]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/sched/core.c
sched/uclamp: Extend sched_setattr() to support utilization clamping
[mirror_ubuntu-jammy-kernel.git] / kernel / sched / core.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4 2/*
391e43da 3 * kernel/sched/core.c
1da177e4 4 *
d1ccc66d 5 * Core kernel scheduler code and related syscalls
1da177e4
LT
6 *
7 * Copyright (C) 1991-2002 Linus Torvalds
1da177e4 8 */
325ea10c 9#include "sched.h"
1da177e4 10
7281c8de 11#include <linux/nospec.h>
85f1abe0 12
0ed557aa
MR
13#include <linux/kcov.h>
14
96f951ed 15#include <asm/switch_to.h>
5517d86b 16#include <asm/tlb.h>
1da177e4 17
ea138446 18#include "../workqueue_internal.h"
29d5e047 19#include "../smpboot.h"
6e0534f2 20
91c27493
VG
21#include "pelt.h"
22
a8d154b0 23#define CREATE_TRACE_POINTS
ad8d75ff 24#include <trace/events/sched.h>
a8d154b0 25
a056a5be
QY
26/*
27 * Export tracepoints that act as a bare tracehook (ie: have no trace event
28 * associated with them) to allow external modules to probe them.
29 */
30EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
31EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
32EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
33EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
34EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
35EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
36
029632fb 37DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 38
e9666d10 39#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL)
bf5c91ba
IM
40/*
41 * Debugging: various feature bits
765cc3a4
PB
42 *
43 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
44 * sysctl_sched_features, defined in sched.h, to allow constants propagation
45 * at compile time and compiler optimization based on features default.
bf5c91ba 46 */
f00b45c1
PZ
47#define SCHED_FEAT(name, enabled) \
48 (1UL << __SCHED_FEAT_##name) * enabled |
bf5c91ba 49const_debug unsigned int sysctl_sched_features =
391e43da 50#include "features.h"
f00b45c1 51 0;
f00b45c1 52#undef SCHED_FEAT
765cc3a4 53#endif
f00b45c1 54
b82d9fdd
PZ
55/*
56 * Number of tasks to iterate in a single balance run.
57 * Limited because this is done with IRQs disabled.
58 */
59const_debug unsigned int sysctl_sched_nr_migrate = 32;
60
fa85ae24 61/*
d1ccc66d 62 * period over which we measure -rt task CPU usage in us.
fa85ae24
PZ
63 * default: 1s
64 */
9f0c1e56 65unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 66
029632fb 67__read_mostly int scheduler_running;
6892b75e 68
9f0c1e56
PZ
69/*
70 * part of the period that we allow rt tasks to run in us.
71 * default: 0.95s
72 */
73int sysctl_sched_rt_runtime = 950000;
fa85ae24 74
3e71a462
PZ
75/*
76 * __task_rq_lock - lock the rq @p resides on.
77 */
eb580751 78struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
79 __acquires(rq->lock)
80{
81 struct rq *rq;
82
83 lockdep_assert_held(&p->pi_lock);
84
85 for (;;) {
86 rq = task_rq(p);
87 raw_spin_lock(&rq->lock);
88 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 89 rq_pin_lock(rq, rf);
3e71a462
PZ
90 return rq;
91 }
92 raw_spin_unlock(&rq->lock);
93
94 while (unlikely(task_on_rq_migrating(p)))
95 cpu_relax();
96 }
97}
98
99/*
100 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
101 */
eb580751 102struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
103 __acquires(p->pi_lock)
104 __acquires(rq->lock)
105{
106 struct rq *rq;
107
108 for (;;) {
eb580751 109 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
3e71a462
PZ
110 rq = task_rq(p);
111 raw_spin_lock(&rq->lock);
112 /*
113 * move_queued_task() task_rq_lock()
114 *
115 * ACQUIRE (rq->lock)
116 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
117 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
118 * [S] ->cpu = new_cpu [L] task_rq()
119 * [L] ->on_rq
120 * RELEASE (rq->lock)
121 *
c546951d 122 * If we observe the old CPU in task_rq_lock(), the acquire of
3e71a462
PZ
123 * the old rq->lock will fully serialize against the stores.
124 *
c546951d
AP
125 * If we observe the new CPU in task_rq_lock(), the address
126 * dependency headed by '[L] rq = task_rq()' and the acquire
127 * will pair with the WMB to ensure we then also see migrating.
3e71a462
PZ
128 */
129 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 130 rq_pin_lock(rq, rf);
3e71a462
PZ
131 return rq;
132 }
133 raw_spin_unlock(&rq->lock);
eb580751 134 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
3e71a462
PZ
135
136 while (unlikely(task_on_rq_migrating(p)))
137 cpu_relax();
138 }
139}
140
535b9552
IM
141/*
142 * RQ-clock updating methods:
143 */
144
145static void update_rq_clock_task(struct rq *rq, s64 delta)
146{
147/*
148 * In theory, the compile should just see 0 here, and optimize out the call
149 * to sched_rt_avg_update. But I don't trust it...
150 */
11d4afd4
VG
151 s64 __maybe_unused steal = 0, irq_delta = 0;
152
535b9552
IM
153#ifdef CONFIG_IRQ_TIME_ACCOUNTING
154 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
155
156 /*
157 * Since irq_time is only updated on {soft,}irq_exit, we might run into
158 * this case when a previous update_rq_clock() happened inside a
159 * {soft,}irq region.
160 *
161 * When this happens, we stop ->clock_task and only update the
162 * prev_irq_time stamp to account for the part that fit, so that a next
163 * update will consume the rest. This ensures ->clock_task is
164 * monotonic.
165 *
166 * It does however cause some slight miss-attribution of {soft,}irq
167 * time, a more accurate solution would be to update the irq_time using
168 * the current rq->clock timestamp, except that would require using
169 * atomic ops.
170 */
171 if (irq_delta > delta)
172 irq_delta = delta;
173
174 rq->prev_irq_time += irq_delta;
175 delta -= irq_delta;
176#endif
177#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
178 if (static_key_false((&paravirt_steal_rq_enabled))) {
179 steal = paravirt_steal_clock(cpu_of(rq));
180 steal -= rq->prev_steal_time_rq;
181
182 if (unlikely(steal > delta))
183 steal = delta;
184
185 rq->prev_steal_time_rq += steal;
186 delta -= steal;
187 }
188#endif
189
190 rq->clock_task += delta;
191
11d4afd4 192#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
535b9552 193 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
91c27493 194 update_irq_load_avg(rq, irq_delta + steal);
535b9552 195#endif
23127296 196 update_rq_clock_pelt(rq, delta);
535b9552
IM
197}
198
199void update_rq_clock(struct rq *rq)
200{
201 s64 delta;
202
203 lockdep_assert_held(&rq->lock);
204
205 if (rq->clock_update_flags & RQCF_ACT_SKIP)
206 return;
207
208#ifdef CONFIG_SCHED_DEBUG
26ae58d2
PZ
209 if (sched_feat(WARN_DOUBLE_CLOCK))
210 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
535b9552
IM
211 rq->clock_update_flags |= RQCF_UPDATED;
212#endif
26ae58d2 213
535b9552
IM
214 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
215 if (delta < 0)
216 return;
217 rq->clock += delta;
218 update_rq_clock_task(rq, delta);
219}
220
221
8f4d37ec
PZ
222#ifdef CONFIG_SCHED_HRTICK
223/*
224 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 225 */
8f4d37ec 226
8f4d37ec
PZ
227static void hrtick_clear(struct rq *rq)
228{
229 if (hrtimer_active(&rq->hrtick_timer))
230 hrtimer_cancel(&rq->hrtick_timer);
231}
232
8f4d37ec
PZ
233/*
234 * High-resolution timer tick.
235 * Runs from hardirq context with interrupts disabled.
236 */
237static enum hrtimer_restart hrtick(struct hrtimer *timer)
238{
239 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
8a8c69c3 240 struct rq_flags rf;
8f4d37ec
PZ
241
242 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
243
8a8c69c3 244 rq_lock(rq, &rf);
3e51f33f 245 update_rq_clock(rq);
8f4d37ec 246 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
8a8c69c3 247 rq_unlock(rq, &rf);
8f4d37ec
PZ
248
249 return HRTIMER_NORESTART;
250}
251
95e904c7 252#ifdef CONFIG_SMP
971ee28c 253
4961b6e1 254static void __hrtick_restart(struct rq *rq)
971ee28c
PZ
255{
256 struct hrtimer *timer = &rq->hrtick_timer;
971ee28c 257
4961b6e1 258 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
971ee28c
PZ
259}
260
31656519
PZ
261/*
262 * called from hardirq (IPI) context
263 */
264static void __hrtick_start(void *arg)
b328ca18 265{
31656519 266 struct rq *rq = arg;
8a8c69c3 267 struct rq_flags rf;
b328ca18 268
8a8c69c3 269 rq_lock(rq, &rf);
971ee28c 270 __hrtick_restart(rq);
31656519 271 rq->hrtick_csd_pending = 0;
8a8c69c3 272 rq_unlock(rq, &rf);
b328ca18
PZ
273}
274
31656519
PZ
275/*
276 * Called to set the hrtick timer state.
277 *
278 * called with rq->lock held and irqs disabled
279 */
029632fb 280void hrtick_start(struct rq *rq, u64 delay)
b328ca18 281{
31656519 282 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 283 ktime_t time;
284 s64 delta;
285
286 /*
287 * Don't schedule slices shorter than 10000ns, that just
288 * doesn't make sense and can cause timer DoS.
289 */
290 delta = max_t(s64, delay, 10000LL);
291 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 292
cc584b21 293 hrtimer_set_expires(timer, time);
31656519
PZ
294
295 if (rq == this_rq()) {
971ee28c 296 __hrtick_restart(rq);
31656519 297 } else if (!rq->hrtick_csd_pending) {
c46fff2a 298 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
299 rq->hrtick_csd_pending = 1;
300 }
b328ca18
PZ
301}
302
31656519
PZ
303#else
304/*
305 * Called to set the hrtick timer state.
306 *
307 * called with rq->lock held and irqs disabled
308 */
029632fb 309void hrtick_start(struct rq *rq, u64 delay)
31656519 310{
86893335
WL
311 /*
312 * Don't schedule slices shorter than 10000ns, that just
313 * doesn't make sense. Rely on vruntime for fairness.
314 */
315 delay = max_t(u64, delay, 10000LL);
4961b6e1
TG
316 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
317 HRTIMER_MODE_REL_PINNED);
31656519 318}
31656519 319#endif /* CONFIG_SMP */
8f4d37ec 320
77a021be 321static void hrtick_rq_init(struct rq *rq)
8f4d37ec 322{
31656519
PZ
323#ifdef CONFIG_SMP
324 rq->hrtick_csd_pending = 0;
8f4d37ec 325
31656519
PZ
326 rq->hrtick_csd.flags = 0;
327 rq->hrtick_csd.func = __hrtick_start;
328 rq->hrtick_csd.info = rq;
329#endif
8f4d37ec 330
31656519
PZ
331 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
332 rq->hrtick_timer.function = hrtick;
8f4d37ec 333}
006c75f1 334#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
335static inline void hrtick_clear(struct rq *rq)
336{
337}
338
77a021be 339static inline void hrtick_rq_init(struct rq *rq)
8f4d37ec
PZ
340{
341}
006c75f1 342#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 343
5529578a
FW
344/*
345 * cmpxchg based fetch_or, macro so it works for different integer types
346 */
347#define fetch_or(ptr, mask) \
348 ({ \
349 typeof(ptr) _ptr = (ptr); \
350 typeof(mask) _mask = (mask); \
351 typeof(*_ptr) _old, _val = *_ptr; \
352 \
353 for (;;) { \
354 _old = cmpxchg(_ptr, _val, _val | _mask); \
355 if (_old == _val) \
356 break; \
357 _val = _old; \
358 } \
359 _old; \
360})
361
e3baac47 362#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
363/*
364 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
365 * this avoids any races wrt polling state changes and thereby avoids
366 * spurious IPIs.
367 */
368static bool set_nr_and_not_polling(struct task_struct *p)
369{
370 struct thread_info *ti = task_thread_info(p);
371 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
372}
e3baac47
PZ
373
374/*
375 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
376 *
377 * If this returns true, then the idle task promises to call
378 * sched_ttwu_pending() and reschedule soon.
379 */
380static bool set_nr_if_polling(struct task_struct *p)
381{
382 struct thread_info *ti = task_thread_info(p);
316c1608 383 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
e3baac47
PZ
384
385 for (;;) {
386 if (!(val & _TIF_POLLING_NRFLAG))
387 return false;
388 if (val & _TIF_NEED_RESCHED)
389 return true;
390 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
391 if (old == val)
392 break;
393 val = old;
394 }
395 return true;
396}
397
fd99f91a
PZ
398#else
399static bool set_nr_and_not_polling(struct task_struct *p)
400{
401 set_tsk_need_resched(p);
402 return true;
403}
e3baac47
PZ
404
405#ifdef CONFIG_SMP
406static bool set_nr_if_polling(struct task_struct *p)
407{
408 return false;
409}
410#endif
fd99f91a
PZ
411#endif
412
07879c6a 413static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
76751049
PZ
414{
415 struct wake_q_node *node = &task->wake_q;
416
417 /*
418 * Atomically grab the task, if ->wake_q is !nil already it means
419 * its already queued (either by us or someone else) and will get the
420 * wakeup due to that.
421 *
4c4e3731
PZ
422 * In order to ensure that a pending wakeup will observe our pending
423 * state, even in the failed case, an explicit smp_mb() must be used.
76751049 424 */
4c4e3731 425 smp_mb__before_atomic();
87ff19cb 426 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
07879c6a 427 return false;
76751049
PZ
428
429 /*
430 * The head is context local, there can be no concurrency.
431 */
432 *head->lastp = node;
433 head->lastp = &node->next;
07879c6a
DB
434 return true;
435}
436
437/**
438 * wake_q_add() - queue a wakeup for 'later' waking.
439 * @head: the wake_q_head to add @task to
440 * @task: the task to queue for 'later' wakeup
441 *
442 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
443 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
444 * instantly.
445 *
446 * This function must be used as-if it were wake_up_process(); IOW the task
447 * must be ready to be woken at this location.
448 */
449void wake_q_add(struct wake_q_head *head, struct task_struct *task)
450{
451 if (__wake_q_add(head, task))
452 get_task_struct(task);
453}
454
455/**
456 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
457 * @head: the wake_q_head to add @task to
458 * @task: the task to queue for 'later' wakeup
459 *
460 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
461 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
462 * instantly.
463 *
464 * This function must be used as-if it were wake_up_process(); IOW the task
465 * must be ready to be woken at this location.
466 *
467 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
468 * that already hold reference to @task can call the 'safe' version and trust
469 * wake_q to do the right thing depending whether or not the @task is already
470 * queued for wakeup.
471 */
472void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
473{
474 if (!__wake_q_add(head, task))
475 put_task_struct(task);
76751049
PZ
476}
477
478void wake_up_q(struct wake_q_head *head)
479{
480 struct wake_q_node *node = head->first;
481
482 while (node != WAKE_Q_TAIL) {
483 struct task_struct *task;
484
485 task = container_of(node, struct task_struct, wake_q);
486 BUG_ON(!task);
d1ccc66d 487 /* Task can safely be re-inserted now: */
76751049
PZ
488 node = node->next;
489 task->wake_q.next = NULL;
490
491 /*
7696f991
AP
492 * wake_up_process() executes a full barrier, which pairs with
493 * the queueing in wake_q_add() so as not to miss wakeups.
76751049
PZ
494 */
495 wake_up_process(task);
496 put_task_struct(task);
497 }
498}
499
c24d20db 500/*
8875125e 501 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
502 *
503 * On UP this means the setting of the need_resched flag, on SMP it
504 * might also involve a cross-CPU call to trigger the scheduler on
505 * the target CPU.
506 */
8875125e 507void resched_curr(struct rq *rq)
c24d20db 508{
8875125e 509 struct task_struct *curr = rq->curr;
c24d20db
IM
510 int cpu;
511
8875125e 512 lockdep_assert_held(&rq->lock);
c24d20db 513
8875125e 514 if (test_tsk_need_resched(curr))
c24d20db
IM
515 return;
516
8875125e 517 cpu = cpu_of(rq);
fd99f91a 518
f27dde8d 519 if (cpu == smp_processor_id()) {
8875125e 520 set_tsk_need_resched(curr);
f27dde8d 521 set_preempt_need_resched();
c24d20db 522 return;
f27dde8d 523 }
c24d20db 524
8875125e 525 if (set_nr_and_not_polling(curr))
c24d20db 526 smp_send_reschedule(cpu);
dfc68f29
AL
527 else
528 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
529}
530
029632fb 531void resched_cpu(int cpu)
c24d20db
IM
532{
533 struct rq *rq = cpu_rq(cpu);
534 unsigned long flags;
535
7c2102e5 536 raw_spin_lock_irqsave(&rq->lock, flags);
a0982dfa
PM
537 if (cpu_online(cpu) || cpu == smp_processor_id())
538 resched_curr(rq);
05fa785c 539 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 540}
06d8308c 541
b021fe3e 542#ifdef CONFIG_SMP
3451d024 543#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2 544/*
d1ccc66d
IM
545 * In the semi idle case, use the nearest busy CPU for migrating timers
546 * from an idle CPU. This is good for power-savings.
83cd4fe2
VP
547 *
548 * We don't do similar optimization for completely idle system, as
d1ccc66d
IM
549 * selecting an idle CPU will add more delays to the timers than intended
550 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
83cd4fe2 551 */
bc7a34b8 552int get_nohz_timer_target(void)
83cd4fe2 553{
bc7a34b8 554 int i, cpu = smp_processor_id();
83cd4fe2
VP
555 struct sched_domain *sd;
556
de201559 557 if (!idle_cpu(cpu) && housekeeping_cpu(cpu, HK_FLAG_TIMER))
6201b4d6
VK
558 return cpu;
559
057f3fad 560 rcu_read_lock();
83cd4fe2 561 for_each_domain(cpu, sd) {
057f3fad 562 for_each_cpu(i, sched_domain_span(sd)) {
44496922
WL
563 if (cpu == i)
564 continue;
565
de201559 566 if (!idle_cpu(i) && housekeeping_cpu(i, HK_FLAG_TIMER)) {
057f3fad
PZ
567 cpu = i;
568 goto unlock;
569 }
570 }
83cd4fe2 571 }
9642d18e 572
de201559
FW
573 if (!housekeeping_cpu(cpu, HK_FLAG_TIMER))
574 cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
057f3fad
PZ
575unlock:
576 rcu_read_unlock();
83cd4fe2
VP
577 return cpu;
578}
d1ccc66d 579
06d8308c
TG
580/*
581 * When add_timer_on() enqueues a timer into the timer wheel of an
582 * idle CPU then this timer might expire before the next timer event
583 * which is scheduled to wake up that CPU. In case of a completely
584 * idle system the next event might even be infinite time into the
585 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
586 * leaves the inner idle loop so the newly added timer is taken into
587 * account when the CPU goes back to idle and evaluates the timer
588 * wheel for the next timer event.
589 */
1c20091e 590static void wake_up_idle_cpu(int cpu)
06d8308c
TG
591{
592 struct rq *rq = cpu_rq(cpu);
593
594 if (cpu == smp_processor_id())
595 return;
596
67b9ca70 597 if (set_nr_and_not_polling(rq->idle))
06d8308c 598 smp_send_reschedule(cpu);
dfc68f29
AL
599 else
600 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
601}
602
c5bfece2 603static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 604{
53c5fa16
FW
605 /*
606 * We just need the target to call irq_exit() and re-evaluate
607 * the next tick. The nohz full kick at least implies that.
608 * If needed we can still optimize that later with an
609 * empty IRQ.
610 */
379d9ecb
PM
611 if (cpu_is_offline(cpu))
612 return true; /* Don't try to wake offline CPUs. */
c5bfece2 613 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
614 if (cpu != smp_processor_id() ||
615 tick_nohz_tick_stopped())
53c5fa16 616 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
617 return true;
618 }
619
620 return false;
621}
622
379d9ecb
PM
623/*
624 * Wake up the specified CPU. If the CPU is going offline, it is the
625 * caller's responsibility to deal with the lost wakeup, for example,
626 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
627 */
1c20091e
FW
628void wake_up_nohz_cpu(int cpu)
629{
c5bfece2 630 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
631 wake_up_idle_cpu(cpu);
632}
633
ca38062e 634static inline bool got_nohz_idle_kick(void)
45bf76df 635{
1c792db7 636 int cpu = smp_processor_id();
873b4c65 637
b7031a02 638 if (!(atomic_read(nohz_flags(cpu)) & NOHZ_KICK_MASK))
873b4c65
VG
639 return false;
640
641 if (idle_cpu(cpu) && !need_resched())
642 return true;
643
644 /*
645 * We can't run Idle Load Balance on this CPU for this time so we
646 * cancel it and clear NOHZ_BALANCE_KICK
647 */
b7031a02 648 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
873b4c65 649 return false;
45bf76df
IM
650}
651
3451d024 652#else /* CONFIG_NO_HZ_COMMON */
45bf76df 653
ca38062e 654static inline bool got_nohz_idle_kick(void)
2069dd75 655{
ca38062e 656 return false;
2069dd75
PZ
657}
658
3451d024 659#endif /* CONFIG_NO_HZ_COMMON */
d842de87 660
ce831b38 661#ifdef CONFIG_NO_HZ_FULL
76d92ac3 662bool sched_can_stop_tick(struct rq *rq)
ce831b38 663{
76d92ac3
FW
664 int fifo_nr_running;
665
666 /* Deadline tasks, even if single, need the tick */
667 if (rq->dl.dl_nr_running)
668 return false;
669
1e78cdbd 670 /*
2548d546
PZ
671 * If there are more than one RR tasks, we need the tick to effect the
672 * actual RR behaviour.
1e78cdbd 673 */
76d92ac3
FW
674 if (rq->rt.rr_nr_running) {
675 if (rq->rt.rr_nr_running == 1)
676 return true;
677 else
678 return false;
1e78cdbd
RR
679 }
680
2548d546
PZ
681 /*
682 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
683 * forced preemption between FIFO tasks.
684 */
685 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
686 if (fifo_nr_running)
687 return true;
688
689 /*
690 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
691 * if there's more than one we need the tick for involuntary
692 * preemption.
693 */
694 if (rq->nr_running > 1)
541b8264 695 return false;
ce831b38 696
541b8264 697 return true;
ce831b38
FW
698}
699#endif /* CONFIG_NO_HZ_FULL */
6d6bc0ad 700#endif /* CONFIG_SMP */
18d95a28 701
a790de99
PT
702#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
703 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 704/*
8277434e
PT
705 * Iterate task_group tree rooted at *from, calling @down when first entering a
706 * node and @up when leaving it for the final time.
707 *
708 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 709 */
029632fb 710int walk_tg_tree_from(struct task_group *from,
8277434e 711 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
712{
713 struct task_group *parent, *child;
eb755805 714 int ret;
c09595f6 715
8277434e
PT
716 parent = from;
717
c09595f6 718down:
eb755805
PZ
719 ret = (*down)(parent, data);
720 if (ret)
8277434e 721 goto out;
c09595f6
PZ
722 list_for_each_entry_rcu(child, &parent->children, siblings) {
723 parent = child;
724 goto down;
725
726up:
727 continue;
728 }
eb755805 729 ret = (*up)(parent, data);
8277434e
PT
730 if (ret || parent == from)
731 goto out;
c09595f6
PZ
732
733 child = parent;
734 parent = parent->parent;
735 if (parent)
736 goto up;
8277434e 737out:
eb755805 738 return ret;
c09595f6
PZ
739}
740
029632fb 741int tg_nop(struct task_group *tg, void *data)
eb755805 742{
e2b245f8 743 return 0;
eb755805 744}
18d95a28
PZ
745#endif
746
9059393e 747static void set_load_weight(struct task_struct *p, bool update_load)
45bf76df 748{
f05998d4
NR
749 int prio = p->static_prio - MAX_RT_PRIO;
750 struct load_weight *load = &p->se.load;
751
dd41f596
IM
752 /*
753 * SCHED_IDLE tasks get minimal weight:
754 */
1da1843f 755 if (task_has_idle_policy(p)) {
c8b28116 756 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 757 load->inv_weight = WMULT_IDLEPRIO;
4a465e3e 758 p->se.runnable_weight = load->weight;
dd41f596
IM
759 return;
760 }
71f8bd46 761
9059393e
VG
762 /*
763 * SCHED_OTHER tasks have to update their load when changing their
764 * weight
765 */
766 if (update_load && p->sched_class == &fair_sched_class) {
767 reweight_task(p, prio);
768 } else {
769 load->weight = scale_load(sched_prio_to_weight[prio]);
770 load->inv_weight = sched_prio_to_wmult[prio];
4a465e3e 771 p->se.runnable_weight = load->weight;
9059393e 772 }
71f8bd46
IM
773}
774
69842cba 775#ifdef CONFIG_UCLAMP_TASK
e8f14172
PB
776/* Max allowed minimum utilization */
777unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
778
779/* Max allowed maximum utilization */
780unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
781
782/* All clamps are required to be less or equal than these values */
783static struct uclamp_se uclamp_default[UCLAMP_CNT];
69842cba
PB
784
785/* Integer rounded range for each bucket */
786#define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
787
788#define for_each_clamp_id(clamp_id) \
789 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
790
791static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
792{
793 return clamp_value / UCLAMP_BUCKET_DELTA;
794}
795
60daf9c1
PB
796static inline unsigned int uclamp_bucket_base_value(unsigned int clamp_value)
797{
798 return UCLAMP_BUCKET_DELTA * uclamp_bucket_id(clamp_value);
799}
800
69842cba
PB
801static inline unsigned int uclamp_none(int clamp_id)
802{
803 if (clamp_id == UCLAMP_MIN)
804 return 0;
805 return SCHED_CAPACITY_SCALE;
806}
807
a509a7cd
PB
808static inline void uclamp_se_set(struct uclamp_se *uc_se,
809 unsigned int value, bool user_defined)
69842cba
PB
810{
811 uc_se->value = value;
812 uc_se->bucket_id = uclamp_bucket_id(value);
a509a7cd 813 uc_se->user_defined = user_defined;
69842cba
PB
814}
815
e496187d
PB
816static inline unsigned int
817uclamp_idle_value(struct rq *rq, unsigned int clamp_id,
818 unsigned int clamp_value)
819{
820 /*
821 * Avoid blocked utilization pushing up the frequency when we go
822 * idle (which drops the max-clamp) by retaining the last known
823 * max-clamp.
824 */
825 if (clamp_id == UCLAMP_MAX) {
826 rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
827 return clamp_value;
828 }
829
830 return uclamp_none(UCLAMP_MIN);
831}
832
833static inline void uclamp_idle_reset(struct rq *rq, unsigned int clamp_id,
834 unsigned int clamp_value)
835{
836 /* Reset max-clamp retention only on idle exit */
837 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
838 return;
839
840 WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
841}
842
69842cba 843static inline
e496187d
PB
844unsigned int uclamp_rq_max_value(struct rq *rq, unsigned int clamp_id,
845 unsigned int clamp_value)
69842cba
PB
846{
847 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
848 int bucket_id = UCLAMP_BUCKETS - 1;
849
850 /*
851 * Since both min and max clamps are max aggregated, find the
852 * top most bucket with tasks in.
853 */
854 for ( ; bucket_id >= 0; bucket_id--) {
855 if (!bucket[bucket_id].tasks)
856 continue;
857 return bucket[bucket_id].value;
858 }
859
860 /* No tasks -- default clamp values */
e496187d 861 return uclamp_idle_value(rq, clamp_id, clamp_value);
69842cba
PB
862}
863
e8f14172
PB
864/*
865 * The effective clamp bucket index of a task depends on, by increasing
866 * priority:
867 * - the task specific clamp value, when explicitly requested from userspace
868 * - the system default clamp value, defined by the sysadmin
869 */
870static inline struct uclamp_se
871uclamp_eff_get(struct task_struct *p, unsigned int clamp_id)
872{
873 struct uclamp_se uc_req = p->uclamp_req[clamp_id];
874 struct uclamp_se uc_max = uclamp_default[clamp_id];
875
876 /* System default restrictions always apply */
877 if (unlikely(uc_req.value > uc_max.value))
878 return uc_max;
879
880 return uc_req;
881}
882
69842cba
PB
883/*
884 * When a task is enqueued on a rq, the clamp bucket currently defined by the
885 * task's uclamp::bucket_id is refcounted on that rq. This also immediately
886 * updates the rq's clamp value if required.
60daf9c1
PB
887 *
888 * Tasks can have a task-specific value requested from user-space, track
889 * within each bucket the maximum value for tasks refcounted in it.
890 * This "local max aggregation" allows to track the exact "requested" value
891 * for each bucket when all its RUNNABLE tasks require the same clamp.
69842cba
PB
892 */
893static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
894 unsigned int clamp_id)
895{
896 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
897 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
898 struct uclamp_bucket *bucket;
899
900 lockdep_assert_held(&rq->lock);
901
e8f14172
PB
902 /* Update task effective clamp */
903 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
904
69842cba
PB
905 bucket = &uc_rq->bucket[uc_se->bucket_id];
906 bucket->tasks++;
e8f14172 907 uc_se->active = true;
69842cba 908
e496187d
PB
909 uclamp_idle_reset(rq, clamp_id, uc_se->value);
910
60daf9c1
PB
911 /*
912 * Local max aggregation: rq buckets always track the max
913 * "requested" clamp value of its RUNNABLE tasks.
914 */
915 if (bucket->tasks == 1 || uc_se->value > bucket->value)
916 bucket->value = uc_se->value;
917
69842cba 918 if (uc_se->value > READ_ONCE(uc_rq->value))
60daf9c1 919 WRITE_ONCE(uc_rq->value, uc_se->value);
69842cba
PB
920}
921
922/*
923 * When a task is dequeued from a rq, the clamp bucket refcounted by the task
924 * is released. If this is the last task reference counting the rq's max
925 * active clamp value, then the rq's clamp value is updated.
926 *
927 * Both refcounted tasks and rq's cached clamp values are expected to be
928 * always valid. If it's detected they are not, as defensive programming,
929 * enforce the expected state and warn.
930 */
931static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
932 unsigned int clamp_id)
933{
934 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
935 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
936 struct uclamp_bucket *bucket;
e496187d 937 unsigned int bkt_clamp;
69842cba
PB
938 unsigned int rq_clamp;
939
940 lockdep_assert_held(&rq->lock);
941
942 bucket = &uc_rq->bucket[uc_se->bucket_id];
943 SCHED_WARN_ON(!bucket->tasks);
944 if (likely(bucket->tasks))
945 bucket->tasks--;
e8f14172 946 uc_se->active = false;
69842cba 947
60daf9c1
PB
948 /*
949 * Keep "local max aggregation" simple and accept to (possibly)
950 * overboost some RUNNABLE tasks in the same bucket.
951 * The rq clamp bucket value is reset to its base value whenever
952 * there are no more RUNNABLE tasks refcounting it.
953 */
69842cba
PB
954 if (likely(bucket->tasks))
955 return;
956
957 rq_clamp = READ_ONCE(uc_rq->value);
958 /*
959 * Defensive programming: this should never happen. If it happens,
960 * e.g. due to future modification, warn and fixup the expected value.
961 */
962 SCHED_WARN_ON(bucket->value > rq_clamp);
e496187d
PB
963 if (bucket->value >= rq_clamp) {
964 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
965 WRITE_ONCE(uc_rq->value, bkt_clamp);
966 }
69842cba
PB
967}
968
969static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
970{
971 unsigned int clamp_id;
972
973 if (unlikely(!p->sched_class->uclamp_enabled))
974 return;
975
976 for_each_clamp_id(clamp_id)
977 uclamp_rq_inc_id(rq, p, clamp_id);
e496187d
PB
978
979 /* Reset clamp idle holding when there is one RUNNABLE task */
980 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
981 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
69842cba
PB
982}
983
984static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
985{
986 unsigned int clamp_id;
987
988 if (unlikely(!p->sched_class->uclamp_enabled))
989 return;
990
991 for_each_clamp_id(clamp_id)
992 uclamp_rq_dec_id(rq, p, clamp_id);
993}
994
e8f14172
PB
995int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
996 void __user *buffer, size_t *lenp,
997 loff_t *ppos)
998{
999 int old_min, old_max;
1000 static DEFINE_MUTEX(mutex);
1001 int result;
1002
1003 mutex_lock(&mutex);
1004 old_min = sysctl_sched_uclamp_util_min;
1005 old_max = sysctl_sched_uclamp_util_max;
1006
1007 result = proc_dointvec(table, write, buffer, lenp, ppos);
1008 if (result)
1009 goto undo;
1010 if (!write)
1011 goto done;
1012
1013 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1014 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE) {
1015 result = -EINVAL;
1016 goto undo;
1017 }
1018
1019 if (old_min != sysctl_sched_uclamp_util_min) {
1020 uclamp_se_set(&uclamp_default[UCLAMP_MIN],
a509a7cd 1021 sysctl_sched_uclamp_util_min, false);
e8f14172
PB
1022 }
1023 if (old_max != sysctl_sched_uclamp_util_max) {
1024 uclamp_se_set(&uclamp_default[UCLAMP_MAX],
a509a7cd 1025 sysctl_sched_uclamp_util_max, false);
e8f14172
PB
1026 }
1027
1028 /*
1029 * Updating all the RUNNABLE task is expensive, keep it simple and do
1030 * just a lazy update at each next enqueue time.
1031 */
1032 goto done;
1033
1034undo:
1035 sysctl_sched_uclamp_util_min = old_min;
1036 sysctl_sched_uclamp_util_max = old_max;
1037done:
1038 mutex_unlock(&mutex);
1039
1040 return result;
1041}
1042
a509a7cd
PB
1043static int uclamp_validate(struct task_struct *p,
1044 const struct sched_attr *attr)
1045{
1046 unsigned int lower_bound = p->uclamp_req[UCLAMP_MIN].value;
1047 unsigned int upper_bound = p->uclamp_req[UCLAMP_MAX].value;
1048
1049 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN)
1050 lower_bound = attr->sched_util_min;
1051 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX)
1052 upper_bound = attr->sched_util_max;
1053
1054 if (lower_bound > upper_bound)
1055 return -EINVAL;
1056 if (upper_bound > SCHED_CAPACITY_SCALE)
1057 return -EINVAL;
1058
1059 return 0;
1060}
1061
1062static void __setscheduler_uclamp(struct task_struct *p,
1063 const struct sched_attr *attr)
1064{
1065 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1066 return;
1067
1068 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1069 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1070 attr->sched_util_min, true);
1071 }
1072
1073 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1074 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1075 attr->sched_util_max, true);
1076 }
1077}
1078
e8f14172
PB
1079static void uclamp_fork(struct task_struct *p)
1080{
1081 unsigned int clamp_id;
1082
1083 for_each_clamp_id(clamp_id)
1084 p->uclamp[clamp_id].active = false;
1085}
1086
69842cba
PB
1087static void __init init_uclamp(void)
1088{
e8f14172 1089 struct uclamp_se uc_max = {};
69842cba
PB
1090 unsigned int clamp_id;
1091 int cpu;
1092
e496187d 1093 for_each_possible_cpu(cpu) {
69842cba 1094 memset(&cpu_rq(cpu)->uclamp, 0, sizeof(struct uclamp_rq));
e496187d
PB
1095 cpu_rq(cpu)->uclamp_flags = 0;
1096 }
69842cba 1097
69842cba 1098 for_each_clamp_id(clamp_id) {
e8f14172 1099 uclamp_se_set(&init_task.uclamp_req[clamp_id],
a509a7cd 1100 uclamp_none(clamp_id), false);
69842cba 1101 }
e8f14172
PB
1102
1103 /* System defaults allow max clamp values for both indexes */
a509a7cd 1104 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
e8f14172
PB
1105 for_each_clamp_id(clamp_id)
1106 uclamp_default[clamp_id] = uc_max;
69842cba
PB
1107}
1108
1109#else /* CONFIG_UCLAMP_TASK */
1110static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
1111static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
a509a7cd
PB
1112static inline int uclamp_validate(struct task_struct *p,
1113 const struct sched_attr *attr)
1114{
1115 return -EOPNOTSUPP;
1116}
1117static void __setscheduler_uclamp(struct task_struct *p,
1118 const struct sched_attr *attr) { }
e8f14172 1119static inline void uclamp_fork(struct task_struct *p) { }
69842cba
PB
1120static inline void init_uclamp(void) { }
1121#endif /* CONFIG_UCLAMP_TASK */
1122
1de64443 1123static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 1124{
0a67d1ee
PZ
1125 if (!(flags & ENQUEUE_NOCLOCK))
1126 update_rq_clock(rq);
1127
eb414681 1128 if (!(flags & ENQUEUE_RESTORE)) {
1de64443 1129 sched_info_queued(rq, p);
eb414681
JW
1130 psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1131 }
0a67d1ee 1132
69842cba 1133 uclamp_rq_inc(rq, p);
371fd7e7 1134 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
1135}
1136
1de64443 1137static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 1138{
0a67d1ee
PZ
1139 if (!(flags & DEQUEUE_NOCLOCK))
1140 update_rq_clock(rq);
1141
eb414681 1142 if (!(flags & DEQUEUE_SAVE)) {
1de64443 1143 sched_info_dequeued(rq, p);
eb414681
JW
1144 psi_dequeue(p, flags & DEQUEUE_SLEEP);
1145 }
0a67d1ee 1146
69842cba 1147 uclamp_rq_dec(rq, p);
371fd7e7 1148 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
1149}
1150
029632fb 1151void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1152{
1153 if (task_contributes_to_load(p))
1154 rq->nr_uninterruptible--;
1155
371fd7e7 1156 enqueue_task(rq, p, flags);
7dd77884
PZ
1157
1158 p->on_rq = TASK_ON_RQ_QUEUED;
1e3c88bd
PZ
1159}
1160
029632fb 1161void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd 1162{
7dd77884
PZ
1163 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
1164
1e3c88bd
PZ
1165 if (task_contributes_to_load(p))
1166 rq->nr_uninterruptible++;
1167
371fd7e7 1168 dequeue_task(rq, p, flags);
1e3c88bd
PZ
1169}
1170
14531189 1171/*
dd41f596 1172 * __normal_prio - return the priority that is based on the static prio
14531189 1173 */
14531189
IM
1174static inline int __normal_prio(struct task_struct *p)
1175{
dd41f596 1176 return p->static_prio;
14531189
IM
1177}
1178
b29739f9
IM
1179/*
1180 * Calculate the expected normal priority: i.e. priority
1181 * without taking RT-inheritance into account. Might be
1182 * boosted by interactivity modifiers. Changes upon fork,
1183 * setprio syscalls, and whenever the interactivity
1184 * estimator recalculates.
1185 */
36c8b586 1186static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1187{
1188 int prio;
1189
aab03e05
DF
1190 if (task_has_dl_policy(p))
1191 prio = MAX_DL_PRIO-1;
1192 else if (task_has_rt_policy(p))
b29739f9
IM
1193 prio = MAX_RT_PRIO-1 - p->rt_priority;
1194 else
1195 prio = __normal_prio(p);
1196 return prio;
1197}
1198
1199/*
1200 * Calculate the current priority, i.e. the priority
1201 * taken into account by the scheduler. This value might
1202 * be boosted by RT tasks, or might be boosted by
1203 * interactivity modifiers. Will be RT if the task got
1204 * RT-boosted. If not then it returns p->normal_prio.
1205 */
36c8b586 1206static int effective_prio(struct task_struct *p)
b29739f9
IM
1207{
1208 p->normal_prio = normal_prio(p);
1209 /*
1210 * If we are RT tasks or we were boosted to RT priority,
1211 * keep the priority unchanged. Otherwise, update priority
1212 * to the normal priority:
1213 */
1214 if (!rt_prio(p->prio))
1215 return p->normal_prio;
1216 return p->prio;
1217}
1218
1da177e4
LT
1219/**
1220 * task_curr - is this task currently executing on a CPU?
1221 * @p: the task in question.
e69f6186
YB
1222 *
1223 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 1224 */
36c8b586 1225inline int task_curr(const struct task_struct *p)
1da177e4
LT
1226{
1227 return cpu_curr(task_cpu(p)) == p;
1228}
1229
67dfa1b7 1230/*
4c9a4bc8
PZ
1231 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1232 * use the balance_callback list if you want balancing.
1233 *
1234 * this means any call to check_class_changed() must be followed by a call to
1235 * balance_callback().
67dfa1b7 1236 */
cb469845
SR
1237static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1238 const struct sched_class *prev_class,
da7a735e 1239 int oldprio)
cb469845
SR
1240{
1241 if (prev_class != p->sched_class) {
1242 if (prev_class->switched_from)
da7a735e 1243 prev_class->switched_from(rq, p);
4c9a4bc8 1244
da7a735e 1245 p->sched_class->switched_to(rq, p);
2d3d891d 1246 } else if (oldprio != p->prio || dl_task(p))
da7a735e 1247 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
1248}
1249
029632fb 1250void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
1251{
1252 const struct sched_class *class;
1253
1254 if (p->sched_class == rq->curr->sched_class) {
1255 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1256 } else {
1257 for_each_class(class) {
1258 if (class == rq->curr->sched_class)
1259 break;
1260 if (class == p->sched_class) {
8875125e 1261 resched_curr(rq);
1e5a7405
PZ
1262 break;
1263 }
1264 }
1265 }
1266
1267 /*
1268 * A queue event has occurred, and we're going to schedule. In
1269 * this case, we can save a useless back to back clock update.
1270 */
da0c1e65 1271 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
adcc8da8 1272 rq_clock_skip_update(rq);
1e5a7405
PZ
1273}
1274
1da177e4 1275#ifdef CONFIG_SMP
175f0e25
PZ
1276
1277static inline bool is_per_cpu_kthread(struct task_struct *p)
1278{
1279 if (!(p->flags & PF_KTHREAD))
1280 return false;
1281
1282 if (p->nr_cpus_allowed != 1)
1283 return false;
1284
1285 return true;
1286}
1287
1288/*
bee98539 1289 * Per-CPU kthreads are allowed to run on !active && online CPUs, see
175f0e25
PZ
1290 * __set_cpus_allowed_ptr() and select_fallback_rq().
1291 */
1292static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
1293{
3bd37062 1294 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
175f0e25
PZ
1295 return false;
1296
1297 if (is_per_cpu_kthread(p))
1298 return cpu_online(cpu);
1299
1300 return cpu_active(cpu);
1301}
1302
5cc389bc
PZ
1303/*
1304 * This is how migration works:
1305 *
1306 * 1) we invoke migration_cpu_stop() on the target CPU using
1307 * stop_one_cpu().
1308 * 2) stopper starts to run (implicitly forcing the migrated thread
1309 * off the CPU)
1310 * 3) it checks whether the migrated task is still in the wrong runqueue.
1311 * 4) if it's in the wrong runqueue then the migration thread removes
1312 * it and puts it into the right queue.
1313 * 5) stopper completes and stop_one_cpu() returns and the migration
1314 * is done.
1315 */
1316
1317/*
1318 * move_queued_task - move a queued task to new rq.
1319 *
1320 * Returns (locked) new rq. Old rq's lock is released.
1321 */
8a8c69c3
PZ
1322static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
1323 struct task_struct *p, int new_cpu)
5cc389bc 1324{
5cc389bc
PZ
1325 lockdep_assert_held(&rq->lock);
1326
c546951d 1327 WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING);
15ff991e 1328 dequeue_task(rq, p, DEQUEUE_NOCLOCK);
5cc389bc 1329 set_task_cpu(p, new_cpu);
8a8c69c3 1330 rq_unlock(rq, rf);
5cc389bc
PZ
1331
1332 rq = cpu_rq(new_cpu);
1333
8a8c69c3 1334 rq_lock(rq, rf);
5cc389bc 1335 BUG_ON(task_cpu(p) != new_cpu);
5cc389bc 1336 enqueue_task(rq, p, 0);
3ea94de1 1337 p->on_rq = TASK_ON_RQ_QUEUED;
5cc389bc
PZ
1338 check_preempt_curr(rq, p, 0);
1339
1340 return rq;
1341}
1342
1343struct migration_arg {
1344 struct task_struct *task;
1345 int dest_cpu;
1346};
1347
1348/*
d1ccc66d 1349 * Move (not current) task off this CPU, onto the destination CPU. We're doing
5cc389bc
PZ
1350 * this because either it can't run here any more (set_cpus_allowed()
1351 * away from this CPU, or CPU going down), or because we're
1352 * attempting to rebalance this task on exec (sched_exec).
1353 *
1354 * So we race with normal scheduler movements, but that's OK, as long
1355 * as the task is no longer on this CPU.
5cc389bc 1356 */
8a8c69c3
PZ
1357static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
1358 struct task_struct *p, int dest_cpu)
5cc389bc 1359{
5cc389bc 1360 /* Affinity changed (again). */
175f0e25 1361 if (!is_cpu_allowed(p, dest_cpu))
5e16bbc2 1362 return rq;
5cc389bc 1363
15ff991e 1364 update_rq_clock(rq);
8a8c69c3 1365 rq = move_queued_task(rq, rf, p, dest_cpu);
5e16bbc2
PZ
1366
1367 return rq;
5cc389bc
PZ
1368}
1369
1370/*
1371 * migration_cpu_stop - this will be executed by a highprio stopper thread
1372 * and performs thread migration by bumping thread off CPU then
1373 * 'pushing' onto another runqueue.
1374 */
1375static int migration_cpu_stop(void *data)
1376{
1377 struct migration_arg *arg = data;
5e16bbc2
PZ
1378 struct task_struct *p = arg->task;
1379 struct rq *rq = this_rq();
8a8c69c3 1380 struct rq_flags rf;
5cc389bc
PZ
1381
1382 /*
d1ccc66d
IM
1383 * The original target CPU might have gone down and we might
1384 * be on another CPU but it doesn't matter.
5cc389bc
PZ
1385 */
1386 local_irq_disable();
1387 /*
1388 * We need to explicitly wake pending tasks before running
3bd37062 1389 * __migrate_task() such that we will not miss enforcing cpus_ptr
5cc389bc
PZ
1390 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1391 */
1392 sched_ttwu_pending();
5e16bbc2
PZ
1393
1394 raw_spin_lock(&p->pi_lock);
8a8c69c3 1395 rq_lock(rq, &rf);
5e16bbc2
PZ
1396 /*
1397 * If task_rq(p) != rq, it cannot be migrated here, because we're
1398 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1399 * we're holding p->pi_lock.
1400 */
bf89a304
CC
1401 if (task_rq(p) == rq) {
1402 if (task_on_rq_queued(p))
8a8c69c3 1403 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
bf89a304
CC
1404 else
1405 p->wake_cpu = arg->dest_cpu;
1406 }
8a8c69c3 1407 rq_unlock(rq, &rf);
5e16bbc2
PZ
1408 raw_spin_unlock(&p->pi_lock);
1409
5cc389bc
PZ
1410 local_irq_enable();
1411 return 0;
1412}
1413
c5b28038
PZ
1414/*
1415 * sched_class::set_cpus_allowed must do the below, but is not required to
1416 * actually call this function.
1417 */
1418void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
5cc389bc 1419{
3bd37062 1420 cpumask_copy(&p->cpus_mask, new_mask);
5cc389bc
PZ
1421 p->nr_cpus_allowed = cpumask_weight(new_mask);
1422}
1423
c5b28038
PZ
1424void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1425{
6c37067e
PZ
1426 struct rq *rq = task_rq(p);
1427 bool queued, running;
1428
c5b28038 1429 lockdep_assert_held(&p->pi_lock);
6c37067e
PZ
1430
1431 queued = task_on_rq_queued(p);
1432 running = task_current(rq, p);
1433
1434 if (queued) {
1435 /*
1436 * Because __kthread_bind() calls this on blocked tasks without
1437 * holding rq->lock.
1438 */
1439 lockdep_assert_held(&rq->lock);
7a57f32a 1440 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
6c37067e
PZ
1441 }
1442 if (running)
1443 put_prev_task(rq, p);
1444
c5b28038 1445 p->sched_class->set_cpus_allowed(p, new_mask);
6c37067e 1446
6c37067e 1447 if (queued)
7134b3e9 1448 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
a399d233 1449 if (running)
b2bf6c31 1450 set_curr_task(rq, p);
c5b28038
PZ
1451}
1452
5cc389bc
PZ
1453/*
1454 * Change a given task's CPU affinity. Migrate the thread to a
1455 * proper CPU and schedule it away if the CPU it's executing on
1456 * is removed from the allowed bitmask.
1457 *
1458 * NOTE: the caller must have a valid reference to the task, the
1459 * task must not exit() & deallocate itself prematurely. The
1460 * call is not atomic; no spinlocks may be held.
1461 */
25834c73
PZ
1462static int __set_cpus_allowed_ptr(struct task_struct *p,
1463 const struct cpumask *new_mask, bool check)
5cc389bc 1464{
e9d867a6 1465 const struct cpumask *cpu_valid_mask = cpu_active_mask;
5cc389bc 1466 unsigned int dest_cpu;
eb580751
PZ
1467 struct rq_flags rf;
1468 struct rq *rq;
5cc389bc
PZ
1469 int ret = 0;
1470
eb580751 1471 rq = task_rq_lock(p, &rf);
a499c3ea 1472 update_rq_clock(rq);
5cc389bc 1473
e9d867a6
PZI
1474 if (p->flags & PF_KTHREAD) {
1475 /*
1476 * Kernel threads are allowed on online && !active CPUs
1477 */
1478 cpu_valid_mask = cpu_online_mask;
1479 }
1480
25834c73
PZ
1481 /*
1482 * Must re-check here, to close a race against __kthread_bind(),
1483 * sched_setaffinity() is not guaranteed to observe the flag.
1484 */
1485 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1486 ret = -EINVAL;
1487 goto out;
1488 }
1489
3bd37062 1490 if (cpumask_equal(p->cpus_ptr, new_mask))
5cc389bc
PZ
1491 goto out;
1492
e9d867a6 1493 if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
5cc389bc
PZ
1494 ret = -EINVAL;
1495 goto out;
1496 }
1497
1498 do_set_cpus_allowed(p, new_mask);
1499
e9d867a6
PZI
1500 if (p->flags & PF_KTHREAD) {
1501 /*
1502 * For kernel threads that do indeed end up on online &&
d1ccc66d 1503 * !active we want to ensure they are strict per-CPU threads.
e9d867a6
PZI
1504 */
1505 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1506 !cpumask_intersects(new_mask, cpu_active_mask) &&
1507 p->nr_cpus_allowed != 1);
1508 }
1509
5cc389bc
PZ
1510 /* Can the task run on the task's current CPU? If so, we're done */
1511 if (cpumask_test_cpu(task_cpu(p), new_mask))
1512 goto out;
1513
e9d867a6 1514 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
5cc389bc
PZ
1515 if (task_running(rq, p) || p->state == TASK_WAKING) {
1516 struct migration_arg arg = { p, dest_cpu };
1517 /* Need help from migration thread: drop lock and wait. */
eb580751 1518 task_rq_unlock(rq, p, &rf);
5cc389bc 1519 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
5cc389bc 1520 return 0;
cbce1a68
PZ
1521 } else if (task_on_rq_queued(p)) {
1522 /*
1523 * OK, since we're going to drop the lock immediately
1524 * afterwards anyway.
1525 */
8a8c69c3 1526 rq = move_queued_task(rq, &rf, p, dest_cpu);
cbce1a68 1527 }
5cc389bc 1528out:
eb580751 1529 task_rq_unlock(rq, p, &rf);
5cc389bc
PZ
1530
1531 return ret;
1532}
25834c73
PZ
1533
1534int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1535{
1536 return __set_cpus_allowed_ptr(p, new_mask, false);
1537}
5cc389bc
PZ
1538EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1539
dd41f596 1540void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1541{
e2912009
PZ
1542#ifdef CONFIG_SCHED_DEBUG
1543 /*
1544 * We should never call set_task_cpu() on a blocked task,
1545 * ttwu() will sort out the placement.
1546 */
077614ee 1547 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
e2336f6e 1548 !p->on_rq);
0122ec5b 1549
3ea94de1
JP
1550 /*
1551 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1552 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1553 * time relying on p->on_rq.
1554 */
1555 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1556 p->sched_class == &fair_sched_class &&
1557 (p->on_rq && !task_on_rq_migrating(p)));
1558
0122ec5b 1559#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1560 /*
1561 * The caller should hold either p->pi_lock or rq->lock, when changing
1562 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1563 *
1564 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1565 * see task_group().
6c6c54e1
PZ
1566 *
1567 * Furthermore, all task_rq users should acquire both locks, see
1568 * task_rq_lock().
1569 */
0122ec5b
PZ
1570 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1571 lockdep_is_held(&task_rq(p)->lock)));
1572#endif
4ff9083b
PZ
1573 /*
1574 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1575 */
1576 WARN_ON_ONCE(!cpu_online(new_cpu));
e2912009
PZ
1577#endif
1578
de1d7286 1579 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1580
0c69774e 1581 if (task_cpu(p) != new_cpu) {
0a74bef8 1582 if (p->sched_class->migrate_task_rq)
1327237a 1583 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 1584 p->se.nr_migrations++;
d7822b1e 1585 rseq_migrate(p);
ff303e66 1586 perf_event_task_migrate(p);
0c69774e 1587 }
dd41f596
IM
1588
1589 __set_task_cpu(p, new_cpu);
c65cc870
IM
1590}
1591
0ad4e3df 1592#ifdef CONFIG_NUMA_BALANCING
ac66f547
PZ
1593static void __migrate_swap_task(struct task_struct *p, int cpu)
1594{
da0c1e65 1595 if (task_on_rq_queued(p)) {
ac66f547 1596 struct rq *src_rq, *dst_rq;
8a8c69c3 1597 struct rq_flags srf, drf;
ac66f547
PZ
1598
1599 src_rq = task_rq(p);
1600 dst_rq = cpu_rq(cpu);
1601
8a8c69c3
PZ
1602 rq_pin_lock(src_rq, &srf);
1603 rq_pin_lock(dst_rq, &drf);
1604
ac66f547
PZ
1605 deactivate_task(src_rq, p, 0);
1606 set_task_cpu(p, cpu);
1607 activate_task(dst_rq, p, 0);
1608 check_preempt_curr(dst_rq, p, 0);
8a8c69c3
PZ
1609
1610 rq_unpin_lock(dst_rq, &drf);
1611 rq_unpin_lock(src_rq, &srf);
1612
ac66f547
PZ
1613 } else {
1614 /*
1615 * Task isn't running anymore; make it appear like we migrated
1616 * it before it went to sleep. This means on wakeup we make the
d1ccc66d 1617 * previous CPU our target instead of where it really is.
ac66f547
PZ
1618 */
1619 p->wake_cpu = cpu;
1620 }
1621}
1622
1623struct migration_swap_arg {
1624 struct task_struct *src_task, *dst_task;
1625 int src_cpu, dst_cpu;
1626};
1627
1628static int migrate_swap_stop(void *data)
1629{
1630 struct migration_swap_arg *arg = data;
1631 struct rq *src_rq, *dst_rq;
1632 int ret = -EAGAIN;
1633
62694cd5
PZ
1634 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1635 return -EAGAIN;
1636
ac66f547
PZ
1637 src_rq = cpu_rq(arg->src_cpu);
1638 dst_rq = cpu_rq(arg->dst_cpu);
1639
74602315
PZ
1640 double_raw_lock(&arg->src_task->pi_lock,
1641 &arg->dst_task->pi_lock);
ac66f547 1642 double_rq_lock(src_rq, dst_rq);
62694cd5 1643
ac66f547
PZ
1644 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1645 goto unlock;
1646
1647 if (task_cpu(arg->src_task) != arg->src_cpu)
1648 goto unlock;
1649
3bd37062 1650 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
ac66f547
PZ
1651 goto unlock;
1652
3bd37062 1653 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
ac66f547
PZ
1654 goto unlock;
1655
1656 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1657 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1658
1659 ret = 0;
1660
1661unlock:
1662 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1663 raw_spin_unlock(&arg->dst_task->pi_lock);
1664 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1665
1666 return ret;
1667}
1668
1669/*
1670 * Cross migrate two tasks
1671 */
0ad4e3df
SD
1672int migrate_swap(struct task_struct *cur, struct task_struct *p,
1673 int target_cpu, int curr_cpu)
ac66f547
PZ
1674{
1675 struct migration_swap_arg arg;
1676 int ret = -EINVAL;
1677
ac66f547
PZ
1678 arg = (struct migration_swap_arg){
1679 .src_task = cur,
0ad4e3df 1680 .src_cpu = curr_cpu,
ac66f547 1681 .dst_task = p,
0ad4e3df 1682 .dst_cpu = target_cpu,
ac66f547
PZ
1683 };
1684
1685 if (arg.src_cpu == arg.dst_cpu)
1686 goto out;
1687
6acce3ef
PZ
1688 /*
1689 * These three tests are all lockless; this is OK since all of them
1690 * will be re-checked with proper locks held further down the line.
1691 */
ac66f547
PZ
1692 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1693 goto out;
1694
3bd37062 1695 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
ac66f547
PZ
1696 goto out;
1697
3bd37062 1698 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
ac66f547
PZ
1699 goto out;
1700
286549dc 1701 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1702 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1703
1704out:
ac66f547
PZ
1705 return ret;
1706}
0ad4e3df 1707#endif /* CONFIG_NUMA_BALANCING */
ac66f547 1708
1da177e4
LT
1709/*
1710 * wait_task_inactive - wait for a thread to unschedule.
1711 *
85ba2d86
RM
1712 * If @match_state is nonzero, it's the @p->state value just checked and
1713 * not expected to change. If it changes, i.e. @p might have woken up,
1714 * then return zero. When we succeed in waiting for @p to be off its CPU,
1715 * we return a positive number (its total switch count). If a second call
1716 * a short while later returns the same number, the caller can be sure that
1717 * @p has remained unscheduled the whole time.
1718 *
1da177e4
LT
1719 * The caller must ensure that the task *will* unschedule sometime soon,
1720 * else this function might spin for a *long* time. This function can't
1721 * be called with interrupts off, or it may introduce deadlock with
1722 * smp_call_function() if an IPI is sent by the same process we are
1723 * waiting to become inactive.
1724 */
85ba2d86 1725unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4 1726{
da0c1e65 1727 int running, queued;
eb580751 1728 struct rq_flags rf;
85ba2d86 1729 unsigned long ncsw;
70b97a7f 1730 struct rq *rq;
1da177e4 1731
3a5c359a
AK
1732 for (;;) {
1733 /*
1734 * We do the initial early heuristics without holding
1735 * any task-queue locks at all. We'll only try to get
1736 * the runqueue lock when things look like they will
1737 * work out!
1738 */
1739 rq = task_rq(p);
fa490cfd 1740
3a5c359a
AK
1741 /*
1742 * If the task is actively running on another CPU
1743 * still, just relax and busy-wait without holding
1744 * any locks.
1745 *
1746 * NOTE! Since we don't hold any locks, it's not
1747 * even sure that "rq" stays as the right runqueue!
1748 * But we don't care, since "task_running()" will
1749 * return false if the runqueue has changed and p
1750 * is actually now running somewhere else!
1751 */
85ba2d86
RM
1752 while (task_running(rq, p)) {
1753 if (match_state && unlikely(p->state != match_state))
1754 return 0;
3a5c359a 1755 cpu_relax();
85ba2d86 1756 }
fa490cfd 1757
3a5c359a
AK
1758 /*
1759 * Ok, time to look more closely! We need the rq
1760 * lock now, to be *sure*. If we're wrong, we'll
1761 * just go back and repeat.
1762 */
eb580751 1763 rq = task_rq_lock(p, &rf);
27a9da65 1764 trace_sched_wait_task(p);
3a5c359a 1765 running = task_running(rq, p);
da0c1e65 1766 queued = task_on_rq_queued(p);
85ba2d86 1767 ncsw = 0;
f31e11d8 1768 if (!match_state || p->state == match_state)
93dcf55f 1769 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
eb580751 1770 task_rq_unlock(rq, p, &rf);
fa490cfd 1771
85ba2d86
RM
1772 /*
1773 * If it changed from the expected state, bail out now.
1774 */
1775 if (unlikely(!ncsw))
1776 break;
1777
3a5c359a
AK
1778 /*
1779 * Was it really running after all now that we
1780 * checked with the proper locks actually held?
1781 *
1782 * Oops. Go back and try again..
1783 */
1784 if (unlikely(running)) {
1785 cpu_relax();
1786 continue;
1787 }
fa490cfd 1788
3a5c359a
AK
1789 /*
1790 * It's not enough that it's not actively running,
1791 * it must be off the runqueue _entirely_, and not
1792 * preempted!
1793 *
80dd99b3 1794 * So if it was still runnable (but just not actively
3a5c359a
AK
1795 * running right now), it's preempted, and we should
1796 * yield - it could be a while.
1797 */
da0c1e65 1798 if (unlikely(queued)) {
8b0e1953 1799 ktime_t to = NSEC_PER_SEC / HZ;
8eb90c30
TG
1800
1801 set_current_state(TASK_UNINTERRUPTIBLE);
1802 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1803 continue;
1804 }
fa490cfd 1805
3a5c359a
AK
1806 /*
1807 * Ahh, all good. It wasn't running, and it wasn't
1808 * runnable, which means that it will never become
1809 * running in the future either. We're all done!
1810 */
1811 break;
1812 }
85ba2d86
RM
1813
1814 return ncsw;
1da177e4
LT
1815}
1816
1817/***
1818 * kick_process - kick a running thread to enter/exit the kernel
1819 * @p: the to-be-kicked thread
1820 *
1821 * Cause a process which is running on another CPU to enter
1822 * kernel-mode, without any delay. (to get signals handled.)
1823 *
25985edc 1824 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1825 * because all it wants to ensure is that the remote task enters
1826 * the kernel. If the IPI races and the task has been migrated
1827 * to another CPU then no harm is done and the purpose has been
1828 * achieved as well.
1829 */
36c8b586 1830void kick_process(struct task_struct *p)
1da177e4
LT
1831{
1832 int cpu;
1833
1834 preempt_disable();
1835 cpu = task_cpu(p);
1836 if ((cpu != smp_processor_id()) && task_curr(p))
1837 smp_send_reschedule(cpu);
1838 preempt_enable();
1839}
b43e3521 1840EXPORT_SYMBOL_GPL(kick_process);
1da177e4 1841
30da688e 1842/*
3bd37062 1843 * ->cpus_ptr is protected by both rq->lock and p->pi_lock
e9d867a6
PZI
1844 *
1845 * A few notes on cpu_active vs cpu_online:
1846 *
1847 * - cpu_active must be a subset of cpu_online
1848 *
97fb7a0a 1849 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
e9d867a6 1850 * see __set_cpus_allowed_ptr(). At this point the newly online
d1ccc66d 1851 * CPU isn't yet part of the sched domains, and balancing will not
e9d867a6
PZI
1852 * see it.
1853 *
d1ccc66d 1854 * - on CPU-down we clear cpu_active() to mask the sched domains and
e9d867a6 1855 * avoid the load balancer to place new tasks on the to be removed
d1ccc66d 1856 * CPU. Existing tasks will remain running there and will be taken
e9d867a6
PZI
1857 * off.
1858 *
1859 * This means that fallback selection must not select !active CPUs.
1860 * And can assume that any active CPU must be online. Conversely
1861 * select_task_rq() below may allow selection of !active CPUs in order
1862 * to satisfy the above rules.
30da688e 1863 */
5da9a0fb
PZ
1864static int select_fallback_rq(int cpu, struct task_struct *p)
1865{
aa00d89c
TC
1866 int nid = cpu_to_node(cpu);
1867 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1868 enum { cpuset, possible, fail } state = cpuset;
1869 int dest_cpu;
5da9a0fb 1870
aa00d89c 1871 /*
d1ccc66d
IM
1872 * If the node that the CPU is on has been offlined, cpu_to_node()
1873 * will return -1. There is no CPU on the node, and we should
1874 * select the CPU on the other node.
aa00d89c
TC
1875 */
1876 if (nid != -1) {
1877 nodemask = cpumask_of_node(nid);
1878
1879 /* Look for allowed, online CPU in same node. */
1880 for_each_cpu(dest_cpu, nodemask) {
aa00d89c
TC
1881 if (!cpu_active(dest_cpu))
1882 continue;
3bd37062 1883 if (cpumask_test_cpu(dest_cpu, p->cpus_ptr))
aa00d89c
TC
1884 return dest_cpu;
1885 }
2baab4e9 1886 }
5da9a0fb 1887
2baab4e9
PZ
1888 for (;;) {
1889 /* Any allowed, online CPU? */
3bd37062 1890 for_each_cpu(dest_cpu, p->cpus_ptr) {
175f0e25 1891 if (!is_cpu_allowed(p, dest_cpu))
2baab4e9 1892 continue;
175f0e25 1893
2baab4e9
PZ
1894 goto out;
1895 }
5da9a0fb 1896
e73e85f0 1897 /* No more Mr. Nice Guy. */
2baab4e9
PZ
1898 switch (state) {
1899 case cpuset:
e73e85f0
ON
1900 if (IS_ENABLED(CONFIG_CPUSETS)) {
1901 cpuset_cpus_allowed_fallback(p);
1902 state = possible;
1903 break;
1904 }
d1ccc66d 1905 /* Fall-through */
2baab4e9
PZ
1906 case possible:
1907 do_set_cpus_allowed(p, cpu_possible_mask);
1908 state = fail;
1909 break;
1910
1911 case fail:
1912 BUG();
1913 break;
1914 }
1915 }
1916
1917out:
1918 if (state != cpuset) {
1919 /*
1920 * Don't tell them about moving exiting tasks or
1921 * kernel threads (both mm NULL), since they never
1922 * leave kernel.
1923 */
1924 if (p->mm && printk_ratelimit()) {
aac74dc4 1925 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1926 task_pid_nr(p), p->comm, cpu);
1927 }
5da9a0fb
PZ
1928 }
1929
1930 return dest_cpu;
1931}
1932
e2912009 1933/*
3bd37062 1934 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
e2912009 1935 */
970b13ba 1936static inline
ac66f547 1937int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1938{
cbce1a68
PZ
1939 lockdep_assert_held(&p->pi_lock);
1940
4b53a341 1941 if (p->nr_cpus_allowed > 1)
6c1d9410 1942 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e9d867a6 1943 else
3bd37062 1944 cpu = cpumask_any(p->cpus_ptr);
e2912009
PZ
1945
1946 /*
1947 * In order not to call set_task_cpu() on a blocking task we need
3bd37062 1948 * to rely on ttwu() to place the task on a valid ->cpus_ptr
d1ccc66d 1949 * CPU.
e2912009
PZ
1950 *
1951 * Since this is common to all placement strategies, this lives here.
1952 *
1953 * [ this allows ->select_task() to simply return task_cpu(p) and
1954 * not worry about this generic constraint ]
1955 */
7af443ee 1956 if (unlikely(!is_cpu_allowed(p, cpu)))
5da9a0fb 1957 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1958
1959 return cpu;
970b13ba 1960}
09a40af5
MG
1961
1962static void update_avg(u64 *avg, u64 sample)
1963{
1964 s64 diff = sample - *avg;
1965 *avg += diff >> 3;
1966}
25834c73 1967
f5832c19
NP
1968void sched_set_stop_task(int cpu, struct task_struct *stop)
1969{
1970 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1971 struct task_struct *old_stop = cpu_rq(cpu)->stop;
1972
1973 if (stop) {
1974 /*
1975 * Make it appear like a SCHED_FIFO task, its something
1976 * userspace knows about and won't get confused about.
1977 *
1978 * Also, it will make PI more or less work without too
1979 * much confusion -- but then, stop work should not
1980 * rely on PI working anyway.
1981 */
1982 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
1983
1984 stop->sched_class = &stop_sched_class;
1985 }
1986
1987 cpu_rq(cpu)->stop = stop;
1988
1989 if (old_stop) {
1990 /*
1991 * Reset it back to a normal scheduling class so that
1992 * it can die in pieces.
1993 */
1994 old_stop->sched_class = &rt_sched_class;
1995 }
1996}
1997
25834c73
PZ
1998#else
1999
2000static inline int __set_cpus_allowed_ptr(struct task_struct *p,
2001 const struct cpumask *new_mask, bool check)
2002{
2003 return set_cpus_allowed_ptr(p, new_mask);
2004}
2005
5cc389bc 2006#endif /* CONFIG_SMP */
970b13ba 2007
d7c01d27 2008static void
b84cb5df 2009ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 2010{
4fa8d299 2011 struct rq *rq;
b84cb5df 2012
4fa8d299
JP
2013 if (!schedstat_enabled())
2014 return;
2015
2016 rq = this_rq();
d7c01d27 2017
4fa8d299
JP
2018#ifdef CONFIG_SMP
2019 if (cpu == rq->cpu) {
b85c8b71
PZ
2020 __schedstat_inc(rq->ttwu_local);
2021 __schedstat_inc(p->se.statistics.nr_wakeups_local);
d7c01d27
PZ
2022 } else {
2023 struct sched_domain *sd;
2024
b85c8b71 2025 __schedstat_inc(p->se.statistics.nr_wakeups_remote);
057f3fad 2026 rcu_read_lock();
4fa8d299 2027 for_each_domain(rq->cpu, sd) {
d7c01d27 2028 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
b85c8b71 2029 __schedstat_inc(sd->ttwu_wake_remote);
d7c01d27
PZ
2030 break;
2031 }
2032 }
057f3fad 2033 rcu_read_unlock();
d7c01d27 2034 }
f339b9dc
PZ
2035
2036 if (wake_flags & WF_MIGRATED)
b85c8b71 2037 __schedstat_inc(p->se.statistics.nr_wakeups_migrate);
d7c01d27
PZ
2038#endif /* CONFIG_SMP */
2039
b85c8b71
PZ
2040 __schedstat_inc(rq->ttwu_count);
2041 __schedstat_inc(p->se.statistics.nr_wakeups);
d7c01d27
PZ
2042
2043 if (wake_flags & WF_SYNC)
b85c8b71 2044 __schedstat_inc(p->se.statistics.nr_wakeups_sync);
d7c01d27
PZ
2045}
2046
23f41eeb
PZ
2047/*
2048 * Mark the task runnable and perform wakeup-preemption.
2049 */
e7904a28 2050static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
d8ac8971 2051 struct rq_flags *rf)
9ed3811a 2052{
9ed3811a 2053 check_preempt_curr(rq, p, wake_flags);
9ed3811a 2054 p->state = TASK_RUNNING;
fbd705a0
PZ
2055 trace_sched_wakeup(p);
2056
9ed3811a 2057#ifdef CONFIG_SMP
4c9a4bc8
PZ
2058 if (p->sched_class->task_woken) {
2059 /*
cbce1a68
PZ
2060 * Our task @p is fully woken up and running; so its safe to
2061 * drop the rq->lock, hereafter rq is only used for statistics.
4c9a4bc8 2062 */
d8ac8971 2063 rq_unpin_lock(rq, rf);
9ed3811a 2064 p->sched_class->task_woken(rq, p);
d8ac8971 2065 rq_repin_lock(rq, rf);
4c9a4bc8 2066 }
9ed3811a 2067
e69c6341 2068 if (rq->idle_stamp) {
78becc27 2069 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 2070 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 2071
abfafa54
JL
2072 update_avg(&rq->avg_idle, delta);
2073
2074 if (rq->avg_idle > max)
9ed3811a 2075 rq->avg_idle = max;
abfafa54 2076
9ed3811a
TH
2077 rq->idle_stamp = 0;
2078 }
2079#endif
2080}
2081
c05fbafb 2082static void
e7904a28 2083ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
d8ac8971 2084 struct rq_flags *rf)
c05fbafb 2085{
77558e4d 2086 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
b5179ac7 2087
cbce1a68
PZ
2088 lockdep_assert_held(&rq->lock);
2089
c05fbafb
PZ
2090#ifdef CONFIG_SMP
2091 if (p->sched_contributes_to_load)
2092 rq->nr_uninterruptible--;
b5179ac7 2093
b5179ac7 2094 if (wake_flags & WF_MIGRATED)
59efa0ba 2095 en_flags |= ENQUEUE_MIGRATED;
c05fbafb
PZ
2096#endif
2097
1b174a2c 2098 activate_task(rq, p, en_flags);
d8ac8971 2099 ttwu_do_wakeup(rq, p, wake_flags, rf);
c05fbafb
PZ
2100}
2101
2102/*
2103 * Called in case the task @p isn't fully descheduled from its runqueue,
2104 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
2105 * since all we need to do is flip p->state to TASK_RUNNING, since
2106 * the task is still ->on_rq.
2107 */
2108static int ttwu_remote(struct task_struct *p, int wake_flags)
2109{
eb580751 2110 struct rq_flags rf;
c05fbafb
PZ
2111 struct rq *rq;
2112 int ret = 0;
2113
eb580751 2114 rq = __task_rq_lock(p, &rf);
da0c1e65 2115 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
2116 /* check_preempt_curr() may use rq clock */
2117 update_rq_clock(rq);
d8ac8971 2118 ttwu_do_wakeup(rq, p, wake_flags, &rf);
c05fbafb
PZ
2119 ret = 1;
2120 }
eb580751 2121 __task_rq_unlock(rq, &rf);
c05fbafb
PZ
2122
2123 return ret;
2124}
2125
317f3941 2126#ifdef CONFIG_SMP
e3baac47 2127void sched_ttwu_pending(void)
317f3941
PZ
2128{
2129 struct rq *rq = this_rq();
fa14ff4a 2130 struct llist_node *llist = llist_del_all(&rq->wake_list);
73215849 2131 struct task_struct *p, *t;
d8ac8971 2132 struct rq_flags rf;
317f3941 2133
e3baac47
PZ
2134 if (!llist)
2135 return;
2136
8a8c69c3 2137 rq_lock_irqsave(rq, &rf);
77558e4d 2138 update_rq_clock(rq);
317f3941 2139
73215849
BP
2140 llist_for_each_entry_safe(p, t, llist, wake_entry)
2141 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
317f3941 2142
8a8c69c3 2143 rq_unlock_irqrestore(rq, &rf);
317f3941
PZ
2144}
2145
2146void scheduler_ipi(void)
2147{
f27dde8d
PZ
2148 /*
2149 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
2150 * TIF_NEED_RESCHED remotely (for the first time) will also send
2151 * this IPI.
2152 */
8cb75e0c 2153 preempt_fold_need_resched();
f27dde8d 2154
fd2ac4f4 2155 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
2156 return;
2157
2158 /*
2159 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
2160 * traditionally all their work was done from the interrupt return
2161 * path. Now that we actually do some work, we need to make sure
2162 * we do call them.
2163 *
2164 * Some archs already do call them, luckily irq_enter/exit nest
2165 * properly.
2166 *
2167 * Arguably we should visit all archs and update all handlers,
2168 * however a fair share of IPIs are still resched only so this would
2169 * somewhat pessimize the simple resched case.
2170 */
2171 irq_enter();
fa14ff4a 2172 sched_ttwu_pending();
ca38062e
SS
2173
2174 /*
2175 * Check if someone kicked us for doing the nohz idle load balance.
2176 */
873b4c65 2177 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 2178 this_rq()->idle_balance = 1;
ca38062e 2179 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 2180 }
c5d753a5 2181 irq_exit();
317f3941
PZ
2182}
2183
b7e7ade3 2184static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
317f3941 2185{
e3baac47
PZ
2186 struct rq *rq = cpu_rq(cpu);
2187
b7e7ade3
PZ
2188 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
2189
e3baac47
PZ
2190 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
2191 if (!set_nr_if_polling(rq->idle))
2192 smp_send_reschedule(cpu);
2193 else
2194 trace_sched_wake_idle_without_ipi(cpu);
2195 }
317f3941 2196}
d6aa8f85 2197
f6be8af1
CL
2198void wake_up_if_idle(int cpu)
2199{
2200 struct rq *rq = cpu_rq(cpu);
8a8c69c3 2201 struct rq_flags rf;
f6be8af1 2202
fd7de1e8
AL
2203 rcu_read_lock();
2204
2205 if (!is_idle_task(rcu_dereference(rq->curr)))
2206 goto out;
f6be8af1
CL
2207
2208 if (set_nr_if_polling(rq->idle)) {
2209 trace_sched_wake_idle_without_ipi(cpu);
2210 } else {
8a8c69c3 2211 rq_lock_irqsave(rq, &rf);
f6be8af1
CL
2212 if (is_idle_task(rq->curr))
2213 smp_send_reschedule(cpu);
d1ccc66d 2214 /* Else CPU is not idle, do nothing here: */
8a8c69c3 2215 rq_unlock_irqrestore(rq, &rf);
f6be8af1 2216 }
fd7de1e8
AL
2217
2218out:
2219 rcu_read_unlock();
f6be8af1
CL
2220}
2221
39be3501 2222bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
2223{
2224 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
2225}
d6aa8f85 2226#endif /* CONFIG_SMP */
317f3941 2227
b5179ac7 2228static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
c05fbafb
PZ
2229{
2230 struct rq *rq = cpu_rq(cpu);
d8ac8971 2231 struct rq_flags rf;
c05fbafb 2232
17d9f311 2233#if defined(CONFIG_SMP)
39be3501 2234 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
d1ccc66d 2235 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
b7e7ade3 2236 ttwu_queue_remote(p, cpu, wake_flags);
317f3941
PZ
2237 return;
2238 }
2239#endif
2240
8a8c69c3 2241 rq_lock(rq, &rf);
77558e4d 2242 update_rq_clock(rq);
d8ac8971 2243 ttwu_do_activate(rq, p, wake_flags, &rf);
8a8c69c3 2244 rq_unlock(rq, &rf);
9ed3811a
TH
2245}
2246
8643cda5
PZ
2247/*
2248 * Notes on Program-Order guarantees on SMP systems.
2249 *
2250 * MIGRATION
2251 *
2252 * The basic program-order guarantee on SMP systems is that when a task [t]
d1ccc66d
IM
2253 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
2254 * execution on its new CPU [c1].
8643cda5
PZ
2255 *
2256 * For migration (of runnable tasks) this is provided by the following means:
2257 *
2258 * A) UNLOCK of the rq(c0)->lock scheduling out task t
2259 * B) migration for t is required to synchronize *both* rq(c0)->lock and
2260 * rq(c1)->lock (if not at the same time, then in that order).
2261 * C) LOCK of the rq(c1)->lock scheduling in task
2262 *
7696f991 2263 * Release/acquire chaining guarantees that B happens after A and C after B.
d1ccc66d 2264 * Note: the CPU doing B need not be c0 or c1
8643cda5
PZ
2265 *
2266 * Example:
2267 *
2268 * CPU0 CPU1 CPU2
2269 *
2270 * LOCK rq(0)->lock
2271 * sched-out X
2272 * sched-in Y
2273 * UNLOCK rq(0)->lock
2274 *
2275 * LOCK rq(0)->lock // orders against CPU0
2276 * dequeue X
2277 * UNLOCK rq(0)->lock
2278 *
2279 * LOCK rq(1)->lock
2280 * enqueue X
2281 * UNLOCK rq(1)->lock
2282 *
2283 * LOCK rq(1)->lock // orders against CPU2
2284 * sched-out Z
2285 * sched-in X
2286 * UNLOCK rq(1)->lock
2287 *
2288 *
2289 * BLOCKING -- aka. SLEEP + WAKEUP
2290 *
2291 * For blocking we (obviously) need to provide the same guarantee as for
2292 * migration. However the means are completely different as there is no lock
2293 * chain to provide order. Instead we do:
2294 *
2295 * 1) smp_store_release(X->on_cpu, 0)
1f03e8d2 2296 * 2) smp_cond_load_acquire(!X->on_cpu)
8643cda5
PZ
2297 *
2298 * Example:
2299 *
2300 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
2301 *
2302 * LOCK rq(0)->lock LOCK X->pi_lock
2303 * dequeue X
2304 * sched-out X
2305 * smp_store_release(X->on_cpu, 0);
2306 *
1f03e8d2 2307 * smp_cond_load_acquire(&X->on_cpu, !VAL);
8643cda5
PZ
2308 * X->state = WAKING
2309 * set_task_cpu(X,2)
2310 *
2311 * LOCK rq(2)->lock
2312 * enqueue X
2313 * X->state = RUNNING
2314 * UNLOCK rq(2)->lock
2315 *
2316 * LOCK rq(2)->lock // orders against CPU1
2317 * sched-out Z
2318 * sched-in X
2319 * UNLOCK rq(2)->lock
2320 *
2321 * UNLOCK X->pi_lock
2322 * UNLOCK rq(0)->lock
2323 *
2324 *
7696f991
AP
2325 * However, for wakeups there is a second guarantee we must provide, namely we
2326 * must ensure that CONDITION=1 done by the caller can not be reordered with
2327 * accesses to the task state; see try_to_wake_up() and set_current_state().
8643cda5
PZ
2328 */
2329
9ed3811a 2330/**
1da177e4 2331 * try_to_wake_up - wake up a thread
9ed3811a 2332 * @p: the thread to be awakened
1da177e4 2333 * @state: the mask of task states that can be woken
9ed3811a 2334 * @wake_flags: wake modifier flags (WF_*)
1da177e4 2335 *
a2250238 2336 * If (@state & @p->state) @p->state = TASK_RUNNING.
1da177e4 2337 *
a2250238
PZ
2338 * If the task was not queued/runnable, also place it back on a runqueue.
2339 *
2340 * Atomic against schedule() which would dequeue a task, also see
2341 * set_current_state().
2342 *
7696f991
AP
2343 * This function executes a full memory barrier before accessing the task
2344 * state; see set_current_state().
2345 *
a2250238
PZ
2346 * Return: %true if @p->state changes (an actual wakeup was done),
2347 * %false otherwise.
1da177e4 2348 */
e4a52bcb
PZ
2349static int
2350try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 2351{
1da177e4 2352 unsigned long flags;
c05fbafb 2353 int cpu, success = 0;
2398f2c6 2354
aacedf26
PZ
2355 if (p == current) {
2356 /*
2357 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
2358 * == smp_processor_id()'. Together this means we can special
2359 * case the whole 'p->on_rq && ttwu_remote()' case below
2360 * without taking any locks.
2361 *
2362 * In particular:
2363 * - we rely on Program-Order guarantees for all the ordering,
2364 * - we're serialized against set_special_state() by virtue of
2365 * it disabling IRQs (this allows not taking ->pi_lock).
2366 */
2367 if (!(p->state & state))
2368 return false;
2369
2370 success = 1;
2371 cpu = task_cpu(p);
2372 trace_sched_waking(p);
2373 p->state = TASK_RUNNING;
2374 trace_sched_wakeup(p);
2375 goto out;
2376 }
2377
e0acd0a6
ON
2378 /*
2379 * If we are going to wake up a thread waiting for CONDITION we
2380 * need to ensure that CONDITION=1 done by the caller can not be
2381 * reordered with p->state check below. This pairs with mb() in
2382 * set_current_state() the waiting thread does.
2383 */
013fdb80 2384 raw_spin_lock_irqsave(&p->pi_lock, flags);
d89e588c 2385 smp_mb__after_spinlock();
e9c84311 2386 if (!(p->state & state))
aacedf26 2387 goto unlock;
1da177e4 2388
fbd705a0
PZ
2389 trace_sched_waking(p);
2390
d1ccc66d
IM
2391 /* We're going to change ->state: */
2392 success = 1;
1da177e4 2393 cpu = task_cpu(p);
1da177e4 2394
135e8c92
BS
2395 /*
2396 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2397 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2398 * in smp_cond_load_acquire() below.
2399 *
3d85b270
AP
2400 * sched_ttwu_pending() try_to_wake_up()
2401 * STORE p->on_rq = 1 LOAD p->state
2402 * UNLOCK rq->lock
2403 *
2404 * __schedule() (switch to task 'p')
2405 * LOCK rq->lock smp_rmb();
2406 * smp_mb__after_spinlock();
2407 * UNLOCK rq->lock
135e8c92
BS
2408 *
2409 * [task p]
3d85b270 2410 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
135e8c92 2411 *
3d85b270
AP
2412 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2413 * __schedule(). See the comment for smp_mb__after_spinlock().
135e8c92
BS
2414 */
2415 smp_rmb();
c05fbafb 2416 if (p->on_rq && ttwu_remote(p, wake_flags))
aacedf26 2417 goto unlock;
1da177e4 2418
1da177e4 2419#ifdef CONFIG_SMP
ecf7d01c
PZ
2420 /*
2421 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2422 * possible to, falsely, observe p->on_cpu == 0.
2423 *
2424 * One must be running (->on_cpu == 1) in order to remove oneself
2425 * from the runqueue.
2426 *
3d85b270
AP
2427 * __schedule() (switch to task 'p') try_to_wake_up()
2428 * STORE p->on_cpu = 1 LOAD p->on_rq
2429 * UNLOCK rq->lock
2430 *
2431 * __schedule() (put 'p' to sleep)
2432 * LOCK rq->lock smp_rmb();
2433 * smp_mb__after_spinlock();
2434 * STORE p->on_rq = 0 LOAD p->on_cpu
ecf7d01c 2435 *
3d85b270
AP
2436 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2437 * __schedule(). See the comment for smp_mb__after_spinlock().
ecf7d01c
PZ
2438 */
2439 smp_rmb();
2440
e9c84311 2441 /*
d1ccc66d 2442 * If the owning (remote) CPU is still in the middle of schedule() with
c05fbafb 2443 * this task as prev, wait until its done referencing the task.
b75a2253 2444 *
31cb1bc0 2445 * Pairs with the smp_store_release() in finish_task().
b75a2253
PZ
2446 *
2447 * This ensures that tasks getting woken will be fully ordered against
2448 * their previous state and preserve Program Order.
0970d299 2449 */
1f03e8d2 2450 smp_cond_load_acquire(&p->on_cpu, !VAL);
1da177e4 2451
a8e4f2ea 2452 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 2453 p->state = TASK_WAKING;
e7693a36 2454
e33a9bba 2455 if (p->in_iowait) {
c96f5471 2456 delayacct_blkio_end(p);
e33a9bba
TH
2457 atomic_dec(&task_rq(p)->nr_iowait);
2458 }
2459
ac66f547 2460 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
2461 if (task_cpu(p) != cpu) {
2462 wake_flags |= WF_MIGRATED;
eb414681 2463 psi_ttwu_dequeue(p);
e4a52bcb 2464 set_task_cpu(p, cpu);
f339b9dc 2465 }
e33a9bba
TH
2466
2467#else /* CONFIG_SMP */
2468
2469 if (p->in_iowait) {
c96f5471 2470 delayacct_blkio_end(p);
e33a9bba
TH
2471 atomic_dec(&task_rq(p)->nr_iowait);
2472 }
2473
1da177e4 2474#endif /* CONFIG_SMP */
1da177e4 2475
b5179ac7 2476 ttwu_queue(p, cpu, wake_flags);
aacedf26 2477unlock:
013fdb80 2478 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
aacedf26
PZ
2479out:
2480 if (success)
2481 ttwu_stat(p, cpu, wake_flags);
1da177e4
LT
2482
2483 return success;
2484}
2485
50fa610a
DH
2486/**
2487 * wake_up_process - Wake up a specific process
2488 * @p: The process to be woken up.
2489 *
2490 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
2491 * processes.
2492 *
2493 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a 2494 *
7696f991 2495 * This function executes a full memory barrier before accessing the task state.
50fa610a 2496 */
7ad5b3a5 2497int wake_up_process(struct task_struct *p)
1da177e4 2498{
9067ac85 2499 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 2500}
1da177e4
LT
2501EXPORT_SYMBOL(wake_up_process);
2502
7ad5b3a5 2503int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2504{
2505 return try_to_wake_up(p, state, 0);
2506}
2507
1da177e4
LT
2508/*
2509 * Perform scheduler related setup for a newly forked process p.
2510 * p is forked by current.
dd41f596
IM
2511 *
2512 * __sched_fork() is basic setup used by init_idle() too:
2513 */
5e1576ed 2514static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2515{
fd2f4419
PZ
2516 p->on_rq = 0;
2517
2518 p->se.on_rq = 0;
dd41f596
IM
2519 p->se.exec_start = 0;
2520 p->se.sum_exec_runtime = 0;
f6cf891c 2521 p->se.prev_sum_exec_runtime = 0;
6c594c21 2522 p->se.nr_migrations = 0;
da7a735e 2523 p->se.vruntime = 0;
fd2f4419 2524 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d 2525
ad936d86
BP
2526#ifdef CONFIG_FAIR_GROUP_SCHED
2527 p->se.cfs_rq = NULL;
2528#endif
2529
6cfb0d5d 2530#ifdef CONFIG_SCHEDSTATS
cb251765 2531 /* Even if schedstat is disabled, there should not be garbage */
41acab88 2532 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2533#endif
476d139c 2534
aab03e05 2535 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 2536 init_dl_task_timer(&p->dl);
209a0cbd 2537 init_dl_inactive_task_timer(&p->dl);
a5e7be3b 2538 __dl_clear_params(p);
aab03e05 2539
fa717060 2540 INIT_LIST_HEAD(&p->rt.run_list);
ff77e468
PZ
2541 p->rt.timeout = 0;
2542 p->rt.time_slice = sched_rr_timeslice;
2543 p->rt.on_rq = 0;
2544 p->rt.on_list = 0;
476d139c 2545
e107be36
AK
2546#ifdef CONFIG_PREEMPT_NOTIFIERS
2547 INIT_HLIST_HEAD(&p->preempt_notifiers);
2548#endif
cbee9f88 2549
5e1f0f09
MG
2550#ifdef CONFIG_COMPACTION
2551 p->capture_control = NULL;
2552#endif
13784475 2553 init_numa_balancing(clone_flags, p);
dd41f596
IM
2554}
2555
2a595721
SD
2556DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2557
1a687c2e 2558#ifdef CONFIG_NUMA_BALANCING
c3b9bc5b 2559
1a687c2e
MG
2560void set_numabalancing_state(bool enabled)
2561{
2562 if (enabled)
2a595721 2563 static_branch_enable(&sched_numa_balancing);
1a687c2e 2564 else
2a595721 2565 static_branch_disable(&sched_numa_balancing);
1a687c2e 2566}
54a43d54
AK
2567
2568#ifdef CONFIG_PROC_SYSCTL
2569int sysctl_numa_balancing(struct ctl_table *table, int write,
2570 void __user *buffer, size_t *lenp, loff_t *ppos)
2571{
2572 struct ctl_table t;
2573 int err;
2a595721 2574 int state = static_branch_likely(&sched_numa_balancing);
54a43d54
AK
2575
2576 if (write && !capable(CAP_SYS_ADMIN))
2577 return -EPERM;
2578
2579 t = *table;
2580 t.data = &state;
2581 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2582 if (err < 0)
2583 return err;
2584 if (write)
2585 set_numabalancing_state(state);
2586 return err;
2587}
2588#endif
2589#endif
dd41f596 2590
4698f88c
JP
2591#ifdef CONFIG_SCHEDSTATS
2592
cb251765 2593DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4698f88c 2594static bool __initdata __sched_schedstats = false;
cb251765 2595
cb251765
MG
2596static void set_schedstats(bool enabled)
2597{
2598 if (enabled)
2599 static_branch_enable(&sched_schedstats);
2600 else
2601 static_branch_disable(&sched_schedstats);
2602}
2603
2604void force_schedstat_enabled(void)
2605{
2606 if (!schedstat_enabled()) {
2607 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2608 static_branch_enable(&sched_schedstats);
2609 }
2610}
2611
2612static int __init setup_schedstats(char *str)
2613{
2614 int ret = 0;
2615 if (!str)
2616 goto out;
2617
4698f88c
JP
2618 /*
2619 * This code is called before jump labels have been set up, so we can't
2620 * change the static branch directly just yet. Instead set a temporary
2621 * variable so init_schedstats() can do it later.
2622 */
cb251765 2623 if (!strcmp(str, "enable")) {
4698f88c 2624 __sched_schedstats = true;
cb251765
MG
2625 ret = 1;
2626 } else if (!strcmp(str, "disable")) {
4698f88c 2627 __sched_schedstats = false;
cb251765
MG
2628 ret = 1;
2629 }
2630out:
2631 if (!ret)
2632 pr_warn("Unable to parse schedstats=\n");
2633
2634 return ret;
2635}
2636__setup("schedstats=", setup_schedstats);
2637
4698f88c
JP
2638static void __init init_schedstats(void)
2639{
2640 set_schedstats(__sched_schedstats);
2641}
2642
cb251765
MG
2643#ifdef CONFIG_PROC_SYSCTL
2644int sysctl_schedstats(struct ctl_table *table, int write,
2645 void __user *buffer, size_t *lenp, loff_t *ppos)
2646{
2647 struct ctl_table t;
2648 int err;
2649 int state = static_branch_likely(&sched_schedstats);
2650
2651 if (write && !capable(CAP_SYS_ADMIN))
2652 return -EPERM;
2653
2654 t = *table;
2655 t.data = &state;
2656 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2657 if (err < 0)
2658 return err;
2659 if (write)
2660 set_schedstats(state);
2661 return err;
2662}
4698f88c
JP
2663#endif /* CONFIG_PROC_SYSCTL */
2664#else /* !CONFIG_SCHEDSTATS */
2665static inline void init_schedstats(void) {}
2666#endif /* CONFIG_SCHEDSTATS */
dd41f596
IM
2667
2668/*
2669 * fork()/clone()-time setup:
2670 */
aab03e05 2671int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2672{
0122ec5b 2673 unsigned long flags;
dd41f596 2674
5e1576ed 2675 __sched_fork(clone_flags, p);
06b83b5f 2676 /*
7dc603c9 2677 * We mark the process as NEW here. This guarantees that
06b83b5f
PZ
2678 * nobody will actually run it, and a signal or other external
2679 * event cannot wake it up and insert it on the runqueue either.
2680 */
7dc603c9 2681 p->state = TASK_NEW;
dd41f596 2682
c350a04e
MG
2683 /*
2684 * Make sure we do not leak PI boosting priority to the child.
2685 */
2686 p->prio = current->normal_prio;
2687
e8f14172
PB
2688 uclamp_fork(p);
2689
b9dc29e7
MG
2690 /*
2691 * Revert to default priority/policy on fork if requested.
2692 */
2693 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 2694 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 2695 p->policy = SCHED_NORMAL;
6c697bdf 2696 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
2697 p->rt_priority = 0;
2698 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2699 p->static_prio = NICE_TO_PRIO(0);
2700
2701 p->prio = p->normal_prio = __normal_prio(p);
9059393e 2702 set_load_weight(p, false);
6c697bdf 2703
b9dc29e7
MG
2704 /*
2705 * We don't need the reset flag anymore after the fork. It has
2706 * fulfilled its duty:
2707 */
2708 p->sched_reset_on_fork = 0;
2709 }
ca94c442 2710
af0fffd9 2711 if (dl_prio(p->prio))
aab03e05 2712 return -EAGAIN;
af0fffd9 2713 else if (rt_prio(p->prio))
aab03e05 2714 p->sched_class = &rt_sched_class;
af0fffd9 2715 else
2ddbf952 2716 p->sched_class = &fair_sched_class;
b29739f9 2717
7dc603c9 2718 init_entity_runnable_average(&p->se);
cd29fe6f 2719
86951599
PZ
2720 /*
2721 * The child is not yet in the pid-hash so no cgroup attach races,
2722 * and the cgroup is pinned to this child due to cgroup_fork()
2723 * is ran before sched_fork().
2724 *
2725 * Silence PROVE_RCU.
2726 */
0122ec5b 2727 raw_spin_lock_irqsave(&p->pi_lock, flags);
e210bffd 2728 /*
d1ccc66d 2729 * We're setting the CPU for the first time, we don't migrate,
e210bffd
PZ
2730 * so use __set_task_cpu().
2731 */
af0fffd9 2732 __set_task_cpu(p, smp_processor_id());
e210bffd
PZ
2733 if (p->sched_class->task_fork)
2734 p->sched_class->task_fork(p);
0122ec5b 2735 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 2736
f6db8347 2737#ifdef CONFIG_SCHED_INFO
dd41f596 2738 if (likely(sched_info_on()))
52f17b6c 2739 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2740#endif
3ca7a440
PZ
2741#if defined(CONFIG_SMP)
2742 p->on_cpu = 0;
4866cde0 2743#endif
01028747 2744 init_task_preempt_count(p);
806c09a7 2745#ifdef CONFIG_SMP
917b627d 2746 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 2747 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 2748#endif
aab03e05 2749 return 0;
1da177e4
LT
2750}
2751
332ac17e
DF
2752unsigned long to_ratio(u64 period, u64 runtime)
2753{
2754 if (runtime == RUNTIME_INF)
c52f14d3 2755 return BW_UNIT;
332ac17e
DF
2756
2757 /*
2758 * Doing this here saves a lot of checks in all
2759 * the calling paths, and returning zero seems
2760 * safe for them anyway.
2761 */
2762 if (period == 0)
2763 return 0;
2764
c52f14d3 2765 return div64_u64(runtime << BW_SHIFT, period);
332ac17e
DF
2766}
2767
1da177e4
LT
2768/*
2769 * wake_up_new_task - wake up a newly created task for the first time.
2770 *
2771 * This function will do some initial scheduler statistics housekeeping
2772 * that must be done for every newly created context, then puts the task
2773 * on the runqueue and wakes it.
2774 */
3e51e3ed 2775void wake_up_new_task(struct task_struct *p)
1da177e4 2776{
eb580751 2777 struct rq_flags rf;
dd41f596 2778 struct rq *rq;
fabf318e 2779
eb580751 2780 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
7dc603c9 2781 p->state = TASK_RUNNING;
fabf318e
PZ
2782#ifdef CONFIG_SMP
2783 /*
2784 * Fork balancing, do it here and not earlier because:
3bd37062 2785 * - cpus_ptr can change in the fork path
d1ccc66d 2786 * - any previously selected CPU might disappear through hotplug
e210bffd
PZ
2787 *
2788 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2789 * as we're not fully set-up yet.
fabf318e 2790 */
32e839dd 2791 p->recent_used_cpu = task_cpu(p);
e210bffd 2792 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735 2793#endif
b7fa30c9 2794 rq = __task_rq_lock(p, &rf);
4126bad6 2795 update_rq_clock(rq);
d0fe0b9c 2796 post_init_entity_util_avg(p);
0017d735 2797
7a57f32a 2798 activate_task(rq, p, ENQUEUE_NOCLOCK);
fbd705a0 2799 trace_sched_wakeup_new(p);
a7558e01 2800 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2801#ifdef CONFIG_SMP
0aaafaab
PZ
2802 if (p->sched_class->task_woken) {
2803 /*
2804 * Nothing relies on rq->lock after this, so its fine to
2805 * drop it.
2806 */
d8ac8971 2807 rq_unpin_lock(rq, &rf);
efbbd05a 2808 p->sched_class->task_woken(rq, p);
d8ac8971 2809 rq_repin_lock(rq, &rf);
0aaafaab 2810 }
9a897c5a 2811#endif
eb580751 2812 task_rq_unlock(rq, p, &rf);
1da177e4
LT
2813}
2814
e107be36
AK
2815#ifdef CONFIG_PREEMPT_NOTIFIERS
2816
b7203428 2817static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
1cde2930 2818
2ecd9d29
PZ
2819void preempt_notifier_inc(void)
2820{
b7203428 2821 static_branch_inc(&preempt_notifier_key);
2ecd9d29
PZ
2822}
2823EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2824
2825void preempt_notifier_dec(void)
2826{
b7203428 2827 static_branch_dec(&preempt_notifier_key);
2ecd9d29
PZ
2828}
2829EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2830
e107be36 2831/**
80dd99b3 2832 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2833 * @notifier: notifier struct to register
e107be36
AK
2834 */
2835void preempt_notifier_register(struct preempt_notifier *notifier)
2836{
b7203428 2837 if (!static_branch_unlikely(&preempt_notifier_key))
2ecd9d29
PZ
2838 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2839
e107be36
AK
2840 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2841}
2842EXPORT_SYMBOL_GPL(preempt_notifier_register);
2843
2844/**
2845 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2846 * @notifier: notifier struct to unregister
e107be36 2847 *
d84525a8 2848 * This is *not* safe to call from within a preemption notifier.
e107be36
AK
2849 */
2850void preempt_notifier_unregister(struct preempt_notifier *notifier)
2851{
2852 hlist_del(&notifier->link);
2853}
2854EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2855
1cde2930 2856static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2857{
2858 struct preempt_notifier *notifier;
e107be36 2859
b67bfe0d 2860 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2861 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2862}
2863
1cde2930
PZ
2864static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2865{
b7203428 2866 if (static_branch_unlikely(&preempt_notifier_key))
1cde2930
PZ
2867 __fire_sched_in_preempt_notifiers(curr);
2868}
2869
e107be36 2870static void
1cde2930
PZ
2871__fire_sched_out_preempt_notifiers(struct task_struct *curr,
2872 struct task_struct *next)
e107be36
AK
2873{
2874 struct preempt_notifier *notifier;
e107be36 2875
b67bfe0d 2876 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2877 notifier->ops->sched_out(notifier, next);
2878}
2879
1cde2930
PZ
2880static __always_inline void
2881fire_sched_out_preempt_notifiers(struct task_struct *curr,
2882 struct task_struct *next)
2883{
b7203428 2884 if (static_branch_unlikely(&preempt_notifier_key))
1cde2930
PZ
2885 __fire_sched_out_preempt_notifiers(curr, next);
2886}
2887
6d6bc0ad 2888#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36 2889
1cde2930 2890static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2891{
2892}
2893
1cde2930 2894static inline void
e107be36
AK
2895fire_sched_out_preempt_notifiers(struct task_struct *curr,
2896 struct task_struct *next)
2897{
2898}
2899
6d6bc0ad 2900#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2901
31cb1bc0 2902static inline void prepare_task(struct task_struct *next)
2903{
2904#ifdef CONFIG_SMP
2905 /*
2906 * Claim the task as running, we do this before switching to it
2907 * such that any running task will have this set.
2908 */
2909 next->on_cpu = 1;
2910#endif
2911}
2912
2913static inline void finish_task(struct task_struct *prev)
2914{
2915#ifdef CONFIG_SMP
2916 /*
2917 * After ->on_cpu is cleared, the task can be moved to a different CPU.
2918 * We must ensure this doesn't happen until the switch is completely
2919 * finished.
2920 *
2921 * In particular, the load of prev->state in finish_task_switch() must
2922 * happen before this.
2923 *
2924 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
2925 */
2926 smp_store_release(&prev->on_cpu, 0);
2927#endif
2928}
2929
269d5992
PZ
2930static inline void
2931prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
31cb1bc0 2932{
269d5992
PZ
2933 /*
2934 * Since the runqueue lock will be released by the next
2935 * task (which is an invalid locking op but in the case
2936 * of the scheduler it's an obvious special-case), so we
2937 * do an early lockdep release here:
2938 */
2939 rq_unpin_lock(rq, rf);
2940 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
31cb1bc0 2941#ifdef CONFIG_DEBUG_SPINLOCK
2942 /* this is a valid case when another task releases the spinlock */
269d5992 2943 rq->lock.owner = next;
31cb1bc0 2944#endif
269d5992
PZ
2945}
2946
2947static inline void finish_lock_switch(struct rq *rq)
2948{
31cb1bc0 2949 /*
2950 * If we are tracking spinlock dependencies then we have to
2951 * fix up the runqueue lock - which gets 'carried over' from
2952 * prev into current:
2953 */
2954 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
31cb1bc0 2955 raw_spin_unlock_irq(&rq->lock);
2956}
2957
325ea10c
IM
2958/*
2959 * NOP if the arch has not defined these:
2960 */
2961
2962#ifndef prepare_arch_switch
2963# define prepare_arch_switch(next) do { } while (0)
2964#endif
2965
2966#ifndef finish_arch_post_lock_switch
2967# define finish_arch_post_lock_switch() do { } while (0)
2968#endif
2969
4866cde0
NP
2970/**
2971 * prepare_task_switch - prepare to switch tasks
2972 * @rq: the runqueue preparing to switch
421cee29 2973 * @prev: the current task that is being switched out
4866cde0
NP
2974 * @next: the task we are going to switch to.
2975 *
2976 * This is called with the rq lock held and interrupts off. It must
2977 * be paired with a subsequent finish_task_switch after the context
2978 * switch.
2979 *
2980 * prepare_task_switch sets up locking and calls architecture specific
2981 * hooks.
2982 */
e107be36
AK
2983static inline void
2984prepare_task_switch(struct rq *rq, struct task_struct *prev,
2985 struct task_struct *next)
4866cde0 2986{
0ed557aa 2987 kcov_prepare_switch(prev);
43148951 2988 sched_info_switch(rq, prev, next);
fe4b04fa 2989 perf_event_task_sched_out(prev, next);
d7822b1e 2990 rseq_preempt(prev);
e107be36 2991 fire_sched_out_preempt_notifiers(prev, next);
31cb1bc0 2992 prepare_task(next);
4866cde0
NP
2993 prepare_arch_switch(next);
2994}
2995
1da177e4
LT
2996/**
2997 * finish_task_switch - clean up after a task-switch
2998 * @prev: the thread we just switched away from.
2999 *
4866cde0
NP
3000 * finish_task_switch must be called after the context switch, paired
3001 * with a prepare_task_switch call before the context switch.
3002 * finish_task_switch will reconcile locking set up by prepare_task_switch,
3003 * and do any other architecture-specific cleanup actions.
1da177e4
LT
3004 *
3005 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 3006 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
3007 * with the lock held can cause deadlocks; see schedule() for
3008 * details.)
dfa50b60
ON
3009 *
3010 * The context switch have flipped the stack from under us and restored the
3011 * local variables which were saved when this task called schedule() in the
3012 * past. prev == current is still correct but we need to recalculate this_rq
3013 * because prev may have moved to another CPU.
1da177e4 3014 */
dfa50b60 3015static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
3016 __releases(rq->lock)
3017{
dfa50b60 3018 struct rq *rq = this_rq();
1da177e4 3019 struct mm_struct *mm = rq->prev_mm;
55a101f8 3020 long prev_state;
1da177e4 3021
609ca066
PZ
3022 /*
3023 * The previous task will have left us with a preempt_count of 2
3024 * because it left us after:
3025 *
3026 * schedule()
3027 * preempt_disable(); // 1
3028 * __schedule()
3029 * raw_spin_lock_irq(&rq->lock) // 2
3030 *
3031 * Also, see FORK_PREEMPT_COUNT.
3032 */
e2bf1c4b
PZ
3033 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
3034 "corrupted preempt_count: %s/%d/0x%x\n",
3035 current->comm, current->pid, preempt_count()))
3036 preempt_count_set(FORK_PREEMPT_COUNT);
609ca066 3037
1da177e4
LT
3038 rq->prev_mm = NULL;
3039
3040 /*
3041 * A task struct has one reference for the use as "current".
c394cc9f 3042 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
3043 * schedule one last time. The schedule call will never return, and
3044 * the scheduled task must drop that reference.
95913d97
PZ
3045 *
3046 * We must observe prev->state before clearing prev->on_cpu (in
31cb1bc0 3047 * finish_task), otherwise a concurrent wakeup can get prev
95913d97
PZ
3048 * running on another CPU and we could rave with its RUNNING -> DEAD
3049 * transition, resulting in a double drop.
1da177e4 3050 */
55a101f8 3051 prev_state = prev->state;
bf9fae9f 3052 vtime_task_switch(prev);
a8d757ef 3053 perf_event_task_sched_in(prev, current);
31cb1bc0 3054 finish_task(prev);
3055 finish_lock_switch(rq);
01f23e16 3056 finish_arch_post_lock_switch();
0ed557aa 3057 kcov_finish_switch(current);
e8fa1362 3058
e107be36 3059 fire_sched_in_preempt_notifiers(current);
306e0604 3060 /*
70216e18
MD
3061 * When switching through a kernel thread, the loop in
3062 * membarrier_{private,global}_expedited() may have observed that
3063 * kernel thread and not issued an IPI. It is therefore possible to
3064 * schedule between user->kernel->user threads without passing though
3065 * switch_mm(). Membarrier requires a barrier after storing to
3066 * rq->curr, before returning to userspace, so provide them here:
3067 *
3068 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
3069 * provided by mmdrop(),
3070 * - a sync_core for SYNC_CORE.
306e0604 3071 */
70216e18
MD
3072 if (mm) {
3073 membarrier_mm_sync_core_before_usermode(mm);
1da177e4 3074 mmdrop(mm);
70216e18 3075 }
1cef1150
PZ
3076 if (unlikely(prev_state == TASK_DEAD)) {
3077 if (prev->sched_class->task_dead)
3078 prev->sched_class->task_dead(prev);
68f24b08 3079
1cef1150
PZ
3080 /*
3081 * Remove function-return probe instances associated with this
3082 * task and put them back on the free list.
3083 */
3084 kprobe_flush_task(prev);
3085
3086 /* Task is done with its stack. */
3087 put_task_stack(prev);
3088
3089 put_task_struct(prev);
c6fd91f0 3090 }
99e5ada9 3091
de734f89 3092 tick_nohz_task_switch();
dfa50b60 3093 return rq;
1da177e4
LT
3094}
3095
3f029d3c
GH
3096#ifdef CONFIG_SMP
3097
3f029d3c 3098/* rq->lock is NOT held, but preemption is disabled */
e3fca9e7 3099static void __balance_callback(struct rq *rq)
3f029d3c 3100{
e3fca9e7
PZ
3101 struct callback_head *head, *next;
3102 void (*func)(struct rq *rq);
3103 unsigned long flags;
3f029d3c 3104
e3fca9e7
PZ
3105 raw_spin_lock_irqsave(&rq->lock, flags);
3106 head = rq->balance_callback;
3107 rq->balance_callback = NULL;
3108 while (head) {
3109 func = (void (*)(struct rq *))head->func;
3110 next = head->next;
3111 head->next = NULL;
3112 head = next;
3f029d3c 3113
e3fca9e7 3114 func(rq);
3f029d3c 3115 }
e3fca9e7
PZ
3116 raw_spin_unlock_irqrestore(&rq->lock, flags);
3117}
3118
3119static inline void balance_callback(struct rq *rq)
3120{
3121 if (unlikely(rq->balance_callback))
3122 __balance_callback(rq);
3f029d3c
GH
3123}
3124
3125#else
da19ab51 3126
e3fca9e7 3127static inline void balance_callback(struct rq *rq)
3f029d3c 3128{
1da177e4
LT
3129}
3130
3f029d3c
GH
3131#endif
3132
1da177e4
LT
3133/**
3134 * schedule_tail - first thing a freshly forked thread must call.
3135 * @prev: the thread we just switched away from.
3136 */
722a9f92 3137asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
3138 __releases(rq->lock)
3139{
1a43a14a 3140 struct rq *rq;
da19ab51 3141
609ca066
PZ
3142 /*
3143 * New tasks start with FORK_PREEMPT_COUNT, see there and
3144 * finish_task_switch() for details.
3145 *
3146 * finish_task_switch() will drop rq->lock() and lower preempt_count
3147 * and the preempt_enable() will end up enabling preemption (on
3148 * PREEMPT_COUNT kernels).
3149 */
3150
dfa50b60 3151 rq = finish_task_switch(prev);
e3fca9e7 3152 balance_callback(rq);
1a43a14a 3153 preempt_enable();
70b97a7f 3154
1da177e4 3155 if (current->set_child_tid)
b488893a 3156 put_user(task_pid_vnr(current), current->set_child_tid);
088fe47c
EB
3157
3158 calculate_sigpending();
1da177e4
LT
3159}
3160
3161/*
dfa50b60 3162 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 3163 */
04936948 3164static __always_inline struct rq *
70b97a7f 3165context_switch(struct rq *rq, struct task_struct *prev,
d8ac8971 3166 struct task_struct *next, struct rq_flags *rf)
1da177e4 3167{
dd41f596 3168 struct mm_struct *mm, *oldmm;
1da177e4 3169
e107be36 3170 prepare_task_switch(rq, prev, next);
fe4b04fa 3171
dd41f596
IM
3172 mm = next->mm;
3173 oldmm = prev->active_mm;
9226d125
ZA
3174 /*
3175 * For paravirt, this is coupled with an exit in switch_to to
3176 * combine the page table reload and the switch backend into
3177 * one hypercall.
3178 */
224101ed 3179 arch_start_context_switch(prev);
9226d125 3180
306e0604
MD
3181 /*
3182 * If mm is non-NULL, we pass through switch_mm(). If mm is
3183 * NULL, we will pass through mmdrop() in finish_task_switch().
3184 * Both of these contain the full memory barrier required by
3185 * membarrier after storing to rq->curr, before returning to
3186 * user-space.
3187 */
31915ab4 3188 if (!mm) {
1da177e4 3189 next->active_mm = oldmm;
f1f10076 3190 mmgrab(oldmm);
1da177e4
LT
3191 enter_lazy_tlb(oldmm, next);
3192 } else
f98db601 3193 switch_mm_irqs_off(oldmm, mm, next);
1da177e4 3194
31915ab4 3195 if (!prev->mm) {
1da177e4 3196 prev->active_mm = NULL;
1da177e4
LT
3197 rq->prev_mm = oldmm;
3198 }
92509b73 3199
cb42c9a3 3200 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
92509b73 3201
269d5992 3202 prepare_lock_switch(rq, next, rf);
1da177e4
LT
3203
3204 /* Here we just switch the register state and the stack. */
3205 switch_to(prev, next, prev);
dd41f596 3206 barrier();
dfa50b60
ON
3207
3208 return finish_task_switch(prev);
1da177e4
LT
3209}
3210
3211/*
1c3e8264 3212 * nr_running and nr_context_switches:
1da177e4
LT
3213 *
3214 * externally visible scheduler statistics: current number of runnable
1c3e8264 3215 * threads, total number of context switches performed since bootup.
1da177e4
LT
3216 */
3217unsigned long nr_running(void)
3218{
3219 unsigned long i, sum = 0;
3220
3221 for_each_online_cpu(i)
3222 sum += cpu_rq(i)->nr_running;
3223
3224 return sum;
f711f609 3225}
1da177e4 3226
2ee507c4 3227/*
d1ccc66d 3228 * Check if only the current task is running on the CPU.
00cc1633
DD
3229 *
3230 * Caution: this function does not check that the caller has disabled
3231 * preemption, thus the result might have a time-of-check-to-time-of-use
3232 * race. The caller is responsible to use it correctly, for example:
3233 *
dfcb245e 3234 * - from a non-preemptible section (of course)
00cc1633
DD
3235 *
3236 * - from a thread that is bound to a single CPU
3237 *
3238 * - in a loop with very short iterations (e.g. a polling loop)
2ee507c4
TC
3239 */
3240bool single_task_running(void)
3241{
00cc1633 3242 return raw_rq()->nr_running == 1;
2ee507c4
TC
3243}
3244EXPORT_SYMBOL(single_task_running);
3245
1da177e4 3246unsigned long long nr_context_switches(void)
46cb4b7c 3247{
cc94abfc
SR
3248 int i;
3249 unsigned long long sum = 0;
46cb4b7c 3250
0a945022 3251 for_each_possible_cpu(i)
1da177e4 3252 sum += cpu_rq(i)->nr_switches;
46cb4b7c 3253
1da177e4
LT
3254 return sum;
3255}
483b4ee6 3256
145d952a
DL
3257/*
3258 * Consumers of these two interfaces, like for example the cpuidle menu
3259 * governor, are using nonsensical data. Preferring shallow idle state selection
3260 * for a CPU that has IO-wait which might not even end up running the task when
3261 * it does become runnable.
3262 */
3263
3264unsigned long nr_iowait_cpu(int cpu)
3265{
3266 return atomic_read(&cpu_rq(cpu)->nr_iowait);
3267}
3268
e33a9bba
TH
3269/*
3270 * IO-wait accounting, and how its mostly bollocks (on SMP).
3271 *
3272 * The idea behind IO-wait account is to account the idle time that we could
3273 * have spend running if it were not for IO. That is, if we were to improve the
3274 * storage performance, we'd have a proportional reduction in IO-wait time.
3275 *
3276 * This all works nicely on UP, where, when a task blocks on IO, we account
3277 * idle time as IO-wait, because if the storage were faster, it could've been
3278 * running and we'd not be idle.
3279 *
3280 * This has been extended to SMP, by doing the same for each CPU. This however
3281 * is broken.
3282 *
3283 * Imagine for instance the case where two tasks block on one CPU, only the one
3284 * CPU will have IO-wait accounted, while the other has regular idle. Even
3285 * though, if the storage were faster, both could've ran at the same time,
3286 * utilising both CPUs.
3287 *
3288 * This means, that when looking globally, the current IO-wait accounting on
3289 * SMP is a lower bound, by reason of under accounting.
3290 *
3291 * Worse, since the numbers are provided per CPU, they are sometimes
3292 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
3293 * associated with any one particular CPU, it can wake to another CPU than it
3294 * blocked on. This means the per CPU IO-wait number is meaningless.
3295 *
3296 * Task CPU affinities can make all that even more 'interesting'.
3297 */
3298
1da177e4
LT
3299unsigned long nr_iowait(void)
3300{
3301 unsigned long i, sum = 0;
483b4ee6 3302
0a945022 3303 for_each_possible_cpu(i)
145d952a 3304 sum += nr_iowait_cpu(i);
46cb4b7c 3305
1da177e4
LT
3306 return sum;
3307}
483b4ee6 3308
dd41f596 3309#ifdef CONFIG_SMP
8a0be9ef 3310
46cb4b7c 3311/*
38022906
PZ
3312 * sched_exec - execve() is a valuable balancing opportunity, because at
3313 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 3314 */
38022906 3315void sched_exec(void)
46cb4b7c 3316{
38022906 3317 struct task_struct *p = current;
1da177e4 3318 unsigned long flags;
0017d735 3319 int dest_cpu;
46cb4b7c 3320
8f42ced9 3321 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 3322 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
3323 if (dest_cpu == smp_processor_id())
3324 goto unlock;
38022906 3325
8f42ced9 3326 if (likely(cpu_active(dest_cpu))) {
969c7921 3327 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 3328
8f42ced9
PZ
3329 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3330 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
3331 return;
3332 }
0017d735 3333unlock:
8f42ced9 3334 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 3335}
dd41f596 3336
1da177e4
LT
3337#endif
3338
1da177e4 3339DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 3340DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
3341
3342EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 3343EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 3344
6075620b
GG
3345/*
3346 * The function fair_sched_class.update_curr accesses the struct curr
3347 * and its field curr->exec_start; when called from task_sched_runtime(),
3348 * we observe a high rate of cache misses in practice.
3349 * Prefetching this data results in improved performance.
3350 */
3351static inline void prefetch_curr_exec_start(struct task_struct *p)
3352{
3353#ifdef CONFIG_FAIR_GROUP_SCHED
3354 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3355#else
3356 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3357#endif
3358 prefetch(curr);
3359 prefetch(&curr->exec_start);
3360}
3361
c5f8d995
HS
3362/*
3363 * Return accounted runtime for the task.
3364 * In case the task is currently running, return the runtime plus current's
3365 * pending runtime that have not been accounted yet.
3366 */
3367unsigned long long task_sched_runtime(struct task_struct *p)
3368{
eb580751 3369 struct rq_flags rf;
c5f8d995 3370 struct rq *rq;
6e998916 3371 u64 ns;
c5f8d995 3372
911b2898
PZ
3373#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3374 /*
97fb7a0a 3375 * 64-bit doesn't need locks to atomically read a 64-bit value.
911b2898
PZ
3376 * So we have a optimization chance when the task's delta_exec is 0.
3377 * Reading ->on_cpu is racy, but this is ok.
3378 *
d1ccc66d
IM
3379 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3380 * If we race with it entering CPU, unaccounted time is 0. This is
911b2898 3381 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
3382 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3383 * been accounted, so we're correct here as well.
911b2898 3384 */
da0c1e65 3385 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
3386 return p->se.sum_exec_runtime;
3387#endif
3388
eb580751 3389 rq = task_rq_lock(p, &rf);
6e998916
SG
3390 /*
3391 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3392 * project cycles that may never be accounted to this
3393 * thread, breaking clock_gettime().
3394 */
3395 if (task_current(rq, p) && task_on_rq_queued(p)) {
6075620b 3396 prefetch_curr_exec_start(p);
6e998916
SG
3397 update_rq_clock(rq);
3398 p->sched_class->update_curr(rq);
3399 }
3400 ns = p->se.sum_exec_runtime;
eb580751 3401 task_rq_unlock(rq, p, &rf);
c5f8d995
HS
3402
3403 return ns;
3404}
48f24c4d 3405
7835b98b
CL
3406/*
3407 * This function gets called by the timer code, with HZ frequency.
3408 * We call it with interrupts disabled.
7835b98b
CL
3409 */
3410void scheduler_tick(void)
3411{
7835b98b
CL
3412 int cpu = smp_processor_id();
3413 struct rq *rq = cpu_rq(cpu);
dd41f596 3414 struct task_struct *curr = rq->curr;
8a8c69c3 3415 struct rq_flags rf;
3e51f33f
PZ
3416
3417 sched_clock_tick();
dd41f596 3418
8a8c69c3
PZ
3419 rq_lock(rq, &rf);
3420
3e51f33f 3421 update_rq_clock(rq);
fa85ae24 3422 curr->sched_class->task_tick(rq, curr, 0);
3289bdb4 3423 calc_global_load_tick(rq);
eb414681 3424 psi_task_tick(rq);
8a8c69c3
PZ
3425
3426 rq_unlock(rq, &rf);
7835b98b 3427
e9d2b064 3428 perf_event_task_tick();
e220d2dc 3429
e418e1c2 3430#ifdef CONFIG_SMP
6eb57e0d 3431 rq->idle_balance = idle_cpu(cpu);
7caff66f 3432 trigger_load_balance(rq);
e418e1c2 3433#endif
1da177e4
LT
3434}
3435
265f22a9 3436#ifdef CONFIG_NO_HZ_FULL
d84b3131
FW
3437
3438struct tick_work {
3439 int cpu;
3440 struct delayed_work work;
3441};
3442
3443static struct tick_work __percpu *tick_work_cpu;
3444
3445static void sched_tick_remote(struct work_struct *work)
3446{
3447 struct delayed_work *dwork = to_delayed_work(work);
3448 struct tick_work *twork = container_of(dwork, struct tick_work, work);
3449 int cpu = twork->cpu;
3450 struct rq *rq = cpu_rq(cpu);
d9c0ffca 3451 struct task_struct *curr;
d84b3131 3452 struct rq_flags rf;
d9c0ffca 3453 u64 delta;
d84b3131
FW
3454
3455 /*
3456 * Handle the tick only if it appears the remote CPU is running in full
3457 * dynticks mode. The check is racy by nature, but missing a tick or
3458 * having one too much is no big deal because the scheduler tick updates
3459 * statistics and checks timeslices in a time-independent way, regardless
3460 * of when exactly it is running.
3461 */
d9c0ffca
FW
3462 if (idle_cpu(cpu) || !tick_nohz_tick_stopped_cpu(cpu))
3463 goto out_requeue;
d84b3131 3464
d9c0ffca
FW
3465 rq_lock_irq(rq, &rf);
3466 curr = rq->curr;
3467 if (is_idle_task(curr))
3468 goto out_unlock;
d84b3131 3469
d9c0ffca
FW
3470 update_rq_clock(rq);
3471 delta = rq_clock_task(rq) - curr->se.exec_start;
3472
3473 /*
3474 * Make sure the next tick runs within a reasonable
3475 * amount of time.
3476 */
3477 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
3478 curr->sched_class->task_tick(rq, curr, 0);
3479
3480out_unlock:
3481 rq_unlock_irq(rq, &rf);
d84b3131 3482
d9c0ffca 3483out_requeue:
d84b3131
FW
3484 /*
3485 * Run the remote tick once per second (1Hz). This arbitrary
3486 * frequency is large enough to avoid overload but short enough
3487 * to keep scheduler internal stats reasonably up to date.
3488 */
3489 queue_delayed_work(system_unbound_wq, dwork, HZ);
3490}
3491
3492static void sched_tick_start(int cpu)
3493{
3494 struct tick_work *twork;
3495
3496 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3497 return;
3498
3499 WARN_ON_ONCE(!tick_work_cpu);
3500
3501 twork = per_cpu_ptr(tick_work_cpu, cpu);
3502 twork->cpu = cpu;
3503 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
3504 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
3505}
3506
3507#ifdef CONFIG_HOTPLUG_CPU
3508static void sched_tick_stop(int cpu)
3509{
3510 struct tick_work *twork;
3511
3512 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3513 return;
3514
3515 WARN_ON_ONCE(!tick_work_cpu);
3516
3517 twork = per_cpu_ptr(tick_work_cpu, cpu);
3518 cancel_delayed_work_sync(&twork->work);
3519}
3520#endif /* CONFIG_HOTPLUG_CPU */
3521
3522int __init sched_tick_offload_init(void)
3523{
3524 tick_work_cpu = alloc_percpu(struct tick_work);
3525 BUG_ON(!tick_work_cpu);
3526
3527 return 0;
3528}
3529
3530#else /* !CONFIG_NO_HZ_FULL */
3531static inline void sched_tick_start(int cpu) { }
3532static inline void sched_tick_stop(int cpu) { }
265f22a9 3533#endif
1da177e4 3534
7e49fcce 3535#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
c3bc8fd6 3536 defined(CONFIG_TRACE_PREEMPT_TOGGLE))
47252cfb
SR
3537/*
3538 * If the value passed in is equal to the current preempt count
3539 * then we just disabled preemption. Start timing the latency.
3540 */
3541static inline void preempt_latency_start(int val)
3542{
3543 if (preempt_count() == val) {
3544 unsigned long ip = get_lock_parent_ip();
3545#ifdef CONFIG_DEBUG_PREEMPT
3546 current->preempt_disable_ip = ip;
3547#endif
3548 trace_preempt_off(CALLER_ADDR0, ip);
3549 }
3550}
7e49fcce 3551
edafe3a5 3552void preempt_count_add(int val)
1da177e4 3553{
6cd8a4bb 3554#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3555 /*
3556 * Underflow?
3557 */
9a11b49a
IM
3558 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3559 return;
6cd8a4bb 3560#endif
bdb43806 3561 __preempt_count_add(val);
6cd8a4bb 3562#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3563 /*
3564 * Spinlock count overflowing soon?
3565 */
33859f7f
MOS
3566 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3567 PREEMPT_MASK - 10);
6cd8a4bb 3568#endif
47252cfb 3569 preempt_latency_start(val);
1da177e4 3570}
bdb43806 3571EXPORT_SYMBOL(preempt_count_add);
edafe3a5 3572NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 3573
47252cfb
SR
3574/*
3575 * If the value passed in equals to the current preempt count
3576 * then we just enabled preemption. Stop timing the latency.
3577 */
3578static inline void preempt_latency_stop(int val)
3579{
3580 if (preempt_count() == val)
3581 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3582}
3583
edafe3a5 3584void preempt_count_sub(int val)
1da177e4 3585{
6cd8a4bb 3586#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3587 /*
3588 * Underflow?
3589 */
01e3eb82 3590 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3591 return;
1da177e4
LT
3592 /*
3593 * Is the spinlock portion underflowing?
3594 */
9a11b49a
IM
3595 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3596 !(preempt_count() & PREEMPT_MASK)))
3597 return;
6cd8a4bb 3598#endif
9a11b49a 3599
47252cfb 3600 preempt_latency_stop(val);
bdb43806 3601 __preempt_count_sub(val);
1da177e4 3602}
bdb43806 3603EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 3604NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4 3605
47252cfb
SR
3606#else
3607static inline void preempt_latency_start(int val) { }
3608static inline void preempt_latency_stop(int val) { }
1da177e4
LT
3609#endif
3610
59ddbcb2
IM
3611static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3612{
3613#ifdef CONFIG_DEBUG_PREEMPT
3614 return p->preempt_disable_ip;
3615#else
3616 return 0;
3617#endif
3618}
3619
1da177e4 3620/*
dd41f596 3621 * Print scheduling while atomic bug:
1da177e4 3622 */
dd41f596 3623static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3624{
d1c6d149
VN
3625 /* Save this before calling printk(), since that will clobber it */
3626 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3627
664dfa65
DJ
3628 if (oops_in_progress)
3629 return;
3630
3df0fc5b
PZ
3631 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3632 prev->comm, prev->pid, preempt_count());
838225b4 3633
dd41f596 3634 debug_show_held_locks(prev);
e21f5b15 3635 print_modules();
dd41f596
IM
3636 if (irqs_disabled())
3637 print_irqtrace_events(prev);
d1c6d149
VN
3638 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3639 && in_atomic_preempt_off()) {
8f47b187 3640 pr_err("Preemption disabled at:");
d1c6d149 3641 print_ip_sym(preempt_disable_ip);
8f47b187
TG
3642 pr_cont("\n");
3643 }
748c7201
DBO
3644 if (panic_on_warn)
3645 panic("scheduling while atomic\n");
3646
6135fc1e 3647 dump_stack();
373d4d09 3648 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 3649}
1da177e4 3650
dd41f596
IM
3651/*
3652 * Various schedule()-time debugging checks and statistics:
3653 */
3654static inline void schedule_debug(struct task_struct *prev)
3655{
0d9e2632 3656#ifdef CONFIG_SCHED_STACK_END_CHECK
29d64551
JH
3657 if (task_stack_end_corrupted(prev))
3658 panic("corrupted stack end detected inside scheduler\n");
0d9e2632 3659#endif
b99def8b 3660
1dc0fffc 3661 if (unlikely(in_atomic_preempt_off())) {
dd41f596 3662 __schedule_bug(prev);
1dc0fffc
PZ
3663 preempt_count_set(PREEMPT_DISABLED);
3664 }
b3fbab05 3665 rcu_sleep_check();
dd41f596 3666
1da177e4
LT
3667 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3668
ae92882e 3669 schedstat_inc(this_rq()->sched_count);
dd41f596
IM
3670}
3671
3672/*
3673 * Pick up the highest-prio task:
3674 */
3675static inline struct task_struct *
d8ac8971 3676pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
dd41f596 3677{
49ee5768 3678 const struct sched_class *class;
dd41f596 3679 struct task_struct *p;
1da177e4
LT
3680
3681 /*
0ba87bb2
PZ
3682 * Optimization: we know that if all tasks are in the fair class we can
3683 * call that function directly, but only if the @prev task wasn't of a
3684 * higher scheduling class, because otherwise those loose the
3685 * opportunity to pull in more work from other CPUs.
1da177e4 3686 */
0ba87bb2
PZ
3687 if (likely((prev->sched_class == &idle_sched_class ||
3688 prev->sched_class == &fair_sched_class) &&
3689 rq->nr_running == rq->cfs.h_nr_running)) {
3690
d8ac8971 3691 p = fair_sched_class.pick_next_task(rq, prev, rf);
6ccdc84b
PZ
3692 if (unlikely(p == RETRY_TASK))
3693 goto again;
3694
d1ccc66d 3695 /* Assumes fair_sched_class->next == idle_sched_class */
6ccdc84b 3696 if (unlikely(!p))
d8ac8971 3697 p = idle_sched_class.pick_next_task(rq, prev, rf);
6ccdc84b
PZ
3698
3699 return p;
1da177e4
LT
3700 }
3701
37e117c0 3702again:
34f971f6 3703 for_each_class(class) {
d8ac8971 3704 p = class->pick_next_task(rq, prev, rf);
37e117c0
PZ
3705 if (p) {
3706 if (unlikely(p == RETRY_TASK))
3707 goto again;
dd41f596 3708 return p;
37e117c0 3709 }
dd41f596 3710 }
34f971f6 3711
d1ccc66d
IM
3712 /* The idle class should always have a runnable task: */
3713 BUG();
dd41f596 3714}
1da177e4 3715
dd41f596 3716/*
c259e01a 3717 * __schedule() is the main scheduler function.
edde96ea
PE
3718 *
3719 * The main means of driving the scheduler and thus entering this function are:
3720 *
3721 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3722 *
3723 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3724 * paths. For example, see arch/x86/entry_64.S.
3725 *
3726 * To drive preemption between tasks, the scheduler sets the flag in timer
3727 * interrupt handler scheduler_tick().
3728 *
3729 * 3. Wakeups don't really cause entry into schedule(). They add a
3730 * task to the run-queue and that's it.
3731 *
3732 * Now, if the new task added to the run-queue preempts the current
3733 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3734 * called on the nearest possible occasion:
3735 *
3736 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3737 *
3738 * - in syscall or exception context, at the next outmost
3739 * preempt_enable(). (this might be as soon as the wake_up()'s
3740 * spin_unlock()!)
3741 *
3742 * - in IRQ context, return from interrupt-handler to
3743 * preemptible context
3744 *
3745 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3746 * then at the next:
3747 *
3748 * - cond_resched() call
3749 * - explicit schedule() call
3750 * - return from syscall or exception to user-space
3751 * - return from interrupt-handler to user-space
bfd9b2b5 3752 *
b30f0e3f 3753 * WARNING: must be called with preemption disabled!
dd41f596 3754 */
499d7955 3755static void __sched notrace __schedule(bool preempt)
dd41f596
IM
3756{
3757 struct task_struct *prev, *next;
67ca7bde 3758 unsigned long *switch_count;
d8ac8971 3759 struct rq_flags rf;
dd41f596 3760 struct rq *rq;
31656519 3761 int cpu;
dd41f596 3762
dd41f596
IM
3763 cpu = smp_processor_id();
3764 rq = cpu_rq(cpu);
dd41f596 3765 prev = rq->curr;
dd41f596 3766
dd41f596 3767 schedule_debug(prev);
1da177e4 3768
31656519 3769 if (sched_feat(HRTICK))
f333fdc9 3770 hrtick_clear(rq);
8f4d37ec 3771
46a5d164 3772 local_irq_disable();
bcbfdd01 3773 rcu_note_context_switch(preempt);
46a5d164 3774
e0acd0a6
ON
3775 /*
3776 * Make sure that signal_pending_state()->signal_pending() below
3777 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3778 * done by the caller to avoid the race with signal_wake_up().
306e0604
MD
3779 *
3780 * The membarrier system call requires a full memory barrier
3781 * after coming from user-space, before storing to rq->curr.
e0acd0a6 3782 */
8a8c69c3 3783 rq_lock(rq, &rf);
d89e588c 3784 smp_mb__after_spinlock();
1da177e4 3785
d1ccc66d
IM
3786 /* Promote REQ to ACT */
3787 rq->clock_update_flags <<= 1;
bce4dc80 3788 update_rq_clock(rq);
9edfbfed 3789
246d86b5 3790 switch_count = &prev->nivcsw;
fc13aeba 3791 if (!preempt && prev->state) {
34ec35ad 3792 if (signal_pending_state(prev->state, prev)) {
1da177e4 3793 prev->state = TASK_RUNNING;
21aa9af0 3794 } else {
bce4dc80 3795 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
2acca55e 3796
e33a9bba
TH
3797 if (prev->in_iowait) {
3798 atomic_inc(&rq->nr_iowait);
3799 delayacct_blkio_start();
3800 }
21aa9af0 3801 }
dd41f596 3802 switch_count = &prev->nvcsw;
1da177e4
LT
3803 }
3804
d8ac8971 3805 next = pick_next_task(rq, prev, &rf);
f26f9aff 3806 clear_tsk_need_resched(prev);
f27dde8d 3807 clear_preempt_need_resched();
1da177e4 3808
1da177e4 3809 if (likely(prev != next)) {
1da177e4
LT
3810 rq->nr_switches++;
3811 rq->curr = next;
22e4ebb9
MD
3812 /*
3813 * The membarrier system call requires each architecture
3814 * to have a full memory barrier after updating
306e0604
MD
3815 * rq->curr, before returning to user-space.
3816 *
3817 * Here are the schemes providing that barrier on the
3818 * various architectures:
3819 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
3820 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
3821 * - finish_lock_switch() for weakly-ordered
3822 * architectures where spin_unlock is a full barrier,
3823 * - switch_to() for arm64 (weakly-ordered, spin_unlock
3824 * is a RELEASE barrier),
22e4ebb9 3825 */
1da177e4
LT
3826 ++*switch_count;
3827
c73464b1 3828 trace_sched_switch(preempt, prev, next);
d1ccc66d
IM
3829
3830 /* Also unlocks the rq: */
3831 rq = context_switch(rq, prev, next, &rf);
cbce1a68 3832 } else {
cb42c9a3 3833 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
8a8c69c3 3834 rq_unlock_irq(rq, &rf);
cbce1a68 3835 }
1da177e4 3836
e3fca9e7 3837 balance_callback(rq);
1da177e4 3838}
c259e01a 3839
9af6528e
PZ
3840void __noreturn do_task_dead(void)
3841{
d1ccc66d 3842 /* Causes final put_task_struct in finish_task_switch(): */
b5bf9a90 3843 set_special_state(TASK_DEAD);
d1ccc66d
IM
3844
3845 /* Tell freezer to ignore us: */
3846 current->flags |= PF_NOFREEZE;
3847
9af6528e
PZ
3848 __schedule(false);
3849 BUG();
d1ccc66d
IM
3850
3851 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
9af6528e 3852 for (;;)
d1ccc66d 3853 cpu_relax();
9af6528e
PZ
3854}
3855
9c40cef2
TG
3856static inline void sched_submit_work(struct task_struct *tsk)
3857{
3c7d5184 3858 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2 3859 return;
6d25be57
TG
3860
3861 /*
3862 * If a worker went to sleep, notify and ask workqueue whether
3863 * it wants to wake up a task to maintain concurrency.
3864 * As this function is called inside the schedule() context,
3865 * we disable preemption to avoid it calling schedule() again
3866 * in the possible wakeup of a kworker.
3867 */
3868 if (tsk->flags & PF_WQ_WORKER) {
3869 preempt_disable();
3870 wq_worker_sleeping(tsk);
3871 preempt_enable_no_resched();
3872 }
3873
9c40cef2
TG
3874 /*
3875 * If we are going to sleep and we have plugged IO queued,
3876 * make sure to submit it to avoid deadlocks.
3877 */
3878 if (blk_needs_flush_plug(tsk))
3879 blk_schedule_flush_plug(tsk);
3880}
3881
6d25be57
TG
3882static void sched_update_worker(struct task_struct *tsk)
3883{
3884 if (tsk->flags & PF_WQ_WORKER)
3885 wq_worker_running(tsk);
3886}
3887
722a9f92 3888asmlinkage __visible void __sched schedule(void)
c259e01a 3889{
9c40cef2
TG
3890 struct task_struct *tsk = current;
3891
3892 sched_submit_work(tsk);
bfd9b2b5 3893 do {
b30f0e3f 3894 preempt_disable();
fc13aeba 3895 __schedule(false);
b30f0e3f 3896 sched_preempt_enable_no_resched();
bfd9b2b5 3897 } while (need_resched());
6d25be57 3898 sched_update_worker(tsk);
c259e01a 3899}
1da177e4
LT
3900EXPORT_SYMBOL(schedule);
3901
8663effb
SRV
3902/*
3903 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
3904 * state (have scheduled out non-voluntarily) by making sure that all
3905 * tasks have either left the run queue or have gone into user space.
3906 * As idle tasks do not do either, they must not ever be preempted
3907 * (schedule out non-voluntarily).
3908 *
3909 * schedule_idle() is similar to schedule_preempt_disable() except that it
3910 * never enables preemption because it does not call sched_submit_work().
3911 */
3912void __sched schedule_idle(void)
3913{
3914 /*
3915 * As this skips calling sched_submit_work(), which the idle task does
3916 * regardless because that function is a nop when the task is in a
3917 * TASK_RUNNING state, make sure this isn't used someplace that the
3918 * current task can be in any other state. Note, idle is always in the
3919 * TASK_RUNNING state.
3920 */
3921 WARN_ON_ONCE(current->state);
3922 do {
3923 __schedule(false);
3924 } while (need_resched());
3925}
3926
91d1aa43 3927#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 3928asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
3929{
3930 /*
3931 * If we come here after a random call to set_need_resched(),
3932 * or we have been woken up remotely but the IPI has not yet arrived,
3933 * we haven't yet exited the RCU idle mode. Do it here manually until
3934 * we find a better solution.
7cc78f8f
AL
3935 *
3936 * NB: There are buggy callers of this function. Ideally we
c467ea76 3937 * should warn if prev_state != CONTEXT_USER, but that will trigger
7cc78f8f 3938 * too frequently to make sense yet.
20ab65e3 3939 */
7cc78f8f 3940 enum ctx_state prev_state = exception_enter();
20ab65e3 3941 schedule();
7cc78f8f 3942 exception_exit(prev_state);
20ab65e3
FW
3943}
3944#endif
3945
c5491ea7
TG
3946/**
3947 * schedule_preempt_disabled - called with preemption disabled
3948 *
3949 * Returns with preemption disabled. Note: preempt_count must be 1
3950 */
3951void __sched schedule_preempt_disabled(void)
3952{
ba74c144 3953 sched_preempt_enable_no_resched();
c5491ea7
TG
3954 schedule();
3955 preempt_disable();
3956}
3957
06b1f808 3958static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
3959{
3960 do {
47252cfb
SR
3961 /*
3962 * Because the function tracer can trace preempt_count_sub()
3963 * and it also uses preempt_enable/disable_notrace(), if
3964 * NEED_RESCHED is set, the preempt_enable_notrace() called
3965 * by the function tracer will call this function again and
3966 * cause infinite recursion.
3967 *
3968 * Preemption must be disabled here before the function
3969 * tracer can trace. Break up preempt_disable() into two
3970 * calls. One to disable preemption without fear of being
3971 * traced. The other to still record the preemption latency,
3972 * which can also be traced by the function tracer.
3973 */
499d7955 3974 preempt_disable_notrace();
47252cfb 3975 preempt_latency_start(1);
fc13aeba 3976 __schedule(true);
47252cfb 3977 preempt_latency_stop(1);
499d7955 3978 preempt_enable_no_resched_notrace();
a18b5d01
FW
3979
3980 /*
3981 * Check again in case we missed a preemption opportunity
3982 * between schedule and now.
3983 */
a18b5d01
FW
3984 } while (need_resched());
3985}
3986
1da177e4
LT
3987#ifdef CONFIG_PREEMPT
3988/*
2ed6e34f 3989 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3990 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3991 * occur there and call schedule directly.
3992 */
722a9f92 3993asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 3994{
1da177e4
LT
3995 /*
3996 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3997 * we do not want to preempt the current task. Just return..
1da177e4 3998 */
fbb00b56 3999 if (likely(!preemptible()))
1da177e4
LT
4000 return;
4001
a18b5d01 4002 preempt_schedule_common();
1da177e4 4003}
376e2424 4004NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 4005EXPORT_SYMBOL(preempt_schedule);
009f60e2 4006
009f60e2 4007/**
4eaca0a8 4008 * preempt_schedule_notrace - preempt_schedule called by tracing
009f60e2
ON
4009 *
4010 * The tracing infrastructure uses preempt_enable_notrace to prevent
4011 * recursion and tracing preempt enabling caused by the tracing
4012 * infrastructure itself. But as tracing can happen in areas coming
4013 * from userspace or just about to enter userspace, a preempt enable
4014 * can occur before user_exit() is called. This will cause the scheduler
4015 * to be called when the system is still in usermode.
4016 *
4017 * To prevent this, the preempt_enable_notrace will use this function
4018 * instead of preempt_schedule() to exit user context if needed before
4019 * calling the scheduler.
4020 */
4eaca0a8 4021asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
009f60e2
ON
4022{
4023 enum ctx_state prev_ctx;
4024
4025 if (likely(!preemptible()))
4026 return;
4027
4028 do {
47252cfb
SR
4029 /*
4030 * Because the function tracer can trace preempt_count_sub()
4031 * and it also uses preempt_enable/disable_notrace(), if
4032 * NEED_RESCHED is set, the preempt_enable_notrace() called
4033 * by the function tracer will call this function again and
4034 * cause infinite recursion.
4035 *
4036 * Preemption must be disabled here before the function
4037 * tracer can trace. Break up preempt_disable() into two
4038 * calls. One to disable preemption without fear of being
4039 * traced. The other to still record the preemption latency,
4040 * which can also be traced by the function tracer.
4041 */
3d8f74dd 4042 preempt_disable_notrace();
47252cfb 4043 preempt_latency_start(1);
009f60e2
ON
4044 /*
4045 * Needs preempt disabled in case user_exit() is traced
4046 * and the tracer calls preempt_enable_notrace() causing
4047 * an infinite recursion.
4048 */
4049 prev_ctx = exception_enter();
fc13aeba 4050 __schedule(true);
009f60e2
ON
4051 exception_exit(prev_ctx);
4052
47252cfb 4053 preempt_latency_stop(1);
3d8f74dd 4054 preempt_enable_no_resched_notrace();
009f60e2
ON
4055 } while (need_resched());
4056}
4eaca0a8 4057EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
009f60e2 4058
32e475d7 4059#endif /* CONFIG_PREEMPT */
1da177e4
LT
4060
4061/*
2ed6e34f 4062 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4063 * off of irq context.
4064 * Note, that this is called and return with irqs disabled. This will
4065 * protect us against recursive calling from irq.
4066 */
722a9f92 4067asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 4068{
b22366cd 4069 enum ctx_state prev_state;
6478d880 4070
2ed6e34f 4071 /* Catch callers which need to be fixed */
f27dde8d 4072 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 4073
b22366cd
FW
4074 prev_state = exception_enter();
4075
3a5c359a 4076 do {
3d8f74dd 4077 preempt_disable();
3a5c359a 4078 local_irq_enable();
fc13aeba 4079 __schedule(true);
3a5c359a 4080 local_irq_disable();
3d8f74dd 4081 sched_preempt_enable_no_resched();
5ed0cec0 4082 } while (need_resched());
b22366cd
FW
4083
4084 exception_exit(prev_state);
1da177e4
LT
4085}
4086
ac6424b9 4087int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
95cdf3b7 4088 void *key)
1da177e4 4089{
63859d4f 4090 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 4091}
1da177e4
LT
4092EXPORT_SYMBOL(default_wake_function);
4093
b29739f9
IM
4094#ifdef CONFIG_RT_MUTEXES
4095
acd58620
PZ
4096static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
4097{
4098 if (pi_task)
4099 prio = min(prio, pi_task->prio);
4100
4101 return prio;
4102}
4103
4104static inline int rt_effective_prio(struct task_struct *p, int prio)
4105{
4106 struct task_struct *pi_task = rt_mutex_get_top_task(p);
4107
4108 return __rt_effective_prio(pi_task, prio);
4109}
4110
b29739f9
IM
4111/*
4112 * rt_mutex_setprio - set the current priority of a task
acd58620
PZ
4113 * @p: task to boost
4114 * @pi_task: donor task
b29739f9
IM
4115 *
4116 * This function changes the 'effective' priority of a task. It does
4117 * not touch ->normal_prio like __setscheduler().
4118 *
c365c292
TG
4119 * Used by the rt_mutex code to implement priority inheritance
4120 * logic. Call site only calls if the priority of the task changed.
b29739f9 4121 */
acd58620 4122void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
b29739f9 4123{
acd58620 4124 int prio, oldprio, queued, running, queue_flag =
7a57f32a 4125 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
83ab0aa0 4126 const struct sched_class *prev_class;
eb580751
PZ
4127 struct rq_flags rf;
4128 struct rq *rq;
b29739f9 4129
acd58620
PZ
4130 /* XXX used to be waiter->prio, not waiter->task->prio */
4131 prio = __rt_effective_prio(pi_task, p->normal_prio);
4132
4133 /*
4134 * If nothing changed; bail early.
4135 */
4136 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
4137 return;
b29739f9 4138
eb580751 4139 rq = __task_rq_lock(p, &rf);
80f5c1b8 4140 update_rq_clock(rq);
acd58620
PZ
4141 /*
4142 * Set under pi_lock && rq->lock, such that the value can be used under
4143 * either lock.
4144 *
4145 * Note that there is loads of tricky to make this pointer cache work
4146 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
4147 * ensure a task is de-boosted (pi_task is set to NULL) before the
4148 * task is allowed to run again (and can exit). This ensures the pointer
4149 * points to a blocked task -- which guaratees the task is present.
4150 */
4151 p->pi_top_task = pi_task;
4152
4153 /*
4154 * For FIFO/RR we only need to set prio, if that matches we're done.
4155 */
4156 if (prio == p->prio && !dl_prio(prio))
4157 goto out_unlock;
b29739f9 4158
1c4dd99b
TG
4159 /*
4160 * Idle task boosting is a nono in general. There is one
4161 * exception, when PREEMPT_RT and NOHZ is active:
4162 *
4163 * The idle task calls get_next_timer_interrupt() and holds
4164 * the timer wheel base->lock on the CPU and another CPU wants
4165 * to access the timer (probably to cancel it). We can safely
4166 * ignore the boosting request, as the idle CPU runs this code
4167 * with interrupts disabled and will complete the lock
4168 * protected section without being interrupted. So there is no
4169 * real need to boost.
4170 */
4171 if (unlikely(p == rq->idle)) {
4172 WARN_ON(p != rq->curr);
4173 WARN_ON(p->pi_blocked_on);
4174 goto out_unlock;
4175 }
4176
b91473ff 4177 trace_sched_pi_setprio(p, pi_task);
d5f9f942 4178 oldprio = p->prio;
ff77e468
PZ
4179
4180 if (oldprio == prio)
4181 queue_flag &= ~DEQUEUE_MOVE;
4182
83ab0aa0 4183 prev_class = p->sched_class;
da0c1e65 4184 queued = task_on_rq_queued(p);
051a1d1a 4185 running = task_current(rq, p);
da0c1e65 4186 if (queued)
ff77e468 4187 dequeue_task(rq, p, queue_flag);
0e1f3483 4188 if (running)
f3cd1c4e 4189 put_prev_task(rq, p);
dd41f596 4190
2d3d891d
DF
4191 /*
4192 * Boosting condition are:
4193 * 1. -rt task is running and holds mutex A
4194 * --> -dl task blocks on mutex A
4195 *
4196 * 2. -dl task is running and holds mutex A
4197 * --> -dl task blocks on mutex A and could preempt the
4198 * running task
4199 */
4200 if (dl_prio(prio)) {
466af29b
ON
4201 if (!dl_prio(p->normal_prio) ||
4202 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d 4203 p->dl.dl_boosted = 1;
ff77e468 4204 queue_flag |= ENQUEUE_REPLENISH;
2d3d891d
DF
4205 } else
4206 p->dl.dl_boosted = 0;
aab03e05 4207 p->sched_class = &dl_sched_class;
2d3d891d
DF
4208 } else if (rt_prio(prio)) {
4209 if (dl_prio(oldprio))
4210 p->dl.dl_boosted = 0;
4211 if (oldprio < prio)
ff77e468 4212 queue_flag |= ENQUEUE_HEAD;
dd41f596 4213 p->sched_class = &rt_sched_class;
2d3d891d
DF
4214 } else {
4215 if (dl_prio(oldprio))
4216 p->dl.dl_boosted = 0;
746db944
BS
4217 if (rt_prio(oldprio))
4218 p->rt.timeout = 0;
dd41f596 4219 p->sched_class = &fair_sched_class;
2d3d891d 4220 }
dd41f596 4221
b29739f9
IM
4222 p->prio = prio;
4223
da0c1e65 4224 if (queued)
ff77e468 4225 enqueue_task(rq, p, queue_flag);
a399d233 4226 if (running)
b2bf6c31 4227 set_curr_task(rq, p);
cb469845 4228
da7a735e 4229 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 4230out_unlock:
d1ccc66d
IM
4231 /* Avoid rq from going away on us: */
4232 preempt_disable();
eb580751 4233 __task_rq_unlock(rq, &rf);
4c9a4bc8
PZ
4234
4235 balance_callback(rq);
4236 preempt_enable();
b29739f9 4237}
acd58620
PZ
4238#else
4239static inline int rt_effective_prio(struct task_struct *p, int prio)
4240{
4241 return prio;
4242}
b29739f9 4243#endif
d50dde5a 4244
36c8b586 4245void set_user_nice(struct task_struct *p, long nice)
1da177e4 4246{
49bd21ef
PZ
4247 bool queued, running;
4248 int old_prio, delta;
eb580751 4249 struct rq_flags rf;
70b97a7f 4250 struct rq *rq;
1da177e4 4251
75e45d51 4252 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
4253 return;
4254 /*
4255 * We have to be careful, if called from sys_setpriority(),
4256 * the task might be in the middle of scheduling on another CPU.
4257 */
eb580751 4258 rq = task_rq_lock(p, &rf);
2fb8d367
PZ
4259 update_rq_clock(rq);
4260
1da177e4
LT
4261 /*
4262 * The RT priorities are set via sched_setscheduler(), but we still
4263 * allow the 'normal' nice value to be set - but as expected
4264 * it wont have any effect on scheduling until the task is
aab03e05 4265 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 4266 */
aab03e05 4267 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
4268 p->static_prio = NICE_TO_PRIO(nice);
4269 goto out_unlock;
4270 }
da0c1e65 4271 queued = task_on_rq_queued(p);
49bd21ef 4272 running = task_current(rq, p);
da0c1e65 4273 if (queued)
7a57f32a 4274 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
49bd21ef
PZ
4275 if (running)
4276 put_prev_task(rq, p);
1da177e4 4277
1da177e4 4278 p->static_prio = NICE_TO_PRIO(nice);
9059393e 4279 set_load_weight(p, true);
b29739f9
IM
4280 old_prio = p->prio;
4281 p->prio = effective_prio(p);
4282 delta = p->prio - old_prio;
1da177e4 4283
da0c1e65 4284 if (queued) {
7134b3e9 4285 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1da177e4 4286 /*
d5f9f942
AM
4287 * If the task increased its priority or is running and
4288 * lowered its priority, then reschedule its CPU:
1da177e4 4289 */
d5f9f942 4290 if (delta < 0 || (delta > 0 && task_running(rq, p)))
8875125e 4291 resched_curr(rq);
1da177e4 4292 }
49bd21ef
PZ
4293 if (running)
4294 set_curr_task(rq, p);
1da177e4 4295out_unlock:
eb580751 4296 task_rq_unlock(rq, p, &rf);
1da177e4 4297}
1da177e4
LT
4298EXPORT_SYMBOL(set_user_nice);
4299
e43379f1
MM
4300/*
4301 * can_nice - check if a task can reduce its nice value
4302 * @p: task
4303 * @nice: nice value
4304 */
36c8b586 4305int can_nice(const struct task_struct *p, const int nice)
e43379f1 4306{
d1ccc66d 4307 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
7aa2c016 4308 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 4309
78d7d407 4310 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
4311 capable(CAP_SYS_NICE));
4312}
4313
1da177e4
LT
4314#ifdef __ARCH_WANT_SYS_NICE
4315
4316/*
4317 * sys_nice - change the priority of the current process.
4318 * @increment: priority increment
4319 *
4320 * sys_setpriority is a more generic, but much slower function that
4321 * does similar things.
4322 */
5add95d4 4323SYSCALL_DEFINE1(nice, int, increment)
1da177e4 4324{
48f24c4d 4325 long nice, retval;
1da177e4
LT
4326
4327 /*
4328 * Setpriority might change our priority at the same moment.
4329 * We don't have to worry. Conceptually one call occurs first
4330 * and we have a single winner.
4331 */
a9467fa3 4332 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 4333 nice = task_nice(current) + increment;
1da177e4 4334
a9467fa3 4335 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
4336 if (increment < 0 && !can_nice(current, nice))
4337 return -EPERM;
4338
1da177e4
LT
4339 retval = security_task_setnice(current, nice);
4340 if (retval)
4341 return retval;
4342
4343 set_user_nice(current, nice);
4344 return 0;
4345}
4346
4347#endif
4348
4349/**
4350 * task_prio - return the priority value of a given task.
4351 * @p: the task in question.
4352 *
e69f6186 4353 * Return: The priority value as seen by users in /proc.
1da177e4
LT
4354 * RT tasks are offset by -200. Normal tasks are centered
4355 * around 0, value goes from -16 to +15.
4356 */
36c8b586 4357int task_prio(const struct task_struct *p)
1da177e4
LT
4358{
4359 return p->prio - MAX_RT_PRIO;
4360}
4361
1da177e4 4362/**
d1ccc66d 4363 * idle_cpu - is a given CPU idle currently?
1da177e4 4364 * @cpu: the processor in question.
e69f6186
YB
4365 *
4366 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
4367 */
4368int idle_cpu(int cpu)
4369{
908a3283
TG
4370 struct rq *rq = cpu_rq(cpu);
4371
4372 if (rq->curr != rq->idle)
4373 return 0;
4374
4375 if (rq->nr_running)
4376 return 0;
4377
4378#ifdef CONFIG_SMP
4379 if (!llist_empty(&rq->wake_list))
4380 return 0;
4381#endif
4382
4383 return 1;
1da177e4
LT
4384}
4385
943d355d
RJ
4386/**
4387 * available_idle_cpu - is a given CPU idle for enqueuing work.
4388 * @cpu: the CPU in question.
4389 *
4390 * Return: 1 if the CPU is currently idle. 0 otherwise.
4391 */
4392int available_idle_cpu(int cpu)
4393{
4394 if (!idle_cpu(cpu))
4395 return 0;
4396
247f2f6f
RJ
4397 if (vcpu_is_preempted(cpu))
4398 return 0;
4399
908a3283 4400 return 1;
1da177e4
LT
4401}
4402
1da177e4 4403/**
d1ccc66d 4404 * idle_task - return the idle task for a given CPU.
1da177e4 4405 * @cpu: the processor in question.
e69f6186 4406 *
d1ccc66d 4407 * Return: The idle task for the CPU @cpu.
1da177e4 4408 */
36c8b586 4409struct task_struct *idle_task(int cpu)
1da177e4
LT
4410{
4411 return cpu_rq(cpu)->idle;
4412}
4413
4414/**
4415 * find_process_by_pid - find a process with a matching PID value.
4416 * @pid: the pid in question.
e69f6186
YB
4417 *
4418 * The task of @pid, if found. %NULL otherwise.
1da177e4 4419 */
a9957449 4420static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4421{
228ebcbe 4422 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4423}
4424
c13db6b1
SR
4425/*
4426 * sched_setparam() passes in -1 for its policy, to let the functions
4427 * it calls know not to change it.
4428 */
4429#define SETPARAM_POLICY -1
4430
c365c292
TG
4431static void __setscheduler_params(struct task_struct *p,
4432 const struct sched_attr *attr)
1da177e4 4433{
d50dde5a
DF
4434 int policy = attr->sched_policy;
4435
c13db6b1 4436 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
4437 policy = p->policy;
4438
1da177e4 4439 p->policy = policy;
d50dde5a 4440
aab03e05
DF
4441 if (dl_policy(policy))
4442 __setparam_dl(p, attr);
39fd8fd2 4443 else if (fair_policy(policy))
d50dde5a
DF
4444 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
4445
39fd8fd2
PZ
4446 /*
4447 * __sched_setscheduler() ensures attr->sched_priority == 0 when
4448 * !rt_policy. Always setting this ensures that things like
4449 * getparam()/getattr() don't report silly values for !rt tasks.
4450 */
4451 p->rt_priority = attr->sched_priority;
383afd09 4452 p->normal_prio = normal_prio(p);
9059393e 4453 set_load_weight(p, true);
c365c292 4454}
39fd8fd2 4455
c365c292
TG
4456/* Actually do priority change: must hold pi & rq lock. */
4457static void __setscheduler(struct rq *rq, struct task_struct *p,
0782e63b 4458 const struct sched_attr *attr, bool keep_boost)
c365c292 4459{
a509a7cd
PB
4460 /*
4461 * If params can't change scheduling class changes aren't allowed
4462 * either.
4463 */
4464 if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)
4465 return;
4466
c365c292 4467 __setscheduler_params(p, attr);
d50dde5a 4468
383afd09 4469 /*
0782e63b
TG
4470 * Keep a potential priority boosting if called from
4471 * sched_setscheduler().
383afd09 4472 */
acd58620 4473 p->prio = normal_prio(p);
0782e63b 4474 if (keep_boost)
acd58620 4475 p->prio = rt_effective_prio(p, p->prio);
383afd09 4476
aab03e05
DF
4477 if (dl_prio(p->prio))
4478 p->sched_class = &dl_sched_class;
4479 else if (rt_prio(p->prio))
ffd44db5
PZ
4480 p->sched_class = &rt_sched_class;
4481 else
4482 p->sched_class = &fair_sched_class;
1da177e4 4483}
aab03e05 4484
c69e8d9c 4485/*
d1ccc66d 4486 * Check the target process has a UID that matches the current process's:
c69e8d9c
DH
4487 */
4488static bool check_same_owner(struct task_struct *p)
4489{
4490 const struct cred *cred = current_cred(), *pcred;
4491 bool match;
4492
4493 rcu_read_lock();
4494 pcred = __task_cred(p);
9c806aa0
EB
4495 match = (uid_eq(cred->euid, pcred->euid) ||
4496 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
4497 rcu_read_unlock();
4498 return match;
4499}
4500
d50dde5a
DF
4501static int __sched_setscheduler(struct task_struct *p,
4502 const struct sched_attr *attr,
dbc7f069 4503 bool user, bool pi)
1da177e4 4504{
383afd09
SR
4505 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4506 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 4507 int retval, oldprio, oldpolicy = -1, queued, running;
0782e63b 4508 int new_effective_prio, policy = attr->sched_policy;
83ab0aa0 4509 const struct sched_class *prev_class;
eb580751 4510 struct rq_flags rf;
ca94c442 4511 int reset_on_fork;
7a57f32a 4512 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
eb580751 4513 struct rq *rq;
1da177e4 4514
896bbb25
SRV
4515 /* The pi code expects interrupts enabled */
4516 BUG_ON(pi && in_interrupt());
1da177e4 4517recheck:
d1ccc66d 4518 /* Double check policy once rq lock held: */
ca94c442
LP
4519 if (policy < 0) {
4520 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4521 policy = oldpolicy = p->policy;
ca94c442 4522 } else {
7479f3c9 4523 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 4524
20f9cd2a 4525 if (!valid_policy(policy))
ca94c442
LP
4526 return -EINVAL;
4527 }
4528
794a56eb 4529 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
7479f3c9
PZ
4530 return -EINVAL;
4531
1da177e4
LT
4532 /*
4533 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4534 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4535 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 4536 */
0bb040a4 4537 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 4538 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 4539 return -EINVAL;
aab03e05
DF
4540 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4541 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
4542 return -EINVAL;
4543
37e4ab3f
OC
4544 /*
4545 * Allow unprivileged RT tasks to decrease priority:
4546 */
961ccddd 4547 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 4548 if (fair_policy(policy)) {
d0ea0268 4549 if (attr->sched_nice < task_nice(p) &&
eaad4513 4550 !can_nice(p, attr->sched_nice))
d50dde5a
DF
4551 return -EPERM;
4552 }
4553
e05606d3 4554 if (rt_policy(policy)) {
a44702e8
ON
4555 unsigned long rlim_rtprio =
4556 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909 4557
d1ccc66d 4558 /* Can't set/change the rt policy: */
8dc3e909
ON
4559 if (policy != p->policy && !rlim_rtprio)
4560 return -EPERM;
4561
d1ccc66d 4562 /* Can't increase priority: */
d50dde5a
DF
4563 if (attr->sched_priority > p->rt_priority &&
4564 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
4565 return -EPERM;
4566 }
c02aa73b 4567
d44753b8
JL
4568 /*
4569 * Can't set/change SCHED_DEADLINE policy at all for now
4570 * (safest behavior); in the future we would like to allow
4571 * unprivileged DL tasks to increase their relative deadline
4572 * or reduce their runtime (both ways reducing utilization)
4573 */
4574 if (dl_policy(policy))
4575 return -EPERM;
4576
dd41f596 4577 /*
c02aa73b
DH
4578 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4579 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 4580 */
1da1843f 4581 if (task_has_idle_policy(p) && !idle_policy(policy)) {
d0ea0268 4582 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
4583 return -EPERM;
4584 }
5fe1d75f 4585
d1ccc66d 4586 /* Can't change other user's priorities: */
c69e8d9c 4587 if (!check_same_owner(p))
37e4ab3f 4588 return -EPERM;
ca94c442 4589
d1ccc66d 4590 /* Normal users shall not reset the sched_reset_on_fork flag: */
ca94c442
LP
4591 if (p->sched_reset_on_fork && !reset_on_fork)
4592 return -EPERM;
37e4ab3f 4593 }
1da177e4 4594
725aad24 4595 if (user) {
794a56eb
JL
4596 if (attr->sched_flags & SCHED_FLAG_SUGOV)
4597 return -EINVAL;
4598
b0ae1981 4599 retval = security_task_setscheduler(p);
725aad24
JF
4600 if (retval)
4601 return retval;
4602 }
4603
a509a7cd
PB
4604 /* Update task specific "requested" clamps */
4605 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
4606 retval = uclamp_validate(p, attr);
4607 if (retval)
4608 return retval;
4609 }
4610
b29739f9 4611 /*
d1ccc66d 4612 * Make sure no PI-waiters arrive (or leave) while we are
b29739f9 4613 * changing the priority of the task:
0122ec5b 4614 *
25985edc 4615 * To be able to change p->policy safely, the appropriate
1da177e4
LT
4616 * runqueue lock must be held.
4617 */
eb580751 4618 rq = task_rq_lock(p, &rf);
80f5c1b8 4619 update_rq_clock(rq);
dc61b1d6 4620
34f971f6 4621 /*
d1ccc66d 4622 * Changing the policy of the stop threads its a very bad idea:
34f971f6
PZ
4623 */
4624 if (p == rq->stop) {
eb580751 4625 task_rq_unlock(rq, p, &rf);
34f971f6
PZ
4626 return -EINVAL;
4627 }
4628
a51e9198 4629 /*
d6b1e911
TG
4630 * If not changing anything there's no need to proceed further,
4631 * but store a possible modification of reset_on_fork.
a51e9198 4632 */
d50dde5a 4633 if (unlikely(policy == p->policy)) {
d0ea0268 4634 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
4635 goto change;
4636 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4637 goto change;
75381608 4638 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 4639 goto change;
a509a7cd
PB
4640 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
4641 goto change;
d50dde5a 4642
d6b1e911 4643 p->sched_reset_on_fork = reset_on_fork;
eb580751 4644 task_rq_unlock(rq, p, &rf);
a51e9198
DF
4645 return 0;
4646 }
d50dde5a 4647change:
a51e9198 4648
dc61b1d6 4649 if (user) {
332ac17e 4650#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
4651 /*
4652 * Do not allow realtime tasks into groups that have no runtime
4653 * assigned.
4654 */
4655 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
4656 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4657 !task_group_is_autogroup(task_group(p))) {
eb580751 4658 task_rq_unlock(rq, p, &rf);
dc61b1d6
PZ
4659 return -EPERM;
4660 }
dc61b1d6 4661#endif
332ac17e 4662#ifdef CONFIG_SMP
794a56eb
JL
4663 if (dl_bandwidth_enabled() && dl_policy(policy) &&
4664 !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
332ac17e 4665 cpumask_t *span = rq->rd->span;
332ac17e
DF
4666
4667 /*
4668 * Don't allow tasks with an affinity mask smaller than
4669 * the entire root_domain to become SCHED_DEADLINE. We
4670 * will also fail if there's no bandwidth available.
4671 */
3bd37062 4672 if (!cpumask_subset(span, p->cpus_ptr) ||
e4099a5e 4673 rq->rd->dl_bw.bw == 0) {
eb580751 4674 task_rq_unlock(rq, p, &rf);
332ac17e
DF
4675 return -EPERM;
4676 }
4677 }
4678#endif
4679 }
dc61b1d6 4680
d1ccc66d 4681 /* Re-check policy now with rq lock held: */
1da177e4
LT
4682 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4683 policy = oldpolicy = -1;
eb580751 4684 task_rq_unlock(rq, p, &rf);
1da177e4
LT
4685 goto recheck;
4686 }
332ac17e
DF
4687
4688 /*
4689 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4690 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4691 * is available.
4692 */
06a76fe0 4693 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
eb580751 4694 task_rq_unlock(rq, p, &rf);
332ac17e
DF
4695 return -EBUSY;
4696 }
4697
c365c292
TG
4698 p->sched_reset_on_fork = reset_on_fork;
4699 oldprio = p->prio;
4700
dbc7f069
PZ
4701 if (pi) {
4702 /*
4703 * Take priority boosted tasks into account. If the new
4704 * effective priority is unchanged, we just store the new
4705 * normal parameters and do not touch the scheduler class and
4706 * the runqueue. This will be done when the task deboost
4707 * itself.
4708 */
acd58620 4709 new_effective_prio = rt_effective_prio(p, newprio);
ff77e468
PZ
4710 if (new_effective_prio == oldprio)
4711 queue_flags &= ~DEQUEUE_MOVE;
c365c292
TG
4712 }
4713
da0c1e65 4714 queued = task_on_rq_queued(p);
051a1d1a 4715 running = task_current(rq, p);
da0c1e65 4716 if (queued)
ff77e468 4717 dequeue_task(rq, p, queue_flags);
0e1f3483 4718 if (running)
f3cd1c4e 4719 put_prev_task(rq, p);
f6b53205 4720
83ab0aa0 4721 prev_class = p->sched_class;
a509a7cd 4722
dbc7f069 4723 __setscheduler(rq, p, attr, pi);
a509a7cd 4724 __setscheduler_uclamp(p, attr);
f6b53205 4725
da0c1e65 4726 if (queued) {
81a44c54
TG
4727 /*
4728 * We enqueue to tail when the priority of a task is
4729 * increased (user space view).
4730 */
ff77e468
PZ
4731 if (oldprio < p->prio)
4732 queue_flags |= ENQUEUE_HEAD;
1de64443 4733
ff77e468 4734 enqueue_task(rq, p, queue_flags);
81a44c54 4735 }
a399d233 4736 if (running)
b2bf6c31 4737 set_curr_task(rq, p);
cb469845 4738
da7a735e 4739 check_class_changed(rq, p, prev_class, oldprio);
d1ccc66d
IM
4740
4741 /* Avoid rq from going away on us: */
4742 preempt_disable();
eb580751 4743 task_rq_unlock(rq, p, &rf);
b29739f9 4744
dbc7f069
PZ
4745 if (pi)
4746 rt_mutex_adjust_pi(p);
95e02ca9 4747
d1ccc66d 4748 /* Run balance callbacks after we've adjusted the PI chain: */
4c9a4bc8
PZ
4749 balance_callback(rq);
4750 preempt_enable();
95e02ca9 4751
1da177e4
LT
4752 return 0;
4753}
961ccddd 4754
7479f3c9
PZ
4755static int _sched_setscheduler(struct task_struct *p, int policy,
4756 const struct sched_param *param, bool check)
4757{
4758 struct sched_attr attr = {
4759 .sched_policy = policy,
4760 .sched_priority = param->sched_priority,
4761 .sched_nice = PRIO_TO_NICE(p->static_prio),
4762 };
4763
c13db6b1
SR
4764 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4765 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
4766 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4767 policy &= ~SCHED_RESET_ON_FORK;
4768 attr.sched_policy = policy;
4769 }
4770
dbc7f069 4771 return __sched_setscheduler(p, &attr, check, true);
7479f3c9 4772}
961ccddd
RR
4773/**
4774 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4775 * @p: the task in question.
4776 * @policy: new policy.
4777 * @param: structure containing the new RT priority.
4778 *
e69f6186
YB
4779 * Return: 0 on success. An error code otherwise.
4780 *
961ccddd
RR
4781 * NOTE that the task may be already dead.
4782 */
4783int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4784 const struct sched_param *param)
961ccddd 4785{
7479f3c9 4786 return _sched_setscheduler(p, policy, param, true);
961ccddd 4787}
1da177e4
LT
4788EXPORT_SYMBOL_GPL(sched_setscheduler);
4789
d50dde5a
DF
4790int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4791{
dbc7f069 4792 return __sched_setscheduler(p, attr, true, true);
d50dde5a
DF
4793}
4794EXPORT_SYMBOL_GPL(sched_setattr);
4795
794a56eb
JL
4796int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
4797{
4798 return __sched_setscheduler(p, attr, false, true);
4799}
4800
961ccddd
RR
4801/**
4802 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4803 * @p: the task in question.
4804 * @policy: new policy.
4805 * @param: structure containing the new RT priority.
4806 *
4807 * Just like sched_setscheduler, only don't bother checking if the
4808 * current context has permission. For example, this is needed in
4809 * stop_machine(): we create temporary high priority worker threads,
4810 * but our caller might not have that capability.
e69f6186
YB
4811 *
4812 * Return: 0 on success. An error code otherwise.
961ccddd
RR
4813 */
4814int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 4815 const struct sched_param *param)
961ccddd 4816{
7479f3c9 4817 return _sched_setscheduler(p, policy, param, false);
961ccddd 4818}
84778472 4819EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
961ccddd 4820
95cdf3b7
IM
4821static int
4822do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4823{
1da177e4
LT
4824 struct sched_param lparam;
4825 struct task_struct *p;
36c8b586 4826 int retval;
1da177e4
LT
4827
4828 if (!param || pid < 0)
4829 return -EINVAL;
4830 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4831 return -EFAULT;
5fe1d75f
ON
4832
4833 rcu_read_lock();
4834 retval = -ESRCH;
1da177e4 4835 p = find_process_by_pid(pid);
5fe1d75f
ON
4836 if (p != NULL)
4837 retval = sched_setscheduler(p, policy, &lparam);
4838 rcu_read_unlock();
36c8b586 4839
1da177e4
LT
4840 return retval;
4841}
4842
d50dde5a
DF
4843/*
4844 * Mimics kernel/events/core.c perf_copy_attr().
4845 */
d1ccc66d 4846static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
d50dde5a
DF
4847{
4848 u32 size;
4849 int ret;
4850
96d4f267 4851 if (!access_ok(uattr, SCHED_ATTR_SIZE_VER0))
d50dde5a
DF
4852 return -EFAULT;
4853
d1ccc66d 4854 /* Zero the full structure, so that a short copy will be nice: */
d50dde5a
DF
4855 memset(attr, 0, sizeof(*attr));
4856
4857 ret = get_user(size, &uattr->size);
4858 if (ret)
4859 return ret;
4860
d1ccc66d
IM
4861 /* Bail out on silly large: */
4862 if (size > PAGE_SIZE)
d50dde5a
DF
4863 goto err_size;
4864
d1ccc66d
IM
4865 /* ABI compatibility quirk: */
4866 if (!size)
d50dde5a
DF
4867 size = SCHED_ATTR_SIZE_VER0;
4868
4869 if (size < SCHED_ATTR_SIZE_VER0)
4870 goto err_size;
4871
4872 /*
4873 * If we're handed a bigger struct than we know of,
4874 * ensure all the unknown bits are 0 - i.e. new
4875 * user-space does not rely on any kernel feature
4876 * extensions we dont know about yet.
4877 */
4878 if (size > sizeof(*attr)) {
4879 unsigned char __user *addr;
4880 unsigned char __user *end;
4881 unsigned char val;
4882
4883 addr = (void __user *)uattr + sizeof(*attr);
4884 end = (void __user *)uattr + size;
4885
4886 for (; addr < end; addr++) {
4887 ret = get_user(val, addr);
4888 if (ret)
4889 return ret;
4890 if (val)
4891 goto err_size;
4892 }
4893 size = sizeof(*attr);
4894 }
4895
4896 ret = copy_from_user(attr, uattr, size);
4897 if (ret)
4898 return -EFAULT;
4899
a509a7cd
PB
4900 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
4901 size < SCHED_ATTR_SIZE_VER1)
4902 return -EINVAL;
4903
d50dde5a 4904 /*
d1ccc66d 4905 * XXX: Do we want to be lenient like existing syscalls; or do we want
d50dde5a
DF
4906 * to be strict and return an error on out-of-bounds values?
4907 */
75e45d51 4908 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 4909
e78c7bca 4910 return 0;
d50dde5a
DF
4911
4912err_size:
4913 put_user(sizeof(*attr), &uattr->size);
e78c7bca 4914 return -E2BIG;
d50dde5a
DF
4915}
4916
1da177e4
LT
4917/**
4918 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4919 * @pid: the pid in question.
4920 * @policy: new policy.
4921 * @param: structure containing the new RT priority.
e69f6186
YB
4922 *
4923 * Return: 0 on success. An error code otherwise.
1da177e4 4924 */
d1ccc66d 4925SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
1da177e4 4926{
c21761f1
JB
4927 if (policy < 0)
4928 return -EINVAL;
4929
1da177e4
LT
4930 return do_sched_setscheduler(pid, policy, param);
4931}
4932
4933/**
4934 * sys_sched_setparam - set/change the RT priority of a thread
4935 * @pid: the pid in question.
4936 * @param: structure containing the new RT priority.
e69f6186
YB
4937 *
4938 * Return: 0 on success. An error code otherwise.
1da177e4 4939 */
5add95d4 4940SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4941{
c13db6b1 4942 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
4943}
4944
d50dde5a
DF
4945/**
4946 * sys_sched_setattr - same as above, but with extended sched_attr
4947 * @pid: the pid in question.
5778fccf 4948 * @uattr: structure containing the extended parameters.
db66d756 4949 * @flags: for future extension.
d50dde5a 4950 */
6d35ab48
PZ
4951SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4952 unsigned int, flags)
d50dde5a
DF
4953{
4954 struct sched_attr attr;
4955 struct task_struct *p;
4956 int retval;
4957
6d35ab48 4958 if (!uattr || pid < 0 || flags)
d50dde5a
DF
4959 return -EINVAL;
4960
143cf23d
MK
4961 retval = sched_copy_attr(uattr, &attr);
4962 if (retval)
4963 return retval;
d50dde5a 4964
b14ed2c2 4965 if ((int)attr.sched_policy < 0)
dbdb2275 4966 return -EINVAL;
1d6362fa
PB
4967 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
4968 attr.sched_policy = SETPARAM_POLICY;
d50dde5a
DF
4969
4970 rcu_read_lock();
4971 retval = -ESRCH;
4972 p = find_process_by_pid(pid);
a509a7cd
PB
4973 if (likely(p))
4974 get_task_struct(p);
d50dde5a
DF
4975 rcu_read_unlock();
4976
a509a7cd
PB
4977 if (likely(p)) {
4978 retval = sched_setattr(p, &attr);
4979 put_task_struct(p);
4980 }
4981
d50dde5a
DF
4982 return retval;
4983}
4984
1da177e4
LT
4985/**
4986 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4987 * @pid: the pid in question.
e69f6186
YB
4988 *
4989 * Return: On success, the policy of the thread. Otherwise, a negative error
4990 * code.
1da177e4 4991 */
5add95d4 4992SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4993{
36c8b586 4994 struct task_struct *p;
3a5c359a 4995 int retval;
1da177e4
LT
4996
4997 if (pid < 0)
3a5c359a 4998 return -EINVAL;
1da177e4
LT
4999
5000 retval = -ESRCH;
5fe85be0 5001 rcu_read_lock();
1da177e4
LT
5002 p = find_process_by_pid(pid);
5003 if (p) {
5004 retval = security_task_getscheduler(p);
5005 if (!retval)
ca94c442
LP
5006 retval = p->policy
5007 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 5008 }
5fe85be0 5009 rcu_read_unlock();
1da177e4
LT
5010 return retval;
5011}
5012
5013/**
ca94c442 5014 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
5015 * @pid: the pid in question.
5016 * @param: structure containing the RT priority.
e69f6186
YB
5017 *
5018 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
5019 * code.
1da177e4 5020 */
5add95d4 5021SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 5022{
ce5f7f82 5023 struct sched_param lp = { .sched_priority = 0 };
36c8b586 5024 struct task_struct *p;
3a5c359a 5025 int retval;
1da177e4
LT
5026
5027 if (!param || pid < 0)
3a5c359a 5028 return -EINVAL;
1da177e4 5029
5fe85be0 5030 rcu_read_lock();
1da177e4
LT
5031 p = find_process_by_pid(pid);
5032 retval = -ESRCH;
5033 if (!p)
5034 goto out_unlock;
5035
5036 retval = security_task_getscheduler(p);
5037 if (retval)
5038 goto out_unlock;
5039
ce5f7f82
PZ
5040 if (task_has_rt_policy(p))
5041 lp.sched_priority = p->rt_priority;
5fe85be0 5042 rcu_read_unlock();
1da177e4
LT
5043
5044 /*
5045 * This one might sleep, we cannot do it with a spinlock held ...
5046 */
5047 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5048
1da177e4
LT
5049 return retval;
5050
5051out_unlock:
5fe85be0 5052 rcu_read_unlock();
1da177e4
LT
5053 return retval;
5054}
5055
d50dde5a
DF
5056static int sched_read_attr(struct sched_attr __user *uattr,
5057 struct sched_attr *attr,
5058 unsigned int usize)
5059{
5060 int ret;
5061
96d4f267 5062 if (!access_ok(uattr, usize))
d50dde5a
DF
5063 return -EFAULT;
5064
5065 /*
5066 * If we're handed a smaller struct than we know of,
5067 * ensure all the unknown bits are 0 - i.e. old
5068 * user-space does not get uncomplete information.
5069 */
5070 if (usize < sizeof(*attr)) {
5071 unsigned char *addr;
5072 unsigned char *end;
5073
5074 addr = (void *)attr + usize;
5075 end = (void *)attr + sizeof(*attr);
5076
5077 for (; addr < end; addr++) {
5078 if (*addr)
22400674 5079 return -EFBIG;
d50dde5a
DF
5080 }
5081
5082 attr->size = usize;
5083 }
5084
4efbc454 5085 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
5086 if (ret)
5087 return -EFAULT;
5088
22400674 5089 return 0;
d50dde5a
DF
5090}
5091
5092/**
aab03e05 5093 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 5094 * @pid: the pid in question.
5778fccf 5095 * @uattr: structure containing the extended parameters.
d50dde5a 5096 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 5097 * @flags: for future extension.
d50dde5a 5098 */
6d35ab48
PZ
5099SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
5100 unsigned int, size, unsigned int, flags)
d50dde5a
DF
5101{
5102 struct sched_attr attr = {
5103 .size = sizeof(struct sched_attr),
5104 };
5105 struct task_struct *p;
5106 int retval;
5107
5108 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 5109 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
5110 return -EINVAL;
5111
5112 rcu_read_lock();
5113 p = find_process_by_pid(pid);
5114 retval = -ESRCH;
5115 if (!p)
5116 goto out_unlock;
5117
5118 retval = security_task_getscheduler(p);
5119 if (retval)
5120 goto out_unlock;
5121
5122 attr.sched_policy = p->policy;
7479f3c9
PZ
5123 if (p->sched_reset_on_fork)
5124 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
5125 if (task_has_dl_policy(p))
5126 __getparam_dl(p, &attr);
5127 else if (task_has_rt_policy(p))
d50dde5a
DF
5128 attr.sched_priority = p->rt_priority;
5129 else
d0ea0268 5130 attr.sched_nice = task_nice(p);
d50dde5a 5131
a509a7cd
PB
5132#ifdef CONFIG_UCLAMP_TASK
5133 attr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
5134 attr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
5135#endif
5136
d50dde5a
DF
5137 rcu_read_unlock();
5138
5139 retval = sched_read_attr(uattr, &attr, size);
5140 return retval;
5141
5142out_unlock:
5143 rcu_read_unlock();
5144 return retval;
5145}
5146
96f874e2 5147long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 5148{
5a16f3d3 5149 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
5150 struct task_struct *p;
5151 int retval;
1da177e4 5152
23f5d142 5153 rcu_read_lock();
1da177e4
LT
5154
5155 p = find_process_by_pid(pid);
5156 if (!p) {
23f5d142 5157 rcu_read_unlock();
1da177e4
LT
5158 return -ESRCH;
5159 }
5160
23f5d142 5161 /* Prevent p going away */
1da177e4 5162 get_task_struct(p);
23f5d142 5163 rcu_read_unlock();
1da177e4 5164
14a40ffc
TH
5165 if (p->flags & PF_NO_SETAFFINITY) {
5166 retval = -EINVAL;
5167 goto out_put_task;
5168 }
5a16f3d3
RR
5169 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5170 retval = -ENOMEM;
5171 goto out_put_task;
5172 }
5173 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5174 retval = -ENOMEM;
5175 goto out_free_cpus_allowed;
5176 }
1da177e4 5177 retval = -EPERM;
4c44aaaf
EB
5178 if (!check_same_owner(p)) {
5179 rcu_read_lock();
5180 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
5181 rcu_read_unlock();
16303ab2 5182 goto out_free_new_mask;
4c44aaaf
EB
5183 }
5184 rcu_read_unlock();
5185 }
1da177e4 5186
b0ae1981 5187 retval = security_task_setscheduler(p);
e7834f8f 5188 if (retval)
16303ab2 5189 goto out_free_new_mask;
e7834f8f 5190
e4099a5e
PZ
5191
5192 cpuset_cpus_allowed(p, cpus_allowed);
5193 cpumask_and(new_mask, in_mask, cpus_allowed);
5194
332ac17e
DF
5195 /*
5196 * Since bandwidth control happens on root_domain basis,
5197 * if admission test is enabled, we only admit -deadline
5198 * tasks allowed to run on all the CPUs in the task's
5199 * root_domain.
5200 */
5201#ifdef CONFIG_SMP
f1e3a093
KT
5202 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
5203 rcu_read_lock();
5204 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 5205 retval = -EBUSY;
f1e3a093 5206 rcu_read_unlock();
16303ab2 5207 goto out_free_new_mask;
332ac17e 5208 }
f1e3a093 5209 rcu_read_unlock();
332ac17e
DF
5210 }
5211#endif
49246274 5212again:
25834c73 5213 retval = __set_cpus_allowed_ptr(p, new_mask, true);
1da177e4 5214
8707d8b8 5215 if (!retval) {
5a16f3d3
RR
5216 cpuset_cpus_allowed(p, cpus_allowed);
5217 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
5218 /*
5219 * We must have raced with a concurrent cpuset
5220 * update. Just reset the cpus_allowed to the
5221 * cpuset's cpus_allowed
5222 */
5a16f3d3 5223 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
5224 goto again;
5225 }
5226 }
16303ab2 5227out_free_new_mask:
5a16f3d3
RR
5228 free_cpumask_var(new_mask);
5229out_free_cpus_allowed:
5230 free_cpumask_var(cpus_allowed);
5231out_put_task:
1da177e4 5232 put_task_struct(p);
1da177e4
LT
5233 return retval;
5234}
5235
5236static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 5237 struct cpumask *new_mask)
1da177e4 5238{
96f874e2
RR
5239 if (len < cpumask_size())
5240 cpumask_clear(new_mask);
5241 else if (len > cpumask_size())
5242 len = cpumask_size();
5243
1da177e4
LT
5244 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5245}
5246
5247/**
d1ccc66d 5248 * sys_sched_setaffinity - set the CPU affinity of a process
1da177e4
LT
5249 * @pid: pid of the process
5250 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
d1ccc66d 5251 * @user_mask_ptr: user-space pointer to the new CPU mask
e69f6186
YB
5252 *
5253 * Return: 0 on success. An error code otherwise.
1da177e4 5254 */
5add95d4
HC
5255SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5256 unsigned long __user *, user_mask_ptr)
1da177e4 5257{
5a16f3d3 5258 cpumask_var_t new_mask;
1da177e4
LT
5259 int retval;
5260
5a16f3d3
RR
5261 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5262 return -ENOMEM;
1da177e4 5263
5a16f3d3
RR
5264 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5265 if (retval == 0)
5266 retval = sched_setaffinity(pid, new_mask);
5267 free_cpumask_var(new_mask);
5268 return retval;
1da177e4
LT
5269}
5270
96f874e2 5271long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 5272{
36c8b586 5273 struct task_struct *p;
31605683 5274 unsigned long flags;
1da177e4 5275 int retval;
1da177e4 5276
23f5d142 5277 rcu_read_lock();
1da177e4
LT
5278
5279 retval = -ESRCH;
5280 p = find_process_by_pid(pid);
5281 if (!p)
5282 goto out_unlock;
5283
e7834f8f
DQ
5284 retval = security_task_getscheduler(p);
5285 if (retval)
5286 goto out_unlock;
5287
013fdb80 5288 raw_spin_lock_irqsave(&p->pi_lock, flags);
3bd37062 5289 cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
013fdb80 5290 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5291
5292out_unlock:
23f5d142 5293 rcu_read_unlock();
1da177e4 5294
9531b62f 5295 return retval;
1da177e4
LT
5296}
5297
5298/**
d1ccc66d 5299 * sys_sched_getaffinity - get the CPU affinity of a process
1da177e4
LT
5300 * @pid: pid of the process
5301 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
d1ccc66d 5302 * @user_mask_ptr: user-space pointer to hold the current CPU mask
e69f6186 5303 *
599b4840
ZW
5304 * Return: size of CPU mask copied to user_mask_ptr on success. An
5305 * error code otherwise.
1da177e4 5306 */
5add95d4
HC
5307SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5308 unsigned long __user *, user_mask_ptr)
1da177e4
LT
5309{
5310 int ret;
f17c8607 5311 cpumask_var_t mask;
1da177e4 5312
84fba5ec 5313 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
5314 return -EINVAL;
5315 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
5316 return -EINVAL;
5317
f17c8607
RR
5318 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5319 return -ENOMEM;
1da177e4 5320
f17c8607
RR
5321 ret = sched_getaffinity(pid, mask);
5322 if (ret == 0) {
4de373a1 5323 unsigned int retlen = min(len, cpumask_size());
cd3d8031
KM
5324
5325 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
5326 ret = -EFAULT;
5327 else
cd3d8031 5328 ret = retlen;
f17c8607
RR
5329 }
5330 free_cpumask_var(mask);
1da177e4 5331
f17c8607 5332 return ret;
1da177e4
LT
5333}
5334
5335/**
5336 * sys_sched_yield - yield the current processor to other threads.
5337 *
dd41f596
IM
5338 * This function yields the current CPU to other tasks. If there are no
5339 * other threads running on this CPU then this function will return.
e69f6186
YB
5340 *
5341 * Return: 0.
1da177e4 5342 */
7d4dd4f1 5343static void do_sched_yield(void)
1da177e4 5344{
8a8c69c3
PZ
5345 struct rq_flags rf;
5346 struct rq *rq;
5347
246b3b33 5348 rq = this_rq_lock_irq(&rf);
1da177e4 5349
ae92882e 5350 schedstat_inc(rq->yld_count);
4530d7ab 5351 current->sched_class->yield_task(rq);
1da177e4
LT
5352
5353 /*
5354 * Since we are going to call schedule() anyway, there's
5355 * no need to preempt or enable interrupts:
5356 */
8a8c69c3
PZ
5357 preempt_disable();
5358 rq_unlock(rq, &rf);
ba74c144 5359 sched_preempt_enable_no_resched();
1da177e4
LT
5360
5361 schedule();
7d4dd4f1 5362}
1da177e4 5363
7d4dd4f1
DB
5364SYSCALL_DEFINE0(sched_yield)
5365{
5366 do_sched_yield();
1da177e4
LT
5367 return 0;
5368}
5369
35a773a0 5370#ifndef CONFIG_PREEMPT
02b67cc3 5371int __sched _cond_resched(void)
1da177e4 5372{
fe32d3cd 5373 if (should_resched(0)) {
a18b5d01 5374 preempt_schedule_common();
1da177e4
LT
5375 return 1;
5376 }
f79c3ad6 5377 rcu_all_qs();
1da177e4
LT
5378 return 0;
5379}
02b67cc3 5380EXPORT_SYMBOL(_cond_resched);
35a773a0 5381#endif
1da177e4
LT
5382
5383/*
613afbf8 5384 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
5385 * call schedule, and on return reacquire the lock.
5386 *
41a2d6cf 5387 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5388 * operations here to prevent schedule() from being called twice (once via
5389 * spin_unlock(), once by hand).
5390 */
613afbf8 5391int __cond_resched_lock(spinlock_t *lock)
1da177e4 5392{
fe32d3cd 5393 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6df3cecb
JK
5394 int ret = 0;
5395
f607c668
PZ
5396 lockdep_assert_held(lock);
5397
4a81e832 5398 if (spin_needbreak(lock) || resched) {
1da177e4 5399 spin_unlock(lock);
d86ee480 5400 if (resched)
a18b5d01 5401 preempt_schedule_common();
95c354fe
NP
5402 else
5403 cpu_relax();
6df3cecb 5404 ret = 1;
1da177e4 5405 spin_lock(lock);
1da177e4 5406 }
6df3cecb 5407 return ret;
1da177e4 5408}
613afbf8 5409EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 5410
1da177e4
LT
5411/**
5412 * yield - yield the current processor to other threads.
5413 *
8e3fabfd
PZ
5414 * Do not ever use this function, there's a 99% chance you're doing it wrong.
5415 *
5416 * The scheduler is at all times free to pick the calling task as the most
5417 * eligible task to run, if removing the yield() call from your code breaks
5418 * it, its already broken.
5419 *
5420 * Typical broken usage is:
5421 *
5422 * while (!event)
d1ccc66d 5423 * yield();
8e3fabfd
PZ
5424 *
5425 * where one assumes that yield() will let 'the other' process run that will
5426 * make event true. If the current task is a SCHED_FIFO task that will never
5427 * happen. Never use yield() as a progress guarantee!!
5428 *
5429 * If you want to use yield() to wait for something, use wait_event().
5430 * If you want to use yield() to be 'nice' for others, use cond_resched().
5431 * If you still want to use yield(), do not!
1da177e4
LT
5432 */
5433void __sched yield(void)
5434{
5435 set_current_state(TASK_RUNNING);
7d4dd4f1 5436 do_sched_yield();
1da177e4 5437}
1da177e4
LT
5438EXPORT_SYMBOL(yield);
5439
d95f4122
MG
5440/**
5441 * yield_to - yield the current processor to another thread in
5442 * your thread group, or accelerate that thread toward the
5443 * processor it's on.
16addf95
RD
5444 * @p: target task
5445 * @preempt: whether task preemption is allowed or not
d95f4122
MG
5446 *
5447 * It's the caller's job to ensure that the target task struct
5448 * can't go away on us before we can do any checks.
5449 *
e69f6186 5450 * Return:
7b270f60
PZ
5451 * true (>0) if we indeed boosted the target task.
5452 * false (0) if we failed to boost the target.
5453 * -ESRCH if there's no task to yield to.
d95f4122 5454 */
fa93384f 5455int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
5456{
5457 struct task_struct *curr = current;
5458 struct rq *rq, *p_rq;
5459 unsigned long flags;
c3c18640 5460 int yielded = 0;
d95f4122
MG
5461
5462 local_irq_save(flags);
5463 rq = this_rq();
5464
5465again:
5466 p_rq = task_rq(p);
7b270f60
PZ
5467 /*
5468 * If we're the only runnable task on the rq and target rq also
5469 * has only one task, there's absolutely no point in yielding.
5470 */
5471 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5472 yielded = -ESRCH;
5473 goto out_irq;
5474 }
5475
d95f4122 5476 double_rq_lock(rq, p_rq);
39e24d8f 5477 if (task_rq(p) != p_rq) {
d95f4122
MG
5478 double_rq_unlock(rq, p_rq);
5479 goto again;
5480 }
5481
5482 if (!curr->sched_class->yield_to_task)
7b270f60 5483 goto out_unlock;
d95f4122
MG
5484
5485 if (curr->sched_class != p->sched_class)
7b270f60 5486 goto out_unlock;
d95f4122
MG
5487
5488 if (task_running(p_rq, p) || p->state)
7b270f60 5489 goto out_unlock;
d95f4122
MG
5490
5491 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 5492 if (yielded) {
ae92882e 5493 schedstat_inc(rq->yld_count);
6d1cafd8
VP
5494 /*
5495 * Make p's CPU reschedule; pick_next_entity takes care of
5496 * fairness.
5497 */
5498 if (preempt && rq != p_rq)
8875125e 5499 resched_curr(p_rq);
6d1cafd8 5500 }
d95f4122 5501
7b270f60 5502out_unlock:
d95f4122 5503 double_rq_unlock(rq, p_rq);
7b270f60 5504out_irq:
d95f4122
MG
5505 local_irq_restore(flags);
5506
7b270f60 5507 if (yielded > 0)
d95f4122
MG
5508 schedule();
5509
5510 return yielded;
5511}
5512EXPORT_SYMBOL_GPL(yield_to);
5513
10ab5643
TH
5514int io_schedule_prepare(void)
5515{
5516 int old_iowait = current->in_iowait;
5517
5518 current->in_iowait = 1;
5519 blk_schedule_flush_plug(current);
5520
5521 return old_iowait;
5522}
5523
5524void io_schedule_finish(int token)
5525{
5526 current->in_iowait = token;
5527}
5528
1da177e4 5529/*
41a2d6cf 5530 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5531 * that process accounting knows that this is a task in IO wait state.
1da177e4 5532 */
1da177e4
LT
5533long __sched io_schedule_timeout(long timeout)
5534{
10ab5643 5535 int token;
1da177e4
LT
5536 long ret;
5537
10ab5643 5538 token = io_schedule_prepare();
1da177e4 5539 ret = schedule_timeout(timeout);
10ab5643 5540 io_schedule_finish(token);
9cff8ade 5541
1da177e4
LT
5542 return ret;
5543}
9cff8ade 5544EXPORT_SYMBOL(io_schedule_timeout);
1da177e4 5545
e3b929b0 5546void __sched io_schedule(void)
10ab5643
TH
5547{
5548 int token;
5549
5550 token = io_schedule_prepare();
5551 schedule();
5552 io_schedule_finish(token);
5553}
5554EXPORT_SYMBOL(io_schedule);
5555
1da177e4
LT
5556/**
5557 * sys_sched_get_priority_max - return maximum RT priority.
5558 * @policy: scheduling class.
5559 *
e69f6186
YB
5560 * Return: On success, this syscall returns the maximum
5561 * rt_priority that can be used by a given scheduling class.
5562 * On failure, a negative error code is returned.
1da177e4 5563 */
5add95d4 5564SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5565{
5566 int ret = -EINVAL;
5567
5568 switch (policy) {
5569 case SCHED_FIFO:
5570 case SCHED_RR:
5571 ret = MAX_USER_RT_PRIO-1;
5572 break;
aab03e05 5573 case SCHED_DEADLINE:
1da177e4 5574 case SCHED_NORMAL:
b0a9499c 5575 case SCHED_BATCH:
dd41f596 5576 case SCHED_IDLE:
1da177e4
LT
5577 ret = 0;
5578 break;
5579 }
5580 return ret;
5581}
5582
5583/**
5584 * sys_sched_get_priority_min - return minimum RT priority.
5585 * @policy: scheduling class.
5586 *
e69f6186
YB
5587 * Return: On success, this syscall returns the minimum
5588 * rt_priority that can be used by a given scheduling class.
5589 * On failure, a negative error code is returned.
1da177e4 5590 */
5add95d4 5591SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5592{
5593 int ret = -EINVAL;
5594
5595 switch (policy) {
5596 case SCHED_FIFO:
5597 case SCHED_RR:
5598 ret = 1;
5599 break;
aab03e05 5600 case SCHED_DEADLINE:
1da177e4 5601 case SCHED_NORMAL:
b0a9499c 5602 case SCHED_BATCH:
dd41f596 5603 case SCHED_IDLE:
1da177e4
LT
5604 ret = 0;
5605 }
5606 return ret;
5607}
5608
abca5fc5 5609static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
1da177e4 5610{
36c8b586 5611 struct task_struct *p;
a4ec24b4 5612 unsigned int time_slice;
eb580751 5613 struct rq_flags rf;
dba091b9 5614 struct rq *rq;
3a5c359a 5615 int retval;
1da177e4
LT
5616
5617 if (pid < 0)
3a5c359a 5618 return -EINVAL;
1da177e4
LT
5619
5620 retval = -ESRCH;
1a551ae7 5621 rcu_read_lock();
1da177e4
LT
5622 p = find_process_by_pid(pid);
5623 if (!p)
5624 goto out_unlock;
5625
5626 retval = security_task_getscheduler(p);
5627 if (retval)
5628 goto out_unlock;
5629
eb580751 5630 rq = task_rq_lock(p, &rf);
a57beec5
PZ
5631 time_slice = 0;
5632 if (p->sched_class->get_rr_interval)
5633 time_slice = p->sched_class->get_rr_interval(rq, p);
eb580751 5634 task_rq_unlock(rq, p, &rf);
a4ec24b4 5635
1a551ae7 5636 rcu_read_unlock();
abca5fc5
AV
5637 jiffies_to_timespec64(time_slice, t);
5638 return 0;
3a5c359a 5639
1da177e4 5640out_unlock:
1a551ae7 5641 rcu_read_unlock();
1da177e4
LT
5642 return retval;
5643}
5644
2064a5ab
RD
5645/**
5646 * sys_sched_rr_get_interval - return the default timeslice of a process.
5647 * @pid: pid of the process.
5648 * @interval: userspace pointer to the timeslice value.
5649 *
5650 * this syscall writes the default timeslice value of a given process
5651 * into the user-space timespec buffer. A value of '0' means infinity.
5652 *
5653 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5654 * an error code.
5655 */
abca5fc5 5656SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
474b9c77 5657 struct __kernel_timespec __user *, interval)
abca5fc5
AV
5658{
5659 struct timespec64 t;
5660 int retval = sched_rr_get_interval(pid, &t);
5661
5662 if (retval == 0)
5663 retval = put_timespec64(&t, interval);
5664
5665 return retval;
5666}
5667
474b9c77 5668#ifdef CONFIG_COMPAT_32BIT_TIME
8dabe724
AB
5669SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
5670 struct old_timespec32 __user *, interval)
abca5fc5
AV
5671{
5672 struct timespec64 t;
5673 int retval = sched_rr_get_interval(pid, &t);
5674
5675 if (retval == 0)
9afc5eee 5676 retval = put_old_timespec32(&t, interval);
abca5fc5
AV
5677 return retval;
5678}
5679#endif
5680
82a1fcb9 5681void sched_show_task(struct task_struct *p)
1da177e4 5682{
1da177e4 5683 unsigned long free = 0;
4e79752c 5684 int ppid;
c930b2c0 5685
38200502
TH
5686 if (!try_get_task_stack(p))
5687 return;
20435d84
XX
5688
5689 printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));
5690
5691 if (p->state == TASK_RUNNING)
3df0fc5b 5692 printk(KERN_CONT " running task ");
1da177e4 5693#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5694 free = stack_not_used(p);
1da177e4 5695#endif
a90e984c 5696 ppid = 0;
4e79752c 5697 rcu_read_lock();
a90e984c
ON
5698 if (pid_alive(p))
5699 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 5700 rcu_read_unlock();
3df0fc5b 5701 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 5702 task_pid_nr(p), ppid,
aa47b7e0 5703 (unsigned long)task_thread_info(p)->flags);
1da177e4 5704
3d1cb205 5705 print_worker_info(KERN_INFO, p);
5fb5e6de 5706 show_stack(p, NULL);
38200502 5707 put_task_stack(p);
1da177e4 5708}
0032f4e8 5709EXPORT_SYMBOL_GPL(sched_show_task);
1da177e4 5710
5d68cc95
PZ
5711static inline bool
5712state_filter_match(unsigned long state_filter, struct task_struct *p)
5713{
5714 /* no filter, everything matches */
5715 if (!state_filter)
5716 return true;
5717
5718 /* filter, but doesn't match */
5719 if (!(p->state & state_filter))
5720 return false;
5721
5722 /*
5723 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
5724 * TASK_KILLABLE).
5725 */
5726 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
5727 return false;
5728
5729 return true;
5730}
5731
5732
e59e2ae2 5733void show_state_filter(unsigned long state_filter)
1da177e4 5734{
36c8b586 5735 struct task_struct *g, *p;
1da177e4 5736
4bd77321 5737#if BITS_PER_LONG == 32
3df0fc5b
PZ
5738 printk(KERN_INFO
5739 " task PC stack pid father\n");
1da177e4 5740#else
3df0fc5b
PZ
5741 printk(KERN_INFO
5742 " task PC stack pid father\n");
1da177e4 5743#endif
510f5acc 5744 rcu_read_lock();
5d07f420 5745 for_each_process_thread(g, p) {
1da177e4
LT
5746 /*
5747 * reset the NMI-timeout, listing all files on a slow
25985edc 5748 * console might take a lot of time:
57675cb9
AR
5749 * Also, reset softlockup watchdogs on all CPUs, because
5750 * another CPU might be blocked waiting for us to process
5751 * an IPI.
1da177e4
LT
5752 */
5753 touch_nmi_watchdog();
57675cb9 5754 touch_all_softlockup_watchdogs();
5d68cc95 5755 if (state_filter_match(state_filter, p))
82a1fcb9 5756 sched_show_task(p);
5d07f420 5757 }
1da177e4 5758
dd41f596 5759#ifdef CONFIG_SCHED_DEBUG
fb90a6e9
RV
5760 if (!state_filter)
5761 sysrq_sched_debug_show();
dd41f596 5762#endif
510f5acc 5763 rcu_read_unlock();
e59e2ae2
IM
5764 /*
5765 * Only show locks if all tasks are dumped:
5766 */
93335a21 5767 if (!state_filter)
e59e2ae2 5768 debug_show_all_locks();
1da177e4
LT
5769}
5770
f340c0d1
IM
5771/**
5772 * init_idle - set up an idle thread for a given CPU
5773 * @idle: task in question
d1ccc66d 5774 * @cpu: CPU the idle task belongs to
f340c0d1
IM
5775 *
5776 * NOTE: this function does not set the idle thread's NEED_RESCHED
5777 * flag, to make booting more robust.
5778 */
0db0628d 5779void init_idle(struct task_struct *idle, int cpu)
1da177e4 5780{
70b97a7f 5781 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5782 unsigned long flags;
5783
25834c73
PZ
5784 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5785 raw_spin_lock(&rq->lock);
5cbd54ef 5786
5e1576ed 5787 __sched_fork(0, idle);
06b83b5f 5788 idle->state = TASK_RUNNING;
dd41f596 5789 idle->se.exec_start = sched_clock();
c1de45ca 5790 idle->flags |= PF_IDLE;
dd41f596 5791
e1b77c92
MR
5792 kasan_unpoison_task_stack(idle);
5793
de9b8f5d
PZ
5794#ifdef CONFIG_SMP
5795 /*
5796 * Its possible that init_idle() gets called multiple times on a task,
5797 * in that case do_set_cpus_allowed() will not do the right thing.
5798 *
5799 * And since this is boot we can forgo the serialization.
5800 */
5801 set_cpus_allowed_common(idle, cpumask_of(cpu));
5802#endif
6506cf6c
PZ
5803 /*
5804 * We're having a chicken and egg problem, even though we are
d1ccc66d 5805 * holding rq->lock, the CPU isn't yet set to this CPU so the
6506cf6c
PZ
5806 * lockdep check in task_group() will fail.
5807 *
5808 * Similar case to sched_fork(). / Alternatively we could
5809 * use task_rq_lock() here and obtain the other rq->lock.
5810 *
5811 * Silence PROVE_RCU
5812 */
5813 rcu_read_lock();
dd41f596 5814 __set_task_cpu(idle, cpu);
6506cf6c 5815 rcu_read_unlock();
1da177e4 5816
1da177e4 5817 rq->curr = rq->idle = idle;
da0c1e65 5818 idle->on_rq = TASK_ON_RQ_QUEUED;
de9b8f5d 5819#ifdef CONFIG_SMP
3ca7a440 5820 idle->on_cpu = 1;
4866cde0 5821#endif
25834c73
PZ
5822 raw_spin_unlock(&rq->lock);
5823 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
1da177e4
LT
5824
5825 /* Set the preempt count _outside_ the spinlocks! */
01028747 5826 init_idle_preempt_count(idle, cpu);
55cd5340 5827
dd41f596
IM
5828 /*
5829 * The idle tasks have their own, simple scheduling class:
5830 */
5831 idle->sched_class = &idle_sched_class;
868baf07 5832 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 5833 vtime_init_idle(idle, cpu);
de9b8f5d 5834#ifdef CONFIG_SMP
f1c6f1a7
CE
5835 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5836#endif
19978ca6
IM
5837}
5838
e1d4eeec
NP
5839#ifdef CONFIG_SMP
5840
f82f8042
JL
5841int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5842 const struct cpumask *trial)
5843{
06a76fe0 5844 int ret = 1;
f82f8042 5845
bb2bc55a
MG
5846 if (!cpumask_weight(cur))
5847 return ret;
5848
06a76fe0 5849 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
f82f8042
JL
5850
5851 return ret;
5852}
5853
7f51412a
JL
5854int task_can_attach(struct task_struct *p,
5855 const struct cpumask *cs_cpus_allowed)
5856{
5857 int ret = 0;
5858
5859 /*
5860 * Kthreads which disallow setaffinity shouldn't be moved
d1ccc66d 5861 * to a new cpuset; we don't want to change their CPU
7f51412a
JL
5862 * affinity and isolating such threads by their set of
5863 * allowed nodes is unnecessary. Thus, cpusets are not
5864 * applicable for such threads. This prevents checking for
5865 * success of set_cpus_allowed_ptr() on all attached tasks
3bd37062 5866 * before cpus_mask may be changed.
7f51412a
JL
5867 */
5868 if (p->flags & PF_NO_SETAFFINITY) {
5869 ret = -EINVAL;
5870 goto out;
5871 }
5872
7f51412a 5873 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
06a76fe0
NP
5874 cs_cpus_allowed))
5875 ret = dl_task_can_attach(p, cs_cpus_allowed);
7f51412a 5876
7f51412a
JL
5877out:
5878 return ret;
5879}
5880
f2cb1360 5881bool sched_smp_initialized __read_mostly;
e26fbffd 5882
e6628d5b
MG
5883#ifdef CONFIG_NUMA_BALANCING
5884/* Migrate current task p to target_cpu */
5885int migrate_task_to(struct task_struct *p, int target_cpu)
5886{
5887 struct migration_arg arg = { p, target_cpu };
5888 int curr_cpu = task_cpu(p);
5889
5890 if (curr_cpu == target_cpu)
5891 return 0;
5892
3bd37062 5893 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
e6628d5b
MG
5894 return -EINVAL;
5895
5896 /* TODO: This is not properly updating schedstats */
5897
286549dc 5898 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
5899 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5900}
0ec8aa00
PZ
5901
5902/*
5903 * Requeue a task on a given node and accurately track the number of NUMA
5904 * tasks on the runqueues
5905 */
5906void sched_setnuma(struct task_struct *p, int nid)
5907{
da0c1e65 5908 bool queued, running;
eb580751
PZ
5909 struct rq_flags rf;
5910 struct rq *rq;
0ec8aa00 5911
eb580751 5912 rq = task_rq_lock(p, &rf);
da0c1e65 5913 queued = task_on_rq_queued(p);
0ec8aa00
PZ
5914 running = task_current(rq, p);
5915
da0c1e65 5916 if (queued)
1de64443 5917 dequeue_task(rq, p, DEQUEUE_SAVE);
0ec8aa00 5918 if (running)
f3cd1c4e 5919 put_prev_task(rq, p);
0ec8aa00
PZ
5920
5921 p->numa_preferred_nid = nid;
0ec8aa00 5922
da0c1e65 5923 if (queued)
7134b3e9 5924 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
a399d233 5925 if (running)
b2bf6c31 5926 set_curr_task(rq, p);
eb580751 5927 task_rq_unlock(rq, p, &rf);
0ec8aa00 5928}
5cc389bc 5929#endif /* CONFIG_NUMA_BALANCING */
f7b4cddc 5930
1da177e4 5931#ifdef CONFIG_HOTPLUG_CPU
054b9108 5932/*
d1ccc66d 5933 * Ensure that the idle task is using init_mm right before its CPU goes
48c5ccae 5934 * offline.
054b9108 5935 */
48c5ccae 5936void idle_task_exit(void)
1da177e4 5937{
48c5ccae 5938 struct mm_struct *mm = current->active_mm;
e76bd8d9 5939
48c5ccae 5940 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 5941
a53efe5f 5942 if (mm != &init_mm) {
252d2a41 5943 switch_mm(mm, &init_mm, current);
3eda69c9 5944 current->active_mm = &init_mm;
a53efe5f
MS
5945 finish_arch_post_lock_switch();
5946 }
48c5ccae 5947 mmdrop(mm);
1da177e4
LT
5948}
5949
5950/*
5d180232
PZ
5951 * Since this CPU is going 'away' for a while, fold any nr_active delta
5952 * we might have. Assumes we're called after migrate_tasks() so that the
d60585c5
TG
5953 * nr_active count is stable. We need to take the teardown thread which
5954 * is calling this into account, so we hand in adjust = 1 to the load
5955 * calculation.
5d180232
PZ
5956 *
5957 * Also see the comment "Global load-average calculations".
1da177e4 5958 */
5d180232 5959static void calc_load_migrate(struct rq *rq)
1da177e4 5960{
d60585c5 5961 long delta = calc_load_fold_active(rq, 1);
5d180232
PZ
5962 if (delta)
5963 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
5964}
5965
3f1d2a31
PZ
5966static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5967{
5968}
5969
5970static const struct sched_class fake_sched_class = {
5971 .put_prev_task = put_prev_task_fake,
5972};
5973
5974static struct task_struct fake_task = {
5975 /*
5976 * Avoid pull_{rt,dl}_task()
5977 */
5978 .prio = MAX_PRIO + 1,
5979 .sched_class = &fake_sched_class,
5980};
5981
48f24c4d 5982/*
48c5ccae
PZ
5983 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5984 * try_to_wake_up()->select_task_rq().
5985 *
5986 * Called with rq->lock held even though we'er in stop_machine() and
5987 * there's no concurrency possible, we hold the required locks anyway
5988 * because of lock validation efforts.
1da177e4 5989 */
8a8c69c3 5990static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
1da177e4 5991{
5e16bbc2 5992 struct rq *rq = dead_rq;
48c5ccae 5993 struct task_struct *next, *stop = rq->stop;
8a8c69c3 5994 struct rq_flags orf = *rf;
48c5ccae 5995 int dest_cpu;
1da177e4
LT
5996
5997 /*
48c5ccae
PZ
5998 * Fudge the rq selection such that the below task selection loop
5999 * doesn't get stuck on the currently eligible stop task.
6000 *
6001 * We're currently inside stop_machine() and the rq is either stuck
6002 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6003 * either way we should never end up calling schedule() until we're
6004 * done here.
1da177e4 6005 */
48c5ccae 6006 rq->stop = NULL;
48f24c4d 6007
77bd3970
FW
6008 /*
6009 * put_prev_task() and pick_next_task() sched
6010 * class method both need to have an up-to-date
6011 * value of rq->clock[_task]
6012 */
6013 update_rq_clock(rq);
6014
5e16bbc2 6015 for (;;) {
48c5ccae
PZ
6016 /*
6017 * There's this thread running, bail when that's the only
d1ccc66d 6018 * remaining thread:
48c5ccae
PZ
6019 */
6020 if (rq->nr_running == 1)
dd41f596 6021 break;
48c5ccae 6022
cbce1a68 6023 /*
d1ccc66d 6024 * pick_next_task() assumes pinned rq->lock:
cbce1a68 6025 */
8a8c69c3 6026 next = pick_next_task(rq, &fake_task, rf);
48c5ccae 6027 BUG_ON(!next);
5b713a3d 6028 put_prev_task(rq, next);
e692ab53 6029
5473e0cc 6030 /*
3bd37062 6031 * Rules for changing task_struct::cpus_mask are holding
5473e0cc
WL
6032 * both pi_lock and rq->lock, such that holding either
6033 * stabilizes the mask.
6034 *
6035 * Drop rq->lock is not quite as disastrous as it usually is
6036 * because !cpu_active at this point, which means load-balance
6037 * will not interfere. Also, stop-machine.
6038 */
8a8c69c3 6039 rq_unlock(rq, rf);
5473e0cc 6040 raw_spin_lock(&next->pi_lock);
8a8c69c3 6041 rq_relock(rq, rf);
5473e0cc
WL
6042
6043 /*
6044 * Since we're inside stop-machine, _nothing_ should have
6045 * changed the task, WARN if weird stuff happened, because in
6046 * that case the above rq->lock drop is a fail too.
6047 */
6048 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
6049 raw_spin_unlock(&next->pi_lock);
6050 continue;
6051 }
6052
48c5ccae 6053 /* Find suitable destination for @next, with force if needed. */
5e16bbc2 6054 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
8a8c69c3 6055 rq = __migrate_task(rq, rf, next, dest_cpu);
5e16bbc2 6056 if (rq != dead_rq) {
8a8c69c3 6057 rq_unlock(rq, rf);
5e16bbc2 6058 rq = dead_rq;
8a8c69c3
PZ
6059 *rf = orf;
6060 rq_relock(rq, rf);
5e16bbc2 6061 }
5473e0cc 6062 raw_spin_unlock(&next->pi_lock);
1da177e4 6063 }
dce48a84 6064
48c5ccae 6065 rq->stop = stop;
dce48a84 6066}
1da177e4
LT
6067#endif /* CONFIG_HOTPLUG_CPU */
6068
f2cb1360 6069void set_rq_online(struct rq *rq)
1f11eb6a
GH
6070{
6071 if (!rq->online) {
6072 const struct sched_class *class;
6073
c6c4927b 6074 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6075 rq->online = 1;
6076
6077 for_each_class(class) {
6078 if (class->rq_online)
6079 class->rq_online(rq);
6080 }
6081 }
6082}
6083
f2cb1360 6084void set_rq_offline(struct rq *rq)
1f11eb6a
GH
6085{
6086 if (rq->online) {
6087 const struct sched_class *class;
6088
6089 for_each_class(class) {
6090 if (class->rq_offline)
6091 class->rq_offline(rq);
6092 }
6093
c6c4927b 6094 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6095 rq->online = 0;
6096 }
6097}
6098
d1ccc66d
IM
6099/*
6100 * used to mark begin/end of suspend/resume:
6101 */
6102static int num_cpus_frozen;
d35be8ba 6103
1da177e4 6104/*
3a101d05
TH
6105 * Update cpusets according to cpu_active mask. If cpusets are
6106 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6107 * around partition_sched_domains().
d35be8ba
SB
6108 *
6109 * If we come here as part of a suspend/resume, don't touch cpusets because we
6110 * want to restore it back to its original state upon resume anyway.
1da177e4 6111 */
40190a78 6112static void cpuset_cpu_active(void)
e761b772 6113{
40190a78 6114 if (cpuhp_tasks_frozen) {
d35be8ba
SB
6115 /*
6116 * num_cpus_frozen tracks how many CPUs are involved in suspend
6117 * resume sequence. As long as this is not the last online
6118 * operation in the resume sequence, just build a single sched
6119 * domain, ignoring cpusets.
6120 */
50e76632
PZ
6121 partition_sched_domains(1, NULL, NULL);
6122 if (--num_cpus_frozen)
135fb3e1 6123 return;
d35be8ba
SB
6124 /*
6125 * This is the last CPU online operation. So fall through and
6126 * restore the original sched domains by considering the
6127 * cpuset configurations.
6128 */
50e76632 6129 cpuset_force_rebuild();
3a101d05 6130 }
30e03acd 6131 cpuset_update_active_cpus();
3a101d05 6132}
e761b772 6133
40190a78 6134static int cpuset_cpu_inactive(unsigned int cpu)
3a101d05 6135{
40190a78 6136 if (!cpuhp_tasks_frozen) {
06a76fe0 6137 if (dl_cpu_busy(cpu))
135fb3e1 6138 return -EBUSY;
30e03acd 6139 cpuset_update_active_cpus();
135fb3e1 6140 } else {
d35be8ba
SB
6141 num_cpus_frozen++;
6142 partition_sched_domains(1, NULL, NULL);
e761b772 6143 }
135fb3e1 6144 return 0;
e761b772 6145}
e761b772 6146
40190a78 6147int sched_cpu_activate(unsigned int cpu)
135fb3e1 6148{
7d976699 6149 struct rq *rq = cpu_rq(cpu);
8a8c69c3 6150 struct rq_flags rf;
7d976699 6151
ba2591a5
PZ
6152#ifdef CONFIG_SCHED_SMT
6153 /*
c5511d03 6154 * When going up, increment the number of cores with SMT present.
ba2591a5 6155 */
c5511d03
PZI
6156 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6157 static_branch_inc_cpuslocked(&sched_smt_present);
ba2591a5 6158#endif
40190a78 6159 set_cpu_active(cpu, true);
135fb3e1 6160
40190a78 6161 if (sched_smp_initialized) {
135fb3e1 6162 sched_domains_numa_masks_set(cpu);
40190a78 6163 cpuset_cpu_active();
e761b772 6164 }
7d976699
TG
6165
6166 /*
6167 * Put the rq online, if not already. This happens:
6168 *
6169 * 1) In the early boot process, because we build the real domains
d1ccc66d 6170 * after all CPUs have been brought up.
7d976699
TG
6171 *
6172 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
6173 * domains.
6174 */
8a8c69c3 6175 rq_lock_irqsave(rq, &rf);
7d976699
TG
6176 if (rq->rd) {
6177 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6178 set_rq_online(rq);
6179 }
8a8c69c3 6180 rq_unlock_irqrestore(rq, &rf);
7d976699
TG
6181
6182 update_max_interval();
6183
40190a78 6184 return 0;
135fb3e1
TG
6185}
6186
40190a78 6187int sched_cpu_deactivate(unsigned int cpu)
135fb3e1 6188{
135fb3e1
TG
6189 int ret;
6190
40190a78 6191 set_cpu_active(cpu, false);
b2454caa
PZ
6192 /*
6193 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
6194 * users of this state to go away such that all new such users will
6195 * observe it.
6196 *
b2454caa
PZ
6197 * Do sync before park smpboot threads to take care the rcu boost case.
6198 */
309ba859 6199 synchronize_rcu();
40190a78 6200
c5511d03
PZI
6201#ifdef CONFIG_SCHED_SMT
6202 /*
6203 * When going down, decrement the number of cores with SMT present.
6204 */
6205 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6206 static_branch_dec_cpuslocked(&sched_smt_present);
6207#endif
6208
40190a78
TG
6209 if (!sched_smp_initialized)
6210 return 0;
6211
6212 ret = cpuset_cpu_inactive(cpu);
6213 if (ret) {
6214 set_cpu_active(cpu, true);
6215 return ret;
135fb3e1 6216 }
40190a78
TG
6217 sched_domains_numa_masks_clear(cpu);
6218 return 0;
135fb3e1
TG
6219}
6220
94baf7a5
TG
6221static void sched_rq_cpu_starting(unsigned int cpu)
6222{
6223 struct rq *rq = cpu_rq(cpu);
6224
6225 rq->calc_load_update = calc_load_update;
94baf7a5
TG
6226 update_max_interval();
6227}
6228
135fb3e1
TG
6229int sched_cpu_starting(unsigned int cpu)
6230{
94baf7a5 6231 sched_rq_cpu_starting(cpu);
d84b3131 6232 sched_tick_start(cpu);
135fb3e1 6233 return 0;
e761b772 6234}
e761b772 6235
f2785ddb
TG
6236#ifdef CONFIG_HOTPLUG_CPU
6237int sched_cpu_dying(unsigned int cpu)
6238{
6239 struct rq *rq = cpu_rq(cpu);
8a8c69c3 6240 struct rq_flags rf;
f2785ddb
TG
6241
6242 /* Handle pending wakeups and then migrate everything off */
6243 sched_ttwu_pending();
d84b3131 6244 sched_tick_stop(cpu);
8a8c69c3
PZ
6245
6246 rq_lock_irqsave(rq, &rf);
f2785ddb
TG
6247 if (rq->rd) {
6248 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6249 set_rq_offline(rq);
6250 }
8a8c69c3 6251 migrate_tasks(rq, &rf);
f2785ddb 6252 BUG_ON(rq->nr_running != 1);
8a8c69c3
PZ
6253 rq_unlock_irqrestore(rq, &rf);
6254
f2785ddb
TG
6255 calc_load_migrate(rq);
6256 update_max_interval();
00357f5e 6257 nohz_balance_exit_idle(rq);
e5ef27d0 6258 hrtick_clear(rq);
f2785ddb
TG
6259 return 0;
6260}
6261#endif
6262
1da177e4
LT
6263void __init sched_init_smp(void)
6264{
cb83b629
PZ
6265 sched_init_numa();
6266
6acce3ef
PZ
6267 /*
6268 * There's no userspace yet to cause hotplug operations; hence all the
d1ccc66d 6269 * CPU masks are stable and all blatant races in the below code cannot
b5a4e2bb 6270 * happen.
6acce3ef 6271 */
712555ee 6272 mutex_lock(&sched_domains_mutex);
8d5dc512 6273 sched_init_domains(cpu_active_mask);
712555ee 6274 mutex_unlock(&sched_domains_mutex);
e761b772 6275
5c1e1767 6276 /* Move init over to a non-isolated CPU */
edb93821 6277 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
5c1e1767 6278 BUG();
19978ca6 6279 sched_init_granularity();
4212823f 6280
0e3900e6 6281 init_sched_rt_class();
1baca4ce 6282 init_sched_dl_class();
1b568f0a 6283
e26fbffd 6284 sched_smp_initialized = true;
1da177e4 6285}
e26fbffd
TG
6286
6287static int __init migration_init(void)
6288{
77a5352b 6289 sched_cpu_starting(smp_processor_id());
e26fbffd 6290 return 0;
1da177e4 6291}
e26fbffd
TG
6292early_initcall(migration_init);
6293
1da177e4
LT
6294#else
6295void __init sched_init_smp(void)
6296{
19978ca6 6297 sched_init_granularity();
1da177e4
LT
6298}
6299#endif /* CONFIG_SMP */
6300
6301int in_sched_functions(unsigned long addr)
6302{
1da177e4
LT
6303 return in_lock_functions(addr) ||
6304 (addr >= (unsigned long)__sched_text_start
6305 && addr < (unsigned long)__sched_text_end);
6306}
6307
029632fb 6308#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
6309/*
6310 * Default task group.
6311 * Every task in system belongs to this group at bootup.
6312 */
029632fb 6313struct task_group root_task_group;
35cf4e50 6314LIST_HEAD(task_groups);
b0367629
WL
6315
6316/* Cacheline aligned slab cache for task_group */
6317static struct kmem_cache *task_group_cache __read_mostly;
052f1dc7 6318#endif
6f505b16 6319
e6252c3e 6320DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
10e2f1ac 6321DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
6f505b16 6322
1da177e4
LT
6323void __init sched_init(void)
6324{
434d53b0 6325 unsigned long alloc_size = 0, ptr;
55627e3c 6326 int i;
434d53b0 6327
5822a454 6328 wait_bit_init();
9dcb8b68 6329
434d53b0
MT
6330#ifdef CONFIG_FAIR_GROUP_SCHED
6331 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6332#endif
6333#ifdef CONFIG_RT_GROUP_SCHED
6334 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6335#endif
434d53b0 6336 if (alloc_size) {
36b7b6d4 6337 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
6338
6339#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 6340 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
6341 ptr += nr_cpu_ids * sizeof(void **);
6342
07e06b01 6343 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 6344 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 6345
6d6bc0ad 6346#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 6347#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6348 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
6349 ptr += nr_cpu_ids * sizeof(void **);
6350
07e06b01 6351 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
6352 ptr += nr_cpu_ids * sizeof(void **);
6353
6d6bc0ad 6354#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 6355 }
df7c8e84 6356#ifdef CONFIG_CPUMASK_OFFSTACK
b74e6278
AT
6357 for_each_possible_cpu(i) {
6358 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
6359 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
10e2f1ac
PZ
6360 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
6361 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
434d53b0 6362 }
b74e6278 6363#endif /* CONFIG_CPUMASK_OFFSTACK */
dd41f596 6364
d1ccc66d
IM
6365 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
6366 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
332ac17e 6367
57d885fe
GH
6368#ifdef CONFIG_SMP
6369 init_defrootdomain();
6370#endif
6371
d0b27fa7 6372#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6373 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 6374 global_rt_period(), global_rt_runtime());
6d6bc0ad 6375#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6376
7c941438 6377#ifdef CONFIG_CGROUP_SCHED
b0367629
WL
6378 task_group_cache = KMEM_CACHE(task_group, 0);
6379
07e06b01
YZ
6380 list_add(&root_task_group.list, &task_groups);
6381 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 6382 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 6383 autogroup_init(&init_task);
7c941438 6384#endif /* CONFIG_CGROUP_SCHED */
6f505b16 6385
0a945022 6386 for_each_possible_cpu(i) {
70b97a7f 6387 struct rq *rq;
1da177e4
LT
6388
6389 rq = cpu_rq(i);
05fa785c 6390 raw_spin_lock_init(&rq->lock);
7897986b 6391 rq->nr_running = 0;
dce48a84
TG
6392 rq->calc_load_active = 0;
6393 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 6394 init_cfs_rq(&rq->cfs);
07c54f7a
AV
6395 init_rt_rq(&rq->rt);
6396 init_dl_rq(&rq->dl);
dd41f596 6397#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 6398 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 6399 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9c2791f9 6400 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
354d60c2 6401 /*
d1ccc66d 6402 * How much CPU bandwidth does root_task_group get?
354d60c2
DG
6403 *
6404 * In case of task-groups formed thr' the cgroup filesystem, it
d1ccc66d
IM
6405 * gets 100% of the CPU resources in the system. This overall
6406 * system CPU resource is divided among the tasks of
07e06b01 6407 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
6408 * based on each entity's (task or task-group's) weight
6409 * (se->load.weight).
6410 *
07e06b01 6411 * In other words, if root_task_group has 10 tasks of weight
354d60c2 6412 * 1024) and two child groups A0 and A1 (of weight 1024 each),
d1ccc66d 6413 * then A0's share of the CPU resource is:
354d60c2 6414 *
0d905bca 6415 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 6416 *
07e06b01
YZ
6417 * We achieve this by letting root_task_group's tasks sit
6418 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 6419 */
ab84d31e 6420 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 6421 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
6422#endif /* CONFIG_FAIR_GROUP_SCHED */
6423
6424 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 6425#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6426 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 6427#endif
1da177e4 6428#ifdef CONFIG_SMP
41c7ce9a 6429 rq->sd = NULL;
57d885fe 6430 rq->rd = NULL;
ca6d75e6 6431 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
e3fca9e7 6432 rq->balance_callback = NULL;
1da177e4 6433 rq->active_balance = 0;
dd41f596 6434 rq->next_balance = jiffies;
1da177e4 6435 rq->push_cpu = 0;
0a2966b4 6436 rq->cpu = i;
1f11eb6a 6437 rq->online = 0;
eae0c9df
MG
6438 rq->idle_stamp = 0;
6439 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 6440 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
6441
6442 INIT_LIST_HEAD(&rq->cfs_tasks);
6443
dc938520 6444 rq_attach_root(rq, &def_root_domain);
3451d024 6445#ifdef CONFIG_NO_HZ_COMMON
9fd81dd5 6446 rq->last_load_update_tick = jiffies;
e022e0d3 6447 rq->last_blocked_load_update_tick = jiffies;
a22e47a4 6448 atomic_set(&rq->nohz_flags, 0);
83cd4fe2 6449#endif
9fd81dd5 6450#endif /* CONFIG_SMP */
77a021be 6451 hrtick_rq_init(rq);
1da177e4 6452 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
6453 }
6454
9059393e 6455 set_load_weight(&init_task, false);
b50f60ce 6456
1da177e4
LT
6457 /*
6458 * The boot idle thread does lazy MMU switching as well:
6459 */
f1f10076 6460 mmgrab(&init_mm);
1da177e4
LT
6461 enter_lazy_tlb(&init_mm, current);
6462
6463 /*
6464 * Make us the idle thread. Technically, schedule() should not be
6465 * called from this thread, however somewhere below it might be,
6466 * but because we are the idle thread, we just pick up running again
6467 * when this runqueue becomes "idle".
6468 */
6469 init_idle(current, smp_processor_id());
dce48a84
TG
6470
6471 calc_load_update = jiffies + LOAD_FREQ;
6472
bf4d83f6 6473#ifdef CONFIG_SMP
29d5e047 6474 idle_thread_set_boot_cpu();
029632fb
PZ
6475#endif
6476 init_sched_fair_class();
6a7b3dc3 6477
4698f88c
JP
6478 init_schedstats();
6479
eb414681
JW
6480 psi_init();
6481
69842cba
PB
6482 init_uclamp();
6483
6892b75e 6484 scheduler_running = 1;
1da177e4
LT
6485}
6486
d902db1e 6487#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
6488static inline int preempt_count_equals(int preempt_offset)
6489{
da7142e2 6490 int nested = preempt_count() + rcu_preempt_depth();
e4aafea2 6491
4ba8216c 6492 return (nested == preempt_offset);
e4aafea2
FW
6493}
6494
d894837f 6495void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6496{
8eb23b9f
PZ
6497 /*
6498 * Blocking primitives will set (and therefore destroy) current->state,
6499 * since we will exit with TASK_RUNNING make sure we enter with it,
6500 * otherwise we will destroy state.
6501 */
00845eb9 6502 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
8eb23b9f
PZ
6503 "do not call blocking ops when !TASK_RUNNING; "
6504 "state=%lx set at [<%p>] %pS\n",
6505 current->state,
6506 (void *)current->task_state_change,
00845eb9 6507 (void *)current->task_state_change);
8eb23b9f 6508
3427445a
PZ
6509 ___might_sleep(file, line, preempt_offset);
6510}
6511EXPORT_SYMBOL(__might_sleep);
6512
6513void ___might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6514{
d1ccc66d
IM
6515 /* Ratelimiting timestamp: */
6516 static unsigned long prev_jiffy;
6517
d1c6d149 6518 unsigned long preempt_disable_ip;
1da177e4 6519
d1ccc66d
IM
6520 /* WARN_ON_ONCE() by default, no rate limit required: */
6521 rcu_sleep_check();
6522
db273be2
TG
6523 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6524 !is_idle_task(current)) ||
1c3c5eab
TG
6525 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
6526 oops_in_progress)
aef745fc 6527 return;
1c3c5eab 6528
aef745fc
IM
6529 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6530 return;
6531 prev_jiffy = jiffies;
6532
d1ccc66d 6533 /* Save this before calling printk(), since that will clobber it: */
d1c6d149
VN
6534 preempt_disable_ip = get_preempt_disable_ip(current);
6535
3df0fc5b
PZ
6536 printk(KERN_ERR
6537 "BUG: sleeping function called from invalid context at %s:%d\n",
6538 file, line);
6539 printk(KERN_ERR
6540 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6541 in_atomic(), irqs_disabled(),
6542 current->pid, current->comm);
aef745fc 6543
a8b686b3
ES
6544 if (task_stack_end_corrupted(current))
6545 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6546
aef745fc
IM
6547 debug_show_held_locks(current);
6548 if (irqs_disabled())
6549 print_irqtrace_events(current);
d1c6d149
VN
6550 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6551 && !preempt_count_equals(preempt_offset)) {
8f47b187 6552 pr_err("Preemption disabled at:");
d1c6d149 6553 print_ip_sym(preempt_disable_ip);
8f47b187
TG
6554 pr_cont("\n");
6555 }
aef745fc 6556 dump_stack();
f0b22e39 6557 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
1da177e4 6558}
3427445a 6559EXPORT_SYMBOL(___might_sleep);
568f1967
PZ
6560
6561void __cant_sleep(const char *file, int line, int preempt_offset)
6562{
6563 static unsigned long prev_jiffy;
6564
6565 if (irqs_disabled())
6566 return;
6567
6568 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
6569 return;
6570
6571 if (preempt_count() > preempt_offset)
6572 return;
6573
6574 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6575 return;
6576 prev_jiffy = jiffies;
6577
6578 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
6579 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6580 in_atomic(), irqs_disabled(),
6581 current->pid, current->comm);
6582
6583 debug_show_held_locks(current);
6584 dump_stack();
6585 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6586}
6587EXPORT_SYMBOL_GPL(__cant_sleep);
1da177e4
LT
6588#endif
6589
6590#ifdef CONFIG_MAGIC_SYSRQ
dbc7f069 6591void normalize_rt_tasks(void)
3a5e4dc1 6592{
dbc7f069 6593 struct task_struct *g, *p;
d50dde5a
DF
6594 struct sched_attr attr = {
6595 .sched_policy = SCHED_NORMAL,
6596 };
1da177e4 6597
3472eaa1 6598 read_lock(&tasklist_lock);
5d07f420 6599 for_each_process_thread(g, p) {
178be793
IM
6600 /*
6601 * Only normalize user tasks:
6602 */
3472eaa1 6603 if (p->flags & PF_KTHREAD)
178be793
IM
6604 continue;
6605
4fa8d299
JP
6606 p->se.exec_start = 0;
6607 schedstat_set(p->se.statistics.wait_start, 0);
6608 schedstat_set(p->se.statistics.sleep_start, 0);
6609 schedstat_set(p->se.statistics.block_start, 0);
dd41f596 6610
aab03e05 6611 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
6612 /*
6613 * Renice negative nice level userspace
6614 * tasks back to 0:
6615 */
3472eaa1 6616 if (task_nice(p) < 0)
dd41f596 6617 set_user_nice(p, 0);
1da177e4 6618 continue;
dd41f596 6619 }
1da177e4 6620
dbc7f069 6621 __sched_setscheduler(p, &attr, false, false);
5d07f420 6622 }
3472eaa1 6623 read_unlock(&tasklist_lock);
1da177e4
LT
6624}
6625
6626#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 6627
67fc4e0c 6628#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 6629/*
67fc4e0c 6630 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
6631 *
6632 * They can only be called when the whole system has been
6633 * stopped - every CPU needs to be quiescent, and no scheduling
6634 * activity can take place. Using them for anything else would
6635 * be a serious bug, and as a result, they aren't even visible
6636 * under any other configuration.
6637 */
6638
6639/**
d1ccc66d 6640 * curr_task - return the current task for a given CPU.
1df5c10a
LT
6641 * @cpu: the processor in question.
6642 *
6643 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
6644 *
6645 * Return: The current task for @cpu.
1df5c10a 6646 */
36c8b586 6647struct task_struct *curr_task(int cpu)
1df5c10a
LT
6648{
6649 return cpu_curr(cpu);
6650}
6651
67fc4e0c
JW
6652#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6653
6654#ifdef CONFIG_IA64
1df5c10a 6655/**
d1ccc66d 6656 * set_curr_task - set the current task for a given CPU.
1df5c10a
LT
6657 * @cpu: the processor in question.
6658 * @p: the task pointer to set.
6659 *
6660 * Description: This function must only be used when non-maskable interrupts
41a2d6cf 6661 * are serviced on a separate stack. It allows the architecture to switch the
d1ccc66d 6662 * notion of the current task on a CPU in a non-blocking manner. This function
1df5c10a
LT
6663 * must be called with all CPU's synchronized, and interrupts disabled, the
6664 * and caller must save the original value of the current task (see
6665 * curr_task() above) and restore that value before reenabling interrupts and
6666 * re-starting the system.
6667 *
6668 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6669 */
a458ae2e 6670void ia64_set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
6671{
6672 cpu_curr(cpu) = p;
6673}
6674
6675#endif
29f59db3 6676
7c941438 6677#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
6678/* task_group_lock serializes the addition/removal of task groups */
6679static DEFINE_SPINLOCK(task_group_lock);
6680
2f5177f0 6681static void sched_free_group(struct task_group *tg)
bccbe08a
PZ
6682{
6683 free_fair_sched_group(tg);
6684 free_rt_sched_group(tg);
e9aa1dd1 6685 autogroup_free(tg);
b0367629 6686 kmem_cache_free(task_group_cache, tg);
bccbe08a
PZ
6687}
6688
6689/* allocate runqueue etc for a new task group */
ec7dc8ac 6690struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
6691{
6692 struct task_group *tg;
bccbe08a 6693
b0367629 6694 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
bccbe08a
PZ
6695 if (!tg)
6696 return ERR_PTR(-ENOMEM);
6697
ec7dc8ac 6698 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
6699 goto err;
6700
ec7dc8ac 6701 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
6702 goto err;
6703
ace783b9
LZ
6704 return tg;
6705
6706err:
2f5177f0 6707 sched_free_group(tg);
ace783b9
LZ
6708 return ERR_PTR(-ENOMEM);
6709}
6710
6711void sched_online_group(struct task_group *tg, struct task_group *parent)
6712{
6713 unsigned long flags;
6714
8ed36996 6715 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 6716 list_add_rcu(&tg->list, &task_groups);
f473aa5e 6717
d1ccc66d
IM
6718 /* Root should already exist: */
6719 WARN_ON(!parent);
f473aa5e
PZ
6720
6721 tg->parent = parent;
f473aa5e 6722 INIT_LIST_HEAD(&tg->children);
09f2724a 6723 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 6724 spin_unlock_irqrestore(&task_group_lock, flags);
8663e24d
PZ
6725
6726 online_fair_sched_group(tg);
29f59db3
SV
6727}
6728
9b5b7751 6729/* rcu callback to free various structures associated with a task group */
2f5177f0 6730static void sched_free_group_rcu(struct rcu_head *rhp)
29f59db3 6731{
d1ccc66d 6732 /* Now it should be safe to free those cfs_rqs: */
2f5177f0 6733 sched_free_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
6734}
6735
4cf86d77 6736void sched_destroy_group(struct task_group *tg)
ace783b9 6737{
d1ccc66d 6738 /* Wait for possible concurrent references to cfs_rqs complete: */
2f5177f0 6739 call_rcu(&tg->rcu, sched_free_group_rcu);
ace783b9
LZ
6740}
6741
6742void sched_offline_group(struct task_group *tg)
29f59db3 6743{
8ed36996 6744 unsigned long flags;
29f59db3 6745
d1ccc66d 6746 /* End participation in shares distribution: */
6fe1f348 6747 unregister_fair_sched_group(tg);
3d4b47b4
PZ
6748
6749 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 6750 list_del_rcu(&tg->list);
f473aa5e 6751 list_del_rcu(&tg->siblings);
8ed36996 6752 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
6753}
6754
ea86cb4b 6755static void sched_change_group(struct task_struct *tsk, int type)
29f59db3 6756{
8323f26c 6757 struct task_group *tg;
29f59db3 6758
f7b8a47d
KT
6759 /*
6760 * All callers are synchronized by task_rq_lock(); we do not use RCU
6761 * which is pointless here. Thus, we pass "true" to task_css_check()
6762 * to prevent lockdep warnings.
6763 */
6764 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
6765 struct task_group, css);
6766 tg = autogroup_task_group(tsk, tg);
6767 tsk->sched_task_group = tg;
6768
810b3817 6769#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
6770 if (tsk->sched_class->task_change_group)
6771 tsk->sched_class->task_change_group(tsk, type);
b2b5ce02 6772 else
810b3817 6773#endif
b2b5ce02 6774 set_task_rq(tsk, task_cpu(tsk));
ea86cb4b
VG
6775}
6776
6777/*
6778 * Change task's runqueue when it moves between groups.
6779 *
6780 * The caller of this function should have put the task in its new group by
6781 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
6782 * its new group.
6783 */
6784void sched_move_task(struct task_struct *tsk)
6785{
7a57f32a
PZ
6786 int queued, running, queue_flags =
6787 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
ea86cb4b
VG
6788 struct rq_flags rf;
6789 struct rq *rq;
6790
6791 rq = task_rq_lock(tsk, &rf);
1b1d6225 6792 update_rq_clock(rq);
ea86cb4b
VG
6793
6794 running = task_current(rq, tsk);
6795 queued = task_on_rq_queued(tsk);
6796
6797 if (queued)
7a57f32a 6798 dequeue_task(rq, tsk, queue_flags);
bb3bac2c 6799 if (running)
ea86cb4b
VG
6800 put_prev_task(rq, tsk);
6801
6802 sched_change_group(tsk, TASK_MOVE_GROUP);
810b3817 6803
da0c1e65 6804 if (queued)
7a57f32a 6805 enqueue_task(rq, tsk, queue_flags);
bb3bac2c 6806 if (running)
b2bf6c31 6807 set_curr_task(rq, tsk);
29f59db3 6808
eb580751 6809 task_rq_unlock(rq, tsk, &rf);
29f59db3 6810}
68318b8e 6811
a7c6d554 6812static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 6813{
a7c6d554 6814 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
6815}
6816
eb95419b
TH
6817static struct cgroup_subsys_state *
6818cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 6819{
eb95419b
TH
6820 struct task_group *parent = css_tg(parent_css);
6821 struct task_group *tg;
68318b8e 6822
eb95419b 6823 if (!parent) {
68318b8e 6824 /* This is early initialization for the top cgroup */
07e06b01 6825 return &root_task_group.css;
68318b8e
SV
6826 }
6827
ec7dc8ac 6828 tg = sched_create_group(parent);
68318b8e
SV
6829 if (IS_ERR(tg))
6830 return ERR_PTR(-ENOMEM);
6831
68318b8e
SV
6832 return &tg->css;
6833}
6834
96b77745
KK
6835/* Expose task group only after completing cgroup initialization */
6836static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
6837{
6838 struct task_group *tg = css_tg(css);
6839 struct task_group *parent = css_tg(css->parent);
6840
6841 if (parent)
6842 sched_online_group(tg, parent);
6843 return 0;
6844}
6845
2f5177f0 6846static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
ace783b9 6847{
eb95419b 6848 struct task_group *tg = css_tg(css);
ace783b9 6849
2f5177f0 6850 sched_offline_group(tg);
ace783b9
LZ
6851}
6852
eb95419b 6853static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 6854{
eb95419b 6855 struct task_group *tg = css_tg(css);
68318b8e 6856
2f5177f0
PZ
6857 /*
6858 * Relies on the RCU grace period between css_released() and this.
6859 */
6860 sched_free_group(tg);
ace783b9
LZ
6861}
6862
ea86cb4b
VG
6863/*
6864 * This is called before wake_up_new_task(), therefore we really only
6865 * have to set its group bits, all the other stuff does not apply.
6866 */
b53202e6 6867static void cpu_cgroup_fork(struct task_struct *task)
eeb61e53 6868{
ea86cb4b
VG
6869 struct rq_flags rf;
6870 struct rq *rq;
6871
6872 rq = task_rq_lock(task, &rf);
6873
80f5c1b8 6874 update_rq_clock(rq);
ea86cb4b
VG
6875 sched_change_group(task, TASK_SET_GROUP);
6876
6877 task_rq_unlock(rq, task, &rf);
eeb61e53
KT
6878}
6879
1f7dd3e5 6880static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
68318b8e 6881{
bb9d97b6 6882 struct task_struct *task;
1f7dd3e5 6883 struct cgroup_subsys_state *css;
7dc603c9 6884 int ret = 0;
bb9d97b6 6885
1f7dd3e5 6886 cgroup_taskset_for_each(task, css, tset) {
b68aa230 6887#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 6888 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 6889 return -EINVAL;
b68aa230 6890#else
bb9d97b6
TH
6891 /* We don't support RT-tasks being in separate groups */
6892 if (task->sched_class != &fair_sched_class)
6893 return -EINVAL;
b68aa230 6894#endif
7dc603c9
PZ
6895 /*
6896 * Serialize against wake_up_new_task() such that if its
6897 * running, we're sure to observe its full state.
6898 */
6899 raw_spin_lock_irq(&task->pi_lock);
6900 /*
6901 * Avoid calling sched_move_task() before wake_up_new_task()
6902 * has happened. This would lead to problems with PELT, due to
6903 * move wanting to detach+attach while we're not attached yet.
6904 */
6905 if (task->state == TASK_NEW)
6906 ret = -EINVAL;
6907 raw_spin_unlock_irq(&task->pi_lock);
6908
6909 if (ret)
6910 break;
bb9d97b6 6911 }
7dc603c9 6912 return ret;
be367d09 6913}
68318b8e 6914
1f7dd3e5 6915static void cpu_cgroup_attach(struct cgroup_taskset *tset)
68318b8e 6916{
bb9d97b6 6917 struct task_struct *task;
1f7dd3e5 6918 struct cgroup_subsys_state *css;
bb9d97b6 6919
1f7dd3e5 6920 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 6921 sched_move_task(task);
68318b8e
SV
6922}
6923
052f1dc7 6924#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
6925static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
6926 struct cftype *cftype, u64 shareval)
68318b8e 6927{
5b61d50a
KK
6928 if (shareval > scale_load_down(ULONG_MAX))
6929 shareval = MAX_SHARES;
182446d0 6930 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
6931}
6932
182446d0
TH
6933static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
6934 struct cftype *cft)
68318b8e 6935{
182446d0 6936 struct task_group *tg = css_tg(css);
68318b8e 6937
c8b28116 6938 return (u64) scale_load_down(tg->shares);
68318b8e 6939}
ab84d31e
PT
6940
6941#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
6942static DEFINE_MUTEX(cfs_constraints_mutex);
6943
ab84d31e 6944const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
b1546edc 6945static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
ab84d31e 6946
a790de99
PT
6947static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
6948
ab84d31e
PT
6949static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
6950{
56f570e5 6951 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 6952 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
6953
6954 if (tg == &root_task_group)
6955 return -EINVAL;
6956
6957 /*
6958 * Ensure we have at some amount of bandwidth every period. This is
6959 * to prevent reaching a state of large arrears when throttled via
6960 * entity_tick() resulting in prolonged exit starvation.
6961 */
6962 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
6963 return -EINVAL;
6964
6965 /*
6966 * Likewise, bound things on the otherside by preventing insane quota
6967 * periods. This also allows us to normalize in computing quota
6968 * feasibility.
6969 */
6970 if (period > max_cfs_quota_period)
6971 return -EINVAL;
6972
0e59bdae
KT
6973 /*
6974 * Prevent race between setting of cfs_rq->runtime_enabled and
6975 * unthrottle_offline_cfs_rqs().
6976 */
6977 get_online_cpus();
a790de99
PT
6978 mutex_lock(&cfs_constraints_mutex);
6979 ret = __cfs_schedulable(tg, period, quota);
6980 if (ret)
6981 goto out_unlock;
6982
58088ad0 6983 runtime_enabled = quota != RUNTIME_INF;
56f570e5 6984 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
6985 /*
6986 * If we need to toggle cfs_bandwidth_used, off->on must occur
6987 * before making related changes, and on->off must occur afterwards
6988 */
6989 if (runtime_enabled && !runtime_was_enabled)
6990 cfs_bandwidth_usage_inc();
ab84d31e
PT
6991 raw_spin_lock_irq(&cfs_b->lock);
6992 cfs_b->period = ns_to_ktime(period);
6993 cfs_b->quota = quota;
58088ad0 6994
a9cf55b2 6995 __refill_cfs_bandwidth_runtime(cfs_b);
d1ccc66d
IM
6996
6997 /* Restart the period timer (if active) to handle new period expiry: */
77a4d1a1
PZ
6998 if (runtime_enabled)
6999 start_cfs_bandwidth(cfs_b);
d1ccc66d 7000
ab84d31e
PT
7001 raw_spin_unlock_irq(&cfs_b->lock);
7002
0e59bdae 7003 for_each_online_cpu(i) {
ab84d31e 7004 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 7005 struct rq *rq = cfs_rq->rq;
8a8c69c3 7006 struct rq_flags rf;
ab84d31e 7007
8a8c69c3 7008 rq_lock_irq(rq, &rf);
58088ad0 7009 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 7010 cfs_rq->runtime_remaining = 0;
671fd9da 7011
029632fb 7012 if (cfs_rq->throttled)
671fd9da 7013 unthrottle_cfs_rq(cfs_rq);
8a8c69c3 7014 rq_unlock_irq(rq, &rf);
ab84d31e 7015 }
1ee14e6c
BS
7016 if (runtime_was_enabled && !runtime_enabled)
7017 cfs_bandwidth_usage_dec();
a790de99
PT
7018out_unlock:
7019 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 7020 put_online_cpus();
ab84d31e 7021
a790de99 7022 return ret;
ab84d31e
PT
7023}
7024
b1546edc 7025static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
ab84d31e
PT
7026{
7027 u64 quota, period;
7028
029632fb 7029 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7030 if (cfs_quota_us < 0)
7031 quota = RUNTIME_INF;
1a8b4540 7032 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
ab84d31e 7033 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
1a8b4540
KK
7034 else
7035 return -EINVAL;
ab84d31e
PT
7036
7037 return tg_set_cfs_bandwidth(tg, period, quota);
7038}
7039
b1546edc 7040static long tg_get_cfs_quota(struct task_group *tg)
ab84d31e
PT
7041{
7042 u64 quota_us;
7043
029632fb 7044 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
7045 return -1;
7046
029632fb 7047 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
7048 do_div(quota_us, NSEC_PER_USEC);
7049
7050 return quota_us;
7051}
7052
b1546edc 7053static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
ab84d31e
PT
7054{
7055 u64 quota, period;
7056
1a8b4540
KK
7057 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
7058 return -EINVAL;
7059
ab84d31e 7060 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 7061 quota = tg->cfs_bandwidth.quota;
ab84d31e 7062
ab84d31e
PT
7063 return tg_set_cfs_bandwidth(tg, period, quota);
7064}
7065
b1546edc 7066static long tg_get_cfs_period(struct task_group *tg)
ab84d31e
PT
7067{
7068 u64 cfs_period_us;
7069
029632fb 7070 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7071 do_div(cfs_period_us, NSEC_PER_USEC);
7072
7073 return cfs_period_us;
7074}
7075
182446d0
TH
7076static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7077 struct cftype *cft)
ab84d31e 7078{
182446d0 7079 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
7080}
7081
182446d0
TH
7082static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7083 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 7084{
182446d0 7085 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
7086}
7087
182446d0
TH
7088static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7089 struct cftype *cft)
ab84d31e 7090{
182446d0 7091 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
7092}
7093
182446d0
TH
7094static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7095 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 7096{
182446d0 7097 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
7098}
7099
a790de99
PT
7100struct cfs_schedulable_data {
7101 struct task_group *tg;
7102 u64 period, quota;
7103};
7104
7105/*
7106 * normalize group quota/period to be quota/max_period
7107 * note: units are usecs
7108 */
7109static u64 normalize_cfs_quota(struct task_group *tg,
7110 struct cfs_schedulable_data *d)
7111{
7112 u64 quota, period;
7113
7114 if (tg == d->tg) {
7115 period = d->period;
7116 quota = d->quota;
7117 } else {
7118 period = tg_get_cfs_period(tg);
7119 quota = tg_get_cfs_quota(tg);
7120 }
7121
7122 /* note: these should typically be equivalent */
7123 if (quota == RUNTIME_INF || quota == -1)
7124 return RUNTIME_INF;
7125
7126 return to_ratio(period, quota);
7127}
7128
7129static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7130{
7131 struct cfs_schedulable_data *d = data;
029632fb 7132 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
7133 s64 quota = 0, parent_quota = -1;
7134
7135 if (!tg->parent) {
7136 quota = RUNTIME_INF;
7137 } else {
029632fb 7138 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
7139
7140 quota = normalize_cfs_quota(tg, d);
9c58c79a 7141 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
7142
7143 /*
c53593e5
TH
7144 * Ensure max(child_quota) <= parent_quota. On cgroup2,
7145 * always take the min. On cgroup1, only inherit when no
d1ccc66d 7146 * limit is set:
a790de99 7147 */
c53593e5
TH
7148 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
7149 quota = min(quota, parent_quota);
7150 } else {
7151 if (quota == RUNTIME_INF)
7152 quota = parent_quota;
7153 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7154 return -EINVAL;
7155 }
a790de99 7156 }
9c58c79a 7157 cfs_b->hierarchical_quota = quota;
a790de99
PT
7158
7159 return 0;
7160}
7161
7162static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7163{
8277434e 7164 int ret;
a790de99
PT
7165 struct cfs_schedulable_data data = {
7166 .tg = tg,
7167 .period = period,
7168 .quota = quota,
7169 };
7170
7171 if (quota != RUNTIME_INF) {
7172 do_div(data.period, NSEC_PER_USEC);
7173 do_div(data.quota, NSEC_PER_USEC);
7174 }
7175
8277434e
PT
7176 rcu_read_lock();
7177 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7178 rcu_read_unlock();
7179
7180 return ret;
a790de99 7181}
e8da1b18 7182
a1f7164c 7183static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
e8da1b18 7184{
2da8ca82 7185 struct task_group *tg = css_tg(seq_css(sf));
029632fb 7186 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 7187
44ffc75b
TH
7188 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7189 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7190 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18 7191
3d6c50c2
YW
7192 if (schedstat_enabled() && tg != &root_task_group) {
7193 u64 ws = 0;
7194 int i;
7195
7196 for_each_possible_cpu(i)
7197 ws += schedstat_val(tg->se[i]->statistics.wait_sum);
7198
7199 seq_printf(sf, "wait_sum %llu\n", ws);
7200 }
7201
e8da1b18
NR
7202 return 0;
7203}
ab84d31e 7204#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 7205#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 7206
052f1dc7 7207#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
7208static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7209 struct cftype *cft, s64 val)
6f505b16 7210{
182446d0 7211 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
7212}
7213
182446d0
TH
7214static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7215 struct cftype *cft)
6f505b16 7216{
182446d0 7217 return sched_group_rt_runtime(css_tg(css));
6f505b16 7218}
d0b27fa7 7219
182446d0
TH
7220static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7221 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 7222{
182446d0 7223 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
7224}
7225
182446d0
TH
7226static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7227 struct cftype *cft)
d0b27fa7 7228{
182446d0 7229 return sched_group_rt_period(css_tg(css));
d0b27fa7 7230}
6d6bc0ad 7231#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 7232
a1f7164c 7233static struct cftype cpu_legacy_files[] = {
052f1dc7 7234#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
7235 {
7236 .name = "shares",
f4c753b7
PM
7237 .read_u64 = cpu_shares_read_u64,
7238 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 7239 },
052f1dc7 7240#endif
ab84d31e
PT
7241#ifdef CONFIG_CFS_BANDWIDTH
7242 {
7243 .name = "cfs_quota_us",
7244 .read_s64 = cpu_cfs_quota_read_s64,
7245 .write_s64 = cpu_cfs_quota_write_s64,
7246 },
7247 {
7248 .name = "cfs_period_us",
7249 .read_u64 = cpu_cfs_period_read_u64,
7250 .write_u64 = cpu_cfs_period_write_u64,
7251 },
e8da1b18
NR
7252 {
7253 .name = "stat",
a1f7164c 7254 .seq_show = cpu_cfs_stat_show,
e8da1b18 7255 },
ab84d31e 7256#endif
052f1dc7 7257#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7258 {
9f0c1e56 7259 .name = "rt_runtime_us",
06ecb27c
PM
7260 .read_s64 = cpu_rt_runtime_read,
7261 .write_s64 = cpu_rt_runtime_write,
6f505b16 7262 },
d0b27fa7
PZ
7263 {
7264 .name = "rt_period_us",
f4c753b7
PM
7265 .read_u64 = cpu_rt_period_read_uint,
7266 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 7267 },
052f1dc7 7268#endif
d1ccc66d 7269 { } /* Terminate */
68318b8e
SV
7270};
7271
d41bf8c9
TH
7272static int cpu_extra_stat_show(struct seq_file *sf,
7273 struct cgroup_subsys_state *css)
0d593634 7274{
0d593634
TH
7275#ifdef CONFIG_CFS_BANDWIDTH
7276 {
d41bf8c9 7277 struct task_group *tg = css_tg(css);
0d593634
TH
7278 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7279 u64 throttled_usec;
7280
7281 throttled_usec = cfs_b->throttled_time;
7282 do_div(throttled_usec, NSEC_PER_USEC);
7283
7284 seq_printf(sf, "nr_periods %d\n"
7285 "nr_throttled %d\n"
7286 "throttled_usec %llu\n",
7287 cfs_b->nr_periods, cfs_b->nr_throttled,
7288 throttled_usec);
7289 }
7290#endif
7291 return 0;
7292}
7293
7294#ifdef CONFIG_FAIR_GROUP_SCHED
7295static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
7296 struct cftype *cft)
7297{
7298 struct task_group *tg = css_tg(css);
7299 u64 weight = scale_load_down(tg->shares);
7300
7301 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
7302}
7303
7304static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
7305 struct cftype *cft, u64 weight)
7306{
7307 /*
7308 * cgroup weight knobs should use the common MIN, DFL and MAX
7309 * values which are 1, 100 and 10000 respectively. While it loses
7310 * a bit of range on both ends, it maps pretty well onto the shares
7311 * value used by scheduler and the round-trip conversions preserve
7312 * the original value over the entire range.
7313 */
7314 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
7315 return -ERANGE;
7316
7317 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
7318
7319 return sched_group_set_shares(css_tg(css), scale_load(weight));
7320}
7321
7322static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
7323 struct cftype *cft)
7324{
7325 unsigned long weight = scale_load_down(css_tg(css)->shares);
7326 int last_delta = INT_MAX;
7327 int prio, delta;
7328
7329 /* find the closest nice value to the current weight */
7330 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
7331 delta = abs(sched_prio_to_weight[prio] - weight);
7332 if (delta >= last_delta)
7333 break;
7334 last_delta = delta;
7335 }
7336
7337 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
7338}
7339
7340static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
7341 struct cftype *cft, s64 nice)
7342{
7343 unsigned long weight;
7281c8de 7344 int idx;
0d593634
TH
7345
7346 if (nice < MIN_NICE || nice > MAX_NICE)
7347 return -ERANGE;
7348
7281c8de
PZ
7349 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
7350 idx = array_index_nospec(idx, 40);
7351 weight = sched_prio_to_weight[idx];
7352
0d593634
TH
7353 return sched_group_set_shares(css_tg(css), scale_load(weight));
7354}
7355#endif
7356
7357static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
7358 long period, long quota)
7359{
7360 if (quota < 0)
7361 seq_puts(sf, "max");
7362 else
7363 seq_printf(sf, "%ld", quota);
7364
7365 seq_printf(sf, " %ld\n", period);
7366}
7367
7368/* caller should put the current value in *@periodp before calling */
7369static int __maybe_unused cpu_period_quota_parse(char *buf,
7370 u64 *periodp, u64 *quotap)
7371{
7372 char tok[21]; /* U64_MAX */
7373
4c47acd8 7374 if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
0d593634
TH
7375 return -EINVAL;
7376
7377 *periodp *= NSEC_PER_USEC;
7378
7379 if (sscanf(tok, "%llu", quotap))
7380 *quotap *= NSEC_PER_USEC;
7381 else if (!strcmp(tok, "max"))
7382 *quotap = RUNTIME_INF;
7383 else
7384 return -EINVAL;
7385
7386 return 0;
7387}
7388
7389#ifdef CONFIG_CFS_BANDWIDTH
7390static int cpu_max_show(struct seq_file *sf, void *v)
7391{
7392 struct task_group *tg = css_tg(seq_css(sf));
7393
7394 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
7395 return 0;
7396}
7397
7398static ssize_t cpu_max_write(struct kernfs_open_file *of,
7399 char *buf, size_t nbytes, loff_t off)
7400{
7401 struct task_group *tg = css_tg(of_css(of));
7402 u64 period = tg_get_cfs_period(tg);
7403 u64 quota;
7404 int ret;
7405
7406 ret = cpu_period_quota_parse(buf, &period, &quota);
7407 if (!ret)
7408 ret = tg_set_cfs_bandwidth(tg, period, quota);
7409 return ret ?: nbytes;
7410}
7411#endif
7412
7413static struct cftype cpu_files[] = {
0d593634
TH
7414#ifdef CONFIG_FAIR_GROUP_SCHED
7415 {
7416 .name = "weight",
7417 .flags = CFTYPE_NOT_ON_ROOT,
7418 .read_u64 = cpu_weight_read_u64,
7419 .write_u64 = cpu_weight_write_u64,
7420 },
7421 {
7422 .name = "weight.nice",
7423 .flags = CFTYPE_NOT_ON_ROOT,
7424 .read_s64 = cpu_weight_nice_read_s64,
7425 .write_s64 = cpu_weight_nice_write_s64,
7426 },
7427#endif
7428#ifdef CONFIG_CFS_BANDWIDTH
7429 {
7430 .name = "max",
7431 .flags = CFTYPE_NOT_ON_ROOT,
7432 .seq_show = cpu_max_show,
7433 .write = cpu_max_write,
7434 },
7435#endif
7436 { } /* terminate */
7437};
7438
073219e9 7439struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748 7440 .css_alloc = cpu_cgroup_css_alloc,
96b77745 7441 .css_online = cpu_cgroup_css_online,
2f5177f0 7442 .css_released = cpu_cgroup_css_released,
92fb9748 7443 .css_free = cpu_cgroup_css_free,
d41bf8c9 7444 .css_extra_stat_show = cpu_extra_stat_show,
eeb61e53 7445 .fork = cpu_cgroup_fork,
bb9d97b6
TH
7446 .can_attach = cpu_cgroup_can_attach,
7447 .attach = cpu_cgroup_attach,
a1f7164c 7448 .legacy_cftypes = cpu_legacy_files,
0d593634 7449 .dfl_cftypes = cpu_files,
b38e42e9 7450 .early_init = true,
0d593634 7451 .threaded = true,
68318b8e
SV
7452};
7453
052f1dc7 7454#endif /* CONFIG_CGROUP_SCHED */
d842de87 7455
b637a328
PM
7456void dump_cpu_task(int cpu)
7457{
7458 pr_info("Task dump for CPU %d:\n", cpu);
7459 sched_show_task(cpu_curr(cpu));
7460}
ed82b8a1
AK
7461
7462/*
7463 * Nice levels are multiplicative, with a gentle 10% change for every
7464 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
7465 * nice 1, it will get ~10% less CPU time than another CPU-bound task
7466 * that remained on nice 0.
7467 *
7468 * The "10% effect" is relative and cumulative: from _any_ nice level,
7469 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
7470 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
7471 * If a task goes up by ~10% and another task goes down by ~10% then
7472 * the relative distance between them is ~25%.)
7473 */
7474const int sched_prio_to_weight[40] = {
7475 /* -20 */ 88761, 71755, 56483, 46273, 36291,
7476 /* -15 */ 29154, 23254, 18705, 14949, 11916,
7477 /* -10 */ 9548, 7620, 6100, 4904, 3906,
7478 /* -5 */ 3121, 2501, 1991, 1586, 1277,
7479 /* 0 */ 1024, 820, 655, 526, 423,
7480 /* 5 */ 335, 272, 215, 172, 137,
7481 /* 10 */ 110, 87, 70, 56, 45,
7482 /* 15 */ 36, 29, 23, 18, 15,
7483};
7484
7485/*
7486 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
7487 *
7488 * In cases where the weight does not change often, we can use the
7489 * precalculated inverse to speed up arithmetics by turning divisions
7490 * into multiplications:
7491 */
7492const u32 sched_prio_to_wmult[40] = {
7493 /* -20 */ 48388, 59856, 76040, 92818, 118348,
7494 /* -15 */ 147320, 184698, 229616, 287308, 360437,
7495 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
7496 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
7497 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
7498 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
7499 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
7500 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
7501};
14a7405b
IM
7502
7503#undef CREATE_TRACE_POINTS