]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - kernel/sched/core.c
sched: Add better debug output for might_sleep()
[mirror_ubuntu-hirsute-kernel.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
91d1aa43 75#include <linux/context_tracking.h>
1da177e4 76
96f951ed 77#include <asm/switch_to.h>
5517d86b 78#include <asm/tlb.h>
838225b4 79#include <asm/irq_regs.h>
db7e527d 80#include <asm/mutex.h>
e6e6685a
GC
81#ifdef CONFIG_PARAVIRT
82#include <asm/paravirt.h>
83#endif
1da177e4 84
029632fb 85#include "sched.h"
ea138446 86#include "../workqueue_internal.h"
29d5e047 87#include "../smpboot.h"
6e0534f2 88
a8d154b0 89#define CREATE_TRACE_POINTS
ad8d75ff 90#include <trace/events/sched.h>
a8d154b0 91
029632fb 92void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 93{
58088ad0
PT
94 unsigned long delta;
95 ktime_t soft, hard, now;
d0b27fa7 96
58088ad0
PT
97 for (;;) {
98 if (hrtimer_active(period_timer))
99 break;
100
101 now = hrtimer_cb_get_time(period_timer);
102 hrtimer_forward(period_timer, now, period);
d0b27fa7 103
58088ad0
PT
104 soft = hrtimer_get_softexpires(period_timer);
105 hard = hrtimer_get_expires(period_timer);
106 delta = ktime_to_ns(ktime_sub(hard, soft));
107 __hrtimer_start_range_ns(period_timer, soft, delta,
108 HRTIMER_MODE_ABS_PINNED, 0);
109 }
110}
111
029632fb
PZ
112DEFINE_MUTEX(sched_domains_mutex);
113DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 114
fe44d621 115static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 116
029632fb 117void update_rq_clock(struct rq *rq)
3e51f33f 118{
fe44d621 119 s64 delta;
305e6835 120
61eadef6 121 if (rq->skip_clock_update > 0)
f26f9aff 122 return;
aa483808 123
fe44d621
PZ
124 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125 rq->clock += delta;
126 update_rq_clock_task(rq, delta);
3e51f33f
PZ
127}
128
bf5c91ba
IM
129/*
130 * Debugging: various feature bits
131 */
f00b45c1 132
f00b45c1
PZ
133#define SCHED_FEAT(name, enabled) \
134 (1UL << __SCHED_FEAT_##name) * enabled |
135
bf5c91ba 136const_debug unsigned int sysctl_sched_features =
391e43da 137#include "features.h"
f00b45c1
PZ
138 0;
139
140#undef SCHED_FEAT
141
142#ifdef CONFIG_SCHED_DEBUG
143#define SCHED_FEAT(name, enabled) \
144 #name ,
145
1292531f 146static const char * const sched_feat_names[] = {
391e43da 147#include "features.h"
f00b45c1
PZ
148};
149
150#undef SCHED_FEAT
151
34f3a814 152static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 153{
f00b45c1
PZ
154 int i;
155
f8b6d1cc 156 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
157 if (!(sysctl_sched_features & (1UL << i)))
158 seq_puts(m, "NO_");
159 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 160 }
34f3a814 161 seq_puts(m, "\n");
f00b45c1 162
34f3a814 163 return 0;
f00b45c1
PZ
164}
165
f8b6d1cc
PZ
166#ifdef HAVE_JUMP_LABEL
167
c5905afb
IM
168#define jump_label_key__true STATIC_KEY_INIT_TRUE
169#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
170
171#define SCHED_FEAT(name, enabled) \
172 jump_label_key__##enabled ,
173
c5905afb 174struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
175#include "features.h"
176};
177
178#undef SCHED_FEAT
179
180static void sched_feat_disable(int i)
181{
c5905afb
IM
182 if (static_key_enabled(&sched_feat_keys[i]))
183 static_key_slow_dec(&sched_feat_keys[i]);
f8b6d1cc
PZ
184}
185
186static void sched_feat_enable(int i)
187{
c5905afb
IM
188 if (!static_key_enabled(&sched_feat_keys[i]))
189 static_key_slow_inc(&sched_feat_keys[i]);
f8b6d1cc
PZ
190}
191#else
192static void sched_feat_disable(int i) { };
193static void sched_feat_enable(int i) { };
194#endif /* HAVE_JUMP_LABEL */
195
1a687c2e 196static int sched_feat_set(char *cmp)
f00b45c1 197{
f00b45c1 198 int i;
1a687c2e 199 int neg = 0;
f00b45c1 200
524429c3 201 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
202 neg = 1;
203 cmp += 3;
204 }
205
f8b6d1cc 206 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 207 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 208 if (neg) {
f00b45c1 209 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
210 sched_feat_disable(i);
211 } else {
f00b45c1 212 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
213 sched_feat_enable(i);
214 }
f00b45c1
PZ
215 break;
216 }
217 }
218
1a687c2e
MG
219 return i;
220}
221
222static ssize_t
223sched_feat_write(struct file *filp, const char __user *ubuf,
224 size_t cnt, loff_t *ppos)
225{
226 char buf[64];
227 char *cmp;
228 int i;
229
230 if (cnt > 63)
231 cnt = 63;
232
233 if (copy_from_user(&buf, ubuf, cnt))
234 return -EFAULT;
235
236 buf[cnt] = 0;
237 cmp = strstrip(buf);
238
239 i = sched_feat_set(cmp);
f8b6d1cc 240 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
241 return -EINVAL;
242
42994724 243 *ppos += cnt;
f00b45c1
PZ
244
245 return cnt;
246}
247
34f3a814
LZ
248static int sched_feat_open(struct inode *inode, struct file *filp)
249{
250 return single_open(filp, sched_feat_show, NULL);
251}
252
828c0950 253static const struct file_operations sched_feat_fops = {
34f3a814
LZ
254 .open = sched_feat_open,
255 .write = sched_feat_write,
256 .read = seq_read,
257 .llseek = seq_lseek,
258 .release = single_release,
f00b45c1
PZ
259};
260
261static __init int sched_init_debug(void)
262{
f00b45c1
PZ
263 debugfs_create_file("sched_features", 0644, NULL, NULL,
264 &sched_feat_fops);
265
266 return 0;
267}
268late_initcall(sched_init_debug);
f8b6d1cc 269#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 270
b82d9fdd
PZ
271/*
272 * Number of tasks to iterate in a single balance run.
273 * Limited because this is done with IRQs disabled.
274 */
275const_debug unsigned int sysctl_sched_nr_migrate = 32;
276
e9e9250b
PZ
277/*
278 * period over which we average the RT time consumption, measured
279 * in ms.
280 *
281 * default: 1s
282 */
283const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284
fa85ae24 285/*
9f0c1e56 286 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
287 * default: 1s
288 */
9f0c1e56 289unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 290
029632fb 291__read_mostly int scheduler_running;
6892b75e 292
9f0c1e56
PZ
293/*
294 * part of the period that we allow rt tasks to run in us.
295 * default: 0.95s
296 */
297int sysctl_sched_rt_runtime = 950000;
fa85ae24 298
0970d299 299/*
0122ec5b 300 * __task_rq_lock - lock the rq @p resides on.
b29739f9 301 */
70b97a7f 302static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
303 __acquires(rq->lock)
304{
0970d299
PZ
305 struct rq *rq;
306
0122ec5b
PZ
307 lockdep_assert_held(&p->pi_lock);
308
3a5c359a 309 for (;;) {
0970d299 310 rq = task_rq(p);
05fa785c 311 raw_spin_lock(&rq->lock);
65cc8e48 312 if (likely(rq == task_rq(p)))
3a5c359a 313 return rq;
05fa785c 314 raw_spin_unlock(&rq->lock);
b29739f9 315 }
b29739f9
IM
316}
317
1da177e4 318/*
0122ec5b 319 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 320 */
70b97a7f 321static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 322 __acquires(p->pi_lock)
1da177e4
LT
323 __acquires(rq->lock)
324{
70b97a7f 325 struct rq *rq;
1da177e4 326
3a5c359a 327 for (;;) {
0122ec5b 328 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 329 rq = task_rq(p);
05fa785c 330 raw_spin_lock(&rq->lock);
65cc8e48 331 if (likely(rq == task_rq(p)))
3a5c359a 332 return rq;
0122ec5b
PZ
333 raw_spin_unlock(&rq->lock);
334 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4 335 }
1da177e4
LT
336}
337
a9957449 338static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
339 __releases(rq->lock)
340{
05fa785c 341 raw_spin_unlock(&rq->lock);
b29739f9
IM
342}
343
0122ec5b
PZ
344static inline void
345task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 346 __releases(rq->lock)
0122ec5b 347 __releases(p->pi_lock)
1da177e4 348{
0122ec5b
PZ
349 raw_spin_unlock(&rq->lock);
350 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
351}
352
1da177e4 353/*
cc2a73b5 354 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 355 */
a9957449 356static struct rq *this_rq_lock(void)
1da177e4
LT
357 __acquires(rq->lock)
358{
70b97a7f 359 struct rq *rq;
1da177e4
LT
360
361 local_irq_disable();
362 rq = this_rq();
05fa785c 363 raw_spin_lock(&rq->lock);
1da177e4
LT
364
365 return rq;
366}
367
8f4d37ec
PZ
368#ifdef CONFIG_SCHED_HRTICK
369/*
370 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 371 */
8f4d37ec 372
8f4d37ec
PZ
373static void hrtick_clear(struct rq *rq)
374{
375 if (hrtimer_active(&rq->hrtick_timer))
376 hrtimer_cancel(&rq->hrtick_timer);
377}
378
8f4d37ec
PZ
379/*
380 * High-resolution timer tick.
381 * Runs from hardirq context with interrupts disabled.
382 */
383static enum hrtimer_restart hrtick(struct hrtimer *timer)
384{
385 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
386
387 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
388
05fa785c 389 raw_spin_lock(&rq->lock);
3e51f33f 390 update_rq_clock(rq);
8f4d37ec 391 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 392 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
393
394 return HRTIMER_NORESTART;
395}
396
95e904c7 397#ifdef CONFIG_SMP
971ee28c
PZ
398
399static int __hrtick_restart(struct rq *rq)
400{
401 struct hrtimer *timer = &rq->hrtick_timer;
402 ktime_t time = hrtimer_get_softexpires(timer);
403
404 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
405}
406
31656519
PZ
407/*
408 * called from hardirq (IPI) context
409 */
410static void __hrtick_start(void *arg)
b328ca18 411{
31656519 412 struct rq *rq = arg;
b328ca18 413
05fa785c 414 raw_spin_lock(&rq->lock);
971ee28c 415 __hrtick_restart(rq);
31656519 416 rq->hrtick_csd_pending = 0;
05fa785c 417 raw_spin_unlock(&rq->lock);
b328ca18
PZ
418}
419
31656519
PZ
420/*
421 * Called to set the hrtick timer state.
422 *
423 * called with rq->lock held and irqs disabled
424 */
029632fb 425void hrtick_start(struct rq *rq, u64 delay)
b328ca18 426{
31656519
PZ
427 struct hrtimer *timer = &rq->hrtick_timer;
428 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 429
cc584b21 430 hrtimer_set_expires(timer, time);
31656519
PZ
431
432 if (rq == this_rq()) {
971ee28c 433 __hrtick_restart(rq);
31656519 434 } else if (!rq->hrtick_csd_pending) {
6e275637 435 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
436 rq->hrtick_csd_pending = 1;
437 }
b328ca18
PZ
438}
439
440static int
441hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
442{
443 int cpu = (int)(long)hcpu;
444
445 switch (action) {
446 case CPU_UP_CANCELED:
447 case CPU_UP_CANCELED_FROZEN:
448 case CPU_DOWN_PREPARE:
449 case CPU_DOWN_PREPARE_FROZEN:
450 case CPU_DEAD:
451 case CPU_DEAD_FROZEN:
31656519 452 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
453 return NOTIFY_OK;
454 }
455
456 return NOTIFY_DONE;
457}
458
fa748203 459static __init void init_hrtick(void)
b328ca18
PZ
460{
461 hotcpu_notifier(hotplug_hrtick, 0);
462}
31656519
PZ
463#else
464/*
465 * Called to set the hrtick timer state.
466 *
467 * called with rq->lock held and irqs disabled
468 */
029632fb 469void hrtick_start(struct rq *rq, u64 delay)
31656519 470{
7f1e2ca9 471 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 472 HRTIMER_MODE_REL_PINNED, 0);
31656519 473}
b328ca18 474
006c75f1 475static inline void init_hrtick(void)
8f4d37ec 476{
8f4d37ec 477}
31656519 478#endif /* CONFIG_SMP */
8f4d37ec 479
31656519 480static void init_rq_hrtick(struct rq *rq)
8f4d37ec 481{
31656519
PZ
482#ifdef CONFIG_SMP
483 rq->hrtick_csd_pending = 0;
8f4d37ec 484
31656519
PZ
485 rq->hrtick_csd.flags = 0;
486 rq->hrtick_csd.func = __hrtick_start;
487 rq->hrtick_csd.info = rq;
488#endif
8f4d37ec 489
31656519
PZ
490 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
491 rq->hrtick_timer.function = hrtick;
8f4d37ec 492}
006c75f1 493#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
494static inline void hrtick_clear(struct rq *rq)
495{
496}
497
8f4d37ec
PZ
498static inline void init_rq_hrtick(struct rq *rq)
499{
500}
501
b328ca18
PZ
502static inline void init_hrtick(void)
503{
504}
006c75f1 505#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 506
c24d20db
IM
507/*
508 * resched_task - mark a task 'to be rescheduled now'.
509 *
510 * On UP this means the setting of the need_resched flag, on SMP it
511 * might also involve a cross-CPU call to trigger the scheduler on
512 * the target CPU.
513 */
029632fb 514void resched_task(struct task_struct *p)
c24d20db
IM
515{
516 int cpu;
517
b021fe3e 518 lockdep_assert_held(&task_rq(p)->lock);
c24d20db 519
5ed0cec0 520 if (test_tsk_need_resched(p))
c24d20db
IM
521 return;
522
5ed0cec0 523 set_tsk_need_resched(p);
c24d20db
IM
524
525 cpu = task_cpu(p);
f27dde8d
PZ
526 if (cpu == smp_processor_id()) {
527 set_preempt_need_resched();
c24d20db 528 return;
f27dde8d 529 }
c24d20db
IM
530
531 /* NEED_RESCHED must be visible before we test polling */
532 smp_mb();
533 if (!tsk_is_polling(p))
534 smp_send_reschedule(cpu);
535}
536
029632fb 537void resched_cpu(int cpu)
c24d20db
IM
538{
539 struct rq *rq = cpu_rq(cpu);
540 unsigned long flags;
541
05fa785c 542 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
543 return;
544 resched_task(cpu_curr(cpu));
05fa785c 545 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 546}
06d8308c 547
b021fe3e 548#ifdef CONFIG_SMP
3451d024 549#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
550/*
551 * In the semi idle case, use the nearest busy cpu for migrating timers
552 * from an idle cpu. This is good for power-savings.
553 *
554 * We don't do similar optimization for completely idle system, as
555 * selecting an idle cpu will add more delays to the timers than intended
556 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
557 */
558int get_nohz_timer_target(void)
559{
560 int cpu = smp_processor_id();
561 int i;
562 struct sched_domain *sd;
563
057f3fad 564 rcu_read_lock();
83cd4fe2 565 for_each_domain(cpu, sd) {
057f3fad
PZ
566 for_each_cpu(i, sched_domain_span(sd)) {
567 if (!idle_cpu(i)) {
568 cpu = i;
569 goto unlock;
570 }
571 }
83cd4fe2 572 }
057f3fad
PZ
573unlock:
574 rcu_read_unlock();
83cd4fe2
VP
575 return cpu;
576}
06d8308c
TG
577/*
578 * When add_timer_on() enqueues a timer into the timer wheel of an
579 * idle CPU then this timer might expire before the next timer event
580 * which is scheduled to wake up that CPU. In case of a completely
581 * idle system the next event might even be infinite time into the
582 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
583 * leaves the inner idle loop so the newly added timer is taken into
584 * account when the CPU goes back to idle and evaluates the timer
585 * wheel for the next timer event.
586 */
1c20091e 587static void wake_up_idle_cpu(int cpu)
06d8308c
TG
588{
589 struct rq *rq = cpu_rq(cpu);
590
591 if (cpu == smp_processor_id())
592 return;
593
594 /*
595 * This is safe, as this function is called with the timer
596 * wheel base lock of (cpu) held. When the CPU is on the way
597 * to idle and has not yet set rq->curr to idle then it will
598 * be serialized on the timer wheel base lock and take the new
599 * timer into account automatically.
600 */
601 if (rq->curr != rq->idle)
602 return;
45bf76df 603
45bf76df 604 /*
06d8308c
TG
605 * We can set TIF_RESCHED on the idle task of the other CPU
606 * lockless. The worst case is that the other CPU runs the
607 * idle task through an additional NOOP schedule()
45bf76df 608 */
5ed0cec0 609 set_tsk_need_resched(rq->idle);
45bf76df 610
06d8308c
TG
611 /* NEED_RESCHED must be visible before we test polling */
612 smp_mb();
613 if (!tsk_is_polling(rq->idle))
614 smp_send_reschedule(cpu);
45bf76df
IM
615}
616
c5bfece2 617static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 618{
c5bfece2 619 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
620 if (cpu != smp_processor_id() ||
621 tick_nohz_tick_stopped())
622 smp_send_reschedule(cpu);
623 return true;
624 }
625
626 return false;
627}
628
629void wake_up_nohz_cpu(int cpu)
630{
c5bfece2 631 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
632 wake_up_idle_cpu(cpu);
633}
634
ca38062e 635static inline bool got_nohz_idle_kick(void)
45bf76df 636{
1c792db7 637 int cpu = smp_processor_id();
873b4c65
VG
638
639 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
640 return false;
641
642 if (idle_cpu(cpu) && !need_resched())
643 return true;
644
645 /*
646 * We can't run Idle Load Balance on this CPU for this time so we
647 * cancel it and clear NOHZ_BALANCE_KICK
648 */
649 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
650 return false;
45bf76df
IM
651}
652
3451d024 653#else /* CONFIG_NO_HZ_COMMON */
45bf76df 654
ca38062e 655static inline bool got_nohz_idle_kick(void)
2069dd75 656{
ca38062e 657 return false;
2069dd75
PZ
658}
659
3451d024 660#endif /* CONFIG_NO_HZ_COMMON */
d842de87 661
ce831b38
FW
662#ifdef CONFIG_NO_HZ_FULL
663bool sched_can_stop_tick(void)
664{
665 struct rq *rq;
666
667 rq = this_rq();
668
669 /* Make sure rq->nr_running update is visible after the IPI */
670 smp_rmb();
671
672 /* More than one running task need preemption */
673 if (rq->nr_running > 1)
674 return false;
675
676 return true;
677}
678#endif /* CONFIG_NO_HZ_FULL */
d842de87 679
029632fb 680void sched_avg_update(struct rq *rq)
18d95a28 681{
e9e9250b
PZ
682 s64 period = sched_avg_period();
683
78becc27 684 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
685 /*
686 * Inline assembly required to prevent the compiler
687 * optimising this loop into a divmod call.
688 * See __iter_div_u64_rem() for another example of this.
689 */
690 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
691 rq->age_stamp += period;
692 rq->rt_avg /= 2;
693 }
18d95a28
PZ
694}
695
6d6bc0ad 696#endif /* CONFIG_SMP */
18d95a28 697
a790de99
PT
698#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
699 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 700/*
8277434e
PT
701 * Iterate task_group tree rooted at *from, calling @down when first entering a
702 * node and @up when leaving it for the final time.
703 *
704 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 705 */
029632fb 706int walk_tg_tree_from(struct task_group *from,
8277434e 707 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
708{
709 struct task_group *parent, *child;
eb755805 710 int ret;
c09595f6 711
8277434e
PT
712 parent = from;
713
c09595f6 714down:
eb755805
PZ
715 ret = (*down)(parent, data);
716 if (ret)
8277434e 717 goto out;
c09595f6
PZ
718 list_for_each_entry_rcu(child, &parent->children, siblings) {
719 parent = child;
720 goto down;
721
722up:
723 continue;
724 }
eb755805 725 ret = (*up)(parent, data);
8277434e
PT
726 if (ret || parent == from)
727 goto out;
c09595f6
PZ
728
729 child = parent;
730 parent = parent->parent;
731 if (parent)
732 goto up;
8277434e 733out:
eb755805 734 return ret;
c09595f6
PZ
735}
736
029632fb 737int tg_nop(struct task_group *tg, void *data)
eb755805 738{
e2b245f8 739 return 0;
eb755805 740}
18d95a28
PZ
741#endif
742
45bf76df
IM
743static void set_load_weight(struct task_struct *p)
744{
f05998d4
NR
745 int prio = p->static_prio - MAX_RT_PRIO;
746 struct load_weight *load = &p->se.load;
747
dd41f596
IM
748 /*
749 * SCHED_IDLE tasks get minimal weight:
750 */
751 if (p->policy == SCHED_IDLE) {
c8b28116 752 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 753 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
754 return;
755 }
71f8bd46 756
c8b28116 757 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 758 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
759}
760
371fd7e7 761static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 762{
a64692a3 763 update_rq_clock(rq);
43148951 764 sched_info_queued(rq, p);
371fd7e7 765 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
766}
767
371fd7e7 768static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 769{
a64692a3 770 update_rq_clock(rq);
43148951 771 sched_info_dequeued(rq, p);
371fd7e7 772 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
773}
774
029632fb 775void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
776{
777 if (task_contributes_to_load(p))
778 rq->nr_uninterruptible--;
779
371fd7e7 780 enqueue_task(rq, p, flags);
1e3c88bd
PZ
781}
782
029632fb 783void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
784{
785 if (task_contributes_to_load(p))
786 rq->nr_uninterruptible++;
787
371fd7e7 788 dequeue_task(rq, p, flags);
1e3c88bd
PZ
789}
790
fe44d621 791static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 792{
095c0aa8
GC
793/*
794 * In theory, the compile should just see 0 here, and optimize out the call
795 * to sched_rt_avg_update. But I don't trust it...
796 */
797#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
798 s64 steal = 0, irq_delta = 0;
799#endif
800#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 801 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
802
803 /*
804 * Since irq_time is only updated on {soft,}irq_exit, we might run into
805 * this case when a previous update_rq_clock() happened inside a
806 * {soft,}irq region.
807 *
808 * When this happens, we stop ->clock_task and only update the
809 * prev_irq_time stamp to account for the part that fit, so that a next
810 * update will consume the rest. This ensures ->clock_task is
811 * monotonic.
812 *
813 * It does however cause some slight miss-attribution of {soft,}irq
814 * time, a more accurate solution would be to update the irq_time using
815 * the current rq->clock timestamp, except that would require using
816 * atomic ops.
817 */
818 if (irq_delta > delta)
819 irq_delta = delta;
820
821 rq->prev_irq_time += irq_delta;
822 delta -= irq_delta;
095c0aa8
GC
823#endif
824#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 825 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
826 u64 st;
827
828 steal = paravirt_steal_clock(cpu_of(rq));
829 steal -= rq->prev_steal_time_rq;
830
831 if (unlikely(steal > delta))
832 steal = delta;
833
834 st = steal_ticks(steal);
835 steal = st * TICK_NSEC;
836
837 rq->prev_steal_time_rq += steal;
838
839 delta -= steal;
840 }
841#endif
842
fe44d621
PZ
843 rq->clock_task += delta;
844
095c0aa8
GC
845#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
846 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
847 sched_rt_avg_update(rq, irq_delta + steal);
848#endif
aa483808
VP
849}
850
34f971f6
PZ
851void sched_set_stop_task(int cpu, struct task_struct *stop)
852{
853 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
854 struct task_struct *old_stop = cpu_rq(cpu)->stop;
855
856 if (stop) {
857 /*
858 * Make it appear like a SCHED_FIFO task, its something
859 * userspace knows about and won't get confused about.
860 *
861 * Also, it will make PI more or less work without too
862 * much confusion -- but then, stop work should not
863 * rely on PI working anyway.
864 */
865 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
866
867 stop->sched_class = &stop_sched_class;
868 }
869
870 cpu_rq(cpu)->stop = stop;
871
872 if (old_stop) {
873 /*
874 * Reset it back to a normal scheduling class so that
875 * it can die in pieces.
876 */
877 old_stop->sched_class = &rt_sched_class;
878 }
879}
880
14531189 881/*
dd41f596 882 * __normal_prio - return the priority that is based on the static prio
14531189 883 */
14531189
IM
884static inline int __normal_prio(struct task_struct *p)
885{
dd41f596 886 return p->static_prio;
14531189
IM
887}
888
b29739f9
IM
889/*
890 * Calculate the expected normal priority: i.e. priority
891 * without taking RT-inheritance into account. Might be
892 * boosted by interactivity modifiers. Changes upon fork,
893 * setprio syscalls, and whenever the interactivity
894 * estimator recalculates.
895 */
36c8b586 896static inline int normal_prio(struct task_struct *p)
b29739f9
IM
897{
898 int prio;
899
aab03e05
DF
900 if (task_has_dl_policy(p))
901 prio = MAX_DL_PRIO-1;
902 else if (task_has_rt_policy(p))
b29739f9
IM
903 prio = MAX_RT_PRIO-1 - p->rt_priority;
904 else
905 prio = __normal_prio(p);
906 return prio;
907}
908
909/*
910 * Calculate the current priority, i.e. the priority
911 * taken into account by the scheduler. This value might
912 * be boosted by RT tasks, or might be boosted by
913 * interactivity modifiers. Will be RT if the task got
914 * RT-boosted. If not then it returns p->normal_prio.
915 */
36c8b586 916static int effective_prio(struct task_struct *p)
b29739f9
IM
917{
918 p->normal_prio = normal_prio(p);
919 /*
920 * If we are RT tasks or we were boosted to RT priority,
921 * keep the priority unchanged. Otherwise, update priority
922 * to the normal priority:
923 */
924 if (!rt_prio(p->prio))
925 return p->normal_prio;
926 return p->prio;
927}
928
1da177e4
LT
929/**
930 * task_curr - is this task currently executing on a CPU?
931 * @p: the task in question.
e69f6186
YB
932 *
933 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 934 */
36c8b586 935inline int task_curr(const struct task_struct *p)
1da177e4
LT
936{
937 return cpu_curr(task_cpu(p)) == p;
938}
939
cb469845
SR
940static inline void check_class_changed(struct rq *rq, struct task_struct *p,
941 const struct sched_class *prev_class,
da7a735e 942 int oldprio)
cb469845
SR
943{
944 if (prev_class != p->sched_class) {
945 if (prev_class->switched_from)
da7a735e
PZ
946 prev_class->switched_from(rq, p);
947 p->sched_class->switched_to(rq, p);
2d3d891d 948 } else if (oldprio != p->prio || dl_task(p))
da7a735e 949 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
950}
951
029632fb 952void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
953{
954 const struct sched_class *class;
955
956 if (p->sched_class == rq->curr->sched_class) {
957 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
958 } else {
959 for_each_class(class) {
960 if (class == rq->curr->sched_class)
961 break;
962 if (class == p->sched_class) {
963 resched_task(rq->curr);
964 break;
965 }
966 }
967 }
968
969 /*
970 * A queue event has occurred, and we're going to schedule. In
971 * this case, we can save a useless back to back clock update.
972 */
fd2f4419 973 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
974 rq->skip_clock_update = 1;
975}
976
1da177e4 977#ifdef CONFIG_SMP
dd41f596 978void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 979{
e2912009
PZ
980#ifdef CONFIG_SCHED_DEBUG
981 /*
982 * We should never call set_task_cpu() on a blocked task,
983 * ttwu() will sort out the placement.
984 */
077614ee 985 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
01028747 986 !(task_preempt_count(p) & PREEMPT_ACTIVE));
0122ec5b
PZ
987
988#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
989 /*
990 * The caller should hold either p->pi_lock or rq->lock, when changing
991 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
992 *
993 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 994 * see task_group().
6c6c54e1
PZ
995 *
996 * Furthermore, all task_rq users should acquire both locks, see
997 * task_rq_lock().
998 */
0122ec5b
PZ
999 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1000 lockdep_is_held(&task_rq(p)->lock)));
1001#endif
e2912009
PZ
1002#endif
1003
de1d7286 1004 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1005
0c69774e 1006 if (task_cpu(p) != new_cpu) {
0a74bef8
PT
1007 if (p->sched_class->migrate_task_rq)
1008 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 1009 p->se.nr_migrations++;
a8b0ca17 1010 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
0c69774e 1011 }
dd41f596
IM
1012
1013 __set_task_cpu(p, new_cpu);
c65cc870
IM
1014}
1015
ac66f547
PZ
1016static void __migrate_swap_task(struct task_struct *p, int cpu)
1017{
1018 if (p->on_rq) {
1019 struct rq *src_rq, *dst_rq;
1020
1021 src_rq = task_rq(p);
1022 dst_rq = cpu_rq(cpu);
1023
1024 deactivate_task(src_rq, p, 0);
1025 set_task_cpu(p, cpu);
1026 activate_task(dst_rq, p, 0);
1027 check_preempt_curr(dst_rq, p, 0);
1028 } else {
1029 /*
1030 * Task isn't running anymore; make it appear like we migrated
1031 * it before it went to sleep. This means on wakeup we make the
1032 * previous cpu our targer instead of where it really is.
1033 */
1034 p->wake_cpu = cpu;
1035 }
1036}
1037
1038struct migration_swap_arg {
1039 struct task_struct *src_task, *dst_task;
1040 int src_cpu, dst_cpu;
1041};
1042
1043static int migrate_swap_stop(void *data)
1044{
1045 struct migration_swap_arg *arg = data;
1046 struct rq *src_rq, *dst_rq;
1047 int ret = -EAGAIN;
1048
1049 src_rq = cpu_rq(arg->src_cpu);
1050 dst_rq = cpu_rq(arg->dst_cpu);
1051
74602315
PZ
1052 double_raw_lock(&arg->src_task->pi_lock,
1053 &arg->dst_task->pi_lock);
ac66f547
PZ
1054 double_rq_lock(src_rq, dst_rq);
1055 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1056 goto unlock;
1057
1058 if (task_cpu(arg->src_task) != arg->src_cpu)
1059 goto unlock;
1060
1061 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1062 goto unlock;
1063
1064 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1065 goto unlock;
1066
1067 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1068 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1069
1070 ret = 0;
1071
1072unlock:
1073 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1074 raw_spin_unlock(&arg->dst_task->pi_lock);
1075 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1076
1077 return ret;
1078}
1079
1080/*
1081 * Cross migrate two tasks
1082 */
1083int migrate_swap(struct task_struct *cur, struct task_struct *p)
1084{
1085 struct migration_swap_arg arg;
1086 int ret = -EINVAL;
1087
ac66f547
PZ
1088 arg = (struct migration_swap_arg){
1089 .src_task = cur,
1090 .src_cpu = task_cpu(cur),
1091 .dst_task = p,
1092 .dst_cpu = task_cpu(p),
1093 };
1094
1095 if (arg.src_cpu == arg.dst_cpu)
1096 goto out;
1097
6acce3ef
PZ
1098 /*
1099 * These three tests are all lockless; this is OK since all of them
1100 * will be re-checked with proper locks held further down the line.
1101 */
ac66f547
PZ
1102 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1103 goto out;
1104
1105 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1106 goto out;
1107
1108 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1109 goto out;
1110
286549dc 1111 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1112 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1113
1114out:
ac66f547
PZ
1115 return ret;
1116}
1117
969c7921 1118struct migration_arg {
36c8b586 1119 struct task_struct *task;
1da177e4 1120 int dest_cpu;
70b97a7f 1121};
1da177e4 1122
969c7921
TH
1123static int migration_cpu_stop(void *data);
1124
1da177e4
LT
1125/*
1126 * wait_task_inactive - wait for a thread to unschedule.
1127 *
85ba2d86
RM
1128 * If @match_state is nonzero, it's the @p->state value just checked and
1129 * not expected to change. If it changes, i.e. @p might have woken up,
1130 * then return zero. When we succeed in waiting for @p to be off its CPU,
1131 * we return a positive number (its total switch count). If a second call
1132 * a short while later returns the same number, the caller can be sure that
1133 * @p has remained unscheduled the whole time.
1134 *
1da177e4
LT
1135 * The caller must ensure that the task *will* unschedule sometime soon,
1136 * else this function might spin for a *long* time. This function can't
1137 * be called with interrupts off, or it may introduce deadlock with
1138 * smp_call_function() if an IPI is sent by the same process we are
1139 * waiting to become inactive.
1140 */
85ba2d86 1141unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1142{
1143 unsigned long flags;
dd41f596 1144 int running, on_rq;
85ba2d86 1145 unsigned long ncsw;
70b97a7f 1146 struct rq *rq;
1da177e4 1147
3a5c359a
AK
1148 for (;;) {
1149 /*
1150 * We do the initial early heuristics without holding
1151 * any task-queue locks at all. We'll only try to get
1152 * the runqueue lock when things look like they will
1153 * work out!
1154 */
1155 rq = task_rq(p);
fa490cfd 1156
3a5c359a
AK
1157 /*
1158 * If the task is actively running on another CPU
1159 * still, just relax and busy-wait without holding
1160 * any locks.
1161 *
1162 * NOTE! Since we don't hold any locks, it's not
1163 * even sure that "rq" stays as the right runqueue!
1164 * But we don't care, since "task_running()" will
1165 * return false if the runqueue has changed and p
1166 * is actually now running somewhere else!
1167 */
85ba2d86
RM
1168 while (task_running(rq, p)) {
1169 if (match_state && unlikely(p->state != match_state))
1170 return 0;
3a5c359a 1171 cpu_relax();
85ba2d86 1172 }
fa490cfd 1173
3a5c359a
AK
1174 /*
1175 * Ok, time to look more closely! We need the rq
1176 * lock now, to be *sure*. If we're wrong, we'll
1177 * just go back and repeat.
1178 */
1179 rq = task_rq_lock(p, &flags);
27a9da65 1180 trace_sched_wait_task(p);
3a5c359a 1181 running = task_running(rq, p);
fd2f4419 1182 on_rq = p->on_rq;
85ba2d86 1183 ncsw = 0;
f31e11d8 1184 if (!match_state || p->state == match_state)
93dcf55f 1185 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1186 task_rq_unlock(rq, p, &flags);
fa490cfd 1187
85ba2d86
RM
1188 /*
1189 * If it changed from the expected state, bail out now.
1190 */
1191 if (unlikely(!ncsw))
1192 break;
1193
3a5c359a
AK
1194 /*
1195 * Was it really running after all now that we
1196 * checked with the proper locks actually held?
1197 *
1198 * Oops. Go back and try again..
1199 */
1200 if (unlikely(running)) {
1201 cpu_relax();
1202 continue;
1203 }
fa490cfd 1204
3a5c359a
AK
1205 /*
1206 * It's not enough that it's not actively running,
1207 * it must be off the runqueue _entirely_, and not
1208 * preempted!
1209 *
80dd99b3 1210 * So if it was still runnable (but just not actively
3a5c359a
AK
1211 * running right now), it's preempted, and we should
1212 * yield - it could be a while.
1213 */
1214 if (unlikely(on_rq)) {
8eb90c30
TG
1215 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1216
1217 set_current_state(TASK_UNINTERRUPTIBLE);
1218 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1219 continue;
1220 }
fa490cfd 1221
3a5c359a
AK
1222 /*
1223 * Ahh, all good. It wasn't running, and it wasn't
1224 * runnable, which means that it will never become
1225 * running in the future either. We're all done!
1226 */
1227 break;
1228 }
85ba2d86
RM
1229
1230 return ncsw;
1da177e4
LT
1231}
1232
1233/***
1234 * kick_process - kick a running thread to enter/exit the kernel
1235 * @p: the to-be-kicked thread
1236 *
1237 * Cause a process which is running on another CPU to enter
1238 * kernel-mode, without any delay. (to get signals handled.)
1239 *
25985edc 1240 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1241 * because all it wants to ensure is that the remote task enters
1242 * the kernel. If the IPI races and the task has been migrated
1243 * to another CPU then no harm is done and the purpose has been
1244 * achieved as well.
1245 */
36c8b586 1246void kick_process(struct task_struct *p)
1da177e4
LT
1247{
1248 int cpu;
1249
1250 preempt_disable();
1251 cpu = task_cpu(p);
1252 if ((cpu != smp_processor_id()) && task_curr(p))
1253 smp_send_reschedule(cpu);
1254 preempt_enable();
1255}
b43e3521 1256EXPORT_SYMBOL_GPL(kick_process);
476d139c 1257#endif /* CONFIG_SMP */
1da177e4 1258
970b13ba 1259#ifdef CONFIG_SMP
30da688e 1260/*
013fdb80 1261 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1262 */
5da9a0fb
PZ
1263static int select_fallback_rq(int cpu, struct task_struct *p)
1264{
aa00d89c
TC
1265 int nid = cpu_to_node(cpu);
1266 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1267 enum { cpuset, possible, fail } state = cpuset;
1268 int dest_cpu;
5da9a0fb 1269
aa00d89c
TC
1270 /*
1271 * If the node that the cpu is on has been offlined, cpu_to_node()
1272 * will return -1. There is no cpu on the node, and we should
1273 * select the cpu on the other node.
1274 */
1275 if (nid != -1) {
1276 nodemask = cpumask_of_node(nid);
1277
1278 /* Look for allowed, online CPU in same node. */
1279 for_each_cpu(dest_cpu, nodemask) {
1280 if (!cpu_online(dest_cpu))
1281 continue;
1282 if (!cpu_active(dest_cpu))
1283 continue;
1284 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1285 return dest_cpu;
1286 }
2baab4e9 1287 }
5da9a0fb 1288
2baab4e9
PZ
1289 for (;;) {
1290 /* Any allowed, online CPU? */
e3831edd 1291 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1292 if (!cpu_online(dest_cpu))
1293 continue;
1294 if (!cpu_active(dest_cpu))
1295 continue;
1296 goto out;
1297 }
5da9a0fb 1298
2baab4e9
PZ
1299 switch (state) {
1300 case cpuset:
1301 /* No more Mr. Nice Guy. */
1302 cpuset_cpus_allowed_fallback(p);
1303 state = possible;
1304 break;
1305
1306 case possible:
1307 do_set_cpus_allowed(p, cpu_possible_mask);
1308 state = fail;
1309 break;
1310
1311 case fail:
1312 BUG();
1313 break;
1314 }
1315 }
1316
1317out:
1318 if (state != cpuset) {
1319 /*
1320 * Don't tell them about moving exiting tasks or
1321 * kernel threads (both mm NULL), since they never
1322 * leave kernel.
1323 */
1324 if (p->mm && printk_ratelimit()) {
1325 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1326 task_pid_nr(p), p->comm, cpu);
1327 }
5da9a0fb
PZ
1328 }
1329
1330 return dest_cpu;
1331}
1332
e2912009 1333/*
013fdb80 1334 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1335 */
970b13ba 1336static inline
ac66f547 1337int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1338{
ac66f547 1339 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e2912009
PZ
1340
1341 /*
1342 * In order not to call set_task_cpu() on a blocking task we need
1343 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1344 * cpu.
1345 *
1346 * Since this is common to all placement strategies, this lives here.
1347 *
1348 * [ this allows ->select_task() to simply return task_cpu(p) and
1349 * not worry about this generic constraint ]
1350 */
fa17b507 1351 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1352 !cpu_online(cpu)))
5da9a0fb 1353 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1354
1355 return cpu;
970b13ba 1356}
09a40af5
MG
1357
1358static void update_avg(u64 *avg, u64 sample)
1359{
1360 s64 diff = sample - *avg;
1361 *avg += diff >> 3;
1362}
970b13ba
PZ
1363#endif
1364
d7c01d27 1365static void
b84cb5df 1366ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1367{
d7c01d27 1368#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1369 struct rq *rq = this_rq();
1370
d7c01d27
PZ
1371#ifdef CONFIG_SMP
1372 int this_cpu = smp_processor_id();
1373
1374 if (cpu == this_cpu) {
1375 schedstat_inc(rq, ttwu_local);
1376 schedstat_inc(p, se.statistics.nr_wakeups_local);
1377 } else {
1378 struct sched_domain *sd;
1379
1380 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1381 rcu_read_lock();
d7c01d27
PZ
1382 for_each_domain(this_cpu, sd) {
1383 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1384 schedstat_inc(sd, ttwu_wake_remote);
1385 break;
1386 }
1387 }
057f3fad 1388 rcu_read_unlock();
d7c01d27 1389 }
f339b9dc
PZ
1390
1391 if (wake_flags & WF_MIGRATED)
1392 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1393
d7c01d27
PZ
1394#endif /* CONFIG_SMP */
1395
1396 schedstat_inc(rq, ttwu_count);
9ed3811a 1397 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1398
1399 if (wake_flags & WF_SYNC)
9ed3811a 1400 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1401
d7c01d27
PZ
1402#endif /* CONFIG_SCHEDSTATS */
1403}
1404
1405static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1406{
9ed3811a 1407 activate_task(rq, p, en_flags);
fd2f4419 1408 p->on_rq = 1;
c2f7115e
PZ
1409
1410 /* if a worker is waking up, notify workqueue */
1411 if (p->flags & PF_WQ_WORKER)
1412 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1413}
1414
23f41eeb
PZ
1415/*
1416 * Mark the task runnable and perform wakeup-preemption.
1417 */
89363381 1418static void
23f41eeb 1419ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1420{
9ed3811a 1421 check_preempt_curr(rq, p, wake_flags);
a8d7ad52 1422 trace_sched_wakeup(p, true);
9ed3811a
TH
1423
1424 p->state = TASK_RUNNING;
1425#ifdef CONFIG_SMP
1426 if (p->sched_class->task_woken)
1427 p->sched_class->task_woken(rq, p);
1428
e69c6341 1429 if (rq->idle_stamp) {
78becc27 1430 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1431 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1432
abfafa54
JL
1433 update_avg(&rq->avg_idle, delta);
1434
1435 if (rq->avg_idle > max)
9ed3811a 1436 rq->avg_idle = max;
abfafa54 1437
9ed3811a
TH
1438 rq->idle_stamp = 0;
1439 }
1440#endif
1441}
1442
c05fbafb
PZ
1443static void
1444ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1445{
1446#ifdef CONFIG_SMP
1447 if (p->sched_contributes_to_load)
1448 rq->nr_uninterruptible--;
1449#endif
1450
1451 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1452 ttwu_do_wakeup(rq, p, wake_flags);
1453}
1454
1455/*
1456 * Called in case the task @p isn't fully descheduled from its runqueue,
1457 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1458 * since all we need to do is flip p->state to TASK_RUNNING, since
1459 * the task is still ->on_rq.
1460 */
1461static int ttwu_remote(struct task_struct *p, int wake_flags)
1462{
1463 struct rq *rq;
1464 int ret = 0;
1465
1466 rq = __task_rq_lock(p);
1467 if (p->on_rq) {
1ad4ec0d
FW
1468 /* check_preempt_curr() may use rq clock */
1469 update_rq_clock(rq);
c05fbafb
PZ
1470 ttwu_do_wakeup(rq, p, wake_flags);
1471 ret = 1;
1472 }
1473 __task_rq_unlock(rq);
1474
1475 return ret;
1476}
1477
317f3941 1478#ifdef CONFIG_SMP
fa14ff4a 1479static void sched_ttwu_pending(void)
317f3941
PZ
1480{
1481 struct rq *rq = this_rq();
fa14ff4a
PZ
1482 struct llist_node *llist = llist_del_all(&rq->wake_list);
1483 struct task_struct *p;
317f3941
PZ
1484
1485 raw_spin_lock(&rq->lock);
1486
fa14ff4a
PZ
1487 while (llist) {
1488 p = llist_entry(llist, struct task_struct, wake_entry);
1489 llist = llist_next(llist);
317f3941
PZ
1490 ttwu_do_activate(rq, p, 0);
1491 }
1492
1493 raw_spin_unlock(&rq->lock);
1494}
1495
1496void scheduler_ipi(void)
1497{
f27dde8d
PZ
1498 /*
1499 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1500 * TIF_NEED_RESCHED remotely (for the first time) will also send
1501 * this IPI.
1502 */
8cb75e0c 1503 preempt_fold_need_resched();
f27dde8d 1504
873b4c65
VG
1505 if (llist_empty(&this_rq()->wake_list)
1506 && !tick_nohz_full_cpu(smp_processor_id())
1507 && !got_nohz_idle_kick())
c5d753a5
PZ
1508 return;
1509
1510 /*
1511 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1512 * traditionally all their work was done from the interrupt return
1513 * path. Now that we actually do some work, we need to make sure
1514 * we do call them.
1515 *
1516 * Some archs already do call them, luckily irq_enter/exit nest
1517 * properly.
1518 *
1519 * Arguably we should visit all archs and update all handlers,
1520 * however a fair share of IPIs are still resched only so this would
1521 * somewhat pessimize the simple resched case.
1522 */
1523 irq_enter();
ff442c51 1524 tick_nohz_full_check();
fa14ff4a 1525 sched_ttwu_pending();
ca38062e
SS
1526
1527 /*
1528 * Check if someone kicked us for doing the nohz idle load balance.
1529 */
873b4c65 1530 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1531 this_rq()->idle_balance = 1;
ca38062e 1532 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1533 }
c5d753a5 1534 irq_exit();
317f3941
PZ
1535}
1536
1537static void ttwu_queue_remote(struct task_struct *p, int cpu)
1538{
fa14ff4a 1539 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
317f3941
PZ
1540 smp_send_reschedule(cpu);
1541}
d6aa8f85 1542
39be3501 1543bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1544{
1545 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1546}
d6aa8f85 1547#endif /* CONFIG_SMP */
317f3941 1548
c05fbafb
PZ
1549static void ttwu_queue(struct task_struct *p, int cpu)
1550{
1551 struct rq *rq = cpu_rq(cpu);
1552
17d9f311 1553#if defined(CONFIG_SMP)
39be3501 1554 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1555 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1556 ttwu_queue_remote(p, cpu);
1557 return;
1558 }
1559#endif
1560
c05fbafb
PZ
1561 raw_spin_lock(&rq->lock);
1562 ttwu_do_activate(rq, p, 0);
1563 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1564}
1565
1566/**
1da177e4 1567 * try_to_wake_up - wake up a thread
9ed3811a 1568 * @p: the thread to be awakened
1da177e4 1569 * @state: the mask of task states that can be woken
9ed3811a 1570 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1571 *
1572 * Put it on the run-queue if it's not already there. The "current"
1573 * thread is always on the run-queue (except when the actual
1574 * re-schedule is in progress), and as such you're allowed to do
1575 * the simpler "current->state = TASK_RUNNING" to mark yourself
1576 * runnable without the overhead of this.
1577 *
e69f6186 1578 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1579 * or @state didn't match @p's state.
1da177e4 1580 */
e4a52bcb
PZ
1581static int
1582try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1583{
1da177e4 1584 unsigned long flags;
c05fbafb 1585 int cpu, success = 0;
2398f2c6 1586
e0acd0a6
ON
1587 /*
1588 * If we are going to wake up a thread waiting for CONDITION we
1589 * need to ensure that CONDITION=1 done by the caller can not be
1590 * reordered with p->state check below. This pairs with mb() in
1591 * set_current_state() the waiting thread does.
1592 */
1593 smp_mb__before_spinlock();
013fdb80 1594 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1595 if (!(p->state & state))
1da177e4
LT
1596 goto out;
1597
c05fbafb 1598 success = 1; /* we're going to change ->state */
1da177e4 1599 cpu = task_cpu(p);
1da177e4 1600
c05fbafb
PZ
1601 if (p->on_rq && ttwu_remote(p, wake_flags))
1602 goto stat;
1da177e4 1603
1da177e4 1604#ifdef CONFIG_SMP
e9c84311 1605 /*
c05fbafb
PZ
1606 * If the owning (remote) cpu is still in the middle of schedule() with
1607 * this task as prev, wait until its done referencing the task.
e9c84311 1608 */
f3e94786 1609 while (p->on_cpu)
e4a52bcb 1610 cpu_relax();
0970d299 1611 /*
e4a52bcb 1612 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1613 */
e4a52bcb 1614 smp_rmb();
1da177e4 1615
a8e4f2ea 1616 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1617 p->state = TASK_WAKING;
e7693a36 1618
e4a52bcb 1619 if (p->sched_class->task_waking)
74f8e4b2 1620 p->sched_class->task_waking(p);
efbbd05a 1621
ac66f547 1622 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1623 if (task_cpu(p) != cpu) {
1624 wake_flags |= WF_MIGRATED;
e4a52bcb 1625 set_task_cpu(p, cpu);
f339b9dc 1626 }
1da177e4 1627#endif /* CONFIG_SMP */
1da177e4 1628
c05fbafb
PZ
1629 ttwu_queue(p, cpu);
1630stat:
b84cb5df 1631 ttwu_stat(p, cpu, wake_flags);
1da177e4 1632out:
013fdb80 1633 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1634
1635 return success;
1636}
1637
21aa9af0
TH
1638/**
1639 * try_to_wake_up_local - try to wake up a local task with rq lock held
1640 * @p: the thread to be awakened
1641 *
2acca55e 1642 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1643 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1644 * the current task.
21aa9af0
TH
1645 */
1646static void try_to_wake_up_local(struct task_struct *p)
1647{
1648 struct rq *rq = task_rq(p);
21aa9af0 1649
383efcd0
TH
1650 if (WARN_ON_ONCE(rq != this_rq()) ||
1651 WARN_ON_ONCE(p == current))
1652 return;
1653
21aa9af0
TH
1654 lockdep_assert_held(&rq->lock);
1655
2acca55e
PZ
1656 if (!raw_spin_trylock(&p->pi_lock)) {
1657 raw_spin_unlock(&rq->lock);
1658 raw_spin_lock(&p->pi_lock);
1659 raw_spin_lock(&rq->lock);
1660 }
1661
21aa9af0 1662 if (!(p->state & TASK_NORMAL))
2acca55e 1663 goto out;
21aa9af0 1664
fd2f4419 1665 if (!p->on_rq)
d7c01d27
PZ
1666 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1667
23f41eeb 1668 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1669 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1670out:
1671 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1672}
1673
50fa610a
DH
1674/**
1675 * wake_up_process - Wake up a specific process
1676 * @p: The process to be woken up.
1677 *
1678 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
1679 * processes.
1680 *
1681 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
1682 *
1683 * It may be assumed that this function implies a write memory barrier before
1684 * changing the task state if and only if any tasks are woken up.
1685 */
7ad5b3a5 1686int wake_up_process(struct task_struct *p)
1da177e4 1687{
9067ac85
ON
1688 WARN_ON(task_is_stopped_or_traced(p));
1689 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 1690}
1da177e4
LT
1691EXPORT_SYMBOL(wake_up_process);
1692
7ad5b3a5 1693int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1694{
1695 return try_to_wake_up(p, state, 0);
1696}
1697
1da177e4
LT
1698/*
1699 * Perform scheduler related setup for a newly forked process p.
1700 * p is forked by current.
dd41f596
IM
1701 *
1702 * __sched_fork() is basic setup used by init_idle() too:
1703 */
5e1576ed 1704static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1705{
fd2f4419
PZ
1706 p->on_rq = 0;
1707
1708 p->se.on_rq = 0;
dd41f596
IM
1709 p->se.exec_start = 0;
1710 p->se.sum_exec_runtime = 0;
f6cf891c 1711 p->se.prev_sum_exec_runtime = 0;
6c594c21 1712 p->se.nr_migrations = 0;
da7a735e 1713 p->se.vruntime = 0;
fd2f4419 1714 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
1715
1716#ifdef CONFIG_SCHEDSTATS
41acab88 1717 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 1718#endif
476d139c 1719
aab03e05
DF
1720 RB_CLEAR_NODE(&p->dl.rb_node);
1721 hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1722 p->dl.dl_runtime = p->dl.runtime = 0;
1723 p->dl.dl_deadline = p->dl.deadline = 0;
755378a4 1724 p->dl.dl_period = 0;
aab03e05
DF
1725 p->dl.flags = 0;
1726
fa717060 1727 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 1728
e107be36
AK
1729#ifdef CONFIG_PREEMPT_NOTIFIERS
1730 INIT_HLIST_HEAD(&p->preempt_notifiers);
1731#endif
cbee9f88
PZ
1732
1733#ifdef CONFIG_NUMA_BALANCING
1734 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 1735 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
1736 p->mm->numa_scan_seq = 0;
1737 }
1738
5e1576ed
RR
1739 if (clone_flags & CLONE_VM)
1740 p->numa_preferred_nid = current->numa_preferred_nid;
1741 else
1742 p->numa_preferred_nid = -1;
1743
cbee9f88
PZ
1744 p->node_stamp = 0ULL;
1745 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 1746 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 1747 p->numa_work.next = &p->numa_work;
ff1df896
RR
1748 p->numa_faults_memory = NULL;
1749 p->numa_faults_buffer_memory = NULL;
7e2703e6
RR
1750 p->last_task_numa_placement = 0;
1751 p->last_sum_exec_runtime = 0;
8c8a743c
PZ
1752
1753 INIT_LIST_HEAD(&p->numa_entry);
1754 p->numa_group = NULL;
cbee9f88 1755#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1756}
1757
1a687c2e 1758#ifdef CONFIG_NUMA_BALANCING
3105b86a 1759#ifdef CONFIG_SCHED_DEBUG
1a687c2e
MG
1760void set_numabalancing_state(bool enabled)
1761{
1762 if (enabled)
1763 sched_feat_set("NUMA");
1764 else
1765 sched_feat_set("NO_NUMA");
1766}
3105b86a
MG
1767#else
1768__read_mostly bool numabalancing_enabled;
1769
1770void set_numabalancing_state(bool enabled)
1771{
1772 numabalancing_enabled = enabled;
dd41f596 1773}
3105b86a 1774#endif /* CONFIG_SCHED_DEBUG */
54a43d54
AK
1775
1776#ifdef CONFIG_PROC_SYSCTL
1777int sysctl_numa_balancing(struct ctl_table *table, int write,
1778 void __user *buffer, size_t *lenp, loff_t *ppos)
1779{
1780 struct ctl_table t;
1781 int err;
1782 int state = numabalancing_enabled;
1783
1784 if (write && !capable(CAP_SYS_ADMIN))
1785 return -EPERM;
1786
1787 t = *table;
1788 t.data = &state;
1789 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1790 if (err < 0)
1791 return err;
1792 if (write)
1793 set_numabalancing_state(state);
1794 return err;
1795}
1796#endif
1797#endif
dd41f596
IM
1798
1799/*
1800 * fork()/clone()-time setup:
1801 */
aab03e05 1802int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1803{
0122ec5b 1804 unsigned long flags;
dd41f596
IM
1805 int cpu = get_cpu();
1806
5e1576ed 1807 __sched_fork(clone_flags, p);
06b83b5f 1808 /*
0017d735 1809 * We mark the process as running here. This guarantees that
06b83b5f
PZ
1810 * nobody will actually run it, and a signal or other external
1811 * event cannot wake it up and insert it on the runqueue either.
1812 */
0017d735 1813 p->state = TASK_RUNNING;
dd41f596 1814
c350a04e
MG
1815 /*
1816 * Make sure we do not leak PI boosting priority to the child.
1817 */
1818 p->prio = current->normal_prio;
1819
b9dc29e7
MG
1820 /*
1821 * Revert to default priority/policy on fork if requested.
1822 */
1823 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 1824 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 1825 p->policy = SCHED_NORMAL;
6c697bdf 1826 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
1827 p->rt_priority = 0;
1828 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1829 p->static_prio = NICE_TO_PRIO(0);
1830
1831 p->prio = p->normal_prio = __normal_prio(p);
1832 set_load_weight(p);
6c697bdf 1833
b9dc29e7
MG
1834 /*
1835 * We don't need the reset flag anymore after the fork. It has
1836 * fulfilled its duty:
1837 */
1838 p->sched_reset_on_fork = 0;
1839 }
ca94c442 1840
aab03e05
DF
1841 if (dl_prio(p->prio)) {
1842 put_cpu();
1843 return -EAGAIN;
1844 } else if (rt_prio(p->prio)) {
1845 p->sched_class = &rt_sched_class;
1846 } else {
2ddbf952 1847 p->sched_class = &fair_sched_class;
aab03e05 1848 }
b29739f9 1849
cd29fe6f
PZ
1850 if (p->sched_class->task_fork)
1851 p->sched_class->task_fork(p);
1852
86951599
PZ
1853 /*
1854 * The child is not yet in the pid-hash so no cgroup attach races,
1855 * and the cgroup is pinned to this child due to cgroup_fork()
1856 * is ran before sched_fork().
1857 *
1858 * Silence PROVE_RCU.
1859 */
0122ec5b 1860 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 1861 set_task_cpu(p, cpu);
0122ec5b 1862 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 1863
52f17b6c 1864#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1865 if (likely(sched_info_on()))
52f17b6c 1866 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1867#endif
3ca7a440
PZ
1868#if defined(CONFIG_SMP)
1869 p->on_cpu = 0;
4866cde0 1870#endif
01028747 1871 init_task_preempt_count(p);
806c09a7 1872#ifdef CONFIG_SMP
917b627d 1873 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 1874 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 1875#endif
917b627d 1876
476d139c 1877 put_cpu();
aab03e05 1878 return 0;
1da177e4
LT
1879}
1880
332ac17e
DF
1881unsigned long to_ratio(u64 period, u64 runtime)
1882{
1883 if (runtime == RUNTIME_INF)
1884 return 1ULL << 20;
1885
1886 /*
1887 * Doing this here saves a lot of checks in all
1888 * the calling paths, and returning zero seems
1889 * safe for them anyway.
1890 */
1891 if (period == 0)
1892 return 0;
1893
1894 return div64_u64(runtime << 20, period);
1895}
1896
1897#ifdef CONFIG_SMP
1898inline struct dl_bw *dl_bw_of(int i)
1899{
1900 return &cpu_rq(i)->rd->dl_bw;
1901}
1902
de212f18 1903static inline int dl_bw_cpus(int i)
332ac17e 1904{
de212f18
PZ
1905 struct root_domain *rd = cpu_rq(i)->rd;
1906 int cpus = 0;
1907
1908 for_each_cpu_and(i, rd->span, cpu_active_mask)
1909 cpus++;
1910
1911 return cpus;
332ac17e
DF
1912}
1913#else
1914inline struct dl_bw *dl_bw_of(int i)
1915{
1916 return &cpu_rq(i)->dl.dl_bw;
1917}
1918
de212f18 1919static inline int dl_bw_cpus(int i)
332ac17e
DF
1920{
1921 return 1;
1922}
1923#endif
1924
1925static inline
1926void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
1927{
1928 dl_b->total_bw -= tsk_bw;
1929}
1930
1931static inline
1932void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
1933{
1934 dl_b->total_bw += tsk_bw;
1935}
1936
1937static inline
1938bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
1939{
1940 return dl_b->bw != -1 &&
1941 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
1942}
1943
1944/*
1945 * We must be sure that accepting a new task (or allowing changing the
1946 * parameters of an existing one) is consistent with the bandwidth
1947 * constraints. If yes, this function also accordingly updates the currently
1948 * allocated bandwidth to reflect the new situation.
1949 *
1950 * This function is called while holding p's rq->lock.
1951 */
1952static int dl_overflow(struct task_struct *p, int policy,
1953 const struct sched_attr *attr)
1954{
1955
1956 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1957 u64 period = attr->sched_period;
1958 u64 runtime = attr->sched_runtime;
1959 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 1960 int cpus, err = -1;
332ac17e
DF
1961
1962 if (new_bw == p->dl.dl_bw)
1963 return 0;
1964
1965 /*
1966 * Either if a task, enters, leave, or stays -deadline but changes
1967 * its parameters, we may need to update accordingly the total
1968 * allocated bandwidth of the container.
1969 */
1970 raw_spin_lock(&dl_b->lock);
de212f18 1971 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
1972 if (dl_policy(policy) && !task_has_dl_policy(p) &&
1973 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
1974 __dl_add(dl_b, new_bw);
1975 err = 0;
1976 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
1977 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
1978 __dl_clear(dl_b, p->dl.dl_bw);
1979 __dl_add(dl_b, new_bw);
1980 err = 0;
1981 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
1982 __dl_clear(dl_b, p->dl.dl_bw);
1983 err = 0;
1984 }
1985 raw_spin_unlock(&dl_b->lock);
1986
1987 return err;
1988}
1989
1990extern void init_dl_bw(struct dl_bw *dl_b);
1991
1da177e4
LT
1992/*
1993 * wake_up_new_task - wake up a newly created task for the first time.
1994 *
1995 * This function will do some initial scheduler statistics housekeeping
1996 * that must be done for every newly created context, then puts the task
1997 * on the runqueue and wakes it.
1998 */
3e51e3ed 1999void wake_up_new_task(struct task_struct *p)
1da177e4
LT
2000{
2001 unsigned long flags;
dd41f596 2002 struct rq *rq;
fabf318e 2003
ab2515c4 2004 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
2005#ifdef CONFIG_SMP
2006 /*
2007 * Fork balancing, do it here and not earlier because:
2008 * - cpus_allowed can change in the fork path
2009 * - any previously selected cpu might disappear through hotplug
fabf318e 2010 */
ac66f547 2011 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735
PZ
2012#endif
2013
a75cdaa9
AS
2014 /* Initialize new task's runnable average */
2015 init_task_runnable_average(p);
ab2515c4 2016 rq = __task_rq_lock(p);
cd29fe6f 2017 activate_task(rq, p, 0);
fd2f4419 2018 p->on_rq = 1;
89363381 2019 trace_sched_wakeup_new(p, true);
a7558e01 2020 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2021#ifdef CONFIG_SMP
efbbd05a
PZ
2022 if (p->sched_class->task_woken)
2023 p->sched_class->task_woken(rq, p);
9a897c5a 2024#endif
0122ec5b 2025 task_rq_unlock(rq, p, &flags);
1da177e4
LT
2026}
2027
e107be36
AK
2028#ifdef CONFIG_PREEMPT_NOTIFIERS
2029
2030/**
80dd99b3 2031 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2032 * @notifier: notifier struct to register
e107be36
AK
2033 */
2034void preempt_notifier_register(struct preempt_notifier *notifier)
2035{
2036 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2037}
2038EXPORT_SYMBOL_GPL(preempt_notifier_register);
2039
2040/**
2041 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2042 * @notifier: notifier struct to unregister
e107be36
AK
2043 *
2044 * This is safe to call from within a preemption notifier.
2045 */
2046void preempt_notifier_unregister(struct preempt_notifier *notifier)
2047{
2048 hlist_del(&notifier->link);
2049}
2050EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2051
2052static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2053{
2054 struct preempt_notifier *notifier;
e107be36 2055
b67bfe0d 2056 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2057 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2058}
2059
2060static void
2061fire_sched_out_preempt_notifiers(struct task_struct *curr,
2062 struct task_struct *next)
2063{
2064 struct preempt_notifier *notifier;
e107be36 2065
b67bfe0d 2066 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2067 notifier->ops->sched_out(notifier, next);
2068}
2069
6d6bc0ad 2070#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2071
2072static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2073{
2074}
2075
2076static void
2077fire_sched_out_preempt_notifiers(struct task_struct *curr,
2078 struct task_struct *next)
2079{
2080}
2081
6d6bc0ad 2082#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2083
4866cde0
NP
2084/**
2085 * prepare_task_switch - prepare to switch tasks
2086 * @rq: the runqueue preparing to switch
421cee29 2087 * @prev: the current task that is being switched out
4866cde0
NP
2088 * @next: the task we are going to switch to.
2089 *
2090 * This is called with the rq lock held and interrupts off. It must
2091 * be paired with a subsequent finish_task_switch after the context
2092 * switch.
2093 *
2094 * prepare_task_switch sets up locking and calls architecture specific
2095 * hooks.
2096 */
e107be36
AK
2097static inline void
2098prepare_task_switch(struct rq *rq, struct task_struct *prev,
2099 struct task_struct *next)
4866cde0 2100{
895dd92c 2101 trace_sched_switch(prev, next);
43148951 2102 sched_info_switch(rq, prev, next);
fe4b04fa 2103 perf_event_task_sched_out(prev, next);
e107be36 2104 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2105 prepare_lock_switch(rq, next);
2106 prepare_arch_switch(next);
2107}
2108
1da177e4
LT
2109/**
2110 * finish_task_switch - clean up after a task-switch
344babaa 2111 * @rq: runqueue associated with task-switch
1da177e4
LT
2112 * @prev: the thread we just switched away from.
2113 *
4866cde0
NP
2114 * finish_task_switch must be called after the context switch, paired
2115 * with a prepare_task_switch call before the context switch.
2116 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2117 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2118 *
2119 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2120 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2121 * with the lock held can cause deadlocks; see schedule() for
2122 * details.)
2123 */
a9957449 2124static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2125 __releases(rq->lock)
2126{
1da177e4 2127 struct mm_struct *mm = rq->prev_mm;
55a101f8 2128 long prev_state;
1da177e4
LT
2129
2130 rq->prev_mm = NULL;
2131
2132 /*
2133 * A task struct has one reference for the use as "current".
c394cc9f 2134 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2135 * schedule one last time. The schedule call will never return, and
2136 * the scheduled task must drop that reference.
c394cc9f 2137 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2138 * still held, otherwise prev could be scheduled on another cpu, die
2139 * there before we look at prev->state, and then the reference would
2140 * be dropped twice.
2141 * Manfred Spraul <manfred@colorfullife.com>
2142 */
55a101f8 2143 prev_state = prev->state;
bf9fae9f 2144 vtime_task_switch(prev);
4866cde0 2145 finish_arch_switch(prev);
a8d757ef 2146 perf_event_task_sched_in(prev, current);
4866cde0 2147 finish_lock_switch(rq, prev);
01f23e16 2148 finish_arch_post_lock_switch();
e8fa1362 2149
e107be36 2150 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2151 if (mm)
2152 mmdrop(mm);
c394cc9f 2153 if (unlikely(prev_state == TASK_DEAD)) {
f809ca9a
MG
2154 task_numa_free(prev);
2155
e6c390f2
DF
2156 if (prev->sched_class->task_dead)
2157 prev->sched_class->task_dead(prev);
2158
c6fd91f0 2159 /*
2160 * Remove function-return probe instances associated with this
2161 * task and put them back on the free list.
9761eea8 2162 */
c6fd91f0 2163 kprobe_flush_task(prev);
1da177e4 2164 put_task_struct(prev);
c6fd91f0 2165 }
99e5ada9
FW
2166
2167 tick_nohz_task_switch(current);
1da177e4
LT
2168}
2169
3f029d3c
GH
2170#ifdef CONFIG_SMP
2171
3f029d3c
GH
2172/* rq->lock is NOT held, but preemption is disabled */
2173static inline void post_schedule(struct rq *rq)
2174{
2175 if (rq->post_schedule) {
2176 unsigned long flags;
2177
05fa785c 2178 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2179 if (rq->curr->sched_class->post_schedule)
2180 rq->curr->sched_class->post_schedule(rq);
05fa785c 2181 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2182
2183 rq->post_schedule = 0;
2184 }
2185}
2186
2187#else
da19ab51 2188
3f029d3c
GH
2189static inline void post_schedule(struct rq *rq)
2190{
1da177e4
LT
2191}
2192
3f029d3c
GH
2193#endif
2194
1da177e4
LT
2195/**
2196 * schedule_tail - first thing a freshly forked thread must call.
2197 * @prev: the thread we just switched away from.
2198 */
36c8b586 2199asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2200 __releases(rq->lock)
2201{
70b97a7f
IM
2202 struct rq *rq = this_rq();
2203
4866cde0 2204 finish_task_switch(rq, prev);
da19ab51 2205
3f029d3c
GH
2206 /*
2207 * FIXME: do we need to worry about rq being invalidated by the
2208 * task_switch?
2209 */
2210 post_schedule(rq);
70b97a7f 2211
4866cde0
NP
2212#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2213 /* In this case, finish_task_switch does not reenable preemption */
2214 preempt_enable();
2215#endif
1da177e4 2216 if (current->set_child_tid)
b488893a 2217 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2218}
2219
2220/*
2221 * context_switch - switch to the new MM and the new
2222 * thread's register state.
2223 */
dd41f596 2224static inline void
70b97a7f 2225context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2226 struct task_struct *next)
1da177e4 2227{
dd41f596 2228 struct mm_struct *mm, *oldmm;
1da177e4 2229
e107be36 2230 prepare_task_switch(rq, prev, next);
fe4b04fa 2231
dd41f596
IM
2232 mm = next->mm;
2233 oldmm = prev->active_mm;
9226d125
ZA
2234 /*
2235 * For paravirt, this is coupled with an exit in switch_to to
2236 * combine the page table reload and the switch backend into
2237 * one hypercall.
2238 */
224101ed 2239 arch_start_context_switch(prev);
9226d125 2240
31915ab4 2241 if (!mm) {
1da177e4
LT
2242 next->active_mm = oldmm;
2243 atomic_inc(&oldmm->mm_count);
2244 enter_lazy_tlb(oldmm, next);
2245 } else
2246 switch_mm(oldmm, mm, next);
2247
31915ab4 2248 if (!prev->mm) {
1da177e4 2249 prev->active_mm = NULL;
1da177e4
LT
2250 rq->prev_mm = oldmm;
2251 }
3a5f5e48
IM
2252 /*
2253 * Since the runqueue lock will be released by the next
2254 * task (which is an invalid locking op but in the case
2255 * of the scheduler it's an obvious special-case), so we
2256 * do an early lockdep release here:
2257 */
2258#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2259 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2260#endif
1da177e4 2261
91d1aa43 2262 context_tracking_task_switch(prev, next);
1da177e4
LT
2263 /* Here we just switch the register state and the stack. */
2264 switch_to(prev, next, prev);
2265
dd41f596
IM
2266 barrier();
2267 /*
2268 * this_rq must be evaluated again because prev may have moved
2269 * CPUs since it called schedule(), thus the 'rq' on its stack
2270 * frame will be invalid.
2271 */
2272 finish_task_switch(this_rq(), prev);
1da177e4
LT
2273}
2274
2275/*
1c3e8264 2276 * nr_running and nr_context_switches:
1da177e4
LT
2277 *
2278 * externally visible scheduler statistics: current number of runnable
1c3e8264 2279 * threads, total number of context switches performed since bootup.
1da177e4
LT
2280 */
2281unsigned long nr_running(void)
2282{
2283 unsigned long i, sum = 0;
2284
2285 for_each_online_cpu(i)
2286 sum += cpu_rq(i)->nr_running;
2287
2288 return sum;
f711f609 2289}
1da177e4 2290
1da177e4 2291unsigned long long nr_context_switches(void)
46cb4b7c 2292{
cc94abfc
SR
2293 int i;
2294 unsigned long long sum = 0;
46cb4b7c 2295
0a945022 2296 for_each_possible_cpu(i)
1da177e4 2297 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2298
1da177e4
LT
2299 return sum;
2300}
483b4ee6 2301
1da177e4
LT
2302unsigned long nr_iowait(void)
2303{
2304 unsigned long i, sum = 0;
483b4ee6 2305
0a945022 2306 for_each_possible_cpu(i)
1da177e4 2307 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2308
1da177e4
LT
2309 return sum;
2310}
483b4ee6 2311
8c215bd3 2312unsigned long nr_iowait_cpu(int cpu)
69d25870 2313{
8c215bd3 2314 struct rq *this = cpu_rq(cpu);
69d25870
AV
2315 return atomic_read(&this->nr_iowait);
2316}
46cb4b7c 2317
dd41f596 2318#ifdef CONFIG_SMP
8a0be9ef 2319
46cb4b7c 2320/*
38022906
PZ
2321 * sched_exec - execve() is a valuable balancing opportunity, because at
2322 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2323 */
38022906 2324void sched_exec(void)
46cb4b7c 2325{
38022906 2326 struct task_struct *p = current;
1da177e4 2327 unsigned long flags;
0017d735 2328 int dest_cpu;
46cb4b7c 2329
8f42ced9 2330 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2331 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2332 if (dest_cpu == smp_processor_id())
2333 goto unlock;
38022906 2334
8f42ced9 2335 if (likely(cpu_active(dest_cpu))) {
969c7921 2336 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2337
8f42ced9
PZ
2338 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2339 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2340 return;
2341 }
0017d735 2342unlock:
8f42ced9 2343 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2344}
dd41f596 2345
1da177e4
LT
2346#endif
2347
1da177e4 2348DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2349DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2350
2351EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2352EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4
LT
2353
2354/*
c5f8d995 2355 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 2356 * @p in case that task is currently running.
c5f8d995
HS
2357 *
2358 * Called with task_rq_lock() held on @rq.
1da177e4 2359 */
c5f8d995
HS
2360static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2361{
2362 u64 ns = 0;
2363
2364 if (task_current(rq, p)) {
2365 update_rq_clock(rq);
78becc27 2366 ns = rq_clock_task(rq) - p->se.exec_start;
c5f8d995
HS
2367 if ((s64)ns < 0)
2368 ns = 0;
2369 }
2370
2371 return ns;
2372}
2373
bb34d92f 2374unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 2375{
1da177e4 2376 unsigned long flags;
41b86e9c 2377 struct rq *rq;
bb34d92f 2378 u64 ns = 0;
48f24c4d 2379
41b86e9c 2380 rq = task_rq_lock(p, &flags);
c5f8d995 2381 ns = do_task_delta_exec(p, rq);
0122ec5b 2382 task_rq_unlock(rq, p, &flags);
1508487e 2383
c5f8d995
HS
2384 return ns;
2385}
f06febc9 2386
c5f8d995
HS
2387/*
2388 * Return accounted runtime for the task.
2389 * In case the task is currently running, return the runtime plus current's
2390 * pending runtime that have not been accounted yet.
2391 */
2392unsigned long long task_sched_runtime(struct task_struct *p)
2393{
2394 unsigned long flags;
2395 struct rq *rq;
2396 u64 ns = 0;
2397
911b2898
PZ
2398#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2399 /*
2400 * 64-bit doesn't need locks to atomically read a 64bit value.
2401 * So we have a optimization chance when the task's delta_exec is 0.
2402 * Reading ->on_cpu is racy, but this is ok.
2403 *
2404 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2405 * If we race with it entering cpu, unaccounted time is 0. This is
2406 * indistinguishable from the read occurring a few cycles earlier.
2407 */
2408 if (!p->on_cpu)
2409 return p->se.sum_exec_runtime;
2410#endif
2411
c5f8d995
HS
2412 rq = task_rq_lock(p, &flags);
2413 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 2414 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2415
2416 return ns;
2417}
48f24c4d 2418
7835b98b
CL
2419/*
2420 * This function gets called by the timer code, with HZ frequency.
2421 * We call it with interrupts disabled.
7835b98b
CL
2422 */
2423void scheduler_tick(void)
2424{
7835b98b
CL
2425 int cpu = smp_processor_id();
2426 struct rq *rq = cpu_rq(cpu);
dd41f596 2427 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2428
2429 sched_clock_tick();
dd41f596 2430
05fa785c 2431 raw_spin_lock(&rq->lock);
3e51f33f 2432 update_rq_clock(rq);
fa85ae24 2433 curr->sched_class->task_tick(rq, curr, 0);
83dfd523 2434 update_cpu_load_active(rq);
05fa785c 2435 raw_spin_unlock(&rq->lock);
7835b98b 2436
e9d2b064 2437 perf_event_task_tick();
e220d2dc 2438
e418e1c2 2439#ifdef CONFIG_SMP
6eb57e0d 2440 rq->idle_balance = idle_cpu(cpu);
7caff66f 2441 trigger_load_balance(rq);
e418e1c2 2442#endif
265f22a9 2443 rq_last_tick_reset(rq);
1da177e4
LT
2444}
2445
265f22a9
FW
2446#ifdef CONFIG_NO_HZ_FULL
2447/**
2448 * scheduler_tick_max_deferment
2449 *
2450 * Keep at least one tick per second when a single
2451 * active task is running because the scheduler doesn't
2452 * yet completely support full dynticks environment.
2453 *
2454 * This makes sure that uptime, CFS vruntime, load
2455 * balancing, etc... continue to move forward, even
2456 * with a very low granularity.
e69f6186
YB
2457 *
2458 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
2459 */
2460u64 scheduler_tick_max_deferment(void)
2461{
2462 struct rq *rq = this_rq();
2463 unsigned long next, now = ACCESS_ONCE(jiffies);
2464
2465 next = rq->last_sched_tick + HZ;
2466
2467 if (time_before_eq(next, now))
2468 return 0;
2469
8fe8ff09 2470 return jiffies_to_nsecs(next - now);
1da177e4 2471}
265f22a9 2472#endif
1da177e4 2473
132380a0 2474notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
2475{
2476 if (in_lock_functions(addr)) {
2477 addr = CALLER_ADDR2;
2478 if (in_lock_functions(addr))
2479 addr = CALLER_ADDR3;
2480 }
2481 return addr;
2482}
1da177e4 2483
7e49fcce
SR
2484#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2485 defined(CONFIG_PREEMPT_TRACER))
2486
bdb43806 2487void __kprobes preempt_count_add(int val)
1da177e4 2488{
6cd8a4bb 2489#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2490 /*
2491 * Underflow?
2492 */
9a11b49a
IM
2493 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2494 return;
6cd8a4bb 2495#endif
bdb43806 2496 __preempt_count_add(val);
6cd8a4bb 2497#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2498 /*
2499 * Spinlock count overflowing soon?
2500 */
33859f7f
MOS
2501 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2502 PREEMPT_MASK - 10);
6cd8a4bb 2503#endif
8f47b187
TG
2504 if (preempt_count() == val) {
2505 unsigned long ip = get_parent_ip(CALLER_ADDR1);
2506#ifdef CONFIG_DEBUG_PREEMPT
2507 current->preempt_disable_ip = ip;
2508#endif
2509 trace_preempt_off(CALLER_ADDR0, ip);
2510 }
1da177e4 2511}
bdb43806 2512EXPORT_SYMBOL(preempt_count_add);
1da177e4 2513
bdb43806 2514void __kprobes preempt_count_sub(int val)
1da177e4 2515{
6cd8a4bb 2516#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2517 /*
2518 * Underflow?
2519 */
01e3eb82 2520 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 2521 return;
1da177e4
LT
2522 /*
2523 * Is the spinlock portion underflowing?
2524 */
9a11b49a
IM
2525 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2526 !(preempt_count() & PREEMPT_MASK)))
2527 return;
6cd8a4bb 2528#endif
9a11b49a 2529
6cd8a4bb
SR
2530 if (preempt_count() == val)
2531 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
bdb43806 2532 __preempt_count_sub(val);
1da177e4 2533}
bdb43806 2534EXPORT_SYMBOL(preempt_count_sub);
1da177e4
LT
2535
2536#endif
2537
2538/*
dd41f596 2539 * Print scheduling while atomic bug:
1da177e4 2540 */
dd41f596 2541static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 2542{
664dfa65
DJ
2543 if (oops_in_progress)
2544 return;
2545
3df0fc5b
PZ
2546 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2547 prev->comm, prev->pid, preempt_count());
838225b4 2548
dd41f596 2549 debug_show_held_locks(prev);
e21f5b15 2550 print_modules();
dd41f596
IM
2551 if (irqs_disabled())
2552 print_irqtrace_events(prev);
8f47b187
TG
2553#ifdef CONFIG_DEBUG_PREEMPT
2554 if (in_atomic_preempt_off()) {
2555 pr_err("Preemption disabled at:");
2556 print_ip_sym(current->preempt_disable_ip);
2557 pr_cont("\n");
2558 }
2559#endif
6135fc1e 2560 dump_stack();
373d4d09 2561 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 2562}
1da177e4 2563
dd41f596
IM
2564/*
2565 * Various schedule()-time debugging checks and statistics:
2566 */
2567static inline void schedule_debug(struct task_struct *prev)
2568{
1da177e4 2569 /*
41a2d6cf 2570 * Test if we are atomic. Since do_exit() needs to call into
192301e7
ON
2571 * schedule() atomically, we ignore that path. Otherwise whine
2572 * if we are scheduling when we should not.
1da177e4 2573 */
192301e7 2574 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
dd41f596 2575 __schedule_bug(prev);
b3fbab05 2576 rcu_sleep_check();
dd41f596 2577
1da177e4
LT
2578 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2579
2d72376b 2580 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
2581}
2582
2583/*
2584 * Pick up the highest-prio task:
2585 */
2586static inline struct task_struct *
606dba2e 2587pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 2588{
5522d5d5 2589 const struct sched_class *class;
dd41f596 2590 struct task_struct *p;
1da177e4
LT
2591
2592 /*
dd41f596
IM
2593 * Optimization: we know that if all tasks are in
2594 * the fair class we can call that function directly:
1da177e4 2595 */
38033c37
PZ
2596 if (likely(prev->sched_class == &fair_sched_class &&
2597 rq->nr_running == rq->cfs.h_nr_running)) {
606dba2e 2598 p = fair_sched_class.pick_next_task(rq, prev);
dd41f596
IM
2599 if (likely(p))
2600 return p;
1da177e4
LT
2601 }
2602
34f971f6 2603 for_each_class(class) {
606dba2e 2604 p = class->pick_next_task(rq, prev);
dd41f596
IM
2605 if (p)
2606 return p;
dd41f596 2607 }
34f971f6
PZ
2608
2609 BUG(); /* the idle class will always have a runnable task */
dd41f596 2610}
1da177e4 2611
dd41f596 2612/*
c259e01a 2613 * __schedule() is the main scheduler function.
edde96ea
PE
2614 *
2615 * The main means of driving the scheduler and thus entering this function are:
2616 *
2617 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2618 *
2619 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2620 * paths. For example, see arch/x86/entry_64.S.
2621 *
2622 * To drive preemption between tasks, the scheduler sets the flag in timer
2623 * interrupt handler scheduler_tick().
2624 *
2625 * 3. Wakeups don't really cause entry into schedule(). They add a
2626 * task to the run-queue and that's it.
2627 *
2628 * Now, if the new task added to the run-queue preempts the current
2629 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2630 * called on the nearest possible occasion:
2631 *
2632 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2633 *
2634 * - in syscall or exception context, at the next outmost
2635 * preempt_enable(). (this might be as soon as the wake_up()'s
2636 * spin_unlock()!)
2637 *
2638 * - in IRQ context, return from interrupt-handler to
2639 * preemptible context
2640 *
2641 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2642 * then at the next:
2643 *
2644 * - cond_resched() call
2645 * - explicit schedule() call
2646 * - return from syscall or exception to user-space
2647 * - return from interrupt-handler to user-space
dd41f596 2648 */
c259e01a 2649static void __sched __schedule(void)
dd41f596
IM
2650{
2651 struct task_struct *prev, *next;
67ca7bde 2652 unsigned long *switch_count;
dd41f596 2653 struct rq *rq;
31656519 2654 int cpu;
dd41f596 2655
ff743345
PZ
2656need_resched:
2657 preempt_disable();
dd41f596
IM
2658 cpu = smp_processor_id();
2659 rq = cpu_rq(cpu);
25502a6c 2660 rcu_note_context_switch(cpu);
dd41f596 2661 prev = rq->curr;
dd41f596 2662
dd41f596 2663 schedule_debug(prev);
1da177e4 2664
31656519 2665 if (sched_feat(HRTICK))
f333fdc9 2666 hrtick_clear(rq);
8f4d37ec 2667
e0acd0a6
ON
2668 /*
2669 * Make sure that signal_pending_state()->signal_pending() below
2670 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2671 * done by the caller to avoid the race with signal_wake_up().
2672 */
2673 smp_mb__before_spinlock();
05fa785c 2674 raw_spin_lock_irq(&rq->lock);
1da177e4 2675
246d86b5 2676 switch_count = &prev->nivcsw;
1da177e4 2677 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 2678 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 2679 prev->state = TASK_RUNNING;
21aa9af0 2680 } else {
2acca55e
PZ
2681 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2682 prev->on_rq = 0;
2683
21aa9af0 2684 /*
2acca55e
PZ
2685 * If a worker went to sleep, notify and ask workqueue
2686 * whether it wants to wake up a task to maintain
2687 * concurrency.
21aa9af0
TH
2688 */
2689 if (prev->flags & PF_WQ_WORKER) {
2690 struct task_struct *to_wakeup;
2691
2692 to_wakeup = wq_worker_sleeping(prev, cpu);
2693 if (to_wakeup)
2694 try_to_wake_up_local(to_wakeup);
2695 }
21aa9af0 2696 }
dd41f596 2697 switch_count = &prev->nvcsw;
1da177e4
LT
2698 }
2699
606dba2e
PZ
2700 if (prev->on_rq || rq->skip_clock_update < 0)
2701 update_rq_clock(rq);
2702
2703 next = pick_next_task(rq, prev);
f26f9aff 2704 clear_tsk_need_resched(prev);
f27dde8d 2705 clear_preempt_need_resched();
f26f9aff 2706 rq->skip_clock_update = 0;
1da177e4 2707
1da177e4 2708 if (likely(prev != next)) {
1da177e4
LT
2709 rq->nr_switches++;
2710 rq->curr = next;
2711 ++*switch_count;
2712
dd41f596 2713 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 2714 /*
246d86b5
ON
2715 * The context switch have flipped the stack from under us
2716 * and restored the local variables which were saved when
2717 * this task called schedule() in the past. prev == current
2718 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
2719 */
2720 cpu = smp_processor_id();
2721 rq = cpu_rq(cpu);
1da177e4 2722 } else
05fa785c 2723 raw_spin_unlock_irq(&rq->lock);
1da177e4 2724
3f029d3c 2725 post_schedule(rq);
1da177e4 2726
ba74c144 2727 sched_preempt_enable_no_resched();
ff743345 2728 if (need_resched())
1da177e4
LT
2729 goto need_resched;
2730}
c259e01a 2731
9c40cef2
TG
2732static inline void sched_submit_work(struct task_struct *tsk)
2733{
3c7d5184 2734 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
2735 return;
2736 /*
2737 * If we are going to sleep and we have plugged IO queued,
2738 * make sure to submit it to avoid deadlocks.
2739 */
2740 if (blk_needs_flush_plug(tsk))
2741 blk_schedule_flush_plug(tsk);
2742}
2743
6ebbe7a0 2744asmlinkage void __sched schedule(void)
c259e01a 2745{
9c40cef2
TG
2746 struct task_struct *tsk = current;
2747
2748 sched_submit_work(tsk);
c259e01a
TG
2749 __schedule();
2750}
1da177e4
LT
2751EXPORT_SYMBOL(schedule);
2752
91d1aa43 2753#ifdef CONFIG_CONTEXT_TRACKING
20ab65e3
FW
2754asmlinkage void __sched schedule_user(void)
2755{
2756 /*
2757 * If we come here after a random call to set_need_resched(),
2758 * or we have been woken up remotely but the IPI has not yet arrived,
2759 * we haven't yet exited the RCU idle mode. Do it here manually until
2760 * we find a better solution.
2761 */
91d1aa43 2762 user_exit();
20ab65e3 2763 schedule();
91d1aa43 2764 user_enter();
20ab65e3
FW
2765}
2766#endif
2767
c5491ea7
TG
2768/**
2769 * schedule_preempt_disabled - called with preemption disabled
2770 *
2771 * Returns with preemption disabled. Note: preempt_count must be 1
2772 */
2773void __sched schedule_preempt_disabled(void)
2774{
ba74c144 2775 sched_preempt_enable_no_resched();
c5491ea7
TG
2776 schedule();
2777 preempt_disable();
2778}
2779
1da177e4
LT
2780#ifdef CONFIG_PREEMPT
2781/*
2ed6e34f 2782 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 2783 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
2784 * occur there and call schedule directly.
2785 */
d1f74e20 2786asmlinkage void __sched notrace preempt_schedule(void)
1da177e4 2787{
1da177e4
LT
2788 /*
2789 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 2790 * we do not want to preempt the current task. Just return..
1da177e4 2791 */
fbb00b56 2792 if (likely(!preemptible()))
1da177e4
LT
2793 return;
2794
3a5c359a 2795 do {
bdb43806 2796 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 2797 __schedule();
bdb43806 2798 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2799
3a5c359a
AK
2800 /*
2801 * Check again in case we missed a preemption opportunity
2802 * between schedule and now.
2803 */
2804 barrier();
5ed0cec0 2805 } while (need_resched());
1da177e4 2806}
1da177e4 2807EXPORT_SYMBOL(preempt_schedule);
32e475d7 2808#endif /* CONFIG_PREEMPT */
1da177e4
LT
2809
2810/*
2ed6e34f 2811 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
2812 * off of irq context.
2813 * Note, that this is called and return with irqs disabled. This will
2814 * protect us against recursive calling from irq.
2815 */
2816asmlinkage void __sched preempt_schedule_irq(void)
2817{
b22366cd 2818 enum ctx_state prev_state;
6478d880 2819
2ed6e34f 2820 /* Catch callers which need to be fixed */
f27dde8d 2821 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 2822
b22366cd
FW
2823 prev_state = exception_enter();
2824
3a5c359a 2825 do {
bdb43806 2826 __preempt_count_add(PREEMPT_ACTIVE);
3a5c359a 2827 local_irq_enable();
c259e01a 2828 __schedule();
3a5c359a 2829 local_irq_disable();
bdb43806 2830 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2831
3a5c359a
AK
2832 /*
2833 * Check again in case we missed a preemption opportunity
2834 * between schedule and now.
2835 */
2836 barrier();
5ed0cec0 2837 } while (need_resched());
b22366cd
FW
2838
2839 exception_exit(prev_state);
1da177e4
LT
2840}
2841
63859d4f 2842int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 2843 void *key)
1da177e4 2844{
63859d4f 2845 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 2846}
1da177e4
LT
2847EXPORT_SYMBOL(default_wake_function);
2848
8cbbe86d
AK
2849static long __sched
2850sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 2851{
0fec171c
IM
2852 unsigned long flags;
2853 wait_queue_t wait;
2854
2855 init_waitqueue_entry(&wait, current);
1da177e4 2856
8cbbe86d 2857 __set_current_state(state);
1da177e4 2858
8cbbe86d
AK
2859 spin_lock_irqsave(&q->lock, flags);
2860 __add_wait_queue(q, &wait);
2861 spin_unlock(&q->lock);
2862 timeout = schedule_timeout(timeout);
2863 spin_lock_irq(&q->lock);
2864 __remove_wait_queue(q, &wait);
2865 spin_unlock_irqrestore(&q->lock, flags);
2866
2867 return timeout;
2868}
2869
2870void __sched interruptible_sleep_on(wait_queue_head_t *q)
2871{
2872 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 2873}
1da177e4
LT
2874EXPORT_SYMBOL(interruptible_sleep_on);
2875
0fec171c 2876long __sched
95cdf3b7 2877interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 2878{
8cbbe86d 2879 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 2880}
1da177e4
LT
2881EXPORT_SYMBOL(interruptible_sleep_on_timeout);
2882
0fec171c 2883void __sched sleep_on(wait_queue_head_t *q)
1da177e4 2884{
8cbbe86d 2885 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 2886}
1da177e4
LT
2887EXPORT_SYMBOL(sleep_on);
2888
0fec171c 2889long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 2890{
8cbbe86d 2891 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 2892}
1da177e4
LT
2893EXPORT_SYMBOL(sleep_on_timeout);
2894
b29739f9
IM
2895#ifdef CONFIG_RT_MUTEXES
2896
2897/*
2898 * rt_mutex_setprio - set the current priority of a task
2899 * @p: task
2900 * @prio: prio value (kernel-internal form)
2901 *
2902 * This function changes the 'effective' priority of a task. It does
2903 * not touch ->normal_prio like __setscheduler().
2904 *
2905 * Used by the rt_mutex code to implement priority inheritance logic.
2906 */
36c8b586 2907void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 2908{
2d3d891d 2909 int oldprio, on_rq, running, enqueue_flag = 0;
70b97a7f 2910 struct rq *rq;
83ab0aa0 2911 const struct sched_class *prev_class;
b29739f9 2912
aab03e05 2913 BUG_ON(prio > MAX_PRIO);
b29739f9 2914
0122ec5b 2915 rq = __task_rq_lock(p);
b29739f9 2916
1c4dd99b
TG
2917 /*
2918 * Idle task boosting is a nono in general. There is one
2919 * exception, when PREEMPT_RT and NOHZ is active:
2920 *
2921 * The idle task calls get_next_timer_interrupt() and holds
2922 * the timer wheel base->lock on the CPU and another CPU wants
2923 * to access the timer (probably to cancel it). We can safely
2924 * ignore the boosting request, as the idle CPU runs this code
2925 * with interrupts disabled and will complete the lock
2926 * protected section without being interrupted. So there is no
2927 * real need to boost.
2928 */
2929 if (unlikely(p == rq->idle)) {
2930 WARN_ON(p != rq->curr);
2931 WARN_ON(p->pi_blocked_on);
2932 goto out_unlock;
2933 }
2934
a8027073 2935 trace_sched_pi_setprio(p, prio);
2d3d891d 2936 p->pi_top_task = rt_mutex_get_top_task(p);
d5f9f942 2937 oldprio = p->prio;
83ab0aa0 2938 prev_class = p->sched_class;
fd2f4419 2939 on_rq = p->on_rq;
051a1d1a 2940 running = task_current(rq, p);
0e1f3483 2941 if (on_rq)
69be72c1 2942 dequeue_task(rq, p, 0);
0e1f3483
HS
2943 if (running)
2944 p->sched_class->put_prev_task(rq, p);
dd41f596 2945
2d3d891d
DF
2946 /*
2947 * Boosting condition are:
2948 * 1. -rt task is running and holds mutex A
2949 * --> -dl task blocks on mutex A
2950 *
2951 * 2. -dl task is running and holds mutex A
2952 * --> -dl task blocks on mutex A and could preempt the
2953 * running task
2954 */
2955 if (dl_prio(prio)) {
2956 if (!dl_prio(p->normal_prio) || (p->pi_top_task &&
2957 dl_entity_preempt(&p->pi_top_task->dl, &p->dl))) {
2958 p->dl.dl_boosted = 1;
2959 p->dl.dl_throttled = 0;
2960 enqueue_flag = ENQUEUE_REPLENISH;
2961 } else
2962 p->dl.dl_boosted = 0;
aab03e05 2963 p->sched_class = &dl_sched_class;
2d3d891d
DF
2964 } else if (rt_prio(prio)) {
2965 if (dl_prio(oldprio))
2966 p->dl.dl_boosted = 0;
2967 if (oldprio < prio)
2968 enqueue_flag = ENQUEUE_HEAD;
dd41f596 2969 p->sched_class = &rt_sched_class;
2d3d891d
DF
2970 } else {
2971 if (dl_prio(oldprio))
2972 p->dl.dl_boosted = 0;
dd41f596 2973 p->sched_class = &fair_sched_class;
2d3d891d 2974 }
dd41f596 2975
b29739f9
IM
2976 p->prio = prio;
2977
0e1f3483
HS
2978 if (running)
2979 p->sched_class->set_curr_task(rq);
da7a735e 2980 if (on_rq)
2d3d891d 2981 enqueue_task(rq, p, enqueue_flag);
cb469845 2982
da7a735e 2983 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 2984out_unlock:
0122ec5b 2985 __task_rq_unlock(rq);
b29739f9 2986}
b29739f9 2987#endif
d50dde5a 2988
36c8b586 2989void set_user_nice(struct task_struct *p, long nice)
1da177e4 2990{
dd41f596 2991 int old_prio, delta, on_rq;
1da177e4 2992 unsigned long flags;
70b97a7f 2993 struct rq *rq;
1da177e4 2994
d0ea0268 2995 if (task_nice(p) == nice || nice < -20 || nice > 19)
1da177e4
LT
2996 return;
2997 /*
2998 * We have to be careful, if called from sys_setpriority(),
2999 * the task might be in the middle of scheduling on another CPU.
3000 */
3001 rq = task_rq_lock(p, &flags);
3002 /*
3003 * The RT priorities are set via sched_setscheduler(), but we still
3004 * allow the 'normal' nice value to be set - but as expected
3005 * it wont have any effect on scheduling until the task is
aab03e05 3006 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3007 */
aab03e05 3008 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3009 p->static_prio = NICE_TO_PRIO(nice);
3010 goto out_unlock;
3011 }
fd2f4419 3012 on_rq = p->on_rq;
c09595f6 3013 if (on_rq)
69be72c1 3014 dequeue_task(rq, p, 0);
1da177e4 3015
1da177e4 3016 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3017 set_load_weight(p);
b29739f9
IM
3018 old_prio = p->prio;
3019 p->prio = effective_prio(p);
3020 delta = p->prio - old_prio;
1da177e4 3021
dd41f596 3022 if (on_rq) {
371fd7e7 3023 enqueue_task(rq, p, 0);
1da177e4 3024 /*
d5f9f942
AM
3025 * If the task increased its priority or is running and
3026 * lowered its priority, then reschedule its CPU:
1da177e4 3027 */
d5f9f942 3028 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
3029 resched_task(rq->curr);
3030 }
3031out_unlock:
0122ec5b 3032 task_rq_unlock(rq, p, &flags);
1da177e4 3033}
1da177e4
LT
3034EXPORT_SYMBOL(set_user_nice);
3035
e43379f1
MM
3036/*
3037 * can_nice - check if a task can reduce its nice value
3038 * @p: task
3039 * @nice: nice value
3040 */
36c8b586 3041int can_nice(const struct task_struct *p, const int nice)
e43379f1 3042{
024f4747
MM
3043 /* convert nice value [19,-20] to rlimit style value [1,40] */
3044 int nice_rlim = 20 - nice;
48f24c4d 3045
78d7d407 3046 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3047 capable(CAP_SYS_NICE));
3048}
3049
1da177e4
LT
3050#ifdef __ARCH_WANT_SYS_NICE
3051
3052/*
3053 * sys_nice - change the priority of the current process.
3054 * @increment: priority increment
3055 *
3056 * sys_setpriority is a more generic, but much slower function that
3057 * does similar things.
3058 */
5add95d4 3059SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3060{
48f24c4d 3061 long nice, retval;
1da177e4
LT
3062
3063 /*
3064 * Setpriority might change our priority at the same moment.
3065 * We don't have to worry. Conceptually one call occurs first
3066 * and we have a single winner.
3067 */
e43379f1
MM
3068 if (increment < -40)
3069 increment = -40;
1da177e4
LT
3070 if (increment > 40)
3071 increment = 40;
3072
d0ea0268 3073 nice = task_nice(current) + increment;
1da177e4
LT
3074 if (nice < -20)
3075 nice = -20;
3076 if (nice > 19)
3077 nice = 19;
3078
e43379f1
MM
3079 if (increment < 0 && !can_nice(current, nice))
3080 return -EPERM;
3081
1da177e4
LT
3082 retval = security_task_setnice(current, nice);
3083 if (retval)
3084 return retval;
3085
3086 set_user_nice(current, nice);
3087 return 0;
3088}
3089
3090#endif
3091
3092/**
3093 * task_prio - return the priority value of a given task.
3094 * @p: the task in question.
3095 *
e69f6186 3096 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3097 * RT tasks are offset by -200. Normal tasks are centered
3098 * around 0, value goes from -16 to +15.
3099 */
36c8b586 3100int task_prio(const struct task_struct *p)
1da177e4
LT
3101{
3102 return p->prio - MAX_RT_PRIO;
3103}
3104
1da177e4
LT
3105/**
3106 * idle_cpu - is a given cpu idle currently?
3107 * @cpu: the processor in question.
e69f6186
YB
3108 *
3109 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3110 */
3111int idle_cpu(int cpu)
3112{
908a3283
TG
3113 struct rq *rq = cpu_rq(cpu);
3114
3115 if (rq->curr != rq->idle)
3116 return 0;
3117
3118 if (rq->nr_running)
3119 return 0;
3120
3121#ifdef CONFIG_SMP
3122 if (!llist_empty(&rq->wake_list))
3123 return 0;
3124#endif
3125
3126 return 1;
1da177e4
LT
3127}
3128
1da177e4
LT
3129/**
3130 * idle_task - return the idle task for a given cpu.
3131 * @cpu: the processor in question.
e69f6186
YB
3132 *
3133 * Return: The idle task for the cpu @cpu.
1da177e4 3134 */
36c8b586 3135struct task_struct *idle_task(int cpu)
1da177e4
LT
3136{
3137 return cpu_rq(cpu)->idle;
3138}
3139
3140/**
3141 * find_process_by_pid - find a process with a matching PID value.
3142 * @pid: the pid in question.
e69f6186
YB
3143 *
3144 * The task of @pid, if found. %NULL otherwise.
1da177e4 3145 */
a9957449 3146static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3147{
228ebcbe 3148 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3149}
3150
aab03e05
DF
3151/*
3152 * This function initializes the sched_dl_entity of a newly becoming
3153 * SCHED_DEADLINE task.
3154 *
3155 * Only the static values are considered here, the actual runtime and the
3156 * absolute deadline will be properly calculated when the task is enqueued
3157 * for the first time with its new policy.
3158 */
3159static void
3160__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3161{
3162 struct sched_dl_entity *dl_se = &p->dl;
3163
3164 init_dl_task_timer(dl_se);
3165 dl_se->dl_runtime = attr->sched_runtime;
3166 dl_se->dl_deadline = attr->sched_deadline;
755378a4 3167 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 3168 dl_se->flags = attr->sched_flags;
332ac17e 3169 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
aab03e05
DF
3170 dl_se->dl_throttled = 0;
3171 dl_se->dl_new = 1;
3172}
3173
d50dde5a
DF
3174/* Actually do priority change: must hold pi & rq lock. */
3175static void __setscheduler(struct rq *rq, struct task_struct *p,
3176 const struct sched_attr *attr)
1da177e4 3177{
d50dde5a
DF
3178 int policy = attr->sched_policy;
3179
39fd8fd2
PZ
3180 if (policy == -1) /* setparam */
3181 policy = p->policy;
3182
1da177e4 3183 p->policy = policy;
d50dde5a 3184
aab03e05
DF
3185 if (dl_policy(policy))
3186 __setparam_dl(p, attr);
39fd8fd2 3187 else if (fair_policy(policy))
d50dde5a
DF
3188 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3189
39fd8fd2
PZ
3190 /*
3191 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3192 * !rt_policy. Always setting this ensures that things like
3193 * getparam()/getattr() don't report silly values for !rt tasks.
3194 */
3195 p->rt_priority = attr->sched_priority;
3196
b29739f9 3197 p->normal_prio = normal_prio(p);
b29739f9 3198 p->prio = rt_mutex_getprio(p);
d50dde5a 3199
aab03e05
DF
3200 if (dl_prio(p->prio))
3201 p->sched_class = &dl_sched_class;
3202 else if (rt_prio(p->prio))
ffd44db5
PZ
3203 p->sched_class = &rt_sched_class;
3204 else
3205 p->sched_class = &fair_sched_class;
d50dde5a 3206
2dd73a4f 3207 set_load_weight(p);
1da177e4 3208}
aab03e05
DF
3209
3210static void
3211__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3212{
3213 struct sched_dl_entity *dl_se = &p->dl;
3214
3215 attr->sched_priority = p->rt_priority;
3216 attr->sched_runtime = dl_se->dl_runtime;
3217 attr->sched_deadline = dl_se->dl_deadline;
755378a4 3218 attr->sched_period = dl_se->dl_period;
aab03e05
DF
3219 attr->sched_flags = dl_se->flags;
3220}
3221
3222/*
3223 * This function validates the new parameters of a -deadline task.
3224 * We ask for the deadline not being zero, and greater or equal
755378a4 3225 * than the runtime, as well as the period of being zero or
332ac17e
DF
3226 * greater than deadline. Furthermore, we have to be sure that
3227 * user parameters are above the internal resolution (1us); we
3228 * check sched_runtime only since it is always the smaller one.
aab03e05
DF
3229 */
3230static bool
3231__checkparam_dl(const struct sched_attr *attr)
3232{
3233 return attr && attr->sched_deadline != 0 &&
755378a4
HG
3234 (attr->sched_period == 0 ||
3235 (s64)(attr->sched_period - attr->sched_deadline) >= 0) &&
332ac17e
DF
3236 (s64)(attr->sched_deadline - attr->sched_runtime ) >= 0 &&
3237 attr->sched_runtime >= (2 << (DL_SCALE - 1));
aab03e05
DF
3238}
3239
c69e8d9c
DH
3240/*
3241 * check the target process has a UID that matches the current process's
3242 */
3243static bool check_same_owner(struct task_struct *p)
3244{
3245 const struct cred *cred = current_cred(), *pcred;
3246 bool match;
3247
3248 rcu_read_lock();
3249 pcred = __task_cred(p);
9c806aa0
EB
3250 match = (uid_eq(cred->euid, pcred->euid) ||
3251 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3252 rcu_read_unlock();
3253 return match;
3254}
3255
d50dde5a
DF
3256static int __sched_setscheduler(struct task_struct *p,
3257 const struct sched_attr *attr,
3258 bool user)
1da177e4 3259{
83b699ed 3260 int retval, oldprio, oldpolicy = -1, on_rq, running;
d50dde5a 3261 int policy = attr->sched_policy;
1da177e4 3262 unsigned long flags;
83ab0aa0 3263 const struct sched_class *prev_class;
70b97a7f 3264 struct rq *rq;
ca94c442 3265 int reset_on_fork;
1da177e4 3266
66e5393a
SR
3267 /* may grab non-irq protected spin_locks */
3268 BUG_ON(in_interrupt());
1da177e4
LT
3269recheck:
3270 /* double check policy once rq lock held */
ca94c442
LP
3271 if (policy < 0) {
3272 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3273 policy = oldpolicy = p->policy;
ca94c442 3274 } else {
7479f3c9 3275 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 3276
aab03e05
DF
3277 if (policy != SCHED_DEADLINE &&
3278 policy != SCHED_FIFO && policy != SCHED_RR &&
ca94c442
LP
3279 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3280 policy != SCHED_IDLE)
3281 return -EINVAL;
3282 }
3283
7479f3c9
PZ
3284 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3285 return -EINVAL;
3286
1da177e4
LT
3287 /*
3288 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3289 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3290 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 3291 */
0bb040a4 3292 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 3293 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 3294 return -EINVAL;
aab03e05
DF
3295 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3296 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
3297 return -EINVAL;
3298
37e4ab3f
OC
3299 /*
3300 * Allow unprivileged RT tasks to decrease priority:
3301 */
961ccddd 3302 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 3303 if (fair_policy(policy)) {
d0ea0268 3304 if (attr->sched_nice < task_nice(p) &&
eaad4513 3305 !can_nice(p, attr->sched_nice))
d50dde5a
DF
3306 return -EPERM;
3307 }
3308
e05606d3 3309 if (rt_policy(policy)) {
a44702e8
ON
3310 unsigned long rlim_rtprio =
3311 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3312
3313 /* can't set/change the rt policy */
3314 if (policy != p->policy && !rlim_rtprio)
3315 return -EPERM;
3316
3317 /* can't increase priority */
d50dde5a
DF
3318 if (attr->sched_priority > p->rt_priority &&
3319 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
3320 return -EPERM;
3321 }
c02aa73b 3322
dd41f596 3323 /*
c02aa73b
DH
3324 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3325 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3326 */
c02aa73b 3327 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
d0ea0268 3328 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
3329 return -EPERM;
3330 }
5fe1d75f 3331
37e4ab3f 3332 /* can't change other user's priorities */
c69e8d9c 3333 if (!check_same_owner(p))
37e4ab3f 3334 return -EPERM;
ca94c442
LP
3335
3336 /* Normal users shall not reset the sched_reset_on_fork flag */
3337 if (p->sched_reset_on_fork && !reset_on_fork)
3338 return -EPERM;
37e4ab3f 3339 }
1da177e4 3340
725aad24 3341 if (user) {
b0ae1981 3342 retval = security_task_setscheduler(p);
725aad24
JF
3343 if (retval)
3344 return retval;
3345 }
3346
b29739f9
IM
3347 /*
3348 * make sure no PI-waiters arrive (or leave) while we are
3349 * changing the priority of the task:
0122ec5b 3350 *
25985edc 3351 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3352 * runqueue lock must be held.
3353 */
0122ec5b 3354 rq = task_rq_lock(p, &flags);
dc61b1d6 3355
34f971f6
PZ
3356 /*
3357 * Changing the policy of the stop threads its a very bad idea
3358 */
3359 if (p == rq->stop) {
0122ec5b 3360 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3361 return -EINVAL;
3362 }
3363
a51e9198
DF
3364 /*
3365 * If not changing anything there's no need to proceed further:
3366 */
d50dde5a 3367 if (unlikely(policy == p->policy)) {
d0ea0268 3368 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
3369 goto change;
3370 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3371 goto change;
aab03e05
DF
3372 if (dl_policy(policy))
3373 goto change;
d50dde5a 3374
45afb173 3375 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3376 return 0;
3377 }
d50dde5a 3378change:
a51e9198 3379
dc61b1d6 3380 if (user) {
332ac17e 3381#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
3382 /*
3383 * Do not allow realtime tasks into groups that have no runtime
3384 * assigned.
3385 */
3386 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3387 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3388 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3389 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3390 return -EPERM;
3391 }
dc61b1d6 3392#endif
332ac17e
DF
3393#ifdef CONFIG_SMP
3394 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3395 cpumask_t *span = rq->rd->span;
332ac17e
DF
3396
3397 /*
3398 * Don't allow tasks with an affinity mask smaller than
3399 * the entire root_domain to become SCHED_DEADLINE. We
3400 * will also fail if there's no bandwidth available.
3401 */
e4099a5e
PZ
3402 if (!cpumask_subset(span, &p->cpus_allowed) ||
3403 rq->rd->dl_bw.bw == 0) {
332ac17e
DF
3404 task_rq_unlock(rq, p, &flags);
3405 return -EPERM;
3406 }
3407 }
3408#endif
3409 }
dc61b1d6 3410
1da177e4
LT
3411 /* recheck policy now with rq lock held */
3412 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3413 policy = oldpolicy = -1;
0122ec5b 3414 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3415 goto recheck;
3416 }
332ac17e
DF
3417
3418 /*
3419 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3420 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3421 * is available.
3422 */
e4099a5e 3423 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
332ac17e
DF
3424 task_rq_unlock(rq, p, &flags);
3425 return -EBUSY;
3426 }
3427
fd2f4419 3428 on_rq = p->on_rq;
051a1d1a 3429 running = task_current(rq, p);
0e1f3483 3430 if (on_rq)
4ca9b72b 3431 dequeue_task(rq, p, 0);
0e1f3483
HS
3432 if (running)
3433 p->sched_class->put_prev_task(rq, p);
f6b53205 3434
ca94c442
LP
3435 p->sched_reset_on_fork = reset_on_fork;
3436
1da177e4 3437 oldprio = p->prio;
83ab0aa0 3438 prev_class = p->sched_class;
d50dde5a 3439 __setscheduler(rq, p, attr);
f6b53205 3440
0e1f3483
HS
3441 if (running)
3442 p->sched_class->set_curr_task(rq);
da7a735e 3443 if (on_rq)
4ca9b72b 3444 enqueue_task(rq, p, 0);
cb469845 3445
da7a735e 3446 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 3447 task_rq_unlock(rq, p, &flags);
b29739f9 3448
95e02ca9
TG
3449 rt_mutex_adjust_pi(p);
3450
1da177e4
LT
3451 return 0;
3452}
961ccddd 3453
7479f3c9
PZ
3454static int _sched_setscheduler(struct task_struct *p, int policy,
3455 const struct sched_param *param, bool check)
3456{
3457 struct sched_attr attr = {
3458 .sched_policy = policy,
3459 .sched_priority = param->sched_priority,
3460 .sched_nice = PRIO_TO_NICE(p->static_prio),
3461 };
3462
3463 /*
3464 * Fixup the legacy SCHED_RESET_ON_FORK hack
3465 */
3466 if (policy & SCHED_RESET_ON_FORK) {
3467 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3468 policy &= ~SCHED_RESET_ON_FORK;
3469 attr.sched_policy = policy;
3470 }
3471
3472 return __sched_setscheduler(p, &attr, check);
3473}
961ccddd
RR
3474/**
3475 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3476 * @p: the task in question.
3477 * @policy: new policy.
3478 * @param: structure containing the new RT priority.
3479 *
e69f6186
YB
3480 * Return: 0 on success. An error code otherwise.
3481 *
961ccddd
RR
3482 * NOTE that the task may be already dead.
3483 */
3484int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3485 const struct sched_param *param)
961ccddd 3486{
7479f3c9 3487 return _sched_setscheduler(p, policy, param, true);
961ccddd 3488}
1da177e4
LT
3489EXPORT_SYMBOL_GPL(sched_setscheduler);
3490
d50dde5a
DF
3491int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3492{
3493 return __sched_setscheduler(p, attr, true);
3494}
3495EXPORT_SYMBOL_GPL(sched_setattr);
3496
961ccddd
RR
3497/**
3498 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3499 * @p: the task in question.
3500 * @policy: new policy.
3501 * @param: structure containing the new RT priority.
3502 *
3503 * Just like sched_setscheduler, only don't bother checking if the
3504 * current context has permission. For example, this is needed in
3505 * stop_machine(): we create temporary high priority worker threads,
3506 * but our caller might not have that capability.
e69f6186
YB
3507 *
3508 * Return: 0 on success. An error code otherwise.
961ccddd
RR
3509 */
3510int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 3511 const struct sched_param *param)
961ccddd 3512{
7479f3c9 3513 return _sched_setscheduler(p, policy, param, false);
961ccddd
RR
3514}
3515
95cdf3b7
IM
3516static int
3517do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 3518{
1da177e4
LT
3519 struct sched_param lparam;
3520 struct task_struct *p;
36c8b586 3521 int retval;
1da177e4
LT
3522
3523 if (!param || pid < 0)
3524 return -EINVAL;
3525 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3526 return -EFAULT;
5fe1d75f
ON
3527
3528 rcu_read_lock();
3529 retval = -ESRCH;
1da177e4 3530 p = find_process_by_pid(pid);
5fe1d75f
ON
3531 if (p != NULL)
3532 retval = sched_setscheduler(p, policy, &lparam);
3533 rcu_read_unlock();
36c8b586 3534
1da177e4
LT
3535 return retval;
3536}
3537
d50dde5a
DF
3538/*
3539 * Mimics kernel/events/core.c perf_copy_attr().
3540 */
3541static int sched_copy_attr(struct sched_attr __user *uattr,
3542 struct sched_attr *attr)
3543{
3544 u32 size;
3545 int ret;
3546
3547 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3548 return -EFAULT;
3549
3550 /*
3551 * zero the full structure, so that a short copy will be nice.
3552 */
3553 memset(attr, 0, sizeof(*attr));
3554
3555 ret = get_user(size, &uattr->size);
3556 if (ret)
3557 return ret;
3558
3559 if (size > PAGE_SIZE) /* silly large */
3560 goto err_size;
3561
3562 if (!size) /* abi compat */
3563 size = SCHED_ATTR_SIZE_VER0;
3564
3565 if (size < SCHED_ATTR_SIZE_VER0)
3566 goto err_size;
3567
3568 /*
3569 * If we're handed a bigger struct than we know of,
3570 * ensure all the unknown bits are 0 - i.e. new
3571 * user-space does not rely on any kernel feature
3572 * extensions we dont know about yet.
3573 */
3574 if (size > sizeof(*attr)) {
3575 unsigned char __user *addr;
3576 unsigned char __user *end;
3577 unsigned char val;
3578
3579 addr = (void __user *)uattr + sizeof(*attr);
3580 end = (void __user *)uattr + size;
3581
3582 for (; addr < end; addr++) {
3583 ret = get_user(val, addr);
3584 if (ret)
3585 return ret;
3586 if (val)
3587 goto err_size;
3588 }
3589 size = sizeof(*attr);
3590 }
3591
3592 ret = copy_from_user(attr, uattr, size);
3593 if (ret)
3594 return -EFAULT;
3595
3596 /*
3597 * XXX: do we want to be lenient like existing syscalls; or do we want
3598 * to be strict and return an error on out-of-bounds values?
3599 */
3600 attr->sched_nice = clamp(attr->sched_nice, -20, 19);
3601
3602out:
3603 return ret;
3604
3605err_size:
3606 put_user(sizeof(*attr), &uattr->size);
3607 ret = -E2BIG;
3608 goto out;
3609}
3610
1da177e4
LT
3611/**
3612 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3613 * @pid: the pid in question.
3614 * @policy: new policy.
3615 * @param: structure containing the new RT priority.
e69f6186
YB
3616 *
3617 * Return: 0 on success. An error code otherwise.
1da177e4 3618 */
5add95d4
HC
3619SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3620 struct sched_param __user *, param)
1da177e4 3621{
c21761f1
JB
3622 /* negative values for policy are not valid */
3623 if (policy < 0)
3624 return -EINVAL;
3625
1da177e4
LT
3626 return do_sched_setscheduler(pid, policy, param);
3627}
3628
3629/**
3630 * sys_sched_setparam - set/change the RT priority of a thread
3631 * @pid: the pid in question.
3632 * @param: structure containing the new RT priority.
e69f6186
YB
3633 *
3634 * Return: 0 on success. An error code otherwise.
1da177e4 3635 */
5add95d4 3636SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
3637{
3638 return do_sched_setscheduler(pid, -1, param);
3639}
3640
d50dde5a
DF
3641/**
3642 * sys_sched_setattr - same as above, but with extended sched_attr
3643 * @pid: the pid in question.
5778fccf 3644 * @uattr: structure containing the extended parameters.
d50dde5a
DF
3645 */
3646SYSCALL_DEFINE2(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr)
3647{
3648 struct sched_attr attr;
3649 struct task_struct *p;
3650 int retval;
3651
3652 if (!uattr || pid < 0)
3653 return -EINVAL;
3654
3655 if (sched_copy_attr(uattr, &attr))
3656 return -EFAULT;
3657
3658 rcu_read_lock();
3659 retval = -ESRCH;
3660 p = find_process_by_pid(pid);
3661 if (p != NULL)
3662 retval = sched_setattr(p, &attr);
3663 rcu_read_unlock();
3664
3665 return retval;
3666}
3667
1da177e4
LT
3668/**
3669 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3670 * @pid: the pid in question.
e69f6186
YB
3671 *
3672 * Return: On success, the policy of the thread. Otherwise, a negative error
3673 * code.
1da177e4 3674 */
5add95d4 3675SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 3676{
36c8b586 3677 struct task_struct *p;
3a5c359a 3678 int retval;
1da177e4
LT
3679
3680 if (pid < 0)
3a5c359a 3681 return -EINVAL;
1da177e4
LT
3682
3683 retval = -ESRCH;
5fe85be0 3684 rcu_read_lock();
1da177e4
LT
3685 p = find_process_by_pid(pid);
3686 if (p) {
3687 retval = security_task_getscheduler(p);
3688 if (!retval)
ca94c442
LP
3689 retval = p->policy
3690 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 3691 }
5fe85be0 3692 rcu_read_unlock();
1da177e4
LT
3693 return retval;
3694}
3695
3696/**
ca94c442 3697 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
3698 * @pid: the pid in question.
3699 * @param: structure containing the RT priority.
e69f6186
YB
3700 *
3701 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3702 * code.
1da177e4 3703 */
5add95d4 3704SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
3705{
3706 struct sched_param lp;
36c8b586 3707 struct task_struct *p;
3a5c359a 3708 int retval;
1da177e4
LT
3709
3710 if (!param || pid < 0)
3a5c359a 3711 return -EINVAL;
1da177e4 3712
5fe85be0 3713 rcu_read_lock();
1da177e4
LT
3714 p = find_process_by_pid(pid);
3715 retval = -ESRCH;
3716 if (!p)
3717 goto out_unlock;
3718
3719 retval = security_task_getscheduler(p);
3720 if (retval)
3721 goto out_unlock;
3722
aab03e05
DF
3723 if (task_has_dl_policy(p)) {
3724 retval = -EINVAL;
3725 goto out_unlock;
3726 }
1da177e4 3727 lp.sched_priority = p->rt_priority;
5fe85be0 3728 rcu_read_unlock();
1da177e4
LT
3729
3730 /*
3731 * This one might sleep, we cannot do it with a spinlock held ...
3732 */
3733 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3734
1da177e4
LT
3735 return retval;
3736
3737out_unlock:
5fe85be0 3738 rcu_read_unlock();
1da177e4
LT
3739 return retval;
3740}
3741
d50dde5a
DF
3742static int sched_read_attr(struct sched_attr __user *uattr,
3743 struct sched_attr *attr,
3744 unsigned int usize)
3745{
3746 int ret;
3747
3748 if (!access_ok(VERIFY_WRITE, uattr, usize))
3749 return -EFAULT;
3750
3751 /*
3752 * If we're handed a smaller struct than we know of,
3753 * ensure all the unknown bits are 0 - i.e. old
3754 * user-space does not get uncomplete information.
3755 */
3756 if (usize < sizeof(*attr)) {
3757 unsigned char *addr;
3758 unsigned char *end;
3759
3760 addr = (void *)attr + usize;
3761 end = (void *)attr + sizeof(*attr);
3762
3763 for (; addr < end; addr++) {
3764 if (*addr)
3765 goto err_size;
3766 }
3767
3768 attr->size = usize;
3769 }
3770
3771 ret = copy_to_user(uattr, attr, usize);
3772 if (ret)
3773 return -EFAULT;
3774
3775out:
3776 return ret;
3777
3778err_size:
3779 ret = -E2BIG;
3780 goto out;
3781}
3782
3783/**
aab03e05 3784 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 3785 * @pid: the pid in question.
5778fccf 3786 * @uattr: structure containing the extended parameters.
d50dde5a
DF
3787 * @size: sizeof(attr) for fwd/bwd comp.
3788 */
3789SYSCALL_DEFINE3(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3790 unsigned int, size)
3791{
3792 struct sched_attr attr = {
3793 .size = sizeof(struct sched_attr),
3794 };
3795 struct task_struct *p;
3796 int retval;
3797
3798 if (!uattr || pid < 0 || size > PAGE_SIZE ||
3799 size < SCHED_ATTR_SIZE_VER0)
3800 return -EINVAL;
3801
3802 rcu_read_lock();
3803 p = find_process_by_pid(pid);
3804 retval = -ESRCH;
3805 if (!p)
3806 goto out_unlock;
3807
3808 retval = security_task_getscheduler(p);
3809 if (retval)
3810 goto out_unlock;
3811
3812 attr.sched_policy = p->policy;
7479f3c9
PZ
3813 if (p->sched_reset_on_fork)
3814 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
3815 if (task_has_dl_policy(p))
3816 __getparam_dl(p, &attr);
3817 else if (task_has_rt_policy(p))
d50dde5a
DF
3818 attr.sched_priority = p->rt_priority;
3819 else
d0ea0268 3820 attr.sched_nice = task_nice(p);
d50dde5a
DF
3821
3822 rcu_read_unlock();
3823
3824 retval = sched_read_attr(uattr, &attr, size);
3825 return retval;
3826
3827out_unlock:
3828 rcu_read_unlock();
3829 return retval;
3830}
3831
96f874e2 3832long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 3833{
5a16f3d3 3834 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
3835 struct task_struct *p;
3836 int retval;
1da177e4 3837
23f5d142 3838 rcu_read_lock();
1da177e4
LT
3839
3840 p = find_process_by_pid(pid);
3841 if (!p) {
23f5d142 3842 rcu_read_unlock();
1da177e4
LT
3843 return -ESRCH;
3844 }
3845
23f5d142 3846 /* Prevent p going away */
1da177e4 3847 get_task_struct(p);
23f5d142 3848 rcu_read_unlock();
1da177e4 3849
14a40ffc
TH
3850 if (p->flags & PF_NO_SETAFFINITY) {
3851 retval = -EINVAL;
3852 goto out_put_task;
3853 }
5a16f3d3
RR
3854 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3855 retval = -ENOMEM;
3856 goto out_put_task;
3857 }
3858 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3859 retval = -ENOMEM;
3860 goto out_free_cpus_allowed;
3861 }
1da177e4 3862 retval = -EPERM;
4c44aaaf
EB
3863 if (!check_same_owner(p)) {
3864 rcu_read_lock();
3865 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3866 rcu_read_unlock();
3867 goto out_unlock;
3868 }
3869 rcu_read_unlock();
3870 }
1da177e4 3871
b0ae1981 3872 retval = security_task_setscheduler(p);
e7834f8f
DQ
3873 if (retval)
3874 goto out_unlock;
3875
e4099a5e
PZ
3876
3877 cpuset_cpus_allowed(p, cpus_allowed);
3878 cpumask_and(new_mask, in_mask, cpus_allowed);
3879
332ac17e
DF
3880 /*
3881 * Since bandwidth control happens on root_domain basis,
3882 * if admission test is enabled, we only admit -deadline
3883 * tasks allowed to run on all the CPUs in the task's
3884 * root_domain.
3885 */
3886#ifdef CONFIG_SMP
3887 if (task_has_dl_policy(p)) {
3888 const struct cpumask *span = task_rq(p)->rd->span;
3889
e4099a5e 3890 if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) {
332ac17e
DF
3891 retval = -EBUSY;
3892 goto out_unlock;
3893 }
3894 }
3895#endif
49246274 3896again:
5a16f3d3 3897 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 3898
8707d8b8 3899 if (!retval) {
5a16f3d3
RR
3900 cpuset_cpus_allowed(p, cpus_allowed);
3901 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
3902 /*
3903 * We must have raced with a concurrent cpuset
3904 * update. Just reset the cpus_allowed to the
3905 * cpuset's cpus_allowed
3906 */
5a16f3d3 3907 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
3908 goto again;
3909 }
3910 }
1da177e4 3911out_unlock:
5a16f3d3
RR
3912 free_cpumask_var(new_mask);
3913out_free_cpus_allowed:
3914 free_cpumask_var(cpus_allowed);
3915out_put_task:
1da177e4 3916 put_task_struct(p);
1da177e4
LT
3917 return retval;
3918}
3919
3920static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 3921 struct cpumask *new_mask)
1da177e4 3922{
96f874e2
RR
3923 if (len < cpumask_size())
3924 cpumask_clear(new_mask);
3925 else if (len > cpumask_size())
3926 len = cpumask_size();
3927
1da177e4
LT
3928 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3929}
3930
3931/**
3932 * sys_sched_setaffinity - set the cpu affinity of a process
3933 * @pid: pid of the process
3934 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3935 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
3936 *
3937 * Return: 0 on success. An error code otherwise.
1da177e4 3938 */
5add95d4
HC
3939SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
3940 unsigned long __user *, user_mask_ptr)
1da177e4 3941{
5a16f3d3 3942 cpumask_var_t new_mask;
1da177e4
LT
3943 int retval;
3944
5a16f3d3
RR
3945 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3946 return -ENOMEM;
1da177e4 3947
5a16f3d3
RR
3948 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
3949 if (retval == 0)
3950 retval = sched_setaffinity(pid, new_mask);
3951 free_cpumask_var(new_mask);
3952 return retval;
1da177e4
LT
3953}
3954
96f874e2 3955long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 3956{
36c8b586 3957 struct task_struct *p;
31605683 3958 unsigned long flags;
1da177e4 3959 int retval;
1da177e4 3960
23f5d142 3961 rcu_read_lock();
1da177e4
LT
3962
3963 retval = -ESRCH;
3964 p = find_process_by_pid(pid);
3965 if (!p)
3966 goto out_unlock;
3967
e7834f8f
DQ
3968 retval = security_task_getscheduler(p);
3969 if (retval)
3970 goto out_unlock;
3971
013fdb80 3972 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 3973 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 3974 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
3975
3976out_unlock:
23f5d142 3977 rcu_read_unlock();
1da177e4 3978
9531b62f 3979 return retval;
1da177e4
LT
3980}
3981
3982/**
3983 * sys_sched_getaffinity - get the cpu affinity of a process
3984 * @pid: pid of the process
3985 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3986 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186
YB
3987 *
3988 * Return: 0 on success. An error code otherwise.
1da177e4 3989 */
5add95d4
HC
3990SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
3991 unsigned long __user *, user_mask_ptr)
1da177e4
LT
3992{
3993 int ret;
f17c8607 3994 cpumask_var_t mask;
1da177e4 3995
84fba5ec 3996 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
3997 return -EINVAL;
3998 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
3999 return -EINVAL;
4000
f17c8607
RR
4001 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4002 return -ENOMEM;
1da177e4 4003
f17c8607
RR
4004 ret = sched_getaffinity(pid, mask);
4005 if (ret == 0) {
8bc037fb 4006 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4007
4008 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4009 ret = -EFAULT;
4010 else
cd3d8031 4011 ret = retlen;
f17c8607
RR
4012 }
4013 free_cpumask_var(mask);
1da177e4 4014
f17c8607 4015 return ret;
1da177e4
LT
4016}
4017
4018/**
4019 * sys_sched_yield - yield the current processor to other threads.
4020 *
dd41f596
IM
4021 * This function yields the current CPU to other tasks. If there are no
4022 * other threads running on this CPU then this function will return.
e69f6186
YB
4023 *
4024 * Return: 0.
1da177e4 4025 */
5add95d4 4026SYSCALL_DEFINE0(sched_yield)
1da177e4 4027{
70b97a7f 4028 struct rq *rq = this_rq_lock();
1da177e4 4029
2d72376b 4030 schedstat_inc(rq, yld_count);
4530d7ab 4031 current->sched_class->yield_task(rq);
1da177e4
LT
4032
4033 /*
4034 * Since we are going to call schedule() anyway, there's
4035 * no need to preempt or enable interrupts:
4036 */
4037 __release(rq->lock);
8a25d5de 4038 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4039 do_raw_spin_unlock(&rq->lock);
ba74c144 4040 sched_preempt_enable_no_resched();
1da177e4
LT
4041
4042 schedule();
4043
4044 return 0;
4045}
4046
e7b38404 4047static void __cond_resched(void)
1da177e4 4048{
bdb43806 4049 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 4050 __schedule();
bdb43806 4051 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4
LT
4052}
4053
02b67cc3 4054int __sched _cond_resched(void)
1da177e4 4055{
d86ee480 4056 if (should_resched()) {
1da177e4
LT
4057 __cond_resched();
4058 return 1;
4059 }
4060 return 0;
4061}
02b67cc3 4062EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4063
4064/*
613afbf8 4065 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4066 * call schedule, and on return reacquire the lock.
4067 *
41a2d6cf 4068 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4069 * operations here to prevent schedule() from being called twice (once via
4070 * spin_unlock(), once by hand).
4071 */
613afbf8 4072int __cond_resched_lock(spinlock_t *lock)
1da177e4 4073{
d86ee480 4074 int resched = should_resched();
6df3cecb
JK
4075 int ret = 0;
4076
f607c668
PZ
4077 lockdep_assert_held(lock);
4078
95c354fe 4079 if (spin_needbreak(lock) || resched) {
1da177e4 4080 spin_unlock(lock);
d86ee480 4081 if (resched)
95c354fe
NP
4082 __cond_resched();
4083 else
4084 cpu_relax();
6df3cecb 4085 ret = 1;
1da177e4 4086 spin_lock(lock);
1da177e4 4087 }
6df3cecb 4088 return ret;
1da177e4 4089}
613afbf8 4090EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4091
613afbf8 4092int __sched __cond_resched_softirq(void)
1da177e4
LT
4093{
4094 BUG_ON(!in_softirq());
4095
d86ee480 4096 if (should_resched()) {
98d82567 4097 local_bh_enable();
1da177e4
LT
4098 __cond_resched();
4099 local_bh_disable();
4100 return 1;
4101 }
4102 return 0;
4103}
613afbf8 4104EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4105
1da177e4
LT
4106/**
4107 * yield - yield the current processor to other threads.
4108 *
8e3fabfd
PZ
4109 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4110 *
4111 * The scheduler is at all times free to pick the calling task as the most
4112 * eligible task to run, if removing the yield() call from your code breaks
4113 * it, its already broken.
4114 *
4115 * Typical broken usage is:
4116 *
4117 * while (!event)
4118 * yield();
4119 *
4120 * where one assumes that yield() will let 'the other' process run that will
4121 * make event true. If the current task is a SCHED_FIFO task that will never
4122 * happen. Never use yield() as a progress guarantee!!
4123 *
4124 * If you want to use yield() to wait for something, use wait_event().
4125 * If you want to use yield() to be 'nice' for others, use cond_resched().
4126 * If you still want to use yield(), do not!
1da177e4
LT
4127 */
4128void __sched yield(void)
4129{
4130 set_current_state(TASK_RUNNING);
4131 sys_sched_yield();
4132}
1da177e4
LT
4133EXPORT_SYMBOL(yield);
4134
d95f4122
MG
4135/**
4136 * yield_to - yield the current processor to another thread in
4137 * your thread group, or accelerate that thread toward the
4138 * processor it's on.
16addf95
RD
4139 * @p: target task
4140 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4141 *
4142 * It's the caller's job to ensure that the target task struct
4143 * can't go away on us before we can do any checks.
4144 *
e69f6186 4145 * Return:
7b270f60
PZ
4146 * true (>0) if we indeed boosted the target task.
4147 * false (0) if we failed to boost the target.
4148 * -ESRCH if there's no task to yield to.
d95f4122
MG
4149 */
4150bool __sched yield_to(struct task_struct *p, bool preempt)
4151{
4152 struct task_struct *curr = current;
4153 struct rq *rq, *p_rq;
4154 unsigned long flags;
c3c18640 4155 int yielded = 0;
d95f4122
MG
4156
4157 local_irq_save(flags);
4158 rq = this_rq();
4159
4160again:
4161 p_rq = task_rq(p);
7b270f60
PZ
4162 /*
4163 * If we're the only runnable task on the rq and target rq also
4164 * has only one task, there's absolutely no point in yielding.
4165 */
4166 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4167 yielded = -ESRCH;
4168 goto out_irq;
4169 }
4170
d95f4122 4171 double_rq_lock(rq, p_rq);
39e24d8f 4172 if (task_rq(p) != p_rq) {
d95f4122
MG
4173 double_rq_unlock(rq, p_rq);
4174 goto again;
4175 }
4176
4177 if (!curr->sched_class->yield_to_task)
7b270f60 4178 goto out_unlock;
d95f4122
MG
4179
4180 if (curr->sched_class != p->sched_class)
7b270f60 4181 goto out_unlock;
d95f4122
MG
4182
4183 if (task_running(p_rq, p) || p->state)
7b270f60 4184 goto out_unlock;
d95f4122
MG
4185
4186 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4187 if (yielded) {
d95f4122 4188 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4189 /*
4190 * Make p's CPU reschedule; pick_next_entity takes care of
4191 * fairness.
4192 */
4193 if (preempt && rq != p_rq)
4194 resched_task(p_rq->curr);
4195 }
d95f4122 4196
7b270f60 4197out_unlock:
d95f4122 4198 double_rq_unlock(rq, p_rq);
7b270f60 4199out_irq:
d95f4122
MG
4200 local_irq_restore(flags);
4201
7b270f60 4202 if (yielded > 0)
d95f4122
MG
4203 schedule();
4204
4205 return yielded;
4206}
4207EXPORT_SYMBOL_GPL(yield_to);
4208
1da177e4 4209/*
41a2d6cf 4210 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4211 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
4212 */
4213void __sched io_schedule(void)
4214{
54d35f29 4215 struct rq *rq = raw_rq();
1da177e4 4216
0ff92245 4217 delayacct_blkio_start();
1da177e4 4218 atomic_inc(&rq->nr_iowait);
73c10101 4219 blk_flush_plug(current);
8f0dfc34 4220 current->in_iowait = 1;
1da177e4 4221 schedule();
8f0dfc34 4222 current->in_iowait = 0;
1da177e4 4223 atomic_dec(&rq->nr_iowait);
0ff92245 4224 delayacct_blkio_end();
1da177e4 4225}
1da177e4
LT
4226EXPORT_SYMBOL(io_schedule);
4227
4228long __sched io_schedule_timeout(long timeout)
4229{
54d35f29 4230 struct rq *rq = raw_rq();
1da177e4
LT
4231 long ret;
4232
0ff92245 4233 delayacct_blkio_start();
1da177e4 4234 atomic_inc(&rq->nr_iowait);
73c10101 4235 blk_flush_plug(current);
8f0dfc34 4236 current->in_iowait = 1;
1da177e4 4237 ret = schedule_timeout(timeout);
8f0dfc34 4238 current->in_iowait = 0;
1da177e4 4239 atomic_dec(&rq->nr_iowait);
0ff92245 4240 delayacct_blkio_end();
1da177e4
LT
4241 return ret;
4242}
4243
4244/**
4245 * sys_sched_get_priority_max - return maximum RT priority.
4246 * @policy: scheduling class.
4247 *
e69f6186
YB
4248 * Return: On success, this syscall returns the maximum
4249 * rt_priority that can be used by a given scheduling class.
4250 * On failure, a negative error code is returned.
1da177e4 4251 */
5add95d4 4252SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4253{
4254 int ret = -EINVAL;
4255
4256 switch (policy) {
4257 case SCHED_FIFO:
4258 case SCHED_RR:
4259 ret = MAX_USER_RT_PRIO-1;
4260 break;
aab03e05 4261 case SCHED_DEADLINE:
1da177e4 4262 case SCHED_NORMAL:
b0a9499c 4263 case SCHED_BATCH:
dd41f596 4264 case SCHED_IDLE:
1da177e4
LT
4265 ret = 0;
4266 break;
4267 }
4268 return ret;
4269}
4270
4271/**
4272 * sys_sched_get_priority_min - return minimum RT priority.
4273 * @policy: scheduling class.
4274 *
e69f6186
YB
4275 * Return: On success, this syscall returns the minimum
4276 * rt_priority that can be used by a given scheduling class.
4277 * On failure, a negative error code is returned.
1da177e4 4278 */
5add95d4 4279SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4280{
4281 int ret = -EINVAL;
4282
4283 switch (policy) {
4284 case SCHED_FIFO:
4285 case SCHED_RR:
4286 ret = 1;
4287 break;
aab03e05 4288 case SCHED_DEADLINE:
1da177e4 4289 case SCHED_NORMAL:
b0a9499c 4290 case SCHED_BATCH:
dd41f596 4291 case SCHED_IDLE:
1da177e4
LT
4292 ret = 0;
4293 }
4294 return ret;
4295}
4296
4297/**
4298 * sys_sched_rr_get_interval - return the default timeslice of a process.
4299 * @pid: pid of the process.
4300 * @interval: userspace pointer to the timeslice value.
4301 *
4302 * this syscall writes the default timeslice value of a given process
4303 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
4304 *
4305 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4306 * an error code.
1da177e4 4307 */
17da2bd9 4308SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4309 struct timespec __user *, interval)
1da177e4 4310{
36c8b586 4311 struct task_struct *p;
a4ec24b4 4312 unsigned int time_slice;
dba091b9
TG
4313 unsigned long flags;
4314 struct rq *rq;
3a5c359a 4315 int retval;
1da177e4 4316 struct timespec t;
1da177e4
LT
4317
4318 if (pid < 0)
3a5c359a 4319 return -EINVAL;
1da177e4
LT
4320
4321 retval = -ESRCH;
1a551ae7 4322 rcu_read_lock();
1da177e4
LT
4323 p = find_process_by_pid(pid);
4324 if (!p)
4325 goto out_unlock;
4326
4327 retval = security_task_getscheduler(p);
4328 if (retval)
4329 goto out_unlock;
4330
dba091b9 4331 rq = task_rq_lock(p, &flags);
a57beec5
PZ
4332 time_slice = 0;
4333 if (p->sched_class->get_rr_interval)
4334 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4335 task_rq_unlock(rq, p, &flags);
a4ec24b4 4336
1a551ae7 4337 rcu_read_unlock();
a4ec24b4 4338 jiffies_to_timespec(time_slice, &t);
1da177e4 4339 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4340 return retval;
3a5c359a 4341
1da177e4 4342out_unlock:
1a551ae7 4343 rcu_read_unlock();
1da177e4
LT
4344 return retval;
4345}
4346
7c731e0a 4347static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4348
82a1fcb9 4349void sched_show_task(struct task_struct *p)
1da177e4 4350{
1da177e4 4351 unsigned long free = 0;
4e79752c 4352 int ppid;
36c8b586 4353 unsigned state;
1da177e4 4354
1da177e4 4355 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 4356 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4357 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4358#if BITS_PER_LONG == 32
1da177e4 4359 if (state == TASK_RUNNING)
3df0fc5b 4360 printk(KERN_CONT " running ");
1da177e4 4361 else
3df0fc5b 4362 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4363#else
4364 if (state == TASK_RUNNING)
3df0fc5b 4365 printk(KERN_CONT " running task ");
1da177e4 4366 else
3df0fc5b 4367 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4368#endif
4369#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4370 free = stack_not_used(p);
1da177e4 4371#endif
4e79752c
PM
4372 rcu_read_lock();
4373 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4374 rcu_read_unlock();
3df0fc5b 4375 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 4376 task_pid_nr(p), ppid,
aa47b7e0 4377 (unsigned long)task_thread_info(p)->flags);
1da177e4 4378
3d1cb205 4379 print_worker_info(KERN_INFO, p);
5fb5e6de 4380 show_stack(p, NULL);
1da177e4
LT
4381}
4382
e59e2ae2 4383void show_state_filter(unsigned long state_filter)
1da177e4 4384{
36c8b586 4385 struct task_struct *g, *p;
1da177e4 4386
4bd77321 4387#if BITS_PER_LONG == 32
3df0fc5b
PZ
4388 printk(KERN_INFO
4389 " task PC stack pid father\n");
1da177e4 4390#else
3df0fc5b
PZ
4391 printk(KERN_INFO
4392 " task PC stack pid father\n");
1da177e4 4393#endif
510f5acc 4394 rcu_read_lock();
1da177e4
LT
4395 do_each_thread(g, p) {
4396 /*
4397 * reset the NMI-timeout, listing all files on a slow
25985edc 4398 * console might take a lot of time:
1da177e4
LT
4399 */
4400 touch_nmi_watchdog();
39bc89fd 4401 if (!state_filter || (p->state & state_filter))
82a1fcb9 4402 sched_show_task(p);
1da177e4
LT
4403 } while_each_thread(g, p);
4404
04c9167f
JF
4405 touch_all_softlockup_watchdogs();
4406
dd41f596
IM
4407#ifdef CONFIG_SCHED_DEBUG
4408 sysrq_sched_debug_show();
4409#endif
510f5acc 4410 rcu_read_unlock();
e59e2ae2
IM
4411 /*
4412 * Only show locks if all tasks are dumped:
4413 */
93335a21 4414 if (!state_filter)
e59e2ae2 4415 debug_show_all_locks();
1da177e4
LT
4416}
4417
0db0628d 4418void init_idle_bootup_task(struct task_struct *idle)
1df21055 4419{
dd41f596 4420 idle->sched_class = &idle_sched_class;
1df21055
IM
4421}
4422
f340c0d1
IM
4423/**
4424 * init_idle - set up an idle thread for a given CPU
4425 * @idle: task in question
4426 * @cpu: cpu the idle task belongs to
4427 *
4428 * NOTE: this function does not set the idle thread's NEED_RESCHED
4429 * flag, to make booting more robust.
4430 */
0db0628d 4431void init_idle(struct task_struct *idle, int cpu)
1da177e4 4432{
70b97a7f 4433 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4434 unsigned long flags;
4435
05fa785c 4436 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 4437
5e1576ed 4438 __sched_fork(0, idle);
06b83b5f 4439 idle->state = TASK_RUNNING;
dd41f596
IM
4440 idle->se.exec_start = sched_clock();
4441
1e1b6c51 4442 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4443 /*
4444 * We're having a chicken and egg problem, even though we are
4445 * holding rq->lock, the cpu isn't yet set to this cpu so the
4446 * lockdep check in task_group() will fail.
4447 *
4448 * Similar case to sched_fork(). / Alternatively we could
4449 * use task_rq_lock() here and obtain the other rq->lock.
4450 *
4451 * Silence PROVE_RCU
4452 */
4453 rcu_read_lock();
dd41f596 4454 __set_task_cpu(idle, cpu);
6506cf6c 4455 rcu_read_unlock();
1da177e4 4456
1da177e4 4457 rq->curr = rq->idle = idle;
77177856 4458 idle->on_rq = 1;
3ca7a440
PZ
4459#if defined(CONFIG_SMP)
4460 idle->on_cpu = 1;
4866cde0 4461#endif
05fa785c 4462 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
4463
4464 /* Set the preempt count _outside_ the spinlocks! */
01028747 4465 init_idle_preempt_count(idle, cpu);
55cd5340 4466
dd41f596
IM
4467 /*
4468 * The idle tasks have their own, simple scheduling class:
4469 */
4470 idle->sched_class = &idle_sched_class;
868baf07 4471 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 4472 vtime_init_idle(idle, cpu);
f1c6f1a7
CE
4473#if defined(CONFIG_SMP)
4474 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4475#endif
19978ca6
IM
4476}
4477
1da177e4 4478#ifdef CONFIG_SMP
1e1b6c51
KM
4479void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4480{
4481 if (p->sched_class && p->sched_class->set_cpus_allowed)
4482 p->sched_class->set_cpus_allowed(p, new_mask);
4939602a
PZ
4483
4484 cpumask_copy(&p->cpus_allowed, new_mask);
29baa747 4485 p->nr_cpus_allowed = cpumask_weight(new_mask);
1e1b6c51
KM
4486}
4487
1da177e4
LT
4488/*
4489 * This is how migration works:
4490 *
969c7921
TH
4491 * 1) we invoke migration_cpu_stop() on the target CPU using
4492 * stop_one_cpu().
4493 * 2) stopper starts to run (implicitly forcing the migrated thread
4494 * off the CPU)
4495 * 3) it checks whether the migrated task is still in the wrong runqueue.
4496 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 4497 * it and puts it into the right queue.
969c7921
TH
4498 * 5) stopper completes and stop_one_cpu() returns and the migration
4499 * is done.
1da177e4
LT
4500 */
4501
4502/*
4503 * Change a given task's CPU affinity. Migrate the thread to a
4504 * proper CPU and schedule it away if the CPU it's executing on
4505 * is removed from the allowed bitmask.
4506 *
4507 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 4508 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
4509 * call is not atomic; no spinlocks may be held.
4510 */
96f874e2 4511int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
4512{
4513 unsigned long flags;
70b97a7f 4514 struct rq *rq;
969c7921 4515 unsigned int dest_cpu;
48f24c4d 4516 int ret = 0;
1da177e4
LT
4517
4518 rq = task_rq_lock(p, &flags);
e2912009 4519
db44fc01
YZ
4520 if (cpumask_equal(&p->cpus_allowed, new_mask))
4521 goto out;
4522
6ad4c188 4523 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
4524 ret = -EINVAL;
4525 goto out;
4526 }
4527
1e1b6c51 4528 do_set_cpus_allowed(p, new_mask);
73fe6aae 4529
1da177e4 4530 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 4531 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
4532 goto out;
4533
969c7921 4534 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
bd8e7dde 4535 if (p->on_rq) {
969c7921 4536 struct migration_arg arg = { p, dest_cpu };
1da177e4 4537 /* Need help from migration thread: drop lock and wait. */
0122ec5b 4538 task_rq_unlock(rq, p, &flags);
969c7921 4539 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
4540 tlb_migrate_finish(p->mm);
4541 return 0;
4542 }
4543out:
0122ec5b 4544 task_rq_unlock(rq, p, &flags);
48f24c4d 4545
1da177e4
LT
4546 return ret;
4547}
cd8ba7cd 4548EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
4549
4550/*
41a2d6cf 4551 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
4552 * this because either it can't run here any more (set_cpus_allowed()
4553 * away from this CPU, or CPU going down), or because we're
4554 * attempting to rebalance this task on exec (sched_exec).
4555 *
4556 * So we race with normal scheduler movements, but that's OK, as long
4557 * as the task is no longer on this CPU.
efc30814
KK
4558 *
4559 * Returns non-zero if task was successfully migrated.
1da177e4 4560 */
efc30814 4561static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4562{
70b97a7f 4563 struct rq *rq_dest, *rq_src;
e2912009 4564 int ret = 0;
1da177e4 4565
e761b772 4566 if (unlikely(!cpu_active(dest_cpu)))
efc30814 4567 return ret;
1da177e4
LT
4568
4569 rq_src = cpu_rq(src_cpu);
4570 rq_dest = cpu_rq(dest_cpu);
4571
0122ec5b 4572 raw_spin_lock(&p->pi_lock);
1da177e4
LT
4573 double_rq_lock(rq_src, rq_dest);
4574 /* Already moved. */
4575 if (task_cpu(p) != src_cpu)
b1e38734 4576 goto done;
1da177e4 4577 /* Affinity changed (again). */
fa17b507 4578 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
b1e38734 4579 goto fail;
1da177e4 4580
e2912009
PZ
4581 /*
4582 * If we're not on a rq, the next wake-up will ensure we're
4583 * placed properly.
4584 */
fd2f4419 4585 if (p->on_rq) {
4ca9b72b 4586 dequeue_task(rq_src, p, 0);
e2912009 4587 set_task_cpu(p, dest_cpu);
4ca9b72b 4588 enqueue_task(rq_dest, p, 0);
15afe09b 4589 check_preempt_curr(rq_dest, p, 0);
1da177e4 4590 }
b1e38734 4591done:
efc30814 4592 ret = 1;
b1e38734 4593fail:
1da177e4 4594 double_rq_unlock(rq_src, rq_dest);
0122ec5b 4595 raw_spin_unlock(&p->pi_lock);
efc30814 4596 return ret;
1da177e4
LT
4597}
4598
e6628d5b
MG
4599#ifdef CONFIG_NUMA_BALANCING
4600/* Migrate current task p to target_cpu */
4601int migrate_task_to(struct task_struct *p, int target_cpu)
4602{
4603 struct migration_arg arg = { p, target_cpu };
4604 int curr_cpu = task_cpu(p);
4605
4606 if (curr_cpu == target_cpu)
4607 return 0;
4608
4609 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4610 return -EINVAL;
4611
4612 /* TODO: This is not properly updating schedstats */
4613
286549dc 4614 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
4615 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4616}
0ec8aa00
PZ
4617
4618/*
4619 * Requeue a task on a given node and accurately track the number of NUMA
4620 * tasks on the runqueues
4621 */
4622void sched_setnuma(struct task_struct *p, int nid)
4623{
4624 struct rq *rq;
4625 unsigned long flags;
4626 bool on_rq, running;
4627
4628 rq = task_rq_lock(p, &flags);
4629 on_rq = p->on_rq;
4630 running = task_current(rq, p);
4631
4632 if (on_rq)
4633 dequeue_task(rq, p, 0);
4634 if (running)
4635 p->sched_class->put_prev_task(rq, p);
4636
4637 p->numa_preferred_nid = nid;
0ec8aa00
PZ
4638
4639 if (running)
4640 p->sched_class->set_curr_task(rq);
4641 if (on_rq)
4642 enqueue_task(rq, p, 0);
4643 task_rq_unlock(rq, p, &flags);
4644}
e6628d5b
MG
4645#endif
4646
1da177e4 4647/*
969c7921
TH
4648 * migration_cpu_stop - this will be executed by a highprio stopper thread
4649 * and performs thread migration by bumping thread off CPU then
4650 * 'pushing' onto another runqueue.
1da177e4 4651 */
969c7921 4652static int migration_cpu_stop(void *data)
1da177e4 4653{
969c7921 4654 struct migration_arg *arg = data;
f7b4cddc 4655
969c7921
TH
4656 /*
4657 * The original target cpu might have gone down and we might
4658 * be on another cpu but it doesn't matter.
4659 */
f7b4cddc 4660 local_irq_disable();
969c7921 4661 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 4662 local_irq_enable();
1da177e4 4663 return 0;
f7b4cddc
ON
4664}
4665
1da177e4 4666#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 4667
054b9108 4668/*
48c5ccae
PZ
4669 * Ensures that the idle task is using init_mm right before its cpu goes
4670 * offline.
054b9108 4671 */
48c5ccae 4672void idle_task_exit(void)
1da177e4 4673{
48c5ccae 4674 struct mm_struct *mm = current->active_mm;
e76bd8d9 4675
48c5ccae 4676 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 4677
48c5ccae
PZ
4678 if (mm != &init_mm)
4679 switch_mm(mm, &init_mm, current);
4680 mmdrop(mm);
1da177e4
LT
4681}
4682
4683/*
5d180232
PZ
4684 * Since this CPU is going 'away' for a while, fold any nr_active delta
4685 * we might have. Assumes we're called after migrate_tasks() so that the
4686 * nr_active count is stable.
4687 *
4688 * Also see the comment "Global load-average calculations".
1da177e4 4689 */
5d180232 4690static void calc_load_migrate(struct rq *rq)
1da177e4 4691{
5d180232
PZ
4692 long delta = calc_load_fold_active(rq);
4693 if (delta)
4694 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
4695}
4696
3f1d2a31
PZ
4697static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4698{
4699}
4700
4701static const struct sched_class fake_sched_class = {
4702 .put_prev_task = put_prev_task_fake,
4703};
4704
4705static struct task_struct fake_task = {
4706 /*
4707 * Avoid pull_{rt,dl}_task()
4708 */
4709 .prio = MAX_PRIO + 1,
4710 .sched_class = &fake_sched_class,
4711};
4712
48f24c4d 4713/*
48c5ccae
PZ
4714 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4715 * try_to_wake_up()->select_task_rq().
4716 *
4717 * Called with rq->lock held even though we'er in stop_machine() and
4718 * there's no concurrency possible, we hold the required locks anyway
4719 * because of lock validation efforts.
1da177e4 4720 */
48c5ccae 4721static void migrate_tasks(unsigned int dead_cpu)
1da177e4 4722{
70b97a7f 4723 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
4724 struct task_struct *next, *stop = rq->stop;
4725 int dest_cpu;
1da177e4
LT
4726
4727 /*
48c5ccae
PZ
4728 * Fudge the rq selection such that the below task selection loop
4729 * doesn't get stuck on the currently eligible stop task.
4730 *
4731 * We're currently inside stop_machine() and the rq is either stuck
4732 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4733 * either way we should never end up calling schedule() until we're
4734 * done here.
1da177e4 4735 */
48c5ccae 4736 rq->stop = NULL;
48f24c4d 4737
77bd3970
FW
4738 /*
4739 * put_prev_task() and pick_next_task() sched
4740 * class method both need to have an up-to-date
4741 * value of rq->clock[_task]
4742 */
4743 update_rq_clock(rq);
4744
dd41f596 4745 for ( ; ; ) {
48c5ccae
PZ
4746 /*
4747 * There's this thread running, bail when that's the only
4748 * remaining thread.
4749 */
4750 if (rq->nr_running == 1)
dd41f596 4751 break;
48c5ccae 4752
3f1d2a31 4753 next = pick_next_task(rq, &fake_task);
48c5ccae 4754 BUG_ON(!next);
79c53799 4755 next->sched_class->put_prev_task(rq, next);
e692ab53 4756
48c5ccae
PZ
4757 /* Find suitable destination for @next, with force if needed. */
4758 dest_cpu = select_fallback_rq(dead_cpu, next);
4759 raw_spin_unlock(&rq->lock);
4760
4761 __migrate_task(next, dead_cpu, dest_cpu);
4762
4763 raw_spin_lock(&rq->lock);
1da177e4 4764 }
dce48a84 4765
48c5ccae 4766 rq->stop = stop;
dce48a84 4767}
48c5ccae 4768
1da177e4
LT
4769#endif /* CONFIG_HOTPLUG_CPU */
4770
e692ab53
NP
4771#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4772
4773static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
4774 {
4775 .procname = "sched_domain",
c57baf1e 4776 .mode = 0555,
e0361851 4777 },
56992309 4778 {}
e692ab53
NP
4779};
4780
4781static struct ctl_table sd_ctl_root[] = {
e0361851
AD
4782 {
4783 .procname = "kernel",
c57baf1e 4784 .mode = 0555,
e0361851
AD
4785 .child = sd_ctl_dir,
4786 },
56992309 4787 {}
e692ab53
NP
4788};
4789
4790static struct ctl_table *sd_alloc_ctl_entry(int n)
4791{
4792 struct ctl_table *entry =
5cf9f062 4793 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 4794
e692ab53
NP
4795 return entry;
4796}
4797
6382bc90
MM
4798static void sd_free_ctl_entry(struct ctl_table **tablep)
4799{
cd790076 4800 struct ctl_table *entry;
6382bc90 4801
cd790076
MM
4802 /*
4803 * In the intermediate directories, both the child directory and
4804 * procname are dynamically allocated and could fail but the mode
41a2d6cf 4805 * will always be set. In the lowest directory the names are
cd790076
MM
4806 * static strings and all have proc handlers.
4807 */
4808 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
4809 if (entry->child)
4810 sd_free_ctl_entry(&entry->child);
cd790076
MM
4811 if (entry->proc_handler == NULL)
4812 kfree(entry->procname);
4813 }
6382bc90
MM
4814
4815 kfree(*tablep);
4816 *tablep = NULL;
4817}
4818
201c373e 4819static int min_load_idx = 0;
fd9b86d3 4820static int max_load_idx = CPU_LOAD_IDX_MAX-1;
201c373e 4821
e692ab53 4822static void
e0361851 4823set_table_entry(struct ctl_table *entry,
e692ab53 4824 const char *procname, void *data, int maxlen,
201c373e
NK
4825 umode_t mode, proc_handler *proc_handler,
4826 bool load_idx)
e692ab53 4827{
e692ab53
NP
4828 entry->procname = procname;
4829 entry->data = data;
4830 entry->maxlen = maxlen;
4831 entry->mode = mode;
4832 entry->proc_handler = proc_handler;
201c373e
NK
4833
4834 if (load_idx) {
4835 entry->extra1 = &min_load_idx;
4836 entry->extra2 = &max_load_idx;
4837 }
e692ab53
NP
4838}
4839
4840static struct ctl_table *
4841sd_alloc_ctl_domain_table(struct sched_domain *sd)
4842{
37e6bae8 4843 struct ctl_table *table = sd_alloc_ctl_entry(14);
e692ab53 4844
ad1cdc1d
MM
4845 if (table == NULL)
4846 return NULL;
4847
e0361851 4848 set_table_entry(&table[0], "min_interval", &sd->min_interval,
201c373e 4849 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4850 set_table_entry(&table[1], "max_interval", &sd->max_interval,
201c373e 4851 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4852 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
201c373e 4853 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4854 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
201c373e 4855 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4856 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
201c373e 4857 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4858 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
201c373e 4859 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4860 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
201c373e 4861 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4862 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
201c373e 4863 sizeof(int), 0644, proc_dointvec_minmax, false);
e0361851 4864 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
201c373e 4865 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4866 set_table_entry(&table[9], "cache_nice_tries",
e692ab53 4867 &sd->cache_nice_tries,
201c373e 4868 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4869 set_table_entry(&table[10], "flags", &sd->flags,
201c373e 4870 sizeof(int), 0644, proc_dointvec_minmax, false);
37e6bae8
AS
4871 set_table_entry(&table[11], "max_newidle_lb_cost",
4872 &sd->max_newidle_lb_cost,
4873 sizeof(long), 0644, proc_doulongvec_minmax, false);
4874 set_table_entry(&table[12], "name", sd->name,
201c373e 4875 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
37e6bae8 4876 /* &table[13] is terminator */
e692ab53
NP
4877
4878 return table;
4879}
4880
be7002e6 4881static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
4882{
4883 struct ctl_table *entry, *table;
4884 struct sched_domain *sd;
4885 int domain_num = 0, i;
4886 char buf[32];
4887
4888 for_each_domain(cpu, sd)
4889 domain_num++;
4890 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
4891 if (table == NULL)
4892 return NULL;
e692ab53
NP
4893
4894 i = 0;
4895 for_each_domain(cpu, sd) {
4896 snprintf(buf, 32, "domain%d", i);
e692ab53 4897 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 4898 entry->mode = 0555;
e692ab53
NP
4899 entry->child = sd_alloc_ctl_domain_table(sd);
4900 entry++;
4901 i++;
4902 }
4903 return table;
4904}
4905
4906static struct ctl_table_header *sd_sysctl_header;
6382bc90 4907static void register_sched_domain_sysctl(void)
e692ab53 4908{
6ad4c188 4909 int i, cpu_num = num_possible_cpus();
e692ab53
NP
4910 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4911 char buf[32];
4912
7378547f
MM
4913 WARN_ON(sd_ctl_dir[0].child);
4914 sd_ctl_dir[0].child = entry;
4915
ad1cdc1d
MM
4916 if (entry == NULL)
4917 return;
4918
6ad4c188 4919 for_each_possible_cpu(i) {
e692ab53 4920 snprintf(buf, 32, "cpu%d", i);
e692ab53 4921 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 4922 entry->mode = 0555;
e692ab53 4923 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 4924 entry++;
e692ab53 4925 }
7378547f
MM
4926
4927 WARN_ON(sd_sysctl_header);
e692ab53
NP
4928 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4929}
6382bc90 4930
7378547f 4931/* may be called multiple times per register */
6382bc90
MM
4932static void unregister_sched_domain_sysctl(void)
4933{
7378547f
MM
4934 if (sd_sysctl_header)
4935 unregister_sysctl_table(sd_sysctl_header);
6382bc90 4936 sd_sysctl_header = NULL;
7378547f
MM
4937 if (sd_ctl_dir[0].child)
4938 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 4939}
e692ab53 4940#else
6382bc90
MM
4941static void register_sched_domain_sysctl(void)
4942{
4943}
4944static void unregister_sched_domain_sysctl(void)
e692ab53
NP
4945{
4946}
4947#endif
4948
1f11eb6a
GH
4949static void set_rq_online(struct rq *rq)
4950{
4951 if (!rq->online) {
4952 const struct sched_class *class;
4953
c6c4927b 4954 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
4955 rq->online = 1;
4956
4957 for_each_class(class) {
4958 if (class->rq_online)
4959 class->rq_online(rq);
4960 }
4961 }
4962}
4963
4964static void set_rq_offline(struct rq *rq)
4965{
4966 if (rq->online) {
4967 const struct sched_class *class;
4968
4969 for_each_class(class) {
4970 if (class->rq_offline)
4971 class->rq_offline(rq);
4972 }
4973
c6c4927b 4974 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
4975 rq->online = 0;
4976 }
4977}
4978
1da177e4
LT
4979/*
4980 * migration_call - callback that gets triggered when a CPU is added.
4981 * Here we can start up the necessary migration thread for the new CPU.
4982 */
0db0628d 4983static int
48f24c4d 4984migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 4985{
48f24c4d 4986 int cpu = (long)hcpu;
1da177e4 4987 unsigned long flags;
969c7921 4988 struct rq *rq = cpu_rq(cpu);
1da177e4 4989
48c5ccae 4990 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 4991
1da177e4 4992 case CPU_UP_PREPARE:
a468d389 4993 rq->calc_load_update = calc_load_update;
1da177e4 4994 break;
48f24c4d 4995
1da177e4 4996 case CPU_ONLINE:
1f94ef59 4997 /* Update our root-domain */
05fa785c 4998 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 4999 if (rq->rd) {
c6c4927b 5000 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5001
5002 set_rq_online(rq);
1f94ef59 5003 }
05fa785c 5004 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5005 break;
48f24c4d 5006
1da177e4 5007#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5008 case CPU_DYING:
317f3941 5009 sched_ttwu_pending();
57d885fe 5010 /* Update our root-domain */
05fa785c 5011 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5012 if (rq->rd) {
c6c4927b 5013 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5014 set_rq_offline(rq);
57d885fe 5015 }
48c5ccae
PZ
5016 migrate_tasks(cpu);
5017 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5018 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 5019 break;
48c5ccae 5020
5d180232 5021 case CPU_DEAD:
f319da0c 5022 calc_load_migrate(rq);
57d885fe 5023 break;
1da177e4
LT
5024#endif
5025 }
49c022e6
PZ
5026
5027 update_max_interval();
5028
1da177e4
LT
5029 return NOTIFY_OK;
5030}
5031
f38b0820
PM
5032/*
5033 * Register at high priority so that task migration (migrate_all_tasks)
5034 * happens before everything else. This has to be lower priority than
cdd6c482 5035 * the notifier in the perf_event subsystem, though.
1da177e4 5036 */
0db0628d 5037static struct notifier_block migration_notifier = {
1da177e4 5038 .notifier_call = migration_call,
50a323b7 5039 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5040};
5041
0db0628d 5042static int sched_cpu_active(struct notifier_block *nfb,
3a101d05
TH
5043 unsigned long action, void *hcpu)
5044{
5045 switch (action & ~CPU_TASKS_FROZEN) {
5fbd036b 5046 case CPU_STARTING:
3a101d05
TH
5047 case CPU_DOWN_FAILED:
5048 set_cpu_active((long)hcpu, true);
5049 return NOTIFY_OK;
5050 default:
5051 return NOTIFY_DONE;
5052 }
5053}
5054
0db0628d 5055static int sched_cpu_inactive(struct notifier_block *nfb,
3a101d05
TH
5056 unsigned long action, void *hcpu)
5057{
de212f18
PZ
5058 unsigned long flags;
5059 long cpu = (long)hcpu;
5060
3a101d05
TH
5061 switch (action & ~CPU_TASKS_FROZEN) {
5062 case CPU_DOWN_PREPARE:
de212f18
PZ
5063 set_cpu_active(cpu, false);
5064
5065 /* explicitly allow suspend */
5066 if (!(action & CPU_TASKS_FROZEN)) {
5067 struct dl_bw *dl_b = dl_bw_of(cpu);
5068 bool overflow;
5069 int cpus;
5070
5071 raw_spin_lock_irqsave(&dl_b->lock, flags);
5072 cpus = dl_bw_cpus(cpu);
5073 overflow = __dl_overflow(dl_b, cpus, 0, 0);
5074 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5075
5076 if (overflow)
5077 return notifier_from_errno(-EBUSY);
5078 }
3a101d05 5079 return NOTIFY_OK;
3a101d05 5080 }
de212f18
PZ
5081
5082 return NOTIFY_DONE;
3a101d05
TH
5083}
5084
7babe8db 5085static int __init migration_init(void)
1da177e4
LT
5086{
5087 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5088 int err;
48f24c4d 5089
3a101d05 5090 /* Initialize migration for the boot CPU */
07dccf33
AM
5091 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5092 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5093 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5094 register_cpu_notifier(&migration_notifier);
7babe8db 5095
3a101d05
TH
5096 /* Register cpu active notifiers */
5097 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5098 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5099
a004cd42 5100 return 0;
1da177e4 5101}
7babe8db 5102early_initcall(migration_init);
1da177e4
LT
5103#endif
5104
5105#ifdef CONFIG_SMP
476f3534 5106
4cb98839
PZ
5107static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5108
3e9830dc 5109#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5110
d039ac60 5111static __read_mostly int sched_debug_enabled;
f6630114 5112
d039ac60 5113static int __init sched_debug_setup(char *str)
f6630114 5114{
d039ac60 5115 sched_debug_enabled = 1;
f6630114
MT
5116
5117 return 0;
5118}
d039ac60
PZ
5119early_param("sched_debug", sched_debug_setup);
5120
5121static inline bool sched_debug(void)
5122{
5123 return sched_debug_enabled;
5124}
f6630114 5125
7c16ec58 5126static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5127 struct cpumask *groupmask)
1da177e4 5128{
4dcf6aff 5129 struct sched_group *group = sd->groups;
434d53b0 5130 char str[256];
1da177e4 5131
968ea6d8 5132 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 5133 cpumask_clear(groupmask);
4dcf6aff
IM
5134
5135 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5136
5137 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5138 printk("does not load-balance\n");
4dcf6aff 5139 if (sd->parent)
3df0fc5b
PZ
5140 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5141 " has parent");
4dcf6aff 5142 return -1;
41c7ce9a
NP
5143 }
5144
3df0fc5b 5145 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 5146
758b2cdc 5147 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5148 printk(KERN_ERR "ERROR: domain->span does not contain "
5149 "CPU%d\n", cpu);
4dcf6aff 5150 }
758b2cdc 5151 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5152 printk(KERN_ERR "ERROR: domain->groups does not contain"
5153 " CPU%d\n", cpu);
4dcf6aff 5154 }
1da177e4 5155
4dcf6aff 5156 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5157 do {
4dcf6aff 5158 if (!group) {
3df0fc5b
PZ
5159 printk("\n");
5160 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5161 break;
5162 }
5163
c3decf0d
PZ
5164 /*
5165 * Even though we initialize ->power to something semi-sane,
5166 * we leave power_orig unset. This allows us to detect if
5167 * domain iteration is still funny without causing /0 traps.
5168 */
5169 if (!group->sgp->power_orig) {
3df0fc5b
PZ
5170 printk(KERN_CONT "\n");
5171 printk(KERN_ERR "ERROR: domain->cpu_power not "
5172 "set\n");
4dcf6aff
IM
5173 break;
5174 }
1da177e4 5175
758b2cdc 5176 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5177 printk(KERN_CONT "\n");
5178 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5179 break;
5180 }
1da177e4 5181
cb83b629
PZ
5182 if (!(sd->flags & SD_OVERLAP) &&
5183 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5184 printk(KERN_CONT "\n");
5185 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5186 break;
5187 }
1da177e4 5188
758b2cdc 5189 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5190
968ea6d8 5191 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 5192
3df0fc5b 5193 printk(KERN_CONT " %s", str);
9c3f75cb 5194 if (group->sgp->power != SCHED_POWER_SCALE) {
3df0fc5b 5195 printk(KERN_CONT " (cpu_power = %d)",
9c3f75cb 5196 group->sgp->power);
381512cf 5197 }
1da177e4 5198
4dcf6aff
IM
5199 group = group->next;
5200 } while (group != sd->groups);
3df0fc5b 5201 printk(KERN_CONT "\n");
1da177e4 5202
758b2cdc 5203 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5204 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5205
758b2cdc
RR
5206 if (sd->parent &&
5207 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5208 printk(KERN_ERR "ERROR: parent span is not a superset "
5209 "of domain->span\n");
4dcf6aff
IM
5210 return 0;
5211}
1da177e4 5212
4dcf6aff
IM
5213static void sched_domain_debug(struct sched_domain *sd, int cpu)
5214{
5215 int level = 0;
1da177e4 5216
d039ac60 5217 if (!sched_debug_enabled)
f6630114
MT
5218 return;
5219
4dcf6aff
IM
5220 if (!sd) {
5221 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5222 return;
5223 }
1da177e4 5224
4dcf6aff
IM
5225 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5226
5227 for (;;) {
4cb98839 5228 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5229 break;
1da177e4
LT
5230 level++;
5231 sd = sd->parent;
33859f7f 5232 if (!sd)
4dcf6aff
IM
5233 break;
5234 }
1da177e4 5235}
6d6bc0ad 5236#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5237# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5238static inline bool sched_debug(void)
5239{
5240 return false;
5241}
6d6bc0ad 5242#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5243
1a20ff27 5244static int sd_degenerate(struct sched_domain *sd)
245af2c7 5245{
758b2cdc 5246 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5247 return 1;
5248
5249 /* Following flags need at least 2 groups */
5250 if (sd->flags & (SD_LOAD_BALANCE |
5251 SD_BALANCE_NEWIDLE |
5252 SD_BALANCE_FORK |
89c4710e
SS
5253 SD_BALANCE_EXEC |
5254 SD_SHARE_CPUPOWER |
5255 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5256 if (sd->groups != sd->groups->next)
5257 return 0;
5258 }
5259
5260 /* Following flags don't use groups */
c88d5910 5261 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5262 return 0;
5263
5264 return 1;
5265}
5266
48f24c4d
IM
5267static int
5268sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5269{
5270 unsigned long cflags = sd->flags, pflags = parent->flags;
5271
5272 if (sd_degenerate(parent))
5273 return 1;
5274
758b2cdc 5275 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5276 return 0;
5277
245af2c7
SS
5278 /* Flags needing groups don't count if only 1 group in parent */
5279 if (parent->groups == parent->groups->next) {
5280 pflags &= ~(SD_LOAD_BALANCE |
5281 SD_BALANCE_NEWIDLE |
5282 SD_BALANCE_FORK |
89c4710e
SS
5283 SD_BALANCE_EXEC |
5284 SD_SHARE_CPUPOWER |
10866e62
PZ
5285 SD_SHARE_PKG_RESOURCES |
5286 SD_PREFER_SIBLING);
5436499e
KC
5287 if (nr_node_ids == 1)
5288 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5289 }
5290 if (~cflags & pflags)
5291 return 0;
5292
5293 return 1;
5294}
5295
dce840a0 5296static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5297{
dce840a0 5298 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5299
68e74568 5300 cpupri_cleanup(&rd->cpupri);
6bfd6d72 5301 cpudl_cleanup(&rd->cpudl);
1baca4ce 5302 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5303 free_cpumask_var(rd->rto_mask);
5304 free_cpumask_var(rd->online);
5305 free_cpumask_var(rd->span);
5306 kfree(rd);
5307}
5308
57d885fe
GH
5309static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5310{
a0490fa3 5311 struct root_domain *old_rd = NULL;
57d885fe 5312 unsigned long flags;
57d885fe 5313
05fa785c 5314 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5315
5316 if (rq->rd) {
a0490fa3 5317 old_rd = rq->rd;
57d885fe 5318
c6c4927b 5319 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5320 set_rq_offline(rq);
57d885fe 5321
c6c4927b 5322 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5323
a0490fa3 5324 /*
0515973f 5325 * If we dont want to free the old_rd yet then
a0490fa3
IM
5326 * set old_rd to NULL to skip the freeing later
5327 * in this function:
5328 */
5329 if (!atomic_dec_and_test(&old_rd->refcount))
5330 old_rd = NULL;
57d885fe
GH
5331 }
5332
5333 atomic_inc(&rd->refcount);
5334 rq->rd = rd;
5335
c6c4927b 5336 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5337 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5338 set_rq_online(rq);
57d885fe 5339
05fa785c 5340 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5341
5342 if (old_rd)
dce840a0 5343 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5344}
5345
68c38fc3 5346static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5347{
5348 memset(rd, 0, sizeof(*rd));
5349
68c38fc3 5350 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5351 goto out;
68c38fc3 5352 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5353 goto free_span;
1baca4ce 5354 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
c6c4927b 5355 goto free_online;
1baca4ce
JL
5356 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5357 goto free_dlo_mask;
6e0534f2 5358
332ac17e 5359 init_dl_bw(&rd->dl_bw);
6bfd6d72
JL
5360 if (cpudl_init(&rd->cpudl) != 0)
5361 goto free_dlo_mask;
332ac17e 5362
68c38fc3 5363 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5364 goto free_rto_mask;
c6c4927b 5365 return 0;
6e0534f2 5366
68e74568
RR
5367free_rto_mask:
5368 free_cpumask_var(rd->rto_mask);
1baca4ce
JL
5369free_dlo_mask:
5370 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5371free_online:
5372 free_cpumask_var(rd->online);
5373free_span:
5374 free_cpumask_var(rd->span);
0c910d28 5375out:
c6c4927b 5376 return -ENOMEM;
57d885fe
GH
5377}
5378
029632fb
PZ
5379/*
5380 * By default the system creates a single root-domain with all cpus as
5381 * members (mimicking the global state we have today).
5382 */
5383struct root_domain def_root_domain;
5384
57d885fe
GH
5385static void init_defrootdomain(void)
5386{
68c38fc3 5387 init_rootdomain(&def_root_domain);
c6c4927b 5388
57d885fe
GH
5389 atomic_set(&def_root_domain.refcount, 1);
5390}
5391
dc938520 5392static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5393{
5394 struct root_domain *rd;
5395
5396 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5397 if (!rd)
5398 return NULL;
5399
68c38fc3 5400 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5401 kfree(rd);
5402 return NULL;
5403 }
57d885fe
GH
5404
5405 return rd;
5406}
5407
e3589f6c
PZ
5408static void free_sched_groups(struct sched_group *sg, int free_sgp)
5409{
5410 struct sched_group *tmp, *first;
5411
5412 if (!sg)
5413 return;
5414
5415 first = sg;
5416 do {
5417 tmp = sg->next;
5418
5419 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5420 kfree(sg->sgp);
5421
5422 kfree(sg);
5423 sg = tmp;
5424 } while (sg != first);
5425}
5426
dce840a0
PZ
5427static void free_sched_domain(struct rcu_head *rcu)
5428{
5429 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5430
5431 /*
5432 * If its an overlapping domain it has private groups, iterate and
5433 * nuke them all.
5434 */
5435 if (sd->flags & SD_OVERLAP) {
5436 free_sched_groups(sd->groups, 1);
5437 } else if (atomic_dec_and_test(&sd->groups->ref)) {
9c3f75cb 5438 kfree(sd->groups->sgp);
dce840a0 5439 kfree(sd->groups);
9c3f75cb 5440 }
dce840a0
PZ
5441 kfree(sd);
5442}
5443
5444static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5445{
5446 call_rcu(&sd->rcu, free_sched_domain);
5447}
5448
5449static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5450{
5451 for (; sd; sd = sd->parent)
5452 destroy_sched_domain(sd, cpu);
5453}
5454
518cd623
PZ
5455/*
5456 * Keep a special pointer to the highest sched_domain that has
5457 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5458 * allows us to avoid some pointer chasing select_idle_sibling().
5459 *
5460 * Also keep a unique ID per domain (we use the first cpu number in
5461 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5462 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5463 */
5464DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5465DEFINE_PER_CPU(int, sd_llc_size);
518cd623 5466DEFINE_PER_CPU(int, sd_llc_id);
fb13c7ee 5467DEFINE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
5468DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5469DEFINE_PER_CPU(struct sched_domain *, sd_asym);
518cd623
PZ
5470
5471static void update_top_cache_domain(int cpu)
5472{
5473 struct sched_domain *sd;
5d4cf996 5474 struct sched_domain *busy_sd = NULL;
518cd623 5475 int id = cpu;
7d9ffa89 5476 int size = 1;
518cd623
PZ
5477
5478 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 5479 if (sd) {
518cd623 5480 id = cpumask_first(sched_domain_span(sd));
7d9ffa89 5481 size = cpumask_weight(sched_domain_span(sd));
5d4cf996 5482 busy_sd = sd->parent; /* sd_busy */
7d9ffa89 5483 }
5d4cf996 5484 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
518cd623
PZ
5485
5486 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 5487 per_cpu(sd_llc_size, cpu) = size;
518cd623 5488 per_cpu(sd_llc_id, cpu) = id;
fb13c7ee
MG
5489
5490 sd = lowest_flag_domain(cpu, SD_NUMA);
5491 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
37dc6b50
PM
5492
5493 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5494 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
518cd623
PZ
5495}
5496
1da177e4 5497/*
0eab9146 5498 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5499 * hold the hotplug lock.
5500 */
0eab9146
IM
5501static void
5502cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5503{
70b97a7f 5504 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5505 struct sched_domain *tmp;
5506
5507 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5508 for (tmp = sd; tmp; ) {
245af2c7
SS
5509 struct sched_domain *parent = tmp->parent;
5510 if (!parent)
5511 break;
f29c9b1c 5512
1a848870 5513 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5514 tmp->parent = parent->parent;
1a848870
SS
5515 if (parent->parent)
5516 parent->parent->child = tmp;
10866e62
PZ
5517 /*
5518 * Transfer SD_PREFER_SIBLING down in case of a
5519 * degenerate parent; the spans match for this
5520 * so the property transfers.
5521 */
5522 if (parent->flags & SD_PREFER_SIBLING)
5523 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 5524 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5525 } else
5526 tmp = tmp->parent;
245af2c7
SS
5527 }
5528
1a848870 5529 if (sd && sd_degenerate(sd)) {
dce840a0 5530 tmp = sd;
245af2c7 5531 sd = sd->parent;
dce840a0 5532 destroy_sched_domain(tmp, cpu);
1a848870
SS
5533 if (sd)
5534 sd->child = NULL;
5535 }
1da177e4 5536
4cb98839 5537 sched_domain_debug(sd, cpu);
1da177e4 5538
57d885fe 5539 rq_attach_root(rq, rd);
dce840a0 5540 tmp = rq->sd;
674311d5 5541 rcu_assign_pointer(rq->sd, sd);
dce840a0 5542 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5543
5544 update_top_cache_domain(cpu);
1da177e4
LT
5545}
5546
5547/* cpus with isolated domains */
dcc30a35 5548static cpumask_var_t cpu_isolated_map;
1da177e4
LT
5549
5550/* Setup the mask of cpus configured for isolated domains */
5551static int __init isolated_cpu_setup(char *str)
5552{
bdddd296 5553 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5554 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5555 return 1;
5556}
5557
8927f494 5558__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5559
d3081f52
PZ
5560static const struct cpumask *cpu_cpu_mask(int cpu)
5561{
5562 return cpumask_of_node(cpu_to_node(cpu));
5563}
5564
dce840a0
PZ
5565struct sd_data {
5566 struct sched_domain **__percpu sd;
5567 struct sched_group **__percpu sg;
9c3f75cb 5568 struct sched_group_power **__percpu sgp;
dce840a0
PZ
5569};
5570
49a02c51 5571struct s_data {
21d42ccf 5572 struct sched_domain ** __percpu sd;
49a02c51
AH
5573 struct root_domain *rd;
5574};
5575
2109b99e 5576enum s_alloc {
2109b99e 5577 sa_rootdomain,
21d42ccf 5578 sa_sd,
dce840a0 5579 sa_sd_storage,
2109b99e
AH
5580 sa_none,
5581};
5582
54ab4ff4
PZ
5583struct sched_domain_topology_level;
5584
5585typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
eb7a74e6
PZ
5586typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5587
e3589f6c
PZ
5588#define SDTL_OVERLAP 0x01
5589
eb7a74e6 5590struct sched_domain_topology_level {
2c402dc3
PZ
5591 sched_domain_init_f init;
5592 sched_domain_mask_f mask;
e3589f6c 5593 int flags;
cb83b629 5594 int numa_level;
54ab4ff4 5595 struct sd_data data;
eb7a74e6
PZ
5596};
5597
c1174876
PZ
5598/*
5599 * Build an iteration mask that can exclude certain CPUs from the upwards
5600 * domain traversal.
5601 *
5602 * Asymmetric node setups can result in situations where the domain tree is of
5603 * unequal depth, make sure to skip domains that already cover the entire
5604 * range.
5605 *
5606 * In that case build_sched_domains() will have terminated the iteration early
5607 * and our sibling sd spans will be empty. Domains should always include the
5608 * cpu they're built on, so check that.
5609 *
5610 */
5611static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5612{
5613 const struct cpumask *span = sched_domain_span(sd);
5614 struct sd_data *sdd = sd->private;
5615 struct sched_domain *sibling;
5616 int i;
5617
5618 for_each_cpu(i, span) {
5619 sibling = *per_cpu_ptr(sdd->sd, i);
5620 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5621 continue;
5622
5623 cpumask_set_cpu(i, sched_group_mask(sg));
5624 }
5625}
5626
5627/*
5628 * Return the canonical balance cpu for this group, this is the first cpu
5629 * of this group that's also in the iteration mask.
5630 */
5631int group_balance_cpu(struct sched_group *sg)
5632{
5633 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5634}
5635
e3589f6c
PZ
5636static int
5637build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5638{
5639 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5640 const struct cpumask *span = sched_domain_span(sd);
5641 struct cpumask *covered = sched_domains_tmpmask;
5642 struct sd_data *sdd = sd->private;
5643 struct sched_domain *child;
5644 int i;
5645
5646 cpumask_clear(covered);
5647
5648 for_each_cpu(i, span) {
5649 struct cpumask *sg_span;
5650
5651 if (cpumask_test_cpu(i, covered))
5652 continue;
5653
c1174876
PZ
5654 child = *per_cpu_ptr(sdd->sd, i);
5655
5656 /* See the comment near build_group_mask(). */
5657 if (!cpumask_test_cpu(i, sched_domain_span(child)))
5658 continue;
5659
e3589f6c 5660 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 5661 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
5662
5663 if (!sg)
5664 goto fail;
5665
5666 sg_span = sched_group_cpus(sg);
e3589f6c
PZ
5667 if (child->child) {
5668 child = child->child;
5669 cpumask_copy(sg_span, sched_domain_span(child));
5670 } else
5671 cpumask_set_cpu(i, sg_span);
5672
5673 cpumask_or(covered, covered, sg_span);
5674
74a5ce20 5675 sg->sgp = *per_cpu_ptr(sdd->sgp, i);
c1174876
PZ
5676 if (atomic_inc_return(&sg->sgp->ref) == 1)
5677 build_group_mask(sd, sg);
5678
c3decf0d
PZ
5679 /*
5680 * Initialize sgp->power such that even if we mess up the
5681 * domains and no possible iteration will get us here, we won't
5682 * die on a /0 trap.
5683 */
5684 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
8e8339a3 5685 sg->sgp->power_orig = sg->sgp->power;
e3589f6c 5686
c1174876
PZ
5687 /*
5688 * Make sure the first group of this domain contains the
5689 * canonical balance cpu. Otherwise the sched_domain iteration
5690 * breaks. See update_sg_lb_stats().
5691 */
74a5ce20 5692 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 5693 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
5694 groups = sg;
5695
5696 if (!first)
5697 first = sg;
5698 if (last)
5699 last->next = sg;
5700 last = sg;
5701 last->next = first;
5702 }
5703 sd->groups = groups;
5704
5705 return 0;
5706
5707fail:
5708 free_sched_groups(first, 0);
5709
5710 return -ENOMEM;
5711}
5712
dce840a0 5713static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 5714{
dce840a0
PZ
5715 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5716 struct sched_domain *child = sd->child;
1da177e4 5717
dce840a0
PZ
5718 if (child)
5719 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 5720
9c3f75cb 5721 if (sg) {
dce840a0 5722 *sg = *per_cpu_ptr(sdd->sg, cpu);
9c3f75cb 5723 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
e3589f6c 5724 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
9c3f75cb 5725 }
dce840a0
PZ
5726
5727 return cpu;
1e9f28fa 5728}
1e9f28fa 5729
01a08546 5730/*
dce840a0
PZ
5731 * build_sched_groups will build a circular linked list of the groups
5732 * covered by the given span, and will set each group's ->cpumask correctly,
5733 * and ->cpu_power to 0.
e3589f6c
PZ
5734 *
5735 * Assumes the sched_domain tree is fully constructed
01a08546 5736 */
e3589f6c
PZ
5737static int
5738build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 5739{
dce840a0
PZ
5740 struct sched_group *first = NULL, *last = NULL;
5741 struct sd_data *sdd = sd->private;
5742 const struct cpumask *span = sched_domain_span(sd);
f96225fd 5743 struct cpumask *covered;
dce840a0 5744 int i;
9c1cfda2 5745
e3589f6c
PZ
5746 get_group(cpu, sdd, &sd->groups);
5747 atomic_inc(&sd->groups->ref);
5748
0936629f 5749 if (cpu != cpumask_first(span))
e3589f6c
PZ
5750 return 0;
5751
f96225fd
PZ
5752 lockdep_assert_held(&sched_domains_mutex);
5753 covered = sched_domains_tmpmask;
5754
dce840a0 5755 cpumask_clear(covered);
6711cab4 5756
dce840a0
PZ
5757 for_each_cpu(i, span) {
5758 struct sched_group *sg;
cd08e923 5759 int group, j;
6711cab4 5760
dce840a0
PZ
5761 if (cpumask_test_cpu(i, covered))
5762 continue;
6711cab4 5763
cd08e923 5764 group = get_group(i, sdd, &sg);
dce840a0 5765 cpumask_clear(sched_group_cpus(sg));
9c3f75cb 5766 sg->sgp->power = 0;
c1174876 5767 cpumask_setall(sched_group_mask(sg));
0601a88d 5768
dce840a0
PZ
5769 for_each_cpu(j, span) {
5770 if (get_group(j, sdd, NULL) != group)
5771 continue;
0601a88d 5772
dce840a0
PZ
5773 cpumask_set_cpu(j, covered);
5774 cpumask_set_cpu(j, sched_group_cpus(sg));
5775 }
0601a88d 5776
dce840a0
PZ
5777 if (!first)
5778 first = sg;
5779 if (last)
5780 last->next = sg;
5781 last = sg;
5782 }
5783 last->next = first;
e3589f6c
PZ
5784
5785 return 0;
0601a88d 5786}
51888ca2 5787
89c4710e
SS
5788/*
5789 * Initialize sched groups cpu_power.
5790 *
5791 * cpu_power indicates the capacity of sched group, which is used while
5792 * distributing the load between different sched groups in a sched domain.
5793 * Typically cpu_power for all the groups in a sched domain will be same unless
5794 * there are asymmetries in the topology. If there are asymmetries, group
5795 * having more cpu_power will pickup more load compared to the group having
5796 * less cpu_power.
89c4710e
SS
5797 */
5798static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5799{
e3589f6c 5800 struct sched_group *sg = sd->groups;
89c4710e 5801
94c95ba6 5802 WARN_ON(!sg);
e3589f6c
PZ
5803
5804 do {
5805 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5806 sg = sg->next;
5807 } while (sg != sd->groups);
89c4710e 5808
c1174876 5809 if (cpu != group_balance_cpu(sg))
e3589f6c 5810 return;
aae6d3dd 5811
d274cb30 5812 update_group_power(sd, cpu);
69e1e811 5813 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
89c4710e
SS
5814}
5815
029632fb
PZ
5816int __weak arch_sd_sibling_asym_packing(void)
5817{
5818 return 0*SD_ASYM_PACKING;
89c4710e
SS
5819}
5820
7c16ec58
MT
5821/*
5822 * Initializers for schedule domains
5823 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5824 */
5825
a5d8c348
IM
5826#ifdef CONFIG_SCHED_DEBUG
5827# define SD_INIT_NAME(sd, type) sd->name = #type
5828#else
5829# define SD_INIT_NAME(sd, type) do { } while (0)
5830#endif
5831
54ab4ff4
PZ
5832#define SD_INIT_FUNC(type) \
5833static noinline struct sched_domain * \
5834sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
5835{ \
5836 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
5837 *sd = SD_##type##_INIT; \
54ab4ff4
PZ
5838 SD_INIT_NAME(sd, type); \
5839 sd->private = &tl->data; \
5840 return sd; \
7c16ec58
MT
5841}
5842
5843SD_INIT_FUNC(CPU)
7c16ec58
MT
5844#ifdef CONFIG_SCHED_SMT
5845 SD_INIT_FUNC(SIBLING)
5846#endif
5847#ifdef CONFIG_SCHED_MC
5848 SD_INIT_FUNC(MC)
5849#endif
01a08546
HC
5850#ifdef CONFIG_SCHED_BOOK
5851 SD_INIT_FUNC(BOOK)
5852#endif
7c16ec58 5853
1d3504fc 5854static int default_relax_domain_level = -1;
60495e77 5855int sched_domain_level_max;
1d3504fc
HS
5856
5857static int __init setup_relax_domain_level(char *str)
5858{
a841f8ce
DS
5859 if (kstrtoint(str, 0, &default_relax_domain_level))
5860 pr_warn("Unable to set relax_domain_level\n");
30e0e178 5861
1d3504fc
HS
5862 return 1;
5863}
5864__setup("relax_domain_level=", setup_relax_domain_level);
5865
5866static void set_domain_attribute(struct sched_domain *sd,
5867 struct sched_domain_attr *attr)
5868{
5869 int request;
5870
5871 if (!attr || attr->relax_domain_level < 0) {
5872 if (default_relax_domain_level < 0)
5873 return;
5874 else
5875 request = default_relax_domain_level;
5876 } else
5877 request = attr->relax_domain_level;
5878 if (request < sd->level) {
5879 /* turn off idle balance on this domain */
c88d5910 5880 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5881 } else {
5882 /* turn on idle balance on this domain */
c88d5910 5883 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5884 }
5885}
5886
54ab4ff4
PZ
5887static void __sdt_free(const struct cpumask *cpu_map);
5888static int __sdt_alloc(const struct cpumask *cpu_map);
5889
2109b99e
AH
5890static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5891 const struct cpumask *cpu_map)
5892{
5893 switch (what) {
2109b99e 5894 case sa_rootdomain:
822ff793
PZ
5895 if (!atomic_read(&d->rd->refcount))
5896 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
5897 case sa_sd:
5898 free_percpu(d->sd); /* fall through */
dce840a0 5899 case sa_sd_storage:
54ab4ff4 5900 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
5901 case sa_none:
5902 break;
5903 }
5904}
3404c8d9 5905
2109b99e
AH
5906static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5907 const struct cpumask *cpu_map)
5908{
dce840a0
PZ
5909 memset(d, 0, sizeof(*d));
5910
54ab4ff4
PZ
5911 if (__sdt_alloc(cpu_map))
5912 return sa_sd_storage;
dce840a0
PZ
5913 d->sd = alloc_percpu(struct sched_domain *);
5914 if (!d->sd)
5915 return sa_sd_storage;
2109b99e 5916 d->rd = alloc_rootdomain();
dce840a0 5917 if (!d->rd)
21d42ccf 5918 return sa_sd;
2109b99e
AH
5919 return sa_rootdomain;
5920}
57d885fe 5921
dce840a0
PZ
5922/*
5923 * NULL the sd_data elements we've used to build the sched_domain and
5924 * sched_group structure so that the subsequent __free_domain_allocs()
5925 * will not free the data we're using.
5926 */
5927static void claim_allocations(int cpu, struct sched_domain *sd)
5928{
5929 struct sd_data *sdd = sd->private;
dce840a0
PZ
5930
5931 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5932 *per_cpu_ptr(sdd->sd, cpu) = NULL;
5933
e3589f6c 5934 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 5935 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c
PZ
5936
5937 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
9c3f75cb 5938 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
dce840a0
PZ
5939}
5940
2c402dc3
PZ
5941#ifdef CONFIG_SCHED_SMT
5942static const struct cpumask *cpu_smt_mask(int cpu)
7f4588f3 5943{
2c402dc3 5944 return topology_thread_cpumask(cpu);
3bd65a80 5945}
2c402dc3 5946#endif
7f4588f3 5947
d069b916
PZ
5948/*
5949 * Topology list, bottom-up.
5950 */
2c402dc3 5951static struct sched_domain_topology_level default_topology[] = {
d069b916
PZ
5952#ifdef CONFIG_SCHED_SMT
5953 { sd_init_SIBLING, cpu_smt_mask, },
01a08546 5954#endif
1e9f28fa 5955#ifdef CONFIG_SCHED_MC
2c402dc3 5956 { sd_init_MC, cpu_coregroup_mask, },
1e9f28fa 5957#endif
d069b916
PZ
5958#ifdef CONFIG_SCHED_BOOK
5959 { sd_init_BOOK, cpu_book_mask, },
5960#endif
5961 { sd_init_CPU, cpu_cpu_mask, },
eb7a74e6
PZ
5962 { NULL, },
5963};
5964
5965static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5966
27723a68
VK
5967#define for_each_sd_topology(tl) \
5968 for (tl = sched_domain_topology; tl->init; tl++)
5969
cb83b629
PZ
5970#ifdef CONFIG_NUMA
5971
5972static int sched_domains_numa_levels;
cb83b629
PZ
5973static int *sched_domains_numa_distance;
5974static struct cpumask ***sched_domains_numa_masks;
5975static int sched_domains_curr_level;
5976
cb83b629
PZ
5977static inline int sd_local_flags(int level)
5978{
10717dcd 5979 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
cb83b629
PZ
5980 return 0;
5981
5982 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
5983}
5984
5985static struct sched_domain *
5986sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
5987{
5988 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
5989 int level = tl->numa_level;
5990 int sd_weight = cpumask_weight(
5991 sched_domains_numa_masks[level][cpu_to_node(cpu)]);
5992
5993 *sd = (struct sched_domain){
5994 .min_interval = sd_weight,
5995 .max_interval = 2*sd_weight,
5996 .busy_factor = 32,
870a0bb5 5997 .imbalance_pct = 125,
cb83b629
PZ
5998 .cache_nice_tries = 2,
5999 .busy_idx = 3,
6000 .idle_idx = 2,
6001 .newidle_idx = 0,
6002 .wake_idx = 0,
6003 .forkexec_idx = 0,
6004
6005 .flags = 1*SD_LOAD_BALANCE
6006 | 1*SD_BALANCE_NEWIDLE
6007 | 0*SD_BALANCE_EXEC
6008 | 0*SD_BALANCE_FORK
6009 | 0*SD_BALANCE_WAKE
6010 | 0*SD_WAKE_AFFINE
cb83b629 6011 | 0*SD_SHARE_CPUPOWER
cb83b629
PZ
6012 | 0*SD_SHARE_PKG_RESOURCES
6013 | 1*SD_SERIALIZE
6014 | 0*SD_PREFER_SIBLING
3a7053b3 6015 | 1*SD_NUMA
cb83b629
PZ
6016 | sd_local_flags(level)
6017 ,
6018 .last_balance = jiffies,
6019 .balance_interval = sd_weight,
6020 };
6021 SD_INIT_NAME(sd, NUMA);
6022 sd->private = &tl->data;
6023
6024 /*
6025 * Ugly hack to pass state to sd_numa_mask()...
6026 */
6027 sched_domains_curr_level = tl->numa_level;
6028
6029 return sd;
6030}
6031
6032static const struct cpumask *sd_numa_mask(int cpu)
6033{
6034 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6035}
6036
d039ac60
PZ
6037static void sched_numa_warn(const char *str)
6038{
6039 static int done = false;
6040 int i,j;
6041
6042 if (done)
6043 return;
6044
6045 done = true;
6046
6047 printk(KERN_WARNING "ERROR: %s\n\n", str);
6048
6049 for (i = 0; i < nr_node_ids; i++) {
6050 printk(KERN_WARNING " ");
6051 for (j = 0; j < nr_node_ids; j++)
6052 printk(KERN_CONT "%02d ", node_distance(i,j));
6053 printk(KERN_CONT "\n");
6054 }
6055 printk(KERN_WARNING "\n");
6056}
6057
6058static bool find_numa_distance(int distance)
6059{
6060 int i;
6061
6062 if (distance == node_distance(0, 0))
6063 return true;
6064
6065 for (i = 0; i < sched_domains_numa_levels; i++) {
6066 if (sched_domains_numa_distance[i] == distance)
6067 return true;
6068 }
6069
6070 return false;
6071}
6072
cb83b629
PZ
6073static void sched_init_numa(void)
6074{
6075 int next_distance, curr_distance = node_distance(0, 0);
6076 struct sched_domain_topology_level *tl;
6077 int level = 0;
6078 int i, j, k;
6079
cb83b629
PZ
6080 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6081 if (!sched_domains_numa_distance)
6082 return;
6083
6084 /*
6085 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6086 * unique distances in the node_distance() table.
6087 *
6088 * Assumes node_distance(0,j) includes all distances in
6089 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6090 */
6091 next_distance = curr_distance;
6092 for (i = 0; i < nr_node_ids; i++) {
6093 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6094 for (k = 0; k < nr_node_ids; k++) {
6095 int distance = node_distance(i, k);
6096
6097 if (distance > curr_distance &&
6098 (distance < next_distance ||
6099 next_distance == curr_distance))
6100 next_distance = distance;
6101
6102 /*
6103 * While not a strong assumption it would be nice to know
6104 * about cases where if node A is connected to B, B is not
6105 * equally connected to A.
6106 */
6107 if (sched_debug() && node_distance(k, i) != distance)
6108 sched_numa_warn("Node-distance not symmetric");
6109
6110 if (sched_debug() && i && !find_numa_distance(distance))
6111 sched_numa_warn("Node-0 not representative");
6112 }
6113 if (next_distance != curr_distance) {
6114 sched_domains_numa_distance[level++] = next_distance;
6115 sched_domains_numa_levels = level;
6116 curr_distance = next_distance;
6117 } else break;
cb83b629 6118 }
d039ac60
PZ
6119
6120 /*
6121 * In case of sched_debug() we verify the above assumption.
6122 */
6123 if (!sched_debug())
6124 break;
cb83b629
PZ
6125 }
6126 /*
6127 * 'level' contains the number of unique distances, excluding the
6128 * identity distance node_distance(i,i).
6129 *
28b4a521 6130 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
6131 * numbers.
6132 */
6133
5f7865f3
TC
6134 /*
6135 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6136 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6137 * the array will contain less then 'level' members. This could be
6138 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6139 * in other functions.
6140 *
6141 * We reset it to 'level' at the end of this function.
6142 */
6143 sched_domains_numa_levels = 0;
6144
cb83b629
PZ
6145 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6146 if (!sched_domains_numa_masks)
6147 return;
6148
6149 /*
6150 * Now for each level, construct a mask per node which contains all
6151 * cpus of nodes that are that many hops away from us.
6152 */
6153 for (i = 0; i < level; i++) {
6154 sched_domains_numa_masks[i] =
6155 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6156 if (!sched_domains_numa_masks[i])
6157 return;
6158
6159 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6160 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6161 if (!mask)
6162 return;
6163
6164 sched_domains_numa_masks[i][j] = mask;
6165
6166 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 6167 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6168 continue;
6169
6170 cpumask_or(mask, mask, cpumask_of_node(k));
6171 }
6172 }
6173 }
6174
6175 tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6176 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6177 if (!tl)
6178 return;
6179
6180 /*
6181 * Copy the default topology bits..
6182 */
6183 for (i = 0; default_topology[i].init; i++)
6184 tl[i] = default_topology[i];
6185
6186 /*
6187 * .. and append 'j' levels of NUMA goodness.
6188 */
6189 for (j = 0; j < level; i++, j++) {
6190 tl[i] = (struct sched_domain_topology_level){
6191 .init = sd_numa_init,
6192 .mask = sd_numa_mask,
6193 .flags = SDTL_OVERLAP,
6194 .numa_level = j,
6195 };
6196 }
6197
6198 sched_domain_topology = tl;
5f7865f3
TC
6199
6200 sched_domains_numa_levels = level;
cb83b629 6201}
301a5cba
TC
6202
6203static void sched_domains_numa_masks_set(int cpu)
6204{
6205 int i, j;
6206 int node = cpu_to_node(cpu);
6207
6208 for (i = 0; i < sched_domains_numa_levels; i++) {
6209 for (j = 0; j < nr_node_ids; j++) {
6210 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6211 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6212 }
6213 }
6214}
6215
6216static void sched_domains_numa_masks_clear(int cpu)
6217{
6218 int i, j;
6219 for (i = 0; i < sched_domains_numa_levels; i++) {
6220 for (j = 0; j < nr_node_ids; j++)
6221 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6222 }
6223}
6224
6225/*
6226 * Update sched_domains_numa_masks[level][node] array when new cpus
6227 * are onlined.
6228 */
6229static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6230 unsigned long action,
6231 void *hcpu)
6232{
6233 int cpu = (long)hcpu;
6234
6235 switch (action & ~CPU_TASKS_FROZEN) {
6236 case CPU_ONLINE:
6237 sched_domains_numa_masks_set(cpu);
6238 break;
6239
6240 case CPU_DEAD:
6241 sched_domains_numa_masks_clear(cpu);
6242 break;
6243
6244 default:
6245 return NOTIFY_DONE;
6246 }
6247
6248 return NOTIFY_OK;
cb83b629
PZ
6249}
6250#else
6251static inline void sched_init_numa(void)
6252{
6253}
301a5cba
TC
6254
6255static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6256 unsigned long action,
6257 void *hcpu)
6258{
6259 return 0;
6260}
cb83b629
PZ
6261#endif /* CONFIG_NUMA */
6262
54ab4ff4
PZ
6263static int __sdt_alloc(const struct cpumask *cpu_map)
6264{
6265 struct sched_domain_topology_level *tl;
6266 int j;
6267
27723a68 6268 for_each_sd_topology(tl) {
54ab4ff4
PZ
6269 struct sd_data *sdd = &tl->data;
6270
6271 sdd->sd = alloc_percpu(struct sched_domain *);
6272 if (!sdd->sd)
6273 return -ENOMEM;
6274
6275 sdd->sg = alloc_percpu(struct sched_group *);
6276 if (!sdd->sg)
6277 return -ENOMEM;
6278
9c3f75cb
PZ
6279 sdd->sgp = alloc_percpu(struct sched_group_power *);
6280 if (!sdd->sgp)
6281 return -ENOMEM;
6282
54ab4ff4
PZ
6283 for_each_cpu(j, cpu_map) {
6284 struct sched_domain *sd;
6285 struct sched_group *sg;
9c3f75cb 6286 struct sched_group_power *sgp;
54ab4ff4
PZ
6287
6288 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6289 GFP_KERNEL, cpu_to_node(j));
6290 if (!sd)
6291 return -ENOMEM;
6292
6293 *per_cpu_ptr(sdd->sd, j) = sd;
6294
6295 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6296 GFP_KERNEL, cpu_to_node(j));
6297 if (!sg)
6298 return -ENOMEM;
6299
30b4e9eb
IM
6300 sg->next = sg;
6301
54ab4ff4 6302 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6303
c1174876 6304 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
9c3f75cb
PZ
6305 GFP_KERNEL, cpu_to_node(j));
6306 if (!sgp)
6307 return -ENOMEM;
6308
6309 *per_cpu_ptr(sdd->sgp, j) = sgp;
54ab4ff4
PZ
6310 }
6311 }
6312
6313 return 0;
6314}
6315
6316static void __sdt_free(const struct cpumask *cpu_map)
6317{
6318 struct sched_domain_topology_level *tl;
6319 int j;
6320
27723a68 6321 for_each_sd_topology(tl) {
54ab4ff4
PZ
6322 struct sd_data *sdd = &tl->data;
6323
6324 for_each_cpu(j, cpu_map) {
fb2cf2c6 6325 struct sched_domain *sd;
6326
6327 if (sdd->sd) {
6328 sd = *per_cpu_ptr(sdd->sd, j);
6329 if (sd && (sd->flags & SD_OVERLAP))
6330 free_sched_groups(sd->groups, 0);
6331 kfree(*per_cpu_ptr(sdd->sd, j));
6332 }
6333
6334 if (sdd->sg)
6335 kfree(*per_cpu_ptr(sdd->sg, j));
6336 if (sdd->sgp)
6337 kfree(*per_cpu_ptr(sdd->sgp, j));
54ab4ff4
PZ
6338 }
6339 free_percpu(sdd->sd);
fb2cf2c6 6340 sdd->sd = NULL;
54ab4ff4 6341 free_percpu(sdd->sg);
fb2cf2c6 6342 sdd->sg = NULL;
9c3f75cb 6343 free_percpu(sdd->sgp);
fb2cf2c6 6344 sdd->sgp = NULL;
54ab4ff4
PZ
6345 }
6346}
6347
2c402dc3 6348struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
6349 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6350 struct sched_domain *child, int cpu)
2c402dc3 6351{
54ab4ff4 6352 struct sched_domain *sd = tl->init(tl, cpu);
2c402dc3 6353 if (!sd)
d069b916 6354 return child;
2c402dc3 6355
2c402dc3 6356 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6357 if (child) {
6358 sd->level = child->level + 1;
6359 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6360 child->parent = sd;
c75e0128 6361 sd->child = child;
60495e77 6362 }
a841f8ce 6363 set_domain_attribute(sd, attr);
2c402dc3
PZ
6364
6365 return sd;
6366}
6367
2109b99e
AH
6368/*
6369 * Build sched domains for a given set of cpus and attach the sched domains
6370 * to the individual cpus
6371 */
dce840a0
PZ
6372static int build_sched_domains(const struct cpumask *cpu_map,
6373 struct sched_domain_attr *attr)
2109b99e 6374{
1c632169 6375 enum s_alloc alloc_state;
dce840a0 6376 struct sched_domain *sd;
2109b99e 6377 struct s_data d;
822ff793 6378 int i, ret = -ENOMEM;
9c1cfda2 6379
2109b99e
AH
6380 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6381 if (alloc_state != sa_rootdomain)
6382 goto error;
9c1cfda2 6383
dce840a0 6384 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6385 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6386 struct sched_domain_topology_level *tl;
6387
3bd65a80 6388 sd = NULL;
27723a68 6389 for_each_sd_topology(tl) {
4a850cbe 6390 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
6391 if (tl == sched_domain_topology)
6392 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
6393 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6394 sd->flags |= SD_OVERLAP;
d110235d
PZ
6395 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6396 break;
e3589f6c 6397 }
dce840a0
PZ
6398 }
6399
6400 /* Build the groups for the domains */
6401 for_each_cpu(i, cpu_map) {
6402 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6403 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6404 if (sd->flags & SD_OVERLAP) {
6405 if (build_overlap_sched_groups(sd, i))
6406 goto error;
6407 } else {
6408 if (build_sched_groups(sd, i))
6409 goto error;
6410 }
1cf51902 6411 }
a06dadbe 6412 }
9c1cfda2 6413
1da177e4 6414 /* Calculate CPU power for physical packages and nodes */
a9c9a9b6
PZ
6415 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6416 if (!cpumask_test_cpu(i, cpu_map))
6417 continue;
9c1cfda2 6418
dce840a0
PZ
6419 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6420 claim_allocations(i, sd);
cd4ea6ae 6421 init_sched_groups_power(i, sd);
dce840a0 6422 }
f712c0c7 6423 }
9c1cfda2 6424
1da177e4 6425 /* Attach the domains */
dce840a0 6426 rcu_read_lock();
abcd083a 6427 for_each_cpu(i, cpu_map) {
21d42ccf 6428 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6429 cpu_attach_domain(sd, d.rd, i);
1da177e4 6430 }
dce840a0 6431 rcu_read_unlock();
51888ca2 6432
822ff793 6433 ret = 0;
51888ca2 6434error:
2109b99e 6435 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6436 return ret;
1da177e4 6437}
029190c5 6438
acc3f5d7 6439static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6440static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6441static struct sched_domain_attr *dattr_cur;
6442 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6443
6444/*
6445 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6446 * cpumask) fails, then fallback to a single sched domain,
6447 * as determined by the single cpumask fallback_doms.
029190c5 6448 */
4212823f 6449static cpumask_var_t fallback_doms;
029190c5 6450
ee79d1bd
HC
6451/*
6452 * arch_update_cpu_topology lets virtualized architectures update the
6453 * cpu core maps. It is supposed to return 1 if the topology changed
6454 * or 0 if it stayed the same.
6455 */
6456int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 6457{
ee79d1bd 6458 return 0;
22e52b07
HC
6459}
6460
acc3f5d7
RR
6461cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6462{
6463 int i;
6464 cpumask_var_t *doms;
6465
6466 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6467 if (!doms)
6468 return NULL;
6469 for (i = 0; i < ndoms; i++) {
6470 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6471 free_sched_domains(doms, i);
6472 return NULL;
6473 }
6474 }
6475 return doms;
6476}
6477
6478void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6479{
6480 unsigned int i;
6481 for (i = 0; i < ndoms; i++)
6482 free_cpumask_var(doms[i]);
6483 kfree(doms);
6484}
6485
1a20ff27 6486/*
41a2d6cf 6487 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6488 * For now this just excludes isolated cpus, but could be used to
6489 * exclude other special cases in the future.
1a20ff27 6490 */
c4a8849a 6491static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6492{
7378547f
MM
6493 int err;
6494
22e52b07 6495 arch_update_cpu_topology();
029190c5 6496 ndoms_cur = 1;
acc3f5d7 6497 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6498 if (!doms_cur)
acc3f5d7
RR
6499 doms_cur = &fallback_doms;
6500 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 6501 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6502 register_sched_domain_sysctl();
7378547f
MM
6503
6504 return err;
1a20ff27
DG
6505}
6506
1a20ff27
DG
6507/*
6508 * Detach sched domains from a group of cpus specified in cpu_map
6509 * These cpus will now be attached to the NULL domain
6510 */
96f874e2 6511static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6512{
6513 int i;
6514
dce840a0 6515 rcu_read_lock();
abcd083a 6516 for_each_cpu(i, cpu_map)
57d885fe 6517 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6518 rcu_read_unlock();
1a20ff27
DG
6519}
6520
1d3504fc
HS
6521/* handle null as "default" */
6522static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6523 struct sched_domain_attr *new, int idx_new)
6524{
6525 struct sched_domain_attr tmp;
6526
6527 /* fast path */
6528 if (!new && !cur)
6529 return 1;
6530
6531 tmp = SD_ATTR_INIT;
6532 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6533 new ? (new + idx_new) : &tmp,
6534 sizeof(struct sched_domain_attr));
6535}
6536
029190c5
PJ
6537/*
6538 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6539 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6540 * doms_new[] to the current sched domain partitioning, doms_cur[].
6541 * It destroys each deleted domain and builds each new domain.
6542 *
acc3f5d7 6543 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
6544 * The masks don't intersect (don't overlap.) We should setup one
6545 * sched domain for each mask. CPUs not in any of the cpumasks will
6546 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6547 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6548 * it as it is.
6549 *
acc3f5d7
RR
6550 * The passed in 'doms_new' should be allocated using
6551 * alloc_sched_domains. This routine takes ownership of it and will
6552 * free_sched_domains it when done with it. If the caller failed the
6553 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6554 * and partition_sched_domains() will fallback to the single partition
6555 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 6556 *
96f874e2 6557 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
6558 * ndoms_new == 0 is a special case for destroying existing domains,
6559 * and it will not create the default domain.
dfb512ec 6560 *
029190c5
PJ
6561 * Call with hotplug lock held
6562 */
acc3f5d7 6563void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 6564 struct sched_domain_attr *dattr_new)
029190c5 6565{
dfb512ec 6566 int i, j, n;
d65bd5ec 6567 int new_topology;
029190c5 6568
712555ee 6569 mutex_lock(&sched_domains_mutex);
a1835615 6570
7378547f
MM
6571 /* always unregister in case we don't destroy any domains */
6572 unregister_sched_domain_sysctl();
6573
d65bd5ec
HC
6574 /* Let architecture update cpu core mappings. */
6575 new_topology = arch_update_cpu_topology();
6576
dfb512ec 6577 n = doms_new ? ndoms_new : 0;
029190c5
PJ
6578
6579 /* Destroy deleted domains */
6580 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 6581 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6582 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 6583 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
6584 goto match1;
6585 }
6586 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 6587 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
6588match1:
6589 ;
6590 }
6591
c8d2d47a 6592 n = ndoms_cur;
e761b772 6593 if (doms_new == NULL) {
c8d2d47a 6594 n = 0;
acc3f5d7 6595 doms_new = &fallback_doms;
6ad4c188 6596 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 6597 WARN_ON_ONCE(dattr_new);
e761b772
MK
6598 }
6599
029190c5
PJ
6600 /* Build new domains */
6601 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 6602 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6603 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 6604 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
6605 goto match2;
6606 }
6607 /* no match - add a new doms_new */
dce840a0 6608 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
6609match2:
6610 ;
6611 }
6612
6613 /* Remember the new sched domains */
acc3f5d7
RR
6614 if (doms_cur != &fallback_doms)
6615 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 6616 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 6617 doms_cur = doms_new;
1d3504fc 6618 dattr_cur = dattr_new;
029190c5 6619 ndoms_cur = ndoms_new;
7378547f
MM
6620
6621 register_sched_domain_sysctl();
a1835615 6622
712555ee 6623 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
6624}
6625
d35be8ba
SB
6626static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6627
1da177e4 6628/*
3a101d05
TH
6629 * Update cpusets according to cpu_active mask. If cpusets are
6630 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6631 * around partition_sched_domains().
d35be8ba
SB
6632 *
6633 * If we come here as part of a suspend/resume, don't touch cpusets because we
6634 * want to restore it back to its original state upon resume anyway.
1da177e4 6635 */
0b2e918a
TH
6636static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6637 void *hcpu)
e761b772 6638{
d35be8ba
SB
6639 switch (action) {
6640 case CPU_ONLINE_FROZEN:
6641 case CPU_DOWN_FAILED_FROZEN:
6642
6643 /*
6644 * num_cpus_frozen tracks how many CPUs are involved in suspend
6645 * resume sequence. As long as this is not the last online
6646 * operation in the resume sequence, just build a single sched
6647 * domain, ignoring cpusets.
6648 */
6649 num_cpus_frozen--;
6650 if (likely(num_cpus_frozen)) {
6651 partition_sched_domains(1, NULL, NULL);
6652 break;
6653 }
6654
6655 /*
6656 * This is the last CPU online operation. So fall through and
6657 * restore the original sched domains by considering the
6658 * cpuset configurations.
6659 */
6660
e761b772 6661 case CPU_ONLINE:
6ad4c188 6662 case CPU_DOWN_FAILED:
7ddf96b0 6663 cpuset_update_active_cpus(true);
d35be8ba 6664 break;
3a101d05
TH
6665 default:
6666 return NOTIFY_DONE;
6667 }
d35be8ba 6668 return NOTIFY_OK;
3a101d05 6669}
e761b772 6670
0b2e918a
TH
6671static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6672 void *hcpu)
3a101d05 6673{
d35be8ba 6674 switch (action) {
3a101d05 6675 case CPU_DOWN_PREPARE:
7ddf96b0 6676 cpuset_update_active_cpus(false);
d35be8ba
SB
6677 break;
6678 case CPU_DOWN_PREPARE_FROZEN:
6679 num_cpus_frozen++;
6680 partition_sched_domains(1, NULL, NULL);
6681 break;
e761b772
MK
6682 default:
6683 return NOTIFY_DONE;
6684 }
d35be8ba 6685 return NOTIFY_OK;
e761b772 6686}
e761b772 6687
1da177e4
LT
6688void __init sched_init_smp(void)
6689{
dcc30a35
RR
6690 cpumask_var_t non_isolated_cpus;
6691
6692 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 6693 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 6694
cb83b629
PZ
6695 sched_init_numa();
6696
6acce3ef
PZ
6697 /*
6698 * There's no userspace yet to cause hotplug operations; hence all the
6699 * cpu masks are stable and all blatant races in the below code cannot
6700 * happen.
6701 */
712555ee 6702 mutex_lock(&sched_domains_mutex);
c4a8849a 6703 init_sched_domains(cpu_active_mask);
dcc30a35
RR
6704 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6705 if (cpumask_empty(non_isolated_cpus))
6706 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 6707 mutex_unlock(&sched_domains_mutex);
e761b772 6708
301a5cba 6709 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
6710 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6711 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772 6712
b328ca18 6713 init_hrtick();
5c1e1767
NP
6714
6715 /* Move init over to a non-isolated CPU */
dcc30a35 6716 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 6717 BUG();
19978ca6 6718 sched_init_granularity();
dcc30a35 6719 free_cpumask_var(non_isolated_cpus);
4212823f 6720
0e3900e6 6721 init_sched_rt_class();
1baca4ce 6722 init_sched_dl_class();
1da177e4
LT
6723}
6724#else
6725void __init sched_init_smp(void)
6726{
19978ca6 6727 sched_init_granularity();
1da177e4
LT
6728}
6729#endif /* CONFIG_SMP */
6730
cd1bb94b
AB
6731const_debug unsigned int sysctl_timer_migration = 1;
6732
1da177e4
LT
6733int in_sched_functions(unsigned long addr)
6734{
1da177e4
LT
6735 return in_lock_functions(addr) ||
6736 (addr >= (unsigned long)__sched_text_start
6737 && addr < (unsigned long)__sched_text_end);
6738}
6739
029632fb 6740#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
6741/*
6742 * Default task group.
6743 * Every task in system belongs to this group at bootup.
6744 */
029632fb 6745struct task_group root_task_group;
35cf4e50 6746LIST_HEAD(task_groups);
052f1dc7 6747#endif
6f505b16 6748
e6252c3e 6749DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 6750
1da177e4
LT
6751void __init sched_init(void)
6752{
dd41f596 6753 int i, j;
434d53b0
MT
6754 unsigned long alloc_size = 0, ptr;
6755
6756#ifdef CONFIG_FAIR_GROUP_SCHED
6757 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6758#endif
6759#ifdef CONFIG_RT_GROUP_SCHED
6760 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 6761#endif
df7c8e84 6762#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 6763 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 6764#endif
434d53b0 6765 if (alloc_size) {
36b7b6d4 6766 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
6767
6768#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 6769 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
6770 ptr += nr_cpu_ids * sizeof(void **);
6771
07e06b01 6772 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 6773 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 6774
6d6bc0ad 6775#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 6776#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6777 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
6778 ptr += nr_cpu_ids * sizeof(void **);
6779
07e06b01 6780 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
6781 ptr += nr_cpu_ids * sizeof(void **);
6782
6d6bc0ad 6783#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
6784#ifdef CONFIG_CPUMASK_OFFSTACK
6785 for_each_possible_cpu(i) {
e6252c3e 6786 per_cpu(load_balance_mask, i) = (void *)ptr;
df7c8e84
RR
6787 ptr += cpumask_size();
6788 }
6789#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 6790 }
dd41f596 6791
332ac17e
DF
6792 init_rt_bandwidth(&def_rt_bandwidth,
6793 global_rt_period(), global_rt_runtime());
6794 init_dl_bandwidth(&def_dl_bandwidth,
1724813d 6795 global_rt_period(), global_rt_runtime());
332ac17e 6796
57d885fe
GH
6797#ifdef CONFIG_SMP
6798 init_defrootdomain();
6799#endif
6800
d0b27fa7 6801#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6802 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 6803 global_rt_period(), global_rt_runtime());
6d6bc0ad 6804#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6805
7c941438 6806#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
6807 list_add(&root_task_group.list, &task_groups);
6808 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 6809 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 6810 autogroup_init(&init_task);
54c707e9 6811
7c941438 6812#endif /* CONFIG_CGROUP_SCHED */
6f505b16 6813
0a945022 6814 for_each_possible_cpu(i) {
70b97a7f 6815 struct rq *rq;
1da177e4
LT
6816
6817 rq = cpu_rq(i);
05fa785c 6818 raw_spin_lock_init(&rq->lock);
7897986b 6819 rq->nr_running = 0;
dce48a84
TG
6820 rq->calc_load_active = 0;
6821 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 6822 init_cfs_rq(&rq->cfs);
6f505b16 6823 init_rt_rq(&rq->rt, rq);
aab03e05 6824 init_dl_rq(&rq->dl, rq);
dd41f596 6825#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 6826 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 6827 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 6828 /*
07e06b01 6829 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
6830 *
6831 * In case of task-groups formed thr' the cgroup filesystem, it
6832 * gets 100% of the cpu resources in the system. This overall
6833 * system cpu resource is divided among the tasks of
07e06b01 6834 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
6835 * based on each entity's (task or task-group's) weight
6836 * (se->load.weight).
6837 *
07e06b01 6838 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
6839 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6840 * then A0's share of the cpu resource is:
6841 *
0d905bca 6842 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 6843 *
07e06b01
YZ
6844 * We achieve this by letting root_task_group's tasks sit
6845 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 6846 */
ab84d31e 6847 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 6848 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
6849#endif /* CONFIG_FAIR_GROUP_SCHED */
6850
6851 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 6852#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 6853 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
07e06b01 6854 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 6855#endif
1da177e4 6856
dd41f596
IM
6857 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6858 rq->cpu_load[j] = 0;
fdf3e95d
VP
6859
6860 rq->last_load_update_tick = jiffies;
6861
1da177e4 6862#ifdef CONFIG_SMP
41c7ce9a 6863 rq->sd = NULL;
57d885fe 6864 rq->rd = NULL;
1399fa78 6865 rq->cpu_power = SCHED_POWER_SCALE;
3f029d3c 6866 rq->post_schedule = 0;
1da177e4 6867 rq->active_balance = 0;
dd41f596 6868 rq->next_balance = jiffies;
1da177e4 6869 rq->push_cpu = 0;
0a2966b4 6870 rq->cpu = i;
1f11eb6a 6871 rq->online = 0;
eae0c9df
MG
6872 rq->idle_stamp = 0;
6873 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 6874 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
6875
6876 INIT_LIST_HEAD(&rq->cfs_tasks);
6877
dc938520 6878 rq_attach_root(rq, &def_root_domain);
3451d024 6879#ifdef CONFIG_NO_HZ_COMMON
1c792db7 6880 rq->nohz_flags = 0;
83cd4fe2 6881#endif
265f22a9
FW
6882#ifdef CONFIG_NO_HZ_FULL
6883 rq->last_sched_tick = 0;
6884#endif
1da177e4 6885#endif
8f4d37ec 6886 init_rq_hrtick(rq);
1da177e4 6887 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
6888 }
6889
2dd73a4f 6890 set_load_weight(&init_task);
b50f60ce 6891
e107be36
AK
6892#ifdef CONFIG_PREEMPT_NOTIFIERS
6893 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6894#endif
6895
1da177e4
LT
6896 /*
6897 * The boot idle thread does lazy MMU switching as well:
6898 */
6899 atomic_inc(&init_mm.mm_count);
6900 enter_lazy_tlb(&init_mm, current);
6901
6902 /*
6903 * Make us the idle thread. Technically, schedule() should not be
6904 * called from this thread, however somewhere below it might be,
6905 * but because we are the idle thread, we just pick up running again
6906 * when this runqueue becomes "idle".
6907 */
6908 init_idle(current, smp_processor_id());
dce48a84
TG
6909
6910 calc_load_update = jiffies + LOAD_FREQ;
6911
dd41f596
IM
6912 /*
6913 * During early bootup we pretend to be a normal task:
6914 */
6915 current->sched_class = &fair_sched_class;
6892b75e 6916
bf4d83f6 6917#ifdef CONFIG_SMP
4cb98839 6918 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
6919 /* May be allocated at isolcpus cmdline parse time */
6920 if (cpu_isolated_map == NULL)
6921 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 6922 idle_thread_set_boot_cpu();
029632fb
PZ
6923#endif
6924 init_sched_fair_class();
6a7b3dc3 6925
6892b75e 6926 scheduler_running = 1;
1da177e4
LT
6927}
6928
d902db1e 6929#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
6930static inline int preempt_count_equals(int preempt_offset)
6931{
234da7bc 6932 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 6933
4ba8216c 6934 return (nested == preempt_offset);
e4aafea2
FW
6935}
6936
d894837f 6937void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6938{
1da177e4
LT
6939 static unsigned long prev_jiffy; /* ratelimiting */
6940
b3fbab05 6941 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
db273be2
TG
6942 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6943 !is_idle_task(current)) ||
e4aafea2 6944 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
6945 return;
6946 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6947 return;
6948 prev_jiffy = jiffies;
6949
3df0fc5b
PZ
6950 printk(KERN_ERR
6951 "BUG: sleeping function called from invalid context at %s:%d\n",
6952 file, line);
6953 printk(KERN_ERR
6954 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6955 in_atomic(), irqs_disabled(),
6956 current->pid, current->comm);
aef745fc
IM
6957
6958 debug_show_held_locks(current);
6959 if (irqs_disabled())
6960 print_irqtrace_events(current);
8f47b187
TG
6961#ifdef CONFIG_DEBUG_PREEMPT
6962 if (!preempt_count_equals(preempt_offset)) {
6963 pr_err("Preemption disabled at:");
6964 print_ip_sym(current->preempt_disable_ip);
6965 pr_cont("\n");
6966 }
6967#endif
aef745fc 6968 dump_stack();
1da177e4
LT
6969}
6970EXPORT_SYMBOL(__might_sleep);
6971#endif
6972
6973#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
6974static void normalize_task(struct rq *rq, struct task_struct *p)
6975{
da7a735e 6976 const struct sched_class *prev_class = p->sched_class;
d50dde5a
DF
6977 struct sched_attr attr = {
6978 .sched_policy = SCHED_NORMAL,
6979 };
da7a735e 6980 int old_prio = p->prio;
3a5e4dc1 6981 int on_rq;
3e51f33f 6982
fd2f4419 6983 on_rq = p->on_rq;
3a5e4dc1 6984 if (on_rq)
4ca9b72b 6985 dequeue_task(rq, p, 0);
d50dde5a 6986 __setscheduler(rq, p, &attr);
3a5e4dc1 6987 if (on_rq) {
4ca9b72b 6988 enqueue_task(rq, p, 0);
3a5e4dc1
AK
6989 resched_task(rq->curr);
6990 }
da7a735e
PZ
6991
6992 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
6993}
6994
1da177e4
LT
6995void normalize_rt_tasks(void)
6996{
a0f98a1c 6997 struct task_struct *g, *p;
1da177e4 6998 unsigned long flags;
70b97a7f 6999 struct rq *rq;
1da177e4 7000
4cf5d77a 7001 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 7002 do_each_thread(g, p) {
178be793
IM
7003 /*
7004 * Only normalize user tasks:
7005 */
7006 if (!p->mm)
7007 continue;
7008
6cfb0d5d 7009 p->se.exec_start = 0;
6cfb0d5d 7010#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7011 p->se.statistics.wait_start = 0;
7012 p->se.statistics.sleep_start = 0;
7013 p->se.statistics.block_start = 0;
6cfb0d5d 7014#endif
dd41f596 7015
aab03e05 7016 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
7017 /*
7018 * Renice negative nice level userspace
7019 * tasks back to 0:
7020 */
d0ea0268 7021 if (task_nice(p) < 0 && p->mm)
dd41f596 7022 set_user_nice(p, 0);
1da177e4 7023 continue;
dd41f596 7024 }
1da177e4 7025
1d615482 7026 raw_spin_lock(&p->pi_lock);
b29739f9 7027 rq = __task_rq_lock(p);
1da177e4 7028
178be793 7029 normalize_task(rq, p);
3a5e4dc1 7030
b29739f9 7031 __task_rq_unlock(rq);
1d615482 7032 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
7033 } while_each_thread(g, p);
7034
4cf5d77a 7035 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
7036}
7037
7038#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7039
67fc4e0c 7040#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7041/*
67fc4e0c 7042 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7043 *
7044 * They can only be called when the whole system has been
7045 * stopped - every CPU needs to be quiescent, and no scheduling
7046 * activity can take place. Using them for anything else would
7047 * be a serious bug, and as a result, they aren't even visible
7048 * under any other configuration.
7049 */
7050
7051/**
7052 * curr_task - return the current task for a given cpu.
7053 * @cpu: the processor in question.
7054 *
7055 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
7056 *
7057 * Return: The current task for @cpu.
1df5c10a 7058 */
36c8b586 7059struct task_struct *curr_task(int cpu)
1df5c10a
LT
7060{
7061 return cpu_curr(cpu);
7062}
7063
67fc4e0c
JW
7064#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7065
7066#ifdef CONFIG_IA64
1df5c10a
LT
7067/**
7068 * set_curr_task - set the current task for a given cpu.
7069 * @cpu: the processor in question.
7070 * @p: the task pointer to set.
7071 *
7072 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7073 * are serviced on a separate stack. It allows the architecture to switch the
7074 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7075 * must be called with all CPU's synchronized, and interrupts disabled, the
7076 * and caller must save the original value of the current task (see
7077 * curr_task() above) and restore that value before reenabling interrupts and
7078 * re-starting the system.
7079 *
7080 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7081 */
36c8b586 7082void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7083{
7084 cpu_curr(cpu) = p;
7085}
7086
7087#endif
29f59db3 7088
7c941438 7089#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7090/* task_group_lock serializes the addition/removal of task groups */
7091static DEFINE_SPINLOCK(task_group_lock);
7092
bccbe08a
PZ
7093static void free_sched_group(struct task_group *tg)
7094{
7095 free_fair_sched_group(tg);
7096 free_rt_sched_group(tg);
e9aa1dd1 7097 autogroup_free(tg);
bccbe08a
PZ
7098 kfree(tg);
7099}
7100
7101/* allocate runqueue etc for a new task group */
ec7dc8ac 7102struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7103{
7104 struct task_group *tg;
bccbe08a
PZ
7105
7106 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7107 if (!tg)
7108 return ERR_PTR(-ENOMEM);
7109
ec7dc8ac 7110 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7111 goto err;
7112
ec7dc8ac 7113 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7114 goto err;
7115
ace783b9
LZ
7116 return tg;
7117
7118err:
7119 free_sched_group(tg);
7120 return ERR_PTR(-ENOMEM);
7121}
7122
7123void sched_online_group(struct task_group *tg, struct task_group *parent)
7124{
7125 unsigned long flags;
7126
8ed36996 7127 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7128 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7129
7130 WARN_ON(!parent); /* root should already exist */
7131
7132 tg->parent = parent;
f473aa5e 7133 INIT_LIST_HEAD(&tg->children);
09f2724a 7134 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7135 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7136}
7137
9b5b7751 7138/* rcu callback to free various structures associated with a task group */
6f505b16 7139static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7140{
29f59db3 7141 /* now it should be safe to free those cfs_rqs */
6f505b16 7142 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7143}
7144
9b5b7751 7145/* Destroy runqueue etc associated with a task group */
4cf86d77 7146void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
7147{
7148 /* wait for possible concurrent references to cfs_rqs complete */
7149 call_rcu(&tg->rcu, free_sched_group_rcu);
7150}
7151
7152void sched_offline_group(struct task_group *tg)
29f59db3 7153{
8ed36996 7154 unsigned long flags;
9b5b7751 7155 int i;
29f59db3 7156
3d4b47b4
PZ
7157 /* end participation in shares distribution */
7158 for_each_possible_cpu(i)
bccbe08a 7159 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
7160
7161 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7162 list_del_rcu(&tg->list);
f473aa5e 7163 list_del_rcu(&tg->siblings);
8ed36996 7164 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7165}
7166
9b5b7751 7167/* change task's runqueue when it moves between groups.
3a252015
IM
7168 * The caller of this function should have put the task in its new group
7169 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7170 * reflect its new group.
9b5b7751
SV
7171 */
7172void sched_move_task(struct task_struct *tsk)
29f59db3 7173{
8323f26c 7174 struct task_group *tg;
29f59db3
SV
7175 int on_rq, running;
7176 unsigned long flags;
7177 struct rq *rq;
7178
7179 rq = task_rq_lock(tsk, &flags);
7180
051a1d1a 7181 running = task_current(rq, tsk);
fd2f4419 7182 on_rq = tsk->on_rq;
29f59db3 7183
0e1f3483 7184 if (on_rq)
29f59db3 7185 dequeue_task(rq, tsk, 0);
0e1f3483
HS
7186 if (unlikely(running))
7187 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 7188
8af01f56 7189 tg = container_of(task_css_check(tsk, cpu_cgroup_subsys_id,
8323f26c
PZ
7190 lockdep_is_held(&tsk->sighand->siglock)),
7191 struct task_group, css);
7192 tg = autogroup_task_group(tsk, tg);
7193 tsk->sched_task_group = tg;
7194
810b3817 7195#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
7196 if (tsk->sched_class->task_move_group)
7197 tsk->sched_class->task_move_group(tsk, on_rq);
7198 else
810b3817 7199#endif
b2b5ce02 7200 set_task_rq(tsk, task_cpu(tsk));
810b3817 7201
0e1f3483
HS
7202 if (unlikely(running))
7203 tsk->sched_class->set_curr_task(rq);
7204 if (on_rq)
371fd7e7 7205 enqueue_task(rq, tsk, 0);
29f59db3 7206
0122ec5b 7207 task_rq_unlock(rq, tsk, &flags);
29f59db3 7208}
7c941438 7209#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7210
a790de99
PT
7211#ifdef CONFIG_RT_GROUP_SCHED
7212/*
7213 * Ensure that the real time constraints are schedulable.
7214 */
7215static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7216
9a7e0b18
PZ
7217/* Must be called with tasklist_lock held */
7218static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7219{
9a7e0b18 7220 struct task_struct *g, *p;
b40b2e8e 7221
9a7e0b18 7222 do_each_thread(g, p) {
029632fb 7223 if (rt_task(p) && task_rq(p)->rt.tg == tg)
9a7e0b18
PZ
7224 return 1;
7225 } while_each_thread(g, p);
b40b2e8e 7226
9a7e0b18
PZ
7227 return 0;
7228}
b40b2e8e 7229
9a7e0b18
PZ
7230struct rt_schedulable_data {
7231 struct task_group *tg;
7232 u64 rt_period;
7233 u64 rt_runtime;
7234};
b40b2e8e 7235
a790de99 7236static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7237{
7238 struct rt_schedulable_data *d = data;
7239 struct task_group *child;
7240 unsigned long total, sum = 0;
7241 u64 period, runtime;
b40b2e8e 7242
9a7e0b18
PZ
7243 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7244 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7245
9a7e0b18
PZ
7246 if (tg == d->tg) {
7247 period = d->rt_period;
7248 runtime = d->rt_runtime;
b40b2e8e 7249 }
b40b2e8e 7250
4653f803
PZ
7251 /*
7252 * Cannot have more runtime than the period.
7253 */
7254 if (runtime > period && runtime != RUNTIME_INF)
7255 return -EINVAL;
6f505b16 7256
4653f803
PZ
7257 /*
7258 * Ensure we don't starve existing RT tasks.
7259 */
9a7e0b18
PZ
7260 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7261 return -EBUSY;
6f505b16 7262
9a7e0b18 7263 total = to_ratio(period, runtime);
6f505b16 7264
4653f803
PZ
7265 /*
7266 * Nobody can have more than the global setting allows.
7267 */
7268 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7269 return -EINVAL;
6f505b16 7270
4653f803
PZ
7271 /*
7272 * The sum of our children's runtime should not exceed our own.
7273 */
9a7e0b18
PZ
7274 list_for_each_entry_rcu(child, &tg->children, siblings) {
7275 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7276 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7277
9a7e0b18
PZ
7278 if (child == d->tg) {
7279 period = d->rt_period;
7280 runtime = d->rt_runtime;
7281 }
6f505b16 7282
9a7e0b18 7283 sum += to_ratio(period, runtime);
9f0c1e56 7284 }
6f505b16 7285
9a7e0b18
PZ
7286 if (sum > total)
7287 return -EINVAL;
7288
7289 return 0;
6f505b16
PZ
7290}
7291
9a7e0b18 7292static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7293{
8277434e
PT
7294 int ret;
7295
9a7e0b18
PZ
7296 struct rt_schedulable_data data = {
7297 .tg = tg,
7298 .rt_period = period,
7299 .rt_runtime = runtime,
7300 };
7301
8277434e
PT
7302 rcu_read_lock();
7303 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7304 rcu_read_unlock();
7305
7306 return ret;
521f1a24
DG
7307}
7308
ab84d31e 7309static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7310 u64 rt_period, u64 rt_runtime)
6f505b16 7311{
ac086bc2 7312 int i, err = 0;
9f0c1e56 7313
9f0c1e56 7314 mutex_lock(&rt_constraints_mutex);
521f1a24 7315 read_lock(&tasklist_lock);
9a7e0b18
PZ
7316 err = __rt_schedulable(tg, rt_period, rt_runtime);
7317 if (err)
9f0c1e56 7318 goto unlock;
ac086bc2 7319
0986b11b 7320 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7321 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7322 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7323
7324 for_each_possible_cpu(i) {
7325 struct rt_rq *rt_rq = tg->rt_rq[i];
7326
0986b11b 7327 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7328 rt_rq->rt_runtime = rt_runtime;
0986b11b 7329 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7330 }
0986b11b 7331 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7332unlock:
521f1a24 7333 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7334 mutex_unlock(&rt_constraints_mutex);
7335
7336 return err;
6f505b16
PZ
7337}
7338
25cc7da7 7339static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
7340{
7341 u64 rt_runtime, rt_period;
7342
7343 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7344 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7345 if (rt_runtime_us < 0)
7346 rt_runtime = RUNTIME_INF;
7347
ab84d31e 7348 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7349}
7350
25cc7da7 7351static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
7352{
7353 u64 rt_runtime_us;
7354
d0b27fa7 7355 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7356 return -1;
7357
d0b27fa7 7358 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7359 do_div(rt_runtime_us, NSEC_PER_USEC);
7360 return rt_runtime_us;
7361}
d0b27fa7 7362
25cc7da7 7363static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
d0b27fa7
PZ
7364{
7365 u64 rt_runtime, rt_period;
7366
7367 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7368 rt_runtime = tg->rt_bandwidth.rt_runtime;
7369
619b0488
R
7370 if (rt_period == 0)
7371 return -EINVAL;
7372
ab84d31e 7373 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7374}
7375
25cc7da7 7376static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
7377{
7378 u64 rt_period_us;
7379
7380 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7381 do_div(rt_period_us, NSEC_PER_USEC);
7382 return rt_period_us;
7383}
332ac17e 7384#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7385
332ac17e 7386#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
7387static int sched_rt_global_constraints(void)
7388{
7389 int ret = 0;
7390
7391 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7392 read_lock(&tasklist_lock);
4653f803 7393 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7394 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7395 mutex_unlock(&rt_constraints_mutex);
7396
7397 return ret;
7398}
54e99124 7399
25cc7da7 7400static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
7401{
7402 /* Don't accept realtime tasks when there is no way for them to run */
7403 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7404 return 0;
7405
7406 return 1;
7407}
7408
6d6bc0ad 7409#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7410static int sched_rt_global_constraints(void)
7411{
ac086bc2 7412 unsigned long flags;
332ac17e 7413 int i, ret = 0;
ec5d4989 7414
0986b11b 7415 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7416 for_each_possible_cpu(i) {
7417 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7418
0986b11b 7419 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7420 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7421 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7422 }
0986b11b 7423 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7424
332ac17e 7425 return ret;
d0b27fa7 7426}
6d6bc0ad 7427#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7428
332ac17e
DF
7429static int sched_dl_global_constraints(void)
7430{
1724813d
PZ
7431 u64 runtime = global_rt_runtime();
7432 u64 period = global_rt_period();
332ac17e 7433 u64 new_bw = to_ratio(period, runtime);
1724813d 7434 int cpu, ret = 0;
332ac17e
DF
7435
7436 /*
7437 * Here we want to check the bandwidth not being set to some
7438 * value smaller than the currently allocated bandwidth in
7439 * any of the root_domains.
7440 *
7441 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7442 * cycling on root_domains... Discussion on different/better
7443 * solutions is welcome!
7444 */
1724813d
PZ
7445 for_each_possible_cpu(cpu) {
7446 struct dl_bw *dl_b = dl_bw_of(cpu);
332ac17e
DF
7447
7448 raw_spin_lock(&dl_b->lock);
1724813d
PZ
7449 if (new_bw < dl_b->total_bw)
7450 ret = -EBUSY;
332ac17e 7451 raw_spin_unlock(&dl_b->lock);
1724813d
PZ
7452
7453 if (ret)
7454 break;
332ac17e
DF
7455 }
7456
1724813d 7457 return ret;
332ac17e
DF
7458}
7459
1724813d 7460static void sched_dl_do_global(void)
ce0dbbbb 7461{
1724813d
PZ
7462 u64 new_bw = -1;
7463 int cpu;
ce0dbbbb 7464
1724813d
PZ
7465 def_dl_bandwidth.dl_period = global_rt_period();
7466 def_dl_bandwidth.dl_runtime = global_rt_runtime();
7467
7468 if (global_rt_runtime() != RUNTIME_INF)
7469 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7470
7471 /*
7472 * FIXME: As above...
7473 */
7474 for_each_possible_cpu(cpu) {
7475 struct dl_bw *dl_b = dl_bw_of(cpu);
7476
7477 raw_spin_lock(&dl_b->lock);
7478 dl_b->bw = new_bw;
7479 raw_spin_unlock(&dl_b->lock);
ce0dbbbb 7480 }
1724813d
PZ
7481}
7482
7483static int sched_rt_global_validate(void)
7484{
7485 if (sysctl_sched_rt_period <= 0)
7486 return -EINVAL;
7487
7488 if (sysctl_sched_rt_runtime > sysctl_sched_rt_period)
7489 return -EINVAL;
7490
7491 return 0;
7492}
7493
7494static void sched_rt_do_global(void)
7495{
7496 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7497 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
7498}
7499
d0b27fa7 7500int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7501 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7502 loff_t *ppos)
7503{
d0b27fa7
PZ
7504 int old_period, old_runtime;
7505 static DEFINE_MUTEX(mutex);
1724813d 7506 int ret;
d0b27fa7
PZ
7507
7508 mutex_lock(&mutex);
7509 old_period = sysctl_sched_rt_period;
7510 old_runtime = sysctl_sched_rt_runtime;
7511
8d65af78 7512 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
7513
7514 if (!ret && write) {
1724813d
PZ
7515 ret = sched_rt_global_validate();
7516 if (ret)
7517 goto undo;
7518
d0b27fa7 7519 ret = sched_rt_global_constraints();
1724813d
PZ
7520 if (ret)
7521 goto undo;
7522
7523 ret = sched_dl_global_constraints();
7524 if (ret)
7525 goto undo;
7526
7527 sched_rt_do_global();
7528 sched_dl_do_global();
7529 }
7530 if (0) {
7531undo:
7532 sysctl_sched_rt_period = old_period;
7533 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
7534 }
7535 mutex_unlock(&mutex);
7536
7537 return ret;
7538}
68318b8e 7539
1724813d 7540int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
7541 void __user *buffer, size_t *lenp,
7542 loff_t *ppos)
7543{
7544 int ret;
332ac17e 7545 static DEFINE_MUTEX(mutex);
332ac17e
DF
7546
7547 mutex_lock(&mutex);
332ac17e 7548 ret = proc_dointvec(table, write, buffer, lenp, ppos);
1724813d
PZ
7549 /* make sure that internally we keep jiffies */
7550 /* also, writing zero resets timeslice to default */
332ac17e 7551 if (!ret && write) {
1724813d
PZ
7552 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7553 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
332ac17e
DF
7554 }
7555 mutex_unlock(&mutex);
332ac17e
DF
7556 return ret;
7557}
7558
052f1dc7 7559#ifdef CONFIG_CGROUP_SCHED
68318b8e 7560
a7c6d554 7561static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 7562{
a7c6d554 7563 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
7564}
7565
eb95419b
TH
7566static struct cgroup_subsys_state *
7567cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 7568{
eb95419b
TH
7569 struct task_group *parent = css_tg(parent_css);
7570 struct task_group *tg;
68318b8e 7571
eb95419b 7572 if (!parent) {
68318b8e 7573 /* This is early initialization for the top cgroup */
07e06b01 7574 return &root_task_group.css;
68318b8e
SV
7575 }
7576
ec7dc8ac 7577 tg = sched_create_group(parent);
68318b8e
SV
7578 if (IS_ERR(tg))
7579 return ERR_PTR(-ENOMEM);
7580
68318b8e
SV
7581 return &tg->css;
7582}
7583
eb95419b 7584static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
ace783b9 7585{
eb95419b
TH
7586 struct task_group *tg = css_tg(css);
7587 struct task_group *parent = css_tg(css_parent(css));
ace783b9 7588
63876986
TH
7589 if (parent)
7590 sched_online_group(tg, parent);
ace783b9
LZ
7591 return 0;
7592}
7593
eb95419b 7594static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 7595{
eb95419b 7596 struct task_group *tg = css_tg(css);
68318b8e
SV
7597
7598 sched_destroy_group(tg);
7599}
7600
eb95419b 7601static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
ace783b9 7602{
eb95419b 7603 struct task_group *tg = css_tg(css);
ace783b9
LZ
7604
7605 sched_offline_group(tg);
7606}
7607
eb95419b 7608static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
bb9d97b6 7609 struct cgroup_taskset *tset)
68318b8e 7610{
bb9d97b6
TH
7611 struct task_struct *task;
7612
d99c8727 7613 cgroup_taskset_for_each(task, css, tset) {
b68aa230 7614#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 7615 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 7616 return -EINVAL;
b68aa230 7617#else
bb9d97b6
TH
7618 /* We don't support RT-tasks being in separate groups */
7619 if (task->sched_class != &fair_sched_class)
7620 return -EINVAL;
b68aa230 7621#endif
bb9d97b6 7622 }
be367d09
BB
7623 return 0;
7624}
68318b8e 7625
eb95419b 7626static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
bb9d97b6 7627 struct cgroup_taskset *tset)
68318b8e 7628{
bb9d97b6
TH
7629 struct task_struct *task;
7630
d99c8727 7631 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 7632 sched_move_task(task);
68318b8e
SV
7633}
7634
eb95419b
TH
7635static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7636 struct cgroup_subsys_state *old_css,
7637 struct task_struct *task)
068c5cc5
PZ
7638{
7639 /*
7640 * cgroup_exit() is called in the copy_process() failure path.
7641 * Ignore this case since the task hasn't ran yet, this avoids
7642 * trying to poke a half freed task state from generic code.
7643 */
7644 if (!(task->flags & PF_EXITING))
7645 return;
7646
7647 sched_move_task(task);
7648}
7649
052f1dc7 7650#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
7651static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7652 struct cftype *cftype, u64 shareval)
68318b8e 7653{
182446d0 7654 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
7655}
7656
182446d0
TH
7657static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7658 struct cftype *cft)
68318b8e 7659{
182446d0 7660 struct task_group *tg = css_tg(css);
68318b8e 7661
c8b28116 7662 return (u64) scale_load_down(tg->shares);
68318b8e 7663}
ab84d31e
PT
7664
7665#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
7666static DEFINE_MUTEX(cfs_constraints_mutex);
7667
ab84d31e
PT
7668const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7669const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7670
a790de99
PT
7671static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7672
ab84d31e
PT
7673static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7674{
56f570e5 7675 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 7676 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
7677
7678 if (tg == &root_task_group)
7679 return -EINVAL;
7680
7681 /*
7682 * Ensure we have at some amount of bandwidth every period. This is
7683 * to prevent reaching a state of large arrears when throttled via
7684 * entity_tick() resulting in prolonged exit starvation.
7685 */
7686 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7687 return -EINVAL;
7688
7689 /*
7690 * Likewise, bound things on the otherside by preventing insane quota
7691 * periods. This also allows us to normalize in computing quota
7692 * feasibility.
7693 */
7694 if (period > max_cfs_quota_period)
7695 return -EINVAL;
7696
a790de99
PT
7697 mutex_lock(&cfs_constraints_mutex);
7698 ret = __cfs_schedulable(tg, period, quota);
7699 if (ret)
7700 goto out_unlock;
7701
58088ad0 7702 runtime_enabled = quota != RUNTIME_INF;
56f570e5 7703 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
7704 /*
7705 * If we need to toggle cfs_bandwidth_used, off->on must occur
7706 * before making related changes, and on->off must occur afterwards
7707 */
7708 if (runtime_enabled && !runtime_was_enabled)
7709 cfs_bandwidth_usage_inc();
ab84d31e
PT
7710 raw_spin_lock_irq(&cfs_b->lock);
7711 cfs_b->period = ns_to_ktime(period);
7712 cfs_b->quota = quota;
58088ad0 7713
a9cf55b2 7714 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
7715 /* restart the period timer (if active) to handle new period expiry */
7716 if (runtime_enabled && cfs_b->timer_active) {
7717 /* force a reprogram */
7718 cfs_b->timer_active = 0;
7719 __start_cfs_bandwidth(cfs_b);
7720 }
ab84d31e
PT
7721 raw_spin_unlock_irq(&cfs_b->lock);
7722
7723 for_each_possible_cpu(i) {
7724 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 7725 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
7726
7727 raw_spin_lock_irq(&rq->lock);
58088ad0 7728 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 7729 cfs_rq->runtime_remaining = 0;
671fd9da 7730
029632fb 7731 if (cfs_rq->throttled)
671fd9da 7732 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
7733 raw_spin_unlock_irq(&rq->lock);
7734 }
1ee14e6c
BS
7735 if (runtime_was_enabled && !runtime_enabled)
7736 cfs_bandwidth_usage_dec();
a790de99
PT
7737out_unlock:
7738 mutex_unlock(&cfs_constraints_mutex);
ab84d31e 7739
a790de99 7740 return ret;
ab84d31e
PT
7741}
7742
7743int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7744{
7745 u64 quota, period;
7746
029632fb 7747 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7748 if (cfs_quota_us < 0)
7749 quota = RUNTIME_INF;
7750 else
7751 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7752
7753 return tg_set_cfs_bandwidth(tg, period, quota);
7754}
7755
7756long tg_get_cfs_quota(struct task_group *tg)
7757{
7758 u64 quota_us;
7759
029632fb 7760 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
7761 return -1;
7762
029632fb 7763 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
7764 do_div(quota_us, NSEC_PER_USEC);
7765
7766 return quota_us;
7767}
7768
7769int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7770{
7771 u64 quota, period;
7772
7773 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 7774 quota = tg->cfs_bandwidth.quota;
ab84d31e 7775
ab84d31e
PT
7776 return tg_set_cfs_bandwidth(tg, period, quota);
7777}
7778
7779long tg_get_cfs_period(struct task_group *tg)
7780{
7781 u64 cfs_period_us;
7782
029632fb 7783 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7784 do_div(cfs_period_us, NSEC_PER_USEC);
7785
7786 return cfs_period_us;
7787}
7788
182446d0
TH
7789static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7790 struct cftype *cft)
ab84d31e 7791{
182446d0 7792 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
7793}
7794
182446d0
TH
7795static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7796 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 7797{
182446d0 7798 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
7799}
7800
182446d0
TH
7801static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7802 struct cftype *cft)
ab84d31e 7803{
182446d0 7804 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
7805}
7806
182446d0
TH
7807static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7808 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 7809{
182446d0 7810 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
7811}
7812
a790de99
PT
7813struct cfs_schedulable_data {
7814 struct task_group *tg;
7815 u64 period, quota;
7816};
7817
7818/*
7819 * normalize group quota/period to be quota/max_period
7820 * note: units are usecs
7821 */
7822static u64 normalize_cfs_quota(struct task_group *tg,
7823 struct cfs_schedulable_data *d)
7824{
7825 u64 quota, period;
7826
7827 if (tg == d->tg) {
7828 period = d->period;
7829 quota = d->quota;
7830 } else {
7831 period = tg_get_cfs_period(tg);
7832 quota = tg_get_cfs_quota(tg);
7833 }
7834
7835 /* note: these should typically be equivalent */
7836 if (quota == RUNTIME_INF || quota == -1)
7837 return RUNTIME_INF;
7838
7839 return to_ratio(period, quota);
7840}
7841
7842static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7843{
7844 struct cfs_schedulable_data *d = data;
029632fb 7845 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
7846 s64 quota = 0, parent_quota = -1;
7847
7848 if (!tg->parent) {
7849 quota = RUNTIME_INF;
7850 } else {
029632fb 7851 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
7852
7853 quota = normalize_cfs_quota(tg, d);
7854 parent_quota = parent_b->hierarchal_quota;
7855
7856 /*
7857 * ensure max(child_quota) <= parent_quota, inherit when no
7858 * limit is set
7859 */
7860 if (quota == RUNTIME_INF)
7861 quota = parent_quota;
7862 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7863 return -EINVAL;
7864 }
7865 cfs_b->hierarchal_quota = quota;
7866
7867 return 0;
7868}
7869
7870static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7871{
8277434e 7872 int ret;
a790de99
PT
7873 struct cfs_schedulable_data data = {
7874 .tg = tg,
7875 .period = period,
7876 .quota = quota,
7877 };
7878
7879 if (quota != RUNTIME_INF) {
7880 do_div(data.period, NSEC_PER_USEC);
7881 do_div(data.quota, NSEC_PER_USEC);
7882 }
7883
8277434e
PT
7884 rcu_read_lock();
7885 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7886 rcu_read_unlock();
7887
7888 return ret;
a790de99 7889}
e8da1b18 7890
2da8ca82 7891static int cpu_stats_show(struct seq_file *sf, void *v)
e8da1b18 7892{
2da8ca82 7893 struct task_group *tg = css_tg(seq_css(sf));
029632fb 7894 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 7895
44ffc75b
TH
7896 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7897 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7898 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
7899
7900 return 0;
7901}
ab84d31e 7902#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 7903#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 7904
052f1dc7 7905#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
7906static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7907 struct cftype *cft, s64 val)
6f505b16 7908{
182446d0 7909 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
7910}
7911
182446d0
TH
7912static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7913 struct cftype *cft)
6f505b16 7914{
182446d0 7915 return sched_group_rt_runtime(css_tg(css));
6f505b16 7916}
d0b27fa7 7917
182446d0
TH
7918static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7919 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 7920{
182446d0 7921 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
7922}
7923
182446d0
TH
7924static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7925 struct cftype *cft)
d0b27fa7 7926{
182446d0 7927 return sched_group_rt_period(css_tg(css));
d0b27fa7 7928}
6d6bc0ad 7929#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 7930
fe5c7cc2 7931static struct cftype cpu_files[] = {
052f1dc7 7932#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
7933 {
7934 .name = "shares",
f4c753b7
PM
7935 .read_u64 = cpu_shares_read_u64,
7936 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 7937 },
052f1dc7 7938#endif
ab84d31e
PT
7939#ifdef CONFIG_CFS_BANDWIDTH
7940 {
7941 .name = "cfs_quota_us",
7942 .read_s64 = cpu_cfs_quota_read_s64,
7943 .write_s64 = cpu_cfs_quota_write_s64,
7944 },
7945 {
7946 .name = "cfs_period_us",
7947 .read_u64 = cpu_cfs_period_read_u64,
7948 .write_u64 = cpu_cfs_period_write_u64,
7949 },
e8da1b18
NR
7950 {
7951 .name = "stat",
2da8ca82 7952 .seq_show = cpu_stats_show,
e8da1b18 7953 },
ab84d31e 7954#endif
052f1dc7 7955#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7956 {
9f0c1e56 7957 .name = "rt_runtime_us",
06ecb27c
PM
7958 .read_s64 = cpu_rt_runtime_read,
7959 .write_s64 = cpu_rt_runtime_write,
6f505b16 7960 },
d0b27fa7
PZ
7961 {
7962 .name = "rt_period_us",
f4c753b7
PM
7963 .read_u64 = cpu_rt_period_read_uint,
7964 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 7965 },
052f1dc7 7966#endif
4baf6e33 7967 { } /* terminate */
68318b8e
SV
7968};
7969
68318b8e 7970struct cgroup_subsys cpu_cgroup_subsys = {
38605cae 7971 .name = "cpu",
92fb9748
TH
7972 .css_alloc = cpu_cgroup_css_alloc,
7973 .css_free = cpu_cgroup_css_free,
ace783b9
LZ
7974 .css_online = cpu_cgroup_css_online,
7975 .css_offline = cpu_cgroup_css_offline,
bb9d97b6
TH
7976 .can_attach = cpu_cgroup_can_attach,
7977 .attach = cpu_cgroup_attach,
068c5cc5 7978 .exit = cpu_cgroup_exit,
38605cae 7979 .subsys_id = cpu_cgroup_subsys_id,
4baf6e33 7980 .base_cftypes = cpu_files,
68318b8e
SV
7981 .early_init = 1,
7982};
7983
052f1dc7 7984#endif /* CONFIG_CGROUP_SCHED */
d842de87 7985
b637a328
PM
7986void dump_cpu_task(int cpu)
7987{
7988 pr_info("Task dump for CPU %d:\n", cpu);
7989 sched_show_task(cpu_curr(cpu));
7990}