]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/sched/core.c
sched/fair: Fix hierarchical order in rq->leaf_cfs_rq_list
[mirror_ubuntu-bionic-kernel.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
e1b77c92 29#include <linux/kasan.h>
1da177e4
LT
30#include <linux/mm.h>
31#include <linux/module.h>
32#include <linux/nmi.h>
33#include <linux/init.h>
dff06c15 34#include <linux/uaccess.h>
1da177e4 35#include <linux/highmem.h>
f98db601 36#include <linux/mmu_context.h>
1da177e4 37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
cdd6c482 42#include <linux/perf_event.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
b5aadf7f 58#include <linux/proc_fs.h>
1da177e4 59#include <linux/seq_file.h>
e692ab53 60#include <linux/sysctl.h>
1da177e4
LT
61#include <linux/syscalls.h>
62#include <linux/times.h>
8f0ab514 63#include <linux/tsacct_kern.h>
c6fd91f0 64#include <linux/kprobes.h>
0ff92245 65#include <linux/delayacct.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
30914a58 69#include <linux/tick.h>
f00b45c1 70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
91d1aa43 74#include <linux/context_tracking.h>
52f5684c 75#include <linux/compiler.h>
8e05e96a 76#include <linux/frame.h>
6075620b 77#include <linux/prefetch.h>
1da177e4 78
96f951ed 79#include <asm/switch_to.h>
5517d86b 80#include <asm/tlb.h>
838225b4 81#include <asm/irq_regs.h>
db7e527d 82#include <asm/mutex.h>
e6e6685a
GC
83#ifdef CONFIG_PARAVIRT
84#include <asm/paravirt.h>
85#endif
1da177e4 86
029632fb 87#include "sched.h"
ea138446 88#include "../workqueue_internal.h"
29d5e047 89#include "../smpboot.h"
6e0534f2 90
a8d154b0 91#define CREATE_TRACE_POINTS
ad8d75ff 92#include <trace/events/sched.h>
a8d154b0 93
029632fb
PZ
94DEFINE_MUTEX(sched_domains_mutex);
95DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 96
fe44d621 97static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 98
029632fb 99void update_rq_clock(struct rq *rq)
3e51f33f 100{
fe44d621 101 s64 delta;
305e6835 102
9edfbfed
PZ
103 lockdep_assert_held(&rq->lock);
104
105 if (rq->clock_skip_update & RQCF_ACT_SKIP)
f26f9aff 106 return;
aa483808 107
fe44d621 108 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
4036ac15
MG
109 if (delta < 0)
110 return;
fe44d621
PZ
111 rq->clock += delta;
112 update_rq_clock_task(rq, delta);
3e51f33f
PZ
113}
114
bf5c91ba
IM
115/*
116 * Debugging: various feature bits
117 */
f00b45c1 118
f00b45c1
PZ
119#define SCHED_FEAT(name, enabled) \
120 (1UL << __SCHED_FEAT_##name) * enabled |
121
bf5c91ba 122const_debug unsigned int sysctl_sched_features =
391e43da 123#include "features.h"
f00b45c1
PZ
124 0;
125
126#undef SCHED_FEAT
127
b82d9fdd
PZ
128/*
129 * Number of tasks to iterate in a single balance run.
130 * Limited because this is done with IRQs disabled.
131 */
132const_debug unsigned int sysctl_sched_nr_migrate = 32;
133
e9e9250b
PZ
134/*
135 * period over which we average the RT time consumption, measured
136 * in ms.
137 *
138 * default: 1s
139 */
140const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
141
fa85ae24 142/*
9f0c1e56 143 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
144 * default: 1s
145 */
9f0c1e56 146unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 147
029632fb 148__read_mostly int scheduler_running;
6892b75e 149
9f0c1e56
PZ
150/*
151 * part of the period that we allow rt tasks to run in us.
152 * default: 0.95s
153 */
154int sysctl_sched_rt_runtime = 950000;
fa85ae24 155
3fa0818b
RR
156/* cpus with isolated domains */
157cpumask_var_t cpu_isolated_map;
158
1da177e4 159/*
cc2a73b5 160 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 161 */
a9957449 162static struct rq *this_rq_lock(void)
1da177e4
LT
163 __acquires(rq->lock)
164{
70b97a7f 165 struct rq *rq;
1da177e4
LT
166
167 local_irq_disable();
168 rq = this_rq();
05fa785c 169 raw_spin_lock(&rq->lock);
1da177e4
LT
170
171 return rq;
172}
173
3e71a462
PZ
174/*
175 * __task_rq_lock - lock the rq @p resides on.
176 */
eb580751 177struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
178 __acquires(rq->lock)
179{
180 struct rq *rq;
181
182 lockdep_assert_held(&p->pi_lock);
183
184 for (;;) {
185 rq = task_rq(p);
186 raw_spin_lock(&rq->lock);
187 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
e7904a28 188 rf->cookie = lockdep_pin_lock(&rq->lock);
3e71a462
PZ
189 return rq;
190 }
191 raw_spin_unlock(&rq->lock);
192
193 while (unlikely(task_on_rq_migrating(p)))
194 cpu_relax();
195 }
196}
197
198/*
199 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
200 */
eb580751 201struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
202 __acquires(p->pi_lock)
203 __acquires(rq->lock)
204{
205 struct rq *rq;
206
207 for (;;) {
eb580751 208 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
3e71a462
PZ
209 rq = task_rq(p);
210 raw_spin_lock(&rq->lock);
211 /*
212 * move_queued_task() task_rq_lock()
213 *
214 * ACQUIRE (rq->lock)
215 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
216 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
217 * [S] ->cpu = new_cpu [L] task_rq()
218 * [L] ->on_rq
219 * RELEASE (rq->lock)
220 *
221 * If we observe the old cpu in task_rq_lock, the acquire of
222 * the old rq->lock will fully serialize against the stores.
223 *
224 * If we observe the new cpu in task_rq_lock, the acquire will
225 * pair with the WMB to ensure we must then also see migrating.
226 */
227 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
e7904a28 228 rf->cookie = lockdep_pin_lock(&rq->lock);
3e71a462
PZ
229 return rq;
230 }
231 raw_spin_unlock(&rq->lock);
eb580751 232 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
3e71a462
PZ
233
234 while (unlikely(task_on_rq_migrating(p)))
235 cpu_relax();
236 }
237}
238
8f4d37ec
PZ
239#ifdef CONFIG_SCHED_HRTICK
240/*
241 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 242 */
8f4d37ec 243
8f4d37ec
PZ
244static void hrtick_clear(struct rq *rq)
245{
246 if (hrtimer_active(&rq->hrtick_timer))
247 hrtimer_cancel(&rq->hrtick_timer);
248}
249
8f4d37ec
PZ
250/*
251 * High-resolution timer tick.
252 * Runs from hardirq context with interrupts disabled.
253 */
254static enum hrtimer_restart hrtick(struct hrtimer *timer)
255{
256 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
257
258 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
259
05fa785c 260 raw_spin_lock(&rq->lock);
3e51f33f 261 update_rq_clock(rq);
8f4d37ec 262 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 263 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
264
265 return HRTIMER_NORESTART;
266}
267
95e904c7 268#ifdef CONFIG_SMP
971ee28c 269
4961b6e1 270static void __hrtick_restart(struct rq *rq)
971ee28c
PZ
271{
272 struct hrtimer *timer = &rq->hrtick_timer;
971ee28c 273
4961b6e1 274 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
971ee28c
PZ
275}
276
31656519
PZ
277/*
278 * called from hardirq (IPI) context
279 */
280static void __hrtick_start(void *arg)
b328ca18 281{
31656519 282 struct rq *rq = arg;
b328ca18 283
05fa785c 284 raw_spin_lock(&rq->lock);
971ee28c 285 __hrtick_restart(rq);
31656519 286 rq->hrtick_csd_pending = 0;
05fa785c 287 raw_spin_unlock(&rq->lock);
b328ca18
PZ
288}
289
31656519
PZ
290/*
291 * Called to set the hrtick timer state.
292 *
293 * called with rq->lock held and irqs disabled
294 */
029632fb 295void hrtick_start(struct rq *rq, u64 delay)
b328ca18 296{
31656519 297 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 298 ktime_t time;
299 s64 delta;
300
301 /*
302 * Don't schedule slices shorter than 10000ns, that just
303 * doesn't make sense and can cause timer DoS.
304 */
305 delta = max_t(s64, delay, 10000LL);
306 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 307
cc584b21 308 hrtimer_set_expires(timer, time);
31656519
PZ
309
310 if (rq == this_rq()) {
971ee28c 311 __hrtick_restart(rq);
31656519 312 } else if (!rq->hrtick_csd_pending) {
c46fff2a 313 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
314 rq->hrtick_csd_pending = 1;
315 }
b328ca18
PZ
316}
317
31656519
PZ
318#else
319/*
320 * Called to set the hrtick timer state.
321 *
322 * called with rq->lock held and irqs disabled
323 */
029632fb 324void hrtick_start(struct rq *rq, u64 delay)
31656519 325{
86893335
WL
326 /*
327 * Don't schedule slices shorter than 10000ns, that just
328 * doesn't make sense. Rely on vruntime for fairness.
329 */
330 delay = max_t(u64, delay, 10000LL);
4961b6e1
TG
331 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
332 HRTIMER_MODE_REL_PINNED);
31656519 333}
31656519 334#endif /* CONFIG_SMP */
8f4d37ec 335
31656519 336static void init_rq_hrtick(struct rq *rq)
8f4d37ec 337{
31656519
PZ
338#ifdef CONFIG_SMP
339 rq->hrtick_csd_pending = 0;
8f4d37ec 340
31656519
PZ
341 rq->hrtick_csd.flags = 0;
342 rq->hrtick_csd.func = __hrtick_start;
343 rq->hrtick_csd.info = rq;
344#endif
8f4d37ec 345
31656519
PZ
346 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
347 rq->hrtick_timer.function = hrtick;
8f4d37ec 348}
006c75f1 349#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
350static inline void hrtick_clear(struct rq *rq)
351{
352}
353
8f4d37ec
PZ
354static inline void init_rq_hrtick(struct rq *rq)
355{
356}
006c75f1 357#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 358
5529578a
FW
359/*
360 * cmpxchg based fetch_or, macro so it works for different integer types
361 */
362#define fetch_or(ptr, mask) \
363 ({ \
364 typeof(ptr) _ptr = (ptr); \
365 typeof(mask) _mask = (mask); \
366 typeof(*_ptr) _old, _val = *_ptr; \
367 \
368 for (;;) { \
369 _old = cmpxchg(_ptr, _val, _val | _mask); \
370 if (_old == _val) \
371 break; \
372 _val = _old; \
373 } \
374 _old; \
375})
376
e3baac47 377#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
378/*
379 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
380 * this avoids any races wrt polling state changes and thereby avoids
381 * spurious IPIs.
382 */
383static bool set_nr_and_not_polling(struct task_struct *p)
384{
385 struct thread_info *ti = task_thread_info(p);
386 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
387}
e3baac47
PZ
388
389/*
390 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
391 *
392 * If this returns true, then the idle task promises to call
393 * sched_ttwu_pending() and reschedule soon.
394 */
395static bool set_nr_if_polling(struct task_struct *p)
396{
397 struct thread_info *ti = task_thread_info(p);
316c1608 398 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
e3baac47
PZ
399
400 for (;;) {
401 if (!(val & _TIF_POLLING_NRFLAG))
402 return false;
403 if (val & _TIF_NEED_RESCHED)
404 return true;
405 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
406 if (old == val)
407 break;
408 val = old;
409 }
410 return true;
411}
412
fd99f91a
PZ
413#else
414static bool set_nr_and_not_polling(struct task_struct *p)
415{
416 set_tsk_need_resched(p);
417 return true;
418}
e3baac47
PZ
419
420#ifdef CONFIG_SMP
421static bool set_nr_if_polling(struct task_struct *p)
422{
423 return false;
424}
425#endif
fd99f91a
PZ
426#endif
427
76751049
PZ
428void wake_q_add(struct wake_q_head *head, struct task_struct *task)
429{
430 struct wake_q_node *node = &task->wake_q;
431
432 /*
433 * Atomically grab the task, if ->wake_q is !nil already it means
434 * its already queued (either by us or someone else) and will get the
435 * wakeup due to that.
436 *
437 * This cmpxchg() implies a full barrier, which pairs with the write
58fe9c46 438 * barrier implied by the wakeup in wake_up_q().
76751049
PZ
439 */
440 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
441 return;
442
443 get_task_struct(task);
444
445 /*
446 * The head is context local, there can be no concurrency.
447 */
448 *head->lastp = node;
449 head->lastp = &node->next;
450}
451
452void wake_up_q(struct wake_q_head *head)
453{
454 struct wake_q_node *node = head->first;
455
456 while (node != WAKE_Q_TAIL) {
457 struct task_struct *task;
458
459 task = container_of(node, struct task_struct, wake_q);
460 BUG_ON(!task);
461 /* task can safely be re-inserted now */
462 node = node->next;
463 task->wake_q.next = NULL;
464
465 /*
466 * wake_up_process() implies a wmb() to pair with the queueing
467 * in wake_q_add() so as not to miss wakeups.
468 */
469 wake_up_process(task);
470 put_task_struct(task);
471 }
472}
473
c24d20db 474/*
8875125e 475 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
476 *
477 * On UP this means the setting of the need_resched flag, on SMP it
478 * might also involve a cross-CPU call to trigger the scheduler on
479 * the target CPU.
480 */
8875125e 481void resched_curr(struct rq *rq)
c24d20db 482{
8875125e 483 struct task_struct *curr = rq->curr;
c24d20db
IM
484 int cpu;
485
8875125e 486 lockdep_assert_held(&rq->lock);
c24d20db 487
8875125e 488 if (test_tsk_need_resched(curr))
c24d20db
IM
489 return;
490
8875125e 491 cpu = cpu_of(rq);
fd99f91a 492
f27dde8d 493 if (cpu == smp_processor_id()) {
8875125e 494 set_tsk_need_resched(curr);
f27dde8d 495 set_preempt_need_resched();
c24d20db 496 return;
f27dde8d 497 }
c24d20db 498
8875125e 499 if (set_nr_and_not_polling(curr))
c24d20db 500 smp_send_reschedule(cpu);
dfc68f29
AL
501 else
502 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
503}
504
029632fb 505void resched_cpu(int cpu)
c24d20db
IM
506{
507 struct rq *rq = cpu_rq(cpu);
508 unsigned long flags;
509
05fa785c 510 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db 511 return;
8875125e 512 resched_curr(rq);
05fa785c 513 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 514}
06d8308c 515
b021fe3e 516#ifdef CONFIG_SMP
3451d024 517#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
518/*
519 * In the semi idle case, use the nearest busy cpu for migrating timers
520 * from an idle cpu. This is good for power-savings.
521 *
522 * We don't do similar optimization for completely idle system, as
523 * selecting an idle cpu will add more delays to the timers than intended
524 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
525 */
bc7a34b8 526int get_nohz_timer_target(void)
83cd4fe2 527{
bc7a34b8 528 int i, cpu = smp_processor_id();
83cd4fe2
VP
529 struct sched_domain *sd;
530
9642d18e 531 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
6201b4d6
VK
532 return cpu;
533
057f3fad 534 rcu_read_lock();
83cd4fe2 535 for_each_domain(cpu, sd) {
057f3fad 536 for_each_cpu(i, sched_domain_span(sd)) {
44496922
WL
537 if (cpu == i)
538 continue;
539
540 if (!idle_cpu(i) && is_housekeeping_cpu(i)) {
057f3fad
PZ
541 cpu = i;
542 goto unlock;
543 }
544 }
83cd4fe2 545 }
9642d18e
VH
546
547 if (!is_housekeeping_cpu(cpu))
548 cpu = housekeeping_any_cpu();
057f3fad
PZ
549unlock:
550 rcu_read_unlock();
83cd4fe2
VP
551 return cpu;
552}
06d8308c
TG
553/*
554 * When add_timer_on() enqueues a timer into the timer wheel of an
555 * idle CPU then this timer might expire before the next timer event
556 * which is scheduled to wake up that CPU. In case of a completely
557 * idle system the next event might even be infinite time into the
558 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
559 * leaves the inner idle loop so the newly added timer is taken into
560 * account when the CPU goes back to idle and evaluates the timer
561 * wheel for the next timer event.
562 */
1c20091e 563static void wake_up_idle_cpu(int cpu)
06d8308c
TG
564{
565 struct rq *rq = cpu_rq(cpu);
566
567 if (cpu == smp_processor_id())
568 return;
569
67b9ca70 570 if (set_nr_and_not_polling(rq->idle))
06d8308c 571 smp_send_reschedule(cpu);
dfc68f29
AL
572 else
573 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
574}
575
c5bfece2 576static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 577{
53c5fa16
FW
578 /*
579 * We just need the target to call irq_exit() and re-evaluate
580 * the next tick. The nohz full kick at least implies that.
581 * If needed we can still optimize that later with an
582 * empty IRQ.
583 */
379d9ecb
PM
584 if (cpu_is_offline(cpu))
585 return true; /* Don't try to wake offline CPUs. */
c5bfece2 586 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
587 if (cpu != smp_processor_id() ||
588 tick_nohz_tick_stopped())
53c5fa16 589 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
590 return true;
591 }
592
593 return false;
594}
595
379d9ecb
PM
596/*
597 * Wake up the specified CPU. If the CPU is going offline, it is the
598 * caller's responsibility to deal with the lost wakeup, for example,
599 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
600 */
1c20091e
FW
601void wake_up_nohz_cpu(int cpu)
602{
c5bfece2 603 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
604 wake_up_idle_cpu(cpu);
605}
606
ca38062e 607static inline bool got_nohz_idle_kick(void)
45bf76df 608{
1c792db7 609 int cpu = smp_processor_id();
873b4c65
VG
610
611 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
612 return false;
613
614 if (idle_cpu(cpu) && !need_resched())
615 return true;
616
617 /*
618 * We can't run Idle Load Balance on this CPU for this time so we
619 * cancel it and clear NOHZ_BALANCE_KICK
620 */
621 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
622 return false;
45bf76df
IM
623}
624
3451d024 625#else /* CONFIG_NO_HZ_COMMON */
45bf76df 626
ca38062e 627static inline bool got_nohz_idle_kick(void)
2069dd75 628{
ca38062e 629 return false;
2069dd75
PZ
630}
631
3451d024 632#endif /* CONFIG_NO_HZ_COMMON */
d842de87 633
ce831b38 634#ifdef CONFIG_NO_HZ_FULL
76d92ac3 635bool sched_can_stop_tick(struct rq *rq)
ce831b38 636{
76d92ac3
FW
637 int fifo_nr_running;
638
639 /* Deadline tasks, even if single, need the tick */
640 if (rq->dl.dl_nr_running)
641 return false;
642
1e78cdbd 643 /*
2548d546
PZ
644 * If there are more than one RR tasks, we need the tick to effect the
645 * actual RR behaviour.
1e78cdbd 646 */
76d92ac3
FW
647 if (rq->rt.rr_nr_running) {
648 if (rq->rt.rr_nr_running == 1)
649 return true;
650 else
651 return false;
1e78cdbd
RR
652 }
653
2548d546
PZ
654 /*
655 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
656 * forced preemption between FIFO tasks.
657 */
658 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
659 if (fifo_nr_running)
660 return true;
661
662 /*
663 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
664 * if there's more than one we need the tick for involuntary
665 * preemption.
666 */
667 if (rq->nr_running > 1)
541b8264 668 return false;
ce831b38 669
541b8264 670 return true;
ce831b38
FW
671}
672#endif /* CONFIG_NO_HZ_FULL */
d842de87 673
029632fb 674void sched_avg_update(struct rq *rq)
18d95a28 675{
e9e9250b
PZ
676 s64 period = sched_avg_period();
677
78becc27 678 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
679 /*
680 * Inline assembly required to prevent the compiler
681 * optimising this loop into a divmod call.
682 * See __iter_div_u64_rem() for another example of this.
683 */
684 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
685 rq->age_stamp += period;
686 rq->rt_avg /= 2;
687 }
18d95a28
PZ
688}
689
6d6bc0ad 690#endif /* CONFIG_SMP */
18d95a28 691
a790de99
PT
692#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
693 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 694/*
8277434e
PT
695 * Iterate task_group tree rooted at *from, calling @down when first entering a
696 * node and @up when leaving it for the final time.
697 *
698 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 699 */
029632fb 700int walk_tg_tree_from(struct task_group *from,
8277434e 701 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
702{
703 struct task_group *parent, *child;
eb755805 704 int ret;
c09595f6 705
8277434e
PT
706 parent = from;
707
c09595f6 708down:
eb755805
PZ
709 ret = (*down)(parent, data);
710 if (ret)
8277434e 711 goto out;
c09595f6
PZ
712 list_for_each_entry_rcu(child, &parent->children, siblings) {
713 parent = child;
714 goto down;
715
716up:
717 continue;
718 }
eb755805 719 ret = (*up)(parent, data);
8277434e
PT
720 if (ret || parent == from)
721 goto out;
c09595f6
PZ
722
723 child = parent;
724 parent = parent->parent;
725 if (parent)
726 goto up;
8277434e 727out:
eb755805 728 return ret;
c09595f6
PZ
729}
730
029632fb 731int tg_nop(struct task_group *tg, void *data)
eb755805 732{
e2b245f8 733 return 0;
eb755805 734}
18d95a28
PZ
735#endif
736
45bf76df
IM
737static void set_load_weight(struct task_struct *p)
738{
f05998d4
NR
739 int prio = p->static_prio - MAX_RT_PRIO;
740 struct load_weight *load = &p->se.load;
741
dd41f596
IM
742 /*
743 * SCHED_IDLE tasks get minimal weight:
744 */
20f9cd2a 745 if (idle_policy(p->policy)) {
c8b28116 746 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 747 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
748 return;
749 }
71f8bd46 750
ed82b8a1
AK
751 load->weight = scale_load(sched_prio_to_weight[prio]);
752 load->inv_weight = sched_prio_to_wmult[prio];
71f8bd46
IM
753}
754
1de64443 755static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 756{
a64692a3 757 update_rq_clock(rq);
1de64443
PZ
758 if (!(flags & ENQUEUE_RESTORE))
759 sched_info_queued(rq, p);
371fd7e7 760 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
761}
762
1de64443 763static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 764{
a64692a3 765 update_rq_clock(rq);
1de64443
PZ
766 if (!(flags & DEQUEUE_SAVE))
767 sched_info_dequeued(rq, p);
371fd7e7 768 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
769}
770
029632fb 771void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
772{
773 if (task_contributes_to_load(p))
774 rq->nr_uninterruptible--;
775
371fd7e7 776 enqueue_task(rq, p, flags);
1e3c88bd
PZ
777}
778
029632fb 779void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
780{
781 if (task_contributes_to_load(p))
782 rq->nr_uninterruptible++;
783
371fd7e7 784 dequeue_task(rq, p, flags);
1e3c88bd
PZ
785}
786
fe44d621 787static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 788{
095c0aa8
GC
789/*
790 * In theory, the compile should just see 0 here, and optimize out the call
791 * to sched_rt_avg_update. But I don't trust it...
792 */
793#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
794 s64 steal = 0, irq_delta = 0;
795#endif
796#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 797 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
798
799 /*
800 * Since irq_time is only updated on {soft,}irq_exit, we might run into
801 * this case when a previous update_rq_clock() happened inside a
802 * {soft,}irq region.
803 *
804 * When this happens, we stop ->clock_task and only update the
805 * prev_irq_time stamp to account for the part that fit, so that a next
806 * update will consume the rest. This ensures ->clock_task is
807 * monotonic.
808 *
809 * It does however cause some slight miss-attribution of {soft,}irq
810 * time, a more accurate solution would be to update the irq_time using
811 * the current rq->clock timestamp, except that would require using
812 * atomic ops.
813 */
814 if (irq_delta > delta)
815 irq_delta = delta;
816
817 rq->prev_irq_time += irq_delta;
818 delta -= irq_delta;
095c0aa8
GC
819#endif
820#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 821 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
822 steal = paravirt_steal_clock(cpu_of(rq));
823 steal -= rq->prev_steal_time_rq;
824
825 if (unlikely(steal > delta))
826 steal = delta;
827
095c0aa8 828 rq->prev_steal_time_rq += steal;
095c0aa8
GC
829 delta -= steal;
830 }
831#endif
832
fe44d621
PZ
833 rq->clock_task += delta;
834
095c0aa8 835#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
5d4dfddd 836 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
095c0aa8
GC
837 sched_rt_avg_update(rq, irq_delta + steal);
838#endif
aa483808
VP
839}
840
34f971f6
PZ
841void sched_set_stop_task(int cpu, struct task_struct *stop)
842{
843 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
844 struct task_struct *old_stop = cpu_rq(cpu)->stop;
845
846 if (stop) {
847 /*
848 * Make it appear like a SCHED_FIFO task, its something
849 * userspace knows about and won't get confused about.
850 *
851 * Also, it will make PI more or less work without too
852 * much confusion -- but then, stop work should not
853 * rely on PI working anyway.
854 */
855 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
856
857 stop->sched_class = &stop_sched_class;
858 }
859
860 cpu_rq(cpu)->stop = stop;
861
862 if (old_stop) {
863 /*
864 * Reset it back to a normal scheduling class so that
865 * it can die in pieces.
866 */
867 old_stop->sched_class = &rt_sched_class;
868 }
869}
870
14531189 871/*
dd41f596 872 * __normal_prio - return the priority that is based on the static prio
14531189 873 */
14531189
IM
874static inline int __normal_prio(struct task_struct *p)
875{
dd41f596 876 return p->static_prio;
14531189
IM
877}
878
b29739f9
IM
879/*
880 * Calculate the expected normal priority: i.e. priority
881 * without taking RT-inheritance into account. Might be
882 * boosted by interactivity modifiers. Changes upon fork,
883 * setprio syscalls, and whenever the interactivity
884 * estimator recalculates.
885 */
36c8b586 886static inline int normal_prio(struct task_struct *p)
b29739f9
IM
887{
888 int prio;
889
aab03e05
DF
890 if (task_has_dl_policy(p))
891 prio = MAX_DL_PRIO-1;
892 else if (task_has_rt_policy(p))
b29739f9
IM
893 prio = MAX_RT_PRIO-1 - p->rt_priority;
894 else
895 prio = __normal_prio(p);
896 return prio;
897}
898
899/*
900 * Calculate the current priority, i.e. the priority
901 * taken into account by the scheduler. This value might
902 * be boosted by RT tasks, or might be boosted by
903 * interactivity modifiers. Will be RT if the task got
904 * RT-boosted. If not then it returns p->normal_prio.
905 */
36c8b586 906static int effective_prio(struct task_struct *p)
b29739f9
IM
907{
908 p->normal_prio = normal_prio(p);
909 /*
910 * If we are RT tasks or we were boosted to RT priority,
911 * keep the priority unchanged. Otherwise, update priority
912 * to the normal priority:
913 */
914 if (!rt_prio(p->prio))
915 return p->normal_prio;
916 return p->prio;
917}
918
1da177e4
LT
919/**
920 * task_curr - is this task currently executing on a CPU?
921 * @p: the task in question.
e69f6186
YB
922 *
923 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 924 */
36c8b586 925inline int task_curr(const struct task_struct *p)
1da177e4
LT
926{
927 return cpu_curr(task_cpu(p)) == p;
928}
929
67dfa1b7 930/*
4c9a4bc8
PZ
931 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
932 * use the balance_callback list if you want balancing.
933 *
934 * this means any call to check_class_changed() must be followed by a call to
935 * balance_callback().
67dfa1b7 936 */
cb469845
SR
937static inline void check_class_changed(struct rq *rq, struct task_struct *p,
938 const struct sched_class *prev_class,
da7a735e 939 int oldprio)
cb469845
SR
940{
941 if (prev_class != p->sched_class) {
942 if (prev_class->switched_from)
da7a735e 943 prev_class->switched_from(rq, p);
4c9a4bc8 944
da7a735e 945 p->sched_class->switched_to(rq, p);
2d3d891d 946 } else if (oldprio != p->prio || dl_task(p))
da7a735e 947 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
948}
949
029632fb 950void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
951{
952 const struct sched_class *class;
953
954 if (p->sched_class == rq->curr->sched_class) {
955 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
956 } else {
957 for_each_class(class) {
958 if (class == rq->curr->sched_class)
959 break;
960 if (class == p->sched_class) {
8875125e 961 resched_curr(rq);
1e5a7405
PZ
962 break;
963 }
964 }
965 }
966
967 /*
968 * A queue event has occurred, and we're going to schedule. In
969 * this case, we can save a useless back to back clock update.
970 */
da0c1e65 971 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
9edfbfed 972 rq_clock_skip_update(rq, true);
1e5a7405
PZ
973}
974
1da177e4 975#ifdef CONFIG_SMP
5cc389bc
PZ
976/*
977 * This is how migration works:
978 *
979 * 1) we invoke migration_cpu_stop() on the target CPU using
980 * stop_one_cpu().
981 * 2) stopper starts to run (implicitly forcing the migrated thread
982 * off the CPU)
983 * 3) it checks whether the migrated task is still in the wrong runqueue.
984 * 4) if it's in the wrong runqueue then the migration thread removes
985 * it and puts it into the right queue.
986 * 5) stopper completes and stop_one_cpu() returns and the migration
987 * is done.
988 */
989
990/*
991 * move_queued_task - move a queued task to new rq.
992 *
993 * Returns (locked) new rq. Old rq's lock is released.
994 */
5e16bbc2 995static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
5cc389bc 996{
5cc389bc
PZ
997 lockdep_assert_held(&rq->lock);
998
5cc389bc 999 p->on_rq = TASK_ON_RQ_MIGRATING;
3ea94de1 1000 dequeue_task(rq, p, 0);
5cc389bc
PZ
1001 set_task_cpu(p, new_cpu);
1002 raw_spin_unlock(&rq->lock);
1003
1004 rq = cpu_rq(new_cpu);
1005
1006 raw_spin_lock(&rq->lock);
1007 BUG_ON(task_cpu(p) != new_cpu);
5cc389bc 1008 enqueue_task(rq, p, 0);
3ea94de1 1009 p->on_rq = TASK_ON_RQ_QUEUED;
5cc389bc
PZ
1010 check_preempt_curr(rq, p, 0);
1011
1012 return rq;
1013}
1014
1015struct migration_arg {
1016 struct task_struct *task;
1017 int dest_cpu;
1018};
1019
1020/*
1021 * Move (not current) task off this cpu, onto dest cpu. We're doing
1022 * this because either it can't run here any more (set_cpus_allowed()
1023 * away from this CPU, or CPU going down), or because we're
1024 * attempting to rebalance this task on exec (sched_exec).
1025 *
1026 * So we race with normal scheduler movements, but that's OK, as long
1027 * as the task is no longer on this CPU.
5cc389bc 1028 */
5e16bbc2 1029static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
5cc389bc 1030{
5cc389bc 1031 if (unlikely(!cpu_active(dest_cpu)))
5e16bbc2 1032 return rq;
5cc389bc
PZ
1033
1034 /* Affinity changed (again). */
1035 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
5e16bbc2 1036 return rq;
5cc389bc 1037
5e16bbc2
PZ
1038 rq = move_queued_task(rq, p, dest_cpu);
1039
1040 return rq;
5cc389bc
PZ
1041}
1042
1043/*
1044 * migration_cpu_stop - this will be executed by a highprio stopper thread
1045 * and performs thread migration by bumping thread off CPU then
1046 * 'pushing' onto another runqueue.
1047 */
1048static int migration_cpu_stop(void *data)
1049{
1050 struct migration_arg *arg = data;
5e16bbc2
PZ
1051 struct task_struct *p = arg->task;
1052 struct rq *rq = this_rq();
5cc389bc
PZ
1053
1054 /*
1055 * The original target cpu might have gone down and we might
1056 * be on another cpu but it doesn't matter.
1057 */
1058 local_irq_disable();
1059 /*
1060 * We need to explicitly wake pending tasks before running
1061 * __migrate_task() such that we will not miss enforcing cpus_allowed
1062 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1063 */
1064 sched_ttwu_pending();
5e16bbc2
PZ
1065
1066 raw_spin_lock(&p->pi_lock);
1067 raw_spin_lock(&rq->lock);
1068 /*
1069 * If task_rq(p) != rq, it cannot be migrated here, because we're
1070 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1071 * we're holding p->pi_lock.
1072 */
bf89a304
CC
1073 if (task_rq(p) == rq) {
1074 if (task_on_rq_queued(p))
1075 rq = __migrate_task(rq, p, arg->dest_cpu);
1076 else
1077 p->wake_cpu = arg->dest_cpu;
1078 }
5e16bbc2
PZ
1079 raw_spin_unlock(&rq->lock);
1080 raw_spin_unlock(&p->pi_lock);
1081
5cc389bc
PZ
1082 local_irq_enable();
1083 return 0;
1084}
1085
c5b28038
PZ
1086/*
1087 * sched_class::set_cpus_allowed must do the below, but is not required to
1088 * actually call this function.
1089 */
1090void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
5cc389bc 1091{
5cc389bc
PZ
1092 cpumask_copy(&p->cpus_allowed, new_mask);
1093 p->nr_cpus_allowed = cpumask_weight(new_mask);
1094}
1095
c5b28038
PZ
1096void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1097{
6c37067e
PZ
1098 struct rq *rq = task_rq(p);
1099 bool queued, running;
1100
c5b28038 1101 lockdep_assert_held(&p->pi_lock);
6c37067e
PZ
1102
1103 queued = task_on_rq_queued(p);
1104 running = task_current(rq, p);
1105
1106 if (queued) {
1107 /*
1108 * Because __kthread_bind() calls this on blocked tasks without
1109 * holding rq->lock.
1110 */
1111 lockdep_assert_held(&rq->lock);
1de64443 1112 dequeue_task(rq, p, DEQUEUE_SAVE);
6c37067e
PZ
1113 }
1114 if (running)
1115 put_prev_task(rq, p);
1116
c5b28038 1117 p->sched_class->set_cpus_allowed(p, new_mask);
6c37067e 1118
6c37067e 1119 if (queued)
1de64443 1120 enqueue_task(rq, p, ENQUEUE_RESTORE);
a399d233 1121 if (running)
b2bf6c31 1122 set_curr_task(rq, p);
c5b28038
PZ
1123}
1124
5cc389bc
PZ
1125/*
1126 * Change a given task's CPU affinity. Migrate the thread to a
1127 * proper CPU and schedule it away if the CPU it's executing on
1128 * is removed from the allowed bitmask.
1129 *
1130 * NOTE: the caller must have a valid reference to the task, the
1131 * task must not exit() & deallocate itself prematurely. The
1132 * call is not atomic; no spinlocks may be held.
1133 */
25834c73
PZ
1134static int __set_cpus_allowed_ptr(struct task_struct *p,
1135 const struct cpumask *new_mask, bool check)
5cc389bc 1136{
e9d867a6 1137 const struct cpumask *cpu_valid_mask = cpu_active_mask;
5cc389bc 1138 unsigned int dest_cpu;
eb580751
PZ
1139 struct rq_flags rf;
1140 struct rq *rq;
5cc389bc
PZ
1141 int ret = 0;
1142
eb580751 1143 rq = task_rq_lock(p, &rf);
5cc389bc 1144
e9d867a6
PZI
1145 if (p->flags & PF_KTHREAD) {
1146 /*
1147 * Kernel threads are allowed on online && !active CPUs
1148 */
1149 cpu_valid_mask = cpu_online_mask;
1150 }
1151
25834c73
PZ
1152 /*
1153 * Must re-check here, to close a race against __kthread_bind(),
1154 * sched_setaffinity() is not guaranteed to observe the flag.
1155 */
1156 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1157 ret = -EINVAL;
1158 goto out;
1159 }
1160
5cc389bc
PZ
1161 if (cpumask_equal(&p->cpus_allowed, new_mask))
1162 goto out;
1163
e9d867a6 1164 if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
5cc389bc
PZ
1165 ret = -EINVAL;
1166 goto out;
1167 }
1168
1169 do_set_cpus_allowed(p, new_mask);
1170
e9d867a6
PZI
1171 if (p->flags & PF_KTHREAD) {
1172 /*
1173 * For kernel threads that do indeed end up on online &&
1174 * !active we want to ensure they are strict per-cpu threads.
1175 */
1176 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1177 !cpumask_intersects(new_mask, cpu_active_mask) &&
1178 p->nr_cpus_allowed != 1);
1179 }
1180
5cc389bc
PZ
1181 /* Can the task run on the task's current CPU? If so, we're done */
1182 if (cpumask_test_cpu(task_cpu(p), new_mask))
1183 goto out;
1184
e9d867a6 1185 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
5cc389bc
PZ
1186 if (task_running(rq, p) || p->state == TASK_WAKING) {
1187 struct migration_arg arg = { p, dest_cpu };
1188 /* Need help from migration thread: drop lock and wait. */
eb580751 1189 task_rq_unlock(rq, p, &rf);
5cc389bc
PZ
1190 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1191 tlb_migrate_finish(p->mm);
1192 return 0;
cbce1a68
PZ
1193 } else if (task_on_rq_queued(p)) {
1194 /*
1195 * OK, since we're going to drop the lock immediately
1196 * afterwards anyway.
1197 */
e7904a28 1198 lockdep_unpin_lock(&rq->lock, rf.cookie);
5e16bbc2 1199 rq = move_queued_task(rq, p, dest_cpu);
e7904a28 1200 lockdep_repin_lock(&rq->lock, rf.cookie);
cbce1a68 1201 }
5cc389bc 1202out:
eb580751 1203 task_rq_unlock(rq, p, &rf);
5cc389bc
PZ
1204
1205 return ret;
1206}
25834c73
PZ
1207
1208int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1209{
1210 return __set_cpus_allowed_ptr(p, new_mask, false);
1211}
5cc389bc
PZ
1212EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1213
dd41f596 1214void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1215{
e2912009
PZ
1216#ifdef CONFIG_SCHED_DEBUG
1217 /*
1218 * We should never call set_task_cpu() on a blocked task,
1219 * ttwu() will sort out the placement.
1220 */
077614ee 1221 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
e2336f6e 1222 !p->on_rq);
0122ec5b 1223
3ea94de1
JP
1224 /*
1225 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1226 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1227 * time relying on p->on_rq.
1228 */
1229 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1230 p->sched_class == &fair_sched_class &&
1231 (p->on_rq && !task_on_rq_migrating(p)));
1232
0122ec5b 1233#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1234 /*
1235 * The caller should hold either p->pi_lock or rq->lock, when changing
1236 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1237 *
1238 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1239 * see task_group().
6c6c54e1
PZ
1240 *
1241 * Furthermore, all task_rq users should acquire both locks, see
1242 * task_rq_lock().
1243 */
0122ec5b
PZ
1244 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1245 lockdep_is_held(&task_rq(p)->lock)));
1246#endif
e2912009
PZ
1247#endif
1248
de1d7286 1249 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1250
0c69774e 1251 if (task_cpu(p) != new_cpu) {
0a74bef8 1252 if (p->sched_class->migrate_task_rq)
5a4fd036 1253 p->sched_class->migrate_task_rq(p);
0c69774e 1254 p->se.nr_migrations++;
ff303e66 1255 perf_event_task_migrate(p);
0c69774e 1256 }
dd41f596
IM
1257
1258 __set_task_cpu(p, new_cpu);
c65cc870
IM
1259}
1260
ac66f547
PZ
1261static void __migrate_swap_task(struct task_struct *p, int cpu)
1262{
da0c1e65 1263 if (task_on_rq_queued(p)) {
ac66f547
PZ
1264 struct rq *src_rq, *dst_rq;
1265
1266 src_rq = task_rq(p);
1267 dst_rq = cpu_rq(cpu);
1268
3ea94de1 1269 p->on_rq = TASK_ON_RQ_MIGRATING;
ac66f547
PZ
1270 deactivate_task(src_rq, p, 0);
1271 set_task_cpu(p, cpu);
1272 activate_task(dst_rq, p, 0);
3ea94de1 1273 p->on_rq = TASK_ON_RQ_QUEUED;
ac66f547
PZ
1274 check_preempt_curr(dst_rq, p, 0);
1275 } else {
1276 /*
1277 * Task isn't running anymore; make it appear like we migrated
1278 * it before it went to sleep. This means on wakeup we make the
a1fd4656 1279 * previous cpu our target instead of where it really is.
ac66f547
PZ
1280 */
1281 p->wake_cpu = cpu;
1282 }
1283}
1284
1285struct migration_swap_arg {
1286 struct task_struct *src_task, *dst_task;
1287 int src_cpu, dst_cpu;
1288};
1289
1290static int migrate_swap_stop(void *data)
1291{
1292 struct migration_swap_arg *arg = data;
1293 struct rq *src_rq, *dst_rq;
1294 int ret = -EAGAIN;
1295
62694cd5
PZ
1296 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1297 return -EAGAIN;
1298
ac66f547
PZ
1299 src_rq = cpu_rq(arg->src_cpu);
1300 dst_rq = cpu_rq(arg->dst_cpu);
1301
74602315
PZ
1302 double_raw_lock(&arg->src_task->pi_lock,
1303 &arg->dst_task->pi_lock);
ac66f547 1304 double_rq_lock(src_rq, dst_rq);
62694cd5 1305
ac66f547
PZ
1306 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1307 goto unlock;
1308
1309 if (task_cpu(arg->src_task) != arg->src_cpu)
1310 goto unlock;
1311
1312 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1313 goto unlock;
1314
1315 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1316 goto unlock;
1317
1318 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1319 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1320
1321 ret = 0;
1322
1323unlock:
1324 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1325 raw_spin_unlock(&arg->dst_task->pi_lock);
1326 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1327
1328 return ret;
1329}
1330
1331/*
1332 * Cross migrate two tasks
1333 */
1334int migrate_swap(struct task_struct *cur, struct task_struct *p)
1335{
1336 struct migration_swap_arg arg;
1337 int ret = -EINVAL;
1338
ac66f547
PZ
1339 arg = (struct migration_swap_arg){
1340 .src_task = cur,
1341 .src_cpu = task_cpu(cur),
1342 .dst_task = p,
1343 .dst_cpu = task_cpu(p),
1344 };
1345
1346 if (arg.src_cpu == arg.dst_cpu)
1347 goto out;
1348
6acce3ef
PZ
1349 /*
1350 * These three tests are all lockless; this is OK since all of them
1351 * will be re-checked with proper locks held further down the line.
1352 */
ac66f547
PZ
1353 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1354 goto out;
1355
1356 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1357 goto out;
1358
1359 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1360 goto out;
1361
286549dc 1362 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1363 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1364
1365out:
ac66f547
PZ
1366 return ret;
1367}
1368
1da177e4
LT
1369/*
1370 * wait_task_inactive - wait for a thread to unschedule.
1371 *
85ba2d86
RM
1372 * If @match_state is nonzero, it's the @p->state value just checked and
1373 * not expected to change. If it changes, i.e. @p might have woken up,
1374 * then return zero. When we succeed in waiting for @p to be off its CPU,
1375 * we return a positive number (its total switch count). If a second call
1376 * a short while later returns the same number, the caller can be sure that
1377 * @p has remained unscheduled the whole time.
1378 *
1da177e4
LT
1379 * The caller must ensure that the task *will* unschedule sometime soon,
1380 * else this function might spin for a *long* time. This function can't
1381 * be called with interrupts off, or it may introduce deadlock with
1382 * smp_call_function() if an IPI is sent by the same process we are
1383 * waiting to become inactive.
1384 */
85ba2d86 1385unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4 1386{
da0c1e65 1387 int running, queued;
eb580751 1388 struct rq_flags rf;
85ba2d86 1389 unsigned long ncsw;
70b97a7f 1390 struct rq *rq;
1da177e4 1391
3a5c359a
AK
1392 for (;;) {
1393 /*
1394 * We do the initial early heuristics without holding
1395 * any task-queue locks at all. We'll only try to get
1396 * the runqueue lock when things look like they will
1397 * work out!
1398 */
1399 rq = task_rq(p);
fa490cfd 1400
3a5c359a
AK
1401 /*
1402 * If the task is actively running on another CPU
1403 * still, just relax and busy-wait without holding
1404 * any locks.
1405 *
1406 * NOTE! Since we don't hold any locks, it's not
1407 * even sure that "rq" stays as the right runqueue!
1408 * But we don't care, since "task_running()" will
1409 * return false if the runqueue has changed and p
1410 * is actually now running somewhere else!
1411 */
85ba2d86
RM
1412 while (task_running(rq, p)) {
1413 if (match_state && unlikely(p->state != match_state))
1414 return 0;
3a5c359a 1415 cpu_relax();
85ba2d86 1416 }
fa490cfd 1417
3a5c359a
AK
1418 /*
1419 * Ok, time to look more closely! We need the rq
1420 * lock now, to be *sure*. If we're wrong, we'll
1421 * just go back and repeat.
1422 */
eb580751 1423 rq = task_rq_lock(p, &rf);
27a9da65 1424 trace_sched_wait_task(p);
3a5c359a 1425 running = task_running(rq, p);
da0c1e65 1426 queued = task_on_rq_queued(p);
85ba2d86 1427 ncsw = 0;
f31e11d8 1428 if (!match_state || p->state == match_state)
93dcf55f 1429 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
eb580751 1430 task_rq_unlock(rq, p, &rf);
fa490cfd 1431
85ba2d86
RM
1432 /*
1433 * If it changed from the expected state, bail out now.
1434 */
1435 if (unlikely(!ncsw))
1436 break;
1437
3a5c359a
AK
1438 /*
1439 * Was it really running after all now that we
1440 * checked with the proper locks actually held?
1441 *
1442 * Oops. Go back and try again..
1443 */
1444 if (unlikely(running)) {
1445 cpu_relax();
1446 continue;
1447 }
fa490cfd 1448
3a5c359a
AK
1449 /*
1450 * It's not enough that it's not actively running,
1451 * it must be off the runqueue _entirely_, and not
1452 * preempted!
1453 *
80dd99b3 1454 * So if it was still runnable (but just not actively
3a5c359a
AK
1455 * running right now), it's preempted, and we should
1456 * yield - it could be a while.
1457 */
da0c1e65 1458 if (unlikely(queued)) {
8eb90c30
TG
1459 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1460
1461 set_current_state(TASK_UNINTERRUPTIBLE);
1462 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1463 continue;
1464 }
fa490cfd 1465
3a5c359a
AK
1466 /*
1467 * Ahh, all good. It wasn't running, and it wasn't
1468 * runnable, which means that it will never become
1469 * running in the future either. We're all done!
1470 */
1471 break;
1472 }
85ba2d86
RM
1473
1474 return ncsw;
1da177e4
LT
1475}
1476
1477/***
1478 * kick_process - kick a running thread to enter/exit the kernel
1479 * @p: the to-be-kicked thread
1480 *
1481 * Cause a process which is running on another CPU to enter
1482 * kernel-mode, without any delay. (to get signals handled.)
1483 *
25985edc 1484 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1485 * because all it wants to ensure is that the remote task enters
1486 * the kernel. If the IPI races and the task has been migrated
1487 * to another CPU then no harm is done and the purpose has been
1488 * achieved as well.
1489 */
36c8b586 1490void kick_process(struct task_struct *p)
1da177e4
LT
1491{
1492 int cpu;
1493
1494 preempt_disable();
1495 cpu = task_cpu(p);
1496 if ((cpu != smp_processor_id()) && task_curr(p))
1497 smp_send_reschedule(cpu);
1498 preempt_enable();
1499}
b43e3521 1500EXPORT_SYMBOL_GPL(kick_process);
1da177e4 1501
30da688e 1502/*
013fdb80 1503 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
e9d867a6
PZI
1504 *
1505 * A few notes on cpu_active vs cpu_online:
1506 *
1507 * - cpu_active must be a subset of cpu_online
1508 *
1509 * - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
1510 * see __set_cpus_allowed_ptr(). At this point the newly online
1511 * cpu isn't yet part of the sched domains, and balancing will not
1512 * see it.
1513 *
1514 * - on cpu-down we clear cpu_active() to mask the sched domains and
1515 * avoid the load balancer to place new tasks on the to be removed
1516 * cpu. Existing tasks will remain running there and will be taken
1517 * off.
1518 *
1519 * This means that fallback selection must not select !active CPUs.
1520 * And can assume that any active CPU must be online. Conversely
1521 * select_task_rq() below may allow selection of !active CPUs in order
1522 * to satisfy the above rules.
30da688e 1523 */
5da9a0fb
PZ
1524static int select_fallback_rq(int cpu, struct task_struct *p)
1525{
aa00d89c
TC
1526 int nid = cpu_to_node(cpu);
1527 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1528 enum { cpuset, possible, fail } state = cpuset;
1529 int dest_cpu;
5da9a0fb 1530
aa00d89c
TC
1531 /*
1532 * If the node that the cpu is on has been offlined, cpu_to_node()
1533 * will return -1. There is no cpu on the node, and we should
1534 * select the cpu on the other node.
1535 */
1536 if (nid != -1) {
1537 nodemask = cpumask_of_node(nid);
1538
1539 /* Look for allowed, online CPU in same node. */
1540 for_each_cpu(dest_cpu, nodemask) {
aa00d89c
TC
1541 if (!cpu_active(dest_cpu))
1542 continue;
1543 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1544 return dest_cpu;
1545 }
2baab4e9 1546 }
5da9a0fb 1547
2baab4e9
PZ
1548 for (;;) {
1549 /* Any allowed, online CPU? */
e3831edd 1550 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
feb245e3
TH
1551 if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu))
1552 continue;
1553 if (!cpu_online(dest_cpu))
2baab4e9
PZ
1554 continue;
1555 goto out;
1556 }
5da9a0fb 1557
e73e85f0 1558 /* No more Mr. Nice Guy. */
2baab4e9
PZ
1559 switch (state) {
1560 case cpuset:
e73e85f0
ON
1561 if (IS_ENABLED(CONFIG_CPUSETS)) {
1562 cpuset_cpus_allowed_fallback(p);
1563 state = possible;
1564 break;
1565 }
1566 /* fall-through */
2baab4e9
PZ
1567 case possible:
1568 do_set_cpus_allowed(p, cpu_possible_mask);
1569 state = fail;
1570 break;
1571
1572 case fail:
1573 BUG();
1574 break;
1575 }
1576 }
1577
1578out:
1579 if (state != cpuset) {
1580 /*
1581 * Don't tell them about moving exiting tasks or
1582 * kernel threads (both mm NULL), since they never
1583 * leave kernel.
1584 */
1585 if (p->mm && printk_ratelimit()) {
aac74dc4 1586 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1587 task_pid_nr(p), p->comm, cpu);
1588 }
5da9a0fb
PZ
1589 }
1590
1591 return dest_cpu;
1592}
1593
e2912009 1594/*
013fdb80 1595 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1596 */
970b13ba 1597static inline
ac66f547 1598int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1599{
cbce1a68
PZ
1600 lockdep_assert_held(&p->pi_lock);
1601
50605ffb 1602 if (tsk_nr_cpus_allowed(p) > 1)
6c1d9410 1603 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e9d867a6
PZI
1604 else
1605 cpu = cpumask_any(tsk_cpus_allowed(p));
e2912009
PZ
1606
1607 /*
1608 * In order not to call set_task_cpu() on a blocking task we need
1609 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1610 * cpu.
1611 *
1612 * Since this is common to all placement strategies, this lives here.
1613 *
1614 * [ this allows ->select_task() to simply return task_cpu(p) and
1615 * not worry about this generic constraint ]
1616 */
fa17b507 1617 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1618 !cpu_online(cpu)))
5da9a0fb 1619 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1620
1621 return cpu;
970b13ba 1622}
09a40af5
MG
1623
1624static void update_avg(u64 *avg, u64 sample)
1625{
1626 s64 diff = sample - *avg;
1627 *avg += diff >> 3;
1628}
25834c73
PZ
1629
1630#else
1631
1632static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1633 const struct cpumask *new_mask, bool check)
1634{
1635 return set_cpus_allowed_ptr(p, new_mask);
1636}
1637
5cc389bc 1638#endif /* CONFIG_SMP */
970b13ba 1639
d7c01d27 1640static void
b84cb5df 1641ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1642{
4fa8d299 1643 struct rq *rq;
b84cb5df 1644
4fa8d299
JP
1645 if (!schedstat_enabled())
1646 return;
1647
1648 rq = this_rq();
d7c01d27 1649
4fa8d299
JP
1650#ifdef CONFIG_SMP
1651 if (cpu == rq->cpu) {
ae92882e
JP
1652 schedstat_inc(rq->ttwu_local);
1653 schedstat_inc(p->se.statistics.nr_wakeups_local);
d7c01d27
PZ
1654 } else {
1655 struct sched_domain *sd;
1656
ae92882e 1657 schedstat_inc(p->se.statistics.nr_wakeups_remote);
057f3fad 1658 rcu_read_lock();
4fa8d299 1659 for_each_domain(rq->cpu, sd) {
d7c01d27 1660 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
ae92882e 1661 schedstat_inc(sd->ttwu_wake_remote);
d7c01d27
PZ
1662 break;
1663 }
1664 }
057f3fad 1665 rcu_read_unlock();
d7c01d27 1666 }
f339b9dc
PZ
1667
1668 if (wake_flags & WF_MIGRATED)
ae92882e 1669 schedstat_inc(p->se.statistics.nr_wakeups_migrate);
d7c01d27
PZ
1670#endif /* CONFIG_SMP */
1671
ae92882e
JP
1672 schedstat_inc(rq->ttwu_count);
1673 schedstat_inc(p->se.statistics.nr_wakeups);
d7c01d27
PZ
1674
1675 if (wake_flags & WF_SYNC)
ae92882e 1676 schedstat_inc(p->se.statistics.nr_wakeups_sync);
d7c01d27
PZ
1677}
1678
1de64443 1679static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
d7c01d27 1680{
9ed3811a 1681 activate_task(rq, p, en_flags);
da0c1e65 1682 p->on_rq = TASK_ON_RQ_QUEUED;
c2f7115e
PZ
1683
1684 /* if a worker is waking up, notify workqueue */
1685 if (p->flags & PF_WQ_WORKER)
1686 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1687}
1688
23f41eeb
PZ
1689/*
1690 * Mark the task runnable and perform wakeup-preemption.
1691 */
e7904a28
PZ
1692static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1693 struct pin_cookie cookie)
9ed3811a 1694{
9ed3811a 1695 check_preempt_curr(rq, p, wake_flags);
9ed3811a 1696 p->state = TASK_RUNNING;
fbd705a0
PZ
1697 trace_sched_wakeup(p);
1698
9ed3811a 1699#ifdef CONFIG_SMP
4c9a4bc8
PZ
1700 if (p->sched_class->task_woken) {
1701 /*
cbce1a68
PZ
1702 * Our task @p is fully woken up and running; so its safe to
1703 * drop the rq->lock, hereafter rq is only used for statistics.
4c9a4bc8 1704 */
e7904a28 1705 lockdep_unpin_lock(&rq->lock, cookie);
9ed3811a 1706 p->sched_class->task_woken(rq, p);
e7904a28 1707 lockdep_repin_lock(&rq->lock, cookie);
4c9a4bc8 1708 }
9ed3811a 1709
e69c6341 1710 if (rq->idle_stamp) {
78becc27 1711 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1712 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1713
abfafa54
JL
1714 update_avg(&rq->avg_idle, delta);
1715
1716 if (rq->avg_idle > max)
9ed3811a 1717 rq->avg_idle = max;
abfafa54 1718
9ed3811a
TH
1719 rq->idle_stamp = 0;
1720 }
1721#endif
1722}
1723
c05fbafb 1724static void
e7904a28
PZ
1725ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1726 struct pin_cookie cookie)
c05fbafb 1727{
b5179ac7
PZ
1728 int en_flags = ENQUEUE_WAKEUP;
1729
cbce1a68
PZ
1730 lockdep_assert_held(&rq->lock);
1731
c05fbafb
PZ
1732#ifdef CONFIG_SMP
1733 if (p->sched_contributes_to_load)
1734 rq->nr_uninterruptible--;
b5179ac7 1735
b5179ac7 1736 if (wake_flags & WF_MIGRATED)
59efa0ba 1737 en_flags |= ENQUEUE_MIGRATED;
c05fbafb
PZ
1738#endif
1739
b5179ac7 1740 ttwu_activate(rq, p, en_flags);
e7904a28 1741 ttwu_do_wakeup(rq, p, wake_flags, cookie);
c05fbafb
PZ
1742}
1743
1744/*
1745 * Called in case the task @p isn't fully descheduled from its runqueue,
1746 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1747 * since all we need to do is flip p->state to TASK_RUNNING, since
1748 * the task is still ->on_rq.
1749 */
1750static int ttwu_remote(struct task_struct *p, int wake_flags)
1751{
eb580751 1752 struct rq_flags rf;
c05fbafb
PZ
1753 struct rq *rq;
1754 int ret = 0;
1755
eb580751 1756 rq = __task_rq_lock(p, &rf);
da0c1e65 1757 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
1758 /* check_preempt_curr() may use rq clock */
1759 update_rq_clock(rq);
e7904a28 1760 ttwu_do_wakeup(rq, p, wake_flags, rf.cookie);
c05fbafb
PZ
1761 ret = 1;
1762 }
eb580751 1763 __task_rq_unlock(rq, &rf);
c05fbafb
PZ
1764
1765 return ret;
1766}
1767
317f3941 1768#ifdef CONFIG_SMP
e3baac47 1769void sched_ttwu_pending(void)
317f3941
PZ
1770{
1771 struct rq *rq = this_rq();
fa14ff4a 1772 struct llist_node *llist = llist_del_all(&rq->wake_list);
e7904a28 1773 struct pin_cookie cookie;
fa14ff4a 1774 struct task_struct *p;
e3baac47 1775 unsigned long flags;
317f3941 1776
e3baac47
PZ
1777 if (!llist)
1778 return;
1779
1780 raw_spin_lock_irqsave(&rq->lock, flags);
e7904a28 1781 cookie = lockdep_pin_lock(&rq->lock);
317f3941 1782
fa14ff4a 1783 while (llist) {
b7e7ade3
PZ
1784 int wake_flags = 0;
1785
fa14ff4a
PZ
1786 p = llist_entry(llist, struct task_struct, wake_entry);
1787 llist = llist_next(llist);
b7e7ade3
PZ
1788
1789 if (p->sched_remote_wakeup)
1790 wake_flags = WF_MIGRATED;
1791
1792 ttwu_do_activate(rq, p, wake_flags, cookie);
317f3941
PZ
1793 }
1794
e7904a28 1795 lockdep_unpin_lock(&rq->lock, cookie);
e3baac47 1796 raw_spin_unlock_irqrestore(&rq->lock, flags);
317f3941
PZ
1797}
1798
1799void scheduler_ipi(void)
1800{
f27dde8d
PZ
1801 /*
1802 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1803 * TIF_NEED_RESCHED remotely (for the first time) will also send
1804 * this IPI.
1805 */
8cb75e0c 1806 preempt_fold_need_resched();
f27dde8d 1807
fd2ac4f4 1808 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1809 return;
1810
1811 /*
1812 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1813 * traditionally all their work was done from the interrupt return
1814 * path. Now that we actually do some work, we need to make sure
1815 * we do call them.
1816 *
1817 * Some archs already do call them, luckily irq_enter/exit nest
1818 * properly.
1819 *
1820 * Arguably we should visit all archs and update all handlers,
1821 * however a fair share of IPIs are still resched only so this would
1822 * somewhat pessimize the simple resched case.
1823 */
1824 irq_enter();
fa14ff4a 1825 sched_ttwu_pending();
ca38062e
SS
1826
1827 /*
1828 * Check if someone kicked us for doing the nohz idle load balance.
1829 */
873b4c65 1830 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1831 this_rq()->idle_balance = 1;
ca38062e 1832 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1833 }
c5d753a5 1834 irq_exit();
317f3941
PZ
1835}
1836
b7e7ade3 1837static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
317f3941 1838{
e3baac47
PZ
1839 struct rq *rq = cpu_rq(cpu);
1840
b7e7ade3
PZ
1841 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1842
e3baac47
PZ
1843 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1844 if (!set_nr_if_polling(rq->idle))
1845 smp_send_reschedule(cpu);
1846 else
1847 trace_sched_wake_idle_without_ipi(cpu);
1848 }
317f3941 1849}
d6aa8f85 1850
f6be8af1
CL
1851void wake_up_if_idle(int cpu)
1852{
1853 struct rq *rq = cpu_rq(cpu);
1854 unsigned long flags;
1855
fd7de1e8
AL
1856 rcu_read_lock();
1857
1858 if (!is_idle_task(rcu_dereference(rq->curr)))
1859 goto out;
f6be8af1
CL
1860
1861 if (set_nr_if_polling(rq->idle)) {
1862 trace_sched_wake_idle_without_ipi(cpu);
1863 } else {
1864 raw_spin_lock_irqsave(&rq->lock, flags);
1865 if (is_idle_task(rq->curr))
1866 smp_send_reschedule(cpu);
1867 /* Else cpu is not in idle, do nothing here */
1868 raw_spin_unlock_irqrestore(&rq->lock, flags);
1869 }
fd7de1e8
AL
1870
1871out:
1872 rcu_read_unlock();
f6be8af1
CL
1873}
1874
39be3501 1875bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1876{
1877 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1878}
d6aa8f85 1879#endif /* CONFIG_SMP */
317f3941 1880
b5179ac7 1881static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
c05fbafb
PZ
1882{
1883 struct rq *rq = cpu_rq(cpu);
e7904a28 1884 struct pin_cookie cookie;
c05fbafb 1885
17d9f311 1886#if defined(CONFIG_SMP)
39be3501 1887 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1888 sched_clock_cpu(cpu); /* sync clocks x-cpu */
b7e7ade3 1889 ttwu_queue_remote(p, cpu, wake_flags);
317f3941
PZ
1890 return;
1891 }
1892#endif
1893
c05fbafb 1894 raw_spin_lock(&rq->lock);
e7904a28 1895 cookie = lockdep_pin_lock(&rq->lock);
b5179ac7 1896 ttwu_do_activate(rq, p, wake_flags, cookie);
e7904a28 1897 lockdep_unpin_lock(&rq->lock, cookie);
c05fbafb 1898 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1899}
1900
8643cda5
PZ
1901/*
1902 * Notes on Program-Order guarantees on SMP systems.
1903 *
1904 * MIGRATION
1905 *
1906 * The basic program-order guarantee on SMP systems is that when a task [t]
1907 * migrates, all its activity on its old cpu [c0] happens-before any subsequent
1908 * execution on its new cpu [c1].
1909 *
1910 * For migration (of runnable tasks) this is provided by the following means:
1911 *
1912 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1913 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1914 * rq(c1)->lock (if not at the same time, then in that order).
1915 * C) LOCK of the rq(c1)->lock scheduling in task
1916 *
1917 * Transitivity guarantees that B happens after A and C after B.
1918 * Note: we only require RCpc transitivity.
1919 * Note: the cpu doing B need not be c0 or c1
1920 *
1921 * Example:
1922 *
1923 * CPU0 CPU1 CPU2
1924 *
1925 * LOCK rq(0)->lock
1926 * sched-out X
1927 * sched-in Y
1928 * UNLOCK rq(0)->lock
1929 *
1930 * LOCK rq(0)->lock // orders against CPU0
1931 * dequeue X
1932 * UNLOCK rq(0)->lock
1933 *
1934 * LOCK rq(1)->lock
1935 * enqueue X
1936 * UNLOCK rq(1)->lock
1937 *
1938 * LOCK rq(1)->lock // orders against CPU2
1939 * sched-out Z
1940 * sched-in X
1941 * UNLOCK rq(1)->lock
1942 *
1943 *
1944 * BLOCKING -- aka. SLEEP + WAKEUP
1945 *
1946 * For blocking we (obviously) need to provide the same guarantee as for
1947 * migration. However the means are completely different as there is no lock
1948 * chain to provide order. Instead we do:
1949 *
1950 * 1) smp_store_release(X->on_cpu, 0)
1f03e8d2 1951 * 2) smp_cond_load_acquire(!X->on_cpu)
8643cda5
PZ
1952 *
1953 * Example:
1954 *
1955 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1956 *
1957 * LOCK rq(0)->lock LOCK X->pi_lock
1958 * dequeue X
1959 * sched-out X
1960 * smp_store_release(X->on_cpu, 0);
1961 *
1f03e8d2 1962 * smp_cond_load_acquire(&X->on_cpu, !VAL);
8643cda5
PZ
1963 * X->state = WAKING
1964 * set_task_cpu(X,2)
1965 *
1966 * LOCK rq(2)->lock
1967 * enqueue X
1968 * X->state = RUNNING
1969 * UNLOCK rq(2)->lock
1970 *
1971 * LOCK rq(2)->lock // orders against CPU1
1972 * sched-out Z
1973 * sched-in X
1974 * UNLOCK rq(2)->lock
1975 *
1976 * UNLOCK X->pi_lock
1977 * UNLOCK rq(0)->lock
1978 *
1979 *
1980 * However; for wakeups there is a second guarantee we must provide, namely we
1981 * must observe the state that lead to our wakeup. That is, not only must our
1982 * task observe its own prior state, it must also observe the stores prior to
1983 * its wakeup.
1984 *
1985 * This means that any means of doing remote wakeups must order the CPU doing
1986 * the wakeup against the CPU the task is going to end up running on. This,
1987 * however, is already required for the regular Program-Order guarantee above,
1f03e8d2 1988 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
8643cda5
PZ
1989 *
1990 */
1991
9ed3811a 1992/**
1da177e4 1993 * try_to_wake_up - wake up a thread
9ed3811a 1994 * @p: the thread to be awakened
1da177e4 1995 * @state: the mask of task states that can be woken
9ed3811a 1996 * @wake_flags: wake modifier flags (WF_*)
1da177e4 1997 *
a2250238 1998 * If (@state & @p->state) @p->state = TASK_RUNNING.
1da177e4 1999 *
a2250238
PZ
2000 * If the task was not queued/runnable, also place it back on a runqueue.
2001 *
2002 * Atomic against schedule() which would dequeue a task, also see
2003 * set_current_state().
2004 *
2005 * Return: %true if @p->state changes (an actual wakeup was done),
2006 * %false otherwise.
1da177e4 2007 */
e4a52bcb
PZ
2008static int
2009try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 2010{
1da177e4 2011 unsigned long flags;
c05fbafb 2012 int cpu, success = 0;
2398f2c6 2013
e0acd0a6
ON
2014 /*
2015 * If we are going to wake up a thread waiting for CONDITION we
2016 * need to ensure that CONDITION=1 done by the caller can not be
2017 * reordered with p->state check below. This pairs with mb() in
2018 * set_current_state() the waiting thread does.
2019 */
2020 smp_mb__before_spinlock();
013fdb80 2021 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 2022 if (!(p->state & state))
1da177e4
LT
2023 goto out;
2024
fbd705a0
PZ
2025 trace_sched_waking(p);
2026
c05fbafb 2027 success = 1; /* we're going to change ->state */
1da177e4 2028 cpu = task_cpu(p);
1da177e4 2029
135e8c92
BS
2030 /*
2031 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2032 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2033 * in smp_cond_load_acquire() below.
2034 *
2035 * sched_ttwu_pending() try_to_wake_up()
2036 * [S] p->on_rq = 1; [L] P->state
2037 * UNLOCK rq->lock -----.
2038 * \
2039 * +--- RMB
2040 * schedule() /
2041 * LOCK rq->lock -----'
2042 * UNLOCK rq->lock
2043 *
2044 * [task p]
2045 * [S] p->state = UNINTERRUPTIBLE [L] p->on_rq
2046 *
2047 * Pairs with the UNLOCK+LOCK on rq->lock from the
2048 * last wakeup of our task and the schedule that got our task
2049 * current.
2050 */
2051 smp_rmb();
c05fbafb
PZ
2052 if (p->on_rq && ttwu_remote(p, wake_flags))
2053 goto stat;
1da177e4 2054
1da177e4 2055#ifdef CONFIG_SMP
ecf7d01c
PZ
2056 /*
2057 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2058 * possible to, falsely, observe p->on_cpu == 0.
2059 *
2060 * One must be running (->on_cpu == 1) in order to remove oneself
2061 * from the runqueue.
2062 *
2063 * [S] ->on_cpu = 1; [L] ->on_rq
2064 * UNLOCK rq->lock
2065 * RMB
2066 * LOCK rq->lock
2067 * [S] ->on_rq = 0; [L] ->on_cpu
2068 *
2069 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2070 * from the consecutive calls to schedule(); the first switching to our
2071 * task, the second putting it to sleep.
2072 */
2073 smp_rmb();
2074
e9c84311 2075 /*
c05fbafb
PZ
2076 * If the owning (remote) cpu is still in the middle of schedule() with
2077 * this task as prev, wait until its done referencing the task.
b75a2253
PZ
2078 *
2079 * Pairs with the smp_store_release() in finish_lock_switch().
2080 *
2081 * This ensures that tasks getting woken will be fully ordered against
2082 * their previous state and preserve Program Order.
0970d299 2083 */
1f03e8d2 2084 smp_cond_load_acquire(&p->on_cpu, !VAL);
1da177e4 2085
a8e4f2ea 2086 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 2087 p->state = TASK_WAKING;
e7693a36 2088
ac66f547 2089 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
2090 if (task_cpu(p) != cpu) {
2091 wake_flags |= WF_MIGRATED;
e4a52bcb 2092 set_task_cpu(p, cpu);
f339b9dc 2093 }
1da177e4 2094#endif /* CONFIG_SMP */
1da177e4 2095
b5179ac7 2096 ttwu_queue(p, cpu, wake_flags);
c05fbafb 2097stat:
4fa8d299 2098 ttwu_stat(p, cpu, wake_flags);
1da177e4 2099out:
013fdb80 2100 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
2101
2102 return success;
2103}
2104
21aa9af0
TH
2105/**
2106 * try_to_wake_up_local - try to wake up a local task with rq lock held
2107 * @p: the thread to be awakened
9279e0d2 2108 * @cookie: context's cookie for pinning
21aa9af0 2109 *
2acca55e 2110 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 2111 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 2112 * the current task.
21aa9af0 2113 */
e7904a28 2114static void try_to_wake_up_local(struct task_struct *p, struct pin_cookie cookie)
21aa9af0
TH
2115{
2116 struct rq *rq = task_rq(p);
21aa9af0 2117
383efcd0
TH
2118 if (WARN_ON_ONCE(rq != this_rq()) ||
2119 WARN_ON_ONCE(p == current))
2120 return;
2121
21aa9af0
TH
2122 lockdep_assert_held(&rq->lock);
2123
2acca55e 2124 if (!raw_spin_trylock(&p->pi_lock)) {
cbce1a68
PZ
2125 /*
2126 * This is OK, because current is on_cpu, which avoids it being
2127 * picked for load-balance and preemption/IRQs are still
2128 * disabled avoiding further scheduler activity on it and we've
2129 * not yet picked a replacement task.
2130 */
e7904a28 2131 lockdep_unpin_lock(&rq->lock, cookie);
2acca55e
PZ
2132 raw_spin_unlock(&rq->lock);
2133 raw_spin_lock(&p->pi_lock);
2134 raw_spin_lock(&rq->lock);
e7904a28 2135 lockdep_repin_lock(&rq->lock, cookie);
2acca55e
PZ
2136 }
2137
21aa9af0 2138 if (!(p->state & TASK_NORMAL))
2acca55e 2139 goto out;
21aa9af0 2140
fbd705a0
PZ
2141 trace_sched_waking(p);
2142
da0c1e65 2143 if (!task_on_rq_queued(p))
d7c01d27
PZ
2144 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2145
e7904a28 2146 ttwu_do_wakeup(rq, p, 0, cookie);
4fa8d299 2147 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
2148out:
2149 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
2150}
2151
50fa610a
DH
2152/**
2153 * wake_up_process - Wake up a specific process
2154 * @p: The process to be woken up.
2155 *
2156 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
2157 * processes.
2158 *
2159 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
2160 *
2161 * It may be assumed that this function implies a write memory barrier before
2162 * changing the task state if and only if any tasks are woken up.
2163 */
7ad5b3a5 2164int wake_up_process(struct task_struct *p)
1da177e4 2165{
9067ac85 2166 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 2167}
1da177e4
LT
2168EXPORT_SYMBOL(wake_up_process);
2169
7ad5b3a5 2170int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2171{
2172 return try_to_wake_up(p, state, 0);
2173}
2174
a5e7be3b
JL
2175/*
2176 * This function clears the sched_dl_entity static params.
2177 */
2178void __dl_clear_params(struct task_struct *p)
2179{
2180 struct sched_dl_entity *dl_se = &p->dl;
2181
2182 dl_se->dl_runtime = 0;
2183 dl_se->dl_deadline = 0;
2184 dl_se->dl_period = 0;
2185 dl_se->flags = 0;
2186 dl_se->dl_bw = 0;
40767b0d
PZ
2187
2188 dl_se->dl_throttled = 0;
40767b0d 2189 dl_se->dl_yielded = 0;
a5e7be3b
JL
2190}
2191
1da177e4
LT
2192/*
2193 * Perform scheduler related setup for a newly forked process p.
2194 * p is forked by current.
dd41f596
IM
2195 *
2196 * __sched_fork() is basic setup used by init_idle() too:
2197 */
5e1576ed 2198static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2199{
fd2f4419
PZ
2200 p->on_rq = 0;
2201
2202 p->se.on_rq = 0;
dd41f596
IM
2203 p->se.exec_start = 0;
2204 p->se.sum_exec_runtime = 0;
f6cf891c 2205 p->se.prev_sum_exec_runtime = 0;
6c594c21 2206 p->se.nr_migrations = 0;
da7a735e 2207 p->se.vruntime = 0;
fd2f4419 2208 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d 2209
ad936d86
BP
2210#ifdef CONFIG_FAIR_GROUP_SCHED
2211 p->se.cfs_rq = NULL;
2212#endif
2213
6cfb0d5d 2214#ifdef CONFIG_SCHEDSTATS
cb251765 2215 /* Even if schedstat is disabled, there should not be garbage */
41acab88 2216 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2217#endif
476d139c 2218
aab03e05 2219 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 2220 init_dl_task_timer(&p->dl);
a5e7be3b 2221 __dl_clear_params(p);
aab03e05 2222
fa717060 2223 INIT_LIST_HEAD(&p->rt.run_list);
ff77e468
PZ
2224 p->rt.timeout = 0;
2225 p->rt.time_slice = sched_rr_timeslice;
2226 p->rt.on_rq = 0;
2227 p->rt.on_list = 0;
476d139c 2228
e107be36
AK
2229#ifdef CONFIG_PREEMPT_NOTIFIERS
2230 INIT_HLIST_HEAD(&p->preempt_notifiers);
2231#endif
cbee9f88
PZ
2232
2233#ifdef CONFIG_NUMA_BALANCING
2234 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 2235 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
2236 p->mm->numa_scan_seq = 0;
2237 }
2238
5e1576ed
RR
2239 if (clone_flags & CLONE_VM)
2240 p->numa_preferred_nid = current->numa_preferred_nid;
2241 else
2242 p->numa_preferred_nid = -1;
2243
cbee9f88
PZ
2244 p->node_stamp = 0ULL;
2245 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 2246 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 2247 p->numa_work.next = &p->numa_work;
44dba3d5 2248 p->numa_faults = NULL;
7e2703e6
RR
2249 p->last_task_numa_placement = 0;
2250 p->last_sum_exec_runtime = 0;
8c8a743c 2251
8c8a743c 2252 p->numa_group = NULL;
cbee9f88 2253#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
2254}
2255
2a595721
SD
2256DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2257
1a687c2e 2258#ifdef CONFIG_NUMA_BALANCING
c3b9bc5b 2259
1a687c2e
MG
2260void set_numabalancing_state(bool enabled)
2261{
2262 if (enabled)
2a595721 2263 static_branch_enable(&sched_numa_balancing);
1a687c2e 2264 else
2a595721 2265 static_branch_disable(&sched_numa_balancing);
1a687c2e 2266}
54a43d54
AK
2267
2268#ifdef CONFIG_PROC_SYSCTL
2269int sysctl_numa_balancing(struct ctl_table *table, int write,
2270 void __user *buffer, size_t *lenp, loff_t *ppos)
2271{
2272 struct ctl_table t;
2273 int err;
2a595721 2274 int state = static_branch_likely(&sched_numa_balancing);
54a43d54
AK
2275
2276 if (write && !capable(CAP_SYS_ADMIN))
2277 return -EPERM;
2278
2279 t = *table;
2280 t.data = &state;
2281 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2282 if (err < 0)
2283 return err;
2284 if (write)
2285 set_numabalancing_state(state);
2286 return err;
2287}
2288#endif
2289#endif
dd41f596 2290
4698f88c
JP
2291#ifdef CONFIG_SCHEDSTATS
2292
cb251765 2293DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4698f88c 2294static bool __initdata __sched_schedstats = false;
cb251765 2295
cb251765
MG
2296static void set_schedstats(bool enabled)
2297{
2298 if (enabled)
2299 static_branch_enable(&sched_schedstats);
2300 else
2301 static_branch_disable(&sched_schedstats);
2302}
2303
2304void force_schedstat_enabled(void)
2305{
2306 if (!schedstat_enabled()) {
2307 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2308 static_branch_enable(&sched_schedstats);
2309 }
2310}
2311
2312static int __init setup_schedstats(char *str)
2313{
2314 int ret = 0;
2315 if (!str)
2316 goto out;
2317
4698f88c
JP
2318 /*
2319 * This code is called before jump labels have been set up, so we can't
2320 * change the static branch directly just yet. Instead set a temporary
2321 * variable so init_schedstats() can do it later.
2322 */
cb251765 2323 if (!strcmp(str, "enable")) {
4698f88c 2324 __sched_schedstats = true;
cb251765
MG
2325 ret = 1;
2326 } else if (!strcmp(str, "disable")) {
4698f88c 2327 __sched_schedstats = false;
cb251765
MG
2328 ret = 1;
2329 }
2330out:
2331 if (!ret)
2332 pr_warn("Unable to parse schedstats=\n");
2333
2334 return ret;
2335}
2336__setup("schedstats=", setup_schedstats);
2337
4698f88c
JP
2338static void __init init_schedstats(void)
2339{
2340 set_schedstats(__sched_schedstats);
2341}
2342
cb251765
MG
2343#ifdef CONFIG_PROC_SYSCTL
2344int sysctl_schedstats(struct ctl_table *table, int write,
2345 void __user *buffer, size_t *lenp, loff_t *ppos)
2346{
2347 struct ctl_table t;
2348 int err;
2349 int state = static_branch_likely(&sched_schedstats);
2350
2351 if (write && !capable(CAP_SYS_ADMIN))
2352 return -EPERM;
2353
2354 t = *table;
2355 t.data = &state;
2356 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2357 if (err < 0)
2358 return err;
2359 if (write)
2360 set_schedstats(state);
2361 return err;
2362}
4698f88c
JP
2363#endif /* CONFIG_PROC_SYSCTL */
2364#else /* !CONFIG_SCHEDSTATS */
2365static inline void init_schedstats(void) {}
2366#endif /* CONFIG_SCHEDSTATS */
dd41f596
IM
2367
2368/*
2369 * fork()/clone()-time setup:
2370 */
aab03e05 2371int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2372{
0122ec5b 2373 unsigned long flags;
dd41f596
IM
2374 int cpu = get_cpu();
2375
5e1576ed 2376 __sched_fork(clone_flags, p);
06b83b5f 2377 /*
7dc603c9 2378 * We mark the process as NEW here. This guarantees that
06b83b5f
PZ
2379 * nobody will actually run it, and a signal or other external
2380 * event cannot wake it up and insert it on the runqueue either.
2381 */
7dc603c9 2382 p->state = TASK_NEW;
dd41f596 2383
c350a04e
MG
2384 /*
2385 * Make sure we do not leak PI boosting priority to the child.
2386 */
2387 p->prio = current->normal_prio;
2388
b9dc29e7
MG
2389 /*
2390 * Revert to default priority/policy on fork if requested.
2391 */
2392 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 2393 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 2394 p->policy = SCHED_NORMAL;
6c697bdf 2395 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
2396 p->rt_priority = 0;
2397 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2398 p->static_prio = NICE_TO_PRIO(0);
2399
2400 p->prio = p->normal_prio = __normal_prio(p);
2401 set_load_weight(p);
6c697bdf 2402
b9dc29e7
MG
2403 /*
2404 * We don't need the reset flag anymore after the fork. It has
2405 * fulfilled its duty:
2406 */
2407 p->sched_reset_on_fork = 0;
2408 }
ca94c442 2409
aab03e05
DF
2410 if (dl_prio(p->prio)) {
2411 put_cpu();
2412 return -EAGAIN;
2413 } else if (rt_prio(p->prio)) {
2414 p->sched_class = &rt_sched_class;
2415 } else {
2ddbf952 2416 p->sched_class = &fair_sched_class;
aab03e05 2417 }
b29739f9 2418
7dc603c9 2419 init_entity_runnable_average(&p->se);
cd29fe6f 2420
86951599
PZ
2421 /*
2422 * The child is not yet in the pid-hash so no cgroup attach races,
2423 * and the cgroup is pinned to this child due to cgroup_fork()
2424 * is ran before sched_fork().
2425 *
2426 * Silence PROVE_RCU.
2427 */
0122ec5b 2428 raw_spin_lock_irqsave(&p->pi_lock, flags);
e210bffd
PZ
2429 /*
2430 * We're setting the cpu for the first time, we don't migrate,
2431 * so use __set_task_cpu().
2432 */
2433 __set_task_cpu(p, cpu);
2434 if (p->sched_class->task_fork)
2435 p->sched_class->task_fork(p);
0122ec5b 2436 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 2437
f6db8347 2438#ifdef CONFIG_SCHED_INFO
dd41f596 2439 if (likely(sched_info_on()))
52f17b6c 2440 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2441#endif
3ca7a440
PZ
2442#if defined(CONFIG_SMP)
2443 p->on_cpu = 0;
4866cde0 2444#endif
01028747 2445 init_task_preempt_count(p);
806c09a7 2446#ifdef CONFIG_SMP
917b627d 2447 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 2448 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 2449#endif
917b627d 2450
476d139c 2451 put_cpu();
aab03e05 2452 return 0;
1da177e4
LT
2453}
2454
332ac17e
DF
2455unsigned long to_ratio(u64 period, u64 runtime)
2456{
2457 if (runtime == RUNTIME_INF)
2458 return 1ULL << 20;
2459
2460 /*
2461 * Doing this here saves a lot of checks in all
2462 * the calling paths, and returning zero seems
2463 * safe for them anyway.
2464 */
2465 if (period == 0)
2466 return 0;
2467
2468 return div64_u64(runtime << 20, period);
2469}
2470
2471#ifdef CONFIG_SMP
2472inline struct dl_bw *dl_bw_of(int i)
2473{
f78f5b90
PM
2474 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2475 "sched RCU must be held");
332ac17e
DF
2476 return &cpu_rq(i)->rd->dl_bw;
2477}
2478
de212f18 2479static inline int dl_bw_cpus(int i)
332ac17e 2480{
de212f18
PZ
2481 struct root_domain *rd = cpu_rq(i)->rd;
2482 int cpus = 0;
2483
f78f5b90
PM
2484 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2485 "sched RCU must be held");
de212f18
PZ
2486 for_each_cpu_and(i, rd->span, cpu_active_mask)
2487 cpus++;
2488
2489 return cpus;
332ac17e
DF
2490}
2491#else
2492inline struct dl_bw *dl_bw_of(int i)
2493{
2494 return &cpu_rq(i)->dl.dl_bw;
2495}
2496
de212f18 2497static inline int dl_bw_cpus(int i)
332ac17e
DF
2498{
2499 return 1;
2500}
2501#endif
2502
332ac17e
DF
2503/*
2504 * We must be sure that accepting a new task (or allowing changing the
2505 * parameters of an existing one) is consistent with the bandwidth
2506 * constraints. If yes, this function also accordingly updates the currently
2507 * allocated bandwidth to reflect the new situation.
2508 *
2509 * This function is called while holding p's rq->lock.
40767b0d
PZ
2510 *
2511 * XXX we should delay bw change until the task's 0-lag point, see
2512 * __setparam_dl().
332ac17e
DF
2513 */
2514static int dl_overflow(struct task_struct *p, int policy,
2515 const struct sched_attr *attr)
2516{
2517
2518 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
4df1638c 2519 u64 period = attr->sched_period ?: attr->sched_deadline;
332ac17e
DF
2520 u64 runtime = attr->sched_runtime;
2521 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 2522 int cpus, err = -1;
332ac17e 2523
fec148c0
XP
2524 /* !deadline task may carry old deadline bandwidth */
2525 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
332ac17e
DF
2526 return 0;
2527
2528 /*
2529 * Either if a task, enters, leave, or stays -deadline but changes
2530 * its parameters, we may need to update accordingly the total
2531 * allocated bandwidth of the container.
2532 */
2533 raw_spin_lock(&dl_b->lock);
de212f18 2534 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
2535 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2536 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2537 __dl_add(dl_b, new_bw);
2538 err = 0;
2539 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2540 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2541 __dl_clear(dl_b, p->dl.dl_bw);
2542 __dl_add(dl_b, new_bw);
2543 err = 0;
2544 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2545 __dl_clear(dl_b, p->dl.dl_bw);
2546 err = 0;
2547 }
2548 raw_spin_unlock(&dl_b->lock);
2549
2550 return err;
2551}
2552
2553extern void init_dl_bw(struct dl_bw *dl_b);
2554
1da177e4
LT
2555/*
2556 * wake_up_new_task - wake up a newly created task for the first time.
2557 *
2558 * This function will do some initial scheduler statistics housekeeping
2559 * that must be done for every newly created context, then puts the task
2560 * on the runqueue and wakes it.
2561 */
3e51e3ed 2562void wake_up_new_task(struct task_struct *p)
1da177e4 2563{
eb580751 2564 struct rq_flags rf;
dd41f596 2565 struct rq *rq;
fabf318e 2566
eb580751 2567 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
7dc603c9 2568 p->state = TASK_RUNNING;
fabf318e
PZ
2569#ifdef CONFIG_SMP
2570 /*
2571 * Fork balancing, do it here and not earlier because:
2572 * - cpus_allowed can change in the fork path
2573 * - any previously selected cpu might disappear through hotplug
e210bffd
PZ
2574 *
2575 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2576 * as we're not fully set-up yet.
fabf318e 2577 */
e210bffd 2578 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735 2579#endif
b7fa30c9 2580 rq = __task_rq_lock(p, &rf);
2b8c41da 2581 post_init_entity_util_avg(&p->se);
0017d735 2582
cd29fe6f 2583 activate_task(rq, p, 0);
da0c1e65 2584 p->on_rq = TASK_ON_RQ_QUEUED;
fbd705a0 2585 trace_sched_wakeup_new(p);
a7558e01 2586 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2587#ifdef CONFIG_SMP
0aaafaab
PZ
2588 if (p->sched_class->task_woken) {
2589 /*
2590 * Nothing relies on rq->lock after this, so its fine to
2591 * drop it.
2592 */
e7904a28 2593 lockdep_unpin_lock(&rq->lock, rf.cookie);
efbbd05a 2594 p->sched_class->task_woken(rq, p);
e7904a28 2595 lockdep_repin_lock(&rq->lock, rf.cookie);
0aaafaab 2596 }
9a897c5a 2597#endif
eb580751 2598 task_rq_unlock(rq, p, &rf);
1da177e4
LT
2599}
2600
e107be36
AK
2601#ifdef CONFIG_PREEMPT_NOTIFIERS
2602
1cde2930
PZ
2603static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2604
2ecd9d29
PZ
2605void preempt_notifier_inc(void)
2606{
2607 static_key_slow_inc(&preempt_notifier_key);
2608}
2609EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2610
2611void preempt_notifier_dec(void)
2612{
2613 static_key_slow_dec(&preempt_notifier_key);
2614}
2615EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2616
e107be36 2617/**
80dd99b3 2618 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2619 * @notifier: notifier struct to register
e107be36
AK
2620 */
2621void preempt_notifier_register(struct preempt_notifier *notifier)
2622{
2ecd9d29
PZ
2623 if (!static_key_false(&preempt_notifier_key))
2624 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2625
e107be36
AK
2626 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2627}
2628EXPORT_SYMBOL_GPL(preempt_notifier_register);
2629
2630/**
2631 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2632 * @notifier: notifier struct to unregister
e107be36 2633 *
d84525a8 2634 * This is *not* safe to call from within a preemption notifier.
e107be36
AK
2635 */
2636void preempt_notifier_unregister(struct preempt_notifier *notifier)
2637{
2638 hlist_del(&notifier->link);
2639}
2640EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2641
1cde2930 2642static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2643{
2644 struct preempt_notifier *notifier;
e107be36 2645
b67bfe0d 2646 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2647 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2648}
2649
1cde2930
PZ
2650static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2651{
2652 if (static_key_false(&preempt_notifier_key))
2653 __fire_sched_in_preempt_notifiers(curr);
2654}
2655
e107be36 2656static void
1cde2930
PZ
2657__fire_sched_out_preempt_notifiers(struct task_struct *curr,
2658 struct task_struct *next)
e107be36
AK
2659{
2660 struct preempt_notifier *notifier;
e107be36 2661
b67bfe0d 2662 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2663 notifier->ops->sched_out(notifier, next);
2664}
2665
1cde2930
PZ
2666static __always_inline void
2667fire_sched_out_preempt_notifiers(struct task_struct *curr,
2668 struct task_struct *next)
2669{
2670 if (static_key_false(&preempt_notifier_key))
2671 __fire_sched_out_preempt_notifiers(curr, next);
2672}
2673
6d6bc0ad 2674#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36 2675
1cde2930 2676static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2677{
2678}
2679
1cde2930 2680static inline void
e107be36
AK
2681fire_sched_out_preempt_notifiers(struct task_struct *curr,
2682 struct task_struct *next)
2683{
2684}
2685
6d6bc0ad 2686#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2687
4866cde0
NP
2688/**
2689 * prepare_task_switch - prepare to switch tasks
2690 * @rq: the runqueue preparing to switch
421cee29 2691 * @prev: the current task that is being switched out
4866cde0
NP
2692 * @next: the task we are going to switch to.
2693 *
2694 * This is called with the rq lock held and interrupts off. It must
2695 * be paired with a subsequent finish_task_switch after the context
2696 * switch.
2697 *
2698 * prepare_task_switch sets up locking and calls architecture specific
2699 * hooks.
2700 */
e107be36
AK
2701static inline void
2702prepare_task_switch(struct rq *rq, struct task_struct *prev,
2703 struct task_struct *next)
4866cde0 2704{
43148951 2705 sched_info_switch(rq, prev, next);
fe4b04fa 2706 perf_event_task_sched_out(prev, next);
e107be36 2707 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2708 prepare_lock_switch(rq, next);
2709 prepare_arch_switch(next);
2710}
2711
1da177e4
LT
2712/**
2713 * finish_task_switch - clean up after a task-switch
2714 * @prev: the thread we just switched away from.
2715 *
4866cde0
NP
2716 * finish_task_switch must be called after the context switch, paired
2717 * with a prepare_task_switch call before the context switch.
2718 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2719 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2720 *
2721 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2722 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2723 * with the lock held can cause deadlocks; see schedule() for
2724 * details.)
dfa50b60
ON
2725 *
2726 * The context switch have flipped the stack from under us and restored the
2727 * local variables which were saved when this task called schedule() in the
2728 * past. prev == current is still correct but we need to recalculate this_rq
2729 * because prev may have moved to another CPU.
1da177e4 2730 */
dfa50b60 2731static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
2732 __releases(rq->lock)
2733{
dfa50b60 2734 struct rq *rq = this_rq();
1da177e4 2735 struct mm_struct *mm = rq->prev_mm;
55a101f8 2736 long prev_state;
1da177e4 2737
609ca066
PZ
2738 /*
2739 * The previous task will have left us with a preempt_count of 2
2740 * because it left us after:
2741 *
2742 * schedule()
2743 * preempt_disable(); // 1
2744 * __schedule()
2745 * raw_spin_lock_irq(&rq->lock) // 2
2746 *
2747 * Also, see FORK_PREEMPT_COUNT.
2748 */
e2bf1c4b
PZ
2749 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2750 "corrupted preempt_count: %s/%d/0x%x\n",
2751 current->comm, current->pid, preempt_count()))
2752 preempt_count_set(FORK_PREEMPT_COUNT);
609ca066 2753
1da177e4
LT
2754 rq->prev_mm = NULL;
2755
2756 /*
2757 * A task struct has one reference for the use as "current".
c394cc9f 2758 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2759 * schedule one last time. The schedule call will never return, and
2760 * the scheduled task must drop that reference.
95913d97
PZ
2761 *
2762 * We must observe prev->state before clearing prev->on_cpu (in
2763 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2764 * running on another CPU and we could rave with its RUNNING -> DEAD
2765 * transition, resulting in a double drop.
1da177e4 2766 */
55a101f8 2767 prev_state = prev->state;
bf9fae9f 2768 vtime_task_switch(prev);
a8d757ef 2769 perf_event_task_sched_in(prev, current);
4866cde0 2770 finish_lock_switch(rq, prev);
01f23e16 2771 finish_arch_post_lock_switch();
e8fa1362 2772
e107be36 2773 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2774 if (mm)
2775 mmdrop(mm);
c394cc9f 2776 if (unlikely(prev_state == TASK_DEAD)) {
e6c390f2
DF
2777 if (prev->sched_class->task_dead)
2778 prev->sched_class->task_dead(prev);
2779
c6fd91f0 2780 /*
2781 * Remove function-return probe instances associated with this
2782 * task and put them back on the free list.
9761eea8 2783 */
c6fd91f0 2784 kprobe_flush_task(prev);
68f24b08
AL
2785
2786 /* Task is done with its stack. */
2787 put_task_stack(prev);
2788
1da177e4 2789 put_task_struct(prev);
c6fd91f0 2790 }
99e5ada9 2791
de734f89 2792 tick_nohz_task_switch();
dfa50b60 2793 return rq;
1da177e4
LT
2794}
2795
3f029d3c
GH
2796#ifdef CONFIG_SMP
2797
3f029d3c 2798/* rq->lock is NOT held, but preemption is disabled */
e3fca9e7 2799static void __balance_callback(struct rq *rq)
3f029d3c 2800{
e3fca9e7
PZ
2801 struct callback_head *head, *next;
2802 void (*func)(struct rq *rq);
2803 unsigned long flags;
3f029d3c 2804
e3fca9e7
PZ
2805 raw_spin_lock_irqsave(&rq->lock, flags);
2806 head = rq->balance_callback;
2807 rq->balance_callback = NULL;
2808 while (head) {
2809 func = (void (*)(struct rq *))head->func;
2810 next = head->next;
2811 head->next = NULL;
2812 head = next;
3f029d3c 2813
e3fca9e7 2814 func(rq);
3f029d3c 2815 }
e3fca9e7
PZ
2816 raw_spin_unlock_irqrestore(&rq->lock, flags);
2817}
2818
2819static inline void balance_callback(struct rq *rq)
2820{
2821 if (unlikely(rq->balance_callback))
2822 __balance_callback(rq);
3f029d3c
GH
2823}
2824
2825#else
da19ab51 2826
e3fca9e7 2827static inline void balance_callback(struct rq *rq)
3f029d3c 2828{
1da177e4
LT
2829}
2830
3f029d3c
GH
2831#endif
2832
1da177e4
LT
2833/**
2834 * schedule_tail - first thing a freshly forked thread must call.
2835 * @prev: the thread we just switched away from.
2836 */
722a9f92 2837asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
2838 __releases(rq->lock)
2839{
1a43a14a 2840 struct rq *rq;
da19ab51 2841
609ca066
PZ
2842 /*
2843 * New tasks start with FORK_PREEMPT_COUNT, see there and
2844 * finish_task_switch() for details.
2845 *
2846 * finish_task_switch() will drop rq->lock() and lower preempt_count
2847 * and the preempt_enable() will end up enabling preemption (on
2848 * PREEMPT_COUNT kernels).
2849 */
2850
dfa50b60 2851 rq = finish_task_switch(prev);
e3fca9e7 2852 balance_callback(rq);
1a43a14a 2853 preempt_enable();
70b97a7f 2854
1da177e4 2855 if (current->set_child_tid)
b488893a 2856 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2857}
2858
2859/*
dfa50b60 2860 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 2861 */
04936948 2862static __always_inline struct rq *
70b97a7f 2863context_switch(struct rq *rq, struct task_struct *prev,
e7904a28 2864 struct task_struct *next, struct pin_cookie cookie)
1da177e4 2865{
dd41f596 2866 struct mm_struct *mm, *oldmm;
1da177e4 2867
e107be36 2868 prepare_task_switch(rq, prev, next);
fe4b04fa 2869
dd41f596
IM
2870 mm = next->mm;
2871 oldmm = prev->active_mm;
9226d125
ZA
2872 /*
2873 * For paravirt, this is coupled with an exit in switch_to to
2874 * combine the page table reload and the switch backend into
2875 * one hypercall.
2876 */
224101ed 2877 arch_start_context_switch(prev);
9226d125 2878
31915ab4 2879 if (!mm) {
1da177e4
LT
2880 next->active_mm = oldmm;
2881 atomic_inc(&oldmm->mm_count);
2882 enter_lazy_tlb(oldmm, next);
2883 } else
f98db601 2884 switch_mm_irqs_off(oldmm, mm, next);
1da177e4 2885
31915ab4 2886 if (!prev->mm) {
1da177e4 2887 prev->active_mm = NULL;
1da177e4
LT
2888 rq->prev_mm = oldmm;
2889 }
3a5f5e48
IM
2890 /*
2891 * Since the runqueue lock will be released by the next
2892 * task (which is an invalid locking op but in the case
2893 * of the scheduler it's an obvious special-case), so we
2894 * do an early lockdep release here:
2895 */
e7904a28 2896 lockdep_unpin_lock(&rq->lock, cookie);
8a25d5de 2897 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
2898
2899 /* Here we just switch the register state and the stack. */
2900 switch_to(prev, next, prev);
dd41f596 2901 barrier();
dfa50b60
ON
2902
2903 return finish_task_switch(prev);
1da177e4
LT
2904}
2905
2906/*
1c3e8264 2907 * nr_running and nr_context_switches:
1da177e4
LT
2908 *
2909 * externally visible scheduler statistics: current number of runnable
1c3e8264 2910 * threads, total number of context switches performed since bootup.
1da177e4
LT
2911 */
2912unsigned long nr_running(void)
2913{
2914 unsigned long i, sum = 0;
2915
2916 for_each_online_cpu(i)
2917 sum += cpu_rq(i)->nr_running;
2918
2919 return sum;
f711f609 2920}
1da177e4 2921
2ee507c4
TC
2922/*
2923 * Check if only the current task is running on the cpu.
00cc1633
DD
2924 *
2925 * Caution: this function does not check that the caller has disabled
2926 * preemption, thus the result might have a time-of-check-to-time-of-use
2927 * race. The caller is responsible to use it correctly, for example:
2928 *
2929 * - from a non-preemptable section (of course)
2930 *
2931 * - from a thread that is bound to a single CPU
2932 *
2933 * - in a loop with very short iterations (e.g. a polling loop)
2ee507c4
TC
2934 */
2935bool single_task_running(void)
2936{
00cc1633 2937 return raw_rq()->nr_running == 1;
2ee507c4
TC
2938}
2939EXPORT_SYMBOL(single_task_running);
2940
1da177e4 2941unsigned long long nr_context_switches(void)
46cb4b7c 2942{
cc94abfc
SR
2943 int i;
2944 unsigned long long sum = 0;
46cb4b7c 2945
0a945022 2946 for_each_possible_cpu(i)
1da177e4 2947 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2948
1da177e4
LT
2949 return sum;
2950}
483b4ee6 2951
1da177e4
LT
2952unsigned long nr_iowait(void)
2953{
2954 unsigned long i, sum = 0;
483b4ee6 2955
0a945022 2956 for_each_possible_cpu(i)
1da177e4 2957 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2958
1da177e4
LT
2959 return sum;
2960}
483b4ee6 2961
8c215bd3 2962unsigned long nr_iowait_cpu(int cpu)
69d25870 2963{
8c215bd3 2964 struct rq *this = cpu_rq(cpu);
69d25870
AV
2965 return atomic_read(&this->nr_iowait);
2966}
46cb4b7c 2967
372ba8cb
MG
2968void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2969{
3289bdb4
PZ
2970 struct rq *rq = this_rq();
2971 *nr_waiters = atomic_read(&rq->nr_iowait);
2972 *load = rq->load.weight;
372ba8cb
MG
2973}
2974
dd41f596 2975#ifdef CONFIG_SMP
8a0be9ef 2976
46cb4b7c 2977/*
38022906
PZ
2978 * sched_exec - execve() is a valuable balancing opportunity, because at
2979 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2980 */
38022906 2981void sched_exec(void)
46cb4b7c 2982{
38022906 2983 struct task_struct *p = current;
1da177e4 2984 unsigned long flags;
0017d735 2985 int dest_cpu;
46cb4b7c 2986
8f42ced9 2987 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2988 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2989 if (dest_cpu == smp_processor_id())
2990 goto unlock;
38022906 2991
8f42ced9 2992 if (likely(cpu_active(dest_cpu))) {
969c7921 2993 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2994
8f42ced9
PZ
2995 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2996 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2997 return;
2998 }
0017d735 2999unlock:
8f42ced9 3000 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 3001}
dd41f596 3002
1da177e4
LT
3003#endif
3004
1da177e4 3005DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 3006DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
3007
3008EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 3009EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 3010
6075620b
GG
3011/*
3012 * The function fair_sched_class.update_curr accesses the struct curr
3013 * and its field curr->exec_start; when called from task_sched_runtime(),
3014 * we observe a high rate of cache misses in practice.
3015 * Prefetching this data results in improved performance.
3016 */
3017static inline void prefetch_curr_exec_start(struct task_struct *p)
3018{
3019#ifdef CONFIG_FAIR_GROUP_SCHED
3020 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3021#else
3022 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3023#endif
3024 prefetch(curr);
3025 prefetch(&curr->exec_start);
3026}
3027
c5f8d995
HS
3028/*
3029 * Return accounted runtime for the task.
3030 * In case the task is currently running, return the runtime plus current's
3031 * pending runtime that have not been accounted yet.
3032 */
3033unsigned long long task_sched_runtime(struct task_struct *p)
3034{
eb580751 3035 struct rq_flags rf;
c5f8d995 3036 struct rq *rq;
6e998916 3037 u64 ns;
c5f8d995 3038
911b2898
PZ
3039#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3040 /*
3041 * 64-bit doesn't need locks to atomically read a 64bit value.
3042 * So we have a optimization chance when the task's delta_exec is 0.
3043 * Reading ->on_cpu is racy, but this is ok.
3044 *
3045 * If we race with it leaving cpu, we'll take a lock. So we're correct.
3046 * If we race with it entering cpu, unaccounted time is 0. This is
3047 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
3048 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3049 * been accounted, so we're correct here as well.
911b2898 3050 */
da0c1e65 3051 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
3052 return p->se.sum_exec_runtime;
3053#endif
3054
eb580751 3055 rq = task_rq_lock(p, &rf);
6e998916
SG
3056 /*
3057 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3058 * project cycles that may never be accounted to this
3059 * thread, breaking clock_gettime().
3060 */
3061 if (task_current(rq, p) && task_on_rq_queued(p)) {
6075620b 3062 prefetch_curr_exec_start(p);
6e998916
SG
3063 update_rq_clock(rq);
3064 p->sched_class->update_curr(rq);
3065 }
3066 ns = p->se.sum_exec_runtime;
eb580751 3067 task_rq_unlock(rq, p, &rf);
c5f8d995
HS
3068
3069 return ns;
3070}
48f24c4d 3071
7835b98b
CL
3072/*
3073 * This function gets called by the timer code, with HZ frequency.
3074 * We call it with interrupts disabled.
7835b98b
CL
3075 */
3076void scheduler_tick(void)
3077{
7835b98b
CL
3078 int cpu = smp_processor_id();
3079 struct rq *rq = cpu_rq(cpu);
dd41f596 3080 struct task_struct *curr = rq->curr;
3e51f33f
PZ
3081
3082 sched_clock_tick();
dd41f596 3083
05fa785c 3084 raw_spin_lock(&rq->lock);
3e51f33f 3085 update_rq_clock(rq);
fa85ae24 3086 curr->sched_class->task_tick(rq, curr, 0);
cee1afce 3087 cpu_load_update_active(rq);
3289bdb4 3088 calc_global_load_tick(rq);
05fa785c 3089 raw_spin_unlock(&rq->lock);
7835b98b 3090
e9d2b064 3091 perf_event_task_tick();
e220d2dc 3092
e418e1c2 3093#ifdef CONFIG_SMP
6eb57e0d 3094 rq->idle_balance = idle_cpu(cpu);
7caff66f 3095 trigger_load_balance(rq);
e418e1c2 3096#endif
265f22a9 3097 rq_last_tick_reset(rq);
1da177e4
LT
3098}
3099
265f22a9
FW
3100#ifdef CONFIG_NO_HZ_FULL
3101/**
3102 * scheduler_tick_max_deferment
3103 *
3104 * Keep at least one tick per second when a single
3105 * active task is running because the scheduler doesn't
3106 * yet completely support full dynticks environment.
3107 *
3108 * This makes sure that uptime, CFS vruntime, load
3109 * balancing, etc... continue to move forward, even
3110 * with a very low granularity.
e69f6186
YB
3111 *
3112 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
3113 */
3114u64 scheduler_tick_max_deferment(void)
3115{
3116 struct rq *rq = this_rq();
316c1608 3117 unsigned long next, now = READ_ONCE(jiffies);
265f22a9
FW
3118
3119 next = rq->last_sched_tick + HZ;
3120
3121 if (time_before_eq(next, now))
3122 return 0;
3123
8fe8ff09 3124 return jiffies_to_nsecs(next - now);
1da177e4 3125}
265f22a9 3126#endif
1da177e4 3127
7e49fcce
SR
3128#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3129 defined(CONFIG_PREEMPT_TRACER))
47252cfb
SR
3130/*
3131 * If the value passed in is equal to the current preempt count
3132 * then we just disabled preemption. Start timing the latency.
3133 */
3134static inline void preempt_latency_start(int val)
3135{
3136 if (preempt_count() == val) {
3137 unsigned long ip = get_lock_parent_ip();
3138#ifdef CONFIG_DEBUG_PREEMPT
3139 current->preempt_disable_ip = ip;
3140#endif
3141 trace_preempt_off(CALLER_ADDR0, ip);
3142 }
3143}
7e49fcce 3144
edafe3a5 3145void preempt_count_add(int val)
1da177e4 3146{
6cd8a4bb 3147#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3148 /*
3149 * Underflow?
3150 */
9a11b49a
IM
3151 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3152 return;
6cd8a4bb 3153#endif
bdb43806 3154 __preempt_count_add(val);
6cd8a4bb 3155#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3156 /*
3157 * Spinlock count overflowing soon?
3158 */
33859f7f
MOS
3159 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3160 PREEMPT_MASK - 10);
6cd8a4bb 3161#endif
47252cfb 3162 preempt_latency_start(val);
1da177e4 3163}
bdb43806 3164EXPORT_SYMBOL(preempt_count_add);
edafe3a5 3165NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 3166
47252cfb
SR
3167/*
3168 * If the value passed in equals to the current preempt count
3169 * then we just enabled preemption. Stop timing the latency.
3170 */
3171static inline void preempt_latency_stop(int val)
3172{
3173 if (preempt_count() == val)
3174 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3175}
3176
edafe3a5 3177void preempt_count_sub(int val)
1da177e4 3178{
6cd8a4bb 3179#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3180 /*
3181 * Underflow?
3182 */
01e3eb82 3183 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3184 return;
1da177e4
LT
3185 /*
3186 * Is the spinlock portion underflowing?
3187 */
9a11b49a
IM
3188 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3189 !(preempt_count() & PREEMPT_MASK)))
3190 return;
6cd8a4bb 3191#endif
9a11b49a 3192
47252cfb 3193 preempt_latency_stop(val);
bdb43806 3194 __preempt_count_sub(val);
1da177e4 3195}
bdb43806 3196EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 3197NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4 3198
47252cfb
SR
3199#else
3200static inline void preempt_latency_start(int val) { }
3201static inline void preempt_latency_stop(int val) { }
1da177e4
LT
3202#endif
3203
3204/*
dd41f596 3205 * Print scheduling while atomic bug:
1da177e4 3206 */
dd41f596 3207static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3208{
d1c6d149
VN
3209 /* Save this before calling printk(), since that will clobber it */
3210 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3211
664dfa65
DJ
3212 if (oops_in_progress)
3213 return;
3214
3df0fc5b
PZ
3215 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3216 prev->comm, prev->pid, preempt_count());
838225b4 3217
dd41f596 3218 debug_show_held_locks(prev);
e21f5b15 3219 print_modules();
dd41f596
IM
3220 if (irqs_disabled())
3221 print_irqtrace_events(prev);
d1c6d149
VN
3222 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3223 && in_atomic_preempt_off()) {
8f47b187 3224 pr_err("Preemption disabled at:");
d1c6d149 3225 print_ip_sym(preempt_disable_ip);
8f47b187
TG
3226 pr_cont("\n");
3227 }
748c7201
DBO
3228 if (panic_on_warn)
3229 panic("scheduling while atomic\n");
3230
6135fc1e 3231 dump_stack();
373d4d09 3232 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 3233}
1da177e4 3234
dd41f596
IM
3235/*
3236 * Various schedule()-time debugging checks and statistics:
3237 */
3238static inline void schedule_debug(struct task_struct *prev)
3239{
0d9e2632 3240#ifdef CONFIG_SCHED_STACK_END_CHECK
29d64551
JH
3241 if (task_stack_end_corrupted(prev))
3242 panic("corrupted stack end detected inside scheduler\n");
0d9e2632 3243#endif
b99def8b 3244
1dc0fffc 3245 if (unlikely(in_atomic_preempt_off())) {
dd41f596 3246 __schedule_bug(prev);
1dc0fffc
PZ
3247 preempt_count_set(PREEMPT_DISABLED);
3248 }
b3fbab05 3249 rcu_sleep_check();
dd41f596 3250
1da177e4
LT
3251 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3252
ae92882e 3253 schedstat_inc(this_rq()->sched_count);
dd41f596
IM
3254}
3255
3256/*
3257 * Pick up the highest-prio task:
3258 */
3259static inline struct task_struct *
e7904a28 3260pick_next_task(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
dd41f596 3261{
37e117c0 3262 const struct sched_class *class = &fair_sched_class;
dd41f596 3263 struct task_struct *p;
1da177e4
LT
3264
3265 /*
dd41f596
IM
3266 * Optimization: we know that if all tasks are in
3267 * the fair class we can call that function directly:
1da177e4 3268 */
37e117c0 3269 if (likely(prev->sched_class == class &&
38033c37 3270 rq->nr_running == rq->cfs.h_nr_running)) {
e7904a28 3271 p = fair_sched_class.pick_next_task(rq, prev, cookie);
6ccdc84b
PZ
3272 if (unlikely(p == RETRY_TASK))
3273 goto again;
3274
3275 /* assumes fair_sched_class->next == idle_sched_class */
3276 if (unlikely(!p))
e7904a28 3277 p = idle_sched_class.pick_next_task(rq, prev, cookie);
6ccdc84b
PZ
3278
3279 return p;
1da177e4
LT
3280 }
3281
37e117c0 3282again:
34f971f6 3283 for_each_class(class) {
e7904a28 3284 p = class->pick_next_task(rq, prev, cookie);
37e117c0
PZ
3285 if (p) {
3286 if (unlikely(p == RETRY_TASK))
3287 goto again;
dd41f596 3288 return p;
37e117c0 3289 }
dd41f596 3290 }
34f971f6
PZ
3291
3292 BUG(); /* the idle class will always have a runnable task */
dd41f596 3293}
1da177e4 3294
dd41f596 3295/*
c259e01a 3296 * __schedule() is the main scheduler function.
edde96ea
PE
3297 *
3298 * The main means of driving the scheduler and thus entering this function are:
3299 *
3300 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3301 *
3302 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3303 * paths. For example, see arch/x86/entry_64.S.
3304 *
3305 * To drive preemption between tasks, the scheduler sets the flag in timer
3306 * interrupt handler scheduler_tick().
3307 *
3308 * 3. Wakeups don't really cause entry into schedule(). They add a
3309 * task to the run-queue and that's it.
3310 *
3311 * Now, if the new task added to the run-queue preempts the current
3312 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3313 * called on the nearest possible occasion:
3314 *
3315 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3316 *
3317 * - in syscall or exception context, at the next outmost
3318 * preempt_enable(). (this might be as soon as the wake_up()'s
3319 * spin_unlock()!)
3320 *
3321 * - in IRQ context, return from interrupt-handler to
3322 * preemptible context
3323 *
3324 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3325 * then at the next:
3326 *
3327 * - cond_resched() call
3328 * - explicit schedule() call
3329 * - return from syscall or exception to user-space
3330 * - return from interrupt-handler to user-space
bfd9b2b5 3331 *
b30f0e3f 3332 * WARNING: must be called with preemption disabled!
dd41f596 3333 */
499d7955 3334static void __sched notrace __schedule(bool preempt)
dd41f596
IM
3335{
3336 struct task_struct *prev, *next;
67ca7bde 3337 unsigned long *switch_count;
e7904a28 3338 struct pin_cookie cookie;
dd41f596 3339 struct rq *rq;
31656519 3340 int cpu;
dd41f596 3341
dd41f596
IM
3342 cpu = smp_processor_id();
3343 rq = cpu_rq(cpu);
dd41f596 3344 prev = rq->curr;
dd41f596 3345
dd41f596 3346 schedule_debug(prev);
1da177e4 3347
31656519 3348 if (sched_feat(HRTICK))
f333fdc9 3349 hrtick_clear(rq);
8f4d37ec 3350
46a5d164
PM
3351 local_irq_disable();
3352 rcu_note_context_switch();
3353
e0acd0a6
ON
3354 /*
3355 * Make sure that signal_pending_state()->signal_pending() below
3356 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3357 * done by the caller to avoid the race with signal_wake_up().
3358 */
3359 smp_mb__before_spinlock();
46a5d164 3360 raw_spin_lock(&rq->lock);
e7904a28 3361 cookie = lockdep_pin_lock(&rq->lock);
1da177e4 3362
9edfbfed
PZ
3363 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3364
246d86b5 3365 switch_count = &prev->nivcsw;
fc13aeba 3366 if (!preempt && prev->state) {
21aa9af0 3367 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 3368 prev->state = TASK_RUNNING;
21aa9af0 3369 } else {
2acca55e
PZ
3370 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3371 prev->on_rq = 0;
3372
21aa9af0 3373 /*
2acca55e
PZ
3374 * If a worker went to sleep, notify and ask workqueue
3375 * whether it wants to wake up a task to maintain
3376 * concurrency.
21aa9af0
TH
3377 */
3378 if (prev->flags & PF_WQ_WORKER) {
3379 struct task_struct *to_wakeup;
3380
9b7f6597 3381 to_wakeup = wq_worker_sleeping(prev);
21aa9af0 3382 if (to_wakeup)
e7904a28 3383 try_to_wake_up_local(to_wakeup, cookie);
21aa9af0 3384 }
21aa9af0 3385 }
dd41f596 3386 switch_count = &prev->nvcsw;
1da177e4
LT
3387 }
3388
9edfbfed 3389 if (task_on_rq_queued(prev))
606dba2e
PZ
3390 update_rq_clock(rq);
3391
e7904a28 3392 next = pick_next_task(rq, prev, cookie);
f26f9aff 3393 clear_tsk_need_resched(prev);
f27dde8d 3394 clear_preempt_need_resched();
9edfbfed 3395 rq->clock_skip_update = 0;
1da177e4 3396
1da177e4 3397 if (likely(prev != next)) {
1da177e4
LT
3398 rq->nr_switches++;
3399 rq->curr = next;
3400 ++*switch_count;
3401
c73464b1 3402 trace_sched_switch(preempt, prev, next);
e7904a28 3403 rq = context_switch(rq, prev, next, cookie); /* unlocks the rq */
cbce1a68 3404 } else {
e7904a28 3405 lockdep_unpin_lock(&rq->lock, cookie);
05fa785c 3406 raw_spin_unlock_irq(&rq->lock);
cbce1a68 3407 }
1da177e4 3408
e3fca9e7 3409 balance_callback(rq);
1da177e4 3410}
c259e01a 3411
9af6528e
PZ
3412void __noreturn do_task_dead(void)
3413{
3414 /*
3415 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
3416 * when the following two conditions become true.
3417 * - There is race condition of mmap_sem (It is acquired by
3418 * exit_mm()), and
3419 * - SMI occurs before setting TASK_RUNINNG.
3420 * (or hypervisor of virtual machine switches to other guest)
3421 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD
3422 *
3423 * To avoid it, we have to wait for releasing tsk->pi_lock which
3424 * is held by try_to_wake_up()
3425 */
3426 smp_mb();
3427 raw_spin_unlock_wait(&current->pi_lock);
3428
3429 /* causes final put_task_struct in finish_task_switch(). */
3430 __set_current_state(TASK_DEAD);
3431 current->flags |= PF_NOFREEZE; /* tell freezer to ignore us */
3432 __schedule(false);
3433 BUG();
3434 /* Avoid "noreturn function does return". */
3435 for (;;)
3436 cpu_relax(); /* For when BUG is null */
3437}
3438
9c40cef2
TG
3439static inline void sched_submit_work(struct task_struct *tsk)
3440{
3c7d5184 3441 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
3442 return;
3443 /*
3444 * If we are going to sleep and we have plugged IO queued,
3445 * make sure to submit it to avoid deadlocks.
3446 */
3447 if (blk_needs_flush_plug(tsk))
3448 blk_schedule_flush_plug(tsk);
3449}
3450
722a9f92 3451asmlinkage __visible void __sched schedule(void)
c259e01a 3452{
9c40cef2
TG
3453 struct task_struct *tsk = current;
3454
3455 sched_submit_work(tsk);
bfd9b2b5 3456 do {
b30f0e3f 3457 preempt_disable();
fc13aeba 3458 __schedule(false);
b30f0e3f 3459 sched_preempt_enable_no_resched();
bfd9b2b5 3460 } while (need_resched());
c259e01a 3461}
1da177e4
LT
3462EXPORT_SYMBOL(schedule);
3463
91d1aa43 3464#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 3465asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
3466{
3467 /*
3468 * If we come here after a random call to set_need_resched(),
3469 * or we have been woken up remotely but the IPI has not yet arrived,
3470 * we haven't yet exited the RCU idle mode. Do it here manually until
3471 * we find a better solution.
7cc78f8f
AL
3472 *
3473 * NB: There are buggy callers of this function. Ideally we
c467ea76 3474 * should warn if prev_state != CONTEXT_USER, but that will trigger
7cc78f8f 3475 * too frequently to make sense yet.
20ab65e3 3476 */
7cc78f8f 3477 enum ctx_state prev_state = exception_enter();
20ab65e3 3478 schedule();
7cc78f8f 3479 exception_exit(prev_state);
20ab65e3
FW
3480}
3481#endif
3482
c5491ea7
TG
3483/**
3484 * schedule_preempt_disabled - called with preemption disabled
3485 *
3486 * Returns with preemption disabled. Note: preempt_count must be 1
3487 */
3488void __sched schedule_preempt_disabled(void)
3489{
ba74c144 3490 sched_preempt_enable_no_resched();
c5491ea7
TG
3491 schedule();
3492 preempt_disable();
3493}
3494
06b1f808 3495static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
3496{
3497 do {
47252cfb
SR
3498 /*
3499 * Because the function tracer can trace preempt_count_sub()
3500 * and it also uses preempt_enable/disable_notrace(), if
3501 * NEED_RESCHED is set, the preempt_enable_notrace() called
3502 * by the function tracer will call this function again and
3503 * cause infinite recursion.
3504 *
3505 * Preemption must be disabled here before the function
3506 * tracer can trace. Break up preempt_disable() into two
3507 * calls. One to disable preemption without fear of being
3508 * traced. The other to still record the preemption latency,
3509 * which can also be traced by the function tracer.
3510 */
499d7955 3511 preempt_disable_notrace();
47252cfb 3512 preempt_latency_start(1);
fc13aeba 3513 __schedule(true);
47252cfb 3514 preempt_latency_stop(1);
499d7955 3515 preempt_enable_no_resched_notrace();
a18b5d01
FW
3516
3517 /*
3518 * Check again in case we missed a preemption opportunity
3519 * between schedule and now.
3520 */
a18b5d01
FW
3521 } while (need_resched());
3522}
3523
1da177e4
LT
3524#ifdef CONFIG_PREEMPT
3525/*
2ed6e34f 3526 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3527 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3528 * occur there and call schedule directly.
3529 */
722a9f92 3530asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 3531{
1da177e4
LT
3532 /*
3533 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3534 * we do not want to preempt the current task. Just return..
1da177e4 3535 */
fbb00b56 3536 if (likely(!preemptible()))
1da177e4
LT
3537 return;
3538
a18b5d01 3539 preempt_schedule_common();
1da177e4 3540}
376e2424 3541NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 3542EXPORT_SYMBOL(preempt_schedule);
009f60e2 3543
009f60e2 3544/**
4eaca0a8 3545 * preempt_schedule_notrace - preempt_schedule called by tracing
009f60e2
ON
3546 *
3547 * The tracing infrastructure uses preempt_enable_notrace to prevent
3548 * recursion and tracing preempt enabling caused by the tracing
3549 * infrastructure itself. But as tracing can happen in areas coming
3550 * from userspace or just about to enter userspace, a preempt enable
3551 * can occur before user_exit() is called. This will cause the scheduler
3552 * to be called when the system is still in usermode.
3553 *
3554 * To prevent this, the preempt_enable_notrace will use this function
3555 * instead of preempt_schedule() to exit user context if needed before
3556 * calling the scheduler.
3557 */
4eaca0a8 3558asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
009f60e2
ON
3559{
3560 enum ctx_state prev_ctx;
3561
3562 if (likely(!preemptible()))
3563 return;
3564
3565 do {
47252cfb
SR
3566 /*
3567 * Because the function tracer can trace preempt_count_sub()
3568 * and it also uses preempt_enable/disable_notrace(), if
3569 * NEED_RESCHED is set, the preempt_enable_notrace() called
3570 * by the function tracer will call this function again and
3571 * cause infinite recursion.
3572 *
3573 * Preemption must be disabled here before the function
3574 * tracer can trace. Break up preempt_disable() into two
3575 * calls. One to disable preemption without fear of being
3576 * traced. The other to still record the preemption latency,
3577 * which can also be traced by the function tracer.
3578 */
3d8f74dd 3579 preempt_disable_notrace();
47252cfb 3580 preempt_latency_start(1);
009f60e2
ON
3581 /*
3582 * Needs preempt disabled in case user_exit() is traced
3583 * and the tracer calls preempt_enable_notrace() causing
3584 * an infinite recursion.
3585 */
3586 prev_ctx = exception_enter();
fc13aeba 3587 __schedule(true);
009f60e2
ON
3588 exception_exit(prev_ctx);
3589
47252cfb 3590 preempt_latency_stop(1);
3d8f74dd 3591 preempt_enable_no_resched_notrace();
009f60e2
ON
3592 } while (need_resched());
3593}
4eaca0a8 3594EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
009f60e2 3595
32e475d7 3596#endif /* CONFIG_PREEMPT */
1da177e4
LT
3597
3598/*
2ed6e34f 3599 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3600 * off of irq context.
3601 * Note, that this is called and return with irqs disabled. This will
3602 * protect us against recursive calling from irq.
3603 */
722a9f92 3604asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 3605{
b22366cd 3606 enum ctx_state prev_state;
6478d880 3607
2ed6e34f 3608 /* Catch callers which need to be fixed */
f27dde8d 3609 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 3610
b22366cd
FW
3611 prev_state = exception_enter();
3612
3a5c359a 3613 do {
3d8f74dd 3614 preempt_disable();
3a5c359a 3615 local_irq_enable();
fc13aeba 3616 __schedule(true);
3a5c359a 3617 local_irq_disable();
3d8f74dd 3618 sched_preempt_enable_no_resched();
5ed0cec0 3619 } while (need_resched());
b22366cd
FW
3620
3621 exception_exit(prev_state);
1da177e4
LT
3622}
3623
63859d4f 3624int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3625 void *key)
1da177e4 3626{
63859d4f 3627 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3628}
1da177e4
LT
3629EXPORT_SYMBOL(default_wake_function);
3630
b29739f9
IM
3631#ifdef CONFIG_RT_MUTEXES
3632
3633/*
3634 * rt_mutex_setprio - set the current priority of a task
3635 * @p: task
3636 * @prio: prio value (kernel-internal form)
3637 *
3638 * This function changes the 'effective' priority of a task. It does
3639 * not touch ->normal_prio like __setscheduler().
3640 *
c365c292
TG
3641 * Used by the rt_mutex code to implement priority inheritance
3642 * logic. Call site only calls if the priority of the task changed.
b29739f9 3643 */
36c8b586 3644void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3645{
ff77e468 3646 int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE;
83ab0aa0 3647 const struct sched_class *prev_class;
eb580751
PZ
3648 struct rq_flags rf;
3649 struct rq *rq;
b29739f9 3650
aab03e05 3651 BUG_ON(prio > MAX_PRIO);
b29739f9 3652
eb580751 3653 rq = __task_rq_lock(p, &rf);
b29739f9 3654
1c4dd99b
TG
3655 /*
3656 * Idle task boosting is a nono in general. There is one
3657 * exception, when PREEMPT_RT and NOHZ is active:
3658 *
3659 * The idle task calls get_next_timer_interrupt() and holds
3660 * the timer wheel base->lock on the CPU and another CPU wants
3661 * to access the timer (probably to cancel it). We can safely
3662 * ignore the boosting request, as the idle CPU runs this code
3663 * with interrupts disabled and will complete the lock
3664 * protected section without being interrupted. So there is no
3665 * real need to boost.
3666 */
3667 if (unlikely(p == rq->idle)) {
3668 WARN_ON(p != rq->curr);
3669 WARN_ON(p->pi_blocked_on);
3670 goto out_unlock;
3671 }
3672
a8027073 3673 trace_sched_pi_setprio(p, prio);
d5f9f942 3674 oldprio = p->prio;
ff77e468
PZ
3675
3676 if (oldprio == prio)
3677 queue_flag &= ~DEQUEUE_MOVE;
3678
83ab0aa0 3679 prev_class = p->sched_class;
da0c1e65 3680 queued = task_on_rq_queued(p);
051a1d1a 3681 running = task_current(rq, p);
da0c1e65 3682 if (queued)
ff77e468 3683 dequeue_task(rq, p, queue_flag);
0e1f3483 3684 if (running)
f3cd1c4e 3685 put_prev_task(rq, p);
dd41f596 3686
2d3d891d
DF
3687 /*
3688 * Boosting condition are:
3689 * 1. -rt task is running and holds mutex A
3690 * --> -dl task blocks on mutex A
3691 *
3692 * 2. -dl task is running and holds mutex A
3693 * --> -dl task blocks on mutex A and could preempt the
3694 * running task
3695 */
3696 if (dl_prio(prio)) {
466af29b
ON
3697 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3698 if (!dl_prio(p->normal_prio) ||
3699 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d 3700 p->dl.dl_boosted = 1;
ff77e468 3701 queue_flag |= ENQUEUE_REPLENISH;
2d3d891d
DF
3702 } else
3703 p->dl.dl_boosted = 0;
aab03e05 3704 p->sched_class = &dl_sched_class;
2d3d891d
DF
3705 } else if (rt_prio(prio)) {
3706 if (dl_prio(oldprio))
3707 p->dl.dl_boosted = 0;
3708 if (oldprio < prio)
ff77e468 3709 queue_flag |= ENQUEUE_HEAD;
dd41f596 3710 p->sched_class = &rt_sched_class;
2d3d891d
DF
3711 } else {
3712 if (dl_prio(oldprio))
3713 p->dl.dl_boosted = 0;
746db944
BS
3714 if (rt_prio(oldprio))
3715 p->rt.timeout = 0;
dd41f596 3716 p->sched_class = &fair_sched_class;
2d3d891d 3717 }
dd41f596 3718
b29739f9
IM
3719 p->prio = prio;
3720
da0c1e65 3721 if (queued)
ff77e468 3722 enqueue_task(rq, p, queue_flag);
a399d233 3723 if (running)
b2bf6c31 3724 set_curr_task(rq, p);
cb469845 3725
da7a735e 3726 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3727out_unlock:
4c9a4bc8 3728 preempt_disable(); /* avoid rq from going away on us */
eb580751 3729 __task_rq_unlock(rq, &rf);
4c9a4bc8
PZ
3730
3731 balance_callback(rq);
3732 preempt_enable();
b29739f9 3733}
b29739f9 3734#endif
d50dde5a 3735
36c8b586 3736void set_user_nice(struct task_struct *p, long nice)
1da177e4 3737{
49bd21ef
PZ
3738 bool queued, running;
3739 int old_prio, delta;
eb580751 3740 struct rq_flags rf;
70b97a7f 3741 struct rq *rq;
1da177e4 3742
75e45d51 3743 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
3744 return;
3745 /*
3746 * We have to be careful, if called from sys_setpriority(),
3747 * the task might be in the middle of scheduling on another CPU.
3748 */
eb580751 3749 rq = task_rq_lock(p, &rf);
1da177e4
LT
3750 /*
3751 * The RT priorities are set via sched_setscheduler(), but we still
3752 * allow the 'normal' nice value to be set - but as expected
3753 * it wont have any effect on scheduling until the task is
aab03e05 3754 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3755 */
aab03e05 3756 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3757 p->static_prio = NICE_TO_PRIO(nice);
3758 goto out_unlock;
3759 }
da0c1e65 3760 queued = task_on_rq_queued(p);
49bd21ef 3761 running = task_current(rq, p);
da0c1e65 3762 if (queued)
1de64443 3763 dequeue_task(rq, p, DEQUEUE_SAVE);
49bd21ef
PZ
3764 if (running)
3765 put_prev_task(rq, p);
1da177e4 3766
1da177e4 3767 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3768 set_load_weight(p);
b29739f9
IM
3769 old_prio = p->prio;
3770 p->prio = effective_prio(p);
3771 delta = p->prio - old_prio;
1da177e4 3772
da0c1e65 3773 if (queued) {
1de64443 3774 enqueue_task(rq, p, ENQUEUE_RESTORE);
1da177e4 3775 /*
d5f9f942
AM
3776 * If the task increased its priority or is running and
3777 * lowered its priority, then reschedule its CPU:
1da177e4 3778 */
d5f9f942 3779 if (delta < 0 || (delta > 0 && task_running(rq, p)))
8875125e 3780 resched_curr(rq);
1da177e4 3781 }
49bd21ef
PZ
3782 if (running)
3783 set_curr_task(rq, p);
1da177e4 3784out_unlock:
eb580751 3785 task_rq_unlock(rq, p, &rf);
1da177e4 3786}
1da177e4
LT
3787EXPORT_SYMBOL(set_user_nice);
3788
e43379f1
MM
3789/*
3790 * can_nice - check if a task can reduce its nice value
3791 * @p: task
3792 * @nice: nice value
3793 */
36c8b586 3794int can_nice(const struct task_struct *p, const int nice)
e43379f1 3795{
024f4747 3796 /* convert nice value [19,-20] to rlimit style value [1,40] */
7aa2c016 3797 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 3798
78d7d407 3799 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3800 capable(CAP_SYS_NICE));
3801}
3802
1da177e4
LT
3803#ifdef __ARCH_WANT_SYS_NICE
3804
3805/*
3806 * sys_nice - change the priority of the current process.
3807 * @increment: priority increment
3808 *
3809 * sys_setpriority is a more generic, but much slower function that
3810 * does similar things.
3811 */
5add95d4 3812SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3813{
48f24c4d 3814 long nice, retval;
1da177e4
LT
3815
3816 /*
3817 * Setpriority might change our priority at the same moment.
3818 * We don't have to worry. Conceptually one call occurs first
3819 * and we have a single winner.
3820 */
a9467fa3 3821 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 3822 nice = task_nice(current) + increment;
1da177e4 3823
a9467fa3 3824 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
3825 if (increment < 0 && !can_nice(current, nice))
3826 return -EPERM;
3827
1da177e4
LT
3828 retval = security_task_setnice(current, nice);
3829 if (retval)
3830 return retval;
3831
3832 set_user_nice(current, nice);
3833 return 0;
3834}
3835
3836#endif
3837
3838/**
3839 * task_prio - return the priority value of a given task.
3840 * @p: the task in question.
3841 *
e69f6186 3842 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3843 * RT tasks are offset by -200. Normal tasks are centered
3844 * around 0, value goes from -16 to +15.
3845 */
36c8b586 3846int task_prio(const struct task_struct *p)
1da177e4
LT
3847{
3848 return p->prio - MAX_RT_PRIO;
3849}
3850
1da177e4
LT
3851/**
3852 * idle_cpu - is a given cpu idle currently?
3853 * @cpu: the processor in question.
e69f6186
YB
3854 *
3855 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3856 */
3857int idle_cpu(int cpu)
3858{
908a3283
TG
3859 struct rq *rq = cpu_rq(cpu);
3860
3861 if (rq->curr != rq->idle)
3862 return 0;
3863
3864 if (rq->nr_running)
3865 return 0;
3866
3867#ifdef CONFIG_SMP
3868 if (!llist_empty(&rq->wake_list))
3869 return 0;
3870#endif
3871
3872 return 1;
1da177e4
LT
3873}
3874
1da177e4
LT
3875/**
3876 * idle_task - return the idle task for a given cpu.
3877 * @cpu: the processor in question.
e69f6186
YB
3878 *
3879 * Return: The idle task for the cpu @cpu.
1da177e4 3880 */
36c8b586 3881struct task_struct *idle_task(int cpu)
1da177e4
LT
3882{
3883 return cpu_rq(cpu)->idle;
3884}
3885
3886/**
3887 * find_process_by_pid - find a process with a matching PID value.
3888 * @pid: the pid in question.
e69f6186
YB
3889 *
3890 * The task of @pid, if found. %NULL otherwise.
1da177e4 3891 */
a9957449 3892static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3893{
228ebcbe 3894 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3895}
3896
aab03e05
DF
3897/*
3898 * This function initializes the sched_dl_entity of a newly becoming
3899 * SCHED_DEADLINE task.
3900 *
3901 * Only the static values are considered here, the actual runtime and the
3902 * absolute deadline will be properly calculated when the task is enqueued
3903 * for the first time with its new policy.
3904 */
3905static void
3906__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3907{
3908 struct sched_dl_entity *dl_se = &p->dl;
3909
aab03e05
DF
3910 dl_se->dl_runtime = attr->sched_runtime;
3911 dl_se->dl_deadline = attr->sched_deadline;
755378a4 3912 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 3913 dl_se->flags = attr->sched_flags;
332ac17e 3914 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
40767b0d
PZ
3915
3916 /*
3917 * Changing the parameters of a task is 'tricky' and we're not doing
3918 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3919 *
3920 * What we SHOULD do is delay the bandwidth release until the 0-lag
3921 * point. This would include retaining the task_struct until that time
3922 * and change dl_overflow() to not immediately decrement the current
3923 * amount.
3924 *
3925 * Instead we retain the current runtime/deadline and let the new
3926 * parameters take effect after the current reservation period lapses.
3927 * This is safe (albeit pessimistic) because the 0-lag point is always
3928 * before the current scheduling deadline.
3929 *
3930 * We can still have temporary overloads because we do not delay the
3931 * change in bandwidth until that time; so admission control is
3932 * not on the safe side. It does however guarantee tasks will never
3933 * consume more than promised.
3934 */
aab03e05
DF
3935}
3936
c13db6b1
SR
3937/*
3938 * sched_setparam() passes in -1 for its policy, to let the functions
3939 * it calls know not to change it.
3940 */
3941#define SETPARAM_POLICY -1
3942
c365c292
TG
3943static void __setscheduler_params(struct task_struct *p,
3944 const struct sched_attr *attr)
1da177e4 3945{
d50dde5a
DF
3946 int policy = attr->sched_policy;
3947
c13db6b1 3948 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
3949 policy = p->policy;
3950
1da177e4 3951 p->policy = policy;
d50dde5a 3952
aab03e05
DF
3953 if (dl_policy(policy))
3954 __setparam_dl(p, attr);
39fd8fd2 3955 else if (fair_policy(policy))
d50dde5a
DF
3956 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3957
39fd8fd2
PZ
3958 /*
3959 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3960 * !rt_policy. Always setting this ensures that things like
3961 * getparam()/getattr() don't report silly values for !rt tasks.
3962 */
3963 p->rt_priority = attr->sched_priority;
383afd09 3964 p->normal_prio = normal_prio(p);
c365c292
TG
3965 set_load_weight(p);
3966}
39fd8fd2 3967
c365c292
TG
3968/* Actually do priority change: must hold pi & rq lock. */
3969static void __setscheduler(struct rq *rq, struct task_struct *p,
0782e63b 3970 const struct sched_attr *attr, bool keep_boost)
c365c292
TG
3971{
3972 __setscheduler_params(p, attr);
d50dde5a 3973
383afd09 3974 /*
0782e63b
TG
3975 * Keep a potential priority boosting if called from
3976 * sched_setscheduler().
383afd09 3977 */
0782e63b
TG
3978 if (keep_boost)
3979 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3980 else
3981 p->prio = normal_prio(p);
383afd09 3982
aab03e05
DF
3983 if (dl_prio(p->prio))
3984 p->sched_class = &dl_sched_class;
3985 else if (rt_prio(p->prio))
ffd44db5
PZ
3986 p->sched_class = &rt_sched_class;
3987 else
3988 p->sched_class = &fair_sched_class;
1da177e4 3989}
aab03e05
DF
3990
3991static void
3992__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3993{
3994 struct sched_dl_entity *dl_se = &p->dl;
3995
3996 attr->sched_priority = p->rt_priority;
3997 attr->sched_runtime = dl_se->dl_runtime;
3998 attr->sched_deadline = dl_se->dl_deadline;
755378a4 3999 attr->sched_period = dl_se->dl_period;
aab03e05
DF
4000 attr->sched_flags = dl_se->flags;
4001}
4002
4003/*
4004 * This function validates the new parameters of a -deadline task.
4005 * We ask for the deadline not being zero, and greater or equal
755378a4 4006 * than the runtime, as well as the period of being zero or
332ac17e 4007 * greater than deadline. Furthermore, we have to be sure that
b0827819
JL
4008 * user parameters are above the internal resolution of 1us (we
4009 * check sched_runtime only since it is always the smaller one) and
4010 * below 2^63 ns (we have to check both sched_deadline and
4011 * sched_period, as the latter can be zero).
aab03e05
DF
4012 */
4013static bool
4014__checkparam_dl(const struct sched_attr *attr)
4015{
b0827819
JL
4016 /* deadline != 0 */
4017 if (attr->sched_deadline == 0)
4018 return false;
4019
4020 /*
4021 * Since we truncate DL_SCALE bits, make sure we're at least
4022 * that big.
4023 */
4024 if (attr->sched_runtime < (1ULL << DL_SCALE))
4025 return false;
4026
4027 /*
4028 * Since we use the MSB for wrap-around and sign issues, make
4029 * sure it's not set (mind that period can be equal to zero).
4030 */
4031 if (attr->sched_deadline & (1ULL << 63) ||
4032 attr->sched_period & (1ULL << 63))
4033 return false;
4034
4035 /* runtime <= deadline <= period (if period != 0) */
4036 if ((attr->sched_period != 0 &&
4037 attr->sched_period < attr->sched_deadline) ||
4038 attr->sched_deadline < attr->sched_runtime)
4039 return false;
4040
4041 return true;
aab03e05
DF
4042}
4043
c69e8d9c
DH
4044/*
4045 * check the target process has a UID that matches the current process's
4046 */
4047static bool check_same_owner(struct task_struct *p)
4048{
4049 const struct cred *cred = current_cred(), *pcred;
4050 bool match;
4051
4052 rcu_read_lock();
4053 pcred = __task_cred(p);
9c806aa0
EB
4054 match = (uid_eq(cred->euid, pcred->euid) ||
4055 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
4056 rcu_read_unlock();
4057 return match;
4058}
4059
75381608
WL
4060static bool dl_param_changed(struct task_struct *p,
4061 const struct sched_attr *attr)
4062{
4063 struct sched_dl_entity *dl_se = &p->dl;
4064
4065 if (dl_se->dl_runtime != attr->sched_runtime ||
4066 dl_se->dl_deadline != attr->sched_deadline ||
4067 dl_se->dl_period != attr->sched_period ||
4068 dl_se->flags != attr->sched_flags)
4069 return true;
4070
4071 return false;
4072}
4073
d50dde5a
DF
4074static int __sched_setscheduler(struct task_struct *p,
4075 const struct sched_attr *attr,
dbc7f069 4076 bool user, bool pi)
1da177e4 4077{
383afd09
SR
4078 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4079 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 4080 int retval, oldprio, oldpolicy = -1, queued, running;
0782e63b 4081 int new_effective_prio, policy = attr->sched_policy;
83ab0aa0 4082 const struct sched_class *prev_class;
eb580751 4083 struct rq_flags rf;
ca94c442 4084 int reset_on_fork;
ff77e468 4085 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
eb580751 4086 struct rq *rq;
1da177e4 4087
66e5393a
SR
4088 /* may grab non-irq protected spin_locks */
4089 BUG_ON(in_interrupt());
1da177e4
LT
4090recheck:
4091 /* double check policy once rq lock held */
ca94c442
LP
4092 if (policy < 0) {
4093 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4094 policy = oldpolicy = p->policy;
ca94c442 4095 } else {
7479f3c9 4096 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 4097
20f9cd2a 4098 if (!valid_policy(policy))
ca94c442
LP
4099 return -EINVAL;
4100 }
4101
7479f3c9
PZ
4102 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
4103 return -EINVAL;
4104
1da177e4
LT
4105 /*
4106 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4107 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4108 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 4109 */
0bb040a4 4110 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 4111 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 4112 return -EINVAL;
aab03e05
DF
4113 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4114 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
4115 return -EINVAL;
4116
37e4ab3f
OC
4117 /*
4118 * Allow unprivileged RT tasks to decrease priority:
4119 */
961ccddd 4120 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 4121 if (fair_policy(policy)) {
d0ea0268 4122 if (attr->sched_nice < task_nice(p) &&
eaad4513 4123 !can_nice(p, attr->sched_nice))
d50dde5a
DF
4124 return -EPERM;
4125 }
4126
e05606d3 4127 if (rt_policy(policy)) {
a44702e8
ON
4128 unsigned long rlim_rtprio =
4129 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
4130
4131 /* can't set/change the rt policy */
4132 if (policy != p->policy && !rlim_rtprio)
4133 return -EPERM;
4134
4135 /* can't increase priority */
d50dde5a
DF
4136 if (attr->sched_priority > p->rt_priority &&
4137 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
4138 return -EPERM;
4139 }
c02aa73b 4140
d44753b8
JL
4141 /*
4142 * Can't set/change SCHED_DEADLINE policy at all for now
4143 * (safest behavior); in the future we would like to allow
4144 * unprivileged DL tasks to increase their relative deadline
4145 * or reduce their runtime (both ways reducing utilization)
4146 */
4147 if (dl_policy(policy))
4148 return -EPERM;
4149
dd41f596 4150 /*
c02aa73b
DH
4151 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4152 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 4153 */
20f9cd2a 4154 if (idle_policy(p->policy) && !idle_policy(policy)) {
d0ea0268 4155 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
4156 return -EPERM;
4157 }
5fe1d75f 4158
37e4ab3f 4159 /* can't change other user's priorities */
c69e8d9c 4160 if (!check_same_owner(p))
37e4ab3f 4161 return -EPERM;
ca94c442
LP
4162
4163 /* Normal users shall not reset the sched_reset_on_fork flag */
4164 if (p->sched_reset_on_fork && !reset_on_fork)
4165 return -EPERM;
37e4ab3f 4166 }
1da177e4 4167
725aad24 4168 if (user) {
b0ae1981 4169 retval = security_task_setscheduler(p);
725aad24
JF
4170 if (retval)
4171 return retval;
4172 }
4173
b29739f9
IM
4174 /*
4175 * make sure no PI-waiters arrive (or leave) while we are
4176 * changing the priority of the task:
0122ec5b 4177 *
25985edc 4178 * To be able to change p->policy safely, the appropriate
1da177e4
LT
4179 * runqueue lock must be held.
4180 */
eb580751 4181 rq = task_rq_lock(p, &rf);
dc61b1d6 4182
34f971f6
PZ
4183 /*
4184 * Changing the policy of the stop threads its a very bad idea
4185 */
4186 if (p == rq->stop) {
eb580751 4187 task_rq_unlock(rq, p, &rf);
34f971f6
PZ
4188 return -EINVAL;
4189 }
4190
a51e9198 4191 /*
d6b1e911
TG
4192 * If not changing anything there's no need to proceed further,
4193 * but store a possible modification of reset_on_fork.
a51e9198 4194 */
d50dde5a 4195 if (unlikely(policy == p->policy)) {
d0ea0268 4196 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
4197 goto change;
4198 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4199 goto change;
75381608 4200 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 4201 goto change;
d50dde5a 4202
d6b1e911 4203 p->sched_reset_on_fork = reset_on_fork;
eb580751 4204 task_rq_unlock(rq, p, &rf);
a51e9198
DF
4205 return 0;
4206 }
d50dde5a 4207change:
a51e9198 4208
dc61b1d6 4209 if (user) {
332ac17e 4210#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
4211 /*
4212 * Do not allow realtime tasks into groups that have no runtime
4213 * assigned.
4214 */
4215 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
4216 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4217 !task_group_is_autogroup(task_group(p))) {
eb580751 4218 task_rq_unlock(rq, p, &rf);
dc61b1d6
PZ
4219 return -EPERM;
4220 }
dc61b1d6 4221#endif
332ac17e
DF
4222#ifdef CONFIG_SMP
4223 if (dl_bandwidth_enabled() && dl_policy(policy)) {
4224 cpumask_t *span = rq->rd->span;
332ac17e
DF
4225
4226 /*
4227 * Don't allow tasks with an affinity mask smaller than
4228 * the entire root_domain to become SCHED_DEADLINE. We
4229 * will also fail if there's no bandwidth available.
4230 */
e4099a5e
PZ
4231 if (!cpumask_subset(span, &p->cpus_allowed) ||
4232 rq->rd->dl_bw.bw == 0) {
eb580751 4233 task_rq_unlock(rq, p, &rf);
332ac17e
DF
4234 return -EPERM;
4235 }
4236 }
4237#endif
4238 }
dc61b1d6 4239
1da177e4
LT
4240 /* recheck policy now with rq lock held */
4241 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4242 policy = oldpolicy = -1;
eb580751 4243 task_rq_unlock(rq, p, &rf);
1da177e4
LT
4244 goto recheck;
4245 }
332ac17e
DF
4246
4247 /*
4248 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4249 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4250 * is available.
4251 */
e4099a5e 4252 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
eb580751 4253 task_rq_unlock(rq, p, &rf);
332ac17e
DF
4254 return -EBUSY;
4255 }
4256
c365c292
TG
4257 p->sched_reset_on_fork = reset_on_fork;
4258 oldprio = p->prio;
4259
dbc7f069
PZ
4260 if (pi) {
4261 /*
4262 * Take priority boosted tasks into account. If the new
4263 * effective priority is unchanged, we just store the new
4264 * normal parameters and do not touch the scheduler class and
4265 * the runqueue. This will be done when the task deboost
4266 * itself.
4267 */
4268 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
ff77e468
PZ
4269 if (new_effective_prio == oldprio)
4270 queue_flags &= ~DEQUEUE_MOVE;
c365c292
TG
4271 }
4272
da0c1e65 4273 queued = task_on_rq_queued(p);
051a1d1a 4274 running = task_current(rq, p);
da0c1e65 4275 if (queued)
ff77e468 4276 dequeue_task(rq, p, queue_flags);
0e1f3483 4277 if (running)
f3cd1c4e 4278 put_prev_task(rq, p);
f6b53205 4279
83ab0aa0 4280 prev_class = p->sched_class;
dbc7f069 4281 __setscheduler(rq, p, attr, pi);
f6b53205 4282
da0c1e65 4283 if (queued) {
81a44c54
TG
4284 /*
4285 * We enqueue to tail when the priority of a task is
4286 * increased (user space view).
4287 */
ff77e468
PZ
4288 if (oldprio < p->prio)
4289 queue_flags |= ENQUEUE_HEAD;
1de64443 4290
ff77e468 4291 enqueue_task(rq, p, queue_flags);
81a44c54 4292 }
a399d233 4293 if (running)
b2bf6c31 4294 set_curr_task(rq, p);
cb469845 4295
da7a735e 4296 check_class_changed(rq, p, prev_class, oldprio);
4c9a4bc8 4297 preempt_disable(); /* avoid rq from going away on us */
eb580751 4298 task_rq_unlock(rq, p, &rf);
b29739f9 4299
dbc7f069
PZ
4300 if (pi)
4301 rt_mutex_adjust_pi(p);
95e02ca9 4302
4c9a4bc8
PZ
4303 /*
4304 * Run balance callbacks after we've adjusted the PI chain.
4305 */
4306 balance_callback(rq);
4307 preempt_enable();
95e02ca9 4308
1da177e4
LT
4309 return 0;
4310}
961ccddd 4311
7479f3c9
PZ
4312static int _sched_setscheduler(struct task_struct *p, int policy,
4313 const struct sched_param *param, bool check)
4314{
4315 struct sched_attr attr = {
4316 .sched_policy = policy,
4317 .sched_priority = param->sched_priority,
4318 .sched_nice = PRIO_TO_NICE(p->static_prio),
4319 };
4320
c13db6b1
SR
4321 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4322 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
4323 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4324 policy &= ~SCHED_RESET_ON_FORK;
4325 attr.sched_policy = policy;
4326 }
4327
dbc7f069 4328 return __sched_setscheduler(p, &attr, check, true);
7479f3c9 4329}
961ccddd
RR
4330/**
4331 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4332 * @p: the task in question.
4333 * @policy: new policy.
4334 * @param: structure containing the new RT priority.
4335 *
e69f6186
YB
4336 * Return: 0 on success. An error code otherwise.
4337 *
961ccddd
RR
4338 * NOTE that the task may be already dead.
4339 */
4340int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4341 const struct sched_param *param)
961ccddd 4342{
7479f3c9 4343 return _sched_setscheduler(p, policy, param, true);
961ccddd 4344}
1da177e4
LT
4345EXPORT_SYMBOL_GPL(sched_setscheduler);
4346
d50dde5a
DF
4347int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4348{
dbc7f069 4349 return __sched_setscheduler(p, attr, true, true);
d50dde5a
DF
4350}
4351EXPORT_SYMBOL_GPL(sched_setattr);
4352
961ccddd
RR
4353/**
4354 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4355 * @p: the task in question.
4356 * @policy: new policy.
4357 * @param: structure containing the new RT priority.
4358 *
4359 * Just like sched_setscheduler, only don't bother checking if the
4360 * current context has permission. For example, this is needed in
4361 * stop_machine(): we create temporary high priority worker threads,
4362 * but our caller might not have that capability.
e69f6186
YB
4363 *
4364 * Return: 0 on success. An error code otherwise.
961ccddd
RR
4365 */
4366int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 4367 const struct sched_param *param)
961ccddd 4368{
7479f3c9 4369 return _sched_setscheduler(p, policy, param, false);
961ccddd 4370}
84778472 4371EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
961ccddd 4372
95cdf3b7
IM
4373static int
4374do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4375{
1da177e4
LT
4376 struct sched_param lparam;
4377 struct task_struct *p;
36c8b586 4378 int retval;
1da177e4
LT
4379
4380 if (!param || pid < 0)
4381 return -EINVAL;
4382 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4383 return -EFAULT;
5fe1d75f
ON
4384
4385 rcu_read_lock();
4386 retval = -ESRCH;
1da177e4 4387 p = find_process_by_pid(pid);
5fe1d75f
ON
4388 if (p != NULL)
4389 retval = sched_setscheduler(p, policy, &lparam);
4390 rcu_read_unlock();
36c8b586 4391
1da177e4
LT
4392 return retval;
4393}
4394
d50dde5a
DF
4395/*
4396 * Mimics kernel/events/core.c perf_copy_attr().
4397 */
4398static int sched_copy_attr(struct sched_attr __user *uattr,
4399 struct sched_attr *attr)
4400{
4401 u32 size;
4402 int ret;
4403
4404 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4405 return -EFAULT;
4406
4407 /*
4408 * zero the full structure, so that a short copy will be nice.
4409 */
4410 memset(attr, 0, sizeof(*attr));
4411
4412 ret = get_user(size, &uattr->size);
4413 if (ret)
4414 return ret;
4415
4416 if (size > PAGE_SIZE) /* silly large */
4417 goto err_size;
4418
4419 if (!size) /* abi compat */
4420 size = SCHED_ATTR_SIZE_VER0;
4421
4422 if (size < SCHED_ATTR_SIZE_VER0)
4423 goto err_size;
4424
4425 /*
4426 * If we're handed a bigger struct than we know of,
4427 * ensure all the unknown bits are 0 - i.e. new
4428 * user-space does not rely on any kernel feature
4429 * extensions we dont know about yet.
4430 */
4431 if (size > sizeof(*attr)) {
4432 unsigned char __user *addr;
4433 unsigned char __user *end;
4434 unsigned char val;
4435
4436 addr = (void __user *)uattr + sizeof(*attr);
4437 end = (void __user *)uattr + size;
4438
4439 for (; addr < end; addr++) {
4440 ret = get_user(val, addr);
4441 if (ret)
4442 return ret;
4443 if (val)
4444 goto err_size;
4445 }
4446 size = sizeof(*attr);
4447 }
4448
4449 ret = copy_from_user(attr, uattr, size);
4450 if (ret)
4451 return -EFAULT;
4452
4453 /*
4454 * XXX: do we want to be lenient like existing syscalls; or do we want
4455 * to be strict and return an error on out-of-bounds values?
4456 */
75e45d51 4457 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 4458
e78c7bca 4459 return 0;
d50dde5a
DF
4460
4461err_size:
4462 put_user(sizeof(*attr), &uattr->size);
e78c7bca 4463 return -E2BIG;
d50dde5a
DF
4464}
4465
1da177e4
LT
4466/**
4467 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4468 * @pid: the pid in question.
4469 * @policy: new policy.
4470 * @param: structure containing the new RT priority.
e69f6186
YB
4471 *
4472 * Return: 0 on success. An error code otherwise.
1da177e4 4473 */
5add95d4
HC
4474SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4475 struct sched_param __user *, param)
1da177e4 4476{
c21761f1
JB
4477 /* negative values for policy are not valid */
4478 if (policy < 0)
4479 return -EINVAL;
4480
1da177e4
LT
4481 return do_sched_setscheduler(pid, policy, param);
4482}
4483
4484/**
4485 * sys_sched_setparam - set/change the RT priority of a thread
4486 * @pid: the pid in question.
4487 * @param: structure containing the new RT priority.
e69f6186
YB
4488 *
4489 * Return: 0 on success. An error code otherwise.
1da177e4 4490 */
5add95d4 4491SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4492{
c13db6b1 4493 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
4494}
4495
d50dde5a
DF
4496/**
4497 * sys_sched_setattr - same as above, but with extended sched_attr
4498 * @pid: the pid in question.
5778fccf 4499 * @uattr: structure containing the extended parameters.
db66d756 4500 * @flags: for future extension.
d50dde5a 4501 */
6d35ab48
PZ
4502SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4503 unsigned int, flags)
d50dde5a
DF
4504{
4505 struct sched_attr attr;
4506 struct task_struct *p;
4507 int retval;
4508
6d35ab48 4509 if (!uattr || pid < 0 || flags)
d50dde5a
DF
4510 return -EINVAL;
4511
143cf23d
MK
4512 retval = sched_copy_attr(uattr, &attr);
4513 if (retval)
4514 return retval;
d50dde5a 4515
b14ed2c2 4516 if ((int)attr.sched_policy < 0)
dbdb2275 4517 return -EINVAL;
d50dde5a
DF
4518
4519 rcu_read_lock();
4520 retval = -ESRCH;
4521 p = find_process_by_pid(pid);
4522 if (p != NULL)
4523 retval = sched_setattr(p, &attr);
4524 rcu_read_unlock();
4525
4526 return retval;
4527}
4528
1da177e4
LT
4529/**
4530 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4531 * @pid: the pid in question.
e69f6186
YB
4532 *
4533 * Return: On success, the policy of the thread. Otherwise, a negative error
4534 * code.
1da177e4 4535 */
5add95d4 4536SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4537{
36c8b586 4538 struct task_struct *p;
3a5c359a 4539 int retval;
1da177e4
LT
4540
4541 if (pid < 0)
3a5c359a 4542 return -EINVAL;
1da177e4
LT
4543
4544 retval = -ESRCH;
5fe85be0 4545 rcu_read_lock();
1da177e4
LT
4546 p = find_process_by_pid(pid);
4547 if (p) {
4548 retval = security_task_getscheduler(p);
4549 if (!retval)
ca94c442
LP
4550 retval = p->policy
4551 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4552 }
5fe85be0 4553 rcu_read_unlock();
1da177e4
LT
4554 return retval;
4555}
4556
4557/**
ca94c442 4558 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4559 * @pid: the pid in question.
4560 * @param: structure containing the RT priority.
e69f6186
YB
4561 *
4562 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4563 * code.
1da177e4 4564 */
5add95d4 4565SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4566{
ce5f7f82 4567 struct sched_param lp = { .sched_priority = 0 };
36c8b586 4568 struct task_struct *p;
3a5c359a 4569 int retval;
1da177e4
LT
4570
4571 if (!param || pid < 0)
3a5c359a 4572 return -EINVAL;
1da177e4 4573
5fe85be0 4574 rcu_read_lock();
1da177e4
LT
4575 p = find_process_by_pid(pid);
4576 retval = -ESRCH;
4577 if (!p)
4578 goto out_unlock;
4579
4580 retval = security_task_getscheduler(p);
4581 if (retval)
4582 goto out_unlock;
4583
ce5f7f82
PZ
4584 if (task_has_rt_policy(p))
4585 lp.sched_priority = p->rt_priority;
5fe85be0 4586 rcu_read_unlock();
1da177e4
LT
4587
4588 /*
4589 * This one might sleep, we cannot do it with a spinlock held ...
4590 */
4591 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4592
1da177e4
LT
4593 return retval;
4594
4595out_unlock:
5fe85be0 4596 rcu_read_unlock();
1da177e4
LT
4597 return retval;
4598}
4599
d50dde5a
DF
4600static int sched_read_attr(struct sched_attr __user *uattr,
4601 struct sched_attr *attr,
4602 unsigned int usize)
4603{
4604 int ret;
4605
4606 if (!access_ok(VERIFY_WRITE, uattr, usize))
4607 return -EFAULT;
4608
4609 /*
4610 * If we're handed a smaller struct than we know of,
4611 * ensure all the unknown bits are 0 - i.e. old
4612 * user-space does not get uncomplete information.
4613 */
4614 if (usize < sizeof(*attr)) {
4615 unsigned char *addr;
4616 unsigned char *end;
4617
4618 addr = (void *)attr + usize;
4619 end = (void *)attr + sizeof(*attr);
4620
4621 for (; addr < end; addr++) {
4622 if (*addr)
22400674 4623 return -EFBIG;
d50dde5a
DF
4624 }
4625
4626 attr->size = usize;
4627 }
4628
4efbc454 4629 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
4630 if (ret)
4631 return -EFAULT;
4632
22400674 4633 return 0;
d50dde5a
DF
4634}
4635
4636/**
aab03e05 4637 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 4638 * @pid: the pid in question.
5778fccf 4639 * @uattr: structure containing the extended parameters.
d50dde5a 4640 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 4641 * @flags: for future extension.
d50dde5a 4642 */
6d35ab48
PZ
4643SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4644 unsigned int, size, unsigned int, flags)
d50dde5a
DF
4645{
4646 struct sched_attr attr = {
4647 .size = sizeof(struct sched_attr),
4648 };
4649 struct task_struct *p;
4650 int retval;
4651
4652 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 4653 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
4654 return -EINVAL;
4655
4656 rcu_read_lock();
4657 p = find_process_by_pid(pid);
4658 retval = -ESRCH;
4659 if (!p)
4660 goto out_unlock;
4661
4662 retval = security_task_getscheduler(p);
4663 if (retval)
4664 goto out_unlock;
4665
4666 attr.sched_policy = p->policy;
7479f3c9
PZ
4667 if (p->sched_reset_on_fork)
4668 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
4669 if (task_has_dl_policy(p))
4670 __getparam_dl(p, &attr);
4671 else if (task_has_rt_policy(p))
d50dde5a
DF
4672 attr.sched_priority = p->rt_priority;
4673 else
d0ea0268 4674 attr.sched_nice = task_nice(p);
d50dde5a
DF
4675
4676 rcu_read_unlock();
4677
4678 retval = sched_read_attr(uattr, &attr, size);
4679 return retval;
4680
4681out_unlock:
4682 rcu_read_unlock();
4683 return retval;
4684}
4685
96f874e2 4686long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4687{
5a16f3d3 4688 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4689 struct task_struct *p;
4690 int retval;
1da177e4 4691
23f5d142 4692 rcu_read_lock();
1da177e4
LT
4693
4694 p = find_process_by_pid(pid);
4695 if (!p) {
23f5d142 4696 rcu_read_unlock();
1da177e4
LT
4697 return -ESRCH;
4698 }
4699
23f5d142 4700 /* Prevent p going away */
1da177e4 4701 get_task_struct(p);
23f5d142 4702 rcu_read_unlock();
1da177e4 4703
14a40ffc
TH
4704 if (p->flags & PF_NO_SETAFFINITY) {
4705 retval = -EINVAL;
4706 goto out_put_task;
4707 }
5a16f3d3
RR
4708 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4709 retval = -ENOMEM;
4710 goto out_put_task;
4711 }
4712 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4713 retval = -ENOMEM;
4714 goto out_free_cpus_allowed;
4715 }
1da177e4 4716 retval = -EPERM;
4c44aaaf
EB
4717 if (!check_same_owner(p)) {
4718 rcu_read_lock();
4719 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4720 rcu_read_unlock();
16303ab2 4721 goto out_free_new_mask;
4c44aaaf
EB
4722 }
4723 rcu_read_unlock();
4724 }
1da177e4 4725
b0ae1981 4726 retval = security_task_setscheduler(p);
e7834f8f 4727 if (retval)
16303ab2 4728 goto out_free_new_mask;
e7834f8f 4729
e4099a5e
PZ
4730
4731 cpuset_cpus_allowed(p, cpus_allowed);
4732 cpumask_and(new_mask, in_mask, cpus_allowed);
4733
332ac17e
DF
4734 /*
4735 * Since bandwidth control happens on root_domain basis,
4736 * if admission test is enabled, we only admit -deadline
4737 * tasks allowed to run on all the CPUs in the task's
4738 * root_domain.
4739 */
4740#ifdef CONFIG_SMP
f1e3a093
KT
4741 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4742 rcu_read_lock();
4743 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 4744 retval = -EBUSY;
f1e3a093 4745 rcu_read_unlock();
16303ab2 4746 goto out_free_new_mask;
332ac17e 4747 }
f1e3a093 4748 rcu_read_unlock();
332ac17e
DF
4749 }
4750#endif
49246274 4751again:
25834c73 4752 retval = __set_cpus_allowed_ptr(p, new_mask, true);
1da177e4 4753
8707d8b8 4754 if (!retval) {
5a16f3d3
RR
4755 cpuset_cpus_allowed(p, cpus_allowed);
4756 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4757 /*
4758 * We must have raced with a concurrent cpuset
4759 * update. Just reset the cpus_allowed to the
4760 * cpuset's cpus_allowed
4761 */
5a16f3d3 4762 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4763 goto again;
4764 }
4765 }
16303ab2 4766out_free_new_mask:
5a16f3d3
RR
4767 free_cpumask_var(new_mask);
4768out_free_cpus_allowed:
4769 free_cpumask_var(cpus_allowed);
4770out_put_task:
1da177e4 4771 put_task_struct(p);
1da177e4
LT
4772 return retval;
4773}
4774
4775static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4776 struct cpumask *new_mask)
1da177e4 4777{
96f874e2
RR
4778 if (len < cpumask_size())
4779 cpumask_clear(new_mask);
4780 else if (len > cpumask_size())
4781 len = cpumask_size();
4782
1da177e4
LT
4783 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4784}
4785
4786/**
4787 * sys_sched_setaffinity - set the cpu affinity of a process
4788 * @pid: pid of the process
4789 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4790 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
4791 *
4792 * Return: 0 on success. An error code otherwise.
1da177e4 4793 */
5add95d4
HC
4794SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4795 unsigned long __user *, user_mask_ptr)
1da177e4 4796{
5a16f3d3 4797 cpumask_var_t new_mask;
1da177e4
LT
4798 int retval;
4799
5a16f3d3
RR
4800 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4801 return -ENOMEM;
1da177e4 4802
5a16f3d3
RR
4803 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4804 if (retval == 0)
4805 retval = sched_setaffinity(pid, new_mask);
4806 free_cpumask_var(new_mask);
4807 return retval;
1da177e4
LT
4808}
4809
96f874e2 4810long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4811{
36c8b586 4812 struct task_struct *p;
31605683 4813 unsigned long flags;
1da177e4 4814 int retval;
1da177e4 4815
23f5d142 4816 rcu_read_lock();
1da177e4
LT
4817
4818 retval = -ESRCH;
4819 p = find_process_by_pid(pid);
4820 if (!p)
4821 goto out_unlock;
4822
e7834f8f
DQ
4823 retval = security_task_getscheduler(p);
4824 if (retval)
4825 goto out_unlock;
4826
013fdb80 4827 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4828 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4829 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4830
4831out_unlock:
23f5d142 4832 rcu_read_unlock();
1da177e4 4833
9531b62f 4834 return retval;
1da177e4
LT
4835}
4836
4837/**
4838 * sys_sched_getaffinity - get the cpu affinity of a process
4839 * @pid: pid of the process
4840 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4841 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186 4842 *
599b4840
ZW
4843 * Return: size of CPU mask copied to user_mask_ptr on success. An
4844 * error code otherwise.
1da177e4 4845 */
5add95d4
HC
4846SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4847 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4848{
4849 int ret;
f17c8607 4850 cpumask_var_t mask;
1da177e4 4851
84fba5ec 4852 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4853 return -EINVAL;
4854 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4855 return -EINVAL;
4856
f17c8607
RR
4857 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4858 return -ENOMEM;
1da177e4 4859
f17c8607
RR
4860 ret = sched_getaffinity(pid, mask);
4861 if (ret == 0) {
8bc037fb 4862 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4863
4864 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4865 ret = -EFAULT;
4866 else
cd3d8031 4867 ret = retlen;
f17c8607
RR
4868 }
4869 free_cpumask_var(mask);
1da177e4 4870
f17c8607 4871 return ret;
1da177e4
LT
4872}
4873
4874/**
4875 * sys_sched_yield - yield the current processor to other threads.
4876 *
dd41f596
IM
4877 * This function yields the current CPU to other tasks. If there are no
4878 * other threads running on this CPU then this function will return.
e69f6186
YB
4879 *
4880 * Return: 0.
1da177e4 4881 */
5add95d4 4882SYSCALL_DEFINE0(sched_yield)
1da177e4 4883{
70b97a7f 4884 struct rq *rq = this_rq_lock();
1da177e4 4885
ae92882e 4886 schedstat_inc(rq->yld_count);
4530d7ab 4887 current->sched_class->yield_task(rq);
1da177e4
LT
4888
4889 /*
4890 * Since we are going to call schedule() anyway, there's
4891 * no need to preempt or enable interrupts:
4892 */
4893 __release(rq->lock);
8a25d5de 4894 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4895 do_raw_spin_unlock(&rq->lock);
ba74c144 4896 sched_preempt_enable_no_resched();
1da177e4
LT
4897
4898 schedule();
4899
4900 return 0;
4901}
4902
35a773a0 4903#ifndef CONFIG_PREEMPT
02b67cc3 4904int __sched _cond_resched(void)
1da177e4 4905{
fe32d3cd 4906 if (should_resched(0)) {
a18b5d01 4907 preempt_schedule_common();
1da177e4
LT
4908 return 1;
4909 }
4910 return 0;
4911}
02b67cc3 4912EXPORT_SYMBOL(_cond_resched);
35a773a0 4913#endif
1da177e4
LT
4914
4915/*
613afbf8 4916 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4917 * call schedule, and on return reacquire the lock.
4918 *
41a2d6cf 4919 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4920 * operations here to prevent schedule() from being called twice (once via
4921 * spin_unlock(), once by hand).
4922 */
613afbf8 4923int __cond_resched_lock(spinlock_t *lock)
1da177e4 4924{
fe32d3cd 4925 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6df3cecb
JK
4926 int ret = 0;
4927
f607c668
PZ
4928 lockdep_assert_held(lock);
4929
4a81e832 4930 if (spin_needbreak(lock) || resched) {
1da177e4 4931 spin_unlock(lock);
d86ee480 4932 if (resched)
a18b5d01 4933 preempt_schedule_common();
95c354fe
NP
4934 else
4935 cpu_relax();
6df3cecb 4936 ret = 1;
1da177e4 4937 spin_lock(lock);
1da177e4 4938 }
6df3cecb 4939 return ret;
1da177e4 4940}
613afbf8 4941EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4942
613afbf8 4943int __sched __cond_resched_softirq(void)
1da177e4
LT
4944{
4945 BUG_ON(!in_softirq());
4946
fe32d3cd 4947 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
98d82567 4948 local_bh_enable();
a18b5d01 4949 preempt_schedule_common();
1da177e4
LT
4950 local_bh_disable();
4951 return 1;
4952 }
4953 return 0;
4954}
613afbf8 4955EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4956
1da177e4
LT
4957/**
4958 * yield - yield the current processor to other threads.
4959 *
8e3fabfd
PZ
4960 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4961 *
4962 * The scheduler is at all times free to pick the calling task as the most
4963 * eligible task to run, if removing the yield() call from your code breaks
4964 * it, its already broken.
4965 *
4966 * Typical broken usage is:
4967 *
4968 * while (!event)
4969 * yield();
4970 *
4971 * where one assumes that yield() will let 'the other' process run that will
4972 * make event true. If the current task is a SCHED_FIFO task that will never
4973 * happen. Never use yield() as a progress guarantee!!
4974 *
4975 * If you want to use yield() to wait for something, use wait_event().
4976 * If you want to use yield() to be 'nice' for others, use cond_resched().
4977 * If you still want to use yield(), do not!
1da177e4
LT
4978 */
4979void __sched yield(void)
4980{
4981 set_current_state(TASK_RUNNING);
4982 sys_sched_yield();
4983}
1da177e4
LT
4984EXPORT_SYMBOL(yield);
4985
d95f4122
MG
4986/**
4987 * yield_to - yield the current processor to another thread in
4988 * your thread group, or accelerate that thread toward the
4989 * processor it's on.
16addf95
RD
4990 * @p: target task
4991 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4992 *
4993 * It's the caller's job to ensure that the target task struct
4994 * can't go away on us before we can do any checks.
4995 *
e69f6186 4996 * Return:
7b270f60
PZ
4997 * true (>0) if we indeed boosted the target task.
4998 * false (0) if we failed to boost the target.
4999 * -ESRCH if there's no task to yield to.
d95f4122 5000 */
fa93384f 5001int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
5002{
5003 struct task_struct *curr = current;
5004 struct rq *rq, *p_rq;
5005 unsigned long flags;
c3c18640 5006 int yielded = 0;
d95f4122
MG
5007
5008 local_irq_save(flags);
5009 rq = this_rq();
5010
5011again:
5012 p_rq = task_rq(p);
7b270f60
PZ
5013 /*
5014 * If we're the only runnable task on the rq and target rq also
5015 * has only one task, there's absolutely no point in yielding.
5016 */
5017 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5018 yielded = -ESRCH;
5019 goto out_irq;
5020 }
5021
d95f4122 5022 double_rq_lock(rq, p_rq);
39e24d8f 5023 if (task_rq(p) != p_rq) {
d95f4122
MG
5024 double_rq_unlock(rq, p_rq);
5025 goto again;
5026 }
5027
5028 if (!curr->sched_class->yield_to_task)
7b270f60 5029 goto out_unlock;
d95f4122
MG
5030
5031 if (curr->sched_class != p->sched_class)
7b270f60 5032 goto out_unlock;
d95f4122
MG
5033
5034 if (task_running(p_rq, p) || p->state)
7b270f60 5035 goto out_unlock;
d95f4122
MG
5036
5037 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 5038 if (yielded) {
ae92882e 5039 schedstat_inc(rq->yld_count);
6d1cafd8
VP
5040 /*
5041 * Make p's CPU reschedule; pick_next_entity takes care of
5042 * fairness.
5043 */
5044 if (preempt && rq != p_rq)
8875125e 5045 resched_curr(p_rq);
6d1cafd8 5046 }
d95f4122 5047
7b270f60 5048out_unlock:
d95f4122 5049 double_rq_unlock(rq, p_rq);
7b270f60 5050out_irq:
d95f4122
MG
5051 local_irq_restore(flags);
5052
7b270f60 5053 if (yielded > 0)
d95f4122
MG
5054 schedule();
5055
5056 return yielded;
5057}
5058EXPORT_SYMBOL_GPL(yield_to);
5059
1da177e4 5060/*
41a2d6cf 5061 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5062 * that process accounting knows that this is a task in IO wait state.
1da177e4 5063 */
1da177e4
LT
5064long __sched io_schedule_timeout(long timeout)
5065{
9cff8ade
N
5066 int old_iowait = current->in_iowait;
5067 struct rq *rq;
1da177e4
LT
5068 long ret;
5069
9cff8ade 5070 current->in_iowait = 1;
10d784ea 5071 blk_schedule_flush_plug(current);
9cff8ade 5072
0ff92245 5073 delayacct_blkio_start();
9cff8ade 5074 rq = raw_rq();
1da177e4
LT
5075 atomic_inc(&rq->nr_iowait);
5076 ret = schedule_timeout(timeout);
9cff8ade 5077 current->in_iowait = old_iowait;
1da177e4 5078 atomic_dec(&rq->nr_iowait);
0ff92245 5079 delayacct_blkio_end();
9cff8ade 5080
1da177e4
LT
5081 return ret;
5082}
9cff8ade 5083EXPORT_SYMBOL(io_schedule_timeout);
1da177e4
LT
5084
5085/**
5086 * sys_sched_get_priority_max - return maximum RT priority.
5087 * @policy: scheduling class.
5088 *
e69f6186
YB
5089 * Return: On success, this syscall returns the maximum
5090 * rt_priority that can be used by a given scheduling class.
5091 * On failure, a negative error code is returned.
1da177e4 5092 */
5add95d4 5093SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5094{
5095 int ret = -EINVAL;
5096
5097 switch (policy) {
5098 case SCHED_FIFO:
5099 case SCHED_RR:
5100 ret = MAX_USER_RT_PRIO-1;
5101 break;
aab03e05 5102 case SCHED_DEADLINE:
1da177e4 5103 case SCHED_NORMAL:
b0a9499c 5104 case SCHED_BATCH:
dd41f596 5105 case SCHED_IDLE:
1da177e4
LT
5106 ret = 0;
5107 break;
5108 }
5109 return ret;
5110}
5111
5112/**
5113 * sys_sched_get_priority_min - return minimum RT priority.
5114 * @policy: scheduling class.
5115 *
e69f6186
YB
5116 * Return: On success, this syscall returns the minimum
5117 * rt_priority that can be used by a given scheduling class.
5118 * On failure, a negative error code is returned.
1da177e4 5119 */
5add95d4 5120SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5121{
5122 int ret = -EINVAL;
5123
5124 switch (policy) {
5125 case SCHED_FIFO:
5126 case SCHED_RR:
5127 ret = 1;
5128 break;
aab03e05 5129 case SCHED_DEADLINE:
1da177e4 5130 case SCHED_NORMAL:
b0a9499c 5131 case SCHED_BATCH:
dd41f596 5132 case SCHED_IDLE:
1da177e4
LT
5133 ret = 0;
5134 }
5135 return ret;
5136}
5137
5138/**
5139 * sys_sched_rr_get_interval - return the default timeslice of a process.
5140 * @pid: pid of the process.
5141 * @interval: userspace pointer to the timeslice value.
5142 *
5143 * this syscall writes the default timeslice value of a given process
5144 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
5145 *
5146 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5147 * an error code.
1da177e4 5148 */
17da2bd9 5149SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5150 struct timespec __user *, interval)
1da177e4 5151{
36c8b586 5152 struct task_struct *p;
a4ec24b4 5153 unsigned int time_slice;
eb580751
PZ
5154 struct rq_flags rf;
5155 struct timespec t;
dba091b9 5156 struct rq *rq;
3a5c359a 5157 int retval;
1da177e4
LT
5158
5159 if (pid < 0)
3a5c359a 5160 return -EINVAL;
1da177e4
LT
5161
5162 retval = -ESRCH;
1a551ae7 5163 rcu_read_lock();
1da177e4
LT
5164 p = find_process_by_pid(pid);
5165 if (!p)
5166 goto out_unlock;
5167
5168 retval = security_task_getscheduler(p);
5169 if (retval)
5170 goto out_unlock;
5171
eb580751 5172 rq = task_rq_lock(p, &rf);
a57beec5
PZ
5173 time_slice = 0;
5174 if (p->sched_class->get_rr_interval)
5175 time_slice = p->sched_class->get_rr_interval(rq, p);
eb580751 5176 task_rq_unlock(rq, p, &rf);
a4ec24b4 5177
1a551ae7 5178 rcu_read_unlock();
a4ec24b4 5179 jiffies_to_timespec(time_slice, &t);
1da177e4 5180 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5181 return retval;
3a5c359a 5182
1da177e4 5183out_unlock:
1a551ae7 5184 rcu_read_unlock();
1da177e4
LT
5185 return retval;
5186}
5187
7c731e0a 5188static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5189
82a1fcb9 5190void sched_show_task(struct task_struct *p)
1da177e4 5191{
1da177e4 5192 unsigned long free = 0;
4e79752c 5193 int ppid;
1f8a7633 5194 unsigned long state = p->state;
1da177e4 5195
38200502
TH
5196 if (!try_get_task_stack(p))
5197 return;
1f8a7633
TH
5198 if (state)
5199 state = __ffs(state) + 1;
28d0686c 5200 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 5201 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
1da177e4 5202 if (state == TASK_RUNNING)
3df0fc5b 5203 printk(KERN_CONT " running task ");
1da177e4 5204#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5205 free = stack_not_used(p);
1da177e4 5206#endif
a90e984c 5207 ppid = 0;
4e79752c 5208 rcu_read_lock();
a90e984c
ON
5209 if (pid_alive(p))
5210 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 5211 rcu_read_unlock();
3df0fc5b 5212 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 5213 task_pid_nr(p), ppid,
aa47b7e0 5214 (unsigned long)task_thread_info(p)->flags);
1da177e4 5215
3d1cb205 5216 print_worker_info(KERN_INFO, p);
5fb5e6de 5217 show_stack(p, NULL);
38200502 5218 put_task_stack(p);
1da177e4
LT
5219}
5220
e59e2ae2 5221void show_state_filter(unsigned long state_filter)
1da177e4 5222{
36c8b586 5223 struct task_struct *g, *p;
1da177e4 5224
4bd77321 5225#if BITS_PER_LONG == 32
3df0fc5b
PZ
5226 printk(KERN_INFO
5227 " task PC stack pid father\n");
1da177e4 5228#else
3df0fc5b
PZ
5229 printk(KERN_INFO
5230 " task PC stack pid father\n");
1da177e4 5231#endif
510f5acc 5232 rcu_read_lock();
5d07f420 5233 for_each_process_thread(g, p) {
1da177e4
LT
5234 /*
5235 * reset the NMI-timeout, listing all files on a slow
25985edc 5236 * console might take a lot of time:
57675cb9
AR
5237 * Also, reset softlockup watchdogs on all CPUs, because
5238 * another CPU might be blocked waiting for us to process
5239 * an IPI.
1da177e4
LT
5240 */
5241 touch_nmi_watchdog();
57675cb9 5242 touch_all_softlockup_watchdogs();
39bc89fd 5243 if (!state_filter || (p->state & state_filter))
82a1fcb9 5244 sched_show_task(p);
5d07f420 5245 }
1da177e4 5246
dd41f596 5247#ifdef CONFIG_SCHED_DEBUG
fb90a6e9
RV
5248 if (!state_filter)
5249 sysrq_sched_debug_show();
dd41f596 5250#endif
510f5acc 5251 rcu_read_unlock();
e59e2ae2
IM
5252 /*
5253 * Only show locks if all tasks are dumped:
5254 */
93335a21 5255 if (!state_filter)
e59e2ae2 5256 debug_show_all_locks();
1da177e4
LT
5257}
5258
0db0628d 5259void init_idle_bootup_task(struct task_struct *idle)
1df21055 5260{
dd41f596 5261 idle->sched_class = &idle_sched_class;
1df21055
IM
5262}
5263
f340c0d1
IM
5264/**
5265 * init_idle - set up an idle thread for a given CPU
5266 * @idle: task in question
5267 * @cpu: cpu the idle task belongs to
5268 *
5269 * NOTE: this function does not set the idle thread's NEED_RESCHED
5270 * flag, to make booting more robust.
5271 */
0db0628d 5272void init_idle(struct task_struct *idle, int cpu)
1da177e4 5273{
70b97a7f 5274 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5275 unsigned long flags;
5276
25834c73
PZ
5277 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5278 raw_spin_lock(&rq->lock);
5cbd54ef 5279
5e1576ed 5280 __sched_fork(0, idle);
06b83b5f 5281 idle->state = TASK_RUNNING;
dd41f596
IM
5282 idle->se.exec_start = sched_clock();
5283
e1b77c92
MR
5284 kasan_unpoison_task_stack(idle);
5285
de9b8f5d
PZ
5286#ifdef CONFIG_SMP
5287 /*
5288 * Its possible that init_idle() gets called multiple times on a task,
5289 * in that case do_set_cpus_allowed() will not do the right thing.
5290 *
5291 * And since this is boot we can forgo the serialization.
5292 */
5293 set_cpus_allowed_common(idle, cpumask_of(cpu));
5294#endif
6506cf6c
PZ
5295 /*
5296 * We're having a chicken and egg problem, even though we are
5297 * holding rq->lock, the cpu isn't yet set to this cpu so the
5298 * lockdep check in task_group() will fail.
5299 *
5300 * Similar case to sched_fork(). / Alternatively we could
5301 * use task_rq_lock() here and obtain the other rq->lock.
5302 *
5303 * Silence PROVE_RCU
5304 */
5305 rcu_read_lock();
dd41f596 5306 __set_task_cpu(idle, cpu);
6506cf6c 5307 rcu_read_unlock();
1da177e4 5308
1da177e4 5309 rq->curr = rq->idle = idle;
da0c1e65 5310 idle->on_rq = TASK_ON_RQ_QUEUED;
de9b8f5d 5311#ifdef CONFIG_SMP
3ca7a440 5312 idle->on_cpu = 1;
4866cde0 5313#endif
25834c73
PZ
5314 raw_spin_unlock(&rq->lock);
5315 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
1da177e4
LT
5316
5317 /* Set the preempt count _outside_ the spinlocks! */
01028747 5318 init_idle_preempt_count(idle, cpu);
55cd5340 5319
dd41f596
IM
5320 /*
5321 * The idle tasks have their own, simple scheduling class:
5322 */
5323 idle->sched_class = &idle_sched_class;
868baf07 5324 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 5325 vtime_init_idle(idle, cpu);
de9b8f5d 5326#ifdef CONFIG_SMP
f1c6f1a7
CE
5327 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5328#endif
19978ca6
IM
5329}
5330
f82f8042
JL
5331int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5332 const struct cpumask *trial)
5333{
5334 int ret = 1, trial_cpus;
5335 struct dl_bw *cur_dl_b;
5336 unsigned long flags;
5337
bb2bc55a
MG
5338 if (!cpumask_weight(cur))
5339 return ret;
5340
75e23e49 5341 rcu_read_lock_sched();
f82f8042
JL
5342 cur_dl_b = dl_bw_of(cpumask_any(cur));
5343 trial_cpus = cpumask_weight(trial);
5344
5345 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5346 if (cur_dl_b->bw != -1 &&
5347 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5348 ret = 0;
5349 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
75e23e49 5350 rcu_read_unlock_sched();
f82f8042
JL
5351
5352 return ret;
5353}
5354
7f51412a
JL
5355int task_can_attach(struct task_struct *p,
5356 const struct cpumask *cs_cpus_allowed)
5357{
5358 int ret = 0;
5359
5360 /*
5361 * Kthreads which disallow setaffinity shouldn't be moved
5362 * to a new cpuset; we don't want to change their cpu
5363 * affinity and isolating such threads by their set of
5364 * allowed nodes is unnecessary. Thus, cpusets are not
5365 * applicable for such threads. This prevents checking for
5366 * success of set_cpus_allowed_ptr() on all attached tasks
5367 * before cpus_allowed may be changed.
5368 */
5369 if (p->flags & PF_NO_SETAFFINITY) {
5370 ret = -EINVAL;
5371 goto out;
5372 }
5373
5374#ifdef CONFIG_SMP
5375 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5376 cs_cpus_allowed)) {
5377 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5378 cs_cpus_allowed);
75e23e49 5379 struct dl_bw *dl_b;
7f51412a
JL
5380 bool overflow;
5381 int cpus;
5382 unsigned long flags;
5383
75e23e49
JL
5384 rcu_read_lock_sched();
5385 dl_b = dl_bw_of(dest_cpu);
7f51412a
JL
5386 raw_spin_lock_irqsave(&dl_b->lock, flags);
5387 cpus = dl_bw_cpus(dest_cpu);
5388 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5389 if (overflow)
5390 ret = -EBUSY;
5391 else {
5392 /*
5393 * We reserve space for this task in the destination
5394 * root_domain, as we can't fail after this point.
5395 * We will free resources in the source root_domain
5396 * later on (see set_cpus_allowed_dl()).
5397 */
5398 __dl_add(dl_b, p->dl.dl_bw);
5399 }
5400 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
75e23e49 5401 rcu_read_unlock_sched();
7f51412a
JL
5402
5403 }
5404#endif
5405out:
5406 return ret;
5407}
5408
1da177e4 5409#ifdef CONFIG_SMP
1da177e4 5410
e26fbffd
TG
5411static bool sched_smp_initialized __read_mostly;
5412
e6628d5b
MG
5413#ifdef CONFIG_NUMA_BALANCING
5414/* Migrate current task p to target_cpu */
5415int migrate_task_to(struct task_struct *p, int target_cpu)
5416{
5417 struct migration_arg arg = { p, target_cpu };
5418 int curr_cpu = task_cpu(p);
5419
5420 if (curr_cpu == target_cpu)
5421 return 0;
5422
5423 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5424 return -EINVAL;
5425
5426 /* TODO: This is not properly updating schedstats */
5427
286549dc 5428 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
5429 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5430}
0ec8aa00
PZ
5431
5432/*
5433 * Requeue a task on a given node and accurately track the number of NUMA
5434 * tasks on the runqueues
5435 */
5436void sched_setnuma(struct task_struct *p, int nid)
5437{
da0c1e65 5438 bool queued, running;
eb580751
PZ
5439 struct rq_flags rf;
5440 struct rq *rq;
0ec8aa00 5441
eb580751 5442 rq = task_rq_lock(p, &rf);
da0c1e65 5443 queued = task_on_rq_queued(p);
0ec8aa00
PZ
5444 running = task_current(rq, p);
5445
da0c1e65 5446 if (queued)
1de64443 5447 dequeue_task(rq, p, DEQUEUE_SAVE);
0ec8aa00 5448 if (running)
f3cd1c4e 5449 put_prev_task(rq, p);
0ec8aa00
PZ
5450
5451 p->numa_preferred_nid = nid;
0ec8aa00 5452
da0c1e65 5453 if (queued)
1de64443 5454 enqueue_task(rq, p, ENQUEUE_RESTORE);
a399d233 5455 if (running)
b2bf6c31 5456 set_curr_task(rq, p);
eb580751 5457 task_rq_unlock(rq, p, &rf);
0ec8aa00 5458}
5cc389bc 5459#endif /* CONFIG_NUMA_BALANCING */
f7b4cddc 5460
1da177e4 5461#ifdef CONFIG_HOTPLUG_CPU
054b9108 5462/*
48c5ccae
PZ
5463 * Ensures that the idle task is using init_mm right before its cpu goes
5464 * offline.
054b9108 5465 */
48c5ccae 5466void idle_task_exit(void)
1da177e4 5467{
48c5ccae 5468 struct mm_struct *mm = current->active_mm;
e76bd8d9 5469
48c5ccae 5470 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 5471
a53efe5f 5472 if (mm != &init_mm) {
f98db601 5473 switch_mm_irqs_off(mm, &init_mm, current);
a53efe5f
MS
5474 finish_arch_post_lock_switch();
5475 }
48c5ccae 5476 mmdrop(mm);
1da177e4
LT
5477}
5478
5479/*
5d180232
PZ
5480 * Since this CPU is going 'away' for a while, fold any nr_active delta
5481 * we might have. Assumes we're called after migrate_tasks() so that the
d60585c5
TG
5482 * nr_active count is stable. We need to take the teardown thread which
5483 * is calling this into account, so we hand in adjust = 1 to the load
5484 * calculation.
5d180232
PZ
5485 *
5486 * Also see the comment "Global load-average calculations".
1da177e4 5487 */
5d180232 5488static void calc_load_migrate(struct rq *rq)
1da177e4 5489{
d60585c5 5490 long delta = calc_load_fold_active(rq, 1);
5d180232
PZ
5491 if (delta)
5492 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
5493}
5494
3f1d2a31
PZ
5495static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5496{
5497}
5498
5499static const struct sched_class fake_sched_class = {
5500 .put_prev_task = put_prev_task_fake,
5501};
5502
5503static struct task_struct fake_task = {
5504 /*
5505 * Avoid pull_{rt,dl}_task()
5506 */
5507 .prio = MAX_PRIO + 1,
5508 .sched_class = &fake_sched_class,
5509};
5510
48f24c4d 5511/*
48c5ccae
PZ
5512 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5513 * try_to_wake_up()->select_task_rq().
5514 *
5515 * Called with rq->lock held even though we'er in stop_machine() and
5516 * there's no concurrency possible, we hold the required locks anyway
5517 * because of lock validation efforts.
1da177e4 5518 */
5e16bbc2 5519static void migrate_tasks(struct rq *dead_rq)
1da177e4 5520{
5e16bbc2 5521 struct rq *rq = dead_rq;
48c5ccae 5522 struct task_struct *next, *stop = rq->stop;
e7904a28 5523 struct pin_cookie cookie;
48c5ccae 5524 int dest_cpu;
1da177e4
LT
5525
5526 /*
48c5ccae
PZ
5527 * Fudge the rq selection such that the below task selection loop
5528 * doesn't get stuck on the currently eligible stop task.
5529 *
5530 * We're currently inside stop_machine() and the rq is either stuck
5531 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5532 * either way we should never end up calling schedule() until we're
5533 * done here.
1da177e4 5534 */
48c5ccae 5535 rq->stop = NULL;
48f24c4d 5536
77bd3970
FW
5537 /*
5538 * put_prev_task() and pick_next_task() sched
5539 * class method both need to have an up-to-date
5540 * value of rq->clock[_task]
5541 */
5542 update_rq_clock(rq);
5543
5e16bbc2 5544 for (;;) {
48c5ccae
PZ
5545 /*
5546 * There's this thread running, bail when that's the only
5547 * remaining thread.
5548 */
5549 if (rq->nr_running == 1)
dd41f596 5550 break;
48c5ccae 5551
cbce1a68 5552 /*
5473e0cc 5553 * pick_next_task assumes pinned rq->lock.
cbce1a68 5554 */
e7904a28
PZ
5555 cookie = lockdep_pin_lock(&rq->lock);
5556 next = pick_next_task(rq, &fake_task, cookie);
48c5ccae 5557 BUG_ON(!next);
79c53799 5558 next->sched_class->put_prev_task(rq, next);
e692ab53 5559
5473e0cc
WL
5560 /*
5561 * Rules for changing task_struct::cpus_allowed are holding
5562 * both pi_lock and rq->lock, such that holding either
5563 * stabilizes the mask.
5564 *
5565 * Drop rq->lock is not quite as disastrous as it usually is
5566 * because !cpu_active at this point, which means load-balance
5567 * will not interfere. Also, stop-machine.
5568 */
e7904a28 5569 lockdep_unpin_lock(&rq->lock, cookie);
5473e0cc
WL
5570 raw_spin_unlock(&rq->lock);
5571 raw_spin_lock(&next->pi_lock);
5572 raw_spin_lock(&rq->lock);
5573
5574 /*
5575 * Since we're inside stop-machine, _nothing_ should have
5576 * changed the task, WARN if weird stuff happened, because in
5577 * that case the above rq->lock drop is a fail too.
5578 */
5579 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5580 raw_spin_unlock(&next->pi_lock);
5581 continue;
5582 }
5583
48c5ccae 5584 /* Find suitable destination for @next, with force if needed. */
5e16bbc2 5585 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
48c5ccae 5586
5e16bbc2
PZ
5587 rq = __migrate_task(rq, next, dest_cpu);
5588 if (rq != dead_rq) {
5589 raw_spin_unlock(&rq->lock);
5590 rq = dead_rq;
5591 raw_spin_lock(&rq->lock);
5592 }
5473e0cc 5593 raw_spin_unlock(&next->pi_lock);
1da177e4 5594 }
dce48a84 5595
48c5ccae 5596 rq->stop = stop;
dce48a84 5597}
1da177e4
LT
5598#endif /* CONFIG_HOTPLUG_CPU */
5599
1f11eb6a
GH
5600static void set_rq_online(struct rq *rq)
5601{
5602 if (!rq->online) {
5603 const struct sched_class *class;
5604
c6c4927b 5605 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5606 rq->online = 1;
5607
5608 for_each_class(class) {
5609 if (class->rq_online)
5610 class->rq_online(rq);
5611 }
5612 }
5613}
5614
5615static void set_rq_offline(struct rq *rq)
5616{
5617 if (rq->online) {
5618 const struct sched_class *class;
5619
5620 for_each_class(class) {
5621 if (class->rq_offline)
5622 class->rq_offline(rq);
5623 }
5624
c6c4927b 5625 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5626 rq->online = 0;
5627 }
5628}
5629
9cf7243d 5630static void set_cpu_rq_start_time(unsigned int cpu)
1da177e4 5631{
969c7921 5632 struct rq *rq = cpu_rq(cpu);
1da177e4 5633
a803f026
CM
5634 rq->age_stamp = sched_clock_cpu(cpu);
5635}
5636
4cb98839
PZ
5637static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5638
3e9830dc 5639#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5640
d039ac60 5641static __read_mostly int sched_debug_enabled;
f6630114 5642
d039ac60 5643static int __init sched_debug_setup(char *str)
f6630114 5644{
d039ac60 5645 sched_debug_enabled = 1;
f6630114
MT
5646
5647 return 0;
5648}
d039ac60
PZ
5649early_param("sched_debug", sched_debug_setup);
5650
5651static inline bool sched_debug(void)
5652{
5653 return sched_debug_enabled;
5654}
f6630114 5655
7c16ec58 5656static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5657 struct cpumask *groupmask)
1da177e4 5658{
4dcf6aff 5659 struct sched_group *group = sd->groups;
1da177e4 5660
96f874e2 5661 cpumask_clear(groupmask);
4dcf6aff
IM
5662
5663 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5664
5665 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5666 printk("does not load-balance\n");
4dcf6aff 5667 if (sd->parent)
3df0fc5b
PZ
5668 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5669 " has parent");
4dcf6aff 5670 return -1;
41c7ce9a
NP
5671 }
5672
333470ee
TH
5673 printk(KERN_CONT "span %*pbl level %s\n",
5674 cpumask_pr_args(sched_domain_span(sd)), sd->name);
4dcf6aff 5675
758b2cdc 5676 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5677 printk(KERN_ERR "ERROR: domain->span does not contain "
5678 "CPU%d\n", cpu);
4dcf6aff 5679 }
758b2cdc 5680 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5681 printk(KERN_ERR "ERROR: domain->groups does not contain"
5682 " CPU%d\n", cpu);
4dcf6aff 5683 }
1da177e4 5684
4dcf6aff 5685 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5686 do {
4dcf6aff 5687 if (!group) {
3df0fc5b
PZ
5688 printk("\n");
5689 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5690 break;
5691 }
5692
758b2cdc 5693 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5694 printk(KERN_CONT "\n");
5695 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5696 break;
5697 }
1da177e4 5698
cb83b629
PZ
5699 if (!(sd->flags & SD_OVERLAP) &&
5700 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5701 printk(KERN_CONT "\n");
5702 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5703 break;
5704 }
1da177e4 5705
758b2cdc 5706 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5707
333470ee
TH
5708 printk(KERN_CONT " %*pbl",
5709 cpumask_pr_args(sched_group_cpus(group)));
ca8ce3d0 5710 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
bf475ce0 5711 printk(KERN_CONT " (cpu_capacity = %lu)",
63b2ca30 5712 group->sgc->capacity);
381512cf 5713 }
1da177e4 5714
4dcf6aff
IM
5715 group = group->next;
5716 } while (group != sd->groups);
3df0fc5b 5717 printk(KERN_CONT "\n");
1da177e4 5718
758b2cdc 5719 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5720 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5721
758b2cdc
RR
5722 if (sd->parent &&
5723 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5724 printk(KERN_ERR "ERROR: parent span is not a superset "
5725 "of domain->span\n");
4dcf6aff
IM
5726 return 0;
5727}
1da177e4 5728
4dcf6aff
IM
5729static void sched_domain_debug(struct sched_domain *sd, int cpu)
5730{
5731 int level = 0;
1da177e4 5732
d039ac60 5733 if (!sched_debug_enabled)
f6630114
MT
5734 return;
5735
4dcf6aff
IM
5736 if (!sd) {
5737 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5738 return;
5739 }
1da177e4 5740
4dcf6aff
IM
5741 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5742
5743 for (;;) {
4cb98839 5744 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5745 break;
1da177e4
LT
5746 level++;
5747 sd = sd->parent;
33859f7f 5748 if (!sd)
4dcf6aff
IM
5749 break;
5750 }
1da177e4 5751}
6d6bc0ad 5752#else /* !CONFIG_SCHED_DEBUG */
a18a579e
PZ
5753
5754# define sched_debug_enabled 0
48f24c4d 5755# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5756static inline bool sched_debug(void)
5757{
5758 return false;
5759}
6d6bc0ad 5760#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5761
1a20ff27 5762static int sd_degenerate(struct sched_domain *sd)
245af2c7 5763{
758b2cdc 5764 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5765 return 1;
5766
5767 /* Following flags need at least 2 groups */
5768 if (sd->flags & (SD_LOAD_BALANCE |
5769 SD_BALANCE_NEWIDLE |
5770 SD_BALANCE_FORK |
89c4710e 5771 SD_BALANCE_EXEC |
5d4dfddd 5772 SD_SHARE_CPUCAPACITY |
1f6e6c7c 5773 SD_ASYM_CPUCAPACITY |
d77b3ed5
VG
5774 SD_SHARE_PKG_RESOURCES |
5775 SD_SHARE_POWERDOMAIN)) {
245af2c7
SS
5776 if (sd->groups != sd->groups->next)
5777 return 0;
5778 }
5779
5780 /* Following flags don't use groups */
c88d5910 5781 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5782 return 0;
5783
5784 return 1;
5785}
5786
48f24c4d
IM
5787static int
5788sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5789{
5790 unsigned long cflags = sd->flags, pflags = parent->flags;
5791
5792 if (sd_degenerate(parent))
5793 return 1;
5794
758b2cdc 5795 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5796 return 0;
5797
245af2c7
SS
5798 /* Flags needing groups don't count if only 1 group in parent */
5799 if (parent->groups == parent->groups->next) {
5800 pflags &= ~(SD_LOAD_BALANCE |
5801 SD_BALANCE_NEWIDLE |
5802 SD_BALANCE_FORK |
89c4710e 5803 SD_BALANCE_EXEC |
1f6e6c7c 5804 SD_ASYM_CPUCAPACITY |
5d4dfddd 5805 SD_SHARE_CPUCAPACITY |
10866e62 5806 SD_SHARE_PKG_RESOURCES |
d77b3ed5
VG
5807 SD_PREFER_SIBLING |
5808 SD_SHARE_POWERDOMAIN);
5436499e
KC
5809 if (nr_node_ids == 1)
5810 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5811 }
5812 if (~cflags & pflags)
5813 return 0;
5814
5815 return 1;
5816}
5817
dce840a0 5818static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5819{
dce840a0 5820 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5821
68e74568 5822 cpupri_cleanup(&rd->cpupri);
6bfd6d72 5823 cpudl_cleanup(&rd->cpudl);
1baca4ce 5824 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5825 free_cpumask_var(rd->rto_mask);
5826 free_cpumask_var(rd->online);
5827 free_cpumask_var(rd->span);
5828 kfree(rd);
5829}
5830
57d885fe
GH
5831static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5832{
a0490fa3 5833 struct root_domain *old_rd = NULL;
57d885fe 5834 unsigned long flags;
57d885fe 5835
05fa785c 5836 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5837
5838 if (rq->rd) {
a0490fa3 5839 old_rd = rq->rd;
57d885fe 5840
c6c4927b 5841 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5842 set_rq_offline(rq);
57d885fe 5843
c6c4927b 5844 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5845
a0490fa3 5846 /*
0515973f 5847 * If we dont want to free the old_rd yet then
a0490fa3
IM
5848 * set old_rd to NULL to skip the freeing later
5849 * in this function:
5850 */
5851 if (!atomic_dec_and_test(&old_rd->refcount))
5852 old_rd = NULL;
57d885fe
GH
5853 }
5854
5855 atomic_inc(&rd->refcount);
5856 rq->rd = rd;
5857
c6c4927b 5858 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5859 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5860 set_rq_online(rq);
57d885fe 5861
05fa785c 5862 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5863
5864 if (old_rd)
dce840a0 5865 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5866}
5867
68c38fc3 5868static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5869{
5870 memset(rd, 0, sizeof(*rd));
5871
8295c699 5872 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5873 goto out;
8295c699 5874 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5875 goto free_span;
8295c699 5876 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
c6c4927b 5877 goto free_online;
8295c699 5878 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
1baca4ce 5879 goto free_dlo_mask;
6e0534f2 5880
332ac17e 5881 init_dl_bw(&rd->dl_bw);
6bfd6d72
JL
5882 if (cpudl_init(&rd->cpudl) != 0)
5883 goto free_dlo_mask;
332ac17e 5884
68c38fc3 5885 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5886 goto free_rto_mask;
c6c4927b 5887 return 0;
6e0534f2 5888
68e74568
RR
5889free_rto_mask:
5890 free_cpumask_var(rd->rto_mask);
1baca4ce
JL
5891free_dlo_mask:
5892 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5893free_online:
5894 free_cpumask_var(rd->online);
5895free_span:
5896 free_cpumask_var(rd->span);
0c910d28 5897out:
c6c4927b 5898 return -ENOMEM;
57d885fe
GH
5899}
5900
029632fb
PZ
5901/*
5902 * By default the system creates a single root-domain with all cpus as
5903 * members (mimicking the global state we have today).
5904 */
5905struct root_domain def_root_domain;
5906
57d885fe
GH
5907static void init_defrootdomain(void)
5908{
68c38fc3 5909 init_rootdomain(&def_root_domain);
c6c4927b 5910
57d885fe
GH
5911 atomic_set(&def_root_domain.refcount, 1);
5912}
5913
dc938520 5914static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5915{
5916 struct root_domain *rd;
5917
5918 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5919 if (!rd)
5920 return NULL;
5921
68c38fc3 5922 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5923 kfree(rd);
5924 return NULL;
5925 }
57d885fe
GH
5926
5927 return rd;
5928}
5929
63b2ca30 5930static void free_sched_groups(struct sched_group *sg, int free_sgc)
e3589f6c
PZ
5931{
5932 struct sched_group *tmp, *first;
5933
5934 if (!sg)
5935 return;
5936
5937 first = sg;
5938 do {
5939 tmp = sg->next;
5940
63b2ca30
NP
5941 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5942 kfree(sg->sgc);
e3589f6c
PZ
5943
5944 kfree(sg);
5945 sg = tmp;
5946 } while (sg != first);
5947}
5948
16f3ef46 5949static void destroy_sched_domain(struct sched_domain *sd)
dce840a0 5950{
e3589f6c
PZ
5951 /*
5952 * If its an overlapping domain it has private groups, iterate and
5953 * nuke them all.
5954 */
5955 if (sd->flags & SD_OVERLAP) {
5956 free_sched_groups(sd->groups, 1);
5957 } else if (atomic_dec_and_test(&sd->groups->ref)) {
63b2ca30 5958 kfree(sd->groups->sgc);
dce840a0 5959 kfree(sd->groups);
9c3f75cb 5960 }
24fc7edb
PZ
5961 if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
5962 kfree(sd->shared);
dce840a0
PZ
5963 kfree(sd);
5964}
5965
16f3ef46 5966static void destroy_sched_domains_rcu(struct rcu_head *rcu)
dce840a0 5967{
16f3ef46
PZ
5968 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5969
5970 while (sd) {
5971 struct sched_domain *parent = sd->parent;
5972 destroy_sched_domain(sd);
5973 sd = parent;
5974 }
dce840a0
PZ
5975}
5976
f39180ef 5977static void destroy_sched_domains(struct sched_domain *sd)
dce840a0 5978{
16f3ef46
PZ
5979 if (sd)
5980 call_rcu(&sd->rcu, destroy_sched_domains_rcu);
dce840a0
PZ
5981}
5982
518cd623
PZ
5983/*
5984 * Keep a special pointer to the highest sched_domain that has
5985 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5986 * allows us to avoid some pointer chasing select_idle_sibling().
5987 *
5988 * Also keep a unique ID per domain (we use the first cpu number in
5989 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5990 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5991 */
5992DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5993DEFINE_PER_CPU(int, sd_llc_size);
518cd623 5994DEFINE_PER_CPU(int, sd_llc_id);
0e369d75 5995DEFINE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
fb13c7ee 5996DEFINE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50 5997DEFINE_PER_CPU(struct sched_domain *, sd_asym);
518cd623
PZ
5998
5999static void update_top_cache_domain(int cpu)
6000{
0e369d75 6001 struct sched_domain_shared *sds = NULL;
518cd623
PZ
6002 struct sched_domain *sd;
6003 int id = cpu;
7d9ffa89 6004 int size = 1;
518cd623
PZ
6005
6006 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 6007 if (sd) {
518cd623 6008 id = cpumask_first(sched_domain_span(sd));
7d9ffa89 6009 size = cpumask_weight(sched_domain_span(sd));
0e369d75 6010 sds = sd->shared;
7d9ffa89 6011 }
518cd623
PZ
6012
6013 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 6014 per_cpu(sd_llc_size, cpu) = size;
518cd623 6015 per_cpu(sd_llc_id, cpu) = id;
0e369d75 6016 rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
fb13c7ee
MG
6017
6018 sd = lowest_flag_domain(cpu, SD_NUMA);
6019 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
37dc6b50
PM
6020
6021 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
6022 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
518cd623
PZ
6023}
6024
1da177e4 6025/*
0eab9146 6026 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6027 * hold the hotplug lock.
6028 */
0eab9146
IM
6029static void
6030cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6031{
70b97a7f 6032 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6033 struct sched_domain *tmp;
6034
6035 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6036 for (tmp = sd; tmp; ) {
245af2c7
SS
6037 struct sched_domain *parent = tmp->parent;
6038 if (!parent)
6039 break;
f29c9b1c 6040
1a848870 6041 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6042 tmp->parent = parent->parent;
1a848870
SS
6043 if (parent->parent)
6044 parent->parent->child = tmp;
10866e62
PZ
6045 /*
6046 * Transfer SD_PREFER_SIBLING down in case of a
6047 * degenerate parent; the spans match for this
6048 * so the property transfers.
6049 */
6050 if (parent->flags & SD_PREFER_SIBLING)
6051 tmp->flags |= SD_PREFER_SIBLING;
f39180ef 6052 destroy_sched_domain(parent);
f29c9b1c
LZ
6053 } else
6054 tmp = tmp->parent;
245af2c7
SS
6055 }
6056
1a848870 6057 if (sd && sd_degenerate(sd)) {
dce840a0 6058 tmp = sd;
245af2c7 6059 sd = sd->parent;
f39180ef 6060 destroy_sched_domain(tmp);
1a848870
SS
6061 if (sd)
6062 sd->child = NULL;
6063 }
1da177e4 6064
4cb98839 6065 sched_domain_debug(sd, cpu);
1da177e4 6066
57d885fe 6067 rq_attach_root(rq, rd);
dce840a0 6068 tmp = rq->sd;
674311d5 6069 rcu_assign_pointer(rq->sd, sd);
f39180ef 6070 destroy_sched_domains(tmp);
518cd623
PZ
6071
6072 update_top_cache_domain(cpu);
1da177e4
LT
6073}
6074
1da177e4
LT
6075/* Setup the mask of cpus configured for isolated domains */
6076static int __init isolated_cpu_setup(char *str)
6077{
a6e4491c
PB
6078 int ret;
6079
bdddd296 6080 alloc_bootmem_cpumask_var(&cpu_isolated_map);
a6e4491c
PB
6081 ret = cpulist_parse(str, cpu_isolated_map);
6082 if (ret) {
6083 pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
6084 return 0;
6085 }
1da177e4
LT
6086 return 1;
6087}
8927f494 6088__setup("isolcpus=", isolated_cpu_setup);
1da177e4 6089
49a02c51 6090struct s_data {
21d42ccf 6091 struct sched_domain ** __percpu sd;
49a02c51
AH
6092 struct root_domain *rd;
6093};
6094
2109b99e 6095enum s_alloc {
2109b99e 6096 sa_rootdomain,
21d42ccf 6097 sa_sd,
dce840a0 6098 sa_sd_storage,
2109b99e
AH
6099 sa_none,
6100};
6101
c1174876
PZ
6102/*
6103 * Build an iteration mask that can exclude certain CPUs from the upwards
6104 * domain traversal.
6105 *
6106 * Asymmetric node setups can result in situations where the domain tree is of
6107 * unequal depth, make sure to skip domains that already cover the entire
6108 * range.
6109 *
6110 * In that case build_sched_domains() will have terminated the iteration early
6111 * and our sibling sd spans will be empty. Domains should always include the
6112 * cpu they're built on, so check that.
6113 *
6114 */
6115static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6116{
6117 const struct cpumask *span = sched_domain_span(sd);
6118 struct sd_data *sdd = sd->private;
6119 struct sched_domain *sibling;
6120 int i;
6121
6122 for_each_cpu(i, span) {
6123 sibling = *per_cpu_ptr(sdd->sd, i);
6124 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6125 continue;
6126
6127 cpumask_set_cpu(i, sched_group_mask(sg));
6128 }
6129}
6130
6131/*
6132 * Return the canonical balance cpu for this group, this is the first cpu
6133 * of this group that's also in the iteration mask.
6134 */
6135int group_balance_cpu(struct sched_group *sg)
6136{
6137 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6138}
6139
e3589f6c
PZ
6140static int
6141build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6142{
6143 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6144 const struct cpumask *span = sched_domain_span(sd);
6145 struct cpumask *covered = sched_domains_tmpmask;
6146 struct sd_data *sdd = sd->private;
aaecac4a 6147 struct sched_domain *sibling;
e3589f6c
PZ
6148 int i;
6149
6150 cpumask_clear(covered);
6151
6152 for_each_cpu(i, span) {
6153 struct cpumask *sg_span;
6154
6155 if (cpumask_test_cpu(i, covered))
6156 continue;
6157
aaecac4a 6158 sibling = *per_cpu_ptr(sdd->sd, i);
c1174876
PZ
6159
6160 /* See the comment near build_group_mask(). */
aaecac4a 6161 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
c1174876
PZ
6162 continue;
6163
e3589f6c 6164 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 6165 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
6166
6167 if (!sg)
6168 goto fail;
6169
6170 sg_span = sched_group_cpus(sg);
aaecac4a
ZZ
6171 if (sibling->child)
6172 cpumask_copy(sg_span, sched_domain_span(sibling->child));
6173 else
e3589f6c
PZ
6174 cpumask_set_cpu(i, sg_span);
6175
6176 cpumask_or(covered, covered, sg_span);
6177
63b2ca30
NP
6178 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6179 if (atomic_inc_return(&sg->sgc->ref) == 1)
c1174876
PZ
6180 build_group_mask(sd, sg);
6181
c3decf0d 6182 /*
63b2ca30 6183 * Initialize sgc->capacity such that even if we mess up the
c3decf0d
PZ
6184 * domains and no possible iteration will get us here, we won't
6185 * die on a /0 trap.
6186 */
ca8ce3d0 6187 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
bf475ce0 6188 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
e3589f6c 6189
c1174876
PZ
6190 /*
6191 * Make sure the first group of this domain contains the
6192 * canonical balance cpu. Otherwise the sched_domain iteration
6193 * breaks. See update_sg_lb_stats().
6194 */
74a5ce20 6195 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 6196 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
6197 groups = sg;
6198
6199 if (!first)
6200 first = sg;
6201 if (last)
6202 last->next = sg;
6203 last = sg;
6204 last->next = first;
6205 }
6206 sd->groups = groups;
6207
6208 return 0;
6209
6210fail:
6211 free_sched_groups(first, 0);
6212
6213 return -ENOMEM;
6214}
6215
dce840a0 6216static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 6217{
dce840a0
PZ
6218 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6219 struct sched_domain *child = sd->child;
1da177e4 6220
dce840a0
PZ
6221 if (child)
6222 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 6223
9c3f75cb 6224 if (sg) {
dce840a0 6225 *sg = *per_cpu_ptr(sdd->sg, cpu);
63b2ca30
NP
6226 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6227 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
9c3f75cb 6228 }
dce840a0
PZ
6229
6230 return cpu;
1e9f28fa 6231}
1e9f28fa 6232
01a08546 6233/*
dce840a0
PZ
6234 * build_sched_groups will build a circular linked list of the groups
6235 * covered by the given span, and will set each group's ->cpumask correctly,
ced549fa 6236 * and ->cpu_capacity to 0.
e3589f6c
PZ
6237 *
6238 * Assumes the sched_domain tree is fully constructed
01a08546 6239 */
e3589f6c
PZ
6240static int
6241build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 6242{
dce840a0
PZ
6243 struct sched_group *first = NULL, *last = NULL;
6244 struct sd_data *sdd = sd->private;
6245 const struct cpumask *span = sched_domain_span(sd);
f96225fd 6246 struct cpumask *covered;
dce840a0 6247 int i;
9c1cfda2 6248
e3589f6c
PZ
6249 get_group(cpu, sdd, &sd->groups);
6250 atomic_inc(&sd->groups->ref);
6251
0936629f 6252 if (cpu != cpumask_first(span))
e3589f6c
PZ
6253 return 0;
6254
f96225fd
PZ
6255 lockdep_assert_held(&sched_domains_mutex);
6256 covered = sched_domains_tmpmask;
6257
dce840a0 6258 cpumask_clear(covered);
6711cab4 6259
dce840a0
PZ
6260 for_each_cpu(i, span) {
6261 struct sched_group *sg;
cd08e923 6262 int group, j;
6711cab4 6263
dce840a0
PZ
6264 if (cpumask_test_cpu(i, covered))
6265 continue;
6711cab4 6266
cd08e923 6267 group = get_group(i, sdd, &sg);
c1174876 6268 cpumask_setall(sched_group_mask(sg));
0601a88d 6269
dce840a0
PZ
6270 for_each_cpu(j, span) {
6271 if (get_group(j, sdd, NULL) != group)
6272 continue;
0601a88d 6273
dce840a0
PZ
6274 cpumask_set_cpu(j, covered);
6275 cpumask_set_cpu(j, sched_group_cpus(sg));
6276 }
0601a88d 6277
dce840a0
PZ
6278 if (!first)
6279 first = sg;
6280 if (last)
6281 last->next = sg;
6282 last = sg;
6283 }
6284 last->next = first;
e3589f6c
PZ
6285
6286 return 0;
0601a88d 6287}
51888ca2 6288
89c4710e 6289/*
63b2ca30 6290 * Initialize sched groups cpu_capacity.
89c4710e 6291 *
63b2ca30 6292 * cpu_capacity indicates the capacity of sched group, which is used while
89c4710e 6293 * distributing the load between different sched groups in a sched domain.
63b2ca30
NP
6294 * Typically cpu_capacity for all the groups in a sched domain will be same
6295 * unless there are asymmetries in the topology. If there are asymmetries,
6296 * group having more cpu_capacity will pickup more load compared to the
6297 * group having less cpu_capacity.
89c4710e 6298 */
63b2ca30 6299static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
89c4710e 6300{
e3589f6c 6301 struct sched_group *sg = sd->groups;
89c4710e 6302
94c95ba6 6303 WARN_ON(!sg);
e3589f6c
PZ
6304
6305 do {
6306 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6307 sg = sg->next;
6308 } while (sg != sd->groups);
89c4710e 6309
c1174876 6310 if (cpu != group_balance_cpu(sg))
e3589f6c 6311 return;
aae6d3dd 6312
63b2ca30 6313 update_group_capacity(sd, cpu);
89c4710e
SS
6314}
6315
7c16ec58
MT
6316/*
6317 * Initializers for schedule domains
6318 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6319 */
6320
1d3504fc 6321static int default_relax_domain_level = -1;
60495e77 6322int sched_domain_level_max;
1d3504fc
HS
6323
6324static int __init setup_relax_domain_level(char *str)
6325{
a841f8ce
DS
6326 if (kstrtoint(str, 0, &default_relax_domain_level))
6327 pr_warn("Unable to set relax_domain_level\n");
30e0e178 6328
1d3504fc
HS
6329 return 1;
6330}
6331__setup("relax_domain_level=", setup_relax_domain_level);
6332
6333static void set_domain_attribute(struct sched_domain *sd,
6334 struct sched_domain_attr *attr)
6335{
6336 int request;
6337
6338 if (!attr || attr->relax_domain_level < 0) {
6339 if (default_relax_domain_level < 0)
6340 return;
6341 else
6342 request = default_relax_domain_level;
6343 } else
6344 request = attr->relax_domain_level;
6345 if (request < sd->level) {
6346 /* turn off idle balance on this domain */
c88d5910 6347 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6348 } else {
6349 /* turn on idle balance on this domain */
c88d5910 6350 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6351 }
6352}
6353
54ab4ff4
PZ
6354static void __sdt_free(const struct cpumask *cpu_map);
6355static int __sdt_alloc(const struct cpumask *cpu_map);
6356
2109b99e
AH
6357static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6358 const struct cpumask *cpu_map)
6359{
6360 switch (what) {
2109b99e 6361 case sa_rootdomain:
822ff793
PZ
6362 if (!atomic_read(&d->rd->refcount))
6363 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
6364 case sa_sd:
6365 free_percpu(d->sd); /* fall through */
dce840a0 6366 case sa_sd_storage:
54ab4ff4 6367 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
6368 case sa_none:
6369 break;
6370 }
6371}
3404c8d9 6372
2109b99e
AH
6373static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6374 const struct cpumask *cpu_map)
6375{
dce840a0
PZ
6376 memset(d, 0, sizeof(*d));
6377
54ab4ff4
PZ
6378 if (__sdt_alloc(cpu_map))
6379 return sa_sd_storage;
dce840a0
PZ
6380 d->sd = alloc_percpu(struct sched_domain *);
6381 if (!d->sd)
6382 return sa_sd_storage;
2109b99e 6383 d->rd = alloc_rootdomain();
dce840a0 6384 if (!d->rd)
21d42ccf 6385 return sa_sd;
2109b99e
AH
6386 return sa_rootdomain;
6387}
57d885fe 6388
dce840a0
PZ
6389/*
6390 * NULL the sd_data elements we've used to build the sched_domain and
6391 * sched_group structure so that the subsequent __free_domain_allocs()
6392 * will not free the data we're using.
6393 */
6394static void claim_allocations(int cpu, struct sched_domain *sd)
6395{
6396 struct sd_data *sdd = sd->private;
dce840a0
PZ
6397
6398 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6399 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6400
24fc7edb
PZ
6401 if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
6402 *per_cpu_ptr(sdd->sds, cpu) = NULL;
6403
e3589f6c 6404 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 6405 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c 6406
63b2ca30
NP
6407 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6408 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
dce840a0
PZ
6409}
6410
cb83b629 6411#ifdef CONFIG_NUMA
cb83b629 6412static int sched_domains_numa_levels;
e3fe70b1 6413enum numa_topology_type sched_numa_topology_type;
cb83b629 6414static int *sched_domains_numa_distance;
9942f79b 6415int sched_max_numa_distance;
cb83b629
PZ
6416static struct cpumask ***sched_domains_numa_masks;
6417static int sched_domains_curr_level;
143e1e28 6418#endif
cb83b629 6419
143e1e28
VG
6420/*
6421 * SD_flags allowed in topology descriptions.
6422 *
94f438c8
PZ
6423 * These flags are purely descriptive of the topology and do not prescribe
6424 * behaviour. Behaviour is artificial and mapped in the below sd_init()
6425 * function:
143e1e28 6426 *
94f438c8
PZ
6427 * SD_SHARE_CPUCAPACITY - describes SMT topologies
6428 * SD_SHARE_PKG_RESOURCES - describes shared caches
6429 * SD_NUMA - describes NUMA topologies
6430 * SD_SHARE_POWERDOMAIN - describes shared power domain
1f6e6c7c 6431 * SD_ASYM_CPUCAPACITY - describes mixed capacity topologies
94f438c8
PZ
6432 *
6433 * Odd one out, which beside describing the topology has a quirk also
6434 * prescribes the desired behaviour that goes along with it:
143e1e28 6435 *
94f438c8 6436 * SD_ASYM_PACKING - describes SMT quirks
143e1e28
VG
6437 */
6438#define TOPOLOGY_SD_FLAGS \
5d4dfddd 6439 (SD_SHARE_CPUCAPACITY | \
143e1e28
VG
6440 SD_SHARE_PKG_RESOURCES | \
6441 SD_NUMA | \
d77b3ed5 6442 SD_ASYM_PACKING | \
1f6e6c7c 6443 SD_ASYM_CPUCAPACITY | \
d77b3ed5 6444 SD_SHARE_POWERDOMAIN)
cb83b629
PZ
6445
6446static struct sched_domain *
3676b13e 6447sd_init(struct sched_domain_topology_level *tl,
24fc7edb 6448 const struct cpumask *cpu_map,
3676b13e 6449 struct sched_domain *child, int cpu)
cb83b629 6450{
24fc7edb
PZ
6451 struct sd_data *sdd = &tl->data;
6452 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6453 int sd_id, sd_weight, sd_flags = 0;
143e1e28
VG
6454
6455#ifdef CONFIG_NUMA
6456 /*
6457 * Ugly hack to pass state to sd_numa_mask()...
6458 */
6459 sched_domains_curr_level = tl->numa_level;
6460#endif
6461
6462 sd_weight = cpumask_weight(tl->mask(cpu));
6463
6464 if (tl->sd_flags)
6465 sd_flags = (*tl->sd_flags)();
6466 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6467 "wrong sd_flags in topology description\n"))
6468 sd_flags &= ~TOPOLOGY_SD_FLAGS;
cb83b629
PZ
6469
6470 *sd = (struct sched_domain){
6471 .min_interval = sd_weight,
6472 .max_interval = 2*sd_weight,
6473 .busy_factor = 32,
870a0bb5 6474 .imbalance_pct = 125,
143e1e28
VG
6475
6476 .cache_nice_tries = 0,
6477 .busy_idx = 0,
6478 .idle_idx = 0,
cb83b629
PZ
6479 .newidle_idx = 0,
6480 .wake_idx = 0,
6481 .forkexec_idx = 0,
6482
6483 .flags = 1*SD_LOAD_BALANCE
6484 | 1*SD_BALANCE_NEWIDLE
143e1e28
VG
6485 | 1*SD_BALANCE_EXEC
6486 | 1*SD_BALANCE_FORK
cb83b629 6487 | 0*SD_BALANCE_WAKE
143e1e28 6488 | 1*SD_WAKE_AFFINE
5d4dfddd 6489 | 0*SD_SHARE_CPUCAPACITY
cb83b629 6490 | 0*SD_SHARE_PKG_RESOURCES
143e1e28 6491 | 0*SD_SERIALIZE
cb83b629 6492 | 0*SD_PREFER_SIBLING
143e1e28
VG
6493 | 0*SD_NUMA
6494 | sd_flags
cb83b629 6495 ,
143e1e28 6496
cb83b629
PZ
6497 .last_balance = jiffies,
6498 .balance_interval = sd_weight,
143e1e28 6499 .smt_gain = 0,
2b4cfe64
JL
6500 .max_newidle_lb_cost = 0,
6501 .next_decay_max_lb_cost = jiffies,
3676b13e 6502 .child = child,
143e1e28
VG
6503#ifdef CONFIG_SCHED_DEBUG
6504 .name = tl->name,
6505#endif
cb83b629 6506 };
cb83b629 6507
24fc7edb
PZ
6508 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6509 sd_id = cpumask_first(sched_domain_span(sd));
6510
cb83b629 6511 /*
143e1e28 6512 * Convert topological properties into behaviour.
cb83b629 6513 */
143e1e28 6514
9ee1cda5
MR
6515 if (sd->flags & SD_ASYM_CPUCAPACITY) {
6516 struct sched_domain *t = sd;
6517
6518 for_each_lower_domain(t)
6519 t->flags |= SD_BALANCE_WAKE;
6520 }
6521
5d4dfddd 6522 if (sd->flags & SD_SHARE_CPUCAPACITY) {
caff37ef 6523 sd->flags |= SD_PREFER_SIBLING;
143e1e28
VG
6524 sd->imbalance_pct = 110;
6525 sd->smt_gain = 1178; /* ~15% */
143e1e28
VG
6526
6527 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6528 sd->imbalance_pct = 117;
6529 sd->cache_nice_tries = 1;
6530 sd->busy_idx = 2;
6531
6532#ifdef CONFIG_NUMA
6533 } else if (sd->flags & SD_NUMA) {
6534 sd->cache_nice_tries = 2;
6535 sd->busy_idx = 3;
6536 sd->idle_idx = 2;
6537
6538 sd->flags |= SD_SERIALIZE;
6539 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6540 sd->flags &= ~(SD_BALANCE_EXEC |
6541 SD_BALANCE_FORK |
6542 SD_WAKE_AFFINE);
6543 }
6544
6545#endif
6546 } else {
6547 sd->flags |= SD_PREFER_SIBLING;
6548 sd->cache_nice_tries = 1;
6549 sd->busy_idx = 2;
6550 sd->idle_idx = 1;
6551 }
6552
24fc7edb
PZ
6553 /*
6554 * For all levels sharing cache; connect a sched_domain_shared
6555 * instance.
6556 */
6557 if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6558 sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
6559 atomic_inc(&sd->shared->ref);
0e369d75 6560 atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
24fc7edb
PZ
6561 }
6562
6563 sd->private = sdd;
cb83b629
PZ
6564
6565 return sd;
6566}
6567
143e1e28
VG
6568/*
6569 * Topology list, bottom-up.
6570 */
6571static struct sched_domain_topology_level default_topology[] = {
6572#ifdef CONFIG_SCHED_SMT
6573 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6574#endif
6575#ifdef CONFIG_SCHED_MC
6576 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
143e1e28
VG
6577#endif
6578 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6579 { NULL, },
6580};
6581
c6e1e7b5
JG
6582static struct sched_domain_topology_level *sched_domain_topology =
6583 default_topology;
143e1e28
VG
6584
6585#define for_each_sd_topology(tl) \
6586 for (tl = sched_domain_topology; tl->mask; tl++)
6587
6588void set_sched_topology(struct sched_domain_topology_level *tl)
6589{
8f37961c
TC
6590 if (WARN_ON_ONCE(sched_smp_initialized))
6591 return;
6592
143e1e28
VG
6593 sched_domain_topology = tl;
6594}
6595
6596#ifdef CONFIG_NUMA
6597
cb83b629
PZ
6598static const struct cpumask *sd_numa_mask(int cpu)
6599{
6600 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6601}
6602
d039ac60
PZ
6603static void sched_numa_warn(const char *str)
6604{
6605 static int done = false;
6606 int i,j;
6607
6608 if (done)
6609 return;
6610
6611 done = true;
6612
6613 printk(KERN_WARNING "ERROR: %s\n\n", str);
6614
6615 for (i = 0; i < nr_node_ids; i++) {
6616 printk(KERN_WARNING " ");
6617 for (j = 0; j < nr_node_ids; j++)
6618 printk(KERN_CONT "%02d ", node_distance(i,j));
6619 printk(KERN_CONT "\n");
6620 }
6621 printk(KERN_WARNING "\n");
6622}
6623
9942f79b 6624bool find_numa_distance(int distance)
d039ac60
PZ
6625{
6626 int i;
6627
6628 if (distance == node_distance(0, 0))
6629 return true;
6630
6631 for (i = 0; i < sched_domains_numa_levels; i++) {
6632 if (sched_domains_numa_distance[i] == distance)
6633 return true;
6634 }
6635
6636 return false;
6637}
6638
e3fe70b1
RR
6639/*
6640 * A system can have three types of NUMA topology:
6641 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6642 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6643 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6644 *
6645 * The difference between a glueless mesh topology and a backplane
6646 * topology lies in whether communication between not directly
6647 * connected nodes goes through intermediary nodes (where programs
6648 * could run), or through backplane controllers. This affects
6649 * placement of programs.
6650 *
6651 * The type of topology can be discerned with the following tests:
6652 * - If the maximum distance between any nodes is 1 hop, the system
6653 * is directly connected.
6654 * - If for two nodes A and B, located N > 1 hops away from each other,
6655 * there is an intermediary node C, which is < N hops away from both
6656 * nodes A and B, the system is a glueless mesh.
6657 */
6658static void init_numa_topology_type(void)
6659{
6660 int a, b, c, n;
6661
6662 n = sched_max_numa_distance;
6663
e237882b 6664 if (sched_domains_numa_levels <= 1) {
e3fe70b1 6665 sched_numa_topology_type = NUMA_DIRECT;
e237882b
AG
6666 return;
6667 }
e3fe70b1
RR
6668
6669 for_each_online_node(a) {
6670 for_each_online_node(b) {
6671 /* Find two nodes furthest removed from each other. */
6672 if (node_distance(a, b) < n)
6673 continue;
6674
6675 /* Is there an intermediary node between a and b? */
6676 for_each_online_node(c) {
6677 if (node_distance(a, c) < n &&
6678 node_distance(b, c) < n) {
6679 sched_numa_topology_type =
6680 NUMA_GLUELESS_MESH;
6681 return;
6682 }
6683 }
6684
6685 sched_numa_topology_type = NUMA_BACKPLANE;
6686 return;
6687 }
6688 }
6689}
6690
cb83b629
PZ
6691static void sched_init_numa(void)
6692{
6693 int next_distance, curr_distance = node_distance(0, 0);
6694 struct sched_domain_topology_level *tl;
6695 int level = 0;
6696 int i, j, k;
6697
cb83b629
PZ
6698 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6699 if (!sched_domains_numa_distance)
6700 return;
6701
6702 /*
6703 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6704 * unique distances in the node_distance() table.
6705 *
6706 * Assumes node_distance(0,j) includes all distances in
6707 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6708 */
6709 next_distance = curr_distance;
6710 for (i = 0; i < nr_node_ids; i++) {
6711 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6712 for (k = 0; k < nr_node_ids; k++) {
6713 int distance = node_distance(i, k);
6714
6715 if (distance > curr_distance &&
6716 (distance < next_distance ||
6717 next_distance == curr_distance))
6718 next_distance = distance;
6719
6720 /*
6721 * While not a strong assumption it would be nice to know
6722 * about cases where if node A is connected to B, B is not
6723 * equally connected to A.
6724 */
6725 if (sched_debug() && node_distance(k, i) != distance)
6726 sched_numa_warn("Node-distance not symmetric");
6727
6728 if (sched_debug() && i && !find_numa_distance(distance))
6729 sched_numa_warn("Node-0 not representative");
6730 }
6731 if (next_distance != curr_distance) {
6732 sched_domains_numa_distance[level++] = next_distance;
6733 sched_domains_numa_levels = level;
6734 curr_distance = next_distance;
6735 } else break;
cb83b629 6736 }
d039ac60
PZ
6737
6738 /*
6739 * In case of sched_debug() we verify the above assumption.
6740 */
6741 if (!sched_debug())
6742 break;
cb83b629 6743 }
c123588b
AR
6744
6745 if (!level)
6746 return;
6747
cb83b629
PZ
6748 /*
6749 * 'level' contains the number of unique distances, excluding the
6750 * identity distance node_distance(i,i).
6751 *
28b4a521 6752 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
6753 * numbers.
6754 */
6755
5f7865f3
TC
6756 /*
6757 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6758 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6759 * the array will contain less then 'level' members. This could be
6760 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6761 * in other functions.
6762 *
6763 * We reset it to 'level' at the end of this function.
6764 */
6765 sched_domains_numa_levels = 0;
6766
cb83b629
PZ
6767 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6768 if (!sched_domains_numa_masks)
6769 return;
6770
6771 /*
6772 * Now for each level, construct a mask per node which contains all
6773 * cpus of nodes that are that many hops away from us.
6774 */
6775 for (i = 0; i < level; i++) {
6776 sched_domains_numa_masks[i] =
6777 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6778 if (!sched_domains_numa_masks[i])
6779 return;
6780
6781 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6782 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6783 if (!mask)
6784 return;
6785
6786 sched_domains_numa_masks[i][j] = mask;
6787
9c03ee14 6788 for_each_node(k) {
dd7d8634 6789 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6790 continue;
6791
6792 cpumask_or(mask, mask, cpumask_of_node(k));
6793 }
6794 }
6795 }
6796
143e1e28
VG
6797 /* Compute default topology size */
6798 for (i = 0; sched_domain_topology[i].mask; i++);
6799
c515db8c 6800 tl = kzalloc((i + level + 1) *
cb83b629
PZ
6801 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6802 if (!tl)
6803 return;
6804
6805 /*
6806 * Copy the default topology bits..
6807 */
143e1e28
VG
6808 for (i = 0; sched_domain_topology[i].mask; i++)
6809 tl[i] = sched_domain_topology[i];
cb83b629
PZ
6810
6811 /*
6812 * .. and append 'j' levels of NUMA goodness.
6813 */
6814 for (j = 0; j < level; i++, j++) {
6815 tl[i] = (struct sched_domain_topology_level){
cb83b629 6816 .mask = sd_numa_mask,
143e1e28 6817 .sd_flags = cpu_numa_flags,
cb83b629
PZ
6818 .flags = SDTL_OVERLAP,
6819 .numa_level = j,
143e1e28 6820 SD_INIT_NAME(NUMA)
cb83b629
PZ
6821 };
6822 }
6823
6824 sched_domain_topology = tl;
5f7865f3
TC
6825
6826 sched_domains_numa_levels = level;
9942f79b 6827 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
e3fe70b1
RR
6828
6829 init_numa_topology_type();
cb83b629 6830}
301a5cba 6831
135fb3e1 6832static void sched_domains_numa_masks_set(unsigned int cpu)
301a5cba 6833{
301a5cba 6834 int node = cpu_to_node(cpu);
135fb3e1 6835 int i, j;
301a5cba
TC
6836
6837 for (i = 0; i < sched_domains_numa_levels; i++) {
6838 for (j = 0; j < nr_node_ids; j++) {
6839 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6840 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6841 }
6842 }
6843}
6844
135fb3e1 6845static void sched_domains_numa_masks_clear(unsigned int cpu)
301a5cba
TC
6846{
6847 int i, j;
135fb3e1 6848
301a5cba
TC
6849 for (i = 0; i < sched_domains_numa_levels; i++) {
6850 for (j = 0; j < nr_node_ids; j++)
6851 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6852 }
6853}
6854
cb83b629 6855#else
135fb3e1
TG
6856static inline void sched_init_numa(void) { }
6857static void sched_domains_numa_masks_set(unsigned int cpu) { }
6858static void sched_domains_numa_masks_clear(unsigned int cpu) { }
cb83b629
PZ
6859#endif /* CONFIG_NUMA */
6860
54ab4ff4
PZ
6861static int __sdt_alloc(const struct cpumask *cpu_map)
6862{
6863 struct sched_domain_topology_level *tl;
6864 int j;
6865
27723a68 6866 for_each_sd_topology(tl) {
54ab4ff4
PZ
6867 struct sd_data *sdd = &tl->data;
6868
6869 sdd->sd = alloc_percpu(struct sched_domain *);
6870 if (!sdd->sd)
6871 return -ENOMEM;
6872
24fc7edb
PZ
6873 sdd->sds = alloc_percpu(struct sched_domain_shared *);
6874 if (!sdd->sds)
6875 return -ENOMEM;
6876
54ab4ff4
PZ
6877 sdd->sg = alloc_percpu(struct sched_group *);
6878 if (!sdd->sg)
6879 return -ENOMEM;
6880
63b2ca30
NP
6881 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6882 if (!sdd->sgc)
9c3f75cb
PZ
6883 return -ENOMEM;
6884
54ab4ff4
PZ
6885 for_each_cpu(j, cpu_map) {
6886 struct sched_domain *sd;
24fc7edb 6887 struct sched_domain_shared *sds;
54ab4ff4 6888 struct sched_group *sg;
63b2ca30 6889 struct sched_group_capacity *sgc;
54ab4ff4 6890
5cc389bc 6891 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
54ab4ff4
PZ
6892 GFP_KERNEL, cpu_to_node(j));
6893 if (!sd)
6894 return -ENOMEM;
6895
6896 *per_cpu_ptr(sdd->sd, j) = sd;
6897
24fc7edb
PZ
6898 sds = kzalloc_node(sizeof(struct sched_domain_shared),
6899 GFP_KERNEL, cpu_to_node(j));
6900 if (!sds)
6901 return -ENOMEM;
6902
6903 *per_cpu_ptr(sdd->sds, j) = sds;
6904
54ab4ff4
PZ
6905 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6906 GFP_KERNEL, cpu_to_node(j));
6907 if (!sg)
6908 return -ENOMEM;
6909
30b4e9eb
IM
6910 sg->next = sg;
6911
54ab4ff4 6912 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6913
63b2ca30 6914 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
9c3f75cb 6915 GFP_KERNEL, cpu_to_node(j));
63b2ca30 6916 if (!sgc)
9c3f75cb
PZ
6917 return -ENOMEM;
6918
63b2ca30 6919 *per_cpu_ptr(sdd->sgc, j) = sgc;
54ab4ff4
PZ
6920 }
6921 }
6922
6923 return 0;
6924}
6925
6926static void __sdt_free(const struct cpumask *cpu_map)
6927{
6928 struct sched_domain_topology_level *tl;
6929 int j;
6930
27723a68 6931 for_each_sd_topology(tl) {
54ab4ff4
PZ
6932 struct sd_data *sdd = &tl->data;
6933
6934 for_each_cpu(j, cpu_map) {
fb2cf2c6 6935 struct sched_domain *sd;
6936
6937 if (sdd->sd) {
6938 sd = *per_cpu_ptr(sdd->sd, j);
6939 if (sd && (sd->flags & SD_OVERLAP))
6940 free_sched_groups(sd->groups, 0);
6941 kfree(*per_cpu_ptr(sdd->sd, j));
6942 }
6943
24fc7edb
PZ
6944 if (sdd->sds)
6945 kfree(*per_cpu_ptr(sdd->sds, j));
fb2cf2c6 6946 if (sdd->sg)
6947 kfree(*per_cpu_ptr(sdd->sg, j));
63b2ca30
NP
6948 if (sdd->sgc)
6949 kfree(*per_cpu_ptr(sdd->sgc, j));
54ab4ff4
PZ
6950 }
6951 free_percpu(sdd->sd);
fb2cf2c6 6952 sdd->sd = NULL;
24fc7edb
PZ
6953 free_percpu(sdd->sds);
6954 sdd->sds = NULL;
54ab4ff4 6955 free_percpu(sdd->sg);
fb2cf2c6 6956 sdd->sg = NULL;
63b2ca30
NP
6957 free_percpu(sdd->sgc);
6958 sdd->sgc = NULL;
54ab4ff4
PZ
6959 }
6960}
6961
2c402dc3 6962struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
6963 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6964 struct sched_domain *child, int cpu)
2c402dc3 6965{
24fc7edb 6966 struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu);
2c402dc3 6967
60495e77
PZ
6968 if (child) {
6969 sd->level = child->level + 1;
6970 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6971 child->parent = sd;
6ae72dff
PZ
6972
6973 if (!cpumask_subset(sched_domain_span(child),
6974 sched_domain_span(sd))) {
6975 pr_err("BUG: arch topology borken\n");
6976#ifdef CONFIG_SCHED_DEBUG
6977 pr_err(" the %s domain not a subset of the %s domain\n",
6978 child->name, sd->name);
6979#endif
6980 /* Fixup, ensure @sd has at least @child cpus. */
6981 cpumask_or(sched_domain_span(sd),
6982 sched_domain_span(sd),
6983 sched_domain_span(child));
6984 }
6985
60495e77 6986 }
a841f8ce 6987 set_domain_attribute(sd, attr);
2c402dc3
PZ
6988
6989 return sd;
6990}
6991
2109b99e
AH
6992/*
6993 * Build sched domains for a given set of cpus and attach the sched domains
6994 * to the individual cpus
6995 */
dce840a0
PZ
6996static int build_sched_domains(const struct cpumask *cpu_map,
6997 struct sched_domain_attr *attr)
2109b99e 6998{
1c632169 6999 enum s_alloc alloc_state;
dce840a0 7000 struct sched_domain *sd;
2109b99e 7001 struct s_data d;
cd92bfd3 7002 struct rq *rq = NULL;
822ff793 7003 int i, ret = -ENOMEM;
9c1cfda2 7004
2109b99e
AH
7005 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7006 if (alloc_state != sa_rootdomain)
7007 goto error;
9c1cfda2 7008
dce840a0 7009 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 7010 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
7011 struct sched_domain_topology_level *tl;
7012
3bd65a80 7013 sd = NULL;
27723a68 7014 for_each_sd_topology(tl) {
4a850cbe 7015 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
7016 if (tl == sched_domain_topology)
7017 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
7018 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
7019 sd->flags |= SD_OVERLAP;
d110235d
PZ
7020 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
7021 break;
e3589f6c 7022 }
dce840a0
PZ
7023 }
7024
7025 /* Build the groups for the domains */
7026 for_each_cpu(i, cpu_map) {
7027 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7028 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
7029 if (sd->flags & SD_OVERLAP) {
7030 if (build_overlap_sched_groups(sd, i))
7031 goto error;
7032 } else {
7033 if (build_sched_groups(sd, i))
7034 goto error;
7035 }
1cf51902 7036 }
a06dadbe 7037 }
9c1cfda2 7038
ced549fa 7039 /* Calculate CPU capacity for physical packages and nodes */
a9c9a9b6
PZ
7040 for (i = nr_cpumask_bits-1; i >= 0; i--) {
7041 if (!cpumask_test_cpu(i, cpu_map))
7042 continue;
9c1cfda2 7043
dce840a0
PZ
7044 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7045 claim_allocations(i, sd);
63b2ca30 7046 init_sched_groups_capacity(i, sd);
dce840a0 7047 }
f712c0c7 7048 }
9c1cfda2 7049
1da177e4 7050 /* Attach the domains */
dce840a0 7051 rcu_read_lock();
abcd083a 7052 for_each_cpu(i, cpu_map) {
cd92bfd3 7053 rq = cpu_rq(i);
21d42ccf 7054 sd = *per_cpu_ptr(d.sd, i);
cd92bfd3
DE
7055
7056 /* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
7057 if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
7058 WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
7059
49a02c51 7060 cpu_attach_domain(sd, d.rd, i);
1da177e4 7061 }
dce840a0 7062 rcu_read_unlock();
51888ca2 7063
a18a579e 7064 if (rq && sched_debug_enabled) {
cd92bfd3
DE
7065 pr_info("span: %*pbl (max cpu_capacity = %lu)\n",
7066 cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
7067 }
7068
822ff793 7069 ret = 0;
51888ca2 7070error:
2109b99e 7071 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 7072 return ret;
1da177e4 7073}
029190c5 7074
acc3f5d7 7075static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 7076static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7077static struct sched_domain_attr *dattr_cur;
7078 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7079
7080/*
7081 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7082 * cpumask) fails, then fallback to a single sched domain,
7083 * as determined by the single cpumask fallback_doms.
029190c5 7084 */
4212823f 7085static cpumask_var_t fallback_doms;
029190c5 7086
ee79d1bd
HC
7087/*
7088 * arch_update_cpu_topology lets virtualized architectures update the
7089 * cpu core maps. It is supposed to return 1 if the topology changed
7090 * or 0 if it stayed the same.
7091 */
52f5684c 7092int __weak arch_update_cpu_topology(void)
22e52b07 7093{
ee79d1bd 7094 return 0;
22e52b07
HC
7095}
7096
acc3f5d7
RR
7097cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7098{
7099 int i;
7100 cpumask_var_t *doms;
7101
7102 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7103 if (!doms)
7104 return NULL;
7105 for (i = 0; i < ndoms; i++) {
7106 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7107 free_sched_domains(doms, i);
7108 return NULL;
7109 }
7110 }
7111 return doms;
7112}
7113
7114void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7115{
7116 unsigned int i;
7117 for (i = 0; i < ndoms; i++)
7118 free_cpumask_var(doms[i]);
7119 kfree(doms);
7120}
7121
1a20ff27 7122/*
41a2d6cf 7123 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7124 * For now this just excludes isolated cpus, but could be used to
7125 * exclude other special cases in the future.
1a20ff27 7126 */
c4a8849a 7127static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7128{
7378547f
MM
7129 int err;
7130
22e52b07 7131 arch_update_cpu_topology();
029190c5 7132 ndoms_cur = 1;
acc3f5d7 7133 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7134 if (!doms_cur)
acc3f5d7
RR
7135 doms_cur = &fallback_doms;
7136 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 7137 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 7138 register_sched_domain_sysctl();
7378547f
MM
7139
7140 return err;
1a20ff27
DG
7141}
7142
1a20ff27
DG
7143/*
7144 * Detach sched domains from a group of cpus specified in cpu_map
7145 * These cpus will now be attached to the NULL domain
7146 */
96f874e2 7147static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
7148{
7149 int i;
7150
dce840a0 7151 rcu_read_lock();
abcd083a 7152 for_each_cpu(i, cpu_map)
57d885fe 7153 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 7154 rcu_read_unlock();
1a20ff27
DG
7155}
7156
1d3504fc
HS
7157/* handle null as "default" */
7158static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7159 struct sched_domain_attr *new, int idx_new)
7160{
7161 struct sched_domain_attr tmp;
7162
7163 /* fast path */
7164 if (!new && !cur)
7165 return 1;
7166
7167 tmp = SD_ATTR_INIT;
7168 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7169 new ? (new + idx_new) : &tmp,
7170 sizeof(struct sched_domain_attr));
7171}
7172
029190c5
PJ
7173/*
7174 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7175 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7176 * doms_new[] to the current sched domain partitioning, doms_cur[].
7177 * It destroys each deleted domain and builds each new domain.
7178 *
acc3f5d7 7179 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7180 * The masks don't intersect (don't overlap.) We should setup one
7181 * sched domain for each mask. CPUs not in any of the cpumasks will
7182 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7183 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7184 * it as it is.
7185 *
acc3f5d7
RR
7186 * The passed in 'doms_new' should be allocated using
7187 * alloc_sched_domains. This routine takes ownership of it and will
7188 * free_sched_domains it when done with it. If the caller failed the
7189 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7190 * and partition_sched_domains() will fallback to the single partition
7191 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7192 *
96f874e2 7193 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7194 * ndoms_new == 0 is a special case for destroying existing domains,
7195 * and it will not create the default domain.
dfb512ec 7196 *
029190c5
PJ
7197 * Call with hotplug lock held
7198 */
acc3f5d7 7199void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7200 struct sched_domain_attr *dattr_new)
029190c5 7201{
dfb512ec 7202 int i, j, n;
d65bd5ec 7203 int new_topology;
029190c5 7204
712555ee 7205 mutex_lock(&sched_domains_mutex);
a1835615 7206
7378547f
MM
7207 /* always unregister in case we don't destroy any domains */
7208 unregister_sched_domain_sysctl();
7209
d65bd5ec
HC
7210 /* Let architecture update cpu core mappings. */
7211 new_topology = arch_update_cpu_topology();
7212
dfb512ec 7213 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7214
7215 /* Destroy deleted domains */
7216 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7217 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7218 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7219 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7220 goto match1;
7221 }
7222 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7223 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7224match1:
7225 ;
7226 }
7227
c8d2d47a 7228 n = ndoms_cur;
e761b772 7229 if (doms_new == NULL) {
c8d2d47a 7230 n = 0;
acc3f5d7 7231 doms_new = &fallback_doms;
6ad4c188 7232 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7233 WARN_ON_ONCE(dattr_new);
e761b772
MK
7234 }
7235
029190c5
PJ
7236 /* Build new domains */
7237 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 7238 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7239 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7240 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7241 goto match2;
7242 }
7243 /* no match - add a new doms_new */
dce840a0 7244 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7245match2:
7246 ;
7247 }
7248
7249 /* Remember the new sched domains */
acc3f5d7
RR
7250 if (doms_cur != &fallback_doms)
7251 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7252 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7253 doms_cur = doms_new;
1d3504fc 7254 dattr_cur = dattr_new;
029190c5 7255 ndoms_cur = ndoms_new;
7378547f
MM
7256
7257 register_sched_domain_sysctl();
a1835615 7258
712555ee 7259 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7260}
7261
d35be8ba
SB
7262static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
7263
1da177e4 7264/*
3a101d05
TH
7265 * Update cpusets according to cpu_active mask. If cpusets are
7266 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7267 * around partition_sched_domains().
d35be8ba
SB
7268 *
7269 * If we come here as part of a suspend/resume, don't touch cpusets because we
7270 * want to restore it back to its original state upon resume anyway.
1da177e4 7271 */
40190a78 7272static void cpuset_cpu_active(void)
e761b772 7273{
40190a78 7274 if (cpuhp_tasks_frozen) {
d35be8ba
SB
7275 /*
7276 * num_cpus_frozen tracks how many CPUs are involved in suspend
7277 * resume sequence. As long as this is not the last online
7278 * operation in the resume sequence, just build a single sched
7279 * domain, ignoring cpusets.
7280 */
7281 num_cpus_frozen--;
7282 if (likely(num_cpus_frozen)) {
7283 partition_sched_domains(1, NULL, NULL);
135fb3e1 7284 return;
d35be8ba 7285 }
d35be8ba
SB
7286 /*
7287 * This is the last CPU online operation. So fall through and
7288 * restore the original sched domains by considering the
7289 * cpuset configurations.
7290 */
3a101d05 7291 }
135fb3e1 7292 cpuset_update_active_cpus(true);
3a101d05 7293}
e761b772 7294
40190a78 7295static int cpuset_cpu_inactive(unsigned int cpu)
3a101d05 7296{
3c18d447 7297 unsigned long flags;
3c18d447 7298 struct dl_bw *dl_b;
533445c6
OS
7299 bool overflow;
7300 int cpus;
3c18d447 7301
40190a78 7302 if (!cpuhp_tasks_frozen) {
533445c6
OS
7303 rcu_read_lock_sched();
7304 dl_b = dl_bw_of(cpu);
3c18d447 7305
533445c6
OS
7306 raw_spin_lock_irqsave(&dl_b->lock, flags);
7307 cpus = dl_bw_cpus(cpu);
7308 overflow = __dl_overflow(dl_b, cpus, 0, 0);
7309 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3c18d447 7310
533445c6 7311 rcu_read_unlock_sched();
3c18d447 7312
533445c6 7313 if (overflow)
135fb3e1 7314 return -EBUSY;
7ddf96b0 7315 cpuset_update_active_cpus(false);
135fb3e1 7316 } else {
d35be8ba
SB
7317 num_cpus_frozen++;
7318 partition_sched_domains(1, NULL, NULL);
e761b772 7319 }
135fb3e1 7320 return 0;
e761b772 7321}
e761b772 7322
40190a78 7323int sched_cpu_activate(unsigned int cpu)
135fb3e1 7324{
7d976699
TG
7325 struct rq *rq = cpu_rq(cpu);
7326 unsigned long flags;
7327
40190a78 7328 set_cpu_active(cpu, true);
135fb3e1 7329
40190a78 7330 if (sched_smp_initialized) {
135fb3e1 7331 sched_domains_numa_masks_set(cpu);
40190a78 7332 cpuset_cpu_active();
e761b772 7333 }
7d976699
TG
7334
7335 /*
7336 * Put the rq online, if not already. This happens:
7337 *
7338 * 1) In the early boot process, because we build the real domains
7339 * after all cpus have been brought up.
7340 *
7341 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
7342 * domains.
7343 */
7344 raw_spin_lock_irqsave(&rq->lock, flags);
7345 if (rq->rd) {
7346 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7347 set_rq_online(rq);
7348 }
7349 raw_spin_unlock_irqrestore(&rq->lock, flags);
7350
7351 update_max_interval();
7352
40190a78 7353 return 0;
135fb3e1
TG
7354}
7355
40190a78 7356int sched_cpu_deactivate(unsigned int cpu)
135fb3e1 7357{
135fb3e1
TG
7358 int ret;
7359
40190a78 7360 set_cpu_active(cpu, false);
b2454caa
PZ
7361 /*
7362 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
7363 * users of this state to go away such that all new such users will
7364 * observe it.
7365 *
7366 * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might
7367 * not imply sync_sched(), so wait for both.
7368 *
7369 * Do sync before park smpboot threads to take care the rcu boost case.
7370 */
7371 if (IS_ENABLED(CONFIG_PREEMPT))
7372 synchronize_rcu_mult(call_rcu, call_rcu_sched);
7373 else
7374 synchronize_rcu();
40190a78
TG
7375
7376 if (!sched_smp_initialized)
7377 return 0;
7378
7379 ret = cpuset_cpu_inactive(cpu);
7380 if (ret) {
7381 set_cpu_active(cpu, true);
7382 return ret;
135fb3e1 7383 }
40190a78
TG
7384 sched_domains_numa_masks_clear(cpu);
7385 return 0;
135fb3e1
TG
7386}
7387
94baf7a5
TG
7388static void sched_rq_cpu_starting(unsigned int cpu)
7389{
7390 struct rq *rq = cpu_rq(cpu);
7391
7392 rq->calc_load_update = calc_load_update;
94baf7a5
TG
7393 update_max_interval();
7394}
7395
135fb3e1
TG
7396int sched_cpu_starting(unsigned int cpu)
7397{
7398 set_cpu_rq_start_time(cpu);
94baf7a5 7399 sched_rq_cpu_starting(cpu);
135fb3e1 7400 return 0;
e761b772 7401}
e761b772 7402
f2785ddb
TG
7403#ifdef CONFIG_HOTPLUG_CPU
7404int sched_cpu_dying(unsigned int cpu)
7405{
7406 struct rq *rq = cpu_rq(cpu);
7407 unsigned long flags;
7408
7409 /* Handle pending wakeups and then migrate everything off */
7410 sched_ttwu_pending();
7411 raw_spin_lock_irqsave(&rq->lock, flags);
7412 if (rq->rd) {
7413 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7414 set_rq_offline(rq);
7415 }
7416 migrate_tasks(rq);
7417 BUG_ON(rq->nr_running != 1);
7418 raw_spin_unlock_irqrestore(&rq->lock, flags);
7419 calc_load_migrate(rq);
7420 update_max_interval();
20a5c8cc 7421 nohz_balance_exit_idle(cpu);
e5ef27d0 7422 hrtick_clear(rq);
f2785ddb
TG
7423 return 0;
7424}
7425#endif
7426
1b568f0a
PZ
7427#ifdef CONFIG_SCHED_SMT
7428DEFINE_STATIC_KEY_FALSE(sched_smt_present);
7429
7430static void sched_init_smt(void)
7431{
7432 /*
7433 * We've enumerated all CPUs and will assume that if any CPU
7434 * has SMT siblings, CPU0 will too.
7435 */
7436 if (cpumask_weight(cpu_smt_mask(0)) > 1)
7437 static_branch_enable(&sched_smt_present);
7438}
7439#else
7440static inline void sched_init_smt(void) { }
7441#endif
7442
1da177e4
LT
7443void __init sched_init_smp(void)
7444{
dcc30a35
RR
7445 cpumask_var_t non_isolated_cpus;
7446
7447 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7448 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7449
cb83b629
PZ
7450 sched_init_numa();
7451
6acce3ef
PZ
7452 /*
7453 * There's no userspace yet to cause hotplug operations; hence all the
7454 * cpu masks are stable and all blatant races in the below code cannot
7455 * happen.
7456 */
712555ee 7457 mutex_lock(&sched_domains_mutex);
c4a8849a 7458 init_sched_domains(cpu_active_mask);
dcc30a35
RR
7459 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7460 if (cpumask_empty(non_isolated_cpus))
7461 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7462 mutex_unlock(&sched_domains_mutex);
e761b772 7463
5c1e1767 7464 /* Move init over to a non-isolated CPU */
dcc30a35 7465 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7466 BUG();
19978ca6 7467 sched_init_granularity();
dcc30a35 7468 free_cpumask_var(non_isolated_cpus);
4212823f 7469
0e3900e6 7470 init_sched_rt_class();
1baca4ce 7471 init_sched_dl_class();
1b568f0a
PZ
7472
7473 sched_init_smt();
7474
e26fbffd 7475 sched_smp_initialized = true;
1da177e4 7476}
e26fbffd
TG
7477
7478static int __init migration_init(void)
7479{
94baf7a5 7480 sched_rq_cpu_starting(smp_processor_id());
e26fbffd 7481 return 0;
1da177e4 7482}
e26fbffd
TG
7483early_initcall(migration_init);
7484
1da177e4
LT
7485#else
7486void __init sched_init_smp(void)
7487{
19978ca6 7488 sched_init_granularity();
1da177e4
LT
7489}
7490#endif /* CONFIG_SMP */
7491
7492int in_sched_functions(unsigned long addr)
7493{
1da177e4
LT
7494 return in_lock_functions(addr) ||
7495 (addr >= (unsigned long)__sched_text_start
7496 && addr < (unsigned long)__sched_text_end);
7497}
7498
029632fb 7499#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
7500/*
7501 * Default task group.
7502 * Every task in system belongs to this group at bootup.
7503 */
029632fb 7504struct task_group root_task_group;
35cf4e50 7505LIST_HEAD(task_groups);
b0367629
WL
7506
7507/* Cacheline aligned slab cache for task_group */
7508static struct kmem_cache *task_group_cache __read_mostly;
052f1dc7 7509#endif
6f505b16 7510
e6252c3e 7511DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
10e2f1ac 7512DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
6f505b16 7513
9dcb8b68
LT
7514#define WAIT_TABLE_BITS 8
7515#define WAIT_TABLE_SIZE (1 << WAIT_TABLE_BITS)
7516static wait_queue_head_t bit_wait_table[WAIT_TABLE_SIZE] __cacheline_aligned;
7517
7518wait_queue_head_t *bit_waitqueue(void *word, int bit)
7519{
7520 const int shift = BITS_PER_LONG == 32 ? 5 : 6;
7521 unsigned long val = (unsigned long)word << shift | bit;
7522
7523 return bit_wait_table + hash_long(val, WAIT_TABLE_BITS);
7524}
7525EXPORT_SYMBOL(bit_waitqueue);
7526
1da177e4
LT
7527void __init sched_init(void)
7528{
dd41f596 7529 int i, j;
434d53b0
MT
7530 unsigned long alloc_size = 0, ptr;
7531
9dcb8b68
LT
7532 for (i = 0; i < WAIT_TABLE_SIZE; i++)
7533 init_waitqueue_head(bit_wait_table + i);
7534
434d53b0
MT
7535#ifdef CONFIG_FAIR_GROUP_SCHED
7536 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7537#endif
7538#ifdef CONFIG_RT_GROUP_SCHED
7539 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7540#endif
434d53b0 7541 if (alloc_size) {
36b7b6d4 7542 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7543
7544#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 7545 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
7546 ptr += nr_cpu_ids * sizeof(void **);
7547
07e06b01 7548 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 7549 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7550
6d6bc0ad 7551#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 7552#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7553 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
7554 ptr += nr_cpu_ids * sizeof(void **);
7555
07e06b01 7556 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7557 ptr += nr_cpu_ids * sizeof(void **);
7558
6d6bc0ad 7559#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 7560 }
df7c8e84 7561#ifdef CONFIG_CPUMASK_OFFSTACK
b74e6278
AT
7562 for_each_possible_cpu(i) {
7563 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7564 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
10e2f1ac
PZ
7565 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
7566 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
434d53b0 7567 }
b74e6278 7568#endif /* CONFIG_CPUMASK_OFFSTACK */
dd41f596 7569
332ac17e
DF
7570 init_rt_bandwidth(&def_rt_bandwidth,
7571 global_rt_period(), global_rt_runtime());
7572 init_dl_bandwidth(&def_dl_bandwidth,
1724813d 7573 global_rt_period(), global_rt_runtime());
332ac17e 7574
57d885fe
GH
7575#ifdef CONFIG_SMP
7576 init_defrootdomain();
7577#endif
7578
d0b27fa7 7579#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7580 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 7581 global_rt_period(), global_rt_runtime());
6d6bc0ad 7582#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7583
7c941438 7584#ifdef CONFIG_CGROUP_SCHED
b0367629
WL
7585 task_group_cache = KMEM_CACHE(task_group, 0);
7586
07e06b01
YZ
7587 list_add(&root_task_group.list, &task_groups);
7588 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 7589 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 7590 autogroup_init(&init_task);
7c941438 7591#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7592
0a945022 7593 for_each_possible_cpu(i) {
70b97a7f 7594 struct rq *rq;
1da177e4
LT
7595
7596 rq = cpu_rq(i);
05fa785c 7597 raw_spin_lock_init(&rq->lock);
7897986b 7598 rq->nr_running = 0;
dce48a84
TG
7599 rq->calc_load_active = 0;
7600 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 7601 init_cfs_rq(&rq->cfs);
07c54f7a
AV
7602 init_rt_rq(&rq->rt);
7603 init_dl_rq(&rq->dl);
dd41f596 7604#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 7605 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 7606 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9c2791f9 7607 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
354d60c2 7608 /*
07e06b01 7609 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
7610 *
7611 * In case of task-groups formed thr' the cgroup filesystem, it
7612 * gets 100% of the cpu resources in the system. This overall
7613 * system cpu resource is divided among the tasks of
07e06b01 7614 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
7615 * based on each entity's (task or task-group's) weight
7616 * (se->load.weight).
7617 *
07e06b01 7618 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
7619 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7620 * then A0's share of the cpu resource is:
7621 *
0d905bca 7622 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 7623 *
07e06b01
YZ
7624 * We achieve this by letting root_task_group's tasks sit
7625 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 7626 */
ab84d31e 7627 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 7628 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
7629#endif /* CONFIG_FAIR_GROUP_SCHED */
7630
7631 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7632#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7633 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 7634#endif
1da177e4 7635
dd41f596
IM
7636 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7637 rq->cpu_load[j] = 0;
fdf3e95d 7638
1da177e4 7639#ifdef CONFIG_SMP
41c7ce9a 7640 rq->sd = NULL;
57d885fe 7641 rq->rd = NULL;
ca6d75e6 7642 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
e3fca9e7 7643 rq->balance_callback = NULL;
1da177e4 7644 rq->active_balance = 0;
dd41f596 7645 rq->next_balance = jiffies;
1da177e4 7646 rq->push_cpu = 0;
0a2966b4 7647 rq->cpu = i;
1f11eb6a 7648 rq->online = 0;
eae0c9df
MG
7649 rq->idle_stamp = 0;
7650 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 7651 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
7652
7653 INIT_LIST_HEAD(&rq->cfs_tasks);
7654
dc938520 7655 rq_attach_root(rq, &def_root_domain);
3451d024 7656#ifdef CONFIG_NO_HZ_COMMON
9fd81dd5 7657 rq->last_load_update_tick = jiffies;
1c792db7 7658 rq->nohz_flags = 0;
83cd4fe2 7659#endif
265f22a9
FW
7660#ifdef CONFIG_NO_HZ_FULL
7661 rq->last_sched_tick = 0;
7662#endif
9fd81dd5 7663#endif /* CONFIG_SMP */
8f4d37ec 7664 init_rq_hrtick(rq);
1da177e4 7665 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7666 }
7667
2dd73a4f 7668 set_load_weight(&init_task);
b50f60ce 7669
1da177e4
LT
7670 /*
7671 * The boot idle thread does lazy MMU switching as well:
7672 */
7673 atomic_inc(&init_mm.mm_count);
7674 enter_lazy_tlb(&init_mm, current);
7675
7676 /*
7677 * Make us the idle thread. Technically, schedule() should not be
7678 * called from this thread, however somewhere below it might be,
7679 * but because we are the idle thread, we just pick up running again
7680 * when this runqueue becomes "idle".
7681 */
7682 init_idle(current, smp_processor_id());
dce48a84
TG
7683
7684 calc_load_update = jiffies + LOAD_FREQ;
7685
bf4d83f6 7686#ifdef CONFIG_SMP
4cb98839 7687 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
7688 /* May be allocated at isolcpus cmdline parse time */
7689 if (cpu_isolated_map == NULL)
7690 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 7691 idle_thread_set_boot_cpu();
9cf7243d 7692 set_cpu_rq_start_time(smp_processor_id());
029632fb
PZ
7693#endif
7694 init_sched_fair_class();
6a7b3dc3 7695
4698f88c
JP
7696 init_schedstats();
7697
6892b75e 7698 scheduler_running = 1;
1da177e4
LT
7699}
7700
d902db1e 7701#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
7702static inline int preempt_count_equals(int preempt_offset)
7703{
da7142e2 7704 int nested = preempt_count() + rcu_preempt_depth();
e4aafea2 7705
4ba8216c 7706 return (nested == preempt_offset);
e4aafea2
FW
7707}
7708
d894837f 7709void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7710{
8eb23b9f
PZ
7711 /*
7712 * Blocking primitives will set (and therefore destroy) current->state,
7713 * since we will exit with TASK_RUNNING make sure we enter with it,
7714 * otherwise we will destroy state.
7715 */
00845eb9 7716 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
8eb23b9f
PZ
7717 "do not call blocking ops when !TASK_RUNNING; "
7718 "state=%lx set at [<%p>] %pS\n",
7719 current->state,
7720 (void *)current->task_state_change,
00845eb9 7721 (void *)current->task_state_change);
8eb23b9f 7722
3427445a
PZ
7723 ___might_sleep(file, line, preempt_offset);
7724}
7725EXPORT_SYMBOL(__might_sleep);
7726
7727void ___might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7728{
1da177e4 7729 static unsigned long prev_jiffy; /* ratelimiting */
d1c6d149 7730 unsigned long preempt_disable_ip;
1da177e4 7731
b3fbab05 7732 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
db273be2
TG
7733 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7734 !is_idle_task(current)) ||
e4aafea2 7735 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7736 return;
7737 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7738 return;
7739 prev_jiffy = jiffies;
7740
d1c6d149
VN
7741 /* Save this before calling printk(), since that will clobber it */
7742 preempt_disable_ip = get_preempt_disable_ip(current);
7743
3df0fc5b
PZ
7744 printk(KERN_ERR
7745 "BUG: sleeping function called from invalid context at %s:%d\n",
7746 file, line);
7747 printk(KERN_ERR
7748 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7749 in_atomic(), irqs_disabled(),
7750 current->pid, current->comm);
aef745fc 7751
a8b686b3
ES
7752 if (task_stack_end_corrupted(current))
7753 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7754
aef745fc
IM
7755 debug_show_held_locks(current);
7756 if (irqs_disabled())
7757 print_irqtrace_events(current);
d1c6d149
VN
7758 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
7759 && !preempt_count_equals(preempt_offset)) {
8f47b187 7760 pr_err("Preemption disabled at:");
d1c6d149 7761 print_ip_sym(preempt_disable_ip);
8f47b187
TG
7762 pr_cont("\n");
7763 }
aef745fc 7764 dump_stack();
f0b22e39 7765 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
1da177e4 7766}
3427445a 7767EXPORT_SYMBOL(___might_sleep);
1da177e4
LT
7768#endif
7769
7770#ifdef CONFIG_MAGIC_SYSRQ
dbc7f069 7771void normalize_rt_tasks(void)
3a5e4dc1 7772{
dbc7f069 7773 struct task_struct *g, *p;
d50dde5a
DF
7774 struct sched_attr attr = {
7775 .sched_policy = SCHED_NORMAL,
7776 };
1da177e4 7777
3472eaa1 7778 read_lock(&tasklist_lock);
5d07f420 7779 for_each_process_thread(g, p) {
178be793
IM
7780 /*
7781 * Only normalize user tasks:
7782 */
3472eaa1 7783 if (p->flags & PF_KTHREAD)
178be793
IM
7784 continue;
7785
4fa8d299
JP
7786 p->se.exec_start = 0;
7787 schedstat_set(p->se.statistics.wait_start, 0);
7788 schedstat_set(p->se.statistics.sleep_start, 0);
7789 schedstat_set(p->se.statistics.block_start, 0);
dd41f596 7790
aab03e05 7791 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
7792 /*
7793 * Renice negative nice level userspace
7794 * tasks back to 0:
7795 */
3472eaa1 7796 if (task_nice(p) < 0)
dd41f596 7797 set_user_nice(p, 0);
1da177e4 7798 continue;
dd41f596 7799 }
1da177e4 7800
dbc7f069 7801 __sched_setscheduler(p, &attr, false, false);
5d07f420 7802 }
3472eaa1 7803 read_unlock(&tasklist_lock);
1da177e4
LT
7804}
7805
7806#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7807
67fc4e0c 7808#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7809/*
67fc4e0c 7810 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7811 *
7812 * They can only be called when the whole system has been
7813 * stopped - every CPU needs to be quiescent, and no scheduling
7814 * activity can take place. Using them for anything else would
7815 * be a serious bug, and as a result, they aren't even visible
7816 * under any other configuration.
7817 */
7818
7819/**
7820 * curr_task - return the current task for a given cpu.
7821 * @cpu: the processor in question.
7822 *
7823 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
7824 *
7825 * Return: The current task for @cpu.
1df5c10a 7826 */
36c8b586 7827struct task_struct *curr_task(int cpu)
1df5c10a
LT
7828{
7829 return cpu_curr(cpu);
7830}
7831
67fc4e0c
JW
7832#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7833
7834#ifdef CONFIG_IA64
1df5c10a
LT
7835/**
7836 * set_curr_task - set the current task for a given cpu.
7837 * @cpu: the processor in question.
7838 * @p: the task pointer to set.
7839 *
7840 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7841 * are serviced on a separate stack. It allows the architecture to switch the
7842 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7843 * must be called with all CPU's synchronized, and interrupts disabled, the
7844 * and caller must save the original value of the current task (see
7845 * curr_task() above) and restore that value before reenabling interrupts and
7846 * re-starting the system.
7847 *
7848 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7849 */
a458ae2e 7850void ia64_set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7851{
7852 cpu_curr(cpu) = p;
7853}
7854
7855#endif
29f59db3 7856
7c941438 7857#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7858/* task_group_lock serializes the addition/removal of task groups */
7859static DEFINE_SPINLOCK(task_group_lock);
7860
2f5177f0 7861static void sched_free_group(struct task_group *tg)
bccbe08a
PZ
7862{
7863 free_fair_sched_group(tg);
7864 free_rt_sched_group(tg);
e9aa1dd1 7865 autogroup_free(tg);
b0367629 7866 kmem_cache_free(task_group_cache, tg);
bccbe08a
PZ
7867}
7868
7869/* allocate runqueue etc for a new task group */
ec7dc8ac 7870struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7871{
7872 struct task_group *tg;
bccbe08a 7873
b0367629 7874 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
bccbe08a
PZ
7875 if (!tg)
7876 return ERR_PTR(-ENOMEM);
7877
ec7dc8ac 7878 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7879 goto err;
7880
ec7dc8ac 7881 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7882 goto err;
7883
ace783b9
LZ
7884 return tg;
7885
7886err:
2f5177f0 7887 sched_free_group(tg);
ace783b9
LZ
7888 return ERR_PTR(-ENOMEM);
7889}
7890
7891void sched_online_group(struct task_group *tg, struct task_group *parent)
7892{
7893 unsigned long flags;
7894
8ed36996 7895 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7896 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7897
7898 WARN_ON(!parent); /* root should already exist */
7899
7900 tg->parent = parent;
f473aa5e 7901 INIT_LIST_HEAD(&tg->children);
09f2724a 7902 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7903 spin_unlock_irqrestore(&task_group_lock, flags);
8663e24d
PZ
7904
7905 online_fair_sched_group(tg);
29f59db3
SV
7906}
7907
9b5b7751 7908/* rcu callback to free various structures associated with a task group */
2f5177f0 7909static void sched_free_group_rcu(struct rcu_head *rhp)
29f59db3 7910{
29f59db3 7911 /* now it should be safe to free those cfs_rqs */
2f5177f0 7912 sched_free_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7913}
7914
4cf86d77 7915void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
7916{
7917 /* wait for possible concurrent references to cfs_rqs complete */
2f5177f0 7918 call_rcu(&tg->rcu, sched_free_group_rcu);
ace783b9
LZ
7919}
7920
7921void sched_offline_group(struct task_group *tg)
29f59db3 7922{
8ed36996 7923 unsigned long flags;
29f59db3 7924
3d4b47b4 7925 /* end participation in shares distribution */
6fe1f348 7926 unregister_fair_sched_group(tg);
3d4b47b4
PZ
7927
7928 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7929 list_del_rcu(&tg->list);
f473aa5e 7930 list_del_rcu(&tg->siblings);
8ed36996 7931 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7932}
7933
ea86cb4b 7934static void sched_change_group(struct task_struct *tsk, int type)
29f59db3 7935{
8323f26c 7936 struct task_group *tg;
29f59db3 7937
f7b8a47d
KT
7938 /*
7939 * All callers are synchronized by task_rq_lock(); we do not use RCU
7940 * which is pointless here. Thus, we pass "true" to task_css_check()
7941 * to prevent lockdep warnings.
7942 */
7943 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
7944 struct task_group, css);
7945 tg = autogroup_task_group(tsk, tg);
7946 tsk->sched_task_group = tg;
7947
810b3817 7948#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
7949 if (tsk->sched_class->task_change_group)
7950 tsk->sched_class->task_change_group(tsk, type);
b2b5ce02 7951 else
810b3817 7952#endif
b2b5ce02 7953 set_task_rq(tsk, task_cpu(tsk));
ea86cb4b
VG
7954}
7955
7956/*
7957 * Change task's runqueue when it moves between groups.
7958 *
7959 * The caller of this function should have put the task in its new group by
7960 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
7961 * its new group.
7962 */
7963void sched_move_task(struct task_struct *tsk)
7964{
7965 int queued, running;
7966 struct rq_flags rf;
7967 struct rq *rq;
7968
7969 rq = task_rq_lock(tsk, &rf);
7970
7971 running = task_current(rq, tsk);
7972 queued = task_on_rq_queued(tsk);
7973
7974 if (queued)
7975 dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
7976 if (unlikely(running))
7977 put_prev_task(rq, tsk);
7978
7979 sched_change_group(tsk, TASK_MOVE_GROUP);
810b3817 7980
da0c1e65 7981 if (queued)
ff77e468 7982 enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
a399d233 7983 if (unlikely(running))
b2bf6c31 7984 set_curr_task(rq, tsk);
29f59db3 7985
eb580751 7986 task_rq_unlock(rq, tsk, &rf);
29f59db3 7987}
7c941438 7988#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7989
a790de99
PT
7990#ifdef CONFIG_RT_GROUP_SCHED
7991/*
7992 * Ensure that the real time constraints are schedulable.
7993 */
7994static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7995
9a7e0b18
PZ
7996/* Must be called with tasklist_lock held */
7997static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7998{
9a7e0b18 7999 struct task_struct *g, *p;
b40b2e8e 8000
1fe89e1b
PZ
8001 /*
8002 * Autogroups do not have RT tasks; see autogroup_create().
8003 */
8004 if (task_group_is_autogroup(tg))
8005 return 0;
8006
5d07f420 8007 for_each_process_thread(g, p) {
8651c658 8008 if (rt_task(p) && task_group(p) == tg)
9a7e0b18 8009 return 1;
5d07f420 8010 }
b40b2e8e 8011
9a7e0b18
PZ
8012 return 0;
8013}
b40b2e8e 8014
9a7e0b18
PZ
8015struct rt_schedulable_data {
8016 struct task_group *tg;
8017 u64 rt_period;
8018 u64 rt_runtime;
8019};
b40b2e8e 8020
a790de99 8021static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
8022{
8023 struct rt_schedulable_data *d = data;
8024 struct task_group *child;
8025 unsigned long total, sum = 0;
8026 u64 period, runtime;
b40b2e8e 8027
9a7e0b18
PZ
8028 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8029 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 8030
9a7e0b18
PZ
8031 if (tg == d->tg) {
8032 period = d->rt_period;
8033 runtime = d->rt_runtime;
b40b2e8e 8034 }
b40b2e8e 8035
4653f803
PZ
8036 /*
8037 * Cannot have more runtime than the period.
8038 */
8039 if (runtime > period && runtime != RUNTIME_INF)
8040 return -EINVAL;
6f505b16 8041
4653f803
PZ
8042 /*
8043 * Ensure we don't starve existing RT tasks.
8044 */
9a7e0b18
PZ
8045 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8046 return -EBUSY;
6f505b16 8047
9a7e0b18 8048 total = to_ratio(period, runtime);
6f505b16 8049
4653f803
PZ
8050 /*
8051 * Nobody can have more than the global setting allows.
8052 */
8053 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8054 return -EINVAL;
6f505b16 8055
4653f803
PZ
8056 /*
8057 * The sum of our children's runtime should not exceed our own.
8058 */
9a7e0b18
PZ
8059 list_for_each_entry_rcu(child, &tg->children, siblings) {
8060 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8061 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8062
9a7e0b18
PZ
8063 if (child == d->tg) {
8064 period = d->rt_period;
8065 runtime = d->rt_runtime;
8066 }
6f505b16 8067
9a7e0b18 8068 sum += to_ratio(period, runtime);
9f0c1e56 8069 }
6f505b16 8070
9a7e0b18
PZ
8071 if (sum > total)
8072 return -EINVAL;
8073
8074 return 0;
6f505b16
PZ
8075}
8076
9a7e0b18 8077static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8078{
8277434e
PT
8079 int ret;
8080
9a7e0b18
PZ
8081 struct rt_schedulable_data data = {
8082 .tg = tg,
8083 .rt_period = period,
8084 .rt_runtime = runtime,
8085 };
8086
8277434e
PT
8087 rcu_read_lock();
8088 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
8089 rcu_read_unlock();
8090
8091 return ret;
521f1a24
DG
8092}
8093
ab84d31e 8094static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 8095 u64 rt_period, u64 rt_runtime)
6f505b16 8096{
ac086bc2 8097 int i, err = 0;
9f0c1e56 8098
2636ed5f
PZ
8099 /*
8100 * Disallowing the root group RT runtime is BAD, it would disallow the
8101 * kernel creating (and or operating) RT threads.
8102 */
8103 if (tg == &root_task_group && rt_runtime == 0)
8104 return -EINVAL;
8105
8106 /* No period doesn't make any sense. */
8107 if (rt_period == 0)
8108 return -EINVAL;
8109
9f0c1e56 8110 mutex_lock(&rt_constraints_mutex);
521f1a24 8111 read_lock(&tasklist_lock);
9a7e0b18
PZ
8112 err = __rt_schedulable(tg, rt_period, rt_runtime);
8113 if (err)
9f0c1e56 8114 goto unlock;
ac086bc2 8115
0986b11b 8116 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8117 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8118 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8119
8120 for_each_possible_cpu(i) {
8121 struct rt_rq *rt_rq = tg->rt_rq[i];
8122
0986b11b 8123 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8124 rt_rq->rt_runtime = rt_runtime;
0986b11b 8125 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8126 }
0986b11b 8127 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 8128unlock:
521f1a24 8129 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8130 mutex_unlock(&rt_constraints_mutex);
8131
8132 return err;
6f505b16
PZ
8133}
8134
25cc7da7 8135static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
8136{
8137 u64 rt_runtime, rt_period;
8138
8139 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8140 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8141 if (rt_runtime_us < 0)
8142 rt_runtime = RUNTIME_INF;
8143
ab84d31e 8144 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
8145}
8146
25cc7da7 8147static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
8148{
8149 u64 rt_runtime_us;
8150
d0b27fa7 8151 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8152 return -1;
8153
d0b27fa7 8154 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8155 do_div(rt_runtime_us, NSEC_PER_USEC);
8156 return rt_runtime_us;
8157}
d0b27fa7 8158
ce2f5fe4 8159static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
d0b27fa7
PZ
8160{
8161 u64 rt_runtime, rt_period;
8162
ce2f5fe4 8163 rt_period = rt_period_us * NSEC_PER_USEC;
d0b27fa7
PZ
8164 rt_runtime = tg->rt_bandwidth.rt_runtime;
8165
ab84d31e 8166 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
8167}
8168
25cc7da7 8169static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
8170{
8171 u64 rt_period_us;
8172
8173 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8174 do_div(rt_period_us, NSEC_PER_USEC);
8175 return rt_period_us;
8176}
332ac17e 8177#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8178
332ac17e 8179#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
8180static int sched_rt_global_constraints(void)
8181{
8182 int ret = 0;
8183
8184 mutex_lock(&rt_constraints_mutex);
9a7e0b18 8185 read_lock(&tasklist_lock);
4653f803 8186 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 8187 read_unlock(&tasklist_lock);
d0b27fa7
PZ
8188 mutex_unlock(&rt_constraints_mutex);
8189
8190 return ret;
8191}
54e99124 8192
25cc7da7 8193static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
8194{
8195 /* Don't accept realtime tasks when there is no way for them to run */
8196 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8197 return 0;
8198
8199 return 1;
8200}
8201
6d6bc0ad 8202#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8203static int sched_rt_global_constraints(void)
8204{
ac086bc2 8205 unsigned long flags;
8c5e9554 8206 int i;
ec5d4989 8207
0986b11b 8208 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
8209 for_each_possible_cpu(i) {
8210 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8211
0986b11b 8212 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8213 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 8214 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8215 }
0986b11b 8216 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 8217
8c5e9554 8218 return 0;
d0b27fa7 8219}
6d6bc0ad 8220#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8221
a1963b81 8222static int sched_dl_global_validate(void)
332ac17e 8223{
1724813d
PZ
8224 u64 runtime = global_rt_runtime();
8225 u64 period = global_rt_period();
332ac17e 8226 u64 new_bw = to_ratio(period, runtime);
f10e00f4 8227 struct dl_bw *dl_b;
1724813d 8228 int cpu, ret = 0;
49516342 8229 unsigned long flags;
332ac17e
DF
8230
8231 /*
8232 * Here we want to check the bandwidth not being set to some
8233 * value smaller than the currently allocated bandwidth in
8234 * any of the root_domains.
8235 *
8236 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
8237 * cycling on root_domains... Discussion on different/better
8238 * solutions is welcome!
8239 */
1724813d 8240 for_each_possible_cpu(cpu) {
f10e00f4
KT
8241 rcu_read_lock_sched();
8242 dl_b = dl_bw_of(cpu);
332ac17e 8243
49516342 8244 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d
PZ
8245 if (new_bw < dl_b->total_bw)
8246 ret = -EBUSY;
49516342 8247 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
1724813d 8248
f10e00f4
KT
8249 rcu_read_unlock_sched();
8250
1724813d
PZ
8251 if (ret)
8252 break;
332ac17e
DF
8253 }
8254
1724813d 8255 return ret;
332ac17e
DF
8256}
8257
1724813d 8258static void sched_dl_do_global(void)
ce0dbbbb 8259{
1724813d 8260 u64 new_bw = -1;
f10e00f4 8261 struct dl_bw *dl_b;
1724813d 8262 int cpu;
49516342 8263 unsigned long flags;
ce0dbbbb 8264
1724813d
PZ
8265 def_dl_bandwidth.dl_period = global_rt_period();
8266 def_dl_bandwidth.dl_runtime = global_rt_runtime();
8267
8268 if (global_rt_runtime() != RUNTIME_INF)
8269 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
8270
8271 /*
8272 * FIXME: As above...
8273 */
8274 for_each_possible_cpu(cpu) {
f10e00f4
KT
8275 rcu_read_lock_sched();
8276 dl_b = dl_bw_of(cpu);
1724813d 8277
49516342 8278 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d 8279 dl_b->bw = new_bw;
49516342 8280 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
f10e00f4
KT
8281
8282 rcu_read_unlock_sched();
ce0dbbbb 8283 }
1724813d
PZ
8284}
8285
8286static int sched_rt_global_validate(void)
8287{
8288 if (sysctl_sched_rt_period <= 0)
8289 return -EINVAL;
8290
e9e7cb38
JL
8291 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
8292 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
1724813d
PZ
8293 return -EINVAL;
8294
8295 return 0;
8296}
8297
8298static void sched_rt_do_global(void)
8299{
8300 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8301 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
8302}
8303
d0b27fa7 8304int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8305 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8306 loff_t *ppos)
8307{
d0b27fa7
PZ
8308 int old_period, old_runtime;
8309 static DEFINE_MUTEX(mutex);
1724813d 8310 int ret;
d0b27fa7
PZ
8311
8312 mutex_lock(&mutex);
8313 old_period = sysctl_sched_rt_period;
8314 old_runtime = sysctl_sched_rt_runtime;
8315
8d65af78 8316 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
8317
8318 if (!ret && write) {
1724813d
PZ
8319 ret = sched_rt_global_validate();
8320 if (ret)
8321 goto undo;
8322
a1963b81 8323 ret = sched_dl_global_validate();
1724813d
PZ
8324 if (ret)
8325 goto undo;
8326
a1963b81 8327 ret = sched_rt_global_constraints();
1724813d
PZ
8328 if (ret)
8329 goto undo;
8330
8331 sched_rt_do_global();
8332 sched_dl_do_global();
8333 }
8334 if (0) {
8335undo:
8336 sysctl_sched_rt_period = old_period;
8337 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
8338 }
8339 mutex_unlock(&mutex);
8340
8341 return ret;
8342}
68318b8e 8343
1724813d 8344int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
8345 void __user *buffer, size_t *lenp,
8346 loff_t *ppos)
8347{
8348 int ret;
332ac17e 8349 static DEFINE_MUTEX(mutex);
332ac17e
DF
8350
8351 mutex_lock(&mutex);
332ac17e 8352 ret = proc_dointvec(table, write, buffer, lenp, ppos);
1724813d
PZ
8353 /* make sure that internally we keep jiffies */
8354 /* also, writing zero resets timeslice to default */
332ac17e 8355 if (!ret && write) {
1724813d
PZ
8356 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8357 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
332ac17e
DF
8358 }
8359 mutex_unlock(&mutex);
332ac17e
DF
8360 return ret;
8361}
8362
052f1dc7 8363#ifdef CONFIG_CGROUP_SCHED
68318b8e 8364
a7c6d554 8365static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 8366{
a7c6d554 8367 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
8368}
8369
eb95419b
TH
8370static struct cgroup_subsys_state *
8371cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 8372{
eb95419b
TH
8373 struct task_group *parent = css_tg(parent_css);
8374 struct task_group *tg;
68318b8e 8375
eb95419b 8376 if (!parent) {
68318b8e 8377 /* This is early initialization for the top cgroup */
07e06b01 8378 return &root_task_group.css;
68318b8e
SV
8379 }
8380
ec7dc8ac 8381 tg = sched_create_group(parent);
68318b8e
SV
8382 if (IS_ERR(tg))
8383 return ERR_PTR(-ENOMEM);
8384
2f5177f0
PZ
8385 sched_online_group(tg, parent);
8386
68318b8e
SV
8387 return &tg->css;
8388}
8389
2f5177f0 8390static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
ace783b9 8391{
eb95419b 8392 struct task_group *tg = css_tg(css);
ace783b9 8393
2f5177f0 8394 sched_offline_group(tg);
ace783b9
LZ
8395}
8396
eb95419b 8397static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 8398{
eb95419b 8399 struct task_group *tg = css_tg(css);
68318b8e 8400
2f5177f0
PZ
8401 /*
8402 * Relies on the RCU grace period between css_released() and this.
8403 */
8404 sched_free_group(tg);
ace783b9
LZ
8405}
8406
ea86cb4b
VG
8407/*
8408 * This is called before wake_up_new_task(), therefore we really only
8409 * have to set its group bits, all the other stuff does not apply.
8410 */
b53202e6 8411static void cpu_cgroup_fork(struct task_struct *task)
eeb61e53 8412{
ea86cb4b
VG
8413 struct rq_flags rf;
8414 struct rq *rq;
8415
8416 rq = task_rq_lock(task, &rf);
8417
8418 sched_change_group(task, TASK_SET_GROUP);
8419
8420 task_rq_unlock(rq, task, &rf);
eeb61e53
KT
8421}
8422
1f7dd3e5 8423static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
68318b8e 8424{
bb9d97b6 8425 struct task_struct *task;
1f7dd3e5 8426 struct cgroup_subsys_state *css;
7dc603c9 8427 int ret = 0;
bb9d97b6 8428
1f7dd3e5 8429 cgroup_taskset_for_each(task, css, tset) {
b68aa230 8430#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 8431 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 8432 return -EINVAL;
b68aa230 8433#else
bb9d97b6
TH
8434 /* We don't support RT-tasks being in separate groups */
8435 if (task->sched_class != &fair_sched_class)
8436 return -EINVAL;
b68aa230 8437#endif
7dc603c9
PZ
8438 /*
8439 * Serialize against wake_up_new_task() such that if its
8440 * running, we're sure to observe its full state.
8441 */
8442 raw_spin_lock_irq(&task->pi_lock);
8443 /*
8444 * Avoid calling sched_move_task() before wake_up_new_task()
8445 * has happened. This would lead to problems with PELT, due to
8446 * move wanting to detach+attach while we're not attached yet.
8447 */
8448 if (task->state == TASK_NEW)
8449 ret = -EINVAL;
8450 raw_spin_unlock_irq(&task->pi_lock);
8451
8452 if (ret)
8453 break;
bb9d97b6 8454 }
7dc603c9 8455 return ret;
be367d09 8456}
68318b8e 8457
1f7dd3e5 8458static void cpu_cgroup_attach(struct cgroup_taskset *tset)
68318b8e 8459{
bb9d97b6 8460 struct task_struct *task;
1f7dd3e5 8461 struct cgroup_subsys_state *css;
bb9d97b6 8462
1f7dd3e5 8463 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 8464 sched_move_task(task);
68318b8e
SV
8465}
8466
052f1dc7 8467#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
8468static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8469 struct cftype *cftype, u64 shareval)
68318b8e 8470{
182446d0 8471 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
8472}
8473
182446d0
TH
8474static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8475 struct cftype *cft)
68318b8e 8476{
182446d0 8477 struct task_group *tg = css_tg(css);
68318b8e 8478
c8b28116 8479 return (u64) scale_load_down(tg->shares);
68318b8e 8480}
ab84d31e
PT
8481
8482#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
8483static DEFINE_MUTEX(cfs_constraints_mutex);
8484
ab84d31e
PT
8485const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8486const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8487
a790de99
PT
8488static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8489
ab84d31e
PT
8490static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8491{
56f570e5 8492 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 8493 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
8494
8495 if (tg == &root_task_group)
8496 return -EINVAL;
8497
8498 /*
8499 * Ensure we have at some amount of bandwidth every period. This is
8500 * to prevent reaching a state of large arrears when throttled via
8501 * entity_tick() resulting in prolonged exit starvation.
8502 */
8503 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8504 return -EINVAL;
8505
8506 /*
8507 * Likewise, bound things on the otherside by preventing insane quota
8508 * periods. This also allows us to normalize in computing quota
8509 * feasibility.
8510 */
8511 if (period > max_cfs_quota_period)
8512 return -EINVAL;
8513
0e59bdae
KT
8514 /*
8515 * Prevent race between setting of cfs_rq->runtime_enabled and
8516 * unthrottle_offline_cfs_rqs().
8517 */
8518 get_online_cpus();
a790de99
PT
8519 mutex_lock(&cfs_constraints_mutex);
8520 ret = __cfs_schedulable(tg, period, quota);
8521 if (ret)
8522 goto out_unlock;
8523
58088ad0 8524 runtime_enabled = quota != RUNTIME_INF;
56f570e5 8525 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
8526 /*
8527 * If we need to toggle cfs_bandwidth_used, off->on must occur
8528 * before making related changes, and on->off must occur afterwards
8529 */
8530 if (runtime_enabled && !runtime_was_enabled)
8531 cfs_bandwidth_usage_inc();
ab84d31e
PT
8532 raw_spin_lock_irq(&cfs_b->lock);
8533 cfs_b->period = ns_to_ktime(period);
8534 cfs_b->quota = quota;
58088ad0 8535
a9cf55b2 8536 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 8537 /* restart the period timer (if active) to handle new period expiry */
77a4d1a1
PZ
8538 if (runtime_enabled)
8539 start_cfs_bandwidth(cfs_b);
ab84d31e
PT
8540 raw_spin_unlock_irq(&cfs_b->lock);
8541
0e59bdae 8542 for_each_online_cpu(i) {
ab84d31e 8543 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 8544 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
8545
8546 raw_spin_lock_irq(&rq->lock);
58088ad0 8547 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 8548 cfs_rq->runtime_remaining = 0;
671fd9da 8549
029632fb 8550 if (cfs_rq->throttled)
671fd9da 8551 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
8552 raw_spin_unlock_irq(&rq->lock);
8553 }
1ee14e6c
BS
8554 if (runtime_was_enabled && !runtime_enabled)
8555 cfs_bandwidth_usage_dec();
a790de99
PT
8556out_unlock:
8557 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 8558 put_online_cpus();
ab84d31e 8559
a790de99 8560 return ret;
ab84d31e
PT
8561}
8562
8563int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8564{
8565 u64 quota, period;
8566
029632fb 8567 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8568 if (cfs_quota_us < 0)
8569 quota = RUNTIME_INF;
8570 else
8571 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8572
8573 return tg_set_cfs_bandwidth(tg, period, quota);
8574}
8575
8576long tg_get_cfs_quota(struct task_group *tg)
8577{
8578 u64 quota_us;
8579
029632fb 8580 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
8581 return -1;
8582
029632fb 8583 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
8584 do_div(quota_us, NSEC_PER_USEC);
8585
8586 return quota_us;
8587}
8588
8589int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8590{
8591 u64 quota, period;
8592
8593 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 8594 quota = tg->cfs_bandwidth.quota;
ab84d31e 8595
ab84d31e
PT
8596 return tg_set_cfs_bandwidth(tg, period, quota);
8597}
8598
8599long tg_get_cfs_period(struct task_group *tg)
8600{
8601 u64 cfs_period_us;
8602
029632fb 8603 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8604 do_div(cfs_period_us, NSEC_PER_USEC);
8605
8606 return cfs_period_us;
8607}
8608
182446d0
TH
8609static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8610 struct cftype *cft)
ab84d31e 8611{
182446d0 8612 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
8613}
8614
182446d0
TH
8615static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8616 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 8617{
182446d0 8618 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
8619}
8620
182446d0
TH
8621static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8622 struct cftype *cft)
ab84d31e 8623{
182446d0 8624 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
8625}
8626
182446d0
TH
8627static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8628 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 8629{
182446d0 8630 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
8631}
8632
a790de99
PT
8633struct cfs_schedulable_data {
8634 struct task_group *tg;
8635 u64 period, quota;
8636};
8637
8638/*
8639 * normalize group quota/period to be quota/max_period
8640 * note: units are usecs
8641 */
8642static u64 normalize_cfs_quota(struct task_group *tg,
8643 struct cfs_schedulable_data *d)
8644{
8645 u64 quota, period;
8646
8647 if (tg == d->tg) {
8648 period = d->period;
8649 quota = d->quota;
8650 } else {
8651 period = tg_get_cfs_period(tg);
8652 quota = tg_get_cfs_quota(tg);
8653 }
8654
8655 /* note: these should typically be equivalent */
8656 if (quota == RUNTIME_INF || quota == -1)
8657 return RUNTIME_INF;
8658
8659 return to_ratio(period, quota);
8660}
8661
8662static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8663{
8664 struct cfs_schedulable_data *d = data;
029632fb 8665 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
8666 s64 quota = 0, parent_quota = -1;
8667
8668 if (!tg->parent) {
8669 quota = RUNTIME_INF;
8670 } else {
029632fb 8671 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
8672
8673 quota = normalize_cfs_quota(tg, d);
9c58c79a 8674 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
8675
8676 /*
8677 * ensure max(child_quota) <= parent_quota, inherit when no
8678 * limit is set
8679 */
8680 if (quota == RUNTIME_INF)
8681 quota = parent_quota;
8682 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8683 return -EINVAL;
8684 }
9c58c79a 8685 cfs_b->hierarchical_quota = quota;
a790de99
PT
8686
8687 return 0;
8688}
8689
8690static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8691{
8277434e 8692 int ret;
a790de99
PT
8693 struct cfs_schedulable_data data = {
8694 .tg = tg,
8695 .period = period,
8696 .quota = quota,
8697 };
8698
8699 if (quota != RUNTIME_INF) {
8700 do_div(data.period, NSEC_PER_USEC);
8701 do_div(data.quota, NSEC_PER_USEC);
8702 }
8703
8277434e
PT
8704 rcu_read_lock();
8705 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8706 rcu_read_unlock();
8707
8708 return ret;
a790de99 8709}
e8da1b18 8710
2da8ca82 8711static int cpu_stats_show(struct seq_file *sf, void *v)
e8da1b18 8712{
2da8ca82 8713 struct task_group *tg = css_tg(seq_css(sf));
029632fb 8714 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 8715
44ffc75b
TH
8716 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8717 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8718 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
8719
8720 return 0;
8721}
ab84d31e 8722#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 8723#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8724
052f1dc7 8725#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
8726static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8727 struct cftype *cft, s64 val)
6f505b16 8728{
182446d0 8729 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
8730}
8731
182446d0
TH
8732static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8733 struct cftype *cft)
6f505b16 8734{
182446d0 8735 return sched_group_rt_runtime(css_tg(css));
6f505b16 8736}
d0b27fa7 8737
182446d0
TH
8738static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8739 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 8740{
182446d0 8741 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
8742}
8743
182446d0
TH
8744static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8745 struct cftype *cft)
d0b27fa7 8746{
182446d0 8747 return sched_group_rt_period(css_tg(css));
d0b27fa7 8748}
6d6bc0ad 8749#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8750
fe5c7cc2 8751static struct cftype cpu_files[] = {
052f1dc7 8752#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8753 {
8754 .name = "shares",
f4c753b7
PM
8755 .read_u64 = cpu_shares_read_u64,
8756 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8757 },
052f1dc7 8758#endif
ab84d31e
PT
8759#ifdef CONFIG_CFS_BANDWIDTH
8760 {
8761 .name = "cfs_quota_us",
8762 .read_s64 = cpu_cfs_quota_read_s64,
8763 .write_s64 = cpu_cfs_quota_write_s64,
8764 },
8765 {
8766 .name = "cfs_period_us",
8767 .read_u64 = cpu_cfs_period_read_u64,
8768 .write_u64 = cpu_cfs_period_write_u64,
8769 },
e8da1b18
NR
8770 {
8771 .name = "stat",
2da8ca82 8772 .seq_show = cpu_stats_show,
e8da1b18 8773 },
ab84d31e 8774#endif
052f1dc7 8775#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8776 {
9f0c1e56 8777 .name = "rt_runtime_us",
06ecb27c
PM
8778 .read_s64 = cpu_rt_runtime_read,
8779 .write_s64 = cpu_rt_runtime_write,
6f505b16 8780 },
d0b27fa7
PZ
8781 {
8782 .name = "rt_period_us",
f4c753b7
PM
8783 .read_u64 = cpu_rt_period_read_uint,
8784 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8785 },
052f1dc7 8786#endif
4baf6e33 8787 { } /* terminate */
68318b8e
SV
8788};
8789
073219e9 8790struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748 8791 .css_alloc = cpu_cgroup_css_alloc,
2f5177f0 8792 .css_released = cpu_cgroup_css_released,
92fb9748 8793 .css_free = cpu_cgroup_css_free,
eeb61e53 8794 .fork = cpu_cgroup_fork,
bb9d97b6
TH
8795 .can_attach = cpu_cgroup_can_attach,
8796 .attach = cpu_cgroup_attach,
5577964e 8797 .legacy_cftypes = cpu_files,
b38e42e9 8798 .early_init = true,
68318b8e
SV
8799};
8800
052f1dc7 8801#endif /* CONFIG_CGROUP_SCHED */
d842de87 8802
b637a328
PM
8803void dump_cpu_task(int cpu)
8804{
8805 pr_info("Task dump for CPU %d:\n", cpu);
8806 sched_show_task(cpu_curr(cpu));
8807}
ed82b8a1
AK
8808
8809/*
8810 * Nice levels are multiplicative, with a gentle 10% change for every
8811 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8812 * nice 1, it will get ~10% less CPU time than another CPU-bound task
8813 * that remained on nice 0.
8814 *
8815 * The "10% effect" is relative and cumulative: from _any_ nice level,
8816 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8817 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8818 * If a task goes up by ~10% and another task goes down by ~10% then
8819 * the relative distance between them is ~25%.)
8820 */
8821const int sched_prio_to_weight[40] = {
8822 /* -20 */ 88761, 71755, 56483, 46273, 36291,
8823 /* -15 */ 29154, 23254, 18705, 14949, 11916,
8824 /* -10 */ 9548, 7620, 6100, 4904, 3906,
8825 /* -5 */ 3121, 2501, 1991, 1586, 1277,
8826 /* 0 */ 1024, 820, 655, 526, 423,
8827 /* 5 */ 335, 272, 215, 172, 137,
8828 /* 10 */ 110, 87, 70, 56, 45,
8829 /* 15 */ 36, 29, 23, 18, 15,
8830};
8831
8832/*
8833 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8834 *
8835 * In cases where the weight does not change often, we can use the
8836 * precalculated inverse to speed up arithmetics by turning divisions
8837 * into multiplications:
8838 */
8839const u32 sched_prio_to_wmult[40] = {
8840 /* -20 */ 48388, 59856, 76040, 92818, 118348,
8841 /* -15 */ 147320, 184698, 229616, 287308, 360437,
8842 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
8843 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
8844 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
8845 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
8846 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
8847 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8848};