]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/sched/core.c
sched: Fix affine_move_task() self-concurrency
[mirror_ubuntu-jammy-kernel.git] / kernel / sched / core.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4 2/*
391e43da 3 * kernel/sched/core.c
1da177e4 4 *
d1ccc66d 5 * Core kernel scheduler code and related syscalls
1da177e4
LT
6 *
7 * Copyright (C) 1991-2002 Linus Torvalds
1da177e4 8 */
9d246053
PA
9#define CREATE_TRACE_POINTS
10#include <trace/events/sched.h>
11#undef CREATE_TRACE_POINTS
12
325ea10c 13#include "sched.h"
1da177e4 14
7281c8de 15#include <linux/nospec.h>
85f1abe0 16
0ed557aa 17#include <linux/kcov.h>
d08b9f0c 18#include <linux/scs.h>
0ed557aa 19
96f951ed 20#include <asm/switch_to.h>
5517d86b 21#include <asm/tlb.h>
1da177e4 22
ea138446 23#include "../workqueue_internal.h"
771b53d0 24#include "../../fs/io-wq.h"
29d5e047 25#include "../smpboot.h"
6e0534f2 26
91c27493 27#include "pelt.h"
1f8db415 28#include "smp.h"
91c27493 29
a056a5be
QY
30/*
31 * Export tracepoints that act as a bare tracehook (ie: have no trace event
32 * associated with them) to allow external modules to probe them.
33 */
34EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
35EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
36EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
37EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
38EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
51cf18c9 39EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
a056a5be 40EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
4581bea8
VD
41EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
42EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
9d246053 43EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
a056a5be 44
029632fb 45DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 46
a73f863a 47#ifdef CONFIG_SCHED_DEBUG
bf5c91ba
IM
48/*
49 * Debugging: various feature bits
765cc3a4
PB
50 *
51 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
52 * sysctl_sched_features, defined in sched.h, to allow constants propagation
53 * at compile time and compiler optimization based on features default.
bf5c91ba 54 */
f00b45c1
PZ
55#define SCHED_FEAT(name, enabled) \
56 (1UL << __SCHED_FEAT_##name) * enabled |
bf5c91ba 57const_debug unsigned int sysctl_sched_features =
391e43da 58#include "features.h"
f00b45c1 59 0;
f00b45c1 60#undef SCHED_FEAT
765cc3a4 61#endif
f00b45c1 62
b82d9fdd
PZ
63/*
64 * Number of tasks to iterate in a single balance run.
65 * Limited because this is done with IRQs disabled.
66 */
67const_debug unsigned int sysctl_sched_nr_migrate = 32;
68
fa85ae24 69/*
d1ccc66d 70 * period over which we measure -rt task CPU usage in us.
fa85ae24
PZ
71 * default: 1s
72 */
9f0c1e56 73unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 74
029632fb 75__read_mostly int scheduler_running;
6892b75e 76
9f0c1e56
PZ
77/*
78 * part of the period that we allow rt tasks to run in us.
79 * default: 0.95s
80 */
81int sysctl_sched_rt_runtime = 950000;
fa85ae24 82
58877d34
PZ
83
84/*
85 * Serialization rules:
86 *
87 * Lock order:
88 *
89 * p->pi_lock
90 * rq->lock
91 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
92 *
93 * rq1->lock
94 * rq2->lock where: rq1 < rq2
95 *
96 * Regular state:
97 *
98 * Normal scheduling state is serialized by rq->lock. __schedule() takes the
99 * local CPU's rq->lock, it optionally removes the task from the runqueue and
b19a888c 100 * always looks at the local rq data structures to find the most eligible task
58877d34
PZ
101 * to run next.
102 *
103 * Task enqueue is also under rq->lock, possibly taken from another CPU.
104 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
105 * the local CPU to avoid bouncing the runqueue state around [ see
106 * ttwu_queue_wakelist() ]
107 *
108 * Task wakeup, specifically wakeups that involve migration, are horribly
109 * complicated to avoid having to take two rq->locks.
110 *
111 * Special state:
112 *
113 * System-calls and anything external will use task_rq_lock() which acquires
114 * both p->pi_lock and rq->lock. As a consequence the state they change is
115 * stable while holding either lock:
116 *
117 * - sched_setaffinity()/
118 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed
119 * - set_user_nice(): p->se.load, p->*prio
120 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio,
121 * p->se.load, p->rt_priority,
122 * p->dl.dl_{runtime, deadline, period, flags, bw, density}
123 * - sched_setnuma(): p->numa_preferred_nid
124 * - sched_move_task()/
125 * cpu_cgroup_fork(): p->sched_task_group
126 * - uclamp_update_active() p->uclamp*
127 *
128 * p->state <- TASK_*:
129 *
130 * is changed locklessly using set_current_state(), __set_current_state() or
131 * set_special_state(), see their respective comments, or by
132 * try_to_wake_up(). This latter uses p->pi_lock to serialize against
133 * concurrent self.
134 *
135 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
136 *
137 * is set by activate_task() and cleared by deactivate_task(), under
138 * rq->lock. Non-zero indicates the task is runnable, the special
139 * ON_RQ_MIGRATING state is used for migration without holding both
140 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
141 *
142 * p->on_cpu <- { 0, 1 }:
143 *
144 * is set by prepare_task() and cleared by finish_task() such that it will be
145 * set before p is scheduled-in and cleared after p is scheduled-out, both
146 * under rq->lock. Non-zero indicates the task is running on its CPU.
147 *
148 * [ The astute reader will observe that it is possible for two tasks on one
149 * CPU to have ->on_cpu = 1 at the same time. ]
150 *
151 * task_cpu(p): is changed by set_task_cpu(), the rules are:
152 *
153 * - Don't call set_task_cpu() on a blocked task:
154 *
155 * We don't care what CPU we're not running on, this simplifies hotplug,
156 * the CPU assignment of blocked tasks isn't required to be valid.
157 *
158 * - for try_to_wake_up(), called under p->pi_lock:
159 *
160 * This allows try_to_wake_up() to only take one rq->lock, see its comment.
161 *
162 * - for migration called under rq->lock:
163 * [ see task_on_rq_migrating() in task_rq_lock() ]
164 *
165 * o move_queued_task()
166 * o detach_task()
167 *
168 * - for migration called under double_rq_lock():
169 *
170 * o __migrate_swap_task()
171 * o push_rt_task() / pull_rt_task()
172 * o push_dl_task() / pull_dl_task()
173 * o dl_task_offline_migration()
174 *
175 */
176
3e71a462
PZ
177/*
178 * __task_rq_lock - lock the rq @p resides on.
179 */
eb580751 180struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
181 __acquires(rq->lock)
182{
183 struct rq *rq;
184
185 lockdep_assert_held(&p->pi_lock);
186
187 for (;;) {
188 rq = task_rq(p);
189 raw_spin_lock(&rq->lock);
190 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 191 rq_pin_lock(rq, rf);
3e71a462
PZ
192 return rq;
193 }
194 raw_spin_unlock(&rq->lock);
195
196 while (unlikely(task_on_rq_migrating(p)))
197 cpu_relax();
198 }
199}
200
201/*
202 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
203 */
eb580751 204struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
205 __acquires(p->pi_lock)
206 __acquires(rq->lock)
207{
208 struct rq *rq;
209
210 for (;;) {
eb580751 211 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
3e71a462
PZ
212 rq = task_rq(p);
213 raw_spin_lock(&rq->lock);
214 /*
215 * move_queued_task() task_rq_lock()
216 *
217 * ACQUIRE (rq->lock)
218 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
219 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
220 * [S] ->cpu = new_cpu [L] task_rq()
221 * [L] ->on_rq
222 * RELEASE (rq->lock)
223 *
c546951d 224 * If we observe the old CPU in task_rq_lock(), the acquire of
3e71a462
PZ
225 * the old rq->lock will fully serialize against the stores.
226 *
c546951d
AP
227 * If we observe the new CPU in task_rq_lock(), the address
228 * dependency headed by '[L] rq = task_rq()' and the acquire
229 * will pair with the WMB to ensure we then also see migrating.
3e71a462
PZ
230 */
231 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 232 rq_pin_lock(rq, rf);
3e71a462
PZ
233 return rq;
234 }
235 raw_spin_unlock(&rq->lock);
eb580751 236 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
3e71a462
PZ
237
238 while (unlikely(task_on_rq_migrating(p)))
239 cpu_relax();
240 }
241}
242
535b9552
IM
243/*
244 * RQ-clock updating methods:
245 */
246
247static void update_rq_clock_task(struct rq *rq, s64 delta)
248{
249/*
250 * In theory, the compile should just see 0 here, and optimize out the call
251 * to sched_rt_avg_update. But I don't trust it...
252 */
11d4afd4
VG
253 s64 __maybe_unused steal = 0, irq_delta = 0;
254
535b9552
IM
255#ifdef CONFIG_IRQ_TIME_ACCOUNTING
256 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
257
258 /*
259 * Since irq_time is only updated on {soft,}irq_exit, we might run into
260 * this case when a previous update_rq_clock() happened inside a
261 * {soft,}irq region.
262 *
263 * When this happens, we stop ->clock_task and only update the
264 * prev_irq_time stamp to account for the part that fit, so that a next
265 * update will consume the rest. This ensures ->clock_task is
266 * monotonic.
267 *
268 * It does however cause some slight miss-attribution of {soft,}irq
269 * time, a more accurate solution would be to update the irq_time using
270 * the current rq->clock timestamp, except that would require using
271 * atomic ops.
272 */
273 if (irq_delta > delta)
274 irq_delta = delta;
275
276 rq->prev_irq_time += irq_delta;
277 delta -= irq_delta;
278#endif
279#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
280 if (static_key_false((&paravirt_steal_rq_enabled))) {
281 steal = paravirt_steal_clock(cpu_of(rq));
282 steal -= rq->prev_steal_time_rq;
283
284 if (unlikely(steal > delta))
285 steal = delta;
286
287 rq->prev_steal_time_rq += steal;
288 delta -= steal;
289 }
290#endif
291
292 rq->clock_task += delta;
293
11d4afd4 294#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
535b9552 295 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
91c27493 296 update_irq_load_avg(rq, irq_delta + steal);
535b9552 297#endif
23127296 298 update_rq_clock_pelt(rq, delta);
535b9552
IM
299}
300
301void update_rq_clock(struct rq *rq)
302{
303 s64 delta;
304
305 lockdep_assert_held(&rq->lock);
306
307 if (rq->clock_update_flags & RQCF_ACT_SKIP)
308 return;
309
310#ifdef CONFIG_SCHED_DEBUG
26ae58d2
PZ
311 if (sched_feat(WARN_DOUBLE_CLOCK))
312 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
535b9552
IM
313 rq->clock_update_flags |= RQCF_UPDATED;
314#endif
26ae58d2 315
535b9552
IM
316 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
317 if (delta < 0)
318 return;
319 rq->clock += delta;
320 update_rq_clock_task(rq, delta);
321}
322
8f4d37ec
PZ
323#ifdef CONFIG_SCHED_HRTICK
324/*
325 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 326 */
8f4d37ec 327
8f4d37ec
PZ
328static void hrtick_clear(struct rq *rq)
329{
330 if (hrtimer_active(&rq->hrtick_timer))
331 hrtimer_cancel(&rq->hrtick_timer);
332}
333
8f4d37ec
PZ
334/*
335 * High-resolution timer tick.
336 * Runs from hardirq context with interrupts disabled.
337 */
338static enum hrtimer_restart hrtick(struct hrtimer *timer)
339{
340 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
8a8c69c3 341 struct rq_flags rf;
8f4d37ec
PZ
342
343 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
344
8a8c69c3 345 rq_lock(rq, &rf);
3e51f33f 346 update_rq_clock(rq);
8f4d37ec 347 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
8a8c69c3 348 rq_unlock(rq, &rf);
8f4d37ec
PZ
349
350 return HRTIMER_NORESTART;
351}
352
95e904c7 353#ifdef CONFIG_SMP
971ee28c 354
4961b6e1 355static void __hrtick_restart(struct rq *rq)
971ee28c
PZ
356{
357 struct hrtimer *timer = &rq->hrtick_timer;
156ec6f4 358 ktime_t time = rq->hrtick_time;
971ee28c 359
156ec6f4 360 hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
971ee28c
PZ
361}
362
31656519
PZ
363/*
364 * called from hardirq (IPI) context
365 */
366static void __hrtick_start(void *arg)
b328ca18 367{
31656519 368 struct rq *rq = arg;
8a8c69c3 369 struct rq_flags rf;
b328ca18 370
8a8c69c3 371 rq_lock(rq, &rf);
971ee28c 372 __hrtick_restart(rq);
8a8c69c3 373 rq_unlock(rq, &rf);
b328ca18
PZ
374}
375
31656519
PZ
376/*
377 * Called to set the hrtick timer state.
378 *
379 * called with rq->lock held and irqs disabled
380 */
029632fb 381void hrtick_start(struct rq *rq, u64 delay)
b328ca18 382{
31656519 383 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 384 s64 delta;
385
386 /*
387 * Don't schedule slices shorter than 10000ns, that just
388 * doesn't make sense and can cause timer DoS.
389 */
390 delta = max_t(s64, delay, 10000LL);
156ec6f4 391 rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
31656519 392
fd3eafda 393 if (rq == this_rq())
971ee28c 394 __hrtick_restart(rq);
fd3eafda 395 else
c46fff2a 396 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
b328ca18
PZ
397}
398
31656519
PZ
399#else
400/*
401 * Called to set the hrtick timer state.
402 *
403 * called with rq->lock held and irqs disabled
404 */
029632fb 405void hrtick_start(struct rq *rq, u64 delay)
31656519 406{
86893335
WL
407 /*
408 * Don't schedule slices shorter than 10000ns, that just
409 * doesn't make sense. Rely on vruntime for fairness.
410 */
411 delay = max_t(u64, delay, 10000LL);
4961b6e1 412 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
d5096aa6 413 HRTIMER_MODE_REL_PINNED_HARD);
31656519 414}
90b5363a 415
31656519 416#endif /* CONFIG_SMP */
8f4d37ec 417
77a021be 418static void hrtick_rq_init(struct rq *rq)
8f4d37ec 419{
31656519 420#ifdef CONFIG_SMP
545b8c8d 421 INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
31656519 422#endif
d5096aa6 423 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
31656519 424 rq->hrtick_timer.function = hrtick;
8f4d37ec 425}
006c75f1 426#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
427static inline void hrtick_clear(struct rq *rq)
428{
429}
430
77a021be 431static inline void hrtick_rq_init(struct rq *rq)
8f4d37ec
PZ
432{
433}
006c75f1 434#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 435
5529578a
FW
436/*
437 * cmpxchg based fetch_or, macro so it works for different integer types
438 */
439#define fetch_or(ptr, mask) \
440 ({ \
441 typeof(ptr) _ptr = (ptr); \
442 typeof(mask) _mask = (mask); \
443 typeof(*_ptr) _old, _val = *_ptr; \
444 \
445 for (;;) { \
446 _old = cmpxchg(_ptr, _val, _val | _mask); \
447 if (_old == _val) \
448 break; \
449 _val = _old; \
450 } \
451 _old; \
452})
453
e3baac47 454#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
455/*
456 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
457 * this avoids any races wrt polling state changes and thereby avoids
458 * spurious IPIs.
459 */
460static bool set_nr_and_not_polling(struct task_struct *p)
461{
462 struct thread_info *ti = task_thread_info(p);
463 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
464}
e3baac47
PZ
465
466/*
467 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
468 *
469 * If this returns true, then the idle task promises to call
470 * sched_ttwu_pending() and reschedule soon.
471 */
472static bool set_nr_if_polling(struct task_struct *p)
473{
474 struct thread_info *ti = task_thread_info(p);
316c1608 475 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
e3baac47
PZ
476
477 for (;;) {
478 if (!(val & _TIF_POLLING_NRFLAG))
479 return false;
480 if (val & _TIF_NEED_RESCHED)
481 return true;
482 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
483 if (old == val)
484 break;
485 val = old;
486 }
487 return true;
488}
489
fd99f91a
PZ
490#else
491static bool set_nr_and_not_polling(struct task_struct *p)
492{
493 set_tsk_need_resched(p);
494 return true;
495}
e3baac47
PZ
496
497#ifdef CONFIG_SMP
498static bool set_nr_if_polling(struct task_struct *p)
499{
500 return false;
501}
502#endif
fd99f91a
PZ
503#endif
504
07879c6a 505static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
76751049
PZ
506{
507 struct wake_q_node *node = &task->wake_q;
508
509 /*
510 * Atomically grab the task, if ->wake_q is !nil already it means
b19a888c 511 * it's already queued (either by us or someone else) and will get the
76751049
PZ
512 * wakeup due to that.
513 *
4c4e3731
PZ
514 * In order to ensure that a pending wakeup will observe our pending
515 * state, even in the failed case, an explicit smp_mb() must be used.
76751049 516 */
4c4e3731 517 smp_mb__before_atomic();
87ff19cb 518 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
07879c6a 519 return false;
76751049
PZ
520
521 /*
522 * The head is context local, there can be no concurrency.
523 */
524 *head->lastp = node;
525 head->lastp = &node->next;
07879c6a
DB
526 return true;
527}
528
529/**
530 * wake_q_add() - queue a wakeup for 'later' waking.
531 * @head: the wake_q_head to add @task to
532 * @task: the task to queue for 'later' wakeup
533 *
534 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
535 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
536 * instantly.
537 *
538 * This function must be used as-if it were wake_up_process(); IOW the task
539 * must be ready to be woken at this location.
540 */
541void wake_q_add(struct wake_q_head *head, struct task_struct *task)
542{
543 if (__wake_q_add(head, task))
544 get_task_struct(task);
545}
546
547/**
548 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
549 * @head: the wake_q_head to add @task to
550 * @task: the task to queue for 'later' wakeup
551 *
552 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
553 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
554 * instantly.
555 *
556 * This function must be used as-if it were wake_up_process(); IOW the task
557 * must be ready to be woken at this location.
558 *
559 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
560 * that already hold reference to @task can call the 'safe' version and trust
561 * wake_q to do the right thing depending whether or not the @task is already
562 * queued for wakeup.
563 */
564void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
565{
566 if (!__wake_q_add(head, task))
567 put_task_struct(task);
76751049
PZ
568}
569
570void wake_up_q(struct wake_q_head *head)
571{
572 struct wake_q_node *node = head->first;
573
574 while (node != WAKE_Q_TAIL) {
575 struct task_struct *task;
576
577 task = container_of(node, struct task_struct, wake_q);
578 BUG_ON(!task);
d1ccc66d 579 /* Task can safely be re-inserted now: */
76751049
PZ
580 node = node->next;
581 task->wake_q.next = NULL;
582
583 /*
7696f991
AP
584 * wake_up_process() executes a full barrier, which pairs with
585 * the queueing in wake_q_add() so as not to miss wakeups.
76751049
PZ
586 */
587 wake_up_process(task);
588 put_task_struct(task);
589 }
590}
591
c24d20db 592/*
8875125e 593 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
594 *
595 * On UP this means the setting of the need_resched flag, on SMP it
596 * might also involve a cross-CPU call to trigger the scheduler on
597 * the target CPU.
598 */
8875125e 599void resched_curr(struct rq *rq)
c24d20db 600{
8875125e 601 struct task_struct *curr = rq->curr;
c24d20db
IM
602 int cpu;
603
8875125e 604 lockdep_assert_held(&rq->lock);
c24d20db 605
8875125e 606 if (test_tsk_need_resched(curr))
c24d20db
IM
607 return;
608
8875125e 609 cpu = cpu_of(rq);
fd99f91a 610
f27dde8d 611 if (cpu == smp_processor_id()) {
8875125e 612 set_tsk_need_resched(curr);
f27dde8d 613 set_preempt_need_resched();
c24d20db 614 return;
f27dde8d 615 }
c24d20db 616
8875125e 617 if (set_nr_and_not_polling(curr))
c24d20db 618 smp_send_reschedule(cpu);
dfc68f29
AL
619 else
620 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
621}
622
029632fb 623void resched_cpu(int cpu)
c24d20db
IM
624{
625 struct rq *rq = cpu_rq(cpu);
626 unsigned long flags;
627
7c2102e5 628 raw_spin_lock_irqsave(&rq->lock, flags);
a0982dfa
PM
629 if (cpu_online(cpu) || cpu == smp_processor_id())
630 resched_curr(rq);
05fa785c 631 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 632}
06d8308c 633
b021fe3e 634#ifdef CONFIG_SMP
3451d024 635#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2 636/*
d1ccc66d
IM
637 * In the semi idle case, use the nearest busy CPU for migrating timers
638 * from an idle CPU. This is good for power-savings.
83cd4fe2
VP
639 *
640 * We don't do similar optimization for completely idle system, as
d1ccc66d
IM
641 * selecting an idle CPU will add more delays to the timers than intended
642 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
83cd4fe2 643 */
bc7a34b8 644int get_nohz_timer_target(void)
83cd4fe2 645{
e938b9c9 646 int i, cpu = smp_processor_id(), default_cpu = -1;
83cd4fe2
VP
647 struct sched_domain *sd;
648
e938b9c9
WL
649 if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) {
650 if (!idle_cpu(cpu))
651 return cpu;
652 default_cpu = cpu;
653 }
6201b4d6 654
057f3fad 655 rcu_read_lock();
83cd4fe2 656 for_each_domain(cpu, sd) {
e938b9c9
WL
657 for_each_cpu_and(i, sched_domain_span(sd),
658 housekeeping_cpumask(HK_FLAG_TIMER)) {
44496922
WL
659 if (cpu == i)
660 continue;
661
e938b9c9 662 if (!idle_cpu(i)) {
057f3fad
PZ
663 cpu = i;
664 goto unlock;
665 }
666 }
83cd4fe2 667 }
9642d18e 668
e938b9c9
WL
669 if (default_cpu == -1)
670 default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
671 cpu = default_cpu;
057f3fad
PZ
672unlock:
673 rcu_read_unlock();
83cd4fe2
VP
674 return cpu;
675}
d1ccc66d 676
06d8308c
TG
677/*
678 * When add_timer_on() enqueues a timer into the timer wheel of an
679 * idle CPU then this timer might expire before the next timer event
680 * which is scheduled to wake up that CPU. In case of a completely
681 * idle system the next event might even be infinite time into the
682 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
683 * leaves the inner idle loop so the newly added timer is taken into
684 * account when the CPU goes back to idle and evaluates the timer
685 * wheel for the next timer event.
686 */
1c20091e 687static void wake_up_idle_cpu(int cpu)
06d8308c
TG
688{
689 struct rq *rq = cpu_rq(cpu);
690
691 if (cpu == smp_processor_id())
692 return;
693
67b9ca70 694 if (set_nr_and_not_polling(rq->idle))
06d8308c 695 smp_send_reschedule(cpu);
dfc68f29
AL
696 else
697 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
698}
699
c5bfece2 700static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 701{
53c5fa16
FW
702 /*
703 * We just need the target to call irq_exit() and re-evaluate
704 * the next tick. The nohz full kick at least implies that.
705 * If needed we can still optimize that later with an
706 * empty IRQ.
707 */
379d9ecb
PM
708 if (cpu_is_offline(cpu))
709 return true; /* Don't try to wake offline CPUs. */
c5bfece2 710 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
711 if (cpu != smp_processor_id() ||
712 tick_nohz_tick_stopped())
53c5fa16 713 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
714 return true;
715 }
716
717 return false;
718}
719
379d9ecb
PM
720/*
721 * Wake up the specified CPU. If the CPU is going offline, it is the
722 * caller's responsibility to deal with the lost wakeup, for example,
723 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
724 */
1c20091e
FW
725void wake_up_nohz_cpu(int cpu)
726{
c5bfece2 727 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
728 wake_up_idle_cpu(cpu);
729}
730
19a1f5ec 731static void nohz_csd_func(void *info)
45bf76df 732{
19a1f5ec
PZ
733 struct rq *rq = info;
734 int cpu = cpu_of(rq);
735 unsigned int flags;
873b4c65
VG
736
737 /*
19a1f5ec 738 * Release the rq::nohz_csd.
873b4c65 739 */
19a1f5ec
PZ
740 flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
741 WARN_ON(!(flags & NOHZ_KICK_MASK));
45bf76df 742
19a1f5ec
PZ
743 rq->idle_balance = idle_cpu(cpu);
744 if (rq->idle_balance && !need_resched()) {
745 rq->nohz_idle_balance = flags;
90b5363a
PZI
746 raise_softirq_irqoff(SCHED_SOFTIRQ);
747 }
2069dd75
PZ
748}
749
3451d024 750#endif /* CONFIG_NO_HZ_COMMON */
d842de87 751
ce831b38 752#ifdef CONFIG_NO_HZ_FULL
76d92ac3 753bool sched_can_stop_tick(struct rq *rq)
ce831b38 754{
76d92ac3
FW
755 int fifo_nr_running;
756
757 /* Deadline tasks, even if single, need the tick */
758 if (rq->dl.dl_nr_running)
759 return false;
760
1e78cdbd 761 /*
b19a888c 762 * If there are more than one RR tasks, we need the tick to affect the
2548d546 763 * actual RR behaviour.
1e78cdbd 764 */
76d92ac3
FW
765 if (rq->rt.rr_nr_running) {
766 if (rq->rt.rr_nr_running == 1)
767 return true;
768 else
769 return false;
1e78cdbd
RR
770 }
771
2548d546
PZ
772 /*
773 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
774 * forced preemption between FIFO tasks.
775 */
776 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
777 if (fifo_nr_running)
778 return true;
779
780 /*
781 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
782 * if there's more than one we need the tick for involuntary
783 * preemption.
784 */
785 if (rq->nr_running > 1)
541b8264 786 return false;
ce831b38 787
541b8264 788 return true;
ce831b38
FW
789}
790#endif /* CONFIG_NO_HZ_FULL */
6d6bc0ad 791#endif /* CONFIG_SMP */
18d95a28 792
a790de99
PT
793#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
794 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 795/*
8277434e
PT
796 * Iterate task_group tree rooted at *from, calling @down when first entering a
797 * node and @up when leaving it for the final time.
798 *
799 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 800 */
029632fb 801int walk_tg_tree_from(struct task_group *from,
8277434e 802 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
803{
804 struct task_group *parent, *child;
eb755805 805 int ret;
c09595f6 806
8277434e
PT
807 parent = from;
808
c09595f6 809down:
eb755805
PZ
810 ret = (*down)(parent, data);
811 if (ret)
8277434e 812 goto out;
c09595f6
PZ
813 list_for_each_entry_rcu(child, &parent->children, siblings) {
814 parent = child;
815 goto down;
816
817up:
818 continue;
819 }
eb755805 820 ret = (*up)(parent, data);
8277434e
PT
821 if (ret || parent == from)
822 goto out;
c09595f6
PZ
823
824 child = parent;
825 parent = parent->parent;
826 if (parent)
827 goto up;
8277434e 828out:
eb755805 829 return ret;
c09595f6
PZ
830}
831
029632fb 832int tg_nop(struct task_group *tg, void *data)
eb755805 833{
e2b245f8 834 return 0;
eb755805 835}
18d95a28
PZ
836#endif
837
9059393e 838static void set_load_weight(struct task_struct *p, bool update_load)
45bf76df 839{
f05998d4
NR
840 int prio = p->static_prio - MAX_RT_PRIO;
841 struct load_weight *load = &p->se.load;
842
dd41f596
IM
843 /*
844 * SCHED_IDLE tasks get minimal weight:
845 */
1da1843f 846 if (task_has_idle_policy(p)) {
c8b28116 847 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 848 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
849 return;
850 }
71f8bd46 851
9059393e
VG
852 /*
853 * SCHED_OTHER tasks have to update their load when changing their
854 * weight
855 */
856 if (update_load && p->sched_class == &fair_sched_class) {
857 reweight_task(p, prio);
858 } else {
859 load->weight = scale_load(sched_prio_to_weight[prio]);
860 load->inv_weight = sched_prio_to_wmult[prio];
861 }
71f8bd46
IM
862}
863
69842cba 864#ifdef CONFIG_UCLAMP_TASK
2480c093
PB
865/*
866 * Serializes updates of utilization clamp values
867 *
868 * The (slow-path) user-space triggers utilization clamp value updates which
869 * can require updates on (fast-path) scheduler's data structures used to
870 * support enqueue/dequeue operations.
871 * While the per-CPU rq lock protects fast-path update operations, user-space
872 * requests are serialized using a mutex to reduce the risk of conflicting
873 * updates or API abuses.
874 */
875static DEFINE_MUTEX(uclamp_mutex);
876
e8f14172
PB
877/* Max allowed minimum utilization */
878unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
879
880/* Max allowed maximum utilization */
881unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
882
13685c4a
QY
883/*
884 * By default RT tasks run at the maximum performance point/capacity of the
885 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
886 * SCHED_CAPACITY_SCALE.
887 *
888 * This knob allows admins to change the default behavior when uclamp is being
889 * used. In battery powered devices, particularly, running at the maximum
890 * capacity and frequency will increase energy consumption and shorten the
891 * battery life.
892 *
893 * This knob only affects RT tasks that their uclamp_se->user_defined == false.
894 *
895 * This knob will not override the system default sched_util_clamp_min defined
896 * above.
897 */
898unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
899
e8f14172
PB
900/* All clamps are required to be less or equal than these values */
901static struct uclamp_se uclamp_default[UCLAMP_CNT];
69842cba 902
46609ce2
QY
903/*
904 * This static key is used to reduce the uclamp overhead in the fast path. It
905 * primarily disables the call to uclamp_rq_{inc, dec}() in
906 * enqueue/dequeue_task().
907 *
908 * This allows users to continue to enable uclamp in their kernel config with
909 * minimum uclamp overhead in the fast path.
910 *
911 * As soon as userspace modifies any of the uclamp knobs, the static key is
912 * enabled, since we have an actual users that make use of uclamp
913 * functionality.
914 *
915 * The knobs that would enable this static key are:
916 *
917 * * A task modifying its uclamp value with sched_setattr().
918 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
919 * * An admin modifying the cgroup cpu.uclamp.{min, max}
920 */
921DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
922
69842cba
PB
923/* Integer rounded range for each bucket */
924#define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
925
926#define for_each_clamp_id(clamp_id) \
927 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
928
929static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
930{
931 return clamp_value / UCLAMP_BUCKET_DELTA;
932}
933
7763baac 934static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
69842cba
PB
935{
936 if (clamp_id == UCLAMP_MIN)
937 return 0;
938 return SCHED_CAPACITY_SCALE;
939}
940
a509a7cd
PB
941static inline void uclamp_se_set(struct uclamp_se *uc_se,
942 unsigned int value, bool user_defined)
69842cba
PB
943{
944 uc_se->value = value;
945 uc_se->bucket_id = uclamp_bucket_id(value);
a509a7cd 946 uc_se->user_defined = user_defined;
69842cba
PB
947}
948
e496187d 949static inline unsigned int
0413d7f3 950uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
e496187d
PB
951 unsigned int clamp_value)
952{
953 /*
954 * Avoid blocked utilization pushing up the frequency when we go
955 * idle (which drops the max-clamp) by retaining the last known
956 * max-clamp.
957 */
958 if (clamp_id == UCLAMP_MAX) {
959 rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
960 return clamp_value;
961 }
962
963 return uclamp_none(UCLAMP_MIN);
964}
965
0413d7f3 966static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
e496187d
PB
967 unsigned int clamp_value)
968{
969 /* Reset max-clamp retention only on idle exit */
970 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
971 return;
972
973 WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
974}
975
69842cba 976static inline
7763baac 977unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
0413d7f3 978 unsigned int clamp_value)
69842cba
PB
979{
980 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
981 int bucket_id = UCLAMP_BUCKETS - 1;
982
983 /*
984 * Since both min and max clamps are max aggregated, find the
985 * top most bucket with tasks in.
986 */
987 for ( ; bucket_id >= 0; bucket_id--) {
988 if (!bucket[bucket_id].tasks)
989 continue;
990 return bucket[bucket_id].value;
991 }
992
993 /* No tasks -- default clamp values */
e496187d 994 return uclamp_idle_value(rq, clamp_id, clamp_value);
69842cba
PB
995}
996
13685c4a
QY
997static void __uclamp_update_util_min_rt_default(struct task_struct *p)
998{
999 unsigned int default_util_min;
1000 struct uclamp_se *uc_se;
1001
1002 lockdep_assert_held(&p->pi_lock);
1003
1004 uc_se = &p->uclamp_req[UCLAMP_MIN];
1005
1006 /* Only sync if user didn't override the default */
1007 if (uc_se->user_defined)
1008 return;
1009
1010 default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1011 uclamp_se_set(uc_se, default_util_min, false);
1012}
1013
1014static void uclamp_update_util_min_rt_default(struct task_struct *p)
1015{
1016 struct rq_flags rf;
1017 struct rq *rq;
1018
1019 if (!rt_task(p))
1020 return;
1021
1022 /* Protect updates to p->uclamp_* */
1023 rq = task_rq_lock(p, &rf);
1024 __uclamp_update_util_min_rt_default(p);
1025 task_rq_unlock(rq, p, &rf);
1026}
1027
1028static void uclamp_sync_util_min_rt_default(void)
1029{
1030 struct task_struct *g, *p;
1031
1032 /*
1033 * copy_process() sysctl_uclamp
1034 * uclamp_min_rt = X;
1035 * write_lock(&tasklist_lock) read_lock(&tasklist_lock)
1036 * // link thread smp_mb__after_spinlock()
1037 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock);
1038 * sched_post_fork() for_each_process_thread()
1039 * __uclamp_sync_rt() __uclamp_sync_rt()
1040 *
1041 * Ensures that either sched_post_fork() will observe the new
1042 * uclamp_min_rt or for_each_process_thread() will observe the new
1043 * task.
1044 */
1045 read_lock(&tasklist_lock);
1046 smp_mb__after_spinlock();
1047 read_unlock(&tasklist_lock);
1048
1049 rcu_read_lock();
1050 for_each_process_thread(g, p)
1051 uclamp_update_util_min_rt_default(p);
1052 rcu_read_unlock();
1053}
1054
3eac870a 1055static inline struct uclamp_se
0413d7f3 1056uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
3eac870a
PB
1057{
1058 struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1059#ifdef CONFIG_UCLAMP_TASK_GROUP
1060 struct uclamp_se uc_max;
1061
1062 /*
1063 * Tasks in autogroups or root task group will be
1064 * restricted by system defaults.
1065 */
1066 if (task_group_is_autogroup(task_group(p)))
1067 return uc_req;
1068 if (task_group(p) == &root_task_group)
1069 return uc_req;
1070
1071 uc_max = task_group(p)->uclamp[clamp_id];
1072 if (uc_req.value > uc_max.value || !uc_req.user_defined)
1073 return uc_max;
1074#endif
1075
1076 return uc_req;
1077}
1078
e8f14172
PB
1079/*
1080 * The effective clamp bucket index of a task depends on, by increasing
1081 * priority:
1082 * - the task specific clamp value, when explicitly requested from userspace
3eac870a
PB
1083 * - the task group effective clamp value, for tasks not either in the root
1084 * group or in an autogroup
e8f14172
PB
1085 * - the system default clamp value, defined by the sysadmin
1086 */
1087static inline struct uclamp_se
0413d7f3 1088uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
e8f14172 1089{
3eac870a 1090 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
e8f14172
PB
1091 struct uclamp_se uc_max = uclamp_default[clamp_id];
1092
1093 /* System default restrictions always apply */
1094 if (unlikely(uc_req.value > uc_max.value))
1095 return uc_max;
1096
1097 return uc_req;
1098}
1099
686516b5 1100unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
9d20ad7d
PB
1101{
1102 struct uclamp_se uc_eff;
1103
1104 /* Task currently refcounted: use back-annotated (effective) value */
1105 if (p->uclamp[clamp_id].active)
686516b5 1106 return (unsigned long)p->uclamp[clamp_id].value;
9d20ad7d
PB
1107
1108 uc_eff = uclamp_eff_get(p, clamp_id);
1109
686516b5 1110 return (unsigned long)uc_eff.value;
9d20ad7d
PB
1111}
1112
69842cba
PB
1113/*
1114 * When a task is enqueued on a rq, the clamp bucket currently defined by the
1115 * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1116 * updates the rq's clamp value if required.
60daf9c1
PB
1117 *
1118 * Tasks can have a task-specific value requested from user-space, track
1119 * within each bucket the maximum value for tasks refcounted in it.
1120 * This "local max aggregation" allows to track the exact "requested" value
1121 * for each bucket when all its RUNNABLE tasks require the same clamp.
69842cba
PB
1122 */
1123static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
0413d7f3 1124 enum uclamp_id clamp_id)
69842cba
PB
1125{
1126 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1127 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1128 struct uclamp_bucket *bucket;
1129
1130 lockdep_assert_held(&rq->lock);
1131
e8f14172
PB
1132 /* Update task effective clamp */
1133 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1134
69842cba
PB
1135 bucket = &uc_rq->bucket[uc_se->bucket_id];
1136 bucket->tasks++;
e8f14172 1137 uc_se->active = true;
69842cba 1138
e496187d
PB
1139 uclamp_idle_reset(rq, clamp_id, uc_se->value);
1140
60daf9c1
PB
1141 /*
1142 * Local max aggregation: rq buckets always track the max
1143 * "requested" clamp value of its RUNNABLE tasks.
1144 */
1145 if (bucket->tasks == 1 || uc_se->value > bucket->value)
1146 bucket->value = uc_se->value;
1147
69842cba 1148 if (uc_se->value > READ_ONCE(uc_rq->value))
60daf9c1 1149 WRITE_ONCE(uc_rq->value, uc_se->value);
69842cba
PB
1150}
1151
1152/*
1153 * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1154 * is released. If this is the last task reference counting the rq's max
1155 * active clamp value, then the rq's clamp value is updated.
1156 *
1157 * Both refcounted tasks and rq's cached clamp values are expected to be
1158 * always valid. If it's detected they are not, as defensive programming,
1159 * enforce the expected state and warn.
1160 */
1161static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
0413d7f3 1162 enum uclamp_id clamp_id)
69842cba
PB
1163{
1164 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1165 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1166 struct uclamp_bucket *bucket;
e496187d 1167 unsigned int bkt_clamp;
69842cba
PB
1168 unsigned int rq_clamp;
1169
1170 lockdep_assert_held(&rq->lock);
1171
46609ce2
QY
1172 /*
1173 * If sched_uclamp_used was enabled after task @p was enqueued,
1174 * we could end up with unbalanced call to uclamp_rq_dec_id().
1175 *
1176 * In this case the uc_se->active flag should be false since no uclamp
1177 * accounting was performed at enqueue time and we can just return
1178 * here.
1179 *
b19a888c 1180 * Need to be careful of the following enqueue/dequeue ordering
46609ce2
QY
1181 * problem too
1182 *
1183 * enqueue(taskA)
1184 * // sched_uclamp_used gets enabled
1185 * enqueue(taskB)
1186 * dequeue(taskA)
b19a888c 1187 * // Must not decrement bucket->tasks here
46609ce2
QY
1188 * dequeue(taskB)
1189 *
1190 * where we could end up with stale data in uc_se and
1191 * bucket[uc_se->bucket_id].
1192 *
1193 * The following check here eliminates the possibility of such race.
1194 */
1195 if (unlikely(!uc_se->active))
1196 return;
1197
69842cba 1198 bucket = &uc_rq->bucket[uc_se->bucket_id];
46609ce2 1199
69842cba
PB
1200 SCHED_WARN_ON(!bucket->tasks);
1201 if (likely(bucket->tasks))
1202 bucket->tasks--;
46609ce2 1203
e8f14172 1204 uc_se->active = false;
69842cba 1205
60daf9c1
PB
1206 /*
1207 * Keep "local max aggregation" simple and accept to (possibly)
1208 * overboost some RUNNABLE tasks in the same bucket.
1209 * The rq clamp bucket value is reset to its base value whenever
1210 * there are no more RUNNABLE tasks refcounting it.
1211 */
69842cba
PB
1212 if (likely(bucket->tasks))
1213 return;
1214
1215 rq_clamp = READ_ONCE(uc_rq->value);
1216 /*
1217 * Defensive programming: this should never happen. If it happens,
1218 * e.g. due to future modification, warn and fixup the expected value.
1219 */
1220 SCHED_WARN_ON(bucket->value > rq_clamp);
e496187d
PB
1221 if (bucket->value >= rq_clamp) {
1222 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1223 WRITE_ONCE(uc_rq->value, bkt_clamp);
1224 }
69842cba
PB
1225}
1226
1227static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1228{
0413d7f3 1229 enum uclamp_id clamp_id;
69842cba 1230
46609ce2
QY
1231 /*
1232 * Avoid any overhead until uclamp is actually used by the userspace.
1233 *
1234 * The condition is constructed such that a NOP is generated when
1235 * sched_uclamp_used is disabled.
1236 */
1237 if (!static_branch_unlikely(&sched_uclamp_used))
1238 return;
1239
69842cba
PB
1240 if (unlikely(!p->sched_class->uclamp_enabled))
1241 return;
1242
1243 for_each_clamp_id(clamp_id)
1244 uclamp_rq_inc_id(rq, p, clamp_id);
e496187d
PB
1245
1246 /* Reset clamp idle holding when there is one RUNNABLE task */
1247 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1248 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
69842cba
PB
1249}
1250
1251static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1252{
0413d7f3 1253 enum uclamp_id clamp_id;
69842cba 1254
46609ce2
QY
1255 /*
1256 * Avoid any overhead until uclamp is actually used by the userspace.
1257 *
1258 * The condition is constructed such that a NOP is generated when
1259 * sched_uclamp_used is disabled.
1260 */
1261 if (!static_branch_unlikely(&sched_uclamp_used))
1262 return;
1263
69842cba
PB
1264 if (unlikely(!p->sched_class->uclamp_enabled))
1265 return;
1266
1267 for_each_clamp_id(clamp_id)
1268 uclamp_rq_dec_id(rq, p, clamp_id);
1269}
1270
babbe170 1271static inline void
0413d7f3 1272uclamp_update_active(struct task_struct *p, enum uclamp_id clamp_id)
babbe170
PB
1273{
1274 struct rq_flags rf;
1275 struct rq *rq;
1276
1277 /*
1278 * Lock the task and the rq where the task is (or was) queued.
1279 *
1280 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1281 * price to pay to safely serialize util_{min,max} updates with
1282 * enqueues, dequeues and migration operations.
1283 * This is the same locking schema used by __set_cpus_allowed_ptr().
1284 */
1285 rq = task_rq_lock(p, &rf);
1286
1287 /*
1288 * Setting the clamp bucket is serialized by task_rq_lock().
1289 * If the task is not yet RUNNABLE and its task_struct is not
1290 * affecting a valid clamp bucket, the next time it's enqueued,
1291 * it will already see the updated clamp bucket value.
1292 */
6e1ff077 1293 if (p->uclamp[clamp_id].active) {
babbe170
PB
1294 uclamp_rq_dec_id(rq, p, clamp_id);
1295 uclamp_rq_inc_id(rq, p, clamp_id);
1296 }
1297
1298 task_rq_unlock(rq, p, &rf);
1299}
1300
e3b8b6a0 1301#ifdef CONFIG_UCLAMP_TASK_GROUP
babbe170
PB
1302static inline void
1303uclamp_update_active_tasks(struct cgroup_subsys_state *css,
1304 unsigned int clamps)
1305{
0413d7f3 1306 enum uclamp_id clamp_id;
babbe170
PB
1307 struct css_task_iter it;
1308 struct task_struct *p;
babbe170
PB
1309
1310 css_task_iter_start(css, 0, &it);
1311 while ((p = css_task_iter_next(&it))) {
1312 for_each_clamp_id(clamp_id) {
1313 if ((0x1 << clamp_id) & clamps)
1314 uclamp_update_active(p, clamp_id);
1315 }
1316 }
1317 css_task_iter_end(&it);
1318}
1319
7274a5c1
PB
1320static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1321static void uclamp_update_root_tg(void)
1322{
1323 struct task_group *tg = &root_task_group;
1324
1325 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1326 sysctl_sched_uclamp_util_min, false);
1327 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1328 sysctl_sched_uclamp_util_max, false);
1329
1330 rcu_read_lock();
1331 cpu_util_update_eff(&root_task_group.css);
1332 rcu_read_unlock();
1333}
1334#else
1335static void uclamp_update_root_tg(void) { }
1336#endif
1337
e8f14172 1338int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
32927393 1339 void *buffer, size_t *lenp, loff_t *ppos)
e8f14172 1340{
7274a5c1 1341 bool update_root_tg = false;
13685c4a 1342 int old_min, old_max, old_min_rt;
e8f14172
PB
1343 int result;
1344
2480c093 1345 mutex_lock(&uclamp_mutex);
e8f14172
PB
1346 old_min = sysctl_sched_uclamp_util_min;
1347 old_max = sysctl_sched_uclamp_util_max;
13685c4a 1348 old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
e8f14172
PB
1349
1350 result = proc_dointvec(table, write, buffer, lenp, ppos);
1351 if (result)
1352 goto undo;
1353 if (!write)
1354 goto done;
1355
1356 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
13685c4a
QY
1357 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE ||
1358 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1359
e8f14172
PB
1360 result = -EINVAL;
1361 goto undo;
1362 }
1363
1364 if (old_min != sysctl_sched_uclamp_util_min) {
1365 uclamp_se_set(&uclamp_default[UCLAMP_MIN],
a509a7cd 1366 sysctl_sched_uclamp_util_min, false);
7274a5c1 1367 update_root_tg = true;
e8f14172
PB
1368 }
1369 if (old_max != sysctl_sched_uclamp_util_max) {
1370 uclamp_se_set(&uclamp_default[UCLAMP_MAX],
a509a7cd 1371 sysctl_sched_uclamp_util_max, false);
7274a5c1 1372 update_root_tg = true;
e8f14172
PB
1373 }
1374
46609ce2
QY
1375 if (update_root_tg) {
1376 static_branch_enable(&sched_uclamp_used);
7274a5c1 1377 uclamp_update_root_tg();
46609ce2 1378 }
7274a5c1 1379
13685c4a
QY
1380 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1381 static_branch_enable(&sched_uclamp_used);
1382 uclamp_sync_util_min_rt_default();
1383 }
7274a5c1 1384
e8f14172 1385 /*
7274a5c1
PB
1386 * We update all RUNNABLE tasks only when task groups are in use.
1387 * Otherwise, keep it simple and do just a lazy update at each next
1388 * task enqueue time.
e8f14172 1389 */
7274a5c1 1390
e8f14172
PB
1391 goto done;
1392
1393undo:
1394 sysctl_sched_uclamp_util_min = old_min;
1395 sysctl_sched_uclamp_util_max = old_max;
13685c4a 1396 sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
e8f14172 1397done:
2480c093 1398 mutex_unlock(&uclamp_mutex);
e8f14172
PB
1399
1400 return result;
1401}
1402
a509a7cd
PB
1403static int uclamp_validate(struct task_struct *p,
1404 const struct sched_attr *attr)
1405{
480a6ca2
DE
1406 int util_min = p->uclamp_req[UCLAMP_MIN].value;
1407 int util_max = p->uclamp_req[UCLAMP_MAX].value;
a509a7cd 1408
480a6ca2
DE
1409 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1410 util_min = attr->sched_util_min;
a509a7cd 1411
480a6ca2
DE
1412 if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
1413 return -EINVAL;
1414 }
1415
1416 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1417 util_max = attr->sched_util_max;
1418
1419 if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
1420 return -EINVAL;
1421 }
1422
1423 if (util_min != -1 && util_max != -1 && util_min > util_max)
a509a7cd
PB
1424 return -EINVAL;
1425
e65855a5
QY
1426 /*
1427 * We have valid uclamp attributes; make sure uclamp is enabled.
1428 *
1429 * We need to do that here, because enabling static branches is a
1430 * blocking operation which obviously cannot be done while holding
1431 * scheduler locks.
1432 */
1433 static_branch_enable(&sched_uclamp_used);
1434
a509a7cd
PB
1435 return 0;
1436}
1437
480a6ca2
DE
1438static bool uclamp_reset(const struct sched_attr *attr,
1439 enum uclamp_id clamp_id,
1440 struct uclamp_se *uc_se)
1441{
1442 /* Reset on sched class change for a non user-defined clamp value. */
1443 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
1444 !uc_se->user_defined)
1445 return true;
1446
1447 /* Reset on sched_util_{min,max} == -1. */
1448 if (clamp_id == UCLAMP_MIN &&
1449 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1450 attr->sched_util_min == -1) {
1451 return true;
1452 }
1453
1454 if (clamp_id == UCLAMP_MAX &&
1455 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1456 attr->sched_util_max == -1) {
1457 return true;
1458 }
1459
1460 return false;
1461}
1462
a509a7cd
PB
1463static void __setscheduler_uclamp(struct task_struct *p,
1464 const struct sched_attr *attr)
1465{
0413d7f3 1466 enum uclamp_id clamp_id;
1a00d999 1467
1a00d999
PB
1468 for_each_clamp_id(clamp_id) {
1469 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
480a6ca2 1470 unsigned int value;
1a00d999 1471
480a6ca2 1472 if (!uclamp_reset(attr, clamp_id, uc_se))
1a00d999
PB
1473 continue;
1474
13685c4a
QY
1475 /*
1476 * RT by default have a 100% boost value that could be modified
1477 * at runtime.
1478 */
1a00d999 1479 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
480a6ca2 1480 value = sysctl_sched_uclamp_util_min_rt_default;
13685c4a 1481 else
480a6ca2
DE
1482 value = uclamp_none(clamp_id);
1483
1484 uclamp_se_set(uc_se, value, false);
1a00d999 1485
1a00d999
PB
1486 }
1487
a509a7cd
PB
1488 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1489 return;
1490
480a6ca2
DE
1491 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1492 attr->sched_util_min != -1) {
a509a7cd
PB
1493 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1494 attr->sched_util_min, true);
1495 }
1496
480a6ca2
DE
1497 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1498 attr->sched_util_max != -1) {
a509a7cd
PB
1499 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1500 attr->sched_util_max, true);
1501 }
1502}
1503
e8f14172
PB
1504static void uclamp_fork(struct task_struct *p)
1505{
0413d7f3 1506 enum uclamp_id clamp_id;
e8f14172 1507
13685c4a
QY
1508 /*
1509 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1510 * as the task is still at its early fork stages.
1511 */
e8f14172
PB
1512 for_each_clamp_id(clamp_id)
1513 p->uclamp[clamp_id].active = false;
a87498ac
PB
1514
1515 if (likely(!p->sched_reset_on_fork))
1516 return;
1517
1518 for_each_clamp_id(clamp_id) {
eaf5a92e
QP
1519 uclamp_se_set(&p->uclamp_req[clamp_id],
1520 uclamp_none(clamp_id), false);
a87498ac 1521 }
e8f14172
PB
1522}
1523
13685c4a
QY
1524static void uclamp_post_fork(struct task_struct *p)
1525{
1526 uclamp_update_util_min_rt_default(p);
1527}
1528
d81ae8aa
QY
1529static void __init init_uclamp_rq(struct rq *rq)
1530{
1531 enum uclamp_id clamp_id;
1532 struct uclamp_rq *uc_rq = rq->uclamp;
1533
1534 for_each_clamp_id(clamp_id) {
1535 uc_rq[clamp_id] = (struct uclamp_rq) {
1536 .value = uclamp_none(clamp_id)
1537 };
1538 }
1539
1540 rq->uclamp_flags = 0;
1541}
1542
69842cba
PB
1543static void __init init_uclamp(void)
1544{
e8f14172 1545 struct uclamp_se uc_max = {};
0413d7f3 1546 enum uclamp_id clamp_id;
69842cba
PB
1547 int cpu;
1548
d81ae8aa
QY
1549 for_each_possible_cpu(cpu)
1550 init_uclamp_rq(cpu_rq(cpu));
69842cba 1551
69842cba 1552 for_each_clamp_id(clamp_id) {
e8f14172 1553 uclamp_se_set(&init_task.uclamp_req[clamp_id],
a509a7cd 1554 uclamp_none(clamp_id), false);
69842cba 1555 }
e8f14172
PB
1556
1557 /* System defaults allow max clamp values for both indexes */
a509a7cd 1558 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
2480c093 1559 for_each_clamp_id(clamp_id) {
e8f14172 1560 uclamp_default[clamp_id] = uc_max;
2480c093
PB
1561#ifdef CONFIG_UCLAMP_TASK_GROUP
1562 root_task_group.uclamp_req[clamp_id] = uc_max;
0b60ba2d 1563 root_task_group.uclamp[clamp_id] = uc_max;
2480c093
PB
1564#endif
1565 }
69842cba
PB
1566}
1567
1568#else /* CONFIG_UCLAMP_TASK */
1569static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
1570static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
a509a7cd
PB
1571static inline int uclamp_validate(struct task_struct *p,
1572 const struct sched_attr *attr)
1573{
1574 return -EOPNOTSUPP;
1575}
1576static void __setscheduler_uclamp(struct task_struct *p,
1577 const struct sched_attr *attr) { }
e8f14172 1578static inline void uclamp_fork(struct task_struct *p) { }
13685c4a 1579static inline void uclamp_post_fork(struct task_struct *p) { }
69842cba
PB
1580static inline void init_uclamp(void) { }
1581#endif /* CONFIG_UCLAMP_TASK */
1582
1de64443 1583static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 1584{
0a67d1ee
PZ
1585 if (!(flags & ENQUEUE_NOCLOCK))
1586 update_rq_clock(rq);
1587
eb414681 1588 if (!(flags & ENQUEUE_RESTORE)) {
1de64443 1589 sched_info_queued(rq, p);
eb414681
JW
1590 psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1591 }
0a67d1ee 1592
69842cba 1593 uclamp_rq_inc(rq, p);
371fd7e7 1594 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
1595}
1596
1de64443 1597static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 1598{
0a67d1ee
PZ
1599 if (!(flags & DEQUEUE_NOCLOCK))
1600 update_rq_clock(rq);
1601
eb414681 1602 if (!(flags & DEQUEUE_SAVE)) {
1de64443 1603 sched_info_dequeued(rq, p);
eb414681
JW
1604 psi_dequeue(p, flags & DEQUEUE_SLEEP);
1605 }
0a67d1ee 1606
69842cba 1607 uclamp_rq_dec(rq, p);
371fd7e7 1608 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
1609}
1610
029632fb 1611void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd 1612{
371fd7e7 1613 enqueue_task(rq, p, flags);
7dd77884
PZ
1614
1615 p->on_rq = TASK_ON_RQ_QUEUED;
1e3c88bd
PZ
1616}
1617
029632fb 1618void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd 1619{
7dd77884
PZ
1620 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
1621
371fd7e7 1622 dequeue_task(rq, p, flags);
1e3c88bd
PZ
1623}
1624
14531189 1625/*
dd41f596 1626 * __normal_prio - return the priority that is based on the static prio
14531189 1627 */
14531189
IM
1628static inline int __normal_prio(struct task_struct *p)
1629{
dd41f596 1630 return p->static_prio;
14531189
IM
1631}
1632
b29739f9
IM
1633/*
1634 * Calculate the expected normal priority: i.e. priority
1635 * without taking RT-inheritance into account. Might be
1636 * boosted by interactivity modifiers. Changes upon fork,
1637 * setprio syscalls, and whenever the interactivity
1638 * estimator recalculates.
1639 */
36c8b586 1640static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1641{
1642 int prio;
1643
aab03e05
DF
1644 if (task_has_dl_policy(p))
1645 prio = MAX_DL_PRIO-1;
1646 else if (task_has_rt_policy(p))
b29739f9
IM
1647 prio = MAX_RT_PRIO-1 - p->rt_priority;
1648 else
1649 prio = __normal_prio(p);
1650 return prio;
1651}
1652
1653/*
1654 * Calculate the current priority, i.e. the priority
1655 * taken into account by the scheduler. This value might
1656 * be boosted by RT tasks, or might be boosted by
1657 * interactivity modifiers. Will be RT if the task got
1658 * RT-boosted. If not then it returns p->normal_prio.
1659 */
36c8b586 1660static int effective_prio(struct task_struct *p)
b29739f9
IM
1661{
1662 p->normal_prio = normal_prio(p);
1663 /*
1664 * If we are RT tasks or we were boosted to RT priority,
1665 * keep the priority unchanged. Otherwise, update priority
1666 * to the normal priority:
1667 */
1668 if (!rt_prio(p->prio))
1669 return p->normal_prio;
1670 return p->prio;
1671}
1672
1da177e4
LT
1673/**
1674 * task_curr - is this task currently executing on a CPU?
1675 * @p: the task in question.
e69f6186
YB
1676 *
1677 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 1678 */
36c8b586 1679inline int task_curr(const struct task_struct *p)
1da177e4
LT
1680{
1681 return cpu_curr(task_cpu(p)) == p;
1682}
1683
67dfa1b7 1684/*
4c9a4bc8
PZ
1685 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1686 * use the balance_callback list if you want balancing.
1687 *
1688 * this means any call to check_class_changed() must be followed by a call to
1689 * balance_callback().
67dfa1b7 1690 */
cb469845
SR
1691static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1692 const struct sched_class *prev_class,
da7a735e 1693 int oldprio)
cb469845
SR
1694{
1695 if (prev_class != p->sched_class) {
1696 if (prev_class->switched_from)
da7a735e 1697 prev_class->switched_from(rq, p);
4c9a4bc8 1698
da7a735e 1699 p->sched_class->switched_to(rq, p);
2d3d891d 1700 } else if (oldprio != p->prio || dl_task(p))
da7a735e 1701 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
1702}
1703
029632fb 1704void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405 1705{
aa93cd53 1706 if (p->sched_class == rq->curr->sched_class)
1e5a7405 1707 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
aa93cd53
KT
1708 else if (p->sched_class > rq->curr->sched_class)
1709 resched_curr(rq);
1e5a7405
PZ
1710
1711 /*
1712 * A queue event has occurred, and we're going to schedule. In
1713 * this case, we can save a useless back to back clock update.
1714 */
da0c1e65 1715 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
adcc8da8 1716 rq_clock_skip_update(rq);
1e5a7405
PZ
1717}
1718
1da177e4 1719#ifdef CONFIG_SMP
175f0e25 1720
af449901
PZ
1721static void
1722__do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags);
1723
1724static int __set_cpus_allowed_ptr(struct task_struct *p,
1725 const struct cpumask *new_mask,
1726 u32 flags);
1727
1728static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
1729{
1730 if (likely(!p->migration_disabled))
1731 return;
1732
1733 if (p->cpus_ptr != &p->cpus_mask)
1734 return;
1735
1736 /*
1737 * Violates locking rules! see comment in __do_set_cpus_allowed().
1738 */
1739 __do_set_cpus_allowed(p, cpumask_of(rq->cpu), SCA_MIGRATE_DISABLE);
1740}
1741
1742void migrate_disable(void)
1743{
3015ef4b
TG
1744 struct task_struct *p = current;
1745
1746 if (p->migration_disabled) {
1747 p->migration_disabled++;
af449901 1748 return;
3015ef4b 1749 }
af449901 1750
3015ef4b
TG
1751 preempt_disable();
1752 this_rq()->nr_pinned++;
1753 p->migration_disabled = 1;
1754 preempt_enable();
af449901
PZ
1755}
1756EXPORT_SYMBOL_GPL(migrate_disable);
1757
1758void migrate_enable(void)
1759{
1760 struct task_struct *p = current;
1761
6d337eab
PZ
1762 if (p->migration_disabled > 1) {
1763 p->migration_disabled--;
af449901 1764 return;
6d337eab 1765 }
af449901 1766
6d337eab
PZ
1767 /*
1768 * Ensure stop_task runs either before or after this, and that
1769 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
1770 */
1771 preempt_disable();
1772 if (p->cpus_ptr != &p->cpus_mask)
1773 __set_cpus_allowed_ptr(p, &p->cpus_mask, SCA_MIGRATE_ENABLE);
1774 /*
1775 * Mustn't clear migration_disabled() until cpus_ptr points back at the
1776 * regular cpus_mask, otherwise things that race (eg.
1777 * select_fallback_rq) get confused.
1778 */
af449901 1779 barrier();
6d337eab 1780 p->migration_disabled = 0;
3015ef4b 1781 this_rq()->nr_pinned--;
6d337eab 1782 preempt_enable();
af449901
PZ
1783}
1784EXPORT_SYMBOL_GPL(migrate_enable);
1785
3015ef4b
TG
1786static inline bool rq_has_pinned_tasks(struct rq *rq)
1787{
1788 return rq->nr_pinned;
1789}
1790
175f0e25 1791/*
bee98539 1792 * Per-CPU kthreads are allowed to run on !active && online CPUs, see
175f0e25
PZ
1793 * __set_cpus_allowed_ptr() and select_fallback_rq().
1794 */
1795static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
1796{
5ba2ffba 1797 /* When not in the task's cpumask, no point in looking further. */
3bd37062 1798 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
175f0e25
PZ
1799 return false;
1800
5ba2ffba
PZ
1801 /* migrate_disabled() must be allowed to finish. */
1802 if (is_migration_disabled(p))
175f0e25
PZ
1803 return cpu_online(cpu);
1804
5ba2ffba
PZ
1805 /* Non kernel threads are not allowed during either online or offline. */
1806 if (!(p->flags & PF_KTHREAD))
1807 return cpu_active(cpu);
1808
1809 /* KTHREAD_IS_PER_CPU is always allowed. */
1810 if (kthread_is_per_cpu(p))
1811 return cpu_online(cpu);
1812
1813 /* Regular kernel threads don't get to stay during offline. */
1814 if (cpu_rq(cpu)->balance_push)
1815 return false;
1816
1817 /* But are allowed during online. */
1818 return cpu_online(cpu);
175f0e25
PZ
1819}
1820
5cc389bc
PZ
1821/*
1822 * This is how migration works:
1823 *
1824 * 1) we invoke migration_cpu_stop() on the target CPU using
1825 * stop_one_cpu().
1826 * 2) stopper starts to run (implicitly forcing the migrated thread
1827 * off the CPU)
1828 * 3) it checks whether the migrated task is still in the wrong runqueue.
1829 * 4) if it's in the wrong runqueue then the migration thread removes
1830 * it and puts it into the right queue.
1831 * 5) stopper completes and stop_one_cpu() returns and the migration
1832 * is done.
1833 */
1834
1835/*
1836 * move_queued_task - move a queued task to new rq.
1837 *
1838 * Returns (locked) new rq. Old rq's lock is released.
1839 */
8a8c69c3
PZ
1840static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
1841 struct task_struct *p, int new_cpu)
5cc389bc 1842{
5cc389bc
PZ
1843 lockdep_assert_held(&rq->lock);
1844
58877d34 1845 deactivate_task(rq, p, DEQUEUE_NOCLOCK);
5cc389bc 1846 set_task_cpu(p, new_cpu);
8a8c69c3 1847 rq_unlock(rq, rf);
5cc389bc
PZ
1848
1849 rq = cpu_rq(new_cpu);
1850
8a8c69c3 1851 rq_lock(rq, rf);
5cc389bc 1852 BUG_ON(task_cpu(p) != new_cpu);
58877d34 1853 activate_task(rq, p, 0);
5cc389bc
PZ
1854 check_preempt_curr(rq, p, 0);
1855
1856 return rq;
1857}
1858
1859struct migration_arg {
6d337eab
PZ
1860 struct task_struct *task;
1861 int dest_cpu;
1862 struct set_affinity_pending *pending;
1863};
1864
1865struct set_affinity_pending {
1866 refcount_t refs;
9e81889c 1867 unsigned int stop_pending;
6d337eab
PZ
1868 struct completion done;
1869 struct cpu_stop_work stop_work;
1870 struct migration_arg arg;
5cc389bc
PZ
1871};
1872
1873/*
d1ccc66d 1874 * Move (not current) task off this CPU, onto the destination CPU. We're doing
5cc389bc
PZ
1875 * this because either it can't run here any more (set_cpus_allowed()
1876 * away from this CPU, or CPU going down), or because we're
1877 * attempting to rebalance this task on exec (sched_exec).
1878 *
1879 * So we race with normal scheduler movements, but that's OK, as long
1880 * as the task is no longer on this CPU.
5cc389bc 1881 */
8a8c69c3
PZ
1882static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
1883 struct task_struct *p, int dest_cpu)
5cc389bc 1884{
5cc389bc 1885 /* Affinity changed (again). */
175f0e25 1886 if (!is_cpu_allowed(p, dest_cpu))
5e16bbc2 1887 return rq;
5cc389bc 1888
15ff991e 1889 update_rq_clock(rq);
8a8c69c3 1890 rq = move_queued_task(rq, rf, p, dest_cpu);
5e16bbc2
PZ
1891
1892 return rq;
5cc389bc
PZ
1893}
1894
1895/*
1896 * migration_cpu_stop - this will be executed by a highprio stopper thread
1897 * and performs thread migration by bumping thread off CPU then
1898 * 'pushing' onto another runqueue.
1899 */
1900static int migration_cpu_stop(void *data)
1901{
1902 struct migration_arg *arg = data;
c20cf065 1903 struct set_affinity_pending *pending = arg->pending;
5e16bbc2 1904 struct task_struct *p = arg->task;
6d337eab 1905 int dest_cpu = arg->dest_cpu;
5e16bbc2 1906 struct rq *rq = this_rq();
6d337eab 1907 bool complete = false;
8a8c69c3 1908 struct rq_flags rf;
5cc389bc
PZ
1909
1910 /*
d1ccc66d
IM
1911 * The original target CPU might have gone down and we might
1912 * be on another CPU but it doesn't matter.
5cc389bc 1913 */
6d337eab 1914 local_irq_save(rf.flags);
5cc389bc
PZ
1915 /*
1916 * We need to explicitly wake pending tasks before running
3bd37062 1917 * __migrate_task() such that we will not miss enforcing cpus_ptr
5cc389bc
PZ
1918 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1919 */
a1488664 1920 flush_smp_call_function_from_idle();
5e16bbc2
PZ
1921
1922 raw_spin_lock(&p->pi_lock);
8a8c69c3 1923 rq_lock(rq, &rf);
6d337eab 1924
5e16bbc2
PZ
1925 /*
1926 * If task_rq(p) != rq, it cannot be migrated here, because we're
1927 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1928 * we're holding p->pi_lock.
1929 */
bf89a304 1930 if (task_rq(p) == rq) {
6d337eab
PZ
1931 if (is_migration_disabled(p))
1932 goto out;
1933
1934 if (pending) {
c20cf065
PZ
1935 if (p->migration_pending == pending)
1936 p->migration_pending = NULL;
6d337eab
PZ
1937 complete = true;
1938 }
1939
3f1bc119
PZ
1940 if (dest_cpu < 0) {
1941 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
1942 goto out;
1943
6d337eab 1944 dest_cpu = cpumask_any_distribute(&p->cpus_mask);
3f1bc119 1945 }
6d337eab 1946
bf89a304 1947 if (task_on_rq_queued(p))
6d337eab 1948 rq = __migrate_task(rq, &rf, p, dest_cpu);
bf89a304 1949 else
6d337eab
PZ
1950 p->wake_cpu = dest_cpu;
1951
3f1bc119
PZ
1952 /*
1953 * XXX __migrate_task() can fail, at which point we might end
1954 * up running on a dodgy CPU, AFAICT this can only happen
1955 * during CPU hotplug, at which point we'll get pushed out
1956 * anyway, so it's probably not a big deal.
1957 */
1958
c20cf065 1959 } else if (pending) {
6d337eab
PZ
1960 /*
1961 * This happens when we get migrated between migrate_enable()'s
1962 * preempt_enable() and scheduling the stopper task. At that
1963 * point we're a regular task again and not current anymore.
1964 *
1965 * A !PREEMPT kernel has a giant hole here, which makes it far
1966 * more likely.
1967 */
1968
d707faa6
VS
1969 /*
1970 * The task moved before the stopper got to run. We're holding
1971 * ->pi_lock, so the allowed mask is stable - if it got
1972 * somewhere allowed, we're done.
1973 */
c20cf065
PZ
1974 if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
1975 if (p->migration_pending == pending)
1976 p->migration_pending = NULL;
d707faa6
VS
1977 complete = true;
1978 goto out;
1979 }
1980
6d337eab
PZ
1981 /*
1982 * When migrate_enable() hits a rq mis-match we can't reliably
1983 * determine is_migration_disabled() and so have to chase after
1984 * it.
1985 */
9e81889c 1986 WARN_ON_ONCE(!pending->stop_pending);
6d337eab
PZ
1987 task_rq_unlock(rq, p, &rf);
1988 stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
1989 &pending->arg, &pending->stop_work);
1990 return 0;
bf89a304 1991 }
6d337eab 1992out:
9e81889c
PZ
1993 if (pending)
1994 pending->stop_pending = false;
6d337eab
PZ
1995 task_rq_unlock(rq, p, &rf);
1996
1997 if (complete)
1998 complete_all(&pending->done);
1999
2000 /* For pending->{arg,stop_work} */
6d337eab
PZ
2001 if (pending && refcount_dec_and_test(&pending->refs))
2002 wake_up_var(&pending->refs);
5e16bbc2 2003
5cc389bc
PZ
2004 return 0;
2005}
2006
a7c81556
PZ
2007int push_cpu_stop(void *arg)
2008{
2009 struct rq *lowest_rq = NULL, *rq = this_rq();
2010 struct task_struct *p = arg;
2011
2012 raw_spin_lock_irq(&p->pi_lock);
2013 raw_spin_lock(&rq->lock);
2014
2015 if (task_rq(p) != rq)
2016 goto out_unlock;
2017
2018 if (is_migration_disabled(p)) {
2019 p->migration_flags |= MDF_PUSH;
2020 goto out_unlock;
2021 }
2022
2023 p->migration_flags &= ~MDF_PUSH;
2024
2025 if (p->sched_class->find_lock_rq)
2026 lowest_rq = p->sched_class->find_lock_rq(p, rq);
5e16bbc2 2027
a7c81556
PZ
2028 if (!lowest_rq)
2029 goto out_unlock;
2030
2031 // XXX validate p is still the highest prio task
2032 if (task_rq(p) == rq) {
2033 deactivate_task(rq, p, 0);
2034 set_task_cpu(p, lowest_rq->cpu);
2035 activate_task(lowest_rq, p, 0);
2036 resched_curr(lowest_rq);
2037 }
2038
2039 double_unlock_balance(rq, lowest_rq);
2040
2041out_unlock:
2042 rq->push_busy = false;
2043 raw_spin_unlock(&rq->lock);
2044 raw_spin_unlock_irq(&p->pi_lock);
2045
2046 put_task_struct(p);
5cc389bc
PZ
2047 return 0;
2048}
2049
c5b28038
PZ
2050/*
2051 * sched_class::set_cpus_allowed must do the below, but is not required to
2052 * actually call this function.
2053 */
9cfc3e18 2054void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
5cc389bc 2055{
af449901
PZ
2056 if (flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2057 p->cpus_ptr = new_mask;
2058 return;
2059 }
2060
3bd37062 2061 cpumask_copy(&p->cpus_mask, new_mask);
5cc389bc
PZ
2062 p->nr_cpus_allowed = cpumask_weight(new_mask);
2063}
2064
9cfc3e18
PZ
2065static void
2066__do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
c5b28038 2067{
6c37067e
PZ
2068 struct rq *rq = task_rq(p);
2069 bool queued, running;
2070
af449901
PZ
2071 /*
2072 * This here violates the locking rules for affinity, since we're only
2073 * supposed to change these variables while holding both rq->lock and
2074 * p->pi_lock.
2075 *
2076 * HOWEVER, it magically works, because ttwu() is the only code that
2077 * accesses these variables under p->pi_lock and only does so after
2078 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2079 * before finish_task().
2080 *
2081 * XXX do further audits, this smells like something putrid.
2082 */
2083 if (flags & SCA_MIGRATE_DISABLE)
2084 SCHED_WARN_ON(!p->on_cpu);
2085 else
2086 lockdep_assert_held(&p->pi_lock);
6c37067e
PZ
2087
2088 queued = task_on_rq_queued(p);
2089 running = task_current(rq, p);
2090
2091 if (queued) {
2092 /*
2093 * Because __kthread_bind() calls this on blocked tasks without
2094 * holding rq->lock.
2095 */
2096 lockdep_assert_held(&rq->lock);
7a57f32a 2097 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
6c37067e
PZ
2098 }
2099 if (running)
2100 put_prev_task(rq, p);
2101
9cfc3e18 2102 p->sched_class->set_cpus_allowed(p, new_mask, flags);
6c37067e 2103
6c37067e 2104 if (queued)
7134b3e9 2105 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
a399d233 2106 if (running)
03b7fad1 2107 set_next_task(rq, p);
c5b28038
PZ
2108}
2109
9cfc3e18
PZ
2110void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2111{
2112 __do_set_cpus_allowed(p, new_mask, 0);
2113}
2114
6d337eab 2115/*
c777d847
VS
2116 * This function is wildly self concurrent; here be dragons.
2117 *
2118 *
2119 * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2120 * designated task is enqueued on an allowed CPU. If that task is currently
2121 * running, we have to kick it out using the CPU stopper.
2122 *
2123 * Migrate-Disable comes along and tramples all over our nice sandcastle.
2124 * Consider:
2125 *
2126 * Initial conditions: P0->cpus_mask = [0, 1]
2127 *
2128 * P0@CPU0 P1
2129 *
2130 * migrate_disable();
2131 * <preempted>
2132 * set_cpus_allowed_ptr(P0, [1]);
2133 *
2134 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2135 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2136 * This means we need the following scheme:
2137 *
2138 * P0@CPU0 P1
2139 *
2140 * migrate_disable();
2141 * <preempted>
2142 * set_cpus_allowed_ptr(P0, [1]);
2143 * <blocks>
2144 * <resumes>
2145 * migrate_enable();
2146 * __set_cpus_allowed_ptr();
2147 * <wakes local stopper>
2148 * `--> <woken on migration completion>
2149 *
2150 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2151 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2152 * task p are serialized by p->pi_lock, which we can leverage: the one that
2153 * should come into effect at the end of the Migrate-Disable region is the last
2154 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2155 * but we still need to properly signal those waiting tasks at the appropriate
2156 * moment.
2157 *
2158 * This is implemented using struct set_affinity_pending. The first
2159 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2160 * setup an instance of that struct and install it on the targeted task_struct.
2161 * Any and all further callers will reuse that instance. Those then wait for
2162 * a completion signaled at the tail of the CPU stopper callback (1), triggered
2163 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2164 *
2165 *
2166 * (1) In the cases covered above. There is one more where the completion is
2167 * signaled within affine_move_task() itself: when a subsequent affinity request
2168 * cancels the need for an active migration. Consider:
2169 *
2170 * Initial conditions: P0->cpus_mask = [0, 1]
2171 *
2172 * P0@CPU0 P1 P2
2173 *
2174 * migrate_disable();
2175 * <preempted>
2176 * set_cpus_allowed_ptr(P0, [1]);
2177 * <blocks>
2178 * set_cpus_allowed_ptr(P0, [0, 1]);
2179 * <signal completion>
2180 * <awakes>
2181 *
2182 * Note that the above is safe vs a concurrent migrate_enable(), as any
2183 * pending affinity completion is preceded by an uninstallation of
2184 * p->migration_pending done with p->pi_lock held.
6d337eab
PZ
2185 */
2186static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2187 int dest_cpu, unsigned int flags)
2188{
2189 struct set_affinity_pending my_pending = { }, *pending = NULL;
9e81889c 2190 bool stop_pending, complete = false;
6d337eab
PZ
2191
2192 /* Can the task run on the task's current CPU? If so, we're done */
2193 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
a7c81556
PZ
2194 struct task_struct *push_task = NULL;
2195
2196 if ((flags & SCA_MIGRATE_ENABLE) &&
2197 (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2198 rq->push_busy = true;
2199 push_task = get_task_struct(p);
2200 }
2201
6d337eab
PZ
2202 pending = p->migration_pending;
2203 if (pending) {
2204 refcount_inc(&pending->refs);
2205 p->migration_pending = NULL;
2206 complete = true;
2207 }
2208 task_rq_unlock(rq, p, rf);
2209
a7c81556
PZ
2210 if (push_task) {
2211 stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2212 p, &rq->push_work);
2213 }
2214
6d337eab
PZ
2215 if (complete)
2216 goto do_complete;
2217
2218 return 0;
2219 }
2220
2221 if (!(flags & SCA_MIGRATE_ENABLE)) {
2222 /* serialized by p->pi_lock */
2223 if (!p->migration_pending) {
c777d847 2224 /* Install the request */
6d337eab
PZ
2225 refcount_set(&my_pending.refs, 1);
2226 init_completion(&my_pending.done);
8a6edb52
PZ
2227 my_pending.arg = (struct migration_arg) {
2228 .task = p,
2229 .dest_cpu = -1, /* any */
2230 .pending = &my_pending,
2231 };
2232
6d337eab
PZ
2233 p->migration_pending = &my_pending;
2234 } else {
2235 pending = p->migration_pending;
2236 refcount_inc(&pending->refs);
2237 }
2238 }
2239 pending = p->migration_pending;
2240 /*
2241 * - !MIGRATE_ENABLE:
2242 * we'll have installed a pending if there wasn't one already.
2243 *
2244 * - MIGRATE_ENABLE:
2245 * we're here because the current CPU isn't matching anymore,
2246 * the only way that can happen is because of a concurrent
2247 * set_cpus_allowed_ptr() call, which should then still be
2248 * pending completion.
2249 *
2250 * Either way, we really should have a @pending here.
2251 */
2252 if (WARN_ON_ONCE(!pending)) {
2253 task_rq_unlock(rq, p, rf);
2254 return -EINVAL;
2255 }
2256
6d337eab 2257 if (task_running(rq, p) || p->state == TASK_WAKING) {
c777d847 2258 /*
58b1a450
PZ
2259 * MIGRATE_ENABLE gets here because 'p == current', but for
2260 * anything else we cannot do is_migration_disabled(), punt
2261 * and have the stopper function handle it all race-free.
c777d847 2262 */
9e81889c
PZ
2263 stop_pending = pending->stop_pending;
2264 if (!stop_pending)
2265 pending->stop_pending = true;
58b1a450 2266
8a6edb52 2267 refcount_inc(&pending->refs); /* pending->{arg,stop_work} */
58b1a450
PZ
2268 if (flags & SCA_MIGRATE_ENABLE)
2269 p->migration_flags &= ~MDF_PUSH;
6d337eab 2270 task_rq_unlock(rq, p, rf);
8a6edb52 2271
9e81889c
PZ
2272 if (!stop_pending) {
2273 stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
2274 &pending->arg, &pending->stop_work);
2275 }
6d337eab 2276
58b1a450
PZ
2277 if (flags & SCA_MIGRATE_ENABLE)
2278 return 0;
6d337eab
PZ
2279 } else {
2280
2281 if (!is_migration_disabled(p)) {
2282 if (task_on_rq_queued(p))
2283 rq = move_queued_task(rq, rf, p, dest_cpu);
2284
2285 p->migration_pending = NULL;
2286 complete = true;
2287 }
2288 task_rq_unlock(rq, p, rf);
2289
2290do_complete:
2291 if (complete)
2292 complete_all(&pending->done);
2293 }
2294
2295 wait_for_completion(&pending->done);
2296
2297 if (refcount_dec_and_test(&pending->refs))
2298 wake_up_var(&pending->refs);
2299
c777d847
VS
2300 /*
2301 * Block the original owner of &pending until all subsequent callers
2302 * have seen the completion and decremented the refcount
2303 */
6d337eab
PZ
2304 wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
2305
2306 return 0;
2307}
2308
5cc389bc
PZ
2309/*
2310 * Change a given task's CPU affinity. Migrate the thread to a
2311 * proper CPU and schedule it away if the CPU it's executing on
2312 * is removed from the allowed bitmask.
2313 *
2314 * NOTE: the caller must have a valid reference to the task, the
2315 * task must not exit() & deallocate itself prematurely. The
2316 * call is not atomic; no spinlocks may be held.
2317 */
25834c73 2318static int __set_cpus_allowed_ptr(struct task_struct *p,
9cfc3e18
PZ
2319 const struct cpumask *new_mask,
2320 u32 flags)
5cc389bc 2321{
e9d867a6 2322 const struct cpumask *cpu_valid_mask = cpu_active_mask;
5cc389bc 2323 unsigned int dest_cpu;
eb580751
PZ
2324 struct rq_flags rf;
2325 struct rq *rq;
5cc389bc
PZ
2326 int ret = 0;
2327
eb580751 2328 rq = task_rq_lock(p, &rf);
a499c3ea 2329 update_rq_clock(rq);
5cc389bc 2330
af449901 2331 if (p->flags & PF_KTHREAD || is_migration_disabled(p)) {
e9d867a6 2332 /*
741ba80f
PZ
2333 * Kernel threads are allowed on online && !active CPUs,
2334 * however, during cpu-hot-unplug, even these might get pushed
2335 * away if not KTHREAD_IS_PER_CPU.
af449901
PZ
2336 *
2337 * Specifically, migration_disabled() tasks must not fail the
2338 * cpumask_any_and_distribute() pick below, esp. so on
2339 * SCA_MIGRATE_ENABLE, otherwise we'll not call
2340 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
e9d867a6
PZI
2341 */
2342 cpu_valid_mask = cpu_online_mask;
2343 }
2344
25834c73
PZ
2345 /*
2346 * Must re-check here, to close a race against __kthread_bind(),
2347 * sched_setaffinity() is not guaranteed to observe the flag.
2348 */
9cfc3e18 2349 if ((flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
25834c73
PZ
2350 ret = -EINVAL;
2351 goto out;
2352 }
2353
885b3ba4
VS
2354 if (!(flags & SCA_MIGRATE_ENABLE)) {
2355 if (cpumask_equal(&p->cpus_mask, new_mask))
2356 goto out;
2357
2358 if (WARN_ON_ONCE(p == current &&
2359 is_migration_disabled(p) &&
2360 !cpumask_test_cpu(task_cpu(p), new_mask))) {
2361 ret = -EBUSY;
2362 goto out;
2363 }
2364 }
5cc389bc 2365
46a87b38
PT
2366 /*
2367 * Picking a ~random cpu helps in cases where we are changing affinity
2368 * for groups of tasks (ie. cpuset), so that load balancing is not
2369 * immediately required to distribute the tasks within their new mask.
2370 */
2371 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask);
714e501e 2372 if (dest_cpu >= nr_cpu_ids) {
5cc389bc
PZ
2373 ret = -EINVAL;
2374 goto out;
2375 }
2376
9cfc3e18 2377 __do_set_cpus_allowed(p, new_mask, flags);
5cc389bc 2378
6d337eab 2379 return affine_move_task(rq, p, &rf, dest_cpu, flags);
5cc389bc 2380
5cc389bc 2381out:
eb580751 2382 task_rq_unlock(rq, p, &rf);
5cc389bc
PZ
2383
2384 return ret;
2385}
25834c73
PZ
2386
2387int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
2388{
9cfc3e18 2389 return __set_cpus_allowed_ptr(p, new_mask, 0);
25834c73 2390}
5cc389bc
PZ
2391EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
2392
dd41f596 2393void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2394{
e2912009
PZ
2395#ifdef CONFIG_SCHED_DEBUG
2396 /*
2397 * We should never call set_task_cpu() on a blocked task,
2398 * ttwu() will sort out the placement.
2399 */
077614ee 2400 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
e2336f6e 2401 !p->on_rq);
0122ec5b 2402
3ea94de1
JP
2403 /*
2404 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
2405 * because schedstat_wait_{start,end} rebase migrating task's wait_start
2406 * time relying on p->on_rq.
2407 */
2408 WARN_ON_ONCE(p->state == TASK_RUNNING &&
2409 p->sched_class == &fair_sched_class &&
2410 (p->on_rq && !task_on_rq_migrating(p)));
2411
0122ec5b 2412#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
2413 /*
2414 * The caller should hold either p->pi_lock or rq->lock, when changing
2415 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
2416 *
2417 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 2418 * see task_group().
6c6c54e1
PZ
2419 *
2420 * Furthermore, all task_rq users should acquire both locks, see
2421 * task_rq_lock().
2422 */
0122ec5b
PZ
2423 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
2424 lockdep_is_held(&task_rq(p)->lock)));
2425#endif
4ff9083b
PZ
2426 /*
2427 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
2428 */
2429 WARN_ON_ONCE(!cpu_online(new_cpu));
af449901
PZ
2430
2431 WARN_ON_ONCE(is_migration_disabled(p));
e2912009
PZ
2432#endif
2433
de1d7286 2434 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2435
0c69774e 2436 if (task_cpu(p) != new_cpu) {
0a74bef8 2437 if (p->sched_class->migrate_task_rq)
1327237a 2438 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 2439 p->se.nr_migrations++;
d7822b1e 2440 rseq_migrate(p);
ff303e66 2441 perf_event_task_migrate(p);
0c69774e 2442 }
dd41f596
IM
2443
2444 __set_task_cpu(p, new_cpu);
c65cc870
IM
2445}
2446
0ad4e3df 2447#ifdef CONFIG_NUMA_BALANCING
ac66f547
PZ
2448static void __migrate_swap_task(struct task_struct *p, int cpu)
2449{
da0c1e65 2450 if (task_on_rq_queued(p)) {
ac66f547 2451 struct rq *src_rq, *dst_rq;
8a8c69c3 2452 struct rq_flags srf, drf;
ac66f547
PZ
2453
2454 src_rq = task_rq(p);
2455 dst_rq = cpu_rq(cpu);
2456
8a8c69c3
PZ
2457 rq_pin_lock(src_rq, &srf);
2458 rq_pin_lock(dst_rq, &drf);
2459
ac66f547
PZ
2460 deactivate_task(src_rq, p, 0);
2461 set_task_cpu(p, cpu);
2462 activate_task(dst_rq, p, 0);
2463 check_preempt_curr(dst_rq, p, 0);
8a8c69c3
PZ
2464
2465 rq_unpin_lock(dst_rq, &drf);
2466 rq_unpin_lock(src_rq, &srf);
2467
ac66f547
PZ
2468 } else {
2469 /*
2470 * Task isn't running anymore; make it appear like we migrated
2471 * it before it went to sleep. This means on wakeup we make the
d1ccc66d 2472 * previous CPU our target instead of where it really is.
ac66f547
PZ
2473 */
2474 p->wake_cpu = cpu;
2475 }
2476}
2477
2478struct migration_swap_arg {
2479 struct task_struct *src_task, *dst_task;
2480 int src_cpu, dst_cpu;
2481};
2482
2483static int migrate_swap_stop(void *data)
2484{
2485 struct migration_swap_arg *arg = data;
2486 struct rq *src_rq, *dst_rq;
2487 int ret = -EAGAIN;
2488
62694cd5
PZ
2489 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
2490 return -EAGAIN;
2491
ac66f547
PZ
2492 src_rq = cpu_rq(arg->src_cpu);
2493 dst_rq = cpu_rq(arg->dst_cpu);
2494
74602315
PZ
2495 double_raw_lock(&arg->src_task->pi_lock,
2496 &arg->dst_task->pi_lock);
ac66f547 2497 double_rq_lock(src_rq, dst_rq);
62694cd5 2498
ac66f547
PZ
2499 if (task_cpu(arg->dst_task) != arg->dst_cpu)
2500 goto unlock;
2501
2502 if (task_cpu(arg->src_task) != arg->src_cpu)
2503 goto unlock;
2504
3bd37062 2505 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
ac66f547
PZ
2506 goto unlock;
2507
3bd37062 2508 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
ac66f547
PZ
2509 goto unlock;
2510
2511 __migrate_swap_task(arg->src_task, arg->dst_cpu);
2512 __migrate_swap_task(arg->dst_task, arg->src_cpu);
2513
2514 ret = 0;
2515
2516unlock:
2517 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
2518 raw_spin_unlock(&arg->dst_task->pi_lock);
2519 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
2520
2521 return ret;
2522}
2523
2524/*
2525 * Cross migrate two tasks
2526 */
0ad4e3df
SD
2527int migrate_swap(struct task_struct *cur, struct task_struct *p,
2528 int target_cpu, int curr_cpu)
ac66f547
PZ
2529{
2530 struct migration_swap_arg arg;
2531 int ret = -EINVAL;
2532
ac66f547
PZ
2533 arg = (struct migration_swap_arg){
2534 .src_task = cur,
0ad4e3df 2535 .src_cpu = curr_cpu,
ac66f547 2536 .dst_task = p,
0ad4e3df 2537 .dst_cpu = target_cpu,
ac66f547
PZ
2538 };
2539
2540 if (arg.src_cpu == arg.dst_cpu)
2541 goto out;
2542
6acce3ef
PZ
2543 /*
2544 * These three tests are all lockless; this is OK since all of them
2545 * will be re-checked with proper locks held further down the line.
2546 */
ac66f547
PZ
2547 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
2548 goto out;
2549
3bd37062 2550 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
ac66f547
PZ
2551 goto out;
2552
3bd37062 2553 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
ac66f547
PZ
2554 goto out;
2555
286549dc 2556 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
2557 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
2558
2559out:
ac66f547
PZ
2560 return ret;
2561}
0ad4e3df 2562#endif /* CONFIG_NUMA_BALANCING */
ac66f547 2563
1da177e4
LT
2564/*
2565 * wait_task_inactive - wait for a thread to unschedule.
2566 *
85ba2d86
RM
2567 * If @match_state is nonzero, it's the @p->state value just checked and
2568 * not expected to change. If it changes, i.e. @p might have woken up,
2569 * then return zero. When we succeed in waiting for @p to be off its CPU,
2570 * we return a positive number (its total switch count). If a second call
2571 * a short while later returns the same number, the caller can be sure that
2572 * @p has remained unscheduled the whole time.
2573 *
1da177e4
LT
2574 * The caller must ensure that the task *will* unschedule sometime soon,
2575 * else this function might spin for a *long* time. This function can't
2576 * be called with interrupts off, or it may introduce deadlock with
2577 * smp_call_function() if an IPI is sent by the same process we are
2578 * waiting to become inactive.
2579 */
85ba2d86 2580unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4 2581{
da0c1e65 2582 int running, queued;
eb580751 2583 struct rq_flags rf;
85ba2d86 2584 unsigned long ncsw;
70b97a7f 2585 struct rq *rq;
1da177e4 2586
3a5c359a
AK
2587 for (;;) {
2588 /*
2589 * We do the initial early heuristics without holding
2590 * any task-queue locks at all. We'll only try to get
2591 * the runqueue lock when things look like they will
2592 * work out!
2593 */
2594 rq = task_rq(p);
fa490cfd 2595
3a5c359a
AK
2596 /*
2597 * If the task is actively running on another CPU
2598 * still, just relax and busy-wait without holding
2599 * any locks.
2600 *
2601 * NOTE! Since we don't hold any locks, it's not
2602 * even sure that "rq" stays as the right runqueue!
2603 * But we don't care, since "task_running()" will
2604 * return false if the runqueue has changed and p
2605 * is actually now running somewhere else!
2606 */
85ba2d86
RM
2607 while (task_running(rq, p)) {
2608 if (match_state && unlikely(p->state != match_state))
2609 return 0;
3a5c359a 2610 cpu_relax();
85ba2d86 2611 }
fa490cfd 2612
3a5c359a
AK
2613 /*
2614 * Ok, time to look more closely! We need the rq
2615 * lock now, to be *sure*. If we're wrong, we'll
2616 * just go back and repeat.
2617 */
eb580751 2618 rq = task_rq_lock(p, &rf);
27a9da65 2619 trace_sched_wait_task(p);
3a5c359a 2620 running = task_running(rq, p);
da0c1e65 2621 queued = task_on_rq_queued(p);
85ba2d86 2622 ncsw = 0;
f31e11d8 2623 if (!match_state || p->state == match_state)
93dcf55f 2624 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
eb580751 2625 task_rq_unlock(rq, p, &rf);
fa490cfd 2626
85ba2d86
RM
2627 /*
2628 * If it changed from the expected state, bail out now.
2629 */
2630 if (unlikely(!ncsw))
2631 break;
2632
3a5c359a
AK
2633 /*
2634 * Was it really running after all now that we
2635 * checked with the proper locks actually held?
2636 *
2637 * Oops. Go back and try again..
2638 */
2639 if (unlikely(running)) {
2640 cpu_relax();
2641 continue;
2642 }
fa490cfd 2643
3a5c359a
AK
2644 /*
2645 * It's not enough that it's not actively running,
2646 * it must be off the runqueue _entirely_, and not
2647 * preempted!
2648 *
80dd99b3 2649 * So if it was still runnable (but just not actively
3a5c359a
AK
2650 * running right now), it's preempted, and we should
2651 * yield - it could be a while.
2652 */
da0c1e65 2653 if (unlikely(queued)) {
8b0e1953 2654 ktime_t to = NSEC_PER_SEC / HZ;
8eb90c30
TG
2655
2656 set_current_state(TASK_UNINTERRUPTIBLE);
2657 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
2658 continue;
2659 }
fa490cfd 2660
3a5c359a
AK
2661 /*
2662 * Ahh, all good. It wasn't running, and it wasn't
2663 * runnable, which means that it will never become
2664 * running in the future either. We're all done!
2665 */
2666 break;
2667 }
85ba2d86
RM
2668
2669 return ncsw;
1da177e4
LT
2670}
2671
2672/***
2673 * kick_process - kick a running thread to enter/exit the kernel
2674 * @p: the to-be-kicked thread
2675 *
2676 * Cause a process which is running on another CPU to enter
2677 * kernel-mode, without any delay. (to get signals handled.)
2678 *
25985edc 2679 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
2680 * because all it wants to ensure is that the remote task enters
2681 * the kernel. If the IPI races and the task has been migrated
2682 * to another CPU then no harm is done and the purpose has been
2683 * achieved as well.
2684 */
36c8b586 2685void kick_process(struct task_struct *p)
1da177e4
LT
2686{
2687 int cpu;
2688
2689 preempt_disable();
2690 cpu = task_cpu(p);
2691 if ((cpu != smp_processor_id()) && task_curr(p))
2692 smp_send_reschedule(cpu);
2693 preempt_enable();
2694}
b43e3521 2695EXPORT_SYMBOL_GPL(kick_process);
1da177e4 2696
30da688e 2697/*
3bd37062 2698 * ->cpus_ptr is protected by both rq->lock and p->pi_lock
e9d867a6
PZI
2699 *
2700 * A few notes on cpu_active vs cpu_online:
2701 *
2702 * - cpu_active must be a subset of cpu_online
2703 *
97fb7a0a 2704 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
e9d867a6 2705 * see __set_cpus_allowed_ptr(). At this point the newly online
d1ccc66d 2706 * CPU isn't yet part of the sched domains, and balancing will not
e9d867a6
PZI
2707 * see it.
2708 *
d1ccc66d 2709 * - on CPU-down we clear cpu_active() to mask the sched domains and
e9d867a6 2710 * avoid the load balancer to place new tasks on the to be removed
d1ccc66d 2711 * CPU. Existing tasks will remain running there and will be taken
e9d867a6
PZI
2712 * off.
2713 *
2714 * This means that fallback selection must not select !active CPUs.
2715 * And can assume that any active CPU must be online. Conversely
2716 * select_task_rq() below may allow selection of !active CPUs in order
2717 * to satisfy the above rules.
30da688e 2718 */
5da9a0fb
PZ
2719static int select_fallback_rq(int cpu, struct task_struct *p)
2720{
aa00d89c
TC
2721 int nid = cpu_to_node(cpu);
2722 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
2723 enum { cpuset, possible, fail } state = cpuset;
2724 int dest_cpu;
5da9a0fb 2725
aa00d89c 2726 /*
d1ccc66d
IM
2727 * If the node that the CPU is on has been offlined, cpu_to_node()
2728 * will return -1. There is no CPU on the node, and we should
2729 * select the CPU on the other node.
aa00d89c
TC
2730 */
2731 if (nid != -1) {
2732 nodemask = cpumask_of_node(nid);
2733
2734 /* Look for allowed, online CPU in same node. */
2735 for_each_cpu(dest_cpu, nodemask) {
aa00d89c
TC
2736 if (!cpu_active(dest_cpu))
2737 continue;
3bd37062 2738 if (cpumask_test_cpu(dest_cpu, p->cpus_ptr))
aa00d89c
TC
2739 return dest_cpu;
2740 }
2baab4e9 2741 }
5da9a0fb 2742
2baab4e9
PZ
2743 for (;;) {
2744 /* Any allowed, online CPU? */
3bd37062 2745 for_each_cpu(dest_cpu, p->cpus_ptr) {
175f0e25 2746 if (!is_cpu_allowed(p, dest_cpu))
2baab4e9 2747 continue;
175f0e25 2748
2baab4e9
PZ
2749 goto out;
2750 }
5da9a0fb 2751
e73e85f0 2752 /* No more Mr. Nice Guy. */
2baab4e9
PZ
2753 switch (state) {
2754 case cpuset:
e73e85f0
ON
2755 if (IS_ENABLED(CONFIG_CPUSETS)) {
2756 cpuset_cpus_allowed_fallback(p);
2757 state = possible;
2758 break;
2759 }
df561f66 2760 fallthrough;
2baab4e9 2761 case possible:
af449901
PZ
2762 /*
2763 * XXX When called from select_task_rq() we only
2764 * hold p->pi_lock and again violate locking order.
2765 *
2766 * More yuck to audit.
2767 */
2baab4e9
PZ
2768 do_set_cpus_allowed(p, cpu_possible_mask);
2769 state = fail;
2770 break;
2771
2772 case fail:
2773 BUG();
2774 break;
2775 }
2776 }
2777
2778out:
2779 if (state != cpuset) {
2780 /*
2781 * Don't tell them about moving exiting tasks or
2782 * kernel threads (both mm NULL), since they never
2783 * leave kernel.
2784 */
2785 if (p->mm && printk_ratelimit()) {
aac74dc4 2786 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
2787 task_pid_nr(p), p->comm, cpu);
2788 }
5da9a0fb
PZ
2789 }
2790
2791 return dest_cpu;
2792}
2793
e2912009 2794/*
3bd37062 2795 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
e2912009 2796 */
970b13ba 2797static inline
3aef1551 2798int select_task_rq(struct task_struct *p, int cpu, int wake_flags)
970b13ba 2799{
cbce1a68
PZ
2800 lockdep_assert_held(&p->pi_lock);
2801
af449901 2802 if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p))
3aef1551 2803 cpu = p->sched_class->select_task_rq(p, cpu, wake_flags);
e9d867a6 2804 else
3bd37062 2805 cpu = cpumask_any(p->cpus_ptr);
e2912009
PZ
2806
2807 /*
2808 * In order not to call set_task_cpu() on a blocking task we need
3bd37062 2809 * to rely on ttwu() to place the task on a valid ->cpus_ptr
d1ccc66d 2810 * CPU.
e2912009
PZ
2811 *
2812 * Since this is common to all placement strategies, this lives here.
2813 *
2814 * [ this allows ->select_task() to simply return task_cpu(p) and
2815 * not worry about this generic constraint ]
2816 */
7af443ee 2817 if (unlikely(!is_cpu_allowed(p, cpu)))
5da9a0fb 2818 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2819
2820 return cpu;
970b13ba 2821}
09a40af5 2822
f5832c19
NP
2823void sched_set_stop_task(int cpu, struct task_struct *stop)
2824{
ded467dc 2825 static struct lock_class_key stop_pi_lock;
f5832c19
NP
2826 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2827 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2828
2829 if (stop) {
2830 /*
2831 * Make it appear like a SCHED_FIFO task, its something
2832 * userspace knows about and won't get confused about.
2833 *
2834 * Also, it will make PI more or less work without too
2835 * much confusion -- but then, stop work should not
2836 * rely on PI working anyway.
2837 */
2838 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2839
2840 stop->sched_class = &stop_sched_class;
ded467dc
PZ
2841
2842 /*
2843 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
2844 * adjust the effective priority of a task. As a result,
2845 * rt_mutex_setprio() can trigger (RT) balancing operations,
2846 * which can then trigger wakeups of the stop thread to push
2847 * around the current task.
2848 *
2849 * The stop task itself will never be part of the PI-chain, it
2850 * never blocks, therefore that ->pi_lock recursion is safe.
2851 * Tell lockdep about this by placing the stop->pi_lock in its
2852 * own class.
2853 */
2854 lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
f5832c19
NP
2855 }
2856
2857 cpu_rq(cpu)->stop = stop;
2858
2859 if (old_stop) {
2860 /*
2861 * Reset it back to a normal scheduling class so that
2862 * it can die in pieces.
2863 */
2864 old_stop->sched_class = &rt_sched_class;
2865 }
2866}
2867
74d862b6 2868#else /* CONFIG_SMP */
25834c73
PZ
2869
2870static inline int __set_cpus_allowed_ptr(struct task_struct *p,
9cfc3e18
PZ
2871 const struct cpumask *new_mask,
2872 u32 flags)
25834c73
PZ
2873{
2874 return set_cpus_allowed_ptr(p, new_mask);
2875}
2876
af449901
PZ
2877static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
2878
3015ef4b
TG
2879static inline bool rq_has_pinned_tasks(struct rq *rq)
2880{
2881 return false;
2882}
2883
74d862b6 2884#endif /* !CONFIG_SMP */
970b13ba 2885
d7c01d27 2886static void
b84cb5df 2887ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 2888{
4fa8d299 2889 struct rq *rq;
b84cb5df 2890
4fa8d299
JP
2891 if (!schedstat_enabled())
2892 return;
2893
2894 rq = this_rq();
d7c01d27 2895
4fa8d299
JP
2896#ifdef CONFIG_SMP
2897 if (cpu == rq->cpu) {
b85c8b71
PZ
2898 __schedstat_inc(rq->ttwu_local);
2899 __schedstat_inc(p->se.statistics.nr_wakeups_local);
d7c01d27
PZ
2900 } else {
2901 struct sched_domain *sd;
2902
b85c8b71 2903 __schedstat_inc(p->se.statistics.nr_wakeups_remote);
057f3fad 2904 rcu_read_lock();
4fa8d299 2905 for_each_domain(rq->cpu, sd) {
d7c01d27 2906 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
b85c8b71 2907 __schedstat_inc(sd->ttwu_wake_remote);
d7c01d27
PZ
2908 break;
2909 }
2910 }
057f3fad 2911 rcu_read_unlock();
d7c01d27 2912 }
f339b9dc
PZ
2913
2914 if (wake_flags & WF_MIGRATED)
b85c8b71 2915 __schedstat_inc(p->se.statistics.nr_wakeups_migrate);
d7c01d27
PZ
2916#endif /* CONFIG_SMP */
2917
b85c8b71
PZ
2918 __schedstat_inc(rq->ttwu_count);
2919 __schedstat_inc(p->se.statistics.nr_wakeups);
d7c01d27
PZ
2920
2921 if (wake_flags & WF_SYNC)
b85c8b71 2922 __schedstat_inc(p->se.statistics.nr_wakeups_sync);
d7c01d27
PZ
2923}
2924
23f41eeb
PZ
2925/*
2926 * Mark the task runnable and perform wakeup-preemption.
2927 */
e7904a28 2928static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
d8ac8971 2929 struct rq_flags *rf)
9ed3811a 2930{
9ed3811a 2931 check_preempt_curr(rq, p, wake_flags);
9ed3811a 2932 p->state = TASK_RUNNING;
fbd705a0
PZ
2933 trace_sched_wakeup(p);
2934
9ed3811a 2935#ifdef CONFIG_SMP
4c9a4bc8
PZ
2936 if (p->sched_class->task_woken) {
2937 /*
b19a888c 2938 * Our task @p is fully woken up and running; so it's safe to
cbce1a68 2939 * drop the rq->lock, hereafter rq is only used for statistics.
4c9a4bc8 2940 */
d8ac8971 2941 rq_unpin_lock(rq, rf);
9ed3811a 2942 p->sched_class->task_woken(rq, p);
d8ac8971 2943 rq_repin_lock(rq, rf);
4c9a4bc8 2944 }
9ed3811a 2945
e69c6341 2946 if (rq->idle_stamp) {
78becc27 2947 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 2948 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 2949
abfafa54
JL
2950 update_avg(&rq->avg_idle, delta);
2951
2952 if (rq->avg_idle > max)
9ed3811a 2953 rq->avg_idle = max;
abfafa54 2954
9ed3811a
TH
2955 rq->idle_stamp = 0;
2956 }
2957#endif
2958}
2959
c05fbafb 2960static void
e7904a28 2961ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
d8ac8971 2962 struct rq_flags *rf)
c05fbafb 2963{
77558e4d 2964 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
b5179ac7 2965
cbce1a68
PZ
2966 lockdep_assert_held(&rq->lock);
2967
c05fbafb
PZ
2968 if (p->sched_contributes_to_load)
2969 rq->nr_uninterruptible--;
b5179ac7 2970
dbfb089d 2971#ifdef CONFIG_SMP
b5179ac7 2972 if (wake_flags & WF_MIGRATED)
59efa0ba 2973 en_flags |= ENQUEUE_MIGRATED;
ec618b84 2974 else
c05fbafb 2975#endif
ec618b84
PZ
2976 if (p->in_iowait) {
2977 delayacct_blkio_end(p);
2978 atomic_dec(&task_rq(p)->nr_iowait);
2979 }
c05fbafb 2980
1b174a2c 2981 activate_task(rq, p, en_flags);
d8ac8971 2982 ttwu_do_wakeup(rq, p, wake_flags, rf);
c05fbafb
PZ
2983}
2984
2985/*
58877d34
PZ
2986 * Consider @p being inside a wait loop:
2987 *
2988 * for (;;) {
2989 * set_current_state(TASK_UNINTERRUPTIBLE);
2990 *
2991 * if (CONDITION)
2992 * break;
2993 *
2994 * schedule();
2995 * }
2996 * __set_current_state(TASK_RUNNING);
2997 *
2998 * between set_current_state() and schedule(). In this case @p is still
2999 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3000 * an atomic manner.
3001 *
3002 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3003 * then schedule() must still happen and p->state can be changed to
3004 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3005 * need to do a full wakeup with enqueue.
3006 *
3007 * Returns: %true when the wakeup is done,
3008 * %false otherwise.
c05fbafb 3009 */
58877d34 3010static int ttwu_runnable(struct task_struct *p, int wake_flags)
c05fbafb 3011{
eb580751 3012 struct rq_flags rf;
c05fbafb
PZ
3013 struct rq *rq;
3014 int ret = 0;
3015
eb580751 3016 rq = __task_rq_lock(p, &rf);
da0c1e65 3017 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
3018 /* check_preempt_curr() may use rq clock */
3019 update_rq_clock(rq);
d8ac8971 3020 ttwu_do_wakeup(rq, p, wake_flags, &rf);
c05fbafb
PZ
3021 ret = 1;
3022 }
eb580751 3023 __task_rq_unlock(rq, &rf);
c05fbafb
PZ
3024
3025 return ret;
3026}
3027
317f3941 3028#ifdef CONFIG_SMP
a1488664 3029void sched_ttwu_pending(void *arg)
317f3941 3030{
a1488664 3031 struct llist_node *llist = arg;
317f3941 3032 struct rq *rq = this_rq();
73215849 3033 struct task_struct *p, *t;
d8ac8971 3034 struct rq_flags rf;
317f3941 3035
e3baac47
PZ
3036 if (!llist)
3037 return;
3038
126c2092
PZ
3039 /*
3040 * rq::ttwu_pending racy indication of out-standing wakeups.
3041 * Races such that false-negatives are possible, since they
3042 * are shorter lived that false-positives would be.
3043 */
3044 WRITE_ONCE(rq->ttwu_pending, 0);
3045
8a8c69c3 3046 rq_lock_irqsave(rq, &rf);
77558e4d 3047 update_rq_clock(rq);
317f3941 3048
8c4890d1 3049 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
b6e13e85
PZ
3050 if (WARN_ON_ONCE(p->on_cpu))
3051 smp_cond_load_acquire(&p->on_cpu, !VAL);
3052
3053 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3054 set_task_cpu(p, cpu_of(rq));
3055
73215849 3056 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
b6e13e85 3057 }
317f3941 3058
8a8c69c3 3059 rq_unlock_irqrestore(rq, &rf);
317f3941
PZ
3060}
3061
b2a02fc4 3062void send_call_function_single_ipi(int cpu)
317f3941 3063{
b2a02fc4 3064 struct rq *rq = cpu_rq(cpu);
ca38062e 3065
b2a02fc4
PZ
3066 if (!set_nr_if_polling(rq->idle))
3067 arch_send_call_function_single_ipi(cpu);
3068 else
3069 trace_sched_wake_idle_without_ipi(cpu);
317f3941
PZ
3070}
3071
2ebb1771
MG
3072/*
3073 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3074 * necessary. The wakee CPU on receipt of the IPI will queue the task
3075 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3076 * of the wakeup instead of the waker.
3077 */
3078static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
317f3941 3079{
e3baac47
PZ
3080 struct rq *rq = cpu_rq(cpu);
3081
b7e7ade3
PZ
3082 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3083
126c2092 3084 WRITE_ONCE(rq->ttwu_pending, 1);
8c4890d1 3085 __smp_call_single_queue(cpu, &p->wake_entry.llist);
317f3941 3086}
d6aa8f85 3087
f6be8af1
CL
3088void wake_up_if_idle(int cpu)
3089{
3090 struct rq *rq = cpu_rq(cpu);
8a8c69c3 3091 struct rq_flags rf;
f6be8af1 3092
fd7de1e8
AL
3093 rcu_read_lock();
3094
3095 if (!is_idle_task(rcu_dereference(rq->curr)))
3096 goto out;
f6be8af1
CL
3097
3098 if (set_nr_if_polling(rq->idle)) {
3099 trace_sched_wake_idle_without_ipi(cpu);
3100 } else {
8a8c69c3 3101 rq_lock_irqsave(rq, &rf);
f6be8af1
CL
3102 if (is_idle_task(rq->curr))
3103 smp_send_reschedule(cpu);
d1ccc66d 3104 /* Else CPU is not idle, do nothing here: */
8a8c69c3 3105 rq_unlock_irqrestore(rq, &rf);
f6be8af1 3106 }
fd7de1e8
AL
3107
3108out:
3109 rcu_read_unlock();
f6be8af1
CL
3110}
3111
39be3501 3112bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
3113{
3114 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3115}
c6e7bd7a 3116
2ebb1771
MG
3117static inline bool ttwu_queue_cond(int cpu, int wake_flags)
3118{
5ba2ffba
PZ
3119 /*
3120 * Do not complicate things with the async wake_list while the CPU is
3121 * in hotplug state.
3122 */
3123 if (!cpu_active(cpu))
3124 return false;
3125
2ebb1771
MG
3126 /*
3127 * If the CPU does not share cache, then queue the task on the
3128 * remote rqs wakelist to avoid accessing remote data.
3129 */
3130 if (!cpus_share_cache(smp_processor_id(), cpu))
3131 return true;
3132
3133 /*
3134 * If the task is descheduling and the only running task on the
3135 * CPU then use the wakelist to offload the task activation to
3136 * the soon-to-be-idle CPU as the current CPU is likely busy.
3137 * nr_running is checked to avoid unnecessary task stacking.
3138 */
739f70b4 3139 if ((wake_flags & WF_ON_CPU) && cpu_rq(cpu)->nr_running <= 1)
2ebb1771
MG
3140 return true;
3141
3142 return false;
3143}
3144
3145static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
c6e7bd7a 3146{
2ebb1771 3147 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(cpu, wake_flags)) {
b6e13e85
PZ
3148 if (WARN_ON_ONCE(cpu == smp_processor_id()))
3149 return false;
3150
c6e7bd7a 3151 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
2ebb1771 3152 __ttwu_queue_wakelist(p, cpu, wake_flags);
c6e7bd7a
PZ
3153 return true;
3154 }
3155
3156 return false;
3157}
58877d34
PZ
3158
3159#else /* !CONFIG_SMP */
3160
3161static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3162{
3163 return false;
3164}
3165
d6aa8f85 3166#endif /* CONFIG_SMP */
317f3941 3167
b5179ac7 3168static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
c05fbafb
PZ
3169{
3170 struct rq *rq = cpu_rq(cpu);
d8ac8971 3171 struct rq_flags rf;
c05fbafb 3172
2ebb1771 3173 if (ttwu_queue_wakelist(p, cpu, wake_flags))
317f3941 3174 return;
317f3941 3175
8a8c69c3 3176 rq_lock(rq, &rf);
77558e4d 3177 update_rq_clock(rq);
d8ac8971 3178 ttwu_do_activate(rq, p, wake_flags, &rf);
8a8c69c3 3179 rq_unlock(rq, &rf);
9ed3811a
TH
3180}
3181
8643cda5
PZ
3182/*
3183 * Notes on Program-Order guarantees on SMP systems.
3184 *
3185 * MIGRATION
3186 *
3187 * The basic program-order guarantee on SMP systems is that when a task [t]
d1ccc66d
IM
3188 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
3189 * execution on its new CPU [c1].
8643cda5
PZ
3190 *
3191 * For migration (of runnable tasks) this is provided by the following means:
3192 *
3193 * A) UNLOCK of the rq(c0)->lock scheduling out task t
3194 * B) migration for t is required to synchronize *both* rq(c0)->lock and
3195 * rq(c1)->lock (if not at the same time, then in that order).
3196 * C) LOCK of the rq(c1)->lock scheduling in task
3197 *
7696f991 3198 * Release/acquire chaining guarantees that B happens after A and C after B.
d1ccc66d 3199 * Note: the CPU doing B need not be c0 or c1
8643cda5
PZ
3200 *
3201 * Example:
3202 *
3203 * CPU0 CPU1 CPU2
3204 *
3205 * LOCK rq(0)->lock
3206 * sched-out X
3207 * sched-in Y
3208 * UNLOCK rq(0)->lock
3209 *
3210 * LOCK rq(0)->lock // orders against CPU0
3211 * dequeue X
3212 * UNLOCK rq(0)->lock
3213 *
3214 * LOCK rq(1)->lock
3215 * enqueue X
3216 * UNLOCK rq(1)->lock
3217 *
3218 * LOCK rq(1)->lock // orders against CPU2
3219 * sched-out Z
3220 * sched-in X
3221 * UNLOCK rq(1)->lock
3222 *
3223 *
3224 * BLOCKING -- aka. SLEEP + WAKEUP
3225 *
3226 * For blocking we (obviously) need to provide the same guarantee as for
3227 * migration. However the means are completely different as there is no lock
3228 * chain to provide order. Instead we do:
3229 *
58877d34
PZ
3230 * 1) smp_store_release(X->on_cpu, 0) -- finish_task()
3231 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
8643cda5
PZ
3232 *
3233 * Example:
3234 *
3235 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
3236 *
3237 * LOCK rq(0)->lock LOCK X->pi_lock
3238 * dequeue X
3239 * sched-out X
3240 * smp_store_release(X->on_cpu, 0);
3241 *
1f03e8d2 3242 * smp_cond_load_acquire(&X->on_cpu, !VAL);
8643cda5
PZ
3243 * X->state = WAKING
3244 * set_task_cpu(X,2)
3245 *
3246 * LOCK rq(2)->lock
3247 * enqueue X
3248 * X->state = RUNNING
3249 * UNLOCK rq(2)->lock
3250 *
3251 * LOCK rq(2)->lock // orders against CPU1
3252 * sched-out Z
3253 * sched-in X
3254 * UNLOCK rq(2)->lock
3255 *
3256 * UNLOCK X->pi_lock
3257 * UNLOCK rq(0)->lock
3258 *
3259 *
7696f991
AP
3260 * However, for wakeups there is a second guarantee we must provide, namely we
3261 * must ensure that CONDITION=1 done by the caller can not be reordered with
3262 * accesses to the task state; see try_to_wake_up() and set_current_state().
8643cda5
PZ
3263 */
3264
9ed3811a 3265/**
1da177e4 3266 * try_to_wake_up - wake up a thread
9ed3811a 3267 * @p: the thread to be awakened
1da177e4 3268 * @state: the mask of task states that can be woken
9ed3811a 3269 * @wake_flags: wake modifier flags (WF_*)
1da177e4 3270 *
58877d34
PZ
3271 * Conceptually does:
3272 *
3273 * If (@state & @p->state) @p->state = TASK_RUNNING.
1da177e4 3274 *
a2250238
PZ
3275 * If the task was not queued/runnable, also place it back on a runqueue.
3276 *
58877d34
PZ
3277 * This function is atomic against schedule() which would dequeue the task.
3278 *
3279 * It issues a full memory barrier before accessing @p->state, see the comment
3280 * with set_current_state().
a2250238 3281 *
58877d34 3282 * Uses p->pi_lock to serialize against concurrent wake-ups.
a2250238 3283 *
58877d34
PZ
3284 * Relies on p->pi_lock stabilizing:
3285 * - p->sched_class
3286 * - p->cpus_ptr
3287 * - p->sched_task_group
3288 * in order to do migration, see its use of select_task_rq()/set_task_cpu().
3289 *
3290 * Tries really hard to only take one task_rq(p)->lock for performance.
3291 * Takes rq->lock in:
3292 * - ttwu_runnable() -- old rq, unavoidable, see comment there;
3293 * - ttwu_queue() -- new rq, for enqueue of the task;
3294 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
3295 *
3296 * As a consequence we race really badly with just about everything. See the
3297 * many memory barriers and their comments for details.
7696f991 3298 *
a2250238
PZ
3299 * Return: %true if @p->state changes (an actual wakeup was done),
3300 * %false otherwise.
1da177e4 3301 */
e4a52bcb
PZ
3302static int
3303try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 3304{
1da177e4 3305 unsigned long flags;
c05fbafb 3306 int cpu, success = 0;
2398f2c6 3307
e3d85487 3308 preempt_disable();
aacedf26
PZ
3309 if (p == current) {
3310 /*
3311 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
3312 * == smp_processor_id()'. Together this means we can special
58877d34 3313 * case the whole 'p->on_rq && ttwu_runnable()' case below
aacedf26
PZ
3314 * without taking any locks.
3315 *
3316 * In particular:
3317 * - we rely on Program-Order guarantees for all the ordering,
3318 * - we're serialized against set_special_state() by virtue of
3319 * it disabling IRQs (this allows not taking ->pi_lock).
3320 */
3321 if (!(p->state & state))
e3d85487 3322 goto out;
aacedf26
PZ
3323
3324 success = 1;
aacedf26
PZ
3325 trace_sched_waking(p);
3326 p->state = TASK_RUNNING;
3327 trace_sched_wakeup(p);
3328 goto out;
3329 }
3330
e0acd0a6
ON
3331 /*
3332 * If we are going to wake up a thread waiting for CONDITION we
3333 * need to ensure that CONDITION=1 done by the caller can not be
58877d34
PZ
3334 * reordered with p->state check below. This pairs with smp_store_mb()
3335 * in set_current_state() that the waiting thread does.
e0acd0a6 3336 */
013fdb80 3337 raw_spin_lock_irqsave(&p->pi_lock, flags);
d89e588c 3338 smp_mb__after_spinlock();
e9c84311 3339 if (!(p->state & state))
aacedf26 3340 goto unlock;
1da177e4 3341
fbd705a0
PZ
3342 trace_sched_waking(p);
3343
d1ccc66d
IM
3344 /* We're going to change ->state: */
3345 success = 1;
1da177e4 3346
135e8c92
BS
3347 /*
3348 * Ensure we load p->on_rq _after_ p->state, otherwise it would
3349 * be possible to, falsely, observe p->on_rq == 0 and get stuck
3350 * in smp_cond_load_acquire() below.
3351 *
3d85b270
AP
3352 * sched_ttwu_pending() try_to_wake_up()
3353 * STORE p->on_rq = 1 LOAD p->state
3354 * UNLOCK rq->lock
3355 *
3356 * __schedule() (switch to task 'p')
3357 * LOCK rq->lock smp_rmb();
3358 * smp_mb__after_spinlock();
3359 * UNLOCK rq->lock
135e8c92
BS
3360 *
3361 * [task p]
3d85b270 3362 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
135e8c92 3363 *
3d85b270
AP
3364 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
3365 * __schedule(). See the comment for smp_mb__after_spinlock().
2beaf328
PM
3366 *
3367 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
135e8c92
BS
3368 */
3369 smp_rmb();
58877d34 3370 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
aacedf26 3371 goto unlock;
1da177e4 3372
1da177e4 3373#ifdef CONFIG_SMP
ecf7d01c
PZ
3374 /*
3375 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
3376 * possible to, falsely, observe p->on_cpu == 0.
3377 *
3378 * One must be running (->on_cpu == 1) in order to remove oneself
3379 * from the runqueue.
3380 *
3d85b270
AP
3381 * __schedule() (switch to task 'p') try_to_wake_up()
3382 * STORE p->on_cpu = 1 LOAD p->on_rq
3383 * UNLOCK rq->lock
3384 *
3385 * __schedule() (put 'p' to sleep)
3386 * LOCK rq->lock smp_rmb();
3387 * smp_mb__after_spinlock();
3388 * STORE p->on_rq = 0 LOAD p->on_cpu
ecf7d01c 3389 *
3d85b270
AP
3390 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
3391 * __schedule(). See the comment for smp_mb__after_spinlock().
dbfb089d
PZ
3392 *
3393 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
3394 * schedule()'s deactivate_task() has 'happened' and p will no longer
3395 * care about it's own p->state. See the comment in __schedule().
ecf7d01c 3396 */
dbfb089d
PZ
3397 smp_acquire__after_ctrl_dep();
3398
3399 /*
3400 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
3401 * == 0), which means we need to do an enqueue, change p->state to
3402 * TASK_WAKING such that we can unlock p->pi_lock before doing the
3403 * enqueue, such as ttwu_queue_wakelist().
3404 */
3405 p->state = TASK_WAKING;
ecf7d01c 3406
c6e7bd7a
PZ
3407 /*
3408 * If the owning (remote) CPU is still in the middle of schedule() with
3409 * this task as prev, considering queueing p on the remote CPUs wake_list
3410 * which potentially sends an IPI instead of spinning on p->on_cpu to
3411 * let the waker make forward progress. This is safe because IRQs are
3412 * disabled and the IPI will deliver after on_cpu is cleared.
b6e13e85
PZ
3413 *
3414 * Ensure we load task_cpu(p) after p->on_cpu:
3415 *
3416 * set_task_cpu(p, cpu);
3417 * STORE p->cpu = @cpu
3418 * __schedule() (switch to task 'p')
3419 * LOCK rq->lock
3420 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu)
3421 * STORE p->on_cpu = 1 LOAD p->cpu
3422 *
3423 * to ensure we observe the correct CPU on which the task is currently
3424 * scheduling.
c6e7bd7a 3425 */
b6e13e85 3426 if (smp_load_acquire(&p->on_cpu) &&
739f70b4 3427 ttwu_queue_wakelist(p, task_cpu(p), wake_flags | WF_ON_CPU))
c6e7bd7a
PZ
3428 goto unlock;
3429
e9c84311 3430 /*
d1ccc66d 3431 * If the owning (remote) CPU is still in the middle of schedule() with
b19a888c 3432 * this task as prev, wait until it's done referencing the task.
b75a2253 3433 *
31cb1bc0 3434 * Pairs with the smp_store_release() in finish_task().
b75a2253
PZ
3435 *
3436 * This ensures that tasks getting woken will be fully ordered against
3437 * their previous state and preserve Program Order.
0970d299 3438 */
1f03e8d2 3439 smp_cond_load_acquire(&p->on_cpu, !VAL);
1da177e4 3440
3aef1551 3441 cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU);
f339b9dc 3442 if (task_cpu(p) != cpu) {
ec618b84
PZ
3443 if (p->in_iowait) {
3444 delayacct_blkio_end(p);
3445 atomic_dec(&task_rq(p)->nr_iowait);
3446 }
3447
f339b9dc 3448 wake_flags |= WF_MIGRATED;
eb414681 3449 psi_ttwu_dequeue(p);
e4a52bcb 3450 set_task_cpu(p, cpu);
f339b9dc 3451 }
b6e13e85
PZ
3452#else
3453 cpu = task_cpu(p);
1da177e4 3454#endif /* CONFIG_SMP */
1da177e4 3455
b5179ac7 3456 ttwu_queue(p, cpu, wake_flags);
aacedf26 3457unlock:
013fdb80 3458 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
aacedf26
PZ
3459out:
3460 if (success)
b6e13e85 3461 ttwu_stat(p, task_cpu(p), wake_flags);
e3d85487 3462 preempt_enable();
1da177e4
LT
3463
3464 return success;
3465}
3466
2beaf328
PM
3467/**
3468 * try_invoke_on_locked_down_task - Invoke a function on task in fixed state
1b7af295 3469 * @p: Process for which the function is to be invoked, can be @current.
2beaf328
PM
3470 * @func: Function to invoke.
3471 * @arg: Argument to function.
3472 *
3473 * If the specified task can be quickly locked into a definite state
3474 * (either sleeping or on a given runqueue), arrange to keep it in that
3475 * state while invoking @func(@arg). This function can use ->on_rq and
3476 * task_curr() to work out what the state is, if required. Given that
3477 * @func can be invoked with a runqueue lock held, it had better be quite
3478 * lightweight.
3479 *
3480 * Returns:
3481 * @false if the task slipped out from under the locks.
3482 * @true if the task was locked onto a runqueue or is sleeping.
3483 * However, @func can override this by returning @false.
3484 */
3485bool try_invoke_on_locked_down_task(struct task_struct *p, bool (*func)(struct task_struct *t, void *arg), void *arg)
3486{
2beaf328 3487 struct rq_flags rf;
1b7af295 3488 bool ret = false;
2beaf328
PM
3489 struct rq *rq;
3490
1b7af295 3491 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2beaf328
PM
3492 if (p->on_rq) {
3493 rq = __task_rq_lock(p, &rf);
3494 if (task_rq(p) == rq)
3495 ret = func(p, arg);
3496 rq_unlock(rq, &rf);
3497 } else {
3498 switch (p->state) {
3499 case TASK_RUNNING:
3500 case TASK_WAKING:
3501 break;
3502 default:
3503 smp_rmb(); // See smp_rmb() comment in try_to_wake_up().
3504 if (!p->on_rq)
3505 ret = func(p, arg);
3506 }
3507 }
1b7af295 3508 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
2beaf328
PM
3509 return ret;
3510}
3511
50fa610a
DH
3512/**
3513 * wake_up_process - Wake up a specific process
3514 * @p: The process to be woken up.
3515 *
3516 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
3517 * processes.
3518 *
3519 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a 3520 *
7696f991 3521 * This function executes a full memory barrier before accessing the task state.
50fa610a 3522 */
7ad5b3a5 3523int wake_up_process(struct task_struct *p)
1da177e4 3524{
9067ac85 3525 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 3526}
1da177e4
LT
3527EXPORT_SYMBOL(wake_up_process);
3528
7ad5b3a5 3529int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
3530{
3531 return try_to_wake_up(p, state, 0);
3532}
3533
1da177e4
LT
3534/*
3535 * Perform scheduler related setup for a newly forked process p.
3536 * p is forked by current.
dd41f596
IM
3537 *
3538 * __sched_fork() is basic setup used by init_idle() too:
3539 */
5e1576ed 3540static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 3541{
fd2f4419
PZ
3542 p->on_rq = 0;
3543
3544 p->se.on_rq = 0;
dd41f596
IM
3545 p->se.exec_start = 0;
3546 p->se.sum_exec_runtime = 0;
f6cf891c 3547 p->se.prev_sum_exec_runtime = 0;
6c594c21 3548 p->se.nr_migrations = 0;
da7a735e 3549 p->se.vruntime = 0;
fd2f4419 3550 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d 3551
ad936d86
BP
3552#ifdef CONFIG_FAIR_GROUP_SCHED
3553 p->se.cfs_rq = NULL;
3554#endif
3555
6cfb0d5d 3556#ifdef CONFIG_SCHEDSTATS
cb251765 3557 /* Even if schedstat is disabled, there should not be garbage */
41acab88 3558 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 3559#endif
476d139c 3560
aab03e05 3561 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 3562 init_dl_task_timer(&p->dl);
209a0cbd 3563 init_dl_inactive_task_timer(&p->dl);
a5e7be3b 3564 __dl_clear_params(p);
aab03e05 3565
fa717060 3566 INIT_LIST_HEAD(&p->rt.run_list);
ff77e468
PZ
3567 p->rt.timeout = 0;
3568 p->rt.time_slice = sched_rr_timeslice;
3569 p->rt.on_rq = 0;
3570 p->rt.on_list = 0;
476d139c 3571
e107be36
AK
3572#ifdef CONFIG_PREEMPT_NOTIFIERS
3573 INIT_HLIST_HEAD(&p->preempt_notifiers);
3574#endif
cbee9f88 3575
5e1f0f09
MG
3576#ifdef CONFIG_COMPACTION
3577 p->capture_control = NULL;
3578#endif
13784475 3579 init_numa_balancing(clone_flags, p);
a1488664 3580#ifdef CONFIG_SMP
8c4890d1 3581 p->wake_entry.u_flags = CSD_TYPE_TTWU;
6d337eab 3582 p->migration_pending = NULL;
a1488664 3583#endif
dd41f596
IM
3584}
3585
2a595721
SD
3586DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
3587
1a687c2e 3588#ifdef CONFIG_NUMA_BALANCING
c3b9bc5b 3589
1a687c2e
MG
3590void set_numabalancing_state(bool enabled)
3591{
3592 if (enabled)
2a595721 3593 static_branch_enable(&sched_numa_balancing);
1a687c2e 3594 else
2a595721 3595 static_branch_disable(&sched_numa_balancing);
1a687c2e 3596}
54a43d54
AK
3597
3598#ifdef CONFIG_PROC_SYSCTL
3599int sysctl_numa_balancing(struct ctl_table *table, int write,
32927393 3600 void *buffer, size_t *lenp, loff_t *ppos)
54a43d54
AK
3601{
3602 struct ctl_table t;
3603 int err;
2a595721 3604 int state = static_branch_likely(&sched_numa_balancing);
54a43d54
AK
3605
3606 if (write && !capable(CAP_SYS_ADMIN))
3607 return -EPERM;
3608
3609 t = *table;
3610 t.data = &state;
3611 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3612 if (err < 0)
3613 return err;
3614 if (write)
3615 set_numabalancing_state(state);
3616 return err;
3617}
3618#endif
3619#endif
dd41f596 3620
4698f88c
JP
3621#ifdef CONFIG_SCHEDSTATS
3622
cb251765 3623DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4698f88c 3624static bool __initdata __sched_schedstats = false;
cb251765 3625
cb251765
MG
3626static void set_schedstats(bool enabled)
3627{
3628 if (enabled)
3629 static_branch_enable(&sched_schedstats);
3630 else
3631 static_branch_disable(&sched_schedstats);
3632}
3633
3634void force_schedstat_enabled(void)
3635{
3636 if (!schedstat_enabled()) {
3637 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
3638 static_branch_enable(&sched_schedstats);
3639 }
3640}
3641
3642static int __init setup_schedstats(char *str)
3643{
3644 int ret = 0;
3645 if (!str)
3646 goto out;
3647
4698f88c
JP
3648 /*
3649 * This code is called before jump labels have been set up, so we can't
3650 * change the static branch directly just yet. Instead set a temporary
3651 * variable so init_schedstats() can do it later.
3652 */
cb251765 3653 if (!strcmp(str, "enable")) {
4698f88c 3654 __sched_schedstats = true;
cb251765
MG
3655 ret = 1;
3656 } else if (!strcmp(str, "disable")) {
4698f88c 3657 __sched_schedstats = false;
cb251765
MG
3658 ret = 1;
3659 }
3660out:
3661 if (!ret)
3662 pr_warn("Unable to parse schedstats=\n");
3663
3664 return ret;
3665}
3666__setup("schedstats=", setup_schedstats);
3667
4698f88c
JP
3668static void __init init_schedstats(void)
3669{
3670 set_schedstats(__sched_schedstats);
3671}
3672
cb251765 3673#ifdef CONFIG_PROC_SYSCTL
32927393
CH
3674int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
3675 size_t *lenp, loff_t *ppos)
cb251765
MG
3676{
3677 struct ctl_table t;
3678 int err;
3679 int state = static_branch_likely(&sched_schedstats);
3680
3681 if (write && !capable(CAP_SYS_ADMIN))
3682 return -EPERM;
3683
3684 t = *table;
3685 t.data = &state;
3686 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3687 if (err < 0)
3688 return err;
3689 if (write)
3690 set_schedstats(state);
3691 return err;
3692}
4698f88c
JP
3693#endif /* CONFIG_PROC_SYSCTL */
3694#else /* !CONFIG_SCHEDSTATS */
3695static inline void init_schedstats(void) {}
3696#endif /* CONFIG_SCHEDSTATS */
dd41f596
IM
3697
3698/*
3699 * fork()/clone()-time setup:
3700 */
aab03e05 3701int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 3702{
0122ec5b 3703 unsigned long flags;
dd41f596 3704
5e1576ed 3705 __sched_fork(clone_flags, p);
06b83b5f 3706 /*
7dc603c9 3707 * We mark the process as NEW here. This guarantees that
06b83b5f
PZ
3708 * nobody will actually run it, and a signal or other external
3709 * event cannot wake it up and insert it on the runqueue either.
3710 */
7dc603c9 3711 p->state = TASK_NEW;
dd41f596 3712
c350a04e
MG
3713 /*
3714 * Make sure we do not leak PI boosting priority to the child.
3715 */
3716 p->prio = current->normal_prio;
3717
e8f14172
PB
3718 uclamp_fork(p);
3719
b9dc29e7
MG
3720 /*
3721 * Revert to default priority/policy on fork if requested.
3722 */
3723 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 3724 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 3725 p->policy = SCHED_NORMAL;
6c697bdf 3726 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
3727 p->rt_priority = 0;
3728 } else if (PRIO_TO_NICE(p->static_prio) < 0)
3729 p->static_prio = NICE_TO_PRIO(0);
3730
3731 p->prio = p->normal_prio = __normal_prio(p);
9059393e 3732 set_load_weight(p, false);
6c697bdf 3733
b9dc29e7
MG
3734 /*
3735 * We don't need the reset flag anymore after the fork. It has
3736 * fulfilled its duty:
3737 */
3738 p->sched_reset_on_fork = 0;
3739 }
ca94c442 3740
af0fffd9 3741 if (dl_prio(p->prio))
aab03e05 3742 return -EAGAIN;
af0fffd9 3743 else if (rt_prio(p->prio))
aab03e05 3744 p->sched_class = &rt_sched_class;
af0fffd9 3745 else
2ddbf952 3746 p->sched_class = &fair_sched_class;
b29739f9 3747
7dc603c9 3748 init_entity_runnable_average(&p->se);
cd29fe6f 3749
86951599
PZ
3750 /*
3751 * The child is not yet in the pid-hash so no cgroup attach races,
3752 * and the cgroup is pinned to this child due to cgroup_fork()
3753 * is ran before sched_fork().
3754 *
3755 * Silence PROVE_RCU.
3756 */
0122ec5b 3757 raw_spin_lock_irqsave(&p->pi_lock, flags);
ce3614da 3758 rseq_migrate(p);
e210bffd 3759 /*
d1ccc66d 3760 * We're setting the CPU for the first time, we don't migrate,
e210bffd
PZ
3761 * so use __set_task_cpu().
3762 */
af0fffd9 3763 __set_task_cpu(p, smp_processor_id());
e210bffd
PZ
3764 if (p->sched_class->task_fork)
3765 p->sched_class->task_fork(p);
0122ec5b 3766 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 3767
f6db8347 3768#ifdef CONFIG_SCHED_INFO
dd41f596 3769 if (likely(sched_info_on()))
52f17b6c 3770 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 3771#endif
3ca7a440
PZ
3772#if defined(CONFIG_SMP)
3773 p->on_cpu = 0;
4866cde0 3774#endif
01028747 3775 init_task_preempt_count(p);
806c09a7 3776#ifdef CONFIG_SMP
917b627d 3777 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 3778 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 3779#endif
aab03e05 3780 return 0;
1da177e4
LT
3781}
3782
13685c4a
QY
3783void sched_post_fork(struct task_struct *p)
3784{
3785 uclamp_post_fork(p);
3786}
3787
332ac17e
DF
3788unsigned long to_ratio(u64 period, u64 runtime)
3789{
3790 if (runtime == RUNTIME_INF)
c52f14d3 3791 return BW_UNIT;
332ac17e
DF
3792
3793 /*
3794 * Doing this here saves a lot of checks in all
3795 * the calling paths, and returning zero seems
3796 * safe for them anyway.
3797 */
3798 if (period == 0)
3799 return 0;
3800
c52f14d3 3801 return div64_u64(runtime << BW_SHIFT, period);
332ac17e
DF
3802}
3803
1da177e4
LT
3804/*
3805 * wake_up_new_task - wake up a newly created task for the first time.
3806 *
3807 * This function will do some initial scheduler statistics housekeeping
3808 * that must be done for every newly created context, then puts the task
3809 * on the runqueue and wakes it.
3810 */
3e51e3ed 3811void wake_up_new_task(struct task_struct *p)
1da177e4 3812{
eb580751 3813 struct rq_flags rf;
dd41f596 3814 struct rq *rq;
fabf318e 3815
eb580751 3816 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
7dc603c9 3817 p->state = TASK_RUNNING;
fabf318e
PZ
3818#ifdef CONFIG_SMP
3819 /*
3820 * Fork balancing, do it here and not earlier because:
3bd37062 3821 * - cpus_ptr can change in the fork path
d1ccc66d 3822 * - any previously selected CPU might disappear through hotplug
e210bffd
PZ
3823 *
3824 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
3825 * as we're not fully set-up yet.
fabf318e 3826 */
32e839dd 3827 p->recent_used_cpu = task_cpu(p);
ce3614da 3828 rseq_migrate(p);
3aef1551 3829 __set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK));
0017d735 3830#endif
b7fa30c9 3831 rq = __task_rq_lock(p, &rf);
4126bad6 3832 update_rq_clock(rq);
d0fe0b9c 3833 post_init_entity_util_avg(p);
0017d735 3834
7a57f32a 3835 activate_task(rq, p, ENQUEUE_NOCLOCK);
fbd705a0 3836 trace_sched_wakeup_new(p);
a7558e01 3837 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 3838#ifdef CONFIG_SMP
0aaafaab
PZ
3839 if (p->sched_class->task_woken) {
3840 /*
b19a888c 3841 * Nothing relies on rq->lock after this, so it's fine to
0aaafaab
PZ
3842 * drop it.
3843 */
d8ac8971 3844 rq_unpin_lock(rq, &rf);
efbbd05a 3845 p->sched_class->task_woken(rq, p);
d8ac8971 3846 rq_repin_lock(rq, &rf);
0aaafaab 3847 }
9a897c5a 3848#endif
eb580751 3849 task_rq_unlock(rq, p, &rf);
1da177e4
LT
3850}
3851
e107be36
AK
3852#ifdef CONFIG_PREEMPT_NOTIFIERS
3853
b7203428 3854static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
1cde2930 3855
2ecd9d29
PZ
3856void preempt_notifier_inc(void)
3857{
b7203428 3858 static_branch_inc(&preempt_notifier_key);
2ecd9d29
PZ
3859}
3860EXPORT_SYMBOL_GPL(preempt_notifier_inc);
3861
3862void preempt_notifier_dec(void)
3863{
b7203428 3864 static_branch_dec(&preempt_notifier_key);
2ecd9d29
PZ
3865}
3866EXPORT_SYMBOL_GPL(preempt_notifier_dec);
3867
e107be36 3868/**
80dd99b3 3869 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 3870 * @notifier: notifier struct to register
e107be36
AK
3871 */
3872void preempt_notifier_register(struct preempt_notifier *notifier)
3873{
b7203428 3874 if (!static_branch_unlikely(&preempt_notifier_key))
2ecd9d29
PZ
3875 WARN(1, "registering preempt_notifier while notifiers disabled\n");
3876
e107be36
AK
3877 hlist_add_head(&notifier->link, &current->preempt_notifiers);
3878}
3879EXPORT_SYMBOL_GPL(preempt_notifier_register);
3880
3881/**
3882 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 3883 * @notifier: notifier struct to unregister
e107be36 3884 *
d84525a8 3885 * This is *not* safe to call from within a preemption notifier.
e107be36
AK
3886 */
3887void preempt_notifier_unregister(struct preempt_notifier *notifier)
3888{
3889 hlist_del(&notifier->link);
3890}
3891EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
3892
1cde2930 3893static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
3894{
3895 struct preempt_notifier *notifier;
e107be36 3896
b67bfe0d 3897 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
3898 notifier->ops->sched_in(notifier, raw_smp_processor_id());
3899}
3900
1cde2930
PZ
3901static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3902{
b7203428 3903 if (static_branch_unlikely(&preempt_notifier_key))
1cde2930
PZ
3904 __fire_sched_in_preempt_notifiers(curr);
3905}
3906
e107be36 3907static void
1cde2930
PZ
3908__fire_sched_out_preempt_notifiers(struct task_struct *curr,
3909 struct task_struct *next)
e107be36
AK
3910{
3911 struct preempt_notifier *notifier;
e107be36 3912
b67bfe0d 3913 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
3914 notifier->ops->sched_out(notifier, next);
3915}
3916
1cde2930
PZ
3917static __always_inline void
3918fire_sched_out_preempt_notifiers(struct task_struct *curr,
3919 struct task_struct *next)
3920{
b7203428 3921 if (static_branch_unlikely(&preempt_notifier_key))
1cde2930
PZ
3922 __fire_sched_out_preempt_notifiers(curr, next);
3923}
3924
6d6bc0ad 3925#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36 3926
1cde2930 3927static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
3928{
3929}
3930
1cde2930 3931static inline void
e107be36
AK
3932fire_sched_out_preempt_notifiers(struct task_struct *curr,
3933 struct task_struct *next)
3934{
3935}
3936
6d6bc0ad 3937#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 3938
31cb1bc0 3939static inline void prepare_task(struct task_struct *next)
3940{
3941#ifdef CONFIG_SMP
3942 /*
3943 * Claim the task as running, we do this before switching to it
3944 * such that any running task will have this set.
58877d34
PZ
3945 *
3946 * See the ttwu() WF_ON_CPU case and its ordering comment.
31cb1bc0 3947 */
58877d34 3948 WRITE_ONCE(next->on_cpu, 1);
31cb1bc0 3949#endif
3950}
3951
3952static inline void finish_task(struct task_struct *prev)
3953{
3954#ifdef CONFIG_SMP
3955 /*
58877d34
PZ
3956 * This must be the very last reference to @prev from this CPU. After
3957 * p->on_cpu is cleared, the task can be moved to a different CPU. We
3958 * must ensure this doesn't happen until the switch is completely
31cb1bc0 3959 * finished.
3960 *
3961 * In particular, the load of prev->state in finish_task_switch() must
3962 * happen before this.
3963 *
3964 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
3965 */
3966 smp_store_release(&prev->on_cpu, 0);
3967#endif
3968}
3969
565790d2
PZ
3970#ifdef CONFIG_SMP
3971
3972static void do_balance_callbacks(struct rq *rq, struct callback_head *head)
3973{
3974 void (*func)(struct rq *rq);
3975 struct callback_head *next;
3976
3977 lockdep_assert_held(&rq->lock);
3978
3979 while (head) {
3980 func = (void (*)(struct rq *))head->func;
3981 next = head->next;
3982 head->next = NULL;
3983 head = next;
3984
3985 func(rq);
3986 }
3987}
3988
ae792702
PZ
3989static void balance_push(struct rq *rq);
3990
3991struct callback_head balance_push_callback = {
3992 .next = NULL,
3993 .func = (void (*)(struct callback_head *))balance_push,
3994};
3995
565790d2
PZ
3996static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
3997{
3998 struct callback_head *head = rq->balance_callback;
3999
4000 lockdep_assert_held(&rq->lock);
ae792702 4001 if (head)
565790d2
PZ
4002 rq->balance_callback = NULL;
4003
4004 return head;
4005}
4006
4007static void __balance_callbacks(struct rq *rq)
4008{
4009 do_balance_callbacks(rq, splice_balance_callbacks(rq));
4010}
4011
4012static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
4013{
4014 unsigned long flags;
4015
4016 if (unlikely(head)) {
4017 raw_spin_lock_irqsave(&rq->lock, flags);
4018 do_balance_callbacks(rq, head);
4019 raw_spin_unlock_irqrestore(&rq->lock, flags);
4020 }
4021}
4022
4023#else
4024
4025static inline void __balance_callbacks(struct rq *rq)
4026{
4027}
4028
4029static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
4030{
4031 return NULL;
4032}
4033
4034static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
4035{
4036}
4037
4038#endif
4039
269d5992
PZ
4040static inline void
4041prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
31cb1bc0 4042{
269d5992
PZ
4043 /*
4044 * Since the runqueue lock will be released by the next
4045 * task (which is an invalid locking op but in the case
4046 * of the scheduler it's an obvious special-case), so we
4047 * do an early lockdep release here:
4048 */
4049 rq_unpin_lock(rq, rf);
5facae4f 4050 spin_release(&rq->lock.dep_map, _THIS_IP_);
31cb1bc0 4051#ifdef CONFIG_DEBUG_SPINLOCK
4052 /* this is a valid case when another task releases the spinlock */
269d5992 4053 rq->lock.owner = next;
31cb1bc0 4054#endif
269d5992
PZ
4055}
4056
4057static inline void finish_lock_switch(struct rq *rq)
4058{
31cb1bc0 4059 /*
4060 * If we are tracking spinlock dependencies then we have to
4061 * fix up the runqueue lock - which gets 'carried over' from
4062 * prev into current:
4063 */
4064 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
ae792702 4065 __balance_callbacks(rq);
31cb1bc0 4066 raw_spin_unlock_irq(&rq->lock);
4067}
4068
325ea10c
IM
4069/*
4070 * NOP if the arch has not defined these:
4071 */
4072
4073#ifndef prepare_arch_switch
4074# define prepare_arch_switch(next) do { } while (0)
4075#endif
4076
4077#ifndef finish_arch_post_lock_switch
4078# define finish_arch_post_lock_switch() do { } while (0)
4079#endif
4080
5fbda3ec
TG
4081static inline void kmap_local_sched_out(void)
4082{
4083#ifdef CONFIG_KMAP_LOCAL
4084 if (unlikely(current->kmap_ctrl.idx))
4085 __kmap_local_sched_out();
4086#endif
4087}
4088
4089static inline void kmap_local_sched_in(void)
4090{
4091#ifdef CONFIG_KMAP_LOCAL
4092 if (unlikely(current->kmap_ctrl.idx))
4093 __kmap_local_sched_in();
4094#endif
4095}
4096
4866cde0
NP
4097/**
4098 * prepare_task_switch - prepare to switch tasks
4099 * @rq: the runqueue preparing to switch
421cee29 4100 * @prev: the current task that is being switched out
4866cde0
NP
4101 * @next: the task we are going to switch to.
4102 *
4103 * This is called with the rq lock held and interrupts off. It must
4104 * be paired with a subsequent finish_task_switch after the context
4105 * switch.
4106 *
4107 * prepare_task_switch sets up locking and calls architecture specific
4108 * hooks.
4109 */
e107be36
AK
4110static inline void
4111prepare_task_switch(struct rq *rq, struct task_struct *prev,
4112 struct task_struct *next)
4866cde0 4113{
0ed557aa 4114 kcov_prepare_switch(prev);
43148951 4115 sched_info_switch(rq, prev, next);
fe4b04fa 4116 perf_event_task_sched_out(prev, next);
d7822b1e 4117 rseq_preempt(prev);
e107be36 4118 fire_sched_out_preempt_notifiers(prev, next);
5fbda3ec 4119 kmap_local_sched_out();
31cb1bc0 4120 prepare_task(next);
4866cde0
NP
4121 prepare_arch_switch(next);
4122}
4123
1da177e4
LT
4124/**
4125 * finish_task_switch - clean up after a task-switch
4126 * @prev: the thread we just switched away from.
4127 *
4866cde0
NP
4128 * finish_task_switch must be called after the context switch, paired
4129 * with a prepare_task_switch call before the context switch.
4130 * finish_task_switch will reconcile locking set up by prepare_task_switch,
4131 * and do any other architecture-specific cleanup actions.
1da177e4
LT
4132 *
4133 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 4134 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
4135 * with the lock held can cause deadlocks; see schedule() for
4136 * details.)
dfa50b60
ON
4137 *
4138 * The context switch have flipped the stack from under us and restored the
4139 * local variables which were saved when this task called schedule() in the
4140 * past. prev == current is still correct but we need to recalculate this_rq
4141 * because prev may have moved to another CPU.
1da177e4 4142 */
dfa50b60 4143static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
4144 __releases(rq->lock)
4145{
dfa50b60 4146 struct rq *rq = this_rq();
1da177e4 4147 struct mm_struct *mm = rq->prev_mm;
55a101f8 4148 long prev_state;
1da177e4 4149
609ca066
PZ
4150 /*
4151 * The previous task will have left us with a preempt_count of 2
4152 * because it left us after:
4153 *
4154 * schedule()
4155 * preempt_disable(); // 1
4156 * __schedule()
4157 * raw_spin_lock_irq(&rq->lock) // 2
4158 *
4159 * Also, see FORK_PREEMPT_COUNT.
4160 */
e2bf1c4b
PZ
4161 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
4162 "corrupted preempt_count: %s/%d/0x%x\n",
4163 current->comm, current->pid, preempt_count()))
4164 preempt_count_set(FORK_PREEMPT_COUNT);
609ca066 4165
1da177e4
LT
4166 rq->prev_mm = NULL;
4167
4168 /*
4169 * A task struct has one reference for the use as "current".
c394cc9f 4170 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
4171 * schedule one last time. The schedule call will never return, and
4172 * the scheduled task must drop that reference.
95913d97
PZ
4173 *
4174 * We must observe prev->state before clearing prev->on_cpu (in
31cb1bc0 4175 * finish_task), otherwise a concurrent wakeup can get prev
95913d97
PZ
4176 * running on another CPU and we could rave with its RUNNING -> DEAD
4177 * transition, resulting in a double drop.
1da177e4 4178 */
55a101f8 4179 prev_state = prev->state;
bf9fae9f 4180 vtime_task_switch(prev);
a8d757ef 4181 perf_event_task_sched_in(prev, current);
31cb1bc0 4182 finish_task(prev);
4183 finish_lock_switch(rq);
01f23e16 4184 finish_arch_post_lock_switch();
0ed557aa 4185 kcov_finish_switch(current);
5fbda3ec
TG
4186 /*
4187 * kmap_local_sched_out() is invoked with rq::lock held and
4188 * interrupts disabled. There is no requirement for that, but the
4189 * sched out code does not have an interrupt enabled section.
4190 * Restoring the maps on sched in does not require interrupts being
4191 * disabled either.
4192 */
4193 kmap_local_sched_in();
e8fa1362 4194
e107be36 4195 fire_sched_in_preempt_notifiers(current);
306e0604 4196 /*
70216e18
MD
4197 * When switching through a kernel thread, the loop in
4198 * membarrier_{private,global}_expedited() may have observed that
4199 * kernel thread and not issued an IPI. It is therefore possible to
4200 * schedule between user->kernel->user threads without passing though
4201 * switch_mm(). Membarrier requires a barrier after storing to
4202 * rq->curr, before returning to userspace, so provide them here:
4203 *
4204 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
4205 * provided by mmdrop(),
4206 * - a sync_core for SYNC_CORE.
306e0604 4207 */
70216e18
MD
4208 if (mm) {
4209 membarrier_mm_sync_core_before_usermode(mm);
1da177e4 4210 mmdrop(mm);
70216e18 4211 }
1cef1150
PZ
4212 if (unlikely(prev_state == TASK_DEAD)) {
4213 if (prev->sched_class->task_dead)
4214 prev->sched_class->task_dead(prev);
68f24b08 4215
1cef1150
PZ
4216 /*
4217 * Remove function-return probe instances associated with this
4218 * task and put them back on the free list.
4219 */
4220 kprobe_flush_task(prev);
4221
4222 /* Task is done with its stack. */
4223 put_task_stack(prev);
4224
0ff7b2cf 4225 put_task_struct_rcu_user(prev);
c6fd91f0 4226 }
99e5ada9 4227
de734f89 4228 tick_nohz_task_switch();
dfa50b60 4229 return rq;
1da177e4
LT
4230}
4231
4232/**
4233 * schedule_tail - first thing a freshly forked thread must call.
4234 * @prev: the thread we just switched away from.
4235 */
722a9f92 4236asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
4237 __releases(rq->lock)
4238{
1a43a14a 4239 struct rq *rq;
da19ab51 4240
609ca066
PZ
4241 /*
4242 * New tasks start with FORK_PREEMPT_COUNT, see there and
4243 * finish_task_switch() for details.
4244 *
4245 * finish_task_switch() will drop rq->lock() and lower preempt_count
4246 * and the preempt_enable() will end up enabling preemption (on
4247 * PREEMPT_COUNT kernels).
4248 */
4249
dfa50b60 4250 rq = finish_task_switch(prev);
1a43a14a 4251 preempt_enable();
70b97a7f 4252
1da177e4 4253 if (current->set_child_tid)
b488893a 4254 put_user(task_pid_vnr(current), current->set_child_tid);
088fe47c
EB
4255
4256 calculate_sigpending();
1da177e4
LT
4257}
4258
4259/*
dfa50b60 4260 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 4261 */
04936948 4262static __always_inline struct rq *
70b97a7f 4263context_switch(struct rq *rq, struct task_struct *prev,
d8ac8971 4264 struct task_struct *next, struct rq_flags *rf)
1da177e4 4265{
e107be36 4266 prepare_task_switch(rq, prev, next);
fe4b04fa 4267
9226d125
ZA
4268 /*
4269 * For paravirt, this is coupled with an exit in switch_to to
4270 * combine the page table reload and the switch backend into
4271 * one hypercall.
4272 */
224101ed 4273 arch_start_context_switch(prev);
9226d125 4274
306e0604 4275 /*
139d025c
PZ
4276 * kernel -> kernel lazy + transfer active
4277 * user -> kernel lazy + mmgrab() active
4278 *
4279 * kernel -> user switch + mmdrop() active
4280 * user -> user switch
306e0604 4281 */
139d025c
PZ
4282 if (!next->mm) { // to kernel
4283 enter_lazy_tlb(prev->active_mm, next);
4284
4285 next->active_mm = prev->active_mm;
4286 if (prev->mm) // from user
4287 mmgrab(prev->active_mm);
4288 else
4289 prev->active_mm = NULL;
4290 } else { // to user
227a4aad 4291 membarrier_switch_mm(rq, prev->active_mm, next->mm);
139d025c
PZ
4292 /*
4293 * sys_membarrier() requires an smp_mb() between setting
227a4aad 4294 * rq->curr / membarrier_switch_mm() and returning to userspace.
139d025c
PZ
4295 *
4296 * The below provides this either through switch_mm(), or in
4297 * case 'prev->active_mm == next->mm' through
4298 * finish_task_switch()'s mmdrop().
4299 */
139d025c 4300 switch_mm_irqs_off(prev->active_mm, next->mm, next);
1da177e4 4301
139d025c
PZ
4302 if (!prev->mm) { // from kernel
4303 /* will mmdrop() in finish_task_switch(). */
4304 rq->prev_mm = prev->active_mm;
4305 prev->active_mm = NULL;
4306 }
1da177e4 4307 }
92509b73 4308
cb42c9a3 4309 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
92509b73 4310
269d5992 4311 prepare_lock_switch(rq, next, rf);
1da177e4
LT
4312
4313 /* Here we just switch the register state and the stack. */
4314 switch_to(prev, next, prev);
dd41f596 4315 barrier();
dfa50b60
ON
4316
4317 return finish_task_switch(prev);
1da177e4
LT
4318}
4319
4320/*
1c3e8264 4321 * nr_running and nr_context_switches:
1da177e4
LT
4322 *
4323 * externally visible scheduler statistics: current number of runnable
1c3e8264 4324 * threads, total number of context switches performed since bootup.
1da177e4
LT
4325 */
4326unsigned long nr_running(void)
4327{
4328 unsigned long i, sum = 0;
4329
4330 for_each_online_cpu(i)
4331 sum += cpu_rq(i)->nr_running;
4332
4333 return sum;
f711f609 4334}
1da177e4 4335
2ee507c4 4336/*
d1ccc66d 4337 * Check if only the current task is running on the CPU.
00cc1633
DD
4338 *
4339 * Caution: this function does not check that the caller has disabled
4340 * preemption, thus the result might have a time-of-check-to-time-of-use
4341 * race. The caller is responsible to use it correctly, for example:
4342 *
dfcb245e 4343 * - from a non-preemptible section (of course)
00cc1633
DD
4344 *
4345 * - from a thread that is bound to a single CPU
4346 *
4347 * - in a loop with very short iterations (e.g. a polling loop)
2ee507c4
TC
4348 */
4349bool single_task_running(void)
4350{
00cc1633 4351 return raw_rq()->nr_running == 1;
2ee507c4
TC
4352}
4353EXPORT_SYMBOL(single_task_running);
4354
1da177e4 4355unsigned long long nr_context_switches(void)
46cb4b7c 4356{
cc94abfc
SR
4357 int i;
4358 unsigned long long sum = 0;
46cb4b7c 4359
0a945022 4360 for_each_possible_cpu(i)
1da177e4 4361 sum += cpu_rq(i)->nr_switches;
46cb4b7c 4362
1da177e4
LT
4363 return sum;
4364}
483b4ee6 4365
145d952a
DL
4366/*
4367 * Consumers of these two interfaces, like for example the cpuidle menu
4368 * governor, are using nonsensical data. Preferring shallow idle state selection
4369 * for a CPU that has IO-wait which might not even end up running the task when
4370 * it does become runnable.
4371 */
4372
4373unsigned long nr_iowait_cpu(int cpu)
4374{
4375 return atomic_read(&cpu_rq(cpu)->nr_iowait);
4376}
4377
e33a9bba 4378/*
b19a888c 4379 * IO-wait accounting, and how it's mostly bollocks (on SMP).
e33a9bba
TH
4380 *
4381 * The idea behind IO-wait account is to account the idle time that we could
4382 * have spend running if it were not for IO. That is, if we were to improve the
4383 * storage performance, we'd have a proportional reduction in IO-wait time.
4384 *
4385 * This all works nicely on UP, where, when a task blocks on IO, we account
4386 * idle time as IO-wait, because if the storage were faster, it could've been
4387 * running and we'd not be idle.
4388 *
4389 * This has been extended to SMP, by doing the same for each CPU. This however
4390 * is broken.
4391 *
4392 * Imagine for instance the case where two tasks block on one CPU, only the one
4393 * CPU will have IO-wait accounted, while the other has regular idle. Even
4394 * though, if the storage were faster, both could've ran at the same time,
4395 * utilising both CPUs.
4396 *
4397 * This means, that when looking globally, the current IO-wait accounting on
4398 * SMP is a lower bound, by reason of under accounting.
4399 *
4400 * Worse, since the numbers are provided per CPU, they are sometimes
4401 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
4402 * associated with any one particular CPU, it can wake to another CPU than it
4403 * blocked on. This means the per CPU IO-wait number is meaningless.
4404 *
4405 * Task CPU affinities can make all that even more 'interesting'.
4406 */
4407
1da177e4
LT
4408unsigned long nr_iowait(void)
4409{
4410 unsigned long i, sum = 0;
483b4ee6 4411
0a945022 4412 for_each_possible_cpu(i)
145d952a 4413 sum += nr_iowait_cpu(i);
46cb4b7c 4414
1da177e4
LT
4415 return sum;
4416}
483b4ee6 4417
dd41f596 4418#ifdef CONFIG_SMP
8a0be9ef 4419
46cb4b7c 4420/*
38022906
PZ
4421 * sched_exec - execve() is a valuable balancing opportunity, because at
4422 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 4423 */
38022906 4424void sched_exec(void)
46cb4b7c 4425{
38022906 4426 struct task_struct *p = current;
1da177e4 4427 unsigned long flags;
0017d735 4428 int dest_cpu;
46cb4b7c 4429
8f42ced9 4430 raw_spin_lock_irqsave(&p->pi_lock, flags);
3aef1551 4431 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
0017d735
PZ
4432 if (dest_cpu == smp_processor_id())
4433 goto unlock;
38022906 4434
8f42ced9 4435 if (likely(cpu_active(dest_cpu))) {
969c7921 4436 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 4437
8f42ced9
PZ
4438 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4439 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
4440 return;
4441 }
0017d735 4442unlock:
8f42ced9 4443 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 4444}
dd41f596 4445
1da177e4
LT
4446#endif
4447
1da177e4 4448DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 4449DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
4450
4451EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 4452EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 4453
6075620b
GG
4454/*
4455 * The function fair_sched_class.update_curr accesses the struct curr
4456 * and its field curr->exec_start; when called from task_sched_runtime(),
4457 * we observe a high rate of cache misses in practice.
4458 * Prefetching this data results in improved performance.
4459 */
4460static inline void prefetch_curr_exec_start(struct task_struct *p)
4461{
4462#ifdef CONFIG_FAIR_GROUP_SCHED
4463 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
4464#else
4465 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
4466#endif
4467 prefetch(curr);
4468 prefetch(&curr->exec_start);
4469}
4470
c5f8d995
HS
4471/*
4472 * Return accounted runtime for the task.
4473 * In case the task is currently running, return the runtime plus current's
4474 * pending runtime that have not been accounted yet.
4475 */
4476unsigned long long task_sched_runtime(struct task_struct *p)
4477{
eb580751 4478 struct rq_flags rf;
c5f8d995 4479 struct rq *rq;
6e998916 4480 u64 ns;
c5f8d995 4481
911b2898
PZ
4482#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
4483 /*
97fb7a0a 4484 * 64-bit doesn't need locks to atomically read a 64-bit value.
911b2898
PZ
4485 * So we have a optimization chance when the task's delta_exec is 0.
4486 * Reading ->on_cpu is racy, but this is ok.
4487 *
d1ccc66d
IM
4488 * If we race with it leaving CPU, we'll take a lock. So we're correct.
4489 * If we race with it entering CPU, unaccounted time is 0. This is
911b2898 4490 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
4491 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
4492 * been accounted, so we're correct here as well.
911b2898 4493 */
da0c1e65 4494 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
4495 return p->se.sum_exec_runtime;
4496#endif
4497
eb580751 4498 rq = task_rq_lock(p, &rf);
6e998916
SG
4499 /*
4500 * Must be ->curr _and_ ->on_rq. If dequeued, we would
4501 * project cycles that may never be accounted to this
4502 * thread, breaking clock_gettime().
4503 */
4504 if (task_current(rq, p) && task_on_rq_queued(p)) {
6075620b 4505 prefetch_curr_exec_start(p);
6e998916
SG
4506 update_rq_clock(rq);
4507 p->sched_class->update_curr(rq);
4508 }
4509 ns = p->se.sum_exec_runtime;
eb580751 4510 task_rq_unlock(rq, p, &rf);
c5f8d995
HS
4511
4512 return ns;
4513}
48f24c4d 4514
7835b98b
CL
4515/*
4516 * This function gets called by the timer code, with HZ frequency.
4517 * We call it with interrupts disabled.
7835b98b
CL
4518 */
4519void scheduler_tick(void)
4520{
7835b98b
CL
4521 int cpu = smp_processor_id();
4522 struct rq *rq = cpu_rq(cpu);
dd41f596 4523 struct task_struct *curr = rq->curr;
8a8c69c3 4524 struct rq_flags rf;
b4eccf5f 4525 unsigned long thermal_pressure;
3e51f33f 4526
1567c3e3 4527 arch_scale_freq_tick();
3e51f33f 4528 sched_clock_tick();
dd41f596 4529
8a8c69c3
PZ
4530 rq_lock(rq, &rf);
4531
3e51f33f 4532 update_rq_clock(rq);
b4eccf5f 4533 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
05289b90 4534 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
fa85ae24 4535 curr->sched_class->task_tick(rq, curr, 0);
3289bdb4 4536 calc_global_load_tick(rq);
eb414681 4537 psi_task_tick(rq);
8a8c69c3
PZ
4538
4539 rq_unlock(rq, &rf);
7835b98b 4540
e9d2b064 4541 perf_event_task_tick();
e220d2dc 4542
e418e1c2 4543#ifdef CONFIG_SMP
6eb57e0d 4544 rq->idle_balance = idle_cpu(cpu);
7caff66f 4545 trigger_load_balance(rq);
e418e1c2 4546#endif
1da177e4
LT
4547}
4548
265f22a9 4549#ifdef CONFIG_NO_HZ_FULL
d84b3131
FW
4550
4551struct tick_work {
4552 int cpu;
b55bd585 4553 atomic_t state;
d84b3131
FW
4554 struct delayed_work work;
4555};
b55bd585
PM
4556/* Values for ->state, see diagram below. */
4557#define TICK_SCHED_REMOTE_OFFLINE 0
4558#define TICK_SCHED_REMOTE_OFFLINING 1
4559#define TICK_SCHED_REMOTE_RUNNING 2
4560
4561/*
4562 * State diagram for ->state:
4563 *
4564 *
4565 * TICK_SCHED_REMOTE_OFFLINE
4566 * | ^
4567 * | |
4568 * | | sched_tick_remote()
4569 * | |
4570 * | |
4571 * +--TICK_SCHED_REMOTE_OFFLINING
4572 * | ^
4573 * | |
4574 * sched_tick_start() | | sched_tick_stop()
4575 * | |
4576 * V |
4577 * TICK_SCHED_REMOTE_RUNNING
4578 *
4579 *
4580 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
4581 * and sched_tick_start() are happy to leave the state in RUNNING.
4582 */
d84b3131
FW
4583
4584static struct tick_work __percpu *tick_work_cpu;
4585
4586static void sched_tick_remote(struct work_struct *work)
4587{
4588 struct delayed_work *dwork = to_delayed_work(work);
4589 struct tick_work *twork = container_of(dwork, struct tick_work, work);
4590 int cpu = twork->cpu;
4591 struct rq *rq = cpu_rq(cpu);
d9c0ffca 4592 struct task_struct *curr;
d84b3131 4593 struct rq_flags rf;
d9c0ffca 4594 u64 delta;
b55bd585 4595 int os;
d84b3131
FW
4596
4597 /*
4598 * Handle the tick only if it appears the remote CPU is running in full
4599 * dynticks mode. The check is racy by nature, but missing a tick or
4600 * having one too much is no big deal because the scheduler tick updates
4601 * statistics and checks timeslices in a time-independent way, regardless
4602 * of when exactly it is running.
4603 */
488603b8 4604 if (!tick_nohz_tick_stopped_cpu(cpu))
d9c0ffca 4605 goto out_requeue;
d84b3131 4606
d9c0ffca
FW
4607 rq_lock_irq(rq, &rf);
4608 curr = rq->curr;
488603b8 4609 if (cpu_is_offline(cpu))
d9c0ffca 4610 goto out_unlock;
d84b3131 4611
d9c0ffca 4612 update_rq_clock(rq);
d9c0ffca 4613
488603b8
SW
4614 if (!is_idle_task(curr)) {
4615 /*
4616 * Make sure the next tick runs within a reasonable
4617 * amount of time.
4618 */
4619 delta = rq_clock_task(rq) - curr->se.exec_start;
4620 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
4621 }
d9c0ffca
FW
4622 curr->sched_class->task_tick(rq, curr, 0);
4623
ebc0f83c 4624 calc_load_nohz_remote(rq);
d9c0ffca
FW
4625out_unlock:
4626 rq_unlock_irq(rq, &rf);
d9c0ffca 4627out_requeue:
ebc0f83c 4628
d84b3131
FW
4629 /*
4630 * Run the remote tick once per second (1Hz). This arbitrary
4631 * frequency is large enough to avoid overload but short enough
b55bd585
PM
4632 * to keep scheduler internal stats reasonably up to date. But
4633 * first update state to reflect hotplug activity if required.
d84b3131 4634 */
b55bd585
PM
4635 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
4636 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
4637 if (os == TICK_SCHED_REMOTE_RUNNING)
4638 queue_delayed_work(system_unbound_wq, dwork, HZ);
d84b3131
FW
4639}
4640
4641static void sched_tick_start(int cpu)
4642{
b55bd585 4643 int os;
d84b3131
FW
4644 struct tick_work *twork;
4645
4646 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
4647 return;
4648
4649 WARN_ON_ONCE(!tick_work_cpu);
4650
4651 twork = per_cpu_ptr(tick_work_cpu, cpu);
b55bd585
PM
4652 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
4653 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
4654 if (os == TICK_SCHED_REMOTE_OFFLINE) {
4655 twork->cpu = cpu;
4656 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
4657 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
4658 }
d84b3131
FW
4659}
4660
4661#ifdef CONFIG_HOTPLUG_CPU
4662static void sched_tick_stop(int cpu)
4663{
4664 struct tick_work *twork;
b55bd585 4665 int os;
d84b3131
FW
4666
4667 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
4668 return;
4669
4670 WARN_ON_ONCE(!tick_work_cpu);
4671
4672 twork = per_cpu_ptr(tick_work_cpu, cpu);
b55bd585
PM
4673 /* There cannot be competing actions, but don't rely on stop-machine. */
4674 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
4675 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
4676 /* Don't cancel, as this would mess up the state machine. */
d84b3131
FW
4677}
4678#endif /* CONFIG_HOTPLUG_CPU */
4679
4680int __init sched_tick_offload_init(void)
4681{
4682 tick_work_cpu = alloc_percpu(struct tick_work);
4683 BUG_ON(!tick_work_cpu);
d84b3131
FW
4684 return 0;
4685}
4686
4687#else /* !CONFIG_NO_HZ_FULL */
4688static inline void sched_tick_start(int cpu) { }
4689static inline void sched_tick_stop(int cpu) { }
265f22a9 4690#endif
1da177e4 4691
c1a280b6 4692#if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
c3bc8fd6 4693 defined(CONFIG_TRACE_PREEMPT_TOGGLE))
47252cfb
SR
4694/*
4695 * If the value passed in is equal to the current preempt count
4696 * then we just disabled preemption. Start timing the latency.
4697 */
4698static inline void preempt_latency_start(int val)
4699{
4700 if (preempt_count() == val) {
4701 unsigned long ip = get_lock_parent_ip();
4702#ifdef CONFIG_DEBUG_PREEMPT
4703 current->preempt_disable_ip = ip;
4704#endif
4705 trace_preempt_off(CALLER_ADDR0, ip);
4706 }
4707}
7e49fcce 4708
edafe3a5 4709void preempt_count_add(int val)
1da177e4 4710{
6cd8a4bb 4711#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4712 /*
4713 * Underflow?
4714 */
9a11b49a
IM
4715 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4716 return;
6cd8a4bb 4717#endif
bdb43806 4718 __preempt_count_add(val);
6cd8a4bb 4719#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4720 /*
4721 * Spinlock count overflowing soon?
4722 */
33859f7f
MOS
4723 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4724 PREEMPT_MASK - 10);
6cd8a4bb 4725#endif
47252cfb 4726 preempt_latency_start(val);
1da177e4 4727}
bdb43806 4728EXPORT_SYMBOL(preempt_count_add);
edafe3a5 4729NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 4730
47252cfb
SR
4731/*
4732 * If the value passed in equals to the current preempt count
4733 * then we just enabled preemption. Stop timing the latency.
4734 */
4735static inline void preempt_latency_stop(int val)
4736{
4737 if (preempt_count() == val)
4738 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
4739}
4740
edafe3a5 4741void preempt_count_sub(int val)
1da177e4 4742{
6cd8a4bb 4743#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4744 /*
4745 * Underflow?
4746 */
01e3eb82 4747 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 4748 return;
1da177e4
LT
4749 /*
4750 * Is the spinlock portion underflowing?
4751 */
9a11b49a
IM
4752 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4753 !(preempt_count() & PREEMPT_MASK)))
4754 return;
6cd8a4bb 4755#endif
9a11b49a 4756
47252cfb 4757 preempt_latency_stop(val);
bdb43806 4758 __preempt_count_sub(val);
1da177e4 4759}
bdb43806 4760EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 4761NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4 4762
47252cfb
SR
4763#else
4764static inline void preempt_latency_start(int val) { }
4765static inline void preempt_latency_stop(int val) { }
1da177e4
LT
4766#endif
4767
59ddbcb2
IM
4768static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
4769{
4770#ifdef CONFIG_DEBUG_PREEMPT
4771 return p->preempt_disable_ip;
4772#else
4773 return 0;
4774#endif
4775}
4776
1da177e4 4777/*
dd41f596 4778 * Print scheduling while atomic bug:
1da177e4 4779 */
dd41f596 4780static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4781{
d1c6d149
VN
4782 /* Save this before calling printk(), since that will clobber it */
4783 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
4784
664dfa65
DJ
4785 if (oops_in_progress)
4786 return;
4787
3df0fc5b
PZ
4788 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4789 prev->comm, prev->pid, preempt_count());
838225b4 4790
dd41f596 4791 debug_show_held_locks(prev);
e21f5b15 4792 print_modules();
dd41f596
IM
4793 if (irqs_disabled())
4794 print_irqtrace_events(prev);
d1c6d149
VN
4795 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
4796 && in_atomic_preempt_off()) {
8f47b187 4797 pr_err("Preemption disabled at:");
2062a4e8 4798 print_ip_sym(KERN_ERR, preempt_disable_ip);
8f47b187 4799 }
748c7201
DBO
4800 if (panic_on_warn)
4801 panic("scheduling while atomic\n");
4802
6135fc1e 4803 dump_stack();
373d4d09 4804 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 4805}
1da177e4 4806
dd41f596
IM
4807/*
4808 * Various schedule()-time debugging checks and statistics:
4809 */
312364f3 4810static inline void schedule_debug(struct task_struct *prev, bool preempt)
dd41f596 4811{
0d9e2632 4812#ifdef CONFIG_SCHED_STACK_END_CHECK
29d64551
JH
4813 if (task_stack_end_corrupted(prev))
4814 panic("corrupted stack end detected inside scheduler\n");
88485be5
WD
4815
4816 if (task_scs_end_corrupted(prev))
4817 panic("corrupted shadow stack detected inside scheduler\n");
0d9e2632 4818#endif
b99def8b 4819
312364f3
DV
4820#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
4821 if (!preempt && prev->state && prev->non_block_count) {
4822 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
4823 prev->comm, prev->pid, prev->non_block_count);
4824 dump_stack();
4825 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
4826 }
4827#endif
4828
1dc0fffc 4829 if (unlikely(in_atomic_preempt_off())) {
dd41f596 4830 __schedule_bug(prev);
1dc0fffc
PZ
4831 preempt_count_set(PREEMPT_DISABLED);
4832 }
b3fbab05 4833 rcu_sleep_check();
9f68b5b7 4834 SCHED_WARN_ON(ct_state() == CONTEXT_USER);
dd41f596 4835
1da177e4
LT
4836 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4837
ae92882e 4838 schedstat_inc(this_rq()->sched_count);
dd41f596
IM
4839}
4840
457d1f46
CY
4841static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
4842 struct rq_flags *rf)
4843{
4844#ifdef CONFIG_SMP
4845 const struct sched_class *class;
4846 /*
4847 * We must do the balancing pass before put_prev_task(), such
4848 * that when we release the rq->lock the task is in the same
4849 * state as before we took rq->lock.
4850 *
4851 * We can terminate the balance pass as soon as we know there is
4852 * a runnable task of @class priority or higher.
4853 */
4854 for_class_range(class, prev->sched_class, &idle_sched_class) {
4855 if (class->balance(rq, prev, rf))
4856 break;
4857 }
4858#endif
4859
4860 put_prev_task(rq, prev);
4861}
4862
dd41f596
IM
4863/*
4864 * Pick up the highest-prio task:
4865 */
4866static inline struct task_struct *
d8ac8971 4867pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
dd41f596 4868{
49ee5768 4869 const struct sched_class *class;
dd41f596 4870 struct task_struct *p;
1da177e4
LT
4871
4872 /*
0ba87bb2
PZ
4873 * Optimization: we know that if all tasks are in the fair class we can
4874 * call that function directly, but only if the @prev task wasn't of a
b19a888c 4875 * higher scheduling class, because otherwise those lose the
0ba87bb2 4876 * opportunity to pull in more work from other CPUs.
1da177e4 4877 */
aa93cd53 4878 if (likely(prev->sched_class <= &fair_sched_class &&
0ba87bb2
PZ
4879 rq->nr_running == rq->cfs.h_nr_running)) {
4880
5d7d6056 4881 p = pick_next_task_fair(rq, prev, rf);
6ccdc84b 4882 if (unlikely(p == RETRY_TASK))
67692435 4883 goto restart;
6ccdc84b 4884
d1ccc66d 4885 /* Assumes fair_sched_class->next == idle_sched_class */
5d7d6056 4886 if (!p) {
f488e105 4887 put_prev_task(rq, prev);
98c2f700 4888 p = pick_next_task_idle(rq);
f488e105 4889 }
6ccdc84b
PZ
4890
4891 return p;
1da177e4
LT
4892 }
4893
67692435 4894restart:
457d1f46 4895 put_prev_task_balance(rq, prev, rf);
67692435 4896
34f971f6 4897 for_each_class(class) {
98c2f700 4898 p = class->pick_next_task(rq);
67692435 4899 if (p)
dd41f596 4900 return p;
dd41f596 4901 }
34f971f6 4902
d1ccc66d
IM
4903 /* The idle class should always have a runnable task: */
4904 BUG();
dd41f596 4905}
1da177e4 4906
dd41f596 4907/*
c259e01a 4908 * __schedule() is the main scheduler function.
edde96ea
PE
4909 *
4910 * The main means of driving the scheduler and thus entering this function are:
4911 *
4912 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
4913 *
4914 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
4915 * paths. For example, see arch/x86/entry_64.S.
4916 *
4917 * To drive preemption between tasks, the scheduler sets the flag in timer
4918 * interrupt handler scheduler_tick().
4919 *
4920 * 3. Wakeups don't really cause entry into schedule(). They add a
4921 * task to the run-queue and that's it.
4922 *
4923 * Now, if the new task added to the run-queue preempts the current
4924 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
4925 * called on the nearest possible occasion:
4926 *
c1a280b6 4927 * - If the kernel is preemptible (CONFIG_PREEMPTION=y):
edde96ea
PE
4928 *
4929 * - in syscall or exception context, at the next outmost
4930 * preempt_enable(). (this might be as soon as the wake_up()'s
4931 * spin_unlock()!)
4932 *
4933 * - in IRQ context, return from interrupt-handler to
4934 * preemptible context
4935 *
c1a280b6 4936 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
edde96ea
PE
4937 * then at the next:
4938 *
4939 * - cond_resched() call
4940 * - explicit schedule() call
4941 * - return from syscall or exception to user-space
4942 * - return from interrupt-handler to user-space
bfd9b2b5 4943 *
b30f0e3f 4944 * WARNING: must be called with preemption disabled!
dd41f596 4945 */
499d7955 4946static void __sched notrace __schedule(bool preempt)
dd41f596
IM
4947{
4948 struct task_struct *prev, *next;
67ca7bde 4949 unsigned long *switch_count;
dbfb089d 4950 unsigned long prev_state;
d8ac8971 4951 struct rq_flags rf;
dd41f596 4952 struct rq *rq;
31656519 4953 int cpu;
dd41f596 4954
dd41f596
IM
4955 cpu = smp_processor_id();
4956 rq = cpu_rq(cpu);
dd41f596 4957 prev = rq->curr;
dd41f596 4958
312364f3 4959 schedule_debug(prev, preempt);
1da177e4 4960
e0ee463c 4961 if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
f333fdc9 4962 hrtick_clear(rq);
8f4d37ec 4963
46a5d164 4964 local_irq_disable();
bcbfdd01 4965 rcu_note_context_switch(preempt);
46a5d164 4966
e0acd0a6
ON
4967 /*
4968 * Make sure that signal_pending_state()->signal_pending() below
4969 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
dbfb089d
PZ
4970 * done by the caller to avoid the race with signal_wake_up():
4971 *
4972 * __set_current_state(@state) signal_wake_up()
4973 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING)
4974 * wake_up_state(p, state)
4975 * LOCK rq->lock LOCK p->pi_state
4976 * smp_mb__after_spinlock() smp_mb__after_spinlock()
4977 * if (signal_pending_state()) if (p->state & @state)
306e0604 4978 *
dbfb089d 4979 * Also, the membarrier system call requires a full memory barrier
306e0604 4980 * after coming from user-space, before storing to rq->curr.
e0acd0a6 4981 */
8a8c69c3 4982 rq_lock(rq, &rf);
d89e588c 4983 smp_mb__after_spinlock();
1da177e4 4984
d1ccc66d
IM
4985 /* Promote REQ to ACT */
4986 rq->clock_update_flags <<= 1;
bce4dc80 4987 update_rq_clock(rq);
9edfbfed 4988
246d86b5 4989 switch_count = &prev->nivcsw;
d136122f 4990
dbfb089d 4991 /*
d136122f
PZ
4992 * We must load prev->state once (task_struct::state is volatile), such
4993 * that:
4994 *
4995 * - we form a control dependency vs deactivate_task() below.
4996 * - ptrace_{,un}freeze_traced() can change ->state underneath us.
dbfb089d 4997 */
d136122f
PZ
4998 prev_state = prev->state;
4999 if (!preempt && prev_state) {
dbfb089d 5000 if (signal_pending_state(prev_state, prev)) {
1da177e4 5001 prev->state = TASK_RUNNING;
21aa9af0 5002 } else {
dbfb089d
PZ
5003 prev->sched_contributes_to_load =
5004 (prev_state & TASK_UNINTERRUPTIBLE) &&
5005 !(prev_state & TASK_NOLOAD) &&
5006 !(prev->flags & PF_FROZEN);
5007
5008 if (prev->sched_contributes_to_load)
5009 rq->nr_uninterruptible++;
5010
5011 /*
5012 * __schedule() ttwu()
d136122f
PZ
5013 * prev_state = prev->state; if (p->on_rq && ...)
5014 * if (prev_state) goto out;
5015 * p->on_rq = 0; smp_acquire__after_ctrl_dep();
5016 * p->state = TASK_WAKING
5017 *
5018 * Where __schedule() and ttwu() have matching control dependencies.
dbfb089d
PZ
5019 *
5020 * After this, schedule() must not care about p->state any more.
5021 */
bce4dc80 5022 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
2acca55e 5023
e33a9bba
TH
5024 if (prev->in_iowait) {
5025 atomic_inc(&rq->nr_iowait);
5026 delayacct_blkio_start();
5027 }
21aa9af0 5028 }
dd41f596 5029 switch_count = &prev->nvcsw;
1da177e4
LT
5030 }
5031
d8ac8971 5032 next = pick_next_task(rq, prev, &rf);
f26f9aff 5033 clear_tsk_need_resched(prev);
f27dde8d 5034 clear_preempt_need_resched();
1da177e4 5035
1da177e4 5036 if (likely(prev != next)) {
1da177e4 5037 rq->nr_switches++;
5311a98f
EB
5038 /*
5039 * RCU users of rcu_dereference(rq->curr) may not see
5040 * changes to task_struct made by pick_next_task().
5041 */
5042 RCU_INIT_POINTER(rq->curr, next);
22e4ebb9
MD
5043 /*
5044 * The membarrier system call requires each architecture
5045 * to have a full memory barrier after updating
306e0604
MD
5046 * rq->curr, before returning to user-space.
5047 *
5048 * Here are the schemes providing that barrier on the
5049 * various architectures:
5050 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
5051 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
5052 * - finish_lock_switch() for weakly-ordered
5053 * architectures where spin_unlock is a full barrier,
5054 * - switch_to() for arm64 (weakly-ordered, spin_unlock
5055 * is a RELEASE barrier),
22e4ebb9 5056 */
1da177e4
LT
5057 ++*switch_count;
5058
af449901 5059 migrate_disable_switch(rq, prev);
b05e75d6
JW
5060 psi_sched_switch(prev, next, !task_on_rq_queued(prev));
5061
c73464b1 5062 trace_sched_switch(preempt, prev, next);
d1ccc66d
IM
5063
5064 /* Also unlocks the rq: */
5065 rq = context_switch(rq, prev, next, &rf);
cbce1a68 5066 } else {
cb42c9a3 5067 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
1da177e4 5068
565790d2
PZ
5069 rq_unpin_lock(rq, &rf);
5070 __balance_callbacks(rq);
5071 raw_spin_unlock_irq(&rq->lock);
5072 }
1da177e4 5073}
c259e01a 5074
9af6528e
PZ
5075void __noreturn do_task_dead(void)
5076{
d1ccc66d 5077 /* Causes final put_task_struct in finish_task_switch(): */
b5bf9a90 5078 set_special_state(TASK_DEAD);
d1ccc66d
IM
5079
5080 /* Tell freezer to ignore us: */
5081 current->flags |= PF_NOFREEZE;
5082
9af6528e
PZ
5083 __schedule(false);
5084 BUG();
d1ccc66d
IM
5085
5086 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
9af6528e 5087 for (;;)
d1ccc66d 5088 cpu_relax();
9af6528e
PZ
5089}
5090
9c40cef2
TG
5091static inline void sched_submit_work(struct task_struct *tsk)
5092{
c1cecf88
SAS
5093 unsigned int task_flags;
5094
b0fdc013 5095 if (!tsk->state)
9c40cef2 5096 return;
6d25be57 5097
c1cecf88 5098 task_flags = tsk->flags;
6d25be57
TG
5099 /*
5100 * If a worker went to sleep, notify and ask workqueue whether
5101 * it wants to wake up a task to maintain concurrency.
5102 * As this function is called inside the schedule() context,
5103 * we disable preemption to avoid it calling schedule() again
62849a96
SAS
5104 * in the possible wakeup of a kworker and because wq_worker_sleeping()
5105 * requires it.
6d25be57 5106 */
c1cecf88 5107 if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6d25be57 5108 preempt_disable();
c1cecf88 5109 if (task_flags & PF_WQ_WORKER)
771b53d0
JA
5110 wq_worker_sleeping(tsk);
5111 else
5112 io_wq_worker_sleeping(tsk);
6d25be57
TG
5113 preempt_enable_no_resched();
5114 }
5115
b0fdc013
SAS
5116 if (tsk_is_pi_blocked(tsk))
5117 return;
5118
9c40cef2
TG
5119 /*
5120 * If we are going to sleep and we have plugged IO queued,
5121 * make sure to submit it to avoid deadlocks.
5122 */
5123 if (blk_needs_flush_plug(tsk))
5124 blk_schedule_flush_plug(tsk);
5125}
5126
6d25be57
TG
5127static void sched_update_worker(struct task_struct *tsk)
5128{
771b53d0
JA
5129 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
5130 if (tsk->flags & PF_WQ_WORKER)
5131 wq_worker_running(tsk);
5132 else
5133 io_wq_worker_running(tsk);
5134 }
6d25be57
TG
5135}
5136
722a9f92 5137asmlinkage __visible void __sched schedule(void)
c259e01a 5138{
9c40cef2
TG
5139 struct task_struct *tsk = current;
5140
5141 sched_submit_work(tsk);
bfd9b2b5 5142 do {
b30f0e3f 5143 preempt_disable();
fc13aeba 5144 __schedule(false);
b30f0e3f 5145 sched_preempt_enable_no_resched();
bfd9b2b5 5146 } while (need_resched());
6d25be57 5147 sched_update_worker(tsk);
c259e01a 5148}
1da177e4
LT
5149EXPORT_SYMBOL(schedule);
5150
8663effb
SRV
5151/*
5152 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
5153 * state (have scheduled out non-voluntarily) by making sure that all
5154 * tasks have either left the run queue or have gone into user space.
5155 * As idle tasks do not do either, they must not ever be preempted
5156 * (schedule out non-voluntarily).
5157 *
5158 * schedule_idle() is similar to schedule_preempt_disable() except that it
5159 * never enables preemption because it does not call sched_submit_work().
5160 */
5161void __sched schedule_idle(void)
5162{
5163 /*
5164 * As this skips calling sched_submit_work(), which the idle task does
5165 * regardless because that function is a nop when the task is in a
5166 * TASK_RUNNING state, make sure this isn't used someplace that the
5167 * current task can be in any other state. Note, idle is always in the
5168 * TASK_RUNNING state.
5169 */
5170 WARN_ON_ONCE(current->state);
5171 do {
5172 __schedule(false);
5173 } while (need_resched());
5174}
5175
6775de49 5176#if defined(CONFIG_CONTEXT_TRACKING) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_OFFSTACK)
722a9f92 5177asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
5178{
5179 /*
5180 * If we come here after a random call to set_need_resched(),
5181 * or we have been woken up remotely but the IPI has not yet arrived,
5182 * we haven't yet exited the RCU idle mode. Do it here manually until
5183 * we find a better solution.
7cc78f8f
AL
5184 *
5185 * NB: There are buggy callers of this function. Ideally we
c467ea76 5186 * should warn if prev_state != CONTEXT_USER, but that will trigger
7cc78f8f 5187 * too frequently to make sense yet.
20ab65e3 5188 */
7cc78f8f 5189 enum ctx_state prev_state = exception_enter();
20ab65e3 5190 schedule();
7cc78f8f 5191 exception_exit(prev_state);
20ab65e3
FW
5192}
5193#endif
5194
c5491ea7
TG
5195/**
5196 * schedule_preempt_disabled - called with preemption disabled
5197 *
5198 * Returns with preemption disabled. Note: preempt_count must be 1
5199 */
5200void __sched schedule_preempt_disabled(void)
5201{
ba74c144 5202 sched_preempt_enable_no_resched();
c5491ea7
TG
5203 schedule();
5204 preempt_disable();
5205}
5206
06b1f808 5207static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
5208{
5209 do {
47252cfb
SR
5210 /*
5211 * Because the function tracer can trace preempt_count_sub()
5212 * and it also uses preempt_enable/disable_notrace(), if
5213 * NEED_RESCHED is set, the preempt_enable_notrace() called
5214 * by the function tracer will call this function again and
5215 * cause infinite recursion.
5216 *
5217 * Preemption must be disabled here before the function
5218 * tracer can trace. Break up preempt_disable() into two
5219 * calls. One to disable preemption without fear of being
5220 * traced. The other to still record the preemption latency,
5221 * which can also be traced by the function tracer.
5222 */
499d7955 5223 preempt_disable_notrace();
47252cfb 5224 preempt_latency_start(1);
fc13aeba 5225 __schedule(true);
47252cfb 5226 preempt_latency_stop(1);
499d7955 5227 preempt_enable_no_resched_notrace();
a18b5d01
FW
5228
5229 /*
5230 * Check again in case we missed a preemption opportunity
5231 * between schedule and now.
5232 */
a18b5d01
FW
5233 } while (need_resched());
5234}
5235
c1a280b6 5236#ifdef CONFIG_PREEMPTION
1da177e4 5237/*
a49b4f40
VS
5238 * This is the entry point to schedule() from in-kernel preemption
5239 * off of preempt_enable.
1da177e4 5240 */
722a9f92 5241asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 5242{
1da177e4
LT
5243 /*
5244 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 5245 * we do not want to preempt the current task. Just return..
1da177e4 5246 */
fbb00b56 5247 if (likely(!preemptible()))
1da177e4
LT
5248 return;
5249
a18b5d01 5250 preempt_schedule_common();
1da177e4 5251}
376e2424 5252NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 5253EXPORT_SYMBOL(preempt_schedule);
009f60e2 5254
2c9a98d3
PZI
5255#ifdef CONFIG_PREEMPT_DYNAMIC
5256DEFINE_STATIC_CALL(preempt_schedule, __preempt_schedule_func);
ef72661e 5257EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
2c9a98d3
PZI
5258#endif
5259
5260
009f60e2 5261/**
4eaca0a8 5262 * preempt_schedule_notrace - preempt_schedule called by tracing
009f60e2
ON
5263 *
5264 * The tracing infrastructure uses preempt_enable_notrace to prevent
5265 * recursion and tracing preempt enabling caused by the tracing
5266 * infrastructure itself. But as tracing can happen in areas coming
5267 * from userspace or just about to enter userspace, a preempt enable
5268 * can occur before user_exit() is called. This will cause the scheduler
5269 * to be called when the system is still in usermode.
5270 *
5271 * To prevent this, the preempt_enable_notrace will use this function
5272 * instead of preempt_schedule() to exit user context if needed before
5273 * calling the scheduler.
5274 */
4eaca0a8 5275asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
009f60e2
ON
5276{
5277 enum ctx_state prev_ctx;
5278
5279 if (likely(!preemptible()))
5280 return;
5281
5282 do {
47252cfb
SR
5283 /*
5284 * Because the function tracer can trace preempt_count_sub()
5285 * and it also uses preempt_enable/disable_notrace(), if
5286 * NEED_RESCHED is set, the preempt_enable_notrace() called
5287 * by the function tracer will call this function again and
5288 * cause infinite recursion.
5289 *
5290 * Preemption must be disabled here before the function
5291 * tracer can trace. Break up preempt_disable() into two
5292 * calls. One to disable preemption without fear of being
5293 * traced. The other to still record the preemption latency,
5294 * which can also be traced by the function tracer.
5295 */
3d8f74dd 5296 preempt_disable_notrace();
47252cfb 5297 preempt_latency_start(1);
009f60e2
ON
5298 /*
5299 * Needs preempt disabled in case user_exit() is traced
5300 * and the tracer calls preempt_enable_notrace() causing
5301 * an infinite recursion.
5302 */
5303 prev_ctx = exception_enter();
fc13aeba 5304 __schedule(true);
009f60e2
ON
5305 exception_exit(prev_ctx);
5306
47252cfb 5307 preempt_latency_stop(1);
3d8f74dd 5308 preempt_enable_no_resched_notrace();
009f60e2
ON
5309 } while (need_resched());
5310}
4eaca0a8 5311EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
009f60e2 5312
2c9a98d3
PZI
5313#ifdef CONFIG_PREEMPT_DYNAMIC
5314DEFINE_STATIC_CALL(preempt_schedule_notrace, __preempt_schedule_notrace_func);
ef72661e 5315EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
2c9a98d3
PZI
5316#endif
5317
c1a280b6 5318#endif /* CONFIG_PREEMPTION */
1da177e4 5319
826bfeb3
PZI
5320#ifdef CONFIG_PREEMPT_DYNAMIC
5321
5322#include <linux/entry-common.h>
5323
5324/*
5325 * SC:cond_resched
5326 * SC:might_resched
5327 * SC:preempt_schedule
5328 * SC:preempt_schedule_notrace
5329 * SC:irqentry_exit_cond_resched
5330 *
5331 *
5332 * NONE:
5333 * cond_resched <- __cond_resched
5334 * might_resched <- RET0
5335 * preempt_schedule <- NOP
5336 * preempt_schedule_notrace <- NOP
5337 * irqentry_exit_cond_resched <- NOP
5338 *
5339 * VOLUNTARY:
5340 * cond_resched <- __cond_resched
5341 * might_resched <- __cond_resched
5342 * preempt_schedule <- NOP
5343 * preempt_schedule_notrace <- NOP
5344 * irqentry_exit_cond_resched <- NOP
5345 *
5346 * FULL:
5347 * cond_resched <- RET0
5348 * might_resched <- RET0
5349 * preempt_schedule <- preempt_schedule
5350 * preempt_schedule_notrace <- preempt_schedule_notrace
5351 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched
5352 */
e59e10f8
PZ
5353
5354enum {
5355 preempt_dynamic_none = 0,
5356 preempt_dynamic_voluntary,
5357 preempt_dynamic_full,
5358};
5359
5360static int preempt_dynamic_mode = preempt_dynamic_full;
5361
5362static int sched_dynamic_mode(const char *str)
826bfeb3 5363{
e59e10f8
PZ
5364 if (!strcmp(str, "none"))
5365 return 0;
5366
5367 if (!strcmp(str, "voluntary"))
5368 return 1;
5369
5370 if (!strcmp(str, "full"))
5371 return 2;
5372
5373 return -1;
5374}
5375
5376static void sched_dynamic_update(int mode)
5377{
5378 /*
5379 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
5380 * the ZERO state, which is invalid.
5381 */
5382 static_call_update(cond_resched, __cond_resched);
5383 static_call_update(might_resched, __cond_resched);
5384 static_call_update(preempt_schedule, __preempt_schedule_func);
5385 static_call_update(preempt_schedule_notrace, __preempt_schedule_notrace_func);
5386 static_call_update(irqentry_exit_cond_resched, irqentry_exit_cond_resched);
5387
5388 switch (mode) {
5389 case preempt_dynamic_none:
826bfeb3
PZI
5390 static_call_update(cond_resched, __cond_resched);
5391 static_call_update(might_resched, (typeof(&__cond_resched)) __static_call_return0);
5392 static_call_update(preempt_schedule, (typeof(&preempt_schedule)) NULL);
5393 static_call_update(preempt_schedule_notrace, (typeof(&preempt_schedule_notrace)) NULL);
5394 static_call_update(irqentry_exit_cond_resched, (typeof(&irqentry_exit_cond_resched)) NULL);
e59e10f8
PZ
5395 pr_info("Dynamic Preempt: none\n");
5396 break;
5397
5398 case preempt_dynamic_voluntary:
826bfeb3
PZI
5399 static_call_update(cond_resched, __cond_resched);
5400 static_call_update(might_resched, __cond_resched);
5401 static_call_update(preempt_schedule, (typeof(&preempt_schedule)) NULL);
5402 static_call_update(preempt_schedule_notrace, (typeof(&preempt_schedule_notrace)) NULL);
5403 static_call_update(irqentry_exit_cond_resched, (typeof(&irqentry_exit_cond_resched)) NULL);
e59e10f8
PZ
5404 pr_info("Dynamic Preempt: voluntary\n");
5405 break;
5406
5407 case preempt_dynamic_full:
826bfeb3
PZI
5408 static_call_update(cond_resched, (typeof(&__cond_resched)) __static_call_return0);
5409 static_call_update(might_resched, (typeof(&__cond_resched)) __static_call_return0);
5410 static_call_update(preempt_schedule, __preempt_schedule_func);
5411 static_call_update(preempt_schedule_notrace, __preempt_schedule_notrace_func);
5412 static_call_update(irqentry_exit_cond_resched, irqentry_exit_cond_resched);
e59e10f8
PZ
5413 pr_info("Dynamic Preempt: full\n");
5414 break;
5415 }
5416
5417 preempt_dynamic_mode = mode;
5418}
5419
5420static int __init setup_preempt_mode(char *str)
5421{
5422 int mode = sched_dynamic_mode(str);
5423 if (mode < 0) {
5424 pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
826bfeb3
PZI
5425 return 1;
5426 }
e59e10f8
PZ
5427
5428 sched_dynamic_update(mode);
826bfeb3
PZI
5429 return 0;
5430}
5431__setup("preempt=", setup_preempt_mode);
5432
e59e10f8
PZ
5433#ifdef CONFIG_SCHED_DEBUG
5434
5435static ssize_t sched_dynamic_write(struct file *filp, const char __user *ubuf,
5436 size_t cnt, loff_t *ppos)
5437{
5438 char buf[16];
5439 int mode;
5440
5441 if (cnt > 15)
5442 cnt = 15;
5443
5444 if (copy_from_user(&buf, ubuf, cnt))
5445 return -EFAULT;
5446
5447 buf[cnt] = 0;
5448 mode = sched_dynamic_mode(strstrip(buf));
5449 if (mode < 0)
5450 return mode;
5451
5452 sched_dynamic_update(mode);
5453
5454 *ppos += cnt;
5455
5456 return cnt;
5457}
5458
5459static int sched_dynamic_show(struct seq_file *m, void *v)
5460{
5461 static const char * preempt_modes[] = {
5462 "none", "voluntary", "full"
5463 };
5464 int i;
5465
5466 for (i = 0; i < ARRAY_SIZE(preempt_modes); i++) {
5467 if (preempt_dynamic_mode == i)
5468 seq_puts(m, "(");
5469 seq_puts(m, preempt_modes[i]);
5470 if (preempt_dynamic_mode == i)
5471 seq_puts(m, ")");
5472
5473 seq_puts(m, " ");
5474 }
5475
5476 seq_puts(m, "\n");
5477 return 0;
5478}
5479
5480static int sched_dynamic_open(struct inode *inode, struct file *filp)
5481{
5482 return single_open(filp, sched_dynamic_show, NULL);
5483}
5484
5485static const struct file_operations sched_dynamic_fops = {
5486 .open = sched_dynamic_open,
5487 .write = sched_dynamic_write,
5488 .read = seq_read,
5489 .llseek = seq_lseek,
5490 .release = single_release,
5491};
5492
5493static __init int sched_init_debug_dynamic(void)
5494{
5495 debugfs_create_file("sched_preempt", 0644, NULL, NULL, &sched_dynamic_fops);
5496 return 0;
5497}
5498late_initcall(sched_init_debug_dynamic);
5499
5500#endif /* CONFIG_SCHED_DEBUG */
826bfeb3
PZI
5501#endif /* CONFIG_PREEMPT_DYNAMIC */
5502
5503
1da177e4 5504/*
a49b4f40 5505 * This is the entry point to schedule() from kernel preemption
1da177e4
LT
5506 * off of irq context.
5507 * Note, that this is called and return with irqs disabled. This will
5508 * protect us against recursive calling from irq.
5509 */
722a9f92 5510asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 5511{
b22366cd 5512 enum ctx_state prev_state;
6478d880 5513
2ed6e34f 5514 /* Catch callers which need to be fixed */
f27dde8d 5515 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 5516
b22366cd
FW
5517 prev_state = exception_enter();
5518
3a5c359a 5519 do {
3d8f74dd 5520 preempt_disable();
3a5c359a 5521 local_irq_enable();
fc13aeba 5522 __schedule(true);
3a5c359a 5523 local_irq_disable();
3d8f74dd 5524 sched_preempt_enable_no_resched();
5ed0cec0 5525 } while (need_resched());
b22366cd
FW
5526
5527 exception_exit(prev_state);
1da177e4
LT
5528}
5529
ac6424b9 5530int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
95cdf3b7 5531 void *key)
1da177e4 5532{
062d3f95 5533 WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC);
63859d4f 5534 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 5535}
1da177e4
LT
5536EXPORT_SYMBOL(default_wake_function);
5537
b29739f9
IM
5538#ifdef CONFIG_RT_MUTEXES
5539
acd58620
PZ
5540static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
5541{
5542 if (pi_task)
5543 prio = min(prio, pi_task->prio);
5544
5545 return prio;
5546}
5547
5548static inline int rt_effective_prio(struct task_struct *p, int prio)
5549{
5550 struct task_struct *pi_task = rt_mutex_get_top_task(p);
5551
5552 return __rt_effective_prio(pi_task, prio);
5553}
5554
b29739f9
IM
5555/*
5556 * rt_mutex_setprio - set the current priority of a task
acd58620
PZ
5557 * @p: task to boost
5558 * @pi_task: donor task
b29739f9
IM
5559 *
5560 * This function changes the 'effective' priority of a task. It does
5561 * not touch ->normal_prio like __setscheduler().
5562 *
c365c292
TG
5563 * Used by the rt_mutex code to implement priority inheritance
5564 * logic. Call site only calls if the priority of the task changed.
b29739f9 5565 */
acd58620 5566void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
b29739f9 5567{
acd58620 5568 int prio, oldprio, queued, running, queue_flag =
7a57f32a 5569 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
83ab0aa0 5570 const struct sched_class *prev_class;
eb580751
PZ
5571 struct rq_flags rf;
5572 struct rq *rq;
b29739f9 5573
acd58620
PZ
5574 /* XXX used to be waiter->prio, not waiter->task->prio */
5575 prio = __rt_effective_prio(pi_task, p->normal_prio);
5576
5577 /*
5578 * If nothing changed; bail early.
5579 */
5580 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
5581 return;
b29739f9 5582
eb580751 5583 rq = __task_rq_lock(p, &rf);
80f5c1b8 5584 update_rq_clock(rq);
acd58620
PZ
5585 /*
5586 * Set under pi_lock && rq->lock, such that the value can be used under
5587 * either lock.
5588 *
5589 * Note that there is loads of tricky to make this pointer cache work
5590 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
5591 * ensure a task is de-boosted (pi_task is set to NULL) before the
5592 * task is allowed to run again (and can exit). This ensures the pointer
b19a888c 5593 * points to a blocked task -- which guarantees the task is present.
acd58620
PZ
5594 */
5595 p->pi_top_task = pi_task;
5596
5597 /*
5598 * For FIFO/RR we only need to set prio, if that matches we're done.
5599 */
5600 if (prio == p->prio && !dl_prio(prio))
5601 goto out_unlock;
b29739f9 5602
1c4dd99b
TG
5603 /*
5604 * Idle task boosting is a nono in general. There is one
5605 * exception, when PREEMPT_RT and NOHZ is active:
5606 *
5607 * The idle task calls get_next_timer_interrupt() and holds
5608 * the timer wheel base->lock on the CPU and another CPU wants
5609 * to access the timer (probably to cancel it). We can safely
5610 * ignore the boosting request, as the idle CPU runs this code
5611 * with interrupts disabled and will complete the lock
5612 * protected section without being interrupted. So there is no
5613 * real need to boost.
5614 */
5615 if (unlikely(p == rq->idle)) {
5616 WARN_ON(p != rq->curr);
5617 WARN_ON(p->pi_blocked_on);
5618 goto out_unlock;
5619 }
5620
b91473ff 5621 trace_sched_pi_setprio(p, pi_task);
d5f9f942 5622 oldprio = p->prio;
ff77e468
PZ
5623
5624 if (oldprio == prio)
5625 queue_flag &= ~DEQUEUE_MOVE;
5626
83ab0aa0 5627 prev_class = p->sched_class;
da0c1e65 5628 queued = task_on_rq_queued(p);
051a1d1a 5629 running = task_current(rq, p);
da0c1e65 5630 if (queued)
ff77e468 5631 dequeue_task(rq, p, queue_flag);
0e1f3483 5632 if (running)
f3cd1c4e 5633 put_prev_task(rq, p);
dd41f596 5634
2d3d891d
DF
5635 /*
5636 * Boosting condition are:
5637 * 1. -rt task is running and holds mutex A
5638 * --> -dl task blocks on mutex A
5639 *
5640 * 2. -dl task is running and holds mutex A
5641 * --> -dl task blocks on mutex A and could preempt the
5642 * running task
5643 */
5644 if (dl_prio(prio)) {
466af29b 5645 if (!dl_prio(p->normal_prio) ||
740797ce
JL
5646 (pi_task && dl_prio(pi_task->prio) &&
5647 dl_entity_preempt(&pi_task->dl, &p->dl))) {
2279f540 5648 p->dl.pi_se = pi_task->dl.pi_se;
ff77e468 5649 queue_flag |= ENQUEUE_REPLENISH;
2279f540
JL
5650 } else {
5651 p->dl.pi_se = &p->dl;
5652 }
aab03e05 5653 p->sched_class = &dl_sched_class;
2d3d891d
DF
5654 } else if (rt_prio(prio)) {
5655 if (dl_prio(oldprio))
2279f540 5656 p->dl.pi_se = &p->dl;
2d3d891d 5657 if (oldprio < prio)
ff77e468 5658 queue_flag |= ENQUEUE_HEAD;
dd41f596 5659 p->sched_class = &rt_sched_class;
2d3d891d
DF
5660 } else {
5661 if (dl_prio(oldprio))
2279f540 5662 p->dl.pi_se = &p->dl;
746db944
BS
5663 if (rt_prio(oldprio))
5664 p->rt.timeout = 0;
dd41f596 5665 p->sched_class = &fair_sched_class;
2d3d891d 5666 }
dd41f596 5667
b29739f9
IM
5668 p->prio = prio;
5669
da0c1e65 5670 if (queued)
ff77e468 5671 enqueue_task(rq, p, queue_flag);
a399d233 5672 if (running)
03b7fad1 5673 set_next_task(rq, p);
cb469845 5674
da7a735e 5675 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 5676out_unlock:
d1ccc66d
IM
5677 /* Avoid rq from going away on us: */
5678 preempt_disable();
4c9a4bc8 5679
565790d2
PZ
5680 rq_unpin_lock(rq, &rf);
5681 __balance_callbacks(rq);
5682 raw_spin_unlock(&rq->lock);
5683
4c9a4bc8 5684 preempt_enable();
b29739f9 5685}
acd58620
PZ
5686#else
5687static inline int rt_effective_prio(struct task_struct *p, int prio)
5688{
5689 return prio;
5690}
b29739f9 5691#endif
d50dde5a 5692
36c8b586 5693void set_user_nice(struct task_struct *p, long nice)
1da177e4 5694{
49bd21ef 5695 bool queued, running;
53a23364 5696 int old_prio;
eb580751 5697 struct rq_flags rf;
70b97a7f 5698 struct rq *rq;
1da177e4 5699
75e45d51 5700 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
5701 return;
5702 /*
5703 * We have to be careful, if called from sys_setpriority(),
5704 * the task might be in the middle of scheduling on another CPU.
5705 */
eb580751 5706 rq = task_rq_lock(p, &rf);
2fb8d367
PZ
5707 update_rq_clock(rq);
5708
1da177e4
LT
5709 /*
5710 * The RT priorities are set via sched_setscheduler(), but we still
5711 * allow the 'normal' nice value to be set - but as expected
b19a888c 5712 * it won't have any effect on scheduling until the task is
aab03e05 5713 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 5714 */
aab03e05 5715 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
5716 p->static_prio = NICE_TO_PRIO(nice);
5717 goto out_unlock;
5718 }
da0c1e65 5719 queued = task_on_rq_queued(p);
49bd21ef 5720 running = task_current(rq, p);
da0c1e65 5721 if (queued)
7a57f32a 5722 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
49bd21ef
PZ
5723 if (running)
5724 put_prev_task(rq, p);
1da177e4 5725
1da177e4 5726 p->static_prio = NICE_TO_PRIO(nice);
9059393e 5727 set_load_weight(p, true);
b29739f9
IM
5728 old_prio = p->prio;
5729 p->prio = effective_prio(p);
1da177e4 5730
5443a0be 5731 if (queued)
7134b3e9 5732 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
49bd21ef 5733 if (running)
03b7fad1 5734 set_next_task(rq, p);
5443a0be
FW
5735
5736 /*
5737 * If the task increased its priority or is running and
5738 * lowered its priority, then reschedule its CPU:
5739 */
5740 p->sched_class->prio_changed(rq, p, old_prio);
5741
1da177e4 5742out_unlock:
eb580751 5743 task_rq_unlock(rq, p, &rf);
1da177e4 5744}
1da177e4
LT
5745EXPORT_SYMBOL(set_user_nice);
5746
e43379f1
MM
5747/*
5748 * can_nice - check if a task can reduce its nice value
5749 * @p: task
5750 * @nice: nice value
5751 */
36c8b586 5752int can_nice(const struct task_struct *p, const int nice)
e43379f1 5753{
d1ccc66d 5754 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
7aa2c016 5755 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 5756
78d7d407 5757 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
5758 capable(CAP_SYS_NICE));
5759}
5760
1da177e4
LT
5761#ifdef __ARCH_WANT_SYS_NICE
5762
5763/*
5764 * sys_nice - change the priority of the current process.
5765 * @increment: priority increment
5766 *
5767 * sys_setpriority is a more generic, but much slower function that
5768 * does similar things.
5769 */
5add95d4 5770SYSCALL_DEFINE1(nice, int, increment)
1da177e4 5771{
48f24c4d 5772 long nice, retval;
1da177e4
LT
5773
5774 /*
5775 * Setpriority might change our priority at the same moment.
5776 * We don't have to worry. Conceptually one call occurs first
5777 * and we have a single winner.
5778 */
a9467fa3 5779 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 5780 nice = task_nice(current) + increment;
1da177e4 5781
a9467fa3 5782 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
5783 if (increment < 0 && !can_nice(current, nice))
5784 return -EPERM;
5785
1da177e4
LT
5786 retval = security_task_setnice(current, nice);
5787 if (retval)
5788 return retval;
5789
5790 set_user_nice(current, nice);
5791 return 0;
5792}
5793
5794#endif
5795
5796/**
5797 * task_prio - return the priority value of a given task.
5798 * @p: the task in question.
5799 *
e69f6186 5800 * Return: The priority value as seen by users in /proc.
c541bb78
DE
5801 *
5802 * sched policy return value kernel prio user prio/nice
5803 *
5804 * normal, batch, idle [0 ... 39] [100 ... 139] 0/[-20 ... 19]
5805 * fifo, rr [-2 ... -100] [98 ... 0] [1 ... 99]
5806 * deadline -101 -1 0
1da177e4 5807 */
36c8b586 5808int task_prio(const struct task_struct *p)
1da177e4
LT
5809{
5810 return p->prio - MAX_RT_PRIO;
5811}
5812
1da177e4 5813/**
d1ccc66d 5814 * idle_cpu - is a given CPU idle currently?
1da177e4 5815 * @cpu: the processor in question.
e69f6186
YB
5816 *
5817 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
5818 */
5819int idle_cpu(int cpu)
5820{
908a3283
TG
5821 struct rq *rq = cpu_rq(cpu);
5822
5823 if (rq->curr != rq->idle)
5824 return 0;
5825
5826 if (rq->nr_running)
5827 return 0;
5828
5829#ifdef CONFIG_SMP
126c2092 5830 if (rq->ttwu_pending)
908a3283
TG
5831 return 0;
5832#endif
5833
5834 return 1;
1da177e4
LT
5835}
5836
943d355d
RJ
5837/**
5838 * available_idle_cpu - is a given CPU idle for enqueuing work.
5839 * @cpu: the CPU in question.
5840 *
5841 * Return: 1 if the CPU is currently idle. 0 otherwise.
5842 */
5843int available_idle_cpu(int cpu)
5844{
5845 if (!idle_cpu(cpu))
5846 return 0;
5847
247f2f6f
RJ
5848 if (vcpu_is_preempted(cpu))
5849 return 0;
5850
908a3283 5851 return 1;
1da177e4
LT
5852}
5853
1da177e4 5854/**
d1ccc66d 5855 * idle_task - return the idle task for a given CPU.
1da177e4 5856 * @cpu: the processor in question.
e69f6186 5857 *
d1ccc66d 5858 * Return: The idle task for the CPU @cpu.
1da177e4 5859 */
36c8b586 5860struct task_struct *idle_task(int cpu)
1da177e4
LT
5861{
5862 return cpu_rq(cpu)->idle;
5863}
5864
7d6a905f
VK
5865#ifdef CONFIG_SMP
5866/*
5867 * This function computes an effective utilization for the given CPU, to be
5868 * used for frequency selection given the linear relation: f = u * f_max.
5869 *
5870 * The scheduler tracks the following metrics:
5871 *
5872 * cpu_util_{cfs,rt,dl,irq}()
5873 * cpu_bw_dl()
5874 *
5875 * Where the cfs,rt and dl util numbers are tracked with the same metric and
5876 * synchronized windows and are thus directly comparable.
5877 *
5878 * The cfs,rt,dl utilization are the running times measured with rq->clock_task
5879 * which excludes things like IRQ and steal-time. These latter are then accrued
5880 * in the irq utilization.
5881 *
5882 * The DL bandwidth number otoh is not a measured metric but a value computed
5883 * based on the task model parameters and gives the minimal utilization
5884 * required to meet deadlines.
5885 */
a5418be9
VK
5886unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
5887 unsigned long max, enum cpu_util_type type,
7d6a905f
VK
5888 struct task_struct *p)
5889{
5890 unsigned long dl_util, util, irq;
5891 struct rq *rq = cpu_rq(cpu);
5892
5893 if (!uclamp_is_used() &&
5894 type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
5895 return max;
5896 }
5897
5898 /*
5899 * Early check to see if IRQ/steal time saturates the CPU, can be
5900 * because of inaccuracies in how we track these -- see
5901 * update_irq_load_avg().
5902 */
5903 irq = cpu_util_irq(rq);
5904 if (unlikely(irq >= max))
5905 return max;
5906
5907 /*
5908 * Because the time spend on RT/DL tasks is visible as 'lost' time to
5909 * CFS tasks and we use the same metric to track the effective
5910 * utilization (PELT windows are synchronized) we can directly add them
5911 * to obtain the CPU's actual utilization.
5912 *
5913 * CFS and RT utilization can be boosted or capped, depending on
5914 * utilization clamp constraints requested by currently RUNNABLE
5915 * tasks.
5916 * When there are no CFS RUNNABLE tasks, clamps are released and
5917 * frequency will be gracefully reduced with the utilization decay.
5918 */
5919 util = util_cfs + cpu_util_rt(rq);
5920 if (type == FREQUENCY_UTIL)
5921 util = uclamp_rq_util_with(rq, util, p);
5922
5923 dl_util = cpu_util_dl(rq);
5924
5925 /*
5926 * For frequency selection we do not make cpu_util_dl() a permanent part
5927 * of this sum because we want to use cpu_bw_dl() later on, but we need
5928 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
5929 * that we select f_max when there is no idle time.
5930 *
5931 * NOTE: numerical errors or stop class might cause us to not quite hit
5932 * saturation when we should -- something for later.
5933 */
5934 if (util + dl_util >= max)
5935 return max;
5936
5937 /*
5938 * OTOH, for energy computation we need the estimated running time, so
5939 * include util_dl and ignore dl_bw.
5940 */
5941 if (type == ENERGY_UTIL)
5942 util += dl_util;
5943
5944 /*
5945 * There is still idle time; further improve the number by using the
5946 * irq metric. Because IRQ/steal time is hidden from the task clock we
5947 * need to scale the task numbers:
5948 *
5949 * max - irq
5950 * U' = irq + --------- * U
5951 * max
5952 */
5953 util = scale_irq_capacity(util, irq, max);
5954 util += irq;
5955
5956 /*
5957 * Bandwidth required by DEADLINE must always be granted while, for
5958 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
5959 * to gracefully reduce the frequency when no tasks show up for longer
5960 * periods of time.
5961 *
5962 * Ideally we would like to set bw_dl as min/guaranteed freq and util +
5963 * bw_dl as requested freq. However, cpufreq is not yet ready for such
5964 * an interface. So, we only do the latter for now.
5965 */
5966 if (type == FREQUENCY_UTIL)
5967 util += cpu_bw_dl(rq);
5968
5969 return min(max, util);
5970}
a5418be9
VK
5971
5972unsigned long sched_cpu_util(int cpu, unsigned long max)
5973{
5974 return effective_cpu_util(cpu, cpu_util_cfs(cpu_rq(cpu)), max,
5975 ENERGY_UTIL, NULL);
5976}
7d6a905f
VK
5977#endif /* CONFIG_SMP */
5978
1da177e4
LT
5979/**
5980 * find_process_by_pid - find a process with a matching PID value.
5981 * @pid: the pid in question.
e69f6186
YB
5982 *
5983 * The task of @pid, if found. %NULL otherwise.
1da177e4 5984 */
a9957449 5985static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 5986{
228ebcbe 5987 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
5988}
5989
c13db6b1
SR
5990/*
5991 * sched_setparam() passes in -1 for its policy, to let the functions
5992 * it calls know not to change it.
5993 */
5994#define SETPARAM_POLICY -1
5995
c365c292
TG
5996static void __setscheduler_params(struct task_struct *p,
5997 const struct sched_attr *attr)
1da177e4 5998{
d50dde5a
DF
5999 int policy = attr->sched_policy;
6000
c13db6b1 6001 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
6002 policy = p->policy;
6003
1da177e4 6004 p->policy = policy;
d50dde5a 6005
aab03e05
DF
6006 if (dl_policy(policy))
6007 __setparam_dl(p, attr);
39fd8fd2 6008 else if (fair_policy(policy))
d50dde5a
DF
6009 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
6010
39fd8fd2
PZ
6011 /*
6012 * __sched_setscheduler() ensures attr->sched_priority == 0 when
6013 * !rt_policy. Always setting this ensures that things like
6014 * getparam()/getattr() don't report silly values for !rt tasks.
6015 */
6016 p->rt_priority = attr->sched_priority;
383afd09 6017 p->normal_prio = normal_prio(p);
9059393e 6018 set_load_weight(p, true);
c365c292 6019}
39fd8fd2 6020
c365c292
TG
6021/* Actually do priority change: must hold pi & rq lock. */
6022static void __setscheduler(struct rq *rq, struct task_struct *p,
0782e63b 6023 const struct sched_attr *attr, bool keep_boost)
c365c292 6024{
a509a7cd
PB
6025 /*
6026 * If params can't change scheduling class changes aren't allowed
6027 * either.
6028 */
6029 if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)
6030 return;
6031
c365c292 6032 __setscheduler_params(p, attr);
d50dde5a 6033
383afd09 6034 /*
0782e63b
TG
6035 * Keep a potential priority boosting if called from
6036 * sched_setscheduler().
383afd09 6037 */
acd58620 6038 p->prio = normal_prio(p);
0782e63b 6039 if (keep_boost)
acd58620 6040 p->prio = rt_effective_prio(p, p->prio);
383afd09 6041
aab03e05
DF
6042 if (dl_prio(p->prio))
6043 p->sched_class = &dl_sched_class;
6044 else if (rt_prio(p->prio))
ffd44db5
PZ
6045 p->sched_class = &rt_sched_class;
6046 else
6047 p->sched_class = &fair_sched_class;
1da177e4 6048}
aab03e05 6049
c69e8d9c 6050/*
d1ccc66d 6051 * Check the target process has a UID that matches the current process's:
c69e8d9c
DH
6052 */
6053static bool check_same_owner(struct task_struct *p)
6054{
6055 const struct cred *cred = current_cred(), *pcred;
6056 bool match;
6057
6058 rcu_read_lock();
6059 pcred = __task_cred(p);
9c806aa0
EB
6060 match = (uid_eq(cred->euid, pcred->euid) ||
6061 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
6062 rcu_read_unlock();
6063 return match;
6064}
6065
d50dde5a
DF
6066static int __sched_setscheduler(struct task_struct *p,
6067 const struct sched_attr *attr,
dbc7f069 6068 bool user, bool pi)
1da177e4 6069{
383afd09
SR
6070 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
6071 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 6072 int retval, oldprio, oldpolicy = -1, queued, running;
0782e63b 6073 int new_effective_prio, policy = attr->sched_policy;
83ab0aa0 6074 const struct sched_class *prev_class;
565790d2 6075 struct callback_head *head;
eb580751 6076 struct rq_flags rf;
ca94c442 6077 int reset_on_fork;
7a57f32a 6078 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
eb580751 6079 struct rq *rq;
1da177e4 6080
896bbb25
SRV
6081 /* The pi code expects interrupts enabled */
6082 BUG_ON(pi && in_interrupt());
1da177e4 6083recheck:
d1ccc66d 6084 /* Double check policy once rq lock held: */
ca94c442
LP
6085 if (policy < 0) {
6086 reset_on_fork = p->sched_reset_on_fork;
1da177e4 6087 policy = oldpolicy = p->policy;
ca94c442 6088 } else {
7479f3c9 6089 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 6090
20f9cd2a 6091 if (!valid_policy(policy))
ca94c442
LP
6092 return -EINVAL;
6093 }
6094
794a56eb 6095 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
7479f3c9
PZ
6096 return -EINVAL;
6097
1da177e4
LT
6098 /*
6099 * Valid priorities for SCHED_FIFO and SCHED_RR are
ae18ad28 6100 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL,
dd41f596 6101 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 6102 */
ae18ad28 6103 if (attr->sched_priority > MAX_RT_PRIO-1)
1da177e4 6104 return -EINVAL;
aab03e05
DF
6105 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
6106 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
6107 return -EINVAL;
6108
37e4ab3f
OC
6109 /*
6110 * Allow unprivileged RT tasks to decrease priority:
6111 */
961ccddd 6112 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 6113 if (fair_policy(policy)) {
d0ea0268 6114 if (attr->sched_nice < task_nice(p) &&
eaad4513 6115 !can_nice(p, attr->sched_nice))
d50dde5a
DF
6116 return -EPERM;
6117 }
6118
e05606d3 6119 if (rt_policy(policy)) {
a44702e8
ON
6120 unsigned long rlim_rtprio =
6121 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909 6122
d1ccc66d 6123 /* Can't set/change the rt policy: */
8dc3e909
ON
6124 if (policy != p->policy && !rlim_rtprio)
6125 return -EPERM;
6126
d1ccc66d 6127 /* Can't increase priority: */
d50dde5a
DF
6128 if (attr->sched_priority > p->rt_priority &&
6129 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
6130 return -EPERM;
6131 }
c02aa73b 6132
d44753b8
JL
6133 /*
6134 * Can't set/change SCHED_DEADLINE policy at all for now
6135 * (safest behavior); in the future we would like to allow
6136 * unprivileged DL tasks to increase their relative deadline
6137 * or reduce their runtime (both ways reducing utilization)
6138 */
6139 if (dl_policy(policy))
6140 return -EPERM;
6141
dd41f596 6142 /*
c02aa73b
DH
6143 * Treat SCHED_IDLE as nice 20. Only allow a switch to
6144 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 6145 */
1da1843f 6146 if (task_has_idle_policy(p) && !idle_policy(policy)) {
d0ea0268 6147 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
6148 return -EPERM;
6149 }
5fe1d75f 6150
d1ccc66d 6151 /* Can't change other user's priorities: */
c69e8d9c 6152 if (!check_same_owner(p))
37e4ab3f 6153 return -EPERM;
ca94c442 6154
d1ccc66d 6155 /* Normal users shall not reset the sched_reset_on_fork flag: */
ca94c442
LP
6156 if (p->sched_reset_on_fork && !reset_on_fork)
6157 return -EPERM;
37e4ab3f 6158 }
1da177e4 6159
725aad24 6160 if (user) {
794a56eb
JL
6161 if (attr->sched_flags & SCHED_FLAG_SUGOV)
6162 return -EINVAL;
6163
b0ae1981 6164 retval = security_task_setscheduler(p);
725aad24
JF
6165 if (retval)
6166 return retval;
6167 }
6168
a509a7cd
PB
6169 /* Update task specific "requested" clamps */
6170 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
6171 retval = uclamp_validate(p, attr);
6172 if (retval)
6173 return retval;
6174 }
6175
710da3c8
JL
6176 if (pi)
6177 cpuset_read_lock();
6178
b29739f9 6179 /*
d1ccc66d 6180 * Make sure no PI-waiters arrive (or leave) while we are
b29739f9 6181 * changing the priority of the task:
0122ec5b 6182 *
25985edc 6183 * To be able to change p->policy safely, the appropriate
1da177e4
LT
6184 * runqueue lock must be held.
6185 */
eb580751 6186 rq = task_rq_lock(p, &rf);
80f5c1b8 6187 update_rq_clock(rq);
dc61b1d6 6188
34f971f6 6189 /*
d1ccc66d 6190 * Changing the policy of the stop threads its a very bad idea:
34f971f6
PZ
6191 */
6192 if (p == rq->stop) {
4b211f2b
MP
6193 retval = -EINVAL;
6194 goto unlock;
34f971f6
PZ
6195 }
6196
a51e9198 6197 /*
d6b1e911
TG
6198 * If not changing anything there's no need to proceed further,
6199 * but store a possible modification of reset_on_fork.
a51e9198 6200 */
d50dde5a 6201 if (unlikely(policy == p->policy)) {
d0ea0268 6202 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
6203 goto change;
6204 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
6205 goto change;
75381608 6206 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 6207 goto change;
a509a7cd
PB
6208 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
6209 goto change;
d50dde5a 6210
d6b1e911 6211 p->sched_reset_on_fork = reset_on_fork;
4b211f2b
MP
6212 retval = 0;
6213 goto unlock;
a51e9198 6214 }
d50dde5a 6215change:
a51e9198 6216
dc61b1d6 6217 if (user) {
332ac17e 6218#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
6219 /*
6220 * Do not allow realtime tasks into groups that have no runtime
6221 * assigned.
6222 */
6223 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
6224 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
6225 !task_group_is_autogroup(task_group(p))) {
4b211f2b
MP
6226 retval = -EPERM;
6227 goto unlock;
dc61b1d6 6228 }
dc61b1d6 6229#endif
332ac17e 6230#ifdef CONFIG_SMP
794a56eb
JL
6231 if (dl_bandwidth_enabled() && dl_policy(policy) &&
6232 !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
332ac17e 6233 cpumask_t *span = rq->rd->span;
332ac17e
DF
6234
6235 /*
6236 * Don't allow tasks with an affinity mask smaller than
6237 * the entire root_domain to become SCHED_DEADLINE. We
6238 * will also fail if there's no bandwidth available.
6239 */
3bd37062 6240 if (!cpumask_subset(span, p->cpus_ptr) ||
e4099a5e 6241 rq->rd->dl_bw.bw == 0) {
4b211f2b
MP
6242 retval = -EPERM;
6243 goto unlock;
332ac17e
DF
6244 }
6245 }
6246#endif
6247 }
dc61b1d6 6248
d1ccc66d 6249 /* Re-check policy now with rq lock held: */
1da177e4
LT
6250 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6251 policy = oldpolicy = -1;
eb580751 6252 task_rq_unlock(rq, p, &rf);
710da3c8
JL
6253 if (pi)
6254 cpuset_read_unlock();
1da177e4
LT
6255 goto recheck;
6256 }
332ac17e
DF
6257
6258 /*
6259 * If setscheduling to SCHED_DEADLINE (or changing the parameters
6260 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
6261 * is available.
6262 */
06a76fe0 6263 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
4b211f2b
MP
6264 retval = -EBUSY;
6265 goto unlock;
332ac17e
DF
6266 }
6267
c365c292
TG
6268 p->sched_reset_on_fork = reset_on_fork;
6269 oldprio = p->prio;
6270
dbc7f069
PZ
6271 if (pi) {
6272 /*
6273 * Take priority boosted tasks into account. If the new
6274 * effective priority is unchanged, we just store the new
6275 * normal parameters and do not touch the scheduler class and
6276 * the runqueue. This will be done when the task deboost
6277 * itself.
6278 */
acd58620 6279 new_effective_prio = rt_effective_prio(p, newprio);
ff77e468
PZ
6280 if (new_effective_prio == oldprio)
6281 queue_flags &= ~DEQUEUE_MOVE;
c365c292
TG
6282 }
6283
da0c1e65 6284 queued = task_on_rq_queued(p);
051a1d1a 6285 running = task_current(rq, p);
da0c1e65 6286 if (queued)
ff77e468 6287 dequeue_task(rq, p, queue_flags);
0e1f3483 6288 if (running)
f3cd1c4e 6289 put_prev_task(rq, p);
f6b53205 6290
83ab0aa0 6291 prev_class = p->sched_class;
a509a7cd 6292
dbc7f069 6293 __setscheduler(rq, p, attr, pi);
a509a7cd 6294 __setscheduler_uclamp(p, attr);
f6b53205 6295
da0c1e65 6296 if (queued) {
81a44c54
TG
6297 /*
6298 * We enqueue to tail when the priority of a task is
6299 * increased (user space view).
6300 */
ff77e468
PZ
6301 if (oldprio < p->prio)
6302 queue_flags |= ENQUEUE_HEAD;
1de64443 6303
ff77e468 6304 enqueue_task(rq, p, queue_flags);
81a44c54 6305 }
a399d233 6306 if (running)
03b7fad1 6307 set_next_task(rq, p);
cb469845 6308
da7a735e 6309 check_class_changed(rq, p, prev_class, oldprio);
d1ccc66d
IM
6310
6311 /* Avoid rq from going away on us: */
6312 preempt_disable();
565790d2 6313 head = splice_balance_callbacks(rq);
eb580751 6314 task_rq_unlock(rq, p, &rf);
b29739f9 6315
710da3c8
JL
6316 if (pi) {
6317 cpuset_read_unlock();
dbc7f069 6318 rt_mutex_adjust_pi(p);
710da3c8 6319 }
95e02ca9 6320
d1ccc66d 6321 /* Run balance callbacks after we've adjusted the PI chain: */
565790d2 6322 balance_callbacks(rq, head);
4c9a4bc8 6323 preempt_enable();
95e02ca9 6324
1da177e4 6325 return 0;
4b211f2b
MP
6326
6327unlock:
6328 task_rq_unlock(rq, p, &rf);
710da3c8
JL
6329 if (pi)
6330 cpuset_read_unlock();
4b211f2b 6331 return retval;
1da177e4 6332}
961ccddd 6333
7479f3c9
PZ
6334static int _sched_setscheduler(struct task_struct *p, int policy,
6335 const struct sched_param *param, bool check)
6336{
6337 struct sched_attr attr = {
6338 .sched_policy = policy,
6339 .sched_priority = param->sched_priority,
6340 .sched_nice = PRIO_TO_NICE(p->static_prio),
6341 };
6342
c13db6b1
SR
6343 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
6344 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
6345 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
6346 policy &= ~SCHED_RESET_ON_FORK;
6347 attr.sched_policy = policy;
6348 }
6349
dbc7f069 6350 return __sched_setscheduler(p, &attr, check, true);
7479f3c9 6351}
961ccddd
RR
6352/**
6353 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6354 * @p: the task in question.
6355 * @policy: new policy.
6356 * @param: structure containing the new RT priority.
6357 *
7318d4cc
PZ
6358 * Use sched_set_fifo(), read its comment.
6359 *
e69f6186
YB
6360 * Return: 0 on success. An error code otherwise.
6361 *
961ccddd
RR
6362 * NOTE that the task may be already dead.
6363 */
6364int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 6365 const struct sched_param *param)
961ccddd 6366{
7479f3c9 6367 return _sched_setscheduler(p, policy, param, true);
961ccddd 6368}
1da177e4 6369
d50dde5a
DF
6370int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
6371{
dbc7f069 6372 return __sched_setscheduler(p, attr, true, true);
d50dde5a 6373}
d50dde5a 6374
794a56eb
JL
6375int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
6376{
6377 return __sched_setscheduler(p, attr, false, true);
6378}
6379
961ccddd
RR
6380/**
6381 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6382 * @p: the task in question.
6383 * @policy: new policy.
6384 * @param: structure containing the new RT priority.
6385 *
6386 * Just like sched_setscheduler, only don't bother checking if the
6387 * current context has permission. For example, this is needed in
6388 * stop_machine(): we create temporary high priority worker threads,
6389 * but our caller might not have that capability.
e69f6186
YB
6390 *
6391 * Return: 0 on success. An error code otherwise.
961ccddd
RR
6392 */
6393int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 6394 const struct sched_param *param)
961ccddd 6395{
7479f3c9 6396 return _sched_setscheduler(p, policy, param, false);
961ccddd
RR
6397}
6398
7318d4cc
PZ
6399/*
6400 * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
6401 * incapable of resource management, which is the one thing an OS really should
6402 * be doing.
6403 *
6404 * This is of course the reason it is limited to privileged users only.
6405 *
6406 * Worse still; it is fundamentally impossible to compose static priority
6407 * workloads. You cannot take two correctly working static prio workloads
6408 * and smash them together and still expect them to work.
6409 *
6410 * For this reason 'all' FIFO tasks the kernel creates are basically at:
6411 *
6412 * MAX_RT_PRIO / 2
6413 *
6414 * The administrator _MUST_ configure the system, the kernel simply doesn't
6415 * know enough information to make a sensible choice.
6416 */
8b700983 6417void sched_set_fifo(struct task_struct *p)
7318d4cc
PZ
6418{
6419 struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
8b700983 6420 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7318d4cc
PZ
6421}
6422EXPORT_SYMBOL_GPL(sched_set_fifo);
6423
6424/*
6425 * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
6426 */
8b700983 6427void sched_set_fifo_low(struct task_struct *p)
7318d4cc
PZ
6428{
6429 struct sched_param sp = { .sched_priority = 1 };
8b700983 6430 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7318d4cc
PZ
6431}
6432EXPORT_SYMBOL_GPL(sched_set_fifo_low);
6433
8b700983 6434void sched_set_normal(struct task_struct *p, int nice)
7318d4cc
PZ
6435{
6436 struct sched_attr attr = {
6437 .sched_policy = SCHED_NORMAL,
6438 .sched_nice = nice,
6439 };
8b700983 6440 WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
7318d4cc
PZ
6441}
6442EXPORT_SYMBOL_GPL(sched_set_normal);
961ccddd 6443
95cdf3b7
IM
6444static int
6445do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 6446{
1da177e4
LT
6447 struct sched_param lparam;
6448 struct task_struct *p;
36c8b586 6449 int retval;
1da177e4
LT
6450
6451 if (!param || pid < 0)
6452 return -EINVAL;
6453 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6454 return -EFAULT;
5fe1d75f
ON
6455
6456 rcu_read_lock();
6457 retval = -ESRCH;
1da177e4 6458 p = find_process_by_pid(pid);
710da3c8
JL
6459 if (likely(p))
6460 get_task_struct(p);
5fe1d75f 6461 rcu_read_unlock();
36c8b586 6462
710da3c8
JL
6463 if (likely(p)) {
6464 retval = sched_setscheduler(p, policy, &lparam);
6465 put_task_struct(p);
6466 }
6467
1da177e4
LT
6468 return retval;
6469}
6470
d50dde5a
DF
6471/*
6472 * Mimics kernel/events/core.c perf_copy_attr().
6473 */
d1ccc66d 6474static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
d50dde5a
DF
6475{
6476 u32 size;
6477 int ret;
6478
d1ccc66d 6479 /* Zero the full structure, so that a short copy will be nice: */
d50dde5a
DF
6480 memset(attr, 0, sizeof(*attr));
6481
6482 ret = get_user(size, &uattr->size);
6483 if (ret)
6484 return ret;
6485
d1ccc66d
IM
6486 /* ABI compatibility quirk: */
6487 if (!size)
d50dde5a 6488 size = SCHED_ATTR_SIZE_VER0;
dff3a85f 6489 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
d50dde5a
DF
6490 goto err_size;
6491
dff3a85f
AS
6492 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
6493 if (ret) {
6494 if (ret == -E2BIG)
6495 goto err_size;
6496 return ret;
d50dde5a
DF
6497 }
6498
a509a7cd
PB
6499 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
6500 size < SCHED_ATTR_SIZE_VER1)
6501 return -EINVAL;
6502
d50dde5a 6503 /*
d1ccc66d 6504 * XXX: Do we want to be lenient like existing syscalls; or do we want
d50dde5a
DF
6505 * to be strict and return an error on out-of-bounds values?
6506 */
75e45d51 6507 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 6508
e78c7bca 6509 return 0;
d50dde5a
DF
6510
6511err_size:
6512 put_user(sizeof(*attr), &uattr->size);
e78c7bca 6513 return -E2BIG;
d50dde5a
DF
6514}
6515
1da177e4
LT
6516/**
6517 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6518 * @pid: the pid in question.
6519 * @policy: new policy.
6520 * @param: structure containing the new RT priority.
e69f6186
YB
6521 *
6522 * Return: 0 on success. An error code otherwise.
1da177e4 6523 */
d1ccc66d 6524SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
1da177e4 6525{
c21761f1
JB
6526 if (policy < 0)
6527 return -EINVAL;
6528
1da177e4
LT
6529 return do_sched_setscheduler(pid, policy, param);
6530}
6531
6532/**
6533 * sys_sched_setparam - set/change the RT priority of a thread
6534 * @pid: the pid in question.
6535 * @param: structure containing the new RT priority.
e69f6186
YB
6536 *
6537 * Return: 0 on success. An error code otherwise.
1da177e4 6538 */
5add95d4 6539SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 6540{
c13db6b1 6541 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
6542}
6543
d50dde5a
DF
6544/**
6545 * sys_sched_setattr - same as above, but with extended sched_attr
6546 * @pid: the pid in question.
5778fccf 6547 * @uattr: structure containing the extended parameters.
db66d756 6548 * @flags: for future extension.
d50dde5a 6549 */
6d35ab48
PZ
6550SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
6551 unsigned int, flags)
d50dde5a
DF
6552{
6553 struct sched_attr attr;
6554 struct task_struct *p;
6555 int retval;
6556
6d35ab48 6557 if (!uattr || pid < 0 || flags)
d50dde5a
DF
6558 return -EINVAL;
6559
143cf23d
MK
6560 retval = sched_copy_attr(uattr, &attr);
6561 if (retval)
6562 return retval;
d50dde5a 6563
b14ed2c2 6564 if ((int)attr.sched_policy < 0)
dbdb2275 6565 return -EINVAL;
1d6362fa
PB
6566 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
6567 attr.sched_policy = SETPARAM_POLICY;
d50dde5a
DF
6568
6569 rcu_read_lock();
6570 retval = -ESRCH;
6571 p = find_process_by_pid(pid);
a509a7cd
PB
6572 if (likely(p))
6573 get_task_struct(p);
d50dde5a
DF
6574 rcu_read_unlock();
6575
a509a7cd
PB
6576 if (likely(p)) {
6577 retval = sched_setattr(p, &attr);
6578 put_task_struct(p);
6579 }
6580
d50dde5a
DF
6581 return retval;
6582}
6583
1da177e4
LT
6584/**
6585 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6586 * @pid: the pid in question.
e69f6186
YB
6587 *
6588 * Return: On success, the policy of the thread. Otherwise, a negative error
6589 * code.
1da177e4 6590 */
5add95d4 6591SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 6592{
36c8b586 6593 struct task_struct *p;
3a5c359a 6594 int retval;
1da177e4
LT
6595
6596 if (pid < 0)
3a5c359a 6597 return -EINVAL;
1da177e4
LT
6598
6599 retval = -ESRCH;
5fe85be0 6600 rcu_read_lock();
1da177e4
LT
6601 p = find_process_by_pid(pid);
6602 if (p) {
6603 retval = security_task_getscheduler(p);
6604 if (!retval)
ca94c442
LP
6605 retval = p->policy
6606 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 6607 }
5fe85be0 6608 rcu_read_unlock();
1da177e4
LT
6609 return retval;
6610}
6611
6612/**
ca94c442 6613 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
6614 * @pid: the pid in question.
6615 * @param: structure containing the RT priority.
e69f6186
YB
6616 *
6617 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
6618 * code.
1da177e4 6619 */
5add95d4 6620SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 6621{
ce5f7f82 6622 struct sched_param lp = { .sched_priority = 0 };
36c8b586 6623 struct task_struct *p;
3a5c359a 6624 int retval;
1da177e4
LT
6625
6626 if (!param || pid < 0)
3a5c359a 6627 return -EINVAL;
1da177e4 6628
5fe85be0 6629 rcu_read_lock();
1da177e4
LT
6630 p = find_process_by_pid(pid);
6631 retval = -ESRCH;
6632 if (!p)
6633 goto out_unlock;
6634
6635 retval = security_task_getscheduler(p);
6636 if (retval)
6637 goto out_unlock;
6638
ce5f7f82
PZ
6639 if (task_has_rt_policy(p))
6640 lp.sched_priority = p->rt_priority;
5fe85be0 6641 rcu_read_unlock();
1da177e4
LT
6642
6643 /*
6644 * This one might sleep, we cannot do it with a spinlock held ...
6645 */
6646 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6647
1da177e4
LT
6648 return retval;
6649
6650out_unlock:
5fe85be0 6651 rcu_read_unlock();
1da177e4
LT
6652 return retval;
6653}
6654
1251201c
IM
6655/*
6656 * Copy the kernel size attribute structure (which might be larger
6657 * than what user-space knows about) to user-space.
6658 *
6659 * Note that all cases are valid: user-space buffer can be larger or
6660 * smaller than the kernel-space buffer. The usual case is that both
6661 * have the same size.
6662 */
6663static int
6664sched_attr_copy_to_user(struct sched_attr __user *uattr,
6665 struct sched_attr *kattr,
6666 unsigned int usize)
d50dde5a 6667{
1251201c 6668 unsigned int ksize = sizeof(*kattr);
d50dde5a 6669
96d4f267 6670 if (!access_ok(uattr, usize))
d50dde5a
DF
6671 return -EFAULT;
6672
6673 /*
1251201c
IM
6674 * sched_getattr() ABI forwards and backwards compatibility:
6675 *
6676 * If usize == ksize then we just copy everything to user-space and all is good.
6677 *
6678 * If usize < ksize then we only copy as much as user-space has space for,
6679 * this keeps ABI compatibility as well. We skip the rest.
6680 *
6681 * If usize > ksize then user-space is using a newer version of the ABI,
6682 * which part the kernel doesn't know about. Just ignore it - tooling can
6683 * detect the kernel's knowledge of attributes from the attr->size value
6684 * which is set to ksize in this case.
d50dde5a 6685 */
1251201c 6686 kattr->size = min(usize, ksize);
d50dde5a 6687
1251201c 6688 if (copy_to_user(uattr, kattr, kattr->size))
d50dde5a
DF
6689 return -EFAULT;
6690
22400674 6691 return 0;
d50dde5a
DF
6692}
6693
6694/**
aab03e05 6695 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 6696 * @pid: the pid in question.
5778fccf 6697 * @uattr: structure containing the extended parameters.
dff3a85f 6698 * @usize: sizeof(attr) for fwd/bwd comp.
db66d756 6699 * @flags: for future extension.
d50dde5a 6700 */
6d35ab48 6701SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
1251201c 6702 unsigned int, usize, unsigned int, flags)
d50dde5a 6703{
1251201c 6704 struct sched_attr kattr = { };
d50dde5a
DF
6705 struct task_struct *p;
6706 int retval;
6707
1251201c
IM
6708 if (!uattr || pid < 0 || usize > PAGE_SIZE ||
6709 usize < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
6710 return -EINVAL;
6711
6712 rcu_read_lock();
6713 p = find_process_by_pid(pid);
6714 retval = -ESRCH;
6715 if (!p)
6716 goto out_unlock;
6717
6718 retval = security_task_getscheduler(p);
6719 if (retval)
6720 goto out_unlock;
6721
1251201c 6722 kattr.sched_policy = p->policy;
7479f3c9 6723 if (p->sched_reset_on_fork)
1251201c 6724 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05 6725 if (task_has_dl_policy(p))
1251201c 6726 __getparam_dl(p, &kattr);
aab03e05 6727 else if (task_has_rt_policy(p))
1251201c 6728 kattr.sched_priority = p->rt_priority;
d50dde5a 6729 else
1251201c 6730 kattr.sched_nice = task_nice(p);
d50dde5a 6731
a509a7cd 6732#ifdef CONFIG_UCLAMP_TASK
13685c4a
QY
6733 /*
6734 * This could race with another potential updater, but this is fine
6735 * because it'll correctly read the old or the new value. We don't need
6736 * to guarantee who wins the race as long as it doesn't return garbage.
6737 */
1251201c
IM
6738 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
6739 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
a509a7cd
PB
6740#endif
6741
d50dde5a
DF
6742 rcu_read_unlock();
6743
1251201c 6744 return sched_attr_copy_to_user(uattr, &kattr, usize);
d50dde5a
DF
6745
6746out_unlock:
6747 rcu_read_unlock();
6748 return retval;
6749}
6750
96f874e2 6751long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 6752{
5a16f3d3 6753 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
6754 struct task_struct *p;
6755 int retval;
1da177e4 6756
23f5d142 6757 rcu_read_lock();
1da177e4
LT
6758
6759 p = find_process_by_pid(pid);
6760 if (!p) {
23f5d142 6761 rcu_read_unlock();
1da177e4
LT
6762 return -ESRCH;
6763 }
6764
23f5d142 6765 /* Prevent p going away */
1da177e4 6766 get_task_struct(p);
23f5d142 6767 rcu_read_unlock();
1da177e4 6768
14a40ffc
TH
6769 if (p->flags & PF_NO_SETAFFINITY) {
6770 retval = -EINVAL;
6771 goto out_put_task;
6772 }
5a16f3d3
RR
6773 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6774 retval = -ENOMEM;
6775 goto out_put_task;
6776 }
6777 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6778 retval = -ENOMEM;
6779 goto out_free_cpus_allowed;
6780 }
1da177e4 6781 retval = -EPERM;
4c44aaaf
EB
6782 if (!check_same_owner(p)) {
6783 rcu_read_lock();
6784 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
6785 rcu_read_unlock();
16303ab2 6786 goto out_free_new_mask;
4c44aaaf
EB
6787 }
6788 rcu_read_unlock();
6789 }
1da177e4 6790
b0ae1981 6791 retval = security_task_setscheduler(p);
e7834f8f 6792 if (retval)
16303ab2 6793 goto out_free_new_mask;
e7834f8f 6794
e4099a5e
PZ
6795
6796 cpuset_cpus_allowed(p, cpus_allowed);
6797 cpumask_and(new_mask, in_mask, cpus_allowed);
6798
332ac17e
DF
6799 /*
6800 * Since bandwidth control happens on root_domain basis,
6801 * if admission test is enabled, we only admit -deadline
6802 * tasks allowed to run on all the CPUs in the task's
6803 * root_domain.
6804 */
6805#ifdef CONFIG_SMP
f1e3a093
KT
6806 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
6807 rcu_read_lock();
6808 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 6809 retval = -EBUSY;
f1e3a093 6810 rcu_read_unlock();
16303ab2 6811 goto out_free_new_mask;
332ac17e 6812 }
f1e3a093 6813 rcu_read_unlock();
332ac17e
DF
6814 }
6815#endif
49246274 6816again:
9cfc3e18 6817 retval = __set_cpus_allowed_ptr(p, new_mask, SCA_CHECK);
1da177e4 6818
8707d8b8 6819 if (!retval) {
5a16f3d3
RR
6820 cpuset_cpus_allowed(p, cpus_allowed);
6821 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
6822 /*
6823 * We must have raced with a concurrent cpuset
6824 * update. Just reset the cpus_allowed to the
6825 * cpuset's cpus_allowed
6826 */
5a16f3d3 6827 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
6828 goto again;
6829 }
6830 }
16303ab2 6831out_free_new_mask:
5a16f3d3
RR
6832 free_cpumask_var(new_mask);
6833out_free_cpus_allowed:
6834 free_cpumask_var(cpus_allowed);
6835out_put_task:
1da177e4 6836 put_task_struct(p);
1da177e4
LT
6837 return retval;
6838}
6839
6840static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 6841 struct cpumask *new_mask)
1da177e4 6842{
96f874e2
RR
6843 if (len < cpumask_size())
6844 cpumask_clear(new_mask);
6845 else if (len > cpumask_size())
6846 len = cpumask_size();
6847
1da177e4
LT
6848 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6849}
6850
6851/**
d1ccc66d 6852 * sys_sched_setaffinity - set the CPU affinity of a process
1da177e4
LT
6853 * @pid: pid of the process
6854 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
d1ccc66d 6855 * @user_mask_ptr: user-space pointer to the new CPU mask
e69f6186
YB
6856 *
6857 * Return: 0 on success. An error code otherwise.
1da177e4 6858 */
5add95d4
HC
6859SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6860 unsigned long __user *, user_mask_ptr)
1da177e4 6861{
5a16f3d3 6862 cpumask_var_t new_mask;
1da177e4
LT
6863 int retval;
6864
5a16f3d3
RR
6865 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6866 return -ENOMEM;
1da177e4 6867
5a16f3d3
RR
6868 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6869 if (retval == 0)
6870 retval = sched_setaffinity(pid, new_mask);
6871 free_cpumask_var(new_mask);
6872 return retval;
1da177e4
LT
6873}
6874
96f874e2 6875long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 6876{
36c8b586 6877 struct task_struct *p;
31605683 6878 unsigned long flags;
1da177e4 6879 int retval;
1da177e4 6880
23f5d142 6881 rcu_read_lock();
1da177e4
LT
6882
6883 retval = -ESRCH;
6884 p = find_process_by_pid(pid);
6885 if (!p)
6886 goto out_unlock;
6887
e7834f8f
DQ
6888 retval = security_task_getscheduler(p);
6889 if (retval)
6890 goto out_unlock;
6891
013fdb80 6892 raw_spin_lock_irqsave(&p->pi_lock, flags);
3bd37062 6893 cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
013fdb80 6894 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
6895
6896out_unlock:
23f5d142 6897 rcu_read_unlock();
1da177e4 6898
9531b62f 6899 return retval;
1da177e4
LT
6900}
6901
6902/**
d1ccc66d 6903 * sys_sched_getaffinity - get the CPU affinity of a process
1da177e4
LT
6904 * @pid: pid of the process
6905 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
d1ccc66d 6906 * @user_mask_ptr: user-space pointer to hold the current CPU mask
e69f6186 6907 *
599b4840
ZW
6908 * Return: size of CPU mask copied to user_mask_ptr on success. An
6909 * error code otherwise.
1da177e4 6910 */
5add95d4
HC
6911SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6912 unsigned long __user *, user_mask_ptr)
1da177e4
LT
6913{
6914 int ret;
f17c8607 6915 cpumask_var_t mask;
1da177e4 6916
84fba5ec 6917 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
6918 return -EINVAL;
6919 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
6920 return -EINVAL;
6921
f17c8607
RR
6922 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6923 return -ENOMEM;
1da177e4 6924
f17c8607
RR
6925 ret = sched_getaffinity(pid, mask);
6926 if (ret == 0) {
4de373a1 6927 unsigned int retlen = min(len, cpumask_size());
cd3d8031
KM
6928
6929 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
6930 ret = -EFAULT;
6931 else
cd3d8031 6932 ret = retlen;
f17c8607
RR
6933 }
6934 free_cpumask_var(mask);
1da177e4 6935
f17c8607 6936 return ret;
1da177e4
LT
6937}
6938
7d4dd4f1 6939static void do_sched_yield(void)
1da177e4 6940{
8a8c69c3
PZ
6941 struct rq_flags rf;
6942 struct rq *rq;
6943
246b3b33 6944 rq = this_rq_lock_irq(&rf);
1da177e4 6945
ae92882e 6946 schedstat_inc(rq->yld_count);
4530d7ab 6947 current->sched_class->yield_task(rq);
1da177e4 6948
8a8c69c3 6949 preempt_disable();
345a957f 6950 rq_unlock_irq(rq, &rf);
ba74c144 6951 sched_preempt_enable_no_resched();
1da177e4
LT
6952
6953 schedule();
7d4dd4f1 6954}
1da177e4 6955
59a74b15
MCC
6956/**
6957 * sys_sched_yield - yield the current processor to other threads.
6958 *
6959 * This function yields the current CPU to other tasks. If there are no
6960 * other threads running on this CPU then this function will return.
6961 *
6962 * Return: 0.
6963 */
7d4dd4f1
DB
6964SYSCALL_DEFINE0(sched_yield)
6965{
6966 do_sched_yield();
1da177e4
LT
6967 return 0;
6968}
6969
b965f1dd
PZI
6970#if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
6971int __sched __cond_resched(void)
1da177e4 6972{
fe32d3cd 6973 if (should_resched(0)) {
a18b5d01 6974 preempt_schedule_common();
1da177e4
LT
6975 return 1;
6976 }
b965f1dd 6977#ifndef CONFIG_PREEMPT_RCU
f79c3ad6 6978 rcu_all_qs();
b965f1dd 6979#endif
1da177e4
LT
6980 return 0;
6981}
b965f1dd
PZI
6982EXPORT_SYMBOL(__cond_resched);
6983#endif
6984
6985#ifdef CONFIG_PREEMPT_DYNAMIC
6986DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
ef72661e 6987EXPORT_STATIC_CALL_TRAMP(cond_resched);
b965f1dd
PZI
6988
6989DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
ef72661e 6990EXPORT_STATIC_CALL_TRAMP(might_resched);
35a773a0 6991#endif
1da177e4
LT
6992
6993/*
613afbf8 6994 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
6995 * call schedule, and on return reacquire the lock.
6996 *
c1a280b6 6997 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
1da177e4
LT
6998 * operations here to prevent schedule() from being called twice (once via
6999 * spin_unlock(), once by hand).
7000 */
613afbf8 7001int __cond_resched_lock(spinlock_t *lock)
1da177e4 7002{
fe32d3cd 7003 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6df3cecb
JK
7004 int ret = 0;
7005
f607c668
PZ
7006 lockdep_assert_held(lock);
7007
4a81e832 7008 if (spin_needbreak(lock) || resched) {
1da177e4 7009 spin_unlock(lock);
d86ee480 7010 if (resched)
a18b5d01 7011 preempt_schedule_common();
95c354fe
NP
7012 else
7013 cpu_relax();
6df3cecb 7014 ret = 1;
1da177e4 7015 spin_lock(lock);
1da177e4 7016 }
6df3cecb 7017 return ret;
1da177e4 7018}
613afbf8 7019EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 7020
f3d4b4b1
BG
7021int __cond_resched_rwlock_read(rwlock_t *lock)
7022{
7023 int resched = should_resched(PREEMPT_LOCK_OFFSET);
7024 int ret = 0;
7025
7026 lockdep_assert_held_read(lock);
7027
7028 if (rwlock_needbreak(lock) || resched) {
7029 read_unlock(lock);
7030 if (resched)
7031 preempt_schedule_common();
7032 else
7033 cpu_relax();
7034 ret = 1;
7035 read_lock(lock);
7036 }
7037 return ret;
7038}
7039EXPORT_SYMBOL(__cond_resched_rwlock_read);
7040
7041int __cond_resched_rwlock_write(rwlock_t *lock)
7042{
7043 int resched = should_resched(PREEMPT_LOCK_OFFSET);
7044 int ret = 0;
7045
7046 lockdep_assert_held_write(lock);
7047
7048 if (rwlock_needbreak(lock) || resched) {
7049 write_unlock(lock);
7050 if (resched)
7051 preempt_schedule_common();
7052 else
7053 cpu_relax();
7054 ret = 1;
7055 write_lock(lock);
7056 }
7057 return ret;
7058}
7059EXPORT_SYMBOL(__cond_resched_rwlock_write);
7060
1da177e4
LT
7061/**
7062 * yield - yield the current processor to other threads.
7063 *
8e3fabfd
PZ
7064 * Do not ever use this function, there's a 99% chance you're doing it wrong.
7065 *
7066 * The scheduler is at all times free to pick the calling task as the most
7067 * eligible task to run, if removing the yield() call from your code breaks
b19a888c 7068 * it, it's already broken.
8e3fabfd
PZ
7069 *
7070 * Typical broken usage is:
7071 *
7072 * while (!event)
d1ccc66d 7073 * yield();
8e3fabfd
PZ
7074 *
7075 * where one assumes that yield() will let 'the other' process run that will
7076 * make event true. If the current task is a SCHED_FIFO task that will never
7077 * happen. Never use yield() as a progress guarantee!!
7078 *
7079 * If you want to use yield() to wait for something, use wait_event().
7080 * If you want to use yield() to be 'nice' for others, use cond_resched().
7081 * If you still want to use yield(), do not!
1da177e4
LT
7082 */
7083void __sched yield(void)
7084{
7085 set_current_state(TASK_RUNNING);
7d4dd4f1 7086 do_sched_yield();
1da177e4 7087}
1da177e4
LT
7088EXPORT_SYMBOL(yield);
7089
d95f4122
MG
7090/**
7091 * yield_to - yield the current processor to another thread in
7092 * your thread group, or accelerate that thread toward the
7093 * processor it's on.
16addf95
RD
7094 * @p: target task
7095 * @preempt: whether task preemption is allowed or not
d95f4122
MG
7096 *
7097 * It's the caller's job to ensure that the target task struct
7098 * can't go away on us before we can do any checks.
7099 *
e69f6186 7100 * Return:
7b270f60
PZ
7101 * true (>0) if we indeed boosted the target task.
7102 * false (0) if we failed to boost the target.
7103 * -ESRCH if there's no task to yield to.
d95f4122 7104 */
fa93384f 7105int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
7106{
7107 struct task_struct *curr = current;
7108 struct rq *rq, *p_rq;
7109 unsigned long flags;
c3c18640 7110 int yielded = 0;
d95f4122
MG
7111
7112 local_irq_save(flags);
7113 rq = this_rq();
7114
7115again:
7116 p_rq = task_rq(p);
7b270f60
PZ
7117 /*
7118 * If we're the only runnable task on the rq and target rq also
7119 * has only one task, there's absolutely no point in yielding.
7120 */
7121 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
7122 yielded = -ESRCH;
7123 goto out_irq;
7124 }
7125
d95f4122 7126 double_rq_lock(rq, p_rq);
39e24d8f 7127 if (task_rq(p) != p_rq) {
d95f4122
MG
7128 double_rq_unlock(rq, p_rq);
7129 goto again;
7130 }
7131
7132 if (!curr->sched_class->yield_to_task)
7b270f60 7133 goto out_unlock;
d95f4122
MG
7134
7135 if (curr->sched_class != p->sched_class)
7b270f60 7136 goto out_unlock;
d95f4122
MG
7137
7138 if (task_running(p_rq, p) || p->state)
7b270f60 7139 goto out_unlock;
d95f4122 7140
0900acf2 7141 yielded = curr->sched_class->yield_to_task(rq, p);
6d1cafd8 7142 if (yielded) {
ae92882e 7143 schedstat_inc(rq->yld_count);
6d1cafd8
VP
7144 /*
7145 * Make p's CPU reschedule; pick_next_entity takes care of
7146 * fairness.
7147 */
7148 if (preempt && rq != p_rq)
8875125e 7149 resched_curr(p_rq);
6d1cafd8 7150 }
d95f4122 7151
7b270f60 7152out_unlock:
d95f4122 7153 double_rq_unlock(rq, p_rq);
7b270f60 7154out_irq:
d95f4122
MG
7155 local_irq_restore(flags);
7156
7b270f60 7157 if (yielded > 0)
d95f4122
MG
7158 schedule();
7159
7160 return yielded;
7161}
7162EXPORT_SYMBOL_GPL(yield_to);
7163
10ab5643
TH
7164int io_schedule_prepare(void)
7165{
7166 int old_iowait = current->in_iowait;
7167
7168 current->in_iowait = 1;
7169 blk_schedule_flush_plug(current);
7170
7171 return old_iowait;
7172}
7173
7174void io_schedule_finish(int token)
7175{
7176 current->in_iowait = token;
7177}
7178
1da177e4 7179/*
41a2d6cf 7180 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 7181 * that process accounting knows that this is a task in IO wait state.
1da177e4 7182 */
1da177e4
LT
7183long __sched io_schedule_timeout(long timeout)
7184{
10ab5643 7185 int token;
1da177e4
LT
7186 long ret;
7187
10ab5643 7188 token = io_schedule_prepare();
1da177e4 7189 ret = schedule_timeout(timeout);
10ab5643 7190 io_schedule_finish(token);
9cff8ade 7191
1da177e4
LT
7192 return ret;
7193}
9cff8ade 7194EXPORT_SYMBOL(io_schedule_timeout);
1da177e4 7195
e3b929b0 7196void __sched io_schedule(void)
10ab5643
TH
7197{
7198 int token;
7199
7200 token = io_schedule_prepare();
7201 schedule();
7202 io_schedule_finish(token);
7203}
7204EXPORT_SYMBOL(io_schedule);
7205
1da177e4
LT
7206/**
7207 * sys_sched_get_priority_max - return maximum RT priority.
7208 * @policy: scheduling class.
7209 *
e69f6186
YB
7210 * Return: On success, this syscall returns the maximum
7211 * rt_priority that can be used by a given scheduling class.
7212 * On failure, a negative error code is returned.
1da177e4 7213 */
5add95d4 7214SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
7215{
7216 int ret = -EINVAL;
7217
7218 switch (policy) {
7219 case SCHED_FIFO:
7220 case SCHED_RR:
ae18ad28 7221 ret = MAX_RT_PRIO-1;
1da177e4 7222 break;
aab03e05 7223 case SCHED_DEADLINE:
1da177e4 7224 case SCHED_NORMAL:
b0a9499c 7225 case SCHED_BATCH:
dd41f596 7226 case SCHED_IDLE:
1da177e4
LT
7227 ret = 0;
7228 break;
7229 }
7230 return ret;
7231}
7232
7233/**
7234 * sys_sched_get_priority_min - return minimum RT priority.
7235 * @policy: scheduling class.
7236 *
e69f6186
YB
7237 * Return: On success, this syscall returns the minimum
7238 * rt_priority that can be used by a given scheduling class.
7239 * On failure, a negative error code is returned.
1da177e4 7240 */
5add95d4 7241SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
7242{
7243 int ret = -EINVAL;
7244
7245 switch (policy) {
7246 case SCHED_FIFO:
7247 case SCHED_RR:
7248 ret = 1;
7249 break;
aab03e05 7250 case SCHED_DEADLINE:
1da177e4 7251 case SCHED_NORMAL:
b0a9499c 7252 case SCHED_BATCH:
dd41f596 7253 case SCHED_IDLE:
1da177e4
LT
7254 ret = 0;
7255 }
7256 return ret;
7257}
7258
abca5fc5 7259static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
1da177e4 7260{
36c8b586 7261 struct task_struct *p;
a4ec24b4 7262 unsigned int time_slice;
eb580751 7263 struct rq_flags rf;
dba091b9 7264 struct rq *rq;
3a5c359a 7265 int retval;
1da177e4
LT
7266
7267 if (pid < 0)
3a5c359a 7268 return -EINVAL;
1da177e4
LT
7269
7270 retval = -ESRCH;
1a551ae7 7271 rcu_read_lock();
1da177e4
LT
7272 p = find_process_by_pid(pid);
7273 if (!p)
7274 goto out_unlock;
7275
7276 retval = security_task_getscheduler(p);
7277 if (retval)
7278 goto out_unlock;
7279
eb580751 7280 rq = task_rq_lock(p, &rf);
a57beec5
PZ
7281 time_slice = 0;
7282 if (p->sched_class->get_rr_interval)
7283 time_slice = p->sched_class->get_rr_interval(rq, p);
eb580751 7284 task_rq_unlock(rq, p, &rf);
a4ec24b4 7285
1a551ae7 7286 rcu_read_unlock();
abca5fc5
AV
7287 jiffies_to_timespec64(time_slice, t);
7288 return 0;
3a5c359a 7289
1da177e4 7290out_unlock:
1a551ae7 7291 rcu_read_unlock();
1da177e4
LT
7292 return retval;
7293}
7294
2064a5ab
RD
7295/**
7296 * sys_sched_rr_get_interval - return the default timeslice of a process.
7297 * @pid: pid of the process.
7298 * @interval: userspace pointer to the timeslice value.
7299 *
7300 * this syscall writes the default timeslice value of a given process
7301 * into the user-space timespec buffer. A value of '0' means infinity.
7302 *
7303 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
7304 * an error code.
7305 */
abca5fc5 7306SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
474b9c77 7307 struct __kernel_timespec __user *, interval)
abca5fc5
AV
7308{
7309 struct timespec64 t;
7310 int retval = sched_rr_get_interval(pid, &t);
7311
7312 if (retval == 0)
7313 retval = put_timespec64(&t, interval);
7314
7315 return retval;
7316}
7317
474b9c77 7318#ifdef CONFIG_COMPAT_32BIT_TIME
8dabe724
AB
7319SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
7320 struct old_timespec32 __user *, interval)
abca5fc5
AV
7321{
7322 struct timespec64 t;
7323 int retval = sched_rr_get_interval(pid, &t);
7324
7325 if (retval == 0)
9afc5eee 7326 retval = put_old_timespec32(&t, interval);
abca5fc5
AV
7327 return retval;
7328}
7329#endif
7330
82a1fcb9 7331void sched_show_task(struct task_struct *p)
1da177e4 7332{
1da177e4 7333 unsigned long free = 0;
4e79752c 7334 int ppid;
c930b2c0 7335
38200502
TH
7336 if (!try_get_task_stack(p))
7337 return;
20435d84 7338
cc172ff3 7339 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
20435d84
XX
7340
7341 if (p->state == TASK_RUNNING)
cc172ff3 7342 pr_cont(" running task ");
1da177e4 7343#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 7344 free = stack_not_used(p);
1da177e4 7345#endif
a90e984c 7346 ppid = 0;
4e79752c 7347 rcu_read_lock();
a90e984c
ON
7348 if (pid_alive(p))
7349 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 7350 rcu_read_unlock();
cc172ff3
LZ
7351 pr_cont(" stack:%5lu pid:%5d ppid:%6d flags:0x%08lx\n",
7352 free, task_pid_nr(p), ppid,
aa47b7e0 7353 (unsigned long)task_thread_info(p)->flags);
1da177e4 7354
3d1cb205 7355 print_worker_info(KERN_INFO, p);
a8b62fd0 7356 print_stop_info(KERN_INFO, p);
9cb8f069 7357 show_stack(p, NULL, KERN_INFO);
38200502 7358 put_task_stack(p);
1da177e4 7359}
0032f4e8 7360EXPORT_SYMBOL_GPL(sched_show_task);
1da177e4 7361
5d68cc95
PZ
7362static inline bool
7363state_filter_match(unsigned long state_filter, struct task_struct *p)
7364{
7365 /* no filter, everything matches */
7366 if (!state_filter)
7367 return true;
7368
7369 /* filter, but doesn't match */
7370 if (!(p->state & state_filter))
7371 return false;
7372
7373 /*
7374 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
7375 * TASK_KILLABLE).
7376 */
7377 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
7378 return false;
7379
7380 return true;
7381}
7382
7383
e59e2ae2 7384void show_state_filter(unsigned long state_filter)
1da177e4 7385{
36c8b586 7386 struct task_struct *g, *p;
1da177e4 7387
510f5acc 7388 rcu_read_lock();
5d07f420 7389 for_each_process_thread(g, p) {
1da177e4
LT
7390 /*
7391 * reset the NMI-timeout, listing all files on a slow
25985edc 7392 * console might take a lot of time:
57675cb9
AR
7393 * Also, reset softlockup watchdogs on all CPUs, because
7394 * another CPU might be blocked waiting for us to process
7395 * an IPI.
1da177e4
LT
7396 */
7397 touch_nmi_watchdog();
57675cb9 7398 touch_all_softlockup_watchdogs();
5d68cc95 7399 if (state_filter_match(state_filter, p))
82a1fcb9 7400 sched_show_task(p);
5d07f420 7401 }
1da177e4 7402
dd41f596 7403#ifdef CONFIG_SCHED_DEBUG
fb90a6e9
RV
7404 if (!state_filter)
7405 sysrq_sched_debug_show();
dd41f596 7406#endif
510f5acc 7407 rcu_read_unlock();
e59e2ae2
IM
7408 /*
7409 * Only show locks if all tasks are dumped:
7410 */
93335a21 7411 if (!state_filter)
e59e2ae2 7412 debug_show_all_locks();
1da177e4
LT
7413}
7414
f340c0d1
IM
7415/**
7416 * init_idle - set up an idle thread for a given CPU
7417 * @idle: task in question
d1ccc66d 7418 * @cpu: CPU the idle task belongs to
f340c0d1
IM
7419 *
7420 * NOTE: this function does not set the idle thread's NEED_RESCHED
7421 * flag, to make booting more robust.
7422 */
0db0628d 7423void init_idle(struct task_struct *idle, int cpu)
1da177e4 7424{
70b97a7f 7425 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
7426 unsigned long flags;
7427
ff51ff84
PZ
7428 __sched_fork(0, idle);
7429
25834c73
PZ
7430 raw_spin_lock_irqsave(&idle->pi_lock, flags);
7431 raw_spin_lock(&rq->lock);
5cbd54ef 7432
06b83b5f 7433 idle->state = TASK_RUNNING;
dd41f596 7434 idle->se.exec_start = sched_clock();
c1de45ca 7435 idle->flags |= PF_IDLE;
dd41f596 7436
d08b9f0c 7437 scs_task_reset(idle);
e1b77c92
MR
7438 kasan_unpoison_task_stack(idle);
7439
de9b8f5d
PZ
7440#ifdef CONFIG_SMP
7441 /*
b19a888c 7442 * It's possible that init_idle() gets called multiple times on a task,
de9b8f5d
PZ
7443 * in that case do_set_cpus_allowed() will not do the right thing.
7444 *
7445 * And since this is boot we can forgo the serialization.
7446 */
9cfc3e18 7447 set_cpus_allowed_common(idle, cpumask_of(cpu), 0);
de9b8f5d 7448#endif
6506cf6c
PZ
7449 /*
7450 * We're having a chicken and egg problem, even though we are
d1ccc66d 7451 * holding rq->lock, the CPU isn't yet set to this CPU so the
6506cf6c
PZ
7452 * lockdep check in task_group() will fail.
7453 *
7454 * Similar case to sched_fork(). / Alternatively we could
7455 * use task_rq_lock() here and obtain the other rq->lock.
7456 *
7457 * Silence PROVE_RCU
7458 */
7459 rcu_read_lock();
dd41f596 7460 __set_task_cpu(idle, cpu);
6506cf6c 7461 rcu_read_unlock();
1da177e4 7462
5311a98f
EB
7463 rq->idle = idle;
7464 rcu_assign_pointer(rq->curr, idle);
da0c1e65 7465 idle->on_rq = TASK_ON_RQ_QUEUED;
de9b8f5d 7466#ifdef CONFIG_SMP
3ca7a440 7467 idle->on_cpu = 1;
4866cde0 7468#endif
25834c73
PZ
7469 raw_spin_unlock(&rq->lock);
7470 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
1da177e4
LT
7471
7472 /* Set the preempt count _outside_ the spinlocks! */
01028747 7473 init_idle_preempt_count(idle, cpu);
55cd5340 7474
dd41f596
IM
7475 /*
7476 * The idle tasks have their own, simple scheduling class:
7477 */
7478 idle->sched_class = &idle_sched_class;
868baf07 7479 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 7480 vtime_init_idle(idle, cpu);
de9b8f5d 7481#ifdef CONFIG_SMP
f1c6f1a7
CE
7482 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
7483#endif
19978ca6
IM
7484}
7485
e1d4eeec
NP
7486#ifdef CONFIG_SMP
7487
f82f8042
JL
7488int cpuset_cpumask_can_shrink(const struct cpumask *cur,
7489 const struct cpumask *trial)
7490{
06a76fe0 7491 int ret = 1;
f82f8042 7492
bb2bc55a
MG
7493 if (!cpumask_weight(cur))
7494 return ret;
7495
06a76fe0 7496 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
f82f8042
JL
7497
7498 return ret;
7499}
7500
7f51412a
JL
7501int task_can_attach(struct task_struct *p,
7502 const struct cpumask *cs_cpus_allowed)
7503{
7504 int ret = 0;
7505
7506 /*
7507 * Kthreads which disallow setaffinity shouldn't be moved
d1ccc66d 7508 * to a new cpuset; we don't want to change their CPU
7f51412a
JL
7509 * affinity and isolating such threads by their set of
7510 * allowed nodes is unnecessary. Thus, cpusets are not
7511 * applicable for such threads. This prevents checking for
7512 * success of set_cpus_allowed_ptr() on all attached tasks
3bd37062 7513 * before cpus_mask may be changed.
7f51412a
JL
7514 */
7515 if (p->flags & PF_NO_SETAFFINITY) {
7516 ret = -EINVAL;
7517 goto out;
7518 }
7519
7f51412a 7520 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
06a76fe0
NP
7521 cs_cpus_allowed))
7522 ret = dl_task_can_attach(p, cs_cpus_allowed);
7f51412a 7523
7f51412a
JL
7524out:
7525 return ret;
7526}
7527
f2cb1360 7528bool sched_smp_initialized __read_mostly;
e26fbffd 7529
e6628d5b
MG
7530#ifdef CONFIG_NUMA_BALANCING
7531/* Migrate current task p to target_cpu */
7532int migrate_task_to(struct task_struct *p, int target_cpu)
7533{
7534 struct migration_arg arg = { p, target_cpu };
7535 int curr_cpu = task_cpu(p);
7536
7537 if (curr_cpu == target_cpu)
7538 return 0;
7539
3bd37062 7540 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
e6628d5b
MG
7541 return -EINVAL;
7542
7543 /* TODO: This is not properly updating schedstats */
7544
286549dc 7545 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
7546 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
7547}
0ec8aa00
PZ
7548
7549/*
7550 * Requeue a task on a given node and accurately track the number of NUMA
7551 * tasks on the runqueues
7552 */
7553void sched_setnuma(struct task_struct *p, int nid)
7554{
da0c1e65 7555 bool queued, running;
eb580751
PZ
7556 struct rq_flags rf;
7557 struct rq *rq;
0ec8aa00 7558
eb580751 7559 rq = task_rq_lock(p, &rf);
da0c1e65 7560 queued = task_on_rq_queued(p);
0ec8aa00
PZ
7561 running = task_current(rq, p);
7562
da0c1e65 7563 if (queued)
1de64443 7564 dequeue_task(rq, p, DEQUEUE_SAVE);
0ec8aa00 7565 if (running)
f3cd1c4e 7566 put_prev_task(rq, p);
0ec8aa00
PZ
7567
7568 p->numa_preferred_nid = nid;
0ec8aa00 7569
da0c1e65 7570 if (queued)
7134b3e9 7571 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
a399d233 7572 if (running)
03b7fad1 7573 set_next_task(rq, p);
eb580751 7574 task_rq_unlock(rq, p, &rf);
0ec8aa00 7575}
5cc389bc 7576#endif /* CONFIG_NUMA_BALANCING */
f7b4cddc 7577
1da177e4 7578#ifdef CONFIG_HOTPLUG_CPU
054b9108 7579/*
d1ccc66d 7580 * Ensure that the idle task is using init_mm right before its CPU goes
48c5ccae 7581 * offline.
054b9108 7582 */
48c5ccae 7583void idle_task_exit(void)
1da177e4 7584{
48c5ccae 7585 struct mm_struct *mm = current->active_mm;
e76bd8d9 7586
48c5ccae 7587 BUG_ON(cpu_online(smp_processor_id()));
bf2c59fc 7588 BUG_ON(current != this_rq()->idle);
e76bd8d9 7589
a53efe5f 7590 if (mm != &init_mm) {
252d2a41 7591 switch_mm(mm, &init_mm, current);
a53efe5f
MS
7592 finish_arch_post_lock_switch();
7593 }
bf2c59fc
PZ
7594
7595 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */
1da177e4
LT
7596}
7597
2558aacf 7598static int __balance_push_cpu_stop(void *arg)
1da177e4 7599{
2558aacf
PZ
7600 struct task_struct *p = arg;
7601 struct rq *rq = this_rq();
7602 struct rq_flags rf;
7603 int cpu;
1da177e4 7604
2558aacf
PZ
7605 raw_spin_lock_irq(&p->pi_lock);
7606 rq_lock(rq, &rf);
3f1d2a31 7607
2558aacf
PZ
7608 update_rq_clock(rq);
7609
7610 if (task_rq(p) == rq && task_on_rq_queued(p)) {
7611 cpu = select_fallback_rq(rq->cpu, p);
7612 rq = __migrate_task(rq, &rf, p, cpu);
10e7071b 7613 }
3f1d2a31 7614
2558aacf
PZ
7615 rq_unlock(rq, &rf);
7616 raw_spin_unlock_irq(&p->pi_lock);
7617
7618 put_task_struct(p);
7619
7620 return 0;
10e7071b 7621}
3f1d2a31 7622
2558aacf
PZ
7623static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
7624
48f24c4d 7625/*
2558aacf 7626 * Ensure we only run per-cpu kthreads once the CPU goes !active.
1da177e4 7627 */
2558aacf 7628static void balance_push(struct rq *rq)
1da177e4 7629{
2558aacf
PZ
7630 struct task_struct *push_task = rq->curr;
7631
7632 lockdep_assert_held(&rq->lock);
7633 SCHED_WARN_ON(rq->cpu != smp_processor_id());
ae792702
PZ
7634 /*
7635 * Ensure the thing is persistent until balance_push_set(.on = false);
7636 */
7637 rq->balance_callback = &balance_push_callback;
1da177e4
LT
7638
7639 /*
2558aacf
PZ
7640 * Both the cpu-hotplug and stop task are in this case and are
7641 * required to complete the hotplug process.
5ba2ffba
PZ
7642 *
7643 * XXX: the idle task does not match kthread_is_per_cpu() due to
7644 * histerical raisins.
1da177e4 7645 */
5ba2ffba
PZ
7646 if (rq->idle == push_task ||
7647 ((push_task->flags & PF_KTHREAD) && kthread_is_per_cpu(push_task)) ||
7648 is_migration_disabled(push_task)) {
7649
f2469a1f
TG
7650 /*
7651 * If this is the idle task on the outgoing CPU try to wake
7652 * up the hotplug control thread which might wait for the
7653 * last task to vanish. The rcuwait_active() check is
7654 * accurate here because the waiter is pinned on this CPU
7655 * and can't obviously be running in parallel.
3015ef4b
TG
7656 *
7657 * On RT kernels this also has to check whether there are
7658 * pinned and scheduled out tasks on the runqueue. They
7659 * need to leave the migrate disabled section first.
f2469a1f 7660 */
3015ef4b
TG
7661 if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
7662 rcuwait_active(&rq->hotplug_wait)) {
f2469a1f
TG
7663 raw_spin_unlock(&rq->lock);
7664 rcuwait_wake_up(&rq->hotplug_wait);
7665 raw_spin_lock(&rq->lock);
7666 }
2558aacf 7667 return;
f2469a1f 7668 }
48f24c4d 7669
2558aacf 7670 get_task_struct(push_task);
77bd3970 7671 /*
2558aacf
PZ
7672 * Temporarily drop rq->lock such that we can wake-up the stop task.
7673 * Both preemption and IRQs are still disabled.
77bd3970 7674 */
2558aacf
PZ
7675 raw_spin_unlock(&rq->lock);
7676 stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
7677 this_cpu_ptr(&push_work));
7678 /*
7679 * At this point need_resched() is true and we'll take the loop in
7680 * schedule(). The next pick is obviously going to be the stop task
5ba2ffba 7681 * which kthread_is_per_cpu() and will push this task away.
2558aacf
PZ
7682 */
7683 raw_spin_lock(&rq->lock);
7684}
77bd3970 7685
2558aacf
PZ
7686static void balance_push_set(int cpu, bool on)
7687{
7688 struct rq *rq = cpu_rq(cpu);
7689 struct rq_flags rf;
48c5ccae 7690
2558aacf 7691 rq_lock_irqsave(rq, &rf);
975707f2 7692 rq->balance_push = on;
22f667c9
PZ
7693 if (on) {
7694 WARN_ON_ONCE(rq->balance_callback);
ae792702 7695 rq->balance_callback = &balance_push_callback;
22f667c9 7696 } else if (rq->balance_callback == &balance_push_callback) {
ae792702 7697 rq->balance_callback = NULL;
22f667c9 7698 }
2558aacf
PZ
7699 rq_unlock_irqrestore(rq, &rf);
7700}
e692ab53 7701
f2469a1f
TG
7702/*
7703 * Invoked from a CPUs hotplug control thread after the CPU has been marked
7704 * inactive. All tasks which are not per CPU kernel threads are either
7705 * pushed off this CPU now via balance_push() or placed on a different CPU
7706 * during wakeup. Wait until the CPU is quiescent.
7707 */
7708static void balance_hotplug_wait(void)
7709{
7710 struct rq *rq = this_rq();
5473e0cc 7711
3015ef4b
TG
7712 rcuwait_wait_event(&rq->hotplug_wait,
7713 rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
f2469a1f
TG
7714 TASK_UNINTERRUPTIBLE);
7715}
5473e0cc 7716
2558aacf 7717#else
dce48a84 7718
2558aacf
PZ
7719static inline void balance_push(struct rq *rq)
7720{
dce48a84 7721}
dce48a84 7722
2558aacf
PZ
7723static inline void balance_push_set(int cpu, bool on)
7724{
7725}
7726
f2469a1f
TG
7727static inline void balance_hotplug_wait(void)
7728{
dce48a84 7729}
f2469a1f 7730
1da177e4
LT
7731#endif /* CONFIG_HOTPLUG_CPU */
7732
f2cb1360 7733void set_rq_online(struct rq *rq)
1f11eb6a
GH
7734{
7735 if (!rq->online) {
7736 const struct sched_class *class;
7737
c6c4927b 7738 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7739 rq->online = 1;
7740
7741 for_each_class(class) {
7742 if (class->rq_online)
7743 class->rq_online(rq);
7744 }
7745 }
7746}
7747
f2cb1360 7748void set_rq_offline(struct rq *rq)
1f11eb6a
GH
7749{
7750 if (rq->online) {
7751 const struct sched_class *class;
7752
7753 for_each_class(class) {
7754 if (class->rq_offline)
7755 class->rq_offline(rq);
7756 }
7757
c6c4927b 7758 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7759 rq->online = 0;
7760 }
7761}
7762
d1ccc66d
IM
7763/*
7764 * used to mark begin/end of suspend/resume:
7765 */
7766static int num_cpus_frozen;
d35be8ba 7767
1da177e4 7768/*
3a101d05
TH
7769 * Update cpusets according to cpu_active mask. If cpusets are
7770 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7771 * around partition_sched_domains().
d35be8ba
SB
7772 *
7773 * If we come here as part of a suspend/resume, don't touch cpusets because we
7774 * want to restore it back to its original state upon resume anyway.
1da177e4 7775 */
40190a78 7776static void cpuset_cpu_active(void)
e761b772 7777{
40190a78 7778 if (cpuhp_tasks_frozen) {
d35be8ba
SB
7779 /*
7780 * num_cpus_frozen tracks how many CPUs are involved in suspend
7781 * resume sequence. As long as this is not the last online
7782 * operation in the resume sequence, just build a single sched
7783 * domain, ignoring cpusets.
7784 */
50e76632
PZ
7785 partition_sched_domains(1, NULL, NULL);
7786 if (--num_cpus_frozen)
135fb3e1 7787 return;
d35be8ba
SB
7788 /*
7789 * This is the last CPU online operation. So fall through and
7790 * restore the original sched domains by considering the
7791 * cpuset configurations.
7792 */
50e76632 7793 cpuset_force_rebuild();
3a101d05 7794 }
30e03acd 7795 cpuset_update_active_cpus();
3a101d05 7796}
e761b772 7797
40190a78 7798static int cpuset_cpu_inactive(unsigned int cpu)
3a101d05 7799{
40190a78 7800 if (!cpuhp_tasks_frozen) {
06a76fe0 7801 if (dl_cpu_busy(cpu))
135fb3e1 7802 return -EBUSY;
30e03acd 7803 cpuset_update_active_cpus();
135fb3e1 7804 } else {
d35be8ba
SB
7805 num_cpus_frozen++;
7806 partition_sched_domains(1, NULL, NULL);
e761b772 7807 }
135fb3e1 7808 return 0;
e761b772 7809}
e761b772 7810
40190a78 7811int sched_cpu_activate(unsigned int cpu)
135fb3e1 7812{
7d976699 7813 struct rq *rq = cpu_rq(cpu);
8a8c69c3 7814 struct rq_flags rf;
7d976699 7815
22f667c9
PZ
7816 /*
7817 * Make sure that when the hotplug state machine does a roll-back
7818 * we clear balance_push. Ideally that would happen earlier...
7819 */
2558aacf
PZ
7820 balance_push_set(cpu, false);
7821
ba2591a5
PZ
7822#ifdef CONFIG_SCHED_SMT
7823 /*
c5511d03 7824 * When going up, increment the number of cores with SMT present.
ba2591a5 7825 */
c5511d03
PZI
7826 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
7827 static_branch_inc_cpuslocked(&sched_smt_present);
ba2591a5 7828#endif
40190a78 7829 set_cpu_active(cpu, true);
135fb3e1 7830
40190a78 7831 if (sched_smp_initialized) {
135fb3e1 7832 sched_domains_numa_masks_set(cpu);
40190a78 7833 cpuset_cpu_active();
e761b772 7834 }
7d976699
TG
7835
7836 /*
7837 * Put the rq online, if not already. This happens:
7838 *
7839 * 1) In the early boot process, because we build the real domains
d1ccc66d 7840 * after all CPUs have been brought up.
7d976699
TG
7841 *
7842 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
7843 * domains.
7844 */
8a8c69c3 7845 rq_lock_irqsave(rq, &rf);
7d976699
TG
7846 if (rq->rd) {
7847 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7848 set_rq_online(rq);
7849 }
8a8c69c3 7850 rq_unlock_irqrestore(rq, &rf);
7d976699 7851
40190a78 7852 return 0;
135fb3e1
TG
7853}
7854
40190a78 7855int sched_cpu_deactivate(unsigned int cpu)
135fb3e1 7856{
120455c5
PZ
7857 struct rq *rq = cpu_rq(cpu);
7858 struct rq_flags rf;
135fb3e1
TG
7859 int ret;
7860
e0b257c3
AMB
7861 /*
7862 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
7863 * load balancing when not active
7864 */
7865 nohz_balance_exit_idle(rq);
7866
40190a78 7867 set_cpu_active(cpu, false);
741ba80f
PZ
7868
7869 /*
7870 * From this point forward, this CPU will refuse to run any task that
7871 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
7872 * push those tasks away until this gets cleared, see
7873 * sched_cpu_dying().
7874 */
975707f2
PZ
7875 balance_push_set(cpu, true);
7876
b2454caa 7877 /*
975707f2
PZ
7878 * We've cleared cpu_active_mask / set balance_push, wait for all
7879 * preempt-disabled and RCU users of this state to go away such that
7880 * all new such users will observe it.
b2454caa 7881 *
5ba2ffba
PZ
7882 * Specifically, we rely on ttwu to no longer target this CPU, see
7883 * ttwu_queue_cond() and is_cpu_allowed().
7884 *
b2454caa
PZ
7885 * Do sync before park smpboot threads to take care the rcu boost case.
7886 */
309ba859 7887 synchronize_rcu();
40190a78 7888
120455c5
PZ
7889 rq_lock_irqsave(rq, &rf);
7890 if (rq->rd) {
7891 update_rq_clock(rq);
7892 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7893 set_rq_offline(rq);
7894 }
7895 rq_unlock_irqrestore(rq, &rf);
7896
c5511d03
PZI
7897#ifdef CONFIG_SCHED_SMT
7898 /*
7899 * When going down, decrement the number of cores with SMT present.
7900 */
7901 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
7902 static_branch_dec_cpuslocked(&sched_smt_present);
7903#endif
7904
40190a78
TG
7905 if (!sched_smp_initialized)
7906 return 0;
7907
7908 ret = cpuset_cpu_inactive(cpu);
7909 if (ret) {
2558aacf 7910 balance_push_set(cpu, false);
40190a78
TG
7911 set_cpu_active(cpu, true);
7912 return ret;
135fb3e1 7913 }
40190a78
TG
7914 sched_domains_numa_masks_clear(cpu);
7915 return 0;
135fb3e1
TG
7916}
7917
94baf7a5
TG
7918static void sched_rq_cpu_starting(unsigned int cpu)
7919{
7920 struct rq *rq = cpu_rq(cpu);
7921
7922 rq->calc_load_update = calc_load_update;
94baf7a5
TG
7923 update_max_interval();
7924}
7925
135fb3e1
TG
7926int sched_cpu_starting(unsigned int cpu)
7927{
94baf7a5 7928 sched_rq_cpu_starting(cpu);
d84b3131 7929 sched_tick_start(cpu);
135fb3e1 7930 return 0;
e761b772 7931}
e761b772 7932
f2785ddb 7933#ifdef CONFIG_HOTPLUG_CPU
1cf12e08
TG
7934
7935/*
7936 * Invoked immediately before the stopper thread is invoked to bring the
7937 * CPU down completely. At this point all per CPU kthreads except the
7938 * hotplug thread (current) and the stopper thread (inactive) have been
7939 * either parked or have been unbound from the outgoing CPU. Ensure that
7940 * any of those which might be on the way out are gone.
7941 *
7942 * If after this point a bound task is being woken on this CPU then the
7943 * responsible hotplug callback has failed to do it's job.
7944 * sched_cpu_dying() will catch it with the appropriate fireworks.
7945 */
7946int sched_cpu_wait_empty(unsigned int cpu)
7947{
7948 balance_hotplug_wait();
7949 return 0;
7950}
7951
7952/*
7953 * Since this CPU is going 'away' for a while, fold any nr_active delta we
7954 * might have. Called from the CPU stopper task after ensuring that the
7955 * stopper is the last running task on the CPU, so nr_active count is
7956 * stable. We need to take the teardown thread which is calling this into
7957 * account, so we hand in adjust = 1 to the load calculation.
7958 *
7959 * Also see the comment "Global load-average calculations".
7960 */
7961static void calc_load_migrate(struct rq *rq)
7962{
7963 long delta = calc_load_fold_active(rq, 1);
7964
7965 if (delta)
7966 atomic_long_add(delta, &calc_load_tasks);
7967}
7968
36c6e17b
VS
7969static void dump_rq_tasks(struct rq *rq, const char *loglvl)
7970{
7971 struct task_struct *g, *p;
7972 int cpu = cpu_of(rq);
7973
7974 lockdep_assert_held(&rq->lock);
7975
7976 printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
7977 for_each_process_thread(g, p) {
7978 if (task_cpu(p) != cpu)
7979 continue;
7980
7981 if (!task_on_rq_queued(p))
7982 continue;
7983
7984 printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
7985 }
7986}
7987
f2785ddb
TG
7988int sched_cpu_dying(unsigned int cpu)
7989{
7990 struct rq *rq = cpu_rq(cpu);
8a8c69c3 7991 struct rq_flags rf;
f2785ddb
TG
7992
7993 /* Handle pending wakeups and then migrate everything off */
d84b3131 7994 sched_tick_stop(cpu);
8a8c69c3
PZ
7995
7996 rq_lock_irqsave(rq, &rf);
36c6e17b
VS
7997 if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
7998 WARN(true, "Dying CPU not properly vacated!");
7999 dump_rq_tasks(rq, KERN_WARNING);
8000 }
8a8c69c3
PZ
8001 rq_unlock_irqrestore(rq, &rf);
8002
22f667c9
PZ
8003 /*
8004 * Now that the CPU is offline, make sure we're welcome
8005 * to new tasks once we come back up.
8006 */
8007 balance_push_set(cpu, false);
8008
f2785ddb
TG
8009 calc_load_migrate(rq);
8010 update_max_interval();
e5ef27d0 8011 hrtick_clear(rq);
f2785ddb
TG
8012 return 0;
8013}
8014#endif
8015
1da177e4
LT
8016void __init sched_init_smp(void)
8017{
cb83b629
PZ
8018 sched_init_numa();
8019
6acce3ef
PZ
8020 /*
8021 * There's no userspace yet to cause hotplug operations; hence all the
d1ccc66d 8022 * CPU masks are stable and all blatant races in the below code cannot
b5a4e2bb 8023 * happen.
6acce3ef 8024 */
712555ee 8025 mutex_lock(&sched_domains_mutex);
8d5dc512 8026 sched_init_domains(cpu_active_mask);
712555ee 8027 mutex_unlock(&sched_domains_mutex);
e761b772 8028
5c1e1767 8029 /* Move init over to a non-isolated CPU */
edb93821 8030 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
5c1e1767 8031 BUG();
19978ca6 8032 sched_init_granularity();
4212823f 8033
0e3900e6 8034 init_sched_rt_class();
1baca4ce 8035 init_sched_dl_class();
1b568f0a 8036
e26fbffd 8037 sched_smp_initialized = true;
1da177e4 8038}
e26fbffd
TG
8039
8040static int __init migration_init(void)
8041{
77a5352b 8042 sched_cpu_starting(smp_processor_id());
e26fbffd 8043 return 0;
1da177e4 8044}
e26fbffd
TG
8045early_initcall(migration_init);
8046
1da177e4
LT
8047#else
8048void __init sched_init_smp(void)
8049{
19978ca6 8050 sched_init_granularity();
1da177e4
LT
8051}
8052#endif /* CONFIG_SMP */
8053
8054int in_sched_functions(unsigned long addr)
8055{
1da177e4
LT
8056 return in_lock_functions(addr) ||
8057 (addr >= (unsigned long)__sched_text_start
8058 && addr < (unsigned long)__sched_text_end);
8059}
8060
029632fb 8061#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
8062/*
8063 * Default task group.
8064 * Every task in system belongs to this group at bootup.
8065 */
029632fb 8066struct task_group root_task_group;
35cf4e50 8067LIST_HEAD(task_groups);
b0367629
WL
8068
8069/* Cacheline aligned slab cache for task_group */
8070static struct kmem_cache *task_group_cache __read_mostly;
052f1dc7 8071#endif
6f505b16 8072
e6252c3e 8073DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
10e2f1ac 8074DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
6f505b16 8075
1da177e4
LT
8076void __init sched_init(void)
8077{
a1dc0446 8078 unsigned long ptr = 0;
55627e3c 8079 int i;
434d53b0 8080
c3a340f7
SRV
8081 /* Make sure the linker didn't screw up */
8082 BUG_ON(&idle_sched_class + 1 != &fair_sched_class ||
8083 &fair_sched_class + 1 != &rt_sched_class ||
8084 &rt_sched_class + 1 != &dl_sched_class);
8085#ifdef CONFIG_SMP
8086 BUG_ON(&dl_sched_class + 1 != &stop_sched_class);
8087#endif
8088
5822a454 8089 wait_bit_init();
9dcb8b68 8090
434d53b0 8091#ifdef CONFIG_FAIR_GROUP_SCHED
a1dc0446 8092 ptr += 2 * nr_cpu_ids * sizeof(void **);
434d53b0
MT
8093#endif
8094#ifdef CONFIG_RT_GROUP_SCHED
a1dc0446 8095 ptr += 2 * nr_cpu_ids * sizeof(void **);
434d53b0 8096#endif
a1dc0446
QC
8097 if (ptr) {
8098 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
434d53b0
MT
8099
8100#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 8101 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
8102 ptr += nr_cpu_ids * sizeof(void **);
8103
07e06b01 8104 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 8105 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 8106
b1d1779e
WY
8107 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
8108 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6d6bc0ad 8109#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 8110#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 8111 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
8112 ptr += nr_cpu_ids * sizeof(void **);
8113
07e06b01 8114 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
8115 ptr += nr_cpu_ids * sizeof(void **);
8116
6d6bc0ad 8117#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 8118 }
df7c8e84 8119#ifdef CONFIG_CPUMASK_OFFSTACK
b74e6278
AT
8120 for_each_possible_cpu(i) {
8121 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
8122 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
10e2f1ac
PZ
8123 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
8124 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
434d53b0 8125 }
b74e6278 8126#endif /* CONFIG_CPUMASK_OFFSTACK */
dd41f596 8127
d1ccc66d
IM
8128 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
8129 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
332ac17e 8130
57d885fe
GH
8131#ifdef CONFIG_SMP
8132 init_defrootdomain();
8133#endif
8134
d0b27fa7 8135#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 8136 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 8137 global_rt_period(), global_rt_runtime());
6d6bc0ad 8138#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8139
7c941438 8140#ifdef CONFIG_CGROUP_SCHED
b0367629
WL
8141 task_group_cache = KMEM_CACHE(task_group, 0);
8142
07e06b01
YZ
8143 list_add(&root_task_group.list, &task_groups);
8144 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 8145 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 8146 autogroup_init(&init_task);
7c941438 8147#endif /* CONFIG_CGROUP_SCHED */
6f505b16 8148
0a945022 8149 for_each_possible_cpu(i) {
70b97a7f 8150 struct rq *rq;
1da177e4
LT
8151
8152 rq = cpu_rq(i);
05fa785c 8153 raw_spin_lock_init(&rq->lock);
7897986b 8154 rq->nr_running = 0;
dce48a84
TG
8155 rq->calc_load_active = 0;
8156 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 8157 init_cfs_rq(&rq->cfs);
07c54f7a
AV
8158 init_rt_rq(&rq->rt);
8159 init_dl_rq(&rq->dl);
dd41f596 8160#ifdef CONFIG_FAIR_GROUP_SCHED
6f505b16 8161 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9c2791f9 8162 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
354d60c2 8163 /*
d1ccc66d 8164 * How much CPU bandwidth does root_task_group get?
354d60c2
DG
8165 *
8166 * In case of task-groups formed thr' the cgroup filesystem, it
d1ccc66d
IM
8167 * gets 100% of the CPU resources in the system. This overall
8168 * system CPU resource is divided among the tasks of
07e06b01 8169 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
8170 * based on each entity's (task or task-group's) weight
8171 * (se->load.weight).
8172 *
07e06b01 8173 * In other words, if root_task_group has 10 tasks of weight
354d60c2 8174 * 1024) and two child groups A0 and A1 (of weight 1024 each),
d1ccc66d 8175 * then A0's share of the CPU resource is:
354d60c2 8176 *
0d905bca 8177 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 8178 *
07e06b01
YZ
8179 * We achieve this by letting root_task_group's tasks sit
8180 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 8181 */
07e06b01 8182 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
8183#endif /* CONFIG_FAIR_GROUP_SCHED */
8184
8185 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 8186#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 8187 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 8188#endif
1da177e4 8189#ifdef CONFIG_SMP
41c7ce9a 8190 rq->sd = NULL;
57d885fe 8191 rq->rd = NULL;
ca6d75e6 8192 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
e3fca9e7 8193 rq->balance_callback = NULL;
1da177e4 8194 rq->active_balance = 0;
dd41f596 8195 rq->next_balance = jiffies;
1da177e4 8196 rq->push_cpu = 0;
0a2966b4 8197 rq->cpu = i;
1f11eb6a 8198 rq->online = 0;
eae0c9df
MG
8199 rq->idle_stamp = 0;
8200 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 8201 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
8202
8203 INIT_LIST_HEAD(&rq->cfs_tasks);
8204
dc938520 8205 rq_attach_root(rq, &def_root_domain);
3451d024 8206#ifdef CONFIG_NO_HZ_COMMON
e022e0d3 8207 rq->last_blocked_load_update_tick = jiffies;
a22e47a4 8208 atomic_set(&rq->nohz_flags, 0);
90b5363a 8209
545b8c8d 8210 INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
83cd4fe2 8211#endif
f2469a1f
TG
8212#ifdef CONFIG_HOTPLUG_CPU
8213 rcuwait_init(&rq->hotplug_wait);
83cd4fe2 8214#endif
9fd81dd5 8215#endif /* CONFIG_SMP */
77a021be 8216 hrtick_rq_init(rq);
1da177e4 8217 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
8218 }
8219
9059393e 8220 set_load_weight(&init_task, false);
b50f60ce 8221
1da177e4
LT
8222 /*
8223 * The boot idle thread does lazy MMU switching as well:
8224 */
f1f10076 8225 mmgrab(&init_mm);
1da177e4
LT
8226 enter_lazy_tlb(&init_mm, current);
8227
8228 /*
8229 * Make us the idle thread. Technically, schedule() should not be
8230 * called from this thread, however somewhere below it might be,
8231 * but because we are the idle thread, we just pick up running again
8232 * when this runqueue becomes "idle".
8233 */
8234 init_idle(current, smp_processor_id());
dce48a84
TG
8235
8236 calc_load_update = jiffies + LOAD_FREQ;
8237
bf4d83f6 8238#ifdef CONFIG_SMP
29d5e047 8239 idle_thread_set_boot_cpu();
029632fb
PZ
8240#endif
8241 init_sched_fair_class();
6a7b3dc3 8242
4698f88c
JP
8243 init_schedstats();
8244
eb414681
JW
8245 psi_init();
8246
69842cba
PB
8247 init_uclamp();
8248
6892b75e 8249 scheduler_running = 1;
1da177e4
LT
8250}
8251
d902db1e 8252#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
8253static inline int preempt_count_equals(int preempt_offset)
8254{
da7142e2 8255 int nested = preempt_count() + rcu_preempt_depth();
e4aafea2 8256
4ba8216c 8257 return (nested == preempt_offset);
e4aafea2
FW
8258}
8259
d894837f 8260void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 8261{
8eb23b9f
PZ
8262 /*
8263 * Blocking primitives will set (and therefore destroy) current->state,
8264 * since we will exit with TASK_RUNNING make sure we enter with it,
8265 * otherwise we will destroy state.
8266 */
00845eb9 8267 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
8eb23b9f
PZ
8268 "do not call blocking ops when !TASK_RUNNING; "
8269 "state=%lx set at [<%p>] %pS\n",
8270 current->state,
8271 (void *)current->task_state_change,
00845eb9 8272 (void *)current->task_state_change);
8eb23b9f 8273
3427445a
PZ
8274 ___might_sleep(file, line, preempt_offset);
8275}
8276EXPORT_SYMBOL(__might_sleep);
8277
8278void ___might_sleep(const char *file, int line, int preempt_offset)
1da177e4 8279{
d1ccc66d
IM
8280 /* Ratelimiting timestamp: */
8281 static unsigned long prev_jiffy;
8282
d1c6d149 8283 unsigned long preempt_disable_ip;
1da177e4 8284
d1ccc66d
IM
8285 /* WARN_ON_ONCE() by default, no rate limit required: */
8286 rcu_sleep_check();
8287
db273be2 8288 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
312364f3 8289 !is_idle_task(current) && !current->non_block_count) ||
1c3c5eab
TG
8290 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
8291 oops_in_progress)
aef745fc 8292 return;
1c3c5eab 8293
aef745fc
IM
8294 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8295 return;
8296 prev_jiffy = jiffies;
8297
d1ccc66d 8298 /* Save this before calling printk(), since that will clobber it: */
d1c6d149
VN
8299 preempt_disable_ip = get_preempt_disable_ip(current);
8300
3df0fc5b
PZ
8301 printk(KERN_ERR
8302 "BUG: sleeping function called from invalid context at %s:%d\n",
8303 file, line);
8304 printk(KERN_ERR
312364f3
DV
8305 "in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
8306 in_atomic(), irqs_disabled(), current->non_block_count,
3df0fc5b 8307 current->pid, current->comm);
aef745fc 8308
a8b686b3
ES
8309 if (task_stack_end_corrupted(current))
8310 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
8311
aef745fc
IM
8312 debug_show_held_locks(current);
8313 if (irqs_disabled())
8314 print_irqtrace_events(current);
d1c6d149
VN
8315 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
8316 && !preempt_count_equals(preempt_offset)) {
8f47b187 8317 pr_err("Preemption disabled at:");
2062a4e8 8318 print_ip_sym(KERN_ERR, preempt_disable_ip);
8f47b187 8319 }
aef745fc 8320 dump_stack();
f0b22e39 8321 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
1da177e4 8322}
3427445a 8323EXPORT_SYMBOL(___might_sleep);
568f1967
PZ
8324
8325void __cant_sleep(const char *file, int line, int preempt_offset)
8326{
8327 static unsigned long prev_jiffy;
8328
8329 if (irqs_disabled())
8330 return;
8331
8332 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
8333 return;
8334
8335 if (preempt_count() > preempt_offset)
8336 return;
8337
8338 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8339 return;
8340 prev_jiffy = jiffies;
8341
8342 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
8343 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8344 in_atomic(), irqs_disabled(),
8345 current->pid, current->comm);
8346
8347 debug_show_held_locks(current);
8348 dump_stack();
8349 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8350}
8351EXPORT_SYMBOL_GPL(__cant_sleep);
74d862b6
TG
8352
8353#ifdef CONFIG_SMP
8354void __cant_migrate(const char *file, int line)
8355{
8356 static unsigned long prev_jiffy;
8357
8358 if (irqs_disabled())
8359 return;
8360
8361 if (is_migration_disabled(current))
8362 return;
8363
8364 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
8365 return;
8366
8367 if (preempt_count() > 0)
8368 return;
8369
8370 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8371 return;
8372 prev_jiffy = jiffies;
8373
8374 pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
8375 pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
8376 in_atomic(), irqs_disabled(), is_migration_disabled(current),
8377 current->pid, current->comm);
8378
8379 debug_show_held_locks(current);
8380 dump_stack();
8381 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8382}
8383EXPORT_SYMBOL_GPL(__cant_migrate);
8384#endif
1da177e4
LT
8385#endif
8386
8387#ifdef CONFIG_MAGIC_SYSRQ
dbc7f069 8388void normalize_rt_tasks(void)
3a5e4dc1 8389{
dbc7f069 8390 struct task_struct *g, *p;
d50dde5a
DF
8391 struct sched_attr attr = {
8392 .sched_policy = SCHED_NORMAL,
8393 };
1da177e4 8394
3472eaa1 8395 read_lock(&tasklist_lock);
5d07f420 8396 for_each_process_thread(g, p) {
178be793
IM
8397 /*
8398 * Only normalize user tasks:
8399 */
3472eaa1 8400 if (p->flags & PF_KTHREAD)
178be793
IM
8401 continue;
8402
4fa8d299
JP
8403 p->se.exec_start = 0;
8404 schedstat_set(p->se.statistics.wait_start, 0);
8405 schedstat_set(p->se.statistics.sleep_start, 0);
8406 schedstat_set(p->se.statistics.block_start, 0);
dd41f596 8407
aab03e05 8408 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
8409 /*
8410 * Renice negative nice level userspace
8411 * tasks back to 0:
8412 */
3472eaa1 8413 if (task_nice(p) < 0)
dd41f596 8414 set_user_nice(p, 0);
1da177e4 8415 continue;
dd41f596 8416 }
1da177e4 8417
dbc7f069 8418 __sched_setscheduler(p, &attr, false, false);
5d07f420 8419 }
3472eaa1 8420 read_unlock(&tasklist_lock);
1da177e4
LT
8421}
8422
8423#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 8424
67fc4e0c 8425#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 8426/*
67fc4e0c 8427 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
8428 *
8429 * They can only be called when the whole system has been
8430 * stopped - every CPU needs to be quiescent, and no scheduling
8431 * activity can take place. Using them for anything else would
8432 * be a serious bug, and as a result, they aren't even visible
8433 * under any other configuration.
8434 */
8435
8436/**
d1ccc66d 8437 * curr_task - return the current task for a given CPU.
1df5c10a
LT
8438 * @cpu: the processor in question.
8439 *
8440 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
8441 *
8442 * Return: The current task for @cpu.
1df5c10a 8443 */
36c8b586 8444struct task_struct *curr_task(int cpu)
1df5c10a
LT
8445{
8446 return cpu_curr(cpu);
8447}
8448
67fc4e0c
JW
8449#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8450
8451#ifdef CONFIG_IA64
1df5c10a 8452/**
5feeb783 8453 * ia64_set_curr_task - set the current task for a given CPU.
1df5c10a
LT
8454 * @cpu: the processor in question.
8455 * @p: the task pointer to set.
8456 *
8457 * Description: This function must only be used when non-maskable interrupts
41a2d6cf 8458 * are serviced on a separate stack. It allows the architecture to switch the
d1ccc66d 8459 * notion of the current task on a CPU in a non-blocking manner. This function
1df5c10a
LT
8460 * must be called with all CPU's synchronized, and interrupts disabled, the
8461 * and caller must save the original value of the current task (see
8462 * curr_task() above) and restore that value before reenabling interrupts and
8463 * re-starting the system.
8464 *
8465 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8466 */
a458ae2e 8467void ia64_set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8468{
8469 cpu_curr(cpu) = p;
8470}
8471
8472#endif
29f59db3 8473
7c941438 8474#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
8475/* task_group_lock serializes the addition/removal of task groups */
8476static DEFINE_SPINLOCK(task_group_lock);
8477
2480c093
PB
8478static inline void alloc_uclamp_sched_group(struct task_group *tg,
8479 struct task_group *parent)
8480{
8481#ifdef CONFIG_UCLAMP_TASK_GROUP
0413d7f3 8482 enum uclamp_id clamp_id;
2480c093
PB
8483
8484 for_each_clamp_id(clamp_id) {
8485 uclamp_se_set(&tg->uclamp_req[clamp_id],
8486 uclamp_none(clamp_id), false);
0b60ba2d 8487 tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
2480c093
PB
8488 }
8489#endif
8490}
8491
2f5177f0 8492static void sched_free_group(struct task_group *tg)
bccbe08a
PZ
8493{
8494 free_fair_sched_group(tg);
8495 free_rt_sched_group(tg);
e9aa1dd1 8496 autogroup_free(tg);
b0367629 8497 kmem_cache_free(task_group_cache, tg);
bccbe08a
PZ
8498}
8499
8500/* allocate runqueue etc for a new task group */
ec7dc8ac 8501struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8502{
8503 struct task_group *tg;
bccbe08a 8504
b0367629 8505 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
bccbe08a
PZ
8506 if (!tg)
8507 return ERR_PTR(-ENOMEM);
8508
ec7dc8ac 8509 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8510 goto err;
8511
ec7dc8ac 8512 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8513 goto err;
8514
2480c093
PB
8515 alloc_uclamp_sched_group(tg, parent);
8516
ace783b9
LZ
8517 return tg;
8518
8519err:
2f5177f0 8520 sched_free_group(tg);
ace783b9
LZ
8521 return ERR_PTR(-ENOMEM);
8522}
8523
8524void sched_online_group(struct task_group *tg, struct task_group *parent)
8525{
8526 unsigned long flags;
8527
8ed36996 8528 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 8529 list_add_rcu(&tg->list, &task_groups);
f473aa5e 8530
d1ccc66d
IM
8531 /* Root should already exist: */
8532 WARN_ON(!parent);
f473aa5e
PZ
8533
8534 tg->parent = parent;
f473aa5e 8535 INIT_LIST_HEAD(&tg->children);
09f2724a 8536 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8537 spin_unlock_irqrestore(&task_group_lock, flags);
8663e24d
PZ
8538
8539 online_fair_sched_group(tg);
29f59db3
SV
8540}
8541
9b5b7751 8542/* rcu callback to free various structures associated with a task group */
2f5177f0 8543static void sched_free_group_rcu(struct rcu_head *rhp)
29f59db3 8544{
d1ccc66d 8545 /* Now it should be safe to free those cfs_rqs: */
2f5177f0 8546 sched_free_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8547}
8548
4cf86d77 8549void sched_destroy_group(struct task_group *tg)
ace783b9 8550{
d1ccc66d 8551 /* Wait for possible concurrent references to cfs_rqs complete: */
2f5177f0 8552 call_rcu(&tg->rcu, sched_free_group_rcu);
ace783b9
LZ
8553}
8554
8555void sched_offline_group(struct task_group *tg)
29f59db3 8556{
8ed36996 8557 unsigned long flags;
29f59db3 8558
d1ccc66d 8559 /* End participation in shares distribution: */
6fe1f348 8560 unregister_fair_sched_group(tg);
3d4b47b4
PZ
8561
8562 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 8563 list_del_rcu(&tg->list);
f473aa5e 8564 list_del_rcu(&tg->siblings);
8ed36996 8565 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
8566}
8567
ea86cb4b 8568static void sched_change_group(struct task_struct *tsk, int type)
29f59db3 8569{
8323f26c 8570 struct task_group *tg;
29f59db3 8571
f7b8a47d
KT
8572 /*
8573 * All callers are synchronized by task_rq_lock(); we do not use RCU
8574 * which is pointless here. Thus, we pass "true" to task_css_check()
8575 * to prevent lockdep warnings.
8576 */
8577 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
8578 struct task_group, css);
8579 tg = autogroup_task_group(tsk, tg);
8580 tsk->sched_task_group = tg;
8581
810b3817 8582#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
8583 if (tsk->sched_class->task_change_group)
8584 tsk->sched_class->task_change_group(tsk, type);
b2b5ce02 8585 else
810b3817 8586#endif
b2b5ce02 8587 set_task_rq(tsk, task_cpu(tsk));
ea86cb4b
VG
8588}
8589
8590/*
8591 * Change task's runqueue when it moves between groups.
8592 *
8593 * The caller of this function should have put the task in its new group by
8594 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
8595 * its new group.
8596 */
8597void sched_move_task(struct task_struct *tsk)
8598{
7a57f32a
PZ
8599 int queued, running, queue_flags =
8600 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
ea86cb4b
VG
8601 struct rq_flags rf;
8602 struct rq *rq;
8603
8604 rq = task_rq_lock(tsk, &rf);
1b1d6225 8605 update_rq_clock(rq);
ea86cb4b
VG
8606
8607 running = task_current(rq, tsk);
8608 queued = task_on_rq_queued(tsk);
8609
8610 if (queued)
7a57f32a 8611 dequeue_task(rq, tsk, queue_flags);
bb3bac2c 8612 if (running)
ea86cb4b
VG
8613 put_prev_task(rq, tsk);
8614
8615 sched_change_group(tsk, TASK_MOVE_GROUP);
810b3817 8616
da0c1e65 8617 if (queued)
7a57f32a 8618 enqueue_task(rq, tsk, queue_flags);
2a4b03ff 8619 if (running) {
03b7fad1 8620 set_next_task(rq, tsk);
2a4b03ff
VG
8621 /*
8622 * After changing group, the running task may have joined a
8623 * throttled one but it's still the running task. Trigger a
8624 * resched to make sure that task can still run.
8625 */
8626 resched_curr(rq);
8627 }
29f59db3 8628
eb580751 8629 task_rq_unlock(rq, tsk, &rf);
29f59db3 8630}
68318b8e 8631
a7c6d554 8632static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 8633{
a7c6d554 8634 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
8635}
8636
eb95419b
TH
8637static struct cgroup_subsys_state *
8638cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 8639{
eb95419b
TH
8640 struct task_group *parent = css_tg(parent_css);
8641 struct task_group *tg;
68318b8e 8642
eb95419b 8643 if (!parent) {
68318b8e 8644 /* This is early initialization for the top cgroup */
07e06b01 8645 return &root_task_group.css;
68318b8e
SV
8646 }
8647
ec7dc8ac 8648 tg = sched_create_group(parent);
68318b8e
SV
8649 if (IS_ERR(tg))
8650 return ERR_PTR(-ENOMEM);
8651
68318b8e
SV
8652 return &tg->css;
8653}
8654
96b77745
KK
8655/* Expose task group only after completing cgroup initialization */
8656static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
8657{
8658 struct task_group *tg = css_tg(css);
8659 struct task_group *parent = css_tg(css->parent);
8660
8661 if (parent)
8662 sched_online_group(tg, parent);
7226017a
QY
8663
8664#ifdef CONFIG_UCLAMP_TASK_GROUP
8665 /* Propagate the effective uclamp value for the new group */
8666 cpu_util_update_eff(css);
8667#endif
8668
96b77745
KK
8669 return 0;
8670}
8671
2f5177f0 8672static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
ace783b9 8673{
eb95419b 8674 struct task_group *tg = css_tg(css);
ace783b9 8675
2f5177f0 8676 sched_offline_group(tg);
ace783b9
LZ
8677}
8678
eb95419b 8679static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 8680{
eb95419b 8681 struct task_group *tg = css_tg(css);
68318b8e 8682
2f5177f0
PZ
8683 /*
8684 * Relies on the RCU grace period between css_released() and this.
8685 */
8686 sched_free_group(tg);
ace783b9
LZ
8687}
8688
ea86cb4b
VG
8689/*
8690 * This is called before wake_up_new_task(), therefore we really only
8691 * have to set its group bits, all the other stuff does not apply.
8692 */
b53202e6 8693static void cpu_cgroup_fork(struct task_struct *task)
eeb61e53 8694{
ea86cb4b
VG
8695 struct rq_flags rf;
8696 struct rq *rq;
8697
8698 rq = task_rq_lock(task, &rf);
8699
80f5c1b8 8700 update_rq_clock(rq);
ea86cb4b
VG
8701 sched_change_group(task, TASK_SET_GROUP);
8702
8703 task_rq_unlock(rq, task, &rf);
eeb61e53
KT
8704}
8705
1f7dd3e5 8706static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
68318b8e 8707{
bb9d97b6 8708 struct task_struct *task;
1f7dd3e5 8709 struct cgroup_subsys_state *css;
7dc603c9 8710 int ret = 0;
bb9d97b6 8711
1f7dd3e5 8712 cgroup_taskset_for_each(task, css, tset) {
b68aa230 8713#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 8714 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 8715 return -EINVAL;
b68aa230 8716#endif
7dc603c9 8717 /*
b19a888c 8718 * Serialize against wake_up_new_task() such that if it's
7dc603c9
PZ
8719 * running, we're sure to observe its full state.
8720 */
8721 raw_spin_lock_irq(&task->pi_lock);
8722 /*
8723 * Avoid calling sched_move_task() before wake_up_new_task()
8724 * has happened. This would lead to problems with PELT, due to
8725 * move wanting to detach+attach while we're not attached yet.
8726 */
8727 if (task->state == TASK_NEW)
8728 ret = -EINVAL;
8729 raw_spin_unlock_irq(&task->pi_lock);
8730
8731 if (ret)
8732 break;
bb9d97b6 8733 }
7dc603c9 8734 return ret;
be367d09 8735}
68318b8e 8736
1f7dd3e5 8737static void cpu_cgroup_attach(struct cgroup_taskset *tset)
68318b8e 8738{
bb9d97b6 8739 struct task_struct *task;
1f7dd3e5 8740 struct cgroup_subsys_state *css;
bb9d97b6 8741
1f7dd3e5 8742 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 8743 sched_move_task(task);
68318b8e
SV
8744}
8745
2480c093 8746#ifdef CONFIG_UCLAMP_TASK_GROUP
0b60ba2d
PB
8747static void cpu_util_update_eff(struct cgroup_subsys_state *css)
8748{
8749 struct cgroup_subsys_state *top_css = css;
8750 struct uclamp_se *uc_parent = NULL;
8751 struct uclamp_se *uc_se = NULL;
8752 unsigned int eff[UCLAMP_CNT];
0413d7f3 8753 enum uclamp_id clamp_id;
0b60ba2d
PB
8754 unsigned int clamps;
8755
8756 css_for_each_descendant_pre(css, top_css) {
8757 uc_parent = css_tg(css)->parent
8758 ? css_tg(css)->parent->uclamp : NULL;
8759
8760 for_each_clamp_id(clamp_id) {
8761 /* Assume effective clamps matches requested clamps */
8762 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
8763 /* Cap effective clamps with parent's effective clamps */
8764 if (uc_parent &&
8765 eff[clamp_id] > uc_parent[clamp_id].value) {
8766 eff[clamp_id] = uc_parent[clamp_id].value;
8767 }
8768 }
8769 /* Ensure protection is always capped by limit */
8770 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
8771
8772 /* Propagate most restrictive effective clamps */
8773 clamps = 0x0;
8774 uc_se = css_tg(css)->uclamp;
8775 for_each_clamp_id(clamp_id) {
8776 if (eff[clamp_id] == uc_se[clamp_id].value)
8777 continue;
8778 uc_se[clamp_id].value = eff[clamp_id];
8779 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
8780 clamps |= (0x1 << clamp_id);
8781 }
babbe170 8782 if (!clamps) {
0b60ba2d 8783 css = css_rightmost_descendant(css);
babbe170
PB
8784 continue;
8785 }
8786
8787 /* Immediately update descendants RUNNABLE tasks */
8788 uclamp_update_active_tasks(css, clamps);
0b60ba2d
PB
8789 }
8790}
2480c093
PB
8791
8792/*
8793 * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
8794 * C expression. Since there is no way to convert a macro argument (N) into a
8795 * character constant, use two levels of macros.
8796 */
8797#define _POW10(exp) ((unsigned int)1e##exp)
8798#define POW10(exp) _POW10(exp)
8799
8800struct uclamp_request {
8801#define UCLAMP_PERCENT_SHIFT 2
8802#define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT))
8803 s64 percent;
8804 u64 util;
8805 int ret;
8806};
8807
8808static inline struct uclamp_request
8809capacity_from_percent(char *buf)
8810{
8811 struct uclamp_request req = {
8812 .percent = UCLAMP_PERCENT_SCALE,
8813 .util = SCHED_CAPACITY_SCALE,
8814 .ret = 0,
8815 };
8816
8817 buf = strim(buf);
8818 if (strcmp(buf, "max")) {
8819 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
8820 &req.percent);
8821 if (req.ret)
8822 return req;
b562d140 8823 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
2480c093
PB
8824 req.ret = -ERANGE;
8825 return req;
8826 }
8827
8828 req.util = req.percent << SCHED_CAPACITY_SHIFT;
8829 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
8830 }
8831
8832 return req;
8833}
8834
8835static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
8836 size_t nbytes, loff_t off,
8837 enum uclamp_id clamp_id)
8838{
8839 struct uclamp_request req;
8840 struct task_group *tg;
8841
8842 req = capacity_from_percent(buf);
8843 if (req.ret)
8844 return req.ret;
8845
46609ce2
QY
8846 static_branch_enable(&sched_uclamp_used);
8847
2480c093
PB
8848 mutex_lock(&uclamp_mutex);
8849 rcu_read_lock();
8850
8851 tg = css_tg(of_css(of));
8852 if (tg->uclamp_req[clamp_id].value != req.util)
8853 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
8854
8855 /*
8856 * Because of not recoverable conversion rounding we keep track of the
8857 * exact requested value
8858 */
8859 tg->uclamp_pct[clamp_id] = req.percent;
8860
0b60ba2d
PB
8861 /* Update effective clamps to track the most restrictive value */
8862 cpu_util_update_eff(of_css(of));
8863
2480c093
PB
8864 rcu_read_unlock();
8865 mutex_unlock(&uclamp_mutex);
8866
8867 return nbytes;
8868}
8869
8870static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
8871 char *buf, size_t nbytes,
8872 loff_t off)
8873{
8874 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
8875}
8876
8877static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
8878 char *buf, size_t nbytes,
8879 loff_t off)
8880{
8881 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
8882}
8883
8884static inline void cpu_uclamp_print(struct seq_file *sf,
8885 enum uclamp_id clamp_id)
8886{
8887 struct task_group *tg;
8888 u64 util_clamp;
8889 u64 percent;
8890 u32 rem;
8891
8892 rcu_read_lock();
8893 tg = css_tg(seq_css(sf));
8894 util_clamp = tg->uclamp_req[clamp_id].value;
8895 rcu_read_unlock();
8896
8897 if (util_clamp == SCHED_CAPACITY_SCALE) {
8898 seq_puts(sf, "max\n");
8899 return;
8900 }
8901
8902 percent = tg->uclamp_pct[clamp_id];
8903 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
8904 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
8905}
8906
8907static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
8908{
8909 cpu_uclamp_print(sf, UCLAMP_MIN);
8910 return 0;
8911}
8912
8913static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
8914{
8915 cpu_uclamp_print(sf, UCLAMP_MAX);
8916 return 0;
8917}
8918#endif /* CONFIG_UCLAMP_TASK_GROUP */
8919
052f1dc7 8920#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
8921static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8922 struct cftype *cftype, u64 shareval)
68318b8e 8923{
5b61d50a
KK
8924 if (shareval > scale_load_down(ULONG_MAX))
8925 shareval = MAX_SHARES;
182446d0 8926 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
8927}
8928
182446d0
TH
8929static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8930 struct cftype *cft)
68318b8e 8931{
182446d0 8932 struct task_group *tg = css_tg(css);
68318b8e 8933
c8b28116 8934 return (u64) scale_load_down(tg->shares);
68318b8e 8935}
ab84d31e
PT
8936
8937#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
8938static DEFINE_MUTEX(cfs_constraints_mutex);
8939
ab84d31e 8940const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
b1546edc 8941static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
d505b8af
HC
8942/* More than 203 days if BW_SHIFT equals 20. */
8943static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
ab84d31e 8944
a790de99
PT
8945static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8946
ab84d31e
PT
8947static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8948{
56f570e5 8949 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 8950 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
8951
8952 if (tg == &root_task_group)
8953 return -EINVAL;
8954
8955 /*
8956 * Ensure we have at some amount of bandwidth every period. This is
8957 * to prevent reaching a state of large arrears when throttled via
8958 * entity_tick() resulting in prolonged exit starvation.
8959 */
8960 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8961 return -EINVAL;
8962
8963 /*
8964 * Likewise, bound things on the otherside by preventing insane quota
8965 * periods. This also allows us to normalize in computing quota
8966 * feasibility.
8967 */
8968 if (period > max_cfs_quota_period)
8969 return -EINVAL;
8970
d505b8af
HC
8971 /*
8972 * Bound quota to defend quota against overflow during bandwidth shift.
8973 */
8974 if (quota != RUNTIME_INF && quota > max_cfs_runtime)
8975 return -EINVAL;
8976
0e59bdae
KT
8977 /*
8978 * Prevent race between setting of cfs_rq->runtime_enabled and
8979 * unthrottle_offline_cfs_rqs().
8980 */
8981 get_online_cpus();
a790de99
PT
8982 mutex_lock(&cfs_constraints_mutex);
8983 ret = __cfs_schedulable(tg, period, quota);
8984 if (ret)
8985 goto out_unlock;
8986
58088ad0 8987 runtime_enabled = quota != RUNTIME_INF;
56f570e5 8988 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
8989 /*
8990 * If we need to toggle cfs_bandwidth_used, off->on must occur
8991 * before making related changes, and on->off must occur afterwards
8992 */
8993 if (runtime_enabled && !runtime_was_enabled)
8994 cfs_bandwidth_usage_inc();
ab84d31e
PT
8995 raw_spin_lock_irq(&cfs_b->lock);
8996 cfs_b->period = ns_to_ktime(period);
8997 cfs_b->quota = quota;
58088ad0 8998
a9cf55b2 8999 __refill_cfs_bandwidth_runtime(cfs_b);
d1ccc66d
IM
9000
9001 /* Restart the period timer (if active) to handle new period expiry: */
77a4d1a1
PZ
9002 if (runtime_enabled)
9003 start_cfs_bandwidth(cfs_b);
d1ccc66d 9004
ab84d31e
PT
9005 raw_spin_unlock_irq(&cfs_b->lock);
9006
0e59bdae 9007 for_each_online_cpu(i) {
ab84d31e 9008 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 9009 struct rq *rq = cfs_rq->rq;
8a8c69c3 9010 struct rq_flags rf;
ab84d31e 9011
8a8c69c3 9012 rq_lock_irq(rq, &rf);
58088ad0 9013 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 9014 cfs_rq->runtime_remaining = 0;
671fd9da 9015
029632fb 9016 if (cfs_rq->throttled)
671fd9da 9017 unthrottle_cfs_rq(cfs_rq);
8a8c69c3 9018 rq_unlock_irq(rq, &rf);
ab84d31e 9019 }
1ee14e6c
BS
9020 if (runtime_was_enabled && !runtime_enabled)
9021 cfs_bandwidth_usage_dec();
a790de99
PT
9022out_unlock:
9023 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 9024 put_online_cpus();
ab84d31e 9025
a790de99 9026 return ret;
ab84d31e
PT
9027}
9028
b1546edc 9029static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
ab84d31e
PT
9030{
9031 u64 quota, period;
9032
029632fb 9033 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
9034 if (cfs_quota_us < 0)
9035 quota = RUNTIME_INF;
1a8b4540 9036 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
ab84d31e 9037 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
1a8b4540
KK
9038 else
9039 return -EINVAL;
ab84d31e
PT
9040
9041 return tg_set_cfs_bandwidth(tg, period, quota);
9042}
9043
b1546edc 9044static long tg_get_cfs_quota(struct task_group *tg)
ab84d31e
PT
9045{
9046 u64 quota_us;
9047
029632fb 9048 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
9049 return -1;
9050
029632fb 9051 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
9052 do_div(quota_us, NSEC_PER_USEC);
9053
9054 return quota_us;
9055}
9056
b1546edc 9057static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
ab84d31e
PT
9058{
9059 u64 quota, period;
9060
1a8b4540
KK
9061 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
9062 return -EINVAL;
9063
ab84d31e 9064 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 9065 quota = tg->cfs_bandwidth.quota;
ab84d31e 9066
ab84d31e
PT
9067 return tg_set_cfs_bandwidth(tg, period, quota);
9068}
9069
b1546edc 9070static long tg_get_cfs_period(struct task_group *tg)
ab84d31e
PT
9071{
9072 u64 cfs_period_us;
9073
029632fb 9074 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
9075 do_div(cfs_period_us, NSEC_PER_USEC);
9076
9077 return cfs_period_us;
9078}
9079
182446d0
TH
9080static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
9081 struct cftype *cft)
ab84d31e 9082{
182446d0 9083 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
9084}
9085
182446d0
TH
9086static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
9087 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 9088{
182446d0 9089 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
9090}
9091
182446d0
TH
9092static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
9093 struct cftype *cft)
ab84d31e 9094{
182446d0 9095 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
9096}
9097
182446d0
TH
9098static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
9099 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 9100{
182446d0 9101 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
9102}
9103
a790de99
PT
9104struct cfs_schedulable_data {
9105 struct task_group *tg;
9106 u64 period, quota;
9107};
9108
9109/*
9110 * normalize group quota/period to be quota/max_period
9111 * note: units are usecs
9112 */
9113static u64 normalize_cfs_quota(struct task_group *tg,
9114 struct cfs_schedulable_data *d)
9115{
9116 u64 quota, period;
9117
9118 if (tg == d->tg) {
9119 period = d->period;
9120 quota = d->quota;
9121 } else {
9122 period = tg_get_cfs_period(tg);
9123 quota = tg_get_cfs_quota(tg);
9124 }
9125
9126 /* note: these should typically be equivalent */
9127 if (quota == RUNTIME_INF || quota == -1)
9128 return RUNTIME_INF;
9129
9130 return to_ratio(period, quota);
9131}
9132
9133static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
9134{
9135 struct cfs_schedulable_data *d = data;
029632fb 9136 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
9137 s64 quota = 0, parent_quota = -1;
9138
9139 if (!tg->parent) {
9140 quota = RUNTIME_INF;
9141 } else {
029632fb 9142 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
9143
9144 quota = normalize_cfs_quota(tg, d);
9c58c79a 9145 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
9146
9147 /*
c53593e5
TH
9148 * Ensure max(child_quota) <= parent_quota. On cgroup2,
9149 * always take the min. On cgroup1, only inherit when no
d1ccc66d 9150 * limit is set:
a790de99 9151 */
c53593e5
TH
9152 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
9153 quota = min(quota, parent_quota);
9154 } else {
9155 if (quota == RUNTIME_INF)
9156 quota = parent_quota;
9157 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
9158 return -EINVAL;
9159 }
a790de99 9160 }
9c58c79a 9161 cfs_b->hierarchical_quota = quota;
a790de99
PT
9162
9163 return 0;
9164}
9165
9166static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
9167{
8277434e 9168 int ret;
a790de99
PT
9169 struct cfs_schedulable_data data = {
9170 .tg = tg,
9171 .period = period,
9172 .quota = quota,
9173 };
9174
9175 if (quota != RUNTIME_INF) {
9176 do_div(data.period, NSEC_PER_USEC);
9177 do_div(data.quota, NSEC_PER_USEC);
9178 }
9179
8277434e
PT
9180 rcu_read_lock();
9181 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
9182 rcu_read_unlock();
9183
9184 return ret;
a790de99 9185}
e8da1b18 9186
a1f7164c 9187static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
e8da1b18 9188{
2da8ca82 9189 struct task_group *tg = css_tg(seq_css(sf));
029632fb 9190 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 9191
44ffc75b
TH
9192 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
9193 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
9194 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18 9195
3d6c50c2
YW
9196 if (schedstat_enabled() && tg != &root_task_group) {
9197 u64 ws = 0;
9198 int i;
9199
9200 for_each_possible_cpu(i)
9201 ws += schedstat_val(tg->se[i]->statistics.wait_sum);
9202
9203 seq_printf(sf, "wait_sum %llu\n", ws);
9204 }
9205
e8da1b18
NR
9206 return 0;
9207}
ab84d31e 9208#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 9209#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 9210
052f1dc7 9211#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
9212static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
9213 struct cftype *cft, s64 val)
6f505b16 9214{
182446d0 9215 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
9216}
9217
182446d0
TH
9218static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
9219 struct cftype *cft)
6f505b16 9220{
182446d0 9221 return sched_group_rt_runtime(css_tg(css));
6f505b16 9222}
d0b27fa7 9223
182446d0
TH
9224static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
9225 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 9226{
182446d0 9227 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
9228}
9229
182446d0
TH
9230static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
9231 struct cftype *cft)
d0b27fa7 9232{
182446d0 9233 return sched_group_rt_period(css_tg(css));
d0b27fa7 9234}
6d6bc0ad 9235#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 9236
a1f7164c 9237static struct cftype cpu_legacy_files[] = {
052f1dc7 9238#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
9239 {
9240 .name = "shares",
f4c753b7
PM
9241 .read_u64 = cpu_shares_read_u64,
9242 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 9243 },
052f1dc7 9244#endif
ab84d31e
PT
9245#ifdef CONFIG_CFS_BANDWIDTH
9246 {
9247 .name = "cfs_quota_us",
9248 .read_s64 = cpu_cfs_quota_read_s64,
9249 .write_s64 = cpu_cfs_quota_write_s64,
9250 },
9251 {
9252 .name = "cfs_period_us",
9253 .read_u64 = cpu_cfs_period_read_u64,
9254 .write_u64 = cpu_cfs_period_write_u64,
9255 },
e8da1b18
NR
9256 {
9257 .name = "stat",
a1f7164c 9258 .seq_show = cpu_cfs_stat_show,
e8da1b18 9259 },
ab84d31e 9260#endif
052f1dc7 9261#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9262 {
9f0c1e56 9263 .name = "rt_runtime_us",
06ecb27c
PM
9264 .read_s64 = cpu_rt_runtime_read,
9265 .write_s64 = cpu_rt_runtime_write,
6f505b16 9266 },
d0b27fa7
PZ
9267 {
9268 .name = "rt_period_us",
f4c753b7
PM
9269 .read_u64 = cpu_rt_period_read_uint,
9270 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 9271 },
2480c093
PB
9272#endif
9273#ifdef CONFIG_UCLAMP_TASK_GROUP
9274 {
9275 .name = "uclamp.min",
9276 .flags = CFTYPE_NOT_ON_ROOT,
9277 .seq_show = cpu_uclamp_min_show,
9278 .write = cpu_uclamp_min_write,
9279 },
9280 {
9281 .name = "uclamp.max",
9282 .flags = CFTYPE_NOT_ON_ROOT,
9283 .seq_show = cpu_uclamp_max_show,
9284 .write = cpu_uclamp_max_write,
9285 },
052f1dc7 9286#endif
d1ccc66d 9287 { } /* Terminate */
68318b8e
SV
9288};
9289
d41bf8c9
TH
9290static int cpu_extra_stat_show(struct seq_file *sf,
9291 struct cgroup_subsys_state *css)
0d593634 9292{
0d593634
TH
9293#ifdef CONFIG_CFS_BANDWIDTH
9294 {
d41bf8c9 9295 struct task_group *tg = css_tg(css);
0d593634
TH
9296 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9297 u64 throttled_usec;
9298
9299 throttled_usec = cfs_b->throttled_time;
9300 do_div(throttled_usec, NSEC_PER_USEC);
9301
9302 seq_printf(sf, "nr_periods %d\n"
9303 "nr_throttled %d\n"
9304 "throttled_usec %llu\n",
9305 cfs_b->nr_periods, cfs_b->nr_throttled,
9306 throttled_usec);
9307 }
9308#endif
9309 return 0;
9310}
9311
9312#ifdef CONFIG_FAIR_GROUP_SCHED
9313static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
9314 struct cftype *cft)
9315{
9316 struct task_group *tg = css_tg(css);
9317 u64 weight = scale_load_down(tg->shares);
9318
9319 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
9320}
9321
9322static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
9323 struct cftype *cft, u64 weight)
9324{
9325 /*
9326 * cgroup weight knobs should use the common MIN, DFL and MAX
9327 * values which are 1, 100 and 10000 respectively. While it loses
9328 * a bit of range on both ends, it maps pretty well onto the shares
9329 * value used by scheduler and the round-trip conversions preserve
9330 * the original value over the entire range.
9331 */
9332 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
9333 return -ERANGE;
9334
9335 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
9336
9337 return sched_group_set_shares(css_tg(css), scale_load(weight));
9338}
9339
9340static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
9341 struct cftype *cft)
9342{
9343 unsigned long weight = scale_load_down(css_tg(css)->shares);
9344 int last_delta = INT_MAX;
9345 int prio, delta;
9346
9347 /* find the closest nice value to the current weight */
9348 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
9349 delta = abs(sched_prio_to_weight[prio] - weight);
9350 if (delta >= last_delta)
9351 break;
9352 last_delta = delta;
9353 }
9354
9355 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
9356}
9357
9358static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
9359 struct cftype *cft, s64 nice)
9360{
9361 unsigned long weight;
7281c8de 9362 int idx;
0d593634
TH
9363
9364 if (nice < MIN_NICE || nice > MAX_NICE)
9365 return -ERANGE;
9366
7281c8de
PZ
9367 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
9368 idx = array_index_nospec(idx, 40);
9369 weight = sched_prio_to_weight[idx];
9370
0d593634
TH
9371 return sched_group_set_shares(css_tg(css), scale_load(weight));
9372}
9373#endif
9374
9375static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
9376 long period, long quota)
9377{
9378 if (quota < 0)
9379 seq_puts(sf, "max");
9380 else
9381 seq_printf(sf, "%ld", quota);
9382
9383 seq_printf(sf, " %ld\n", period);
9384}
9385
9386/* caller should put the current value in *@periodp before calling */
9387static int __maybe_unused cpu_period_quota_parse(char *buf,
9388 u64 *periodp, u64 *quotap)
9389{
9390 char tok[21]; /* U64_MAX */
9391
4c47acd8 9392 if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
0d593634
TH
9393 return -EINVAL;
9394
9395 *periodp *= NSEC_PER_USEC;
9396
9397 if (sscanf(tok, "%llu", quotap))
9398 *quotap *= NSEC_PER_USEC;
9399 else if (!strcmp(tok, "max"))
9400 *quotap = RUNTIME_INF;
9401 else
9402 return -EINVAL;
9403
9404 return 0;
9405}
9406
9407#ifdef CONFIG_CFS_BANDWIDTH
9408static int cpu_max_show(struct seq_file *sf, void *v)
9409{
9410 struct task_group *tg = css_tg(seq_css(sf));
9411
9412 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
9413 return 0;
9414}
9415
9416static ssize_t cpu_max_write(struct kernfs_open_file *of,
9417 char *buf, size_t nbytes, loff_t off)
9418{
9419 struct task_group *tg = css_tg(of_css(of));
9420 u64 period = tg_get_cfs_period(tg);
9421 u64 quota;
9422 int ret;
9423
9424 ret = cpu_period_quota_parse(buf, &period, &quota);
9425 if (!ret)
9426 ret = tg_set_cfs_bandwidth(tg, period, quota);
9427 return ret ?: nbytes;
9428}
9429#endif
9430
9431static struct cftype cpu_files[] = {
0d593634
TH
9432#ifdef CONFIG_FAIR_GROUP_SCHED
9433 {
9434 .name = "weight",
9435 .flags = CFTYPE_NOT_ON_ROOT,
9436 .read_u64 = cpu_weight_read_u64,
9437 .write_u64 = cpu_weight_write_u64,
9438 },
9439 {
9440 .name = "weight.nice",
9441 .flags = CFTYPE_NOT_ON_ROOT,
9442 .read_s64 = cpu_weight_nice_read_s64,
9443 .write_s64 = cpu_weight_nice_write_s64,
9444 },
9445#endif
9446#ifdef CONFIG_CFS_BANDWIDTH
9447 {
9448 .name = "max",
9449 .flags = CFTYPE_NOT_ON_ROOT,
9450 .seq_show = cpu_max_show,
9451 .write = cpu_max_write,
9452 },
2480c093
PB
9453#endif
9454#ifdef CONFIG_UCLAMP_TASK_GROUP
9455 {
9456 .name = "uclamp.min",
9457 .flags = CFTYPE_NOT_ON_ROOT,
9458 .seq_show = cpu_uclamp_min_show,
9459 .write = cpu_uclamp_min_write,
9460 },
9461 {
9462 .name = "uclamp.max",
9463 .flags = CFTYPE_NOT_ON_ROOT,
9464 .seq_show = cpu_uclamp_max_show,
9465 .write = cpu_uclamp_max_write,
9466 },
0d593634
TH
9467#endif
9468 { } /* terminate */
9469};
9470
073219e9 9471struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748 9472 .css_alloc = cpu_cgroup_css_alloc,
96b77745 9473 .css_online = cpu_cgroup_css_online,
2f5177f0 9474 .css_released = cpu_cgroup_css_released,
92fb9748 9475 .css_free = cpu_cgroup_css_free,
d41bf8c9 9476 .css_extra_stat_show = cpu_extra_stat_show,
eeb61e53 9477 .fork = cpu_cgroup_fork,
bb9d97b6
TH
9478 .can_attach = cpu_cgroup_can_attach,
9479 .attach = cpu_cgroup_attach,
a1f7164c 9480 .legacy_cftypes = cpu_legacy_files,
0d593634 9481 .dfl_cftypes = cpu_files,
b38e42e9 9482 .early_init = true,
0d593634 9483 .threaded = true,
68318b8e
SV
9484};
9485
052f1dc7 9486#endif /* CONFIG_CGROUP_SCHED */
d842de87 9487
b637a328
PM
9488void dump_cpu_task(int cpu)
9489{
9490 pr_info("Task dump for CPU %d:\n", cpu);
9491 sched_show_task(cpu_curr(cpu));
9492}
ed82b8a1
AK
9493
9494/*
9495 * Nice levels are multiplicative, with a gentle 10% change for every
9496 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
9497 * nice 1, it will get ~10% less CPU time than another CPU-bound task
9498 * that remained on nice 0.
9499 *
9500 * The "10% effect" is relative and cumulative: from _any_ nice level,
9501 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
9502 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
9503 * If a task goes up by ~10% and another task goes down by ~10% then
9504 * the relative distance between them is ~25%.)
9505 */
9506const int sched_prio_to_weight[40] = {
9507 /* -20 */ 88761, 71755, 56483, 46273, 36291,
9508 /* -15 */ 29154, 23254, 18705, 14949, 11916,
9509 /* -10 */ 9548, 7620, 6100, 4904, 3906,
9510 /* -5 */ 3121, 2501, 1991, 1586, 1277,
9511 /* 0 */ 1024, 820, 655, 526, 423,
9512 /* 5 */ 335, 272, 215, 172, 137,
9513 /* 10 */ 110, 87, 70, 56, 45,
9514 /* 15 */ 36, 29, 23, 18, 15,
9515};
9516
9517/*
9518 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
9519 *
9520 * In cases where the weight does not change often, we can use the
9521 * precalculated inverse to speed up arithmetics by turning divisions
9522 * into multiplications:
9523 */
9524const u32 sched_prio_to_wmult[40] = {
9525 /* -20 */ 48388, 59856, 76040, 92818, 118348,
9526 /* -15 */ 147320, 184698, 229616, 287308, 360437,
9527 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
9528 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
9529 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
9530 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
9531 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
9532 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
9533};
14a7405b 9534
9d246053
PA
9535void call_trace_sched_update_nr_running(struct rq *rq, int count)
9536{
9537 trace_sched_update_nr_running_tp(rq, count);
9538}