {
8610 /* -20 */ 88761, 71755, 56483, 46273, 36291,
8611 /* -15 */ 29154, 23254, 18705, 14949, 11916,
8612 /* -10 */ 9548, 7620, 6100, 4904, 3906,
8613 /* -5 */ 3121, 2501, 1991, 1586, 1277,
8614 /* 0 */ 1024, 820, 655, 526, 423,
8615 /* 5 */ 335, 272, 215, 172, 137,
8616 /* 10 */ 110, 87, 70, 56, 45,
8617 /* 15 */ 36, 29, 23, 18, 15,
8618};
8619
8620/*
8621 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8622 *
8623 * In cases where the weight does not change often, we can use the
8624 * precalculated inverse to speed up arithmetics by turning divisions
8625 * into multiplications:
8626 */
8627const u32 sched_prio_to_wmult[40] = {
8628 /* -20 */ 48388, 59856, 76040, 92818, 118348,
8629 /* -15 */ 147320, 184698, 229616, 287308, 360437,
8630 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
8631 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
8632 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
8633 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
8634 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
8635 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8636};