]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/sched/core.c
sched/core: Enable SD_BALANCE_WAKE for asymmetric capacity systems
[mirror_ubuntu-bionic-kernel.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
e1b77c92 29#include <linux/kasan.h>
1da177e4
LT
30#include <linux/mm.h>
31#include <linux/module.h>
32#include <linux/nmi.h>
33#include <linux/init.h>
dff06c15 34#include <linux/uaccess.h>
1da177e4 35#include <linux/highmem.h>
f98db601 36#include <linux/mmu_context.h>
1da177e4 37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
cdd6c482 42#include <linux/perf_event.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
b5aadf7f 58#include <linux/proc_fs.h>
1da177e4 59#include <linux/seq_file.h>
e692ab53 60#include <linux/sysctl.h>
1da177e4
LT
61#include <linux/syscalls.h>
62#include <linux/times.h>
8f0ab514 63#include <linux/tsacct_kern.h>
c6fd91f0 64#include <linux/kprobes.h>
0ff92245 65#include <linux/delayacct.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
30914a58 69#include <linux/tick.h>
f00b45c1 70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
91d1aa43 74#include <linux/context_tracking.h>
52f5684c 75#include <linux/compiler.h>
8e05e96a 76#include <linux/frame.h>
6075620b 77#include <linux/prefetch.h>
1da177e4 78
96f951ed 79#include <asm/switch_to.h>
5517d86b 80#include <asm/tlb.h>
838225b4 81#include <asm/irq_regs.h>
db7e527d 82#include <asm/mutex.h>
e6e6685a
GC
83#ifdef CONFIG_PARAVIRT
84#include <asm/paravirt.h>
85#endif
1da177e4 86
029632fb 87#include "sched.h"
ea138446 88#include "../workqueue_internal.h"
29d5e047 89#include "../smpboot.h"
6e0534f2 90
a8d154b0 91#define CREATE_TRACE_POINTS
ad8d75ff 92#include <trace/events/sched.h>
a8d154b0 93
029632fb
PZ
94DEFINE_MUTEX(sched_domains_mutex);
95DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 96
fe44d621 97static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 98
029632fb 99void update_rq_clock(struct rq *rq)
3e51f33f 100{
fe44d621 101 s64 delta;
305e6835 102
9edfbfed
PZ
103 lockdep_assert_held(&rq->lock);
104
105 if (rq->clock_skip_update & RQCF_ACT_SKIP)
f26f9aff 106 return;
aa483808 107
fe44d621 108 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
4036ac15
MG
109 if (delta < 0)
110 return;
fe44d621
PZ
111 rq->clock += delta;
112 update_rq_clock_task(rq, delta);
3e51f33f
PZ
113}
114
bf5c91ba
IM
115/*
116 * Debugging: various feature bits
117 */
f00b45c1 118
f00b45c1
PZ
119#define SCHED_FEAT(name, enabled) \
120 (1UL << __SCHED_FEAT_##name) * enabled |
121
bf5c91ba 122const_debug unsigned int sysctl_sched_features =
391e43da 123#include "features.h"
f00b45c1
PZ
124 0;
125
126#undef SCHED_FEAT
127
b82d9fdd
PZ
128/*
129 * Number of tasks to iterate in a single balance run.
130 * Limited because this is done with IRQs disabled.
131 */
132const_debug unsigned int sysctl_sched_nr_migrate = 32;
133
e9e9250b
PZ
134/*
135 * period over which we average the RT time consumption, measured
136 * in ms.
137 *
138 * default: 1s
139 */
140const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
141
fa85ae24 142/*
9f0c1e56 143 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
144 * default: 1s
145 */
9f0c1e56 146unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 147
029632fb 148__read_mostly int scheduler_running;
6892b75e 149
9f0c1e56
PZ
150/*
151 * part of the period that we allow rt tasks to run in us.
152 * default: 0.95s
153 */
154int sysctl_sched_rt_runtime = 950000;
fa85ae24 155
3fa0818b
RR
156/* cpus with isolated domains */
157cpumask_var_t cpu_isolated_map;
158
1da177e4 159/*
cc2a73b5 160 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 161 */
a9957449 162static struct rq *this_rq_lock(void)
1da177e4
LT
163 __acquires(rq->lock)
164{
70b97a7f 165 struct rq *rq;
1da177e4
LT
166
167 local_irq_disable();
168 rq = this_rq();
05fa785c 169 raw_spin_lock(&rq->lock);
1da177e4
LT
170
171 return rq;
172}
173
3e71a462
PZ
174/*
175 * __task_rq_lock - lock the rq @p resides on.
176 */
eb580751 177struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
178 __acquires(rq->lock)
179{
180 struct rq *rq;
181
182 lockdep_assert_held(&p->pi_lock);
183
184 for (;;) {
185 rq = task_rq(p);
186 raw_spin_lock(&rq->lock);
187 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
e7904a28 188 rf->cookie = lockdep_pin_lock(&rq->lock);
3e71a462
PZ
189 return rq;
190 }
191 raw_spin_unlock(&rq->lock);
192
193 while (unlikely(task_on_rq_migrating(p)))
194 cpu_relax();
195 }
196}
197
198/*
199 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
200 */
eb580751 201struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
202 __acquires(p->pi_lock)
203 __acquires(rq->lock)
204{
205 struct rq *rq;
206
207 for (;;) {
eb580751 208 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
3e71a462
PZ
209 rq = task_rq(p);
210 raw_spin_lock(&rq->lock);
211 /*
212 * move_queued_task() task_rq_lock()
213 *
214 * ACQUIRE (rq->lock)
215 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
216 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
217 * [S] ->cpu = new_cpu [L] task_rq()
218 * [L] ->on_rq
219 * RELEASE (rq->lock)
220 *
221 * If we observe the old cpu in task_rq_lock, the acquire of
222 * the old rq->lock will fully serialize against the stores.
223 *
224 * If we observe the new cpu in task_rq_lock, the acquire will
225 * pair with the WMB to ensure we must then also see migrating.
226 */
227 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
e7904a28 228 rf->cookie = lockdep_pin_lock(&rq->lock);
3e71a462
PZ
229 return rq;
230 }
231 raw_spin_unlock(&rq->lock);
eb580751 232 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
3e71a462
PZ
233
234 while (unlikely(task_on_rq_migrating(p)))
235 cpu_relax();
236 }
237}
238
8f4d37ec
PZ
239#ifdef CONFIG_SCHED_HRTICK
240/*
241 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 242 */
8f4d37ec 243
8f4d37ec
PZ
244static void hrtick_clear(struct rq *rq)
245{
246 if (hrtimer_active(&rq->hrtick_timer))
247 hrtimer_cancel(&rq->hrtick_timer);
248}
249
8f4d37ec
PZ
250/*
251 * High-resolution timer tick.
252 * Runs from hardirq context with interrupts disabled.
253 */
254static enum hrtimer_restart hrtick(struct hrtimer *timer)
255{
256 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
257
258 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
259
05fa785c 260 raw_spin_lock(&rq->lock);
3e51f33f 261 update_rq_clock(rq);
8f4d37ec 262 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 263 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
264
265 return HRTIMER_NORESTART;
266}
267
95e904c7 268#ifdef CONFIG_SMP
971ee28c 269
4961b6e1 270static void __hrtick_restart(struct rq *rq)
971ee28c
PZ
271{
272 struct hrtimer *timer = &rq->hrtick_timer;
971ee28c 273
4961b6e1 274 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
971ee28c
PZ
275}
276
31656519
PZ
277/*
278 * called from hardirq (IPI) context
279 */
280static void __hrtick_start(void *arg)
b328ca18 281{
31656519 282 struct rq *rq = arg;
b328ca18 283
05fa785c 284 raw_spin_lock(&rq->lock);
971ee28c 285 __hrtick_restart(rq);
31656519 286 rq->hrtick_csd_pending = 0;
05fa785c 287 raw_spin_unlock(&rq->lock);
b328ca18
PZ
288}
289
31656519
PZ
290/*
291 * Called to set the hrtick timer state.
292 *
293 * called with rq->lock held and irqs disabled
294 */
029632fb 295void hrtick_start(struct rq *rq, u64 delay)
b328ca18 296{
31656519 297 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 298 ktime_t time;
299 s64 delta;
300
301 /*
302 * Don't schedule slices shorter than 10000ns, that just
303 * doesn't make sense and can cause timer DoS.
304 */
305 delta = max_t(s64, delay, 10000LL);
306 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 307
cc584b21 308 hrtimer_set_expires(timer, time);
31656519
PZ
309
310 if (rq == this_rq()) {
971ee28c 311 __hrtick_restart(rq);
31656519 312 } else if (!rq->hrtick_csd_pending) {
c46fff2a 313 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
314 rq->hrtick_csd_pending = 1;
315 }
b328ca18
PZ
316}
317
31656519
PZ
318#else
319/*
320 * Called to set the hrtick timer state.
321 *
322 * called with rq->lock held and irqs disabled
323 */
029632fb 324void hrtick_start(struct rq *rq, u64 delay)
31656519 325{
86893335
WL
326 /*
327 * Don't schedule slices shorter than 10000ns, that just
328 * doesn't make sense. Rely on vruntime for fairness.
329 */
330 delay = max_t(u64, delay, 10000LL);
4961b6e1
TG
331 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
332 HRTIMER_MODE_REL_PINNED);
31656519 333}
31656519 334#endif /* CONFIG_SMP */
8f4d37ec 335
31656519 336static void init_rq_hrtick(struct rq *rq)
8f4d37ec 337{
31656519
PZ
338#ifdef CONFIG_SMP
339 rq->hrtick_csd_pending = 0;
8f4d37ec 340
31656519
PZ
341 rq->hrtick_csd.flags = 0;
342 rq->hrtick_csd.func = __hrtick_start;
343 rq->hrtick_csd.info = rq;
344#endif
8f4d37ec 345
31656519
PZ
346 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
347 rq->hrtick_timer.function = hrtick;
8f4d37ec 348}
006c75f1 349#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
350static inline void hrtick_clear(struct rq *rq)
351{
352}
353
8f4d37ec
PZ
354static inline void init_rq_hrtick(struct rq *rq)
355{
356}
006c75f1 357#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 358
5529578a
FW
359/*
360 * cmpxchg based fetch_or, macro so it works for different integer types
361 */
362#define fetch_or(ptr, mask) \
363 ({ \
364 typeof(ptr) _ptr = (ptr); \
365 typeof(mask) _mask = (mask); \
366 typeof(*_ptr) _old, _val = *_ptr; \
367 \
368 for (;;) { \
369 _old = cmpxchg(_ptr, _val, _val | _mask); \
370 if (_old == _val) \
371 break; \
372 _val = _old; \
373 } \
374 _old; \
375})
376
e3baac47 377#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
378/*
379 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
380 * this avoids any races wrt polling state changes and thereby avoids
381 * spurious IPIs.
382 */
383static bool set_nr_and_not_polling(struct task_struct *p)
384{
385 struct thread_info *ti = task_thread_info(p);
386 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
387}
e3baac47
PZ
388
389/*
390 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
391 *
392 * If this returns true, then the idle task promises to call
393 * sched_ttwu_pending() and reschedule soon.
394 */
395static bool set_nr_if_polling(struct task_struct *p)
396{
397 struct thread_info *ti = task_thread_info(p);
316c1608 398 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
e3baac47
PZ
399
400 for (;;) {
401 if (!(val & _TIF_POLLING_NRFLAG))
402 return false;
403 if (val & _TIF_NEED_RESCHED)
404 return true;
405 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
406 if (old == val)
407 break;
408 val = old;
409 }
410 return true;
411}
412
fd99f91a
PZ
413#else
414static bool set_nr_and_not_polling(struct task_struct *p)
415{
416 set_tsk_need_resched(p);
417 return true;
418}
e3baac47
PZ
419
420#ifdef CONFIG_SMP
421static bool set_nr_if_polling(struct task_struct *p)
422{
423 return false;
424}
425#endif
fd99f91a
PZ
426#endif
427
76751049
PZ
428void wake_q_add(struct wake_q_head *head, struct task_struct *task)
429{
430 struct wake_q_node *node = &task->wake_q;
431
432 /*
433 * Atomically grab the task, if ->wake_q is !nil already it means
434 * its already queued (either by us or someone else) and will get the
435 * wakeup due to that.
436 *
437 * This cmpxchg() implies a full barrier, which pairs with the write
58fe9c46 438 * barrier implied by the wakeup in wake_up_q().
76751049
PZ
439 */
440 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
441 return;
442
443 get_task_struct(task);
444
445 /*
446 * The head is context local, there can be no concurrency.
447 */
448 *head->lastp = node;
449 head->lastp = &node->next;
450}
451
452void wake_up_q(struct wake_q_head *head)
453{
454 struct wake_q_node *node = head->first;
455
456 while (node != WAKE_Q_TAIL) {
457 struct task_struct *task;
458
459 task = container_of(node, struct task_struct, wake_q);
460 BUG_ON(!task);
461 /* task can safely be re-inserted now */
462 node = node->next;
463 task->wake_q.next = NULL;
464
465 /*
466 * wake_up_process() implies a wmb() to pair with the queueing
467 * in wake_q_add() so as not to miss wakeups.
468 */
469 wake_up_process(task);
470 put_task_struct(task);
471 }
472}
473
c24d20db 474/*
8875125e 475 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
476 *
477 * On UP this means the setting of the need_resched flag, on SMP it
478 * might also involve a cross-CPU call to trigger the scheduler on
479 * the target CPU.
480 */
8875125e 481void resched_curr(struct rq *rq)
c24d20db 482{
8875125e 483 struct task_struct *curr = rq->curr;
c24d20db
IM
484 int cpu;
485
8875125e 486 lockdep_assert_held(&rq->lock);
c24d20db 487
8875125e 488 if (test_tsk_need_resched(curr))
c24d20db
IM
489 return;
490
8875125e 491 cpu = cpu_of(rq);
fd99f91a 492
f27dde8d 493 if (cpu == smp_processor_id()) {
8875125e 494 set_tsk_need_resched(curr);
f27dde8d 495 set_preempt_need_resched();
c24d20db 496 return;
f27dde8d 497 }
c24d20db 498
8875125e 499 if (set_nr_and_not_polling(curr))
c24d20db 500 smp_send_reschedule(cpu);
dfc68f29
AL
501 else
502 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
503}
504
029632fb 505void resched_cpu(int cpu)
c24d20db
IM
506{
507 struct rq *rq = cpu_rq(cpu);
508 unsigned long flags;
509
05fa785c 510 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db 511 return;
8875125e 512 resched_curr(rq);
05fa785c 513 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 514}
06d8308c 515
b021fe3e 516#ifdef CONFIG_SMP
3451d024 517#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
518/*
519 * In the semi idle case, use the nearest busy cpu for migrating timers
520 * from an idle cpu. This is good for power-savings.
521 *
522 * We don't do similar optimization for completely idle system, as
523 * selecting an idle cpu will add more delays to the timers than intended
524 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
525 */
bc7a34b8 526int get_nohz_timer_target(void)
83cd4fe2 527{
bc7a34b8 528 int i, cpu = smp_processor_id();
83cd4fe2
VP
529 struct sched_domain *sd;
530
9642d18e 531 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
6201b4d6
VK
532 return cpu;
533
057f3fad 534 rcu_read_lock();
83cd4fe2 535 for_each_domain(cpu, sd) {
057f3fad 536 for_each_cpu(i, sched_domain_span(sd)) {
44496922
WL
537 if (cpu == i)
538 continue;
539
540 if (!idle_cpu(i) && is_housekeeping_cpu(i)) {
057f3fad
PZ
541 cpu = i;
542 goto unlock;
543 }
544 }
83cd4fe2 545 }
9642d18e
VH
546
547 if (!is_housekeeping_cpu(cpu))
548 cpu = housekeeping_any_cpu();
057f3fad
PZ
549unlock:
550 rcu_read_unlock();
83cd4fe2
VP
551 return cpu;
552}
06d8308c
TG
553/*
554 * When add_timer_on() enqueues a timer into the timer wheel of an
555 * idle CPU then this timer might expire before the next timer event
556 * which is scheduled to wake up that CPU. In case of a completely
557 * idle system the next event might even be infinite time into the
558 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
559 * leaves the inner idle loop so the newly added timer is taken into
560 * account when the CPU goes back to idle and evaluates the timer
561 * wheel for the next timer event.
562 */
1c20091e 563static void wake_up_idle_cpu(int cpu)
06d8308c
TG
564{
565 struct rq *rq = cpu_rq(cpu);
566
567 if (cpu == smp_processor_id())
568 return;
569
67b9ca70 570 if (set_nr_and_not_polling(rq->idle))
06d8308c 571 smp_send_reschedule(cpu);
dfc68f29
AL
572 else
573 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
574}
575
c5bfece2 576static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 577{
53c5fa16
FW
578 /*
579 * We just need the target to call irq_exit() and re-evaluate
580 * the next tick. The nohz full kick at least implies that.
581 * If needed we can still optimize that later with an
582 * empty IRQ.
583 */
c5bfece2 584 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
585 if (cpu != smp_processor_id() ||
586 tick_nohz_tick_stopped())
53c5fa16 587 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
588 return true;
589 }
590
591 return false;
592}
593
594void wake_up_nohz_cpu(int cpu)
595{
c5bfece2 596 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
597 wake_up_idle_cpu(cpu);
598}
599
ca38062e 600static inline bool got_nohz_idle_kick(void)
45bf76df 601{
1c792db7 602 int cpu = smp_processor_id();
873b4c65
VG
603
604 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
605 return false;
606
607 if (idle_cpu(cpu) && !need_resched())
608 return true;
609
610 /*
611 * We can't run Idle Load Balance on this CPU for this time so we
612 * cancel it and clear NOHZ_BALANCE_KICK
613 */
614 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
615 return false;
45bf76df
IM
616}
617
3451d024 618#else /* CONFIG_NO_HZ_COMMON */
45bf76df 619
ca38062e 620static inline bool got_nohz_idle_kick(void)
2069dd75 621{
ca38062e 622 return false;
2069dd75
PZ
623}
624
3451d024 625#endif /* CONFIG_NO_HZ_COMMON */
d842de87 626
ce831b38 627#ifdef CONFIG_NO_HZ_FULL
76d92ac3 628bool sched_can_stop_tick(struct rq *rq)
ce831b38 629{
76d92ac3
FW
630 int fifo_nr_running;
631
632 /* Deadline tasks, even if single, need the tick */
633 if (rq->dl.dl_nr_running)
634 return false;
635
1e78cdbd 636 /*
2548d546
PZ
637 * If there are more than one RR tasks, we need the tick to effect the
638 * actual RR behaviour.
1e78cdbd 639 */
76d92ac3
FW
640 if (rq->rt.rr_nr_running) {
641 if (rq->rt.rr_nr_running == 1)
642 return true;
643 else
644 return false;
1e78cdbd
RR
645 }
646
2548d546
PZ
647 /*
648 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
649 * forced preemption between FIFO tasks.
650 */
651 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
652 if (fifo_nr_running)
653 return true;
654
655 /*
656 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
657 * if there's more than one we need the tick for involuntary
658 * preemption.
659 */
660 if (rq->nr_running > 1)
541b8264 661 return false;
ce831b38 662
541b8264 663 return true;
ce831b38
FW
664}
665#endif /* CONFIG_NO_HZ_FULL */
d842de87 666
029632fb 667void sched_avg_update(struct rq *rq)
18d95a28 668{
e9e9250b
PZ
669 s64 period = sched_avg_period();
670
78becc27 671 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
672 /*
673 * Inline assembly required to prevent the compiler
674 * optimising this loop into a divmod call.
675 * See __iter_div_u64_rem() for another example of this.
676 */
677 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
678 rq->age_stamp += period;
679 rq->rt_avg /= 2;
680 }
18d95a28
PZ
681}
682
6d6bc0ad 683#endif /* CONFIG_SMP */
18d95a28 684
a790de99
PT
685#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
686 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 687/*
8277434e
PT
688 * Iterate task_group tree rooted at *from, calling @down when first entering a
689 * node and @up when leaving it for the final time.
690 *
691 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 692 */
029632fb 693int walk_tg_tree_from(struct task_group *from,
8277434e 694 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
695{
696 struct task_group *parent, *child;
eb755805 697 int ret;
c09595f6 698
8277434e
PT
699 parent = from;
700
c09595f6 701down:
eb755805
PZ
702 ret = (*down)(parent, data);
703 if (ret)
8277434e 704 goto out;
c09595f6
PZ
705 list_for_each_entry_rcu(child, &parent->children, siblings) {
706 parent = child;
707 goto down;
708
709up:
710 continue;
711 }
eb755805 712 ret = (*up)(parent, data);
8277434e
PT
713 if (ret || parent == from)
714 goto out;
c09595f6
PZ
715
716 child = parent;
717 parent = parent->parent;
718 if (parent)
719 goto up;
8277434e 720out:
eb755805 721 return ret;
c09595f6
PZ
722}
723
029632fb 724int tg_nop(struct task_group *tg, void *data)
eb755805 725{
e2b245f8 726 return 0;
eb755805 727}
18d95a28
PZ
728#endif
729
45bf76df
IM
730static void set_load_weight(struct task_struct *p)
731{
f05998d4
NR
732 int prio = p->static_prio - MAX_RT_PRIO;
733 struct load_weight *load = &p->se.load;
734
dd41f596
IM
735 /*
736 * SCHED_IDLE tasks get minimal weight:
737 */
20f9cd2a 738 if (idle_policy(p->policy)) {
c8b28116 739 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 740 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
741 return;
742 }
71f8bd46 743
ed82b8a1
AK
744 load->weight = scale_load(sched_prio_to_weight[prio]);
745 load->inv_weight = sched_prio_to_wmult[prio];
71f8bd46
IM
746}
747
1de64443 748static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 749{
a64692a3 750 update_rq_clock(rq);
1de64443
PZ
751 if (!(flags & ENQUEUE_RESTORE))
752 sched_info_queued(rq, p);
371fd7e7 753 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
754}
755
1de64443 756static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 757{
a64692a3 758 update_rq_clock(rq);
1de64443
PZ
759 if (!(flags & DEQUEUE_SAVE))
760 sched_info_dequeued(rq, p);
371fd7e7 761 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
762}
763
029632fb 764void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
765{
766 if (task_contributes_to_load(p))
767 rq->nr_uninterruptible--;
768
371fd7e7 769 enqueue_task(rq, p, flags);
1e3c88bd
PZ
770}
771
029632fb 772void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
773{
774 if (task_contributes_to_load(p))
775 rq->nr_uninterruptible++;
776
371fd7e7 777 dequeue_task(rq, p, flags);
1e3c88bd
PZ
778}
779
fe44d621 780static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 781{
095c0aa8
GC
782/*
783 * In theory, the compile should just see 0 here, and optimize out the call
784 * to sched_rt_avg_update. But I don't trust it...
785 */
786#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
787 s64 steal = 0, irq_delta = 0;
788#endif
789#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 790 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
791
792 /*
793 * Since irq_time is only updated on {soft,}irq_exit, we might run into
794 * this case when a previous update_rq_clock() happened inside a
795 * {soft,}irq region.
796 *
797 * When this happens, we stop ->clock_task and only update the
798 * prev_irq_time stamp to account for the part that fit, so that a next
799 * update will consume the rest. This ensures ->clock_task is
800 * monotonic.
801 *
802 * It does however cause some slight miss-attribution of {soft,}irq
803 * time, a more accurate solution would be to update the irq_time using
804 * the current rq->clock timestamp, except that would require using
805 * atomic ops.
806 */
807 if (irq_delta > delta)
808 irq_delta = delta;
809
810 rq->prev_irq_time += irq_delta;
811 delta -= irq_delta;
095c0aa8
GC
812#endif
813#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 814 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
815 steal = paravirt_steal_clock(cpu_of(rq));
816 steal -= rq->prev_steal_time_rq;
817
818 if (unlikely(steal > delta))
819 steal = delta;
820
095c0aa8 821 rq->prev_steal_time_rq += steal;
095c0aa8
GC
822 delta -= steal;
823 }
824#endif
825
fe44d621
PZ
826 rq->clock_task += delta;
827
095c0aa8 828#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
5d4dfddd 829 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
095c0aa8
GC
830 sched_rt_avg_update(rq, irq_delta + steal);
831#endif
aa483808
VP
832}
833
34f971f6
PZ
834void sched_set_stop_task(int cpu, struct task_struct *stop)
835{
836 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
837 struct task_struct *old_stop = cpu_rq(cpu)->stop;
838
839 if (stop) {
840 /*
841 * Make it appear like a SCHED_FIFO task, its something
842 * userspace knows about and won't get confused about.
843 *
844 * Also, it will make PI more or less work without too
845 * much confusion -- but then, stop work should not
846 * rely on PI working anyway.
847 */
848 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
849
850 stop->sched_class = &stop_sched_class;
851 }
852
853 cpu_rq(cpu)->stop = stop;
854
855 if (old_stop) {
856 /*
857 * Reset it back to a normal scheduling class so that
858 * it can die in pieces.
859 */
860 old_stop->sched_class = &rt_sched_class;
861 }
862}
863
14531189 864/*
dd41f596 865 * __normal_prio - return the priority that is based on the static prio
14531189 866 */
14531189
IM
867static inline int __normal_prio(struct task_struct *p)
868{
dd41f596 869 return p->static_prio;
14531189
IM
870}
871
b29739f9
IM
872/*
873 * Calculate the expected normal priority: i.e. priority
874 * without taking RT-inheritance into account. Might be
875 * boosted by interactivity modifiers. Changes upon fork,
876 * setprio syscalls, and whenever the interactivity
877 * estimator recalculates.
878 */
36c8b586 879static inline int normal_prio(struct task_struct *p)
b29739f9
IM
880{
881 int prio;
882
aab03e05
DF
883 if (task_has_dl_policy(p))
884 prio = MAX_DL_PRIO-1;
885 else if (task_has_rt_policy(p))
b29739f9
IM
886 prio = MAX_RT_PRIO-1 - p->rt_priority;
887 else
888 prio = __normal_prio(p);
889 return prio;
890}
891
892/*
893 * Calculate the current priority, i.e. the priority
894 * taken into account by the scheduler. This value might
895 * be boosted by RT tasks, or might be boosted by
896 * interactivity modifiers. Will be RT if the task got
897 * RT-boosted. If not then it returns p->normal_prio.
898 */
36c8b586 899static int effective_prio(struct task_struct *p)
b29739f9
IM
900{
901 p->normal_prio = normal_prio(p);
902 /*
903 * If we are RT tasks or we were boosted to RT priority,
904 * keep the priority unchanged. Otherwise, update priority
905 * to the normal priority:
906 */
907 if (!rt_prio(p->prio))
908 return p->normal_prio;
909 return p->prio;
910}
911
1da177e4
LT
912/**
913 * task_curr - is this task currently executing on a CPU?
914 * @p: the task in question.
e69f6186
YB
915 *
916 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 917 */
36c8b586 918inline int task_curr(const struct task_struct *p)
1da177e4
LT
919{
920 return cpu_curr(task_cpu(p)) == p;
921}
922
67dfa1b7 923/*
4c9a4bc8
PZ
924 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
925 * use the balance_callback list if you want balancing.
926 *
927 * this means any call to check_class_changed() must be followed by a call to
928 * balance_callback().
67dfa1b7 929 */
cb469845
SR
930static inline void check_class_changed(struct rq *rq, struct task_struct *p,
931 const struct sched_class *prev_class,
da7a735e 932 int oldprio)
cb469845
SR
933{
934 if (prev_class != p->sched_class) {
935 if (prev_class->switched_from)
da7a735e 936 prev_class->switched_from(rq, p);
4c9a4bc8 937
da7a735e 938 p->sched_class->switched_to(rq, p);
2d3d891d 939 } else if (oldprio != p->prio || dl_task(p))
da7a735e 940 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
941}
942
029632fb 943void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
944{
945 const struct sched_class *class;
946
947 if (p->sched_class == rq->curr->sched_class) {
948 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
949 } else {
950 for_each_class(class) {
951 if (class == rq->curr->sched_class)
952 break;
953 if (class == p->sched_class) {
8875125e 954 resched_curr(rq);
1e5a7405
PZ
955 break;
956 }
957 }
958 }
959
960 /*
961 * A queue event has occurred, and we're going to schedule. In
962 * this case, we can save a useless back to back clock update.
963 */
da0c1e65 964 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
9edfbfed 965 rq_clock_skip_update(rq, true);
1e5a7405
PZ
966}
967
1da177e4 968#ifdef CONFIG_SMP
5cc389bc
PZ
969/*
970 * This is how migration works:
971 *
972 * 1) we invoke migration_cpu_stop() on the target CPU using
973 * stop_one_cpu().
974 * 2) stopper starts to run (implicitly forcing the migrated thread
975 * off the CPU)
976 * 3) it checks whether the migrated task is still in the wrong runqueue.
977 * 4) if it's in the wrong runqueue then the migration thread removes
978 * it and puts it into the right queue.
979 * 5) stopper completes and stop_one_cpu() returns and the migration
980 * is done.
981 */
982
983/*
984 * move_queued_task - move a queued task to new rq.
985 *
986 * Returns (locked) new rq. Old rq's lock is released.
987 */
5e16bbc2 988static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
5cc389bc 989{
5cc389bc
PZ
990 lockdep_assert_held(&rq->lock);
991
5cc389bc 992 p->on_rq = TASK_ON_RQ_MIGRATING;
3ea94de1 993 dequeue_task(rq, p, 0);
5cc389bc
PZ
994 set_task_cpu(p, new_cpu);
995 raw_spin_unlock(&rq->lock);
996
997 rq = cpu_rq(new_cpu);
998
999 raw_spin_lock(&rq->lock);
1000 BUG_ON(task_cpu(p) != new_cpu);
5cc389bc 1001 enqueue_task(rq, p, 0);
3ea94de1 1002 p->on_rq = TASK_ON_RQ_QUEUED;
5cc389bc
PZ
1003 check_preempt_curr(rq, p, 0);
1004
1005 return rq;
1006}
1007
1008struct migration_arg {
1009 struct task_struct *task;
1010 int dest_cpu;
1011};
1012
1013/*
1014 * Move (not current) task off this cpu, onto dest cpu. We're doing
1015 * this because either it can't run here any more (set_cpus_allowed()
1016 * away from this CPU, or CPU going down), or because we're
1017 * attempting to rebalance this task on exec (sched_exec).
1018 *
1019 * So we race with normal scheduler movements, but that's OK, as long
1020 * as the task is no longer on this CPU.
5cc389bc 1021 */
5e16bbc2 1022static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
5cc389bc 1023{
5cc389bc 1024 if (unlikely(!cpu_active(dest_cpu)))
5e16bbc2 1025 return rq;
5cc389bc
PZ
1026
1027 /* Affinity changed (again). */
1028 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
5e16bbc2 1029 return rq;
5cc389bc 1030
5e16bbc2
PZ
1031 rq = move_queued_task(rq, p, dest_cpu);
1032
1033 return rq;
5cc389bc
PZ
1034}
1035
1036/*
1037 * migration_cpu_stop - this will be executed by a highprio stopper thread
1038 * and performs thread migration by bumping thread off CPU then
1039 * 'pushing' onto another runqueue.
1040 */
1041static int migration_cpu_stop(void *data)
1042{
1043 struct migration_arg *arg = data;
5e16bbc2
PZ
1044 struct task_struct *p = arg->task;
1045 struct rq *rq = this_rq();
5cc389bc
PZ
1046
1047 /*
1048 * The original target cpu might have gone down and we might
1049 * be on another cpu but it doesn't matter.
1050 */
1051 local_irq_disable();
1052 /*
1053 * We need to explicitly wake pending tasks before running
1054 * __migrate_task() such that we will not miss enforcing cpus_allowed
1055 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1056 */
1057 sched_ttwu_pending();
5e16bbc2
PZ
1058
1059 raw_spin_lock(&p->pi_lock);
1060 raw_spin_lock(&rq->lock);
1061 /*
1062 * If task_rq(p) != rq, it cannot be migrated here, because we're
1063 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1064 * we're holding p->pi_lock.
1065 */
1066 if (task_rq(p) == rq && task_on_rq_queued(p))
1067 rq = __migrate_task(rq, p, arg->dest_cpu);
1068 raw_spin_unlock(&rq->lock);
1069 raw_spin_unlock(&p->pi_lock);
1070
5cc389bc
PZ
1071 local_irq_enable();
1072 return 0;
1073}
1074
c5b28038
PZ
1075/*
1076 * sched_class::set_cpus_allowed must do the below, but is not required to
1077 * actually call this function.
1078 */
1079void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
5cc389bc 1080{
5cc389bc
PZ
1081 cpumask_copy(&p->cpus_allowed, new_mask);
1082 p->nr_cpus_allowed = cpumask_weight(new_mask);
1083}
1084
c5b28038
PZ
1085void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1086{
6c37067e
PZ
1087 struct rq *rq = task_rq(p);
1088 bool queued, running;
1089
c5b28038 1090 lockdep_assert_held(&p->pi_lock);
6c37067e
PZ
1091
1092 queued = task_on_rq_queued(p);
1093 running = task_current(rq, p);
1094
1095 if (queued) {
1096 /*
1097 * Because __kthread_bind() calls this on blocked tasks without
1098 * holding rq->lock.
1099 */
1100 lockdep_assert_held(&rq->lock);
1de64443 1101 dequeue_task(rq, p, DEQUEUE_SAVE);
6c37067e
PZ
1102 }
1103 if (running)
1104 put_prev_task(rq, p);
1105
c5b28038 1106 p->sched_class->set_cpus_allowed(p, new_mask);
6c37067e
PZ
1107
1108 if (running)
1109 p->sched_class->set_curr_task(rq);
1110 if (queued)
1de64443 1111 enqueue_task(rq, p, ENQUEUE_RESTORE);
c5b28038
PZ
1112}
1113
5cc389bc
PZ
1114/*
1115 * Change a given task's CPU affinity. Migrate the thread to a
1116 * proper CPU and schedule it away if the CPU it's executing on
1117 * is removed from the allowed bitmask.
1118 *
1119 * NOTE: the caller must have a valid reference to the task, the
1120 * task must not exit() & deallocate itself prematurely. The
1121 * call is not atomic; no spinlocks may be held.
1122 */
25834c73
PZ
1123static int __set_cpus_allowed_ptr(struct task_struct *p,
1124 const struct cpumask *new_mask, bool check)
5cc389bc 1125{
e9d867a6 1126 const struct cpumask *cpu_valid_mask = cpu_active_mask;
5cc389bc 1127 unsigned int dest_cpu;
eb580751
PZ
1128 struct rq_flags rf;
1129 struct rq *rq;
5cc389bc
PZ
1130 int ret = 0;
1131
eb580751 1132 rq = task_rq_lock(p, &rf);
5cc389bc 1133
e9d867a6
PZI
1134 if (p->flags & PF_KTHREAD) {
1135 /*
1136 * Kernel threads are allowed on online && !active CPUs
1137 */
1138 cpu_valid_mask = cpu_online_mask;
1139 }
1140
25834c73
PZ
1141 /*
1142 * Must re-check here, to close a race against __kthread_bind(),
1143 * sched_setaffinity() is not guaranteed to observe the flag.
1144 */
1145 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1146 ret = -EINVAL;
1147 goto out;
1148 }
1149
5cc389bc
PZ
1150 if (cpumask_equal(&p->cpus_allowed, new_mask))
1151 goto out;
1152
e9d867a6 1153 if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
5cc389bc
PZ
1154 ret = -EINVAL;
1155 goto out;
1156 }
1157
1158 do_set_cpus_allowed(p, new_mask);
1159
e9d867a6
PZI
1160 if (p->flags & PF_KTHREAD) {
1161 /*
1162 * For kernel threads that do indeed end up on online &&
1163 * !active we want to ensure they are strict per-cpu threads.
1164 */
1165 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1166 !cpumask_intersects(new_mask, cpu_active_mask) &&
1167 p->nr_cpus_allowed != 1);
1168 }
1169
5cc389bc
PZ
1170 /* Can the task run on the task's current CPU? If so, we're done */
1171 if (cpumask_test_cpu(task_cpu(p), new_mask))
1172 goto out;
1173
e9d867a6 1174 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
5cc389bc
PZ
1175 if (task_running(rq, p) || p->state == TASK_WAKING) {
1176 struct migration_arg arg = { p, dest_cpu };
1177 /* Need help from migration thread: drop lock and wait. */
eb580751 1178 task_rq_unlock(rq, p, &rf);
5cc389bc
PZ
1179 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1180 tlb_migrate_finish(p->mm);
1181 return 0;
cbce1a68
PZ
1182 } else if (task_on_rq_queued(p)) {
1183 /*
1184 * OK, since we're going to drop the lock immediately
1185 * afterwards anyway.
1186 */
e7904a28 1187 lockdep_unpin_lock(&rq->lock, rf.cookie);
5e16bbc2 1188 rq = move_queued_task(rq, p, dest_cpu);
e7904a28 1189 lockdep_repin_lock(&rq->lock, rf.cookie);
cbce1a68 1190 }
5cc389bc 1191out:
eb580751 1192 task_rq_unlock(rq, p, &rf);
5cc389bc
PZ
1193
1194 return ret;
1195}
25834c73
PZ
1196
1197int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1198{
1199 return __set_cpus_allowed_ptr(p, new_mask, false);
1200}
5cc389bc
PZ
1201EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1202
dd41f596 1203void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1204{
e2912009
PZ
1205#ifdef CONFIG_SCHED_DEBUG
1206 /*
1207 * We should never call set_task_cpu() on a blocked task,
1208 * ttwu() will sort out the placement.
1209 */
077614ee 1210 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
e2336f6e 1211 !p->on_rq);
0122ec5b 1212
3ea94de1
JP
1213 /*
1214 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1215 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1216 * time relying on p->on_rq.
1217 */
1218 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1219 p->sched_class == &fair_sched_class &&
1220 (p->on_rq && !task_on_rq_migrating(p)));
1221
0122ec5b 1222#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1223 /*
1224 * The caller should hold either p->pi_lock or rq->lock, when changing
1225 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1226 *
1227 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1228 * see task_group().
6c6c54e1
PZ
1229 *
1230 * Furthermore, all task_rq users should acquire both locks, see
1231 * task_rq_lock().
1232 */
0122ec5b
PZ
1233 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1234 lockdep_is_held(&task_rq(p)->lock)));
1235#endif
e2912009
PZ
1236#endif
1237
de1d7286 1238 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1239
0c69774e 1240 if (task_cpu(p) != new_cpu) {
0a74bef8 1241 if (p->sched_class->migrate_task_rq)
5a4fd036 1242 p->sched_class->migrate_task_rq(p);
0c69774e 1243 p->se.nr_migrations++;
ff303e66 1244 perf_event_task_migrate(p);
0c69774e 1245 }
dd41f596
IM
1246
1247 __set_task_cpu(p, new_cpu);
c65cc870
IM
1248}
1249
ac66f547
PZ
1250static void __migrate_swap_task(struct task_struct *p, int cpu)
1251{
da0c1e65 1252 if (task_on_rq_queued(p)) {
ac66f547
PZ
1253 struct rq *src_rq, *dst_rq;
1254
1255 src_rq = task_rq(p);
1256 dst_rq = cpu_rq(cpu);
1257
3ea94de1 1258 p->on_rq = TASK_ON_RQ_MIGRATING;
ac66f547
PZ
1259 deactivate_task(src_rq, p, 0);
1260 set_task_cpu(p, cpu);
1261 activate_task(dst_rq, p, 0);
3ea94de1 1262 p->on_rq = TASK_ON_RQ_QUEUED;
ac66f547
PZ
1263 check_preempt_curr(dst_rq, p, 0);
1264 } else {
1265 /*
1266 * Task isn't running anymore; make it appear like we migrated
1267 * it before it went to sleep. This means on wakeup we make the
a1fd4656 1268 * previous cpu our target instead of where it really is.
ac66f547
PZ
1269 */
1270 p->wake_cpu = cpu;
1271 }
1272}
1273
1274struct migration_swap_arg {
1275 struct task_struct *src_task, *dst_task;
1276 int src_cpu, dst_cpu;
1277};
1278
1279static int migrate_swap_stop(void *data)
1280{
1281 struct migration_swap_arg *arg = data;
1282 struct rq *src_rq, *dst_rq;
1283 int ret = -EAGAIN;
1284
62694cd5
PZ
1285 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1286 return -EAGAIN;
1287
ac66f547
PZ
1288 src_rq = cpu_rq(arg->src_cpu);
1289 dst_rq = cpu_rq(arg->dst_cpu);
1290
74602315
PZ
1291 double_raw_lock(&arg->src_task->pi_lock,
1292 &arg->dst_task->pi_lock);
ac66f547 1293 double_rq_lock(src_rq, dst_rq);
62694cd5 1294
ac66f547
PZ
1295 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1296 goto unlock;
1297
1298 if (task_cpu(arg->src_task) != arg->src_cpu)
1299 goto unlock;
1300
1301 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1302 goto unlock;
1303
1304 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1305 goto unlock;
1306
1307 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1308 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1309
1310 ret = 0;
1311
1312unlock:
1313 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1314 raw_spin_unlock(&arg->dst_task->pi_lock);
1315 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1316
1317 return ret;
1318}
1319
1320/*
1321 * Cross migrate two tasks
1322 */
1323int migrate_swap(struct task_struct *cur, struct task_struct *p)
1324{
1325 struct migration_swap_arg arg;
1326 int ret = -EINVAL;
1327
ac66f547
PZ
1328 arg = (struct migration_swap_arg){
1329 .src_task = cur,
1330 .src_cpu = task_cpu(cur),
1331 .dst_task = p,
1332 .dst_cpu = task_cpu(p),
1333 };
1334
1335 if (arg.src_cpu == arg.dst_cpu)
1336 goto out;
1337
6acce3ef
PZ
1338 /*
1339 * These three tests are all lockless; this is OK since all of them
1340 * will be re-checked with proper locks held further down the line.
1341 */
ac66f547
PZ
1342 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1343 goto out;
1344
1345 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1346 goto out;
1347
1348 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1349 goto out;
1350
286549dc 1351 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1352 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1353
1354out:
ac66f547
PZ
1355 return ret;
1356}
1357
1da177e4
LT
1358/*
1359 * wait_task_inactive - wait for a thread to unschedule.
1360 *
85ba2d86
RM
1361 * If @match_state is nonzero, it's the @p->state value just checked and
1362 * not expected to change. If it changes, i.e. @p might have woken up,
1363 * then return zero. When we succeed in waiting for @p to be off its CPU,
1364 * we return a positive number (its total switch count). If a second call
1365 * a short while later returns the same number, the caller can be sure that
1366 * @p has remained unscheduled the whole time.
1367 *
1da177e4
LT
1368 * The caller must ensure that the task *will* unschedule sometime soon,
1369 * else this function might spin for a *long* time. This function can't
1370 * be called with interrupts off, or it may introduce deadlock with
1371 * smp_call_function() if an IPI is sent by the same process we are
1372 * waiting to become inactive.
1373 */
85ba2d86 1374unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4 1375{
da0c1e65 1376 int running, queued;
eb580751 1377 struct rq_flags rf;
85ba2d86 1378 unsigned long ncsw;
70b97a7f 1379 struct rq *rq;
1da177e4 1380
3a5c359a
AK
1381 for (;;) {
1382 /*
1383 * We do the initial early heuristics without holding
1384 * any task-queue locks at all. We'll only try to get
1385 * the runqueue lock when things look like they will
1386 * work out!
1387 */
1388 rq = task_rq(p);
fa490cfd 1389
3a5c359a
AK
1390 /*
1391 * If the task is actively running on another CPU
1392 * still, just relax and busy-wait without holding
1393 * any locks.
1394 *
1395 * NOTE! Since we don't hold any locks, it's not
1396 * even sure that "rq" stays as the right runqueue!
1397 * But we don't care, since "task_running()" will
1398 * return false if the runqueue has changed and p
1399 * is actually now running somewhere else!
1400 */
85ba2d86
RM
1401 while (task_running(rq, p)) {
1402 if (match_state && unlikely(p->state != match_state))
1403 return 0;
3a5c359a 1404 cpu_relax();
85ba2d86 1405 }
fa490cfd 1406
3a5c359a
AK
1407 /*
1408 * Ok, time to look more closely! We need the rq
1409 * lock now, to be *sure*. If we're wrong, we'll
1410 * just go back and repeat.
1411 */
eb580751 1412 rq = task_rq_lock(p, &rf);
27a9da65 1413 trace_sched_wait_task(p);
3a5c359a 1414 running = task_running(rq, p);
da0c1e65 1415 queued = task_on_rq_queued(p);
85ba2d86 1416 ncsw = 0;
f31e11d8 1417 if (!match_state || p->state == match_state)
93dcf55f 1418 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
eb580751 1419 task_rq_unlock(rq, p, &rf);
fa490cfd 1420
85ba2d86
RM
1421 /*
1422 * If it changed from the expected state, bail out now.
1423 */
1424 if (unlikely(!ncsw))
1425 break;
1426
3a5c359a
AK
1427 /*
1428 * Was it really running after all now that we
1429 * checked with the proper locks actually held?
1430 *
1431 * Oops. Go back and try again..
1432 */
1433 if (unlikely(running)) {
1434 cpu_relax();
1435 continue;
1436 }
fa490cfd 1437
3a5c359a
AK
1438 /*
1439 * It's not enough that it's not actively running,
1440 * it must be off the runqueue _entirely_, and not
1441 * preempted!
1442 *
80dd99b3 1443 * So if it was still runnable (but just not actively
3a5c359a
AK
1444 * running right now), it's preempted, and we should
1445 * yield - it could be a while.
1446 */
da0c1e65 1447 if (unlikely(queued)) {
8eb90c30
TG
1448 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1449
1450 set_current_state(TASK_UNINTERRUPTIBLE);
1451 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1452 continue;
1453 }
fa490cfd 1454
3a5c359a
AK
1455 /*
1456 * Ahh, all good. It wasn't running, and it wasn't
1457 * runnable, which means that it will never become
1458 * running in the future either. We're all done!
1459 */
1460 break;
1461 }
85ba2d86
RM
1462
1463 return ncsw;
1da177e4
LT
1464}
1465
1466/***
1467 * kick_process - kick a running thread to enter/exit the kernel
1468 * @p: the to-be-kicked thread
1469 *
1470 * Cause a process which is running on another CPU to enter
1471 * kernel-mode, without any delay. (to get signals handled.)
1472 *
25985edc 1473 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1474 * because all it wants to ensure is that the remote task enters
1475 * the kernel. If the IPI races and the task has been migrated
1476 * to another CPU then no harm is done and the purpose has been
1477 * achieved as well.
1478 */
36c8b586 1479void kick_process(struct task_struct *p)
1da177e4
LT
1480{
1481 int cpu;
1482
1483 preempt_disable();
1484 cpu = task_cpu(p);
1485 if ((cpu != smp_processor_id()) && task_curr(p))
1486 smp_send_reschedule(cpu);
1487 preempt_enable();
1488}
b43e3521 1489EXPORT_SYMBOL_GPL(kick_process);
1da177e4 1490
30da688e 1491/*
013fdb80 1492 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
e9d867a6
PZI
1493 *
1494 * A few notes on cpu_active vs cpu_online:
1495 *
1496 * - cpu_active must be a subset of cpu_online
1497 *
1498 * - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
1499 * see __set_cpus_allowed_ptr(). At this point the newly online
1500 * cpu isn't yet part of the sched domains, and balancing will not
1501 * see it.
1502 *
1503 * - on cpu-down we clear cpu_active() to mask the sched domains and
1504 * avoid the load balancer to place new tasks on the to be removed
1505 * cpu. Existing tasks will remain running there and will be taken
1506 * off.
1507 *
1508 * This means that fallback selection must not select !active CPUs.
1509 * And can assume that any active CPU must be online. Conversely
1510 * select_task_rq() below may allow selection of !active CPUs in order
1511 * to satisfy the above rules.
30da688e 1512 */
5da9a0fb
PZ
1513static int select_fallback_rq(int cpu, struct task_struct *p)
1514{
aa00d89c
TC
1515 int nid = cpu_to_node(cpu);
1516 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1517 enum { cpuset, possible, fail } state = cpuset;
1518 int dest_cpu;
5da9a0fb 1519
aa00d89c
TC
1520 /*
1521 * If the node that the cpu is on has been offlined, cpu_to_node()
1522 * will return -1. There is no cpu on the node, and we should
1523 * select the cpu on the other node.
1524 */
1525 if (nid != -1) {
1526 nodemask = cpumask_of_node(nid);
1527
1528 /* Look for allowed, online CPU in same node. */
1529 for_each_cpu(dest_cpu, nodemask) {
aa00d89c
TC
1530 if (!cpu_active(dest_cpu))
1531 continue;
1532 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1533 return dest_cpu;
1534 }
2baab4e9 1535 }
5da9a0fb 1536
2baab4e9
PZ
1537 for (;;) {
1538 /* Any allowed, online CPU? */
e3831edd 1539 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
feb245e3
TH
1540 if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu))
1541 continue;
1542 if (!cpu_online(dest_cpu))
2baab4e9
PZ
1543 continue;
1544 goto out;
1545 }
5da9a0fb 1546
e73e85f0 1547 /* No more Mr. Nice Guy. */
2baab4e9
PZ
1548 switch (state) {
1549 case cpuset:
e73e85f0
ON
1550 if (IS_ENABLED(CONFIG_CPUSETS)) {
1551 cpuset_cpus_allowed_fallback(p);
1552 state = possible;
1553 break;
1554 }
1555 /* fall-through */
2baab4e9
PZ
1556 case possible:
1557 do_set_cpus_allowed(p, cpu_possible_mask);
1558 state = fail;
1559 break;
1560
1561 case fail:
1562 BUG();
1563 break;
1564 }
1565 }
1566
1567out:
1568 if (state != cpuset) {
1569 /*
1570 * Don't tell them about moving exiting tasks or
1571 * kernel threads (both mm NULL), since they never
1572 * leave kernel.
1573 */
1574 if (p->mm && printk_ratelimit()) {
aac74dc4 1575 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1576 task_pid_nr(p), p->comm, cpu);
1577 }
5da9a0fb
PZ
1578 }
1579
1580 return dest_cpu;
1581}
1582
e2912009 1583/*
013fdb80 1584 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1585 */
970b13ba 1586static inline
ac66f547 1587int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1588{
cbce1a68
PZ
1589 lockdep_assert_held(&p->pi_lock);
1590
50605ffb 1591 if (tsk_nr_cpus_allowed(p) > 1)
6c1d9410 1592 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e9d867a6
PZI
1593 else
1594 cpu = cpumask_any(tsk_cpus_allowed(p));
e2912009
PZ
1595
1596 /*
1597 * In order not to call set_task_cpu() on a blocking task we need
1598 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1599 * cpu.
1600 *
1601 * Since this is common to all placement strategies, this lives here.
1602 *
1603 * [ this allows ->select_task() to simply return task_cpu(p) and
1604 * not worry about this generic constraint ]
1605 */
fa17b507 1606 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1607 !cpu_online(cpu)))
5da9a0fb 1608 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1609
1610 return cpu;
970b13ba 1611}
09a40af5
MG
1612
1613static void update_avg(u64 *avg, u64 sample)
1614{
1615 s64 diff = sample - *avg;
1616 *avg += diff >> 3;
1617}
25834c73
PZ
1618
1619#else
1620
1621static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1622 const struct cpumask *new_mask, bool check)
1623{
1624 return set_cpus_allowed_ptr(p, new_mask);
1625}
1626
5cc389bc 1627#endif /* CONFIG_SMP */
970b13ba 1628
d7c01d27 1629static void
b84cb5df 1630ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1631{
d7c01d27 1632#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1633 struct rq *rq = this_rq();
1634
d7c01d27
PZ
1635#ifdef CONFIG_SMP
1636 int this_cpu = smp_processor_id();
1637
1638 if (cpu == this_cpu) {
1639 schedstat_inc(rq, ttwu_local);
1640 schedstat_inc(p, se.statistics.nr_wakeups_local);
1641 } else {
1642 struct sched_domain *sd;
1643
1644 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1645 rcu_read_lock();
d7c01d27
PZ
1646 for_each_domain(this_cpu, sd) {
1647 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1648 schedstat_inc(sd, ttwu_wake_remote);
1649 break;
1650 }
1651 }
057f3fad 1652 rcu_read_unlock();
d7c01d27 1653 }
f339b9dc
PZ
1654
1655 if (wake_flags & WF_MIGRATED)
1656 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1657
d7c01d27
PZ
1658#endif /* CONFIG_SMP */
1659
1660 schedstat_inc(rq, ttwu_count);
9ed3811a 1661 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1662
1663 if (wake_flags & WF_SYNC)
9ed3811a 1664 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1665
d7c01d27
PZ
1666#endif /* CONFIG_SCHEDSTATS */
1667}
1668
1de64443 1669static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
d7c01d27 1670{
9ed3811a 1671 activate_task(rq, p, en_flags);
da0c1e65 1672 p->on_rq = TASK_ON_RQ_QUEUED;
c2f7115e
PZ
1673
1674 /* if a worker is waking up, notify workqueue */
1675 if (p->flags & PF_WQ_WORKER)
1676 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1677}
1678
23f41eeb
PZ
1679/*
1680 * Mark the task runnable and perform wakeup-preemption.
1681 */
e7904a28
PZ
1682static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1683 struct pin_cookie cookie)
9ed3811a 1684{
9ed3811a 1685 check_preempt_curr(rq, p, wake_flags);
9ed3811a 1686 p->state = TASK_RUNNING;
fbd705a0
PZ
1687 trace_sched_wakeup(p);
1688
9ed3811a 1689#ifdef CONFIG_SMP
4c9a4bc8
PZ
1690 if (p->sched_class->task_woken) {
1691 /*
cbce1a68
PZ
1692 * Our task @p is fully woken up and running; so its safe to
1693 * drop the rq->lock, hereafter rq is only used for statistics.
4c9a4bc8 1694 */
e7904a28 1695 lockdep_unpin_lock(&rq->lock, cookie);
9ed3811a 1696 p->sched_class->task_woken(rq, p);
e7904a28 1697 lockdep_repin_lock(&rq->lock, cookie);
4c9a4bc8 1698 }
9ed3811a 1699
e69c6341 1700 if (rq->idle_stamp) {
78becc27 1701 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1702 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1703
abfafa54
JL
1704 update_avg(&rq->avg_idle, delta);
1705
1706 if (rq->avg_idle > max)
9ed3811a 1707 rq->avg_idle = max;
abfafa54 1708
9ed3811a
TH
1709 rq->idle_stamp = 0;
1710 }
1711#endif
1712}
1713
c05fbafb 1714static void
e7904a28
PZ
1715ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1716 struct pin_cookie cookie)
c05fbafb 1717{
b5179ac7
PZ
1718 int en_flags = ENQUEUE_WAKEUP;
1719
cbce1a68
PZ
1720 lockdep_assert_held(&rq->lock);
1721
c05fbafb
PZ
1722#ifdef CONFIG_SMP
1723 if (p->sched_contributes_to_load)
1724 rq->nr_uninterruptible--;
b5179ac7 1725
b5179ac7 1726 if (wake_flags & WF_MIGRATED)
59efa0ba 1727 en_flags |= ENQUEUE_MIGRATED;
c05fbafb
PZ
1728#endif
1729
b5179ac7 1730 ttwu_activate(rq, p, en_flags);
e7904a28 1731 ttwu_do_wakeup(rq, p, wake_flags, cookie);
c05fbafb
PZ
1732}
1733
1734/*
1735 * Called in case the task @p isn't fully descheduled from its runqueue,
1736 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1737 * since all we need to do is flip p->state to TASK_RUNNING, since
1738 * the task is still ->on_rq.
1739 */
1740static int ttwu_remote(struct task_struct *p, int wake_flags)
1741{
eb580751 1742 struct rq_flags rf;
c05fbafb
PZ
1743 struct rq *rq;
1744 int ret = 0;
1745
eb580751 1746 rq = __task_rq_lock(p, &rf);
da0c1e65 1747 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
1748 /* check_preempt_curr() may use rq clock */
1749 update_rq_clock(rq);
e7904a28 1750 ttwu_do_wakeup(rq, p, wake_flags, rf.cookie);
c05fbafb
PZ
1751 ret = 1;
1752 }
eb580751 1753 __task_rq_unlock(rq, &rf);
c05fbafb
PZ
1754
1755 return ret;
1756}
1757
317f3941 1758#ifdef CONFIG_SMP
e3baac47 1759void sched_ttwu_pending(void)
317f3941
PZ
1760{
1761 struct rq *rq = this_rq();
fa14ff4a 1762 struct llist_node *llist = llist_del_all(&rq->wake_list);
e7904a28 1763 struct pin_cookie cookie;
fa14ff4a 1764 struct task_struct *p;
e3baac47 1765 unsigned long flags;
317f3941 1766
e3baac47
PZ
1767 if (!llist)
1768 return;
1769
1770 raw_spin_lock_irqsave(&rq->lock, flags);
e7904a28 1771 cookie = lockdep_pin_lock(&rq->lock);
317f3941 1772
fa14ff4a 1773 while (llist) {
b7e7ade3
PZ
1774 int wake_flags = 0;
1775
fa14ff4a
PZ
1776 p = llist_entry(llist, struct task_struct, wake_entry);
1777 llist = llist_next(llist);
b7e7ade3
PZ
1778
1779 if (p->sched_remote_wakeup)
1780 wake_flags = WF_MIGRATED;
1781
1782 ttwu_do_activate(rq, p, wake_flags, cookie);
317f3941
PZ
1783 }
1784
e7904a28 1785 lockdep_unpin_lock(&rq->lock, cookie);
e3baac47 1786 raw_spin_unlock_irqrestore(&rq->lock, flags);
317f3941
PZ
1787}
1788
1789void scheduler_ipi(void)
1790{
f27dde8d
PZ
1791 /*
1792 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1793 * TIF_NEED_RESCHED remotely (for the first time) will also send
1794 * this IPI.
1795 */
8cb75e0c 1796 preempt_fold_need_resched();
f27dde8d 1797
fd2ac4f4 1798 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1799 return;
1800
1801 /*
1802 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1803 * traditionally all their work was done from the interrupt return
1804 * path. Now that we actually do some work, we need to make sure
1805 * we do call them.
1806 *
1807 * Some archs already do call them, luckily irq_enter/exit nest
1808 * properly.
1809 *
1810 * Arguably we should visit all archs and update all handlers,
1811 * however a fair share of IPIs are still resched only so this would
1812 * somewhat pessimize the simple resched case.
1813 */
1814 irq_enter();
fa14ff4a 1815 sched_ttwu_pending();
ca38062e
SS
1816
1817 /*
1818 * Check if someone kicked us for doing the nohz idle load balance.
1819 */
873b4c65 1820 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1821 this_rq()->idle_balance = 1;
ca38062e 1822 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1823 }
c5d753a5 1824 irq_exit();
317f3941
PZ
1825}
1826
b7e7ade3 1827static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
317f3941 1828{
e3baac47
PZ
1829 struct rq *rq = cpu_rq(cpu);
1830
b7e7ade3
PZ
1831 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1832
e3baac47
PZ
1833 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1834 if (!set_nr_if_polling(rq->idle))
1835 smp_send_reschedule(cpu);
1836 else
1837 trace_sched_wake_idle_without_ipi(cpu);
1838 }
317f3941 1839}
d6aa8f85 1840
f6be8af1
CL
1841void wake_up_if_idle(int cpu)
1842{
1843 struct rq *rq = cpu_rq(cpu);
1844 unsigned long flags;
1845
fd7de1e8
AL
1846 rcu_read_lock();
1847
1848 if (!is_idle_task(rcu_dereference(rq->curr)))
1849 goto out;
f6be8af1
CL
1850
1851 if (set_nr_if_polling(rq->idle)) {
1852 trace_sched_wake_idle_without_ipi(cpu);
1853 } else {
1854 raw_spin_lock_irqsave(&rq->lock, flags);
1855 if (is_idle_task(rq->curr))
1856 smp_send_reschedule(cpu);
1857 /* Else cpu is not in idle, do nothing here */
1858 raw_spin_unlock_irqrestore(&rq->lock, flags);
1859 }
fd7de1e8
AL
1860
1861out:
1862 rcu_read_unlock();
f6be8af1
CL
1863}
1864
39be3501 1865bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1866{
1867 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1868}
d6aa8f85 1869#endif /* CONFIG_SMP */
317f3941 1870
b5179ac7 1871static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
c05fbafb
PZ
1872{
1873 struct rq *rq = cpu_rq(cpu);
e7904a28 1874 struct pin_cookie cookie;
c05fbafb 1875
17d9f311 1876#if defined(CONFIG_SMP)
39be3501 1877 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1878 sched_clock_cpu(cpu); /* sync clocks x-cpu */
b7e7ade3 1879 ttwu_queue_remote(p, cpu, wake_flags);
317f3941
PZ
1880 return;
1881 }
1882#endif
1883
c05fbafb 1884 raw_spin_lock(&rq->lock);
e7904a28 1885 cookie = lockdep_pin_lock(&rq->lock);
b5179ac7 1886 ttwu_do_activate(rq, p, wake_flags, cookie);
e7904a28 1887 lockdep_unpin_lock(&rq->lock, cookie);
c05fbafb 1888 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1889}
1890
8643cda5
PZ
1891/*
1892 * Notes on Program-Order guarantees on SMP systems.
1893 *
1894 * MIGRATION
1895 *
1896 * The basic program-order guarantee on SMP systems is that when a task [t]
1897 * migrates, all its activity on its old cpu [c0] happens-before any subsequent
1898 * execution on its new cpu [c1].
1899 *
1900 * For migration (of runnable tasks) this is provided by the following means:
1901 *
1902 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1903 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1904 * rq(c1)->lock (if not at the same time, then in that order).
1905 * C) LOCK of the rq(c1)->lock scheduling in task
1906 *
1907 * Transitivity guarantees that B happens after A and C after B.
1908 * Note: we only require RCpc transitivity.
1909 * Note: the cpu doing B need not be c0 or c1
1910 *
1911 * Example:
1912 *
1913 * CPU0 CPU1 CPU2
1914 *
1915 * LOCK rq(0)->lock
1916 * sched-out X
1917 * sched-in Y
1918 * UNLOCK rq(0)->lock
1919 *
1920 * LOCK rq(0)->lock // orders against CPU0
1921 * dequeue X
1922 * UNLOCK rq(0)->lock
1923 *
1924 * LOCK rq(1)->lock
1925 * enqueue X
1926 * UNLOCK rq(1)->lock
1927 *
1928 * LOCK rq(1)->lock // orders against CPU2
1929 * sched-out Z
1930 * sched-in X
1931 * UNLOCK rq(1)->lock
1932 *
1933 *
1934 * BLOCKING -- aka. SLEEP + WAKEUP
1935 *
1936 * For blocking we (obviously) need to provide the same guarantee as for
1937 * migration. However the means are completely different as there is no lock
1938 * chain to provide order. Instead we do:
1939 *
1940 * 1) smp_store_release(X->on_cpu, 0)
1f03e8d2 1941 * 2) smp_cond_load_acquire(!X->on_cpu)
8643cda5
PZ
1942 *
1943 * Example:
1944 *
1945 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1946 *
1947 * LOCK rq(0)->lock LOCK X->pi_lock
1948 * dequeue X
1949 * sched-out X
1950 * smp_store_release(X->on_cpu, 0);
1951 *
1f03e8d2 1952 * smp_cond_load_acquire(&X->on_cpu, !VAL);
8643cda5
PZ
1953 * X->state = WAKING
1954 * set_task_cpu(X,2)
1955 *
1956 * LOCK rq(2)->lock
1957 * enqueue X
1958 * X->state = RUNNING
1959 * UNLOCK rq(2)->lock
1960 *
1961 * LOCK rq(2)->lock // orders against CPU1
1962 * sched-out Z
1963 * sched-in X
1964 * UNLOCK rq(2)->lock
1965 *
1966 * UNLOCK X->pi_lock
1967 * UNLOCK rq(0)->lock
1968 *
1969 *
1970 * However; for wakeups there is a second guarantee we must provide, namely we
1971 * must observe the state that lead to our wakeup. That is, not only must our
1972 * task observe its own prior state, it must also observe the stores prior to
1973 * its wakeup.
1974 *
1975 * This means that any means of doing remote wakeups must order the CPU doing
1976 * the wakeup against the CPU the task is going to end up running on. This,
1977 * however, is already required for the regular Program-Order guarantee above,
1f03e8d2 1978 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
8643cda5
PZ
1979 *
1980 */
1981
9ed3811a 1982/**
1da177e4 1983 * try_to_wake_up - wake up a thread
9ed3811a 1984 * @p: the thread to be awakened
1da177e4 1985 * @state: the mask of task states that can be woken
9ed3811a 1986 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1987 *
1988 * Put it on the run-queue if it's not already there. The "current"
1989 * thread is always on the run-queue (except when the actual
1990 * re-schedule is in progress), and as such you're allowed to do
1991 * the simpler "current->state = TASK_RUNNING" to mark yourself
1992 * runnable without the overhead of this.
1993 *
e69f6186 1994 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1995 * or @state didn't match @p's state.
1da177e4 1996 */
e4a52bcb
PZ
1997static int
1998try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1999{
1da177e4 2000 unsigned long flags;
c05fbafb 2001 int cpu, success = 0;
2398f2c6 2002
e0acd0a6
ON
2003 /*
2004 * If we are going to wake up a thread waiting for CONDITION we
2005 * need to ensure that CONDITION=1 done by the caller can not be
2006 * reordered with p->state check below. This pairs with mb() in
2007 * set_current_state() the waiting thread does.
2008 */
2009 smp_mb__before_spinlock();
013fdb80 2010 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 2011 if (!(p->state & state))
1da177e4
LT
2012 goto out;
2013
fbd705a0
PZ
2014 trace_sched_waking(p);
2015
c05fbafb 2016 success = 1; /* we're going to change ->state */
1da177e4 2017 cpu = task_cpu(p);
1da177e4 2018
c05fbafb
PZ
2019 if (p->on_rq && ttwu_remote(p, wake_flags))
2020 goto stat;
1da177e4 2021
1da177e4 2022#ifdef CONFIG_SMP
ecf7d01c
PZ
2023 /*
2024 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2025 * possible to, falsely, observe p->on_cpu == 0.
2026 *
2027 * One must be running (->on_cpu == 1) in order to remove oneself
2028 * from the runqueue.
2029 *
2030 * [S] ->on_cpu = 1; [L] ->on_rq
2031 * UNLOCK rq->lock
2032 * RMB
2033 * LOCK rq->lock
2034 * [S] ->on_rq = 0; [L] ->on_cpu
2035 *
2036 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2037 * from the consecutive calls to schedule(); the first switching to our
2038 * task, the second putting it to sleep.
2039 */
2040 smp_rmb();
2041
e9c84311 2042 /*
c05fbafb
PZ
2043 * If the owning (remote) cpu is still in the middle of schedule() with
2044 * this task as prev, wait until its done referencing the task.
b75a2253
PZ
2045 *
2046 * Pairs with the smp_store_release() in finish_lock_switch().
2047 *
2048 * This ensures that tasks getting woken will be fully ordered against
2049 * their previous state and preserve Program Order.
0970d299 2050 */
1f03e8d2 2051 smp_cond_load_acquire(&p->on_cpu, !VAL);
1da177e4 2052
a8e4f2ea 2053 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 2054 p->state = TASK_WAKING;
e7693a36 2055
ac66f547 2056 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
2057 if (task_cpu(p) != cpu) {
2058 wake_flags |= WF_MIGRATED;
e4a52bcb 2059 set_task_cpu(p, cpu);
f339b9dc 2060 }
1da177e4 2061#endif /* CONFIG_SMP */
1da177e4 2062
b5179ac7 2063 ttwu_queue(p, cpu, wake_flags);
c05fbafb 2064stat:
cb251765
MG
2065 if (schedstat_enabled())
2066 ttwu_stat(p, cpu, wake_flags);
1da177e4 2067out:
013fdb80 2068 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
2069
2070 return success;
2071}
2072
21aa9af0
TH
2073/**
2074 * try_to_wake_up_local - try to wake up a local task with rq lock held
2075 * @p: the thread to be awakened
9279e0d2 2076 * @cookie: context's cookie for pinning
21aa9af0 2077 *
2acca55e 2078 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 2079 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 2080 * the current task.
21aa9af0 2081 */
e7904a28 2082static void try_to_wake_up_local(struct task_struct *p, struct pin_cookie cookie)
21aa9af0
TH
2083{
2084 struct rq *rq = task_rq(p);
21aa9af0 2085
383efcd0
TH
2086 if (WARN_ON_ONCE(rq != this_rq()) ||
2087 WARN_ON_ONCE(p == current))
2088 return;
2089
21aa9af0
TH
2090 lockdep_assert_held(&rq->lock);
2091
2acca55e 2092 if (!raw_spin_trylock(&p->pi_lock)) {
cbce1a68
PZ
2093 /*
2094 * This is OK, because current is on_cpu, which avoids it being
2095 * picked for load-balance and preemption/IRQs are still
2096 * disabled avoiding further scheduler activity on it and we've
2097 * not yet picked a replacement task.
2098 */
e7904a28 2099 lockdep_unpin_lock(&rq->lock, cookie);
2acca55e
PZ
2100 raw_spin_unlock(&rq->lock);
2101 raw_spin_lock(&p->pi_lock);
2102 raw_spin_lock(&rq->lock);
e7904a28 2103 lockdep_repin_lock(&rq->lock, cookie);
2acca55e
PZ
2104 }
2105
21aa9af0 2106 if (!(p->state & TASK_NORMAL))
2acca55e 2107 goto out;
21aa9af0 2108
fbd705a0
PZ
2109 trace_sched_waking(p);
2110
da0c1e65 2111 if (!task_on_rq_queued(p))
d7c01d27
PZ
2112 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2113
e7904a28 2114 ttwu_do_wakeup(rq, p, 0, cookie);
cb251765
MG
2115 if (schedstat_enabled())
2116 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
2117out:
2118 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
2119}
2120
50fa610a
DH
2121/**
2122 * wake_up_process - Wake up a specific process
2123 * @p: The process to be woken up.
2124 *
2125 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
2126 * processes.
2127 *
2128 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
2129 *
2130 * It may be assumed that this function implies a write memory barrier before
2131 * changing the task state if and only if any tasks are woken up.
2132 */
7ad5b3a5 2133int wake_up_process(struct task_struct *p)
1da177e4 2134{
9067ac85 2135 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 2136}
1da177e4
LT
2137EXPORT_SYMBOL(wake_up_process);
2138
7ad5b3a5 2139int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2140{
2141 return try_to_wake_up(p, state, 0);
2142}
2143
a5e7be3b
JL
2144/*
2145 * This function clears the sched_dl_entity static params.
2146 */
2147void __dl_clear_params(struct task_struct *p)
2148{
2149 struct sched_dl_entity *dl_se = &p->dl;
2150
2151 dl_se->dl_runtime = 0;
2152 dl_se->dl_deadline = 0;
2153 dl_se->dl_period = 0;
2154 dl_se->flags = 0;
2155 dl_se->dl_bw = 0;
40767b0d
PZ
2156
2157 dl_se->dl_throttled = 0;
40767b0d 2158 dl_se->dl_yielded = 0;
a5e7be3b
JL
2159}
2160
1da177e4
LT
2161/*
2162 * Perform scheduler related setup for a newly forked process p.
2163 * p is forked by current.
dd41f596
IM
2164 *
2165 * __sched_fork() is basic setup used by init_idle() too:
2166 */
5e1576ed 2167static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2168{
fd2f4419
PZ
2169 p->on_rq = 0;
2170
2171 p->se.on_rq = 0;
dd41f596
IM
2172 p->se.exec_start = 0;
2173 p->se.sum_exec_runtime = 0;
f6cf891c 2174 p->se.prev_sum_exec_runtime = 0;
6c594c21 2175 p->se.nr_migrations = 0;
da7a735e 2176 p->se.vruntime = 0;
fd2f4419 2177 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d 2178
ad936d86
BP
2179#ifdef CONFIG_FAIR_GROUP_SCHED
2180 p->se.cfs_rq = NULL;
2181#endif
2182
6cfb0d5d 2183#ifdef CONFIG_SCHEDSTATS
cb251765 2184 /* Even if schedstat is disabled, there should not be garbage */
41acab88 2185 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2186#endif
476d139c 2187
aab03e05 2188 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 2189 init_dl_task_timer(&p->dl);
a5e7be3b 2190 __dl_clear_params(p);
aab03e05 2191
fa717060 2192 INIT_LIST_HEAD(&p->rt.run_list);
ff77e468
PZ
2193 p->rt.timeout = 0;
2194 p->rt.time_slice = sched_rr_timeslice;
2195 p->rt.on_rq = 0;
2196 p->rt.on_list = 0;
476d139c 2197
e107be36
AK
2198#ifdef CONFIG_PREEMPT_NOTIFIERS
2199 INIT_HLIST_HEAD(&p->preempt_notifiers);
2200#endif
cbee9f88
PZ
2201
2202#ifdef CONFIG_NUMA_BALANCING
2203 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 2204 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
2205 p->mm->numa_scan_seq = 0;
2206 }
2207
5e1576ed
RR
2208 if (clone_flags & CLONE_VM)
2209 p->numa_preferred_nid = current->numa_preferred_nid;
2210 else
2211 p->numa_preferred_nid = -1;
2212
cbee9f88
PZ
2213 p->node_stamp = 0ULL;
2214 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 2215 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 2216 p->numa_work.next = &p->numa_work;
44dba3d5 2217 p->numa_faults = NULL;
7e2703e6
RR
2218 p->last_task_numa_placement = 0;
2219 p->last_sum_exec_runtime = 0;
8c8a743c 2220
8c8a743c 2221 p->numa_group = NULL;
cbee9f88 2222#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
2223}
2224
2a595721
SD
2225DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2226
1a687c2e 2227#ifdef CONFIG_NUMA_BALANCING
c3b9bc5b 2228
1a687c2e
MG
2229void set_numabalancing_state(bool enabled)
2230{
2231 if (enabled)
2a595721 2232 static_branch_enable(&sched_numa_balancing);
1a687c2e 2233 else
2a595721 2234 static_branch_disable(&sched_numa_balancing);
1a687c2e 2235}
54a43d54
AK
2236
2237#ifdef CONFIG_PROC_SYSCTL
2238int sysctl_numa_balancing(struct ctl_table *table, int write,
2239 void __user *buffer, size_t *lenp, loff_t *ppos)
2240{
2241 struct ctl_table t;
2242 int err;
2a595721 2243 int state = static_branch_likely(&sched_numa_balancing);
54a43d54
AK
2244
2245 if (write && !capable(CAP_SYS_ADMIN))
2246 return -EPERM;
2247
2248 t = *table;
2249 t.data = &state;
2250 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2251 if (err < 0)
2252 return err;
2253 if (write)
2254 set_numabalancing_state(state);
2255 return err;
2256}
2257#endif
2258#endif
dd41f596 2259
4698f88c
JP
2260#ifdef CONFIG_SCHEDSTATS
2261
cb251765 2262DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4698f88c 2263static bool __initdata __sched_schedstats = false;
cb251765 2264
cb251765
MG
2265static void set_schedstats(bool enabled)
2266{
2267 if (enabled)
2268 static_branch_enable(&sched_schedstats);
2269 else
2270 static_branch_disable(&sched_schedstats);
2271}
2272
2273void force_schedstat_enabled(void)
2274{
2275 if (!schedstat_enabled()) {
2276 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2277 static_branch_enable(&sched_schedstats);
2278 }
2279}
2280
2281static int __init setup_schedstats(char *str)
2282{
2283 int ret = 0;
2284 if (!str)
2285 goto out;
2286
4698f88c
JP
2287 /*
2288 * This code is called before jump labels have been set up, so we can't
2289 * change the static branch directly just yet. Instead set a temporary
2290 * variable so init_schedstats() can do it later.
2291 */
cb251765 2292 if (!strcmp(str, "enable")) {
4698f88c 2293 __sched_schedstats = true;
cb251765
MG
2294 ret = 1;
2295 } else if (!strcmp(str, "disable")) {
4698f88c 2296 __sched_schedstats = false;
cb251765
MG
2297 ret = 1;
2298 }
2299out:
2300 if (!ret)
2301 pr_warn("Unable to parse schedstats=\n");
2302
2303 return ret;
2304}
2305__setup("schedstats=", setup_schedstats);
2306
4698f88c
JP
2307static void __init init_schedstats(void)
2308{
2309 set_schedstats(__sched_schedstats);
2310}
2311
cb251765
MG
2312#ifdef CONFIG_PROC_SYSCTL
2313int sysctl_schedstats(struct ctl_table *table, int write,
2314 void __user *buffer, size_t *lenp, loff_t *ppos)
2315{
2316 struct ctl_table t;
2317 int err;
2318 int state = static_branch_likely(&sched_schedstats);
2319
2320 if (write && !capable(CAP_SYS_ADMIN))
2321 return -EPERM;
2322
2323 t = *table;
2324 t.data = &state;
2325 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2326 if (err < 0)
2327 return err;
2328 if (write)
2329 set_schedstats(state);
2330 return err;
2331}
4698f88c
JP
2332#endif /* CONFIG_PROC_SYSCTL */
2333#else /* !CONFIG_SCHEDSTATS */
2334static inline void init_schedstats(void) {}
2335#endif /* CONFIG_SCHEDSTATS */
dd41f596
IM
2336
2337/*
2338 * fork()/clone()-time setup:
2339 */
aab03e05 2340int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2341{
0122ec5b 2342 unsigned long flags;
dd41f596
IM
2343 int cpu = get_cpu();
2344
5e1576ed 2345 __sched_fork(clone_flags, p);
06b83b5f 2346 /*
7dc603c9 2347 * We mark the process as NEW here. This guarantees that
06b83b5f
PZ
2348 * nobody will actually run it, and a signal or other external
2349 * event cannot wake it up and insert it on the runqueue either.
2350 */
7dc603c9 2351 p->state = TASK_NEW;
dd41f596 2352
c350a04e
MG
2353 /*
2354 * Make sure we do not leak PI boosting priority to the child.
2355 */
2356 p->prio = current->normal_prio;
2357
b9dc29e7
MG
2358 /*
2359 * Revert to default priority/policy on fork if requested.
2360 */
2361 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 2362 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 2363 p->policy = SCHED_NORMAL;
6c697bdf 2364 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
2365 p->rt_priority = 0;
2366 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2367 p->static_prio = NICE_TO_PRIO(0);
2368
2369 p->prio = p->normal_prio = __normal_prio(p);
2370 set_load_weight(p);
6c697bdf 2371
b9dc29e7
MG
2372 /*
2373 * We don't need the reset flag anymore after the fork. It has
2374 * fulfilled its duty:
2375 */
2376 p->sched_reset_on_fork = 0;
2377 }
ca94c442 2378
aab03e05
DF
2379 if (dl_prio(p->prio)) {
2380 put_cpu();
2381 return -EAGAIN;
2382 } else if (rt_prio(p->prio)) {
2383 p->sched_class = &rt_sched_class;
2384 } else {
2ddbf952 2385 p->sched_class = &fair_sched_class;
aab03e05 2386 }
b29739f9 2387
7dc603c9 2388 init_entity_runnable_average(&p->se);
cd29fe6f 2389
86951599
PZ
2390 /*
2391 * The child is not yet in the pid-hash so no cgroup attach races,
2392 * and the cgroup is pinned to this child due to cgroup_fork()
2393 * is ran before sched_fork().
2394 *
2395 * Silence PROVE_RCU.
2396 */
0122ec5b 2397 raw_spin_lock_irqsave(&p->pi_lock, flags);
e210bffd
PZ
2398 /*
2399 * We're setting the cpu for the first time, we don't migrate,
2400 * so use __set_task_cpu().
2401 */
2402 __set_task_cpu(p, cpu);
2403 if (p->sched_class->task_fork)
2404 p->sched_class->task_fork(p);
0122ec5b 2405 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 2406
f6db8347 2407#ifdef CONFIG_SCHED_INFO
dd41f596 2408 if (likely(sched_info_on()))
52f17b6c 2409 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2410#endif
3ca7a440
PZ
2411#if defined(CONFIG_SMP)
2412 p->on_cpu = 0;
4866cde0 2413#endif
01028747 2414 init_task_preempt_count(p);
806c09a7 2415#ifdef CONFIG_SMP
917b627d 2416 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 2417 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 2418#endif
917b627d 2419
476d139c 2420 put_cpu();
aab03e05 2421 return 0;
1da177e4
LT
2422}
2423
332ac17e
DF
2424unsigned long to_ratio(u64 period, u64 runtime)
2425{
2426 if (runtime == RUNTIME_INF)
2427 return 1ULL << 20;
2428
2429 /*
2430 * Doing this here saves a lot of checks in all
2431 * the calling paths, and returning zero seems
2432 * safe for them anyway.
2433 */
2434 if (period == 0)
2435 return 0;
2436
2437 return div64_u64(runtime << 20, period);
2438}
2439
2440#ifdef CONFIG_SMP
2441inline struct dl_bw *dl_bw_of(int i)
2442{
f78f5b90
PM
2443 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2444 "sched RCU must be held");
332ac17e
DF
2445 return &cpu_rq(i)->rd->dl_bw;
2446}
2447
de212f18 2448static inline int dl_bw_cpus(int i)
332ac17e 2449{
de212f18
PZ
2450 struct root_domain *rd = cpu_rq(i)->rd;
2451 int cpus = 0;
2452
f78f5b90
PM
2453 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2454 "sched RCU must be held");
de212f18
PZ
2455 for_each_cpu_and(i, rd->span, cpu_active_mask)
2456 cpus++;
2457
2458 return cpus;
332ac17e
DF
2459}
2460#else
2461inline struct dl_bw *dl_bw_of(int i)
2462{
2463 return &cpu_rq(i)->dl.dl_bw;
2464}
2465
de212f18 2466static inline int dl_bw_cpus(int i)
332ac17e
DF
2467{
2468 return 1;
2469}
2470#endif
2471
332ac17e
DF
2472/*
2473 * We must be sure that accepting a new task (or allowing changing the
2474 * parameters of an existing one) is consistent with the bandwidth
2475 * constraints. If yes, this function also accordingly updates the currently
2476 * allocated bandwidth to reflect the new situation.
2477 *
2478 * This function is called while holding p's rq->lock.
40767b0d
PZ
2479 *
2480 * XXX we should delay bw change until the task's 0-lag point, see
2481 * __setparam_dl().
332ac17e
DF
2482 */
2483static int dl_overflow(struct task_struct *p, int policy,
2484 const struct sched_attr *attr)
2485{
2486
2487 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
4df1638c 2488 u64 period = attr->sched_period ?: attr->sched_deadline;
332ac17e
DF
2489 u64 runtime = attr->sched_runtime;
2490 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 2491 int cpus, err = -1;
332ac17e 2492
fec148c0
XP
2493 /* !deadline task may carry old deadline bandwidth */
2494 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
332ac17e
DF
2495 return 0;
2496
2497 /*
2498 * Either if a task, enters, leave, or stays -deadline but changes
2499 * its parameters, we may need to update accordingly the total
2500 * allocated bandwidth of the container.
2501 */
2502 raw_spin_lock(&dl_b->lock);
de212f18 2503 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
2504 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2505 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2506 __dl_add(dl_b, new_bw);
2507 err = 0;
2508 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2509 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2510 __dl_clear(dl_b, p->dl.dl_bw);
2511 __dl_add(dl_b, new_bw);
2512 err = 0;
2513 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2514 __dl_clear(dl_b, p->dl.dl_bw);
2515 err = 0;
2516 }
2517 raw_spin_unlock(&dl_b->lock);
2518
2519 return err;
2520}
2521
2522extern void init_dl_bw(struct dl_bw *dl_b);
2523
1da177e4
LT
2524/*
2525 * wake_up_new_task - wake up a newly created task for the first time.
2526 *
2527 * This function will do some initial scheduler statistics housekeeping
2528 * that must be done for every newly created context, then puts the task
2529 * on the runqueue and wakes it.
2530 */
3e51e3ed 2531void wake_up_new_task(struct task_struct *p)
1da177e4 2532{
eb580751 2533 struct rq_flags rf;
dd41f596 2534 struct rq *rq;
fabf318e 2535
eb580751 2536 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
7dc603c9 2537 p->state = TASK_RUNNING;
fabf318e
PZ
2538#ifdef CONFIG_SMP
2539 /*
2540 * Fork balancing, do it here and not earlier because:
2541 * - cpus_allowed can change in the fork path
2542 * - any previously selected cpu might disappear through hotplug
e210bffd
PZ
2543 *
2544 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2545 * as we're not fully set-up yet.
fabf318e 2546 */
e210bffd 2547 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735 2548#endif
b7fa30c9 2549 rq = __task_rq_lock(p, &rf);
2b8c41da 2550 post_init_entity_util_avg(&p->se);
0017d735 2551
cd29fe6f 2552 activate_task(rq, p, 0);
da0c1e65 2553 p->on_rq = TASK_ON_RQ_QUEUED;
fbd705a0 2554 trace_sched_wakeup_new(p);
a7558e01 2555 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2556#ifdef CONFIG_SMP
0aaafaab
PZ
2557 if (p->sched_class->task_woken) {
2558 /*
2559 * Nothing relies on rq->lock after this, so its fine to
2560 * drop it.
2561 */
e7904a28 2562 lockdep_unpin_lock(&rq->lock, rf.cookie);
efbbd05a 2563 p->sched_class->task_woken(rq, p);
e7904a28 2564 lockdep_repin_lock(&rq->lock, rf.cookie);
0aaafaab 2565 }
9a897c5a 2566#endif
eb580751 2567 task_rq_unlock(rq, p, &rf);
1da177e4
LT
2568}
2569
e107be36
AK
2570#ifdef CONFIG_PREEMPT_NOTIFIERS
2571
1cde2930
PZ
2572static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2573
2ecd9d29
PZ
2574void preempt_notifier_inc(void)
2575{
2576 static_key_slow_inc(&preempt_notifier_key);
2577}
2578EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2579
2580void preempt_notifier_dec(void)
2581{
2582 static_key_slow_dec(&preempt_notifier_key);
2583}
2584EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2585
e107be36 2586/**
80dd99b3 2587 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2588 * @notifier: notifier struct to register
e107be36
AK
2589 */
2590void preempt_notifier_register(struct preempt_notifier *notifier)
2591{
2ecd9d29
PZ
2592 if (!static_key_false(&preempt_notifier_key))
2593 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2594
e107be36
AK
2595 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2596}
2597EXPORT_SYMBOL_GPL(preempt_notifier_register);
2598
2599/**
2600 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2601 * @notifier: notifier struct to unregister
e107be36 2602 *
d84525a8 2603 * This is *not* safe to call from within a preemption notifier.
e107be36
AK
2604 */
2605void preempt_notifier_unregister(struct preempt_notifier *notifier)
2606{
2607 hlist_del(&notifier->link);
2608}
2609EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2610
1cde2930 2611static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2612{
2613 struct preempt_notifier *notifier;
e107be36 2614
b67bfe0d 2615 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2616 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2617}
2618
1cde2930
PZ
2619static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2620{
2621 if (static_key_false(&preempt_notifier_key))
2622 __fire_sched_in_preempt_notifiers(curr);
2623}
2624
e107be36 2625static void
1cde2930
PZ
2626__fire_sched_out_preempt_notifiers(struct task_struct *curr,
2627 struct task_struct *next)
e107be36
AK
2628{
2629 struct preempt_notifier *notifier;
e107be36 2630
b67bfe0d 2631 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2632 notifier->ops->sched_out(notifier, next);
2633}
2634
1cde2930
PZ
2635static __always_inline void
2636fire_sched_out_preempt_notifiers(struct task_struct *curr,
2637 struct task_struct *next)
2638{
2639 if (static_key_false(&preempt_notifier_key))
2640 __fire_sched_out_preempt_notifiers(curr, next);
2641}
2642
6d6bc0ad 2643#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36 2644
1cde2930 2645static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2646{
2647}
2648
1cde2930 2649static inline void
e107be36
AK
2650fire_sched_out_preempt_notifiers(struct task_struct *curr,
2651 struct task_struct *next)
2652{
2653}
2654
6d6bc0ad 2655#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2656
4866cde0
NP
2657/**
2658 * prepare_task_switch - prepare to switch tasks
2659 * @rq: the runqueue preparing to switch
421cee29 2660 * @prev: the current task that is being switched out
4866cde0
NP
2661 * @next: the task we are going to switch to.
2662 *
2663 * This is called with the rq lock held and interrupts off. It must
2664 * be paired with a subsequent finish_task_switch after the context
2665 * switch.
2666 *
2667 * prepare_task_switch sets up locking and calls architecture specific
2668 * hooks.
2669 */
e107be36
AK
2670static inline void
2671prepare_task_switch(struct rq *rq, struct task_struct *prev,
2672 struct task_struct *next)
4866cde0 2673{
43148951 2674 sched_info_switch(rq, prev, next);
fe4b04fa 2675 perf_event_task_sched_out(prev, next);
e107be36 2676 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2677 prepare_lock_switch(rq, next);
2678 prepare_arch_switch(next);
2679}
2680
1da177e4
LT
2681/**
2682 * finish_task_switch - clean up after a task-switch
2683 * @prev: the thread we just switched away from.
2684 *
4866cde0
NP
2685 * finish_task_switch must be called after the context switch, paired
2686 * with a prepare_task_switch call before the context switch.
2687 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2688 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2689 *
2690 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2691 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2692 * with the lock held can cause deadlocks; see schedule() for
2693 * details.)
dfa50b60
ON
2694 *
2695 * The context switch have flipped the stack from under us and restored the
2696 * local variables which were saved when this task called schedule() in the
2697 * past. prev == current is still correct but we need to recalculate this_rq
2698 * because prev may have moved to another CPU.
1da177e4 2699 */
dfa50b60 2700static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
2701 __releases(rq->lock)
2702{
dfa50b60 2703 struct rq *rq = this_rq();
1da177e4 2704 struct mm_struct *mm = rq->prev_mm;
55a101f8 2705 long prev_state;
1da177e4 2706
609ca066
PZ
2707 /*
2708 * The previous task will have left us with a preempt_count of 2
2709 * because it left us after:
2710 *
2711 * schedule()
2712 * preempt_disable(); // 1
2713 * __schedule()
2714 * raw_spin_lock_irq(&rq->lock) // 2
2715 *
2716 * Also, see FORK_PREEMPT_COUNT.
2717 */
e2bf1c4b
PZ
2718 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2719 "corrupted preempt_count: %s/%d/0x%x\n",
2720 current->comm, current->pid, preempt_count()))
2721 preempt_count_set(FORK_PREEMPT_COUNT);
609ca066 2722
1da177e4
LT
2723 rq->prev_mm = NULL;
2724
2725 /*
2726 * A task struct has one reference for the use as "current".
c394cc9f 2727 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2728 * schedule one last time. The schedule call will never return, and
2729 * the scheduled task must drop that reference.
95913d97
PZ
2730 *
2731 * We must observe prev->state before clearing prev->on_cpu (in
2732 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2733 * running on another CPU and we could rave with its RUNNING -> DEAD
2734 * transition, resulting in a double drop.
1da177e4 2735 */
55a101f8 2736 prev_state = prev->state;
bf9fae9f 2737 vtime_task_switch(prev);
a8d757ef 2738 perf_event_task_sched_in(prev, current);
4866cde0 2739 finish_lock_switch(rq, prev);
01f23e16 2740 finish_arch_post_lock_switch();
e8fa1362 2741
e107be36 2742 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2743 if (mm)
2744 mmdrop(mm);
c394cc9f 2745 if (unlikely(prev_state == TASK_DEAD)) {
e6c390f2
DF
2746 if (prev->sched_class->task_dead)
2747 prev->sched_class->task_dead(prev);
2748
c6fd91f0 2749 /*
2750 * Remove function-return probe instances associated with this
2751 * task and put them back on the free list.
9761eea8 2752 */
c6fd91f0 2753 kprobe_flush_task(prev);
1da177e4 2754 put_task_struct(prev);
c6fd91f0 2755 }
99e5ada9 2756
de734f89 2757 tick_nohz_task_switch();
dfa50b60 2758 return rq;
1da177e4
LT
2759}
2760
3f029d3c
GH
2761#ifdef CONFIG_SMP
2762
3f029d3c 2763/* rq->lock is NOT held, but preemption is disabled */
e3fca9e7 2764static void __balance_callback(struct rq *rq)
3f029d3c 2765{
e3fca9e7
PZ
2766 struct callback_head *head, *next;
2767 void (*func)(struct rq *rq);
2768 unsigned long flags;
3f029d3c 2769
e3fca9e7
PZ
2770 raw_spin_lock_irqsave(&rq->lock, flags);
2771 head = rq->balance_callback;
2772 rq->balance_callback = NULL;
2773 while (head) {
2774 func = (void (*)(struct rq *))head->func;
2775 next = head->next;
2776 head->next = NULL;
2777 head = next;
3f029d3c 2778
e3fca9e7 2779 func(rq);
3f029d3c 2780 }
e3fca9e7
PZ
2781 raw_spin_unlock_irqrestore(&rq->lock, flags);
2782}
2783
2784static inline void balance_callback(struct rq *rq)
2785{
2786 if (unlikely(rq->balance_callback))
2787 __balance_callback(rq);
3f029d3c
GH
2788}
2789
2790#else
da19ab51 2791
e3fca9e7 2792static inline void balance_callback(struct rq *rq)
3f029d3c 2793{
1da177e4
LT
2794}
2795
3f029d3c
GH
2796#endif
2797
1da177e4
LT
2798/**
2799 * schedule_tail - first thing a freshly forked thread must call.
2800 * @prev: the thread we just switched away from.
2801 */
722a9f92 2802asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
2803 __releases(rq->lock)
2804{
1a43a14a 2805 struct rq *rq;
da19ab51 2806
609ca066
PZ
2807 /*
2808 * New tasks start with FORK_PREEMPT_COUNT, see there and
2809 * finish_task_switch() for details.
2810 *
2811 * finish_task_switch() will drop rq->lock() and lower preempt_count
2812 * and the preempt_enable() will end up enabling preemption (on
2813 * PREEMPT_COUNT kernels).
2814 */
2815
dfa50b60 2816 rq = finish_task_switch(prev);
e3fca9e7 2817 balance_callback(rq);
1a43a14a 2818 preempt_enable();
70b97a7f 2819
1da177e4 2820 if (current->set_child_tid)
b488893a 2821 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2822}
2823
2824/*
dfa50b60 2825 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 2826 */
04936948 2827static __always_inline struct rq *
70b97a7f 2828context_switch(struct rq *rq, struct task_struct *prev,
e7904a28 2829 struct task_struct *next, struct pin_cookie cookie)
1da177e4 2830{
dd41f596 2831 struct mm_struct *mm, *oldmm;
1da177e4 2832
e107be36 2833 prepare_task_switch(rq, prev, next);
fe4b04fa 2834
dd41f596
IM
2835 mm = next->mm;
2836 oldmm = prev->active_mm;
9226d125
ZA
2837 /*
2838 * For paravirt, this is coupled with an exit in switch_to to
2839 * combine the page table reload and the switch backend into
2840 * one hypercall.
2841 */
224101ed 2842 arch_start_context_switch(prev);
9226d125 2843
31915ab4 2844 if (!mm) {
1da177e4
LT
2845 next->active_mm = oldmm;
2846 atomic_inc(&oldmm->mm_count);
2847 enter_lazy_tlb(oldmm, next);
2848 } else
f98db601 2849 switch_mm_irqs_off(oldmm, mm, next);
1da177e4 2850
31915ab4 2851 if (!prev->mm) {
1da177e4 2852 prev->active_mm = NULL;
1da177e4
LT
2853 rq->prev_mm = oldmm;
2854 }
3a5f5e48
IM
2855 /*
2856 * Since the runqueue lock will be released by the next
2857 * task (which is an invalid locking op but in the case
2858 * of the scheduler it's an obvious special-case), so we
2859 * do an early lockdep release here:
2860 */
e7904a28 2861 lockdep_unpin_lock(&rq->lock, cookie);
8a25d5de 2862 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
2863
2864 /* Here we just switch the register state and the stack. */
2865 switch_to(prev, next, prev);
dd41f596 2866 barrier();
dfa50b60
ON
2867
2868 return finish_task_switch(prev);
1da177e4
LT
2869}
2870
2871/*
1c3e8264 2872 * nr_running and nr_context_switches:
1da177e4
LT
2873 *
2874 * externally visible scheduler statistics: current number of runnable
1c3e8264 2875 * threads, total number of context switches performed since bootup.
1da177e4
LT
2876 */
2877unsigned long nr_running(void)
2878{
2879 unsigned long i, sum = 0;
2880
2881 for_each_online_cpu(i)
2882 sum += cpu_rq(i)->nr_running;
2883
2884 return sum;
f711f609 2885}
1da177e4 2886
2ee507c4
TC
2887/*
2888 * Check if only the current task is running on the cpu.
00cc1633
DD
2889 *
2890 * Caution: this function does not check that the caller has disabled
2891 * preemption, thus the result might have a time-of-check-to-time-of-use
2892 * race. The caller is responsible to use it correctly, for example:
2893 *
2894 * - from a non-preemptable section (of course)
2895 *
2896 * - from a thread that is bound to a single CPU
2897 *
2898 * - in a loop with very short iterations (e.g. a polling loop)
2ee507c4
TC
2899 */
2900bool single_task_running(void)
2901{
00cc1633 2902 return raw_rq()->nr_running == 1;
2ee507c4
TC
2903}
2904EXPORT_SYMBOL(single_task_running);
2905
1da177e4 2906unsigned long long nr_context_switches(void)
46cb4b7c 2907{
cc94abfc
SR
2908 int i;
2909 unsigned long long sum = 0;
46cb4b7c 2910
0a945022 2911 for_each_possible_cpu(i)
1da177e4 2912 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2913
1da177e4
LT
2914 return sum;
2915}
483b4ee6 2916
1da177e4
LT
2917unsigned long nr_iowait(void)
2918{
2919 unsigned long i, sum = 0;
483b4ee6 2920
0a945022 2921 for_each_possible_cpu(i)
1da177e4 2922 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2923
1da177e4
LT
2924 return sum;
2925}
483b4ee6 2926
8c215bd3 2927unsigned long nr_iowait_cpu(int cpu)
69d25870 2928{
8c215bd3 2929 struct rq *this = cpu_rq(cpu);
69d25870
AV
2930 return atomic_read(&this->nr_iowait);
2931}
46cb4b7c 2932
372ba8cb
MG
2933void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2934{
3289bdb4
PZ
2935 struct rq *rq = this_rq();
2936 *nr_waiters = atomic_read(&rq->nr_iowait);
2937 *load = rq->load.weight;
372ba8cb
MG
2938}
2939
dd41f596 2940#ifdef CONFIG_SMP
8a0be9ef 2941
46cb4b7c 2942/*
38022906
PZ
2943 * sched_exec - execve() is a valuable balancing opportunity, because at
2944 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2945 */
38022906 2946void sched_exec(void)
46cb4b7c 2947{
38022906 2948 struct task_struct *p = current;
1da177e4 2949 unsigned long flags;
0017d735 2950 int dest_cpu;
46cb4b7c 2951
8f42ced9 2952 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2953 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2954 if (dest_cpu == smp_processor_id())
2955 goto unlock;
38022906 2956
8f42ced9 2957 if (likely(cpu_active(dest_cpu))) {
969c7921 2958 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2959
8f42ced9
PZ
2960 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2961 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2962 return;
2963 }
0017d735 2964unlock:
8f42ced9 2965 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2966}
dd41f596 2967
1da177e4
LT
2968#endif
2969
1da177e4 2970DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2971DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2972
2973EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2974EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 2975
6075620b
GG
2976/*
2977 * The function fair_sched_class.update_curr accesses the struct curr
2978 * and its field curr->exec_start; when called from task_sched_runtime(),
2979 * we observe a high rate of cache misses in practice.
2980 * Prefetching this data results in improved performance.
2981 */
2982static inline void prefetch_curr_exec_start(struct task_struct *p)
2983{
2984#ifdef CONFIG_FAIR_GROUP_SCHED
2985 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
2986#else
2987 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
2988#endif
2989 prefetch(curr);
2990 prefetch(&curr->exec_start);
2991}
2992
c5f8d995
HS
2993/*
2994 * Return accounted runtime for the task.
2995 * In case the task is currently running, return the runtime plus current's
2996 * pending runtime that have not been accounted yet.
2997 */
2998unsigned long long task_sched_runtime(struct task_struct *p)
2999{
eb580751 3000 struct rq_flags rf;
c5f8d995 3001 struct rq *rq;
6e998916 3002 u64 ns;
c5f8d995 3003
911b2898
PZ
3004#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3005 /*
3006 * 64-bit doesn't need locks to atomically read a 64bit value.
3007 * So we have a optimization chance when the task's delta_exec is 0.
3008 * Reading ->on_cpu is racy, but this is ok.
3009 *
3010 * If we race with it leaving cpu, we'll take a lock. So we're correct.
3011 * If we race with it entering cpu, unaccounted time is 0. This is
3012 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
3013 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3014 * been accounted, so we're correct here as well.
911b2898 3015 */
da0c1e65 3016 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
3017 return p->se.sum_exec_runtime;
3018#endif
3019
eb580751 3020 rq = task_rq_lock(p, &rf);
6e998916
SG
3021 /*
3022 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3023 * project cycles that may never be accounted to this
3024 * thread, breaking clock_gettime().
3025 */
3026 if (task_current(rq, p) && task_on_rq_queued(p)) {
6075620b 3027 prefetch_curr_exec_start(p);
6e998916
SG
3028 update_rq_clock(rq);
3029 p->sched_class->update_curr(rq);
3030 }
3031 ns = p->se.sum_exec_runtime;
eb580751 3032 task_rq_unlock(rq, p, &rf);
c5f8d995
HS
3033
3034 return ns;
3035}
48f24c4d 3036
7835b98b
CL
3037/*
3038 * This function gets called by the timer code, with HZ frequency.
3039 * We call it with interrupts disabled.
7835b98b
CL
3040 */
3041void scheduler_tick(void)
3042{
7835b98b
CL
3043 int cpu = smp_processor_id();
3044 struct rq *rq = cpu_rq(cpu);
dd41f596 3045 struct task_struct *curr = rq->curr;
3e51f33f
PZ
3046
3047 sched_clock_tick();
dd41f596 3048
05fa785c 3049 raw_spin_lock(&rq->lock);
3e51f33f 3050 update_rq_clock(rq);
fa85ae24 3051 curr->sched_class->task_tick(rq, curr, 0);
cee1afce 3052 cpu_load_update_active(rq);
3289bdb4 3053 calc_global_load_tick(rq);
05fa785c 3054 raw_spin_unlock(&rq->lock);
7835b98b 3055
e9d2b064 3056 perf_event_task_tick();
e220d2dc 3057
e418e1c2 3058#ifdef CONFIG_SMP
6eb57e0d 3059 rq->idle_balance = idle_cpu(cpu);
7caff66f 3060 trigger_load_balance(rq);
e418e1c2 3061#endif
265f22a9 3062 rq_last_tick_reset(rq);
1da177e4
LT
3063}
3064
265f22a9
FW
3065#ifdef CONFIG_NO_HZ_FULL
3066/**
3067 * scheduler_tick_max_deferment
3068 *
3069 * Keep at least one tick per second when a single
3070 * active task is running because the scheduler doesn't
3071 * yet completely support full dynticks environment.
3072 *
3073 * This makes sure that uptime, CFS vruntime, load
3074 * balancing, etc... continue to move forward, even
3075 * with a very low granularity.
e69f6186
YB
3076 *
3077 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
3078 */
3079u64 scheduler_tick_max_deferment(void)
3080{
3081 struct rq *rq = this_rq();
316c1608 3082 unsigned long next, now = READ_ONCE(jiffies);
265f22a9
FW
3083
3084 next = rq->last_sched_tick + HZ;
3085
3086 if (time_before_eq(next, now))
3087 return 0;
3088
8fe8ff09 3089 return jiffies_to_nsecs(next - now);
1da177e4 3090}
265f22a9 3091#endif
1da177e4 3092
7e49fcce
SR
3093#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3094 defined(CONFIG_PREEMPT_TRACER))
47252cfb
SR
3095/*
3096 * If the value passed in is equal to the current preempt count
3097 * then we just disabled preemption. Start timing the latency.
3098 */
3099static inline void preempt_latency_start(int val)
3100{
3101 if (preempt_count() == val) {
3102 unsigned long ip = get_lock_parent_ip();
3103#ifdef CONFIG_DEBUG_PREEMPT
3104 current->preempt_disable_ip = ip;
3105#endif
3106 trace_preempt_off(CALLER_ADDR0, ip);
3107 }
3108}
7e49fcce 3109
edafe3a5 3110void preempt_count_add(int val)
1da177e4 3111{
6cd8a4bb 3112#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3113 /*
3114 * Underflow?
3115 */
9a11b49a
IM
3116 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3117 return;
6cd8a4bb 3118#endif
bdb43806 3119 __preempt_count_add(val);
6cd8a4bb 3120#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3121 /*
3122 * Spinlock count overflowing soon?
3123 */
33859f7f
MOS
3124 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3125 PREEMPT_MASK - 10);
6cd8a4bb 3126#endif
47252cfb 3127 preempt_latency_start(val);
1da177e4 3128}
bdb43806 3129EXPORT_SYMBOL(preempt_count_add);
edafe3a5 3130NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 3131
47252cfb
SR
3132/*
3133 * If the value passed in equals to the current preempt count
3134 * then we just enabled preemption. Stop timing the latency.
3135 */
3136static inline void preempt_latency_stop(int val)
3137{
3138 if (preempt_count() == val)
3139 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3140}
3141
edafe3a5 3142void preempt_count_sub(int val)
1da177e4 3143{
6cd8a4bb 3144#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3145 /*
3146 * Underflow?
3147 */
01e3eb82 3148 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3149 return;
1da177e4
LT
3150 /*
3151 * Is the spinlock portion underflowing?
3152 */
9a11b49a
IM
3153 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3154 !(preempt_count() & PREEMPT_MASK)))
3155 return;
6cd8a4bb 3156#endif
9a11b49a 3157
47252cfb 3158 preempt_latency_stop(val);
bdb43806 3159 __preempt_count_sub(val);
1da177e4 3160}
bdb43806 3161EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 3162NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4 3163
47252cfb
SR
3164#else
3165static inline void preempt_latency_start(int val) { }
3166static inline void preempt_latency_stop(int val) { }
1da177e4
LT
3167#endif
3168
3169/*
dd41f596 3170 * Print scheduling while atomic bug:
1da177e4 3171 */
dd41f596 3172static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3173{
d1c6d149
VN
3174 /* Save this before calling printk(), since that will clobber it */
3175 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3176
664dfa65
DJ
3177 if (oops_in_progress)
3178 return;
3179
3df0fc5b
PZ
3180 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3181 prev->comm, prev->pid, preempt_count());
838225b4 3182
dd41f596 3183 debug_show_held_locks(prev);
e21f5b15 3184 print_modules();
dd41f596
IM
3185 if (irqs_disabled())
3186 print_irqtrace_events(prev);
d1c6d149
VN
3187 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3188 && in_atomic_preempt_off()) {
8f47b187 3189 pr_err("Preemption disabled at:");
d1c6d149 3190 print_ip_sym(preempt_disable_ip);
8f47b187
TG
3191 pr_cont("\n");
3192 }
748c7201
DBO
3193 if (panic_on_warn)
3194 panic("scheduling while atomic\n");
3195
6135fc1e 3196 dump_stack();
373d4d09 3197 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 3198}
1da177e4 3199
dd41f596
IM
3200/*
3201 * Various schedule()-time debugging checks and statistics:
3202 */
3203static inline void schedule_debug(struct task_struct *prev)
3204{
0d9e2632 3205#ifdef CONFIG_SCHED_STACK_END_CHECK
29d64551
JH
3206 if (task_stack_end_corrupted(prev))
3207 panic("corrupted stack end detected inside scheduler\n");
0d9e2632 3208#endif
b99def8b 3209
1dc0fffc 3210 if (unlikely(in_atomic_preempt_off())) {
dd41f596 3211 __schedule_bug(prev);
1dc0fffc
PZ
3212 preempt_count_set(PREEMPT_DISABLED);
3213 }
b3fbab05 3214 rcu_sleep_check();
dd41f596 3215
1da177e4
LT
3216 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3217
2d72376b 3218 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
3219}
3220
3221/*
3222 * Pick up the highest-prio task:
3223 */
3224static inline struct task_struct *
e7904a28 3225pick_next_task(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
dd41f596 3226{
37e117c0 3227 const struct sched_class *class = &fair_sched_class;
dd41f596 3228 struct task_struct *p;
1da177e4
LT
3229
3230 /*
dd41f596
IM
3231 * Optimization: we know that if all tasks are in
3232 * the fair class we can call that function directly:
1da177e4 3233 */
37e117c0 3234 if (likely(prev->sched_class == class &&
38033c37 3235 rq->nr_running == rq->cfs.h_nr_running)) {
e7904a28 3236 p = fair_sched_class.pick_next_task(rq, prev, cookie);
6ccdc84b
PZ
3237 if (unlikely(p == RETRY_TASK))
3238 goto again;
3239
3240 /* assumes fair_sched_class->next == idle_sched_class */
3241 if (unlikely(!p))
e7904a28 3242 p = idle_sched_class.pick_next_task(rq, prev, cookie);
6ccdc84b
PZ
3243
3244 return p;
1da177e4
LT
3245 }
3246
37e117c0 3247again:
34f971f6 3248 for_each_class(class) {
e7904a28 3249 p = class->pick_next_task(rq, prev, cookie);
37e117c0
PZ
3250 if (p) {
3251 if (unlikely(p == RETRY_TASK))
3252 goto again;
dd41f596 3253 return p;
37e117c0 3254 }
dd41f596 3255 }
34f971f6
PZ
3256
3257 BUG(); /* the idle class will always have a runnable task */
dd41f596 3258}
1da177e4 3259
dd41f596 3260/*
c259e01a 3261 * __schedule() is the main scheduler function.
edde96ea
PE
3262 *
3263 * The main means of driving the scheduler and thus entering this function are:
3264 *
3265 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3266 *
3267 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3268 * paths. For example, see arch/x86/entry_64.S.
3269 *
3270 * To drive preemption between tasks, the scheduler sets the flag in timer
3271 * interrupt handler scheduler_tick().
3272 *
3273 * 3. Wakeups don't really cause entry into schedule(). They add a
3274 * task to the run-queue and that's it.
3275 *
3276 * Now, if the new task added to the run-queue preempts the current
3277 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3278 * called on the nearest possible occasion:
3279 *
3280 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3281 *
3282 * - in syscall or exception context, at the next outmost
3283 * preempt_enable(). (this might be as soon as the wake_up()'s
3284 * spin_unlock()!)
3285 *
3286 * - in IRQ context, return from interrupt-handler to
3287 * preemptible context
3288 *
3289 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3290 * then at the next:
3291 *
3292 * - cond_resched() call
3293 * - explicit schedule() call
3294 * - return from syscall or exception to user-space
3295 * - return from interrupt-handler to user-space
bfd9b2b5 3296 *
b30f0e3f 3297 * WARNING: must be called with preemption disabled!
dd41f596 3298 */
499d7955 3299static void __sched notrace __schedule(bool preempt)
dd41f596
IM
3300{
3301 struct task_struct *prev, *next;
67ca7bde 3302 unsigned long *switch_count;
e7904a28 3303 struct pin_cookie cookie;
dd41f596 3304 struct rq *rq;
31656519 3305 int cpu;
dd41f596 3306
dd41f596
IM
3307 cpu = smp_processor_id();
3308 rq = cpu_rq(cpu);
dd41f596 3309 prev = rq->curr;
dd41f596 3310
b99def8b
PZ
3311 /*
3312 * do_exit() calls schedule() with preemption disabled as an exception;
3313 * however we must fix that up, otherwise the next task will see an
3314 * inconsistent (higher) preempt count.
3315 *
3316 * It also avoids the below schedule_debug() test from complaining
3317 * about this.
3318 */
3319 if (unlikely(prev->state == TASK_DEAD))
3320 preempt_enable_no_resched_notrace();
3321
dd41f596 3322 schedule_debug(prev);
1da177e4 3323
31656519 3324 if (sched_feat(HRTICK))
f333fdc9 3325 hrtick_clear(rq);
8f4d37ec 3326
46a5d164
PM
3327 local_irq_disable();
3328 rcu_note_context_switch();
3329
e0acd0a6
ON
3330 /*
3331 * Make sure that signal_pending_state()->signal_pending() below
3332 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3333 * done by the caller to avoid the race with signal_wake_up().
3334 */
3335 smp_mb__before_spinlock();
46a5d164 3336 raw_spin_lock(&rq->lock);
e7904a28 3337 cookie = lockdep_pin_lock(&rq->lock);
1da177e4 3338
9edfbfed
PZ
3339 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3340
246d86b5 3341 switch_count = &prev->nivcsw;
fc13aeba 3342 if (!preempt && prev->state) {
21aa9af0 3343 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 3344 prev->state = TASK_RUNNING;
21aa9af0 3345 } else {
2acca55e
PZ
3346 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3347 prev->on_rq = 0;
3348
21aa9af0 3349 /*
2acca55e
PZ
3350 * If a worker went to sleep, notify and ask workqueue
3351 * whether it wants to wake up a task to maintain
3352 * concurrency.
21aa9af0
TH
3353 */
3354 if (prev->flags & PF_WQ_WORKER) {
3355 struct task_struct *to_wakeup;
3356
9b7f6597 3357 to_wakeup = wq_worker_sleeping(prev);
21aa9af0 3358 if (to_wakeup)
e7904a28 3359 try_to_wake_up_local(to_wakeup, cookie);
21aa9af0 3360 }
21aa9af0 3361 }
dd41f596 3362 switch_count = &prev->nvcsw;
1da177e4
LT
3363 }
3364
9edfbfed 3365 if (task_on_rq_queued(prev))
606dba2e
PZ
3366 update_rq_clock(rq);
3367
e7904a28 3368 next = pick_next_task(rq, prev, cookie);
f26f9aff 3369 clear_tsk_need_resched(prev);
f27dde8d 3370 clear_preempt_need_resched();
9edfbfed 3371 rq->clock_skip_update = 0;
1da177e4 3372
1da177e4 3373 if (likely(prev != next)) {
1da177e4
LT
3374 rq->nr_switches++;
3375 rq->curr = next;
3376 ++*switch_count;
3377
c73464b1 3378 trace_sched_switch(preempt, prev, next);
e7904a28 3379 rq = context_switch(rq, prev, next, cookie); /* unlocks the rq */
cbce1a68 3380 } else {
e7904a28 3381 lockdep_unpin_lock(&rq->lock, cookie);
05fa785c 3382 raw_spin_unlock_irq(&rq->lock);
cbce1a68 3383 }
1da177e4 3384
e3fca9e7 3385 balance_callback(rq);
1da177e4 3386}
8e05e96a 3387STACK_FRAME_NON_STANDARD(__schedule); /* switch_to() */
c259e01a 3388
9c40cef2
TG
3389static inline void sched_submit_work(struct task_struct *tsk)
3390{
3c7d5184 3391 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
3392 return;
3393 /*
3394 * If we are going to sleep and we have plugged IO queued,
3395 * make sure to submit it to avoid deadlocks.
3396 */
3397 if (blk_needs_flush_plug(tsk))
3398 blk_schedule_flush_plug(tsk);
3399}
3400
722a9f92 3401asmlinkage __visible void __sched schedule(void)
c259e01a 3402{
9c40cef2
TG
3403 struct task_struct *tsk = current;
3404
3405 sched_submit_work(tsk);
bfd9b2b5 3406 do {
b30f0e3f 3407 preempt_disable();
fc13aeba 3408 __schedule(false);
b30f0e3f 3409 sched_preempt_enable_no_resched();
bfd9b2b5 3410 } while (need_resched());
c259e01a 3411}
1da177e4
LT
3412EXPORT_SYMBOL(schedule);
3413
91d1aa43 3414#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 3415asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
3416{
3417 /*
3418 * If we come here after a random call to set_need_resched(),
3419 * or we have been woken up remotely but the IPI has not yet arrived,
3420 * we haven't yet exited the RCU idle mode. Do it here manually until
3421 * we find a better solution.
7cc78f8f
AL
3422 *
3423 * NB: There are buggy callers of this function. Ideally we
c467ea76 3424 * should warn if prev_state != CONTEXT_USER, but that will trigger
7cc78f8f 3425 * too frequently to make sense yet.
20ab65e3 3426 */
7cc78f8f 3427 enum ctx_state prev_state = exception_enter();
20ab65e3 3428 schedule();
7cc78f8f 3429 exception_exit(prev_state);
20ab65e3
FW
3430}
3431#endif
3432
c5491ea7
TG
3433/**
3434 * schedule_preempt_disabled - called with preemption disabled
3435 *
3436 * Returns with preemption disabled. Note: preempt_count must be 1
3437 */
3438void __sched schedule_preempt_disabled(void)
3439{
ba74c144 3440 sched_preempt_enable_no_resched();
c5491ea7
TG
3441 schedule();
3442 preempt_disable();
3443}
3444
06b1f808 3445static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
3446{
3447 do {
47252cfb
SR
3448 /*
3449 * Because the function tracer can trace preempt_count_sub()
3450 * and it also uses preempt_enable/disable_notrace(), if
3451 * NEED_RESCHED is set, the preempt_enable_notrace() called
3452 * by the function tracer will call this function again and
3453 * cause infinite recursion.
3454 *
3455 * Preemption must be disabled here before the function
3456 * tracer can trace. Break up preempt_disable() into two
3457 * calls. One to disable preemption without fear of being
3458 * traced. The other to still record the preemption latency,
3459 * which can also be traced by the function tracer.
3460 */
499d7955 3461 preempt_disable_notrace();
47252cfb 3462 preempt_latency_start(1);
fc13aeba 3463 __schedule(true);
47252cfb 3464 preempt_latency_stop(1);
499d7955 3465 preempt_enable_no_resched_notrace();
a18b5d01
FW
3466
3467 /*
3468 * Check again in case we missed a preemption opportunity
3469 * between schedule and now.
3470 */
a18b5d01
FW
3471 } while (need_resched());
3472}
3473
1da177e4
LT
3474#ifdef CONFIG_PREEMPT
3475/*
2ed6e34f 3476 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3477 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3478 * occur there and call schedule directly.
3479 */
722a9f92 3480asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 3481{
1da177e4
LT
3482 /*
3483 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3484 * we do not want to preempt the current task. Just return..
1da177e4 3485 */
fbb00b56 3486 if (likely(!preemptible()))
1da177e4
LT
3487 return;
3488
a18b5d01 3489 preempt_schedule_common();
1da177e4 3490}
376e2424 3491NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 3492EXPORT_SYMBOL(preempt_schedule);
009f60e2 3493
009f60e2 3494/**
4eaca0a8 3495 * preempt_schedule_notrace - preempt_schedule called by tracing
009f60e2
ON
3496 *
3497 * The tracing infrastructure uses preempt_enable_notrace to prevent
3498 * recursion and tracing preempt enabling caused by the tracing
3499 * infrastructure itself. But as tracing can happen in areas coming
3500 * from userspace or just about to enter userspace, a preempt enable
3501 * can occur before user_exit() is called. This will cause the scheduler
3502 * to be called when the system is still in usermode.
3503 *
3504 * To prevent this, the preempt_enable_notrace will use this function
3505 * instead of preempt_schedule() to exit user context if needed before
3506 * calling the scheduler.
3507 */
4eaca0a8 3508asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
009f60e2
ON
3509{
3510 enum ctx_state prev_ctx;
3511
3512 if (likely(!preemptible()))
3513 return;
3514
3515 do {
47252cfb
SR
3516 /*
3517 * Because the function tracer can trace preempt_count_sub()
3518 * and it also uses preempt_enable/disable_notrace(), if
3519 * NEED_RESCHED is set, the preempt_enable_notrace() called
3520 * by the function tracer will call this function again and
3521 * cause infinite recursion.
3522 *
3523 * Preemption must be disabled here before the function
3524 * tracer can trace. Break up preempt_disable() into two
3525 * calls. One to disable preemption without fear of being
3526 * traced. The other to still record the preemption latency,
3527 * which can also be traced by the function tracer.
3528 */
3d8f74dd 3529 preempt_disable_notrace();
47252cfb 3530 preempt_latency_start(1);
009f60e2
ON
3531 /*
3532 * Needs preempt disabled in case user_exit() is traced
3533 * and the tracer calls preempt_enable_notrace() causing
3534 * an infinite recursion.
3535 */
3536 prev_ctx = exception_enter();
fc13aeba 3537 __schedule(true);
009f60e2
ON
3538 exception_exit(prev_ctx);
3539
47252cfb 3540 preempt_latency_stop(1);
3d8f74dd 3541 preempt_enable_no_resched_notrace();
009f60e2
ON
3542 } while (need_resched());
3543}
4eaca0a8 3544EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
009f60e2 3545
32e475d7 3546#endif /* CONFIG_PREEMPT */
1da177e4
LT
3547
3548/*
2ed6e34f 3549 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3550 * off of irq context.
3551 * Note, that this is called and return with irqs disabled. This will
3552 * protect us against recursive calling from irq.
3553 */
722a9f92 3554asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 3555{
b22366cd 3556 enum ctx_state prev_state;
6478d880 3557
2ed6e34f 3558 /* Catch callers which need to be fixed */
f27dde8d 3559 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 3560
b22366cd
FW
3561 prev_state = exception_enter();
3562
3a5c359a 3563 do {
3d8f74dd 3564 preempt_disable();
3a5c359a 3565 local_irq_enable();
fc13aeba 3566 __schedule(true);
3a5c359a 3567 local_irq_disable();
3d8f74dd 3568 sched_preempt_enable_no_resched();
5ed0cec0 3569 } while (need_resched());
b22366cd
FW
3570
3571 exception_exit(prev_state);
1da177e4
LT
3572}
3573
63859d4f 3574int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3575 void *key)
1da177e4 3576{
63859d4f 3577 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3578}
1da177e4
LT
3579EXPORT_SYMBOL(default_wake_function);
3580
b29739f9
IM
3581#ifdef CONFIG_RT_MUTEXES
3582
3583/*
3584 * rt_mutex_setprio - set the current priority of a task
3585 * @p: task
3586 * @prio: prio value (kernel-internal form)
3587 *
3588 * This function changes the 'effective' priority of a task. It does
3589 * not touch ->normal_prio like __setscheduler().
3590 *
c365c292
TG
3591 * Used by the rt_mutex code to implement priority inheritance
3592 * logic. Call site only calls if the priority of the task changed.
b29739f9 3593 */
36c8b586 3594void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3595{
ff77e468 3596 int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE;
83ab0aa0 3597 const struct sched_class *prev_class;
eb580751
PZ
3598 struct rq_flags rf;
3599 struct rq *rq;
b29739f9 3600
aab03e05 3601 BUG_ON(prio > MAX_PRIO);
b29739f9 3602
eb580751 3603 rq = __task_rq_lock(p, &rf);
b29739f9 3604
1c4dd99b
TG
3605 /*
3606 * Idle task boosting is a nono in general. There is one
3607 * exception, when PREEMPT_RT and NOHZ is active:
3608 *
3609 * The idle task calls get_next_timer_interrupt() and holds
3610 * the timer wheel base->lock on the CPU and another CPU wants
3611 * to access the timer (probably to cancel it). We can safely
3612 * ignore the boosting request, as the idle CPU runs this code
3613 * with interrupts disabled and will complete the lock
3614 * protected section without being interrupted. So there is no
3615 * real need to boost.
3616 */
3617 if (unlikely(p == rq->idle)) {
3618 WARN_ON(p != rq->curr);
3619 WARN_ON(p->pi_blocked_on);
3620 goto out_unlock;
3621 }
3622
a8027073 3623 trace_sched_pi_setprio(p, prio);
d5f9f942 3624 oldprio = p->prio;
ff77e468
PZ
3625
3626 if (oldprio == prio)
3627 queue_flag &= ~DEQUEUE_MOVE;
3628
83ab0aa0 3629 prev_class = p->sched_class;
da0c1e65 3630 queued = task_on_rq_queued(p);
051a1d1a 3631 running = task_current(rq, p);
da0c1e65 3632 if (queued)
ff77e468 3633 dequeue_task(rq, p, queue_flag);
0e1f3483 3634 if (running)
f3cd1c4e 3635 put_prev_task(rq, p);
dd41f596 3636
2d3d891d
DF
3637 /*
3638 * Boosting condition are:
3639 * 1. -rt task is running and holds mutex A
3640 * --> -dl task blocks on mutex A
3641 *
3642 * 2. -dl task is running and holds mutex A
3643 * --> -dl task blocks on mutex A and could preempt the
3644 * running task
3645 */
3646 if (dl_prio(prio)) {
466af29b
ON
3647 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3648 if (!dl_prio(p->normal_prio) ||
3649 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d 3650 p->dl.dl_boosted = 1;
ff77e468 3651 queue_flag |= ENQUEUE_REPLENISH;
2d3d891d
DF
3652 } else
3653 p->dl.dl_boosted = 0;
aab03e05 3654 p->sched_class = &dl_sched_class;
2d3d891d
DF
3655 } else if (rt_prio(prio)) {
3656 if (dl_prio(oldprio))
3657 p->dl.dl_boosted = 0;
3658 if (oldprio < prio)
ff77e468 3659 queue_flag |= ENQUEUE_HEAD;
dd41f596 3660 p->sched_class = &rt_sched_class;
2d3d891d
DF
3661 } else {
3662 if (dl_prio(oldprio))
3663 p->dl.dl_boosted = 0;
746db944
BS
3664 if (rt_prio(oldprio))
3665 p->rt.timeout = 0;
dd41f596 3666 p->sched_class = &fair_sched_class;
2d3d891d 3667 }
dd41f596 3668
b29739f9
IM
3669 p->prio = prio;
3670
0e1f3483
HS
3671 if (running)
3672 p->sched_class->set_curr_task(rq);
da0c1e65 3673 if (queued)
ff77e468 3674 enqueue_task(rq, p, queue_flag);
cb469845 3675
da7a735e 3676 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3677out_unlock:
4c9a4bc8 3678 preempt_disable(); /* avoid rq from going away on us */
eb580751 3679 __task_rq_unlock(rq, &rf);
4c9a4bc8
PZ
3680
3681 balance_callback(rq);
3682 preempt_enable();
b29739f9 3683}
b29739f9 3684#endif
d50dde5a 3685
36c8b586 3686void set_user_nice(struct task_struct *p, long nice)
1da177e4 3687{
da0c1e65 3688 int old_prio, delta, queued;
eb580751 3689 struct rq_flags rf;
70b97a7f 3690 struct rq *rq;
1da177e4 3691
75e45d51 3692 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
3693 return;
3694 /*
3695 * We have to be careful, if called from sys_setpriority(),
3696 * the task might be in the middle of scheduling on another CPU.
3697 */
eb580751 3698 rq = task_rq_lock(p, &rf);
1da177e4
LT
3699 /*
3700 * The RT priorities are set via sched_setscheduler(), but we still
3701 * allow the 'normal' nice value to be set - but as expected
3702 * it wont have any effect on scheduling until the task is
aab03e05 3703 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3704 */
aab03e05 3705 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3706 p->static_prio = NICE_TO_PRIO(nice);
3707 goto out_unlock;
3708 }
da0c1e65
KT
3709 queued = task_on_rq_queued(p);
3710 if (queued)
1de64443 3711 dequeue_task(rq, p, DEQUEUE_SAVE);
1da177e4 3712
1da177e4 3713 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3714 set_load_weight(p);
b29739f9
IM
3715 old_prio = p->prio;
3716 p->prio = effective_prio(p);
3717 delta = p->prio - old_prio;
1da177e4 3718
da0c1e65 3719 if (queued) {
1de64443 3720 enqueue_task(rq, p, ENQUEUE_RESTORE);
1da177e4 3721 /*
d5f9f942
AM
3722 * If the task increased its priority or is running and
3723 * lowered its priority, then reschedule its CPU:
1da177e4 3724 */
d5f9f942 3725 if (delta < 0 || (delta > 0 && task_running(rq, p)))
8875125e 3726 resched_curr(rq);
1da177e4
LT
3727 }
3728out_unlock:
eb580751 3729 task_rq_unlock(rq, p, &rf);
1da177e4 3730}
1da177e4
LT
3731EXPORT_SYMBOL(set_user_nice);
3732
e43379f1
MM
3733/*
3734 * can_nice - check if a task can reduce its nice value
3735 * @p: task
3736 * @nice: nice value
3737 */
36c8b586 3738int can_nice(const struct task_struct *p, const int nice)
e43379f1 3739{
024f4747 3740 /* convert nice value [19,-20] to rlimit style value [1,40] */
7aa2c016 3741 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 3742
78d7d407 3743 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3744 capable(CAP_SYS_NICE));
3745}
3746
1da177e4
LT
3747#ifdef __ARCH_WANT_SYS_NICE
3748
3749/*
3750 * sys_nice - change the priority of the current process.
3751 * @increment: priority increment
3752 *
3753 * sys_setpriority is a more generic, but much slower function that
3754 * does similar things.
3755 */
5add95d4 3756SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3757{
48f24c4d 3758 long nice, retval;
1da177e4
LT
3759
3760 /*
3761 * Setpriority might change our priority at the same moment.
3762 * We don't have to worry. Conceptually one call occurs first
3763 * and we have a single winner.
3764 */
a9467fa3 3765 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 3766 nice = task_nice(current) + increment;
1da177e4 3767
a9467fa3 3768 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
3769 if (increment < 0 && !can_nice(current, nice))
3770 return -EPERM;
3771
1da177e4
LT
3772 retval = security_task_setnice(current, nice);
3773 if (retval)
3774 return retval;
3775
3776 set_user_nice(current, nice);
3777 return 0;
3778}
3779
3780#endif
3781
3782/**
3783 * task_prio - return the priority value of a given task.
3784 * @p: the task in question.
3785 *
e69f6186 3786 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3787 * RT tasks are offset by -200. Normal tasks are centered
3788 * around 0, value goes from -16 to +15.
3789 */
36c8b586 3790int task_prio(const struct task_struct *p)
1da177e4
LT
3791{
3792 return p->prio - MAX_RT_PRIO;
3793}
3794
1da177e4
LT
3795/**
3796 * idle_cpu - is a given cpu idle currently?
3797 * @cpu: the processor in question.
e69f6186
YB
3798 *
3799 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3800 */
3801int idle_cpu(int cpu)
3802{
908a3283
TG
3803 struct rq *rq = cpu_rq(cpu);
3804
3805 if (rq->curr != rq->idle)
3806 return 0;
3807
3808 if (rq->nr_running)
3809 return 0;
3810
3811#ifdef CONFIG_SMP
3812 if (!llist_empty(&rq->wake_list))
3813 return 0;
3814#endif
3815
3816 return 1;
1da177e4
LT
3817}
3818
1da177e4
LT
3819/**
3820 * idle_task - return the idle task for a given cpu.
3821 * @cpu: the processor in question.
e69f6186
YB
3822 *
3823 * Return: The idle task for the cpu @cpu.
1da177e4 3824 */
36c8b586 3825struct task_struct *idle_task(int cpu)
1da177e4
LT
3826{
3827 return cpu_rq(cpu)->idle;
3828}
3829
3830/**
3831 * find_process_by_pid - find a process with a matching PID value.
3832 * @pid: the pid in question.
e69f6186
YB
3833 *
3834 * The task of @pid, if found. %NULL otherwise.
1da177e4 3835 */
a9957449 3836static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3837{
228ebcbe 3838 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3839}
3840
aab03e05
DF
3841/*
3842 * This function initializes the sched_dl_entity of a newly becoming
3843 * SCHED_DEADLINE task.
3844 *
3845 * Only the static values are considered here, the actual runtime and the
3846 * absolute deadline will be properly calculated when the task is enqueued
3847 * for the first time with its new policy.
3848 */
3849static void
3850__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3851{
3852 struct sched_dl_entity *dl_se = &p->dl;
3853
aab03e05
DF
3854 dl_se->dl_runtime = attr->sched_runtime;
3855 dl_se->dl_deadline = attr->sched_deadline;
755378a4 3856 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 3857 dl_se->flags = attr->sched_flags;
332ac17e 3858 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
40767b0d
PZ
3859
3860 /*
3861 * Changing the parameters of a task is 'tricky' and we're not doing
3862 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3863 *
3864 * What we SHOULD do is delay the bandwidth release until the 0-lag
3865 * point. This would include retaining the task_struct until that time
3866 * and change dl_overflow() to not immediately decrement the current
3867 * amount.
3868 *
3869 * Instead we retain the current runtime/deadline and let the new
3870 * parameters take effect after the current reservation period lapses.
3871 * This is safe (albeit pessimistic) because the 0-lag point is always
3872 * before the current scheduling deadline.
3873 *
3874 * We can still have temporary overloads because we do not delay the
3875 * change in bandwidth until that time; so admission control is
3876 * not on the safe side. It does however guarantee tasks will never
3877 * consume more than promised.
3878 */
aab03e05
DF
3879}
3880
c13db6b1
SR
3881/*
3882 * sched_setparam() passes in -1 for its policy, to let the functions
3883 * it calls know not to change it.
3884 */
3885#define SETPARAM_POLICY -1
3886
c365c292
TG
3887static void __setscheduler_params(struct task_struct *p,
3888 const struct sched_attr *attr)
1da177e4 3889{
d50dde5a
DF
3890 int policy = attr->sched_policy;
3891
c13db6b1 3892 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
3893 policy = p->policy;
3894
1da177e4 3895 p->policy = policy;
d50dde5a 3896
aab03e05
DF
3897 if (dl_policy(policy))
3898 __setparam_dl(p, attr);
39fd8fd2 3899 else if (fair_policy(policy))
d50dde5a
DF
3900 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3901
39fd8fd2
PZ
3902 /*
3903 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3904 * !rt_policy. Always setting this ensures that things like
3905 * getparam()/getattr() don't report silly values for !rt tasks.
3906 */
3907 p->rt_priority = attr->sched_priority;
383afd09 3908 p->normal_prio = normal_prio(p);
c365c292
TG
3909 set_load_weight(p);
3910}
39fd8fd2 3911
c365c292
TG
3912/* Actually do priority change: must hold pi & rq lock. */
3913static void __setscheduler(struct rq *rq, struct task_struct *p,
0782e63b 3914 const struct sched_attr *attr, bool keep_boost)
c365c292
TG
3915{
3916 __setscheduler_params(p, attr);
d50dde5a 3917
383afd09 3918 /*
0782e63b
TG
3919 * Keep a potential priority boosting if called from
3920 * sched_setscheduler().
383afd09 3921 */
0782e63b
TG
3922 if (keep_boost)
3923 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3924 else
3925 p->prio = normal_prio(p);
383afd09 3926
aab03e05
DF
3927 if (dl_prio(p->prio))
3928 p->sched_class = &dl_sched_class;
3929 else if (rt_prio(p->prio))
ffd44db5
PZ
3930 p->sched_class = &rt_sched_class;
3931 else
3932 p->sched_class = &fair_sched_class;
1da177e4 3933}
aab03e05
DF
3934
3935static void
3936__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3937{
3938 struct sched_dl_entity *dl_se = &p->dl;
3939
3940 attr->sched_priority = p->rt_priority;
3941 attr->sched_runtime = dl_se->dl_runtime;
3942 attr->sched_deadline = dl_se->dl_deadline;
755378a4 3943 attr->sched_period = dl_se->dl_period;
aab03e05
DF
3944 attr->sched_flags = dl_se->flags;
3945}
3946
3947/*
3948 * This function validates the new parameters of a -deadline task.
3949 * We ask for the deadline not being zero, and greater or equal
755378a4 3950 * than the runtime, as well as the period of being zero or
332ac17e 3951 * greater than deadline. Furthermore, we have to be sure that
b0827819
JL
3952 * user parameters are above the internal resolution of 1us (we
3953 * check sched_runtime only since it is always the smaller one) and
3954 * below 2^63 ns (we have to check both sched_deadline and
3955 * sched_period, as the latter can be zero).
aab03e05
DF
3956 */
3957static bool
3958__checkparam_dl(const struct sched_attr *attr)
3959{
b0827819
JL
3960 /* deadline != 0 */
3961 if (attr->sched_deadline == 0)
3962 return false;
3963
3964 /*
3965 * Since we truncate DL_SCALE bits, make sure we're at least
3966 * that big.
3967 */
3968 if (attr->sched_runtime < (1ULL << DL_SCALE))
3969 return false;
3970
3971 /*
3972 * Since we use the MSB for wrap-around and sign issues, make
3973 * sure it's not set (mind that period can be equal to zero).
3974 */
3975 if (attr->sched_deadline & (1ULL << 63) ||
3976 attr->sched_period & (1ULL << 63))
3977 return false;
3978
3979 /* runtime <= deadline <= period (if period != 0) */
3980 if ((attr->sched_period != 0 &&
3981 attr->sched_period < attr->sched_deadline) ||
3982 attr->sched_deadline < attr->sched_runtime)
3983 return false;
3984
3985 return true;
aab03e05
DF
3986}
3987
c69e8d9c
DH
3988/*
3989 * check the target process has a UID that matches the current process's
3990 */
3991static bool check_same_owner(struct task_struct *p)
3992{
3993 const struct cred *cred = current_cred(), *pcred;
3994 bool match;
3995
3996 rcu_read_lock();
3997 pcred = __task_cred(p);
9c806aa0
EB
3998 match = (uid_eq(cred->euid, pcred->euid) ||
3999 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
4000 rcu_read_unlock();
4001 return match;
4002}
4003
75381608
WL
4004static bool dl_param_changed(struct task_struct *p,
4005 const struct sched_attr *attr)
4006{
4007 struct sched_dl_entity *dl_se = &p->dl;
4008
4009 if (dl_se->dl_runtime != attr->sched_runtime ||
4010 dl_se->dl_deadline != attr->sched_deadline ||
4011 dl_se->dl_period != attr->sched_period ||
4012 dl_se->flags != attr->sched_flags)
4013 return true;
4014
4015 return false;
4016}
4017
d50dde5a
DF
4018static int __sched_setscheduler(struct task_struct *p,
4019 const struct sched_attr *attr,
dbc7f069 4020 bool user, bool pi)
1da177e4 4021{
383afd09
SR
4022 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4023 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 4024 int retval, oldprio, oldpolicy = -1, queued, running;
0782e63b 4025 int new_effective_prio, policy = attr->sched_policy;
83ab0aa0 4026 const struct sched_class *prev_class;
eb580751 4027 struct rq_flags rf;
ca94c442 4028 int reset_on_fork;
ff77e468 4029 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
eb580751 4030 struct rq *rq;
1da177e4 4031
66e5393a
SR
4032 /* may grab non-irq protected spin_locks */
4033 BUG_ON(in_interrupt());
1da177e4
LT
4034recheck:
4035 /* double check policy once rq lock held */
ca94c442
LP
4036 if (policy < 0) {
4037 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4038 policy = oldpolicy = p->policy;
ca94c442 4039 } else {
7479f3c9 4040 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 4041
20f9cd2a 4042 if (!valid_policy(policy))
ca94c442
LP
4043 return -EINVAL;
4044 }
4045
7479f3c9
PZ
4046 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
4047 return -EINVAL;
4048
1da177e4
LT
4049 /*
4050 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4051 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4052 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 4053 */
0bb040a4 4054 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 4055 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 4056 return -EINVAL;
aab03e05
DF
4057 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4058 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
4059 return -EINVAL;
4060
37e4ab3f
OC
4061 /*
4062 * Allow unprivileged RT tasks to decrease priority:
4063 */
961ccddd 4064 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 4065 if (fair_policy(policy)) {
d0ea0268 4066 if (attr->sched_nice < task_nice(p) &&
eaad4513 4067 !can_nice(p, attr->sched_nice))
d50dde5a
DF
4068 return -EPERM;
4069 }
4070
e05606d3 4071 if (rt_policy(policy)) {
a44702e8
ON
4072 unsigned long rlim_rtprio =
4073 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
4074
4075 /* can't set/change the rt policy */
4076 if (policy != p->policy && !rlim_rtprio)
4077 return -EPERM;
4078
4079 /* can't increase priority */
d50dde5a
DF
4080 if (attr->sched_priority > p->rt_priority &&
4081 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
4082 return -EPERM;
4083 }
c02aa73b 4084
d44753b8
JL
4085 /*
4086 * Can't set/change SCHED_DEADLINE policy at all for now
4087 * (safest behavior); in the future we would like to allow
4088 * unprivileged DL tasks to increase their relative deadline
4089 * or reduce their runtime (both ways reducing utilization)
4090 */
4091 if (dl_policy(policy))
4092 return -EPERM;
4093
dd41f596 4094 /*
c02aa73b
DH
4095 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4096 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 4097 */
20f9cd2a 4098 if (idle_policy(p->policy) && !idle_policy(policy)) {
d0ea0268 4099 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
4100 return -EPERM;
4101 }
5fe1d75f 4102
37e4ab3f 4103 /* can't change other user's priorities */
c69e8d9c 4104 if (!check_same_owner(p))
37e4ab3f 4105 return -EPERM;
ca94c442
LP
4106
4107 /* Normal users shall not reset the sched_reset_on_fork flag */
4108 if (p->sched_reset_on_fork && !reset_on_fork)
4109 return -EPERM;
37e4ab3f 4110 }
1da177e4 4111
725aad24 4112 if (user) {
b0ae1981 4113 retval = security_task_setscheduler(p);
725aad24
JF
4114 if (retval)
4115 return retval;
4116 }
4117
b29739f9
IM
4118 /*
4119 * make sure no PI-waiters arrive (or leave) while we are
4120 * changing the priority of the task:
0122ec5b 4121 *
25985edc 4122 * To be able to change p->policy safely, the appropriate
1da177e4
LT
4123 * runqueue lock must be held.
4124 */
eb580751 4125 rq = task_rq_lock(p, &rf);
dc61b1d6 4126
34f971f6
PZ
4127 /*
4128 * Changing the policy of the stop threads its a very bad idea
4129 */
4130 if (p == rq->stop) {
eb580751 4131 task_rq_unlock(rq, p, &rf);
34f971f6
PZ
4132 return -EINVAL;
4133 }
4134
a51e9198 4135 /*
d6b1e911
TG
4136 * If not changing anything there's no need to proceed further,
4137 * but store a possible modification of reset_on_fork.
a51e9198 4138 */
d50dde5a 4139 if (unlikely(policy == p->policy)) {
d0ea0268 4140 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
4141 goto change;
4142 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4143 goto change;
75381608 4144 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 4145 goto change;
d50dde5a 4146
d6b1e911 4147 p->sched_reset_on_fork = reset_on_fork;
eb580751 4148 task_rq_unlock(rq, p, &rf);
a51e9198
DF
4149 return 0;
4150 }
d50dde5a 4151change:
a51e9198 4152
dc61b1d6 4153 if (user) {
332ac17e 4154#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
4155 /*
4156 * Do not allow realtime tasks into groups that have no runtime
4157 * assigned.
4158 */
4159 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
4160 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4161 !task_group_is_autogroup(task_group(p))) {
eb580751 4162 task_rq_unlock(rq, p, &rf);
dc61b1d6
PZ
4163 return -EPERM;
4164 }
dc61b1d6 4165#endif
332ac17e
DF
4166#ifdef CONFIG_SMP
4167 if (dl_bandwidth_enabled() && dl_policy(policy)) {
4168 cpumask_t *span = rq->rd->span;
332ac17e
DF
4169
4170 /*
4171 * Don't allow tasks with an affinity mask smaller than
4172 * the entire root_domain to become SCHED_DEADLINE. We
4173 * will also fail if there's no bandwidth available.
4174 */
e4099a5e
PZ
4175 if (!cpumask_subset(span, &p->cpus_allowed) ||
4176 rq->rd->dl_bw.bw == 0) {
eb580751 4177 task_rq_unlock(rq, p, &rf);
332ac17e
DF
4178 return -EPERM;
4179 }
4180 }
4181#endif
4182 }
dc61b1d6 4183
1da177e4
LT
4184 /* recheck policy now with rq lock held */
4185 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4186 policy = oldpolicy = -1;
eb580751 4187 task_rq_unlock(rq, p, &rf);
1da177e4
LT
4188 goto recheck;
4189 }
332ac17e
DF
4190
4191 /*
4192 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4193 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4194 * is available.
4195 */
e4099a5e 4196 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
eb580751 4197 task_rq_unlock(rq, p, &rf);
332ac17e
DF
4198 return -EBUSY;
4199 }
4200
c365c292
TG
4201 p->sched_reset_on_fork = reset_on_fork;
4202 oldprio = p->prio;
4203
dbc7f069
PZ
4204 if (pi) {
4205 /*
4206 * Take priority boosted tasks into account. If the new
4207 * effective priority is unchanged, we just store the new
4208 * normal parameters and do not touch the scheduler class and
4209 * the runqueue. This will be done when the task deboost
4210 * itself.
4211 */
4212 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
ff77e468
PZ
4213 if (new_effective_prio == oldprio)
4214 queue_flags &= ~DEQUEUE_MOVE;
c365c292
TG
4215 }
4216
da0c1e65 4217 queued = task_on_rq_queued(p);
051a1d1a 4218 running = task_current(rq, p);
da0c1e65 4219 if (queued)
ff77e468 4220 dequeue_task(rq, p, queue_flags);
0e1f3483 4221 if (running)
f3cd1c4e 4222 put_prev_task(rq, p);
f6b53205 4223
83ab0aa0 4224 prev_class = p->sched_class;
dbc7f069 4225 __setscheduler(rq, p, attr, pi);
f6b53205 4226
0e1f3483
HS
4227 if (running)
4228 p->sched_class->set_curr_task(rq);
da0c1e65 4229 if (queued) {
81a44c54
TG
4230 /*
4231 * We enqueue to tail when the priority of a task is
4232 * increased (user space view).
4233 */
ff77e468
PZ
4234 if (oldprio < p->prio)
4235 queue_flags |= ENQUEUE_HEAD;
1de64443 4236
ff77e468 4237 enqueue_task(rq, p, queue_flags);
81a44c54 4238 }
cb469845 4239
da7a735e 4240 check_class_changed(rq, p, prev_class, oldprio);
4c9a4bc8 4241 preempt_disable(); /* avoid rq from going away on us */
eb580751 4242 task_rq_unlock(rq, p, &rf);
b29739f9 4243
dbc7f069
PZ
4244 if (pi)
4245 rt_mutex_adjust_pi(p);
95e02ca9 4246
4c9a4bc8
PZ
4247 /*
4248 * Run balance callbacks after we've adjusted the PI chain.
4249 */
4250 balance_callback(rq);
4251 preempt_enable();
95e02ca9 4252
1da177e4
LT
4253 return 0;
4254}
961ccddd 4255
7479f3c9
PZ
4256static int _sched_setscheduler(struct task_struct *p, int policy,
4257 const struct sched_param *param, bool check)
4258{
4259 struct sched_attr attr = {
4260 .sched_policy = policy,
4261 .sched_priority = param->sched_priority,
4262 .sched_nice = PRIO_TO_NICE(p->static_prio),
4263 };
4264
c13db6b1
SR
4265 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4266 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
4267 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4268 policy &= ~SCHED_RESET_ON_FORK;
4269 attr.sched_policy = policy;
4270 }
4271
dbc7f069 4272 return __sched_setscheduler(p, &attr, check, true);
7479f3c9 4273}
961ccddd
RR
4274/**
4275 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4276 * @p: the task in question.
4277 * @policy: new policy.
4278 * @param: structure containing the new RT priority.
4279 *
e69f6186
YB
4280 * Return: 0 on success. An error code otherwise.
4281 *
961ccddd
RR
4282 * NOTE that the task may be already dead.
4283 */
4284int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4285 const struct sched_param *param)
961ccddd 4286{
7479f3c9 4287 return _sched_setscheduler(p, policy, param, true);
961ccddd 4288}
1da177e4
LT
4289EXPORT_SYMBOL_GPL(sched_setscheduler);
4290
d50dde5a
DF
4291int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4292{
dbc7f069 4293 return __sched_setscheduler(p, attr, true, true);
d50dde5a
DF
4294}
4295EXPORT_SYMBOL_GPL(sched_setattr);
4296
961ccddd
RR
4297/**
4298 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4299 * @p: the task in question.
4300 * @policy: new policy.
4301 * @param: structure containing the new RT priority.
4302 *
4303 * Just like sched_setscheduler, only don't bother checking if the
4304 * current context has permission. For example, this is needed in
4305 * stop_machine(): we create temporary high priority worker threads,
4306 * but our caller might not have that capability.
e69f6186
YB
4307 *
4308 * Return: 0 on success. An error code otherwise.
961ccddd
RR
4309 */
4310int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 4311 const struct sched_param *param)
961ccddd 4312{
7479f3c9 4313 return _sched_setscheduler(p, policy, param, false);
961ccddd 4314}
84778472 4315EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
961ccddd 4316
95cdf3b7
IM
4317static int
4318do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4319{
1da177e4
LT
4320 struct sched_param lparam;
4321 struct task_struct *p;
36c8b586 4322 int retval;
1da177e4
LT
4323
4324 if (!param || pid < 0)
4325 return -EINVAL;
4326 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4327 return -EFAULT;
5fe1d75f
ON
4328
4329 rcu_read_lock();
4330 retval = -ESRCH;
1da177e4 4331 p = find_process_by_pid(pid);
5fe1d75f
ON
4332 if (p != NULL)
4333 retval = sched_setscheduler(p, policy, &lparam);
4334 rcu_read_unlock();
36c8b586 4335
1da177e4
LT
4336 return retval;
4337}
4338
d50dde5a
DF
4339/*
4340 * Mimics kernel/events/core.c perf_copy_attr().
4341 */
4342static int sched_copy_attr(struct sched_attr __user *uattr,
4343 struct sched_attr *attr)
4344{
4345 u32 size;
4346 int ret;
4347
4348 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4349 return -EFAULT;
4350
4351 /*
4352 * zero the full structure, so that a short copy will be nice.
4353 */
4354 memset(attr, 0, sizeof(*attr));
4355
4356 ret = get_user(size, &uattr->size);
4357 if (ret)
4358 return ret;
4359
4360 if (size > PAGE_SIZE) /* silly large */
4361 goto err_size;
4362
4363 if (!size) /* abi compat */
4364 size = SCHED_ATTR_SIZE_VER0;
4365
4366 if (size < SCHED_ATTR_SIZE_VER0)
4367 goto err_size;
4368
4369 /*
4370 * If we're handed a bigger struct than we know of,
4371 * ensure all the unknown bits are 0 - i.e. new
4372 * user-space does not rely on any kernel feature
4373 * extensions we dont know about yet.
4374 */
4375 if (size > sizeof(*attr)) {
4376 unsigned char __user *addr;
4377 unsigned char __user *end;
4378 unsigned char val;
4379
4380 addr = (void __user *)uattr + sizeof(*attr);
4381 end = (void __user *)uattr + size;
4382
4383 for (; addr < end; addr++) {
4384 ret = get_user(val, addr);
4385 if (ret)
4386 return ret;
4387 if (val)
4388 goto err_size;
4389 }
4390 size = sizeof(*attr);
4391 }
4392
4393 ret = copy_from_user(attr, uattr, size);
4394 if (ret)
4395 return -EFAULT;
4396
4397 /*
4398 * XXX: do we want to be lenient like existing syscalls; or do we want
4399 * to be strict and return an error on out-of-bounds values?
4400 */
75e45d51 4401 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 4402
e78c7bca 4403 return 0;
d50dde5a
DF
4404
4405err_size:
4406 put_user(sizeof(*attr), &uattr->size);
e78c7bca 4407 return -E2BIG;
d50dde5a
DF
4408}
4409
1da177e4
LT
4410/**
4411 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4412 * @pid: the pid in question.
4413 * @policy: new policy.
4414 * @param: structure containing the new RT priority.
e69f6186
YB
4415 *
4416 * Return: 0 on success. An error code otherwise.
1da177e4 4417 */
5add95d4
HC
4418SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4419 struct sched_param __user *, param)
1da177e4 4420{
c21761f1
JB
4421 /* negative values for policy are not valid */
4422 if (policy < 0)
4423 return -EINVAL;
4424
1da177e4
LT
4425 return do_sched_setscheduler(pid, policy, param);
4426}
4427
4428/**
4429 * sys_sched_setparam - set/change the RT priority of a thread
4430 * @pid: the pid in question.
4431 * @param: structure containing the new RT priority.
e69f6186
YB
4432 *
4433 * Return: 0 on success. An error code otherwise.
1da177e4 4434 */
5add95d4 4435SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4436{
c13db6b1 4437 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
4438}
4439
d50dde5a
DF
4440/**
4441 * sys_sched_setattr - same as above, but with extended sched_attr
4442 * @pid: the pid in question.
5778fccf 4443 * @uattr: structure containing the extended parameters.
db66d756 4444 * @flags: for future extension.
d50dde5a 4445 */
6d35ab48
PZ
4446SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4447 unsigned int, flags)
d50dde5a
DF
4448{
4449 struct sched_attr attr;
4450 struct task_struct *p;
4451 int retval;
4452
6d35ab48 4453 if (!uattr || pid < 0 || flags)
d50dde5a
DF
4454 return -EINVAL;
4455
143cf23d
MK
4456 retval = sched_copy_attr(uattr, &attr);
4457 if (retval)
4458 return retval;
d50dde5a 4459
b14ed2c2 4460 if ((int)attr.sched_policy < 0)
dbdb2275 4461 return -EINVAL;
d50dde5a
DF
4462
4463 rcu_read_lock();
4464 retval = -ESRCH;
4465 p = find_process_by_pid(pid);
4466 if (p != NULL)
4467 retval = sched_setattr(p, &attr);
4468 rcu_read_unlock();
4469
4470 return retval;
4471}
4472
1da177e4
LT
4473/**
4474 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4475 * @pid: the pid in question.
e69f6186
YB
4476 *
4477 * Return: On success, the policy of the thread. Otherwise, a negative error
4478 * code.
1da177e4 4479 */
5add95d4 4480SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4481{
36c8b586 4482 struct task_struct *p;
3a5c359a 4483 int retval;
1da177e4
LT
4484
4485 if (pid < 0)
3a5c359a 4486 return -EINVAL;
1da177e4
LT
4487
4488 retval = -ESRCH;
5fe85be0 4489 rcu_read_lock();
1da177e4
LT
4490 p = find_process_by_pid(pid);
4491 if (p) {
4492 retval = security_task_getscheduler(p);
4493 if (!retval)
ca94c442
LP
4494 retval = p->policy
4495 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4496 }
5fe85be0 4497 rcu_read_unlock();
1da177e4
LT
4498 return retval;
4499}
4500
4501/**
ca94c442 4502 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4503 * @pid: the pid in question.
4504 * @param: structure containing the RT priority.
e69f6186
YB
4505 *
4506 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4507 * code.
1da177e4 4508 */
5add95d4 4509SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4510{
ce5f7f82 4511 struct sched_param lp = { .sched_priority = 0 };
36c8b586 4512 struct task_struct *p;
3a5c359a 4513 int retval;
1da177e4
LT
4514
4515 if (!param || pid < 0)
3a5c359a 4516 return -EINVAL;
1da177e4 4517
5fe85be0 4518 rcu_read_lock();
1da177e4
LT
4519 p = find_process_by_pid(pid);
4520 retval = -ESRCH;
4521 if (!p)
4522 goto out_unlock;
4523
4524 retval = security_task_getscheduler(p);
4525 if (retval)
4526 goto out_unlock;
4527
ce5f7f82
PZ
4528 if (task_has_rt_policy(p))
4529 lp.sched_priority = p->rt_priority;
5fe85be0 4530 rcu_read_unlock();
1da177e4
LT
4531
4532 /*
4533 * This one might sleep, we cannot do it with a spinlock held ...
4534 */
4535 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4536
1da177e4
LT
4537 return retval;
4538
4539out_unlock:
5fe85be0 4540 rcu_read_unlock();
1da177e4
LT
4541 return retval;
4542}
4543
d50dde5a
DF
4544static int sched_read_attr(struct sched_attr __user *uattr,
4545 struct sched_attr *attr,
4546 unsigned int usize)
4547{
4548 int ret;
4549
4550 if (!access_ok(VERIFY_WRITE, uattr, usize))
4551 return -EFAULT;
4552
4553 /*
4554 * If we're handed a smaller struct than we know of,
4555 * ensure all the unknown bits are 0 - i.e. old
4556 * user-space does not get uncomplete information.
4557 */
4558 if (usize < sizeof(*attr)) {
4559 unsigned char *addr;
4560 unsigned char *end;
4561
4562 addr = (void *)attr + usize;
4563 end = (void *)attr + sizeof(*attr);
4564
4565 for (; addr < end; addr++) {
4566 if (*addr)
22400674 4567 return -EFBIG;
d50dde5a
DF
4568 }
4569
4570 attr->size = usize;
4571 }
4572
4efbc454 4573 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
4574 if (ret)
4575 return -EFAULT;
4576
22400674 4577 return 0;
d50dde5a
DF
4578}
4579
4580/**
aab03e05 4581 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 4582 * @pid: the pid in question.
5778fccf 4583 * @uattr: structure containing the extended parameters.
d50dde5a 4584 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 4585 * @flags: for future extension.
d50dde5a 4586 */
6d35ab48
PZ
4587SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4588 unsigned int, size, unsigned int, flags)
d50dde5a
DF
4589{
4590 struct sched_attr attr = {
4591 .size = sizeof(struct sched_attr),
4592 };
4593 struct task_struct *p;
4594 int retval;
4595
4596 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 4597 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
4598 return -EINVAL;
4599
4600 rcu_read_lock();
4601 p = find_process_by_pid(pid);
4602 retval = -ESRCH;
4603 if (!p)
4604 goto out_unlock;
4605
4606 retval = security_task_getscheduler(p);
4607 if (retval)
4608 goto out_unlock;
4609
4610 attr.sched_policy = p->policy;
7479f3c9
PZ
4611 if (p->sched_reset_on_fork)
4612 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
4613 if (task_has_dl_policy(p))
4614 __getparam_dl(p, &attr);
4615 else if (task_has_rt_policy(p))
d50dde5a
DF
4616 attr.sched_priority = p->rt_priority;
4617 else
d0ea0268 4618 attr.sched_nice = task_nice(p);
d50dde5a
DF
4619
4620 rcu_read_unlock();
4621
4622 retval = sched_read_attr(uattr, &attr, size);
4623 return retval;
4624
4625out_unlock:
4626 rcu_read_unlock();
4627 return retval;
4628}
4629
96f874e2 4630long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4631{
5a16f3d3 4632 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4633 struct task_struct *p;
4634 int retval;
1da177e4 4635
23f5d142 4636 rcu_read_lock();
1da177e4
LT
4637
4638 p = find_process_by_pid(pid);
4639 if (!p) {
23f5d142 4640 rcu_read_unlock();
1da177e4
LT
4641 return -ESRCH;
4642 }
4643
23f5d142 4644 /* Prevent p going away */
1da177e4 4645 get_task_struct(p);
23f5d142 4646 rcu_read_unlock();
1da177e4 4647
14a40ffc
TH
4648 if (p->flags & PF_NO_SETAFFINITY) {
4649 retval = -EINVAL;
4650 goto out_put_task;
4651 }
5a16f3d3
RR
4652 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4653 retval = -ENOMEM;
4654 goto out_put_task;
4655 }
4656 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4657 retval = -ENOMEM;
4658 goto out_free_cpus_allowed;
4659 }
1da177e4 4660 retval = -EPERM;
4c44aaaf
EB
4661 if (!check_same_owner(p)) {
4662 rcu_read_lock();
4663 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4664 rcu_read_unlock();
16303ab2 4665 goto out_free_new_mask;
4c44aaaf
EB
4666 }
4667 rcu_read_unlock();
4668 }
1da177e4 4669
b0ae1981 4670 retval = security_task_setscheduler(p);
e7834f8f 4671 if (retval)
16303ab2 4672 goto out_free_new_mask;
e7834f8f 4673
e4099a5e
PZ
4674
4675 cpuset_cpus_allowed(p, cpus_allowed);
4676 cpumask_and(new_mask, in_mask, cpus_allowed);
4677
332ac17e
DF
4678 /*
4679 * Since bandwidth control happens on root_domain basis,
4680 * if admission test is enabled, we only admit -deadline
4681 * tasks allowed to run on all the CPUs in the task's
4682 * root_domain.
4683 */
4684#ifdef CONFIG_SMP
f1e3a093
KT
4685 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4686 rcu_read_lock();
4687 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 4688 retval = -EBUSY;
f1e3a093 4689 rcu_read_unlock();
16303ab2 4690 goto out_free_new_mask;
332ac17e 4691 }
f1e3a093 4692 rcu_read_unlock();
332ac17e
DF
4693 }
4694#endif
49246274 4695again:
25834c73 4696 retval = __set_cpus_allowed_ptr(p, new_mask, true);
1da177e4 4697
8707d8b8 4698 if (!retval) {
5a16f3d3
RR
4699 cpuset_cpus_allowed(p, cpus_allowed);
4700 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4701 /*
4702 * We must have raced with a concurrent cpuset
4703 * update. Just reset the cpus_allowed to the
4704 * cpuset's cpus_allowed
4705 */
5a16f3d3 4706 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4707 goto again;
4708 }
4709 }
16303ab2 4710out_free_new_mask:
5a16f3d3
RR
4711 free_cpumask_var(new_mask);
4712out_free_cpus_allowed:
4713 free_cpumask_var(cpus_allowed);
4714out_put_task:
1da177e4 4715 put_task_struct(p);
1da177e4
LT
4716 return retval;
4717}
4718
4719static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4720 struct cpumask *new_mask)
1da177e4 4721{
96f874e2
RR
4722 if (len < cpumask_size())
4723 cpumask_clear(new_mask);
4724 else if (len > cpumask_size())
4725 len = cpumask_size();
4726
1da177e4
LT
4727 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4728}
4729
4730/**
4731 * sys_sched_setaffinity - set the cpu affinity of a process
4732 * @pid: pid of the process
4733 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4734 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
4735 *
4736 * Return: 0 on success. An error code otherwise.
1da177e4 4737 */
5add95d4
HC
4738SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4739 unsigned long __user *, user_mask_ptr)
1da177e4 4740{
5a16f3d3 4741 cpumask_var_t new_mask;
1da177e4
LT
4742 int retval;
4743
5a16f3d3
RR
4744 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4745 return -ENOMEM;
1da177e4 4746
5a16f3d3
RR
4747 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4748 if (retval == 0)
4749 retval = sched_setaffinity(pid, new_mask);
4750 free_cpumask_var(new_mask);
4751 return retval;
1da177e4
LT
4752}
4753
96f874e2 4754long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4755{
36c8b586 4756 struct task_struct *p;
31605683 4757 unsigned long flags;
1da177e4 4758 int retval;
1da177e4 4759
23f5d142 4760 rcu_read_lock();
1da177e4
LT
4761
4762 retval = -ESRCH;
4763 p = find_process_by_pid(pid);
4764 if (!p)
4765 goto out_unlock;
4766
e7834f8f
DQ
4767 retval = security_task_getscheduler(p);
4768 if (retval)
4769 goto out_unlock;
4770
013fdb80 4771 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4772 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4773 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4774
4775out_unlock:
23f5d142 4776 rcu_read_unlock();
1da177e4 4777
9531b62f 4778 return retval;
1da177e4
LT
4779}
4780
4781/**
4782 * sys_sched_getaffinity - get the cpu affinity of a process
4783 * @pid: pid of the process
4784 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4785 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186 4786 *
599b4840
ZW
4787 * Return: size of CPU mask copied to user_mask_ptr on success. An
4788 * error code otherwise.
1da177e4 4789 */
5add95d4
HC
4790SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4791 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4792{
4793 int ret;
f17c8607 4794 cpumask_var_t mask;
1da177e4 4795
84fba5ec 4796 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4797 return -EINVAL;
4798 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4799 return -EINVAL;
4800
f17c8607
RR
4801 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4802 return -ENOMEM;
1da177e4 4803
f17c8607
RR
4804 ret = sched_getaffinity(pid, mask);
4805 if (ret == 0) {
8bc037fb 4806 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4807
4808 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4809 ret = -EFAULT;
4810 else
cd3d8031 4811 ret = retlen;
f17c8607
RR
4812 }
4813 free_cpumask_var(mask);
1da177e4 4814
f17c8607 4815 return ret;
1da177e4
LT
4816}
4817
4818/**
4819 * sys_sched_yield - yield the current processor to other threads.
4820 *
dd41f596
IM
4821 * This function yields the current CPU to other tasks. If there are no
4822 * other threads running on this CPU then this function will return.
e69f6186
YB
4823 *
4824 * Return: 0.
1da177e4 4825 */
5add95d4 4826SYSCALL_DEFINE0(sched_yield)
1da177e4 4827{
70b97a7f 4828 struct rq *rq = this_rq_lock();
1da177e4 4829
2d72376b 4830 schedstat_inc(rq, yld_count);
4530d7ab 4831 current->sched_class->yield_task(rq);
1da177e4
LT
4832
4833 /*
4834 * Since we are going to call schedule() anyway, there's
4835 * no need to preempt or enable interrupts:
4836 */
4837 __release(rq->lock);
8a25d5de 4838 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4839 do_raw_spin_unlock(&rq->lock);
ba74c144 4840 sched_preempt_enable_no_resched();
1da177e4
LT
4841
4842 schedule();
4843
4844 return 0;
4845}
4846
02b67cc3 4847int __sched _cond_resched(void)
1da177e4 4848{
fe32d3cd 4849 if (should_resched(0)) {
a18b5d01 4850 preempt_schedule_common();
1da177e4
LT
4851 return 1;
4852 }
4853 return 0;
4854}
02b67cc3 4855EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4856
4857/*
613afbf8 4858 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4859 * call schedule, and on return reacquire the lock.
4860 *
41a2d6cf 4861 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4862 * operations here to prevent schedule() from being called twice (once via
4863 * spin_unlock(), once by hand).
4864 */
613afbf8 4865int __cond_resched_lock(spinlock_t *lock)
1da177e4 4866{
fe32d3cd 4867 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6df3cecb
JK
4868 int ret = 0;
4869
f607c668
PZ
4870 lockdep_assert_held(lock);
4871
4a81e832 4872 if (spin_needbreak(lock) || resched) {
1da177e4 4873 spin_unlock(lock);
d86ee480 4874 if (resched)
a18b5d01 4875 preempt_schedule_common();
95c354fe
NP
4876 else
4877 cpu_relax();
6df3cecb 4878 ret = 1;
1da177e4 4879 spin_lock(lock);
1da177e4 4880 }
6df3cecb 4881 return ret;
1da177e4 4882}
613afbf8 4883EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4884
613afbf8 4885int __sched __cond_resched_softirq(void)
1da177e4
LT
4886{
4887 BUG_ON(!in_softirq());
4888
fe32d3cd 4889 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
98d82567 4890 local_bh_enable();
a18b5d01 4891 preempt_schedule_common();
1da177e4
LT
4892 local_bh_disable();
4893 return 1;
4894 }
4895 return 0;
4896}
613afbf8 4897EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4898
1da177e4
LT
4899/**
4900 * yield - yield the current processor to other threads.
4901 *
8e3fabfd
PZ
4902 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4903 *
4904 * The scheduler is at all times free to pick the calling task as the most
4905 * eligible task to run, if removing the yield() call from your code breaks
4906 * it, its already broken.
4907 *
4908 * Typical broken usage is:
4909 *
4910 * while (!event)
4911 * yield();
4912 *
4913 * where one assumes that yield() will let 'the other' process run that will
4914 * make event true. If the current task is a SCHED_FIFO task that will never
4915 * happen. Never use yield() as a progress guarantee!!
4916 *
4917 * If you want to use yield() to wait for something, use wait_event().
4918 * If you want to use yield() to be 'nice' for others, use cond_resched().
4919 * If you still want to use yield(), do not!
1da177e4
LT
4920 */
4921void __sched yield(void)
4922{
4923 set_current_state(TASK_RUNNING);
4924 sys_sched_yield();
4925}
1da177e4
LT
4926EXPORT_SYMBOL(yield);
4927
d95f4122
MG
4928/**
4929 * yield_to - yield the current processor to another thread in
4930 * your thread group, or accelerate that thread toward the
4931 * processor it's on.
16addf95
RD
4932 * @p: target task
4933 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4934 *
4935 * It's the caller's job to ensure that the target task struct
4936 * can't go away on us before we can do any checks.
4937 *
e69f6186 4938 * Return:
7b270f60
PZ
4939 * true (>0) if we indeed boosted the target task.
4940 * false (0) if we failed to boost the target.
4941 * -ESRCH if there's no task to yield to.
d95f4122 4942 */
fa93384f 4943int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
4944{
4945 struct task_struct *curr = current;
4946 struct rq *rq, *p_rq;
4947 unsigned long flags;
c3c18640 4948 int yielded = 0;
d95f4122
MG
4949
4950 local_irq_save(flags);
4951 rq = this_rq();
4952
4953again:
4954 p_rq = task_rq(p);
7b270f60
PZ
4955 /*
4956 * If we're the only runnable task on the rq and target rq also
4957 * has only one task, there's absolutely no point in yielding.
4958 */
4959 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4960 yielded = -ESRCH;
4961 goto out_irq;
4962 }
4963
d95f4122 4964 double_rq_lock(rq, p_rq);
39e24d8f 4965 if (task_rq(p) != p_rq) {
d95f4122
MG
4966 double_rq_unlock(rq, p_rq);
4967 goto again;
4968 }
4969
4970 if (!curr->sched_class->yield_to_task)
7b270f60 4971 goto out_unlock;
d95f4122
MG
4972
4973 if (curr->sched_class != p->sched_class)
7b270f60 4974 goto out_unlock;
d95f4122
MG
4975
4976 if (task_running(p_rq, p) || p->state)
7b270f60 4977 goto out_unlock;
d95f4122
MG
4978
4979 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4980 if (yielded) {
d95f4122 4981 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4982 /*
4983 * Make p's CPU reschedule; pick_next_entity takes care of
4984 * fairness.
4985 */
4986 if (preempt && rq != p_rq)
8875125e 4987 resched_curr(p_rq);
6d1cafd8 4988 }
d95f4122 4989
7b270f60 4990out_unlock:
d95f4122 4991 double_rq_unlock(rq, p_rq);
7b270f60 4992out_irq:
d95f4122
MG
4993 local_irq_restore(flags);
4994
7b270f60 4995 if (yielded > 0)
d95f4122
MG
4996 schedule();
4997
4998 return yielded;
4999}
5000EXPORT_SYMBOL_GPL(yield_to);
5001
1da177e4 5002/*
41a2d6cf 5003 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5004 * that process accounting knows that this is a task in IO wait state.
1da177e4 5005 */
1da177e4
LT
5006long __sched io_schedule_timeout(long timeout)
5007{
9cff8ade
N
5008 int old_iowait = current->in_iowait;
5009 struct rq *rq;
1da177e4
LT
5010 long ret;
5011
9cff8ade 5012 current->in_iowait = 1;
10d784ea 5013 blk_schedule_flush_plug(current);
9cff8ade 5014
0ff92245 5015 delayacct_blkio_start();
9cff8ade 5016 rq = raw_rq();
1da177e4
LT
5017 atomic_inc(&rq->nr_iowait);
5018 ret = schedule_timeout(timeout);
9cff8ade 5019 current->in_iowait = old_iowait;
1da177e4 5020 atomic_dec(&rq->nr_iowait);
0ff92245 5021 delayacct_blkio_end();
9cff8ade 5022
1da177e4
LT
5023 return ret;
5024}
9cff8ade 5025EXPORT_SYMBOL(io_schedule_timeout);
1da177e4
LT
5026
5027/**
5028 * sys_sched_get_priority_max - return maximum RT priority.
5029 * @policy: scheduling class.
5030 *
e69f6186
YB
5031 * Return: On success, this syscall returns the maximum
5032 * rt_priority that can be used by a given scheduling class.
5033 * On failure, a negative error code is returned.
1da177e4 5034 */
5add95d4 5035SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5036{
5037 int ret = -EINVAL;
5038
5039 switch (policy) {
5040 case SCHED_FIFO:
5041 case SCHED_RR:
5042 ret = MAX_USER_RT_PRIO-1;
5043 break;
aab03e05 5044 case SCHED_DEADLINE:
1da177e4 5045 case SCHED_NORMAL:
b0a9499c 5046 case SCHED_BATCH:
dd41f596 5047 case SCHED_IDLE:
1da177e4
LT
5048 ret = 0;
5049 break;
5050 }
5051 return ret;
5052}
5053
5054/**
5055 * sys_sched_get_priority_min - return minimum RT priority.
5056 * @policy: scheduling class.
5057 *
e69f6186
YB
5058 * Return: On success, this syscall returns the minimum
5059 * rt_priority that can be used by a given scheduling class.
5060 * On failure, a negative error code is returned.
1da177e4 5061 */
5add95d4 5062SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5063{
5064 int ret = -EINVAL;
5065
5066 switch (policy) {
5067 case SCHED_FIFO:
5068 case SCHED_RR:
5069 ret = 1;
5070 break;
aab03e05 5071 case SCHED_DEADLINE:
1da177e4 5072 case SCHED_NORMAL:
b0a9499c 5073 case SCHED_BATCH:
dd41f596 5074 case SCHED_IDLE:
1da177e4
LT
5075 ret = 0;
5076 }
5077 return ret;
5078}
5079
5080/**
5081 * sys_sched_rr_get_interval - return the default timeslice of a process.
5082 * @pid: pid of the process.
5083 * @interval: userspace pointer to the timeslice value.
5084 *
5085 * this syscall writes the default timeslice value of a given process
5086 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
5087 *
5088 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5089 * an error code.
1da177e4 5090 */
17da2bd9 5091SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5092 struct timespec __user *, interval)
1da177e4 5093{
36c8b586 5094 struct task_struct *p;
a4ec24b4 5095 unsigned int time_slice;
eb580751
PZ
5096 struct rq_flags rf;
5097 struct timespec t;
dba091b9 5098 struct rq *rq;
3a5c359a 5099 int retval;
1da177e4
LT
5100
5101 if (pid < 0)
3a5c359a 5102 return -EINVAL;
1da177e4
LT
5103
5104 retval = -ESRCH;
1a551ae7 5105 rcu_read_lock();
1da177e4
LT
5106 p = find_process_by_pid(pid);
5107 if (!p)
5108 goto out_unlock;
5109
5110 retval = security_task_getscheduler(p);
5111 if (retval)
5112 goto out_unlock;
5113
eb580751 5114 rq = task_rq_lock(p, &rf);
a57beec5
PZ
5115 time_slice = 0;
5116 if (p->sched_class->get_rr_interval)
5117 time_slice = p->sched_class->get_rr_interval(rq, p);
eb580751 5118 task_rq_unlock(rq, p, &rf);
a4ec24b4 5119
1a551ae7 5120 rcu_read_unlock();
a4ec24b4 5121 jiffies_to_timespec(time_slice, &t);
1da177e4 5122 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5123 return retval;
3a5c359a 5124
1da177e4 5125out_unlock:
1a551ae7 5126 rcu_read_unlock();
1da177e4
LT
5127 return retval;
5128}
5129
7c731e0a 5130static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5131
82a1fcb9 5132void sched_show_task(struct task_struct *p)
1da177e4 5133{
1da177e4 5134 unsigned long free = 0;
4e79752c 5135 int ppid;
1f8a7633 5136 unsigned long state = p->state;
1da177e4 5137
1f8a7633
TH
5138 if (state)
5139 state = __ffs(state) + 1;
28d0686c 5140 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 5141 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5142#if BITS_PER_LONG == 32
1da177e4 5143 if (state == TASK_RUNNING)
3df0fc5b 5144 printk(KERN_CONT " running ");
1da177e4 5145 else
3df0fc5b 5146 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5147#else
5148 if (state == TASK_RUNNING)
3df0fc5b 5149 printk(KERN_CONT " running task ");
1da177e4 5150 else
3df0fc5b 5151 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5152#endif
5153#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5154 free = stack_not_used(p);
1da177e4 5155#endif
a90e984c 5156 ppid = 0;
4e79752c 5157 rcu_read_lock();
a90e984c
ON
5158 if (pid_alive(p))
5159 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 5160 rcu_read_unlock();
3df0fc5b 5161 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 5162 task_pid_nr(p), ppid,
aa47b7e0 5163 (unsigned long)task_thread_info(p)->flags);
1da177e4 5164
3d1cb205 5165 print_worker_info(KERN_INFO, p);
5fb5e6de 5166 show_stack(p, NULL);
1da177e4
LT
5167}
5168
e59e2ae2 5169void show_state_filter(unsigned long state_filter)
1da177e4 5170{
36c8b586 5171 struct task_struct *g, *p;
1da177e4 5172
4bd77321 5173#if BITS_PER_LONG == 32
3df0fc5b
PZ
5174 printk(KERN_INFO
5175 " task PC stack pid father\n");
1da177e4 5176#else
3df0fc5b
PZ
5177 printk(KERN_INFO
5178 " task PC stack pid father\n");
1da177e4 5179#endif
510f5acc 5180 rcu_read_lock();
5d07f420 5181 for_each_process_thread(g, p) {
1da177e4
LT
5182 /*
5183 * reset the NMI-timeout, listing all files on a slow
25985edc 5184 * console might take a lot of time:
57675cb9
AR
5185 * Also, reset softlockup watchdogs on all CPUs, because
5186 * another CPU might be blocked waiting for us to process
5187 * an IPI.
1da177e4
LT
5188 */
5189 touch_nmi_watchdog();
57675cb9 5190 touch_all_softlockup_watchdogs();
39bc89fd 5191 if (!state_filter || (p->state & state_filter))
82a1fcb9 5192 sched_show_task(p);
5d07f420 5193 }
1da177e4 5194
dd41f596 5195#ifdef CONFIG_SCHED_DEBUG
fb90a6e9
RV
5196 if (!state_filter)
5197 sysrq_sched_debug_show();
dd41f596 5198#endif
510f5acc 5199 rcu_read_unlock();
e59e2ae2
IM
5200 /*
5201 * Only show locks if all tasks are dumped:
5202 */
93335a21 5203 if (!state_filter)
e59e2ae2 5204 debug_show_all_locks();
1da177e4
LT
5205}
5206
0db0628d 5207void init_idle_bootup_task(struct task_struct *idle)
1df21055 5208{
dd41f596 5209 idle->sched_class = &idle_sched_class;
1df21055
IM
5210}
5211
f340c0d1
IM
5212/**
5213 * init_idle - set up an idle thread for a given CPU
5214 * @idle: task in question
5215 * @cpu: cpu the idle task belongs to
5216 *
5217 * NOTE: this function does not set the idle thread's NEED_RESCHED
5218 * flag, to make booting more robust.
5219 */
0db0628d 5220void init_idle(struct task_struct *idle, int cpu)
1da177e4 5221{
70b97a7f 5222 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5223 unsigned long flags;
5224
25834c73
PZ
5225 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5226 raw_spin_lock(&rq->lock);
5cbd54ef 5227
5e1576ed 5228 __sched_fork(0, idle);
06b83b5f 5229 idle->state = TASK_RUNNING;
dd41f596
IM
5230 idle->se.exec_start = sched_clock();
5231
e1b77c92
MR
5232 kasan_unpoison_task_stack(idle);
5233
de9b8f5d
PZ
5234#ifdef CONFIG_SMP
5235 /*
5236 * Its possible that init_idle() gets called multiple times on a task,
5237 * in that case do_set_cpus_allowed() will not do the right thing.
5238 *
5239 * And since this is boot we can forgo the serialization.
5240 */
5241 set_cpus_allowed_common(idle, cpumask_of(cpu));
5242#endif
6506cf6c
PZ
5243 /*
5244 * We're having a chicken and egg problem, even though we are
5245 * holding rq->lock, the cpu isn't yet set to this cpu so the
5246 * lockdep check in task_group() will fail.
5247 *
5248 * Similar case to sched_fork(). / Alternatively we could
5249 * use task_rq_lock() here and obtain the other rq->lock.
5250 *
5251 * Silence PROVE_RCU
5252 */
5253 rcu_read_lock();
dd41f596 5254 __set_task_cpu(idle, cpu);
6506cf6c 5255 rcu_read_unlock();
1da177e4 5256
1da177e4 5257 rq->curr = rq->idle = idle;
da0c1e65 5258 idle->on_rq = TASK_ON_RQ_QUEUED;
de9b8f5d 5259#ifdef CONFIG_SMP
3ca7a440 5260 idle->on_cpu = 1;
4866cde0 5261#endif
25834c73
PZ
5262 raw_spin_unlock(&rq->lock);
5263 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
1da177e4
LT
5264
5265 /* Set the preempt count _outside_ the spinlocks! */
01028747 5266 init_idle_preempt_count(idle, cpu);
55cd5340 5267
dd41f596
IM
5268 /*
5269 * The idle tasks have their own, simple scheduling class:
5270 */
5271 idle->sched_class = &idle_sched_class;
868baf07 5272 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 5273 vtime_init_idle(idle, cpu);
de9b8f5d 5274#ifdef CONFIG_SMP
f1c6f1a7
CE
5275 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5276#endif
19978ca6
IM
5277}
5278
f82f8042
JL
5279int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5280 const struct cpumask *trial)
5281{
5282 int ret = 1, trial_cpus;
5283 struct dl_bw *cur_dl_b;
5284 unsigned long flags;
5285
bb2bc55a
MG
5286 if (!cpumask_weight(cur))
5287 return ret;
5288
75e23e49 5289 rcu_read_lock_sched();
f82f8042
JL
5290 cur_dl_b = dl_bw_of(cpumask_any(cur));
5291 trial_cpus = cpumask_weight(trial);
5292
5293 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5294 if (cur_dl_b->bw != -1 &&
5295 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5296 ret = 0;
5297 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
75e23e49 5298 rcu_read_unlock_sched();
f82f8042
JL
5299
5300 return ret;
5301}
5302
7f51412a
JL
5303int task_can_attach(struct task_struct *p,
5304 const struct cpumask *cs_cpus_allowed)
5305{
5306 int ret = 0;
5307
5308 /*
5309 * Kthreads which disallow setaffinity shouldn't be moved
5310 * to a new cpuset; we don't want to change their cpu
5311 * affinity and isolating such threads by their set of
5312 * allowed nodes is unnecessary. Thus, cpusets are not
5313 * applicable for such threads. This prevents checking for
5314 * success of set_cpus_allowed_ptr() on all attached tasks
5315 * before cpus_allowed may be changed.
5316 */
5317 if (p->flags & PF_NO_SETAFFINITY) {
5318 ret = -EINVAL;
5319 goto out;
5320 }
5321
5322#ifdef CONFIG_SMP
5323 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5324 cs_cpus_allowed)) {
5325 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5326 cs_cpus_allowed);
75e23e49 5327 struct dl_bw *dl_b;
7f51412a
JL
5328 bool overflow;
5329 int cpus;
5330 unsigned long flags;
5331
75e23e49
JL
5332 rcu_read_lock_sched();
5333 dl_b = dl_bw_of(dest_cpu);
7f51412a
JL
5334 raw_spin_lock_irqsave(&dl_b->lock, flags);
5335 cpus = dl_bw_cpus(dest_cpu);
5336 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5337 if (overflow)
5338 ret = -EBUSY;
5339 else {
5340 /*
5341 * We reserve space for this task in the destination
5342 * root_domain, as we can't fail after this point.
5343 * We will free resources in the source root_domain
5344 * later on (see set_cpus_allowed_dl()).
5345 */
5346 __dl_add(dl_b, p->dl.dl_bw);
5347 }
5348 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
75e23e49 5349 rcu_read_unlock_sched();
7f51412a
JL
5350
5351 }
5352#endif
5353out:
5354 return ret;
5355}
5356
1da177e4 5357#ifdef CONFIG_SMP
1da177e4 5358
e26fbffd
TG
5359static bool sched_smp_initialized __read_mostly;
5360
e6628d5b
MG
5361#ifdef CONFIG_NUMA_BALANCING
5362/* Migrate current task p to target_cpu */
5363int migrate_task_to(struct task_struct *p, int target_cpu)
5364{
5365 struct migration_arg arg = { p, target_cpu };
5366 int curr_cpu = task_cpu(p);
5367
5368 if (curr_cpu == target_cpu)
5369 return 0;
5370
5371 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5372 return -EINVAL;
5373
5374 /* TODO: This is not properly updating schedstats */
5375
286549dc 5376 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
5377 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5378}
0ec8aa00
PZ
5379
5380/*
5381 * Requeue a task on a given node and accurately track the number of NUMA
5382 * tasks on the runqueues
5383 */
5384void sched_setnuma(struct task_struct *p, int nid)
5385{
da0c1e65 5386 bool queued, running;
eb580751
PZ
5387 struct rq_flags rf;
5388 struct rq *rq;
0ec8aa00 5389
eb580751 5390 rq = task_rq_lock(p, &rf);
da0c1e65 5391 queued = task_on_rq_queued(p);
0ec8aa00
PZ
5392 running = task_current(rq, p);
5393
da0c1e65 5394 if (queued)
1de64443 5395 dequeue_task(rq, p, DEQUEUE_SAVE);
0ec8aa00 5396 if (running)
f3cd1c4e 5397 put_prev_task(rq, p);
0ec8aa00
PZ
5398
5399 p->numa_preferred_nid = nid;
0ec8aa00
PZ
5400
5401 if (running)
5402 p->sched_class->set_curr_task(rq);
da0c1e65 5403 if (queued)
1de64443 5404 enqueue_task(rq, p, ENQUEUE_RESTORE);
eb580751 5405 task_rq_unlock(rq, p, &rf);
0ec8aa00 5406}
5cc389bc 5407#endif /* CONFIG_NUMA_BALANCING */
f7b4cddc 5408
1da177e4 5409#ifdef CONFIG_HOTPLUG_CPU
054b9108 5410/*
48c5ccae
PZ
5411 * Ensures that the idle task is using init_mm right before its cpu goes
5412 * offline.
054b9108 5413 */
48c5ccae 5414void idle_task_exit(void)
1da177e4 5415{
48c5ccae 5416 struct mm_struct *mm = current->active_mm;
e76bd8d9 5417
48c5ccae 5418 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 5419
a53efe5f 5420 if (mm != &init_mm) {
f98db601 5421 switch_mm_irqs_off(mm, &init_mm, current);
a53efe5f
MS
5422 finish_arch_post_lock_switch();
5423 }
48c5ccae 5424 mmdrop(mm);
1da177e4
LT
5425}
5426
5427/*
5d180232
PZ
5428 * Since this CPU is going 'away' for a while, fold any nr_active delta
5429 * we might have. Assumes we're called after migrate_tasks() so that the
d60585c5
TG
5430 * nr_active count is stable. We need to take the teardown thread which
5431 * is calling this into account, so we hand in adjust = 1 to the load
5432 * calculation.
5d180232
PZ
5433 *
5434 * Also see the comment "Global load-average calculations".
1da177e4 5435 */
5d180232 5436static void calc_load_migrate(struct rq *rq)
1da177e4 5437{
d60585c5 5438 long delta = calc_load_fold_active(rq, 1);
5d180232
PZ
5439 if (delta)
5440 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
5441}
5442
3f1d2a31
PZ
5443static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5444{
5445}
5446
5447static const struct sched_class fake_sched_class = {
5448 .put_prev_task = put_prev_task_fake,
5449};
5450
5451static struct task_struct fake_task = {
5452 /*
5453 * Avoid pull_{rt,dl}_task()
5454 */
5455 .prio = MAX_PRIO + 1,
5456 .sched_class = &fake_sched_class,
5457};
5458
48f24c4d 5459/*
48c5ccae
PZ
5460 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5461 * try_to_wake_up()->select_task_rq().
5462 *
5463 * Called with rq->lock held even though we'er in stop_machine() and
5464 * there's no concurrency possible, we hold the required locks anyway
5465 * because of lock validation efforts.
1da177e4 5466 */
5e16bbc2 5467static void migrate_tasks(struct rq *dead_rq)
1da177e4 5468{
5e16bbc2 5469 struct rq *rq = dead_rq;
48c5ccae 5470 struct task_struct *next, *stop = rq->stop;
e7904a28 5471 struct pin_cookie cookie;
48c5ccae 5472 int dest_cpu;
1da177e4
LT
5473
5474 /*
48c5ccae
PZ
5475 * Fudge the rq selection such that the below task selection loop
5476 * doesn't get stuck on the currently eligible stop task.
5477 *
5478 * We're currently inside stop_machine() and the rq is either stuck
5479 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5480 * either way we should never end up calling schedule() until we're
5481 * done here.
1da177e4 5482 */
48c5ccae 5483 rq->stop = NULL;
48f24c4d 5484
77bd3970
FW
5485 /*
5486 * put_prev_task() and pick_next_task() sched
5487 * class method both need to have an up-to-date
5488 * value of rq->clock[_task]
5489 */
5490 update_rq_clock(rq);
5491
5e16bbc2 5492 for (;;) {
48c5ccae
PZ
5493 /*
5494 * There's this thread running, bail when that's the only
5495 * remaining thread.
5496 */
5497 if (rq->nr_running == 1)
dd41f596 5498 break;
48c5ccae 5499
cbce1a68 5500 /*
5473e0cc 5501 * pick_next_task assumes pinned rq->lock.
cbce1a68 5502 */
e7904a28
PZ
5503 cookie = lockdep_pin_lock(&rq->lock);
5504 next = pick_next_task(rq, &fake_task, cookie);
48c5ccae 5505 BUG_ON(!next);
79c53799 5506 next->sched_class->put_prev_task(rq, next);
e692ab53 5507
5473e0cc
WL
5508 /*
5509 * Rules for changing task_struct::cpus_allowed are holding
5510 * both pi_lock and rq->lock, such that holding either
5511 * stabilizes the mask.
5512 *
5513 * Drop rq->lock is not quite as disastrous as it usually is
5514 * because !cpu_active at this point, which means load-balance
5515 * will not interfere. Also, stop-machine.
5516 */
e7904a28 5517 lockdep_unpin_lock(&rq->lock, cookie);
5473e0cc
WL
5518 raw_spin_unlock(&rq->lock);
5519 raw_spin_lock(&next->pi_lock);
5520 raw_spin_lock(&rq->lock);
5521
5522 /*
5523 * Since we're inside stop-machine, _nothing_ should have
5524 * changed the task, WARN if weird stuff happened, because in
5525 * that case the above rq->lock drop is a fail too.
5526 */
5527 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5528 raw_spin_unlock(&next->pi_lock);
5529 continue;
5530 }
5531
48c5ccae 5532 /* Find suitable destination for @next, with force if needed. */
5e16bbc2 5533 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
48c5ccae 5534
5e16bbc2
PZ
5535 rq = __migrate_task(rq, next, dest_cpu);
5536 if (rq != dead_rq) {
5537 raw_spin_unlock(&rq->lock);
5538 rq = dead_rq;
5539 raw_spin_lock(&rq->lock);
5540 }
5473e0cc 5541 raw_spin_unlock(&next->pi_lock);
1da177e4 5542 }
dce48a84 5543
48c5ccae 5544 rq->stop = stop;
dce48a84 5545}
1da177e4
LT
5546#endif /* CONFIG_HOTPLUG_CPU */
5547
1f11eb6a
GH
5548static void set_rq_online(struct rq *rq)
5549{
5550 if (!rq->online) {
5551 const struct sched_class *class;
5552
c6c4927b 5553 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5554 rq->online = 1;
5555
5556 for_each_class(class) {
5557 if (class->rq_online)
5558 class->rq_online(rq);
5559 }
5560 }
5561}
5562
5563static void set_rq_offline(struct rq *rq)
5564{
5565 if (rq->online) {
5566 const struct sched_class *class;
5567
5568 for_each_class(class) {
5569 if (class->rq_offline)
5570 class->rq_offline(rq);
5571 }
5572
c6c4927b 5573 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5574 rq->online = 0;
5575 }
5576}
5577
9cf7243d 5578static void set_cpu_rq_start_time(unsigned int cpu)
1da177e4 5579{
969c7921 5580 struct rq *rq = cpu_rq(cpu);
1da177e4 5581
a803f026
CM
5582 rq->age_stamp = sched_clock_cpu(cpu);
5583}
5584
4cb98839
PZ
5585static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5586
3e9830dc 5587#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5588
d039ac60 5589static __read_mostly int sched_debug_enabled;
f6630114 5590
d039ac60 5591static int __init sched_debug_setup(char *str)
f6630114 5592{
d039ac60 5593 sched_debug_enabled = 1;
f6630114
MT
5594
5595 return 0;
5596}
d039ac60
PZ
5597early_param("sched_debug", sched_debug_setup);
5598
5599static inline bool sched_debug(void)
5600{
5601 return sched_debug_enabled;
5602}
f6630114 5603
7c16ec58 5604static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5605 struct cpumask *groupmask)
1da177e4 5606{
4dcf6aff 5607 struct sched_group *group = sd->groups;
1da177e4 5608
96f874e2 5609 cpumask_clear(groupmask);
4dcf6aff
IM
5610
5611 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5612
5613 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5614 printk("does not load-balance\n");
4dcf6aff 5615 if (sd->parent)
3df0fc5b
PZ
5616 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5617 " has parent");
4dcf6aff 5618 return -1;
41c7ce9a
NP
5619 }
5620
333470ee
TH
5621 printk(KERN_CONT "span %*pbl level %s\n",
5622 cpumask_pr_args(sched_domain_span(sd)), sd->name);
4dcf6aff 5623
758b2cdc 5624 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5625 printk(KERN_ERR "ERROR: domain->span does not contain "
5626 "CPU%d\n", cpu);
4dcf6aff 5627 }
758b2cdc 5628 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5629 printk(KERN_ERR "ERROR: domain->groups does not contain"
5630 " CPU%d\n", cpu);
4dcf6aff 5631 }
1da177e4 5632
4dcf6aff 5633 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5634 do {
4dcf6aff 5635 if (!group) {
3df0fc5b
PZ
5636 printk("\n");
5637 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5638 break;
5639 }
5640
758b2cdc 5641 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5642 printk(KERN_CONT "\n");
5643 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5644 break;
5645 }
1da177e4 5646
cb83b629
PZ
5647 if (!(sd->flags & SD_OVERLAP) &&
5648 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5649 printk(KERN_CONT "\n");
5650 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5651 break;
5652 }
1da177e4 5653
758b2cdc 5654 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5655
333470ee
TH
5656 printk(KERN_CONT " %*pbl",
5657 cpumask_pr_args(sched_group_cpus(group)));
ca8ce3d0 5658 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
63b2ca30
NP
5659 printk(KERN_CONT " (cpu_capacity = %d)",
5660 group->sgc->capacity);
381512cf 5661 }
1da177e4 5662
4dcf6aff
IM
5663 group = group->next;
5664 } while (group != sd->groups);
3df0fc5b 5665 printk(KERN_CONT "\n");
1da177e4 5666
758b2cdc 5667 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5668 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5669
758b2cdc
RR
5670 if (sd->parent &&
5671 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5672 printk(KERN_ERR "ERROR: parent span is not a superset "
5673 "of domain->span\n");
4dcf6aff
IM
5674 return 0;
5675}
1da177e4 5676
4dcf6aff
IM
5677static void sched_domain_debug(struct sched_domain *sd, int cpu)
5678{
5679 int level = 0;
1da177e4 5680
d039ac60 5681 if (!sched_debug_enabled)
f6630114
MT
5682 return;
5683
4dcf6aff
IM
5684 if (!sd) {
5685 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5686 return;
5687 }
1da177e4 5688
4dcf6aff
IM
5689 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5690
5691 for (;;) {
4cb98839 5692 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5693 break;
1da177e4
LT
5694 level++;
5695 sd = sd->parent;
33859f7f 5696 if (!sd)
4dcf6aff
IM
5697 break;
5698 }
1da177e4 5699}
6d6bc0ad 5700#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5701# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5702static inline bool sched_debug(void)
5703{
5704 return false;
5705}
6d6bc0ad 5706#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5707
1a20ff27 5708static int sd_degenerate(struct sched_domain *sd)
245af2c7 5709{
758b2cdc 5710 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5711 return 1;
5712
5713 /* Following flags need at least 2 groups */
5714 if (sd->flags & (SD_LOAD_BALANCE |
5715 SD_BALANCE_NEWIDLE |
5716 SD_BALANCE_FORK |
89c4710e 5717 SD_BALANCE_EXEC |
5d4dfddd 5718 SD_SHARE_CPUCAPACITY |
1f6e6c7c 5719 SD_ASYM_CPUCAPACITY |
d77b3ed5
VG
5720 SD_SHARE_PKG_RESOURCES |
5721 SD_SHARE_POWERDOMAIN)) {
245af2c7
SS
5722 if (sd->groups != sd->groups->next)
5723 return 0;
5724 }
5725
5726 /* Following flags don't use groups */
c88d5910 5727 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5728 return 0;
5729
5730 return 1;
5731}
5732
48f24c4d
IM
5733static int
5734sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5735{
5736 unsigned long cflags = sd->flags, pflags = parent->flags;
5737
5738 if (sd_degenerate(parent))
5739 return 1;
5740
758b2cdc 5741 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5742 return 0;
5743
245af2c7
SS
5744 /* Flags needing groups don't count if only 1 group in parent */
5745 if (parent->groups == parent->groups->next) {
5746 pflags &= ~(SD_LOAD_BALANCE |
5747 SD_BALANCE_NEWIDLE |
5748 SD_BALANCE_FORK |
89c4710e 5749 SD_BALANCE_EXEC |
1f6e6c7c 5750 SD_ASYM_CPUCAPACITY |
5d4dfddd 5751 SD_SHARE_CPUCAPACITY |
10866e62 5752 SD_SHARE_PKG_RESOURCES |
d77b3ed5
VG
5753 SD_PREFER_SIBLING |
5754 SD_SHARE_POWERDOMAIN);
5436499e
KC
5755 if (nr_node_ids == 1)
5756 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5757 }
5758 if (~cflags & pflags)
5759 return 0;
5760
5761 return 1;
5762}
5763
dce840a0 5764static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5765{
dce840a0 5766 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5767
68e74568 5768 cpupri_cleanup(&rd->cpupri);
6bfd6d72 5769 cpudl_cleanup(&rd->cpudl);
1baca4ce 5770 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5771 free_cpumask_var(rd->rto_mask);
5772 free_cpumask_var(rd->online);
5773 free_cpumask_var(rd->span);
5774 kfree(rd);
5775}
5776
57d885fe
GH
5777static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5778{
a0490fa3 5779 struct root_domain *old_rd = NULL;
57d885fe 5780 unsigned long flags;
57d885fe 5781
05fa785c 5782 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5783
5784 if (rq->rd) {
a0490fa3 5785 old_rd = rq->rd;
57d885fe 5786
c6c4927b 5787 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5788 set_rq_offline(rq);
57d885fe 5789
c6c4927b 5790 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5791
a0490fa3 5792 /*
0515973f 5793 * If we dont want to free the old_rd yet then
a0490fa3
IM
5794 * set old_rd to NULL to skip the freeing later
5795 * in this function:
5796 */
5797 if (!atomic_dec_and_test(&old_rd->refcount))
5798 old_rd = NULL;
57d885fe
GH
5799 }
5800
5801 atomic_inc(&rd->refcount);
5802 rq->rd = rd;
5803
c6c4927b 5804 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5805 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5806 set_rq_online(rq);
57d885fe 5807
05fa785c 5808 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5809
5810 if (old_rd)
dce840a0 5811 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5812}
5813
68c38fc3 5814static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5815{
5816 memset(rd, 0, sizeof(*rd));
5817
8295c699 5818 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5819 goto out;
8295c699 5820 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5821 goto free_span;
8295c699 5822 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
c6c4927b 5823 goto free_online;
8295c699 5824 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
1baca4ce 5825 goto free_dlo_mask;
6e0534f2 5826
332ac17e 5827 init_dl_bw(&rd->dl_bw);
6bfd6d72
JL
5828 if (cpudl_init(&rd->cpudl) != 0)
5829 goto free_dlo_mask;
332ac17e 5830
68c38fc3 5831 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5832 goto free_rto_mask;
c6c4927b 5833 return 0;
6e0534f2 5834
68e74568
RR
5835free_rto_mask:
5836 free_cpumask_var(rd->rto_mask);
1baca4ce
JL
5837free_dlo_mask:
5838 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5839free_online:
5840 free_cpumask_var(rd->online);
5841free_span:
5842 free_cpumask_var(rd->span);
0c910d28 5843out:
c6c4927b 5844 return -ENOMEM;
57d885fe
GH
5845}
5846
029632fb
PZ
5847/*
5848 * By default the system creates a single root-domain with all cpus as
5849 * members (mimicking the global state we have today).
5850 */
5851struct root_domain def_root_domain;
5852
57d885fe
GH
5853static void init_defrootdomain(void)
5854{
68c38fc3 5855 init_rootdomain(&def_root_domain);
c6c4927b 5856
57d885fe
GH
5857 atomic_set(&def_root_domain.refcount, 1);
5858}
5859
dc938520 5860static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5861{
5862 struct root_domain *rd;
5863
5864 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5865 if (!rd)
5866 return NULL;
5867
68c38fc3 5868 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5869 kfree(rd);
5870 return NULL;
5871 }
57d885fe
GH
5872
5873 return rd;
5874}
5875
63b2ca30 5876static void free_sched_groups(struct sched_group *sg, int free_sgc)
e3589f6c
PZ
5877{
5878 struct sched_group *tmp, *first;
5879
5880 if (!sg)
5881 return;
5882
5883 first = sg;
5884 do {
5885 tmp = sg->next;
5886
63b2ca30
NP
5887 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5888 kfree(sg->sgc);
e3589f6c
PZ
5889
5890 kfree(sg);
5891 sg = tmp;
5892 } while (sg != first);
5893}
5894
dce840a0
PZ
5895static void free_sched_domain(struct rcu_head *rcu)
5896{
5897 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5898
5899 /*
5900 * If its an overlapping domain it has private groups, iterate and
5901 * nuke them all.
5902 */
5903 if (sd->flags & SD_OVERLAP) {
5904 free_sched_groups(sd->groups, 1);
5905 } else if (atomic_dec_and_test(&sd->groups->ref)) {
63b2ca30 5906 kfree(sd->groups->sgc);
dce840a0 5907 kfree(sd->groups);
9c3f75cb 5908 }
dce840a0
PZ
5909 kfree(sd);
5910}
5911
5912static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5913{
5914 call_rcu(&sd->rcu, free_sched_domain);
5915}
5916
5917static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5918{
5919 for (; sd; sd = sd->parent)
5920 destroy_sched_domain(sd, cpu);
5921}
5922
518cd623
PZ
5923/*
5924 * Keep a special pointer to the highest sched_domain that has
5925 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5926 * allows us to avoid some pointer chasing select_idle_sibling().
5927 *
5928 * Also keep a unique ID per domain (we use the first cpu number in
5929 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5930 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5931 */
5932DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5933DEFINE_PER_CPU(int, sd_llc_size);
518cd623 5934DEFINE_PER_CPU(int, sd_llc_id);
fb13c7ee 5935DEFINE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
5936DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5937DEFINE_PER_CPU(struct sched_domain *, sd_asym);
518cd623
PZ
5938
5939static void update_top_cache_domain(int cpu)
5940{
5941 struct sched_domain *sd;
5d4cf996 5942 struct sched_domain *busy_sd = NULL;
518cd623 5943 int id = cpu;
7d9ffa89 5944 int size = 1;
518cd623
PZ
5945
5946 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 5947 if (sd) {
518cd623 5948 id = cpumask_first(sched_domain_span(sd));
7d9ffa89 5949 size = cpumask_weight(sched_domain_span(sd));
5d4cf996 5950 busy_sd = sd->parent; /* sd_busy */
7d9ffa89 5951 }
5d4cf996 5952 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
518cd623
PZ
5953
5954 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 5955 per_cpu(sd_llc_size, cpu) = size;
518cd623 5956 per_cpu(sd_llc_id, cpu) = id;
fb13c7ee
MG
5957
5958 sd = lowest_flag_domain(cpu, SD_NUMA);
5959 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
37dc6b50
PM
5960
5961 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5962 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
518cd623
PZ
5963}
5964
1da177e4 5965/*
0eab9146 5966 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5967 * hold the hotplug lock.
5968 */
0eab9146
IM
5969static void
5970cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5971{
70b97a7f 5972 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5973 struct sched_domain *tmp;
5974
5975 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5976 for (tmp = sd; tmp; ) {
245af2c7
SS
5977 struct sched_domain *parent = tmp->parent;
5978 if (!parent)
5979 break;
f29c9b1c 5980
1a848870 5981 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5982 tmp->parent = parent->parent;
1a848870
SS
5983 if (parent->parent)
5984 parent->parent->child = tmp;
10866e62
PZ
5985 /*
5986 * Transfer SD_PREFER_SIBLING down in case of a
5987 * degenerate parent; the spans match for this
5988 * so the property transfers.
5989 */
5990 if (parent->flags & SD_PREFER_SIBLING)
5991 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 5992 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5993 } else
5994 tmp = tmp->parent;
245af2c7
SS
5995 }
5996
1a848870 5997 if (sd && sd_degenerate(sd)) {
dce840a0 5998 tmp = sd;
245af2c7 5999 sd = sd->parent;
dce840a0 6000 destroy_sched_domain(tmp, cpu);
1a848870
SS
6001 if (sd)
6002 sd->child = NULL;
6003 }
1da177e4 6004
4cb98839 6005 sched_domain_debug(sd, cpu);
1da177e4 6006
57d885fe 6007 rq_attach_root(rq, rd);
dce840a0 6008 tmp = rq->sd;
674311d5 6009 rcu_assign_pointer(rq->sd, sd);
dce840a0 6010 destroy_sched_domains(tmp, cpu);
518cd623
PZ
6011
6012 update_top_cache_domain(cpu);
1da177e4
LT
6013}
6014
1da177e4
LT
6015/* Setup the mask of cpus configured for isolated domains */
6016static int __init isolated_cpu_setup(char *str)
6017{
a6e4491c
PB
6018 int ret;
6019
bdddd296 6020 alloc_bootmem_cpumask_var(&cpu_isolated_map);
a6e4491c
PB
6021 ret = cpulist_parse(str, cpu_isolated_map);
6022 if (ret) {
6023 pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
6024 return 0;
6025 }
1da177e4
LT
6026 return 1;
6027}
8927f494 6028__setup("isolcpus=", isolated_cpu_setup);
1da177e4 6029
49a02c51 6030struct s_data {
21d42ccf 6031 struct sched_domain ** __percpu sd;
49a02c51
AH
6032 struct root_domain *rd;
6033};
6034
2109b99e 6035enum s_alloc {
2109b99e 6036 sa_rootdomain,
21d42ccf 6037 sa_sd,
dce840a0 6038 sa_sd_storage,
2109b99e
AH
6039 sa_none,
6040};
6041
c1174876
PZ
6042/*
6043 * Build an iteration mask that can exclude certain CPUs from the upwards
6044 * domain traversal.
6045 *
6046 * Asymmetric node setups can result in situations where the domain tree is of
6047 * unequal depth, make sure to skip domains that already cover the entire
6048 * range.
6049 *
6050 * In that case build_sched_domains() will have terminated the iteration early
6051 * and our sibling sd spans will be empty. Domains should always include the
6052 * cpu they're built on, so check that.
6053 *
6054 */
6055static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6056{
6057 const struct cpumask *span = sched_domain_span(sd);
6058 struct sd_data *sdd = sd->private;
6059 struct sched_domain *sibling;
6060 int i;
6061
6062 for_each_cpu(i, span) {
6063 sibling = *per_cpu_ptr(sdd->sd, i);
6064 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6065 continue;
6066
6067 cpumask_set_cpu(i, sched_group_mask(sg));
6068 }
6069}
6070
6071/*
6072 * Return the canonical balance cpu for this group, this is the first cpu
6073 * of this group that's also in the iteration mask.
6074 */
6075int group_balance_cpu(struct sched_group *sg)
6076{
6077 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6078}
6079
e3589f6c
PZ
6080static int
6081build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6082{
6083 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6084 const struct cpumask *span = sched_domain_span(sd);
6085 struct cpumask *covered = sched_domains_tmpmask;
6086 struct sd_data *sdd = sd->private;
aaecac4a 6087 struct sched_domain *sibling;
e3589f6c
PZ
6088 int i;
6089
6090 cpumask_clear(covered);
6091
6092 for_each_cpu(i, span) {
6093 struct cpumask *sg_span;
6094
6095 if (cpumask_test_cpu(i, covered))
6096 continue;
6097
aaecac4a 6098 sibling = *per_cpu_ptr(sdd->sd, i);
c1174876
PZ
6099
6100 /* See the comment near build_group_mask(). */
aaecac4a 6101 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
c1174876
PZ
6102 continue;
6103
e3589f6c 6104 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 6105 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
6106
6107 if (!sg)
6108 goto fail;
6109
6110 sg_span = sched_group_cpus(sg);
aaecac4a
ZZ
6111 if (sibling->child)
6112 cpumask_copy(sg_span, sched_domain_span(sibling->child));
6113 else
e3589f6c
PZ
6114 cpumask_set_cpu(i, sg_span);
6115
6116 cpumask_or(covered, covered, sg_span);
6117
63b2ca30
NP
6118 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6119 if (atomic_inc_return(&sg->sgc->ref) == 1)
c1174876
PZ
6120 build_group_mask(sd, sg);
6121
c3decf0d 6122 /*
63b2ca30 6123 * Initialize sgc->capacity such that even if we mess up the
c3decf0d
PZ
6124 * domains and no possible iteration will get us here, we won't
6125 * die on a /0 trap.
6126 */
ca8ce3d0 6127 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
e3589f6c 6128
c1174876
PZ
6129 /*
6130 * Make sure the first group of this domain contains the
6131 * canonical balance cpu. Otherwise the sched_domain iteration
6132 * breaks. See update_sg_lb_stats().
6133 */
74a5ce20 6134 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 6135 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
6136 groups = sg;
6137
6138 if (!first)
6139 first = sg;
6140 if (last)
6141 last->next = sg;
6142 last = sg;
6143 last->next = first;
6144 }
6145 sd->groups = groups;
6146
6147 return 0;
6148
6149fail:
6150 free_sched_groups(first, 0);
6151
6152 return -ENOMEM;
6153}
6154
dce840a0 6155static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 6156{
dce840a0
PZ
6157 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6158 struct sched_domain *child = sd->child;
1da177e4 6159
dce840a0
PZ
6160 if (child)
6161 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 6162
9c3f75cb 6163 if (sg) {
dce840a0 6164 *sg = *per_cpu_ptr(sdd->sg, cpu);
63b2ca30
NP
6165 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6166 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
9c3f75cb 6167 }
dce840a0
PZ
6168
6169 return cpu;
1e9f28fa 6170}
1e9f28fa 6171
01a08546 6172/*
dce840a0
PZ
6173 * build_sched_groups will build a circular linked list of the groups
6174 * covered by the given span, and will set each group's ->cpumask correctly,
ced549fa 6175 * and ->cpu_capacity to 0.
e3589f6c
PZ
6176 *
6177 * Assumes the sched_domain tree is fully constructed
01a08546 6178 */
e3589f6c
PZ
6179static int
6180build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 6181{
dce840a0
PZ
6182 struct sched_group *first = NULL, *last = NULL;
6183 struct sd_data *sdd = sd->private;
6184 const struct cpumask *span = sched_domain_span(sd);
f96225fd 6185 struct cpumask *covered;
dce840a0 6186 int i;
9c1cfda2 6187
e3589f6c
PZ
6188 get_group(cpu, sdd, &sd->groups);
6189 atomic_inc(&sd->groups->ref);
6190
0936629f 6191 if (cpu != cpumask_first(span))
e3589f6c
PZ
6192 return 0;
6193
f96225fd
PZ
6194 lockdep_assert_held(&sched_domains_mutex);
6195 covered = sched_domains_tmpmask;
6196
dce840a0 6197 cpumask_clear(covered);
6711cab4 6198
dce840a0
PZ
6199 for_each_cpu(i, span) {
6200 struct sched_group *sg;
cd08e923 6201 int group, j;
6711cab4 6202
dce840a0
PZ
6203 if (cpumask_test_cpu(i, covered))
6204 continue;
6711cab4 6205
cd08e923 6206 group = get_group(i, sdd, &sg);
c1174876 6207 cpumask_setall(sched_group_mask(sg));
0601a88d 6208
dce840a0
PZ
6209 for_each_cpu(j, span) {
6210 if (get_group(j, sdd, NULL) != group)
6211 continue;
0601a88d 6212
dce840a0
PZ
6213 cpumask_set_cpu(j, covered);
6214 cpumask_set_cpu(j, sched_group_cpus(sg));
6215 }
0601a88d 6216
dce840a0
PZ
6217 if (!first)
6218 first = sg;
6219 if (last)
6220 last->next = sg;
6221 last = sg;
6222 }
6223 last->next = first;
e3589f6c
PZ
6224
6225 return 0;
0601a88d 6226}
51888ca2 6227
89c4710e 6228/*
63b2ca30 6229 * Initialize sched groups cpu_capacity.
89c4710e 6230 *
63b2ca30 6231 * cpu_capacity indicates the capacity of sched group, which is used while
89c4710e 6232 * distributing the load between different sched groups in a sched domain.
63b2ca30
NP
6233 * Typically cpu_capacity for all the groups in a sched domain will be same
6234 * unless there are asymmetries in the topology. If there are asymmetries,
6235 * group having more cpu_capacity will pickup more load compared to the
6236 * group having less cpu_capacity.
89c4710e 6237 */
63b2ca30 6238static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
89c4710e 6239{
e3589f6c 6240 struct sched_group *sg = sd->groups;
89c4710e 6241
94c95ba6 6242 WARN_ON(!sg);
e3589f6c
PZ
6243
6244 do {
6245 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6246 sg = sg->next;
6247 } while (sg != sd->groups);
89c4710e 6248
c1174876 6249 if (cpu != group_balance_cpu(sg))
e3589f6c 6250 return;
aae6d3dd 6251
63b2ca30
NP
6252 update_group_capacity(sd, cpu);
6253 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
89c4710e
SS
6254}
6255
7c16ec58
MT
6256/*
6257 * Initializers for schedule domains
6258 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6259 */
6260
1d3504fc 6261static int default_relax_domain_level = -1;
60495e77 6262int sched_domain_level_max;
1d3504fc
HS
6263
6264static int __init setup_relax_domain_level(char *str)
6265{
a841f8ce
DS
6266 if (kstrtoint(str, 0, &default_relax_domain_level))
6267 pr_warn("Unable to set relax_domain_level\n");
30e0e178 6268
1d3504fc
HS
6269 return 1;
6270}
6271__setup("relax_domain_level=", setup_relax_domain_level);
6272
6273static void set_domain_attribute(struct sched_domain *sd,
6274 struct sched_domain_attr *attr)
6275{
6276 int request;
6277
6278 if (!attr || attr->relax_domain_level < 0) {
6279 if (default_relax_domain_level < 0)
6280 return;
6281 else
6282 request = default_relax_domain_level;
6283 } else
6284 request = attr->relax_domain_level;
6285 if (request < sd->level) {
6286 /* turn off idle balance on this domain */
c88d5910 6287 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6288 } else {
6289 /* turn on idle balance on this domain */
c88d5910 6290 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6291 }
6292}
6293
54ab4ff4
PZ
6294static void __sdt_free(const struct cpumask *cpu_map);
6295static int __sdt_alloc(const struct cpumask *cpu_map);
6296
2109b99e
AH
6297static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6298 const struct cpumask *cpu_map)
6299{
6300 switch (what) {
2109b99e 6301 case sa_rootdomain:
822ff793
PZ
6302 if (!atomic_read(&d->rd->refcount))
6303 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
6304 case sa_sd:
6305 free_percpu(d->sd); /* fall through */
dce840a0 6306 case sa_sd_storage:
54ab4ff4 6307 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
6308 case sa_none:
6309 break;
6310 }
6311}
3404c8d9 6312
2109b99e
AH
6313static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6314 const struct cpumask *cpu_map)
6315{
dce840a0
PZ
6316 memset(d, 0, sizeof(*d));
6317
54ab4ff4
PZ
6318 if (__sdt_alloc(cpu_map))
6319 return sa_sd_storage;
dce840a0
PZ
6320 d->sd = alloc_percpu(struct sched_domain *);
6321 if (!d->sd)
6322 return sa_sd_storage;
2109b99e 6323 d->rd = alloc_rootdomain();
dce840a0 6324 if (!d->rd)
21d42ccf 6325 return sa_sd;
2109b99e
AH
6326 return sa_rootdomain;
6327}
57d885fe 6328
dce840a0
PZ
6329/*
6330 * NULL the sd_data elements we've used to build the sched_domain and
6331 * sched_group structure so that the subsequent __free_domain_allocs()
6332 * will not free the data we're using.
6333 */
6334static void claim_allocations(int cpu, struct sched_domain *sd)
6335{
6336 struct sd_data *sdd = sd->private;
dce840a0
PZ
6337
6338 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6339 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6340
e3589f6c 6341 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 6342 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c 6343
63b2ca30
NP
6344 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6345 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
dce840a0
PZ
6346}
6347
cb83b629 6348#ifdef CONFIG_NUMA
cb83b629 6349static int sched_domains_numa_levels;
e3fe70b1 6350enum numa_topology_type sched_numa_topology_type;
cb83b629 6351static int *sched_domains_numa_distance;
9942f79b 6352int sched_max_numa_distance;
cb83b629
PZ
6353static struct cpumask ***sched_domains_numa_masks;
6354static int sched_domains_curr_level;
143e1e28 6355#endif
cb83b629 6356
143e1e28
VG
6357/*
6358 * SD_flags allowed in topology descriptions.
6359 *
94f438c8
PZ
6360 * These flags are purely descriptive of the topology and do not prescribe
6361 * behaviour. Behaviour is artificial and mapped in the below sd_init()
6362 * function:
143e1e28 6363 *
94f438c8
PZ
6364 * SD_SHARE_CPUCAPACITY - describes SMT topologies
6365 * SD_SHARE_PKG_RESOURCES - describes shared caches
6366 * SD_NUMA - describes NUMA topologies
6367 * SD_SHARE_POWERDOMAIN - describes shared power domain
1f6e6c7c 6368 * SD_ASYM_CPUCAPACITY - describes mixed capacity topologies
94f438c8
PZ
6369 *
6370 * Odd one out, which beside describing the topology has a quirk also
6371 * prescribes the desired behaviour that goes along with it:
6372 *
6373 * SD_ASYM_PACKING - describes SMT quirks
143e1e28
VG
6374 */
6375#define TOPOLOGY_SD_FLAGS \
5d4dfddd 6376 (SD_SHARE_CPUCAPACITY | \
143e1e28
VG
6377 SD_SHARE_PKG_RESOURCES | \
6378 SD_NUMA | \
d77b3ed5 6379 SD_ASYM_PACKING | \
1f6e6c7c 6380 SD_ASYM_CPUCAPACITY | \
d77b3ed5 6381 SD_SHARE_POWERDOMAIN)
cb83b629
PZ
6382
6383static struct sched_domain *
3676b13e
MR
6384sd_init(struct sched_domain_topology_level *tl,
6385 struct sched_domain *child, int cpu)
cb83b629
PZ
6386{
6387 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
143e1e28
VG
6388 int sd_weight, sd_flags = 0;
6389
6390#ifdef CONFIG_NUMA
6391 /*
6392 * Ugly hack to pass state to sd_numa_mask()...
6393 */
6394 sched_domains_curr_level = tl->numa_level;
6395#endif
6396
6397 sd_weight = cpumask_weight(tl->mask(cpu));
6398
6399 if (tl->sd_flags)
6400 sd_flags = (*tl->sd_flags)();
6401 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6402 "wrong sd_flags in topology description\n"))
6403 sd_flags &= ~TOPOLOGY_SD_FLAGS;
cb83b629
PZ
6404
6405 *sd = (struct sched_domain){
6406 .min_interval = sd_weight,
6407 .max_interval = 2*sd_weight,
6408 .busy_factor = 32,
870a0bb5 6409 .imbalance_pct = 125,
143e1e28
VG
6410
6411 .cache_nice_tries = 0,
6412 .busy_idx = 0,
6413 .idle_idx = 0,
cb83b629
PZ
6414 .newidle_idx = 0,
6415 .wake_idx = 0,
6416 .forkexec_idx = 0,
6417
6418 .flags = 1*SD_LOAD_BALANCE
6419 | 1*SD_BALANCE_NEWIDLE
143e1e28
VG
6420 | 1*SD_BALANCE_EXEC
6421 | 1*SD_BALANCE_FORK
cb83b629 6422 | 0*SD_BALANCE_WAKE
143e1e28 6423 | 1*SD_WAKE_AFFINE
5d4dfddd 6424 | 0*SD_SHARE_CPUCAPACITY
cb83b629 6425 | 0*SD_SHARE_PKG_RESOURCES
143e1e28 6426 | 0*SD_SERIALIZE
cb83b629 6427 | 0*SD_PREFER_SIBLING
143e1e28
VG
6428 | 0*SD_NUMA
6429 | sd_flags
cb83b629 6430 ,
143e1e28 6431
cb83b629
PZ
6432 .last_balance = jiffies,
6433 .balance_interval = sd_weight,
143e1e28 6434 .smt_gain = 0,
2b4cfe64
JL
6435 .max_newidle_lb_cost = 0,
6436 .next_decay_max_lb_cost = jiffies,
3676b13e 6437 .child = child,
143e1e28
VG
6438#ifdef CONFIG_SCHED_DEBUG
6439 .name = tl->name,
6440#endif
cb83b629 6441 };
cb83b629
PZ
6442
6443 /*
143e1e28 6444 * Convert topological properties into behaviour.
cb83b629 6445 */
143e1e28 6446
9ee1cda5
MR
6447 if (sd->flags & SD_ASYM_CPUCAPACITY) {
6448 struct sched_domain *t = sd;
6449
6450 for_each_lower_domain(t)
6451 t->flags |= SD_BALANCE_WAKE;
6452 }
6453
5d4dfddd 6454 if (sd->flags & SD_SHARE_CPUCAPACITY) {
caff37ef 6455 sd->flags |= SD_PREFER_SIBLING;
143e1e28
VG
6456 sd->imbalance_pct = 110;
6457 sd->smt_gain = 1178; /* ~15% */
143e1e28
VG
6458
6459 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6460 sd->imbalance_pct = 117;
6461 sd->cache_nice_tries = 1;
6462 sd->busy_idx = 2;
6463
6464#ifdef CONFIG_NUMA
6465 } else if (sd->flags & SD_NUMA) {
6466 sd->cache_nice_tries = 2;
6467 sd->busy_idx = 3;
6468 sd->idle_idx = 2;
6469
6470 sd->flags |= SD_SERIALIZE;
6471 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6472 sd->flags &= ~(SD_BALANCE_EXEC |
6473 SD_BALANCE_FORK |
6474 SD_WAKE_AFFINE);
6475 }
6476
6477#endif
6478 } else {
6479 sd->flags |= SD_PREFER_SIBLING;
6480 sd->cache_nice_tries = 1;
6481 sd->busy_idx = 2;
6482 sd->idle_idx = 1;
6483 }
6484
6485 sd->private = &tl->data;
cb83b629
PZ
6486
6487 return sd;
6488}
6489
143e1e28
VG
6490/*
6491 * Topology list, bottom-up.
6492 */
6493static struct sched_domain_topology_level default_topology[] = {
6494#ifdef CONFIG_SCHED_SMT
6495 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6496#endif
6497#ifdef CONFIG_SCHED_MC
6498 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
143e1e28
VG
6499#endif
6500 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6501 { NULL, },
6502};
6503
c6e1e7b5
JG
6504static struct sched_domain_topology_level *sched_domain_topology =
6505 default_topology;
143e1e28
VG
6506
6507#define for_each_sd_topology(tl) \
6508 for (tl = sched_domain_topology; tl->mask; tl++)
6509
6510void set_sched_topology(struct sched_domain_topology_level *tl)
6511{
6512 sched_domain_topology = tl;
6513}
6514
6515#ifdef CONFIG_NUMA
6516
cb83b629
PZ
6517static const struct cpumask *sd_numa_mask(int cpu)
6518{
6519 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6520}
6521
d039ac60
PZ
6522static void sched_numa_warn(const char *str)
6523{
6524 static int done = false;
6525 int i,j;
6526
6527 if (done)
6528 return;
6529
6530 done = true;
6531
6532 printk(KERN_WARNING "ERROR: %s\n\n", str);
6533
6534 for (i = 0; i < nr_node_ids; i++) {
6535 printk(KERN_WARNING " ");
6536 for (j = 0; j < nr_node_ids; j++)
6537 printk(KERN_CONT "%02d ", node_distance(i,j));
6538 printk(KERN_CONT "\n");
6539 }
6540 printk(KERN_WARNING "\n");
6541}
6542
9942f79b 6543bool find_numa_distance(int distance)
d039ac60
PZ
6544{
6545 int i;
6546
6547 if (distance == node_distance(0, 0))
6548 return true;
6549
6550 for (i = 0; i < sched_domains_numa_levels; i++) {
6551 if (sched_domains_numa_distance[i] == distance)
6552 return true;
6553 }
6554
6555 return false;
6556}
6557
e3fe70b1
RR
6558/*
6559 * A system can have three types of NUMA topology:
6560 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6561 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6562 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6563 *
6564 * The difference between a glueless mesh topology and a backplane
6565 * topology lies in whether communication between not directly
6566 * connected nodes goes through intermediary nodes (where programs
6567 * could run), or through backplane controllers. This affects
6568 * placement of programs.
6569 *
6570 * The type of topology can be discerned with the following tests:
6571 * - If the maximum distance between any nodes is 1 hop, the system
6572 * is directly connected.
6573 * - If for two nodes A and B, located N > 1 hops away from each other,
6574 * there is an intermediary node C, which is < N hops away from both
6575 * nodes A and B, the system is a glueless mesh.
6576 */
6577static void init_numa_topology_type(void)
6578{
6579 int a, b, c, n;
6580
6581 n = sched_max_numa_distance;
6582
e237882b 6583 if (sched_domains_numa_levels <= 1) {
e3fe70b1 6584 sched_numa_topology_type = NUMA_DIRECT;
e237882b
AG
6585 return;
6586 }
e3fe70b1
RR
6587
6588 for_each_online_node(a) {
6589 for_each_online_node(b) {
6590 /* Find two nodes furthest removed from each other. */
6591 if (node_distance(a, b) < n)
6592 continue;
6593
6594 /* Is there an intermediary node between a and b? */
6595 for_each_online_node(c) {
6596 if (node_distance(a, c) < n &&
6597 node_distance(b, c) < n) {
6598 sched_numa_topology_type =
6599 NUMA_GLUELESS_MESH;
6600 return;
6601 }
6602 }
6603
6604 sched_numa_topology_type = NUMA_BACKPLANE;
6605 return;
6606 }
6607 }
6608}
6609
cb83b629
PZ
6610static void sched_init_numa(void)
6611{
6612 int next_distance, curr_distance = node_distance(0, 0);
6613 struct sched_domain_topology_level *tl;
6614 int level = 0;
6615 int i, j, k;
6616
cb83b629
PZ
6617 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6618 if (!sched_domains_numa_distance)
6619 return;
6620
6621 /*
6622 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6623 * unique distances in the node_distance() table.
6624 *
6625 * Assumes node_distance(0,j) includes all distances in
6626 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6627 */
6628 next_distance = curr_distance;
6629 for (i = 0; i < nr_node_ids; i++) {
6630 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6631 for (k = 0; k < nr_node_ids; k++) {
6632 int distance = node_distance(i, k);
6633
6634 if (distance > curr_distance &&
6635 (distance < next_distance ||
6636 next_distance == curr_distance))
6637 next_distance = distance;
6638
6639 /*
6640 * While not a strong assumption it would be nice to know
6641 * about cases where if node A is connected to B, B is not
6642 * equally connected to A.
6643 */
6644 if (sched_debug() && node_distance(k, i) != distance)
6645 sched_numa_warn("Node-distance not symmetric");
6646
6647 if (sched_debug() && i && !find_numa_distance(distance))
6648 sched_numa_warn("Node-0 not representative");
6649 }
6650 if (next_distance != curr_distance) {
6651 sched_domains_numa_distance[level++] = next_distance;
6652 sched_domains_numa_levels = level;
6653 curr_distance = next_distance;
6654 } else break;
cb83b629 6655 }
d039ac60
PZ
6656
6657 /*
6658 * In case of sched_debug() we verify the above assumption.
6659 */
6660 if (!sched_debug())
6661 break;
cb83b629 6662 }
c123588b
AR
6663
6664 if (!level)
6665 return;
6666
cb83b629
PZ
6667 /*
6668 * 'level' contains the number of unique distances, excluding the
6669 * identity distance node_distance(i,i).
6670 *
28b4a521 6671 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
6672 * numbers.
6673 */
6674
5f7865f3
TC
6675 /*
6676 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6677 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6678 * the array will contain less then 'level' members. This could be
6679 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6680 * in other functions.
6681 *
6682 * We reset it to 'level' at the end of this function.
6683 */
6684 sched_domains_numa_levels = 0;
6685
cb83b629
PZ
6686 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6687 if (!sched_domains_numa_masks)
6688 return;
6689
6690 /*
6691 * Now for each level, construct a mask per node which contains all
6692 * cpus of nodes that are that many hops away from us.
6693 */
6694 for (i = 0; i < level; i++) {
6695 sched_domains_numa_masks[i] =
6696 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6697 if (!sched_domains_numa_masks[i])
6698 return;
6699
6700 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6701 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6702 if (!mask)
6703 return;
6704
6705 sched_domains_numa_masks[i][j] = mask;
6706
9c03ee14 6707 for_each_node(k) {
dd7d8634 6708 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6709 continue;
6710
6711 cpumask_or(mask, mask, cpumask_of_node(k));
6712 }
6713 }
6714 }
6715
143e1e28
VG
6716 /* Compute default topology size */
6717 for (i = 0; sched_domain_topology[i].mask; i++);
6718
c515db8c 6719 tl = kzalloc((i + level + 1) *
cb83b629
PZ
6720 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6721 if (!tl)
6722 return;
6723
6724 /*
6725 * Copy the default topology bits..
6726 */
143e1e28
VG
6727 for (i = 0; sched_domain_topology[i].mask; i++)
6728 tl[i] = sched_domain_topology[i];
cb83b629
PZ
6729
6730 /*
6731 * .. and append 'j' levels of NUMA goodness.
6732 */
6733 for (j = 0; j < level; i++, j++) {
6734 tl[i] = (struct sched_domain_topology_level){
cb83b629 6735 .mask = sd_numa_mask,
143e1e28 6736 .sd_flags = cpu_numa_flags,
cb83b629
PZ
6737 .flags = SDTL_OVERLAP,
6738 .numa_level = j,
143e1e28 6739 SD_INIT_NAME(NUMA)
cb83b629
PZ
6740 };
6741 }
6742
6743 sched_domain_topology = tl;
5f7865f3
TC
6744
6745 sched_domains_numa_levels = level;
9942f79b 6746 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
e3fe70b1
RR
6747
6748 init_numa_topology_type();
cb83b629 6749}
301a5cba 6750
135fb3e1 6751static void sched_domains_numa_masks_set(unsigned int cpu)
301a5cba 6752{
301a5cba 6753 int node = cpu_to_node(cpu);
135fb3e1 6754 int i, j;
301a5cba
TC
6755
6756 for (i = 0; i < sched_domains_numa_levels; i++) {
6757 for (j = 0; j < nr_node_ids; j++) {
6758 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6759 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6760 }
6761 }
6762}
6763
135fb3e1 6764static void sched_domains_numa_masks_clear(unsigned int cpu)
301a5cba
TC
6765{
6766 int i, j;
135fb3e1 6767
301a5cba
TC
6768 for (i = 0; i < sched_domains_numa_levels; i++) {
6769 for (j = 0; j < nr_node_ids; j++)
6770 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6771 }
6772}
6773
cb83b629 6774#else
135fb3e1
TG
6775static inline void sched_init_numa(void) { }
6776static void sched_domains_numa_masks_set(unsigned int cpu) { }
6777static void sched_domains_numa_masks_clear(unsigned int cpu) { }
cb83b629
PZ
6778#endif /* CONFIG_NUMA */
6779
54ab4ff4
PZ
6780static int __sdt_alloc(const struct cpumask *cpu_map)
6781{
6782 struct sched_domain_topology_level *tl;
6783 int j;
6784
27723a68 6785 for_each_sd_topology(tl) {
54ab4ff4
PZ
6786 struct sd_data *sdd = &tl->data;
6787
6788 sdd->sd = alloc_percpu(struct sched_domain *);
6789 if (!sdd->sd)
6790 return -ENOMEM;
6791
6792 sdd->sg = alloc_percpu(struct sched_group *);
6793 if (!sdd->sg)
6794 return -ENOMEM;
6795
63b2ca30
NP
6796 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6797 if (!sdd->sgc)
9c3f75cb
PZ
6798 return -ENOMEM;
6799
54ab4ff4
PZ
6800 for_each_cpu(j, cpu_map) {
6801 struct sched_domain *sd;
6802 struct sched_group *sg;
63b2ca30 6803 struct sched_group_capacity *sgc;
54ab4ff4 6804
5cc389bc 6805 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
54ab4ff4
PZ
6806 GFP_KERNEL, cpu_to_node(j));
6807 if (!sd)
6808 return -ENOMEM;
6809
6810 *per_cpu_ptr(sdd->sd, j) = sd;
6811
6812 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6813 GFP_KERNEL, cpu_to_node(j));
6814 if (!sg)
6815 return -ENOMEM;
6816
30b4e9eb
IM
6817 sg->next = sg;
6818
54ab4ff4 6819 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6820
63b2ca30 6821 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
9c3f75cb 6822 GFP_KERNEL, cpu_to_node(j));
63b2ca30 6823 if (!sgc)
9c3f75cb
PZ
6824 return -ENOMEM;
6825
63b2ca30 6826 *per_cpu_ptr(sdd->sgc, j) = sgc;
54ab4ff4
PZ
6827 }
6828 }
6829
6830 return 0;
6831}
6832
6833static void __sdt_free(const struct cpumask *cpu_map)
6834{
6835 struct sched_domain_topology_level *tl;
6836 int j;
6837
27723a68 6838 for_each_sd_topology(tl) {
54ab4ff4
PZ
6839 struct sd_data *sdd = &tl->data;
6840
6841 for_each_cpu(j, cpu_map) {
fb2cf2c6 6842 struct sched_domain *sd;
6843
6844 if (sdd->sd) {
6845 sd = *per_cpu_ptr(sdd->sd, j);
6846 if (sd && (sd->flags & SD_OVERLAP))
6847 free_sched_groups(sd->groups, 0);
6848 kfree(*per_cpu_ptr(sdd->sd, j));
6849 }
6850
6851 if (sdd->sg)
6852 kfree(*per_cpu_ptr(sdd->sg, j));
63b2ca30
NP
6853 if (sdd->sgc)
6854 kfree(*per_cpu_ptr(sdd->sgc, j));
54ab4ff4
PZ
6855 }
6856 free_percpu(sdd->sd);
fb2cf2c6 6857 sdd->sd = NULL;
54ab4ff4 6858 free_percpu(sdd->sg);
fb2cf2c6 6859 sdd->sg = NULL;
63b2ca30
NP
6860 free_percpu(sdd->sgc);
6861 sdd->sgc = NULL;
54ab4ff4
PZ
6862 }
6863}
6864
2c402dc3 6865struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
6866 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6867 struct sched_domain *child, int cpu)
2c402dc3 6868{
3676b13e 6869 struct sched_domain *sd = sd_init(tl, child, cpu);
2c402dc3 6870
2c402dc3 6871 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6872 if (child) {
6873 sd->level = child->level + 1;
6874 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6875 child->parent = sd;
6ae72dff
PZ
6876
6877 if (!cpumask_subset(sched_domain_span(child),
6878 sched_domain_span(sd))) {
6879 pr_err("BUG: arch topology borken\n");
6880#ifdef CONFIG_SCHED_DEBUG
6881 pr_err(" the %s domain not a subset of the %s domain\n",
6882 child->name, sd->name);
6883#endif
6884 /* Fixup, ensure @sd has at least @child cpus. */
6885 cpumask_or(sched_domain_span(sd),
6886 sched_domain_span(sd),
6887 sched_domain_span(child));
6888 }
6889
60495e77 6890 }
a841f8ce 6891 set_domain_attribute(sd, attr);
2c402dc3
PZ
6892
6893 return sd;
6894}
6895
2109b99e
AH
6896/*
6897 * Build sched domains for a given set of cpus and attach the sched domains
6898 * to the individual cpus
6899 */
dce840a0
PZ
6900static int build_sched_domains(const struct cpumask *cpu_map,
6901 struct sched_domain_attr *attr)
2109b99e 6902{
1c632169 6903 enum s_alloc alloc_state;
dce840a0 6904 struct sched_domain *sd;
2109b99e 6905 struct s_data d;
822ff793 6906 int i, ret = -ENOMEM;
9c1cfda2 6907
2109b99e
AH
6908 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6909 if (alloc_state != sa_rootdomain)
6910 goto error;
9c1cfda2 6911
dce840a0 6912 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6913 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6914 struct sched_domain_topology_level *tl;
6915
3bd65a80 6916 sd = NULL;
27723a68 6917 for_each_sd_topology(tl) {
4a850cbe 6918 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
6919 if (tl == sched_domain_topology)
6920 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
6921 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6922 sd->flags |= SD_OVERLAP;
d110235d
PZ
6923 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6924 break;
e3589f6c 6925 }
dce840a0
PZ
6926 }
6927
6928 /* Build the groups for the domains */
6929 for_each_cpu(i, cpu_map) {
6930 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6931 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6932 if (sd->flags & SD_OVERLAP) {
6933 if (build_overlap_sched_groups(sd, i))
6934 goto error;
6935 } else {
6936 if (build_sched_groups(sd, i))
6937 goto error;
6938 }
1cf51902 6939 }
a06dadbe 6940 }
9c1cfda2 6941
ced549fa 6942 /* Calculate CPU capacity for physical packages and nodes */
a9c9a9b6
PZ
6943 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6944 if (!cpumask_test_cpu(i, cpu_map))
6945 continue;
9c1cfda2 6946
dce840a0
PZ
6947 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6948 claim_allocations(i, sd);
63b2ca30 6949 init_sched_groups_capacity(i, sd);
dce840a0 6950 }
f712c0c7 6951 }
9c1cfda2 6952
1da177e4 6953 /* Attach the domains */
dce840a0 6954 rcu_read_lock();
abcd083a 6955 for_each_cpu(i, cpu_map) {
21d42ccf 6956 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6957 cpu_attach_domain(sd, d.rd, i);
1da177e4 6958 }
dce840a0 6959 rcu_read_unlock();
51888ca2 6960
822ff793 6961 ret = 0;
51888ca2 6962error:
2109b99e 6963 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6964 return ret;
1da177e4 6965}
029190c5 6966
acc3f5d7 6967static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6968static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6969static struct sched_domain_attr *dattr_cur;
6970 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6971
6972/*
6973 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6974 * cpumask) fails, then fallback to a single sched domain,
6975 * as determined by the single cpumask fallback_doms.
029190c5 6976 */
4212823f 6977static cpumask_var_t fallback_doms;
029190c5 6978
ee79d1bd
HC
6979/*
6980 * arch_update_cpu_topology lets virtualized architectures update the
6981 * cpu core maps. It is supposed to return 1 if the topology changed
6982 * or 0 if it stayed the same.
6983 */
52f5684c 6984int __weak arch_update_cpu_topology(void)
22e52b07 6985{
ee79d1bd 6986 return 0;
22e52b07
HC
6987}
6988
acc3f5d7
RR
6989cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6990{
6991 int i;
6992 cpumask_var_t *doms;
6993
6994 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6995 if (!doms)
6996 return NULL;
6997 for (i = 0; i < ndoms; i++) {
6998 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6999 free_sched_domains(doms, i);
7000 return NULL;
7001 }
7002 }
7003 return doms;
7004}
7005
7006void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7007{
7008 unsigned int i;
7009 for (i = 0; i < ndoms; i++)
7010 free_cpumask_var(doms[i]);
7011 kfree(doms);
7012}
7013
1a20ff27 7014/*
41a2d6cf 7015 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7016 * For now this just excludes isolated cpus, but could be used to
7017 * exclude other special cases in the future.
1a20ff27 7018 */
c4a8849a 7019static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7020{
7378547f
MM
7021 int err;
7022
22e52b07 7023 arch_update_cpu_topology();
029190c5 7024 ndoms_cur = 1;
acc3f5d7 7025 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7026 if (!doms_cur)
acc3f5d7
RR
7027 doms_cur = &fallback_doms;
7028 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 7029 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 7030 register_sched_domain_sysctl();
7378547f
MM
7031
7032 return err;
1a20ff27
DG
7033}
7034
1a20ff27
DG
7035/*
7036 * Detach sched domains from a group of cpus specified in cpu_map
7037 * These cpus will now be attached to the NULL domain
7038 */
96f874e2 7039static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
7040{
7041 int i;
7042
dce840a0 7043 rcu_read_lock();
abcd083a 7044 for_each_cpu(i, cpu_map)
57d885fe 7045 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 7046 rcu_read_unlock();
1a20ff27
DG
7047}
7048
1d3504fc
HS
7049/* handle null as "default" */
7050static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7051 struct sched_domain_attr *new, int idx_new)
7052{
7053 struct sched_domain_attr tmp;
7054
7055 /* fast path */
7056 if (!new && !cur)
7057 return 1;
7058
7059 tmp = SD_ATTR_INIT;
7060 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7061 new ? (new + idx_new) : &tmp,
7062 sizeof(struct sched_domain_attr));
7063}
7064
029190c5
PJ
7065/*
7066 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7067 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7068 * doms_new[] to the current sched domain partitioning, doms_cur[].
7069 * It destroys each deleted domain and builds each new domain.
7070 *
acc3f5d7 7071 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7072 * The masks don't intersect (don't overlap.) We should setup one
7073 * sched domain for each mask. CPUs not in any of the cpumasks will
7074 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7075 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7076 * it as it is.
7077 *
acc3f5d7
RR
7078 * The passed in 'doms_new' should be allocated using
7079 * alloc_sched_domains. This routine takes ownership of it and will
7080 * free_sched_domains it when done with it. If the caller failed the
7081 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7082 * and partition_sched_domains() will fallback to the single partition
7083 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7084 *
96f874e2 7085 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7086 * ndoms_new == 0 is a special case for destroying existing domains,
7087 * and it will not create the default domain.
dfb512ec 7088 *
029190c5
PJ
7089 * Call with hotplug lock held
7090 */
acc3f5d7 7091void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7092 struct sched_domain_attr *dattr_new)
029190c5 7093{
dfb512ec 7094 int i, j, n;
d65bd5ec 7095 int new_topology;
029190c5 7096
712555ee 7097 mutex_lock(&sched_domains_mutex);
a1835615 7098
7378547f
MM
7099 /* always unregister in case we don't destroy any domains */
7100 unregister_sched_domain_sysctl();
7101
d65bd5ec
HC
7102 /* Let architecture update cpu core mappings. */
7103 new_topology = arch_update_cpu_topology();
7104
dfb512ec 7105 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7106
7107 /* Destroy deleted domains */
7108 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7109 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7110 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7111 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7112 goto match1;
7113 }
7114 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7115 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7116match1:
7117 ;
7118 }
7119
c8d2d47a 7120 n = ndoms_cur;
e761b772 7121 if (doms_new == NULL) {
c8d2d47a 7122 n = 0;
acc3f5d7 7123 doms_new = &fallback_doms;
6ad4c188 7124 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7125 WARN_ON_ONCE(dattr_new);
e761b772
MK
7126 }
7127
029190c5
PJ
7128 /* Build new domains */
7129 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 7130 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7131 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7132 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7133 goto match2;
7134 }
7135 /* no match - add a new doms_new */
dce840a0 7136 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7137match2:
7138 ;
7139 }
7140
7141 /* Remember the new sched domains */
acc3f5d7
RR
7142 if (doms_cur != &fallback_doms)
7143 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7144 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7145 doms_cur = doms_new;
1d3504fc 7146 dattr_cur = dattr_new;
029190c5 7147 ndoms_cur = ndoms_new;
7378547f
MM
7148
7149 register_sched_domain_sysctl();
a1835615 7150
712555ee 7151 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7152}
7153
d35be8ba
SB
7154static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
7155
1da177e4 7156/*
3a101d05
TH
7157 * Update cpusets according to cpu_active mask. If cpusets are
7158 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7159 * around partition_sched_domains().
d35be8ba
SB
7160 *
7161 * If we come here as part of a suspend/resume, don't touch cpusets because we
7162 * want to restore it back to its original state upon resume anyway.
1da177e4 7163 */
40190a78 7164static void cpuset_cpu_active(void)
e761b772 7165{
40190a78 7166 if (cpuhp_tasks_frozen) {
d35be8ba
SB
7167 /*
7168 * num_cpus_frozen tracks how many CPUs are involved in suspend
7169 * resume sequence. As long as this is not the last online
7170 * operation in the resume sequence, just build a single sched
7171 * domain, ignoring cpusets.
7172 */
7173 num_cpus_frozen--;
7174 if (likely(num_cpus_frozen)) {
7175 partition_sched_domains(1, NULL, NULL);
135fb3e1 7176 return;
d35be8ba 7177 }
d35be8ba
SB
7178 /*
7179 * This is the last CPU online operation. So fall through and
7180 * restore the original sched domains by considering the
7181 * cpuset configurations.
7182 */
3a101d05 7183 }
135fb3e1 7184 cpuset_update_active_cpus(true);
3a101d05 7185}
e761b772 7186
40190a78 7187static int cpuset_cpu_inactive(unsigned int cpu)
3a101d05 7188{
3c18d447 7189 unsigned long flags;
3c18d447 7190 struct dl_bw *dl_b;
533445c6
OS
7191 bool overflow;
7192 int cpus;
3c18d447 7193
40190a78 7194 if (!cpuhp_tasks_frozen) {
533445c6
OS
7195 rcu_read_lock_sched();
7196 dl_b = dl_bw_of(cpu);
3c18d447 7197
533445c6
OS
7198 raw_spin_lock_irqsave(&dl_b->lock, flags);
7199 cpus = dl_bw_cpus(cpu);
7200 overflow = __dl_overflow(dl_b, cpus, 0, 0);
7201 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3c18d447 7202
533445c6 7203 rcu_read_unlock_sched();
3c18d447 7204
533445c6 7205 if (overflow)
135fb3e1 7206 return -EBUSY;
7ddf96b0 7207 cpuset_update_active_cpus(false);
135fb3e1 7208 } else {
d35be8ba
SB
7209 num_cpus_frozen++;
7210 partition_sched_domains(1, NULL, NULL);
e761b772 7211 }
135fb3e1 7212 return 0;
e761b772 7213}
e761b772 7214
40190a78 7215int sched_cpu_activate(unsigned int cpu)
135fb3e1 7216{
7d976699
TG
7217 struct rq *rq = cpu_rq(cpu);
7218 unsigned long flags;
7219
40190a78 7220 set_cpu_active(cpu, true);
135fb3e1 7221
40190a78 7222 if (sched_smp_initialized) {
135fb3e1 7223 sched_domains_numa_masks_set(cpu);
40190a78 7224 cpuset_cpu_active();
e761b772 7225 }
7d976699
TG
7226
7227 /*
7228 * Put the rq online, if not already. This happens:
7229 *
7230 * 1) In the early boot process, because we build the real domains
7231 * after all cpus have been brought up.
7232 *
7233 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
7234 * domains.
7235 */
7236 raw_spin_lock_irqsave(&rq->lock, flags);
7237 if (rq->rd) {
7238 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7239 set_rq_online(rq);
7240 }
7241 raw_spin_unlock_irqrestore(&rq->lock, flags);
7242
7243 update_max_interval();
7244
40190a78 7245 return 0;
135fb3e1
TG
7246}
7247
40190a78 7248int sched_cpu_deactivate(unsigned int cpu)
135fb3e1 7249{
135fb3e1
TG
7250 int ret;
7251
40190a78 7252 set_cpu_active(cpu, false);
b2454caa
PZ
7253 /*
7254 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
7255 * users of this state to go away such that all new such users will
7256 * observe it.
7257 *
7258 * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might
7259 * not imply sync_sched(), so wait for both.
7260 *
7261 * Do sync before park smpboot threads to take care the rcu boost case.
7262 */
7263 if (IS_ENABLED(CONFIG_PREEMPT))
7264 synchronize_rcu_mult(call_rcu, call_rcu_sched);
7265 else
7266 synchronize_rcu();
40190a78
TG
7267
7268 if (!sched_smp_initialized)
7269 return 0;
7270
7271 ret = cpuset_cpu_inactive(cpu);
7272 if (ret) {
7273 set_cpu_active(cpu, true);
7274 return ret;
135fb3e1 7275 }
40190a78
TG
7276 sched_domains_numa_masks_clear(cpu);
7277 return 0;
135fb3e1
TG
7278}
7279
94baf7a5
TG
7280static void sched_rq_cpu_starting(unsigned int cpu)
7281{
7282 struct rq *rq = cpu_rq(cpu);
7283
7284 rq->calc_load_update = calc_load_update;
94baf7a5
TG
7285 update_max_interval();
7286}
7287
135fb3e1
TG
7288int sched_cpu_starting(unsigned int cpu)
7289{
7290 set_cpu_rq_start_time(cpu);
94baf7a5 7291 sched_rq_cpu_starting(cpu);
135fb3e1 7292 return 0;
e761b772 7293}
e761b772 7294
f2785ddb
TG
7295#ifdef CONFIG_HOTPLUG_CPU
7296int sched_cpu_dying(unsigned int cpu)
7297{
7298 struct rq *rq = cpu_rq(cpu);
7299 unsigned long flags;
7300
7301 /* Handle pending wakeups and then migrate everything off */
7302 sched_ttwu_pending();
7303 raw_spin_lock_irqsave(&rq->lock, flags);
7304 if (rq->rd) {
7305 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7306 set_rq_offline(rq);
7307 }
7308 migrate_tasks(rq);
7309 BUG_ON(rq->nr_running != 1);
7310 raw_spin_unlock_irqrestore(&rq->lock, flags);
7311 calc_load_migrate(rq);
7312 update_max_interval();
20a5c8cc 7313 nohz_balance_exit_idle(cpu);
e5ef27d0 7314 hrtick_clear(rq);
f2785ddb
TG
7315 return 0;
7316}
7317#endif
7318
1da177e4
LT
7319void __init sched_init_smp(void)
7320{
dcc30a35
RR
7321 cpumask_var_t non_isolated_cpus;
7322
7323 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7324 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7325
cb83b629
PZ
7326 sched_init_numa();
7327
6acce3ef
PZ
7328 /*
7329 * There's no userspace yet to cause hotplug operations; hence all the
7330 * cpu masks are stable and all blatant races in the below code cannot
7331 * happen.
7332 */
712555ee 7333 mutex_lock(&sched_domains_mutex);
c4a8849a 7334 init_sched_domains(cpu_active_mask);
dcc30a35
RR
7335 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7336 if (cpumask_empty(non_isolated_cpus))
7337 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7338 mutex_unlock(&sched_domains_mutex);
e761b772 7339
5c1e1767 7340 /* Move init over to a non-isolated CPU */
dcc30a35 7341 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7342 BUG();
19978ca6 7343 sched_init_granularity();
dcc30a35 7344 free_cpumask_var(non_isolated_cpus);
4212823f 7345
0e3900e6 7346 init_sched_rt_class();
1baca4ce 7347 init_sched_dl_class();
e26fbffd 7348 sched_smp_initialized = true;
1da177e4 7349}
e26fbffd
TG
7350
7351static int __init migration_init(void)
7352{
94baf7a5 7353 sched_rq_cpu_starting(smp_processor_id());
e26fbffd 7354 return 0;
1da177e4 7355}
e26fbffd
TG
7356early_initcall(migration_init);
7357
1da177e4
LT
7358#else
7359void __init sched_init_smp(void)
7360{
19978ca6 7361 sched_init_granularity();
1da177e4
LT
7362}
7363#endif /* CONFIG_SMP */
7364
7365int in_sched_functions(unsigned long addr)
7366{
1da177e4
LT
7367 return in_lock_functions(addr) ||
7368 (addr >= (unsigned long)__sched_text_start
7369 && addr < (unsigned long)__sched_text_end);
7370}
7371
029632fb 7372#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
7373/*
7374 * Default task group.
7375 * Every task in system belongs to this group at bootup.
7376 */
029632fb 7377struct task_group root_task_group;
35cf4e50 7378LIST_HEAD(task_groups);
b0367629
WL
7379
7380/* Cacheline aligned slab cache for task_group */
7381static struct kmem_cache *task_group_cache __read_mostly;
052f1dc7 7382#endif
6f505b16 7383
e6252c3e 7384DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 7385
1da177e4
LT
7386void __init sched_init(void)
7387{
dd41f596 7388 int i, j;
434d53b0
MT
7389 unsigned long alloc_size = 0, ptr;
7390
7391#ifdef CONFIG_FAIR_GROUP_SCHED
7392 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7393#endif
7394#ifdef CONFIG_RT_GROUP_SCHED
7395 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7396#endif
434d53b0 7397 if (alloc_size) {
36b7b6d4 7398 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7399
7400#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 7401 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
7402 ptr += nr_cpu_ids * sizeof(void **);
7403
07e06b01 7404 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 7405 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7406
6d6bc0ad 7407#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 7408#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7409 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
7410 ptr += nr_cpu_ids * sizeof(void **);
7411
07e06b01 7412 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7413 ptr += nr_cpu_ids * sizeof(void **);
7414
6d6bc0ad 7415#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 7416 }
df7c8e84 7417#ifdef CONFIG_CPUMASK_OFFSTACK
b74e6278
AT
7418 for_each_possible_cpu(i) {
7419 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7420 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
434d53b0 7421 }
b74e6278 7422#endif /* CONFIG_CPUMASK_OFFSTACK */
dd41f596 7423
332ac17e
DF
7424 init_rt_bandwidth(&def_rt_bandwidth,
7425 global_rt_period(), global_rt_runtime());
7426 init_dl_bandwidth(&def_dl_bandwidth,
1724813d 7427 global_rt_period(), global_rt_runtime());
332ac17e 7428
57d885fe
GH
7429#ifdef CONFIG_SMP
7430 init_defrootdomain();
7431#endif
7432
d0b27fa7 7433#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7434 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 7435 global_rt_period(), global_rt_runtime());
6d6bc0ad 7436#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7437
7c941438 7438#ifdef CONFIG_CGROUP_SCHED
b0367629
WL
7439 task_group_cache = KMEM_CACHE(task_group, 0);
7440
07e06b01
YZ
7441 list_add(&root_task_group.list, &task_groups);
7442 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 7443 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 7444 autogroup_init(&init_task);
7c941438 7445#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7446
0a945022 7447 for_each_possible_cpu(i) {
70b97a7f 7448 struct rq *rq;
1da177e4
LT
7449
7450 rq = cpu_rq(i);
05fa785c 7451 raw_spin_lock_init(&rq->lock);
7897986b 7452 rq->nr_running = 0;
dce48a84
TG
7453 rq->calc_load_active = 0;
7454 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 7455 init_cfs_rq(&rq->cfs);
07c54f7a
AV
7456 init_rt_rq(&rq->rt);
7457 init_dl_rq(&rq->dl);
dd41f596 7458#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 7459 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 7460 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 7461 /*
07e06b01 7462 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
7463 *
7464 * In case of task-groups formed thr' the cgroup filesystem, it
7465 * gets 100% of the cpu resources in the system. This overall
7466 * system cpu resource is divided among the tasks of
07e06b01 7467 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
7468 * based on each entity's (task or task-group's) weight
7469 * (se->load.weight).
7470 *
07e06b01 7471 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
7472 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7473 * then A0's share of the cpu resource is:
7474 *
0d905bca 7475 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 7476 *
07e06b01
YZ
7477 * We achieve this by letting root_task_group's tasks sit
7478 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 7479 */
ab84d31e 7480 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 7481 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
7482#endif /* CONFIG_FAIR_GROUP_SCHED */
7483
7484 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7485#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7486 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 7487#endif
1da177e4 7488
dd41f596
IM
7489 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7490 rq->cpu_load[j] = 0;
fdf3e95d 7491
1da177e4 7492#ifdef CONFIG_SMP
41c7ce9a 7493 rq->sd = NULL;
57d885fe 7494 rq->rd = NULL;
ca6d75e6 7495 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
e3fca9e7 7496 rq->balance_callback = NULL;
1da177e4 7497 rq->active_balance = 0;
dd41f596 7498 rq->next_balance = jiffies;
1da177e4 7499 rq->push_cpu = 0;
0a2966b4 7500 rq->cpu = i;
1f11eb6a 7501 rq->online = 0;
eae0c9df
MG
7502 rq->idle_stamp = 0;
7503 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 7504 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
7505
7506 INIT_LIST_HEAD(&rq->cfs_tasks);
7507
dc938520 7508 rq_attach_root(rq, &def_root_domain);
3451d024 7509#ifdef CONFIG_NO_HZ_COMMON
9fd81dd5 7510 rq->last_load_update_tick = jiffies;
1c792db7 7511 rq->nohz_flags = 0;
83cd4fe2 7512#endif
265f22a9
FW
7513#ifdef CONFIG_NO_HZ_FULL
7514 rq->last_sched_tick = 0;
7515#endif
9fd81dd5 7516#endif /* CONFIG_SMP */
8f4d37ec 7517 init_rq_hrtick(rq);
1da177e4 7518 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7519 }
7520
2dd73a4f 7521 set_load_weight(&init_task);
b50f60ce 7522
e107be36
AK
7523#ifdef CONFIG_PREEMPT_NOTIFIERS
7524 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7525#endif
7526
1da177e4
LT
7527 /*
7528 * The boot idle thread does lazy MMU switching as well:
7529 */
7530 atomic_inc(&init_mm.mm_count);
7531 enter_lazy_tlb(&init_mm, current);
7532
1b537c7d
YD
7533 /*
7534 * During early bootup we pretend to be a normal task:
7535 */
7536 current->sched_class = &fair_sched_class;
7537
1da177e4
LT
7538 /*
7539 * Make us the idle thread. Technically, schedule() should not be
7540 * called from this thread, however somewhere below it might be,
7541 * but because we are the idle thread, we just pick up running again
7542 * when this runqueue becomes "idle".
7543 */
7544 init_idle(current, smp_processor_id());
dce48a84
TG
7545
7546 calc_load_update = jiffies + LOAD_FREQ;
7547
bf4d83f6 7548#ifdef CONFIG_SMP
4cb98839 7549 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
7550 /* May be allocated at isolcpus cmdline parse time */
7551 if (cpu_isolated_map == NULL)
7552 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 7553 idle_thread_set_boot_cpu();
9cf7243d 7554 set_cpu_rq_start_time(smp_processor_id());
029632fb
PZ
7555#endif
7556 init_sched_fair_class();
6a7b3dc3 7557
4698f88c
JP
7558 init_schedstats();
7559
6892b75e 7560 scheduler_running = 1;
1da177e4
LT
7561}
7562
d902db1e 7563#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
7564static inline int preempt_count_equals(int preempt_offset)
7565{
da7142e2 7566 int nested = preempt_count() + rcu_preempt_depth();
e4aafea2 7567
4ba8216c 7568 return (nested == preempt_offset);
e4aafea2
FW
7569}
7570
d894837f 7571void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7572{
8eb23b9f
PZ
7573 /*
7574 * Blocking primitives will set (and therefore destroy) current->state,
7575 * since we will exit with TASK_RUNNING make sure we enter with it,
7576 * otherwise we will destroy state.
7577 */
00845eb9 7578 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
8eb23b9f
PZ
7579 "do not call blocking ops when !TASK_RUNNING; "
7580 "state=%lx set at [<%p>] %pS\n",
7581 current->state,
7582 (void *)current->task_state_change,
00845eb9 7583 (void *)current->task_state_change);
8eb23b9f 7584
3427445a
PZ
7585 ___might_sleep(file, line, preempt_offset);
7586}
7587EXPORT_SYMBOL(__might_sleep);
7588
7589void ___might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7590{
1da177e4 7591 static unsigned long prev_jiffy; /* ratelimiting */
d1c6d149 7592 unsigned long preempt_disable_ip;
1da177e4 7593
b3fbab05 7594 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
db273be2
TG
7595 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7596 !is_idle_task(current)) ||
e4aafea2 7597 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7598 return;
7599 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7600 return;
7601 prev_jiffy = jiffies;
7602
d1c6d149
VN
7603 /* Save this before calling printk(), since that will clobber it */
7604 preempt_disable_ip = get_preempt_disable_ip(current);
7605
3df0fc5b
PZ
7606 printk(KERN_ERR
7607 "BUG: sleeping function called from invalid context at %s:%d\n",
7608 file, line);
7609 printk(KERN_ERR
7610 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7611 in_atomic(), irqs_disabled(),
7612 current->pid, current->comm);
aef745fc 7613
a8b686b3
ES
7614 if (task_stack_end_corrupted(current))
7615 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7616
aef745fc
IM
7617 debug_show_held_locks(current);
7618 if (irqs_disabled())
7619 print_irqtrace_events(current);
d1c6d149
VN
7620 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
7621 && !preempt_count_equals(preempt_offset)) {
8f47b187 7622 pr_err("Preemption disabled at:");
d1c6d149 7623 print_ip_sym(preempt_disable_ip);
8f47b187
TG
7624 pr_cont("\n");
7625 }
aef745fc 7626 dump_stack();
f0b22e39 7627 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
1da177e4 7628}
3427445a 7629EXPORT_SYMBOL(___might_sleep);
1da177e4
LT
7630#endif
7631
7632#ifdef CONFIG_MAGIC_SYSRQ
dbc7f069 7633void normalize_rt_tasks(void)
3a5e4dc1 7634{
dbc7f069 7635 struct task_struct *g, *p;
d50dde5a
DF
7636 struct sched_attr attr = {
7637 .sched_policy = SCHED_NORMAL,
7638 };
1da177e4 7639
3472eaa1 7640 read_lock(&tasklist_lock);
5d07f420 7641 for_each_process_thread(g, p) {
178be793
IM
7642 /*
7643 * Only normalize user tasks:
7644 */
3472eaa1 7645 if (p->flags & PF_KTHREAD)
178be793
IM
7646 continue;
7647
6cfb0d5d 7648 p->se.exec_start = 0;
6cfb0d5d 7649#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7650 p->se.statistics.wait_start = 0;
7651 p->se.statistics.sleep_start = 0;
7652 p->se.statistics.block_start = 0;
6cfb0d5d 7653#endif
dd41f596 7654
aab03e05 7655 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
7656 /*
7657 * Renice negative nice level userspace
7658 * tasks back to 0:
7659 */
3472eaa1 7660 if (task_nice(p) < 0)
dd41f596 7661 set_user_nice(p, 0);
1da177e4 7662 continue;
dd41f596 7663 }
1da177e4 7664
dbc7f069 7665 __sched_setscheduler(p, &attr, false, false);
5d07f420 7666 }
3472eaa1 7667 read_unlock(&tasklist_lock);
1da177e4
LT
7668}
7669
7670#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7671
67fc4e0c 7672#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7673/*
67fc4e0c 7674 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7675 *
7676 * They can only be called when the whole system has been
7677 * stopped - every CPU needs to be quiescent, and no scheduling
7678 * activity can take place. Using them for anything else would
7679 * be a serious bug, and as a result, they aren't even visible
7680 * under any other configuration.
7681 */
7682
7683/**
7684 * curr_task - return the current task for a given cpu.
7685 * @cpu: the processor in question.
7686 *
7687 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
7688 *
7689 * Return: The current task for @cpu.
1df5c10a 7690 */
36c8b586 7691struct task_struct *curr_task(int cpu)
1df5c10a
LT
7692{
7693 return cpu_curr(cpu);
7694}
7695
67fc4e0c
JW
7696#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7697
7698#ifdef CONFIG_IA64
1df5c10a
LT
7699/**
7700 * set_curr_task - set the current task for a given cpu.
7701 * @cpu: the processor in question.
7702 * @p: the task pointer to set.
7703 *
7704 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7705 * are serviced on a separate stack. It allows the architecture to switch the
7706 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7707 * must be called with all CPU's synchronized, and interrupts disabled, the
7708 * and caller must save the original value of the current task (see
7709 * curr_task() above) and restore that value before reenabling interrupts and
7710 * re-starting the system.
7711 *
7712 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7713 */
36c8b586 7714void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7715{
7716 cpu_curr(cpu) = p;
7717}
7718
7719#endif
29f59db3 7720
7c941438 7721#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7722/* task_group_lock serializes the addition/removal of task groups */
7723static DEFINE_SPINLOCK(task_group_lock);
7724
2f5177f0 7725static void sched_free_group(struct task_group *tg)
bccbe08a
PZ
7726{
7727 free_fair_sched_group(tg);
7728 free_rt_sched_group(tg);
e9aa1dd1 7729 autogroup_free(tg);
b0367629 7730 kmem_cache_free(task_group_cache, tg);
bccbe08a
PZ
7731}
7732
7733/* allocate runqueue etc for a new task group */
ec7dc8ac 7734struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7735{
7736 struct task_group *tg;
bccbe08a 7737
b0367629 7738 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
bccbe08a
PZ
7739 if (!tg)
7740 return ERR_PTR(-ENOMEM);
7741
ec7dc8ac 7742 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7743 goto err;
7744
ec7dc8ac 7745 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7746 goto err;
7747
ace783b9
LZ
7748 return tg;
7749
7750err:
2f5177f0 7751 sched_free_group(tg);
ace783b9
LZ
7752 return ERR_PTR(-ENOMEM);
7753}
7754
7755void sched_online_group(struct task_group *tg, struct task_group *parent)
7756{
7757 unsigned long flags;
7758
8ed36996 7759 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7760 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7761
7762 WARN_ON(!parent); /* root should already exist */
7763
7764 tg->parent = parent;
f473aa5e 7765 INIT_LIST_HEAD(&tg->children);
09f2724a 7766 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7767 spin_unlock_irqrestore(&task_group_lock, flags);
8663e24d
PZ
7768
7769 online_fair_sched_group(tg);
29f59db3
SV
7770}
7771
9b5b7751 7772/* rcu callback to free various structures associated with a task group */
2f5177f0 7773static void sched_free_group_rcu(struct rcu_head *rhp)
29f59db3 7774{
29f59db3 7775 /* now it should be safe to free those cfs_rqs */
2f5177f0 7776 sched_free_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7777}
7778
4cf86d77 7779void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
7780{
7781 /* wait for possible concurrent references to cfs_rqs complete */
2f5177f0 7782 call_rcu(&tg->rcu, sched_free_group_rcu);
ace783b9
LZ
7783}
7784
7785void sched_offline_group(struct task_group *tg)
29f59db3 7786{
8ed36996 7787 unsigned long flags;
29f59db3 7788
3d4b47b4 7789 /* end participation in shares distribution */
6fe1f348 7790 unregister_fair_sched_group(tg);
3d4b47b4
PZ
7791
7792 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7793 list_del_rcu(&tg->list);
f473aa5e 7794 list_del_rcu(&tg->siblings);
8ed36996 7795 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7796}
7797
ea86cb4b 7798static void sched_change_group(struct task_struct *tsk, int type)
29f59db3 7799{
8323f26c 7800 struct task_group *tg;
29f59db3 7801
f7b8a47d
KT
7802 /*
7803 * All callers are synchronized by task_rq_lock(); we do not use RCU
7804 * which is pointless here. Thus, we pass "true" to task_css_check()
7805 * to prevent lockdep warnings.
7806 */
7807 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
7808 struct task_group, css);
7809 tg = autogroup_task_group(tsk, tg);
7810 tsk->sched_task_group = tg;
7811
810b3817 7812#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
7813 if (tsk->sched_class->task_change_group)
7814 tsk->sched_class->task_change_group(tsk, type);
b2b5ce02 7815 else
810b3817 7816#endif
b2b5ce02 7817 set_task_rq(tsk, task_cpu(tsk));
ea86cb4b
VG
7818}
7819
7820/*
7821 * Change task's runqueue when it moves between groups.
7822 *
7823 * The caller of this function should have put the task in its new group by
7824 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
7825 * its new group.
7826 */
7827void sched_move_task(struct task_struct *tsk)
7828{
7829 int queued, running;
7830 struct rq_flags rf;
7831 struct rq *rq;
7832
7833 rq = task_rq_lock(tsk, &rf);
7834
7835 running = task_current(rq, tsk);
7836 queued = task_on_rq_queued(tsk);
7837
7838 if (queued)
7839 dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
7840 if (unlikely(running))
7841 put_prev_task(rq, tsk);
7842
7843 sched_change_group(tsk, TASK_MOVE_GROUP);
810b3817 7844
0e1f3483
HS
7845 if (unlikely(running))
7846 tsk->sched_class->set_curr_task(rq);
da0c1e65 7847 if (queued)
ff77e468 7848 enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
29f59db3 7849
eb580751 7850 task_rq_unlock(rq, tsk, &rf);
29f59db3 7851}
7c941438 7852#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7853
a790de99
PT
7854#ifdef CONFIG_RT_GROUP_SCHED
7855/*
7856 * Ensure that the real time constraints are schedulable.
7857 */
7858static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7859
9a7e0b18
PZ
7860/* Must be called with tasklist_lock held */
7861static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7862{
9a7e0b18 7863 struct task_struct *g, *p;
b40b2e8e 7864
1fe89e1b
PZ
7865 /*
7866 * Autogroups do not have RT tasks; see autogroup_create().
7867 */
7868 if (task_group_is_autogroup(tg))
7869 return 0;
7870
5d07f420 7871 for_each_process_thread(g, p) {
8651c658 7872 if (rt_task(p) && task_group(p) == tg)
9a7e0b18 7873 return 1;
5d07f420 7874 }
b40b2e8e 7875
9a7e0b18
PZ
7876 return 0;
7877}
b40b2e8e 7878
9a7e0b18
PZ
7879struct rt_schedulable_data {
7880 struct task_group *tg;
7881 u64 rt_period;
7882 u64 rt_runtime;
7883};
b40b2e8e 7884
a790de99 7885static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7886{
7887 struct rt_schedulable_data *d = data;
7888 struct task_group *child;
7889 unsigned long total, sum = 0;
7890 u64 period, runtime;
b40b2e8e 7891
9a7e0b18
PZ
7892 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7893 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7894
9a7e0b18
PZ
7895 if (tg == d->tg) {
7896 period = d->rt_period;
7897 runtime = d->rt_runtime;
b40b2e8e 7898 }
b40b2e8e 7899
4653f803
PZ
7900 /*
7901 * Cannot have more runtime than the period.
7902 */
7903 if (runtime > period && runtime != RUNTIME_INF)
7904 return -EINVAL;
6f505b16 7905
4653f803
PZ
7906 /*
7907 * Ensure we don't starve existing RT tasks.
7908 */
9a7e0b18
PZ
7909 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7910 return -EBUSY;
6f505b16 7911
9a7e0b18 7912 total = to_ratio(period, runtime);
6f505b16 7913
4653f803
PZ
7914 /*
7915 * Nobody can have more than the global setting allows.
7916 */
7917 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7918 return -EINVAL;
6f505b16 7919
4653f803
PZ
7920 /*
7921 * The sum of our children's runtime should not exceed our own.
7922 */
9a7e0b18
PZ
7923 list_for_each_entry_rcu(child, &tg->children, siblings) {
7924 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7925 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7926
9a7e0b18
PZ
7927 if (child == d->tg) {
7928 period = d->rt_period;
7929 runtime = d->rt_runtime;
7930 }
6f505b16 7931
9a7e0b18 7932 sum += to_ratio(period, runtime);
9f0c1e56 7933 }
6f505b16 7934
9a7e0b18
PZ
7935 if (sum > total)
7936 return -EINVAL;
7937
7938 return 0;
6f505b16
PZ
7939}
7940
9a7e0b18 7941static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7942{
8277434e
PT
7943 int ret;
7944
9a7e0b18
PZ
7945 struct rt_schedulable_data data = {
7946 .tg = tg,
7947 .rt_period = period,
7948 .rt_runtime = runtime,
7949 };
7950
8277434e
PT
7951 rcu_read_lock();
7952 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7953 rcu_read_unlock();
7954
7955 return ret;
521f1a24
DG
7956}
7957
ab84d31e 7958static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7959 u64 rt_period, u64 rt_runtime)
6f505b16 7960{
ac086bc2 7961 int i, err = 0;
9f0c1e56 7962
2636ed5f
PZ
7963 /*
7964 * Disallowing the root group RT runtime is BAD, it would disallow the
7965 * kernel creating (and or operating) RT threads.
7966 */
7967 if (tg == &root_task_group && rt_runtime == 0)
7968 return -EINVAL;
7969
7970 /* No period doesn't make any sense. */
7971 if (rt_period == 0)
7972 return -EINVAL;
7973
9f0c1e56 7974 mutex_lock(&rt_constraints_mutex);
521f1a24 7975 read_lock(&tasklist_lock);
9a7e0b18
PZ
7976 err = __rt_schedulable(tg, rt_period, rt_runtime);
7977 if (err)
9f0c1e56 7978 goto unlock;
ac086bc2 7979
0986b11b 7980 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7981 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7982 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7983
7984 for_each_possible_cpu(i) {
7985 struct rt_rq *rt_rq = tg->rt_rq[i];
7986
0986b11b 7987 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7988 rt_rq->rt_runtime = rt_runtime;
0986b11b 7989 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7990 }
0986b11b 7991 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7992unlock:
521f1a24 7993 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7994 mutex_unlock(&rt_constraints_mutex);
7995
7996 return err;
6f505b16
PZ
7997}
7998
25cc7da7 7999static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
8000{
8001 u64 rt_runtime, rt_period;
8002
8003 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8004 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8005 if (rt_runtime_us < 0)
8006 rt_runtime = RUNTIME_INF;
8007
ab84d31e 8008 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
8009}
8010
25cc7da7 8011static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
8012{
8013 u64 rt_runtime_us;
8014
d0b27fa7 8015 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8016 return -1;
8017
d0b27fa7 8018 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8019 do_div(rt_runtime_us, NSEC_PER_USEC);
8020 return rt_runtime_us;
8021}
d0b27fa7 8022
ce2f5fe4 8023static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
d0b27fa7
PZ
8024{
8025 u64 rt_runtime, rt_period;
8026
ce2f5fe4 8027 rt_period = rt_period_us * NSEC_PER_USEC;
d0b27fa7
PZ
8028 rt_runtime = tg->rt_bandwidth.rt_runtime;
8029
ab84d31e 8030 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
8031}
8032
25cc7da7 8033static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
8034{
8035 u64 rt_period_us;
8036
8037 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8038 do_div(rt_period_us, NSEC_PER_USEC);
8039 return rt_period_us;
8040}
332ac17e 8041#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8042
332ac17e 8043#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
8044static int sched_rt_global_constraints(void)
8045{
8046 int ret = 0;
8047
8048 mutex_lock(&rt_constraints_mutex);
9a7e0b18 8049 read_lock(&tasklist_lock);
4653f803 8050 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 8051 read_unlock(&tasklist_lock);
d0b27fa7
PZ
8052 mutex_unlock(&rt_constraints_mutex);
8053
8054 return ret;
8055}
54e99124 8056
25cc7da7 8057static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
8058{
8059 /* Don't accept realtime tasks when there is no way for them to run */
8060 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8061 return 0;
8062
8063 return 1;
8064}
8065
6d6bc0ad 8066#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8067static int sched_rt_global_constraints(void)
8068{
ac086bc2 8069 unsigned long flags;
8c5e9554 8070 int i;
ec5d4989 8071
0986b11b 8072 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
8073 for_each_possible_cpu(i) {
8074 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8075
0986b11b 8076 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8077 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 8078 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8079 }
0986b11b 8080 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 8081
8c5e9554 8082 return 0;
d0b27fa7 8083}
6d6bc0ad 8084#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8085
a1963b81 8086static int sched_dl_global_validate(void)
332ac17e 8087{
1724813d
PZ
8088 u64 runtime = global_rt_runtime();
8089 u64 period = global_rt_period();
332ac17e 8090 u64 new_bw = to_ratio(period, runtime);
f10e00f4 8091 struct dl_bw *dl_b;
1724813d 8092 int cpu, ret = 0;
49516342 8093 unsigned long flags;
332ac17e
DF
8094
8095 /*
8096 * Here we want to check the bandwidth not being set to some
8097 * value smaller than the currently allocated bandwidth in
8098 * any of the root_domains.
8099 *
8100 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
8101 * cycling on root_domains... Discussion on different/better
8102 * solutions is welcome!
8103 */
1724813d 8104 for_each_possible_cpu(cpu) {
f10e00f4
KT
8105 rcu_read_lock_sched();
8106 dl_b = dl_bw_of(cpu);
332ac17e 8107
49516342 8108 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d
PZ
8109 if (new_bw < dl_b->total_bw)
8110 ret = -EBUSY;
49516342 8111 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
1724813d 8112
f10e00f4
KT
8113 rcu_read_unlock_sched();
8114
1724813d
PZ
8115 if (ret)
8116 break;
332ac17e
DF
8117 }
8118
1724813d 8119 return ret;
332ac17e
DF
8120}
8121
1724813d 8122static void sched_dl_do_global(void)
ce0dbbbb 8123{
1724813d 8124 u64 new_bw = -1;
f10e00f4 8125 struct dl_bw *dl_b;
1724813d 8126 int cpu;
49516342 8127 unsigned long flags;
ce0dbbbb 8128
1724813d
PZ
8129 def_dl_bandwidth.dl_period = global_rt_period();
8130 def_dl_bandwidth.dl_runtime = global_rt_runtime();
8131
8132 if (global_rt_runtime() != RUNTIME_INF)
8133 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
8134
8135 /*
8136 * FIXME: As above...
8137 */
8138 for_each_possible_cpu(cpu) {
f10e00f4
KT
8139 rcu_read_lock_sched();
8140 dl_b = dl_bw_of(cpu);
1724813d 8141
49516342 8142 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d 8143 dl_b->bw = new_bw;
49516342 8144 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
f10e00f4
KT
8145
8146 rcu_read_unlock_sched();
ce0dbbbb 8147 }
1724813d
PZ
8148}
8149
8150static int sched_rt_global_validate(void)
8151{
8152 if (sysctl_sched_rt_period <= 0)
8153 return -EINVAL;
8154
e9e7cb38
JL
8155 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
8156 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
1724813d
PZ
8157 return -EINVAL;
8158
8159 return 0;
8160}
8161
8162static void sched_rt_do_global(void)
8163{
8164 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8165 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
8166}
8167
d0b27fa7 8168int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8169 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8170 loff_t *ppos)
8171{
d0b27fa7
PZ
8172 int old_period, old_runtime;
8173 static DEFINE_MUTEX(mutex);
1724813d 8174 int ret;
d0b27fa7
PZ
8175
8176 mutex_lock(&mutex);
8177 old_period = sysctl_sched_rt_period;
8178 old_runtime = sysctl_sched_rt_runtime;
8179
8d65af78 8180 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
8181
8182 if (!ret && write) {
1724813d
PZ
8183 ret = sched_rt_global_validate();
8184 if (ret)
8185 goto undo;
8186
a1963b81 8187 ret = sched_dl_global_validate();
1724813d
PZ
8188 if (ret)
8189 goto undo;
8190
a1963b81 8191 ret = sched_rt_global_constraints();
1724813d
PZ
8192 if (ret)
8193 goto undo;
8194
8195 sched_rt_do_global();
8196 sched_dl_do_global();
8197 }
8198 if (0) {
8199undo:
8200 sysctl_sched_rt_period = old_period;
8201 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
8202 }
8203 mutex_unlock(&mutex);
8204
8205 return ret;
8206}
68318b8e 8207
1724813d 8208int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
8209 void __user *buffer, size_t *lenp,
8210 loff_t *ppos)
8211{
8212 int ret;
332ac17e 8213 static DEFINE_MUTEX(mutex);
332ac17e
DF
8214
8215 mutex_lock(&mutex);
332ac17e 8216 ret = proc_dointvec(table, write, buffer, lenp, ppos);
1724813d
PZ
8217 /* make sure that internally we keep jiffies */
8218 /* also, writing zero resets timeslice to default */
332ac17e 8219 if (!ret && write) {
1724813d
PZ
8220 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8221 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
332ac17e
DF
8222 }
8223 mutex_unlock(&mutex);
332ac17e
DF
8224 return ret;
8225}
8226
052f1dc7 8227#ifdef CONFIG_CGROUP_SCHED
68318b8e 8228
a7c6d554 8229static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 8230{
a7c6d554 8231 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
8232}
8233
eb95419b
TH
8234static struct cgroup_subsys_state *
8235cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 8236{
eb95419b
TH
8237 struct task_group *parent = css_tg(parent_css);
8238 struct task_group *tg;
68318b8e 8239
eb95419b 8240 if (!parent) {
68318b8e 8241 /* This is early initialization for the top cgroup */
07e06b01 8242 return &root_task_group.css;
68318b8e
SV
8243 }
8244
ec7dc8ac 8245 tg = sched_create_group(parent);
68318b8e
SV
8246 if (IS_ERR(tg))
8247 return ERR_PTR(-ENOMEM);
8248
2f5177f0
PZ
8249 sched_online_group(tg, parent);
8250
68318b8e
SV
8251 return &tg->css;
8252}
8253
2f5177f0 8254static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
ace783b9 8255{
eb95419b 8256 struct task_group *tg = css_tg(css);
ace783b9 8257
2f5177f0 8258 sched_offline_group(tg);
ace783b9
LZ
8259}
8260
eb95419b 8261static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 8262{
eb95419b 8263 struct task_group *tg = css_tg(css);
68318b8e 8264
2f5177f0
PZ
8265 /*
8266 * Relies on the RCU grace period between css_released() and this.
8267 */
8268 sched_free_group(tg);
ace783b9
LZ
8269}
8270
ea86cb4b
VG
8271/*
8272 * This is called before wake_up_new_task(), therefore we really only
8273 * have to set its group bits, all the other stuff does not apply.
8274 */
b53202e6 8275static void cpu_cgroup_fork(struct task_struct *task)
eeb61e53 8276{
ea86cb4b
VG
8277 struct rq_flags rf;
8278 struct rq *rq;
8279
8280 rq = task_rq_lock(task, &rf);
8281
8282 sched_change_group(task, TASK_SET_GROUP);
8283
8284 task_rq_unlock(rq, task, &rf);
eeb61e53
KT
8285}
8286
1f7dd3e5 8287static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
68318b8e 8288{
bb9d97b6 8289 struct task_struct *task;
1f7dd3e5 8290 struct cgroup_subsys_state *css;
7dc603c9 8291 int ret = 0;
bb9d97b6 8292
1f7dd3e5 8293 cgroup_taskset_for_each(task, css, tset) {
b68aa230 8294#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 8295 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 8296 return -EINVAL;
b68aa230 8297#else
bb9d97b6
TH
8298 /* We don't support RT-tasks being in separate groups */
8299 if (task->sched_class != &fair_sched_class)
8300 return -EINVAL;
b68aa230 8301#endif
7dc603c9
PZ
8302 /*
8303 * Serialize against wake_up_new_task() such that if its
8304 * running, we're sure to observe its full state.
8305 */
8306 raw_spin_lock_irq(&task->pi_lock);
8307 /*
8308 * Avoid calling sched_move_task() before wake_up_new_task()
8309 * has happened. This would lead to problems with PELT, due to
8310 * move wanting to detach+attach while we're not attached yet.
8311 */
8312 if (task->state == TASK_NEW)
8313 ret = -EINVAL;
8314 raw_spin_unlock_irq(&task->pi_lock);
8315
8316 if (ret)
8317 break;
bb9d97b6 8318 }
7dc603c9 8319 return ret;
be367d09 8320}
68318b8e 8321
1f7dd3e5 8322static void cpu_cgroup_attach(struct cgroup_taskset *tset)
68318b8e 8323{
bb9d97b6 8324 struct task_struct *task;
1f7dd3e5 8325 struct cgroup_subsys_state *css;
bb9d97b6 8326
1f7dd3e5 8327 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 8328 sched_move_task(task);
68318b8e
SV
8329}
8330
052f1dc7 8331#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
8332static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8333 struct cftype *cftype, u64 shareval)
68318b8e 8334{
182446d0 8335 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
8336}
8337
182446d0
TH
8338static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8339 struct cftype *cft)
68318b8e 8340{
182446d0 8341 struct task_group *tg = css_tg(css);
68318b8e 8342
c8b28116 8343 return (u64) scale_load_down(tg->shares);
68318b8e 8344}
ab84d31e
PT
8345
8346#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
8347static DEFINE_MUTEX(cfs_constraints_mutex);
8348
ab84d31e
PT
8349const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8350const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8351
a790de99
PT
8352static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8353
ab84d31e
PT
8354static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8355{
56f570e5 8356 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 8357 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
8358
8359 if (tg == &root_task_group)
8360 return -EINVAL;
8361
8362 /*
8363 * Ensure we have at some amount of bandwidth every period. This is
8364 * to prevent reaching a state of large arrears when throttled via
8365 * entity_tick() resulting in prolonged exit starvation.
8366 */
8367 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8368 return -EINVAL;
8369
8370 /*
8371 * Likewise, bound things on the otherside by preventing insane quota
8372 * periods. This also allows us to normalize in computing quota
8373 * feasibility.
8374 */
8375 if (period > max_cfs_quota_period)
8376 return -EINVAL;
8377
0e59bdae
KT
8378 /*
8379 * Prevent race between setting of cfs_rq->runtime_enabled and
8380 * unthrottle_offline_cfs_rqs().
8381 */
8382 get_online_cpus();
a790de99
PT
8383 mutex_lock(&cfs_constraints_mutex);
8384 ret = __cfs_schedulable(tg, period, quota);
8385 if (ret)
8386 goto out_unlock;
8387
58088ad0 8388 runtime_enabled = quota != RUNTIME_INF;
56f570e5 8389 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
8390 /*
8391 * If we need to toggle cfs_bandwidth_used, off->on must occur
8392 * before making related changes, and on->off must occur afterwards
8393 */
8394 if (runtime_enabled && !runtime_was_enabled)
8395 cfs_bandwidth_usage_inc();
ab84d31e
PT
8396 raw_spin_lock_irq(&cfs_b->lock);
8397 cfs_b->period = ns_to_ktime(period);
8398 cfs_b->quota = quota;
58088ad0 8399
a9cf55b2 8400 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 8401 /* restart the period timer (if active) to handle new period expiry */
77a4d1a1
PZ
8402 if (runtime_enabled)
8403 start_cfs_bandwidth(cfs_b);
ab84d31e
PT
8404 raw_spin_unlock_irq(&cfs_b->lock);
8405
0e59bdae 8406 for_each_online_cpu(i) {
ab84d31e 8407 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 8408 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
8409
8410 raw_spin_lock_irq(&rq->lock);
58088ad0 8411 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 8412 cfs_rq->runtime_remaining = 0;
671fd9da 8413
029632fb 8414 if (cfs_rq->throttled)
671fd9da 8415 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
8416 raw_spin_unlock_irq(&rq->lock);
8417 }
1ee14e6c
BS
8418 if (runtime_was_enabled && !runtime_enabled)
8419 cfs_bandwidth_usage_dec();
a790de99
PT
8420out_unlock:
8421 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 8422 put_online_cpus();
ab84d31e 8423
a790de99 8424 return ret;
ab84d31e
PT
8425}
8426
8427int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8428{
8429 u64 quota, period;
8430
029632fb 8431 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8432 if (cfs_quota_us < 0)
8433 quota = RUNTIME_INF;
8434 else
8435 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8436
8437 return tg_set_cfs_bandwidth(tg, period, quota);
8438}
8439
8440long tg_get_cfs_quota(struct task_group *tg)
8441{
8442 u64 quota_us;
8443
029632fb 8444 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
8445 return -1;
8446
029632fb 8447 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
8448 do_div(quota_us, NSEC_PER_USEC);
8449
8450 return quota_us;
8451}
8452
8453int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8454{
8455 u64 quota, period;
8456
8457 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 8458 quota = tg->cfs_bandwidth.quota;
ab84d31e 8459
ab84d31e
PT
8460 return tg_set_cfs_bandwidth(tg, period, quota);
8461}
8462
8463long tg_get_cfs_period(struct task_group *tg)
8464{
8465 u64 cfs_period_us;
8466
029632fb 8467 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8468 do_div(cfs_period_us, NSEC_PER_USEC);
8469
8470 return cfs_period_us;
8471}
8472
182446d0
TH
8473static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8474 struct cftype *cft)
ab84d31e 8475{
182446d0 8476 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
8477}
8478
182446d0
TH
8479static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8480 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 8481{
182446d0 8482 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
8483}
8484
182446d0
TH
8485static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8486 struct cftype *cft)
ab84d31e 8487{
182446d0 8488 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
8489}
8490
182446d0
TH
8491static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8492 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 8493{
182446d0 8494 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
8495}
8496
a790de99
PT
8497struct cfs_schedulable_data {
8498 struct task_group *tg;
8499 u64 period, quota;
8500};
8501
8502/*
8503 * normalize group quota/period to be quota/max_period
8504 * note: units are usecs
8505 */
8506static u64 normalize_cfs_quota(struct task_group *tg,
8507 struct cfs_schedulable_data *d)
8508{
8509 u64 quota, period;
8510
8511 if (tg == d->tg) {
8512 period = d->period;
8513 quota = d->quota;
8514 } else {
8515 period = tg_get_cfs_period(tg);
8516 quota = tg_get_cfs_quota(tg);
8517 }
8518
8519 /* note: these should typically be equivalent */
8520 if (quota == RUNTIME_INF || quota == -1)
8521 return RUNTIME_INF;
8522
8523 return to_ratio(period, quota);
8524}
8525
8526static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8527{
8528 struct cfs_schedulable_data *d = data;
029632fb 8529 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
8530 s64 quota = 0, parent_quota = -1;
8531
8532 if (!tg->parent) {
8533 quota = RUNTIME_INF;
8534 } else {
029632fb 8535 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
8536
8537 quota = normalize_cfs_quota(tg, d);
9c58c79a 8538 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
8539
8540 /*
8541 * ensure max(child_quota) <= parent_quota, inherit when no
8542 * limit is set
8543 */
8544 if (quota == RUNTIME_INF)
8545 quota = parent_quota;
8546 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8547 return -EINVAL;
8548 }
9c58c79a 8549 cfs_b->hierarchical_quota = quota;
a790de99
PT
8550
8551 return 0;
8552}
8553
8554static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8555{
8277434e 8556 int ret;
a790de99
PT
8557 struct cfs_schedulable_data data = {
8558 .tg = tg,
8559 .period = period,
8560 .quota = quota,
8561 };
8562
8563 if (quota != RUNTIME_INF) {
8564 do_div(data.period, NSEC_PER_USEC);
8565 do_div(data.quota, NSEC_PER_USEC);
8566 }
8567
8277434e
PT
8568 rcu_read_lock();
8569 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8570 rcu_read_unlock();
8571
8572 return ret;
a790de99 8573}
e8da1b18 8574
2da8ca82 8575static int cpu_stats_show(struct seq_file *sf, void *v)
e8da1b18 8576{
2da8ca82 8577 struct task_group *tg = css_tg(seq_css(sf));
029632fb 8578 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 8579
44ffc75b
TH
8580 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8581 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8582 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
8583
8584 return 0;
8585}
ab84d31e 8586#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 8587#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8588
052f1dc7 8589#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
8590static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8591 struct cftype *cft, s64 val)
6f505b16 8592{
182446d0 8593 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
8594}
8595
182446d0
TH
8596static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8597 struct cftype *cft)
6f505b16 8598{
182446d0 8599 return sched_group_rt_runtime(css_tg(css));
6f505b16 8600}
d0b27fa7 8601
182446d0
TH
8602static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8603 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 8604{
182446d0 8605 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
8606}
8607
182446d0
TH
8608static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8609 struct cftype *cft)
d0b27fa7 8610{
182446d0 8611 return sched_group_rt_period(css_tg(css));
d0b27fa7 8612}
6d6bc0ad 8613#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8614
fe5c7cc2 8615static struct cftype cpu_files[] = {
052f1dc7 8616#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8617 {
8618 .name = "shares",
f4c753b7
PM
8619 .read_u64 = cpu_shares_read_u64,
8620 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8621 },
052f1dc7 8622#endif
ab84d31e
PT
8623#ifdef CONFIG_CFS_BANDWIDTH
8624 {
8625 .name = "cfs_quota_us",
8626 .read_s64 = cpu_cfs_quota_read_s64,
8627 .write_s64 = cpu_cfs_quota_write_s64,
8628 },
8629 {
8630 .name = "cfs_period_us",
8631 .read_u64 = cpu_cfs_period_read_u64,
8632 .write_u64 = cpu_cfs_period_write_u64,
8633 },
e8da1b18
NR
8634 {
8635 .name = "stat",
2da8ca82 8636 .seq_show = cpu_stats_show,
e8da1b18 8637 },
ab84d31e 8638#endif
052f1dc7 8639#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8640 {
9f0c1e56 8641 .name = "rt_runtime_us",
06ecb27c
PM
8642 .read_s64 = cpu_rt_runtime_read,
8643 .write_s64 = cpu_rt_runtime_write,
6f505b16 8644 },
d0b27fa7
PZ
8645 {
8646 .name = "rt_period_us",
f4c753b7
PM
8647 .read_u64 = cpu_rt_period_read_uint,
8648 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8649 },
052f1dc7 8650#endif
4baf6e33 8651 { } /* terminate */
68318b8e
SV
8652};
8653
073219e9 8654struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748 8655 .css_alloc = cpu_cgroup_css_alloc,
2f5177f0 8656 .css_released = cpu_cgroup_css_released,
92fb9748 8657 .css_free = cpu_cgroup_css_free,
eeb61e53 8658 .fork = cpu_cgroup_fork,
bb9d97b6
TH
8659 .can_attach = cpu_cgroup_can_attach,
8660 .attach = cpu_cgroup_attach,
5577964e 8661 .legacy_cftypes = cpu_files,
b38e42e9 8662 .early_init = true,
68318b8e
SV
8663};
8664
052f1dc7 8665#endif /* CONFIG_CGROUP_SCHED */
d842de87 8666
b637a328
PM
8667void dump_cpu_task(int cpu)
8668{
8669 pr_info("Task dump for CPU %d:\n", cpu);
8670 sched_show_task(cpu_curr(cpu));
8671}
ed82b8a1
AK
8672
8673/*
8674 * Nice levels are multiplicative, with a gentle 10% change for every
8675 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8676 * nice 1, it will get ~10% less CPU time than another CPU-bound task
8677 * that remained on nice 0.
8678 *
8679 * The "10% effect" is relative and cumulative: from _any_ nice level,
8680 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8681 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8682 * If a task goes up by ~10% and another task goes down by ~10% then
8683 * the relative distance between them is ~25%.)
8684 */
8685const int sched_prio_to_weight[40] = {
8686 /* -20 */ 88761, 71755, 56483, 46273, 36291,
8687 /* -15 */ 29154, 23254, 18705, 14949, 11916,
8688 /* -10 */ 9548, 7620, 6100, 4904, 3906,
8689 /* -5 */ 3121, 2501, 1991, 1586, 1277,
8690 /* 0 */ 1024, 820, 655, 526, 423,
8691 /* 5 */ 335, 272, 215, 172, 137,
8692 /* 10 */ 110, 87, 70, 56, 45,
8693 /* 15 */ 36, 29, 23, 18, 15,
8694};
8695
8696/*
8697 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8698 *
8699 * In cases where the weight does not change often, we can use the
8700 * precalculated inverse to speed up arithmetics by turning divisions
8701 * into multiplications:
8702 */
8703const u32 sched_prio_to_wmult[40] = {
8704 /* -20 */ 48388, 59856, 76040, 92818, 118348,
8705 /* -15 */ 147320, 184698, 229616, 287308, 360437,
8706 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
8707 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
8708 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
8709 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
8710 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
8711 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8712};