]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/sched/core.c
sched: Remove USER_PRIO, TASK_USER_PRIO and MAX_USER_PRIO
[mirror_ubuntu-jammy-kernel.git] / kernel / sched / core.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4 2/*
391e43da 3 * kernel/sched/core.c
1da177e4 4 *
d1ccc66d 5 * Core kernel scheduler code and related syscalls
1da177e4
LT
6 *
7 * Copyright (C) 1991-2002 Linus Torvalds
1da177e4 8 */
9d246053
PA
9#define CREATE_TRACE_POINTS
10#include <trace/events/sched.h>
11#undef CREATE_TRACE_POINTS
12
325ea10c 13#include "sched.h"
1da177e4 14
7281c8de 15#include <linux/nospec.h>
85f1abe0 16
0ed557aa 17#include <linux/kcov.h>
d08b9f0c 18#include <linux/scs.h>
0ed557aa 19
96f951ed 20#include <asm/switch_to.h>
5517d86b 21#include <asm/tlb.h>
1da177e4 22
ea138446 23#include "../workqueue_internal.h"
771b53d0 24#include "../../fs/io-wq.h"
29d5e047 25#include "../smpboot.h"
6e0534f2 26
91c27493 27#include "pelt.h"
1f8db415 28#include "smp.h"
91c27493 29
a056a5be
QY
30/*
31 * Export tracepoints that act as a bare tracehook (ie: have no trace event
32 * associated with them) to allow external modules to probe them.
33 */
34EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
35EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
36EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
37EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
38EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
51cf18c9 39EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
a056a5be 40EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
4581bea8
VD
41EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
42EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
9d246053 43EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
a056a5be 44
029632fb 45DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 46
a73f863a 47#ifdef CONFIG_SCHED_DEBUG
bf5c91ba
IM
48/*
49 * Debugging: various feature bits
765cc3a4
PB
50 *
51 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
52 * sysctl_sched_features, defined in sched.h, to allow constants propagation
53 * at compile time and compiler optimization based on features default.
bf5c91ba 54 */
f00b45c1
PZ
55#define SCHED_FEAT(name, enabled) \
56 (1UL << __SCHED_FEAT_##name) * enabled |
bf5c91ba 57const_debug unsigned int sysctl_sched_features =
391e43da 58#include "features.h"
f00b45c1 59 0;
f00b45c1 60#undef SCHED_FEAT
765cc3a4 61#endif
f00b45c1 62
b82d9fdd
PZ
63/*
64 * Number of tasks to iterate in a single balance run.
65 * Limited because this is done with IRQs disabled.
66 */
67const_debug unsigned int sysctl_sched_nr_migrate = 32;
68
fa85ae24 69/*
d1ccc66d 70 * period over which we measure -rt task CPU usage in us.
fa85ae24
PZ
71 * default: 1s
72 */
9f0c1e56 73unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 74
029632fb 75__read_mostly int scheduler_running;
6892b75e 76
9f0c1e56
PZ
77/*
78 * part of the period that we allow rt tasks to run in us.
79 * default: 0.95s
80 */
81int sysctl_sched_rt_runtime = 950000;
fa85ae24 82
58877d34
PZ
83
84/*
85 * Serialization rules:
86 *
87 * Lock order:
88 *
89 * p->pi_lock
90 * rq->lock
91 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
92 *
93 * rq1->lock
94 * rq2->lock where: rq1 < rq2
95 *
96 * Regular state:
97 *
98 * Normal scheduling state is serialized by rq->lock. __schedule() takes the
99 * local CPU's rq->lock, it optionally removes the task from the runqueue and
b19a888c 100 * always looks at the local rq data structures to find the most eligible task
58877d34
PZ
101 * to run next.
102 *
103 * Task enqueue is also under rq->lock, possibly taken from another CPU.
104 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
105 * the local CPU to avoid bouncing the runqueue state around [ see
106 * ttwu_queue_wakelist() ]
107 *
108 * Task wakeup, specifically wakeups that involve migration, are horribly
109 * complicated to avoid having to take two rq->locks.
110 *
111 * Special state:
112 *
113 * System-calls and anything external will use task_rq_lock() which acquires
114 * both p->pi_lock and rq->lock. As a consequence the state they change is
115 * stable while holding either lock:
116 *
117 * - sched_setaffinity()/
118 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed
119 * - set_user_nice(): p->se.load, p->*prio
120 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio,
121 * p->se.load, p->rt_priority,
122 * p->dl.dl_{runtime, deadline, period, flags, bw, density}
123 * - sched_setnuma(): p->numa_preferred_nid
124 * - sched_move_task()/
125 * cpu_cgroup_fork(): p->sched_task_group
126 * - uclamp_update_active() p->uclamp*
127 *
128 * p->state <- TASK_*:
129 *
130 * is changed locklessly using set_current_state(), __set_current_state() or
131 * set_special_state(), see their respective comments, or by
132 * try_to_wake_up(). This latter uses p->pi_lock to serialize against
133 * concurrent self.
134 *
135 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
136 *
137 * is set by activate_task() and cleared by deactivate_task(), under
138 * rq->lock. Non-zero indicates the task is runnable, the special
139 * ON_RQ_MIGRATING state is used for migration without holding both
140 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
141 *
142 * p->on_cpu <- { 0, 1 }:
143 *
144 * is set by prepare_task() and cleared by finish_task() such that it will be
145 * set before p is scheduled-in and cleared after p is scheduled-out, both
146 * under rq->lock. Non-zero indicates the task is running on its CPU.
147 *
148 * [ The astute reader will observe that it is possible for two tasks on one
149 * CPU to have ->on_cpu = 1 at the same time. ]
150 *
151 * task_cpu(p): is changed by set_task_cpu(), the rules are:
152 *
153 * - Don't call set_task_cpu() on a blocked task:
154 *
155 * We don't care what CPU we're not running on, this simplifies hotplug,
156 * the CPU assignment of blocked tasks isn't required to be valid.
157 *
158 * - for try_to_wake_up(), called under p->pi_lock:
159 *
160 * This allows try_to_wake_up() to only take one rq->lock, see its comment.
161 *
162 * - for migration called under rq->lock:
163 * [ see task_on_rq_migrating() in task_rq_lock() ]
164 *
165 * o move_queued_task()
166 * o detach_task()
167 *
168 * - for migration called under double_rq_lock():
169 *
170 * o __migrate_swap_task()
171 * o push_rt_task() / pull_rt_task()
172 * o push_dl_task() / pull_dl_task()
173 * o dl_task_offline_migration()
174 *
175 */
176
3e71a462
PZ
177/*
178 * __task_rq_lock - lock the rq @p resides on.
179 */
eb580751 180struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
181 __acquires(rq->lock)
182{
183 struct rq *rq;
184
185 lockdep_assert_held(&p->pi_lock);
186
187 for (;;) {
188 rq = task_rq(p);
189 raw_spin_lock(&rq->lock);
190 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 191 rq_pin_lock(rq, rf);
3e71a462
PZ
192 return rq;
193 }
194 raw_spin_unlock(&rq->lock);
195
196 while (unlikely(task_on_rq_migrating(p)))
197 cpu_relax();
198 }
199}
200
201/*
202 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
203 */
eb580751 204struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
205 __acquires(p->pi_lock)
206 __acquires(rq->lock)
207{
208 struct rq *rq;
209
210 for (;;) {
eb580751 211 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
3e71a462
PZ
212 rq = task_rq(p);
213 raw_spin_lock(&rq->lock);
214 /*
215 * move_queued_task() task_rq_lock()
216 *
217 * ACQUIRE (rq->lock)
218 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
219 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
220 * [S] ->cpu = new_cpu [L] task_rq()
221 * [L] ->on_rq
222 * RELEASE (rq->lock)
223 *
c546951d 224 * If we observe the old CPU in task_rq_lock(), the acquire of
3e71a462
PZ
225 * the old rq->lock will fully serialize against the stores.
226 *
c546951d
AP
227 * If we observe the new CPU in task_rq_lock(), the address
228 * dependency headed by '[L] rq = task_rq()' and the acquire
229 * will pair with the WMB to ensure we then also see migrating.
3e71a462
PZ
230 */
231 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 232 rq_pin_lock(rq, rf);
3e71a462
PZ
233 return rq;
234 }
235 raw_spin_unlock(&rq->lock);
eb580751 236 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
3e71a462
PZ
237
238 while (unlikely(task_on_rq_migrating(p)))
239 cpu_relax();
240 }
241}
242
535b9552
IM
243/*
244 * RQ-clock updating methods:
245 */
246
247static void update_rq_clock_task(struct rq *rq, s64 delta)
248{
249/*
250 * In theory, the compile should just see 0 here, and optimize out the call
251 * to sched_rt_avg_update. But I don't trust it...
252 */
11d4afd4
VG
253 s64 __maybe_unused steal = 0, irq_delta = 0;
254
535b9552
IM
255#ifdef CONFIG_IRQ_TIME_ACCOUNTING
256 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
257
258 /*
259 * Since irq_time is only updated on {soft,}irq_exit, we might run into
260 * this case when a previous update_rq_clock() happened inside a
261 * {soft,}irq region.
262 *
263 * When this happens, we stop ->clock_task and only update the
264 * prev_irq_time stamp to account for the part that fit, so that a next
265 * update will consume the rest. This ensures ->clock_task is
266 * monotonic.
267 *
268 * It does however cause some slight miss-attribution of {soft,}irq
269 * time, a more accurate solution would be to update the irq_time using
270 * the current rq->clock timestamp, except that would require using
271 * atomic ops.
272 */
273 if (irq_delta > delta)
274 irq_delta = delta;
275
276 rq->prev_irq_time += irq_delta;
277 delta -= irq_delta;
278#endif
279#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
280 if (static_key_false((&paravirt_steal_rq_enabled))) {
281 steal = paravirt_steal_clock(cpu_of(rq));
282 steal -= rq->prev_steal_time_rq;
283
284 if (unlikely(steal > delta))
285 steal = delta;
286
287 rq->prev_steal_time_rq += steal;
288 delta -= steal;
289 }
290#endif
291
292 rq->clock_task += delta;
293
11d4afd4 294#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
535b9552 295 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
91c27493 296 update_irq_load_avg(rq, irq_delta + steal);
535b9552 297#endif
23127296 298 update_rq_clock_pelt(rq, delta);
535b9552
IM
299}
300
301void update_rq_clock(struct rq *rq)
302{
303 s64 delta;
304
305 lockdep_assert_held(&rq->lock);
306
307 if (rq->clock_update_flags & RQCF_ACT_SKIP)
308 return;
309
310#ifdef CONFIG_SCHED_DEBUG
26ae58d2
PZ
311 if (sched_feat(WARN_DOUBLE_CLOCK))
312 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
535b9552
IM
313 rq->clock_update_flags |= RQCF_UPDATED;
314#endif
26ae58d2 315
535b9552
IM
316 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
317 if (delta < 0)
318 return;
319 rq->clock += delta;
320 update_rq_clock_task(rq, delta);
321}
322
8f4d37ec
PZ
323#ifdef CONFIG_SCHED_HRTICK
324/*
325 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 326 */
8f4d37ec 327
8f4d37ec
PZ
328static void hrtick_clear(struct rq *rq)
329{
330 if (hrtimer_active(&rq->hrtick_timer))
331 hrtimer_cancel(&rq->hrtick_timer);
332}
333
8f4d37ec
PZ
334/*
335 * High-resolution timer tick.
336 * Runs from hardirq context with interrupts disabled.
337 */
338static enum hrtimer_restart hrtick(struct hrtimer *timer)
339{
340 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
8a8c69c3 341 struct rq_flags rf;
8f4d37ec
PZ
342
343 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
344
8a8c69c3 345 rq_lock(rq, &rf);
3e51f33f 346 update_rq_clock(rq);
8f4d37ec 347 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
8a8c69c3 348 rq_unlock(rq, &rf);
8f4d37ec
PZ
349
350 return HRTIMER_NORESTART;
351}
352
95e904c7 353#ifdef CONFIG_SMP
971ee28c 354
4961b6e1 355static void __hrtick_restart(struct rq *rq)
971ee28c
PZ
356{
357 struct hrtimer *timer = &rq->hrtick_timer;
971ee28c 358
d5096aa6 359 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
971ee28c
PZ
360}
361
31656519
PZ
362/*
363 * called from hardirq (IPI) context
364 */
365static void __hrtick_start(void *arg)
b328ca18 366{
31656519 367 struct rq *rq = arg;
8a8c69c3 368 struct rq_flags rf;
b328ca18 369
8a8c69c3 370 rq_lock(rq, &rf);
971ee28c 371 __hrtick_restart(rq);
8a8c69c3 372 rq_unlock(rq, &rf);
b328ca18
PZ
373}
374
31656519
PZ
375/*
376 * Called to set the hrtick timer state.
377 *
378 * called with rq->lock held and irqs disabled
379 */
029632fb 380void hrtick_start(struct rq *rq, u64 delay)
b328ca18 381{
31656519 382 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 383 ktime_t time;
384 s64 delta;
385
386 /*
387 * Don't schedule slices shorter than 10000ns, that just
388 * doesn't make sense and can cause timer DoS.
389 */
390 delta = max_t(s64, delay, 10000LL);
391 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 392
cc584b21 393 hrtimer_set_expires(timer, time);
31656519 394
fd3eafda 395 if (rq == this_rq())
971ee28c 396 __hrtick_restart(rq);
fd3eafda 397 else
c46fff2a 398 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
b328ca18
PZ
399}
400
31656519
PZ
401#else
402/*
403 * Called to set the hrtick timer state.
404 *
405 * called with rq->lock held and irqs disabled
406 */
029632fb 407void hrtick_start(struct rq *rq, u64 delay)
31656519 408{
86893335
WL
409 /*
410 * Don't schedule slices shorter than 10000ns, that just
411 * doesn't make sense. Rely on vruntime for fairness.
412 */
413 delay = max_t(u64, delay, 10000LL);
4961b6e1 414 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
d5096aa6 415 HRTIMER_MODE_REL_PINNED_HARD);
31656519 416}
90b5363a 417
31656519 418#endif /* CONFIG_SMP */
8f4d37ec 419
77a021be 420static void hrtick_rq_init(struct rq *rq)
8f4d37ec 421{
31656519 422#ifdef CONFIG_SMP
545b8c8d 423 INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
31656519 424#endif
d5096aa6 425 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
31656519 426 rq->hrtick_timer.function = hrtick;
8f4d37ec 427}
006c75f1 428#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
429static inline void hrtick_clear(struct rq *rq)
430{
431}
432
77a021be 433static inline void hrtick_rq_init(struct rq *rq)
8f4d37ec
PZ
434{
435}
006c75f1 436#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 437
5529578a
FW
438/*
439 * cmpxchg based fetch_or, macro so it works for different integer types
440 */
441#define fetch_or(ptr, mask) \
442 ({ \
443 typeof(ptr) _ptr = (ptr); \
444 typeof(mask) _mask = (mask); \
445 typeof(*_ptr) _old, _val = *_ptr; \
446 \
447 for (;;) { \
448 _old = cmpxchg(_ptr, _val, _val | _mask); \
449 if (_old == _val) \
450 break; \
451 _val = _old; \
452 } \
453 _old; \
454})
455
e3baac47 456#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
457/*
458 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
459 * this avoids any races wrt polling state changes and thereby avoids
460 * spurious IPIs.
461 */
462static bool set_nr_and_not_polling(struct task_struct *p)
463{
464 struct thread_info *ti = task_thread_info(p);
465 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
466}
e3baac47
PZ
467
468/*
469 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
470 *
471 * If this returns true, then the idle task promises to call
472 * sched_ttwu_pending() and reschedule soon.
473 */
474static bool set_nr_if_polling(struct task_struct *p)
475{
476 struct thread_info *ti = task_thread_info(p);
316c1608 477 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
e3baac47
PZ
478
479 for (;;) {
480 if (!(val & _TIF_POLLING_NRFLAG))
481 return false;
482 if (val & _TIF_NEED_RESCHED)
483 return true;
484 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
485 if (old == val)
486 break;
487 val = old;
488 }
489 return true;
490}
491
fd99f91a
PZ
492#else
493static bool set_nr_and_not_polling(struct task_struct *p)
494{
495 set_tsk_need_resched(p);
496 return true;
497}
e3baac47
PZ
498
499#ifdef CONFIG_SMP
500static bool set_nr_if_polling(struct task_struct *p)
501{
502 return false;
503}
504#endif
fd99f91a
PZ
505#endif
506
07879c6a 507static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
76751049
PZ
508{
509 struct wake_q_node *node = &task->wake_q;
510
511 /*
512 * Atomically grab the task, if ->wake_q is !nil already it means
b19a888c 513 * it's already queued (either by us or someone else) and will get the
76751049
PZ
514 * wakeup due to that.
515 *
4c4e3731
PZ
516 * In order to ensure that a pending wakeup will observe our pending
517 * state, even in the failed case, an explicit smp_mb() must be used.
76751049 518 */
4c4e3731 519 smp_mb__before_atomic();
87ff19cb 520 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
07879c6a 521 return false;
76751049
PZ
522
523 /*
524 * The head is context local, there can be no concurrency.
525 */
526 *head->lastp = node;
527 head->lastp = &node->next;
07879c6a
DB
528 return true;
529}
530
531/**
532 * wake_q_add() - queue a wakeup for 'later' waking.
533 * @head: the wake_q_head to add @task to
534 * @task: the task to queue for 'later' wakeup
535 *
536 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
537 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
538 * instantly.
539 *
540 * This function must be used as-if it were wake_up_process(); IOW the task
541 * must be ready to be woken at this location.
542 */
543void wake_q_add(struct wake_q_head *head, struct task_struct *task)
544{
545 if (__wake_q_add(head, task))
546 get_task_struct(task);
547}
548
549/**
550 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
551 * @head: the wake_q_head to add @task to
552 * @task: the task to queue for 'later' wakeup
553 *
554 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
555 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
556 * instantly.
557 *
558 * This function must be used as-if it were wake_up_process(); IOW the task
559 * must be ready to be woken at this location.
560 *
561 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
562 * that already hold reference to @task can call the 'safe' version and trust
563 * wake_q to do the right thing depending whether or not the @task is already
564 * queued for wakeup.
565 */
566void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
567{
568 if (!__wake_q_add(head, task))
569 put_task_struct(task);
76751049
PZ
570}
571
572void wake_up_q(struct wake_q_head *head)
573{
574 struct wake_q_node *node = head->first;
575
576 while (node != WAKE_Q_TAIL) {
577 struct task_struct *task;
578
579 task = container_of(node, struct task_struct, wake_q);
580 BUG_ON(!task);
d1ccc66d 581 /* Task can safely be re-inserted now: */
76751049
PZ
582 node = node->next;
583 task->wake_q.next = NULL;
584
585 /*
7696f991
AP
586 * wake_up_process() executes a full barrier, which pairs with
587 * the queueing in wake_q_add() so as not to miss wakeups.
76751049
PZ
588 */
589 wake_up_process(task);
590 put_task_struct(task);
591 }
592}
593
c24d20db 594/*
8875125e 595 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
596 *
597 * On UP this means the setting of the need_resched flag, on SMP it
598 * might also involve a cross-CPU call to trigger the scheduler on
599 * the target CPU.
600 */
8875125e 601void resched_curr(struct rq *rq)
c24d20db 602{
8875125e 603 struct task_struct *curr = rq->curr;
c24d20db
IM
604 int cpu;
605
8875125e 606 lockdep_assert_held(&rq->lock);
c24d20db 607
8875125e 608 if (test_tsk_need_resched(curr))
c24d20db
IM
609 return;
610
8875125e 611 cpu = cpu_of(rq);
fd99f91a 612
f27dde8d 613 if (cpu == smp_processor_id()) {
8875125e 614 set_tsk_need_resched(curr);
f27dde8d 615 set_preempt_need_resched();
c24d20db 616 return;
f27dde8d 617 }
c24d20db 618
8875125e 619 if (set_nr_and_not_polling(curr))
c24d20db 620 smp_send_reschedule(cpu);
dfc68f29
AL
621 else
622 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
623}
624
029632fb 625void resched_cpu(int cpu)
c24d20db
IM
626{
627 struct rq *rq = cpu_rq(cpu);
628 unsigned long flags;
629
7c2102e5 630 raw_spin_lock_irqsave(&rq->lock, flags);
a0982dfa
PM
631 if (cpu_online(cpu) || cpu == smp_processor_id())
632 resched_curr(rq);
05fa785c 633 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 634}
06d8308c 635
b021fe3e 636#ifdef CONFIG_SMP
3451d024 637#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2 638/*
d1ccc66d
IM
639 * In the semi idle case, use the nearest busy CPU for migrating timers
640 * from an idle CPU. This is good for power-savings.
83cd4fe2
VP
641 *
642 * We don't do similar optimization for completely idle system, as
d1ccc66d
IM
643 * selecting an idle CPU will add more delays to the timers than intended
644 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
83cd4fe2 645 */
bc7a34b8 646int get_nohz_timer_target(void)
83cd4fe2 647{
e938b9c9 648 int i, cpu = smp_processor_id(), default_cpu = -1;
83cd4fe2
VP
649 struct sched_domain *sd;
650
e938b9c9
WL
651 if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) {
652 if (!idle_cpu(cpu))
653 return cpu;
654 default_cpu = cpu;
655 }
6201b4d6 656
057f3fad 657 rcu_read_lock();
83cd4fe2 658 for_each_domain(cpu, sd) {
e938b9c9
WL
659 for_each_cpu_and(i, sched_domain_span(sd),
660 housekeeping_cpumask(HK_FLAG_TIMER)) {
44496922
WL
661 if (cpu == i)
662 continue;
663
e938b9c9 664 if (!idle_cpu(i)) {
057f3fad
PZ
665 cpu = i;
666 goto unlock;
667 }
668 }
83cd4fe2 669 }
9642d18e 670
e938b9c9
WL
671 if (default_cpu == -1)
672 default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
673 cpu = default_cpu;
057f3fad
PZ
674unlock:
675 rcu_read_unlock();
83cd4fe2
VP
676 return cpu;
677}
d1ccc66d 678
06d8308c
TG
679/*
680 * When add_timer_on() enqueues a timer into the timer wheel of an
681 * idle CPU then this timer might expire before the next timer event
682 * which is scheduled to wake up that CPU. In case of a completely
683 * idle system the next event might even be infinite time into the
684 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
685 * leaves the inner idle loop so the newly added timer is taken into
686 * account when the CPU goes back to idle and evaluates the timer
687 * wheel for the next timer event.
688 */
1c20091e 689static void wake_up_idle_cpu(int cpu)
06d8308c
TG
690{
691 struct rq *rq = cpu_rq(cpu);
692
693 if (cpu == smp_processor_id())
694 return;
695
67b9ca70 696 if (set_nr_and_not_polling(rq->idle))
06d8308c 697 smp_send_reschedule(cpu);
dfc68f29
AL
698 else
699 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
700}
701
c5bfece2 702static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 703{
53c5fa16
FW
704 /*
705 * We just need the target to call irq_exit() and re-evaluate
706 * the next tick. The nohz full kick at least implies that.
707 * If needed we can still optimize that later with an
708 * empty IRQ.
709 */
379d9ecb
PM
710 if (cpu_is_offline(cpu))
711 return true; /* Don't try to wake offline CPUs. */
c5bfece2 712 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
713 if (cpu != smp_processor_id() ||
714 tick_nohz_tick_stopped())
53c5fa16 715 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
716 return true;
717 }
718
719 return false;
720}
721
379d9ecb
PM
722/*
723 * Wake up the specified CPU. If the CPU is going offline, it is the
724 * caller's responsibility to deal with the lost wakeup, for example,
725 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
726 */
1c20091e
FW
727void wake_up_nohz_cpu(int cpu)
728{
c5bfece2 729 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
730 wake_up_idle_cpu(cpu);
731}
732
19a1f5ec 733static void nohz_csd_func(void *info)
45bf76df 734{
19a1f5ec
PZ
735 struct rq *rq = info;
736 int cpu = cpu_of(rq);
737 unsigned int flags;
873b4c65
VG
738
739 /*
19a1f5ec 740 * Release the rq::nohz_csd.
873b4c65 741 */
19a1f5ec
PZ
742 flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
743 WARN_ON(!(flags & NOHZ_KICK_MASK));
45bf76df 744
19a1f5ec
PZ
745 rq->idle_balance = idle_cpu(cpu);
746 if (rq->idle_balance && !need_resched()) {
747 rq->nohz_idle_balance = flags;
90b5363a
PZI
748 raise_softirq_irqoff(SCHED_SOFTIRQ);
749 }
2069dd75
PZ
750}
751
3451d024 752#endif /* CONFIG_NO_HZ_COMMON */
d842de87 753
ce831b38 754#ifdef CONFIG_NO_HZ_FULL
76d92ac3 755bool sched_can_stop_tick(struct rq *rq)
ce831b38 756{
76d92ac3
FW
757 int fifo_nr_running;
758
759 /* Deadline tasks, even if single, need the tick */
760 if (rq->dl.dl_nr_running)
761 return false;
762
1e78cdbd 763 /*
b19a888c 764 * If there are more than one RR tasks, we need the tick to affect the
2548d546 765 * actual RR behaviour.
1e78cdbd 766 */
76d92ac3
FW
767 if (rq->rt.rr_nr_running) {
768 if (rq->rt.rr_nr_running == 1)
769 return true;
770 else
771 return false;
1e78cdbd
RR
772 }
773
2548d546
PZ
774 /*
775 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
776 * forced preemption between FIFO tasks.
777 */
778 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
779 if (fifo_nr_running)
780 return true;
781
782 /*
783 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
784 * if there's more than one we need the tick for involuntary
785 * preemption.
786 */
787 if (rq->nr_running > 1)
541b8264 788 return false;
ce831b38 789
541b8264 790 return true;
ce831b38
FW
791}
792#endif /* CONFIG_NO_HZ_FULL */
6d6bc0ad 793#endif /* CONFIG_SMP */
18d95a28 794
a790de99
PT
795#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
796 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 797/*
8277434e
PT
798 * Iterate task_group tree rooted at *from, calling @down when first entering a
799 * node and @up when leaving it for the final time.
800 *
801 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 802 */
029632fb 803int walk_tg_tree_from(struct task_group *from,
8277434e 804 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
805{
806 struct task_group *parent, *child;
eb755805 807 int ret;
c09595f6 808
8277434e
PT
809 parent = from;
810
c09595f6 811down:
eb755805
PZ
812 ret = (*down)(parent, data);
813 if (ret)
8277434e 814 goto out;
c09595f6
PZ
815 list_for_each_entry_rcu(child, &parent->children, siblings) {
816 parent = child;
817 goto down;
818
819up:
820 continue;
821 }
eb755805 822 ret = (*up)(parent, data);
8277434e
PT
823 if (ret || parent == from)
824 goto out;
c09595f6
PZ
825
826 child = parent;
827 parent = parent->parent;
828 if (parent)
829 goto up;
8277434e 830out:
eb755805 831 return ret;
c09595f6
PZ
832}
833
029632fb 834int tg_nop(struct task_group *tg, void *data)
eb755805 835{
e2b245f8 836 return 0;
eb755805 837}
18d95a28
PZ
838#endif
839
9059393e 840static void set_load_weight(struct task_struct *p, bool update_load)
45bf76df 841{
f05998d4
NR
842 int prio = p->static_prio - MAX_RT_PRIO;
843 struct load_weight *load = &p->se.load;
844
dd41f596
IM
845 /*
846 * SCHED_IDLE tasks get minimal weight:
847 */
1da1843f 848 if (task_has_idle_policy(p)) {
c8b28116 849 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 850 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
851 return;
852 }
71f8bd46 853
9059393e
VG
854 /*
855 * SCHED_OTHER tasks have to update their load when changing their
856 * weight
857 */
858 if (update_load && p->sched_class == &fair_sched_class) {
859 reweight_task(p, prio);
860 } else {
861 load->weight = scale_load(sched_prio_to_weight[prio]);
862 load->inv_weight = sched_prio_to_wmult[prio];
863 }
71f8bd46
IM
864}
865
69842cba 866#ifdef CONFIG_UCLAMP_TASK
2480c093
PB
867/*
868 * Serializes updates of utilization clamp values
869 *
870 * The (slow-path) user-space triggers utilization clamp value updates which
871 * can require updates on (fast-path) scheduler's data structures used to
872 * support enqueue/dequeue operations.
873 * While the per-CPU rq lock protects fast-path update operations, user-space
874 * requests are serialized using a mutex to reduce the risk of conflicting
875 * updates or API abuses.
876 */
877static DEFINE_MUTEX(uclamp_mutex);
878
e8f14172
PB
879/* Max allowed minimum utilization */
880unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
881
882/* Max allowed maximum utilization */
883unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
884
13685c4a
QY
885/*
886 * By default RT tasks run at the maximum performance point/capacity of the
887 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
888 * SCHED_CAPACITY_SCALE.
889 *
890 * This knob allows admins to change the default behavior when uclamp is being
891 * used. In battery powered devices, particularly, running at the maximum
892 * capacity and frequency will increase energy consumption and shorten the
893 * battery life.
894 *
895 * This knob only affects RT tasks that their uclamp_se->user_defined == false.
896 *
897 * This knob will not override the system default sched_util_clamp_min defined
898 * above.
899 */
900unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
901
e8f14172
PB
902/* All clamps are required to be less or equal than these values */
903static struct uclamp_se uclamp_default[UCLAMP_CNT];
69842cba 904
46609ce2
QY
905/*
906 * This static key is used to reduce the uclamp overhead in the fast path. It
907 * primarily disables the call to uclamp_rq_{inc, dec}() in
908 * enqueue/dequeue_task().
909 *
910 * This allows users to continue to enable uclamp in their kernel config with
911 * minimum uclamp overhead in the fast path.
912 *
913 * As soon as userspace modifies any of the uclamp knobs, the static key is
914 * enabled, since we have an actual users that make use of uclamp
915 * functionality.
916 *
917 * The knobs that would enable this static key are:
918 *
919 * * A task modifying its uclamp value with sched_setattr().
920 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
921 * * An admin modifying the cgroup cpu.uclamp.{min, max}
922 */
923DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
924
69842cba
PB
925/* Integer rounded range for each bucket */
926#define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
927
928#define for_each_clamp_id(clamp_id) \
929 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
930
931static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
932{
933 return clamp_value / UCLAMP_BUCKET_DELTA;
934}
935
7763baac 936static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
69842cba
PB
937{
938 if (clamp_id == UCLAMP_MIN)
939 return 0;
940 return SCHED_CAPACITY_SCALE;
941}
942
a509a7cd
PB
943static inline void uclamp_se_set(struct uclamp_se *uc_se,
944 unsigned int value, bool user_defined)
69842cba
PB
945{
946 uc_se->value = value;
947 uc_se->bucket_id = uclamp_bucket_id(value);
a509a7cd 948 uc_se->user_defined = user_defined;
69842cba
PB
949}
950
e496187d 951static inline unsigned int
0413d7f3 952uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
e496187d
PB
953 unsigned int clamp_value)
954{
955 /*
956 * Avoid blocked utilization pushing up the frequency when we go
957 * idle (which drops the max-clamp) by retaining the last known
958 * max-clamp.
959 */
960 if (clamp_id == UCLAMP_MAX) {
961 rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
962 return clamp_value;
963 }
964
965 return uclamp_none(UCLAMP_MIN);
966}
967
0413d7f3 968static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
e496187d
PB
969 unsigned int clamp_value)
970{
971 /* Reset max-clamp retention only on idle exit */
972 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
973 return;
974
975 WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
976}
977
69842cba 978static inline
7763baac 979unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
0413d7f3 980 unsigned int clamp_value)
69842cba
PB
981{
982 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
983 int bucket_id = UCLAMP_BUCKETS - 1;
984
985 /*
986 * Since both min and max clamps are max aggregated, find the
987 * top most bucket with tasks in.
988 */
989 for ( ; bucket_id >= 0; bucket_id--) {
990 if (!bucket[bucket_id].tasks)
991 continue;
992 return bucket[bucket_id].value;
993 }
994
995 /* No tasks -- default clamp values */
e496187d 996 return uclamp_idle_value(rq, clamp_id, clamp_value);
69842cba
PB
997}
998
13685c4a
QY
999static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1000{
1001 unsigned int default_util_min;
1002 struct uclamp_se *uc_se;
1003
1004 lockdep_assert_held(&p->pi_lock);
1005
1006 uc_se = &p->uclamp_req[UCLAMP_MIN];
1007
1008 /* Only sync if user didn't override the default */
1009 if (uc_se->user_defined)
1010 return;
1011
1012 default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1013 uclamp_se_set(uc_se, default_util_min, false);
1014}
1015
1016static void uclamp_update_util_min_rt_default(struct task_struct *p)
1017{
1018 struct rq_flags rf;
1019 struct rq *rq;
1020
1021 if (!rt_task(p))
1022 return;
1023
1024 /* Protect updates to p->uclamp_* */
1025 rq = task_rq_lock(p, &rf);
1026 __uclamp_update_util_min_rt_default(p);
1027 task_rq_unlock(rq, p, &rf);
1028}
1029
1030static void uclamp_sync_util_min_rt_default(void)
1031{
1032 struct task_struct *g, *p;
1033
1034 /*
1035 * copy_process() sysctl_uclamp
1036 * uclamp_min_rt = X;
1037 * write_lock(&tasklist_lock) read_lock(&tasklist_lock)
1038 * // link thread smp_mb__after_spinlock()
1039 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock);
1040 * sched_post_fork() for_each_process_thread()
1041 * __uclamp_sync_rt() __uclamp_sync_rt()
1042 *
1043 * Ensures that either sched_post_fork() will observe the new
1044 * uclamp_min_rt or for_each_process_thread() will observe the new
1045 * task.
1046 */
1047 read_lock(&tasklist_lock);
1048 smp_mb__after_spinlock();
1049 read_unlock(&tasklist_lock);
1050
1051 rcu_read_lock();
1052 for_each_process_thread(g, p)
1053 uclamp_update_util_min_rt_default(p);
1054 rcu_read_unlock();
1055}
1056
3eac870a 1057static inline struct uclamp_se
0413d7f3 1058uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
3eac870a
PB
1059{
1060 struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1061#ifdef CONFIG_UCLAMP_TASK_GROUP
1062 struct uclamp_se uc_max;
1063
1064 /*
1065 * Tasks in autogroups or root task group will be
1066 * restricted by system defaults.
1067 */
1068 if (task_group_is_autogroup(task_group(p)))
1069 return uc_req;
1070 if (task_group(p) == &root_task_group)
1071 return uc_req;
1072
1073 uc_max = task_group(p)->uclamp[clamp_id];
1074 if (uc_req.value > uc_max.value || !uc_req.user_defined)
1075 return uc_max;
1076#endif
1077
1078 return uc_req;
1079}
1080
e8f14172
PB
1081/*
1082 * The effective clamp bucket index of a task depends on, by increasing
1083 * priority:
1084 * - the task specific clamp value, when explicitly requested from userspace
3eac870a
PB
1085 * - the task group effective clamp value, for tasks not either in the root
1086 * group or in an autogroup
e8f14172
PB
1087 * - the system default clamp value, defined by the sysadmin
1088 */
1089static inline struct uclamp_se
0413d7f3 1090uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
e8f14172 1091{
3eac870a 1092 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
e8f14172
PB
1093 struct uclamp_se uc_max = uclamp_default[clamp_id];
1094
1095 /* System default restrictions always apply */
1096 if (unlikely(uc_req.value > uc_max.value))
1097 return uc_max;
1098
1099 return uc_req;
1100}
1101
686516b5 1102unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
9d20ad7d
PB
1103{
1104 struct uclamp_se uc_eff;
1105
1106 /* Task currently refcounted: use back-annotated (effective) value */
1107 if (p->uclamp[clamp_id].active)
686516b5 1108 return (unsigned long)p->uclamp[clamp_id].value;
9d20ad7d
PB
1109
1110 uc_eff = uclamp_eff_get(p, clamp_id);
1111
686516b5 1112 return (unsigned long)uc_eff.value;
9d20ad7d
PB
1113}
1114
69842cba
PB
1115/*
1116 * When a task is enqueued on a rq, the clamp bucket currently defined by the
1117 * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1118 * updates the rq's clamp value if required.
60daf9c1
PB
1119 *
1120 * Tasks can have a task-specific value requested from user-space, track
1121 * within each bucket the maximum value for tasks refcounted in it.
1122 * This "local max aggregation" allows to track the exact "requested" value
1123 * for each bucket when all its RUNNABLE tasks require the same clamp.
69842cba
PB
1124 */
1125static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
0413d7f3 1126 enum uclamp_id clamp_id)
69842cba
PB
1127{
1128 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1129 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1130 struct uclamp_bucket *bucket;
1131
1132 lockdep_assert_held(&rq->lock);
1133
e8f14172
PB
1134 /* Update task effective clamp */
1135 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1136
69842cba
PB
1137 bucket = &uc_rq->bucket[uc_se->bucket_id];
1138 bucket->tasks++;
e8f14172 1139 uc_se->active = true;
69842cba 1140
e496187d
PB
1141 uclamp_idle_reset(rq, clamp_id, uc_se->value);
1142
60daf9c1
PB
1143 /*
1144 * Local max aggregation: rq buckets always track the max
1145 * "requested" clamp value of its RUNNABLE tasks.
1146 */
1147 if (bucket->tasks == 1 || uc_se->value > bucket->value)
1148 bucket->value = uc_se->value;
1149
69842cba 1150 if (uc_se->value > READ_ONCE(uc_rq->value))
60daf9c1 1151 WRITE_ONCE(uc_rq->value, uc_se->value);
69842cba
PB
1152}
1153
1154/*
1155 * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1156 * is released. If this is the last task reference counting the rq's max
1157 * active clamp value, then the rq's clamp value is updated.
1158 *
1159 * Both refcounted tasks and rq's cached clamp values are expected to be
1160 * always valid. If it's detected they are not, as defensive programming,
1161 * enforce the expected state and warn.
1162 */
1163static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
0413d7f3 1164 enum uclamp_id clamp_id)
69842cba
PB
1165{
1166 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1167 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1168 struct uclamp_bucket *bucket;
e496187d 1169 unsigned int bkt_clamp;
69842cba
PB
1170 unsigned int rq_clamp;
1171
1172 lockdep_assert_held(&rq->lock);
1173
46609ce2
QY
1174 /*
1175 * If sched_uclamp_used was enabled after task @p was enqueued,
1176 * we could end up with unbalanced call to uclamp_rq_dec_id().
1177 *
1178 * In this case the uc_se->active flag should be false since no uclamp
1179 * accounting was performed at enqueue time and we can just return
1180 * here.
1181 *
b19a888c 1182 * Need to be careful of the following enqueue/dequeue ordering
46609ce2
QY
1183 * problem too
1184 *
1185 * enqueue(taskA)
1186 * // sched_uclamp_used gets enabled
1187 * enqueue(taskB)
1188 * dequeue(taskA)
b19a888c 1189 * // Must not decrement bucket->tasks here
46609ce2
QY
1190 * dequeue(taskB)
1191 *
1192 * where we could end up with stale data in uc_se and
1193 * bucket[uc_se->bucket_id].
1194 *
1195 * The following check here eliminates the possibility of such race.
1196 */
1197 if (unlikely(!uc_se->active))
1198 return;
1199
69842cba 1200 bucket = &uc_rq->bucket[uc_se->bucket_id];
46609ce2 1201
69842cba
PB
1202 SCHED_WARN_ON(!bucket->tasks);
1203 if (likely(bucket->tasks))
1204 bucket->tasks--;
46609ce2 1205
e8f14172 1206 uc_se->active = false;
69842cba 1207
60daf9c1
PB
1208 /*
1209 * Keep "local max aggregation" simple and accept to (possibly)
1210 * overboost some RUNNABLE tasks in the same bucket.
1211 * The rq clamp bucket value is reset to its base value whenever
1212 * there are no more RUNNABLE tasks refcounting it.
1213 */
69842cba
PB
1214 if (likely(bucket->tasks))
1215 return;
1216
1217 rq_clamp = READ_ONCE(uc_rq->value);
1218 /*
1219 * Defensive programming: this should never happen. If it happens,
1220 * e.g. due to future modification, warn and fixup the expected value.
1221 */
1222 SCHED_WARN_ON(bucket->value > rq_clamp);
e496187d
PB
1223 if (bucket->value >= rq_clamp) {
1224 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1225 WRITE_ONCE(uc_rq->value, bkt_clamp);
1226 }
69842cba
PB
1227}
1228
1229static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1230{
0413d7f3 1231 enum uclamp_id clamp_id;
69842cba 1232
46609ce2
QY
1233 /*
1234 * Avoid any overhead until uclamp is actually used by the userspace.
1235 *
1236 * The condition is constructed such that a NOP is generated when
1237 * sched_uclamp_used is disabled.
1238 */
1239 if (!static_branch_unlikely(&sched_uclamp_used))
1240 return;
1241
69842cba
PB
1242 if (unlikely(!p->sched_class->uclamp_enabled))
1243 return;
1244
1245 for_each_clamp_id(clamp_id)
1246 uclamp_rq_inc_id(rq, p, clamp_id);
e496187d
PB
1247
1248 /* Reset clamp idle holding when there is one RUNNABLE task */
1249 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1250 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
69842cba
PB
1251}
1252
1253static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1254{
0413d7f3 1255 enum uclamp_id clamp_id;
69842cba 1256
46609ce2
QY
1257 /*
1258 * Avoid any overhead until uclamp is actually used by the userspace.
1259 *
1260 * The condition is constructed such that a NOP is generated when
1261 * sched_uclamp_used is disabled.
1262 */
1263 if (!static_branch_unlikely(&sched_uclamp_used))
1264 return;
1265
69842cba
PB
1266 if (unlikely(!p->sched_class->uclamp_enabled))
1267 return;
1268
1269 for_each_clamp_id(clamp_id)
1270 uclamp_rq_dec_id(rq, p, clamp_id);
1271}
1272
babbe170 1273static inline void
0413d7f3 1274uclamp_update_active(struct task_struct *p, enum uclamp_id clamp_id)
babbe170
PB
1275{
1276 struct rq_flags rf;
1277 struct rq *rq;
1278
1279 /*
1280 * Lock the task and the rq where the task is (or was) queued.
1281 *
1282 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1283 * price to pay to safely serialize util_{min,max} updates with
1284 * enqueues, dequeues and migration operations.
1285 * This is the same locking schema used by __set_cpus_allowed_ptr().
1286 */
1287 rq = task_rq_lock(p, &rf);
1288
1289 /*
1290 * Setting the clamp bucket is serialized by task_rq_lock().
1291 * If the task is not yet RUNNABLE and its task_struct is not
1292 * affecting a valid clamp bucket, the next time it's enqueued,
1293 * it will already see the updated clamp bucket value.
1294 */
6e1ff077 1295 if (p->uclamp[clamp_id].active) {
babbe170
PB
1296 uclamp_rq_dec_id(rq, p, clamp_id);
1297 uclamp_rq_inc_id(rq, p, clamp_id);
1298 }
1299
1300 task_rq_unlock(rq, p, &rf);
1301}
1302
e3b8b6a0 1303#ifdef CONFIG_UCLAMP_TASK_GROUP
babbe170
PB
1304static inline void
1305uclamp_update_active_tasks(struct cgroup_subsys_state *css,
1306 unsigned int clamps)
1307{
0413d7f3 1308 enum uclamp_id clamp_id;
babbe170
PB
1309 struct css_task_iter it;
1310 struct task_struct *p;
babbe170
PB
1311
1312 css_task_iter_start(css, 0, &it);
1313 while ((p = css_task_iter_next(&it))) {
1314 for_each_clamp_id(clamp_id) {
1315 if ((0x1 << clamp_id) & clamps)
1316 uclamp_update_active(p, clamp_id);
1317 }
1318 }
1319 css_task_iter_end(&it);
1320}
1321
7274a5c1
PB
1322static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1323static void uclamp_update_root_tg(void)
1324{
1325 struct task_group *tg = &root_task_group;
1326
1327 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1328 sysctl_sched_uclamp_util_min, false);
1329 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1330 sysctl_sched_uclamp_util_max, false);
1331
1332 rcu_read_lock();
1333 cpu_util_update_eff(&root_task_group.css);
1334 rcu_read_unlock();
1335}
1336#else
1337static void uclamp_update_root_tg(void) { }
1338#endif
1339
e8f14172 1340int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
32927393 1341 void *buffer, size_t *lenp, loff_t *ppos)
e8f14172 1342{
7274a5c1 1343 bool update_root_tg = false;
13685c4a 1344 int old_min, old_max, old_min_rt;
e8f14172
PB
1345 int result;
1346
2480c093 1347 mutex_lock(&uclamp_mutex);
e8f14172
PB
1348 old_min = sysctl_sched_uclamp_util_min;
1349 old_max = sysctl_sched_uclamp_util_max;
13685c4a 1350 old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
e8f14172
PB
1351
1352 result = proc_dointvec(table, write, buffer, lenp, ppos);
1353 if (result)
1354 goto undo;
1355 if (!write)
1356 goto done;
1357
1358 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
13685c4a
QY
1359 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE ||
1360 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1361
e8f14172
PB
1362 result = -EINVAL;
1363 goto undo;
1364 }
1365
1366 if (old_min != sysctl_sched_uclamp_util_min) {
1367 uclamp_se_set(&uclamp_default[UCLAMP_MIN],
a509a7cd 1368 sysctl_sched_uclamp_util_min, false);
7274a5c1 1369 update_root_tg = true;
e8f14172
PB
1370 }
1371 if (old_max != sysctl_sched_uclamp_util_max) {
1372 uclamp_se_set(&uclamp_default[UCLAMP_MAX],
a509a7cd 1373 sysctl_sched_uclamp_util_max, false);
7274a5c1 1374 update_root_tg = true;
e8f14172
PB
1375 }
1376
46609ce2
QY
1377 if (update_root_tg) {
1378 static_branch_enable(&sched_uclamp_used);
7274a5c1 1379 uclamp_update_root_tg();
46609ce2 1380 }
7274a5c1 1381
13685c4a
QY
1382 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1383 static_branch_enable(&sched_uclamp_used);
1384 uclamp_sync_util_min_rt_default();
1385 }
7274a5c1 1386
e8f14172 1387 /*
7274a5c1
PB
1388 * We update all RUNNABLE tasks only when task groups are in use.
1389 * Otherwise, keep it simple and do just a lazy update at each next
1390 * task enqueue time.
e8f14172 1391 */
7274a5c1 1392
e8f14172
PB
1393 goto done;
1394
1395undo:
1396 sysctl_sched_uclamp_util_min = old_min;
1397 sysctl_sched_uclamp_util_max = old_max;
13685c4a 1398 sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
e8f14172 1399done:
2480c093 1400 mutex_unlock(&uclamp_mutex);
e8f14172
PB
1401
1402 return result;
1403}
1404
a509a7cd
PB
1405static int uclamp_validate(struct task_struct *p,
1406 const struct sched_attr *attr)
1407{
480a6ca2
DE
1408 int util_min = p->uclamp_req[UCLAMP_MIN].value;
1409 int util_max = p->uclamp_req[UCLAMP_MAX].value;
a509a7cd 1410
480a6ca2
DE
1411 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1412 util_min = attr->sched_util_min;
a509a7cd 1413
480a6ca2
DE
1414 if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
1415 return -EINVAL;
1416 }
1417
1418 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1419 util_max = attr->sched_util_max;
1420
1421 if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
1422 return -EINVAL;
1423 }
1424
1425 if (util_min != -1 && util_max != -1 && util_min > util_max)
a509a7cd
PB
1426 return -EINVAL;
1427
e65855a5
QY
1428 /*
1429 * We have valid uclamp attributes; make sure uclamp is enabled.
1430 *
1431 * We need to do that here, because enabling static branches is a
1432 * blocking operation which obviously cannot be done while holding
1433 * scheduler locks.
1434 */
1435 static_branch_enable(&sched_uclamp_used);
1436
a509a7cd
PB
1437 return 0;
1438}
1439
480a6ca2
DE
1440static bool uclamp_reset(const struct sched_attr *attr,
1441 enum uclamp_id clamp_id,
1442 struct uclamp_se *uc_se)
1443{
1444 /* Reset on sched class change for a non user-defined clamp value. */
1445 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
1446 !uc_se->user_defined)
1447 return true;
1448
1449 /* Reset on sched_util_{min,max} == -1. */
1450 if (clamp_id == UCLAMP_MIN &&
1451 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1452 attr->sched_util_min == -1) {
1453 return true;
1454 }
1455
1456 if (clamp_id == UCLAMP_MAX &&
1457 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1458 attr->sched_util_max == -1) {
1459 return true;
1460 }
1461
1462 return false;
1463}
1464
a509a7cd
PB
1465static void __setscheduler_uclamp(struct task_struct *p,
1466 const struct sched_attr *attr)
1467{
0413d7f3 1468 enum uclamp_id clamp_id;
1a00d999 1469
1a00d999
PB
1470 for_each_clamp_id(clamp_id) {
1471 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
480a6ca2 1472 unsigned int value;
1a00d999 1473
480a6ca2 1474 if (!uclamp_reset(attr, clamp_id, uc_se))
1a00d999
PB
1475 continue;
1476
13685c4a
QY
1477 /*
1478 * RT by default have a 100% boost value that could be modified
1479 * at runtime.
1480 */
1a00d999 1481 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
480a6ca2 1482 value = sysctl_sched_uclamp_util_min_rt_default;
13685c4a 1483 else
480a6ca2
DE
1484 value = uclamp_none(clamp_id);
1485
1486 uclamp_se_set(uc_se, value, false);
1a00d999 1487
1a00d999
PB
1488 }
1489
a509a7cd
PB
1490 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1491 return;
1492
480a6ca2
DE
1493 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1494 attr->sched_util_min != -1) {
a509a7cd
PB
1495 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1496 attr->sched_util_min, true);
1497 }
1498
480a6ca2
DE
1499 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1500 attr->sched_util_max != -1) {
a509a7cd
PB
1501 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1502 attr->sched_util_max, true);
1503 }
1504}
1505
e8f14172
PB
1506static void uclamp_fork(struct task_struct *p)
1507{
0413d7f3 1508 enum uclamp_id clamp_id;
e8f14172 1509
13685c4a
QY
1510 /*
1511 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1512 * as the task is still at its early fork stages.
1513 */
e8f14172
PB
1514 for_each_clamp_id(clamp_id)
1515 p->uclamp[clamp_id].active = false;
a87498ac
PB
1516
1517 if (likely(!p->sched_reset_on_fork))
1518 return;
1519
1520 for_each_clamp_id(clamp_id) {
eaf5a92e
QP
1521 uclamp_se_set(&p->uclamp_req[clamp_id],
1522 uclamp_none(clamp_id), false);
a87498ac 1523 }
e8f14172
PB
1524}
1525
13685c4a
QY
1526static void uclamp_post_fork(struct task_struct *p)
1527{
1528 uclamp_update_util_min_rt_default(p);
1529}
1530
d81ae8aa
QY
1531static void __init init_uclamp_rq(struct rq *rq)
1532{
1533 enum uclamp_id clamp_id;
1534 struct uclamp_rq *uc_rq = rq->uclamp;
1535
1536 for_each_clamp_id(clamp_id) {
1537 uc_rq[clamp_id] = (struct uclamp_rq) {
1538 .value = uclamp_none(clamp_id)
1539 };
1540 }
1541
1542 rq->uclamp_flags = 0;
1543}
1544
69842cba
PB
1545static void __init init_uclamp(void)
1546{
e8f14172 1547 struct uclamp_se uc_max = {};
0413d7f3 1548 enum uclamp_id clamp_id;
69842cba
PB
1549 int cpu;
1550
d81ae8aa
QY
1551 for_each_possible_cpu(cpu)
1552 init_uclamp_rq(cpu_rq(cpu));
69842cba 1553
69842cba 1554 for_each_clamp_id(clamp_id) {
e8f14172 1555 uclamp_se_set(&init_task.uclamp_req[clamp_id],
a509a7cd 1556 uclamp_none(clamp_id), false);
69842cba 1557 }
e8f14172
PB
1558
1559 /* System defaults allow max clamp values for both indexes */
a509a7cd 1560 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
2480c093 1561 for_each_clamp_id(clamp_id) {
e8f14172 1562 uclamp_default[clamp_id] = uc_max;
2480c093
PB
1563#ifdef CONFIG_UCLAMP_TASK_GROUP
1564 root_task_group.uclamp_req[clamp_id] = uc_max;
0b60ba2d 1565 root_task_group.uclamp[clamp_id] = uc_max;
2480c093
PB
1566#endif
1567 }
69842cba
PB
1568}
1569
1570#else /* CONFIG_UCLAMP_TASK */
1571static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
1572static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
a509a7cd
PB
1573static inline int uclamp_validate(struct task_struct *p,
1574 const struct sched_attr *attr)
1575{
1576 return -EOPNOTSUPP;
1577}
1578static void __setscheduler_uclamp(struct task_struct *p,
1579 const struct sched_attr *attr) { }
e8f14172 1580static inline void uclamp_fork(struct task_struct *p) { }
13685c4a 1581static inline void uclamp_post_fork(struct task_struct *p) { }
69842cba
PB
1582static inline void init_uclamp(void) { }
1583#endif /* CONFIG_UCLAMP_TASK */
1584
1de64443 1585static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 1586{
0a67d1ee
PZ
1587 if (!(flags & ENQUEUE_NOCLOCK))
1588 update_rq_clock(rq);
1589
eb414681 1590 if (!(flags & ENQUEUE_RESTORE)) {
1de64443 1591 sched_info_queued(rq, p);
eb414681
JW
1592 psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1593 }
0a67d1ee 1594
69842cba 1595 uclamp_rq_inc(rq, p);
371fd7e7 1596 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
1597}
1598
1de64443 1599static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 1600{
0a67d1ee
PZ
1601 if (!(flags & DEQUEUE_NOCLOCK))
1602 update_rq_clock(rq);
1603
eb414681 1604 if (!(flags & DEQUEUE_SAVE)) {
1de64443 1605 sched_info_dequeued(rq, p);
eb414681
JW
1606 psi_dequeue(p, flags & DEQUEUE_SLEEP);
1607 }
0a67d1ee 1608
69842cba 1609 uclamp_rq_dec(rq, p);
371fd7e7 1610 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
1611}
1612
029632fb 1613void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd 1614{
371fd7e7 1615 enqueue_task(rq, p, flags);
7dd77884
PZ
1616
1617 p->on_rq = TASK_ON_RQ_QUEUED;
1e3c88bd
PZ
1618}
1619
029632fb 1620void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd 1621{
7dd77884
PZ
1622 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
1623
371fd7e7 1624 dequeue_task(rq, p, flags);
1e3c88bd
PZ
1625}
1626
14531189 1627/*
dd41f596 1628 * __normal_prio - return the priority that is based on the static prio
14531189 1629 */
14531189
IM
1630static inline int __normal_prio(struct task_struct *p)
1631{
dd41f596 1632 return p->static_prio;
14531189
IM
1633}
1634
b29739f9
IM
1635/*
1636 * Calculate the expected normal priority: i.e. priority
1637 * without taking RT-inheritance into account. Might be
1638 * boosted by interactivity modifiers. Changes upon fork,
1639 * setprio syscalls, and whenever the interactivity
1640 * estimator recalculates.
1641 */
36c8b586 1642static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1643{
1644 int prio;
1645
aab03e05
DF
1646 if (task_has_dl_policy(p))
1647 prio = MAX_DL_PRIO-1;
1648 else if (task_has_rt_policy(p))
b29739f9
IM
1649 prio = MAX_RT_PRIO-1 - p->rt_priority;
1650 else
1651 prio = __normal_prio(p);
1652 return prio;
1653}
1654
1655/*
1656 * Calculate the current priority, i.e. the priority
1657 * taken into account by the scheduler. This value might
1658 * be boosted by RT tasks, or might be boosted by
1659 * interactivity modifiers. Will be RT if the task got
1660 * RT-boosted. If not then it returns p->normal_prio.
1661 */
36c8b586 1662static int effective_prio(struct task_struct *p)
b29739f9
IM
1663{
1664 p->normal_prio = normal_prio(p);
1665 /*
1666 * If we are RT tasks or we were boosted to RT priority,
1667 * keep the priority unchanged. Otherwise, update priority
1668 * to the normal priority:
1669 */
1670 if (!rt_prio(p->prio))
1671 return p->normal_prio;
1672 return p->prio;
1673}
1674
1da177e4
LT
1675/**
1676 * task_curr - is this task currently executing on a CPU?
1677 * @p: the task in question.
e69f6186
YB
1678 *
1679 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 1680 */
36c8b586 1681inline int task_curr(const struct task_struct *p)
1da177e4
LT
1682{
1683 return cpu_curr(task_cpu(p)) == p;
1684}
1685
67dfa1b7 1686/*
4c9a4bc8
PZ
1687 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1688 * use the balance_callback list if you want balancing.
1689 *
1690 * this means any call to check_class_changed() must be followed by a call to
1691 * balance_callback().
67dfa1b7 1692 */
cb469845
SR
1693static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1694 const struct sched_class *prev_class,
da7a735e 1695 int oldprio)
cb469845
SR
1696{
1697 if (prev_class != p->sched_class) {
1698 if (prev_class->switched_from)
da7a735e 1699 prev_class->switched_from(rq, p);
4c9a4bc8 1700
da7a735e 1701 p->sched_class->switched_to(rq, p);
2d3d891d 1702 } else if (oldprio != p->prio || dl_task(p))
da7a735e 1703 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
1704}
1705
029632fb 1706void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405 1707{
aa93cd53 1708 if (p->sched_class == rq->curr->sched_class)
1e5a7405 1709 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
aa93cd53
KT
1710 else if (p->sched_class > rq->curr->sched_class)
1711 resched_curr(rq);
1e5a7405
PZ
1712
1713 /*
1714 * A queue event has occurred, and we're going to schedule. In
1715 * this case, we can save a useless back to back clock update.
1716 */
da0c1e65 1717 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
adcc8da8 1718 rq_clock_skip_update(rq);
1e5a7405
PZ
1719}
1720
1da177e4 1721#ifdef CONFIG_SMP
175f0e25 1722
af449901
PZ
1723static void
1724__do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags);
1725
1726static int __set_cpus_allowed_ptr(struct task_struct *p,
1727 const struct cpumask *new_mask,
1728 u32 flags);
1729
1730static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
1731{
1732 if (likely(!p->migration_disabled))
1733 return;
1734
1735 if (p->cpus_ptr != &p->cpus_mask)
1736 return;
1737
1738 /*
1739 * Violates locking rules! see comment in __do_set_cpus_allowed().
1740 */
1741 __do_set_cpus_allowed(p, cpumask_of(rq->cpu), SCA_MIGRATE_DISABLE);
1742}
1743
1744void migrate_disable(void)
1745{
3015ef4b
TG
1746 struct task_struct *p = current;
1747
1748 if (p->migration_disabled) {
1749 p->migration_disabled++;
af449901 1750 return;
3015ef4b 1751 }
af449901 1752
3015ef4b
TG
1753 preempt_disable();
1754 this_rq()->nr_pinned++;
1755 p->migration_disabled = 1;
1756 preempt_enable();
af449901
PZ
1757}
1758EXPORT_SYMBOL_GPL(migrate_disable);
1759
1760void migrate_enable(void)
1761{
1762 struct task_struct *p = current;
1763
6d337eab
PZ
1764 if (p->migration_disabled > 1) {
1765 p->migration_disabled--;
af449901 1766 return;
6d337eab 1767 }
af449901 1768
6d337eab
PZ
1769 /*
1770 * Ensure stop_task runs either before or after this, and that
1771 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
1772 */
1773 preempt_disable();
1774 if (p->cpus_ptr != &p->cpus_mask)
1775 __set_cpus_allowed_ptr(p, &p->cpus_mask, SCA_MIGRATE_ENABLE);
1776 /*
1777 * Mustn't clear migration_disabled() until cpus_ptr points back at the
1778 * regular cpus_mask, otherwise things that race (eg.
1779 * select_fallback_rq) get confused.
1780 */
af449901 1781 barrier();
6d337eab 1782 p->migration_disabled = 0;
3015ef4b 1783 this_rq()->nr_pinned--;
6d337eab 1784 preempt_enable();
af449901
PZ
1785}
1786EXPORT_SYMBOL_GPL(migrate_enable);
1787
3015ef4b
TG
1788static inline bool rq_has_pinned_tasks(struct rq *rq)
1789{
1790 return rq->nr_pinned;
1791}
1792
175f0e25 1793/*
bee98539 1794 * Per-CPU kthreads are allowed to run on !active && online CPUs, see
175f0e25
PZ
1795 * __set_cpus_allowed_ptr() and select_fallback_rq().
1796 */
1797static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
1798{
5ba2ffba 1799 /* When not in the task's cpumask, no point in looking further. */
3bd37062 1800 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
175f0e25
PZ
1801 return false;
1802
5ba2ffba
PZ
1803 /* migrate_disabled() must be allowed to finish. */
1804 if (is_migration_disabled(p))
175f0e25
PZ
1805 return cpu_online(cpu);
1806
5ba2ffba
PZ
1807 /* Non kernel threads are not allowed during either online or offline. */
1808 if (!(p->flags & PF_KTHREAD))
1809 return cpu_active(cpu);
1810
1811 /* KTHREAD_IS_PER_CPU is always allowed. */
1812 if (kthread_is_per_cpu(p))
1813 return cpu_online(cpu);
1814
1815 /* Regular kernel threads don't get to stay during offline. */
1816 if (cpu_rq(cpu)->balance_push)
1817 return false;
1818
1819 /* But are allowed during online. */
1820 return cpu_online(cpu);
175f0e25
PZ
1821}
1822
5cc389bc
PZ
1823/*
1824 * This is how migration works:
1825 *
1826 * 1) we invoke migration_cpu_stop() on the target CPU using
1827 * stop_one_cpu().
1828 * 2) stopper starts to run (implicitly forcing the migrated thread
1829 * off the CPU)
1830 * 3) it checks whether the migrated task is still in the wrong runqueue.
1831 * 4) if it's in the wrong runqueue then the migration thread removes
1832 * it and puts it into the right queue.
1833 * 5) stopper completes and stop_one_cpu() returns and the migration
1834 * is done.
1835 */
1836
1837/*
1838 * move_queued_task - move a queued task to new rq.
1839 *
1840 * Returns (locked) new rq. Old rq's lock is released.
1841 */
8a8c69c3
PZ
1842static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
1843 struct task_struct *p, int new_cpu)
5cc389bc 1844{
5cc389bc
PZ
1845 lockdep_assert_held(&rq->lock);
1846
58877d34 1847 deactivate_task(rq, p, DEQUEUE_NOCLOCK);
5cc389bc 1848 set_task_cpu(p, new_cpu);
8a8c69c3 1849 rq_unlock(rq, rf);
5cc389bc
PZ
1850
1851 rq = cpu_rq(new_cpu);
1852
8a8c69c3 1853 rq_lock(rq, rf);
5cc389bc 1854 BUG_ON(task_cpu(p) != new_cpu);
58877d34 1855 activate_task(rq, p, 0);
5cc389bc
PZ
1856 check_preempt_curr(rq, p, 0);
1857
1858 return rq;
1859}
1860
1861struct migration_arg {
6d337eab
PZ
1862 struct task_struct *task;
1863 int dest_cpu;
1864 struct set_affinity_pending *pending;
1865};
1866
1867struct set_affinity_pending {
1868 refcount_t refs;
1869 struct completion done;
1870 struct cpu_stop_work stop_work;
1871 struct migration_arg arg;
5cc389bc
PZ
1872};
1873
1874/*
d1ccc66d 1875 * Move (not current) task off this CPU, onto the destination CPU. We're doing
5cc389bc
PZ
1876 * this because either it can't run here any more (set_cpus_allowed()
1877 * away from this CPU, or CPU going down), or because we're
1878 * attempting to rebalance this task on exec (sched_exec).
1879 *
1880 * So we race with normal scheduler movements, but that's OK, as long
1881 * as the task is no longer on this CPU.
5cc389bc 1882 */
8a8c69c3
PZ
1883static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
1884 struct task_struct *p, int dest_cpu)
5cc389bc 1885{
5cc389bc 1886 /* Affinity changed (again). */
175f0e25 1887 if (!is_cpu_allowed(p, dest_cpu))
5e16bbc2 1888 return rq;
5cc389bc 1889
15ff991e 1890 update_rq_clock(rq);
8a8c69c3 1891 rq = move_queued_task(rq, rf, p, dest_cpu);
5e16bbc2
PZ
1892
1893 return rq;
5cc389bc
PZ
1894}
1895
1896/*
1897 * migration_cpu_stop - this will be executed by a highprio stopper thread
1898 * and performs thread migration by bumping thread off CPU then
1899 * 'pushing' onto another runqueue.
1900 */
1901static int migration_cpu_stop(void *data)
1902{
6d337eab 1903 struct set_affinity_pending *pending;
5cc389bc 1904 struct migration_arg *arg = data;
5e16bbc2 1905 struct task_struct *p = arg->task;
6d337eab 1906 int dest_cpu = arg->dest_cpu;
5e16bbc2 1907 struct rq *rq = this_rq();
6d337eab 1908 bool complete = false;
8a8c69c3 1909 struct rq_flags rf;
5cc389bc
PZ
1910
1911 /*
d1ccc66d
IM
1912 * The original target CPU might have gone down and we might
1913 * be on another CPU but it doesn't matter.
5cc389bc 1914 */
6d337eab 1915 local_irq_save(rf.flags);
5cc389bc
PZ
1916 /*
1917 * We need to explicitly wake pending tasks before running
3bd37062 1918 * __migrate_task() such that we will not miss enforcing cpus_ptr
5cc389bc
PZ
1919 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1920 */
a1488664 1921 flush_smp_call_function_from_idle();
5e16bbc2
PZ
1922
1923 raw_spin_lock(&p->pi_lock);
8a8c69c3 1924 rq_lock(rq, &rf);
6d337eab
PZ
1925
1926 pending = p->migration_pending;
5e16bbc2
PZ
1927 /*
1928 * If task_rq(p) != rq, it cannot be migrated here, because we're
1929 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1930 * we're holding p->pi_lock.
1931 */
bf89a304 1932 if (task_rq(p) == rq) {
6d337eab
PZ
1933 if (is_migration_disabled(p))
1934 goto out;
1935
1936 if (pending) {
1937 p->migration_pending = NULL;
1938 complete = true;
1939 }
1940
1941 /* migrate_enable() -- we must not race against SCA */
1942 if (dest_cpu < 0) {
1943 /*
1944 * When this was migrate_enable() but we no longer
1945 * have a @pending, a concurrent SCA 'fixed' things
1946 * and we should be valid again. Nothing to do.
1947 */
1948 if (!pending) {
1293771e 1949 WARN_ON_ONCE(!cpumask_test_cpu(task_cpu(p), &p->cpus_mask));
6d337eab
PZ
1950 goto out;
1951 }
1952
1953 dest_cpu = cpumask_any_distribute(&p->cpus_mask);
1954 }
1955
bf89a304 1956 if (task_on_rq_queued(p))
6d337eab 1957 rq = __migrate_task(rq, &rf, p, dest_cpu);
bf89a304 1958 else
6d337eab
PZ
1959 p->wake_cpu = dest_cpu;
1960
d707faa6 1961 } else if (dest_cpu < 0 || pending) {
6d337eab
PZ
1962 /*
1963 * This happens when we get migrated between migrate_enable()'s
1964 * preempt_enable() and scheduling the stopper task. At that
1965 * point we're a regular task again and not current anymore.
1966 *
1967 * A !PREEMPT kernel has a giant hole here, which makes it far
1968 * more likely.
1969 */
1970
d707faa6
VS
1971 /*
1972 * The task moved before the stopper got to run. We're holding
1973 * ->pi_lock, so the allowed mask is stable - if it got
1974 * somewhere allowed, we're done.
1975 */
1976 if (pending && cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
1977 p->migration_pending = NULL;
1978 complete = true;
1979 goto out;
1980 }
1981
6d337eab
PZ
1982 /*
1983 * When this was migrate_enable() but we no longer have an
1984 * @pending, a concurrent SCA 'fixed' things and we should be
1985 * valid again. Nothing to do.
1986 */
1987 if (!pending) {
1293771e 1988 WARN_ON_ONCE(!cpumask_test_cpu(task_cpu(p), &p->cpus_mask));
6d337eab
PZ
1989 goto out;
1990 }
1991
1992 /*
1993 * When migrate_enable() hits a rq mis-match we can't reliably
1994 * determine is_migration_disabled() and so have to chase after
1995 * it.
1996 */
1997 task_rq_unlock(rq, p, &rf);
1998 stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
1999 &pending->arg, &pending->stop_work);
2000 return 0;
bf89a304 2001 }
6d337eab
PZ
2002out:
2003 task_rq_unlock(rq, p, &rf);
2004
2005 if (complete)
2006 complete_all(&pending->done);
2007
2008 /* For pending->{arg,stop_work} */
2009 pending = arg->pending;
2010 if (pending && refcount_dec_and_test(&pending->refs))
2011 wake_up_var(&pending->refs);
5e16bbc2 2012
5cc389bc
PZ
2013 return 0;
2014}
2015
a7c81556
PZ
2016int push_cpu_stop(void *arg)
2017{
2018 struct rq *lowest_rq = NULL, *rq = this_rq();
2019 struct task_struct *p = arg;
2020
2021 raw_spin_lock_irq(&p->pi_lock);
2022 raw_spin_lock(&rq->lock);
2023
2024 if (task_rq(p) != rq)
2025 goto out_unlock;
2026
2027 if (is_migration_disabled(p)) {
2028 p->migration_flags |= MDF_PUSH;
2029 goto out_unlock;
2030 }
2031
2032 p->migration_flags &= ~MDF_PUSH;
2033
2034 if (p->sched_class->find_lock_rq)
2035 lowest_rq = p->sched_class->find_lock_rq(p, rq);
5e16bbc2 2036
a7c81556
PZ
2037 if (!lowest_rq)
2038 goto out_unlock;
2039
2040 // XXX validate p is still the highest prio task
2041 if (task_rq(p) == rq) {
2042 deactivate_task(rq, p, 0);
2043 set_task_cpu(p, lowest_rq->cpu);
2044 activate_task(lowest_rq, p, 0);
2045 resched_curr(lowest_rq);
2046 }
2047
2048 double_unlock_balance(rq, lowest_rq);
2049
2050out_unlock:
2051 rq->push_busy = false;
2052 raw_spin_unlock(&rq->lock);
2053 raw_spin_unlock_irq(&p->pi_lock);
2054
2055 put_task_struct(p);
5cc389bc
PZ
2056 return 0;
2057}
2058
c5b28038
PZ
2059/*
2060 * sched_class::set_cpus_allowed must do the below, but is not required to
2061 * actually call this function.
2062 */
9cfc3e18 2063void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
5cc389bc 2064{
af449901
PZ
2065 if (flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2066 p->cpus_ptr = new_mask;
2067 return;
2068 }
2069
3bd37062 2070 cpumask_copy(&p->cpus_mask, new_mask);
5cc389bc
PZ
2071 p->nr_cpus_allowed = cpumask_weight(new_mask);
2072}
2073
9cfc3e18
PZ
2074static void
2075__do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
c5b28038 2076{
6c37067e
PZ
2077 struct rq *rq = task_rq(p);
2078 bool queued, running;
2079
af449901
PZ
2080 /*
2081 * This here violates the locking rules for affinity, since we're only
2082 * supposed to change these variables while holding both rq->lock and
2083 * p->pi_lock.
2084 *
2085 * HOWEVER, it magically works, because ttwu() is the only code that
2086 * accesses these variables under p->pi_lock and only does so after
2087 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2088 * before finish_task().
2089 *
2090 * XXX do further audits, this smells like something putrid.
2091 */
2092 if (flags & SCA_MIGRATE_DISABLE)
2093 SCHED_WARN_ON(!p->on_cpu);
2094 else
2095 lockdep_assert_held(&p->pi_lock);
6c37067e
PZ
2096
2097 queued = task_on_rq_queued(p);
2098 running = task_current(rq, p);
2099
2100 if (queued) {
2101 /*
2102 * Because __kthread_bind() calls this on blocked tasks without
2103 * holding rq->lock.
2104 */
2105 lockdep_assert_held(&rq->lock);
7a57f32a 2106 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
6c37067e
PZ
2107 }
2108 if (running)
2109 put_prev_task(rq, p);
2110
9cfc3e18 2111 p->sched_class->set_cpus_allowed(p, new_mask, flags);
6c37067e 2112
6c37067e 2113 if (queued)
7134b3e9 2114 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
a399d233 2115 if (running)
03b7fad1 2116 set_next_task(rq, p);
c5b28038
PZ
2117}
2118
9cfc3e18
PZ
2119void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2120{
2121 __do_set_cpus_allowed(p, new_mask, 0);
2122}
2123
6d337eab 2124/*
c777d847
VS
2125 * This function is wildly self concurrent; here be dragons.
2126 *
2127 *
2128 * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2129 * designated task is enqueued on an allowed CPU. If that task is currently
2130 * running, we have to kick it out using the CPU stopper.
2131 *
2132 * Migrate-Disable comes along and tramples all over our nice sandcastle.
2133 * Consider:
2134 *
2135 * Initial conditions: P0->cpus_mask = [0, 1]
2136 *
2137 * P0@CPU0 P1
2138 *
2139 * migrate_disable();
2140 * <preempted>
2141 * set_cpus_allowed_ptr(P0, [1]);
2142 *
2143 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2144 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2145 * This means we need the following scheme:
2146 *
2147 * P0@CPU0 P1
2148 *
2149 * migrate_disable();
2150 * <preempted>
2151 * set_cpus_allowed_ptr(P0, [1]);
2152 * <blocks>
2153 * <resumes>
2154 * migrate_enable();
2155 * __set_cpus_allowed_ptr();
2156 * <wakes local stopper>
2157 * `--> <woken on migration completion>
2158 *
2159 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2160 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2161 * task p are serialized by p->pi_lock, which we can leverage: the one that
2162 * should come into effect at the end of the Migrate-Disable region is the last
2163 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2164 * but we still need to properly signal those waiting tasks at the appropriate
2165 * moment.
2166 *
2167 * This is implemented using struct set_affinity_pending. The first
2168 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2169 * setup an instance of that struct and install it on the targeted task_struct.
2170 * Any and all further callers will reuse that instance. Those then wait for
2171 * a completion signaled at the tail of the CPU stopper callback (1), triggered
2172 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2173 *
2174 *
2175 * (1) In the cases covered above. There is one more where the completion is
2176 * signaled within affine_move_task() itself: when a subsequent affinity request
2177 * cancels the need for an active migration. Consider:
2178 *
2179 * Initial conditions: P0->cpus_mask = [0, 1]
2180 *
2181 * P0@CPU0 P1 P2
2182 *
2183 * migrate_disable();
2184 * <preempted>
2185 * set_cpus_allowed_ptr(P0, [1]);
2186 * <blocks>
2187 * set_cpus_allowed_ptr(P0, [0, 1]);
2188 * <signal completion>
2189 * <awakes>
2190 *
2191 * Note that the above is safe vs a concurrent migrate_enable(), as any
2192 * pending affinity completion is preceded by an uninstallation of
2193 * p->migration_pending done with p->pi_lock held.
6d337eab
PZ
2194 */
2195static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2196 int dest_cpu, unsigned int flags)
2197{
2198 struct set_affinity_pending my_pending = { }, *pending = NULL;
2199 struct migration_arg arg = {
2200 .task = p,
2201 .dest_cpu = dest_cpu,
2202 };
2203 bool complete = false;
2204
2205 /* Can the task run on the task's current CPU? If so, we're done */
2206 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
a7c81556
PZ
2207 struct task_struct *push_task = NULL;
2208
2209 if ((flags & SCA_MIGRATE_ENABLE) &&
2210 (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2211 rq->push_busy = true;
2212 push_task = get_task_struct(p);
2213 }
2214
6d337eab
PZ
2215 pending = p->migration_pending;
2216 if (pending) {
2217 refcount_inc(&pending->refs);
2218 p->migration_pending = NULL;
2219 complete = true;
2220 }
2221 task_rq_unlock(rq, p, rf);
2222
a7c81556
PZ
2223 if (push_task) {
2224 stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2225 p, &rq->push_work);
2226 }
2227
6d337eab
PZ
2228 if (complete)
2229 goto do_complete;
2230
2231 return 0;
2232 }
2233
2234 if (!(flags & SCA_MIGRATE_ENABLE)) {
2235 /* serialized by p->pi_lock */
2236 if (!p->migration_pending) {
c777d847 2237 /* Install the request */
6d337eab
PZ
2238 refcount_set(&my_pending.refs, 1);
2239 init_completion(&my_pending.done);
2240 p->migration_pending = &my_pending;
2241 } else {
2242 pending = p->migration_pending;
2243 refcount_inc(&pending->refs);
2244 }
2245 }
2246 pending = p->migration_pending;
2247 /*
2248 * - !MIGRATE_ENABLE:
2249 * we'll have installed a pending if there wasn't one already.
2250 *
2251 * - MIGRATE_ENABLE:
2252 * we're here because the current CPU isn't matching anymore,
2253 * the only way that can happen is because of a concurrent
2254 * set_cpus_allowed_ptr() call, which should then still be
2255 * pending completion.
2256 *
2257 * Either way, we really should have a @pending here.
2258 */
2259 if (WARN_ON_ONCE(!pending)) {
2260 task_rq_unlock(rq, p, rf);
2261 return -EINVAL;
2262 }
2263
2264 if (flags & SCA_MIGRATE_ENABLE) {
2265
2266 refcount_inc(&pending->refs); /* pending->{arg,stop_work} */
a7c81556 2267 p->migration_flags &= ~MDF_PUSH;
6d337eab
PZ
2268 task_rq_unlock(rq, p, rf);
2269
2270 pending->arg = (struct migration_arg) {
2271 .task = p,
2272 .dest_cpu = -1,
2273 .pending = pending,
2274 };
2275
2276 stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
2277 &pending->arg, &pending->stop_work);
2278
2279 return 0;
2280 }
2281
2282 if (task_running(rq, p) || p->state == TASK_WAKING) {
c777d847
VS
2283 /*
2284 * Lessen races (and headaches) by delegating
2285 * is_migration_disabled(p) checks to the stopper, which will
2286 * run on the same CPU as said p.
2287 */
6d337eab
PZ
2288 task_rq_unlock(rq, p, rf);
2289 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
2290
2291 } else {
2292
2293 if (!is_migration_disabled(p)) {
2294 if (task_on_rq_queued(p))
2295 rq = move_queued_task(rq, rf, p, dest_cpu);
2296
2297 p->migration_pending = NULL;
2298 complete = true;
2299 }
2300 task_rq_unlock(rq, p, rf);
2301
2302do_complete:
2303 if (complete)
2304 complete_all(&pending->done);
2305 }
2306
2307 wait_for_completion(&pending->done);
2308
2309 if (refcount_dec_and_test(&pending->refs))
2310 wake_up_var(&pending->refs);
2311
c777d847
VS
2312 /*
2313 * Block the original owner of &pending until all subsequent callers
2314 * have seen the completion and decremented the refcount
2315 */
6d337eab
PZ
2316 wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
2317
2318 return 0;
2319}
2320
5cc389bc
PZ
2321/*
2322 * Change a given task's CPU affinity. Migrate the thread to a
2323 * proper CPU and schedule it away if the CPU it's executing on
2324 * is removed from the allowed bitmask.
2325 *
2326 * NOTE: the caller must have a valid reference to the task, the
2327 * task must not exit() & deallocate itself prematurely. The
2328 * call is not atomic; no spinlocks may be held.
2329 */
25834c73 2330static int __set_cpus_allowed_ptr(struct task_struct *p,
9cfc3e18
PZ
2331 const struct cpumask *new_mask,
2332 u32 flags)
5cc389bc 2333{
e9d867a6 2334 const struct cpumask *cpu_valid_mask = cpu_active_mask;
5cc389bc 2335 unsigned int dest_cpu;
eb580751
PZ
2336 struct rq_flags rf;
2337 struct rq *rq;
5cc389bc
PZ
2338 int ret = 0;
2339
eb580751 2340 rq = task_rq_lock(p, &rf);
a499c3ea 2341 update_rq_clock(rq);
5cc389bc 2342
af449901 2343 if (p->flags & PF_KTHREAD || is_migration_disabled(p)) {
e9d867a6 2344 /*
741ba80f
PZ
2345 * Kernel threads are allowed on online && !active CPUs,
2346 * however, during cpu-hot-unplug, even these might get pushed
2347 * away if not KTHREAD_IS_PER_CPU.
af449901
PZ
2348 *
2349 * Specifically, migration_disabled() tasks must not fail the
2350 * cpumask_any_and_distribute() pick below, esp. so on
2351 * SCA_MIGRATE_ENABLE, otherwise we'll not call
2352 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
e9d867a6
PZI
2353 */
2354 cpu_valid_mask = cpu_online_mask;
2355 }
2356
25834c73
PZ
2357 /*
2358 * Must re-check here, to close a race against __kthread_bind(),
2359 * sched_setaffinity() is not guaranteed to observe the flag.
2360 */
9cfc3e18 2361 if ((flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
25834c73
PZ
2362 ret = -EINVAL;
2363 goto out;
2364 }
2365
885b3ba4
VS
2366 if (!(flags & SCA_MIGRATE_ENABLE)) {
2367 if (cpumask_equal(&p->cpus_mask, new_mask))
2368 goto out;
2369
2370 if (WARN_ON_ONCE(p == current &&
2371 is_migration_disabled(p) &&
2372 !cpumask_test_cpu(task_cpu(p), new_mask))) {
2373 ret = -EBUSY;
2374 goto out;
2375 }
2376 }
5cc389bc 2377
46a87b38
PT
2378 /*
2379 * Picking a ~random cpu helps in cases where we are changing affinity
2380 * for groups of tasks (ie. cpuset), so that load balancing is not
2381 * immediately required to distribute the tasks within their new mask.
2382 */
2383 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask);
714e501e 2384 if (dest_cpu >= nr_cpu_ids) {
5cc389bc
PZ
2385 ret = -EINVAL;
2386 goto out;
2387 }
2388
9cfc3e18 2389 __do_set_cpus_allowed(p, new_mask, flags);
5cc389bc 2390
6d337eab 2391 return affine_move_task(rq, p, &rf, dest_cpu, flags);
5cc389bc 2392
5cc389bc 2393out:
eb580751 2394 task_rq_unlock(rq, p, &rf);
5cc389bc
PZ
2395
2396 return ret;
2397}
25834c73
PZ
2398
2399int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
2400{
9cfc3e18 2401 return __set_cpus_allowed_ptr(p, new_mask, 0);
25834c73 2402}
5cc389bc
PZ
2403EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
2404
dd41f596 2405void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2406{
e2912009
PZ
2407#ifdef CONFIG_SCHED_DEBUG
2408 /*
2409 * We should never call set_task_cpu() on a blocked task,
2410 * ttwu() will sort out the placement.
2411 */
077614ee 2412 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
e2336f6e 2413 !p->on_rq);
0122ec5b 2414
3ea94de1
JP
2415 /*
2416 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
2417 * because schedstat_wait_{start,end} rebase migrating task's wait_start
2418 * time relying on p->on_rq.
2419 */
2420 WARN_ON_ONCE(p->state == TASK_RUNNING &&
2421 p->sched_class == &fair_sched_class &&
2422 (p->on_rq && !task_on_rq_migrating(p)));
2423
0122ec5b 2424#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
2425 /*
2426 * The caller should hold either p->pi_lock or rq->lock, when changing
2427 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
2428 *
2429 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 2430 * see task_group().
6c6c54e1
PZ
2431 *
2432 * Furthermore, all task_rq users should acquire both locks, see
2433 * task_rq_lock().
2434 */
0122ec5b
PZ
2435 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
2436 lockdep_is_held(&task_rq(p)->lock)));
2437#endif
4ff9083b
PZ
2438 /*
2439 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
2440 */
2441 WARN_ON_ONCE(!cpu_online(new_cpu));
af449901
PZ
2442
2443 WARN_ON_ONCE(is_migration_disabled(p));
e2912009
PZ
2444#endif
2445
de1d7286 2446 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2447
0c69774e 2448 if (task_cpu(p) != new_cpu) {
0a74bef8 2449 if (p->sched_class->migrate_task_rq)
1327237a 2450 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 2451 p->se.nr_migrations++;
d7822b1e 2452 rseq_migrate(p);
ff303e66 2453 perf_event_task_migrate(p);
0c69774e 2454 }
dd41f596
IM
2455
2456 __set_task_cpu(p, new_cpu);
c65cc870
IM
2457}
2458
0ad4e3df 2459#ifdef CONFIG_NUMA_BALANCING
ac66f547
PZ
2460static void __migrate_swap_task(struct task_struct *p, int cpu)
2461{
da0c1e65 2462 if (task_on_rq_queued(p)) {
ac66f547 2463 struct rq *src_rq, *dst_rq;
8a8c69c3 2464 struct rq_flags srf, drf;
ac66f547
PZ
2465
2466 src_rq = task_rq(p);
2467 dst_rq = cpu_rq(cpu);
2468
8a8c69c3
PZ
2469 rq_pin_lock(src_rq, &srf);
2470 rq_pin_lock(dst_rq, &drf);
2471
ac66f547
PZ
2472 deactivate_task(src_rq, p, 0);
2473 set_task_cpu(p, cpu);
2474 activate_task(dst_rq, p, 0);
2475 check_preempt_curr(dst_rq, p, 0);
8a8c69c3
PZ
2476
2477 rq_unpin_lock(dst_rq, &drf);
2478 rq_unpin_lock(src_rq, &srf);
2479
ac66f547
PZ
2480 } else {
2481 /*
2482 * Task isn't running anymore; make it appear like we migrated
2483 * it before it went to sleep. This means on wakeup we make the
d1ccc66d 2484 * previous CPU our target instead of where it really is.
ac66f547
PZ
2485 */
2486 p->wake_cpu = cpu;
2487 }
2488}
2489
2490struct migration_swap_arg {
2491 struct task_struct *src_task, *dst_task;
2492 int src_cpu, dst_cpu;
2493};
2494
2495static int migrate_swap_stop(void *data)
2496{
2497 struct migration_swap_arg *arg = data;
2498 struct rq *src_rq, *dst_rq;
2499 int ret = -EAGAIN;
2500
62694cd5
PZ
2501 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
2502 return -EAGAIN;
2503
ac66f547
PZ
2504 src_rq = cpu_rq(arg->src_cpu);
2505 dst_rq = cpu_rq(arg->dst_cpu);
2506
74602315
PZ
2507 double_raw_lock(&arg->src_task->pi_lock,
2508 &arg->dst_task->pi_lock);
ac66f547 2509 double_rq_lock(src_rq, dst_rq);
62694cd5 2510
ac66f547
PZ
2511 if (task_cpu(arg->dst_task) != arg->dst_cpu)
2512 goto unlock;
2513
2514 if (task_cpu(arg->src_task) != arg->src_cpu)
2515 goto unlock;
2516
3bd37062 2517 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
ac66f547
PZ
2518 goto unlock;
2519
3bd37062 2520 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
ac66f547
PZ
2521 goto unlock;
2522
2523 __migrate_swap_task(arg->src_task, arg->dst_cpu);
2524 __migrate_swap_task(arg->dst_task, arg->src_cpu);
2525
2526 ret = 0;
2527
2528unlock:
2529 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
2530 raw_spin_unlock(&arg->dst_task->pi_lock);
2531 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
2532
2533 return ret;
2534}
2535
2536/*
2537 * Cross migrate two tasks
2538 */
0ad4e3df
SD
2539int migrate_swap(struct task_struct *cur, struct task_struct *p,
2540 int target_cpu, int curr_cpu)
ac66f547
PZ
2541{
2542 struct migration_swap_arg arg;
2543 int ret = -EINVAL;
2544
ac66f547
PZ
2545 arg = (struct migration_swap_arg){
2546 .src_task = cur,
0ad4e3df 2547 .src_cpu = curr_cpu,
ac66f547 2548 .dst_task = p,
0ad4e3df 2549 .dst_cpu = target_cpu,
ac66f547
PZ
2550 };
2551
2552 if (arg.src_cpu == arg.dst_cpu)
2553 goto out;
2554
6acce3ef
PZ
2555 /*
2556 * These three tests are all lockless; this is OK since all of them
2557 * will be re-checked with proper locks held further down the line.
2558 */
ac66f547
PZ
2559 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
2560 goto out;
2561
3bd37062 2562 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
ac66f547
PZ
2563 goto out;
2564
3bd37062 2565 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
ac66f547
PZ
2566 goto out;
2567
286549dc 2568 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
2569 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
2570
2571out:
ac66f547
PZ
2572 return ret;
2573}
0ad4e3df 2574#endif /* CONFIG_NUMA_BALANCING */
ac66f547 2575
1da177e4
LT
2576/*
2577 * wait_task_inactive - wait for a thread to unschedule.
2578 *
85ba2d86
RM
2579 * If @match_state is nonzero, it's the @p->state value just checked and
2580 * not expected to change. If it changes, i.e. @p might have woken up,
2581 * then return zero. When we succeed in waiting for @p to be off its CPU,
2582 * we return a positive number (its total switch count). If a second call
2583 * a short while later returns the same number, the caller can be sure that
2584 * @p has remained unscheduled the whole time.
2585 *
1da177e4
LT
2586 * The caller must ensure that the task *will* unschedule sometime soon,
2587 * else this function might spin for a *long* time. This function can't
2588 * be called with interrupts off, or it may introduce deadlock with
2589 * smp_call_function() if an IPI is sent by the same process we are
2590 * waiting to become inactive.
2591 */
85ba2d86 2592unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4 2593{
da0c1e65 2594 int running, queued;
eb580751 2595 struct rq_flags rf;
85ba2d86 2596 unsigned long ncsw;
70b97a7f 2597 struct rq *rq;
1da177e4 2598
3a5c359a
AK
2599 for (;;) {
2600 /*
2601 * We do the initial early heuristics without holding
2602 * any task-queue locks at all. We'll only try to get
2603 * the runqueue lock when things look like they will
2604 * work out!
2605 */
2606 rq = task_rq(p);
fa490cfd 2607
3a5c359a
AK
2608 /*
2609 * If the task is actively running on another CPU
2610 * still, just relax and busy-wait without holding
2611 * any locks.
2612 *
2613 * NOTE! Since we don't hold any locks, it's not
2614 * even sure that "rq" stays as the right runqueue!
2615 * But we don't care, since "task_running()" will
2616 * return false if the runqueue has changed and p
2617 * is actually now running somewhere else!
2618 */
85ba2d86
RM
2619 while (task_running(rq, p)) {
2620 if (match_state && unlikely(p->state != match_state))
2621 return 0;
3a5c359a 2622 cpu_relax();
85ba2d86 2623 }
fa490cfd 2624
3a5c359a
AK
2625 /*
2626 * Ok, time to look more closely! We need the rq
2627 * lock now, to be *sure*. If we're wrong, we'll
2628 * just go back and repeat.
2629 */
eb580751 2630 rq = task_rq_lock(p, &rf);
27a9da65 2631 trace_sched_wait_task(p);
3a5c359a 2632 running = task_running(rq, p);
da0c1e65 2633 queued = task_on_rq_queued(p);
85ba2d86 2634 ncsw = 0;
f31e11d8 2635 if (!match_state || p->state == match_state)
93dcf55f 2636 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
eb580751 2637 task_rq_unlock(rq, p, &rf);
fa490cfd 2638
85ba2d86
RM
2639 /*
2640 * If it changed from the expected state, bail out now.
2641 */
2642 if (unlikely(!ncsw))
2643 break;
2644
3a5c359a
AK
2645 /*
2646 * Was it really running after all now that we
2647 * checked with the proper locks actually held?
2648 *
2649 * Oops. Go back and try again..
2650 */
2651 if (unlikely(running)) {
2652 cpu_relax();
2653 continue;
2654 }
fa490cfd 2655
3a5c359a
AK
2656 /*
2657 * It's not enough that it's not actively running,
2658 * it must be off the runqueue _entirely_, and not
2659 * preempted!
2660 *
80dd99b3 2661 * So if it was still runnable (but just not actively
3a5c359a
AK
2662 * running right now), it's preempted, and we should
2663 * yield - it could be a while.
2664 */
da0c1e65 2665 if (unlikely(queued)) {
8b0e1953 2666 ktime_t to = NSEC_PER_SEC / HZ;
8eb90c30
TG
2667
2668 set_current_state(TASK_UNINTERRUPTIBLE);
2669 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
2670 continue;
2671 }
fa490cfd 2672
3a5c359a
AK
2673 /*
2674 * Ahh, all good. It wasn't running, and it wasn't
2675 * runnable, which means that it will never become
2676 * running in the future either. We're all done!
2677 */
2678 break;
2679 }
85ba2d86
RM
2680
2681 return ncsw;
1da177e4
LT
2682}
2683
2684/***
2685 * kick_process - kick a running thread to enter/exit the kernel
2686 * @p: the to-be-kicked thread
2687 *
2688 * Cause a process which is running on another CPU to enter
2689 * kernel-mode, without any delay. (to get signals handled.)
2690 *
25985edc 2691 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
2692 * because all it wants to ensure is that the remote task enters
2693 * the kernel. If the IPI races and the task has been migrated
2694 * to another CPU then no harm is done and the purpose has been
2695 * achieved as well.
2696 */
36c8b586 2697void kick_process(struct task_struct *p)
1da177e4
LT
2698{
2699 int cpu;
2700
2701 preempt_disable();
2702 cpu = task_cpu(p);
2703 if ((cpu != smp_processor_id()) && task_curr(p))
2704 smp_send_reschedule(cpu);
2705 preempt_enable();
2706}
b43e3521 2707EXPORT_SYMBOL_GPL(kick_process);
1da177e4 2708
30da688e 2709/*
3bd37062 2710 * ->cpus_ptr is protected by both rq->lock and p->pi_lock
e9d867a6
PZI
2711 *
2712 * A few notes on cpu_active vs cpu_online:
2713 *
2714 * - cpu_active must be a subset of cpu_online
2715 *
97fb7a0a 2716 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
e9d867a6 2717 * see __set_cpus_allowed_ptr(). At this point the newly online
d1ccc66d 2718 * CPU isn't yet part of the sched domains, and balancing will not
e9d867a6
PZI
2719 * see it.
2720 *
d1ccc66d 2721 * - on CPU-down we clear cpu_active() to mask the sched domains and
e9d867a6 2722 * avoid the load balancer to place new tasks on the to be removed
d1ccc66d 2723 * CPU. Existing tasks will remain running there and will be taken
e9d867a6
PZI
2724 * off.
2725 *
2726 * This means that fallback selection must not select !active CPUs.
2727 * And can assume that any active CPU must be online. Conversely
2728 * select_task_rq() below may allow selection of !active CPUs in order
2729 * to satisfy the above rules.
30da688e 2730 */
5da9a0fb
PZ
2731static int select_fallback_rq(int cpu, struct task_struct *p)
2732{
aa00d89c
TC
2733 int nid = cpu_to_node(cpu);
2734 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
2735 enum { cpuset, possible, fail } state = cpuset;
2736 int dest_cpu;
5da9a0fb 2737
aa00d89c 2738 /*
d1ccc66d
IM
2739 * If the node that the CPU is on has been offlined, cpu_to_node()
2740 * will return -1. There is no CPU on the node, and we should
2741 * select the CPU on the other node.
aa00d89c
TC
2742 */
2743 if (nid != -1) {
2744 nodemask = cpumask_of_node(nid);
2745
2746 /* Look for allowed, online CPU in same node. */
2747 for_each_cpu(dest_cpu, nodemask) {
aa00d89c
TC
2748 if (!cpu_active(dest_cpu))
2749 continue;
3bd37062 2750 if (cpumask_test_cpu(dest_cpu, p->cpus_ptr))
aa00d89c
TC
2751 return dest_cpu;
2752 }
2baab4e9 2753 }
5da9a0fb 2754
2baab4e9
PZ
2755 for (;;) {
2756 /* Any allowed, online CPU? */
3bd37062 2757 for_each_cpu(dest_cpu, p->cpus_ptr) {
175f0e25 2758 if (!is_cpu_allowed(p, dest_cpu))
2baab4e9 2759 continue;
175f0e25 2760
2baab4e9
PZ
2761 goto out;
2762 }
5da9a0fb 2763
e73e85f0 2764 /* No more Mr. Nice Guy. */
2baab4e9
PZ
2765 switch (state) {
2766 case cpuset:
e73e85f0
ON
2767 if (IS_ENABLED(CONFIG_CPUSETS)) {
2768 cpuset_cpus_allowed_fallback(p);
2769 state = possible;
2770 break;
2771 }
df561f66 2772 fallthrough;
2baab4e9 2773 case possible:
af449901
PZ
2774 /*
2775 * XXX When called from select_task_rq() we only
2776 * hold p->pi_lock and again violate locking order.
2777 *
2778 * More yuck to audit.
2779 */
2baab4e9
PZ
2780 do_set_cpus_allowed(p, cpu_possible_mask);
2781 state = fail;
2782 break;
2783
2784 case fail:
2785 BUG();
2786 break;
2787 }
2788 }
2789
2790out:
2791 if (state != cpuset) {
2792 /*
2793 * Don't tell them about moving exiting tasks or
2794 * kernel threads (both mm NULL), since they never
2795 * leave kernel.
2796 */
2797 if (p->mm && printk_ratelimit()) {
aac74dc4 2798 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
2799 task_pid_nr(p), p->comm, cpu);
2800 }
5da9a0fb
PZ
2801 }
2802
2803 return dest_cpu;
2804}
2805
e2912009 2806/*
3bd37062 2807 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
e2912009 2808 */
970b13ba 2809static inline
3aef1551 2810int select_task_rq(struct task_struct *p, int cpu, int wake_flags)
970b13ba 2811{
cbce1a68
PZ
2812 lockdep_assert_held(&p->pi_lock);
2813
af449901 2814 if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p))
3aef1551 2815 cpu = p->sched_class->select_task_rq(p, cpu, wake_flags);
e9d867a6 2816 else
3bd37062 2817 cpu = cpumask_any(p->cpus_ptr);
e2912009
PZ
2818
2819 /*
2820 * In order not to call set_task_cpu() on a blocking task we need
3bd37062 2821 * to rely on ttwu() to place the task on a valid ->cpus_ptr
d1ccc66d 2822 * CPU.
e2912009
PZ
2823 *
2824 * Since this is common to all placement strategies, this lives here.
2825 *
2826 * [ this allows ->select_task() to simply return task_cpu(p) and
2827 * not worry about this generic constraint ]
2828 */
7af443ee 2829 if (unlikely(!is_cpu_allowed(p, cpu)))
5da9a0fb 2830 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2831
2832 return cpu;
970b13ba 2833}
09a40af5 2834
f5832c19
NP
2835void sched_set_stop_task(int cpu, struct task_struct *stop)
2836{
ded467dc 2837 static struct lock_class_key stop_pi_lock;
f5832c19
NP
2838 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2839 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2840
2841 if (stop) {
2842 /*
2843 * Make it appear like a SCHED_FIFO task, its something
2844 * userspace knows about and won't get confused about.
2845 *
2846 * Also, it will make PI more or less work without too
2847 * much confusion -- but then, stop work should not
2848 * rely on PI working anyway.
2849 */
2850 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2851
2852 stop->sched_class = &stop_sched_class;
ded467dc
PZ
2853
2854 /*
2855 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
2856 * adjust the effective priority of a task. As a result,
2857 * rt_mutex_setprio() can trigger (RT) balancing operations,
2858 * which can then trigger wakeups of the stop thread to push
2859 * around the current task.
2860 *
2861 * The stop task itself will never be part of the PI-chain, it
2862 * never blocks, therefore that ->pi_lock recursion is safe.
2863 * Tell lockdep about this by placing the stop->pi_lock in its
2864 * own class.
2865 */
2866 lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
f5832c19
NP
2867 }
2868
2869 cpu_rq(cpu)->stop = stop;
2870
2871 if (old_stop) {
2872 /*
2873 * Reset it back to a normal scheduling class so that
2874 * it can die in pieces.
2875 */
2876 old_stop->sched_class = &rt_sched_class;
2877 }
2878}
2879
74d862b6 2880#else /* CONFIG_SMP */
25834c73
PZ
2881
2882static inline int __set_cpus_allowed_ptr(struct task_struct *p,
9cfc3e18
PZ
2883 const struct cpumask *new_mask,
2884 u32 flags)
25834c73
PZ
2885{
2886 return set_cpus_allowed_ptr(p, new_mask);
2887}
2888
af449901
PZ
2889static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
2890
3015ef4b
TG
2891static inline bool rq_has_pinned_tasks(struct rq *rq)
2892{
2893 return false;
2894}
2895
74d862b6 2896#endif /* !CONFIG_SMP */
970b13ba 2897
d7c01d27 2898static void
b84cb5df 2899ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 2900{
4fa8d299 2901 struct rq *rq;
b84cb5df 2902
4fa8d299
JP
2903 if (!schedstat_enabled())
2904 return;
2905
2906 rq = this_rq();
d7c01d27 2907
4fa8d299
JP
2908#ifdef CONFIG_SMP
2909 if (cpu == rq->cpu) {
b85c8b71
PZ
2910 __schedstat_inc(rq->ttwu_local);
2911 __schedstat_inc(p->se.statistics.nr_wakeups_local);
d7c01d27
PZ
2912 } else {
2913 struct sched_domain *sd;
2914
b85c8b71 2915 __schedstat_inc(p->se.statistics.nr_wakeups_remote);
057f3fad 2916 rcu_read_lock();
4fa8d299 2917 for_each_domain(rq->cpu, sd) {
d7c01d27 2918 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
b85c8b71 2919 __schedstat_inc(sd->ttwu_wake_remote);
d7c01d27
PZ
2920 break;
2921 }
2922 }
057f3fad 2923 rcu_read_unlock();
d7c01d27 2924 }
f339b9dc
PZ
2925
2926 if (wake_flags & WF_MIGRATED)
b85c8b71 2927 __schedstat_inc(p->se.statistics.nr_wakeups_migrate);
d7c01d27
PZ
2928#endif /* CONFIG_SMP */
2929
b85c8b71
PZ
2930 __schedstat_inc(rq->ttwu_count);
2931 __schedstat_inc(p->se.statistics.nr_wakeups);
d7c01d27
PZ
2932
2933 if (wake_flags & WF_SYNC)
b85c8b71 2934 __schedstat_inc(p->se.statistics.nr_wakeups_sync);
d7c01d27
PZ
2935}
2936
23f41eeb
PZ
2937/*
2938 * Mark the task runnable and perform wakeup-preemption.
2939 */
e7904a28 2940static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
d8ac8971 2941 struct rq_flags *rf)
9ed3811a 2942{
9ed3811a 2943 check_preempt_curr(rq, p, wake_flags);
9ed3811a 2944 p->state = TASK_RUNNING;
fbd705a0
PZ
2945 trace_sched_wakeup(p);
2946
9ed3811a 2947#ifdef CONFIG_SMP
4c9a4bc8
PZ
2948 if (p->sched_class->task_woken) {
2949 /*
b19a888c 2950 * Our task @p is fully woken up and running; so it's safe to
cbce1a68 2951 * drop the rq->lock, hereafter rq is only used for statistics.
4c9a4bc8 2952 */
d8ac8971 2953 rq_unpin_lock(rq, rf);
9ed3811a 2954 p->sched_class->task_woken(rq, p);
d8ac8971 2955 rq_repin_lock(rq, rf);
4c9a4bc8 2956 }
9ed3811a 2957
e69c6341 2958 if (rq->idle_stamp) {
78becc27 2959 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 2960 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 2961
abfafa54
JL
2962 update_avg(&rq->avg_idle, delta);
2963
2964 if (rq->avg_idle > max)
9ed3811a 2965 rq->avg_idle = max;
abfafa54 2966
9ed3811a
TH
2967 rq->idle_stamp = 0;
2968 }
2969#endif
2970}
2971
c05fbafb 2972static void
e7904a28 2973ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
d8ac8971 2974 struct rq_flags *rf)
c05fbafb 2975{
77558e4d 2976 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
b5179ac7 2977
cbce1a68
PZ
2978 lockdep_assert_held(&rq->lock);
2979
c05fbafb
PZ
2980 if (p->sched_contributes_to_load)
2981 rq->nr_uninterruptible--;
b5179ac7 2982
dbfb089d 2983#ifdef CONFIG_SMP
b5179ac7 2984 if (wake_flags & WF_MIGRATED)
59efa0ba 2985 en_flags |= ENQUEUE_MIGRATED;
ec618b84 2986 else
c05fbafb 2987#endif
ec618b84
PZ
2988 if (p->in_iowait) {
2989 delayacct_blkio_end(p);
2990 atomic_dec(&task_rq(p)->nr_iowait);
2991 }
c05fbafb 2992
1b174a2c 2993 activate_task(rq, p, en_flags);
d8ac8971 2994 ttwu_do_wakeup(rq, p, wake_flags, rf);
c05fbafb
PZ
2995}
2996
2997/*
58877d34
PZ
2998 * Consider @p being inside a wait loop:
2999 *
3000 * for (;;) {
3001 * set_current_state(TASK_UNINTERRUPTIBLE);
3002 *
3003 * if (CONDITION)
3004 * break;
3005 *
3006 * schedule();
3007 * }
3008 * __set_current_state(TASK_RUNNING);
3009 *
3010 * between set_current_state() and schedule(). In this case @p is still
3011 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3012 * an atomic manner.
3013 *
3014 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3015 * then schedule() must still happen and p->state can be changed to
3016 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3017 * need to do a full wakeup with enqueue.
3018 *
3019 * Returns: %true when the wakeup is done,
3020 * %false otherwise.
c05fbafb 3021 */
58877d34 3022static int ttwu_runnable(struct task_struct *p, int wake_flags)
c05fbafb 3023{
eb580751 3024 struct rq_flags rf;
c05fbafb
PZ
3025 struct rq *rq;
3026 int ret = 0;
3027
eb580751 3028 rq = __task_rq_lock(p, &rf);
da0c1e65 3029 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
3030 /* check_preempt_curr() may use rq clock */
3031 update_rq_clock(rq);
d8ac8971 3032 ttwu_do_wakeup(rq, p, wake_flags, &rf);
c05fbafb
PZ
3033 ret = 1;
3034 }
eb580751 3035 __task_rq_unlock(rq, &rf);
c05fbafb
PZ
3036
3037 return ret;
3038}
3039
317f3941 3040#ifdef CONFIG_SMP
a1488664 3041void sched_ttwu_pending(void *arg)
317f3941 3042{
a1488664 3043 struct llist_node *llist = arg;
317f3941 3044 struct rq *rq = this_rq();
73215849 3045 struct task_struct *p, *t;
d8ac8971 3046 struct rq_flags rf;
317f3941 3047
e3baac47
PZ
3048 if (!llist)
3049 return;
3050
126c2092
PZ
3051 /*
3052 * rq::ttwu_pending racy indication of out-standing wakeups.
3053 * Races such that false-negatives are possible, since they
3054 * are shorter lived that false-positives would be.
3055 */
3056 WRITE_ONCE(rq->ttwu_pending, 0);
3057
8a8c69c3 3058 rq_lock_irqsave(rq, &rf);
77558e4d 3059 update_rq_clock(rq);
317f3941 3060
8c4890d1 3061 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
b6e13e85
PZ
3062 if (WARN_ON_ONCE(p->on_cpu))
3063 smp_cond_load_acquire(&p->on_cpu, !VAL);
3064
3065 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3066 set_task_cpu(p, cpu_of(rq));
3067
73215849 3068 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
b6e13e85 3069 }
317f3941 3070
8a8c69c3 3071 rq_unlock_irqrestore(rq, &rf);
317f3941
PZ
3072}
3073
b2a02fc4 3074void send_call_function_single_ipi(int cpu)
317f3941 3075{
b2a02fc4 3076 struct rq *rq = cpu_rq(cpu);
ca38062e 3077
b2a02fc4
PZ
3078 if (!set_nr_if_polling(rq->idle))
3079 arch_send_call_function_single_ipi(cpu);
3080 else
3081 trace_sched_wake_idle_without_ipi(cpu);
317f3941
PZ
3082}
3083
2ebb1771
MG
3084/*
3085 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3086 * necessary. The wakee CPU on receipt of the IPI will queue the task
3087 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3088 * of the wakeup instead of the waker.
3089 */
3090static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
317f3941 3091{
e3baac47
PZ
3092 struct rq *rq = cpu_rq(cpu);
3093
b7e7ade3
PZ
3094 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3095
126c2092 3096 WRITE_ONCE(rq->ttwu_pending, 1);
8c4890d1 3097 __smp_call_single_queue(cpu, &p->wake_entry.llist);
317f3941 3098}
d6aa8f85 3099
f6be8af1
CL
3100void wake_up_if_idle(int cpu)
3101{
3102 struct rq *rq = cpu_rq(cpu);
8a8c69c3 3103 struct rq_flags rf;
f6be8af1 3104
fd7de1e8
AL
3105 rcu_read_lock();
3106
3107 if (!is_idle_task(rcu_dereference(rq->curr)))
3108 goto out;
f6be8af1
CL
3109
3110 if (set_nr_if_polling(rq->idle)) {
3111 trace_sched_wake_idle_without_ipi(cpu);
3112 } else {
8a8c69c3 3113 rq_lock_irqsave(rq, &rf);
f6be8af1
CL
3114 if (is_idle_task(rq->curr))
3115 smp_send_reschedule(cpu);
d1ccc66d 3116 /* Else CPU is not idle, do nothing here: */
8a8c69c3 3117 rq_unlock_irqrestore(rq, &rf);
f6be8af1 3118 }
fd7de1e8
AL
3119
3120out:
3121 rcu_read_unlock();
f6be8af1
CL
3122}
3123
39be3501 3124bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
3125{
3126 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3127}
c6e7bd7a 3128
2ebb1771
MG
3129static inline bool ttwu_queue_cond(int cpu, int wake_flags)
3130{
5ba2ffba
PZ
3131 /*
3132 * Do not complicate things with the async wake_list while the CPU is
3133 * in hotplug state.
3134 */
3135 if (!cpu_active(cpu))
3136 return false;
3137
2ebb1771
MG
3138 /*
3139 * If the CPU does not share cache, then queue the task on the
3140 * remote rqs wakelist to avoid accessing remote data.
3141 */
3142 if (!cpus_share_cache(smp_processor_id(), cpu))
3143 return true;
3144
3145 /*
3146 * If the task is descheduling and the only running task on the
3147 * CPU then use the wakelist to offload the task activation to
3148 * the soon-to-be-idle CPU as the current CPU is likely busy.
3149 * nr_running is checked to avoid unnecessary task stacking.
3150 */
739f70b4 3151 if ((wake_flags & WF_ON_CPU) && cpu_rq(cpu)->nr_running <= 1)
2ebb1771
MG
3152 return true;
3153
3154 return false;
3155}
3156
3157static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
c6e7bd7a 3158{
2ebb1771 3159 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(cpu, wake_flags)) {
b6e13e85
PZ
3160 if (WARN_ON_ONCE(cpu == smp_processor_id()))
3161 return false;
3162
c6e7bd7a 3163 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
2ebb1771 3164 __ttwu_queue_wakelist(p, cpu, wake_flags);
c6e7bd7a
PZ
3165 return true;
3166 }
3167
3168 return false;
3169}
58877d34
PZ
3170
3171#else /* !CONFIG_SMP */
3172
3173static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3174{
3175 return false;
3176}
3177
d6aa8f85 3178#endif /* CONFIG_SMP */
317f3941 3179
b5179ac7 3180static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
c05fbafb
PZ
3181{
3182 struct rq *rq = cpu_rq(cpu);
d8ac8971 3183 struct rq_flags rf;
c05fbafb 3184
2ebb1771 3185 if (ttwu_queue_wakelist(p, cpu, wake_flags))
317f3941 3186 return;
317f3941 3187
8a8c69c3 3188 rq_lock(rq, &rf);
77558e4d 3189 update_rq_clock(rq);
d8ac8971 3190 ttwu_do_activate(rq, p, wake_flags, &rf);
8a8c69c3 3191 rq_unlock(rq, &rf);
9ed3811a
TH
3192}
3193
8643cda5
PZ
3194/*
3195 * Notes on Program-Order guarantees on SMP systems.
3196 *
3197 * MIGRATION
3198 *
3199 * The basic program-order guarantee on SMP systems is that when a task [t]
d1ccc66d
IM
3200 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
3201 * execution on its new CPU [c1].
8643cda5
PZ
3202 *
3203 * For migration (of runnable tasks) this is provided by the following means:
3204 *
3205 * A) UNLOCK of the rq(c0)->lock scheduling out task t
3206 * B) migration for t is required to synchronize *both* rq(c0)->lock and
3207 * rq(c1)->lock (if not at the same time, then in that order).
3208 * C) LOCK of the rq(c1)->lock scheduling in task
3209 *
7696f991 3210 * Release/acquire chaining guarantees that B happens after A and C after B.
d1ccc66d 3211 * Note: the CPU doing B need not be c0 or c1
8643cda5
PZ
3212 *
3213 * Example:
3214 *
3215 * CPU0 CPU1 CPU2
3216 *
3217 * LOCK rq(0)->lock
3218 * sched-out X
3219 * sched-in Y
3220 * UNLOCK rq(0)->lock
3221 *
3222 * LOCK rq(0)->lock // orders against CPU0
3223 * dequeue X
3224 * UNLOCK rq(0)->lock
3225 *
3226 * LOCK rq(1)->lock
3227 * enqueue X
3228 * UNLOCK rq(1)->lock
3229 *
3230 * LOCK rq(1)->lock // orders against CPU2
3231 * sched-out Z
3232 * sched-in X
3233 * UNLOCK rq(1)->lock
3234 *
3235 *
3236 * BLOCKING -- aka. SLEEP + WAKEUP
3237 *
3238 * For blocking we (obviously) need to provide the same guarantee as for
3239 * migration. However the means are completely different as there is no lock
3240 * chain to provide order. Instead we do:
3241 *
58877d34
PZ
3242 * 1) smp_store_release(X->on_cpu, 0) -- finish_task()
3243 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
8643cda5
PZ
3244 *
3245 * Example:
3246 *
3247 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
3248 *
3249 * LOCK rq(0)->lock LOCK X->pi_lock
3250 * dequeue X
3251 * sched-out X
3252 * smp_store_release(X->on_cpu, 0);
3253 *
1f03e8d2 3254 * smp_cond_load_acquire(&X->on_cpu, !VAL);
8643cda5
PZ
3255 * X->state = WAKING
3256 * set_task_cpu(X,2)
3257 *
3258 * LOCK rq(2)->lock
3259 * enqueue X
3260 * X->state = RUNNING
3261 * UNLOCK rq(2)->lock
3262 *
3263 * LOCK rq(2)->lock // orders against CPU1
3264 * sched-out Z
3265 * sched-in X
3266 * UNLOCK rq(2)->lock
3267 *
3268 * UNLOCK X->pi_lock
3269 * UNLOCK rq(0)->lock
3270 *
3271 *
7696f991
AP
3272 * However, for wakeups there is a second guarantee we must provide, namely we
3273 * must ensure that CONDITION=1 done by the caller can not be reordered with
3274 * accesses to the task state; see try_to_wake_up() and set_current_state().
8643cda5
PZ
3275 */
3276
9ed3811a 3277/**
1da177e4 3278 * try_to_wake_up - wake up a thread
9ed3811a 3279 * @p: the thread to be awakened
1da177e4 3280 * @state: the mask of task states that can be woken
9ed3811a 3281 * @wake_flags: wake modifier flags (WF_*)
1da177e4 3282 *
58877d34
PZ
3283 * Conceptually does:
3284 *
3285 * If (@state & @p->state) @p->state = TASK_RUNNING.
1da177e4 3286 *
a2250238
PZ
3287 * If the task was not queued/runnable, also place it back on a runqueue.
3288 *
58877d34
PZ
3289 * This function is atomic against schedule() which would dequeue the task.
3290 *
3291 * It issues a full memory barrier before accessing @p->state, see the comment
3292 * with set_current_state().
a2250238 3293 *
58877d34 3294 * Uses p->pi_lock to serialize against concurrent wake-ups.
a2250238 3295 *
58877d34
PZ
3296 * Relies on p->pi_lock stabilizing:
3297 * - p->sched_class
3298 * - p->cpus_ptr
3299 * - p->sched_task_group
3300 * in order to do migration, see its use of select_task_rq()/set_task_cpu().
3301 *
3302 * Tries really hard to only take one task_rq(p)->lock for performance.
3303 * Takes rq->lock in:
3304 * - ttwu_runnable() -- old rq, unavoidable, see comment there;
3305 * - ttwu_queue() -- new rq, for enqueue of the task;
3306 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
3307 *
3308 * As a consequence we race really badly with just about everything. See the
3309 * many memory barriers and their comments for details.
7696f991 3310 *
a2250238
PZ
3311 * Return: %true if @p->state changes (an actual wakeup was done),
3312 * %false otherwise.
1da177e4 3313 */
e4a52bcb
PZ
3314static int
3315try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 3316{
1da177e4 3317 unsigned long flags;
c05fbafb 3318 int cpu, success = 0;
2398f2c6 3319
e3d85487 3320 preempt_disable();
aacedf26
PZ
3321 if (p == current) {
3322 /*
3323 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
3324 * == smp_processor_id()'. Together this means we can special
58877d34 3325 * case the whole 'p->on_rq && ttwu_runnable()' case below
aacedf26
PZ
3326 * without taking any locks.
3327 *
3328 * In particular:
3329 * - we rely on Program-Order guarantees for all the ordering,
3330 * - we're serialized against set_special_state() by virtue of
3331 * it disabling IRQs (this allows not taking ->pi_lock).
3332 */
3333 if (!(p->state & state))
e3d85487 3334 goto out;
aacedf26
PZ
3335
3336 success = 1;
aacedf26
PZ
3337 trace_sched_waking(p);
3338 p->state = TASK_RUNNING;
3339 trace_sched_wakeup(p);
3340 goto out;
3341 }
3342
e0acd0a6
ON
3343 /*
3344 * If we are going to wake up a thread waiting for CONDITION we
3345 * need to ensure that CONDITION=1 done by the caller can not be
58877d34
PZ
3346 * reordered with p->state check below. This pairs with smp_store_mb()
3347 * in set_current_state() that the waiting thread does.
e0acd0a6 3348 */
013fdb80 3349 raw_spin_lock_irqsave(&p->pi_lock, flags);
d89e588c 3350 smp_mb__after_spinlock();
e9c84311 3351 if (!(p->state & state))
aacedf26 3352 goto unlock;
1da177e4 3353
fbd705a0
PZ
3354 trace_sched_waking(p);
3355
d1ccc66d
IM
3356 /* We're going to change ->state: */
3357 success = 1;
1da177e4 3358
135e8c92
BS
3359 /*
3360 * Ensure we load p->on_rq _after_ p->state, otherwise it would
3361 * be possible to, falsely, observe p->on_rq == 0 and get stuck
3362 * in smp_cond_load_acquire() below.
3363 *
3d85b270
AP
3364 * sched_ttwu_pending() try_to_wake_up()
3365 * STORE p->on_rq = 1 LOAD p->state
3366 * UNLOCK rq->lock
3367 *
3368 * __schedule() (switch to task 'p')
3369 * LOCK rq->lock smp_rmb();
3370 * smp_mb__after_spinlock();
3371 * UNLOCK rq->lock
135e8c92
BS
3372 *
3373 * [task p]
3d85b270 3374 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
135e8c92 3375 *
3d85b270
AP
3376 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
3377 * __schedule(). See the comment for smp_mb__after_spinlock().
2beaf328
PM
3378 *
3379 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
135e8c92
BS
3380 */
3381 smp_rmb();
58877d34 3382 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
aacedf26 3383 goto unlock;
1da177e4 3384
1da177e4 3385#ifdef CONFIG_SMP
ecf7d01c
PZ
3386 /*
3387 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
3388 * possible to, falsely, observe p->on_cpu == 0.
3389 *
3390 * One must be running (->on_cpu == 1) in order to remove oneself
3391 * from the runqueue.
3392 *
3d85b270
AP
3393 * __schedule() (switch to task 'p') try_to_wake_up()
3394 * STORE p->on_cpu = 1 LOAD p->on_rq
3395 * UNLOCK rq->lock
3396 *
3397 * __schedule() (put 'p' to sleep)
3398 * LOCK rq->lock smp_rmb();
3399 * smp_mb__after_spinlock();
3400 * STORE p->on_rq = 0 LOAD p->on_cpu
ecf7d01c 3401 *
3d85b270
AP
3402 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
3403 * __schedule(). See the comment for smp_mb__after_spinlock().
dbfb089d
PZ
3404 *
3405 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
3406 * schedule()'s deactivate_task() has 'happened' and p will no longer
3407 * care about it's own p->state. See the comment in __schedule().
ecf7d01c 3408 */
dbfb089d
PZ
3409 smp_acquire__after_ctrl_dep();
3410
3411 /*
3412 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
3413 * == 0), which means we need to do an enqueue, change p->state to
3414 * TASK_WAKING such that we can unlock p->pi_lock before doing the
3415 * enqueue, such as ttwu_queue_wakelist().
3416 */
3417 p->state = TASK_WAKING;
ecf7d01c 3418
c6e7bd7a
PZ
3419 /*
3420 * If the owning (remote) CPU is still in the middle of schedule() with
3421 * this task as prev, considering queueing p on the remote CPUs wake_list
3422 * which potentially sends an IPI instead of spinning on p->on_cpu to
3423 * let the waker make forward progress. This is safe because IRQs are
3424 * disabled and the IPI will deliver after on_cpu is cleared.
b6e13e85
PZ
3425 *
3426 * Ensure we load task_cpu(p) after p->on_cpu:
3427 *
3428 * set_task_cpu(p, cpu);
3429 * STORE p->cpu = @cpu
3430 * __schedule() (switch to task 'p')
3431 * LOCK rq->lock
3432 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu)
3433 * STORE p->on_cpu = 1 LOAD p->cpu
3434 *
3435 * to ensure we observe the correct CPU on which the task is currently
3436 * scheduling.
c6e7bd7a 3437 */
b6e13e85 3438 if (smp_load_acquire(&p->on_cpu) &&
739f70b4 3439 ttwu_queue_wakelist(p, task_cpu(p), wake_flags | WF_ON_CPU))
c6e7bd7a
PZ
3440 goto unlock;
3441
e9c84311 3442 /*
d1ccc66d 3443 * If the owning (remote) CPU is still in the middle of schedule() with
b19a888c 3444 * this task as prev, wait until it's done referencing the task.
b75a2253 3445 *
31cb1bc0 3446 * Pairs with the smp_store_release() in finish_task().
b75a2253
PZ
3447 *
3448 * This ensures that tasks getting woken will be fully ordered against
3449 * their previous state and preserve Program Order.
0970d299 3450 */
1f03e8d2 3451 smp_cond_load_acquire(&p->on_cpu, !VAL);
1da177e4 3452
3aef1551 3453 cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU);
f339b9dc 3454 if (task_cpu(p) != cpu) {
ec618b84
PZ
3455 if (p->in_iowait) {
3456 delayacct_blkio_end(p);
3457 atomic_dec(&task_rq(p)->nr_iowait);
3458 }
3459
f339b9dc 3460 wake_flags |= WF_MIGRATED;
eb414681 3461 psi_ttwu_dequeue(p);
e4a52bcb 3462 set_task_cpu(p, cpu);
f339b9dc 3463 }
b6e13e85
PZ
3464#else
3465 cpu = task_cpu(p);
1da177e4 3466#endif /* CONFIG_SMP */
1da177e4 3467
b5179ac7 3468 ttwu_queue(p, cpu, wake_flags);
aacedf26 3469unlock:
013fdb80 3470 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
aacedf26
PZ
3471out:
3472 if (success)
b6e13e85 3473 ttwu_stat(p, task_cpu(p), wake_flags);
e3d85487 3474 preempt_enable();
1da177e4
LT
3475
3476 return success;
3477}
3478
2beaf328
PM
3479/**
3480 * try_invoke_on_locked_down_task - Invoke a function on task in fixed state
3481 * @p: Process for which the function is to be invoked.
3482 * @func: Function to invoke.
3483 * @arg: Argument to function.
3484 *
3485 * If the specified task can be quickly locked into a definite state
3486 * (either sleeping or on a given runqueue), arrange to keep it in that
3487 * state while invoking @func(@arg). This function can use ->on_rq and
3488 * task_curr() to work out what the state is, if required. Given that
3489 * @func can be invoked with a runqueue lock held, it had better be quite
3490 * lightweight.
3491 *
3492 * Returns:
3493 * @false if the task slipped out from under the locks.
3494 * @true if the task was locked onto a runqueue or is sleeping.
3495 * However, @func can override this by returning @false.
3496 */
3497bool try_invoke_on_locked_down_task(struct task_struct *p, bool (*func)(struct task_struct *t, void *arg), void *arg)
3498{
3499 bool ret = false;
3500 struct rq_flags rf;
3501 struct rq *rq;
3502
3503 lockdep_assert_irqs_enabled();
3504 raw_spin_lock_irq(&p->pi_lock);
3505 if (p->on_rq) {
3506 rq = __task_rq_lock(p, &rf);
3507 if (task_rq(p) == rq)
3508 ret = func(p, arg);
3509 rq_unlock(rq, &rf);
3510 } else {
3511 switch (p->state) {
3512 case TASK_RUNNING:
3513 case TASK_WAKING:
3514 break;
3515 default:
3516 smp_rmb(); // See smp_rmb() comment in try_to_wake_up().
3517 if (!p->on_rq)
3518 ret = func(p, arg);
3519 }
3520 }
3521 raw_spin_unlock_irq(&p->pi_lock);
3522 return ret;
3523}
3524
50fa610a
DH
3525/**
3526 * wake_up_process - Wake up a specific process
3527 * @p: The process to be woken up.
3528 *
3529 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
3530 * processes.
3531 *
3532 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a 3533 *
7696f991 3534 * This function executes a full memory barrier before accessing the task state.
50fa610a 3535 */
7ad5b3a5 3536int wake_up_process(struct task_struct *p)
1da177e4 3537{
9067ac85 3538 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 3539}
1da177e4
LT
3540EXPORT_SYMBOL(wake_up_process);
3541
7ad5b3a5 3542int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
3543{
3544 return try_to_wake_up(p, state, 0);
3545}
3546
1da177e4
LT
3547/*
3548 * Perform scheduler related setup for a newly forked process p.
3549 * p is forked by current.
dd41f596
IM
3550 *
3551 * __sched_fork() is basic setup used by init_idle() too:
3552 */
5e1576ed 3553static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 3554{
fd2f4419
PZ
3555 p->on_rq = 0;
3556
3557 p->se.on_rq = 0;
dd41f596
IM
3558 p->se.exec_start = 0;
3559 p->se.sum_exec_runtime = 0;
f6cf891c 3560 p->se.prev_sum_exec_runtime = 0;
6c594c21 3561 p->se.nr_migrations = 0;
da7a735e 3562 p->se.vruntime = 0;
fd2f4419 3563 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d 3564
ad936d86
BP
3565#ifdef CONFIG_FAIR_GROUP_SCHED
3566 p->se.cfs_rq = NULL;
3567#endif
3568
6cfb0d5d 3569#ifdef CONFIG_SCHEDSTATS
cb251765 3570 /* Even if schedstat is disabled, there should not be garbage */
41acab88 3571 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 3572#endif
476d139c 3573
aab03e05 3574 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 3575 init_dl_task_timer(&p->dl);
209a0cbd 3576 init_dl_inactive_task_timer(&p->dl);
a5e7be3b 3577 __dl_clear_params(p);
aab03e05 3578
fa717060 3579 INIT_LIST_HEAD(&p->rt.run_list);
ff77e468
PZ
3580 p->rt.timeout = 0;
3581 p->rt.time_slice = sched_rr_timeslice;
3582 p->rt.on_rq = 0;
3583 p->rt.on_list = 0;
476d139c 3584
e107be36
AK
3585#ifdef CONFIG_PREEMPT_NOTIFIERS
3586 INIT_HLIST_HEAD(&p->preempt_notifiers);
3587#endif
cbee9f88 3588
5e1f0f09
MG
3589#ifdef CONFIG_COMPACTION
3590 p->capture_control = NULL;
3591#endif
13784475 3592 init_numa_balancing(clone_flags, p);
a1488664 3593#ifdef CONFIG_SMP
8c4890d1 3594 p->wake_entry.u_flags = CSD_TYPE_TTWU;
6d337eab 3595 p->migration_pending = NULL;
a1488664 3596#endif
dd41f596
IM
3597}
3598
2a595721
SD
3599DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
3600
1a687c2e 3601#ifdef CONFIG_NUMA_BALANCING
c3b9bc5b 3602
1a687c2e
MG
3603void set_numabalancing_state(bool enabled)
3604{
3605 if (enabled)
2a595721 3606 static_branch_enable(&sched_numa_balancing);
1a687c2e 3607 else
2a595721 3608 static_branch_disable(&sched_numa_balancing);
1a687c2e 3609}
54a43d54
AK
3610
3611#ifdef CONFIG_PROC_SYSCTL
3612int sysctl_numa_balancing(struct ctl_table *table, int write,
32927393 3613 void *buffer, size_t *lenp, loff_t *ppos)
54a43d54
AK
3614{
3615 struct ctl_table t;
3616 int err;
2a595721 3617 int state = static_branch_likely(&sched_numa_balancing);
54a43d54
AK
3618
3619 if (write && !capable(CAP_SYS_ADMIN))
3620 return -EPERM;
3621
3622 t = *table;
3623 t.data = &state;
3624 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3625 if (err < 0)
3626 return err;
3627 if (write)
3628 set_numabalancing_state(state);
3629 return err;
3630}
3631#endif
3632#endif
dd41f596 3633
4698f88c
JP
3634#ifdef CONFIG_SCHEDSTATS
3635
cb251765 3636DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4698f88c 3637static bool __initdata __sched_schedstats = false;
cb251765 3638
cb251765
MG
3639static void set_schedstats(bool enabled)
3640{
3641 if (enabled)
3642 static_branch_enable(&sched_schedstats);
3643 else
3644 static_branch_disable(&sched_schedstats);
3645}
3646
3647void force_schedstat_enabled(void)
3648{
3649 if (!schedstat_enabled()) {
3650 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
3651 static_branch_enable(&sched_schedstats);
3652 }
3653}
3654
3655static int __init setup_schedstats(char *str)
3656{
3657 int ret = 0;
3658 if (!str)
3659 goto out;
3660
4698f88c
JP
3661 /*
3662 * This code is called before jump labels have been set up, so we can't
3663 * change the static branch directly just yet. Instead set a temporary
3664 * variable so init_schedstats() can do it later.
3665 */
cb251765 3666 if (!strcmp(str, "enable")) {
4698f88c 3667 __sched_schedstats = true;
cb251765
MG
3668 ret = 1;
3669 } else if (!strcmp(str, "disable")) {
4698f88c 3670 __sched_schedstats = false;
cb251765
MG
3671 ret = 1;
3672 }
3673out:
3674 if (!ret)
3675 pr_warn("Unable to parse schedstats=\n");
3676
3677 return ret;
3678}
3679__setup("schedstats=", setup_schedstats);
3680
4698f88c
JP
3681static void __init init_schedstats(void)
3682{
3683 set_schedstats(__sched_schedstats);
3684}
3685
cb251765 3686#ifdef CONFIG_PROC_SYSCTL
32927393
CH
3687int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
3688 size_t *lenp, loff_t *ppos)
cb251765
MG
3689{
3690 struct ctl_table t;
3691 int err;
3692 int state = static_branch_likely(&sched_schedstats);
3693
3694 if (write && !capable(CAP_SYS_ADMIN))
3695 return -EPERM;
3696
3697 t = *table;
3698 t.data = &state;
3699 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3700 if (err < 0)
3701 return err;
3702 if (write)
3703 set_schedstats(state);
3704 return err;
3705}
4698f88c
JP
3706#endif /* CONFIG_PROC_SYSCTL */
3707#else /* !CONFIG_SCHEDSTATS */
3708static inline void init_schedstats(void) {}
3709#endif /* CONFIG_SCHEDSTATS */
dd41f596
IM
3710
3711/*
3712 * fork()/clone()-time setup:
3713 */
aab03e05 3714int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 3715{
0122ec5b 3716 unsigned long flags;
dd41f596 3717
5e1576ed 3718 __sched_fork(clone_flags, p);
06b83b5f 3719 /*
7dc603c9 3720 * We mark the process as NEW here. This guarantees that
06b83b5f
PZ
3721 * nobody will actually run it, and a signal or other external
3722 * event cannot wake it up and insert it on the runqueue either.
3723 */
7dc603c9 3724 p->state = TASK_NEW;
dd41f596 3725
c350a04e
MG
3726 /*
3727 * Make sure we do not leak PI boosting priority to the child.
3728 */
3729 p->prio = current->normal_prio;
3730
e8f14172
PB
3731 uclamp_fork(p);
3732
b9dc29e7
MG
3733 /*
3734 * Revert to default priority/policy on fork if requested.
3735 */
3736 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 3737 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 3738 p->policy = SCHED_NORMAL;
6c697bdf 3739 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
3740 p->rt_priority = 0;
3741 } else if (PRIO_TO_NICE(p->static_prio) < 0)
3742 p->static_prio = NICE_TO_PRIO(0);
3743
3744 p->prio = p->normal_prio = __normal_prio(p);
9059393e 3745 set_load_weight(p, false);
6c697bdf 3746
b9dc29e7
MG
3747 /*
3748 * We don't need the reset flag anymore after the fork. It has
3749 * fulfilled its duty:
3750 */
3751 p->sched_reset_on_fork = 0;
3752 }
ca94c442 3753
af0fffd9 3754 if (dl_prio(p->prio))
aab03e05 3755 return -EAGAIN;
af0fffd9 3756 else if (rt_prio(p->prio))
aab03e05 3757 p->sched_class = &rt_sched_class;
af0fffd9 3758 else
2ddbf952 3759 p->sched_class = &fair_sched_class;
b29739f9 3760
7dc603c9 3761 init_entity_runnable_average(&p->se);
cd29fe6f 3762
86951599
PZ
3763 /*
3764 * The child is not yet in the pid-hash so no cgroup attach races,
3765 * and the cgroup is pinned to this child due to cgroup_fork()
3766 * is ran before sched_fork().
3767 *
3768 * Silence PROVE_RCU.
3769 */
0122ec5b 3770 raw_spin_lock_irqsave(&p->pi_lock, flags);
ce3614da 3771 rseq_migrate(p);
e210bffd 3772 /*
d1ccc66d 3773 * We're setting the CPU for the first time, we don't migrate,
e210bffd
PZ
3774 * so use __set_task_cpu().
3775 */
af0fffd9 3776 __set_task_cpu(p, smp_processor_id());
e210bffd
PZ
3777 if (p->sched_class->task_fork)
3778 p->sched_class->task_fork(p);
0122ec5b 3779 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 3780
f6db8347 3781#ifdef CONFIG_SCHED_INFO
dd41f596 3782 if (likely(sched_info_on()))
52f17b6c 3783 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 3784#endif
3ca7a440
PZ
3785#if defined(CONFIG_SMP)
3786 p->on_cpu = 0;
4866cde0 3787#endif
01028747 3788 init_task_preempt_count(p);
806c09a7 3789#ifdef CONFIG_SMP
917b627d 3790 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 3791 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 3792#endif
aab03e05 3793 return 0;
1da177e4
LT
3794}
3795
13685c4a
QY
3796void sched_post_fork(struct task_struct *p)
3797{
3798 uclamp_post_fork(p);
3799}
3800
332ac17e
DF
3801unsigned long to_ratio(u64 period, u64 runtime)
3802{
3803 if (runtime == RUNTIME_INF)
c52f14d3 3804 return BW_UNIT;
332ac17e
DF
3805
3806 /*
3807 * Doing this here saves a lot of checks in all
3808 * the calling paths, and returning zero seems
3809 * safe for them anyway.
3810 */
3811 if (period == 0)
3812 return 0;
3813
c52f14d3 3814 return div64_u64(runtime << BW_SHIFT, period);
332ac17e
DF
3815}
3816
1da177e4
LT
3817/*
3818 * wake_up_new_task - wake up a newly created task for the first time.
3819 *
3820 * This function will do some initial scheduler statistics housekeeping
3821 * that must be done for every newly created context, then puts the task
3822 * on the runqueue and wakes it.
3823 */
3e51e3ed 3824void wake_up_new_task(struct task_struct *p)
1da177e4 3825{
eb580751 3826 struct rq_flags rf;
dd41f596 3827 struct rq *rq;
fabf318e 3828
eb580751 3829 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
7dc603c9 3830 p->state = TASK_RUNNING;
fabf318e
PZ
3831#ifdef CONFIG_SMP
3832 /*
3833 * Fork balancing, do it here and not earlier because:
3bd37062 3834 * - cpus_ptr can change in the fork path
d1ccc66d 3835 * - any previously selected CPU might disappear through hotplug
e210bffd
PZ
3836 *
3837 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
3838 * as we're not fully set-up yet.
fabf318e 3839 */
32e839dd 3840 p->recent_used_cpu = task_cpu(p);
ce3614da 3841 rseq_migrate(p);
3aef1551 3842 __set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK));
0017d735 3843#endif
b7fa30c9 3844 rq = __task_rq_lock(p, &rf);
4126bad6 3845 update_rq_clock(rq);
d0fe0b9c 3846 post_init_entity_util_avg(p);
0017d735 3847
7a57f32a 3848 activate_task(rq, p, ENQUEUE_NOCLOCK);
fbd705a0 3849 trace_sched_wakeup_new(p);
a7558e01 3850 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 3851#ifdef CONFIG_SMP
0aaafaab
PZ
3852 if (p->sched_class->task_woken) {
3853 /*
b19a888c 3854 * Nothing relies on rq->lock after this, so it's fine to
0aaafaab
PZ
3855 * drop it.
3856 */
d8ac8971 3857 rq_unpin_lock(rq, &rf);
efbbd05a 3858 p->sched_class->task_woken(rq, p);
d8ac8971 3859 rq_repin_lock(rq, &rf);
0aaafaab 3860 }
9a897c5a 3861#endif
eb580751 3862 task_rq_unlock(rq, p, &rf);
1da177e4
LT
3863}
3864
e107be36
AK
3865#ifdef CONFIG_PREEMPT_NOTIFIERS
3866
b7203428 3867static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
1cde2930 3868
2ecd9d29
PZ
3869void preempt_notifier_inc(void)
3870{
b7203428 3871 static_branch_inc(&preempt_notifier_key);
2ecd9d29
PZ
3872}
3873EXPORT_SYMBOL_GPL(preempt_notifier_inc);
3874
3875void preempt_notifier_dec(void)
3876{
b7203428 3877 static_branch_dec(&preempt_notifier_key);
2ecd9d29
PZ
3878}
3879EXPORT_SYMBOL_GPL(preempt_notifier_dec);
3880
e107be36 3881/**
80dd99b3 3882 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 3883 * @notifier: notifier struct to register
e107be36
AK
3884 */
3885void preempt_notifier_register(struct preempt_notifier *notifier)
3886{
b7203428 3887 if (!static_branch_unlikely(&preempt_notifier_key))
2ecd9d29
PZ
3888 WARN(1, "registering preempt_notifier while notifiers disabled\n");
3889
e107be36
AK
3890 hlist_add_head(&notifier->link, &current->preempt_notifiers);
3891}
3892EXPORT_SYMBOL_GPL(preempt_notifier_register);
3893
3894/**
3895 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 3896 * @notifier: notifier struct to unregister
e107be36 3897 *
d84525a8 3898 * This is *not* safe to call from within a preemption notifier.
e107be36
AK
3899 */
3900void preempt_notifier_unregister(struct preempt_notifier *notifier)
3901{
3902 hlist_del(&notifier->link);
3903}
3904EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
3905
1cde2930 3906static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
3907{
3908 struct preempt_notifier *notifier;
e107be36 3909
b67bfe0d 3910 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
3911 notifier->ops->sched_in(notifier, raw_smp_processor_id());
3912}
3913
1cde2930
PZ
3914static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3915{
b7203428 3916 if (static_branch_unlikely(&preempt_notifier_key))
1cde2930
PZ
3917 __fire_sched_in_preempt_notifiers(curr);
3918}
3919
e107be36 3920static void
1cde2930
PZ
3921__fire_sched_out_preempt_notifiers(struct task_struct *curr,
3922 struct task_struct *next)
e107be36
AK
3923{
3924 struct preempt_notifier *notifier;
e107be36 3925
b67bfe0d 3926 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
3927 notifier->ops->sched_out(notifier, next);
3928}
3929
1cde2930
PZ
3930static __always_inline void
3931fire_sched_out_preempt_notifiers(struct task_struct *curr,
3932 struct task_struct *next)
3933{
b7203428 3934 if (static_branch_unlikely(&preempt_notifier_key))
1cde2930
PZ
3935 __fire_sched_out_preempt_notifiers(curr, next);
3936}
3937
6d6bc0ad 3938#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36 3939
1cde2930 3940static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
3941{
3942}
3943
1cde2930 3944static inline void
e107be36
AK
3945fire_sched_out_preempt_notifiers(struct task_struct *curr,
3946 struct task_struct *next)
3947{
3948}
3949
6d6bc0ad 3950#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 3951
31cb1bc0 3952static inline void prepare_task(struct task_struct *next)
3953{
3954#ifdef CONFIG_SMP
3955 /*
3956 * Claim the task as running, we do this before switching to it
3957 * such that any running task will have this set.
58877d34
PZ
3958 *
3959 * See the ttwu() WF_ON_CPU case and its ordering comment.
31cb1bc0 3960 */
58877d34 3961 WRITE_ONCE(next->on_cpu, 1);
31cb1bc0 3962#endif
3963}
3964
3965static inline void finish_task(struct task_struct *prev)
3966{
3967#ifdef CONFIG_SMP
3968 /*
58877d34
PZ
3969 * This must be the very last reference to @prev from this CPU. After
3970 * p->on_cpu is cleared, the task can be moved to a different CPU. We
3971 * must ensure this doesn't happen until the switch is completely
31cb1bc0 3972 * finished.
3973 *
3974 * In particular, the load of prev->state in finish_task_switch() must
3975 * happen before this.
3976 *
3977 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
3978 */
3979 smp_store_release(&prev->on_cpu, 0);
3980#endif
3981}
3982
565790d2
PZ
3983#ifdef CONFIG_SMP
3984
3985static void do_balance_callbacks(struct rq *rq, struct callback_head *head)
3986{
3987 void (*func)(struct rq *rq);
3988 struct callback_head *next;
3989
3990 lockdep_assert_held(&rq->lock);
3991
3992 while (head) {
3993 func = (void (*)(struct rq *))head->func;
3994 next = head->next;
3995 head->next = NULL;
3996 head = next;
3997
3998 func(rq);
3999 }
4000}
4001
ae792702
PZ
4002static void balance_push(struct rq *rq);
4003
4004struct callback_head balance_push_callback = {
4005 .next = NULL,
4006 .func = (void (*)(struct callback_head *))balance_push,
4007};
4008
565790d2
PZ
4009static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
4010{
4011 struct callback_head *head = rq->balance_callback;
4012
4013 lockdep_assert_held(&rq->lock);
ae792702 4014 if (head)
565790d2
PZ
4015 rq->balance_callback = NULL;
4016
4017 return head;
4018}
4019
4020static void __balance_callbacks(struct rq *rq)
4021{
4022 do_balance_callbacks(rq, splice_balance_callbacks(rq));
4023}
4024
4025static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
4026{
4027 unsigned long flags;
4028
4029 if (unlikely(head)) {
4030 raw_spin_lock_irqsave(&rq->lock, flags);
4031 do_balance_callbacks(rq, head);
4032 raw_spin_unlock_irqrestore(&rq->lock, flags);
4033 }
4034}
4035
4036#else
4037
4038static inline void __balance_callbacks(struct rq *rq)
4039{
4040}
4041
4042static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
4043{
4044 return NULL;
4045}
4046
4047static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
4048{
4049}
4050
4051#endif
4052
269d5992
PZ
4053static inline void
4054prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
31cb1bc0 4055{
269d5992
PZ
4056 /*
4057 * Since the runqueue lock will be released by the next
4058 * task (which is an invalid locking op but in the case
4059 * of the scheduler it's an obvious special-case), so we
4060 * do an early lockdep release here:
4061 */
4062 rq_unpin_lock(rq, rf);
5facae4f 4063 spin_release(&rq->lock.dep_map, _THIS_IP_);
31cb1bc0 4064#ifdef CONFIG_DEBUG_SPINLOCK
4065 /* this is a valid case when another task releases the spinlock */
269d5992 4066 rq->lock.owner = next;
31cb1bc0 4067#endif
269d5992
PZ
4068}
4069
4070static inline void finish_lock_switch(struct rq *rq)
4071{
31cb1bc0 4072 /*
4073 * If we are tracking spinlock dependencies then we have to
4074 * fix up the runqueue lock - which gets 'carried over' from
4075 * prev into current:
4076 */
4077 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
ae792702 4078 __balance_callbacks(rq);
31cb1bc0 4079 raw_spin_unlock_irq(&rq->lock);
4080}
4081
325ea10c
IM
4082/*
4083 * NOP if the arch has not defined these:
4084 */
4085
4086#ifndef prepare_arch_switch
4087# define prepare_arch_switch(next) do { } while (0)
4088#endif
4089
4090#ifndef finish_arch_post_lock_switch
4091# define finish_arch_post_lock_switch() do { } while (0)
4092#endif
4093
5fbda3ec
TG
4094static inline void kmap_local_sched_out(void)
4095{
4096#ifdef CONFIG_KMAP_LOCAL
4097 if (unlikely(current->kmap_ctrl.idx))
4098 __kmap_local_sched_out();
4099#endif
4100}
4101
4102static inline void kmap_local_sched_in(void)
4103{
4104#ifdef CONFIG_KMAP_LOCAL
4105 if (unlikely(current->kmap_ctrl.idx))
4106 __kmap_local_sched_in();
4107#endif
4108}
4109
4866cde0
NP
4110/**
4111 * prepare_task_switch - prepare to switch tasks
4112 * @rq: the runqueue preparing to switch
421cee29 4113 * @prev: the current task that is being switched out
4866cde0
NP
4114 * @next: the task we are going to switch to.
4115 *
4116 * This is called with the rq lock held and interrupts off. It must
4117 * be paired with a subsequent finish_task_switch after the context
4118 * switch.
4119 *
4120 * prepare_task_switch sets up locking and calls architecture specific
4121 * hooks.
4122 */
e107be36
AK
4123static inline void
4124prepare_task_switch(struct rq *rq, struct task_struct *prev,
4125 struct task_struct *next)
4866cde0 4126{
0ed557aa 4127 kcov_prepare_switch(prev);
43148951 4128 sched_info_switch(rq, prev, next);
fe4b04fa 4129 perf_event_task_sched_out(prev, next);
d7822b1e 4130 rseq_preempt(prev);
e107be36 4131 fire_sched_out_preempt_notifiers(prev, next);
5fbda3ec 4132 kmap_local_sched_out();
31cb1bc0 4133 prepare_task(next);
4866cde0
NP
4134 prepare_arch_switch(next);
4135}
4136
1da177e4
LT
4137/**
4138 * finish_task_switch - clean up after a task-switch
4139 * @prev: the thread we just switched away from.
4140 *
4866cde0
NP
4141 * finish_task_switch must be called after the context switch, paired
4142 * with a prepare_task_switch call before the context switch.
4143 * finish_task_switch will reconcile locking set up by prepare_task_switch,
4144 * and do any other architecture-specific cleanup actions.
1da177e4
LT
4145 *
4146 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 4147 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
4148 * with the lock held can cause deadlocks; see schedule() for
4149 * details.)
dfa50b60
ON
4150 *
4151 * The context switch have flipped the stack from under us and restored the
4152 * local variables which were saved when this task called schedule() in the
4153 * past. prev == current is still correct but we need to recalculate this_rq
4154 * because prev may have moved to another CPU.
1da177e4 4155 */
dfa50b60 4156static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
4157 __releases(rq->lock)
4158{
dfa50b60 4159 struct rq *rq = this_rq();
1da177e4 4160 struct mm_struct *mm = rq->prev_mm;
55a101f8 4161 long prev_state;
1da177e4 4162
609ca066
PZ
4163 /*
4164 * The previous task will have left us with a preempt_count of 2
4165 * because it left us after:
4166 *
4167 * schedule()
4168 * preempt_disable(); // 1
4169 * __schedule()
4170 * raw_spin_lock_irq(&rq->lock) // 2
4171 *
4172 * Also, see FORK_PREEMPT_COUNT.
4173 */
e2bf1c4b
PZ
4174 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
4175 "corrupted preempt_count: %s/%d/0x%x\n",
4176 current->comm, current->pid, preempt_count()))
4177 preempt_count_set(FORK_PREEMPT_COUNT);
609ca066 4178
1da177e4
LT
4179 rq->prev_mm = NULL;
4180
4181 /*
4182 * A task struct has one reference for the use as "current".
c394cc9f 4183 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
4184 * schedule one last time. The schedule call will never return, and
4185 * the scheduled task must drop that reference.
95913d97
PZ
4186 *
4187 * We must observe prev->state before clearing prev->on_cpu (in
31cb1bc0 4188 * finish_task), otherwise a concurrent wakeup can get prev
95913d97
PZ
4189 * running on another CPU and we could rave with its RUNNING -> DEAD
4190 * transition, resulting in a double drop.
1da177e4 4191 */
55a101f8 4192 prev_state = prev->state;
bf9fae9f 4193 vtime_task_switch(prev);
a8d757ef 4194 perf_event_task_sched_in(prev, current);
31cb1bc0 4195 finish_task(prev);
4196 finish_lock_switch(rq);
01f23e16 4197 finish_arch_post_lock_switch();
0ed557aa 4198 kcov_finish_switch(current);
5fbda3ec
TG
4199 /*
4200 * kmap_local_sched_out() is invoked with rq::lock held and
4201 * interrupts disabled. There is no requirement for that, but the
4202 * sched out code does not have an interrupt enabled section.
4203 * Restoring the maps on sched in does not require interrupts being
4204 * disabled either.
4205 */
4206 kmap_local_sched_in();
e8fa1362 4207
e107be36 4208 fire_sched_in_preempt_notifiers(current);
306e0604 4209 /*
70216e18
MD
4210 * When switching through a kernel thread, the loop in
4211 * membarrier_{private,global}_expedited() may have observed that
4212 * kernel thread and not issued an IPI. It is therefore possible to
4213 * schedule between user->kernel->user threads without passing though
4214 * switch_mm(). Membarrier requires a barrier after storing to
4215 * rq->curr, before returning to userspace, so provide them here:
4216 *
4217 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
4218 * provided by mmdrop(),
4219 * - a sync_core for SYNC_CORE.
306e0604 4220 */
70216e18
MD
4221 if (mm) {
4222 membarrier_mm_sync_core_before_usermode(mm);
1da177e4 4223 mmdrop(mm);
70216e18 4224 }
1cef1150
PZ
4225 if (unlikely(prev_state == TASK_DEAD)) {
4226 if (prev->sched_class->task_dead)
4227 prev->sched_class->task_dead(prev);
68f24b08 4228
1cef1150
PZ
4229 /*
4230 * Remove function-return probe instances associated with this
4231 * task and put them back on the free list.
4232 */
4233 kprobe_flush_task(prev);
4234
4235 /* Task is done with its stack. */
4236 put_task_stack(prev);
4237
0ff7b2cf 4238 put_task_struct_rcu_user(prev);
c6fd91f0 4239 }
99e5ada9 4240
de734f89 4241 tick_nohz_task_switch();
dfa50b60 4242 return rq;
1da177e4
LT
4243}
4244
4245/**
4246 * schedule_tail - first thing a freshly forked thread must call.
4247 * @prev: the thread we just switched away from.
4248 */
722a9f92 4249asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
4250 __releases(rq->lock)
4251{
1a43a14a 4252 struct rq *rq;
da19ab51 4253
609ca066
PZ
4254 /*
4255 * New tasks start with FORK_PREEMPT_COUNT, see there and
4256 * finish_task_switch() for details.
4257 *
4258 * finish_task_switch() will drop rq->lock() and lower preempt_count
4259 * and the preempt_enable() will end up enabling preemption (on
4260 * PREEMPT_COUNT kernels).
4261 */
4262
dfa50b60 4263 rq = finish_task_switch(prev);
1a43a14a 4264 preempt_enable();
70b97a7f 4265
1da177e4 4266 if (current->set_child_tid)
b488893a 4267 put_user(task_pid_vnr(current), current->set_child_tid);
088fe47c
EB
4268
4269 calculate_sigpending();
1da177e4
LT
4270}
4271
4272/*
dfa50b60 4273 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 4274 */
04936948 4275static __always_inline struct rq *
70b97a7f 4276context_switch(struct rq *rq, struct task_struct *prev,
d8ac8971 4277 struct task_struct *next, struct rq_flags *rf)
1da177e4 4278{
e107be36 4279 prepare_task_switch(rq, prev, next);
fe4b04fa 4280
9226d125
ZA
4281 /*
4282 * For paravirt, this is coupled with an exit in switch_to to
4283 * combine the page table reload and the switch backend into
4284 * one hypercall.
4285 */
224101ed 4286 arch_start_context_switch(prev);
9226d125 4287
306e0604 4288 /*
139d025c
PZ
4289 * kernel -> kernel lazy + transfer active
4290 * user -> kernel lazy + mmgrab() active
4291 *
4292 * kernel -> user switch + mmdrop() active
4293 * user -> user switch
306e0604 4294 */
139d025c
PZ
4295 if (!next->mm) { // to kernel
4296 enter_lazy_tlb(prev->active_mm, next);
4297
4298 next->active_mm = prev->active_mm;
4299 if (prev->mm) // from user
4300 mmgrab(prev->active_mm);
4301 else
4302 prev->active_mm = NULL;
4303 } else { // to user
227a4aad 4304 membarrier_switch_mm(rq, prev->active_mm, next->mm);
139d025c
PZ
4305 /*
4306 * sys_membarrier() requires an smp_mb() between setting
227a4aad 4307 * rq->curr / membarrier_switch_mm() and returning to userspace.
139d025c
PZ
4308 *
4309 * The below provides this either through switch_mm(), or in
4310 * case 'prev->active_mm == next->mm' through
4311 * finish_task_switch()'s mmdrop().
4312 */
139d025c 4313 switch_mm_irqs_off(prev->active_mm, next->mm, next);
1da177e4 4314
139d025c
PZ
4315 if (!prev->mm) { // from kernel
4316 /* will mmdrop() in finish_task_switch(). */
4317 rq->prev_mm = prev->active_mm;
4318 prev->active_mm = NULL;
4319 }
1da177e4 4320 }
92509b73 4321
cb42c9a3 4322 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
92509b73 4323
269d5992 4324 prepare_lock_switch(rq, next, rf);
1da177e4
LT
4325
4326 /* Here we just switch the register state and the stack. */
4327 switch_to(prev, next, prev);
dd41f596 4328 barrier();
dfa50b60
ON
4329
4330 return finish_task_switch(prev);
1da177e4
LT
4331}
4332
4333/*
1c3e8264 4334 * nr_running and nr_context_switches:
1da177e4
LT
4335 *
4336 * externally visible scheduler statistics: current number of runnable
1c3e8264 4337 * threads, total number of context switches performed since bootup.
1da177e4
LT
4338 */
4339unsigned long nr_running(void)
4340{
4341 unsigned long i, sum = 0;
4342
4343 for_each_online_cpu(i)
4344 sum += cpu_rq(i)->nr_running;
4345
4346 return sum;
f711f609 4347}
1da177e4 4348
2ee507c4 4349/*
d1ccc66d 4350 * Check if only the current task is running on the CPU.
00cc1633
DD
4351 *
4352 * Caution: this function does not check that the caller has disabled
4353 * preemption, thus the result might have a time-of-check-to-time-of-use
4354 * race. The caller is responsible to use it correctly, for example:
4355 *
dfcb245e 4356 * - from a non-preemptible section (of course)
00cc1633
DD
4357 *
4358 * - from a thread that is bound to a single CPU
4359 *
4360 * - in a loop with very short iterations (e.g. a polling loop)
2ee507c4
TC
4361 */
4362bool single_task_running(void)
4363{
00cc1633 4364 return raw_rq()->nr_running == 1;
2ee507c4
TC
4365}
4366EXPORT_SYMBOL(single_task_running);
4367
1da177e4 4368unsigned long long nr_context_switches(void)
46cb4b7c 4369{
cc94abfc
SR
4370 int i;
4371 unsigned long long sum = 0;
46cb4b7c 4372
0a945022 4373 for_each_possible_cpu(i)
1da177e4 4374 sum += cpu_rq(i)->nr_switches;
46cb4b7c 4375
1da177e4
LT
4376 return sum;
4377}
483b4ee6 4378
145d952a
DL
4379/*
4380 * Consumers of these two interfaces, like for example the cpuidle menu
4381 * governor, are using nonsensical data. Preferring shallow idle state selection
4382 * for a CPU that has IO-wait which might not even end up running the task when
4383 * it does become runnable.
4384 */
4385
4386unsigned long nr_iowait_cpu(int cpu)
4387{
4388 return atomic_read(&cpu_rq(cpu)->nr_iowait);
4389}
4390
e33a9bba 4391/*
b19a888c 4392 * IO-wait accounting, and how it's mostly bollocks (on SMP).
e33a9bba
TH
4393 *
4394 * The idea behind IO-wait account is to account the idle time that we could
4395 * have spend running if it were not for IO. That is, if we were to improve the
4396 * storage performance, we'd have a proportional reduction in IO-wait time.
4397 *
4398 * This all works nicely on UP, where, when a task blocks on IO, we account
4399 * idle time as IO-wait, because if the storage were faster, it could've been
4400 * running and we'd not be idle.
4401 *
4402 * This has been extended to SMP, by doing the same for each CPU. This however
4403 * is broken.
4404 *
4405 * Imagine for instance the case where two tasks block on one CPU, only the one
4406 * CPU will have IO-wait accounted, while the other has regular idle. Even
4407 * though, if the storage were faster, both could've ran at the same time,
4408 * utilising both CPUs.
4409 *
4410 * This means, that when looking globally, the current IO-wait accounting on
4411 * SMP is a lower bound, by reason of under accounting.
4412 *
4413 * Worse, since the numbers are provided per CPU, they are sometimes
4414 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
4415 * associated with any one particular CPU, it can wake to another CPU than it
4416 * blocked on. This means the per CPU IO-wait number is meaningless.
4417 *
4418 * Task CPU affinities can make all that even more 'interesting'.
4419 */
4420
1da177e4
LT
4421unsigned long nr_iowait(void)
4422{
4423 unsigned long i, sum = 0;
483b4ee6 4424
0a945022 4425 for_each_possible_cpu(i)
145d952a 4426 sum += nr_iowait_cpu(i);
46cb4b7c 4427
1da177e4
LT
4428 return sum;
4429}
483b4ee6 4430
dd41f596 4431#ifdef CONFIG_SMP
8a0be9ef 4432
46cb4b7c 4433/*
38022906
PZ
4434 * sched_exec - execve() is a valuable balancing opportunity, because at
4435 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 4436 */
38022906 4437void sched_exec(void)
46cb4b7c 4438{
38022906 4439 struct task_struct *p = current;
1da177e4 4440 unsigned long flags;
0017d735 4441 int dest_cpu;
46cb4b7c 4442
8f42ced9 4443 raw_spin_lock_irqsave(&p->pi_lock, flags);
3aef1551 4444 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
0017d735
PZ
4445 if (dest_cpu == smp_processor_id())
4446 goto unlock;
38022906 4447
8f42ced9 4448 if (likely(cpu_active(dest_cpu))) {
969c7921 4449 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 4450
8f42ced9
PZ
4451 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4452 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
4453 return;
4454 }
0017d735 4455unlock:
8f42ced9 4456 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 4457}
dd41f596 4458
1da177e4
LT
4459#endif
4460
1da177e4 4461DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 4462DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
4463
4464EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 4465EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 4466
6075620b
GG
4467/*
4468 * The function fair_sched_class.update_curr accesses the struct curr
4469 * and its field curr->exec_start; when called from task_sched_runtime(),
4470 * we observe a high rate of cache misses in practice.
4471 * Prefetching this data results in improved performance.
4472 */
4473static inline void prefetch_curr_exec_start(struct task_struct *p)
4474{
4475#ifdef CONFIG_FAIR_GROUP_SCHED
4476 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
4477#else
4478 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
4479#endif
4480 prefetch(curr);
4481 prefetch(&curr->exec_start);
4482}
4483
c5f8d995
HS
4484/*
4485 * Return accounted runtime for the task.
4486 * In case the task is currently running, return the runtime plus current's
4487 * pending runtime that have not been accounted yet.
4488 */
4489unsigned long long task_sched_runtime(struct task_struct *p)
4490{
eb580751 4491 struct rq_flags rf;
c5f8d995 4492 struct rq *rq;
6e998916 4493 u64 ns;
c5f8d995 4494
911b2898
PZ
4495#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
4496 /*
97fb7a0a 4497 * 64-bit doesn't need locks to atomically read a 64-bit value.
911b2898
PZ
4498 * So we have a optimization chance when the task's delta_exec is 0.
4499 * Reading ->on_cpu is racy, but this is ok.
4500 *
d1ccc66d
IM
4501 * If we race with it leaving CPU, we'll take a lock. So we're correct.
4502 * If we race with it entering CPU, unaccounted time is 0. This is
911b2898 4503 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
4504 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
4505 * been accounted, so we're correct here as well.
911b2898 4506 */
da0c1e65 4507 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
4508 return p->se.sum_exec_runtime;
4509#endif
4510
eb580751 4511 rq = task_rq_lock(p, &rf);
6e998916
SG
4512 /*
4513 * Must be ->curr _and_ ->on_rq. If dequeued, we would
4514 * project cycles that may never be accounted to this
4515 * thread, breaking clock_gettime().
4516 */
4517 if (task_current(rq, p) && task_on_rq_queued(p)) {
6075620b 4518 prefetch_curr_exec_start(p);
6e998916
SG
4519 update_rq_clock(rq);
4520 p->sched_class->update_curr(rq);
4521 }
4522 ns = p->se.sum_exec_runtime;
eb580751 4523 task_rq_unlock(rq, p, &rf);
c5f8d995
HS
4524
4525 return ns;
4526}
48f24c4d 4527
7835b98b
CL
4528/*
4529 * This function gets called by the timer code, with HZ frequency.
4530 * We call it with interrupts disabled.
7835b98b
CL
4531 */
4532void scheduler_tick(void)
4533{
7835b98b
CL
4534 int cpu = smp_processor_id();
4535 struct rq *rq = cpu_rq(cpu);
dd41f596 4536 struct task_struct *curr = rq->curr;
8a8c69c3 4537 struct rq_flags rf;
b4eccf5f 4538 unsigned long thermal_pressure;
3e51f33f 4539
1567c3e3 4540 arch_scale_freq_tick();
3e51f33f 4541 sched_clock_tick();
dd41f596 4542
8a8c69c3
PZ
4543 rq_lock(rq, &rf);
4544
3e51f33f 4545 update_rq_clock(rq);
b4eccf5f 4546 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
05289b90 4547 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
fa85ae24 4548 curr->sched_class->task_tick(rq, curr, 0);
3289bdb4 4549 calc_global_load_tick(rq);
eb414681 4550 psi_task_tick(rq);
8a8c69c3
PZ
4551
4552 rq_unlock(rq, &rf);
7835b98b 4553
e9d2b064 4554 perf_event_task_tick();
e220d2dc 4555
e418e1c2 4556#ifdef CONFIG_SMP
6eb57e0d 4557 rq->idle_balance = idle_cpu(cpu);
7caff66f 4558 trigger_load_balance(rq);
e418e1c2 4559#endif
1da177e4
LT
4560}
4561
265f22a9 4562#ifdef CONFIG_NO_HZ_FULL
d84b3131
FW
4563
4564struct tick_work {
4565 int cpu;
b55bd585 4566 atomic_t state;
d84b3131
FW
4567 struct delayed_work work;
4568};
b55bd585
PM
4569/* Values for ->state, see diagram below. */
4570#define TICK_SCHED_REMOTE_OFFLINE 0
4571#define TICK_SCHED_REMOTE_OFFLINING 1
4572#define TICK_SCHED_REMOTE_RUNNING 2
4573
4574/*
4575 * State diagram for ->state:
4576 *
4577 *
4578 * TICK_SCHED_REMOTE_OFFLINE
4579 * | ^
4580 * | |
4581 * | | sched_tick_remote()
4582 * | |
4583 * | |
4584 * +--TICK_SCHED_REMOTE_OFFLINING
4585 * | ^
4586 * | |
4587 * sched_tick_start() | | sched_tick_stop()
4588 * | |
4589 * V |
4590 * TICK_SCHED_REMOTE_RUNNING
4591 *
4592 *
4593 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
4594 * and sched_tick_start() are happy to leave the state in RUNNING.
4595 */
d84b3131
FW
4596
4597static struct tick_work __percpu *tick_work_cpu;
4598
4599static void sched_tick_remote(struct work_struct *work)
4600{
4601 struct delayed_work *dwork = to_delayed_work(work);
4602 struct tick_work *twork = container_of(dwork, struct tick_work, work);
4603 int cpu = twork->cpu;
4604 struct rq *rq = cpu_rq(cpu);
d9c0ffca 4605 struct task_struct *curr;
d84b3131 4606 struct rq_flags rf;
d9c0ffca 4607 u64 delta;
b55bd585 4608 int os;
d84b3131
FW
4609
4610 /*
4611 * Handle the tick only if it appears the remote CPU is running in full
4612 * dynticks mode. The check is racy by nature, but missing a tick or
4613 * having one too much is no big deal because the scheduler tick updates
4614 * statistics and checks timeslices in a time-independent way, regardless
4615 * of when exactly it is running.
4616 */
488603b8 4617 if (!tick_nohz_tick_stopped_cpu(cpu))
d9c0ffca 4618 goto out_requeue;
d84b3131 4619
d9c0ffca
FW
4620 rq_lock_irq(rq, &rf);
4621 curr = rq->curr;
488603b8 4622 if (cpu_is_offline(cpu))
d9c0ffca 4623 goto out_unlock;
d84b3131 4624
d9c0ffca 4625 update_rq_clock(rq);
d9c0ffca 4626
488603b8
SW
4627 if (!is_idle_task(curr)) {
4628 /*
4629 * Make sure the next tick runs within a reasonable
4630 * amount of time.
4631 */
4632 delta = rq_clock_task(rq) - curr->se.exec_start;
4633 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
4634 }
d9c0ffca
FW
4635 curr->sched_class->task_tick(rq, curr, 0);
4636
ebc0f83c 4637 calc_load_nohz_remote(rq);
d9c0ffca
FW
4638out_unlock:
4639 rq_unlock_irq(rq, &rf);
d9c0ffca 4640out_requeue:
ebc0f83c 4641
d84b3131
FW
4642 /*
4643 * Run the remote tick once per second (1Hz). This arbitrary
4644 * frequency is large enough to avoid overload but short enough
b55bd585
PM
4645 * to keep scheduler internal stats reasonably up to date. But
4646 * first update state to reflect hotplug activity if required.
d84b3131 4647 */
b55bd585
PM
4648 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
4649 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
4650 if (os == TICK_SCHED_REMOTE_RUNNING)
4651 queue_delayed_work(system_unbound_wq, dwork, HZ);
d84b3131
FW
4652}
4653
4654static void sched_tick_start(int cpu)
4655{
b55bd585 4656 int os;
d84b3131
FW
4657 struct tick_work *twork;
4658
4659 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
4660 return;
4661
4662 WARN_ON_ONCE(!tick_work_cpu);
4663
4664 twork = per_cpu_ptr(tick_work_cpu, cpu);
b55bd585
PM
4665 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
4666 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
4667 if (os == TICK_SCHED_REMOTE_OFFLINE) {
4668 twork->cpu = cpu;
4669 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
4670 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
4671 }
d84b3131
FW
4672}
4673
4674#ifdef CONFIG_HOTPLUG_CPU
4675static void sched_tick_stop(int cpu)
4676{
4677 struct tick_work *twork;
b55bd585 4678 int os;
d84b3131
FW
4679
4680 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
4681 return;
4682
4683 WARN_ON_ONCE(!tick_work_cpu);
4684
4685 twork = per_cpu_ptr(tick_work_cpu, cpu);
b55bd585
PM
4686 /* There cannot be competing actions, but don't rely on stop-machine. */
4687 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
4688 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
4689 /* Don't cancel, as this would mess up the state machine. */
d84b3131
FW
4690}
4691#endif /* CONFIG_HOTPLUG_CPU */
4692
4693int __init sched_tick_offload_init(void)
4694{
4695 tick_work_cpu = alloc_percpu(struct tick_work);
4696 BUG_ON(!tick_work_cpu);
d84b3131
FW
4697 return 0;
4698}
4699
4700#else /* !CONFIG_NO_HZ_FULL */
4701static inline void sched_tick_start(int cpu) { }
4702static inline void sched_tick_stop(int cpu) { }
265f22a9 4703#endif
1da177e4 4704
c1a280b6 4705#if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
c3bc8fd6 4706 defined(CONFIG_TRACE_PREEMPT_TOGGLE))
47252cfb
SR
4707/*
4708 * If the value passed in is equal to the current preempt count
4709 * then we just disabled preemption. Start timing the latency.
4710 */
4711static inline void preempt_latency_start(int val)
4712{
4713 if (preempt_count() == val) {
4714 unsigned long ip = get_lock_parent_ip();
4715#ifdef CONFIG_DEBUG_PREEMPT
4716 current->preempt_disable_ip = ip;
4717#endif
4718 trace_preempt_off(CALLER_ADDR0, ip);
4719 }
4720}
7e49fcce 4721
edafe3a5 4722void preempt_count_add(int val)
1da177e4 4723{
6cd8a4bb 4724#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4725 /*
4726 * Underflow?
4727 */
9a11b49a
IM
4728 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4729 return;
6cd8a4bb 4730#endif
bdb43806 4731 __preempt_count_add(val);
6cd8a4bb 4732#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4733 /*
4734 * Spinlock count overflowing soon?
4735 */
33859f7f
MOS
4736 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4737 PREEMPT_MASK - 10);
6cd8a4bb 4738#endif
47252cfb 4739 preempt_latency_start(val);
1da177e4 4740}
bdb43806 4741EXPORT_SYMBOL(preempt_count_add);
edafe3a5 4742NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 4743
47252cfb
SR
4744/*
4745 * If the value passed in equals to the current preempt count
4746 * then we just enabled preemption. Stop timing the latency.
4747 */
4748static inline void preempt_latency_stop(int val)
4749{
4750 if (preempt_count() == val)
4751 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
4752}
4753
edafe3a5 4754void preempt_count_sub(int val)
1da177e4 4755{
6cd8a4bb 4756#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4757 /*
4758 * Underflow?
4759 */
01e3eb82 4760 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 4761 return;
1da177e4
LT
4762 /*
4763 * Is the spinlock portion underflowing?
4764 */
9a11b49a
IM
4765 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4766 !(preempt_count() & PREEMPT_MASK)))
4767 return;
6cd8a4bb 4768#endif
9a11b49a 4769
47252cfb 4770 preempt_latency_stop(val);
bdb43806 4771 __preempt_count_sub(val);
1da177e4 4772}
bdb43806 4773EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 4774NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4 4775
47252cfb
SR
4776#else
4777static inline void preempt_latency_start(int val) { }
4778static inline void preempt_latency_stop(int val) { }
1da177e4
LT
4779#endif
4780
59ddbcb2
IM
4781static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
4782{
4783#ifdef CONFIG_DEBUG_PREEMPT
4784 return p->preempt_disable_ip;
4785#else
4786 return 0;
4787#endif
4788}
4789
1da177e4 4790/*
dd41f596 4791 * Print scheduling while atomic bug:
1da177e4 4792 */
dd41f596 4793static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4794{
d1c6d149
VN
4795 /* Save this before calling printk(), since that will clobber it */
4796 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
4797
664dfa65
DJ
4798 if (oops_in_progress)
4799 return;
4800
3df0fc5b
PZ
4801 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4802 prev->comm, prev->pid, preempt_count());
838225b4 4803
dd41f596 4804 debug_show_held_locks(prev);
e21f5b15 4805 print_modules();
dd41f596
IM
4806 if (irqs_disabled())
4807 print_irqtrace_events(prev);
d1c6d149
VN
4808 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
4809 && in_atomic_preempt_off()) {
8f47b187 4810 pr_err("Preemption disabled at:");
2062a4e8 4811 print_ip_sym(KERN_ERR, preempt_disable_ip);
8f47b187 4812 }
748c7201
DBO
4813 if (panic_on_warn)
4814 panic("scheduling while atomic\n");
4815
6135fc1e 4816 dump_stack();
373d4d09 4817 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 4818}
1da177e4 4819
dd41f596
IM
4820/*
4821 * Various schedule()-time debugging checks and statistics:
4822 */
312364f3 4823static inline void schedule_debug(struct task_struct *prev, bool preempt)
dd41f596 4824{
0d9e2632 4825#ifdef CONFIG_SCHED_STACK_END_CHECK
29d64551
JH
4826 if (task_stack_end_corrupted(prev))
4827 panic("corrupted stack end detected inside scheduler\n");
88485be5
WD
4828
4829 if (task_scs_end_corrupted(prev))
4830 panic("corrupted shadow stack detected inside scheduler\n");
0d9e2632 4831#endif
b99def8b 4832
312364f3
DV
4833#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
4834 if (!preempt && prev->state && prev->non_block_count) {
4835 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
4836 prev->comm, prev->pid, prev->non_block_count);
4837 dump_stack();
4838 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
4839 }
4840#endif
4841
1dc0fffc 4842 if (unlikely(in_atomic_preempt_off())) {
dd41f596 4843 __schedule_bug(prev);
1dc0fffc
PZ
4844 preempt_count_set(PREEMPT_DISABLED);
4845 }
b3fbab05 4846 rcu_sleep_check();
9f68b5b7 4847 SCHED_WARN_ON(ct_state() == CONTEXT_USER);
dd41f596 4848
1da177e4
LT
4849 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4850
ae92882e 4851 schedstat_inc(this_rq()->sched_count);
dd41f596
IM
4852}
4853
457d1f46
CY
4854static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
4855 struct rq_flags *rf)
4856{
4857#ifdef CONFIG_SMP
4858 const struct sched_class *class;
4859 /*
4860 * We must do the balancing pass before put_prev_task(), such
4861 * that when we release the rq->lock the task is in the same
4862 * state as before we took rq->lock.
4863 *
4864 * We can terminate the balance pass as soon as we know there is
4865 * a runnable task of @class priority or higher.
4866 */
4867 for_class_range(class, prev->sched_class, &idle_sched_class) {
4868 if (class->balance(rq, prev, rf))
4869 break;
4870 }
4871#endif
4872
4873 put_prev_task(rq, prev);
4874}
4875
dd41f596
IM
4876/*
4877 * Pick up the highest-prio task:
4878 */
4879static inline struct task_struct *
d8ac8971 4880pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
dd41f596 4881{
49ee5768 4882 const struct sched_class *class;
dd41f596 4883 struct task_struct *p;
1da177e4
LT
4884
4885 /*
0ba87bb2
PZ
4886 * Optimization: we know that if all tasks are in the fair class we can
4887 * call that function directly, but only if the @prev task wasn't of a
b19a888c 4888 * higher scheduling class, because otherwise those lose the
0ba87bb2 4889 * opportunity to pull in more work from other CPUs.
1da177e4 4890 */
aa93cd53 4891 if (likely(prev->sched_class <= &fair_sched_class &&
0ba87bb2
PZ
4892 rq->nr_running == rq->cfs.h_nr_running)) {
4893
5d7d6056 4894 p = pick_next_task_fair(rq, prev, rf);
6ccdc84b 4895 if (unlikely(p == RETRY_TASK))
67692435 4896 goto restart;
6ccdc84b 4897
d1ccc66d 4898 /* Assumes fair_sched_class->next == idle_sched_class */
5d7d6056 4899 if (!p) {
f488e105 4900 put_prev_task(rq, prev);
98c2f700 4901 p = pick_next_task_idle(rq);
f488e105 4902 }
6ccdc84b
PZ
4903
4904 return p;
1da177e4
LT
4905 }
4906
67692435 4907restart:
457d1f46 4908 put_prev_task_balance(rq, prev, rf);
67692435 4909
34f971f6 4910 for_each_class(class) {
98c2f700 4911 p = class->pick_next_task(rq);
67692435 4912 if (p)
dd41f596 4913 return p;
dd41f596 4914 }
34f971f6 4915
d1ccc66d
IM
4916 /* The idle class should always have a runnable task: */
4917 BUG();
dd41f596 4918}
1da177e4 4919
dd41f596 4920/*
c259e01a 4921 * __schedule() is the main scheduler function.
edde96ea
PE
4922 *
4923 * The main means of driving the scheduler and thus entering this function are:
4924 *
4925 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
4926 *
4927 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
4928 * paths. For example, see arch/x86/entry_64.S.
4929 *
4930 * To drive preemption between tasks, the scheduler sets the flag in timer
4931 * interrupt handler scheduler_tick().
4932 *
4933 * 3. Wakeups don't really cause entry into schedule(). They add a
4934 * task to the run-queue and that's it.
4935 *
4936 * Now, if the new task added to the run-queue preempts the current
4937 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
4938 * called on the nearest possible occasion:
4939 *
c1a280b6 4940 * - If the kernel is preemptible (CONFIG_PREEMPTION=y):
edde96ea
PE
4941 *
4942 * - in syscall or exception context, at the next outmost
4943 * preempt_enable(). (this might be as soon as the wake_up()'s
4944 * spin_unlock()!)
4945 *
4946 * - in IRQ context, return from interrupt-handler to
4947 * preemptible context
4948 *
c1a280b6 4949 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
edde96ea
PE
4950 * then at the next:
4951 *
4952 * - cond_resched() call
4953 * - explicit schedule() call
4954 * - return from syscall or exception to user-space
4955 * - return from interrupt-handler to user-space
bfd9b2b5 4956 *
b30f0e3f 4957 * WARNING: must be called with preemption disabled!
dd41f596 4958 */
499d7955 4959static void __sched notrace __schedule(bool preempt)
dd41f596
IM
4960{
4961 struct task_struct *prev, *next;
67ca7bde 4962 unsigned long *switch_count;
dbfb089d 4963 unsigned long prev_state;
d8ac8971 4964 struct rq_flags rf;
dd41f596 4965 struct rq *rq;
31656519 4966 int cpu;
dd41f596 4967
dd41f596
IM
4968 cpu = smp_processor_id();
4969 rq = cpu_rq(cpu);
dd41f596 4970 prev = rq->curr;
dd41f596 4971
312364f3 4972 schedule_debug(prev, preempt);
1da177e4 4973
31656519 4974 if (sched_feat(HRTICK))
f333fdc9 4975 hrtick_clear(rq);
8f4d37ec 4976
46a5d164 4977 local_irq_disable();
bcbfdd01 4978 rcu_note_context_switch(preempt);
46a5d164 4979
e0acd0a6
ON
4980 /*
4981 * Make sure that signal_pending_state()->signal_pending() below
4982 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
dbfb089d
PZ
4983 * done by the caller to avoid the race with signal_wake_up():
4984 *
4985 * __set_current_state(@state) signal_wake_up()
4986 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING)
4987 * wake_up_state(p, state)
4988 * LOCK rq->lock LOCK p->pi_state
4989 * smp_mb__after_spinlock() smp_mb__after_spinlock()
4990 * if (signal_pending_state()) if (p->state & @state)
306e0604 4991 *
dbfb089d 4992 * Also, the membarrier system call requires a full memory barrier
306e0604 4993 * after coming from user-space, before storing to rq->curr.
e0acd0a6 4994 */
8a8c69c3 4995 rq_lock(rq, &rf);
d89e588c 4996 smp_mb__after_spinlock();
1da177e4 4997
d1ccc66d
IM
4998 /* Promote REQ to ACT */
4999 rq->clock_update_flags <<= 1;
bce4dc80 5000 update_rq_clock(rq);
9edfbfed 5001
246d86b5 5002 switch_count = &prev->nivcsw;
d136122f 5003
dbfb089d 5004 /*
d136122f
PZ
5005 * We must load prev->state once (task_struct::state is volatile), such
5006 * that:
5007 *
5008 * - we form a control dependency vs deactivate_task() below.
5009 * - ptrace_{,un}freeze_traced() can change ->state underneath us.
dbfb089d 5010 */
d136122f
PZ
5011 prev_state = prev->state;
5012 if (!preempt && prev_state) {
dbfb089d 5013 if (signal_pending_state(prev_state, prev)) {
1da177e4 5014 prev->state = TASK_RUNNING;
21aa9af0 5015 } else {
dbfb089d
PZ
5016 prev->sched_contributes_to_load =
5017 (prev_state & TASK_UNINTERRUPTIBLE) &&
5018 !(prev_state & TASK_NOLOAD) &&
5019 !(prev->flags & PF_FROZEN);
5020
5021 if (prev->sched_contributes_to_load)
5022 rq->nr_uninterruptible++;
5023
5024 /*
5025 * __schedule() ttwu()
d136122f
PZ
5026 * prev_state = prev->state; if (p->on_rq && ...)
5027 * if (prev_state) goto out;
5028 * p->on_rq = 0; smp_acquire__after_ctrl_dep();
5029 * p->state = TASK_WAKING
5030 *
5031 * Where __schedule() and ttwu() have matching control dependencies.
dbfb089d
PZ
5032 *
5033 * After this, schedule() must not care about p->state any more.
5034 */
bce4dc80 5035 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
2acca55e 5036
e33a9bba
TH
5037 if (prev->in_iowait) {
5038 atomic_inc(&rq->nr_iowait);
5039 delayacct_blkio_start();
5040 }
21aa9af0 5041 }
dd41f596 5042 switch_count = &prev->nvcsw;
1da177e4
LT
5043 }
5044
d8ac8971 5045 next = pick_next_task(rq, prev, &rf);
f26f9aff 5046 clear_tsk_need_resched(prev);
f27dde8d 5047 clear_preempt_need_resched();
1da177e4 5048
1da177e4 5049 if (likely(prev != next)) {
1da177e4 5050 rq->nr_switches++;
5311a98f
EB
5051 /*
5052 * RCU users of rcu_dereference(rq->curr) may not see
5053 * changes to task_struct made by pick_next_task().
5054 */
5055 RCU_INIT_POINTER(rq->curr, next);
22e4ebb9
MD
5056 /*
5057 * The membarrier system call requires each architecture
5058 * to have a full memory barrier after updating
306e0604
MD
5059 * rq->curr, before returning to user-space.
5060 *
5061 * Here are the schemes providing that barrier on the
5062 * various architectures:
5063 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
5064 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
5065 * - finish_lock_switch() for weakly-ordered
5066 * architectures where spin_unlock is a full barrier,
5067 * - switch_to() for arm64 (weakly-ordered, spin_unlock
5068 * is a RELEASE barrier),
22e4ebb9 5069 */
1da177e4
LT
5070 ++*switch_count;
5071
af449901 5072 migrate_disable_switch(rq, prev);
b05e75d6
JW
5073 psi_sched_switch(prev, next, !task_on_rq_queued(prev));
5074
c73464b1 5075 trace_sched_switch(preempt, prev, next);
d1ccc66d
IM
5076
5077 /* Also unlocks the rq: */
5078 rq = context_switch(rq, prev, next, &rf);
cbce1a68 5079 } else {
cb42c9a3 5080 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
1da177e4 5081
565790d2
PZ
5082 rq_unpin_lock(rq, &rf);
5083 __balance_callbacks(rq);
5084 raw_spin_unlock_irq(&rq->lock);
5085 }
1da177e4 5086}
c259e01a 5087
9af6528e
PZ
5088void __noreturn do_task_dead(void)
5089{
d1ccc66d 5090 /* Causes final put_task_struct in finish_task_switch(): */
b5bf9a90 5091 set_special_state(TASK_DEAD);
d1ccc66d
IM
5092
5093 /* Tell freezer to ignore us: */
5094 current->flags |= PF_NOFREEZE;
5095
9af6528e
PZ
5096 __schedule(false);
5097 BUG();
d1ccc66d
IM
5098
5099 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
9af6528e 5100 for (;;)
d1ccc66d 5101 cpu_relax();
9af6528e
PZ
5102}
5103
9c40cef2
TG
5104static inline void sched_submit_work(struct task_struct *tsk)
5105{
c1cecf88
SAS
5106 unsigned int task_flags;
5107
b0fdc013 5108 if (!tsk->state)
9c40cef2 5109 return;
6d25be57 5110
c1cecf88 5111 task_flags = tsk->flags;
6d25be57
TG
5112 /*
5113 * If a worker went to sleep, notify and ask workqueue whether
5114 * it wants to wake up a task to maintain concurrency.
5115 * As this function is called inside the schedule() context,
5116 * we disable preemption to avoid it calling schedule() again
62849a96
SAS
5117 * in the possible wakeup of a kworker and because wq_worker_sleeping()
5118 * requires it.
6d25be57 5119 */
c1cecf88 5120 if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6d25be57 5121 preempt_disable();
c1cecf88 5122 if (task_flags & PF_WQ_WORKER)
771b53d0
JA
5123 wq_worker_sleeping(tsk);
5124 else
5125 io_wq_worker_sleeping(tsk);
6d25be57
TG
5126 preempt_enable_no_resched();
5127 }
5128
b0fdc013
SAS
5129 if (tsk_is_pi_blocked(tsk))
5130 return;
5131
9c40cef2
TG
5132 /*
5133 * If we are going to sleep and we have plugged IO queued,
5134 * make sure to submit it to avoid deadlocks.
5135 */
5136 if (blk_needs_flush_plug(tsk))
5137 blk_schedule_flush_plug(tsk);
5138}
5139
6d25be57
TG
5140static void sched_update_worker(struct task_struct *tsk)
5141{
771b53d0
JA
5142 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
5143 if (tsk->flags & PF_WQ_WORKER)
5144 wq_worker_running(tsk);
5145 else
5146 io_wq_worker_running(tsk);
5147 }
6d25be57
TG
5148}
5149
722a9f92 5150asmlinkage __visible void __sched schedule(void)
c259e01a 5151{
9c40cef2
TG
5152 struct task_struct *tsk = current;
5153
5154 sched_submit_work(tsk);
bfd9b2b5 5155 do {
b30f0e3f 5156 preempt_disable();
fc13aeba 5157 __schedule(false);
b30f0e3f 5158 sched_preempt_enable_no_resched();
bfd9b2b5 5159 } while (need_resched());
6d25be57 5160 sched_update_worker(tsk);
c259e01a 5161}
1da177e4
LT
5162EXPORT_SYMBOL(schedule);
5163
8663effb
SRV
5164/*
5165 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
5166 * state (have scheduled out non-voluntarily) by making sure that all
5167 * tasks have either left the run queue or have gone into user space.
5168 * As idle tasks do not do either, they must not ever be preempted
5169 * (schedule out non-voluntarily).
5170 *
5171 * schedule_idle() is similar to schedule_preempt_disable() except that it
5172 * never enables preemption because it does not call sched_submit_work().
5173 */
5174void __sched schedule_idle(void)
5175{
5176 /*
5177 * As this skips calling sched_submit_work(), which the idle task does
5178 * regardless because that function is a nop when the task is in a
5179 * TASK_RUNNING state, make sure this isn't used someplace that the
5180 * current task can be in any other state. Note, idle is always in the
5181 * TASK_RUNNING state.
5182 */
5183 WARN_ON_ONCE(current->state);
5184 do {
5185 __schedule(false);
5186 } while (need_resched());
5187}
5188
6775de49 5189#if defined(CONFIG_CONTEXT_TRACKING) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_OFFSTACK)
722a9f92 5190asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
5191{
5192 /*
5193 * If we come here after a random call to set_need_resched(),
5194 * or we have been woken up remotely but the IPI has not yet arrived,
5195 * we haven't yet exited the RCU idle mode. Do it here manually until
5196 * we find a better solution.
7cc78f8f
AL
5197 *
5198 * NB: There are buggy callers of this function. Ideally we
c467ea76 5199 * should warn if prev_state != CONTEXT_USER, but that will trigger
7cc78f8f 5200 * too frequently to make sense yet.
20ab65e3 5201 */
7cc78f8f 5202 enum ctx_state prev_state = exception_enter();
20ab65e3 5203 schedule();
7cc78f8f 5204 exception_exit(prev_state);
20ab65e3
FW
5205}
5206#endif
5207
c5491ea7
TG
5208/**
5209 * schedule_preempt_disabled - called with preemption disabled
5210 *
5211 * Returns with preemption disabled. Note: preempt_count must be 1
5212 */
5213void __sched schedule_preempt_disabled(void)
5214{
ba74c144 5215 sched_preempt_enable_no_resched();
c5491ea7
TG
5216 schedule();
5217 preempt_disable();
5218}
5219
06b1f808 5220static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
5221{
5222 do {
47252cfb
SR
5223 /*
5224 * Because the function tracer can trace preempt_count_sub()
5225 * and it also uses preempt_enable/disable_notrace(), if
5226 * NEED_RESCHED is set, the preempt_enable_notrace() called
5227 * by the function tracer will call this function again and
5228 * cause infinite recursion.
5229 *
5230 * Preemption must be disabled here before the function
5231 * tracer can trace. Break up preempt_disable() into two
5232 * calls. One to disable preemption without fear of being
5233 * traced. The other to still record the preemption latency,
5234 * which can also be traced by the function tracer.
5235 */
499d7955 5236 preempt_disable_notrace();
47252cfb 5237 preempt_latency_start(1);
fc13aeba 5238 __schedule(true);
47252cfb 5239 preempt_latency_stop(1);
499d7955 5240 preempt_enable_no_resched_notrace();
a18b5d01
FW
5241
5242 /*
5243 * Check again in case we missed a preemption opportunity
5244 * between schedule and now.
5245 */
a18b5d01
FW
5246 } while (need_resched());
5247}
5248
c1a280b6 5249#ifdef CONFIG_PREEMPTION
1da177e4 5250/*
a49b4f40
VS
5251 * This is the entry point to schedule() from in-kernel preemption
5252 * off of preempt_enable.
1da177e4 5253 */
722a9f92 5254asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 5255{
1da177e4
LT
5256 /*
5257 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 5258 * we do not want to preempt the current task. Just return..
1da177e4 5259 */
fbb00b56 5260 if (likely(!preemptible()))
1da177e4
LT
5261 return;
5262
a18b5d01 5263 preempt_schedule_common();
1da177e4 5264}
376e2424 5265NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 5266EXPORT_SYMBOL(preempt_schedule);
009f60e2 5267
009f60e2 5268/**
4eaca0a8 5269 * preempt_schedule_notrace - preempt_schedule called by tracing
009f60e2
ON
5270 *
5271 * The tracing infrastructure uses preempt_enable_notrace to prevent
5272 * recursion and tracing preempt enabling caused by the tracing
5273 * infrastructure itself. But as tracing can happen in areas coming
5274 * from userspace or just about to enter userspace, a preempt enable
5275 * can occur before user_exit() is called. This will cause the scheduler
5276 * to be called when the system is still in usermode.
5277 *
5278 * To prevent this, the preempt_enable_notrace will use this function
5279 * instead of preempt_schedule() to exit user context if needed before
5280 * calling the scheduler.
5281 */
4eaca0a8 5282asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
009f60e2
ON
5283{
5284 enum ctx_state prev_ctx;
5285
5286 if (likely(!preemptible()))
5287 return;
5288
5289 do {
47252cfb
SR
5290 /*
5291 * Because the function tracer can trace preempt_count_sub()
5292 * and it also uses preempt_enable/disable_notrace(), if
5293 * NEED_RESCHED is set, the preempt_enable_notrace() called
5294 * by the function tracer will call this function again and
5295 * cause infinite recursion.
5296 *
5297 * Preemption must be disabled here before the function
5298 * tracer can trace. Break up preempt_disable() into two
5299 * calls. One to disable preemption without fear of being
5300 * traced. The other to still record the preemption latency,
5301 * which can also be traced by the function tracer.
5302 */
3d8f74dd 5303 preempt_disable_notrace();
47252cfb 5304 preempt_latency_start(1);
009f60e2
ON
5305 /*
5306 * Needs preempt disabled in case user_exit() is traced
5307 * and the tracer calls preempt_enable_notrace() causing
5308 * an infinite recursion.
5309 */
5310 prev_ctx = exception_enter();
fc13aeba 5311 __schedule(true);
009f60e2
ON
5312 exception_exit(prev_ctx);
5313
47252cfb 5314 preempt_latency_stop(1);
3d8f74dd 5315 preempt_enable_no_resched_notrace();
009f60e2
ON
5316 } while (need_resched());
5317}
4eaca0a8 5318EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
009f60e2 5319
c1a280b6 5320#endif /* CONFIG_PREEMPTION */
1da177e4
LT
5321
5322/*
a49b4f40 5323 * This is the entry point to schedule() from kernel preemption
1da177e4
LT
5324 * off of irq context.
5325 * Note, that this is called and return with irqs disabled. This will
5326 * protect us against recursive calling from irq.
5327 */
722a9f92 5328asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 5329{
b22366cd 5330 enum ctx_state prev_state;
6478d880 5331
2ed6e34f 5332 /* Catch callers which need to be fixed */
f27dde8d 5333 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 5334
b22366cd
FW
5335 prev_state = exception_enter();
5336
3a5c359a 5337 do {
3d8f74dd 5338 preempt_disable();
3a5c359a 5339 local_irq_enable();
fc13aeba 5340 __schedule(true);
3a5c359a 5341 local_irq_disable();
3d8f74dd 5342 sched_preempt_enable_no_resched();
5ed0cec0 5343 } while (need_resched());
b22366cd
FW
5344
5345 exception_exit(prev_state);
1da177e4
LT
5346}
5347
ac6424b9 5348int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
95cdf3b7 5349 void *key)
1da177e4 5350{
062d3f95 5351 WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC);
63859d4f 5352 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 5353}
1da177e4
LT
5354EXPORT_SYMBOL(default_wake_function);
5355
b29739f9
IM
5356#ifdef CONFIG_RT_MUTEXES
5357
acd58620
PZ
5358static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
5359{
5360 if (pi_task)
5361 prio = min(prio, pi_task->prio);
5362
5363 return prio;
5364}
5365
5366static inline int rt_effective_prio(struct task_struct *p, int prio)
5367{
5368 struct task_struct *pi_task = rt_mutex_get_top_task(p);
5369
5370 return __rt_effective_prio(pi_task, prio);
5371}
5372
b29739f9
IM
5373/*
5374 * rt_mutex_setprio - set the current priority of a task
acd58620
PZ
5375 * @p: task to boost
5376 * @pi_task: donor task
b29739f9
IM
5377 *
5378 * This function changes the 'effective' priority of a task. It does
5379 * not touch ->normal_prio like __setscheduler().
5380 *
c365c292
TG
5381 * Used by the rt_mutex code to implement priority inheritance
5382 * logic. Call site only calls if the priority of the task changed.
b29739f9 5383 */
acd58620 5384void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
b29739f9 5385{
acd58620 5386 int prio, oldprio, queued, running, queue_flag =
7a57f32a 5387 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
83ab0aa0 5388 const struct sched_class *prev_class;
eb580751
PZ
5389 struct rq_flags rf;
5390 struct rq *rq;
b29739f9 5391
acd58620
PZ
5392 /* XXX used to be waiter->prio, not waiter->task->prio */
5393 prio = __rt_effective_prio(pi_task, p->normal_prio);
5394
5395 /*
5396 * If nothing changed; bail early.
5397 */
5398 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
5399 return;
b29739f9 5400
eb580751 5401 rq = __task_rq_lock(p, &rf);
80f5c1b8 5402 update_rq_clock(rq);
acd58620
PZ
5403 /*
5404 * Set under pi_lock && rq->lock, such that the value can be used under
5405 * either lock.
5406 *
5407 * Note that there is loads of tricky to make this pointer cache work
5408 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
5409 * ensure a task is de-boosted (pi_task is set to NULL) before the
5410 * task is allowed to run again (and can exit). This ensures the pointer
b19a888c 5411 * points to a blocked task -- which guarantees the task is present.
acd58620
PZ
5412 */
5413 p->pi_top_task = pi_task;
5414
5415 /*
5416 * For FIFO/RR we only need to set prio, if that matches we're done.
5417 */
5418 if (prio == p->prio && !dl_prio(prio))
5419 goto out_unlock;
b29739f9 5420
1c4dd99b
TG
5421 /*
5422 * Idle task boosting is a nono in general. There is one
5423 * exception, when PREEMPT_RT and NOHZ is active:
5424 *
5425 * The idle task calls get_next_timer_interrupt() and holds
5426 * the timer wheel base->lock on the CPU and another CPU wants
5427 * to access the timer (probably to cancel it). We can safely
5428 * ignore the boosting request, as the idle CPU runs this code
5429 * with interrupts disabled and will complete the lock
5430 * protected section without being interrupted. So there is no
5431 * real need to boost.
5432 */
5433 if (unlikely(p == rq->idle)) {
5434 WARN_ON(p != rq->curr);
5435 WARN_ON(p->pi_blocked_on);
5436 goto out_unlock;
5437 }
5438
b91473ff 5439 trace_sched_pi_setprio(p, pi_task);
d5f9f942 5440 oldprio = p->prio;
ff77e468
PZ
5441
5442 if (oldprio == prio)
5443 queue_flag &= ~DEQUEUE_MOVE;
5444
83ab0aa0 5445 prev_class = p->sched_class;
da0c1e65 5446 queued = task_on_rq_queued(p);
051a1d1a 5447 running = task_current(rq, p);
da0c1e65 5448 if (queued)
ff77e468 5449 dequeue_task(rq, p, queue_flag);
0e1f3483 5450 if (running)
f3cd1c4e 5451 put_prev_task(rq, p);
dd41f596 5452
2d3d891d
DF
5453 /*
5454 * Boosting condition are:
5455 * 1. -rt task is running and holds mutex A
5456 * --> -dl task blocks on mutex A
5457 *
5458 * 2. -dl task is running and holds mutex A
5459 * --> -dl task blocks on mutex A and could preempt the
5460 * running task
5461 */
5462 if (dl_prio(prio)) {
466af29b 5463 if (!dl_prio(p->normal_prio) ||
740797ce
JL
5464 (pi_task && dl_prio(pi_task->prio) &&
5465 dl_entity_preempt(&pi_task->dl, &p->dl))) {
2279f540 5466 p->dl.pi_se = pi_task->dl.pi_se;
ff77e468 5467 queue_flag |= ENQUEUE_REPLENISH;
2279f540
JL
5468 } else {
5469 p->dl.pi_se = &p->dl;
5470 }
aab03e05 5471 p->sched_class = &dl_sched_class;
2d3d891d
DF
5472 } else if (rt_prio(prio)) {
5473 if (dl_prio(oldprio))
2279f540 5474 p->dl.pi_se = &p->dl;
2d3d891d 5475 if (oldprio < prio)
ff77e468 5476 queue_flag |= ENQUEUE_HEAD;
dd41f596 5477 p->sched_class = &rt_sched_class;
2d3d891d
DF
5478 } else {
5479 if (dl_prio(oldprio))
2279f540 5480 p->dl.pi_se = &p->dl;
746db944
BS
5481 if (rt_prio(oldprio))
5482 p->rt.timeout = 0;
dd41f596 5483 p->sched_class = &fair_sched_class;
2d3d891d 5484 }
dd41f596 5485
b29739f9
IM
5486 p->prio = prio;
5487
da0c1e65 5488 if (queued)
ff77e468 5489 enqueue_task(rq, p, queue_flag);
a399d233 5490 if (running)
03b7fad1 5491 set_next_task(rq, p);
cb469845 5492
da7a735e 5493 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 5494out_unlock:
d1ccc66d
IM
5495 /* Avoid rq from going away on us: */
5496 preempt_disable();
4c9a4bc8 5497
565790d2
PZ
5498 rq_unpin_lock(rq, &rf);
5499 __balance_callbacks(rq);
5500 raw_spin_unlock(&rq->lock);
5501
4c9a4bc8 5502 preempt_enable();
b29739f9 5503}
acd58620
PZ
5504#else
5505static inline int rt_effective_prio(struct task_struct *p, int prio)
5506{
5507 return prio;
5508}
b29739f9 5509#endif
d50dde5a 5510
36c8b586 5511void set_user_nice(struct task_struct *p, long nice)
1da177e4 5512{
49bd21ef 5513 bool queued, running;
53a23364 5514 int old_prio;
eb580751 5515 struct rq_flags rf;
70b97a7f 5516 struct rq *rq;
1da177e4 5517
75e45d51 5518 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
5519 return;
5520 /*
5521 * We have to be careful, if called from sys_setpriority(),
5522 * the task might be in the middle of scheduling on another CPU.
5523 */
eb580751 5524 rq = task_rq_lock(p, &rf);
2fb8d367
PZ
5525 update_rq_clock(rq);
5526
1da177e4
LT
5527 /*
5528 * The RT priorities are set via sched_setscheduler(), but we still
5529 * allow the 'normal' nice value to be set - but as expected
b19a888c 5530 * it won't have any effect on scheduling until the task is
aab03e05 5531 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 5532 */
aab03e05 5533 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
5534 p->static_prio = NICE_TO_PRIO(nice);
5535 goto out_unlock;
5536 }
da0c1e65 5537 queued = task_on_rq_queued(p);
49bd21ef 5538 running = task_current(rq, p);
da0c1e65 5539 if (queued)
7a57f32a 5540 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
49bd21ef
PZ
5541 if (running)
5542 put_prev_task(rq, p);
1da177e4 5543
1da177e4 5544 p->static_prio = NICE_TO_PRIO(nice);
9059393e 5545 set_load_weight(p, true);
b29739f9
IM
5546 old_prio = p->prio;
5547 p->prio = effective_prio(p);
1da177e4 5548
5443a0be 5549 if (queued)
7134b3e9 5550 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
49bd21ef 5551 if (running)
03b7fad1 5552 set_next_task(rq, p);
5443a0be
FW
5553
5554 /*
5555 * If the task increased its priority or is running and
5556 * lowered its priority, then reschedule its CPU:
5557 */
5558 p->sched_class->prio_changed(rq, p, old_prio);
5559
1da177e4 5560out_unlock:
eb580751 5561 task_rq_unlock(rq, p, &rf);
1da177e4 5562}
1da177e4
LT
5563EXPORT_SYMBOL(set_user_nice);
5564
e43379f1
MM
5565/*
5566 * can_nice - check if a task can reduce its nice value
5567 * @p: task
5568 * @nice: nice value
5569 */
36c8b586 5570int can_nice(const struct task_struct *p, const int nice)
e43379f1 5571{
d1ccc66d 5572 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
7aa2c016 5573 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 5574
78d7d407 5575 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
5576 capable(CAP_SYS_NICE));
5577}
5578
1da177e4
LT
5579#ifdef __ARCH_WANT_SYS_NICE
5580
5581/*
5582 * sys_nice - change the priority of the current process.
5583 * @increment: priority increment
5584 *
5585 * sys_setpriority is a more generic, but much slower function that
5586 * does similar things.
5587 */
5add95d4 5588SYSCALL_DEFINE1(nice, int, increment)
1da177e4 5589{
48f24c4d 5590 long nice, retval;
1da177e4
LT
5591
5592 /*
5593 * Setpriority might change our priority at the same moment.
5594 * We don't have to worry. Conceptually one call occurs first
5595 * and we have a single winner.
5596 */
a9467fa3 5597 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 5598 nice = task_nice(current) + increment;
1da177e4 5599
a9467fa3 5600 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
5601 if (increment < 0 && !can_nice(current, nice))
5602 return -EPERM;
5603
1da177e4
LT
5604 retval = security_task_setnice(current, nice);
5605 if (retval)
5606 return retval;
5607
5608 set_user_nice(current, nice);
5609 return 0;
5610}
5611
5612#endif
5613
5614/**
5615 * task_prio - return the priority value of a given task.
5616 * @p: the task in question.
5617 *
e69f6186 5618 * Return: The priority value as seen by users in /proc.
1da177e4
LT
5619 * RT tasks are offset by -200. Normal tasks are centered
5620 * around 0, value goes from -16 to +15.
5621 */
36c8b586 5622int task_prio(const struct task_struct *p)
1da177e4
LT
5623{
5624 return p->prio - MAX_RT_PRIO;
5625}
5626
1da177e4 5627/**
d1ccc66d 5628 * idle_cpu - is a given CPU idle currently?
1da177e4 5629 * @cpu: the processor in question.
e69f6186
YB
5630 *
5631 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
5632 */
5633int idle_cpu(int cpu)
5634{
908a3283
TG
5635 struct rq *rq = cpu_rq(cpu);
5636
5637 if (rq->curr != rq->idle)
5638 return 0;
5639
5640 if (rq->nr_running)
5641 return 0;
5642
5643#ifdef CONFIG_SMP
126c2092 5644 if (rq->ttwu_pending)
908a3283
TG
5645 return 0;
5646#endif
5647
5648 return 1;
1da177e4
LT
5649}
5650
943d355d
RJ
5651/**
5652 * available_idle_cpu - is a given CPU idle for enqueuing work.
5653 * @cpu: the CPU in question.
5654 *
5655 * Return: 1 if the CPU is currently idle. 0 otherwise.
5656 */
5657int available_idle_cpu(int cpu)
5658{
5659 if (!idle_cpu(cpu))
5660 return 0;
5661
247f2f6f
RJ
5662 if (vcpu_is_preempted(cpu))
5663 return 0;
5664
908a3283 5665 return 1;
1da177e4
LT
5666}
5667
1da177e4 5668/**
d1ccc66d 5669 * idle_task - return the idle task for a given CPU.
1da177e4 5670 * @cpu: the processor in question.
e69f6186 5671 *
d1ccc66d 5672 * Return: The idle task for the CPU @cpu.
1da177e4 5673 */
36c8b586 5674struct task_struct *idle_task(int cpu)
1da177e4
LT
5675{
5676 return cpu_rq(cpu)->idle;
5677}
5678
7d6a905f
VK
5679#ifdef CONFIG_SMP
5680/*
5681 * This function computes an effective utilization for the given CPU, to be
5682 * used for frequency selection given the linear relation: f = u * f_max.
5683 *
5684 * The scheduler tracks the following metrics:
5685 *
5686 * cpu_util_{cfs,rt,dl,irq}()
5687 * cpu_bw_dl()
5688 *
5689 * Where the cfs,rt and dl util numbers are tracked with the same metric and
5690 * synchronized windows and are thus directly comparable.
5691 *
5692 * The cfs,rt,dl utilization are the running times measured with rq->clock_task
5693 * which excludes things like IRQ and steal-time. These latter are then accrued
5694 * in the irq utilization.
5695 *
5696 * The DL bandwidth number otoh is not a measured metric but a value computed
5697 * based on the task model parameters and gives the minimal utilization
5698 * required to meet deadlines.
5699 */
a5418be9
VK
5700unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
5701 unsigned long max, enum cpu_util_type type,
7d6a905f
VK
5702 struct task_struct *p)
5703{
5704 unsigned long dl_util, util, irq;
5705 struct rq *rq = cpu_rq(cpu);
5706
5707 if (!uclamp_is_used() &&
5708 type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
5709 return max;
5710 }
5711
5712 /*
5713 * Early check to see if IRQ/steal time saturates the CPU, can be
5714 * because of inaccuracies in how we track these -- see
5715 * update_irq_load_avg().
5716 */
5717 irq = cpu_util_irq(rq);
5718 if (unlikely(irq >= max))
5719 return max;
5720
5721 /*
5722 * Because the time spend on RT/DL tasks is visible as 'lost' time to
5723 * CFS tasks and we use the same metric to track the effective
5724 * utilization (PELT windows are synchronized) we can directly add them
5725 * to obtain the CPU's actual utilization.
5726 *
5727 * CFS and RT utilization can be boosted or capped, depending on
5728 * utilization clamp constraints requested by currently RUNNABLE
5729 * tasks.
5730 * When there are no CFS RUNNABLE tasks, clamps are released and
5731 * frequency will be gracefully reduced with the utilization decay.
5732 */
5733 util = util_cfs + cpu_util_rt(rq);
5734 if (type == FREQUENCY_UTIL)
5735 util = uclamp_rq_util_with(rq, util, p);
5736
5737 dl_util = cpu_util_dl(rq);
5738
5739 /*
5740 * For frequency selection we do not make cpu_util_dl() a permanent part
5741 * of this sum because we want to use cpu_bw_dl() later on, but we need
5742 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
5743 * that we select f_max when there is no idle time.
5744 *
5745 * NOTE: numerical errors or stop class might cause us to not quite hit
5746 * saturation when we should -- something for later.
5747 */
5748 if (util + dl_util >= max)
5749 return max;
5750
5751 /*
5752 * OTOH, for energy computation we need the estimated running time, so
5753 * include util_dl and ignore dl_bw.
5754 */
5755 if (type == ENERGY_UTIL)
5756 util += dl_util;
5757
5758 /*
5759 * There is still idle time; further improve the number by using the
5760 * irq metric. Because IRQ/steal time is hidden from the task clock we
5761 * need to scale the task numbers:
5762 *
5763 * max - irq
5764 * U' = irq + --------- * U
5765 * max
5766 */
5767 util = scale_irq_capacity(util, irq, max);
5768 util += irq;
5769
5770 /*
5771 * Bandwidth required by DEADLINE must always be granted while, for
5772 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
5773 * to gracefully reduce the frequency when no tasks show up for longer
5774 * periods of time.
5775 *
5776 * Ideally we would like to set bw_dl as min/guaranteed freq and util +
5777 * bw_dl as requested freq. However, cpufreq is not yet ready for such
5778 * an interface. So, we only do the latter for now.
5779 */
5780 if (type == FREQUENCY_UTIL)
5781 util += cpu_bw_dl(rq);
5782
5783 return min(max, util);
5784}
a5418be9
VK
5785
5786unsigned long sched_cpu_util(int cpu, unsigned long max)
5787{
5788 return effective_cpu_util(cpu, cpu_util_cfs(cpu_rq(cpu)), max,
5789 ENERGY_UTIL, NULL);
5790}
7d6a905f
VK
5791#endif /* CONFIG_SMP */
5792
1da177e4
LT
5793/**
5794 * find_process_by_pid - find a process with a matching PID value.
5795 * @pid: the pid in question.
e69f6186
YB
5796 *
5797 * The task of @pid, if found. %NULL otherwise.
1da177e4 5798 */
a9957449 5799static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 5800{
228ebcbe 5801 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
5802}
5803
c13db6b1
SR
5804/*
5805 * sched_setparam() passes in -1 for its policy, to let the functions
5806 * it calls know not to change it.
5807 */
5808#define SETPARAM_POLICY -1
5809
c365c292
TG
5810static void __setscheduler_params(struct task_struct *p,
5811 const struct sched_attr *attr)
1da177e4 5812{
d50dde5a
DF
5813 int policy = attr->sched_policy;
5814
c13db6b1 5815 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
5816 policy = p->policy;
5817
1da177e4 5818 p->policy = policy;
d50dde5a 5819
aab03e05
DF
5820 if (dl_policy(policy))
5821 __setparam_dl(p, attr);
39fd8fd2 5822 else if (fair_policy(policy))
d50dde5a
DF
5823 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
5824
39fd8fd2
PZ
5825 /*
5826 * __sched_setscheduler() ensures attr->sched_priority == 0 when
5827 * !rt_policy. Always setting this ensures that things like
5828 * getparam()/getattr() don't report silly values for !rt tasks.
5829 */
5830 p->rt_priority = attr->sched_priority;
383afd09 5831 p->normal_prio = normal_prio(p);
9059393e 5832 set_load_weight(p, true);
c365c292 5833}
39fd8fd2 5834
c365c292
TG
5835/* Actually do priority change: must hold pi & rq lock. */
5836static void __setscheduler(struct rq *rq, struct task_struct *p,
0782e63b 5837 const struct sched_attr *attr, bool keep_boost)
c365c292 5838{
a509a7cd
PB
5839 /*
5840 * If params can't change scheduling class changes aren't allowed
5841 * either.
5842 */
5843 if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)
5844 return;
5845
c365c292 5846 __setscheduler_params(p, attr);
d50dde5a 5847
383afd09 5848 /*
0782e63b
TG
5849 * Keep a potential priority boosting if called from
5850 * sched_setscheduler().
383afd09 5851 */
acd58620 5852 p->prio = normal_prio(p);
0782e63b 5853 if (keep_boost)
acd58620 5854 p->prio = rt_effective_prio(p, p->prio);
383afd09 5855
aab03e05
DF
5856 if (dl_prio(p->prio))
5857 p->sched_class = &dl_sched_class;
5858 else if (rt_prio(p->prio))
ffd44db5
PZ
5859 p->sched_class = &rt_sched_class;
5860 else
5861 p->sched_class = &fair_sched_class;
1da177e4 5862}
aab03e05 5863
c69e8d9c 5864/*
d1ccc66d 5865 * Check the target process has a UID that matches the current process's:
c69e8d9c
DH
5866 */
5867static bool check_same_owner(struct task_struct *p)
5868{
5869 const struct cred *cred = current_cred(), *pcred;
5870 bool match;
5871
5872 rcu_read_lock();
5873 pcred = __task_cred(p);
9c806aa0
EB
5874 match = (uid_eq(cred->euid, pcred->euid) ||
5875 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
5876 rcu_read_unlock();
5877 return match;
5878}
5879
d50dde5a
DF
5880static int __sched_setscheduler(struct task_struct *p,
5881 const struct sched_attr *attr,
dbc7f069 5882 bool user, bool pi)
1da177e4 5883{
383afd09
SR
5884 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
5885 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 5886 int retval, oldprio, oldpolicy = -1, queued, running;
0782e63b 5887 int new_effective_prio, policy = attr->sched_policy;
83ab0aa0 5888 const struct sched_class *prev_class;
565790d2 5889 struct callback_head *head;
eb580751 5890 struct rq_flags rf;
ca94c442 5891 int reset_on_fork;
7a57f32a 5892 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
eb580751 5893 struct rq *rq;
1da177e4 5894
896bbb25
SRV
5895 /* The pi code expects interrupts enabled */
5896 BUG_ON(pi && in_interrupt());
1da177e4 5897recheck:
d1ccc66d 5898 /* Double check policy once rq lock held: */
ca94c442
LP
5899 if (policy < 0) {
5900 reset_on_fork = p->sched_reset_on_fork;
1da177e4 5901 policy = oldpolicy = p->policy;
ca94c442 5902 } else {
7479f3c9 5903 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 5904
20f9cd2a 5905 if (!valid_policy(policy))
ca94c442
LP
5906 return -EINVAL;
5907 }
5908
794a56eb 5909 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
7479f3c9
PZ
5910 return -EINVAL;
5911
1da177e4
LT
5912 /*
5913 * Valid priorities for SCHED_FIFO and SCHED_RR are
ae18ad28 5914 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL,
dd41f596 5915 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 5916 */
ae18ad28 5917 if (attr->sched_priority > MAX_RT_PRIO-1)
1da177e4 5918 return -EINVAL;
aab03e05
DF
5919 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
5920 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
5921 return -EINVAL;
5922
37e4ab3f
OC
5923 /*
5924 * Allow unprivileged RT tasks to decrease priority:
5925 */
961ccddd 5926 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 5927 if (fair_policy(policy)) {
d0ea0268 5928 if (attr->sched_nice < task_nice(p) &&
eaad4513 5929 !can_nice(p, attr->sched_nice))
d50dde5a
DF
5930 return -EPERM;
5931 }
5932
e05606d3 5933 if (rt_policy(policy)) {
a44702e8
ON
5934 unsigned long rlim_rtprio =
5935 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909 5936
d1ccc66d 5937 /* Can't set/change the rt policy: */
8dc3e909
ON
5938 if (policy != p->policy && !rlim_rtprio)
5939 return -EPERM;
5940
d1ccc66d 5941 /* Can't increase priority: */
d50dde5a
DF
5942 if (attr->sched_priority > p->rt_priority &&
5943 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
5944 return -EPERM;
5945 }
c02aa73b 5946
d44753b8
JL
5947 /*
5948 * Can't set/change SCHED_DEADLINE policy at all for now
5949 * (safest behavior); in the future we would like to allow
5950 * unprivileged DL tasks to increase their relative deadline
5951 * or reduce their runtime (both ways reducing utilization)
5952 */
5953 if (dl_policy(policy))
5954 return -EPERM;
5955
dd41f596 5956 /*
c02aa73b
DH
5957 * Treat SCHED_IDLE as nice 20. Only allow a switch to
5958 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 5959 */
1da1843f 5960 if (task_has_idle_policy(p) && !idle_policy(policy)) {
d0ea0268 5961 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
5962 return -EPERM;
5963 }
5fe1d75f 5964
d1ccc66d 5965 /* Can't change other user's priorities: */
c69e8d9c 5966 if (!check_same_owner(p))
37e4ab3f 5967 return -EPERM;
ca94c442 5968
d1ccc66d 5969 /* Normal users shall not reset the sched_reset_on_fork flag: */
ca94c442
LP
5970 if (p->sched_reset_on_fork && !reset_on_fork)
5971 return -EPERM;
37e4ab3f 5972 }
1da177e4 5973
725aad24 5974 if (user) {
794a56eb
JL
5975 if (attr->sched_flags & SCHED_FLAG_SUGOV)
5976 return -EINVAL;
5977
b0ae1981 5978 retval = security_task_setscheduler(p);
725aad24
JF
5979 if (retval)
5980 return retval;
5981 }
5982
a509a7cd
PB
5983 /* Update task specific "requested" clamps */
5984 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
5985 retval = uclamp_validate(p, attr);
5986 if (retval)
5987 return retval;
5988 }
5989
710da3c8
JL
5990 if (pi)
5991 cpuset_read_lock();
5992
b29739f9 5993 /*
d1ccc66d 5994 * Make sure no PI-waiters arrive (or leave) while we are
b29739f9 5995 * changing the priority of the task:
0122ec5b 5996 *
25985edc 5997 * To be able to change p->policy safely, the appropriate
1da177e4
LT
5998 * runqueue lock must be held.
5999 */
eb580751 6000 rq = task_rq_lock(p, &rf);
80f5c1b8 6001 update_rq_clock(rq);
dc61b1d6 6002
34f971f6 6003 /*
d1ccc66d 6004 * Changing the policy of the stop threads its a very bad idea:
34f971f6
PZ
6005 */
6006 if (p == rq->stop) {
4b211f2b
MP
6007 retval = -EINVAL;
6008 goto unlock;
34f971f6
PZ
6009 }
6010
a51e9198 6011 /*
d6b1e911
TG
6012 * If not changing anything there's no need to proceed further,
6013 * but store a possible modification of reset_on_fork.
a51e9198 6014 */
d50dde5a 6015 if (unlikely(policy == p->policy)) {
d0ea0268 6016 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
6017 goto change;
6018 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
6019 goto change;
75381608 6020 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 6021 goto change;
a509a7cd
PB
6022 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
6023 goto change;
d50dde5a 6024
d6b1e911 6025 p->sched_reset_on_fork = reset_on_fork;
4b211f2b
MP
6026 retval = 0;
6027 goto unlock;
a51e9198 6028 }
d50dde5a 6029change:
a51e9198 6030
dc61b1d6 6031 if (user) {
332ac17e 6032#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
6033 /*
6034 * Do not allow realtime tasks into groups that have no runtime
6035 * assigned.
6036 */
6037 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
6038 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
6039 !task_group_is_autogroup(task_group(p))) {
4b211f2b
MP
6040 retval = -EPERM;
6041 goto unlock;
dc61b1d6 6042 }
dc61b1d6 6043#endif
332ac17e 6044#ifdef CONFIG_SMP
794a56eb
JL
6045 if (dl_bandwidth_enabled() && dl_policy(policy) &&
6046 !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
332ac17e 6047 cpumask_t *span = rq->rd->span;
332ac17e
DF
6048
6049 /*
6050 * Don't allow tasks with an affinity mask smaller than
6051 * the entire root_domain to become SCHED_DEADLINE. We
6052 * will also fail if there's no bandwidth available.
6053 */
3bd37062 6054 if (!cpumask_subset(span, p->cpus_ptr) ||
e4099a5e 6055 rq->rd->dl_bw.bw == 0) {
4b211f2b
MP
6056 retval = -EPERM;
6057 goto unlock;
332ac17e
DF
6058 }
6059 }
6060#endif
6061 }
dc61b1d6 6062
d1ccc66d 6063 /* Re-check policy now with rq lock held: */
1da177e4
LT
6064 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6065 policy = oldpolicy = -1;
eb580751 6066 task_rq_unlock(rq, p, &rf);
710da3c8
JL
6067 if (pi)
6068 cpuset_read_unlock();
1da177e4
LT
6069 goto recheck;
6070 }
332ac17e
DF
6071
6072 /*
6073 * If setscheduling to SCHED_DEADLINE (or changing the parameters
6074 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
6075 * is available.
6076 */
06a76fe0 6077 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
4b211f2b
MP
6078 retval = -EBUSY;
6079 goto unlock;
332ac17e
DF
6080 }
6081
c365c292
TG
6082 p->sched_reset_on_fork = reset_on_fork;
6083 oldprio = p->prio;
6084
dbc7f069
PZ
6085 if (pi) {
6086 /*
6087 * Take priority boosted tasks into account. If the new
6088 * effective priority is unchanged, we just store the new
6089 * normal parameters and do not touch the scheduler class and
6090 * the runqueue. This will be done when the task deboost
6091 * itself.
6092 */
acd58620 6093 new_effective_prio = rt_effective_prio(p, newprio);
ff77e468
PZ
6094 if (new_effective_prio == oldprio)
6095 queue_flags &= ~DEQUEUE_MOVE;
c365c292
TG
6096 }
6097
da0c1e65 6098 queued = task_on_rq_queued(p);
051a1d1a 6099 running = task_current(rq, p);
da0c1e65 6100 if (queued)
ff77e468 6101 dequeue_task(rq, p, queue_flags);
0e1f3483 6102 if (running)
f3cd1c4e 6103 put_prev_task(rq, p);
f6b53205 6104
83ab0aa0 6105 prev_class = p->sched_class;
a509a7cd 6106
dbc7f069 6107 __setscheduler(rq, p, attr, pi);
a509a7cd 6108 __setscheduler_uclamp(p, attr);
f6b53205 6109
da0c1e65 6110 if (queued) {
81a44c54
TG
6111 /*
6112 * We enqueue to tail when the priority of a task is
6113 * increased (user space view).
6114 */
ff77e468
PZ
6115 if (oldprio < p->prio)
6116 queue_flags |= ENQUEUE_HEAD;
1de64443 6117
ff77e468 6118 enqueue_task(rq, p, queue_flags);
81a44c54 6119 }
a399d233 6120 if (running)
03b7fad1 6121 set_next_task(rq, p);
cb469845 6122
da7a735e 6123 check_class_changed(rq, p, prev_class, oldprio);
d1ccc66d
IM
6124
6125 /* Avoid rq from going away on us: */
6126 preempt_disable();
565790d2 6127 head = splice_balance_callbacks(rq);
eb580751 6128 task_rq_unlock(rq, p, &rf);
b29739f9 6129
710da3c8
JL
6130 if (pi) {
6131 cpuset_read_unlock();
dbc7f069 6132 rt_mutex_adjust_pi(p);
710da3c8 6133 }
95e02ca9 6134
d1ccc66d 6135 /* Run balance callbacks after we've adjusted the PI chain: */
565790d2 6136 balance_callbacks(rq, head);
4c9a4bc8 6137 preempt_enable();
95e02ca9 6138
1da177e4 6139 return 0;
4b211f2b
MP
6140
6141unlock:
6142 task_rq_unlock(rq, p, &rf);
710da3c8
JL
6143 if (pi)
6144 cpuset_read_unlock();
4b211f2b 6145 return retval;
1da177e4 6146}
961ccddd 6147
7479f3c9
PZ
6148static int _sched_setscheduler(struct task_struct *p, int policy,
6149 const struct sched_param *param, bool check)
6150{
6151 struct sched_attr attr = {
6152 .sched_policy = policy,
6153 .sched_priority = param->sched_priority,
6154 .sched_nice = PRIO_TO_NICE(p->static_prio),
6155 };
6156
c13db6b1
SR
6157 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
6158 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
6159 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
6160 policy &= ~SCHED_RESET_ON_FORK;
6161 attr.sched_policy = policy;
6162 }
6163
dbc7f069 6164 return __sched_setscheduler(p, &attr, check, true);
7479f3c9 6165}
961ccddd
RR
6166/**
6167 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6168 * @p: the task in question.
6169 * @policy: new policy.
6170 * @param: structure containing the new RT priority.
6171 *
7318d4cc
PZ
6172 * Use sched_set_fifo(), read its comment.
6173 *
e69f6186
YB
6174 * Return: 0 on success. An error code otherwise.
6175 *
961ccddd
RR
6176 * NOTE that the task may be already dead.
6177 */
6178int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 6179 const struct sched_param *param)
961ccddd 6180{
7479f3c9 6181 return _sched_setscheduler(p, policy, param, true);
961ccddd 6182}
1da177e4 6183
d50dde5a
DF
6184int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
6185{
dbc7f069 6186 return __sched_setscheduler(p, attr, true, true);
d50dde5a 6187}
d50dde5a 6188
794a56eb
JL
6189int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
6190{
6191 return __sched_setscheduler(p, attr, false, true);
6192}
6193
961ccddd
RR
6194/**
6195 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6196 * @p: the task in question.
6197 * @policy: new policy.
6198 * @param: structure containing the new RT priority.
6199 *
6200 * Just like sched_setscheduler, only don't bother checking if the
6201 * current context has permission. For example, this is needed in
6202 * stop_machine(): we create temporary high priority worker threads,
6203 * but our caller might not have that capability.
e69f6186
YB
6204 *
6205 * Return: 0 on success. An error code otherwise.
961ccddd
RR
6206 */
6207int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 6208 const struct sched_param *param)
961ccddd 6209{
7479f3c9 6210 return _sched_setscheduler(p, policy, param, false);
961ccddd
RR
6211}
6212
7318d4cc
PZ
6213/*
6214 * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
6215 * incapable of resource management, which is the one thing an OS really should
6216 * be doing.
6217 *
6218 * This is of course the reason it is limited to privileged users only.
6219 *
6220 * Worse still; it is fundamentally impossible to compose static priority
6221 * workloads. You cannot take two correctly working static prio workloads
6222 * and smash them together and still expect them to work.
6223 *
6224 * For this reason 'all' FIFO tasks the kernel creates are basically at:
6225 *
6226 * MAX_RT_PRIO / 2
6227 *
6228 * The administrator _MUST_ configure the system, the kernel simply doesn't
6229 * know enough information to make a sensible choice.
6230 */
8b700983 6231void sched_set_fifo(struct task_struct *p)
7318d4cc
PZ
6232{
6233 struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
8b700983 6234 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7318d4cc
PZ
6235}
6236EXPORT_SYMBOL_GPL(sched_set_fifo);
6237
6238/*
6239 * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
6240 */
8b700983 6241void sched_set_fifo_low(struct task_struct *p)
7318d4cc
PZ
6242{
6243 struct sched_param sp = { .sched_priority = 1 };
8b700983 6244 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7318d4cc
PZ
6245}
6246EXPORT_SYMBOL_GPL(sched_set_fifo_low);
6247
8b700983 6248void sched_set_normal(struct task_struct *p, int nice)
7318d4cc
PZ
6249{
6250 struct sched_attr attr = {
6251 .sched_policy = SCHED_NORMAL,
6252 .sched_nice = nice,
6253 };
8b700983 6254 WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
7318d4cc
PZ
6255}
6256EXPORT_SYMBOL_GPL(sched_set_normal);
961ccddd 6257
95cdf3b7
IM
6258static int
6259do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 6260{
1da177e4
LT
6261 struct sched_param lparam;
6262 struct task_struct *p;
36c8b586 6263 int retval;
1da177e4
LT
6264
6265 if (!param || pid < 0)
6266 return -EINVAL;
6267 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6268 return -EFAULT;
5fe1d75f
ON
6269
6270 rcu_read_lock();
6271 retval = -ESRCH;
1da177e4 6272 p = find_process_by_pid(pid);
710da3c8
JL
6273 if (likely(p))
6274 get_task_struct(p);
5fe1d75f 6275 rcu_read_unlock();
36c8b586 6276
710da3c8
JL
6277 if (likely(p)) {
6278 retval = sched_setscheduler(p, policy, &lparam);
6279 put_task_struct(p);
6280 }
6281
1da177e4
LT
6282 return retval;
6283}
6284
d50dde5a
DF
6285/*
6286 * Mimics kernel/events/core.c perf_copy_attr().
6287 */
d1ccc66d 6288static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
d50dde5a
DF
6289{
6290 u32 size;
6291 int ret;
6292
d1ccc66d 6293 /* Zero the full structure, so that a short copy will be nice: */
d50dde5a
DF
6294 memset(attr, 0, sizeof(*attr));
6295
6296 ret = get_user(size, &uattr->size);
6297 if (ret)
6298 return ret;
6299
d1ccc66d
IM
6300 /* ABI compatibility quirk: */
6301 if (!size)
d50dde5a 6302 size = SCHED_ATTR_SIZE_VER0;
dff3a85f 6303 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
d50dde5a
DF
6304 goto err_size;
6305
dff3a85f
AS
6306 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
6307 if (ret) {
6308 if (ret == -E2BIG)
6309 goto err_size;
6310 return ret;
d50dde5a
DF
6311 }
6312
a509a7cd
PB
6313 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
6314 size < SCHED_ATTR_SIZE_VER1)
6315 return -EINVAL;
6316
d50dde5a 6317 /*
d1ccc66d 6318 * XXX: Do we want to be lenient like existing syscalls; or do we want
d50dde5a
DF
6319 * to be strict and return an error on out-of-bounds values?
6320 */
75e45d51 6321 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 6322
e78c7bca 6323 return 0;
d50dde5a
DF
6324
6325err_size:
6326 put_user(sizeof(*attr), &uattr->size);
e78c7bca 6327 return -E2BIG;
d50dde5a
DF
6328}
6329
1da177e4
LT
6330/**
6331 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6332 * @pid: the pid in question.
6333 * @policy: new policy.
6334 * @param: structure containing the new RT priority.
e69f6186
YB
6335 *
6336 * Return: 0 on success. An error code otherwise.
1da177e4 6337 */
d1ccc66d 6338SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
1da177e4 6339{
c21761f1
JB
6340 if (policy < 0)
6341 return -EINVAL;
6342
1da177e4
LT
6343 return do_sched_setscheduler(pid, policy, param);
6344}
6345
6346/**
6347 * sys_sched_setparam - set/change the RT priority of a thread
6348 * @pid: the pid in question.
6349 * @param: structure containing the new RT priority.
e69f6186
YB
6350 *
6351 * Return: 0 on success. An error code otherwise.
1da177e4 6352 */
5add95d4 6353SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 6354{
c13db6b1 6355 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
6356}
6357
d50dde5a
DF
6358/**
6359 * sys_sched_setattr - same as above, but with extended sched_attr
6360 * @pid: the pid in question.
5778fccf 6361 * @uattr: structure containing the extended parameters.
db66d756 6362 * @flags: for future extension.
d50dde5a 6363 */
6d35ab48
PZ
6364SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
6365 unsigned int, flags)
d50dde5a
DF
6366{
6367 struct sched_attr attr;
6368 struct task_struct *p;
6369 int retval;
6370
6d35ab48 6371 if (!uattr || pid < 0 || flags)
d50dde5a
DF
6372 return -EINVAL;
6373
143cf23d
MK
6374 retval = sched_copy_attr(uattr, &attr);
6375 if (retval)
6376 return retval;
d50dde5a 6377
b14ed2c2 6378 if ((int)attr.sched_policy < 0)
dbdb2275 6379 return -EINVAL;
1d6362fa
PB
6380 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
6381 attr.sched_policy = SETPARAM_POLICY;
d50dde5a
DF
6382
6383 rcu_read_lock();
6384 retval = -ESRCH;
6385 p = find_process_by_pid(pid);
a509a7cd
PB
6386 if (likely(p))
6387 get_task_struct(p);
d50dde5a
DF
6388 rcu_read_unlock();
6389
a509a7cd
PB
6390 if (likely(p)) {
6391 retval = sched_setattr(p, &attr);
6392 put_task_struct(p);
6393 }
6394
d50dde5a
DF
6395 return retval;
6396}
6397
1da177e4
LT
6398/**
6399 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6400 * @pid: the pid in question.
e69f6186
YB
6401 *
6402 * Return: On success, the policy of the thread. Otherwise, a negative error
6403 * code.
1da177e4 6404 */
5add95d4 6405SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 6406{
36c8b586 6407 struct task_struct *p;
3a5c359a 6408 int retval;
1da177e4
LT
6409
6410 if (pid < 0)
3a5c359a 6411 return -EINVAL;
1da177e4
LT
6412
6413 retval = -ESRCH;
5fe85be0 6414 rcu_read_lock();
1da177e4
LT
6415 p = find_process_by_pid(pid);
6416 if (p) {
6417 retval = security_task_getscheduler(p);
6418 if (!retval)
ca94c442
LP
6419 retval = p->policy
6420 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 6421 }
5fe85be0 6422 rcu_read_unlock();
1da177e4
LT
6423 return retval;
6424}
6425
6426/**
ca94c442 6427 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
6428 * @pid: the pid in question.
6429 * @param: structure containing the RT priority.
e69f6186
YB
6430 *
6431 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
6432 * code.
1da177e4 6433 */
5add95d4 6434SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 6435{
ce5f7f82 6436 struct sched_param lp = { .sched_priority = 0 };
36c8b586 6437 struct task_struct *p;
3a5c359a 6438 int retval;
1da177e4
LT
6439
6440 if (!param || pid < 0)
3a5c359a 6441 return -EINVAL;
1da177e4 6442
5fe85be0 6443 rcu_read_lock();
1da177e4
LT
6444 p = find_process_by_pid(pid);
6445 retval = -ESRCH;
6446 if (!p)
6447 goto out_unlock;
6448
6449 retval = security_task_getscheduler(p);
6450 if (retval)
6451 goto out_unlock;
6452
ce5f7f82
PZ
6453 if (task_has_rt_policy(p))
6454 lp.sched_priority = p->rt_priority;
5fe85be0 6455 rcu_read_unlock();
1da177e4
LT
6456
6457 /*
6458 * This one might sleep, we cannot do it with a spinlock held ...
6459 */
6460 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6461
1da177e4
LT
6462 return retval;
6463
6464out_unlock:
5fe85be0 6465 rcu_read_unlock();
1da177e4
LT
6466 return retval;
6467}
6468
1251201c
IM
6469/*
6470 * Copy the kernel size attribute structure (which might be larger
6471 * than what user-space knows about) to user-space.
6472 *
6473 * Note that all cases are valid: user-space buffer can be larger or
6474 * smaller than the kernel-space buffer. The usual case is that both
6475 * have the same size.
6476 */
6477static int
6478sched_attr_copy_to_user(struct sched_attr __user *uattr,
6479 struct sched_attr *kattr,
6480 unsigned int usize)
d50dde5a 6481{
1251201c 6482 unsigned int ksize = sizeof(*kattr);
d50dde5a 6483
96d4f267 6484 if (!access_ok(uattr, usize))
d50dde5a
DF
6485 return -EFAULT;
6486
6487 /*
1251201c
IM
6488 * sched_getattr() ABI forwards and backwards compatibility:
6489 *
6490 * If usize == ksize then we just copy everything to user-space and all is good.
6491 *
6492 * If usize < ksize then we only copy as much as user-space has space for,
6493 * this keeps ABI compatibility as well. We skip the rest.
6494 *
6495 * If usize > ksize then user-space is using a newer version of the ABI,
6496 * which part the kernel doesn't know about. Just ignore it - tooling can
6497 * detect the kernel's knowledge of attributes from the attr->size value
6498 * which is set to ksize in this case.
d50dde5a 6499 */
1251201c 6500 kattr->size = min(usize, ksize);
d50dde5a 6501
1251201c 6502 if (copy_to_user(uattr, kattr, kattr->size))
d50dde5a
DF
6503 return -EFAULT;
6504
22400674 6505 return 0;
d50dde5a
DF
6506}
6507
6508/**
aab03e05 6509 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 6510 * @pid: the pid in question.
5778fccf 6511 * @uattr: structure containing the extended parameters.
dff3a85f 6512 * @usize: sizeof(attr) for fwd/bwd comp.
db66d756 6513 * @flags: for future extension.
d50dde5a 6514 */
6d35ab48 6515SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
1251201c 6516 unsigned int, usize, unsigned int, flags)
d50dde5a 6517{
1251201c 6518 struct sched_attr kattr = { };
d50dde5a
DF
6519 struct task_struct *p;
6520 int retval;
6521
1251201c
IM
6522 if (!uattr || pid < 0 || usize > PAGE_SIZE ||
6523 usize < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
6524 return -EINVAL;
6525
6526 rcu_read_lock();
6527 p = find_process_by_pid(pid);
6528 retval = -ESRCH;
6529 if (!p)
6530 goto out_unlock;
6531
6532 retval = security_task_getscheduler(p);
6533 if (retval)
6534 goto out_unlock;
6535
1251201c 6536 kattr.sched_policy = p->policy;
7479f3c9 6537 if (p->sched_reset_on_fork)
1251201c 6538 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05 6539 if (task_has_dl_policy(p))
1251201c 6540 __getparam_dl(p, &kattr);
aab03e05 6541 else if (task_has_rt_policy(p))
1251201c 6542 kattr.sched_priority = p->rt_priority;
d50dde5a 6543 else
1251201c 6544 kattr.sched_nice = task_nice(p);
d50dde5a 6545
a509a7cd 6546#ifdef CONFIG_UCLAMP_TASK
13685c4a
QY
6547 /*
6548 * This could race with another potential updater, but this is fine
6549 * because it'll correctly read the old or the new value. We don't need
6550 * to guarantee who wins the race as long as it doesn't return garbage.
6551 */
1251201c
IM
6552 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
6553 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
a509a7cd
PB
6554#endif
6555
d50dde5a
DF
6556 rcu_read_unlock();
6557
1251201c 6558 return sched_attr_copy_to_user(uattr, &kattr, usize);
d50dde5a
DF
6559
6560out_unlock:
6561 rcu_read_unlock();
6562 return retval;
6563}
6564
96f874e2 6565long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 6566{
5a16f3d3 6567 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
6568 struct task_struct *p;
6569 int retval;
1da177e4 6570
23f5d142 6571 rcu_read_lock();
1da177e4
LT
6572
6573 p = find_process_by_pid(pid);
6574 if (!p) {
23f5d142 6575 rcu_read_unlock();
1da177e4
LT
6576 return -ESRCH;
6577 }
6578
23f5d142 6579 /* Prevent p going away */
1da177e4 6580 get_task_struct(p);
23f5d142 6581 rcu_read_unlock();
1da177e4 6582
14a40ffc
TH
6583 if (p->flags & PF_NO_SETAFFINITY) {
6584 retval = -EINVAL;
6585 goto out_put_task;
6586 }
5a16f3d3
RR
6587 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6588 retval = -ENOMEM;
6589 goto out_put_task;
6590 }
6591 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6592 retval = -ENOMEM;
6593 goto out_free_cpus_allowed;
6594 }
1da177e4 6595 retval = -EPERM;
4c44aaaf
EB
6596 if (!check_same_owner(p)) {
6597 rcu_read_lock();
6598 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
6599 rcu_read_unlock();
16303ab2 6600 goto out_free_new_mask;
4c44aaaf
EB
6601 }
6602 rcu_read_unlock();
6603 }
1da177e4 6604
b0ae1981 6605 retval = security_task_setscheduler(p);
e7834f8f 6606 if (retval)
16303ab2 6607 goto out_free_new_mask;
e7834f8f 6608
e4099a5e
PZ
6609
6610 cpuset_cpus_allowed(p, cpus_allowed);
6611 cpumask_and(new_mask, in_mask, cpus_allowed);
6612
332ac17e
DF
6613 /*
6614 * Since bandwidth control happens on root_domain basis,
6615 * if admission test is enabled, we only admit -deadline
6616 * tasks allowed to run on all the CPUs in the task's
6617 * root_domain.
6618 */
6619#ifdef CONFIG_SMP
f1e3a093
KT
6620 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
6621 rcu_read_lock();
6622 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 6623 retval = -EBUSY;
f1e3a093 6624 rcu_read_unlock();
16303ab2 6625 goto out_free_new_mask;
332ac17e 6626 }
f1e3a093 6627 rcu_read_unlock();
332ac17e
DF
6628 }
6629#endif
49246274 6630again:
9cfc3e18 6631 retval = __set_cpus_allowed_ptr(p, new_mask, SCA_CHECK);
1da177e4 6632
8707d8b8 6633 if (!retval) {
5a16f3d3
RR
6634 cpuset_cpus_allowed(p, cpus_allowed);
6635 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
6636 /*
6637 * We must have raced with a concurrent cpuset
6638 * update. Just reset the cpus_allowed to the
6639 * cpuset's cpus_allowed
6640 */
5a16f3d3 6641 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
6642 goto again;
6643 }
6644 }
16303ab2 6645out_free_new_mask:
5a16f3d3
RR
6646 free_cpumask_var(new_mask);
6647out_free_cpus_allowed:
6648 free_cpumask_var(cpus_allowed);
6649out_put_task:
1da177e4 6650 put_task_struct(p);
1da177e4
LT
6651 return retval;
6652}
6653
6654static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 6655 struct cpumask *new_mask)
1da177e4 6656{
96f874e2
RR
6657 if (len < cpumask_size())
6658 cpumask_clear(new_mask);
6659 else if (len > cpumask_size())
6660 len = cpumask_size();
6661
1da177e4
LT
6662 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6663}
6664
6665/**
d1ccc66d 6666 * sys_sched_setaffinity - set the CPU affinity of a process
1da177e4
LT
6667 * @pid: pid of the process
6668 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
d1ccc66d 6669 * @user_mask_ptr: user-space pointer to the new CPU mask
e69f6186
YB
6670 *
6671 * Return: 0 on success. An error code otherwise.
1da177e4 6672 */
5add95d4
HC
6673SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6674 unsigned long __user *, user_mask_ptr)
1da177e4 6675{
5a16f3d3 6676 cpumask_var_t new_mask;
1da177e4
LT
6677 int retval;
6678
5a16f3d3
RR
6679 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6680 return -ENOMEM;
1da177e4 6681
5a16f3d3
RR
6682 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6683 if (retval == 0)
6684 retval = sched_setaffinity(pid, new_mask);
6685 free_cpumask_var(new_mask);
6686 return retval;
1da177e4
LT
6687}
6688
96f874e2 6689long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 6690{
36c8b586 6691 struct task_struct *p;
31605683 6692 unsigned long flags;
1da177e4 6693 int retval;
1da177e4 6694
23f5d142 6695 rcu_read_lock();
1da177e4
LT
6696
6697 retval = -ESRCH;
6698 p = find_process_by_pid(pid);
6699 if (!p)
6700 goto out_unlock;
6701
e7834f8f
DQ
6702 retval = security_task_getscheduler(p);
6703 if (retval)
6704 goto out_unlock;
6705
013fdb80 6706 raw_spin_lock_irqsave(&p->pi_lock, flags);
3bd37062 6707 cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
013fdb80 6708 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
6709
6710out_unlock:
23f5d142 6711 rcu_read_unlock();
1da177e4 6712
9531b62f 6713 return retval;
1da177e4
LT
6714}
6715
6716/**
d1ccc66d 6717 * sys_sched_getaffinity - get the CPU affinity of a process
1da177e4
LT
6718 * @pid: pid of the process
6719 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
d1ccc66d 6720 * @user_mask_ptr: user-space pointer to hold the current CPU mask
e69f6186 6721 *
599b4840
ZW
6722 * Return: size of CPU mask copied to user_mask_ptr on success. An
6723 * error code otherwise.
1da177e4 6724 */
5add95d4
HC
6725SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6726 unsigned long __user *, user_mask_ptr)
1da177e4
LT
6727{
6728 int ret;
f17c8607 6729 cpumask_var_t mask;
1da177e4 6730
84fba5ec 6731 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
6732 return -EINVAL;
6733 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
6734 return -EINVAL;
6735
f17c8607
RR
6736 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6737 return -ENOMEM;
1da177e4 6738
f17c8607
RR
6739 ret = sched_getaffinity(pid, mask);
6740 if (ret == 0) {
4de373a1 6741 unsigned int retlen = min(len, cpumask_size());
cd3d8031
KM
6742
6743 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
6744 ret = -EFAULT;
6745 else
cd3d8031 6746 ret = retlen;
f17c8607
RR
6747 }
6748 free_cpumask_var(mask);
1da177e4 6749
f17c8607 6750 return ret;
1da177e4
LT
6751}
6752
7d4dd4f1 6753static void do_sched_yield(void)
1da177e4 6754{
8a8c69c3
PZ
6755 struct rq_flags rf;
6756 struct rq *rq;
6757
246b3b33 6758 rq = this_rq_lock_irq(&rf);
1da177e4 6759
ae92882e 6760 schedstat_inc(rq->yld_count);
4530d7ab 6761 current->sched_class->yield_task(rq);
1da177e4 6762
8a8c69c3 6763 preempt_disable();
345a957f 6764 rq_unlock_irq(rq, &rf);
ba74c144 6765 sched_preempt_enable_no_resched();
1da177e4
LT
6766
6767 schedule();
7d4dd4f1 6768}
1da177e4 6769
59a74b15
MCC
6770/**
6771 * sys_sched_yield - yield the current processor to other threads.
6772 *
6773 * This function yields the current CPU to other tasks. If there are no
6774 * other threads running on this CPU then this function will return.
6775 *
6776 * Return: 0.
6777 */
7d4dd4f1
DB
6778SYSCALL_DEFINE0(sched_yield)
6779{
6780 do_sched_yield();
1da177e4
LT
6781 return 0;
6782}
6783
c1a280b6 6784#ifndef CONFIG_PREEMPTION
02b67cc3 6785int __sched _cond_resched(void)
1da177e4 6786{
fe32d3cd 6787 if (should_resched(0)) {
a18b5d01 6788 preempt_schedule_common();
1da177e4
LT
6789 return 1;
6790 }
f79c3ad6 6791 rcu_all_qs();
1da177e4
LT
6792 return 0;
6793}
02b67cc3 6794EXPORT_SYMBOL(_cond_resched);
35a773a0 6795#endif
1da177e4
LT
6796
6797/*
613afbf8 6798 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
6799 * call schedule, and on return reacquire the lock.
6800 *
c1a280b6 6801 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
1da177e4
LT
6802 * operations here to prevent schedule() from being called twice (once via
6803 * spin_unlock(), once by hand).
6804 */
613afbf8 6805int __cond_resched_lock(spinlock_t *lock)
1da177e4 6806{
fe32d3cd 6807 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6df3cecb
JK
6808 int ret = 0;
6809
f607c668
PZ
6810 lockdep_assert_held(lock);
6811
4a81e832 6812 if (spin_needbreak(lock) || resched) {
1da177e4 6813 spin_unlock(lock);
d86ee480 6814 if (resched)
a18b5d01 6815 preempt_schedule_common();
95c354fe
NP
6816 else
6817 cpu_relax();
6df3cecb 6818 ret = 1;
1da177e4 6819 spin_lock(lock);
1da177e4 6820 }
6df3cecb 6821 return ret;
1da177e4 6822}
613afbf8 6823EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 6824
1da177e4
LT
6825/**
6826 * yield - yield the current processor to other threads.
6827 *
8e3fabfd
PZ
6828 * Do not ever use this function, there's a 99% chance you're doing it wrong.
6829 *
6830 * The scheduler is at all times free to pick the calling task as the most
6831 * eligible task to run, if removing the yield() call from your code breaks
b19a888c 6832 * it, it's already broken.
8e3fabfd
PZ
6833 *
6834 * Typical broken usage is:
6835 *
6836 * while (!event)
d1ccc66d 6837 * yield();
8e3fabfd
PZ
6838 *
6839 * where one assumes that yield() will let 'the other' process run that will
6840 * make event true. If the current task is a SCHED_FIFO task that will never
6841 * happen. Never use yield() as a progress guarantee!!
6842 *
6843 * If you want to use yield() to wait for something, use wait_event().
6844 * If you want to use yield() to be 'nice' for others, use cond_resched().
6845 * If you still want to use yield(), do not!
1da177e4
LT
6846 */
6847void __sched yield(void)
6848{
6849 set_current_state(TASK_RUNNING);
7d4dd4f1 6850 do_sched_yield();
1da177e4 6851}
1da177e4
LT
6852EXPORT_SYMBOL(yield);
6853
d95f4122
MG
6854/**
6855 * yield_to - yield the current processor to another thread in
6856 * your thread group, or accelerate that thread toward the
6857 * processor it's on.
16addf95
RD
6858 * @p: target task
6859 * @preempt: whether task preemption is allowed or not
d95f4122
MG
6860 *
6861 * It's the caller's job to ensure that the target task struct
6862 * can't go away on us before we can do any checks.
6863 *
e69f6186 6864 * Return:
7b270f60
PZ
6865 * true (>0) if we indeed boosted the target task.
6866 * false (0) if we failed to boost the target.
6867 * -ESRCH if there's no task to yield to.
d95f4122 6868 */
fa93384f 6869int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
6870{
6871 struct task_struct *curr = current;
6872 struct rq *rq, *p_rq;
6873 unsigned long flags;
c3c18640 6874 int yielded = 0;
d95f4122
MG
6875
6876 local_irq_save(flags);
6877 rq = this_rq();
6878
6879again:
6880 p_rq = task_rq(p);
7b270f60
PZ
6881 /*
6882 * If we're the only runnable task on the rq and target rq also
6883 * has only one task, there's absolutely no point in yielding.
6884 */
6885 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
6886 yielded = -ESRCH;
6887 goto out_irq;
6888 }
6889
d95f4122 6890 double_rq_lock(rq, p_rq);
39e24d8f 6891 if (task_rq(p) != p_rq) {
d95f4122
MG
6892 double_rq_unlock(rq, p_rq);
6893 goto again;
6894 }
6895
6896 if (!curr->sched_class->yield_to_task)
7b270f60 6897 goto out_unlock;
d95f4122
MG
6898
6899 if (curr->sched_class != p->sched_class)
7b270f60 6900 goto out_unlock;
d95f4122
MG
6901
6902 if (task_running(p_rq, p) || p->state)
7b270f60 6903 goto out_unlock;
d95f4122 6904
0900acf2 6905 yielded = curr->sched_class->yield_to_task(rq, p);
6d1cafd8 6906 if (yielded) {
ae92882e 6907 schedstat_inc(rq->yld_count);
6d1cafd8
VP
6908 /*
6909 * Make p's CPU reschedule; pick_next_entity takes care of
6910 * fairness.
6911 */
6912 if (preempt && rq != p_rq)
8875125e 6913 resched_curr(p_rq);
6d1cafd8 6914 }
d95f4122 6915
7b270f60 6916out_unlock:
d95f4122 6917 double_rq_unlock(rq, p_rq);
7b270f60 6918out_irq:
d95f4122
MG
6919 local_irq_restore(flags);
6920
7b270f60 6921 if (yielded > 0)
d95f4122
MG
6922 schedule();
6923
6924 return yielded;
6925}
6926EXPORT_SYMBOL_GPL(yield_to);
6927
10ab5643
TH
6928int io_schedule_prepare(void)
6929{
6930 int old_iowait = current->in_iowait;
6931
6932 current->in_iowait = 1;
6933 blk_schedule_flush_plug(current);
6934
6935 return old_iowait;
6936}
6937
6938void io_schedule_finish(int token)
6939{
6940 current->in_iowait = token;
6941}
6942
1da177e4 6943/*
41a2d6cf 6944 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 6945 * that process accounting knows that this is a task in IO wait state.
1da177e4 6946 */
1da177e4
LT
6947long __sched io_schedule_timeout(long timeout)
6948{
10ab5643 6949 int token;
1da177e4
LT
6950 long ret;
6951
10ab5643 6952 token = io_schedule_prepare();
1da177e4 6953 ret = schedule_timeout(timeout);
10ab5643 6954 io_schedule_finish(token);
9cff8ade 6955
1da177e4
LT
6956 return ret;
6957}
9cff8ade 6958EXPORT_SYMBOL(io_schedule_timeout);
1da177e4 6959
e3b929b0 6960void __sched io_schedule(void)
10ab5643
TH
6961{
6962 int token;
6963
6964 token = io_schedule_prepare();
6965 schedule();
6966 io_schedule_finish(token);
6967}
6968EXPORT_SYMBOL(io_schedule);
6969
1da177e4
LT
6970/**
6971 * sys_sched_get_priority_max - return maximum RT priority.
6972 * @policy: scheduling class.
6973 *
e69f6186
YB
6974 * Return: On success, this syscall returns the maximum
6975 * rt_priority that can be used by a given scheduling class.
6976 * On failure, a negative error code is returned.
1da177e4 6977 */
5add95d4 6978SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
6979{
6980 int ret = -EINVAL;
6981
6982 switch (policy) {
6983 case SCHED_FIFO:
6984 case SCHED_RR:
ae18ad28 6985 ret = MAX_RT_PRIO-1;
1da177e4 6986 break;
aab03e05 6987 case SCHED_DEADLINE:
1da177e4 6988 case SCHED_NORMAL:
b0a9499c 6989 case SCHED_BATCH:
dd41f596 6990 case SCHED_IDLE:
1da177e4
LT
6991 ret = 0;
6992 break;
6993 }
6994 return ret;
6995}
6996
6997/**
6998 * sys_sched_get_priority_min - return minimum RT priority.
6999 * @policy: scheduling class.
7000 *
e69f6186
YB
7001 * Return: On success, this syscall returns the minimum
7002 * rt_priority that can be used by a given scheduling class.
7003 * On failure, a negative error code is returned.
1da177e4 7004 */
5add95d4 7005SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
7006{
7007 int ret = -EINVAL;
7008
7009 switch (policy) {
7010 case SCHED_FIFO:
7011 case SCHED_RR:
7012 ret = 1;
7013 break;
aab03e05 7014 case SCHED_DEADLINE:
1da177e4 7015 case SCHED_NORMAL:
b0a9499c 7016 case SCHED_BATCH:
dd41f596 7017 case SCHED_IDLE:
1da177e4
LT
7018 ret = 0;
7019 }
7020 return ret;
7021}
7022
abca5fc5 7023static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
1da177e4 7024{
36c8b586 7025 struct task_struct *p;
a4ec24b4 7026 unsigned int time_slice;
eb580751 7027 struct rq_flags rf;
dba091b9 7028 struct rq *rq;
3a5c359a 7029 int retval;
1da177e4
LT
7030
7031 if (pid < 0)
3a5c359a 7032 return -EINVAL;
1da177e4
LT
7033
7034 retval = -ESRCH;
1a551ae7 7035 rcu_read_lock();
1da177e4
LT
7036 p = find_process_by_pid(pid);
7037 if (!p)
7038 goto out_unlock;
7039
7040 retval = security_task_getscheduler(p);
7041 if (retval)
7042 goto out_unlock;
7043
eb580751 7044 rq = task_rq_lock(p, &rf);
a57beec5
PZ
7045 time_slice = 0;
7046 if (p->sched_class->get_rr_interval)
7047 time_slice = p->sched_class->get_rr_interval(rq, p);
eb580751 7048 task_rq_unlock(rq, p, &rf);
a4ec24b4 7049
1a551ae7 7050 rcu_read_unlock();
abca5fc5
AV
7051 jiffies_to_timespec64(time_slice, t);
7052 return 0;
3a5c359a 7053
1da177e4 7054out_unlock:
1a551ae7 7055 rcu_read_unlock();
1da177e4
LT
7056 return retval;
7057}
7058
2064a5ab
RD
7059/**
7060 * sys_sched_rr_get_interval - return the default timeslice of a process.
7061 * @pid: pid of the process.
7062 * @interval: userspace pointer to the timeslice value.
7063 *
7064 * this syscall writes the default timeslice value of a given process
7065 * into the user-space timespec buffer. A value of '0' means infinity.
7066 *
7067 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
7068 * an error code.
7069 */
abca5fc5 7070SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
474b9c77 7071 struct __kernel_timespec __user *, interval)
abca5fc5
AV
7072{
7073 struct timespec64 t;
7074 int retval = sched_rr_get_interval(pid, &t);
7075
7076 if (retval == 0)
7077 retval = put_timespec64(&t, interval);
7078
7079 return retval;
7080}
7081
474b9c77 7082#ifdef CONFIG_COMPAT_32BIT_TIME
8dabe724
AB
7083SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
7084 struct old_timespec32 __user *, interval)
abca5fc5
AV
7085{
7086 struct timespec64 t;
7087 int retval = sched_rr_get_interval(pid, &t);
7088
7089 if (retval == 0)
9afc5eee 7090 retval = put_old_timespec32(&t, interval);
abca5fc5
AV
7091 return retval;
7092}
7093#endif
7094
82a1fcb9 7095void sched_show_task(struct task_struct *p)
1da177e4 7096{
1da177e4 7097 unsigned long free = 0;
4e79752c 7098 int ppid;
c930b2c0 7099
38200502
TH
7100 if (!try_get_task_stack(p))
7101 return;
20435d84 7102
cc172ff3 7103 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
20435d84
XX
7104
7105 if (p->state == TASK_RUNNING)
cc172ff3 7106 pr_cont(" running task ");
1da177e4 7107#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 7108 free = stack_not_used(p);
1da177e4 7109#endif
a90e984c 7110 ppid = 0;
4e79752c 7111 rcu_read_lock();
a90e984c
ON
7112 if (pid_alive(p))
7113 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 7114 rcu_read_unlock();
cc172ff3
LZ
7115 pr_cont(" stack:%5lu pid:%5d ppid:%6d flags:0x%08lx\n",
7116 free, task_pid_nr(p), ppid,
aa47b7e0 7117 (unsigned long)task_thread_info(p)->flags);
1da177e4 7118
3d1cb205 7119 print_worker_info(KERN_INFO, p);
a8b62fd0 7120 print_stop_info(KERN_INFO, p);
9cb8f069 7121 show_stack(p, NULL, KERN_INFO);
38200502 7122 put_task_stack(p);
1da177e4 7123}
0032f4e8 7124EXPORT_SYMBOL_GPL(sched_show_task);
1da177e4 7125
5d68cc95
PZ
7126static inline bool
7127state_filter_match(unsigned long state_filter, struct task_struct *p)
7128{
7129 /* no filter, everything matches */
7130 if (!state_filter)
7131 return true;
7132
7133 /* filter, but doesn't match */
7134 if (!(p->state & state_filter))
7135 return false;
7136
7137 /*
7138 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
7139 * TASK_KILLABLE).
7140 */
7141 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
7142 return false;
7143
7144 return true;
7145}
7146
7147
e59e2ae2 7148void show_state_filter(unsigned long state_filter)
1da177e4 7149{
36c8b586 7150 struct task_struct *g, *p;
1da177e4 7151
510f5acc 7152 rcu_read_lock();
5d07f420 7153 for_each_process_thread(g, p) {
1da177e4
LT
7154 /*
7155 * reset the NMI-timeout, listing all files on a slow
25985edc 7156 * console might take a lot of time:
57675cb9
AR
7157 * Also, reset softlockup watchdogs on all CPUs, because
7158 * another CPU might be blocked waiting for us to process
7159 * an IPI.
1da177e4
LT
7160 */
7161 touch_nmi_watchdog();
57675cb9 7162 touch_all_softlockup_watchdogs();
5d68cc95 7163 if (state_filter_match(state_filter, p))
82a1fcb9 7164 sched_show_task(p);
5d07f420 7165 }
1da177e4 7166
dd41f596 7167#ifdef CONFIG_SCHED_DEBUG
fb90a6e9
RV
7168 if (!state_filter)
7169 sysrq_sched_debug_show();
dd41f596 7170#endif
510f5acc 7171 rcu_read_unlock();
e59e2ae2
IM
7172 /*
7173 * Only show locks if all tasks are dumped:
7174 */
93335a21 7175 if (!state_filter)
e59e2ae2 7176 debug_show_all_locks();
1da177e4
LT
7177}
7178
f340c0d1
IM
7179/**
7180 * init_idle - set up an idle thread for a given CPU
7181 * @idle: task in question
d1ccc66d 7182 * @cpu: CPU the idle task belongs to
f340c0d1
IM
7183 *
7184 * NOTE: this function does not set the idle thread's NEED_RESCHED
7185 * flag, to make booting more robust.
7186 */
0db0628d 7187void init_idle(struct task_struct *idle, int cpu)
1da177e4 7188{
70b97a7f 7189 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
7190 unsigned long flags;
7191
ff51ff84
PZ
7192 __sched_fork(0, idle);
7193
25834c73
PZ
7194 raw_spin_lock_irqsave(&idle->pi_lock, flags);
7195 raw_spin_lock(&rq->lock);
5cbd54ef 7196
06b83b5f 7197 idle->state = TASK_RUNNING;
dd41f596 7198 idle->se.exec_start = sched_clock();
c1de45ca 7199 idle->flags |= PF_IDLE;
dd41f596 7200
d08b9f0c 7201 scs_task_reset(idle);
e1b77c92
MR
7202 kasan_unpoison_task_stack(idle);
7203
de9b8f5d
PZ
7204#ifdef CONFIG_SMP
7205 /*
b19a888c 7206 * It's possible that init_idle() gets called multiple times on a task,
de9b8f5d
PZ
7207 * in that case do_set_cpus_allowed() will not do the right thing.
7208 *
7209 * And since this is boot we can forgo the serialization.
7210 */
9cfc3e18 7211 set_cpus_allowed_common(idle, cpumask_of(cpu), 0);
de9b8f5d 7212#endif
6506cf6c
PZ
7213 /*
7214 * We're having a chicken and egg problem, even though we are
d1ccc66d 7215 * holding rq->lock, the CPU isn't yet set to this CPU so the
6506cf6c
PZ
7216 * lockdep check in task_group() will fail.
7217 *
7218 * Similar case to sched_fork(). / Alternatively we could
7219 * use task_rq_lock() here and obtain the other rq->lock.
7220 *
7221 * Silence PROVE_RCU
7222 */
7223 rcu_read_lock();
dd41f596 7224 __set_task_cpu(idle, cpu);
6506cf6c 7225 rcu_read_unlock();
1da177e4 7226
5311a98f
EB
7227 rq->idle = idle;
7228 rcu_assign_pointer(rq->curr, idle);
da0c1e65 7229 idle->on_rq = TASK_ON_RQ_QUEUED;
de9b8f5d 7230#ifdef CONFIG_SMP
3ca7a440 7231 idle->on_cpu = 1;
4866cde0 7232#endif
25834c73
PZ
7233 raw_spin_unlock(&rq->lock);
7234 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
1da177e4
LT
7235
7236 /* Set the preempt count _outside_ the spinlocks! */
01028747 7237 init_idle_preempt_count(idle, cpu);
55cd5340 7238
dd41f596
IM
7239 /*
7240 * The idle tasks have their own, simple scheduling class:
7241 */
7242 idle->sched_class = &idle_sched_class;
868baf07 7243 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 7244 vtime_init_idle(idle, cpu);
de9b8f5d 7245#ifdef CONFIG_SMP
f1c6f1a7
CE
7246 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
7247#endif
19978ca6
IM
7248}
7249
e1d4eeec
NP
7250#ifdef CONFIG_SMP
7251
f82f8042
JL
7252int cpuset_cpumask_can_shrink(const struct cpumask *cur,
7253 const struct cpumask *trial)
7254{
06a76fe0 7255 int ret = 1;
f82f8042 7256
bb2bc55a
MG
7257 if (!cpumask_weight(cur))
7258 return ret;
7259
06a76fe0 7260 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
f82f8042
JL
7261
7262 return ret;
7263}
7264
7f51412a
JL
7265int task_can_attach(struct task_struct *p,
7266 const struct cpumask *cs_cpus_allowed)
7267{
7268 int ret = 0;
7269
7270 /*
7271 * Kthreads which disallow setaffinity shouldn't be moved
d1ccc66d 7272 * to a new cpuset; we don't want to change their CPU
7f51412a
JL
7273 * affinity and isolating such threads by their set of
7274 * allowed nodes is unnecessary. Thus, cpusets are not
7275 * applicable for such threads. This prevents checking for
7276 * success of set_cpus_allowed_ptr() on all attached tasks
3bd37062 7277 * before cpus_mask may be changed.
7f51412a
JL
7278 */
7279 if (p->flags & PF_NO_SETAFFINITY) {
7280 ret = -EINVAL;
7281 goto out;
7282 }
7283
7f51412a 7284 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
06a76fe0
NP
7285 cs_cpus_allowed))
7286 ret = dl_task_can_attach(p, cs_cpus_allowed);
7f51412a 7287
7f51412a
JL
7288out:
7289 return ret;
7290}
7291
f2cb1360 7292bool sched_smp_initialized __read_mostly;
e26fbffd 7293
e6628d5b
MG
7294#ifdef CONFIG_NUMA_BALANCING
7295/* Migrate current task p to target_cpu */
7296int migrate_task_to(struct task_struct *p, int target_cpu)
7297{
7298 struct migration_arg arg = { p, target_cpu };
7299 int curr_cpu = task_cpu(p);
7300
7301 if (curr_cpu == target_cpu)
7302 return 0;
7303
3bd37062 7304 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
e6628d5b
MG
7305 return -EINVAL;
7306
7307 /* TODO: This is not properly updating schedstats */
7308
286549dc 7309 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
7310 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
7311}
0ec8aa00
PZ
7312
7313/*
7314 * Requeue a task on a given node and accurately track the number of NUMA
7315 * tasks on the runqueues
7316 */
7317void sched_setnuma(struct task_struct *p, int nid)
7318{
da0c1e65 7319 bool queued, running;
eb580751
PZ
7320 struct rq_flags rf;
7321 struct rq *rq;
0ec8aa00 7322
eb580751 7323 rq = task_rq_lock(p, &rf);
da0c1e65 7324 queued = task_on_rq_queued(p);
0ec8aa00
PZ
7325 running = task_current(rq, p);
7326
da0c1e65 7327 if (queued)
1de64443 7328 dequeue_task(rq, p, DEQUEUE_SAVE);
0ec8aa00 7329 if (running)
f3cd1c4e 7330 put_prev_task(rq, p);
0ec8aa00
PZ
7331
7332 p->numa_preferred_nid = nid;
0ec8aa00 7333
da0c1e65 7334 if (queued)
7134b3e9 7335 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
a399d233 7336 if (running)
03b7fad1 7337 set_next_task(rq, p);
eb580751 7338 task_rq_unlock(rq, p, &rf);
0ec8aa00 7339}
5cc389bc 7340#endif /* CONFIG_NUMA_BALANCING */
f7b4cddc 7341
1da177e4 7342#ifdef CONFIG_HOTPLUG_CPU
054b9108 7343/*
d1ccc66d 7344 * Ensure that the idle task is using init_mm right before its CPU goes
48c5ccae 7345 * offline.
054b9108 7346 */
48c5ccae 7347void idle_task_exit(void)
1da177e4 7348{
48c5ccae 7349 struct mm_struct *mm = current->active_mm;
e76bd8d9 7350
48c5ccae 7351 BUG_ON(cpu_online(smp_processor_id()));
bf2c59fc 7352 BUG_ON(current != this_rq()->idle);
e76bd8d9 7353
a53efe5f 7354 if (mm != &init_mm) {
252d2a41 7355 switch_mm(mm, &init_mm, current);
a53efe5f
MS
7356 finish_arch_post_lock_switch();
7357 }
bf2c59fc
PZ
7358
7359 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */
1da177e4
LT
7360}
7361
2558aacf 7362static int __balance_push_cpu_stop(void *arg)
1da177e4 7363{
2558aacf
PZ
7364 struct task_struct *p = arg;
7365 struct rq *rq = this_rq();
7366 struct rq_flags rf;
7367 int cpu;
1da177e4 7368
2558aacf
PZ
7369 raw_spin_lock_irq(&p->pi_lock);
7370 rq_lock(rq, &rf);
3f1d2a31 7371
2558aacf
PZ
7372 update_rq_clock(rq);
7373
7374 if (task_rq(p) == rq && task_on_rq_queued(p)) {
7375 cpu = select_fallback_rq(rq->cpu, p);
7376 rq = __migrate_task(rq, &rf, p, cpu);
10e7071b 7377 }
3f1d2a31 7378
2558aacf
PZ
7379 rq_unlock(rq, &rf);
7380 raw_spin_unlock_irq(&p->pi_lock);
7381
7382 put_task_struct(p);
7383
7384 return 0;
10e7071b 7385}
3f1d2a31 7386
2558aacf
PZ
7387static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
7388
48f24c4d 7389/*
2558aacf 7390 * Ensure we only run per-cpu kthreads once the CPU goes !active.
1da177e4 7391 */
2558aacf 7392static void balance_push(struct rq *rq)
1da177e4 7393{
2558aacf
PZ
7394 struct task_struct *push_task = rq->curr;
7395
7396 lockdep_assert_held(&rq->lock);
7397 SCHED_WARN_ON(rq->cpu != smp_processor_id());
ae792702
PZ
7398 /*
7399 * Ensure the thing is persistent until balance_push_set(.on = false);
7400 */
7401 rq->balance_callback = &balance_push_callback;
1da177e4
LT
7402
7403 /*
2558aacf
PZ
7404 * Both the cpu-hotplug and stop task are in this case and are
7405 * required to complete the hotplug process.
5ba2ffba
PZ
7406 *
7407 * XXX: the idle task does not match kthread_is_per_cpu() due to
7408 * histerical raisins.
1da177e4 7409 */
5ba2ffba
PZ
7410 if (rq->idle == push_task ||
7411 ((push_task->flags & PF_KTHREAD) && kthread_is_per_cpu(push_task)) ||
7412 is_migration_disabled(push_task)) {
7413
f2469a1f
TG
7414 /*
7415 * If this is the idle task on the outgoing CPU try to wake
7416 * up the hotplug control thread which might wait for the
7417 * last task to vanish. The rcuwait_active() check is
7418 * accurate here because the waiter is pinned on this CPU
7419 * and can't obviously be running in parallel.
3015ef4b
TG
7420 *
7421 * On RT kernels this also has to check whether there are
7422 * pinned and scheduled out tasks on the runqueue. They
7423 * need to leave the migrate disabled section first.
f2469a1f 7424 */
3015ef4b
TG
7425 if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
7426 rcuwait_active(&rq->hotplug_wait)) {
f2469a1f
TG
7427 raw_spin_unlock(&rq->lock);
7428 rcuwait_wake_up(&rq->hotplug_wait);
7429 raw_spin_lock(&rq->lock);
7430 }
2558aacf 7431 return;
f2469a1f 7432 }
48f24c4d 7433
2558aacf 7434 get_task_struct(push_task);
77bd3970 7435 /*
2558aacf
PZ
7436 * Temporarily drop rq->lock such that we can wake-up the stop task.
7437 * Both preemption and IRQs are still disabled.
77bd3970 7438 */
2558aacf
PZ
7439 raw_spin_unlock(&rq->lock);
7440 stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
7441 this_cpu_ptr(&push_work));
7442 /*
7443 * At this point need_resched() is true and we'll take the loop in
7444 * schedule(). The next pick is obviously going to be the stop task
5ba2ffba 7445 * which kthread_is_per_cpu() and will push this task away.
2558aacf
PZ
7446 */
7447 raw_spin_lock(&rq->lock);
7448}
77bd3970 7449
2558aacf
PZ
7450static void balance_push_set(int cpu, bool on)
7451{
7452 struct rq *rq = cpu_rq(cpu);
7453 struct rq_flags rf;
48c5ccae 7454
2558aacf 7455 rq_lock_irqsave(rq, &rf);
975707f2 7456 rq->balance_push = on;
22f667c9
PZ
7457 if (on) {
7458 WARN_ON_ONCE(rq->balance_callback);
ae792702 7459 rq->balance_callback = &balance_push_callback;
22f667c9 7460 } else if (rq->balance_callback == &balance_push_callback) {
ae792702 7461 rq->balance_callback = NULL;
22f667c9 7462 }
2558aacf
PZ
7463 rq_unlock_irqrestore(rq, &rf);
7464}
e692ab53 7465
f2469a1f
TG
7466/*
7467 * Invoked from a CPUs hotplug control thread after the CPU has been marked
7468 * inactive. All tasks which are not per CPU kernel threads are either
7469 * pushed off this CPU now via balance_push() or placed on a different CPU
7470 * during wakeup. Wait until the CPU is quiescent.
7471 */
7472static void balance_hotplug_wait(void)
7473{
7474 struct rq *rq = this_rq();
5473e0cc 7475
3015ef4b
TG
7476 rcuwait_wait_event(&rq->hotplug_wait,
7477 rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
f2469a1f
TG
7478 TASK_UNINTERRUPTIBLE);
7479}
5473e0cc 7480
2558aacf 7481#else
dce48a84 7482
2558aacf
PZ
7483static inline void balance_push(struct rq *rq)
7484{
dce48a84 7485}
dce48a84 7486
2558aacf
PZ
7487static inline void balance_push_set(int cpu, bool on)
7488{
7489}
7490
f2469a1f
TG
7491static inline void balance_hotplug_wait(void)
7492{
dce48a84 7493}
f2469a1f 7494
1da177e4
LT
7495#endif /* CONFIG_HOTPLUG_CPU */
7496
f2cb1360 7497void set_rq_online(struct rq *rq)
1f11eb6a
GH
7498{
7499 if (!rq->online) {
7500 const struct sched_class *class;
7501
c6c4927b 7502 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7503 rq->online = 1;
7504
7505 for_each_class(class) {
7506 if (class->rq_online)
7507 class->rq_online(rq);
7508 }
7509 }
7510}
7511
f2cb1360 7512void set_rq_offline(struct rq *rq)
1f11eb6a
GH
7513{
7514 if (rq->online) {
7515 const struct sched_class *class;
7516
7517 for_each_class(class) {
7518 if (class->rq_offline)
7519 class->rq_offline(rq);
7520 }
7521
c6c4927b 7522 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7523 rq->online = 0;
7524 }
7525}
7526
d1ccc66d
IM
7527/*
7528 * used to mark begin/end of suspend/resume:
7529 */
7530static int num_cpus_frozen;
d35be8ba 7531
1da177e4 7532/*
3a101d05
TH
7533 * Update cpusets according to cpu_active mask. If cpusets are
7534 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7535 * around partition_sched_domains().
d35be8ba
SB
7536 *
7537 * If we come here as part of a suspend/resume, don't touch cpusets because we
7538 * want to restore it back to its original state upon resume anyway.
1da177e4 7539 */
40190a78 7540static void cpuset_cpu_active(void)
e761b772 7541{
40190a78 7542 if (cpuhp_tasks_frozen) {
d35be8ba
SB
7543 /*
7544 * num_cpus_frozen tracks how many CPUs are involved in suspend
7545 * resume sequence. As long as this is not the last online
7546 * operation in the resume sequence, just build a single sched
7547 * domain, ignoring cpusets.
7548 */
50e76632
PZ
7549 partition_sched_domains(1, NULL, NULL);
7550 if (--num_cpus_frozen)
135fb3e1 7551 return;
d35be8ba
SB
7552 /*
7553 * This is the last CPU online operation. So fall through and
7554 * restore the original sched domains by considering the
7555 * cpuset configurations.
7556 */
50e76632 7557 cpuset_force_rebuild();
3a101d05 7558 }
30e03acd 7559 cpuset_update_active_cpus();
3a101d05 7560}
e761b772 7561
40190a78 7562static int cpuset_cpu_inactive(unsigned int cpu)
3a101d05 7563{
40190a78 7564 if (!cpuhp_tasks_frozen) {
06a76fe0 7565 if (dl_cpu_busy(cpu))
135fb3e1 7566 return -EBUSY;
30e03acd 7567 cpuset_update_active_cpus();
135fb3e1 7568 } else {
d35be8ba
SB
7569 num_cpus_frozen++;
7570 partition_sched_domains(1, NULL, NULL);
e761b772 7571 }
135fb3e1 7572 return 0;
e761b772 7573}
e761b772 7574
40190a78 7575int sched_cpu_activate(unsigned int cpu)
135fb3e1 7576{
7d976699 7577 struct rq *rq = cpu_rq(cpu);
8a8c69c3 7578 struct rq_flags rf;
7d976699 7579
22f667c9
PZ
7580 /*
7581 * Make sure that when the hotplug state machine does a roll-back
7582 * we clear balance_push. Ideally that would happen earlier...
7583 */
2558aacf
PZ
7584 balance_push_set(cpu, false);
7585
ba2591a5
PZ
7586#ifdef CONFIG_SCHED_SMT
7587 /*
c5511d03 7588 * When going up, increment the number of cores with SMT present.
ba2591a5 7589 */
c5511d03
PZI
7590 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
7591 static_branch_inc_cpuslocked(&sched_smt_present);
ba2591a5 7592#endif
40190a78 7593 set_cpu_active(cpu, true);
135fb3e1 7594
40190a78 7595 if (sched_smp_initialized) {
135fb3e1 7596 sched_domains_numa_masks_set(cpu);
40190a78 7597 cpuset_cpu_active();
e761b772 7598 }
7d976699
TG
7599
7600 /*
7601 * Put the rq online, if not already. This happens:
7602 *
7603 * 1) In the early boot process, because we build the real domains
d1ccc66d 7604 * after all CPUs have been brought up.
7d976699
TG
7605 *
7606 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
7607 * domains.
7608 */
8a8c69c3 7609 rq_lock_irqsave(rq, &rf);
7d976699
TG
7610 if (rq->rd) {
7611 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7612 set_rq_online(rq);
7613 }
8a8c69c3 7614 rq_unlock_irqrestore(rq, &rf);
7d976699 7615
40190a78 7616 return 0;
135fb3e1
TG
7617}
7618
40190a78 7619int sched_cpu_deactivate(unsigned int cpu)
135fb3e1 7620{
120455c5
PZ
7621 struct rq *rq = cpu_rq(cpu);
7622 struct rq_flags rf;
135fb3e1
TG
7623 int ret;
7624
e0b257c3
AMB
7625 /*
7626 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
7627 * load balancing when not active
7628 */
7629 nohz_balance_exit_idle(rq);
7630
40190a78 7631 set_cpu_active(cpu, false);
741ba80f
PZ
7632
7633 /*
7634 * From this point forward, this CPU will refuse to run any task that
7635 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
7636 * push those tasks away until this gets cleared, see
7637 * sched_cpu_dying().
7638 */
975707f2
PZ
7639 balance_push_set(cpu, true);
7640
b2454caa 7641 /*
975707f2
PZ
7642 * We've cleared cpu_active_mask / set balance_push, wait for all
7643 * preempt-disabled and RCU users of this state to go away such that
7644 * all new such users will observe it.
b2454caa 7645 *
5ba2ffba
PZ
7646 * Specifically, we rely on ttwu to no longer target this CPU, see
7647 * ttwu_queue_cond() and is_cpu_allowed().
b2454caa 7648 *
b2454caa
PZ
7649 * Do sync before park smpboot threads to take care the rcu boost case.
7650 */
309ba859 7651 synchronize_rcu();
40190a78 7652
120455c5
PZ
7653 rq_lock_irqsave(rq, &rf);
7654 if (rq->rd) {
7655 update_rq_clock(rq);
7656 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7657 set_rq_offline(rq);
7658 }
7659 rq_unlock_irqrestore(rq, &rf);
7660
c5511d03
PZI
7661#ifdef CONFIG_SCHED_SMT
7662 /*
7663 * When going down, decrement the number of cores with SMT present.
7664 */
7665 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
7666 static_branch_dec_cpuslocked(&sched_smt_present);
7667#endif
7668
40190a78
TG
7669 if (!sched_smp_initialized)
7670 return 0;
7671
7672 ret = cpuset_cpu_inactive(cpu);
7673 if (ret) {
2558aacf 7674 balance_push_set(cpu, false);
40190a78
TG
7675 set_cpu_active(cpu, true);
7676 return ret;
135fb3e1 7677 }
40190a78
TG
7678 sched_domains_numa_masks_clear(cpu);
7679 return 0;
135fb3e1
TG
7680}
7681
94baf7a5
TG
7682static void sched_rq_cpu_starting(unsigned int cpu)
7683{
7684 struct rq *rq = cpu_rq(cpu);
7685
7686 rq->calc_load_update = calc_load_update;
94baf7a5
TG
7687 update_max_interval();
7688}
7689
135fb3e1
TG
7690int sched_cpu_starting(unsigned int cpu)
7691{
94baf7a5 7692 sched_rq_cpu_starting(cpu);
d84b3131 7693 sched_tick_start(cpu);
135fb3e1 7694 return 0;
e761b772 7695}
e761b772 7696
f2785ddb 7697#ifdef CONFIG_HOTPLUG_CPU
1cf12e08
TG
7698
7699/*
7700 * Invoked immediately before the stopper thread is invoked to bring the
7701 * CPU down completely. At this point all per CPU kthreads except the
7702 * hotplug thread (current) and the stopper thread (inactive) have been
7703 * either parked or have been unbound from the outgoing CPU. Ensure that
7704 * any of those which might be on the way out are gone.
7705 *
7706 * If after this point a bound task is being woken on this CPU then the
7707 * responsible hotplug callback has failed to do it's job.
7708 * sched_cpu_dying() will catch it with the appropriate fireworks.
7709 */
7710int sched_cpu_wait_empty(unsigned int cpu)
7711{
7712 balance_hotplug_wait();
7713 return 0;
7714}
7715
7716/*
7717 * Since this CPU is going 'away' for a while, fold any nr_active delta we
7718 * might have. Called from the CPU stopper task after ensuring that the
7719 * stopper is the last running task on the CPU, so nr_active count is
7720 * stable. We need to take the teardown thread which is calling this into
7721 * account, so we hand in adjust = 1 to the load calculation.
7722 *
7723 * Also see the comment "Global load-average calculations".
7724 */
7725static void calc_load_migrate(struct rq *rq)
7726{
7727 long delta = calc_load_fold_active(rq, 1);
7728
7729 if (delta)
7730 atomic_long_add(delta, &calc_load_tasks);
7731}
7732
36c6e17b
VS
7733static void dump_rq_tasks(struct rq *rq, const char *loglvl)
7734{
7735 struct task_struct *g, *p;
7736 int cpu = cpu_of(rq);
7737
7738 lockdep_assert_held(&rq->lock);
7739
7740 printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
7741 for_each_process_thread(g, p) {
7742 if (task_cpu(p) != cpu)
7743 continue;
7744
7745 if (!task_on_rq_queued(p))
7746 continue;
7747
7748 printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
7749 }
7750}
7751
f2785ddb
TG
7752int sched_cpu_dying(unsigned int cpu)
7753{
7754 struct rq *rq = cpu_rq(cpu);
8a8c69c3 7755 struct rq_flags rf;
f2785ddb
TG
7756
7757 /* Handle pending wakeups and then migrate everything off */
d84b3131 7758 sched_tick_stop(cpu);
8a8c69c3
PZ
7759
7760 rq_lock_irqsave(rq, &rf);
36c6e17b
VS
7761 if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
7762 WARN(true, "Dying CPU not properly vacated!");
7763 dump_rq_tasks(rq, KERN_WARNING);
7764 }
8a8c69c3
PZ
7765 rq_unlock_irqrestore(rq, &rf);
7766
22f667c9
PZ
7767 /*
7768 * Now that the CPU is offline, make sure we're welcome
7769 * to new tasks once we come back up.
7770 */
7771 balance_push_set(cpu, false);
7772
f2785ddb
TG
7773 calc_load_migrate(rq);
7774 update_max_interval();
e5ef27d0 7775 hrtick_clear(rq);
f2785ddb
TG
7776 return 0;
7777}
7778#endif
7779
1da177e4
LT
7780void __init sched_init_smp(void)
7781{
cb83b629
PZ
7782 sched_init_numa();
7783
6acce3ef
PZ
7784 /*
7785 * There's no userspace yet to cause hotplug operations; hence all the
d1ccc66d 7786 * CPU masks are stable and all blatant races in the below code cannot
b5a4e2bb 7787 * happen.
6acce3ef 7788 */
712555ee 7789 mutex_lock(&sched_domains_mutex);
8d5dc512 7790 sched_init_domains(cpu_active_mask);
712555ee 7791 mutex_unlock(&sched_domains_mutex);
e761b772 7792
5c1e1767 7793 /* Move init over to a non-isolated CPU */
edb93821 7794 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
5c1e1767 7795 BUG();
19978ca6 7796 sched_init_granularity();
4212823f 7797
0e3900e6 7798 init_sched_rt_class();
1baca4ce 7799 init_sched_dl_class();
1b568f0a 7800
e26fbffd 7801 sched_smp_initialized = true;
1da177e4 7802}
e26fbffd
TG
7803
7804static int __init migration_init(void)
7805{
77a5352b 7806 sched_cpu_starting(smp_processor_id());
e26fbffd 7807 return 0;
1da177e4 7808}
e26fbffd
TG
7809early_initcall(migration_init);
7810
1da177e4
LT
7811#else
7812void __init sched_init_smp(void)
7813{
19978ca6 7814 sched_init_granularity();
1da177e4
LT
7815}
7816#endif /* CONFIG_SMP */
7817
7818int in_sched_functions(unsigned long addr)
7819{
1da177e4
LT
7820 return in_lock_functions(addr) ||
7821 (addr >= (unsigned long)__sched_text_start
7822 && addr < (unsigned long)__sched_text_end);
7823}
7824
029632fb 7825#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
7826/*
7827 * Default task group.
7828 * Every task in system belongs to this group at bootup.
7829 */
029632fb 7830struct task_group root_task_group;
35cf4e50 7831LIST_HEAD(task_groups);
b0367629
WL
7832
7833/* Cacheline aligned slab cache for task_group */
7834static struct kmem_cache *task_group_cache __read_mostly;
052f1dc7 7835#endif
6f505b16 7836
e6252c3e 7837DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
10e2f1ac 7838DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
6f505b16 7839
1da177e4
LT
7840void __init sched_init(void)
7841{
a1dc0446 7842 unsigned long ptr = 0;
55627e3c 7843 int i;
434d53b0 7844
c3a340f7
SRV
7845 /* Make sure the linker didn't screw up */
7846 BUG_ON(&idle_sched_class + 1 != &fair_sched_class ||
7847 &fair_sched_class + 1 != &rt_sched_class ||
7848 &rt_sched_class + 1 != &dl_sched_class);
7849#ifdef CONFIG_SMP
7850 BUG_ON(&dl_sched_class + 1 != &stop_sched_class);
7851#endif
7852
5822a454 7853 wait_bit_init();
9dcb8b68 7854
434d53b0 7855#ifdef CONFIG_FAIR_GROUP_SCHED
a1dc0446 7856 ptr += 2 * nr_cpu_ids * sizeof(void **);
434d53b0
MT
7857#endif
7858#ifdef CONFIG_RT_GROUP_SCHED
a1dc0446 7859 ptr += 2 * nr_cpu_ids * sizeof(void **);
434d53b0 7860#endif
a1dc0446
QC
7861 if (ptr) {
7862 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
434d53b0
MT
7863
7864#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 7865 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
7866 ptr += nr_cpu_ids * sizeof(void **);
7867
07e06b01 7868 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 7869 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7870
b1d1779e
WY
7871 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7872 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6d6bc0ad 7873#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 7874#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7875 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
7876 ptr += nr_cpu_ids * sizeof(void **);
7877
07e06b01 7878 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7879 ptr += nr_cpu_ids * sizeof(void **);
7880
6d6bc0ad 7881#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 7882 }
df7c8e84 7883#ifdef CONFIG_CPUMASK_OFFSTACK
b74e6278
AT
7884 for_each_possible_cpu(i) {
7885 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7886 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
10e2f1ac
PZ
7887 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
7888 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
434d53b0 7889 }
b74e6278 7890#endif /* CONFIG_CPUMASK_OFFSTACK */
dd41f596 7891
d1ccc66d
IM
7892 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
7893 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
332ac17e 7894
57d885fe
GH
7895#ifdef CONFIG_SMP
7896 init_defrootdomain();
7897#endif
7898
d0b27fa7 7899#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7900 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 7901 global_rt_period(), global_rt_runtime());
6d6bc0ad 7902#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7903
7c941438 7904#ifdef CONFIG_CGROUP_SCHED
b0367629
WL
7905 task_group_cache = KMEM_CACHE(task_group, 0);
7906
07e06b01
YZ
7907 list_add(&root_task_group.list, &task_groups);
7908 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 7909 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 7910 autogroup_init(&init_task);
7c941438 7911#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7912
0a945022 7913 for_each_possible_cpu(i) {
70b97a7f 7914 struct rq *rq;
1da177e4
LT
7915
7916 rq = cpu_rq(i);
05fa785c 7917 raw_spin_lock_init(&rq->lock);
7897986b 7918 rq->nr_running = 0;
dce48a84
TG
7919 rq->calc_load_active = 0;
7920 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 7921 init_cfs_rq(&rq->cfs);
07c54f7a
AV
7922 init_rt_rq(&rq->rt);
7923 init_dl_rq(&rq->dl);
dd41f596 7924#ifdef CONFIG_FAIR_GROUP_SCHED
6f505b16 7925 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9c2791f9 7926 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
354d60c2 7927 /*
d1ccc66d 7928 * How much CPU bandwidth does root_task_group get?
354d60c2
DG
7929 *
7930 * In case of task-groups formed thr' the cgroup filesystem, it
d1ccc66d
IM
7931 * gets 100% of the CPU resources in the system. This overall
7932 * system CPU resource is divided among the tasks of
07e06b01 7933 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
7934 * based on each entity's (task or task-group's) weight
7935 * (se->load.weight).
7936 *
07e06b01 7937 * In other words, if root_task_group has 10 tasks of weight
354d60c2 7938 * 1024) and two child groups A0 and A1 (of weight 1024 each),
d1ccc66d 7939 * then A0's share of the CPU resource is:
354d60c2 7940 *
0d905bca 7941 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 7942 *
07e06b01
YZ
7943 * We achieve this by letting root_task_group's tasks sit
7944 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 7945 */
07e06b01 7946 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
7947#endif /* CONFIG_FAIR_GROUP_SCHED */
7948
7949 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7950#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7951 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 7952#endif
1da177e4 7953#ifdef CONFIG_SMP
41c7ce9a 7954 rq->sd = NULL;
57d885fe 7955 rq->rd = NULL;
ca6d75e6 7956 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
e3fca9e7 7957 rq->balance_callback = NULL;
1da177e4 7958 rq->active_balance = 0;
dd41f596 7959 rq->next_balance = jiffies;
1da177e4 7960 rq->push_cpu = 0;
0a2966b4 7961 rq->cpu = i;
1f11eb6a 7962 rq->online = 0;
eae0c9df
MG
7963 rq->idle_stamp = 0;
7964 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 7965 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
7966
7967 INIT_LIST_HEAD(&rq->cfs_tasks);
7968
dc938520 7969 rq_attach_root(rq, &def_root_domain);
3451d024 7970#ifdef CONFIG_NO_HZ_COMMON
e022e0d3 7971 rq->last_blocked_load_update_tick = jiffies;
a22e47a4 7972 atomic_set(&rq->nohz_flags, 0);
90b5363a 7973
545b8c8d 7974 INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
83cd4fe2 7975#endif
f2469a1f
TG
7976#ifdef CONFIG_HOTPLUG_CPU
7977 rcuwait_init(&rq->hotplug_wait);
83cd4fe2 7978#endif
9fd81dd5 7979#endif /* CONFIG_SMP */
77a021be 7980 hrtick_rq_init(rq);
1da177e4 7981 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7982 }
7983
9059393e 7984 set_load_weight(&init_task, false);
b50f60ce 7985
1da177e4
LT
7986 /*
7987 * The boot idle thread does lazy MMU switching as well:
7988 */
f1f10076 7989 mmgrab(&init_mm);
1da177e4
LT
7990 enter_lazy_tlb(&init_mm, current);
7991
7992 /*
7993 * Make us the idle thread. Technically, schedule() should not be
7994 * called from this thread, however somewhere below it might be,
7995 * but because we are the idle thread, we just pick up running again
7996 * when this runqueue becomes "idle".
7997 */
7998 init_idle(current, smp_processor_id());
dce48a84
TG
7999
8000 calc_load_update = jiffies + LOAD_FREQ;
8001
bf4d83f6 8002#ifdef CONFIG_SMP
29d5e047 8003 idle_thread_set_boot_cpu();
029632fb
PZ
8004#endif
8005 init_sched_fair_class();
6a7b3dc3 8006
4698f88c
JP
8007 init_schedstats();
8008
eb414681
JW
8009 psi_init();
8010
69842cba
PB
8011 init_uclamp();
8012
6892b75e 8013 scheduler_running = 1;
1da177e4
LT
8014}
8015
d902db1e 8016#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
8017static inline int preempt_count_equals(int preempt_offset)
8018{
da7142e2 8019 int nested = preempt_count() + rcu_preempt_depth();
e4aafea2 8020
4ba8216c 8021 return (nested == preempt_offset);
e4aafea2
FW
8022}
8023
d894837f 8024void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 8025{
8eb23b9f
PZ
8026 /*
8027 * Blocking primitives will set (and therefore destroy) current->state,
8028 * since we will exit with TASK_RUNNING make sure we enter with it,
8029 * otherwise we will destroy state.
8030 */
00845eb9 8031 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
8eb23b9f
PZ
8032 "do not call blocking ops when !TASK_RUNNING; "
8033 "state=%lx set at [<%p>] %pS\n",
8034 current->state,
8035 (void *)current->task_state_change,
00845eb9 8036 (void *)current->task_state_change);
8eb23b9f 8037
3427445a
PZ
8038 ___might_sleep(file, line, preempt_offset);
8039}
8040EXPORT_SYMBOL(__might_sleep);
8041
8042void ___might_sleep(const char *file, int line, int preempt_offset)
1da177e4 8043{
d1ccc66d
IM
8044 /* Ratelimiting timestamp: */
8045 static unsigned long prev_jiffy;
8046
d1c6d149 8047 unsigned long preempt_disable_ip;
1da177e4 8048
d1ccc66d
IM
8049 /* WARN_ON_ONCE() by default, no rate limit required: */
8050 rcu_sleep_check();
8051
db273be2 8052 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
312364f3 8053 !is_idle_task(current) && !current->non_block_count) ||
1c3c5eab
TG
8054 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
8055 oops_in_progress)
aef745fc 8056 return;
1c3c5eab 8057
aef745fc
IM
8058 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8059 return;
8060 prev_jiffy = jiffies;
8061
d1ccc66d 8062 /* Save this before calling printk(), since that will clobber it: */
d1c6d149
VN
8063 preempt_disable_ip = get_preempt_disable_ip(current);
8064
3df0fc5b
PZ
8065 printk(KERN_ERR
8066 "BUG: sleeping function called from invalid context at %s:%d\n",
8067 file, line);
8068 printk(KERN_ERR
312364f3
DV
8069 "in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
8070 in_atomic(), irqs_disabled(), current->non_block_count,
3df0fc5b 8071 current->pid, current->comm);
aef745fc 8072
a8b686b3
ES
8073 if (task_stack_end_corrupted(current))
8074 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
8075
aef745fc
IM
8076 debug_show_held_locks(current);
8077 if (irqs_disabled())
8078 print_irqtrace_events(current);
d1c6d149
VN
8079 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
8080 && !preempt_count_equals(preempt_offset)) {
8f47b187 8081 pr_err("Preemption disabled at:");
2062a4e8 8082 print_ip_sym(KERN_ERR, preempt_disable_ip);
8f47b187 8083 }
aef745fc 8084 dump_stack();
f0b22e39 8085 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
1da177e4 8086}
3427445a 8087EXPORT_SYMBOL(___might_sleep);
568f1967
PZ
8088
8089void __cant_sleep(const char *file, int line, int preempt_offset)
8090{
8091 static unsigned long prev_jiffy;
8092
8093 if (irqs_disabled())
8094 return;
8095
8096 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
8097 return;
8098
8099 if (preempt_count() > preempt_offset)
8100 return;
8101
8102 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8103 return;
8104 prev_jiffy = jiffies;
8105
8106 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
8107 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8108 in_atomic(), irqs_disabled(),
8109 current->pid, current->comm);
8110
8111 debug_show_held_locks(current);
8112 dump_stack();
8113 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8114}
8115EXPORT_SYMBOL_GPL(__cant_sleep);
74d862b6
TG
8116
8117#ifdef CONFIG_SMP
8118void __cant_migrate(const char *file, int line)
8119{
8120 static unsigned long prev_jiffy;
8121
8122 if (irqs_disabled())
8123 return;
8124
8125 if (is_migration_disabled(current))
8126 return;
8127
8128 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
8129 return;
8130
8131 if (preempt_count() > 0)
8132 return;
8133
8134 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8135 return;
8136 prev_jiffy = jiffies;
8137
8138 pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
8139 pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
8140 in_atomic(), irqs_disabled(), is_migration_disabled(current),
8141 current->pid, current->comm);
8142
8143 debug_show_held_locks(current);
8144 dump_stack();
8145 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8146}
8147EXPORT_SYMBOL_GPL(__cant_migrate);
8148#endif
1da177e4
LT
8149#endif
8150
8151#ifdef CONFIG_MAGIC_SYSRQ
dbc7f069 8152void normalize_rt_tasks(void)
3a5e4dc1 8153{
dbc7f069 8154 struct task_struct *g, *p;
d50dde5a
DF
8155 struct sched_attr attr = {
8156 .sched_policy = SCHED_NORMAL,
8157 };
1da177e4 8158
3472eaa1 8159 read_lock(&tasklist_lock);
5d07f420 8160 for_each_process_thread(g, p) {
178be793
IM
8161 /*
8162 * Only normalize user tasks:
8163 */
3472eaa1 8164 if (p->flags & PF_KTHREAD)
178be793
IM
8165 continue;
8166
4fa8d299
JP
8167 p->se.exec_start = 0;
8168 schedstat_set(p->se.statistics.wait_start, 0);
8169 schedstat_set(p->se.statistics.sleep_start, 0);
8170 schedstat_set(p->se.statistics.block_start, 0);
dd41f596 8171
aab03e05 8172 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
8173 /*
8174 * Renice negative nice level userspace
8175 * tasks back to 0:
8176 */
3472eaa1 8177 if (task_nice(p) < 0)
dd41f596 8178 set_user_nice(p, 0);
1da177e4 8179 continue;
dd41f596 8180 }
1da177e4 8181
dbc7f069 8182 __sched_setscheduler(p, &attr, false, false);
5d07f420 8183 }
3472eaa1 8184 read_unlock(&tasklist_lock);
1da177e4
LT
8185}
8186
8187#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 8188
67fc4e0c 8189#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 8190/*
67fc4e0c 8191 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
8192 *
8193 * They can only be called when the whole system has been
8194 * stopped - every CPU needs to be quiescent, and no scheduling
8195 * activity can take place. Using them for anything else would
8196 * be a serious bug, and as a result, they aren't even visible
8197 * under any other configuration.
8198 */
8199
8200/**
d1ccc66d 8201 * curr_task - return the current task for a given CPU.
1df5c10a
LT
8202 * @cpu: the processor in question.
8203 *
8204 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
8205 *
8206 * Return: The current task for @cpu.
1df5c10a 8207 */
36c8b586 8208struct task_struct *curr_task(int cpu)
1df5c10a
LT
8209{
8210 return cpu_curr(cpu);
8211}
8212
67fc4e0c
JW
8213#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8214
8215#ifdef CONFIG_IA64
1df5c10a 8216/**
5feeb783 8217 * ia64_set_curr_task - set the current task for a given CPU.
1df5c10a
LT
8218 * @cpu: the processor in question.
8219 * @p: the task pointer to set.
8220 *
8221 * Description: This function must only be used when non-maskable interrupts
41a2d6cf 8222 * are serviced on a separate stack. It allows the architecture to switch the
d1ccc66d 8223 * notion of the current task on a CPU in a non-blocking manner. This function
1df5c10a
LT
8224 * must be called with all CPU's synchronized, and interrupts disabled, the
8225 * and caller must save the original value of the current task (see
8226 * curr_task() above) and restore that value before reenabling interrupts and
8227 * re-starting the system.
8228 *
8229 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8230 */
a458ae2e 8231void ia64_set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8232{
8233 cpu_curr(cpu) = p;
8234}
8235
8236#endif
29f59db3 8237
7c941438 8238#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
8239/* task_group_lock serializes the addition/removal of task groups */
8240static DEFINE_SPINLOCK(task_group_lock);
8241
2480c093
PB
8242static inline void alloc_uclamp_sched_group(struct task_group *tg,
8243 struct task_group *parent)
8244{
8245#ifdef CONFIG_UCLAMP_TASK_GROUP
0413d7f3 8246 enum uclamp_id clamp_id;
2480c093
PB
8247
8248 for_each_clamp_id(clamp_id) {
8249 uclamp_se_set(&tg->uclamp_req[clamp_id],
8250 uclamp_none(clamp_id), false);
0b60ba2d 8251 tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
2480c093
PB
8252 }
8253#endif
8254}
8255
2f5177f0 8256static void sched_free_group(struct task_group *tg)
bccbe08a
PZ
8257{
8258 free_fair_sched_group(tg);
8259 free_rt_sched_group(tg);
e9aa1dd1 8260 autogroup_free(tg);
b0367629 8261 kmem_cache_free(task_group_cache, tg);
bccbe08a
PZ
8262}
8263
8264/* allocate runqueue etc for a new task group */
ec7dc8ac 8265struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8266{
8267 struct task_group *tg;
bccbe08a 8268
b0367629 8269 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
bccbe08a
PZ
8270 if (!tg)
8271 return ERR_PTR(-ENOMEM);
8272
ec7dc8ac 8273 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8274 goto err;
8275
ec7dc8ac 8276 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8277 goto err;
8278
2480c093
PB
8279 alloc_uclamp_sched_group(tg, parent);
8280
ace783b9
LZ
8281 return tg;
8282
8283err:
2f5177f0 8284 sched_free_group(tg);
ace783b9
LZ
8285 return ERR_PTR(-ENOMEM);
8286}
8287
8288void sched_online_group(struct task_group *tg, struct task_group *parent)
8289{
8290 unsigned long flags;
8291
8ed36996 8292 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 8293 list_add_rcu(&tg->list, &task_groups);
f473aa5e 8294
d1ccc66d
IM
8295 /* Root should already exist: */
8296 WARN_ON(!parent);
f473aa5e
PZ
8297
8298 tg->parent = parent;
f473aa5e 8299 INIT_LIST_HEAD(&tg->children);
09f2724a 8300 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8301 spin_unlock_irqrestore(&task_group_lock, flags);
8663e24d
PZ
8302
8303 online_fair_sched_group(tg);
29f59db3
SV
8304}
8305
9b5b7751 8306/* rcu callback to free various structures associated with a task group */
2f5177f0 8307static void sched_free_group_rcu(struct rcu_head *rhp)
29f59db3 8308{
d1ccc66d 8309 /* Now it should be safe to free those cfs_rqs: */
2f5177f0 8310 sched_free_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8311}
8312
4cf86d77 8313void sched_destroy_group(struct task_group *tg)
ace783b9 8314{
d1ccc66d 8315 /* Wait for possible concurrent references to cfs_rqs complete: */
2f5177f0 8316 call_rcu(&tg->rcu, sched_free_group_rcu);
ace783b9
LZ
8317}
8318
8319void sched_offline_group(struct task_group *tg)
29f59db3 8320{
8ed36996 8321 unsigned long flags;
29f59db3 8322
d1ccc66d 8323 /* End participation in shares distribution: */
6fe1f348 8324 unregister_fair_sched_group(tg);
3d4b47b4
PZ
8325
8326 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 8327 list_del_rcu(&tg->list);
f473aa5e 8328 list_del_rcu(&tg->siblings);
8ed36996 8329 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
8330}
8331
ea86cb4b 8332static void sched_change_group(struct task_struct *tsk, int type)
29f59db3 8333{
8323f26c 8334 struct task_group *tg;
29f59db3 8335
f7b8a47d
KT
8336 /*
8337 * All callers are synchronized by task_rq_lock(); we do not use RCU
8338 * which is pointless here. Thus, we pass "true" to task_css_check()
8339 * to prevent lockdep warnings.
8340 */
8341 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
8342 struct task_group, css);
8343 tg = autogroup_task_group(tsk, tg);
8344 tsk->sched_task_group = tg;
8345
810b3817 8346#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
8347 if (tsk->sched_class->task_change_group)
8348 tsk->sched_class->task_change_group(tsk, type);
b2b5ce02 8349 else
810b3817 8350#endif
b2b5ce02 8351 set_task_rq(tsk, task_cpu(tsk));
ea86cb4b
VG
8352}
8353
8354/*
8355 * Change task's runqueue when it moves between groups.
8356 *
8357 * The caller of this function should have put the task in its new group by
8358 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
8359 * its new group.
8360 */
8361void sched_move_task(struct task_struct *tsk)
8362{
7a57f32a
PZ
8363 int queued, running, queue_flags =
8364 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
ea86cb4b
VG
8365 struct rq_flags rf;
8366 struct rq *rq;
8367
8368 rq = task_rq_lock(tsk, &rf);
1b1d6225 8369 update_rq_clock(rq);
ea86cb4b
VG
8370
8371 running = task_current(rq, tsk);
8372 queued = task_on_rq_queued(tsk);
8373
8374 if (queued)
7a57f32a 8375 dequeue_task(rq, tsk, queue_flags);
bb3bac2c 8376 if (running)
ea86cb4b
VG
8377 put_prev_task(rq, tsk);
8378
8379 sched_change_group(tsk, TASK_MOVE_GROUP);
810b3817 8380
da0c1e65 8381 if (queued)
7a57f32a 8382 enqueue_task(rq, tsk, queue_flags);
2a4b03ff 8383 if (running) {
03b7fad1 8384 set_next_task(rq, tsk);
2a4b03ff
VG
8385 /*
8386 * After changing group, the running task may have joined a
8387 * throttled one but it's still the running task. Trigger a
8388 * resched to make sure that task can still run.
8389 */
8390 resched_curr(rq);
8391 }
29f59db3 8392
eb580751 8393 task_rq_unlock(rq, tsk, &rf);
29f59db3 8394}
68318b8e 8395
a7c6d554 8396static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 8397{
a7c6d554 8398 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
8399}
8400
eb95419b
TH
8401static struct cgroup_subsys_state *
8402cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 8403{
eb95419b
TH
8404 struct task_group *parent = css_tg(parent_css);
8405 struct task_group *tg;
68318b8e 8406
eb95419b 8407 if (!parent) {
68318b8e 8408 /* This is early initialization for the top cgroup */
07e06b01 8409 return &root_task_group.css;
68318b8e
SV
8410 }
8411
ec7dc8ac 8412 tg = sched_create_group(parent);
68318b8e
SV
8413 if (IS_ERR(tg))
8414 return ERR_PTR(-ENOMEM);
8415
68318b8e
SV
8416 return &tg->css;
8417}
8418
96b77745
KK
8419/* Expose task group only after completing cgroup initialization */
8420static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
8421{
8422 struct task_group *tg = css_tg(css);
8423 struct task_group *parent = css_tg(css->parent);
8424
8425 if (parent)
8426 sched_online_group(tg, parent);
7226017a
QY
8427
8428#ifdef CONFIG_UCLAMP_TASK_GROUP
8429 /* Propagate the effective uclamp value for the new group */
8430 cpu_util_update_eff(css);
8431#endif
8432
96b77745
KK
8433 return 0;
8434}
8435
2f5177f0 8436static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
ace783b9 8437{
eb95419b 8438 struct task_group *tg = css_tg(css);
ace783b9 8439
2f5177f0 8440 sched_offline_group(tg);
ace783b9
LZ
8441}
8442
eb95419b 8443static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 8444{
eb95419b 8445 struct task_group *tg = css_tg(css);
68318b8e 8446
2f5177f0
PZ
8447 /*
8448 * Relies on the RCU grace period between css_released() and this.
8449 */
8450 sched_free_group(tg);
ace783b9
LZ
8451}
8452
ea86cb4b
VG
8453/*
8454 * This is called before wake_up_new_task(), therefore we really only
8455 * have to set its group bits, all the other stuff does not apply.
8456 */
b53202e6 8457static void cpu_cgroup_fork(struct task_struct *task)
eeb61e53 8458{
ea86cb4b
VG
8459 struct rq_flags rf;
8460 struct rq *rq;
8461
8462 rq = task_rq_lock(task, &rf);
8463
80f5c1b8 8464 update_rq_clock(rq);
ea86cb4b
VG
8465 sched_change_group(task, TASK_SET_GROUP);
8466
8467 task_rq_unlock(rq, task, &rf);
eeb61e53
KT
8468}
8469
1f7dd3e5 8470static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
68318b8e 8471{
bb9d97b6 8472 struct task_struct *task;
1f7dd3e5 8473 struct cgroup_subsys_state *css;
7dc603c9 8474 int ret = 0;
bb9d97b6 8475
1f7dd3e5 8476 cgroup_taskset_for_each(task, css, tset) {
b68aa230 8477#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 8478 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 8479 return -EINVAL;
b68aa230 8480#endif
7dc603c9 8481 /*
b19a888c 8482 * Serialize against wake_up_new_task() such that if it's
7dc603c9
PZ
8483 * running, we're sure to observe its full state.
8484 */
8485 raw_spin_lock_irq(&task->pi_lock);
8486 /*
8487 * Avoid calling sched_move_task() before wake_up_new_task()
8488 * has happened. This would lead to problems with PELT, due to
8489 * move wanting to detach+attach while we're not attached yet.
8490 */
8491 if (task->state == TASK_NEW)
8492 ret = -EINVAL;
8493 raw_spin_unlock_irq(&task->pi_lock);
8494
8495 if (ret)
8496 break;
bb9d97b6 8497 }
7dc603c9 8498 return ret;
be367d09 8499}
68318b8e 8500
1f7dd3e5 8501static void cpu_cgroup_attach(struct cgroup_taskset *tset)
68318b8e 8502{
bb9d97b6 8503 struct task_struct *task;
1f7dd3e5 8504 struct cgroup_subsys_state *css;
bb9d97b6 8505
1f7dd3e5 8506 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 8507 sched_move_task(task);
68318b8e
SV
8508}
8509
2480c093 8510#ifdef CONFIG_UCLAMP_TASK_GROUP
0b60ba2d
PB
8511static void cpu_util_update_eff(struct cgroup_subsys_state *css)
8512{
8513 struct cgroup_subsys_state *top_css = css;
8514 struct uclamp_se *uc_parent = NULL;
8515 struct uclamp_se *uc_se = NULL;
8516 unsigned int eff[UCLAMP_CNT];
0413d7f3 8517 enum uclamp_id clamp_id;
0b60ba2d
PB
8518 unsigned int clamps;
8519
8520 css_for_each_descendant_pre(css, top_css) {
8521 uc_parent = css_tg(css)->parent
8522 ? css_tg(css)->parent->uclamp : NULL;
8523
8524 for_each_clamp_id(clamp_id) {
8525 /* Assume effective clamps matches requested clamps */
8526 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
8527 /* Cap effective clamps with parent's effective clamps */
8528 if (uc_parent &&
8529 eff[clamp_id] > uc_parent[clamp_id].value) {
8530 eff[clamp_id] = uc_parent[clamp_id].value;
8531 }
8532 }
8533 /* Ensure protection is always capped by limit */
8534 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
8535
8536 /* Propagate most restrictive effective clamps */
8537 clamps = 0x0;
8538 uc_se = css_tg(css)->uclamp;
8539 for_each_clamp_id(clamp_id) {
8540 if (eff[clamp_id] == uc_se[clamp_id].value)
8541 continue;
8542 uc_se[clamp_id].value = eff[clamp_id];
8543 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
8544 clamps |= (0x1 << clamp_id);
8545 }
babbe170 8546 if (!clamps) {
0b60ba2d 8547 css = css_rightmost_descendant(css);
babbe170
PB
8548 continue;
8549 }
8550
8551 /* Immediately update descendants RUNNABLE tasks */
8552 uclamp_update_active_tasks(css, clamps);
0b60ba2d
PB
8553 }
8554}
2480c093
PB
8555
8556/*
8557 * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
8558 * C expression. Since there is no way to convert a macro argument (N) into a
8559 * character constant, use two levels of macros.
8560 */
8561#define _POW10(exp) ((unsigned int)1e##exp)
8562#define POW10(exp) _POW10(exp)
8563
8564struct uclamp_request {
8565#define UCLAMP_PERCENT_SHIFT 2
8566#define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT))
8567 s64 percent;
8568 u64 util;
8569 int ret;
8570};
8571
8572static inline struct uclamp_request
8573capacity_from_percent(char *buf)
8574{
8575 struct uclamp_request req = {
8576 .percent = UCLAMP_PERCENT_SCALE,
8577 .util = SCHED_CAPACITY_SCALE,
8578 .ret = 0,
8579 };
8580
8581 buf = strim(buf);
8582 if (strcmp(buf, "max")) {
8583 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
8584 &req.percent);
8585 if (req.ret)
8586 return req;
b562d140 8587 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
2480c093
PB
8588 req.ret = -ERANGE;
8589 return req;
8590 }
8591
8592 req.util = req.percent << SCHED_CAPACITY_SHIFT;
8593 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
8594 }
8595
8596 return req;
8597}
8598
8599static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
8600 size_t nbytes, loff_t off,
8601 enum uclamp_id clamp_id)
8602{
8603 struct uclamp_request req;
8604 struct task_group *tg;
8605
8606 req = capacity_from_percent(buf);
8607 if (req.ret)
8608 return req.ret;
8609
46609ce2
QY
8610 static_branch_enable(&sched_uclamp_used);
8611
2480c093
PB
8612 mutex_lock(&uclamp_mutex);
8613 rcu_read_lock();
8614
8615 tg = css_tg(of_css(of));
8616 if (tg->uclamp_req[clamp_id].value != req.util)
8617 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
8618
8619 /*
8620 * Because of not recoverable conversion rounding we keep track of the
8621 * exact requested value
8622 */
8623 tg->uclamp_pct[clamp_id] = req.percent;
8624
0b60ba2d
PB
8625 /* Update effective clamps to track the most restrictive value */
8626 cpu_util_update_eff(of_css(of));
8627
2480c093
PB
8628 rcu_read_unlock();
8629 mutex_unlock(&uclamp_mutex);
8630
8631 return nbytes;
8632}
8633
8634static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
8635 char *buf, size_t nbytes,
8636 loff_t off)
8637{
8638 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
8639}
8640
8641static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
8642 char *buf, size_t nbytes,
8643 loff_t off)
8644{
8645 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
8646}
8647
8648static inline void cpu_uclamp_print(struct seq_file *sf,
8649 enum uclamp_id clamp_id)
8650{
8651 struct task_group *tg;
8652 u64 util_clamp;
8653 u64 percent;
8654 u32 rem;
8655
8656 rcu_read_lock();
8657 tg = css_tg(seq_css(sf));
8658 util_clamp = tg->uclamp_req[clamp_id].value;
8659 rcu_read_unlock();
8660
8661 if (util_clamp == SCHED_CAPACITY_SCALE) {
8662 seq_puts(sf, "max\n");
8663 return;
8664 }
8665
8666 percent = tg->uclamp_pct[clamp_id];
8667 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
8668 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
8669}
8670
8671static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
8672{
8673 cpu_uclamp_print(sf, UCLAMP_MIN);
8674 return 0;
8675}
8676
8677static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
8678{
8679 cpu_uclamp_print(sf, UCLAMP_MAX);
8680 return 0;
8681}
8682#endif /* CONFIG_UCLAMP_TASK_GROUP */
8683
052f1dc7 8684#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
8685static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8686 struct cftype *cftype, u64 shareval)
68318b8e 8687{
5b61d50a
KK
8688 if (shareval > scale_load_down(ULONG_MAX))
8689 shareval = MAX_SHARES;
182446d0 8690 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
8691}
8692
182446d0
TH
8693static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8694 struct cftype *cft)
68318b8e 8695{
182446d0 8696 struct task_group *tg = css_tg(css);
68318b8e 8697
c8b28116 8698 return (u64) scale_load_down(tg->shares);
68318b8e 8699}
ab84d31e
PT
8700
8701#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
8702static DEFINE_MUTEX(cfs_constraints_mutex);
8703
ab84d31e 8704const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
b1546edc 8705static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
d505b8af
HC
8706/* More than 203 days if BW_SHIFT equals 20. */
8707static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
ab84d31e 8708
a790de99
PT
8709static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8710
ab84d31e
PT
8711static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8712{
56f570e5 8713 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 8714 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
8715
8716 if (tg == &root_task_group)
8717 return -EINVAL;
8718
8719 /*
8720 * Ensure we have at some amount of bandwidth every period. This is
8721 * to prevent reaching a state of large arrears when throttled via
8722 * entity_tick() resulting in prolonged exit starvation.
8723 */
8724 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8725 return -EINVAL;
8726
8727 /*
8728 * Likewise, bound things on the otherside by preventing insane quota
8729 * periods. This also allows us to normalize in computing quota
8730 * feasibility.
8731 */
8732 if (period > max_cfs_quota_period)
8733 return -EINVAL;
8734
d505b8af
HC
8735 /*
8736 * Bound quota to defend quota against overflow during bandwidth shift.
8737 */
8738 if (quota != RUNTIME_INF && quota > max_cfs_runtime)
8739 return -EINVAL;
8740
0e59bdae
KT
8741 /*
8742 * Prevent race between setting of cfs_rq->runtime_enabled and
8743 * unthrottle_offline_cfs_rqs().
8744 */
8745 get_online_cpus();
a790de99
PT
8746 mutex_lock(&cfs_constraints_mutex);
8747 ret = __cfs_schedulable(tg, period, quota);
8748 if (ret)
8749 goto out_unlock;
8750
58088ad0 8751 runtime_enabled = quota != RUNTIME_INF;
56f570e5 8752 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
8753 /*
8754 * If we need to toggle cfs_bandwidth_used, off->on must occur
8755 * before making related changes, and on->off must occur afterwards
8756 */
8757 if (runtime_enabled && !runtime_was_enabled)
8758 cfs_bandwidth_usage_inc();
ab84d31e
PT
8759 raw_spin_lock_irq(&cfs_b->lock);
8760 cfs_b->period = ns_to_ktime(period);
8761 cfs_b->quota = quota;
58088ad0 8762
a9cf55b2 8763 __refill_cfs_bandwidth_runtime(cfs_b);
d1ccc66d
IM
8764
8765 /* Restart the period timer (if active) to handle new period expiry: */
77a4d1a1
PZ
8766 if (runtime_enabled)
8767 start_cfs_bandwidth(cfs_b);
d1ccc66d 8768
ab84d31e
PT
8769 raw_spin_unlock_irq(&cfs_b->lock);
8770
0e59bdae 8771 for_each_online_cpu(i) {
ab84d31e 8772 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 8773 struct rq *rq = cfs_rq->rq;
8a8c69c3 8774 struct rq_flags rf;
ab84d31e 8775
8a8c69c3 8776 rq_lock_irq(rq, &rf);
58088ad0 8777 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 8778 cfs_rq->runtime_remaining = 0;
671fd9da 8779
029632fb 8780 if (cfs_rq->throttled)
671fd9da 8781 unthrottle_cfs_rq(cfs_rq);
8a8c69c3 8782 rq_unlock_irq(rq, &rf);
ab84d31e 8783 }
1ee14e6c
BS
8784 if (runtime_was_enabled && !runtime_enabled)
8785 cfs_bandwidth_usage_dec();
a790de99
PT
8786out_unlock:
8787 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 8788 put_online_cpus();
ab84d31e 8789
a790de99 8790 return ret;
ab84d31e
PT
8791}
8792
b1546edc 8793static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
ab84d31e
PT
8794{
8795 u64 quota, period;
8796
029632fb 8797 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8798 if (cfs_quota_us < 0)
8799 quota = RUNTIME_INF;
1a8b4540 8800 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
ab84d31e 8801 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
1a8b4540
KK
8802 else
8803 return -EINVAL;
ab84d31e
PT
8804
8805 return tg_set_cfs_bandwidth(tg, period, quota);
8806}
8807
b1546edc 8808static long tg_get_cfs_quota(struct task_group *tg)
ab84d31e
PT
8809{
8810 u64 quota_us;
8811
029632fb 8812 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
8813 return -1;
8814
029632fb 8815 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
8816 do_div(quota_us, NSEC_PER_USEC);
8817
8818 return quota_us;
8819}
8820
b1546edc 8821static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
ab84d31e
PT
8822{
8823 u64 quota, period;
8824
1a8b4540
KK
8825 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
8826 return -EINVAL;
8827
ab84d31e 8828 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 8829 quota = tg->cfs_bandwidth.quota;
ab84d31e 8830
ab84d31e
PT
8831 return tg_set_cfs_bandwidth(tg, period, quota);
8832}
8833
b1546edc 8834static long tg_get_cfs_period(struct task_group *tg)
ab84d31e
PT
8835{
8836 u64 cfs_period_us;
8837
029632fb 8838 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8839 do_div(cfs_period_us, NSEC_PER_USEC);
8840
8841 return cfs_period_us;
8842}
8843
182446d0
TH
8844static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8845 struct cftype *cft)
ab84d31e 8846{
182446d0 8847 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
8848}
8849
182446d0
TH
8850static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8851 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 8852{
182446d0 8853 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
8854}
8855
182446d0
TH
8856static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8857 struct cftype *cft)
ab84d31e 8858{
182446d0 8859 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
8860}
8861
182446d0
TH
8862static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8863 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 8864{
182446d0 8865 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
8866}
8867
a790de99
PT
8868struct cfs_schedulable_data {
8869 struct task_group *tg;
8870 u64 period, quota;
8871};
8872
8873/*
8874 * normalize group quota/period to be quota/max_period
8875 * note: units are usecs
8876 */
8877static u64 normalize_cfs_quota(struct task_group *tg,
8878 struct cfs_schedulable_data *d)
8879{
8880 u64 quota, period;
8881
8882 if (tg == d->tg) {
8883 period = d->period;
8884 quota = d->quota;
8885 } else {
8886 period = tg_get_cfs_period(tg);
8887 quota = tg_get_cfs_quota(tg);
8888 }
8889
8890 /* note: these should typically be equivalent */
8891 if (quota == RUNTIME_INF || quota == -1)
8892 return RUNTIME_INF;
8893
8894 return to_ratio(period, quota);
8895}
8896
8897static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8898{
8899 struct cfs_schedulable_data *d = data;
029632fb 8900 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
8901 s64 quota = 0, parent_quota = -1;
8902
8903 if (!tg->parent) {
8904 quota = RUNTIME_INF;
8905 } else {
029632fb 8906 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
8907
8908 quota = normalize_cfs_quota(tg, d);
9c58c79a 8909 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
8910
8911 /*
c53593e5
TH
8912 * Ensure max(child_quota) <= parent_quota. On cgroup2,
8913 * always take the min. On cgroup1, only inherit when no
d1ccc66d 8914 * limit is set:
a790de99 8915 */
c53593e5
TH
8916 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
8917 quota = min(quota, parent_quota);
8918 } else {
8919 if (quota == RUNTIME_INF)
8920 quota = parent_quota;
8921 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8922 return -EINVAL;
8923 }
a790de99 8924 }
9c58c79a 8925 cfs_b->hierarchical_quota = quota;
a790de99
PT
8926
8927 return 0;
8928}
8929
8930static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8931{
8277434e 8932 int ret;
a790de99
PT
8933 struct cfs_schedulable_data data = {
8934 .tg = tg,
8935 .period = period,
8936 .quota = quota,
8937 };
8938
8939 if (quota != RUNTIME_INF) {
8940 do_div(data.period, NSEC_PER_USEC);
8941 do_div(data.quota, NSEC_PER_USEC);
8942 }
8943
8277434e
PT
8944 rcu_read_lock();
8945 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8946 rcu_read_unlock();
8947
8948 return ret;
a790de99 8949}
e8da1b18 8950
a1f7164c 8951static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
e8da1b18 8952{
2da8ca82 8953 struct task_group *tg = css_tg(seq_css(sf));
029632fb 8954 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 8955
44ffc75b
TH
8956 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8957 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8958 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18 8959
3d6c50c2
YW
8960 if (schedstat_enabled() && tg != &root_task_group) {
8961 u64 ws = 0;
8962 int i;
8963
8964 for_each_possible_cpu(i)
8965 ws += schedstat_val(tg->se[i]->statistics.wait_sum);
8966
8967 seq_printf(sf, "wait_sum %llu\n", ws);
8968 }
8969
e8da1b18
NR
8970 return 0;
8971}
ab84d31e 8972#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 8973#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8974
052f1dc7 8975#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
8976static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8977 struct cftype *cft, s64 val)
6f505b16 8978{
182446d0 8979 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
8980}
8981
182446d0
TH
8982static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8983 struct cftype *cft)
6f505b16 8984{
182446d0 8985 return sched_group_rt_runtime(css_tg(css));
6f505b16 8986}
d0b27fa7 8987
182446d0
TH
8988static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8989 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 8990{
182446d0 8991 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
8992}
8993
182446d0
TH
8994static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8995 struct cftype *cft)
d0b27fa7 8996{
182446d0 8997 return sched_group_rt_period(css_tg(css));
d0b27fa7 8998}
6d6bc0ad 8999#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 9000
a1f7164c 9001static struct cftype cpu_legacy_files[] = {
052f1dc7 9002#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
9003 {
9004 .name = "shares",
f4c753b7
PM
9005 .read_u64 = cpu_shares_read_u64,
9006 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 9007 },
052f1dc7 9008#endif
ab84d31e
PT
9009#ifdef CONFIG_CFS_BANDWIDTH
9010 {
9011 .name = "cfs_quota_us",
9012 .read_s64 = cpu_cfs_quota_read_s64,
9013 .write_s64 = cpu_cfs_quota_write_s64,
9014 },
9015 {
9016 .name = "cfs_period_us",
9017 .read_u64 = cpu_cfs_period_read_u64,
9018 .write_u64 = cpu_cfs_period_write_u64,
9019 },
e8da1b18
NR
9020 {
9021 .name = "stat",
a1f7164c 9022 .seq_show = cpu_cfs_stat_show,
e8da1b18 9023 },
ab84d31e 9024#endif
052f1dc7 9025#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9026 {
9f0c1e56 9027 .name = "rt_runtime_us",
06ecb27c
PM
9028 .read_s64 = cpu_rt_runtime_read,
9029 .write_s64 = cpu_rt_runtime_write,
6f505b16 9030 },
d0b27fa7
PZ
9031 {
9032 .name = "rt_period_us",
f4c753b7
PM
9033 .read_u64 = cpu_rt_period_read_uint,
9034 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 9035 },
2480c093
PB
9036#endif
9037#ifdef CONFIG_UCLAMP_TASK_GROUP
9038 {
9039 .name = "uclamp.min",
9040 .flags = CFTYPE_NOT_ON_ROOT,
9041 .seq_show = cpu_uclamp_min_show,
9042 .write = cpu_uclamp_min_write,
9043 },
9044 {
9045 .name = "uclamp.max",
9046 .flags = CFTYPE_NOT_ON_ROOT,
9047 .seq_show = cpu_uclamp_max_show,
9048 .write = cpu_uclamp_max_write,
9049 },
052f1dc7 9050#endif
d1ccc66d 9051 { } /* Terminate */
68318b8e
SV
9052};
9053
d41bf8c9
TH
9054static int cpu_extra_stat_show(struct seq_file *sf,
9055 struct cgroup_subsys_state *css)
0d593634 9056{
0d593634
TH
9057#ifdef CONFIG_CFS_BANDWIDTH
9058 {
d41bf8c9 9059 struct task_group *tg = css_tg(css);
0d593634
TH
9060 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9061 u64 throttled_usec;
9062
9063 throttled_usec = cfs_b->throttled_time;
9064 do_div(throttled_usec, NSEC_PER_USEC);
9065
9066 seq_printf(sf, "nr_periods %d\n"
9067 "nr_throttled %d\n"
9068 "throttled_usec %llu\n",
9069 cfs_b->nr_periods, cfs_b->nr_throttled,
9070 throttled_usec);
9071 }
9072#endif
9073 return 0;
9074}
9075
9076#ifdef CONFIG_FAIR_GROUP_SCHED
9077static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
9078 struct cftype *cft)
9079{
9080 struct task_group *tg = css_tg(css);
9081 u64 weight = scale_load_down(tg->shares);
9082
9083 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
9084}
9085
9086static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
9087 struct cftype *cft, u64 weight)
9088{
9089 /*
9090 * cgroup weight knobs should use the common MIN, DFL and MAX
9091 * values which are 1, 100 and 10000 respectively. While it loses
9092 * a bit of range on both ends, it maps pretty well onto the shares
9093 * value used by scheduler and the round-trip conversions preserve
9094 * the original value over the entire range.
9095 */
9096 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
9097 return -ERANGE;
9098
9099 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
9100
9101 return sched_group_set_shares(css_tg(css), scale_load(weight));
9102}
9103
9104static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
9105 struct cftype *cft)
9106{
9107 unsigned long weight = scale_load_down(css_tg(css)->shares);
9108 int last_delta = INT_MAX;
9109 int prio, delta;
9110
9111 /* find the closest nice value to the current weight */
9112 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
9113 delta = abs(sched_prio_to_weight[prio] - weight);
9114 if (delta >= last_delta)
9115 break;
9116 last_delta = delta;
9117 }
9118
9119 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
9120}
9121
9122static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
9123 struct cftype *cft, s64 nice)
9124{
9125 unsigned long weight;
7281c8de 9126 int idx;
0d593634
TH
9127
9128 if (nice < MIN_NICE || nice > MAX_NICE)
9129 return -ERANGE;
9130
7281c8de
PZ
9131 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
9132 idx = array_index_nospec(idx, 40);
9133 weight = sched_prio_to_weight[idx];
9134
0d593634
TH
9135 return sched_group_set_shares(css_tg(css), scale_load(weight));
9136}
9137#endif
9138
9139static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
9140 long period, long quota)
9141{
9142 if (quota < 0)
9143 seq_puts(sf, "max");
9144 else
9145 seq_printf(sf, "%ld", quota);
9146
9147 seq_printf(sf, " %ld\n", period);
9148}
9149
9150/* caller should put the current value in *@periodp before calling */
9151static int __maybe_unused cpu_period_quota_parse(char *buf,
9152 u64 *periodp, u64 *quotap)
9153{
9154 char tok[21]; /* U64_MAX */
9155
4c47acd8 9156 if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
0d593634
TH
9157 return -EINVAL;
9158
9159 *periodp *= NSEC_PER_USEC;
9160
9161 if (sscanf(tok, "%llu", quotap))
9162 *quotap *= NSEC_PER_USEC;
9163 else if (!strcmp(tok, "max"))
9164 *quotap = RUNTIME_INF;
9165 else
9166 return -EINVAL;
9167
9168 return 0;
9169}
9170
9171#ifdef CONFIG_CFS_BANDWIDTH
9172static int cpu_max_show(struct seq_file *sf, void *v)
9173{
9174 struct task_group *tg = css_tg(seq_css(sf));
9175
9176 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
9177 return 0;
9178}
9179
9180static ssize_t cpu_max_write(struct kernfs_open_file *of,
9181 char *buf, size_t nbytes, loff_t off)
9182{
9183 struct task_group *tg = css_tg(of_css(of));
9184 u64 period = tg_get_cfs_period(tg);
9185 u64 quota;
9186 int ret;
9187
9188 ret = cpu_period_quota_parse(buf, &period, &quota);
9189 if (!ret)
9190 ret = tg_set_cfs_bandwidth(tg, period, quota);
9191 return ret ?: nbytes;
9192}
9193#endif
9194
9195static struct cftype cpu_files[] = {
0d593634
TH
9196#ifdef CONFIG_FAIR_GROUP_SCHED
9197 {
9198 .name = "weight",
9199 .flags = CFTYPE_NOT_ON_ROOT,
9200 .read_u64 = cpu_weight_read_u64,
9201 .write_u64 = cpu_weight_write_u64,
9202 },
9203 {
9204 .name = "weight.nice",
9205 .flags = CFTYPE_NOT_ON_ROOT,
9206 .read_s64 = cpu_weight_nice_read_s64,
9207 .write_s64 = cpu_weight_nice_write_s64,
9208 },
9209#endif
9210#ifdef CONFIG_CFS_BANDWIDTH
9211 {
9212 .name = "max",
9213 .flags = CFTYPE_NOT_ON_ROOT,
9214 .seq_show = cpu_max_show,
9215 .write = cpu_max_write,
9216 },
2480c093
PB
9217#endif
9218#ifdef CONFIG_UCLAMP_TASK_GROUP
9219 {
9220 .name = "uclamp.min",
9221 .flags = CFTYPE_NOT_ON_ROOT,
9222 .seq_show = cpu_uclamp_min_show,
9223 .write = cpu_uclamp_min_write,
9224 },
9225 {
9226 .name = "uclamp.max",
9227 .flags = CFTYPE_NOT_ON_ROOT,
9228 .seq_show = cpu_uclamp_max_show,
9229 .write = cpu_uclamp_max_write,
9230 },
0d593634
TH
9231#endif
9232 { } /* terminate */
9233};
9234
073219e9 9235struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748 9236 .css_alloc = cpu_cgroup_css_alloc,
96b77745 9237 .css_online = cpu_cgroup_css_online,
2f5177f0 9238 .css_released = cpu_cgroup_css_released,
92fb9748 9239 .css_free = cpu_cgroup_css_free,
d41bf8c9 9240 .css_extra_stat_show = cpu_extra_stat_show,
eeb61e53 9241 .fork = cpu_cgroup_fork,
bb9d97b6
TH
9242 .can_attach = cpu_cgroup_can_attach,
9243 .attach = cpu_cgroup_attach,
a1f7164c 9244 .legacy_cftypes = cpu_legacy_files,
0d593634 9245 .dfl_cftypes = cpu_files,
b38e42e9 9246 .early_init = true,
0d593634 9247 .threaded = true,
68318b8e
SV
9248};
9249
052f1dc7 9250#endif /* CONFIG_CGROUP_SCHED */
d842de87 9251
b637a328
PM
9252void dump_cpu_task(int cpu)
9253{
9254 pr_info("Task dump for CPU %d:\n", cpu);
9255 sched_show_task(cpu_curr(cpu));
9256}
ed82b8a1
AK
9257
9258/*
9259 * Nice levels are multiplicative, with a gentle 10% change for every
9260 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
9261 * nice 1, it will get ~10% less CPU time than another CPU-bound task
9262 * that remained on nice 0.
9263 *
9264 * The "10% effect" is relative and cumulative: from _any_ nice level,
9265 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
9266 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
9267 * If a task goes up by ~10% and another task goes down by ~10% then
9268 * the relative distance between them is ~25%.)
9269 */
9270const int sched_prio_to_weight[40] = {
9271 /* -20 */ 88761, 71755, 56483, 46273, 36291,
9272 /* -15 */ 29154, 23254, 18705, 14949, 11916,
9273 /* -10 */ 9548, 7620, 6100, 4904, 3906,
9274 /* -5 */ 3121, 2501, 1991, 1586, 1277,
9275 /* 0 */ 1024, 820, 655, 526, 423,
9276 /* 5 */ 335, 272, 215, 172, 137,
9277 /* 10 */ 110, 87, 70, 56, 45,
9278 /* 15 */ 36, 29, 23, 18, 15,
9279};
9280
9281/*
9282 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
9283 *
9284 * In cases where the weight does not change often, we can use the
9285 * precalculated inverse to speed up arithmetics by turning divisions
9286 * into multiplications:
9287 */
9288const u32 sched_prio_to_wmult[40] = {
9289 /* -20 */ 48388, 59856, 76040, 92818, 118348,
9290 /* -15 */ 147320, 184698, 229616, 287308, 360437,
9291 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
9292 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
9293 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
9294 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
9295 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
9296 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
9297};
14a7405b 9298
9d246053
PA
9299void call_trace_sched_update_nr_running(struct rq *rq, int count)
9300{
9301 trace_sched_update_nr_running_tp(rq, count);
9302}