]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - kernel/sched/core.c
sched/deadline: Remove useless parameter from setup_new_dl_entity()
[mirror_ubuntu-zesty-kernel.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
e1b77c92 29#include <linux/kasan.h>
1da177e4
LT
30#include <linux/mm.h>
31#include <linux/module.h>
32#include <linux/nmi.h>
33#include <linux/init.h>
dff06c15 34#include <linux/uaccess.h>
1da177e4 35#include <linux/highmem.h>
f98db601 36#include <linux/mmu_context.h>
1da177e4 37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
cdd6c482 42#include <linux/perf_event.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
b5aadf7f 58#include <linux/proc_fs.h>
1da177e4 59#include <linux/seq_file.h>
e692ab53 60#include <linux/sysctl.h>
1da177e4
LT
61#include <linux/syscalls.h>
62#include <linux/times.h>
8f0ab514 63#include <linux/tsacct_kern.h>
c6fd91f0 64#include <linux/kprobes.h>
0ff92245 65#include <linux/delayacct.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
30914a58 69#include <linux/tick.h>
f00b45c1 70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
91d1aa43 74#include <linux/context_tracking.h>
52f5684c 75#include <linux/compiler.h>
8e05e96a 76#include <linux/frame.h>
6075620b 77#include <linux/prefetch.h>
1da177e4 78
96f951ed 79#include <asm/switch_to.h>
5517d86b 80#include <asm/tlb.h>
838225b4 81#include <asm/irq_regs.h>
db7e527d 82#include <asm/mutex.h>
e6e6685a
GC
83#ifdef CONFIG_PARAVIRT
84#include <asm/paravirt.h>
85#endif
1da177e4 86
029632fb 87#include "sched.h"
ea138446 88#include "../workqueue_internal.h"
29d5e047 89#include "../smpboot.h"
6e0534f2 90
a8d154b0 91#define CREATE_TRACE_POINTS
ad8d75ff 92#include <trace/events/sched.h>
a8d154b0 93
029632fb
PZ
94DEFINE_MUTEX(sched_domains_mutex);
95DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 96
fe44d621 97static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 98
029632fb 99void update_rq_clock(struct rq *rq)
3e51f33f 100{
fe44d621 101 s64 delta;
305e6835 102
9edfbfed
PZ
103 lockdep_assert_held(&rq->lock);
104
105 if (rq->clock_skip_update & RQCF_ACT_SKIP)
f26f9aff 106 return;
aa483808 107
fe44d621 108 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
4036ac15
MG
109 if (delta < 0)
110 return;
fe44d621
PZ
111 rq->clock += delta;
112 update_rq_clock_task(rq, delta);
3e51f33f
PZ
113}
114
bf5c91ba
IM
115/*
116 * Debugging: various feature bits
117 */
f00b45c1 118
f00b45c1
PZ
119#define SCHED_FEAT(name, enabled) \
120 (1UL << __SCHED_FEAT_##name) * enabled |
121
bf5c91ba 122const_debug unsigned int sysctl_sched_features =
391e43da 123#include "features.h"
f00b45c1
PZ
124 0;
125
126#undef SCHED_FEAT
127
b82d9fdd
PZ
128/*
129 * Number of tasks to iterate in a single balance run.
130 * Limited because this is done with IRQs disabled.
131 */
132const_debug unsigned int sysctl_sched_nr_migrate = 32;
133
e9e9250b
PZ
134/*
135 * period over which we average the RT time consumption, measured
136 * in ms.
137 *
138 * default: 1s
139 */
140const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
141
fa85ae24 142/*
9f0c1e56 143 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
144 * default: 1s
145 */
9f0c1e56 146unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 147
029632fb 148__read_mostly int scheduler_running;
6892b75e 149
9f0c1e56
PZ
150/*
151 * part of the period that we allow rt tasks to run in us.
152 * default: 0.95s
153 */
154int sysctl_sched_rt_runtime = 950000;
fa85ae24 155
3fa0818b
RR
156/* cpus with isolated domains */
157cpumask_var_t cpu_isolated_map;
158
1da177e4 159/*
cc2a73b5 160 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 161 */
a9957449 162static struct rq *this_rq_lock(void)
1da177e4
LT
163 __acquires(rq->lock)
164{
70b97a7f 165 struct rq *rq;
1da177e4
LT
166
167 local_irq_disable();
168 rq = this_rq();
05fa785c 169 raw_spin_lock(&rq->lock);
1da177e4
LT
170
171 return rq;
172}
173
3e71a462
PZ
174/*
175 * __task_rq_lock - lock the rq @p resides on.
176 */
eb580751 177struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
178 __acquires(rq->lock)
179{
180 struct rq *rq;
181
182 lockdep_assert_held(&p->pi_lock);
183
184 for (;;) {
185 rq = task_rq(p);
186 raw_spin_lock(&rq->lock);
187 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
e7904a28 188 rf->cookie = lockdep_pin_lock(&rq->lock);
3e71a462
PZ
189 return rq;
190 }
191 raw_spin_unlock(&rq->lock);
192
193 while (unlikely(task_on_rq_migrating(p)))
194 cpu_relax();
195 }
196}
197
198/*
199 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
200 */
eb580751 201struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
202 __acquires(p->pi_lock)
203 __acquires(rq->lock)
204{
205 struct rq *rq;
206
207 for (;;) {
eb580751 208 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
3e71a462
PZ
209 rq = task_rq(p);
210 raw_spin_lock(&rq->lock);
211 /*
212 * move_queued_task() task_rq_lock()
213 *
214 * ACQUIRE (rq->lock)
215 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
216 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
217 * [S] ->cpu = new_cpu [L] task_rq()
218 * [L] ->on_rq
219 * RELEASE (rq->lock)
220 *
221 * If we observe the old cpu in task_rq_lock, the acquire of
222 * the old rq->lock will fully serialize against the stores.
223 *
224 * If we observe the new cpu in task_rq_lock, the acquire will
225 * pair with the WMB to ensure we must then also see migrating.
226 */
227 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
e7904a28 228 rf->cookie = lockdep_pin_lock(&rq->lock);
3e71a462
PZ
229 return rq;
230 }
231 raw_spin_unlock(&rq->lock);
eb580751 232 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
3e71a462
PZ
233
234 while (unlikely(task_on_rq_migrating(p)))
235 cpu_relax();
236 }
237}
238
8f4d37ec
PZ
239#ifdef CONFIG_SCHED_HRTICK
240/*
241 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 242 */
8f4d37ec 243
8f4d37ec
PZ
244static void hrtick_clear(struct rq *rq)
245{
246 if (hrtimer_active(&rq->hrtick_timer))
247 hrtimer_cancel(&rq->hrtick_timer);
248}
249
8f4d37ec
PZ
250/*
251 * High-resolution timer tick.
252 * Runs from hardirq context with interrupts disabled.
253 */
254static enum hrtimer_restart hrtick(struct hrtimer *timer)
255{
256 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
257
258 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
259
05fa785c 260 raw_spin_lock(&rq->lock);
3e51f33f 261 update_rq_clock(rq);
8f4d37ec 262 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 263 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
264
265 return HRTIMER_NORESTART;
266}
267
95e904c7 268#ifdef CONFIG_SMP
971ee28c 269
4961b6e1 270static void __hrtick_restart(struct rq *rq)
971ee28c
PZ
271{
272 struct hrtimer *timer = &rq->hrtick_timer;
971ee28c 273
4961b6e1 274 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
971ee28c
PZ
275}
276
31656519
PZ
277/*
278 * called from hardirq (IPI) context
279 */
280static void __hrtick_start(void *arg)
b328ca18 281{
31656519 282 struct rq *rq = arg;
b328ca18 283
05fa785c 284 raw_spin_lock(&rq->lock);
971ee28c 285 __hrtick_restart(rq);
31656519 286 rq->hrtick_csd_pending = 0;
05fa785c 287 raw_spin_unlock(&rq->lock);
b328ca18
PZ
288}
289
31656519
PZ
290/*
291 * Called to set the hrtick timer state.
292 *
293 * called with rq->lock held and irqs disabled
294 */
029632fb 295void hrtick_start(struct rq *rq, u64 delay)
b328ca18 296{
31656519 297 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 298 ktime_t time;
299 s64 delta;
300
301 /*
302 * Don't schedule slices shorter than 10000ns, that just
303 * doesn't make sense and can cause timer DoS.
304 */
305 delta = max_t(s64, delay, 10000LL);
306 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 307
cc584b21 308 hrtimer_set_expires(timer, time);
31656519
PZ
309
310 if (rq == this_rq()) {
971ee28c 311 __hrtick_restart(rq);
31656519 312 } else if (!rq->hrtick_csd_pending) {
c46fff2a 313 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
314 rq->hrtick_csd_pending = 1;
315 }
b328ca18
PZ
316}
317
31656519
PZ
318#else
319/*
320 * Called to set the hrtick timer state.
321 *
322 * called with rq->lock held and irqs disabled
323 */
029632fb 324void hrtick_start(struct rq *rq, u64 delay)
31656519 325{
86893335
WL
326 /*
327 * Don't schedule slices shorter than 10000ns, that just
328 * doesn't make sense. Rely on vruntime for fairness.
329 */
330 delay = max_t(u64, delay, 10000LL);
4961b6e1
TG
331 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
332 HRTIMER_MODE_REL_PINNED);
31656519 333}
31656519 334#endif /* CONFIG_SMP */
8f4d37ec 335
31656519 336static void init_rq_hrtick(struct rq *rq)
8f4d37ec 337{
31656519
PZ
338#ifdef CONFIG_SMP
339 rq->hrtick_csd_pending = 0;
8f4d37ec 340
31656519
PZ
341 rq->hrtick_csd.flags = 0;
342 rq->hrtick_csd.func = __hrtick_start;
343 rq->hrtick_csd.info = rq;
344#endif
8f4d37ec 345
31656519
PZ
346 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
347 rq->hrtick_timer.function = hrtick;
8f4d37ec 348}
006c75f1 349#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
350static inline void hrtick_clear(struct rq *rq)
351{
352}
353
8f4d37ec
PZ
354static inline void init_rq_hrtick(struct rq *rq)
355{
356}
006c75f1 357#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 358
5529578a
FW
359/*
360 * cmpxchg based fetch_or, macro so it works for different integer types
361 */
362#define fetch_or(ptr, mask) \
363 ({ \
364 typeof(ptr) _ptr = (ptr); \
365 typeof(mask) _mask = (mask); \
366 typeof(*_ptr) _old, _val = *_ptr; \
367 \
368 for (;;) { \
369 _old = cmpxchg(_ptr, _val, _val | _mask); \
370 if (_old == _val) \
371 break; \
372 _val = _old; \
373 } \
374 _old; \
375})
376
e3baac47 377#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
378/*
379 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
380 * this avoids any races wrt polling state changes and thereby avoids
381 * spurious IPIs.
382 */
383static bool set_nr_and_not_polling(struct task_struct *p)
384{
385 struct thread_info *ti = task_thread_info(p);
386 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
387}
e3baac47
PZ
388
389/*
390 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
391 *
392 * If this returns true, then the idle task promises to call
393 * sched_ttwu_pending() and reschedule soon.
394 */
395static bool set_nr_if_polling(struct task_struct *p)
396{
397 struct thread_info *ti = task_thread_info(p);
316c1608 398 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
e3baac47
PZ
399
400 for (;;) {
401 if (!(val & _TIF_POLLING_NRFLAG))
402 return false;
403 if (val & _TIF_NEED_RESCHED)
404 return true;
405 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
406 if (old == val)
407 break;
408 val = old;
409 }
410 return true;
411}
412
fd99f91a
PZ
413#else
414static bool set_nr_and_not_polling(struct task_struct *p)
415{
416 set_tsk_need_resched(p);
417 return true;
418}
e3baac47
PZ
419
420#ifdef CONFIG_SMP
421static bool set_nr_if_polling(struct task_struct *p)
422{
423 return false;
424}
425#endif
fd99f91a
PZ
426#endif
427
76751049
PZ
428void wake_q_add(struct wake_q_head *head, struct task_struct *task)
429{
430 struct wake_q_node *node = &task->wake_q;
431
432 /*
433 * Atomically grab the task, if ->wake_q is !nil already it means
434 * its already queued (either by us or someone else) and will get the
435 * wakeup due to that.
436 *
437 * This cmpxchg() implies a full barrier, which pairs with the write
58fe9c46 438 * barrier implied by the wakeup in wake_up_q().
76751049
PZ
439 */
440 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
441 return;
442
443 get_task_struct(task);
444
445 /*
446 * The head is context local, there can be no concurrency.
447 */
448 *head->lastp = node;
449 head->lastp = &node->next;
450}
451
452void wake_up_q(struct wake_q_head *head)
453{
454 struct wake_q_node *node = head->first;
455
456 while (node != WAKE_Q_TAIL) {
457 struct task_struct *task;
458
459 task = container_of(node, struct task_struct, wake_q);
460 BUG_ON(!task);
461 /* task can safely be re-inserted now */
462 node = node->next;
463 task->wake_q.next = NULL;
464
465 /*
466 * wake_up_process() implies a wmb() to pair with the queueing
467 * in wake_q_add() so as not to miss wakeups.
468 */
469 wake_up_process(task);
470 put_task_struct(task);
471 }
472}
473
c24d20db 474/*
8875125e 475 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
476 *
477 * On UP this means the setting of the need_resched flag, on SMP it
478 * might also involve a cross-CPU call to trigger the scheduler on
479 * the target CPU.
480 */
8875125e 481void resched_curr(struct rq *rq)
c24d20db 482{
8875125e 483 struct task_struct *curr = rq->curr;
c24d20db
IM
484 int cpu;
485
8875125e 486 lockdep_assert_held(&rq->lock);
c24d20db 487
8875125e 488 if (test_tsk_need_resched(curr))
c24d20db
IM
489 return;
490
8875125e 491 cpu = cpu_of(rq);
fd99f91a 492
f27dde8d 493 if (cpu == smp_processor_id()) {
8875125e 494 set_tsk_need_resched(curr);
f27dde8d 495 set_preempt_need_resched();
c24d20db 496 return;
f27dde8d 497 }
c24d20db 498
8875125e 499 if (set_nr_and_not_polling(curr))
c24d20db 500 smp_send_reschedule(cpu);
dfc68f29
AL
501 else
502 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
503}
504
029632fb 505void resched_cpu(int cpu)
c24d20db
IM
506{
507 struct rq *rq = cpu_rq(cpu);
508 unsigned long flags;
509
05fa785c 510 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db 511 return;
8875125e 512 resched_curr(rq);
05fa785c 513 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 514}
06d8308c 515
b021fe3e 516#ifdef CONFIG_SMP
3451d024 517#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
518/*
519 * In the semi idle case, use the nearest busy cpu for migrating timers
520 * from an idle cpu. This is good for power-savings.
521 *
522 * We don't do similar optimization for completely idle system, as
523 * selecting an idle cpu will add more delays to the timers than intended
524 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
525 */
bc7a34b8 526int get_nohz_timer_target(void)
83cd4fe2 527{
bc7a34b8 528 int i, cpu = smp_processor_id();
83cd4fe2
VP
529 struct sched_domain *sd;
530
9642d18e 531 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
6201b4d6
VK
532 return cpu;
533
057f3fad 534 rcu_read_lock();
83cd4fe2 535 for_each_domain(cpu, sd) {
057f3fad 536 for_each_cpu(i, sched_domain_span(sd)) {
44496922
WL
537 if (cpu == i)
538 continue;
539
540 if (!idle_cpu(i) && is_housekeeping_cpu(i)) {
057f3fad
PZ
541 cpu = i;
542 goto unlock;
543 }
544 }
83cd4fe2 545 }
9642d18e
VH
546
547 if (!is_housekeeping_cpu(cpu))
548 cpu = housekeeping_any_cpu();
057f3fad
PZ
549unlock:
550 rcu_read_unlock();
83cd4fe2
VP
551 return cpu;
552}
06d8308c
TG
553/*
554 * When add_timer_on() enqueues a timer into the timer wheel of an
555 * idle CPU then this timer might expire before the next timer event
556 * which is scheduled to wake up that CPU. In case of a completely
557 * idle system the next event might even be infinite time into the
558 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
559 * leaves the inner idle loop so the newly added timer is taken into
560 * account when the CPU goes back to idle and evaluates the timer
561 * wheel for the next timer event.
562 */
1c20091e 563static void wake_up_idle_cpu(int cpu)
06d8308c
TG
564{
565 struct rq *rq = cpu_rq(cpu);
566
567 if (cpu == smp_processor_id())
568 return;
569
67b9ca70 570 if (set_nr_and_not_polling(rq->idle))
06d8308c 571 smp_send_reschedule(cpu);
dfc68f29
AL
572 else
573 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
574}
575
c5bfece2 576static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 577{
53c5fa16
FW
578 /*
579 * We just need the target to call irq_exit() and re-evaluate
580 * the next tick. The nohz full kick at least implies that.
581 * If needed we can still optimize that later with an
582 * empty IRQ.
583 */
c5bfece2 584 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
585 if (cpu != smp_processor_id() ||
586 tick_nohz_tick_stopped())
53c5fa16 587 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
588 return true;
589 }
590
591 return false;
592}
593
594void wake_up_nohz_cpu(int cpu)
595{
c5bfece2 596 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
597 wake_up_idle_cpu(cpu);
598}
599
ca38062e 600static inline bool got_nohz_idle_kick(void)
45bf76df 601{
1c792db7 602 int cpu = smp_processor_id();
873b4c65
VG
603
604 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
605 return false;
606
607 if (idle_cpu(cpu) && !need_resched())
608 return true;
609
610 /*
611 * We can't run Idle Load Balance on this CPU for this time so we
612 * cancel it and clear NOHZ_BALANCE_KICK
613 */
614 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
615 return false;
45bf76df
IM
616}
617
3451d024 618#else /* CONFIG_NO_HZ_COMMON */
45bf76df 619
ca38062e 620static inline bool got_nohz_idle_kick(void)
2069dd75 621{
ca38062e 622 return false;
2069dd75
PZ
623}
624
3451d024 625#endif /* CONFIG_NO_HZ_COMMON */
d842de87 626
ce831b38 627#ifdef CONFIG_NO_HZ_FULL
76d92ac3 628bool sched_can_stop_tick(struct rq *rq)
ce831b38 629{
76d92ac3
FW
630 int fifo_nr_running;
631
632 /* Deadline tasks, even if single, need the tick */
633 if (rq->dl.dl_nr_running)
634 return false;
635
1e78cdbd 636 /*
2548d546
PZ
637 * If there are more than one RR tasks, we need the tick to effect the
638 * actual RR behaviour.
1e78cdbd 639 */
76d92ac3
FW
640 if (rq->rt.rr_nr_running) {
641 if (rq->rt.rr_nr_running == 1)
642 return true;
643 else
644 return false;
1e78cdbd
RR
645 }
646
2548d546
PZ
647 /*
648 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
649 * forced preemption between FIFO tasks.
650 */
651 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
652 if (fifo_nr_running)
653 return true;
654
655 /*
656 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
657 * if there's more than one we need the tick for involuntary
658 * preemption.
659 */
660 if (rq->nr_running > 1)
541b8264 661 return false;
ce831b38 662
541b8264 663 return true;
ce831b38
FW
664}
665#endif /* CONFIG_NO_HZ_FULL */
d842de87 666
029632fb 667void sched_avg_update(struct rq *rq)
18d95a28 668{
e9e9250b
PZ
669 s64 period = sched_avg_period();
670
78becc27 671 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
672 /*
673 * Inline assembly required to prevent the compiler
674 * optimising this loop into a divmod call.
675 * See __iter_div_u64_rem() for another example of this.
676 */
677 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
678 rq->age_stamp += period;
679 rq->rt_avg /= 2;
680 }
18d95a28
PZ
681}
682
6d6bc0ad 683#endif /* CONFIG_SMP */
18d95a28 684
a790de99
PT
685#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
686 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 687/*
8277434e
PT
688 * Iterate task_group tree rooted at *from, calling @down when first entering a
689 * node and @up when leaving it for the final time.
690 *
691 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 692 */
029632fb 693int walk_tg_tree_from(struct task_group *from,
8277434e 694 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
695{
696 struct task_group *parent, *child;
eb755805 697 int ret;
c09595f6 698
8277434e
PT
699 parent = from;
700
c09595f6 701down:
eb755805
PZ
702 ret = (*down)(parent, data);
703 if (ret)
8277434e 704 goto out;
c09595f6
PZ
705 list_for_each_entry_rcu(child, &parent->children, siblings) {
706 parent = child;
707 goto down;
708
709up:
710 continue;
711 }
eb755805 712 ret = (*up)(parent, data);
8277434e
PT
713 if (ret || parent == from)
714 goto out;
c09595f6
PZ
715
716 child = parent;
717 parent = parent->parent;
718 if (parent)
719 goto up;
8277434e 720out:
eb755805 721 return ret;
c09595f6
PZ
722}
723
029632fb 724int tg_nop(struct task_group *tg, void *data)
eb755805 725{
e2b245f8 726 return 0;
eb755805 727}
18d95a28
PZ
728#endif
729
45bf76df
IM
730static void set_load_weight(struct task_struct *p)
731{
f05998d4
NR
732 int prio = p->static_prio - MAX_RT_PRIO;
733 struct load_weight *load = &p->se.load;
734
dd41f596
IM
735 /*
736 * SCHED_IDLE tasks get minimal weight:
737 */
20f9cd2a 738 if (idle_policy(p->policy)) {
c8b28116 739 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 740 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
741 return;
742 }
71f8bd46 743
ed82b8a1
AK
744 load->weight = scale_load(sched_prio_to_weight[prio]);
745 load->inv_weight = sched_prio_to_wmult[prio];
71f8bd46
IM
746}
747
1de64443 748static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 749{
a64692a3 750 update_rq_clock(rq);
1de64443
PZ
751 if (!(flags & ENQUEUE_RESTORE))
752 sched_info_queued(rq, p);
371fd7e7 753 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
754}
755
1de64443 756static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 757{
a64692a3 758 update_rq_clock(rq);
1de64443
PZ
759 if (!(flags & DEQUEUE_SAVE))
760 sched_info_dequeued(rq, p);
371fd7e7 761 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
762}
763
029632fb 764void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
765{
766 if (task_contributes_to_load(p))
767 rq->nr_uninterruptible--;
768
371fd7e7 769 enqueue_task(rq, p, flags);
1e3c88bd
PZ
770}
771
029632fb 772void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
773{
774 if (task_contributes_to_load(p))
775 rq->nr_uninterruptible++;
776
371fd7e7 777 dequeue_task(rq, p, flags);
1e3c88bd
PZ
778}
779
fe44d621 780static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 781{
095c0aa8
GC
782/*
783 * In theory, the compile should just see 0 here, and optimize out the call
784 * to sched_rt_avg_update. But I don't trust it...
785 */
786#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
787 s64 steal = 0, irq_delta = 0;
788#endif
789#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 790 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
791
792 /*
793 * Since irq_time is only updated on {soft,}irq_exit, we might run into
794 * this case when a previous update_rq_clock() happened inside a
795 * {soft,}irq region.
796 *
797 * When this happens, we stop ->clock_task and only update the
798 * prev_irq_time stamp to account for the part that fit, so that a next
799 * update will consume the rest. This ensures ->clock_task is
800 * monotonic.
801 *
802 * It does however cause some slight miss-attribution of {soft,}irq
803 * time, a more accurate solution would be to update the irq_time using
804 * the current rq->clock timestamp, except that would require using
805 * atomic ops.
806 */
807 if (irq_delta > delta)
808 irq_delta = delta;
809
810 rq->prev_irq_time += irq_delta;
811 delta -= irq_delta;
095c0aa8
GC
812#endif
813#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 814 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
815 steal = paravirt_steal_clock(cpu_of(rq));
816 steal -= rq->prev_steal_time_rq;
817
818 if (unlikely(steal > delta))
819 steal = delta;
820
095c0aa8 821 rq->prev_steal_time_rq += steal;
095c0aa8
GC
822 delta -= steal;
823 }
824#endif
825
fe44d621
PZ
826 rq->clock_task += delta;
827
095c0aa8 828#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
5d4dfddd 829 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
095c0aa8
GC
830 sched_rt_avg_update(rq, irq_delta + steal);
831#endif
aa483808
VP
832}
833
34f971f6
PZ
834void sched_set_stop_task(int cpu, struct task_struct *stop)
835{
836 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
837 struct task_struct *old_stop = cpu_rq(cpu)->stop;
838
839 if (stop) {
840 /*
841 * Make it appear like a SCHED_FIFO task, its something
842 * userspace knows about and won't get confused about.
843 *
844 * Also, it will make PI more or less work without too
845 * much confusion -- but then, stop work should not
846 * rely on PI working anyway.
847 */
848 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
849
850 stop->sched_class = &stop_sched_class;
851 }
852
853 cpu_rq(cpu)->stop = stop;
854
855 if (old_stop) {
856 /*
857 * Reset it back to a normal scheduling class so that
858 * it can die in pieces.
859 */
860 old_stop->sched_class = &rt_sched_class;
861 }
862}
863
14531189 864/*
dd41f596 865 * __normal_prio - return the priority that is based on the static prio
14531189 866 */
14531189
IM
867static inline int __normal_prio(struct task_struct *p)
868{
dd41f596 869 return p->static_prio;
14531189
IM
870}
871
b29739f9
IM
872/*
873 * Calculate the expected normal priority: i.e. priority
874 * without taking RT-inheritance into account. Might be
875 * boosted by interactivity modifiers. Changes upon fork,
876 * setprio syscalls, and whenever the interactivity
877 * estimator recalculates.
878 */
36c8b586 879static inline int normal_prio(struct task_struct *p)
b29739f9
IM
880{
881 int prio;
882
aab03e05
DF
883 if (task_has_dl_policy(p))
884 prio = MAX_DL_PRIO-1;
885 else if (task_has_rt_policy(p))
b29739f9
IM
886 prio = MAX_RT_PRIO-1 - p->rt_priority;
887 else
888 prio = __normal_prio(p);
889 return prio;
890}
891
892/*
893 * Calculate the current priority, i.e. the priority
894 * taken into account by the scheduler. This value might
895 * be boosted by RT tasks, or might be boosted by
896 * interactivity modifiers. Will be RT if the task got
897 * RT-boosted. If not then it returns p->normal_prio.
898 */
36c8b586 899static int effective_prio(struct task_struct *p)
b29739f9
IM
900{
901 p->normal_prio = normal_prio(p);
902 /*
903 * If we are RT tasks or we were boosted to RT priority,
904 * keep the priority unchanged. Otherwise, update priority
905 * to the normal priority:
906 */
907 if (!rt_prio(p->prio))
908 return p->normal_prio;
909 return p->prio;
910}
911
1da177e4
LT
912/**
913 * task_curr - is this task currently executing on a CPU?
914 * @p: the task in question.
e69f6186
YB
915 *
916 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 917 */
36c8b586 918inline int task_curr(const struct task_struct *p)
1da177e4
LT
919{
920 return cpu_curr(task_cpu(p)) == p;
921}
922
67dfa1b7 923/*
4c9a4bc8
PZ
924 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
925 * use the balance_callback list if you want balancing.
926 *
927 * this means any call to check_class_changed() must be followed by a call to
928 * balance_callback().
67dfa1b7 929 */
cb469845
SR
930static inline void check_class_changed(struct rq *rq, struct task_struct *p,
931 const struct sched_class *prev_class,
da7a735e 932 int oldprio)
cb469845
SR
933{
934 if (prev_class != p->sched_class) {
935 if (prev_class->switched_from)
da7a735e 936 prev_class->switched_from(rq, p);
4c9a4bc8 937
da7a735e 938 p->sched_class->switched_to(rq, p);
2d3d891d 939 } else if (oldprio != p->prio || dl_task(p))
da7a735e 940 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
941}
942
029632fb 943void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
944{
945 const struct sched_class *class;
946
947 if (p->sched_class == rq->curr->sched_class) {
948 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
949 } else {
950 for_each_class(class) {
951 if (class == rq->curr->sched_class)
952 break;
953 if (class == p->sched_class) {
8875125e 954 resched_curr(rq);
1e5a7405
PZ
955 break;
956 }
957 }
958 }
959
960 /*
961 * A queue event has occurred, and we're going to schedule. In
962 * this case, we can save a useless back to back clock update.
963 */
da0c1e65 964 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
9edfbfed 965 rq_clock_skip_update(rq, true);
1e5a7405
PZ
966}
967
1da177e4 968#ifdef CONFIG_SMP
5cc389bc
PZ
969/*
970 * This is how migration works:
971 *
972 * 1) we invoke migration_cpu_stop() on the target CPU using
973 * stop_one_cpu().
974 * 2) stopper starts to run (implicitly forcing the migrated thread
975 * off the CPU)
976 * 3) it checks whether the migrated task is still in the wrong runqueue.
977 * 4) if it's in the wrong runqueue then the migration thread removes
978 * it and puts it into the right queue.
979 * 5) stopper completes and stop_one_cpu() returns and the migration
980 * is done.
981 */
982
983/*
984 * move_queued_task - move a queued task to new rq.
985 *
986 * Returns (locked) new rq. Old rq's lock is released.
987 */
5e16bbc2 988static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
5cc389bc 989{
5cc389bc
PZ
990 lockdep_assert_held(&rq->lock);
991
5cc389bc 992 p->on_rq = TASK_ON_RQ_MIGRATING;
3ea94de1 993 dequeue_task(rq, p, 0);
5cc389bc
PZ
994 set_task_cpu(p, new_cpu);
995 raw_spin_unlock(&rq->lock);
996
997 rq = cpu_rq(new_cpu);
998
999 raw_spin_lock(&rq->lock);
1000 BUG_ON(task_cpu(p) != new_cpu);
5cc389bc 1001 enqueue_task(rq, p, 0);
3ea94de1 1002 p->on_rq = TASK_ON_RQ_QUEUED;
5cc389bc
PZ
1003 check_preempt_curr(rq, p, 0);
1004
1005 return rq;
1006}
1007
1008struct migration_arg {
1009 struct task_struct *task;
1010 int dest_cpu;
1011};
1012
1013/*
1014 * Move (not current) task off this cpu, onto dest cpu. We're doing
1015 * this because either it can't run here any more (set_cpus_allowed()
1016 * away from this CPU, or CPU going down), or because we're
1017 * attempting to rebalance this task on exec (sched_exec).
1018 *
1019 * So we race with normal scheduler movements, but that's OK, as long
1020 * as the task is no longer on this CPU.
5cc389bc 1021 */
5e16bbc2 1022static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
5cc389bc 1023{
5cc389bc 1024 if (unlikely(!cpu_active(dest_cpu)))
5e16bbc2 1025 return rq;
5cc389bc
PZ
1026
1027 /* Affinity changed (again). */
1028 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
5e16bbc2 1029 return rq;
5cc389bc 1030
5e16bbc2
PZ
1031 rq = move_queued_task(rq, p, dest_cpu);
1032
1033 return rq;
5cc389bc
PZ
1034}
1035
1036/*
1037 * migration_cpu_stop - this will be executed by a highprio stopper thread
1038 * and performs thread migration by bumping thread off CPU then
1039 * 'pushing' onto another runqueue.
1040 */
1041static int migration_cpu_stop(void *data)
1042{
1043 struct migration_arg *arg = data;
5e16bbc2
PZ
1044 struct task_struct *p = arg->task;
1045 struct rq *rq = this_rq();
5cc389bc
PZ
1046
1047 /*
1048 * The original target cpu might have gone down and we might
1049 * be on another cpu but it doesn't matter.
1050 */
1051 local_irq_disable();
1052 /*
1053 * We need to explicitly wake pending tasks before running
1054 * __migrate_task() such that we will not miss enforcing cpus_allowed
1055 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1056 */
1057 sched_ttwu_pending();
5e16bbc2
PZ
1058
1059 raw_spin_lock(&p->pi_lock);
1060 raw_spin_lock(&rq->lock);
1061 /*
1062 * If task_rq(p) != rq, it cannot be migrated here, because we're
1063 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1064 * we're holding p->pi_lock.
1065 */
1066 if (task_rq(p) == rq && task_on_rq_queued(p))
1067 rq = __migrate_task(rq, p, arg->dest_cpu);
1068 raw_spin_unlock(&rq->lock);
1069 raw_spin_unlock(&p->pi_lock);
1070
5cc389bc
PZ
1071 local_irq_enable();
1072 return 0;
1073}
1074
c5b28038
PZ
1075/*
1076 * sched_class::set_cpus_allowed must do the below, but is not required to
1077 * actually call this function.
1078 */
1079void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
5cc389bc 1080{
5cc389bc
PZ
1081 cpumask_copy(&p->cpus_allowed, new_mask);
1082 p->nr_cpus_allowed = cpumask_weight(new_mask);
1083}
1084
c5b28038
PZ
1085void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1086{
6c37067e
PZ
1087 struct rq *rq = task_rq(p);
1088 bool queued, running;
1089
c5b28038 1090 lockdep_assert_held(&p->pi_lock);
6c37067e
PZ
1091
1092 queued = task_on_rq_queued(p);
1093 running = task_current(rq, p);
1094
1095 if (queued) {
1096 /*
1097 * Because __kthread_bind() calls this on blocked tasks without
1098 * holding rq->lock.
1099 */
1100 lockdep_assert_held(&rq->lock);
1de64443 1101 dequeue_task(rq, p, DEQUEUE_SAVE);
6c37067e
PZ
1102 }
1103 if (running)
1104 put_prev_task(rq, p);
1105
c5b28038 1106 p->sched_class->set_cpus_allowed(p, new_mask);
6c37067e
PZ
1107
1108 if (running)
1109 p->sched_class->set_curr_task(rq);
1110 if (queued)
1de64443 1111 enqueue_task(rq, p, ENQUEUE_RESTORE);
c5b28038
PZ
1112}
1113
5cc389bc
PZ
1114/*
1115 * Change a given task's CPU affinity. Migrate the thread to a
1116 * proper CPU and schedule it away if the CPU it's executing on
1117 * is removed from the allowed bitmask.
1118 *
1119 * NOTE: the caller must have a valid reference to the task, the
1120 * task must not exit() & deallocate itself prematurely. The
1121 * call is not atomic; no spinlocks may be held.
1122 */
25834c73
PZ
1123static int __set_cpus_allowed_ptr(struct task_struct *p,
1124 const struct cpumask *new_mask, bool check)
5cc389bc 1125{
e9d867a6 1126 const struct cpumask *cpu_valid_mask = cpu_active_mask;
5cc389bc 1127 unsigned int dest_cpu;
eb580751
PZ
1128 struct rq_flags rf;
1129 struct rq *rq;
5cc389bc
PZ
1130 int ret = 0;
1131
eb580751 1132 rq = task_rq_lock(p, &rf);
5cc389bc 1133
e9d867a6
PZI
1134 if (p->flags & PF_KTHREAD) {
1135 /*
1136 * Kernel threads are allowed on online && !active CPUs
1137 */
1138 cpu_valid_mask = cpu_online_mask;
1139 }
1140
25834c73
PZ
1141 /*
1142 * Must re-check here, to close a race against __kthread_bind(),
1143 * sched_setaffinity() is not guaranteed to observe the flag.
1144 */
1145 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1146 ret = -EINVAL;
1147 goto out;
1148 }
1149
5cc389bc
PZ
1150 if (cpumask_equal(&p->cpus_allowed, new_mask))
1151 goto out;
1152
e9d867a6 1153 if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
5cc389bc
PZ
1154 ret = -EINVAL;
1155 goto out;
1156 }
1157
1158 do_set_cpus_allowed(p, new_mask);
1159
e9d867a6
PZI
1160 if (p->flags & PF_KTHREAD) {
1161 /*
1162 * For kernel threads that do indeed end up on online &&
1163 * !active we want to ensure they are strict per-cpu threads.
1164 */
1165 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1166 !cpumask_intersects(new_mask, cpu_active_mask) &&
1167 p->nr_cpus_allowed != 1);
1168 }
1169
5cc389bc
PZ
1170 /* Can the task run on the task's current CPU? If so, we're done */
1171 if (cpumask_test_cpu(task_cpu(p), new_mask))
1172 goto out;
1173
e9d867a6 1174 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
5cc389bc
PZ
1175 if (task_running(rq, p) || p->state == TASK_WAKING) {
1176 struct migration_arg arg = { p, dest_cpu };
1177 /* Need help from migration thread: drop lock and wait. */
eb580751 1178 task_rq_unlock(rq, p, &rf);
5cc389bc
PZ
1179 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1180 tlb_migrate_finish(p->mm);
1181 return 0;
cbce1a68
PZ
1182 } else if (task_on_rq_queued(p)) {
1183 /*
1184 * OK, since we're going to drop the lock immediately
1185 * afterwards anyway.
1186 */
e7904a28 1187 lockdep_unpin_lock(&rq->lock, rf.cookie);
5e16bbc2 1188 rq = move_queued_task(rq, p, dest_cpu);
e7904a28 1189 lockdep_repin_lock(&rq->lock, rf.cookie);
cbce1a68 1190 }
5cc389bc 1191out:
eb580751 1192 task_rq_unlock(rq, p, &rf);
5cc389bc
PZ
1193
1194 return ret;
1195}
25834c73
PZ
1196
1197int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1198{
1199 return __set_cpus_allowed_ptr(p, new_mask, false);
1200}
5cc389bc
PZ
1201EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1202
dd41f596 1203void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1204{
e2912009
PZ
1205#ifdef CONFIG_SCHED_DEBUG
1206 /*
1207 * We should never call set_task_cpu() on a blocked task,
1208 * ttwu() will sort out the placement.
1209 */
077614ee 1210 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
e2336f6e 1211 !p->on_rq);
0122ec5b 1212
3ea94de1
JP
1213 /*
1214 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1215 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1216 * time relying on p->on_rq.
1217 */
1218 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1219 p->sched_class == &fair_sched_class &&
1220 (p->on_rq && !task_on_rq_migrating(p)));
1221
0122ec5b 1222#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1223 /*
1224 * The caller should hold either p->pi_lock or rq->lock, when changing
1225 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1226 *
1227 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1228 * see task_group().
6c6c54e1
PZ
1229 *
1230 * Furthermore, all task_rq users should acquire both locks, see
1231 * task_rq_lock().
1232 */
0122ec5b
PZ
1233 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1234 lockdep_is_held(&task_rq(p)->lock)));
1235#endif
e2912009
PZ
1236#endif
1237
de1d7286 1238 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1239
0c69774e 1240 if (task_cpu(p) != new_cpu) {
0a74bef8 1241 if (p->sched_class->migrate_task_rq)
5a4fd036 1242 p->sched_class->migrate_task_rq(p);
0c69774e 1243 p->se.nr_migrations++;
ff303e66 1244 perf_event_task_migrate(p);
0c69774e 1245 }
dd41f596
IM
1246
1247 __set_task_cpu(p, new_cpu);
c65cc870
IM
1248}
1249
ac66f547
PZ
1250static void __migrate_swap_task(struct task_struct *p, int cpu)
1251{
da0c1e65 1252 if (task_on_rq_queued(p)) {
ac66f547
PZ
1253 struct rq *src_rq, *dst_rq;
1254
1255 src_rq = task_rq(p);
1256 dst_rq = cpu_rq(cpu);
1257
3ea94de1 1258 p->on_rq = TASK_ON_RQ_MIGRATING;
ac66f547
PZ
1259 deactivate_task(src_rq, p, 0);
1260 set_task_cpu(p, cpu);
1261 activate_task(dst_rq, p, 0);
3ea94de1 1262 p->on_rq = TASK_ON_RQ_QUEUED;
ac66f547
PZ
1263 check_preempt_curr(dst_rq, p, 0);
1264 } else {
1265 /*
1266 * Task isn't running anymore; make it appear like we migrated
1267 * it before it went to sleep. This means on wakeup we make the
a1fd4656 1268 * previous cpu our target instead of where it really is.
ac66f547
PZ
1269 */
1270 p->wake_cpu = cpu;
1271 }
1272}
1273
1274struct migration_swap_arg {
1275 struct task_struct *src_task, *dst_task;
1276 int src_cpu, dst_cpu;
1277};
1278
1279static int migrate_swap_stop(void *data)
1280{
1281 struct migration_swap_arg *arg = data;
1282 struct rq *src_rq, *dst_rq;
1283 int ret = -EAGAIN;
1284
62694cd5
PZ
1285 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1286 return -EAGAIN;
1287
ac66f547
PZ
1288 src_rq = cpu_rq(arg->src_cpu);
1289 dst_rq = cpu_rq(arg->dst_cpu);
1290
74602315
PZ
1291 double_raw_lock(&arg->src_task->pi_lock,
1292 &arg->dst_task->pi_lock);
ac66f547 1293 double_rq_lock(src_rq, dst_rq);
62694cd5 1294
ac66f547
PZ
1295 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1296 goto unlock;
1297
1298 if (task_cpu(arg->src_task) != arg->src_cpu)
1299 goto unlock;
1300
1301 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1302 goto unlock;
1303
1304 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1305 goto unlock;
1306
1307 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1308 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1309
1310 ret = 0;
1311
1312unlock:
1313 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1314 raw_spin_unlock(&arg->dst_task->pi_lock);
1315 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1316
1317 return ret;
1318}
1319
1320/*
1321 * Cross migrate two tasks
1322 */
1323int migrate_swap(struct task_struct *cur, struct task_struct *p)
1324{
1325 struct migration_swap_arg arg;
1326 int ret = -EINVAL;
1327
ac66f547
PZ
1328 arg = (struct migration_swap_arg){
1329 .src_task = cur,
1330 .src_cpu = task_cpu(cur),
1331 .dst_task = p,
1332 .dst_cpu = task_cpu(p),
1333 };
1334
1335 if (arg.src_cpu == arg.dst_cpu)
1336 goto out;
1337
6acce3ef
PZ
1338 /*
1339 * These three tests are all lockless; this is OK since all of them
1340 * will be re-checked with proper locks held further down the line.
1341 */
ac66f547
PZ
1342 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1343 goto out;
1344
1345 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1346 goto out;
1347
1348 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1349 goto out;
1350
286549dc 1351 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1352 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1353
1354out:
ac66f547
PZ
1355 return ret;
1356}
1357
1da177e4
LT
1358/*
1359 * wait_task_inactive - wait for a thread to unschedule.
1360 *
85ba2d86
RM
1361 * If @match_state is nonzero, it's the @p->state value just checked and
1362 * not expected to change. If it changes, i.e. @p might have woken up,
1363 * then return zero. When we succeed in waiting for @p to be off its CPU,
1364 * we return a positive number (its total switch count). If a second call
1365 * a short while later returns the same number, the caller can be sure that
1366 * @p has remained unscheduled the whole time.
1367 *
1da177e4
LT
1368 * The caller must ensure that the task *will* unschedule sometime soon,
1369 * else this function might spin for a *long* time. This function can't
1370 * be called with interrupts off, or it may introduce deadlock with
1371 * smp_call_function() if an IPI is sent by the same process we are
1372 * waiting to become inactive.
1373 */
85ba2d86 1374unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4 1375{
da0c1e65 1376 int running, queued;
eb580751 1377 struct rq_flags rf;
85ba2d86 1378 unsigned long ncsw;
70b97a7f 1379 struct rq *rq;
1da177e4 1380
3a5c359a
AK
1381 for (;;) {
1382 /*
1383 * We do the initial early heuristics without holding
1384 * any task-queue locks at all. We'll only try to get
1385 * the runqueue lock when things look like they will
1386 * work out!
1387 */
1388 rq = task_rq(p);
fa490cfd 1389
3a5c359a
AK
1390 /*
1391 * If the task is actively running on another CPU
1392 * still, just relax and busy-wait without holding
1393 * any locks.
1394 *
1395 * NOTE! Since we don't hold any locks, it's not
1396 * even sure that "rq" stays as the right runqueue!
1397 * But we don't care, since "task_running()" will
1398 * return false if the runqueue has changed and p
1399 * is actually now running somewhere else!
1400 */
85ba2d86
RM
1401 while (task_running(rq, p)) {
1402 if (match_state && unlikely(p->state != match_state))
1403 return 0;
3a5c359a 1404 cpu_relax();
85ba2d86 1405 }
fa490cfd 1406
3a5c359a
AK
1407 /*
1408 * Ok, time to look more closely! We need the rq
1409 * lock now, to be *sure*. If we're wrong, we'll
1410 * just go back and repeat.
1411 */
eb580751 1412 rq = task_rq_lock(p, &rf);
27a9da65 1413 trace_sched_wait_task(p);
3a5c359a 1414 running = task_running(rq, p);
da0c1e65 1415 queued = task_on_rq_queued(p);
85ba2d86 1416 ncsw = 0;
f31e11d8 1417 if (!match_state || p->state == match_state)
93dcf55f 1418 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
eb580751 1419 task_rq_unlock(rq, p, &rf);
fa490cfd 1420
85ba2d86
RM
1421 /*
1422 * If it changed from the expected state, bail out now.
1423 */
1424 if (unlikely(!ncsw))
1425 break;
1426
3a5c359a
AK
1427 /*
1428 * Was it really running after all now that we
1429 * checked with the proper locks actually held?
1430 *
1431 * Oops. Go back and try again..
1432 */
1433 if (unlikely(running)) {
1434 cpu_relax();
1435 continue;
1436 }
fa490cfd 1437
3a5c359a
AK
1438 /*
1439 * It's not enough that it's not actively running,
1440 * it must be off the runqueue _entirely_, and not
1441 * preempted!
1442 *
80dd99b3 1443 * So if it was still runnable (but just not actively
3a5c359a
AK
1444 * running right now), it's preempted, and we should
1445 * yield - it could be a while.
1446 */
da0c1e65 1447 if (unlikely(queued)) {
8eb90c30
TG
1448 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1449
1450 set_current_state(TASK_UNINTERRUPTIBLE);
1451 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1452 continue;
1453 }
fa490cfd 1454
3a5c359a
AK
1455 /*
1456 * Ahh, all good. It wasn't running, and it wasn't
1457 * runnable, which means that it will never become
1458 * running in the future either. We're all done!
1459 */
1460 break;
1461 }
85ba2d86
RM
1462
1463 return ncsw;
1da177e4
LT
1464}
1465
1466/***
1467 * kick_process - kick a running thread to enter/exit the kernel
1468 * @p: the to-be-kicked thread
1469 *
1470 * Cause a process which is running on another CPU to enter
1471 * kernel-mode, without any delay. (to get signals handled.)
1472 *
25985edc 1473 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1474 * because all it wants to ensure is that the remote task enters
1475 * the kernel. If the IPI races and the task has been migrated
1476 * to another CPU then no harm is done and the purpose has been
1477 * achieved as well.
1478 */
36c8b586 1479void kick_process(struct task_struct *p)
1da177e4
LT
1480{
1481 int cpu;
1482
1483 preempt_disable();
1484 cpu = task_cpu(p);
1485 if ((cpu != smp_processor_id()) && task_curr(p))
1486 smp_send_reschedule(cpu);
1487 preempt_enable();
1488}
b43e3521 1489EXPORT_SYMBOL_GPL(kick_process);
1da177e4 1490
30da688e 1491/*
013fdb80 1492 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
e9d867a6
PZI
1493 *
1494 * A few notes on cpu_active vs cpu_online:
1495 *
1496 * - cpu_active must be a subset of cpu_online
1497 *
1498 * - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
1499 * see __set_cpus_allowed_ptr(). At this point the newly online
1500 * cpu isn't yet part of the sched domains, and balancing will not
1501 * see it.
1502 *
1503 * - on cpu-down we clear cpu_active() to mask the sched domains and
1504 * avoid the load balancer to place new tasks on the to be removed
1505 * cpu. Existing tasks will remain running there and will be taken
1506 * off.
1507 *
1508 * This means that fallback selection must not select !active CPUs.
1509 * And can assume that any active CPU must be online. Conversely
1510 * select_task_rq() below may allow selection of !active CPUs in order
1511 * to satisfy the above rules.
30da688e 1512 */
5da9a0fb
PZ
1513static int select_fallback_rq(int cpu, struct task_struct *p)
1514{
aa00d89c
TC
1515 int nid = cpu_to_node(cpu);
1516 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1517 enum { cpuset, possible, fail } state = cpuset;
1518 int dest_cpu;
5da9a0fb 1519
aa00d89c
TC
1520 /*
1521 * If the node that the cpu is on has been offlined, cpu_to_node()
1522 * will return -1. There is no cpu on the node, and we should
1523 * select the cpu on the other node.
1524 */
1525 if (nid != -1) {
1526 nodemask = cpumask_of_node(nid);
1527
1528 /* Look for allowed, online CPU in same node. */
1529 for_each_cpu(dest_cpu, nodemask) {
aa00d89c
TC
1530 if (!cpu_active(dest_cpu))
1531 continue;
1532 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1533 return dest_cpu;
1534 }
2baab4e9 1535 }
5da9a0fb 1536
2baab4e9
PZ
1537 for (;;) {
1538 /* Any allowed, online CPU? */
e3831edd 1539 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
feb245e3
TH
1540 if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu))
1541 continue;
1542 if (!cpu_online(dest_cpu))
2baab4e9
PZ
1543 continue;
1544 goto out;
1545 }
5da9a0fb 1546
e73e85f0 1547 /* No more Mr. Nice Guy. */
2baab4e9
PZ
1548 switch (state) {
1549 case cpuset:
e73e85f0
ON
1550 if (IS_ENABLED(CONFIG_CPUSETS)) {
1551 cpuset_cpus_allowed_fallback(p);
1552 state = possible;
1553 break;
1554 }
1555 /* fall-through */
2baab4e9
PZ
1556 case possible:
1557 do_set_cpus_allowed(p, cpu_possible_mask);
1558 state = fail;
1559 break;
1560
1561 case fail:
1562 BUG();
1563 break;
1564 }
1565 }
1566
1567out:
1568 if (state != cpuset) {
1569 /*
1570 * Don't tell them about moving exiting tasks or
1571 * kernel threads (both mm NULL), since they never
1572 * leave kernel.
1573 */
1574 if (p->mm && printk_ratelimit()) {
aac74dc4 1575 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1576 task_pid_nr(p), p->comm, cpu);
1577 }
5da9a0fb
PZ
1578 }
1579
1580 return dest_cpu;
1581}
1582
e2912009 1583/*
013fdb80 1584 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1585 */
970b13ba 1586static inline
ac66f547 1587int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1588{
cbce1a68
PZ
1589 lockdep_assert_held(&p->pi_lock);
1590
50605ffb 1591 if (tsk_nr_cpus_allowed(p) > 1)
6c1d9410 1592 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e9d867a6
PZI
1593 else
1594 cpu = cpumask_any(tsk_cpus_allowed(p));
e2912009
PZ
1595
1596 /*
1597 * In order not to call set_task_cpu() on a blocking task we need
1598 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1599 * cpu.
1600 *
1601 * Since this is common to all placement strategies, this lives here.
1602 *
1603 * [ this allows ->select_task() to simply return task_cpu(p) and
1604 * not worry about this generic constraint ]
1605 */
fa17b507 1606 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1607 !cpu_online(cpu)))
5da9a0fb 1608 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1609
1610 return cpu;
970b13ba 1611}
09a40af5
MG
1612
1613static void update_avg(u64 *avg, u64 sample)
1614{
1615 s64 diff = sample - *avg;
1616 *avg += diff >> 3;
1617}
25834c73
PZ
1618
1619#else
1620
1621static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1622 const struct cpumask *new_mask, bool check)
1623{
1624 return set_cpus_allowed_ptr(p, new_mask);
1625}
1626
5cc389bc 1627#endif /* CONFIG_SMP */
970b13ba 1628
d7c01d27 1629static void
b84cb5df 1630ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1631{
d7c01d27 1632#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1633 struct rq *rq = this_rq();
1634
d7c01d27
PZ
1635#ifdef CONFIG_SMP
1636 int this_cpu = smp_processor_id();
1637
1638 if (cpu == this_cpu) {
1639 schedstat_inc(rq, ttwu_local);
1640 schedstat_inc(p, se.statistics.nr_wakeups_local);
1641 } else {
1642 struct sched_domain *sd;
1643
1644 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1645 rcu_read_lock();
d7c01d27
PZ
1646 for_each_domain(this_cpu, sd) {
1647 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1648 schedstat_inc(sd, ttwu_wake_remote);
1649 break;
1650 }
1651 }
057f3fad 1652 rcu_read_unlock();
d7c01d27 1653 }
f339b9dc
PZ
1654
1655 if (wake_flags & WF_MIGRATED)
1656 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1657
d7c01d27
PZ
1658#endif /* CONFIG_SMP */
1659
1660 schedstat_inc(rq, ttwu_count);
9ed3811a 1661 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1662
1663 if (wake_flags & WF_SYNC)
9ed3811a 1664 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1665
d7c01d27
PZ
1666#endif /* CONFIG_SCHEDSTATS */
1667}
1668
1de64443 1669static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
d7c01d27 1670{
9ed3811a 1671 activate_task(rq, p, en_flags);
da0c1e65 1672 p->on_rq = TASK_ON_RQ_QUEUED;
c2f7115e
PZ
1673
1674 /* if a worker is waking up, notify workqueue */
1675 if (p->flags & PF_WQ_WORKER)
1676 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1677}
1678
23f41eeb
PZ
1679/*
1680 * Mark the task runnable and perform wakeup-preemption.
1681 */
e7904a28
PZ
1682static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1683 struct pin_cookie cookie)
9ed3811a 1684{
9ed3811a 1685 check_preempt_curr(rq, p, wake_flags);
9ed3811a 1686 p->state = TASK_RUNNING;
fbd705a0
PZ
1687 trace_sched_wakeup(p);
1688
9ed3811a 1689#ifdef CONFIG_SMP
4c9a4bc8
PZ
1690 if (p->sched_class->task_woken) {
1691 /*
cbce1a68
PZ
1692 * Our task @p is fully woken up and running; so its safe to
1693 * drop the rq->lock, hereafter rq is only used for statistics.
4c9a4bc8 1694 */
e7904a28 1695 lockdep_unpin_lock(&rq->lock, cookie);
9ed3811a 1696 p->sched_class->task_woken(rq, p);
e7904a28 1697 lockdep_repin_lock(&rq->lock, cookie);
4c9a4bc8 1698 }
9ed3811a 1699
e69c6341 1700 if (rq->idle_stamp) {
78becc27 1701 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1702 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1703
abfafa54
JL
1704 update_avg(&rq->avg_idle, delta);
1705
1706 if (rq->avg_idle > max)
9ed3811a 1707 rq->avg_idle = max;
abfafa54 1708
9ed3811a
TH
1709 rq->idle_stamp = 0;
1710 }
1711#endif
1712}
1713
c05fbafb 1714static void
e7904a28
PZ
1715ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1716 struct pin_cookie cookie)
c05fbafb 1717{
b5179ac7
PZ
1718 int en_flags = ENQUEUE_WAKEUP;
1719
cbce1a68
PZ
1720 lockdep_assert_held(&rq->lock);
1721
c05fbafb
PZ
1722#ifdef CONFIG_SMP
1723 if (p->sched_contributes_to_load)
1724 rq->nr_uninterruptible--;
b5179ac7 1725
b5179ac7 1726 if (wake_flags & WF_MIGRATED)
59efa0ba 1727 en_flags |= ENQUEUE_MIGRATED;
c05fbafb
PZ
1728#endif
1729
b5179ac7 1730 ttwu_activate(rq, p, en_flags);
e7904a28 1731 ttwu_do_wakeup(rq, p, wake_flags, cookie);
c05fbafb
PZ
1732}
1733
1734/*
1735 * Called in case the task @p isn't fully descheduled from its runqueue,
1736 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1737 * since all we need to do is flip p->state to TASK_RUNNING, since
1738 * the task is still ->on_rq.
1739 */
1740static int ttwu_remote(struct task_struct *p, int wake_flags)
1741{
eb580751 1742 struct rq_flags rf;
c05fbafb
PZ
1743 struct rq *rq;
1744 int ret = 0;
1745
eb580751 1746 rq = __task_rq_lock(p, &rf);
da0c1e65 1747 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
1748 /* check_preempt_curr() may use rq clock */
1749 update_rq_clock(rq);
e7904a28 1750 ttwu_do_wakeup(rq, p, wake_flags, rf.cookie);
c05fbafb
PZ
1751 ret = 1;
1752 }
eb580751 1753 __task_rq_unlock(rq, &rf);
c05fbafb
PZ
1754
1755 return ret;
1756}
1757
317f3941 1758#ifdef CONFIG_SMP
e3baac47 1759void sched_ttwu_pending(void)
317f3941
PZ
1760{
1761 struct rq *rq = this_rq();
fa14ff4a 1762 struct llist_node *llist = llist_del_all(&rq->wake_list);
e7904a28 1763 struct pin_cookie cookie;
fa14ff4a 1764 struct task_struct *p;
e3baac47 1765 unsigned long flags;
317f3941 1766
e3baac47
PZ
1767 if (!llist)
1768 return;
1769
1770 raw_spin_lock_irqsave(&rq->lock, flags);
e7904a28 1771 cookie = lockdep_pin_lock(&rq->lock);
317f3941 1772
fa14ff4a 1773 while (llist) {
b7e7ade3
PZ
1774 int wake_flags = 0;
1775
fa14ff4a
PZ
1776 p = llist_entry(llist, struct task_struct, wake_entry);
1777 llist = llist_next(llist);
b7e7ade3
PZ
1778
1779 if (p->sched_remote_wakeup)
1780 wake_flags = WF_MIGRATED;
1781
1782 ttwu_do_activate(rq, p, wake_flags, cookie);
317f3941
PZ
1783 }
1784
e7904a28 1785 lockdep_unpin_lock(&rq->lock, cookie);
e3baac47 1786 raw_spin_unlock_irqrestore(&rq->lock, flags);
317f3941
PZ
1787}
1788
1789void scheduler_ipi(void)
1790{
f27dde8d
PZ
1791 /*
1792 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1793 * TIF_NEED_RESCHED remotely (for the first time) will also send
1794 * this IPI.
1795 */
8cb75e0c 1796 preempt_fold_need_resched();
f27dde8d 1797
fd2ac4f4 1798 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1799 return;
1800
1801 /*
1802 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1803 * traditionally all their work was done from the interrupt return
1804 * path. Now that we actually do some work, we need to make sure
1805 * we do call them.
1806 *
1807 * Some archs already do call them, luckily irq_enter/exit nest
1808 * properly.
1809 *
1810 * Arguably we should visit all archs and update all handlers,
1811 * however a fair share of IPIs are still resched only so this would
1812 * somewhat pessimize the simple resched case.
1813 */
1814 irq_enter();
fa14ff4a 1815 sched_ttwu_pending();
ca38062e
SS
1816
1817 /*
1818 * Check if someone kicked us for doing the nohz idle load balance.
1819 */
873b4c65 1820 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1821 this_rq()->idle_balance = 1;
ca38062e 1822 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1823 }
c5d753a5 1824 irq_exit();
317f3941
PZ
1825}
1826
b7e7ade3 1827static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
317f3941 1828{
e3baac47
PZ
1829 struct rq *rq = cpu_rq(cpu);
1830
b7e7ade3
PZ
1831 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1832
e3baac47
PZ
1833 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1834 if (!set_nr_if_polling(rq->idle))
1835 smp_send_reschedule(cpu);
1836 else
1837 trace_sched_wake_idle_without_ipi(cpu);
1838 }
317f3941 1839}
d6aa8f85 1840
f6be8af1
CL
1841void wake_up_if_idle(int cpu)
1842{
1843 struct rq *rq = cpu_rq(cpu);
1844 unsigned long flags;
1845
fd7de1e8
AL
1846 rcu_read_lock();
1847
1848 if (!is_idle_task(rcu_dereference(rq->curr)))
1849 goto out;
f6be8af1
CL
1850
1851 if (set_nr_if_polling(rq->idle)) {
1852 trace_sched_wake_idle_without_ipi(cpu);
1853 } else {
1854 raw_spin_lock_irqsave(&rq->lock, flags);
1855 if (is_idle_task(rq->curr))
1856 smp_send_reschedule(cpu);
1857 /* Else cpu is not in idle, do nothing here */
1858 raw_spin_unlock_irqrestore(&rq->lock, flags);
1859 }
fd7de1e8
AL
1860
1861out:
1862 rcu_read_unlock();
f6be8af1
CL
1863}
1864
39be3501 1865bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1866{
1867 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1868}
d6aa8f85 1869#endif /* CONFIG_SMP */
317f3941 1870
b5179ac7 1871static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
c05fbafb
PZ
1872{
1873 struct rq *rq = cpu_rq(cpu);
e7904a28 1874 struct pin_cookie cookie;
c05fbafb 1875
17d9f311 1876#if defined(CONFIG_SMP)
39be3501 1877 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1878 sched_clock_cpu(cpu); /* sync clocks x-cpu */
b7e7ade3 1879 ttwu_queue_remote(p, cpu, wake_flags);
317f3941
PZ
1880 return;
1881 }
1882#endif
1883
c05fbafb 1884 raw_spin_lock(&rq->lock);
e7904a28 1885 cookie = lockdep_pin_lock(&rq->lock);
b5179ac7 1886 ttwu_do_activate(rq, p, wake_flags, cookie);
e7904a28 1887 lockdep_unpin_lock(&rq->lock, cookie);
c05fbafb 1888 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1889}
1890
8643cda5
PZ
1891/*
1892 * Notes on Program-Order guarantees on SMP systems.
1893 *
1894 * MIGRATION
1895 *
1896 * The basic program-order guarantee on SMP systems is that when a task [t]
1897 * migrates, all its activity on its old cpu [c0] happens-before any subsequent
1898 * execution on its new cpu [c1].
1899 *
1900 * For migration (of runnable tasks) this is provided by the following means:
1901 *
1902 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1903 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1904 * rq(c1)->lock (if not at the same time, then in that order).
1905 * C) LOCK of the rq(c1)->lock scheduling in task
1906 *
1907 * Transitivity guarantees that B happens after A and C after B.
1908 * Note: we only require RCpc transitivity.
1909 * Note: the cpu doing B need not be c0 or c1
1910 *
1911 * Example:
1912 *
1913 * CPU0 CPU1 CPU2
1914 *
1915 * LOCK rq(0)->lock
1916 * sched-out X
1917 * sched-in Y
1918 * UNLOCK rq(0)->lock
1919 *
1920 * LOCK rq(0)->lock // orders against CPU0
1921 * dequeue X
1922 * UNLOCK rq(0)->lock
1923 *
1924 * LOCK rq(1)->lock
1925 * enqueue X
1926 * UNLOCK rq(1)->lock
1927 *
1928 * LOCK rq(1)->lock // orders against CPU2
1929 * sched-out Z
1930 * sched-in X
1931 * UNLOCK rq(1)->lock
1932 *
1933 *
1934 * BLOCKING -- aka. SLEEP + WAKEUP
1935 *
1936 * For blocking we (obviously) need to provide the same guarantee as for
1937 * migration. However the means are completely different as there is no lock
1938 * chain to provide order. Instead we do:
1939 *
1940 * 1) smp_store_release(X->on_cpu, 0)
1f03e8d2 1941 * 2) smp_cond_load_acquire(!X->on_cpu)
8643cda5
PZ
1942 *
1943 * Example:
1944 *
1945 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1946 *
1947 * LOCK rq(0)->lock LOCK X->pi_lock
1948 * dequeue X
1949 * sched-out X
1950 * smp_store_release(X->on_cpu, 0);
1951 *
1f03e8d2 1952 * smp_cond_load_acquire(&X->on_cpu, !VAL);
8643cda5
PZ
1953 * X->state = WAKING
1954 * set_task_cpu(X,2)
1955 *
1956 * LOCK rq(2)->lock
1957 * enqueue X
1958 * X->state = RUNNING
1959 * UNLOCK rq(2)->lock
1960 *
1961 * LOCK rq(2)->lock // orders against CPU1
1962 * sched-out Z
1963 * sched-in X
1964 * UNLOCK rq(2)->lock
1965 *
1966 * UNLOCK X->pi_lock
1967 * UNLOCK rq(0)->lock
1968 *
1969 *
1970 * However; for wakeups there is a second guarantee we must provide, namely we
1971 * must observe the state that lead to our wakeup. That is, not only must our
1972 * task observe its own prior state, it must also observe the stores prior to
1973 * its wakeup.
1974 *
1975 * This means that any means of doing remote wakeups must order the CPU doing
1976 * the wakeup against the CPU the task is going to end up running on. This,
1977 * however, is already required for the regular Program-Order guarantee above,
1f03e8d2 1978 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
8643cda5
PZ
1979 *
1980 */
1981
9ed3811a 1982/**
1da177e4 1983 * try_to_wake_up - wake up a thread
9ed3811a 1984 * @p: the thread to be awakened
1da177e4 1985 * @state: the mask of task states that can be woken
9ed3811a 1986 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1987 *
1988 * Put it on the run-queue if it's not already there. The "current"
1989 * thread is always on the run-queue (except when the actual
1990 * re-schedule is in progress), and as such you're allowed to do
1991 * the simpler "current->state = TASK_RUNNING" to mark yourself
1992 * runnable without the overhead of this.
1993 *
e69f6186 1994 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1995 * or @state didn't match @p's state.
1da177e4 1996 */
e4a52bcb
PZ
1997static int
1998try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1999{
1da177e4 2000 unsigned long flags;
c05fbafb 2001 int cpu, success = 0;
2398f2c6 2002
e0acd0a6
ON
2003 /*
2004 * If we are going to wake up a thread waiting for CONDITION we
2005 * need to ensure that CONDITION=1 done by the caller can not be
2006 * reordered with p->state check below. This pairs with mb() in
2007 * set_current_state() the waiting thread does.
2008 */
2009 smp_mb__before_spinlock();
013fdb80 2010 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 2011 if (!(p->state & state))
1da177e4
LT
2012 goto out;
2013
fbd705a0
PZ
2014 trace_sched_waking(p);
2015
c05fbafb 2016 success = 1; /* we're going to change ->state */
1da177e4 2017 cpu = task_cpu(p);
1da177e4 2018
c05fbafb
PZ
2019 if (p->on_rq && ttwu_remote(p, wake_flags))
2020 goto stat;
1da177e4 2021
1da177e4 2022#ifdef CONFIG_SMP
ecf7d01c
PZ
2023 /*
2024 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2025 * possible to, falsely, observe p->on_cpu == 0.
2026 *
2027 * One must be running (->on_cpu == 1) in order to remove oneself
2028 * from the runqueue.
2029 *
2030 * [S] ->on_cpu = 1; [L] ->on_rq
2031 * UNLOCK rq->lock
2032 * RMB
2033 * LOCK rq->lock
2034 * [S] ->on_rq = 0; [L] ->on_cpu
2035 *
2036 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2037 * from the consecutive calls to schedule(); the first switching to our
2038 * task, the second putting it to sleep.
2039 */
2040 smp_rmb();
2041
e9c84311 2042 /*
c05fbafb
PZ
2043 * If the owning (remote) cpu is still in the middle of schedule() with
2044 * this task as prev, wait until its done referencing the task.
b75a2253
PZ
2045 *
2046 * Pairs with the smp_store_release() in finish_lock_switch().
2047 *
2048 * This ensures that tasks getting woken will be fully ordered against
2049 * their previous state and preserve Program Order.
0970d299 2050 */
1f03e8d2 2051 smp_cond_load_acquire(&p->on_cpu, !VAL);
1da177e4 2052
a8e4f2ea 2053 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 2054 p->state = TASK_WAKING;
e7693a36 2055
ac66f547 2056 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
2057 if (task_cpu(p) != cpu) {
2058 wake_flags |= WF_MIGRATED;
e4a52bcb 2059 set_task_cpu(p, cpu);
f339b9dc 2060 }
1da177e4 2061#endif /* CONFIG_SMP */
1da177e4 2062
b5179ac7 2063 ttwu_queue(p, cpu, wake_flags);
c05fbafb 2064stat:
cb251765
MG
2065 if (schedstat_enabled())
2066 ttwu_stat(p, cpu, wake_flags);
1da177e4 2067out:
013fdb80 2068 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
2069
2070 return success;
2071}
2072
21aa9af0
TH
2073/**
2074 * try_to_wake_up_local - try to wake up a local task with rq lock held
2075 * @p: the thread to be awakened
9279e0d2 2076 * @cookie: context's cookie for pinning
21aa9af0 2077 *
2acca55e 2078 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 2079 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 2080 * the current task.
21aa9af0 2081 */
e7904a28 2082static void try_to_wake_up_local(struct task_struct *p, struct pin_cookie cookie)
21aa9af0
TH
2083{
2084 struct rq *rq = task_rq(p);
21aa9af0 2085
383efcd0
TH
2086 if (WARN_ON_ONCE(rq != this_rq()) ||
2087 WARN_ON_ONCE(p == current))
2088 return;
2089
21aa9af0
TH
2090 lockdep_assert_held(&rq->lock);
2091
2acca55e 2092 if (!raw_spin_trylock(&p->pi_lock)) {
cbce1a68
PZ
2093 /*
2094 * This is OK, because current is on_cpu, which avoids it being
2095 * picked for load-balance and preemption/IRQs are still
2096 * disabled avoiding further scheduler activity on it and we've
2097 * not yet picked a replacement task.
2098 */
e7904a28 2099 lockdep_unpin_lock(&rq->lock, cookie);
2acca55e
PZ
2100 raw_spin_unlock(&rq->lock);
2101 raw_spin_lock(&p->pi_lock);
2102 raw_spin_lock(&rq->lock);
e7904a28 2103 lockdep_repin_lock(&rq->lock, cookie);
2acca55e
PZ
2104 }
2105
21aa9af0 2106 if (!(p->state & TASK_NORMAL))
2acca55e 2107 goto out;
21aa9af0 2108
fbd705a0
PZ
2109 trace_sched_waking(p);
2110
da0c1e65 2111 if (!task_on_rq_queued(p))
d7c01d27
PZ
2112 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2113
e7904a28 2114 ttwu_do_wakeup(rq, p, 0, cookie);
cb251765
MG
2115 if (schedstat_enabled())
2116 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
2117out:
2118 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
2119}
2120
50fa610a
DH
2121/**
2122 * wake_up_process - Wake up a specific process
2123 * @p: The process to be woken up.
2124 *
2125 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
2126 * processes.
2127 *
2128 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
2129 *
2130 * It may be assumed that this function implies a write memory barrier before
2131 * changing the task state if and only if any tasks are woken up.
2132 */
7ad5b3a5 2133int wake_up_process(struct task_struct *p)
1da177e4 2134{
9067ac85 2135 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 2136}
1da177e4
LT
2137EXPORT_SYMBOL(wake_up_process);
2138
7ad5b3a5 2139int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2140{
2141 return try_to_wake_up(p, state, 0);
2142}
2143
a5e7be3b
JL
2144/*
2145 * This function clears the sched_dl_entity static params.
2146 */
2147void __dl_clear_params(struct task_struct *p)
2148{
2149 struct sched_dl_entity *dl_se = &p->dl;
2150
2151 dl_se->dl_runtime = 0;
2152 dl_se->dl_deadline = 0;
2153 dl_se->dl_period = 0;
2154 dl_se->flags = 0;
2155 dl_se->dl_bw = 0;
40767b0d
PZ
2156
2157 dl_se->dl_throttled = 0;
40767b0d 2158 dl_se->dl_yielded = 0;
a5e7be3b
JL
2159}
2160
1da177e4
LT
2161/*
2162 * Perform scheduler related setup for a newly forked process p.
2163 * p is forked by current.
dd41f596
IM
2164 *
2165 * __sched_fork() is basic setup used by init_idle() too:
2166 */
5e1576ed 2167static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2168{
fd2f4419
PZ
2169 p->on_rq = 0;
2170
2171 p->se.on_rq = 0;
dd41f596
IM
2172 p->se.exec_start = 0;
2173 p->se.sum_exec_runtime = 0;
f6cf891c 2174 p->se.prev_sum_exec_runtime = 0;
6c594c21 2175 p->se.nr_migrations = 0;
da7a735e 2176 p->se.vruntime = 0;
fd2f4419 2177 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d 2178
ad936d86
BP
2179#ifdef CONFIG_FAIR_GROUP_SCHED
2180 p->se.cfs_rq = NULL;
2181#endif
2182
6cfb0d5d 2183#ifdef CONFIG_SCHEDSTATS
cb251765 2184 /* Even if schedstat is disabled, there should not be garbage */
41acab88 2185 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2186#endif
476d139c 2187
aab03e05 2188 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 2189 init_dl_task_timer(&p->dl);
a5e7be3b 2190 __dl_clear_params(p);
aab03e05 2191
fa717060 2192 INIT_LIST_HEAD(&p->rt.run_list);
ff77e468
PZ
2193 p->rt.timeout = 0;
2194 p->rt.time_slice = sched_rr_timeslice;
2195 p->rt.on_rq = 0;
2196 p->rt.on_list = 0;
476d139c 2197
e107be36
AK
2198#ifdef CONFIG_PREEMPT_NOTIFIERS
2199 INIT_HLIST_HEAD(&p->preempt_notifiers);
2200#endif
cbee9f88
PZ
2201
2202#ifdef CONFIG_NUMA_BALANCING
2203 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 2204 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
2205 p->mm->numa_scan_seq = 0;
2206 }
2207
5e1576ed
RR
2208 if (clone_flags & CLONE_VM)
2209 p->numa_preferred_nid = current->numa_preferred_nid;
2210 else
2211 p->numa_preferred_nid = -1;
2212
cbee9f88
PZ
2213 p->node_stamp = 0ULL;
2214 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 2215 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 2216 p->numa_work.next = &p->numa_work;
44dba3d5 2217 p->numa_faults = NULL;
7e2703e6
RR
2218 p->last_task_numa_placement = 0;
2219 p->last_sum_exec_runtime = 0;
8c8a743c 2220
8c8a743c 2221 p->numa_group = NULL;
cbee9f88 2222#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
2223}
2224
2a595721
SD
2225DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2226
1a687c2e 2227#ifdef CONFIG_NUMA_BALANCING
c3b9bc5b 2228
1a687c2e
MG
2229void set_numabalancing_state(bool enabled)
2230{
2231 if (enabled)
2a595721 2232 static_branch_enable(&sched_numa_balancing);
1a687c2e 2233 else
2a595721 2234 static_branch_disable(&sched_numa_balancing);
1a687c2e 2235}
54a43d54
AK
2236
2237#ifdef CONFIG_PROC_SYSCTL
2238int sysctl_numa_balancing(struct ctl_table *table, int write,
2239 void __user *buffer, size_t *lenp, loff_t *ppos)
2240{
2241 struct ctl_table t;
2242 int err;
2a595721 2243 int state = static_branch_likely(&sched_numa_balancing);
54a43d54
AK
2244
2245 if (write && !capable(CAP_SYS_ADMIN))
2246 return -EPERM;
2247
2248 t = *table;
2249 t.data = &state;
2250 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2251 if (err < 0)
2252 return err;
2253 if (write)
2254 set_numabalancing_state(state);
2255 return err;
2256}
2257#endif
2258#endif
dd41f596 2259
4698f88c
JP
2260#ifdef CONFIG_SCHEDSTATS
2261
cb251765 2262DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4698f88c 2263static bool __initdata __sched_schedstats = false;
cb251765 2264
cb251765
MG
2265static void set_schedstats(bool enabled)
2266{
2267 if (enabled)
2268 static_branch_enable(&sched_schedstats);
2269 else
2270 static_branch_disable(&sched_schedstats);
2271}
2272
2273void force_schedstat_enabled(void)
2274{
2275 if (!schedstat_enabled()) {
2276 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2277 static_branch_enable(&sched_schedstats);
2278 }
2279}
2280
2281static int __init setup_schedstats(char *str)
2282{
2283 int ret = 0;
2284 if (!str)
2285 goto out;
2286
4698f88c
JP
2287 /*
2288 * This code is called before jump labels have been set up, so we can't
2289 * change the static branch directly just yet. Instead set a temporary
2290 * variable so init_schedstats() can do it later.
2291 */
cb251765 2292 if (!strcmp(str, "enable")) {
4698f88c 2293 __sched_schedstats = true;
cb251765
MG
2294 ret = 1;
2295 } else if (!strcmp(str, "disable")) {
4698f88c 2296 __sched_schedstats = false;
cb251765
MG
2297 ret = 1;
2298 }
2299out:
2300 if (!ret)
2301 pr_warn("Unable to parse schedstats=\n");
2302
2303 return ret;
2304}
2305__setup("schedstats=", setup_schedstats);
2306
4698f88c
JP
2307static void __init init_schedstats(void)
2308{
2309 set_schedstats(__sched_schedstats);
2310}
2311
cb251765
MG
2312#ifdef CONFIG_PROC_SYSCTL
2313int sysctl_schedstats(struct ctl_table *table, int write,
2314 void __user *buffer, size_t *lenp, loff_t *ppos)
2315{
2316 struct ctl_table t;
2317 int err;
2318 int state = static_branch_likely(&sched_schedstats);
2319
2320 if (write && !capable(CAP_SYS_ADMIN))
2321 return -EPERM;
2322
2323 t = *table;
2324 t.data = &state;
2325 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2326 if (err < 0)
2327 return err;
2328 if (write)
2329 set_schedstats(state);
2330 return err;
2331}
4698f88c
JP
2332#endif /* CONFIG_PROC_SYSCTL */
2333#else /* !CONFIG_SCHEDSTATS */
2334static inline void init_schedstats(void) {}
2335#endif /* CONFIG_SCHEDSTATS */
dd41f596
IM
2336
2337/*
2338 * fork()/clone()-time setup:
2339 */
aab03e05 2340int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2341{
0122ec5b 2342 unsigned long flags;
dd41f596
IM
2343 int cpu = get_cpu();
2344
5e1576ed 2345 __sched_fork(clone_flags, p);
06b83b5f 2346 /*
7dc603c9 2347 * We mark the process as NEW here. This guarantees that
06b83b5f
PZ
2348 * nobody will actually run it, and a signal or other external
2349 * event cannot wake it up and insert it on the runqueue either.
2350 */
7dc603c9 2351 p->state = TASK_NEW;
dd41f596 2352
c350a04e
MG
2353 /*
2354 * Make sure we do not leak PI boosting priority to the child.
2355 */
2356 p->prio = current->normal_prio;
2357
b9dc29e7
MG
2358 /*
2359 * Revert to default priority/policy on fork if requested.
2360 */
2361 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 2362 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 2363 p->policy = SCHED_NORMAL;
6c697bdf 2364 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
2365 p->rt_priority = 0;
2366 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2367 p->static_prio = NICE_TO_PRIO(0);
2368
2369 p->prio = p->normal_prio = __normal_prio(p);
2370 set_load_weight(p);
6c697bdf 2371
b9dc29e7
MG
2372 /*
2373 * We don't need the reset flag anymore after the fork. It has
2374 * fulfilled its duty:
2375 */
2376 p->sched_reset_on_fork = 0;
2377 }
ca94c442 2378
aab03e05
DF
2379 if (dl_prio(p->prio)) {
2380 put_cpu();
2381 return -EAGAIN;
2382 } else if (rt_prio(p->prio)) {
2383 p->sched_class = &rt_sched_class;
2384 } else {
2ddbf952 2385 p->sched_class = &fair_sched_class;
aab03e05 2386 }
b29739f9 2387
7dc603c9 2388 init_entity_runnable_average(&p->se);
cd29fe6f 2389
86951599
PZ
2390 /*
2391 * The child is not yet in the pid-hash so no cgroup attach races,
2392 * and the cgroup is pinned to this child due to cgroup_fork()
2393 * is ran before sched_fork().
2394 *
2395 * Silence PROVE_RCU.
2396 */
0122ec5b 2397 raw_spin_lock_irqsave(&p->pi_lock, flags);
e210bffd
PZ
2398 /*
2399 * We're setting the cpu for the first time, we don't migrate,
2400 * so use __set_task_cpu().
2401 */
2402 __set_task_cpu(p, cpu);
2403 if (p->sched_class->task_fork)
2404 p->sched_class->task_fork(p);
0122ec5b 2405 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 2406
f6db8347 2407#ifdef CONFIG_SCHED_INFO
dd41f596 2408 if (likely(sched_info_on()))
52f17b6c 2409 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2410#endif
3ca7a440
PZ
2411#if defined(CONFIG_SMP)
2412 p->on_cpu = 0;
4866cde0 2413#endif
01028747 2414 init_task_preempt_count(p);
806c09a7 2415#ifdef CONFIG_SMP
917b627d 2416 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 2417 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 2418#endif
917b627d 2419
476d139c 2420 put_cpu();
aab03e05 2421 return 0;
1da177e4
LT
2422}
2423
332ac17e
DF
2424unsigned long to_ratio(u64 period, u64 runtime)
2425{
2426 if (runtime == RUNTIME_INF)
2427 return 1ULL << 20;
2428
2429 /*
2430 * Doing this here saves a lot of checks in all
2431 * the calling paths, and returning zero seems
2432 * safe for them anyway.
2433 */
2434 if (period == 0)
2435 return 0;
2436
2437 return div64_u64(runtime << 20, period);
2438}
2439
2440#ifdef CONFIG_SMP
2441inline struct dl_bw *dl_bw_of(int i)
2442{
f78f5b90
PM
2443 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2444 "sched RCU must be held");
332ac17e
DF
2445 return &cpu_rq(i)->rd->dl_bw;
2446}
2447
de212f18 2448static inline int dl_bw_cpus(int i)
332ac17e 2449{
de212f18
PZ
2450 struct root_domain *rd = cpu_rq(i)->rd;
2451 int cpus = 0;
2452
f78f5b90
PM
2453 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2454 "sched RCU must be held");
de212f18
PZ
2455 for_each_cpu_and(i, rd->span, cpu_active_mask)
2456 cpus++;
2457
2458 return cpus;
332ac17e
DF
2459}
2460#else
2461inline struct dl_bw *dl_bw_of(int i)
2462{
2463 return &cpu_rq(i)->dl.dl_bw;
2464}
2465
de212f18 2466static inline int dl_bw_cpus(int i)
332ac17e
DF
2467{
2468 return 1;
2469}
2470#endif
2471
332ac17e
DF
2472/*
2473 * We must be sure that accepting a new task (or allowing changing the
2474 * parameters of an existing one) is consistent with the bandwidth
2475 * constraints. If yes, this function also accordingly updates the currently
2476 * allocated bandwidth to reflect the new situation.
2477 *
2478 * This function is called while holding p's rq->lock.
40767b0d
PZ
2479 *
2480 * XXX we should delay bw change until the task's 0-lag point, see
2481 * __setparam_dl().
332ac17e
DF
2482 */
2483static int dl_overflow(struct task_struct *p, int policy,
2484 const struct sched_attr *attr)
2485{
2486
2487 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
4df1638c 2488 u64 period = attr->sched_period ?: attr->sched_deadline;
332ac17e
DF
2489 u64 runtime = attr->sched_runtime;
2490 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 2491 int cpus, err = -1;
332ac17e 2492
fec148c0
XP
2493 /* !deadline task may carry old deadline bandwidth */
2494 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
332ac17e
DF
2495 return 0;
2496
2497 /*
2498 * Either if a task, enters, leave, or stays -deadline but changes
2499 * its parameters, we may need to update accordingly the total
2500 * allocated bandwidth of the container.
2501 */
2502 raw_spin_lock(&dl_b->lock);
de212f18 2503 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
2504 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2505 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2506 __dl_add(dl_b, new_bw);
2507 err = 0;
2508 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2509 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2510 __dl_clear(dl_b, p->dl.dl_bw);
2511 __dl_add(dl_b, new_bw);
2512 err = 0;
2513 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2514 __dl_clear(dl_b, p->dl.dl_bw);
2515 err = 0;
2516 }
2517 raw_spin_unlock(&dl_b->lock);
2518
2519 return err;
2520}
2521
2522extern void init_dl_bw(struct dl_bw *dl_b);
2523
1da177e4
LT
2524/*
2525 * wake_up_new_task - wake up a newly created task for the first time.
2526 *
2527 * This function will do some initial scheduler statistics housekeeping
2528 * that must be done for every newly created context, then puts the task
2529 * on the runqueue and wakes it.
2530 */
3e51e3ed 2531void wake_up_new_task(struct task_struct *p)
1da177e4 2532{
eb580751 2533 struct rq_flags rf;
dd41f596 2534 struct rq *rq;
fabf318e 2535
eb580751 2536 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
7dc603c9 2537 p->state = TASK_RUNNING;
fabf318e
PZ
2538#ifdef CONFIG_SMP
2539 /*
2540 * Fork balancing, do it here and not earlier because:
2541 * - cpus_allowed can change in the fork path
2542 * - any previously selected cpu might disappear through hotplug
e210bffd
PZ
2543 *
2544 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2545 * as we're not fully set-up yet.
fabf318e 2546 */
e210bffd 2547 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735 2548#endif
b7fa30c9 2549 rq = __task_rq_lock(p, &rf);
2b8c41da 2550 post_init_entity_util_avg(&p->se);
0017d735 2551
cd29fe6f 2552 activate_task(rq, p, 0);
da0c1e65 2553 p->on_rq = TASK_ON_RQ_QUEUED;
fbd705a0 2554 trace_sched_wakeup_new(p);
a7558e01 2555 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2556#ifdef CONFIG_SMP
0aaafaab
PZ
2557 if (p->sched_class->task_woken) {
2558 /*
2559 * Nothing relies on rq->lock after this, so its fine to
2560 * drop it.
2561 */
e7904a28 2562 lockdep_unpin_lock(&rq->lock, rf.cookie);
efbbd05a 2563 p->sched_class->task_woken(rq, p);
e7904a28 2564 lockdep_repin_lock(&rq->lock, rf.cookie);
0aaafaab 2565 }
9a897c5a 2566#endif
eb580751 2567 task_rq_unlock(rq, p, &rf);
1da177e4
LT
2568}
2569
e107be36
AK
2570#ifdef CONFIG_PREEMPT_NOTIFIERS
2571
1cde2930
PZ
2572static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2573
2ecd9d29
PZ
2574void preempt_notifier_inc(void)
2575{
2576 static_key_slow_inc(&preempt_notifier_key);
2577}
2578EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2579
2580void preempt_notifier_dec(void)
2581{
2582 static_key_slow_dec(&preempt_notifier_key);
2583}
2584EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2585
e107be36 2586/**
80dd99b3 2587 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2588 * @notifier: notifier struct to register
e107be36
AK
2589 */
2590void preempt_notifier_register(struct preempt_notifier *notifier)
2591{
2ecd9d29
PZ
2592 if (!static_key_false(&preempt_notifier_key))
2593 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2594
e107be36
AK
2595 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2596}
2597EXPORT_SYMBOL_GPL(preempt_notifier_register);
2598
2599/**
2600 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2601 * @notifier: notifier struct to unregister
e107be36 2602 *
d84525a8 2603 * This is *not* safe to call from within a preemption notifier.
e107be36
AK
2604 */
2605void preempt_notifier_unregister(struct preempt_notifier *notifier)
2606{
2607 hlist_del(&notifier->link);
2608}
2609EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2610
1cde2930 2611static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2612{
2613 struct preempt_notifier *notifier;
e107be36 2614
b67bfe0d 2615 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2616 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2617}
2618
1cde2930
PZ
2619static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2620{
2621 if (static_key_false(&preempt_notifier_key))
2622 __fire_sched_in_preempt_notifiers(curr);
2623}
2624
e107be36 2625static void
1cde2930
PZ
2626__fire_sched_out_preempt_notifiers(struct task_struct *curr,
2627 struct task_struct *next)
e107be36
AK
2628{
2629 struct preempt_notifier *notifier;
e107be36 2630
b67bfe0d 2631 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2632 notifier->ops->sched_out(notifier, next);
2633}
2634
1cde2930
PZ
2635static __always_inline void
2636fire_sched_out_preempt_notifiers(struct task_struct *curr,
2637 struct task_struct *next)
2638{
2639 if (static_key_false(&preempt_notifier_key))
2640 __fire_sched_out_preempt_notifiers(curr, next);
2641}
2642
6d6bc0ad 2643#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36 2644
1cde2930 2645static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2646{
2647}
2648
1cde2930 2649static inline void
e107be36
AK
2650fire_sched_out_preempt_notifiers(struct task_struct *curr,
2651 struct task_struct *next)
2652{
2653}
2654
6d6bc0ad 2655#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2656
4866cde0
NP
2657/**
2658 * prepare_task_switch - prepare to switch tasks
2659 * @rq: the runqueue preparing to switch
421cee29 2660 * @prev: the current task that is being switched out
4866cde0
NP
2661 * @next: the task we are going to switch to.
2662 *
2663 * This is called with the rq lock held and interrupts off. It must
2664 * be paired with a subsequent finish_task_switch after the context
2665 * switch.
2666 *
2667 * prepare_task_switch sets up locking and calls architecture specific
2668 * hooks.
2669 */
e107be36
AK
2670static inline void
2671prepare_task_switch(struct rq *rq, struct task_struct *prev,
2672 struct task_struct *next)
4866cde0 2673{
43148951 2674 sched_info_switch(rq, prev, next);
fe4b04fa 2675 perf_event_task_sched_out(prev, next);
e107be36 2676 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2677 prepare_lock_switch(rq, next);
2678 prepare_arch_switch(next);
2679}
2680
1da177e4
LT
2681/**
2682 * finish_task_switch - clean up after a task-switch
2683 * @prev: the thread we just switched away from.
2684 *
4866cde0
NP
2685 * finish_task_switch must be called after the context switch, paired
2686 * with a prepare_task_switch call before the context switch.
2687 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2688 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2689 *
2690 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2691 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2692 * with the lock held can cause deadlocks; see schedule() for
2693 * details.)
dfa50b60
ON
2694 *
2695 * The context switch have flipped the stack from under us and restored the
2696 * local variables which were saved when this task called schedule() in the
2697 * past. prev == current is still correct but we need to recalculate this_rq
2698 * because prev may have moved to another CPU.
1da177e4 2699 */
dfa50b60 2700static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
2701 __releases(rq->lock)
2702{
dfa50b60 2703 struct rq *rq = this_rq();
1da177e4 2704 struct mm_struct *mm = rq->prev_mm;
55a101f8 2705 long prev_state;
1da177e4 2706
609ca066
PZ
2707 /*
2708 * The previous task will have left us with a preempt_count of 2
2709 * because it left us after:
2710 *
2711 * schedule()
2712 * preempt_disable(); // 1
2713 * __schedule()
2714 * raw_spin_lock_irq(&rq->lock) // 2
2715 *
2716 * Also, see FORK_PREEMPT_COUNT.
2717 */
e2bf1c4b
PZ
2718 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2719 "corrupted preempt_count: %s/%d/0x%x\n",
2720 current->comm, current->pid, preempt_count()))
2721 preempt_count_set(FORK_PREEMPT_COUNT);
609ca066 2722
1da177e4
LT
2723 rq->prev_mm = NULL;
2724
2725 /*
2726 * A task struct has one reference for the use as "current".
c394cc9f 2727 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2728 * schedule one last time. The schedule call will never return, and
2729 * the scheduled task must drop that reference.
95913d97
PZ
2730 *
2731 * We must observe prev->state before clearing prev->on_cpu (in
2732 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2733 * running on another CPU and we could rave with its RUNNING -> DEAD
2734 * transition, resulting in a double drop.
1da177e4 2735 */
55a101f8 2736 prev_state = prev->state;
bf9fae9f 2737 vtime_task_switch(prev);
a8d757ef 2738 perf_event_task_sched_in(prev, current);
4866cde0 2739 finish_lock_switch(rq, prev);
01f23e16 2740 finish_arch_post_lock_switch();
e8fa1362 2741
e107be36 2742 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2743 if (mm)
2744 mmdrop(mm);
c394cc9f 2745 if (unlikely(prev_state == TASK_DEAD)) {
e6c390f2
DF
2746 if (prev->sched_class->task_dead)
2747 prev->sched_class->task_dead(prev);
2748
c6fd91f0 2749 /*
2750 * Remove function-return probe instances associated with this
2751 * task and put them back on the free list.
9761eea8 2752 */
c6fd91f0 2753 kprobe_flush_task(prev);
1da177e4 2754 put_task_struct(prev);
c6fd91f0 2755 }
99e5ada9 2756
de734f89 2757 tick_nohz_task_switch();
dfa50b60 2758 return rq;
1da177e4
LT
2759}
2760
3f029d3c
GH
2761#ifdef CONFIG_SMP
2762
3f029d3c 2763/* rq->lock is NOT held, but preemption is disabled */
e3fca9e7 2764static void __balance_callback(struct rq *rq)
3f029d3c 2765{
e3fca9e7
PZ
2766 struct callback_head *head, *next;
2767 void (*func)(struct rq *rq);
2768 unsigned long flags;
3f029d3c 2769
e3fca9e7
PZ
2770 raw_spin_lock_irqsave(&rq->lock, flags);
2771 head = rq->balance_callback;
2772 rq->balance_callback = NULL;
2773 while (head) {
2774 func = (void (*)(struct rq *))head->func;
2775 next = head->next;
2776 head->next = NULL;
2777 head = next;
3f029d3c 2778
e3fca9e7 2779 func(rq);
3f029d3c 2780 }
e3fca9e7
PZ
2781 raw_spin_unlock_irqrestore(&rq->lock, flags);
2782}
2783
2784static inline void balance_callback(struct rq *rq)
2785{
2786 if (unlikely(rq->balance_callback))
2787 __balance_callback(rq);
3f029d3c
GH
2788}
2789
2790#else
da19ab51 2791
e3fca9e7 2792static inline void balance_callback(struct rq *rq)
3f029d3c 2793{
1da177e4
LT
2794}
2795
3f029d3c
GH
2796#endif
2797
1da177e4
LT
2798/**
2799 * schedule_tail - first thing a freshly forked thread must call.
2800 * @prev: the thread we just switched away from.
2801 */
722a9f92 2802asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
2803 __releases(rq->lock)
2804{
1a43a14a 2805 struct rq *rq;
da19ab51 2806
609ca066
PZ
2807 /*
2808 * New tasks start with FORK_PREEMPT_COUNT, see there and
2809 * finish_task_switch() for details.
2810 *
2811 * finish_task_switch() will drop rq->lock() and lower preempt_count
2812 * and the preempt_enable() will end up enabling preemption (on
2813 * PREEMPT_COUNT kernels).
2814 */
2815
dfa50b60 2816 rq = finish_task_switch(prev);
e3fca9e7 2817 balance_callback(rq);
1a43a14a 2818 preempt_enable();
70b97a7f 2819
1da177e4 2820 if (current->set_child_tid)
b488893a 2821 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2822}
2823
2824/*
dfa50b60 2825 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 2826 */
04936948 2827static __always_inline struct rq *
70b97a7f 2828context_switch(struct rq *rq, struct task_struct *prev,
e7904a28 2829 struct task_struct *next, struct pin_cookie cookie)
1da177e4 2830{
dd41f596 2831 struct mm_struct *mm, *oldmm;
1da177e4 2832
e107be36 2833 prepare_task_switch(rq, prev, next);
fe4b04fa 2834
dd41f596
IM
2835 mm = next->mm;
2836 oldmm = prev->active_mm;
9226d125
ZA
2837 /*
2838 * For paravirt, this is coupled with an exit in switch_to to
2839 * combine the page table reload and the switch backend into
2840 * one hypercall.
2841 */
224101ed 2842 arch_start_context_switch(prev);
9226d125 2843
31915ab4 2844 if (!mm) {
1da177e4
LT
2845 next->active_mm = oldmm;
2846 atomic_inc(&oldmm->mm_count);
2847 enter_lazy_tlb(oldmm, next);
2848 } else
f98db601 2849 switch_mm_irqs_off(oldmm, mm, next);
1da177e4 2850
31915ab4 2851 if (!prev->mm) {
1da177e4 2852 prev->active_mm = NULL;
1da177e4
LT
2853 rq->prev_mm = oldmm;
2854 }
3a5f5e48
IM
2855 /*
2856 * Since the runqueue lock will be released by the next
2857 * task (which is an invalid locking op but in the case
2858 * of the scheduler it's an obvious special-case), so we
2859 * do an early lockdep release here:
2860 */
e7904a28 2861 lockdep_unpin_lock(&rq->lock, cookie);
8a25d5de 2862 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
2863
2864 /* Here we just switch the register state and the stack. */
2865 switch_to(prev, next, prev);
dd41f596 2866 barrier();
dfa50b60
ON
2867
2868 return finish_task_switch(prev);
1da177e4
LT
2869}
2870
2871/*
1c3e8264 2872 * nr_running and nr_context_switches:
1da177e4
LT
2873 *
2874 * externally visible scheduler statistics: current number of runnable
1c3e8264 2875 * threads, total number of context switches performed since bootup.
1da177e4
LT
2876 */
2877unsigned long nr_running(void)
2878{
2879 unsigned long i, sum = 0;
2880
2881 for_each_online_cpu(i)
2882 sum += cpu_rq(i)->nr_running;
2883
2884 return sum;
f711f609 2885}
1da177e4 2886
2ee507c4
TC
2887/*
2888 * Check if only the current task is running on the cpu.
00cc1633
DD
2889 *
2890 * Caution: this function does not check that the caller has disabled
2891 * preemption, thus the result might have a time-of-check-to-time-of-use
2892 * race. The caller is responsible to use it correctly, for example:
2893 *
2894 * - from a non-preemptable section (of course)
2895 *
2896 * - from a thread that is bound to a single CPU
2897 *
2898 * - in a loop with very short iterations (e.g. a polling loop)
2ee507c4
TC
2899 */
2900bool single_task_running(void)
2901{
00cc1633 2902 return raw_rq()->nr_running == 1;
2ee507c4
TC
2903}
2904EXPORT_SYMBOL(single_task_running);
2905
1da177e4 2906unsigned long long nr_context_switches(void)
46cb4b7c 2907{
cc94abfc
SR
2908 int i;
2909 unsigned long long sum = 0;
46cb4b7c 2910
0a945022 2911 for_each_possible_cpu(i)
1da177e4 2912 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2913
1da177e4
LT
2914 return sum;
2915}
483b4ee6 2916
1da177e4
LT
2917unsigned long nr_iowait(void)
2918{
2919 unsigned long i, sum = 0;
483b4ee6 2920
0a945022 2921 for_each_possible_cpu(i)
1da177e4 2922 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2923
1da177e4
LT
2924 return sum;
2925}
483b4ee6 2926
8c215bd3 2927unsigned long nr_iowait_cpu(int cpu)
69d25870 2928{
8c215bd3 2929 struct rq *this = cpu_rq(cpu);
69d25870
AV
2930 return atomic_read(&this->nr_iowait);
2931}
46cb4b7c 2932
372ba8cb
MG
2933void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2934{
3289bdb4
PZ
2935 struct rq *rq = this_rq();
2936 *nr_waiters = atomic_read(&rq->nr_iowait);
2937 *load = rq->load.weight;
372ba8cb
MG
2938}
2939
dd41f596 2940#ifdef CONFIG_SMP
8a0be9ef 2941
46cb4b7c 2942/*
38022906
PZ
2943 * sched_exec - execve() is a valuable balancing opportunity, because at
2944 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2945 */
38022906 2946void sched_exec(void)
46cb4b7c 2947{
38022906 2948 struct task_struct *p = current;
1da177e4 2949 unsigned long flags;
0017d735 2950 int dest_cpu;
46cb4b7c 2951
8f42ced9 2952 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2953 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2954 if (dest_cpu == smp_processor_id())
2955 goto unlock;
38022906 2956
8f42ced9 2957 if (likely(cpu_active(dest_cpu))) {
969c7921 2958 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2959
8f42ced9
PZ
2960 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2961 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2962 return;
2963 }
0017d735 2964unlock:
8f42ced9 2965 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2966}
dd41f596 2967
1da177e4
LT
2968#endif
2969
1da177e4 2970DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2971DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2972
2973EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2974EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 2975
6075620b
GG
2976/*
2977 * The function fair_sched_class.update_curr accesses the struct curr
2978 * and its field curr->exec_start; when called from task_sched_runtime(),
2979 * we observe a high rate of cache misses in practice.
2980 * Prefetching this data results in improved performance.
2981 */
2982static inline void prefetch_curr_exec_start(struct task_struct *p)
2983{
2984#ifdef CONFIG_FAIR_GROUP_SCHED
2985 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
2986#else
2987 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
2988#endif
2989 prefetch(curr);
2990 prefetch(&curr->exec_start);
2991}
2992
c5f8d995
HS
2993/*
2994 * Return accounted runtime for the task.
2995 * In case the task is currently running, return the runtime plus current's
2996 * pending runtime that have not been accounted yet.
2997 */
2998unsigned long long task_sched_runtime(struct task_struct *p)
2999{
eb580751 3000 struct rq_flags rf;
c5f8d995 3001 struct rq *rq;
6e998916 3002 u64 ns;
c5f8d995 3003
911b2898
PZ
3004#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3005 /*
3006 * 64-bit doesn't need locks to atomically read a 64bit value.
3007 * So we have a optimization chance when the task's delta_exec is 0.
3008 * Reading ->on_cpu is racy, but this is ok.
3009 *
3010 * If we race with it leaving cpu, we'll take a lock. So we're correct.
3011 * If we race with it entering cpu, unaccounted time is 0. This is
3012 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
3013 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3014 * been accounted, so we're correct here as well.
911b2898 3015 */
da0c1e65 3016 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
3017 return p->se.sum_exec_runtime;
3018#endif
3019
eb580751 3020 rq = task_rq_lock(p, &rf);
6e998916
SG
3021 /*
3022 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3023 * project cycles that may never be accounted to this
3024 * thread, breaking clock_gettime().
3025 */
3026 if (task_current(rq, p) && task_on_rq_queued(p)) {
6075620b 3027 prefetch_curr_exec_start(p);
6e998916
SG
3028 update_rq_clock(rq);
3029 p->sched_class->update_curr(rq);
3030 }
3031 ns = p->se.sum_exec_runtime;
eb580751 3032 task_rq_unlock(rq, p, &rf);
c5f8d995
HS
3033
3034 return ns;
3035}
48f24c4d 3036
7835b98b
CL
3037/*
3038 * This function gets called by the timer code, with HZ frequency.
3039 * We call it with interrupts disabled.
7835b98b
CL
3040 */
3041void scheduler_tick(void)
3042{
7835b98b
CL
3043 int cpu = smp_processor_id();
3044 struct rq *rq = cpu_rq(cpu);
dd41f596 3045 struct task_struct *curr = rq->curr;
3e51f33f
PZ
3046
3047 sched_clock_tick();
dd41f596 3048
05fa785c 3049 raw_spin_lock(&rq->lock);
3e51f33f 3050 update_rq_clock(rq);
fa85ae24 3051 curr->sched_class->task_tick(rq, curr, 0);
cee1afce 3052 cpu_load_update_active(rq);
3289bdb4 3053 calc_global_load_tick(rq);
05fa785c 3054 raw_spin_unlock(&rq->lock);
7835b98b 3055
e9d2b064 3056 perf_event_task_tick();
e220d2dc 3057
e418e1c2 3058#ifdef CONFIG_SMP
6eb57e0d 3059 rq->idle_balance = idle_cpu(cpu);
7caff66f 3060 trigger_load_balance(rq);
e418e1c2 3061#endif
265f22a9 3062 rq_last_tick_reset(rq);
1da177e4
LT
3063}
3064
265f22a9
FW
3065#ifdef CONFIG_NO_HZ_FULL
3066/**
3067 * scheduler_tick_max_deferment
3068 *
3069 * Keep at least one tick per second when a single
3070 * active task is running because the scheduler doesn't
3071 * yet completely support full dynticks environment.
3072 *
3073 * This makes sure that uptime, CFS vruntime, load
3074 * balancing, etc... continue to move forward, even
3075 * with a very low granularity.
e69f6186
YB
3076 *
3077 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
3078 */
3079u64 scheduler_tick_max_deferment(void)
3080{
3081 struct rq *rq = this_rq();
316c1608 3082 unsigned long next, now = READ_ONCE(jiffies);
265f22a9
FW
3083
3084 next = rq->last_sched_tick + HZ;
3085
3086 if (time_before_eq(next, now))
3087 return 0;
3088
8fe8ff09 3089 return jiffies_to_nsecs(next - now);
1da177e4 3090}
265f22a9 3091#endif
1da177e4 3092
7e49fcce
SR
3093#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3094 defined(CONFIG_PREEMPT_TRACER))
47252cfb
SR
3095/*
3096 * If the value passed in is equal to the current preempt count
3097 * then we just disabled preemption. Start timing the latency.
3098 */
3099static inline void preempt_latency_start(int val)
3100{
3101 if (preempt_count() == val) {
3102 unsigned long ip = get_lock_parent_ip();
3103#ifdef CONFIG_DEBUG_PREEMPT
3104 current->preempt_disable_ip = ip;
3105#endif
3106 trace_preempt_off(CALLER_ADDR0, ip);
3107 }
3108}
7e49fcce 3109
edafe3a5 3110void preempt_count_add(int val)
1da177e4 3111{
6cd8a4bb 3112#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3113 /*
3114 * Underflow?
3115 */
9a11b49a
IM
3116 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3117 return;
6cd8a4bb 3118#endif
bdb43806 3119 __preempt_count_add(val);
6cd8a4bb 3120#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3121 /*
3122 * Spinlock count overflowing soon?
3123 */
33859f7f
MOS
3124 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3125 PREEMPT_MASK - 10);
6cd8a4bb 3126#endif
47252cfb 3127 preempt_latency_start(val);
1da177e4 3128}
bdb43806 3129EXPORT_SYMBOL(preempt_count_add);
edafe3a5 3130NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 3131
47252cfb
SR
3132/*
3133 * If the value passed in equals to the current preempt count
3134 * then we just enabled preemption. Stop timing the latency.
3135 */
3136static inline void preempt_latency_stop(int val)
3137{
3138 if (preempt_count() == val)
3139 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3140}
3141
edafe3a5 3142void preempt_count_sub(int val)
1da177e4 3143{
6cd8a4bb 3144#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3145 /*
3146 * Underflow?
3147 */
01e3eb82 3148 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3149 return;
1da177e4
LT
3150 /*
3151 * Is the spinlock portion underflowing?
3152 */
9a11b49a
IM
3153 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3154 !(preempt_count() & PREEMPT_MASK)))
3155 return;
6cd8a4bb 3156#endif
9a11b49a 3157
47252cfb 3158 preempt_latency_stop(val);
bdb43806 3159 __preempt_count_sub(val);
1da177e4 3160}
bdb43806 3161EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 3162NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4 3163
47252cfb
SR
3164#else
3165static inline void preempt_latency_start(int val) { }
3166static inline void preempt_latency_stop(int val) { }
1da177e4
LT
3167#endif
3168
3169/*
dd41f596 3170 * Print scheduling while atomic bug:
1da177e4 3171 */
dd41f596 3172static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3173{
664dfa65
DJ
3174 if (oops_in_progress)
3175 return;
3176
3df0fc5b
PZ
3177 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3178 prev->comm, prev->pid, preempt_count());
838225b4 3179
dd41f596 3180 debug_show_held_locks(prev);
e21f5b15 3181 print_modules();
dd41f596
IM
3182 if (irqs_disabled())
3183 print_irqtrace_events(prev);
8f47b187
TG
3184#ifdef CONFIG_DEBUG_PREEMPT
3185 if (in_atomic_preempt_off()) {
3186 pr_err("Preemption disabled at:");
3187 print_ip_sym(current->preempt_disable_ip);
3188 pr_cont("\n");
3189 }
3190#endif
748c7201
DBO
3191 if (panic_on_warn)
3192 panic("scheduling while atomic\n");
3193
6135fc1e 3194 dump_stack();
373d4d09 3195 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 3196}
1da177e4 3197
dd41f596
IM
3198/*
3199 * Various schedule()-time debugging checks and statistics:
3200 */
3201static inline void schedule_debug(struct task_struct *prev)
3202{
0d9e2632 3203#ifdef CONFIG_SCHED_STACK_END_CHECK
29d64551
JH
3204 if (task_stack_end_corrupted(prev))
3205 panic("corrupted stack end detected inside scheduler\n");
0d9e2632 3206#endif
b99def8b 3207
1dc0fffc 3208 if (unlikely(in_atomic_preempt_off())) {
dd41f596 3209 __schedule_bug(prev);
1dc0fffc
PZ
3210 preempt_count_set(PREEMPT_DISABLED);
3211 }
b3fbab05 3212 rcu_sleep_check();
dd41f596 3213
1da177e4
LT
3214 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3215
2d72376b 3216 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
3217}
3218
3219/*
3220 * Pick up the highest-prio task:
3221 */
3222static inline struct task_struct *
e7904a28 3223pick_next_task(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
dd41f596 3224{
37e117c0 3225 const struct sched_class *class = &fair_sched_class;
dd41f596 3226 struct task_struct *p;
1da177e4
LT
3227
3228 /*
dd41f596
IM
3229 * Optimization: we know that if all tasks are in
3230 * the fair class we can call that function directly:
1da177e4 3231 */
37e117c0 3232 if (likely(prev->sched_class == class &&
38033c37 3233 rq->nr_running == rq->cfs.h_nr_running)) {
e7904a28 3234 p = fair_sched_class.pick_next_task(rq, prev, cookie);
6ccdc84b
PZ
3235 if (unlikely(p == RETRY_TASK))
3236 goto again;
3237
3238 /* assumes fair_sched_class->next == idle_sched_class */
3239 if (unlikely(!p))
e7904a28 3240 p = idle_sched_class.pick_next_task(rq, prev, cookie);
6ccdc84b
PZ
3241
3242 return p;
1da177e4
LT
3243 }
3244
37e117c0 3245again:
34f971f6 3246 for_each_class(class) {
e7904a28 3247 p = class->pick_next_task(rq, prev, cookie);
37e117c0
PZ
3248 if (p) {
3249 if (unlikely(p == RETRY_TASK))
3250 goto again;
dd41f596 3251 return p;
37e117c0 3252 }
dd41f596 3253 }
34f971f6
PZ
3254
3255 BUG(); /* the idle class will always have a runnable task */
dd41f596 3256}
1da177e4 3257
dd41f596 3258/*
c259e01a 3259 * __schedule() is the main scheduler function.
edde96ea
PE
3260 *
3261 * The main means of driving the scheduler and thus entering this function are:
3262 *
3263 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3264 *
3265 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3266 * paths. For example, see arch/x86/entry_64.S.
3267 *
3268 * To drive preemption between tasks, the scheduler sets the flag in timer
3269 * interrupt handler scheduler_tick().
3270 *
3271 * 3. Wakeups don't really cause entry into schedule(). They add a
3272 * task to the run-queue and that's it.
3273 *
3274 * Now, if the new task added to the run-queue preempts the current
3275 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3276 * called on the nearest possible occasion:
3277 *
3278 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3279 *
3280 * - in syscall or exception context, at the next outmost
3281 * preempt_enable(). (this might be as soon as the wake_up()'s
3282 * spin_unlock()!)
3283 *
3284 * - in IRQ context, return from interrupt-handler to
3285 * preemptible context
3286 *
3287 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3288 * then at the next:
3289 *
3290 * - cond_resched() call
3291 * - explicit schedule() call
3292 * - return from syscall or exception to user-space
3293 * - return from interrupt-handler to user-space
bfd9b2b5 3294 *
b30f0e3f 3295 * WARNING: must be called with preemption disabled!
dd41f596 3296 */
499d7955 3297static void __sched notrace __schedule(bool preempt)
dd41f596
IM
3298{
3299 struct task_struct *prev, *next;
67ca7bde 3300 unsigned long *switch_count;
e7904a28 3301 struct pin_cookie cookie;
dd41f596 3302 struct rq *rq;
31656519 3303 int cpu;
dd41f596 3304
dd41f596
IM
3305 cpu = smp_processor_id();
3306 rq = cpu_rq(cpu);
dd41f596 3307 prev = rq->curr;
dd41f596 3308
b99def8b
PZ
3309 /*
3310 * do_exit() calls schedule() with preemption disabled as an exception;
3311 * however we must fix that up, otherwise the next task will see an
3312 * inconsistent (higher) preempt count.
3313 *
3314 * It also avoids the below schedule_debug() test from complaining
3315 * about this.
3316 */
3317 if (unlikely(prev->state == TASK_DEAD))
3318 preempt_enable_no_resched_notrace();
3319
dd41f596 3320 schedule_debug(prev);
1da177e4 3321
31656519 3322 if (sched_feat(HRTICK))
f333fdc9 3323 hrtick_clear(rq);
8f4d37ec 3324
46a5d164
PM
3325 local_irq_disable();
3326 rcu_note_context_switch();
3327
e0acd0a6
ON
3328 /*
3329 * Make sure that signal_pending_state()->signal_pending() below
3330 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3331 * done by the caller to avoid the race with signal_wake_up().
3332 */
3333 smp_mb__before_spinlock();
46a5d164 3334 raw_spin_lock(&rq->lock);
e7904a28 3335 cookie = lockdep_pin_lock(&rq->lock);
1da177e4 3336
9edfbfed
PZ
3337 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3338
246d86b5 3339 switch_count = &prev->nivcsw;
fc13aeba 3340 if (!preempt && prev->state) {
21aa9af0 3341 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 3342 prev->state = TASK_RUNNING;
21aa9af0 3343 } else {
2acca55e
PZ
3344 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3345 prev->on_rq = 0;
3346
21aa9af0 3347 /*
2acca55e
PZ
3348 * If a worker went to sleep, notify and ask workqueue
3349 * whether it wants to wake up a task to maintain
3350 * concurrency.
21aa9af0
TH
3351 */
3352 if (prev->flags & PF_WQ_WORKER) {
3353 struct task_struct *to_wakeup;
3354
9b7f6597 3355 to_wakeup = wq_worker_sleeping(prev);
21aa9af0 3356 if (to_wakeup)
e7904a28 3357 try_to_wake_up_local(to_wakeup, cookie);
21aa9af0 3358 }
21aa9af0 3359 }
dd41f596 3360 switch_count = &prev->nvcsw;
1da177e4
LT
3361 }
3362
9edfbfed 3363 if (task_on_rq_queued(prev))
606dba2e
PZ
3364 update_rq_clock(rq);
3365
e7904a28 3366 next = pick_next_task(rq, prev, cookie);
f26f9aff 3367 clear_tsk_need_resched(prev);
f27dde8d 3368 clear_preempt_need_resched();
9edfbfed 3369 rq->clock_skip_update = 0;
1da177e4 3370
1da177e4 3371 if (likely(prev != next)) {
1da177e4
LT
3372 rq->nr_switches++;
3373 rq->curr = next;
3374 ++*switch_count;
3375
c73464b1 3376 trace_sched_switch(preempt, prev, next);
e7904a28 3377 rq = context_switch(rq, prev, next, cookie); /* unlocks the rq */
cbce1a68 3378 } else {
e7904a28 3379 lockdep_unpin_lock(&rq->lock, cookie);
05fa785c 3380 raw_spin_unlock_irq(&rq->lock);
cbce1a68 3381 }
1da177e4 3382
e3fca9e7 3383 balance_callback(rq);
1da177e4 3384}
8e05e96a 3385STACK_FRAME_NON_STANDARD(__schedule); /* switch_to() */
c259e01a 3386
9c40cef2
TG
3387static inline void sched_submit_work(struct task_struct *tsk)
3388{
3c7d5184 3389 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
3390 return;
3391 /*
3392 * If we are going to sleep and we have plugged IO queued,
3393 * make sure to submit it to avoid deadlocks.
3394 */
3395 if (blk_needs_flush_plug(tsk))
3396 blk_schedule_flush_plug(tsk);
3397}
3398
722a9f92 3399asmlinkage __visible void __sched schedule(void)
c259e01a 3400{
9c40cef2
TG
3401 struct task_struct *tsk = current;
3402
3403 sched_submit_work(tsk);
bfd9b2b5 3404 do {
b30f0e3f 3405 preempt_disable();
fc13aeba 3406 __schedule(false);
b30f0e3f 3407 sched_preempt_enable_no_resched();
bfd9b2b5 3408 } while (need_resched());
c259e01a 3409}
1da177e4
LT
3410EXPORT_SYMBOL(schedule);
3411
91d1aa43 3412#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 3413asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
3414{
3415 /*
3416 * If we come here after a random call to set_need_resched(),
3417 * or we have been woken up remotely but the IPI has not yet arrived,
3418 * we haven't yet exited the RCU idle mode. Do it here manually until
3419 * we find a better solution.
7cc78f8f
AL
3420 *
3421 * NB: There are buggy callers of this function. Ideally we
c467ea76 3422 * should warn if prev_state != CONTEXT_USER, but that will trigger
7cc78f8f 3423 * too frequently to make sense yet.
20ab65e3 3424 */
7cc78f8f 3425 enum ctx_state prev_state = exception_enter();
20ab65e3 3426 schedule();
7cc78f8f 3427 exception_exit(prev_state);
20ab65e3
FW
3428}
3429#endif
3430
c5491ea7
TG
3431/**
3432 * schedule_preempt_disabled - called with preemption disabled
3433 *
3434 * Returns with preemption disabled. Note: preempt_count must be 1
3435 */
3436void __sched schedule_preempt_disabled(void)
3437{
ba74c144 3438 sched_preempt_enable_no_resched();
c5491ea7
TG
3439 schedule();
3440 preempt_disable();
3441}
3442
06b1f808 3443static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
3444{
3445 do {
47252cfb
SR
3446 /*
3447 * Because the function tracer can trace preempt_count_sub()
3448 * and it also uses preempt_enable/disable_notrace(), if
3449 * NEED_RESCHED is set, the preempt_enable_notrace() called
3450 * by the function tracer will call this function again and
3451 * cause infinite recursion.
3452 *
3453 * Preemption must be disabled here before the function
3454 * tracer can trace. Break up preempt_disable() into two
3455 * calls. One to disable preemption without fear of being
3456 * traced. The other to still record the preemption latency,
3457 * which can also be traced by the function tracer.
3458 */
499d7955 3459 preempt_disable_notrace();
47252cfb 3460 preempt_latency_start(1);
fc13aeba 3461 __schedule(true);
47252cfb 3462 preempt_latency_stop(1);
499d7955 3463 preempt_enable_no_resched_notrace();
a18b5d01
FW
3464
3465 /*
3466 * Check again in case we missed a preemption opportunity
3467 * between schedule and now.
3468 */
a18b5d01
FW
3469 } while (need_resched());
3470}
3471
1da177e4
LT
3472#ifdef CONFIG_PREEMPT
3473/*
2ed6e34f 3474 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3475 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3476 * occur there and call schedule directly.
3477 */
722a9f92 3478asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 3479{
1da177e4
LT
3480 /*
3481 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3482 * we do not want to preempt the current task. Just return..
1da177e4 3483 */
fbb00b56 3484 if (likely(!preemptible()))
1da177e4
LT
3485 return;
3486
a18b5d01 3487 preempt_schedule_common();
1da177e4 3488}
376e2424 3489NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 3490EXPORT_SYMBOL(preempt_schedule);
009f60e2 3491
009f60e2 3492/**
4eaca0a8 3493 * preempt_schedule_notrace - preempt_schedule called by tracing
009f60e2
ON
3494 *
3495 * The tracing infrastructure uses preempt_enable_notrace to prevent
3496 * recursion and tracing preempt enabling caused by the tracing
3497 * infrastructure itself. But as tracing can happen in areas coming
3498 * from userspace or just about to enter userspace, a preempt enable
3499 * can occur before user_exit() is called. This will cause the scheduler
3500 * to be called when the system is still in usermode.
3501 *
3502 * To prevent this, the preempt_enable_notrace will use this function
3503 * instead of preempt_schedule() to exit user context if needed before
3504 * calling the scheduler.
3505 */
4eaca0a8 3506asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
009f60e2
ON
3507{
3508 enum ctx_state prev_ctx;
3509
3510 if (likely(!preemptible()))
3511 return;
3512
3513 do {
47252cfb
SR
3514 /*
3515 * Because the function tracer can trace preempt_count_sub()
3516 * and it also uses preempt_enable/disable_notrace(), if
3517 * NEED_RESCHED is set, the preempt_enable_notrace() called
3518 * by the function tracer will call this function again and
3519 * cause infinite recursion.
3520 *
3521 * Preemption must be disabled here before the function
3522 * tracer can trace. Break up preempt_disable() into two
3523 * calls. One to disable preemption without fear of being
3524 * traced. The other to still record the preemption latency,
3525 * which can also be traced by the function tracer.
3526 */
3d8f74dd 3527 preempt_disable_notrace();
47252cfb 3528 preempt_latency_start(1);
009f60e2
ON
3529 /*
3530 * Needs preempt disabled in case user_exit() is traced
3531 * and the tracer calls preempt_enable_notrace() causing
3532 * an infinite recursion.
3533 */
3534 prev_ctx = exception_enter();
fc13aeba 3535 __schedule(true);
009f60e2
ON
3536 exception_exit(prev_ctx);
3537
47252cfb 3538 preempt_latency_stop(1);
3d8f74dd 3539 preempt_enable_no_resched_notrace();
009f60e2
ON
3540 } while (need_resched());
3541}
4eaca0a8 3542EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
009f60e2 3543
32e475d7 3544#endif /* CONFIG_PREEMPT */
1da177e4
LT
3545
3546/*
2ed6e34f 3547 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3548 * off of irq context.
3549 * Note, that this is called and return with irqs disabled. This will
3550 * protect us against recursive calling from irq.
3551 */
722a9f92 3552asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 3553{
b22366cd 3554 enum ctx_state prev_state;
6478d880 3555
2ed6e34f 3556 /* Catch callers which need to be fixed */
f27dde8d 3557 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 3558
b22366cd
FW
3559 prev_state = exception_enter();
3560
3a5c359a 3561 do {
3d8f74dd 3562 preempt_disable();
3a5c359a 3563 local_irq_enable();
fc13aeba 3564 __schedule(true);
3a5c359a 3565 local_irq_disable();
3d8f74dd 3566 sched_preempt_enable_no_resched();
5ed0cec0 3567 } while (need_resched());
b22366cd
FW
3568
3569 exception_exit(prev_state);
1da177e4
LT
3570}
3571
63859d4f 3572int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3573 void *key)
1da177e4 3574{
63859d4f 3575 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3576}
1da177e4
LT
3577EXPORT_SYMBOL(default_wake_function);
3578
b29739f9
IM
3579#ifdef CONFIG_RT_MUTEXES
3580
3581/*
3582 * rt_mutex_setprio - set the current priority of a task
3583 * @p: task
3584 * @prio: prio value (kernel-internal form)
3585 *
3586 * This function changes the 'effective' priority of a task. It does
3587 * not touch ->normal_prio like __setscheduler().
3588 *
c365c292
TG
3589 * Used by the rt_mutex code to implement priority inheritance
3590 * logic. Call site only calls if the priority of the task changed.
b29739f9 3591 */
36c8b586 3592void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3593{
ff77e468 3594 int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE;
83ab0aa0 3595 const struct sched_class *prev_class;
eb580751
PZ
3596 struct rq_flags rf;
3597 struct rq *rq;
b29739f9 3598
aab03e05 3599 BUG_ON(prio > MAX_PRIO);
b29739f9 3600
eb580751 3601 rq = __task_rq_lock(p, &rf);
b29739f9 3602
1c4dd99b
TG
3603 /*
3604 * Idle task boosting is a nono in general. There is one
3605 * exception, when PREEMPT_RT and NOHZ is active:
3606 *
3607 * The idle task calls get_next_timer_interrupt() and holds
3608 * the timer wheel base->lock on the CPU and another CPU wants
3609 * to access the timer (probably to cancel it). We can safely
3610 * ignore the boosting request, as the idle CPU runs this code
3611 * with interrupts disabled and will complete the lock
3612 * protected section without being interrupted. So there is no
3613 * real need to boost.
3614 */
3615 if (unlikely(p == rq->idle)) {
3616 WARN_ON(p != rq->curr);
3617 WARN_ON(p->pi_blocked_on);
3618 goto out_unlock;
3619 }
3620
a8027073 3621 trace_sched_pi_setprio(p, prio);
d5f9f942 3622 oldprio = p->prio;
ff77e468
PZ
3623
3624 if (oldprio == prio)
3625 queue_flag &= ~DEQUEUE_MOVE;
3626
83ab0aa0 3627 prev_class = p->sched_class;
da0c1e65 3628 queued = task_on_rq_queued(p);
051a1d1a 3629 running = task_current(rq, p);
da0c1e65 3630 if (queued)
ff77e468 3631 dequeue_task(rq, p, queue_flag);
0e1f3483 3632 if (running)
f3cd1c4e 3633 put_prev_task(rq, p);
dd41f596 3634
2d3d891d
DF
3635 /*
3636 * Boosting condition are:
3637 * 1. -rt task is running and holds mutex A
3638 * --> -dl task blocks on mutex A
3639 *
3640 * 2. -dl task is running and holds mutex A
3641 * --> -dl task blocks on mutex A and could preempt the
3642 * running task
3643 */
3644 if (dl_prio(prio)) {
466af29b
ON
3645 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3646 if (!dl_prio(p->normal_prio) ||
3647 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d 3648 p->dl.dl_boosted = 1;
ff77e468 3649 queue_flag |= ENQUEUE_REPLENISH;
2d3d891d
DF
3650 } else
3651 p->dl.dl_boosted = 0;
aab03e05 3652 p->sched_class = &dl_sched_class;
2d3d891d
DF
3653 } else if (rt_prio(prio)) {
3654 if (dl_prio(oldprio))
3655 p->dl.dl_boosted = 0;
3656 if (oldprio < prio)
ff77e468 3657 queue_flag |= ENQUEUE_HEAD;
dd41f596 3658 p->sched_class = &rt_sched_class;
2d3d891d
DF
3659 } else {
3660 if (dl_prio(oldprio))
3661 p->dl.dl_boosted = 0;
746db944
BS
3662 if (rt_prio(oldprio))
3663 p->rt.timeout = 0;
dd41f596 3664 p->sched_class = &fair_sched_class;
2d3d891d 3665 }
dd41f596 3666
b29739f9
IM
3667 p->prio = prio;
3668
0e1f3483
HS
3669 if (running)
3670 p->sched_class->set_curr_task(rq);
da0c1e65 3671 if (queued)
ff77e468 3672 enqueue_task(rq, p, queue_flag);
cb469845 3673
da7a735e 3674 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3675out_unlock:
4c9a4bc8 3676 preempt_disable(); /* avoid rq from going away on us */
eb580751 3677 __task_rq_unlock(rq, &rf);
4c9a4bc8
PZ
3678
3679 balance_callback(rq);
3680 preempt_enable();
b29739f9 3681}
b29739f9 3682#endif
d50dde5a 3683
36c8b586 3684void set_user_nice(struct task_struct *p, long nice)
1da177e4 3685{
da0c1e65 3686 int old_prio, delta, queued;
eb580751 3687 struct rq_flags rf;
70b97a7f 3688 struct rq *rq;
1da177e4 3689
75e45d51 3690 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
3691 return;
3692 /*
3693 * We have to be careful, if called from sys_setpriority(),
3694 * the task might be in the middle of scheduling on another CPU.
3695 */
eb580751 3696 rq = task_rq_lock(p, &rf);
1da177e4
LT
3697 /*
3698 * The RT priorities are set via sched_setscheduler(), but we still
3699 * allow the 'normal' nice value to be set - but as expected
3700 * it wont have any effect on scheduling until the task is
aab03e05 3701 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3702 */
aab03e05 3703 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3704 p->static_prio = NICE_TO_PRIO(nice);
3705 goto out_unlock;
3706 }
da0c1e65
KT
3707 queued = task_on_rq_queued(p);
3708 if (queued)
1de64443 3709 dequeue_task(rq, p, DEQUEUE_SAVE);
1da177e4 3710
1da177e4 3711 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3712 set_load_weight(p);
b29739f9
IM
3713 old_prio = p->prio;
3714 p->prio = effective_prio(p);
3715 delta = p->prio - old_prio;
1da177e4 3716
da0c1e65 3717 if (queued) {
1de64443 3718 enqueue_task(rq, p, ENQUEUE_RESTORE);
1da177e4 3719 /*
d5f9f942
AM
3720 * If the task increased its priority or is running and
3721 * lowered its priority, then reschedule its CPU:
1da177e4 3722 */
d5f9f942 3723 if (delta < 0 || (delta > 0 && task_running(rq, p)))
8875125e 3724 resched_curr(rq);
1da177e4
LT
3725 }
3726out_unlock:
eb580751 3727 task_rq_unlock(rq, p, &rf);
1da177e4 3728}
1da177e4
LT
3729EXPORT_SYMBOL(set_user_nice);
3730
e43379f1
MM
3731/*
3732 * can_nice - check if a task can reduce its nice value
3733 * @p: task
3734 * @nice: nice value
3735 */
36c8b586 3736int can_nice(const struct task_struct *p, const int nice)
e43379f1 3737{
024f4747 3738 /* convert nice value [19,-20] to rlimit style value [1,40] */
7aa2c016 3739 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 3740
78d7d407 3741 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3742 capable(CAP_SYS_NICE));
3743}
3744
1da177e4
LT
3745#ifdef __ARCH_WANT_SYS_NICE
3746
3747/*
3748 * sys_nice - change the priority of the current process.
3749 * @increment: priority increment
3750 *
3751 * sys_setpriority is a more generic, but much slower function that
3752 * does similar things.
3753 */
5add95d4 3754SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3755{
48f24c4d 3756 long nice, retval;
1da177e4
LT
3757
3758 /*
3759 * Setpriority might change our priority at the same moment.
3760 * We don't have to worry. Conceptually one call occurs first
3761 * and we have a single winner.
3762 */
a9467fa3 3763 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 3764 nice = task_nice(current) + increment;
1da177e4 3765
a9467fa3 3766 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
3767 if (increment < 0 && !can_nice(current, nice))
3768 return -EPERM;
3769
1da177e4
LT
3770 retval = security_task_setnice(current, nice);
3771 if (retval)
3772 return retval;
3773
3774 set_user_nice(current, nice);
3775 return 0;
3776}
3777
3778#endif
3779
3780/**
3781 * task_prio - return the priority value of a given task.
3782 * @p: the task in question.
3783 *
e69f6186 3784 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3785 * RT tasks are offset by -200. Normal tasks are centered
3786 * around 0, value goes from -16 to +15.
3787 */
36c8b586 3788int task_prio(const struct task_struct *p)
1da177e4
LT
3789{
3790 return p->prio - MAX_RT_PRIO;
3791}
3792
1da177e4
LT
3793/**
3794 * idle_cpu - is a given cpu idle currently?
3795 * @cpu: the processor in question.
e69f6186
YB
3796 *
3797 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3798 */
3799int idle_cpu(int cpu)
3800{
908a3283
TG
3801 struct rq *rq = cpu_rq(cpu);
3802
3803 if (rq->curr != rq->idle)
3804 return 0;
3805
3806 if (rq->nr_running)
3807 return 0;
3808
3809#ifdef CONFIG_SMP
3810 if (!llist_empty(&rq->wake_list))
3811 return 0;
3812#endif
3813
3814 return 1;
1da177e4
LT
3815}
3816
1da177e4
LT
3817/**
3818 * idle_task - return the idle task for a given cpu.
3819 * @cpu: the processor in question.
e69f6186
YB
3820 *
3821 * Return: The idle task for the cpu @cpu.
1da177e4 3822 */
36c8b586 3823struct task_struct *idle_task(int cpu)
1da177e4
LT
3824{
3825 return cpu_rq(cpu)->idle;
3826}
3827
3828/**
3829 * find_process_by_pid - find a process with a matching PID value.
3830 * @pid: the pid in question.
e69f6186
YB
3831 *
3832 * The task of @pid, if found. %NULL otherwise.
1da177e4 3833 */
a9957449 3834static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3835{
228ebcbe 3836 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3837}
3838
aab03e05
DF
3839/*
3840 * This function initializes the sched_dl_entity of a newly becoming
3841 * SCHED_DEADLINE task.
3842 *
3843 * Only the static values are considered here, the actual runtime and the
3844 * absolute deadline will be properly calculated when the task is enqueued
3845 * for the first time with its new policy.
3846 */
3847static void
3848__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3849{
3850 struct sched_dl_entity *dl_se = &p->dl;
3851
aab03e05
DF
3852 dl_se->dl_runtime = attr->sched_runtime;
3853 dl_se->dl_deadline = attr->sched_deadline;
755378a4 3854 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 3855 dl_se->flags = attr->sched_flags;
332ac17e 3856 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
40767b0d
PZ
3857
3858 /*
3859 * Changing the parameters of a task is 'tricky' and we're not doing
3860 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3861 *
3862 * What we SHOULD do is delay the bandwidth release until the 0-lag
3863 * point. This would include retaining the task_struct until that time
3864 * and change dl_overflow() to not immediately decrement the current
3865 * amount.
3866 *
3867 * Instead we retain the current runtime/deadline and let the new
3868 * parameters take effect after the current reservation period lapses.
3869 * This is safe (albeit pessimistic) because the 0-lag point is always
3870 * before the current scheduling deadline.
3871 *
3872 * We can still have temporary overloads because we do not delay the
3873 * change in bandwidth until that time; so admission control is
3874 * not on the safe side. It does however guarantee tasks will never
3875 * consume more than promised.
3876 */
aab03e05
DF
3877}
3878
c13db6b1
SR
3879/*
3880 * sched_setparam() passes in -1 for its policy, to let the functions
3881 * it calls know not to change it.
3882 */
3883#define SETPARAM_POLICY -1
3884
c365c292
TG
3885static void __setscheduler_params(struct task_struct *p,
3886 const struct sched_attr *attr)
1da177e4 3887{
d50dde5a
DF
3888 int policy = attr->sched_policy;
3889
c13db6b1 3890 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
3891 policy = p->policy;
3892
1da177e4 3893 p->policy = policy;
d50dde5a 3894
aab03e05
DF
3895 if (dl_policy(policy))
3896 __setparam_dl(p, attr);
39fd8fd2 3897 else if (fair_policy(policy))
d50dde5a
DF
3898 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3899
39fd8fd2
PZ
3900 /*
3901 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3902 * !rt_policy. Always setting this ensures that things like
3903 * getparam()/getattr() don't report silly values for !rt tasks.
3904 */
3905 p->rt_priority = attr->sched_priority;
383afd09 3906 p->normal_prio = normal_prio(p);
c365c292
TG
3907 set_load_weight(p);
3908}
39fd8fd2 3909
c365c292
TG
3910/* Actually do priority change: must hold pi & rq lock. */
3911static void __setscheduler(struct rq *rq, struct task_struct *p,
0782e63b 3912 const struct sched_attr *attr, bool keep_boost)
c365c292
TG
3913{
3914 __setscheduler_params(p, attr);
d50dde5a 3915
383afd09 3916 /*
0782e63b
TG
3917 * Keep a potential priority boosting if called from
3918 * sched_setscheduler().
383afd09 3919 */
0782e63b
TG
3920 if (keep_boost)
3921 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3922 else
3923 p->prio = normal_prio(p);
383afd09 3924
aab03e05
DF
3925 if (dl_prio(p->prio))
3926 p->sched_class = &dl_sched_class;
3927 else if (rt_prio(p->prio))
ffd44db5
PZ
3928 p->sched_class = &rt_sched_class;
3929 else
3930 p->sched_class = &fair_sched_class;
1da177e4 3931}
aab03e05
DF
3932
3933static void
3934__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3935{
3936 struct sched_dl_entity *dl_se = &p->dl;
3937
3938 attr->sched_priority = p->rt_priority;
3939 attr->sched_runtime = dl_se->dl_runtime;
3940 attr->sched_deadline = dl_se->dl_deadline;
755378a4 3941 attr->sched_period = dl_se->dl_period;
aab03e05
DF
3942 attr->sched_flags = dl_se->flags;
3943}
3944
3945/*
3946 * This function validates the new parameters of a -deadline task.
3947 * We ask for the deadline not being zero, and greater or equal
755378a4 3948 * than the runtime, as well as the period of being zero or
332ac17e 3949 * greater than deadline. Furthermore, we have to be sure that
b0827819
JL
3950 * user parameters are above the internal resolution of 1us (we
3951 * check sched_runtime only since it is always the smaller one) and
3952 * below 2^63 ns (we have to check both sched_deadline and
3953 * sched_period, as the latter can be zero).
aab03e05
DF
3954 */
3955static bool
3956__checkparam_dl(const struct sched_attr *attr)
3957{
b0827819
JL
3958 /* deadline != 0 */
3959 if (attr->sched_deadline == 0)
3960 return false;
3961
3962 /*
3963 * Since we truncate DL_SCALE bits, make sure we're at least
3964 * that big.
3965 */
3966 if (attr->sched_runtime < (1ULL << DL_SCALE))
3967 return false;
3968
3969 /*
3970 * Since we use the MSB for wrap-around and sign issues, make
3971 * sure it's not set (mind that period can be equal to zero).
3972 */
3973 if (attr->sched_deadline & (1ULL << 63) ||
3974 attr->sched_period & (1ULL << 63))
3975 return false;
3976
3977 /* runtime <= deadline <= period (if period != 0) */
3978 if ((attr->sched_period != 0 &&
3979 attr->sched_period < attr->sched_deadline) ||
3980 attr->sched_deadline < attr->sched_runtime)
3981 return false;
3982
3983 return true;
aab03e05
DF
3984}
3985
c69e8d9c
DH
3986/*
3987 * check the target process has a UID that matches the current process's
3988 */
3989static bool check_same_owner(struct task_struct *p)
3990{
3991 const struct cred *cred = current_cred(), *pcred;
3992 bool match;
3993
3994 rcu_read_lock();
3995 pcred = __task_cred(p);
9c806aa0
EB
3996 match = (uid_eq(cred->euid, pcred->euid) ||
3997 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3998 rcu_read_unlock();
3999 return match;
4000}
4001
75381608
WL
4002static bool dl_param_changed(struct task_struct *p,
4003 const struct sched_attr *attr)
4004{
4005 struct sched_dl_entity *dl_se = &p->dl;
4006
4007 if (dl_se->dl_runtime != attr->sched_runtime ||
4008 dl_se->dl_deadline != attr->sched_deadline ||
4009 dl_se->dl_period != attr->sched_period ||
4010 dl_se->flags != attr->sched_flags)
4011 return true;
4012
4013 return false;
4014}
4015
d50dde5a
DF
4016static int __sched_setscheduler(struct task_struct *p,
4017 const struct sched_attr *attr,
dbc7f069 4018 bool user, bool pi)
1da177e4 4019{
383afd09
SR
4020 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4021 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 4022 int retval, oldprio, oldpolicy = -1, queued, running;
0782e63b 4023 int new_effective_prio, policy = attr->sched_policy;
83ab0aa0 4024 const struct sched_class *prev_class;
eb580751 4025 struct rq_flags rf;
ca94c442 4026 int reset_on_fork;
ff77e468 4027 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
eb580751 4028 struct rq *rq;
1da177e4 4029
66e5393a
SR
4030 /* may grab non-irq protected spin_locks */
4031 BUG_ON(in_interrupt());
1da177e4
LT
4032recheck:
4033 /* double check policy once rq lock held */
ca94c442
LP
4034 if (policy < 0) {
4035 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4036 policy = oldpolicy = p->policy;
ca94c442 4037 } else {
7479f3c9 4038 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 4039
20f9cd2a 4040 if (!valid_policy(policy))
ca94c442
LP
4041 return -EINVAL;
4042 }
4043
7479f3c9
PZ
4044 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
4045 return -EINVAL;
4046
1da177e4
LT
4047 /*
4048 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4049 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4050 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 4051 */
0bb040a4 4052 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 4053 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 4054 return -EINVAL;
aab03e05
DF
4055 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4056 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
4057 return -EINVAL;
4058
37e4ab3f
OC
4059 /*
4060 * Allow unprivileged RT tasks to decrease priority:
4061 */
961ccddd 4062 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 4063 if (fair_policy(policy)) {
d0ea0268 4064 if (attr->sched_nice < task_nice(p) &&
eaad4513 4065 !can_nice(p, attr->sched_nice))
d50dde5a
DF
4066 return -EPERM;
4067 }
4068
e05606d3 4069 if (rt_policy(policy)) {
a44702e8
ON
4070 unsigned long rlim_rtprio =
4071 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
4072
4073 /* can't set/change the rt policy */
4074 if (policy != p->policy && !rlim_rtprio)
4075 return -EPERM;
4076
4077 /* can't increase priority */
d50dde5a
DF
4078 if (attr->sched_priority > p->rt_priority &&
4079 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
4080 return -EPERM;
4081 }
c02aa73b 4082
d44753b8
JL
4083 /*
4084 * Can't set/change SCHED_DEADLINE policy at all for now
4085 * (safest behavior); in the future we would like to allow
4086 * unprivileged DL tasks to increase their relative deadline
4087 * or reduce their runtime (both ways reducing utilization)
4088 */
4089 if (dl_policy(policy))
4090 return -EPERM;
4091
dd41f596 4092 /*
c02aa73b
DH
4093 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4094 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 4095 */
20f9cd2a 4096 if (idle_policy(p->policy) && !idle_policy(policy)) {
d0ea0268 4097 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
4098 return -EPERM;
4099 }
5fe1d75f 4100
37e4ab3f 4101 /* can't change other user's priorities */
c69e8d9c 4102 if (!check_same_owner(p))
37e4ab3f 4103 return -EPERM;
ca94c442
LP
4104
4105 /* Normal users shall not reset the sched_reset_on_fork flag */
4106 if (p->sched_reset_on_fork && !reset_on_fork)
4107 return -EPERM;
37e4ab3f 4108 }
1da177e4 4109
725aad24 4110 if (user) {
b0ae1981 4111 retval = security_task_setscheduler(p);
725aad24
JF
4112 if (retval)
4113 return retval;
4114 }
4115
b29739f9
IM
4116 /*
4117 * make sure no PI-waiters arrive (or leave) while we are
4118 * changing the priority of the task:
0122ec5b 4119 *
25985edc 4120 * To be able to change p->policy safely, the appropriate
1da177e4
LT
4121 * runqueue lock must be held.
4122 */
eb580751 4123 rq = task_rq_lock(p, &rf);
dc61b1d6 4124
34f971f6
PZ
4125 /*
4126 * Changing the policy of the stop threads its a very bad idea
4127 */
4128 if (p == rq->stop) {
eb580751 4129 task_rq_unlock(rq, p, &rf);
34f971f6
PZ
4130 return -EINVAL;
4131 }
4132
a51e9198 4133 /*
d6b1e911
TG
4134 * If not changing anything there's no need to proceed further,
4135 * but store a possible modification of reset_on_fork.
a51e9198 4136 */
d50dde5a 4137 if (unlikely(policy == p->policy)) {
d0ea0268 4138 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
4139 goto change;
4140 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4141 goto change;
75381608 4142 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 4143 goto change;
d50dde5a 4144
d6b1e911 4145 p->sched_reset_on_fork = reset_on_fork;
eb580751 4146 task_rq_unlock(rq, p, &rf);
a51e9198
DF
4147 return 0;
4148 }
d50dde5a 4149change:
a51e9198 4150
dc61b1d6 4151 if (user) {
332ac17e 4152#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
4153 /*
4154 * Do not allow realtime tasks into groups that have no runtime
4155 * assigned.
4156 */
4157 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
4158 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4159 !task_group_is_autogroup(task_group(p))) {
eb580751 4160 task_rq_unlock(rq, p, &rf);
dc61b1d6
PZ
4161 return -EPERM;
4162 }
dc61b1d6 4163#endif
332ac17e
DF
4164#ifdef CONFIG_SMP
4165 if (dl_bandwidth_enabled() && dl_policy(policy)) {
4166 cpumask_t *span = rq->rd->span;
332ac17e
DF
4167
4168 /*
4169 * Don't allow tasks with an affinity mask smaller than
4170 * the entire root_domain to become SCHED_DEADLINE. We
4171 * will also fail if there's no bandwidth available.
4172 */
e4099a5e
PZ
4173 if (!cpumask_subset(span, &p->cpus_allowed) ||
4174 rq->rd->dl_bw.bw == 0) {
eb580751 4175 task_rq_unlock(rq, p, &rf);
332ac17e
DF
4176 return -EPERM;
4177 }
4178 }
4179#endif
4180 }
dc61b1d6 4181
1da177e4
LT
4182 /* recheck policy now with rq lock held */
4183 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4184 policy = oldpolicy = -1;
eb580751 4185 task_rq_unlock(rq, p, &rf);
1da177e4
LT
4186 goto recheck;
4187 }
332ac17e
DF
4188
4189 /*
4190 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4191 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4192 * is available.
4193 */
e4099a5e 4194 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
eb580751 4195 task_rq_unlock(rq, p, &rf);
332ac17e
DF
4196 return -EBUSY;
4197 }
4198
c365c292
TG
4199 p->sched_reset_on_fork = reset_on_fork;
4200 oldprio = p->prio;
4201
dbc7f069
PZ
4202 if (pi) {
4203 /*
4204 * Take priority boosted tasks into account. If the new
4205 * effective priority is unchanged, we just store the new
4206 * normal parameters and do not touch the scheduler class and
4207 * the runqueue. This will be done when the task deboost
4208 * itself.
4209 */
4210 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
ff77e468
PZ
4211 if (new_effective_prio == oldprio)
4212 queue_flags &= ~DEQUEUE_MOVE;
c365c292
TG
4213 }
4214
da0c1e65 4215 queued = task_on_rq_queued(p);
051a1d1a 4216 running = task_current(rq, p);
da0c1e65 4217 if (queued)
ff77e468 4218 dequeue_task(rq, p, queue_flags);
0e1f3483 4219 if (running)
f3cd1c4e 4220 put_prev_task(rq, p);
f6b53205 4221
83ab0aa0 4222 prev_class = p->sched_class;
dbc7f069 4223 __setscheduler(rq, p, attr, pi);
f6b53205 4224
0e1f3483
HS
4225 if (running)
4226 p->sched_class->set_curr_task(rq);
da0c1e65 4227 if (queued) {
81a44c54
TG
4228 /*
4229 * We enqueue to tail when the priority of a task is
4230 * increased (user space view).
4231 */
ff77e468
PZ
4232 if (oldprio < p->prio)
4233 queue_flags |= ENQUEUE_HEAD;
1de64443 4234
ff77e468 4235 enqueue_task(rq, p, queue_flags);
81a44c54 4236 }
cb469845 4237
da7a735e 4238 check_class_changed(rq, p, prev_class, oldprio);
4c9a4bc8 4239 preempt_disable(); /* avoid rq from going away on us */
eb580751 4240 task_rq_unlock(rq, p, &rf);
b29739f9 4241
dbc7f069
PZ
4242 if (pi)
4243 rt_mutex_adjust_pi(p);
95e02ca9 4244
4c9a4bc8
PZ
4245 /*
4246 * Run balance callbacks after we've adjusted the PI chain.
4247 */
4248 balance_callback(rq);
4249 preempt_enable();
95e02ca9 4250
1da177e4
LT
4251 return 0;
4252}
961ccddd 4253
7479f3c9
PZ
4254static int _sched_setscheduler(struct task_struct *p, int policy,
4255 const struct sched_param *param, bool check)
4256{
4257 struct sched_attr attr = {
4258 .sched_policy = policy,
4259 .sched_priority = param->sched_priority,
4260 .sched_nice = PRIO_TO_NICE(p->static_prio),
4261 };
4262
c13db6b1
SR
4263 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4264 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
4265 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4266 policy &= ~SCHED_RESET_ON_FORK;
4267 attr.sched_policy = policy;
4268 }
4269
dbc7f069 4270 return __sched_setscheduler(p, &attr, check, true);
7479f3c9 4271}
961ccddd
RR
4272/**
4273 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4274 * @p: the task in question.
4275 * @policy: new policy.
4276 * @param: structure containing the new RT priority.
4277 *
e69f6186
YB
4278 * Return: 0 on success. An error code otherwise.
4279 *
961ccddd
RR
4280 * NOTE that the task may be already dead.
4281 */
4282int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4283 const struct sched_param *param)
961ccddd 4284{
7479f3c9 4285 return _sched_setscheduler(p, policy, param, true);
961ccddd 4286}
1da177e4
LT
4287EXPORT_SYMBOL_GPL(sched_setscheduler);
4288
d50dde5a
DF
4289int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4290{
dbc7f069 4291 return __sched_setscheduler(p, attr, true, true);
d50dde5a
DF
4292}
4293EXPORT_SYMBOL_GPL(sched_setattr);
4294
961ccddd
RR
4295/**
4296 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4297 * @p: the task in question.
4298 * @policy: new policy.
4299 * @param: structure containing the new RT priority.
4300 *
4301 * Just like sched_setscheduler, only don't bother checking if the
4302 * current context has permission. For example, this is needed in
4303 * stop_machine(): we create temporary high priority worker threads,
4304 * but our caller might not have that capability.
e69f6186
YB
4305 *
4306 * Return: 0 on success. An error code otherwise.
961ccddd
RR
4307 */
4308int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 4309 const struct sched_param *param)
961ccddd 4310{
7479f3c9 4311 return _sched_setscheduler(p, policy, param, false);
961ccddd 4312}
84778472 4313EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
961ccddd 4314
95cdf3b7
IM
4315static int
4316do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4317{
1da177e4
LT
4318 struct sched_param lparam;
4319 struct task_struct *p;
36c8b586 4320 int retval;
1da177e4
LT
4321
4322 if (!param || pid < 0)
4323 return -EINVAL;
4324 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4325 return -EFAULT;
5fe1d75f
ON
4326
4327 rcu_read_lock();
4328 retval = -ESRCH;
1da177e4 4329 p = find_process_by_pid(pid);
5fe1d75f
ON
4330 if (p != NULL)
4331 retval = sched_setscheduler(p, policy, &lparam);
4332 rcu_read_unlock();
36c8b586 4333
1da177e4
LT
4334 return retval;
4335}
4336
d50dde5a
DF
4337/*
4338 * Mimics kernel/events/core.c perf_copy_attr().
4339 */
4340static int sched_copy_attr(struct sched_attr __user *uattr,
4341 struct sched_attr *attr)
4342{
4343 u32 size;
4344 int ret;
4345
4346 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4347 return -EFAULT;
4348
4349 /*
4350 * zero the full structure, so that a short copy will be nice.
4351 */
4352 memset(attr, 0, sizeof(*attr));
4353
4354 ret = get_user(size, &uattr->size);
4355 if (ret)
4356 return ret;
4357
4358 if (size > PAGE_SIZE) /* silly large */
4359 goto err_size;
4360
4361 if (!size) /* abi compat */
4362 size = SCHED_ATTR_SIZE_VER0;
4363
4364 if (size < SCHED_ATTR_SIZE_VER0)
4365 goto err_size;
4366
4367 /*
4368 * If we're handed a bigger struct than we know of,
4369 * ensure all the unknown bits are 0 - i.e. new
4370 * user-space does not rely on any kernel feature
4371 * extensions we dont know about yet.
4372 */
4373 if (size > sizeof(*attr)) {
4374 unsigned char __user *addr;
4375 unsigned char __user *end;
4376 unsigned char val;
4377
4378 addr = (void __user *)uattr + sizeof(*attr);
4379 end = (void __user *)uattr + size;
4380
4381 for (; addr < end; addr++) {
4382 ret = get_user(val, addr);
4383 if (ret)
4384 return ret;
4385 if (val)
4386 goto err_size;
4387 }
4388 size = sizeof(*attr);
4389 }
4390
4391 ret = copy_from_user(attr, uattr, size);
4392 if (ret)
4393 return -EFAULT;
4394
4395 /*
4396 * XXX: do we want to be lenient like existing syscalls; or do we want
4397 * to be strict and return an error on out-of-bounds values?
4398 */
75e45d51 4399 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 4400
e78c7bca 4401 return 0;
d50dde5a
DF
4402
4403err_size:
4404 put_user(sizeof(*attr), &uattr->size);
e78c7bca 4405 return -E2BIG;
d50dde5a
DF
4406}
4407
1da177e4
LT
4408/**
4409 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4410 * @pid: the pid in question.
4411 * @policy: new policy.
4412 * @param: structure containing the new RT priority.
e69f6186
YB
4413 *
4414 * Return: 0 on success. An error code otherwise.
1da177e4 4415 */
5add95d4
HC
4416SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4417 struct sched_param __user *, param)
1da177e4 4418{
c21761f1
JB
4419 /* negative values for policy are not valid */
4420 if (policy < 0)
4421 return -EINVAL;
4422
1da177e4
LT
4423 return do_sched_setscheduler(pid, policy, param);
4424}
4425
4426/**
4427 * sys_sched_setparam - set/change the RT priority of a thread
4428 * @pid: the pid in question.
4429 * @param: structure containing the new RT priority.
e69f6186
YB
4430 *
4431 * Return: 0 on success. An error code otherwise.
1da177e4 4432 */
5add95d4 4433SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4434{
c13db6b1 4435 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
4436}
4437
d50dde5a
DF
4438/**
4439 * sys_sched_setattr - same as above, but with extended sched_attr
4440 * @pid: the pid in question.
5778fccf 4441 * @uattr: structure containing the extended parameters.
db66d756 4442 * @flags: for future extension.
d50dde5a 4443 */
6d35ab48
PZ
4444SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4445 unsigned int, flags)
d50dde5a
DF
4446{
4447 struct sched_attr attr;
4448 struct task_struct *p;
4449 int retval;
4450
6d35ab48 4451 if (!uattr || pid < 0 || flags)
d50dde5a
DF
4452 return -EINVAL;
4453
143cf23d
MK
4454 retval = sched_copy_attr(uattr, &attr);
4455 if (retval)
4456 return retval;
d50dde5a 4457
b14ed2c2 4458 if ((int)attr.sched_policy < 0)
dbdb2275 4459 return -EINVAL;
d50dde5a
DF
4460
4461 rcu_read_lock();
4462 retval = -ESRCH;
4463 p = find_process_by_pid(pid);
4464 if (p != NULL)
4465 retval = sched_setattr(p, &attr);
4466 rcu_read_unlock();
4467
4468 return retval;
4469}
4470
1da177e4
LT
4471/**
4472 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4473 * @pid: the pid in question.
e69f6186
YB
4474 *
4475 * Return: On success, the policy of the thread. Otherwise, a negative error
4476 * code.
1da177e4 4477 */
5add95d4 4478SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4479{
36c8b586 4480 struct task_struct *p;
3a5c359a 4481 int retval;
1da177e4
LT
4482
4483 if (pid < 0)
3a5c359a 4484 return -EINVAL;
1da177e4
LT
4485
4486 retval = -ESRCH;
5fe85be0 4487 rcu_read_lock();
1da177e4
LT
4488 p = find_process_by_pid(pid);
4489 if (p) {
4490 retval = security_task_getscheduler(p);
4491 if (!retval)
ca94c442
LP
4492 retval = p->policy
4493 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4494 }
5fe85be0 4495 rcu_read_unlock();
1da177e4
LT
4496 return retval;
4497}
4498
4499/**
ca94c442 4500 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4501 * @pid: the pid in question.
4502 * @param: structure containing the RT priority.
e69f6186
YB
4503 *
4504 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4505 * code.
1da177e4 4506 */
5add95d4 4507SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4508{
ce5f7f82 4509 struct sched_param lp = { .sched_priority = 0 };
36c8b586 4510 struct task_struct *p;
3a5c359a 4511 int retval;
1da177e4
LT
4512
4513 if (!param || pid < 0)
3a5c359a 4514 return -EINVAL;
1da177e4 4515
5fe85be0 4516 rcu_read_lock();
1da177e4
LT
4517 p = find_process_by_pid(pid);
4518 retval = -ESRCH;
4519 if (!p)
4520 goto out_unlock;
4521
4522 retval = security_task_getscheduler(p);
4523 if (retval)
4524 goto out_unlock;
4525
ce5f7f82
PZ
4526 if (task_has_rt_policy(p))
4527 lp.sched_priority = p->rt_priority;
5fe85be0 4528 rcu_read_unlock();
1da177e4
LT
4529
4530 /*
4531 * This one might sleep, we cannot do it with a spinlock held ...
4532 */
4533 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4534
1da177e4
LT
4535 return retval;
4536
4537out_unlock:
5fe85be0 4538 rcu_read_unlock();
1da177e4
LT
4539 return retval;
4540}
4541
d50dde5a
DF
4542static int sched_read_attr(struct sched_attr __user *uattr,
4543 struct sched_attr *attr,
4544 unsigned int usize)
4545{
4546 int ret;
4547
4548 if (!access_ok(VERIFY_WRITE, uattr, usize))
4549 return -EFAULT;
4550
4551 /*
4552 * If we're handed a smaller struct than we know of,
4553 * ensure all the unknown bits are 0 - i.e. old
4554 * user-space does not get uncomplete information.
4555 */
4556 if (usize < sizeof(*attr)) {
4557 unsigned char *addr;
4558 unsigned char *end;
4559
4560 addr = (void *)attr + usize;
4561 end = (void *)attr + sizeof(*attr);
4562
4563 for (; addr < end; addr++) {
4564 if (*addr)
22400674 4565 return -EFBIG;
d50dde5a
DF
4566 }
4567
4568 attr->size = usize;
4569 }
4570
4efbc454 4571 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
4572 if (ret)
4573 return -EFAULT;
4574
22400674 4575 return 0;
d50dde5a
DF
4576}
4577
4578/**
aab03e05 4579 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 4580 * @pid: the pid in question.
5778fccf 4581 * @uattr: structure containing the extended parameters.
d50dde5a 4582 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 4583 * @flags: for future extension.
d50dde5a 4584 */
6d35ab48
PZ
4585SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4586 unsigned int, size, unsigned int, flags)
d50dde5a
DF
4587{
4588 struct sched_attr attr = {
4589 .size = sizeof(struct sched_attr),
4590 };
4591 struct task_struct *p;
4592 int retval;
4593
4594 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 4595 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
4596 return -EINVAL;
4597
4598 rcu_read_lock();
4599 p = find_process_by_pid(pid);
4600 retval = -ESRCH;
4601 if (!p)
4602 goto out_unlock;
4603
4604 retval = security_task_getscheduler(p);
4605 if (retval)
4606 goto out_unlock;
4607
4608 attr.sched_policy = p->policy;
7479f3c9
PZ
4609 if (p->sched_reset_on_fork)
4610 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
4611 if (task_has_dl_policy(p))
4612 __getparam_dl(p, &attr);
4613 else if (task_has_rt_policy(p))
d50dde5a
DF
4614 attr.sched_priority = p->rt_priority;
4615 else
d0ea0268 4616 attr.sched_nice = task_nice(p);
d50dde5a
DF
4617
4618 rcu_read_unlock();
4619
4620 retval = sched_read_attr(uattr, &attr, size);
4621 return retval;
4622
4623out_unlock:
4624 rcu_read_unlock();
4625 return retval;
4626}
4627
96f874e2 4628long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4629{
5a16f3d3 4630 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4631 struct task_struct *p;
4632 int retval;
1da177e4 4633
23f5d142 4634 rcu_read_lock();
1da177e4
LT
4635
4636 p = find_process_by_pid(pid);
4637 if (!p) {
23f5d142 4638 rcu_read_unlock();
1da177e4
LT
4639 return -ESRCH;
4640 }
4641
23f5d142 4642 /* Prevent p going away */
1da177e4 4643 get_task_struct(p);
23f5d142 4644 rcu_read_unlock();
1da177e4 4645
14a40ffc
TH
4646 if (p->flags & PF_NO_SETAFFINITY) {
4647 retval = -EINVAL;
4648 goto out_put_task;
4649 }
5a16f3d3
RR
4650 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4651 retval = -ENOMEM;
4652 goto out_put_task;
4653 }
4654 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4655 retval = -ENOMEM;
4656 goto out_free_cpus_allowed;
4657 }
1da177e4 4658 retval = -EPERM;
4c44aaaf
EB
4659 if (!check_same_owner(p)) {
4660 rcu_read_lock();
4661 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4662 rcu_read_unlock();
16303ab2 4663 goto out_free_new_mask;
4c44aaaf
EB
4664 }
4665 rcu_read_unlock();
4666 }
1da177e4 4667
b0ae1981 4668 retval = security_task_setscheduler(p);
e7834f8f 4669 if (retval)
16303ab2 4670 goto out_free_new_mask;
e7834f8f 4671
e4099a5e
PZ
4672
4673 cpuset_cpus_allowed(p, cpus_allowed);
4674 cpumask_and(new_mask, in_mask, cpus_allowed);
4675
332ac17e
DF
4676 /*
4677 * Since bandwidth control happens on root_domain basis,
4678 * if admission test is enabled, we only admit -deadline
4679 * tasks allowed to run on all the CPUs in the task's
4680 * root_domain.
4681 */
4682#ifdef CONFIG_SMP
f1e3a093
KT
4683 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4684 rcu_read_lock();
4685 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 4686 retval = -EBUSY;
f1e3a093 4687 rcu_read_unlock();
16303ab2 4688 goto out_free_new_mask;
332ac17e 4689 }
f1e3a093 4690 rcu_read_unlock();
332ac17e
DF
4691 }
4692#endif
49246274 4693again:
25834c73 4694 retval = __set_cpus_allowed_ptr(p, new_mask, true);
1da177e4 4695
8707d8b8 4696 if (!retval) {
5a16f3d3
RR
4697 cpuset_cpus_allowed(p, cpus_allowed);
4698 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4699 /*
4700 * We must have raced with a concurrent cpuset
4701 * update. Just reset the cpus_allowed to the
4702 * cpuset's cpus_allowed
4703 */
5a16f3d3 4704 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4705 goto again;
4706 }
4707 }
16303ab2 4708out_free_new_mask:
5a16f3d3
RR
4709 free_cpumask_var(new_mask);
4710out_free_cpus_allowed:
4711 free_cpumask_var(cpus_allowed);
4712out_put_task:
1da177e4 4713 put_task_struct(p);
1da177e4
LT
4714 return retval;
4715}
4716
4717static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4718 struct cpumask *new_mask)
1da177e4 4719{
96f874e2
RR
4720 if (len < cpumask_size())
4721 cpumask_clear(new_mask);
4722 else if (len > cpumask_size())
4723 len = cpumask_size();
4724
1da177e4
LT
4725 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4726}
4727
4728/**
4729 * sys_sched_setaffinity - set the cpu affinity of a process
4730 * @pid: pid of the process
4731 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4732 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
4733 *
4734 * Return: 0 on success. An error code otherwise.
1da177e4 4735 */
5add95d4
HC
4736SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4737 unsigned long __user *, user_mask_ptr)
1da177e4 4738{
5a16f3d3 4739 cpumask_var_t new_mask;
1da177e4
LT
4740 int retval;
4741
5a16f3d3
RR
4742 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4743 return -ENOMEM;
1da177e4 4744
5a16f3d3
RR
4745 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4746 if (retval == 0)
4747 retval = sched_setaffinity(pid, new_mask);
4748 free_cpumask_var(new_mask);
4749 return retval;
1da177e4
LT
4750}
4751
96f874e2 4752long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4753{
36c8b586 4754 struct task_struct *p;
31605683 4755 unsigned long flags;
1da177e4 4756 int retval;
1da177e4 4757
23f5d142 4758 rcu_read_lock();
1da177e4
LT
4759
4760 retval = -ESRCH;
4761 p = find_process_by_pid(pid);
4762 if (!p)
4763 goto out_unlock;
4764
e7834f8f
DQ
4765 retval = security_task_getscheduler(p);
4766 if (retval)
4767 goto out_unlock;
4768
013fdb80 4769 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4770 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4771 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4772
4773out_unlock:
23f5d142 4774 rcu_read_unlock();
1da177e4 4775
9531b62f 4776 return retval;
1da177e4
LT
4777}
4778
4779/**
4780 * sys_sched_getaffinity - get the cpu affinity of a process
4781 * @pid: pid of the process
4782 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4783 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186 4784 *
599b4840
ZW
4785 * Return: size of CPU mask copied to user_mask_ptr on success. An
4786 * error code otherwise.
1da177e4 4787 */
5add95d4
HC
4788SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4789 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4790{
4791 int ret;
f17c8607 4792 cpumask_var_t mask;
1da177e4 4793
84fba5ec 4794 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4795 return -EINVAL;
4796 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4797 return -EINVAL;
4798
f17c8607
RR
4799 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4800 return -ENOMEM;
1da177e4 4801
f17c8607
RR
4802 ret = sched_getaffinity(pid, mask);
4803 if (ret == 0) {
8bc037fb 4804 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4805
4806 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4807 ret = -EFAULT;
4808 else
cd3d8031 4809 ret = retlen;
f17c8607
RR
4810 }
4811 free_cpumask_var(mask);
1da177e4 4812
f17c8607 4813 return ret;
1da177e4
LT
4814}
4815
4816/**
4817 * sys_sched_yield - yield the current processor to other threads.
4818 *
dd41f596
IM
4819 * This function yields the current CPU to other tasks. If there are no
4820 * other threads running on this CPU then this function will return.
e69f6186
YB
4821 *
4822 * Return: 0.
1da177e4 4823 */
5add95d4 4824SYSCALL_DEFINE0(sched_yield)
1da177e4 4825{
70b97a7f 4826 struct rq *rq = this_rq_lock();
1da177e4 4827
2d72376b 4828 schedstat_inc(rq, yld_count);
4530d7ab 4829 current->sched_class->yield_task(rq);
1da177e4
LT
4830
4831 /*
4832 * Since we are going to call schedule() anyway, there's
4833 * no need to preempt or enable interrupts:
4834 */
4835 __release(rq->lock);
8a25d5de 4836 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4837 do_raw_spin_unlock(&rq->lock);
ba74c144 4838 sched_preempt_enable_no_resched();
1da177e4
LT
4839
4840 schedule();
4841
4842 return 0;
4843}
4844
02b67cc3 4845int __sched _cond_resched(void)
1da177e4 4846{
fe32d3cd 4847 if (should_resched(0)) {
a18b5d01 4848 preempt_schedule_common();
1da177e4
LT
4849 return 1;
4850 }
4851 return 0;
4852}
02b67cc3 4853EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4854
4855/*
613afbf8 4856 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4857 * call schedule, and on return reacquire the lock.
4858 *
41a2d6cf 4859 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4860 * operations here to prevent schedule() from being called twice (once via
4861 * spin_unlock(), once by hand).
4862 */
613afbf8 4863int __cond_resched_lock(spinlock_t *lock)
1da177e4 4864{
fe32d3cd 4865 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6df3cecb
JK
4866 int ret = 0;
4867
f607c668
PZ
4868 lockdep_assert_held(lock);
4869
4a81e832 4870 if (spin_needbreak(lock) || resched) {
1da177e4 4871 spin_unlock(lock);
d86ee480 4872 if (resched)
a18b5d01 4873 preempt_schedule_common();
95c354fe
NP
4874 else
4875 cpu_relax();
6df3cecb 4876 ret = 1;
1da177e4 4877 spin_lock(lock);
1da177e4 4878 }
6df3cecb 4879 return ret;
1da177e4 4880}
613afbf8 4881EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4882
613afbf8 4883int __sched __cond_resched_softirq(void)
1da177e4
LT
4884{
4885 BUG_ON(!in_softirq());
4886
fe32d3cd 4887 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
98d82567 4888 local_bh_enable();
a18b5d01 4889 preempt_schedule_common();
1da177e4
LT
4890 local_bh_disable();
4891 return 1;
4892 }
4893 return 0;
4894}
613afbf8 4895EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4896
1da177e4
LT
4897/**
4898 * yield - yield the current processor to other threads.
4899 *
8e3fabfd
PZ
4900 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4901 *
4902 * The scheduler is at all times free to pick the calling task as the most
4903 * eligible task to run, if removing the yield() call from your code breaks
4904 * it, its already broken.
4905 *
4906 * Typical broken usage is:
4907 *
4908 * while (!event)
4909 * yield();
4910 *
4911 * where one assumes that yield() will let 'the other' process run that will
4912 * make event true. If the current task is a SCHED_FIFO task that will never
4913 * happen. Never use yield() as a progress guarantee!!
4914 *
4915 * If you want to use yield() to wait for something, use wait_event().
4916 * If you want to use yield() to be 'nice' for others, use cond_resched().
4917 * If you still want to use yield(), do not!
1da177e4
LT
4918 */
4919void __sched yield(void)
4920{
4921 set_current_state(TASK_RUNNING);
4922 sys_sched_yield();
4923}
1da177e4
LT
4924EXPORT_SYMBOL(yield);
4925
d95f4122
MG
4926/**
4927 * yield_to - yield the current processor to another thread in
4928 * your thread group, or accelerate that thread toward the
4929 * processor it's on.
16addf95
RD
4930 * @p: target task
4931 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4932 *
4933 * It's the caller's job to ensure that the target task struct
4934 * can't go away on us before we can do any checks.
4935 *
e69f6186 4936 * Return:
7b270f60
PZ
4937 * true (>0) if we indeed boosted the target task.
4938 * false (0) if we failed to boost the target.
4939 * -ESRCH if there's no task to yield to.
d95f4122 4940 */
fa93384f 4941int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
4942{
4943 struct task_struct *curr = current;
4944 struct rq *rq, *p_rq;
4945 unsigned long flags;
c3c18640 4946 int yielded = 0;
d95f4122
MG
4947
4948 local_irq_save(flags);
4949 rq = this_rq();
4950
4951again:
4952 p_rq = task_rq(p);
7b270f60
PZ
4953 /*
4954 * If we're the only runnable task on the rq and target rq also
4955 * has only one task, there's absolutely no point in yielding.
4956 */
4957 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4958 yielded = -ESRCH;
4959 goto out_irq;
4960 }
4961
d95f4122 4962 double_rq_lock(rq, p_rq);
39e24d8f 4963 if (task_rq(p) != p_rq) {
d95f4122
MG
4964 double_rq_unlock(rq, p_rq);
4965 goto again;
4966 }
4967
4968 if (!curr->sched_class->yield_to_task)
7b270f60 4969 goto out_unlock;
d95f4122
MG
4970
4971 if (curr->sched_class != p->sched_class)
7b270f60 4972 goto out_unlock;
d95f4122
MG
4973
4974 if (task_running(p_rq, p) || p->state)
7b270f60 4975 goto out_unlock;
d95f4122
MG
4976
4977 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4978 if (yielded) {
d95f4122 4979 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4980 /*
4981 * Make p's CPU reschedule; pick_next_entity takes care of
4982 * fairness.
4983 */
4984 if (preempt && rq != p_rq)
8875125e 4985 resched_curr(p_rq);
6d1cafd8 4986 }
d95f4122 4987
7b270f60 4988out_unlock:
d95f4122 4989 double_rq_unlock(rq, p_rq);
7b270f60 4990out_irq:
d95f4122
MG
4991 local_irq_restore(flags);
4992
7b270f60 4993 if (yielded > 0)
d95f4122
MG
4994 schedule();
4995
4996 return yielded;
4997}
4998EXPORT_SYMBOL_GPL(yield_to);
4999
1da177e4 5000/*
41a2d6cf 5001 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5002 * that process accounting knows that this is a task in IO wait state.
1da177e4 5003 */
1da177e4
LT
5004long __sched io_schedule_timeout(long timeout)
5005{
9cff8ade
N
5006 int old_iowait = current->in_iowait;
5007 struct rq *rq;
1da177e4
LT
5008 long ret;
5009
9cff8ade 5010 current->in_iowait = 1;
10d784ea 5011 blk_schedule_flush_plug(current);
9cff8ade 5012
0ff92245 5013 delayacct_blkio_start();
9cff8ade 5014 rq = raw_rq();
1da177e4
LT
5015 atomic_inc(&rq->nr_iowait);
5016 ret = schedule_timeout(timeout);
9cff8ade 5017 current->in_iowait = old_iowait;
1da177e4 5018 atomic_dec(&rq->nr_iowait);
0ff92245 5019 delayacct_blkio_end();
9cff8ade 5020
1da177e4
LT
5021 return ret;
5022}
9cff8ade 5023EXPORT_SYMBOL(io_schedule_timeout);
1da177e4
LT
5024
5025/**
5026 * sys_sched_get_priority_max - return maximum RT priority.
5027 * @policy: scheduling class.
5028 *
e69f6186
YB
5029 * Return: On success, this syscall returns the maximum
5030 * rt_priority that can be used by a given scheduling class.
5031 * On failure, a negative error code is returned.
1da177e4 5032 */
5add95d4 5033SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5034{
5035 int ret = -EINVAL;
5036
5037 switch (policy) {
5038 case SCHED_FIFO:
5039 case SCHED_RR:
5040 ret = MAX_USER_RT_PRIO-1;
5041 break;
aab03e05 5042 case SCHED_DEADLINE:
1da177e4 5043 case SCHED_NORMAL:
b0a9499c 5044 case SCHED_BATCH:
dd41f596 5045 case SCHED_IDLE:
1da177e4
LT
5046 ret = 0;
5047 break;
5048 }
5049 return ret;
5050}
5051
5052/**
5053 * sys_sched_get_priority_min - return minimum RT priority.
5054 * @policy: scheduling class.
5055 *
e69f6186
YB
5056 * Return: On success, this syscall returns the minimum
5057 * rt_priority that can be used by a given scheduling class.
5058 * On failure, a negative error code is returned.
1da177e4 5059 */
5add95d4 5060SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5061{
5062 int ret = -EINVAL;
5063
5064 switch (policy) {
5065 case SCHED_FIFO:
5066 case SCHED_RR:
5067 ret = 1;
5068 break;
aab03e05 5069 case SCHED_DEADLINE:
1da177e4 5070 case SCHED_NORMAL:
b0a9499c 5071 case SCHED_BATCH:
dd41f596 5072 case SCHED_IDLE:
1da177e4
LT
5073 ret = 0;
5074 }
5075 return ret;
5076}
5077
5078/**
5079 * sys_sched_rr_get_interval - return the default timeslice of a process.
5080 * @pid: pid of the process.
5081 * @interval: userspace pointer to the timeslice value.
5082 *
5083 * this syscall writes the default timeslice value of a given process
5084 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
5085 *
5086 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5087 * an error code.
1da177e4 5088 */
17da2bd9 5089SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5090 struct timespec __user *, interval)
1da177e4 5091{
36c8b586 5092 struct task_struct *p;
a4ec24b4 5093 unsigned int time_slice;
eb580751
PZ
5094 struct rq_flags rf;
5095 struct timespec t;
dba091b9 5096 struct rq *rq;
3a5c359a 5097 int retval;
1da177e4
LT
5098
5099 if (pid < 0)
3a5c359a 5100 return -EINVAL;
1da177e4
LT
5101
5102 retval = -ESRCH;
1a551ae7 5103 rcu_read_lock();
1da177e4
LT
5104 p = find_process_by_pid(pid);
5105 if (!p)
5106 goto out_unlock;
5107
5108 retval = security_task_getscheduler(p);
5109 if (retval)
5110 goto out_unlock;
5111
eb580751 5112 rq = task_rq_lock(p, &rf);
a57beec5
PZ
5113 time_slice = 0;
5114 if (p->sched_class->get_rr_interval)
5115 time_slice = p->sched_class->get_rr_interval(rq, p);
eb580751 5116 task_rq_unlock(rq, p, &rf);
a4ec24b4 5117
1a551ae7 5118 rcu_read_unlock();
a4ec24b4 5119 jiffies_to_timespec(time_slice, &t);
1da177e4 5120 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5121 return retval;
3a5c359a 5122
1da177e4 5123out_unlock:
1a551ae7 5124 rcu_read_unlock();
1da177e4
LT
5125 return retval;
5126}
5127
7c731e0a 5128static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5129
82a1fcb9 5130void sched_show_task(struct task_struct *p)
1da177e4 5131{
1da177e4 5132 unsigned long free = 0;
4e79752c 5133 int ppid;
1f8a7633 5134 unsigned long state = p->state;
1da177e4 5135
1f8a7633
TH
5136 if (state)
5137 state = __ffs(state) + 1;
28d0686c 5138 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 5139 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5140#if BITS_PER_LONG == 32
1da177e4 5141 if (state == TASK_RUNNING)
3df0fc5b 5142 printk(KERN_CONT " running ");
1da177e4 5143 else
3df0fc5b 5144 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5145#else
5146 if (state == TASK_RUNNING)
3df0fc5b 5147 printk(KERN_CONT " running task ");
1da177e4 5148 else
3df0fc5b 5149 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5150#endif
5151#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5152 free = stack_not_used(p);
1da177e4 5153#endif
a90e984c 5154 ppid = 0;
4e79752c 5155 rcu_read_lock();
a90e984c
ON
5156 if (pid_alive(p))
5157 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 5158 rcu_read_unlock();
3df0fc5b 5159 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 5160 task_pid_nr(p), ppid,
aa47b7e0 5161 (unsigned long)task_thread_info(p)->flags);
1da177e4 5162
3d1cb205 5163 print_worker_info(KERN_INFO, p);
5fb5e6de 5164 show_stack(p, NULL);
1da177e4
LT
5165}
5166
e59e2ae2 5167void show_state_filter(unsigned long state_filter)
1da177e4 5168{
36c8b586 5169 struct task_struct *g, *p;
1da177e4 5170
4bd77321 5171#if BITS_PER_LONG == 32
3df0fc5b
PZ
5172 printk(KERN_INFO
5173 " task PC stack pid father\n");
1da177e4 5174#else
3df0fc5b
PZ
5175 printk(KERN_INFO
5176 " task PC stack pid father\n");
1da177e4 5177#endif
510f5acc 5178 rcu_read_lock();
5d07f420 5179 for_each_process_thread(g, p) {
1da177e4
LT
5180 /*
5181 * reset the NMI-timeout, listing all files on a slow
25985edc 5182 * console might take a lot of time:
57675cb9
AR
5183 * Also, reset softlockup watchdogs on all CPUs, because
5184 * another CPU might be blocked waiting for us to process
5185 * an IPI.
1da177e4
LT
5186 */
5187 touch_nmi_watchdog();
57675cb9 5188 touch_all_softlockup_watchdogs();
39bc89fd 5189 if (!state_filter || (p->state & state_filter))
82a1fcb9 5190 sched_show_task(p);
5d07f420 5191 }
1da177e4 5192
dd41f596 5193#ifdef CONFIG_SCHED_DEBUG
fb90a6e9
RV
5194 if (!state_filter)
5195 sysrq_sched_debug_show();
dd41f596 5196#endif
510f5acc 5197 rcu_read_unlock();
e59e2ae2
IM
5198 /*
5199 * Only show locks if all tasks are dumped:
5200 */
93335a21 5201 if (!state_filter)
e59e2ae2 5202 debug_show_all_locks();
1da177e4
LT
5203}
5204
0db0628d 5205void init_idle_bootup_task(struct task_struct *idle)
1df21055 5206{
dd41f596 5207 idle->sched_class = &idle_sched_class;
1df21055
IM
5208}
5209
f340c0d1
IM
5210/**
5211 * init_idle - set up an idle thread for a given CPU
5212 * @idle: task in question
5213 * @cpu: cpu the idle task belongs to
5214 *
5215 * NOTE: this function does not set the idle thread's NEED_RESCHED
5216 * flag, to make booting more robust.
5217 */
0db0628d 5218void init_idle(struct task_struct *idle, int cpu)
1da177e4 5219{
70b97a7f 5220 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5221 unsigned long flags;
5222
25834c73
PZ
5223 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5224 raw_spin_lock(&rq->lock);
5cbd54ef 5225
5e1576ed 5226 __sched_fork(0, idle);
06b83b5f 5227 idle->state = TASK_RUNNING;
dd41f596
IM
5228 idle->se.exec_start = sched_clock();
5229
e1b77c92
MR
5230 kasan_unpoison_task_stack(idle);
5231
de9b8f5d
PZ
5232#ifdef CONFIG_SMP
5233 /*
5234 * Its possible that init_idle() gets called multiple times on a task,
5235 * in that case do_set_cpus_allowed() will not do the right thing.
5236 *
5237 * And since this is boot we can forgo the serialization.
5238 */
5239 set_cpus_allowed_common(idle, cpumask_of(cpu));
5240#endif
6506cf6c
PZ
5241 /*
5242 * We're having a chicken and egg problem, even though we are
5243 * holding rq->lock, the cpu isn't yet set to this cpu so the
5244 * lockdep check in task_group() will fail.
5245 *
5246 * Similar case to sched_fork(). / Alternatively we could
5247 * use task_rq_lock() here and obtain the other rq->lock.
5248 *
5249 * Silence PROVE_RCU
5250 */
5251 rcu_read_lock();
dd41f596 5252 __set_task_cpu(idle, cpu);
6506cf6c 5253 rcu_read_unlock();
1da177e4 5254
1da177e4 5255 rq->curr = rq->idle = idle;
da0c1e65 5256 idle->on_rq = TASK_ON_RQ_QUEUED;
de9b8f5d 5257#ifdef CONFIG_SMP
3ca7a440 5258 idle->on_cpu = 1;
4866cde0 5259#endif
25834c73
PZ
5260 raw_spin_unlock(&rq->lock);
5261 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
1da177e4
LT
5262
5263 /* Set the preempt count _outside_ the spinlocks! */
01028747 5264 init_idle_preempt_count(idle, cpu);
55cd5340 5265
dd41f596
IM
5266 /*
5267 * The idle tasks have their own, simple scheduling class:
5268 */
5269 idle->sched_class = &idle_sched_class;
868baf07 5270 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 5271 vtime_init_idle(idle, cpu);
de9b8f5d 5272#ifdef CONFIG_SMP
f1c6f1a7
CE
5273 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5274#endif
19978ca6
IM
5275}
5276
f82f8042
JL
5277int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5278 const struct cpumask *trial)
5279{
5280 int ret = 1, trial_cpus;
5281 struct dl_bw *cur_dl_b;
5282 unsigned long flags;
5283
bb2bc55a
MG
5284 if (!cpumask_weight(cur))
5285 return ret;
5286
75e23e49 5287 rcu_read_lock_sched();
f82f8042
JL
5288 cur_dl_b = dl_bw_of(cpumask_any(cur));
5289 trial_cpus = cpumask_weight(trial);
5290
5291 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5292 if (cur_dl_b->bw != -1 &&
5293 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5294 ret = 0;
5295 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
75e23e49 5296 rcu_read_unlock_sched();
f82f8042
JL
5297
5298 return ret;
5299}
5300
7f51412a
JL
5301int task_can_attach(struct task_struct *p,
5302 const struct cpumask *cs_cpus_allowed)
5303{
5304 int ret = 0;
5305
5306 /*
5307 * Kthreads which disallow setaffinity shouldn't be moved
5308 * to a new cpuset; we don't want to change their cpu
5309 * affinity and isolating such threads by their set of
5310 * allowed nodes is unnecessary. Thus, cpusets are not
5311 * applicable for such threads. This prevents checking for
5312 * success of set_cpus_allowed_ptr() on all attached tasks
5313 * before cpus_allowed may be changed.
5314 */
5315 if (p->flags & PF_NO_SETAFFINITY) {
5316 ret = -EINVAL;
5317 goto out;
5318 }
5319
5320#ifdef CONFIG_SMP
5321 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5322 cs_cpus_allowed)) {
5323 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5324 cs_cpus_allowed);
75e23e49 5325 struct dl_bw *dl_b;
7f51412a
JL
5326 bool overflow;
5327 int cpus;
5328 unsigned long flags;
5329
75e23e49
JL
5330 rcu_read_lock_sched();
5331 dl_b = dl_bw_of(dest_cpu);
7f51412a
JL
5332 raw_spin_lock_irqsave(&dl_b->lock, flags);
5333 cpus = dl_bw_cpus(dest_cpu);
5334 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5335 if (overflow)
5336 ret = -EBUSY;
5337 else {
5338 /*
5339 * We reserve space for this task in the destination
5340 * root_domain, as we can't fail after this point.
5341 * We will free resources in the source root_domain
5342 * later on (see set_cpus_allowed_dl()).
5343 */
5344 __dl_add(dl_b, p->dl.dl_bw);
5345 }
5346 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
75e23e49 5347 rcu_read_unlock_sched();
7f51412a
JL
5348
5349 }
5350#endif
5351out:
5352 return ret;
5353}
5354
1da177e4 5355#ifdef CONFIG_SMP
1da177e4 5356
e26fbffd
TG
5357static bool sched_smp_initialized __read_mostly;
5358
e6628d5b
MG
5359#ifdef CONFIG_NUMA_BALANCING
5360/* Migrate current task p to target_cpu */
5361int migrate_task_to(struct task_struct *p, int target_cpu)
5362{
5363 struct migration_arg arg = { p, target_cpu };
5364 int curr_cpu = task_cpu(p);
5365
5366 if (curr_cpu == target_cpu)
5367 return 0;
5368
5369 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5370 return -EINVAL;
5371
5372 /* TODO: This is not properly updating schedstats */
5373
286549dc 5374 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
5375 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5376}
0ec8aa00
PZ
5377
5378/*
5379 * Requeue a task on a given node and accurately track the number of NUMA
5380 * tasks on the runqueues
5381 */
5382void sched_setnuma(struct task_struct *p, int nid)
5383{
da0c1e65 5384 bool queued, running;
eb580751
PZ
5385 struct rq_flags rf;
5386 struct rq *rq;
0ec8aa00 5387
eb580751 5388 rq = task_rq_lock(p, &rf);
da0c1e65 5389 queued = task_on_rq_queued(p);
0ec8aa00
PZ
5390 running = task_current(rq, p);
5391
da0c1e65 5392 if (queued)
1de64443 5393 dequeue_task(rq, p, DEQUEUE_SAVE);
0ec8aa00 5394 if (running)
f3cd1c4e 5395 put_prev_task(rq, p);
0ec8aa00
PZ
5396
5397 p->numa_preferred_nid = nid;
0ec8aa00
PZ
5398
5399 if (running)
5400 p->sched_class->set_curr_task(rq);
da0c1e65 5401 if (queued)
1de64443 5402 enqueue_task(rq, p, ENQUEUE_RESTORE);
eb580751 5403 task_rq_unlock(rq, p, &rf);
0ec8aa00 5404}
5cc389bc 5405#endif /* CONFIG_NUMA_BALANCING */
f7b4cddc 5406
1da177e4 5407#ifdef CONFIG_HOTPLUG_CPU
054b9108 5408/*
48c5ccae
PZ
5409 * Ensures that the idle task is using init_mm right before its cpu goes
5410 * offline.
054b9108 5411 */
48c5ccae 5412void idle_task_exit(void)
1da177e4 5413{
48c5ccae 5414 struct mm_struct *mm = current->active_mm;
e76bd8d9 5415
48c5ccae 5416 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 5417
a53efe5f 5418 if (mm != &init_mm) {
f98db601 5419 switch_mm_irqs_off(mm, &init_mm, current);
a53efe5f
MS
5420 finish_arch_post_lock_switch();
5421 }
48c5ccae 5422 mmdrop(mm);
1da177e4
LT
5423}
5424
5425/*
5d180232
PZ
5426 * Since this CPU is going 'away' for a while, fold any nr_active delta
5427 * we might have. Assumes we're called after migrate_tasks() so that the
d60585c5
TG
5428 * nr_active count is stable. We need to take the teardown thread which
5429 * is calling this into account, so we hand in adjust = 1 to the load
5430 * calculation.
5d180232
PZ
5431 *
5432 * Also see the comment "Global load-average calculations".
1da177e4 5433 */
5d180232 5434static void calc_load_migrate(struct rq *rq)
1da177e4 5435{
d60585c5 5436 long delta = calc_load_fold_active(rq, 1);
5d180232
PZ
5437 if (delta)
5438 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
5439}
5440
3f1d2a31
PZ
5441static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5442{
5443}
5444
5445static const struct sched_class fake_sched_class = {
5446 .put_prev_task = put_prev_task_fake,
5447};
5448
5449static struct task_struct fake_task = {
5450 /*
5451 * Avoid pull_{rt,dl}_task()
5452 */
5453 .prio = MAX_PRIO + 1,
5454 .sched_class = &fake_sched_class,
5455};
5456
48f24c4d 5457/*
48c5ccae
PZ
5458 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5459 * try_to_wake_up()->select_task_rq().
5460 *
5461 * Called with rq->lock held even though we'er in stop_machine() and
5462 * there's no concurrency possible, we hold the required locks anyway
5463 * because of lock validation efforts.
1da177e4 5464 */
5e16bbc2 5465static void migrate_tasks(struct rq *dead_rq)
1da177e4 5466{
5e16bbc2 5467 struct rq *rq = dead_rq;
48c5ccae 5468 struct task_struct *next, *stop = rq->stop;
e7904a28 5469 struct pin_cookie cookie;
48c5ccae 5470 int dest_cpu;
1da177e4
LT
5471
5472 /*
48c5ccae
PZ
5473 * Fudge the rq selection such that the below task selection loop
5474 * doesn't get stuck on the currently eligible stop task.
5475 *
5476 * We're currently inside stop_machine() and the rq is either stuck
5477 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5478 * either way we should never end up calling schedule() until we're
5479 * done here.
1da177e4 5480 */
48c5ccae 5481 rq->stop = NULL;
48f24c4d 5482
77bd3970
FW
5483 /*
5484 * put_prev_task() and pick_next_task() sched
5485 * class method both need to have an up-to-date
5486 * value of rq->clock[_task]
5487 */
5488 update_rq_clock(rq);
5489
5e16bbc2 5490 for (;;) {
48c5ccae
PZ
5491 /*
5492 * There's this thread running, bail when that's the only
5493 * remaining thread.
5494 */
5495 if (rq->nr_running == 1)
dd41f596 5496 break;
48c5ccae 5497
cbce1a68 5498 /*
5473e0cc 5499 * pick_next_task assumes pinned rq->lock.
cbce1a68 5500 */
e7904a28
PZ
5501 cookie = lockdep_pin_lock(&rq->lock);
5502 next = pick_next_task(rq, &fake_task, cookie);
48c5ccae 5503 BUG_ON(!next);
79c53799 5504 next->sched_class->put_prev_task(rq, next);
e692ab53 5505
5473e0cc
WL
5506 /*
5507 * Rules for changing task_struct::cpus_allowed are holding
5508 * both pi_lock and rq->lock, such that holding either
5509 * stabilizes the mask.
5510 *
5511 * Drop rq->lock is not quite as disastrous as it usually is
5512 * because !cpu_active at this point, which means load-balance
5513 * will not interfere. Also, stop-machine.
5514 */
e7904a28 5515 lockdep_unpin_lock(&rq->lock, cookie);
5473e0cc
WL
5516 raw_spin_unlock(&rq->lock);
5517 raw_spin_lock(&next->pi_lock);
5518 raw_spin_lock(&rq->lock);
5519
5520 /*
5521 * Since we're inside stop-machine, _nothing_ should have
5522 * changed the task, WARN if weird stuff happened, because in
5523 * that case the above rq->lock drop is a fail too.
5524 */
5525 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5526 raw_spin_unlock(&next->pi_lock);
5527 continue;
5528 }
5529
48c5ccae 5530 /* Find suitable destination for @next, with force if needed. */
5e16bbc2 5531 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
48c5ccae 5532
5e16bbc2
PZ
5533 rq = __migrate_task(rq, next, dest_cpu);
5534 if (rq != dead_rq) {
5535 raw_spin_unlock(&rq->lock);
5536 rq = dead_rq;
5537 raw_spin_lock(&rq->lock);
5538 }
5473e0cc 5539 raw_spin_unlock(&next->pi_lock);
1da177e4 5540 }
dce48a84 5541
48c5ccae 5542 rq->stop = stop;
dce48a84 5543}
1da177e4
LT
5544#endif /* CONFIG_HOTPLUG_CPU */
5545
1f11eb6a
GH
5546static void set_rq_online(struct rq *rq)
5547{
5548 if (!rq->online) {
5549 const struct sched_class *class;
5550
c6c4927b 5551 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5552 rq->online = 1;
5553
5554 for_each_class(class) {
5555 if (class->rq_online)
5556 class->rq_online(rq);
5557 }
5558 }
5559}
5560
5561static void set_rq_offline(struct rq *rq)
5562{
5563 if (rq->online) {
5564 const struct sched_class *class;
5565
5566 for_each_class(class) {
5567 if (class->rq_offline)
5568 class->rq_offline(rq);
5569 }
5570
c6c4927b 5571 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5572 rq->online = 0;
5573 }
5574}
5575
9cf7243d 5576static void set_cpu_rq_start_time(unsigned int cpu)
1da177e4 5577{
969c7921 5578 struct rq *rq = cpu_rq(cpu);
1da177e4 5579
a803f026
CM
5580 rq->age_stamp = sched_clock_cpu(cpu);
5581}
5582
4cb98839
PZ
5583static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5584
3e9830dc 5585#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5586
d039ac60 5587static __read_mostly int sched_debug_enabled;
f6630114 5588
d039ac60 5589static int __init sched_debug_setup(char *str)
f6630114 5590{
d039ac60 5591 sched_debug_enabled = 1;
f6630114
MT
5592
5593 return 0;
5594}
d039ac60
PZ
5595early_param("sched_debug", sched_debug_setup);
5596
5597static inline bool sched_debug(void)
5598{
5599 return sched_debug_enabled;
5600}
f6630114 5601
7c16ec58 5602static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5603 struct cpumask *groupmask)
1da177e4 5604{
4dcf6aff 5605 struct sched_group *group = sd->groups;
1da177e4 5606
96f874e2 5607 cpumask_clear(groupmask);
4dcf6aff
IM
5608
5609 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5610
5611 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5612 printk("does not load-balance\n");
4dcf6aff 5613 if (sd->parent)
3df0fc5b
PZ
5614 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5615 " has parent");
4dcf6aff 5616 return -1;
41c7ce9a
NP
5617 }
5618
333470ee
TH
5619 printk(KERN_CONT "span %*pbl level %s\n",
5620 cpumask_pr_args(sched_domain_span(sd)), sd->name);
4dcf6aff 5621
758b2cdc 5622 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5623 printk(KERN_ERR "ERROR: domain->span does not contain "
5624 "CPU%d\n", cpu);
4dcf6aff 5625 }
758b2cdc 5626 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5627 printk(KERN_ERR "ERROR: domain->groups does not contain"
5628 " CPU%d\n", cpu);
4dcf6aff 5629 }
1da177e4 5630
4dcf6aff 5631 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5632 do {
4dcf6aff 5633 if (!group) {
3df0fc5b
PZ
5634 printk("\n");
5635 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5636 break;
5637 }
5638
758b2cdc 5639 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5640 printk(KERN_CONT "\n");
5641 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5642 break;
5643 }
1da177e4 5644
cb83b629
PZ
5645 if (!(sd->flags & SD_OVERLAP) &&
5646 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5647 printk(KERN_CONT "\n");
5648 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5649 break;
5650 }
1da177e4 5651
758b2cdc 5652 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5653
333470ee
TH
5654 printk(KERN_CONT " %*pbl",
5655 cpumask_pr_args(sched_group_cpus(group)));
ca8ce3d0 5656 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
63b2ca30
NP
5657 printk(KERN_CONT " (cpu_capacity = %d)",
5658 group->sgc->capacity);
381512cf 5659 }
1da177e4 5660
4dcf6aff
IM
5661 group = group->next;
5662 } while (group != sd->groups);
3df0fc5b 5663 printk(KERN_CONT "\n");
1da177e4 5664
758b2cdc 5665 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5666 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5667
758b2cdc
RR
5668 if (sd->parent &&
5669 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5670 printk(KERN_ERR "ERROR: parent span is not a superset "
5671 "of domain->span\n");
4dcf6aff
IM
5672 return 0;
5673}
1da177e4 5674
4dcf6aff
IM
5675static void sched_domain_debug(struct sched_domain *sd, int cpu)
5676{
5677 int level = 0;
1da177e4 5678
d039ac60 5679 if (!sched_debug_enabled)
f6630114
MT
5680 return;
5681
4dcf6aff
IM
5682 if (!sd) {
5683 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5684 return;
5685 }
1da177e4 5686
4dcf6aff
IM
5687 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5688
5689 for (;;) {
4cb98839 5690 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5691 break;
1da177e4
LT
5692 level++;
5693 sd = sd->parent;
33859f7f 5694 if (!sd)
4dcf6aff
IM
5695 break;
5696 }
1da177e4 5697}
6d6bc0ad 5698#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5699# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5700static inline bool sched_debug(void)
5701{
5702 return false;
5703}
6d6bc0ad 5704#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5705
1a20ff27 5706static int sd_degenerate(struct sched_domain *sd)
245af2c7 5707{
758b2cdc 5708 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5709 return 1;
5710
5711 /* Following flags need at least 2 groups */
5712 if (sd->flags & (SD_LOAD_BALANCE |
5713 SD_BALANCE_NEWIDLE |
5714 SD_BALANCE_FORK |
89c4710e 5715 SD_BALANCE_EXEC |
5d4dfddd 5716 SD_SHARE_CPUCAPACITY |
d77b3ed5
VG
5717 SD_SHARE_PKG_RESOURCES |
5718 SD_SHARE_POWERDOMAIN)) {
245af2c7
SS
5719 if (sd->groups != sd->groups->next)
5720 return 0;
5721 }
5722
5723 /* Following flags don't use groups */
c88d5910 5724 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5725 return 0;
5726
5727 return 1;
5728}
5729
48f24c4d
IM
5730static int
5731sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5732{
5733 unsigned long cflags = sd->flags, pflags = parent->flags;
5734
5735 if (sd_degenerate(parent))
5736 return 1;
5737
758b2cdc 5738 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5739 return 0;
5740
245af2c7
SS
5741 /* Flags needing groups don't count if only 1 group in parent */
5742 if (parent->groups == parent->groups->next) {
5743 pflags &= ~(SD_LOAD_BALANCE |
5744 SD_BALANCE_NEWIDLE |
5745 SD_BALANCE_FORK |
89c4710e 5746 SD_BALANCE_EXEC |
5d4dfddd 5747 SD_SHARE_CPUCAPACITY |
10866e62 5748 SD_SHARE_PKG_RESOURCES |
d77b3ed5
VG
5749 SD_PREFER_SIBLING |
5750 SD_SHARE_POWERDOMAIN);
5436499e
KC
5751 if (nr_node_ids == 1)
5752 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5753 }
5754 if (~cflags & pflags)
5755 return 0;
5756
5757 return 1;
5758}
5759
dce840a0 5760static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5761{
dce840a0 5762 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5763
68e74568 5764 cpupri_cleanup(&rd->cpupri);
6bfd6d72 5765 cpudl_cleanup(&rd->cpudl);
1baca4ce 5766 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5767 free_cpumask_var(rd->rto_mask);
5768 free_cpumask_var(rd->online);
5769 free_cpumask_var(rd->span);
5770 kfree(rd);
5771}
5772
57d885fe
GH
5773static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5774{
a0490fa3 5775 struct root_domain *old_rd = NULL;
57d885fe 5776 unsigned long flags;
57d885fe 5777
05fa785c 5778 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5779
5780 if (rq->rd) {
a0490fa3 5781 old_rd = rq->rd;
57d885fe 5782
c6c4927b 5783 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5784 set_rq_offline(rq);
57d885fe 5785
c6c4927b 5786 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5787
a0490fa3 5788 /*
0515973f 5789 * If we dont want to free the old_rd yet then
a0490fa3
IM
5790 * set old_rd to NULL to skip the freeing later
5791 * in this function:
5792 */
5793 if (!atomic_dec_and_test(&old_rd->refcount))
5794 old_rd = NULL;
57d885fe
GH
5795 }
5796
5797 atomic_inc(&rd->refcount);
5798 rq->rd = rd;
5799
c6c4927b 5800 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5801 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5802 set_rq_online(rq);
57d885fe 5803
05fa785c 5804 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5805
5806 if (old_rd)
dce840a0 5807 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5808}
5809
68c38fc3 5810static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5811{
5812 memset(rd, 0, sizeof(*rd));
5813
8295c699 5814 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5815 goto out;
8295c699 5816 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5817 goto free_span;
8295c699 5818 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
c6c4927b 5819 goto free_online;
8295c699 5820 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
1baca4ce 5821 goto free_dlo_mask;
6e0534f2 5822
332ac17e 5823 init_dl_bw(&rd->dl_bw);
6bfd6d72
JL
5824 if (cpudl_init(&rd->cpudl) != 0)
5825 goto free_dlo_mask;
332ac17e 5826
68c38fc3 5827 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5828 goto free_rto_mask;
c6c4927b 5829 return 0;
6e0534f2 5830
68e74568
RR
5831free_rto_mask:
5832 free_cpumask_var(rd->rto_mask);
1baca4ce
JL
5833free_dlo_mask:
5834 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5835free_online:
5836 free_cpumask_var(rd->online);
5837free_span:
5838 free_cpumask_var(rd->span);
0c910d28 5839out:
c6c4927b 5840 return -ENOMEM;
57d885fe
GH
5841}
5842
029632fb
PZ
5843/*
5844 * By default the system creates a single root-domain with all cpus as
5845 * members (mimicking the global state we have today).
5846 */
5847struct root_domain def_root_domain;
5848
57d885fe
GH
5849static void init_defrootdomain(void)
5850{
68c38fc3 5851 init_rootdomain(&def_root_domain);
c6c4927b 5852
57d885fe
GH
5853 atomic_set(&def_root_domain.refcount, 1);
5854}
5855
dc938520 5856static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5857{
5858 struct root_domain *rd;
5859
5860 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5861 if (!rd)
5862 return NULL;
5863
68c38fc3 5864 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5865 kfree(rd);
5866 return NULL;
5867 }
57d885fe
GH
5868
5869 return rd;
5870}
5871
63b2ca30 5872static void free_sched_groups(struct sched_group *sg, int free_sgc)
e3589f6c
PZ
5873{
5874 struct sched_group *tmp, *first;
5875
5876 if (!sg)
5877 return;
5878
5879 first = sg;
5880 do {
5881 tmp = sg->next;
5882
63b2ca30
NP
5883 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5884 kfree(sg->sgc);
e3589f6c
PZ
5885
5886 kfree(sg);
5887 sg = tmp;
5888 } while (sg != first);
5889}
5890
dce840a0
PZ
5891static void free_sched_domain(struct rcu_head *rcu)
5892{
5893 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5894
5895 /*
5896 * If its an overlapping domain it has private groups, iterate and
5897 * nuke them all.
5898 */
5899 if (sd->flags & SD_OVERLAP) {
5900 free_sched_groups(sd->groups, 1);
5901 } else if (atomic_dec_and_test(&sd->groups->ref)) {
63b2ca30 5902 kfree(sd->groups->sgc);
dce840a0 5903 kfree(sd->groups);
9c3f75cb 5904 }
dce840a0
PZ
5905 kfree(sd);
5906}
5907
5908static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5909{
5910 call_rcu(&sd->rcu, free_sched_domain);
5911}
5912
5913static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5914{
5915 for (; sd; sd = sd->parent)
5916 destroy_sched_domain(sd, cpu);
5917}
5918
518cd623
PZ
5919/*
5920 * Keep a special pointer to the highest sched_domain that has
5921 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5922 * allows us to avoid some pointer chasing select_idle_sibling().
5923 *
5924 * Also keep a unique ID per domain (we use the first cpu number in
5925 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5926 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5927 */
5928DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5929DEFINE_PER_CPU(int, sd_llc_size);
518cd623 5930DEFINE_PER_CPU(int, sd_llc_id);
fb13c7ee 5931DEFINE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
5932DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5933DEFINE_PER_CPU(struct sched_domain *, sd_asym);
518cd623
PZ
5934
5935static void update_top_cache_domain(int cpu)
5936{
5937 struct sched_domain *sd;
5d4cf996 5938 struct sched_domain *busy_sd = NULL;
518cd623 5939 int id = cpu;
7d9ffa89 5940 int size = 1;
518cd623
PZ
5941
5942 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 5943 if (sd) {
518cd623 5944 id = cpumask_first(sched_domain_span(sd));
7d9ffa89 5945 size = cpumask_weight(sched_domain_span(sd));
5d4cf996 5946 busy_sd = sd->parent; /* sd_busy */
7d9ffa89 5947 }
5d4cf996 5948 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
518cd623
PZ
5949
5950 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 5951 per_cpu(sd_llc_size, cpu) = size;
518cd623 5952 per_cpu(sd_llc_id, cpu) = id;
fb13c7ee
MG
5953
5954 sd = lowest_flag_domain(cpu, SD_NUMA);
5955 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
37dc6b50
PM
5956
5957 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5958 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
518cd623
PZ
5959}
5960
1da177e4 5961/*
0eab9146 5962 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5963 * hold the hotplug lock.
5964 */
0eab9146
IM
5965static void
5966cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5967{
70b97a7f 5968 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5969 struct sched_domain *tmp;
5970
5971 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5972 for (tmp = sd; tmp; ) {
245af2c7
SS
5973 struct sched_domain *parent = tmp->parent;
5974 if (!parent)
5975 break;
f29c9b1c 5976
1a848870 5977 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5978 tmp->parent = parent->parent;
1a848870
SS
5979 if (parent->parent)
5980 parent->parent->child = tmp;
10866e62
PZ
5981 /*
5982 * Transfer SD_PREFER_SIBLING down in case of a
5983 * degenerate parent; the spans match for this
5984 * so the property transfers.
5985 */
5986 if (parent->flags & SD_PREFER_SIBLING)
5987 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 5988 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5989 } else
5990 tmp = tmp->parent;
245af2c7
SS
5991 }
5992
1a848870 5993 if (sd && sd_degenerate(sd)) {
dce840a0 5994 tmp = sd;
245af2c7 5995 sd = sd->parent;
dce840a0 5996 destroy_sched_domain(tmp, cpu);
1a848870
SS
5997 if (sd)
5998 sd->child = NULL;
5999 }
1da177e4 6000
4cb98839 6001 sched_domain_debug(sd, cpu);
1da177e4 6002
57d885fe 6003 rq_attach_root(rq, rd);
dce840a0 6004 tmp = rq->sd;
674311d5 6005 rcu_assign_pointer(rq->sd, sd);
dce840a0 6006 destroy_sched_domains(tmp, cpu);
518cd623
PZ
6007
6008 update_top_cache_domain(cpu);
1da177e4
LT
6009}
6010
1da177e4
LT
6011/* Setup the mask of cpus configured for isolated domains */
6012static int __init isolated_cpu_setup(char *str)
6013{
a6e4491c
PB
6014 int ret;
6015
bdddd296 6016 alloc_bootmem_cpumask_var(&cpu_isolated_map);
a6e4491c
PB
6017 ret = cpulist_parse(str, cpu_isolated_map);
6018 if (ret) {
6019 pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
6020 return 0;
6021 }
1da177e4
LT
6022 return 1;
6023}
8927f494 6024__setup("isolcpus=", isolated_cpu_setup);
1da177e4 6025
49a02c51 6026struct s_data {
21d42ccf 6027 struct sched_domain ** __percpu sd;
49a02c51
AH
6028 struct root_domain *rd;
6029};
6030
2109b99e 6031enum s_alloc {
2109b99e 6032 sa_rootdomain,
21d42ccf 6033 sa_sd,
dce840a0 6034 sa_sd_storage,
2109b99e
AH
6035 sa_none,
6036};
6037
c1174876
PZ
6038/*
6039 * Build an iteration mask that can exclude certain CPUs from the upwards
6040 * domain traversal.
6041 *
6042 * Asymmetric node setups can result in situations where the domain tree is of
6043 * unequal depth, make sure to skip domains that already cover the entire
6044 * range.
6045 *
6046 * In that case build_sched_domains() will have terminated the iteration early
6047 * and our sibling sd spans will be empty. Domains should always include the
6048 * cpu they're built on, so check that.
6049 *
6050 */
6051static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6052{
6053 const struct cpumask *span = sched_domain_span(sd);
6054 struct sd_data *sdd = sd->private;
6055 struct sched_domain *sibling;
6056 int i;
6057
6058 for_each_cpu(i, span) {
6059 sibling = *per_cpu_ptr(sdd->sd, i);
6060 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6061 continue;
6062
6063 cpumask_set_cpu(i, sched_group_mask(sg));
6064 }
6065}
6066
6067/*
6068 * Return the canonical balance cpu for this group, this is the first cpu
6069 * of this group that's also in the iteration mask.
6070 */
6071int group_balance_cpu(struct sched_group *sg)
6072{
6073 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6074}
6075
e3589f6c
PZ
6076static int
6077build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6078{
6079 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6080 const struct cpumask *span = sched_domain_span(sd);
6081 struct cpumask *covered = sched_domains_tmpmask;
6082 struct sd_data *sdd = sd->private;
aaecac4a 6083 struct sched_domain *sibling;
e3589f6c
PZ
6084 int i;
6085
6086 cpumask_clear(covered);
6087
6088 for_each_cpu(i, span) {
6089 struct cpumask *sg_span;
6090
6091 if (cpumask_test_cpu(i, covered))
6092 continue;
6093
aaecac4a 6094 sibling = *per_cpu_ptr(sdd->sd, i);
c1174876
PZ
6095
6096 /* See the comment near build_group_mask(). */
aaecac4a 6097 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
c1174876
PZ
6098 continue;
6099
e3589f6c 6100 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 6101 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
6102
6103 if (!sg)
6104 goto fail;
6105
6106 sg_span = sched_group_cpus(sg);
aaecac4a
ZZ
6107 if (sibling->child)
6108 cpumask_copy(sg_span, sched_domain_span(sibling->child));
6109 else
e3589f6c
PZ
6110 cpumask_set_cpu(i, sg_span);
6111
6112 cpumask_or(covered, covered, sg_span);
6113
63b2ca30
NP
6114 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6115 if (atomic_inc_return(&sg->sgc->ref) == 1)
c1174876
PZ
6116 build_group_mask(sd, sg);
6117
c3decf0d 6118 /*
63b2ca30 6119 * Initialize sgc->capacity such that even if we mess up the
c3decf0d
PZ
6120 * domains and no possible iteration will get us here, we won't
6121 * die on a /0 trap.
6122 */
ca8ce3d0 6123 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
e3589f6c 6124
c1174876
PZ
6125 /*
6126 * Make sure the first group of this domain contains the
6127 * canonical balance cpu. Otherwise the sched_domain iteration
6128 * breaks. See update_sg_lb_stats().
6129 */
74a5ce20 6130 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 6131 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
6132 groups = sg;
6133
6134 if (!first)
6135 first = sg;
6136 if (last)
6137 last->next = sg;
6138 last = sg;
6139 last->next = first;
6140 }
6141 sd->groups = groups;
6142
6143 return 0;
6144
6145fail:
6146 free_sched_groups(first, 0);
6147
6148 return -ENOMEM;
6149}
6150
dce840a0 6151static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 6152{
dce840a0
PZ
6153 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6154 struct sched_domain *child = sd->child;
1da177e4 6155
dce840a0
PZ
6156 if (child)
6157 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 6158
9c3f75cb 6159 if (sg) {
dce840a0 6160 *sg = *per_cpu_ptr(sdd->sg, cpu);
63b2ca30
NP
6161 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6162 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
9c3f75cb 6163 }
dce840a0
PZ
6164
6165 return cpu;
1e9f28fa 6166}
1e9f28fa 6167
01a08546 6168/*
dce840a0
PZ
6169 * build_sched_groups will build a circular linked list of the groups
6170 * covered by the given span, and will set each group's ->cpumask correctly,
ced549fa 6171 * and ->cpu_capacity to 0.
e3589f6c
PZ
6172 *
6173 * Assumes the sched_domain tree is fully constructed
01a08546 6174 */
e3589f6c
PZ
6175static int
6176build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 6177{
dce840a0
PZ
6178 struct sched_group *first = NULL, *last = NULL;
6179 struct sd_data *sdd = sd->private;
6180 const struct cpumask *span = sched_domain_span(sd);
f96225fd 6181 struct cpumask *covered;
dce840a0 6182 int i;
9c1cfda2 6183
e3589f6c
PZ
6184 get_group(cpu, sdd, &sd->groups);
6185 atomic_inc(&sd->groups->ref);
6186
0936629f 6187 if (cpu != cpumask_first(span))
e3589f6c
PZ
6188 return 0;
6189
f96225fd
PZ
6190 lockdep_assert_held(&sched_domains_mutex);
6191 covered = sched_domains_tmpmask;
6192
dce840a0 6193 cpumask_clear(covered);
6711cab4 6194
dce840a0
PZ
6195 for_each_cpu(i, span) {
6196 struct sched_group *sg;
cd08e923 6197 int group, j;
6711cab4 6198
dce840a0
PZ
6199 if (cpumask_test_cpu(i, covered))
6200 continue;
6711cab4 6201
cd08e923 6202 group = get_group(i, sdd, &sg);
c1174876 6203 cpumask_setall(sched_group_mask(sg));
0601a88d 6204
dce840a0
PZ
6205 for_each_cpu(j, span) {
6206 if (get_group(j, sdd, NULL) != group)
6207 continue;
0601a88d 6208
dce840a0
PZ
6209 cpumask_set_cpu(j, covered);
6210 cpumask_set_cpu(j, sched_group_cpus(sg));
6211 }
0601a88d 6212
dce840a0
PZ
6213 if (!first)
6214 first = sg;
6215 if (last)
6216 last->next = sg;
6217 last = sg;
6218 }
6219 last->next = first;
e3589f6c
PZ
6220
6221 return 0;
0601a88d 6222}
51888ca2 6223
89c4710e 6224/*
63b2ca30 6225 * Initialize sched groups cpu_capacity.
89c4710e 6226 *
63b2ca30 6227 * cpu_capacity indicates the capacity of sched group, which is used while
89c4710e 6228 * distributing the load between different sched groups in a sched domain.
63b2ca30
NP
6229 * Typically cpu_capacity for all the groups in a sched domain will be same
6230 * unless there are asymmetries in the topology. If there are asymmetries,
6231 * group having more cpu_capacity will pickup more load compared to the
6232 * group having less cpu_capacity.
89c4710e 6233 */
63b2ca30 6234static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
89c4710e 6235{
e3589f6c 6236 struct sched_group *sg = sd->groups;
89c4710e 6237
94c95ba6 6238 WARN_ON(!sg);
e3589f6c
PZ
6239
6240 do {
6241 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6242 sg = sg->next;
6243 } while (sg != sd->groups);
89c4710e 6244
c1174876 6245 if (cpu != group_balance_cpu(sg))
e3589f6c 6246 return;
aae6d3dd 6247
63b2ca30
NP
6248 update_group_capacity(sd, cpu);
6249 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
89c4710e
SS
6250}
6251
7c16ec58
MT
6252/*
6253 * Initializers for schedule domains
6254 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6255 */
6256
1d3504fc 6257static int default_relax_domain_level = -1;
60495e77 6258int sched_domain_level_max;
1d3504fc
HS
6259
6260static int __init setup_relax_domain_level(char *str)
6261{
a841f8ce
DS
6262 if (kstrtoint(str, 0, &default_relax_domain_level))
6263 pr_warn("Unable to set relax_domain_level\n");
30e0e178 6264
1d3504fc
HS
6265 return 1;
6266}
6267__setup("relax_domain_level=", setup_relax_domain_level);
6268
6269static void set_domain_attribute(struct sched_domain *sd,
6270 struct sched_domain_attr *attr)
6271{
6272 int request;
6273
6274 if (!attr || attr->relax_domain_level < 0) {
6275 if (default_relax_domain_level < 0)
6276 return;
6277 else
6278 request = default_relax_domain_level;
6279 } else
6280 request = attr->relax_domain_level;
6281 if (request < sd->level) {
6282 /* turn off idle balance on this domain */
c88d5910 6283 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6284 } else {
6285 /* turn on idle balance on this domain */
c88d5910 6286 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6287 }
6288}
6289
54ab4ff4
PZ
6290static void __sdt_free(const struct cpumask *cpu_map);
6291static int __sdt_alloc(const struct cpumask *cpu_map);
6292
2109b99e
AH
6293static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6294 const struct cpumask *cpu_map)
6295{
6296 switch (what) {
2109b99e 6297 case sa_rootdomain:
822ff793
PZ
6298 if (!atomic_read(&d->rd->refcount))
6299 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
6300 case sa_sd:
6301 free_percpu(d->sd); /* fall through */
dce840a0 6302 case sa_sd_storage:
54ab4ff4 6303 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
6304 case sa_none:
6305 break;
6306 }
6307}
3404c8d9 6308
2109b99e
AH
6309static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6310 const struct cpumask *cpu_map)
6311{
dce840a0
PZ
6312 memset(d, 0, sizeof(*d));
6313
54ab4ff4
PZ
6314 if (__sdt_alloc(cpu_map))
6315 return sa_sd_storage;
dce840a0
PZ
6316 d->sd = alloc_percpu(struct sched_domain *);
6317 if (!d->sd)
6318 return sa_sd_storage;
2109b99e 6319 d->rd = alloc_rootdomain();
dce840a0 6320 if (!d->rd)
21d42ccf 6321 return sa_sd;
2109b99e
AH
6322 return sa_rootdomain;
6323}
57d885fe 6324
dce840a0
PZ
6325/*
6326 * NULL the sd_data elements we've used to build the sched_domain and
6327 * sched_group structure so that the subsequent __free_domain_allocs()
6328 * will not free the data we're using.
6329 */
6330static void claim_allocations(int cpu, struct sched_domain *sd)
6331{
6332 struct sd_data *sdd = sd->private;
dce840a0
PZ
6333
6334 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6335 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6336
e3589f6c 6337 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 6338 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c 6339
63b2ca30
NP
6340 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6341 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
dce840a0
PZ
6342}
6343
cb83b629 6344#ifdef CONFIG_NUMA
cb83b629 6345static int sched_domains_numa_levels;
e3fe70b1 6346enum numa_topology_type sched_numa_topology_type;
cb83b629 6347static int *sched_domains_numa_distance;
9942f79b 6348int sched_max_numa_distance;
cb83b629
PZ
6349static struct cpumask ***sched_domains_numa_masks;
6350static int sched_domains_curr_level;
143e1e28 6351#endif
cb83b629 6352
143e1e28
VG
6353/*
6354 * SD_flags allowed in topology descriptions.
6355 *
5d4dfddd 6356 * SD_SHARE_CPUCAPACITY - describes SMT topologies
143e1e28
VG
6357 * SD_SHARE_PKG_RESOURCES - describes shared caches
6358 * SD_NUMA - describes NUMA topologies
d77b3ed5 6359 * SD_SHARE_POWERDOMAIN - describes shared power domain
143e1e28
VG
6360 *
6361 * Odd one out:
6362 * SD_ASYM_PACKING - describes SMT quirks
6363 */
6364#define TOPOLOGY_SD_FLAGS \
5d4dfddd 6365 (SD_SHARE_CPUCAPACITY | \
143e1e28
VG
6366 SD_SHARE_PKG_RESOURCES | \
6367 SD_NUMA | \
d77b3ed5
VG
6368 SD_ASYM_PACKING | \
6369 SD_SHARE_POWERDOMAIN)
cb83b629
PZ
6370
6371static struct sched_domain *
143e1e28 6372sd_init(struct sched_domain_topology_level *tl, int cpu)
cb83b629
PZ
6373{
6374 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
143e1e28
VG
6375 int sd_weight, sd_flags = 0;
6376
6377#ifdef CONFIG_NUMA
6378 /*
6379 * Ugly hack to pass state to sd_numa_mask()...
6380 */
6381 sched_domains_curr_level = tl->numa_level;
6382#endif
6383
6384 sd_weight = cpumask_weight(tl->mask(cpu));
6385
6386 if (tl->sd_flags)
6387 sd_flags = (*tl->sd_flags)();
6388 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6389 "wrong sd_flags in topology description\n"))
6390 sd_flags &= ~TOPOLOGY_SD_FLAGS;
cb83b629
PZ
6391
6392 *sd = (struct sched_domain){
6393 .min_interval = sd_weight,
6394 .max_interval = 2*sd_weight,
6395 .busy_factor = 32,
870a0bb5 6396 .imbalance_pct = 125,
143e1e28
VG
6397
6398 .cache_nice_tries = 0,
6399 .busy_idx = 0,
6400 .idle_idx = 0,
cb83b629
PZ
6401 .newidle_idx = 0,
6402 .wake_idx = 0,
6403 .forkexec_idx = 0,
6404
6405 .flags = 1*SD_LOAD_BALANCE
6406 | 1*SD_BALANCE_NEWIDLE
143e1e28
VG
6407 | 1*SD_BALANCE_EXEC
6408 | 1*SD_BALANCE_FORK
cb83b629 6409 | 0*SD_BALANCE_WAKE
143e1e28 6410 | 1*SD_WAKE_AFFINE
5d4dfddd 6411 | 0*SD_SHARE_CPUCAPACITY
cb83b629 6412 | 0*SD_SHARE_PKG_RESOURCES
143e1e28 6413 | 0*SD_SERIALIZE
cb83b629 6414 | 0*SD_PREFER_SIBLING
143e1e28
VG
6415 | 0*SD_NUMA
6416 | sd_flags
cb83b629 6417 ,
143e1e28 6418
cb83b629
PZ
6419 .last_balance = jiffies,
6420 .balance_interval = sd_weight,
143e1e28 6421 .smt_gain = 0,
2b4cfe64
JL
6422 .max_newidle_lb_cost = 0,
6423 .next_decay_max_lb_cost = jiffies,
143e1e28
VG
6424#ifdef CONFIG_SCHED_DEBUG
6425 .name = tl->name,
6426#endif
cb83b629 6427 };
cb83b629
PZ
6428
6429 /*
143e1e28 6430 * Convert topological properties into behaviour.
cb83b629 6431 */
143e1e28 6432
5d4dfddd 6433 if (sd->flags & SD_SHARE_CPUCAPACITY) {
caff37ef 6434 sd->flags |= SD_PREFER_SIBLING;
143e1e28
VG
6435 sd->imbalance_pct = 110;
6436 sd->smt_gain = 1178; /* ~15% */
143e1e28
VG
6437
6438 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6439 sd->imbalance_pct = 117;
6440 sd->cache_nice_tries = 1;
6441 sd->busy_idx = 2;
6442
6443#ifdef CONFIG_NUMA
6444 } else if (sd->flags & SD_NUMA) {
6445 sd->cache_nice_tries = 2;
6446 sd->busy_idx = 3;
6447 sd->idle_idx = 2;
6448
6449 sd->flags |= SD_SERIALIZE;
6450 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6451 sd->flags &= ~(SD_BALANCE_EXEC |
6452 SD_BALANCE_FORK |
6453 SD_WAKE_AFFINE);
6454 }
6455
6456#endif
6457 } else {
6458 sd->flags |= SD_PREFER_SIBLING;
6459 sd->cache_nice_tries = 1;
6460 sd->busy_idx = 2;
6461 sd->idle_idx = 1;
6462 }
6463
6464 sd->private = &tl->data;
cb83b629
PZ
6465
6466 return sd;
6467}
6468
143e1e28
VG
6469/*
6470 * Topology list, bottom-up.
6471 */
6472static struct sched_domain_topology_level default_topology[] = {
6473#ifdef CONFIG_SCHED_SMT
6474 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6475#endif
6476#ifdef CONFIG_SCHED_MC
6477 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
143e1e28
VG
6478#endif
6479 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6480 { NULL, },
6481};
6482
c6e1e7b5
JG
6483static struct sched_domain_topology_level *sched_domain_topology =
6484 default_topology;
143e1e28
VG
6485
6486#define for_each_sd_topology(tl) \
6487 for (tl = sched_domain_topology; tl->mask; tl++)
6488
6489void set_sched_topology(struct sched_domain_topology_level *tl)
6490{
6491 sched_domain_topology = tl;
6492}
6493
6494#ifdef CONFIG_NUMA
6495
cb83b629
PZ
6496static const struct cpumask *sd_numa_mask(int cpu)
6497{
6498 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6499}
6500
d039ac60
PZ
6501static void sched_numa_warn(const char *str)
6502{
6503 static int done = false;
6504 int i,j;
6505
6506 if (done)
6507 return;
6508
6509 done = true;
6510
6511 printk(KERN_WARNING "ERROR: %s\n\n", str);
6512
6513 for (i = 0; i < nr_node_ids; i++) {
6514 printk(KERN_WARNING " ");
6515 for (j = 0; j < nr_node_ids; j++)
6516 printk(KERN_CONT "%02d ", node_distance(i,j));
6517 printk(KERN_CONT "\n");
6518 }
6519 printk(KERN_WARNING "\n");
6520}
6521
9942f79b 6522bool find_numa_distance(int distance)
d039ac60
PZ
6523{
6524 int i;
6525
6526 if (distance == node_distance(0, 0))
6527 return true;
6528
6529 for (i = 0; i < sched_domains_numa_levels; i++) {
6530 if (sched_domains_numa_distance[i] == distance)
6531 return true;
6532 }
6533
6534 return false;
6535}
6536
e3fe70b1
RR
6537/*
6538 * A system can have three types of NUMA topology:
6539 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6540 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6541 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6542 *
6543 * The difference between a glueless mesh topology and a backplane
6544 * topology lies in whether communication between not directly
6545 * connected nodes goes through intermediary nodes (where programs
6546 * could run), or through backplane controllers. This affects
6547 * placement of programs.
6548 *
6549 * The type of topology can be discerned with the following tests:
6550 * - If the maximum distance between any nodes is 1 hop, the system
6551 * is directly connected.
6552 * - If for two nodes A and B, located N > 1 hops away from each other,
6553 * there is an intermediary node C, which is < N hops away from both
6554 * nodes A and B, the system is a glueless mesh.
6555 */
6556static void init_numa_topology_type(void)
6557{
6558 int a, b, c, n;
6559
6560 n = sched_max_numa_distance;
6561
e237882b 6562 if (sched_domains_numa_levels <= 1) {
e3fe70b1 6563 sched_numa_topology_type = NUMA_DIRECT;
e237882b
AG
6564 return;
6565 }
e3fe70b1
RR
6566
6567 for_each_online_node(a) {
6568 for_each_online_node(b) {
6569 /* Find two nodes furthest removed from each other. */
6570 if (node_distance(a, b) < n)
6571 continue;
6572
6573 /* Is there an intermediary node between a and b? */
6574 for_each_online_node(c) {
6575 if (node_distance(a, c) < n &&
6576 node_distance(b, c) < n) {
6577 sched_numa_topology_type =
6578 NUMA_GLUELESS_MESH;
6579 return;
6580 }
6581 }
6582
6583 sched_numa_topology_type = NUMA_BACKPLANE;
6584 return;
6585 }
6586 }
6587}
6588
cb83b629
PZ
6589static void sched_init_numa(void)
6590{
6591 int next_distance, curr_distance = node_distance(0, 0);
6592 struct sched_domain_topology_level *tl;
6593 int level = 0;
6594 int i, j, k;
6595
cb83b629
PZ
6596 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6597 if (!sched_domains_numa_distance)
6598 return;
6599
6600 /*
6601 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6602 * unique distances in the node_distance() table.
6603 *
6604 * Assumes node_distance(0,j) includes all distances in
6605 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6606 */
6607 next_distance = curr_distance;
6608 for (i = 0; i < nr_node_ids; i++) {
6609 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6610 for (k = 0; k < nr_node_ids; k++) {
6611 int distance = node_distance(i, k);
6612
6613 if (distance > curr_distance &&
6614 (distance < next_distance ||
6615 next_distance == curr_distance))
6616 next_distance = distance;
6617
6618 /*
6619 * While not a strong assumption it would be nice to know
6620 * about cases where if node A is connected to B, B is not
6621 * equally connected to A.
6622 */
6623 if (sched_debug() && node_distance(k, i) != distance)
6624 sched_numa_warn("Node-distance not symmetric");
6625
6626 if (sched_debug() && i && !find_numa_distance(distance))
6627 sched_numa_warn("Node-0 not representative");
6628 }
6629 if (next_distance != curr_distance) {
6630 sched_domains_numa_distance[level++] = next_distance;
6631 sched_domains_numa_levels = level;
6632 curr_distance = next_distance;
6633 } else break;
cb83b629 6634 }
d039ac60
PZ
6635
6636 /*
6637 * In case of sched_debug() we verify the above assumption.
6638 */
6639 if (!sched_debug())
6640 break;
cb83b629 6641 }
c123588b
AR
6642
6643 if (!level)
6644 return;
6645
cb83b629
PZ
6646 /*
6647 * 'level' contains the number of unique distances, excluding the
6648 * identity distance node_distance(i,i).
6649 *
28b4a521 6650 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
6651 * numbers.
6652 */
6653
5f7865f3
TC
6654 /*
6655 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6656 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6657 * the array will contain less then 'level' members. This could be
6658 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6659 * in other functions.
6660 *
6661 * We reset it to 'level' at the end of this function.
6662 */
6663 sched_domains_numa_levels = 0;
6664
cb83b629
PZ
6665 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6666 if (!sched_domains_numa_masks)
6667 return;
6668
6669 /*
6670 * Now for each level, construct a mask per node which contains all
6671 * cpus of nodes that are that many hops away from us.
6672 */
6673 for (i = 0; i < level; i++) {
6674 sched_domains_numa_masks[i] =
6675 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6676 if (!sched_domains_numa_masks[i])
6677 return;
6678
6679 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6680 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6681 if (!mask)
6682 return;
6683
6684 sched_domains_numa_masks[i][j] = mask;
6685
9c03ee14 6686 for_each_node(k) {
dd7d8634 6687 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6688 continue;
6689
6690 cpumask_or(mask, mask, cpumask_of_node(k));
6691 }
6692 }
6693 }
6694
143e1e28
VG
6695 /* Compute default topology size */
6696 for (i = 0; sched_domain_topology[i].mask; i++);
6697
c515db8c 6698 tl = kzalloc((i + level + 1) *
cb83b629
PZ
6699 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6700 if (!tl)
6701 return;
6702
6703 /*
6704 * Copy the default topology bits..
6705 */
143e1e28
VG
6706 for (i = 0; sched_domain_topology[i].mask; i++)
6707 tl[i] = sched_domain_topology[i];
cb83b629
PZ
6708
6709 /*
6710 * .. and append 'j' levels of NUMA goodness.
6711 */
6712 for (j = 0; j < level; i++, j++) {
6713 tl[i] = (struct sched_domain_topology_level){
cb83b629 6714 .mask = sd_numa_mask,
143e1e28 6715 .sd_flags = cpu_numa_flags,
cb83b629
PZ
6716 .flags = SDTL_OVERLAP,
6717 .numa_level = j,
143e1e28 6718 SD_INIT_NAME(NUMA)
cb83b629
PZ
6719 };
6720 }
6721
6722 sched_domain_topology = tl;
5f7865f3
TC
6723
6724 sched_domains_numa_levels = level;
9942f79b 6725 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
e3fe70b1
RR
6726
6727 init_numa_topology_type();
cb83b629 6728}
301a5cba 6729
135fb3e1 6730static void sched_domains_numa_masks_set(unsigned int cpu)
301a5cba 6731{
301a5cba 6732 int node = cpu_to_node(cpu);
135fb3e1 6733 int i, j;
301a5cba
TC
6734
6735 for (i = 0; i < sched_domains_numa_levels; i++) {
6736 for (j = 0; j < nr_node_ids; j++) {
6737 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6738 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6739 }
6740 }
6741}
6742
135fb3e1 6743static void sched_domains_numa_masks_clear(unsigned int cpu)
301a5cba
TC
6744{
6745 int i, j;
135fb3e1 6746
301a5cba
TC
6747 for (i = 0; i < sched_domains_numa_levels; i++) {
6748 for (j = 0; j < nr_node_ids; j++)
6749 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6750 }
6751}
6752
cb83b629 6753#else
135fb3e1
TG
6754static inline void sched_init_numa(void) { }
6755static void sched_domains_numa_masks_set(unsigned int cpu) { }
6756static void sched_domains_numa_masks_clear(unsigned int cpu) { }
cb83b629
PZ
6757#endif /* CONFIG_NUMA */
6758
54ab4ff4
PZ
6759static int __sdt_alloc(const struct cpumask *cpu_map)
6760{
6761 struct sched_domain_topology_level *tl;
6762 int j;
6763
27723a68 6764 for_each_sd_topology(tl) {
54ab4ff4
PZ
6765 struct sd_data *sdd = &tl->data;
6766
6767 sdd->sd = alloc_percpu(struct sched_domain *);
6768 if (!sdd->sd)
6769 return -ENOMEM;
6770
6771 sdd->sg = alloc_percpu(struct sched_group *);
6772 if (!sdd->sg)
6773 return -ENOMEM;
6774
63b2ca30
NP
6775 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6776 if (!sdd->sgc)
9c3f75cb
PZ
6777 return -ENOMEM;
6778
54ab4ff4
PZ
6779 for_each_cpu(j, cpu_map) {
6780 struct sched_domain *sd;
6781 struct sched_group *sg;
63b2ca30 6782 struct sched_group_capacity *sgc;
54ab4ff4 6783
5cc389bc 6784 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
54ab4ff4
PZ
6785 GFP_KERNEL, cpu_to_node(j));
6786 if (!sd)
6787 return -ENOMEM;
6788
6789 *per_cpu_ptr(sdd->sd, j) = sd;
6790
6791 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6792 GFP_KERNEL, cpu_to_node(j));
6793 if (!sg)
6794 return -ENOMEM;
6795
30b4e9eb
IM
6796 sg->next = sg;
6797
54ab4ff4 6798 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6799
63b2ca30 6800 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
9c3f75cb 6801 GFP_KERNEL, cpu_to_node(j));
63b2ca30 6802 if (!sgc)
9c3f75cb
PZ
6803 return -ENOMEM;
6804
63b2ca30 6805 *per_cpu_ptr(sdd->sgc, j) = sgc;
54ab4ff4
PZ
6806 }
6807 }
6808
6809 return 0;
6810}
6811
6812static void __sdt_free(const struct cpumask *cpu_map)
6813{
6814 struct sched_domain_topology_level *tl;
6815 int j;
6816
27723a68 6817 for_each_sd_topology(tl) {
54ab4ff4
PZ
6818 struct sd_data *sdd = &tl->data;
6819
6820 for_each_cpu(j, cpu_map) {
fb2cf2c6 6821 struct sched_domain *sd;
6822
6823 if (sdd->sd) {
6824 sd = *per_cpu_ptr(sdd->sd, j);
6825 if (sd && (sd->flags & SD_OVERLAP))
6826 free_sched_groups(sd->groups, 0);
6827 kfree(*per_cpu_ptr(sdd->sd, j));
6828 }
6829
6830 if (sdd->sg)
6831 kfree(*per_cpu_ptr(sdd->sg, j));
63b2ca30
NP
6832 if (sdd->sgc)
6833 kfree(*per_cpu_ptr(sdd->sgc, j));
54ab4ff4
PZ
6834 }
6835 free_percpu(sdd->sd);
fb2cf2c6 6836 sdd->sd = NULL;
54ab4ff4 6837 free_percpu(sdd->sg);
fb2cf2c6 6838 sdd->sg = NULL;
63b2ca30
NP
6839 free_percpu(sdd->sgc);
6840 sdd->sgc = NULL;
54ab4ff4
PZ
6841 }
6842}
6843
2c402dc3 6844struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
6845 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6846 struct sched_domain *child, int cpu)
2c402dc3 6847{
143e1e28 6848 struct sched_domain *sd = sd_init(tl, cpu);
2c402dc3 6849 if (!sd)
d069b916 6850 return child;
2c402dc3 6851
2c402dc3 6852 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6853 if (child) {
6854 sd->level = child->level + 1;
6855 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6856 child->parent = sd;
c75e0128 6857 sd->child = child;
6ae72dff
PZ
6858
6859 if (!cpumask_subset(sched_domain_span(child),
6860 sched_domain_span(sd))) {
6861 pr_err("BUG: arch topology borken\n");
6862#ifdef CONFIG_SCHED_DEBUG
6863 pr_err(" the %s domain not a subset of the %s domain\n",
6864 child->name, sd->name);
6865#endif
6866 /* Fixup, ensure @sd has at least @child cpus. */
6867 cpumask_or(sched_domain_span(sd),
6868 sched_domain_span(sd),
6869 sched_domain_span(child));
6870 }
6871
60495e77 6872 }
a841f8ce 6873 set_domain_attribute(sd, attr);
2c402dc3
PZ
6874
6875 return sd;
6876}
6877
2109b99e
AH
6878/*
6879 * Build sched domains for a given set of cpus and attach the sched domains
6880 * to the individual cpus
6881 */
dce840a0
PZ
6882static int build_sched_domains(const struct cpumask *cpu_map,
6883 struct sched_domain_attr *attr)
2109b99e 6884{
1c632169 6885 enum s_alloc alloc_state;
dce840a0 6886 struct sched_domain *sd;
2109b99e 6887 struct s_data d;
822ff793 6888 int i, ret = -ENOMEM;
9c1cfda2 6889
2109b99e
AH
6890 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6891 if (alloc_state != sa_rootdomain)
6892 goto error;
9c1cfda2 6893
dce840a0 6894 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6895 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6896 struct sched_domain_topology_level *tl;
6897
3bd65a80 6898 sd = NULL;
27723a68 6899 for_each_sd_topology(tl) {
4a850cbe 6900 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
6901 if (tl == sched_domain_topology)
6902 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
6903 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6904 sd->flags |= SD_OVERLAP;
d110235d
PZ
6905 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6906 break;
e3589f6c 6907 }
dce840a0
PZ
6908 }
6909
6910 /* Build the groups for the domains */
6911 for_each_cpu(i, cpu_map) {
6912 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6913 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6914 if (sd->flags & SD_OVERLAP) {
6915 if (build_overlap_sched_groups(sd, i))
6916 goto error;
6917 } else {
6918 if (build_sched_groups(sd, i))
6919 goto error;
6920 }
1cf51902 6921 }
a06dadbe 6922 }
9c1cfda2 6923
ced549fa 6924 /* Calculate CPU capacity for physical packages and nodes */
a9c9a9b6
PZ
6925 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6926 if (!cpumask_test_cpu(i, cpu_map))
6927 continue;
9c1cfda2 6928
dce840a0
PZ
6929 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6930 claim_allocations(i, sd);
63b2ca30 6931 init_sched_groups_capacity(i, sd);
dce840a0 6932 }
f712c0c7 6933 }
9c1cfda2 6934
1da177e4 6935 /* Attach the domains */
dce840a0 6936 rcu_read_lock();
abcd083a 6937 for_each_cpu(i, cpu_map) {
21d42ccf 6938 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6939 cpu_attach_domain(sd, d.rd, i);
1da177e4 6940 }
dce840a0 6941 rcu_read_unlock();
51888ca2 6942
822ff793 6943 ret = 0;
51888ca2 6944error:
2109b99e 6945 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6946 return ret;
1da177e4 6947}
029190c5 6948
acc3f5d7 6949static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6950static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6951static struct sched_domain_attr *dattr_cur;
6952 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6953
6954/*
6955 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6956 * cpumask) fails, then fallback to a single sched domain,
6957 * as determined by the single cpumask fallback_doms.
029190c5 6958 */
4212823f 6959static cpumask_var_t fallback_doms;
029190c5 6960
ee79d1bd
HC
6961/*
6962 * arch_update_cpu_topology lets virtualized architectures update the
6963 * cpu core maps. It is supposed to return 1 if the topology changed
6964 * or 0 if it stayed the same.
6965 */
52f5684c 6966int __weak arch_update_cpu_topology(void)
22e52b07 6967{
ee79d1bd 6968 return 0;
22e52b07
HC
6969}
6970
acc3f5d7
RR
6971cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6972{
6973 int i;
6974 cpumask_var_t *doms;
6975
6976 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6977 if (!doms)
6978 return NULL;
6979 for (i = 0; i < ndoms; i++) {
6980 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6981 free_sched_domains(doms, i);
6982 return NULL;
6983 }
6984 }
6985 return doms;
6986}
6987
6988void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6989{
6990 unsigned int i;
6991 for (i = 0; i < ndoms; i++)
6992 free_cpumask_var(doms[i]);
6993 kfree(doms);
6994}
6995
1a20ff27 6996/*
41a2d6cf 6997 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6998 * For now this just excludes isolated cpus, but could be used to
6999 * exclude other special cases in the future.
1a20ff27 7000 */
c4a8849a 7001static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7002{
7378547f
MM
7003 int err;
7004
22e52b07 7005 arch_update_cpu_topology();
029190c5 7006 ndoms_cur = 1;
acc3f5d7 7007 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7008 if (!doms_cur)
acc3f5d7
RR
7009 doms_cur = &fallback_doms;
7010 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 7011 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 7012 register_sched_domain_sysctl();
7378547f
MM
7013
7014 return err;
1a20ff27
DG
7015}
7016
1a20ff27
DG
7017/*
7018 * Detach sched domains from a group of cpus specified in cpu_map
7019 * These cpus will now be attached to the NULL domain
7020 */
96f874e2 7021static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
7022{
7023 int i;
7024
dce840a0 7025 rcu_read_lock();
abcd083a 7026 for_each_cpu(i, cpu_map)
57d885fe 7027 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 7028 rcu_read_unlock();
1a20ff27
DG
7029}
7030
1d3504fc
HS
7031/* handle null as "default" */
7032static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7033 struct sched_domain_attr *new, int idx_new)
7034{
7035 struct sched_domain_attr tmp;
7036
7037 /* fast path */
7038 if (!new && !cur)
7039 return 1;
7040
7041 tmp = SD_ATTR_INIT;
7042 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7043 new ? (new + idx_new) : &tmp,
7044 sizeof(struct sched_domain_attr));
7045}
7046
029190c5
PJ
7047/*
7048 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7049 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7050 * doms_new[] to the current sched domain partitioning, doms_cur[].
7051 * It destroys each deleted domain and builds each new domain.
7052 *
acc3f5d7 7053 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7054 * The masks don't intersect (don't overlap.) We should setup one
7055 * sched domain for each mask. CPUs not in any of the cpumasks will
7056 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7057 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7058 * it as it is.
7059 *
acc3f5d7
RR
7060 * The passed in 'doms_new' should be allocated using
7061 * alloc_sched_domains. This routine takes ownership of it and will
7062 * free_sched_domains it when done with it. If the caller failed the
7063 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7064 * and partition_sched_domains() will fallback to the single partition
7065 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7066 *
96f874e2 7067 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7068 * ndoms_new == 0 is a special case for destroying existing domains,
7069 * and it will not create the default domain.
dfb512ec 7070 *
029190c5
PJ
7071 * Call with hotplug lock held
7072 */
acc3f5d7 7073void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7074 struct sched_domain_attr *dattr_new)
029190c5 7075{
dfb512ec 7076 int i, j, n;
d65bd5ec 7077 int new_topology;
029190c5 7078
712555ee 7079 mutex_lock(&sched_domains_mutex);
a1835615 7080
7378547f
MM
7081 /* always unregister in case we don't destroy any domains */
7082 unregister_sched_domain_sysctl();
7083
d65bd5ec
HC
7084 /* Let architecture update cpu core mappings. */
7085 new_topology = arch_update_cpu_topology();
7086
dfb512ec 7087 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7088
7089 /* Destroy deleted domains */
7090 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7091 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7092 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7093 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7094 goto match1;
7095 }
7096 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7097 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7098match1:
7099 ;
7100 }
7101
c8d2d47a 7102 n = ndoms_cur;
e761b772 7103 if (doms_new == NULL) {
c8d2d47a 7104 n = 0;
acc3f5d7 7105 doms_new = &fallback_doms;
6ad4c188 7106 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7107 WARN_ON_ONCE(dattr_new);
e761b772
MK
7108 }
7109
029190c5
PJ
7110 /* Build new domains */
7111 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 7112 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7113 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7114 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7115 goto match2;
7116 }
7117 /* no match - add a new doms_new */
dce840a0 7118 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7119match2:
7120 ;
7121 }
7122
7123 /* Remember the new sched domains */
acc3f5d7
RR
7124 if (doms_cur != &fallback_doms)
7125 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7126 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7127 doms_cur = doms_new;
1d3504fc 7128 dattr_cur = dattr_new;
029190c5 7129 ndoms_cur = ndoms_new;
7378547f
MM
7130
7131 register_sched_domain_sysctl();
a1835615 7132
712555ee 7133 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7134}
7135
d35be8ba
SB
7136static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
7137
1da177e4 7138/*
3a101d05
TH
7139 * Update cpusets according to cpu_active mask. If cpusets are
7140 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7141 * around partition_sched_domains().
d35be8ba
SB
7142 *
7143 * If we come here as part of a suspend/resume, don't touch cpusets because we
7144 * want to restore it back to its original state upon resume anyway.
1da177e4 7145 */
40190a78 7146static void cpuset_cpu_active(void)
e761b772 7147{
40190a78 7148 if (cpuhp_tasks_frozen) {
d35be8ba
SB
7149 /*
7150 * num_cpus_frozen tracks how many CPUs are involved in suspend
7151 * resume sequence. As long as this is not the last online
7152 * operation in the resume sequence, just build a single sched
7153 * domain, ignoring cpusets.
7154 */
7155 num_cpus_frozen--;
7156 if (likely(num_cpus_frozen)) {
7157 partition_sched_domains(1, NULL, NULL);
135fb3e1 7158 return;
d35be8ba 7159 }
d35be8ba
SB
7160 /*
7161 * This is the last CPU online operation. So fall through and
7162 * restore the original sched domains by considering the
7163 * cpuset configurations.
7164 */
3a101d05 7165 }
135fb3e1 7166 cpuset_update_active_cpus(true);
3a101d05 7167}
e761b772 7168
40190a78 7169static int cpuset_cpu_inactive(unsigned int cpu)
3a101d05 7170{
3c18d447 7171 unsigned long flags;
3c18d447 7172 struct dl_bw *dl_b;
533445c6
OS
7173 bool overflow;
7174 int cpus;
3c18d447 7175
40190a78 7176 if (!cpuhp_tasks_frozen) {
533445c6
OS
7177 rcu_read_lock_sched();
7178 dl_b = dl_bw_of(cpu);
3c18d447 7179
533445c6
OS
7180 raw_spin_lock_irqsave(&dl_b->lock, flags);
7181 cpus = dl_bw_cpus(cpu);
7182 overflow = __dl_overflow(dl_b, cpus, 0, 0);
7183 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3c18d447 7184
533445c6 7185 rcu_read_unlock_sched();
3c18d447 7186
533445c6 7187 if (overflow)
135fb3e1 7188 return -EBUSY;
7ddf96b0 7189 cpuset_update_active_cpus(false);
135fb3e1 7190 } else {
d35be8ba
SB
7191 num_cpus_frozen++;
7192 partition_sched_domains(1, NULL, NULL);
e761b772 7193 }
135fb3e1 7194 return 0;
e761b772 7195}
e761b772 7196
40190a78 7197int sched_cpu_activate(unsigned int cpu)
135fb3e1 7198{
7d976699
TG
7199 struct rq *rq = cpu_rq(cpu);
7200 unsigned long flags;
7201
40190a78 7202 set_cpu_active(cpu, true);
135fb3e1 7203
40190a78 7204 if (sched_smp_initialized) {
135fb3e1 7205 sched_domains_numa_masks_set(cpu);
40190a78 7206 cpuset_cpu_active();
e761b772 7207 }
7d976699
TG
7208
7209 /*
7210 * Put the rq online, if not already. This happens:
7211 *
7212 * 1) In the early boot process, because we build the real domains
7213 * after all cpus have been brought up.
7214 *
7215 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
7216 * domains.
7217 */
7218 raw_spin_lock_irqsave(&rq->lock, flags);
7219 if (rq->rd) {
7220 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7221 set_rq_online(rq);
7222 }
7223 raw_spin_unlock_irqrestore(&rq->lock, flags);
7224
7225 update_max_interval();
7226
40190a78 7227 return 0;
135fb3e1
TG
7228}
7229
40190a78 7230int sched_cpu_deactivate(unsigned int cpu)
135fb3e1 7231{
135fb3e1
TG
7232 int ret;
7233
40190a78 7234 set_cpu_active(cpu, false);
b2454caa
PZ
7235 /*
7236 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
7237 * users of this state to go away such that all new such users will
7238 * observe it.
7239 *
7240 * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might
7241 * not imply sync_sched(), so wait for both.
7242 *
7243 * Do sync before park smpboot threads to take care the rcu boost case.
7244 */
7245 if (IS_ENABLED(CONFIG_PREEMPT))
7246 synchronize_rcu_mult(call_rcu, call_rcu_sched);
7247 else
7248 synchronize_rcu();
40190a78
TG
7249
7250 if (!sched_smp_initialized)
7251 return 0;
7252
7253 ret = cpuset_cpu_inactive(cpu);
7254 if (ret) {
7255 set_cpu_active(cpu, true);
7256 return ret;
135fb3e1 7257 }
40190a78
TG
7258 sched_domains_numa_masks_clear(cpu);
7259 return 0;
135fb3e1
TG
7260}
7261
94baf7a5
TG
7262static void sched_rq_cpu_starting(unsigned int cpu)
7263{
7264 struct rq *rq = cpu_rq(cpu);
7265
7266 rq->calc_load_update = calc_load_update;
94baf7a5
TG
7267 update_max_interval();
7268}
7269
135fb3e1
TG
7270int sched_cpu_starting(unsigned int cpu)
7271{
7272 set_cpu_rq_start_time(cpu);
94baf7a5 7273 sched_rq_cpu_starting(cpu);
135fb3e1 7274 return 0;
e761b772 7275}
e761b772 7276
f2785ddb
TG
7277#ifdef CONFIG_HOTPLUG_CPU
7278int sched_cpu_dying(unsigned int cpu)
7279{
7280 struct rq *rq = cpu_rq(cpu);
7281 unsigned long flags;
7282
7283 /* Handle pending wakeups and then migrate everything off */
7284 sched_ttwu_pending();
7285 raw_spin_lock_irqsave(&rq->lock, flags);
7286 if (rq->rd) {
7287 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7288 set_rq_offline(rq);
7289 }
7290 migrate_tasks(rq);
7291 BUG_ON(rq->nr_running != 1);
7292 raw_spin_unlock_irqrestore(&rq->lock, flags);
7293 calc_load_migrate(rq);
7294 update_max_interval();
20a5c8cc 7295 nohz_balance_exit_idle(cpu);
e5ef27d0 7296 hrtick_clear(rq);
f2785ddb
TG
7297 return 0;
7298}
7299#endif
7300
1da177e4
LT
7301void __init sched_init_smp(void)
7302{
dcc30a35
RR
7303 cpumask_var_t non_isolated_cpus;
7304
7305 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7306 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7307
cb83b629
PZ
7308 sched_init_numa();
7309
6acce3ef
PZ
7310 /*
7311 * There's no userspace yet to cause hotplug operations; hence all the
7312 * cpu masks are stable and all blatant races in the below code cannot
7313 * happen.
7314 */
712555ee 7315 mutex_lock(&sched_domains_mutex);
c4a8849a 7316 init_sched_domains(cpu_active_mask);
dcc30a35
RR
7317 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7318 if (cpumask_empty(non_isolated_cpus))
7319 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7320 mutex_unlock(&sched_domains_mutex);
e761b772 7321
5c1e1767 7322 /* Move init over to a non-isolated CPU */
dcc30a35 7323 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7324 BUG();
19978ca6 7325 sched_init_granularity();
dcc30a35 7326 free_cpumask_var(non_isolated_cpus);
4212823f 7327
0e3900e6 7328 init_sched_rt_class();
1baca4ce 7329 init_sched_dl_class();
e26fbffd 7330 sched_smp_initialized = true;
1da177e4 7331}
e26fbffd
TG
7332
7333static int __init migration_init(void)
7334{
94baf7a5 7335 sched_rq_cpu_starting(smp_processor_id());
e26fbffd 7336 return 0;
1da177e4 7337}
e26fbffd
TG
7338early_initcall(migration_init);
7339
1da177e4
LT
7340#else
7341void __init sched_init_smp(void)
7342{
19978ca6 7343 sched_init_granularity();
1da177e4
LT
7344}
7345#endif /* CONFIG_SMP */
7346
7347int in_sched_functions(unsigned long addr)
7348{
1da177e4
LT
7349 return in_lock_functions(addr) ||
7350 (addr >= (unsigned long)__sched_text_start
7351 && addr < (unsigned long)__sched_text_end);
7352}
7353
029632fb 7354#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
7355/*
7356 * Default task group.
7357 * Every task in system belongs to this group at bootup.
7358 */
029632fb 7359struct task_group root_task_group;
35cf4e50 7360LIST_HEAD(task_groups);
b0367629
WL
7361
7362/* Cacheline aligned slab cache for task_group */
7363static struct kmem_cache *task_group_cache __read_mostly;
052f1dc7 7364#endif
6f505b16 7365
e6252c3e 7366DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 7367
1da177e4
LT
7368void __init sched_init(void)
7369{
dd41f596 7370 int i, j;
434d53b0
MT
7371 unsigned long alloc_size = 0, ptr;
7372
7373#ifdef CONFIG_FAIR_GROUP_SCHED
7374 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7375#endif
7376#ifdef CONFIG_RT_GROUP_SCHED
7377 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7378#endif
434d53b0 7379 if (alloc_size) {
36b7b6d4 7380 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7381
7382#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 7383 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
7384 ptr += nr_cpu_ids * sizeof(void **);
7385
07e06b01 7386 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 7387 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7388
6d6bc0ad 7389#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 7390#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7391 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
7392 ptr += nr_cpu_ids * sizeof(void **);
7393
07e06b01 7394 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7395 ptr += nr_cpu_ids * sizeof(void **);
7396
6d6bc0ad 7397#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 7398 }
df7c8e84 7399#ifdef CONFIG_CPUMASK_OFFSTACK
b74e6278
AT
7400 for_each_possible_cpu(i) {
7401 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7402 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
434d53b0 7403 }
b74e6278 7404#endif /* CONFIG_CPUMASK_OFFSTACK */
dd41f596 7405
332ac17e
DF
7406 init_rt_bandwidth(&def_rt_bandwidth,
7407 global_rt_period(), global_rt_runtime());
7408 init_dl_bandwidth(&def_dl_bandwidth,
1724813d 7409 global_rt_period(), global_rt_runtime());
332ac17e 7410
57d885fe
GH
7411#ifdef CONFIG_SMP
7412 init_defrootdomain();
7413#endif
7414
d0b27fa7 7415#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7416 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 7417 global_rt_period(), global_rt_runtime());
6d6bc0ad 7418#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7419
7c941438 7420#ifdef CONFIG_CGROUP_SCHED
b0367629
WL
7421 task_group_cache = KMEM_CACHE(task_group, 0);
7422
07e06b01
YZ
7423 list_add(&root_task_group.list, &task_groups);
7424 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 7425 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 7426 autogroup_init(&init_task);
7c941438 7427#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7428
0a945022 7429 for_each_possible_cpu(i) {
70b97a7f 7430 struct rq *rq;
1da177e4
LT
7431
7432 rq = cpu_rq(i);
05fa785c 7433 raw_spin_lock_init(&rq->lock);
7897986b 7434 rq->nr_running = 0;
dce48a84
TG
7435 rq->calc_load_active = 0;
7436 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 7437 init_cfs_rq(&rq->cfs);
07c54f7a
AV
7438 init_rt_rq(&rq->rt);
7439 init_dl_rq(&rq->dl);
dd41f596 7440#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 7441 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 7442 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 7443 /*
07e06b01 7444 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
7445 *
7446 * In case of task-groups formed thr' the cgroup filesystem, it
7447 * gets 100% of the cpu resources in the system. This overall
7448 * system cpu resource is divided among the tasks of
07e06b01 7449 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
7450 * based on each entity's (task or task-group's) weight
7451 * (se->load.weight).
7452 *
07e06b01 7453 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
7454 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7455 * then A0's share of the cpu resource is:
7456 *
0d905bca 7457 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 7458 *
07e06b01
YZ
7459 * We achieve this by letting root_task_group's tasks sit
7460 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 7461 */
ab84d31e 7462 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 7463 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
7464#endif /* CONFIG_FAIR_GROUP_SCHED */
7465
7466 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7467#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7468 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 7469#endif
1da177e4 7470
dd41f596
IM
7471 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7472 rq->cpu_load[j] = 0;
fdf3e95d 7473
1da177e4 7474#ifdef CONFIG_SMP
41c7ce9a 7475 rq->sd = NULL;
57d885fe 7476 rq->rd = NULL;
ca6d75e6 7477 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
e3fca9e7 7478 rq->balance_callback = NULL;
1da177e4 7479 rq->active_balance = 0;
dd41f596 7480 rq->next_balance = jiffies;
1da177e4 7481 rq->push_cpu = 0;
0a2966b4 7482 rq->cpu = i;
1f11eb6a 7483 rq->online = 0;
eae0c9df
MG
7484 rq->idle_stamp = 0;
7485 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 7486 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
7487
7488 INIT_LIST_HEAD(&rq->cfs_tasks);
7489
dc938520 7490 rq_attach_root(rq, &def_root_domain);
3451d024 7491#ifdef CONFIG_NO_HZ_COMMON
9fd81dd5 7492 rq->last_load_update_tick = jiffies;
1c792db7 7493 rq->nohz_flags = 0;
83cd4fe2 7494#endif
265f22a9
FW
7495#ifdef CONFIG_NO_HZ_FULL
7496 rq->last_sched_tick = 0;
7497#endif
9fd81dd5 7498#endif /* CONFIG_SMP */
8f4d37ec 7499 init_rq_hrtick(rq);
1da177e4 7500 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7501 }
7502
2dd73a4f 7503 set_load_weight(&init_task);
b50f60ce 7504
e107be36
AK
7505#ifdef CONFIG_PREEMPT_NOTIFIERS
7506 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7507#endif
7508
1da177e4
LT
7509 /*
7510 * The boot idle thread does lazy MMU switching as well:
7511 */
7512 atomic_inc(&init_mm.mm_count);
7513 enter_lazy_tlb(&init_mm, current);
7514
1b537c7d
YD
7515 /*
7516 * During early bootup we pretend to be a normal task:
7517 */
7518 current->sched_class = &fair_sched_class;
7519
1da177e4
LT
7520 /*
7521 * Make us the idle thread. Technically, schedule() should not be
7522 * called from this thread, however somewhere below it might be,
7523 * but because we are the idle thread, we just pick up running again
7524 * when this runqueue becomes "idle".
7525 */
7526 init_idle(current, smp_processor_id());
dce48a84
TG
7527
7528 calc_load_update = jiffies + LOAD_FREQ;
7529
bf4d83f6 7530#ifdef CONFIG_SMP
4cb98839 7531 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
7532 /* May be allocated at isolcpus cmdline parse time */
7533 if (cpu_isolated_map == NULL)
7534 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 7535 idle_thread_set_boot_cpu();
9cf7243d 7536 set_cpu_rq_start_time(smp_processor_id());
029632fb
PZ
7537#endif
7538 init_sched_fair_class();
6a7b3dc3 7539
4698f88c
JP
7540 init_schedstats();
7541
6892b75e 7542 scheduler_running = 1;
1da177e4
LT
7543}
7544
d902db1e 7545#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
7546static inline int preempt_count_equals(int preempt_offset)
7547{
da7142e2 7548 int nested = preempt_count() + rcu_preempt_depth();
e4aafea2 7549
4ba8216c 7550 return (nested == preempt_offset);
e4aafea2
FW
7551}
7552
d894837f 7553void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7554{
8eb23b9f
PZ
7555 /*
7556 * Blocking primitives will set (and therefore destroy) current->state,
7557 * since we will exit with TASK_RUNNING make sure we enter with it,
7558 * otherwise we will destroy state.
7559 */
00845eb9 7560 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
8eb23b9f
PZ
7561 "do not call blocking ops when !TASK_RUNNING; "
7562 "state=%lx set at [<%p>] %pS\n",
7563 current->state,
7564 (void *)current->task_state_change,
00845eb9 7565 (void *)current->task_state_change);
8eb23b9f 7566
3427445a
PZ
7567 ___might_sleep(file, line, preempt_offset);
7568}
7569EXPORT_SYMBOL(__might_sleep);
7570
7571void ___might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7572{
1da177e4
LT
7573 static unsigned long prev_jiffy; /* ratelimiting */
7574
b3fbab05 7575 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
db273be2
TG
7576 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7577 !is_idle_task(current)) ||
e4aafea2 7578 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7579 return;
7580 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7581 return;
7582 prev_jiffy = jiffies;
7583
3df0fc5b
PZ
7584 printk(KERN_ERR
7585 "BUG: sleeping function called from invalid context at %s:%d\n",
7586 file, line);
7587 printk(KERN_ERR
7588 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7589 in_atomic(), irqs_disabled(),
7590 current->pid, current->comm);
aef745fc 7591
a8b686b3
ES
7592 if (task_stack_end_corrupted(current))
7593 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7594
aef745fc
IM
7595 debug_show_held_locks(current);
7596 if (irqs_disabled())
7597 print_irqtrace_events(current);
8f47b187
TG
7598#ifdef CONFIG_DEBUG_PREEMPT
7599 if (!preempt_count_equals(preempt_offset)) {
7600 pr_err("Preemption disabled at:");
7601 print_ip_sym(current->preempt_disable_ip);
7602 pr_cont("\n");
7603 }
7604#endif
aef745fc 7605 dump_stack();
1da177e4 7606}
3427445a 7607EXPORT_SYMBOL(___might_sleep);
1da177e4
LT
7608#endif
7609
7610#ifdef CONFIG_MAGIC_SYSRQ
dbc7f069 7611void normalize_rt_tasks(void)
3a5e4dc1 7612{
dbc7f069 7613 struct task_struct *g, *p;
d50dde5a
DF
7614 struct sched_attr attr = {
7615 .sched_policy = SCHED_NORMAL,
7616 };
1da177e4 7617
3472eaa1 7618 read_lock(&tasklist_lock);
5d07f420 7619 for_each_process_thread(g, p) {
178be793
IM
7620 /*
7621 * Only normalize user tasks:
7622 */
3472eaa1 7623 if (p->flags & PF_KTHREAD)
178be793
IM
7624 continue;
7625
6cfb0d5d 7626 p->se.exec_start = 0;
6cfb0d5d 7627#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7628 p->se.statistics.wait_start = 0;
7629 p->se.statistics.sleep_start = 0;
7630 p->se.statistics.block_start = 0;
6cfb0d5d 7631#endif
dd41f596 7632
aab03e05 7633 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
7634 /*
7635 * Renice negative nice level userspace
7636 * tasks back to 0:
7637 */
3472eaa1 7638 if (task_nice(p) < 0)
dd41f596 7639 set_user_nice(p, 0);
1da177e4 7640 continue;
dd41f596 7641 }
1da177e4 7642
dbc7f069 7643 __sched_setscheduler(p, &attr, false, false);
5d07f420 7644 }
3472eaa1 7645 read_unlock(&tasklist_lock);
1da177e4
LT
7646}
7647
7648#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7649
67fc4e0c 7650#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7651/*
67fc4e0c 7652 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7653 *
7654 * They can only be called when the whole system has been
7655 * stopped - every CPU needs to be quiescent, and no scheduling
7656 * activity can take place. Using them for anything else would
7657 * be a serious bug, and as a result, they aren't even visible
7658 * under any other configuration.
7659 */
7660
7661/**
7662 * curr_task - return the current task for a given cpu.
7663 * @cpu: the processor in question.
7664 *
7665 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
7666 *
7667 * Return: The current task for @cpu.
1df5c10a 7668 */
36c8b586 7669struct task_struct *curr_task(int cpu)
1df5c10a
LT
7670{
7671 return cpu_curr(cpu);
7672}
7673
67fc4e0c
JW
7674#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7675
7676#ifdef CONFIG_IA64
1df5c10a
LT
7677/**
7678 * set_curr_task - set the current task for a given cpu.
7679 * @cpu: the processor in question.
7680 * @p: the task pointer to set.
7681 *
7682 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7683 * are serviced on a separate stack. It allows the architecture to switch the
7684 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7685 * must be called with all CPU's synchronized, and interrupts disabled, the
7686 * and caller must save the original value of the current task (see
7687 * curr_task() above) and restore that value before reenabling interrupts and
7688 * re-starting the system.
7689 *
7690 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7691 */
36c8b586 7692void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7693{
7694 cpu_curr(cpu) = p;
7695}
7696
7697#endif
29f59db3 7698
7c941438 7699#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7700/* task_group_lock serializes the addition/removal of task groups */
7701static DEFINE_SPINLOCK(task_group_lock);
7702
2f5177f0 7703static void sched_free_group(struct task_group *tg)
bccbe08a
PZ
7704{
7705 free_fair_sched_group(tg);
7706 free_rt_sched_group(tg);
e9aa1dd1 7707 autogroup_free(tg);
b0367629 7708 kmem_cache_free(task_group_cache, tg);
bccbe08a
PZ
7709}
7710
7711/* allocate runqueue etc for a new task group */
ec7dc8ac 7712struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7713{
7714 struct task_group *tg;
bccbe08a 7715
b0367629 7716 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
bccbe08a
PZ
7717 if (!tg)
7718 return ERR_PTR(-ENOMEM);
7719
ec7dc8ac 7720 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7721 goto err;
7722
ec7dc8ac 7723 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7724 goto err;
7725
ace783b9
LZ
7726 return tg;
7727
7728err:
2f5177f0 7729 sched_free_group(tg);
ace783b9
LZ
7730 return ERR_PTR(-ENOMEM);
7731}
7732
7733void sched_online_group(struct task_group *tg, struct task_group *parent)
7734{
7735 unsigned long flags;
7736
8ed36996 7737 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7738 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7739
7740 WARN_ON(!parent); /* root should already exist */
7741
7742 tg->parent = parent;
f473aa5e 7743 INIT_LIST_HEAD(&tg->children);
09f2724a 7744 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7745 spin_unlock_irqrestore(&task_group_lock, flags);
8663e24d
PZ
7746
7747 online_fair_sched_group(tg);
29f59db3
SV
7748}
7749
9b5b7751 7750/* rcu callback to free various structures associated with a task group */
2f5177f0 7751static void sched_free_group_rcu(struct rcu_head *rhp)
29f59db3 7752{
29f59db3 7753 /* now it should be safe to free those cfs_rqs */
2f5177f0 7754 sched_free_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7755}
7756
4cf86d77 7757void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
7758{
7759 /* wait for possible concurrent references to cfs_rqs complete */
2f5177f0 7760 call_rcu(&tg->rcu, sched_free_group_rcu);
ace783b9
LZ
7761}
7762
7763void sched_offline_group(struct task_group *tg)
29f59db3 7764{
8ed36996 7765 unsigned long flags;
29f59db3 7766
3d4b47b4 7767 /* end participation in shares distribution */
6fe1f348 7768 unregister_fair_sched_group(tg);
3d4b47b4
PZ
7769
7770 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7771 list_del_rcu(&tg->list);
f473aa5e 7772 list_del_rcu(&tg->siblings);
8ed36996 7773 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7774}
7775
ea86cb4b 7776static void sched_change_group(struct task_struct *tsk, int type)
29f59db3 7777{
8323f26c 7778 struct task_group *tg;
29f59db3 7779
f7b8a47d
KT
7780 /*
7781 * All callers are synchronized by task_rq_lock(); we do not use RCU
7782 * which is pointless here. Thus, we pass "true" to task_css_check()
7783 * to prevent lockdep warnings.
7784 */
7785 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
7786 struct task_group, css);
7787 tg = autogroup_task_group(tsk, tg);
7788 tsk->sched_task_group = tg;
7789
810b3817 7790#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
7791 if (tsk->sched_class->task_change_group)
7792 tsk->sched_class->task_change_group(tsk, type);
b2b5ce02 7793 else
810b3817 7794#endif
b2b5ce02 7795 set_task_rq(tsk, task_cpu(tsk));
ea86cb4b
VG
7796}
7797
7798/*
7799 * Change task's runqueue when it moves between groups.
7800 *
7801 * The caller of this function should have put the task in its new group by
7802 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
7803 * its new group.
7804 */
7805void sched_move_task(struct task_struct *tsk)
7806{
7807 int queued, running;
7808 struct rq_flags rf;
7809 struct rq *rq;
7810
7811 rq = task_rq_lock(tsk, &rf);
7812
7813 running = task_current(rq, tsk);
7814 queued = task_on_rq_queued(tsk);
7815
7816 if (queued)
7817 dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
7818 if (unlikely(running))
7819 put_prev_task(rq, tsk);
7820
7821 sched_change_group(tsk, TASK_MOVE_GROUP);
810b3817 7822
0e1f3483
HS
7823 if (unlikely(running))
7824 tsk->sched_class->set_curr_task(rq);
da0c1e65 7825 if (queued)
ff77e468 7826 enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
29f59db3 7827
eb580751 7828 task_rq_unlock(rq, tsk, &rf);
29f59db3 7829}
7c941438 7830#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7831
a790de99
PT
7832#ifdef CONFIG_RT_GROUP_SCHED
7833/*
7834 * Ensure that the real time constraints are schedulable.
7835 */
7836static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7837
9a7e0b18
PZ
7838/* Must be called with tasklist_lock held */
7839static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7840{
9a7e0b18 7841 struct task_struct *g, *p;
b40b2e8e 7842
1fe89e1b
PZ
7843 /*
7844 * Autogroups do not have RT tasks; see autogroup_create().
7845 */
7846 if (task_group_is_autogroup(tg))
7847 return 0;
7848
5d07f420 7849 for_each_process_thread(g, p) {
8651c658 7850 if (rt_task(p) && task_group(p) == tg)
9a7e0b18 7851 return 1;
5d07f420 7852 }
b40b2e8e 7853
9a7e0b18
PZ
7854 return 0;
7855}
b40b2e8e 7856
9a7e0b18
PZ
7857struct rt_schedulable_data {
7858 struct task_group *tg;
7859 u64 rt_period;
7860 u64 rt_runtime;
7861};
b40b2e8e 7862
a790de99 7863static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7864{
7865 struct rt_schedulable_data *d = data;
7866 struct task_group *child;
7867 unsigned long total, sum = 0;
7868 u64 period, runtime;
b40b2e8e 7869
9a7e0b18
PZ
7870 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7871 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7872
9a7e0b18
PZ
7873 if (tg == d->tg) {
7874 period = d->rt_period;
7875 runtime = d->rt_runtime;
b40b2e8e 7876 }
b40b2e8e 7877
4653f803
PZ
7878 /*
7879 * Cannot have more runtime than the period.
7880 */
7881 if (runtime > period && runtime != RUNTIME_INF)
7882 return -EINVAL;
6f505b16 7883
4653f803
PZ
7884 /*
7885 * Ensure we don't starve existing RT tasks.
7886 */
9a7e0b18
PZ
7887 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7888 return -EBUSY;
6f505b16 7889
9a7e0b18 7890 total = to_ratio(period, runtime);
6f505b16 7891
4653f803
PZ
7892 /*
7893 * Nobody can have more than the global setting allows.
7894 */
7895 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7896 return -EINVAL;
6f505b16 7897
4653f803
PZ
7898 /*
7899 * The sum of our children's runtime should not exceed our own.
7900 */
9a7e0b18
PZ
7901 list_for_each_entry_rcu(child, &tg->children, siblings) {
7902 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7903 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7904
9a7e0b18
PZ
7905 if (child == d->tg) {
7906 period = d->rt_period;
7907 runtime = d->rt_runtime;
7908 }
6f505b16 7909
9a7e0b18 7910 sum += to_ratio(period, runtime);
9f0c1e56 7911 }
6f505b16 7912
9a7e0b18
PZ
7913 if (sum > total)
7914 return -EINVAL;
7915
7916 return 0;
6f505b16
PZ
7917}
7918
9a7e0b18 7919static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7920{
8277434e
PT
7921 int ret;
7922
9a7e0b18
PZ
7923 struct rt_schedulable_data data = {
7924 .tg = tg,
7925 .rt_period = period,
7926 .rt_runtime = runtime,
7927 };
7928
8277434e
PT
7929 rcu_read_lock();
7930 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7931 rcu_read_unlock();
7932
7933 return ret;
521f1a24
DG
7934}
7935
ab84d31e 7936static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7937 u64 rt_period, u64 rt_runtime)
6f505b16 7938{
ac086bc2 7939 int i, err = 0;
9f0c1e56 7940
2636ed5f
PZ
7941 /*
7942 * Disallowing the root group RT runtime is BAD, it would disallow the
7943 * kernel creating (and or operating) RT threads.
7944 */
7945 if (tg == &root_task_group && rt_runtime == 0)
7946 return -EINVAL;
7947
7948 /* No period doesn't make any sense. */
7949 if (rt_period == 0)
7950 return -EINVAL;
7951
9f0c1e56 7952 mutex_lock(&rt_constraints_mutex);
521f1a24 7953 read_lock(&tasklist_lock);
9a7e0b18
PZ
7954 err = __rt_schedulable(tg, rt_period, rt_runtime);
7955 if (err)
9f0c1e56 7956 goto unlock;
ac086bc2 7957
0986b11b 7958 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7959 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7960 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7961
7962 for_each_possible_cpu(i) {
7963 struct rt_rq *rt_rq = tg->rt_rq[i];
7964
0986b11b 7965 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7966 rt_rq->rt_runtime = rt_runtime;
0986b11b 7967 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7968 }
0986b11b 7969 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7970unlock:
521f1a24 7971 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7972 mutex_unlock(&rt_constraints_mutex);
7973
7974 return err;
6f505b16
PZ
7975}
7976
25cc7da7 7977static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
7978{
7979 u64 rt_runtime, rt_period;
7980
7981 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7982 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7983 if (rt_runtime_us < 0)
7984 rt_runtime = RUNTIME_INF;
7985
ab84d31e 7986 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7987}
7988
25cc7da7 7989static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
7990{
7991 u64 rt_runtime_us;
7992
d0b27fa7 7993 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7994 return -1;
7995
d0b27fa7 7996 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7997 do_div(rt_runtime_us, NSEC_PER_USEC);
7998 return rt_runtime_us;
7999}
d0b27fa7 8000
ce2f5fe4 8001static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
d0b27fa7
PZ
8002{
8003 u64 rt_runtime, rt_period;
8004
ce2f5fe4 8005 rt_period = rt_period_us * NSEC_PER_USEC;
d0b27fa7
PZ
8006 rt_runtime = tg->rt_bandwidth.rt_runtime;
8007
ab84d31e 8008 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
8009}
8010
25cc7da7 8011static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
8012{
8013 u64 rt_period_us;
8014
8015 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8016 do_div(rt_period_us, NSEC_PER_USEC);
8017 return rt_period_us;
8018}
332ac17e 8019#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8020
332ac17e 8021#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
8022static int sched_rt_global_constraints(void)
8023{
8024 int ret = 0;
8025
8026 mutex_lock(&rt_constraints_mutex);
9a7e0b18 8027 read_lock(&tasklist_lock);
4653f803 8028 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 8029 read_unlock(&tasklist_lock);
d0b27fa7
PZ
8030 mutex_unlock(&rt_constraints_mutex);
8031
8032 return ret;
8033}
54e99124 8034
25cc7da7 8035static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
8036{
8037 /* Don't accept realtime tasks when there is no way for them to run */
8038 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8039 return 0;
8040
8041 return 1;
8042}
8043
6d6bc0ad 8044#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8045static int sched_rt_global_constraints(void)
8046{
ac086bc2 8047 unsigned long flags;
8c5e9554 8048 int i;
ec5d4989 8049
0986b11b 8050 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
8051 for_each_possible_cpu(i) {
8052 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8053
0986b11b 8054 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8055 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 8056 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8057 }
0986b11b 8058 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 8059
8c5e9554 8060 return 0;
d0b27fa7 8061}
6d6bc0ad 8062#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8063
a1963b81 8064static int sched_dl_global_validate(void)
332ac17e 8065{
1724813d
PZ
8066 u64 runtime = global_rt_runtime();
8067 u64 period = global_rt_period();
332ac17e 8068 u64 new_bw = to_ratio(period, runtime);
f10e00f4 8069 struct dl_bw *dl_b;
1724813d 8070 int cpu, ret = 0;
49516342 8071 unsigned long flags;
332ac17e
DF
8072
8073 /*
8074 * Here we want to check the bandwidth not being set to some
8075 * value smaller than the currently allocated bandwidth in
8076 * any of the root_domains.
8077 *
8078 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
8079 * cycling on root_domains... Discussion on different/better
8080 * solutions is welcome!
8081 */
1724813d 8082 for_each_possible_cpu(cpu) {
f10e00f4
KT
8083 rcu_read_lock_sched();
8084 dl_b = dl_bw_of(cpu);
332ac17e 8085
49516342 8086 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d
PZ
8087 if (new_bw < dl_b->total_bw)
8088 ret = -EBUSY;
49516342 8089 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
1724813d 8090
f10e00f4
KT
8091 rcu_read_unlock_sched();
8092
1724813d
PZ
8093 if (ret)
8094 break;
332ac17e
DF
8095 }
8096
1724813d 8097 return ret;
332ac17e
DF
8098}
8099
1724813d 8100static void sched_dl_do_global(void)
ce0dbbbb 8101{
1724813d 8102 u64 new_bw = -1;
f10e00f4 8103 struct dl_bw *dl_b;
1724813d 8104 int cpu;
49516342 8105 unsigned long flags;
ce0dbbbb 8106
1724813d
PZ
8107 def_dl_bandwidth.dl_period = global_rt_period();
8108 def_dl_bandwidth.dl_runtime = global_rt_runtime();
8109
8110 if (global_rt_runtime() != RUNTIME_INF)
8111 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
8112
8113 /*
8114 * FIXME: As above...
8115 */
8116 for_each_possible_cpu(cpu) {
f10e00f4
KT
8117 rcu_read_lock_sched();
8118 dl_b = dl_bw_of(cpu);
1724813d 8119
49516342 8120 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d 8121 dl_b->bw = new_bw;
49516342 8122 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
f10e00f4
KT
8123
8124 rcu_read_unlock_sched();
ce0dbbbb 8125 }
1724813d
PZ
8126}
8127
8128static int sched_rt_global_validate(void)
8129{
8130 if (sysctl_sched_rt_period <= 0)
8131 return -EINVAL;
8132
e9e7cb38
JL
8133 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
8134 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
1724813d
PZ
8135 return -EINVAL;
8136
8137 return 0;
8138}
8139
8140static void sched_rt_do_global(void)
8141{
8142 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8143 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
8144}
8145
d0b27fa7 8146int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8147 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8148 loff_t *ppos)
8149{
d0b27fa7
PZ
8150 int old_period, old_runtime;
8151 static DEFINE_MUTEX(mutex);
1724813d 8152 int ret;
d0b27fa7
PZ
8153
8154 mutex_lock(&mutex);
8155 old_period = sysctl_sched_rt_period;
8156 old_runtime = sysctl_sched_rt_runtime;
8157
8d65af78 8158 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
8159
8160 if (!ret && write) {
1724813d
PZ
8161 ret = sched_rt_global_validate();
8162 if (ret)
8163 goto undo;
8164
a1963b81 8165 ret = sched_dl_global_validate();
1724813d
PZ
8166 if (ret)
8167 goto undo;
8168
a1963b81 8169 ret = sched_rt_global_constraints();
1724813d
PZ
8170 if (ret)
8171 goto undo;
8172
8173 sched_rt_do_global();
8174 sched_dl_do_global();
8175 }
8176 if (0) {
8177undo:
8178 sysctl_sched_rt_period = old_period;
8179 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
8180 }
8181 mutex_unlock(&mutex);
8182
8183 return ret;
8184}
68318b8e 8185
1724813d 8186int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
8187 void __user *buffer, size_t *lenp,
8188 loff_t *ppos)
8189{
8190 int ret;
332ac17e 8191 static DEFINE_MUTEX(mutex);
332ac17e
DF
8192
8193 mutex_lock(&mutex);
332ac17e 8194 ret = proc_dointvec(table, write, buffer, lenp, ppos);
1724813d
PZ
8195 /* make sure that internally we keep jiffies */
8196 /* also, writing zero resets timeslice to default */
332ac17e 8197 if (!ret && write) {
1724813d
PZ
8198 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8199 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
332ac17e
DF
8200 }
8201 mutex_unlock(&mutex);
332ac17e
DF
8202 return ret;
8203}
8204
052f1dc7 8205#ifdef CONFIG_CGROUP_SCHED
68318b8e 8206
a7c6d554 8207static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 8208{
a7c6d554 8209 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
8210}
8211
eb95419b
TH
8212static struct cgroup_subsys_state *
8213cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 8214{
eb95419b
TH
8215 struct task_group *parent = css_tg(parent_css);
8216 struct task_group *tg;
68318b8e 8217
eb95419b 8218 if (!parent) {
68318b8e 8219 /* This is early initialization for the top cgroup */
07e06b01 8220 return &root_task_group.css;
68318b8e
SV
8221 }
8222
ec7dc8ac 8223 tg = sched_create_group(parent);
68318b8e
SV
8224 if (IS_ERR(tg))
8225 return ERR_PTR(-ENOMEM);
8226
2f5177f0
PZ
8227 sched_online_group(tg, parent);
8228
68318b8e
SV
8229 return &tg->css;
8230}
8231
2f5177f0 8232static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
ace783b9 8233{
eb95419b 8234 struct task_group *tg = css_tg(css);
ace783b9 8235
2f5177f0 8236 sched_offline_group(tg);
ace783b9
LZ
8237}
8238
eb95419b 8239static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 8240{
eb95419b 8241 struct task_group *tg = css_tg(css);
68318b8e 8242
2f5177f0
PZ
8243 /*
8244 * Relies on the RCU grace period between css_released() and this.
8245 */
8246 sched_free_group(tg);
ace783b9
LZ
8247}
8248
ea86cb4b
VG
8249/*
8250 * This is called before wake_up_new_task(), therefore we really only
8251 * have to set its group bits, all the other stuff does not apply.
8252 */
b53202e6 8253static void cpu_cgroup_fork(struct task_struct *task)
eeb61e53 8254{
ea86cb4b
VG
8255 struct rq_flags rf;
8256 struct rq *rq;
8257
8258 rq = task_rq_lock(task, &rf);
8259
8260 sched_change_group(task, TASK_SET_GROUP);
8261
8262 task_rq_unlock(rq, task, &rf);
eeb61e53
KT
8263}
8264
1f7dd3e5 8265static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
68318b8e 8266{
bb9d97b6 8267 struct task_struct *task;
1f7dd3e5 8268 struct cgroup_subsys_state *css;
7dc603c9 8269 int ret = 0;
bb9d97b6 8270
1f7dd3e5 8271 cgroup_taskset_for_each(task, css, tset) {
b68aa230 8272#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 8273 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 8274 return -EINVAL;
b68aa230 8275#else
bb9d97b6
TH
8276 /* We don't support RT-tasks being in separate groups */
8277 if (task->sched_class != &fair_sched_class)
8278 return -EINVAL;
b68aa230 8279#endif
7dc603c9
PZ
8280 /*
8281 * Serialize against wake_up_new_task() such that if its
8282 * running, we're sure to observe its full state.
8283 */
8284 raw_spin_lock_irq(&task->pi_lock);
8285 /*
8286 * Avoid calling sched_move_task() before wake_up_new_task()
8287 * has happened. This would lead to problems with PELT, due to
8288 * move wanting to detach+attach while we're not attached yet.
8289 */
8290 if (task->state == TASK_NEW)
8291 ret = -EINVAL;
8292 raw_spin_unlock_irq(&task->pi_lock);
8293
8294 if (ret)
8295 break;
bb9d97b6 8296 }
7dc603c9 8297 return ret;
be367d09 8298}
68318b8e 8299
1f7dd3e5 8300static void cpu_cgroup_attach(struct cgroup_taskset *tset)
68318b8e 8301{
bb9d97b6 8302 struct task_struct *task;
1f7dd3e5 8303 struct cgroup_subsys_state *css;
bb9d97b6 8304
1f7dd3e5 8305 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 8306 sched_move_task(task);
68318b8e
SV
8307}
8308
052f1dc7 8309#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
8310static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8311 struct cftype *cftype, u64 shareval)
68318b8e 8312{
182446d0 8313 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
8314}
8315
182446d0
TH
8316static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8317 struct cftype *cft)
68318b8e 8318{
182446d0 8319 struct task_group *tg = css_tg(css);
68318b8e 8320
c8b28116 8321 return (u64) scale_load_down(tg->shares);
68318b8e 8322}
ab84d31e
PT
8323
8324#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
8325static DEFINE_MUTEX(cfs_constraints_mutex);
8326
ab84d31e
PT
8327const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8328const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8329
a790de99
PT
8330static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8331
ab84d31e
PT
8332static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8333{
56f570e5 8334 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 8335 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
8336
8337 if (tg == &root_task_group)
8338 return -EINVAL;
8339
8340 /*
8341 * Ensure we have at some amount of bandwidth every period. This is
8342 * to prevent reaching a state of large arrears when throttled via
8343 * entity_tick() resulting in prolonged exit starvation.
8344 */
8345 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8346 return -EINVAL;
8347
8348 /*
8349 * Likewise, bound things on the otherside by preventing insane quota
8350 * periods. This also allows us to normalize in computing quota
8351 * feasibility.
8352 */
8353 if (period > max_cfs_quota_period)
8354 return -EINVAL;
8355
0e59bdae
KT
8356 /*
8357 * Prevent race between setting of cfs_rq->runtime_enabled and
8358 * unthrottle_offline_cfs_rqs().
8359 */
8360 get_online_cpus();
a790de99
PT
8361 mutex_lock(&cfs_constraints_mutex);
8362 ret = __cfs_schedulable(tg, period, quota);
8363 if (ret)
8364 goto out_unlock;
8365
58088ad0 8366 runtime_enabled = quota != RUNTIME_INF;
56f570e5 8367 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
8368 /*
8369 * If we need to toggle cfs_bandwidth_used, off->on must occur
8370 * before making related changes, and on->off must occur afterwards
8371 */
8372 if (runtime_enabled && !runtime_was_enabled)
8373 cfs_bandwidth_usage_inc();
ab84d31e
PT
8374 raw_spin_lock_irq(&cfs_b->lock);
8375 cfs_b->period = ns_to_ktime(period);
8376 cfs_b->quota = quota;
58088ad0 8377
a9cf55b2 8378 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 8379 /* restart the period timer (if active) to handle new period expiry */
77a4d1a1
PZ
8380 if (runtime_enabled)
8381 start_cfs_bandwidth(cfs_b);
ab84d31e
PT
8382 raw_spin_unlock_irq(&cfs_b->lock);
8383
0e59bdae 8384 for_each_online_cpu(i) {
ab84d31e 8385 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 8386 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
8387
8388 raw_spin_lock_irq(&rq->lock);
58088ad0 8389 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 8390 cfs_rq->runtime_remaining = 0;
671fd9da 8391
029632fb 8392 if (cfs_rq->throttled)
671fd9da 8393 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
8394 raw_spin_unlock_irq(&rq->lock);
8395 }
1ee14e6c
BS
8396 if (runtime_was_enabled && !runtime_enabled)
8397 cfs_bandwidth_usage_dec();
a790de99
PT
8398out_unlock:
8399 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 8400 put_online_cpus();
ab84d31e 8401
a790de99 8402 return ret;
ab84d31e
PT
8403}
8404
8405int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8406{
8407 u64 quota, period;
8408
029632fb 8409 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8410 if (cfs_quota_us < 0)
8411 quota = RUNTIME_INF;
8412 else
8413 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8414
8415 return tg_set_cfs_bandwidth(tg, period, quota);
8416}
8417
8418long tg_get_cfs_quota(struct task_group *tg)
8419{
8420 u64 quota_us;
8421
029632fb 8422 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
8423 return -1;
8424
029632fb 8425 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
8426 do_div(quota_us, NSEC_PER_USEC);
8427
8428 return quota_us;
8429}
8430
8431int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8432{
8433 u64 quota, period;
8434
8435 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 8436 quota = tg->cfs_bandwidth.quota;
ab84d31e 8437
ab84d31e
PT
8438 return tg_set_cfs_bandwidth(tg, period, quota);
8439}
8440
8441long tg_get_cfs_period(struct task_group *tg)
8442{
8443 u64 cfs_period_us;
8444
029632fb 8445 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8446 do_div(cfs_period_us, NSEC_PER_USEC);
8447
8448 return cfs_period_us;
8449}
8450
182446d0
TH
8451static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8452 struct cftype *cft)
ab84d31e 8453{
182446d0 8454 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
8455}
8456
182446d0
TH
8457static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8458 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 8459{
182446d0 8460 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
8461}
8462
182446d0
TH
8463static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8464 struct cftype *cft)
ab84d31e 8465{
182446d0 8466 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
8467}
8468
182446d0
TH
8469static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8470 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 8471{
182446d0 8472 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
8473}
8474
a790de99
PT
8475struct cfs_schedulable_data {
8476 struct task_group *tg;
8477 u64 period, quota;
8478};
8479
8480/*
8481 * normalize group quota/period to be quota/max_period
8482 * note: units are usecs
8483 */
8484static u64 normalize_cfs_quota(struct task_group *tg,
8485 struct cfs_schedulable_data *d)
8486{
8487 u64 quota, period;
8488
8489 if (tg == d->tg) {
8490 period = d->period;
8491 quota = d->quota;
8492 } else {
8493 period = tg_get_cfs_period(tg);
8494 quota = tg_get_cfs_quota(tg);
8495 }
8496
8497 /* note: these should typically be equivalent */
8498 if (quota == RUNTIME_INF || quota == -1)
8499 return RUNTIME_INF;
8500
8501 return to_ratio(period, quota);
8502}
8503
8504static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8505{
8506 struct cfs_schedulable_data *d = data;
029632fb 8507 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
8508 s64 quota = 0, parent_quota = -1;
8509
8510 if (!tg->parent) {
8511 quota = RUNTIME_INF;
8512 } else {
029632fb 8513 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
8514
8515 quota = normalize_cfs_quota(tg, d);
9c58c79a 8516 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
8517
8518 /*
8519 * ensure max(child_quota) <= parent_quota, inherit when no
8520 * limit is set
8521 */
8522 if (quota == RUNTIME_INF)
8523 quota = parent_quota;
8524 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8525 return -EINVAL;
8526 }
9c58c79a 8527 cfs_b->hierarchical_quota = quota;
a790de99
PT
8528
8529 return 0;
8530}
8531
8532static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8533{
8277434e 8534 int ret;
a790de99
PT
8535 struct cfs_schedulable_data data = {
8536 .tg = tg,
8537 .period = period,
8538 .quota = quota,
8539 };
8540
8541 if (quota != RUNTIME_INF) {
8542 do_div(data.period, NSEC_PER_USEC);
8543 do_div(data.quota, NSEC_PER_USEC);
8544 }
8545
8277434e
PT
8546 rcu_read_lock();
8547 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8548 rcu_read_unlock();
8549
8550 return ret;
a790de99 8551}
e8da1b18 8552
2da8ca82 8553static int cpu_stats_show(struct seq_file *sf, void *v)
e8da1b18 8554{
2da8ca82 8555 struct task_group *tg = css_tg(seq_css(sf));
029632fb 8556 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 8557
44ffc75b
TH
8558 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8559 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8560 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
8561
8562 return 0;
8563}
ab84d31e 8564#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 8565#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8566
052f1dc7 8567#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
8568static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8569 struct cftype *cft, s64 val)
6f505b16 8570{
182446d0 8571 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
8572}
8573
182446d0
TH
8574static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8575 struct cftype *cft)
6f505b16 8576{
182446d0 8577 return sched_group_rt_runtime(css_tg(css));
6f505b16 8578}
d0b27fa7 8579
182446d0
TH
8580static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8581 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 8582{
182446d0 8583 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
8584}
8585
182446d0
TH
8586static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8587 struct cftype *cft)
d0b27fa7 8588{
182446d0 8589 return sched_group_rt_period(css_tg(css));
d0b27fa7 8590}
6d6bc0ad 8591#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8592
fe5c7cc2 8593static struct cftype cpu_files[] = {
052f1dc7 8594#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8595 {
8596 .name = "shares",
f4c753b7
PM
8597 .read_u64 = cpu_shares_read_u64,
8598 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8599 },
052f1dc7 8600#endif
ab84d31e
PT
8601#ifdef CONFIG_CFS_BANDWIDTH
8602 {
8603 .name = "cfs_quota_us",
8604 .read_s64 = cpu_cfs_quota_read_s64,
8605 .write_s64 = cpu_cfs_quota_write_s64,
8606 },
8607 {
8608 .name = "cfs_period_us",
8609 .read_u64 = cpu_cfs_period_read_u64,
8610 .write_u64 = cpu_cfs_period_write_u64,
8611 },
e8da1b18
NR
8612 {
8613 .name = "stat",
2da8ca82 8614 .seq_show = cpu_stats_show,
e8da1b18 8615 },
ab84d31e 8616#endif
052f1dc7 8617#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8618 {
9f0c1e56 8619 .name = "rt_runtime_us",
06ecb27c
PM
8620 .read_s64 = cpu_rt_runtime_read,
8621 .write_s64 = cpu_rt_runtime_write,
6f505b16 8622 },
d0b27fa7
PZ
8623 {
8624 .name = "rt_period_us",
f4c753b7
PM
8625 .read_u64 = cpu_rt_period_read_uint,
8626 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8627 },
052f1dc7 8628#endif
4baf6e33 8629 { } /* terminate */
68318b8e
SV
8630};
8631
073219e9 8632struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748 8633 .css_alloc = cpu_cgroup_css_alloc,
2f5177f0 8634 .css_released = cpu_cgroup_css_released,
92fb9748 8635 .css_free = cpu_cgroup_css_free,
eeb61e53 8636 .fork = cpu_cgroup_fork,
bb9d97b6
TH
8637 .can_attach = cpu_cgroup_can_attach,
8638 .attach = cpu_cgroup_attach,
5577964e 8639 .legacy_cftypes = cpu_files,
b38e42e9 8640 .early_init = true,
68318b8e
SV
8641};
8642
052f1dc7 8643#endif /* CONFIG_CGROUP_SCHED */
d842de87 8644
b637a328
PM
8645void dump_cpu_task(int cpu)
8646{
8647 pr_info("Task dump for CPU %d:\n", cpu);
8648 sched_show_task(cpu_curr(cpu));
8649}
ed82b8a1
AK
8650
8651/*
8652 * Nice levels are multiplicative, with a gentle 10% change for every
8653 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8654 * nice 1, it will get ~10% less CPU time than another CPU-bound task
8655 * that remained on nice 0.
8656 *
8657 * The "10% effect" is relative and cumulative: from _any_ nice level,
8658 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8659 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8660 * If a task goes up by ~10% and another task goes down by ~10% then
8661 * the relative distance between them is ~25%.)
8662 */
8663const int sched_prio_to_weight[40] = {
8664 /* -20 */ 88761, 71755, 56483, 46273, 36291,
8665 /* -15 */ 29154, 23254, 18705, 14949, 11916,
8666 /* -10 */ 9548, 7620, 6100, 4904, 3906,
8667 /* -5 */ 3121, 2501, 1991, 1586, 1277,
8668 /* 0 */ 1024, 820, 655, 526, 423,
8669 /* 5 */ 335, 272, 215, 172, 137,
8670 /* 10 */ 110, 87, 70, 56, 45,
8671 /* 15 */ 36, 29, 23, 18, 15,
8672};
8673
8674/*
8675 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8676 *
8677 * In cases where the weight does not change often, we can use the
8678 * precalculated inverse to speed up arithmetics by turning divisions
8679 * into multiplications:
8680 */
8681const u32 sched_prio_to_wmult[40] = {
8682 /* -20 */ 48388, 59856, 76040, 92818, 118348,
8683 /* -15 */ 147320, 184698, 229616, 287308, 360437,
8684 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
8685 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
8686 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
8687 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
8688 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
8689 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8690};