]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - kernel/sched/core.c
sched/fair: Optimize !CONFIG_NO_HZ_COMMON CPU load updates
[mirror_ubuntu-eoan-kernel.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
e1b77c92 29#include <linux/kasan.h>
1da177e4
LT
30#include <linux/mm.h>
31#include <linux/module.h>
32#include <linux/nmi.h>
33#include <linux/init.h>
dff06c15 34#include <linux/uaccess.h>
1da177e4 35#include <linux/highmem.h>
1da177e4
LT
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
cdd6c482 42#include <linux/perf_event.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
b5aadf7f 58#include <linux/proc_fs.h>
1da177e4 59#include <linux/seq_file.h>
e692ab53 60#include <linux/sysctl.h>
1da177e4
LT
61#include <linux/syscalls.h>
62#include <linux/times.h>
8f0ab514 63#include <linux/tsacct_kern.h>
c6fd91f0 64#include <linux/kprobes.h>
0ff92245 65#include <linux/delayacct.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
30914a58 69#include <linux/tick.h>
f00b45c1 70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
91d1aa43 74#include <linux/context_tracking.h>
52f5684c 75#include <linux/compiler.h>
8e05e96a 76#include <linux/frame.h>
1da177e4 77
96f951ed 78#include <asm/switch_to.h>
5517d86b 79#include <asm/tlb.h>
838225b4 80#include <asm/irq_regs.h>
db7e527d 81#include <asm/mutex.h>
e6e6685a
GC
82#ifdef CONFIG_PARAVIRT
83#include <asm/paravirt.h>
84#endif
1da177e4 85
029632fb 86#include "sched.h"
ea138446 87#include "../workqueue_internal.h"
29d5e047 88#include "../smpboot.h"
6e0534f2 89
a8d154b0 90#define CREATE_TRACE_POINTS
ad8d75ff 91#include <trace/events/sched.h>
a8d154b0 92
029632fb
PZ
93DEFINE_MUTEX(sched_domains_mutex);
94DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 95
fe44d621 96static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 97
029632fb 98void update_rq_clock(struct rq *rq)
3e51f33f 99{
fe44d621 100 s64 delta;
305e6835 101
9edfbfed
PZ
102 lockdep_assert_held(&rq->lock);
103
104 if (rq->clock_skip_update & RQCF_ACT_SKIP)
f26f9aff 105 return;
aa483808 106
fe44d621 107 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
4036ac15
MG
108 if (delta < 0)
109 return;
fe44d621
PZ
110 rq->clock += delta;
111 update_rq_clock_task(rq, delta);
3e51f33f
PZ
112}
113
bf5c91ba
IM
114/*
115 * Debugging: various feature bits
116 */
f00b45c1 117
f00b45c1
PZ
118#define SCHED_FEAT(name, enabled) \
119 (1UL << __SCHED_FEAT_##name) * enabled |
120
bf5c91ba 121const_debug unsigned int sysctl_sched_features =
391e43da 122#include "features.h"
f00b45c1
PZ
123 0;
124
125#undef SCHED_FEAT
126
b82d9fdd
PZ
127/*
128 * Number of tasks to iterate in a single balance run.
129 * Limited because this is done with IRQs disabled.
130 */
131const_debug unsigned int sysctl_sched_nr_migrate = 32;
132
e9e9250b
PZ
133/*
134 * period over which we average the RT time consumption, measured
135 * in ms.
136 *
137 * default: 1s
138 */
139const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
140
fa85ae24 141/*
9f0c1e56 142 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
143 * default: 1s
144 */
9f0c1e56 145unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 146
029632fb 147__read_mostly int scheduler_running;
6892b75e 148
9f0c1e56
PZ
149/*
150 * part of the period that we allow rt tasks to run in us.
151 * default: 0.95s
152 */
153int sysctl_sched_rt_runtime = 950000;
fa85ae24 154
3fa0818b
RR
155/* cpus with isolated domains */
156cpumask_var_t cpu_isolated_map;
157
1da177e4 158/*
cc2a73b5 159 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 160 */
a9957449 161static struct rq *this_rq_lock(void)
1da177e4
LT
162 __acquires(rq->lock)
163{
70b97a7f 164 struct rq *rq;
1da177e4
LT
165
166 local_irq_disable();
167 rq = this_rq();
05fa785c 168 raw_spin_lock(&rq->lock);
1da177e4
LT
169
170 return rq;
171}
172
8f4d37ec
PZ
173#ifdef CONFIG_SCHED_HRTICK
174/*
175 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 176 */
8f4d37ec 177
8f4d37ec
PZ
178static void hrtick_clear(struct rq *rq)
179{
180 if (hrtimer_active(&rq->hrtick_timer))
181 hrtimer_cancel(&rq->hrtick_timer);
182}
183
8f4d37ec
PZ
184/*
185 * High-resolution timer tick.
186 * Runs from hardirq context with interrupts disabled.
187 */
188static enum hrtimer_restart hrtick(struct hrtimer *timer)
189{
190 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
191
192 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
193
05fa785c 194 raw_spin_lock(&rq->lock);
3e51f33f 195 update_rq_clock(rq);
8f4d37ec 196 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 197 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
198
199 return HRTIMER_NORESTART;
200}
201
95e904c7 202#ifdef CONFIG_SMP
971ee28c 203
4961b6e1 204static void __hrtick_restart(struct rq *rq)
971ee28c
PZ
205{
206 struct hrtimer *timer = &rq->hrtick_timer;
971ee28c 207
4961b6e1 208 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
971ee28c
PZ
209}
210
31656519
PZ
211/*
212 * called from hardirq (IPI) context
213 */
214static void __hrtick_start(void *arg)
b328ca18 215{
31656519 216 struct rq *rq = arg;
b328ca18 217
05fa785c 218 raw_spin_lock(&rq->lock);
971ee28c 219 __hrtick_restart(rq);
31656519 220 rq->hrtick_csd_pending = 0;
05fa785c 221 raw_spin_unlock(&rq->lock);
b328ca18
PZ
222}
223
31656519
PZ
224/*
225 * Called to set the hrtick timer state.
226 *
227 * called with rq->lock held and irqs disabled
228 */
029632fb 229void hrtick_start(struct rq *rq, u64 delay)
b328ca18 230{
31656519 231 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 232 ktime_t time;
233 s64 delta;
234
235 /*
236 * Don't schedule slices shorter than 10000ns, that just
237 * doesn't make sense and can cause timer DoS.
238 */
239 delta = max_t(s64, delay, 10000LL);
240 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 241
cc584b21 242 hrtimer_set_expires(timer, time);
31656519
PZ
243
244 if (rq == this_rq()) {
971ee28c 245 __hrtick_restart(rq);
31656519 246 } else if (!rq->hrtick_csd_pending) {
c46fff2a 247 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
248 rq->hrtick_csd_pending = 1;
249 }
b328ca18
PZ
250}
251
252static int
253hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
254{
255 int cpu = (int)(long)hcpu;
256
257 switch (action) {
258 case CPU_UP_CANCELED:
259 case CPU_UP_CANCELED_FROZEN:
260 case CPU_DOWN_PREPARE:
261 case CPU_DOWN_PREPARE_FROZEN:
262 case CPU_DEAD:
263 case CPU_DEAD_FROZEN:
31656519 264 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
265 return NOTIFY_OK;
266 }
267
268 return NOTIFY_DONE;
269}
270
fa748203 271static __init void init_hrtick(void)
b328ca18
PZ
272{
273 hotcpu_notifier(hotplug_hrtick, 0);
274}
31656519
PZ
275#else
276/*
277 * Called to set the hrtick timer state.
278 *
279 * called with rq->lock held and irqs disabled
280 */
029632fb 281void hrtick_start(struct rq *rq, u64 delay)
31656519 282{
86893335
WL
283 /*
284 * Don't schedule slices shorter than 10000ns, that just
285 * doesn't make sense. Rely on vruntime for fairness.
286 */
287 delay = max_t(u64, delay, 10000LL);
4961b6e1
TG
288 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
289 HRTIMER_MODE_REL_PINNED);
31656519 290}
b328ca18 291
006c75f1 292static inline void init_hrtick(void)
8f4d37ec 293{
8f4d37ec 294}
31656519 295#endif /* CONFIG_SMP */
8f4d37ec 296
31656519 297static void init_rq_hrtick(struct rq *rq)
8f4d37ec 298{
31656519
PZ
299#ifdef CONFIG_SMP
300 rq->hrtick_csd_pending = 0;
8f4d37ec 301
31656519
PZ
302 rq->hrtick_csd.flags = 0;
303 rq->hrtick_csd.func = __hrtick_start;
304 rq->hrtick_csd.info = rq;
305#endif
8f4d37ec 306
31656519
PZ
307 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
308 rq->hrtick_timer.function = hrtick;
8f4d37ec 309}
006c75f1 310#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
311static inline void hrtick_clear(struct rq *rq)
312{
313}
314
8f4d37ec
PZ
315static inline void init_rq_hrtick(struct rq *rq)
316{
317}
318
b328ca18
PZ
319static inline void init_hrtick(void)
320{
321}
006c75f1 322#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 323
5529578a
FW
324/*
325 * cmpxchg based fetch_or, macro so it works for different integer types
326 */
327#define fetch_or(ptr, mask) \
328 ({ \
329 typeof(ptr) _ptr = (ptr); \
330 typeof(mask) _mask = (mask); \
331 typeof(*_ptr) _old, _val = *_ptr; \
332 \
333 for (;;) { \
334 _old = cmpxchg(_ptr, _val, _val | _mask); \
335 if (_old == _val) \
336 break; \
337 _val = _old; \
338 } \
339 _old; \
340})
341
e3baac47 342#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
343/*
344 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
345 * this avoids any races wrt polling state changes and thereby avoids
346 * spurious IPIs.
347 */
348static bool set_nr_and_not_polling(struct task_struct *p)
349{
350 struct thread_info *ti = task_thread_info(p);
351 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
352}
e3baac47
PZ
353
354/*
355 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
356 *
357 * If this returns true, then the idle task promises to call
358 * sched_ttwu_pending() and reschedule soon.
359 */
360static bool set_nr_if_polling(struct task_struct *p)
361{
362 struct thread_info *ti = task_thread_info(p);
316c1608 363 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
e3baac47
PZ
364
365 for (;;) {
366 if (!(val & _TIF_POLLING_NRFLAG))
367 return false;
368 if (val & _TIF_NEED_RESCHED)
369 return true;
370 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
371 if (old == val)
372 break;
373 val = old;
374 }
375 return true;
376}
377
fd99f91a
PZ
378#else
379static bool set_nr_and_not_polling(struct task_struct *p)
380{
381 set_tsk_need_resched(p);
382 return true;
383}
e3baac47
PZ
384
385#ifdef CONFIG_SMP
386static bool set_nr_if_polling(struct task_struct *p)
387{
388 return false;
389}
390#endif
fd99f91a
PZ
391#endif
392
76751049
PZ
393void wake_q_add(struct wake_q_head *head, struct task_struct *task)
394{
395 struct wake_q_node *node = &task->wake_q;
396
397 /*
398 * Atomically grab the task, if ->wake_q is !nil already it means
399 * its already queued (either by us or someone else) and will get the
400 * wakeup due to that.
401 *
402 * This cmpxchg() implies a full barrier, which pairs with the write
403 * barrier implied by the wakeup in wake_up_list().
404 */
405 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
406 return;
407
408 get_task_struct(task);
409
410 /*
411 * The head is context local, there can be no concurrency.
412 */
413 *head->lastp = node;
414 head->lastp = &node->next;
415}
416
417void wake_up_q(struct wake_q_head *head)
418{
419 struct wake_q_node *node = head->first;
420
421 while (node != WAKE_Q_TAIL) {
422 struct task_struct *task;
423
424 task = container_of(node, struct task_struct, wake_q);
425 BUG_ON(!task);
426 /* task can safely be re-inserted now */
427 node = node->next;
428 task->wake_q.next = NULL;
429
430 /*
431 * wake_up_process() implies a wmb() to pair with the queueing
432 * in wake_q_add() so as not to miss wakeups.
433 */
434 wake_up_process(task);
435 put_task_struct(task);
436 }
437}
438
c24d20db 439/*
8875125e 440 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
441 *
442 * On UP this means the setting of the need_resched flag, on SMP it
443 * might also involve a cross-CPU call to trigger the scheduler on
444 * the target CPU.
445 */
8875125e 446void resched_curr(struct rq *rq)
c24d20db 447{
8875125e 448 struct task_struct *curr = rq->curr;
c24d20db
IM
449 int cpu;
450
8875125e 451 lockdep_assert_held(&rq->lock);
c24d20db 452
8875125e 453 if (test_tsk_need_resched(curr))
c24d20db
IM
454 return;
455
8875125e 456 cpu = cpu_of(rq);
fd99f91a 457
f27dde8d 458 if (cpu == smp_processor_id()) {
8875125e 459 set_tsk_need_resched(curr);
f27dde8d 460 set_preempt_need_resched();
c24d20db 461 return;
f27dde8d 462 }
c24d20db 463
8875125e 464 if (set_nr_and_not_polling(curr))
c24d20db 465 smp_send_reschedule(cpu);
dfc68f29
AL
466 else
467 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
468}
469
029632fb 470void resched_cpu(int cpu)
c24d20db
IM
471{
472 struct rq *rq = cpu_rq(cpu);
473 unsigned long flags;
474
05fa785c 475 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db 476 return;
8875125e 477 resched_curr(rq);
05fa785c 478 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 479}
06d8308c 480
b021fe3e 481#ifdef CONFIG_SMP
3451d024 482#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
483/*
484 * In the semi idle case, use the nearest busy cpu for migrating timers
485 * from an idle cpu. This is good for power-savings.
486 *
487 * We don't do similar optimization for completely idle system, as
488 * selecting an idle cpu will add more delays to the timers than intended
489 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
490 */
bc7a34b8 491int get_nohz_timer_target(void)
83cd4fe2 492{
bc7a34b8 493 int i, cpu = smp_processor_id();
83cd4fe2
VP
494 struct sched_domain *sd;
495
9642d18e 496 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
6201b4d6
VK
497 return cpu;
498
057f3fad 499 rcu_read_lock();
83cd4fe2 500 for_each_domain(cpu, sd) {
057f3fad 501 for_each_cpu(i, sched_domain_span(sd)) {
9642d18e 502 if (!idle_cpu(i) && is_housekeeping_cpu(cpu)) {
057f3fad
PZ
503 cpu = i;
504 goto unlock;
505 }
506 }
83cd4fe2 507 }
9642d18e
VH
508
509 if (!is_housekeeping_cpu(cpu))
510 cpu = housekeeping_any_cpu();
057f3fad
PZ
511unlock:
512 rcu_read_unlock();
83cd4fe2
VP
513 return cpu;
514}
06d8308c
TG
515/*
516 * When add_timer_on() enqueues a timer into the timer wheel of an
517 * idle CPU then this timer might expire before the next timer event
518 * which is scheduled to wake up that CPU. In case of a completely
519 * idle system the next event might even be infinite time into the
520 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
521 * leaves the inner idle loop so the newly added timer is taken into
522 * account when the CPU goes back to idle and evaluates the timer
523 * wheel for the next timer event.
524 */
1c20091e 525static void wake_up_idle_cpu(int cpu)
06d8308c
TG
526{
527 struct rq *rq = cpu_rq(cpu);
528
529 if (cpu == smp_processor_id())
530 return;
531
67b9ca70 532 if (set_nr_and_not_polling(rq->idle))
06d8308c 533 smp_send_reschedule(cpu);
dfc68f29
AL
534 else
535 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
536}
537
c5bfece2 538static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 539{
53c5fa16
FW
540 /*
541 * We just need the target to call irq_exit() and re-evaluate
542 * the next tick. The nohz full kick at least implies that.
543 * If needed we can still optimize that later with an
544 * empty IRQ.
545 */
c5bfece2 546 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
547 if (cpu != smp_processor_id() ||
548 tick_nohz_tick_stopped())
53c5fa16 549 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
550 return true;
551 }
552
553 return false;
554}
555
556void wake_up_nohz_cpu(int cpu)
557{
c5bfece2 558 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
559 wake_up_idle_cpu(cpu);
560}
561
ca38062e 562static inline bool got_nohz_idle_kick(void)
45bf76df 563{
1c792db7 564 int cpu = smp_processor_id();
873b4c65
VG
565
566 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
567 return false;
568
569 if (idle_cpu(cpu) && !need_resched())
570 return true;
571
572 /*
573 * We can't run Idle Load Balance on this CPU for this time so we
574 * cancel it and clear NOHZ_BALANCE_KICK
575 */
576 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
577 return false;
45bf76df
IM
578}
579
3451d024 580#else /* CONFIG_NO_HZ_COMMON */
45bf76df 581
ca38062e 582static inline bool got_nohz_idle_kick(void)
2069dd75 583{
ca38062e 584 return false;
2069dd75
PZ
585}
586
3451d024 587#endif /* CONFIG_NO_HZ_COMMON */
d842de87 588
ce831b38 589#ifdef CONFIG_NO_HZ_FULL
76d92ac3 590bool sched_can_stop_tick(struct rq *rq)
ce831b38 591{
76d92ac3
FW
592 int fifo_nr_running;
593
594 /* Deadline tasks, even if single, need the tick */
595 if (rq->dl.dl_nr_running)
596 return false;
597
1e78cdbd 598 /*
76d92ac3
FW
599 * FIFO realtime policy runs the highest priority task (after DEADLINE).
600 * Other runnable tasks are of a lower priority. The scheduler tick
601 * isn't needed.
1e78cdbd 602 */
76d92ac3
FW
603 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
604 if (fifo_nr_running)
1e78cdbd
RR
605 return true;
606
607 /*
608 * Round-robin realtime tasks time slice with other tasks at the same
76d92ac3 609 * realtime priority.
1e78cdbd 610 */
76d92ac3
FW
611 if (rq->rt.rr_nr_running) {
612 if (rq->rt.rr_nr_running == 1)
613 return true;
614 else
615 return false;
1e78cdbd
RR
616 }
617
76d92ac3
FW
618 /* Normal multitasking need periodic preemption checks */
619 if (rq->cfs.nr_running > 1)
541b8264 620 return false;
ce831b38 621
541b8264 622 return true;
ce831b38
FW
623}
624#endif /* CONFIG_NO_HZ_FULL */
d842de87 625
029632fb 626void sched_avg_update(struct rq *rq)
18d95a28 627{
e9e9250b
PZ
628 s64 period = sched_avg_period();
629
78becc27 630 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
631 /*
632 * Inline assembly required to prevent the compiler
633 * optimising this loop into a divmod call.
634 * See __iter_div_u64_rem() for another example of this.
635 */
636 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
637 rq->age_stamp += period;
638 rq->rt_avg /= 2;
639 }
18d95a28
PZ
640}
641
6d6bc0ad 642#endif /* CONFIG_SMP */
18d95a28 643
a790de99
PT
644#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
645 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 646/*
8277434e
PT
647 * Iterate task_group tree rooted at *from, calling @down when first entering a
648 * node and @up when leaving it for the final time.
649 *
650 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 651 */
029632fb 652int walk_tg_tree_from(struct task_group *from,
8277434e 653 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
654{
655 struct task_group *parent, *child;
eb755805 656 int ret;
c09595f6 657
8277434e
PT
658 parent = from;
659
c09595f6 660down:
eb755805
PZ
661 ret = (*down)(parent, data);
662 if (ret)
8277434e 663 goto out;
c09595f6
PZ
664 list_for_each_entry_rcu(child, &parent->children, siblings) {
665 parent = child;
666 goto down;
667
668up:
669 continue;
670 }
eb755805 671 ret = (*up)(parent, data);
8277434e
PT
672 if (ret || parent == from)
673 goto out;
c09595f6
PZ
674
675 child = parent;
676 parent = parent->parent;
677 if (parent)
678 goto up;
8277434e 679out:
eb755805 680 return ret;
c09595f6
PZ
681}
682
029632fb 683int tg_nop(struct task_group *tg, void *data)
eb755805 684{
e2b245f8 685 return 0;
eb755805 686}
18d95a28
PZ
687#endif
688
45bf76df
IM
689static void set_load_weight(struct task_struct *p)
690{
f05998d4
NR
691 int prio = p->static_prio - MAX_RT_PRIO;
692 struct load_weight *load = &p->se.load;
693
dd41f596
IM
694 /*
695 * SCHED_IDLE tasks get minimal weight:
696 */
20f9cd2a 697 if (idle_policy(p->policy)) {
c8b28116 698 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 699 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
700 return;
701 }
71f8bd46 702
ed82b8a1
AK
703 load->weight = scale_load(sched_prio_to_weight[prio]);
704 load->inv_weight = sched_prio_to_wmult[prio];
71f8bd46
IM
705}
706
1de64443 707static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 708{
a64692a3 709 update_rq_clock(rq);
1de64443
PZ
710 if (!(flags & ENQUEUE_RESTORE))
711 sched_info_queued(rq, p);
371fd7e7 712 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
713}
714
1de64443 715static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 716{
a64692a3 717 update_rq_clock(rq);
1de64443
PZ
718 if (!(flags & DEQUEUE_SAVE))
719 sched_info_dequeued(rq, p);
371fd7e7 720 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
721}
722
029632fb 723void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
724{
725 if (task_contributes_to_load(p))
726 rq->nr_uninterruptible--;
727
371fd7e7 728 enqueue_task(rq, p, flags);
1e3c88bd
PZ
729}
730
029632fb 731void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
732{
733 if (task_contributes_to_load(p))
734 rq->nr_uninterruptible++;
735
371fd7e7 736 dequeue_task(rq, p, flags);
1e3c88bd
PZ
737}
738
fe44d621 739static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 740{
095c0aa8
GC
741/*
742 * In theory, the compile should just see 0 here, and optimize out the call
743 * to sched_rt_avg_update. But I don't trust it...
744 */
745#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
746 s64 steal = 0, irq_delta = 0;
747#endif
748#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 749 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
750
751 /*
752 * Since irq_time is only updated on {soft,}irq_exit, we might run into
753 * this case when a previous update_rq_clock() happened inside a
754 * {soft,}irq region.
755 *
756 * When this happens, we stop ->clock_task and only update the
757 * prev_irq_time stamp to account for the part that fit, so that a next
758 * update will consume the rest. This ensures ->clock_task is
759 * monotonic.
760 *
761 * It does however cause some slight miss-attribution of {soft,}irq
762 * time, a more accurate solution would be to update the irq_time using
763 * the current rq->clock timestamp, except that would require using
764 * atomic ops.
765 */
766 if (irq_delta > delta)
767 irq_delta = delta;
768
769 rq->prev_irq_time += irq_delta;
770 delta -= irq_delta;
095c0aa8
GC
771#endif
772#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 773 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
774 steal = paravirt_steal_clock(cpu_of(rq));
775 steal -= rq->prev_steal_time_rq;
776
777 if (unlikely(steal > delta))
778 steal = delta;
779
095c0aa8 780 rq->prev_steal_time_rq += steal;
095c0aa8
GC
781 delta -= steal;
782 }
783#endif
784
fe44d621
PZ
785 rq->clock_task += delta;
786
095c0aa8 787#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
5d4dfddd 788 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
095c0aa8
GC
789 sched_rt_avg_update(rq, irq_delta + steal);
790#endif
aa483808
VP
791}
792
34f971f6
PZ
793void sched_set_stop_task(int cpu, struct task_struct *stop)
794{
795 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
796 struct task_struct *old_stop = cpu_rq(cpu)->stop;
797
798 if (stop) {
799 /*
800 * Make it appear like a SCHED_FIFO task, its something
801 * userspace knows about and won't get confused about.
802 *
803 * Also, it will make PI more or less work without too
804 * much confusion -- but then, stop work should not
805 * rely on PI working anyway.
806 */
807 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
808
809 stop->sched_class = &stop_sched_class;
810 }
811
812 cpu_rq(cpu)->stop = stop;
813
814 if (old_stop) {
815 /*
816 * Reset it back to a normal scheduling class so that
817 * it can die in pieces.
818 */
819 old_stop->sched_class = &rt_sched_class;
820 }
821}
822
14531189 823/*
dd41f596 824 * __normal_prio - return the priority that is based on the static prio
14531189 825 */
14531189
IM
826static inline int __normal_prio(struct task_struct *p)
827{
dd41f596 828 return p->static_prio;
14531189
IM
829}
830
b29739f9
IM
831/*
832 * Calculate the expected normal priority: i.e. priority
833 * without taking RT-inheritance into account. Might be
834 * boosted by interactivity modifiers. Changes upon fork,
835 * setprio syscalls, and whenever the interactivity
836 * estimator recalculates.
837 */
36c8b586 838static inline int normal_prio(struct task_struct *p)
b29739f9
IM
839{
840 int prio;
841
aab03e05
DF
842 if (task_has_dl_policy(p))
843 prio = MAX_DL_PRIO-1;
844 else if (task_has_rt_policy(p))
b29739f9
IM
845 prio = MAX_RT_PRIO-1 - p->rt_priority;
846 else
847 prio = __normal_prio(p);
848 return prio;
849}
850
851/*
852 * Calculate the current priority, i.e. the priority
853 * taken into account by the scheduler. This value might
854 * be boosted by RT tasks, or might be boosted by
855 * interactivity modifiers. Will be RT if the task got
856 * RT-boosted. If not then it returns p->normal_prio.
857 */
36c8b586 858static int effective_prio(struct task_struct *p)
b29739f9
IM
859{
860 p->normal_prio = normal_prio(p);
861 /*
862 * If we are RT tasks or we were boosted to RT priority,
863 * keep the priority unchanged. Otherwise, update priority
864 * to the normal priority:
865 */
866 if (!rt_prio(p->prio))
867 return p->normal_prio;
868 return p->prio;
869}
870
1da177e4
LT
871/**
872 * task_curr - is this task currently executing on a CPU?
873 * @p: the task in question.
e69f6186
YB
874 *
875 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 876 */
36c8b586 877inline int task_curr(const struct task_struct *p)
1da177e4
LT
878{
879 return cpu_curr(task_cpu(p)) == p;
880}
881
67dfa1b7 882/*
4c9a4bc8
PZ
883 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
884 * use the balance_callback list if you want balancing.
885 *
886 * this means any call to check_class_changed() must be followed by a call to
887 * balance_callback().
67dfa1b7 888 */
cb469845
SR
889static inline void check_class_changed(struct rq *rq, struct task_struct *p,
890 const struct sched_class *prev_class,
da7a735e 891 int oldprio)
cb469845
SR
892{
893 if (prev_class != p->sched_class) {
894 if (prev_class->switched_from)
da7a735e 895 prev_class->switched_from(rq, p);
4c9a4bc8 896
da7a735e 897 p->sched_class->switched_to(rq, p);
2d3d891d 898 } else if (oldprio != p->prio || dl_task(p))
da7a735e 899 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
900}
901
029632fb 902void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
903{
904 const struct sched_class *class;
905
906 if (p->sched_class == rq->curr->sched_class) {
907 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
908 } else {
909 for_each_class(class) {
910 if (class == rq->curr->sched_class)
911 break;
912 if (class == p->sched_class) {
8875125e 913 resched_curr(rq);
1e5a7405
PZ
914 break;
915 }
916 }
917 }
918
919 /*
920 * A queue event has occurred, and we're going to schedule. In
921 * this case, we can save a useless back to back clock update.
922 */
da0c1e65 923 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
9edfbfed 924 rq_clock_skip_update(rq, true);
1e5a7405
PZ
925}
926
1da177e4 927#ifdef CONFIG_SMP
5cc389bc
PZ
928/*
929 * This is how migration works:
930 *
931 * 1) we invoke migration_cpu_stop() on the target CPU using
932 * stop_one_cpu().
933 * 2) stopper starts to run (implicitly forcing the migrated thread
934 * off the CPU)
935 * 3) it checks whether the migrated task is still in the wrong runqueue.
936 * 4) if it's in the wrong runqueue then the migration thread removes
937 * it and puts it into the right queue.
938 * 5) stopper completes and stop_one_cpu() returns and the migration
939 * is done.
940 */
941
942/*
943 * move_queued_task - move a queued task to new rq.
944 *
945 * Returns (locked) new rq. Old rq's lock is released.
946 */
5e16bbc2 947static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
5cc389bc 948{
5cc389bc
PZ
949 lockdep_assert_held(&rq->lock);
950
5cc389bc 951 p->on_rq = TASK_ON_RQ_MIGRATING;
3ea94de1 952 dequeue_task(rq, p, 0);
5cc389bc
PZ
953 set_task_cpu(p, new_cpu);
954 raw_spin_unlock(&rq->lock);
955
956 rq = cpu_rq(new_cpu);
957
958 raw_spin_lock(&rq->lock);
959 BUG_ON(task_cpu(p) != new_cpu);
5cc389bc 960 enqueue_task(rq, p, 0);
3ea94de1 961 p->on_rq = TASK_ON_RQ_QUEUED;
5cc389bc
PZ
962 check_preempt_curr(rq, p, 0);
963
964 return rq;
965}
966
967struct migration_arg {
968 struct task_struct *task;
969 int dest_cpu;
970};
971
972/*
973 * Move (not current) task off this cpu, onto dest cpu. We're doing
974 * this because either it can't run here any more (set_cpus_allowed()
975 * away from this CPU, or CPU going down), or because we're
976 * attempting to rebalance this task on exec (sched_exec).
977 *
978 * So we race with normal scheduler movements, but that's OK, as long
979 * as the task is no longer on this CPU.
5cc389bc 980 */
5e16bbc2 981static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
5cc389bc 982{
5cc389bc 983 if (unlikely(!cpu_active(dest_cpu)))
5e16bbc2 984 return rq;
5cc389bc
PZ
985
986 /* Affinity changed (again). */
987 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
5e16bbc2 988 return rq;
5cc389bc 989
5e16bbc2
PZ
990 rq = move_queued_task(rq, p, dest_cpu);
991
992 return rq;
5cc389bc
PZ
993}
994
995/*
996 * migration_cpu_stop - this will be executed by a highprio stopper thread
997 * and performs thread migration by bumping thread off CPU then
998 * 'pushing' onto another runqueue.
999 */
1000static int migration_cpu_stop(void *data)
1001{
1002 struct migration_arg *arg = data;
5e16bbc2
PZ
1003 struct task_struct *p = arg->task;
1004 struct rq *rq = this_rq();
5cc389bc
PZ
1005
1006 /*
1007 * The original target cpu might have gone down and we might
1008 * be on another cpu but it doesn't matter.
1009 */
1010 local_irq_disable();
1011 /*
1012 * We need to explicitly wake pending tasks before running
1013 * __migrate_task() such that we will not miss enforcing cpus_allowed
1014 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1015 */
1016 sched_ttwu_pending();
5e16bbc2
PZ
1017
1018 raw_spin_lock(&p->pi_lock);
1019 raw_spin_lock(&rq->lock);
1020 /*
1021 * If task_rq(p) != rq, it cannot be migrated here, because we're
1022 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1023 * we're holding p->pi_lock.
1024 */
1025 if (task_rq(p) == rq && task_on_rq_queued(p))
1026 rq = __migrate_task(rq, p, arg->dest_cpu);
1027 raw_spin_unlock(&rq->lock);
1028 raw_spin_unlock(&p->pi_lock);
1029
5cc389bc
PZ
1030 local_irq_enable();
1031 return 0;
1032}
1033
c5b28038
PZ
1034/*
1035 * sched_class::set_cpus_allowed must do the below, but is not required to
1036 * actually call this function.
1037 */
1038void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
5cc389bc 1039{
5cc389bc
PZ
1040 cpumask_copy(&p->cpus_allowed, new_mask);
1041 p->nr_cpus_allowed = cpumask_weight(new_mask);
1042}
1043
c5b28038
PZ
1044void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1045{
6c37067e
PZ
1046 struct rq *rq = task_rq(p);
1047 bool queued, running;
1048
c5b28038 1049 lockdep_assert_held(&p->pi_lock);
6c37067e
PZ
1050
1051 queued = task_on_rq_queued(p);
1052 running = task_current(rq, p);
1053
1054 if (queued) {
1055 /*
1056 * Because __kthread_bind() calls this on blocked tasks without
1057 * holding rq->lock.
1058 */
1059 lockdep_assert_held(&rq->lock);
1de64443 1060 dequeue_task(rq, p, DEQUEUE_SAVE);
6c37067e
PZ
1061 }
1062 if (running)
1063 put_prev_task(rq, p);
1064
c5b28038 1065 p->sched_class->set_cpus_allowed(p, new_mask);
6c37067e
PZ
1066
1067 if (running)
1068 p->sched_class->set_curr_task(rq);
1069 if (queued)
1de64443 1070 enqueue_task(rq, p, ENQUEUE_RESTORE);
c5b28038
PZ
1071}
1072
5cc389bc
PZ
1073/*
1074 * Change a given task's CPU affinity. Migrate the thread to a
1075 * proper CPU and schedule it away if the CPU it's executing on
1076 * is removed from the allowed bitmask.
1077 *
1078 * NOTE: the caller must have a valid reference to the task, the
1079 * task must not exit() & deallocate itself prematurely. The
1080 * call is not atomic; no spinlocks may be held.
1081 */
25834c73
PZ
1082static int __set_cpus_allowed_ptr(struct task_struct *p,
1083 const struct cpumask *new_mask, bool check)
5cc389bc
PZ
1084{
1085 unsigned long flags;
1086 struct rq *rq;
1087 unsigned int dest_cpu;
1088 int ret = 0;
1089
1090 rq = task_rq_lock(p, &flags);
1091
25834c73
PZ
1092 /*
1093 * Must re-check here, to close a race against __kthread_bind(),
1094 * sched_setaffinity() is not guaranteed to observe the flag.
1095 */
1096 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1097 ret = -EINVAL;
1098 goto out;
1099 }
1100
5cc389bc
PZ
1101 if (cpumask_equal(&p->cpus_allowed, new_mask))
1102 goto out;
1103
1104 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1105 ret = -EINVAL;
1106 goto out;
1107 }
1108
1109 do_set_cpus_allowed(p, new_mask);
1110
1111 /* Can the task run on the task's current CPU? If so, we're done */
1112 if (cpumask_test_cpu(task_cpu(p), new_mask))
1113 goto out;
1114
1115 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
1116 if (task_running(rq, p) || p->state == TASK_WAKING) {
1117 struct migration_arg arg = { p, dest_cpu };
1118 /* Need help from migration thread: drop lock and wait. */
1119 task_rq_unlock(rq, p, &flags);
1120 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1121 tlb_migrate_finish(p->mm);
1122 return 0;
cbce1a68
PZ
1123 } else if (task_on_rq_queued(p)) {
1124 /*
1125 * OK, since we're going to drop the lock immediately
1126 * afterwards anyway.
1127 */
1128 lockdep_unpin_lock(&rq->lock);
5e16bbc2 1129 rq = move_queued_task(rq, p, dest_cpu);
cbce1a68
PZ
1130 lockdep_pin_lock(&rq->lock);
1131 }
5cc389bc
PZ
1132out:
1133 task_rq_unlock(rq, p, &flags);
1134
1135 return ret;
1136}
25834c73
PZ
1137
1138int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1139{
1140 return __set_cpus_allowed_ptr(p, new_mask, false);
1141}
5cc389bc
PZ
1142EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1143
dd41f596 1144void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1145{
e2912009
PZ
1146#ifdef CONFIG_SCHED_DEBUG
1147 /*
1148 * We should never call set_task_cpu() on a blocked task,
1149 * ttwu() will sort out the placement.
1150 */
077614ee 1151 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
e2336f6e 1152 !p->on_rq);
0122ec5b 1153
3ea94de1
JP
1154 /*
1155 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1156 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1157 * time relying on p->on_rq.
1158 */
1159 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1160 p->sched_class == &fair_sched_class &&
1161 (p->on_rq && !task_on_rq_migrating(p)));
1162
0122ec5b 1163#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1164 /*
1165 * The caller should hold either p->pi_lock or rq->lock, when changing
1166 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1167 *
1168 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1169 * see task_group().
6c6c54e1
PZ
1170 *
1171 * Furthermore, all task_rq users should acquire both locks, see
1172 * task_rq_lock().
1173 */
0122ec5b
PZ
1174 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1175 lockdep_is_held(&task_rq(p)->lock)));
1176#endif
e2912009
PZ
1177#endif
1178
de1d7286 1179 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1180
0c69774e 1181 if (task_cpu(p) != new_cpu) {
0a74bef8 1182 if (p->sched_class->migrate_task_rq)
5a4fd036 1183 p->sched_class->migrate_task_rq(p);
0c69774e 1184 p->se.nr_migrations++;
ff303e66 1185 perf_event_task_migrate(p);
0c69774e 1186 }
dd41f596
IM
1187
1188 __set_task_cpu(p, new_cpu);
c65cc870
IM
1189}
1190
ac66f547
PZ
1191static void __migrate_swap_task(struct task_struct *p, int cpu)
1192{
da0c1e65 1193 if (task_on_rq_queued(p)) {
ac66f547
PZ
1194 struct rq *src_rq, *dst_rq;
1195
1196 src_rq = task_rq(p);
1197 dst_rq = cpu_rq(cpu);
1198
3ea94de1 1199 p->on_rq = TASK_ON_RQ_MIGRATING;
ac66f547
PZ
1200 deactivate_task(src_rq, p, 0);
1201 set_task_cpu(p, cpu);
1202 activate_task(dst_rq, p, 0);
3ea94de1 1203 p->on_rq = TASK_ON_RQ_QUEUED;
ac66f547
PZ
1204 check_preempt_curr(dst_rq, p, 0);
1205 } else {
1206 /*
1207 * Task isn't running anymore; make it appear like we migrated
1208 * it before it went to sleep. This means on wakeup we make the
1209 * previous cpu our targer instead of where it really is.
1210 */
1211 p->wake_cpu = cpu;
1212 }
1213}
1214
1215struct migration_swap_arg {
1216 struct task_struct *src_task, *dst_task;
1217 int src_cpu, dst_cpu;
1218};
1219
1220static int migrate_swap_stop(void *data)
1221{
1222 struct migration_swap_arg *arg = data;
1223 struct rq *src_rq, *dst_rq;
1224 int ret = -EAGAIN;
1225
62694cd5
PZ
1226 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1227 return -EAGAIN;
1228
ac66f547
PZ
1229 src_rq = cpu_rq(arg->src_cpu);
1230 dst_rq = cpu_rq(arg->dst_cpu);
1231
74602315
PZ
1232 double_raw_lock(&arg->src_task->pi_lock,
1233 &arg->dst_task->pi_lock);
ac66f547 1234 double_rq_lock(src_rq, dst_rq);
62694cd5 1235
ac66f547
PZ
1236 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1237 goto unlock;
1238
1239 if (task_cpu(arg->src_task) != arg->src_cpu)
1240 goto unlock;
1241
1242 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1243 goto unlock;
1244
1245 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1246 goto unlock;
1247
1248 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1249 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1250
1251 ret = 0;
1252
1253unlock:
1254 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1255 raw_spin_unlock(&arg->dst_task->pi_lock);
1256 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1257
1258 return ret;
1259}
1260
1261/*
1262 * Cross migrate two tasks
1263 */
1264int migrate_swap(struct task_struct *cur, struct task_struct *p)
1265{
1266 struct migration_swap_arg arg;
1267 int ret = -EINVAL;
1268
ac66f547
PZ
1269 arg = (struct migration_swap_arg){
1270 .src_task = cur,
1271 .src_cpu = task_cpu(cur),
1272 .dst_task = p,
1273 .dst_cpu = task_cpu(p),
1274 };
1275
1276 if (arg.src_cpu == arg.dst_cpu)
1277 goto out;
1278
6acce3ef
PZ
1279 /*
1280 * These three tests are all lockless; this is OK since all of them
1281 * will be re-checked with proper locks held further down the line.
1282 */
ac66f547
PZ
1283 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1284 goto out;
1285
1286 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1287 goto out;
1288
1289 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1290 goto out;
1291
286549dc 1292 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1293 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1294
1295out:
ac66f547
PZ
1296 return ret;
1297}
1298
1da177e4
LT
1299/*
1300 * wait_task_inactive - wait for a thread to unschedule.
1301 *
85ba2d86
RM
1302 * If @match_state is nonzero, it's the @p->state value just checked and
1303 * not expected to change. If it changes, i.e. @p might have woken up,
1304 * then return zero. When we succeed in waiting for @p to be off its CPU,
1305 * we return a positive number (its total switch count). If a second call
1306 * a short while later returns the same number, the caller can be sure that
1307 * @p has remained unscheduled the whole time.
1308 *
1da177e4
LT
1309 * The caller must ensure that the task *will* unschedule sometime soon,
1310 * else this function might spin for a *long* time. This function can't
1311 * be called with interrupts off, or it may introduce deadlock with
1312 * smp_call_function() if an IPI is sent by the same process we are
1313 * waiting to become inactive.
1314 */
85ba2d86 1315unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1316{
1317 unsigned long flags;
da0c1e65 1318 int running, queued;
85ba2d86 1319 unsigned long ncsw;
70b97a7f 1320 struct rq *rq;
1da177e4 1321
3a5c359a
AK
1322 for (;;) {
1323 /*
1324 * We do the initial early heuristics without holding
1325 * any task-queue locks at all. We'll only try to get
1326 * the runqueue lock when things look like they will
1327 * work out!
1328 */
1329 rq = task_rq(p);
fa490cfd 1330
3a5c359a
AK
1331 /*
1332 * If the task is actively running on another CPU
1333 * still, just relax and busy-wait without holding
1334 * any locks.
1335 *
1336 * NOTE! Since we don't hold any locks, it's not
1337 * even sure that "rq" stays as the right runqueue!
1338 * But we don't care, since "task_running()" will
1339 * return false if the runqueue has changed and p
1340 * is actually now running somewhere else!
1341 */
85ba2d86
RM
1342 while (task_running(rq, p)) {
1343 if (match_state && unlikely(p->state != match_state))
1344 return 0;
3a5c359a 1345 cpu_relax();
85ba2d86 1346 }
fa490cfd 1347
3a5c359a
AK
1348 /*
1349 * Ok, time to look more closely! We need the rq
1350 * lock now, to be *sure*. If we're wrong, we'll
1351 * just go back and repeat.
1352 */
1353 rq = task_rq_lock(p, &flags);
27a9da65 1354 trace_sched_wait_task(p);
3a5c359a 1355 running = task_running(rq, p);
da0c1e65 1356 queued = task_on_rq_queued(p);
85ba2d86 1357 ncsw = 0;
f31e11d8 1358 if (!match_state || p->state == match_state)
93dcf55f 1359 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1360 task_rq_unlock(rq, p, &flags);
fa490cfd 1361
85ba2d86
RM
1362 /*
1363 * If it changed from the expected state, bail out now.
1364 */
1365 if (unlikely(!ncsw))
1366 break;
1367
3a5c359a
AK
1368 /*
1369 * Was it really running after all now that we
1370 * checked with the proper locks actually held?
1371 *
1372 * Oops. Go back and try again..
1373 */
1374 if (unlikely(running)) {
1375 cpu_relax();
1376 continue;
1377 }
fa490cfd 1378
3a5c359a
AK
1379 /*
1380 * It's not enough that it's not actively running,
1381 * it must be off the runqueue _entirely_, and not
1382 * preempted!
1383 *
80dd99b3 1384 * So if it was still runnable (but just not actively
3a5c359a
AK
1385 * running right now), it's preempted, and we should
1386 * yield - it could be a while.
1387 */
da0c1e65 1388 if (unlikely(queued)) {
8eb90c30
TG
1389 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1390
1391 set_current_state(TASK_UNINTERRUPTIBLE);
1392 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1393 continue;
1394 }
fa490cfd 1395
3a5c359a
AK
1396 /*
1397 * Ahh, all good. It wasn't running, and it wasn't
1398 * runnable, which means that it will never become
1399 * running in the future either. We're all done!
1400 */
1401 break;
1402 }
85ba2d86
RM
1403
1404 return ncsw;
1da177e4
LT
1405}
1406
1407/***
1408 * kick_process - kick a running thread to enter/exit the kernel
1409 * @p: the to-be-kicked thread
1410 *
1411 * Cause a process which is running on another CPU to enter
1412 * kernel-mode, without any delay. (to get signals handled.)
1413 *
25985edc 1414 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1415 * because all it wants to ensure is that the remote task enters
1416 * the kernel. If the IPI races and the task has been migrated
1417 * to another CPU then no harm is done and the purpose has been
1418 * achieved as well.
1419 */
36c8b586 1420void kick_process(struct task_struct *p)
1da177e4
LT
1421{
1422 int cpu;
1423
1424 preempt_disable();
1425 cpu = task_cpu(p);
1426 if ((cpu != smp_processor_id()) && task_curr(p))
1427 smp_send_reschedule(cpu);
1428 preempt_enable();
1429}
b43e3521 1430EXPORT_SYMBOL_GPL(kick_process);
1da177e4 1431
30da688e 1432/*
013fdb80 1433 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1434 */
5da9a0fb
PZ
1435static int select_fallback_rq(int cpu, struct task_struct *p)
1436{
aa00d89c
TC
1437 int nid = cpu_to_node(cpu);
1438 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1439 enum { cpuset, possible, fail } state = cpuset;
1440 int dest_cpu;
5da9a0fb 1441
aa00d89c
TC
1442 /*
1443 * If the node that the cpu is on has been offlined, cpu_to_node()
1444 * will return -1. There is no cpu on the node, and we should
1445 * select the cpu on the other node.
1446 */
1447 if (nid != -1) {
1448 nodemask = cpumask_of_node(nid);
1449
1450 /* Look for allowed, online CPU in same node. */
1451 for_each_cpu(dest_cpu, nodemask) {
1452 if (!cpu_online(dest_cpu))
1453 continue;
1454 if (!cpu_active(dest_cpu))
1455 continue;
1456 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1457 return dest_cpu;
1458 }
2baab4e9 1459 }
5da9a0fb 1460
2baab4e9
PZ
1461 for (;;) {
1462 /* Any allowed, online CPU? */
e3831edd 1463 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1464 if (!cpu_online(dest_cpu))
1465 continue;
1466 if (!cpu_active(dest_cpu))
1467 continue;
1468 goto out;
1469 }
5da9a0fb 1470
e73e85f0 1471 /* No more Mr. Nice Guy. */
2baab4e9
PZ
1472 switch (state) {
1473 case cpuset:
e73e85f0
ON
1474 if (IS_ENABLED(CONFIG_CPUSETS)) {
1475 cpuset_cpus_allowed_fallback(p);
1476 state = possible;
1477 break;
1478 }
1479 /* fall-through */
2baab4e9
PZ
1480 case possible:
1481 do_set_cpus_allowed(p, cpu_possible_mask);
1482 state = fail;
1483 break;
1484
1485 case fail:
1486 BUG();
1487 break;
1488 }
1489 }
1490
1491out:
1492 if (state != cpuset) {
1493 /*
1494 * Don't tell them about moving exiting tasks or
1495 * kernel threads (both mm NULL), since they never
1496 * leave kernel.
1497 */
1498 if (p->mm && printk_ratelimit()) {
aac74dc4 1499 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1500 task_pid_nr(p), p->comm, cpu);
1501 }
5da9a0fb
PZ
1502 }
1503
1504 return dest_cpu;
1505}
1506
e2912009 1507/*
013fdb80 1508 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1509 */
970b13ba 1510static inline
ac66f547 1511int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1512{
cbce1a68
PZ
1513 lockdep_assert_held(&p->pi_lock);
1514
6c1d9410
WL
1515 if (p->nr_cpus_allowed > 1)
1516 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e2912009
PZ
1517
1518 /*
1519 * In order not to call set_task_cpu() on a blocking task we need
1520 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1521 * cpu.
1522 *
1523 * Since this is common to all placement strategies, this lives here.
1524 *
1525 * [ this allows ->select_task() to simply return task_cpu(p) and
1526 * not worry about this generic constraint ]
1527 */
fa17b507 1528 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1529 !cpu_online(cpu)))
5da9a0fb 1530 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1531
1532 return cpu;
970b13ba 1533}
09a40af5
MG
1534
1535static void update_avg(u64 *avg, u64 sample)
1536{
1537 s64 diff = sample - *avg;
1538 *avg += diff >> 3;
1539}
25834c73
PZ
1540
1541#else
1542
1543static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1544 const struct cpumask *new_mask, bool check)
1545{
1546 return set_cpus_allowed_ptr(p, new_mask);
1547}
1548
5cc389bc 1549#endif /* CONFIG_SMP */
970b13ba 1550
d7c01d27 1551static void
b84cb5df 1552ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1553{
d7c01d27 1554#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1555 struct rq *rq = this_rq();
1556
d7c01d27
PZ
1557#ifdef CONFIG_SMP
1558 int this_cpu = smp_processor_id();
1559
1560 if (cpu == this_cpu) {
1561 schedstat_inc(rq, ttwu_local);
1562 schedstat_inc(p, se.statistics.nr_wakeups_local);
1563 } else {
1564 struct sched_domain *sd;
1565
1566 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1567 rcu_read_lock();
d7c01d27
PZ
1568 for_each_domain(this_cpu, sd) {
1569 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1570 schedstat_inc(sd, ttwu_wake_remote);
1571 break;
1572 }
1573 }
057f3fad 1574 rcu_read_unlock();
d7c01d27 1575 }
f339b9dc
PZ
1576
1577 if (wake_flags & WF_MIGRATED)
1578 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1579
d7c01d27
PZ
1580#endif /* CONFIG_SMP */
1581
1582 schedstat_inc(rq, ttwu_count);
9ed3811a 1583 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1584
1585 if (wake_flags & WF_SYNC)
9ed3811a 1586 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1587
d7c01d27
PZ
1588#endif /* CONFIG_SCHEDSTATS */
1589}
1590
1de64443 1591static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
d7c01d27 1592{
9ed3811a 1593 activate_task(rq, p, en_flags);
da0c1e65 1594 p->on_rq = TASK_ON_RQ_QUEUED;
c2f7115e
PZ
1595
1596 /* if a worker is waking up, notify workqueue */
1597 if (p->flags & PF_WQ_WORKER)
1598 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1599}
1600
23f41eeb
PZ
1601/*
1602 * Mark the task runnable and perform wakeup-preemption.
1603 */
89363381 1604static void
23f41eeb 1605ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1606{
9ed3811a 1607 check_preempt_curr(rq, p, wake_flags);
9ed3811a 1608 p->state = TASK_RUNNING;
fbd705a0
PZ
1609 trace_sched_wakeup(p);
1610
9ed3811a 1611#ifdef CONFIG_SMP
4c9a4bc8
PZ
1612 if (p->sched_class->task_woken) {
1613 /*
cbce1a68
PZ
1614 * Our task @p is fully woken up and running; so its safe to
1615 * drop the rq->lock, hereafter rq is only used for statistics.
4c9a4bc8 1616 */
cbce1a68 1617 lockdep_unpin_lock(&rq->lock);
9ed3811a 1618 p->sched_class->task_woken(rq, p);
cbce1a68 1619 lockdep_pin_lock(&rq->lock);
4c9a4bc8 1620 }
9ed3811a 1621
e69c6341 1622 if (rq->idle_stamp) {
78becc27 1623 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1624 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1625
abfafa54
JL
1626 update_avg(&rq->avg_idle, delta);
1627
1628 if (rq->avg_idle > max)
9ed3811a 1629 rq->avg_idle = max;
abfafa54 1630
9ed3811a
TH
1631 rq->idle_stamp = 0;
1632 }
1633#endif
1634}
1635
c05fbafb
PZ
1636static void
1637ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1638{
cbce1a68
PZ
1639 lockdep_assert_held(&rq->lock);
1640
c05fbafb
PZ
1641#ifdef CONFIG_SMP
1642 if (p->sched_contributes_to_load)
1643 rq->nr_uninterruptible--;
1644#endif
1645
1646 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1647 ttwu_do_wakeup(rq, p, wake_flags);
1648}
1649
1650/*
1651 * Called in case the task @p isn't fully descheduled from its runqueue,
1652 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1653 * since all we need to do is flip p->state to TASK_RUNNING, since
1654 * the task is still ->on_rq.
1655 */
1656static int ttwu_remote(struct task_struct *p, int wake_flags)
1657{
1658 struct rq *rq;
1659 int ret = 0;
1660
1661 rq = __task_rq_lock(p);
da0c1e65 1662 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
1663 /* check_preempt_curr() may use rq clock */
1664 update_rq_clock(rq);
c05fbafb
PZ
1665 ttwu_do_wakeup(rq, p, wake_flags);
1666 ret = 1;
1667 }
1668 __task_rq_unlock(rq);
1669
1670 return ret;
1671}
1672
317f3941 1673#ifdef CONFIG_SMP
e3baac47 1674void sched_ttwu_pending(void)
317f3941
PZ
1675{
1676 struct rq *rq = this_rq();
fa14ff4a
PZ
1677 struct llist_node *llist = llist_del_all(&rq->wake_list);
1678 struct task_struct *p;
e3baac47 1679 unsigned long flags;
317f3941 1680
e3baac47
PZ
1681 if (!llist)
1682 return;
1683
1684 raw_spin_lock_irqsave(&rq->lock, flags);
cbce1a68 1685 lockdep_pin_lock(&rq->lock);
317f3941 1686
fa14ff4a
PZ
1687 while (llist) {
1688 p = llist_entry(llist, struct task_struct, wake_entry);
1689 llist = llist_next(llist);
317f3941
PZ
1690 ttwu_do_activate(rq, p, 0);
1691 }
1692
cbce1a68 1693 lockdep_unpin_lock(&rq->lock);
e3baac47 1694 raw_spin_unlock_irqrestore(&rq->lock, flags);
317f3941
PZ
1695}
1696
1697void scheduler_ipi(void)
1698{
f27dde8d
PZ
1699 /*
1700 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1701 * TIF_NEED_RESCHED remotely (for the first time) will also send
1702 * this IPI.
1703 */
8cb75e0c 1704 preempt_fold_need_resched();
f27dde8d 1705
fd2ac4f4 1706 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1707 return;
1708
1709 /*
1710 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1711 * traditionally all their work was done from the interrupt return
1712 * path. Now that we actually do some work, we need to make sure
1713 * we do call them.
1714 *
1715 * Some archs already do call them, luckily irq_enter/exit nest
1716 * properly.
1717 *
1718 * Arguably we should visit all archs and update all handlers,
1719 * however a fair share of IPIs are still resched only so this would
1720 * somewhat pessimize the simple resched case.
1721 */
1722 irq_enter();
fa14ff4a 1723 sched_ttwu_pending();
ca38062e
SS
1724
1725 /*
1726 * Check if someone kicked us for doing the nohz idle load balance.
1727 */
873b4c65 1728 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1729 this_rq()->idle_balance = 1;
ca38062e 1730 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1731 }
c5d753a5 1732 irq_exit();
317f3941
PZ
1733}
1734
1735static void ttwu_queue_remote(struct task_struct *p, int cpu)
1736{
e3baac47
PZ
1737 struct rq *rq = cpu_rq(cpu);
1738
1739 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1740 if (!set_nr_if_polling(rq->idle))
1741 smp_send_reschedule(cpu);
1742 else
1743 trace_sched_wake_idle_without_ipi(cpu);
1744 }
317f3941 1745}
d6aa8f85 1746
f6be8af1
CL
1747void wake_up_if_idle(int cpu)
1748{
1749 struct rq *rq = cpu_rq(cpu);
1750 unsigned long flags;
1751
fd7de1e8
AL
1752 rcu_read_lock();
1753
1754 if (!is_idle_task(rcu_dereference(rq->curr)))
1755 goto out;
f6be8af1
CL
1756
1757 if (set_nr_if_polling(rq->idle)) {
1758 trace_sched_wake_idle_without_ipi(cpu);
1759 } else {
1760 raw_spin_lock_irqsave(&rq->lock, flags);
1761 if (is_idle_task(rq->curr))
1762 smp_send_reschedule(cpu);
1763 /* Else cpu is not in idle, do nothing here */
1764 raw_spin_unlock_irqrestore(&rq->lock, flags);
1765 }
fd7de1e8
AL
1766
1767out:
1768 rcu_read_unlock();
f6be8af1
CL
1769}
1770
39be3501 1771bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1772{
1773 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1774}
d6aa8f85 1775#endif /* CONFIG_SMP */
317f3941 1776
c05fbafb
PZ
1777static void ttwu_queue(struct task_struct *p, int cpu)
1778{
1779 struct rq *rq = cpu_rq(cpu);
1780
17d9f311 1781#if defined(CONFIG_SMP)
39be3501 1782 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1783 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1784 ttwu_queue_remote(p, cpu);
1785 return;
1786 }
1787#endif
1788
c05fbafb 1789 raw_spin_lock(&rq->lock);
cbce1a68 1790 lockdep_pin_lock(&rq->lock);
c05fbafb 1791 ttwu_do_activate(rq, p, 0);
cbce1a68 1792 lockdep_unpin_lock(&rq->lock);
c05fbafb 1793 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1794}
1795
8643cda5
PZ
1796/*
1797 * Notes on Program-Order guarantees on SMP systems.
1798 *
1799 * MIGRATION
1800 *
1801 * The basic program-order guarantee on SMP systems is that when a task [t]
1802 * migrates, all its activity on its old cpu [c0] happens-before any subsequent
1803 * execution on its new cpu [c1].
1804 *
1805 * For migration (of runnable tasks) this is provided by the following means:
1806 *
1807 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1808 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1809 * rq(c1)->lock (if not at the same time, then in that order).
1810 * C) LOCK of the rq(c1)->lock scheduling in task
1811 *
1812 * Transitivity guarantees that B happens after A and C after B.
1813 * Note: we only require RCpc transitivity.
1814 * Note: the cpu doing B need not be c0 or c1
1815 *
1816 * Example:
1817 *
1818 * CPU0 CPU1 CPU2
1819 *
1820 * LOCK rq(0)->lock
1821 * sched-out X
1822 * sched-in Y
1823 * UNLOCK rq(0)->lock
1824 *
1825 * LOCK rq(0)->lock // orders against CPU0
1826 * dequeue X
1827 * UNLOCK rq(0)->lock
1828 *
1829 * LOCK rq(1)->lock
1830 * enqueue X
1831 * UNLOCK rq(1)->lock
1832 *
1833 * LOCK rq(1)->lock // orders against CPU2
1834 * sched-out Z
1835 * sched-in X
1836 * UNLOCK rq(1)->lock
1837 *
1838 *
1839 * BLOCKING -- aka. SLEEP + WAKEUP
1840 *
1841 * For blocking we (obviously) need to provide the same guarantee as for
1842 * migration. However the means are completely different as there is no lock
1843 * chain to provide order. Instead we do:
1844 *
1845 * 1) smp_store_release(X->on_cpu, 0)
1846 * 2) smp_cond_acquire(!X->on_cpu)
1847 *
1848 * Example:
1849 *
1850 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1851 *
1852 * LOCK rq(0)->lock LOCK X->pi_lock
1853 * dequeue X
1854 * sched-out X
1855 * smp_store_release(X->on_cpu, 0);
1856 *
1857 * smp_cond_acquire(!X->on_cpu);
1858 * X->state = WAKING
1859 * set_task_cpu(X,2)
1860 *
1861 * LOCK rq(2)->lock
1862 * enqueue X
1863 * X->state = RUNNING
1864 * UNLOCK rq(2)->lock
1865 *
1866 * LOCK rq(2)->lock // orders against CPU1
1867 * sched-out Z
1868 * sched-in X
1869 * UNLOCK rq(2)->lock
1870 *
1871 * UNLOCK X->pi_lock
1872 * UNLOCK rq(0)->lock
1873 *
1874 *
1875 * However; for wakeups there is a second guarantee we must provide, namely we
1876 * must observe the state that lead to our wakeup. That is, not only must our
1877 * task observe its own prior state, it must also observe the stores prior to
1878 * its wakeup.
1879 *
1880 * This means that any means of doing remote wakeups must order the CPU doing
1881 * the wakeup against the CPU the task is going to end up running on. This,
1882 * however, is already required for the regular Program-Order guarantee above,
1883 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_acquire).
1884 *
1885 */
1886
9ed3811a 1887/**
1da177e4 1888 * try_to_wake_up - wake up a thread
9ed3811a 1889 * @p: the thread to be awakened
1da177e4 1890 * @state: the mask of task states that can be woken
9ed3811a 1891 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1892 *
1893 * Put it on the run-queue if it's not already there. The "current"
1894 * thread is always on the run-queue (except when the actual
1895 * re-schedule is in progress), and as such you're allowed to do
1896 * the simpler "current->state = TASK_RUNNING" to mark yourself
1897 * runnable without the overhead of this.
1898 *
e69f6186 1899 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1900 * or @state didn't match @p's state.
1da177e4 1901 */
e4a52bcb
PZ
1902static int
1903try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1904{
1da177e4 1905 unsigned long flags;
c05fbafb 1906 int cpu, success = 0;
2398f2c6 1907
e0acd0a6
ON
1908 /*
1909 * If we are going to wake up a thread waiting for CONDITION we
1910 * need to ensure that CONDITION=1 done by the caller can not be
1911 * reordered with p->state check below. This pairs with mb() in
1912 * set_current_state() the waiting thread does.
1913 */
1914 smp_mb__before_spinlock();
013fdb80 1915 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1916 if (!(p->state & state))
1da177e4
LT
1917 goto out;
1918
fbd705a0
PZ
1919 trace_sched_waking(p);
1920
c05fbafb 1921 success = 1; /* we're going to change ->state */
1da177e4 1922 cpu = task_cpu(p);
1da177e4 1923
c05fbafb
PZ
1924 if (p->on_rq && ttwu_remote(p, wake_flags))
1925 goto stat;
1da177e4 1926
1da177e4 1927#ifdef CONFIG_SMP
ecf7d01c
PZ
1928 /*
1929 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
1930 * possible to, falsely, observe p->on_cpu == 0.
1931 *
1932 * One must be running (->on_cpu == 1) in order to remove oneself
1933 * from the runqueue.
1934 *
1935 * [S] ->on_cpu = 1; [L] ->on_rq
1936 * UNLOCK rq->lock
1937 * RMB
1938 * LOCK rq->lock
1939 * [S] ->on_rq = 0; [L] ->on_cpu
1940 *
1941 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
1942 * from the consecutive calls to schedule(); the first switching to our
1943 * task, the second putting it to sleep.
1944 */
1945 smp_rmb();
1946
e9c84311 1947 /*
c05fbafb
PZ
1948 * If the owning (remote) cpu is still in the middle of schedule() with
1949 * this task as prev, wait until its done referencing the task.
b75a2253
PZ
1950 *
1951 * Pairs with the smp_store_release() in finish_lock_switch().
1952 *
1953 * This ensures that tasks getting woken will be fully ordered against
1954 * their previous state and preserve Program Order.
0970d299 1955 */
b3e0b1b6 1956 smp_cond_acquire(!p->on_cpu);
1da177e4 1957
a8e4f2ea 1958 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1959 p->state = TASK_WAKING;
e7693a36 1960
e4a52bcb 1961 if (p->sched_class->task_waking)
74f8e4b2 1962 p->sched_class->task_waking(p);
efbbd05a 1963
ac66f547 1964 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1965 if (task_cpu(p) != cpu) {
1966 wake_flags |= WF_MIGRATED;
e4a52bcb 1967 set_task_cpu(p, cpu);
f339b9dc 1968 }
1da177e4 1969#endif /* CONFIG_SMP */
1da177e4 1970
c05fbafb
PZ
1971 ttwu_queue(p, cpu);
1972stat:
cb251765
MG
1973 if (schedstat_enabled())
1974 ttwu_stat(p, cpu, wake_flags);
1da177e4 1975out:
013fdb80 1976 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1977
1978 return success;
1979}
1980
21aa9af0
TH
1981/**
1982 * try_to_wake_up_local - try to wake up a local task with rq lock held
1983 * @p: the thread to be awakened
1984 *
2acca55e 1985 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1986 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1987 * the current task.
21aa9af0
TH
1988 */
1989static void try_to_wake_up_local(struct task_struct *p)
1990{
1991 struct rq *rq = task_rq(p);
21aa9af0 1992
383efcd0
TH
1993 if (WARN_ON_ONCE(rq != this_rq()) ||
1994 WARN_ON_ONCE(p == current))
1995 return;
1996
21aa9af0
TH
1997 lockdep_assert_held(&rq->lock);
1998
2acca55e 1999 if (!raw_spin_trylock(&p->pi_lock)) {
cbce1a68
PZ
2000 /*
2001 * This is OK, because current is on_cpu, which avoids it being
2002 * picked for load-balance and preemption/IRQs are still
2003 * disabled avoiding further scheduler activity on it and we've
2004 * not yet picked a replacement task.
2005 */
2006 lockdep_unpin_lock(&rq->lock);
2acca55e
PZ
2007 raw_spin_unlock(&rq->lock);
2008 raw_spin_lock(&p->pi_lock);
2009 raw_spin_lock(&rq->lock);
cbce1a68 2010 lockdep_pin_lock(&rq->lock);
2acca55e
PZ
2011 }
2012
21aa9af0 2013 if (!(p->state & TASK_NORMAL))
2acca55e 2014 goto out;
21aa9af0 2015
fbd705a0
PZ
2016 trace_sched_waking(p);
2017
da0c1e65 2018 if (!task_on_rq_queued(p))
d7c01d27
PZ
2019 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2020
23f41eeb 2021 ttwu_do_wakeup(rq, p, 0);
cb251765
MG
2022 if (schedstat_enabled())
2023 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
2024out:
2025 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
2026}
2027
50fa610a
DH
2028/**
2029 * wake_up_process - Wake up a specific process
2030 * @p: The process to be woken up.
2031 *
2032 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
2033 * processes.
2034 *
2035 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
2036 *
2037 * It may be assumed that this function implies a write memory barrier before
2038 * changing the task state if and only if any tasks are woken up.
2039 */
7ad5b3a5 2040int wake_up_process(struct task_struct *p)
1da177e4 2041{
9067ac85 2042 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 2043}
1da177e4
LT
2044EXPORT_SYMBOL(wake_up_process);
2045
7ad5b3a5 2046int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2047{
2048 return try_to_wake_up(p, state, 0);
2049}
2050
a5e7be3b
JL
2051/*
2052 * This function clears the sched_dl_entity static params.
2053 */
2054void __dl_clear_params(struct task_struct *p)
2055{
2056 struct sched_dl_entity *dl_se = &p->dl;
2057
2058 dl_se->dl_runtime = 0;
2059 dl_se->dl_deadline = 0;
2060 dl_se->dl_period = 0;
2061 dl_se->flags = 0;
2062 dl_se->dl_bw = 0;
40767b0d
PZ
2063
2064 dl_se->dl_throttled = 0;
40767b0d 2065 dl_se->dl_yielded = 0;
a5e7be3b
JL
2066}
2067
1da177e4
LT
2068/*
2069 * Perform scheduler related setup for a newly forked process p.
2070 * p is forked by current.
dd41f596
IM
2071 *
2072 * __sched_fork() is basic setup used by init_idle() too:
2073 */
5e1576ed 2074static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2075{
fd2f4419
PZ
2076 p->on_rq = 0;
2077
2078 p->se.on_rq = 0;
dd41f596
IM
2079 p->se.exec_start = 0;
2080 p->se.sum_exec_runtime = 0;
f6cf891c 2081 p->se.prev_sum_exec_runtime = 0;
6c594c21 2082 p->se.nr_migrations = 0;
da7a735e 2083 p->se.vruntime = 0;
fd2f4419 2084 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d 2085
ad936d86
BP
2086#ifdef CONFIG_FAIR_GROUP_SCHED
2087 p->se.cfs_rq = NULL;
2088#endif
2089
6cfb0d5d 2090#ifdef CONFIG_SCHEDSTATS
cb251765 2091 /* Even if schedstat is disabled, there should not be garbage */
41acab88 2092 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2093#endif
476d139c 2094
aab03e05 2095 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 2096 init_dl_task_timer(&p->dl);
a5e7be3b 2097 __dl_clear_params(p);
aab03e05 2098
fa717060 2099 INIT_LIST_HEAD(&p->rt.run_list);
ff77e468
PZ
2100 p->rt.timeout = 0;
2101 p->rt.time_slice = sched_rr_timeslice;
2102 p->rt.on_rq = 0;
2103 p->rt.on_list = 0;
476d139c 2104
e107be36
AK
2105#ifdef CONFIG_PREEMPT_NOTIFIERS
2106 INIT_HLIST_HEAD(&p->preempt_notifiers);
2107#endif
cbee9f88
PZ
2108
2109#ifdef CONFIG_NUMA_BALANCING
2110 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 2111 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
2112 p->mm->numa_scan_seq = 0;
2113 }
2114
5e1576ed
RR
2115 if (clone_flags & CLONE_VM)
2116 p->numa_preferred_nid = current->numa_preferred_nid;
2117 else
2118 p->numa_preferred_nid = -1;
2119
cbee9f88
PZ
2120 p->node_stamp = 0ULL;
2121 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 2122 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 2123 p->numa_work.next = &p->numa_work;
44dba3d5 2124 p->numa_faults = NULL;
7e2703e6
RR
2125 p->last_task_numa_placement = 0;
2126 p->last_sum_exec_runtime = 0;
8c8a743c 2127
8c8a743c 2128 p->numa_group = NULL;
cbee9f88 2129#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
2130}
2131
2a595721
SD
2132DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2133
1a687c2e 2134#ifdef CONFIG_NUMA_BALANCING
c3b9bc5b 2135
1a687c2e
MG
2136void set_numabalancing_state(bool enabled)
2137{
2138 if (enabled)
2a595721 2139 static_branch_enable(&sched_numa_balancing);
1a687c2e 2140 else
2a595721 2141 static_branch_disable(&sched_numa_balancing);
1a687c2e 2142}
54a43d54
AK
2143
2144#ifdef CONFIG_PROC_SYSCTL
2145int sysctl_numa_balancing(struct ctl_table *table, int write,
2146 void __user *buffer, size_t *lenp, loff_t *ppos)
2147{
2148 struct ctl_table t;
2149 int err;
2a595721 2150 int state = static_branch_likely(&sched_numa_balancing);
54a43d54
AK
2151
2152 if (write && !capable(CAP_SYS_ADMIN))
2153 return -EPERM;
2154
2155 t = *table;
2156 t.data = &state;
2157 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2158 if (err < 0)
2159 return err;
2160 if (write)
2161 set_numabalancing_state(state);
2162 return err;
2163}
2164#endif
2165#endif
dd41f596 2166
cb251765
MG
2167DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2168
2169#ifdef CONFIG_SCHEDSTATS
2170static void set_schedstats(bool enabled)
2171{
2172 if (enabled)
2173 static_branch_enable(&sched_schedstats);
2174 else
2175 static_branch_disable(&sched_schedstats);
2176}
2177
2178void force_schedstat_enabled(void)
2179{
2180 if (!schedstat_enabled()) {
2181 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2182 static_branch_enable(&sched_schedstats);
2183 }
2184}
2185
2186static int __init setup_schedstats(char *str)
2187{
2188 int ret = 0;
2189 if (!str)
2190 goto out;
2191
2192 if (!strcmp(str, "enable")) {
2193 set_schedstats(true);
2194 ret = 1;
2195 } else if (!strcmp(str, "disable")) {
2196 set_schedstats(false);
2197 ret = 1;
2198 }
2199out:
2200 if (!ret)
2201 pr_warn("Unable to parse schedstats=\n");
2202
2203 return ret;
2204}
2205__setup("schedstats=", setup_schedstats);
2206
2207#ifdef CONFIG_PROC_SYSCTL
2208int sysctl_schedstats(struct ctl_table *table, int write,
2209 void __user *buffer, size_t *lenp, loff_t *ppos)
2210{
2211 struct ctl_table t;
2212 int err;
2213 int state = static_branch_likely(&sched_schedstats);
2214
2215 if (write && !capable(CAP_SYS_ADMIN))
2216 return -EPERM;
2217
2218 t = *table;
2219 t.data = &state;
2220 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2221 if (err < 0)
2222 return err;
2223 if (write)
2224 set_schedstats(state);
2225 return err;
2226}
2227#endif
2228#endif
dd41f596
IM
2229
2230/*
2231 * fork()/clone()-time setup:
2232 */
aab03e05 2233int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2234{
0122ec5b 2235 unsigned long flags;
dd41f596
IM
2236 int cpu = get_cpu();
2237
5e1576ed 2238 __sched_fork(clone_flags, p);
06b83b5f 2239 /*
0017d735 2240 * We mark the process as running here. This guarantees that
06b83b5f
PZ
2241 * nobody will actually run it, and a signal or other external
2242 * event cannot wake it up and insert it on the runqueue either.
2243 */
0017d735 2244 p->state = TASK_RUNNING;
dd41f596 2245
c350a04e
MG
2246 /*
2247 * Make sure we do not leak PI boosting priority to the child.
2248 */
2249 p->prio = current->normal_prio;
2250
b9dc29e7
MG
2251 /*
2252 * Revert to default priority/policy on fork if requested.
2253 */
2254 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 2255 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 2256 p->policy = SCHED_NORMAL;
6c697bdf 2257 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
2258 p->rt_priority = 0;
2259 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2260 p->static_prio = NICE_TO_PRIO(0);
2261
2262 p->prio = p->normal_prio = __normal_prio(p);
2263 set_load_weight(p);
6c697bdf 2264
b9dc29e7
MG
2265 /*
2266 * We don't need the reset flag anymore after the fork. It has
2267 * fulfilled its duty:
2268 */
2269 p->sched_reset_on_fork = 0;
2270 }
ca94c442 2271
aab03e05
DF
2272 if (dl_prio(p->prio)) {
2273 put_cpu();
2274 return -EAGAIN;
2275 } else if (rt_prio(p->prio)) {
2276 p->sched_class = &rt_sched_class;
2277 } else {
2ddbf952 2278 p->sched_class = &fair_sched_class;
aab03e05 2279 }
b29739f9 2280
cd29fe6f
PZ
2281 if (p->sched_class->task_fork)
2282 p->sched_class->task_fork(p);
2283
86951599
PZ
2284 /*
2285 * The child is not yet in the pid-hash so no cgroup attach races,
2286 * and the cgroup is pinned to this child due to cgroup_fork()
2287 * is ran before sched_fork().
2288 *
2289 * Silence PROVE_RCU.
2290 */
0122ec5b 2291 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 2292 set_task_cpu(p, cpu);
0122ec5b 2293 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 2294
f6db8347 2295#ifdef CONFIG_SCHED_INFO
dd41f596 2296 if (likely(sched_info_on()))
52f17b6c 2297 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2298#endif
3ca7a440
PZ
2299#if defined(CONFIG_SMP)
2300 p->on_cpu = 0;
4866cde0 2301#endif
01028747 2302 init_task_preempt_count(p);
806c09a7 2303#ifdef CONFIG_SMP
917b627d 2304 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 2305 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 2306#endif
917b627d 2307
476d139c 2308 put_cpu();
aab03e05 2309 return 0;
1da177e4
LT
2310}
2311
332ac17e
DF
2312unsigned long to_ratio(u64 period, u64 runtime)
2313{
2314 if (runtime == RUNTIME_INF)
2315 return 1ULL << 20;
2316
2317 /*
2318 * Doing this here saves a lot of checks in all
2319 * the calling paths, and returning zero seems
2320 * safe for them anyway.
2321 */
2322 if (period == 0)
2323 return 0;
2324
2325 return div64_u64(runtime << 20, period);
2326}
2327
2328#ifdef CONFIG_SMP
2329inline struct dl_bw *dl_bw_of(int i)
2330{
f78f5b90
PM
2331 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2332 "sched RCU must be held");
332ac17e
DF
2333 return &cpu_rq(i)->rd->dl_bw;
2334}
2335
de212f18 2336static inline int dl_bw_cpus(int i)
332ac17e 2337{
de212f18
PZ
2338 struct root_domain *rd = cpu_rq(i)->rd;
2339 int cpus = 0;
2340
f78f5b90
PM
2341 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2342 "sched RCU must be held");
de212f18
PZ
2343 for_each_cpu_and(i, rd->span, cpu_active_mask)
2344 cpus++;
2345
2346 return cpus;
332ac17e
DF
2347}
2348#else
2349inline struct dl_bw *dl_bw_of(int i)
2350{
2351 return &cpu_rq(i)->dl.dl_bw;
2352}
2353
de212f18 2354static inline int dl_bw_cpus(int i)
332ac17e
DF
2355{
2356 return 1;
2357}
2358#endif
2359
332ac17e
DF
2360/*
2361 * We must be sure that accepting a new task (or allowing changing the
2362 * parameters of an existing one) is consistent with the bandwidth
2363 * constraints. If yes, this function also accordingly updates the currently
2364 * allocated bandwidth to reflect the new situation.
2365 *
2366 * This function is called while holding p's rq->lock.
40767b0d
PZ
2367 *
2368 * XXX we should delay bw change until the task's 0-lag point, see
2369 * __setparam_dl().
332ac17e
DF
2370 */
2371static int dl_overflow(struct task_struct *p, int policy,
2372 const struct sched_attr *attr)
2373{
2374
2375 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
4df1638c 2376 u64 period = attr->sched_period ?: attr->sched_deadline;
332ac17e
DF
2377 u64 runtime = attr->sched_runtime;
2378 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 2379 int cpus, err = -1;
332ac17e
DF
2380
2381 if (new_bw == p->dl.dl_bw)
2382 return 0;
2383
2384 /*
2385 * Either if a task, enters, leave, or stays -deadline but changes
2386 * its parameters, we may need to update accordingly the total
2387 * allocated bandwidth of the container.
2388 */
2389 raw_spin_lock(&dl_b->lock);
de212f18 2390 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
2391 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2392 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2393 __dl_add(dl_b, new_bw);
2394 err = 0;
2395 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2396 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2397 __dl_clear(dl_b, p->dl.dl_bw);
2398 __dl_add(dl_b, new_bw);
2399 err = 0;
2400 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2401 __dl_clear(dl_b, p->dl.dl_bw);
2402 err = 0;
2403 }
2404 raw_spin_unlock(&dl_b->lock);
2405
2406 return err;
2407}
2408
2409extern void init_dl_bw(struct dl_bw *dl_b);
2410
1da177e4
LT
2411/*
2412 * wake_up_new_task - wake up a newly created task for the first time.
2413 *
2414 * This function will do some initial scheduler statistics housekeeping
2415 * that must be done for every newly created context, then puts the task
2416 * on the runqueue and wakes it.
2417 */
3e51e3ed 2418void wake_up_new_task(struct task_struct *p)
1da177e4
LT
2419{
2420 unsigned long flags;
dd41f596 2421 struct rq *rq;
fabf318e 2422
ab2515c4 2423 raw_spin_lock_irqsave(&p->pi_lock, flags);
98d8fd81
MR
2424 /* Initialize new task's runnable average */
2425 init_entity_runnable_average(&p->se);
fabf318e
PZ
2426#ifdef CONFIG_SMP
2427 /*
2428 * Fork balancing, do it here and not earlier because:
2429 * - cpus_allowed can change in the fork path
2430 * - any previously selected cpu might disappear through hotplug
fabf318e 2431 */
ac66f547 2432 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735 2433#endif
2b8c41da
YD
2434 /* Post initialize new task's util average when its cfs_rq is set */
2435 post_init_entity_util_avg(&p->se);
0017d735 2436
ab2515c4 2437 rq = __task_rq_lock(p);
cd29fe6f 2438 activate_task(rq, p, 0);
da0c1e65 2439 p->on_rq = TASK_ON_RQ_QUEUED;
fbd705a0 2440 trace_sched_wakeup_new(p);
a7558e01 2441 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2442#ifdef CONFIG_SMP
0aaafaab
PZ
2443 if (p->sched_class->task_woken) {
2444 /*
2445 * Nothing relies on rq->lock after this, so its fine to
2446 * drop it.
2447 */
2448 lockdep_unpin_lock(&rq->lock);
efbbd05a 2449 p->sched_class->task_woken(rq, p);
0aaafaab
PZ
2450 lockdep_pin_lock(&rq->lock);
2451 }
9a897c5a 2452#endif
0122ec5b 2453 task_rq_unlock(rq, p, &flags);
1da177e4
LT
2454}
2455
e107be36
AK
2456#ifdef CONFIG_PREEMPT_NOTIFIERS
2457
1cde2930
PZ
2458static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2459
2ecd9d29
PZ
2460void preempt_notifier_inc(void)
2461{
2462 static_key_slow_inc(&preempt_notifier_key);
2463}
2464EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2465
2466void preempt_notifier_dec(void)
2467{
2468 static_key_slow_dec(&preempt_notifier_key);
2469}
2470EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2471
e107be36 2472/**
80dd99b3 2473 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2474 * @notifier: notifier struct to register
e107be36
AK
2475 */
2476void preempt_notifier_register(struct preempt_notifier *notifier)
2477{
2ecd9d29
PZ
2478 if (!static_key_false(&preempt_notifier_key))
2479 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2480
e107be36
AK
2481 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2482}
2483EXPORT_SYMBOL_GPL(preempt_notifier_register);
2484
2485/**
2486 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2487 * @notifier: notifier struct to unregister
e107be36 2488 *
d84525a8 2489 * This is *not* safe to call from within a preemption notifier.
e107be36
AK
2490 */
2491void preempt_notifier_unregister(struct preempt_notifier *notifier)
2492{
2493 hlist_del(&notifier->link);
2494}
2495EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2496
1cde2930 2497static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2498{
2499 struct preempt_notifier *notifier;
e107be36 2500
b67bfe0d 2501 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2502 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2503}
2504
1cde2930
PZ
2505static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2506{
2507 if (static_key_false(&preempt_notifier_key))
2508 __fire_sched_in_preempt_notifiers(curr);
2509}
2510
e107be36 2511static void
1cde2930
PZ
2512__fire_sched_out_preempt_notifiers(struct task_struct *curr,
2513 struct task_struct *next)
e107be36
AK
2514{
2515 struct preempt_notifier *notifier;
e107be36 2516
b67bfe0d 2517 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2518 notifier->ops->sched_out(notifier, next);
2519}
2520
1cde2930
PZ
2521static __always_inline void
2522fire_sched_out_preempt_notifiers(struct task_struct *curr,
2523 struct task_struct *next)
2524{
2525 if (static_key_false(&preempt_notifier_key))
2526 __fire_sched_out_preempt_notifiers(curr, next);
2527}
2528
6d6bc0ad 2529#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36 2530
1cde2930 2531static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2532{
2533}
2534
1cde2930 2535static inline void
e107be36
AK
2536fire_sched_out_preempt_notifiers(struct task_struct *curr,
2537 struct task_struct *next)
2538{
2539}
2540
6d6bc0ad 2541#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2542
4866cde0
NP
2543/**
2544 * prepare_task_switch - prepare to switch tasks
2545 * @rq: the runqueue preparing to switch
421cee29 2546 * @prev: the current task that is being switched out
4866cde0
NP
2547 * @next: the task we are going to switch to.
2548 *
2549 * This is called with the rq lock held and interrupts off. It must
2550 * be paired with a subsequent finish_task_switch after the context
2551 * switch.
2552 *
2553 * prepare_task_switch sets up locking and calls architecture specific
2554 * hooks.
2555 */
e107be36
AK
2556static inline void
2557prepare_task_switch(struct rq *rq, struct task_struct *prev,
2558 struct task_struct *next)
4866cde0 2559{
43148951 2560 sched_info_switch(rq, prev, next);
fe4b04fa 2561 perf_event_task_sched_out(prev, next);
e107be36 2562 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2563 prepare_lock_switch(rq, next);
2564 prepare_arch_switch(next);
2565}
2566
1da177e4
LT
2567/**
2568 * finish_task_switch - clean up after a task-switch
2569 * @prev: the thread we just switched away from.
2570 *
4866cde0
NP
2571 * finish_task_switch must be called after the context switch, paired
2572 * with a prepare_task_switch call before the context switch.
2573 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2574 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2575 *
2576 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2577 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2578 * with the lock held can cause deadlocks; see schedule() for
2579 * details.)
dfa50b60
ON
2580 *
2581 * The context switch have flipped the stack from under us and restored the
2582 * local variables which were saved when this task called schedule() in the
2583 * past. prev == current is still correct but we need to recalculate this_rq
2584 * because prev may have moved to another CPU.
1da177e4 2585 */
dfa50b60 2586static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
2587 __releases(rq->lock)
2588{
dfa50b60 2589 struct rq *rq = this_rq();
1da177e4 2590 struct mm_struct *mm = rq->prev_mm;
55a101f8 2591 long prev_state;
1da177e4 2592
609ca066
PZ
2593 /*
2594 * The previous task will have left us with a preempt_count of 2
2595 * because it left us after:
2596 *
2597 * schedule()
2598 * preempt_disable(); // 1
2599 * __schedule()
2600 * raw_spin_lock_irq(&rq->lock) // 2
2601 *
2602 * Also, see FORK_PREEMPT_COUNT.
2603 */
e2bf1c4b
PZ
2604 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2605 "corrupted preempt_count: %s/%d/0x%x\n",
2606 current->comm, current->pid, preempt_count()))
2607 preempt_count_set(FORK_PREEMPT_COUNT);
609ca066 2608
1da177e4
LT
2609 rq->prev_mm = NULL;
2610
2611 /*
2612 * A task struct has one reference for the use as "current".
c394cc9f 2613 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2614 * schedule one last time. The schedule call will never return, and
2615 * the scheduled task must drop that reference.
95913d97
PZ
2616 *
2617 * We must observe prev->state before clearing prev->on_cpu (in
2618 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2619 * running on another CPU and we could rave with its RUNNING -> DEAD
2620 * transition, resulting in a double drop.
1da177e4 2621 */
55a101f8 2622 prev_state = prev->state;
bf9fae9f 2623 vtime_task_switch(prev);
a8d757ef 2624 perf_event_task_sched_in(prev, current);
4866cde0 2625 finish_lock_switch(rq, prev);
01f23e16 2626 finish_arch_post_lock_switch();
e8fa1362 2627
e107be36 2628 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2629 if (mm)
2630 mmdrop(mm);
c394cc9f 2631 if (unlikely(prev_state == TASK_DEAD)) {
e6c390f2
DF
2632 if (prev->sched_class->task_dead)
2633 prev->sched_class->task_dead(prev);
2634
c6fd91f0 2635 /*
2636 * Remove function-return probe instances associated with this
2637 * task and put them back on the free list.
9761eea8 2638 */
c6fd91f0 2639 kprobe_flush_task(prev);
1da177e4 2640 put_task_struct(prev);
c6fd91f0 2641 }
99e5ada9 2642
de734f89 2643 tick_nohz_task_switch();
dfa50b60 2644 return rq;
1da177e4
LT
2645}
2646
3f029d3c
GH
2647#ifdef CONFIG_SMP
2648
3f029d3c 2649/* rq->lock is NOT held, but preemption is disabled */
e3fca9e7 2650static void __balance_callback(struct rq *rq)
3f029d3c 2651{
e3fca9e7
PZ
2652 struct callback_head *head, *next;
2653 void (*func)(struct rq *rq);
2654 unsigned long flags;
3f029d3c 2655
e3fca9e7
PZ
2656 raw_spin_lock_irqsave(&rq->lock, flags);
2657 head = rq->balance_callback;
2658 rq->balance_callback = NULL;
2659 while (head) {
2660 func = (void (*)(struct rq *))head->func;
2661 next = head->next;
2662 head->next = NULL;
2663 head = next;
3f029d3c 2664
e3fca9e7 2665 func(rq);
3f029d3c 2666 }
e3fca9e7
PZ
2667 raw_spin_unlock_irqrestore(&rq->lock, flags);
2668}
2669
2670static inline void balance_callback(struct rq *rq)
2671{
2672 if (unlikely(rq->balance_callback))
2673 __balance_callback(rq);
3f029d3c
GH
2674}
2675
2676#else
da19ab51 2677
e3fca9e7 2678static inline void balance_callback(struct rq *rq)
3f029d3c 2679{
1da177e4
LT
2680}
2681
3f029d3c
GH
2682#endif
2683
1da177e4
LT
2684/**
2685 * schedule_tail - first thing a freshly forked thread must call.
2686 * @prev: the thread we just switched away from.
2687 */
722a9f92 2688asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
2689 __releases(rq->lock)
2690{
1a43a14a 2691 struct rq *rq;
da19ab51 2692
609ca066
PZ
2693 /*
2694 * New tasks start with FORK_PREEMPT_COUNT, see there and
2695 * finish_task_switch() for details.
2696 *
2697 * finish_task_switch() will drop rq->lock() and lower preempt_count
2698 * and the preempt_enable() will end up enabling preemption (on
2699 * PREEMPT_COUNT kernels).
2700 */
2701
dfa50b60 2702 rq = finish_task_switch(prev);
e3fca9e7 2703 balance_callback(rq);
1a43a14a 2704 preempt_enable();
70b97a7f 2705
1da177e4 2706 if (current->set_child_tid)
b488893a 2707 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2708}
2709
2710/*
dfa50b60 2711 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 2712 */
04936948 2713static __always_inline struct rq *
70b97a7f 2714context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2715 struct task_struct *next)
1da177e4 2716{
dd41f596 2717 struct mm_struct *mm, *oldmm;
1da177e4 2718
e107be36 2719 prepare_task_switch(rq, prev, next);
fe4b04fa 2720
dd41f596
IM
2721 mm = next->mm;
2722 oldmm = prev->active_mm;
9226d125
ZA
2723 /*
2724 * For paravirt, this is coupled with an exit in switch_to to
2725 * combine the page table reload and the switch backend into
2726 * one hypercall.
2727 */
224101ed 2728 arch_start_context_switch(prev);
9226d125 2729
31915ab4 2730 if (!mm) {
1da177e4
LT
2731 next->active_mm = oldmm;
2732 atomic_inc(&oldmm->mm_count);
2733 enter_lazy_tlb(oldmm, next);
2734 } else
2735 switch_mm(oldmm, mm, next);
2736
31915ab4 2737 if (!prev->mm) {
1da177e4 2738 prev->active_mm = NULL;
1da177e4
LT
2739 rq->prev_mm = oldmm;
2740 }
3a5f5e48
IM
2741 /*
2742 * Since the runqueue lock will be released by the next
2743 * task (which is an invalid locking op but in the case
2744 * of the scheduler it's an obvious special-case), so we
2745 * do an early lockdep release here:
2746 */
cbce1a68 2747 lockdep_unpin_lock(&rq->lock);
8a25d5de 2748 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
2749
2750 /* Here we just switch the register state and the stack. */
2751 switch_to(prev, next, prev);
dd41f596 2752 barrier();
dfa50b60
ON
2753
2754 return finish_task_switch(prev);
1da177e4
LT
2755}
2756
2757/*
1c3e8264 2758 * nr_running and nr_context_switches:
1da177e4
LT
2759 *
2760 * externally visible scheduler statistics: current number of runnable
1c3e8264 2761 * threads, total number of context switches performed since bootup.
1da177e4
LT
2762 */
2763unsigned long nr_running(void)
2764{
2765 unsigned long i, sum = 0;
2766
2767 for_each_online_cpu(i)
2768 sum += cpu_rq(i)->nr_running;
2769
2770 return sum;
f711f609 2771}
1da177e4 2772
2ee507c4
TC
2773/*
2774 * Check if only the current task is running on the cpu.
00cc1633
DD
2775 *
2776 * Caution: this function does not check that the caller has disabled
2777 * preemption, thus the result might have a time-of-check-to-time-of-use
2778 * race. The caller is responsible to use it correctly, for example:
2779 *
2780 * - from a non-preemptable section (of course)
2781 *
2782 * - from a thread that is bound to a single CPU
2783 *
2784 * - in a loop with very short iterations (e.g. a polling loop)
2ee507c4
TC
2785 */
2786bool single_task_running(void)
2787{
00cc1633 2788 return raw_rq()->nr_running == 1;
2ee507c4
TC
2789}
2790EXPORT_SYMBOL(single_task_running);
2791
1da177e4 2792unsigned long long nr_context_switches(void)
46cb4b7c 2793{
cc94abfc
SR
2794 int i;
2795 unsigned long long sum = 0;
46cb4b7c 2796
0a945022 2797 for_each_possible_cpu(i)
1da177e4 2798 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2799
1da177e4
LT
2800 return sum;
2801}
483b4ee6 2802
1da177e4
LT
2803unsigned long nr_iowait(void)
2804{
2805 unsigned long i, sum = 0;
483b4ee6 2806
0a945022 2807 for_each_possible_cpu(i)
1da177e4 2808 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2809
1da177e4
LT
2810 return sum;
2811}
483b4ee6 2812
8c215bd3 2813unsigned long nr_iowait_cpu(int cpu)
69d25870 2814{
8c215bd3 2815 struct rq *this = cpu_rq(cpu);
69d25870
AV
2816 return atomic_read(&this->nr_iowait);
2817}
46cb4b7c 2818
372ba8cb
MG
2819void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2820{
3289bdb4
PZ
2821 struct rq *rq = this_rq();
2822 *nr_waiters = atomic_read(&rq->nr_iowait);
2823 *load = rq->load.weight;
372ba8cb
MG
2824}
2825
dd41f596 2826#ifdef CONFIG_SMP
8a0be9ef 2827
46cb4b7c 2828/*
38022906
PZ
2829 * sched_exec - execve() is a valuable balancing opportunity, because at
2830 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2831 */
38022906 2832void sched_exec(void)
46cb4b7c 2833{
38022906 2834 struct task_struct *p = current;
1da177e4 2835 unsigned long flags;
0017d735 2836 int dest_cpu;
46cb4b7c 2837
8f42ced9 2838 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2839 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2840 if (dest_cpu == smp_processor_id())
2841 goto unlock;
38022906 2842
8f42ced9 2843 if (likely(cpu_active(dest_cpu))) {
969c7921 2844 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2845
8f42ced9
PZ
2846 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2847 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2848 return;
2849 }
0017d735 2850unlock:
8f42ced9 2851 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2852}
dd41f596 2853
1da177e4
LT
2854#endif
2855
1da177e4 2856DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2857DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2858
2859EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2860EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 2861
c5f8d995
HS
2862/*
2863 * Return accounted runtime for the task.
2864 * In case the task is currently running, return the runtime plus current's
2865 * pending runtime that have not been accounted yet.
2866 */
2867unsigned long long task_sched_runtime(struct task_struct *p)
2868{
2869 unsigned long flags;
2870 struct rq *rq;
6e998916 2871 u64 ns;
c5f8d995 2872
911b2898
PZ
2873#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2874 /*
2875 * 64-bit doesn't need locks to atomically read a 64bit value.
2876 * So we have a optimization chance when the task's delta_exec is 0.
2877 * Reading ->on_cpu is racy, but this is ok.
2878 *
2879 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2880 * If we race with it entering cpu, unaccounted time is 0. This is
2881 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
2882 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2883 * been accounted, so we're correct here as well.
911b2898 2884 */
da0c1e65 2885 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
2886 return p->se.sum_exec_runtime;
2887#endif
2888
c5f8d995 2889 rq = task_rq_lock(p, &flags);
6e998916
SG
2890 /*
2891 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2892 * project cycles that may never be accounted to this
2893 * thread, breaking clock_gettime().
2894 */
2895 if (task_current(rq, p) && task_on_rq_queued(p)) {
2896 update_rq_clock(rq);
2897 p->sched_class->update_curr(rq);
2898 }
2899 ns = p->se.sum_exec_runtime;
0122ec5b 2900 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2901
2902 return ns;
2903}
48f24c4d 2904
7835b98b
CL
2905/*
2906 * This function gets called by the timer code, with HZ frequency.
2907 * We call it with interrupts disabled.
7835b98b
CL
2908 */
2909void scheduler_tick(void)
2910{
7835b98b
CL
2911 int cpu = smp_processor_id();
2912 struct rq *rq = cpu_rq(cpu);
dd41f596 2913 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2914
2915 sched_clock_tick();
dd41f596 2916
05fa785c 2917 raw_spin_lock(&rq->lock);
3e51f33f 2918 update_rq_clock(rq);
fa85ae24 2919 curr->sched_class->task_tick(rq, curr, 0);
cee1afce 2920 cpu_load_update_active(rq);
3289bdb4 2921 calc_global_load_tick(rq);
05fa785c 2922 raw_spin_unlock(&rq->lock);
7835b98b 2923
e9d2b064 2924 perf_event_task_tick();
e220d2dc 2925
e418e1c2 2926#ifdef CONFIG_SMP
6eb57e0d 2927 rq->idle_balance = idle_cpu(cpu);
7caff66f 2928 trigger_load_balance(rq);
e418e1c2 2929#endif
265f22a9 2930 rq_last_tick_reset(rq);
1da177e4
LT
2931}
2932
265f22a9
FW
2933#ifdef CONFIG_NO_HZ_FULL
2934/**
2935 * scheduler_tick_max_deferment
2936 *
2937 * Keep at least one tick per second when a single
2938 * active task is running because the scheduler doesn't
2939 * yet completely support full dynticks environment.
2940 *
2941 * This makes sure that uptime, CFS vruntime, load
2942 * balancing, etc... continue to move forward, even
2943 * with a very low granularity.
e69f6186
YB
2944 *
2945 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
2946 */
2947u64 scheduler_tick_max_deferment(void)
2948{
2949 struct rq *rq = this_rq();
316c1608 2950 unsigned long next, now = READ_ONCE(jiffies);
265f22a9
FW
2951
2952 next = rq->last_sched_tick + HZ;
2953
2954 if (time_before_eq(next, now))
2955 return 0;
2956
8fe8ff09 2957 return jiffies_to_nsecs(next - now);
1da177e4 2958}
265f22a9 2959#endif
1da177e4 2960
7e49fcce
SR
2961#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2962 defined(CONFIG_PREEMPT_TRACER))
47252cfb
SR
2963/*
2964 * If the value passed in is equal to the current preempt count
2965 * then we just disabled preemption. Start timing the latency.
2966 */
2967static inline void preempt_latency_start(int val)
2968{
2969 if (preempt_count() == val) {
2970 unsigned long ip = get_lock_parent_ip();
2971#ifdef CONFIG_DEBUG_PREEMPT
2972 current->preempt_disable_ip = ip;
2973#endif
2974 trace_preempt_off(CALLER_ADDR0, ip);
2975 }
2976}
7e49fcce 2977
edafe3a5 2978void preempt_count_add(int val)
1da177e4 2979{
6cd8a4bb 2980#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2981 /*
2982 * Underflow?
2983 */
9a11b49a
IM
2984 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2985 return;
6cd8a4bb 2986#endif
bdb43806 2987 __preempt_count_add(val);
6cd8a4bb 2988#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2989 /*
2990 * Spinlock count overflowing soon?
2991 */
33859f7f
MOS
2992 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2993 PREEMPT_MASK - 10);
6cd8a4bb 2994#endif
47252cfb 2995 preempt_latency_start(val);
1da177e4 2996}
bdb43806 2997EXPORT_SYMBOL(preempt_count_add);
edafe3a5 2998NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 2999
47252cfb
SR
3000/*
3001 * If the value passed in equals to the current preempt count
3002 * then we just enabled preemption. Stop timing the latency.
3003 */
3004static inline void preempt_latency_stop(int val)
3005{
3006 if (preempt_count() == val)
3007 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3008}
3009
edafe3a5 3010void preempt_count_sub(int val)
1da177e4 3011{
6cd8a4bb 3012#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3013 /*
3014 * Underflow?
3015 */
01e3eb82 3016 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3017 return;
1da177e4
LT
3018 /*
3019 * Is the spinlock portion underflowing?
3020 */
9a11b49a
IM
3021 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3022 !(preempt_count() & PREEMPT_MASK)))
3023 return;
6cd8a4bb 3024#endif
9a11b49a 3025
47252cfb 3026 preempt_latency_stop(val);
bdb43806 3027 __preempt_count_sub(val);
1da177e4 3028}
bdb43806 3029EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 3030NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4 3031
47252cfb
SR
3032#else
3033static inline void preempt_latency_start(int val) { }
3034static inline void preempt_latency_stop(int val) { }
1da177e4
LT
3035#endif
3036
3037/*
dd41f596 3038 * Print scheduling while atomic bug:
1da177e4 3039 */
dd41f596 3040static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3041{
664dfa65
DJ
3042 if (oops_in_progress)
3043 return;
3044
3df0fc5b
PZ
3045 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3046 prev->comm, prev->pid, preempt_count());
838225b4 3047
dd41f596 3048 debug_show_held_locks(prev);
e21f5b15 3049 print_modules();
dd41f596
IM
3050 if (irqs_disabled())
3051 print_irqtrace_events(prev);
8f47b187
TG
3052#ifdef CONFIG_DEBUG_PREEMPT
3053 if (in_atomic_preempt_off()) {
3054 pr_err("Preemption disabled at:");
3055 print_ip_sym(current->preempt_disable_ip);
3056 pr_cont("\n");
3057 }
3058#endif
6135fc1e 3059 dump_stack();
373d4d09 3060 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 3061}
1da177e4 3062
dd41f596
IM
3063/*
3064 * Various schedule()-time debugging checks and statistics:
3065 */
3066static inline void schedule_debug(struct task_struct *prev)
3067{
0d9e2632 3068#ifdef CONFIG_SCHED_STACK_END_CHECK
ce03e413 3069 BUG_ON(task_stack_end_corrupted(prev));
0d9e2632 3070#endif
b99def8b 3071
1dc0fffc 3072 if (unlikely(in_atomic_preempt_off())) {
dd41f596 3073 __schedule_bug(prev);
1dc0fffc
PZ
3074 preempt_count_set(PREEMPT_DISABLED);
3075 }
b3fbab05 3076 rcu_sleep_check();
dd41f596 3077
1da177e4
LT
3078 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3079
2d72376b 3080 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
3081}
3082
3083/*
3084 * Pick up the highest-prio task:
3085 */
3086static inline struct task_struct *
606dba2e 3087pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 3088{
37e117c0 3089 const struct sched_class *class = &fair_sched_class;
dd41f596 3090 struct task_struct *p;
1da177e4
LT
3091
3092 /*
dd41f596
IM
3093 * Optimization: we know that if all tasks are in
3094 * the fair class we can call that function directly:
1da177e4 3095 */
37e117c0 3096 if (likely(prev->sched_class == class &&
38033c37 3097 rq->nr_running == rq->cfs.h_nr_running)) {
606dba2e 3098 p = fair_sched_class.pick_next_task(rq, prev);
6ccdc84b
PZ
3099 if (unlikely(p == RETRY_TASK))
3100 goto again;
3101
3102 /* assumes fair_sched_class->next == idle_sched_class */
3103 if (unlikely(!p))
3104 p = idle_sched_class.pick_next_task(rq, prev);
3105
3106 return p;
1da177e4
LT
3107 }
3108
37e117c0 3109again:
34f971f6 3110 for_each_class(class) {
606dba2e 3111 p = class->pick_next_task(rq, prev);
37e117c0
PZ
3112 if (p) {
3113 if (unlikely(p == RETRY_TASK))
3114 goto again;
dd41f596 3115 return p;
37e117c0 3116 }
dd41f596 3117 }
34f971f6
PZ
3118
3119 BUG(); /* the idle class will always have a runnable task */
dd41f596 3120}
1da177e4 3121
dd41f596 3122/*
c259e01a 3123 * __schedule() is the main scheduler function.
edde96ea
PE
3124 *
3125 * The main means of driving the scheduler and thus entering this function are:
3126 *
3127 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3128 *
3129 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3130 * paths. For example, see arch/x86/entry_64.S.
3131 *
3132 * To drive preemption between tasks, the scheduler sets the flag in timer
3133 * interrupt handler scheduler_tick().
3134 *
3135 * 3. Wakeups don't really cause entry into schedule(). They add a
3136 * task to the run-queue and that's it.
3137 *
3138 * Now, if the new task added to the run-queue preempts the current
3139 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3140 * called on the nearest possible occasion:
3141 *
3142 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3143 *
3144 * - in syscall or exception context, at the next outmost
3145 * preempt_enable(). (this might be as soon as the wake_up()'s
3146 * spin_unlock()!)
3147 *
3148 * - in IRQ context, return from interrupt-handler to
3149 * preemptible context
3150 *
3151 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3152 * then at the next:
3153 *
3154 * - cond_resched() call
3155 * - explicit schedule() call
3156 * - return from syscall or exception to user-space
3157 * - return from interrupt-handler to user-space
bfd9b2b5 3158 *
b30f0e3f 3159 * WARNING: must be called with preemption disabled!
dd41f596 3160 */
499d7955 3161static void __sched notrace __schedule(bool preempt)
dd41f596
IM
3162{
3163 struct task_struct *prev, *next;
67ca7bde 3164 unsigned long *switch_count;
dd41f596 3165 struct rq *rq;
31656519 3166 int cpu;
dd41f596 3167
dd41f596
IM
3168 cpu = smp_processor_id();
3169 rq = cpu_rq(cpu);
dd41f596 3170 prev = rq->curr;
dd41f596 3171
b99def8b
PZ
3172 /*
3173 * do_exit() calls schedule() with preemption disabled as an exception;
3174 * however we must fix that up, otherwise the next task will see an
3175 * inconsistent (higher) preempt count.
3176 *
3177 * It also avoids the below schedule_debug() test from complaining
3178 * about this.
3179 */
3180 if (unlikely(prev->state == TASK_DEAD))
3181 preempt_enable_no_resched_notrace();
3182
dd41f596 3183 schedule_debug(prev);
1da177e4 3184
31656519 3185 if (sched_feat(HRTICK))
f333fdc9 3186 hrtick_clear(rq);
8f4d37ec 3187
46a5d164
PM
3188 local_irq_disable();
3189 rcu_note_context_switch();
3190
e0acd0a6
ON
3191 /*
3192 * Make sure that signal_pending_state()->signal_pending() below
3193 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3194 * done by the caller to avoid the race with signal_wake_up().
3195 */
3196 smp_mb__before_spinlock();
46a5d164 3197 raw_spin_lock(&rq->lock);
cbce1a68 3198 lockdep_pin_lock(&rq->lock);
1da177e4 3199
9edfbfed
PZ
3200 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3201
246d86b5 3202 switch_count = &prev->nivcsw;
fc13aeba 3203 if (!preempt && prev->state) {
21aa9af0 3204 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 3205 prev->state = TASK_RUNNING;
21aa9af0 3206 } else {
2acca55e
PZ
3207 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3208 prev->on_rq = 0;
3209
21aa9af0 3210 /*
2acca55e
PZ
3211 * If a worker went to sleep, notify and ask workqueue
3212 * whether it wants to wake up a task to maintain
3213 * concurrency.
21aa9af0
TH
3214 */
3215 if (prev->flags & PF_WQ_WORKER) {
3216 struct task_struct *to_wakeup;
3217
9b7f6597 3218 to_wakeup = wq_worker_sleeping(prev);
21aa9af0
TH
3219 if (to_wakeup)
3220 try_to_wake_up_local(to_wakeup);
3221 }
21aa9af0 3222 }
dd41f596 3223 switch_count = &prev->nvcsw;
1da177e4
LT
3224 }
3225
9edfbfed 3226 if (task_on_rq_queued(prev))
606dba2e
PZ
3227 update_rq_clock(rq);
3228
3229 next = pick_next_task(rq, prev);
f26f9aff 3230 clear_tsk_need_resched(prev);
f27dde8d 3231 clear_preempt_need_resched();
9edfbfed 3232 rq->clock_skip_update = 0;
1da177e4 3233
1da177e4 3234 if (likely(prev != next)) {
1da177e4
LT
3235 rq->nr_switches++;
3236 rq->curr = next;
3237 ++*switch_count;
3238
c73464b1 3239 trace_sched_switch(preempt, prev, next);
dfa50b60 3240 rq = context_switch(rq, prev, next); /* unlocks the rq */
cbce1a68
PZ
3241 } else {
3242 lockdep_unpin_lock(&rq->lock);
05fa785c 3243 raw_spin_unlock_irq(&rq->lock);
cbce1a68 3244 }
1da177e4 3245
e3fca9e7 3246 balance_callback(rq);
1da177e4 3247}
8e05e96a 3248STACK_FRAME_NON_STANDARD(__schedule); /* switch_to() */
c259e01a 3249
9c40cef2
TG
3250static inline void sched_submit_work(struct task_struct *tsk)
3251{
3c7d5184 3252 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
3253 return;
3254 /*
3255 * If we are going to sleep and we have plugged IO queued,
3256 * make sure to submit it to avoid deadlocks.
3257 */
3258 if (blk_needs_flush_plug(tsk))
3259 blk_schedule_flush_plug(tsk);
3260}
3261
722a9f92 3262asmlinkage __visible void __sched schedule(void)
c259e01a 3263{
9c40cef2
TG
3264 struct task_struct *tsk = current;
3265
3266 sched_submit_work(tsk);
bfd9b2b5 3267 do {
b30f0e3f 3268 preempt_disable();
fc13aeba 3269 __schedule(false);
b30f0e3f 3270 sched_preempt_enable_no_resched();
bfd9b2b5 3271 } while (need_resched());
c259e01a 3272}
1da177e4
LT
3273EXPORT_SYMBOL(schedule);
3274
91d1aa43 3275#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 3276asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
3277{
3278 /*
3279 * If we come here after a random call to set_need_resched(),
3280 * or we have been woken up remotely but the IPI has not yet arrived,
3281 * we haven't yet exited the RCU idle mode. Do it here manually until
3282 * we find a better solution.
7cc78f8f
AL
3283 *
3284 * NB: There are buggy callers of this function. Ideally we
c467ea76 3285 * should warn if prev_state != CONTEXT_USER, but that will trigger
7cc78f8f 3286 * too frequently to make sense yet.
20ab65e3 3287 */
7cc78f8f 3288 enum ctx_state prev_state = exception_enter();
20ab65e3 3289 schedule();
7cc78f8f 3290 exception_exit(prev_state);
20ab65e3
FW
3291}
3292#endif
3293
c5491ea7
TG
3294/**
3295 * schedule_preempt_disabled - called with preemption disabled
3296 *
3297 * Returns with preemption disabled. Note: preempt_count must be 1
3298 */
3299void __sched schedule_preempt_disabled(void)
3300{
ba74c144 3301 sched_preempt_enable_no_resched();
c5491ea7
TG
3302 schedule();
3303 preempt_disable();
3304}
3305
06b1f808 3306static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
3307{
3308 do {
47252cfb
SR
3309 /*
3310 * Because the function tracer can trace preempt_count_sub()
3311 * and it also uses preempt_enable/disable_notrace(), if
3312 * NEED_RESCHED is set, the preempt_enable_notrace() called
3313 * by the function tracer will call this function again and
3314 * cause infinite recursion.
3315 *
3316 * Preemption must be disabled here before the function
3317 * tracer can trace. Break up preempt_disable() into two
3318 * calls. One to disable preemption without fear of being
3319 * traced. The other to still record the preemption latency,
3320 * which can also be traced by the function tracer.
3321 */
499d7955 3322 preempt_disable_notrace();
47252cfb 3323 preempt_latency_start(1);
fc13aeba 3324 __schedule(true);
47252cfb 3325 preempt_latency_stop(1);
499d7955 3326 preempt_enable_no_resched_notrace();
a18b5d01
FW
3327
3328 /*
3329 * Check again in case we missed a preemption opportunity
3330 * between schedule and now.
3331 */
a18b5d01
FW
3332 } while (need_resched());
3333}
3334
1da177e4
LT
3335#ifdef CONFIG_PREEMPT
3336/*
2ed6e34f 3337 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3338 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3339 * occur there and call schedule directly.
3340 */
722a9f92 3341asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 3342{
1da177e4
LT
3343 /*
3344 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3345 * we do not want to preempt the current task. Just return..
1da177e4 3346 */
fbb00b56 3347 if (likely(!preemptible()))
1da177e4
LT
3348 return;
3349
a18b5d01 3350 preempt_schedule_common();
1da177e4 3351}
376e2424 3352NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 3353EXPORT_SYMBOL(preempt_schedule);
009f60e2 3354
009f60e2 3355/**
4eaca0a8 3356 * preempt_schedule_notrace - preempt_schedule called by tracing
009f60e2
ON
3357 *
3358 * The tracing infrastructure uses preempt_enable_notrace to prevent
3359 * recursion and tracing preempt enabling caused by the tracing
3360 * infrastructure itself. But as tracing can happen in areas coming
3361 * from userspace or just about to enter userspace, a preempt enable
3362 * can occur before user_exit() is called. This will cause the scheduler
3363 * to be called when the system is still in usermode.
3364 *
3365 * To prevent this, the preempt_enable_notrace will use this function
3366 * instead of preempt_schedule() to exit user context if needed before
3367 * calling the scheduler.
3368 */
4eaca0a8 3369asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
009f60e2
ON
3370{
3371 enum ctx_state prev_ctx;
3372
3373 if (likely(!preemptible()))
3374 return;
3375
3376 do {
47252cfb
SR
3377 /*
3378 * Because the function tracer can trace preempt_count_sub()
3379 * and it also uses preempt_enable/disable_notrace(), if
3380 * NEED_RESCHED is set, the preempt_enable_notrace() called
3381 * by the function tracer will call this function again and
3382 * cause infinite recursion.
3383 *
3384 * Preemption must be disabled here before the function
3385 * tracer can trace. Break up preempt_disable() into two
3386 * calls. One to disable preemption without fear of being
3387 * traced. The other to still record the preemption latency,
3388 * which can also be traced by the function tracer.
3389 */
3d8f74dd 3390 preempt_disable_notrace();
47252cfb 3391 preempt_latency_start(1);
009f60e2
ON
3392 /*
3393 * Needs preempt disabled in case user_exit() is traced
3394 * and the tracer calls preempt_enable_notrace() causing
3395 * an infinite recursion.
3396 */
3397 prev_ctx = exception_enter();
fc13aeba 3398 __schedule(true);
009f60e2
ON
3399 exception_exit(prev_ctx);
3400
47252cfb 3401 preempt_latency_stop(1);
3d8f74dd 3402 preempt_enable_no_resched_notrace();
009f60e2
ON
3403 } while (need_resched());
3404}
4eaca0a8 3405EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
009f60e2 3406
32e475d7 3407#endif /* CONFIG_PREEMPT */
1da177e4
LT
3408
3409/*
2ed6e34f 3410 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3411 * off of irq context.
3412 * Note, that this is called and return with irqs disabled. This will
3413 * protect us against recursive calling from irq.
3414 */
722a9f92 3415asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 3416{
b22366cd 3417 enum ctx_state prev_state;
6478d880 3418
2ed6e34f 3419 /* Catch callers which need to be fixed */
f27dde8d 3420 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 3421
b22366cd
FW
3422 prev_state = exception_enter();
3423
3a5c359a 3424 do {
3d8f74dd 3425 preempt_disable();
3a5c359a 3426 local_irq_enable();
fc13aeba 3427 __schedule(true);
3a5c359a 3428 local_irq_disable();
3d8f74dd 3429 sched_preempt_enable_no_resched();
5ed0cec0 3430 } while (need_resched());
b22366cd
FW
3431
3432 exception_exit(prev_state);
1da177e4
LT
3433}
3434
63859d4f 3435int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3436 void *key)
1da177e4 3437{
63859d4f 3438 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3439}
1da177e4
LT
3440EXPORT_SYMBOL(default_wake_function);
3441
b29739f9
IM
3442#ifdef CONFIG_RT_MUTEXES
3443
3444/*
3445 * rt_mutex_setprio - set the current priority of a task
3446 * @p: task
3447 * @prio: prio value (kernel-internal form)
3448 *
3449 * This function changes the 'effective' priority of a task. It does
3450 * not touch ->normal_prio like __setscheduler().
3451 *
c365c292
TG
3452 * Used by the rt_mutex code to implement priority inheritance
3453 * logic. Call site only calls if the priority of the task changed.
b29739f9 3454 */
36c8b586 3455void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3456{
ff77e468 3457 int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE;
70b97a7f 3458 struct rq *rq;
83ab0aa0 3459 const struct sched_class *prev_class;
b29739f9 3460
aab03e05 3461 BUG_ON(prio > MAX_PRIO);
b29739f9 3462
0122ec5b 3463 rq = __task_rq_lock(p);
b29739f9 3464
1c4dd99b
TG
3465 /*
3466 * Idle task boosting is a nono in general. There is one
3467 * exception, when PREEMPT_RT and NOHZ is active:
3468 *
3469 * The idle task calls get_next_timer_interrupt() and holds
3470 * the timer wheel base->lock on the CPU and another CPU wants
3471 * to access the timer (probably to cancel it). We can safely
3472 * ignore the boosting request, as the idle CPU runs this code
3473 * with interrupts disabled and will complete the lock
3474 * protected section without being interrupted. So there is no
3475 * real need to boost.
3476 */
3477 if (unlikely(p == rq->idle)) {
3478 WARN_ON(p != rq->curr);
3479 WARN_ON(p->pi_blocked_on);
3480 goto out_unlock;
3481 }
3482
a8027073 3483 trace_sched_pi_setprio(p, prio);
d5f9f942 3484 oldprio = p->prio;
ff77e468
PZ
3485
3486 if (oldprio == prio)
3487 queue_flag &= ~DEQUEUE_MOVE;
3488
83ab0aa0 3489 prev_class = p->sched_class;
da0c1e65 3490 queued = task_on_rq_queued(p);
051a1d1a 3491 running = task_current(rq, p);
da0c1e65 3492 if (queued)
ff77e468 3493 dequeue_task(rq, p, queue_flag);
0e1f3483 3494 if (running)
f3cd1c4e 3495 put_prev_task(rq, p);
dd41f596 3496
2d3d891d
DF
3497 /*
3498 * Boosting condition are:
3499 * 1. -rt task is running and holds mutex A
3500 * --> -dl task blocks on mutex A
3501 *
3502 * 2. -dl task is running and holds mutex A
3503 * --> -dl task blocks on mutex A and could preempt the
3504 * running task
3505 */
3506 if (dl_prio(prio)) {
466af29b
ON
3507 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3508 if (!dl_prio(p->normal_prio) ||
3509 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d 3510 p->dl.dl_boosted = 1;
ff77e468 3511 queue_flag |= ENQUEUE_REPLENISH;
2d3d891d
DF
3512 } else
3513 p->dl.dl_boosted = 0;
aab03e05 3514 p->sched_class = &dl_sched_class;
2d3d891d
DF
3515 } else if (rt_prio(prio)) {
3516 if (dl_prio(oldprio))
3517 p->dl.dl_boosted = 0;
3518 if (oldprio < prio)
ff77e468 3519 queue_flag |= ENQUEUE_HEAD;
dd41f596 3520 p->sched_class = &rt_sched_class;
2d3d891d
DF
3521 } else {
3522 if (dl_prio(oldprio))
3523 p->dl.dl_boosted = 0;
746db944
BS
3524 if (rt_prio(oldprio))
3525 p->rt.timeout = 0;
dd41f596 3526 p->sched_class = &fair_sched_class;
2d3d891d 3527 }
dd41f596 3528
b29739f9
IM
3529 p->prio = prio;
3530
0e1f3483
HS
3531 if (running)
3532 p->sched_class->set_curr_task(rq);
da0c1e65 3533 if (queued)
ff77e468 3534 enqueue_task(rq, p, queue_flag);
cb469845 3535
da7a735e 3536 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3537out_unlock:
4c9a4bc8 3538 preempt_disable(); /* avoid rq from going away on us */
0122ec5b 3539 __task_rq_unlock(rq);
4c9a4bc8
PZ
3540
3541 balance_callback(rq);
3542 preempt_enable();
b29739f9 3543}
b29739f9 3544#endif
d50dde5a 3545
36c8b586 3546void set_user_nice(struct task_struct *p, long nice)
1da177e4 3547{
da0c1e65 3548 int old_prio, delta, queued;
1da177e4 3549 unsigned long flags;
70b97a7f 3550 struct rq *rq;
1da177e4 3551
75e45d51 3552 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
3553 return;
3554 /*
3555 * We have to be careful, if called from sys_setpriority(),
3556 * the task might be in the middle of scheduling on another CPU.
3557 */
3558 rq = task_rq_lock(p, &flags);
3559 /*
3560 * The RT priorities are set via sched_setscheduler(), but we still
3561 * allow the 'normal' nice value to be set - but as expected
3562 * it wont have any effect on scheduling until the task is
aab03e05 3563 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3564 */
aab03e05 3565 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3566 p->static_prio = NICE_TO_PRIO(nice);
3567 goto out_unlock;
3568 }
da0c1e65
KT
3569 queued = task_on_rq_queued(p);
3570 if (queued)
1de64443 3571 dequeue_task(rq, p, DEQUEUE_SAVE);
1da177e4 3572
1da177e4 3573 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3574 set_load_weight(p);
b29739f9
IM
3575 old_prio = p->prio;
3576 p->prio = effective_prio(p);
3577 delta = p->prio - old_prio;
1da177e4 3578
da0c1e65 3579 if (queued) {
1de64443 3580 enqueue_task(rq, p, ENQUEUE_RESTORE);
1da177e4 3581 /*
d5f9f942
AM
3582 * If the task increased its priority or is running and
3583 * lowered its priority, then reschedule its CPU:
1da177e4 3584 */
d5f9f942 3585 if (delta < 0 || (delta > 0 && task_running(rq, p)))
8875125e 3586 resched_curr(rq);
1da177e4
LT
3587 }
3588out_unlock:
0122ec5b 3589 task_rq_unlock(rq, p, &flags);
1da177e4 3590}
1da177e4
LT
3591EXPORT_SYMBOL(set_user_nice);
3592
e43379f1
MM
3593/*
3594 * can_nice - check if a task can reduce its nice value
3595 * @p: task
3596 * @nice: nice value
3597 */
36c8b586 3598int can_nice(const struct task_struct *p, const int nice)
e43379f1 3599{
024f4747 3600 /* convert nice value [19,-20] to rlimit style value [1,40] */
7aa2c016 3601 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 3602
78d7d407 3603 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3604 capable(CAP_SYS_NICE));
3605}
3606
1da177e4
LT
3607#ifdef __ARCH_WANT_SYS_NICE
3608
3609/*
3610 * sys_nice - change the priority of the current process.
3611 * @increment: priority increment
3612 *
3613 * sys_setpriority is a more generic, but much slower function that
3614 * does similar things.
3615 */
5add95d4 3616SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3617{
48f24c4d 3618 long nice, retval;
1da177e4
LT
3619
3620 /*
3621 * Setpriority might change our priority at the same moment.
3622 * We don't have to worry. Conceptually one call occurs first
3623 * and we have a single winner.
3624 */
a9467fa3 3625 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 3626 nice = task_nice(current) + increment;
1da177e4 3627
a9467fa3 3628 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
3629 if (increment < 0 && !can_nice(current, nice))
3630 return -EPERM;
3631
1da177e4
LT
3632 retval = security_task_setnice(current, nice);
3633 if (retval)
3634 return retval;
3635
3636 set_user_nice(current, nice);
3637 return 0;
3638}
3639
3640#endif
3641
3642/**
3643 * task_prio - return the priority value of a given task.
3644 * @p: the task in question.
3645 *
e69f6186 3646 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3647 * RT tasks are offset by -200. Normal tasks are centered
3648 * around 0, value goes from -16 to +15.
3649 */
36c8b586 3650int task_prio(const struct task_struct *p)
1da177e4
LT
3651{
3652 return p->prio - MAX_RT_PRIO;
3653}
3654
1da177e4
LT
3655/**
3656 * idle_cpu - is a given cpu idle currently?
3657 * @cpu: the processor in question.
e69f6186
YB
3658 *
3659 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3660 */
3661int idle_cpu(int cpu)
3662{
908a3283
TG
3663 struct rq *rq = cpu_rq(cpu);
3664
3665 if (rq->curr != rq->idle)
3666 return 0;
3667
3668 if (rq->nr_running)
3669 return 0;
3670
3671#ifdef CONFIG_SMP
3672 if (!llist_empty(&rq->wake_list))
3673 return 0;
3674#endif
3675
3676 return 1;
1da177e4
LT
3677}
3678
1da177e4
LT
3679/**
3680 * idle_task - return the idle task for a given cpu.
3681 * @cpu: the processor in question.
e69f6186
YB
3682 *
3683 * Return: The idle task for the cpu @cpu.
1da177e4 3684 */
36c8b586 3685struct task_struct *idle_task(int cpu)
1da177e4
LT
3686{
3687 return cpu_rq(cpu)->idle;
3688}
3689
3690/**
3691 * find_process_by_pid - find a process with a matching PID value.
3692 * @pid: the pid in question.
e69f6186
YB
3693 *
3694 * The task of @pid, if found. %NULL otherwise.
1da177e4 3695 */
a9957449 3696static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3697{
228ebcbe 3698 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3699}
3700
aab03e05
DF
3701/*
3702 * This function initializes the sched_dl_entity of a newly becoming
3703 * SCHED_DEADLINE task.
3704 *
3705 * Only the static values are considered here, the actual runtime and the
3706 * absolute deadline will be properly calculated when the task is enqueued
3707 * for the first time with its new policy.
3708 */
3709static void
3710__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3711{
3712 struct sched_dl_entity *dl_se = &p->dl;
3713
aab03e05
DF
3714 dl_se->dl_runtime = attr->sched_runtime;
3715 dl_se->dl_deadline = attr->sched_deadline;
755378a4 3716 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 3717 dl_se->flags = attr->sched_flags;
332ac17e 3718 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
40767b0d
PZ
3719
3720 /*
3721 * Changing the parameters of a task is 'tricky' and we're not doing
3722 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3723 *
3724 * What we SHOULD do is delay the bandwidth release until the 0-lag
3725 * point. This would include retaining the task_struct until that time
3726 * and change dl_overflow() to not immediately decrement the current
3727 * amount.
3728 *
3729 * Instead we retain the current runtime/deadline and let the new
3730 * parameters take effect after the current reservation period lapses.
3731 * This is safe (albeit pessimistic) because the 0-lag point is always
3732 * before the current scheduling deadline.
3733 *
3734 * We can still have temporary overloads because we do not delay the
3735 * change in bandwidth until that time; so admission control is
3736 * not on the safe side. It does however guarantee tasks will never
3737 * consume more than promised.
3738 */
aab03e05
DF
3739}
3740
c13db6b1
SR
3741/*
3742 * sched_setparam() passes in -1 for its policy, to let the functions
3743 * it calls know not to change it.
3744 */
3745#define SETPARAM_POLICY -1
3746
c365c292
TG
3747static void __setscheduler_params(struct task_struct *p,
3748 const struct sched_attr *attr)
1da177e4 3749{
d50dde5a
DF
3750 int policy = attr->sched_policy;
3751
c13db6b1 3752 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
3753 policy = p->policy;
3754
1da177e4 3755 p->policy = policy;
d50dde5a 3756
aab03e05
DF
3757 if (dl_policy(policy))
3758 __setparam_dl(p, attr);
39fd8fd2 3759 else if (fair_policy(policy))
d50dde5a
DF
3760 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3761
39fd8fd2
PZ
3762 /*
3763 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3764 * !rt_policy. Always setting this ensures that things like
3765 * getparam()/getattr() don't report silly values for !rt tasks.
3766 */
3767 p->rt_priority = attr->sched_priority;
383afd09 3768 p->normal_prio = normal_prio(p);
c365c292
TG
3769 set_load_weight(p);
3770}
39fd8fd2 3771
c365c292
TG
3772/* Actually do priority change: must hold pi & rq lock. */
3773static void __setscheduler(struct rq *rq, struct task_struct *p,
0782e63b 3774 const struct sched_attr *attr, bool keep_boost)
c365c292
TG
3775{
3776 __setscheduler_params(p, attr);
d50dde5a 3777
383afd09 3778 /*
0782e63b
TG
3779 * Keep a potential priority boosting if called from
3780 * sched_setscheduler().
383afd09 3781 */
0782e63b
TG
3782 if (keep_boost)
3783 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3784 else
3785 p->prio = normal_prio(p);
383afd09 3786
aab03e05
DF
3787 if (dl_prio(p->prio))
3788 p->sched_class = &dl_sched_class;
3789 else if (rt_prio(p->prio))
ffd44db5
PZ
3790 p->sched_class = &rt_sched_class;
3791 else
3792 p->sched_class = &fair_sched_class;
1da177e4 3793}
aab03e05
DF
3794
3795static void
3796__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3797{
3798 struct sched_dl_entity *dl_se = &p->dl;
3799
3800 attr->sched_priority = p->rt_priority;
3801 attr->sched_runtime = dl_se->dl_runtime;
3802 attr->sched_deadline = dl_se->dl_deadline;
755378a4 3803 attr->sched_period = dl_se->dl_period;
aab03e05
DF
3804 attr->sched_flags = dl_se->flags;
3805}
3806
3807/*
3808 * This function validates the new parameters of a -deadline task.
3809 * We ask for the deadline not being zero, and greater or equal
755378a4 3810 * than the runtime, as well as the period of being zero or
332ac17e 3811 * greater than deadline. Furthermore, we have to be sure that
b0827819
JL
3812 * user parameters are above the internal resolution of 1us (we
3813 * check sched_runtime only since it is always the smaller one) and
3814 * below 2^63 ns (we have to check both sched_deadline and
3815 * sched_period, as the latter can be zero).
aab03e05
DF
3816 */
3817static bool
3818__checkparam_dl(const struct sched_attr *attr)
3819{
b0827819
JL
3820 /* deadline != 0 */
3821 if (attr->sched_deadline == 0)
3822 return false;
3823
3824 /*
3825 * Since we truncate DL_SCALE bits, make sure we're at least
3826 * that big.
3827 */
3828 if (attr->sched_runtime < (1ULL << DL_SCALE))
3829 return false;
3830
3831 /*
3832 * Since we use the MSB for wrap-around and sign issues, make
3833 * sure it's not set (mind that period can be equal to zero).
3834 */
3835 if (attr->sched_deadline & (1ULL << 63) ||
3836 attr->sched_period & (1ULL << 63))
3837 return false;
3838
3839 /* runtime <= deadline <= period (if period != 0) */
3840 if ((attr->sched_period != 0 &&
3841 attr->sched_period < attr->sched_deadline) ||
3842 attr->sched_deadline < attr->sched_runtime)
3843 return false;
3844
3845 return true;
aab03e05
DF
3846}
3847
c69e8d9c
DH
3848/*
3849 * check the target process has a UID that matches the current process's
3850 */
3851static bool check_same_owner(struct task_struct *p)
3852{
3853 const struct cred *cred = current_cred(), *pcred;
3854 bool match;
3855
3856 rcu_read_lock();
3857 pcred = __task_cred(p);
9c806aa0
EB
3858 match = (uid_eq(cred->euid, pcred->euid) ||
3859 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3860 rcu_read_unlock();
3861 return match;
3862}
3863
75381608
WL
3864static bool dl_param_changed(struct task_struct *p,
3865 const struct sched_attr *attr)
3866{
3867 struct sched_dl_entity *dl_se = &p->dl;
3868
3869 if (dl_se->dl_runtime != attr->sched_runtime ||
3870 dl_se->dl_deadline != attr->sched_deadline ||
3871 dl_se->dl_period != attr->sched_period ||
3872 dl_se->flags != attr->sched_flags)
3873 return true;
3874
3875 return false;
3876}
3877
d50dde5a
DF
3878static int __sched_setscheduler(struct task_struct *p,
3879 const struct sched_attr *attr,
dbc7f069 3880 bool user, bool pi)
1da177e4 3881{
383afd09
SR
3882 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3883 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 3884 int retval, oldprio, oldpolicy = -1, queued, running;
0782e63b 3885 int new_effective_prio, policy = attr->sched_policy;
1da177e4 3886 unsigned long flags;
83ab0aa0 3887 const struct sched_class *prev_class;
70b97a7f 3888 struct rq *rq;
ca94c442 3889 int reset_on_fork;
ff77e468 3890 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
1da177e4 3891
66e5393a
SR
3892 /* may grab non-irq protected spin_locks */
3893 BUG_ON(in_interrupt());
1da177e4
LT
3894recheck:
3895 /* double check policy once rq lock held */
ca94c442
LP
3896 if (policy < 0) {
3897 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3898 policy = oldpolicy = p->policy;
ca94c442 3899 } else {
7479f3c9 3900 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 3901
20f9cd2a 3902 if (!valid_policy(policy))
ca94c442
LP
3903 return -EINVAL;
3904 }
3905
7479f3c9
PZ
3906 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3907 return -EINVAL;
3908
1da177e4
LT
3909 /*
3910 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3911 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3912 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 3913 */
0bb040a4 3914 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 3915 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 3916 return -EINVAL;
aab03e05
DF
3917 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3918 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
3919 return -EINVAL;
3920
37e4ab3f
OC
3921 /*
3922 * Allow unprivileged RT tasks to decrease priority:
3923 */
961ccddd 3924 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 3925 if (fair_policy(policy)) {
d0ea0268 3926 if (attr->sched_nice < task_nice(p) &&
eaad4513 3927 !can_nice(p, attr->sched_nice))
d50dde5a
DF
3928 return -EPERM;
3929 }
3930
e05606d3 3931 if (rt_policy(policy)) {
a44702e8
ON
3932 unsigned long rlim_rtprio =
3933 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3934
3935 /* can't set/change the rt policy */
3936 if (policy != p->policy && !rlim_rtprio)
3937 return -EPERM;
3938
3939 /* can't increase priority */
d50dde5a
DF
3940 if (attr->sched_priority > p->rt_priority &&
3941 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
3942 return -EPERM;
3943 }
c02aa73b 3944
d44753b8
JL
3945 /*
3946 * Can't set/change SCHED_DEADLINE policy at all for now
3947 * (safest behavior); in the future we would like to allow
3948 * unprivileged DL tasks to increase their relative deadline
3949 * or reduce their runtime (both ways reducing utilization)
3950 */
3951 if (dl_policy(policy))
3952 return -EPERM;
3953
dd41f596 3954 /*
c02aa73b
DH
3955 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3956 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3957 */
20f9cd2a 3958 if (idle_policy(p->policy) && !idle_policy(policy)) {
d0ea0268 3959 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
3960 return -EPERM;
3961 }
5fe1d75f 3962
37e4ab3f 3963 /* can't change other user's priorities */
c69e8d9c 3964 if (!check_same_owner(p))
37e4ab3f 3965 return -EPERM;
ca94c442
LP
3966
3967 /* Normal users shall not reset the sched_reset_on_fork flag */
3968 if (p->sched_reset_on_fork && !reset_on_fork)
3969 return -EPERM;
37e4ab3f 3970 }
1da177e4 3971
725aad24 3972 if (user) {
b0ae1981 3973 retval = security_task_setscheduler(p);
725aad24
JF
3974 if (retval)
3975 return retval;
3976 }
3977
b29739f9
IM
3978 /*
3979 * make sure no PI-waiters arrive (or leave) while we are
3980 * changing the priority of the task:
0122ec5b 3981 *
25985edc 3982 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3983 * runqueue lock must be held.
3984 */
0122ec5b 3985 rq = task_rq_lock(p, &flags);
dc61b1d6 3986
34f971f6
PZ
3987 /*
3988 * Changing the policy of the stop threads its a very bad idea
3989 */
3990 if (p == rq->stop) {
0122ec5b 3991 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3992 return -EINVAL;
3993 }
3994
a51e9198 3995 /*
d6b1e911
TG
3996 * If not changing anything there's no need to proceed further,
3997 * but store a possible modification of reset_on_fork.
a51e9198 3998 */
d50dde5a 3999 if (unlikely(policy == p->policy)) {
d0ea0268 4000 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
4001 goto change;
4002 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4003 goto change;
75381608 4004 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 4005 goto change;
d50dde5a 4006
d6b1e911 4007 p->sched_reset_on_fork = reset_on_fork;
45afb173 4008 task_rq_unlock(rq, p, &flags);
a51e9198
DF
4009 return 0;
4010 }
d50dde5a 4011change:
a51e9198 4012
dc61b1d6 4013 if (user) {
332ac17e 4014#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
4015 /*
4016 * Do not allow realtime tasks into groups that have no runtime
4017 * assigned.
4018 */
4019 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
4020 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4021 !task_group_is_autogroup(task_group(p))) {
0122ec5b 4022 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
4023 return -EPERM;
4024 }
dc61b1d6 4025#endif
332ac17e
DF
4026#ifdef CONFIG_SMP
4027 if (dl_bandwidth_enabled() && dl_policy(policy)) {
4028 cpumask_t *span = rq->rd->span;
332ac17e
DF
4029
4030 /*
4031 * Don't allow tasks with an affinity mask smaller than
4032 * the entire root_domain to become SCHED_DEADLINE. We
4033 * will also fail if there's no bandwidth available.
4034 */
e4099a5e
PZ
4035 if (!cpumask_subset(span, &p->cpus_allowed) ||
4036 rq->rd->dl_bw.bw == 0) {
332ac17e
DF
4037 task_rq_unlock(rq, p, &flags);
4038 return -EPERM;
4039 }
4040 }
4041#endif
4042 }
dc61b1d6 4043
1da177e4
LT
4044 /* recheck policy now with rq lock held */
4045 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4046 policy = oldpolicy = -1;
0122ec5b 4047 task_rq_unlock(rq, p, &flags);
1da177e4
LT
4048 goto recheck;
4049 }
332ac17e
DF
4050
4051 /*
4052 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4053 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4054 * is available.
4055 */
e4099a5e 4056 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
332ac17e
DF
4057 task_rq_unlock(rq, p, &flags);
4058 return -EBUSY;
4059 }
4060
c365c292
TG
4061 p->sched_reset_on_fork = reset_on_fork;
4062 oldprio = p->prio;
4063
dbc7f069
PZ
4064 if (pi) {
4065 /*
4066 * Take priority boosted tasks into account. If the new
4067 * effective priority is unchanged, we just store the new
4068 * normal parameters and do not touch the scheduler class and
4069 * the runqueue. This will be done when the task deboost
4070 * itself.
4071 */
4072 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
ff77e468
PZ
4073 if (new_effective_prio == oldprio)
4074 queue_flags &= ~DEQUEUE_MOVE;
c365c292
TG
4075 }
4076
da0c1e65 4077 queued = task_on_rq_queued(p);
051a1d1a 4078 running = task_current(rq, p);
da0c1e65 4079 if (queued)
ff77e468 4080 dequeue_task(rq, p, queue_flags);
0e1f3483 4081 if (running)
f3cd1c4e 4082 put_prev_task(rq, p);
f6b53205 4083
83ab0aa0 4084 prev_class = p->sched_class;
dbc7f069 4085 __setscheduler(rq, p, attr, pi);
f6b53205 4086
0e1f3483
HS
4087 if (running)
4088 p->sched_class->set_curr_task(rq);
da0c1e65 4089 if (queued) {
81a44c54
TG
4090 /*
4091 * We enqueue to tail when the priority of a task is
4092 * increased (user space view).
4093 */
ff77e468
PZ
4094 if (oldprio < p->prio)
4095 queue_flags |= ENQUEUE_HEAD;
1de64443 4096
ff77e468 4097 enqueue_task(rq, p, queue_flags);
81a44c54 4098 }
cb469845 4099
da7a735e 4100 check_class_changed(rq, p, prev_class, oldprio);
4c9a4bc8 4101 preempt_disable(); /* avoid rq from going away on us */
0122ec5b 4102 task_rq_unlock(rq, p, &flags);
b29739f9 4103
dbc7f069
PZ
4104 if (pi)
4105 rt_mutex_adjust_pi(p);
95e02ca9 4106
4c9a4bc8
PZ
4107 /*
4108 * Run balance callbacks after we've adjusted the PI chain.
4109 */
4110 balance_callback(rq);
4111 preempt_enable();
95e02ca9 4112
1da177e4
LT
4113 return 0;
4114}
961ccddd 4115
7479f3c9
PZ
4116static int _sched_setscheduler(struct task_struct *p, int policy,
4117 const struct sched_param *param, bool check)
4118{
4119 struct sched_attr attr = {
4120 .sched_policy = policy,
4121 .sched_priority = param->sched_priority,
4122 .sched_nice = PRIO_TO_NICE(p->static_prio),
4123 };
4124
c13db6b1
SR
4125 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4126 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
4127 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4128 policy &= ~SCHED_RESET_ON_FORK;
4129 attr.sched_policy = policy;
4130 }
4131
dbc7f069 4132 return __sched_setscheduler(p, &attr, check, true);
7479f3c9 4133}
961ccddd
RR
4134/**
4135 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4136 * @p: the task in question.
4137 * @policy: new policy.
4138 * @param: structure containing the new RT priority.
4139 *
e69f6186
YB
4140 * Return: 0 on success. An error code otherwise.
4141 *
961ccddd
RR
4142 * NOTE that the task may be already dead.
4143 */
4144int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4145 const struct sched_param *param)
961ccddd 4146{
7479f3c9 4147 return _sched_setscheduler(p, policy, param, true);
961ccddd 4148}
1da177e4
LT
4149EXPORT_SYMBOL_GPL(sched_setscheduler);
4150
d50dde5a
DF
4151int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4152{
dbc7f069 4153 return __sched_setscheduler(p, attr, true, true);
d50dde5a
DF
4154}
4155EXPORT_SYMBOL_GPL(sched_setattr);
4156
961ccddd
RR
4157/**
4158 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4159 * @p: the task in question.
4160 * @policy: new policy.
4161 * @param: structure containing the new RT priority.
4162 *
4163 * Just like sched_setscheduler, only don't bother checking if the
4164 * current context has permission. For example, this is needed in
4165 * stop_machine(): we create temporary high priority worker threads,
4166 * but our caller might not have that capability.
e69f6186
YB
4167 *
4168 * Return: 0 on success. An error code otherwise.
961ccddd
RR
4169 */
4170int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 4171 const struct sched_param *param)
961ccddd 4172{
7479f3c9 4173 return _sched_setscheduler(p, policy, param, false);
961ccddd 4174}
84778472 4175EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
961ccddd 4176
95cdf3b7
IM
4177static int
4178do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4179{
1da177e4
LT
4180 struct sched_param lparam;
4181 struct task_struct *p;
36c8b586 4182 int retval;
1da177e4
LT
4183
4184 if (!param || pid < 0)
4185 return -EINVAL;
4186 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4187 return -EFAULT;
5fe1d75f
ON
4188
4189 rcu_read_lock();
4190 retval = -ESRCH;
1da177e4 4191 p = find_process_by_pid(pid);
5fe1d75f
ON
4192 if (p != NULL)
4193 retval = sched_setscheduler(p, policy, &lparam);
4194 rcu_read_unlock();
36c8b586 4195
1da177e4
LT
4196 return retval;
4197}
4198
d50dde5a
DF
4199/*
4200 * Mimics kernel/events/core.c perf_copy_attr().
4201 */
4202static int sched_copy_attr(struct sched_attr __user *uattr,
4203 struct sched_attr *attr)
4204{
4205 u32 size;
4206 int ret;
4207
4208 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4209 return -EFAULT;
4210
4211 /*
4212 * zero the full structure, so that a short copy will be nice.
4213 */
4214 memset(attr, 0, sizeof(*attr));
4215
4216 ret = get_user(size, &uattr->size);
4217 if (ret)
4218 return ret;
4219
4220 if (size > PAGE_SIZE) /* silly large */
4221 goto err_size;
4222
4223 if (!size) /* abi compat */
4224 size = SCHED_ATTR_SIZE_VER0;
4225
4226 if (size < SCHED_ATTR_SIZE_VER0)
4227 goto err_size;
4228
4229 /*
4230 * If we're handed a bigger struct than we know of,
4231 * ensure all the unknown bits are 0 - i.e. new
4232 * user-space does not rely on any kernel feature
4233 * extensions we dont know about yet.
4234 */
4235 if (size > sizeof(*attr)) {
4236 unsigned char __user *addr;
4237 unsigned char __user *end;
4238 unsigned char val;
4239
4240 addr = (void __user *)uattr + sizeof(*attr);
4241 end = (void __user *)uattr + size;
4242
4243 for (; addr < end; addr++) {
4244 ret = get_user(val, addr);
4245 if (ret)
4246 return ret;
4247 if (val)
4248 goto err_size;
4249 }
4250 size = sizeof(*attr);
4251 }
4252
4253 ret = copy_from_user(attr, uattr, size);
4254 if (ret)
4255 return -EFAULT;
4256
4257 /*
4258 * XXX: do we want to be lenient like existing syscalls; or do we want
4259 * to be strict and return an error on out-of-bounds values?
4260 */
75e45d51 4261 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 4262
e78c7bca 4263 return 0;
d50dde5a
DF
4264
4265err_size:
4266 put_user(sizeof(*attr), &uattr->size);
e78c7bca 4267 return -E2BIG;
d50dde5a
DF
4268}
4269
1da177e4
LT
4270/**
4271 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4272 * @pid: the pid in question.
4273 * @policy: new policy.
4274 * @param: structure containing the new RT priority.
e69f6186
YB
4275 *
4276 * Return: 0 on success. An error code otherwise.
1da177e4 4277 */
5add95d4
HC
4278SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4279 struct sched_param __user *, param)
1da177e4 4280{
c21761f1
JB
4281 /* negative values for policy are not valid */
4282 if (policy < 0)
4283 return -EINVAL;
4284
1da177e4
LT
4285 return do_sched_setscheduler(pid, policy, param);
4286}
4287
4288/**
4289 * sys_sched_setparam - set/change the RT priority of a thread
4290 * @pid: the pid in question.
4291 * @param: structure containing the new RT priority.
e69f6186
YB
4292 *
4293 * Return: 0 on success. An error code otherwise.
1da177e4 4294 */
5add95d4 4295SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4296{
c13db6b1 4297 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
4298}
4299
d50dde5a
DF
4300/**
4301 * sys_sched_setattr - same as above, but with extended sched_attr
4302 * @pid: the pid in question.
5778fccf 4303 * @uattr: structure containing the extended parameters.
db66d756 4304 * @flags: for future extension.
d50dde5a 4305 */
6d35ab48
PZ
4306SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4307 unsigned int, flags)
d50dde5a
DF
4308{
4309 struct sched_attr attr;
4310 struct task_struct *p;
4311 int retval;
4312
6d35ab48 4313 if (!uattr || pid < 0 || flags)
d50dde5a
DF
4314 return -EINVAL;
4315
143cf23d
MK
4316 retval = sched_copy_attr(uattr, &attr);
4317 if (retval)
4318 return retval;
d50dde5a 4319
b14ed2c2 4320 if ((int)attr.sched_policy < 0)
dbdb2275 4321 return -EINVAL;
d50dde5a
DF
4322
4323 rcu_read_lock();
4324 retval = -ESRCH;
4325 p = find_process_by_pid(pid);
4326 if (p != NULL)
4327 retval = sched_setattr(p, &attr);
4328 rcu_read_unlock();
4329
4330 return retval;
4331}
4332
1da177e4
LT
4333/**
4334 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4335 * @pid: the pid in question.
e69f6186
YB
4336 *
4337 * Return: On success, the policy of the thread. Otherwise, a negative error
4338 * code.
1da177e4 4339 */
5add95d4 4340SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4341{
36c8b586 4342 struct task_struct *p;
3a5c359a 4343 int retval;
1da177e4
LT
4344
4345 if (pid < 0)
3a5c359a 4346 return -EINVAL;
1da177e4
LT
4347
4348 retval = -ESRCH;
5fe85be0 4349 rcu_read_lock();
1da177e4
LT
4350 p = find_process_by_pid(pid);
4351 if (p) {
4352 retval = security_task_getscheduler(p);
4353 if (!retval)
ca94c442
LP
4354 retval = p->policy
4355 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4356 }
5fe85be0 4357 rcu_read_unlock();
1da177e4
LT
4358 return retval;
4359}
4360
4361/**
ca94c442 4362 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4363 * @pid: the pid in question.
4364 * @param: structure containing the RT priority.
e69f6186
YB
4365 *
4366 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4367 * code.
1da177e4 4368 */
5add95d4 4369SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4370{
ce5f7f82 4371 struct sched_param lp = { .sched_priority = 0 };
36c8b586 4372 struct task_struct *p;
3a5c359a 4373 int retval;
1da177e4
LT
4374
4375 if (!param || pid < 0)
3a5c359a 4376 return -EINVAL;
1da177e4 4377
5fe85be0 4378 rcu_read_lock();
1da177e4
LT
4379 p = find_process_by_pid(pid);
4380 retval = -ESRCH;
4381 if (!p)
4382 goto out_unlock;
4383
4384 retval = security_task_getscheduler(p);
4385 if (retval)
4386 goto out_unlock;
4387
ce5f7f82
PZ
4388 if (task_has_rt_policy(p))
4389 lp.sched_priority = p->rt_priority;
5fe85be0 4390 rcu_read_unlock();
1da177e4
LT
4391
4392 /*
4393 * This one might sleep, we cannot do it with a spinlock held ...
4394 */
4395 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4396
1da177e4
LT
4397 return retval;
4398
4399out_unlock:
5fe85be0 4400 rcu_read_unlock();
1da177e4
LT
4401 return retval;
4402}
4403
d50dde5a
DF
4404static int sched_read_attr(struct sched_attr __user *uattr,
4405 struct sched_attr *attr,
4406 unsigned int usize)
4407{
4408 int ret;
4409
4410 if (!access_ok(VERIFY_WRITE, uattr, usize))
4411 return -EFAULT;
4412
4413 /*
4414 * If we're handed a smaller struct than we know of,
4415 * ensure all the unknown bits are 0 - i.e. old
4416 * user-space does not get uncomplete information.
4417 */
4418 if (usize < sizeof(*attr)) {
4419 unsigned char *addr;
4420 unsigned char *end;
4421
4422 addr = (void *)attr + usize;
4423 end = (void *)attr + sizeof(*attr);
4424
4425 for (; addr < end; addr++) {
4426 if (*addr)
22400674 4427 return -EFBIG;
d50dde5a
DF
4428 }
4429
4430 attr->size = usize;
4431 }
4432
4efbc454 4433 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
4434 if (ret)
4435 return -EFAULT;
4436
22400674 4437 return 0;
d50dde5a
DF
4438}
4439
4440/**
aab03e05 4441 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 4442 * @pid: the pid in question.
5778fccf 4443 * @uattr: structure containing the extended parameters.
d50dde5a 4444 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 4445 * @flags: for future extension.
d50dde5a 4446 */
6d35ab48
PZ
4447SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4448 unsigned int, size, unsigned int, flags)
d50dde5a
DF
4449{
4450 struct sched_attr attr = {
4451 .size = sizeof(struct sched_attr),
4452 };
4453 struct task_struct *p;
4454 int retval;
4455
4456 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 4457 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
4458 return -EINVAL;
4459
4460 rcu_read_lock();
4461 p = find_process_by_pid(pid);
4462 retval = -ESRCH;
4463 if (!p)
4464 goto out_unlock;
4465
4466 retval = security_task_getscheduler(p);
4467 if (retval)
4468 goto out_unlock;
4469
4470 attr.sched_policy = p->policy;
7479f3c9
PZ
4471 if (p->sched_reset_on_fork)
4472 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
4473 if (task_has_dl_policy(p))
4474 __getparam_dl(p, &attr);
4475 else if (task_has_rt_policy(p))
d50dde5a
DF
4476 attr.sched_priority = p->rt_priority;
4477 else
d0ea0268 4478 attr.sched_nice = task_nice(p);
d50dde5a
DF
4479
4480 rcu_read_unlock();
4481
4482 retval = sched_read_attr(uattr, &attr, size);
4483 return retval;
4484
4485out_unlock:
4486 rcu_read_unlock();
4487 return retval;
4488}
4489
96f874e2 4490long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4491{
5a16f3d3 4492 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4493 struct task_struct *p;
4494 int retval;
1da177e4 4495
23f5d142 4496 rcu_read_lock();
1da177e4
LT
4497
4498 p = find_process_by_pid(pid);
4499 if (!p) {
23f5d142 4500 rcu_read_unlock();
1da177e4
LT
4501 return -ESRCH;
4502 }
4503
23f5d142 4504 /* Prevent p going away */
1da177e4 4505 get_task_struct(p);
23f5d142 4506 rcu_read_unlock();
1da177e4 4507
14a40ffc
TH
4508 if (p->flags & PF_NO_SETAFFINITY) {
4509 retval = -EINVAL;
4510 goto out_put_task;
4511 }
5a16f3d3
RR
4512 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4513 retval = -ENOMEM;
4514 goto out_put_task;
4515 }
4516 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4517 retval = -ENOMEM;
4518 goto out_free_cpus_allowed;
4519 }
1da177e4 4520 retval = -EPERM;
4c44aaaf
EB
4521 if (!check_same_owner(p)) {
4522 rcu_read_lock();
4523 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4524 rcu_read_unlock();
16303ab2 4525 goto out_free_new_mask;
4c44aaaf
EB
4526 }
4527 rcu_read_unlock();
4528 }
1da177e4 4529
b0ae1981 4530 retval = security_task_setscheduler(p);
e7834f8f 4531 if (retval)
16303ab2 4532 goto out_free_new_mask;
e7834f8f 4533
e4099a5e
PZ
4534
4535 cpuset_cpus_allowed(p, cpus_allowed);
4536 cpumask_and(new_mask, in_mask, cpus_allowed);
4537
332ac17e
DF
4538 /*
4539 * Since bandwidth control happens on root_domain basis,
4540 * if admission test is enabled, we only admit -deadline
4541 * tasks allowed to run on all the CPUs in the task's
4542 * root_domain.
4543 */
4544#ifdef CONFIG_SMP
f1e3a093
KT
4545 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4546 rcu_read_lock();
4547 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 4548 retval = -EBUSY;
f1e3a093 4549 rcu_read_unlock();
16303ab2 4550 goto out_free_new_mask;
332ac17e 4551 }
f1e3a093 4552 rcu_read_unlock();
332ac17e
DF
4553 }
4554#endif
49246274 4555again:
25834c73 4556 retval = __set_cpus_allowed_ptr(p, new_mask, true);
1da177e4 4557
8707d8b8 4558 if (!retval) {
5a16f3d3
RR
4559 cpuset_cpus_allowed(p, cpus_allowed);
4560 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4561 /*
4562 * We must have raced with a concurrent cpuset
4563 * update. Just reset the cpus_allowed to the
4564 * cpuset's cpus_allowed
4565 */
5a16f3d3 4566 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4567 goto again;
4568 }
4569 }
16303ab2 4570out_free_new_mask:
5a16f3d3
RR
4571 free_cpumask_var(new_mask);
4572out_free_cpus_allowed:
4573 free_cpumask_var(cpus_allowed);
4574out_put_task:
1da177e4 4575 put_task_struct(p);
1da177e4
LT
4576 return retval;
4577}
4578
4579static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4580 struct cpumask *new_mask)
1da177e4 4581{
96f874e2
RR
4582 if (len < cpumask_size())
4583 cpumask_clear(new_mask);
4584 else if (len > cpumask_size())
4585 len = cpumask_size();
4586
1da177e4
LT
4587 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4588}
4589
4590/**
4591 * sys_sched_setaffinity - set the cpu affinity of a process
4592 * @pid: pid of the process
4593 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4594 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
4595 *
4596 * Return: 0 on success. An error code otherwise.
1da177e4 4597 */
5add95d4
HC
4598SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4599 unsigned long __user *, user_mask_ptr)
1da177e4 4600{
5a16f3d3 4601 cpumask_var_t new_mask;
1da177e4
LT
4602 int retval;
4603
5a16f3d3
RR
4604 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4605 return -ENOMEM;
1da177e4 4606
5a16f3d3
RR
4607 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4608 if (retval == 0)
4609 retval = sched_setaffinity(pid, new_mask);
4610 free_cpumask_var(new_mask);
4611 return retval;
1da177e4
LT
4612}
4613
96f874e2 4614long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4615{
36c8b586 4616 struct task_struct *p;
31605683 4617 unsigned long flags;
1da177e4 4618 int retval;
1da177e4 4619
23f5d142 4620 rcu_read_lock();
1da177e4
LT
4621
4622 retval = -ESRCH;
4623 p = find_process_by_pid(pid);
4624 if (!p)
4625 goto out_unlock;
4626
e7834f8f
DQ
4627 retval = security_task_getscheduler(p);
4628 if (retval)
4629 goto out_unlock;
4630
013fdb80 4631 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4632 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4633 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4634
4635out_unlock:
23f5d142 4636 rcu_read_unlock();
1da177e4 4637
9531b62f 4638 return retval;
1da177e4
LT
4639}
4640
4641/**
4642 * sys_sched_getaffinity - get the cpu affinity of a process
4643 * @pid: pid of the process
4644 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4645 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186
YB
4646 *
4647 * Return: 0 on success. An error code otherwise.
1da177e4 4648 */
5add95d4
HC
4649SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4650 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4651{
4652 int ret;
f17c8607 4653 cpumask_var_t mask;
1da177e4 4654
84fba5ec 4655 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4656 return -EINVAL;
4657 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4658 return -EINVAL;
4659
f17c8607
RR
4660 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4661 return -ENOMEM;
1da177e4 4662
f17c8607
RR
4663 ret = sched_getaffinity(pid, mask);
4664 if (ret == 0) {
8bc037fb 4665 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4666
4667 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4668 ret = -EFAULT;
4669 else
cd3d8031 4670 ret = retlen;
f17c8607
RR
4671 }
4672 free_cpumask_var(mask);
1da177e4 4673
f17c8607 4674 return ret;
1da177e4
LT
4675}
4676
4677/**
4678 * sys_sched_yield - yield the current processor to other threads.
4679 *
dd41f596
IM
4680 * This function yields the current CPU to other tasks. If there are no
4681 * other threads running on this CPU then this function will return.
e69f6186
YB
4682 *
4683 * Return: 0.
1da177e4 4684 */
5add95d4 4685SYSCALL_DEFINE0(sched_yield)
1da177e4 4686{
70b97a7f 4687 struct rq *rq = this_rq_lock();
1da177e4 4688
2d72376b 4689 schedstat_inc(rq, yld_count);
4530d7ab 4690 current->sched_class->yield_task(rq);
1da177e4
LT
4691
4692 /*
4693 * Since we are going to call schedule() anyway, there's
4694 * no need to preempt or enable interrupts:
4695 */
4696 __release(rq->lock);
8a25d5de 4697 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4698 do_raw_spin_unlock(&rq->lock);
ba74c144 4699 sched_preempt_enable_no_resched();
1da177e4
LT
4700
4701 schedule();
4702
4703 return 0;
4704}
4705
02b67cc3 4706int __sched _cond_resched(void)
1da177e4 4707{
fe32d3cd 4708 if (should_resched(0)) {
a18b5d01 4709 preempt_schedule_common();
1da177e4
LT
4710 return 1;
4711 }
4712 return 0;
4713}
02b67cc3 4714EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4715
4716/*
613afbf8 4717 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4718 * call schedule, and on return reacquire the lock.
4719 *
41a2d6cf 4720 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4721 * operations here to prevent schedule() from being called twice (once via
4722 * spin_unlock(), once by hand).
4723 */
613afbf8 4724int __cond_resched_lock(spinlock_t *lock)
1da177e4 4725{
fe32d3cd 4726 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6df3cecb
JK
4727 int ret = 0;
4728
f607c668
PZ
4729 lockdep_assert_held(lock);
4730
4a81e832 4731 if (spin_needbreak(lock) || resched) {
1da177e4 4732 spin_unlock(lock);
d86ee480 4733 if (resched)
a18b5d01 4734 preempt_schedule_common();
95c354fe
NP
4735 else
4736 cpu_relax();
6df3cecb 4737 ret = 1;
1da177e4 4738 spin_lock(lock);
1da177e4 4739 }
6df3cecb 4740 return ret;
1da177e4 4741}
613afbf8 4742EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4743
613afbf8 4744int __sched __cond_resched_softirq(void)
1da177e4
LT
4745{
4746 BUG_ON(!in_softirq());
4747
fe32d3cd 4748 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
98d82567 4749 local_bh_enable();
a18b5d01 4750 preempt_schedule_common();
1da177e4
LT
4751 local_bh_disable();
4752 return 1;
4753 }
4754 return 0;
4755}
613afbf8 4756EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4757
1da177e4
LT
4758/**
4759 * yield - yield the current processor to other threads.
4760 *
8e3fabfd
PZ
4761 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4762 *
4763 * The scheduler is at all times free to pick the calling task as the most
4764 * eligible task to run, if removing the yield() call from your code breaks
4765 * it, its already broken.
4766 *
4767 * Typical broken usage is:
4768 *
4769 * while (!event)
4770 * yield();
4771 *
4772 * where one assumes that yield() will let 'the other' process run that will
4773 * make event true. If the current task is a SCHED_FIFO task that will never
4774 * happen. Never use yield() as a progress guarantee!!
4775 *
4776 * If you want to use yield() to wait for something, use wait_event().
4777 * If you want to use yield() to be 'nice' for others, use cond_resched().
4778 * If you still want to use yield(), do not!
1da177e4
LT
4779 */
4780void __sched yield(void)
4781{
4782 set_current_state(TASK_RUNNING);
4783 sys_sched_yield();
4784}
1da177e4
LT
4785EXPORT_SYMBOL(yield);
4786
d95f4122
MG
4787/**
4788 * yield_to - yield the current processor to another thread in
4789 * your thread group, or accelerate that thread toward the
4790 * processor it's on.
16addf95
RD
4791 * @p: target task
4792 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4793 *
4794 * It's the caller's job to ensure that the target task struct
4795 * can't go away on us before we can do any checks.
4796 *
e69f6186 4797 * Return:
7b270f60
PZ
4798 * true (>0) if we indeed boosted the target task.
4799 * false (0) if we failed to boost the target.
4800 * -ESRCH if there's no task to yield to.
d95f4122 4801 */
fa93384f 4802int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
4803{
4804 struct task_struct *curr = current;
4805 struct rq *rq, *p_rq;
4806 unsigned long flags;
c3c18640 4807 int yielded = 0;
d95f4122
MG
4808
4809 local_irq_save(flags);
4810 rq = this_rq();
4811
4812again:
4813 p_rq = task_rq(p);
7b270f60
PZ
4814 /*
4815 * If we're the only runnable task on the rq and target rq also
4816 * has only one task, there's absolutely no point in yielding.
4817 */
4818 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4819 yielded = -ESRCH;
4820 goto out_irq;
4821 }
4822
d95f4122 4823 double_rq_lock(rq, p_rq);
39e24d8f 4824 if (task_rq(p) != p_rq) {
d95f4122
MG
4825 double_rq_unlock(rq, p_rq);
4826 goto again;
4827 }
4828
4829 if (!curr->sched_class->yield_to_task)
7b270f60 4830 goto out_unlock;
d95f4122
MG
4831
4832 if (curr->sched_class != p->sched_class)
7b270f60 4833 goto out_unlock;
d95f4122
MG
4834
4835 if (task_running(p_rq, p) || p->state)
7b270f60 4836 goto out_unlock;
d95f4122
MG
4837
4838 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4839 if (yielded) {
d95f4122 4840 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4841 /*
4842 * Make p's CPU reschedule; pick_next_entity takes care of
4843 * fairness.
4844 */
4845 if (preempt && rq != p_rq)
8875125e 4846 resched_curr(p_rq);
6d1cafd8 4847 }
d95f4122 4848
7b270f60 4849out_unlock:
d95f4122 4850 double_rq_unlock(rq, p_rq);
7b270f60 4851out_irq:
d95f4122
MG
4852 local_irq_restore(flags);
4853
7b270f60 4854 if (yielded > 0)
d95f4122
MG
4855 schedule();
4856
4857 return yielded;
4858}
4859EXPORT_SYMBOL_GPL(yield_to);
4860
1da177e4 4861/*
41a2d6cf 4862 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4863 * that process accounting knows that this is a task in IO wait state.
1da177e4 4864 */
1da177e4
LT
4865long __sched io_schedule_timeout(long timeout)
4866{
9cff8ade
N
4867 int old_iowait = current->in_iowait;
4868 struct rq *rq;
1da177e4
LT
4869 long ret;
4870
9cff8ade 4871 current->in_iowait = 1;
10d784ea 4872 blk_schedule_flush_plug(current);
9cff8ade 4873
0ff92245 4874 delayacct_blkio_start();
9cff8ade 4875 rq = raw_rq();
1da177e4
LT
4876 atomic_inc(&rq->nr_iowait);
4877 ret = schedule_timeout(timeout);
9cff8ade 4878 current->in_iowait = old_iowait;
1da177e4 4879 atomic_dec(&rq->nr_iowait);
0ff92245 4880 delayacct_blkio_end();
9cff8ade 4881
1da177e4
LT
4882 return ret;
4883}
9cff8ade 4884EXPORT_SYMBOL(io_schedule_timeout);
1da177e4
LT
4885
4886/**
4887 * sys_sched_get_priority_max - return maximum RT priority.
4888 * @policy: scheduling class.
4889 *
e69f6186
YB
4890 * Return: On success, this syscall returns the maximum
4891 * rt_priority that can be used by a given scheduling class.
4892 * On failure, a negative error code is returned.
1da177e4 4893 */
5add95d4 4894SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4895{
4896 int ret = -EINVAL;
4897
4898 switch (policy) {
4899 case SCHED_FIFO:
4900 case SCHED_RR:
4901 ret = MAX_USER_RT_PRIO-1;
4902 break;
aab03e05 4903 case SCHED_DEADLINE:
1da177e4 4904 case SCHED_NORMAL:
b0a9499c 4905 case SCHED_BATCH:
dd41f596 4906 case SCHED_IDLE:
1da177e4
LT
4907 ret = 0;
4908 break;
4909 }
4910 return ret;
4911}
4912
4913/**
4914 * sys_sched_get_priority_min - return minimum RT priority.
4915 * @policy: scheduling class.
4916 *
e69f6186
YB
4917 * Return: On success, this syscall returns the minimum
4918 * rt_priority that can be used by a given scheduling class.
4919 * On failure, a negative error code is returned.
1da177e4 4920 */
5add95d4 4921SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4922{
4923 int ret = -EINVAL;
4924
4925 switch (policy) {
4926 case SCHED_FIFO:
4927 case SCHED_RR:
4928 ret = 1;
4929 break;
aab03e05 4930 case SCHED_DEADLINE:
1da177e4 4931 case SCHED_NORMAL:
b0a9499c 4932 case SCHED_BATCH:
dd41f596 4933 case SCHED_IDLE:
1da177e4
LT
4934 ret = 0;
4935 }
4936 return ret;
4937}
4938
4939/**
4940 * sys_sched_rr_get_interval - return the default timeslice of a process.
4941 * @pid: pid of the process.
4942 * @interval: userspace pointer to the timeslice value.
4943 *
4944 * this syscall writes the default timeslice value of a given process
4945 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
4946 *
4947 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4948 * an error code.
1da177e4 4949 */
17da2bd9 4950SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4951 struct timespec __user *, interval)
1da177e4 4952{
36c8b586 4953 struct task_struct *p;
a4ec24b4 4954 unsigned int time_slice;
dba091b9
TG
4955 unsigned long flags;
4956 struct rq *rq;
3a5c359a 4957 int retval;
1da177e4 4958 struct timespec t;
1da177e4
LT
4959
4960 if (pid < 0)
3a5c359a 4961 return -EINVAL;
1da177e4
LT
4962
4963 retval = -ESRCH;
1a551ae7 4964 rcu_read_lock();
1da177e4
LT
4965 p = find_process_by_pid(pid);
4966 if (!p)
4967 goto out_unlock;
4968
4969 retval = security_task_getscheduler(p);
4970 if (retval)
4971 goto out_unlock;
4972
dba091b9 4973 rq = task_rq_lock(p, &flags);
a57beec5
PZ
4974 time_slice = 0;
4975 if (p->sched_class->get_rr_interval)
4976 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4977 task_rq_unlock(rq, p, &flags);
a4ec24b4 4978
1a551ae7 4979 rcu_read_unlock();
a4ec24b4 4980 jiffies_to_timespec(time_slice, &t);
1da177e4 4981 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4982 return retval;
3a5c359a 4983
1da177e4 4984out_unlock:
1a551ae7 4985 rcu_read_unlock();
1da177e4
LT
4986 return retval;
4987}
4988
7c731e0a 4989static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4990
82a1fcb9 4991void sched_show_task(struct task_struct *p)
1da177e4 4992{
1da177e4 4993 unsigned long free = 0;
4e79752c 4994 int ppid;
1f8a7633 4995 unsigned long state = p->state;
1da177e4 4996
1f8a7633
TH
4997 if (state)
4998 state = __ffs(state) + 1;
28d0686c 4999 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 5000 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5001#if BITS_PER_LONG == 32
1da177e4 5002 if (state == TASK_RUNNING)
3df0fc5b 5003 printk(KERN_CONT " running ");
1da177e4 5004 else
3df0fc5b 5005 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5006#else
5007 if (state == TASK_RUNNING)
3df0fc5b 5008 printk(KERN_CONT " running task ");
1da177e4 5009 else
3df0fc5b 5010 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5011#endif
5012#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5013 free = stack_not_used(p);
1da177e4 5014#endif
a90e984c 5015 ppid = 0;
4e79752c 5016 rcu_read_lock();
a90e984c
ON
5017 if (pid_alive(p))
5018 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 5019 rcu_read_unlock();
3df0fc5b 5020 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 5021 task_pid_nr(p), ppid,
aa47b7e0 5022 (unsigned long)task_thread_info(p)->flags);
1da177e4 5023
3d1cb205 5024 print_worker_info(KERN_INFO, p);
5fb5e6de 5025 show_stack(p, NULL);
1da177e4
LT
5026}
5027
e59e2ae2 5028void show_state_filter(unsigned long state_filter)
1da177e4 5029{
36c8b586 5030 struct task_struct *g, *p;
1da177e4 5031
4bd77321 5032#if BITS_PER_LONG == 32
3df0fc5b
PZ
5033 printk(KERN_INFO
5034 " task PC stack pid father\n");
1da177e4 5035#else
3df0fc5b
PZ
5036 printk(KERN_INFO
5037 " task PC stack pid father\n");
1da177e4 5038#endif
510f5acc 5039 rcu_read_lock();
5d07f420 5040 for_each_process_thread(g, p) {
1da177e4
LT
5041 /*
5042 * reset the NMI-timeout, listing all files on a slow
25985edc 5043 * console might take a lot of time:
1da177e4
LT
5044 */
5045 touch_nmi_watchdog();
39bc89fd 5046 if (!state_filter || (p->state & state_filter))
82a1fcb9 5047 sched_show_task(p);
5d07f420 5048 }
1da177e4 5049
04c9167f
JF
5050 touch_all_softlockup_watchdogs();
5051
dd41f596 5052#ifdef CONFIG_SCHED_DEBUG
fb90a6e9
RV
5053 if (!state_filter)
5054 sysrq_sched_debug_show();
dd41f596 5055#endif
510f5acc 5056 rcu_read_unlock();
e59e2ae2
IM
5057 /*
5058 * Only show locks if all tasks are dumped:
5059 */
93335a21 5060 if (!state_filter)
e59e2ae2 5061 debug_show_all_locks();
1da177e4
LT
5062}
5063
0db0628d 5064void init_idle_bootup_task(struct task_struct *idle)
1df21055 5065{
dd41f596 5066 idle->sched_class = &idle_sched_class;
1df21055
IM
5067}
5068
f340c0d1
IM
5069/**
5070 * init_idle - set up an idle thread for a given CPU
5071 * @idle: task in question
5072 * @cpu: cpu the idle task belongs to
5073 *
5074 * NOTE: this function does not set the idle thread's NEED_RESCHED
5075 * flag, to make booting more robust.
5076 */
0db0628d 5077void init_idle(struct task_struct *idle, int cpu)
1da177e4 5078{
70b97a7f 5079 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5080 unsigned long flags;
5081
25834c73
PZ
5082 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5083 raw_spin_lock(&rq->lock);
5cbd54ef 5084
5e1576ed 5085 __sched_fork(0, idle);
06b83b5f 5086 idle->state = TASK_RUNNING;
dd41f596
IM
5087 idle->se.exec_start = sched_clock();
5088
e1b77c92
MR
5089 kasan_unpoison_task_stack(idle);
5090
de9b8f5d
PZ
5091#ifdef CONFIG_SMP
5092 /*
5093 * Its possible that init_idle() gets called multiple times on a task,
5094 * in that case do_set_cpus_allowed() will not do the right thing.
5095 *
5096 * And since this is boot we can forgo the serialization.
5097 */
5098 set_cpus_allowed_common(idle, cpumask_of(cpu));
5099#endif
6506cf6c
PZ
5100 /*
5101 * We're having a chicken and egg problem, even though we are
5102 * holding rq->lock, the cpu isn't yet set to this cpu so the
5103 * lockdep check in task_group() will fail.
5104 *
5105 * Similar case to sched_fork(). / Alternatively we could
5106 * use task_rq_lock() here and obtain the other rq->lock.
5107 *
5108 * Silence PROVE_RCU
5109 */
5110 rcu_read_lock();
dd41f596 5111 __set_task_cpu(idle, cpu);
6506cf6c 5112 rcu_read_unlock();
1da177e4 5113
1da177e4 5114 rq->curr = rq->idle = idle;
da0c1e65 5115 idle->on_rq = TASK_ON_RQ_QUEUED;
de9b8f5d 5116#ifdef CONFIG_SMP
3ca7a440 5117 idle->on_cpu = 1;
4866cde0 5118#endif
25834c73
PZ
5119 raw_spin_unlock(&rq->lock);
5120 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
1da177e4
LT
5121
5122 /* Set the preempt count _outside_ the spinlocks! */
01028747 5123 init_idle_preempt_count(idle, cpu);
55cd5340 5124
dd41f596
IM
5125 /*
5126 * The idle tasks have their own, simple scheduling class:
5127 */
5128 idle->sched_class = &idle_sched_class;
868baf07 5129 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 5130 vtime_init_idle(idle, cpu);
de9b8f5d 5131#ifdef CONFIG_SMP
f1c6f1a7
CE
5132 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5133#endif
19978ca6
IM
5134}
5135
f82f8042
JL
5136int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5137 const struct cpumask *trial)
5138{
5139 int ret = 1, trial_cpus;
5140 struct dl_bw *cur_dl_b;
5141 unsigned long flags;
5142
bb2bc55a
MG
5143 if (!cpumask_weight(cur))
5144 return ret;
5145
75e23e49 5146 rcu_read_lock_sched();
f82f8042
JL
5147 cur_dl_b = dl_bw_of(cpumask_any(cur));
5148 trial_cpus = cpumask_weight(trial);
5149
5150 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5151 if (cur_dl_b->bw != -1 &&
5152 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5153 ret = 0;
5154 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
75e23e49 5155 rcu_read_unlock_sched();
f82f8042
JL
5156
5157 return ret;
5158}
5159
7f51412a
JL
5160int task_can_attach(struct task_struct *p,
5161 const struct cpumask *cs_cpus_allowed)
5162{
5163 int ret = 0;
5164
5165 /*
5166 * Kthreads which disallow setaffinity shouldn't be moved
5167 * to a new cpuset; we don't want to change their cpu
5168 * affinity and isolating such threads by their set of
5169 * allowed nodes is unnecessary. Thus, cpusets are not
5170 * applicable for such threads. This prevents checking for
5171 * success of set_cpus_allowed_ptr() on all attached tasks
5172 * before cpus_allowed may be changed.
5173 */
5174 if (p->flags & PF_NO_SETAFFINITY) {
5175 ret = -EINVAL;
5176 goto out;
5177 }
5178
5179#ifdef CONFIG_SMP
5180 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5181 cs_cpus_allowed)) {
5182 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5183 cs_cpus_allowed);
75e23e49 5184 struct dl_bw *dl_b;
7f51412a
JL
5185 bool overflow;
5186 int cpus;
5187 unsigned long flags;
5188
75e23e49
JL
5189 rcu_read_lock_sched();
5190 dl_b = dl_bw_of(dest_cpu);
7f51412a
JL
5191 raw_spin_lock_irqsave(&dl_b->lock, flags);
5192 cpus = dl_bw_cpus(dest_cpu);
5193 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5194 if (overflow)
5195 ret = -EBUSY;
5196 else {
5197 /*
5198 * We reserve space for this task in the destination
5199 * root_domain, as we can't fail after this point.
5200 * We will free resources in the source root_domain
5201 * later on (see set_cpus_allowed_dl()).
5202 */
5203 __dl_add(dl_b, p->dl.dl_bw);
5204 }
5205 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
75e23e49 5206 rcu_read_unlock_sched();
7f51412a
JL
5207
5208 }
5209#endif
5210out:
5211 return ret;
5212}
5213
1da177e4 5214#ifdef CONFIG_SMP
1da177e4 5215
e6628d5b
MG
5216#ifdef CONFIG_NUMA_BALANCING
5217/* Migrate current task p to target_cpu */
5218int migrate_task_to(struct task_struct *p, int target_cpu)
5219{
5220 struct migration_arg arg = { p, target_cpu };
5221 int curr_cpu = task_cpu(p);
5222
5223 if (curr_cpu == target_cpu)
5224 return 0;
5225
5226 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5227 return -EINVAL;
5228
5229 /* TODO: This is not properly updating schedstats */
5230
286549dc 5231 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
5232 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5233}
0ec8aa00
PZ
5234
5235/*
5236 * Requeue a task on a given node and accurately track the number of NUMA
5237 * tasks on the runqueues
5238 */
5239void sched_setnuma(struct task_struct *p, int nid)
5240{
5241 struct rq *rq;
5242 unsigned long flags;
da0c1e65 5243 bool queued, running;
0ec8aa00
PZ
5244
5245 rq = task_rq_lock(p, &flags);
da0c1e65 5246 queued = task_on_rq_queued(p);
0ec8aa00
PZ
5247 running = task_current(rq, p);
5248
da0c1e65 5249 if (queued)
1de64443 5250 dequeue_task(rq, p, DEQUEUE_SAVE);
0ec8aa00 5251 if (running)
f3cd1c4e 5252 put_prev_task(rq, p);
0ec8aa00
PZ
5253
5254 p->numa_preferred_nid = nid;
0ec8aa00
PZ
5255
5256 if (running)
5257 p->sched_class->set_curr_task(rq);
da0c1e65 5258 if (queued)
1de64443 5259 enqueue_task(rq, p, ENQUEUE_RESTORE);
0ec8aa00
PZ
5260 task_rq_unlock(rq, p, &flags);
5261}
5cc389bc 5262#endif /* CONFIG_NUMA_BALANCING */
f7b4cddc 5263
1da177e4 5264#ifdef CONFIG_HOTPLUG_CPU
054b9108 5265/*
48c5ccae
PZ
5266 * Ensures that the idle task is using init_mm right before its cpu goes
5267 * offline.
054b9108 5268 */
48c5ccae 5269void idle_task_exit(void)
1da177e4 5270{
48c5ccae 5271 struct mm_struct *mm = current->active_mm;
e76bd8d9 5272
48c5ccae 5273 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 5274
a53efe5f 5275 if (mm != &init_mm) {
48c5ccae 5276 switch_mm(mm, &init_mm, current);
a53efe5f
MS
5277 finish_arch_post_lock_switch();
5278 }
48c5ccae 5279 mmdrop(mm);
1da177e4
LT
5280}
5281
5282/*
5d180232
PZ
5283 * Since this CPU is going 'away' for a while, fold any nr_active delta
5284 * we might have. Assumes we're called after migrate_tasks() so that the
5285 * nr_active count is stable.
5286 *
5287 * Also see the comment "Global load-average calculations".
1da177e4 5288 */
5d180232 5289static void calc_load_migrate(struct rq *rq)
1da177e4 5290{
5d180232
PZ
5291 long delta = calc_load_fold_active(rq);
5292 if (delta)
5293 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
5294}
5295
3f1d2a31
PZ
5296static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5297{
5298}
5299
5300static const struct sched_class fake_sched_class = {
5301 .put_prev_task = put_prev_task_fake,
5302};
5303
5304static struct task_struct fake_task = {
5305 /*
5306 * Avoid pull_{rt,dl}_task()
5307 */
5308 .prio = MAX_PRIO + 1,
5309 .sched_class = &fake_sched_class,
5310};
5311
48f24c4d 5312/*
48c5ccae
PZ
5313 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5314 * try_to_wake_up()->select_task_rq().
5315 *
5316 * Called with rq->lock held even though we'er in stop_machine() and
5317 * there's no concurrency possible, we hold the required locks anyway
5318 * because of lock validation efforts.
1da177e4 5319 */
5e16bbc2 5320static void migrate_tasks(struct rq *dead_rq)
1da177e4 5321{
5e16bbc2 5322 struct rq *rq = dead_rq;
48c5ccae
PZ
5323 struct task_struct *next, *stop = rq->stop;
5324 int dest_cpu;
1da177e4
LT
5325
5326 /*
48c5ccae
PZ
5327 * Fudge the rq selection such that the below task selection loop
5328 * doesn't get stuck on the currently eligible stop task.
5329 *
5330 * We're currently inside stop_machine() and the rq is either stuck
5331 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5332 * either way we should never end up calling schedule() until we're
5333 * done here.
1da177e4 5334 */
48c5ccae 5335 rq->stop = NULL;
48f24c4d 5336
77bd3970
FW
5337 /*
5338 * put_prev_task() and pick_next_task() sched
5339 * class method both need to have an up-to-date
5340 * value of rq->clock[_task]
5341 */
5342 update_rq_clock(rq);
5343
5e16bbc2 5344 for (;;) {
48c5ccae
PZ
5345 /*
5346 * There's this thread running, bail when that's the only
5347 * remaining thread.
5348 */
5349 if (rq->nr_running == 1)
dd41f596 5350 break;
48c5ccae 5351
cbce1a68 5352 /*
5473e0cc 5353 * pick_next_task assumes pinned rq->lock.
cbce1a68
PZ
5354 */
5355 lockdep_pin_lock(&rq->lock);
3f1d2a31 5356 next = pick_next_task(rq, &fake_task);
48c5ccae 5357 BUG_ON(!next);
79c53799 5358 next->sched_class->put_prev_task(rq, next);
e692ab53 5359
5473e0cc
WL
5360 /*
5361 * Rules for changing task_struct::cpus_allowed are holding
5362 * both pi_lock and rq->lock, such that holding either
5363 * stabilizes the mask.
5364 *
5365 * Drop rq->lock is not quite as disastrous as it usually is
5366 * because !cpu_active at this point, which means load-balance
5367 * will not interfere. Also, stop-machine.
5368 */
5369 lockdep_unpin_lock(&rq->lock);
5370 raw_spin_unlock(&rq->lock);
5371 raw_spin_lock(&next->pi_lock);
5372 raw_spin_lock(&rq->lock);
5373
5374 /*
5375 * Since we're inside stop-machine, _nothing_ should have
5376 * changed the task, WARN if weird stuff happened, because in
5377 * that case the above rq->lock drop is a fail too.
5378 */
5379 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5380 raw_spin_unlock(&next->pi_lock);
5381 continue;
5382 }
5383
48c5ccae 5384 /* Find suitable destination for @next, with force if needed. */
5e16bbc2 5385 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
48c5ccae 5386
5e16bbc2
PZ
5387 rq = __migrate_task(rq, next, dest_cpu);
5388 if (rq != dead_rq) {
5389 raw_spin_unlock(&rq->lock);
5390 rq = dead_rq;
5391 raw_spin_lock(&rq->lock);
5392 }
5473e0cc 5393 raw_spin_unlock(&next->pi_lock);
1da177e4 5394 }
dce48a84 5395
48c5ccae 5396 rq->stop = stop;
dce48a84 5397}
1da177e4
LT
5398#endif /* CONFIG_HOTPLUG_CPU */
5399
1f11eb6a
GH
5400static void set_rq_online(struct rq *rq)
5401{
5402 if (!rq->online) {
5403 const struct sched_class *class;
5404
c6c4927b 5405 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5406 rq->online = 1;
5407
5408 for_each_class(class) {
5409 if (class->rq_online)
5410 class->rq_online(rq);
5411 }
5412 }
5413}
5414
5415static void set_rq_offline(struct rq *rq)
5416{
5417 if (rq->online) {
5418 const struct sched_class *class;
5419
5420 for_each_class(class) {
5421 if (class->rq_offline)
5422 class->rq_offline(rq);
5423 }
5424
c6c4927b 5425 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5426 rq->online = 0;
5427 }
5428}
5429
1da177e4
LT
5430/*
5431 * migration_call - callback that gets triggered when a CPU is added.
5432 * Here we can start up the necessary migration thread for the new CPU.
5433 */
0db0628d 5434static int
48f24c4d 5435migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5436{
48f24c4d 5437 int cpu = (long)hcpu;
1da177e4 5438 unsigned long flags;
969c7921 5439 struct rq *rq = cpu_rq(cpu);
1da177e4 5440
48c5ccae 5441 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 5442
1da177e4 5443 case CPU_UP_PREPARE:
a468d389 5444 rq->calc_load_update = calc_load_update;
e9532e69 5445 account_reset_rq(rq);
1da177e4 5446 break;
48f24c4d 5447
1da177e4 5448 case CPU_ONLINE:
1f94ef59 5449 /* Update our root-domain */
05fa785c 5450 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5451 if (rq->rd) {
c6c4927b 5452 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5453
5454 set_rq_online(rq);
1f94ef59 5455 }
05fa785c 5456 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5457 break;
48f24c4d 5458
1da177e4 5459#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5460 case CPU_DYING:
317f3941 5461 sched_ttwu_pending();
57d885fe 5462 /* Update our root-domain */
05fa785c 5463 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5464 if (rq->rd) {
c6c4927b 5465 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5466 set_rq_offline(rq);
57d885fe 5467 }
5e16bbc2 5468 migrate_tasks(rq);
48c5ccae 5469 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5470 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 5471 break;
48c5ccae 5472
5d180232 5473 case CPU_DEAD:
f319da0c 5474 calc_load_migrate(rq);
57d885fe 5475 break;
1da177e4
LT
5476#endif
5477 }
49c022e6
PZ
5478
5479 update_max_interval();
5480
1da177e4
LT
5481 return NOTIFY_OK;
5482}
5483
f38b0820
PM
5484/*
5485 * Register at high priority so that task migration (migrate_all_tasks)
5486 * happens before everything else. This has to be lower priority than
cdd6c482 5487 * the notifier in the perf_event subsystem, though.
1da177e4 5488 */
0db0628d 5489static struct notifier_block migration_notifier = {
1da177e4 5490 .notifier_call = migration_call,
50a323b7 5491 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5492};
5493
6a82b60d 5494static void set_cpu_rq_start_time(void)
a803f026
CM
5495{
5496 int cpu = smp_processor_id();
5497 struct rq *rq = cpu_rq(cpu);
5498 rq->age_stamp = sched_clock_cpu(cpu);
5499}
5500
0db0628d 5501static int sched_cpu_active(struct notifier_block *nfb,
3a101d05
TH
5502 unsigned long action, void *hcpu)
5503{
07f06cb3
PZ
5504 int cpu = (long)hcpu;
5505
3a101d05 5506 switch (action & ~CPU_TASKS_FROZEN) {
a803f026
CM
5507 case CPU_STARTING:
5508 set_cpu_rq_start_time();
5509 return NOTIFY_OK;
07f06cb3 5510
3a101d05 5511 case CPU_DOWN_FAILED:
07f06cb3 5512 set_cpu_active(cpu, true);
3a101d05 5513 return NOTIFY_OK;
07f06cb3 5514
3a101d05
TH
5515 default:
5516 return NOTIFY_DONE;
5517 }
5518}
5519
0db0628d 5520static int sched_cpu_inactive(struct notifier_block *nfb,
3a101d05
TH
5521 unsigned long action, void *hcpu)
5522{
5523 switch (action & ~CPU_TASKS_FROZEN) {
5524 case CPU_DOWN_PREPARE:
3c18d447 5525 set_cpu_active((long)hcpu, false);
3a101d05 5526 return NOTIFY_OK;
3c18d447
JL
5527 default:
5528 return NOTIFY_DONE;
3a101d05
TH
5529 }
5530}
5531
7babe8db 5532static int __init migration_init(void)
1da177e4
LT
5533{
5534 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5535 int err;
48f24c4d 5536
3a101d05 5537 /* Initialize migration for the boot CPU */
07dccf33
AM
5538 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5539 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5540 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5541 register_cpu_notifier(&migration_notifier);
7babe8db 5542
3a101d05
TH
5543 /* Register cpu active notifiers */
5544 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5545 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5546
a004cd42 5547 return 0;
1da177e4 5548}
7babe8db 5549early_initcall(migration_init);
476f3534 5550
4cb98839
PZ
5551static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5552
3e9830dc 5553#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5554
d039ac60 5555static __read_mostly int sched_debug_enabled;
f6630114 5556
d039ac60 5557static int __init sched_debug_setup(char *str)
f6630114 5558{
d039ac60 5559 sched_debug_enabled = 1;
f6630114
MT
5560
5561 return 0;
5562}
d039ac60
PZ
5563early_param("sched_debug", sched_debug_setup);
5564
5565static inline bool sched_debug(void)
5566{
5567 return sched_debug_enabled;
5568}
f6630114 5569
7c16ec58 5570static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5571 struct cpumask *groupmask)
1da177e4 5572{
4dcf6aff 5573 struct sched_group *group = sd->groups;
1da177e4 5574
96f874e2 5575 cpumask_clear(groupmask);
4dcf6aff
IM
5576
5577 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5578
5579 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5580 printk("does not load-balance\n");
4dcf6aff 5581 if (sd->parent)
3df0fc5b
PZ
5582 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5583 " has parent");
4dcf6aff 5584 return -1;
41c7ce9a
NP
5585 }
5586
333470ee
TH
5587 printk(KERN_CONT "span %*pbl level %s\n",
5588 cpumask_pr_args(sched_domain_span(sd)), sd->name);
4dcf6aff 5589
758b2cdc 5590 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5591 printk(KERN_ERR "ERROR: domain->span does not contain "
5592 "CPU%d\n", cpu);
4dcf6aff 5593 }
758b2cdc 5594 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5595 printk(KERN_ERR "ERROR: domain->groups does not contain"
5596 " CPU%d\n", cpu);
4dcf6aff 5597 }
1da177e4 5598
4dcf6aff 5599 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5600 do {
4dcf6aff 5601 if (!group) {
3df0fc5b
PZ
5602 printk("\n");
5603 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5604 break;
5605 }
5606
758b2cdc 5607 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5608 printk(KERN_CONT "\n");
5609 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5610 break;
5611 }
1da177e4 5612
cb83b629
PZ
5613 if (!(sd->flags & SD_OVERLAP) &&
5614 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5615 printk(KERN_CONT "\n");
5616 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5617 break;
5618 }
1da177e4 5619
758b2cdc 5620 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5621
333470ee
TH
5622 printk(KERN_CONT " %*pbl",
5623 cpumask_pr_args(sched_group_cpus(group)));
ca8ce3d0 5624 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
63b2ca30
NP
5625 printk(KERN_CONT " (cpu_capacity = %d)",
5626 group->sgc->capacity);
381512cf 5627 }
1da177e4 5628
4dcf6aff
IM
5629 group = group->next;
5630 } while (group != sd->groups);
3df0fc5b 5631 printk(KERN_CONT "\n");
1da177e4 5632
758b2cdc 5633 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5634 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5635
758b2cdc
RR
5636 if (sd->parent &&
5637 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5638 printk(KERN_ERR "ERROR: parent span is not a superset "
5639 "of domain->span\n");
4dcf6aff
IM
5640 return 0;
5641}
1da177e4 5642
4dcf6aff
IM
5643static void sched_domain_debug(struct sched_domain *sd, int cpu)
5644{
5645 int level = 0;
1da177e4 5646
d039ac60 5647 if (!sched_debug_enabled)
f6630114
MT
5648 return;
5649
4dcf6aff
IM
5650 if (!sd) {
5651 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5652 return;
5653 }
1da177e4 5654
4dcf6aff
IM
5655 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5656
5657 for (;;) {
4cb98839 5658 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5659 break;
1da177e4
LT
5660 level++;
5661 sd = sd->parent;
33859f7f 5662 if (!sd)
4dcf6aff
IM
5663 break;
5664 }
1da177e4 5665}
6d6bc0ad 5666#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5667# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5668static inline bool sched_debug(void)
5669{
5670 return false;
5671}
6d6bc0ad 5672#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5673
1a20ff27 5674static int sd_degenerate(struct sched_domain *sd)
245af2c7 5675{
758b2cdc 5676 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5677 return 1;
5678
5679 /* Following flags need at least 2 groups */
5680 if (sd->flags & (SD_LOAD_BALANCE |
5681 SD_BALANCE_NEWIDLE |
5682 SD_BALANCE_FORK |
89c4710e 5683 SD_BALANCE_EXEC |
5d4dfddd 5684 SD_SHARE_CPUCAPACITY |
d77b3ed5
VG
5685 SD_SHARE_PKG_RESOURCES |
5686 SD_SHARE_POWERDOMAIN)) {
245af2c7
SS
5687 if (sd->groups != sd->groups->next)
5688 return 0;
5689 }
5690
5691 /* Following flags don't use groups */
c88d5910 5692 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5693 return 0;
5694
5695 return 1;
5696}
5697
48f24c4d
IM
5698static int
5699sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5700{
5701 unsigned long cflags = sd->flags, pflags = parent->flags;
5702
5703 if (sd_degenerate(parent))
5704 return 1;
5705
758b2cdc 5706 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5707 return 0;
5708
245af2c7
SS
5709 /* Flags needing groups don't count if only 1 group in parent */
5710 if (parent->groups == parent->groups->next) {
5711 pflags &= ~(SD_LOAD_BALANCE |
5712 SD_BALANCE_NEWIDLE |
5713 SD_BALANCE_FORK |
89c4710e 5714 SD_BALANCE_EXEC |
5d4dfddd 5715 SD_SHARE_CPUCAPACITY |
10866e62 5716 SD_SHARE_PKG_RESOURCES |
d77b3ed5
VG
5717 SD_PREFER_SIBLING |
5718 SD_SHARE_POWERDOMAIN);
5436499e
KC
5719 if (nr_node_ids == 1)
5720 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5721 }
5722 if (~cflags & pflags)
5723 return 0;
5724
5725 return 1;
5726}
5727
dce840a0 5728static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5729{
dce840a0 5730 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5731
68e74568 5732 cpupri_cleanup(&rd->cpupri);
6bfd6d72 5733 cpudl_cleanup(&rd->cpudl);
1baca4ce 5734 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5735 free_cpumask_var(rd->rto_mask);
5736 free_cpumask_var(rd->online);
5737 free_cpumask_var(rd->span);
5738 kfree(rd);
5739}
5740
57d885fe
GH
5741static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5742{
a0490fa3 5743 struct root_domain *old_rd = NULL;
57d885fe 5744 unsigned long flags;
57d885fe 5745
05fa785c 5746 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5747
5748 if (rq->rd) {
a0490fa3 5749 old_rd = rq->rd;
57d885fe 5750
c6c4927b 5751 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5752 set_rq_offline(rq);
57d885fe 5753
c6c4927b 5754 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5755
a0490fa3 5756 /*
0515973f 5757 * If we dont want to free the old_rd yet then
a0490fa3
IM
5758 * set old_rd to NULL to skip the freeing later
5759 * in this function:
5760 */
5761 if (!atomic_dec_and_test(&old_rd->refcount))
5762 old_rd = NULL;
57d885fe
GH
5763 }
5764
5765 atomic_inc(&rd->refcount);
5766 rq->rd = rd;
5767
c6c4927b 5768 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5769 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5770 set_rq_online(rq);
57d885fe 5771
05fa785c 5772 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5773
5774 if (old_rd)
dce840a0 5775 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5776}
5777
68c38fc3 5778static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5779{
5780 memset(rd, 0, sizeof(*rd));
5781
8295c699 5782 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5783 goto out;
8295c699 5784 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5785 goto free_span;
8295c699 5786 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
c6c4927b 5787 goto free_online;
8295c699 5788 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
1baca4ce 5789 goto free_dlo_mask;
6e0534f2 5790
332ac17e 5791 init_dl_bw(&rd->dl_bw);
6bfd6d72
JL
5792 if (cpudl_init(&rd->cpudl) != 0)
5793 goto free_dlo_mask;
332ac17e 5794
68c38fc3 5795 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5796 goto free_rto_mask;
c6c4927b 5797 return 0;
6e0534f2 5798
68e74568
RR
5799free_rto_mask:
5800 free_cpumask_var(rd->rto_mask);
1baca4ce
JL
5801free_dlo_mask:
5802 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5803free_online:
5804 free_cpumask_var(rd->online);
5805free_span:
5806 free_cpumask_var(rd->span);
0c910d28 5807out:
c6c4927b 5808 return -ENOMEM;
57d885fe
GH
5809}
5810
029632fb
PZ
5811/*
5812 * By default the system creates a single root-domain with all cpus as
5813 * members (mimicking the global state we have today).
5814 */
5815struct root_domain def_root_domain;
5816
57d885fe
GH
5817static void init_defrootdomain(void)
5818{
68c38fc3 5819 init_rootdomain(&def_root_domain);
c6c4927b 5820
57d885fe
GH
5821 atomic_set(&def_root_domain.refcount, 1);
5822}
5823
dc938520 5824static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5825{
5826 struct root_domain *rd;
5827
5828 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5829 if (!rd)
5830 return NULL;
5831
68c38fc3 5832 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5833 kfree(rd);
5834 return NULL;
5835 }
57d885fe
GH
5836
5837 return rd;
5838}
5839
63b2ca30 5840static void free_sched_groups(struct sched_group *sg, int free_sgc)
e3589f6c
PZ
5841{
5842 struct sched_group *tmp, *first;
5843
5844 if (!sg)
5845 return;
5846
5847 first = sg;
5848 do {
5849 tmp = sg->next;
5850
63b2ca30
NP
5851 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5852 kfree(sg->sgc);
e3589f6c
PZ
5853
5854 kfree(sg);
5855 sg = tmp;
5856 } while (sg != first);
5857}
5858
dce840a0
PZ
5859static void free_sched_domain(struct rcu_head *rcu)
5860{
5861 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5862
5863 /*
5864 * If its an overlapping domain it has private groups, iterate and
5865 * nuke them all.
5866 */
5867 if (sd->flags & SD_OVERLAP) {
5868 free_sched_groups(sd->groups, 1);
5869 } else if (atomic_dec_and_test(&sd->groups->ref)) {
63b2ca30 5870 kfree(sd->groups->sgc);
dce840a0 5871 kfree(sd->groups);
9c3f75cb 5872 }
dce840a0
PZ
5873 kfree(sd);
5874}
5875
5876static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5877{
5878 call_rcu(&sd->rcu, free_sched_domain);
5879}
5880
5881static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5882{
5883 for (; sd; sd = sd->parent)
5884 destroy_sched_domain(sd, cpu);
5885}
5886
518cd623
PZ
5887/*
5888 * Keep a special pointer to the highest sched_domain that has
5889 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5890 * allows us to avoid some pointer chasing select_idle_sibling().
5891 *
5892 * Also keep a unique ID per domain (we use the first cpu number in
5893 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5894 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5895 */
5896DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5897DEFINE_PER_CPU(int, sd_llc_size);
518cd623 5898DEFINE_PER_CPU(int, sd_llc_id);
fb13c7ee 5899DEFINE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
5900DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5901DEFINE_PER_CPU(struct sched_domain *, sd_asym);
518cd623
PZ
5902
5903static void update_top_cache_domain(int cpu)
5904{
5905 struct sched_domain *sd;
5d4cf996 5906 struct sched_domain *busy_sd = NULL;
518cd623 5907 int id = cpu;
7d9ffa89 5908 int size = 1;
518cd623
PZ
5909
5910 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 5911 if (sd) {
518cd623 5912 id = cpumask_first(sched_domain_span(sd));
7d9ffa89 5913 size = cpumask_weight(sched_domain_span(sd));
5d4cf996 5914 busy_sd = sd->parent; /* sd_busy */
7d9ffa89 5915 }
5d4cf996 5916 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
518cd623
PZ
5917
5918 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 5919 per_cpu(sd_llc_size, cpu) = size;
518cd623 5920 per_cpu(sd_llc_id, cpu) = id;
fb13c7ee
MG
5921
5922 sd = lowest_flag_domain(cpu, SD_NUMA);
5923 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
37dc6b50
PM
5924
5925 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5926 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
518cd623
PZ
5927}
5928
1da177e4 5929/*
0eab9146 5930 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5931 * hold the hotplug lock.
5932 */
0eab9146
IM
5933static void
5934cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5935{
70b97a7f 5936 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5937 struct sched_domain *tmp;
5938
5939 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5940 for (tmp = sd; tmp; ) {
245af2c7
SS
5941 struct sched_domain *parent = tmp->parent;
5942 if (!parent)
5943 break;
f29c9b1c 5944
1a848870 5945 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5946 tmp->parent = parent->parent;
1a848870
SS
5947 if (parent->parent)
5948 parent->parent->child = tmp;
10866e62
PZ
5949 /*
5950 * Transfer SD_PREFER_SIBLING down in case of a
5951 * degenerate parent; the spans match for this
5952 * so the property transfers.
5953 */
5954 if (parent->flags & SD_PREFER_SIBLING)
5955 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 5956 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5957 } else
5958 tmp = tmp->parent;
245af2c7
SS
5959 }
5960
1a848870 5961 if (sd && sd_degenerate(sd)) {
dce840a0 5962 tmp = sd;
245af2c7 5963 sd = sd->parent;
dce840a0 5964 destroy_sched_domain(tmp, cpu);
1a848870
SS
5965 if (sd)
5966 sd->child = NULL;
5967 }
1da177e4 5968
4cb98839 5969 sched_domain_debug(sd, cpu);
1da177e4 5970
57d885fe 5971 rq_attach_root(rq, rd);
dce840a0 5972 tmp = rq->sd;
674311d5 5973 rcu_assign_pointer(rq->sd, sd);
dce840a0 5974 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5975
5976 update_top_cache_domain(cpu);
1da177e4
LT
5977}
5978
1da177e4
LT
5979/* Setup the mask of cpus configured for isolated domains */
5980static int __init isolated_cpu_setup(char *str)
5981{
a6e4491c
PB
5982 int ret;
5983
bdddd296 5984 alloc_bootmem_cpumask_var(&cpu_isolated_map);
a6e4491c
PB
5985 ret = cpulist_parse(str, cpu_isolated_map);
5986 if (ret) {
5987 pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
5988 return 0;
5989 }
1da177e4
LT
5990 return 1;
5991}
8927f494 5992__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5993
49a02c51 5994struct s_data {
21d42ccf 5995 struct sched_domain ** __percpu sd;
49a02c51
AH
5996 struct root_domain *rd;
5997};
5998
2109b99e 5999enum s_alloc {
2109b99e 6000 sa_rootdomain,
21d42ccf 6001 sa_sd,
dce840a0 6002 sa_sd_storage,
2109b99e
AH
6003 sa_none,
6004};
6005
c1174876
PZ
6006/*
6007 * Build an iteration mask that can exclude certain CPUs from the upwards
6008 * domain traversal.
6009 *
6010 * Asymmetric node setups can result in situations where the domain tree is of
6011 * unequal depth, make sure to skip domains that already cover the entire
6012 * range.
6013 *
6014 * In that case build_sched_domains() will have terminated the iteration early
6015 * and our sibling sd spans will be empty. Domains should always include the
6016 * cpu they're built on, so check that.
6017 *
6018 */
6019static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6020{
6021 const struct cpumask *span = sched_domain_span(sd);
6022 struct sd_data *sdd = sd->private;
6023 struct sched_domain *sibling;
6024 int i;
6025
6026 for_each_cpu(i, span) {
6027 sibling = *per_cpu_ptr(sdd->sd, i);
6028 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6029 continue;
6030
6031 cpumask_set_cpu(i, sched_group_mask(sg));
6032 }
6033}
6034
6035/*
6036 * Return the canonical balance cpu for this group, this is the first cpu
6037 * of this group that's also in the iteration mask.
6038 */
6039int group_balance_cpu(struct sched_group *sg)
6040{
6041 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6042}
6043
e3589f6c
PZ
6044static int
6045build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6046{
6047 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6048 const struct cpumask *span = sched_domain_span(sd);
6049 struct cpumask *covered = sched_domains_tmpmask;
6050 struct sd_data *sdd = sd->private;
aaecac4a 6051 struct sched_domain *sibling;
e3589f6c
PZ
6052 int i;
6053
6054 cpumask_clear(covered);
6055
6056 for_each_cpu(i, span) {
6057 struct cpumask *sg_span;
6058
6059 if (cpumask_test_cpu(i, covered))
6060 continue;
6061
aaecac4a 6062 sibling = *per_cpu_ptr(sdd->sd, i);
c1174876
PZ
6063
6064 /* See the comment near build_group_mask(). */
aaecac4a 6065 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
c1174876
PZ
6066 continue;
6067
e3589f6c 6068 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 6069 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
6070
6071 if (!sg)
6072 goto fail;
6073
6074 sg_span = sched_group_cpus(sg);
aaecac4a
ZZ
6075 if (sibling->child)
6076 cpumask_copy(sg_span, sched_domain_span(sibling->child));
6077 else
e3589f6c
PZ
6078 cpumask_set_cpu(i, sg_span);
6079
6080 cpumask_or(covered, covered, sg_span);
6081
63b2ca30
NP
6082 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6083 if (atomic_inc_return(&sg->sgc->ref) == 1)
c1174876
PZ
6084 build_group_mask(sd, sg);
6085
c3decf0d 6086 /*
63b2ca30 6087 * Initialize sgc->capacity such that even if we mess up the
c3decf0d
PZ
6088 * domains and no possible iteration will get us here, we won't
6089 * die on a /0 trap.
6090 */
ca8ce3d0 6091 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
e3589f6c 6092
c1174876
PZ
6093 /*
6094 * Make sure the first group of this domain contains the
6095 * canonical balance cpu. Otherwise the sched_domain iteration
6096 * breaks. See update_sg_lb_stats().
6097 */
74a5ce20 6098 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 6099 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
6100 groups = sg;
6101
6102 if (!first)
6103 first = sg;
6104 if (last)
6105 last->next = sg;
6106 last = sg;
6107 last->next = first;
6108 }
6109 sd->groups = groups;
6110
6111 return 0;
6112
6113fail:
6114 free_sched_groups(first, 0);
6115
6116 return -ENOMEM;
6117}
6118
dce840a0 6119static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 6120{
dce840a0
PZ
6121 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6122 struct sched_domain *child = sd->child;
1da177e4 6123
dce840a0
PZ
6124 if (child)
6125 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 6126
9c3f75cb 6127 if (sg) {
dce840a0 6128 *sg = *per_cpu_ptr(sdd->sg, cpu);
63b2ca30
NP
6129 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6130 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
9c3f75cb 6131 }
dce840a0
PZ
6132
6133 return cpu;
1e9f28fa 6134}
1e9f28fa 6135
01a08546 6136/*
dce840a0
PZ
6137 * build_sched_groups will build a circular linked list of the groups
6138 * covered by the given span, and will set each group's ->cpumask correctly,
ced549fa 6139 * and ->cpu_capacity to 0.
e3589f6c
PZ
6140 *
6141 * Assumes the sched_domain tree is fully constructed
01a08546 6142 */
e3589f6c
PZ
6143static int
6144build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 6145{
dce840a0
PZ
6146 struct sched_group *first = NULL, *last = NULL;
6147 struct sd_data *sdd = sd->private;
6148 const struct cpumask *span = sched_domain_span(sd);
f96225fd 6149 struct cpumask *covered;
dce840a0 6150 int i;
9c1cfda2 6151
e3589f6c
PZ
6152 get_group(cpu, sdd, &sd->groups);
6153 atomic_inc(&sd->groups->ref);
6154
0936629f 6155 if (cpu != cpumask_first(span))
e3589f6c
PZ
6156 return 0;
6157
f96225fd
PZ
6158 lockdep_assert_held(&sched_domains_mutex);
6159 covered = sched_domains_tmpmask;
6160
dce840a0 6161 cpumask_clear(covered);
6711cab4 6162
dce840a0
PZ
6163 for_each_cpu(i, span) {
6164 struct sched_group *sg;
cd08e923 6165 int group, j;
6711cab4 6166
dce840a0
PZ
6167 if (cpumask_test_cpu(i, covered))
6168 continue;
6711cab4 6169
cd08e923 6170 group = get_group(i, sdd, &sg);
c1174876 6171 cpumask_setall(sched_group_mask(sg));
0601a88d 6172
dce840a0
PZ
6173 for_each_cpu(j, span) {
6174 if (get_group(j, sdd, NULL) != group)
6175 continue;
0601a88d 6176
dce840a0
PZ
6177 cpumask_set_cpu(j, covered);
6178 cpumask_set_cpu(j, sched_group_cpus(sg));
6179 }
0601a88d 6180
dce840a0
PZ
6181 if (!first)
6182 first = sg;
6183 if (last)
6184 last->next = sg;
6185 last = sg;
6186 }
6187 last->next = first;
e3589f6c
PZ
6188
6189 return 0;
0601a88d 6190}
51888ca2 6191
89c4710e 6192/*
63b2ca30 6193 * Initialize sched groups cpu_capacity.
89c4710e 6194 *
63b2ca30 6195 * cpu_capacity indicates the capacity of sched group, which is used while
89c4710e 6196 * distributing the load between different sched groups in a sched domain.
63b2ca30
NP
6197 * Typically cpu_capacity for all the groups in a sched domain will be same
6198 * unless there are asymmetries in the topology. If there are asymmetries,
6199 * group having more cpu_capacity will pickup more load compared to the
6200 * group having less cpu_capacity.
89c4710e 6201 */
63b2ca30 6202static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
89c4710e 6203{
e3589f6c 6204 struct sched_group *sg = sd->groups;
89c4710e 6205
94c95ba6 6206 WARN_ON(!sg);
e3589f6c
PZ
6207
6208 do {
6209 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6210 sg = sg->next;
6211 } while (sg != sd->groups);
89c4710e 6212
c1174876 6213 if (cpu != group_balance_cpu(sg))
e3589f6c 6214 return;
aae6d3dd 6215
63b2ca30
NP
6216 update_group_capacity(sd, cpu);
6217 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
89c4710e
SS
6218}
6219
7c16ec58
MT
6220/*
6221 * Initializers for schedule domains
6222 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6223 */
6224
1d3504fc 6225static int default_relax_domain_level = -1;
60495e77 6226int sched_domain_level_max;
1d3504fc
HS
6227
6228static int __init setup_relax_domain_level(char *str)
6229{
a841f8ce
DS
6230 if (kstrtoint(str, 0, &default_relax_domain_level))
6231 pr_warn("Unable to set relax_domain_level\n");
30e0e178 6232
1d3504fc
HS
6233 return 1;
6234}
6235__setup("relax_domain_level=", setup_relax_domain_level);
6236
6237static void set_domain_attribute(struct sched_domain *sd,
6238 struct sched_domain_attr *attr)
6239{
6240 int request;
6241
6242 if (!attr || attr->relax_domain_level < 0) {
6243 if (default_relax_domain_level < 0)
6244 return;
6245 else
6246 request = default_relax_domain_level;
6247 } else
6248 request = attr->relax_domain_level;
6249 if (request < sd->level) {
6250 /* turn off idle balance on this domain */
c88d5910 6251 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6252 } else {
6253 /* turn on idle balance on this domain */
c88d5910 6254 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6255 }
6256}
6257
54ab4ff4
PZ
6258static void __sdt_free(const struct cpumask *cpu_map);
6259static int __sdt_alloc(const struct cpumask *cpu_map);
6260
2109b99e
AH
6261static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6262 const struct cpumask *cpu_map)
6263{
6264 switch (what) {
2109b99e 6265 case sa_rootdomain:
822ff793
PZ
6266 if (!atomic_read(&d->rd->refcount))
6267 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
6268 case sa_sd:
6269 free_percpu(d->sd); /* fall through */
dce840a0 6270 case sa_sd_storage:
54ab4ff4 6271 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
6272 case sa_none:
6273 break;
6274 }
6275}
3404c8d9 6276
2109b99e
AH
6277static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6278 const struct cpumask *cpu_map)
6279{
dce840a0
PZ
6280 memset(d, 0, sizeof(*d));
6281
54ab4ff4
PZ
6282 if (__sdt_alloc(cpu_map))
6283 return sa_sd_storage;
dce840a0
PZ
6284 d->sd = alloc_percpu(struct sched_domain *);
6285 if (!d->sd)
6286 return sa_sd_storage;
2109b99e 6287 d->rd = alloc_rootdomain();
dce840a0 6288 if (!d->rd)
21d42ccf 6289 return sa_sd;
2109b99e
AH
6290 return sa_rootdomain;
6291}
57d885fe 6292
dce840a0
PZ
6293/*
6294 * NULL the sd_data elements we've used to build the sched_domain and
6295 * sched_group structure so that the subsequent __free_domain_allocs()
6296 * will not free the data we're using.
6297 */
6298static void claim_allocations(int cpu, struct sched_domain *sd)
6299{
6300 struct sd_data *sdd = sd->private;
dce840a0
PZ
6301
6302 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6303 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6304
e3589f6c 6305 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 6306 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c 6307
63b2ca30
NP
6308 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6309 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
dce840a0
PZ
6310}
6311
cb83b629 6312#ifdef CONFIG_NUMA
cb83b629 6313static int sched_domains_numa_levels;
e3fe70b1 6314enum numa_topology_type sched_numa_topology_type;
cb83b629 6315static int *sched_domains_numa_distance;
9942f79b 6316int sched_max_numa_distance;
cb83b629
PZ
6317static struct cpumask ***sched_domains_numa_masks;
6318static int sched_domains_curr_level;
143e1e28 6319#endif
cb83b629 6320
143e1e28
VG
6321/*
6322 * SD_flags allowed in topology descriptions.
6323 *
5d4dfddd 6324 * SD_SHARE_CPUCAPACITY - describes SMT topologies
143e1e28
VG
6325 * SD_SHARE_PKG_RESOURCES - describes shared caches
6326 * SD_NUMA - describes NUMA topologies
d77b3ed5 6327 * SD_SHARE_POWERDOMAIN - describes shared power domain
143e1e28
VG
6328 *
6329 * Odd one out:
6330 * SD_ASYM_PACKING - describes SMT quirks
6331 */
6332#define TOPOLOGY_SD_FLAGS \
5d4dfddd 6333 (SD_SHARE_CPUCAPACITY | \
143e1e28
VG
6334 SD_SHARE_PKG_RESOURCES | \
6335 SD_NUMA | \
d77b3ed5
VG
6336 SD_ASYM_PACKING | \
6337 SD_SHARE_POWERDOMAIN)
cb83b629
PZ
6338
6339static struct sched_domain *
143e1e28 6340sd_init(struct sched_domain_topology_level *tl, int cpu)
cb83b629
PZ
6341{
6342 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
143e1e28
VG
6343 int sd_weight, sd_flags = 0;
6344
6345#ifdef CONFIG_NUMA
6346 /*
6347 * Ugly hack to pass state to sd_numa_mask()...
6348 */
6349 sched_domains_curr_level = tl->numa_level;
6350#endif
6351
6352 sd_weight = cpumask_weight(tl->mask(cpu));
6353
6354 if (tl->sd_flags)
6355 sd_flags = (*tl->sd_flags)();
6356 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6357 "wrong sd_flags in topology description\n"))
6358 sd_flags &= ~TOPOLOGY_SD_FLAGS;
cb83b629
PZ
6359
6360 *sd = (struct sched_domain){
6361 .min_interval = sd_weight,
6362 .max_interval = 2*sd_weight,
6363 .busy_factor = 32,
870a0bb5 6364 .imbalance_pct = 125,
143e1e28
VG
6365
6366 .cache_nice_tries = 0,
6367 .busy_idx = 0,
6368 .idle_idx = 0,
cb83b629
PZ
6369 .newidle_idx = 0,
6370 .wake_idx = 0,
6371 .forkexec_idx = 0,
6372
6373 .flags = 1*SD_LOAD_BALANCE
6374 | 1*SD_BALANCE_NEWIDLE
143e1e28
VG
6375 | 1*SD_BALANCE_EXEC
6376 | 1*SD_BALANCE_FORK
cb83b629 6377 | 0*SD_BALANCE_WAKE
143e1e28 6378 | 1*SD_WAKE_AFFINE
5d4dfddd 6379 | 0*SD_SHARE_CPUCAPACITY
cb83b629 6380 | 0*SD_SHARE_PKG_RESOURCES
143e1e28 6381 | 0*SD_SERIALIZE
cb83b629 6382 | 0*SD_PREFER_SIBLING
143e1e28
VG
6383 | 0*SD_NUMA
6384 | sd_flags
cb83b629 6385 ,
143e1e28 6386
cb83b629
PZ
6387 .last_balance = jiffies,
6388 .balance_interval = sd_weight,
143e1e28 6389 .smt_gain = 0,
2b4cfe64
JL
6390 .max_newidle_lb_cost = 0,
6391 .next_decay_max_lb_cost = jiffies,
143e1e28
VG
6392#ifdef CONFIG_SCHED_DEBUG
6393 .name = tl->name,
6394#endif
cb83b629 6395 };
cb83b629
PZ
6396
6397 /*
143e1e28 6398 * Convert topological properties into behaviour.
cb83b629 6399 */
143e1e28 6400
5d4dfddd 6401 if (sd->flags & SD_SHARE_CPUCAPACITY) {
caff37ef 6402 sd->flags |= SD_PREFER_SIBLING;
143e1e28
VG
6403 sd->imbalance_pct = 110;
6404 sd->smt_gain = 1178; /* ~15% */
143e1e28
VG
6405
6406 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6407 sd->imbalance_pct = 117;
6408 sd->cache_nice_tries = 1;
6409 sd->busy_idx = 2;
6410
6411#ifdef CONFIG_NUMA
6412 } else if (sd->flags & SD_NUMA) {
6413 sd->cache_nice_tries = 2;
6414 sd->busy_idx = 3;
6415 sd->idle_idx = 2;
6416
6417 sd->flags |= SD_SERIALIZE;
6418 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6419 sd->flags &= ~(SD_BALANCE_EXEC |
6420 SD_BALANCE_FORK |
6421 SD_WAKE_AFFINE);
6422 }
6423
6424#endif
6425 } else {
6426 sd->flags |= SD_PREFER_SIBLING;
6427 sd->cache_nice_tries = 1;
6428 sd->busy_idx = 2;
6429 sd->idle_idx = 1;
6430 }
6431
6432 sd->private = &tl->data;
cb83b629
PZ
6433
6434 return sd;
6435}
6436
143e1e28
VG
6437/*
6438 * Topology list, bottom-up.
6439 */
6440static struct sched_domain_topology_level default_topology[] = {
6441#ifdef CONFIG_SCHED_SMT
6442 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6443#endif
6444#ifdef CONFIG_SCHED_MC
6445 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
143e1e28
VG
6446#endif
6447 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6448 { NULL, },
6449};
6450
c6e1e7b5
JG
6451static struct sched_domain_topology_level *sched_domain_topology =
6452 default_topology;
143e1e28
VG
6453
6454#define for_each_sd_topology(tl) \
6455 for (tl = sched_domain_topology; tl->mask; tl++)
6456
6457void set_sched_topology(struct sched_domain_topology_level *tl)
6458{
6459 sched_domain_topology = tl;
6460}
6461
6462#ifdef CONFIG_NUMA
6463
cb83b629
PZ
6464static const struct cpumask *sd_numa_mask(int cpu)
6465{
6466 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6467}
6468
d039ac60
PZ
6469static void sched_numa_warn(const char *str)
6470{
6471 static int done = false;
6472 int i,j;
6473
6474 if (done)
6475 return;
6476
6477 done = true;
6478
6479 printk(KERN_WARNING "ERROR: %s\n\n", str);
6480
6481 for (i = 0; i < nr_node_ids; i++) {
6482 printk(KERN_WARNING " ");
6483 for (j = 0; j < nr_node_ids; j++)
6484 printk(KERN_CONT "%02d ", node_distance(i,j));
6485 printk(KERN_CONT "\n");
6486 }
6487 printk(KERN_WARNING "\n");
6488}
6489
9942f79b 6490bool find_numa_distance(int distance)
d039ac60
PZ
6491{
6492 int i;
6493
6494 if (distance == node_distance(0, 0))
6495 return true;
6496
6497 for (i = 0; i < sched_domains_numa_levels; i++) {
6498 if (sched_domains_numa_distance[i] == distance)
6499 return true;
6500 }
6501
6502 return false;
6503}
6504
e3fe70b1
RR
6505/*
6506 * A system can have three types of NUMA topology:
6507 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6508 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6509 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6510 *
6511 * The difference between a glueless mesh topology and a backplane
6512 * topology lies in whether communication between not directly
6513 * connected nodes goes through intermediary nodes (where programs
6514 * could run), or through backplane controllers. This affects
6515 * placement of programs.
6516 *
6517 * The type of topology can be discerned with the following tests:
6518 * - If the maximum distance between any nodes is 1 hop, the system
6519 * is directly connected.
6520 * - If for two nodes A and B, located N > 1 hops away from each other,
6521 * there is an intermediary node C, which is < N hops away from both
6522 * nodes A and B, the system is a glueless mesh.
6523 */
6524static void init_numa_topology_type(void)
6525{
6526 int a, b, c, n;
6527
6528 n = sched_max_numa_distance;
6529
e237882b 6530 if (sched_domains_numa_levels <= 1) {
e3fe70b1 6531 sched_numa_topology_type = NUMA_DIRECT;
e237882b
AG
6532 return;
6533 }
e3fe70b1
RR
6534
6535 for_each_online_node(a) {
6536 for_each_online_node(b) {
6537 /* Find two nodes furthest removed from each other. */
6538 if (node_distance(a, b) < n)
6539 continue;
6540
6541 /* Is there an intermediary node between a and b? */
6542 for_each_online_node(c) {
6543 if (node_distance(a, c) < n &&
6544 node_distance(b, c) < n) {
6545 sched_numa_topology_type =
6546 NUMA_GLUELESS_MESH;
6547 return;
6548 }
6549 }
6550
6551 sched_numa_topology_type = NUMA_BACKPLANE;
6552 return;
6553 }
6554 }
6555}
6556
cb83b629
PZ
6557static void sched_init_numa(void)
6558{
6559 int next_distance, curr_distance = node_distance(0, 0);
6560 struct sched_domain_topology_level *tl;
6561 int level = 0;
6562 int i, j, k;
6563
cb83b629
PZ
6564 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6565 if (!sched_domains_numa_distance)
6566 return;
6567
6568 /*
6569 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6570 * unique distances in the node_distance() table.
6571 *
6572 * Assumes node_distance(0,j) includes all distances in
6573 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6574 */
6575 next_distance = curr_distance;
6576 for (i = 0; i < nr_node_ids; i++) {
6577 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6578 for (k = 0; k < nr_node_ids; k++) {
6579 int distance = node_distance(i, k);
6580
6581 if (distance > curr_distance &&
6582 (distance < next_distance ||
6583 next_distance == curr_distance))
6584 next_distance = distance;
6585
6586 /*
6587 * While not a strong assumption it would be nice to know
6588 * about cases where if node A is connected to B, B is not
6589 * equally connected to A.
6590 */
6591 if (sched_debug() && node_distance(k, i) != distance)
6592 sched_numa_warn("Node-distance not symmetric");
6593
6594 if (sched_debug() && i && !find_numa_distance(distance))
6595 sched_numa_warn("Node-0 not representative");
6596 }
6597 if (next_distance != curr_distance) {
6598 sched_domains_numa_distance[level++] = next_distance;
6599 sched_domains_numa_levels = level;
6600 curr_distance = next_distance;
6601 } else break;
cb83b629 6602 }
d039ac60
PZ
6603
6604 /*
6605 * In case of sched_debug() we verify the above assumption.
6606 */
6607 if (!sched_debug())
6608 break;
cb83b629 6609 }
c123588b
AR
6610
6611 if (!level)
6612 return;
6613
cb83b629
PZ
6614 /*
6615 * 'level' contains the number of unique distances, excluding the
6616 * identity distance node_distance(i,i).
6617 *
28b4a521 6618 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
6619 * numbers.
6620 */
6621
5f7865f3
TC
6622 /*
6623 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6624 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6625 * the array will contain less then 'level' members. This could be
6626 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6627 * in other functions.
6628 *
6629 * We reset it to 'level' at the end of this function.
6630 */
6631 sched_domains_numa_levels = 0;
6632
cb83b629
PZ
6633 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6634 if (!sched_domains_numa_masks)
6635 return;
6636
6637 /*
6638 * Now for each level, construct a mask per node which contains all
6639 * cpus of nodes that are that many hops away from us.
6640 */
6641 for (i = 0; i < level; i++) {
6642 sched_domains_numa_masks[i] =
6643 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6644 if (!sched_domains_numa_masks[i])
6645 return;
6646
6647 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6648 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6649 if (!mask)
6650 return;
6651
6652 sched_domains_numa_masks[i][j] = mask;
6653
9c03ee14 6654 for_each_node(k) {
dd7d8634 6655 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6656 continue;
6657
6658 cpumask_or(mask, mask, cpumask_of_node(k));
6659 }
6660 }
6661 }
6662
143e1e28
VG
6663 /* Compute default topology size */
6664 for (i = 0; sched_domain_topology[i].mask; i++);
6665
c515db8c 6666 tl = kzalloc((i + level + 1) *
cb83b629
PZ
6667 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6668 if (!tl)
6669 return;
6670
6671 /*
6672 * Copy the default topology bits..
6673 */
143e1e28
VG
6674 for (i = 0; sched_domain_topology[i].mask; i++)
6675 tl[i] = sched_domain_topology[i];
cb83b629
PZ
6676
6677 /*
6678 * .. and append 'j' levels of NUMA goodness.
6679 */
6680 for (j = 0; j < level; i++, j++) {
6681 tl[i] = (struct sched_domain_topology_level){
cb83b629 6682 .mask = sd_numa_mask,
143e1e28 6683 .sd_flags = cpu_numa_flags,
cb83b629
PZ
6684 .flags = SDTL_OVERLAP,
6685 .numa_level = j,
143e1e28 6686 SD_INIT_NAME(NUMA)
cb83b629
PZ
6687 };
6688 }
6689
6690 sched_domain_topology = tl;
5f7865f3
TC
6691
6692 sched_domains_numa_levels = level;
9942f79b 6693 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
e3fe70b1
RR
6694
6695 init_numa_topology_type();
cb83b629 6696}
301a5cba
TC
6697
6698static void sched_domains_numa_masks_set(int cpu)
6699{
6700 int i, j;
6701 int node = cpu_to_node(cpu);
6702
6703 for (i = 0; i < sched_domains_numa_levels; i++) {
6704 for (j = 0; j < nr_node_ids; j++) {
6705 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6706 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6707 }
6708 }
6709}
6710
6711static void sched_domains_numa_masks_clear(int cpu)
6712{
6713 int i, j;
6714 for (i = 0; i < sched_domains_numa_levels; i++) {
6715 for (j = 0; j < nr_node_ids; j++)
6716 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6717 }
6718}
6719
6720/*
6721 * Update sched_domains_numa_masks[level][node] array when new cpus
6722 * are onlined.
6723 */
6724static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6725 unsigned long action,
6726 void *hcpu)
6727{
6728 int cpu = (long)hcpu;
6729
6730 switch (action & ~CPU_TASKS_FROZEN) {
6731 case CPU_ONLINE:
6732 sched_domains_numa_masks_set(cpu);
6733 break;
6734
6735 case CPU_DEAD:
6736 sched_domains_numa_masks_clear(cpu);
6737 break;
6738
6739 default:
6740 return NOTIFY_DONE;
6741 }
6742
6743 return NOTIFY_OK;
cb83b629
PZ
6744}
6745#else
6746static inline void sched_init_numa(void)
6747{
6748}
301a5cba
TC
6749
6750static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6751 unsigned long action,
6752 void *hcpu)
6753{
6754 return 0;
6755}
cb83b629
PZ
6756#endif /* CONFIG_NUMA */
6757
54ab4ff4
PZ
6758static int __sdt_alloc(const struct cpumask *cpu_map)
6759{
6760 struct sched_domain_topology_level *tl;
6761 int j;
6762
27723a68 6763 for_each_sd_topology(tl) {
54ab4ff4
PZ
6764 struct sd_data *sdd = &tl->data;
6765
6766 sdd->sd = alloc_percpu(struct sched_domain *);
6767 if (!sdd->sd)
6768 return -ENOMEM;
6769
6770 sdd->sg = alloc_percpu(struct sched_group *);
6771 if (!sdd->sg)
6772 return -ENOMEM;
6773
63b2ca30
NP
6774 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6775 if (!sdd->sgc)
9c3f75cb
PZ
6776 return -ENOMEM;
6777
54ab4ff4
PZ
6778 for_each_cpu(j, cpu_map) {
6779 struct sched_domain *sd;
6780 struct sched_group *sg;
63b2ca30 6781 struct sched_group_capacity *sgc;
54ab4ff4 6782
5cc389bc 6783 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
54ab4ff4
PZ
6784 GFP_KERNEL, cpu_to_node(j));
6785 if (!sd)
6786 return -ENOMEM;
6787
6788 *per_cpu_ptr(sdd->sd, j) = sd;
6789
6790 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6791 GFP_KERNEL, cpu_to_node(j));
6792 if (!sg)
6793 return -ENOMEM;
6794
30b4e9eb
IM
6795 sg->next = sg;
6796
54ab4ff4 6797 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6798
63b2ca30 6799 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
9c3f75cb 6800 GFP_KERNEL, cpu_to_node(j));
63b2ca30 6801 if (!sgc)
9c3f75cb
PZ
6802 return -ENOMEM;
6803
63b2ca30 6804 *per_cpu_ptr(sdd->sgc, j) = sgc;
54ab4ff4
PZ
6805 }
6806 }
6807
6808 return 0;
6809}
6810
6811static void __sdt_free(const struct cpumask *cpu_map)
6812{
6813 struct sched_domain_topology_level *tl;
6814 int j;
6815
27723a68 6816 for_each_sd_topology(tl) {
54ab4ff4
PZ
6817 struct sd_data *sdd = &tl->data;
6818
6819 for_each_cpu(j, cpu_map) {
fb2cf2c6 6820 struct sched_domain *sd;
6821
6822 if (sdd->sd) {
6823 sd = *per_cpu_ptr(sdd->sd, j);
6824 if (sd && (sd->flags & SD_OVERLAP))
6825 free_sched_groups(sd->groups, 0);
6826 kfree(*per_cpu_ptr(sdd->sd, j));
6827 }
6828
6829 if (sdd->sg)
6830 kfree(*per_cpu_ptr(sdd->sg, j));
63b2ca30
NP
6831 if (sdd->sgc)
6832 kfree(*per_cpu_ptr(sdd->sgc, j));
54ab4ff4
PZ
6833 }
6834 free_percpu(sdd->sd);
fb2cf2c6 6835 sdd->sd = NULL;
54ab4ff4 6836 free_percpu(sdd->sg);
fb2cf2c6 6837 sdd->sg = NULL;
63b2ca30
NP
6838 free_percpu(sdd->sgc);
6839 sdd->sgc = NULL;
54ab4ff4
PZ
6840 }
6841}
6842
2c402dc3 6843struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
6844 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6845 struct sched_domain *child, int cpu)
2c402dc3 6846{
143e1e28 6847 struct sched_domain *sd = sd_init(tl, cpu);
2c402dc3 6848 if (!sd)
d069b916 6849 return child;
2c402dc3 6850
2c402dc3 6851 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6852 if (child) {
6853 sd->level = child->level + 1;
6854 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6855 child->parent = sd;
c75e0128 6856 sd->child = child;
6ae72dff
PZ
6857
6858 if (!cpumask_subset(sched_domain_span(child),
6859 sched_domain_span(sd))) {
6860 pr_err("BUG: arch topology borken\n");
6861#ifdef CONFIG_SCHED_DEBUG
6862 pr_err(" the %s domain not a subset of the %s domain\n",
6863 child->name, sd->name);
6864#endif
6865 /* Fixup, ensure @sd has at least @child cpus. */
6866 cpumask_or(sched_domain_span(sd),
6867 sched_domain_span(sd),
6868 sched_domain_span(child));
6869 }
6870
60495e77 6871 }
a841f8ce 6872 set_domain_attribute(sd, attr);
2c402dc3
PZ
6873
6874 return sd;
6875}
6876
2109b99e
AH
6877/*
6878 * Build sched domains for a given set of cpus and attach the sched domains
6879 * to the individual cpus
6880 */
dce840a0
PZ
6881static int build_sched_domains(const struct cpumask *cpu_map,
6882 struct sched_domain_attr *attr)
2109b99e 6883{
1c632169 6884 enum s_alloc alloc_state;
dce840a0 6885 struct sched_domain *sd;
2109b99e 6886 struct s_data d;
822ff793 6887 int i, ret = -ENOMEM;
9c1cfda2 6888
2109b99e
AH
6889 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6890 if (alloc_state != sa_rootdomain)
6891 goto error;
9c1cfda2 6892
dce840a0 6893 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6894 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6895 struct sched_domain_topology_level *tl;
6896
3bd65a80 6897 sd = NULL;
27723a68 6898 for_each_sd_topology(tl) {
4a850cbe 6899 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
6900 if (tl == sched_domain_topology)
6901 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
6902 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6903 sd->flags |= SD_OVERLAP;
d110235d
PZ
6904 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6905 break;
e3589f6c 6906 }
dce840a0
PZ
6907 }
6908
6909 /* Build the groups for the domains */
6910 for_each_cpu(i, cpu_map) {
6911 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6912 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6913 if (sd->flags & SD_OVERLAP) {
6914 if (build_overlap_sched_groups(sd, i))
6915 goto error;
6916 } else {
6917 if (build_sched_groups(sd, i))
6918 goto error;
6919 }
1cf51902 6920 }
a06dadbe 6921 }
9c1cfda2 6922
ced549fa 6923 /* Calculate CPU capacity for physical packages and nodes */
a9c9a9b6
PZ
6924 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6925 if (!cpumask_test_cpu(i, cpu_map))
6926 continue;
9c1cfda2 6927
dce840a0
PZ
6928 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6929 claim_allocations(i, sd);
63b2ca30 6930 init_sched_groups_capacity(i, sd);
dce840a0 6931 }
f712c0c7 6932 }
9c1cfda2 6933
1da177e4 6934 /* Attach the domains */
dce840a0 6935 rcu_read_lock();
abcd083a 6936 for_each_cpu(i, cpu_map) {
21d42ccf 6937 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6938 cpu_attach_domain(sd, d.rd, i);
1da177e4 6939 }
dce840a0 6940 rcu_read_unlock();
51888ca2 6941
822ff793 6942 ret = 0;
51888ca2 6943error:
2109b99e 6944 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6945 return ret;
1da177e4 6946}
029190c5 6947
acc3f5d7 6948static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6949static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6950static struct sched_domain_attr *dattr_cur;
6951 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6952
6953/*
6954 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6955 * cpumask) fails, then fallback to a single sched domain,
6956 * as determined by the single cpumask fallback_doms.
029190c5 6957 */
4212823f 6958static cpumask_var_t fallback_doms;
029190c5 6959
ee79d1bd
HC
6960/*
6961 * arch_update_cpu_topology lets virtualized architectures update the
6962 * cpu core maps. It is supposed to return 1 if the topology changed
6963 * or 0 if it stayed the same.
6964 */
52f5684c 6965int __weak arch_update_cpu_topology(void)
22e52b07 6966{
ee79d1bd 6967 return 0;
22e52b07
HC
6968}
6969
acc3f5d7
RR
6970cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6971{
6972 int i;
6973 cpumask_var_t *doms;
6974
6975 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6976 if (!doms)
6977 return NULL;
6978 for (i = 0; i < ndoms; i++) {
6979 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6980 free_sched_domains(doms, i);
6981 return NULL;
6982 }
6983 }
6984 return doms;
6985}
6986
6987void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6988{
6989 unsigned int i;
6990 for (i = 0; i < ndoms; i++)
6991 free_cpumask_var(doms[i]);
6992 kfree(doms);
6993}
6994
1a20ff27 6995/*
41a2d6cf 6996 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6997 * For now this just excludes isolated cpus, but could be used to
6998 * exclude other special cases in the future.
1a20ff27 6999 */
c4a8849a 7000static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7001{
7378547f
MM
7002 int err;
7003
22e52b07 7004 arch_update_cpu_topology();
029190c5 7005 ndoms_cur = 1;
acc3f5d7 7006 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7007 if (!doms_cur)
acc3f5d7
RR
7008 doms_cur = &fallback_doms;
7009 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 7010 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 7011 register_sched_domain_sysctl();
7378547f
MM
7012
7013 return err;
1a20ff27
DG
7014}
7015
1a20ff27
DG
7016/*
7017 * Detach sched domains from a group of cpus specified in cpu_map
7018 * These cpus will now be attached to the NULL domain
7019 */
96f874e2 7020static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
7021{
7022 int i;
7023
dce840a0 7024 rcu_read_lock();
abcd083a 7025 for_each_cpu(i, cpu_map)
57d885fe 7026 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 7027 rcu_read_unlock();
1a20ff27
DG
7028}
7029
1d3504fc
HS
7030/* handle null as "default" */
7031static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7032 struct sched_domain_attr *new, int idx_new)
7033{
7034 struct sched_domain_attr tmp;
7035
7036 /* fast path */
7037 if (!new && !cur)
7038 return 1;
7039
7040 tmp = SD_ATTR_INIT;
7041 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7042 new ? (new + idx_new) : &tmp,
7043 sizeof(struct sched_domain_attr));
7044}
7045
029190c5
PJ
7046/*
7047 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7048 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7049 * doms_new[] to the current sched domain partitioning, doms_cur[].
7050 * It destroys each deleted domain and builds each new domain.
7051 *
acc3f5d7 7052 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7053 * The masks don't intersect (don't overlap.) We should setup one
7054 * sched domain for each mask. CPUs not in any of the cpumasks will
7055 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7056 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7057 * it as it is.
7058 *
acc3f5d7
RR
7059 * The passed in 'doms_new' should be allocated using
7060 * alloc_sched_domains. This routine takes ownership of it and will
7061 * free_sched_domains it when done with it. If the caller failed the
7062 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7063 * and partition_sched_domains() will fallback to the single partition
7064 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7065 *
96f874e2 7066 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7067 * ndoms_new == 0 is a special case for destroying existing domains,
7068 * and it will not create the default domain.
dfb512ec 7069 *
029190c5
PJ
7070 * Call with hotplug lock held
7071 */
acc3f5d7 7072void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7073 struct sched_domain_attr *dattr_new)
029190c5 7074{
dfb512ec 7075 int i, j, n;
d65bd5ec 7076 int new_topology;
029190c5 7077
712555ee 7078 mutex_lock(&sched_domains_mutex);
a1835615 7079
7378547f
MM
7080 /* always unregister in case we don't destroy any domains */
7081 unregister_sched_domain_sysctl();
7082
d65bd5ec
HC
7083 /* Let architecture update cpu core mappings. */
7084 new_topology = arch_update_cpu_topology();
7085
dfb512ec 7086 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7087
7088 /* Destroy deleted domains */
7089 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7090 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7091 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7092 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7093 goto match1;
7094 }
7095 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7096 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7097match1:
7098 ;
7099 }
7100
c8d2d47a 7101 n = ndoms_cur;
e761b772 7102 if (doms_new == NULL) {
c8d2d47a 7103 n = 0;
acc3f5d7 7104 doms_new = &fallback_doms;
6ad4c188 7105 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7106 WARN_ON_ONCE(dattr_new);
e761b772
MK
7107 }
7108
029190c5
PJ
7109 /* Build new domains */
7110 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 7111 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7112 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7113 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7114 goto match2;
7115 }
7116 /* no match - add a new doms_new */
dce840a0 7117 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7118match2:
7119 ;
7120 }
7121
7122 /* Remember the new sched domains */
acc3f5d7
RR
7123 if (doms_cur != &fallback_doms)
7124 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7125 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7126 doms_cur = doms_new;
1d3504fc 7127 dattr_cur = dattr_new;
029190c5 7128 ndoms_cur = ndoms_new;
7378547f
MM
7129
7130 register_sched_domain_sysctl();
a1835615 7131
712555ee 7132 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7133}
7134
d35be8ba
SB
7135static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
7136
1da177e4 7137/*
3a101d05
TH
7138 * Update cpusets according to cpu_active mask. If cpusets are
7139 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7140 * around partition_sched_domains().
d35be8ba
SB
7141 *
7142 * If we come here as part of a suspend/resume, don't touch cpusets because we
7143 * want to restore it back to its original state upon resume anyway.
1da177e4 7144 */
0b2e918a
TH
7145static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7146 void *hcpu)
e761b772 7147{
d35be8ba
SB
7148 switch (action) {
7149 case CPU_ONLINE_FROZEN:
7150 case CPU_DOWN_FAILED_FROZEN:
7151
7152 /*
7153 * num_cpus_frozen tracks how many CPUs are involved in suspend
7154 * resume sequence. As long as this is not the last online
7155 * operation in the resume sequence, just build a single sched
7156 * domain, ignoring cpusets.
7157 */
7158 num_cpus_frozen--;
7159 if (likely(num_cpus_frozen)) {
7160 partition_sched_domains(1, NULL, NULL);
7161 break;
7162 }
7163
7164 /*
7165 * This is the last CPU online operation. So fall through and
7166 * restore the original sched domains by considering the
7167 * cpuset configurations.
7168 */
7169
e761b772 7170 case CPU_ONLINE:
7ddf96b0 7171 cpuset_update_active_cpus(true);
d35be8ba 7172 break;
3a101d05
TH
7173 default:
7174 return NOTIFY_DONE;
7175 }
d35be8ba 7176 return NOTIFY_OK;
3a101d05 7177}
e761b772 7178
0b2e918a
TH
7179static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7180 void *hcpu)
3a101d05 7181{
3c18d447
JL
7182 unsigned long flags;
7183 long cpu = (long)hcpu;
7184 struct dl_bw *dl_b;
533445c6
OS
7185 bool overflow;
7186 int cpus;
3c18d447 7187
533445c6 7188 switch (action) {
3a101d05 7189 case CPU_DOWN_PREPARE:
533445c6
OS
7190 rcu_read_lock_sched();
7191 dl_b = dl_bw_of(cpu);
3c18d447 7192
533445c6
OS
7193 raw_spin_lock_irqsave(&dl_b->lock, flags);
7194 cpus = dl_bw_cpus(cpu);
7195 overflow = __dl_overflow(dl_b, cpus, 0, 0);
7196 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3c18d447 7197
533445c6 7198 rcu_read_unlock_sched();
3c18d447 7199
533445c6
OS
7200 if (overflow)
7201 return notifier_from_errno(-EBUSY);
7ddf96b0 7202 cpuset_update_active_cpus(false);
d35be8ba
SB
7203 break;
7204 case CPU_DOWN_PREPARE_FROZEN:
7205 num_cpus_frozen++;
7206 partition_sched_domains(1, NULL, NULL);
7207 break;
e761b772
MK
7208 default:
7209 return NOTIFY_DONE;
7210 }
d35be8ba 7211 return NOTIFY_OK;
e761b772 7212}
e761b772 7213
1da177e4
LT
7214void __init sched_init_smp(void)
7215{
dcc30a35
RR
7216 cpumask_var_t non_isolated_cpus;
7217
7218 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7219 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7220
cb83b629
PZ
7221 sched_init_numa();
7222
6acce3ef
PZ
7223 /*
7224 * There's no userspace yet to cause hotplug operations; hence all the
7225 * cpu masks are stable and all blatant races in the below code cannot
7226 * happen.
7227 */
712555ee 7228 mutex_lock(&sched_domains_mutex);
c4a8849a 7229 init_sched_domains(cpu_active_mask);
dcc30a35
RR
7230 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7231 if (cpumask_empty(non_isolated_cpus))
7232 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7233 mutex_unlock(&sched_domains_mutex);
e761b772 7234
301a5cba 7235 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
7236 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7237 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772 7238
b328ca18 7239 init_hrtick();
5c1e1767
NP
7240
7241 /* Move init over to a non-isolated CPU */
dcc30a35 7242 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7243 BUG();
19978ca6 7244 sched_init_granularity();
dcc30a35 7245 free_cpumask_var(non_isolated_cpus);
4212823f 7246
0e3900e6 7247 init_sched_rt_class();
1baca4ce 7248 init_sched_dl_class();
1da177e4
LT
7249}
7250#else
7251void __init sched_init_smp(void)
7252{
19978ca6 7253 sched_init_granularity();
1da177e4
LT
7254}
7255#endif /* CONFIG_SMP */
7256
7257int in_sched_functions(unsigned long addr)
7258{
1da177e4
LT
7259 return in_lock_functions(addr) ||
7260 (addr >= (unsigned long)__sched_text_start
7261 && addr < (unsigned long)__sched_text_end);
7262}
7263
029632fb 7264#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
7265/*
7266 * Default task group.
7267 * Every task in system belongs to this group at bootup.
7268 */
029632fb 7269struct task_group root_task_group;
35cf4e50 7270LIST_HEAD(task_groups);
b0367629
WL
7271
7272/* Cacheline aligned slab cache for task_group */
7273static struct kmem_cache *task_group_cache __read_mostly;
052f1dc7 7274#endif
6f505b16 7275
e6252c3e 7276DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 7277
1da177e4
LT
7278void __init sched_init(void)
7279{
dd41f596 7280 int i, j;
434d53b0
MT
7281 unsigned long alloc_size = 0, ptr;
7282
7283#ifdef CONFIG_FAIR_GROUP_SCHED
7284 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7285#endif
7286#ifdef CONFIG_RT_GROUP_SCHED
7287 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7288#endif
434d53b0 7289 if (alloc_size) {
36b7b6d4 7290 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7291
7292#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 7293 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
7294 ptr += nr_cpu_ids * sizeof(void **);
7295
07e06b01 7296 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 7297 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7298
6d6bc0ad 7299#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 7300#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7301 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
7302 ptr += nr_cpu_ids * sizeof(void **);
7303
07e06b01 7304 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7305 ptr += nr_cpu_ids * sizeof(void **);
7306
6d6bc0ad 7307#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 7308 }
df7c8e84 7309#ifdef CONFIG_CPUMASK_OFFSTACK
b74e6278
AT
7310 for_each_possible_cpu(i) {
7311 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7312 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
434d53b0 7313 }
b74e6278 7314#endif /* CONFIG_CPUMASK_OFFSTACK */
dd41f596 7315
332ac17e
DF
7316 init_rt_bandwidth(&def_rt_bandwidth,
7317 global_rt_period(), global_rt_runtime());
7318 init_dl_bandwidth(&def_dl_bandwidth,
1724813d 7319 global_rt_period(), global_rt_runtime());
332ac17e 7320
57d885fe
GH
7321#ifdef CONFIG_SMP
7322 init_defrootdomain();
7323#endif
7324
d0b27fa7 7325#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7326 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 7327 global_rt_period(), global_rt_runtime());
6d6bc0ad 7328#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7329
7c941438 7330#ifdef CONFIG_CGROUP_SCHED
b0367629
WL
7331 task_group_cache = KMEM_CACHE(task_group, 0);
7332
07e06b01
YZ
7333 list_add(&root_task_group.list, &task_groups);
7334 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 7335 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 7336 autogroup_init(&init_task);
7c941438 7337#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7338
0a945022 7339 for_each_possible_cpu(i) {
70b97a7f 7340 struct rq *rq;
1da177e4
LT
7341
7342 rq = cpu_rq(i);
05fa785c 7343 raw_spin_lock_init(&rq->lock);
7897986b 7344 rq->nr_running = 0;
dce48a84
TG
7345 rq->calc_load_active = 0;
7346 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 7347 init_cfs_rq(&rq->cfs);
07c54f7a
AV
7348 init_rt_rq(&rq->rt);
7349 init_dl_rq(&rq->dl);
dd41f596 7350#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 7351 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 7352 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 7353 /*
07e06b01 7354 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
7355 *
7356 * In case of task-groups formed thr' the cgroup filesystem, it
7357 * gets 100% of the cpu resources in the system. This overall
7358 * system cpu resource is divided among the tasks of
07e06b01 7359 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
7360 * based on each entity's (task or task-group's) weight
7361 * (se->load.weight).
7362 *
07e06b01 7363 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
7364 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7365 * then A0's share of the cpu resource is:
7366 *
0d905bca 7367 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 7368 *
07e06b01
YZ
7369 * We achieve this by letting root_task_group's tasks sit
7370 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 7371 */
ab84d31e 7372 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 7373 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
7374#endif /* CONFIG_FAIR_GROUP_SCHED */
7375
7376 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7377#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7378 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 7379#endif
1da177e4 7380
dd41f596
IM
7381 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7382 rq->cpu_load[j] = 0;
fdf3e95d 7383
1da177e4 7384#ifdef CONFIG_SMP
41c7ce9a 7385 rq->sd = NULL;
57d885fe 7386 rq->rd = NULL;
ca6d75e6 7387 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
e3fca9e7 7388 rq->balance_callback = NULL;
1da177e4 7389 rq->active_balance = 0;
dd41f596 7390 rq->next_balance = jiffies;
1da177e4 7391 rq->push_cpu = 0;
0a2966b4 7392 rq->cpu = i;
1f11eb6a 7393 rq->online = 0;
eae0c9df
MG
7394 rq->idle_stamp = 0;
7395 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 7396 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
7397
7398 INIT_LIST_HEAD(&rq->cfs_tasks);
7399
dc938520 7400 rq_attach_root(rq, &def_root_domain);
3451d024 7401#ifdef CONFIG_NO_HZ_COMMON
9fd81dd5 7402 rq->last_load_update_tick = jiffies;
1c792db7 7403 rq->nohz_flags = 0;
83cd4fe2 7404#endif
265f22a9
FW
7405#ifdef CONFIG_NO_HZ_FULL
7406 rq->last_sched_tick = 0;
7407#endif
9fd81dd5 7408#endif /* CONFIG_SMP */
8f4d37ec 7409 init_rq_hrtick(rq);
1da177e4 7410 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7411 }
7412
2dd73a4f 7413 set_load_weight(&init_task);
b50f60ce 7414
e107be36
AK
7415#ifdef CONFIG_PREEMPT_NOTIFIERS
7416 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7417#endif
7418
1da177e4
LT
7419 /*
7420 * The boot idle thread does lazy MMU switching as well:
7421 */
7422 atomic_inc(&init_mm.mm_count);
7423 enter_lazy_tlb(&init_mm, current);
7424
1b537c7d
YD
7425 /*
7426 * During early bootup we pretend to be a normal task:
7427 */
7428 current->sched_class = &fair_sched_class;
7429
1da177e4
LT
7430 /*
7431 * Make us the idle thread. Technically, schedule() should not be
7432 * called from this thread, however somewhere below it might be,
7433 * but because we are the idle thread, we just pick up running again
7434 * when this runqueue becomes "idle".
7435 */
7436 init_idle(current, smp_processor_id());
dce48a84
TG
7437
7438 calc_load_update = jiffies + LOAD_FREQ;
7439
bf4d83f6 7440#ifdef CONFIG_SMP
4cb98839 7441 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
7442 /* May be allocated at isolcpus cmdline parse time */
7443 if (cpu_isolated_map == NULL)
7444 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 7445 idle_thread_set_boot_cpu();
a803f026 7446 set_cpu_rq_start_time();
029632fb
PZ
7447#endif
7448 init_sched_fair_class();
6a7b3dc3 7449
6892b75e 7450 scheduler_running = 1;
1da177e4
LT
7451}
7452
d902db1e 7453#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
7454static inline int preempt_count_equals(int preempt_offset)
7455{
da7142e2 7456 int nested = preempt_count() + rcu_preempt_depth();
e4aafea2 7457
4ba8216c 7458 return (nested == preempt_offset);
e4aafea2
FW
7459}
7460
d894837f 7461void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7462{
8eb23b9f
PZ
7463 /*
7464 * Blocking primitives will set (and therefore destroy) current->state,
7465 * since we will exit with TASK_RUNNING make sure we enter with it,
7466 * otherwise we will destroy state.
7467 */
00845eb9 7468 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
8eb23b9f
PZ
7469 "do not call blocking ops when !TASK_RUNNING; "
7470 "state=%lx set at [<%p>] %pS\n",
7471 current->state,
7472 (void *)current->task_state_change,
00845eb9 7473 (void *)current->task_state_change);
8eb23b9f 7474
3427445a
PZ
7475 ___might_sleep(file, line, preempt_offset);
7476}
7477EXPORT_SYMBOL(__might_sleep);
7478
7479void ___might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7480{
1da177e4
LT
7481 static unsigned long prev_jiffy; /* ratelimiting */
7482
b3fbab05 7483 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
db273be2
TG
7484 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7485 !is_idle_task(current)) ||
e4aafea2 7486 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7487 return;
7488 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7489 return;
7490 prev_jiffy = jiffies;
7491
3df0fc5b
PZ
7492 printk(KERN_ERR
7493 "BUG: sleeping function called from invalid context at %s:%d\n",
7494 file, line);
7495 printk(KERN_ERR
7496 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7497 in_atomic(), irqs_disabled(),
7498 current->pid, current->comm);
aef745fc 7499
a8b686b3
ES
7500 if (task_stack_end_corrupted(current))
7501 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7502
aef745fc
IM
7503 debug_show_held_locks(current);
7504 if (irqs_disabled())
7505 print_irqtrace_events(current);
8f47b187
TG
7506#ifdef CONFIG_DEBUG_PREEMPT
7507 if (!preempt_count_equals(preempt_offset)) {
7508 pr_err("Preemption disabled at:");
7509 print_ip_sym(current->preempt_disable_ip);
7510 pr_cont("\n");
7511 }
7512#endif
aef745fc 7513 dump_stack();
1da177e4 7514}
3427445a 7515EXPORT_SYMBOL(___might_sleep);
1da177e4
LT
7516#endif
7517
7518#ifdef CONFIG_MAGIC_SYSRQ
dbc7f069 7519void normalize_rt_tasks(void)
3a5e4dc1 7520{
dbc7f069 7521 struct task_struct *g, *p;
d50dde5a
DF
7522 struct sched_attr attr = {
7523 .sched_policy = SCHED_NORMAL,
7524 };
1da177e4 7525
3472eaa1 7526 read_lock(&tasklist_lock);
5d07f420 7527 for_each_process_thread(g, p) {
178be793
IM
7528 /*
7529 * Only normalize user tasks:
7530 */
3472eaa1 7531 if (p->flags & PF_KTHREAD)
178be793
IM
7532 continue;
7533
6cfb0d5d 7534 p->se.exec_start = 0;
6cfb0d5d 7535#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7536 p->se.statistics.wait_start = 0;
7537 p->se.statistics.sleep_start = 0;
7538 p->se.statistics.block_start = 0;
6cfb0d5d 7539#endif
dd41f596 7540
aab03e05 7541 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
7542 /*
7543 * Renice negative nice level userspace
7544 * tasks back to 0:
7545 */
3472eaa1 7546 if (task_nice(p) < 0)
dd41f596 7547 set_user_nice(p, 0);
1da177e4 7548 continue;
dd41f596 7549 }
1da177e4 7550
dbc7f069 7551 __sched_setscheduler(p, &attr, false, false);
5d07f420 7552 }
3472eaa1 7553 read_unlock(&tasklist_lock);
1da177e4
LT
7554}
7555
7556#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7557
67fc4e0c 7558#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7559/*
67fc4e0c 7560 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7561 *
7562 * They can only be called when the whole system has been
7563 * stopped - every CPU needs to be quiescent, and no scheduling
7564 * activity can take place. Using them for anything else would
7565 * be a serious bug, and as a result, they aren't even visible
7566 * under any other configuration.
7567 */
7568
7569/**
7570 * curr_task - return the current task for a given cpu.
7571 * @cpu: the processor in question.
7572 *
7573 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
7574 *
7575 * Return: The current task for @cpu.
1df5c10a 7576 */
36c8b586 7577struct task_struct *curr_task(int cpu)
1df5c10a
LT
7578{
7579 return cpu_curr(cpu);
7580}
7581
67fc4e0c
JW
7582#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7583
7584#ifdef CONFIG_IA64
1df5c10a
LT
7585/**
7586 * set_curr_task - set the current task for a given cpu.
7587 * @cpu: the processor in question.
7588 * @p: the task pointer to set.
7589 *
7590 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7591 * are serviced on a separate stack. It allows the architecture to switch the
7592 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7593 * must be called with all CPU's synchronized, and interrupts disabled, the
7594 * and caller must save the original value of the current task (see
7595 * curr_task() above) and restore that value before reenabling interrupts and
7596 * re-starting the system.
7597 *
7598 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7599 */
36c8b586 7600void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7601{
7602 cpu_curr(cpu) = p;
7603}
7604
7605#endif
29f59db3 7606
7c941438 7607#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7608/* task_group_lock serializes the addition/removal of task groups */
7609static DEFINE_SPINLOCK(task_group_lock);
7610
2f5177f0 7611static void sched_free_group(struct task_group *tg)
bccbe08a
PZ
7612{
7613 free_fair_sched_group(tg);
7614 free_rt_sched_group(tg);
e9aa1dd1 7615 autogroup_free(tg);
b0367629 7616 kmem_cache_free(task_group_cache, tg);
bccbe08a
PZ
7617}
7618
7619/* allocate runqueue etc for a new task group */
ec7dc8ac 7620struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7621{
7622 struct task_group *tg;
bccbe08a 7623
b0367629 7624 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
bccbe08a
PZ
7625 if (!tg)
7626 return ERR_PTR(-ENOMEM);
7627
ec7dc8ac 7628 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7629 goto err;
7630
ec7dc8ac 7631 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7632 goto err;
7633
ace783b9
LZ
7634 return tg;
7635
7636err:
2f5177f0 7637 sched_free_group(tg);
ace783b9
LZ
7638 return ERR_PTR(-ENOMEM);
7639}
7640
7641void sched_online_group(struct task_group *tg, struct task_group *parent)
7642{
7643 unsigned long flags;
7644
8ed36996 7645 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7646 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7647
7648 WARN_ON(!parent); /* root should already exist */
7649
7650 tg->parent = parent;
f473aa5e 7651 INIT_LIST_HEAD(&tg->children);
09f2724a 7652 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7653 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7654}
7655
9b5b7751 7656/* rcu callback to free various structures associated with a task group */
2f5177f0 7657static void sched_free_group_rcu(struct rcu_head *rhp)
29f59db3 7658{
29f59db3 7659 /* now it should be safe to free those cfs_rqs */
2f5177f0 7660 sched_free_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7661}
7662
4cf86d77 7663void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
7664{
7665 /* wait for possible concurrent references to cfs_rqs complete */
2f5177f0 7666 call_rcu(&tg->rcu, sched_free_group_rcu);
ace783b9
LZ
7667}
7668
7669void sched_offline_group(struct task_group *tg)
29f59db3 7670{
8ed36996 7671 unsigned long flags;
29f59db3 7672
3d4b47b4 7673 /* end participation in shares distribution */
6fe1f348 7674 unregister_fair_sched_group(tg);
3d4b47b4
PZ
7675
7676 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7677 list_del_rcu(&tg->list);
f473aa5e 7678 list_del_rcu(&tg->siblings);
8ed36996 7679 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7680}
7681
9b5b7751 7682/* change task's runqueue when it moves between groups.
3a252015
IM
7683 * The caller of this function should have put the task in its new group
7684 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7685 * reflect its new group.
9b5b7751
SV
7686 */
7687void sched_move_task(struct task_struct *tsk)
29f59db3 7688{
8323f26c 7689 struct task_group *tg;
da0c1e65 7690 int queued, running;
29f59db3
SV
7691 unsigned long flags;
7692 struct rq *rq;
7693
7694 rq = task_rq_lock(tsk, &flags);
7695
051a1d1a 7696 running = task_current(rq, tsk);
da0c1e65 7697 queued = task_on_rq_queued(tsk);
29f59db3 7698
da0c1e65 7699 if (queued)
ff77e468 7700 dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
0e1f3483 7701 if (unlikely(running))
f3cd1c4e 7702 put_prev_task(rq, tsk);
29f59db3 7703
f7b8a47d
KT
7704 /*
7705 * All callers are synchronized by task_rq_lock(); we do not use RCU
7706 * which is pointless here. Thus, we pass "true" to task_css_check()
7707 * to prevent lockdep warnings.
7708 */
7709 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
7710 struct task_group, css);
7711 tg = autogroup_task_group(tsk, tg);
7712 tsk->sched_task_group = tg;
7713
810b3817 7714#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7715 if (tsk->sched_class->task_move_group)
bc54da21 7716 tsk->sched_class->task_move_group(tsk);
b2b5ce02 7717 else
810b3817 7718#endif
b2b5ce02 7719 set_task_rq(tsk, task_cpu(tsk));
810b3817 7720
0e1f3483
HS
7721 if (unlikely(running))
7722 tsk->sched_class->set_curr_task(rq);
da0c1e65 7723 if (queued)
ff77e468 7724 enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
29f59db3 7725
0122ec5b 7726 task_rq_unlock(rq, tsk, &flags);
29f59db3 7727}
7c941438 7728#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7729
a790de99
PT
7730#ifdef CONFIG_RT_GROUP_SCHED
7731/*
7732 * Ensure that the real time constraints are schedulable.
7733 */
7734static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7735
9a7e0b18
PZ
7736/* Must be called with tasklist_lock held */
7737static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7738{
9a7e0b18 7739 struct task_struct *g, *p;
b40b2e8e 7740
1fe89e1b
PZ
7741 /*
7742 * Autogroups do not have RT tasks; see autogroup_create().
7743 */
7744 if (task_group_is_autogroup(tg))
7745 return 0;
7746
5d07f420 7747 for_each_process_thread(g, p) {
8651c658 7748 if (rt_task(p) && task_group(p) == tg)
9a7e0b18 7749 return 1;
5d07f420 7750 }
b40b2e8e 7751
9a7e0b18
PZ
7752 return 0;
7753}
b40b2e8e 7754
9a7e0b18
PZ
7755struct rt_schedulable_data {
7756 struct task_group *tg;
7757 u64 rt_period;
7758 u64 rt_runtime;
7759};
b40b2e8e 7760
a790de99 7761static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7762{
7763 struct rt_schedulable_data *d = data;
7764 struct task_group *child;
7765 unsigned long total, sum = 0;
7766 u64 period, runtime;
b40b2e8e 7767
9a7e0b18
PZ
7768 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7769 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7770
9a7e0b18
PZ
7771 if (tg == d->tg) {
7772 period = d->rt_period;
7773 runtime = d->rt_runtime;
b40b2e8e 7774 }
b40b2e8e 7775
4653f803
PZ
7776 /*
7777 * Cannot have more runtime than the period.
7778 */
7779 if (runtime > period && runtime != RUNTIME_INF)
7780 return -EINVAL;
6f505b16 7781
4653f803
PZ
7782 /*
7783 * Ensure we don't starve existing RT tasks.
7784 */
9a7e0b18
PZ
7785 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7786 return -EBUSY;
6f505b16 7787
9a7e0b18 7788 total = to_ratio(period, runtime);
6f505b16 7789
4653f803
PZ
7790 /*
7791 * Nobody can have more than the global setting allows.
7792 */
7793 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7794 return -EINVAL;
6f505b16 7795
4653f803
PZ
7796 /*
7797 * The sum of our children's runtime should not exceed our own.
7798 */
9a7e0b18
PZ
7799 list_for_each_entry_rcu(child, &tg->children, siblings) {
7800 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7801 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7802
9a7e0b18
PZ
7803 if (child == d->tg) {
7804 period = d->rt_period;
7805 runtime = d->rt_runtime;
7806 }
6f505b16 7807
9a7e0b18 7808 sum += to_ratio(period, runtime);
9f0c1e56 7809 }
6f505b16 7810
9a7e0b18
PZ
7811 if (sum > total)
7812 return -EINVAL;
7813
7814 return 0;
6f505b16
PZ
7815}
7816
9a7e0b18 7817static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7818{
8277434e
PT
7819 int ret;
7820
9a7e0b18
PZ
7821 struct rt_schedulable_data data = {
7822 .tg = tg,
7823 .rt_period = period,
7824 .rt_runtime = runtime,
7825 };
7826
8277434e
PT
7827 rcu_read_lock();
7828 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7829 rcu_read_unlock();
7830
7831 return ret;
521f1a24
DG
7832}
7833
ab84d31e 7834static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7835 u64 rt_period, u64 rt_runtime)
6f505b16 7836{
ac086bc2 7837 int i, err = 0;
9f0c1e56 7838
2636ed5f
PZ
7839 /*
7840 * Disallowing the root group RT runtime is BAD, it would disallow the
7841 * kernel creating (and or operating) RT threads.
7842 */
7843 if (tg == &root_task_group && rt_runtime == 0)
7844 return -EINVAL;
7845
7846 /* No period doesn't make any sense. */
7847 if (rt_period == 0)
7848 return -EINVAL;
7849
9f0c1e56 7850 mutex_lock(&rt_constraints_mutex);
521f1a24 7851 read_lock(&tasklist_lock);
9a7e0b18
PZ
7852 err = __rt_schedulable(tg, rt_period, rt_runtime);
7853 if (err)
9f0c1e56 7854 goto unlock;
ac086bc2 7855
0986b11b 7856 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7857 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7858 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7859
7860 for_each_possible_cpu(i) {
7861 struct rt_rq *rt_rq = tg->rt_rq[i];
7862
0986b11b 7863 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7864 rt_rq->rt_runtime = rt_runtime;
0986b11b 7865 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7866 }
0986b11b 7867 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7868unlock:
521f1a24 7869 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7870 mutex_unlock(&rt_constraints_mutex);
7871
7872 return err;
6f505b16
PZ
7873}
7874
25cc7da7 7875static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
7876{
7877 u64 rt_runtime, rt_period;
7878
7879 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7880 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7881 if (rt_runtime_us < 0)
7882 rt_runtime = RUNTIME_INF;
7883
ab84d31e 7884 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7885}
7886
25cc7da7 7887static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
7888{
7889 u64 rt_runtime_us;
7890
d0b27fa7 7891 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7892 return -1;
7893
d0b27fa7 7894 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7895 do_div(rt_runtime_us, NSEC_PER_USEC);
7896 return rt_runtime_us;
7897}
d0b27fa7 7898
ce2f5fe4 7899static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
d0b27fa7
PZ
7900{
7901 u64 rt_runtime, rt_period;
7902
ce2f5fe4 7903 rt_period = rt_period_us * NSEC_PER_USEC;
d0b27fa7
PZ
7904 rt_runtime = tg->rt_bandwidth.rt_runtime;
7905
ab84d31e 7906 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7907}
7908
25cc7da7 7909static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
7910{
7911 u64 rt_period_us;
7912
7913 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7914 do_div(rt_period_us, NSEC_PER_USEC);
7915 return rt_period_us;
7916}
332ac17e 7917#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7918
332ac17e 7919#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
7920static int sched_rt_global_constraints(void)
7921{
7922 int ret = 0;
7923
7924 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7925 read_lock(&tasklist_lock);
4653f803 7926 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7927 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7928 mutex_unlock(&rt_constraints_mutex);
7929
7930 return ret;
7931}
54e99124 7932
25cc7da7 7933static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
7934{
7935 /* Don't accept realtime tasks when there is no way for them to run */
7936 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7937 return 0;
7938
7939 return 1;
7940}
7941
6d6bc0ad 7942#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7943static int sched_rt_global_constraints(void)
7944{
ac086bc2 7945 unsigned long flags;
332ac17e 7946 int i, ret = 0;
ec5d4989 7947
0986b11b 7948 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7949 for_each_possible_cpu(i) {
7950 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7951
0986b11b 7952 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7953 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7954 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7955 }
0986b11b 7956 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7957
332ac17e 7958 return ret;
d0b27fa7 7959}
6d6bc0ad 7960#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7961
a1963b81 7962static int sched_dl_global_validate(void)
332ac17e 7963{
1724813d
PZ
7964 u64 runtime = global_rt_runtime();
7965 u64 period = global_rt_period();
332ac17e 7966 u64 new_bw = to_ratio(period, runtime);
f10e00f4 7967 struct dl_bw *dl_b;
1724813d 7968 int cpu, ret = 0;
49516342 7969 unsigned long flags;
332ac17e
DF
7970
7971 /*
7972 * Here we want to check the bandwidth not being set to some
7973 * value smaller than the currently allocated bandwidth in
7974 * any of the root_domains.
7975 *
7976 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7977 * cycling on root_domains... Discussion on different/better
7978 * solutions is welcome!
7979 */
1724813d 7980 for_each_possible_cpu(cpu) {
f10e00f4
KT
7981 rcu_read_lock_sched();
7982 dl_b = dl_bw_of(cpu);
332ac17e 7983
49516342 7984 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d
PZ
7985 if (new_bw < dl_b->total_bw)
7986 ret = -EBUSY;
49516342 7987 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
1724813d 7988
f10e00f4
KT
7989 rcu_read_unlock_sched();
7990
1724813d
PZ
7991 if (ret)
7992 break;
332ac17e
DF
7993 }
7994
1724813d 7995 return ret;
332ac17e
DF
7996}
7997
1724813d 7998static void sched_dl_do_global(void)
ce0dbbbb 7999{
1724813d 8000 u64 new_bw = -1;
f10e00f4 8001 struct dl_bw *dl_b;
1724813d 8002 int cpu;
49516342 8003 unsigned long flags;
ce0dbbbb 8004
1724813d
PZ
8005 def_dl_bandwidth.dl_period = global_rt_period();
8006 def_dl_bandwidth.dl_runtime = global_rt_runtime();
8007
8008 if (global_rt_runtime() != RUNTIME_INF)
8009 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
8010
8011 /*
8012 * FIXME: As above...
8013 */
8014 for_each_possible_cpu(cpu) {
f10e00f4
KT
8015 rcu_read_lock_sched();
8016 dl_b = dl_bw_of(cpu);
1724813d 8017
49516342 8018 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d 8019 dl_b->bw = new_bw;
49516342 8020 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
f10e00f4
KT
8021
8022 rcu_read_unlock_sched();
ce0dbbbb 8023 }
1724813d
PZ
8024}
8025
8026static int sched_rt_global_validate(void)
8027{
8028 if (sysctl_sched_rt_period <= 0)
8029 return -EINVAL;
8030
e9e7cb38
JL
8031 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
8032 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
1724813d
PZ
8033 return -EINVAL;
8034
8035 return 0;
8036}
8037
8038static void sched_rt_do_global(void)
8039{
8040 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8041 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
8042}
8043
d0b27fa7 8044int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8045 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8046 loff_t *ppos)
8047{
d0b27fa7
PZ
8048 int old_period, old_runtime;
8049 static DEFINE_MUTEX(mutex);
1724813d 8050 int ret;
d0b27fa7
PZ
8051
8052 mutex_lock(&mutex);
8053 old_period = sysctl_sched_rt_period;
8054 old_runtime = sysctl_sched_rt_runtime;
8055
8d65af78 8056 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
8057
8058 if (!ret && write) {
1724813d
PZ
8059 ret = sched_rt_global_validate();
8060 if (ret)
8061 goto undo;
8062
a1963b81 8063 ret = sched_dl_global_validate();
1724813d
PZ
8064 if (ret)
8065 goto undo;
8066
a1963b81 8067 ret = sched_rt_global_constraints();
1724813d
PZ
8068 if (ret)
8069 goto undo;
8070
8071 sched_rt_do_global();
8072 sched_dl_do_global();
8073 }
8074 if (0) {
8075undo:
8076 sysctl_sched_rt_period = old_period;
8077 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
8078 }
8079 mutex_unlock(&mutex);
8080
8081 return ret;
8082}
68318b8e 8083
1724813d 8084int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
8085 void __user *buffer, size_t *lenp,
8086 loff_t *ppos)
8087{
8088 int ret;
332ac17e 8089 static DEFINE_MUTEX(mutex);
332ac17e
DF
8090
8091 mutex_lock(&mutex);
332ac17e 8092 ret = proc_dointvec(table, write, buffer, lenp, ppos);
1724813d
PZ
8093 /* make sure that internally we keep jiffies */
8094 /* also, writing zero resets timeslice to default */
332ac17e 8095 if (!ret && write) {
1724813d
PZ
8096 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8097 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
332ac17e
DF
8098 }
8099 mutex_unlock(&mutex);
332ac17e
DF
8100 return ret;
8101}
8102
052f1dc7 8103#ifdef CONFIG_CGROUP_SCHED
68318b8e 8104
a7c6d554 8105static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 8106{
a7c6d554 8107 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
8108}
8109
eb95419b
TH
8110static struct cgroup_subsys_state *
8111cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 8112{
eb95419b
TH
8113 struct task_group *parent = css_tg(parent_css);
8114 struct task_group *tg;
68318b8e 8115
eb95419b 8116 if (!parent) {
68318b8e 8117 /* This is early initialization for the top cgroup */
07e06b01 8118 return &root_task_group.css;
68318b8e
SV
8119 }
8120
ec7dc8ac 8121 tg = sched_create_group(parent);
68318b8e
SV
8122 if (IS_ERR(tg))
8123 return ERR_PTR(-ENOMEM);
8124
2f5177f0
PZ
8125 sched_online_group(tg, parent);
8126
68318b8e
SV
8127 return &tg->css;
8128}
8129
2f5177f0 8130static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
ace783b9 8131{
eb95419b 8132 struct task_group *tg = css_tg(css);
ace783b9 8133
2f5177f0 8134 sched_offline_group(tg);
ace783b9
LZ
8135}
8136
eb95419b 8137static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 8138{
eb95419b 8139 struct task_group *tg = css_tg(css);
68318b8e 8140
2f5177f0
PZ
8141 /*
8142 * Relies on the RCU grace period between css_released() and this.
8143 */
8144 sched_free_group(tg);
ace783b9
LZ
8145}
8146
b53202e6 8147static void cpu_cgroup_fork(struct task_struct *task)
eeb61e53
KT
8148{
8149 sched_move_task(task);
8150}
8151
1f7dd3e5 8152static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
68318b8e 8153{
bb9d97b6 8154 struct task_struct *task;
1f7dd3e5 8155 struct cgroup_subsys_state *css;
bb9d97b6 8156
1f7dd3e5 8157 cgroup_taskset_for_each(task, css, tset) {
b68aa230 8158#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 8159 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 8160 return -EINVAL;
b68aa230 8161#else
bb9d97b6
TH
8162 /* We don't support RT-tasks being in separate groups */
8163 if (task->sched_class != &fair_sched_class)
8164 return -EINVAL;
b68aa230 8165#endif
bb9d97b6 8166 }
be367d09
BB
8167 return 0;
8168}
68318b8e 8169
1f7dd3e5 8170static void cpu_cgroup_attach(struct cgroup_taskset *tset)
68318b8e 8171{
bb9d97b6 8172 struct task_struct *task;
1f7dd3e5 8173 struct cgroup_subsys_state *css;
bb9d97b6 8174
1f7dd3e5 8175 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 8176 sched_move_task(task);
68318b8e
SV
8177}
8178
052f1dc7 8179#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
8180static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8181 struct cftype *cftype, u64 shareval)
68318b8e 8182{
182446d0 8183 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
8184}
8185
182446d0
TH
8186static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8187 struct cftype *cft)
68318b8e 8188{
182446d0 8189 struct task_group *tg = css_tg(css);
68318b8e 8190
c8b28116 8191 return (u64) scale_load_down(tg->shares);
68318b8e 8192}
ab84d31e
PT
8193
8194#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
8195static DEFINE_MUTEX(cfs_constraints_mutex);
8196
ab84d31e
PT
8197const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8198const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8199
a790de99
PT
8200static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8201
ab84d31e
PT
8202static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8203{
56f570e5 8204 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 8205 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
8206
8207 if (tg == &root_task_group)
8208 return -EINVAL;
8209
8210 /*
8211 * Ensure we have at some amount of bandwidth every period. This is
8212 * to prevent reaching a state of large arrears when throttled via
8213 * entity_tick() resulting in prolonged exit starvation.
8214 */
8215 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8216 return -EINVAL;
8217
8218 /*
8219 * Likewise, bound things on the otherside by preventing insane quota
8220 * periods. This also allows us to normalize in computing quota
8221 * feasibility.
8222 */
8223 if (period > max_cfs_quota_period)
8224 return -EINVAL;
8225
0e59bdae
KT
8226 /*
8227 * Prevent race between setting of cfs_rq->runtime_enabled and
8228 * unthrottle_offline_cfs_rqs().
8229 */
8230 get_online_cpus();
a790de99
PT
8231 mutex_lock(&cfs_constraints_mutex);
8232 ret = __cfs_schedulable(tg, period, quota);
8233 if (ret)
8234 goto out_unlock;
8235
58088ad0 8236 runtime_enabled = quota != RUNTIME_INF;
56f570e5 8237 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
8238 /*
8239 * If we need to toggle cfs_bandwidth_used, off->on must occur
8240 * before making related changes, and on->off must occur afterwards
8241 */
8242 if (runtime_enabled && !runtime_was_enabled)
8243 cfs_bandwidth_usage_inc();
ab84d31e
PT
8244 raw_spin_lock_irq(&cfs_b->lock);
8245 cfs_b->period = ns_to_ktime(period);
8246 cfs_b->quota = quota;
58088ad0 8247
a9cf55b2 8248 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 8249 /* restart the period timer (if active) to handle new period expiry */
77a4d1a1
PZ
8250 if (runtime_enabled)
8251 start_cfs_bandwidth(cfs_b);
ab84d31e
PT
8252 raw_spin_unlock_irq(&cfs_b->lock);
8253
0e59bdae 8254 for_each_online_cpu(i) {
ab84d31e 8255 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 8256 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
8257
8258 raw_spin_lock_irq(&rq->lock);
58088ad0 8259 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 8260 cfs_rq->runtime_remaining = 0;
671fd9da 8261
029632fb 8262 if (cfs_rq->throttled)
671fd9da 8263 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
8264 raw_spin_unlock_irq(&rq->lock);
8265 }
1ee14e6c
BS
8266 if (runtime_was_enabled && !runtime_enabled)
8267 cfs_bandwidth_usage_dec();
a790de99
PT
8268out_unlock:
8269 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 8270 put_online_cpus();
ab84d31e 8271
a790de99 8272 return ret;
ab84d31e
PT
8273}
8274
8275int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8276{
8277 u64 quota, period;
8278
029632fb 8279 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8280 if (cfs_quota_us < 0)
8281 quota = RUNTIME_INF;
8282 else
8283 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8284
8285 return tg_set_cfs_bandwidth(tg, period, quota);
8286}
8287
8288long tg_get_cfs_quota(struct task_group *tg)
8289{
8290 u64 quota_us;
8291
029632fb 8292 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
8293 return -1;
8294
029632fb 8295 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
8296 do_div(quota_us, NSEC_PER_USEC);
8297
8298 return quota_us;
8299}
8300
8301int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8302{
8303 u64 quota, period;
8304
8305 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 8306 quota = tg->cfs_bandwidth.quota;
ab84d31e 8307
ab84d31e
PT
8308 return tg_set_cfs_bandwidth(tg, period, quota);
8309}
8310
8311long tg_get_cfs_period(struct task_group *tg)
8312{
8313 u64 cfs_period_us;
8314
029632fb 8315 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8316 do_div(cfs_period_us, NSEC_PER_USEC);
8317
8318 return cfs_period_us;
8319}
8320
182446d0
TH
8321static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8322 struct cftype *cft)
ab84d31e 8323{
182446d0 8324 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
8325}
8326
182446d0
TH
8327static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8328 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 8329{
182446d0 8330 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
8331}
8332
182446d0
TH
8333static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8334 struct cftype *cft)
ab84d31e 8335{
182446d0 8336 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
8337}
8338
182446d0
TH
8339static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8340 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 8341{
182446d0 8342 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
8343}
8344
a790de99
PT
8345struct cfs_schedulable_data {
8346 struct task_group *tg;
8347 u64 period, quota;
8348};
8349
8350/*
8351 * normalize group quota/period to be quota/max_period
8352 * note: units are usecs
8353 */
8354static u64 normalize_cfs_quota(struct task_group *tg,
8355 struct cfs_schedulable_data *d)
8356{
8357 u64 quota, period;
8358
8359 if (tg == d->tg) {
8360 period = d->period;
8361 quota = d->quota;
8362 } else {
8363 period = tg_get_cfs_period(tg);
8364 quota = tg_get_cfs_quota(tg);
8365 }
8366
8367 /* note: these should typically be equivalent */
8368 if (quota == RUNTIME_INF || quota == -1)
8369 return RUNTIME_INF;
8370
8371 return to_ratio(period, quota);
8372}
8373
8374static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8375{
8376 struct cfs_schedulable_data *d = data;
029632fb 8377 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
8378 s64 quota = 0, parent_quota = -1;
8379
8380 if (!tg->parent) {
8381 quota = RUNTIME_INF;
8382 } else {
029632fb 8383 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
8384
8385 quota = normalize_cfs_quota(tg, d);
9c58c79a 8386 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
8387
8388 /*
8389 * ensure max(child_quota) <= parent_quota, inherit when no
8390 * limit is set
8391 */
8392 if (quota == RUNTIME_INF)
8393 quota = parent_quota;
8394 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8395 return -EINVAL;
8396 }
9c58c79a 8397 cfs_b->hierarchical_quota = quota;
a790de99
PT
8398
8399 return 0;
8400}
8401
8402static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8403{
8277434e 8404 int ret;
a790de99
PT
8405 struct cfs_schedulable_data data = {
8406 .tg = tg,
8407 .period = period,
8408 .quota = quota,
8409 };
8410
8411 if (quota != RUNTIME_INF) {
8412 do_div(data.period, NSEC_PER_USEC);
8413 do_div(data.quota, NSEC_PER_USEC);
8414 }
8415
8277434e
PT
8416 rcu_read_lock();
8417 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8418 rcu_read_unlock();
8419
8420 return ret;
a790de99 8421}
e8da1b18 8422
2da8ca82 8423static int cpu_stats_show(struct seq_file *sf, void *v)
e8da1b18 8424{
2da8ca82 8425 struct task_group *tg = css_tg(seq_css(sf));
029632fb 8426 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 8427
44ffc75b
TH
8428 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8429 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8430 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
8431
8432 return 0;
8433}
ab84d31e 8434#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 8435#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8436
052f1dc7 8437#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
8438static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8439 struct cftype *cft, s64 val)
6f505b16 8440{
182446d0 8441 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
8442}
8443
182446d0
TH
8444static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8445 struct cftype *cft)
6f505b16 8446{
182446d0 8447 return sched_group_rt_runtime(css_tg(css));
6f505b16 8448}
d0b27fa7 8449
182446d0
TH
8450static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8451 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 8452{
182446d0 8453 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
8454}
8455
182446d0
TH
8456static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8457 struct cftype *cft)
d0b27fa7 8458{
182446d0 8459 return sched_group_rt_period(css_tg(css));
d0b27fa7 8460}
6d6bc0ad 8461#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8462
fe5c7cc2 8463static struct cftype cpu_files[] = {
052f1dc7 8464#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8465 {
8466 .name = "shares",
f4c753b7
PM
8467 .read_u64 = cpu_shares_read_u64,
8468 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8469 },
052f1dc7 8470#endif
ab84d31e
PT
8471#ifdef CONFIG_CFS_BANDWIDTH
8472 {
8473 .name = "cfs_quota_us",
8474 .read_s64 = cpu_cfs_quota_read_s64,
8475 .write_s64 = cpu_cfs_quota_write_s64,
8476 },
8477 {
8478 .name = "cfs_period_us",
8479 .read_u64 = cpu_cfs_period_read_u64,
8480 .write_u64 = cpu_cfs_period_write_u64,
8481 },
e8da1b18
NR
8482 {
8483 .name = "stat",
2da8ca82 8484 .seq_show = cpu_stats_show,
e8da1b18 8485 },
ab84d31e 8486#endif
052f1dc7 8487#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8488 {
9f0c1e56 8489 .name = "rt_runtime_us",
06ecb27c
PM
8490 .read_s64 = cpu_rt_runtime_read,
8491 .write_s64 = cpu_rt_runtime_write,
6f505b16 8492 },
d0b27fa7
PZ
8493 {
8494 .name = "rt_period_us",
f4c753b7
PM
8495 .read_u64 = cpu_rt_period_read_uint,
8496 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8497 },
052f1dc7 8498#endif
4baf6e33 8499 { } /* terminate */
68318b8e
SV
8500};
8501
073219e9 8502struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748 8503 .css_alloc = cpu_cgroup_css_alloc,
2f5177f0 8504 .css_released = cpu_cgroup_css_released,
92fb9748 8505 .css_free = cpu_cgroup_css_free,
eeb61e53 8506 .fork = cpu_cgroup_fork,
bb9d97b6
TH
8507 .can_attach = cpu_cgroup_can_attach,
8508 .attach = cpu_cgroup_attach,
5577964e 8509 .legacy_cftypes = cpu_files,
b38e42e9 8510 .early_init = true,
68318b8e
SV
8511};
8512
052f1dc7 8513#endif /* CONFIG_CGROUP_SCHED */
d842de87 8514
b637a328
PM
8515void dump_cpu_task(int cpu)
8516{
8517 pr_info("Task dump for CPU %d:\n", cpu);
8518 sched_show_task(cpu_curr(cpu));
8519}
ed82b8a1
AK
8520
8521/*
8522 * Nice levels are multiplicative, with a gentle 10% change for every
8523 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8524 * nice 1, it will get ~10% less CPU time than another CPU-bound task
8525 * that remained on nice 0.
8526 *
8527 * The "10% effect" is relative and cumulative: from _any_ nice level,
8528 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8529 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8530 * If a task goes up by ~10% and another task goes down by ~10% then
8531 * the relative distance between them is ~25%.)
8532 */
8533const int sched_prio_to_weight[40] = {
8534 /* -20 */ 88761, 71755, 56483, 46273, 36291,
8535 /* -15 */ 29154, 23254, 18705, 14949, 11916,
8536 /* -10 */ 9548, 7620, 6100, 4904, 3906,
8537 /* -5 */ 3121, 2501, 1991, 1586, 1277,
8538 /* 0 */ 1024, 820, 655, 526, 423,
8539 /* 5 */ 335, 272, 215, 172, 137,
8540 /* 10 */ 110, 87, 70, 56, 45,
8541 /* 15 */ 36, 29, 23, 18, 15,
8542};
8543
8544/*
8545 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8546 *
8547 * In cases where the weight does not change often, we can use the
8548 * precalculated inverse to speed up arithmetics by turning divisions
8549 * into multiplications:
8550 */
8551const u32 sched_prio_to_wmult[40] = {
8552 /* -20 */ 48388, 59856, 76040, 92818, 118348,
8553 /* -15 */ 147320, 184698, 229616, 287308, 360437,
8554 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
8555 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
8556 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
8557 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
8558 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
8559 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8560};