]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/sched/core.c
sched/preempt: Rename PREEMPT_CHECK_OFFSET to PREEMPT_DISABLE_OFFSET
[mirror_ubuntu-artful-kernel.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
91d1aa43 75#include <linux/context_tracking.h>
52f5684c 76#include <linux/compiler.h>
1da177e4 77
96f951ed 78#include <asm/switch_to.h>
5517d86b 79#include <asm/tlb.h>
838225b4 80#include <asm/irq_regs.h>
db7e527d 81#include <asm/mutex.h>
e6e6685a
GC
82#ifdef CONFIG_PARAVIRT
83#include <asm/paravirt.h>
84#endif
1da177e4 85
029632fb 86#include "sched.h"
ea138446 87#include "../workqueue_internal.h"
29d5e047 88#include "../smpboot.h"
6e0534f2 89
a8d154b0 90#define CREATE_TRACE_POINTS
ad8d75ff 91#include <trace/events/sched.h>
a8d154b0 92
029632fb 93void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 94{
58088ad0
PT
95 unsigned long delta;
96 ktime_t soft, hard, now;
d0b27fa7 97
58088ad0
PT
98 for (;;) {
99 if (hrtimer_active(period_timer))
100 break;
101
102 now = hrtimer_cb_get_time(period_timer);
103 hrtimer_forward(period_timer, now, period);
d0b27fa7 104
58088ad0
PT
105 soft = hrtimer_get_softexpires(period_timer);
106 hard = hrtimer_get_expires(period_timer);
107 delta = ktime_to_ns(ktime_sub(hard, soft));
108 __hrtimer_start_range_ns(period_timer, soft, delta,
109 HRTIMER_MODE_ABS_PINNED, 0);
110 }
111}
112
029632fb
PZ
113DEFINE_MUTEX(sched_domains_mutex);
114DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 115
fe44d621 116static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 117
029632fb 118void update_rq_clock(struct rq *rq)
3e51f33f 119{
fe44d621 120 s64 delta;
305e6835 121
9edfbfed
PZ
122 lockdep_assert_held(&rq->lock);
123
124 if (rq->clock_skip_update & RQCF_ACT_SKIP)
f26f9aff 125 return;
aa483808 126
fe44d621 127 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
4036ac15
MG
128 if (delta < 0)
129 return;
fe44d621
PZ
130 rq->clock += delta;
131 update_rq_clock_task(rq, delta);
3e51f33f
PZ
132}
133
bf5c91ba
IM
134/*
135 * Debugging: various feature bits
136 */
f00b45c1 137
f00b45c1
PZ
138#define SCHED_FEAT(name, enabled) \
139 (1UL << __SCHED_FEAT_##name) * enabled |
140
bf5c91ba 141const_debug unsigned int sysctl_sched_features =
391e43da 142#include "features.h"
f00b45c1
PZ
143 0;
144
145#undef SCHED_FEAT
146
147#ifdef CONFIG_SCHED_DEBUG
148#define SCHED_FEAT(name, enabled) \
149 #name ,
150
1292531f 151static const char * const sched_feat_names[] = {
391e43da 152#include "features.h"
f00b45c1
PZ
153};
154
155#undef SCHED_FEAT
156
34f3a814 157static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 158{
f00b45c1
PZ
159 int i;
160
f8b6d1cc 161 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
162 if (!(sysctl_sched_features & (1UL << i)))
163 seq_puts(m, "NO_");
164 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 165 }
34f3a814 166 seq_puts(m, "\n");
f00b45c1 167
34f3a814 168 return 0;
f00b45c1
PZ
169}
170
f8b6d1cc
PZ
171#ifdef HAVE_JUMP_LABEL
172
c5905afb
IM
173#define jump_label_key__true STATIC_KEY_INIT_TRUE
174#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
175
176#define SCHED_FEAT(name, enabled) \
177 jump_label_key__##enabled ,
178
c5905afb 179struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
180#include "features.h"
181};
182
183#undef SCHED_FEAT
184
185static void sched_feat_disable(int i)
186{
c5905afb
IM
187 if (static_key_enabled(&sched_feat_keys[i]))
188 static_key_slow_dec(&sched_feat_keys[i]);
f8b6d1cc
PZ
189}
190
191static void sched_feat_enable(int i)
192{
c5905afb
IM
193 if (!static_key_enabled(&sched_feat_keys[i]))
194 static_key_slow_inc(&sched_feat_keys[i]);
f8b6d1cc
PZ
195}
196#else
197static void sched_feat_disable(int i) { };
198static void sched_feat_enable(int i) { };
199#endif /* HAVE_JUMP_LABEL */
200
1a687c2e 201static int sched_feat_set(char *cmp)
f00b45c1 202{
f00b45c1 203 int i;
1a687c2e 204 int neg = 0;
f00b45c1 205
524429c3 206 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
207 neg = 1;
208 cmp += 3;
209 }
210
f8b6d1cc 211 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 212 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 213 if (neg) {
f00b45c1 214 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
215 sched_feat_disable(i);
216 } else {
f00b45c1 217 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
218 sched_feat_enable(i);
219 }
f00b45c1
PZ
220 break;
221 }
222 }
223
1a687c2e
MG
224 return i;
225}
226
227static ssize_t
228sched_feat_write(struct file *filp, const char __user *ubuf,
229 size_t cnt, loff_t *ppos)
230{
231 char buf[64];
232 char *cmp;
233 int i;
5cd08fbf 234 struct inode *inode;
1a687c2e
MG
235
236 if (cnt > 63)
237 cnt = 63;
238
239 if (copy_from_user(&buf, ubuf, cnt))
240 return -EFAULT;
241
242 buf[cnt] = 0;
243 cmp = strstrip(buf);
244
5cd08fbf
JB
245 /* Ensure the static_key remains in a consistent state */
246 inode = file_inode(filp);
247 mutex_lock(&inode->i_mutex);
1a687c2e 248 i = sched_feat_set(cmp);
5cd08fbf 249 mutex_unlock(&inode->i_mutex);
f8b6d1cc 250 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
251 return -EINVAL;
252
42994724 253 *ppos += cnt;
f00b45c1
PZ
254
255 return cnt;
256}
257
34f3a814
LZ
258static int sched_feat_open(struct inode *inode, struct file *filp)
259{
260 return single_open(filp, sched_feat_show, NULL);
261}
262
828c0950 263static const struct file_operations sched_feat_fops = {
34f3a814
LZ
264 .open = sched_feat_open,
265 .write = sched_feat_write,
266 .read = seq_read,
267 .llseek = seq_lseek,
268 .release = single_release,
f00b45c1
PZ
269};
270
271static __init int sched_init_debug(void)
272{
f00b45c1
PZ
273 debugfs_create_file("sched_features", 0644, NULL, NULL,
274 &sched_feat_fops);
275
276 return 0;
277}
278late_initcall(sched_init_debug);
f8b6d1cc 279#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 280
b82d9fdd
PZ
281/*
282 * Number of tasks to iterate in a single balance run.
283 * Limited because this is done with IRQs disabled.
284 */
285const_debug unsigned int sysctl_sched_nr_migrate = 32;
286
e9e9250b
PZ
287/*
288 * period over which we average the RT time consumption, measured
289 * in ms.
290 *
291 * default: 1s
292 */
293const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
294
fa85ae24 295/*
9f0c1e56 296 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
297 * default: 1s
298 */
9f0c1e56 299unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 300
029632fb 301__read_mostly int scheduler_running;
6892b75e 302
9f0c1e56
PZ
303/*
304 * part of the period that we allow rt tasks to run in us.
305 * default: 0.95s
306 */
307int sysctl_sched_rt_runtime = 950000;
fa85ae24 308
3fa0818b
RR
309/* cpus with isolated domains */
310cpumask_var_t cpu_isolated_map;
311
1da177e4 312/*
cc2a73b5 313 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 314 */
a9957449 315static struct rq *this_rq_lock(void)
1da177e4
LT
316 __acquires(rq->lock)
317{
70b97a7f 318 struct rq *rq;
1da177e4
LT
319
320 local_irq_disable();
321 rq = this_rq();
05fa785c 322 raw_spin_lock(&rq->lock);
1da177e4
LT
323
324 return rq;
325}
326
8f4d37ec
PZ
327#ifdef CONFIG_SCHED_HRTICK
328/*
329 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 330 */
8f4d37ec 331
8f4d37ec
PZ
332static void hrtick_clear(struct rq *rq)
333{
334 if (hrtimer_active(&rq->hrtick_timer))
335 hrtimer_cancel(&rq->hrtick_timer);
336}
337
8f4d37ec
PZ
338/*
339 * High-resolution timer tick.
340 * Runs from hardirq context with interrupts disabled.
341 */
342static enum hrtimer_restart hrtick(struct hrtimer *timer)
343{
344 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
345
346 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
347
05fa785c 348 raw_spin_lock(&rq->lock);
3e51f33f 349 update_rq_clock(rq);
8f4d37ec 350 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 351 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
352
353 return HRTIMER_NORESTART;
354}
355
95e904c7 356#ifdef CONFIG_SMP
971ee28c
PZ
357
358static int __hrtick_restart(struct rq *rq)
359{
360 struct hrtimer *timer = &rq->hrtick_timer;
361 ktime_t time = hrtimer_get_softexpires(timer);
362
363 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
364}
365
31656519
PZ
366/*
367 * called from hardirq (IPI) context
368 */
369static void __hrtick_start(void *arg)
b328ca18 370{
31656519 371 struct rq *rq = arg;
b328ca18 372
05fa785c 373 raw_spin_lock(&rq->lock);
971ee28c 374 __hrtick_restart(rq);
31656519 375 rq->hrtick_csd_pending = 0;
05fa785c 376 raw_spin_unlock(&rq->lock);
b328ca18
PZ
377}
378
31656519
PZ
379/*
380 * Called to set the hrtick timer state.
381 *
382 * called with rq->lock held and irqs disabled
383 */
029632fb 384void hrtick_start(struct rq *rq, u64 delay)
b328ca18 385{
31656519 386 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 387 ktime_t time;
388 s64 delta;
389
390 /*
391 * Don't schedule slices shorter than 10000ns, that just
392 * doesn't make sense and can cause timer DoS.
393 */
394 delta = max_t(s64, delay, 10000LL);
395 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 396
cc584b21 397 hrtimer_set_expires(timer, time);
31656519
PZ
398
399 if (rq == this_rq()) {
971ee28c 400 __hrtick_restart(rq);
31656519 401 } else if (!rq->hrtick_csd_pending) {
c46fff2a 402 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
403 rq->hrtick_csd_pending = 1;
404 }
b328ca18
PZ
405}
406
407static int
408hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
409{
410 int cpu = (int)(long)hcpu;
411
412 switch (action) {
413 case CPU_UP_CANCELED:
414 case CPU_UP_CANCELED_FROZEN:
415 case CPU_DOWN_PREPARE:
416 case CPU_DOWN_PREPARE_FROZEN:
417 case CPU_DEAD:
418 case CPU_DEAD_FROZEN:
31656519 419 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
420 return NOTIFY_OK;
421 }
422
423 return NOTIFY_DONE;
424}
425
fa748203 426static __init void init_hrtick(void)
b328ca18
PZ
427{
428 hotcpu_notifier(hotplug_hrtick, 0);
429}
31656519
PZ
430#else
431/*
432 * Called to set the hrtick timer state.
433 *
434 * called with rq->lock held and irqs disabled
435 */
029632fb 436void hrtick_start(struct rq *rq, u64 delay)
31656519 437{
86893335
WL
438 /*
439 * Don't schedule slices shorter than 10000ns, that just
440 * doesn't make sense. Rely on vruntime for fairness.
441 */
442 delay = max_t(u64, delay, 10000LL);
7f1e2ca9 443 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 444 HRTIMER_MODE_REL_PINNED, 0);
31656519 445}
b328ca18 446
006c75f1 447static inline void init_hrtick(void)
8f4d37ec 448{
8f4d37ec 449}
31656519 450#endif /* CONFIG_SMP */
8f4d37ec 451
31656519 452static void init_rq_hrtick(struct rq *rq)
8f4d37ec 453{
31656519
PZ
454#ifdef CONFIG_SMP
455 rq->hrtick_csd_pending = 0;
8f4d37ec 456
31656519
PZ
457 rq->hrtick_csd.flags = 0;
458 rq->hrtick_csd.func = __hrtick_start;
459 rq->hrtick_csd.info = rq;
460#endif
8f4d37ec 461
31656519
PZ
462 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
463 rq->hrtick_timer.function = hrtick;
8f4d37ec 464}
006c75f1 465#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
466static inline void hrtick_clear(struct rq *rq)
467{
468}
469
8f4d37ec
PZ
470static inline void init_rq_hrtick(struct rq *rq)
471{
472}
473
b328ca18
PZ
474static inline void init_hrtick(void)
475{
476}
006c75f1 477#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 478
fd99f91a
PZ
479/*
480 * cmpxchg based fetch_or, macro so it works for different integer types
481 */
482#define fetch_or(ptr, val) \
483({ typeof(*(ptr)) __old, __val = *(ptr); \
484 for (;;) { \
485 __old = cmpxchg((ptr), __val, __val | (val)); \
486 if (__old == __val) \
487 break; \
488 __val = __old; \
489 } \
490 __old; \
491})
492
e3baac47 493#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
494/*
495 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
496 * this avoids any races wrt polling state changes and thereby avoids
497 * spurious IPIs.
498 */
499static bool set_nr_and_not_polling(struct task_struct *p)
500{
501 struct thread_info *ti = task_thread_info(p);
502 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
503}
e3baac47
PZ
504
505/*
506 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
507 *
508 * If this returns true, then the idle task promises to call
509 * sched_ttwu_pending() and reschedule soon.
510 */
511static bool set_nr_if_polling(struct task_struct *p)
512{
513 struct thread_info *ti = task_thread_info(p);
316c1608 514 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
e3baac47
PZ
515
516 for (;;) {
517 if (!(val & _TIF_POLLING_NRFLAG))
518 return false;
519 if (val & _TIF_NEED_RESCHED)
520 return true;
521 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
522 if (old == val)
523 break;
524 val = old;
525 }
526 return true;
527}
528
fd99f91a
PZ
529#else
530static bool set_nr_and_not_polling(struct task_struct *p)
531{
532 set_tsk_need_resched(p);
533 return true;
534}
e3baac47
PZ
535
536#ifdef CONFIG_SMP
537static bool set_nr_if_polling(struct task_struct *p)
538{
539 return false;
540}
541#endif
fd99f91a
PZ
542#endif
543
76751049
PZ
544void wake_q_add(struct wake_q_head *head, struct task_struct *task)
545{
546 struct wake_q_node *node = &task->wake_q;
547
548 /*
549 * Atomically grab the task, if ->wake_q is !nil already it means
550 * its already queued (either by us or someone else) and will get the
551 * wakeup due to that.
552 *
553 * This cmpxchg() implies a full barrier, which pairs with the write
554 * barrier implied by the wakeup in wake_up_list().
555 */
556 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
557 return;
558
559 get_task_struct(task);
560
561 /*
562 * The head is context local, there can be no concurrency.
563 */
564 *head->lastp = node;
565 head->lastp = &node->next;
566}
567
568void wake_up_q(struct wake_q_head *head)
569{
570 struct wake_q_node *node = head->first;
571
572 while (node != WAKE_Q_TAIL) {
573 struct task_struct *task;
574
575 task = container_of(node, struct task_struct, wake_q);
576 BUG_ON(!task);
577 /* task can safely be re-inserted now */
578 node = node->next;
579 task->wake_q.next = NULL;
580
581 /*
582 * wake_up_process() implies a wmb() to pair with the queueing
583 * in wake_q_add() so as not to miss wakeups.
584 */
585 wake_up_process(task);
586 put_task_struct(task);
587 }
588}
589
c24d20db 590/*
8875125e 591 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
592 *
593 * On UP this means the setting of the need_resched flag, on SMP it
594 * might also involve a cross-CPU call to trigger the scheduler on
595 * the target CPU.
596 */
8875125e 597void resched_curr(struct rq *rq)
c24d20db 598{
8875125e 599 struct task_struct *curr = rq->curr;
c24d20db
IM
600 int cpu;
601
8875125e 602 lockdep_assert_held(&rq->lock);
c24d20db 603
8875125e 604 if (test_tsk_need_resched(curr))
c24d20db
IM
605 return;
606
8875125e 607 cpu = cpu_of(rq);
fd99f91a 608
f27dde8d 609 if (cpu == smp_processor_id()) {
8875125e 610 set_tsk_need_resched(curr);
f27dde8d 611 set_preempt_need_resched();
c24d20db 612 return;
f27dde8d 613 }
c24d20db 614
8875125e 615 if (set_nr_and_not_polling(curr))
c24d20db 616 smp_send_reschedule(cpu);
dfc68f29
AL
617 else
618 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
619}
620
029632fb 621void resched_cpu(int cpu)
c24d20db
IM
622{
623 struct rq *rq = cpu_rq(cpu);
624 unsigned long flags;
625
05fa785c 626 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db 627 return;
8875125e 628 resched_curr(rq);
05fa785c 629 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 630}
06d8308c 631
b021fe3e 632#ifdef CONFIG_SMP
3451d024 633#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
634/*
635 * In the semi idle case, use the nearest busy cpu for migrating timers
636 * from an idle cpu. This is good for power-savings.
637 *
638 * We don't do similar optimization for completely idle system, as
639 * selecting an idle cpu will add more delays to the timers than intended
640 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
641 */
6201b4d6 642int get_nohz_timer_target(int pinned)
83cd4fe2
VP
643{
644 int cpu = smp_processor_id();
645 int i;
646 struct sched_domain *sd;
647
6201b4d6
VK
648 if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
649 return cpu;
650
057f3fad 651 rcu_read_lock();
83cd4fe2 652 for_each_domain(cpu, sd) {
057f3fad
PZ
653 for_each_cpu(i, sched_domain_span(sd)) {
654 if (!idle_cpu(i)) {
655 cpu = i;
656 goto unlock;
657 }
658 }
83cd4fe2 659 }
057f3fad
PZ
660unlock:
661 rcu_read_unlock();
83cd4fe2
VP
662 return cpu;
663}
06d8308c
TG
664/*
665 * When add_timer_on() enqueues a timer into the timer wheel of an
666 * idle CPU then this timer might expire before the next timer event
667 * which is scheduled to wake up that CPU. In case of a completely
668 * idle system the next event might even be infinite time into the
669 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
670 * leaves the inner idle loop so the newly added timer is taken into
671 * account when the CPU goes back to idle and evaluates the timer
672 * wheel for the next timer event.
673 */
1c20091e 674static void wake_up_idle_cpu(int cpu)
06d8308c
TG
675{
676 struct rq *rq = cpu_rq(cpu);
677
678 if (cpu == smp_processor_id())
679 return;
680
67b9ca70 681 if (set_nr_and_not_polling(rq->idle))
06d8308c 682 smp_send_reschedule(cpu);
dfc68f29
AL
683 else
684 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
685}
686
c5bfece2 687static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 688{
53c5fa16
FW
689 /*
690 * We just need the target to call irq_exit() and re-evaluate
691 * the next tick. The nohz full kick at least implies that.
692 * If needed we can still optimize that later with an
693 * empty IRQ.
694 */
c5bfece2 695 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
696 if (cpu != smp_processor_id() ||
697 tick_nohz_tick_stopped())
53c5fa16 698 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
699 return true;
700 }
701
702 return false;
703}
704
705void wake_up_nohz_cpu(int cpu)
706{
c5bfece2 707 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
708 wake_up_idle_cpu(cpu);
709}
710
ca38062e 711static inline bool got_nohz_idle_kick(void)
45bf76df 712{
1c792db7 713 int cpu = smp_processor_id();
873b4c65
VG
714
715 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
716 return false;
717
718 if (idle_cpu(cpu) && !need_resched())
719 return true;
720
721 /*
722 * We can't run Idle Load Balance on this CPU for this time so we
723 * cancel it and clear NOHZ_BALANCE_KICK
724 */
725 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
726 return false;
45bf76df
IM
727}
728
3451d024 729#else /* CONFIG_NO_HZ_COMMON */
45bf76df 730
ca38062e 731static inline bool got_nohz_idle_kick(void)
2069dd75 732{
ca38062e 733 return false;
2069dd75
PZ
734}
735
3451d024 736#endif /* CONFIG_NO_HZ_COMMON */
d842de87 737
ce831b38
FW
738#ifdef CONFIG_NO_HZ_FULL
739bool sched_can_stop_tick(void)
740{
1e78cdbd
RR
741 /*
742 * FIFO realtime policy runs the highest priority task. Other runnable
743 * tasks are of a lower priority. The scheduler tick does nothing.
744 */
745 if (current->policy == SCHED_FIFO)
746 return true;
747
748 /*
749 * Round-robin realtime tasks time slice with other tasks at the same
750 * realtime priority. Is this task the only one at this priority?
751 */
752 if (current->policy == SCHED_RR) {
753 struct sched_rt_entity *rt_se = &current->rt;
754
755 return rt_se->run_list.prev == rt_se->run_list.next;
756 }
757
3882ec64
FW
758 /*
759 * More than one running task need preemption.
760 * nr_running update is assumed to be visible
761 * after IPI is sent from wakers.
762 */
541b8264
VK
763 if (this_rq()->nr_running > 1)
764 return false;
ce831b38 765
541b8264 766 return true;
ce831b38
FW
767}
768#endif /* CONFIG_NO_HZ_FULL */
d842de87 769
029632fb 770void sched_avg_update(struct rq *rq)
18d95a28 771{
e9e9250b
PZ
772 s64 period = sched_avg_period();
773
78becc27 774 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
775 /*
776 * Inline assembly required to prevent the compiler
777 * optimising this loop into a divmod call.
778 * See __iter_div_u64_rem() for another example of this.
779 */
780 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
781 rq->age_stamp += period;
782 rq->rt_avg /= 2;
783 }
18d95a28
PZ
784}
785
6d6bc0ad 786#endif /* CONFIG_SMP */
18d95a28 787
a790de99
PT
788#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
789 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 790/*
8277434e
PT
791 * Iterate task_group tree rooted at *from, calling @down when first entering a
792 * node and @up when leaving it for the final time.
793 *
794 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 795 */
029632fb 796int walk_tg_tree_from(struct task_group *from,
8277434e 797 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
798{
799 struct task_group *parent, *child;
eb755805 800 int ret;
c09595f6 801
8277434e
PT
802 parent = from;
803
c09595f6 804down:
eb755805
PZ
805 ret = (*down)(parent, data);
806 if (ret)
8277434e 807 goto out;
c09595f6
PZ
808 list_for_each_entry_rcu(child, &parent->children, siblings) {
809 parent = child;
810 goto down;
811
812up:
813 continue;
814 }
eb755805 815 ret = (*up)(parent, data);
8277434e
PT
816 if (ret || parent == from)
817 goto out;
c09595f6
PZ
818
819 child = parent;
820 parent = parent->parent;
821 if (parent)
822 goto up;
8277434e 823out:
eb755805 824 return ret;
c09595f6
PZ
825}
826
029632fb 827int tg_nop(struct task_group *tg, void *data)
eb755805 828{
e2b245f8 829 return 0;
eb755805 830}
18d95a28
PZ
831#endif
832
45bf76df
IM
833static void set_load_weight(struct task_struct *p)
834{
f05998d4
NR
835 int prio = p->static_prio - MAX_RT_PRIO;
836 struct load_weight *load = &p->se.load;
837
dd41f596
IM
838 /*
839 * SCHED_IDLE tasks get minimal weight:
840 */
841 if (p->policy == SCHED_IDLE) {
c8b28116 842 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 843 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
844 return;
845 }
71f8bd46 846
c8b28116 847 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 848 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
849}
850
371fd7e7 851static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 852{
a64692a3 853 update_rq_clock(rq);
43148951 854 sched_info_queued(rq, p);
371fd7e7 855 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
856}
857
371fd7e7 858static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 859{
a64692a3 860 update_rq_clock(rq);
43148951 861 sched_info_dequeued(rq, p);
371fd7e7 862 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
863}
864
029632fb 865void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
866{
867 if (task_contributes_to_load(p))
868 rq->nr_uninterruptible--;
869
371fd7e7 870 enqueue_task(rq, p, flags);
1e3c88bd
PZ
871}
872
029632fb 873void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
874{
875 if (task_contributes_to_load(p))
876 rq->nr_uninterruptible++;
877
371fd7e7 878 dequeue_task(rq, p, flags);
1e3c88bd
PZ
879}
880
fe44d621 881static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 882{
095c0aa8
GC
883/*
884 * In theory, the compile should just see 0 here, and optimize out the call
885 * to sched_rt_avg_update. But I don't trust it...
886 */
887#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
888 s64 steal = 0, irq_delta = 0;
889#endif
890#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 891 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
892
893 /*
894 * Since irq_time is only updated on {soft,}irq_exit, we might run into
895 * this case when a previous update_rq_clock() happened inside a
896 * {soft,}irq region.
897 *
898 * When this happens, we stop ->clock_task and only update the
899 * prev_irq_time stamp to account for the part that fit, so that a next
900 * update will consume the rest. This ensures ->clock_task is
901 * monotonic.
902 *
903 * It does however cause some slight miss-attribution of {soft,}irq
904 * time, a more accurate solution would be to update the irq_time using
905 * the current rq->clock timestamp, except that would require using
906 * atomic ops.
907 */
908 if (irq_delta > delta)
909 irq_delta = delta;
910
911 rq->prev_irq_time += irq_delta;
912 delta -= irq_delta;
095c0aa8
GC
913#endif
914#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 915 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
916 steal = paravirt_steal_clock(cpu_of(rq));
917 steal -= rq->prev_steal_time_rq;
918
919 if (unlikely(steal > delta))
920 steal = delta;
921
095c0aa8 922 rq->prev_steal_time_rq += steal;
095c0aa8
GC
923 delta -= steal;
924 }
925#endif
926
fe44d621
PZ
927 rq->clock_task += delta;
928
095c0aa8 929#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
5d4dfddd 930 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
095c0aa8
GC
931 sched_rt_avg_update(rq, irq_delta + steal);
932#endif
aa483808
VP
933}
934
34f971f6
PZ
935void sched_set_stop_task(int cpu, struct task_struct *stop)
936{
937 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
938 struct task_struct *old_stop = cpu_rq(cpu)->stop;
939
940 if (stop) {
941 /*
942 * Make it appear like a SCHED_FIFO task, its something
943 * userspace knows about and won't get confused about.
944 *
945 * Also, it will make PI more or less work without too
946 * much confusion -- but then, stop work should not
947 * rely on PI working anyway.
948 */
949 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
950
951 stop->sched_class = &stop_sched_class;
952 }
953
954 cpu_rq(cpu)->stop = stop;
955
956 if (old_stop) {
957 /*
958 * Reset it back to a normal scheduling class so that
959 * it can die in pieces.
960 */
961 old_stop->sched_class = &rt_sched_class;
962 }
963}
964
14531189 965/*
dd41f596 966 * __normal_prio - return the priority that is based on the static prio
14531189 967 */
14531189
IM
968static inline int __normal_prio(struct task_struct *p)
969{
dd41f596 970 return p->static_prio;
14531189
IM
971}
972
b29739f9
IM
973/*
974 * Calculate the expected normal priority: i.e. priority
975 * without taking RT-inheritance into account. Might be
976 * boosted by interactivity modifiers. Changes upon fork,
977 * setprio syscalls, and whenever the interactivity
978 * estimator recalculates.
979 */
36c8b586 980static inline int normal_prio(struct task_struct *p)
b29739f9
IM
981{
982 int prio;
983
aab03e05
DF
984 if (task_has_dl_policy(p))
985 prio = MAX_DL_PRIO-1;
986 else if (task_has_rt_policy(p))
b29739f9
IM
987 prio = MAX_RT_PRIO-1 - p->rt_priority;
988 else
989 prio = __normal_prio(p);
990 return prio;
991}
992
993/*
994 * Calculate the current priority, i.e. the priority
995 * taken into account by the scheduler. This value might
996 * be boosted by RT tasks, or might be boosted by
997 * interactivity modifiers. Will be RT if the task got
998 * RT-boosted. If not then it returns p->normal_prio.
999 */
36c8b586 1000static int effective_prio(struct task_struct *p)
b29739f9
IM
1001{
1002 p->normal_prio = normal_prio(p);
1003 /*
1004 * If we are RT tasks or we were boosted to RT priority,
1005 * keep the priority unchanged. Otherwise, update priority
1006 * to the normal priority:
1007 */
1008 if (!rt_prio(p->prio))
1009 return p->normal_prio;
1010 return p->prio;
1011}
1012
1da177e4
LT
1013/**
1014 * task_curr - is this task currently executing on a CPU?
1015 * @p: the task in question.
e69f6186
YB
1016 *
1017 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 1018 */
36c8b586 1019inline int task_curr(const struct task_struct *p)
1da177e4
LT
1020{
1021 return cpu_curr(task_cpu(p)) == p;
1022}
1023
67dfa1b7
KT
1024/*
1025 * Can drop rq->lock because from sched_class::switched_from() methods drop it.
1026 */
cb469845
SR
1027static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1028 const struct sched_class *prev_class,
da7a735e 1029 int oldprio)
cb469845
SR
1030{
1031 if (prev_class != p->sched_class) {
1032 if (prev_class->switched_from)
da7a735e 1033 prev_class->switched_from(rq, p);
67dfa1b7 1034 /* Possble rq->lock 'hole'. */
da7a735e 1035 p->sched_class->switched_to(rq, p);
2d3d891d 1036 } else if (oldprio != p->prio || dl_task(p))
da7a735e 1037 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
1038}
1039
029632fb 1040void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
1041{
1042 const struct sched_class *class;
1043
1044 if (p->sched_class == rq->curr->sched_class) {
1045 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1046 } else {
1047 for_each_class(class) {
1048 if (class == rq->curr->sched_class)
1049 break;
1050 if (class == p->sched_class) {
8875125e 1051 resched_curr(rq);
1e5a7405
PZ
1052 break;
1053 }
1054 }
1055 }
1056
1057 /*
1058 * A queue event has occurred, and we're going to schedule. In
1059 * this case, we can save a useless back to back clock update.
1060 */
da0c1e65 1061 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
9edfbfed 1062 rq_clock_skip_update(rq, true);
1e5a7405
PZ
1063}
1064
1da177e4 1065#ifdef CONFIG_SMP
dd41f596 1066void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1067{
e2912009
PZ
1068#ifdef CONFIG_SCHED_DEBUG
1069 /*
1070 * We should never call set_task_cpu() on a blocked task,
1071 * ttwu() will sort out the placement.
1072 */
077614ee 1073 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
e2336f6e 1074 !p->on_rq);
0122ec5b
PZ
1075
1076#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1077 /*
1078 * The caller should hold either p->pi_lock or rq->lock, when changing
1079 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1080 *
1081 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1082 * see task_group().
6c6c54e1
PZ
1083 *
1084 * Furthermore, all task_rq users should acquire both locks, see
1085 * task_rq_lock().
1086 */
0122ec5b
PZ
1087 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1088 lockdep_is_held(&task_rq(p)->lock)));
1089#endif
e2912009
PZ
1090#endif
1091
de1d7286 1092 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1093
0c69774e 1094 if (task_cpu(p) != new_cpu) {
0a74bef8
PT
1095 if (p->sched_class->migrate_task_rq)
1096 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 1097 p->se.nr_migrations++;
86038c5e 1098 perf_sw_event_sched(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 0);
0c69774e 1099 }
dd41f596
IM
1100
1101 __set_task_cpu(p, new_cpu);
c65cc870
IM
1102}
1103
ac66f547
PZ
1104static void __migrate_swap_task(struct task_struct *p, int cpu)
1105{
da0c1e65 1106 if (task_on_rq_queued(p)) {
ac66f547
PZ
1107 struct rq *src_rq, *dst_rq;
1108
1109 src_rq = task_rq(p);
1110 dst_rq = cpu_rq(cpu);
1111
1112 deactivate_task(src_rq, p, 0);
1113 set_task_cpu(p, cpu);
1114 activate_task(dst_rq, p, 0);
1115 check_preempt_curr(dst_rq, p, 0);
1116 } else {
1117 /*
1118 * Task isn't running anymore; make it appear like we migrated
1119 * it before it went to sleep. This means on wakeup we make the
1120 * previous cpu our targer instead of where it really is.
1121 */
1122 p->wake_cpu = cpu;
1123 }
1124}
1125
1126struct migration_swap_arg {
1127 struct task_struct *src_task, *dst_task;
1128 int src_cpu, dst_cpu;
1129};
1130
1131static int migrate_swap_stop(void *data)
1132{
1133 struct migration_swap_arg *arg = data;
1134 struct rq *src_rq, *dst_rq;
1135 int ret = -EAGAIN;
1136
1137 src_rq = cpu_rq(arg->src_cpu);
1138 dst_rq = cpu_rq(arg->dst_cpu);
1139
74602315
PZ
1140 double_raw_lock(&arg->src_task->pi_lock,
1141 &arg->dst_task->pi_lock);
ac66f547
PZ
1142 double_rq_lock(src_rq, dst_rq);
1143 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1144 goto unlock;
1145
1146 if (task_cpu(arg->src_task) != arg->src_cpu)
1147 goto unlock;
1148
1149 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1150 goto unlock;
1151
1152 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1153 goto unlock;
1154
1155 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1156 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1157
1158 ret = 0;
1159
1160unlock:
1161 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1162 raw_spin_unlock(&arg->dst_task->pi_lock);
1163 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1164
1165 return ret;
1166}
1167
1168/*
1169 * Cross migrate two tasks
1170 */
1171int migrate_swap(struct task_struct *cur, struct task_struct *p)
1172{
1173 struct migration_swap_arg arg;
1174 int ret = -EINVAL;
1175
ac66f547
PZ
1176 arg = (struct migration_swap_arg){
1177 .src_task = cur,
1178 .src_cpu = task_cpu(cur),
1179 .dst_task = p,
1180 .dst_cpu = task_cpu(p),
1181 };
1182
1183 if (arg.src_cpu == arg.dst_cpu)
1184 goto out;
1185
6acce3ef
PZ
1186 /*
1187 * These three tests are all lockless; this is OK since all of them
1188 * will be re-checked with proper locks held further down the line.
1189 */
ac66f547
PZ
1190 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1191 goto out;
1192
1193 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1194 goto out;
1195
1196 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1197 goto out;
1198
286549dc 1199 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1200 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1201
1202out:
ac66f547
PZ
1203 return ret;
1204}
1205
969c7921 1206struct migration_arg {
36c8b586 1207 struct task_struct *task;
1da177e4 1208 int dest_cpu;
70b97a7f 1209};
1da177e4 1210
969c7921
TH
1211static int migration_cpu_stop(void *data);
1212
1da177e4
LT
1213/*
1214 * wait_task_inactive - wait for a thread to unschedule.
1215 *
85ba2d86
RM
1216 * If @match_state is nonzero, it's the @p->state value just checked and
1217 * not expected to change. If it changes, i.e. @p might have woken up,
1218 * then return zero. When we succeed in waiting for @p to be off its CPU,
1219 * we return a positive number (its total switch count). If a second call
1220 * a short while later returns the same number, the caller can be sure that
1221 * @p has remained unscheduled the whole time.
1222 *
1da177e4
LT
1223 * The caller must ensure that the task *will* unschedule sometime soon,
1224 * else this function might spin for a *long* time. This function can't
1225 * be called with interrupts off, or it may introduce deadlock with
1226 * smp_call_function() if an IPI is sent by the same process we are
1227 * waiting to become inactive.
1228 */
85ba2d86 1229unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1230{
1231 unsigned long flags;
da0c1e65 1232 int running, queued;
85ba2d86 1233 unsigned long ncsw;
70b97a7f 1234 struct rq *rq;
1da177e4 1235
3a5c359a
AK
1236 for (;;) {
1237 /*
1238 * We do the initial early heuristics without holding
1239 * any task-queue locks at all. We'll only try to get
1240 * the runqueue lock when things look like they will
1241 * work out!
1242 */
1243 rq = task_rq(p);
fa490cfd 1244
3a5c359a
AK
1245 /*
1246 * If the task is actively running on another CPU
1247 * still, just relax and busy-wait without holding
1248 * any locks.
1249 *
1250 * NOTE! Since we don't hold any locks, it's not
1251 * even sure that "rq" stays as the right runqueue!
1252 * But we don't care, since "task_running()" will
1253 * return false if the runqueue has changed and p
1254 * is actually now running somewhere else!
1255 */
85ba2d86
RM
1256 while (task_running(rq, p)) {
1257 if (match_state && unlikely(p->state != match_state))
1258 return 0;
3a5c359a 1259 cpu_relax();
85ba2d86 1260 }
fa490cfd 1261
3a5c359a
AK
1262 /*
1263 * Ok, time to look more closely! We need the rq
1264 * lock now, to be *sure*. If we're wrong, we'll
1265 * just go back and repeat.
1266 */
1267 rq = task_rq_lock(p, &flags);
27a9da65 1268 trace_sched_wait_task(p);
3a5c359a 1269 running = task_running(rq, p);
da0c1e65 1270 queued = task_on_rq_queued(p);
85ba2d86 1271 ncsw = 0;
f31e11d8 1272 if (!match_state || p->state == match_state)
93dcf55f 1273 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1274 task_rq_unlock(rq, p, &flags);
fa490cfd 1275
85ba2d86
RM
1276 /*
1277 * If it changed from the expected state, bail out now.
1278 */
1279 if (unlikely(!ncsw))
1280 break;
1281
3a5c359a
AK
1282 /*
1283 * Was it really running after all now that we
1284 * checked with the proper locks actually held?
1285 *
1286 * Oops. Go back and try again..
1287 */
1288 if (unlikely(running)) {
1289 cpu_relax();
1290 continue;
1291 }
fa490cfd 1292
3a5c359a
AK
1293 /*
1294 * It's not enough that it's not actively running,
1295 * it must be off the runqueue _entirely_, and not
1296 * preempted!
1297 *
80dd99b3 1298 * So if it was still runnable (but just not actively
3a5c359a
AK
1299 * running right now), it's preempted, and we should
1300 * yield - it could be a while.
1301 */
da0c1e65 1302 if (unlikely(queued)) {
8eb90c30
TG
1303 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1304
1305 set_current_state(TASK_UNINTERRUPTIBLE);
1306 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1307 continue;
1308 }
fa490cfd 1309
3a5c359a
AK
1310 /*
1311 * Ahh, all good. It wasn't running, and it wasn't
1312 * runnable, which means that it will never become
1313 * running in the future either. We're all done!
1314 */
1315 break;
1316 }
85ba2d86
RM
1317
1318 return ncsw;
1da177e4
LT
1319}
1320
1321/***
1322 * kick_process - kick a running thread to enter/exit the kernel
1323 * @p: the to-be-kicked thread
1324 *
1325 * Cause a process which is running on another CPU to enter
1326 * kernel-mode, without any delay. (to get signals handled.)
1327 *
25985edc 1328 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1329 * because all it wants to ensure is that the remote task enters
1330 * the kernel. If the IPI races and the task has been migrated
1331 * to another CPU then no harm is done and the purpose has been
1332 * achieved as well.
1333 */
36c8b586 1334void kick_process(struct task_struct *p)
1da177e4
LT
1335{
1336 int cpu;
1337
1338 preempt_disable();
1339 cpu = task_cpu(p);
1340 if ((cpu != smp_processor_id()) && task_curr(p))
1341 smp_send_reschedule(cpu);
1342 preempt_enable();
1343}
b43e3521 1344EXPORT_SYMBOL_GPL(kick_process);
476d139c 1345#endif /* CONFIG_SMP */
1da177e4 1346
970b13ba 1347#ifdef CONFIG_SMP
30da688e 1348/*
013fdb80 1349 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1350 */
5da9a0fb
PZ
1351static int select_fallback_rq(int cpu, struct task_struct *p)
1352{
aa00d89c
TC
1353 int nid = cpu_to_node(cpu);
1354 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1355 enum { cpuset, possible, fail } state = cpuset;
1356 int dest_cpu;
5da9a0fb 1357
aa00d89c
TC
1358 /*
1359 * If the node that the cpu is on has been offlined, cpu_to_node()
1360 * will return -1. There is no cpu on the node, and we should
1361 * select the cpu on the other node.
1362 */
1363 if (nid != -1) {
1364 nodemask = cpumask_of_node(nid);
1365
1366 /* Look for allowed, online CPU in same node. */
1367 for_each_cpu(dest_cpu, nodemask) {
1368 if (!cpu_online(dest_cpu))
1369 continue;
1370 if (!cpu_active(dest_cpu))
1371 continue;
1372 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1373 return dest_cpu;
1374 }
2baab4e9 1375 }
5da9a0fb 1376
2baab4e9
PZ
1377 for (;;) {
1378 /* Any allowed, online CPU? */
e3831edd 1379 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1380 if (!cpu_online(dest_cpu))
1381 continue;
1382 if (!cpu_active(dest_cpu))
1383 continue;
1384 goto out;
1385 }
5da9a0fb 1386
2baab4e9
PZ
1387 switch (state) {
1388 case cpuset:
1389 /* No more Mr. Nice Guy. */
1390 cpuset_cpus_allowed_fallback(p);
1391 state = possible;
1392 break;
1393
1394 case possible:
1395 do_set_cpus_allowed(p, cpu_possible_mask);
1396 state = fail;
1397 break;
1398
1399 case fail:
1400 BUG();
1401 break;
1402 }
1403 }
1404
1405out:
1406 if (state != cpuset) {
1407 /*
1408 * Don't tell them about moving exiting tasks or
1409 * kernel threads (both mm NULL), since they never
1410 * leave kernel.
1411 */
1412 if (p->mm && printk_ratelimit()) {
aac74dc4 1413 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1414 task_pid_nr(p), p->comm, cpu);
1415 }
5da9a0fb
PZ
1416 }
1417
1418 return dest_cpu;
1419}
1420
e2912009 1421/*
013fdb80 1422 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1423 */
970b13ba 1424static inline
ac66f547 1425int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1426{
6c1d9410
WL
1427 if (p->nr_cpus_allowed > 1)
1428 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e2912009
PZ
1429
1430 /*
1431 * In order not to call set_task_cpu() on a blocking task we need
1432 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1433 * cpu.
1434 *
1435 * Since this is common to all placement strategies, this lives here.
1436 *
1437 * [ this allows ->select_task() to simply return task_cpu(p) and
1438 * not worry about this generic constraint ]
1439 */
fa17b507 1440 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1441 !cpu_online(cpu)))
5da9a0fb 1442 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1443
1444 return cpu;
970b13ba 1445}
09a40af5
MG
1446
1447static void update_avg(u64 *avg, u64 sample)
1448{
1449 s64 diff = sample - *avg;
1450 *avg += diff >> 3;
1451}
970b13ba
PZ
1452#endif
1453
d7c01d27 1454static void
b84cb5df 1455ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1456{
d7c01d27 1457#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1458 struct rq *rq = this_rq();
1459
d7c01d27
PZ
1460#ifdef CONFIG_SMP
1461 int this_cpu = smp_processor_id();
1462
1463 if (cpu == this_cpu) {
1464 schedstat_inc(rq, ttwu_local);
1465 schedstat_inc(p, se.statistics.nr_wakeups_local);
1466 } else {
1467 struct sched_domain *sd;
1468
1469 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1470 rcu_read_lock();
d7c01d27
PZ
1471 for_each_domain(this_cpu, sd) {
1472 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1473 schedstat_inc(sd, ttwu_wake_remote);
1474 break;
1475 }
1476 }
057f3fad 1477 rcu_read_unlock();
d7c01d27 1478 }
f339b9dc
PZ
1479
1480 if (wake_flags & WF_MIGRATED)
1481 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1482
d7c01d27
PZ
1483#endif /* CONFIG_SMP */
1484
1485 schedstat_inc(rq, ttwu_count);
9ed3811a 1486 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1487
1488 if (wake_flags & WF_SYNC)
9ed3811a 1489 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1490
d7c01d27
PZ
1491#endif /* CONFIG_SCHEDSTATS */
1492}
1493
1494static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1495{
9ed3811a 1496 activate_task(rq, p, en_flags);
da0c1e65 1497 p->on_rq = TASK_ON_RQ_QUEUED;
c2f7115e
PZ
1498
1499 /* if a worker is waking up, notify workqueue */
1500 if (p->flags & PF_WQ_WORKER)
1501 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1502}
1503
23f41eeb
PZ
1504/*
1505 * Mark the task runnable and perform wakeup-preemption.
1506 */
89363381 1507static void
23f41eeb 1508ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1509{
9ed3811a 1510 check_preempt_curr(rq, p, wake_flags);
a8d7ad52 1511 trace_sched_wakeup(p, true);
9ed3811a
TH
1512
1513 p->state = TASK_RUNNING;
1514#ifdef CONFIG_SMP
1515 if (p->sched_class->task_woken)
1516 p->sched_class->task_woken(rq, p);
1517
e69c6341 1518 if (rq->idle_stamp) {
78becc27 1519 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1520 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1521
abfafa54
JL
1522 update_avg(&rq->avg_idle, delta);
1523
1524 if (rq->avg_idle > max)
9ed3811a 1525 rq->avg_idle = max;
abfafa54 1526
9ed3811a
TH
1527 rq->idle_stamp = 0;
1528 }
1529#endif
1530}
1531
c05fbafb
PZ
1532static void
1533ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1534{
1535#ifdef CONFIG_SMP
1536 if (p->sched_contributes_to_load)
1537 rq->nr_uninterruptible--;
1538#endif
1539
1540 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1541 ttwu_do_wakeup(rq, p, wake_flags);
1542}
1543
1544/*
1545 * Called in case the task @p isn't fully descheduled from its runqueue,
1546 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1547 * since all we need to do is flip p->state to TASK_RUNNING, since
1548 * the task is still ->on_rq.
1549 */
1550static int ttwu_remote(struct task_struct *p, int wake_flags)
1551{
1552 struct rq *rq;
1553 int ret = 0;
1554
1555 rq = __task_rq_lock(p);
da0c1e65 1556 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
1557 /* check_preempt_curr() may use rq clock */
1558 update_rq_clock(rq);
c05fbafb
PZ
1559 ttwu_do_wakeup(rq, p, wake_flags);
1560 ret = 1;
1561 }
1562 __task_rq_unlock(rq);
1563
1564 return ret;
1565}
1566
317f3941 1567#ifdef CONFIG_SMP
e3baac47 1568void sched_ttwu_pending(void)
317f3941
PZ
1569{
1570 struct rq *rq = this_rq();
fa14ff4a
PZ
1571 struct llist_node *llist = llist_del_all(&rq->wake_list);
1572 struct task_struct *p;
e3baac47 1573 unsigned long flags;
317f3941 1574
e3baac47
PZ
1575 if (!llist)
1576 return;
1577
1578 raw_spin_lock_irqsave(&rq->lock, flags);
317f3941 1579
fa14ff4a
PZ
1580 while (llist) {
1581 p = llist_entry(llist, struct task_struct, wake_entry);
1582 llist = llist_next(llist);
317f3941
PZ
1583 ttwu_do_activate(rq, p, 0);
1584 }
1585
e3baac47 1586 raw_spin_unlock_irqrestore(&rq->lock, flags);
317f3941
PZ
1587}
1588
1589void scheduler_ipi(void)
1590{
f27dde8d
PZ
1591 /*
1592 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1593 * TIF_NEED_RESCHED remotely (for the first time) will also send
1594 * this IPI.
1595 */
8cb75e0c 1596 preempt_fold_need_resched();
f27dde8d 1597
fd2ac4f4 1598 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1599 return;
1600
1601 /*
1602 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1603 * traditionally all their work was done from the interrupt return
1604 * path. Now that we actually do some work, we need to make sure
1605 * we do call them.
1606 *
1607 * Some archs already do call them, luckily irq_enter/exit nest
1608 * properly.
1609 *
1610 * Arguably we should visit all archs and update all handlers,
1611 * however a fair share of IPIs are still resched only so this would
1612 * somewhat pessimize the simple resched case.
1613 */
1614 irq_enter();
fa14ff4a 1615 sched_ttwu_pending();
ca38062e
SS
1616
1617 /*
1618 * Check if someone kicked us for doing the nohz idle load balance.
1619 */
873b4c65 1620 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1621 this_rq()->idle_balance = 1;
ca38062e 1622 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1623 }
c5d753a5 1624 irq_exit();
317f3941
PZ
1625}
1626
1627static void ttwu_queue_remote(struct task_struct *p, int cpu)
1628{
e3baac47
PZ
1629 struct rq *rq = cpu_rq(cpu);
1630
1631 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1632 if (!set_nr_if_polling(rq->idle))
1633 smp_send_reschedule(cpu);
1634 else
1635 trace_sched_wake_idle_without_ipi(cpu);
1636 }
317f3941 1637}
d6aa8f85 1638
f6be8af1
CL
1639void wake_up_if_idle(int cpu)
1640{
1641 struct rq *rq = cpu_rq(cpu);
1642 unsigned long flags;
1643
fd7de1e8
AL
1644 rcu_read_lock();
1645
1646 if (!is_idle_task(rcu_dereference(rq->curr)))
1647 goto out;
f6be8af1
CL
1648
1649 if (set_nr_if_polling(rq->idle)) {
1650 trace_sched_wake_idle_without_ipi(cpu);
1651 } else {
1652 raw_spin_lock_irqsave(&rq->lock, flags);
1653 if (is_idle_task(rq->curr))
1654 smp_send_reschedule(cpu);
1655 /* Else cpu is not in idle, do nothing here */
1656 raw_spin_unlock_irqrestore(&rq->lock, flags);
1657 }
fd7de1e8
AL
1658
1659out:
1660 rcu_read_unlock();
f6be8af1
CL
1661}
1662
39be3501 1663bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1664{
1665 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1666}
d6aa8f85 1667#endif /* CONFIG_SMP */
317f3941 1668
c05fbafb
PZ
1669static void ttwu_queue(struct task_struct *p, int cpu)
1670{
1671 struct rq *rq = cpu_rq(cpu);
1672
17d9f311 1673#if defined(CONFIG_SMP)
39be3501 1674 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1675 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1676 ttwu_queue_remote(p, cpu);
1677 return;
1678 }
1679#endif
1680
c05fbafb
PZ
1681 raw_spin_lock(&rq->lock);
1682 ttwu_do_activate(rq, p, 0);
1683 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1684}
1685
1686/**
1da177e4 1687 * try_to_wake_up - wake up a thread
9ed3811a 1688 * @p: the thread to be awakened
1da177e4 1689 * @state: the mask of task states that can be woken
9ed3811a 1690 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1691 *
1692 * Put it on the run-queue if it's not already there. The "current"
1693 * thread is always on the run-queue (except when the actual
1694 * re-schedule is in progress), and as such you're allowed to do
1695 * the simpler "current->state = TASK_RUNNING" to mark yourself
1696 * runnable without the overhead of this.
1697 *
e69f6186 1698 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1699 * or @state didn't match @p's state.
1da177e4 1700 */
e4a52bcb
PZ
1701static int
1702try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1703{
1da177e4 1704 unsigned long flags;
c05fbafb 1705 int cpu, success = 0;
2398f2c6 1706
e0acd0a6
ON
1707 /*
1708 * If we are going to wake up a thread waiting for CONDITION we
1709 * need to ensure that CONDITION=1 done by the caller can not be
1710 * reordered with p->state check below. This pairs with mb() in
1711 * set_current_state() the waiting thread does.
1712 */
1713 smp_mb__before_spinlock();
013fdb80 1714 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1715 if (!(p->state & state))
1da177e4
LT
1716 goto out;
1717
c05fbafb 1718 success = 1; /* we're going to change ->state */
1da177e4 1719 cpu = task_cpu(p);
1da177e4 1720
c05fbafb
PZ
1721 if (p->on_rq && ttwu_remote(p, wake_flags))
1722 goto stat;
1da177e4 1723
1da177e4 1724#ifdef CONFIG_SMP
e9c84311 1725 /*
c05fbafb
PZ
1726 * If the owning (remote) cpu is still in the middle of schedule() with
1727 * this task as prev, wait until its done referencing the task.
e9c84311 1728 */
f3e94786 1729 while (p->on_cpu)
e4a52bcb 1730 cpu_relax();
0970d299 1731 /*
e4a52bcb 1732 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1733 */
e4a52bcb 1734 smp_rmb();
1da177e4 1735
a8e4f2ea 1736 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1737 p->state = TASK_WAKING;
e7693a36 1738
e4a52bcb 1739 if (p->sched_class->task_waking)
74f8e4b2 1740 p->sched_class->task_waking(p);
efbbd05a 1741
ac66f547 1742 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1743 if (task_cpu(p) != cpu) {
1744 wake_flags |= WF_MIGRATED;
e4a52bcb 1745 set_task_cpu(p, cpu);
f339b9dc 1746 }
1da177e4 1747#endif /* CONFIG_SMP */
1da177e4 1748
c05fbafb
PZ
1749 ttwu_queue(p, cpu);
1750stat:
b84cb5df 1751 ttwu_stat(p, cpu, wake_flags);
1da177e4 1752out:
013fdb80 1753 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1754
1755 return success;
1756}
1757
21aa9af0
TH
1758/**
1759 * try_to_wake_up_local - try to wake up a local task with rq lock held
1760 * @p: the thread to be awakened
1761 *
2acca55e 1762 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1763 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1764 * the current task.
21aa9af0
TH
1765 */
1766static void try_to_wake_up_local(struct task_struct *p)
1767{
1768 struct rq *rq = task_rq(p);
21aa9af0 1769
383efcd0
TH
1770 if (WARN_ON_ONCE(rq != this_rq()) ||
1771 WARN_ON_ONCE(p == current))
1772 return;
1773
21aa9af0
TH
1774 lockdep_assert_held(&rq->lock);
1775
2acca55e
PZ
1776 if (!raw_spin_trylock(&p->pi_lock)) {
1777 raw_spin_unlock(&rq->lock);
1778 raw_spin_lock(&p->pi_lock);
1779 raw_spin_lock(&rq->lock);
1780 }
1781
21aa9af0 1782 if (!(p->state & TASK_NORMAL))
2acca55e 1783 goto out;
21aa9af0 1784
da0c1e65 1785 if (!task_on_rq_queued(p))
d7c01d27
PZ
1786 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1787
23f41eeb 1788 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1789 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1790out:
1791 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1792}
1793
50fa610a
DH
1794/**
1795 * wake_up_process - Wake up a specific process
1796 * @p: The process to be woken up.
1797 *
1798 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
1799 * processes.
1800 *
1801 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
1802 *
1803 * It may be assumed that this function implies a write memory barrier before
1804 * changing the task state if and only if any tasks are woken up.
1805 */
7ad5b3a5 1806int wake_up_process(struct task_struct *p)
1da177e4 1807{
9067ac85
ON
1808 WARN_ON(task_is_stopped_or_traced(p));
1809 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 1810}
1da177e4
LT
1811EXPORT_SYMBOL(wake_up_process);
1812
7ad5b3a5 1813int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1814{
1815 return try_to_wake_up(p, state, 0);
1816}
1817
a5e7be3b
JL
1818/*
1819 * This function clears the sched_dl_entity static params.
1820 */
1821void __dl_clear_params(struct task_struct *p)
1822{
1823 struct sched_dl_entity *dl_se = &p->dl;
1824
1825 dl_se->dl_runtime = 0;
1826 dl_se->dl_deadline = 0;
1827 dl_se->dl_period = 0;
1828 dl_se->flags = 0;
1829 dl_se->dl_bw = 0;
40767b0d
PZ
1830
1831 dl_se->dl_throttled = 0;
1832 dl_se->dl_new = 1;
1833 dl_se->dl_yielded = 0;
a5e7be3b
JL
1834}
1835
1da177e4
LT
1836/*
1837 * Perform scheduler related setup for a newly forked process p.
1838 * p is forked by current.
dd41f596
IM
1839 *
1840 * __sched_fork() is basic setup used by init_idle() too:
1841 */
5e1576ed 1842static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1843{
fd2f4419
PZ
1844 p->on_rq = 0;
1845
1846 p->se.on_rq = 0;
dd41f596
IM
1847 p->se.exec_start = 0;
1848 p->se.sum_exec_runtime = 0;
f6cf891c 1849 p->se.prev_sum_exec_runtime = 0;
6c594c21 1850 p->se.nr_migrations = 0;
da7a735e 1851 p->se.vruntime = 0;
bb04159d
KT
1852#ifdef CONFIG_SMP
1853 p->se.avg.decay_count = 0;
1854#endif
fd2f4419 1855 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
1856
1857#ifdef CONFIG_SCHEDSTATS
41acab88 1858 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 1859#endif
476d139c 1860
aab03e05 1861 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 1862 init_dl_task_timer(&p->dl);
a5e7be3b 1863 __dl_clear_params(p);
aab03e05 1864
fa717060 1865 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 1866
e107be36
AK
1867#ifdef CONFIG_PREEMPT_NOTIFIERS
1868 INIT_HLIST_HEAD(&p->preempt_notifiers);
1869#endif
cbee9f88
PZ
1870
1871#ifdef CONFIG_NUMA_BALANCING
1872 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 1873 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
1874 p->mm->numa_scan_seq = 0;
1875 }
1876
5e1576ed
RR
1877 if (clone_flags & CLONE_VM)
1878 p->numa_preferred_nid = current->numa_preferred_nid;
1879 else
1880 p->numa_preferred_nid = -1;
1881
cbee9f88
PZ
1882 p->node_stamp = 0ULL;
1883 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 1884 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 1885 p->numa_work.next = &p->numa_work;
44dba3d5 1886 p->numa_faults = NULL;
7e2703e6
RR
1887 p->last_task_numa_placement = 0;
1888 p->last_sum_exec_runtime = 0;
8c8a743c 1889
8c8a743c 1890 p->numa_group = NULL;
cbee9f88 1891#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1892}
1893
1a687c2e 1894#ifdef CONFIG_NUMA_BALANCING
3105b86a 1895#ifdef CONFIG_SCHED_DEBUG
1a687c2e
MG
1896void set_numabalancing_state(bool enabled)
1897{
1898 if (enabled)
1899 sched_feat_set("NUMA");
1900 else
1901 sched_feat_set("NO_NUMA");
1902}
3105b86a
MG
1903#else
1904__read_mostly bool numabalancing_enabled;
1905
1906void set_numabalancing_state(bool enabled)
1907{
1908 numabalancing_enabled = enabled;
dd41f596 1909}
3105b86a 1910#endif /* CONFIG_SCHED_DEBUG */
54a43d54
AK
1911
1912#ifdef CONFIG_PROC_SYSCTL
1913int sysctl_numa_balancing(struct ctl_table *table, int write,
1914 void __user *buffer, size_t *lenp, loff_t *ppos)
1915{
1916 struct ctl_table t;
1917 int err;
1918 int state = numabalancing_enabled;
1919
1920 if (write && !capable(CAP_SYS_ADMIN))
1921 return -EPERM;
1922
1923 t = *table;
1924 t.data = &state;
1925 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1926 if (err < 0)
1927 return err;
1928 if (write)
1929 set_numabalancing_state(state);
1930 return err;
1931}
1932#endif
1933#endif
dd41f596
IM
1934
1935/*
1936 * fork()/clone()-time setup:
1937 */
aab03e05 1938int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1939{
0122ec5b 1940 unsigned long flags;
dd41f596
IM
1941 int cpu = get_cpu();
1942
5e1576ed 1943 __sched_fork(clone_flags, p);
06b83b5f 1944 /*
0017d735 1945 * We mark the process as running here. This guarantees that
06b83b5f
PZ
1946 * nobody will actually run it, and a signal or other external
1947 * event cannot wake it up and insert it on the runqueue either.
1948 */
0017d735 1949 p->state = TASK_RUNNING;
dd41f596 1950
c350a04e
MG
1951 /*
1952 * Make sure we do not leak PI boosting priority to the child.
1953 */
1954 p->prio = current->normal_prio;
1955
b9dc29e7
MG
1956 /*
1957 * Revert to default priority/policy on fork if requested.
1958 */
1959 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 1960 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 1961 p->policy = SCHED_NORMAL;
6c697bdf 1962 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
1963 p->rt_priority = 0;
1964 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1965 p->static_prio = NICE_TO_PRIO(0);
1966
1967 p->prio = p->normal_prio = __normal_prio(p);
1968 set_load_weight(p);
6c697bdf 1969
b9dc29e7
MG
1970 /*
1971 * We don't need the reset flag anymore after the fork. It has
1972 * fulfilled its duty:
1973 */
1974 p->sched_reset_on_fork = 0;
1975 }
ca94c442 1976
aab03e05
DF
1977 if (dl_prio(p->prio)) {
1978 put_cpu();
1979 return -EAGAIN;
1980 } else if (rt_prio(p->prio)) {
1981 p->sched_class = &rt_sched_class;
1982 } else {
2ddbf952 1983 p->sched_class = &fair_sched_class;
aab03e05 1984 }
b29739f9 1985
cd29fe6f
PZ
1986 if (p->sched_class->task_fork)
1987 p->sched_class->task_fork(p);
1988
86951599
PZ
1989 /*
1990 * The child is not yet in the pid-hash so no cgroup attach races,
1991 * and the cgroup is pinned to this child due to cgroup_fork()
1992 * is ran before sched_fork().
1993 *
1994 * Silence PROVE_RCU.
1995 */
0122ec5b 1996 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 1997 set_task_cpu(p, cpu);
0122ec5b 1998 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 1999
52f17b6c 2000#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2001 if (likely(sched_info_on()))
52f17b6c 2002 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2003#endif
3ca7a440
PZ
2004#if defined(CONFIG_SMP)
2005 p->on_cpu = 0;
4866cde0 2006#endif
01028747 2007 init_task_preempt_count(p);
806c09a7 2008#ifdef CONFIG_SMP
917b627d 2009 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 2010 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 2011#endif
917b627d 2012
476d139c 2013 put_cpu();
aab03e05 2014 return 0;
1da177e4
LT
2015}
2016
332ac17e
DF
2017unsigned long to_ratio(u64 period, u64 runtime)
2018{
2019 if (runtime == RUNTIME_INF)
2020 return 1ULL << 20;
2021
2022 /*
2023 * Doing this here saves a lot of checks in all
2024 * the calling paths, and returning zero seems
2025 * safe for them anyway.
2026 */
2027 if (period == 0)
2028 return 0;
2029
2030 return div64_u64(runtime << 20, period);
2031}
2032
2033#ifdef CONFIG_SMP
2034inline struct dl_bw *dl_bw_of(int i)
2035{
66339c31
KT
2036 rcu_lockdep_assert(rcu_read_lock_sched_held(),
2037 "sched RCU must be held");
332ac17e
DF
2038 return &cpu_rq(i)->rd->dl_bw;
2039}
2040
de212f18 2041static inline int dl_bw_cpus(int i)
332ac17e 2042{
de212f18
PZ
2043 struct root_domain *rd = cpu_rq(i)->rd;
2044 int cpus = 0;
2045
66339c31
KT
2046 rcu_lockdep_assert(rcu_read_lock_sched_held(),
2047 "sched RCU must be held");
de212f18
PZ
2048 for_each_cpu_and(i, rd->span, cpu_active_mask)
2049 cpus++;
2050
2051 return cpus;
332ac17e
DF
2052}
2053#else
2054inline struct dl_bw *dl_bw_of(int i)
2055{
2056 return &cpu_rq(i)->dl.dl_bw;
2057}
2058
de212f18 2059static inline int dl_bw_cpus(int i)
332ac17e
DF
2060{
2061 return 1;
2062}
2063#endif
2064
332ac17e
DF
2065/*
2066 * We must be sure that accepting a new task (or allowing changing the
2067 * parameters of an existing one) is consistent with the bandwidth
2068 * constraints. If yes, this function also accordingly updates the currently
2069 * allocated bandwidth to reflect the new situation.
2070 *
2071 * This function is called while holding p's rq->lock.
40767b0d
PZ
2072 *
2073 * XXX we should delay bw change until the task's 0-lag point, see
2074 * __setparam_dl().
332ac17e
DF
2075 */
2076static int dl_overflow(struct task_struct *p, int policy,
2077 const struct sched_attr *attr)
2078{
2079
2080 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
4df1638c 2081 u64 period = attr->sched_period ?: attr->sched_deadline;
332ac17e
DF
2082 u64 runtime = attr->sched_runtime;
2083 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 2084 int cpus, err = -1;
332ac17e
DF
2085
2086 if (new_bw == p->dl.dl_bw)
2087 return 0;
2088
2089 /*
2090 * Either if a task, enters, leave, or stays -deadline but changes
2091 * its parameters, we may need to update accordingly the total
2092 * allocated bandwidth of the container.
2093 */
2094 raw_spin_lock(&dl_b->lock);
de212f18 2095 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
2096 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2097 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2098 __dl_add(dl_b, new_bw);
2099 err = 0;
2100 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2101 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2102 __dl_clear(dl_b, p->dl.dl_bw);
2103 __dl_add(dl_b, new_bw);
2104 err = 0;
2105 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2106 __dl_clear(dl_b, p->dl.dl_bw);
2107 err = 0;
2108 }
2109 raw_spin_unlock(&dl_b->lock);
2110
2111 return err;
2112}
2113
2114extern void init_dl_bw(struct dl_bw *dl_b);
2115
1da177e4
LT
2116/*
2117 * wake_up_new_task - wake up a newly created task for the first time.
2118 *
2119 * This function will do some initial scheduler statistics housekeeping
2120 * that must be done for every newly created context, then puts the task
2121 * on the runqueue and wakes it.
2122 */
3e51e3ed 2123void wake_up_new_task(struct task_struct *p)
1da177e4
LT
2124{
2125 unsigned long flags;
dd41f596 2126 struct rq *rq;
fabf318e 2127
ab2515c4 2128 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
2129#ifdef CONFIG_SMP
2130 /*
2131 * Fork balancing, do it here and not earlier because:
2132 * - cpus_allowed can change in the fork path
2133 * - any previously selected cpu might disappear through hotplug
fabf318e 2134 */
ac66f547 2135 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735
PZ
2136#endif
2137
a75cdaa9
AS
2138 /* Initialize new task's runnable average */
2139 init_task_runnable_average(p);
ab2515c4 2140 rq = __task_rq_lock(p);
cd29fe6f 2141 activate_task(rq, p, 0);
da0c1e65 2142 p->on_rq = TASK_ON_RQ_QUEUED;
89363381 2143 trace_sched_wakeup_new(p, true);
a7558e01 2144 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2145#ifdef CONFIG_SMP
efbbd05a
PZ
2146 if (p->sched_class->task_woken)
2147 p->sched_class->task_woken(rq, p);
9a897c5a 2148#endif
0122ec5b 2149 task_rq_unlock(rq, p, &flags);
1da177e4
LT
2150}
2151
e107be36
AK
2152#ifdef CONFIG_PREEMPT_NOTIFIERS
2153
2154/**
80dd99b3 2155 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2156 * @notifier: notifier struct to register
e107be36
AK
2157 */
2158void preempt_notifier_register(struct preempt_notifier *notifier)
2159{
2160 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2161}
2162EXPORT_SYMBOL_GPL(preempt_notifier_register);
2163
2164/**
2165 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2166 * @notifier: notifier struct to unregister
e107be36
AK
2167 *
2168 * This is safe to call from within a preemption notifier.
2169 */
2170void preempt_notifier_unregister(struct preempt_notifier *notifier)
2171{
2172 hlist_del(&notifier->link);
2173}
2174EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2175
2176static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2177{
2178 struct preempt_notifier *notifier;
e107be36 2179
b67bfe0d 2180 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2181 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2182}
2183
2184static void
2185fire_sched_out_preempt_notifiers(struct task_struct *curr,
2186 struct task_struct *next)
2187{
2188 struct preempt_notifier *notifier;
e107be36 2189
b67bfe0d 2190 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2191 notifier->ops->sched_out(notifier, next);
2192}
2193
6d6bc0ad 2194#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2195
2196static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2197{
2198}
2199
2200static void
2201fire_sched_out_preempt_notifiers(struct task_struct *curr,
2202 struct task_struct *next)
2203{
2204}
2205
6d6bc0ad 2206#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2207
4866cde0
NP
2208/**
2209 * prepare_task_switch - prepare to switch tasks
2210 * @rq: the runqueue preparing to switch
421cee29 2211 * @prev: the current task that is being switched out
4866cde0
NP
2212 * @next: the task we are going to switch to.
2213 *
2214 * This is called with the rq lock held and interrupts off. It must
2215 * be paired with a subsequent finish_task_switch after the context
2216 * switch.
2217 *
2218 * prepare_task_switch sets up locking and calls architecture specific
2219 * hooks.
2220 */
e107be36
AK
2221static inline void
2222prepare_task_switch(struct rq *rq, struct task_struct *prev,
2223 struct task_struct *next)
4866cde0 2224{
895dd92c 2225 trace_sched_switch(prev, next);
43148951 2226 sched_info_switch(rq, prev, next);
fe4b04fa 2227 perf_event_task_sched_out(prev, next);
e107be36 2228 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2229 prepare_lock_switch(rq, next);
2230 prepare_arch_switch(next);
2231}
2232
1da177e4
LT
2233/**
2234 * finish_task_switch - clean up after a task-switch
2235 * @prev: the thread we just switched away from.
2236 *
4866cde0
NP
2237 * finish_task_switch must be called after the context switch, paired
2238 * with a prepare_task_switch call before the context switch.
2239 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2240 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2241 *
2242 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2243 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2244 * with the lock held can cause deadlocks; see schedule() for
2245 * details.)
dfa50b60
ON
2246 *
2247 * The context switch have flipped the stack from under us and restored the
2248 * local variables which were saved when this task called schedule() in the
2249 * past. prev == current is still correct but we need to recalculate this_rq
2250 * because prev may have moved to another CPU.
1da177e4 2251 */
dfa50b60 2252static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
2253 __releases(rq->lock)
2254{
dfa50b60 2255 struct rq *rq = this_rq();
1da177e4 2256 struct mm_struct *mm = rq->prev_mm;
55a101f8 2257 long prev_state;
1da177e4
LT
2258
2259 rq->prev_mm = NULL;
2260
2261 /*
2262 * A task struct has one reference for the use as "current".
c394cc9f 2263 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2264 * schedule one last time. The schedule call will never return, and
2265 * the scheduled task must drop that reference.
c394cc9f 2266 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2267 * still held, otherwise prev could be scheduled on another cpu, die
2268 * there before we look at prev->state, and then the reference would
2269 * be dropped twice.
2270 * Manfred Spraul <manfred@colorfullife.com>
2271 */
55a101f8 2272 prev_state = prev->state;
bf9fae9f 2273 vtime_task_switch(prev);
4866cde0 2274 finish_arch_switch(prev);
a8d757ef 2275 perf_event_task_sched_in(prev, current);
4866cde0 2276 finish_lock_switch(rq, prev);
01f23e16 2277 finish_arch_post_lock_switch();
e8fa1362 2278
e107be36 2279 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2280 if (mm)
2281 mmdrop(mm);
c394cc9f 2282 if (unlikely(prev_state == TASK_DEAD)) {
e6c390f2
DF
2283 if (prev->sched_class->task_dead)
2284 prev->sched_class->task_dead(prev);
2285
c6fd91f0 2286 /*
2287 * Remove function-return probe instances associated with this
2288 * task and put them back on the free list.
9761eea8 2289 */
c6fd91f0 2290 kprobe_flush_task(prev);
1da177e4 2291 put_task_struct(prev);
c6fd91f0 2292 }
99e5ada9
FW
2293
2294 tick_nohz_task_switch(current);
dfa50b60 2295 return rq;
1da177e4
LT
2296}
2297
3f029d3c
GH
2298#ifdef CONFIG_SMP
2299
3f029d3c
GH
2300/* rq->lock is NOT held, but preemption is disabled */
2301static inline void post_schedule(struct rq *rq)
2302{
2303 if (rq->post_schedule) {
2304 unsigned long flags;
2305
05fa785c 2306 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2307 if (rq->curr->sched_class->post_schedule)
2308 rq->curr->sched_class->post_schedule(rq);
05fa785c 2309 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2310
2311 rq->post_schedule = 0;
2312 }
2313}
2314
2315#else
da19ab51 2316
3f029d3c
GH
2317static inline void post_schedule(struct rq *rq)
2318{
1da177e4
LT
2319}
2320
3f029d3c
GH
2321#endif
2322
1da177e4
LT
2323/**
2324 * schedule_tail - first thing a freshly forked thread must call.
2325 * @prev: the thread we just switched away from.
2326 */
722a9f92 2327asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
2328 __releases(rq->lock)
2329{
1a43a14a 2330 struct rq *rq;
da19ab51 2331
1a43a14a
ON
2332 /* finish_task_switch() drops rq->lock and enables preemtion */
2333 preempt_disable();
dfa50b60 2334 rq = finish_task_switch(prev);
3f029d3c 2335 post_schedule(rq);
1a43a14a 2336 preempt_enable();
70b97a7f 2337
1da177e4 2338 if (current->set_child_tid)
b488893a 2339 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2340}
2341
2342/*
dfa50b60 2343 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 2344 */
dfa50b60 2345static inline struct rq *
70b97a7f 2346context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2347 struct task_struct *next)
1da177e4 2348{
dd41f596 2349 struct mm_struct *mm, *oldmm;
1da177e4 2350
e107be36 2351 prepare_task_switch(rq, prev, next);
fe4b04fa 2352
dd41f596
IM
2353 mm = next->mm;
2354 oldmm = prev->active_mm;
9226d125
ZA
2355 /*
2356 * For paravirt, this is coupled with an exit in switch_to to
2357 * combine the page table reload and the switch backend into
2358 * one hypercall.
2359 */
224101ed 2360 arch_start_context_switch(prev);
9226d125 2361
31915ab4 2362 if (!mm) {
1da177e4
LT
2363 next->active_mm = oldmm;
2364 atomic_inc(&oldmm->mm_count);
2365 enter_lazy_tlb(oldmm, next);
2366 } else
2367 switch_mm(oldmm, mm, next);
2368
31915ab4 2369 if (!prev->mm) {
1da177e4 2370 prev->active_mm = NULL;
1da177e4
LT
2371 rq->prev_mm = oldmm;
2372 }
3a5f5e48
IM
2373 /*
2374 * Since the runqueue lock will be released by the next
2375 * task (which is an invalid locking op but in the case
2376 * of the scheduler it's an obvious special-case), so we
2377 * do an early lockdep release here:
2378 */
8a25d5de 2379 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4 2380
91d1aa43 2381 context_tracking_task_switch(prev, next);
1da177e4
LT
2382 /* Here we just switch the register state and the stack. */
2383 switch_to(prev, next, prev);
dd41f596 2384 barrier();
dfa50b60
ON
2385
2386 return finish_task_switch(prev);
1da177e4
LT
2387}
2388
2389/*
1c3e8264 2390 * nr_running and nr_context_switches:
1da177e4
LT
2391 *
2392 * externally visible scheduler statistics: current number of runnable
1c3e8264 2393 * threads, total number of context switches performed since bootup.
1da177e4
LT
2394 */
2395unsigned long nr_running(void)
2396{
2397 unsigned long i, sum = 0;
2398
2399 for_each_online_cpu(i)
2400 sum += cpu_rq(i)->nr_running;
2401
2402 return sum;
f711f609 2403}
1da177e4 2404
2ee507c4
TC
2405/*
2406 * Check if only the current task is running on the cpu.
2407 */
2408bool single_task_running(void)
2409{
2410 if (cpu_rq(smp_processor_id())->nr_running == 1)
2411 return true;
2412 else
2413 return false;
2414}
2415EXPORT_SYMBOL(single_task_running);
2416
1da177e4 2417unsigned long long nr_context_switches(void)
46cb4b7c 2418{
cc94abfc
SR
2419 int i;
2420 unsigned long long sum = 0;
46cb4b7c 2421
0a945022 2422 for_each_possible_cpu(i)
1da177e4 2423 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2424
1da177e4
LT
2425 return sum;
2426}
483b4ee6 2427
1da177e4
LT
2428unsigned long nr_iowait(void)
2429{
2430 unsigned long i, sum = 0;
483b4ee6 2431
0a945022 2432 for_each_possible_cpu(i)
1da177e4 2433 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2434
1da177e4
LT
2435 return sum;
2436}
483b4ee6 2437
8c215bd3 2438unsigned long nr_iowait_cpu(int cpu)
69d25870 2439{
8c215bd3 2440 struct rq *this = cpu_rq(cpu);
69d25870
AV
2441 return atomic_read(&this->nr_iowait);
2442}
46cb4b7c 2443
372ba8cb
MG
2444void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2445{
3289bdb4
PZ
2446 struct rq *rq = this_rq();
2447 *nr_waiters = atomic_read(&rq->nr_iowait);
2448 *load = rq->load.weight;
372ba8cb
MG
2449}
2450
dd41f596 2451#ifdef CONFIG_SMP
8a0be9ef 2452
46cb4b7c 2453/*
38022906
PZ
2454 * sched_exec - execve() is a valuable balancing opportunity, because at
2455 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2456 */
38022906 2457void sched_exec(void)
46cb4b7c 2458{
38022906 2459 struct task_struct *p = current;
1da177e4 2460 unsigned long flags;
0017d735 2461 int dest_cpu;
46cb4b7c 2462
8f42ced9 2463 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2464 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2465 if (dest_cpu == smp_processor_id())
2466 goto unlock;
38022906 2467
8f42ced9 2468 if (likely(cpu_active(dest_cpu))) {
969c7921 2469 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2470
8f42ced9
PZ
2471 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2472 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2473 return;
2474 }
0017d735 2475unlock:
8f42ced9 2476 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2477}
dd41f596 2478
1da177e4
LT
2479#endif
2480
1da177e4 2481DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2482DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2483
2484EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2485EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 2486
c5f8d995
HS
2487/*
2488 * Return accounted runtime for the task.
2489 * In case the task is currently running, return the runtime plus current's
2490 * pending runtime that have not been accounted yet.
2491 */
2492unsigned long long task_sched_runtime(struct task_struct *p)
2493{
2494 unsigned long flags;
2495 struct rq *rq;
6e998916 2496 u64 ns;
c5f8d995 2497
911b2898
PZ
2498#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2499 /*
2500 * 64-bit doesn't need locks to atomically read a 64bit value.
2501 * So we have a optimization chance when the task's delta_exec is 0.
2502 * Reading ->on_cpu is racy, but this is ok.
2503 *
2504 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2505 * If we race with it entering cpu, unaccounted time is 0. This is
2506 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
2507 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2508 * been accounted, so we're correct here as well.
911b2898 2509 */
da0c1e65 2510 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
2511 return p->se.sum_exec_runtime;
2512#endif
2513
c5f8d995 2514 rq = task_rq_lock(p, &flags);
6e998916
SG
2515 /*
2516 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2517 * project cycles that may never be accounted to this
2518 * thread, breaking clock_gettime().
2519 */
2520 if (task_current(rq, p) && task_on_rq_queued(p)) {
2521 update_rq_clock(rq);
2522 p->sched_class->update_curr(rq);
2523 }
2524 ns = p->se.sum_exec_runtime;
0122ec5b 2525 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2526
2527 return ns;
2528}
48f24c4d 2529
7835b98b
CL
2530/*
2531 * This function gets called by the timer code, with HZ frequency.
2532 * We call it with interrupts disabled.
7835b98b
CL
2533 */
2534void scheduler_tick(void)
2535{
7835b98b
CL
2536 int cpu = smp_processor_id();
2537 struct rq *rq = cpu_rq(cpu);
dd41f596 2538 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2539
2540 sched_clock_tick();
dd41f596 2541
05fa785c 2542 raw_spin_lock(&rq->lock);
3e51f33f 2543 update_rq_clock(rq);
fa85ae24 2544 curr->sched_class->task_tick(rq, curr, 0);
83dfd523 2545 update_cpu_load_active(rq);
3289bdb4 2546 calc_global_load_tick(rq);
05fa785c 2547 raw_spin_unlock(&rq->lock);
7835b98b 2548
e9d2b064 2549 perf_event_task_tick();
e220d2dc 2550
e418e1c2 2551#ifdef CONFIG_SMP
6eb57e0d 2552 rq->idle_balance = idle_cpu(cpu);
7caff66f 2553 trigger_load_balance(rq);
e418e1c2 2554#endif
265f22a9 2555 rq_last_tick_reset(rq);
1da177e4
LT
2556}
2557
265f22a9
FW
2558#ifdef CONFIG_NO_HZ_FULL
2559/**
2560 * scheduler_tick_max_deferment
2561 *
2562 * Keep at least one tick per second when a single
2563 * active task is running because the scheduler doesn't
2564 * yet completely support full dynticks environment.
2565 *
2566 * This makes sure that uptime, CFS vruntime, load
2567 * balancing, etc... continue to move forward, even
2568 * with a very low granularity.
e69f6186
YB
2569 *
2570 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
2571 */
2572u64 scheduler_tick_max_deferment(void)
2573{
2574 struct rq *rq = this_rq();
316c1608 2575 unsigned long next, now = READ_ONCE(jiffies);
265f22a9
FW
2576
2577 next = rq->last_sched_tick + HZ;
2578
2579 if (time_before_eq(next, now))
2580 return 0;
2581
8fe8ff09 2582 return jiffies_to_nsecs(next - now);
1da177e4 2583}
265f22a9 2584#endif
1da177e4 2585
132380a0 2586notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
2587{
2588 if (in_lock_functions(addr)) {
2589 addr = CALLER_ADDR2;
2590 if (in_lock_functions(addr))
2591 addr = CALLER_ADDR3;
2592 }
2593 return addr;
2594}
1da177e4 2595
7e49fcce
SR
2596#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2597 defined(CONFIG_PREEMPT_TRACER))
2598
edafe3a5 2599void preempt_count_add(int val)
1da177e4 2600{
6cd8a4bb 2601#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2602 /*
2603 * Underflow?
2604 */
9a11b49a
IM
2605 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2606 return;
6cd8a4bb 2607#endif
bdb43806 2608 __preempt_count_add(val);
6cd8a4bb 2609#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2610 /*
2611 * Spinlock count overflowing soon?
2612 */
33859f7f
MOS
2613 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2614 PREEMPT_MASK - 10);
6cd8a4bb 2615#endif
8f47b187
TG
2616 if (preempt_count() == val) {
2617 unsigned long ip = get_parent_ip(CALLER_ADDR1);
2618#ifdef CONFIG_DEBUG_PREEMPT
2619 current->preempt_disable_ip = ip;
2620#endif
2621 trace_preempt_off(CALLER_ADDR0, ip);
2622 }
1da177e4 2623}
bdb43806 2624EXPORT_SYMBOL(preempt_count_add);
edafe3a5 2625NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 2626
edafe3a5 2627void preempt_count_sub(int val)
1da177e4 2628{
6cd8a4bb 2629#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2630 /*
2631 * Underflow?
2632 */
01e3eb82 2633 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 2634 return;
1da177e4
LT
2635 /*
2636 * Is the spinlock portion underflowing?
2637 */
9a11b49a
IM
2638 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2639 !(preempt_count() & PREEMPT_MASK)))
2640 return;
6cd8a4bb 2641#endif
9a11b49a 2642
6cd8a4bb
SR
2643 if (preempt_count() == val)
2644 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
bdb43806 2645 __preempt_count_sub(val);
1da177e4 2646}
bdb43806 2647EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 2648NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4
LT
2649
2650#endif
2651
2652/*
dd41f596 2653 * Print scheduling while atomic bug:
1da177e4 2654 */
dd41f596 2655static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 2656{
664dfa65
DJ
2657 if (oops_in_progress)
2658 return;
2659
3df0fc5b
PZ
2660 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2661 prev->comm, prev->pid, preempt_count());
838225b4 2662
dd41f596 2663 debug_show_held_locks(prev);
e21f5b15 2664 print_modules();
dd41f596
IM
2665 if (irqs_disabled())
2666 print_irqtrace_events(prev);
8f47b187
TG
2667#ifdef CONFIG_DEBUG_PREEMPT
2668 if (in_atomic_preempt_off()) {
2669 pr_err("Preemption disabled at:");
2670 print_ip_sym(current->preempt_disable_ip);
2671 pr_cont("\n");
2672 }
2673#endif
6135fc1e 2674 dump_stack();
373d4d09 2675 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 2676}
1da177e4 2677
dd41f596
IM
2678/*
2679 * Various schedule()-time debugging checks and statistics:
2680 */
2681static inline void schedule_debug(struct task_struct *prev)
2682{
0d9e2632
AT
2683#ifdef CONFIG_SCHED_STACK_END_CHECK
2684 BUG_ON(unlikely(task_stack_end_corrupted(prev)));
2685#endif
1da177e4 2686 /*
41a2d6cf 2687 * Test if we are atomic. Since do_exit() needs to call into
192301e7
ON
2688 * schedule() atomically, we ignore that path. Otherwise whine
2689 * if we are scheduling when we should not.
1da177e4 2690 */
192301e7 2691 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
dd41f596 2692 __schedule_bug(prev);
b3fbab05 2693 rcu_sleep_check();
dd41f596 2694
1da177e4
LT
2695 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2696
2d72376b 2697 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
2698}
2699
2700/*
2701 * Pick up the highest-prio task:
2702 */
2703static inline struct task_struct *
606dba2e 2704pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 2705{
37e117c0 2706 const struct sched_class *class = &fair_sched_class;
dd41f596 2707 struct task_struct *p;
1da177e4
LT
2708
2709 /*
dd41f596
IM
2710 * Optimization: we know that if all tasks are in
2711 * the fair class we can call that function directly:
1da177e4 2712 */
37e117c0 2713 if (likely(prev->sched_class == class &&
38033c37 2714 rq->nr_running == rq->cfs.h_nr_running)) {
606dba2e 2715 p = fair_sched_class.pick_next_task(rq, prev);
6ccdc84b
PZ
2716 if (unlikely(p == RETRY_TASK))
2717 goto again;
2718
2719 /* assumes fair_sched_class->next == idle_sched_class */
2720 if (unlikely(!p))
2721 p = idle_sched_class.pick_next_task(rq, prev);
2722
2723 return p;
1da177e4
LT
2724 }
2725
37e117c0 2726again:
34f971f6 2727 for_each_class(class) {
606dba2e 2728 p = class->pick_next_task(rq, prev);
37e117c0
PZ
2729 if (p) {
2730 if (unlikely(p == RETRY_TASK))
2731 goto again;
dd41f596 2732 return p;
37e117c0 2733 }
dd41f596 2734 }
34f971f6
PZ
2735
2736 BUG(); /* the idle class will always have a runnable task */
dd41f596 2737}
1da177e4 2738
dd41f596 2739/*
c259e01a 2740 * __schedule() is the main scheduler function.
edde96ea
PE
2741 *
2742 * The main means of driving the scheduler and thus entering this function are:
2743 *
2744 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2745 *
2746 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2747 * paths. For example, see arch/x86/entry_64.S.
2748 *
2749 * To drive preemption between tasks, the scheduler sets the flag in timer
2750 * interrupt handler scheduler_tick().
2751 *
2752 * 3. Wakeups don't really cause entry into schedule(). They add a
2753 * task to the run-queue and that's it.
2754 *
2755 * Now, if the new task added to the run-queue preempts the current
2756 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2757 * called on the nearest possible occasion:
2758 *
2759 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2760 *
2761 * - in syscall or exception context, at the next outmost
2762 * preempt_enable(). (this might be as soon as the wake_up()'s
2763 * spin_unlock()!)
2764 *
2765 * - in IRQ context, return from interrupt-handler to
2766 * preemptible context
2767 *
2768 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2769 * then at the next:
2770 *
2771 * - cond_resched() call
2772 * - explicit schedule() call
2773 * - return from syscall or exception to user-space
2774 * - return from interrupt-handler to user-space
bfd9b2b5
FW
2775 *
2776 * WARNING: all callers must re-check need_resched() afterward and reschedule
2777 * accordingly in case an event triggered the need for rescheduling (such as
2778 * an interrupt waking up a task) while preemption was disabled in __schedule().
dd41f596 2779 */
c259e01a 2780static void __sched __schedule(void)
dd41f596
IM
2781{
2782 struct task_struct *prev, *next;
67ca7bde 2783 unsigned long *switch_count;
dd41f596 2784 struct rq *rq;
31656519 2785 int cpu;
dd41f596 2786
ff743345 2787 preempt_disable();
dd41f596
IM
2788 cpu = smp_processor_id();
2789 rq = cpu_rq(cpu);
38200cf2 2790 rcu_note_context_switch();
dd41f596 2791 prev = rq->curr;
dd41f596 2792
dd41f596 2793 schedule_debug(prev);
1da177e4 2794
31656519 2795 if (sched_feat(HRTICK))
f333fdc9 2796 hrtick_clear(rq);
8f4d37ec 2797
e0acd0a6
ON
2798 /*
2799 * Make sure that signal_pending_state()->signal_pending() below
2800 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2801 * done by the caller to avoid the race with signal_wake_up().
2802 */
2803 smp_mb__before_spinlock();
05fa785c 2804 raw_spin_lock_irq(&rq->lock);
1da177e4 2805
9edfbfed
PZ
2806 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
2807
246d86b5 2808 switch_count = &prev->nivcsw;
1da177e4 2809 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 2810 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 2811 prev->state = TASK_RUNNING;
21aa9af0 2812 } else {
2acca55e
PZ
2813 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2814 prev->on_rq = 0;
2815
21aa9af0 2816 /*
2acca55e
PZ
2817 * If a worker went to sleep, notify and ask workqueue
2818 * whether it wants to wake up a task to maintain
2819 * concurrency.
21aa9af0
TH
2820 */
2821 if (prev->flags & PF_WQ_WORKER) {
2822 struct task_struct *to_wakeup;
2823
2824 to_wakeup = wq_worker_sleeping(prev, cpu);
2825 if (to_wakeup)
2826 try_to_wake_up_local(to_wakeup);
2827 }
21aa9af0 2828 }
dd41f596 2829 switch_count = &prev->nvcsw;
1da177e4
LT
2830 }
2831
9edfbfed 2832 if (task_on_rq_queued(prev))
606dba2e
PZ
2833 update_rq_clock(rq);
2834
2835 next = pick_next_task(rq, prev);
f26f9aff 2836 clear_tsk_need_resched(prev);
f27dde8d 2837 clear_preempt_need_resched();
9edfbfed 2838 rq->clock_skip_update = 0;
1da177e4 2839
1da177e4 2840 if (likely(prev != next)) {
1da177e4
LT
2841 rq->nr_switches++;
2842 rq->curr = next;
2843 ++*switch_count;
2844
dfa50b60
ON
2845 rq = context_switch(rq, prev, next); /* unlocks the rq */
2846 cpu = cpu_of(rq);
1da177e4 2847 } else
05fa785c 2848 raw_spin_unlock_irq(&rq->lock);
1da177e4 2849
3f029d3c 2850 post_schedule(rq);
1da177e4 2851
ba74c144 2852 sched_preempt_enable_no_resched();
1da177e4 2853}
c259e01a 2854
9c40cef2
TG
2855static inline void sched_submit_work(struct task_struct *tsk)
2856{
3c7d5184 2857 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
2858 return;
2859 /*
2860 * If we are going to sleep and we have plugged IO queued,
2861 * make sure to submit it to avoid deadlocks.
2862 */
2863 if (blk_needs_flush_plug(tsk))
2864 blk_schedule_flush_plug(tsk);
2865}
2866
722a9f92 2867asmlinkage __visible void __sched schedule(void)
c259e01a 2868{
9c40cef2
TG
2869 struct task_struct *tsk = current;
2870
2871 sched_submit_work(tsk);
bfd9b2b5
FW
2872 do {
2873 __schedule();
2874 } while (need_resched());
c259e01a 2875}
1da177e4
LT
2876EXPORT_SYMBOL(schedule);
2877
91d1aa43 2878#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 2879asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
2880{
2881 /*
2882 * If we come here after a random call to set_need_resched(),
2883 * or we have been woken up remotely but the IPI has not yet arrived,
2884 * we haven't yet exited the RCU idle mode. Do it here manually until
2885 * we find a better solution.
7cc78f8f
AL
2886 *
2887 * NB: There are buggy callers of this function. Ideally we
c467ea76 2888 * should warn if prev_state != CONTEXT_USER, but that will trigger
7cc78f8f 2889 * too frequently to make sense yet.
20ab65e3 2890 */
7cc78f8f 2891 enum ctx_state prev_state = exception_enter();
20ab65e3 2892 schedule();
7cc78f8f 2893 exception_exit(prev_state);
20ab65e3
FW
2894}
2895#endif
2896
c5491ea7
TG
2897/**
2898 * schedule_preempt_disabled - called with preemption disabled
2899 *
2900 * Returns with preemption disabled. Note: preempt_count must be 1
2901 */
2902void __sched schedule_preempt_disabled(void)
2903{
ba74c144 2904 sched_preempt_enable_no_resched();
c5491ea7
TG
2905 schedule();
2906 preempt_disable();
2907}
2908
06b1f808 2909static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
2910{
2911 do {
2912 __preempt_count_add(PREEMPT_ACTIVE);
2913 __schedule();
2914 __preempt_count_sub(PREEMPT_ACTIVE);
2915
2916 /*
2917 * Check again in case we missed a preemption opportunity
2918 * between schedule and now.
2919 */
2920 barrier();
2921 } while (need_resched());
2922}
2923
1da177e4
LT
2924#ifdef CONFIG_PREEMPT
2925/*
2ed6e34f 2926 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 2927 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
2928 * occur there and call schedule directly.
2929 */
722a9f92 2930asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 2931{
1da177e4
LT
2932 /*
2933 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 2934 * we do not want to preempt the current task. Just return..
1da177e4 2935 */
fbb00b56 2936 if (likely(!preemptible()))
1da177e4
LT
2937 return;
2938
a18b5d01 2939 preempt_schedule_common();
1da177e4 2940}
376e2424 2941NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 2942EXPORT_SYMBOL(preempt_schedule);
009f60e2
ON
2943
2944#ifdef CONFIG_CONTEXT_TRACKING
2945/**
2946 * preempt_schedule_context - preempt_schedule called by tracing
2947 *
2948 * The tracing infrastructure uses preempt_enable_notrace to prevent
2949 * recursion and tracing preempt enabling caused by the tracing
2950 * infrastructure itself. But as tracing can happen in areas coming
2951 * from userspace or just about to enter userspace, a preempt enable
2952 * can occur before user_exit() is called. This will cause the scheduler
2953 * to be called when the system is still in usermode.
2954 *
2955 * To prevent this, the preempt_enable_notrace will use this function
2956 * instead of preempt_schedule() to exit user context if needed before
2957 * calling the scheduler.
2958 */
2959asmlinkage __visible void __sched notrace preempt_schedule_context(void)
2960{
2961 enum ctx_state prev_ctx;
2962
2963 if (likely(!preemptible()))
2964 return;
2965
2966 do {
2967 __preempt_count_add(PREEMPT_ACTIVE);
2968 /*
2969 * Needs preempt disabled in case user_exit() is traced
2970 * and the tracer calls preempt_enable_notrace() causing
2971 * an infinite recursion.
2972 */
2973 prev_ctx = exception_enter();
2974 __schedule();
2975 exception_exit(prev_ctx);
2976
2977 __preempt_count_sub(PREEMPT_ACTIVE);
2978 barrier();
2979 } while (need_resched());
2980}
2981EXPORT_SYMBOL_GPL(preempt_schedule_context);
2982#endif /* CONFIG_CONTEXT_TRACKING */
2983
32e475d7 2984#endif /* CONFIG_PREEMPT */
1da177e4
LT
2985
2986/*
2ed6e34f 2987 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
2988 * off of irq context.
2989 * Note, that this is called and return with irqs disabled. This will
2990 * protect us against recursive calling from irq.
2991 */
722a9f92 2992asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 2993{
b22366cd 2994 enum ctx_state prev_state;
6478d880 2995
2ed6e34f 2996 /* Catch callers which need to be fixed */
f27dde8d 2997 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 2998
b22366cd
FW
2999 prev_state = exception_enter();
3000
3a5c359a 3001 do {
bdb43806 3002 __preempt_count_add(PREEMPT_ACTIVE);
3a5c359a 3003 local_irq_enable();
c259e01a 3004 __schedule();
3a5c359a 3005 local_irq_disable();
bdb43806 3006 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 3007
3a5c359a
AK
3008 /*
3009 * Check again in case we missed a preemption opportunity
3010 * between schedule and now.
3011 */
3012 barrier();
5ed0cec0 3013 } while (need_resched());
b22366cd
FW
3014
3015 exception_exit(prev_state);
1da177e4
LT
3016}
3017
63859d4f 3018int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3019 void *key)
1da177e4 3020{
63859d4f 3021 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3022}
1da177e4
LT
3023EXPORT_SYMBOL(default_wake_function);
3024
b29739f9
IM
3025#ifdef CONFIG_RT_MUTEXES
3026
3027/*
3028 * rt_mutex_setprio - set the current priority of a task
3029 * @p: task
3030 * @prio: prio value (kernel-internal form)
3031 *
3032 * This function changes the 'effective' priority of a task. It does
3033 * not touch ->normal_prio like __setscheduler().
3034 *
c365c292
TG
3035 * Used by the rt_mutex code to implement priority inheritance
3036 * logic. Call site only calls if the priority of the task changed.
b29739f9 3037 */
36c8b586 3038void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3039{
da0c1e65 3040 int oldprio, queued, running, enqueue_flag = 0;
70b97a7f 3041 struct rq *rq;
83ab0aa0 3042 const struct sched_class *prev_class;
b29739f9 3043
aab03e05 3044 BUG_ON(prio > MAX_PRIO);
b29739f9 3045
0122ec5b 3046 rq = __task_rq_lock(p);
b29739f9 3047
1c4dd99b
TG
3048 /*
3049 * Idle task boosting is a nono in general. There is one
3050 * exception, when PREEMPT_RT and NOHZ is active:
3051 *
3052 * The idle task calls get_next_timer_interrupt() and holds
3053 * the timer wheel base->lock on the CPU and another CPU wants
3054 * to access the timer (probably to cancel it). We can safely
3055 * ignore the boosting request, as the idle CPU runs this code
3056 * with interrupts disabled and will complete the lock
3057 * protected section without being interrupted. So there is no
3058 * real need to boost.
3059 */
3060 if (unlikely(p == rq->idle)) {
3061 WARN_ON(p != rq->curr);
3062 WARN_ON(p->pi_blocked_on);
3063 goto out_unlock;
3064 }
3065
a8027073 3066 trace_sched_pi_setprio(p, prio);
d5f9f942 3067 oldprio = p->prio;
83ab0aa0 3068 prev_class = p->sched_class;
da0c1e65 3069 queued = task_on_rq_queued(p);
051a1d1a 3070 running = task_current(rq, p);
da0c1e65 3071 if (queued)
69be72c1 3072 dequeue_task(rq, p, 0);
0e1f3483 3073 if (running)
f3cd1c4e 3074 put_prev_task(rq, p);
dd41f596 3075
2d3d891d
DF
3076 /*
3077 * Boosting condition are:
3078 * 1. -rt task is running and holds mutex A
3079 * --> -dl task blocks on mutex A
3080 *
3081 * 2. -dl task is running and holds mutex A
3082 * --> -dl task blocks on mutex A and could preempt the
3083 * running task
3084 */
3085 if (dl_prio(prio)) {
466af29b
ON
3086 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3087 if (!dl_prio(p->normal_prio) ||
3088 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d
DF
3089 p->dl.dl_boosted = 1;
3090 p->dl.dl_throttled = 0;
3091 enqueue_flag = ENQUEUE_REPLENISH;
3092 } else
3093 p->dl.dl_boosted = 0;
aab03e05 3094 p->sched_class = &dl_sched_class;
2d3d891d
DF
3095 } else if (rt_prio(prio)) {
3096 if (dl_prio(oldprio))
3097 p->dl.dl_boosted = 0;
3098 if (oldprio < prio)
3099 enqueue_flag = ENQUEUE_HEAD;
dd41f596 3100 p->sched_class = &rt_sched_class;
2d3d891d
DF
3101 } else {
3102 if (dl_prio(oldprio))
3103 p->dl.dl_boosted = 0;
746db944
BS
3104 if (rt_prio(oldprio))
3105 p->rt.timeout = 0;
dd41f596 3106 p->sched_class = &fair_sched_class;
2d3d891d 3107 }
dd41f596 3108
b29739f9
IM
3109 p->prio = prio;
3110
0e1f3483
HS
3111 if (running)
3112 p->sched_class->set_curr_task(rq);
da0c1e65 3113 if (queued)
2d3d891d 3114 enqueue_task(rq, p, enqueue_flag);
cb469845 3115
da7a735e 3116 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3117out_unlock:
0122ec5b 3118 __task_rq_unlock(rq);
b29739f9 3119}
b29739f9 3120#endif
d50dde5a 3121
36c8b586 3122void set_user_nice(struct task_struct *p, long nice)
1da177e4 3123{
da0c1e65 3124 int old_prio, delta, queued;
1da177e4 3125 unsigned long flags;
70b97a7f 3126 struct rq *rq;
1da177e4 3127
75e45d51 3128 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
3129 return;
3130 /*
3131 * We have to be careful, if called from sys_setpriority(),
3132 * the task might be in the middle of scheduling on another CPU.
3133 */
3134 rq = task_rq_lock(p, &flags);
3135 /*
3136 * The RT priorities are set via sched_setscheduler(), but we still
3137 * allow the 'normal' nice value to be set - but as expected
3138 * it wont have any effect on scheduling until the task is
aab03e05 3139 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3140 */
aab03e05 3141 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3142 p->static_prio = NICE_TO_PRIO(nice);
3143 goto out_unlock;
3144 }
da0c1e65
KT
3145 queued = task_on_rq_queued(p);
3146 if (queued)
69be72c1 3147 dequeue_task(rq, p, 0);
1da177e4 3148
1da177e4 3149 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3150 set_load_weight(p);
b29739f9
IM
3151 old_prio = p->prio;
3152 p->prio = effective_prio(p);
3153 delta = p->prio - old_prio;
1da177e4 3154
da0c1e65 3155 if (queued) {
371fd7e7 3156 enqueue_task(rq, p, 0);
1da177e4 3157 /*
d5f9f942
AM
3158 * If the task increased its priority or is running and
3159 * lowered its priority, then reschedule its CPU:
1da177e4 3160 */
d5f9f942 3161 if (delta < 0 || (delta > 0 && task_running(rq, p)))
8875125e 3162 resched_curr(rq);
1da177e4
LT
3163 }
3164out_unlock:
0122ec5b 3165 task_rq_unlock(rq, p, &flags);
1da177e4 3166}
1da177e4
LT
3167EXPORT_SYMBOL(set_user_nice);
3168
e43379f1
MM
3169/*
3170 * can_nice - check if a task can reduce its nice value
3171 * @p: task
3172 * @nice: nice value
3173 */
36c8b586 3174int can_nice(const struct task_struct *p, const int nice)
e43379f1 3175{
024f4747 3176 /* convert nice value [19,-20] to rlimit style value [1,40] */
7aa2c016 3177 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 3178
78d7d407 3179 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3180 capable(CAP_SYS_NICE));
3181}
3182
1da177e4
LT
3183#ifdef __ARCH_WANT_SYS_NICE
3184
3185/*
3186 * sys_nice - change the priority of the current process.
3187 * @increment: priority increment
3188 *
3189 * sys_setpriority is a more generic, but much slower function that
3190 * does similar things.
3191 */
5add95d4 3192SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3193{
48f24c4d 3194 long nice, retval;
1da177e4
LT
3195
3196 /*
3197 * Setpriority might change our priority at the same moment.
3198 * We don't have to worry. Conceptually one call occurs first
3199 * and we have a single winner.
3200 */
a9467fa3 3201 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 3202 nice = task_nice(current) + increment;
1da177e4 3203
a9467fa3 3204 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
3205 if (increment < 0 && !can_nice(current, nice))
3206 return -EPERM;
3207
1da177e4
LT
3208 retval = security_task_setnice(current, nice);
3209 if (retval)
3210 return retval;
3211
3212 set_user_nice(current, nice);
3213 return 0;
3214}
3215
3216#endif
3217
3218/**
3219 * task_prio - return the priority value of a given task.
3220 * @p: the task in question.
3221 *
e69f6186 3222 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3223 * RT tasks are offset by -200. Normal tasks are centered
3224 * around 0, value goes from -16 to +15.
3225 */
36c8b586 3226int task_prio(const struct task_struct *p)
1da177e4
LT
3227{
3228 return p->prio - MAX_RT_PRIO;
3229}
3230
1da177e4
LT
3231/**
3232 * idle_cpu - is a given cpu idle currently?
3233 * @cpu: the processor in question.
e69f6186
YB
3234 *
3235 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3236 */
3237int idle_cpu(int cpu)
3238{
908a3283
TG
3239 struct rq *rq = cpu_rq(cpu);
3240
3241 if (rq->curr != rq->idle)
3242 return 0;
3243
3244 if (rq->nr_running)
3245 return 0;
3246
3247#ifdef CONFIG_SMP
3248 if (!llist_empty(&rq->wake_list))
3249 return 0;
3250#endif
3251
3252 return 1;
1da177e4
LT
3253}
3254
1da177e4
LT
3255/**
3256 * idle_task - return the idle task for a given cpu.
3257 * @cpu: the processor in question.
e69f6186
YB
3258 *
3259 * Return: The idle task for the cpu @cpu.
1da177e4 3260 */
36c8b586 3261struct task_struct *idle_task(int cpu)
1da177e4
LT
3262{
3263 return cpu_rq(cpu)->idle;
3264}
3265
3266/**
3267 * find_process_by_pid - find a process with a matching PID value.
3268 * @pid: the pid in question.
e69f6186
YB
3269 *
3270 * The task of @pid, if found. %NULL otherwise.
1da177e4 3271 */
a9957449 3272static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3273{
228ebcbe 3274 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3275}
3276
aab03e05
DF
3277/*
3278 * This function initializes the sched_dl_entity of a newly becoming
3279 * SCHED_DEADLINE task.
3280 *
3281 * Only the static values are considered here, the actual runtime and the
3282 * absolute deadline will be properly calculated when the task is enqueued
3283 * for the first time with its new policy.
3284 */
3285static void
3286__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3287{
3288 struct sched_dl_entity *dl_se = &p->dl;
3289
aab03e05
DF
3290 dl_se->dl_runtime = attr->sched_runtime;
3291 dl_se->dl_deadline = attr->sched_deadline;
755378a4 3292 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 3293 dl_se->flags = attr->sched_flags;
332ac17e 3294 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
40767b0d
PZ
3295
3296 /*
3297 * Changing the parameters of a task is 'tricky' and we're not doing
3298 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3299 *
3300 * What we SHOULD do is delay the bandwidth release until the 0-lag
3301 * point. This would include retaining the task_struct until that time
3302 * and change dl_overflow() to not immediately decrement the current
3303 * amount.
3304 *
3305 * Instead we retain the current runtime/deadline and let the new
3306 * parameters take effect after the current reservation period lapses.
3307 * This is safe (albeit pessimistic) because the 0-lag point is always
3308 * before the current scheduling deadline.
3309 *
3310 * We can still have temporary overloads because we do not delay the
3311 * change in bandwidth until that time; so admission control is
3312 * not on the safe side. It does however guarantee tasks will never
3313 * consume more than promised.
3314 */
aab03e05
DF
3315}
3316
c13db6b1
SR
3317/*
3318 * sched_setparam() passes in -1 for its policy, to let the functions
3319 * it calls know not to change it.
3320 */
3321#define SETPARAM_POLICY -1
3322
c365c292
TG
3323static void __setscheduler_params(struct task_struct *p,
3324 const struct sched_attr *attr)
1da177e4 3325{
d50dde5a
DF
3326 int policy = attr->sched_policy;
3327
c13db6b1 3328 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
3329 policy = p->policy;
3330
1da177e4 3331 p->policy = policy;
d50dde5a 3332
aab03e05
DF
3333 if (dl_policy(policy))
3334 __setparam_dl(p, attr);
39fd8fd2 3335 else if (fair_policy(policy))
d50dde5a
DF
3336 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3337
39fd8fd2
PZ
3338 /*
3339 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3340 * !rt_policy. Always setting this ensures that things like
3341 * getparam()/getattr() don't report silly values for !rt tasks.
3342 */
3343 p->rt_priority = attr->sched_priority;
383afd09 3344 p->normal_prio = normal_prio(p);
c365c292
TG
3345 set_load_weight(p);
3346}
39fd8fd2 3347
c365c292
TG
3348/* Actually do priority change: must hold pi & rq lock. */
3349static void __setscheduler(struct rq *rq, struct task_struct *p,
0782e63b 3350 const struct sched_attr *attr, bool keep_boost)
c365c292
TG
3351{
3352 __setscheduler_params(p, attr);
d50dde5a 3353
383afd09 3354 /*
0782e63b
TG
3355 * Keep a potential priority boosting if called from
3356 * sched_setscheduler().
383afd09 3357 */
0782e63b
TG
3358 if (keep_boost)
3359 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3360 else
3361 p->prio = normal_prio(p);
383afd09 3362
aab03e05
DF
3363 if (dl_prio(p->prio))
3364 p->sched_class = &dl_sched_class;
3365 else if (rt_prio(p->prio))
ffd44db5
PZ
3366 p->sched_class = &rt_sched_class;
3367 else
3368 p->sched_class = &fair_sched_class;
1da177e4 3369}
aab03e05
DF
3370
3371static void
3372__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3373{
3374 struct sched_dl_entity *dl_se = &p->dl;
3375
3376 attr->sched_priority = p->rt_priority;
3377 attr->sched_runtime = dl_se->dl_runtime;
3378 attr->sched_deadline = dl_se->dl_deadline;
755378a4 3379 attr->sched_period = dl_se->dl_period;
aab03e05
DF
3380 attr->sched_flags = dl_se->flags;
3381}
3382
3383/*
3384 * This function validates the new parameters of a -deadline task.
3385 * We ask for the deadline not being zero, and greater or equal
755378a4 3386 * than the runtime, as well as the period of being zero or
332ac17e 3387 * greater than deadline. Furthermore, we have to be sure that
b0827819
JL
3388 * user parameters are above the internal resolution of 1us (we
3389 * check sched_runtime only since it is always the smaller one) and
3390 * below 2^63 ns (we have to check both sched_deadline and
3391 * sched_period, as the latter can be zero).
aab03e05
DF
3392 */
3393static bool
3394__checkparam_dl(const struct sched_attr *attr)
3395{
b0827819
JL
3396 /* deadline != 0 */
3397 if (attr->sched_deadline == 0)
3398 return false;
3399
3400 /*
3401 * Since we truncate DL_SCALE bits, make sure we're at least
3402 * that big.
3403 */
3404 if (attr->sched_runtime < (1ULL << DL_SCALE))
3405 return false;
3406
3407 /*
3408 * Since we use the MSB for wrap-around and sign issues, make
3409 * sure it's not set (mind that period can be equal to zero).
3410 */
3411 if (attr->sched_deadline & (1ULL << 63) ||
3412 attr->sched_period & (1ULL << 63))
3413 return false;
3414
3415 /* runtime <= deadline <= period (if period != 0) */
3416 if ((attr->sched_period != 0 &&
3417 attr->sched_period < attr->sched_deadline) ||
3418 attr->sched_deadline < attr->sched_runtime)
3419 return false;
3420
3421 return true;
aab03e05
DF
3422}
3423
c69e8d9c
DH
3424/*
3425 * check the target process has a UID that matches the current process's
3426 */
3427static bool check_same_owner(struct task_struct *p)
3428{
3429 const struct cred *cred = current_cred(), *pcred;
3430 bool match;
3431
3432 rcu_read_lock();
3433 pcred = __task_cred(p);
9c806aa0
EB
3434 match = (uid_eq(cred->euid, pcred->euid) ||
3435 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3436 rcu_read_unlock();
3437 return match;
3438}
3439
75381608
WL
3440static bool dl_param_changed(struct task_struct *p,
3441 const struct sched_attr *attr)
3442{
3443 struct sched_dl_entity *dl_se = &p->dl;
3444
3445 if (dl_se->dl_runtime != attr->sched_runtime ||
3446 dl_se->dl_deadline != attr->sched_deadline ||
3447 dl_se->dl_period != attr->sched_period ||
3448 dl_se->flags != attr->sched_flags)
3449 return true;
3450
3451 return false;
3452}
3453
d50dde5a
DF
3454static int __sched_setscheduler(struct task_struct *p,
3455 const struct sched_attr *attr,
3456 bool user)
1da177e4 3457{
383afd09
SR
3458 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3459 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 3460 int retval, oldprio, oldpolicy = -1, queued, running;
0782e63b 3461 int new_effective_prio, policy = attr->sched_policy;
1da177e4 3462 unsigned long flags;
83ab0aa0 3463 const struct sched_class *prev_class;
70b97a7f 3464 struct rq *rq;
ca94c442 3465 int reset_on_fork;
1da177e4 3466
66e5393a
SR
3467 /* may grab non-irq protected spin_locks */
3468 BUG_ON(in_interrupt());
1da177e4
LT
3469recheck:
3470 /* double check policy once rq lock held */
ca94c442
LP
3471 if (policy < 0) {
3472 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3473 policy = oldpolicy = p->policy;
ca94c442 3474 } else {
7479f3c9 3475 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 3476
aab03e05
DF
3477 if (policy != SCHED_DEADLINE &&
3478 policy != SCHED_FIFO && policy != SCHED_RR &&
ca94c442
LP
3479 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3480 policy != SCHED_IDLE)
3481 return -EINVAL;
3482 }
3483
7479f3c9
PZ
3484 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3485 return -EINVAL;
3486
1da177e4
LT
3487 /*
3488 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3489 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3490 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 3491 */
0bb040a4 3492 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 3493 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 3494 return -EINVAL;
aab03e05
DF
3495 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3496 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
3497 return -EINVAL;
3498
37e4ab3f
OC
3499 /*
3500 * Allow unprivileged RT tasks to decrease priority:
3501 */
961ccddd 3502 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 3503 if (fair_policy(policy)) {
d0ea0268 3504 if (attr->sched_nice < task_nice(p) &&
eaad4513 3505 !can_nice(p, attr->sched_nice))
d50dde5a
DF
3506 return -EPERM;
3507 }
3508
e05606d3 3509 if (rt_policy(policy)) {
a44702e8
ON
3510 unsigned long rlim_rtprio =
3511 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3512
3513 /* can't set/change the rt policy */
3514 if (policy != p->policy && !rlim_rtprio)
3515 return -EPERM;
3516
3517 /* can't increase priority */
d50dde5a
DF
3518 if (attr->sched_priority > p->rt_priority &&
3519 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
3520 return -EPERM;
3521 }
c02aa73b 3522
d44753b8
JL
3523 /*
3524 * Can't set/change SCHED_DEADLINE policy at all for now
3525 * (safest behavior); in the future we would like to allow
3526 * unprivileged DL tasks to increase their relative deadline
3527 * or reduce their runtime (both ways reducing utilization)
3528 */
3529 if (dl_policy(policy))
3530 return -EPERM;
3531
dd41f596 3532 /*
c02aa73b
DH
3533 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3534 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3535 */
c02aa73b 3536 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
d0ea0268 3537 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
3538 return -EPERM;
3539 }
5fe1d75f 3540
37e4ab3f 3541 /* can't change other user's priorities */
c69e8d9c 3542 if (!check_same_owner(p))
37e4ab3f 3543 return -EPERM;
ca94c442
LP
3544
3545 /* Normal users shall not reset the sched_reset_on_fork flag */
3546 if (p->sched_reset_on_fork && !reset_on_fork)
3547 return -EPERM;
37e4ab3f 3548 }
1da177e4 3549
725aad24 3550 if (user) {
b0ae1981 3551 retval = security_task_setscheduler(p);
725aad24
JF
3552 if (retval)
3553 return retval;
3554 }
3555
b29739f9
IM
3556 /*
3557 * make sure no PI-waiters arrive (or leave) while we are
3558 * changing the priority of the task:
0122ec5b 3559 *
25985edc 3560 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3561 * runqueue lock must be held.
3562 */
0122ec5b 3563 rq = task_rq_lock(p, &flags);
dc61b1d6 3564
34f971f6
PZ
3565 /*
3566 * Changing the policy of the stop threads its a very bad idea
3567 */
3568 if (p == rq->stop) {
0122ec5b 3569 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3570 return -EINVAL;
3571 }
3572
a51e9198 3573 /*
d6b1e911
TG
3574 * If not changing anything there's no need to proceed further,
3575 * but store a possible modification of reset_on_fork.
a51e9198 3576 */
d50dde5a 3577 if (unlikely(policy == p->policy)) {
d0ea0268 3578 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
3579 goto change;
3580 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3581 goto change;
75381608 3582 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 3583 goto change;
d50dde5a 3584
d6b1e911 3585 p->sched_reset_on_fork = reset_on_fork;
45afb173 3586 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3587 return 0;
3588 }
d50dde5a 3589change:
a51e9198 3590
dc61b1d6 3591 if (user) {
332ac17e 3592#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
3593 /*
3594 * Do not allow realtime tasks into groups that have no runtime
3595 * assigned.
3596 */
3597 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3598 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3599 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3600 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3601 return -EPERM;
3602 }
dc61b1d6 3603#endif
332ac17e
DF
3604#ifdef CONFIG_SMP
3605 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3606 cpumask_t *span = rq->rd->span;
332ac17e
DF
3607
3608 /*
3609 * Don't allow tasks with an affinity mask smaller than
3610 * the entire root_domain to become SCHED_DEADLINE. We
3611 * will also fail if there's no bandwidth available.
3612 */
e4099a5e
PZ
3613 if (!cpumask_subset(span, &p->cpus_allowed) ||
3614 rq->rd->dl_bw.bw == 0) {
332ac17e
DF
3615 task_rq_unlock(rq, p, &flags);
3616 return -EPERM;
3617 }
3618 }
3619#endif
3620 }
dc61b1d6 3621
1da177e4
LT
3622 /* recheck policy now with rq lock held */
3623 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3624 policy = oldpolicy = -1;
0122ec5b 3625 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3626 goto recheck;
3627 }
332ac17e
DF
3628
3629 /*
3630 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3631 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3632 * is available.
3633 */
e4099a5e 3634 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
332ac17e
DF
3635 task_rq_unlock(rq, p, &flags);
3636 return -EBUSY;
3637 }
3638
c365c292
TG
3639 p->sched_reset_on_fork = reset_on_fork;
3640 oldprio = p->prio;
3641
3642 /*
0782e63b
TG
3643 * Take priority boosted tasks into account. If the new
3644 * effective priority is unchanged, we just store the new
c365c292
TG
3645 * normal parameters and do not touch the scheduler class and
3646 * the runqueue. This will be done when the task deboost
3647 * itself.
3648 */
0782e63b
TG
3649 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
3650 if (new_effective_prio == oldprio) {
c365c292
TG
3651 __setscheduler_params(p, attr);
3652 task_rq_unlock(rq, p, &flags);
3653 return 0;
3654 }
3655
da0c1e65 3656 queued = task_on_rq_queued(p);
051a1d1a 3657 running = task_current(rq, p);
da0c1e65 3658 if (queued)
4ca9b72b 3659 dequeue_task(rq, p, 0);
0e1f3483 3660 if (running)
f3cd1c4e 3661 put_prev_task(rq, p);
f6b53205 3662
83ab0aa0 3663 prev_class = p->sched_class;
0782e63b 3664 __setscheduler(rq, p, attr, true);
f6b53205 3665
0e1f3483
HS
3666 if (running)
3667 p->sched_class->set_curr_task(rq);
da0c1e65 3668 if (queued) {
81a44c54
TG
3669 /*
3670 * We enqueue to tail when the priority of a task is
3671 * increased (user space view).
3672 */
3673 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3674 }
cb469845 3675
da7a735e 3676 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 3677 task_rq_unlock(rq, p, &flags);
b29739f9 3678
95e02ca9
TG
3679 rt_mutex_adjust_pi(p);
3680
1da177e4
LT
3681 return 0;
3682}
961ccddd 3683
7479f3c9
PZ
3684static int _sched_setscheduler(struct task_struct *p, int policy,
3685 const struct sched_param *param, bool check)
3686{
3687 struct sched_attr attr = {
3688 .sched_policy = policy,
3689 .sched_priority = param->sched_priority,
3690 .sched_nice = PRIO_TO_NICE(p->static_prio),
3691 };
3692
c13db6b1
SR
3693 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
3694 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
3695 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3696 policy &= ~SCHED_RESET_ON_FORK;
3697 attr.sched_policy = policy;
3698 }
3699
3700 return __sched_setscheduler(p, &attr, check);
3701}
961ccddd
RR
3702/**
3703 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3704 * @p: the task in question.
3705 * @policy: new policy.
3706 * @param: structure containing the new RT priority.
3707 *
e69f6186
YB
3708 * Return: 0 on success. An error code otherwise.
3709 *
961ccddd
RR
3710 * NOTE that the task may be already dead.
3711 */
3712int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3713 const struct sched_param *param)
961ccddd 3714{
7479f3c9 3715 return _sched_setscheduler(p, policy, param, true);
961ccddd 3716}
1da177e4
LT
3717EXPORT_SYMBOL_GPL(sched_setscheduler);
3718
d50dde5a
DF
3719int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3720{
3721 return __sched_setscheduler(p, attr, true);
3722}
3723EXPORT_SYMBOL_GPL(sched_setattr);
3724
961ccddd
RR
3725/**
3726 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3727 * @p: the task in question.
3728 * @policy: new policy.
3729 * @param: structure containing the new RT priority.
3730 *
3731 * Just like sched_setscheduler, only don't bother checking if the
3732 * current context has permission. For example, this is needed in
3733 * stop_machine(): we create temporary high priority worker threads,
3734 * but our caller might not have that capability.
e69f6186
YB
3735 *
3736 * Return: 0 on success. An error code otherwise.
961ccddd
RR
3737 */
3738int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 3739 const struct sched_param *param)
961ccddd 3740{
7479f3c9 3741 return _sched_setscheduler(p, policy, param, false);
961ccddd
RR
3742}
3743
95cdf3b7
IM
3744static int
3745do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 3746{
1da177e4
LT
3747 struct sched_param lparam;
3748 struct task_struct *p;
36c8b586 3749 int retval;
1da177e4
LT
3750
3751 if (!param || pid < 0)
3752 return -EINVAL;
3753 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3754 return -EFAULT;
5fe1d75f
ON
3755
3756 rcu_read_lock();
3757 retval = -ESRCH;
1da177e4 3758 p = find_process_by_pid(pid);
5fe1d75f
ON
3759 if (p != NULL)
3760 retval = sched_setscheduler(p, policy, &lparam);
3761 rcu_read_unlock();
36c8b586 3762
1da177e4
LT
3763 return retval;
3764}
3765
d50dde5a
DF
3766/*
3767 * Mimics kernel/events/core.c perf_copy_attr().
3768 */
3769static int sched_copy_attr(struct sched_attr __user *uattr,
3770 struct sched_attr *attr)
3771{
3772 u32 size;
3773 int ret;
3774
3775 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3776 return -EFAULT;
3777
3778 /*
3779 * zero the full structure, so that a short copy will be nice.
3780 */
3781 memset(attr, 0, sizeof(*attr));
3782
3783 ret = get_user(size, &uattr->size);
3784 if (ret)
3785 return ret;
3786
3787 if (size > PAGE_SIZE) /* silly large */
3788 goto err_size;
3789
3790 if (!size) /* abi compat */
3791 size = SCHED_ATTR_SIZE_VER0;
3792
3793 if (size < SCHED_ATTR_SIZE_VER0)
3794 goto err_size;
3795
3796 /*
3797 * If we're handed a bigger struct than we know of,
3798 * ensure all the unknown bits are 0 - i.e. new
3799 * user-space does not rely on any kernel feature
3800 * extensions we dont know about yet.
3801 */
3802 if (size > sizeof(*attr)) {
3803 unsigned char __user *addr;
3804 unsigned char __user *end;
3805 unsigned char val;
3806
3807 addr = (void __user *)uattr + sizeof(*attr);
3808 end = (void __user *)uattr + size;
3809
3810 for (; addr < end; addr++) {
3811 ret = get_user(val, addr);
3812 if (ret)
3813 return ret;
3814 if (val)
3815 goto err_size;
3816 }
3817 size = sizeof(*attr);
3818 }
3819
3820 ret = copy_from_user(attr, uattr, size);
3821 if (ret)
3822 return -EFAULT;
3823
3824 /*
3825 * XXX: do we want to be lenient like existing syscalls; or do we want
3826 * to be strict and return an error on out-of-bounds values?
3827 */
75e45d51 3828 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 3829
e78c7bca 3830 return 0;
d50dde5a
DF
3831
3832err_size:
3833 put_user(sizeof(*attr), &uattr->size);
e78c7bca 3834 return -E2BIG;
d50dde5a
DF
3835}
3836
1da177e4
LT
3837/**
3838 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3839 * @pid: the pid in question.
3840 * @policy: new policy.
3841 * @param: structure containing the new RT priority.
e69f6186
YB
3842 *
3843 * Return: 0 on success. An error code otherwise.
1da177e4 3844 */
5add95d4
HC
3845SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3846 struct sched_param __user *, param)
1da177e4 3847{
c21761f1
JB
3848 /* negative values for policy are not valid */
3849 if (policy < 0)
3850 return -EINVAL;
3851
1da177e4
LT
3852 return do_sched_setscheduler(pid, policy, param);
3853}
3854
3855/**
3856 * sys_sched_setparam - set/change the RT priority of a thread
3857 * @pid: the pid in question.
3858 * @param: structure containing the new RT priority.
e69f6186
YB
3859 *
3860 * Return: 0 on success. An error code otherwise.
1da177e4 3861 */
5add95d4 3862SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 3863{
c13db6b1 3864 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
3865}
3866
d50dde5a
DF
3867/**
3868 * sys_sched_setattr - same as above, but with extended sched_attr
3869 * @pid: the pid in question.
5778fccf 3870 * @uattr: structure containing the extended parameters.
db66d756 3871 * @flags: for future extension.
d50dde5a 3872 */
6d35ab48
PZ
3873SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3874 unsigned int, flags)
d50dde5a
DF
3875{
3876 struct sched_attr attr;
3877 struct task_struct *p;
3878 int retval;
3879
6d35ab48 3880 if (!uattr || pid < 0 || flags)
d50dde5a
DF
3881 return -EINVAL;
3882
143cf23d
MK
3883 retval = sched_copy_attr(uattr, &attr);
3884 if (retval)
3885 return retval;
d50dde5a 3886
b14ed2c2 3887 if ((int)attr.sched_policy < 0)
dbdb2275 3888 return -EINVAL;
d50dde5a
DF
3889
3890 rcu_read_lock();
3891 retval = -ESRCH;
3892 p = find_process_by_pid(pid);
3893 if (p != NULL)
3894 retval = sched_setattr(p, &attr);
3895 rcu_read_unlock();
3896
3897 return retval;
3898}
3899
1da177e4
LT
3900/**
3901 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3902 * @pid: the pid in question.
e69f6186
YB
3903 *
3904 * Return: On success, the policy of the thread. Otherwise, a negative error
3905 * code.
1da177e4 3906 */
5add95d4 3907SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 3908{
36c8b586 3909 struct task_struct *p;
3a5c359a 3910 int retval;
1da177e4
LT
3911
3912 if (pid < 0)
3a5c359a 3913 return -EINVAL;
1da177e4
LT
3914
3915 retval = -ESRCH;
5fe85be0 3916 rcu_read_lock();
1da177e4
LT
3917 p = find_process_by_pid(pid);
3918 if (p) {
3919 retval = security_task_getscheduler(p);
3920 if (!retval)
ca94c442
LP
3921 retval = p->policy
3922 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 3923 }
5fe85be0 3924 rcu_read_unlock();
1da177e4
LT
3925 return retval;
3926}
3927
3928/**
ca94c442 3929 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
3930 * @pid: the pid in question.
3931 * @param: structure containing the RT priority.
e69f6186
YB
3932 *
3933 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3934 * code.
1da177e4 3935 */
5add95d4 3936SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 3937{
ce5f7f82 3938 struct sched_param lp = { .sched_priority = 0 };
36c8b586 3939 struct task_struct *p;
3a5c359a 3940 int retval;
1da177e4
LT
3941
3942 if (!param || pid < 0)
3a5c359a 3943 return -EINVAL;
1da177e4 3944
5fe85be0 3945 rcu_read_lock();
1da177e4
LT
3946 p = find_process_by_pid(pid);
3947 retval = -ESRCH;
3948 if (!p)
3949 goto out_unlock;
3950
3951 retval = security_task_getscheduler(p);
3952 if (retval)
3953 goto out_unlock;
3954
ce5f7f82
PZ
3955 if (task_has_rt_policy(p))
3956 lp.sched_priority = p->rt_priority;
5fe85be0 3957 rcu_read_unlock();
1da177e4
LT
3958
3959 /*
3960 * This one might sleep, we cannot do it with a spinlock held ...
3961 */
3962 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3963
1da177e4
LT
3964 return retval;
3965
3966out_unlock:
5fe85be0 3967 rcu_read_unlock();
1da177e4
LT
3968 return retval;
3969}
3970
d50dde5a
DF
3971static int sched_read_attr(struct sched_attr __user *uattr,
3972 struct sched_attr *attr,
3973 unsigned int usize)
3974{
3975 int ret;
3976
3977 if (!access_ok(VERIFY_WRITE, uattr, usize))
3978 return -EFAULT;
3979
3980 /*
3981 * If we're handed a smaller struct than we know of,
3982 * ensure all the unknown bits are 0 - i.e. old
3983 * user-space does not get uncomplete information.
3984 */
3985 if (usize < sizeof(*attr)) {
3986 unsigned char *addr;
3987 unsigned char *end;
3988
3989 addr = (void *)attr + usize;
3990 end = (void *)attr + sizeof(*attr);
3991
3992 for (; addr < end; addr++) {
3993 if (*addr)
22400674 3994 return -EFBIG;
d50dde5a
DF
3995 }
3996
3997 attr->size = usize;
3998 }
3999
4efbc454 4000 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
4001 if (ret)
4002 return -EFAULT;
4003
22400674 4004 return 0;
d50dde5a
DF
4005}
4006
4007/**
aab03e05 4008 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 4009 * @pid: the pid in question.
5778fccf 4010 * @uattr: structure containing the extended parameters.
d50dde5a 4011 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 4012 * @flags: for future extension.
d50dde5a 4013 */
6d35ab48
PZ
4014SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4015 unsigned int, size, unsigned int, flags)
d50dde5a
DF
4016{
4017 struct sched_attr attr = {
4018 .size = sizeof(struct sched_attr),
4019 };
4020 struct task_struct *p;
4021 int retval;
4022
4023 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 4024 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
4025 return -EINVAL;
4026
4027 rcu_read_lock();
4028 p = find_process_by_pid(pid);
4029 retval = -ESRCH;
4030 if (!p)
4031 goto out_unlock;
4032
4033 retval = security_task_getscheduler(p);
4034 if (retval)
4035 goto out_unlock;
4036
4037 attr.sched_policy = p->policy;
7479f3c9
PZ
4038 if (p->sched_reset_on_fork)
4039 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
4040 if (task_has_dl_policy(p))
4041 __getparam_dl(p, &attr);
4042 else if (task_has_rt_policy(p))
d50dde5a
DF
4043 attr.sched_priority = p->rt_priority;
4044 else
d0ea0268 4045 attr.sched_nice = task_nice(p);
d50dde5a
DF
4046
4047 rcu_read_unlock();
4048
4049 retval = sched_read_attr(uattr, &attr, size);
4050 return retval;
4051
4052out_unlock:
4053 rcu_read_unlock();
4054 return retval;
4055}
4056
96f874e2 4057long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4058{
5a16f3d3 4059 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4060 struct task_struct *p;
4061 int retval;
1da177e4 4062
23f5d142 4063 rcu_read_lock();
1da177e4
LT
4064
4065 p = find_process_by_pid(pid);
4066 if (!p) {
23f5d142 4067 rcu_read_unlock();
1da177e4
LT
4068 return -ESRCH;
4069 }
4070
23f5d142 4071 /* Prevent p going away */
1da177e4 4072 get_task_struct(p);
23f5d142 4073 rcu_read_unlock();
1da177e4 4074
14a40ffc
TH
4075 if (p->flags & PF_NO_SETAFFINITY) {
4076 retval = -EINVAL;
4077 goto out_put_task;
4078 }
5a16f3d3
RR
4079 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4080 retval = -ENOMEM;
4081 goto out_put_task;
4082 }
4083 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4084 retval = -ENOMEM;
4085 goto out_free_cpus_allowed;
4086 }
1da177e4 4087 retval = -EPERM;
4c44aaaf
EB
4088 if (!check_same_owner(p)) {
4089 rcu_read_lock();
4090 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4091 rcu_read_unlock();
16303ab2 4092 goto out_free_new_mask;
4c44aaaf
EB
4093 }
4094 rcu_read_unlock();
4095 }
1da177e4 4096
b0ae1981 4097 retval = security_task_setscheduler(p);
e7834f8f 4098 if (retval)
16303ab2 4099 goto out_free_new_mask;
e7834f8f 4100
e4099a5e
PZ
4101
4102 cpuset_cpus_allowed(p, cpus_allowed);
4103 cpumask_and(new_mask, in_mask, cpus_allowed);
4104
332ac17e
DF
4105 /*
4106 * Since bandwidth control happens on root_domain basis,
4107 * if admission test is enabled, we only admit -deadline
4108 * tasks allowed to run on all the CPUs in the task's
4109 * root_domain.
4110 */
4111#ifdef CONFIG_SMP
f1e3a093
KT
4112 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4113 rcu_read_lock();
4114 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 4115 retval = -EBUSY;
f1e3a093 4116 rcu_read_unlock();
16303ab2 4117 goto out_free_new_mask;
332ac17e 4118 }
f1e3a093 4119 rcu_read_unlock();
332ac17e
DF
4120 }
4121#endif
49246274 4122again:
5a16f3d3 4123 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 4124
8707d8b8 4125 if (!retval) {
5a16f3d3
RR
4126 cpuset_cpus_allowed(p, cpus_allowed);
4127 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4128 /*
4129 * We must have raced with a concurrent cpuset
4130 * update. Just reset the cpus_allowed to the
4131 * cpuset's cpus_allowed
4132 */
5a16f3d3 4133 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4134 goto again;
4135 }
4136 }
16303ab2 4137out_free_new_mask:
5a16f3d3
RR
4138 free_cpumask_var(new_mask);
4139out_free_cpus_allowed:
4140 free_cpumask_var(cpus_allowed);
4141out_put_task:
1da177e4 4142 put_task_struct(p);
1da177e4
LT
4143 return retval;
4144}
4145
4146static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4147 struct cpumask *new_mask)
1da177e4 4148{
96f874e2
RR
4149 if (len < cpumask_size())
4150 cpumask_clear(new_mask);
4151 else if (len > cpumask_size())
4152 len = cpumask_size();
4153
1da177e4
LT
4154 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4155}
4156
4157/**
4158 * sys_sched_setaffinity - set the cpu affinity of a process
4159 * @pid: pid of the process
4160 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4161 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
4162 *
4163 * Return: 0 on success. An error code otherwise.
1da177e4 4164 */
5add95d4
HC
4165SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4166 unsigned long __user *, user_mask_ptr)
1da177e4 4167{
5a16f3d3 4168 cpumask_var_t new_mask;
1da177e4
LT
4169 int retval;
4170
5a16f3d3
RR
4171 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4172 return -ENOMEM;
1da177e4 4173
5a16f3d3
RR
4174 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4175 if (retval == 0)
4176 retval = sched_setaffinity(pid, new_mask);
4177 free_cpumask_var(new_mask);
4178 return retval;
1da177e4
LT
4179}
4180
96f874e2 4181long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4182{
36c8b586 4183 struct task_struct *p;
31605683 4184 unsigned long flags;
1da177e4 4185 int retval;
1da177e4 4186
23f5d142 4187 rcu_read_lock();
1da177e4
LT
4188
4189 retval = -ESRCH;
4190 p = find_process_by_pid(pid);
4191 if (!p)
4192 goto out_unlock;
4193
e7834f8f
DQ
4194 retval = security_task_getscheduler(p);
4195 if (retval)
4196 goto out_unlock;
4197
013fdb80 4198 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4199 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4200 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4201
4202out_unlock:
23f5d142 4203 rcu_read_unlock();
1da177e4 4204
9531b62f 4205 return retval;
1da177e4
LT
4206}
4207
4208/**
4209 * sys_sched_getaffinity - get the cpu affinity of a process
4210 * @pid: pid of the process
4211 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4212 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186
YB
4213 *
4214 * Return: 0 on success. An error code otherwise.
1da177e4 4215 */
5add95d4
HC
4216SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4217 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4218{
4219 int ret;
f17c8607 4220 cpumask_var_t mask;
1da177e4 4221
84fba5ec 4222 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4223 return -EINVAL;
4224 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4225 return -EINVAL;
4226
f17c8607
RR
4227 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4228 return -ENOMEM;
1da177e4 4229
f17c8607
RR
4230 ret = sched_getaffinity(pid, mask);
4231 if (ret == 0) {
8bc037fb 4232 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4233
4234 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4235 ret = -EFAULT;
4236 else
cd3d8031 4237 ret = retlen;
f17c8607
RR
4238 }
4239 free_cpumask_var(mask);
1da177e4 4240
f17c8607 4241 return ret;
1da177e4
LT
4242}
4243
4244/**
4245 * sys_sched_yield - yield the current processor to other threads.
4246 *
dd41f596
IM
4247 * This function yields the current CPU to other tasks. If there are no
4248 * other threads running on this CPU then this function will return.
e69f6186
YB
4249 *
4250 * Return: 0.
1da177e4 4251 */
5add95d4 4252SYSCALL_DEFINE0(sched_yield)
1da177e4 4253{
70b97a7f 4254 struct rq *rq = this_rq_lock();
1da177e4 4255
2d72376b 4256 schedstat_inc(rq, yld_count);
4530d7ab 4257 current->sched_class->yield_task(rq);
1da177e4
LT
4258
4259 /*
4260 * Since we are going to call schedule() anyway, there's
4261 * no need to preempt or enable interrupts:
4262 */
4263 __release(rq->lock);
8a25d5de 4264 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4265 do_raw_spin_unlock(&rq->lock);
ba74c144 4266 sched_preempt_enable_no_resched();
1da177e4
LT
4267
4268 schedule();
4269
4270 return 0;
4271}
4272
02b67cc3 4273int __sched _cond_resched(void)
1da177e4 4274{
d86ee480 4275 if (should_resched()) {
a18b5d01 4276 preempt_schedule_common();
1da177e4
LT
4277 return 1;
4278 }
4279 return 0;
4280}
02b67cc3 4281EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4282
4283/*
613afbf8 4284 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4285 * call schedule, and on return reacquire the lock.
4286 *
41a2d6cf 4287 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4288 * operations here to prevent schedule() from being called twice (once via
4289 * spin_unlock(), once by hand).
4290 */
613afbf8 4291int __cond_resched_lock(spinlock_t *lock)
1da177e4 4292{
d86ee480 4293 int resched = should_resched();
6df3cecb
JK
4294 int ret = 0;
4295
f607c668
PZ
4296 lockdep_assert_held(lock);
4297
4a81e832 4298 if (spin_needbreak(lock) || resched) {
1da177e4 4299 spin_unlock(lock);
d86ee480 4300 if (resched)
a18b5d01 4301 preempt_schedule_common();
95c354fe
NP
4302 else
4303 cpu_relax();
6df3cecb 4304 ret = 1;
1da177e4 4305 spin_lock(lock);
1da177e4 4306 }
6df3cecb 4307 return ret;
1da177e4 4308}
613afbf8 4309EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4310
613afbf8 4311int __sched __cond_resched_softirq(void)
1da177e4
LT
4312{
4313 BUG_ON(!in_softirq());
4314
d86ee480 4315 if (should_resched()) {
98d82567 4316 local_bh_enable();
a18b5d01 4317 preempt_schedule_common();
1da177e4
LT
4318 local_bh_disable();
4319 return 1;
4320 }
4321 return 0;
4322}
613afbf8 4323EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4324
1da177e4
LT
4325/**
4326 * yield - yield the current processor to other threads.
4327 *
8e3fabfd
PZ
4328 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4329 *
4330 * The scheduler is at all times free to pick the calling task as the most
4331 * eligible task to run, if removing the yield() call from your code breaks
4332 * it, its already broken.
4333 *
4334 * Typical broken usage is:
4335 *
4336 * while (!event)
4337 * yield();
4338 *
4339 * where one assumes that yield() will let 'the other' process run that will
4340 * make event true. If the current task is a SCHED_FIFO task that will never
4341 * happen. Never use yield() as a progress guarantee!!
4342 *
4343 * If you want to use yield() to wait for something, use wait_event().
4344 * If you want to use yield() to be 'nice' for others, use cond_resched().
4345 * If you still want to use yield(), do not!
1da177e4
LT
4346 */
4347void __sched yield(void)
4348{
4349 set_current_state(TASK_RUNNING);
4350 sys_sched_yield();
4351}
1da177e4
LT
4352EXPORT_SYMBOL(yield);
4353
d95f4122
MG
4354/**
4355 * yield_to - yield the current processor to another thread in
4356 * your thread group, or accelerate that thread toward the
4357 * processor it's on.
16addf95
RD
4358 * @p: target task
4359 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4360 *
4361 * It's the caller's job to ensure that the target task struct
4362 * can't go away on us before we can do any checks.
4363 *
e69f6186 4364 * Return:
7b270f60
PZ
4365 * true (>0) if we indeed boosted the target task.
4366 * false (0) if we failed to boost the target.
4367 * -ESRCH if there's no task to yield to.
d95f4122 4368 */
fa93384f 4369int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
4370{
4371 struct task_struct *curr = current;
4372 struct rq *rq, *p_rq;
4373 unsigned long flags;
c3c18640 4374 int yielded = 0;
d95f4122
MG
4375
4376 local_irq_save(flags);
4377 rq = this_rq();
4378
4379again:
4380 p_rq = task_rq(p);
7b270f60
PZ
4381 /*
4382 * If we're the only runnable task on the rq and target rq also
4383 * has only one task, there's absolutely no point in yielding.
4384 */
4385 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4386 yielded = -ESRCH;
4387 goto out_irq;
4388 }
4389
d95f4122 4390 double_rq_lock(rq, p_rq);
39e24d8f 4391 if (task_rq(p) != p_rq) {
d95f4122
MG
4392 double_rq_unlock(rq, p_rq);
4393 goto again;
4394 }
4395
4396 if (!curr->sched_class->yield_to_task)
7b270f60 4397 goto out_unlock;
d95f4122
MG
4398
4399 if (curr->sched_class != p->sched_class)
7b270f60 4400 goto out_unlock;
d95f4122
MG
4401
4402 if (task_running(p_rq, p) || p->state)
7b270f60 4403 goto out_unlock;
d95f4122
MG
4404
4405 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4406 if (yielded) {
d95f4122 4407 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4408 /*
4409 * Make p's CPU reschedule; pick_next_entity takes care of
4410 * fairness.
4411 */
4412 if (preempt && rq != p_rq)
8875125e 4413 resched_curr(p_rq);
6d1cafd8 4414 }
d95f4122 4415
7b270f60 4416out_unlock:
d95f4122 4417 double_rq_unlock(rq, p_rq);
7b270f60 4418out_irq:
d95f4122
MG
4419 local_irq_restore(flags);
4420
7b270f60 4421 if (yielded > 0)
d95f4122
MG
4422 schedule();
4423
4424 return yielded;
4425}
4426EXPORT_SYMBOL_GPL(yield_to);
4427
1da177e4 4428/*
41a2d6cf 4429 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4430 * that process accounting knows that this is a task in IO wait state.
1da177e4 4431 */
1da177e4
LT
4432long __sched io_schedule_timeout(long timeout)
4433{
9cff8ade
N
4434 int old_iowait = current->in_iowait;
4435 struct rq *rq;
1da177e4
LT
4436 long ret;
4437
9cff8ade
N
4438 current->in_iowait = 1;
4439 if (old_iowait)
4440 blk_schedule_flush_plug(current);
4441 else
4442 blk_flush_plug(current);
4443
0ff92245 4444 delayacct_blkio_start();
9cff8ade 4445 rq = raw_rq();
1da177e4
LT
4446 atomic_inc(&rq->nr_iowait);
4447 ret = schedule_timeout(timeout);
9cff8ade 4448 current->in_iowait = old_iowait;
1da177e4 4449 atomic_dec(&rq->nr_iowait);
0ff92245 4450 delayacct_blkio_end();
9cff8ade 4451
1da177e4
LT
4452 return ret;
4453}
9cff8ade 4454EXPORT_SYMBOL(io_schedule_timeout);
1da177e4
LT
4455
4456/**
4457 * sys_sched_get_priority_max - return maximum RT priority.
4458 * @policy: scheduling class.
4459 *
e69f6186
YB
4460 * Return: On success, this syscall returns the maximum
4461 * rt_priority that can be used by a given scheduling class.
4462 * On failure, a negative error code is returned.
1da177e4 4463 */
5add95d4 4464SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4465{
4466 int ret = -EINVAL;
4467
4468 switch (policy) {
4469 case SCHED_FIFO:
4470 case SCHED_RR:
4471 ret = MAX_USER_RT_PRIO-1;
4472 break;
aab03e05 4473 case SCHED_DEADLINE:
1da177e4 4474 case SCHED_NORMAL:
b0a9499c 4475 case SCHED_BATCH:
dd41f596 4476 case SCHED_IDLE:
1da177e4
LT
4477 ret = 0;
4478 break;
4479 }
4480 return ret;
4481}
4482
4483/**
4484 * sys_sched_get_priority_min - return minimum RT priority.
4485 * @policy: scheduling class.
4486 *
e69f6186
YB
4487 * Return: On success, this syscall returns the minimum
4488 * rt_priority that can be used by a given scheduling class.
4489 * On failure, a negative error code is returned.
1da177e4 4490 */
5add95d4 4491SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4492{
4493 int ret = -EINVAL;
4494
4495 switch (policy) {
4496 case SCHED_FIFO:
4497 case SCHED_RR:
4498 ret = 1;
4499 break;
aab03e05 4500 case SCHED_DEADLINE:
1da177e4 4501 case SCHED_NORMAL:
b0a9499c 4502 case SCHED_BATCH:
dd41f596 4503 case SCHED_IDLE:
1da177e4
LT
4504 ret = 0;
4505 }
4506 return ret;
4507}
4508
4509/**
4510 * sys_sched_rr_get_interval - return the default timeslice of a process.
4511 * @pid: pid of the process.
4512 * @interval: userspace pointer to the timeslice value.
4513 *
4514 * this syscall writes the default timeslice value of a given process
4515 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
4516 *
4517 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4518 * an error code.
1da177e4 4519 */
17da2bd9 4520SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4521 struct timespec __user *, interval)
1da177e4 4522{
36c8b586 4523 struct task_struct *p;
a4ec24b4 4524 unsigned int time_slice;
dba091b9
TG
4525 unsigned long flags;
4526 struct rq *rq;
3a5c359a 4527 int retval;
1da177e4 4528 struct timespec t;
1da177e4
LT
4529
4530 if (pid < 0)
3a5c359a 4531 return -EINVAL;
1da177e4
LT
4532
4533 retval = -ESRCH;
1a551ae7 4534 rcu_read_lock();
1da177e4
LT
4535 p = find_process_by_pid(pid);
4536 if (!p)
4537 goto out_unlock;
4538
4539 retval = security_task_getscheduler(p);
4540 if (retval)
4541 goto out_unlock;
4542
dba091b9 4543 rq = task_rq_lock(p, &flags);
a57beec5
PZ
4544 time_slice = 0;
4545 if (p->sched_class->get_rr_interval)
4546 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4547 task_rq_unlock(rq, p, &flags);
a4ec24b4 4548
1a551ae7 4549 rcu_read_unlock();
a4ec24b4 4550 jiffies_to_timespec(time_slice, &t);
1da177e4 4551 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4552 return retval;
3a5c359a 4553
1da177e4 4554out_unlock:
1a551ae7 4555 rcu_read_unlock();
1da177e4
LT
4556 return retval;
4557}
4558
7c731e0a 4559static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4560
82a1fcb9 4561void sched_show_task(struct task_struct *p)
1da177e4 4562{
1da177e4 4563 unsigned long free = 0;
4e79752c 4564 int ppid;
1f8a7633 4565 unsigned long state = p->state;
1da177e4 4566
1f8a7633
TH
4567 if (state)
4568 state = __ffs(state) + 1;
28d0686c 4569 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4570 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4571#if BITS_PER_LONG == 32
1da177e4 4572 if (state == TASK_RUNNING)
3df0fc5b 4573 printk(KERN_CONT " running ");
1da177e4 4574 else
3df0fc5b 4575 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4576#else
4577 if (state == TASK_RUNNING)
3df0fc5b 4578 printk(KERN_CONT " running task ");
1da177e4 4579 else
3df0fc5b 4580 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4581#endif
4582#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4583 free = stack_not_used(p);
1da177e4 4584#endif
a90e984c 4585 ppid = 0;
4e79752c 4586 rcu_read_lock();
a90e984c
ON
4587 if (pid_alive(p))
4588 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 4589 rcu_read_unlock();
3df0fc5b 4590 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 4591 task_pid_nr(p), ppid,
aa47b7e0 4592 (unsigned long)task_thread_info(p)->flags);
1da177e4 4593
3d1cb205 4594 print_worker_info(KERN_INFO, p);
5fb5e6de 4595 show_stack(p, NULL);
1da177e4
LT
4596}
4597
e59e2ae2 4598void show_state_filter(unsigned long state_filter)
1da177e4 4599{
36c8b586 4600 struct task_struct *g, *p;
1da177e4 4601
4bd77321 4602#if BITS_PER_LONG == 32
3df0fc5b
PZ
4603 printk(KERN_INFO
4604 " task PC stack pid father\n");
1da177e4 4605#else
3df0fc5b
PZ
4606 printk(KERN_INFO
4607 " task PC stack pid father\n");
1da177e4 4608#endif
510f5acc 4609 rcu_read_lock();
5d07f420 4610 for_each_process_thread(g, p) {
1da177e4
LT
4611 /*
4612 * reset the NMI-timeout, listing all files on a slow
25985edc 4613 * console might take a lot of time:
1da177e4
LT
4614 */
4615 touch_nmi_watchdog();
39bc89fd 4616 if (!state_filter || (p->state & state_filter))
82a1fcb9 4617 sched_show_task(p);
5d07f420 4618 }
1da177e4 4619
04c9167f
JF
4620 touch_all_softlockup_watchdogs();
4621
dd41f596
IM
4622#ifdef CONFIG_SCHED_DEBUG
4623 sysrq_sched_debug_show();
4624#endif
510f5acc 4625 rcu_read_unlock();
e59e2ae2
IM
4626 /*
4627 * Only show locks if all tasks are dumped:
4628 */
93335a21 4629 if (!state_filter)
e59e2ae2 4630 debug_show_all_locks();
1da177e4
LT
4631}
4632
0db0628d 4633void init_idle_bootup_task(struct task_struct *idle)
1df21055 4634{
dd41f596 4635 idle->sched_class = &idle_sched_class;
1df21055
IM
4636}
4637
f340c0d1
IM
4638/**
4639 * init_idle - set up an idle thread for a given CPU
4640 * @idle: task in question
4641 * @cpu: cpu the idle task belongs to
4642 *
4643 * NOTE: this function does not set the idle thread's NEED_RESCHED
4644 * flag, to make booting more robust.
4645 */
0db0628d 4646void init_idle(struct task_struct *idle, int cpu)
1da177e4 4647{
70b97a7f 4648 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4649 unsigned long flags;
4650
05fa785c 4651 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 4652
5e1576ed 4653 __sched_fork(0, idle);
06b83b5f 4654 idle->state = TASK_RUNNING;
dd41f596
IM
4655 idle->se.exec_start = sched_clock();
4656
1e1b6c51 4657 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4658 /*
4659 * We're having a chicken and egg problem, even though we are
4660 * holding rq->lock, the cpu isn't yet set to this cpu so the
4661 * lockdep check in task_group() will fail.
4662 *
4663 * Similar case to sched_fork(). / Alternatively we could
4664 * use task_rq_lock() here and obtain the other rq->lock.
4665 *
4666 * Silence PROVE_RCU
4667 */
4668 rcu_read_lock();
dd41f596 4669 __set_task_cpu(idle, cpu);
6506cf6c 4670 rcu_read_unlock();
1da177e4 4671
1da177e4 4672 rq->curr = rq->idle = idle;
da0c1e65 4673 idle->on_rq = TASK_ON_RQ_QUEUED;
3ca7a440
PZ
4674#if defined(CONFIG_SMP)
4675 idle->on_cpu = 1;
4866cde0 4676#endif
05fa785c 4677 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
4678
4679 /* Set the preempt count _outside_ the spinlocks! */
01028747 4680 init_idle_preempt_count(idle, cpu);
55cd5340 4681
dd41f596
IM
4682 /*
4683 * The idle tasks have their own, simple scheduling class:
4684 */
4685 idle->sched_class = &idle_sched_class;
868baf07 4686 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 4687 vtime_init_idle(idle, cpu);
f1c6f1a7
CE
4688#if defined(CONFIG_SMP)
4689 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4690#endif
19978ca6
IM
4691}
4692
f82f8042
JL
4693int cpuset_cpumask_can_shrink(const struct cpumask *cur,
4694 const struct cpumask *trial)
4695{
4696 int ret = 1, trial_cpus;
4697 struct dl_bw *cur_dl_b;
4698 unsigned long flags;
4699
bb2bc55a
MG
4700 if (!cpumask_weight(cur))
4701 return ret;
4702
75e23e49 4703 rcu_read_lock_sched();
f82f8042
JL
4704 cur_dl_b = dl_bw_of(cpumask_any(cur));
4705 trial_cpus = cpumask_weight(trial);
4706
4707 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
4708 if (cur_dl_b->bw != -1 &&
4709 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
4710 ret = 0;
4711 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
75e23e49 4712 rcu_read_unlock_sched();
f82f8042
JL
4713
4714 return ret;
4715}
4716
7f51412a
JL
4717int task_can_attach(struct task_struct *p,
4718 const struct cpumask *cs_cpus_allowed)
4719{
4720 int ret = 0;
4721
4722 /*
4723 * Kthreads which disallow setaffinity shouldn't be moved
4724 * to a new cpuset; we don't want to change their cpu
4725 * affinity and isolating such threads by their set of
4726 * allowed nodes is unnecessary. Thus, cpusets are not
4727 * applicable for such threads. This prevents checking for
4728 * success of set_cpus_allowed_ptr() on all attached tasks
4729 * before cpus_allowed may be changed.
4730 */
4731 if (p->flags & PF_NO_SETAFFINITY) {
4732 ret = -EINVAL;
4733 goto out;
4734 }
4735
4736#ifdef CONFIG_SMP
4737 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
4738 cs_cpus_allowed)) {
4739 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
4740 cs_cpus_allowed);
75e23e49 4741 struct dl_bw *dl_b;
7f51412a
JL
4742 bool overflow;
4743 int cpus;
4744 unsigned long flags;
4745
75e23e49
JL
4746 rcu_read_lock_sched();
4747 dl_b = dl_bw_of(dest_cpu);
7f51412a
JL
4748 raw_spin_lock_irqsave(&dl_b->lock, flags);
4749 cpus = dl_bw_cpus(dest_cpu);
4750 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
4751 if (overflow)
4752 ret = -EBUSY;
4753 else {
4754 /*
4755 * We reserve space for this task in the destination
4756 * root_domain, as we can't fail after this point.
4757 * We will free resources in the source root_domain
4758 * later on (see set_cpus_allowed_dl()).
4759 */
4760 __dl_add(dl_b, p->dl.dl_bw);
4761 }
4762 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
75e23e49 4763 rcu_read_unlock_sched();
7f51412a
JL
4764
4765 }
4766#endif
4767out:
4768 return ret;
4769}
4770
1da177e4 4771#ifdef CONFIG_SMP
a15b12ac
KT
4772/*
4773 * move_queued_task - move a queued task to new rq.
4774 *
4775 * Returns (locked) new rq. Old rq's lock is released.
4776 */
4777static struct rq *move_queued_task(struct task_struct *p, int new_cpu)
4778{
4779 struct rq *rq = task_rq(p);
4780
4781 lockdep_assert_held(&rq->lock);
4782
4783 dequeue_task(rq, p, 0);
4784 p->on_rq = TASK_ON_RQ_MIGRATING;
4785 set_task_cpu(p, new_cpu);
4786 raw_spin_unlock(&rq->lock);
4787
4788 rq = cpu_rq(new_cpu);
4789
4790 raw_spin_lock(&rq->lock);
4791 BUG_ON(task_cpu(p) != new_cpu);
4792 p->on_rq = TASK_ON_RQ_QUEUED;
4793 enqueue_task(rq, p, 0);
4794 check_preempt_curr(rq, p, 0);
4795
4796 return rq;
4797}
4798
1e1b6c51
KM
4799void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4800{
1b537c7d 4801 if (p->sched_class->set_cpus_allowed)
1e1b6c51 4802 p->sched_class->set_cpus_allowed(p, new_mask);
4939602a
PZ
4803
4804 cpumask_copy(&p->cpus_allowed, new_mask);
29baa747 4805 p->nr_cpus_allowed = cpumask_weight(new_mask);
1e1b6c51
KM
4806}
4807
1da177e4
LT
4808/*
4809 * This is how migration works:
4810 *
969c7921
TH
4811 * 1) we invoke migration_cpu_stop() on the target CPU using
4812 * stop_one_cpu().
4813 * 2) stopper starts to run (implicitly forcing the migrated thread
4814 * off the CPU)
4815 * 3) it checks whether the migrated task is still in the wrong runqueue.
4816 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 4817 * it and puts it into the right queue.
969c7921
TH
4818 * 5) stopper completes and stop_one_cpu() returns and the migration
4819 * is done.
1da177e4
LT
4820 */
4821
4822/*
4823 * Change a given task's CPU affinity. Migrate the thread to a
4824 * proper CPU and schedule it away if the CPU it's executing on
4825 * is removed from the allowed bitmask.
4826 *
4827 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 4828 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
4829 * call is not atomic; no spinlocks may be held.
4830 */
96f874e2 4831int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
4832{
4833 unsigned long flags;
70b97a7f 4834 struct rq *rq;
969c7921 4835 unsigned int dest_cpu;
48f24c4d 4836 int ret = 0;
1da177e4
LT
4837
4838 rq = task_rq_lock(p, &flags);
e2912009 4839
db44fc01
YZ
4840 if (cpumask_equal(&p->cpus_allowed, new_mask))
4841 goto out;
4842
6ad4c188 4843 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
4844 ret = -EINVAL;
4845 goto out;
4846 }
4847
1e1b6c51 4848 do_set_cpus_allowed(p, new_mask);
73fe6aae 4849
1da177e4 4850 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 4851 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
4852 goto out;
4853
969c7921 4854 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
a15b12ac 4855 if (task_running(rq, p) || p->state == TASK_WAKING) {
969c7921 4856 struct migration_arg arg = { p, dest_cpu };
1da177e4 4857 /* Need help from migration thread: drop lock and wait. */
0122ec5b 4858 task_rq_unlock(rq, p, &flags);
969c7921 4859 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
4860 tlb_migrate_finish(p->mm);
4861 return 0;
a15b12ac
KT
4862 } else if (task_on_rq_queued(p))
4863 rq = move_queued_task(p, dest_cpu);
1da177e4 4864out:
0122ec5b 4865 task_rq_unlock(rq, p, &flags);
48f24c4d 4866
1da177e4
LT
4867 return ret;
4868}
cd8ba7cd 4869EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
4870
4871/*
41a2d6cf 4872 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
4873 * this because either it can't run here any more (set_cpus_allowed()
4874 * away from this CPU, or CPU going down), or because we're
4875 * attempting to rebalance this task on exec (sched_exec).
4876 *
4877 * So we race with normal scheduler movements, but that's OK, as long
4878 * as the task is no longer on this CPU.
efc30814
KK
4879 *
4880 * Returns non-zero if task was successfully migrated.
1da177e4 4881 */
efc30814 4882static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4883{
a1e01829 4884 struct rq *rq;
e2912009 4885 int ret = 0;
1da177e4 4886
e761b772 4887 if (unlikely(!cpu_active(dest_cpu)))
efc30814 4888 return ret;
1da177e4 4889
a1e01829 4890 rq = cpu_rq(src_cpu);
1da177e4 4891
0122ec5b 4892 raw_spin_lock(&p->pi_lock);
a1e01829 4893 raw_spin_lock(&rq->lock);
1da177e4
LT
4894 /* Already moved. */
4895 if (task_cpu(p) != src_cpu)
b1e38734 4896 goto done;
a1e01829 4897
1da177e4 4898 /* Affinity changed (again). */
fa17b507 4899 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
b1e38734 4900 goto fail;
1da177e4 4901
e2912009
PZ
4902 /*
4903 * If we're not on a rq, the next wake-up will ensure we're
4904 * placed properly.
4905 */
a15b12ac
KT
4906 if (task_on_rq_queued(p))
4907 rq = move_queued_task(p, dest_cpu);
b1e38734 4908done:
efc30814 4909 ret = 1;
b1e38734 4910fail:
a1e01829 4911 raw_spin_unlock(&rq->lock);
0122ec5b 4912 raw_spin_unlock(&p->pi_lock);
efc30814 4913 return ret;
1da177e4
LT
4914}
4915
e6628d5b
MG
4916#ifdef CONFIG_NUMA_BALANCING
4917/* Migrate current task p to target_cpu */
4918int migrate_task_to(struct task_struct *p, int target_cpu)
4919{
4920 struct migration_arg arg = { p, target_cpu };
4921 int curr_cpu = task_cpu(p);
4922
4923 if (curr_cpu == target_cpu)
4924 return 0;
4925
4926 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4927 return -EINVAL;
4928
4929 /* TODO: This is not properly updating schedstats */
4930
286549dc 4931 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
4932 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4933}
0ec8aa00
PZ
4934
4935/*
4936 * Requeue a task on a given node and accurately track the number of NUMA
4937 * tasks on the runqueues
4938 */
4939void sched_setnuma(struct task_struct *p, int nid)
4940{
4941 struct rq *rq;
4942 unsigned long flags;
da0c1e65 4943 bool queued, running;
0ec8aa00
PZ
4944
4945 rq = task_rq_lock(p, &flags);
da0c1e65 4946 queued = task_on_rq_queued(p);
0ec8aa00
PZ
4947 running = task_current(rq, p);
4948
da0c1e65 4949 if (queued)
0ec8aa00
PZ
4950 dequeue_task(rq, p, 0);
4951 if (running)
f3cd1c4e 4952 put_prev_task(rq, p);
0ec8aa00
PZ
4953
4954 p->numa_preferred_nid = nid;
0ec8aa00
PZ
4955
4956 if (running)
4957 p->sched_class->set_curr_task(rq);
da0c1e65 4958 if (queued)
0ec8aa00
PZ
4959 enqueue_task(rq, p, 0);
4960 task_rq_unlock(rq, p, &flags);
4961}
e6628d5b
MG
4962#endif
4963
1da177e4 4964/*
969c7921
TH
4965 * migration_cpu_stop - this will be executed by a highprio stopper thread
4966 * and performs thread migration by bumping thread off CPU then
4967 * 'pushing' onto another runqueue.
1da177e4 4968 */
969c7921 4969static int migration_cpu_stop(void *data)
1da177e4 4970{
969c7921 4971 struct migration_arg *arg = data;
f7b4cddc 4972
969c7921
TH
4973 /*
4974 * The original target cpu might have gone down and we might
4975 * be on another cpu but it doesn't matter.
4976 */
f7b4cddc 4977 local_irq_disable();
5cd038f5
LJ
4978 /*
4979 * We need to explicitly wake pending tasks before running
4980 * __migrate_task() such that we will not miss enforcing cpus_allowed
4981 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
4982 */
4983 sched_ttwu_pending();
969c7921 4984 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 4985 local_irq_enable();
1da177e4 4986 return 0;
f7b4cddc
ON
4987}
4988
1da177e4 4989#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 4990
054b9108 4991/*
48c5ccae
PZ
4992 * Ensures that the idle task is using init_mm right before its cpu goes
4993 * offline.
054b9108 4994 */
48c5ccae 4995void idle_task_exit(void)
1da177e4 4996{
48c5ccae 4997 struct mm_struct *mm = current->active_mm;
e76bd8d9 4998
48c5ccae 4999 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 5000
a53efe5f 5001 if (mm != &init_mm) {
48c5ccae 5002 switch_mm(mm, &init_mm, current);
a53efe5f
MS
5003 finish_arch_post_lock_switch();
5004 }
48c5ccae 5005 mmdrop(mm);
1da177e4
LT
5006}
5007
5008/*
5d180232
PZ
5009 * Since this CPU is going 'away' for a while, fold any nr_active delta
5010 * we might have. Assumes we're called after migrate_tasks() so that the
5011 * nr_active count is stable.
5012 *
5013 * Also see the comment "Global load-average calculations".
1da177e4 5014 */
5d180232 5015static void calc_load_migrate(struct rq *rq)
1da177e4 5016{
5d180232
PZ
5017 long delta = calc_load_fold_active(rq);
5018 if (delta)
5019 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
5020}
5021
3f1d2a31
PZ
5022static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5023{
5024}
5025
5026static const struct sched_class fake_sched_class = {
5027 .put_prev_task = put_prev_task_fake,
5028};
5029
5030static struct task_struct fake_task = {
5031 /*
5032 * Avoid pull_{rt,dl}_task()
5033 */
5034 .prio = MAX_PRIO + 1,
5035 .sched_class = &fake_sched_class,
5036};
5037
48f24c4d 5038/*
48c5ccae
PZ
5039 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5040 * try_to_wake_up()->select_task_rq().
5041 *
5042 * Called with rq->lock held even though we'er in stop_machine() and
5043 * there's no concurrency possible, we hold the required locks anyway
5044 * because of lock validation efforts.
1da177e4 5045 */
48c5ccae 5046static void migrate_tasks(unsigned int dead_cpu)
1da177e4 5047{
70b97a7f 5048 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
5049 struct task_struct *next, *stop = rq->stop;
5050 int dest_cpu;
1da177e4
LT
5051
5052 /*
48c5ccae
PZ
5053 * Fudge the rq selection such that the below task selection loop
5054 * doesn't get stuck on the currently eligible stop task.
5055 *
5056 * We're currently inside stop_machine() and the rq is either stuck
5057 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5058 * either way we should never end up calling schedule() until we're
5059 * done here.
1da177e4 5060 */
48c5ccae 5061 rq->stop = NULL;
48f24c4d 5062
77bd3970
FW
5063 /*
5064 * put_prev_task() and pick_next_task() sched
5065 * class method both need to have an up-to-date
5066 * value of rq->clock[_task]
5067 */
5068 update_rq_clock(rq);
5069
dd41f596 5070 for ( ; ; ) {
48c5ccae
PZ
5071 /*
5072 * There's this thread running, bail when that's the only
5073 * remaining thread.
5074 */
5075 if (rq->nr_running == 1)
dd41f596 5076 break;
48c5ccae 5077
3f1d2a31 5078 next = pick_next_task(rq, &fake_task);
48c5ccae 5079 BUG_ON(!next);
79c53799 5080 next->sched_class->put_prev_task(rq, next);
e692ab53 5081
48c5ccae
PZ
5082 /* Find suitable destination for @next, with force if needed. */
5083 dest_cpu = select_fallback_rq(dead_cpu, next);
5084 raw_spin_unlock(&rq->lock);
5085
5086 __migrate_task(next, dead_cpu, dest_cpu);
5087
5088 raw_spin_lock(&rq->lock);
1da177e4 5089 }
dce48a84 5090
48c5ccae 5091 rq->stop = stop;
dce48a84 5092}
48c5ccae 5093
1da177e4
LT
5094#endif /* CONFIG_HOTPLUG_CPU */
5095
e692ab53
NP
5096#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5097
5098static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5099 {
5100 .procname = "sched_domain",
c57baf1e 5101 .mode = 0555,
e0361851 5102 },
56992309 5103 {}
e692ab53
NP
5104};
5105
5106static struct ctl_table sd_ctl_root[] = {
e0361851
AD
5107 {
5108 .procname = "kernel",
c57baf1e 5109 .mode = 0555,
e0361851
AD
5110 .child = sd_ctl_dir,
5111 },
56992309 5112 {}
e692ab53
NP
5113};
5114
5115static struct ctl_table *sd_alloc_ctl_entry(int n)
5116{
5117 struct ctl_table *entry =
5cf9f062 5118 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5119
e692ab53
NP
5120 return entry;
5121}
5122
6382bc90
MM
5123static void sd_free_ctl_entry(struct ctl_table **tablep)
5124{
cd790076 5125 struct ctl_table *entry;
6382bc90 5126
cd790076
MM
5127 /*
5128 * In the intermediate directories, both the child directory and
5129 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5130 * will always be set. In the lowest directory the names are
cd790076
MM
5131 * static strings and all have proc handlers.
5132 */
5133 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5134 if (entry->child)
5135 sd_free_ctl_entry(&entry->child);
cd790076
MM
5136 if (entry->proc_handler == NULL)
5137 kfree(entry->procname);
5138 }
6382bc90
MM
5139
5140 kfree(*tablep);
5141 *tablep = NULL;
5142}
5143
201c373e 5144static int min_load_idx = 0;
fd9b86d3 5145static int max_load_idx = CPU_LOAD_IDX_MAX-1;
201c373e 5146
e692ab53 5147static void
e0361851 5148set_table_entry(struct ctl_table *entry,
e692ab53 5149 const char *procname, void *data, int maxlen,
201c373e
NK
5150 umode_t mode, proc_handler *proc_handler,
5151 bool load_idx)
e692ab53 5152{
e692ab53
NP
5153 entry->procname = procname;
5154 entry->data = data;
5155 entry->maxlen = maxlen;
5156 entry->mode = mode;
5157 entry->proc_handler = proc_handler;
201c373e
NK
5158
5159 if (load_idx) {
5160 entry->extra1 = &min_load_idx;
5161 entry->extra2 = &max_load_idx;
5162 }
e692ab53
NP
5163}
5164
5165static struct ctl_table *
5166sd_alloc_ctl_domain_table(struct sched_domain *sd)
5167{
37e6bae8 5168 struct ctl_table *table = sd_alloc_ctl_entry(14);
e692ab53 5169
ad1cdc1d
MM
5170 if (table == NULL)
5171 return NULL;
5172
e0361851 5173 set_table_entry(&table[0], "min_interval", &sd->min_interval,
201c373e 5174 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 5175 set_table_entry(&table[1], "max_interval", &sd->max_interval,
201c373e 5176 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 5177 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
201c373e 5178 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5179 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
201c373e 5180 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5181 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
201c373e 5182 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5183 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
201c373e 5184 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5185 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
201c373e 5186 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5187 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
201c373e 5188 sizeof(int), 0644, proc_dointvec_minmax, false);
e0361851 5189 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
201c373e 5190 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 5191 set_table_entry(&table[9], "cache_nice_tries",
e692ab53 5192 &sd->cache_nice_tries,
201c373e 5193 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 5194 set_table_entry(&table[10], "flags", &sd->flags,
201c373e 5195 sizeof(int), 0644, proc_dointvec_minmax, false);
37e6bae8
AS
5196 set_table_entry(&table[11], "max_newidle_lb_cost",
5197 &sd->max_newidle_lb_cost,
5198 sizeof(long), 0644, proc_doulongvec_minmax, false);
5199 set_table_entry(&table[12], "name", sd->name,
201c373e 5200 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
37e6bae8 5201 /* &table[13] is terminator */
e692ab53
NP
5202
5203 return table;
5204}
5205
be7002e6 5206static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5207{
5208 struct ctl_table *entry, *table;
5209 struct sched_domain *sd;
5210 int domain_num = 0, i;
5211 char buf[32];
5212
5213 for_each_domain(cpu, sd)
5214 domain_num++;
5215 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5216 if (table == NULL)
5217 return NULL;
e692ab53
NP
5218
5219 i = 0;
5220 for_each_domain(cpu, sd) {
5221 snprintf(buf, 32, "domain%d", i);
e692ab53 5222 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5223 entry->mode = 0555;
e692ab53
NP
5224 entry->child = sd_alloc_ctl_domain_table(sd);
5225 entry++;
5226 i++;
5227 }
5228 return table;
5229}
5230
5231static struct ctl_table_header *sd_sysctl_header;
6382bc90 5232static void register_sched_domain_sysctl(void)
e692ab53 5233{
6ad4c188 5234 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5235 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5236 char buf[32];
5237
7378547f
MM
5238 WARN_ON(sd_ctl_dir[0].child);
5239 sd_ctl_dir[0].child = entry;
5240
ad1cdc1d
MM
5241 if (entry == NULL)
5242 return;
5243
6ad4c188 5244 for_each_possible_cpu(i) {
e692ab53 5245 snprintf(buf, 32, "cpu%d", i);
e692ab53 5246 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5247 entry->mode = 0555;
e692ab53 5248 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5249 entry++;
e692ab53 5250 }
7378547f
MM
5251
5252 WARN_ON(sd_sysctl_header);
e692ab53
NP
5253 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5254}
6382bc90 5255
7378547f 5256/* may be called multiple times per register */
6382bc90
MM
5257static void unregister_sched_domain_sysctl(void)
5258{
7378547f
MM
5259 if (sd_sysctl_header)
5260 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5261 sd_sysctl_header = NULL;
7378547f
MM
5262 if (sd_ctl_dir[0].child)
5263 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5264}
e692ab53 5265#else
6382bc90
MM
5266static void register_sched_domain_sysctl(void)
5267{
5268}
5269static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5270{
5271}
5272#endif
5273
1f11eb6a
GH
5274static void set_rq_online(struct rq *rq)
5275{
5276 if (!rq->online) {
5277 const struct sched_class *class;
5278
c6c4927b 5279 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5280 rq->online = 1;
5281
5282 for_each_class(class) {
5283 if (class->rq_online)
5284 class->rq_online(rq);
5285 }
5286 }
5287}
5288
5289static void set_rq_offline(struct rq *rq)
5290{
5291 if (rq->online) {
5292 const struct sched_class *class;
5293
5294 for_each_class(class) {
5295 if (class->rq_offline)
5296 class->rq_offline(rq);
5297 }
5298
c6c4927b 5299 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5300 rq->online = 0;
5301 }
5302}
5303
1da177e4
LT
5304/*
5305 * migration_call - callback that gets triggered when a CPU is added.
5306 * Here we can start up the necessary migration thread for the new CPU.
5307 */
0db0628d 5308static int
48f24c4d 5309migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5310{
48f24c4d 5311 int cpu = (long)hcpu;
1da177e4 5312 unsigned long flags;
969c7921 5313 struct rq *rq = cpu_rq(cpu);
1da177e4 5314
48c5ccae 5315 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 5316
1da177e4 5317 case CPU_UP_PREPARE:
a468d389 5318 rq->calc_load_update = calc_load_update;
1da177e4 5319 break;
48f24c4d 5320
1da177e4 5321 case CPU_ONLINE:
1f94ef59 5322 /* Update our root-domain */
05fa785c 5323 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5324 if (rq->rd) {
c6c4927b 5325 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5326
5327 set_rq_online(rq);
1f94ef59 5328 }
05fa785c 5329 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5330 break;
48f24c4d 5331
1da177e4 5332#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5333 case CPU_DYING:
317f3941 5334 sched_ttwu_pending();
57d885fe 5335 /* Update our root-domain */
05fa785c 5336 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5337 if (rq->rd) {
c6c4927b 5338 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5339 set_rq_offline(rq);
57d885fe 5340 }
48c5ccae
PZ
5341 migrate_tasks(cpu);
5342 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5343 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 5344 break;
48c5ccae 5345
5d180232 5346 case CPU_DEAD:
f319da0c 5347 calc_load_migrate(rq);
57d885fe 5348 break;
1da177e4
LT
5349#endif
5350 }
49c022e6
PZ
5351
5352 update_max_interval();
5353
1da177e4
LT
5354 return NOTIFY_OK;
5355}
5356
f38b0820
PM
5357/*
5358 * Register at high priority so that task migration (migrate_all_tasks)
5359 * happens before everything else. This has to be lower priority than
cdd6c482 5360 * the notifier in the perf_event subsystem, though.
1da177e4 5361 */
0db0628d 5362static struct notifier_block migration_notifier = {
1da177e4 5363 .notifier_call = migration_call,
50a323b7 5364 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5365};
5366
6a82b60d 5367static void set_cpu_rq_start_time(void)
a803f026
CM
5368{
5369 int cpu = smp_processor_id();
5370 struct rq *rq = cpu_rq(cpu);
5371 rq->age_stamp = sched_clock_cpu(cpu);
5372}
5373
0db0628d 5374static int sched_cpu_active(struct notifier_block *nfb,
3a101d05
TH
5375 unsigned long action, void *hcpu)
5376{
5377 switch (action & ~CPU_TASKS_FROZEN) {
a803f026
CM
5378 case CPU_STARTING:
5379 set_cpu_rq_start_time();
5380 return NOTIFY_OK;
3a101d05
TH
5381 case CPU_DOWN_FAILED:
5382 set_cpu_active((long)hcpu, true);
5383 return NOTIFY_OK;
5384 default:
5385 return NOTIFY_DONE;
5386 }
5387}
5388
0db0628d 5389static int sched_cpu_inactive(struct notifier_block *nfb,
3a101d05
TH
5390 unsigned long action, void *hcpu)
5391{
5392 switch (action & ~CPU_TASKS_FROZEN) {
5393 case CPU_DOWN_PREPARE:
3c18d447 5394 set_cpu_active((long)hcpu, false);
3a101d05 5395 return NOTIFY_OK;
3c18d447
JL
5396 default:
5397 return NOTIFY_DONE;
3a101d05
TH
5398 }
5399}
5400
7babe8db 5401static int __init migration_init(void)
1da177e4
LT
5402{
5403 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5404 int err;
48f24c4d 5405
3a101d05 5406 /* Initialize migration for the boot CPU */
07dccf33
AM
5407 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5408 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5409 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5410 register_cpu_notifier(&migration_notifier);
7babe8db 5411
3a101d05
TH
5412 /* Register cpu active notifiers */
5413 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5414 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5415
a004cd42 5416 return 0;
1da177e4 5417}
7babe8db 5418early_initcall(migration_init);
1da177e4
LT
5419#endif
5420
5421#ifdef CONFIG_SMP
476f3534 5422
4cb98839
PZ
5423static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5424
3e9830dc 5425#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5426
d039ac60 5427static __read_mostly int sched_debug_enabled;
f6630114 5428
d039ac60 5429static int __init sched_debug_setup(char *str)
f6630114 5430{
d039ac60 5431 sched_debug_enabled = 1;
f6630114
MT
5432
5433 return 0;
5434}
d039ac60
PZ
5435early_param("sched_debug", sched_debug_setup);
5436
5437static inline bool sched_debug(void)
5438{
5439 return sched_debug_enabled;
5440}
f6630114 5441
7c16ec58 5442static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5443 struct cpumask *groupmask)
1da177e4 5444{
4dcf6aff 5445 struct sched_group *group = sd->groups;
1da177e4 5446
96f874e2 5447 cpumask_clear(groupmask);
4dcf6aff
IM
5448
5449 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5450
5451 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5452 printk("does not load-balance\n");
4dcf6aff 5453 if (sd->parent)
3df0fc5b
PZ
5454 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5455 " has parent");
4dcf6aff 5456 return -1;
41c7ce9a
NP
5457 }
5458
333470ee
TH
5459 printk(KERN_CONT "span %*pbl level %s\n",
5460 cpumask_pr_args(sched_domain_span(sd)), sd->name);
4dcf6aff 5461
758b2cdc 5462 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5463 printk(KERN_ERR "ERROR: domain->span does not contain "
5464 "CPU%d\n", cpu);
4dcf6aff 5465 }
758b2cdc 5466 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5467 printk(KERN_ERR "ERROR: domain->groups does not contain"
5468 " CPU%d\n", cpu);
4dcf6aff 5469 }
1da177e4 5470
4dcf6aff 5471 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5472 do {
4dcf6aff 5473 if (!group) {
3df0fc5b
PZ
5474 printk("\n");
5475 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5476 break;
5477 }
5478
758b2cdc 5479 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5480 printk(KERN_CONT "\n");
5481 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5482 break;
5483 }
1da177e4 5484
cb83b629
PZ
5485 if (!(sd->flags & SD_OVERLAP) &&
5486 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5487 printk(KERN_CONT "\n");
5488 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5489 break;
5490 }
1da177e4 5491
758b2cdc 5492 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5493
333470ee
TH
5494 printk(KERN_CONT " %*pbl",
5495 cpumask_pr_args(sched_group_cpus(group)));
ca8ce3d0 5496 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
63b2ca30
NP
5497 printk(KERN_CONT " (cpu_capacity = %d)",
5498 group->sgc->capacity);
381512cf 5499 }
1da177e4 5500
4dcf6aff
IM
5501 group = group->next;
5502 } while (group != sd->groups);
3df0fc5b 5503 printk(KERN_CONT "\n");
1da177e4 5504
758b2cdc 5505 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5506 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5507
758b2cdc
RR
5508 if (sd->parent &&
5509 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5510 printk(KERN_ERR "ERROR: parent span is not a superset "
5511 "of domain->span\n");
4dcf6aff
IM
5512 return 0;
5513}
1da177e4 5514
4dcf6aff
IM
5515static void sched_domain_debug(struct sched_domain *sd, int cpu)
5516{
5517 int level = 0;
1da177e4 5518
d039ac60 5519 if (!sched_debug_enabled)
f6630114
MT
5520 return;
5521
4dcf6aff
IM
5522 if (!sd) {
5523 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5524 return;
5525 }
1da177e4 5526
4dcf6aff
IM
5527 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5528
5529 for (;;) {
4cb98839 5530 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5531 break;
1da177e4
LT
5532 level++;
5533 sd = sd->parent;
33859f7f 5534 if (!sd)
4dcf6aff
IM
5535 break;
5536 }
1da177e4 5537}
6d6bc0ad 5538#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5539# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5540static inline bool sched_debug(void)
5541{
5542 return false;
5543}
6d6bc0ad 5544#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5545
1a20ff27 5546static int sd_degenerate(struct sched_domain *sd)
245af2c7 5547{
758b2cdc 5548 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5549 return 1;
5550
5551 /* Following flags need at least 2 groups */
5552 if (sd->flags & (SD_LOAD_BALANCE |
5553 SD_BALANCE_NEWIDLE |
5554 SD_BALANCE_FORK |
89c4710e 5555 SD_BALANCE_EXEC |
5d4dfddd 5556 SD_SHARE_CPUCAPACITY |
d77b3ed5
VG
5557 SD_SHARE_PKG_RESOURCES |
5558 SD_SHARE_POWERDOMAIN)) {
245af2c7
SS
5559 if (sd->groups != sd->groups->next)
5560 return 0;
5561 }
5562
5563 /* Following flags don't use groups */
c88d5910 5564 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5565 return 0;
5566
5567 return 1;
5568}
5569
48f24c4d
IM
5570static int
5571sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5572{
5573 unsigned long cflags = sd->flags, pflags = parent->flags;
5574
5575 if (sd_degenerate(parent))
5576 return 1;
5577
758b2cdc 5578 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5579 return 0;
5580
245af2c7
SS
5581 /* Flags needing groups don't count if only 1 group in parent */
5582 if (parent->groups == parent->groups->next) {
5583 pflags &= ~(SD_LOAD_BALANCE |
5584 SD_BALANCE_NEWIDLE |
5585 SD_BALANCE_FORK |
89c4710e 5586 SD_BALANCE_EXEC |
5d4dfddd 5587 SD_SHARE_CPUCAPACITY |
10866e62 5588 SD_SHARE_PKG_RESOURCES |
d77b3ed5
VG
5589 SD_PREFER_SIBLING |
5590 SD_SHARE_POWERDOMAIN);
5436499e
KC
5591 if (nr_node_ids == 1)
5592 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5593 }
5594 if (~cflags & pflags)
5595 return 0;
5596
5597 return 1;
5598}
5599
dce840a0 5600static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5601{
dce840a0 5602 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5603
68e74568 5604 cpupri_cleanup(&rd->cpupri);
6bfd6d72 5605 cpudl_cleanup(&rd->cpudl);
1baca4ce 5606 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5607 free_cpumask_var(rd->rto_mask);
5608 free_cpumask_var(rd->online);
5609 free_cpumask_var(rd->span);
5610 kfree(rd);
5611}
5612
57d885fe
GH
5613static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5614{
a0490fa3 5615 struct root_domain *old_rd = NULL;
57d885fe 5616 unsigned long flags;
57d885fe 5617
05fa785c 5618 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5619
5620 if (rq->rd) {
a0490fa3 5621 old_rd = rq->rd;
57d885fe 5622
c6c4927b 5623 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5624 set_rq_offline(rq);
57d885fe 5625
c6c4927b 5626 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5627
a0490fa3 5628 /*
0515973f 5629 * If we dont want to free the old_rd yet then
a0490fa3
IM
5630 * set old_rd to NULL to skip the freeing later
5631 * in this function:
5632 */
5633 if (!atomic_dec_and_test(&old_rd->refcount))
5634 old_rd = NULL;
57d885fe
GH
5635 }
5636
5637 atomic_inc(&rd->refcount);
5638 rq->rd = rd;
5639
c6c4927b 5640 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5641 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5642 set_rq_online(rq);
57d885fe 5643
05fa785c 5644 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5645
5646 if (old_rd)
dce840a0 5647 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5648}
5649
68c38fc3 5650static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5651{
5652 memset(rd, 0, sizeof(*rd));
5653
68c38fc3 5654 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5655 goto out;
68c38fc3 5656 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5657 goto free_span;
1baca4ce 5658 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
c6c4927b 5659 goto free_online;
1baca4ce
JL
5660 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5661 goto free_dlo_mask;
6e0534f2 5662
332ac17e 5663 init_dl_bw(&rd->dl_bw);
6bfd6d72
JL
5664 if (cpudl_init(&rd->cpudl) != 0)
5665 goto free_dlo_mask;
332ac17e 5666
68c38fc3 5667 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5668 goto free_rto_mask;
c6c4927b 5669 return 0;
6e0534f2 5670
68e74568
RR
5671free_rto_mask:
5672 free_cpumask_var(rd->rto_mask);
1baca4ce
JL
5673free_dlo_mask:
5674 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5675free_online:
5676 free_cpumask_var(rd->online);
5677free_span:
5678 free_cpumask_var(rd->span);
0c910d28 5679out:
c6c4927b 5680 return -ENOMEM;
57d885fe
GH
5681}
5682
029632fb
PZ
5683/*
5684 * By default the system creates a single root-domain with all cpus as
5685 * members (mimicking the global state we have today).
5686 */
5687struct root_domain def_root_domain;
5688
57d885fe
GH
5689static void init_defrootdomain(void)
5690{
68c38fc3 5691 init_rootdomain(&def_root_domain);
c6c4927b 5692
57d885fe
GH
5693 atomic_set(&def_root_domain.refcount, 1);
5694}
5695
dc938520 5696static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5697{
5698 struct root_domain *rd;
5699
5700 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5701 if (!rd)
5702 return NULL;
5703
68c38fc3 5704 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5705 kfree(rd);
5706 return NULL;
5707 }
57d885fe
GH
5708
5709 return rd;
5710}
5711
63b2ca30 5712static void free_sched_groups(struct sched_group *sg, int free_sgc)
e3589f6c
PZ
5713{
5714 struct sched_group *tmp, *first;
5715
5716 if (!sg)
5717 return;
5718
5719 first = sg;
5720 do {
5721 tmp = sg->next;
5722
63b2ca30
NP
5723 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5724 kfree(sg->sgc);
e3589f6c
PZ
5725
5726 kfree(sg);
5727 sg = tmp;
5728 } while (sg != first);
5729}
5730
dce840a0
PZ
5731static void free_sched_domain(struct rcu_head *rcu)
5732{
5733 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5734
5735 /*
5736 * If its an overlapping domain it has private groups, iterate and
5737 * nuke them all.
5738 */
5739 if (sd->flags & SD_OVERLAP) {
5740 free_sched_groups(sd->groups, 1);
5741 } else if (atomic_dec_and_test(&sd->groups->ref)) {
63b2ca30 5742 kfree(sd->groups->sgc);
dce840a0 5743 kfree(sd->groups);
9c3f75cb 5744 }
dce840a0
PZ
5745 kfree(sd);
5746}
5747
5748static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5749{
5750 call_rcu(&sd->rcu, free_sched_domain);
5751}
5752
5753static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5754{
5755 for (; sd; sd = sd->parent)
5756 destroy_sched_domain(sd, cpu);
5757}
5758
518cd623
PZ
5759/*
5760 * Keep a special pointer to the highest sched_domain that has
5761 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5762 * allows us to avoid some pointer chasing select_idle_sibling().
5763 *
5764 * Also keep a unique ID per domain (we use the first cpu number in
5765 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5766 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5767 */
5768DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5769DEFINE_PER_CPU(int, sd_llc_size);
518cd623 5770DEFINE_PER_CPU(int, sd_llc_id);
fb13c7ee 5771DEFINE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
5772DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5773DEFINE_PER_CPU(struct sched_domain *, sd_asym);
518cd623
PZ
5774
5775static void update_top_cache_domain(int cpu)
5776{
5777 struct sched_domain *sd;
5d4cf996 5778 struct sched_domain *busy_sd = NULL;
518cd623 5779 int id = cpu;
7d9ffa89 5780 int size = 1;
518cd623
PZ
5781
5782 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 5783 if (sd) {
518cd623 5784 id = cpumask_first(sched_domain_span(sd));
7d9ffa89 5785 size = cpumask_weight(sched_domain_span(sd));
5d4cf996 5786 busy_sd = sd->parent; /* sd_busy */
7d9ffa89 5787 }
5d4cf996 5788 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
518cd623
PZ
5789
5790 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 5791 per_cpu(sd_llc_size, cpu) = size;
518cd623 5792 per_cpu(sd_llc_id, cpu) = id;
fb13c7ee
MG
5793
5794 sd = lowest_flag_domain(cpu, SD_NUMA);
5795 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
37dc6b50
PM
5796
5797 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5798 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
518cd623
PZ
5799}
5800
1da177e4 5801/*
0eab9146 5802 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5803 * hold the hotplug lock.
5804 */
0eab9146
IM
5805static void
5806cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5807{
70b97a7f 5808 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5809 struct sched_domain *tmp;
5810
5811 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5812 for (tmp = sd; tmp; ) {
245af2c7
SS
5813 struct sched_domain *parent = tmp->parent;
5814 if (!parent)
5815 break;
f29c9b1c 5816
1a848870 5817 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5818 tmp->parent = parent->parent;
1a848870
SS
5819 if (parent->parent)
5820 parent->parent->child = tmp;
10866e62
PZ
5821 /*
5822 * Transfer SD_PREFER_SIBLING down in case of a
5823 * degenerate parent; the spans match for this
5824 * so the property transfers.
5825 */
5826 if (parent->flags & SD_PREFER_SIBLING)
5827 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 5828 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5829 } else
5830 tmp = tmp->parent;
245af2c7
SS
5831 }
5832
1a848870 5833 if (sd && sd_degenerate(sd)) {
dce840a0 5834 tmp = sd;
245af2c7 5835 sd = sd->parent;
dce840a0 5836 destroy_sched_domain(tmp, cpu);
1a848870
SS
5837 if (sd)
5838 sd->child = NULL;
5839 }
1da177e4 5840
4cb98839 5841 sched_domain_debug(sd, cpu);
1da177e4 5842
57d885fe 5843 rq_attach_root(rq, rd);
dce840a0 5844 tmp = rq->sd;
674311d5 5845 rcu_assign_pointer(rq->sd, sd);
dce840a0 5846 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5847
5848 update_top_cache_domain(cpu);
1da177e4
LT
5849}
5850
1da177e4
LT
5851/* Setup the mask of cpus configured for isolated domains */
5852static int __init isolated_cpu_setup(char *str)
5853{
bdddd296 5854 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5855 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5856 return 1;
5857}
5858
8927f494 5859__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5860
49a02c51 5861struct s_data {
21d42ccf 5862 struct sched_domain ** __percpu sd;
49a02c51
AH
5863 struct root_domain *rd;
5864};
5865
2109b99e 5866enum s_alloc {
2109b99e 5867 sa_rootdomain,
21d42ccf 5868 sa_sd,
dce840a0 5869 sa_sd_storage,
2109b99e
AH
5870 sa_none,
5871};
5872
c1174876
PZ
5873/*
5874 * Build an iteration mask that can exclude certain CPUs from the upwards
5875 * domain traversal.
5876 *
5877 * Asymmetric node setups can result in situations where the domain tree is of
5878 * unequal depth, make sure to skip domains that already cover the entire
5879 * range.
5880 *
5881 * In that case build_sched_domains() will have terminated the iteration early
5882 * and our sibling sd spans will be empty. Domains should always include the
5883 * cpu they're built on, so check that.
5884 *
5885 */
5886static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5887{
5888 const struct cpumask *span = sched_domain_span(sd);
5889 struct sd_data *sdd = sd->private;
5890 struct sched_domain *sibling;
5891 int i;
5892
5893 for_each_cpu(i, span) {
5894 sibling = *per_cpu_ptr(sdd->sd, i);
5895 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5896 continue;
5897
5898 cpumask_set_cpu(i, sched_group_mask(sg));
5899 }
5900}
5901
5902/*
5903 * Return the canonical balance cpu for this group, this is the first cpu
5904 * of this group that's also in the iteration mask.
5905 */
5906int group_balance_cpu(struct sched_group *sg)
5907{
5908 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5909}
5910
e3589f6c
PZ
5911static int
5912build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5913{
5914 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5915 const struct cpumask *span = sched_domain_span(sd);
5916 struct cpumask *covered = sched_domains_tmpmask;
5917 struct sd_data *sdd = sd->private;
aaecac4a 5918 struct sched_domain *sibling;
e3589f6c
PZ
5919 int i;
5920
5921 cpumask_clear(covered);
5922
5923 for_each_cpu(i, span) {
5924 struct cpumask *sg_span;
5925
5926 if (cpumask_test_cpu(i, covered))
5927 continue;
5928
aaecac4a 5929 sibling = *per_cpu_ptr(sdd->sd, i);
c1174876
PZ
5930
5931 /* See the comment near build_group_mask(). */
aaecac4a 5932 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
c1174876
PZ
5933 continue;
5934
e3589f6c 5935 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 5936 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
5937
5938 if (!sg)
5939 goto fail;
5940
5941 sg_span = sched_group_cpus(sg);
aaecac4a
ZZ
5942 if (sibling->child)
5943 cpumask_copy(sg_span, sched_domain_span(sibling->child));
5944 else
e3589f6c
PZ
5945 cpumask_set_cpu(i, sg_span);
5946
5947 cpumask_or(covered, covered, sg_span);
5948
63b2ca30
NP
5949 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
5950 if (atomic_inc_return(&sg->sgc->ref) == 1)
c1174876
PZ
5951 build_group_mask(sd, sg);
5952
c3decf0d 5953 /*
63b2ca30 5954 * Initialize sgc->capacity such that even if we mess up the
c3decf0d
PZ
5955 * domains and no possible iteration will get us here, we won't
5956 * die on a /0 trap.
5957 */
ca8ce3d0 5958 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
e3589f6c 5959
c1174876
PZ
5960 /*
5961 * Make sure the first group of this domain contains the
5962 * canonical balance cpu. Otherwise the sched_domain iteration
5963 * breaks. See update_sg_lb_stats().
5964 */
74a5ce20 5965 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 5966 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
5967 groups = sg;
5968
5969 if (!first)
5970 first = sg;
5971 if (last)
5972 last->next = sg;
5973 last = sg;
5974 last->next = first;
5975 }
5976 sd->groups = groups;
5977
5978 return 0;
5979
5980fail:
5981 free_sched_groups(first, 0);
5982
5983 return -ENOMEM;
5984}
5985
dce840a0 5986static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 5987{
dce840a0
PZ
5988 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5989 struct sched_domain *child = sd->child;
1da177e4 5990
dce840a0
PZ
5991 if (child)
5992 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 5993
9c3f75cb 5994 if (sg) {
dce840a0 5995 *sg = *per_cpu_ptr(sdd->sg, cpu);
63b2ca30
NP
5996 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
5997 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
9c3f75cb 5998 }
dce840a0
PZ
5999
6000 return cpu;
1e9f28fa 6001}
1e9f28fa 6002
01a08546 6003/*
dce840a0
PZ
6004 * build_sched_groups will build a circular linked list of the groups
6005 * covered by the given span, and will set each group's ->cpumask correctly,
ced549fa 6006 * and ->cpu_capacity to 0.
e3589f6c
PZ
6007 *
6008 * Assumes the sched_domain tree is fully constructed
01a08546 6009 */
e3589f6c
PZ
6010static int
6011build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 6012{
dce840a0
PZ
6013 struct sched_group *first = NULL, *last = NULL;
6014 struct sd_data *sdd = sd->private;
6015 const struct cpumask *span = sched_domain_span(sd);
f96225fd 6016 struct cpumask *covered;
dce840a0 6017 int i;
9c1cfda2 6018
e3589f6c
PZ
6019 get_group(cpu, sdd, &sd->groups);
6020 atomic_inc(&sd->groups->ref);
6021
0936629f 6022 if (cpu != cpumask_first(span))
e3589f6c
PZ
6023 return 0;
6024
f96225fd
PZ
6025 lockdep_assert_held(&sched_domains_mutex);
6026 covered = sched_domains_tmpmask;
6027
dce840a0 6028 cpumask_clear(covered);
6711cab4 6029
dce840a0
PZ
6030 for_each_cpu(i, span) {
6031 struct sched_group *sg;
cd08e923 6032 int group, j;
6711cab4 6033
dce840a0
PZ
6034 if (cpumask_test_cpu(i, covered))
6035 continue;
6711cab4 6036
cd08e923 6037 group = get_group(i, sdd, &sg);
c1174876 6038 cpumask_setall(sched_group_mask(sg));
0601a88d 6039
dce840a0
PZ
6040 for_each_cpu(j, span) {
6041 if (get_group(j, sdd, NULL) != group)
6042 continue;
0601a88d 6043
dce840a0
PZ
6044 cpumask_set_cpu(j, covered);
6045 cpumask_set_cpu(j, sched_group_cpus(sg));
6046 }
0601a88d 6047
dce840a0
PZ
6048 if (!first)
6049 first = sg;
6050 if (last)
6051 last->next = sg;
6052 last = sg;
6053 }
6054 last->next = first;
e3589f6c
PZ
6055
6056 return 0;
0601a88d 6057}
51888ca2 6058
89c4710e 6059/*
63b2ca30 6060 * Initialize sched groups cpu_capacity.
89c4710e 6061 *
63b2ca30 6062 * cpu_capacity indicates the capacity of sched group, which is used while
89c4710e 6063 * distributing the load between different sched groups in a sched domain.
63b2ca30
NP
6064 * Typically cpu_capacity for all the groups in a sched domain will be same
6065 * unless there are asymmetries in the topology. If there are asymmetries,
6066 * group having more cpu_capacity will pickup more load compared to the
6067 * group having less cpu_capacity.
89c4710e 6068 */
63b2ca30 6069static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
89c4710e 6070{
e3589f6c 6071 struct sched_group *sg = sd->groups;
89c4710e 6072
94c95ba6 6073 WARN_ON(!sg);
e3589f6c
PZ
6074
6075 do {
6076 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6077 sg = sg->next;
6078 } while (sg != sd->groups);
89c4710e 6079
c1174876 6080 if (cpu != group_balance_cpu(sg))
e3589f6c 6081 return;
aae6d3dd 6082
63b2ca30
NP
6083 update_group_capacity(sd, cpu);
6084 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
89c4710e
SS
6085}
6086
7c16ec58
MT
6087/*
6088 * Initializers for schedule domains
6089 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6090 */
6091
1d3504fc 6092static int default_relax_domain_level = -1;
60495e77 6093int sched_domain_level_max;
1d3504fc
HS
6094
6095static int __init setup_relax_domain_level(char *str)
6096{
a841f8ce
DS
6097 if (kstrtoint(str, 0, &default_relax_domain_level))
6098 pr_warn("Unable to set relax_domain_level\n");
30e0e178 6099
1d3504fc
HS
6100 return 1;
6101}
6102__setup("relax_domain_level=", setup_relax_domain_level);
6103
6104static void set_domain_attribute(struct sched_domain *sd,
6105 struct sched_domain_attr *attr)
6106{
6107 int request;
6108
6109 if (!attr || attr->relax_domain_level < 0) {
6110 if (default_relax_domain_level < 0)
6111 return;
6112 else
6113 request = default_relax_domain_level;
6114 } else
6115 request = attr->relax_domain_level;
6116 if (request < sd->level) {
6117 /* turn off idle balance on this domain */
c88d5910 6118 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6119 } else {
6120 /* turn on idle balance on this domain */
c88d5910 6121 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6122 }
6123}
6124
54ab4ff4
PZ
6125static void __sdt_free(const struct cpumask *cpu_map);
6126static int __sdt_alloc(const struct cpumask *cpu_map);
6127
2109b99e
AH
6128static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6129 const struct cpumask *cpu_map)
6130{
6131 switch (what) {
2109b99e 6132 case sa_rootdomain:
822ff793
PZ
6133 if (!atomic_read(&d->rd->refcount))
6134 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
6135 case sa_sd:
6136 free_percpu(d->sd); /* fall through */
dce840a0 6137 case sa_sd_storage:
54ab4ff4 6138 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
6139 case sa_none:
6140 break;
6141 }
6142}
3404c8d9 6143
2109b99e
AH
6144static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6145 const struct cpumask *cpu_map)
6146{
dce840a0
PZ
6147 memset(d, 0, sizeof(*d));
6148
54ab4ff4
PZ
6149 if (__sdt_alloc(cpu_map))
6150 return sa_sd_storage;
dce840a0
PZ
6151 d->sd = alloc_percpu(struct sched_domain *);
6152 if (!d->sd)
6153 return sa_sd_storage;
2109b99e 6154 d->rd = alloc_rootdomain();
dce840a0 6155 if (!d->rd)
21d42ccf 6156 return sa_sd;
2109b99e
AH
6157 return sa_rootdomain;
6158}
57d885fe 6159
dce840a0
PZ
6160/*
6161 * NULL the sd_data elements we've used to build the sched_domain and
6162 * sched_group structure so that the subsequent __free_domain_allocs()
6163 * will not free the data we're using.
6164 */
6165static void claim_allocations(int cpu, struct sched_domain *sd)
6166{
6167 struct sd_data *sdd = sd->private;
dce840a0
PZ
6168
6169 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6170 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6171
e3589f6c 6172 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 6173 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c 6174
63b2ca30
NP
6175 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6176 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
dce840a0
PZ
6177}
6178
cb83b629 6179#ifdef CONFIG_NUMA
cb83b629 6180static int sched_domains_numa_levels;
e3fe70b1 6181enum numa_topology_type sched_numa_topology_type;
cb83b629 6182static int *sched_domains_numa_distance;
9942f79b 6183int sched_max_numa_distance;
cb83b629
PZ
6184static struct cpumask ***sched_domains_numa_masks;
6185static int sched_domains_curr_level;
143e1e28 6186#endif
cb83b629 6187
143e1e28
VG
6188/*
6189 * SD_flags allowed in topology descriptions.
6190 *
5d4dfddd 6191 * SD_SHARE_CPUCAPACITY - describes SMT topologies
143e1e28
VG
6192 * SD_SHARE_PKG_RESOURCES - describes shared caches
6193 * SD_NUMA - describes NUMA topologies
d77b3ed5 6194 * SD_SHARE_POWERDOMAIN - describes shared power domain
143e1e28
VG
6195 *
6196 * Odd one out:
6197 * SD_ASYM_PACKING - describes SMT quirks
6198 */
6199#define TOPOLOGY_SD_FLAGS \
5d4dfddd 6200 (SD_SHARE_CPUCAPACITY | \
143e1e28
VG
6201 SD_SHARE_PKG_RESOURCES | \
6202 SD_NUMA | \
d77b3ed5
VG
6203 SD_ASYM_PACKING | \
6204 SD_SHARE_POWERDOMAIN)
cb83b629
PZ
6205
6206static struct sched_domain *
143e1e28 6207sd_init(struct sched_domain_topology_level *tl, int cpu)
cb83b629
PZ
6208{
6209 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
143e1e28
VG
6210 int sd_weight, sd_flags = 0;
6211
6212#ifdef CONFIG_NUMA
6213 /*
6214 * Ugly hack to pass state to sd_numa_mask()...
6215 */
6216 sched_domains_curr_level = tl->numa_level;
6217#endif
6218
6219 sd_weight = cpumask_weight(tl->mask(cpu));
6220
6221 if (tl->sd_flags)
6222 sd_flags = (*tl->sd_flags)();
6223 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6224 "wrong sd_flags in topology description\n"))
6225 sd_flags &= ~TOPOLOGY_SD_FLAGS;
cb83b629
PZ
6226
6227 *sd = (struct sched_domain){
6228 .min_interval = sd_weight,
6229 .max_interval = 2*sd_weight,
6230 .busy_factor = 32,
870a0bb5 6231 .imbalance_pct = 125,
143e1e28
VG
6232
6233 .cache_nice_tries = 0,
6234 .busy_idx = 0,
6235 .idle_idx = 0,
cb83b629
PZ
6236 .newidle_idx = 0,
6237 .wake_idx = 0,
6238 .forkexec_idx = 0,
6239
6240 .flags = 1*SD_LOAD_BALANCE
6241 | 1*SD_BALANCE_NEWIDLE
143e1e28
VG
6242 | 1*SD_BALANCE_EXEC
6243 | 1*SD_BALANCE_FORK
cb83b629 6244 | 0*SD_BALANCE_WAKE
143e1e28 6245 | 1*SD_WAKE_AFFINE
5d4dfddd 6246 | 0*SD_SHARE_CPUCAPACITY
cb83b629 6247 | 0*SD_SHARE_PKG_RESOURCES
143e1e28 6248 | 0*SD_SERIALIZE
cb83b629 6249 | 0*SD_PREFER_SIBLING
143e1e28
VG
6250 | 0*SD_NUMA
6251 | sd_flags
cb83b629 6252 ,
143e1e28 6253
cb83b629
PZ
6254 .last_balance = jiffies,
6255 .balance_interval = sd_weight,
143e1e28 6256 .smt_gain = 0,
2b4cfe64
JL
6257 .max_newidle_lb_cost = 0,
6258 .next_decay_max_lb_cost = jiffies,
143e1e28
VG
6259#ifdef CONFIG_SCHED_DEBUG
6260 .name = tl->name,
6261#endif
cb83b629 6262 };
cb83b629
PZ
6263
6264 /*
143e1e28 6265 * Convert topological properties into behaviour.
cb83b629 6266 */
143e1e28 6267
5d4dfddd 6268 if (sd->flags & SD_SHARE_CPUCAPACITY) {
caff37ef 6269 sd->flags |= SD_PREFER_SIBLING;
143e1e28
VG
6270 sd->imbalance_pct = 110;
6271 sd->smt_gain = 1178; /* ~15% */
143e1e28
VG
6272
6273 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6274 sd->imbalance_pct = 117;
6275 sd->cache_nice_tries = 1;
6276 sd->busy_idx = 2;
6277
6278#ifdef CONFIG_NUMA
6279 } else if (sd->flags & SD_NUMA) {
6280 sd->cache_nice_tries = 2;
6281 sd->busy_idx = 3;
6282 sd->idle_idx = 2;
6283
6284 sd->flags |= SD_SERIALIZE;
6285 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6286 sd->flags &= ~(SD_BALANCE_EXEC |
6287 SD_BALANCE_FORK |
6288 SD_WAKE_AFFINE);
6289 }
6290
6291#endif
6292 } else {
6293 sd->flags |= SD_PREFER_SIBLING;
6294 sd->cache_nice_tries = 1;
6295 sd->busy_idx = 2;
6296 sd->idle_idx = 1;
6297 }
6298
6299 sd->private = &tl->data;
cb83b629
PZ
6300
6301 return sd;
6302}
6303
143e1e28
VG
6304/*
6305 * Topology list, bottom-up.
6306 */
6307static struct sched_domain_topology_level default_topology[] = {
6308#ifdef CONFIG_SCHED_SMT
6309 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6310#endif
6311#ifdef CONFIG_SCHED_MC
6312 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
143e1e28
VG
6313#endif
6314 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6315 { NULL, },
6316};
6317
6318struct sched_domain_topology_level *sched_domain_topology = default_topology;
6319
6320#define for_each_sd_topology(tl) \
6321 for (tl = sched_domain_topology; tl->mask; tl++)
6322
6323void set_sched_topology(struct sched_domain_topology_level *tl)
6324{
6325 sched_domain_topology = tl;
6326}
6327
6328#ifdef CONFIG_NUMA
6329
cb83b629
PZ
6330static const struct cpumask *sd_numa_mask(int cpu)
6331{
6332 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6333}
6334
d039ac60
PZ
6335static void sched_numa_warn(const char *str)
6336{
6337 static int done = false;
6338 int i,j;
6339
6340 if (done)
6341 return;
6342
6343 done = true;
6344
6345 printk(KERN_WARNING "ERROR: %s\n\n", str);
6346
6347 for (i = 0; i < nr_node_ids; i++) {
6348 printk(KERN_WARNING " ");
6349 for (j = 0; j < nr_node_ids; j++)
6350 printk(KERN_CONT "%02d ", node_distance(i,j));
6351 printk(KERN_CONT "\n");
6352 }
6353 printk(KERN_WARNING "\n");
6354}
6355
9942f79b 6356bool find_numa_distance(int distance)
d039ac60
PZ
6357{
6358 int i;
6359
6360 if (distance == node_distance(0, 0))
6361 return true;
6362
6363 for (i = 0; i < sched_domains_numa_levels; i++) {
6364 if (sched_domains_numa_distance[i] == distance)
6365 return true;
6366 }
6367
6368 return false;
6369}
6370
e3fe70b1
RR
6371/*
6372 * A system can have three types of NUMA topology:
6373 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6374 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6375 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6376 *
6377 * The difference between a glueless mesh topology and a backplane
6378 * topology lies in whether communication between not directly
6379 * connected nodes goes through intermediary nodes (where programs
6380 * could run), or through backplane controllers. This affects
6381 * placement of programs.
6382 *
6383 * The type of topology can be discerned with the following tests:
6384 * - If the maximum distance between any nodes is 1 hop, the system
6385 * is directly connected.
6386 * - If for two nodes A and B, located N > 1 hops away from each other,
6387 * there is an intermediary node C, which is < N hops away from both
6388 * nodes A and B, the system is a glueless mesh.
6389 */
6390static void init_numa_topology_type(void)
6391{
6392 int a, b, c, n;
6393
6394 n = sched_max_numa_distance;
6395
6396 if (n <= 1)
6397 sched_numa_topology_type = NUMA_DIRECT;
6398
6399 for_each_online_node(a) {
6400 for_each_online_node(b) {
6401 /* Find two nodes furthest removed from each other. */
6402 if (node_distance(a, b) < n)
6403 continue;
6404
6405 /* Is there an intermediary node between a and b? */
6406 for_each_online_node(c) {
6407 if (node_distance(a, c) < n &&
6408 node_distance(b, c) < n) {
6409 sched_numa_topology_type =
6410 NUMA_GLUELESS_MESH;
6411 return;
6412 }
6413 }
6414
6415 sched_numa_topology_type = NUMA_BACKPLANE;
6416 return;
6417 }
6418 }
6419}
6420
cb83b629
PZ
6421static void sched_init_numa(void)
6422{
6423 int next_distance, curr_distance = node_distance(0, 0);
6424 struct sched_domain_topology_level *tl;
6425 int level = 0;
6426 int i, j, k;
6427
cb83b629
PZ
6428 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6429 if (!sched_domains_numa_distance)
6430 return;
6431
6432 /*
6433 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6434 * unique distances in the node_distance() table.
6435 *
6436 * Assumes node_distance(0,j) includes all distances in
6437 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6438 */
6439 next_distance = curr_distance;
6440 for (i = 0; i < nr_node_ids; i++) {
6441 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6442 for (k = 0; k < nr_node_ids; k++) {
6443 int distance = node_distance(i, k);
6444
6445 if (distance > curr_distance &&
6446 (distance < next_distance ||
6447 next_distance == curr_distance))
6448 next_distance = distance;
6449
6450 /*
6451 * While not a strong assumption it would be nice to know
6452 * about cases where if node A is connected to B, B is not
6453 * equally connected to A.
6454 */
6455 if (sched_debug() && node_distance(k, i) != distance)
6456 sched_numa_warn("Node-distance not symmetric");
6457
6458 if (sched_debug() && i && !find_numa_distance(distance))
6459 sched_numa_warn("Node-0 not representative");
6460 }
6461 if (next_distance != curr_distance) {
6462 sched_domains_numa_distance[level++] = next_distance;
6463 sched_domains_numa_levels = level;
6464 curr_distance = next_distance;
6465 } else break;
cb83b629 6466 }
d039ac60
PZ
6467
6468 /*
6469 * In case of sched_debug() we verify the above assumption.
6470 */
6471 if (!sched_debug())
6472 break;
cb83b629 6473 }
c123588b
AR
6474
6475 if (!level)
6476 return;
6477
cb83b629
PZ
6478 /*
6479 * 'level' contains the number of unique distances, excluding the
6480 * identity distance node_distance(i,i).
6481 *
28b4a521 6482 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
6483 * numbers.
6484 */
6485
5f7865f3
TC
6486 /*
6487 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6488 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6489 * the array will contain less then 'level' members. This could be
6490 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6491 * in other functions.
6492 *
6493 * We reset it to 'level' at the end of this function.
6494 */
6495 sched_domains_numa_levels = 0;
6496
cb83b629
PZ
6497 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6498 if (!sched_domains_numa_masks)
6499 return;
6500
6501 /*
6502 * Now for each level, construct a mask per node which contains all
6503 * cpus of nodes that are that many hops away from us.
6504 */
6505 for (i = 0; i < level; i++) {
6506 sched_domains_numa_masks[i] =
6507 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6508 if (!sched_domains_numa_masks[i])
6509 return;
6510
6511 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6512 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6513 if (!mask)
6514 return;
6515
6516 sched_domains_numa_masks[i][j] = mask;
6517
6518 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 6519 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6520 continue;
6521
6522 cpumask_or(mask, mask, cpumask_of_node(k));
6523 }
6524 }
6525 }
6526
143e1e28
VG
6527 /* Compute default topology size */
6528 for (i = 0; sched_domain_topology[i].mask; i++);
6529
c515db8c 6530 tl = kzalloc((i + level + 1) *
cb83b629
PZ
6531 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6532 if (!tl)
6533 return;
6534
6535 /*
6536 * Copy the default topology bits..
6537 */
143e1e28
VG
6538 for (i = 0; sched_domain_topology[i].mask; i++)
6539 tl[i] = sched_domain_topology[i];
cb83b629
PZ
6540
6541 /*
6542 * .. and append 'j' levels of NUMA goodness.
6543 */
6544 for (j = 0; j < level; i++, j++) {
6545 tl[i] = (struct sched_domain_topology_level){
cb83b629 6546 .mask = sd_numa_mask,
143e1e28 6547 .sd_flags = cpu_numa_flags,
cb83b629
PZ
6548 .flags = SDTL_OVERLAP,
6549 .numa_level = j,
143e1e28 6550 SD_INIT_NAME(NUMA)
cb83b629
PZ
6551 };
6552 }
6553
6554 sched_domain_topology = tl;
5f7865f3
TC
6555
6556 sched_domains_numa_levels = level;
9942f79b 6557 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
e3fe70b1
RR
6558
6559 init_numa_topology_type();
cb83b629 6560}
301a5cba
TC
6561
6562static void sched_domains_numa_masks_set(int cpu)
6563{
6564 int i, j;
6565 int node = cpu_to_node(cpu);
6566
6567 for (i = 0; i < sched_domains_numa_levels; i++) {
6568 for (j = 0; j < nr_node_ids; j++) {
6569 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6570 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6571 }
6572 }
6573}
6574
6575static void sched_domains_numa_masks_clear(int cpu)
6576{
6577 int i, j;
6578 for (i = 0; i < sched_domains_numa_levels; i++) {
6579 for (j = 0; j < nr_node_ids; j++)
6580 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6581 }
6582}
6583
6584/*
6585 * Update sched_domains_numa_masks[level][node] array when new cpus
6586 * are onlined.
6587 */
6588static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6589 unsigned long action,
6590 void *hcpu)
6591{
6592 int cpu = (long)hcpu;
6593
6594 switch (action & ~CPU_TASKS_FROZEN) {
6595 case CPU_ONLINE:
6596 sched_domains_numa_masks_set(cpu);
6597 break;
6598
6599 case CPU_DEAD:
6600 sched_domains_numa_masks_clear(cpu);
6601 break;
6602
6603 default:
6604 return NOTIFY_DONE;
6605 }
6606
6607 return NOTIFY_OK;
cb83b629
PZ
6608}
6609#else
6610static inline void sched_init_numa(void)
6611{
6612}
301a5cba
TC
6613
6614static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6615 unsigned long action,
6616 void *hcpu)
6617{
6618 return 0;
6619}
cb83b629
PZ
6620#endif /* CONFIG_NUMA */
6621
54ab4ff4
PZ
6622static int __sdt_alloc(const struct cpumask *cpu_map)
6623{
6624 struct sched_domain_topology_level *tl;
6625 int j;
6626
27723a68 6627 for_each_sd_topology(tl) {
54ab4ff4
PZ
6628 struct sd_data *sdd = &tl->data;
6629
6630 sdd->sd = alloc_percpu(struct sched_domain *);
6631 if (!sdd->sd)
6632 return -ENOMEM;
6633
6634 sdd->sg = alloc_percpu(struct sched_group *);
6635 if (!sdd->sg)
6636 return -ENOMEM;
6637
63b2ca30
NP
6638 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6639 if (!sdd->sgc)
9c3f75cb
PZ
6640 return -ENOMEM;
6641
54ab4ff4
PZ
6642 for_each_cpu(j, cpu_map) {
6643 struct sched_domain *sd;
6644 struct sched_group *sg;
63b2ca30 6645 struct sched_group_capacity *sgc;
54ab4ff4
PZ
6646
6647 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6648 GFP_KERNEL, cpu_to_node(j));
6649 if (!sd)
6650 return -ENOMEM;
6651
6652 *per_cpu_ptr(sdd->sd, j) = sd;
6653
6654 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6655 GFP_KERNEL, cpu_to_node(j));
6656 if (!sg)
6657 return -ENOMEM;
6658
30b4e9eb
IM
6659 sg->next = sg;
6660
54ab4ff4 6661 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6662
63b2ca30 6663 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
9c3f75cb 6664 GFP_KERNEL, cpu_to_node(j));
63b2ca30 6665 if (!sgc)
9c3f75cb
PZ
6666 return -ENOMEM;
6667
63b2ca30 6668 *per_cpu_ptr(sdd->sgc, j) = sgc;
54ab4ff4
PZ
6669 }
6670 }
6671
6672 return 0;
6673}
6674
6675static void __sdt_free(const struct cpumask *cpu_map)
6676{
6677 struct sched_domain_topology_level *tl;
6678 int j;
6679
27723a68 6680 for_each_sd_topology(tl) {
54ab4ff4
PZ
6681 struct sd_data *sdd = &tl->data;
6682
6683 for_each_cpu(j, cpu_map) {
fb2cf2c6 6684 struct sched_domain *sd;
6685
6686 if (sdd->sd) {
6687 sd = *per_cpu_ptr(sdd->sd, j);
6688 if (sd && (sd->flags & SD_OVERLAP))
6689 free_sched_groups(sd->groups, 0);
6690 kfree(*per_cpu_ptr(sdd->sd, j));
6691 }
6692
6693 if (sdd->sg)
6694 kfree(*per_cpu_ptr(sdd->sg, j));
63b2ca30
NP
6695 if (sdd->sgc)
6696 kfree(*per_cpu_ptr(sdd->sgc, j));
54ab4ff4
PZ
6697 }
6698 free_percpu(sdd->sd);
fb2cf2c6 6699 sdd->sd = NULL;
54ab4ff4 6700 free_percpu(sdd->sg);
fb2cf2c6 6701 sdd->sg = NULL;
63b2ca30
NP
6702 free_percpu(sdd->sgc);
6703 sdd->sgc = NULL;
54ab4ff4
PZ
6704 }
6705}
6706
2c402dc3 6707struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
6708 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6709 struct sched_domain *child, int cpu)
2c402dc3 6710{
143e1e28 6711 struct sched_domain *sd = sd_init(tl, cpu);
2c402dc3 6712 if (!sd)
d069b916 6713 return child;
2c402dc3 6714
2c402dc3 6715 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6716 if (child) {
6717 sd->level = child->level + 1;
6718 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6719 child->parent = sd;
c75e0128 6720 sd->child = child;
6ae72dff
PZ
6721
6722 if (!cpumask_subset(sched_domain_span(child),
6723 sched_domain_span(sd))) {
6724 pr_err("BUG: arch topology borken\n");
6725#ifdef CONFIG_SCHED_DEBUG
6726 pr_err(" the %s domain not a subset of the %s domain\n",
6727 child->name, sd->name);
6728#endif
6729 /* Fixup, ensure @sd has at least @child cpus. */
6730 cpumask_or(sched_domain_span(sd),
6731 sched_domain_span(sd),
6732 sched_domain_span(child));
6733 }
6734
60495e77 6735 }
a841f8ce 6736 set_domain_attribute(sd, attr);
2c402dc3
PZ
6737
6738 return sd;
6739}
6740
2109b99e
AH
6741/*
6742 * Build sched domains for a given set of cpus and attach the sched domains
6743 * to the individual cpus
6744 */
dce840a0
PZ
6745static int build_sched_domains(const struct cpumask *cpu_map,
6746 struct sched_domain_attr *attr)
2109b99e 6747{
1c632169 6748 enum s_alloc alloc_state;
dce840a0 6749 struct sched_domain *sd;
2109b99e 6750 struct s_data d;
822ff793 6751 int i, ret = -ENOMEM;
9c1cfda2 6752
2109b99e
AH
6753 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6754 if (alloc_state != sa_rootdomain)
6755 goto error;
9c1cfda2 6756
dce840a0 6757 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6758 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6759 struct sched_domain_topology_level *tl;
6760
3bd65a80 6761 sd = NULL;
27723a68 6762 for_each_sd_topology(tl) {
4a850cbe 6763 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
6764 if (tl == sched_domain_topology)
6765 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
6766 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6767 sd->flags |= SD_OVERLAP;
d110235d
PZ
6768 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6769 break;
e3589f6c 6770 }
dce840a0
PZ
6771 }
6772
6773 /* Build the groups for the domains */
6774 for_each_cpu(i, cpu_map) {
6775 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6776 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6777 if (sd->flags & SD_OVERLAP) {
6778 if (build_overlap_sched_groups(sd, i))
6779 goto error;
6780 } else {
6781 if (build_sched_groups(sd, i))
6782 goto error;
6783 }
1cf51902 6784 }
a06dadbe 6785 }
9c1cfda2 6786
ced549fa 6787 /* Calculate CPU capacity for physical packages and nodes */
a9c9a9b6
PZ
6788 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6789 if (!cpumask_test_cpu(i, cpu_map))
6790 continue;
9c1cfda2 6791
dce840a0
PZ
6792 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6793 claim_allocations(i, sd);
63b2ca30 6794 init_sched_groups_capacity(i, sd);
dce840a0 6795 }
f712c0c7 6796 }
9c1cfda2 6797
1da177e4 6798 /* Attach the domains */
dce840a0 6799 rcu_read_lock();
abcd083a 6800 for_each_cpu(i, cpu_map) {
21d42ccf 6801 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6802 cpu_attach_domain(sd, d.rd, i);
1da177e4 6803 }
dce840a0 6804 rcu_read_unlock();
51888ca2 6805
822ff793 6806 ret = 0;
51888ca2 6807error:
2109b99e 6808 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6809 return ret;
1da177e4 6810}
029190c5 6811
acc3f5d7 6812static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6813static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6814static struct sched_domain_attr *dattr_cur;
6815 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6816
6817/*
6818 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6819 * cpumask) fails, then fallback to a single sched domain,
6820 * as determined by the single cpumask fallback_doms.
029190c5 6821 */
4212823f 6822static cpumask_var_t fallback_doms;
029190c5 6823
ee79d1bd
HC
6824/*
6825 * arch_update_cpu_topology lets virtualized architectures update the
6826 * cpu core maps. It is supposed to return 1 if the topology changed
6827 * or 0 if it stayed the same.
6828 */
52f5684c 6829int __weak arch_update_cpu_topology(void)
22e52b07 6830{
ee79d1bd 6831 return 0;
22e52b07
HC
6832}
6833
acc3f5d7
RR
6834cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6835{
6836 int i;
6837 cpumask_var_t *doms;
6838
6839 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6840 if (!doms)
6841 return NULL;
6842 for (i = 0; i < ndoms; i++) {
6843 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6844 free_sched_domains(doms, i);
6845 return NULL;
6846 }
6847 }
6848 return doms;
6849}
6850
6851void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6852{
6853 unsigned int i;
6854 for (i = 0; i < ndoms; i++)
6855 free_cpumask_var(doms[i]);
6856 kfree(doms);
6857}
6858
1a20ff27 6859/*
41a2d6cf 6860 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6861 * For now this just excludes isolated cpus, but could be used to
6862 * exclude other special cases in the future.
1a20ff27 6863 */
c4a8849a 6864static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6865{
7378547f
MM
6866 int err;
6867
22e52b07 6868 arch_update_cpu_topology();
029190c5 6869 ndoms_cur = 1;
acc3f5d7 6870 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6871 if (!doms_cur)
acc3f5d7
RR
6872 doms_cur = &fallback_doms;
6873 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 6874 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6875 register_sched_domain_sysctl();
7378547f
MM
6876
6877 return err;
1a20ff27
DG
6878}
6879
1a20ff27
DG
6880/*
6881 * Detach sched domains from a group of cpus specified in cpu_map
6882 * These cpus will now be attached to the NULL domain
6883 */
96f874e2 6884static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6885{
6886 int i;
6887
dce840a0 6888 rcu_read_lock();
abcd083a 6889 for_each_cpu(i, cpu_map)
57d885fe 6890 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6891 rcu_read_unlock();
1a20ff27
DG
6892}
6893
1d3504fc
HS
6894/* handle null as "default" */
6895static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6896 struct sched_domain_attr *new, int idx_new)
6897{
6898 struct sched_domain_attr tmp;
6899
6900 /* fast path */
6901 if (!new && !cur)
6902 return 1;
6903
6904 tmp = SD_ATTR_INIT;
6905 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6906 new ? (new + idx_new) : &tmp,
6907 sizeof(struct sched_domain_attr));
6908}
6909
029190c5
PJ
6910/*
6911 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6912 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6913 * doms_new[] to the current sched domain partitioning, doms_cur[].
6914 * It destroys each deleted domain and builds each new domain.
6915 *
acc3f5d7 6916 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
6917 * The masks don't intersect (don't overlap.) We should setup one
6918 * sched domain for each mask. CPUs not in any of the cpumasks will
6919 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6920 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6921 * it as it is.
6922 *
acc3f5d7
RR
6923 * The passed in 'doms_new' should be allocated using
6924 * alloc_sched_domains. This routine takes ownership of it and will
6925 * free_sched_domains it when done with it. If the caller failed the
6926 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6927 * and partition_sched_domains() will fallback to the single partition
6928 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 6929 *
96f874e2 6930 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
6931 * ndoms_new == 0 is a special case for destroying existing domains,
6932 * and it will not create the default domain.
dfb512ec 6933 *
029190c5
PJ
6934 * Call with hotplug lock held
6935 */
acc3f5d7 6936void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 6937 struct sched_domain_attr *dattr_new)
029190c5 6938{
dfb512ec 6939 int i, j, n;
d65bd5ec 6940 int new_topology;
029190c5 6941
712555ee 6942 mutex_lock(&sched_domains_mutex);
a1835615 6943
7378547f
MM
6944 /* always unregister in case we don't destroy any domains */
6945 unregister_sched_domain_sysctl();
6946
d65bd5ec
HC
6947 /* Let architecture update cpu core mappings. */
6948 new_topology = arch_update_cpu_topology();
6949
dfb512ec 6950 n = doms_new ? ndoms_new : 0;
029190c5
PJ
6951
6952 /* Destroy deleted domains */
6953 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 6954 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6955 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 6956 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
6957 goto match1;
6958 }
6959 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 6960 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
6961match1:
6962 ;
6963 }
6964
c8d2d47a 6965 n = ndoms_cur;
e761b772 6966 if (doms_new == NULL) {
c8d2d47a 6967 n = 0;
acc3f5d7 6968 doms_new = &fallback_doms;
6ad4c188 6969 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 6970 WARN_ON_ONCE(dattr_new);
e761b772
MK
6971 }
6972
029190c5
PJ
6973 /* Build new domains */
6974 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 6975 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6976 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 6977 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
6978 goto match2;
6979 }
6980 /* no match - add a new doms_new */
dce840a0 6981 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
6982match2:
6983 ;
6984 }
6985
6986 /* Remember the new sched domains */
acc3f5d7
RR
6987 if (doms_cur != &fallback_doms)
6988 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 6989 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 6990 doms_cur = doms_new;
1d3504fc 6991 dattr_cur = dattr_new;
029190c5 6992 ndoms_cur = ndoms_new;
7378547f
MM
6993
6994 register_sched_domain_sysctl();
a1835615 6995
712555ee 6996 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
6997}
6998
d35be8ba
SB
6999static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
7000
1da177e4 7001/*
3a101d05
TH
7002 * Update cpusets according to cpu_active mask. If cpusets are
7003 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7004 * around partition_sched_domains().
d35be8ba
SB
7005 *
7006 * If we come here as part of a suspend/resume, don't touch cpusets because we
7007 * want to restore it back to its original state upon resume anyway.
1da177e4 7008 */
0b2e918a
TH
7009static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7010 void *hcpu)
e761b772 7011{
d35be8ba
SB
7012 switch (action) {
7013 case CPU_ONLINE_FROZEN:
7014 case CPU_DOWN_FAILED_FROZEN:
7015
7016 /*
7017 * num_cpus_frozen tracks how many CPUs are involved in suspend
7018 * resume sequence. As long as this is not the last online
7019 * operation in the resume sequence, just build a single sched
7020 * domain, ignoring cpusets.
7021 */
7022 num_cpus_frozen--;
7023 if (likely(num_cpus_frozen)) {
7024 partition_sched_domains(1, NULL, NULL);
7025 break;
7026 }
7027
7028 /*
7029 * This is the last CPU online operation. So fall through and
7030 * restore the original sched domains by considering the
7031 * cpuset configurations.
7032 */
7033
e761b772 7034 case CPU_ONLINE:
7ddf96b0 7035 cpuset_update_active_cpus(true);
d35be8ba 7036 break;
3a101d05
TH
7037 default:
7038 return NOTIFY_DONE;
7039 }
d35be8ba 7040 return NOTIFY_OK;
3a101d05 7041}
e761b772 7042
0b2e918a
TH
7043static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7044 void *hcpu)
3a101d05 7045{
3c18d447
JL
7046 unsigned long flags;
7047 long cpu = (long)hcpu;
7048 struct dl_bw *dl_b;
533445c6
OS
7049 bool overflow;
7050 int cpus;
3c18d447 7051
533445c6 7052 switch (action) {
3a101d05 7053 case CPU_DOWN_PREPARE:
533445c6
OS
7054 rcu_read_lock_sched();
7055 dl_b = dl_bw_of(cpu);
3c18d447 7056
533445c6
OS
7057 raw_spin_lock_irqsave(&dl_b->lock, flags);
7058 cpus = dl_bw_cpus(cpu);
7059 overflow = __dl_overflow(dl_b, cpus, 0, 0);
7060 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3c18d447 7061
533445c6 7062 rcu_read_unlock_sched();
3c18d447 7063
533445c6
OS
7064 if (overflow)
7065 return notifier_from_errno(-EBUSY);
7ddf96b0 7066 cpuset_update_active_cpus(false);
d35be8ba
SB
7067 break;
7068 case CPU_DOWN_PREPARE_FROZEN:
7069 num_cpus_frozen++;
7070 partition_sched_domains(1, NULL, NULL);
7071 break;
e761b772
MK
7072 default:
7073 return NOTIFY_DONE;
7074 }
d35be8ba 7075 return NOTIFY_OK;
e761b772 7076}
e761b772 7077
1da177e4
LT
7078void __init sched_init_smp(void)
7079{
dcc30a35
RR
7080 cpumask_var_t non_isolated_cpus;
7081
7082 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7083 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7084
cb83b629
PZ
7085 sched_init_numa();
7086
6acce3ef
PZ
7087 /*
7088 * There's no userspace yet to cause hotplug operations; hence all the
7089 * cpu masks are stable and all blatant races in the below code cannot
7090 * happen.
7091 */
712555ee 7092 mutex_lock(&sched_domains_mutex);
c4a8849a 7093 init_sched_domains(cpu_active_mask);
dcc30a35
RR
7094 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7095 if (cpumask_empty(non_isolated_cpus))
7096 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7097 mutex_unlock(&sched_domains_mutex);
e761b772 7098
301a5cba 7099 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
7100 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7101 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772 7102
b328ca18 7103 init_hrtick();
5c1e1767
NP
7104
7105 /* Move init over to a non-isolated CPU */
dcc30a35 7106 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7107 BUG();
19978ca6 7108 sched_init_granularity();
dcc30a35 7109 free_cpumask_var(non_isolated_cpus);
4212823f 7110
0e3900e6 7111 init_sched_rt_class();
1baca4ce 7112 init_sched_dl_class();
1da177e4
LT
7113}
7114#else
7115void __init sched_init_smp(void)
7116{
19978ca6 7117 sched_init_granularity();
1da177e4
LT
7118}
7119#endif /* CONFIG_SMP */
7120
cd1bb94b
AB
7121const_debug unsigned int sysctl_timer_migration = 1;
7122
1da177e4
LT
7123int in_sched_functions(unsigned long addr)
7124{
1da177e4
LT
7125 return in_lock_functions(addr) ||
7126 (addr >= (unsigned long)__sched_text_start
7127 && addr < (unsigned long)__sched_text_end);
7128}
7129
029632fb 7130#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
7131/*
7132 * Default task group.
7133 * Every task in system belongs to this group at bootup.
7134 */
029632fb 7135struct task_group root_task_group;
35cf4e50 7136LIST_HEAD(task_groups);
052f1dc7 7137#endif
6f505b16 7138
e6252c3e 7139DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 7140
1da177e4
LT
7141void __init sched_init(void)
7142{
dd41f596 7143 int i, j;
434d53b0
MT
7144 unsigned long alloc_size = 0, ptr;
7145
7146#ifdef CONFIG_FAIR_GROUP_SCHED
7147 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7148#endif
7149#ifdef CONFIG_RT_GROUP_SCHED
7150 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7151#endif
434d53b0 7152 if (alloc_size) {
36b7b6d4 7153 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7154
7155#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 7156 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
7157 ptr += nr_cpu_ids * sizeof(void **);
7158
07e06b01 7159 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 7160 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7161
6d6bc0ad 7162#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 7163#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7164 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
7165 ptr += nr_cpu_ids * sizeof(void **);
7166
07e06b01 7167 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7168 ptr += nr_cpu_ids * sizeof(void **);
7169
6d6bc0ad 7170#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 7171 }
df7c8e84 7172#ifdef CONFIG_CPUMASK_OFFSTACK
b74e6278
AT
7173 for_each_possible_cpu(i) {
7174 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7175 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
434d53b0 7176 }
b74e6278 7177#endif /* CONFIG_CPUMASK_OFFSTACK */
dd41f596 7178
332ac17e
DF
7179 init_rt_bandwidth(&def_rt_bandwidth,
7180 global_rt_period(), global_rt_runtime());
7181 init_dl_bandwidth(&def_dl_bandwidth,
1724813d 7182 global_rt_period(), global_rt_runtime());
332ac17e 7183
57d885fe
GH
7184#ifdef CONFIG_SMP
7185 init_defrootdomain();
7186#endif
7187
d0b27fa7 7188#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7189 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 7190 global_rt_period(), global_rt_runtime());
6d6bc0ad 7191#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7192
7c941438 7193#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
7194 list_add(&root_task_group.list, &task_groups);
7195 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 7196 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 7197 autogroup_init(&init_task);
54c707e9 7198
7c941438 7199#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7200
0a945022 7201 for_each_possible_cpu(i) {
70b97a7f 7202 struct rq *rq;
1da177e4
LT
7203
7204 rq = cpu_rq(i);
05fa785c 7205 raw_spin_lock_init(&rq->lock);
7897986b 7206 rq->nr_running = 0;
dce48a84
TG
7207 rq->calc_load_active = 0;
7208 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 7209 init_cfs_rq(&rq->cfs);
07c54f7a
AV
7210 init_rt_rq(&rq->rt);
7211 init_dl_rq(&rq->dl);
dd41f596 7212#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 7213 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 7214 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 7215 /*
07e06b01 7216 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
7217 *
7218 * In case of task-groups formed thr' the cgroup filesystem, it
7219 * gets 100% of the cpu resources in the system. This overall
7220 * system cpu resource is divided among the tasks of
07e06b01 7221 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
7222 * based on each entity's (task or task-group's) weight
7223 * (se->load.weight).
7224 *
07e06b01 7225 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
7226 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7227 * then A0's share of the cpu resource is:
7228 *
0d905bca 7229 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 7230 *
07e06b01
YZ
7231 * We achieve this by letting root_task_group's tasks sit
7232 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 7233 */
ab84d31e 7234 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 7235 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
7236#endif /* CONFIG_FAIR_GROUP_SCHED */
7237
7238 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7239#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7240 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 7241#endif
1da177e4 7242
dd41f596
IM
7243 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7244 rq->cpu_load[j] = 0;
fdf3e95d
VP
7245
7246 rq->last_load_update_tick = jiffies;
7247
1da177e4 7248#ifdef CONFIG_SMP
41c7ce9a 7249 rq->sd = NULL;
57d885fe 7250 rq->rd = NULL;
ca6d75e6 7251 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
3f029d3c 7252 rq->post_schedule = 0;
1da177e4 7253 rq->active_balance = 0;
dd41f596 7254 rq->next_balance = jiffies;
1da177e4 7255 rq->push_cpu = 0;
0a2966b4 7256 rq->cpu = i;
1f11eb6a 7257 rq->online = 0;
eae0c9df
MG
7258 rq->idle_stamp = 0;
7259 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 7260 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
7261
7262 INIT_LIST_HEAD(&rq->cfs_tasks);
7263
dc938520 7264 rq_attach_root(rq, &def_root_domain);
3451d024 7265#ifdef CONFIG_NO_HZ_COMMON
1c792db7 7266 rq->nohz_flags = 0;
83cd4fe2 7267#endif
265f22a9
FW
7268#ifdef CONFIG_NO_HZ_FULL
7269 rq->last_sched_tick = 0;
7270#endif
1da177e4 7271#endif
8f4d37ec 7272 init_rq_hrtick(rq);
1da177e4 7273 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7274 }
7275
2dd73a4f 7276 set_load_weight(&init_task);
b50f60ce 7277
e107be36
AK
7278#ifdef CONFIG_PREEMPT_NOTIFIERS
7279 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7280#endif
7281
1da177e4
LT
7282 /*
7283 * The boot idle thread does lazy MMU switching as well:
7284 */
7285 atomic_inc(&init_mm.mm_count);
7286 enter_lazy_tlb(&init_mm, current);
7287
1b537c7d
YD
7288 /*
7289 * During early bootup we pretend to be a normal task:
7290 */
7291 current->sched_class = &fair_sched_class;
7292
1da177e4
LT
7293 /*
7294 * Make us the idle thread. Technically, schedule() should not be
7295 * called from this thread, however somewhere below it might be,
7296 * but because we are the idle thread, we just pick up running again
7297 * when this runqueue becomes "idle".
7298 */
7299 init_idle(current, smp_processor_id());
dce48a84
TG
7300
7301 calc_load_update = jiffies + LOAD_FREQ;
7302
bf4d83f6 7303#ifdef CONFIG_SMP
4cb98839 7304 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
7305 /* May be allocated at isolcpus cmdline parse time */
7306 if (cpu_isolated_map == NULL)
7307 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 7308 idle_thread_set_boot_cpu();
a803f026 7309 set_cpu_rq_start_time();
029632fb
PZ
7310#endif
7311 init_sched_fair_class();
6a7b3dc3 7312
6892b75e 7313 scheduler_running = 1;
1da177e4
LT
7314}
7315
d902db1e 7316#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
7317static inline int preempt_count_equals(int preempt_offset)
7318{
234da7bc 7319 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 7320
4ba8216c 7321 return (nested == preempt_offset);
e4aafea2
FW
7322}
7323
d894837f 7324void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7325{
8eb23b9f
PZ
7326 /*
7327 * Blocking primitives will set (and therefore destroy) current->state,
7328 * since we will exit with TASK_RUNNING make sure we enter with it,
7329 * otherwise we will destroy state.
7330 */
00845eb9 7331 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
8eb23b9f
PZ
7332 "do not call blocking ops when !TASK_RUNNING; "
7333 "state=%lx set at [<%p>] %pS\n",
7334 current->state,
7335 (void *)current->task_state_change,
00845eb9 7336 (void *)current->task_state_change);
8eb23b9f 7337
3427445a
PZ
7338 ___might_sleep(file, line, preempt_offset);
7339}
7340EXPORT_SYMBOL(__might_sleep);
7341
7342void ___might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7343{
1da177e4
LT
7344 static unsigned long prev_jiffy; /* ratelimiting */
7345
b3fbab05 7346 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
db273be2
TG
7347 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7348 !is_idle_task(current)) ||
e4aafea2 7349 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7350 return;
7351 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7352 return;
7353 prev_jiffy = jiffies;
7354
3df0fc5b
PZ
7355 printk(KERN_ERR
7356 "BUG: sleeping function called from invalid context at %s:%d\n",
7357 file, line);
7358 printk(KERN_ERR
7359 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7360 in_atomic(), irqs_disabled(),
7361 current->pid, current->comm);
aef745fc 7362
a8b686b3
ES
7363 if (task_stack_end_corrupted(current))
7364 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7365
aef745fc
IM
7366 debug_show_held_locks(current);
7367 if (irqs_disabled())
7368 print_irqtrace_events(current);
8f47b187
TG
7369#ifdef CONFIG_DEBUG_PREEMPT
7370 if (!preempt_count_equals(preempt_offset)) {
7371 pr_err("Preemption disabled at:");
7372 print_ip_sym(current->preempt_disable_ip);
7373 pr_cont("\n");
7374 }
7375#endif
aef745fc 7376 dump_stack();
1da177e4 7377}
3427445a 7378EXPORT_SYMBOL(___might_sleep);
1da177e4
LT
7379#endif
7380
7381#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7382static void normalize_task(struct rq *rq, struct task_struct *p)
7383{
da7a735e 7384 const struct sched_class *prev_class = p->sched_class;
d50dde5a
DF
7385 struct sched_attr attr = {
7386 .sched_policy = SCHED_NORMAL,
7387 };
da7a735e 7388 int old_prio = p->prio;
da0c1e65 7389 int queued;
3e51f33f 7390
da0c1e65
KT
7391 queued = task_on_rq_queued(p);
7392 if (queued)
4ca9b72b 7393 dequeue_task(rq, p, 0);
0782e63b 7394 __setscheduler(rq, p, &attr, false);
da0c1e65 7395 if (queued) {
4ca9b72b 7396 enqueue_task(rq, p, 0);
8875125e 7397 resched_curr(rq);
3a5e4dc1 7398 }
da7a735e
PZ
7399
7400 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
7401}
7402
1da177e4
LT
7403void normalize_rt_tasks(void)
7404{
a0f98a1c 7405 struct task_struct *g, *p;
1da177e4 7406 unsigned long flags;
70b97a7f 7407 struct rq *rq;
1da177e4 7408
3472eaa1 7409 read_lock(&tasklist_lock);
5d07f420 7410 for_each_process_thread(g, p) {
178be793
IM
7411 /*
7412 * Only normalize user tasks:
7413 */
3472eaa1 7414 if (p->flags & PF_KTHREAD)
178be793
IM
7415 continue;
7416
6cfb0d5d 7417 p->se.exec_start = 0;
6cfb0d5d 7418#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7419 p->se.statistics.wait_start = 0;
7420 p->se.statistics.sleep_start = 0;
7421 p->se.statistics.block_start = 0;
6cfb0d5d 7422#endif
dd41f596 7423
aab03e05 7424 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
7425 /*
7426 * Renice negative nice level userspace
7427 * tasks back to 0:
7428 */
3472eaa1 7429 if (task_nice(p) < 0)
dd41f596 7430 set_user_nice(p, 0);
1da177e4 7431 continue;
dd41f596 7432 }
1da177e4 7433
3472eaa1 7434 rq = task_rq_lock(p, &flags);
178be793 7435 normalize_task(rq, p);
3472eaa1 7436 task_rq_unlock(rq, p, &flags);
5d07f420 7437 }
3472eaa1 7438 read_unlock(&tasklist_lock);
1da177e4
LT
7439}
7440
7441#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7442
67fc4e0c 7443#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7444/*
67fc4e0c 7445 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7446 *
7447 * They can only be called when the whole system has been
7448 * stopped - every CPU needs to be quiescent, and no scheduling
7449 * activity can take place. Using them for anything else would
7450 * be a serious bug, and as a result, they aren't even visible
7451 * under any other configuration.
7452 */
7453
7454/**
7455 * curr_task - return the current task for a given cpu.
7456 * @cpu: the processor in question.
7457 *
7458 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
7459 *
7460 * Return: The current task for @cpu.
1df5c10a 7461 */
36c8b586 7462struct task_struct *curr_task(int cpu)
1df5c10a
LT
7463{
7464 return cpu_curr(cpu);
7465}
7466
67fc4e0c
JW
7467#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7468
7469#ifdef CONFIG_IA64
1df5c10a
LT
7470/**
7471 * set_curr_task - set the current task for a given cpu.
7472 * @cpu: the processor in question.
7473 * @p: the task pointer to set.
7474 *
7475 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7476 * are serviced on a separate stack. It allows the architecture to switch the
7477 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7478 * must be called with all CPU's synchronized, and interrupts disabled, the
7479 * and caller must save the original value of the current task (see
7480 * curr_task() above) and restore that value before reenabling interrupts and
7481 * re-starting the system.
7482 *
7483 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7484 */
36c8b586 7485void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7486{
7487 cpu_curr(cpu) = p;
7488}
7489
7490#endif
29f59db3 7491
7c941438 7492#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7493/* task_group_lock serializes the addition/removal of task groups */
7494static DEFINE_SPINLOCK(task_group_lock);
7495
bccbe08a
PZ
7496static void free_sched_group(struct task_group *tg)
7497{
7498 free_fair_sched_group(tg);
7499 free_rt_sched_group(tg);
e9aa1dd1 7500 autogroup_free(tg);
bccbe08a
PZ
7501 kfree(tg);
7502}
7503
7504/* allocate runqueue etc for a new task group */
ec7dc8ac 7505struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7506{
7507 struct task_group *tg;
bccbe08a
PZ
7508
7509 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7510 if (!tg)
7511 return ERR_PTR(-ENOMEM);
7512
ec7dc8ac 7513 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7514 goto err;
7515
ec7dc8ac 7516 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7517 goto err;
7518
ace783b9
LZ
7519 return tg;
7520
7521err:
7522 free_sched_group(tg);
7523 return ERR_PTR(-ENOMEM);
7524}
7525
7526void sched_online_group(struct task_group *tg, struct task_group *parent)
7527{
7528 unsigned long flags;
7529
8ed36996 7530 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7531 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7532
7533 WARN_ON(!parent); /* root should already exist */
7534
7535 tg->parent = parent;
f473aa5e 7536 INIT_LIST_HEAD(&tg->children);
09f2724a 7537 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7538 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7539}
7540
9b5b7751 7541/* rcu callback to free various structures associated with a task group */
6f505b16 7542static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7543{
29f59db3 7544 /* now it should be safe to free those cfs_rqs */
6f505b16 7545 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7546}
7547
9b5b7751 7548/* Destroy runqueue etc associated with a task group */
4cf86d77 7549void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
7550{
7551 /* wait for possible concurrent references to cfs_rqs complete */
7552 call_rcu(&tg->rcu, free_sched_group_rcu);
7553}
7554
7555void sched_offline_group(struct task_group *tg)
29f59db3 7556{
8ed36996 7557 unsigned long flags;
9b5b7751 7558 int i;
29f59db3 7559
3d4b47b4
PZ
7560 /* end participation in shares distribution */
7561 for_each_possible_cpu(i)
bccbe08a 7562 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
7563
7564 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7565 list_del_rcu(&tg->list);
f473aa5e 7566 list_del_rcu(&tg->siblings);
8ed36996 7567 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7568}
7569
9b5b7751 7570/* change task's runqueue when it moves between groups.
3a252015
IM
7571 * The caller of this function should have put the task in its new group
7572 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7573 * reflect its new group.
9b5b7751
SV
7574 */
7575void sched_move_task(struct task_struct *tsk)
29f59db3 7576{
8323f26c 7577 struct task_group *tg;
da0c1e65 7578 int queued, running;
29f59db3
SV
7579 unsigned long flags;
7580 struct rq *rq;
7581
7582 rq = task_rq_lock(tsk, &flags);
7583
051a1d1a 7584 running = task_current(rq, tsk);
da0c1e65 7585 queued = task_on_rq_queued(tsk);
29f59db3 7586
da0c1e65 7587 if (queued)
29f59db3 7588 dequeue_task(rq, tsk, 0);
0e1f3483 7589 if (unlikely(running))
f3cd1c4e 7590 put_prev_task(rq, tsk);
29f59db3 7591
f7b8a47d
KT
7592 /*
7593 * All callers are synchronized by task_rq_lock(); we do not use RCU
7594 * which is pointless here. Thus, we pass "true" to task_css_check()
7595 * to prevent lockdep warnings.
7596 */
7597 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
7598 struct task_group, css);
7599 tg = autogroup_task_group(tsk, tg);
7600 tsk->sched_task_group = tg;
7601
810b3817 7602#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7603 if (tsk->sched_class->task_move_group)
da0c1e65 7604 tsk->sched_class->task_move_group(tsk, queued);
b2b5ce02 7605 else
810b3817 7606#endif
b2b5ce02 7607 set_task_rq(tsk, task_cpu(tsk));
810b3817 7608
0e1f3483
HS
7609 if (unlikely(running))
7610 tsk->sched_class->set_curr_task(rq);
da0c1e65 7611 if (queued)
371fd7e7 7612 enqueue_task(rq, tsk, 0);
29f59db3 7613
0122ec5b 7614 task_rq_unlock(rq, tsk, &flags);
29f59db3 7615}
7c941438 7616#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7617
a790de99
PT
7618#ifdef CONFIG_RT_GROUP_SCHED
7619/*
7620 * Ensure that the real time constraints are schedulable.
7621 */
7622static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7623
9a7e0b18
PZ
7624/* Must be called with tasklist_lock held */
7625static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7626{
9a7e0b18 7627 struct task_struct *g, *p;
b40b2e8e 7628
1fe89e1b
PZ
7629 /*
7630 * Autogroups do not have RT tasks; see autogroup_create().
7631 */
7632 if (task_group_is_autogroup(tg))
7633 return 0;
7634
5d07f420 7635 for_each_process_thread(g, p) {
8651c658 7636 if (rt_task(p) && task_group(p) == tg)
9a7e0b18 7637 return 1;
5d07f420 7638 }
b40b2e8e 7639
9a7e0b18
PZ
7640 return 0;
7641}
b40b2e8e 7642
9a7e0b18
PZ
7643struct rt_schedulable_data {
7644 struct task_group *tg;
7645 u64 rt_period;
7646 u64 rt_runtime;
7647};
b40b2e8e 7648
a790de99 7649static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7650{
7651 struct rt_schedulable_data *d = data;
7652 struct task_group *child;
7653 unsigned long total, sum = 0;
7654 u64 period, runtime;
b40b2e8e 7655
9a7e0b18
PZ
7656 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7657 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7658
9a7e0b18
PZ
7659 if (tg == d->tg) {
7660 period = d->rt_period;
7661 runtime = d->rt_runtime;
b40b2e8e 7662 }
b40b2e8e 7663
4653f803
PZ
7664 /*
7665 * Cannot have more runtime than the period.
7666 */
7667 if (runtime > period && runtime != RUNTIME_INF)
7668 return -EINVAL;
6f505b16 7669
4653f803
PZ
7670 /*
7671 * Ensure we don't starve existing RT tasks.
7672 */
9a7e0b18
PZ
7673 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7674 return -EBUSY;
6f505b16 7675
9a7e0b18 7676 total = to_ratio(period, runtime);
6f505b16 7677
4653f803
PZ
7678 /*
7679 * Nobody can have more than the global setting allows.
7680 */
7681 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7682 return -EINVAL;
6f505b16 7683
4653f803
PZ
7684 /*
7685 * The sum of our children's runtime should not exceed our own.
7686 */
9a7e0b18
PZ
7687 list_for_each_entry_rcu(child, &tg->children, siblings) {
7688 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7689 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7690
9a7e0b18
PZ
7691 if (child == d->tg) {
7692 period = d->rt_period;
7693 runtime = d->rt_runtime;
7694 }
6f505b16 7695
9a7e0b18 7696 sum += to_ratio(period, runtime);
9f0c1e56 7697 }
6f505b16 7698
9a7e0b18
PZ
7699 if (sum > total)
7700 return -EINVAL;
7701
7702 return 0;
6f505b16
PZ
7703}
7704
9a7e0b18 7705static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7706{
8277434e
PT
7707 int ret;
7708
9a7e0b18
PZ
7709 struct rt_schedulable_data data = {
7710 .tg = tg,
7711 .rt_period = period,
7712 .rt_runtime = runtime,
7713 };
7714
8277434e
PT
7715 rcu_read_lock();
7716 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7717 rcu_read_unlock();
7718
7719 return ret;
521f1a24
DG
7720}
7721
ab84d31e 7722static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7723 u64 rt_period, u64 rt_runtime)
6f505b16 7724{
ac086bc2 7725 int i, err = 0;
9f0c1e56 7726
2636ed5f
PZ
7727 /*
7728 * Disallowing the root group RT runtime is BAD, it would disallow the
7729 * kernel creating (and or operating) RT threads.
7730 */
7731 if (tg == &root_task_group && rt_runtime == 0)
7732 return -EINVAL;
7733
7734 /* No period doesn't make any sense. */
7735 if (rt_period == 0)
7736 return -EINVAL;
7737
9f0c1e56 7738 mutex_lock(&rt_constraints_mutex);
521f1a24 7739 read_lock(&tasklist_lock);
9a7e0b18
PZ
7740 err = __rt_schedulable(tg, rt_period, rt_runtime);
7741 if (err)
9f0c1e56 7742 goto unlock;
ac086bc2 7743
0986b11b 7744 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7745 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7746 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7747
7748 for_each_possible_cpu(i) {
7749 struct rt_rq *rt_rq = tg->rt_rq[i];
7750
0986b11b 7751 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7752 rt_rq->rt_runtime = rt_runtime;
0986b11b 7753 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7754 }
0986b11b 7755 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7756unlock:
521f1a24 7757 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7758 mutex_unlock(&rt_constraints_mutex);
7759
7760 return err;
6f505b16
PZ
7761}
7762
25cc7da7 7763static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
7764{
7765 u64 rt_runtime, rt_period;
7766
7767 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7768 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7769 if (rt_runtime_us < 0)
7770 rt_runtime = RUNTIME_INF;
7771
ab84d31e 7772 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7773}
7774
25cc7da7 7775static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
7776{
7777 u64 rt_runtime_us;
7778
d0b27fa7 7779 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7780 return -1;
7781
d0b27fa7 7782 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7783 do_div(rt_runtime_us, NSEC_PER_USEC);
7784 return rt_runtime_us;
7785}
d0b27fa7 7786
ce2f5fe4 7787static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
d0b27fa7
PZ
7788{
7789 u64 rt_runtime, rt_period;
7790
ce2f5fe4 7791 rt_period = rt_period_us * NSEC_PER_USEC;
d0b27fa7
PZ
7792 rt_runtime = tg->rt_bandwidth.rt_runtime;
7793
ab84d31e 7794 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7795}
7796
25cc7da7 7797static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
7798{
7799 u64 rt_period_us;
7800
7801 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7802 do_div(rt_period_us, NSEC_PER_USEC);
7803 return rt_period_us;
7804}
332ac17e 7805#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7806
332ac17e 7807#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
7808static int sched_rt_global_constraints(void)
7809{
7810 int ret = 0;
7811
7812 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7813 read_lock(&tasklist_lock);
4653f803 7814 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7815 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7816 mutex_unlock(&rt_constraints_mutex);
7817
7818 return ret;
7819}
54e99124 7820
25cc7da7 7821static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
7822{
7823 /* Don't accept realtime tasks when there is no way for them to run */
7824 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7825 return 0;
7826
7827 return 1;
7828}
7829
6d6bc0ad 7830#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7831static int sched_rt_global_constraints(void)
7832{
ac086bc2 7833 unsigned long flags;
332ac17e 7834 int i, ret = 0;
ec5d4989 7835
0986b11b 7836 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7837 for_each_possible_cpu(i) {
7838 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7839
0986b11b 7840 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7841 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7842 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7843 }
0986b11b 7844 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7845
332ac17e 7846 return ret;
d0b27fa7 7847}
6d6bc0ad 7848#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7849
a1963b81 7850static int sched_dl_global_validate(void)
332ac17e 7851{
1724813d
PZ
7852 u64 runtime = global_rt_runtime();
7853 u64 period = global_rt_period();
332ac17e 7854 u64 new_bw = to_ratio(period, runtime);
f10e00f4 7855 struct dl_bw *dl_b;
1724813d 7856 int cpu, ret = 0;
49516342 7857 unsigned long flags;
332ac17e
DF
7858
7859 /*
7860 * Here we want to check the bandwidth not being set to some
7861 * value smaller than the currently allocated bandwidth in
7862 * any of the root_domains.
7863 *
7864 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7865 * cycling on root_domains... Discussion on different/better
7866 * solutions is welcome!
7867 */
1724813d 7868 for_each_possible_cpu(cpu) {
f10e00f4
KT
7869 rcu_read_lock_sched();
7870 dl_b = dl_bw_of(cpu);
332ac17e 7871
49516342 7872 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d
PZ
7873 if (new_bw < dl_b->total_bw)
7874 ret = -EBUSY;
49516342 7875 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
1724813d 7876
f10e00f4
KT
7877 rcu_read_unlock_sched();
7878
1724813d
PZ
7879 if (ret)
7880 break;
332ac17e
DF
7881 }
7882
1724813d 7883 return ret;
332ac17e
DF
7884}
7885
1724813d 7886static void sched_dl_do_global(void)
ce0dbbbb 7887{
1724813d 7888 u64 new_bw = -1;
f10e00f4 7889 struct dl_bw *dl_b;
1724813d 7890 int cpu;
49516342 7891 unsigned long flags;
ce0dbbbb 7892
1724813d
PZ
7893 def_dl_bandwidth.dl_period = global_rt_period();
7894 def_dl_bandwidth.dl_runtime = global_rt_runtime();
7895
7896 if (global_rt_runtime() != RUNTIME_INF)
7897 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7898
7899 /*
7900 * FIXME: As above...
7901 */
7902 for_each_possible_cpu(cpu) {
f10e00f4
KT
7903 rcu_read_lock_sched();
7904 dl_b = dl_bw_of(cpu);
1724813d 7905
49516342 7906 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d 7907 dl_b->bw = new_bw;
49516342 7908 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
f10e00f4
KT
7909
7910 rcu_read_unlock_sched();
ce0dbbbb 7911 }
1724813d
PZ
7912}
7913
7914static int sched_rt_global_validate(void)
7915{
7916 if (sysctl_sched_rt_period <= 0)
7917 return -EINVAL;
7918
e9e7cb38
JL
7919 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7920 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
1724813d
PZ
7921 return -EINVAL;
7922
7923 return 0;
7924}
7925
7926static void sched_rt_do_global(void)
7927{
7928 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7929 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
7930}
7931
d0b27fa7 7932int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7933 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7934 loff_t *ppos)
7935{
d0b27fa7
PZ
7936 int old_period, old_runtime;
7937 static DEFINE_MUTEX(mutex);
1724813d 7938 int ret;
d0b27fa7
PZ
7939
7940 mutex_lock(&mutex);
7941 old_period = sysctl_sched_rt_period;
7942 old_runtime = sysctl_sched_rt_runtime;
7943
8d65af78 7944 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
7945
7946 if (!ret && write) {
1724813d
PZ
7947 ret = sched_rt_global_validate();
7948 if (ret)
7949 goto undo;
7950
a1963b81 7951 ret = sched_dl_global_validate();
1724813d
PZ
7952 if (ret)
7953 goto undo;
7954
a1963b81 7955 ret = sched_rt_global_constraints();
1724813d
PZ
7956 if (ret)
7957 goto undo;
7958
7959 sched_rt_do_global();
7960 sched_dl_do_global();
7961 }
7962 if (0) {
7963undo:
7964 sysctl_sched_rt_period = old_period;
7965 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
7966 }
7967 mutex_unlock(&mutex);
7968
7969 return ret;
7970}
68318b8e 7971
1724813d 7972int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
7973 void __user *buffer, size_t *lenp,
7974 loff_t *ppos)
7975{
7976 int ret;
332ac17e 7977 static DEFINE_MUTEX(mutex);
332ac17e
DF
7978
7979 mutex_lock(&mutex);
332ac17e 7980 ret = proc_dointvec(table, write, buffer, lenp, ppos);
1724813d
PZ
7981 /* make sure that internally we keep jiffies */
7982 /* also, writing zero resets timeslice to default */
332ac17e 7983 if (!ret && write) {
1724813d
PZ
7984 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7985 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
332ac17e
DF
7986 }
7987 mutex_unlock(&mutex);
332ac17e
DF
7988 return ret;
7989}
7990
052f1dc7 7991#ifdef CONFIG_CGROUP_SCHED
68318b8e 7992
a7c6d554 7993static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 7994{
a7c6d554 7995 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
7996}
7997
eb95419b
TH
7998static struct cgroup_subsys_state *
7999cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 8000{
eb95419b
TH
8001 struct task_group *parent = css_tg(parent_css);
8002 struct task_group *tg;
68318b8e 8003
eb95419b 8004 if (!parent) {
68318b8e 8005 /* This is early initialization for the top cgroup */
07e06b01 8006 return &root_task_group.css;
68318b8e
SV
8007 }
8008
ec7dc8ac 8009 tg = sched_create_group(parent);
68318b8e
SV
8010 if (IS_ERR(tg))
8011 return ERR_PTR(-ENOMEM);
8012
68318b8e
SV
8013 return &tg->css;
8014}
8015
eb95419b 8016static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
ace783b9 8017{
eb95419b 8018 struct task_group *tg = css_tg(css);
5c9d535b 8019 struct task_group *parent = css_tg(css->parent);
ace783b9 8020
63876986
TH
8021 if (parent)
8022 sched_online_group(tg, parent);
ace783b9
LZ
8023 return 0;
8024}
8025
eb95419b 8026static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 8027{
eb95419b 8028 struct task_group *tg = css_tg(css);
68318b8e
SV
8029
8030 sched_destroy_group(tg);
8031}
8032
eb95419b 8033static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
ace783b9 8034{
eb95419b 8035 struct task_group *tg = css_tg(css);
ace783b9
LZ
8036
8037 sched_offline_group(tg);
8038}
8039
eeb61e53
KT
8040static void cpu_cgroup_fork(struct task_struct *task)
8041{
8042 sched_move_task(task);
8043}
8044
eb95419b 8045static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
bb9d97b6 8046 struct cgroup_taskset *tset)
68318b8e 8047{
bb9d97b6
TH
8048 struct task_struct *task;
8049
924f0d9a 8050 cgroup_taskset_for_each(task, tset) {
b68aa230 8051#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 8052 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 8053 return -EINVAL;
b68aa230 8054#else
bb9d97b6
TH
8055 /* We don't support RT-tasks being in separate groups */
8056 if (task->sched_class != &fair_sched_class)
8057 return -EINVAL;
b68aa230 8058#endif
bb9d97b6 8059 }
be367d09
BB
8060 return 0;
8061}
68318b8e 8062
eb95419b 8063static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
bb9d97b6 8064 struct cgroup_taskset *tset)
68318b8e 8065{
bb9d97b6
TH
8066 struct task_struct *task;
8067
924f0d9a 8068 cgroup_taskset_for_each(task, tset)
bb9d97b6 8069 sched_move_task(task);
68318b8e
SV
8070}
8071
eb95419b
TH
8072static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
8073 struct cgroup_subsys_state *old_css,
8074 struct task_struct *task)
068c5cc5
PZ
8075{
8076 /*
8077 * cgroup_exit() is called in the copy_process() failure path.
8078 * Ignore this case since the task hasn't ran yet, this avoids
8079 * trying to poke a half freed task state from generic code.
8080 */
8081 if (!(task->flags & PF_EXITING))
8082 return;
8083
8084 sched_move_task(task);
8085}
8086
052f1dc7 8087#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
8088static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8089 struct cftype *cftype, u64 shareval)
68318b8e 8090{
182446d0 8091 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
8092}
8093
182446d0
TH
8094static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8095 struct cftype *cft)
68318b8e 8096{
182446d0 8097 struct task_group *tg = css_tg(css);
68318b8e 8098
c8b28116 8099 return (u64) scale_load_down(tg->shares);
68318b8e 8100}
ab84d31e
PT
8101
8102#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
8103static DEFINE_MUTEX(cfs_constraints_mutex);
8104
ab84d31e
PT
8105const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8106const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8107
a790de99
PT
8108static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8109
ab84d31e
PT
8110static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8111{
56f570e5 8112 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 8113 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
8114
8115 if (tg == &root_task_group)
8116 return -EINVAL;
8117
8118 /*
8119 * Ensure we have at some amount of bandwidth every period. This is
8120 * to prevent reaching a state of large arrears when throttled via
8121 * entity_tick() resulting in prolonged exit starvation.
8122 */
8123 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8124 return -EINVAL;
8125
8126 /*
8127 * Likewise, bound things on the otherside by preventing insane quota
8128 * periods. This also allows us to normalize in computing quota
8129 * feasibility.
8130 */
8131 if (period > max_cfs_quota_period)
8132 return -EINVAL;
8133
0e59bdae
KT
8134 /*
8135 * Prevent race between setting of cfs_rq->runtime_enabled and
8136 * unthrottle_offline_cfs_rqs().
8137 */
8138 get_online_cpus();
a790de99
PT
8139 mutex_lock(&cfs_constraints_mutex);
8140 ret = __cfs_schedulable(tg, period, quota);
8141 if (ret)
8142 goto out_unlock;
8143
58088ad0 8144 runtime_enabled = quota != RUNTIME_INF;
56f570e5 8145 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
8146 /*
8147 * If we need to toggle cfs_bandwidth_used, off->on must occur
8148 * before making related changes, and on->off must occur afterwards
8149 */
8150 if (runtime_enabled && !runtime_was_enabled)
8151 cfs_bandwidth_usage_inc();
ab84d31e
PT
8152 raw_spin_lock_irq(&cfs_b->lock);
8153 cfs_b->period = ns_to_ktime(period);
8154 cfs_b->quota = quota;
58088ad0 8155
a9cf55b2 8156 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
8157 /* restart the period timer (if active) to handle new period expiry */
8158 if (runtime_enabled && cfs_b->timer_active) {
8159 /* force a reprogram */
09dc4ab0 8160 __start_cfs_bandwidth(cfs_b, true);
58088ad0 8161 }
ab84d31e
PT
8162 raw_spin_unlock_irq(&cfs_b->lock);
8163
0e59bdae 8164 for_each_online_cpu(i) {
ab84d31e 8165 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 8166 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
8167
8168 raw_spin_lock_irq(&rq->lock);
58088ad0 8169 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 8170 cfs_rq->runtime_remaining = 0;
671fd9da 8171
029632fb 8172 if (cfs_rq->throttled)
671fd9da 8173 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
8174 raw_spin_unlock_irq(&rq->lock);
8175 }
1ee14e6c
BS
8176 if (runtime_was_enabled && !runtime_enabled)
8177 cfs_bandwidth_usage_dec();
a790de99
PT
8178out_unlock:
8179 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 8180 put_online_cpus();
ab84d31e 8181
a790de99 8182 return ret;
ab84d31e
PT
8183}
8184
8185int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8186{
8187 u64 quota, period;
8188
029632fb 8189 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8190 if (cfs_quota_us < 0)
8191 quota = RUNTIME_INF;
8192 else
8193 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8194
8195 return tg_set_cfs_bandwidth(tg, period, quota);
8196}
8197
8198long tg_get_cfs_quota(struct task_group *tg)
8199{
8200 u64 quota_us;
8201
029632fb 8202 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
8203 return -1;
8204
029632fb 8205 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
8206 do_div(quota_us, NSEC_PER_USEC);
8207
8208 return quota_us;
8209}
8210
8211int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8212{
8213 u64 quota, period;
8214
8215 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 8216 quota = tg->cfs_bandwidth.quota;
ab84d31e 8217
ab84d31e
PT
8218 return tg_set_cfs_bandwidth(tg, period, quota);
8219}
8220
8221long tg_get_cfs_period(struct task_group *tg)
8222{
8223 u64 cfs_period_us;
8224
029632fb 8225 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8226 do_div(cfs_period_us, NSEC_PER_USEC);
8227
8228 return cfs_period_us;
8229}
8230
182446d0
TH
8231static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8232 struct cftype *cft)
ab84d31e 8233{
182446d0 8234 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
8235}
8236
182446d0
TH
8237static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8238 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 8239{
182446d0 8240 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
8241}
8242
182446d0
TH
8243static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8244 struct cftype *cft)
ab84d31e 8245{
182446d0 8246 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
8247}
8248
182446d0
TH
8249static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8250 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 8251{
182446d0 8252 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
8253}
8254
a790de99
PT
8255struct cfs_schedulable_data {
8256 struct task_group *tg;
8257 u64 period, quota;
8258};
8259
8260/*
8261 * normalize group quota/period to be quota/max_period
8262 * note: units are usecs
8263 */
8264static u64 normalize_cfs_quota(struct task_group *tg,
8265 struct cfs_schedulable_data *d)
8266{
8267 u64 quota, period;
8268
8269 if (tg == d->tg) {
8270 period = d->period;
8271 quota = d->quota;
8272 } else {
8273 period = tg_get_cfs_period(tg);
8274 quota = tg_get_cfs_quota(tg);
8275 }
8276
8277 /* note: these should typically be equivalent */
8278 if (quota == RUNTIME_INF || quota == -1)
8279 return RUNTIME_INF;
8280
8281 return to_ratio(period, quota);
8282}
8283
8284static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8285{
8286 struct cfs_schedulable_data *d = data;
029632fb 8287 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
8288 s64 quota = 0, parent_quota = -1;
8289
8290 if (!tg->parent) {
8291 quota = RUNTIME_INF;
8292 } else {
029632fb 8293 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
8294
8295 quota = normalize_cfs_quota(tg, d);
9c58c79a 8296 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
8297
8298 /*
8299 * ensure max(child_quota) <= parent_quota, inherit when no
8300 * limit is set
8301 */
8302 if (quota == RUNTIME_INF)
8303 quota = parent_quota;
8304 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8305 return -EINVAL;
8306 }
9c58c79a 8307 cfs_b->hierarchical_quota = quota;
a790de99
PT
8308
8309 return 0;
8310}
8311
8312static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8313{
8277434e 8314 int ret;
a790de99
PT
8315 struct cfs_schedulable_data data = {
8316 .tg = tg,
8317 .period = period,
8318 .quota = quota,
8319 };
8320
8321 if (quota != RUNTIME_INF) {
8322 do_div(data.period, NSEC_PER_USEC);
8323 do_div(data.quota, NSEC_PER_USEC);
8324 }
8325
8277434e
PT
8326 rcu_read_lock();
8327 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8328 rcu_read_unlock();
8329
8330 return ret;
a790de99 8331}
e8da1b18 8332
2da8ca82 8333static int cpu_stats_show(struct seq_file *sf, void *v)
e8da1b18 8334{
2da8ca82 8335 struct task_group *tg = css_tg(seq_css(sf));
029632fb 8336 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 8337
44ffc75b
TH
8338 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8339 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8340 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
8341
8342 return 0;
8343}
ab84d31e 8344#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 8345#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8346
052f1dc7 8347#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
8348static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8349 struct cftype *cft, s64 val)
6f505b16 8350{
182446d0 8351 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
8352}
8353
182446d0
TH
8354static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8355 struct cftype *cft)
6f505b16 8356{
182446d0 8357 return sched_group_rt_runtime(css_tg(css));
6f505b16 8358}
d0b27fa7 8359
182446d0
TH
8360static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8361 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 8362{
182446d0 8363 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
8364}
8365
182446d0
TH
8366static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8367 struct cftype *cft)
d0b27fa7 8368{
182446d0 8369 return sched_group_rt_period(css_tg(css));
d0b27fa7 8370}
6d6bc0ad 8371#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8372
fe5c7cc2 8373static struct cftype cpu_files[] = {
052f1dc7 8374#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8375 {
8376 .name = "shares",
f4c753b7
PM
8377 .read_u64 = cpu_shares_read_u64,
8378 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8379 },
052f1dc7 8380#endif
ab84d31e
PT
8381#ifdef CONFIG_CFS_BANDWIDTH
8382 {
8383 .name = "cfs_quota_us",
8384 .read_s64 = cpu_cfs_quota_read_s64,
8385 .write_s64 = cpu_cfs_quota_write_s64,
8386 },
8387 {
8388 .name = "cfs_period_us",
8389 .read_u64 = cpu_cfs_period_read_u64,
8390 .write_u64 = cpu_cfs_period_write_u64,
8391 },
e8da1b18
NR
8392 {
8393 .name = "stat",
2da8ca82 8394 .seq_show = cpu_stats_show,
e8da1b18 8395 },
ab84d31e 8396#endif
052f1dc7 8397#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8398 {
9f0c1e56 8399 .name = "rt_runtime_us",
06ecb27c
PM
8400 .read_s64 = cpu_rt_runtime_read,
8401 .write_s64 = cpu_rt_runtime_write,
6f505b16 8402 },
d0b27fa7
PZ
8403 {
8404 .name = "rt_period_us",
f4c753b7
PM
8405 .read_u64 = cpu_rt_period_read_uint,
8406 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8407 },
052f1dc7 8408#endif
4baf6e33 8409 { } /* terminate */
68318b8e
SV
8410};
8411
073219e9 8412struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748
TH
8413 .css_alloc = cpu_cgroup_css_alloc,
8414 .css_free = cpu_cgroup_css_free,
ace783b9
LZ
8415 .css_online = cpu_cgroup_css_online,
8416 .css_offline = cpu_cgroup_css_offline,
eeb61e53 8417 .fork = cpu_cgroup_fork,
bb9d97b6
TH
8418 .can_attach = cpu_cgroup_can_attach,
8419 .attach = cpu_cgroup_attach,
068c5cc5 8420 .exit = cpu_cgroup_exit,
5577964e 8421 .legacy_cftypes = cpu_files,
68318b8e
SV
8422 .early_init = 1,
8423};
8424
052f1dc7 8425#endif /* CONFIG_CGROUP_SCHED */
d842de87 8426
b637a328
PM
8427void dump_cpu_task(int cpu)
8428{
8429 pr_info("Task dump for CPU %d:\n", cpu);
8430 sched_show_task(cpu_curr(cpu));
8431}