]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - kernel/sched/core.c
sched/core: Convert nohz_flags to atomic_t
[mirror_ubuntu-kernels.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4 3 *
d1ccc66d 4 * Core kernel scheduler code and related syscalls
1da177e4
LT
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
1da177e4 7 */
325ea10c 8#include "sched.h"
1da177e4 9
96f951ed 10#include <asm/switch_to.h>
5517d86b 11#include <asm/tlb.h>
1da177e4 12
ea138446 13#include "../workqueue_internal.h"
29d5e047 14#include "../smpboot.h"
6e0534f2 15
a8d154b0 16#define CREATE_TRACE_POINTS
ad8d75ff 17#include <trace/events/sched.h>
a8d154b0 18
029632fb 19DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 20
765cc3a4 21#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
bf5c91ba
IM
22/*
23 * Debugging: various feature bits
765cc3a4
PB
24 *
25 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
26 * sysctl_sched_features, defined in sched.h, to allow constants propagation
27 * at compile time and compiler optimization based on features default.
bf5c91ba 28 */
f00b45c1
PZ
29#define SCHED_FEAT(name, enabled) \
30 (1UL << __SCHED_FEAT_##name) * enabled |
bf5c91ba 31const_debug unsigned int sysctl_sched_features =
391e43da 32#include "features.h"
f00b45c1 33 0;
f00b45c1 34#undef SCHED_FEAT
765cc3a4 35#endif
f00b45c1 36
b82d9fdd
PZ
37/*
38 * Number of tasks to iterate in a single balance run.
39 * Limited because this is done with IRQs disabled.
40 */
41const_debug unsigned int sysctl_sched_nr_migrate = 32;
42
e9e9250b
PZ
43/*
44 * period over which we average the RT time consumption, measured
45 * in ms.
46 *
47 * default: 1s
48 */
49const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
50
fa85ae24 51/*
d1ccc66d 52 * period over which we measure -rt task CPU usage in us.
fa85ae24
PZ
53 * default: 1s
54 */
9f0c1e56 55unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 56
029632fb 57__read_mostly int scheduler_running;
6892b75e 58
9f0c1e56
PZ
59/*
60 * part of the period that we allow rt tasks to run in us.
61 * default: 0.95s
62 */
63int sysctl_sched_rt_runtime = 950000;
fa85ae24 64
3e71a462
PZ
65/*
66 * __task_rq_lock - lock the rq @p resides on.
67 */
eb580751 68struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
69 __acquires(rq->lock)
70{
71 struct rq *rq;
72
73 lockdep_assert_held(&p->pi_lock);
74
75 for (;;) {
76 rq = task_rq(p);
77 raw_spin_lock(&rq->lock);
78 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 79 rq_pin_lock(rq, rf);
3e71a462
PZ
80 return rq;
81 }
82 raw_spin_unlock(&rq->lock);
83
84 while (unlikely(task_on_rq_migrating(p)))
85 cpu_relax();
86 }
87}
88
89/*
90 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
91 */
eb580751 92struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
93 __acquires(p->pi_lock)
94 __acquires(rq->lock)
95{
96 struct rq *rq;
97
98 for (;;) {
eb580751 99 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
3e71a462
PZ
100 rq = task_rq(p);
101 raw_spin_lock(&rq->lock);
102 /*
103 * move_queued_task() task_rq_lock()
104 *
105 * ACQUIRE (rq->lock)
106 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
107 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
108 * [S] ->cpu = new_cpu [L] task_rq()
109 * [L] ->on_rq
110 * RELEASE (rq->lock)
111 *
97fb7a0a 112 * If we observe the old CPU in task_rq_lock, the acquire of
3e71a462
PZ
113 * the old rq->lock will fully serialize against the stores.
114 *
d1ccc66d 115 * If we observe the new CPU in task_rq_lock, the acquire will
3e71a462
PZ
116 * pair with the WMB to ensure we must then also see migrating.
117 */
118 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 119 rq_pin_lock(rq, rf);
3e71a462
PZ
120 return rq;
121 }
122 raw_spin_unlock(&rq->lock);
eb580751 123 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
3e71a462
PZ
124
125 while (unlikely(task_on_rq_migrating(p)))
126 cpu_relax();
127 }
128}
129
535b9552
IM
130/*
131 * RQ-clock updating methods:
132 */
133
134static void update_rq_clock_task(struct rq *rq, s64 delta)
135{
136/*
137 * In theory, the compile should just see 0 here, and optimize out the call
138 * to sched_rt_avg_update. But I don't trust it...
139 */
140#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
141 s64 steal = 0, irq_delta = 0;
142#endif
143#ifdef CONFIG_IRQ_TIME_ACCOUNTING
144 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
145
146 /*
147 * Since irq_time is only updated on {soft,}irq_exit, we might run into
148 * this case when a previous update_rq_clock() happened inside a
149 * {soft,}irq region.
150 *
151 * When this happens, we stop ->clock_task and only update the
152 * prev_irq_time stamp to account for the part that fit, so that a next
153 * update will consume the rest. This ensures ->clock_task is
154 * monotonic.
155 *
156 * It does however cause some slight miss-attribution of {soft,}irq
157 * time, a more accurate solution would be to update the irq_time using
158 * the current rq->clock timestamp, except that would require using
159 * atomic ops.
160 */
161 if (irq_delta > delta)
162 irq_delta = delta;
163
164 rq->prev_irq_time += irq_delta;
165 delta -= irq_delta;
166#endif
167#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
168 if (static_key_false((&paravirt_steal_rq_enabled))) {
169 steal = paravirt_steal_clock(cpu_of(rq));
170 steal -= rq->prev_steal_time_rq;
171
172 if (unlikely(steal > delta))
173 steal = delta;
174
175 rq->prev_steal_time_rq += steal;
176 delta -= steal;
177 }
178#endif
179
180 rq->clock_task += delta;
181
182#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
183 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
184 sched_rt_avg_update(rq, irq_delta + steal);
185#endif
186}
187
188void update_rq_clock(struct rq *rq)
189{
190 s64 delta;
191
192 lockdep_assert_held(&rq->lock);
193
194 if (rq->clock_update_flags & RQCF_ACT_SKIP)
195 return;
196
197#ifdef CONFIG_SCHED_DEBUG
26ae58d2
PZ
198 if (sched_feat(WARN_DOUBLE_CLOCK))
199 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
535b9552
IM
200 rq->clock_update_flags |= RQCF_UPDATED;
201#endif
26ae58d2 202
535b9552
IM
203 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
204 if (delta < 0)
205 return;
206 rq->clock += delta;
207 update_rq_clock_task(rq, delta);
208}
209
210
8f4d37ec
PZ
211#ifdef CONFIG_SCHED_HRTICK
212/*
213 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 214 */
8f4d37ec 215
8f4d37ec
PZ
216static void hrtick_clear(struct rq *rq)
217{
218 if (hrtimer_active(&rq->hrtick_timer))
219 hrtimer_cancel(&rq->hrtick_timer);
220}
221
8f4d37ec
PZ
222/*
223 * High-resolution timer tick.
224 * Runs from hardirq context with interrupts disabled.
225 */
226static enum hrtimer_restart hrtick(struct hrtimer *timer)
227{
228 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
8a8c69c3 229 struct rq_flags rf;
8f4d37ec
PZ
230
231 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
232
8a8c69c3 233 rq_lock(rq, &rf);
3e51f33f 234 update_rq_clock(rq);
8f4d37ec 235 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
8a8c69c3 236 rq_unlock(rq, &rf);
8f4d37ec
PZ
237
238 return HRTIMER_NORESTART;
239}
240
95e904c7 241#ifdef CONFIG_SMP
971ee28c 242
4961b6e1 243static void __hrtick_restart(struct rq *rq)
971ee28c
PZ
244{
245 struct hrtimer *timer = &rq->hrtick_timer;
971ee28c 246
4961b6e1 247 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
971ee28c
PZ
248}
249
31656519
PZ
250/*
251 * called from hardirq (IPI) context
252 */
253static void __hrtick_start(void *arg)
b328ca18 254{
31656519 255 struct rq *rq = arg;
8a8c69c3 256 struct rq_flags rf;
b328ca18 257
8a8c69c3 258 rq_lock(rq, &rf);
971ee28c 259 __hrtick_restart(rq);
31656519 260 rq->hrtick_csd_pending = 0;
8a8c69c3 261 rq_unlock(rq, &rf);
b328ca18
PZ
262}
263
31656519
PZ
264/*
265 * Called to set the hrtick timer state.
266 *
267 * called with rq->lock held and irqs disabled
268 */
029632fb 269void hrtick_start(struct rq *rq, u64 delay)
b328ca18 270{
31656519 271 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 272 ktime_t time;
273 s64 delta;
274
275 /*
276 * Don't schedule slices shorter than 10000ns, that just
277 * doesn't make sense and can cause timer DoS.
278 */
279 delta = max_t(s64, delay, 10000LL);
280 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 281
cc584b21 282 hrtimer_set_expires(timer, time);
31656519
PZ
283
284 if (rq == this_rq()) {
971ee28c 285 __hrtick_restart(rq);
31656519 286 } else if (!rq->hrtick_csd_pending) {
c46fff2a 287 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
288 rq->hrtick_csd_pending = 1;
289 }
b328ca18
PZ
290}
291
31656519
PZ
292#else
293/*
294 * Called to set the hrtick timer state.
295 *
296 * called with rq->lock held and irqs disabled
297 */
029632fb 298void hrtick_start(struct rq *rq, u64 delay)
31656519 299{
86893335
WL
300 /*
301 * Don't schedule slices shorter than 10000ns, that just
302 * doesn't make sense. Rely on vruntime for fairness.
303 */
304 delay = max_t(u64, delay, 10000LL);
4961b6e1
TG
305 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
306 HRTIMER_MODE_REL_PINNED);
31656519 307}
31656519 308#endif /* CONFIG_SMP */
8f4d37ec 309
77a021be 310static void hrtick_rq_init(struct rq *rq)
8f4d37ec 311{
31656519
PZ
312#ifdef CONFIG_SMP
313 rq->hrtick_csd_pending = 0;
8f4d37ec 314
31656519
PZ
315 rq->hrtick_csd.flags = 0;
316 rq->hrtick_csd.func = __hrtick_start;
317 rq->hrtick_csd.info = rq;
318#endif
8f4d37ec 319
31656519
PZ
320 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
321 rq->hrtick_timer.function = hrtick;
8f4d37ec 322}
006c75f1 323#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
324static inline void hrtick_clear(struct rq *rq)
325{
326}
327
77a021be 328static inline void hrtick_rq_init(struct rq *rq)
8f4d37ec
PZ
329{
330}
006c75f1 331#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 332
5529578a
FW
333/*
334 * cmpxchg based fetch_or, macro so it works for different integer types
335 */
336#define fetch_or(ptr, mask) \
337 ({ \
338 typeof(ptr) _ptr = (ptr); \
339 typeof(mask) _mask = (mask); \
340 typeof(*_ptr) _old, _val = *_ptr; \
341 \
342 for (;;) { \
343 _old = cmpxchg(_ptr, _val, _val | _mask); \
344 if (_old == _val) \
345 break; \
346 _val = _old; \
347 } \
348 _old; \
349})
350
e3baac47 351#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
352/*
353 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
354 * this avoids any races wrt polling state changes and thereby avoids
355 * spurious IPIs.
356 */
357static bool set_nr_and_not_polling(struct task_struct *p)
358{
359 struct thread_info *ti = task_thread_info(p);
360 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
361}
e3baac47
PZ
362
363/*
364 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
365 *
366 * If this returns true, then the idle task promises to call
367 * sched_ttwu_pending() and reschedule soon.
368 */
369static bool set_nr_if_polling(struct task_struct *p)
370{
371 struct thread_info *ti = task_thread_info(p);
316c1608 372 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
e3baac47
PZ
373
374 for (;;) {
375 if (!(val & _TIF_POLLING_NRFLAG))
376 return false;
377 if (val & _TIF_NEED_RESCHED)
378 return true;
379 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
380 if (old == val)
381 break;
382 val = old;
383 }
384 return true;
385}
386
fd99f91a
PZ
387#else
388static bool set_nr_and_not_polling(struct task_struct *p)
389{
390 set_tsk_need_resched(p);
391 return true;
392}
e3baac47
PZ
393
394#ifdef CONFIG_SMP
395static bool set_nr_if_polling(struct task_struct *p)
396{
397 return false;
398}
399#endif
fd99f91a
PZ
400#endif
401
76751049
PZ
402void wake_q_add(struct wake_q_head *head, struct task_struct *task)
403{
404 struct wake_q_node *node = &task->wake_q;
405
406 /*
407 * Atomically grab the task, if ->wake_q is !nil already it means
408 * its already queued (either by us or someone else) and will get the
409 * wakeup due to that.
410 *
411 * This cmpxchg() implies a full barrier, which pairs with the write
58fe9c46 412 * barrier implied by the wakeup in wake_up_q().
76751049
PZ
413 */
414 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
415 return;
416
417 get_task_struct(task);
418
419 /*
420 * The head is context local, there can be no concurrency.
421 */
422 *head->lastp = node;
423 head->lastp = &node->next;
424}
425
426void wake_up_q(struct wake_q_head *head)
427{
428 struct wake_q_node *node = head->first;
429
430 while (node != WAKE_Q_TAIL) {
431 struct task_struct *task;
432
433 task = container_of(node, struct task_struct, wake_q);
434 BUG_ON(!task);
d1ccc66d 435 /* Task can safely be re-inserted now: */
76751049
PZ
436 node = node->next;
437 task->wake_q.next = NULL;
438
439 /*
440 * wake_up_process() implies a wmb() to pair with the queueing
441 * in wake_q_add() so as not to miss wakeups.
442 */
443 wake_up_process(task);
444 put_task_struct(task);
445 }
446}
447
c24d20db 448/*
8875125e 449 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
450 *
451 * On UP this means the setting of the need_resched flag, on SMP it
452 * might also involve a cross-CPU call to trigger the scheduler on
453 * the target CPU.
454 */
8875125e 455void resched_curr(struct rq *rq)
c24d20db 456{
8875125e 457 struct task_struct *curr = rq->curr;
c24d20db
IM
458 int cpu;
459
8875125e 460 lockdep_assert_held(&rq->lock);
c24d20db 461
8875125e 462 if (test_tsk_need_resched(curr))
c24d20db
IM
463 return;
464
8875125e 465 cpu = cpu_of(rq);
fd99f91a 466
f27dde8d 467 if (cpu == smp_processor_id()) {
8875125e 468 set_tsk_need_resched(curr);
f27dde8d 469 set_preempt_need_resched();
c24d20db 470 return;
f27dde8d 471 }
c24d20db 472
8875125e 473 if (set_nr_and_not_polling(curr))
c24d20db 474 smp_send_reschedule(cpu);
dfc68f29
AL
475 else
476 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
477}
478
029632fb 479void resched_cpu(int cpu)
c24d20db
IM
480{
481 struct rq *rq = cpu_rq(cpu);
482 unsigned long flags;
483
7c2102e5 484 raw_spin_lock_irqsave(&rq->lock, flags);
a0982dfa
PM
485 if (cpu_online(cpu) || cpu == smp_processor_id())
486 resched_curr(rq);
05fa785c 487 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 488}
06d8308c 489
b021fe3e 490#ifdef CONFIG_SMP
3451d024 491#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2 492/*
d1ccc66d
IM
493 * In the semi idle case, use the nearest busy CPU for migrating timers
494 * from an idle CPU. This is good for power-savings.
83cd4fe2
VP
495 *
496 * We don't do similar optimization for completely idle system, as
d1ccc66d
IM
497 * selecting an idle CPU will add more delays to the timers than intended
498 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
83cd4fe2 499 */
bc7a34b8 500int get_nohz_timer_target(void)
83cd4fe2 501{
bc7a34b8 502 int i, cpu = smp_processor_id();
83cd4fe2
VP
503 struct sched_domain *sd;
504
de201559 505 if (!idle_cpu(cpu) && housekeeping_cpu(cpu, HK_FLAG_TIMER))
6201b4d6
VK
506 return cpu;
507
057f3fad 508 rcu_read_lock();
83cd4fe2 509 for_each_domain(cpu, sd) {
057f3fad 510 for_each_cpu(i, sched_domain_span(sd)) {
44496922
WL
511 if (cpu == i)
512 continue;
513
de201559 514 if (!idle_cpu(i) && housekeeping_cpu(i, HK_FLAG_TIMER)) {
057f3fad
PZ
515 cpu = i;
516 goto unlock;
517 }
518 }
83cd4fe2 519 }
9642d18e 520
de201559
FW
521 if (!housekeeping_cpu(cpu, HK_FLAG_TIMER))
522 cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
057f3fad
PZ
523unlock:
524 rcu_read_unlock();
83cd4fe2
VP
525 return cpu;
526}
d1ccc66d 527
06d8308c
TG
528/*
529 * When add_timer_on() enqueues a timer into the timer wheel of an
530 * idle CPU then this timer might expire before the next timer event
531 * which is scheduled to wake up that CPU. In case of a completely
532 * idle system the next event might even be infinite time into the
533 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
534 * leaves the inner idle loop so the newly added timer is taken into
535 * account when the CPU goes back to idle and evaluates the timer
536 * wheel for the next timer event.
537 */
1c20091e 538static void wake_up_idle_cpu(int cpu)
06d8308c
TG
539{
540 struct rq *rq = cpu_rq(cpu);
541
542 if (cpu == smp_processor_id())
543 return;
544
67b9ca70 545 if (set_nr_and_not_polling(rq->idle))
06d8308c 546 smp_send_reschedule(cpu);
dfc68f29
AL
547 else
548 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
549}
550
c5bfece2 551static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 552{
53c5fa16
FW
553 /*
554 * We just need the target to call irq_exit() and re-evaluate
555 * the next tick. The nohz full kick at least implies that.
556 * If needed we can still optimize that later with an
557 * empty IRQ.
558 */
379d9ecb
PM
559 if (cpu_is_offline(cpu))
560 return true; /* Don't try to wake offline CPUs. */
c5bfece2 561 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
562 if (cpu != smp_processor_id() ||
563 tick_nohz_tick_stopped())
53c5fa16 564 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
565 return true;
566 }
567
568 return false;
569}
570
379d9ecb
PM
571/*
572 * Wake up the specified CPU. If the CPU is going offline, it is the
573 * caller's responsibility to deal with the lost wakeup, for example,
574 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
575 */
1c20091e
FW
576void wake_up_nohz_cpu(int cpu)
577{
c5bfece2 578 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
579 wake_up_idle_cpu(cpu);
580}
581
ca38062e 582static inline bool got_nohz_idle_kick(void)
45bf76df 583{
1c792db7 584 int cpu = smp_processor_id();
873b4c65 585
a22e47a4 586 if (!(atomic_read(nohz_flags(cpu)) & NOHZ_BALANCE_KICK))
873b4c65
VG
587 return false;
588
589 if (idle_cpu(cpu) && !need_resched())
590 return true;
591
592 /*
593 * We can't run Idle Load Balance on this CPU for this time so we
594 * cancel it and clear NOHZ_BALANCE_KICK
595 */
a22e47a4 596 atomic_andnot(NOHZ_BALANCE_KICK, nohz_flags(cpu));
873b4c65 597 return false;
45bf76df
IM
598}
599
3451d024 600#else /* CONFIG_NO_HZ_COMMON */
45bf76df 601
ca38062e 602static inline bool got_nohz_idle_kick(void)
2069dd75 603{
ca38062e 604 return false;
2069dd75
PZ
605}
606
3451d024 607#endif /* CONFIG_NO_HZ_COMMON */
d842de87 608
ce831b38 609#ifdef CONFIG_NO_HZ_FULL
76d92ac3 610bool sched_can_stop_tick(struct rq *rq)
ce831b38 611{
76d92ac3
FW
612 int fifo_nr_running;
613
614 /* Deadline tasks, even if single, need the tick */
615 if (rq->dl.dl_nr_running)
616 return false;
617
1e78cdbd 618 /*
2548d546
PZ
619 * If there are more than one RR tasks, we need the tick to effect the
620 * actual RR behaviour.
1e78cdbd 621 */
76d92ac3
FW
622 if (rq->rt.rr_nr_running) {
623 if (rq->rt.rr_nr_running == 1)
624 return true;
625 else
626 return false;
1e78cdbd
RR
627 }
628
2548d546
PZ
629 /*
630 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
631 * forced preemption between FIFO tasks.
632 */
633 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
634 if (fifo_nr_running)
635 return true;
636
637 /*
638 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
639 * if there's more than one we need the tick for involuntary
640 * preemption.
641 */
642 if (rq->nr_running > 1)
541b8264 643 return false;
ce831b38 644
541b8264 645 return true;
ce831b38
FW
646}
647#endif /* CONFIG_NO_HZ_FULL */
d842de87 648
029632fb 649void sched_avg_update(struct rq *rq)
18d95a28 650{
e9e9250b
PZ
651 s64 period = sched_avg_period();
652
78becc27 653 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
654 /*
655 * Inline assembly required to prevent the compiler
656 * optimising this loop into a divmod call.
657 * See __iter_div_u64_rem() for another example of this.
658 */
659 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
660 rq->age_stamp += period;
661 rq->rt_avg /= 2;
662 }
18d95a28
PZ
663}
664
6d6bc0ad 665#endif /* CONFIG_SMP */
18d95a28 666
a790de99
PT
667#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
668 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 669/*
8277434e
PT
670 * Iterate task_group tree rooted at *from, calling @down when first entering a
671 * node and @up when leaving it for the final time.
672 *
673 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 674 */
029632fb 675int walk_tg_tree_from(struct task_group *from,
8277434e 676 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
677{
678 struct task_group *parent, *child;
eb755805 679 int ret;
c09595f6 680
8277434e
PT
681 parent = from;
682
c09595f6 683down:
eb755805
PZ
684 ret = (*down)(parent, data);
685 if (ret)
8277434e 686 goto out;
c09595f6
PZ
687 list_for_each_entry_rcu(child, &parent->children, siblings) {
688 parent = child;
689 goto down;
690
691up:
692 continue;
693 }
eb755805 694 ret = (*up)(parent, data);
8277434e
PT
695 if (ret || parent == from)
696 goto out;
c09595f6
PZ
697
698 child = parent;
699 parent = parent->parent;
700 if (parent)
701 goto up;
8277434e 702out:
eb755805 703 return ret;
c09595f6
PZ
704}
705
029632fb 706int tg_nop(struct task_group *tg, void *data)
eb755805 707{
e2b245f8 708 return 0;
eb755805 709}
18d95a28
PZ
710#endif
711
9059393e 712static void set_load_weight(struct task_struct *p, bool update_load)
45bf76df 713{
f05998d4
NR
714 int prio = p->static_prio - MAX_RT_PRIO;
715 struct load_weight *load = &p->se.load;
716
dd41f596
IM
717 /*
718 * SCHED_IDLE tasks get minimal weight:
719 */
20f9cd2a 720 if (idle_policy(p->policy)) {
c8b28116 721 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 722 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
723 return;
724 }
71f8bd46 725
9059393e
VG
726 /*
727 * SCHED_OTHER tasks have to update their load when changing their
728 * weight
729 */
730 if (update_load && p->sched_class == &fair_sched_class) {
731 reweight_task(p, prio);
732 } else {
733 load->weight = scale_load(sched_prio_to_weight[prio]);
734 load->inv_weight = sched_prio_to_wmult[prio];
735 }
71f8bd46
IM
736}
737
1de64443 738static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 739{
0a67d1ee
PZ
740 if (!(flags & ENQUEUE_NOCLOCK))
741 update_rq_clock(rq);
742
1de64443
PZ
743 if (!(flags & ENQUEUE_RESTORE))
744 sched_info_queued(rq, p);
0a67d1ee 745
371fd7e7 746 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
747}
748
1de64443 749static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 750{
0a67d1ee
PZ
751 if (!(flags & DEQUEUE_NOCLOCK))
752 update_rq_clock(rq);
753
1de64443
PZ
754 if (!(flags & DEQUEUE_SAVE))
755 sched_info_dequeued(rq, p);
0a67d1ee 756
371fd7e7 757 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
758}
759
029632fb 760void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
761{
762 if (task_contributes_to_load(p))
763 rq->nr_uninterruptible--;
764
371fd7e7 765 enqueue_task(rq, p, flags);
1e3c88bd
PZ
766}
767
029632fb 768void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
769{
770 if (task_contributes_to_load(p))
771 rq->nr_uninterruptible++;
772
371fd7e7 773 dequeue_task(rq, p, flags);
1e3c88bd
PZ
774}
775
14531189 776/*
dd41f596 777 * __normal_prio - return the priority that is based on the static prio
14531189 778 */
14531189
IM
779static inline int __normal_prio(struct task_struct *p)
780{
dd41f596 781 return p->static_prio;
14531189
IM
782}
783
b29739f9
IM
784/*
785 * Calculate the expected normal priority: i.e. priority
786 * without taking RT-inheritance into account. Might be
787 * boosted by interactivity modifiers. Changes upon fork,
788 * setprio syscalls, and whenever the interactivity
789 * estimator recalculates.
790 */
36c8b586 791static inline int normal_prio(struct task_struct *p)
b29739f9
IM
792{
793 int prio;
794
aab03e05
DF
795 if (task_has_dl_policy(p))
796 prio = MAX_DL_PRIO-1;
797 else if (task_has_rt_policy(p))
b29739f9
IM
798 prio = MAX_RT_PRIO-1 - p->rt_priority;
799 else
800 prio = __normal_prio(p);
801 return prio;
802}
803
804/*
805 * Calculate the current priority, i.e. the priority
806 * taken into account by the scheduler. This value might
807 * be boosted by RT tasks, or might be boosted by
808 * interactivity modifiers. Will be RT if the task got
809 * RT-boosted. If not then it returns p->normal_prio.
810 */
36c8b586 811static int effective_prio(struct task_struct *p)
b29739f9
IM
812{
813 p->normal_prio = normal_prio(p);
814 /*
815 * If we are RT tasks or we were boosted to RT priority,
816 * keep the priority unchanged. Otherwise, update priority
817 * to the normal priority:
818 */
819 if (!rt_prio(p->prio))
820 return p->normal_prio;
821 return p->prio;
822}
823
1da177e4
LT
824/**
825 * task_curr - is this task currently executing on a CPU?
826 * @p: the task in question.
e69f6186
YB
827 *
828 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 829 */
36c8b586 830inline int task_curr(const struct task_struct *p)
1da177e4
LT
831{
832 return cpu_curr(task_cpu(p)) == p;
833}
834
67dfa1b7 835/*
4c9a4bc8
PZ
836 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
837 * use the balance_callback list if you want balancing.
838 *
839 * this means any call to check_class_changed() must be followed by a call to
840 * balance_callback().
67dfa1b7 841 */
cb469845
SR
842static inline void check_class_changed(struct rq *rq, struct task_struct *p,
843 const struct sched_class *prev_class,
da7a735e 844 int oldprio)
cb469845
SR
845{
846 if (prev_class != p->sched_class) {
847 if (prev_class->switched_from)
da7a735e 848 prev_class->switched_from(rq, p);
4c9a4bc8 849
da7a735e 850 p->sched_class->switched_to(rq, p);
2d3d891d 851 } else if (oldprio != p->prio || dl_task(p))
da7a735e 852 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
853}
854
029632fb 855void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
856{
857 const struct sched_class *class;
858
859 if (p->sched_class == rq->curr->sched_class) {
860 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
861 } else {
862 for_each_class(class) {
863 if (class == rq->curr->sched_class)
864 break;
865 if (class == p->sched_class) {
8875125e 866 resched_curr(rq);
1e5a7405
PZ
867 break;
868 }
869 }
870 }
871
872 /*
873 * A queue event has occurred, and we're going to schedule. In
874 * this case, we can save a useless back to back clock update.
875 */
da0c1e65 876 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
9edfbfed 877 rq_clock_skip_update(rq, true);
1e5a7405
PZ
878}
879
1da177e4 880#ifdef CONFIG_SMP
5cc389bc
PZ
881/*
882 * This is how migration works:
883 *
884 * 1) we invoke migration_cpu_stop() on the target CPU using
885 * stop_one_cpu().
886 * 2) stopper starts to run (implicitly forcing the migrated thread
887 * off the CPU)
888 * 3) it checks whether the migrated task is still in the wrong runqueue.
889 * 4) if it's in the wrong runqueue then the migration thread removes
890 * it and puts it into the right queue.
891 * 5) stopper completes and stop_one_cpu() returns and the migration
892 * is done.
893 */
894
895/*
896 * move_queued_task - move a queued task to new rq.
897 *
898 * Returns (locked) new rq. Old rq's lock is released.
899 */
8a8c69c3
PZ
900static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
901 struct task_struct *p, int new_cpu)
5cc389bc 902{
5cc389bc
PZ
903 lockdep_assert_held(&rq->lock);
904
5cc389bc 905 p->on_rq = TASK_ON_RQ_MIGRATING;
15ff991e 906 dequeue_task(rq, p, DEQUEUE_NOCLOCK);
5cc389bc 907 set_task_cpu(p, new_cpu);
8a8c69c3 908 rq_unlock(rq, rf);
5cc389bc
PZ
909
910 rq = cpu_rq(new_cpu);
911
8a8c69c3 912 rq_lock(rq, rf);
5cc389bc 913 BUG_ON(task_cpu(p) != new_cpu);
5cc389bc 914 enqueue_task(rq, p, 0);
3ea94de1 915 p->on_rq = TASK_ON_RQ_QUEUED;
5cc389bc
PZ
916 check_preempt_curr(rq, p, 0);
917
918 return rq;
919}
920
921struct migration_arg {
922 struct task_struct *task;
923 int dest_cpu;
924};
925
926/*
d1ccc66d 927 * Move (not current) task off this CPU, onto the destination CPU. We're doing
5cc389bc
PZ
928 * this because either it can't run here any more (set_cpus_allowed()
929 * away from this CPU, or CPU going down), or because we're
930 * attempting to rebalance this task on exec (sched_exec).
931 *
932 * So we race with normal scheduler movements, but that's OK, as long
933 * as the task is no longer on this CPU.
5cc389bc 934 */
8a8c69c3
PZ
935static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
936 struct task_struct *p, int dest_cpu)
5cc389bc 937{
955dbdf4
TH
938 if (p->flags & PF_KTHREAD) {
939 if (unlikely(!cpu_online(dest_cpu)))
940 return rq;
941 } else {
942 if (unlikely(!cpu_active(dest_cpu)))
943 return rq;
944 }
5cc389bc
PZ
945
946 /* Affinity changed (again). */
0c98d344 947 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
5e16bbc2 948 return rq;
5cc389bc 949
15ff991e 950 update_rq_clock(rq);
8a8c69c3 951 rq = move_queued_task(rq, rf, p, dest_cpu);
5e16bbc2
PZ
952
953 return rq;
5cc389bc
PZ
954}
955
956/*
957 * migration_cpu_stop - this will be executed by a highprio stopper thread
958 * and performs thread migration by bumping thread off CPU then
959 * 'pushing' onto another runqueue.
960 */
961static int migration_cpu_stop(void *data)
962{
963 struct migration_arg *arg = data;
5e16bbc2
PZ
964 struct task_struct *p = arg->task;
965 struct rq *rq = this_rq();
8a8c69c3 966 struct rq_flags rf;
5cc389bc
PZ
967
968 /*
d1ccc66d
IM
969 * The original target CPU might have gone down and we might
970 * be on another CPU but it doesn't matter.
5cc389bc
PZ
971 */
972 local_irq_disable();
973 /*
974 * We need to explicitly wake pending tasks before running
975 * __migrate_task() such that we will not miss enforcing cpus_allowed
976 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
977 */
978 sched_ttwu_pending();
5e16bbc2
PZ
979
980 raw_spin_lock(&p->pi_lock);
8a8c69c3 981 rq_lock(rq, &rf);
5e16bbc2
PZ
982 /*
983 * If task_rq(p) != rq, it cannot be migrated here, because we're
984 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
985 * we're holding p->pi_lock.
986 */
bf89a304
CC
987 if (task_rq(p) == rq) {
988 if (task_on_rq_queued(p))
8a8c69c3 989 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
bf89a304
CC
990 else
991 p->wake_cpu = arg->dest_cpu;
992 }
8a8c69c3 993 rq_unlock(rq, &rf);
5e16bbc2
PZ
994 raw_spin_unlock(&p->pi_lock);
995
5cc389bc
PZ
996 local_irq_enable();
997 return 0;
998}
999
c5b28038
PZ
1000/*
1001 * sched_class::set_cpus_allowed must do the below, but is not required to
1002 * actually call this function.
1003 */
1004void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
5cc389bc 1005{
5cc389bc
PZ
1006 cpumask_copy(&p->cpus_allowed, new_mask);
1007 p->nr_cpus_allowed = cpumask_weight(new_mask);
1008}
1009
c5b28038
PZ
1010void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1011{
6c37067e
PZ
1012 struct rq *rq = task_rq(p);
1013 bool queued, running;
1014
c5b28038 1015 lockdep_assert_held(&p->pi_lock);
6c37067e
PZ
1016
1017 queued = task_on_rq_queued(p);
1018 running = task_current(rq, p);
1019
1020 if (queued) {
1021 /*
1022 * Because __kthread_bind() calls this on blocked tasks without
1023 * holding rq->lock.
1024 */
1025 lockdep_assert_held(&rq->lock);
7a57f32a 1026 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
6c37067e
PZ
1027 }
1028 if (running)
1029 put_prev_task(rq, p);
1030
c5b28038 1031 p->sched_class->set_cpus_allowed(p, new_mask);
6c37067e 1032
6c37067e 1033 if (queued)
7134b3e9 1034 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
a399d233 1035 if (running)
b2bf6c31 1036 set_curr_task(rq, p);
c5b28038
PZ
1037}
1038
5cc389bc
PZ
1039/*
1040 * Change a given task's CPU affinity. Migrate the thread to a
1041 * proper CPU and schedule it away if the CPU it's executing on
1042 * is removed from the allowed bitmask.
1043 *
1044 * NOTE: the caller must have a valid reference to the task, the
1045 * task must not exit() & deallocate itself prematurely. The
1046 * call is not atomic; no spinlocks may be held.
1047 */
25834c73
PZ
1048static int __set_cpus_allowed_ptr(struct task_struct *p,
1049 const struct cpumask *new_mask, bool check)
5cc389bc 1050{
e9d867a6 1051 const struct cpumask *cpu_valid_mask = cpu_active_mask;
5cc389bc 1052 unsigned int dest_cpu;
eb580751
PZ
1053 struct rq_flags rf;
1054 struct rq *rq;
5cc389bc
PZ
1055 int ret = 0;
1056
eb580751 1057 rq = task_rq_lock(p, &rf);
a499c3ea 1058 update_rq_clock(rq);
5cc389bc 1059
e9d867a6
PZI
1060 if (p->flags & PF_KTHREAD) {
1061 /*
1062 * Kernel threads are allowed on online && !active CPUs
1063 */
1064 cpu_valid_mask = cpu_online_mask;
1065 }
1066
25834c73
PZ
1067 /*
1068 * Must re-check here, to close a race against __kthread_bind(),
1069 * sched_setaffinity() is not guaranteed to observe the flag.
1070 */
1071 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1072 ret = -EINVAL;
1073 goto out;
1074 }
1075
5cc389bc
PZ
1076 if (cpumask_equal(&p->cpus_allowed, new_mask))
1077 goto out;
1078
e9d867a6 1079 if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
5cc389bc
PZ
1080 ret = -EINVAL;
1081 goto out;
1082 }
1083
1084 do_set_cpus_allowed(p, new_mask);
1085
e9d867a6
PZI
1086 if (p->flags & PF_KTHREAD) {
1087 /*
1088 * For kernel threads that do indeed end up on online &&
d1ccc66d 1089 * !active we want to ensure they are strict per-CPU threads.
e9d867a6
PZI
1090 */
1091 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1092 !cpumask_intersects(new_mask, cpu_active_mask) &&
1093 p->nr_cpus_allowed != 1);
1094 }
1095
5cc389bc
PZ
1096 /* Can the task run on the task's current CPU? If so, we're done */
1097 if (cpumask_test_cpu(task_cpu(p), new_mask))
1098 goto out;
1099
e9d867a6 1100 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
5cc389bc
PZ
1101 if (task_running(rq, p) || p->state == TASK_WAKING) {
1102 struct migration_arg arg = { p, dest_cpu };
1103 /* Need help from migration thread: drop lock and wait. */
eb580751 1104 task_rq_unlock(rq, p, &rf);
5cc389bc
PZ
1105 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1106 tlb_migrate_finish(p->mm);
1107 return 0;
cbce1a68
PZ
1108 } else if (task_on_rq_queued(p)) {
1109 /*
1110 * OK, since we're going to drop the lock immediately
1111 * afterwards anyway.
1112 */
8a8c69c3 1113 rq = move_queued_task(rq, &rf, p, dest_cpu);
cbce1a68 1114 }
5cc389bc 1115out:
eb580751 1116 task_rq_unlock(rq, p, &rf);
5cc389bc
PZ
1117
1118 return ret;
1119}
25834c73
PZ
1120
1121int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1122{
1123 return __set_cpus_allowed_ptr(p, new_mask, false);
1124}
5cc389bc
PZ
1125EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1126
dd41f596 1127void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1128{
e2912009
PZ
1129#ifdef CONFIG_SCHED_DEBUG
1130 /*
1131 * We should never call set_task_cpu() on a blocked task,
1132 * ttwu() will sort out the placement.
1133 */
077614ee 1134 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
e2336f6e 1135 !p->on_rq);
0122ec5b 1136
3ea94de1
JP
1137 /*
1138 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1139 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1140 * time relying on p->on_rq.
1141 */
1142 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1143 p->sched_class == &fair_sched_class &&
1144 (p->on_rq && !task_on_rq_migrating(p)));
1145
0122ec5b 1146#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1147 /*
1148 * The caller should hold either p->pi_lock or rq->lock, when changing
1149 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1150 *
1151 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1152 * see task_group().
6c6c54e1
PZ
1153 *
1154 * Furthermore, all task_rq users should acquire both locks, see
1155 * task_rq_lock().
1156 */
0122ec5b
PZ
1157 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1158 lockdep_is_held(&task_rq(p)->lock)));
1159#endif
4ff9083b
PZ
1160 /*
1161 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1162 */
1163 WARN_ON_ONCE(!cpu_online(new_cpu));
e2912009
PZ
1164#endif
1165
de1d7286 1166 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1167
0c69774e 1168 if (task_cpu(p) != new_cpu) {
0a74bef8 1169 if (p->sched_class->migrate_task_rq)
5a4fd036 1170 p->sched_class->migrate_task_rq(p);
0c69774e 1171 p->se.nr_migrations++;
ff303e66 1172 perf_event_task_migrate(p);
0c69774e 1173 }
dd41f596
IM
1174
1175 __set_task_cpu(p, new_cpu);
c65cc870
IM
1176}
1177
ac66f547
PZ
1178static void __migrate_swap_task(struct task_struct *p, int cpu)
1179{
da0c1e65 1180 if (task_on_rq_queued(p)) {
ac66f547 1181 struct rq *src_rq, *dst_rq;
8a8c69c3 1182 struct rq_flags srf, drf;
ac66f547
PZ
1183
1184 src_rq = task_rq(p);
1185 dst_rq = cpu_rq(cpu);
1186
8a8c69c3
PZ
1187 rq_pin_lock(src_rq, &srf);
1188 rq_pin_lock(dst_rq, &drf);
1189
3ea94de1 1190 p->on_rq = TASK_ON_RQ_MIGRATING;
ac66f547
PZ
1191 deactivate_task(src_rq, p, 0);
1192 set_task_cpu(p, cpu);
1193 activate_task(dst_rq, p, 0);
3ea94de1 1194 p->on_rq = TASK_ON_RQ_QUEUED;
ac66f547 1195 check_preempt_curr(dst_rq, p, 0);
8a8c69c3
PZ
1196
1197 rq_unpin_lock(dst_rq, &drf);
1198 rq_unpin_lock(src_rq, &srf);
1199
ac66f547
PZ
1200 } else {
1201 /*
1202 * Task isn't running anymore; make it appear like we migrated
1203 * it before it went to sleep. This means on wakeup we make the
d1ccc66d 1204 * previous CPU our target instead of where it really is.
ac66f547
PZ
1205 */
1206 p->wake_cpu = cpu;
1207 }
1208}
1209
1210struct migration_swap_arg {
1211 struct task_struct *src_task, *dst_task;
1212 int src_cpu, dst_cpu;
1213};
1214
1215static int migrate_swap_stop(void *data)
1216{
1217 struct migration_swap_arg *arg = data;
1218 struct rq *src_rq, *dst_rq;
1219 int ret = -EAGAIN;
1220
62694cd5
PZ
1221 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1222 return -EAGAIN;
1223
ac66f547
PZ
1224 src_rq = cpu_rq(arg->src_cpu);
1225 dst_rq = cpu_rq(arg->dst_cpu);
1226
74602315
PZ
1227 double_raw_lock(&arg->src_task->pi_lock,
1228 &arg->dst_task->pi_lock);
ac66f547 1229 double_rq_lock(src_rq, dst_rq);
62694cd5 1230
ac66f547
PZ
1231 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1232 goto unlock;
1233
1234 if (task_cpu(arg->src_task) != arg->src_cpu)
1235 goto unlock;
1236
0c98d344 1237 if (!cpumask_test_cpu(arg->dst_cpu, &arg->src_task->cpus_allowed))
ac66f547
PZ
1238 goto unlock;
1239
0c98d344 1240 if (!cpumask_test_cpu(arg->src_cpu, &arg->dst_task->cpus_allowed))
ac66f547
PZ
1241 goto unlock;
1242
1243 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1244 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1245
1246 ret = 0;
1247
1248unlock:
1249 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1250 raw_spin_unlock(&arg->dst_task->pi_lock);
1251 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1252
1253 return ret;
1254}
1255
1256/*
1257 * Cross migrate two tasks
1258 */
1259int migrate_swap(struct task_struct *cur, struct task_struct *p)
1260{
1261 struct migration_swap_arg arg;
1262 int ret = -EINVAL;
1263
ac66f547
PZ
1264 arg = (struct migration_swap_arg){
1265 .src_task = cur,
1266 .src_cpu = task_cpu(cur),
1267 .dst_task = p,
1268 .dst_cpu = task_cpu(p),
1269 };
1270
1271 if (arg.src_cpu == arg.dst_cpu)
1272 goto out;
1273
6acce3ef
PZ
1274 /*
1275 * These three tests are all lockless; this is OK since all of them
1276 * will be re-checked with proper locks held further down the line.
1277 */
ac66f547
PZ
1278 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1279 goto out;
1280
0c98d344 1281 if (!cpumask_test_cpu(arg.dst_cpu, &arg.src_task->cpus_allowed))
ac66f547
PZ
1282 goto out;
1283
0c98d344 1284 if (!cpumask_test_cpu(arg.src_cpu, &arg.dst_task->cpus_allowed))
ac66f547
PZ
1285 goto out;
1286
286549dc 1287 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1288 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1289
1290out:
ac66f547
PZ
1291 return ret;
1292}
1293
1da177e4
LT
1294/*
1295 * wait_task_inactive - wait for a thread to unschedule.
1296 *
85ba2d86
RM
1297 * If @match_state is nonzero, it's the @p->state value just checked and
1298 * not expected to change. If it changes, i.e. @p might have woken up,
1299 * then return zero. When we succeed in waiting for @p to be off its CPU,
1300 * we return a positive number (its total switch count). If a second call
1301 * a short while later returns the same number, the caller can be sure that
1302 * @p has remained unscheduled the whole time.
1303 *
1da177e4
LT
1304 * The caller must ensure that the task *will* unschedule sometime soon,
1305 * else this function might spin for a *long* time. This function can't
1306 * be called with interrupts off, or it may introduce deadlock with
1307 * smp_call_function() if an IPI is sent by the same process we are
1308 * waiting to become inactive.
1309 */
85ba2d86 1310unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4 1311{
da0c1e65 1312 int running, queued;
eb580751 1313 struct rq_flags rf;
85ba2d86 1314 unsigned long ncsw;
70b97a7f 1315 struct rq *rq;
1da177e4 1316
3a5c359a
AK
1317 for (;;) {
1318 /*
1319 * We do the initial early heuristics without holding
1320 * any task-queue locks at all. We'll only try to get
1321 * the runqueue lock when things look like they will
1322 * work out!
1323 */
1324 rq = task_rq(p);
fa490cfd 1325
3a5c359a
AK
1326 /*
1327 * If the task is actively running on another CPU
1328 * still, just relax and busy-wait without holding
1329 * any locks.
1330 *
1331 * NOTE! Since we don't hold any locks, it's not
1332 * even sure that "rq" stays as the right runqueue!
1333 * But we don't care, since "task_running()" will
1334 * return false if the runqueue has changed and p
1335 * is actually now running somewhere else!
1336 */
85ba2d86
RM
1337 while (task_running(rq, p)) {
1338 if (match_state && unlikely(p->state != match_state))
1339 return 0;
3a5c359a 1340 cpu_relax();
85ba2d86 1341 }
fa490cfd 1342
3a5c359a
AK
1343 /*
1344 * Ok, time to look more closely! We need the rq
1345 * lock now, to be *sure*. If we're wrong, we'll
1346 * just go back and repeat.
1347 */
eb580751 1348 rq = task_rq_lock(p, &rf);
27a9da65 1349 trace_sched_wait_task(p);
3a5c359a 1350 running = task_running(rq, p);
da0c1e65 1351 queued = task_on_rq_queued(p);
85ba2d86 1352 ncsw = 0;
f31e11d8 1353 if (!match_state || p->state == match_state)
93dcf55f 1354 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
eb580751 1355 task_rq_unlock(rq, p, &rf);
fa490cfd 1356
85ba2d86
RM
1357 /*
1358 * If it changed from the expected state, bail out now.
1359 */
1360 if (unlikely(!ncsw))
1361 break;
1362
3a5c359a
AK
1363 /*
1364 * Was it really running after all now that we
1365 * checked with the proper locks actually held?
1366 *
1367 * Oops. Go back and try again..
1368 */
1369 if (unlikely(running)) {
1370 cpu_relax();
1371 continue;
1372 }
fa490cfd 1373
3a5c359a
AK
1374 /*
1375 * It's not enough that it's not actively running,
1376 * it must be off the runqueue _entirely_, and not
1377 * preempted!
1378 *
80dd99b3 1379 * So if it was still runnable (but just not actively
3a5c359a
AK
1380 * running right now), it's preempted, and we should
1381 * yield - it could be a while.
1382 */
da0c1e65 1383 if (unlikely(queued)) {
8b0e1953 1384 ktime_t to = NSEC_PER_SEC / HZ;
8eb90c30
TG
1385
1386 set_current_state(TASK_UNINTERRUPTIBLE);
1387 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1388 continue;
1389 }
fa490cfd 1390
3a5c359a
AK
1391 /*
1392 * Ahh, all good. It wasn't running, and it wasn't
1393 * runnable, which means that it will never become
1394 * running in the future either. We're all done!
1395 */
1396 break;
1397 }
85ba2d86
RM
1398
1399 return ncsw;
1da177e4
LT
1400}
1401
1402/***
1403 * kick_process - kick a running thread to enter/exit the kernel
1404 * @p: the to-be-kicked thread
1405 *
1406 * Cause a process which is running on another CPU to enter
1407 * kernel-mode, without any delay. (to get signals handled.)
1408 *
25985edc 1409 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1410 * because all it wants to ensure is that the remote task enters
1411 * the kernel. If the IPI races and the task has been migrated
1412 * to another CPU then no harm is done and the purpose has been
1413 * achieved as well.
1414 */
36c8b586 1415void kick_process(struct task_struct *p)
1da177e4
LT
1416{
1417 int cpu;
1418
1419 preempt_disable();
1420 cpu = task_cpu(p);
1421 if ((cpu != smp_processor_id()) && task_curr(p))
1422 smp_send_reschedule(cpu);
1423 preempt_enable();
1424}
b43e3521 1425EXPORT_SYMBOL_GPL(kick_process);
1da177e4 1426
30da688e 1427/*
013fdb80 1428 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
e9d867a6
PZI
1429 *
1430 * A few notes on cpu_active vs cpu_online:
1431 *
1432 * - cpu_active must be a subset of cpu_online
1433 *
97fb7a0a 1434 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
e9d867a6 1435 * see __set_cpus_allowed_ptr(). At this point the newly online
d1ccc66d 1436 * CPU isn't yet part of the sched domains, and balancing will not
e9d867a6
PZI
1437 * see it.
1438 *
d1ccc66d 1439 * - on CPU-down we clear cpu_active() to mask the sched domains and
e9d867a6 1440 * avoid the load balancer to place new tasks on the to be removed
d1ccc66d 1441 * CPU. Existing tasks will remain running there and will be taken
e9d867a6
PZI
1442 * off.
1443 *
1444 * This means that fallback selection must not select !active CPUs.
1445 * And can assume that any active CPU must be online. Conversely
1446 * select_task_rq() below may allow selection of !active CPUs in order
1447 * to satisfy the above rules.
30da688e 1448 */
5da9a0fb
PZ
1449static int select_fallback_rq(int cpu, struct task_struct *p)
1450{
aa00d89c
TC
1451 int nid = cpu_to_node(cpu);
1452 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1453 enum { cpuset, possible, fail } state = cpuset;
1454 int dest_cpu;
5da9a0fb 1455
aa00d89c 1456 /*
d1ccc66d
IM
1457 * If the node that the CPU is on has been offlined, cpu_to_node()
1458 * will return -1. There is no CPU on the node, and we should
1459 * select the CPU on the other node.
aa00d89c
TC
1460 */
1461 if (nid != -1) {
1462 nodemask = cpumask_of_node(nid);
1463
1464 /* Look for allowed, online CPU in same node. */
1465 for_each_cpu(dest_cpu, nodemask) {
aa00d89c
TC
1466 if (!cpu_active(dest_cpu))
1467 continue;
0c98d344 1468 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
aa00d89c
TC
1469 return dest_cpu;
1470 }
2baab4e9 1471 }
5da9a0fb 1472
2baab4e9
PZ
1473 for (;;) {
1474 /* Any allowed, online CPU? */
0c98d344 1475 for_each_cpu(dest_cpu, &p->cpus_allowed) {
feb245e3
TH
1476 if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu))
1477 continue;
1478 if (!cpu_online(dest_cpu))
2baab4e9
PZ
1479 continue;
1480 goto out;
1481 }
5da9a0fb 1482
e73e85f0 1483 /* No more Mr. Nice Guy. */
2baab4e9
PZ
1484 switch (state) {
1485 case cpuset:
e73e85f0
ON
1486 if (IS_ENABLED(CONFIG_CPUSETS)) {
1487 cpuset_cpus_allowed_fallback(p);
1488 state = possible;
1489 break;
1490 }
d1ccc66d 1491 /* Fall-through */
2baab4e9
PZ
1492 case possible:
1493 do_set_cpus_allowed(p, cpu_possible_mask);
1494 state = fail;
1495 break;
1496
1497 case fail:
1498 BUG();
1499 break;
1500 }
1501 }
1502
1503out:
1504 if (state != cpuset) {
1505 /*
1506 * Don't tell them about moving exiting tasks or
1507 * kernel threads (both mm NULL), since they never
1508 * leave kernel.
1509 */
1510 if (p->mm && printk_ratelimit()) {
aac74dc4 1511 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1512 task_pid_nr(p), p->comm, cpu);
1513 }
5da9a0fb
PZ
1514 }
1515
1516 return dest_cpu;
1517}
1518
e2912009 1519/*
013fdb80 1520 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1521 */
970b13ba 1522static inline
ac66f547 1523int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1524{
cbce1a68
PZ
1525 lockdep_assert_held(&p->pi_lock);
1526
4b53a341 1527 if (p->nr_cpus_allowed > 1)
6c1d9410 1528 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e9d867a6 1529 else
0c98d344 1530 cpu = cpumask_any(&p->cpus_allowed);
e2912009
PZ
1531
1532 /*
1533 * In order not to call set_task_cpu() on a blocking task we need
1534 * to rely on ttwu() to place the task on a valid ->cpus_allowed
d1ccc66d 1535 * CPU.
e2912009
PZ
1536 *
1537 * Since this is common to all placement strategies, this lives here.
1538 *
1539 * [ this allows ->select_task() to simply return task_cpu(p) and
1540 * not worry about this generic constraint ]
1541 */
0c98d344 1542 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
70f11205 1543 !cpu_online(cpu)))
5da9a0fb 1544 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1545
1546 return cpu;
970b13ba 1547}
09a40af5
MG
1548
1549static void update_avg(u64 *avg, u64 sample)
1550{
1551 s64 diff = sample - *avg;
1552 *avg += diff >> 3;
1553}
25834c73 1554
f5832c19
NP
1555void sched_set_stop_task(int cpu, struct task_struct *stop)
1556{
1557 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1558 struct task_struct *old_stop = cpu_rq(cpu)->stop;
1559
1560 if (stop) {
1561 /*
1562 * Make it appear like a SCHED_FIFO task, its something
1563 * userspace knows about and won't get confused about.
1564 *
1565 * Also, it will make PI more or less work without too
1566 * much confusion -- but then, stop work should not
1567 * rely on PI working anyway.
1568 */
1569 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
1570
1571 stop->sched_class = &stop_sched_class;
1572 }
1573
1574 cpu_rq(cpu)->stop = stop;
1575
1576 if (old_stop) {
1577 /*
1578 * Reset it back to a normal scheduling class so that
1579 * it can die in pieces.
1580 */
1581 old_stop->sched_class = &rt_sched_class;
1582 }
1583}
1584
25834c73
PZ
1585#else
1586
1587static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1588 const struct cpumask *new_mask, bool check)
1589{
1590 return set_cpus_allowed_ptr(p, new_mask);
1591}
1592
5cc389bc 1593#endif /* CONFIG_SMP */
970b13ba 1594
d7c01d27 1595static void
b84cb5df 1596ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1597{
4fa8d299 1598 struct rq *rq;
b84cb5df 1599
4fa8d299
JP
1600 if (!schedstat_enabled())
1601 return;
1602
1603 rq = this_rq();
d7c01d27 1604
4fa8d299
JP
1605#ifdef CONFIG_SMP
1606 if (cpu == rq->cpu) {
b85c8b71
PZ
1607 __schedstat_inc(rq->ttwu_local);
1608 __schedstat_inc(p->se.statistics.nr_wakeups_local);
d7c01d27
PZ
1609 } else {
1610 struct sched_domain *sd;
1611
b85c8b71 1612 __schedstat_inc(p->se.statistics.nr_wakeups_remote);
057f3fad 1613 rcu_read_lock();
4fa8d299 1614 for_each_domain(rq->cpu, sd) {
d7c01d27 1615 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
b85c8b71 1616 __schedstat_inc(sd->ttwu_wake_remote);
d7c01d27
PZ
1617 break;
1618 }
1619 }
057f3fad 1620 rcu_read_unlock();
d7c01d27 1621 }
f339b9dc
PZ
1622
1623 if (wake_flags & WF_MIGRATED)
b85c8b71 1624 __schedstat_inc(p->se.statistics.nr_wakeups_migrate);
d7c01d27
PZ
1625#endif /* CONFIG_SMP */
1626
b85c8b71
PZ
1627 __schedstat_inc(rq->ttwu_count);
1628 __schedstat_inc(p->se.statistics.nr_wakeups);
d7c01d27
PZ
1629
1630 if (wake_flags & WF_SYNC)
b85c8b71 1631 __schedstat_inc(p->se.statistics.nr_wakeups_sync);
d7c01d27
PZ
1632}
1633
1de64443 1634static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
d7c01d27 1635{
9ed3811a 1636 activate_task(rq, p, en_flags);
da0c1e65 1637 p->on_rq = TASK_ON_RQ_QUEUED;
c2f7115e 1638
d1ccc66d 1639 /* If a worker is waking up, notify the workqueue: */
c2f7115e
PZ
1640 if (p->flags & PF_WQ_WORKER)
1641 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1642}
1643
23f41eeb
PZ
1644/*
1645 * Mark the task runnable and perform wakeup-preemption.
1646 */
e7904a28 1647static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
d8ac8971 1648 struct rq_flags *rf)
9ed3811a 1649{
9ed3811a 1650 check_preempt_curr(rq, p, wake_flags);
9ed3811a 1651 p->state = TASK_RUNNING;
fbd705a0
PZ
1652 trace_sched_wakeup(p);
1653
9ed3811a 1654#ifdef CONFIG_SMP
4c9a4bc8
PZ
1655 if (p->sched_class->task_woken) {
1656 /*
cbce1a68
PZ
1657 * Our task @p is fully woken up and running; so its safe to
1658 * drop the rq->lock, hereafter rq is only used for statistics.
4c9a4bc8 1659 */
d8ac8971 1660 rq_unpin_lock(rq, rf);
9ed3811a 1661 p->sched_class->task_woken(rq, p);
d8ac8971 1662 rq_repin_lock(rq, rf);
4c9a4bc8 1663 }
9ed3811a 1664
e69c6341 1665 if (rq->idle_stamp) {
78becc27 1666 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1667 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1668
abfafa54
JL
1669 update_avg(&rq->avg_idle, delta);
1670
1671 if (rq->avg_idle > max)
9ed3811a 1672 rq->avg_idle = max;
abfafa54 1673
9ed3811a
TH
1674 rq->idle_stamp = 0;
1675 }
1676#endif
1677}
1678
c05fbafb 1679static void
e7904a28 1680ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
d8ac8971 1681 struct rq_flags *rf)
c05fbafb 1682{
77558e4d 1683 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
b5179ac7 1684
cbce1a68
PZ
1685 lockdep_assert_held(&rq->lock);
1686
c05fbafb
PZ
1687#ifdef CONFIG_SMP
1688 if (p->sched_contributes_to_load)
1689 rq->nr_uninterruptible--;
b5179ac7 1690
b5179ac7 1691 if (wake_flags & WF_MIGRATED)
59efa0ba 1692 en_flags |= ENQUEUE_MIGRATED;
c05fbafb
PZ
1693#endif
1694
b5179ac7 1695 ttwu_activate(rq, p, en_flags);
d8ac8971 1696 ttwu_do_wakeup(rq, p, wake_flags, rf);
c05fbafb
PZ
1697}
1698
1699/*
1700 * Called in case the task @p isn't fully descheduled from its runqueue,
1701 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1702 * since all we need to do is flip p->state to TASK_RUNNING, since
1703 * the task is still ->on_rq.
1704 */
1705static int ttwu_remote(struct task_struct *p, int wake_flags)
1706{
eb580751 1707 struct rq_flags rf;
c05fbafb
PZ
1708 struct rq *rq;
1709 int ret = 0;
1710
eb580751 1711 rq = __task_rq_lock(p, &rf);
da0c1e65 1712 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
1713 /* check_preempt_curr() may use rq clock */
1714 update_rq_clock(rq);
d8ac8971 1715 ttwu_do_wakeup(rq, p, wake_flags, &rf);
c05fbafb
PZ
1716 ret = 1;
1717 }
eb580751 1718 __task_rq_unlock(rq, &rf);
c05fbafb
PZ
1719
1720 return ret;
1721}
1722
317f3941 1723#ifdef CONFIG_SMP
e3baac47 1724void sched_ttwu_pending(void)
317f3941
PZ
1725{
1726 struct rq *rq = this_rq();
fa14ff4a 1727 struct llist_node *llist = llist_del_all(&rq->wake_list);
73215849 1728 struct task_struct *p, *t;
d8ac8971 1729 struct rq_flags rf;
317f3941 1730
e3baac47
PZ
1731 if (!llist)
1732 return;
1733
8a8c69c3 1734 rq_lock_irqsave(rq, &rf);
77558e4d 1735 update_rq_clock(rq);
317f3941 1736
73215849
BP
1737 llist_for_each_entry_safe(p, t, llist, wake_entry)
1738 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
317f3941 1739
8a8c69c3 1740 rq_unlock_irqrestore(rq, &rf);
317f3941
PZ
1741}
1742
1743void scheduler_ipi(void)
1744{
f27dde8d
PZ
1745 /*
1746 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1747 * TIF_NEED_RESCHED remotely (for the first time) will also send
1748 * this IPI.
1749 */
8cb75e0c 1750 preempt_fold_need_resched();
f27dde8d 1751
fd2ac4f4 1752 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1753 return;
1754
1755 /*
1756 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1757 * traditionally all their work was done from the interrupt return
1758 * path. Now that we actually do some work, we need to make sure
1759 * we do call them.
1760 *
1761 * Some archs already do call them, luckily irq_enter/exit nest
1762 * properly.
1763 *
1764 * Arguably we should visit all archs and update all handlers,
1765 * however a fair share of IPIs are still resched only so this would
1766 * somewhat pessimize the simple resched case.
1767 */
1768 irq_enter();
fa14ff4a 1769 sched_ttwu_pending();
ca38062e
SS
1770
1771 /*
1772 * Check if someone kicked us for doing the nohz idle load balance.
1773 */
873b4c65 1774 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1775 this_rq()->idle_balance = 1;
ca38062e 1776 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1777 }
c5d753a5 1778 irq_exit();
317f3941
PZ
1779}
1780
b7e7ade3 1781static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
317f3941 1782{
e3baac47
PZ
1783 struct rq *rq = cpu_rq(cpu);
1784
b7e7ade3
PZ
1785 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1786
e3baac47
PZ
1787 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1788 if (!set_nr_if_polling(rq->idle))
1789 smp_send_reschedule(cpu);
1790 else
1791 trace_sched_wake_idle_without_ipi(cpu);
1792 }
317f3941 1793}
d6aa8f85 1794
f6be8af1
CL
1795void wake_up_if_idle(int cpu)
1796{
1797 struct rq *rq = cpu_rq(cpu);
8a8c69c3 1798 struct rq_flags rf;
f6be8af1 1799
fd7de1e8
AL
1800 rcu_read_lock();
1801
1802 if (!is_idle_task(rcu_dereference(rq->curr)))
1803 goto out;
f6be8af1
CL
1804
1805 if (set_nr_if_polling(rq->idle)) {
1806 trace_sched_wake_idle_without_ipi(cpu);
1807 } else {
8a8c69c3 1808 rq_lock_irqsave(rq, &rf);
f6be8af1
CL
1809 if (is_idle_task(rq->curr))
1810 smp_send_reschedule(cpu);
d1ccc66d 1811 /* Else CPU is not idle, do nothing here: */
8a8c69c3 1812 rq_unlock_irqrestore(rq, &rf);
f6be8af1 1813 }
fd7de1e8
AL
1814
1815out:
1816 rcu_read_unlock();
f6be8af1
CL
1817}
1818
39be3501 1819bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1820{
1821 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1822}
d6aa8f85 1823#endif /* CONFIG_SMP */
317f3941 1824
b5179ac7 1825static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
c05fbafb
PZ
1826{
1827 struct rq *rq = cpu_rq(cpu);
d8ac8971 1828 struct rq_flags rf;
c05fbafb 1829
17d9f311 1830#if defined(CONFIG_SMP)
39be3501 1831 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
d1ccc66d 1832 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
b7e7ade3 1833 ttwu_queue_remote(p, cpu, wake_flags);
317f3941
PZ
1834 return;
1835 }
1836#endif
1837
8a8c69c3 1838 rq_lock(rq, &rf);
77558e4d 1839 update_rq_clock(rq);
d8ac8971 1840 ttwu_do_activate(rq, p, wake_flags, &rf);
8a8c69c3 1841 rq_unlock(rq, &rf);
9ed3811a
TH
1842}
1843
8643cda5
PZ
1844/*
1845 * Notes on Program-Order guarantees on SMP systems.
1846 *
1847 * MIGRATION
1848 *
1849 * The basic program-order guarantee on SMP systems is that when a task [t]
d1ccc66d
IM
1850 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
1851 * execution on its new CPU [c1].
8643cda5
PZ
1852 *
1853 * For migration (of runnable tasks) this is provided by the following means:
1854 *
1855 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1856 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1857 * rq(c1)->lock (if not at the same time, then in that order).
1858 * C) LOCK of the rq(c1)->lock scheduling in task
1859 *
1860 * Transitivity guarantees that B happens after A and C after B.
1861 * Note: we only require RCpc transitivity.
d1ccc66d 1862 * Note: the CPU doing B need not be c0 or c1
8643cda5
PZ
1863 *
1864 * Example:
1865 *
1866 * CPU0 CPU1 CPU2
1867 *
1868 * LOCK rq(0)->lock
1869 * sched-out X
1870 * sched-in Y
1871 * UNLOCK rq(0)->lock
1872 *
1873 * LOCK rq(0)->lock // orders against CPU0
1874 * dequeue X
1875 * UNLOCK rq(0)->lock
1876 *
1877 * LOCK rq(1)->lock
1878 * enqueue X
1879 * UNLOCK rq(1)->lock
1880 *
1881 * LOCK rq(1)->lock // orders against CPU2
1882 * sched-out Z
1883 * sched-in X
1884 * UNLOCK rq(1)->lock
1885 *
1886 *
1887 * BLOCKING -- aka. SLEEP + WAKEUP
1888 *
1889 * For blocking we (obviously) need to provide the same guarantee as for
1890 * migration. However the means are completely different as there is no lock
1891 * chain to provide order. Instead we do:
1892 *
1893 * 1) smp_store_release(X->on_cpu, 0)
1f03e8d2 1894 * 2) smp_cond_load_acquire(!X->on_cpu)
8643cda5
PZ
1895 *
1896 * Example:
1897 *
1898 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1899 *
1900 * LOCK rq(0)->lock LOCK X->pi_lock
1901 * dequeue X
1902 * sched-out X
1903 * smp_store_release(X->on_cpu, 0);
1904 *
1f03e8d2 1905 * smp_cond_load_acquire(&X->on_cpu, !VAL);
8643cda5
PZ
1906 * X->state = WAKING
1907 * set_task_cpu(X,2)
1908 *
1909 * LOCK rq(2)->lock
1910 * enqueue X
1911 * X->state = RUNNING
1912 * UNLOCK rq(2)->lock
1913 *
1914 * LOCK rq(2)->lock // orders against CPU1
1915 * sched-out Z
1916 * sched-in X
1917 * UNLOCK rq(2)->lock
1918 *
1919 * UNLOCK X->pi_lock
1920 * UNLOCK rq(0)->lock
1921 *
1922 *
1923 * However; for wakeups there is a second guarantee we must provide, namely we
1924 * must observe the state that lead to our wakeup. That is, not only must our
1925 * task observe its own prior state, it must also observe the stores prior to
1926 * its wakeup.
1927 *
1928 * This means that any means of doing remote wakeups must order the CPU doing
1929 * the wakeup against the CPU the task is going to end up running on. This,
1930 * however, is already required for the regular Program-Order guarantee above,
1f03e8d2 1931 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
8643cda5
PZ
1932 *
1933 */
1934
9ed3811a 1935/**
1da177e4 1936 * try_to_wake_up - wake up a thread
9ed3811a 1937 * @p: the thread to be awakened
1da177e4 1938 * @state: the mask of task states that can be woken
9ed3811a 1939 * @wake_flags: wake modifier flags (WF_*)
1da177e4 1940 *
a2250238 1941 * If (@state & @p->state) @p->state = TASK_RUNNING.
1da177e4 1942 *
a2250238
PZ
1943 * If the task was not queued/runnable, also place it back on a runqueue.
1944 *
1945 * Atomic against schedule() which would dequeue a task, also see
1946 * set_current_state().
1947 *
1948 * Return: %true if @p->state changes (an actual wakeup was done),
1949 * %false otherwise.
1da177e4 1950 */
e4a52bcb
PZ
1951static int
1952try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1953{
1da177e4 1954 unsigned long flags;
c05fbafb 1955 int cpu, success = 0;
2398f2c6 1956
e0acd0a6
ON
1957 /*
1958 * If we are going to wake up a thread waiting for CONDITION we
1959 * need to ensure that CONDITION=1 done by the caller can not be
1960 * reordered with p->state check below. This pairs with mb() in
1961 * set_current_state() the waiting thread does.
1962 */
013fdb80 1963 raw_spin_lock_irqsave(&p->pi_lock, flags);
d89e588c 1964 smp_mb__after_spinlock();
e9c84311 1965 if (!(p->state & state))
1da177e4
LT
1966 goto out;
1967
fbd705a0
PZ
1968 trace_sched_waking(p);
1969
d1ccc66d
IM
1970 /* We're going to change ->state: */
1971 success = 1;
1da177e4 1972 cpu = task_cpu(p);
1da177e4 1973
135e8c92
BS
1974 /*
1975 * Ensure we load p->on_rq _after_ p->state, otherwise it would
1976 * be possible to, falsely, observe p->on_rq == 0 and get stuck
1977 * in smp_cond_load_acquire() below.
1978 *
1979 * sched_ttwu_pending() try_to_wake_up()
1980 * [S] p->on_rq = 1; [L] P->state
1981 * UNLOCK rq->lock -----.
1982 * \
1983 * +--- RMB
1984 * schedule() /
1985 * LOCK rq->lock -----'
1986 * UNLOCK rq->lock
1987 *
1988 * [task p]
1989 * [S] p->state = UNINTERRUPTIBLE [L] p->on_rq
1990 *
1991 * Pairs with the UNLOCK+LOCK on rq->lock from the
1992 * last wakeup of our task and the schedule that got our task
1993 * current.
1994 */
1995 smp_rmb();
c05fbafb
PZ
1996 if (p->on_rq && ttwu_remote(p, wake_flags))
1997 goto stat;
1da177e4 1998
1da177e4 1999#ifdef CONFIG_SMP
ecf7d01c
PZ
2000 /*
2001 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2002 * possible to, falsely, observe p->on_cpu == 0.
2003 *
2004 * One must be running (->on_cpu == 1) in order to remove oneself
2005 * from the runqueue.
2006 *
2007 * [S] ->on_cpu = 1; [L] ->on_rq
2008 * UNLOCK rq->lock
2009 * RMB
2010 * LOCK rq->lock
2011 * [S] ->on_rq = 0; [L] ->on_cpu
2012 *
2013 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2014 * from the consecutive calls to schedule(); the first switching to our
2015 * task, the second putting it to sleep.
2016 */
2017 smp_rmb();
2018
e9c84311 2019 /*
d1ccc66d 2020 * If the owning (remote) CPU is still in the middle of schedule() with
c05fbafb 2021 * this task as prev, wait until its done referencing the task.
b75a2253 2022 *
31cb1bc0 2023 * Pairs with the smp_store_release() in finish_task().
b75a2253
PZ
2024 *
2025 * This ensures that tasks getting woken will be fully ordered against
2026 * their previous state and preserve Program Order.
0970d299 2027 */
1f03e8d2 2028 smp_cond_load_acquire(&p->on_cpu, !VAL);
1da177e4 2029
a8e4f2ea 2030 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 2031 p->state = TASK_WAKING;
e7693a36 2032
e33a9bba 2033 if (p->in_iowait) {
c96f5471 2034 delayacct_blkio_end(p);
e33a9bba
TH
2035 atomic_dec(&task_rq(p)->nr_iowait);
2036 }
2037
ac66f547 2038 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
2039 if (task_cpu(p) != cpu) {
2040 wake_flags |= WF_MIGRATED;
e4a52bcb 2041 set_task_cpu(p, cpu);
f339b9dc 2042 }
e33a9bba
TH
2043
2044#else /* CONFIG_SMP */
2045
2046 if (p->in_iowait) {
c96f5471 2047 delayacct_blkio_end(p);
e33a9bba
TH
2048 atomic_dec(&task_rq(p)->nr_iowait);
2049 }
2050
1da177e4 2051#endif /* CONFIG_SMP */
1da177e4 2052
b5179ac7 2053 ttwu_queue(p, cpu, wake_flags);
c05fbafb 2054stat:
4fa8d299 2055 ttwu_stat(p, cpu, wake_flags);
1da177e4 2056out:
013fdb80 2057 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
2058
2059 return success;
2060}
2061
21aa9af0
TH
2062/**
2063 * try_to_wake_up_local - try to wake up a local task with rq lock held
2064 * @p: the thread to be awakened
bf50f0e8 2065 * @rf: request-queue flags for pinning
21aa9af0 2066 *
2acca55e 2067 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 2068 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 2069 * the current task.
21aa9af0 2070 */
d8ac8971 2071static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf)
21aa9af0
TH
2072{
2073 struct rq *rq = task_rq(p);
21aa9af0 2074
383efcd0
TH
2075 if (WARN_ON_ONCE(rq != this_rq()) ||
2076 WARN_ON_ONCE(p == current))
2077 return;
2078
21aa9af0
TH
2079 lockdep_assert_held(&rq->lock);
2080
2acca55e 2081 if (!raw_spin_trylock(&p->pi_lock)) {
cbce1a68
PZ
2082 /*
2083 * This is OK, because current is on_cpu, which avoids it being
2084 * picked for load-balance and preemption/IRQs are still
2085 * disabled avoiding further scheduler activity on it and we've
2086 * not yet picked a replacement task.
2087 */
8a8c69c3 2088 rq_unlock(rq, rf);
2acca55e 2089 raw_spin_lock(&p->pi_lock);
8a8c69c3 2090 rq_relock(rq, rf);
2acca55e
PZ
2091 }
2092
21aa9af0 2093 if (!(p->state & TASK_NORMAL))
2acca55e 2094 goto out;
21aa9af0 2095
fbd705a0
PZ
2096 trace_sched_waking(p);
2097
e33a9bba
TH
2098 if (!task_on_rq_queued(p)) {
2099 if (p->in_iowait) {
c96f5471 2100 delayacct_blkio_end(p);
e33a9bba
TH
2101 atomic_dec(&rq->nr_iowait);
2102 }
bce4dc80 2103 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK);
e33a9bba 2104 }
d7c01d27 2105
d8ac8971 2106 ttwu_do_wakeup(rq, p, 0, rf);
4fa8d299 2107 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
2108out:
2109 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
2110}
2111
50fa610a
DH
2112/**
2113 * wake_up_process - Wake up a specific process
2114 * @p: The process to be woken up.
2115 *
2116 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
2117 * processes.
2118 *
2119 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
2120 *
2121 * It may be assumed that this function implies a write memory barrier before
2122 * changing the task state if and only if any tasks are woken up.
2123 */
7ad5b3a5 2124int wake_up_process(struct task_struct *p)
1da177e4 2125{
9067ac85 2126 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 2127}
1da177e4
LT
2128EXPORT_SYMBOL(wake_up_process);
2129
7ad5b3a5 2130int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2131{
2132 return try_to_wake_up(p, state, 0);
2133}
2134
1da177e4
LT
2135/*
2136 * Perform scheduler related setup for a newly forked process p.
2137 * p is forked by current.
dd41f596
IM
2138 *
2139 * __sched_fork() is basic setup used by init_idle() too:
2140 */
5e1576ed 2141static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2142{
fd2f4419
PZ
2143 p->on_rq = 0;
2144
2145 p->se.on_rq = 0;
dd41f596
IM
2146 p->se.exec_start = 0;
2147 p->se.sum_exec_runtime = 0;
f6cf891c 2148 p->se.prev_sum_exec_runtime = 0;
6c594c21 2149 p->se.nr_migrations = 0;
da7a735e 2150 p->se.vruntime = 0;
fd2f4419 2151 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d 2152
ad936d86
BP
2153#ifdef CONFIG_FAIR_GROUP_SCHED
2154 p->se.cfs_rq = NULL;
2155#endif
2156
6cfb0d5d 2157#ifdef CONFIG_SCHEDSTATS
cb251765 2158 /* Even if schedstat is disabled, there should not be garbage */
41acab88 2159 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2160#endif
476d139c 2161
aab03e05 2162 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 2163 init_dl_task_timer(&p->dl);
209a0cbd 2164 init_dl_inactive_task_timer(&p->dl);
a5e7be3b 2165 __dl_clear_params(p);
aab03e05 2166
fa717060 2167 INIT_LIST_HEAD(&p->rt.run_list);
ff77e468
PZ
2168 p->rt.timeout = 0;
2169 p->rt.time_slice = sched_rr_timeslice;
2170 p->rt.on_rq = 0;
2171 p->rt.on_list = 0;
476d139c 2172
e107be36
AK
2173#ifdef CONFIG_PREEMPT_NOTIFIERS
2174 INIT_HLIST_HEAD(&p->preempt_notifiers);
2175#endif
cbee9f88
PZ
2176
2177#ifdef CONFIG_NUMA_BALANCING
2178 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 2179 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
2180 p->mm->numa_scan_seq = 0;
2181 }
2182
5e1576ed
RR
2183 if (clone_flags & CLONE_VM)
2184 p->numa_preferred_nid = current->numa_preferred_nid;
2185 else
2186 p->numa_preferred_nid = -1;
2187
cbee9f88
PZ
2188 p->node_stamp = 0ULL;
2189 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 2190 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 2191 p->numa_work.next = &p->numa_work;
44dba3d5 2192 p->numa_faults = NULL;
7e2703e6
RR
2193 p->last_task_numa_placement = 0;
2194 p->last_sum_exec_runtime = 0;
8c8a743c 2195
8c8a743c 2196 p->numa_group = NULL;
cbee9f88 2197#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
2198}
2199
2a595721
SD
2200DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2201
1a687c2e 2202#ifdef CONFIG_NUMA_BALANCING
c3b9bc5b 2203
1a687c2e
MG
2204void set_numabalancing_state(bool enabled)
2205{
2206 if (enabled)
2a595721 2207 static_branch_enable(&sched_numa_balancing);
1a687c2e 2208 else
2a595721 2209 static_branch_disable(&sched_numa_balancing);
1a687c2e 2210}
54a43d54
AK
2211
2212#ifdef CONFIG_PROC_SYSCTL
2213int sysctl_numa_balancing(struct ctl_table *table, int write,
2214 void __user *buffer, size_t *lenp, loff_t *ppos)
2215{
2216 struct ctl_table t;
2217 int err;
2a595721 2218 int state = static_branch_likely(&sched_numa_balancing);
54a43d54
AK
2219
2220 if (write && !capable(CAP_SYS_ADMIN))
2221 return -EPERM;
2222
2223 t = *table;
2224 t.data = &state;
2225 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2226 if (err < 0)
2227 return err;
2228 if (write)
2229 set_numabalancing_state(state);
2230 return err;
2231}
2232#endif
2233#endif
dd41f596 2234
4698f88c
JP
2235#ifdef CONFIG_SCHEDSTATS
2236
cb251765 2237DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4698f88c 2238static bool __initdata __sched_schedstats = false;
cb251765 2239
cb251765
MG
2240static void set_schedstats(bool enabled)
2241{
2242 if (enabled)
2243 static_branch_enable(&sched_schedstats);
2244 else
2245 static_branch_disable(&sched_schedstats);
2246}
2247
2248void force_schedstat_enabled(void)
2249{
2250 if (!schedstat_enabled()) {
2251 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2252 static_branch_enable(&sched_schedstats);
2253 }
2254}
2255
2256static int __init setup_schedstats(char *str)
2257{
2258 int ret = 0;
2259 if (!str)
2260 goto out;
2261
4698f88c
JP
2262 /*
2263 * This code is called before jump labels have been set up, so we can't
2264 * change the static branch directly just yet. Instead set a temporary
2265 * variable so init_schedstats() can do it later.
2266 */
cb251765 2267 if (!strcmp(str, "enable")) {
4698f88c 2268 __sched_schedstats = true;
cb251765
MG
2269 ret = 1;
2270 } else if (!strcmp(str, "disable")) {
4698f88c 2271 __sched_schedstats = false;
cb251765
MG
2272 ret = 1;
2273 }
2274out:
2275 if (!ret)
2276 pr_warn("Unable to parse schedstats=\n");
2277
2278 return ret;
2279}
2280__setup("schedstats=", setup_schedstats);
2281
4698f88c
JP
2282static void __init init_schedstats(void)
2283{
2284 set_schedstats(__sched_schedstats);
2285}
2286
cb251765
MG
2287#ifdef CONFIG_PROC_SYSCTL
2288int sysctl_schedstats(struct ctl_table *table, int write,
2289 void __user *buffer, size_t *lenp, loff_t *ppos)
2290{
2291 struct ctl_table t;
2292 int err;
2293 int state = static_branch_likely(&sched_schedstats);
2294
2295 if (write && !capable(CAP_SYS_ADMIN))
2296 return -EPERM;
2297
2298 t = *table;
2299 t.data = &state;
2300 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2301 if (err < 0)
2302 return err;
2303 if (write)
2304 set_schedstats(state);
2305 return err;
2306}
4698f88c
JP
2307#endif /* CONFIG_PROC_SYSCTL */
2308#else /* !CONFIG_SCHEDSTATS */
2309static inline void init_schedstats(void) {}
2310#endif /* CONFIG_SCHEDSTATS */
dd41f596
IM
2311
2312/*
2313 * fork()/clone()-time setup:
2314 */
aab03e05 2315int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2316{
0122ec5b 2317 unsigned long flags;
dd41f596
IM
2318 int cpu = get_cpu();
2319
5e1576ed 2320 __sched_fork(clone_flags, p);
06b83b5f 2321 /*
7dc603c9 2322 * We mark the process as NEW here. This guarantees that
06b83b5f
PZ
2323 * nobody will actually run it, and a signal or other external
2324 * event cannot wake it up and insert it on the runqueue either.
2325 */
7dc603c9 2326 p->state = TASK_NEW;
dd41f596 2327
c350a04e
MG
2328 /*
2329 * Make sure we do not leak PI boosting priority to the child.
2330 */
2331 p->prio = current->normal_prio;
2332
b9dc29e7
MG
2333 /*
2334 * Revert to default priority/policy on fork if requested.
2335 */
2336 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 2337 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 2338 p->policy = SCHED_NORMAL;
6c697bdf 2339 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
2340 p->rt_priority = 0;
2341 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2342 p->static_prio = NICE_TO_PRIO(0);
2343
2344 p->prio = p->normal_prio = __normal_prio(p);
9059393e 2345 set_load_weight(p, false);
6c697bdf 2346
b9dc29e7
MG
2347 /*
2348 * We don't need the reset flag anymore after the fork. It has
2349 * fulfilled its duty:
2350 */
2351 p->sched_reset_on_fork = 0;
2352 }
ca94c442 2353
aab03e05
DF
2354 if (dl_prio(p->prio)) {
2355 put_cpu();
2356 return -EAGAIN;
2357 } else if (rt_prio(p->prio)) {
2358 p->sched_class = &rt_sched_class;
2359 } else {
2ddbf952 2360 p->sched_class = &fair_sched_class;
aab03e05 2361 }
b29739f9 2362
7dc603c9 2363 init_entity_runnable_average(&p->se);
cd29fe6f 2364
86951599
PZ
2365 /*
2366 * The child is not yet in the pid-hash so no cgroup attach races,
2367 * and the cgroup is pinned to this child due to cgroup_fork()
2368 * is ran before sched_fork().
2369 *
2370 * Silence PROVE_RCU.
2371 */
0122ec5b 2372 raw_spin_lock_irqsave(&p->pi_lock, flags);
e210bffd 2373 /*
d1ccc66d 2374 * We're setting the CPU for the first time, we don't migrate,
e210bffd
PZ
2375 * so use __set_task_cpu().
2376 */
2377 __set_task_cpu(p, cpu);
2378 if (p->sched_class->task_fork)
2379 p->sched_class->task_fork(p);
0122ec5b 2380 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 2381
f6db8347 2382#ifdef CONFIG_SCHED_INFO
dd41f596 2383 if (likely(sched_info_on()))
52f17b6c 2384 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2385#endif
3ca7a440
PZ
2386#if defined(CONFIG_SMP)
2387 p->on_cpu = 0;
4866cde0 2388#endif
01028747 2389 init_task_preempt_count(p);
806c09a7 2390#ifdef CONFIG_SMP
917b627d 2391 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 2392 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 2393#endif
917b627d 2394
476d139c 2395 put_cpu();
aab03e05 2396 return 0;
1da177e4
LT
2397}
2398
332ac17e
DF
2399unsigned long to_ratio(u64 period, u64 runtime)
2400{
2401 if (runtime == RUNTIME_INF)
c52f14d3 2402 return BW_UNIT;
332ac17e
DF
2403
2404 /*
2405 * Doing this here saves a lot of checks in all
2406 * the calling paths, and returning zero seems
2407 * safe for them anyway.
2408 */
2409 if (period == 0)
2410 return 0;
2411
c52f14d3 2412 return div64_u64(runtime << BW_SHIFT, period);
332ac17e
DF
2413}
2414
1da177e4
LT
2415/*
2416 * wake_up_new_task - wake up a newly created task for the first time.
2417 *
2418 * This function will do some initial scheduler statistics housekeeping
2419 * that must be done for every newly created context, then puts the task
2420 * on the runqueue and wakes it.
2421 */
3e51e3ed 2422void wake_up_new_task(struct task_struct *p)
1da177e4 2423{
eb580751 2424 struct rq_flags rf;
dd41f596 2425 struct rq *rq;
fabf318e 2426
eb580751 2427 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
7dc603c9 2428 p->state = TASK_RUNNING;
fabf318e
PZ
2429#ifdef CONFIG_SMP
2430 /*
2431 * Fork balancing, do it here and not earlier because:
2432 * - cpus_allowed can change in the fork path
d1ccc66d 2433 * - any previously selected CPU might disappear through hotplug
e210bffd
PZ
2434 *
2435 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2436 * as we're not fully set-up yet.
fabf318e 2437 */
32e839dd 2438 p->recent_used_cpu = task_cpu(p);
e210bffd 2439 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735 2440#endif
b7fa30c9 2441 rq = __task_rq_lock(p, &rf);
4126bad6 2442 update_rq_clock(rq);
2b8c41da 2443 post_init_entity_util_avg(&p->se);
0017d735 2444
7a57f32a 2445 activate_task(rq, p, ENQUEUE_NOCLOCK);
da0c1e65 2446 p->on_rq = TASK_ON_RQ_QUEUED;
fbd705a0 2447 trace_sched_wakeup_new(p);
a7558e01 2448 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2449#ifdef CONFIG_SMP
0aaafaab
PZ
2450 if (p->sched_class->task_woken) {
2451 /*
2452 * Nothing relies on rq->lock after this, so its fine to
2453 * drop it.
2454 */
d8ac8971 2455 rq_unpin_lock(rq, &rf);
efbbd05a 2456 p->sched_class->task_woken(rq, p);
d8ac8971 2457 rq_repin_lock(rq, &rf);
0aaafaab 2458 }
9a897c5a 2459#endif
eb580751 2460 task_rq_unlock(rq, p, &rf);
1da177e4
LT
2461}
2462
e107be36
AK
2463#ifdef CONFIG_PREEMPT_NOTIFIERS
2464
1cde2930
PZ
2465static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2466
2ecd9d29
PZ
2467void preempt_notifier_inc(void)
2468{
2469 static_key_slow_inc(&preempt_notifier_key);
2470}
2471EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2472
2473void preempt_notifier_dec(void)
2474{
2475 static_key_slow_dec(&preempt_notifier_key);
2476}
2477EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2478
e107be36 2479/**
80dd99b3 2480 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2481 * @notifier: notifier struct to register
e107be36
AK
2482 */
2483void preempt_notifier_register(struct preempt_notifier *notifier)
2484{
2ecd9d29
PZ
2485 if (!static_key_false(&preempt_notifier_key))
2486 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2487
e107be36
AK
2488 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2489}
2490EXPORT_SYMBOL_GPL(preempt_notifier_register);
2491
2492/**
2493 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2494 * @notifier: notifier struct to unregister
e107be36 2495 *
d84525a8 2496 * This is *not* safe to call from within a preemption notifier.
e107be36
AK
2497 */
2498void preempt_notifier_unregister(struct preempt_notifier *notifier)
2499{
2500 hlist_del(&notifier->link);
2501}
2502EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2503
1cde2930 2504static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2505{
2506 struct preempt_notifier *notifier;
e107be36 2507
b67bfe0d 2508 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2509 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2510}
2511
1cde2930
PZ
2512static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2513{
2514 if (static_key_false(&preempt_notifier_key))
2515 __fire_sched_in_preempt_notifiers(curr);
2516}
2517
e107be36 2518static void
1cde2930
PZ
2519__fire_sched_out_preempt_notifiers(struct task_struct *curr,
2520 struct task_struct *next)
e107be36
AK
2521{
2522 struct preempt_notifier *notifier;
e107be36 2523
b67bfe0d 2524 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2525 notifier->ops->sched_out(notifier, next);
2526}
2527
1cde2930
PZ
2528static __always_inline void
2529fire_sched_out_preempt_notifiers(struct task_struct *curr,
2530 struct task_struct *next)
2531{
2532 if (static_key_false(&preempt_notifier_key))
2533 __fire_sched_out_preempt_notifiers(curr, next);
2534}
2535
6d6bc0ad 2536#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36 2537
1cde2930 2538static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2539{
2540}
2541
1cde2930 2542static inline void
e107be36
AK
2543fire_sched_out_preempt_notifiers(struct task_struct *curr,
2544 struct task_struct *next)
2545{
2546}
2547
6d6bc0ad 2548#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2549
31cb1bc0 2550static inline void prepare_task(struct task_struct *next)
2551{
2552#ifdef CONFIG_SMP
2553 /*
2554 * Claim the task as running, we do this before switching to it
2555 * such that any running task will have this set.
2556 */
2557 next->on_cpu = 1;
2558#endif
2559}
2560
2561static inline void finish_task(struct task_struct *prev)
2562{
2563#ifdef CONFIG_SMP
2564 /*
2565 * After ->on_cpu is cleared, the task can be moved to a different CPU.
2566 * We must ensure this doesn't happen until the switch is completely
2567 * finished.
2568 *
2569 * In particular, the load of prev->state in finish_task_switch() must
2570 * happen before this.
2571 *
2572 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
2573 */
2574 smp_store_release(&prev->on_cpu, 0);
2575#endif
2576}
2577
269d5992
PZ
2578static inline void
2579prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
31cb1bc0 2580{
269d5992
PZ
2581 /*
2582 * Since the runqueue lock will be released by the next
2583 * task (which is an invalid locking op but in the case
2584 * of the scheduler it's an obvious special-case), so we
2585 * do an early lockdep release here:
2586 */
2587 rq_unpin_lock(rq, rf);
2588 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
31cb1bc0 2589#ifdef CONFIG_DEBUG_SPINLOCK
2590 /* this is a valid case when another task releases the spinlock */
269d5992 2591 rq->lock.owner = next;
31cb1bc0 2592#endif
269d5992
PZ
2593}
2594
2595static inline void finish_lock_switch(struct rq *rq)
2596{
31cb1bc0 2597 /*
2598 * If we are tracking spinlock dependencies then we have to
2599 * fix up the runqueue lock - which gets 'carried over' from
2600 * prev into current:
2601 */
2602 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
31cb1bc0 2603 raw_spin_unlock_irq(&rq->lock);
2604}
2605
325ea10c
IM
2606/*
2607 * NOP if the arch has not defined these:
2608 */
2609
2610#ifndef prepare_arch_switch
2611# define prepare_arch_switch(next) do { } while (0)
2612#endif
2613
2614#ifndef finish_arch_post_lock_switch
2615# define finish_arch_post_lock_switch() do { } while (0)
2616#endif
2617
4866cde0
NP
2618/**
2619 * prepare_task_switch - prepare to switch tasks
2620 * @rq: the runqueue preparing to switch
421cee29 2621 * @prev: the current task that is being switched out
4866cde0
NP
2622 * @next: the task we are going to switch to.
2623 *
2624 * This is called with the rq lock held and interrupts off. It must
2625 * be paired with a subsequent finish_task_switch after the context
2626 * switch.
2627 *
2628 * prepare_task_switch sets up locking and calls architecture specific
2629 * hooks.
2630 */
e107be36
AK
2631static inline void
2632prepare_task_switch(struct rq *rq, struct task_struct *prev,
2633 struct task_struct *next)
4866cde0 2634{
43148951 2635 sched_info_switch(rq, prev, next);
fe4b04fa 2636 perf_event_task_sched_out(prev, next);
e107be36 2637 fire_sched_out_preempt_notifiers(prev, next);
31cb1bc0 2638 prepare_task(next);
4866cde0
NP
2639 prepare_arch_switch(next);
2640}
2641
1da177e4
LT
2642/**
2643 * finish_task_switch - clean up after a task-switch
2644 * @prev: the thread we just switched away from.
2645 *
4866cde0
NP
2646 * finish_task_switch must be called after the context switch, paired
2647 * with a prepare_task_switch call before the context switch.
2648 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2649 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2650 *
2651 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2652 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2653 * with the lock held can cause deadlocks; see schedule() for
2654 * details.)
dfa50b60
ON
2655 *
2656 * The context switch have flipped the stack from under us and restored the
2657 * local variables which were saved when this task called schedule() in the
2658 * past. prev == current is still correct but we need to recalculate this_rq
2659 * because prev may have moved to another CPU.
1da177e4 2660 */
dfa50b60 2661static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
2662 __releases(rq->lock)
2663{
dfa50b60 2664 struct rq *rq = this_rq();
1da177e4 2665 struct mm_struct *mm = rq->prev_mm;
55a101f8 2666 long prev_state;
1da177e4 2667
609ca066
PZ
2668 /*
2669 * The previous task will have left us with a preempt_count of 2
2670 * because it left us after:
2671 *
2672 * schedule()
2673 * preempt_disable(); // 1
2674 * __schedule()
2675 * raw_spin_lock_irq(&rq->lock) // 2
2676 *
2677 * Also, see FORK_PREEMPT_COUNT.
2678 */
e2bf1c4b
PZ
2679 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2680 "corrupted preempt_count: %s/%d/0x%x\n",
2681 current->comm, current->pid, preempt_count()))
2682 preempt_count_set(FORK_PREEMPT_COUNT);
609ca066 2683
1da177e4
LT
2684 rq->prev_mm = NULL;
2685
2686 /*
2687 * A task struct has one reference for the use as "current".
c394cc9f 2688 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2689 * schedule one last time. The schedule call will never return, and
2690 * the scheduled task must drop that reference.
95913d97
PZ
2691 *
2692 * We must observe prev->state before clearing prev->on_cpu (in
31cb1bc0 2693 * finish_task), otherwise a concurrent wakeup can get prev
95913d97
PZ
2694 * running on another CPU and we could rave with its RUNNING -> DEAD
2695 * transition, resulting in a double drop.
1da177e4 2696 */
55a101f8 2697 prev_state = prev->state;
bf9fae9f 2698 vtime_task_switch(prev);
a8d757ef 2699 perf_event_task_sched_in(prev, current);
31cb1bc0 2700 finish_task(prev);
2701 finish_lock_switch(rq);
01f23e16 2702 finish_arch_post_lock_switch();
e8fa1362 2703
e107be36 2704 fire_sched_in_preempt_notifiers(current);
306e0604 2705 /*
70216e18
MD
2706 * When switching through a kernel thread, the loop in
2707 * membarrier_{private,global}_expedited() may have observed that
2708 * kernel thread and not issued an IPI. It is therefore possible to
2709 * schedule between user->kernel->user threads without passing though
2710 * switch_mm(). Membarrier requires a barrier after storing to
2711 * rq->curr, before returning to userspace, so provide them here:
2712 *
2713 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
2714 * provided by mmdrop(),
2715 * - a sync_core for SYNC_CORE.
306e0604 2716 */
70216e18
MD
2717 if (mm) {
2718 membarrier_mm_sync_core_before_usermode(mm);
1da177e4 2719 mmdrop(mm);
70216e18 2720 }
c394cc9f 2721 if (unlikely(prev_state == TASK_DEAD)) {
e6c390f2
DF
2722 if (prev->sched_class->task_dead)
2723 prev->sched_class->task_dead(prev);
2724
c6fd91f0 2725 /*
2726 * Remove function-return probe instances associated with this
2727 * task and put them back on the free list.
9761eea8 2728 */
c6fd91f0 2729 kprobe_flush_task(prev);
68f24b08
AL
2730
2731 /* Task is done with its stack. */
2732 put_task_stack(prev);
2733
1da177e4 2734 put_task_struct(prev);
c6fd91f0 2735 }
99e5ada9 2736
de734f89 2737 tick_nohz_task_switch();
dfa50b60 2738 return rq;
1da177e4
LT
2739}
2740
3f029d3c
GH
2741#ifdef CONFIG_SMP
2742
3f029d3c 2743/* rq->lock is NOT held, but preemption is disabled */
e3fca9e7 2744static void __balance_callback(struct rq *rq)
3f029d3c 2745{
e3fca9e7
PZ
2746 struct callback_head *head, *next;
2747 void (*func)(struct rq *rq);
2748 unsigned long flags;
3f029d3c 2749
e3fca9e7
PZ
2750 raw_spin_lock_irqsave(&rq->lock, flags);
2751 head = rq->balance_callback;
2752 rq->balance_callback = NULL;
2753 while (head) {
2754 func = (void (*)(struct rq *))head->func;
2755 next = head->next;
2756 head->next = NULL;
2757 head = next;
3f029d3c 2758
e3fca9e7 2759 func(rq);
3f029d3c 2760 }
e3fca9e7
PZ
2761 raw_spin_unlock_irqrestore(&rq->lock, flags);
2762}
2763
2764static inline void balance_callback(struct rq *rq)
2765{
2766 if (unlikely(rq->balance_callback))
2767 __balance_callback(rq);
3f029d3c
GH
2768}
2769
2770#else
da19ab51 2771
e3fca9e7 2772static inline void balance_callback(struct rq *rq)
3f029d3c 2773{
1da177e4
LT
2774}
2775
3f029d3c
GH
2776#endif
2777
1da177e4
LT
2778/**
2779 * schedule_tail - first thing a freshly forked thread must call.
2780 * @prev: the thread we just switched away from.
2781 */
722a9f92 2782asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
2783 __releases(rq->lock)
2784{
1a43a14a 2785 struct rq *rq;
da19ab51 2786
609ca066
PZ
2787 /*
2788 * New tasks start with FORK_PREEMPT_COUNT, see there and
2789 * finish_task_switch() for details.
2790 *
2791 * finish_task_switch() will drop rq->lock() and lower preempt_count
2792 * and the preempt_enable() will end up enabling preemption (on
2793 * PREEMPT_COUNT kernels).
2794 */
2795
dfa50b60 2796 rq = finish_task_switch(prev);
e3fca9e7 2797 balance_callback(rq);
1a43a14a 2798 preempt_enable();
70b97a7f 2799
1da177e4 2800 if (current->set_child_tid)
b488893a 2801 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2802}
2803
2804/*
dfa50b60 2805 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 2806 */
04936948 2807static __always_inline struct rq *
70b97a7f 2808context_switch(struct rq *rq, struct task_struct *prev,
d8ac8971 2809 struct task_struct *next, struct rq_flags *rf)
1da177e4 2810{
dd41f596 2811 struct mm_struct *mm, *oldmm;
1da177e4 2812
e107be36 2813 prepare_task_switch(rq, prev, next);
fe4b04fa 2814
dd41f596
IM
2815 mm = next->mm;
2816 oldmm = prev->active_mm;
9226d125
ZA
2817 /*
2818 * For paravirt, this is coupled with an exit in switch_to to
2819 * combine the page table reload and the switch backend into
2820 * one hypercall.
2821 */
224101ed 2822 arch_start_context_switch(prev);
9226d125 2823
306e0604
MD
2824 /*
2825 * If mm is non-NULL, we pass through switch_mm(). If mm is
2826 * NULL, we will pass through mmdrop() in finish_task_switch().
2827 * Both of these contain the full memory barrier required by
2828 * membarrier after storing to rq->curr, before returning to
2829 * user-space.
2830 */
31915ab4 2831 if (!mm) {
1da177e4 2832 next->active_mm = oldmm;
f1f10076 2833 mmgrab(oldmm);
1da177e4
LT
2834 enter_lazy_tlb(oldmm, next);
2835 } else
f98db601 2836 switch_mm_irqs_off(oldmm, mm, next);
1da177e4 2837
31915ab4 2838 if (!prev->mm) {
1da177e4 2839 prev->active_mm = NULL;
1da177e4
LT
2840 rq->prev_mm = oldmm;
2841 }
92509b73 2842
cb42c9a3 2843 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
92509b73 2844
269d5992 2845 prepare_lock_switch(rq, next, rf);
1da177e4
LT
2846
2847 /* Here we just switch the register state and the stack. */
2848 switch_to(prev, next, prev);
dd41f596 2849 barrier();
dfa50b60
ON
2850
2851 return finish_task_switch(prev);
1da177e4
LT
2852}
2853
2854/*
1c3e8264 2855 * nr_running and nr_context_switches:
1da177e4
LT
2856 *
2857 * externally visible scheduler statistics: current number of runnable
1c3e8264 2858 * threads, total number of context switches performed since bootup.
1da177e4
LT
2859 */
2860unsigned long nr_running(void)
2861{
2862 unsigned long i, sum = 0;
2863
2864 for_each_online_cpu(i)
2865 sum += cpu_rq(i)->nr_running;
2866
2867 return sum;
f711f609 2868}
1da177e4 2869
2ee507c4 2870/*
d1ccc66d 2871 * Check if only the current task is running on the CPU.
00cc1633
DD
2872 *
2873 * Caution: this function does not check that the caller has disabled
2874 * preemption, thus the result might have a time-of-check-to-time-of-use
2875 * race. The caller is responsible to use it correctly, for example:
2876 *
2877 * - from a non-preemptable section (of course)
2878 *
2879 * - from a thread that is bound to a single CPU
2880 *
2881 * - in a loop with very short iterations (e.g. a polling loop)
2ee507c4
TC
2882 */
2883bool single_task_running(void)
2884{
00cc1633 2885 return raw_rq()->nr_running == 1;
2ee507c4
TC
2886}
2887EXPORT_SYMBOL(single_task_running);
2888
1da177e4 2889unsigned long long nr_context_switches(void)
46cb4b7c 2890{
cc94abfc
SR
2891 int i;
2892 unsigned long long sum = 0;
46cb4b7c 2893
0a945022 2894 for_each_possible_cpu(i)
1da177e4 2895 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2896
1da177e4
LT
2897 return sum;
2898}
483b4ee6 2899
e33a9bba
TH
2900/*
2901 * IO-wait accounting, and how its mostly bollocks (on SMP).
2902 *
2903 * The idea behind IO-wait account is to account the idle time that we could
2904 * have spend running if it were not for IO. That is, if we were to improve the
2905 * storage performance, we'd have a proportional reduction in IO-wait time.
2906 *
2907 * This all works nicely on UP, where, when a task blocks on IO, we account
2908 * idle time as IO-wait, because if the storage were faster, it could've been
2909 * running and we'd not be idle.
2910 *
2911 * This has been extended to SMP, by doing the same for each CPU. This however
2912 * is broken.
2913 *
2914 * Imagine for instance the case where two tasks block on one CPU, only the one
2915 * CPU will have IO-wait accounted, while the other has regular idle. Even
2916 * though, if the storage were faster, both could've ran at the same time,
2917 * utilising both CPUs.
2918 *
2919 * This means, that when looking globally, the current IO-wait accounting on
2920 * SMP is a lower bound, by reason of under accounting.
2921 *
2922 * Worse, since the numbers are provided per CPU, they are sometimes
2923 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
2924 * associated with any one particular CPU, it can wake to another CPU than it
2925 * blocked on. This means the per CPU IO-wait number is meaningless.
2926 *
2927 * Task CPU affinities can make all that even more 'interesting'.
2928 */
2929
1da177e4
LT
2930unsigned long nr_iowait(void)
2931{
2932 unsigned long i, sum = 0;
483b4ee6 2933
0a945022 2934 for_each_possible_cpu(i)
1da177e4 2935 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2936
1da177e4
LT
2937 return sum;
2938}
483b4ee6 2939
e33a9bba
TH
2940/*
2941 * Consumers of these two interfaces, like for example the cpufreq menu
2942 * governor are using nonsensical data. Boosting frequency for a CPU that has
2943 * IO-wait which might not even end up running the task when it does become
2944 * runnable.
2945 */
2946
8c215bd3 2947unsigned long nr_iowait_cpu(int cpu)
69d25870 2948{
8c215bd3 2949 struct rq *this = cpu_rq(cpu);
69d25870
AV
2950 return atomic_read(&this->nr_iowait);
2951}
46cb4b7c 2952
372ba8cb
MG
2953void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2954{
3289bdb4
PZ
2955 struct rq *rq = this_rq();
2956 *nr_waiters = atomic_read(&rq->nr_iowait);
2957 *load = rq->load.weight;
372ba8cb
MG
2958}
2959
dd41f596 2960#ifdef CONFIG_SMP
8a0be9ef 2961
46cb4b7c 2962/*
38022906
PZ
2963 * sched_exec - execve() is a valuable balancing opportunity, because at
2964 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2965 */
38022906 2966void sched_exec(void)
46cb4b7c 2967{
38022906 2968 struct task_struct *p = current;
1da177e4 2969 unsigned long flags;
0017d735 2970 int dest_cpu;
46cb4b7c 2971
8f42ced9 2972 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2973 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2974 if (dest_cpu == smp_processor_id())
2975 goto unlock;
38022906 2976
8f42ced9 2977 if (likely(cpu_active(dest_cpu))) {
969c7921 2978 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2979
8f42ced9
PZ
2980 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2981 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2982 return;
2983 }
0017d735 2984unlock:
8f42ced9 2985 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2986}
dd41f596 2987
1da177e4
LT
2988#endif
2989
1da177e4 2990DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2991DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2992
2993EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2994EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 2995
6075620b
GG
2996/*
2997 * The function fair_sched_class.update_curr accesses the struct curr
2998 * and its field curr->exec_start; when called from task_sched_runtime(),
2999 * we observe a high rate of cache misses in practice.
3000 * Prefetching this data results in improved performance.
3001 */
3002static inline void prefetch_curr_exec_start(struct task_struct *p)
3003{
3004#ifdef CONFIG_FAIR_GROUP_SCHED
3005 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3006#else
3007 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3008#endif
3009 prefetch(curr);
3010 prefetch(&curr->exec_start);
3011}
3012
c5f8d995
HS
3013/*
3014 * Return accounted runtime for the task.
3015 * In case the task is currently running, return the runtime plus current's
3016 * pending runtime that have not been accounted yet.
3017 */
3018unsigned long long task_sched_runtime(struct task_struct *p)
3019{
eb580751 3020 struct rq_flags rf;
c5f8d995 3021 struct rq *rq;
6e998916 3022 u64 ns;
c5f8d995 3023
911b2898
PZ
3024#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3025 /*
97fb7a0a 3026 * 64-bit doesn't need locks to atomically read a 64-bit value.
911b2898
PZ
3027 * So we have a optimization chance when the task's delta_exec is 0.
3028 * Reading ->on_cpu is racy, but this is ok.
3029 *
d1ccc66d
IM
3030 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3031 * If we race with it entering CPU, unaccounted time is 0. This is
911b2898 3032 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
3033 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3034 * been accounted, so we're correct here as well.
911b2898 3035 */
da0c1e65 3036 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
3037 return p->se.sum_exec_runtime;
3038#endif
3039
eb580751 3040 rq = task_rq_lock(p, &rf);
6e998916
SG
3041 /*
3042 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3043 * project cycles that may never be accounted to this
3044 * thread, breaking clock_gettime().
3045 */
3046 if (task_current(rq, p) && task_on_rq_queued(p)) {
6075620b 3047 prefetch_curr_exec_start(p);
6e998916
SG
3048 update_rq_clock(rq);
3049 p->sched_class->update_curr(rq);
3050 }
3051 ns = p->se.sum_exec_runtime;
eb580751 3052 task_rq_unlock(rq, p, &rf);
c5f8d995
HS
3053
3054 return ns;
3055}
48f24c4d 3056
7835b98b
CL
3057/*
3058 * This function gets called by the timer code, with HZ frequency.
3059 * We call it with interrupts disabled.
7835b98b
CL
3060 */
3061void scheduler_tick(void)
3062{
7835b98b
CL
3063 int cpu = smp_processor_id();
3064 struct rq *rq = cpu_rq(cpu);
dd41f596 3065 struct task_struct *curr = rq->curr;
8a8c69c3 3066 struct rq_flags rf;
3e51f33f
PZ
3067
3068 sched_clock_tick();
dd41f596 3069
8a8c69c3
PZ
3070 rq_lock(rq, &rf);
3071
3e51f33f 3072 update_rq_clock(rq);
fa85ae24 3073 curr->sched_class->task_tick(rq, curr, 0);
cee1afce 3074 cpu_load_update_active(rq);
3289bdb4 3075 calc_global_load_tick(rq);
8a8c69c3
PZ
3076
3077 rq_unlock(rq, &rf);
7835b98b 3078
e9d2b064 3079 perf_event_task_tick();
e220d2dc 3080
e418e1c2 3081#ifdef CONFIG_SMP
6eb57e0d 3082 rq->idle_balance = idle_cpu(cpu);
7caff66f 3083 trigger_load_balance(rq);
e418e1c2 3084#endif
1da177e4
LT
3085}
3086
265f22a9 3087#ifdef CONFIG_NO_HZ_FULL
d84b3131
FW
3088
3089struct tick_work {
3090 int cpu;
3091 struct delayed_work work;
3092};
3093
3094static struct tick_work __percpu *tick_work_cpu;
3095
3096static void sched_tick_remote(struct work_struct *work)
3097{
3098 struct delayed_work *dwork = to_delayed_work(work);
3099 struct tick_work *twork = container_of(dwork, struct tick_work, work);
3100 int cpu = twork->cpu;
3101 struct rq *rq = cpu_rq(cpu);
3102 struct rq_flags rf;
3103
3104 /*
3105 * Handle the tick only if it appears the remote CPU is running in full
3106 * dynticks mode. The check is racy by nature, but missing a tick or
3107 * having one too much is no big deal because the scheduler tick updates
3108 * statistics and checks timeslices in a time-independent way, regardless
3109 * of when exactly it is running.
3110 */
3111 if (!idle_cpu(cpu) && tick_nohz_tick_stopped_cpu(cpu)) {
3112 struct task_struct *curr;
3113 u64 delta;
3114
3115 rq_lock_irq(rq, &rf);
3116 update_rq_clock(rq);
3117 curr = rq->curr;
3118 delta = rq_clock_task(rq) - curr->se.exec_start;
3119
3120 /*
3121 * Make sure the next tick runs within a reasonable
3122 * amount of time.
3123 */
3124 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
3125 curr->sched_class->task_tick(rq, curr, 0);
3126 rq_unlock_irq(rq, &rf);
3127 }
3128
3129 /*
3130 * Run the remote tick once per second (1Hz). This arbitrary
3131 * frequency is large enough to avoid overload but short enough
3132 * to keep scheduler internal stats reasonably up to date.
3133 */
3134 queue_delayed_work(system_unbound_wq, dwork, HZ);
3135}
3136
3137static void sched_tick_start(int cpu)
3138{
3139 struct tick_work *twork;
3140
3141 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3142 return;
3143
3144 WARN_ON_ONCE(!tick_work_cpu);
3145
3146 twork = per_cpu_ptr(tick_work_cpu, cpu);
3147 twork->cpu = cpu;
3148 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
3149 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
3150}
3151
3152#ifdef CONFIG_HOTPLUG_CPU
3153static void sched_tick_stop(int cpu)
3154{
3155 struct tick_work *twork;
3156
3157 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3158 return;
3159
3160 WARN_ON_ONCE(!tick_work_cpu);
3161
3162 twork = per_cpu_ptr(tick_work_cpu, cpu);
3163 cancel_delayed_work_sync(&twork->work);
3164}
3165#endif /* CONFIG_HOTPLUG_CPU */
3166
3167int __init sched_tick_offload_init(void)
3168{
3169 tick_work_cpu = alloc_percpu(struct tick_work);
3170 BUG_ON(!tick_work_cpu);
3171
3172 return 0;
3173}
3174
3175#else /* !CONFIG_NO_HZ_FULL */
3176static inline void sched_tick_start(int cpu) { }
3177static inline void sched_tick_stop(int cpu) { }
265f22a9 3178#endif
1da177e4 3179
7e49fcce
SR
3180#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3181 defined(CONFIG_PREEMPT_TRACER))
47252cfb
SR
3182/*
3183 * If the value passed in is equal to the current preempt count
3184 * then we just disabled preemption. Start timing the latency.
3185 */
3186static inline void preempt_latency_start(int val)
3187{
3188 if (preempt_count() == val) {
3189 unsigned long ip = get_lock_parent_ip();
3190#ifdef CONFIG_DEBUG_PREEMPT
3191 current->preempt_disable_ip = ip;
3192#endif
3193 trace_preempt_off(CALLER_ADDR0, ip);
3194 }
3195}
7e49fcce 3196
edafe3a5 3197void preempt_count_add(int val)
1da177e4 3198{
6cd8a4bb 3199#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3200 /*
3201 * Underflow?
3202 */
9a11b49a
IM
3203 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3204 return;
6cd8a4bb 3205#endif
bdb43806 3206 __preempt_count_add(val);
6cd8a4bb 3207#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3208 /*
3209 * Spinlock count overflowing soon?
3210 */
33859f7f
MOS
3211 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3212 PREEMPT_MASK - 10);
6cd8a4bb 3213#endif
47252cfb 3214 preempt_latency_start(val);
1da177e4 3215}
bdb43806 3216EXPORT_SYMBOL(preempt_count_add);
edafe3a5 3217NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 3218
47252cfb
SR
3219/*
3220 * If the value passed in equals to the current preempt count
3221 * then we just enabled preemption. Stop timing the latency.
3222 */
3223static inline void preempt_latency_stop(int val)
3224{
3225 if (preempt_count() == val)
3226 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3227}
3228
edafe3a5 3229void preempt_count_sub(int val)
1da177e4 3230{
6cd8a4bb 3231#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3232 /*
3233 * Underflow?
3234 */
01e3eb82 3235 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3236 return;
1da177e4
LT
3237 /*
3238 * Is the spinlock portion underflowing?
3239 */
9a11b49a
IM
3240 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3241 !(preempt_count() & PREEMPT_MASK)))
3242 return;
6cd8a4bb 3243#endif
9a11b49a 3244
47252cfb 3245 preempt_latency_stop(val);
bdb43806 3246 __preempt_count_sub(val);
1da177e4 3247}
bdb43806 3248EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 3249NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4 3250
47252cfb
SR
3251#else
3252static inline void preempt_latency_start(int val) { }
3253static inline void preempt_latency_stop(int val) { }
1da177e4
LT
3254#endif
3255
59ddbcb2
IM
3256static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3257{
3258#ifdef CONFIG_DEBUG_PREEMPT
3259 return p->preempt_disable_ip;
3260#else
3261 return 0;
3262#endif
3263}
3264
1da177e4 3265/*
dd41f596 3266 * Print scheduling while atomic bug:
1da177e4 3267 */
dd41f596 3268static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3269{
d1c6d149
VN
3270 /* Save this before calling printk(), since that will clobber it */
3271 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3272
664dfa65
DJ
3273 if (oops_in_progress)
3274 return;
3275
3df0fc5b
PZ
3276 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3277 prev->comm, prev->pid, preempt_count());
838225b4 3278
dd41f596 3279 debug_show_held_locks(prev);
e21f5b15 3280 print_modules();
dd41f596
IM
3281 if (irqs_disabled())
3282 print_irqtrace_events(prev);
d1c6d149
VN
3283 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3284 && in_atomic_preempt_off()) {
8f47b187 3285 pr_err("Preemption disabled at:");
d1c6d149 3286 print_ip_sym(preempt_disable_ip);
8f47b187
TG
3287 pr_cont("\n");
3288 }
748c7201
DBO
3289 if (panic_on_warn)
3290 panic("scheduling while atomic\n");
3291
6135fc1e 3292 dump_stack();
373d4d09 3293 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 3294}
1da177e4 3295
dd41f596
IM
3296/*
3297 * Various schedule()-time debugging checks and statistics:
3298 */
3299static inline void schedule_debug(struct task_struct *prev)
3300{
0d9e2632 3301#ifdef CONFIG_SCHED_STACK_END_CHECK
29d64551
JH
3302 if (task_stack_end_corrupted(prev))
3303 panic("corrupted stack end detected inside scheduler\n");
0d9e2632 3304#endif
b99def8b 3305
1dc0fffc 3306 if (unlikely(in_atomic_preempt_off())) {
dd41f596 3307 __schedule_bug(prev);
1dc0fffc
PZ
3308 preempt_count_set(PREEMPT_DISABLED);
3309 }
b3fbab05 3310 rcu_sleep_check();
dd41f596 3311
1da177e4
LT
3312 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3313
ae92882e 3314 schedstat_inc(this_rq()->sched_count);
dd41f596
IM
3315}
3316
3317/*
3318 * Pick up the highest-prio task:
3319 */
3320static inline struct task_struct *
d8ac8971 3321pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
dd41f596 3322{
49ee5768 3323 const struct sched_class *class;
dd41f596 3324 struct task_struct *p;
1da177e4
LT
3325
3326 /*
0ba87bb2
PZ
3327 * Optimization: we know that if all tasks are in the fair class we can
3328 * call that function directly, but only if the @prev task wasn't of a
3329 * higher scheduling class, because otherwise those loose the
3330 * opportunity to pull in more work from other CPUs.
1da177e4 3331 */
0ba87bb2
PZ
3332 if (likely((prev->sched_class == &idle_sched_class ||
3333 prev->sched_class == &fair_sched_class) &&
3334 rq->nr_running == rq->cfs.h_nr_running)) {
3335
d8ac8971 3336 p = fair_sched_class.pick_next_task(rq, prev, rf);
6ccdc84b
PZ
3337 if (unlikely(p == RETRY_TASK))
3338 goto again;
3339
d1ccc66d 3340 /* Assumes fair_sched_class->next == idle_sched_class */
6ccdc84b 3341 if (unlikely(!p))
d8ac8971 3342 p = idle_sched_class.pick_next_task(rq, prev, rf);
6ccdc84b
PZ
3343
3344 return p;
1da177e4
LT
3345 }
3346
37e117c0 3347again:
34f971f6 3348 for_each_class(class) {
d8ac8971 3349 p = class->pick_next_task(rq, prev, rf);
37e117c0
PZ
3350 if (p) {
3351 if (unlikely(p == RETRY_TASK))
3352 goto again;
dd41f596 3353 return p;
37e117c0 3354 }
dd41f596 3355 }
34f971f6 3356
d1ccc66d
IM
3357 /* The idle class should always have a runnable task: */
3358 BUG();
dd41f596 3359}
1da177e4 3360
dd41f596 3361/*
c259e01a 3362 * __schedule() is the main scheduler function.
edde96ea
PE
3363 *
3364 * The main means of driving the scheduler and thus entering this function are:
3365 *
3366 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3367 *
3368 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3369 * paths. For example, see arch/x86/entry_64.S.
3370 *
3371 * To drive preemption between tasks, the scheduler sets the flag in timer
3372 * interrupt handler scheduler_tick().
3373 *
3374 * 3. Wakeups don't really cause entry into schedule(). They add a
3375 * task to the run-queue and that's it.
3376 *
3377 * Now, if the new task added to the run-queue preempts the current
3378 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3379 * called on the nearest possible occasion:
3380 *
3381 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3382 *
3383 * - in syscall or exception context, at the next outmost
3384 * preempt_enable(). (this might be as soon as the wake_up()'s
3385 * spin_unlock()!)
3386 *
3387 * - in IRQ context, return from interrupt-handler to
3388 * preemptible context
3389 *
3390 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3391 * then at the next:
3392 *
3393 * - cond_resched() call
3394 * - explicit schedule() call
3395 * - return from syscall or exception to user-space
3396 * - return from interrupt-handler to user-space
bfd9b2b5 3397 *
b30f0e3f 3398 * WARNING: must be called with preemption disabled!
dd41f596 3399 */
499d7955 3400static void __sched notrace __schedule(bool preempt)
dd41f596
IM
3401{
3402 struct task_struct *prev, *next;
67ca7bde 3403 unsigned long *switch_count;
d8ac8971 3404 struct rq_flags rf;
dd41f596 3405 struct rq *rq;
31656519 3406 int cpu;
dd41f596 3407
dd41f596
IM
3408 cpu = smp_processor_id();
3409 rq = cpu_rq(cpu);
dd41f596 3410 prev = rq->curr;
dd41f596 3411
dd41f596 3412 schedule_debug(prev);
1da177e4 3413
31656519 3414 if (sched_feat(HRTICK))
f333fdc9 3415 hrtick_clear(rq);
8f4d37ec 3416
46a5d164 3417 local_irq_disable();
bcbfdd01 3418 rcu_note_context_switch(preempt);
46a5d164 3419
e0acd0a6
ON
3420 /*
3421 * Make sure that signal_pending_state()->signal_pending() below
3422 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3423 * done by the caller to avoid the race with signal_wake_up().
306e0604
MD
3424 *
3425 * The membarrier system call requires a full memory barrier
3426 * after coming from user-space, before storing to rq->curr.
e0acd0a6 3427 */
8a8c69c3 3428 rq_lock(rq, &rf);
d89e588c 3429 smp_mb__after_spinlock();
1da177e4 3430
d1ccc66d
IM
3431 /* Promote REQ to ACT */
3432 rq->clock_update_flags <<= 1;
bce4dc80 3433 update_rq_clock(rq);
9edfbfed 3434
246d86b5 3435 switch_count = &prev->nivcsw;
fc13aeba 3436 if (!preempt && prev->state) {
21aa9af0 3437 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 3438 prev->state = TASK_RUNNING;
21aa9af0 3439 } else {
bce4dc80 3440 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
2acca55e
PZ
3441 prev->on_rq = 0;
3442
e33a9bba
TH
3443 if (prev->in_iowait) {
3444 atomic_inc(&rq->nr_iowait);
3445 delayacct_blkio_start();
3446 }
3447
21aa9af0 3448 /*
2acca55e
PZ
3449 * If a worker went to sleep, notify and ask workqueue
3450 * whether it wants to wake up a task to maintain
3451 * concurrency.
21aa9af0
TH
3452 */
3453 if (prev->flags & PF_WQ_WORKER) {
3454 struct task_struct *to_wakeup;
3455
9b7f6597 3456 to_wakeup = wq_worker_sleeping(prev);
21aa9af0 3457 if (to_wakeup)
d8ac8971 3458 try_to_wake_up_local(to_wakeup, &rf);
21aa9af0 3459 }
21aa9af0 3460 }
dd41f596 3461 switch_count = &prev->nvcsw;
1da177e4
LT
3462 }
3463
d8ac8971 3464 next = pick_next_task(rq, prev, &rf);
f26f9aff 3465 clear_tsk_need_resched(prev);
f27dde8d 3466 clear_preempt_need_resched();
1da177e4 3467
1da177e4 3468 if (likely(prev != next)) {
1da177e4
LT
3469 rq->nr_switches++;
3470 rq->curr = next;
22e4ebb9
MD
3471 /*
3472 * The membarrier system call requires each architecture
3473 * to have a full memory barrier after updating
306e0604
MD
3474 * rq->curr, before returning to user-space.
3475 *
3476 * Here are the schemes providing that barrier on the
3477 * various architectures:
3478 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
3479 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
3480 * - finish_lock_switch() for weakly-ordered
3481 * architectures where spin_unlock is a full barrier,
3482 * - switch_to() for arm64 (weakly-ordered, spin_unlock
3483 * is a RELEASE barrier),
22e4ebb9 3484 */
1da177e4
LT
3485 ++*switch_count;
3486
c73464b1 3487 trace_sched_switch(preempt, prev, next);
d1ccc66d
IM
3488
3489 /* Also unlocks the rq: */
3490 rq = context_switch(rq, prev, next, &rf);
cbce1a68 3491 } else {
cb42c9a3 3492 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
8a8c69c3 3493 rq_unlock_irq(rq, &rf);
cbce1a68 3494 }
1da177e4 3495
e3fca9e7 3496 balance_callback(rq);
1da177e4 3497}
c259e01a 3498
9af6528e
PZ
3499void __noreturn do_task_dead(void)
3500{
3501 /*
3502 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
3503 * when the following two conditions become true.
3504 * - There is race condition of mmap_sem (It is acquired by
3505 * exit_mm()), and
3506 * - SMI occurs before setting TASK_RUNINNG.
3507 * (or hypervisor of virtual machine switches to other guest)
3508 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD
3509 *
3510 * To avoid it, we have to wait for releasing tsk->pi_lock which
3511 * is held by try_to_wake_up()
3512 */
23a9b748
PM
3513 raw_spin_lock_irq(&current->pi_lock);
3514 raw_spin_unlock_irq(&current->pi_lock);
9af6528e 3515
d1ccc66d 3516 /* Causes final put_task_struct in finish_task_switch(): */
9af6528e 3517 __set_current_state(TASK_DEAD);
d1ccc66d
IM
3518
3519 /* Tell freezer to ignore us: */
3520 current->flags |= PF_NOFREEZE;
3521
9af6528e
PZ
3522 __schedule(false);
3523 BUG();
d1ccc66d
IM
3524
3525 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
9af6528e 3526 for (;;)
d1ccc66d 3527 cpu_relax();
9af6528e
PZ
3528}
3529
9c40cef2
TG
3530static inline void sched_submit_work(struct task_struct *tsk)
3531{
3c7d5184 3532 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
3533 return;
3534 /*
3535 * If we are going to sleep and we have plugged IO queued,
3536 * make sure to submit it to avoid deadlocks.
3537 */
3538 if (blk_needs_flush_plug(tsk))
3539 blk_schedule_flush_plug(tsk);
3540}
3541
722a9f92 3542asmlinkage __visible void __sched schedule(void)
c259e01a 3543{
9c40cef2
TG
3544 struct task_struct *tsk = current;
3545
3546 sched_submit_work(tsk);
bfd9b2b5 3547 do {
b30f0e3f 3548 preempt_disable();
fc13aeba 3549 __schedule(false);
b30f0e3f 3550 sched_preempt_enable_no_resched();
bfd9b2b5 3551 } while (need_resched());
c259e01a 3552}
1da177e4
LT
3553EXPORT_SYMBOL(schedule);
3554
8663effb
SRV
3555/*
3556 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
3557 * state (have scheduled out non-voluntarily) by making sure that all
3558 * tasks have either left the run queue or have gone into user space.
3559 * As idle tasks do not do either, they must not ever be preempted
3560 * (schedule out non-voluntarily).
3561 *
3562 * schedule_idle() is similar to schedule_preempt_disable() except that it
3563 * never enables preemption because it does not call sched_submit_work().
3564 */
3565void __sched schedule_idle(void)
3566{
3567 /*
3568 * As this skips calling sched_submit_work(), which the idle task does
3569 * regardless because that function is a nop when the task is in a
3570 * TASK_RUNNING state, make sure this isn't used someplace that the
3571 * current task can be in any other state. Note, idle is always in the
3572 * TASK_RUNNING state.
3573 */
3574 WARN_ON_ONCE(current->state);
3575 do {
3576 __schedule(false);
3577 } while (need_resched());
3578}
3579
91d1aa43 3580#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 3581asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
3582{
3583 /*
3584 * If we come here after a random call to set_need_resched(),
3585 * or we have been woken up remotely but the IPI has not yet arrived,
3586 * we haven't yet exited the RCU idle mode. Do it here manually until
3587 * we find a better solution.
7cc78f8f
AL
3588 *
3589 * NB: There are buggy callers of this function. Ideally we
c467ea76 3590 * should warn if prev_state != CONTEXT_USER, but that will trigger
7cc78f8f 3591 * too frequently to make sense yet.
20ab65e3 3592 */
7cc78f8f 3593 enum ctx_state prev_state = exception_enter();
20ab65e3 3594 schedule();
7cc78f8f 3595 exception_exit(prev_state);
20ab65e3
FW
3596}
3597#endif
3598
c5491ea7
TG
3599/**
3600 * schedule_preempt_disabled - called with preemption disabled
3601 *
3602 * Returns with preemption disabled. Note: preempt_count must be 1
3603 */
3604void __sched schedule_preempt_disabled(void)
3605{
ba74c144 3606 sched_preempt_enable_no_resched();
c5491ea7
TG
3607 schedule();
3608 preempt_disable();
3609}
3610
06b1f808 3611static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
3612{
3613 do {
47252cfb
SR
3614 /*
3615 * Because the function tracer can trace preempt_count_sub()
3616 * and it also uses preempt_enable/disable_notrace(), if
3617 * NEED_RESCHED is set, the preempt_enable_notrace() called
3618 * by the function tracer will call this function again and
3619 * cause infinite recursion.
3620 *
3621 * Preemption must be disabled here before the function
3622 * tracer can trace. Break up preempt_disable() into two
3623 * calls. One to disable preemption without fear of being
3624 * traced. The other to still record the preemption latency,
3625 * which can also be traced by the function tracer.
3626 */
499d7955 3627 preempt_disable_notrace();
47252cfb 3628 preempt_latency_start(1);
fc13aeba 3629 __schedule(true);
47252cfb 3630 preempt_latency_stop(1);
499d7955 3631 preempt_enable_no_resched_notrace();
a18b5d01
FW
3632
3633 /*
3634 * Check again in case we missed a preemption opportunity
3635 * between schedule and now.
3636 */
a18b5d01
FW
3637 } while (need_resched());
3638}
3639
1da177e4
LT
3640#ifdef CONFIG_PREEMPT
3641/*
2ed6e34f 3642 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3643 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3644 * occur there and call schedule directly.
3645 */
722a9f92 3646asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 3647{
1da177e4
LT
3648 /*
3649 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3650 * we do not want to preempt the current task. Just return..
1da177e4 3651 */
fbb00b56 3652 if (likely(!preemptible()))
1da177e4
LT
3653 return;
3654
a18b5d01 3655 preempt_schedule_common();
1da177e4 3656}
376e2424 3657NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 3658EXPORT_SYMBOL(preempt_schedule);
009f60e2 3659
009f60e2 3660/**
4eaca0a8 3661 * preempt_schedule_notrace - preempt_schedule called by tracing
009f60e2
ON
3662 *
3663 * The tracing infrastructure uses preempt_enable_notrace to prevent
3664 * recursion and tracing preempt enabling caused by the tracing
3665 * infrastructure itself. But as tracing can happen in areas coming
3666 * from userspace or just about to enter userspace, a preempt enable
3667 * can occur before user_exit() is called. This will cause the scheduler
3668 * to be called when the system is still in usermode.
3669 *
3670 * To prevent this, the preempt_enable_notrace will use this function
3671 * instead of preempt_schedule() to exit user context if needed before
3672 * calling the scheduler.
3673 */
4eaca0a8 3674asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
009f60e2
ON
3675{
3676 enum ctx_state prev_ctx;
3677
3678 if (likely(!preemptible()))
3679 return;
3680
3681 do {
47252cfb
SR
3682 /*
3683 * Because the function tracer can trace preempt_count_sub()
3684 * and it also uses preempt_enable/disable_notrace(), if
3685 * NEED_RESCHED is set, the preempt_enable_notrace() called
3686 * by the function tracer will call this function again and
3687 * cause infinite recursion.
3688 *
3689 * Preemption must be disabled here before the function
3690 * tracer can trace. Break up preempt_disable() into two
3691 * calls. One to disable preemption without fear of being
3692 * traced. The other to still record the preemption latency,
3693 * which can also be traced by the function tracer.
3694 */
3d8f74dd 3695 preempt_disable_notrace();
47252cfb 3696 preempt_latency_start(1);
009f60e2
ON
3697 /*
3698 * Needs preempt disabled in case user_exit() is traced
3699 * and the tracer calls preempt_enable_notrace() causing
3700 * an infinite recursion.
3701 */
3702 prev_ctx = exception_enter();
fc13aeba 3703 __schedule(true);
009f60e2
ON
3704 exception_exit(prev_ctx);
3705
47252cfb 3706 preempt_latency_stop(1);
3d8f74dd 3707 preempt_enable_no_resched_notrace();
009f60e2
ON
3708 } while (need_resched());
3709}
4eaca0a8 3710EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
009f60e2 3711
32e475d7 3712#endif /* CONFIG_PREEMPT */
1da177e4
LT
3713
3714/*
2ed6e34f 3715 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3716 * off of irq context.
3717 * Note, that this is called and return with irqs disabled. This will
3718 * protect us against recursive calling from irq.
3719 */
722a9f92 3720asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 3721{
b22366cd 3722 enum ctx_state prev_state;
6478d880 3723
2ed6e34f 3724 /* Catch callers which need to be fixed */
f27dde8d 3725 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 3726
b22366cd
FW
3727 prev_state = exception_enter();
3728
3a5c359a 3729 do {
3d8f74dd 3730 preempt_disable();
3a5c359a 3731 local_irq_enable();
fc13aeba 3732 __schedule(true);
3a5c359a 3733 local_irq_disable();
3d8f74dd 3734 sched_preempt_enable_no_resched();
5ed0cec0 3735 } while (need_resched());
b22366cd
FW
3736
3737 exception_exit(prev_state);
1da177e4
LT
3738}
3739
ac6424b9 3740int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3741 void *key)
1da177e4 3742{
63859d4f 3743 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3744}
1da177e4
LT
3745EXPORT_SYMBOL(default_wake_function);
3746
b29739f9
IM
3747#ifdef CONFIG_RT_MUTEXES
3748
acd58620
PZ
3749static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
3750{
3751 if (pi_task)
3752 prio = min(prio, pi_task->prio);
3753
3754 return prio;
3755}
3756
3757static inline int rt_effective_prio(struct task_struct *p, int prio)
3758{
3759 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3760
3761 return __rt_effective_prio(pi_task, prio);
3762}
3763
b29739f9
IM
3764/*
3765 * rt_mutex_setprio - set the current priority of a task
acd58620
PZ
3766 * @p: task to boost
3767 * @pi_task: donor task
b29739f9
IM
3768 *
3769 * This function changes the 'effective' priority of a task. It does
3770 * not touch ->normal_prio like __setscheduler().
3771 *
c365c292
TG
3772 * Used by the rt_mutex code to implement priority inheritance
3773 * logic. Call site only calls if the priority of the task changed.
b29739f9 3774 */
acd58620 3775void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
b29739f9 3776{
acd58620 3777 int prio, oldprio, queued, running, queue_flag =
7a57f32a 3778 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
83ab0aa0 3779 const struct sched_class *prev_class;
eb580751
PZ
3780 struct rq_flags rf;
3781 struct rq *rq;
b29739f9 3782
acd58620
PZ
3783 /* XXX used to be waiter->prio, not waiter->task->prio */
3784 prio = __rt_effective_prio(pi_task, p->normal_prio);
3785
3786 /*
3787 * If nothing changed; bail early.
3788 */
3789 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
3790 return;
b29739f9 3791
eb580751 3792 rq = __task_rq_lock(p, &rf);
80f5c1b8 3793 update_rq_clock(rq);
acd58620
PZ
3794 /*
3795 * Set under pi_lock && rq->lock, such that the value can be used under
3796 * either lock.
3797 *
3798 * Note that there is loads of tricky to make this pointer cache work
3799 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
3800 * ensure a task is de-boosted (pi_task is set to NULL) before the
3801 * task is allowed to run again (and can exit). This ensures the pointer
3802 * points to a blocked task -- which guaratees the task is present.
3803 */
3804 p->pi_top_task = pi_task;
3805
3806 /*
3807 * For FIFO/RR we only need to set prio, if that matches we're done.
3808 */
3809 if (prio == p->prio && !dl_prio(prio))
3810 goto out_unlock;
b29739f9 3811
1c4dd99b
TG
3812 /*
3813 * Idle task boosting is a nono in general. There is one
3814 * exception, when PREEMPT_RT and NOHZ is active:
3815 *
3816 * The idle task calls get_next_timer_interrupt() and holds
3817 * the timer wheel base->lock on the CPU and another CPU wants
3818 * to access the timer (probably to cancel it). We can safely
3819 * ignore the boosting request, as the idle CPU runs this code
3820 * with interrupts disabled and will complete the lock
3821 * protected section without being interrupted. So there is no
3822 * real need to boost.
3823 */
3824 if (unlikely(p == rq->idle)) {
3825 WARN_ON(p != rq->curr);
3826 WARN_ON(p->pi_blocked_on);
3827 goto out_unlock;
3828 }
3829
b91473ff 3830 trace_sched_pi_setprio(p, pi_task);
d5f9f942 3831 oldprio = p->prio;
ff77e468
PZ
3832
3833 if (oldprio == prio)
3834 queue_flag &= ~DEQUEUE_MOVE;
3835
83ab0aa0 3836 prev_class = p->sched_class;
da0c1e65 3837 queued = task_on_rq_queued(p);
051a1d1a 3838 running = task_current(rq, p);
da0c1e65 3839 if (queued)
ff77e468 3840 dequeue_task(rq, p, queue_flag);
0e1f3483 3841 if (running)
f3cd1c4e 3842 put_prev_task(rq, p);
dd41f596 3843
2d3d891d
DF
3844 /*
3845 * Boosting condition are:
3846 * 1. -rt task is running and holds mutex A
3847 * --> -dl task blocks on mutex A
3848 *
3849 * 2. -dl task is running and holds mutex A
3850 * --> -dl task blocks on mutex A and could preempt the
3851 * running task
3852 */
3853 if (dl_prio(prio)) {
466af29b
ON
3854 if (!dl_prio(p->normal_prio) ||
3855 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d 3856 p->dl.dl_boosted = 1;
ff77e468 3857 queue_flag |= ENQUEUE_REPLENISH;
2d3d891d
DF
3858 } else
3859 p->dl.dl_boosted = 0;
aab03e05 3860 p->sched_class = &dl_sched_class;
2d3d891d
DF
3861 } else if (rt_prio(prio)) {
3862 if (dl_prio(oldprio))
3863 p->dl.dl_boosted = 0;
3864 if (oldprio < prio)
ff77e468 3865 queue_flag |= ENQUEUE_HEAD;
dd41f596 3866 p->sched_class = &rt_sched_class;
2d3d891d
DF
3867 } else {
3868 if (dl_prio(oldprio))
3869 p->dl.dl_boosted = 0;
746db944
BS
3870 if (rt_prio(oldprio))
3871 p->rt.timeout = 0;
dd41f596 3872 p->sched_class = &fair_sched_class;
2d3d891d 3873 }
dd41f596 3874
b29739f9
IM
3875 p->prio = prio;
3876
da0c1e65 3877 if (queued)
ff77e468 3878 enqueue_task(rq, p, queue_flag);
a399d233 3879 if (running)
b2bf6c31 3880 set_curr_task(rq, p);
cb469845 3881
da7a735e 3882 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3883out_unlock:
d1ccc66d
IM
3884 /* Avoid rq from going away on us: */
3885 preempt_disable();
eb580751 3886 __task_rq_unlock(rq, &rf);
4c9a4bc8
PZ
3887
3888 balance_callback(rq);
3889 preempt_enable();
b29739f9 3890}
acd58620
PZ
3891#else
3892static inline int rt_effective_prio(struct task_struct *p, int prio)
3893{
3894 return prio;
3895}
b29739f9 3896#endif
d50dde5a 3897
36c8b586 3898void set_user_nice(struct task_struct *p, long nice)
1da177e4 3899{
49bd21ef
PZ
3900 bool queued, running;
3901 int old_prio, delta;
eb580751 3902 struct rq_flags rf;
70b97a7f 3903 struct rq *rq;
1da177e4 3904
75e45d51 3905 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
3906 return;
3907 /*
3908 * We have to be careful, if called from sys_setpriority(),
3909 * the task might be in the middle of scheduling on another CPU.
3910 */
eb580751 3911 rq = task_rq_lock(p, &rf);
2fb8d367
PZ
3912 update_rq_clock(rq);
3913
1da177e4
LT
3914 /*
3915 * The RT priorities are set via sched_setscheduler(), but we still
3916 * allow the 'normal' nice value to be set - but as expected
3917 * it wont have any effect on scheduling until the task is
aab03e05 3918 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3919 */
aab03e05 3920 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3921 p->static_prio = NICE_TO_PRIO(nice);
3922 goto out_unlock;
3923 }
da0c1e65 3924 queued = task_on_rq_queued(p);
49bd21ef 3925 running = task_current(rq, p);
da0c1e65 3926 if (queued)
7a57f32a 3927 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
49bd21ef
PZ
3928 if (running)
3929 put_prev_task(rq, p);
1da177e4 3930
1da177e4 3931 p->static_prio = NICE_TO_PRIO(nice);
9059393e 3932 set_load_weight(p, true);
b29739f9
IM
3933 old_prio = p->prio;
3934 p->prio = effective_prio(p);
3935 delta = p->prio - old_prio;
1da177e4 3936
da0c1e65 3937 if (queued) {
7134b3e9 3938 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1da177e4 3939 /*
d5f9f942
AM
3940 * If the task increased its priority or is running and
3941 * lowered its priority, then reschedule its CPU:
1da177e4 3942 */
d5f9f942 3943 if (delta < 0 || (delta > 0 && task_running(rq, p)))
8875125e 3944 resched_curr(rq);
1da177e4 3945 }
49bd21ef
PZ
3946 if (running)
3947 set_curr_task(rq, p);
1da177e4 3948out_unlock:
eb580751 3949 task_rq_unlock(rq, p, &rf);
1da177e4 3950}
1da177e4
LT
3951EXPORT_SYMBOL(set_user_nice);
3952
e43379f1
MM
3953/*
3954 * can_nice - check if a task can reduce its nice value
3955 * @p: task
3956 * @nice: nice value
3957 */
36c8b586 3958int can_nice(const struct task_struct *p, const int nice)
e43379f1 3959{
d1ccc66d 3960 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
7aa2c016 3961 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 3962
78d7d407 3963 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3964 capable(CAP_SYS_NICE));
3965}
3966
1da177e4
LT
3967#ifdef __ARCH_WANT_SYS_NICE
3968
3969/*
3970 * sys_nice - change the priority of the current process.
3971 * @increment: priority increment
3972 *
3973 * sys_setpriority is a more generic, but much slower function that
3974 * does similar things.
3975 */
5add95d4 3976SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3977{
48f24c4d 3978 long nice, retval;
1da177e4
LT
3979
3980 /*
3981 * Setpriority might change our priority at the same moment.
3982 * We don't have to worry. Conceptually one call occurs first
3983 * and we have a single winner.
3984 */
a9467fa3 3985 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 3986 nice = task_nice(current) + increment;
1da177e4 3987
a9467fa3 3988 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
3989 if (increment < 0 && !can_nice(current, nice))
3990 return -EPERM;
3991
1da177e4
LT
3992 retval = security_task_setnice(current, nice);
3993 if (retval)
3994 return retval;
3995
3996 set_user_nice(current, nice);
3997 return 0;
3998}
3999
4000#endif
4001
4002/**
4003 * task_prio - return the priority value of a given task.
4004 * @p: the task in question.
4005 *
e69f6186 4006 * Return: The priority value as seen by users in /proc.
1da177e4
LT
4007 * RT tasks are offset by -200. Normal tasks are centered
4008 * around 0, value goes from -16 to +15.
4009 */
36c8b586 4010int task_prio(const struct task_struct *p)
1da177e4
LT
4011{
4012 return p->prio - MAX_RT_PRIO;
4013}
4014
1da177e4 4015/**
d1ccc66d 4016 * idle_cpu - is a given CPU idle currently?
1da177e4 4017 * @cpu: the processor in question.
e69f6186
YB
4018 *
4019 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
4020 */
4021int idle_cpu(int cpu)
4022{
908a3283
TG
4023 struct rq *rq = cpu_rq(cpu);
4024
4025 if (rq->curr != rq->idle)
4026 return 0;
4027
4028 if (rq->nr_running)
4029 return 0;
4030
4031#ifdef CONFIG_SMP
4032 if (!llist_empty(&rq->wake_list))
4033 return 0;
4034#endif
4035
4036 return 1;
1da177e4
LT
4037}
4038
1da177e4 4039/**
d1ccc66d 4040 * idle_task - return the idle task for a given CPU.
1da177e4 4041 * @cpu: the processor in question.
e69f6186 4042 *
d1ccc66d 4043 * Return: The idle task for the CPU @cpu.
1da177e4 4044 */
36c8b586 4045struct task_struct *idle_task(int cpu)
1da177e4
LT
4046{
4047 return cpu_rq(cpu)->idle;
4048}
4049
4050/**
4051 * find_process_by_pid - find a process with a matching PID value.
4052 * @pid: the pid in question.
e69f6186
YB
4053 *
4054 * The task of @pid, if found. %NULL otherwise.
1da177e4 4055 */
a9957449 4056static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4057{
228ebcbe 4058 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4059}
4060
c13db6b1
SR
4061/*
4062 * sched_setparam() passes in -1 for its policy, to let the functions
4063 * it calls know not to change it.
4064 */
4065#define SETPARAM_POLICY -1
4066
c365c292
TG
4067static void __setscheduler_params(struct task_struct *p,
4068 const struct sched_attr *attr)
1da177e4 4069{
d50dde5a
DF
4070 int policy = attr->sched_policy;
4071
c13db6b1 4072 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
4073 policy = p->policy;
4074
1da177e4 4075 p->policy = policy;
d50dde5a 4076
aab03e05
DF
4077 if (dl_policy(policy))
4078 __setparam_dl(p, attr);
39fd8fd2 4079 else if (fair_policy(policy))
d50dde5a
DF
4080 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
4081
39fd8fd2
PZ
4082 /*
4083 * __sched_setscheduler() ensures attr->sched_priority == 0 when
4084 * !rt_policy. Always setting this ensures that things like
4085 * getparam()/getattr() don't report silly values for !rt tasks.
4086 */
4087 p->rt_priority = attr->sched_priority;
383afd09 4088 p->normal_prio = normal_prio(p);
9059393e 4089 set_load_weight(p, true);
c365c292 4090}
39fd8fd2 4091
c365c292
TG
4092/* Actually do priority change: must hold pi & rq lock. */
4093static void __setscheduler(struct rq *rq, struct task_struct *p,
0782e63b 4094 const struct sched_attr *attr, bool keep_boost)
c365c292
TG
4095{
4096 __setscheduler_params(p, attr);
d50dde5a 4097
383afd09 4098 /*
0782e63b
TG
4099 * Keep a potential priority boosting if called from
4100 * sched_setscheduler().
383afd09 4101 */
acd58620 4102 p->prio = normal_prio(p);
0782e63b 4103 if (keep_boost)
acd58620 4104 p->prio = rt_effective_prio(p, p->prio);
383afd09 4105
aab03e05
DF
4106 if (dl_prio(p->prio))
4107 p->sched_class = &dl_sched_class;
4108 else if (rt_prio(p->prio))
ffd44db5
PZ
4109 p->sched_class = &rt_sched_class;
4110 else
4111 p->sched_class = &fair_sched_class;
1da177e4 4112}
aab03e05 4113
c69e8d9c 4114/*
d1ccc66d 4115 * Check the target process has a UID that matches the current process's:
c69e8d9c
DH
4116 */
4117static bool check_same_owner(struct task_struct *p)
4118{
4119 const struct cred *cred = current_cred(), *pcred;
4120 bool match;
4121
4122 rcu_read_lock();
4123 pcred = __task_cred(p);
9c806aa0
EB
4124 match = (uid_eq(cred->euid, pcred->euid) ||
4125 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
4126 rcu_read_unlock();
4127 return match;
4128}
4129
d50dde5a
DF
4130static int __sched_setscheduler(struct task_struct *p,
4131 const struct sched_attr *attr,
dbc7f069 4132 bool user, bool pi)
1da177e4 4133{
383afd09
SR
4134 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4135 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 4136 int retval, oldprio, oldpolicy = -1, queued, running;
0782e63b 4137 int new_effective_prio, policy = attr->sched_policy;
83ab0aa0 4138 const struct sched_class *prev_class;
eb580751 4139 struct rq_flags rf;
ca94c442 4140 int reset_on_fork;
7a57f32a 4141 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
eb580751 4142 struct rq *rq;
1da177e4 4143
896bbb25
SRV
4144 /* The pi code expects interrupts enabled */
4145 BUG_ON(pi && in_interrupt());
1da177e4 4146recheck:
d1ccc66d 4147 /* Double check policy once rq lock held: */
ca94c442
LP
4148 if (policy < 0) {
4149 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4150 policy = oldpolicy = p->policy;
ca94c442 4151 } else {
7479f3c9 4152 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 4153
20f9cd2a 4154 if (!valid_policy(policy))
ca94c442
LP
4155 return -EINVAL;
4156 }
4157
794a56eb 4158 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
7479f3c9
PZ
4159 return -EINVAL;
4160
1da177e4
LT
4161 /*
4162 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4163 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4164 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 4165 */
0bb040a4 4166 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 4167 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 4168 return -EINVAL;
aab03e05
DF
4169 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4170 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
4171 return -EINVAL;
4172
37e4ab3f
OC
4173 /*
4174 * Allow unprivileged RT tasks to decrease priority:
4175 */
961ccddd 4176 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 4177 if (fair_policy(policy)) {
d0ea0268 4178 if (attr->sched_nice < task_nice(p) &&
eaad4513 4179 !can_nice(p, attr->sched_nice))
d50dde5a
DF
4180 return -EPERM;
4181 }
4182
e05606d3 4183 if (rt_policy(policy)) {
a44702e8
ON
4184 unsigned long rlim_rtprio =
4185 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909 4186
d1ccc66d 4187 /* Can't set/change the rt policy: */
8dc3e909
ON
4188 if (policy != p->policy && !rlim_rtprio)
4189 return -EPERM;
4190
d1ccc66d 4191 /* Can't increase priority: */
d50dde5a
DF
4192 if (attr->sched_priority > p->rt_priority &&
4193 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
4194 return -EPERM;
4195 }
c02aa73b 4196
d44753b8
JL
4197 /*
4198 * Can't set/change SCHED_DEADLINE policy at all for now
4199 * (safest behavior); in the future we would like to allow
4200 * unprivileged DL tasks to increase their relative deadline
4201 * or reduce their runtime (both ways reducing utilization)
4202 */
4203 if (dl_policy(policy))
4204 return -EPERM;
4205
dd41f596 4206 /*
c02aa73b
DH
4207 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4208 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 4209 */
20f9cd2a 4210 if (idle_policy(p->policy) && !idle_policy(policy)) {
d0ea0268 4211 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
4212 return -EPERM;
4213 }
5fe1d75f 4214
d1ccc66d 4215 /* Can't change other user's priorities: */
c69e8d9c 4216 if (!check_same_owner(p))
37e4ab3f 4217 return -EPERM;
ca94c442 4218
d1ccc66d 4219 /* Normal users shall not reset the sched_reset_on_fork flag: */
ca94c442
LP
4220 if (p->sched_reset_on_fork && !reset_on_fork)
4221 return -EPERM;
37e4ab3f 4222 }
1da177e4 4223
725aad24 4224 if (user) {
794a56eb
JL
4225 if (attr->sched_flags & SCHED_FLAG_SUGOV)
4226 return -EINVAL;
4227
b0ae1981 4228 retval = security_task_setscheduler(p);
725aad24
JF
4229 if (retval)
4230 return retval;
4231 }
4232
b29739f9 4233 /*
d1ccc66d 4234 * Make sure no PI-waiters arrive (or leave) while we are
b29739f9 4235 * changing the priority of the task:
0122ec5b 4236 *
25985edc 4237 * To be able to change p->policy safely, the appropriate
1da177e4
LT
4238 * runqueue lock must be held.
4239 */
eb580751 4240 rq = task_rq_lock(p, &rf);
80f5c1b8 4241 update_rq_clock(rq);
dc61b1d6 4242
34f971f6 4243 /*
d1ccc66d 4244 * Changing the policy of the stop threads its a very bad idea:
34f971f6
PZ
4245 */
4246 if (p == rq->stop) {
eb580751 4247 task_rq_unlock(rq, p, &rf);
34f971f6
PZ
4248 return -EINVAL;
4249 }
4250
a51e9198 4251 /*
d6b1e911
TG
4252 * If not changing anything there's no need to proceed further,
4253 * but store a possible modification of reset_on_fork.
a51e9198 4254 */
d50dde5a 4255 if (unlikely(policy == p->policy)) {
d0ea0268 4256 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
4257 goto change;
4258 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4259 goto change;
75381608 4260 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 4261 goto change;
d50dde5a 4262
d6b1e911 4263 p->sched_reset_on_fork = reset_on_fork;
eb580751 4264 task_rq_unlock(rq, p, &rf);
a51e9198
DF
4265 return 0;
4266 }
d50dde5a 4267change:
a51e9198 4268
dc61b1d6 4269 if (user) {
332ac17e 4270#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
4271 /*
4272 * Do not allow realtime tasks into groups that have no runtime
4273 * assigned.
4274 */
4275 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
4276 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4277 !task_group_is_autogroup(task_group(p))) {
eb580751 4278 task_rq_unlock(rq, p, &rf);
dc61b1d6
PZ
4279 return -EPERM;
4280 }
dc61b1d6 4281#endif
332ac17e 4282#ifdef CONFIG_SMP
794a56eb
JL
4283 if (dl_bandwidth_enabled() && dl_policy(policy) &&
4284 !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
332ac17e 4285 cpumask_t *span = rq->rd->span;
332ac17e
DF
4286
4287 /*
4288 * Don't allow tasks with an affinity mask smaller than
4289 * the entire root_domain to become SCHED_DEADLINE. We
4290 * will also fail if there's no bandwidth available.
4291 */
e4099a5e
PZ
4292 if (!cpumask_subset(span, &p->cpus_allowed) ||
4293 rq->rd->dl_bw.bw == 0) {
eb580751 4294 task_rq_unlock(rq, p, &rf);
332ac17e
DF
4295 return -EPERM;
4296 }
4297 }
4298#endif
4299 }
dc61b1d6 4300
d1ccc66d 4301 /* Re-check policy now with rq lock held: */
1da177e4
LT
4302 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4303 policy = oldpolicy = -1;
eb580751 4304 task_rq_unlock(rq, p, &rf);
1da177e4
LT
4305 goto recheck;
4306 }
332ac17e
DF
4307
4308 /*
4309 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4310 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4311 * is available.
4312 */
06a76fe0 4313 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
eb580751 4314 task_rq_unlock(rq, p, &rf);
332ac17e
DF
4315 return -EBUSY;
4316 }
4317
c365c292
TG
4318 p->sched_reset_on_fork = reset_on_fork;
4319 oldprio = p->prio;
4320
dbc7f069
PZ
4321 if (pi) {
4322 /*
4323 * Take priority boosted tasks into account. If the new
4324 * effective priority is unchanged, we just store the new
4325 * normal parameters and do not touch the scheduler class and
4326 * the runqueue. This will be done when the task deboost
4327 * itself.
4328 */
acd58620 4329 new_effective_prio = rt_effective_prio(p, newprio);
ff77e468
PZ
4330 if (new_effective_prio == oldprio)
4331 queue_flags &= ~DEQUEUE_MOVE;
c365c292
TG
4332 }
4333
da0c1e65 4334 queued = task_on_rq_queued(p);
051a1d1a 4335 running = task_current(rq, p);
da0c1e65 4336 if (queued)
ff77e468 4337 dequeue_task(rq, p, queue_flags);
0e1f3483 4338 if (running)
f3cd1c4e 4339 put_prev_task(rq, p);
f6b53205 4340
83ab0aa0 4341 prev_class = p->sched_class;
dbc7f069 4342 __setscheduler(rq, p, attr, pi);
f6b53205 4343
da0c1e65 4344 if (queued) {
81a44c54
TG
4345 /*
4346 * We enqueue to tail when the priority of a task is
4347 * increased (user space view).
4348 */
ff77e468
PZ
4349 if (oldprio < p->prio)
4350 queue_flags |= ENQUEUE_HEAD;
1de64443 4351
ff77e468 4352 enqueue_task(rq, p, queue_flags);
81a44c54 4353 }
a399d233 4354 if (running)
b2bf6c31 4355 set_curr_task(rq, p);
cb469845 4356
da7a735e 4357 check_class_changed(rq, p, prev_class, oldprio);
d1ccc66d
IM
4358
4359 /* Avoid rq from going away on us: */
4360 preempt_disable();
eb580751 4361 task_rq_unlock(rq, p, &rf);
b29739f9 4362
dbc7f069
PZ
4363 if (pi)
4364 rt_mutex_adjust_pi(p);
95e02ca9 4365
d1ccc66d 4366 /* Run balance callbacks after we've adjusted the PI chain: */
4c9a4bc8
PZ
4367 balance_callback(rq);
4368 preempt_enable();
95e02ca9 4369
1da177e4
LT
4370 return 0;
4371}
961ccddd 4372
7479f3c9
PZ
4373static int _sched_setscheduler(struct task_struct *p, int policy,
4374 const struct sched_param *param, bool check)
4375{
4376 struct sched_attr attr = {
4377 .sched_policy = policy,
4378 .sched_priority = param->sched_priority,
4379 .sched_nice = PRIO_TO_NICE(p->static_prio),
4380 };
4381
c13db6b1
SR
4382 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4383 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
4384 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4385 policy &= ~SCHED_RESET_ON_FORK;
4386 attr.sched_policy = policy;
4387 }
4388
dbc7f069 4389 return __sched_setscheduler(p, &attr, check, true);
7479f3c9 4390}
961ccddd
RR
4391/**
4392 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4393 * @p: the task in question.
4394 * @policy: new policy.
4395 * @param: structure containing the new RT priority.
4396 *
e69f6186
YB
4397 * Return: 0 on success. An error code otherwise.
4398 *
961ccddd
RR
4399 * NOTE that the task may be already dead.
4400 */
4401int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4402 const struct sched_param *param)
961ccddd 4403{
7479f3c9 4404 return _sched_setscheduler(p, policy, param, true);
961ccddd 4405}
1da177e4
LT
4406EXPORT_SYMBOL_GPL(sched_setscheduler);
4407
d50dde5a
DF
4408int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4409{
dbc7f069 4410 return __sched_setscheduler(p, attr, true, true);
d50dde5a
DF
4411}
4412EXPORT_SYMBOL_GPL(sched_setattr);
4413
794a56eb
JL
4414int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
4415{
4416 return __sched_setscheduler(p, attr, false, true);
4417}
4418
961ccddd
RR
4419/**
4420 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4421 * @p: the task in question.
4422 * @policy: new policy.
4423 * @param: structure containing the new RT priority.
4424 *
4425 * Just like sched_setscheduler, only don't bother checking if the
4426 * current context has permission. For example, this is needed in
4427 * stop_machine(): we create temporary high priority worker threads,
4428 * but our caller might not have that capability.
e69f6186
YB
4429 *
4430 * Return: 0 on success. An error code otherwise.
961ccddd
RR
4431 */
4432int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 4433 const struct sched_param *param)
961ccddd 4434{
7479f3c9 4435 return _sched_setscheduler(p, policy, param, false);
961ccddd 4436}
84778472 4437EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
961ccddd 4438
95cdf3b7
IM
4439static int
4440do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4441{
1da177e4
LT
4442 struct sched_param lparam;
4443 struct task_struct *p;
36c8b586 4444 int retval;
1da177e4
LT
4445
4446 if (!param || pid < 0)
4447 return -EINVAL;
4448 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4449 return -EFAULT;
5fe1d75f
ON
4450
4451 rcu_read_lock();
4452 retval = -ESRCH;
1da177e4 4453 p = find_process_by_pid(pid);
5fe1d75f
ON
4454 if (p != NULL)
4455 retval = sched_setscheduler(p, policy, &lparam);
4456 rcu_read_unlock();
36c8b586 4457
1da177e4
LT
4458 return retval;
4459}
4460
d50dde5a
DF
4461/*
4462 * Mimics kernel/events/core.c perf_copy_attr().
4463 */
d1ccc66d 4464static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
d50dde5a
DF
4465{
4466 u32 size;
4467 int ret;
4468
4469 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4470 return -EFAULT;
4471
d1ccc66d 4472 /* Zero the full structure, so that a short copy will be nice: */
d50dde5a
DF
4473 memset(attr, 0, sizeof(*attr));
4474
4475 ret = get_user(size, &uattr->size);
4476 if (ret)
4477 return ret;
4478
d1ccc66d
IM
4479 /* Bail out on silly large: */
4480 if (size > PAGE_SIZE)
d50dde5a
DF
4481 goto err_size;
4482
d1ccc66d
IM
4483 /* ABI compatibility quirk: */
4484 if (!size)
d50dde5a
DF
4485 size = SCHED_ATTR_SIZE_VER0;
4486
4487 if (size < SCHED_ATTR_SIZE_VER0)
4488 goto err_size;
4489
4490 /*
4491 * If we're handed a bigger struct than we know of,
4492 * ensure all the unknown bits are 0 - i.e. new
4493 * user-space does not rely on any kernel feature
4494 * extensions we dont know about yet.
4495 */
4496 if (size > sizeof(*attr)) {
4497 unsigned char __user *addr;
4498 unsigned char __user *end;
4499 unsigned char val;
4500
4501 addr = (void __user *)uattr + sizeof(*attr);
4502 end = (void __user *)uattr + size;
4503
4504 for (; addr < end; addr++) {
4505 ret = get_user(val, addr);
4506 if (ret)
4507 return ret;
4508 if (val)
4509 goto err_size;
4510 }
4511 size = sizeof(*attr);
4512 }
4513
4514 ret = copy_from_user(attr, uattr, size);
4515 if (ret)
4516 return -EFAULT;
4517
4518 /*
d1ccc66d 4519 * XXX: Do we want to be lenient like existing syscalls; or do we want
d50dde5a
DF
4520 * to be strict and return an error on out-of-bounds values?
4521 */
75e45d51 4522 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 4523
e78c7bca 4524 return 0;
d50dde5a
DF
4525
4526err_size:
4527 put_user(sizeof(*attr), &uattr->size);
e78c7bca 4528 return -E2BIG;
d50dde5a
DF
4529}
4530
1da177e4
LT
4531/**
4532 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4533 * @pid: the pid in question.
4534 * @policy: new policy.
4535 * @param: structure containing the new RT priority.
e69f6186
YB
4536 *
4537 * Return: 0 on success. An error code otherwise.
1da177e4 4538 */
d1ccc66d 4539SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
1da177e4 4540{
c21761f1
JB
4541 if (policy < 0)
4542 return -EINVAL;
4543
1da177e4
LT
4544 return do_sched_setscheduler(pid, policy, param);
4545}
4546
4547/**
4548 * sys_sched_setparam - set/change the RT priority of a thread
4549 * @pid: the pid in question.
4550 * @param: structure containing the new RT priority.
e69f6186
YB
4551 *
4552 * Return: 0 on success. An error code otherwise.
1da177e4 4553 */
5add95d4 4554SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4555{
c13db6b1 4556 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
4557}
4558
d50dde5a
DF
4559/**
4560 * sys_sched_setattr - same as above, but with extended sched_attr
4561 * @pid: the pid in question.
5778fccf 4562 * @uattr: structure containing the extended parameters.
db66d756 4563 * @flags: for future extension.
d50dde5a 4564 */
6d35ab48
PZ
4565SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4566 unsigned int, flags)
d50dde5a
DF
4567{
4568 struct sched_attr attr;
4569 struct task_struct *p;
4570 int retval;
4571
6d35ab48 4572 if (!uattr || pid < 0 || flags)
d50dde5a
DF
4573 return -EINVAL;
4574
143cf23d
MK
4575 retval = sched_copy_attr(uattr, &attr);
4576 if (retval)
4577 return retval;
d50dde5a 4578
b14ed2c2 4579 if ((int)attr.sched_policy < 0)
dbdb2275 4580 return -EINVAL;
d50dde5a
DF
4581
4582 rcu_read_lock();
4583 retval = -ESRCH;
4584 p = find_process_by_pid(pid);
4585 if (p != NULL)
4586 retval = sched_setattr(p, &attr);
4587 rcu_read_unlock();
4588
4589 return retval;
4590}
4591
1da177e4
LT
4592/**
4593 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4594 * @pid: the pid in question.
e69f6186
YB
4595 *
4596 * Return: On success, the policy of the thread. Otherwise, a negative error
4597 * code.
1da177e4 4598 */
5add95d4 4599SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4600{
36c8b586 4601 struct task_struct *p;
3a5c359a 4602 int retval;
1da177e4
LT
4603
4604 if (pid < 0)
3a5c359a 4605 return -EINVAL;
1da177e4
LT
4606
4607 retval = -ESRCH;
5fe85be0 4608 rcu_read_lock();
1da177e4
LT
4609 p = find_process_by_pid(pid);
4610 if (p) {
4611 retval = security_task_getscheduler(p);
4612 if (!retval)
ca94c442
LP
4613 retval = p->policy
4614 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4615 }
5fe85be0 4616 rcu_read_unlock();
1da177e4
LT
4617 return retval;
4618}
4619
4620/**
ca94c442 4621 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4622 * @pid: the pid in question.
4623 * @param: structure containing the RT priority.
e69f6186
YB
4624 *
4625 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4626 * code.
1da177e4 4627 */
5add95d4 4628SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4629{
ce5f7f82 4630 struct sched_param lp = { .sched_priority = 0 };
36c8b586 4631 struct task_struct *p;
3a5c359a 4632 int retval;
1da177e4
LT
4633
4634 if (!param || pid < 0)
3a5c359a 4635 return -EINVAL;
1da177e4 4636
5fe85be0 4637 rcu_read_lock();
1da177e4
LT
4638 p = find_process_by_pid(pid);
4639 retval = -ESRCH;
4640 if (!p)
4641 goto out_unlock;
4642
4643 retval = security_task_getscheduler(p);
4644 if (retval)
4645 goto out_unlock;
4646
ce5f7f82
PZ
4647 if (task_has_rt_policy(p))
4648 lp.sched_priority = p->rt_priority;
5fe85be0 4649 rcu_read_unlock();
1da177e4
LT
4650
4651 /*
4652 * This one might sleep, we cannot do it with a spinlock held ...
4653 */
4654 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4655
1da177e4
LT
4656 return retval;
4657
4658out_unlock:
5fe85be0 4659 rcu_read_unlock();
1da177e4
LT
4660 return retval;
4661}
4662
d50dde5a
DF
4663static int sched_read_attr(struct sched_attr __user *uattr,
4664 struct sched_attr *attr,
4665 unsigned int usize)
4666{
4667 int ret;
4668
4669 if (!access_ok(VERIFY_WRITE, uattr, usize))
4670 return -EFAULT;
4671
4672 /*
4673 * If we're handed a smaller struct than we know of,
4674 * ensure all the unknown bits are 0 - i.e. old
4675 * user-space does not get uncomplete information.
4676 */
4677 if (usize < sizeof(*attr)) {
4678 unsigned char *addr;
4679 unsigned char *end;
4680
4681 addr = (void *)attr + usize;
4682 end = (void *)attr + sizeof(*attr);
4683
4684 for (; addr < end; addr++) {
4685 if (*addr)
22400674 4686 return -EFBIG;
d50dde5a
DF
4687 }
4688
4689 attr->size = usize;
4690 }
4691
4efbc454 4692 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
4693 if (ret)
4694 return -EFAULT;
4695
22400674 4696 return 0;
d50dde5a
DF
4697}
4698
4699/**
aab03e05 4700 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 4701 * @pid: the pid in question.
5778fccf 4702 * @uattr: structure containing the extended parameters.
d50dde5a 4703 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 4704 * @flags: for future extension.
d50dde5a 4705 */
6d35ab48
PZ
4706SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4707 unsigned int, size, unsigned int, flags)
d50dde5a
DF
4708{
4709 struct sched_attr attr = {
4710 .size = sizeof(struct sched_attr),
4711 };
4712 struct task_struct *p;
4713 int retval;
4714
4715 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 4716 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
4717 return -EINVAL;
4718
4719 rcu_read_lock();
4720 p = find_process_by_pid(pid);
4721 retval = -ESRCH;
4722 if (!p)
4723 goto out_unlock;
4724
4725 retval = security_task_getscheduler(p);
4726 if (retval)
4727 goto out_unlock;
4728
4729 attr.sched_policy = p->policy;
7479f3c9
PZ
4730 if (p->sched_reset_on_fork)
4731 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
4732 if (task_has_dl_policy(p))
4733 __getparam_dl(p, &attr);
4734 else if (task_has_rt_policy(p))
d50dde5a
DF
4735 attr.sched_priority = p->rt_priority;
4736 else
d0ea0268 4737 attr.sched_nice = task_nice(p);
d50dde5a
DF
4738
4739 rcu_read_unlock();
4740
4741 retval = sched_read_attr(uattr, &attr, size);
4742 return retval;
4743
4744out_unlock:
4745 rcu_read_unlock();
4746 return retval;
4747}
4748
96f874e2 4749long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4750{
5a16f3d3 4751 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4752 struct task_struct *p;
4753 int retval;
1da177e4 4754
23f5d142 4755 rcu_read_lock();
1da177e4
LT
4756
4757 p = find_process_by_pid(pid);
4758 if (!p) {
23f5d142 4759 rcu_read_unlock();
1da177e4
LT
4760 return -ESRCH;
4761 }
4762
23f5d142 4763 /* Prevent p going away */
1da177e4 4764 get_task_struct(p);
23f5d142 4765 rcu_read_unlock();
1da177e4 4766
14a40ffc
TH
4767 if (p->flags & PF_NO_SETAFFINITY) {
4768 retval = -EINVAL;
4769 goto out_put_task;
4770 }
5a16f3d3
RR
4771 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4772 retval = -ENOMEM;
4773 goto out_put_task;
4774 }
4775 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4776 retval = -ENOMEM;
4777 goto out_free_cpus_allowed;
4778 }
1da177e4 4779 retval = -EPERM;
4c44aaaf
EB
4780 if (!check_same_owner(p)) {
4781 rcu_read_lock();
4782 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4783 rcu_read_unlock();
16303ab2 4784 goto out_free_new_mask;
4c44aaaf
EB
4785 }
4786 rcu_read_unlock();
4787 }
1da177e4 4788
b0ae1981 4789 retval = security_task_setscheduler(p);
e7834f8f 4790 if (retval)
16303ab2 4791 goto out_free_new_mask;
e7834f8f 4792
e4099a5e
PZ
4793
4794 cpuset_cpus_allowed(p, cpus_allowed);
4795 cpumask_and(new_mask, in_mask, cpus_allowed);
4796
332ac17e
DF
4797 /*
4798 * Since bandwidth control happens on root_domain basis,
4799 * if admission test is enabled, we only admit -deadline
4800 * tasks allowed to run on all the CPUs in the task's
4801 * root_domain.
4802 */
4803#ifdef CONFIG_SMP
f1e3a093
KT
4804 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4805 rcu_read_lock();
4806 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 4807 retval = -EBUSY;
f1e3a093 4808 rcu_read_unlock();
16303ab2 4809 goto out_free_new_mask;
332ac17e 4810 }
f1e3a093 4811 rcu_read_unlock();
332ac17e
DF
4812 }
4813#endif
49246274 4814again:
25834c73 4815 retval = __set_cpus_allowed_ptr(p, new_mask, true);
1da177e4 4816
8707d8b8 4817 if (!retval) {
5a16f3d3
RR
4818 cpuset_cpus_allowed(p, cpus_allowed);
4819 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4820 /*
4821 * We must have raced with a concurrent cpuset
4822 * update. Just reset the cpus_allowed to the
4823 * cpuset's cpus_allowed
4824 */
5a16f3d3 4825 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4826 goto again;
4827 }
4828 }
16303ab2 4829out_free_new_mask:
5a16f3d3
RR
4830 free_cpumask_var(new_mask);
4831out_free_cpus_allowed:
4832 free_cpumask_var(cpus_allowed);
4833out_put_task:
1da177e4 4834 put_task_struct(p);
1da177e4
LT
4835 return retval;
4836}
4837
4838static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4839 struct cpumask *new_mask)
1da177e4 4840{
96f874e2
RR
4841 if (len < cpumask_size())
4842 cpumask_clear(new_mask);
4843 else if (len > cpumask_size())
4844 len = cpumask_size();
4845
1da177e4
LT
4846 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4847}
4848
4849/**
d1ccc66d 4850 * sys_sched_setaffinity - set the CPU affinity of a process
1da177e4
LT
4851 * @pid: pid of the process
4852 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
d1ccc66d 4853 * @user_mask_ptr: user-space pointer to the new CPU mask
e69f6186
YB
4854 *
4855 * Return: 0 on success. An error code otherwise.
1da177e4 4856 */
5add95d4
HC
4857SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4858 unsigned long __user *, user_mask_ptr)
1da177e4 4859{
5a16f3d3 4860 cpumask_var_t new_mask;
1da177e4
LT
4861 int retval;
4862
5a16f3d3
RR
4863 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4864 return -ENOMEM;
1da177e4 4865
5a16f3d3
RR
4866 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4867 if (retval == 0)
4868 retval = sched_setaffinity(pid, new_mask);
4869 free_cpumask_var(new_mask);
4870 return retval;
1da177e4
LT
4871}
4872
96f874e2 4873long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4874{
36c8b586 4875 struct task_struct *p;
31605683 4876 unsigned long flags;
1da177e4 4877 int retval;
1da177e4 4878
23f5d142 4879 rcu_read_lock();
1da177e4
LT
4880
4881 retval = -ESRCH;
4882 p = find_process_by_pid(pid);
4883 if (!p)
4884 goto out_unlock;
4885
e7834f8f
DQ
4886 retval = security_task_getscheduler(p);
4887 if (retval)
4888 goto out_unlock;
4889
013fdb80 4890 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4891 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4892 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4893
4894out_unlock:
23f5d142 4895 rcu_read_unlock();
1da177e4 4896
9531b62f 4897 return retval;
1da177e4
LT
4898}
4899
4900/**
d1ccc66d 4901 * sys_sched_getaffinity - get the CPU affinity of a process
1da177e4
LT
4902 * @pid: pid of the process
4903 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
d1ccc66d 4904 * @user_mask_ptr: user-space pointer to hold the current CPU mask
e69f6186 4905 *
599b4840
ZW
4906 * Return: size of CPU mask copied to user_mask_ptr on success. An
4907 * error code otherwise.
1da177e4 4908 */
5add95d4
HC
4909SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4910 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4911{
4912 int ret;
f17c8607 4913 cpumask_var_t mask;
1da177e4 4914
84fba5ec 4915 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4916 return -EINVAL;
4917 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4918 return -EINVAL;
4919
f17c8607
RR
4920 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4921 return -ENOMEM;
1da177e4 4922
f17c8607
RR
4923 ret = sched_getaffinity(pid, mask);
4924 if (ret == 0) {
4de373a1 4925 unsigned int retlen = min(len, cpumask_size());
cd3d8031
KM
4926
4927 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4928 ret = -EFAULT;
4929 else
cd3d8031 4930 ret = retlen;
f17c8607
RR
4931 }
4932 free_cpumask_var(mask);
1da177e4 4933
f17c8607 4934 return ret;
1da177e4
LT
4935}
4936
4937/**
4938 * sys_sched_yield - yield the current processor to other threads.
4939 *
dd41f596
IM
4940 * This function yields the current CPU to other tasks. If there are no
4941 * other threads running on this CPU then this function will return.
e69f6186
YB
4942 *
4943 * Return: 0.
1da177e4 4944 */
5add95d4 4945SYSCALL_DEFINE0(sched_yield)
1da177e4 4946{
8a8c69c3
PZ
4947 struct rq_flags rf;
4948 struct rq *rq;
4949
4950 local_irq_disable();
4951 rq = this_rq();
4952 rq_lock(rq, &rf);
1da177e4 4953
ae92882e 4954 schedstat_inc(rq->yld_count);
4530d7ab 4955 current->sched_class->yield_task(rq);
1da177e4
LT
4956
4957 /*
4958 * Since we are going to call schedule() anyway, there's
4959 * no need to preempt or enable interrupts:
4960 */
8a8c69c3
PZ
4961 preempt_disable();
4962 rq_unlock(rq, &rf);
ba74c144 4963 sched_preempt_enable_no_resched();
1da177e4
LT
4964
4965 schedule();
4966
4967 return 0;
4968}
4969
35a773a0 4970#ifndef CONFIG_PREEMPT
02b67cc3 4971int __sched _cond_resched(void)
1da177e4 4972{
fe32d3cd 4973 if (should_resched(0)) {
a18b5d01 4974 preempt_schedule_common();
1da177e4
LT
4975 return 1;
4976 }
f79c3ad6 4977 rcu_all_qs();
1da177e4
LT
4978 return 0;
4979}
02b67cc3 4980EXPORT_SYMBOL(_cond_resched);
35a773a0 4981#endif
1da177e4
LT
4982
4983/*
613afbf8 4984 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4985 * call schedule, and on return reacquire the lock.
4986 *
41a2d6cf 4987 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4988 * operations here to prevent schedule() from being called twice (once via
4989 * spin_unlock(), once by hand).
4990 */
613afbf8 4991int __cond_resched_lock(spinlock_t *lock)
1da177e4 4992{
fe32d3cd 4993 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6df3cecb
JK
4994 int ret = 0;
4995
f607c668
PZ
4996 lockdep_assert_held(lock);
4997
4a81e832 4998 if (spin_needbreak(lock) || resched) {
1da177e4 4999 spin_unlock(lock);
d86ee480 5000 if (resched)
a18b5d01 5001 preempt_schedule_common();
95c354fe
NP
5002 else
5003 cpu_relax();
6df3cecb 5004 ret = 1;
1da177e4 5005 spin_lock(lock);
1da177e4 5006 }
6df3cecb 5007 return ret;
1da177e4 5008}
613afbf8 5009EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 5010
613afbf8 5011int __sched __cond_resched_softirq(void)
1da177e4
LT
5012{
5013 BUG_ON(!in_softirq());
5014
fe32d3cd 5015 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
98d82567 5016 local_bh_enable();
a18b5d01 5017 preempt_schedule_common();
1da177e4
LT
5018 local_bh_disable();
5019 return 1;
5020 }
5021 return 0;
5022}
613afbf8 5023EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 5024
1da177e4
LT
5025/**
5026 * yield - yield the current processor to other threads.
5027 *
8e3fabfd
PZ
5028 * Do not ever use this function, there's a 99% chance you're doing it wrong.
5029 *
5030 * The scheduler is at all times free to pick the calling task as the most
5031 * eligible task to run, if removing the yield() call from your code breaks
5032 * it, its already broken.
5033 *
5034 * Typical broken usage is:
5035 *
5036 * while (!event)
d1ccc66d 5037 * yield();
8e3fabfd
PZ
5038 *
5039 * where one assumes that yield() will let 'the other' process run that will
5040 * make event true. If the current task is a SCHED_FIFO task that will never
5041 * happen. Never use yield() as a progress guarantee!!
5042 *
5043 * If you want to use yield() to wait for something, use wait_event().
5044 * If you want to use yield() to be 'nice' for others, use cond_resched().
5045 * If you still want to use yield(), do not!
1da177e4
LT
5046 */
5047void __sched yield(void)
5048{
5049 set_current_state(TASK_RUNNING);
5050 sys_sched_yield();
5051}
1da177e4
LT
5052EXPORT_SYMBOL(yield);
5053
d95f4122
MG
5054/**
5055 * yield_to - yield the current processor to another thread in
5056 * your thread group, or accelerate that thread toward the
5057 * processor it's on.
16addf95
RD
5058 * @p: target task
5059 * @preempt: whether task preemption is allowed or not
d95f4122
MG
5060 *
5061 * It's the caller's job to ensure that the target task struct
5062 * can't go away on us before we can do any checks.
5063 *
e69f6186 5064 * Return:
7b270f60
PZ
5065 * true (>0) if we indeed boosted the target task.
5066 * false (0) if we failed to boost the target.
5067 * -ESRCH if there's no task to yield to.
d95f4122 5068 */
fa93384f 5069int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
5070{
5071 struct task_struct *curr = current;
5072 struct rq *rq, *p_rq;
5073 unsigned long flags;
c3c18640 5074 int yielded = 0;
d95f4122
MG
5075
5076 local_irq_save(flags);
5077 rq = this_rq();
5078
5079again:
5080 p_rq = task_rq(p);
7b270f60
PZ
5081 /*
5082 * If we're the only runnable task on the rq and target rq also
5083 * has only one task, there's absolutely no point in yielding.
5084 */
5085 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5086 yielded = -ESRCH;
5087 goto out_irq;
5088 }
5089
d95f4122 5090 double_rq_lock(rq, p_rq);
39e24d8f 5091 if (task_rq(p) != p_rq) {
d95f4122
MG
5092 double_rq_unlock(rq, p_rq);
5093 goto again;
5094 }
5095
5096 if (!curr->sched_class->yield_to_task)
7b270f60 5097 goto out_unlock;
d95f4122
MG
5098
5099 if (curr->sched_class != p->sched_class)
7b270f60 5100 goto out_unlock;
d95f4122
MG
5101
5102 if (task_running(p_rq, p) || p->state)
7b270f60 5103 goto out_unlock;
d95f4122
MG
5104
5105 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 5106 if (yielded) {
ae92882e 5107 schedstat_inc(rq->yld_count);
6d1cafd8
VP
5108 /*
5109 * Make p's CPU reschedule; pick_next_entity takes care of
5110 * fairness.
5111 */
5112 if (preempt && rq != p_rq)
8875125e 5113 resched_curr(p_rq);
6d1cafd8 5114 }
d95f4122 5115
7b270f60 5116out_unlock:
d95f4122 5117 double_rq_unlock(rq, p_rq);
7b270f60 5118out_irq:
d95f4122
MG
5119 local_irq_restore(flags);
5120
7b270f60 5121 if (yielded > 0)
d95f4122
MG
5122 schedule();
5123
5124 return yielded;
5125}
5126EXPORT_SYMBOL_GPL(yield_to);
5127
10ab5643
TH
5128int io_schedule_prepare(void)
5129{
5130 int old_iowait = current->in_iowait;
5131
5132 current->in_iowait = 1;
5133 blk_schedule_flush_plug(current);
5134
5135 return old_iowait;
5136}
5137
5138void io_schedule_finish(int token)
5139{
5140 current->in_iowait = token;
5141}
5142
1da177e4 5143/*
41a2d6cf 5144 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5145 * that process accounting knows that this is a task in IO wait state.
1da177e4 5146 */
1da177e4
LT
5147long __sched io_schedule_timeout(long timeout)
5148{
10ab5643 5149 int token;
1da177e4
LT
5150 long ret;
5151
10ab5643 5152 token = io_schedule_prepare();
1da177e4 5153 ret = schedule_timeout(timeout);
10ab5643 5154 io_schedule_finish(token);
9cff8ade 5155
1da177e4
LT
5156 return ret;
5157}
9cff8ade 5158EXPORT_SYMBOL(io_schedule_timeout);
1da177e4 5159
10ab5643
TH
5160void io_schedule(void)
5161{
5162 int token;
5163
5164 token = io_schedule_prepare();
5165 schedule();
5166 io_schedule_finish(token);
5167}
5168EXPORT_SYMBOL(io_schedule);
5169
1da177e4
LT
5170/**
5171 * sys_sched_get_priority_max - return maximum RT priority.
5172 * @policy: scheduling class.
5173 *
e69f6186
YB
5174 * Return: On success, this syscall returns the maximum
5175 * rt_priority that can be used by a given scheduling class.
5176 * On failure, a negative error code is returned.
1da177e4 5177 */
5add95d4 5178SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5179{
5180 int ret = -EINVAL;
5181
5182 switch (policy) {
5183 case SCHED_FIFO:
5184 case SCHED_RR:
5185 ret = MAX_USER_RT_PRIO-1;
5186 break;
aab03e05 5187 case SCHED_DEADLINE:
1da177e4 5188 case SCHED_NORMAL:
b0a9499c 5189 case SCHED_BATCH:
dd41f596 5190 case SCHED_IDLE:
1da177e4
LT
5191 ret = 0;
5192 break;
5193 }
5194 return ret;
5195}
5196
5197/**
5198 * sys_sched_get_priority_min - return minimum RT priority.
5199 * @policy: scheduling class.
5200 *
e69f6186
YB
5201 * Return: On success, this syscall returns the minimum
5202 * rt_priority that can be used by a given scheduling class.
5203 * On failure, a negative error code is returned.
1da177e4 5204 */
5add95d4 5205SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5206{
5207 int ret = -EINVAL;
5208
5209 switch (policy) {
5210 case SCHED_FIFO:
5211 case SCHED_RR:
5212 ret = 1;
5213 break;
aab03e05 5214 case SCHED_DEADLINE:
1da177e4 5215 case SCHED_NORMAL:
b0a9499c 5216 case SCHED_BATCH:
dd41f596 5217 case SCHED_IDLE:
1da177e4
LT
5218 ret = 0;
5219 }
5220 return ret;
5221}
5222
abca5fc5 5223static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
1da177e4 5224{
36c8b586 5225 struct task_struct *p;
a4ec24b4 5226 unsigned int time_slice;
eb580751 5227 struct rq_flags rf;
dba091b9 5228 struct rq *rq;
3a5c359a 5229 int retval;
1da177e4
LT
5230
5231 if (pid < 0)
3a5c359a 5232 return -EINVAL;
1da177e4
LT
5233
5234 retval = -ESRCH;
1a551ae7 5235 rcu_read_lock();
1da177e4
LT
5236 p = find_process_by_pid(pid);
5237 if (!p)
5238 goto out_unlock;
5239
5240 retval = security_task_getscheduler(p);
5241 if (retval)
5242 goto out_unlock;
5243
eb580751 5244 rq = task_rq_lock(p, &rf);
a57beec5
PZ
5245 time_slice = 0;
5246 if (p->sched_class->get_rr_interval)
5247 time_slice = p->sched_class->get_rr_interval(rq, p);
eb580751 5248 task_rq_unlock(rq, p, &rf);
a4ec24b4 5249
1a551ae7 5250 rcu_read_unlock();
abca5fc5
AV
5251 jiffies_to_timespec64(time_slice, t);
5252 return 0;
3a5c359a 5253
1da177e4 5254out_unlock:
1a551ae7 5255 rcu_read_unlock();
1da177e4
LT
5256 return retval;
5257}
5258
2064a5ab
RD
5259/**
5260 * sys_sched_rr_get_interval - return the default timeslice of a process.
5261 * @pid: pid of the process.
5262 * @interval: userspace pointer to the timeslice value.
5263 *
5264 * this syscall writes the default timeslice value of a given process
5265 * into the user-space timespec buffer. A value of '0' means infinity.
5266 *
5267 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5268 * an error code.
5269 */
abca5fc5
AV
5270SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5271 struct timespec __user *, interval)
5272{
5273 struct timespec64 t;
5274 int retval = sched_rr_get_interval(pid, &t);
5275
5276 if (retval == 0)
5277 retval = put_timespec64(&t, interval);
5278
5279 return retval;
5280}
5281
5282#ifdef CONFIG_COMPAT
5283COMPAT_SYSCALL_DEFINE2(sched_rr_get_interval,
5284 compat_pid_t, pid,
5285 struct compat_timespec __user *, interval)
5286{
5287 struct timespec64 t;
5288 int retval = sched_rr_get_interval(pid, &t);
5289
5290 if (retval == 0)
5291 retval = compat_put_timespec64(&t, interval);
5292 return retval;
5293}
5294#endif
5295
82a1fcb9 5296void sched_show_task(struct task_struct *p)
1da177e4 5297{
1da177e4 5298 unsigned long free = 0;
4e79752c 5299 int ppid;
c930b2c0 5300
38200502
TH
5301 if (!try_get_task_stack(p))
5302 return;
20435d84
XX
5303
5304 printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));
5305
5306 if (p->state == TASK_RUNNING)
3df0fc5b 5307 printk(KERN_CONT " running task ");
1da177e4 5308#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5309 free = stack_not_used(p);
1da177e4 5310#endif
a90e984c 5311 ppid = 0;
4e79752c 5312 rcu_read_lock();
a90e984c
ON
5313 if (pid_alive(p))
5314 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 5315 rcu_read_unlock();
3df0fc5b 5316 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 5317 task_pid_nr(p), ppid,
aa47b7e0 5318 (unsigned long)task_thread_info(p)->flags);
1da177e4 5319
3d1cb205 5320 print_worker_info(KERN_INFO, p);
5fb5e6de 5321 show_stack(p, NULL);
38200502 5322 put_task_stack(p);
1da177e4 5323}
0032f4e8 5324EXPORT_SYMBOL_GPL(sched_show_task);
1da177e4 5325
5d68cc95
PZ
5326static inline bool
5327state_filter_match(unsigned long state_filter, struct task_struct *p)
5328{
5329 /* no filter, everything matches */
5330 if (!state_filter)
5331 return true;
5332
5333 /* filter, but doesn't match */
5334 if (!(p->state & state_filter))
5335 return false;
5336
5337 /*
5338 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
5339 * TASK_KILLABLE).
5340 */
5341 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
5342 return false;
5343
5344 return true;
5345}
5346
5347
e59e2ae2 5348void show_state_filter(unsigned long state_filter)
1da177e4 5349{
36c8b586 5350 struct task_struct *g, *p;
1da177e4 5351
4bd77321 5352#if BITS_PER_LONG == 32
3df0fc5b
PZ
5353 printk(KERN_INFO
5354 " task PC stack pid father\n");
1da177e4 5355#else
3df0fc5b
PZ
5356 printk(KERN_INFO
5357 " task PC stack pid father\n");
1da177e4 5358#endif
510f5acc 5359 rcu_read_lock();
5d07f420 5360 for_each_process_thread(g, p) {
1da177e4
LT
5361 /*
5362 * reset the NMI-timeout, listing all files on a slow
25985edc 5363 * console might take a lot of time:
57675cb9
AR
5364 * Also, reset softlockup watchdogs on all CPUs, because
5365 * another CPU might be blocked waiting for us to process
5366 * an IPI.
1da177e4
LT
5367 */
5368 touch_nmi_watchdog();
57675cb9 5369 touch_all_softlockup_watchdogs();
5d68cc95 5370 if (state_filter_match(state_filter, p))
82a1fcb9 5371 sched_show_task(p);
5d07f420 5372 }
1da177e4 5373
dd41f596 5374#ifdef CONFIG_SCHED_DEBUG
fb90a6e9
RV
5375 if (!state_filter)
5376 sysrq_sched_debug_show();
dd41f596 5377#endif
510f5acc 5378 rcu_read_unlock();
e59e2ae2
IM
5379 /*
5380 * Only show locks if all tasks are dumped:
5381 */
93335a21 5382 if (!state_filter)
e59e2ae2 5383 debug_show_all_locks();
1da177e4
LT
5384}
5385
f340c0d1
IM
5386/**
5387 * init_idle - set up an idle thread for a given CPU
5388 * @idle: task in question
d1ccc66d 5389 * @cpu: CPU the idle task belongs to
f340c0d1
IM
5390 *
5391 * NOTE: this function does not set the idle thread's NEED_RESCHED
5392 * flag, to make booting more robust.
5393 */
0db0628d 5394void init_idle(struct task_struct *idle, int cpu)
1da177e4 5395{
70b97a7f 5396 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5397 unsigned long flags;
5398
25834c73
PZ
5399 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5400 raw_spin_lock(&rq->lock);
5cbd54ef 5401
5e1576ed 5402 __sched_fork(0, idle);
06b83b5f 5403 idle->state = TASK_RUNNING;
dd41f596 5404 idle->se.exec_start = sched_clock();
c1de45ca 5405 idle->flags |= PF_IDLE;
dd41f596 5406
e1b77c92
MR
5407 kasan_unpoison_task_stack(idle);
5408
de9b8f5d
PZ
5409#ifdef CONFIG_SMP
5410 /*
5411 * Its possible that init_idle() gets called multiple times on a task,
5412 * in that case do_set_cpus_allowed() will not do the right thing.
5413 *
5414 * And since this is boot we can forgo the serialization.
5415 */
5416 set_cpus_allowed_common(idle, cpumask_of(cpu));
5417#endif
6506cf6c
PZ
5418 /*
5419 * We're having a chicken and egg problem, even though we are
d1ccc66d 5420 * holding rq->lock, the CPU isn't yet set to this CPU so the
6506cf6c
PZ
5421 * lockdep check in task_group() will fail.
5422 *
5423 * Similar case to sched_fork(). / Alternatively we could
5424 * use task_rq_lock() here and obtain the other rq->lock.
5425 *
5426 * Silence PROVE_RCU
5427 */
5428 rcu_read_lock();
dd41f596 5429 __set_task_cpu(idle, cpu);
6506cf6c 5430 rcu_read_unlock();
1da177e4 5431
1da177e4 5432 rq->curr = rq->idle = idle;
da0c1e65 5433 idle->on_rq = TASK_ON_RQ_QUEUED;
de9b8f5d 5434#ifdef CONFIG_SMP
3ca7a440 5435 idle->on_cpu = 1;
4866cde0 5436#endif
25834c73
PZ
5437 raw_spin_unlock(&rq->lock);
5438 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
1da177e4
LT
5439
5440 /* Set the preempt count _outside_ the spinlocks! */
01028747 5441 init_idle_preempt_count(idle, cpu);
55cd5340 5442
dd41f596
IM
5443 /*
5444 * The idle tasks have their own, simple scheduling class:
5445 */
5446 idle->sched_class = &idle_sched_class;
868baf07 5447 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 5448 vtime_init_idle(idle, cpu);
de9b8f5d 5449#ifdef CONFIG_SMP
f1c6f1a7
CE
5450 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5451#endif
19978ca6
IM
5452}
5453
e1d4eeec
NP
5454#ifdef CONFIG_SMP
5455
f82f8042
JL
5456int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5457 const struct cpumask *trial)
5458{
06a76fe0 5459 int ret = 1;
f82f8042 5460
bb2bc55a
MG
5461 if (!cpumask_weight(cur))
5462 return ret;
5463
06a76fe0 5464 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
f82f8042
JL
5465
5466 return ret;
5467}
5468
7f51412a
JL
5469int task_can_attach(struct task_struct *p,
5470 const struct cpumask *cs_cpus_allowed)
5471{
5472 int ret = 0;
5473
5474 /*
5475 * Kthreads which disallow setaffinity shouldn't be moved
d1ccc66d 5476 * to a new cpuset; we don't want to change their CPU
7f51412a
JL
5477 * affinity and isolating such threads by their set of
5478 * allowed nodes is unnecessary. Thus, cpusets are not
5479 * applicable for such threads. This prevents checking for
5480 * success of set_cpus_allowed_ptr() on all attached tasks
5481 * before cpus_allowed may be changed.
5482 */
5483 if (p->flags & PF_NO_SETAFFINITY) {
5484 ret = -EINVAL;
5485 goto out;
5486 }
5487
7f51412a 5488 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
06a76fe0
NP
5489 cs_cpus_allowed))
5490 ret = dl_task_can_attach(p, cs_cpus_allowed);
7f51412a 5491
7f51412a
JL
5492out:
5493 return ret;
5494}
5495
f2cb1360 5496bool sched_smp_initialized __read_mostly;
e26fbffd 5497
e6628d5b
MG
5498#ifdef CONFIG_NUMA_BALANCING
5499/* Migrate current task p to target_cpu */
5500int migrate_task_to(struct task_struct *p, int target_cpu)
5501{
5502 struct migration_arg arg = { p, target_cpu };
5503 int curr_cpu = task_cpu(p);
5504
5505 if (curr_cpu == target_cpu)
5506 return 0;
5507
0c98d344 5508 if (!cpumask_test_cpu(target_cpu, &p->cpus_allowed))
e6628d5b
MG
5509 return -EINVAL;
5510
5511 /* TODO: This is not properly updating schedstats */
5512
286549dc 5513 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
5514 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5515}
0ec8aa00
PZ
5516
5517/*
5518 * Requeue a task on a given node and accurately track the number of NUMA
5519 * tasks on the runqueues
5520 */
5521void sched_setnuma(struct task_struct *p, int nid)
5522{
da0c1e65 5523 bool queued, running;
eb580751
PZ
5524 struct rq_flags rf;
5525 struct rq *rq;
0ec8aa00 5526
eb580751 5527 rq = task_rq_lock(p, &rf);
da0c1e65 5528 queued = task_on_rq_queued(p);
0ec8aa00
PZ
5529 running = task_current(rq, p);
5530
da0c1e65 5531 if (queued)
1de64443 5532 dequeue_task(rq, p, DEQUEUE_SAVE);
0ec8aa00 5533 if (running)
f3cd1c4e 5534 put_prev_task(rq, p);
0ec8aa00
PZ
5535
5536 p->numa_preferred_nid = nid;
0ec8aa00 5537
da0c1e65 5538 if (queued)
7134b3e9 5539 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
a399d233 5540 if (running)
b2bf6c31 5541 set_curr_task(rq, p);
eb580751 5542 task_rq_unlock(rq, p, &rf);
0ec8aa00 5543}
5cc389bc 5544#endif /* CONFIG_NUMA_BALANCING */
f7b4cddc 5545
1da177e4 5546#ifdef CONFIG_HOTPLUG_CPU
054b9108 5547/*
d1ccc66d 5548 * Ensure that the idle task is using init_mm right before its CPU goes
48c5ccae 5549 * offline.
054b9108 5550 */
48c5ccae 5551void idle_task_exit(void)
1da177e4 5552{
48c5ccae 5553 struct mm_struct *mm = current->active_mm;
e76bd8d9 5554
48c5ccae 5555 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 5556
a53efe5f 5557 if (mm != &init_mm) {
252d2a41 5558 switch_mm(mm, &init_mm, current);
a53efe5f
MS
5559 finish_arch_post_lock_switch();
5560 }
48c5ccae 5561 mmdrop(mm);
1da177e4
LT
5562}
5563
5564/*
5d180232
PZ
5565 * Since this CPU is going 'away' for a while, fold any nr_active delta
5566 * we might have. Assumes we're called after migrate_tasks() so that the
d60585c5
TG
5567 * nr_active count is stable. We need to take the teardown thread which
5568 * is calling this into account, so we hand in adjust = 1 to the load
5569 * calculation.
5d180232
PZ
5570 *
5571 * Also see the comment "Global load-average calculations".
1da177e4 5572 */
5d180232 5573static void calc_load_migrate(struct rq *rq)
1da177e4 5574{
d60585c5 5575 long delta = calc_load_fold_active(rq, 1);
5d180232
PZ
5576 if (delta)
5577 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
5578}
5579
3f1d2a31
PZ
5580static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5581{
5582}
5583
5584static const struct sched_class fake_sched_class = {
5585 .put_prev_task = put_prev_task_fake,
5586};
5587
5588static struct task_struct fake_task = {
5589 /*
5590 * Avoid pull_{rt,dl}_task()
5591 */
5592 .prio = MAX_PRIO + 1,
5593 .sched_class = &fake_sched_class,
5594};
5595
48f24c4d 5596/*
48c5ccae
PZ
5597 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5598 * try_to_wake_up()->select_task_rq().
5599 *
5600 * Called with rq->lock held even though we'er in stop_machine() and
5601 * there's no concurrency possible, we hold the required locks anyway
5602 * because of lock validation efforts.
1da177e4 5603 */
8a8c69c3 5604static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
1da177e4 5605{
5e16bbc2 5606 struct rq *rq = dead_rq;
48c5ccae 5607 struct task_struct *next, *stop = rq->stop;
8a8c69c3 5608 struct rq_flags orf = *rf;
48c5ccae 5609 int dest_cpu;
1da177e4
LT
5610
5611 /*
48c5ccae
PZ
5612 * Fudge the rq selection such that the below task selection loop
5613 * doesn't get stuck on the currently eligible stop task.
5614 *
5615 * We're currently inside stop_machine() and the rq is either stuck
5616 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5617 * either way we should never end up calling schedule() until we're
5618 * done here.
1da177e4 5619 */
48c5ccae 5620 rq->stop = NULL;
48f24c4d 5621
77bd3970
FW
5622 /*
5623 * put_prev_task() and pick_next_task() sched
5624 * class method both need to have an up-to-date
5625 * value of rq->clock[_task]
5626 */
5627 update_rq_clock(rq);
5628
5e16bbc2 5629 for (;;) {
48c5ccae
PZ
5630 /*
5631 * There's this thread running, bail when that's the only
d1ccc66d 5632 * remaining thread:
48c5ccae
PZ
5633 */
5634 if (rq->nr_running == 1)
dd41f596 5635 break;
48c5ccae 5636
cbce1a68 5637 /*
d1ccc66d 5638 * pick_next_task() assumes pinned rq->lock:
cbce1a68 5639 */
8a8c69c3 5640 next = pick_next_task(rq, &fake_task, rf);
48c5ccae 5641 BUG_ON(!next);
5b713a3d 5642 put_prev_task(rq, next);
e692ab53 5643
5473e0cc
WL
5644 /*
5645 * Rules for changing task_struct::cpus_allowed are holding
5646 * both pi_lock and rq->lock, such that holding either
5647 * stabilizes the mask.
5648 *
5649 * Drop rq->lock is not quite as disastrous as it usually is
5650 * because !cpu_active at this point, which means load-balance
5651 * will not interfere. Also, stop-machine.
5652 */
8a8c69c3 5653 rq_unlock(rq, rf);
5473e0cc 5654 raw_spin_lock(&next->pi_lock);
8a8c69c3 5655 rq_relock(rq, rf);
5473e0cc
WL
5656
5657 /*
5658 * Since we're inside stop-machine, _nothing_ should have
5659 * changed the task, WARN if weird stuff happened, because in
5660 * that case the above rq->lock drop is a fail too.
5661 */
5662 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5663 raw_spin_unlock(&next->pi_lock);
5664 continue;
5665 }
5666
48c5ccae 5667 /* Find suitable destination for @next, with force if needed. */
5e16bbc2 5668 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
8a8c69c3 5669 rq = __migrate_task(rq, rf, next, dest_cpu);
5e16bbc2 5670 if (rq != dead_rq) {
8a8c69c3 5671 rq_unlock(rq, rf);
5e16bbc2 5672 rq = dead_rq;
8a8c69c3
PZ
5673 *rf = orf;
5674 rq_relock(rq, rf);
5e16bbc2 5675 }
5473e0cc 5676 raw_spin_unlock(&next->pi_lock);
1da177e4 5677 }
dce48a84 5678
48c5ccae 5679 rq->stop = stop;
dce48a84 5680}
1da177e4
LT
5681#endif /* CONFIG_HOTPLUG_CPU */
5682
f2cb1360 5683void set_rq_online(struct rq *rq)
1f11eb6a
GH
5684{
5685 if (!rq->online) {
5686 const struct sched_class *class;
5687
c6c4927b 5688 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5689 rq->online = 1;
5690
5691 for_each_class(class) {
5692 if (class->rq_online)
5693 class->rq_online(rq);
5694 }
5695 }
5696}
5697
f2cb1360 5698void set_rq_offline(struct rq *rq)
1f11eb6a
GH
5699{
5700 if (rq->online) {
5701 const struct sched_class *class;
5702
5703 for_each_class(class) {
5704 if (class->rq_offline)
5705 class->rq_offline(rq);
5706 }
5707
c6c4927b 5708 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5709 rq->online = 0;
5710 }
5711}
5712
9cf7243d 5713static void set_cpu_rq_start_time(unsigned int cpu)
1da177e4 5714{
969c7921 5715 struct rq *rq = cpu_rq(cpu);
1da177e4 5716
a803f026
CM
5717 rq->age_stamp = sched_clock_cpu(cpu);
5718}
5719
d1ccc66d
IM
5720/*
5721 * used to mark begin/end of suspend/resume:
5722 */
5723static int num_cpus_frozen;
d35be8ba 5724
1da177e4 5725/*
3a101d05
TH
5726 * Update cpusets according to cpu_active mask. If cpusets are
5727 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
5728 * around partition_sched_domains().
d35be8ba
SB
5729 *
5730 * If we come here as part of a suspend/resume, don't touch cpusets because we
5731 * want to restore it back to its original state upon resume anyway.
1da177e4 5732 */
40190a78 5733static void cpuset_cpu_active(void)
e761b772 5734{
40190a78 5735 if (cpuhp_tasks_frozen) {
d35be8ba
SB
5736 /*
5737 * num_cpus_frozen tracks how many CPUs are involved in suspend
5738 * resume sequence. As long as this is not the last online
5739 * operation in the resume sequence, just build a single sched
5740 * domain, ignoring cpusets.
5741 */
50e76632
PZ
5742 partition_sched_domains(1, NULL, NULL);
5743 if (--num_cpus_frozen)
135fb3e1 5744 return;
d35be8ba
SB
5745 /*
5746 * This is the last CPU online operation. So fall through and
5747 * restore the original sched domains by considering the
5748 * cpuset configurations.
5749 */
50e76632 5750 cpuset_force_rebuild();
3a101d05 5751 }
30e03acd 5752 cpuset_update_active_cpus();
3a101d05 5753}
e761b772 5754
40190a78 5755static int cpuset_cpu_inactive(unsigned int cpu)
3a101d05 5756{
40190a78 5757 if (!cpuhp_tasks_frozen) {
06a76fe0 5758 if (dl_cpu_busy(cpu))
135fb3e1 5759 return -EBUSY;
30e03acd 5760 cpuset_update_active_cpus();
135fb3e1 5761 } else {
d35be8ba
SB
5762 num_cpus_frozen++;
5763 partition_sched_domains(1, NULL, NULL);
e761b772 5764 }
135fb3e1 5765 return 0;
e761b772 5766}
e761b772 5767
40190a78 5768int sched_cpu_activate(unsigned int cpu)
135fb3e1 5769{
7d976699 5770 struct rq *rq = cpu_rq(cpu);
8a8c69c3 5771 struct rq_flags rf;
7d976699 5772
40190a78 5773 set_cpu_active(cpu, true);
135fb3e1 5774
40190a78 5775 if (sched_smp_initialized) {
135fb3e1 5776 sched_domains_numa_masks_set(cpu);
40190a78 5777 cpuset_cpu_active();
e761b772 5778 }
7d976699
TG
5779
5780 /*
5781 * Put the rq online, if not already. This happens:
5782 *
5783 * 1) In the early boot process, because we build the real domains
d1ccc66d 5784 * after all CPUs have been brought up.
7d976699
TG
5785 *
5786 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
5787 * domains.
5788 */
8a8c69c3 5789 rq_lock_irqsave(rq, &rf);
7d976699
TG
5790 if (rq->rd) {
5791 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5792 set_rq_online(rq);
5793 }
8a8c69c3 5794 rq_unlock_irqrestore(rq, &rf);
7d976699
TG
5795
5796 update_max_interval();
5797
40190a78 5798 return 0;
135fb3e1
TG
5799}
5800
40190a78 5801int sched_cpu_deactivate(unsigned int cpu)
135fb3e1 5802{
135fb3e1
TG
5803 int ret;
5804
40190a78 5805 set_cpu_active(cpu, false);
b2454caa
PZ
5806 /*
5807 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
5808 * users of this state to go away such that all new such users will
5809 * observe it.
5810 *
b2454caa
PZ
5811 * Do sync before park smpboot threads to take care the rcu boost case.
5812 */
d7d34d5e 5813 synchronize_rcu_mult(call_rcu, call_rcu_sched);
40190a78
TG
5814
5815 if (!sched_smp_initialized)
5816 return 0;
5817
5818 ret = cpuset_cpu_inactive(cpu);
5819 if (ret) {
5820 set_cpu_active(cpu, true);
5821 return ret;
135fb3e1 5822 }
40190a78
TG
5823 sched_domains_numa_masks_clear(cpu);
5824 return 0;
135fb3e1
TG
5825}
5826
94baf7a5
TG
5827static void sched_rq_cpu_starting(unsigned int cpu)
5828{
5829 struct rq *rq = cpu_rq(cpu);
5830
5831 rq->calc_load_update = calc_load_update;
94baf7a5
TG
5832 update_max_interval();
5833}
5834
135fb3e1
TG
5835int sched_cpu_starting(unsigned int cpu)
5836{
5837 set_cpu_rq_start_time(cpu);
94baf7a5 5838 sched_rq_cpu_starting(cpu);
d84b3131 5839 sched_tick_start(cpu);
135fb3e1 5840 return 0;
e761b772 5841}
e761b772 5842
f2785ddb
TG
5843#ifdef CONFIG_HOTPLUG_CPU
5844int sched_cpu_dying(unsigned int cpu)
5845{
5846 struct rq *rq = cpu_rq(cpu);
8a8c69c3 5847 struct rq_flags rf;
f2785ddb
TG
5848
5849 /* Handle pending wakeups and then migrate everything off */
5850 sched_ttwu_pending();
d84b3131 5851 sched_tick_stop(cpu);
8a8c69c3
PZ
5852
5853 rq_lock_irqsave(rq, &rf);
f2785ddb
TG
5854 if (rq->rd) {
5855 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5856 set_rq_offline(rq);
5857 }
8a8c69c3 5858 migrate_tasks(rq, &rf);
f2785ddb 5859 BUG_ON(rq->nr_running != 1);
8a8c69c3
PZ
5860 rq_unlock_irqrestore(rq, &rf);
5861
f2785ddb
TG
5862 calc_load_migrate(rq);
5863 update_max_interval();
20a5c8cc 5864 nohz_balance_exit_idle(cpu);
e5ef27d0 5865 hrtick_clear(rq);
f2785ddb
TG
5866 return 0;
5867}
5868#endif
5869
1b568f0a
PZ
5870#ifdef CONFIG_SCHED_SMT
5871DEFINE_STATIC_KEY_FALSE(sched_smt_present);
5872
5873static void sched_init_smt(void)
5874{
5875 /*
5876 * We've enumerated all CPUs and will assume that if any CPU
5877 * has SMT siblings, CPU0 will too.
5878 */
5879 if (cpumask_weight(cpu_smt_mask(0)) > 1)
5880 static_branch_enable(&sched_smt_present);
5881}
5882#else
5883static inline void sched_init_smt(void) { }
5884#endif
5885
1da177e4
LT
5886void __init sched_init_smp(void)
5887{
cb83b629
PZ
5888 sched_init_numa();
5889
6acce3ef
PZ
5890 /*
5891 * There's no userspace yet to cause hotplug operations; hence all the
d1ccc66d 5892 * CPU masks are stable and all blatant races in the below code cannot
6acce3ef
PZ
5893 * happen.
5894 */
712555ee 5895 mutex_lock(&sched_domains_mutex);
8d5dc512 5896 sched_init_domains(cpu_active_mask);
712555ee 5897 mutex_unlock(&sched_domains_mutex);
e761b772 5898
5c1e1767 5899 /* Move init over to a non-isolated CPU */
edb93821 5900 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
5c1e1767 5901 BUG();
19978ca6 5902 sched_init_granularity();
4212823f 5903
0e3900e6 5904 init_sched_rt_class();
1baca4ce 5905 init_sched_dl_class();
1b568f0a
PZ
5906
5907 sched_init_smt();
5908
e26fbffd 5909 sched_smp_initialized = true;
1da177e4 5910}
e26fbffd
TG
5911
5912static int __init migration_init(void)
5913{
94baf7a5 5914 sched_rq_cpu_starting(smp_processor_id());
e26fbffd 5915 return 0;
1da177e4 5916}
e26fbffd
TG
5917early_initcall(migration_init);
5918
1da177e4
LT
5919#else
5920void __init sched_init_smp(void)
5921{
19978ca6 5922 sched_init_granularity();
1da177e4
LT
5923}
5924#endif /* CONFIG_SMP */
5925
5926int in_sched_functions(unsigned long addr)
5927{
1da177e4
LT
5928 return in_lock_functions(addr) ||
5929 (addr >= (unsigned long)__sched_text_start
5930 && addr < (unsigned long)__sched_text_end);
5931}
5932
029632fb 5933#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
5934/*
5935 * Default task group.
5936 * Every task in system belongs to this group at bootup.
5937 */
029632fb 5938struct task_group root_task_group;
35cf4e50 5939LIST_HEAD(task_groups);
b0367629
WL
5940
5941/* Cacheline aligned slab cache for task_group */
5942static struct kmem_cache *task_group_cache __read_mostly;
052f1dc7 5943#endif
6f505b16 5944
e6252c3e 5945DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
10e2f1ac 5946DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
6f505b16 5947
1da177e4
LT
5948void __init sched_init(void)
5949{
dd41f596 5950 int i, j;
434d53b0
MT
5951 unsigned long alloc_size = 0, ptr;
5952
9881b024 5953 sched_clock_init();
5822a454 5954 wait_bit_init();
9dcb8b68 5955
434d53b0
MT
5956#ifdef CONFIG_FAIR_GROUP_SCHED
5957 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5958#endif
5959#ifdef CONFIG_RT_GROUP_SCHED
5960 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5961#endif
434d53b0 5962 if (alloc_size) {
36b7b6d4 5963 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
5964
5965#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 5966 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
5967 ptr += nr_cpu_ids * sizeof(void **);
5968
07e06b01 5969 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 5970 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 5971
6d6bc0ad 5972#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 5973#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 5974 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
5975 ptr += nr_cpu_ids * sizeof(void **);
5976
07e06b01 5977 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
5978 ptr += nr_cpu_ids * sizeof(void **);
5979
6d6bc0ad 5980#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 5981 }
df7c8e84 5982#ifdef CONFIG_CPUMASK_OFFSTACK
b74e6278
AT
5983 for_each_possible_cpu(i) {
5984 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
5985 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
10e2f1ac
PZ
5986 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
5987 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
434d53b0 5988 }
b74e6278 5989#endif /* CONFIG_CPUMASK_OFFSTACK */
dd41f596 5990
d1ccc66d
IM
5991 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
5992 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
332ac17e 5993
57d885fe
GH
5994#ifdef CONFIG_SMP
5995 init_defrootdomain();
5996#endif
5997
d0b27fa7 5998#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 5999 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 6000 global_rt_period(), global_rt_runtime());
6d6bc0ad 6001#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6002
7c941438 6003#ifdef CONFIG_CGROUP_SCHED
b0367629
WL
6004 task_group_cache = KMEM_CACHE(task_group, 0);
6005
07e06b01
YZ
6006 list_add(&root_task_group.list, &task_groups);
6007 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 6008 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 6009 autogroup_init(&init_task);
7c941438 6010#endif /* CONFIG_CGROUP_SCHED */
6f505b16 6011
0a945022 6012 for_each_possible_cpu(i) {
70b97a7f 6013 struct rq *rq;
1da177e4
LT
6014
6015 rq = cpu_rq(i);
05fa785c 6016 raw_spin_lock_init(&rq->lock);
7897986b 6017 rq->nr_running = 0;
dce48a84
TG
6018 rq->calc_load_active = 0;
6019 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 6020 init_cfs_rq(&rq->cfs);
07c54f7a
AV
6021 init_rt_rq(&rq->rt);
6022 init_dl_rq(&rq->dl);
dd41f596 6023#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 6024 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 6025 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9c2791f9 6026 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
354d60c2 6027 /*
d1ccc66d 6028 * How much CPU bandwidth does root_task_group get?
354d60c2
DG
6029 *
6030 * In case of task-groups formed thr' the cgroup filesystem, it
d1ccc66d
IM
6031 * gets 100% of the CPU resources in the system. This overall
6032 * system CPU resource is divided among the tasks of
07e06b01 6033 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
6034 * based on each entity's (task or task-group's) weight
6035 * (se->load.weight).
6036 *
07e06b01 6037 * In other words, if root_task_group has 10 tasks of weight
354d60c2 6038 * 1024) and two child groups A0 and A1 (of weight 1024 each),
d1ccc66d 6039 * then A0's share of the CPU resource is:
354d60c2 6040 *
0d905bca 6041 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 6042 *
07e06b01
YZ
6043 * We achieve this by letting root_task_group's tasks sit
6044 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 6045 */
ab84d31e 6046 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 6047 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
6048#endif /* CONFIG_FAIR_GROUP_SCHED */
6049
6050 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 6051#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6052 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 6053#endif
1da177e4 6054
dd41f596
IM
6055 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6056 rq->cpu_load[j] = 0;
fdf3e95d 6057
1da177e4 6058#ifdef CONFIG_SMP
41c7ce9a 6059 rq->sd = NULL;
57d885fe 6060 rq->rd = NULL;
ca6d75e6 6061 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
e3fca9e7 6062 rq->balance_callback = NULL;
1da177e4 6063 rq->active_balance = 0;
dd41f596 6064 rq->next_balance = jiffies;
1da177e4 6065 rq->push_cpu = 0;
0a2966b4 6066 rq->cpu = i;
1f11eb6a 6067 rq->online = 0;
eae0c9df
MG
6068 rq->idle_stamp = 0;
6069 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 6070 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
6071
6072 INIT_LIST_HEAD(&rq->cfs_tasks);
6073
dc938520 6074 rq_attach_root(rq, &def_root_domain);
3451d024 6075#ifdef CONFIG_NO_HZ_COMMON
9fd81dd5 6076 rq->last_load_update_tick = jiffies;
a22e47a4 6077 atomic_set(&rq->nohz_flags, 0);
83cd4fe2 6078#endif
9fd81dd5 6079#endif /* CONFIG_SMP */
77a021be 6080 hrtick_rq_init(rq);
1da177e4 6081 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
6082 }
6083
9059393e 6084 set_load_weight(&init_task, false);
b50f60ce 6085
1da177e4
LT
6086 /*
6087 * The boot idle thread does lazy MMU switching as well:
6088 */
f1f10076 6089 mmgrab(&init_mm);
1da177e4
LT
6090 enter_lazy_tlb(&init_mm, current);
6091
6092 /*
6093 * Make us the idle thread. Technically, schedule() should not be
6094 * called from this thread, however somewhere below it might be,
6095 * but because we are the idle thread, we just pick up running again
6096 * when this runqueue becomes "idle".
6097 */
6098 init_idle(current, smp_processor_id());
dce48a84
TG
6099
6100 calc_load_update = jiffies + LOAD_FREQ;
6101
bf4d83f6 6102#ifdef CONFIG_SMP
29d5e047 6103 idle_thread_set_boot_cpu();
9cf7243d 6104 set_cpu_rq_start_time(smp_processor_id());
029632fb
PZ
6105#endif
6106 init_sched_fair_class();
6a7b3dc3 6107
4698f88c
JP
6108 init_schedstats();
6109
6892b75e 6110 scheduler_running = 1;
1da177e4
LT
6111}
6112
d902db1e 6113#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
6114static inline int preempt_count_equals(int preempt_offset)
6115{
da7142e2 6116 int nested = preempt_count() + rcu_preempt_depth();
e4aafea2 6117
4ba8216c 6118 return (nested == preempt_offset);
e4aafea2
FW
6119}
6120
d894837f 6121void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6122{
8eb23b9f
PZ
6123 /*
6124 * Blocking primitives will set (and therefore destroy) current->state,
6125 * since we will exit with TASK_RUNNING make sure we enter with it,
6126 * otherwise we will destroy state.
6127 */
00845eb9 6128 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
8eb23b9f
PZ
6129 "do not call blocking ops when !TASK_RUNNING; "
6130 "state=%lx set at [<%p>] %pS\n",
6131 current->state,
6132 (void *)current->task_state_change,
00845eb9 6133 (void *)current->task_state_change);
8eb23b9f 6134
3427445a
PZ
6135 ___might_sleep(file, line, preempt_offset);
6136}
6137EXPORT_SYMBOL(__might_sleep);
6138
6139void ___might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6140{
d1ccc66d
IM
6141 /* Ratelimiting timestamp: */
6142 static unsigned long prev_jiffy;
6143
d1c6d149 6144 unsigned long preempt_disable_ip;
1da177e4 6145
d1ccc66d
IM
6146 /* WARN_ON_ONCE() by default, no rate limit required: */
6147 rcu_sleep_check();
6148
db273be2
TG
6149 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6150 !is_idle_task(current)) ||
1c3c5eab
TG
6151 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
6152 oops_in_progress)
aef745fc 6153 return;
1c3c5eab 6154
aef745fc
IM
6155 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6156 return;
6157 prev_jiffy = jiffies;
6158
d1ccc66d 6159 /* Save this before calling printk(), since that will clobber it: */
d1c6d149
VN
6160 preempt_disable_ip = get_preempt_disable_ip(current);
6161
3df0fc5b
PZ
6162 printk(KERN_ERR
6163 "BUG: sleeping function called from invalid context at %s:%d\n",
6164 file, line);
6165 printk(KERN_ERR
6166 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6167 in_atomic(), irqs_disabled(),
6168 current->pid, current->comm);
aef745fc 6169
a8b686b3
ES
6170 if (task_stack_end_corrupted(current))
6171 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6172
aef745fc
IM
6173 debug_show_held_locks(current);
6174 if (irqs_disabled())
6175 print_irqtrace_events(current);
d1c6d149
VN
6176 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6177 && !preempt_count_equals(preempt_offset)) {
8f47b187 6178 pr_err("Preemption disabled at:");
d1c6d149 6179 print_ip_sym(preempt_disable_ip);
8f47b187
TG
6180 pr_cont("\n");
6181 }
aef745fc 6182 dump_stack();
f0b22e39 6183 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
1da177e4 6184}
3427445a 6185EXPORT_SYMBOL(___might_sleep);
1da177e4
LT
6186#endif
6187
6188#ifdef CONFIG_MAGIC_SYSRQ
dbc7f069 6189void normalize_rt_tasks(void)
3a5e4dc1 6190{
dbc7f069 6191 struct task_struct *g, *p;
d50dde5a
DF
6192 struct sched_attr attr = {
6193 .sched_policy = SCHED_NORMAL,
6194 };
1da177e4 6195
3472eaa1 6196 read_lock(&tasklist_lock);
5d07f420 6197 for_each_process_thread(g, p) {
178be793
IM
6198 /*
6199 * Only normalize user tasks:
6200 */
3472eaa1 6201 if (p->flags & PF_KTHREAD)
178be793
IM
6202 continue;
6203
4fa8d299
JP
6204 p->se.exec_start = 0;
6205 schedstat_set(p->se.statistics.wait_start, 0);
6206 schedstat_set(p->se.statistics.sleep_start, 0);
6207 schedstat_set(p->se.statistics.block_start, 0);
dd41f596 6208
aab03e05 6209 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
6210 /*
6211 * Renice negative nice level userspace
6212 * tasks back to 0:
6213 */
3472eaa1 6214 if (task_nice(p) < 0)
dd41f596 6215 set_user_nice(p, 0);
1da177e4 6216 continue;
dd41f596 6217 }
1da177e4 6218
dbc7f069 6219 __sched_setscheduler(p, &attr, false, false);
5d07f420 6220 }
3472eaa1 6221 read_unlock(&tasklist_lock);
1da177e4
LT
6222}
6223
6224#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 6225
67fc4e0c 6226#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 6227/*
67fc4e0c 6228 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
6229 *
6230 * They can only be called when the whole system has been
6231 * stopped - every CPU needs to be quiescent, and no scheduling
6232 * activity can take place. Using them for anything else would
6233 * be a serious bug, and as a result, they aren't even visible
6234 * under any other configuration.
6235 */
6236
6237/**
d1ccc66d 6238 * curr_task - return the current task for a given CPU.
1df5c10a
LT
6239 * @cpu: the processor in question.
6240 *
6241 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
6242 *
6243 * Return: The current task for @cpu.
1df5c10a 6244 */
36c8b586 6245struct task_struct *curr_task(int cpu)
1df5c10a
LT
6246{
6247 return cpu_curr(cpu);
6248}
6249
67fc4e0c
JW
6250#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6251
6252#ifdef CONFIG_IA64
1df5c10a 6253/**
d1ccc66d 6254 * set_curr_task - set the current task for a given CPU.
1df5c10a
LT
6255 * @cpu: the processor in question.
6256 * @p: the task pointer to set.
6257 *
6258 * Description: This function must only be used when non-maskable interrupts
41a2d6cf 6259 * are serviced on a separate stack. It allows the architecture to switch the
d1ccc66d 6260 * notion of the current task on a CPU in a non-blocking manner. This function
1df5c10a
LT
6261 * must be called with all CPU's synchronized, and interrupts disabled, the
6262 * and caller must save the original value of the current task (see
6263 * curr_task() above) and restore that value before reenabling interrupts and
6264 * re-starting the system.
6265 *
6266 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6267 */
a458ae2e 6268void ia64_set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
6269{
6270 cpu_curr(cpu) = p;
6271}
6272
6273#endif
29f59db3 6274
7c941438 6275#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
6276/* task_group_lock serializes the addition/removal of task groups */
6277static DEFINE_SPINLOCK(task_group_lock);
6278
2f5177f0 6279static void sched_free_group(struct task_group *tg)
bccbe08a
PZ
6280{
6281 free_fair_sched_group(tg);
6282 free_rt_sched_group(tg);
e9aa1dd1 6283 autogroup_free(tg);
b0367629 6284 kmem_cache_free(task_group_cache, tg);
bccbe08a
PZ
6285}
6286
6287/* allocate runqueue etc for a new task group */
ec7dc8ac 6288struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
6289{
6290 struct task_group *tg;
bccbe08a 6291
b0367629 6292 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
bccbe08a
PZ
6293 if (!tg)
6294 return ERR_PTR(-ENOMEM);
6295
ec7dc8ac 6296 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
6297 goto err;
6298
ec7dc8ac 6299 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
6300 goto err;
6301
ace783b9
LZ
6302 return tg;
6303
6304err:
2f5177f0 6305 sched_free_group(tg);
ace783b9
LZ
6306 return ERR_PTR(-ENOMEM);
6307}
6308
6309void sched_online_group(struct task_group *tg, struct task_group *parent)
6310{
6311 unsigned long flags;
6312
8ed36996 6313 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 6314 list_add_rcu(&tg->list, &task_groups);
f473aa5e 6315
d1ccc66d
IM
6316 /* Root should already exist: */
6317 WARN_ON(!parent);
f473aa5e
PZ
6318
6319 tg->parent = parent;
f473aa5e 6320 INIT_LIST_HEAD(&tg->children);
09f2724a 6321 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 6322 spin_unlock_irqrestore(&task_group_lock, flags);
8663e24d
PZ
6323
6324 online_fair_sched_group(tg);
29f59db3
SV
6325}
6326
9b5b7751 6327/* rcu callback to free various structures associated with a task group */
2f5177f0 6328static void sched_free_group_rcu(struct rcu_head *rhp)
29f59db3 6329{
d1ccc66d 6330 /* Now it should be safe to free those cfs_rqs: */
2f5177f0 6331 sched_free_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
6332}
6333
4cf86d77 6334void sched_destroy_group(struct task_group *tg)
ace783b9 6335{
d1ccc66d 6336 /* Wait for possible concurrent references to cfs_rqs complete: */
2f5177f0 6337 call_rcu(&tg->rcu, sched_free_group_rcu);
ace783b9
LZ
6338}
6339
6340void sched_offline_group(struct task_group *tg)
29f59db3 6341{
8ed36996 6342 unsigned long flags;
29f59db3 6343
d1ccc66d 6344 /* End participation in shares distribution: */
6fe1f348 6345 unregister_fair_sched_group(tg);
3d4b47b4
PZ
6346
6347 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 6348 list_del_rcu(&tg->list);
f473aa5e 6349 list_del_rcu(&tg->siblings);
8ed36996 6350 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
6351}
6352
ea86cb4b 6353static void sched_change_group(struct task_struct *tsk, int type)
29f59db3 6354{
8323f26c 6355 struct task_group *tg;
29f59db3 6356
f7b8a47d
KT
6357 /*
6358 * All callers are synchronized by task_rq_lock(); we do not use RCU
6359 * which is pointless here. Thus, we pass "true" to task_css_check()
6360 * to prevent lockdep warnings.
6361 */
6362 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
6363 struct task_group, css);
6364 tg = autogroup_task_group(tsk, tg);
6365 tsk->sched_task_group = tg;
6366
810b3817 6367#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
6368 if (tsk->sched_class->task_change_group)
6369 tsk->sched_class->task_change_group(tsk, type);
b2b5ce02 6370 else
810b3817 6371#endif
b2b5ce02 6372 set_task_rq(tsk, task_cpu(tsk));
ea86cb4b
VG
6373}
6374
6375/*
6376 * Change task's runqueue when it moves between groups.
6377 *
6378 * The caller of this function should have put the task in its new group by
6379 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
6380 * its new group.
6381 */
6382void sched_move_task(struct task_struct *tsk)
6383{
7a57f32a
PZ
6384 int queued, running, queue_flags =
6385 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
ea86cb4b
VG
6386 struct rq_flags rf;
6387 struct rq *rq;
6388
6389 rq = task_rq_lock(tsk, &rf);
1b1d6225 6390 update_rq_clock(rq);
ea86cb4b
VG
6391
6392 running = task_current(rq, tsk);
6393 queued = task_on_rq_queued(tsk);
6394
6395 if (queued)
7a57f32a 6396 dequeue_task(rq, tsk, queue_flags);
bb3bac2c 6397 if (running)
ea86cb4b
VG
6398 put_prev_task(rq, tsk);
6399
6400 sched_change_group(tsk, TASK_MOVE_GROUP);
810b3817 6401
da0c1e65 6402 if (queued)
7a57f32a 6403 enqueue_task(rq, tsk, queue_flags);
bb3bac2c 6404 if (running)
b2bf6c31 6405 set_curr_task(rq, tsk);
29f59db3 6406
eb580751 6407 task_rq_unlock(rq, tsk, &rf);
29f59db3 6408}
68318b8e 6409
a7c6d554 6410static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 6411{
a7c6d554 6412 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
6413}
6414
eb95419b
TH
6415static struct cgroup_subsys_state *
6416cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 6417{
eb95419b
TH
6418 struct task_group *parent = css_tg(parent_css);
6419 struct task_group *tg;
68318b8e 6420
eb95419b 6421 if (!parent) {
68318b8e 6422 /* This is early initialization for the top cgroup */
07e06b01 6423 return &root_task_group.css;
68318b8e
SV
6424 }
6425
ec7dc8ac 6426 tg = sched_create_group(parent);
68318b8e
SV
6427 if (IS_ERR(tg))
6428 return ERR_PTR(-ENOMEM);
6429
68318b8e
SV
6430 return &tg->css;
6431}
6432
96b77745
KK
6433/* Expose task group only after completing cgroup initialization */
6434static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
6435{
6436 struct task_group *tg = css_tg(css);
6437 struct task_group *parent = css_tg(css->parent);
6438
6439 if (parent)
6440 sched_online_group(tg, parent);
6441 return 0;
6442}
6443
2f5177f0 6444static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
ace783b9 6445{
eb95419b 6446 struct task_group *tg = css_tg(css);
ace783b9 6447
2f5177f0 6448 sched_offline_group(tg);
ace783b9
LZ
6449}
6450
eb95419b 6451static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 6452{
eb95419b 6453 struct task_group *tg = css_tg(css);
68318b8e 6454
2f5177f0
PZ
6455 /*
6456 * Relies on the RCU grace period between css_released() and this.
6457 */
6458 sched_free_group(tg);
ace783b9
LZ
6459}
6460
ea86cb4b
VG
6461/*
6462 * This is called before wake_up_new_task(), therefore we really only
6463 * have to set its group bits, all the other stuff does not apply.
6464 */
b53202e6 6465static void cpu_cgroup_fork(struct task_struct *task)
eeb61e53 6466{
ea86cb4b
VG
6467 struct rq_flags rf;
6468 struct rq *rq;
6469
6470 rq = task_rq_lock(task, &rf);
6471
80f5c1b8 6472 update_rq_clock(rq);
ea86cb4b
VG
6473 sched_change_group(task, TASK_SET_GROUP);
6474
6475 task_rq_unlock(rq, task, &rf);
eeb61e53
KT
6476}
6477
1f7dd3e5 6478static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
68318b8e 6479{
bb9d97b6 6480 struct task_struct *task;
1f7dd3e5 6481 struct cgroup_subsys_state *css;
7dc603c9 6482 int ret = 0;
bb9d97b6 6483
1f7dd3e5 6484 cgroup_taskset_for_each(task, css, tset) {
b68aa230 6485#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 6486 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 6487 return -EINVAL;
b68aa230 6488#else
bb9d97b6
TH
6489 /* We don't support RT-tasks being in separate groups */
6490 if (task->sched_class != &fair_sched_class)
6491 return -EINVAL;
b68aa230 6492#endif
7dc603c9
PZ
6493 /*
6494 * Serialize against wake_up_new_task() such that if its
6495 * running, we're sure to observe its full state.
6496 */
6497 raw_spin_lock_irq(&task->pi_lock);
6498 /*
6499 * Avoid calling sched_move_task() before wake_up_new_task()
6500 * has happened. This would lead to problems with PELT, due to
6501 * move wanting to detach+attach while we're not attached yet.
6502 */
6503 if (task->state == TASK_NEW)
6504 ret = -EINVAL;
6505 raw_spin_unlock_irq(&task->pi_lock);
6506
6507 if (ret)
6508 break;
bb9d97b6 6509 }
7dc603c9 6510 return ret;
be367d09 6511}
68318b8e 6512
1f7dd3e5 6513static void cpu_cgroup_attach(struct cgroup_taskset *tset)
68318b8e 6514{
bb9d97b6 6515 struct task_struct *task;
1f7dd3e5 6516 struct cgroup_subsys_state *css;
bb9d97b6 6517
1f7dd3e5 6518 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 6519 sched_move_task(task);
68318b8e
SV
6520}
6521
052f1dc7 6522#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
6523static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
6524 struct cftype *cftype, u64 shareval)
68318b8e 6525{
182446d0 6526 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
6527}
6528
182446d0
TH
6529static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
6530 struct cftype *cft)
68318b8e 6531{
182446d0 6532 struct task_group *tg = css_tg(css);
68318b8e 6533
c8b28116 6534 return (u64) scale_load_down(tg->shares);
68318b8e 6535}
ab84d31e
PT
6536
6537#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
6538static DEFINE_MUTEX(cfs_constraints_mutex);
6539
ab84d31e
PT
6540const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
6541const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
6542
a790de99
PT
6543static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
6544
ab84d31e
PT
6545static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
6546{
56f570e5 6547 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 6548 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
6549
6550 if (tg == &root_task_group)
6551 return -EINVAL;
6552
6553 /*
6554 * Ensure we have at some amount of bandwidth every period. This is
6555 * to prevent reaching a state of large arrears when throttled via
6556 * entity_tick() resulting in prolonged exit starvation.
6557 */
6558 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
6559 return -EINVAL;
6560
6561 /*
6562 * Likewise, bound things on the otherside by preventing insane quota
6563 * periods. This also allows us to normalize in computing quota
6564 * feasibility.
6565 */
6566 if (period > max_cfs_quota_period)
6567 return -EINVAL;
6568
0e59bdae
KT
6569 /*
6570 * Prevent race between setting of cfs_rq->runtime_enabled and
6571 * unthrottle_offline_cfs_rqs().
6572 */
6573 get_online_cpus();
a790de99
PT
6574 mutex_lock(&cfs_constraints_mutex);
6575 ret = __cfs_schedulable(tg, period, quota);
6576 if (ret)
6577 goto out_unlock;
6578
58088ad0 6579 runtime_enabled = quota != RUNTIME_INF;
56f570e5 6580 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
6581 /*
6582 * If we need to toggle cfs_bandwidth_used, off->on must occur
6583 * before making related changes, and on->off must occur afterwards
6584 */
6585 if (runtime_enabled && !runtime_was_enabled)
6586 cfs_bandwidth_usage_inc();
ab84d31e
PT
6587 raw_spin_lock_irq(&cfs_b->lock);
6588 cfs_b->period = ns_to_ktime(period);
6589 cfs_b->quota = quota;
58088ad0 6590
a9cf55b2 6591 __refill_cfs_bandwidth_runtime(cfs_b);
d1ccc66d
IM
6592
6593 /* Restart the period timer (if active) to handle new period expiry: */
77a4d1a1
PZ
6594 if (runtime_enabled)
6595 start_cfs_bandwidth(cfs_b);
d1ccc66d 6596
ab84d31e
PT
6597 raw_spin_unlock_irq(&cfs_b->lock);
6598
0e59bdae 6599 for_each_online_cpu(i) {
ab84d31e 6600 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 6601 struct rq *rq = cfs_rq->rq;
8a8c69c3 6602 struct rq_flags rf;
ab84d31e 6603
8a8c69c3 6604 rq_lock_irq(rq, &rf);
58088ad0 6605 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 6606 cfs_rq->runtime_remaining = 0;
671fd9da 6607
029632fb 6608 if (cfs_rq->throttled)
671fd9da 6609 unthrottle_cfs_rq(cfs_rq);
8a8c69c3 6610 rq_unlock_irq(rq, &rf);
ab84d31e 6611 }
1ee14e6c
BS
6612 if (runtime_was_enabled && !runtime_enabled)
6613 cfs_bandwidth_usage_dec();
a790de99
PT
6614out_unlock:
6615 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 6616 put_online_cpus();
ab84d31e 6617
a790de99 6618 return ret;
ab84d31e
PT
6619}
6620
6621int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
6622{
6623 u64 quota, period;
6624
029632fb 6625 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
6626 if (cfs_quota_us < 0)
6627 quota = RUNTIME_INF;
6628 else
6629 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
6630
6631 return tg_set_cfs_bandwidth(tg, period, quota);
6632}
6633
6634long tg_get_cfs_quota(struct task_group *tg)
6635{
6636 u64 quota_us;
6637
029632fb 6638 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
6639 return -1;
6640
029632fb 6641 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
6642 do_div(quota_us, NSEC_PER_USEC);
6643
6644 return quota_us;
6645}
6646
6647int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
6648{
6649 u64 quota, period;
6650
6651 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 6652 quota = tg->cfs_bandwidth.quota;
ab84d31e 6653
ab84d31e
PT
6654 return tg_set_cfs_bandwidth(tg, period, quota);
6655}
6656
6657long tg_get_cfs_period(struct task_group *tg)
6658{
6659 u64 cfs_period_us;
6660
029632fb 6661 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
6662 do_div(cfs_period_us, NSEC_PER_USEC);
6663
6664 return cfs_period_us;
6665}
6666
182446d0
TH
6667static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
6668 struct cftype *cft)
ab84d31e 6669{
182446d0 6670 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
6671}
6672
182446d0
TH
6673static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
6674 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 6675{
182446d0 6676 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
6677}
6678
182446d0
TH
6679static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
6680 struct cftype *cft)
ab84d31e 6681{
182446d0 6682 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
6683}
6684
182446d0
TH
6685static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
6686 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 6687{
182446d0 6688 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
6689}
6690
a790de99
PT
6691struct cfs_schedulable_data {
6692 struct task_group *tg;
6693 u64 period, quota;
6694};
6695
6696/*
6697 * normalize group quota/period to be quota/max_period
6698 * note: units are usecs
6699 */
6700static u64 normalize_cfs_quota(struct task_group *tg,
6701 struct cfs_schedulable_data *d)
6702{
6703 u64 quota, period;
6704
6705 if (tg == d->tg) {
6706 period = d->period;
6707 quota = d->quota;
6708 } else {
6709 period = tg_get_cfs_period(tg);
6710 quota = tg_get_cfs_quota(tg);
6711 }
6712
6713 /* note: these should typically be equivalent */
6714 if (quota == RUNTIME_INF || quota == -1)
6715 return RUNTIME_INF;
6716
6717 return to_ratio(period, quota);
6718}
6719
6720static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
6721{
6722 struct cfs_schedulable_data *d = data;
029632fb 6723 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
6724 s64 quota = 0, parent_quota = -1;
6725
6726 if (!tg->parent) {
6727 quota = RUNTIME_INF;
6728 } else {
029632fb 6729 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
6730
6731 quota = normalize_cfs_quota(tg, d);
9c58c79a 6732 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
6733
6734 /*
d1ccc66d
IM
6735 * Ensure max(child_quota) <= parent_quota, inherit when no
6736 * limit is set:
a790de99
PT
6737 */
6738 if (quota == RUNTIME_INF)
6739 quota = parent_quota;
6740 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
6741 return -EINVAL;
6742 }
9c58c79a 6743 cfs_b->hierarchical_quota = quota;
a790de99
PT
6744
6745 return 0;
6746}
6747
6748static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
6749{
8277434e 6750 int ret;
a790de99
PT
6751 struct cfs_schedulable_data data = {
6752 .tg = tg,
6753 .period = period,
6754 .quota = quota,
6755 };
6756
6757 if (quota != RUNTIME_INF) {
6758 do_div(data.period, NSEC_PER_USEC);
6759 do_div(data.quota, NSEC_PER_USEC);
6760 }
6761
8277434e
PT
6762 rcu_read_lock();
6763 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
6764 rcu_read_unlock();
6765
6766 return ret;
a790de99 6767}
e8da1b18 6768
a1f7164c 6769static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
e8da1b18 6770{
2da8ca82 6771 struct task_group *tg = css_tg(seq_css(sf));
029632fb 6772 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 6773
44ffc75b
TH
6774 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
6775 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
6776 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
6777
6778 return 0;
6779}
ab84d31e 6780#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 6781#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 6782
052f1dc7 6783#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
6784static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
6785 struct cftype *cft, s64 val)
6f505b16 6786{
182446d0 6787 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
6788}
6789
182446d0
TH
6790static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
6791 struct cftype *cft)
6f505b16 6792{
182446d0 6793 return sched_group_rt_runtime(css_tg(css));
6f505b16 6794}
d0b27fa7 6795
182446d0
TH
6796static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
6797 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 6798{
182446d0 6799 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
6800}
6801
182446d0
TH
6802static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
6803 struct cftype *cft)
d0b27fa7 6804{
182446d0 6805 return sched_group_rt_period(css_tg(css));
d0b27fa7 6806}
6d6bc0ad 6807#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 6808
a1f7164c 6809static struct cftype cpu_legacy_files[] = {
052f1dc7 6810#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
6811 {
6812 .name = "shares",
f4c753b7
PM
6813 .read_u64 = cpu_shares_read_u64,
6814 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 6815 },
052f1dc7 6816#endif
ab84d31e
PT
6817#ifdef CONFIG_CFS_BANDWIDTH
6818 {
6819 .name = "cfs_quota_us",
6820 .read_s64 = cpu_cfs_quota_read_s64,
6821 .write_s64 = cpu_cfs_quota_write_s64,
6822 },
6823 {
6824 .name = "cfs_period_us",
6825 .read_u64 = cpu_cfs_period_read_u64,
6826 .write_u64 = cpu_cfs_period_write_u64,
6827 },
e8da1b18
NR
6828 {
6829 .name = "stat",
a1f7164c 6830 .seq_show = cpu_cfs_stat_show,
e8da1b18 6831 },
ab84d31e 6832#endif
052f1dc7 6833#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 6834 {
9f0c1e56 6835 .name = "rt_runtime_us",
06ecb27c
PM
6836 .read_s64 = cpu_rt_runtime_read,
6837 .write_s64 = cpu_rt_runtime_write,
6f505b16 6838 },
d0b27fa7
PZ
6839 {
6840 .name = "rt_period_us",
f4c753b7
PM
6841 .read_u64 = cpu_rt_period_read_uint,
6842 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 6843 },
052f1dc7 6844#endif
d1ccc66d 6845 { } /* Terminate */
68318b8e
SV
6846};
6847
d41bf8c9
TH
6848static int cpu_extra_stat_show(struct seq_file *sf,
6849 struct cgroup_subsys_state *css)
0d593634 6850{
0d593634
TH
6851#ifdef CONFIG_CFS_BANDWIDTH
6852 {
d41bf8c9 6853 struct task_group *tg = css_tg(css);
0d593634
TH
6854 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6855 u64 throttled_usec;
6856
6857 throttled_usec = cfs_b->throttled_time;
6858 do_div(throttled_usec, NSEC_PER_USEC);
6859
6860 seq_printf(sf, "nr_periods %d\n"
6861 "nr_throttled %d\n"
6862 "throttled_usec %llu\n",
6863 cfs_b->nr_periods, cfs_b->nr_throttled,
6864 throttled_usec);
6865 }
6866#endif
6867 return 0;
6868}
6869
6870#ifdef CONFIG_FAIR_GROUP_SCHED
6871static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
6872 struct cftype *cft)
6873{
6874 struct task_group *tg = css_tg(css);
6875 u64 weight = scale_load_down(tg->shares);
6876
6877 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
6878}
6879
6880static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
6881 struct cftype *cft, u64 weight)
6882{
6883 /*
6884 * cgroup weight knobs should use the common MIN, DFL and MAX
6885 * values which are 1, 100 and 10000 respectively. While it loses
6886 * a bit of range on both ends, it maps pretty well onto the shares
6887 * value used by scheduler and the round-trip conversions preserve
6888 * the original value over the entire range.
6889 */
6890 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
6891 return -ERANGE;
6892
6893 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
6894
6895 return sched_group_set_shares(css_tg(css), scale_load(weight));
6896}
6897
6898static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
6899 struct cftype *cft)
6900{
6901 unsigned long weight = scale_load_down(css_tg(css)->shares);
6902 int last_delta = INT_MAX;
6903 int prio, delta;
6904
6905 /* find the closest nice value to the current weight */
6906 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
6907 delta = abs(sched_prio_to_weight[prio] - weight);
6908 if (delta >= last_delta)
6909 break;
6910 last_delta = delta;
6911 }
6912
6913 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
6914}
6915
6916static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
6917 struct cftype *cft, s64 nice)
6918{
6919 unsigned long weight;
6920
6921 if (nice < MIN_NICE || nice > MAX_NICE)
6922 return -ERANGE;
6923
6924 weight = sched_prio_to_weight[NICE_TO_PRIO(nice) - MAX_RT_PRIO];
6925 return sched_group_set_shares(css_tg(css), scale_load(weight));
6926}
6927#endif
6928
6929static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
6930 long period, long quota)
6931{
6932 if (quota < 0)
6933 seq_puts(sf, "max");
6934 else
6935 seq_printf(sf, "%ld", quota);
6936
6937 seq_printf(sf, " %ld\n", period);
6938}
6939
6940/* caller should put the current value in *@periodp before calling */
6941static int __maybe_unused cpu_period_quota_parse(char *buf,
6942 u64 *periodp, u64 *quotap)
6943{
6944 char tok[21]; /* U64_MAX */
6945
6946 if (!sscanf(buf, "%s %llu", tok, periodp))
6947 return -EINVAL;
6948
6949 *periodp *= NSEC_PER_USEC;
6950
6951 if (sscanf(tok, "%llu", quotap))
6952 *quotap *= NSEC_PER_USEC;
6953 else if (!strcmp(tok, "max"))
6954 *quotap = RUNTIME_INF;
6955 else
6956 return -EINVAL;
6957
6958 return 0;
6959}
6960
6961#ifdef CONFIG_CFS_BANDWIDTH
6962static int cpu_max_show(struct seq_file *sf, void *v)
6963{
6964 struct task_group *tg = css_tg(seq_css(sf));
6965
6966 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
6967 return 0;
6968}
6969
6970static ssize_t cpu_max_write(struct kernfs_open_file *of,
6971 char *buf, size_t nbytes, loff_t off)
6972{
6973 struct task_group *tg = css_tg(of_css(of));
6974 u64 period = tg_get_cfs_period(tg);
6975 u64 quota;
6976 int ret;
6977
6978 ret = cpu_period_quota_parse(buf, &period, &quota);
6979 if (!ret)
6980 ret = tg_set_cfs_bandwidth(tg, period, quota);
6981 return ret ?: nbytes;
6982}
6983#endif
6984
6985static struct cftype cpu_files[] = {
0d593634
TH
6986#ifdef CONFIG_FAIR_GROUP_SCHED
6987 {
6988 .name = "weight",
6989 .flags = CFTYPE_NOT_ON_ROOT,
6990 .read_u64 = cpu_weight_read_u64,
6991 .write_u64 = cpu_weight_write_u64,
6992 },
6993 {
6994 .name = "weight.nice",
6995 .flags = CFTYPE_NOT_ON_ROOT,
6996 .read_s64 = cpu_weight_nice_read_s64,
6997 .write_s64 = cpu_weight_nice_write_s64,
6998 },
6999#endif
7000#ifdef CONFIG_CFS_BANDWIDTH
7001 {
7002 .name = "max",
7003 .flags = CFTYPE_NOT_ON_ROOT,
7004 .seq_show = cpu_max_show,
7005 .write = cpu_max_write,
7006 },
7007#endif
7008 { } /* terminate */
7009};
7010
073219e9 7011struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748 7012 .css_alloc = cpu_cgroup_css_alloc,
96b77745 7013 .css_online = cpu_cgroup_css_online,
2f5177f0 7014 .css_released = cpu_cgroup_css_released,
92fb9748 7015 .css_free = cpu_cgroup_css_free,
d41bf8c9 7016 .css_extra_stat_show = cpu_extra_stat_show,
eeb61e53 7017 .fork = cpu_cgroup_fork,
bb9d97b6
TH
7018 .can_attach = cpu_cgroup_can_attach,
7019 .attach = cpu_cgroup_attach,
a1f7164c 7020 .legacy_cftypes = cpu_legacy_files,
0d593634 7021 .dfl_cftypes = cpu_files,
b38e42e9 7022 .early_init = true,
0d593634 7023 .threaded = true,
68318b8e
SV
7024};
7025
052f1dc7 7026#endif /* CONFIG_CGROUP_SCHED */
d842de87 7027
b637a328
PM
7028void dump_cpu_task(int cpu)
7029{
7030 pr_info("Task dump for CPU %d:\n", cpu);
7031 sched_show_task(cpu_curr(cpu));
7032}
ed82b8a1
AK
7033
7034/*
7035 * Nice levels are multiplicative, with a gentle 10% change for every
7036 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
7037 * nice 1, it will get ~10% less CPU time than another CPU-bound task
7038 * that remained on nice 0.
7039 *
7040 * The "10% effect" is relative and cumulative: from _any_ nice level,
7041 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
7042 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
7043 * If a task goes up by ~10% and another task goes down by ~10% then
7044 * the relative distance between them is ~25%.)
7045 */
7046const int sched_prio_to_weight[40] = {
7047 /* -20 */ 88761, 71755, 56483, 46273, 36291,
7048 /* -15 */ 29154, 23254, 18705, 14949, 11916,
7049 /* -10 */ 9548, 7620, 6100, 4904, 3906,
7050 /* -5 */ 3121, 2501, 1991, 1586, 1277,
7051 /* 0 */ 1024, 820, 655, 526, 423,
7052 /* 5 */ 335, 272, 215, 172, 137,
7053 /* 10 */ 110, 87, 70, 56, 45,
7054 /* 15 */ 36, 29, 23, 18, 15,
7055};
7056
7057/*
7058 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
7059 *
7060 * In cases where the weight does not change often, we can use the
7061 * precalculated inverse to speed up arithmetics by turning divisions
7062 * into multiplications:
7063 */
7064const u32 sched_prio_to_wmult[40] = {
7065 /* -20 */ 48388, 59856, 76040, 92818, 118348,
7066 /* -15 */ 147320, 184698, 229616, 287308, 360437,
7067 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
7068 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
7069 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
7070 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
7071 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
7072 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
7073};
14a7405b
IM
7074
7075#undef CREATE_TRACE_POINTS