]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/sched/core.c
sched: Update yield() docs
[mirror_ubuntu-artful-kernel.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
1da177e4 74
5517d86b 75#include <asm/tlb.h>
838225b4 76#include <asm/irq_regs.h>
db7e527d 77#include <asm/mutex.h>
e6e6685a
GC
78#ifdef CONFIG_PARAVIRT
79#include <asm/paravirt.h>
80#endif
1da177e4 81
029632fb 82#include "sched.h"
391e43da 83#include "../workqueue_sched.h"
6e0534f2 84
a8d154b0 85#define CREATE_TRACE_POINTS
ad8d75ff 86#include <trace/events/sched.h>
a8d154b0 87
029632fb 88void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 89{
58088ad0
PT
90 unsigned long delta;
91 ktime_t soft, hard, now;
d0b27fa7 92
58088ad0
PT
93 for (;;) {
94 if (hrtimer_active(period_timer))
95 break;
96
97 now = hrtimer_cb_get_time(period_timer);
98 hrtimer_forward(period_timer, now, period);
d0b27fa7 99
58088ad0
PT
100 soft = hrtimer_get_softexpires(period_timer);
101 hard = hrtimer_get_expires(period_timer);
102 delta = ktime_to_ns(ktime_sub(hard, soft));
103 __hrtimer_start_range_ns(period_timer, soft, delta,
104 HRTIMER_MODE_ABS_PINNED, 0);
105 }
106}
107
029632fb
PZ
108DEFINE_MUTEX(sched_domains_mutex);
109DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 110
fe44d621 111static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 112
029632fb 113void update_rq_clock(struct rq *rq)
3e51f33f 114{
fe44d621 115 s64 delta;
305e6835 116
61eadef6 117 if (rq->skip_clock_update > 0)
f26f9aff 118 return;
aa483808 119
fe44d621
PZ
120 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
121 rq->clock += delta;
122 update_rq_clock_task(rq, delta);
3e51f33f
PZ
123}
124
bf5c91ba
IM
125/*
126 * Debugging: various feature bits
127 */
f00b45c1 128
f00b45c1
PZ
129#define SCHED_FEAT(name, enabled) \
130 (1UL << __SCHED_FEAT_##name) * enabled |
131
bf5c91ba 132const_debug unsigned int sysctl_sched_features =
391e43da 133#include "features.h"
f00b45c1
PZ
134 0;
135
136#undef SCHED_FEAT
137
138#ifdef CONFIG_SCHED_DEBUG
139#define SCHED_FEAT(name, enabled) \
140 #name ,
141
983ed7a6 142static __read_mostly char *sched_feat_names[] = {
391e43da 143#include "features.h"
f00b45c1
PZ
144 NULL
145};
146
147#undef SCHED_FEAT
148
34f3a814 149static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 150{
f00b45c1
PZ
151 int i;
152
f8b6d1cc 153 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
154 if (!(sysctl_sched_features & (1UL << i)))
155 seq_puts(m, "NO_");
156 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 157 }
34f3a814 158 seq_puts(m, "\n");
f00b45c1 159
34f3a814 160 return 0;
f00b45c1
PZ
161}
162
f8b6d1cc
PZ
163#ifdef HAVE_JUMP_LABEL
164
165#define jump_label_key__true jump_label_key_enabled
166#define jump_label_key__false jump_label_key_disabled
167
168#define SCHED_FEAT(name, enabled) \
169 jump_label_key__##enabled ,
170
171struct jump_label_key sched_feat_keys[__SCHED_FEAT_NR] = {
172#include "features.h"
173};
174
175#undef SCHED_FEAT
176
177static void sched_feat_disable(int i)
178{
179 if (jump_label_enabled(&sched_feat_keys[i]))
180 jump_label_dec(&sched_feat_keys[i]);
181}
182
183static void sched_feat_enable(int i)
184{
185 if (!jump_label_enabled(&sched_feat_keys[i]))
186 jump_label_inc(&sched_feat_keys[i]);
187}
188#else
189static void sched_feat_disable(int i) { };
190static void sched_feat_enable(int i) { };
191#endif /* HAVE_JUMP_LABEL */
192
f00b45c1
PZ
193static ssize_t
194sched_feat_write(struct file *filp, const char __user *ubuf,
195 size_t cnt, loff_t *ppos)
196{
197 char buf[64];
7740191c 198 char *cmp;
f00b45c1
PZ
199 int neg = 0;
200 int i;
201
202 if (cnt > 63)
203 cnt = 63;
204
205 if (copy_from_user(&buf, ubuf, cnt))
206 return -EFAULT;
207
208 buf[cnt] = 0;
7740191c 209 cmp = strstrip(buf);
f00b45c1 210
524429c3 211 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
212 neg = 1;
213 cmp += 3;
214 }
215
f8b6d1cc 216 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 217 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 218 if (neg) {
f00b45c1 219 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
220 sched_feat_disable(i);
221 } else {
f00b45c1 222 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
223 sched_feat_enable(i);
224 }
f00b45c1
PZ
225 break;
226 }
227 }
228
f8b6d1cc 229 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
230 return -EINVAL;
231
42994724 232 *ppos += cnt;
f00b45c1
PZ
233
234 return cnt;
235}
236
34f3a814
LZ
237static int sched_feat_open(struct inode *inode, struct file *filp)
238{
239 return single_open(filp, sched_feat_show, NULL);
240}
241
828c0950 242static const struct file_operations sched_feat_fops = {
34f3a814
LZ
243 .open = sched_feat_open,
244 .write = sched_feat_write,
245 .read = seq_read,
246 .llseek = seq_lseek,
247 .release = single_release,
f00b45c1
PZ
248};
249
250static __init int sched_init_debug(void)
251{
f00b45c1
PZ
252 debugfs_create_file("sched_features", 0644, NULL, NULL,
253 &sched_feat_fops);
254
255 return 0;
256}
257late_initcall(sched_init_debug);
f8b6d1cc 258#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 259
b82d9fdd
PZ
260/*
261 * Number of tasks to iterate in a single balance run.
262 * Limited because this is done with IRQs disabled.
263 */
264const_debug unsigned int sysctl_sched_nr_migrate = 32;
265
e9e9250b
PZ
266/*
267 * period over which we average the RT time consumption, measured
268 * in ms.
269 *
270 * default: 1s
271 */
272const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
273
fa85ae24 274/*
9f0c1e56 275 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
276 * default: 1s
277 */
9f0c1e56 278unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 279
029632fb 280__read_mostly int scheduler_running;
6892b75e 281
9f0c1e56
PZ
282/*
283 * part of the period that we allow rt tasks to run in us.
284 * default: 0.95s
285 */
286int sysctl_sched_rt_runtime = 950000;
fa85ae24 287
fa85ae24 288
1da177e4 289
0970d299 290/*
0122ec5b 291 * __task_rq_lock - lock the rq @p resides on.
b29739f9 292 */
70b97a7f 293static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
294 __acquires(rq->lock)
295{
0970d299
PZ
296 struct rq *rq;
297
0122ec5b
PZ
298 lockdep_assert_held(&p->pi_lock);
299
3a5c359a 300 for (;;) {
0970d299 301 rq = task_rq(p);
05fa785c 302 raw_spin_lock(&rq->lock);
65cc8e48 303 if (likely(rq == task_rq(p)))
3a5c359a 304 return rq;
05fa785c 305 raw_spin_unlock(&rq->lock);
b29739f9 306 }
b29739f9
IM
307}
308
1da177e4 309/*
0122ec5b 310 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 311 */
70b97a7f 312static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 313 __acquires(p->pi_lock)
1da177e4
LT
314 __acquires(rq->lock)
315{
70b97a7f 316 struct rq *rq;
1da177e4 317
3a5c359a 318 for (;;) {
0122ec5b 319 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 320 rq = task_rq(p);
05fa785c 321 raw_spin_lock(&rq->lock);
65cc8e48 322 if (likely(rq == task_rq(p)))
3a5c359a 323 return rq;
0122ec5b
PZ
324 raw_spin_unlock(&rq->lock);
325 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4 326 }
1da177e4
LT
327}
328
a9957449 329static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
330 __releases(rq->lock)
331{
05fa785c 332 raw_spin_unlock(&rq->lock);
b29739f9
IM
333}
334
0122ec5b
PZ
335static inline void
336task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 337 __releases(rq->lock)
0122ec5b 338 __releases(p->pi_lock)
1da177e4 339{
0122ec5b
PZ
340 raw_spin_unlock(&rq->lock);
341 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
342}
343
1da177e4 344/*
cc2a73b5 345 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 346 */
a9957449 347static struct rq *this_rq_lock(void)
1da177e4
LT
348 __acquires(rq->lock)
349{
70b97a7f 350 struct rq *rq;
1da177e4
LT
351
352 local_irq_disable();
353 rq = this_rq();
05fa785c 354 raw_spin_lock(&rq->lock);
1da177e4
LT
355
356 return rq;
357}
358
8f4d37ec
PZ
359#ifdef CONFIG_SCHED_HRTICK
360/*
361 * Use HR-timers to deliver accurate preemption points.
362 *
363 * Its all a bit involved since we cannot program an hrt while holding the
364 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
365 * reschedule event.
366 *
367 * When we get rescheduled we reprogram the hrtick_timer outside of the
368 * rq->lock.
369 */
8f4d37ec 370
8f4d37ec
PZ
371static void hrtick_clear(struct rq *rq)
372{
373 if (hrtimer_active(&rq->hrtick_timer))
374 hrtimer_cancel(&rq->hrtick_timer);
375}
376
8f4d37ec
PZ
377/*
378 * High-resolution timer tick.
379 * Runs from hardirq context with interrupts disabled.
380 */
381static enum hrtimer_restart hrtick(struct hrtimer *timer)
382{
383 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
384
385 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
386
05fa785c 387 raw_spin_lock(&rq->lock);
3e51f33f 388 update_rq_clock(rq);
8f4d37ec 389 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 390 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
391
392 return HRTIMER_NORESTART;
393}
394
95e904c7 395#ifdef CONFIG_SMP
31656519
PZ
396/*
397 * called from hardirq (IPI) context
398 */
399static void __hrtick_start(void *arg)
b328ca18 400{
31656519 401 struct rq *rq = arg;
b328ca18 402
05fa785c 403 raw_spin_lock(&rq->lock);
31656519
PZ
404 hrtimer_restart(&rq->hrtick_timer);
405 rq->hrtick_csd_pending = 0;
05fa785c 406 raw_spin_unlock(&rq->lock);
b328ca18
PZ
407}
408
31656519
PZ
409/*
410 * Called to set the hrtick timer state.
411 *
412 * called with rq->lock held and irqs disabled
413 */
029632fb 414void hrtick_start(struct rq *rq, u64 delay)
b328ca18 415{
31656519
PZ
416 struct hrtimer *timer = &rq->hrtick_timer;
417 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 418
cc584b21 419 hrtimer_set_expires(timer, time);
31656519
PZ
420
421 if (rq == this_rq()) {
422 hrtimer_restart(timer);
423 } else if (!rq->hrtick_csd_pending) {
6e275637 424 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
425 rq->hrtick_csd_pending = 1;
426 }
b328ca18
PZ
427}
428
429static int
430hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
431{
432 int cpu = (int)(long)hcpu;
433
434 switch (action) {
435 case CPU_UP_CANCELED:
436 case CPU_UP_CANCELED_FROZEN:
437 case CPU_DOWN_PREPARE:
438 case CPU_DOWN_PREPARE_FROZEN:
439 case CPU_DEAD:
440 case CPU_DEAD_FROZEN:
31656519 441 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
442 return NOTIFY_OK;
443 }
444
445 return NOTIFY_DONE;
446}
447
fa748203 448static __init void init_hrtick(void)
b328ca18
PZ
449{
450 hotcpu_notifier(hotplug_hrtick, 0);
451}
31656519
PZ
452#else
453/*
454 * Called to set the hrtick timer state.
455 *
456 * called with rq->lock held and irqs disabled
457 */
029632fb 458void hrtick_start(struct rq *rq, u64 delay)
31656519 459{
7f1e2ca9 460 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 461 HRTIMER_MODE_REL_PINNED, 0);
31656519 462}
b328ca18 463
006c75f1 464static inline void init_hrtick(void)
8f4d37ec 465{
8f4d37ec 466}
31656519 467#endif /* CONFIG_SMP */
8f4d37ec 468
31656519 469static void init_rq_hrtick(struct rq *rq)
8f4d37ec 470{
31656519
PZ
471#ifdef CONFIG_SMP
472 rq->hrtick_csd_pending = 0;
8f4d37ec 473
31656519
PZ
474 rq->hrtick_csd.flags = 0;
475 rq->hrtick_csd.func = __hrtick_start;
476 rq->hrtick_csd.info = rq;
477#endif
8f4d37ec 478
31656519
PZ
479 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
480 rq->hrtick_timer.function = hrtick;
8f4d37ec 481}
006c75f1 482#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
483static inline void hrtick_clear(struct rq *rq)
484{
485}
486
8f4d37ec
PZ
487static inline void init_rq_hrtick(struct rq *rq)
488{
489}
490
b328ca18
PZ
491static inline void init_hrtick(void)
492{
493}
006c75f1 494#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 495
c24d20db
IM
496/*
497 * resched_task - mark a task 'to be rescheduled now'.
498 *
499 * On UP this means the setting of the need_resched flag, on SMP it
500 * might also involve a cross-CPU call to trigger the scheduler on
501 * the target CPU.
502 */
503#ifdef CONFIG_SMP
504
505#ifndef tsk_is_polling
506#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
507#endif
508
029632fb 509void resched_task(struct task_struct *p)
c24d20db
IM
510{
511 int cpu;
512
05fa785c 513 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 514
5ed0cec0 515 if (test_tsk_need_resched(p))
c24d20db
IM
516 return;
517
5ed0cec0 518 set_tsk_need_resched(p);
c24d20db
IM
519
520 cpu = task_cpu(p);
521 if (cpu == smp_processor_id())
522 return;
523
524 /* NEED_RESCHED must be visible before we test polling */
525 smp_mb();
526 if (!tsk_is_polling(p))
527 smp_send_reschedule(cpu);
528}
529
029632fb 530void resched_cpu(int cpu)
c24d20db
IM
531{
532 struct rq *rq = cpu_rq(cpu);
533 unsigned long flags;
534
05fa785c 535 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
536 return;
537 resched_task(cpu_curr(cpu));
05fa785c 538 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 539}
06d8308c
TG
540
541#ifdef CONFIG_NO_HZ
83cd4fe2
VP
542/*
543 * In the semi idle case, use the nearest busy cpu for migrating timers
544 * from an idle cpu. This is good for power-savings.
545 *
546 * We don't do similar optimization for completely idle system, as
547 * selecting an idle cpu will add more delays to the timers than intended
548 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
549 */
550int get_nohz_timer_target(void)
551{
552 int cpu = smp_processor_id();
553 int i;
554 struct sched_domain *sd;
555
057f3fad 556 rcu_read_lock();
83cd4fe2 557 for_each_domain(cpu, sd) {
057f3fad
PZ
558 for_each_cpu(i, sched_domain_span(sd)) {
559 if (!idle_cpu(i)) {
560 cpu = i;
561 goto unlock;
562 }
563 }
83cd4fe2 564 }
057f3fad
PZ
565unlock:
566 rcu_read_unlock();
83cd4fe2
VP
567 return cpu;
568}
06d8308c
TG
569/*
570 * When add_timer_on() enqueues a timer into the timer wheel of an
571 * idle CPU then this timer might expire before the next timer event
572 * which is scheduled to wake up that CPU. In case of a completely
573 * idle system the next event might even be infinite time into the
574 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
575 * leaves the inner idle loop so the newly added timer is taken into
576 * account when the CPU goes back to idle and evaluates the timer
577 * wheel for the next timer event.
578 */
579void wake_up_idle_cpu(int cpu)
580{
581 struct rq *rq = cpu_rq(cpu);
582
583 if (cpu == smp_processor_id())
584 return;
585
586 /*
587 * This is safe, as this function is called with the timer
588 * wheel base lock of (cpu) held. When the CPU is on the way
589 * to idle and has not yet set rq->curr to idle then it will
590 * be serialized on the timer wheel base lock and take the new
591 * timer into account automatically.
592 */
593 if (rq->curr != rq->idle)
594 return;
45bf76df 595
45bf76df 596 /*
06d8308c
TG
597 * We can set TIF_RESCHED on the idle task of the other CPU
598 * lockless. The worst case is that the other CPU runs the
599 * idle task through an additional NOOP schedule()
45bf76df 600 */
5ed0cec0 601 set_tsk_need_resched(rq->idle);
45bf76df 602
06d8308c
TG
603 /* NEED_RESCHED must be visible before we test polling */
604 smp_mb();
605 if (!tsk_is_polling(rq->idle))
606 smp_send_reschedule(cpu);
45bf76df
IM
607}
608
ca38062e 609static inline bool got_nohz_idle_kick(void)
45bf76df 610{
1c792db7
SS
611 int cpu = smp_processor_id();
612 return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
45bf76df
IM
613}
614
ca38062e 615#else /* CONFIG_NO_HZ */
45bf76df 616
ca38062e 617static inline bool got_nohz_idle_kick(void)
2069dd75 618{
ca38062e 619 return false;
2069dd75
PZ
620}
621
6d6bc0ad 622#endif /* CONFIG_NO_HZ */
d842de87 623
029632fb 624void sched_avg_update(struct rq *rq)
18d95a28 625{
e9e9250b
PZ
626 s64 period = sched_avg_period();
627
628 while ((s64)(rq->clock - rq->age_stamp) > period) {
0d98bb26
WD
629 /*
630 * Inline assembly required to prevent the compiler
631 * optimising this loop into a divmod call.
632 * See __iter_div_u64_rem() for another example of this.
633 */
634 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
635 rq->age_stamp += period;
636 rq->rt_avg /= 2;
637 }
18d95a28
PZ
638}
639
6d6bc0ad 640#else /* !CONFIG_SMP */
029632fb 641void resched_task(struct task_struct *p)
18d95a28 642{
05fa785c 643 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 644 set_tsk_need_resched(p);
18d95a28 645}
6d6bc0ad 646#endif /* CONFIG_SMP */
18d95a28 647
a790de99
PT
648#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
649 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 650/*
8277434e
PT
651 * Iterate task_group tree rooted at *from, calling @down when first entering a
652 * node and @up when leaving it for the final time.
653 *
654 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 655 */
029632fb 656int walk_tg_tree_from(struct task_group *from,
8277434e 657 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
658{
659 struct task_group *parent, *child;
eb755805 660 int ret;
c09595f6 661
8277434e
PT
662 parent = from;
663
c09595f6 664down:
eb755805
PZ
665 ret = (*down)(parent, data);
666 if (ret)
8277434e 667 goto out;
c09595f6
PZ
668 list_for_each_entry_rcu(child, &parent->children, siblings) {
669 parent = child;
670 goto down;
671
672up:
673 continue;
674 }
eb755805 675 ret = (*up)(parent, data);
8277434e
PT
676 if (ret || parent == from)
677 goto out;
c09595f6
PZ
678
679 child = parent;
680 parent = parent->parent;
681 if (parent)
682 goto up;
8277434e 683out:
eb755805 684 return ret;
c09595f6
PZ
685}
686
029632fb 687int tg_nop(struct task_group *tg, void *data)
eb755805 688{
e2b245f8 689 return 0;
eb755805 690}
18d95a28
PZ
691#endif
692
029632fb 693void update_cpu_load(struct rq *this_rq);
9c217245 694
45bf76df
IM
695static void set_load_weight(struct task_struct *p)
696{
f05998d4
NR
697 int prio = p->static_prio - MAX_RT_PRIO;
698 struct load_weight *load = &p->se.load;
699
dd41f596
IM
700 /*
701 * SCHED_IDLE tasks get minimal weight:
702 */
703 if (p->policy == SCHED_IDLE) {
c8b28116 704 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 705 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
706 return;
707 }
71f8bd46 708
c8b28116 709 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 710 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
711}
712
371fd7e7 713static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 714{
a64692a3 715 update_rq_clock(rq);
dd41f596 716 sched_info_queued(p);
371fd7e7 717 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
718}
719
371fd7e7 720static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 721{
a64692a3 722 update_rq_clock(rq);
46ac22ba 723 sched_info_dequeued(p);
371fd7e7 724 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
725}
726
029632fb 727void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
728{
729 if (task_contributes_to_load(p))
730 rq->nr_uninterruptible--;
731
371fd7e7 732 enqueue_task(rq, p, flags);
1e3c88bd
PZ
733}
734
029632fb 735void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
736{
737 if (task_contributes_to_load(p))
738 rq->nr_uninterruptible++;
739
371fd7e7 740 dequeue_task(rq, p, flags);
1e3c88bd
PZ
741}
742
b52bfee4
VP
743#ifdef CONFIG_IRQ_TIME_ACCOUNTING
744
305e6835
VP
745/*
746 * There are no locks covering percpu hardirq/softirq time.
747 * They are only modified in account_system_vtime, on corresponding CPU
748 * with interrupts disabled. So, writes are safe.
749 * They are read and saved off onto struct rq in update_rq_clock().
750 * This may result in other CPU reading this CPU's irq time and can
751 * race with irq/account_system_vtime on this CPU. We would either get old
8e92c201
PZ
752 * or new value with a side effect of accounting a slice of irq time to wrong
753 * task when irq is in progress while we read rq->clock. That is a worthy
754 * compromise in place of having locks on each irq in account_system_time.
305e6835 755 */
b52bfee4
VP
756static DEFINE_PER_CPU(u64, cpu_hardirq_time);
757static DEFINE_PER_CPU(u64, cpu_softirq_time);
758
759static DEFINE_PER_CPU(u64, irq_start_time);
760static int sched_clock_irqtime;
761
762void enable_sched_clock_irqtime(void)
763{
764 sched_clock_irqtime = 1;
765}
766
767void disable_sched_clock_irqtime(void)
768{
769 sched_clock_irqtime = 0;
770}
771
8e92c201
PZ
772#ifndef CONFIG_64BIT
773static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
774
775static inline void irq_time_write_begin(void)
776{
777 __this_cpu_inc(irq_time_seq.sequence);
778 smp_wmb();
779}
780
781static inline void irq_time_write_end(void)
782{
783 smp_wmb();
784 __this_cpu_inc(irq_time_seq.sequence);
785}
786
787static inline u64 irq_time_read(int cpu)
788{
789 u64 irq_time;
790 unsigned seq;
791
792 do {
793 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
794 irq_time = per_cpu(cpu_softirq_time, cpu) +
795 per_cpu(cpu_hardirq_time, cpu);
796 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
797
798 return irq_time;
799}
800#else /* CONFIG_64BIT */
801static inline void irq_time_write_begin(void)
802{
803}
804
805static inline void irq_time_write_end(void)
806{
807}
808
809static inline u64 irq_time_read(int cpu)
305e6835 810{
305e6835
VP
811 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
812}
8e92c201 813#endif /* CONFIG_64BIT */
305e6835 814
fe44d621
PZ
815/*
816 * Called before incrementing preempt_count on {soft,}irq_enter
817 * and before decrementing preempt_count on {soft,}irq_exit.
818 */
b52bfee4
VP
819void account_system_vtime(struct task_struct *curr)
820{
821 unsigned long flags;
fe44d621 822 s64 delta;
b52bfee4 823 int cpu;
b52bfee4
VP
824
825 if (!sched_clock_irqtime)
826 return;
827
828 local_irq_save(flags);
829
b52bfee4 830 cpu = smp_processor_id();
fe44d621
PZ
831 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
832 __this_cpu_add(irq_start_time, delta);
833
8e92c201 834 irq_time_write_begin();
b52bfee4
VP
835 /*
836 * We do not account for softirq time from ksoftirqd here.
837 * We want to continue accounting softirq time to ksoftirqd thread
838 * in that case, so as not to confuse scheduler with a special task
839 * that do not consume any time, but still wants to run.
840 */
841 if (hardirq_count())
fe44d621 842 __this_cpu_add(cpu_hardirq_time, delta);
4dd53d89 843 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
fe44d621 844 __this_cpu_add(cpu_softirq_time, delta);
b52bfee4 845
8e92c201 846 irq_time_write_end();
b52bfee4
VP
847 local_irq_restore(flags);
848}
b7dadc38 849EXPORT_SYMBOL_GPL(account_system_vtime);
b52bfee4 850
e6e6685a
GC
851#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
852
853#ifdef CONFIG_PARAVIRT
854static inline u64 steal_ticks(u64 steal)
aa483808 855{
e6e6685a
GC
856 if (unlikely(steal > NSEC_PER_SEC))
857 return div_u64(steal, TICK_NSEC);
fe44d621 858
e6e6685a
GC
859 return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
860}
861#endif
862
fe44d621 863static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 864{
095c0aa8
GC
865/*
866 * In theory, the compile should just see 0 here, and optimize out the call
867 * to sched_rt_avg_update. But I don't trust it...
868 */
869#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
870 s64 steal = 0, irq_delta = 0;
871#endif
872#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 873 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
874
875 /*
876 * Since irq_time is only updated on {soft,}irq_exit, we might run into
877 * this case when a previous update_rq_clock() happened inside a
878 * {soft,}irq region.
879 *
880 * When this happens, we stop ->clock_task and only update the
881 * prev_irq_time stamp to account for the part that fit, so that a next
882 * update will consume the rest. This ensures ->clock_task is
883 * monotonic.
884 *
885 * It does however cause some slight miss-attribution of {soft,}irq
886 * time, a more accurate solution would be to update the irq_time using
887 * the current rq->clock timestamp, except that would require using
888 * atomic ops.
889 */
890 if (irq_delta > delta)
891 irq_delta = delta;
892
893 rq->prev_irq_time += irq_delta;
894 delta -= irq_delta;
095c0aa8
GC
895#endif
896#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
897 if (static_branch((&paravirt_steal_rq_enabled))) {
898 u64 st;
899
900 steal = paravirt_steal_clock(cpu_of(rq));
901 steal -= rq->prev_steal_time_rq;
902
903 if (unlikely(steal > delta))
904 steal = delta;
905
906 st = steal_ticks(steal);
907 steal = st * TICK_NSEC;
908
909 rq->prev_steal_time_rq += steal;
910
911 delta -= steal;
912 }
913#endif
914
fe44d621
PZ
915 rq->clock_task += delta;
916
095c0aa8
GC
917#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
918 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
919 sched_rt_avg_update(rq, irq_delta + steal);
920#endif
aa483808
VP
921}
922
095c0aa8 923#ifdef CONFIG_IRQ_TIME_ACCOUNTING
abb74cef
VP
924static int irqtime_account_hi_update(void)
925{
3292beb3 926 u64 *cpustat = kcpustat_this_cpu->cpustat;
abb74cef
VP
927 unsigned long flags;
928 u64 latest_ns;
929 int ret = 0;
930
931 local_irq_save(flags);
932 latest_ns = this_cpu_read(cpu_hardirq_time);
612ef28a 933 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
abb74cef
VP
934 ret = 1;
935 local_irq_restore(flags);
936 return ret;
937}
938
939static int irqtime_account_si_update(void)
940{
3292beb3 941 u64 *cpustat = kcpustat_this_cpu->cpustat;
abb74cef
VP
942 unsigned long flags;
943 u64 latest_ns;
944 int ret = 0;
945
946 local_irq_save(flags);
947 latest_ns = this_cpu_read(cpu_softirq_time);
612ef28a 948 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
abb74cef
VP
949 ret = 1;
950 local_irq_restore(flags);
951 return ret;
952}
953
fe44d621 954#else /* CONFIG_IRQ_TIME_ACCOUNTING */
305e6835 955
abb74cef
VP
956#define sched_clock_irqtime (0)
957
095c0aa8 958#endif
b52bfee4 959
34f971f6
PZ
960void sched_set_stop_task(int cpu, struct task_struct *stop)
961{
962 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
963 struct task_struct *old_stop = cpu_rq(cpu)->stop;
964
965 if (stop) {
966 /*
967 * Make it appear like a SCHED_FIFO task, its something
968 * userspace knows about and won't get confused about.
969 *
970 * Also, it will make PI more or less work without too
971 * much confusion -- but then, stop work should not
972 * rely on PI working anyway.
973 */
974 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
975
976 stop->sched_class = &stop_sched_class;
977 }
978
979 cpu_rq(cpu)->stop = stop;
980
981 if (old_stop) {
982 /*
983 * Reset it back to a normal scheduling class so that
984 * it can die in pieces.
985 */
986 old_stop->sched_class = &rt_sched_class;
987 }
988}
989
14531189 990/*
dd41f596 991 * __normal_prio - return the priority that is based on the static prio
14531189 992 */
14531189
IM
993static inline int __normal_prio(struct task_struct *p)
994{
dd41f596 995 return p->static_prio;
14531189
IM
996}
997
b29739f9
IM
998/*
999 * Calculate the expected normal priority: i.e. priority
1000 * without taking RT-inheritance into account. Might be
1001 * boosted by interactivity modifiers. Changes upon fork,
1002 * setprio syscalls, and whenever the interactivity
1003 * estimator recalculates.
1004 */
36c8b586 1005static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1006{
1007 int prio;
1008
e05606d3 1009 if (task_has_rt_policy(p))
b29739f9
IM
1010 prio = MAX_RT_PRIO-1 - p->rt_priority;
1011 else
1012 prio = __normal_prio(p);
1013 return prio;
1014}
1015
1016/*
1017 * Calculate the current priority, i.e. the priority
1018 * taken into account by the scheduler. This value might
1019 * be boosted by RT tasks, or might be boosted by
1020 * interactivity modifiers. Will be RT if the task got
1021 * RT-boosted. If not then it returns p->normal_prio.
1022 */
36c8b586 1023static int effective_prio(struct task_struct *p)
b29739f9
IM
1024{
1025 p->normal_prio = normal_prio(p);
1026 /*
1027 * If we are RT tasks or we were boosted to RT priority,
1028 * keep the priority unchanged. Otherwise, update priority
1029 * to the normal priority:
1030 */
1031 if (!rt_prio(p->prio))
1032 return p->normal_prio;
1033 return p->prio;
1034}
1035
1da177e4
LT
1036/**
1037 * task_curr - is this task currently executing on a CPU?
1038 * @p: the task in question.
1039 */
36c8b586 1040inline int task_curr(const struct task_struct *p)
1da177e4
LT
1041{
1042 return cpu_curr(task_cpu(p)) == p;
1043}
1044
cb469845
SR
1045static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1046 const struct sched_class *prev_class,
da7a735e 1047 int oldprio)
cb469845
SR
1048{
1049 if (prev_class != p->sched_class) {
1050 if (prev_class->switched_from)
da7a735e
PZ
1051 prev_class->switched_from(rq, p);
1052 p->sched_class->switched_to(rq, p);
1053 } else if (oldprio != p->prio)
1054 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
1055}
1056
029632fb 1057void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
1058{
1059 const struct sched_class *class;
1060
1061 if (p->sched_class == rq->curr->sched_class) {
1062 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1063 } else {
1064 for_each_class(class) {
1065 if (class == rq->curr->sched_class)
1066 break;
1067 if (class == p->sched_class) {
1068 resched_task(rq->curr);
1069 break;
1070 }
1071 }
1072 }
1073
1074 /*
1075 * A queue event has occurred, and we're going to schedule. In
1076 * this case, we can save a useless back to back clock update.
1077 */
fd2f4419 1078 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
1079 rq->skip_clock_update = 1;
1080}
1081
1da177e4 1082#ifdef CONFIG_SMP
dd41f596 1083void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1084{
e2912009
PZ
1085#ifdef CONFIG_SCHED_DEBUG
1086 /*
1087 * We should never call set_task_cpu() on a blocked task,
1088 * ttwu() will sort out the placement.
1089 */
077614ee
PZ
1090 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1091 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
0122ec5b
PZ
1092
1093#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1094 /*
1095 * The caller should hold either p->pi_lock or rq->lock, when changing
1096 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1097 *
1098 * sched_move_task() holds both and thus holding either pins the cgroup,
1099 * see set_task_rq().
1100 *
1101 * Furthermore, all task_rq users should acquire both locks, see
1102 * task_rq_lock().
1103 */
0122ec5b
PZ
1104 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1105 lockdep_is_held(&task_rq(p)->lock)));
1106#endif
e2912009
PZ
1107#endif
1108
de1d7286 1109 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1110
0c69774e
PZ
1111 if (task_cpu(p) != new_cpu) {
1112 p->se.nr_migrations++;
a8b0ca17 1113 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
0c69774e 1114 }
dd41f596
IM
1115
1116 __set_task_cpu(p, new_cpu);
c65cc870
IM
1117}
1118
969c7921 1119struct migration_arg {
36c8b586 1120 struct task_struct *task;
1da177e4 1121 int dest_cpu;
70b97a7f 1122};
1da177e4 1123
969c7921
TH
1124static int migration_cpu_stop(void *data);
1125
1da177e4
LT
1126/*
1127 * wait_task_inactive - wait for a thread to unschedule.
1128 *
85ba2d86
RM
1129 * If @match_state is nonzero, it's the @p->state value just checked and
1130 * not expected to change. If it changes, i.e. @p might have woken up,
1131 * then return zero. When we succeed in waiting for @p to be off its CPU,
1132 * we return a positive number (its total switch count). If a second call
1133 * a short while later returns the same number, the caller can be sure that
1134 * @p has remained unscheduled the whole time.
1135 *
1da177e4
LT
1136 * The caller must ensure that the task *will* unschedule sometime soon,
1137 * else this function might spin for a *long* time. This function can't
1138 * be called with interrupts off, or it may introduce deadlock with
1139 * smp_call_function() if an IPI is sent by the same process we are
1140 * waiting to become inactive.
1141 */
85ba2d86 1142unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1143{
1144 unsigned long flags;
dd41f596 1145 int running, on_rq;
85ba2d86 1146 unsigned long ncsw;
70b97a7f 1147 struct rq *rq;
1da177e4 1148
3a5c359a
AK
1149 for (;;) {
1150 /*
1151 * We do the initial early heuristics without holding
1152 * any task-queue locks at all. We'll only try to get
1153 * the runqueue lock when things look like they will
1154 * work out!
1155 */
1156 rq = task_rq(p);
fa490cfd 1157
3a5c359a
AK
1158 /*
1159 * If the task is actively running on another CPU
1160 * still, just relax and busy-wait without holding
1161 * any locks.
1162 *
1163 * NOTE! Since we don't hold any locks, it's not
1164 * even sure that "rq" stays as the right runqueue!
1165 * But we don't care, since "task_running()" will
1166 * return false if the runqueue has changed and p
1167 * is actually now running somewhere else!
1168 */
85ba2d86
RM
1169 while (task_running(rq, p)) {
1170 if (match_state && unlikely(p->state != match_state))
1171 return 0;
3a5c359a 1172 cpu_relax();
85ba2d86 1173 }
fa490cfd 1174
3a5c359a
AK
1175 /*
1176 * Ok, time to look more closely! We need the rq
1177 * lock now, to be *sure*. If we're wrong, we'll
1178 * just go back and repeat.
1179 */
1180 rq = task_rq_lock(p, &flags);
27a9da65 1181 trace_sched_wait_task(p);
3a5c359a 1182 running = task_running(rq, p);
fd2f4419 1183 on_rq = p->on_rq;
85ba2d86 1184 ncsw = 0;
f31e11d8 1185 if (!match_state || p->state == match_state)
93dcf55f 1186 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1187 task_rq_unlock(rq, p, &flags);
fa490cfd 1188
85ba2d86
RM
1189 /*
1190 * If it changed from the expected state, bail out now.
1191 */
1192 if (unlikely(!ncsw))
1193 break;
1194
3a5c359a
AK
1195 /*
1196 * Was it really running after all now that we
1197 * checked with the proper locks actually held?
1198 *
1199 * Oops. Go back and try again..
1200 */
1201 if (unlikely(running)) {
1202 cpu_relax();
1203 continue;
1204 }
fa490cfd 1205
3a5c359a
AK
1206 /*
1207 * It's not enough that it's not actively running,
1208 * it must be off the runqueue _entirely_, and not
1209 * preempted!
1210 *
80dd99b3 1211 * So if it was still runnable (but just not actively
3a5c359a
AK
1212 * running right now), it's preempted, and we should
1213 * yield - it could be a while.
1214 */
1215 if (unlikely(on_rq)) {
8eb90c30
TG
1216 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1217
1218 set_current_state(TASK_UNINTERRUPTIBLE);
1219 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1220 continue;
1221 }
fa490cfd 1222
3a5c359a
AK
1223 /*
1224 * Ahh, all good. It wasn't running, and it wasn't
1225 * runnable, which means that it will never become
1226 * running in the future either. We're all done!
1227 */
1228 break;
1229 }
85ba2d86
RM
1230
1231 return ncsw;
1da177e4
LT
1232}
1233
1234/***
1235 * kick_process - kick a running thread to enter/exit the kernel
1236 * @p: the to-be-kicked thread
1237 *
1238 * Cause a process which is running on another CPU to enter
1239 * kernel-mode, without any delay. (to get signals handled.)
1240 *
25985edc 1241 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1242 * because all it wants to ensure is that the remote task enters
1243 * the kernel. If the IPI races and the task has been migrated
1244 * to another CPU then no harm is done and the purpose has been
1245 * achieved as well.
1246 */
36c8b586 1247void kick_process(struct task_struct *p)
1da177e4
LT
1248{
1249 int cpu;
1250
1251 preempt_disable();
1252 cpu = task_cpu(p);
1253 if ((cpu != smp_processor_id()) && task_curr(p))
1254 smp_send_reschedule(cpu);
1255 preempt_enable();
1256}
b43e3521 1257EXPORT_SYMBOL_GPL(kick_process);
476d139c 1258#endif /* CONFIG_SMP */
1da177e4 1259
970b13ba 1260#ifdef CONFIG_SMP
30da688e 1261/*
013fdb80 1262 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1263 */
5da9a0fb
PZ
1264static int select_fallback_rq(int cpu, struct task_struct *p)
1265{
1266 int dest_cpu;
1267 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
1268
1269 /* Look for allowed, online CPU in same node. */
1270 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
fa17b507 1271 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
5da9a0fb
PZ
1272 return dest_cpu;
1273
1274 /* Any allowed, online CPU? */
fa17b507 1275 dest_cpu = cpumask_any_and(tsk_cpus_allowed(p), cpu_active_mask);
5da9a0fb
PZ
1276 if (dest_cpu < nr_cpu_ids)
1277 return dest_cpu;
1278
1279 /* No more Mr. Nice Guy. */
48c5ccae
PZ
1280 dest_cpu = cpuset_cpus_allowed_fallback(p);
1281 /*
1282 * Don't tell them about moving exiting tasks or
1283 * kernel threads (both mm NULL), since they never
1284 * leave kernel.
1285 */
1286 if (p->mm && printk_ratelimit()) {
3ccf3e83 1287 printk_sched("process %d (%s) no longer affine to cpu%d\n",
48c5ccae 1288 task_pid_nr(p), p->comm, cpu);
5da9a0fb
PZ
1289 }
1290
1291 return dest_cpu;
1292}
1293
e2912009 1294/*
013fdb80 1295 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1296 */
970b13ba 1297static inline
7608dec2 1298int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 1299{
7608dec2 1300 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
e2912009
PZ
1301
1302 /*
1303 * In order not to call set_task_cpu() on a blocking task we need
1304 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1305 * cpu.
1306 *
1307 * Since this is common to all placement strategies, this lives here.
1308 *
1309 * [ this allows ->select_task() to simply return task_cpu(p) and
1310 * not worry about this generic constraint ]
1311 */
fa17b507 1312 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1313 !cpu_online(cpu)))
5da9a0fb 1314 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1315
1316 return cpu;
970b13ba 1317}
09a40af5
MG
1318
1319static void update_avg(u64 *avg, u64 sample)
1320{
1321 s64 diff = sample - *avg;
1322 *avg += diff >> 3;
1323}
970b13ba
PZ
1324#endif
1325
d7c01d27 1326static void
b84cb5df 1327ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1328{
d7c01d27 1329#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1330 struct rq *rq = this_rq();
1331
d7c01d27
PZ
1332#ifdef CONFIG_SMP
1333 int this_cpu = smp_processor_id();
1334
1335 if (cpu == this_cpu) {
1336 schedstat_inc(rq, ttwu_local);
1337 schedstat_inc(p, se.statistics.nr_wakeups_local);
1338 } else {
1339 struct sched_domain *sd;
1340
1341 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1342 rcu_read_lock();
d7c01d27
PZ
1343 for_each_domain(this_cpu, sd) {
1344 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1345 schedstat_inc(sd, ttwu_wake_remote);
1346 break;
1347 }
1348 }
057f3fad 1349 rcu_read_unlock();
d7c01d27 1350 }
f339b9dc
PZ
1351
1352 if (wake_flags & WF_MIGRATED)
1353 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1354
d7c01d27
PZ
1355#endif /* CONFIG_SMP */
1356
1357 schedstat_inc(rq, ttwu_count);
9ed3811a 1358 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1359
1360 if (wake_flags & WF_SYNC)
9ed3811a 1361 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1362
d7c01d27
PZ
1363#endif /* CONFIG_SCHEDSTATS */
1364}
1365
1366static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1367{
9ed3811a 1368 activate_task(rq, p, en_flags);
fd2f4419 1369 p->on_rq = 1;
c2f7115e
PZ
1370
1371 /* if a worker is waking up, notify workqueue */
1372 if (p->flags & PF_WQ_WORKER)
1373 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1374}
1375
23f41eeb
PZ
1376/*
1377 * Mark the task runnable and perform wakeup-preemption.
1378 */
89363381 1379static void
23f41eeb 1380ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1381{
89363381 1382 trace_sched_wakeup(p, true);
9ed3811a
TH
1383 check_preempt_curr(rq, p, wake_flags);
1384
1385 p->state = TASK_RUNNING;
1386#ifdef CONFIG_SMP
1387 if (p->sched_class->task_woken)
1388 p->sched_class->task_woken(rq, p);
1389
e69c6341 1390 if (rq->idle_stamp) {
9ed3811a
TH
1391 u64 delta = rq->clock - rq->idle_stamp;
1392 u64 max = 2*sysctl_sched_migration_cost;
1393
1394 if (delta > max)
1395 rq->avg_idle = max;
1396 else
1397 update_avg(&rq->avg_idle, delta);
1398 rq->idle_stamp = 0;
1399 }
1400#endif
1401}
1402
c05fbafb
PZ
1403static void
1404ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1405{
1406#ifdef CONFIG_SMP
1407 if (p->sched_contributes_to_load)
1408 rq->nr_uninterruptible--;
1409#endif
1410
1411 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1412 ttwu_do_wakeup(rq, p, wake_flags);
1413}
1414
1415/*
1416 * Called in case the task @p isn't fully descheduled from its runqueue,
1417 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1418 * since all we need to do is flip p->state to TASK_RUNNING, since
1419 * the task is still ->on_rq.
1420 */
1421static int ttwu_remote(struct task_struct *p, int wake_flags)
1422{
1423 struct rq *rq;
1424 int ret = 0;
1425
1426 rq = __task_rq_lock(p);
1427 if (p->on_rq) {
1428 ttwu_do_wakeup(rq, p, wake_flags);
1429 ret = 1;
1430 }
1431 __task_rq_unlock(rq);
1432
1433 return ret;
1434}
1435
317f3941 1436#ifdef CONFIG_SMP
fa14ff4a 1437static void sched_ttwu_pending(void)
317f3941
PZ
1438{
1439 struct rq *rq = this_rq();
fa14ff4a
PZ
1440 struct llist_node *llist = llist_del_all(&rq->wake_list);
1441 struct task_struct *p;
317f3941
PZ
1442
1443 raw_spin_lock(&rq->lock);
1444
fa14ff4a
PZ
1445 while (llist) {
1446 p = llist_entry(llist, struct task_struct, wake_entry);
1447 llist = llist_next(llist);
317f3941
PZ
1448 ttwu_do_activate(rq, p, 0);
1449 }
1450
1451 raw_spin_unlock(&rq->lock);
1452}
1453
1454void scheduler_ipi(void)
1455{
ca38062e 1456 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1457 return;
1458
1459 /*
1460 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1461 * traditionally all their work was done from the interrupt return
1462 * path. Now that we actually do some work, we need to make sure
1463 * we do call them.
1464 *
1465 * Some archs already do call them, luckily irq_enter/exit nest
1466 * properly.
1467 *
1468 * Arguably we should visit all archs and update all handlers,
1469 * however a fair share of IPIs are still resched only so this would
1470 * somewhat pessimize the simple resched case.
1471 */
1472 irq_enter();
fa14ff4a 1473 sched_ttwu_pending();
ca38062e
SS
1474
1475 /*
1476 * Check if someone kicked us for doing the nohz idle load balance.
1477 */
6eb57e0d
SS
1478 if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1479 this_rq()->idle_balance = 1;
ca38062e 1480 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1481 }
c5d753a5 1482 irq_exit();
317f3941
PZ
1483}
1484
1485static void ttwu_queue_remote(struct task_struct *p, int cpu)
1486{
fa14ff4a 1487 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
317f3941
PZ
1488 smp_send_reschedule(cpu);
1489}
d6aa8f85
PZ
1490
1491#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1492static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
1493{
1494 struct rq *rq;
1495 int ret = 0;
1496
1497 rq = __task_rq_lock(p);
1498 if (p->on_cpu) {
1499 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1500 ttwu_do_wakeup(rq, p, wake_flags);
1501 ret = 1;
1502 }
1503 __task_rq_unlock(rq);
1504
1505 return ret;
1506
1507}
1508#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
518cd623 1509
39be3501 1510bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1511{
1512 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1513}
d6aa8f85 1514#endif /* CONFIG_SMP */
317f3941 1515
c05fbafb
PZ
1516static void ttwu_queue(struct task_struct *p, int cpu)
1517{
1518 struct rq *rq = cpu_rq(cpu);
1519
17d9f311 1520#if defined(CONFIG_SMP)
39be3501 1521 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1522 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1523 ttwu_queue_remote(p, cpu);
1524 return;
1525 }
1526#endif
1527
c05fbafb
PZ
1528 raw_spin_lock(&rq->lock);
1529 ttwu_do_activate(rq, p, 0);
1530 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1531}
1532
1533/**
1da177e4 1534 * try_to_wake_up - wake up a thread
9ed3811a 1535 * @p: the thread to be awakened
1da177e4 1536 * @state: the mask of task states that can be woken
9ed3811a 1537 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1538 *
1539 * Put it on the run-queue if it's not already there. The "current"
1540 * thread is always on the run-queue (except when the actual
1541 * re-schedule is in progress), and as such you're allowed to do
1542 * the simpler "current->state = TASK_RUNNING" to mark yourself
1543 * runnable without the overhead of this.
1544 *
9ed3811a
TH
1545 * Returns %true if @p was woken up, %false if it was already running
1546 * or @state didn't match @p's state.
1da177e4 1547 */
e4a52bcb
PZ
1548static int
1549try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1550{
1da177e4 1551 unsigned long flags;
c05fbafb 1552 int cpu, success = 0;
2398f2c6 1553
04e2f174 1554 smp_wmb();
013fdb80 1555 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1556 if (!(p->state & state))
1da177e4
LT
1557 goto out;
1558
c05fbafb 1559 success = 1; /* we're going to change ->state */
1da177e4 1560 cpu = task_cpu(p);
1da177e4 1561
c05fbafb
PZ
1562 if (p->on_rq && ttwu_remote(p, wake_flags))
1563 goto stat;
1da177e4 1564
1da177e4 1565#ifdef CONFIG_SMP
e9c84311 1566 /*
c05fbafb
PZ
1567 * If the owning (remote) cpu is still in the middle of schedule() with
1568 * this task as prev, wait until its done referencing the task.
e9c84311 1569 */
e4a52bcb
PZ
1570 while (p->on_cpu) {
1571#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1572 /*
d6aa8f85
PZ
1573 * In case the architecture enables interrupts in
1574 * context_switch(), we cannot busy wait, since that
1575 * would lead to deadlocks when an interrupt hits and
1576 * tries to wake up @prev. So bail and do a complete
1577 * remote wakeup.
e4a52bcb 1578 */
d6aa8f85 1579 if (ttwu_activate_remote(p, wake_flags))
c05fbafb 1580 goto stat;
d6aa8f85 1581#else
e4a52bcb 1582 cpu_relax();
d6aa8f85 1583#endif
371fd7e7 1584 }
0970d299 1585 /*
e4a52bcb 1586 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1587 */
e4a52bcb 1588 smp_rmb();
1da177e4 1589
a8e4f2ea 1590 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1591 p->state = TASK_WAKING;
e7693a36 1592
e4a52bcb 1593 if (p->sched_class->task_waking)
74f8e4b2 1594 p->sched_class->task_waking(p);
efbbd05a 1595
7608dec2 1596 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1597 if (task_cpu(p) != cpu) {
1598 wake_flags |= WF_MIGRATED;
e4a52bcb 1599 set_task_cpu(p, cpu);
f339b9dc 1600 }
1da177e4 1601#endif /* CONFIG_SMP */
1da177e4 1602
c05fbafb
PZ
1603 ttwu_queue(p, cpu);
1604stat:
b84cb5df 1605 ttwu_stat(p, cpu, wake_flags);
1da177e4 1606out:
013fdb80 1607 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1608
1609 return success;
1610}
1611
21aa9af0
TH
1612/**
1613 * try_to_wake_up_local - try to wake up a local task with rq lock held
1614 * @p: the thread to be awakened
1615 *
2acca55e 1616 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1617 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1618 * the current task.
21aa9af0
TH
1619 */
1620static void try_to_wake_up_local(struct task_struct *p)
1621{
1622 struct rq *rq = task_rq(p);
21aa9af0
TH
1623
1624 BUG_ON(rq != this_rq());
1625 BUG_ON(p == current);
1626 lockdep_assert_held(&rq->lock);
1627
2acca55e
PZ
1628 if (!raw_spin_trylock(&p->pi_lock)) {
1629 raw_spin_unlock(&rq->lock);
1630 raw_spin_lock(&p->pi_lock);
1631 raw_spin_lock(&rq->lock);
1632 }
1633
21aa9af0 1634 if (!(p->state & TASK_NORMAL))
2acca55e 1635 goto out;
21aa9af0 1636
fd2f4419 1637 if (!p->on_rq)
d7c01d27
PZ
1638 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1639
23f41eeb 1640 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1641 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1642out:
1643 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1644}
1645
50fa610a
DH
1646/**
1647 * wake_up_process - Wake up a specific process
1648 * @p: The process to be woken up.
1649 *
1650 * Attempt to wake up the nominated process and move it to the set of runnable
1651 * processes. Returns 1 if the process was woken up, 0 if it was already
1652 * running.
1653 *
1654 * It may be assumed that this function implies a write memory barrier before
1655 * changing the task state if and only if any tasks are woken up.
1656 */
7ad5b3a5 1657int wake_up_process(struct task_struct *p)
1da177e4 1658{
d9514f6c 1659 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 1660}
1da177e4
LT
1661EXPORT_SYMBOL(wake_up_process);
1662
7ad5b3a5 1663int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1664{
1665 return try_to_wake_up(p, state, 0);
1666}
1667
1da177e4
LT
1668/*
1669 * Perform scheduler related setup for a newly forked process p.
1670 * p is forked by current.
dd41f596
IM
1671 *
1672 * __sched_fork() is basic setup used by init_idle() too:
1673 */
1674static void __sched_fork(struct task_struct *p)
1675{
fd2f4419
PZ
1676 p->on_rq = 0;
1677
1678 p->se.on_rq = 0;
dd41f596
IM
1679 p->se.exec_start = 0;
1680 p->se.sum_exec_runtime = 0;
f6cf891c 1681 p->se.prev_sum_exec_runtime = 0;
6c594c21 1682 p->se.nr_migrations = 0;
da7a735e 1683 p->se.vruntime = 0;
fd2f4419 1684 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
1685
1686#ifdef CONFIG_SCHEDSTATS
41acab88 1687 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 1688#endif
476d139c 1689
fa717060 1690 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 1691
e107be36
AK
1692#ifdef CONFIG_PREEMPT_NOTIFIERS
1693 INIT_HLIST_HEAD(&p->preempt_notifiers);
1694#endif
dd41f596
IM
1695}
1696
1697/*
1698 * fork()/clone()-time setup:
1699 */
3e51e3ed 1700void sched_fork(struct task_struct *p)
dd41f596 1701{
0122ec5b 1702 unsigned long flags;
dd41f596
IM
1703 int cpu = get_cpu();
1704
1705 __sched_fork(p);
06b83b5f 1706 /*
0017d735 1707 * We mark the process as running here. This guarantees that
06b83b5f
PZ
1708 * nobody will actually run it, and a signal or other external
1709 * event cannot wake it up and insert it on the runqueue either.
1710 */
0017d735 1711 p->state = TASK_RUNNING;
dd41f596 1712
c350a04e
MG
1713 /*
1714 * Make sure we do not leak PI boosting priority to the child.
1715 */
1716 p->prio = current->normal_prio;
1717
b9dc29e7
MG
1718 /*
1719 * Revert to default priority/policy on fork if requested.
1720 */
1721 if (unlikely(p->sched_reset_on_fork)) {
c350a04e 1722 if (task_has_rt_policy(p)) {
b9dc29e7 1723 p->policy = SCHED_NORMAL;
6c697bdf 1724 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
1725 p->rt_priority = 0;
1726 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1727 p->static_prio = NICE_TO_PRIO(0);
1728
1729 p->prio = p->normal_prio = __normal_prio(p);
1730 set_load_weight(p);
6c697bdf 1731
b9dc29e7
MG
1732 /*
1733 * We don't need the reset flag anymore after the fork. It has
1734 * fulfilled its duty:
1735 */
1736 p->sched_reset_on_fork = 0;
1737 }
ca94c442 1738
2ddbf952
HS
1739 if (!rt_prio(p->prio))
1740 p->sched_class = &fair_sched_class;
b29739f9 1741
cd29fe6f
PZ
1742 if (p->sched_class->task_fork)
1743 p->sched_class->task_fork(p);
1744
86951599
PZ
1745 /*
1746 * The child is not yet in the pid-hash so no cgroup attach races,
1747 * and the cgroup is pinned to this child due to cgroup_fork()
1748 * is ran before sched_fork().
1749 *
1750 * Silence PROVE_RCU.
1751 */
0122ec5b 1752 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 1753 set_task_cpu(p, cpu);
0122ec5b 1754 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 1755
52f17b6c 1756#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1757 if (likely(sched_info_on()))
52f17b6c 1758 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1759#endif
3ca7a440
PZ
1760#if defined(CONFIG_SMP)
1761 p->on_cpu = 0;
4866cde0 1762#endif
bdd4e85d 1763#ifdef CONFIG_PREEMPT_COUNT
4866cde0 1764 /* Want to start with kernel preemption disabled. */
a1261f54 1765 task_thread_info(p)->preempt_count = 1;
1da177e4 1766#endif
806c09a7 1767#ifdef CONFIG_SMP
917b627d 1768 plist_node_init(&p->pushable_tasks, MAX_PRIO);
806c09a7 1769#endif
917b627d 1770
476d139c 1771 put_cpu();
1da177e4
LT
1772}
1773
1774/*
1775 * wake_up_new_task - wake up a newly created task for the first time.
1776 *
1777 * This function will do some initial scheduler statistics housekeeping
1778 * that must be done for every newly created context, then puts the task
1779 * on the runqueue and wakes it.
1780 */
3e51e3ed 1781void wake_up_new_task(struct task_struct *p)
1da177e4
LT
1782{
1783 unsigned long flags;
dd41f596 1784 struct rq *rq;
fabf318e 1785
ab2515c4 1786 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
1787#ifdef CONFIG_SMP
1788 /*
1789 * Fork balancing, do it here and not earlier because:
1790 * - cpus_allowed can change in the fork path
1791 * - any previously selected cpu might disappear through hotplug
fabf318e 1792 */
ab2515c4 1793 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
0017d735
PZ
1794#endif
1795
ab2515c4 1796 rq = __task_rq_lock(p);
cd29fe6f 1797 activate_task(rq, p, 0);
fd2f4419 1798 p->on_rq = 1;
89363381 1799 trace_sched_wakeup_new(p, true);
a7558e01 1800 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 1801#ifdef CONFIG_SMP
efbbd05a
PZ
1802 if (p->sched_class->task_woken)
1803 p->sched_class->task_woken(rq, p);
9a897c5a 1804#endif
0122ec5b 1805 task_rq_unlock(rq, p, &flags);
1da177e4
LT
1806}
1807
e107be36
AK
1808#ifdef CONFIG_PREEMPT_NOTIFIERS
1809
1810/**
80dd99b3 1811 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 1812 * @notifier: notifier struct to register
e107be36
AK
1813 */
1814void preempt_notifier_register(struct preempt_notifier *notifier)
1815{
1816 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1817}
1818EXPORT_SYMBOL_GPL(preempt_notifier_register);
1819
1820/**
1821 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 1822 * @notifier: notifier struct to unregister
e107be36
AK
1823 *
1824 * This is safe to call from within a preemption notifier.
1825 */
1826void preempt_notifier_unregister(struct preempt_notifier *notifier)
1827{
1828 hlist_del(&notifier->link);
1829}
1830EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1831
1832static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1833{
1834 struct preempt_notifier *notifier;
1835 struct hlist_node *node;
1836
1837 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1838 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1839}
1840
1841static void
1842fire_sched_out_preempt_notifiers(struct task_struct *curr,
1843 struct task_struct *next)
1844{
1845 struct preempt_notifier *notifier;
1846 struct hlist_node *node;
1847
1848 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1849 notifier->ops->sched_out(notifier, next);
1850}
1851
6d6bc0ad 1852#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
1853
1854static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1855{
1856}
1857
1858static void
1859fire_sched_out_preempt_notifiers(struct task_struct *curr,
1860 struct task_struct *next)
1861{
1862}
1863
6d6bc0ad 1864#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 1865
4866cde0
NP
1866/**
1867 * prepare_task_switch - prepare to switch tasks
1868 * @rq: the runqueue preparing to switch
421cee29 1869 * @prev: the current task that is being switched out
4866cde0
NP
1870 * @next: the task we are going to switch to.
1871 *
1872 * This is called with the rq lock held and interrupts off. It must
1873 * be paired with a subsequent finish_task_switch after the context
1874 * switch.
1875 *
1876 * prepare_task_switch sets up locking and calls architecture specific
1877 * hooks.
1878 */
e107be36
AK
1879static inline void
1880prepare_task_switch(struct rq *rq, struct task_struct *prev,
1881 struct task_struct *next)
4866cde0 1882{
fe4b04fa
PZ
1883 sched_info_switch(prev, next);
1884 perf_event_task_sched_out(prev, next);
e107be36 1885 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
1886 prepare_lock_switch(rq, next);
1887 prepare_arch_switch(next);
fe4b04fa 1888 trace_sched_switch(prev, next);
4866cde0
NP
1889}
1890
1da177e4
LT
1891/**
1892 * finish_task_switch - clean up after a task-switch
344babaa 1893 * @rq: runqueue associated with task-switch
1da177e4
LT
1894 * @prev: the thread we just switched away from.
1895 *
4866cde0
NP
1896 * finish_task_switch must be called after the context switch, paired
1897 * with a prepare_task_switch call before the context switch.
1898 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1899 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1900 *
1901 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 1902 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
1903 * with the lock held can cause deadlocks; see schedule() for
1904 * details.)
1905 */
a9957449 1906static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1907 __releases(rq->lock)
1908{
1da177e4 1909 struct mm_struct *mm = rq->prev_mm;
55a101f8 1910 long prev_state;
1da177e4
LT
1911
1912 rq->prev_mm = NULL;
1913
1914 /*
1915 * A task struct has one reference for the use as "current".
c394cc9f 1916 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1917 * schedule one last time. The schedule call will never return, and
1918 * the scheduled task must drop that reference.
c394cc9f 1919 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1920 * still held, otherwise prev could be scheduled on another cpu, die
1921 * there before we look at prev->state, and then the reference would
1922 * be dropped twice.
1923 * Manfred Spraul <manfred@colorfullife.com>
1924 */
55a101f8 1925 prev_state = prev->state;
4866cde0 1926 finish_arch_switch(prev);
8381f65d
JI
1927#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1928 local_irq_disable();
1929#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
a8d757ef 1930 perf_event_task_sched_in(prev, current);
8381f65d
JI
1931#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1932 local_irq_enable();
1933#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
4866cde0 1934 finish_lock_switch(rq, prev);
e8fa1362 1935
e107be36 1936 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
1937 if (mm)
1938 mmdrop(mm);
c394cc9f 1939 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 1940 /*
1941 * Remove function-return probe instances associated with this
1942 * task and put them back on the free list.
9761eea8 1943 */
c6fd91f0 1944 kprobe_flush_task(prev);
1da177e4 1945 put_task_struct(prev);
c6fd91f0 1946 }
1da177e4
LT
1947}
1948
3f029d3c
GH
1949#ifdef CONFIG_SMP
1950
1951/* assumes rq->lock is held */
1952static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1953{
1954 if (prev->sched_class->pre_schedule)
1955 prev->sched_class->pre_schedule(rq, prev);
1956}
1957
1958/* rq->lock is NOT held, but preemption is disabled */
1959static inline void post_schedule(struct rq *rq)
1960{
1961 if (rq->post_schedule) {
1962 unsigned long flags;
1963
05fa785c 1964 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
1965 if (rq->curr->sched_class->post_schedule)
1966 rq->curr->sched_class->post_schedule(rq);
05fa785c 1967 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
1968
1969 rq->post_schedule = 0;
1970 }
1971}
1972
1973#else
da19ab51 1974
3f029d3c
GH
1975static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1976{
1977}
1978
1979static inline void post_schedule(struct rq *rq)
1980{
1da177e4
LT
1981}
1982
3f029d3c
GH
1983#endif
1984
1da177e4
LT
1985/**
1986 * schedule_tail - first thing a freshly forked thread must call.
1987 * @prev: the thread we just switched away from.
1988 */
36c8b586 1989asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
1990 __releases(rq->lock)
1991{
70b97a7f
IM
1992 struct rq *rq = this_rq();
1993
4866cde0 1994 finish_task_switch(rq, prev);
da19ab51 1995
3f029d3c
GH
1996 /*
1997 * FIXME: do we need to worry about rq being invalidated by the
1998 * task_switch?
1999 */
2000 post_schedule(rq);
70b97a7f 2001
4866cde0
NP
2002#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2003 /* In this case, finish_task_switch does not reenable preemption */
2004 preempt_enable();
2005#endif
1da177e4 2006 if (current->set_child_tid)
b488893a 2007 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2008}
2009
2010/*
2011 * context_switch - switch to the new MM and the new
2012 * thread's register state.
2013 */
dd41f596 2014static inline void
70b97a7f 2015context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2016 struct task_struct *next)
1da177e4 2017{
dd41f596 2018 struct mm_struct *mm, *oldmm;
1da177e4 2019
e107be36 2020 prepare_task_switch(rq, prev, next);
fe4b04fa 2021
dd41f596
IM
2022 mm = next->mm;
2023 oldmm = prev->active_mm;
9226d125
ZA
2024 /*
2025 * For paravirt, this is coupled with an exit in switch_to to
2026 * combine the page table reload and the switch backend into
2027 * one hypercall.
2028 */
224101ed 2029 arch_start_context_switch(prev);
9226d125 2030
31915ab4 2031 if (!mm) {
1da177e4
LT
2032 next->active_mm = oldmm;
2033 atomic_inc(&oldmm->mm_count);
2034 enter_lazy_tlb(oldmm, next);
2035 } else
2036 switch_mm(oldmm, mm, next);
2037
31915ab4 2038 if (!prev->mm) {
1da177e4 2039 prev->active_mm = NULL;
1da177e4
LT
2040 rq->prev_mm = oldmm;
2041 }
3a5f5e48
IM
2042 /*
2043 * Since the runqueue lock will be released by the next
2044 * task (which is an invalid locking op but in the case
2045 * of the scheduler it's an obvious special-case), so we
2046 * do an early lockdep release here:
2047 */
2048#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2049 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2050#endif
1da177e4
LT
2051
2052 /* Here we just switch the register state and the stack. */
2053 switch_to(prev, next, prev);
2054
dd41f596
IM
2055 barrier();
2056 /*
2057 * this_rq must be evaluated again because prev may have moved
2058 * CPUs since it called schedule(), thus the 'rq' on its stack
2059 * frame will be invalid.
2060 */
2061 finish_task_switch(this_rq(), prev);
1da177e4
LT
2062}
2063
2064/*
2065 * nr_running, nr_uninterruptible and nr_context_switches:
2066 *
2067 * externally visible scheduler statistics: current number of runnable
2068 * threads, current number of uninterruptible-sleeping threads, total
2069 * number of context switches performed since bootup.
2070 */
2071unsigned long nr_running(void)
2072{
2073 unsigned long i, sum = 0;
2074
2075 for_each_online_cpu(i)
2076 sum += cpu_rq(i)->nr_running;
2077
2078 return sum;
f711f609 2079}
1da177e4
LT
2080
2081unsigned long nr_uninterruptible(void)
f711f609 2082{
1da177e4 2083 unsigned long i, sum = 0;
f711f609 2084
0a945022 2085 for_each_possible_cpu(i)
1da177e4 2086 sum += cpu_rq(i)->nr_uninterruptible;
f711f609
GS
2087
2088 /*
1da177e4
LT
2089 * Since we read the counters lockless, it might be slightly
2090 * inaccurate. Do not allow it to go below zero though:
f711f609 2091 */
1da177e4
LT
2092 if (unlikely((long)sum < 0))
2093 sum = 0;
f711f609 2094
1da177e4 2095 return sum;
f711f609 2096}
f711f609 2097
1da177e4 2098unsigned long long nr_context_switches(void)
46cb4b7c 2099{
cc94abfc
SR
2100 int i;
2101 unsigned long long sum = 0;
46cb4b7c 2102
0a945022 2103 for_each_possible_cpu(i)
1da177e4 2104 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2105
1da177e4
LT
2106 return sum;
2107}
483b4ee6 2108
1da177e4
LT
2109unsigned long nr_iowait(void)
2110{
2111 unsigned long i, sum = 0;
483b4ee6 2112
0a945022 2113 for_each_possible_cpu(i)
1da177e4 2114 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2115
1da177e4
LT
2116 return sum;
2117}
483b4ee6 2118
8c215bd3 2119unsigned long nr_iowait_cpu(int cpu)
69d25870 2120{
8c215bd3 2121 struct rq *this = cpu_rq(cpu);
69d25870
AV
2122 return atomic_read(&this->nr_iowait);
2123}
46cb4b7c 2124
69d25870
AV
2125unsigned long this_cpu_load(void)
2126{
2127 struct rq *this = this_rq();
2128 return this->cpu_load[0];
2129}
e790fb0b 2130
46cb4b7c 2131
dce48a84
TG
2132/* Variables and functions for calc_load */
2133static atomic_long_t calc_load_tasks;
2134static unsigned long calc_load_update;
2135unsigned long avenrun[3];
2136EXPORT_SYMBOL(avenrun);
46cb4b7c 2137
74f5187a
PZ
2138static long calc_load_fold_active(struct rq *this_rq)
2139{
2140 long nr_active, delta = 0;
2141
2142 nr_active = this_rq->nr_running;
2143 nr_active += (long) this_rq->nr_uninterruptible;
2144
2145 if (nr_active != this_rq->calc_load_active) {
2146 delta = nr_active - this_rq->calc_load_active;
2147 this_rq->calc_load_active = nr_active;
2148 }
2149
2150 return delta;
2151}
2152
0f004f5a
PZ
2153static unsigned long
2154calc_load(unsigned long load, unsigned long exp, unsigned long active)
2155{
2156 load *= exp;
2157 load += active * (FIXED_1 - exp);
2158 load += 1UL << (FSHIFT - 1);
2159 return load >> FSHIFT;
2160}
2161
74f5187a
PZ
2162#ifdef CONFIG_NO_HZ
2163/*
2164 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
2165 *
2166 * When making the ILB scale, we should try to pull this in as well.
2167 */
2168static atomic_long_t calc_load_tasks_idle;
2169
029632fb 2170void calc_load_account_idle(struct rq *this_rq)
74f5187a
PZ
2171{
2172 long delta;
2173
2174 delta = calc_load_fold_active(this_rq);
2175 if (delta)
2176 atomic_long_add(delta, &calc_load_tasks_idle);
2177}
2178
2179static long calc_load_fold_idle(void)
2180{
2181 long delta = 0;
2182
2183 /*
2184 * Its got a race, we don't care...
2185 */
2186 if (atomic_long_read(&calc_load_tasks_idle))
2187 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
2188
2189 return delta;
2190}
0f004f5a
PZ
2191
2192/**
2193 * fixed_power_int - compute: x^n, in O(log n) time
2194 *
2195 * @x: base of the power
2196 * @frac_bits: fractional bits of @x
2197 * @n: power to raise @x to.
2198 *
2199 * By exploiting the relation between the definition of the natural power
2200 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2201 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2202 * (where: n_i \elem {0, 1}, the binary vector representing n),
2203 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2204 * of course trivially computable in O(log_2 n), the length of our binary
2205 * vector.
2206 */
2207static unsigned long
2208fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2209{
2210 unsigned long result = 1UL << frac_bits;
2211
2212 if (n) for (;;) {
2213 if (n & 1) {
2214 result *= x;
2215 result += 1UL << (frac_bits - 1);
2216 result >>= frac_bits;
2217 }
2218 n >>= 1;
2219 if (!n)
2220 break;
2221 x *= x;
2222 x += 1UL << (frac_bits - 1);
2223 x >>= frac_bits;
2224 }
2225
2226 return result;
2227}
2228
2229/*
2230 * a1 = a0 * e + a * (1 - e)
2231 *
2232 * a2 = a1 * e + a * (1 - e)
2233 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2234 * = a0 * e^2 + a * (1 - e) * (1 + e)
2235 *
2236 * a3 = a2 * e + a * (1 - e)
2237 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2238 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2239 *
2240 * ...
2241 *
2242 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2243 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2244 * = a0 * e^n + a * (1 - e^n)
2245 *
2246 * [1] application of the geometric series:
2247 *
2248 * n 1 - x^(n+1)
2249 * S_n := \Sum x^i = -------------
2250 * i=0 1 - x
2251 */
2252static unsigned long
2253calc_load_n(unsigned long load, unsigned long exp,
2254 unsigned long active, unsigned int n)
2255{
2256
2257 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2258}
2259
2260/*
2261 * NO_HZ can leave us missing all per-cpu ticks calling
2262 * calc_load_account_active(), but since an idle CPU folds its delta into
2263 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2264 * in the pending idle delta if our idle period crossed a load cycle boundary.
2265 *
2266 * Once we've updated the global active value, we need to apply the exponential
2267 * weights adjusted to the number of cycles missed.
2268 */
2269static void calc_global_nohz(unsigned long ticks)
2270{
2271 long delta, active, n;
2272
2273 if (time_before(jiffies, calc_load_update))
2274 return;
2275
2276 /*
2277 * If we crossed a calc_load_update boundary, make sure to fold
2278 * any pending idle changes, the respective CPUs might have
2279 * missed the tick driven calc_load_account_active() update
2280 * due to NO_HZ.
2281 */
2282 delta = calc_load_fold_idle();
2283 if (delta)
2284 atomic_long_add(delta, &calc_load_tasks);
2285
2286 /*
2287 * If we were idle for multiple load cycles, apply them.
2288 */
2289 if (ticks >= LOAD_FREQ) {
2290 n = ticks / LOAD_FREQ;
2291
2292 active = atomic_long_read(&calc_load_tasks);
2293 active = active > 0 ? active * FIXED_1 : 0;
2294
2295 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2296 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2297 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2298
2299 calc_load_update += n * LOAD_FREQ;
2300 }
2301
2302 /*
2303 * Its possible the remainder of the above division also crosses
2304 * a LOAD_FREQ period, the regular check in calc_global_load()
2305 * which comes after this will take care of that.
2306 *
2307 * Consider us being 11 ticks before a cycle completion, and us
2308 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
2309 * age us 4 cycles, and the test in calc_global_load() will
2310 * pick up the final one.
2311 */
2312}
74f5187a 2313#else
029632fb 2314void calc_load_account_idle(struct rq *this_rq)
74f5187a
PZ
2315{
2316}
2317
2318static inline long calc_load_fold_idle(void)
2319{
2320 return 0;
2321}
0f004f5a
PZ
2322
2323static void calc_global_nohz(unsigned long ticks)
2324{
2325}
74f5187a
PZ
2326#endif
2327
2d02494f
TG
2328/**
2329 * get_avenrun - get the load average array
2330 * @loads: pointer to dest load array
2331 * @offset: offset to add
2332 * @shift: shift count to shift the result left
2333 *
2334 * These values are estimates at best, so no need for locking.
2335 */
2336void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2337{
2338 loads[0] = (avenrun[0] + offset) << shift;
2339 loads[1] = (avenrun[1] + offset) << shift;
2340 loads[2] = (avenrun[2] + offset) << shift;
46cb4b7c 2341}
46cb4b7c 2342
46cb4b7c 2343/*
dce48a84
TG
2344 * calc_load - update the avenrun load estimates 10 ticks after the
2345 * CPUs have updated calc_load_tasks.
7835b98b 2346 */
0f004f5a 2347void calc_global_load(unsigned long ticks)
7835b98b 2348{
dce48a84 2349 long active;
1da177e4 2350
0f004f5a
PZ
2351 calc_global_nohz(ticks);
2352
2353 if (time_before(jiffies, calc_load_update + 10))
dce48a84 2354 return;
1da177e4 2355
dce48a84
TG
2356 active = atomic_long_read(&calc_load_tasks);
2357 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 2358
dce48a84
TG
2359 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2360 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2361 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 2362
dce48a84
TG
2363 calc_load_update += LOAD_FREQ;
2364}
1da177e4 2365
dce48a84 2366/*
74f5187a
PZ
2367 * Called from update_cpu_load() to periodically update this CPU's
2368 * active count.
dce48a84
TG
2369 */
2370static void calc_load_account_active(struct rq *this_rq)
2371{
74f5187a 2372 long delta;
08c183f3 2373
74f5187a
PZ
2374 if (time_before(jiffies, this_rq->calc_load_update))
2375 return;
783609c6 2376
74f5187a
PZ
2377 delta = calc_load_fold_active(this_rq);
2378 delta += calc_load_fold_idle();
2379 if (delta)
dce48a84 2380 atomic_long_add(delta, &calc_load_tasks);
74f5187a
PZ
2381
2382 this_rq->calc_load_update += LOAD_FREQ;
46cb4b7c
SS
2383}
2384
fdf3e95d
VP
2385/*
2386 * The exact cpuload at various idx values, calculated at every tick would be
2387 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2388 *
2389 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2390 * on nth tick when cpu may be busy, then we have:
2391 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2392 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2393 *
2394 * decay_load_missed() below does efficient calculation of
2395 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2396 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2397 *
2398 * The calculation is approximated on a 128 point scale.
2399 * degrade_zero_ticks is the number of ticks after which load at any
2400 * particular idx is approximated to be zero.
2401 * degrade_factor is a precomputed table, a row for each load idx.
2402 * Each column corresponds to degradation factor for a power of two ticks,
2403 * based on 128 point scale.
2404 * Example:
2405 * row 2, col 3 (=12) says that the degradation at load idx 2 after
2406 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2407 *
2408 * With this power of 2 load factors, we can degrade the load n times
2409 * by looking at 1 bits in n and doing as many mult/shift instead of
2410 * n mult/shifts needed by the exact degradation.
2411 */
2412#define DEGRADE_SHIFT 7
2413static const unsigned char
2414 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2415static const unsigned char
2416 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2417 {0, 0, 0, 0, 0, 0, 0, 0},
2418 {64, 32, 8, 0, 0, 0, 0, 0},
2419 {96, 72, 40, 12, 1, 0, 0},
2420 {112, 98, 75, 43, 15, 1, 0},
2421 {120, 112, 98, 76, 45, 16, 2} };
2422
2423/*
2424 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2425 * would be when CPU is idle and so we just decay the old load without
2426 * adding any new load.
2427 */
2428static unsigned long
2429decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2430{
2431 int j = 0;
2432
2433 if (!missed_updates)
2434 return load;
2435
2436 if (missed_updates >= degrade_zero_ticks[idx])
2437 return 0;
2438
2439 if (idx == 1)
2440 return load >> missed_updates;
2441
2442 while (missed_updates) {
2443 if (missed_updates % 2)
2444 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2445
2446 missed_updates >>= 1;
2447 j++;
2448 }
2449 return load;
2450}
2451
46cb4b7c 2452/*
dd41f596 2453 * Update rq->cpu_load[] statistics. This function is usually called every
fdf3e95d
VP
2454 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2455 * every tick. We fix it up based on jiffies.
46cb4b7c 2456 */
029632fb 2457void update_cpu_load(struct rq *this_rq)
46cb4b7c 2458{
495eca49 2459 unsigned long this_load = this_rq->load.weight;
fdf3e95d
VP
2460 unsigned long curr_jiffies = jiffies;
2461 unsigned long pending_updates;
dd41f596 2462 int i, scale;
46cb4b7c 2463
dd41f596 2464 this_rq->nr_load_updates++;
46cb4b7c 2465
fdf3e95d
VP
2466 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
2467 if (curr_jiffies == this_rq->last_load_update_tick)
2468 return;
2469
2470 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2471 this_rq->last_load_update_tick = curr_jiffies;
2472
dd41f596 2473 /* Update our load: */
fdf3e95d
VP
2474 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2475 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
dd41f596 2476 unsigned long old_load, new_load;
7d1e6a9b 2477
dd41f596 2478 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 2479
dd41f596 2480 old_load = this_rq->cpu_load[i];
fdf3e95d 2481 old_load = decay_load_missed(old_load, pending_updates - 1, i);
dd41f596 2482 new_load = this_load;
a25707f3
IM
2483 /*
2484 * Round up the averaging division if load is increasing. This
2485 * prevents us from getting stuck on 9 if the load is 10, for
2486 * example.
2487 */
2488 if (new_load > old_load)
fdf3e95d
VP
2489 new_load += scale - 1;
2490
2491 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
dd41f596 2492 }
da2b71ed
SS
2493
2494 sched_avg_update(this_rq);
fdf3e95d
VP
2495}
2496
2497static void update_cpu_load_active(struct rq *this_rq)
2498{
2499 update_cpu_load(this_rq);
46cb4b7c 2500
74f5187a 2501 calc_load_account_active(this_rq);
46cb4b7c
SS
2502}
2503
dd41f596 2504#ifdef CONFIG_SMP
8a0be9ef 2505
46cb4b7c 2506/*
38022906
PZ
2507 * sched_exec - execve() is a valuable balancing opportunity, because at
2508 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2509 */
38022906 2510void sched_exec(void)
46cb4b7c 2511{
38022906 2512 struct task_struct *p = current;
1da177e4 2513 unsigned long flags;
0017d735 2514 int dest_cpu;
46cb4b7c 2515
8f42ced9 2516 raw_spin_lock_irqsave(&p->pi_lock, flags);
7608dec2 2517 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
0017d735
PZ
2518 if (dest_cpu == smp_processor_id())
2519 goto unlock;
38022906 2520
8f42ced9 2521 if (likely(cpu_active(dest_cpu))) {
969c7921 2522 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2523
8f42ced9
PZ
2524 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2525 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2526 return;
2527 }
0017d735 2528unlock:
8f42ced9 2529 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2530}
dd41f596 2531
1da177e4
LT
2532#endif
2533
1da177e4 2534DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2535DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2536
2537EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2538EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4
LT
2539
2540/*
c5f8d995 2541 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 2542 * @p in case that task is currently running.
c5f8d995
HS
2543 *
2544 * Called with task_rq_lock() held on @rq.
1da177e4 2545 */
c5f8d995
HS
2546static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2547{
2548 u64 ns = 0;
2549
2550 if (task_current(rq, p)) {
2551 update_rq_clock(rq);
305e6835 2552 ns = rq->clock_task - p->se.exec_start;
c5f8d995
HS
2553 if ((s64)ns < 0)
2554 ns = 0;
2555 }
2556
2557 return ns;
2558}
2559
bb34d92f 2560unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 2561{
1da177e4 2562 unsigned long flags;
41b86e9c 2563 struct rq *rq;
bb34d92f 2564 u64 ns = 0;
48f24c4d 2565
41b86e9c 2566 rq = task_rq_lock(p, &flags);
c5f8d995 2567 ns = do_task_delta_exec(p, rq);
0122ec5b 2568 task_rq_unlock(rq, p, &flags);
1508487e 2569
c5f8d995
HS
2570 return ns;
2571}
f06febc9 2572
c5f8d995
HS
2573/*
2574 * Return accounted runtime for the task.
2575 * In case the task is currently running, return the runtime plus current's
2576 * pending runtime that have not been accounted yet.
2577 */
2578unsigned long long task_sched_runtime(struct task_struct *p)
2579{
2580 unsigned long flags;
2581 struct rq *rq;
2582 u64 ns = 0;
2583
2584 rq = task_rq_lock(p, &flags);
2585 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 2586 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2587
2588 return ns;
2589}
48f24c4d 2590
54c707e9
GC
2591#ifdef CONFIG_CGROUP_CPUACCT
2592struct cgroup_subsys cpuacct_subsys;
2593struct cpuacct root_cpuacct;
2594#endif
2595
be726ffd
GC
2596static inline void task_group_account_field(struct task_struct *p, int index,
2597 u64 tmp)
54c707e9
GC
2598{
2599#ifdef CONFIG_CGROUP_CPUACCT
2600 struct kernel_cpustat *kcpustat;
2601 struct cpuacct *ca;
2602#endif
2603 /*
2604 * Since all updates are sure to touch the root cgroup, we
2605 * get ourselves ahead and touch it first. If the root cgroup
2606 * is the only cgroup, then nothing else should be necessary.
2607 *
2608 */
2609 __get_cpu_var(kernel_cpustat).cpustat[index] += tmp;
2610
2611#ifdef CONFIG_CGROUP_CPUACCT
2612 if (unlikely(!cpuacct_subsys.active))
2613 return;
2614
2615 rcu_read_lock();
2616 ca = task_ca(p);
2617 while (ca && (ca != &root_cpuacct)) {
2618 kcpustat = this_cpu_ptr(ca->cpustat);
2619 kcpustat->cpustat[index] += tmp;
2620 ca = parent_ca(ca);
2621 }
2622 rcu_read_unlock();
2623#endif
2624}
2625
2626
1da177e4
LT
2627/*
2628 * Account user cpu time to a process.
2629 * @p: the process that the cpu time gets accounted to
1da177e4 2630 * @cputime: the cpu time spent in user space since the last update
457533a7 2631 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 2632 */
457533a7
MS
2633void account_user_time(struct task_struct *p, cputime_t cputime,
2634 cputime_t cputime_scaled)
1da177e4 2635{
3292beb3 2636 int index;
1da177e4 2637
457533a7 2638 /* Add user time to process. */
64861634
MS
2639 p->utime += cputime;
2640 p->utimescaled += cputime_scaled;
f06febc9 2641 account_group_user_time(p, cputime);
1da177e4 2642
3292beb3 2643 index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
ef12fefa 2644
1da177e4 2645 /* Add user time to cpustat. */
612ef28a 2646 task_group_account_field(p, index, (__force u64) cputime);
ef12fefa 2647
49b5cf34
JL
2648 /* Account for user time used */
2649 acct_update_integrals(p);
1da177e4
LT
2650}
2651
94886b84
LV
2652/*
2653 * Account guest cpu time to a process.
2654 * @p: the process that the cpu time gets accounted to
2655 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 2656 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 2657 */
457533a7
MS
2658static void account_guest_time(struct task_struct *p, cputime_t cputime,
2659 cputime_t cputime_scaled)
94886b84 2660{
3292beb3 2661 u64 *cpustat = kcpustat_this_cpu->cpustat;
94886b84 2662
457533a7 2663 /* Add guest time to process. */
64861634
MS
2664 p->utime += cputime;
2665 p->utimescaled += cputime_scaled;
f06febc9 2666 account_group_user_time(p, cputime);
64861634 2667 p->gtime += cputime;
94886b84 2668
457533a7 2669 /* Add guest time to cpustat. */
ce0e7b28 2670 if (TASK_NICE(p) > 0) {
612ef28a
MS
2671 cpustat[CPUTIME_NICE] += (__force u64) cputime;
2672 cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
ce0e7b28 2673 } else {
612ef28a
MS
2674 cpustat[CPUTIME_USER] += (__force u64) cputime;
2675 cpustat[CPUTIME_GUEST] += (__force u64) cputime;
ce0e7b28 2676 }
94886b84
LV
2677}
2678
70a89a66
VP
2679/*
2680 * Account system cpu time to a process and desired cpustat field
2681 * @p: the process that the cpu time gets accounted to
2682 * @cputime: the cpu time spent in kernel space since the last update
2683 * @cputime_scaled: cputime scaled by cpu frequency
2684 * @target_cputime64: pointer to cpustat field that has to be updated
2685 */
2686static inline
2687void __account_system_time(struct task_struct *p, cputime_t cputime,
3292beb3 2688 cputime_t cputime_scaled, int index)
70a89a66 2689{
70a89a66 2690 /* Add system time to process. */
64861634
MS
2691 p->stime += cputime;
2692 p->stimescaled += cputime_scaled;
70a89a66
VP
2693 account_group_system_time(p, cputime);
2694
2695 /* Add system time to cpustat. */
612ef28a 2696 task_group_account_field(p, index, (__force u64) cputime);
70a89a66
VP
2697
2698 /* Account for system time used */
2699 acct_update_integrals(p);
2700}
2701
1da177e4
LT
2702/*
2703 * Account system cpu time to a process.
2704 * @p: the process that the cpu time gets accounted to
2705 * @hardirq_offset: the offset to subtract from hardirq_count()
2706 * @cputime: the cpu time spent in kernel space since the last update
457533a7 2707 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
2708 */
2709void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 2710 cputime_t cputime, cputime_t cputime_scaled)
1da177e4 2711{
3292beb3 2712 int index;
1da177e4 2713
983ed7a6 2714 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 2715 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
2716 return;
2717 }
94886b84 2718
1da177e4 2719 if (hardirq_count() - hardirq_offset)
3292beb3 2720 index = CPUTIME_IRQ;
75e1056f 2721 else if (in_serving_softirq())
3292beb3 2722 index = CPUTIME_SOFTIRQ;
1da177e4 2723 else
3292beb3 2724 index = CPUTIME_SYSTEM;
ef12fefa 2725
3292beb3 2726 __account_system_time(p, cputime, cputime_scaled, index);
1da177e4
LT
2727}
2728
c66f08be 2729/*
1da177e4 2730 * Account for involuntary wait time.
544b4a1f 2731 * @cputime: the cpu time spent in involuntary wait
c66f08be 2732 */
79741dd3 2733void account_steal_time(cputime_t cputime)
c66f08be 2734{
3292beb3 2735 u64 *cpustat = kcpustat_this_cpu->cpustat;
79741dd3 2736
612ef28a 2737 cpustat[CPUTIME_STEAL] += (__force u64) cputime;
c66f08be
MN
2738}
2739
1da177e4 2740/*
79741dd3
MS
2741 * Account for idle time.
2742 * @cputime: the cpu time spent in idle wait
1da177e4 2743 */
79741dd3 2744void account_idle_time(cputime_t cputime)
1da177e4 2745{
3292beb3 2746 u64 *cpustat = kcpustat_this_cpu->cpustat;
70b97a7f 2747 struct rq *rq = this_rq();
1da177e4 2748
79741dd3 2749 if (atomic_read(&rq->nr_iowait) > 0)
612ef28a 2750 cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
79741dd3 2751 else
612ef28a 2752 cpustat[CPUTIME_IDLE] += (__force u64) cputime;
1da177e4
LT
2753}
2754
e6e6685a
GC
2755static __always_inline bool steal_account_process_tick(void)
2756{
2757#ifdef CONFIG_PARAVIRT
2758 if (static_branch(&paravirt_steal_enabled)) {
2759 u64 steal, st = 0;
2760
2761 steal = paravirt_steal_clock(smp_processor_id());
2762 steal -= this_rq()->prev_steal_time;
2763
2764 st = steal_ticks(steal);
2765 this_rq()->prev_steal_time += st * TICK_NSEC;
2766
2767 account_steal_time(st);
2768 return st;
2769 }
2770#endif
2771 return false;
2772}
2773
79741dd3
MS
2774#ifndef CONFIG_VIRT_CPU_ACCOUNTING
2775
abb74cef
VP
2776#ifdef CONFIG_IRQ_TIME_ACCOUNTING
2777/*
2778 * Account a tick to a process and cpustat
2779 * @p: the process that the cpu time gets accounted to
2780 * @user_tick: is the tick from userspace
2781 * @rq: the pointer to rq
2782 *
2783 * Tick demultiplexing follows the order
2784 * - pending hardirq update
2785 * - pending softirq update
2786 * - user_time
2787 * - idle_time
2788 * - system time
2789 * - check for guest_time
2790 * - else account as system_time
2791 *
2792 * Check for hardirq is done both for system and user time as there is
2793 * no timer going off while we are on hardirq and hence we may never get an
2794 * opportunity to update it solely in system time.
2795 * p->stime and friends are only updated on system time and not on irq
2796 * softirq as those do not count in task exec_runtime any more.
2797 */
2798static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
2799 struct rq *rq)
2800{
2801 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3292beb3 2802 u64 *cpustat = kcpustat_this_cpu->cpustat;
abb74cef 2803
e6e6685a
GC
2804 if (steal_account_process_tick())
2805 return;
2806
abb74cef 2807 if (irqtime_account_hi_update()) {
612ef28a 2808 cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy;
abb74cef 2809 } else if (irqtime_account_si_update()) {
612ef28a 2810 cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy;
414bee9b
VP
2811 } else if (this_cpu_ksoftirqd() == p) {
2812 /*
2813 * ksoftirqd time do not get accounted in cpu_softirq_time.
2814 * So, we have to handle it separately here.
2815 * Also, p->stime needs to be updated for ksoftirqd.
2816 */
2817 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3292beb3 2818 CPUTIME_SOFTIRQ);
abb74cef
VP
2819 } else if (user_tick) {
2820 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
2821 } else if (p == rq->idle) {
2822 account_idle_time(cputime_one_jiffy);
2823 } else if (p->flags & PF_VCPU) { /* System time or guest time */
2824 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
2825 } else {
2826 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3292beb3 2827 CPUTIME_SYSTEM);
abb74cef
VP
2828 }
2829}
2830
2831static void irqtime_account_idle_ticks(int ticks)
2832{
2833 int i;
2834 struct rq *rq = this_rq();
2835
2836 for (i = 0; i < ticks; i++)
2837 irqtime_account_process_tick(current, 0, rq);
2838}
544b4a1f 2839#else /* CONFIG_IRQ_TIME_ACCOUNTING */
abb74cef
VP
2840static void irqtime_account_idle_ticks(int ticks) {}
2841static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
2842 struct rq *rq) {}
544b4a1f 2843#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
79741dd3
MS
2844
2845/*
2846 * Account a single tick of cpu time.
2847 * @p: the process that the cpu time gets accounted to
2848 * @user_tick: indicates if the tick is a user or a system tick
2849 */
2850void account_process_tick(struct task_struct *p, int user_tick)
2851{
a42548a1 2852 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
2853 struct rq *rq = this_rq();
2854
abb74cef
VP
2855 if (sched_clock_irqtime) {
2856 irqtime_account_process_tick(p, user_tick, rq);
2857 return;
2858 }
2859
e6e6685a
GC
2860 if (steal_account_process_tick())
2861 return;
2862
79741dd3 2863 if (user_tick)
a42548a1 2864 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 2865 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 2866 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
2867 one_jiffy_scaled);
2868 else
a42548a1 2869 account_idle_time(cputime_one_jiffy);
79741dd3
MS
2870}
2871
2872/*
2873 * Account multiple ticks of steal time.
2874 * @p: the process from which the cpu time has been stolen
2875 * @ticks: number of stolen ticks
2876 */
2877void account_steal_ticks(unsigned long ticks)
2878{
2879 account_steal_time(jiffies_to_cputime(ticks));
2880}
2881
2882/*
2883 * Account multiple ticks of idle time.
2884 * @ticks: number of stolen ticks
2885 */
2886void account_idle_ticks(unsigned long ticks)
2887{
abb74cef
VP
2888
2889 if (sched_clock_irqtime) {
2890 irqtime_account_idle_ticks(ticks);
2891 return;
2892 }
2893
79741dd3 2894 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
2895}
2896
79741dd3
MS
2897#endif
2898
49048622
BS
2899/*
2900 * Use precise platform statistics if available:
2901 */
2902#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 2903void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 2904{
d99ca3b9
HS
2905 *ut = p->utime;
2906 *st = p->stime;
49048622
BS
2907}
2908
0cf55e1e 2909void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 2910{
0cf55e1e
HS
2911 struct task_cputime cputime;
2912
2913 thread_group_cputime(p, &cputime);
2914
2915 *ut = cputime.utime;
2916 *st = cputime.stime;
49048622
BS
2917}
2918#else
761b1d26
HS
2919
2920#ifndef nsecs_to_cputime
b7b20df9 2921# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
2922#endif
2923
d180c5bc 2924void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 2925{
64861634 2926 cputime_t rtime, utime = p->utime, total = utime + p->stime;
49048622
BS
2927
2928 /*
2929 * Use CFS's precise accounting:
2930 */
d180c5bc 2931 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
2932
2933 if (total) {
64861634 2934 u64 temp = (__force u64) rtime;
d180c5bc 2935
64861634
MS
2936 temp *= (__force u64) utime;
2937 do_div(temp, (__force u32) total);
2938 utime = (__force cputime_t) temp;
d180c5bc
HS
2939 } else
2940 utime = rtime;
49048622 2941
d180c5bc
HS
2942 /*
2943 * Compare with previous values, to keep monotonicity:
2944 */
761b1d26 2945 p->prev_utime = max(p->prev_utime, utime);
64861634 2946 p->prev_stime = max(p->prev_stime, rtime - p->prev_utime);
49048622 2947
d99ca3b9
HS
2948 *ut = p->prev_utime;
2949 *st = p->prev_stime;
49048622
BS
2950}
2951
0cf55e1e
HS
2952/*
2953 * Must be called with siglock held.
2954 */
2955void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 2956{
0cf55e1e
HS
2957 struct signal_struct *sig = p->signal;
2958 struct task_cputime cputime;
2959 cputime_t rtime, utime, total;
49048622 2960
0cf55e1e 2961 thread_group_cputime(p, &cputime);
49048622 2962
64861634 2963 total = cputime.utime + cputime.stime;
0cf55e1e 2964 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 2965
0cf55e1e 2966 if (total) {
64861634 2967 u64 temp = (__force u64) rtime;
49048622 2968
64861634
MS
2969 temp *= (__force u64) cputime.utime;
2970 do_div(temp, (__force u32) total);
2971 utime = (__force cputime_t) temp;
0cf55e1e
HS
2972 } else
2973 utime = rtime;
2974
2975 sig->prev_utime = max(sig->prev_utime, utime);
64861634 2976 sig->prev_stime = max(sig->prev_stime, rtime - sig->prev_utime);
0cf55e1e
HS
2977
2978 *ut = sig->prev_utime;
2979 *st = sig->prev_stime;
49048622 2980}
49048622 2981#endif
49048622 2982
7835b98b
CL
2983/*
2984 * This function gets called by the timer code, with HZ frequency.
2985 * We call it with interrupts disabled.
7835b98b
CL
2986 */
2987void scheduler_tick(void)
2988{
7835b98b
CL
2989 int cpu = smp_processor_id();
2990 struct rq *rq = cpu_rq(cpu);
dd41f596 2991 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2992
2993 sched_clock_tick();
dd41f596 2994
05fa785c 2995 raw_spin_lock(&rq->lock);
3e51f33f 2996 update_rq_clock(rq);
fdf3e95d 2997 update_cpu_load_active(rq);
fa85ae24 2998 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 2999 raw_spin_unlock(&rq->lock);
7835b98b 3000
e9d2b064 3001 perf_event_task_tick();
e220d2dc 3002
e418e1c2 3003#ifdef CONFIG_SMP
6eb57e0d 3004 rq->idle_balance = idle_cpu(cpu);
dd41f596 3005 trigger_load_balance(rq, cpu);
e418e1c2 3006#endif
1da177e4
LT
3007}
3008
132380a0 3009notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
3010{
3011 if (in_lock_functions(addr)) {
3012 addr = CALLER_ADDR2;
3013 if (in_lock_functions(addr))
3014 addr = CALLER_ADDR3;
3015 }
3016 return addr;
3017}
1da177e4 3018
7e49fcce
SR
3019#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3020 defined(CONFIG_PREEMPT_TRACER))
3021
43627582 3022void __kprobes add_preempt_count(int val)
1da177e4 3023{
6cd8a4bb 3024#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3025 /*
3026 * Underflow?
3027 */
9a11b49a
IM
3028 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3029 return;
6cd8a4bb 3030#endif
1da177e4 3031 preempt_count() += val;
6cd8a4bb 3032#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3033 /*
3034 * Spinlock count overflowing soon?
3035 */
33859f7f
MOS
3036 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3037 PREEMPT_MASK - 10);
6cd8a4bb
SR
3038#endif
3039 if (preempt_count() == val)
3040 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3041}
3042EXPORT_SYMBOL(add_preempt_count);
3043
43627582 3044void __kprobes sub_preempt_count(int val)
1da177e4 3045{
6cd8a4bb 3046#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3047 /*
3048 * Underflow?
3049 */
01e3eb82 3050 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3051 return;
1da177e4
LT
3052 /*
3053 * Is the spinlock portion underflowing?
3054 */
9a11b49a
IM
3055 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3056 !(preempt_count() & PREEMPT_MASK)))
3057 return;
6cd8a4bb 3058#endif
9a11b49a 3059
6cd8a4bb
SR
3060 if (preempt_count() == val)
3061 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3062 preempt_count() -= val;
3063}
3064EXPORT_SYMBOL(sub_preempt_count);
3065
3066#endif
3067
3068/*
dd41f596 3069 * Print scheduling while atomic bug:
1da177e4 3070 */
dd41f596 3071static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3072{
838225b4
SS
3073 struct pt_regs *regs = get_irq_regs();
3074
664dfa65
DJ
3075 if (oops_in_progress)
3076 return;
3077
3df0fc5b
PZ
3078 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3079 prev->comm, prev->pid, preempt_count());
838225b4 3080
dd41f596 3081 debug_show_held_locks(prev);
e21f5b15 3082 print_modules();
dd41f596
IM
3083 if (irqs_disabled())
3084 print_irqtrace_events(prev);
838225b4
SS
3085
3086 if (regs)
3087 show_regs(regs);
3088 else
3089 dump_stack();
dd41f596 3090}
1da177e4 3091
dd41f596
IM
3092/*
3093 * Various schedule()-time debugging checks and statistics:
3094 */
3095static inline void schedule_debug(struct task_struct *prev)
3096{
1da177e4 3097 /*
41a2d6cf 3098 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
3099 * schedule() atomically, we ignore that path for now.
3100 * Otherwise, whine if we are scheduling when we should not be.
3101 */
3f33a7ce 3102 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596 3103 __schedule_bug(prev);
b3fbab05 3104 rcu_sleep_check();
dd41f596 3105
1da177e4
LT
3106 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3107
2d72376b 3108 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
3109}
3110
6cecd084 3111static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 3112{
61eadef6 3113 if (prev->on_rq || rq->skip_clock_update < 0)
a64692a3 3114 update_rq_clock(rq);
6cecd084 3115 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
3116}
3117
dd41f596
IM
3118/*
3119 * Pick up the highest-prio task:
3120 */
3121static inline struct task_struct *
b67802ea 3122pick_next_task(struct rq *rq)
dd41f596 3123{
5522d5d5 3124 const struct sched_class *class;
dd41f596 3125 struct task_struct *p;
1da177e4
LT
3126
3127 /*
dd41f596
IM
3128 * Optimization: we know that if all tasks are in
3129 * the fair class we can call that function directly:
1da177e4 3130 */
953bfcd1 3131 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
fb8d4724 3132 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3133 if (likely(p))
3134 return p;
1da177e4
LT
3135 }
3136
34f971f6 3137 for_each_class(class) {
fb8d4724 3138 p = class->pick_next_task(rq);
dd41f596
IM
3139 if (p)
3140 return p;
dd41f596 3141 }
34f971f6
PZ
3142
3143 BUG(); /* the idle class will always have a runnable task */
dd41f596 3144}
1da177e4 3145
dd41f596 3146/*
c259e01a 3147 * __schedule() is the main scheduler function.
dd41f596 3148 */
c259e01a 3149static void __sched __schedule(void)
dd41f596
IM
3150{
3151 struct task_struct *prev, *next;
67ca7bde 3152 unsigned long *switch_count;
dd41f596 3153 struct rq *rq;
31656519 3154 int cpu;
dd41f596 3155
ff743345
PZ
3156need_resched:
3157 preempt_disable();
dd41f596
IM
3158 cpu = smp_processor_id();
3159 rq = cpu_rq(cpu);
25502a6c 3160 rcu_note_context_switch(cpu);
dd41f596 3161 prev = rq->curr;
dd41f596 3162
dd41f596 3163 schedule_debug(prev);
1da177e4 3164
31656519 3165 if (sched_feat(HRTICK))
f333fdc9 3166 hrtick_clear(rq);
8f4d37ec 3167
05fa785c 3168 raw_spin_lock_irq(&rq->lock);
1da177e4 3169
246d86b5 3170 switch_count = &prev->nivcsw;
1da177e4 3171 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 3172 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 3173 prev->state = TASK_RUNNING;
21aa9af0 3174 } else {
2acca55e
PZ
3175 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3176 prev->on_rq = 0;
3177
21aa9af0 3178 /*
2acca55e
PZ
3179 * If a worker went to sleep, notify and ask workqueue
3180 * whether it wants to wake up a task to maintain
3181 * concurrency.
21aa9af0
TH
3182 */
3183 if (prev->flags & PF_WQ_WORKER) {
3184 struct task_struct *to_wakeup;
3185
3186 to_wakeup = wq_worker_sleeping(prev, cpu);
3187 if (to_wakeup)
3188 try_to_wake_up_local(to_wakeup);
3189 }
21aa9af0 3190 }
dd41f596 3191 switch_count = &prev->nvcsw;
1da177e4
LT
3192 }
3193
3f029d3c 3194 pre_schedule(rq, prev);
f65eda4f 3195
dd41f596 3196 if (unlikely(!rq->nr_running))
1da177e4 3197 idle_balance(cpu, rq);
1da177e4 3198
df1c99d4 3199 put_prev_task(rq, prev);
b67802ea 3200 next = pick_next_task(rq);
f26f9aff
MG
3201 clear_tsk_need_resched(prev);
3202 rq->skip_clock_update = 0;
1da177e4 3203
1da177e4 3204 if (likely(prev != next)) {
1da177e4
LT
3205 rq->nr_switches++;
3206 rq->curr = next;
3207 ++*switch_count;
3208
dd41f596 3209 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 3210 /*
246d86b5
ON
3211 * The context switch have flipped the stack from under us
3212 * and restored the local variables which were saved when
3213 * this task called schedule() in the past. prev == current
3214 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
3215 */
3216 cpu = smp_processor_id();
3217 rq = cpu_rq(cpu);
1da177e4 3218 } else
05fa785c 3219 raw_spin_unlock_irq(&rq->lock);
1da177e4 3220
3f029d3c 3221 post_schedule(rq);
1da177e4 3222
ba74c144 3223 sched_preempt_enable_no_resched();
ff743345 3224 if (need_resched())
1da177e4
LT
3225 goto need_resched;
3226}
c259e01a 3227
9c40cef2
TG
3228static inline void sched_submit_work(struct task_struct *tsk)
3229{
3c7d5184 3230 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
3231 return;
3232 /*
3233 * If we are going to sleep and we have plugged IO queued,
3234 * make sure to submit it to avoid deadlocks.
3235 */
3236 if (blk_needs_flush_plug(tsk))
3237 blk_schedule_flush_plug(tsk);
3238}
3239
6ebbe7a0 3240asmlinkage void __sched schedule(void)
c259e01a 3241{
9c40cef2
TG
3242 struct task_struct *tsk = current;
3243
3244 sched_submit_work(tsk);
c259e01a
TG
3245 __schedule();
3246}
1da177e4
LT
3247EXPORT_SYMBOL(schedule);
3248
c5491ea7
TG
3249/**
3250 * schedule_preempt_disabled - called with preemption disabled
3251 *
3252 * Returns with preemption disabled. Note: preempt_count must be 1
3253 */
3254void __sched schedule_preempt_disabled(void)
3255{
ba74c144 3256 sched_preempt_enable_no_resched();
c5491ea7
TG
3257 schedule();
3258 preempt_disable();
3259}
3260
c08f7829 3261#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d 3262
c6eb3dda
PZ
3263static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
3264{
c6eb3dda 3265 if (lock->owner != owner)
307bf980 3266 return false;
0d66bf6d
PZ
3267
3268 /*
c6eb3dda
PZ
3269 * Ensure we emit the owner->on_cpu, dereference _after_ checking
3270 * lock->owner still matches owner, if that fails, owner might
3271 * point to free()d memory, if it still matches, the rcu_read_lock()
3272 * ensures the memory stays valid.
0d66bf6d 3273 */
c6eb3dda 3274 barrier();
0d66bf6d 3275
307bf980 3276 return owner->on_cpu;
c6eb3dda 3277}
0d66bf6d 3278
c6eb3dda
PZ
3279/*
3280 * Look out! "owner" is an entirely speculative pointer
3281 * access and not reliable.
3282 */
3283int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
3284{
3285 if (!sched_feat(OWNER_SPIN))
3286 return 0;
0d66bf6d 3287
307bf980 3288 rcu_read_lock();
c6eb3dda
PZ
3289 while (owner_running(lock, owner)) {
3290 if (need_resched())
307bf980 3291 break;
0d66bf6d 3292
335d7afb 3293 arch_mutex_cpu_relax();
0d66bf6d 3294 }
307bf980 3295 rcu_read_unlock();
4b402210 3296
c6eb3dda 3297 /*
307bf980
TG
3298 * We break out the loop above on need_resched() and when the
3299 * owner changed, which is a sign for heavy contention. Return
3300 * success only when lock->owner is NULL.
c6eb3dda 3301 */
307bf980 3302 return lock->owner == NULL;
0d66bf6d
PZ
3303}
3304#endif
3305
1da177e4
LT
3306#ifdef CONFIG_PREEMPT
3307/*
2ed6e34f 3308 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3309 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3310 * occur there and call schedule directly.
3311 */
d1f74e20 3312asmlinkage void __sched notrace preempt_schedule(void)
1da177e4
LT
3313{
3314 struct thread_info *ti = current_thread_info();
6478d880 3315
1da177e4
LT
3316 /*
3317 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3318 * we do not want to preempt the current task. Just return..
1da177e4 3319 */
beed33a8 3320 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3321 return;
3322
3a5c359a 3323 do {
d1f74e20 3324 add_preempt_count_notrace(PREEMPT_ACTIVE);
c259e01a 3325 __schedule();
d1f74e20 3326 sub_preempt_count_notrace(PREEMPT_ACTIVE);
1da177e4 3327
3a5c359a
AK
3328 /*
3329 * Check again in case we missed a preemption opportunity
3330 * between schedule and now.
3331 */
3332 barrier();
5ed0cec0 3333 } while (need_resched());
1da177e4 3334}
1da177e4
LT
3335EXPORT_SYMBOL(preempt_schedule);
3336
3337/*
2ed6e34f 3338 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3339 * off of irq context.
3340 * Note, that this is called and return with irqs disabled. This will
3341 * protect us against recursive calling from irq.
3342 */
3343asmlinkage void __sched preempt_schedule_irq(void)
3344{
3345 struct thread_info *ti = current_thread_info();
6478d880 3346
2ed6e34f 3347 /* Catch callers which need to be fixed */
1da177e4
LT
3348 BUG_ON(ti->preempt_count || !irqs_disabled());
3349
3a5c359a
AK
3350 do {
3351 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 3352 local_irq_enable();
c259e01a 3353 __schedule();
3a5c359a 3354 local_irq_disable();
3a5c359a 3355 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3356
3a5c359a
AK
3357 /*
3358 * Check again in case we missed a preemption opportunity
3359 * between schedule and now.
3360 */
3361 barrier();
5ed0cec0 3362 } while (need_resched());
1da177e4
LT
3363}
3364
3365#endif /* CONFIG_PREEMPT */
3366
63859d4f 3367int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3368 void *key)
1da177e4 3369{
63859d4f 3370 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3371}
1da177e4
LT
3372EXPORT_SYMBOL(default_wake_function);
3373
3374/*
41a2d6cf
IM
3375 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3376 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
3377 * number) then we wake all the non-exclusive tasks and one exclusive task.
3378 *
3379 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 3380 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
3381 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3382 */
78ddb08f 3383static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 3384 int nr_exclusive, int wake_flags, void *key)
1da177e4 3385{
2e45874c 3386 wait_queue_t *curr, *next;
1da177e4 3387
2e45874c 3388 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
3389 unsigned flags = curr->flags;
3390
63859d4f 3391 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 3392 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3393 break;
3394 }
3395}
3396
3397/**
3398 * __wake_up - wake up threads blocked on a waitqueue.
3399 * @q: the waitqueue
3400 * @mode: which threads
3401 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3402 * @key: is directly passed to the wakeup function
50fa610a
DH
3403 *
3404 * It may be assumed that this function implies a write memory barrier before
3405 * changing the task state if and only if any tasks are woken up.
1da177e4 3406 */
7ad5b3a5 3407void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3408 int nr_exclusive, void *key)
1da177e4
LT
3409{
3410 unsigned long flags;
3411
3412 spin_lock_irqsave(&q->lock, flags);
3413 __wake_up_common(q, mode, nr_exclusive, 0, key);
3414 spin_unlock_irqrestore(&q->lock, flags);
3415}
1da177e4
LT
3416EXPORT_SYMBOL(__wake_up);
3417
3418/*
3419 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3420 */
63b20011 3421void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
1da177e4 3422{
63b20011 3423 __wake_up_common(q, mode, nr, 0, NULL);
1da177e4 3424}
22c43c81 3425EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 3426
4ede816a
DL
3427void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3428{
3429 __wake_up_common(q, mode, 1, 0, key);
3430}
bf294b41 3431EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4ede816a 3432
1da177e4 3433/**
4ede816a 3434 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
3435 * @q: the waitqueue
3436 * @mode: which threads
3437 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 3438 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
3439 *
3440 * The sync wakeup differs that the waker knows that it will schedule
3441 * away soon, so while the target thread will be woken up, it will not
3442 * be migrated to another CPU - ie. the two threads are 'synchronized'
3443 * with each other. This can prevent needless bouncing between CPUs.
3444 *
3445 * On UP it can prevent extra preemption.
50fa610a
DH
3446 *
3447 * It may be assumed that this function implies a write memory barrier before
3448 * changing the task state if and only if any tasks are woken up.
1da177e4 3449 */
4ede816a
DL
3450void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3451 int nr_exclusive, void *key)
1da177e4
LT
3452{
3453 unsigned long flags;
7d478721 3454 int wake_flags = WF_SYNC;
1da177e4
LT
3455
3456 if (unlikely(!q))
3457 return;
3458
3459 if (unlikely(!nr_exclusive))
7d478721 3460 wake_flags = 0;
1da177e4
LT
3461
3462 spin_lock_irqsave(&q->lock, flags);
7d478721 3463 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
3464 spin_unlock_irqrestore(&q->lock, flags);
3465}
4ede816a
DL
3466EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3467
3468/*
3469 * __wake_up_sync - see __wake_up_sync_key()
3470 */
3471void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3472{
3473 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3474}
1da177e4
LT
3475EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3476
65eb3dc6
KD
3477/**
3478 * complete: - signals a single thread waiting on this completion
3479 * @x: holds the state of this particular completion
3480 *
3481 * This will wake up a single thread waiting on this completion. Threads will be
3482 * awakened in the same order in which they were queued.
3483 *
3484 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
3485 *
3486 * It may be assumed that this function implies a write memory barrier before
3487 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3488 */
b15136e9 3489void complete(struct completion *x)
1da177e4
LT
3490{
3491 unsigned long flags;
3492
3493 spin_lock_irqsave(&x->wait.lock, flags);
3494 x->done++;
d9514f6c 3495 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
3496 spin_unlock_irqrestore(&x->wait.lock, flags);
3497}
3498EXPORT_SYMBOL(complete);
3499
65eb3dc6
KD
3500/**
3501 * complete_all: - signals all threads waiting on this completion
3502 * @x: holds the state of this particular completion
3503 *
3504 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
3505 *
3506 * It may be assumed that this function implies a write memory barrier before
3507 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3508 */
b15136e9 3509void complete_all(struct completion *x)
1da177e4
LT
3510{
3511 unsigned long flags;
3512
3513 spin_lock_irqsave(&x->wait.lock, flags);
3514 x->done += UINT_MAX/2;
d9514f6c 3515 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
3516 spin_unlock_irqrestore(&x->wait.lock, flags);
3517}
3518EXPORT_SYMBOL(complete_all);
3519
8cbbe86d
AK
3520static inline long __sched
3521do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3522{
1da177e4
LT
3523 if (!x->done) {
3524 DECLARE_WAITQUEUE(wait, current);
3525
a93d2f17 3526 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 3527 do {
94d3d824 3528 if (signal_pending_state(state, current)) {
ea71a546
ON
3529 timeout = -ERESTARTSYS;
3530 break;
8cbbe86d
AK
3531 }
3532 __set_current_state(state);
1da177e4
LT
3533 spin_unlock_irq(&x->wait.lock);
3534 timeout = schedule_timeout(timeout);
3535 spin_lock_irq(&x->wait.lock);
ea71a546 3536 } while (!x->done && timeout);
1da177e4 3537 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
3538 if (!x->done)
3539 return timeout;
1da177e4
LT
3540 }
3541 x->done--;
ea71a546 3542 return timeout ?: 1;
1da177e4 3543}
1da177e4 3544
8cbbe86d
AK
3545static long __sched
3546wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3547{
1da177e4
LT
3548 might_sleep();
3549
3550 spin_lock_irq(&x->wait.lock);
8cbbe86d 3551 timeout = do_wait_for_common(x, timeout, state);
1da177e4 3552 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
3553 return timeout;
3554}
1da177e4 3555
65eb3dc6
KD
3556/**
3557 * wait_for_completion: - waits for completion of a task
3558 * @x: holds the state of this particular completion
3559 *
3560 * This waits to be signaled for completion of a specific task. It is NOT
3561 * interruptible and there is no timeout.
3562 *
3563 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3564 * and interrupt capability. Also see complete().
3565 */
b15136e9 3566void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
3567{
3568 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 3569}
8cbbe86d 3570EXPORT_SYMBOL(wait_for_completion);
1da177e4 3571
65eb3dc6
KD
3572/**
3573 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3574 * @x: holds the state of this particular completion
3575 * @timeout: timeout value in jiffies
3576 *
3577 * This waits for either a completion of a specific task to be signaled or for a
3578 * specified timeout to expire. The timeout is in jiffies. It is not
3579 * interruptible.
c6dc7f05
BF
3580 *
3581 * The return value is 0 if timed out, and positive (at least 1, or number of
3582 * jiffies left till timeout) if completed.
65eb3dc6 3583 */
b15136e9 3584unsigned long __sched
8cbbe86d 3585wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 3586{
8cbbe86d 3587 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 3588}
8cbbe86d 3589EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 3590
65eb3dc6
KD
3591/**
3592 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3593 * @x: holds the state of this particular completion
3594 *
3595 * This waits for completion of a specific task to be signaled. It is
3596 * interruptible.
c6dc7f05
BF
3597 *
3598 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
65eb3dc6 3599 */
8cbbe86d 3600int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 3601{
51e97990
AK
3602 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3603 if (t == -ERESTARTSYS)
3604 return t;
3605 return 0;
0fec171c 3606}
8cbbe86d 3607EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 3608
65eb3dc6
KD
3609/**
3610 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3611 * @x: holds the state of this particular completion
3612 * @timeout: timeout value in jiffies
3613 *
3614 * This waits for either a completion of a specific task to be signaled or for a
3615 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
c6dc7f05
BF
3616 *
3617 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3618 * positive (at least 1, or number of jiffies left till timeout) if completed.
65eb3dc6 3619 */
6bf41237 3620long __sched
8cbbe86d
AK
3621wait_for_completion_interruptible_timeout(struct completion *x,
3622 unsigned long timeout)
0fec171c 3623{
8cbbe86d 3624 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 3625}
8cbbe86d 3626EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 3627
65eb3dc6
KD
3628/**
3629 * wait_for_completion_killable: - waits for completion of a task (killable)
3630 * @x: holds the state of this particular completion
3631 *
3632 * This waits to be signaled for completion of a specific task. It can be
3633 * interrupted by a kill signal.
c6dc7f05
BF
3634 *
3635 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
65eb3dc6 3636 */
009e577e
MW
3637int __sched wait_for_completion_killable(struct completion *x)
3638{
3639 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3640 if (t == -ERESTARTSYS)
3641 return t;
3642 return 0;
3643}
3644EXPORT_SYMBOL(wait_for_completion_killable);
3645
0aa12fb4
SW
3646/**
3647 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3648 * @x: holds the state of this particular completion
3649 * @timeout: timeout value in jiffies
3650 *
3651 * This waits for either a completion of a specific task to be
3652 * signaled or for a specified timeout to expire. It can be
3653 * interrupted by a kill signal. The timeout is in jiffies.
c6dc7f05
BF
3654 *
3655 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3656 * positive (at least 1, or number of jiffies left till timeout) if completed.
0aa12fb4 3657 */
6bf41237 3658long __sched
0aa12fb4
SW
3659wait_for_completion_killable_timeout(struct completion *x,
3660 unsigned long timeout)
3661{
3662 return wait_for_common(x, timeout, TASK_KILLABLE);
3663}
3664EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3665
be4de352
DC
3666/**
3667 * try_wait_for_completion - try to decrement a completion without blocking
3668 * @x: completion structure
3669 *
3670 * Returns: 0 if a decrement cannot be done without blocking
3671 * 1 if a decrement succeeded.
3672 *
3673 * If a completion is being used as a counting completion,
3674 * attempt to decrement the counter without blocking. This
3675 * enables us to avoid waiting if the resource the completion
3676 * is protecting is not available.
3677 */
3678bool try_wait_for_completion(struct completion *x)
3679{
7539a3b3 3680 unsigned long flags;
be4de352
DC
3681 int ret = 1;
3682
7539a3b3 3683 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
3684 if (!x->done)
3685 ret = 0;
3686 else
3687 x->done--;
7539a3b3 3688 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
3689 return ret;
3690}
3691EXPORT_SYMBOL(try_wait_for_completion);
3692
3693/**
3694 * completion_done - Test to see if a completion has any waiters
3695 * @x: completion structure
3696 *
3697 * Returns: 0 if there are waiters (wait_for_completion() in progress)
3698 * 1 if there are no waiters.
3699 *
3700 */
3701bool completion_done(struct completion *x)
3702{
7539a3b3 3703 unsigned long flags;
be4de352
DC
3704 int ret = 1;
3705
7539a3b3 3706 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
3707 if (!x->done)
3708 ret = 0;
7539a3b3 3709 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
3710 return ret;
3711}
3712EXPORT_SYMBOL(completion_done);
3713
8cbbe86d
AK
3714static long __sched
3715sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 3716{
0fec171c
IM
3717 unsigned long flags;
3718 wait_queue_t wait;
3719
3720 init_waitqueue_entry(&wait, current);
1da177e4 3721
8cbbe86d 3722 __set_current_state(state);
1da177e4 3723
8cbbe86d
AK
3724 spin_lock_irqsave(&q->lock, flags);
3725 __add_wait_queue(q, &wait);
3726 spin_unlock(&q->lock);
3727 timeout = schedule_timeout(timeout);
3728 spin_lock_irq(&q->lock);
3729 __remove_wait_queue(q, &wait);
3730 spin_unlock_irqrestore(&q->lock, flags);
3731
3732 return timeout;
3733}
3734
3735void __sched interruptible_sleep_on(wait_queue_head_t *q)
3736{
3737 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3738}
1da177e4
LT
3739EXPORT_SYMBOL(interruptible_sleep_on);
3740
0fec171c 3741long __sched
95cdf3b7 3742interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3743{
8cbbe86d 3744 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 3745}
1da177e4
LT
3746EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3747
0fec171c 3748void __sched sleep_on(wait_queue_head_t *q)
1da177e4 3749{
8cbbe86d 3750 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3751}
1da177e4
LT
3752EXPORT_SYMBOL(sleep_on);
3753
0fec171c 3754long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3755{
8cbbe86d 3756 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 3757}
1da177e4
LT
3758EXPORT_SYMBOL(sleep_on_timeout);
3759
b29739f9
IM
3760#ifdef CONFIG_RT_MUTEXES
3761
3762/*
3763 * rt_mutex_setprio - set the current priority of a task
3764 * @p: task
3765 * @prio: prio value (kernel-internal form)
3766 *
3767 * This function changes the 'effective' priority of a task. It does
3768 * not touch ->normal_prio like __setscheduler().
3769 *
3770 * Used by the rt_mutex code to implement priority inheritance logic.
3771 */
36c8b586 3772void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3773{
83b699ed 3774 int oldprio, on_rq, running;
70b97a7f 3775 struct rq *rq;
83ab0aa0 3776 const struct sched_class *prev_class;
b29739f9
IM
3777
3778 BUG_ON(prio < 0 || prio > MAX_PRIO);
3779
0122ec5b 3780 rq = __task_rq_lock(p);
b29739f9 3781
1c4dd99b
TG
3782 /*
3783 * Idle task boosting is a nono in general. There is one
3784 * exception, when PREEMPT_RT and NOHZ is active:
3785 *
3786 * The idle task calls get_next_timer_interrupt() and holds
3787 * the timer wheel base->lock on the CPU and another CPU wants
3788 * to access the timer (probably to cancel it). We can safely
3789 * ignore the boosting request, as the idle CPU runs this code
3790 * with interrupts disabled and will complete the lock
3791 * protected section without being interrupted. So there is no
3792 * real need to boost.
3793 */
3794 if (unlikely(p == rq->idle)) {
3795 WARN_ON(p != rq->curr);
3796 WARN_ON(p->pi_blocked_on);
3797 goto out_unlock;
3798 }
3799
a8027073 3800 trace_sched_pi_setprio(p, prio);
d5f9f942 3801 oldprio = p->prio;
83ab0aa0 3802 prev_class = p->sched_class;
fd2f4419 3803 on_rq = p->on_rq;
051a1d1a 3804 running = task_current(rq, p);
0e1f3483 3805 if (on_rq)
69be72c1 3806 dequeue_task(rq, p, 0);
0e1f3483
HS
3807 if (running)
3808 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
3809
3810 if (rt_prio(prio))
3811 p->sched_class = &rt_sched_class;
3812 else
3813 p->sched_class = &fair_sched_class;
3814
b29739f9
IM
3815 p->prio = prio;
3816
0e1f3483
HS
3817 if (running)
3818 p->sched_class->set_curr_task(rq);
da7a735e 3819 if (on_rq)
371fd7e7 3820 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845 3821
da7a735e 3822 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3823out_unlock:
0122ec5b 3824 __task_rq_unlock(rq);
b29739f9 3825}
b29739f9 3826#endif
36c8b586 3827void set_user_nice(struct task_struct *p, long nice)
1da177e4 3828{
dd41f596 3829 int old_prio, delta, on_rq;
1da177e4 3830 unsigned long flags;
70b97a7f 3831 struct rq *rq;
1da177e4
LT
3832
3833 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3834 return;
3835 /*
3836 * We have to be careful, if called from sys_setpriority(),
3837 * the task might be in the middle of scheduling on another CPU.
3838 */
3839 rq = task_rq_lock(p, &flags);
3840 /*
3841 * The RT priorities are set via sched_setscheduler(), but we still
3842 * allow the 'normal' nice value to be set - but as expected
3843 * it wont have any effect on scheduling until the task is
dd41f596 3844 * SCHED_FIFO/SCHED_RR:
1da177e4 3845 */
e05606d3 3846 if (task_has_rt_policy(p)) {
1da177e4
LT
3847 p->static_prio = NICE_TO_PRIO(nice);
3848 goto out_unlock;
3849 }
fd2f4419 3850 on_rq = p->on_rq;
c09595f6 3851 if (on_rq)
69be72c1 3852 dequeue_task(rq, p, 0);
1da177e4 3853
1da177e4 3854 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3855 set_load_weight(p);
b29739f9
IM
3856 old_prio = p->prio;
3857 p->prio = effective_prio(p);
3858 delta = p->prio - old_prio;
1da177e4 3859
dd41f596 3860 if (on_rq) {
371fd7e7 3861 enqueue_task(rq, p, 0);
1da177e4 3862 /*
d5f9f942
AM
3863 * If the task increased its priority or is running and
3864 * lowered its priority, then reschedule its CPU:
1da177e4 3865 */
d5f9f942 3866 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
3867 resched_task(rq->curr);
3868 }
3869out_unlock:
0122ec5b 3870 task_rq_unlock(rq, p, &flags);
1da177e4 3871}
1da177e4
LT
3872EXPORT_SYMBOL(set_user_nice);
3873
e43379f1
MM
3874/*
3875 * can_nice - check if a task can reduce its nice value
3876 * @p: task
3877 * @nice: nice value
3878 */
36c8b586 3879int can_nice(const struct task_struct *p, const int nice)
e43379f1 3880{
024f4747
MM
3881 /* convert nice value [19,-20] to rlimit style value [1,40] */
3882 int nice_rlim = 20 - nice;
48f24c4d 3883
78d7d407 3884 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3885 capable(CAP_SYS_NICE));
3886}
3887
1da177e4
LT
3888#ifdef __ARCH_WANT_SYS_NICE
3889
3890/*
3891 * sys_nice - change the priority of the current process.
3892 * @increment: priority increment
3893 *
3894 * sys_setpriority is a more generic, but much slower function that
3895 * does similar things.
3896 */
5add95d4 3897SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3898{
48f24c4d 3899 long nice, retval;
1da177e4
LT
3900
3901 /*
3902 * Setpriority might change our priority at the same moment.
3903 * We don't have to worry. Conceptually one call occurs first
3904 * and we have a single winner.
3905 */
e43379f1
MM
3906 if (increment < -40)
3907 increment = -40;
1da177e4
LT
3908 if (increment > 40)
3909 increment = 40;
3910
2b8f836f 3911 nice = TASK_NICE(current) + increment;
1da177e4
LT
3912 if (nice < -20)
3913 nice = -20;
3914 if (nice > 19)
3915 nice = 19;
3916
e43379f1
MM
3917 if (increment < 0 && !can_nice(current, nice))
3918 return -EPERM;
3919
1da177e4
LT
3920 retval = security_task_setnice(current, nice);
3921 if (retval)
3922 return retval;
3923
3924 set_user_nice(current, nice);
3925 return 0;
3926}
3927
3928#endif
3929
3930/**
3931 * task_prio - return the priority value of a given task.
3932 * @p: the task in question.
3933 *
3934 * This is the priority value as seen by users in /proc.
3935 * RT tasks are offset by -200. Normal tasks are centered
3936 * around 0, value goes from -16 to +15.
3937 */
36c8b586 3938int task_prio(const struct task_struct *p)
1da177e4
LT
3939{
3940 return p->prio - MAX_RT_PRIO;
3941}
3942
3943/**
3944 * task_nice - return the nice value of a given task.
3945 * @p: the task in question.
3946 */
36c8b586 3947int task_nice(const struct task_struct *p)
1da177e4
LT
3948{
3949 return TASK_NICE(p);
3950}
150d8bed 3951EXPORT_SYMBOL(task_nice);
1da177e4
LT
3952
3953/**
3954 * idle_cpu - is a given cpu idle currently?
3955 * @cpu: the processor in question.
3956 */
3957int idle_cpu(int cpu)
3958{
908a3283
TG
3959 struct rq *rq = cpu_rq(cpu);
3960
3961 if (rq->curr != rq->idle)
3962 return 0;
3963
3964 if (rq->nr_running)
3965 return 0;
3966
3967#ifdef CONFIG_SMP
3968 if (!llist_empty(&rq->wake_list))
3969 return 0;
3970#endif
3971
3972 return 1;
1da177e4
LT
3973}
3974
1da177e4
LT
3975/**
3976 * idle_task - return the idle task for a given cpu.
3977 * @cpu: the processor in question.
3978 */
36c8b586 3979struct task_struct *idle_task(int cpu)
1da177e4
LT
3980{
3981 return cpu_rq(cpu)->idle;
3982}
3983
3984/**
3985 * find_process_by_pid - find a process with a matching PID value.
3986 * @pid: the pid in question.
3987 */
a9957449 3988static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3989{
228ebcbe 3990 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3991}
3992
3993/* Actually do priority change: must hold rq lock. */
dd41f596
IM
3994static void
3995__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 3996{
1da177e4
LT
3997 p->policy = policy;
3998 p->rt_priority = prio;
b29739f9
IM
3999 p->normal_prio = normal_prio(p);
4000 /* we are holding p->pi_lock already */
4001 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
4002 if (rt_prio(p->prio))
4003 p->sched_class = &rt_sched_class;
4004 else
4005 p->sched_class = &fair_sched_class;
2dd73a4f 4006 set_load_weight(p);
1da177e4
LT
4007}
4008
c69e8d9c
DH
4009/*
4010 * check the target process has a UID that matches the current process's
4011 */
4012static bool check_same_owner(struct task_struct *p)
4013{
4014 const struct cred *cred = current_cred(), *pcred;
4015 bool match;
4016
4017 rcu_read_lock();
4018 pcred = __task_cred(p);
b0e77598
SH
4019 if (cred->user->user_ns == pcred->user->user_ns)
4020 match = (cred->euid == pcred->euid ||
4021 cred->euid == pcred->uid);
4022 else
4023 match = false;
c69e8d9c
DH
4024 rcu_read_unlock();
4025 return match;
4026}
4027
961ccddd 4028static int __sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4029 const struct sched_param *param, bool user)
1da177e4 4030{
83b699ed 4031 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4032 unsigned long flags;
83ab0aa0 4033 const struct sched_class *prev_class;
70b97a7f 4034 struct rq *rq;
ca94c442 4035 int reset_on_fork;
1da177e4 4036
66e5393a
SR
4037 /* may grab non-irq protected spin_locks */
4038 BUG_ON(in_interrupt());
1da177e4
LT
4039recheck:
4040 /* double check policy once rq lock held */
ca94c442
LP
4041 if (policy < 0) {
4042 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4043 policy = oldpolicy = p->policy;
ca94c442
LP
4044 } else {
4045 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4046 policy &= ~SCHED_RESET_ON_FORK;
4047
4048 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4049 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4050 policy != SCHED_IDLE)
4051 return -EINVAL;
4052 }
4053
1da177e4
LT
4054 /*
4055 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4056 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4057 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4058 */
4059 if (param->sched_priority < 0 ||
95cdf3b7 4060 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4061 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4062 return -EINVAL;
e05606d3 4063 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4064 return -EINVAL;
4065
37e4ab3f
OC
4066 /*
4067 * Allow unprivileged RT tasks to decrease priority:
4068 */
961ccddd 4069 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 4070 if (rt_policy(policy)) {
a44702e8
ON
4071 unsigned long rlim_rtprio =
4072 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
4073
4074 /* can't set/change the rt policy */
4075 if (policy != p->policy && !rlim_rtprio)
4076 return -EPERM;
4077
4078 /* can't increase priority */
4079 if (param->sched_priority > p->rt_priority &&
4080 param->sched_priority > rlim_rtprio)
4081 return -EPERM;
4082 }
c02aa73b 4083
dd41f596 4084 /*
c02aa73b
DH
4085 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4086 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 4087 */
c02aa73b
DH
4088 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
4089 if (!can_nice(p, TASK_NICE(p)))
4090 return -EPERM;
4091 }
5fe1d75f 4092
37e4ab3f 4093 /* can't change other user's priorities */
c69e8d9c 4094 if (!check_same_owner(p))
37e4ab3f 4095 return -EPERM;
ca94c442
LP
4096
4097 /* Normal users shall not reset the sched_reset_on_fork flag */
4098 if (p->sched_reset_on_fork && !reset_on_fork)
4099 return -EPERM;
37e4ab3f 4100 }
1da177e4 4101
725aad24 4102 if (user) {
b0ae1981 4103 retval = security_task_setscheduler(p);
725aad24
JF
4104 if (retval)
4105 return retval;
4106 }
4107
b29739f9
IM
4108 /*
4109 * make sure no PI-waiters arrive (or leave) while we are
4110 * changing the priority of the task:
0122ec5b 4111 *
25985edc 4112 * To be able to change p->policy safely, the appropriate
1da177e4
LT
4113 * runqueue lock must be held.
4114 */
0122ec5b 4115 rq = task_rq_lock(p, &flags);
dc61b1d6 4116
34f971f6
PZ
4117 /*
4118 * Changing the policy of the stop threads its a very bad idea
4119 */
4120 if (p == rq->stop) {
0122ec5b 4121 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
4122 return -EINVAL;
4123 }
4124
a51e9198
DF
4125 /*
4126 * If not changing anything there's no need to proceed further:
4127 */
4128 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
4129 param->sched_priority == p->rt_priority))) {
4130
4131 __task_rq_unlock(rq);
4132 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4133 return 0;
4134 }
4135
dc61b1d6
PZ
4136#ifdef CONFIG_RT_GROUP_SCHED
4137 if (user) {
4138 /*
4139 * Do not allow realtime tasks into groups that have no runtime
4140 * assigned.
4141 */
4142 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
4143 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4144 !task_group_is_autogroup(task_group(p))) {
0122ec5b 4145 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
4146 return -EPERM;
4147 }
4148 }
4149#endif
4150
1da177e4
LT
4151 /* recheck policy now with rq lock held */
4152 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4153 policy = oldpolicy = -1;
0122ec5b 4154 task_rq_unlock(rq, p, &flags);
1da177e4
LT
4155 goto recheck;
4156 }
fd2f4419 4157 on_rq = p->on_rq;
051a1d1a 4158 running = task_current(rq, p);
0e1f3483 4159 if (on_rq)
4ca9b72b 4160 dequeue_task(rq, p, 0);
0e1f3483
HS
4161 if (running)
4162 p->sched_class->put_prev_task(rq, p);
f6b53205 4163
ca94c442
LP
4164 p->sched_reset_on_fork = reset_on_fork;
4165
1da177e4 4166 oldprio = p->prio;
83ab0aa0 4167 prev_class = p->sched_class;
dd41f596 4168 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4169
0e1f3483
HS
4170 if (running)
4171 p->sched_class->set_curr_task(rq);
da7a735e 4172 if (on_rq)
4ca9b72b 4173 enqueue_task(rq, p, 0);
cb469845 4174
da7a735e 4175 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 4176 task_rq_unlock(rq, p, &flags);
b29739f9 4177
95e02ca9
TG
4178 rt_mutex_adjust_pi(p);
4179
1da177e4
LT
4180 return 0;
4181}
961ccddd
RR
4182
4183/**
4184 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4185 * @p: the task in question.
4186 * @policy: new policy.
4187 * @param: structure containing the new RT priority.
4188 *
4189 * NOTE that the task may be already dead.
4190 */
4191int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4192 const struct sched_param *param)
961ccddd
RR
4193{
4194 return __sched_setscheduler(p, policy, param, true);
4195}
1da177e4
LT
4196EXPORT_SYMBOL_GPL(sched_setscheduler);
4197
961ccddd
RR
4198/**
4199 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4200 * @p: the task in question.
4201 * @policy: new policy.
4202 * @param: structure containing the new RT priority.
4203 *
4204 * Just like sched_setscheduler, only don't bother checking if the
4205 * current context has permission. For example, this is needed in
4206 * stop_machine(): we create temporary high priority worker threads,
4207 * but our caller might not have that capability.
4208 */
4209int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 4210 const struct sched_param *param)
961ccddd
RR
4211{
4212 return __sched_setscheduler(p, policy, param, false);
4213}
4214
95cdf3b7
IM
4215static int
4216do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4217{
1da177e4
LT
4218 struct sched_param lparam;
4219 struct task_struct *p;
36c8b586 4220 int retval;
1da177e4
LT
4221
4222 if (!param || pid < 0)
4223 return -EINVAL;
4224 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4225 return -EFAULT;
5fe1d75f
ON
4226
4227 rcu_read_lock();
4228 retval = -ESRCH;
1da177e4 4229 p = find_process_by_pid(pid);
5fe1d75f
ON
4230 if (p != NULL)
4231 retval = sched_setscheduler(p, policy, &lparam);
4232 rcu_read_unlock();
36c8b586 4233
1da177e4
LT
4234 return retval;
4235}
4236
4237/**
4238 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4239 * @pid: the pid in question.
4240 * @policy: new policy.
4241 * @param: structure containing the new RT priority.
4242 */
5add95d4
HC
4243SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4244 struct sched_param __user *, param)
1da177e4 4245{
c21761f1
JB
4246 /* negative values for policy are not valid */
4247 if (policy < 0)
4248 return -EINVAL;
4249
1da177e4
LT
4250 return do_sched_setscheduler(pid, policy, param);
4251}
4252
4253/**
4254 * sys_sched_setparam - set/change the RT priority of a thread
4255 * @pid: the pid in question.
4256 * @param: structure containing the new RT priority.
4257 */
5add95d4 4258SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4259{
4260 return do_sched_setscheduler(pid, -1, param);
4261}
4262
4263/**
4264 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4265 * @pid: the pid in question.
4266 */
5add95d4 4267SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4268{
36c8b586 4269 struct task_struct *p;
3a5c359a 4270 int retval;
1da177e4
LT
4271
4272 if (pid < 0)
3a5c359a 4273 return -EINVAL;
1da177e4
LT
4274
4275 retval = -ESRCH;
5fe85be0 4276 rcu_read_lock();
1da177e4
LT
4277 p = find_process_by_pid(pid);
4278 if (p) {
4279 retval = security_task_getscheduler(p);
4280 if (!retval)
ca94c442
LP
4281 retval = p->policy
4282 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4283 }
5fe85be0 4284 rcu_read_unlock();
1da177e4
LT
4285 return retval;
4286}
4287
4288/**
ca94c442 4289 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4290 * @pid: the pid in question.
4291 * @param: structure containing the RT priority.
4292 */
5add95d4 4293SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4294{
4295 struct sched_param lp;
36c8b586 4296 struct task_struct *p;
3a5c359a 4297 int retval;
1da177e4
LT
4298
4299 if (!param || pid < 0)
3a5c359a 4300 return -EINVAL;
1da177e4 4301
5fe85be0 4302 rcu_read_lock();
1da177e4
LT
4303 p = find_process_by_pid(pid);
4304 retval = -ESRCH;
4305 if (!p)
4306 goto out_unlock;
4307
4308 retval = security_task_getscheduler(p);
4309 if (retval)
4310 goto out_unlock;
4311
4312 lp.sched_priority = p->rt_priority;
5fe85be0 4313 rcu_read_unlock();
1da177e4
LT
4314
4315 /*
4316 * This one might sleep, we cannot do it with a spinlock held ...
4317 */
4318 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4319
1da177e4
LT
4320 return retval;
4321
4322out_unlock:
5fe85be0 4323 rcu_read_unlock();
1da177e4
LT
4324 return retval;
4325}
4326
96f874e2 4327long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4328{
5a16f3d3 4329 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4330 struct task_struct *p;
4331 int retval;
1da177e4 4332
95402b38 4333 get_online_cpus();
23f5d142 4334 rcu_read_lock();
1da177e4
LT
4335
4336 p = find_process_by_pid(pid);
4337 if (!p) {
23f5d142 4338 rcu_read_unlock();
95402b38 4339 put_online_cpus();
1da177e4
LT
4340 return -ESRCH;
4341 }
4342
23f5d142 4343 /* Prevent p going away */
1da177e4 4344 get_task_struct(p);
23f5d142 4345 rcu_read_unlock();
1da177e4 4346
5a16f3d3
RR
4347 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4348 retval = -ENOMEM;
4349 goto out_put_task;
4350 }
4351 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4352 retval = -ENOMEM;
4353 goto out_free_cpus_allowed;
4354 }
1da177e4 4355 retval = -EPERM;
f1c84dae 4356 if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE))
1da177e4
LT
4357 goto out_unlock;
4358
b0ae1981 4359 retval = security_task_setscheduler(p);
e7834f8f
DQ
4360 if (retval)
4361 goto out_unlock;
4362
5a16f3d3
RR
4363 cpuset_cpus_allowed(p, cpus_allowed);
4364 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 4365again:
5a16f3d3 4366 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 4367
8707d8b8 4368 if (!retval) {
5a16f3d3
RR
4369 cpuset_cpus_allowed(p, cpus_allowed);
4370 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4371 /*
4372 * We must have raced with a concurrent cpuset
4373 * update. Just reset the cpus_allowed to the
4374 * cpuset's cpus_allowed
4375 */
5a16f3d3 4376 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4377 goto again;
4378 }
4379 }
1da177e4 4380out_unlock:
5a16f3d3
RR
4381 free_cpumask_var(new_mask);
4382out_free_cpus_allowed:
4383 free_cpumask_var(cpus_allowed);
4384out_put_task:
1da177e4 4385 put_task_struct(p);
95402b38 4386 put_online_cpus();
1da177e4
LT
4387 return retval;
4388}
4389
4390static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4391 struct cpumask *new_mask)
1da177e4 4392{
96f874e2
RR
4393 if (len < cpumask_size())
4394 cpumask_clear(new_mask);
4395 else if (len > cpumask_size())
4396 len = cpumask_size();
4397
1da177e4
LT
4398 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4399}
4400
4401/**
4402 * sys_sched_setaffinity - set the cpu affinity of a process
4403 * @pid: pid of the process
4404 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4405 * @user_mask_ptr: user-space pointer to the new cpu mask
4406 */
5add95d4
HC
4407SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4408 unsigned long __user *, user_mask_ptr)
1da177e4 4409{
5a16f3d3 4410 cpumask_var_t new_mask;
1da177e4
LT
4411 int retval;
4412
5a16f3d3
RR
4413 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4414 return -ENOMEM;
1da177e4 4415
5a16f3d3
RR
4416 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4417 if (retval == 0)
4418 retval = sched_setaffinity(pid, new_mask);
4419 free_cpumask_var(new_mask);
4420 return retval;
1da177e4
LT
4421}
4422
96f874e2 4423long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4424{
36c8b586 4425 struct task_struct *p;
31605683 4426 unsigned long flags;
1da177e4 4427 int retval;
1da177e4 4428
95402b38 4429 get_online_cpus();
23f5d142 4430 rcu_read_lock();
1da177e4
LT
4431
4432 retval = -ESRCH;
4433 p = find_process_by_pid(pid);
4434 if (!p)
4435 goto out_unlock;
4436
e7834f8f
DQ
4437 retval = security_task_getscheduler(p);
4438 if (retval)
4439 goto out_unlock;
4440
013fdb80 4441 raw_spin_lock_irqsave(&p->pi_lock, flags);
96f874e2 4442 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
013fdb80 4443 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4444
4445out_unlock:
23f5d142 4446 rcu_read_unlock();
95402b38 4447 put_online_cpus();
1da177e4 4448
9531b62f 4449 return retval;
1da177e4
LT
4450}
4451
4452/**
4453 * sys_sched_getaffinity - get the cpu affinity of a process
4454 * @pid: pid of the process
4455 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4456 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4457 */
5add95d4
HC
4458SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4459 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4460{
4461 int ret;
f17c8607 4462 cpumask_var_t mask;
1da177e4 4463
84fba5ec 4464 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4465 return -EINVAL;
4466 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4467 return -EINVAL;
4468
f17c8607
RR
4469 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4470 return -ENOMEM;
1da177e4 4471
f17c8607
RR
4472 ret = sched_getaffinity(pid, mask);
4473 if (ret == 0) {
8bc037fb 4474 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4475
4476 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4477 ret = -EFAULT;
4478 else
cd3d8031 4479 ret = retlen;
f17c8607
RR
4480 }
4481 free_cpumask_var(mask);
1da177e4 4482
f17c8607 4483 return ret;
1da177e4
LT
4484}
4485
4486/**
4487 * sys_sched_yield - yield the current processor to other threads.
4488 *
dd41f596
IM
4489 * This function yields the current CPU to other tasks. If there are no
4490 * other threads running on this CPU then this function will return.
1da177e4 4491 */
5add95d4 4492SYSCALL_DEFINE0(sched_yield)
1da177e4 4493{
70b97a7f 4494 struct rq *rq = this_rq_lock();
1da177e4 4495
2d72376b 4496 schedstat_inc(rq, yld_count);
4530d7ab 4497 current->sched_class->yield_task(rq);
1da177e4
LT
4498
4499 /*
4500 * Since we are going to call schedule() anyway, there's
4501 * no need to preempt or enable interrupts:
4502 */
4503 __release(rq->lock);
8a25d5de 4504 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4505 do_raw_spin_unlock(&rq->lock);
ba74c144 4506 sched_preempt_enable_no_resched();
1da177e4
LT
4507
4508 schedule();
4509
4510 return 0;
4511}
4512
d86ee480
PZ
4513static inline int should_resched(void)
4514{
4515 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4516}
4517
e7b38404 4518static void __cond_resched(void)
1da177e4 4519{
e7aaaa69 4520 add_preempt_count(PREEMPT_ACTIVE);
c259e01a 4521 __schedule();
e7aaaa69 4522 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
4523}
4524
02b67cc3 4525int __sched _cond_resched(void)
1da177e4 4526{
d86ee480 4527 if (should_resched()) {
1da177e4
LT
4528 __cond_resched();
4529 return 1;
4530 }
4531 return 0;
4532}
02b67cc3 4533EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4534
4535/*
613afbf8 4536 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4537 * call schedule, and on return reacquire the lock.
4538 *
41a2d6cf 4539 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4540 * operations here to prevent schedule() from being called twice (once via
4541 * spin_unlock(), once by hand).
4542 */
613afbf8 4543int __cond_resched_lock(spinlock_t *lock)
1da177e4 4544{
d86ee480 4545 int resched = should_resched();
6df3cecb
JK
4546 int ret = 0;
4547
f607c668
PZ
4548 lockdep_assert_held(lock);
4549
95c354fe 4550 if (spin_needbreak(lock) || resched) {
1da177e4 4551 spin_unlock(lock);
d86ee480 4552 if (resched)
95c354fe
NP
4553 __cond_resched();
4554 else
4555 cpu_relax();
6df3cecb 4556 ret = 1;
1da177e4 4557 spin_lock(lock);
1da177e4 4558 }
6df3cecb 4559 return ret;
1da177e4 4560}
613afbf8 4561EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4562
613afbf8 4563int __sched __cond_resched_softirq(void)
1da177e4
LT
4564{
4565 BUG_ON(!in_softirq());
4566
d86ee480 4567 if (should_resched()) {
98d82567 4568 local_bh_enable();
1da177e4
LT
4569 __cond_resched();
4570 local_bh_disable();
4571 return 1;
4572 }
4573 return 0;
4574}
613afbf8 4575EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4576
1da177e4
LT
4577/**
4578 * yield - yield the current processor to other threads.
4579 *
8e3fabfd
PZ
4580 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4581 *
4582 * The scheduler is at all times free to pick the calling task as the most
4583 * eligible task to run, if removing the yield() call from your code breaks
4584 * it, its already broken.
4585 *
4586 * Typical broken usage is:
4587 *
4588 * while (!event)
4589 * yield();
4590 *
4591 * where one assumes that yield() will let 'the other' process run that will
4592 * make event true. If the current task is a SCHED_FIFO task that will never
4593 * happen. Never use yield() as a progress guarantee!!
4594 *
4595 * If you want to use yield() to wait for something, use wait_event().
4596 * If you want to use yield() to be 'nice' for others, use cond_resched().
4597 * If you still want to use yield(), do not!
1da177e4
LT
4598 */
4599void __sched yield(void)
4600{
4601 set_current_state(TASK_RUNNING);
4602 sys_sched_yield();
4603}
1da177e4
LT
4604EXPORT_SYMBOL(yield);
4605
d95f4122
MG
4606/**
4607 * yield_to - yield the current processor to another thread in
4608 * your thread group, or accelerate that thread toward the
4609 * processor it's on.
16addf95
RD
4610 * @p: target task
4611 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4612 *
4613 * It's the caller's job to ensure that the target task struct
4614 * can't go away on us before we can do any checks.
4615 *
4616 * Returns true if we indeed boosted the target task.
4617 */
4618bool __sched yield_to(struct task_struct *p, bool preempt)
4619{
4620 struct task_struct *curr = current;
4621 struct rq *rq, *p_rq;
4622 unsigned long flags;
4623 bool yielded = 0;
4624
4625 local_irq_save(flags);
4626 rq = this_rq();
4627
4628again:
4629 p_rq = task_rq(p);
4630 double_rq_lock(rq, p_rq);
4631 while (task_rq(p) != p_rq) {
4632 double_rq_unlock(rq, p_rq);
4633 goto again;
4634 }
4635
4636 if (!curr->sched_class->yield_to_task)
4637 goto out;
4638
4639 if (curr->sched_class != p->sched_class)
4640 goto out;
4641
4642 if (task_running(p_rq, p) || p->state)
4643 goto out;
4644
4645 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4646 if (yielded) {
d95f4122 4647 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4648 /*
4649 * Make p's CPU reschedule; pick_next_entity takes care of
4650 * fairness.
4651 */
4652 if (preempt && rq != p_rq)
4653 resched_task(p_rq->curr);
916671c0
MG
4654 } else {
4655 /*
4656 * We might have set it in task_yield_fair(), but are
4657 * not going to schedule(), so don't want to skip
4658 * the next update.
4659 */
4660 rq->skip_clock_update = 0;
6d1cafd8 4661 }
d95f4122
MG
4662
4663out:
4664 double_rq_unlock(rq, p_rq);
4665 local_irq_restore(flags);
4666
4667 if (yielded)
4668 schedule();
4669
4670 return yielded;
4671}
4672EXPORT_SYMBOL_GPL(yield_to);
4673
1da177e4 4674/*
41a2d6cf 4675 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4676 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
4677 */
4678void __sched io_schedule(void)
4679{
54d35f29 4680 struct rq *rq = raw_rq();
1da177e4 4681
0ff92245 4682 delayacct_blkio_start();
1da177e4 4683 atomic_inc(&rq->nr_iowait);
73c10101 4684 blk_flush_plug(current);
8f0dfc34 4685 current->in_iowait = 1;
1da177e4 4686 schedule();
8f0dfc34 4687 current->in_iowait = 0;
1da177e4 4688 atomic_dec(&rq->nr_iowait);
0ff92245 4689 delayacct_blkio_end();
1da177e4 4690}
1da177e4
LT
4691EXPORT_SYMBOL(io_schedule);
4692
4693long __sched io_schedule_timeout(long timeout)
4694{
54d35f29 4695 struct rq *rq = raw_rq();
1da177e4
LT
4696 long ret;
4697
0ff92245 4698 delayacct_blkio_start();
1da177e4 4699 atomic_inc(&rq->nr_iowait);
73c10101 4700 blk_flush_plug(current);
8f0dfc34 4701 current->in_iowait = 1;
1da177e4 4702 ret = schedule_timeout(timeout);
8f0dfc34 4703 current->in_iowait = 0;
1da177e4 4704 atomic_dec(&rq->nr_iowait);
0ff92245 4705 delayacct_blkio_end();
1da177e4
LT
4706 return ret;
4707}
4708
4709/**
4710 * sys_sched_get_priority_max - return maximum RT priority.
4711 * @policy: scheduling class.
4712 *
4713 * this syscall returns the maximum rt_priority that can be used
4714 * by a given scheduling class.
4715 */
5add95d4 4716SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4717{
4718 int ret = -EINVAL;
4719
4720 switch (policy) {
4721 case SCHED_FIFO:
4722 case SCHED_RR:
4723 ret = MAX_USER_RT_PRIO-1;
4724 break;
4725 case SCHED_NORMAL:
b0a9499c 4726 case SCHED_BATCH:
dd41f596 4727 case SCHED_IDLE:
1da177e4
LT
4728 ret = 0;
4729 break;
4730 }
4731 return ret;
4732}
4733
4734/**
4735 * sys_sched_get_priority_min - return minimum RT priority.
4736 * @policy: scheduling class.
4737 *
4738 * this syscall returns the minimum rt_priority that can be used
4739 * by a given scheduling class.
4740 */
5add95d4 4741SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4742{
4743 int ret = -EINVAL;
4744
4745 switch (policy) {
4746 case SCHED_FIFO:
4747 case SCHED_RR:
4748 ret = 1;
4749 break;
4750 case SCHED_NORMAL:
b0a9499c 4751 case SCHED_BATCH:
dd41f596 4752 case SCHED_IDLE:
1da177e4
LT
4753 ret = 0;
4754 }
4755 return ret;
4756}
4757
4758/**
4759 * sys_sched_rr_get_interval - return the default timeslice of a process.
4760 * @pid: pid of the process.
4761 * @interval: userspace pointer to the timeslice value.
4762 *
4763 * this syscall writes the default timeslice value of a given process
4764 * into the user-space timespec buffer. A value of '0' means infinity.
4765 */
17da2bd9 4766SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4767 struct timespec __user *, interval)
1da177e4 4768{
36c8b586 4769 struct task_struct *p;
a4ec24b4 4770 unsigned int time_slice;
dba091b9
TG
4771 unsigned long flags;
4772 struct rq *rq;
3a5c359a 4773 int retval;
1da177e4 4774 struct timespec t;
1da177e4
LT
4775
4776 if (pid < 0)
3a5c359a 4777 return -EINVAL;
1da177e4
LT
4778
4779 retval = -ESRCH;
1a551ae7 4780 rcu_read_lock();
1da177e4
LT
4781 p = find_process_by_pid(pid);
4782 if (!p)
4783 goto out_unlock;
4784
4785 retval = security_task_getscheduler(p);
4786 if (retval)
4787 goto out_unlock;
4788
dba091b9
TG
4789 rq = task_rq_lock(p, &flags);
4790 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4791 task_rq_unlock(rq, p, &flags);
a4ec24b4 4792
1a551ae7 4793 rcu_read_unlock();
a4ec24b4 4794 jiffies_to_timespec(time_slice, &t);
1da177e4 4795 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4796 return retval;
3a5c359a 4797
1da177e4 4798out_unlock:
1a551ae7 4799 rcu_read_unlock();
1da177e4
LT
4800 return retval;
4801}
4802
7c731e0a 4803static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4804
82a1fcb9 4805void sched_show_task(struct task_struct *p)
1da177e4 4806{
1da177e4 4807 unsigned long free = 0;
36c8b586 4808 unsigned state;
1da177e4 4809
1da177e4 4810 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 4811 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4812 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4813#if BITS_PER_LONG == 32
1da177e4 4814 if (state == TASK_RUNNING)
3df0fc5b 4815 printk(KERN_CONT " running ");
1da177e4 4816 else
3df0fc5b 4817 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4818#else
4819 if (state == TASK_RUNNING)
3df0fc5b 4820 printk(KERN_CONT " running task ");
1da177e4 4821 else
3df0fc5b 4822 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4823#endif
4824#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4825 free = stack_not_used(p);
1da177e4 4826#endif
3df0fc5b 4827 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
07cde260 4828 task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)),
aa47b7e0 4829 (unsigned long)task_thread_info(p)->flags);
1da177e4 4830
5fb5e6de 4831 show_stack(p, NULL);
1da177e4
LT
4832}
4833
e59e2ae2 4834void show_state_filter(unsigned long state_filter)
1da177e4 4835{
36c8b586 4836 struct task_struct *g, *p;
1da177e4 4837
4bd77321 4838#if BITS_PER_LONG == 32
3df0fc5b
PZ
4839 printk(KERN_INFO
4840 " task PC stack pid father\n");
1da177e4 4841#else
3df0fc5b
PZ
4842 printk(KERN_INFO
4843 " task PC stack pid father\n");
1da177e4 4844#endif
510f5acc 4845 rcu_read_lock();
1da177e4
LT
4846 do_each_thread(g, p) {
4847 /*
4848 * reset the NMI-timeout, listing all files on a slow
25985edc 4849 * console might take a lot of time:
1da177e4
LT
4850 */
4851 touch_nmi_watchdog();
39bc89fd 4852 if (!state_filter || (p->state & state_filter))
82a1fcb9 4853 sched_show_task(p);
1da177e4
LT
4854 } while_each_thread(g, p);
4855
04c9167f
JF
4856 touch_all_softlockup_watchdogs();
4857
dd41f596
IM
4858#ifdef CONFIG_SCHED_DEBUG
4859 sysrq_sched_debug_show();
4860#endif
510f5acc 4861 rcu_read_unlock();
e59e2ae2
IM
4862 /*
4863 * Only show locks if all tasks are dumped:
4864 */
93335a21 4865 if (!state_filter)
e59e2ae2 4866 debug_show_all_locks();
1da177e4
LT
4867}
4868
1df21055
IM
4869void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4870{
dd41f596 4871 idle->sched_class = &idle_sched_class;
1df21055
IM
4872}
4873
f340c0d1
IM
4874/**
4875 * init_idle - set up an idle thread for a given CPU
4876 * @idle: task in question
4877 * @cpu: cpu the idle task belongs to
4878 *
4879 * NOTE: this function does not set the idle thread's NEED_RESCHED
4880 * flag, to make booting more robust.
4881 */
5c1e1767 4882void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 4883{
70b97a7f 4884 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4885 unsigned long flags;
4886
05fa785c 4887 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 4888
dd41f596 4889 __sched_fork(idle);
06b83b5f 4890 idle->state = TASK_RUNNING;
dd41f596
IM
4891 idle->se.exec_start = sched_clock();
4892
1e1b6c51 4893 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4894 /*
4895 * We're having a chicken and egg problem, even though we are
4896 * holding rq->lock, the cpu isn't yet set to this cpu so the
4897 * lockdep check in task_group() will fail.
4898 *
4899 * Similar case to sched_fork(). / Alternatively we could
4900 * use task_rq_lock() here and obtain the other rq->lock.
4901 *
4902 * Silence PROVE_RCU
4903 */
4904 rcu_read_lock();
dd41f596 4905 __set_task_cpu(idle, cpu);
6506cf6c 4906 rcu_read_unlock();
1da177e4 4907
1da177e4 4908 rq->curr = rq->idle = idle;
3ca7a440
PZ
4909#if defined(CONFIG_SMP)
4910 idle->on_cpu = 1;
4866cde0 4911#endif
05fa785c 4912 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
4913
4914 /* Set the preempt count _outside_ the spinlocks! */
a1261f54 4915 task_thread_info(idle)->preempt_count = 0;
55cd5340 4916
dd41f596
IM
4917 /*
4918 * The idle tasks have their own, simple scheduling class:
4919 */
4920 idle->sched_class = &idle_sched_class;
868baf07 4921 ftrace_graph_init_idle_task(idle, cpu);
f1c6f1a7
CE
4922#if defined(CONFIG_SMP)
4923 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4924#endif
19978ca6
IM
4925}
4926
1da177e4 4927#ifdef CONFIG_SMP
1e1b6c51
KM
4928void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4929{
4930 if (p->sched_class && p->sched_class->set_cpus_allowed)
4931 p->sched_class->set_cpus_allowed(p, new_mask);
4939602a
PZ
4932
4933 cpumask_copy(&p->cpus_allowed, new_mask);
4934 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
1e1b6c51
KM
4935}
4936
1da177e4
LT
4937/*
4938 * This is how migration works:
4939 *
969c7921
TH
4940 * 1) we invoke migration_cpu_stop() on the target CPU using
4941 * stop_one_cpu().
4942 * 2) stopper starts to run (implicitly forcing the migrated thread
4943 * off the CPU)
4944 * 3) it checks whether the migrated task is still in the wrong runqueue.
4945 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 4946 * it and puts it into the right queue.
969c7921
TH
4947 * 5) stopper completes and stop_one_cpu() returns and the migration
4948 * is done.
1da177e4
LT
4949 */
4950
4951/*
4952 * Change a given task's CPU affinity. Migrate the thread to a
4953 * proper CPU and schedule it away if the CPU it's executing on
4954 * is removed from the allowed bitmask.
4955 *
4956 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 4957 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
4958 * call is not atomic; no spinlocks may be held.
4959 */
96f874e2 4960int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
4961{
4962 unsigned long flags;
70b97a7f 4963 struct rq *rq;
969c7921 4964 unsigned int dest_cpu;
48f24c4d 4965 int ret = 0;
1da177e4
LT
4966
4967 rq = task_rq_lock(p, &flags);
e2912009 4968
db44fc01
YZ
4969 if (cpumask_equal(&p->cpus_allowed, new_mask))
4970 goto out;
4971
6ad4c188 4972 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
4973 ret = -EINVAL;
4974 goto out;
4975 }
4976
db44fc01 4977 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
9985b0ba
DR
4978 ret = -EINVAL;
4979 goto out;
4980 }
4981
1e1b6c51 4982 do_set_cpus_allowed(p, new_mask);
73fe6aae 4983
1da177e4 4984 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 4985 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
4986 goto out;
4987
969c7921 4988 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
bd8e7dde 4989 if (p->on_rq) {
969c7921 4990 struct migration_arg arg = { p, dest_cpu };
1da177e4 4991 /* Need help from migration thread: drop lock and wait. */
0122ec5b 4992 task_rq_unlock(rq, p, &flags);
969c7921 4993 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
4994 tlb_migrate_finish(p->mm);
4995 return 0;
4996 }
4997out:
0122ec5b 4998 task_rq_unlock(rq, p, &flags);
48f24c4d 4999
1da177e4
LT
5000 return ret;
5001}
cd8ba7cd 5002EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5003
5004/*
41a2d6cf 5005 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5006 * this because either it can't run here any more (set_cpus_allowed()
5007 * away from this CPU, or CPU going down), or because we're
5008 * attempting to rebalance this task on exec (sched_exec).
5009 *
5010 * So we race with normal scheduler movements, but that's OK, as long
5011 * as the task is no longer on this CPU.
efc30814
KK
5012 *
5013 * Returns non-zero if task was successfully migrated.
1da177e4 5014 */
efc30814 5015static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5016{
70b97a7f 5017 struct rq *rq_dest, *rq_src;
e2912009 5018 int ret = 0;
1da177e4 5019
e761b772 5020 if (unlikely(!cpu_active(dest_cpu)))
efc30814 5021 return ret;
1da177e4
LT
5022
5023 rq_src = cpu_rq(src_cpu);
5024 rq_dest = cpu_rq(dest_cpu);
5025
0122ec5b 5026 raw_spin_lock(&p->pi_lock);
1da177e4
LT
5027 double_rq_lock(rq_src, rq_dest);
5028 /* Already moved. */
5029 if (task_cpu(p) != src_cpu)
b1e38734 5030 goto done;
1da177e4 5031 /* Affinity changed (again). */
fa17b507 5032 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
b1e38734 5033 goto fail;
1da177e4 5034
e2912009
PZ
5035 /*
5036 * If we're not on a rq, the next wake-up will ensure we're
5037 * placed properly.
5038 */
fd2f4419 5039 if (p->on_rq) {
4ca9b72b 5040 dequeue_task(rq_src, p, 0);
e2912009 5041 set_task_cpu(p, dest_cpu);
4ca9b72b 5042 enqueue_task(rq_dest, p, 0);
15afe09b 5043 check_preempt_curr(rq_dest, p, 0);
1da177e4 5044 }
b1e38734 5045done:
efc30814 5046 ret = 1;
b1e38734 5047fail:
1da177e4 5048 double_rq_unlock(rq_src, rq_dest);
0122ec5b 5049 raw_spin_unlock(&p->pi_lock);
efc30814 5050 return ret;
1da177e4
LT
5051}
5052
5053/*
969c7921
TH
5054 * migration_cpu_stop - this will be executed by a highprio stopper thread
5055 * and performs thread migration by bumping thread off CPU then
5056 * 'pushing' onto another runqueue.
1da177e4 5057 */
969c7921 5058static int migration_cpu_stop(void *data)
1da177e4 5059{
969c7921 5060 struct migration_arg *arg = data;
f7b4cddc 5061
969c7921
TH
5062 /*
5063 * The original target cpu might have gone down and we might
5064 * be on another cpu but it doesn't matter.
5065 */
f7b4cddc 5066 local_irq_disable();
969c7921 5067 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 5068 local_irq_enable();
1da177e4 5069 return 0;
f7b4cddc
ON
5070}
5071
1da177e4 5072#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 5073
054b9108 5074/*
48c5ccae
PZ
5075 * Ensures that the idle task is using init_mm right before its cpu goes
5076 * offline.
054b9108 5077 */
48c5ccae 5078void idle_task_exit(void)
1da177e4 5079{
48c5ccae 5080 struct mm_struct *mm = current->active_mm;
e76bd8d9 5081
48c5ccae 5082 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 5083
48c5ccae
PZ
5084 if (mm != &init_mm)
5085 switch_mm(mm, &init_mm, current);
5086 mmdrop(mm);
1da177e4
LT
5087}
5088
5089/*
5090 * While a dead CPU has no uninterruptible tasks queued at this point,
5091 * it might still have a nonzero ->nr_uninterruptible counter, because
5092 * for performance reasons the counter is not stricly tracking tasks to
5093 * their home CPUs. So we just add the counter to another CPU's counter,
5094 * to keep the global sum constant after CPU-down:
5095 */
70b97a7f 5096static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5097{
6ad4c188 5098 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4 5099
1da177e4
LT
5100 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5101 rq_src->nr_uninterruptible = 0;
1da177e4
LT
5102}
5103
dd41f596 5104/*
48c5ccae 5105 * remove the tasks which were accounted by rq from calc_load_tasks.
1da177e4 5106 */
48c5ccae 5107static void calc_global_load_remove(struct rq *rq)
1da177e4 5108{
48c5ccae
PZ
5109 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5110 rq->calc_load_active = 0;
1da177e4
LT
5111}
5112
48f24c4d 5113/*
48c5ccae
PZ
5114 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5115 * try_to_wake_up()->select_task_rq().
5116 *
5117 * Called with rq->lock held even though we'er in stop_machine() and
5118 * there's no concurrency possible, we hold the required locks anyway
5119 * because of lock validation efforts.
1da177e4 5120 */
48c5ccae 5121static void migrate_tasks(unsigned int dead_cpu)
1da177e4 5122{
70b97a7f 5123 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
5124 struct task_struct *next, *stop = rq->stop;
5125 int dest_cpu;
1da177e4
LT
5126
5127 /*
48c5ccae
PZ
5128 * Fudge the rq selection such that the below task selection loop
5129 * doesn't get stuck on the currently eligible stop task.
5130 *
5131 * We're currently inside stop_machine() and the rq is either stuck
5132 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5133 * either way we should never end up calling schedule() until we're
5134 * done here.
1da177e4 5135 */
48c5ccae 5136 rq->stop = NULL;
48f24c4d 5137
8cb120d3
PT
5138 /* Ensure any throttled groups are reachable by pick_next_task */
5139 unthrottle_offline_cfs_rqs(rq);
5140
dd41f596 5141 for ( ; ; ) {
48c5ccae
PZ
5142 /*
5143 * There's this thread running, bail when that's the only
5144 * remaining thread.
5145 */
5146 if (rq->nr_running == 1)
dd41f596 5147 break;
48c5ccae 5148
b67802ea 5149 next = pick_next_task(rq);
48c5ccae 5150 BUG_ON(!next);
79c53799 5151 next->sched_class->put_prev_task(rq, next);
e692ab53 5152
48c5ccae
PZ
5153 /* Find suitable destination for @next, with force if needed. */
5154 dest_cpu = select_fallback_rq(dead_cpu, next);
5155 raw_spin_unlock(&rq->lock);
5156
5157 __migrate_task(next, dead_cpu, dest_cpu);
5158
5159 raw_spin_lock(&rq->lock);
1da177e4 5160 }
dce48a84 5161
48c5ccae 5162 rq->stop = stop;
dce48a84 5163}
48c5ccae 5164
1da177e4
LT
5165#endif /* CONFIG_HOTPLUG_CPU */
5166
e692ab53
NP
5167#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5168
5169static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5170 {
5171 .procname = "sched_domain",
c57baf1e 5172 .mode = 0555,
e0361851 5173 },
56992309 5174 {}
e692ab53
NP
5175};
5176
5177static struct ctl_table sd_ctl_root[] = {
e0361851
AD
5178 {
5179 .procname = "kernel",
c57baf1e 5180 .mode = 0555,
e0361851
AD
5181 .child = sd_ctl_dir,
5182 },
56992309 5183 {}
e692ab53
NP
5184};
5185
5186static struct ctl_table *sd_alloc_ctl_entry(int n)
5187{
5188 struct ctl_table *entry =
5cf9f062 5189 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5190
e692ab53
NP
5191 return entry;
5192}
5193
6382bc90
MM
5194static void sd_free_ctl_entry(struct ctl_table **tablep)
5195{
cd790076 5196 struct ctl_table *entry;
6382bc90 5197
cd790076
MM
5198 /*
5199 * In the intermediate directories, both the child directory and
5200 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5201 * will always be set. In the lowest directory the names are
cd790076
MM
5202 * static strings and all have proc handlers.
5203 */
5204 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5205 if (entry->child)
5206 sd_free_ctl_entry(&entry->child);
cd790076
MM
5207 if (entry->proc_handler == NULL)
5208 kfree(entry->procname);
5209 }
6382bc90
MM
5210
5211 kfree(*tablep);
5212 *tablep = NULL;
5213}
5214
e692ab53 5215static void
e0361851 5216set_table_entry(struct ctl_table *entry,
e692ab53 5217 const char *procname, void *data, int maxlen,
36fcb589 5218 umode_t mode, proc_handler *proc_handler)
e692ab53 5219{
e692ab53
NP
5220 entry->procname = procname;
5221 entry->data = data;
5222 entry->maxlen = maxlen;
5223 entry->mode = mode;
5224 entry->proc_handler = proc_handler;
5225}
5226
5227static struct ctl_table *
5228sd_alloc_ctl_domain_table(struct sched_domain *sd)
5229{
a5d8c348 5230 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 5231
ad1cdc1d
MM
5232 if (table == NULL)
5233 return NULL;
5234
e0361851 5235 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5236 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5237 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5238 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5239 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5240 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5241 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5242 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5243 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5244 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5245 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5246 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5247 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5248 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5249 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5250 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5251 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5252 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5253 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
5254 &sd->cache_nice_tries,
5255 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5256 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 5257 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
5258 set_table_entry(&table[11], "name", sd->name,
5259 CORENAME_MAX_SIZE, 0444, proc_dostring);
5260 /* &table[12] is terminator */
e692ab53
NP
5261
5262 return table;
5263}
5264
9a4e7159 5265static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5266{
5267 struct ctl_table *entry, *table;
5268 struct sched_domain *sd;
5269 int domain_num = 0, i;
5270 char buf[32];
5271
5272 for_each_domain(cpu, sd)
5273 domain_num++;
5274 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5275 if (table == NULL)
5276 return NULL;
e692ab53
NP
5277
5278 i = 0;
5279 for_each_domain(cpu, sd) {
5280 snprintf(buf, 32, "domain%d", i);
e692ab53 5281 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5282 entry->mode = 0555;
e692ab53
NP
5283 entry->child = sd_alloc_ctl_domain_table(sd);
5284 entry++;
5285 i++;
5286 }
5287 return table;
5288}
5289
5290static struct ctl_table_header *sd_sysctl_header;
6382bc90 5291static void register_sched_domain_sysctl(void)
e692ab53 5292{
6ad4c188 5293 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5294 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5295 char buf[32];
5296
7378547f
MM
5297 WARN_ON(sd_ctl_dir[0].child);
5298 sd_ctl_dir[0].child = entry;
5299
ad1cdc1d
MM
5300 if (entry == NULL)
5301 return;
5302
6ad4c188 5303 for_each_possible_cpu(i) {
e692ab53 5304 snprintf(buf, 32, "cpu%d", i);
e692ab53 5305 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5306 entry->mode = 0555;
e692ab53 5307 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5308 entry++;
e692ab53 5309 }
7378547f
MM
5310
5311 WARN_ON(sd_sysctl_header);
e692ab53
NP
5312 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5313}
6382bc90 5314
7378547f 5315/* may be called multiple times per register */
6382bc90
MM
5316static void unregister_sched_domain_sysctl(void)
5317{
7378547f
MM
5318 if (sd_sysctl_header)
5319 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5320 sd_sysctl_header = NULL;
7378547f
MM
5321 if (sd_ctl_dir[0].child)
5322 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5323}
e692ab53 5324#else
6382bc90
MM
5325static void register_sched_domain_sysctl(void)
5326{
5327}
5328static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5329{
5330}
5331#endif
5332
1f11eb6a
GH
5333static void set_rq_online(struct rq *rq)
5334{
5335 if (!rq->online) {
5336 const struct sched_class *class;
5337
c6c4927b 5338 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5339 rq->online = 1;
5340
5341 for_each_class(class) {
5342 if (class->rq_online)
5343 class->rq_online(rq);
5344 }
5345 }
5346}
5347
5348static void set_rq_offline(struct rq *rq)
5349{
5350 if (rq->online) {
5351 const struct sched_class *class;
5352
5353 for_each_class(class) {
5354 if (class->rq_offline)
5355 class->rq_offline(rq);
5356 }
5357
c6c4927b 5358 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5359 rq->online = 0;
5360 }
5361}
5362
1da177e4
LT
5363/*
5364 * migration_call - callback that gets triggered when a CPU is added.
5365 * Here we can start up the necessary migration thread for the new CPU.
5366 */
48f24c4d
IM
5367static int __cpuinit
5368migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5369{
48f24c4d 5370 int cpu = (long)hcpu;
1da177e4 5371 unsigned long flags;
969c7921 5372 struct rq *rq = cpu_rq(cpu);
1da177e4 5373
48c5ccae 5374 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 5375
1da177e4 5376 case CPU_UP_PREPARE:
a468d389 5377 rq->calc_load_update = calc_load_update;
1da177e4 5378 break;
48f24c4d 5379
1da177e4 5380 case CPU_ONLINE:
1f94ef59 5381 /* Update our root-domain */
05fa785c 5382 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5383 if (rq->rd) {
c6c4927b 5384 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5385
5386 set_rq_online(rq);
1f94ef59 5387 }
05fa785c 5388 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5389 break;
48f24c4d 5390
1da177e4 5391#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5392 case CPU_DYING:
317f3941 5393 sched_ttwu_pending();
57d885fe 5394 /* Update our root-domain */
05fa785c 5395 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5396 if (rq->rd) {
c6c4927b 5397 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5398 set_rq_offline(rq);
57d885fe 5399 }
48c5ccae
PZ
5400 migrate_tasks(cpu);
5401 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5402 raw_spin_unlock_irqrestore(&rq->lock, flags);
48c5ccae
PZ
5403
5404 migrate_nr_uninterruptible(rq);
5405 calc_global_load_remove(rq);
57d885fe 5406 break;
1da177e4
LT
5407#endif
5408 }
49c022e6
PZ
5409
5410 update_max_interval();
5411
1da177e4
LT
5412 return NOTIFY_OK;
5413}
5414
f38b0820
PM
5415/*
5416 * Register at high priority so that task migration (migrate_all_tasks)
5417 * happens before everything else. This has to be lower priority than
cdd6c482 5418 * the notifier in the perf_event subsystem, though.
1da177e4 5419 */
26c2143b 5420static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4 5421 .notifier_call = migration_call,
50a323b7 5422 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5423};
5424
3a101d05
TH
5425static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5426 unsigned long action, void *hcpu)
5427{
5428 switch (action & ~CPU_TASKS_FROZEN) {
5fbd036b 5429 case CPU_STARTING:
3a101d05
TH
5430 case CPU_DOWN_FAILED:
5431 set_cpu_active((long)hcpu, true);
5432 return NOTIFY_OK;
5433 default:
5434 return NOTIFY_DONE;
5435 }
5436}
5437
5438static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5439 unsigned long action, void *hcpu)
5440{
5441 switch (action & ~CPU_TASKS_FROZEN) {
5442 case CPU_DOWN_PREPARE:
5443 set_cpu_active((long)hcpu, false);
5444 return NOTIFY_OK;
5445 default:
5446 return NOTIFY_DONE;
5447 }
5448}
5449
7babe8db 5450static int __init migration_init(void)
1da177e4
LT
5451{
5452 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5453 int err;
48f24c4d 5454
3a101d05 5455 /* Initialize migration for the boot CPU */
07dccf33
AM
5456 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5457 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5458 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5459 register_cpu_notifier(&migration_notifier);
7babe8db 5460
3a101d05
TH
5461 /* Register cpu active notifiers */
5462 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5463 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5464
a004cd42 5465 return 0;
1da177e4 5466}
7babe8db 5467early_initcall(migration_init);
1da177e4
LT
5468#endif
5469
5470#ifdef CONFIG_SMP
476f3534 5471
4cb98839
PZ
5472static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5473
3e9830dc 5474#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5475
f6630114
MT
5476static __read_mostly int sched_domain_debug_enabled;
5477
5478static int __init sched_domain_debug_setup(char *str)
5479{
5480 sched_domain_debug_enabled = 1;
5481
5482 return 0;
5483}
5484early_param("sched_debug", sched_domain_debug_setup);
5485
7c16ec58 5486static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5487 struct cpumask *groupmask)
1da177e4 5488{
4dcf6aff 5489 struct sched_group *group = sd->groups;
434d53b0 5490 char str[256];
1da177e4 5491
968ea6d8 5492 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 5493 cpumask_clear(groupmask);
4dcf6aff
IM
5494
5495 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5496
5497 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5498 printk("does not load-balance\n");
4dcf6aff 5499 if (sd->parent)
3df0fc5b
PZ
5500 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5501 " has parent");
4dcf6aff 5502 return -1;
41c7ce9a
NP
5503 }
5504
3df0fc5b 5505 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 5506
758b2cdc 5507 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5508 printk(KERN_ERR "ERROR: domain->span does not contain "
5509 "CPU%d\n", cpu);
4dcf6aff 5510 }
758b2cdc 5511 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5512 printk(KERN_ERR "ERROR: domain->groups does not contain"
5513 " CPU%d\n", cpu);
4dcf6aff 5514 }
1da177e4 5515
4dcf6aff 5516 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5517 do {
4dcf6aff 5518 if (!group) {
3df0fc5b
PZ
5519 printk("\n");
5520 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5521 break;
5522 }
5523
9c3f75cb 5524 if (!group->sgp->power) {
3df0fc5b
PZ
5525 printk(KERN_CONT "\n");
5526 printk(KERN_ERR "ERROR: domain->cpu_power not "
5527 "set\n");
4dcf6aff
IM
5528 break;
5529 }
1da177e4 5530
758b2cdc 5531 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5532 printk(KERN_CONT "\n");
5533 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5534 break;
5535 }
1da177e4 5536
758b2cdc 5537 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5538 printk(KERN_CONT "\n");
5539 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5540 break;
5541 }
1da177e4 5542
758b2cdc 5543 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5544
968ea6d8 5545 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 5546
3df0fc5b 5547 printk(KERN_CONT " %s", str);
9c3f75cb 5548 if (group->sgp->power != SCHED_POWER_SCALE) {
3df0fc5b 5549 printk(KERN_CONT " (cpu_power = %d)",
9c3f75cb 5550 group->sgp->power);
381512cf 5551 }
1da177e4 5552
4dcf6aff
IM
5553 group = group->next;
5554 } while (group != sd->groups);
3df0fc5b 5555 printk(KERN_CONT "\n");
1da177e4 5556
758b2cdc 5557 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5558 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5559
758b2cdc
RR
5560 if (sd->parent &&
5561 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5562 printk(KERN_ERR "ERROR: parent span is not a superset "
5563 "of domain->span\n");
4dcf6aff
IM
5564 return 0;
5565}
1da177e4 5566
4dcf6aff
IM
5567static void sched_domain_debug(struct sched_domain *sd, int cpu)
5568{
5569 int level = 0;
1da177e4 5570
f6630114
MT
5571 if (!sched_domain_debug_enabled)
5572 return;
5573
4dcf6aff
IM
5574 if (!sd) {
5575 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5576 return;
5577 }
1da177e4 5578
4dcf6aff
IM
5579 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5580
5581 for (;;) {
4cb98839 5582 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5583 break;
1da177e4
LT
5584 level++;
5585 sd = sd->parent;
33859f7f 5586 if (!sd)
4dcf6aff
IM
5587 break;
5588 }
1da177e4 5589}
6d6bc0ad 5590#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5591# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 5592#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5593
1a20ff27 5594static int sd_degenerate(struct sched_domain *sd)
245af2c7 5595{
758b2cdc 5596 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5597 return 1;
5598
5599 /* Following flags need at least 2 groups */
5600 if (sd->flags & (SD_LOAD_BALANCE |
5601 SD_BALANCE_NEWIDLE |
5602 SD_BALANCE_FORK |
89c4710e
SS
5603 SD_BALANCE_EXEC |
5604 SD_SHARE_CPUPOWER |
5605 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5606 if (sd->groups != sd->groups->next)
5607 return 0;
5608 }
5609
5610 /* Following flags don't use groups */
c88d5910 5611 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5612 return 0;
5613
5614 return 1;
5615}
5616
48f24c4d
IM
5617static int
5618sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5619{
5620 unsigned long cflags = sd->flags, pflags = parent->flags;
5621
5622 if (sd_degenerate(parent))
5623 return 1;
5624
758b2cdc 5625 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5626 return 0;
5627
245af2c7
SS
5628 /* Flags needing groups don't count if only 1 group in parent */
5629 if (parent->groups == parent->groups->next) {
5630 pflags &= ~(SD_LOAD_BALANCE |
5631 SD_BALANCE_NEWIDLE |
5632 SD_BALANCE_FORK |
89c4710e
SS
5633 SD_BALANCE_EXEC |
5634 SD_SHARE_CPUPOWER |
5635 SD_SHARE_PKG_RESOURCES);
5436499e
KC
5636 if (nr_node_ids == 1)
5637 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5638 }
5639 if (~cflags & pflags)
5640 return 0;
5641
5642 return 1;
5643}
5644
dce840a0 5645static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5646{
dce840a0 5647 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5648
68e74568 5649 cpupri_cleanup(&rd->cpupri);
c6c4927b
RR
5650 free_cpumask_var(rd->rto_mask);
5651 free_cpumask_var(rd->online);
5652 free_cpumask_var(rd->span);
5653 kfree(rd);
5654}
5655
57d885fe
GH
5656static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5657{
a0490fa3 5658 struct root_domain *old_rd = NULL;
57d885fe 5659 unsigned long flags;
57d885fe 5660
05fa785c 5661 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5662
5663 if (rq->rd) {
a0490fa3 5664 old_rd = rq->rd;
57d885fe 5665
c6c4927b 5666 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5667 set_rq_offline(rq);
57d885fe 5668
c6c4927b 5669 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5670
a0490fa3
IM
5671 /*
5672 * If we dont want to free the old_rt yet then
5673 * set old_rd to NULL to skip the freeing later
5674 * in this function:
5675 */
5676 if (!atomic_dec_and_test(&old_rd->refcount))
5677 old_rd = NULL;
57d885fe
GH
5678 }
5679
5680 atomic_inc(&rd->refcount);
5681 rq->rd = rd;
5682
c6c4927b 5683 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5684 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5685 set_rq_online(rq);
57d885fe 5686
05fa785c 5687 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5688
5689 if (old_rd)
dce840a0 5690 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5691}
5692
68c38fc3 5693static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5694{
5695 memset(rd, 0, sizeof(*rd));
5696
68c38fc3 5697 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5698 goto out;
68c38fc3 5699 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5700 goto free_span;
68c38fc3 5701 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 5702 goto free_online;
6e0534f2 5703
68c38fc3 5704 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5705 goto free_rto_mask;
c6c4927b 5706 return 0;
6e0534f2 5707
68e74568
RR
5708free_rto_mask:
5709 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
5710free_online:
5711 free_cpumask_var(rd->online);
5712free_span:
5713 free_cpumask_var(rd->span);
0c910d28 5714out:
c6c4927b 5715 return -ENOMEM;
57d885fe
GH
5716}
5717
029632fb
PZ
5718/*
5719 * By default the system creates a single root-domain with all cpus as
5720 * members (mimicking the global state we have today).
5721 */
5722struct root_domain def_root_domain;
5723
57d885fe
GH
5724static void init_defrootdomain(void)
5725{
68c38fc3 5726 init_rootdomain(&def_root_domain);
c6c4927b 5727
57d885fe
GH
5728 atomic_set(&def_root_domain.refcount, 1);
5729}
5730
dc938520 5731static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5732{
5733 struct root_domain *rd;
5734
5735 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5736 if (!rd)
5737 return NULL;
5738
68c38fc3 5739 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5740 kfree(rd);
5741 return NULL;
5742 }
57d885fe
GH
5743
5744 return rd;
5745}
5746
e3589f6c
PZ
5747static void free_sched_groups(struct sched_group *sg, int free_sgp)
5748{
5749 struct sched_group *tmp, *first;
5750
5751 if (!sg)
5752 return;
5753
5754 first = sg;
5755 do {
5756 tmp = sg->next;
5757
5758 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5759 kfree(sg->sgp);
5760
5761 kfree(sg);
5762 sg = tmp;
5763 } while (sg != first);
5764}
5765
dce840a0
PZ
5766static void free_sched_domain(struct rcu_head *rcu)
5767{
5768 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5769
5770 /*
5771 * If its an overlapping domain it has private groups, iterate and
5772 * nuke them all.
5773 */
5774 if (sd->flags & SD_OVERLAP) {
5775 free_sched_groups(sd->groups, 1);
5776 } else if (atomic_dec_and_test(&sd->groups->ref)) {
9c3f75cb 5777 kfree(sd->groups->sgp);
dce840a0 5778 kfree(sd->groups);
9c3f75cb 5779 }
dce840a0
PZ
5780 kfree(sd);
5781}
5782
5783static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5784{
5785 call_rcu(&sd->rcu, free_sched_domain);
5786}
5787
5788static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5789{
5790 for (; sd; sd = sd->parent)
5791 destroy_sched_domain(sd, cpu);
5792}
5793
518cd623
PZ
5794/*
5795 * Keep a special pointer to the highest sched_domain that has
5796 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5797 * allows us to avoid some pointer chasing select_idle_sibling().
5798 *
5799 * Also keep a unique ID per domain (we use the first cpu number in
5800 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5801 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5802 */
5803DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5804DEFINE_PER_CPU(int, sd_llc_id);
5805
5806static void update_top_cache_domain(int cpu)
5807{
5808 struct sched_domain *sd;
5809 int id = cpu;
5810
5811 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5812 if (sd)
5813 id = cpumask_first(sched_domain_span(sd));
5814
5815 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5816 per_cpu(sd_llc_id, cpu) = id;
5817}
5818
1da177e4 5819/*
0eab9146 5820 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5821 * hold the hotplug lock.
5822 */
0eab9146
IM
5823static void
5824cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5825{
70b97a7f 5826 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5827 struct sched_domain *tmp;
5828
5829 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5830 for (tmp = sd; tmp; ) {
245af2c7
SS
5831 struct sched_domain *parent = tmp->parent;
5832 if (!parent)
5833 break;
f29c9b1c 5834
1a848870 5835 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5836 tmp->parent = parent->parent;
1a848870
SS
5837 if (parent->parent)
5838 parent->parent->child = tmp;
dce840a0 5839 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5840 } else
5841 tmp = tmp->parent;
245af2c7
SS
5842 }
5843
1a848870 5844 if (sd && sd_degenerate(sd)) {
dce840a0 5845 tmp = sd;
245af2c7 5846 sd = sd->parent;
dce840a0 5847 destroy_sched_domain(tmp, cpu);
1a848870
SS
5848 if (sd)
5849 sd->child = NULL;
5850 }
1da177e4 5851
4cb98839 5852 sched_domain_debug(sd, cpu);
1da177e4 5853
57d885fe 5854 rq_attach_root(rq, rd);
dce840a0 5855 tmp = rq->sd;
674311d5 5856 rcu_assign_pointer(rq->sd, sd);
dce840a0 5857 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5858
5859 update_top_cache_domain(cpu);
1da177e4
LT
5860}
5861
5862/* cpus with isolated domains */
dcc30a35 5863static cpumask_var_t cpu_isolated_map;
1da177e4
LT
5864
5865/* Setup the mask of cpus configured for isolated domains */
5866static int __init isolated_cpu_setup(char *str)
5867{
bdddd296 5868 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5869 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5870 return 1;
5871}
5872
8927f494 5873__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5874
9c1cfda2 5875#ifdef CONFIG_NUMA
198e2f18 5876
9c1cfda2
JH
5877/**
5878 * find_next_best_node - find the next node to include in a sched_domain
5879 * @node: node whose sched_domain we're building
5880 * @used_nodes: nodes already in the sched_domain
5881 *
41a2d6cf 5882 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
5883 * finds the closest node not already in the @used_nodes map.
5884 *
5885 * Should use nodemask_t.
5886 */
c5f59f08 5887static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2 5888{
7142d17e 5889 int i, n, val, min_val, best_node = -1;
9c1cfda2
JH
5890
5891 min_val = INT_MAX;
5892
076ac2af 5893 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 5894 /* Start at @node */
076ac2af 5895 n = (node + i) % nr_node_ids;
9c1cfda2
JH
5896
5897 if (!nr_cpus_node(n))
5898 continue;
5899
5900 /* Skip already used nodes */
c5f59f08 5901 if (node_isset(n, *used_nodes))
9c1cfda2
JH
5902 continue;
5903
5904 /* Simple min distance search */
5905 val = node_distance(node, n);
5906
5907 if (val < min_val) {
5908 min_val = val;
5909 best_node = n;
5910 }
5911 }
5912
7142d17e
HD
5913 if (best_node != -1)
5914 node_set(best_node, *used_nodes);
9c1cfda2
JH
5915 return best_node;
5916}
5917
5918/**
5919 * sched_domain_node_span - get a cpumask for a node's sched_domain
5920 * @node: node whose cpumask we're constructing
73486722 5921 * @span: resulting cpumask
9c1cfda2 5922 *
41a2d6cf 5923 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
5924 * should be one that prevents unnecessary balancing, but also spreads tasks
5925 * out optimally.
5926 */
96f874e2 5927static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 5928{
c5f59f08 5929 nodemask_t used_nodes;
48f24c4d 5930 int i;
9c1cfda2 5931
6ca09dfc 5932 cpumask_clear(span);
c5f59f08 5933 nodes_clear(used_nodes);
9c1cfda2 5934
6ca09dfc 5935 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 5936 node_set(node, used_nodes);
9c1cfda2
JH
5937
5938 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 5939 int next_node = find_next_best_node(node, &used_nodes);
7142d17e
HD
5940 if (next_node < 0)
5941 break;
6ca09dfc 5942 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 5943 }
9c1cfda2 5944}
d3081f52
PZ
5945
5946static const struct cpumask *cpu_node_mask(int cpu)
5947{
5948 lockdep_assert_held(&sched_domains_mutex);
5949
5950 sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);
5951
5952 return sched_domains_tmpmask;
5953}
2c402dc3
PZ
5954
5955static const struct cpumask *cpu_allnodes_mask(int cpu)
5956{
5957 return cpu_possible_mask;
5958}
6d6bc0ad 5959#endif /* CONFIG_NUMA */
9c1cfda2 5960
d3081f52
PZ
5961static const struct cpumask *cpu_cpu_mask(int cpu)
5962{
5963 return cpumask_of_node(cpu_to_node(cpu));
5964}
5965
5c45bf27 5966int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 5967
dce840a0
PZ
5968struct sd_data {
5969 struct sched_domain **__percpu sd;
5970 struct sched_group **__percpu sg;
9c3f75cb 5971 struct sched_group_power **__percpu sgp;
dce840a0
PZ
5972};
5973
49a02c51 5974struct s_data {
21d42ccf 5975 struct sched_domain ** __percpu sd;
49a02c51
AH
5976 struct root_domain *rd;
5977};
5978
2109b99e 5979enum s_alloc {
2109b99e 5980 sa_rootdomain,
21d42ccf 5981 sa_sd,
dce840a0 5982 sa_sd_storage,
2109b99e
AH
5983 sa_none,
5984};
5985
54ab4ff4
PZ
5986struct sched_domain_topology_level;
5987
5988typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
eb7a74e6
PZ
5989typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5990
e3589f6c
PZ
5991#define SDTL_OVERLAP 0x01
5992
eb7a74e6 5993struct sched_domain_topology_level {
2c402dc3
PZ
5994 sched_domain_init_f init;
5995 sched_domain_mask_f mask;
e3589f6c 5996 int flags;
54ab4ff4 5997 struct sd_data data;
eb7a74e6
PZ
5998};
5999
e3589f6c
PZ
6000static int
6001build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6002{
6003 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6004 const struct cpumask *span = sched_domain_span(sd);
6005 struct cpumask *covered = sched_domains_tmpmask;
6006 struct sd_data *sdd = sd->private;
6007 struct sched_domain *child;
6008 int i;
6009
6010 cpumask_clear(covered);
6011
6012 for_each_cpu(i, span) {
6013 struct cpumask *sg_span;
6014
6015 if (cpumask_test_cpu(i, covered))
6016 continue;
6017
6018 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 6019 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
6020
6021 if (!sg)
6022 goto fail;
6023
6024 sg_span = sched_group_cpus(sg);
6025
6026 child = *per_cpu_ptr(sdd->sd, i);
6027 if (child->child) {
6028 child = child->child;
6029 cpumask_copy(sg_span, sched_domain_span(child));
6030 } else
6031 cpumask_set_cpu(i, sg_span);
6032
6033 cpumask_or(covered, covered, sg_span);
6034
6035 sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span));
6036 atomic_inc(&sg->sgp->ref);
6037
6038 if (cpumask_test_cpu(cpu, sg_span))
6039 groups = sg;
6040
6041 if (!first)
6042 first = sg;
6043 if (last)
6044 last->next = sg;
6045 last = sg;
6046 last->next = first;
6047 }
6048 sd->groups = groups;
6049
6050 return 0;
6051
6052fail:
6053 free_sched_groups(first, 0);
6054
6055 return -ENOMEM;
6056}
6057
dce840a0 6058static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 6059{
dce840a0
PZ
6060 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6061 struct sched_domain *child = sd->child;
1da177e4 6062
dce840a0
PZ
6063 if (child)
6064 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 6065
9c3f75cb 6066 if (sg) {
dce840a0 6067 *sg = *per_cpu_ptr(sdd->sg, cpu);
9c3f75cb 6068 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
e3589f6c 6069 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
9c3f75cb 6070 }
dce840a0
PZ
6071
6072 return cpu;
1e9f28fa 6073}
1e9f28fa 6074
01a08546 6075/*
dce840a0
PZ
6076 * build_sched_groups will build a circular linked list of the groups
6077 * covered by the given span, and will set each group's ->cpumask correctly,
6078 * and ->cpu_power to 0.
e3589f6c
PZ
6079 *
6080 * Assumes the sched_domain tree is fully constructed
01a08546 6081 */
e3589f6c
PZ
6082static int
6083build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 6084{
dce840a0
PZ
6085 struct sched_group *first = NULL, *last = NULL;
6086 struct sd_data *sdd = sd->private;
6087 const struct cpumask *span = sched_domain_span(sd);
f96225fd 6088 struct cpumask *covered;
dce840a0 6089 int i;
9c1cfda2 6090
e3589f6c
PZ
6091 get_group(cpu, sdd, &sd->groups);
6092 atomic_inc(&sd->groups->ref);
6093
6094 if (cpu != cpumask_first(sched_domain_span(sd)))
6095 return 0;
6096
f96225fd
PZ
6097 lockdep_assert_held(&sched_domains_mutex);
6098 covered = sched_domains_tmpmask;
6099
dce840a0 6100 cpumask_clear(covered);
6711cab4 6101
dce840a0
PZ
6102 for_each_cpu(i, span) {
6103 struct sched_group *sg;
6104 int group = get_group(i, sdd, &sg);
6105 int j;
6711cab4 6106
dce840a0
PZ
6107 if (cpumask_test_cpu(i, covered))
6108 continue;
6711cab4 6109
dce840a0 6110 cpumask_clear(sched_group_cpus(sg));
9c3f75cb 6111 sg->sgp->power = 0;
0601a88d 6112
dce840a0
PZ
6113 for_each_cpu(j, span) {
6114 if (get_group(j, sdd, NULL) != group)
6115 continue;
0601a88d 6116
dce840a0
PZ
6117 cpumask_set_cpu(j, covered);
6118 cpumask_set_cpu(j, sched_group_cpus(sg));
6119 }
0601a88d 6120
dce840a0
PZ
6121 if (!first)
6122 first = sg;
6123 if (last)
6124 last->next = sg;
6125 last = sg;
6126 }
6127 last->next = first;
e3589f6c
PZ
6128
6129 return 0;
0601a88d 6130}
51888ca2 6131
89c4710e
SS
6132/*
6133 * Initialize sched groups cpu_power.
6134 *
6135 * cpu_power indicates the capacity of sched group, which is used while
6136 * distributing the load between different sched groups in a sched domain.
6137 * Typically cpu_power for all the groups in a sched domain will be same unless
6138 * there are asymmetries in the topology. If there are asymmetries, group
6139 * having more cpu_power will pickup more load compared to the group having
6140 * less cpu_power.
89c4710e
SS
6141 */
6142static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6143{
e3589f6c 6144 struct sched_group *sg = sd->groups;
89c4710e 6145
e3589f6c
PZ
6146 WARN_ON(!sd || !sg);
6147
6148 do {
6149 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6150 sg = sg->next;
6151 } while (sg != sd->groups);
89c4710e 6152
e3589f6c
PZ
6153 if (cpu != group_first_cpu(sg))
6154 return;
aae6d3dd 6155
d274cb30 6156 update_group_power(sd, cpu);
69e1e811 6157 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
89c4710e
SS
6158}
6159
029632fb
PZ
6160int __weak arch_sd_sibling_asym_packing(void)
6161{
6162 return 0*SD_ASYM_PACKING;
89c4710e
SS
6163}
6164
7c16ec58
MT
6165/*
6166 * Initializers for schedule domains
6167 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6168 */
6169
a5d8c348
IM
6170#ifdef CONFIG_SCHED_DEBUG
6171# define SD_INIT_NAME(sd, type) sd->name = #type
6172#else
6173# define SD_INIT_NAME(sd, type) do { } while (0)
6174#endif
6175
54ab4ff4
PZ
6176#define SD_INIT_FUNC(type) \
6177static noinline struct sched_domain * \
6178sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
6179{ \
6180 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
6181 *sd = SD_##type##_INIT; \
54ab4ff4
PZ
6182 SD_INIT_NAME(sd, type); \
6183 sd->private = &tl->data; \
6184 return sd; \
7c16ec58
MT
6185}
6186
6187SD_INIT_FUNC(CPU)
6188#ifdef CONFIG_NUMA
6189 SD_INIT_FUNC(ALLNODES)
6190 SD_INIT_FUNC(NODE)
6191#endif
6192#ifdef CONFIG_SCHED_SMT
6193 SD_INIT_FUNC(SIBLING)
6194#endif
6195#ifdef CONFIG_SCHED_MC
6196 SD_INIT_FUNC(MC)
6197#endif
01a08546
HC
6198#ifdef CONFIG_SCHED_BOOK
6199 SD_INIT_FUNC(BOOK)
6200#endif
7c16ec58 6201
1d3504fc 6202static int default_relax_domain_level = -1;
60495e77 6203int sched_domain_level_max;
1d3504fc
HS
6204
6205static int __init setup_relax_domain_level(char *str)
6206{
30e0e178
LZ
6207 unsigned long val;
6208
6209 val = simple_strtoul(str, NULL, 0);
60495e77 6210 if (val < sched_domain_level_max)
30e0e178
LZ
6211 default_relax_domain_level = val;
6212
1d3504fc
HS
6213 return 1;
6214}
6215__setup("relax_domain_level=", setup_relax_domain_level);
6216
6217static void set_domain_attribute(struct sched_domain *sd,
6218 struct sched_domain_attr *attr)
6219{
6220 int request;
6221
6222 if (!attr || attr->relax_domain_level < 0) {
6223 if (default_relax_domain_level < 0)
6224 return;
6225 else
6226 request = default_relax_domain_level;
6227 } else
6228 request = attr->relax_domain_level;
6229 if (request < sd->level) {
6230 /* turn off idle balance on this domain */
c88d5910 6231 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6232 } else {
6233 /* turn on idle balance on this domain */
c88d5910 6234 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6235 }
6236}
6237
54ab4ff4
PZ
6238static void __sdt_free(const struct cpumask *cpu_map);
6239static int __sdt_alloc(const struct cpumask *cpu_map);
6240
2109b99e
AH
6241static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6242 const struct cpumask *cpu_map)
6243{
6244 switch (what) {
2109b99e 6245 case sa_rootdomain:
822ff793
PZ
6246 if (!atomic_read(&d->rd->refcount))
6247 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
6248 case sa_sd:
6249 free_percpu(d->sd); /* fall through */
dce840a0 6250 case sa_sd_storage:
54ab4ff4 6251 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
6252 case sa_none:
6253 break;
6254 }
6255}
3404c8d9 6256
2109b99e
AH
6257static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6258 const struct cpumask *cpu_map)
6259{
dce840a0
PZ
6260 memset(d, 0, sizeof(*d));
6261
54ab4ff4
PZ
6262 if (__sdt_alloc(cpu_map))
6263 return sa_sd_storage;
dce840a0
PZ
6264 d->sd = alloc_percpu(struct sched_domain *);
6265 if (!d->sd)
6266 return sa_sd_storage;
2109b99e 6267 d->rd = alloc_rootdomain();
dce840a0 6268 if (!d->rd)
21d42ccf 6269 return sa_sd;
2109b99e
AH
6270 return sa_rootdomain;
6271}
57d885fe 6272
dce840a0
PZ
6273/*
6274 * NULL the sd_data elements we've used to build the sched_domain and
6275 * sched_group structure so that the subsequent __free_domain_allocs()
6276 * will not free the data we're using.
6277 */
6278static void claim_allocations(int cpu, struct sched_domain *sd)
6279{
6280 struct sd_data *sdd = sd->private;
dce840a0
PZ
6281
6282 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6283 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6284
e3589f6c 6285 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 6286 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c
PZ
6287
6288 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
9c3f75cb 6289 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
dce840a0
PZ
6290}
6291
2c402dc3
PZ
6292#ifdef CONFIG_SCHED_SMT
6293static const struct cpumask *cpu_smt_mask(int cpu)
7f4588f3 6294{
2c402dc3 6295 return topology_thread_cpumask(cpu);
3bd65a80 6296}
2c402dc3 6297#endif
7f4588f3 6298
d069b916
PZ
6299/*
6300 * Topology list, bottom-up.
6301 */
2c402dc3 6302static struct sched_domain_topology_level default_topology[] = {
d069b916
PZ
6303#ifdef CONFIG_SCHED_SMT
6304 { sd_init_SIBLING, cpu_smt_mask, },
01a08546 6305#endif
1e9f28fa 6306#ifdef CONFIG_SCHED_MC
2c402dc3 6307 { sd_init_MC, cpu_coregroup_mask, },
1e9f28fa 6308#endif
d069b916
PZ
6309#ifdef CONFIG_SCHED_BOOK
6310 { sd_init_BOOK, cpu_book_mask, },
6311#endif
6312 { sd_init_CPU, cpu_cpu_mask, },
6313#ifdef CONFIG_NUMA
e3589f6c 6314 { sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, },
d069b916 6315 { sd_init_ALLNODES, cpu_allnodes_mask, },
1da177e4 6316#endif
eb7a74e6
PZ
6317 { NULL, },
6318};
6319
6320static struct sched_domain_topology_level *sched_domain_topology = default_topology;
6321
54ab4ff4
PZ
6322static int __sdt_alloc(const struct cpumask *cpu_map)
6323{
6324 struct sched_domain_topology_level *tl;
6325 int j;
6326
6327 for (tl = sched_domain_topology; tl->init; tl++) {
6328 struct sd_data *sdd = &tl->data;
6329
6330 sdd->sd = alloc_percpu(struct sched_domain *);
6331 if (!sdd->sd)
6332 return -ENOMEM;
6333
6334 sdd->sg = alloc_percpu(struct sched_group *);
6335 if (!sdd->sg)
6336 return -ENOMEM;
6337
9c3f75cb
PZ
6338 sdd->sgp = alloc_percpu(struct sched_group_power *);
6339 if (!sdd->sgp)
6340 return -ENOMEM;
6341
54ab4ff4
PZ
6342 for_each_cpu(j, cpu_map) {
6343 struct sched_domain *sd;
6344 struct sched_group *sg;
9c3f75cb 6345 struct sched_group_power *sgp;
54ab4ff4
PZ
6346
6347 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6348 GFP_KERNEL, cpu_to_node(j));
6349 if (!sd)
6350 return -ENOMEM;
6351
6352 *per_cpu_ptr(sdd->sd, j) = sd;
6353
6354 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6355 GFP_KERNEL, cpu_to_node(j));
6356 if (!sg)
6357 return -ENOMEM;
6358
6359 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb
PZ
6360
6361 sgp = kzalloc_node(sizeof(struct sched_group_power),
6362 GFP_KERNEL, cpu_to_node(j));
6363 if (!sgp)
6364 return -ENOMEM;
6365
6366 *per_cpu_ptr(sdd->sgp, j) = sgp;
54ab4ff4
PZ
6367 }
6368 }
6369
6370 return 0;
6371}
6372
6373static void __sdt_free(const struct cpumask *cpu_map)
6374{
6375 struct sched_domain_topology_level *tl;
6376 int j;
6377
6378 for (tl = sched_domain_topology; tl->init; tl++) {
6379 struct sd_data *sdd = &tl->data;
6380
6381 for_each_cpu(j, cpu_map) {
e3589f6c
PZ
6382 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, j);
6383 if (sd && (sd->flags & SD_OVERLAP))
6384 free_sched_groups(sd->groups, 0);
feff8fa0 6385 kfree(*per_cpu_ptr(sdd->sd, j));
54ab4ff4 6386 kfree(*per_cpu_ptr(sdd->sg, j));
9c3f75cb 6387 kfree(*per_cpu_ptr(sdd->sgp, j));
54ab4ff4
PZ
6388 }
6389 free_percpu(sdd->sd);
6390 free_percpu(sdd->sg);
9c3f75cb 6391 free_percpu(sdd->sgp);
54ab4ff4
PZ
6392 }
6393}
6394
2c402dc3
PZ
6395struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6396 struct s_data *d, const struct cpumask *cpu_map,
d069b916 6397 struct sched_domain_attr *attr, struct sched_domain *child,
2c402dc3
PZ
6398 int cpu)
6399{
54ab4ff4 6400 struct sched_domain *sd = tl->init(tl, cpu);
2c402dc3 6401 if (!sd)
d069b916 6402 return child;
2c402dc3
PZ
6403
6404 set_domain_attribute(sd, attr);
6405 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6406 if (child) {
6407 sd->level = child->level + 1;
6408 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6409 child->parent = sd;
60495e77 6410 }
d069b916 6411 sd->child = child;
2c402dc3
PZ
6412
6413 return sd;
6414}
6415
2109b99e
AH
6416/*
6417 * Build sched domains for a given set of cpus and attach the sched domains
6418 * to the individual cpus
6419 */
dce840a0
PZ
6420static int build_sched_domains(const struct cpumask *cpu_map,
6421 struct sched_domain_attr *attr)
2109b99e
AH
6422{
6423 enum s_alloc alloc_state = sa_none;
dce840a0 6424 struct sched_domain *sd;
2109b99e 6425 struct s_data d;
822ff793 6426 int i, ret = -ENOMEM;
9c1cfda2 6427
2109b99e
AH
6428 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6429 if (alloc_state != sa_rootdomain)
6430 goto error;
9c1cfda2 6431
dce840a0 6432 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6433 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6434 struct sched_domain_topology_level *tl;
6435
3bd65a80 6436 sd = NULL;
e3589f6c 6437 for (tl = sched_domain_topology; tl->init; tl++) {
2c402dc3 6438 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
e3589f6c
PZ
6439 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6440 sd->flags |= SD_OVERLAP;
d110235d
PZ
6441 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6442 break;
e3589f6c 6443 }
d274cb30 6444
d069b916
PZ
6445 while (sd->child)
6446 sd = sd->child;
6447
21d42ccf 6448 *per_cpu_ptr(d.sd, i) = sd;
dce840a0
PZ
6449 }
6450
6451 /* Build the groups for the domains */
6452 for_each_cpu(i, cpu_map) {
6453 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6454 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6455 if (sd->flags & SD_OVERLAP) {
6456 if (build_overlap_sched_groups(sd, i))
6457 goto error;
6458 } else {
6459 if (build_sched_groups(sd, i))
6460 goto error;
6461 }
1cf51902 6462 }
a06dadbe 6463 }
9c1cfda2 6464
1da177e4 6465 /* Calculate CPU power for physical packages and nodes */
a9c9a9b6
PZ
6466 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6467 if (!cpumask_test_cpu(i, cpu_map))
6468 continue;
9c1cfda2 6469
dce840a0
PZ
6470 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6471 claim_allocations(i, sd);
cd4ea6ae 6472 init_sched_groups_power(i, sd);
dce840a0 6473 }
f712c0c7 6474 }
9c1cfda2 6475
1da177e4 6476 /* Attach the domains */
dce840a0 6477 rcu_read_lock();
abcd083a 6478 for_each_cpu(i, cpu_map) {
21d42ccf 6479 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6480 cpu_attach_domain(sd, d.rd, i);
1da177e4 6481 }
dce840a0 6482 rcu_read_unlock();
51888ca2 6483
822ff793 6484 ret = 0;
51888ca2 6485error:
2109b99e 6486 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6487 return ret;
1da177e4 6488}
029190c5 6489
acc3f5d7 6490static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6491static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6492static struct sched_domain_attr *dattr_cur;
6493 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6494
6495/*
6496 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6497 * cpumask) fails, then fallback to a single sched domain,
6498 * as determined by the single cpumask fallback_doms.
029190c5 6499 */
4212823f 6500static cpumask_var_t fallback_doms;
029190c5 6501
ee79d1bd
HC
6502/*
6503 * arch_update_cpu_topology lets virtualized architectures update the
6504 * cpu core maps. It is supposed to return 1 if the topology changed
6505 * or 0 if it stayed the same.
6506 */
6507int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 6508{
ee79d1bd 6509 return 0;
22e52b07
HC
6510}
6511
acc3f5d7
RR
6512cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6513{
6514 int i;
6515 cpumask_var_t *doms;
6516
6517 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6518 if (!doms)
6519 return NULL;
6520 for (i = 0; i < ndoms; i++) {
6521 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6522 free_sched_domains(doms, i);
6523 return NULL;
6524 }
6525 }
6526 return doms;
6527}
6528
6529void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6530{
6531 unsigned int i;
6532 for (i = 0; i < ndoms; i++)
6533 free_cpumask_var(doms[i]);
6534 kfree(doms);
6535}
6536
1a20ff27 6537/*
41a2d6cf 6538 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6539 * For now this just excludes isolated cpus, but could be used to
6540 * exclude other special cases in the future.
1a20ff27 6541 */
c4a8849a 6542static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6543{
7378547f
MM
6544 int err;
6545
22e52b07 6546 arch_update_cpu_topology();
029190c5 6547 ndoms_cur = 1;
acc3f5d7 6548 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6549 if (!doms_cur)
acc3f5d7
RR
6550 doms_cur = &fallback_doms;
6551 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 6552 dattr_cur = NULL;
dce840a0 6553 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6554 register_sched_domain_sysctl();
7378547f
MM
6555
6556 return err;
1a20ff27
DG
6557}
6558
1a20ff27
DG
6559/*
6560 * Detach sched domains from a group of cpus specified in cpu_map
6561 * These cpus will now be attached to the NULL domain
6562 */
96f874e2 6563static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6564{
6565 int i;
6566
dce840a0 6567 rcu_read_lock();
abcd083a 6568 for_each_cpu(i, cpu_map)
57d885fe 6569 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6570 rcu_read_unlock();
1a20ff27
DG
6571}
6572
1d3504fc
HS
6573/* handle null as "default" */
6574static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6575 struct sched_domain_attr *new, int idx_new)
6576{
6577 struct sched_domain_attr tmp;
6578
6579 /* fast path */
6580 if (!new && !cur)
6581 return 1;
6582
6583 tmp = SD_ATTR_INIT;
6584 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6585 new ? (new + idx_new) : &tmp,
6586 sizeof(struct sched_domain_attr));
6587}
6588
029190c5
PJ
6589/*
6590 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6591 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6592 * doms_new[] to the current sched domain partitioning, doms_cur[].
6593 * It destroys each deleted domain and builds each new domain.
6594 *
acc3f5d7 6595 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
6596 * The masks don't intersect (don't overlap.) We should setup one
6597 * sched domain for each mask. CPUs not in any of the cpumasks will
6598 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6599 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6600 * it as it is.
6601 *
acc3f5d7
RR
6602 * The passed in 'doms_new' should be allocated using
6603 * alloc_sched_domains. This routine takes ownership of it and will
6604 * free_sched_domains it when done with it. If the caller failed the
6605 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6606 * and partition_sched_domains() will fallback to the single partition
6607 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 6608 *
96f874e2 6609 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
6610 * ndoms_new == 0 is a special case for destroying existing domains,
6611 * and it will not create the default domain.
dfb512ec 6612 *
029190c5
PJ
6613 * Call with hotplug lock held
6614 */
acc3f5d7 6615void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 6616 struct sched_domain_attr *dattr_new)
029190c5 6617{
dfb512ec 6618 int i, j, n;
d65bd5ec 6619 int new_topology;
029190c5 6620
712555ee 6621 mutex_lock(&sched_domains_mutex);
a1835615 6622
7378547f
MM
6623 /* always unregister in case we don't destroy any domains */
6624 unregister_sched_domain_sysctl();
6625
d65bd5ec
HC
6626 /* Let architecture update cpu core mappings. */
6627 new_topology = arch_update_cpu_topology();
6628
dfb512ec 6629 n = doms_new ? ndoms_new : 0;
029190c5
PJ
6630
6631 /* Destroy deleted domains */
6632 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 6633 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6634 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 6635 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
6636 goto match1;
6637 }
6638 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 6639 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
6640match1:
6641 ;
6642 }
6643
e761b772
MK
6644 if (doms_new == NULL) {
6645 ndoms_cur = 0;
acc3f5d7 6646 doms_new = &fallback_doms;
6ad4c188 6647 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 6648 WARN_ON_ONCE(dattr_new);
e761b772
MK
6649 }
6650
029190c5
PJ
6651 /* Build new domains */
6652 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 6653 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 6654 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 6655 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
6656 goto match2;
6657 }
6658 /* no match - add a new doms_new */
dce840a0 6659 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
6660match2:
6661 ;
6662 }
6663
6664 /* Remember the new sched domains */
acc3f5d7
RR
6665 if (doms_cur != &fallback_doms)
6666 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 6667 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 6668 doms_cur = doms_new;
1d3504fc 6669 dattr_cur = dattr_new;
029190c5 6670 ndoms_cur = ndoms_new;
7378547f
MM
6671
6672 register_sched_domain_sysctl();
a1835615 6673
712555ee 6674 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
6675}
6676
5c45bf27 6677#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c4a8849a 6678static void reinit_sched_domains(void)
5c45bf27 6679{
95402b38 6680 get_online_cpus();
dfb512ec
MK
6681
6682 /* Destroy domains first to force the rebuild */
6683 partition_sched_domains(0, NULL, NULL);
6684
e761b772 6685 rebuild_sched_domains();
95402b38 6686 put_online_cpus();
5c45bf27
SS
6687}
6688
6689static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6690{
afb8a9b7 6691 unsigned int level = 0;
5c45bf27 6692
afb8a9b7
GS
6693 if (sscanf(buf, "%u", &level) != 1)
6694 return -EINVAL;
6695
6696 /*
6697 * level is always be positive so don't check for
6698 * level < POWERSAVINGS_BALANCE_NONE which is 0
6699 * What happens on 0 or 1 byte write,
6700 * need to check for count as well?
6701 */
6702
6703 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
6704 return -EINVAL;
6705
6706 if (smt)
afb8a9b7 6707 sched_smt_power_savings = level;
5c45bf27 6708 else
afb8a9b7 6709 sched_mc_power_savings = level;
5c45bf27 6710
c4a8849a 6711 reinit_sched_domains();
5c45bf27 6712
c70f22d2 6713 return count;
5c45bf27
SS
6714}
6715
5c45bf27 6716#ifdef CONFIG_SCHED_MC
8a25a2fd
KS
6717static ssize_t sched_mc_power_savings_show(struct device *dev,
6718 struct device_attribute *attr,
6719 char *buf)
5c45bf27 6720{
8a25a2fd 6721 return sprintf(buf, "%u\n", sched_mc_power_savings);
5c45bf27 6722}
8a25a2fd
KS
6723static ssize_t sched_mc_power_savings_store(struct device *dev,
6724 struct device_attribute *attr,
48f24c4d 6725 const char *buf, size_t count)
5c45bf27
SS
6726{
6727 return sched_power_savings_store(buf, count, 0);
6728}
8a25a2fd
KS
6729static DEVICE_ATTR(sched_mc_power_savings, 0644,
6730 sched_mc_power_savings_show,
6731 sched_mc_power_savings_store);
5c45bf27
SS
6732#endif
6733
6734#ifdef CONFIG_SCHED_SMT
8a25a2fd
KS
6735static ssize_t sched_smt_power_savings_show(struct device *dev,
6736 struct device_attribute *attr,
6737 char *buf)
5c45bf27 6738{
8a25a2fd 6739 return sprintf(buf, "%u\n", sched_smt_power_savings);
5c45bf27 6740}
8a25a2fd
KS
6741static ssize_t sched_smt_power_savings_store(struct device *dev,
6742 struct device_attribute *attr,
48f24c4d 6743 const char *buf, size_t count)
5c45bf27
SS
6744{
6745 return sched_power_savings_store(buf, count, 1);
6746}
8a25a2fd 6747static DEVICE_ATTR(sched_smt_power_savings, 0644,
f718cd4a 6748 sched_smt_power_savings_show,
6707de00
AB
6749 sched_smt_power_savings_store);
6750#endif
6751
8a25a2fd 6752int __init sched_create_sysfs_power_savings_entries(struct device *dev)
6707de00
AB
6753{
6754 int err = 0;
6755
6756#ifdef CONFIG_SCHED_SMT
6757 if (smt_capable())
8a25a2fd 6758 err = device_create_file(dev, &dev_attr_sched_smt_power_savings);
6707de00
AB
6759#endif
6760#ifdef CONFIG_SCHED_MC
6761 if (!err && mc_capable())
8a25a2fd 6762 err = device_create_file(dev, &dev_attr_sched_mc_power_savings);
6707de00
AB
6763#endif
6764 return err;
6765}
6d6bc0ad 6766#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 6767
1da177e4 6768/*
3a101d05
TH
6769 * Update cpusets according to cpu_active mask. If cpusets are
6770 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6771 * around partition_sched_domains().
1da177e4 6772 */
0b2e918a
TH
6773static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6774 void *hcpu)
e761b772 6775{
3a101d05 6776 switch (action & ~CPU_TASKS_FROZEN) {
e761b772 6777 case CPU_ONLINE:
6ad4c188 6778 case CPU_DOWN_FAILED:
3a101d05 6779 cpuset_update_active_cpus();
e761b772 6780 return NOTIFY_OK;
3a101d05
TH
6781 default:
6782 return NOTIFY_DONE;
6783 }
6784}
e761b772 6785
0b2e918a
TH
6786static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6787 void *hcpu)
3a101d05
TH
6788{
6789 switch (action & ~CPU_TASKS_FROZEN) {
6790 case CPU_DOWN_PREPARE:
6791 cpuset_update_active_cpus();
6792 return NOTIFY_OK;
e761b772
MK
6793 default:
6794 return NOTIFY_DONE;
6795 }
6796}
e761b772 6797
1da177e4
LT
6798void __init sched_init_smp(void)
6799{
dcc30a35
RR
6800 cpumask_var_t non_isolated_cpus;
6801
6802 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 6803 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 6804
95402b38 6805 get_online_cpus();
712555ee 6806 mutex_lock(&sched_domains_mutex);
c4a8849a 6807 init_sched_domains(cpu_active_mask);
dcc30a35
RR
6808 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6809 if (cpumask_empty(non_isolated_cpus))
6810 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 6811 mutex_unlock(&sched_domains_mutex);
95402b38 6812 put_online_cpus();
e761b772 6813
3a101d05
TH
6814 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6815 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772
MK
6816
6817 /* RT runtime code needs to handle some hotplug events */
6818 hotcpu_notifier(update_runtime, 0);
6819
b328ca18 6820 init_hrtick();
5c1e1767
NP
6821
6822 /* Move init over to a non-isolated CPU */
dcc30a35 6823 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 6824 BUG();
19978ca6 6825 sched_init_granularity();
dcc30a35 6826 free_cpumask_var(non_isolated_cpus);
4212823f 6827
0e3900e6 6828 init_sched_rt_class();
1da177e4
LT
6829}
6830#else
6831void __init sched_init_smp(void)
6832{
19978ca6 6833 sched_init_granularity();
1da177e4
LT
6834}
6835#endif /* CONFIG_SMP */
6836
cd1bb94b
AB
6837const_debug unsigned int sysctl_timer_migration = 1;
6838
1da177e4
LT
6839int in_sched_functions(unsigned long addr)
6840{
1da177e4
LT
6841 return in_lock_functions(addr) ||
6842 (addr >= (unsigned long)__sched_text_start
6843 && addr < (unsigned long)__sched_text_end);
6844}
6845
029632fb
PZ
6846#ifdef CONFIG_CGROUP_SCHED
6847struct task_group root_task_group;
052f1dc7 6848#endif
6f505b16 6849
029632fb 6850DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
6f505b16 6851
1da177e4
LT
6852void __init sched_init(void)
6853{
dd41f596 6854 int i, j;
434d53b0
MT
6855 unsigned long alloc_size = 0, ptr;
6856
6857#ifdef CONFIG_FAIR_GROUP_SCHED
6858 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6859#endif
6860#ifdef CONFIG_RT_GROUP_SCHED
6861 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 6862#endif
df7c8e84 6863#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 6864 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 6865#endif
434d53b0 6866 if (alloc_size) {
36b7b6d4 6867 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
6868
6869#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 6870 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
6871 ptr += nr_cpu_ids * sizeof(void **);
6872
07e06b01 6873 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 6874 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 6875
6d6bc0ad 6876#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 6877#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6878 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
6879 ptr += nr_cpu_ids * sizeof(void **);
6880
07e06b01 6881 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
6882 ptr += nr_cpu_ids * sizeof(void **);
6883
6d6bc0ad 6884#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
6885#ifdef CONFIG_CPUMASK_OFFSTACK
6886 for_each_possible_cpu(i) {
6887 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
6888 ptr += cpumask_size();
6889 }
6890#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 6891 }
dd41f596 6892
57d885fe
GH
6893#ifdef CONFIG_SMP
6894 init_defrootdomain();
6895#endif
6896
d0b27fa7
PZ
6897 init_rt_bandwidth(&def_rt_bandwidth,
6898 global_rt_period(), global_rt_runtime());
6899
6900#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6901 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 6902 global_rt_period(), global_rt_runtime());
6d6bc0ad 6903#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6904
7c941438 6905#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
6906 list_add(&root_task_group.list, &task_groups);
6907 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 6908 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 6909 autogroup_init(&init_task);
54c707e9 6910
7c941438 6911#endif /* CONFIG_CGROUP_SCHED */
6f505b16 6912
54c707e9
GC
6913#ifdef CONFIG_CGROUP_CPUACCT
6914 root_cpuacct.cpustat = &kernel_cpustat;
6915 root_cpuacct.cpuusage = alloc_percpu(u64);
6916 /* Too early, not expected to fail */
6917 BUG_ON(!root_cpuacct.cpuusage);
6918#endif
0a945022 6919 for_each_possible_cpu(i) {
70b97a7f 6920 struct rq *rq;
1da177e4
LT
6921
6922 rq = cpu_rq(i);
05fa785c 6923 raw_spin_lock_init(&rq->lock);
7897986b 6924 rq->nr_running = 0;
dce48a84
TG
6925 rq->calc_load_active = 0;
6926 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 6927 init_cfs_rq(&rq->cfs);
6f505b16 6928 init_rt_rq(&rq->rt, rq);
dd41f596 6929#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 6930 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 6931 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 6932 /*
07e06b01 6933 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
6934 *
6935 * In case of task-groups formed thr' the cgroup filesystem, it
6936 * gets 100% of the cpu resources in the system. This overall
6937 * system cpu resource is divided among the tasks of
07e06b01 6938 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
6939 * based on each entity's (task or task-group's) weight
6940 * (se->load.weight).
6941 *
07e06b01 6942 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
6943 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6944 * then A0's share of the cpu resource is:
6945 *
0d905bca 6946 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 6947 *
07e06b01
YZ
6948 * We achieve this by letting root_task_group's tasks sit
6949 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 6950 */
ab84d31e 6951 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 6952 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
6953#endif /* CONFIG_FAIR_GROUP_SCHED */
6954
6955 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 6956#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 6957 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
07e06b01 6958 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 6959#endif
1da177e4 6960
dd41f596
IM
6961 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6962 rq->cpu_load[j] = 0;
fdf3e95d
VP
6963
6964 rq->last_load_update_tick = jiffies;
6965
1da177e4 6966#ifdef CONFIG_SMP
41c7ce9a 6967 rq->sd = NULL;
57d885fe 6968 rq->rd = NULL;
1399fa78 6969 rq->cpu_power = SCHED_POWER_SCALE;
3f029d3c 6970 rq->post_schedule = 0;
1da177e4 6971 rq->active_balance = 0;
dd41f596 6972 rq->next_balance = jiffies;
1da177e4 6973 rq->push_cpu = 0;
0a2966b4 6974 rq->cpu = i;
1f11eb6a 6975 rq->online = 0;
eae0c9df
MG
6976 rq->idle_stamp = 0;
6977 rq->avg_idle = 2*sysctl_sched_migration_cost;
367456c7
PZ
6978
6979 INIT_LIST_HEAD(&rq->cfs_tasks);
6980
dc938520 6981 rq_attach_root(rq, &def_root_domain);
83cd4fe2 6982#ifdef CONFIG_NO_HZ
1c792db7 6983 rq->nohz_flags = 0;
83cd4fe2 6984#endif
1da177e4 6985#endif
8f4d37ec 6986 init_rq_hrtick(rq);
1da177e4 6987 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
6988 }
6989
2dd73a4f 6990 set_load_weight(&init_task);
b50f60ce 6991
e107be36
AK
6992#ifdef CONFIG_PREEMPT_NOTIFIERS
6993 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6994#endif
6995
b50f60ce 6996#ifdef CONFIG_RT_MUTEXES
732375c6 6997 plist_head_init(&init_task.pi_waiters);
b50f60ce
HC
6998#endif
6999
1da177e4
LT
7000 /*
7001 * The boot idle thread does lazy MMU switching as well:
7002 */
7003 atomic_inc(&init_mm.mm_count);
7004 enter_lazy_tlb(&init_mm, current);
7005
7006 /*
7007 * Make us the idle thread. Technically, schedule() should not be
7008 * called from this thread, however somewhere below it might be,
7009 * but because we are the idle thread, we just pick up running again
7010 * when this runqueue becomes "idle".
7011 */
7012 init_idle(current, smp_processor_id());
dce48a84
TG
7013
7014 calc_load_update = jiffies + LOAD_FREQ;
7015
dd41f596
IM
7016 /*
7017 * During early bootup we pretend to be a normal task:
7018 */
7019 current->sched_class = &fair_sched_class;
6892b75e 7020
bf4d83f6 7021#ifdef CONFIG_SMP
4cb98839 7022 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
7023 /* May be allocated at isolcpus cmdline parse time */
7024 if (cpu_isolated_map == NULL)
7025 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
029632fb
PZ
7026#endif
7027 init_sched_fair_class();
6a7b3dc3 7028
6892b75e 7029 scheduler_running = 1;
1da177e4
LT
7030}
7031
d902db1e 7032#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
7033static inline int preempt_count_equals(int preempt_offset)
7034{
234da7bc 7035 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 7036
4ba8216c 7037 return (nested == preempt_offset);
e4aafea2
FW
7038}
7039
d894837f 7040void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7041{
1da177e4
LT
7042 static unsigned long prev_jiffy; /* ratelimiting */
7043
b3fbab05 7044 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
e4aafea2
FW
7045 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7046 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7047 return;
7048 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7049 return;
7050 prev_jiffy = jiffies;
7051
3df0fc5b
PZ
7052 printk(KERN_ERR
7053 "BUG: sleeping function called from invalid context at %s:%d\n",
7054 file, line);
7055 printk(KERN_ERR
7056 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7057 in_atomic(), irqs_disabled(),
7058 current->pid, current->comm);
aef745fc
IM
7059
7060 debug_show_held_locks(current);
7061 if (irqs_disabled())
7062 print_irqtrace_events(current);
7063 dump_stack();
1da177e4
LT
7064}
7065EXPORT_SYMBOL(__might_sleep);
7066#endif
7067
7068#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7069static void normalize_task(struct rq *rq, struct task_struct *p)
7070{
da7a735e
PZ
7071 const struct sched_class *prev_class = p->sched_class;
7072 int old_prio = p->prio;
3a5e4dc1 7073 int on_rq;
3e51f33f 7074
fd2f4419 7075 on_rq = p->on_rq;
3a5e4dc1 7076 if (on_rq)
4ca9b72b 7077 dequeue_task(rq, p, 0);
3a5e4dc1
AK
7078 __setscheduler(rq, p, SCHED_NORMAL, 0);
7079 if (on_rq) {
4ca9b72b 7080 enqueue_task(rq, p, 0);
3a5e4dc1
AK
7081 resched_task(rq->curr);
7082 }
da7a735e
PZ
7083
7084 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
7085}
7086
1da177e4
LT
7087void normalize_rt_tasks(void)
7088{
a0f98a1c 7089 struct task_struct *g, *p;
1da177e4 7090 unsigned long flags;
70b97a7f 7091 struct rq *rq;
1da177e4 7092
4cf5d77a 7093 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 7094 do_each_thread(g, p) {
178be793
IM
7095 /*
7096 * Only normalize user tasks:
7097 */
7098 if (!p->mm)
7099 continue;
7100
6cfb0d5d 7101 p->se.exec_start = 0;
6cfb0d5d 7102#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7103 p->se.statistics.wait_start = 0;
7104 p->se.statistics.sleep_start = 0;
7105 p->se.statistics.block_start = 0;
6cfb0d5d 7106#endif
dd41f596
IM
7107
7108 if (!rt_task(p)) {
7109 /*
7110 * Renice negative nice level userspace
7111 * tasks back to 0:
7112 */
7113 if (TASK_NICE(p) < 0 && p->mm)
7114 set_user_nice(p, 0);
1da177e4 7115 continue;
dd41f596 7116 }
1da177e4 7117
1d615482 7118 raw_spin_lock(&p->pi_lock);
b29739f9 7119 rq = __task_rq_lock(p);
1da177e4 7120
178be793 7121 normalize_task(rq, p);
3a5e4dc1 7122
b29739f9 7123 __task_rq_unlock(rq);
1d615482 7124 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
7125 } while_each_thread(g, p);
7126
4cf5d77a 7127 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
7128}
7129
7130#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7131
67fc4e0c 7132#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7133/*
67fc4e0c 7134 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7135 *
7136 * They can only be called when the whole system has been
7137 * stopped - every CPU needs to be quiescent, and no scheduling
7138 * activity can take place. Using them for anything else would
7139 * be a serious bug, and as a result, they aren't even visible
7140 * under any other configuration.
7141 */
7142
7143/**
7144 * curr_task - return the current task for a given cpu.
7145 * @cpu: the processor in question.
7146 *
7147 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7148 */
36c8b586 7149struct task_struct *curr_task(int cpu)
1df5c10a
LT
7150{
7151 return cpu_curr(cpu);
7152}
7153
67fc4e0c
JW
7154#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7155
7156#ifdef CONFIG_IA64
1df5c10a
LT
7157/**
7158 * set_curr_task - set the current task for a given cpu.
7159 * @cpu: the processor in question.
7160 * @p: the task pointer to set.
7161 *
7162 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7163 * are serviced on a separate stack. It allows the architecture to switch the
7164 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7165 * must be called with all CPU's synchronized, and interrupts disabled, the
7166 * and caller must save the original value of the current task (see
7167 * curr_task() above) and restore that value before reenabling interrupts and
7168 * re-starting the system.
7169 *
7170 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7171 */
36c8b586 7172void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7173{
7174 cpu_curr(cpu) = p;
7175}
7176
7177#endif
29f59db3 7178
7c941438 7179#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7180/* task_group_lock serializes the addition/removal of task groups */
7181static DEFINE_SPINLOCK(task_group_lock);
7182
bccbe08a
PZ
7183static void free_sched_group(struct task_group *tg)
7184{
7185 free_fair_sched_group(tg);
7186 free_rt_sched_group(tg);
e9aa1dd1 7187 autogroup_free(tg);
bccbe08a
PZ
7188 kfree(tg);
7189}
7190
7191/* allocate runqueue etc for a new task group */
ec7dc8ac 7192struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7193{
7194 struct task_group *tg;
7195 unsigned long flags;
bccbe08a
PZ
7196
7197 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7198 if (!tg)
7199 return ERR_PTR(-ENOMEM);
7200
ec7dc8ac 7201 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7202 goto err;
7203
ec7dc8ac 7204 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7205 goto err;
7206
8ed36996 7207 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7208 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7209
7210 WARN_ON(!parent); /* root should already exist */
7211
7212 tg->parent = parent;
f473aa5e 7213 INIT_LIST_HEAD(&tg->children);
09f2724a 7214 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7215 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 7216
9b5b7751 7217 return tg;
29f59db3
SV
7218
7219err:
6f505b16 7220 free_sched_group(tg);
29f59db3
SV
7221 return ERR_PTR(-ENOMEM);
7222}
7223
9b5b7751 7224/* rcu callback to free various structures associated with a task group */
6f505b16 7225static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7226{
29f59db3 7227 /* now it should be safe to free those cfs_rqs */
6f505b16 7228 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7229}
7230
9b5b7751 7231/* Destroy runqueue etc associated with a task group */
4cf86d77 7232void sched_destroy_group(struct task_group *tg)
29f59db3 7233{
8ed36996 7234 unsigned long flags;
9b5b7751 7235 int i;
29f59db3 7236
3d4b47b4
PZ
7237 /* end participation in shares distribution */
7238 for_each_possible_cpu(i)
bccbe08a 7239 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
7240
7241 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7242 list_del_rcu(&tg->list);
f473aa5e 7243 list_del_rcu(&tg->siblings);
8ed36996 7244 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 7245
9b5b7751 7246 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 7247 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
7248}
7249
9b5b7751 7250/* change task's runqueue when it moves between groups.
3a252015
IM
7251 * The caller of this function should have put the task in its new group
7252 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7253 * reflect its new group.
9b5b7751
SV
7254 */
7255void sched_move_task(struct task_struct *tsk)
29f59db3
SV
7256{
7257 int on_rq, running;
7258 unsigned long flags;
7259 struct rq *rq;
7260
7261 rq = task_rq_lock(tsk, &flags);
7262
051a1d1a 7263 running = task_current(rq, tsk);
fd2f4419 7264 on_rq = tsk->on_rq;
29f59db3 7265
0e1f3483 7266 if (on_rq)
29f59db3 7267 dequeue_task(rq, tsk, 0);
0e1f3483
HS
7268 if (unlikely(running))
7269 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 7270
810b3817 7271#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
7272 if (tsk->sched_class->task_move_group)
7273 tsk->sched_class->task_move_group(tsk, on_rq);
7274 else
810b3817 7275#endif
b2b5ce02 7276 set_task_rq(tsk, task_cpu(tsk));
810b3817 7277
0e1f3483
HS
7278 if (unlikely(running))
7279 tsk->sched_class->set_curr_task(rq);
7280 if (on_rq)
371fd7e7 7281 enqueue_task(rq, tsk, 0);
29f59db3 7282
0122ec5b 7283 task_rq_unlock(rq, tsk, &flags);
29f59db3 7284}
7c941438 7285#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7286
a790de99 7287#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
9f0c1e56
PZ
7288static unsigned long to_ratio(u64 period, u64 runtime)
7289{
7290 if (runtime == RUNTIME_INF)
9a7e0b18 7291 return 1ULL << 20;
9f0c1e56 7292
9a7e0b18 7293 return div64_u64(runtime << 20, period);
9f0c1e56 7294}
a790de99
PT
7295#endif
7296
7297#ifdef CONFIG_RT_GROUP_SCHED
7298/*
7299 * Ensure that the real time constraints are schedulable.
7300 */
7301static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7302
9a7e0b18
PZ
7303/* Must be called with tasklist_lock held */
7304static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7305{
9a7e0b18 7306 struct task_struct *g, *p;
b40b2e8e 7307
9a7e0b18 7308 do_each_thread(g, p) {
029632fb 7309 if (rt_task(p) && task_rq(p)->rt.tg == tg)
9a7e0b18
PZ
7310 return 1;
7311 } while_each_thread(g, p);
b40b2e8e 7312
9a7e0b18
PZ
7313 return 0;
7314}
b40b2e8e 7315
9a7e0b18
PZ
7316struct rt_schedulable_data {
7317 struct task_group *tg;
7318 u64 rt_period;
7319 u64 rt_runtime;
7320};
b40b2e8e 7321
a790de99 7322static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7323{
7324 struct rt_schedulable_data *d = data;
7325 struct task_group *child;
7326 unsigned long total, sum = 0;
7327 u64 period, runtime;
b40b2e8e 7328
9a7e0b18
PZ
7329 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7330 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7331
9a7e0b18
PZ
7332 if (tg == d->tg) {
7333 period = d->rt_period;
7334 runtime = d->rt_runtime;
b40b2e8e 7335 }
b40b2e8e 7336
4653f803
PZ
7337 /*
7338 * Cannot have more runtime than the period.
7339 */
7340 if (runtime > period && runtime != RUNTIME_INF)
7341 return -EINVAL;
6f505b16 7342
4653f803
PZ
7343 /*
7344 * Ensure we don't starve existing RT tasks.
7345 */
9a7e0b18
PZ
7346 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7347 return -EBUSY;
6f505b16 7348
9a7e0b18 7349 total = to_ratio(period, runtime);
6f505b16 7350
4653f803
PZ
7351 /*
7352 * Nobody can have more than the global setting allows.
7353 */
7354 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7355 return -EINVAL;
6f505b16 7356
4653f803
PZ
7357 /*
7358 * The sum of our children's runtime should not exceed our own.
7359 */
9a7e0b18
PZ
7360 list_for_each_entry_rcu(child, &tg->children, siblings) {
7361 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7362 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7363
9a7e0b18
PZ
7364 if (child == d->tg) {
7365 period = d->rt_period;
7366 runtime = d->rt_runtime;
7367 }
6f505b16 7368
9a7e0b18 7369 sum += to_ratio(period, runtime);
9f0c1e56 7370 }
6f505b16 7371
9a7e0b18
PZ
7372 if (sum > total)
7373 return -EINVAL;
7374
7375 return 0;
6f505b16
PZ
7376}
7377
9a7e0b18 7378static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7379{
8277434e
PT
7380 int ret;
7381
9a7e0b18
PZ
7382 struct rt_schedulable_data data = {
7383 .tg = tg,
7384 .rt_period = period,
7385 .rt_runtime = runtime,
7386 };
7387
8277434e
PT
7388 rcu_read_lock();
7389 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7390 rcu_read_unlock();
7391
7392 return ret;
521f1a24
DG
7393}
7394
ab84d31e 7395static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7396 u64 rt_period, u64 rt_runtime)
6f505b16 7397{
ac086bc2 7398 int i, err = 0;
9f0c1e56 7399
9f0c1e56 7400 mutex_lock(&rt_constraints_mutex);
521f1a24 7401 read_lock(&tasklist_lock);
9a7e0b18
PZ
7402 err = __rt_schedulable(tg, rt_period, rt_runtime);
7403 if (err)
9f0c1e56 7404 goto unlock;
ac086bc2 7405
0986b11b 7406 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7407 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7408 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7409
7410 for_each_possible_cpu(i) {
7411 struct rt_rq *rt_rq = tg->rt_rq[i];
7412
0986b11b 7413 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7414 rt_rq->rt_runtime = rt_runtime;
0986b11b 7415 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7416 }
0986b11b 7417 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7418unlock:
521f1a24 7419 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7420 mutex_unlock(&rt_constraints_mutex);
7421
7422 return err;
6f505b16
PZ
7423}
7424
d0b27fa7
PZ
7425int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7426{
7427 u64 rt_runtime, rt_period;
7428
7429 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7430 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7431 if (rt_runtime_us < 0)
7432 rt_runtime = RUNTIME_INF;
7433
ab84d31e 7434 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7435}
7436
9f0c1e56
PZ
7437long sched_group_rt_runtime(struct task_group *tg)
7438{
7439 u64 rt_runtime_us;
7440
d0b27fa7 7441 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7442 return -1;
7443
d0b27fa7 7444 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7445 do_div(rt_runtime_us, NSEC_PER_USEC);
7446 return rt_runtime_us;
7447}
d0b27fa7
PZ
7448
7449int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7450{
7451 u64 rt_runtime, rt_period;
7452
7453 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7454 rt_runtime = tg->rt_bandwidth.rt_runtime;
7455
619b0488
R
7456 if (rt_period == 0)
7457 return -EINVAL;
7458
ab84d31e 7459 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7460}
7461
7462long sched_group_rt_period(struct task_group *tg)
7463{
7464 u64 rt_period_us;
7465
7466 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7467 do_div(rt_period_us, NSEC_PER_USEC);
7468 return rt_period_us;
7469}
7470
7471static int sched_rt_global_constraints(void)
7472{
4653f803 7473 u64 runtime, period;
d0b27fa7
PZ
7474 int ret = 0;
7475
ec5d4989
HS
7476 if (sysctl_sched_rt_period <= 0)
7477 return -EINVAL;
7478
4653f803
PZ
7479 runtime = global_rt_runtime();
7480 period = global_rt_period();
7481
7482 /*
7483 * Sanity check on the sysctl variables.
7484 */
7485 if (runtime > period && runtime != RUNTIME_INF)
7486 return -EINVAL;
10b612f4 7487
d0b27fa7 7488 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7489 read_lock(&tasklist_lock);
4653f803 7490 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7491 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7492 mutex_unlock(&rt_constraints_mutex);
7493
7494 return ret;
7495}
54e99124
DG
7496
7497int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7498{
7499 /* Don't accept realtime tasks when there is no way for them to run */
7500 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7501 return 0;
7502
7503 return 1;
7504}
7505
6d6bc0ad 7506#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7507static int sched_rt_global_constraints(void)
7508{
ac086bc2
PZ
7509 unsigned long flags;
7510 int i;
7511
ec5d4989
HS
7512 if (sysctl_sched_rt_period <= 0)
7513 return -EINVAL;
7514
60aa605d
PZ
7515 /*
7516 * There's always some RT tasks in the root group
7517 * -- migration, kstopmachine etc..
7518 */
7519 if (sysctl_sched_rt_runtime == 0)
7520 return -EBUSY;
7521
0986b11b 7522 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7523 for_each_possible_cpu(i) {
7524 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7525
0986b11b 7526 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7527 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7528 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7529 }
0986b11b 7530 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7531
d0b27fa7
PZ
7532 return 0;
7533}
6d6bc0ad 7534#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7535
7536int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7537 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7538 loff_t *ppos)
7539{
7540 int ret;
7541 int old_period, old_runtime;
7542 static DEFINE_MUTEX(mutex);
7543
7544 mutex_lock(&mutex);
7545 old_period = sysctl_sched_rt_period;
7546 old_runtime = sysctl_sched_rt_runtime;
7547
8d65af78 7548 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
7549
7550 if (!ret && write) {
7551 ret = sched_rt_global_constraints();
7552 if (ret) {
7553 sysctl_sched_rt_period = old_period;
7554 sysctl_sched_rt_runtime = old_runtime;
7555 } else {
7556 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7557 def_rt_bandwidth.rt_period =
7558 ns_to_ktime(global_rt_period());
7559 }
7560 }
7561 mutex_unlock(&mutex);
7562
7563 return ret;
7564}
68318b8e 7565
052f1dc7 7566#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
7567
7568/* return corresponding task_group object of a cgroup */
2b01dfe3 7569static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 7570{
2b01dfe3
PM
7571 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7572 struct task_group, css);
68318b8e
SV
7573}
7574
7575static struct cgroup_subsys_state *
2b01dfe3 7576cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 7577{
ec7dc8ac 7578 struct task_group *tg, *parent;
68318b8e 7579
2b01dfe3 7580 if (!cgrp->parent) {
68318b8e 7581 /* This is early initialization for the top cgroup */
07e06b01 7582 return &root_task_group.css;
68318b8e
SV
7583 }
7584
ec7dc8ac
DG
7585 parent = cgroup_tg(cgrp->parent);
7586 tg = sched_create_group(parent);
68318b8e
SV
7587 if (IS_ERR(tg))
7588 return ERR_PTR(-ENOMEM);
7589
68318b8e
SV
7590 return &tg->css;
7591}
7592
41a2d6cf
IM
7593static void
7594cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 7595{
2b01dfe3 7596 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
7597
7598 sched_destroy_group(tg);
7599}
7600
bb9d97b6
TH
7601static int cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7602 struct cgroup_taskset *tset)
68318b8e 7603{
bb9d97b6
TH
7604 struct task_struct *task;
7605
7606 cgroup_taskset_for_each(task, cgrp, tset) {
b68aa230 7607#ifdef CONFIG_RT_GROUP_SCHED
bb9d97b6
TH
7608 if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7609 return -EINVAL;
b68aa230 7610#else
bb9d97b6
TH
7611 /* We don't support RT-tasks being in separate groups */
7612 if (task->sched_class != &fair_sched_class)
7613 return -EINVAL;
b68aa230 7614#endif
bb9d97b6 7615 }
be367d09
BB
7616 return 0;
7617}
68318b8e 7618
bb9d97b6
TH
7619static void cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7620 struct cgroup_taskset *tset)
68318b8e 7621{
bb9d97b6
TH
7622 struct task_struct *task;
7623
7624 cgroup_taskset_for_each(task, cgrp, tset)
7625 sched_move_task(task);
68318b8e
SV
7626}
7627
068c5cc5 7628static void
d41d5a01
PZ
7629cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
7630 struct cgroup *old_cgrp, struct task_struct *task)
068c5cc5
PZ
7631{
7632 /*
7633 * cgroup_exit() is called in the copy_process() failure path.
7634 * Ignore this case since the task hasn't ran yet, this avoids
7635 * trying to poke a half freed task state from generic code.
7636 */
7637 if (!(task->flags & PF_EXITING))
7638 return;
7639
7640 sched_move_task(task);
7641}
7642
052f1dc7 7643#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 7644static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 7645 u64 shareval)
68318b8e 7646{
c8b28116 7647 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
68318b8e
SV
7648}
7649
f4c753b7 7650static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 7651{
2b01dfe3 7652 struct task_group *tg = cgroup_tg(cgrp);
68318b8e 7653
c8b28116 7654 return (u64) scale_load_down(tg->shares);
68318b8e 7655}
ab84d31e
PT
7656
7657#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
7658static DEFINE_MUTEX(cfs_constraints_mutex);
7659
ab84d31e
PT
7660const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7661const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7662
a790de99
PT
7663static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7664
ab84d31e
PT
7665static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7666{
56f570e5 7667 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 7668 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
7669
7670 if (tg == &root_task_group)
7671 return -EINVAL;
7672
7673 /*
7674 * Ensure we have at some amount of bandwidth every period. This is
7675 * to prevent reaching a state of large arrears when throttled via
7676 * entity_tick() resulting in prolonged exit starvation.
7677 */
7678 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7679 return -EINVAL;
7680
7681 /*
7682 * Likewise, bound things on the otherside by preventing insane quota
7683 * periods. This also allows us to normalize in computing quota
7684 * feasibility.
7685 */
7686 if (period > max_cfs_quota_period)
7687 return -EINVAL;
7688
a790de99
PT
7689 mutex_lock(&cfs_constraints_mutex);
7690 ret = __cfs_schedulable(tg, period, quota);
7691 if (ret)
7692 goto out_unlock;
7693
58088ad0 7694 runtime_enabled = quota != RUNTIME_INF;
56f570e5
PT
7695 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7696 account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
ab84d31e
PT
7697 raw_spin_lock_irq(&cfs_b->lock);
7698 cfs_b->period = ns_to_ktime(period);
7699 cfs_b->quota = quota;
58088ad0 7700
a9cf55b2 7701 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
7702 /* restart the period timer (if active) to handle new period expiry */
7703 if (runtime_enabled && cfs_b->timer_active) {
7704 /* force a reprogram */
7705 cfs_b->timer_active = 0;
7706 __start_cfs_bandwidth(cfs_b);
7707 }
ab84d31e
PT
7708 raw_spin_unlock_irq(&cfs_b->lock);
7709
7710 for_each_possible_cpu(i) {
7711 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 7712 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
7713
7714 raw_spin_lock_irq(&rq->lock);
58088ad0 7715 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 7716 cfs_rq->runtime_remaining = 0;
671fd9da 7717
029632fb 7718 if (cfs_rq->throttled)
671fd9da 7719 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
7720 raw_spin_unlock_irq(&rq->lock);
7721 }
a790de99
PT
7722out_unlock:
7723 mutex_unlock(&cfs_constraints_mutex);
ab84d31e 7724
a790de99 7725 return ret;
ab84d31e
PT
7726}
7727
7728int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7729{
7730 u64 quota, period;
7731
029632fb 7732 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7733 if (cfs_quota_us < 0)
7734 quota = RUNTIME_INF;
7735 else
7736 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7737
7738 return tg_set_cfs_bandwidth(tg, period, quota);
7739}
7740
7741long tg_get_cfs_quota(struct task_group *tg)
7742{
7743 u64 quota_us;
7744
029632fb 7745 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
7746 return -1;
7747
029632fb 7748 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
7749 do_div(quota_us, NSEC_PER_USEC);
7750
7751 return quota_us;
7752}
7753
7754int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7755{
7756 u64 quota, period;
7757
7758 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 7759 quota = tg->cfs_bandwidth.quota;
ab84d31e 7760
ab84d31e
PT
7761 return tg_set_cfs_bandwidth(tg, period, quota);
7762}
7763
7764long tg_get_cfs_period(struct task_group *tg)
7765{
7766 u64 cfs_period_us;
7767
029632fb 7768 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7769 do_div(cfs_period_us, NSEC_PER_USEC);
7770
7771 return cfs_period_us;
7772}
7773
7774static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7775{
7776 return tg_get_cfs_quota(cgroup_tg(cgrp));
7777}
7778
7779static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7780 s64 cfs_quota_us)
7781{
7782 return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7783}
7784
7785static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7786{
7787 return tg_get_cfs_period(cgroup_tg(cgrp));
7788}
7789
7790static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7791 u64 cfs_period_us)
7792{
7793 return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7794}
7795
a790de99
PT
7796struct cfs_schedulable_data {
7797 struct task_group *tg;
7798 u64 period, quota;
7799};
7800
7801/*
7802 * normalize group quota/period to be quota/max_period
7803 * note: units are usecs
7804 */
7805static u64 normalize_cfs_quota(struct task_group *tg,
7806 struct cfs_schedulable_data *d)
7807{
7808 u64 quota, period;
7809
7810 if (tg == d->tg) {
7811 period = d->period;
7812 quota = d->quota;
7813 } else {
7814 period = tg_get_cfs_period(tg);
7815 quota = tg_get_cfs_quota(tg);
7816 }
7817
7818 /* note: these should typically be equivalent */
7819 if (quota == RUNTIME_INF || quota == -1)
7820 return RUNTIME_INF;
7821
7822 return to_ratio(period, quota);
7823}
7824
7825static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7826{
7827 struct cfs_schedulable_data *d = data;
029632fb 7828 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
7829 s64 quota = 0, parent_quota = -1;
7830
7831 if (!tg->parent) {
7832 quota = RUNTIME_INF;
7833 } else {
029632fb 7834 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
7835
7836 quota = normalize_cfs_quota(tg, d);
7837 parent_quota = parent_b->hierarchal_quota;
7838
7839 /*
7840 * ensure max(child_quota) <= parent_quota, inherit when no
7841 * limit is set
7842 */
7843 if (quota == RUNTIME_INF)
7844 quota = parent_quota;
7845 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7846 return -EINVAL;
7847 }
7848 cfs_b->hierarchal_quota = quota;
7849
7850 return 0;
7851}
7852
7853static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7854{
8277434e 7855 int ret;
a790de99
PT
7856 struct cfs_schedulable_data data = {
7857 .tg = tg,
7858 .period = period,
7859 .quota = quota,
7860 };
7861
7862 if (quota != RUNTIME_INF) {
7863 do_div(data.period, NSEC_PER_USEC);
7864 do_div(data.quota, NSEC_PER_USEC);
7865 }
7866
8277434e
PT
7867 rcu_read_lock();
7868 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7869 rcu_read_unlock();
7870
7871 return ret;
a790de99 7872}
e8da1b18
NR
7873
7874static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
7875 struct cgroup_map_cb *cb)
7876{
7877 struct task_group *tg = cgroup_tg(cgrp);
029632fb 7878 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18
NR
7879
7880 cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7881 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7882 cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7883
7884 return 0;
7885}
ab84d31e 7886#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 7887#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 7888
052f1dc7 7889#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 7890static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 7891 s64 val)
6f505b16 7892{
06ecb27c 7893 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
7894}
7895
06ecb27c 7896static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 7897{
06ecb27c 7898 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 7899}
d0b27fa7
PZ
7900
7901static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7902 u64 rt_period_us)
7903{
7904 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
7905}
7906
7907static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
7908{
7909 return sched_group_rt_period(cgroup_tg(cgrp));
7910}
6d6bc0ad 7911#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 7912
fe5c7cc2 7913static struct cftype cpu_files[] = {
052f1dc7 7914#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
7915 {
7916 .name = "shares",
f4c753b7
PM
7917 .read_u64 = cpu_shares_read_u64,
7918 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 7919 },
052f1dc7 7920#endif
ab84d31e
PT
7921#ifdef CONFIG_CFS_BANDWIDTH
7922 {
7923 .name = "cfs_quota_us",
7924 .read_s64 = cpu_cfs_quota_read_s64,
7925 .write_s64 = cpu_cfs_quota_write_s64,
7926 },
7927 {
7928 .name = "cfs_period_us",
7929 .read_u64 = cpu_cfs_period_read_u64,
7930 .write_u64 = cpu_cfs_period_write_u64,
7931 },
e8da1b18
NR
7932 {
7933 .name = "stat",
7934 .read_map = cpu_stats_show,
7935 },
ab84d31e 7936#endif
052f1dc7 7937#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7938 {
9f0c1e56 7939 .name = "rt_runtime_us",
06ecb27c
PM
7940 .read_s64 = cpu_rt_runtime_read,
7941 .write_s64 = cpu_rt_runtime_write,
6f505b16 7942 },
d0b27fa7
PZ
7943 {
7944 .name = "rt_period_us",
f4c753b7
PM
7945 .read_u64 = cpu_rt_period_read_uint,
7946 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 7947 },
052f1dc7 7948#endif
68318b8e
SV
7949};
7950
7951static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7952{
fe5c7cc2 7953 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
7954}
7955
7956struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
7957 .name = "cpu",
7958 .create = cpu_cgroup_create,
7959 .destroy = cpu_cgroup_destroy,
bb9d97b6
TH
7960 .can_attach = cpu_cgroup_can_attach,
7961 .attach = cpu_cgroup_attach,
068c5cc5 7962 .exit = cpu_cgroup_exit,
38605cae
IM
7963 .populate = cpu_cgroup_populate,
7964 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
7965 .early_init = 1,
7966};
7967
052f1dc7 7968#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
7969
7970#ifdef CONFIG_CGROUP_CPUACCT
7971
7972/*
7973 * CPU accounting code for task groups.
7974 *
7975 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
7976 * (balbir@in.ibm.com).
7977 */
7978
d842de87
SV
7979/* create a new cpu accounting group */
7980static struct cgroup_subsys_state *cpuacct_create(
32cd756a 7981 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 7982{
54c707e9 7983 struct cpuacct *ca;
d842de87 7984
54c707e9
GC
7985 if (!cgrp->parent)
7986 return &root_cpuacct.css;
7987
7988 ca = kzalloc(sizeof(*ca), GFP_KERNEL);
d842de87 7989 if (!ca)
ef12fefa 7990 goto out;
d842de87
SV
7991
7992 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
7993 if (!ca->cpuusage)
7994 goto out_free_ca;
7995
54c707e9
GC
7996 ca->cpustat = alloc_percpu(struct kernel_cpustat);
7997 if (!ca->cpustat)
7998 goto out_free_cpuusage;
934352f2 7999
d842de87 8000 return &ca->css;
ef12fefa 8001
54c707e9 8002out_free_cpuusage:
ef12fefa
BR
8003 free_percpu(ca->cpuusage);
8004out_free_ca:
8005 kfree(ca);
8006out:
8007 return ERR_PTR(-ENOMEM);
d842de87
SV
8008}
8009
8010/* destroy an existing cpu accounting group */
41a2d6cf 8011static void
32cd756a 8012cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8013{
32cd756a 8014 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87 8015
54c707e9 8016 free_percpu(ca->cpustat);
d842de87
SV
8017 free_percpu(ca->cpuusage);
8018 kfree(ca);
8019}
8020
720f5498
KC
8021static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8022{
b36128c8 8023 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8024 u64 data;
8025
8026#ifndef CONFIG_64BIT
8027 /*
8028 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8029 */
05fa785c 8030 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8031 data = *cpuusage;
05fa785c 8032 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8033#else
8034 data = *cpuusage;
8035#endif
8036
8037 return data;
8038}
8039
8040static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8041{
b36128c8 8042 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8043
8044#ifndef CONFIG_64BIT
8045 /*
8046 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8047 */
05fa785c 8048 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8049 *cpuusage = val;
05fa785c 8050 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8051#else
8052 *cpuusage = val;
8053#endif
8054}
8055
d842de87 8056/* return total cpu usage (in nanoseconds) of a group */
32cd756a 8057static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 8058{
32cd756a 8059 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
8060 u64 totalcpuusage = 0;
8061 int i;
8062
720f5498
KC
8063 for_each_present_cpu(i)
8064 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
8065
8066 return totalcpuusage;
8067}
8068
0297b803
DG
8069static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8070 u64 reset)
8071{
8072 struct cpuacct *ca = cgroup_ca(cgrp);
8073 int err = 0;
8074 int i;
8075
8076 if (reset) {
8077 err = -EINVAL;
8078 goto out;
8079 }
8080
720f5498
KC
8081 for_each_present_cpu(i)
8082 cpuacct_cpuusage_write(ca, i, 0);
0297b803 8083
0297b803
DG
8084out:
8085 return err;
8086}
8087
e9515c3c
KC
8088static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8089 struct seq_file *m)
8090{
8091 struct cpuacct *ca = cgroup_ca(cgroup);
8092 u64 percpu;
8093 int i;
8094
8095 for_each_present_cpu(i) {
8096 percpu = cpuacct_cpuusage_read(ca, i);
8097 seq_printf(m, "%llu ", (unsigned long long) percpu);
8098 }
8099 seq_printf(m, "\n");
8100 return 0;
8101}
8102
ef12fefa
BR
8103static const char *cpuacct_stat_desc[] = {
8104 [CPUACCT_STAT_USER] = "user",
8105 [CPUACCT_STAT_SYSTEM] = "system",
8106};
8107
8108static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
54c707e9 8109 struct cgroup_map_cb *cb)
ef12fefa
BR
8110{
8111 struct cpuacct *ca = cgroup_ca(cgrp);
54c707e9
GC
8112 int cpu;
8113 s64 val = 0;
ef12fefa 8114
54c707e9
GC
8115 for_each_online_cpu(cpu) {
8116 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8117 val += kcpustat->cpustat[CPUTIME_USER];
8118 val += kcpustat->cpustat[CPUTIME_NICE];
ef12fefa 8119 }
54c707e9
GC
8120 val = cputime64_to_clock_t(val);
8121 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
ef12fefa 8122
54c707e9
GC
8123 val = 0;
8124 for_each_online_cpu(cpu) {
8125 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8126 val += kcpustat->cpustat[CPUTIME_SYSTEM];
8127 val += kcpustat->cpustat[CPUTIME_IRQ];
8128 val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
ef12fefa 8129 }
54c707e9
GC
8130
8131 val = cputime64_to_clock_t(val);
8132 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
8133
ef12fefa
BR
8134 return 0;
8135}
8136
d842de87
SV
8137static struct cftype files[] = {
8138 {
8139 .name = "usage",
f4c753b7
PM
8140 .read_u64 = cpuusage_read,
8141 .write_u64 = cpuusage_write,
d842de87 8142 },
e9515c3c
KC
8143 {
8144 .name = "usage_percpu",
8145 .read_seq_string = cpuacct_percpu_seq_read,
8146 },
ef12fefa
BR
8147 {
8148 .name = "stat",
8149 .read_map = cpuacct_stats_show,
8150 },
d842de87
SV
8151};
8152
32cd756a 8153static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8154{
32cd756a 8155 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
8156}
8157
8158/*
8159 * charge this task's execution time to its accounting group.
8160 *
8161 * called with rq->lock held.
8162 */
029632fb 8163void cpuacct_charge(struct task_struct *tsk, u64 cputime)
d842de87
SV
8164{
8165 struct cpuacct *ca;
934352f2 8166 int cpu;
d842de87 8167
c40c6f85 8168 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
8169 return;
8170
934352f2 8171 cpu = task_cpu(tsk);
a18b83b7
BR
8172
8173 rcu_read_lock();
8174
d842de87 8175 ca = task_ca(tsk);
d842de87 8176
44252e42 8177 for (; ca; ca = parent_ca(ca)) {
b36128c8 8178 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
8179 *cpuusage += cputime;
8180 }
a18b83b7
BR
8181
8182 rcu_read_unlock();
d842de87
SV
8183}
8184
8185struct cgroup_subsys cpuacct_subsys = {
8186 .name = "cpuacct",
8187 .create = cpuacct_create,
8188 .destroy = cpuacct_destroy,
8189 .populate = cpuacct_populate,
8190 .subsys_id = cpuacct_subsys_id,
8191};
8192#endif /* CONFIG_CGROUP_CPUACCT */