]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/sched/core.c
sched/wait: Include <linux/wait.h> in <linux/swait.h>
[mirror_ubuntu-jammy-kernel.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4 3 *
d1ccc66d 4 * Core kernel scheduler code and related syscalls
1da177e4
LT
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
1da177e4 7 */
325ea10c 8#include "sched.h"
1da177e4 9
85f1abe0 10#include <linux/kthread.h>
7281c8de 11#include <linux/nospec.h>
85f1abe0 12
96f951ed 13#include <asm/switch_to.h>
5517d86b 14#include <asm/tlb.h>
1da177e4 15
ea138446 16#include "../workqueue_internal.h"
29d5e047 17#include "../smpboot.h"
6e0534f2 18
a8d154b0 19#define CREATE_TRACE_POINTS
ad8d75ff 20#include <trace/events/sched.h>
a8d154b0 21
029632fb 22DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 23
765cc3a4 24#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
bf5c91ba
IM
25/*
26 * Debugging: various feature bits
765cc3a4
PB
27 *
28 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
29 * sysctl_sched_features, defined in sched.h, to allow constants propagation
30 * at compile time and compiler optimization based on features default.
bf5c91ba 31 */
f00b45c1
PZ
32#define SCHED_FEAT(name, enabled) \
33 (1UL << __SCHED_FEAT_##name) * enabled |
bf5c91ba 34const_debug unsigned int sysctl_sched_features =
391e43da 35#include "features.h"
f00b45c1 36 0;
f00b45c1 37#undef SCHED_FEAT
765cc3a4 38#endif
f00b45c1 39
b82d9fdd
PZ
40/*
41 * Number of tasks to iterate in a single balance run.
42 * Limited because this is done with IRQs disabled.
43 */
44const_debug unsigned int sysctl_sched_nr_migrate = 32;
45
e9e9250b
PZ
46/*
47 * period over which we average the RT time consumption, measured
48 * in ms.
49 *
50 * default: 1s
51 */
52const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
53
fa85ae24 54/*
d1ccc66d 55 * period over which we measure -rt task CPU usage in us.
fa85ae24
PZ
56 * default: 1s
57 */
9f0c1e56 58unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 59
029632fb 60__read_mostly int scheduler_running;
6892b75e 61
9f0c1e56
PZ
62/*
63 * part of the period that we allow rt tasks to run in us.
64 * default: 0.95s
65 */
66int sysctl_sched_rt_runtime = 950000;
fa85ae24 67
3e71a462
PZ
68/*
69 * __task_rq_lock - lock the rq @p resides on.
70 */
eb580751 71struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
72 __acquires(rq->lock)
73{
74 struct rq *rq;
75
76 lockdep_assert_held(&p->pi_lock);
77
78 for (;;) {
79 rq = task_rq(p);
80 raw_spin_lock(&rq->lock);
81 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 82 rq_pin_lock(rq, rf);
3e71a462
PZ
83 return rq;
84 }
85 raw_spin_unlock(&rq->lock);
86
87 while (unlikely(task_on_rq_migrating(p)))
88 cpu_relax();
89 }
90}
91
92/*
93 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
94 */
eb580751 95struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
96 __acquires(p->pi_lock)
97 __acquires(rq->lock)
98{
99 struct rq *rq;
100
101 for (;;) {
eb580751 102 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
3e71a462
PZ
103 rq = task_rq(p);
104 raw_spin_lock(&rq->lock);
105 /*
106 * move_queued_task() task_rq_lock()
107 *
108 * ACQUIRE (rq->lock)
109 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
110 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
111 * [S] ->cpu = new_cpu [L] task_rq()
112 * [L] ->on_rq
113 * RELEASE (rq->lock)
114 *
97fb7a0a 115 * If we observe the old CPU in task_rq_lock, the acquire of
3e71a462
PZ
116 * the old rq->lock will fully serialize against the stores.
117 *
d1ccc66d 118 * If we observe the new CPU in task_rq_lock, the acquire will
3e71a462
PZ
119 * pair with the WMB to ensure we must then also see migrating.
120 */
121 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 122 rq_pin_lock(rq, rf);
3e71a462
PZ
123 return rq;
124 }
125 raw_spin_unlock(&rq->lock);
eb580751 126 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
3e71a462
PZ
127
128 while (unlikely(task_on_rq_migrating(p)))
129 cpu_relax();
130 }
131}
132
535b9552
IM
133/*
134 * RQ-clock updating methods:
135 */
136
137static void update_rq_clock_task(struct rq *rq, s64 delta)
138{
139/*
140 * In theory, the compile should just see 0 here, and optimize out the call
141 * to sched_rt_avg_update. But I don't trust it...
142 */
143#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
144 s64 steal = 0, irq_delta = 0;
145#endif
146#ifdef CONFIG_IRQ_TIME_ACCOUNTING
147 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
148
149 /*
150 * Since irq_time is only updated on {soft,}irq_exit, we might run into
151 * this case when a previous update_rq_clock() happened inside a
152 * {soft,}irq region.
153 *
154 * When this happens, we stop ->clock_task and only update the
155 * prev_irq_time stamp to account for the part that fit, so that a next
156 * update will consume the rest. This ensures ->clock_task is
157 * monotonic.
158 *
159 * It does however cause some slight miss-attribution of {soft,}irq
160 * time, a more accurate solution would be to update the irq_time using
161 * the current rq->clock timestamp, except that would require using
162 * atomic ops.
163 */
164 if (irq_delta > delta)
165 irq_delta = delta;
166
167 rq->prev_irq_time += irq_delta;
168 delta -= irq_delta;
169#endif
170#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
171 if (static_key_false((&paravirt_steal_rq_enabled))) {
172 steal = paravirt_steal_clock(cpu_of(rq));
173 steal -= rq->prev_steal_time_rq;
174
175 if (unlikely(steal > delta))
176 steal = delta;
177
178 rq->prev_steal_time_rq += steal;
179 delta -= steal;
180 }
181#endif
182
183 rq->clock_task += delta;
184
185#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
186 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
187 sched_rt_avg_update(rq, irq_delta + steal);
188#endif
189}
190
191void update_rq_clock(struct rq *rq)
192{
193 s64 delta;
194
195 lockdep_assert_held(&rq->lock);
196
197 if (rq->clock_update_flags & RQCF_ACT_SKIP)
198 return;
199
200#ifdef CONFIG_SCHED_DEBUG
26ae58d2
PZ
201 if (sched_feat(WARN_DOUBLE_CLOCK))
202 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
535b9552
IM
203 rq->clock_update_flags |= RQCF_UPDATED;
204#endif
26ae58d2 205
535b9552
IM
206 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
207 if (delta < 0)
208 return;
209 rq->clock += delta;
210 update_rq_clock_task(rq, delta);
211}
212
213
8f4d37ec
PZ
214#ifdef CONFIG_SCHED_HRTICK
215/*
216 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 217 */
8f4d37ec 218
8f4d37ec
PZ
219static void hrtick_clear(struct rq *rq)
220{
221 if (hrtimer_active(&rq->hrtick_timer))
222 hrtimer_cancel(&rq->hrtick_timer);
223}
224
8f4d37ec
PZ
225/*
226 * High-resolution timer tick.
227 * Runs from hardirq context with interrupts disabled.
228 */
229static enum hrtimer_restart hrtick(struct hrtimer *timer)
230{
231 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
8a8c69c3 232 struct rq_flags rf;
8f4d37ec
PZ
233
234 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
235
8a8c69c3 236 rq_lock(rq, &rf);
3e51f33f 237 update_rq_clock(rq);
8f4d37ec 238 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
8a8c69c3 239 rq_unlock(rq, &rf);
8f4d37ec
PZ
240
241 return HRTIMER_NORESTART;
242}
243
95e904c7 244#ifdef CONFIG_SMP
971ee28c 245
4961b6e1 246static void __hrtick_restart(struct rq *rq)
971ee28c
PZ
247{
248 struct hrtimer *timer = &rq->hrtick_timer;
971ee28c 249
4961b6e1 250 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
971ee28c
PZ
251}
252
31656519
PZ
253/*
254 * called from hardirq (IPI) context
255 */
256static void __hrtick_start(void *arg)
b328ca18 257{
31656519 258 struct rq *rq = arg;
8a8c69c3 259 struct rq_flags rf;
b328ca18 260
8a8c69c3 261 rq_lock(rq, &rf);
971ee28c 262 __hrtick_restart(rq);
31656519 263 rq->hrtick_csd_pending = 0;
8a8c69c3 264 rq_unlock(rq, &rf);
b328ca18
PZ
265}
266
31656519
PZ
267/*
268 * Called to set the hrtick timer state.
269 *
270 * called with rq->lock held and irqs disabled
271 */
029632fb 272void hrtick_start(struct rq *rq, u64 delay)
b328ca18 273{
31656519 274 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 275 ktime_t time;
276 s64 delta;
277
278 /*
279 * Don't schedule slices shorter than 10000ns, that just
280 * doesn't make sense and can cause timer DoS.
281 */
282 delta = max_t(s64, delay, 10000LL);
283 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 284
cc584b21 285 hrtimer_set_expires(timer, time);
31656519
PZ
286
287 if (rq == this_rq()) {
971ee28c 288 __hrtick_restart(rq);
31656519 289 } else if (!rq->hrtick_csd_pending) {
c46fff2a 290 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
291 rq->hrtick_csd_pending = 1;
292 }
b328ca18
PZ
293}
294
31656519
PZ
295#else
296/*
297 * Called to set the hrtick timer state.
298 *
299 * called with rq->lock held and irqs disabled
300 */
029632fb 301void hrtick_start(struct rq *rq, u64 delay)
31656519 302{
86893335
WL
303 /*
304 * Don't schedule slices shorter than 10000ns, that just
305 * doesn't make sense. Rely on vruntime for fairness.
306 */
307 delay = max_t(u64, delay, 10000LL);
4961b6e1
TG
308 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
309 HRTIMER_MODE_REL_PINNED);
31656519 310}
31656519 311#endif /* CONFIG_SMP */
8f4d37ec 312
77a021be 313static void hrtick_rq_init(struct rq *rq)
8f4d37ec 314{
31656519
PZ
315#ifdef CONFIG_SMP
316 rq->hrtick_csd_pending = 0;
8f4d37ec 317
31656519
PZ
318 rq->hrtick_csd.flags = 0;
319 rq->hrtick_csd.func = __hrtick_start;
320 rq->hrtick_csd.info = rq;
321#endif
8f4d37ec 322
31656519
PZ
323 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
324 rq->hrtick_timer.function = hrtick;
8f4d37ec 325}
006c75f1 326#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
327static inline void hrtick_clear(struct rq *rq)
328{
329}
330
77a021be 331static inline void hrtick_rq_init(struct rq *rq)
8f4d37ec
PZ
332{
333}
006c75f1 334#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 335
5529578a
FW
336/*
337 * cmpxchg based fetch_or, macro so it works for different integer types
338 */
339#define fetch_or(ptr, mask) \
340 ({ \
341 typeof(ptr) _ptr = (ptr); \
342 typeof(mask) _mask = (mask); \
343 typeof(*_ptr) _old, _val = *_ptr; \
344 \
345 for (;;) { \
346 _old = cmpxchg(_ptr, _val, _val | _mask); \
347 if (_old == _val) \
348 break; \
349 _val = _old; \
350 } \
351 _old; \
352})
353
e3baac47 354#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
355/*
356 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
357 * this avoids any races wrt polling state changes and thereby avoids
358 * spurious IPIs.
359 */
360static bool set_nr_and_not_polling(struct task_struct *p)
361{
362 struct thread_info *ti = task_thread_info(p);
363 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
364}
e3baac47
PZ
365
366/*
367 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
368 *
369 * If this returns true, then the idle task promises to call
370 * sched_ttwu_pending() and reschedule soon.
371 */
372static bool set_nr_if_polling(struct task_struct *p)
373{
374 struct thread_info *ti = task_thread_info(p);
316c1608 375 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
e3baac47
PZ
376
377 for (;;) {
378 if (!(val & _TIF_POLLING_NRFLAG))
379 return false;
380 if (val & _TIF_NEED_RESCHED)
381 return true;
382 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
383 if (old == val)
384 break;
385 val = old;
386 }
387 return true;
388}
389
fd99f91a
PZ
390#else
391static bool set_nr_and_not_polling(struct task_struct *p)
392{
393 set_tsk_need_resched(p);
394 return true;
395}
e3baac47
PZ
396
397#ifdef CONFIG_SMP
398static bool set_nr_if_polling(struct task_struct *p)
399{
400 return false;
401}
402#endif
fd99f91a
PZ
403#endif
404
76751049
PZ
405void wake_q_add(struct wake_q_head *head, struct task_struct *task)
406{
407 struct wake_q_node *node = &task->wake_q;
408
409 /*
410 * Atomically grab the task, if ->wake_q is !nil already it means
411 * its already queued (either by us or someone else) and will get the
412 * wakeup due to that.
413 *
414 * This cmpxchg() implies a full barrier, which pairs with the write
58fe9c46 415 * barrier implied by the wakeup in wake_up_q().
76751049
PZ
416 */
417 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
418 return;
419
420 get_task_struct(task);
421
422 /*
423 * The head is context local, there can be no concurrency.
424 */
425 *head->lastp = node;
426 head->lastp = &node->next;
427}
428
429void wake_up_q(struct wake_q_head *head)
430{
431 struct wake_q_node *node = head->first;
432
433 while (node != WAKE_Q_TAIL) {
434 struct task_struct *task;
435
436 task = container_of(node, struct task_struct, wake_q);
437 BUG_ON(!task);
d1ccc66d 438 /* Task can safely be re-inserted now: */
76751049
PZ
439 node = node->next;
440 task->wake_q.next = NULL;
441
442 /*
443 * wake_up_process() implies a wmb() to pair with the queueing
444 * in wake_q_add() so as not to miss wakeups.
445 */
446 wake_up_process(task);
447 put_task_struct(task);
448 }
449}
450
c24d20db 451/*
8875125e 452 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
453 *
454 * On UP this means the setting of the need_resched flag, on SMP it
455 * might also involve a cross-CPU call to trigger the scheduler on
456 * the target CPU.
457 */
8875125e 458void resched_curr(struct rq *rq)
c24d20db 459{
8875125e 460 struct task_struct *curr = rq->curr;
c24d20db
IM
461 int cpu;
462
8875125e 463 lockdep_assert_held(&rq->lock);
c24d20db 464
8875125e 465 if (test_tsk_need_resched(curr))
c24d20db
IM
466 return;
467
8875125e 468 cpu = cpu_of(rq);
fd99f91a 469
f27dde8d 470 if (cpu == smp_processor_id()) {
8875125e 471 set_tsk_need_resched(curr);
f27dde8d 472 set_preempt_need_resched();
c24d20db 473 return;
f27dde8d 474 }
c24d20db 475
8875125e 476 if (set_nr_and_not_polling(curr))
c24d20db 477 smp_send_reschedule(cpu);
dfc68f29
AL
478 else
479 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
480}
481
029632fb 482void resched_cpu(int cpu)
c24d20db
IM
483{
484 struct rq *rq = cpu_rq(cpu);
485 unsigned long flags;
486
7c2102e5 487 raw_spin_lock_irqsave(&rq->lock, flags);
a0982dfa
PM
488 if (cpu_online(cpu) || cpu == smp_processor_id())
489 resched_curr(rq);
05fa785c 490 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 491}
06d8308c 492
b021fe3e 493#ifdef CONFIG_SMP
3451d024 494#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2 495/*
d1ccc66d
IM
496 * In the semi idle case, use the nearest busy CPU for migrating timers
497 * from an idle CPU. This is good for power-savings.
83cd4fe2
VP
498 *
499 * We don't do similar optimization for completely idle system, as
d1ccc66d
IM
500 * selecting an idle CPU will add more delays to the timers than intended
501 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
83cd4fe2 502 */
bc7a34b8 503int get_nohz_timer_target(void)
83cd4fe2 504{
bc7a34b8 505 int i, cpu = smp_processor_id();
83cd4fe2
VP
506 struct sched_domain *sd;
507
de201559 508 if (!idle_cpu(cpu) && housekeeping_cpu(cpu, HK_FLAG_TIMER))
6201b4d6
VK
509 return cpu;
510
057f3fad 511 rcu_read_lock();
83cd4fe2 512 for_each_domain(cpu, sd) {
057f3fad 513 for_each_cpu(i, sched_domain_span(sd)) {
44496922
WL
514 if (cpu == i)
515 continue;
516
de201559 517 if (!idle_cpu(i) && housekeeping_cpu(i, HK_FLAG_TIMER)) {
057f3fad
PZ
518 cpu = i;
519 goto unlock;
520 }
521 }
83cd4fe2 522 }
9642d18e 523
de201559
FW
524 if (!housekeeping_cpu(cpu, HK_FLAG_TIMER))
525 cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
057f3fad
PZ
526unlock:
527 rcu_read_unlock();
83cd4fe2
VP
528 return cpu;
529}
d1ccc66d 530
06d8308c
TG
531/*
532 * When add_timer_on() enqueues a timer into the timer wheel of an
533 * idle CPU then this timer might expire before the next timer event
534 * which is scheduled to wake up that CPU. In case of a completely
535 * idle system the next event might even be infinite time into the
536 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
537 * leaves the inner idle loop so the newly added timer is taken into
538 * account when the CPU goes back to idle and evaluates the timer
539 * wheel for the next timer event.
540 */
1c20091e 541static void wake_up_idle_cpu(int cpu)
06d8308c
TG
542{
543 struct rq *rq = cpu_rq(cpu);
544
545 if (cpu == smp_processor_id())
546 return;
547
67b9ca70 548 if (set_nr_and_not_polling(rq->idle))
06d8308c 549 smp_send_reschedule(cpu);
dfc68f29
AL
550 else
551 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
552}
553
c5bfece2 554static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 555{
53c5fa16
FW
556 /*
557 * We just need the target to call irq_exit() and re-evaluate
558 * the next tick. The nohz full kick at least implies that.
559 * If needed we can still optimize that later with an
560 * empty IRQ.
561 */
379d9ecb
PM
562 if (cpu_is_offline(cpu))
563 return true; /* Don't try to wake offline CPUs. */
c5bfece2 564 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
565 if (cpu != smp_processor_id() ||
566 tick_nohz_tick_stopped())
53c5fa16 567 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
568 return true;
569 }
570
571 return false;
572}
573
379d9ecb
PM
574/*
575 * Wake up the specified CPU. If the CPU is going offline, it is the
576 * caller's responsibility to deal with the lost wakeup, for example,
577 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
578 */
1c20091e
FW
579void wake_up_nohz_cpu(int cpu)
580{
c5bfece2 581 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
582 wake_up_idle_cpu(cpu);
583}
584
ca38062e 585static inline bool got_nohz_idle_kick(void)
45bf76df 586{
1c792db7 587 int cpu = smp_processor_id();
873b4c65 588
b7031a02 589 if (!(atomic_read(nohz_flags(cpu)) & NOHZ_KICK_MASK))
873b4c65
VG
590 return false;
591
592 if (idle_cpu(cpu) && !need_resched())
593 return true;
594
595 /*
596 * We can't run Idle Load Balance on this CPU for this time so we
597 * cancel it and clear NOHZ_BALANCE_KICK
598 */
b7031a02 599 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
873b4c65 600 return false;
45bf76df
IM
601}
602
3451d024 603#else /* CONFIG_NO_HZ_COMMON */
45bf76df 604
ca38062e 605static inline bool got_nohz_idle_kick(void)
2069dd75 606{
ca38062e 607 return false;
2069dd75
PZ
608}
609
3451d024 610#endif /* CONFIG_NO_HZ_COMMON */
d842de87 611
ce831b38 612#ifdef CONFIG_NO_HZ_FULL
76d92ac3 613bool sched_can_stop_tick(struct rq *rq)
ce831b38 614{
76d92ac3
FW
615 int fifo_nr_running;
616
617 /* Deadline tasks, even if single, need the tick */
618 if (rq->dl.dl_nr_running)
619 return false;
620
1e78cdbd 621 /*
2548d546
PZ
622 * If there are more than one RR tasks, we need the tick to effect the
623 * actual RR behaviour.
1e78cdbd 624 */
76d92ac3
FW
625 if (rq->rt.rr_nr_running) {
626 if (rq->rt.rr_nr_running == 1)
627 return true;
628 else
629 return false;
1e78cdbd
RR
630 }
631
2548d546
PZ
632 /*
633 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
634 * forced preemption between FIFO tasks.
635 */
636 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
637 if (fifo_nr_running)
638 return true;
639
640 /*
641 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
642 * if there's more than one we need the tick for involuntary
643 * preemption.
644 */
645 if (rq->nr_running > 1)
541b8264 646 return false;
ce831b38 647
541b8264 648 return true;
ce831b38
FW
649}
650#endif /* CONFIG_NO_HZ_FULL */
d842de87 651
029632fb 652void sched_avg_update(struct rq *rq)
18d95a28 653{
e9e9250b
PZ
654 s64 period = sched_avg_period();
655
78becc27 656 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
657 /*
658 * Inline assembly required to prevent the compiler
659 * optimising this loop into a divmod call.
660 * See __iter_div_u64_rem() for another example of this.
661 */
662 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
663 rq->age_stamp += period;
664 rq->rt_avg /= 2;
665 }
18d95a28
PZ
666}
667
6d6bc0ad 668#endif /* CONFIG_SMP */
18d95a28 669
a790de99
PT
670#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
671 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 672/*
8277434e
PT
673 * Iterate task_group tree rooted at *from, calling @down when first entering a
674 * node and @up when leaving it for the final time.
675 *
676 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 677 */
029632fb 678int walk_tg_tree_from(struct task_group *from,
8277434e 679 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
680{
681 struct task_group *parent, *child;
eb755805 682 int ret;
c09595f6 683
8277434e
PT
684 parent = from;
685
c09595f6 686down:
eb755805
PZ
687 ret = (*down)(parent, data);
688 if (ret)
8277434e 689 goto out;
c09595f6
PZ
690 list_for_each_entry_rcu(child, &parent->children, siblings) {
691 parent = child;
692 goto down;
693
694up:
695 continue;
696 }
eb755805 697 ret = (*up)(parent, data);
8277434e
PT
698 if (ret || parent == from)
699 goto out;
c09595f6
PZ
700
701 child = parent;
702 parent = parent->parent;
703 if (parent)
704 goto up;
8277434e 705out:
eb755805 706 return ret;
c09595f6
PZ
707}
708
029632fb 709int tg_nop(struct task_group *tg, void *data)
eb755805 710{
e2b245f8 711 return 0;
eb755805 712}
18d95a28
PZ
713#endif
714
9059393e 715static void set_load_weight(struct task_struct *p, bool update_load)
45bf76df 716{
f05998d4
NR
717 int prio = p->static_prio - MAX_RT_PRIO;
718 struct load_weight *load = &p->se.load;
719
dd41f596
IM
720 /*
721 * SCHED_IDLE tasks get minimal weight:
722 */
20f9cd2a 723 if (idle_policy(p->policy)) {
c8b28116 724 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 725 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
726 return;
727 }
71f8bd46 728
9059393e
VG
729 /*
730 * SCHED_OTHER tasks have to update their load when changing their
731 * weight
732 */
733 if (update_load && p->sched_class == &fair_sched_class) {
734 reweight_task(p, prio);
735 } else {
736 load->weight = scale_load(sched_prio_to_weight[prio]);
737 load->inv_weight = sched_prio_to_wmult[prio];
738 }
71f8bd46
IM
739}
740
1de64443 741static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 742{
0a67d1ee
PZ
743 if (!(flags & ENQUEUE_NOCLOCK))
744 update_rq_clock(rq);
745
1de64443
PZ
746 if (!(flags & ENQUEUE_RESTORE))
747 sched_info_queued(rq, p);
0a67d1ee 748
371fd7e7 749 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
750}
751
1de64443 752static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 753{
0a67d1ee
PZ
754 if (!(flags & DEQUEUE_NOCLOCK))
755 update_rq_clock(rq);
756
1de64443
PZ
757 if (!(flags & DEQUEUE_SAVE))
758 sched_info_dequeued(rq, p);
0a67d1ee 759
371fd7e7 760 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
761}
762
029632fb 763void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
764{
765 if (task_contributes_to_load(p))
766 rq->nr_uninterruptible--;
767
371fd7e7 768 enqueue_task(rq, p, flags);
1e3c88bd
PZ
769}
770
029632fb 771void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
772{
773 if (task_contributes_to_load(p))
774 rq->nr_uninterruptible++;
775
371fd7e7 776 dequeue_task(rq, p, flags);
1e3c88bd
PZ
777}
778
14531189 779/*
dd41f596 780 * __normal_prio - return the priority that is based on the static prio
14531189 781 */
14531189
IM
782static inline int __normal_prio(struct task_struct *p)
783{
dd41f596 784 return p->static_prio;
14531189
IM
785}
786
b29739f9
IM
787/*
788 * Calculate the expected normal priority: i.e. priority
789 * without taking RT-inheritance into account. Might be
790 * boosted by interactivity modifiers. Changes upon fork,
791 * setprio syscalls, and whenever the interactivity
792 * estimator recalculates.
793 */
36c8b586 794static inline int normal_prio(struct task_struct *p)
b29739f9
IM
795{
796 int prio;
797
aab03e05
DF
798 if (task_has_dl_policy(p))
799 prio = MAX_DL_PRIO-1;
800 else if (task_has_rt_policy(p))
b29739f9
IM
801 prio = MAX_RT_PRIO-1 - p->rt_priority;
802 else
803 prio = __normal_prio(p);
804 return prio;
805}
806
807/*
808 * Calculate the current priority, i.e. the priority
809 * taken into account by the scheduler. This value might
810 * be boosted by RT tasks, or might be boosted by
811 * interactivity modifiers. Will be RT if the task got
812 * RT-boosted. If not then it returns p->normal_prio.
813 */
36c8b586 814static int effective_prio(struct task_struct *p)
b29739f9
IM
815{
816 p->normal_prio = normal_prio(p);
817 /*
818 * If we are RT tasks or we were boosted to RT priority,
819 * keep the priority unchanged. Otherwise, update priority
820 * to the normal priority:
821 */
822 if (!rt_prio(p->prio))
823 return p->normal_prio;
824 return p->prio;
825}
826
1da177e4
LT
827/**
828 * task_curr - is this task currently executing on a CPU?
829 * @p: the task in question.
e69f6186
YB
830 *
831 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 832 */
36c8b586 833inline int task_curr(const struct task_struct *p)
1da177e4
LT
834{
835 return cpu_curr(task_cpu(p)) == p;
836}
837
67dfa1b7 838/*
4c9a4bc8
PZ
839 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
840 * use the balance_callback list if you want balancing.
841 *
842 * this means any call to check_class_changed() must be followed by a call to
843 * balance_callback().
67dfa1b7 844 */
cb469845
SR
845static inline void check_class_changed(struct rq *rq, struct task_struct *p,
846 const struct sched_class *prev_class,
da7a735e 847 int oldprio)
cb469845
SR
848{
849 if (prev_class != p->sched_class) {
850 if (prev_class->switched_from)
da7a735e 851 prev_class->switched_from(rq, p);
4c9a4bc8 852
da7a735e 853 p->sched_class->switched_to(rq, p);
2d3d891d 854 } else if (oldprio != p->prio || dl_task(p))
da7a735e 855 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
856}
857
029632fb 858void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
859{
860 const struct sched_class *class;
861
862 if (p->sched_class == rq->curr->sched_class) {
863 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
864 } else {
865 for_each_class(class) {
866 if (class == rq->curr->sched_class)
867 break;
868 if (class == p->sched_class) {
8875125e 869 resched_curr(rq);
1e5a7405
PZ
870 break;
871 }
872 }
873 }
874
875 /*
876 * A queue event has occurred, and we're going to schedule. In
877 * this case, we can save a useless back to back clock update.
878 */
da0c1e65 879 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
adcc8da8 880 rq_clock_skip_update(rq);
1e5a7405
PZ
881}
882
1da177e4 883#ifdef CONFIG_SMP
5cc389bc
PZ
884/*
885 * This is how migration works:
886 *
887 * 1) we invoke migration_cpu_stop() on the target CPU using
888 * stop_one_cpu().
889 * 2) stopper starts to run (implicitly forcing the migrated thread
890 * off the CPU)
891 * 3) it checks whether the migrated task is still in the wrong runqueue.
892 * 4) if it's in the wrong runqueue then the migration thread removes
893 * it and puts it into the right queue.
894 * 5) stopper completes and stop_one_cpu() returns and the migration
895 * is done.
896 */
897
898/*
899 * move_queued_task - move a queued task to new rq.
900 *
901 * Returns (locked) new rq. Old rq's lock is released.
902 */
8a8c69c3
PZ
903static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
904 struct task_struct *p, int new_cpu)
5cc389bc 905{
5cc389bc
PZ
906 lockdep_assert_held(&rq->lock);
907
5cc389bc 908 p->on_rq = TASK_ON_RQ_MIGRATING;
15ff991e 909 dequeue_task(rq, p, DEQUEUE_NOCLOCK);
5cc389bc 910 set_task_cpu(p, new_cpu);
8a8c69c3 911 rq_unlock(rq, rf);
5cc389bc
PZ
912
913 rq = cpu_rq(new_cpu);
914
8a8c69c3 915 rq_lock(rq, rf);
5cc389bc 916 BUG_ON(task_cpu(p) != new_cpu);
5cc389bc 917 enqueue_task(rq, p, 0);
3ea94de1 918 p->on_rq = TASK_ON_RQ_QUEUED;
5cc389bc
PZ
919 check_preempt_curr(rq, p, 0);
920
921 return rq;
922}
923
924struct migration_arg {
925 struct task_struct *task;
926 int dest_cpu;
927};
928
929/*
d1ccc66d 930 * Move (not current) task off this CPU, onto the destination CPU. We're doing
5cc389bc
PZ
931 * this because either it can't run here any more (set_cpus_allowed()
932 * away from this CPU, or CPU going down), or because we're
933 * attempting to rebalance this task on exec (sched_exec).
934 *
935 * So we race with normal scheduler movements, but that's OK, as long
936 * as the task is no longer on this CPU.
5cc389bc 937 */
8a8c69c3
PZ
938static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
939 struct task_struct *p, int dest_cpu)
5cc389bc 940{
955dbdf4
TH
941 if (p->flags & PF_KTHREAD) {
942 if (unlikely(!cpu_online(dest_cpu)))
943 return rq;
944 } else {
945 if (unlikely(!cpu_active(dest_cpu)))
946 return rq;
947 }
5cc389bc
PZ
948
949 /* Affinity changed (again). */
0c98d344 950 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
5e16bbc2 951 return rq;
5cc389bc 952
15ff991e 953 update_rq_clock(rq);
8a8c69c3 954 rq = move_queued_task(rq, rf, p, dest_cpu);
5e16bbc2
PZ
955
956 return rq;
5cc389bc
PZ
957}
958
959/*
960 * migration_cpu_stop - this will be executed by a highprio stopper thread
961 * and performs thread migration by bumping thread off CPU then
962 * 'pushing' onto another runqueue.
963 */
964static int migration_cpu_stop(void *data)
965{
966 struct migration_arg *arg = data;
5e16bbc2
PZ
967 struct task_struct *p = arg->task;
968 struct rq *rq = this_rq();
8a8c69c3 969 struct rq_flags rf;
5cc389bc
PZ
970
971 /*
d1ccc66d
IM
972 * The original target CPU might have gone down and we might
973 * be on another CPU but it doesn't matter.
5cc389bc
PZ
974 */
975 local_irq_disable();
976 /*
977 * We need to explicitly wake pending tasks before running
978 * __migrate_task() such that we will not miss enforcing cpus_allowed
979 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
980 */
981 sched_ttwu_pending();
5e16bbc2
PZ
982
983 raw_spin_lock(&p->pi_lock);
8a8c69c3 984 rq_lock(rq, &rf);
5e16bbc2
PZ
985 /*
986 * If task_rq(p) != rq, it cannot be migrated here, because we're
987 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
988 * we're holding p->pi_lock.
989 */
bf89a304
CC
990 if (task_rq(p) == rq) {
991 if (task_on_rq_queued(p))
8a8c69c3 992 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
bf89a304
CC
993 else
994 p->wake_cpu = arg->dest_cpu;
995 }
8a8c69c3 996 rq_unlock(rq, &rf);
5e16bbc2
PZ
997 raw_spin_unlock(&p->pi_lock);
998
5cc389bc
PZ
999 local_irq_enable();
1000 return 0;
1001}
1002
c5b28038
PZ
1003/*
1004 * sched_class::set_cpus_allowed must do the below, but is not required to
1005 * actually call this function.
1006 */
1007void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
5cc389bc 1008{
5cc389bc
PZ
1009 cpumask_copy(&p->cpus_allowed, new_mask);
1010 p->nr_cpus_allowed = cpumask_weight(new_mask);
1011}
1012
c5b28038
PZ
1013void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1014{
6c37067e
PZ
1015 struct rq *rq = task_rq(p);
1016 bool queued, running;
1017
c5b28038 1018 lockdep_assert_held(&p->pi_lock);
6c37067e
PZ
1019
1020 queued = task_on_rq_queued(p);
1021 running = task_current(rq, p);
1022
1023 if (queued) {
1024 /*
1025 * Because __kthread_bind() calls this on blocked tasks without
1026 * holding rq->lock.
1027 */
1028 lockdep_assert_held(&rq->lock);
7a57f32a 1029 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
6c37067e
PZ
1030 }
1031 if (running)
1032 put_prev_task(rq, p);
1033
c5b28038 1034 p->sched_class->set_cpus_allowed(p, new_mask);
6c37067e 1035
6c37067e 1036 if (queued)
7134b3e9 1037 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
a399d233 1038 if (running)
b2bf6c31 1039 set_curr_task(rq, p);
c5b28038
PZ
1040}
1041
5cc389bc
PZ
1042/*
1043 * Change a given task's CPU affinity. Migrate the thread to a
1044 * proper CPU and schedule it away if the CPU it's executing on
1045 * is removed from the allowed bitmask.
1046 *
1047 * NOTE: the caller must have a valid reference to the task, the
1048 * task must not exit() & deallocate itself prematurely. The
1049 * call is not atomic; no spinlocks may be held.
1050 */
25834c73
PZ
1051static int __set_cpus_allowed_ptr(struct task_struct *p,
1052 const struct cpumask *new_mask, bool check)
5cc389bc 1053{
e9d867a6 1054 const struct cpumask *cpu_valid_mask = cpu_active_mask;
5cc389bc 1055 unsigned int dest_cpu;
eb580751
PZ
1056 struct rq_flags rf;
1057 struct rq *rq;
5cc389bc
PZ
1058 int ret = 0;
1059
eb580751 1060 rq = task_rq_lock(p, &rf);
a499c3ea 1061 update_rq_clock(rq);
5cc389bc 1062
e9d867a6
PZI
1063 if (p->flags & PF_KTHREAD) {
1064 /*
1065 * Kernel threads are allowed on online && !active CPUs
1066 */
1067 cpu_valid_mask = cpu_online_mask;
1068 }
1069
25834c73
PZ
1070 /*
1071 * Must re-check here, to close a race against __kthread_bind(),
1072 * sched_setaffinity() is not guaranteed to observe the flag.
1073 */
1074 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1075 ret = -EINVAL;
1076 goto out;
1077 }
1078
5cc389bc
PZ
1079 if (cpumask_equal(&p->cpus_allowed, new_mask))
1080 goto out;
1081
e9d867a6 1082 if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
5cc389bc
PZ
1083 ret = -EINVAL;
1084 goto out;
1085 }
1086
1087 do_set_cpus_allowed(p, new_mask);
1088
e9d867a6
PZI
1089 if (p->flags & PF_KTHREAD) {
1090 /*
1091 * For kernel threads that do indeed end up on online &&
d1ccc66d 1092 * !active we want to ensure they are strict per-CPU threads.
e9d867a6
PZI
1093 */
1094 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1095 !cpumask_intersects(new_mask, cpu_active_mask) &&
1096 p->nr_cpus_allowed != 1);
1097 }
1098
5cc389bc
PZ
1099 /* Can the task run on the task's current CPU? If so, we're done */
1100 if (cpumask_test_cpu(task_cpu(p), new_mask))
1101 goto out;
1102
e9d867a6 1103 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
5cc389bc
PZ
1104 if (task_running(rq, p) || p->state == TASK_WAKING) {
1105 struct migration_arg arg = { p, dest_cpu };
1106 /* Need help from migration thread: drop lock and wait. */
eb580751 1107 task_rq_unlock(rq, p, &rf);
5cc389bc
PZ
1108 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1109 tlb_migrate_finish(p->mm);
1110 return 0;
cbce1a68
PZ
1111 } else if (task_on_rq_queued(p)) {
1112 /*
1113 * OK, since we're going to drop the lock immediately
1114 * afterwards anyway.
1115 */
8a8c69c3 1116 rq = move_queued_task(rq, &rf, p, dest_cpu);
cbce1a68 1117 }
5cc389bc 1118out:
eb580751 1119 task_rq_unlock(rq, p, &rf);
5cc389bc
PZ
1120
1121 return ret;
1122}
25834c73
PZ
1123
1124int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1125{
1126 return __set_cpus_allowed_ptr(p, new_mask, false);
1127}
5cc389bc
PZ
1128EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1129
dd41f596 1130void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1131{
e2912009
PZ
1132#ifdef CONFIG_SCHED_DEBUG
1133 /*
1134 * We should never call set_task_cpu() on a blocked task,
1135 * ttwu() will sort out the placement.
1136 */
077614ee 1137 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
e2336f6e 1138 !p->on_rq);
0122ec5b 1139
3ea94de1
JP
1140 /*
1141 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1142 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1143 * time relying on p->on_rq.
1144 */
1145 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1146 p->sched_class == &fair_sched_class &&
1147 (p->on_rq && !task_on_rq_migrating(p)));
1148
0122ec5b 1149#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1150 /*
1151 * The caller should hold either p->pi_lock or rq->lock, when changing
1152 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1153 *
1154 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1155 * see task_group().
6c6c54e1
PZ
1156 *
1157 * Furthermore, all task_rq users should acquire both locks, see
1158 * task_rq_lock().
1159 */
0122ec5b
PZ
1160 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1161 lockdep_is_held(&task_rq(p)->lock)));
1162#endif
4ff9083b
PZ
1163 /*
1164 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1165 */
1166 WARN_ON_ONCE(!cpu_online(new_cpu));
e2912009
PZ
1167#endif
1168
de1d7286 1169 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1170
0c69774e 1171 if (task_cpu(p) != new_cpu) {
0a74bef8 1172 if (p->sched_class->migrate_task_rq)
5a4fd036 1173 p->sched_class->migrate_task_rq(p);
0c69774e 1174 p->se.nr_migrations++;
ff303e66 1175 perf_event_task_migrate(p);
0c69774e 1176 }
dd41f596
IM
1177
1178 __set_task_cpu(p, new_cpu);
c65cc870
IM
1179}
1180
ac66f547
PZ
1181static void __migrate_swap_task(struct task_struct *p, int cpu)
1182{
da0c1e65 1183 if (task_on_rq_queued(p)) {
ac66f547 1184 struct rq *src_rq, *dst_rq;
8a8c69c3 1185 struct rq_flags srf, drf;
ac66f547
PZ
1186
1187 src_rq = task_rq(p);
1188 dst_rq = cpu_rq(cpu);
1189
8a8c69c3
PZ
1190 rq_pin_lock(src_rq, &srf);
1191 rq_pin_lock(dst_rq, &drf);
1192
3ea94de1 1193 p->on_rq = TASK_ON_RQ_MIGRATING;
ac66f547
PZ
1194 deactivate_task(src_rq, p, 0);
1195 set_task_cpu(p, cpu);
1196 activate_task(dst_rq, p, 0);
3ea94de1 1197 p->on_rq = TASK_ON_RQ_QUEUED;
ac66f547 1198 check_preempt_curr(dst_rq, p, 0);
8a8c69c3
PZ
1199
1200 rq_unpin_lock(dst_rq, &drf);
1201 rq_unpin_lock(src_rq, &srf);
1202
ac66f547
PZ
1203 } else {
1204 /*
1205 * Task isn't running anymore; make it appear like we migrated
1206 * it before it went to sleep. This means on wakeup we make the
d1ccc66d 1207 * previous CPU our target instead of where it really is.
ac66f547
PZ
1208 */
1209 p->wake_cpu = cpu;
1210 }
1211}
1212
1213struct migration_swap_arg {
1214 struct task_struct *src_task, *dst_task;
1215 int src_cpu, dst_cpu;
1216};
1217
1218static int migrate_swap_stop(void *data)
1219{
1220 struct migration_swap_arg *arg = data;
1221 struct rq *src_rq, *dst_rq;
1222 int ret = -EAGAIN;
1223
62694cd5
PZ
1224 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1225 return -EAGAIN;
1226
ac66f547
PZ
1227 src_rq = cpu_rq(arg->src_cpu);
1228 dst_rq = cpu_rq(arg->dst_cpu);
1229
74602315
PZ
1230 double_raw_lock(&arg->src_task->pi_lock,
1231 &arg->dst_task->pi_lock);
ac66f547 1232 double_rq_lock(src_rq, dst_rq);
62694cd5 1233
ac66f547
PZ
1234 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1235 goto unlock;
1236
1237 if (task_cpu(arg->src_task) != arg->src_cpu)
1238 goto unlock;
1239
0c98d344 1240 if (!cpumask_test_cpu(arg->dst_cpu, &arg->src_task->cpus_allowed))
ac66f547
PZ
1241 goto unlock;
1242
0c98d344 1243 if (!cpumask_test_cpu(arg->src_cpu, &arg->dst_task->cpus_allowed))
ac66f547
PZ
1244 goto unlock;
1245
1246 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1247 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1248
1249 ret = 0;
1250
1251unlock:
1252 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1253 raw_spin_unlock(&arg->dst_task->pi_lock);
1254 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1255
1256 return ret;
1257}
1258
1259/*
1260 * Cross migrate two tasks
1261 */
1262int migrate_swap(struct task_struct *cur, struct task_struct *p)
1263{
1264 struct migration_swap_arg arg;
1265 int ret = -EINVAL;
1266
ac66f547
PZ
1267 arg = (struct migration_swap_arg){
1268 .src_task = cur,
1269 .src_cpu = task_cpu(cur),
1270 .dst_task = p,
1271 .dst_cpu = task_cpu(p),
1272 };
1273
1274 if (arg.src_cpu == arg.dst_cpu)
1275 goto out;
1276
6acce3ef
PZ
1277 /*
1278 * These three tests are all lockless; this is OK since all of them
1279 * will be re-checked with proper locks held further down the line.
1280 */
ac66f547
PZ
1281 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1282 goto out;
1283
0c98d344 1284 if (!cpumask_test_cpu(arg.dst_cpu, &arg.src_task->cpus_allowed))
ac66f547
PZ
1285 goto out;
1286
0c98d344 1287 if (!cpumask_test_cpu(arg.src_cpu, &arg.dst_task->cpus_allowed))
ac66f547
PZ
1288 goto out;
1289
286549dc 1290 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1291 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1292
1293out:
ac66f547
PZ
1294 return ret;
1295}
1296
1da177e4
LT
1297/*
1298 * wait_task_inactive - wait for a thread to unschedule.
1299 *
85ba2d86
RM
1300 * If @match_state is nonzero, it's the @p->state value just checked and
1301 * not expected to change. If it changes, i.e. @p might have woken up,
1302 * then return zero. When we succeed in waiting for @p to be off its CPU,
1303 * we return a positive number (its total switch count). If a second call
1304 * a short while later returns the same number, the caller can be sure that
1305 * @p has remained unscheduled the whole time.
1306 *
1da177e4
LT
1307 * The caller must ensure that the task *will* unschedule sometime soon,
1308 * else this function might spin for a *long* time. This function can't
1309 * be called with interrupts off, or it may introduce deadlock with
1310 * smp_call_function() if an IPI is sent by the same process we are
1311 * waiting to become inactive.
1312 */
85ba2d86 1313unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4 1314{
da0c1e65 1315 int running, queued;
eb580751 1316 struct rq_flags rf;
85ba2d86 1317 unsigned long ncsw;
70b97a7f 1318 struct rq *rq;
1da177e4 1319
3a5c359a
AK
1320 for (;;) {
1321 /*
1322 * We do the initial early heuristics without holding
1323 * any task-queue locks at all. We'll only try to get
1324 * the runqueue lock when things look like they will
1325 * work out!
1326 */
1327 rq = task_rq(p);
fa490cfd 1328
3a5c359a
AK
1329 /*
1330 * If the task is actively running on another CPU
1331 * still, just relax and busy-wait without holding
1332 * any locks.
1333 *
1334 * NOTE! Since we don't hold any locks, it's not
1335 * even sure that "rq" stays as the right runqueue!
1336 * But we don't care, since "task_running()" will
1337 * return false if the runqueue has changed and p
1338 * is actually now running somewhere else!
1339 */
85ba2d86
RM
1340 while (task_running(rq, p)) {
1341 if (match_state && unlikely(p->state != match_state))
1342 return 0;
3a5c359a 1343 cpu_relax();
85ba2d86 1344 }
fa490cfd 1345
3a5c359a
AK
1346 /*
1347 * Ok, time to look more closely! We need the rq
1348 * lock now, to be *sure*. If we're wrong, we'll
1349 * just go back and repeat.
1350 */
eb580751 1351 rq = task_rq_lock(p, &rf);
27a9da65 1352 trace_sched_wait_task(p);
3a5c359a 1353 running = task_running(rq, p);
da0c1e65 1354 queued = task_on_rq_queued(p);
85ba2d86 1355 ncsw = 0;
f31e11d8 1356 if (!match_state || p->state == match_state)
93dcf55f 1357 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
eb580751 1358 task_rq_unlock(rq, p, &rf);
fa490cfd 1359
85ba2d86
RM
1360 /*
1361 * If it changed from the expected state, bail out now.
1362 */
1363 if (unlikely(!ncsw))
1364 break;
1365
3a5c359a
AK
1366 /*
1367 * Was it really running after all now that we
1368 * checked with the proper locks actually held?
1369 *
1370 * Oops. Go back and try again..
1371 */
1372 if (unlikely(running)) {
1373 cpu_relax();
1374 continue;
1375 }
fa490cfd 1376
3a5c359a
AK
1377 /*
1378 * It's not enough that it's not actively running,
1379 * it must be off the runqueue _entirely_, and not
1380 * preempted!
1381 *
80dd99b3 1382 * So if it was still runnable (but just not actively
3a5c359a
AK
1383 * running right now), it's preempted, and we should
1384 * yield - it could be a while.
1385 */
da0c1e65 1386 if (unlikely(queued)) {
8b0e1953 1387 ktime_t to = NSEC_PER_SEC / HZ;
8eb90c30
TG
1388
1389 set_current_state(TASK_UNINTERRUPTIBLE);
1390 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1391 continue;
1392 }
fa490cfd 1393
3a5c359a
AK
1394 /*
1395 * Ahh, all good. It wasn't running, and it wasn't
1396 * runnable, which means that it will never become
1397 * running in the future either. We're all done!
1398 */
1399 break;
1400 }
85ba2d86
RM
1401
1402 return ncsw;
1da177e4
LT
1403}
1404
1405/***
1406 * kick_process - kick a running thread to enter/exit the kernel
1407 * @p: the to-be-kicked thread
1408 *
1409 * Cause a process which is running on another CPU to enter
1410 * kernel-mode, without any delay. (to get signals handled.)
1411 *
25985edc 1412 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1413 * because all it wants to ensure is that the remote task enters
1414 * the kernel. If the IPI races and the task has been migrated
1415 * to another CPU then no harm is done and the purpose has been
1416 * achieved as well.
1417 */
36c8b586 1418void kick_process(struct task_struct *p)
1da177e4
LT
1419{
1420 int cpu;
1421
1422 preempt_disable();
1423 cpu = task_cpu(p);
1424 if ((cpu != smp_processor_id()) && task_curr(p))
1425 smp_send_reschedule(cpu);
1426 preempt_enable();
1427}
b43e3521 1428EXPORT_SYMBOL_GPL(kick_process);
1da177e4 1429
30da688e 1430/*
013fdb80 1431 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
e9d867a6
PZI
1432 *
1433 * A few notes on cpu_active vs cpu_online:
1434 *
1435 * - cpu_active must be a subset of cpu_online
1436 *
97fb7a0a 1437 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
e9d867a6 1438 * see __set_cpus_allowed_ptr(). At this point the newly online
d1ccc66d 1439 * CPU isn't yet part of the sched domains, and balancing will not
e9d867a6
PZI
1440 * see it.
1441 *
d1ccc66d 1442 * - on CPU-down we clear cpu_active() to mask the sched domains and
e9d867a6 1443 * avoid the load balancer to place new tasks on the to be removed
d1ccc66d 1444 * CPU. Existing tasks will remain running there and will be taken
e9d867a6
PZI
1445 * off.
1446 *
1447 * This means that fallback selection must not select !active CPUs.
1448 * And can assume that any active CPU must be online. Conversely
1449 * select_task_rq() below may allow selection of !active CPUs in order
1450 * to satisfy the above rules.
30da688e 1451 */
5da9a0fb
PZ
1452static int select_fallback_rq(int cpu, struct task_struct *p)
1453{
aa00d89c
TC
1454 int nid = cpu_to_node(cpu);
1455 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1456 enum { cpuset, possible, fail } state = cpuset;
1457 int dest_cpu;
5da9a0fb 1458
aa00d89c 1459 /*
d1ccc66d
IM
1460 * If the node that the CPU is on has been offlined, cpu_to_node()
1461 * will return -1. There is no CPU on the node, and we should
1462 * select the CPU on the other node.
aa00d89c
TC
1463 */
1464 if (nid != -1) {
1465 nodemask = cpumask_of_node(nid);
1466
1467 /* Look for allowed, online CPU in same node. */
1468 for_each_cpu(dest_cpu, nodemask) {
aa00d89c
TC
1469 if (!cpu_active(dest_cpu))
1470 continue;
0c98d344 1471 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
aa00d89c
TC
1472 return dest_cpu;
1473 }
2baab4e9 1474 }
5da9a0fb 1475
2baab4e9
PZ
1476 for (;;) {
1477 /* Any allowed, online CPU? */
0c98d344 1478 for_each_cpu(dest_cpu, &p->cpus_allowed) {
feb245e3
TH
1479 if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu))
1480 continue;
1481 if (!cpu_online(dest_cpu))
2baab4e9
PZ
1482 continue;
1483 goto out;
1484 }
5da9a0fb 1485
e73e85f0 1486 /* No more Mr. Nice Guy. */
2baab4e9
PZ
1487 switch (state) {
1488 case cpuset:
e73e85f0
ON
1489 if (IS_ENABLED(CONFIG_CPUSETS)) {
1490 cpuset_cpus_allowed_fallback(p);
1491 state = possible;
1492 break;
1493 }
d1ccc66d 1494 /* Fall-through */
2baab4e9
PZ
1495 case possible:
1496 do_set_cpus_allowed(p, cpu_possible_mask);
1497 state = fail;
1498 break;
1499
1500 case fail:
1501 BUG();
1502 break;
1503 }
1504 }
1505
1506out:
1507 if (state != cpuset) {
1508 /*
1509 * Don't tell them about moving exiting tasks or
1510 * kernel threads (both mm NULL), since they never
1511 * leave kernel.
1512 */
1513 if (p->mm && printk_ratelimit()) {
aac74dc4 1514 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1515 task_pid_nr(p), p->comm, cpu);
1516 }
5da9a0fb
PZ
1517 }
1518
1519 return dest_cpu;
1520}
1521
e2912009 1522/*
013fdb80 1523 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1524 */
970b13ba 1525static inline
ac66f547 1526int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1527{
cbce1a68
PZ
1528 lockdep_assert_held(&p->pi_lock);
1529
4b53a341 1530 if (p->nr_cpus_allowed > 1)
6c1d9410 1531 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e9d867a6 1532 else
0c98d344 1533 cpu = cpumask_any(&p->cpus_allowed);
e2912009
PZ
1534
1535 /*
1536 * In order not to call set_task_cpu() on a blocking task we need
1537 * to rely on ttwu() to place the task on a valid ->cpus_allowed
d1ccc66d 1538 * CPU.
e2912009
PZ
1539 *
1540 * Since this is common to all placement strategies, this lives here.
1541 *
1542 * [ this allows ->select_task() to simply return task_cpu(p) and
1543 * not worry about this generic constraint ]
1544 */
0c98d344 1545 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
70f11205 1546 !cpu_online(cpu)))
5da9a0fb 1547 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1548
1549 return cpu;
970b13ba 1550}
09a40af5
MG
1551
1552static void update_avg(u64 *avg, u64 sample)
1553{
1554 s64 diff = sample - *avg;
1555 *avg += diff >> 3;
1556}
25834c73 1557
f5832c19
NP
1558void sched_set_stop_task(int cpu, struct task_struct *stop)
1559{
1560 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1561 struct task_struct *old_stop = cpu_rq(cpu)->stop;
1562
1563 if (stop) {
1564 /*
1565 * Make it appear like a SCHED_FIFO task, its something
1566 * userspace knows about and won't get confused about.
1567 *
1568 * Also, it will make PI more or less work without too
1569 * much confusion -- but then, stop work should not
1570 * rely on PI working anyway.
1571 */
1572 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
1573
1574 stop->sched_class = &stop_sched_class;
1575 }
1576
1577 cpu_rq(cpu)->stop = stop;
1578
1579 if (old_stop) {
1580 /*
1581 * Reset it back to a normal scheduling class so that
1582 * it can die in pieces.
1583 */
1584 old_stop->sched_class = &rt_sched_class;
1585 }
1586}
1587
25834c73
PZ
1588#else
1589
1590static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1591 const struct cpumask *new_mask, bool check)
1592{
1593 return set_cpus_allowed_ptr(p, new_mask);
1594}
1595
5cc389bc 1596#endif /* CONFIG_SMP */
970b13ba 1597
d7c01d27 1598static void
b84cb5df 1599ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1600{
4fa8d299 1601 struct rq *rq;
b84cb5df 1602
4fa8d299
JP
1603 if (!schedstat_enabled())
1604 return;
1605
1606 rq = this_rq();
d7c01d27 1607
4fa8d299
JP
1608#ifdef CONFIG_SMP
1609 if (cpu == rq->cpu) {
b85c8b71
PZ
1610 __schedstat_inc(rq->ttwu_local);
1611 __schedstat_inc(p->se.statistics.nr_wakeups_local);
d7c01d27
PZ
1612 } else {
1613 struct sched_domain *sd;
1614
b85c8b71 1615 __schedstat_inc(p->se.statistics.nr_wakeups_remote);
057f3fad 1616 rcu_read_lock();
4fa8d299 1617 for_each_domain(rq->cpu, sd) {
d7c01d27 1618 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
b85c8b71 1619 __schedstat_inc(sd->ttwu_wake_remote);
d7c01d27
PZ
1620 break;
1621 }
1622 }
057f3fad 1623 rcu_read_unlock();
d7c01d27 1624 }
f339b9dc
PZ
1625
1626 if (wake_flags & WF_MIGRATED)
b85c8b71 1627 __schedstat_inc(p->se.statistics.nr_wakeups_migrate);
d7c01d27
PZ
1628#endif /* CONFIG_SMP */
1629
b85c8b71
PZ
1630 __schedstat_inc(rq->ttwu_count);
1631 __schedstat_inc(p->se.statistics.nr_wakeups);
d7c01d27
PZ
1632
1633 if (wake_flags & WF_SYNC)
b85c8b71 1634 __schedstat_inc(p->se.statistics.nr_wakeups_sync);
d7c01d27
PZ
1635}
1636
1de64443 1637static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
d7c01d27 1638{
9ed3811a 1639 activate_task(rq, p, en_flags);
da0c1e65 1640 p->on_rq = TASK_ON_RQ_QUEUED;
c2f7115e 1641
d1ccc66d 1642 /* If a worker is waking up, notify the workqueue: */
c2f7115e
PZ
1643 if (p->flags & PF_WQ_WORKER)
1644 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1645}
1646
23f41eeb
PZ
1647/*
1648 * Mark the task runnable and perform wakeup-preemption.
1649 */
e7904a28 1650static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
d8ac8971 1651 struct rq_flags *rf)
9ed3811a 1652{
9ed3811a 1653 check_preempt_curr(rq, p, wake_flags);
9ed3811a 1654 p->state = TASK_RUNNING;
fbd705a0
PZ
1655 trace_sched_wakeup(p);
1656
9ed3811a 1657#ifdef CONFIG_SMP
4c9a4bc8
PZ
1658 if (p->sched_class->task_woken) {
1659 /*
cbce1a68
PZ
1660 * Our task @p is fully woken up and running; so its safe to
1661 * drop the rq->lock, hereafter rq is only used for statistics.
4c9a4bc8 1662 */
d8ac8971 1663 rq_unpin_lock(rq, rf);
9ed3811a 1664 p->sched_class->task_woken(rq, p);
d8ac8971 1665 rq_repin_lock(rq, rf);
4c9a4bc8 1666 }
9ed3811a 1667
e69c6341 1668 if (rq->idle_stamp) {
78becc27 1669 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1670 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1671
abfafa54
JL
1672 update_avg(&rq->avg_idle, delta);
1673
1674 if (rq->avg_idle > max)
9ed3811a 1675 rq->avg_idle = max;
abfafa54 1676
9ed3811a
TH
1677 rq->idle_stamp = 0;
1678 }
1679#endif
1680}
1681
c05fbafb 1682static void
e7904a28 1683ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
d8ac8971 1684 struct rq_flags *rf)
c05fbafb 1685{
77558e4d 1686 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
b5179ac7 1687
cbce1a68
PZ
1688 lockdep_assert_held(&rq->lock);
1689
c05fbafb
PZ
1690#ifdef CONFIG_SMP
1691 if (p->sched_contributes_to_load)
1692 rq->nr_uninterruptible--;
b5179ac7 1693
b5179ac7 1694 if (wake_flags & WF_MIGRATED)
59efa0ba 1695 en_flags |= ENQUEUE_MIGRATED;
c05fbafb
PZ
1696#endif
1697
b5179ac7 1698 ttwu_activate(rq, p, en_flags);
d8ac8971 1699 ttwu_do_wakeup(rq, p, wake_flags, rf);
c05fbafb
PZ
1700}
1701
1702/*
1703 * Called in case the task @p isn't fully descheduled from its runqueue,
1704 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1705 * since all we need to do is flip p->state to TASK_RUNNING, since
1706 * the task is still ->on_rq.
1707 */
1708static int ttwu_remote(struct task_struct *p, int wake_flags)
1709{
eb580751 1710 struct rq_flags rf;
c05fbafb
PZ
1711 struct rq *rq;
1712 int ret = 0;
1713
eb580751 1714 rq = __task_rq_lock(p, &rf);
da0c1e65 1715 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
1716 /* check_preempt_curr() may use rq clock */
1717 update_rq_clock(rq);
d8ac8971 1718 ttwu_do_wakeup(rq, p, wake_flags, &rf);
c05fbafb
PZ
1719 ret = 1;
1720 }
eb580751 1721 __task_rq_unlock(rq, &rf);
c05fbafb
PZ
1722
1723 return ret;
1724}
1725
317f3941 1726#ifdef CONFIG_SMP
e3baac47 1727void sched_ttwu_pending(void)
317f3941
PZ
1728{
1729 struct rq *rq = this_rq();
fa14ff4a 1730 struct llist_node *llist = llist_del_all(&rq->wake_list);
73215849 1731 struct task_struct *p, *t;
d8ac8971 1732 struct rq_flags rf;
317f3941 1733
e3baac47
PZ
1734 if (!llist)
1735 return;
1736
8a8c69c3 1737 rq_lock_irqsave(rq, &rf);
77558e4d 1738 update_rq_clock(rq);
317f3941 1739
73215849
BP
1740 llist_for_each_entry_safe(p, t, llist, wake_entry)
1741 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
317f3941 1742
8a8c69c3 1743 rq_unlock_irqrestore(rq, &rf);
317f3941
PZ
1744}
1745
1746void scheduler_ipi(void)
1747{
f27dde8d
PZ
1748 /*
1749 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1750 * TIF_NEED_RESCHED remotely (for the first time) will also send
1751 * this IPI.
1752 */
8cb75e0c 1753 preempt_fold_need_resched();
f27dde8d 1754
fd2ac4f4 1755 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1756 return;
1757
1758 /*
1759 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1760 * traditionally all their work was done from the interrupt return
1761 * path. Now that we actually do some work, we need to make sure
1762 * we do call them.
1763 *
1764 * Some archs already do call them, luckily irq_enter/exit nest
1765 * properly.
1766 *
1767 * Arguably we should visit all archs and update all handlers,
1768 * however a fair share of IPIs are still resched only so this would
1769 * somewhat pessimize the simple resched case.
1770 */
1771 irq_enter();
fa14ff4a 1772 sched_ttwu_pending();
ca38062e
SS
1773
1774 /*
1775 * Check if someone kicked us for doing the nohz idle load balance.
1776 */
873b4c65 1777 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1778 this_rq()->idle_balance = 1;
ca38062e 1779 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1780 }
c5d753a5 1781 irq_exit();
317f3941
PZ
1782}
1783
b7e7ade3 1784static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
317f3941 1785{
e3baac47
PZ
1786 struct rq *rq = cpu_rq(cpu);
1787
b7e7ade3
PZ
1788 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1789
e3baac47
PZ
1790 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1791 if (!set_nr_if_polling(rq->idle))
1792 smp_send_reschedule(cpu);
1793 else
1794 trace_sched_wake_idle_without_ipi(cpu);
1795 }
317f3941 1796}
d6aa8f85 1797
f6be8af1
CL
1798void wake_up_if_idle(int cpu)
1799{
1800 struct rq *rq = cpu_rq(cpu);
8a8c69c3 1801 struct rq_flags rf;
f6be8af1 1802
fd7de1e8
AL
1803 rcu_read_lock();
1804
1805 if (!is_idle_task(rcu_dereference(rq->curr)))
1806 goto out;
f6be8af1
CL
1807
1808 if (set_nr_if_polling(rq->idle)) {
1809 trace_sched_wake_idle_without_ipi(cpu);
1810 } else {
8a8c69c3 1811 rq_lock_irqsave(rq, &rf);
f6be8af1
CL
1812 if (is_idle_task(rq->curr))
1813 smp_send_reschedule(cpu);
d1ccc66d 1814 /* Else CPU is not idle, do nothing here: */
8a8c69c3 1815 rq_unlock_irqrestore(rq, &rf);
f6be8af1 1816 }
fd7de1e8
AL
1817
1818out:
1819 rcu_read_unlock();
f6be8af1
CL
1820}
1821
39be3501 1822bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1823{
1824 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1825}
d6aa8f85 1826#endif /* CONFIG_SMP */
317f3941 1827
b5179ac7 1828static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
c05fbafb
PZ
1829{
1830 struct rq *rq = cpu_rq(cpu);
d8ac8971 1831 struct rq_flags rf;
c05fbafb 1832
17d9f311 1833#if defined(CONFIG_SMP)
39be3501 1834 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
d1ccc66d 1835 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
b7e7ade3 1836 ttwu_queue_remote(p, cpu, wake_flags);
317f3941
PZ
1837 return;
1838 }
1839#endif
1840
8a8c69c3 1841 rq_lock(rq, &rf);
77558e4d 1842 update_rq_clock(rq);
d8ac8971 1843 ttwu_do_activate(rq, p, wake_flags, &rf);
8a8c69c3 1844 rq_unlock(rq, &rf);
9ed3811a
TH
1845}
1846
8643cda5
PZ
1847/*
1848 * Notes on Program-Order guarantees on SMP systems.
1849 *
1850 * MIGRATION
1851 *
1852 * The basic program-order guarantee on SMP systems is that when a task [t]
d1ccc66d
IM
1853 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
1854 * execution on its new CPU [c1].
8643cda5
PZ
1855 *
1856 * For migration (of runnable tasks) this is provided by the following means:
1857 *
1858 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1859 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1860 * rq(c1)->lock (if not at the same time, then in that order).
1861 * C) LOCK of the rq(c1)->lock scheduling in task
1862 *
1863 * Transitivity guarantees that B happens after A and C after B.
1864 * Note: we only require RCpc transitivity.
d1ccc66d 1865 * Note: the CPU doing B need not be c0 or c1
8643cda5
PZ
1866 *
1867 * Example:
1868 *
1869 * CPU0 CPU1 CPU2
1870 *
1871 * LOCK rq(0)->lock
1872 * sched-out X
1873 * sched-in Y
1874 * UNLOCK rq(0)->lock
1875 *
1876 * LOCK rq(0)->lock // orders against CPU0
1877 * dequeue X
1878 * UNLOCK rq(0)->lock
1879 *
1880 * LOCK rq(1)->lock
1881 * enqueue X
1882 * UNLOCK rq(1)->lock
1883 *
1884 * LOCK rq(1)->lock // orders against CPU2
1885 * sched-out Z
1886 * sched-in X
1887 * UNLOCK rq(1)->lock
1888 *
1889 *
1890 * BLOCKING -- aka. SLEEP + WAKEUP
1891 *
1892 * For blocking we (obviously) need to provide the same guarantee as for
1893 * migration. However the means are completely different as there is no lock
1894 * chain to provide order. Instead we do:
1895 *
1896 * 1) smp_store_release(X->on_cpu, 0)
1f03e8d2 1897 * 2) smp_cond_load_acquire(!X->on_cpu)
8643cda5
PZ
1898 *
1899 * Example:
1900 *
1901 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1902 *
1903 * LOCK rq(0)->lock LOCK X->pi_lock
1904 * dequeue X
1905 * sched-out X
1906 * smp_store_release(X->on_cpu, 0);
1907 *
1f03e8d2 1908 * smp_cond_load_acquire(&X->on_cpu, !VAL);
8643cda5
PZ
1909 * X->state = WAKING
1910 * set_task_cpu(X,2)
1911 *
1912 * LOCK rq(2)->lock
1913 * enqueue X
1914 * X->state = RUNNING
1915 * UNLOCK rq(2)->lock
1916 *
1917 * LOCK rq(2)->lock // orders against CPU1
1918 * sched-out Z
1919 * sched-in X
1920 * UNLOCK rq(2)->lock
1921 *
1922 * UNLOCK X->pi_lock
1923 * UNLOCK rq(0)->lock
1924 *
1925 *
1926 * However; for wakeups there is a second guarantee we must provide, namely we
1927 * must observe the state that lead to our wakeup. That is, not only must our
1928 * task observe its own prior state, it must also observe the stores prior to
1929 * its wakeup.
1930 *
1931 * This means that any means of doing remote wakeups must order the CPU doing
1932 * the wakeup against the CPU the task is going to end up running on. This,
1933 * however, is already required for the regular Program-Order guarantee above,
1f03e8d2 1934 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
8643cda5
PZ
1935 *
1936 */
1937
9ed3811a 1938/**
1da177e4 1939 * try_to_wake_up - wake up a thread
9ed3811a 1940 * @p: the thread to be awakened
1da177e4 1941 * @state: the mask of task states that can be woken
9ed3811a 1942 * @wake_flags: wake modifier flags (WF_*)
1da177e4 1943 *
a2250238 1944 * If (@state & @p->state) @p->state = TASK_RUNNING.
1da177e4 1945 *
a2250238
PZ
1946 * If the task was not queued/runnable, also place it back on a runqueue.
1947 *
1948 * Atomic against schedule() which would dequeue a task, also see
1949 * set_current_state().
1950 *
1951 * Return: %true if @p->state changes (an actual wakeup was done),
1952 * %false otherwise.
1da177e4 1953 */
e4a52bcb
PZ
1954static int
1955try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1956{
1da177e4 1957 unsigned long flags;
c05fbafb 1958 int cpu, success = 0;
2398f2c6 1959
e0acd0a6
ON
1960 /*
1961 * If we are going to wake up a thread waiting for CONDITION we
1962 * need to ensure that CONDITION=1 done by the caller can not be
1963 * reordered with p->state check below. This pairs with mb() in
1964 * set_current_state() the waiting thread does.
1965 */
013fdb80 1966 raw_spin_lock_irqsave(&p->pi_lock, flags);
d89e588c 1967 smp_mb__after_spinlock();
e9c84311 1968 if (!(p->state & state))
1da177e4
LT
1969 goto out;
1970
fbd705a0
PZ
1971 trace_sched_waking(p);
1972
d1ccc66d
IM
1973 /* We're going to change ->state: */
1974 success = 1;
1da177e4 1975 cpu = task_cpu(p);
1da177e4 1976
135e8c92
BS
1977 /*
1978 * Ensure we load p->on_rq _after_ p->state, otherwise it would
1979 * be possible to, falsely, observe p->on_rq == 0 and get stuck
1980 * in smp_cond_load_acquire() below.
1981 *
1982 * sched_ttwu_pending() try_to_wake_up()
1983 * [S] p->on_rq = 1; [L] P->state
1984 * UNLOCK rq->lock -----.
1985 * \
1986 * +--- RMB
1987 * schedule() /
1988 * LOCK rq->lock -----'
1989 * UNLOCK rq->lock
1990 *
1991 * [task p]
1992 * [S] p->state = UNINTERRUPTIBLE [L] p->on_rq
1993 *
1994 * Pairs with the UNLOCK+LOCK on rq->lock from the
1995 * last wakeup of our task and the schedule that got our task
1996 * current.
1997 */
1998 smp_rmb();
c05fbafb
PZ
1999 if (p->on_rq && ttwu_remote(p, wake_flags))
2000 goto stat;
1da177e4 2001
1da177e4 2002#ifdef CONFIG_SMP
ecf7d01c
PZ
2003 /*
2004 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2005 * possible to, falsely, observe p->on_cpu == 0.
2006 *
2007 * One must be running (->on_cpu == 1) in order to remove oneself
2008 * from the runqueue.
2009 *
2010 * [S] ->on_cpu = 1; [L] ->on_rq
2011 * UNLOCK rq->lock
2012 * RMB
2013 * LOCK rq->lock
2014 * [S] ->on_rq = 0; [L] ->on_cpu
2015 *
2016 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2017 * from the consecutive calls to schedule(); the first switching to our
2018 * task, the second putting it to sleep.
2019 */
2020 smp_rmb();
2021
e9c84311 2022 /*
d1ccc66d 2023 * If the owning (remote) CPU is still in the middle of schedule() with
c05fbafb 2024 * this task as prev, wait until its done referencing the task.
b75a2253 2025 *
31cb1bc0 2026 * Pairs with the smp_store_release() in finish_task().
b75a2253
PZ
2027 *
2028 * This ensures that tasks getting woken will be fully ordered against
2029 * their previous state and preserve Program Order.
0970d299 2030 */
1f03e8d2 2031 smp_cond_load_acquire(&p->on_cpu, !VAL);
1da177e4 2032
a8e4f2ea 2033 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 2034 p->state = TASK_WAKING;
e7693a36 2035
e33a9bba 2036 if (p->in_iowait) {
c96f5471 2037 delayacct_blkio_end(p);
e33a9bba
TH
2038 atomic_dec(&task_rq(p)->nr_iowait);
2039 }
2040
ac66f547 2041 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
2042 if (task_cpu(p) != cpu) {
2043 wake_flags |= WF_MIGRATED;
e4a52bcb 2044 set_task_cpu(p, cpu);
f339b9dc 2045 }
e33a9bba
TH
2046
2047#else /* CONFIG_SMP */
2048
2049 if (p->in_iowait) {
c96f5471 2050 delayacct_blkio_end(p);
e33a9bba
TH
2051 atomic_dec(&task_rq(p)->nr_iowait);
2052 }
2053
1da177e4 2054#endif /* CONFIG_SMP */
1da177e4 2055
b5179ac7 2056 ttwu_queue(p, cpu, wake_flags);
c05fbafb 2057stat:
4fa8d299 2058 ttwu_stat(p, cpu, wake_flags);
1da177e4 2059out:
013fdb80 2060 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
2061
2062 return success;
2063}
2064
21aa9af0
TH
2065/**
2066 * try_to_wake_up_local - try to wake up a local task with rq lock held
2067 * @p: the thread to be awakened
bf50f0e8 2068 * @rf: request-queue flags for pinning
21aa9af0 2069 *
2acca55e 2070 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 2071 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 2072 * the current task.
21aa9af0 2073 */
d8ac8971 2074static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf)
21aa9af0
TH
2075{
2076 struct rq *rq = task_rq(p);
21aa9af0 2077
383efcd0
TH
2078 if (WARN_ON_ONCE(rq != this_rq()) ||
2079 WARN_ON_ONCE(p == current))
2080 return;
2081
21aa9af0
TH
2082 lockdep_assert_held(&rq->lock);
2083
2acca55e 2084 if (!raw_spin_trylock(&p->pi_lock)) {
cbce1a68
PZ
2085 /*
2086 * This is OK, because current is on_cpu, which avoids it being
2087 * picked for load-balance and preemption/IRQs are still
2088 * disabled avoiding further scheduler activity on it and we've
2089 * not yet picked a replacement task.
2090 */
8a8c69c3 2091 rq_unlock(rq, rf);
2acca55e 2092 raw_spin_lock(&p->pi_lock);
8a8c69c3 2093 rq_relock(rq, rf);
2acca55e
PZ
2094 }
2095
21aa9af0 2096 if (!(p->state & TASK_NORMAL))
2acca55e 2097 goto out;
21aa9af0 2098
fbd705a0
PZ
2099 trace_sched_waking(p);
2100
e33a9bba
TH
2101 if (!task_on_rq_queued(p)) {
2102 if (p->in_iowait) {
c96f5471 2103 delayacct_blkio_end(p);
e33a9bba
TH
2104 atomic_dec(&rq->nr_iowait);
2105 }
bce4dc80 2106 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK);
e33a9bba 2107 }
d7c01d27 2108
d8ac8971 2109 ttwu_do_wakeup(rq, p, 0, rf);
4fa8d299 2110 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
2111out:
2112 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
2113}
2114
50fa610a
DH
2115/**
2116 * wake_up_process - Wake up a specific process
2117 * @p: The process to be woken up.
2118 *
2119 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
2120 * processes.
2121 *
2122 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
2123 *
2124 * It may be assumed that this function implies a write memory barrier before
2125 * changing the task state if and only if any tasks are woken up.
2126 */
7ad5b3a5 2127int wake_up_process(struct task_struct *p)
1da177e4 2128{
9067ac85 2129 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 2130}
1da177e4
LT
2131EXPORT_SYMBOL(wake_up_process);
2132
7ad5b3a5 2133int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2134{
2135 return try_to_wake_up(p, state, 0);
2136}
2137
1da177e4
LT
2138/*
2139 * Perform scheduler related setup for a newly forked process p.
2140 * p is forked by current.
dd41f596
IM
2141 *
2142 * __sched_fork() is basic setup used by init_idle() too:
2143 */
5e1576ed 2144static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2145{
fd2f4419
PZ
2146 p->on_rq = 0;
2147
2148 p->se.on_rq = 0;
dd41f596
IM
2149 p->se.exec_start = 0;
2150 p->se.sum_exec_runtime = 0;
f6cf891c 2151 p->se.prev_sum_exec_runtime = 0;
6c594c21 2152 p->se.nr_migrations = 0;
da7a735e 2153 p->se.vruntime = 0;
fd2f4419 2154 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d 2155
ad936d86
BP
2156#ifdef CONFIG_FAIR_GROUP_SCHED
2157 p->se.cfs_rq = NULL;
2158#endif
2159
6cfb0d5d 2160#ifdef CONFIG_SCHEDSTATS
cb251765 2161 /* Even if schedstat is disabled, there should not be garbage */
41acab88 2162 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2163#endif
476d139c 2164
aab03e05 2165 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 2166 init_dl_task_timer(&p->dl);
209a0cbd 2167 init_dl_inactive_task_timer(&p->dl);
a5e7be3b 2168 __dl_clear_params(p);
aab03e05 2169
fa717060 2170 INIT_LIST_HEAD(&p->rt.run_list);
ff77e468
PZ
2171 p->rt.timeout = 0;
2172 p->rt.time_slice = sched_rr_timeslice;
2173 p->rt.on_rq = 0;
2174 p->rt.on_list = 0;
476d139c 2175
e107be36
AK
2176#ifdef CONFIG_PREEMPT_NOTIFIERS
2177 INIT_HLIST_HEAD(&p->preempt_notifiers);
2178#endif
cbee9f88 2179
13784475 2180 init_numa_balancing(clone_flags, p);
dd41f596
IM
2181}
2182
2a595721
SD
2183DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2184
1a687c2e 2185#ifdef CONFIG_NUMA_BALANCING
c3b9bc5b 2186
1a687c2e
MG
2187void set_numabalancing_state(bool enabled)
2188{
2189 if (enabled)
2a595721 2190 static_branch_enable(&sched_numa_balancing);
1a687c2e 2191 else
2a595721 2192 static_branch_disable(&sched_numa_balancing);
1a687c2e 2193}
54a43d54
AK
2194
2195#ifdef CONFIG_PROC_SYSCTL
2196int sysctl_numa_balancing(struct ctl_table *table, int write,
2197 void __user *buffer, size_t *lenp, loff_t *ppos)
2198{
2199 struct ctl_table t;
2200 int err;
2a595721 2201 int state = static_branch_likely(&sched_numa_balancing);
54a43d54
AK
2202
2203 if (write && !capable(CAP_SYS_ADMIN))
2204 return -EPERM;
2205
2206 t = *table;
2207 t.data = &state;
2208 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2209 if (err < 0)
2210 return err;
2211 if (write)
2212 set_numabalancing_state(state);
2213 return err;
2214}
2215#endif
2216#endif
dd41f596 2217
4698f88c
JP
2218#ifdef CONFIG_SCHEDSTATS
2219
cb251765 2220DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4698f88c 2221static bool __initdata __sched_schedstats = false;
cb251765 2222
cb251765
MG
2223static void set_schedstats(bool enabled)
2224{
2225 if (enabled)
2226 static_branch_enable(&sched_schedstats);
2227 else
2228 static_branch_disable(&sched_schedstats);
2229}
2230
2231void force_schedstat_enabled(void)
2232{
2233 if (!schedstat_enabled()) {
2234 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2235 static_branch_enable(&sched_schedstats);
2236 }
2237}
2238
2239static int __init setup_schedstats(char *str)
2240{
2241 int ret = 0;
2242 if (!str)
2243 goto out;
2244
4698f88c
JP
2245 /*
2246 * This code is called before jump labels have been set up, so we can't
2247 * change the static branch directly just yet. Instead set a temporary
2248 * variable so init_schedstats() can do it later.
2249 */
cb251765 2250 if (!strcmp(str, "enable")) {
4698f88c 2251 __sched_schedstats = true;
cb251765
MG
2252 ret = 1;
2253 } else if (!strcmp(str, "disable")) {
4698f88c 2254 __sched_schedstats = false;
cb251765
MG
2255 ret = 1;
2256 }
2257out:
2258 if (!ret)
2259 pr_warn("Unable to parse schedstats=\n");
2260
2261 return ret;
2262}
2263__setup("schedstats=", setup_schedstats);
2264
4698f88c
JP
2265static void __init init_schedstats(void)
2266{
2267 set_schedstats(__sched_schedstats);
2268}
2269
cb251765
MG
2270#ifdef CONFIG_PROC_SYSCTL
2271int sysctl_schedstats(struct ctl_table *table, int write,
2272 void __user *buffer, size_t *lenp, loff_t *ppos)
2273{
2274 struct ctl_table t;
2275 int err;
2276 int state = static_branch_likely(&sched_schedstats);
2277
2278 if (write && !capable(CAP_SYS_ADMIN))
2279 return -EPERM;
2280
2281 t = *table;
2282 t.data = &state;
2283 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2284 if (err < 0)
2285 return err;
2286 if (write)
2287 set_schedstats(state);
2288 return err;
2289}
4698f88c
JP
2290#endif /* CONFIG_PROC_SYSCTL */
2291#else /* !CONFIG_SCHEDSTATS */
2292static inline void init_schedstats(void) {}
2293#endif /* CONFIG_SCHEDSTATS */
dd41f596
IM
2294
2295/*
2296 * fork()/clone()-time setup:
2297 */
aab03e05 2298int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2299{
0122ec5b 2300 unsigned long flags;
dd41f596
IM
2301 int cpu = get_cpu();
2302
5e1576ed 2303 __sched_fork(clone_flags, p);
06b83b5f 2304 /*
7dc603c9 2305 * We mark the process as NEW here. This guarantees that
06b83b5f
PZ
2306 * nobody will actually run it, and a signal or other external
2307 * event cannot wake it up and insert it on the runqueue either.
2308 */
7dc603c9 2309 p->state = TASK_NEW;
dd41f596 2310
c350a04e
MG
2311 /*
2312 * Make sure we do not leak PI boosting priority to the child.
2313 */
2314 p->prio = current->normal_prio;
2315
b9dc29e7
MG
2316 /*
2317 * Revert to default priority/policy on fork if requested.
2318 */
2319 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 2320 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 2321 p->policy = SCHED_NORMAL;
6c697bdf 2322 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
2323 p->rt_priority = 0;
2324 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2325 p->static_prio = NICE_TO_PRIO(0);
2326
2327 p->prio = p->normal_prio = __normal_prio(p);
9059393e 2328 set_load_weight(p, false);
6c697bdf 2329
b9dc29e7
MG
2330 /*
2331 * We don't need the reset flag anymore after the fork. It has
2332 * fulfilled its duty:
2333 */
2334 p->sched_reset_on_fork = 0;
2335 }
ca94c442 2336
aab03e05
DF
2337 if (dl_prio(p->prio)) {
2338 put_cpu();
2339 return -EAGAIN;
2340 } else if (rt_prio(p->prio)) {
2341 p->sched_class = &rt_sched_class;
2342 } else {
2ddbf952 2343 p->sched_class = &fair_sched_class;
aab03e05 2344 }
b29739f9 2345
7dc603c9 2346 init_entity_runnable_average(&p->se);
cd29fe6f 2347
86951599
PZ
2348 /*
2349 * The child is not yet in the pid-hash so no cgroup attach races,
2350 * and the cgroup is pinned to this child due to cgroup_fork()
2351 * is ran before sched_fork().
2352 *
2353 * Silence PROVE_RCU.
2354 */
0122ec5b 2355 raw_spin_lock_irqsave(&p->pi_lock, flags);
e210bffd 2356 /*
d1ccc66d 2357 * We're setting the CPU for the first time, we don't migrate,
e210bffd
PZ
2358 * so use __set_task_cpu().
2359 */
2360 __set_task_cpu(p, cpu);
2361 if (p->sched_class->task_fork)
2362 p->sched_class->task_fork(p);
0122ec5b 2363 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 2364
f6db8347 2365#ifdef CONFIG_SCHED_INFO
dd41f596 2366 if (likely(sched_info_on()))
52f17b6c 2367 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2368#endif
3ca7a440
PZ
2369#if defined(CONFIG_SMP)
2370 p->on_cpu = 0;
4866cde0 2371#endif
01028747 2372 init_task_preempt_count(p);
806c09a7 2373#ifdef CONFIG_SMP
917b627d 2374 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 2375 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 2376#endif
917b627d 2377
476d139c 2378 put_cpu();
aab03e05 2379 return 0;
1da177e4
LT
2380}
2381
332ac17e
DF
2382unsigned long to_ratio(u64 period, u64 runtime)
2383{
2384 if (runtime == RUNTIME_INF)
c52f14d3 2385 return BW_UNIT;
332ac17e
DF
2386
2387 /*
2388 * Doing this here saves a lot of checks in all
2389 * the calling paths, and returning zero seems
2390 * safe for them anyway.
2391 */
2392 if (period == 0)
2393 return 0;
2394
c52f14d3 2395 return div64_u64(runtime << BW_SHIFT, period);
332ac17e
DF
2396}
2397
1da177e4
LT
2398/*
2399 * wake_up_new_task - wake up a newly created task for the first time.
2400 *
2401 * This function will do some initial scheduler statistics housekeeping
2402 * that must be done for every newly created context, then puts the task
2403 * on the runqueue and wakes it.
2404 */
3e51e3ed 2405void wake_up_new_task(struct task_struct *p)
1da177e4 2406{
eb580751 2407 struct rq_flags rf;
dd41f596 2408 struct rq *rq;
fabf318e 2409
eb580751 2410 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
7dc603c9 2411 p->state = TASK_RUNNING;
fabf318e
PZ
2412#ifdef CONFIG_SMP
2413 /*
2414 * Fork balancing, do it here and not earlier because:
2415 * - cpus_allowed can change in the fork path
d1ccc66d 2416 * - any previously selected CPU might disappear through hotplug
e210bffd
PZ
2417 *
2418 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2419 * as we're not fully set-up yet.
fabf318e 2420 */
32e839dd 2421 p->recent_used_cpu = task_cpu(p);
e210bffd 2422 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735 2423#endif
b7fa30c9 2424 rq = __task_rq_lock(p, &rf);
4126bad6 2425 update_rq_clock(rq);
2b8c41da 2426 post_init_entity_util_avg(&p->se);
0017d735 2427
7a57f32a 2428 activate_task(rq, p, ENQUEUE_NOCLOCK);
da0c1e65 2429 p->on_rq = TASK_ON_RQ_QUEUED;
fbd705a0 2430 trace_sched_wakeup_new(p);
a7558e01 2431 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2432#ifdef CONFIG_SMP
0aaafaab
PZ
2433 if (p->sched_class->task_woken) {
2434 /*
2435 * Nothing relies on rq->lock after this, so its fine to
2436 * drop it.
2437 */
d8ac8971 2438 rq_unpin_lock(rq, &rf);
efbbd05a 2439 p->sched_class->task_woken(rq, p);
d8ac8971 2440 rq_repin_lock(rq, &rf);
0aaafaab 2441 }
9a897c5a 2442#endif
eb580751 2443 task_rq_unlock(rq, p, &rf);
1da177e4
LT
2444}
2445
e107be36
AK
2446#ifdef CONFIG_PREEMPT_NOTIFIERS
2447
b7203428 2448static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
1cde2930 2449
2ecd9d29
PZ
2450void preempt_notifier_inc(void)
2451{
b7203428 2452 static_branch_inc(&preempt_notifier_key);
2ecd9d29
PZ
2453}
2454EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2455
2456void preempt_notifier_dec(void)
2457{
b7203428 2458 static_branch_dec(&preempt_notifier_key);
2ecd9d29
PZ
2459}
2460EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2461
e107be36 2462/**
80dd99b3 2463 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2464 * @notifier: notifier struct to register
e107be36
AK
2465 */
2466void preempt_notifier_register(struct preempt_notifier *notifier)
2467{
b7203428 2468 if (!static_branch_unlikely(&preempt_notifier_key))
2ecd9d29
PZ
2469 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2470
e107be36
AK
2471 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2472}
2473EXPORT_SYMBOL_GPL(preempt_notifier_register);
2474
2475/**
2476 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2477 * @notifier: notifier struct to unregister
e107be36 2478 *
d84525a8 2479 * This is *not* safe to call from within a preemption notifier.
e107be36
AK
2480 */
2481void preempt_notifier_unregister(struct preempt_notifier *notifier)
2482{
2483 hlist_del(&notifier->link);
2484}
2485EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2486
1cde2930 2487static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2488{
2489 struct preempt_notifier *notifier;
e107be36 2490
b67bfe0d 2491 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2492 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2493}
2494
1cde2930
PZ
2495static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2496{
b7203428 2497 if (static_branch_unlikely(&preempt_notifier_key))
1cde2930
PZ
2498 __fire_sched_in_preempt_notifiers(curr);
2499}
2500
e107be36 2501static void
1cde2930
PZ
2502__fire_sched_out_preempt_notifiers(struct task_struct *curr,
2503 struct task_struct *next)
e107be36
AK
2504{
2505 struct preempt_notifier *notifier;
e107be36 2506
b67bfe0d 2507 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2508 notifier->ops->sched_out(notifier, next);
2509}
2510
1cde2930
PZ
2511static __always_inline void
2512fire_sched_out_preempt_notifiers(struct task_struct *curr,
2513 struct task_struct *next)
2514{
b7203428 2515 if (static_branch_unlikely(&preempt_notifier_key))
1cde2930
PZ
2516 __fire_sched_out_preempt_notifiers(curr, next);
2517}
2518
6d6bc0ad 2519#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36 2520
1cde2930 2521static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2522{
2523}
2524
1cde2930 2525static inline void
e107be36
AK
2526fire_sched_out_preempt_notifiers(struct task_struct *curr,
2527 struct task_struct *next)
2528{
2529}
2530
6d6bc0ad 2531#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2532
31cb1bc0 2533static inline void prepare_task(struct task_struct *next)
2534{
2535#ifdef CONFIG_SMP
2536 /*
2537 * Claim the task as running, we do this before switching to it
2538 * such that any running task will have this set.
2539 */
2540 next->on_cpu = 1;
2541#endif
2542}
2543
2544static inline void finish_task(struct task_struct *prev)
2545{
2546#ifdef CONFIG_SMP
2547 /*
2548 * After ->on_cpu is cleared, the task can be moved to a different CPU.
2549 * We must ensure this doesn't happen until the switch is completely
2550 * finished.
2551 *
2552 * In particular, the load of prev->state in finish_task_switch() must
2553 * happen before this.
2554 *
2555 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
2556 */
2557 smp_store_release(&prev->on_cpu, 0);
2558#endif
2559}
2560
269d5992
PZ
2561static inline void
2562prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
31cb1bc0 2563{
269d5992
PZ
2564 /*
2565 * Since the runqueue lock will be released by the next
2566 * task (which is an invalid locking op but in the case
2567 * of the scheduler it's an obvious special-case), so we
2568 * do an early lockdep release here:
2569 */
2570 rq_unpin_lock(rq, rf);
2571 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
31cb1bc0 2572#ifdef CONFIG_DEBUG_SPINLOCK
2573 /* this is a valid case when another task releases the spinlock */
269d5992 2574 rq->lock.owner = next;
31cb1bc0 2575#endif
269d5992
PZ
2576}
2577
2578static inline void finish_lock_switch(struct rq *rq)
2579{
31cb1bc0 2580 /*
2581 * If we are tracking spinlock dependencies then we have to
2582 * fix up the runqueue lock - which gets 'carried over' from
2583 * prev into current:
2584 */
2585 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
31cb1bc0 2586 raw_spin_unlock_irq(&rq->lock);
2587}
2588
325ea10c
IM
2589/*
2590 * NOP if the arch has not defined these:
2591 */
2592
2593#ifndef prepare_arch_switch
2594# define prepare_arch_switch(next) do { } while (0)
2595#endif
2596
2597#ifndef finish_arch_post_lock_switch
2598# define finish_arch_post_lock_switch() do { } while (0)
2599#endif
2600
4866cde0
NP
2601/**
2602 * prepare_task_switch - prepare to switch tasks
2603 * @rq: the runqueue preparing to switch
421cee29 2604 * @prev: the current task that is being switched out
4866cde0
NP
2605 * @next: the task we are going to switch to.
2606 *
2607 * This is called with the rq lock held and interrupts off. It must
2608 * be paired with a subsequent finish_task_switch after the context
2609 * switch.
2610 *
2611 * prepare_task_switch sets up locking and calls architecture specific
2612 * hooks.
2613 */
e107be36
AK
2614static inline void
2615prepare_task_switch(struct rq *rq, struct task_struct *prev,
2616 struct task_struct *next)
4866cde0 2617{
43148951 2618 sched_info_switch(rq, prev, next);
fe4b04fa 2619 perf_event_task_sched_out(prev, next);
e107be36 2620 fire_sched_out_preempt_notifiers(prev, next);
31cb1bc0 2621 prepare_task(next);
4866cde0
NP
2622 prepare_arch_switch(next);
2623}
2624
1da177e4
LT
2625/**
2626 * finish_task_switch - clean up after a task-switch
2627 * @prev: the thread we just switched away from.
2628 *
4866cde0
NP
2629 * finish_task_switch must be called after the context switch, paired
2630 * with a prepare_task_switch call before the context switch.
2631 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2632 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2633 *
2634 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2635 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2636 * with the lock held can cause deadlocks; see schedule() for
2637 * details.)
dfa50b60
ON
2638 *
2639 * The context switch have flipped the stack from under us and restored the
2640 * local variables which were saved when this task called schedule() in the
2641 * past. prev == current is still correct but we need to recalculate this_rq
2642 * because prev may have moved to another CPU.
1da177e4 2643 */
dfa50b60 2644static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
2645 __releases(rq->lock)
2646{
dfa50b60 2647 struct rq *rq = this_rq();
1da177e4 2648 struct mm_struct *mm = rq->prev_mm;
55a101f8 2649 long prev_state;
1da177e4 2650
609ca066
PZ
2651 /*
2652 * The previous task will have left us with a preempt_count of 2
2653 * because it left us after:
2654 *
2655 * schedule()
2656 * preempt_disable(); // 1
2657 * __schedule()
2658 * raw_spin_lock_irq(&rq->lock) // 2
2659 *
2660 * Also, see FORK_PREEMPT_COUNT.
2661 */
e2bf1c4b
PZ
2662 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2663 "corrupted preempt_count: %s/%d/0x%x\n",
2664 current->comm, current->pid, preempt_count()))
2665 preempt_count_set(FORK_PREEMPT_COUNT);
609ca066 2666
1da177e4
LT
2667 rq->prev_mm = NULL;
2668
2669 /*
2670 * A task struct has one reference for the use as "current".
c394cc9f 2671 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2672 * schedule one last time. The schedule call will never return, and
2673 * the scheduled task must drop that reference.
95913d97
PZ
2674 *
2675 * We must observe prev->state before clearing prev->on_cpu (in
31cb1bc0 2676 * finish_task), otherwise a concurrent wakeup can get prev
95913d97
PZ
2677 * running on another CPU and we could rave with its RUNNING -> DEAD
2678 * transition, resulting in a double drop.
1da177e4 2679 */
55a101f8 2680 prev_state = prev->state;
bf9fae9f 2681 vtime_task_switch(prev);
a8d757ef 2682 perf_event_task_sched_in(prev, current);
31cb1bc0 2683 finish_task(prev);
2684 finish_lock_switch(rq);
01f23e16 2685 finish_arch_post_lock_switch();
e8fa1362 2686
e107be36 2687 fire_sched_in_preempt_notifiers(current);
306e0604 2688 /*
70216e18
MD
2689 * When switching through a kernel thread, the loop in
2690 * membarrier_{private,global}_expedited() may have observed that
2691 * kernel thread and not issued an IPI. It is therefore possible to
2692 * schedule between user->kernel->user threads without passing though
2693 * switch_mm(). Membarrier requires a barrier after storing to
2694 * rq->curr, before returning to userspace, so provide them here:
2695 *
2696 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
2697 * provided by mmdrop(),
2698 * - a sync_core for SYNC_CORE.
306e0604 2699 */
70216e18
MD
2700 if (mm) {
2701 membarrier_mm_sync_core_before_usermode(mm);
1da177e4 2702 mmdrop(mm);
70216e18 2703 }
85f1abe0
PZ
2704 if (unlikely(prev_state & (TASK_DEAD|TASK_PARKED))) {
2705 switch (prev_state) {
2706 case TASK_DEAD:
2707 if (prev->sched_class->task_dead)
2708 prev->sched_class->task_dead(prev);
2709
2710 /*
2711 * Remove function-return probe instances associated with this
2712 * task and put them back on the free list.
2713 */
2714 kprobe_flush_task(prev);
2715
2716 /* Task is done with its stack. */
2717 put_task_stack(prev);
2718
2719 put_task_struct(prev);
2720 break;
68f24b08 2721
85f1abe0
PZ
2722 case TASK_PARKED:
2723 kthread_park_complete(prev);
2724 break;
2725 }
c6fd91f0 2726 }
99e5ada9 2727
de734f89 2728 tick_nohz_task_switch();
dfa50b60 2729 return rq;
1da177e4
LT
2730}
2731
3f029d3c
GH
2732#ifdef CONFIG_SMP
2733
3f029d3c 2734/* rq->lock is NOT held, but preemption is disabled */
e3fca9e7 2735static void __balance_callback(struct rq *rq)
3f029d3c 2736{
e3fca9e7
PZ
2737 struct callback_head *head, *next;
2738 void (*func)(struct rq *rq);
2739 unsigned long flags;
3f029d3c 2740
e3fca9e7
PZ
2741 raw_spin_lock_irqsave(&rq->lock, flags);
2742 head = rq->balance_callback;
2743 rq->balance_callback = NULL;
2744 while (head) {
2745 func = (void (*)(struct rq *))head->func;
2746 next = head->next;
2747 head->next = NULL;
2748 head = next;
3f029d3c 2749
e3fca9e7 2750 func(rq);
3f029d3c 2751 }
e3fca9e7
PZ
2752 raw_spin_unlock_irqrestore(&rq->lock, flags);
2753}
2754
2755static inline void balance_callback(struct rq *rq)
2756{
2757 if (unlikely(rq->balance_callback))
2758 __balance_callback(rq);
3f029d3c
GH
2759}
2760
2761#else
da19ab51 2762
e3fca9e7 2763static inline void balance_callback(struct rq *rq)
3f029d3c 2764{
1da177e4
LT
2765}
2766
3f029d3c
GH
2767#endif
2768
1da177e4
LT
2769/**
2770 * schedule_tail - first thing a freshly forked thread must call.
2771 * @prev: the thread we just switched away from.
2772 */
722a9f92 2773asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
2774 __releases(rq->lock)
2775{
1a43a14a 2776 struct rq *rq;
da19ab51 2777
609ca066
PZ
2778 /*
2779 * New tasks start with FORK_PREEMPT_COUNT, see there and
2780 * finish_task_switch() for details.
2781 *
2782 * finish_task_switch() will drop rq->lock() and lower preempt_count
2783 * and the preempt_enable() will end up enabling preemption (on
2784 * PREEMPT_COUNT kernels).
2785 */
2786
dfa50b60 2787 rq = finish_task_switch(prev);
e3fca9e7 2788 balance_callback(rq);
1a43a14a 2789 preempt_enable();
70b97a7f 2790
1da177e4 2791 if (current->set_child_tid)
b488893a 2792 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2793}
2794
2795/*
dfa50b60 2796 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 2797 */
04936948 2798static __always_inline struct rq *
70b97a7f 2799context_switch(struct rq *rq, struct task_struct *prev,
d8ac8971 2800 struct task_struct *next, struct rq_flags *rf)
1da177e4 2801{
dd41f596 2802 struct mm_struct *mm, *oldmm;
1da177e4 2803
e107be36 2804 prepare_task_switch(rq, prev, next);
fe4b04fa 2805
dd41f596
IM
2806 mm = next->mm;
2807 oldmm = prev->active_mm;
9226d125
ZA
2808 /*
2809 * For paravirt, this is coupled with an exit in switch_to to
2810 * combine the page table reload and the switch backend into
2811 * one hypercall.
2812 */
224101ed 2813 arch_start_context_switch(prev);
9226d125 2814
306e0604
MD
2815 /*
2816 * If mm is non-NULL, we pass through switch_mm(). If mm is
2817 * NULL, we will pass through mmdrop() in finish_task_switch().
2818 * Both of these contain the full memory barrier required by
2819 * membarrier after storing to rq->curr, before returning to
2820 * user-space.
2821 */
31915ab4 2822 if (!mm) {
1da177e4 2823 next->active_mm = oldmm;
f1f10076 2824 mmgrab(oldmm);
1da177e4
LT
2825 enter_lazy_tlb(oldmm, next);
2826 } else
f98db601 2827 switch_mm_irqs_off(oldmm, mm, next);
1da177e4 2828
31915ab4 2829 if (!prev->mm) {
1da177e4 2830 prev->active_mm = NULL;
1da177e4
LT
2831 rq->prev_mm = oldmm;
2832 }
92509b73 2833
cb42c9a3 2834 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
92509b73 2835
269d5992 2836 prepare_lock_switch(rq, next, rf);
1da177e4
LT
2837
2838 /* Here we just switch the register state and the stack. */
2839 switch_to(prev, next, prev);
dd41f596 2840 barrier();
dfa50b60
ON
2841
2842 return finish_task_switch(prev);
1da177e4
LT
2843}
2844
2845/*
1c3e8264 2846 * nr_running and nr_context_switches:
1da177e4
LT
2847 *
2848 * externally visible scheduler statistics: current number of runnable
1c3e8264 2849 * threads, total number of context switches performed since bootup.
1da177e4
LT
2850 */
2851unsigned long nr_running(void)
2852{
2853 unsigned long i, sum = 0;
2854
2855 for_each_online_cpu(i)
2856 sum += cpu_rq(i)->nr_running;
2857
2858 return sum;
f711f609 2859}
1da177e4 2860
2ee507c4 2861/*
d1ccc66d 2862 * Check if only the current task is running on the CPU.
00cc1633
DD
2863 *
2864 * Caution: this function does not check that the caller has disabled
2865 * preemption, thus the result might have a time-of-check-to-time-of-use
2866 * race. The caller is responsible to use it correctly, for example:
2867 *
2868 * - from a non-preemptable section (of course)
2869 *
2870 * - from a thread that is bound to a single CPU
2871 *
2872 * - in a loop with very short iterations (e.g. a polling loop)
2ee507c4
TC
2873 */
2874bool single_task_running(void)
2875{
00cc1633 2876 return raw_rq()->nr_running == 1;
2ee507c4
TC
2877}
2878EXPORT_SYMBOL(single_task_running);
2879
1da177e4 2880unsigned long long nr_context_switches(void)
46cb4b7c 2881{
cc94abfc
SR
2882 int i;
2883 unsigned long long sum = 0;
46cb4b7c 2884
0a945022 2885 for_each_possible_cpu(i)
1da177e4 2886 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2887
1da177e4
LT
2888 return sum;
2889}
483b4ee6 2890
e33a9bba
TH
2891/*
2892 * IO-wait accounting, and how its mostly bollocks (on SMP).
2893 *
2894 * The idea behind IO-wait account is to account the idle time that we could
2895 * have spend running if it were not for IO. That is, if we were to improve the
2896 * storage performance, we'd have a proportional reduction in IO-wait time.
2897 *
2898 * This all works nicely on UP, where, when a task blocks on IO, we account
2899 * idle time as IO-wait, because if the storage were faster, it could've been
2900 * running and we'd not be idle.
2901 *
2902 * This has been extended to SMP, by doing the same for each CPU. This however
2903 * is broken.
2904 *
2905 * Imagine for instance the case where two tasks block on one CPU, only the one
2906 * CPU will have IO-wait accounted, while the other has regular idle. Even
2907 * though, if the storage were faster, both could've ran at the same time,
2908 * utilising both CPUs.
2909 *
2910 * This means, that when looking globally, the current IO-wait accounting on
2911 * SMP is a lower bound, by reason of under accounting.
2912 *
2913 * Worse, since the numbers are provided per CPU, they are sometimes
2914 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
2915 * associated with any one particular CPU, it can wake to another CPU than it
2916 * blocked on. This means the per CPU IO-wait number is meaningless.
2917 *
2918 * Task CPU affinities can make all that even more 'interesting'.
2919 */
2920
1da177e4
LT
2921unsigned long nr_iowait(void)
2922{
2923 unsigned long i, sum = 0;
483b4ee6 2924
0a945022 2925 for_each_possible_cpu(i)
1da177e4 2926 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2927
1da177e4
LT
2928 return sum;
2929}
483b4ee6 2930
e33a9bba
TH
2931/*
2932 * Consumers of these two interfaces, like for example the cpufreq menu
2933 * governor are using nonsensical data. Boosting frequency for a CPU that has
2934 * IO-wait which might not even end up running the task when it does become
2935 * runnable.
2936 */
2937
8c215bd3 2938unsigned long nr_iowait_cpu(int cpu)
69d25870 2939{
8c215bd3 2940 struct rq *this = cpu_rq(cpu);
69d25870
AV
2941 return atomic_read(&this->nr_iowait);
2942}
46cb4b7c 2943
372ba8cb
MG
2944void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2945{
3289bdb4
PZ
2946 struct rq *rq = this_rq();
2947 *nr_waiters = atomic_read(&rq->nr_iowait);
2948 *load = rq->load.weight;
372ba8cb
MG
2949}
2950
dd41f596 2951#ifdef CONFIG_SMP
8a0be9ef 2952
46cb4b7c 2953/*
38022906
PZ
2954 * sched_exec - execve() is a valuable balancing opportunity, because at
2955 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2956 */
38022906 2957void sched_exec(void)
46cb4b7c 2958{
38022906 2959 struct task_struct *p = current;
1da177e4 2960 unsigned long flags;
0017d735 2961 int dest_cpu;
46cb4b7c 2962
8f42ced9 2963 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2964 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2965 if (dest_cpu == smp_processor_id())
2966 goto unlock;
38022906 2967
8f42ced9 2968 if (likely(cpu_active(dest_cpu))) {
969c7921 2969 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2970
8f42ced9
PZ
2971 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2972 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2973 return;
2974 }
0017d735 2975unlock:
8f42ced9 2976 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2977}
dd41f596 2978
1da177e4
LT
2979#endif
2980
1da177e4 2981DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2982DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2983
2984EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2985EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 2986
6075620b
GG
2987/*
2988 * The function fair_sched_class.update_curr accesses the struct curr
2989 * and its field curr->exec_start; when called from task_sched_runtime(),
2990 * we observe a high rate of cache misses in practice.
2991 * Prefetching this data results in improved performance.
2992 */
2993static inline void prefetch_curr_exec_start(struct task_struct *p)
2994{
2995#ifdef CONFIG_FAIR_GROUP_SCHED
2996 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
2997#else
2998 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
2999#endif
3000 prefetch(curr);
3001 prefetch(&curr->exec_start);
3002}
3003
c5f8d995
HS
3004/*
3005 * Return accounted runtime for the task.
3006 * In case the task is currently running, return the runtime plus current's
3007 * pending runtime that have not been accounted yet.
3008 */
3009unsigned long long task_sched_runtime(struct task_struct *p)
3010{
eb580751 3011 struct rq_flags rf;
c5f8d995 3012 struct rq *rq;
6e998916 3013 u64 ns;
c5f8d995 3014
911b2898
PZ
3015#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3016 /*
97fb7a0a 3017 * 64-bit doesn't need locks to atomically read a 64-bit value.
911b2898
PZ
3018 * So we have a optimization chance when the task's delta_exec is 0.
3019 * Reading ->on_cpu is racy, but this is ok.
3020 *
d1ccc66d
IM
3021 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3022 * If we race with it entering CPU, unaccounted time is 0. This is
911b2898 3023 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
3024 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3025 * been accounted, so we're correct here as well.
911b2898 3026 */
da0c1e65 3027 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
3028 return p->se.sum_exec_runtime;
3029#endif
3030
eb580751 3031 rq = task_rq_lock(p, &rf);
6e998916
SG
3032 /*
3033 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3034 * project cycles that may never be accounted to this
3035 * thread, breaking clock_gettime().
3036 */
3037 if (task_current(rq, p) && task_on_rq_queued(p)) {
6075620b 3038 prefetch_curr_exec_start(p);
6e998916
SG
3039 update_rq_clock(rq);
3040 p->sched_class->update_curr(rq);
3041 }
3042 ns = p->se.sum_exec_runtime;
eb580751 3043 task_rq_unlock(rq, p, &rf);
c5f8d995
HS
3044
3045 return ns;
3046}
48f24c4d 3047
7835b98b
CL
3048/*
3049 * This function gets called by the timer code, with HZ frequency.
3050 * We call it with interrupts disabled.
7835b98b
CL
3051 */
3052void scheduler_tick(void)
3053{
7835b98b
CL
3054 int cpu = smp_processor_id();
3055 struct rq *rq = cpu_rq(cpu);
dd41f596 3056 struct task_struct *curr = rq->curr;
8a8c69c3 3057 struct rq_flags rf;
3e51f33f
PZ
3058
3059 sched_clock_tick();
dd41f596 3060
8a8c69c3
PZ
3061 rq_lock(rq, &rf);
3062
3e51f33f 3063 update_rq_clock(rq);
fa85ae24 3064 curr->sched_class->task_tick(rq, curr, 0);
cee1afce 3065 cpu_load_update_active(rq);
3289bdb4 3066 calc_global_load_tick(rq);
8a8c69c3
PZ
3067
3068 rq_unlock(rq, &rf);
7835b98b 3069
e9d2b064 3070 perf_event_task_tick();
e220d2dc 3071
e418e1c2 3072#ifdef CONFIG_SMP
6eb57e0d 3073 rq->idle_balance = idle_cpu(cpu);
7caff66f 3074 trigger_load_balance(rq);
e418e1c2 3075#endif
1da177e4
LT
3076}
3077
265f22a9 3078#ifdef CONFIG_NO_HZ_FULL
d84b3131
FW
3079
3080struct tick_work {
3081 int cpu;
3082 struct delayed_work work;
3083};
3084
3085static struct tick_work __percpu *tick_work_cpu;
3086
3087static void sched_tick_remote(struct work_struct *work)
3088{
3089 struct delayed_work *dwork = to_delayed_work(work);
3090 struct tick_work *twork = container_of(dwork, struct tick_work, work);
3091 int cpu = twork->cpu;
3092 struct rq *rq = cpu_rq(cpu);
3093 struct rq_flags rf;
3094
3095 /*
3096 * Handle the tick only if it appears the remote CPU is running in full
3097 * dynticks mode. The check is racy by nature, but missing a tick or
3098 * having one too much is no big deal because the scheduler tick updates
3099 * statistics and checks timeslices in a time-independent way, regardless
3100 * of when exactly it is running.
3101 */
3102 if (!idle_cpu(cpu) && tick_nohz_tick_stopped_cpu(cpu)) {
3103 struct task_struct *curr;
3104 u64 delta;
3105
3106 rq_lock_irq(rq, &rf);
3107 update_rq_clock(rq);
3108 curr = rq->curr;
3109 delta = rq_clock_task(rq) - curr->se.exec_start;
3110
3111 /*
3112 * Make sure the next tick runs within a reasonable
3113 * amount of time.
3114 */
3115 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
3116 curr->sched_class->task_tick(rq, curr, 0);
3117 rq_unlock_irq(rq, &rf);
3118 }
3119
3120 /*
3121 * Run the remote tick once per second (1Hz). This arbitrary
3122 * frequency is large enough to avoid overload but short enough
3123 * to keep scheduler internal stats reasonably up to date.
3124 */
3125 queue_delayed_work(system_unbound_wq, dwork, HZ);
3126}
3127
3128static void sched_tick_start(int cpu)
3129{
3130 struct tick_work *twork;
3131
3132 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3133 return;
3134
3135 WARN_ON_ONCE(!tick_work_cpu);
3136
3137 twork = per_cpu_ptr(tick_work_cpu, cpu);
3138 twork->cpu = cpu;
3139 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
3140 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
3141}
3142
3143#ifdef CONFIG_HOTPLUG_CPU
3144static void sched_tick_stop(int cpu)
3145{
3146 struct tick_work *twork;
3147
3148 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3149 return;
3150
3151 WARN_ON_ONCE(!tick_work_cpu);
3152
3153 twork = per_cpu_ptr(tick_work_cpu, cpu);
3154 cancel_delayed_work_sync(&twork->work);
3155}
3156#endif /* CONFIG_HOTPLUG_CPU */
3157
3158int __init sched_tick_offload_init(void)
3159{
3160 tick_work_cpu = alloc_percpu(struct tick_work);
3161 BUG_ON(!tick_work_cpu);
3162
3163 return 0;
3164}
3165
3166#else /* !CONFIG_NO_HZ_FULL */
3167static inline void sched_tick_start(int cpu) { }
3168static inline void sched_tick_stop(int cpu) { }
265f22a9 3169#endif
1da177e4 3170
7e49fcce
SR
3171#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3172 defined(CONFIG_PREEMPT_TRACER))
47252cfb
SR
3173/*
3174 * If the value passed in is equal to the current preempt count
3175 * then we just disabled preemption. Start timing the latency.
3176 */
3177static inline void preempt_latency_start(int val)
3178{
3179 if (preempt_count() == val) {
3180 unsigned long ip = get_lock_parent_ip();
3181#ifdef CONFIG_DEBUG_PREEMPT
3182 current->preempt_disable_ip = ip;
3183#endif
3184 trace_preempt_off(CALLER_ADDR0, ip);
3185 }
3186}
7e49fcce 3187
edafe3a5 3188void preempt_count_add(int val)
1da177e4 3189{
6cd8a4bb 3190#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3191 /*
3192 * Underflow?
3193 */
9a11b49a
IM
3194 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3195 return;
6cd8a4bb 3196#endif
bdb43806 3197 __preempt_count_add(val);
6cd8a4bb 3198#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3199 /*
3200 * Spinlock count overflowing soon?
3201 */
33859f7f
MOS
3202 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3203 PREEMPT_MASK - 10);
6cd8a4bb 3204#endif
47252cfb 3205 preempt_latency_start(val);
1da177e4 3206}
bdb43806 3207EXPORT_SYMBOL(preempt_count_add);
edafe3a5 3208NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 3209
47252cfb
SR
3210/*
3211 * If the value passed in equals to the current preempt count
3212 * then we just enabled preemption. Stop timing the latency.
3213 */
3214static inline void preempt_latency_stop(int val)
3215{
3216 if (preempt_count() == val)
3217 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3218}
3219
edafe3a5 3220void preempt_count_sub(int val)
1da177e4 3221{
6cd8a4bb 3222#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3223 /*
3224 * Underflow?
3225 */
01e3eb82 3226 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3227 return;
1da177e4
LT
3228 /*
3229 * Is the spinlock portion underflowing?
3230 */
9a11b49a
IM
3231 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3232 !(preempt_count() & PREEMPT_MASK)))
3233 return;
6cd8a4bb 3234#endif
9a11b49a 3235
47252cfb 3236 preempt_latency_stop(val);
bdb43806 3237 __preempt_count_sub(val);
1da177e4 3238}
bdb43806 3239EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 3240NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4 3241
47252cfb
SR
3242#else
3243static inline void preempt_latency_start(int val) { }
3244static inline void preempt_latency_stop(int val) { }
1da177e4
LT
3245#endif
3246
59ddbcb2
IM
3247static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3248{
3249#ifdef CONFIG_DEBUG_PREEMPT
3250 return p->preempt_disable_ip;
3251#else
3252 return 0;
3253#endif
3254}
3255
1da177e4 3256/*
dd41f596 3257 * Print scheduling while atomic bug:
1da177e4 3258 */
dd41f596 3259static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3260{
d1c6d149
VN
3261 /* Save this before calling printk(), since that will clobber it */
3262 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3263
664dfa65
DJ
3264 if (oops_in_progress)
3265 return;
3266
3df0fc5b
PZ
3267 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3268 prev->comm, prev->pid, preempt_count());
838225b4 3269
dd41f596 3270 debug_show_held_locks(prev);
e21f5b15 3271 print_modules();
dd41f596
IM
3272 if (irqs_disabled())
3273 print_irqtrace_events(prev);
d1c6d149
VN
3274 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3275 && in_atomic_preempt_off()) {
8f47b187 3276 pr_err("Preemption disabled at:");
d1c6d149 3277 print_ip_sym(preempt_disable_ip);
8f47b187
TG
3278 pr_cont("\n");
3279 }
748c7201
DBO
3280 if (panic_on_warn)
3281 panic("scheduling while atomic\n");
3282
6135fc1e 3283 dump_stack();
373d4d09 3284 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 3285}
1da177e4 3286
dd41f596
IM
3287/*
3288 * Various schedule()-time debugging checks and statistics:
3289 */
3290static inline void schedule_debug(struct task_struct *prev)
3291{
0d9e2632 3292#ifdef CONFIG_SCHED_STACK_END_CHECK
29d64551
JH
3293 if (task_stack_end_corrupted(prev))
3294 panic("corrupted stack end detected inside scheduler\n");
0d9e2632 3295#endif
b99def8b 3296
1dc0fffc 3297 if (unlikely(in_atomic_preempt_off())) {
dd41f596 3298 __schedule_bug(prev);
1dc0fffc
PZ
3299 preempt_count_set(PREEMPT_DISABLED);
3300 }
b3fbab05 3301 rcu_sleep_check();
dd41f596 3302
1da177e4
LT
3303 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3304
ae92882e 3305 schedstat_inc(this_rq()->sched_count);
dd41f596
IM
3306}
3307
3308/*
3309 * Pick up the highest-prio task:
3310 */
3311static inline struct task_struct *
d8ac8971 3312pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
dd41f596 3313{
49ee5768 3314 const struct sched_class *class;
dd41f596 3315 struct task_struct *p;
1da177e4
LT
3316
3317 /*
0ba87bb2
PZ
3318 * Optimization: we know that if all tasks are in the fair class we can
3319 * call that function directly, but only if the @prev task wasn't of a
3320 * higher scheduling class, because otherwise those loose the
3321 * opportunity to pull in more work from other CPUs.
1da177e4 3322 */
0ba87bb2
PZ
3323 if (likely((prev->sched_class == &idle_sched_class ||
3324 prev->sched_class == &fair_sched_class) &&
3325 rq->nr_running == rq->cfs.h_nr_running)) {
3326
d8ac8971 3327 p = fair_sched_class.pick_next_task(rq, prev, rf);
6ccdc84b
PZ
3328 if (unlikely(p == RETRY_TASK))
3329 goto again;
3330
d1ccc66d 3331 /* Assumes fair_sched_class->next == idle_sched_class */
6ccdc84b 3332 if (unlikely(!p))
d8ac8971 3333 p = idle_sched_class.pick_next_task(rq, prev, rf);
6ccdc84b
PZ
3334
3335 return p;
1da177e4
LT
3336 }
3337
37e117c0 3338again:
34f971f6 3339 for_each_class(class) {
d8ac8971 3340 p = class->pick_next_task(rq, prev, rf);
37e117c0
PZ
3341 if (p) {
3342 if (unlikely(p == RETRY_TASK))
3343 goto again;
dd41f596 3344 return p;
37e117c0 3345 }
dd41f596 3346 }
34f971f6 3347
d1ccc66d
IM
3348 /* The idle class should always have a runnable task: */
3349 BUG();
dd41f596 3350}
1da177e4 3351
dd41f596 3352/*
c259e01a 3353 * __schedule() is the main scheduler function.
edde96ea
PE
3354 *
3355 * The main means of driving the scheduler and thus entering this function are:
3356 *
3357 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3358 *
3359 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3360 * paths. For example, see arch/x86/entry_64.S.
3361 *
3362 * To drive preemption between tasks, the scheduler sets the flag in timer
3363 * interrupt handler scheduler_tick().
3364 *
3365 * 3. Wakeups don't really cause entry into schedule(). They add a
3366 * task to the run-queue and that's it.
3367 *
3368 * Now, if the new task added to the run-queue preempts the current
3369 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3370 * called on the nearest possible occasion:
3371 *
3372 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3373 *
3374 * - in syscall or exception context, at the next outmost
3375 * preempt_enable(). (this might be as soon as the wake_up()'s
3376 * spin_unlock()!)
3377 *
3378 * - in IRQ context, return from interrupt-handler to
3379 * preemptible context
3380 *
3381 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3382 * then at the next:
3383 *
3384 * - cond_resched() call
3385 * - explicit schedule() call
3386 * - return from syscall or exception to user-space
3387 * - return from interrupt-handler to user-space
bfd9b2b5 3388 *
b30f0e3f 3389 * WARNING: must be called with preemption disabled!
dd41f596 3390 */
499d7955 3391static void __sched notrace __schedule(bool preempt)
dd41f596
IM
3392{
3393 struct task_struct *prev, *next;
67ca7bde 3394 unsigned long *switch_count;
d8ac8971 3395 struct rq_flags rf;
dd41f596 3396 struct rq *rq;
31656519 3397 int cpu;
dd41f596 3398
dd41f596
IM
3399 cpu = smp_processor_id();
3400 rq = cpu_rq(cpu);
dd41f596 3401 prev = rq->curr;
dd41f596 3402
dd41f596 3403 schedule_debug(prev);
1da177e4 3404
31656519 3405 if (sched_feat(HRTICK))
f333fdc9 3406 hrtick_clear(rq);
8f4d37ec 3407
46a5d164 3408 local_irq_disable();
bcbfdd01 3409 rcu_note_context_switch(preempt);
46a5d164 3410
e0acd0a6
ON
3411 /*
3412 * Make sure that signal_pending_state()->signal_pending() below
3413 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3414 * done by the caller to avoid the race with signal_wake_up().
306e0604
MD
3415 *
3416 * The membarrier system call requires a full memory barrier
3417 * after coming from user-space, before storing to rq->curr.
e0acd0a6 3418 */
8a8c69c3 3419 rq_lock(rq, &rf);
d89e588c 3420 smp_mb__after_spinlock();
1da177e4 3421
d1ccc66d
IM
3422 /* Promote REQ to ACT */
3423 rq->clock_update_flags <<= 1;
bce4dc80 3424 update_rq_clock(rq);
9edfbfed 3425
246d86b5 3426 switch_count = &prev->nivcsw;
fc13aeba 3427 if (!preempt && prev->state) {
21aa9af0 3428 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 3429 prev->state = TASK_RUNNING;
21aa9af0 3430 } else {
bce4dc80 3431 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
2acca55e
PZ
3432 prev->on_rq = 0;
3433
e33a9bba
TH
3434 if (prev->in_iowait) {
3435 atomic_inc(&rq->nr_iowait);
3436 delayacct_blkio_start();
3437 }
3438
21aa9af0 3439 /*
2acca55e
PZ
3440 * If a worker went to sleep, notify and ask workqueue
3441 * whether it wants to wake up a task to maintain
3442 * concurrency.
21aa9af0
TH
3443 */
3444 if (prev->flags & PF_WQ_WORKER) {
3445 struct task_struct *to_wakeup;
3446
9b7f6597 3447 to_wakeup = wq_worker_sleeping(prev);
21aa9af0 3448 if (to_wakeup)
d8ac8971 3449 try_to_wake_up_local(to_wakeup, &rf);
21aa9af0 3450 }
21aa9af0 3451 }
dd41f596 3452 switch_count = &prev->nvcsw;
1da177e4
LT
3453 }
3454
d8ac8971 3455 next = pick_next_task(rq, prev, &rf);
f26f9aff 3456 clear_tsk_need_resched(prev);
f27dde8d 3457 clear_preempt_need_resched();
1da177e4 3458
1da177e4 3459 if (likely(prev != next)) {
1da177e4
LT
3460 rq->nr_switches++;
3461 rq->curr = next;
22e4ebb9
MD
3462 /*
3463 * The membarrier system call requires each architecture
3464 * to have a full memory barrier after updating
306e0604
MD
3465 * rq->curr, before returning to user-space.
3466 *
3467 * Here are the schemes providing that barrier on the
3468 * various architectures:
3469 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
3470 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
3471 * - finish_lock_switch() for weakly-ordered
3472 * architectures where spin_unlock is a full barrier,
3473 * - switch_to() for arm64 (weakly-ordered, spin_unlock
3474 * is a RELEASE barrier),
22e4ebb9 3475 */
1da177e4
LT
3476 ++*switch_count;
3477
c73464b1 3478 trace_sched_switch(preempt, prev, next);
d1ccc66d
IM
3479
3480 /* Also unlocks the rq: */
3481 rq = context_switch(rq, prev, next, &rf);
cbce1a68 3482 } else {
cb42c9a3 3483 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
8a8c69c3 3484 rq_unlock_irq(rq, &rf);
cbce1a68 3485 }
1da177e4 3486
e3fca9e7 3487 balance_callback(rq);
1da177e4 3488}
c259e01a 3489
9af6528e
PZ
3490void __noreturn do_task_dead(void)
3491{
d1ccc66d 3492 /* Causes final put_task_struct in finish_task_switch(): */
b5bf9a90 3493 set_special_state(TASK_DEAD);
d1ccc66d
IM
3494
3495 /* Tell freezer to ignore us: */
3496 current->flags |= PF_NOFREEZE;
3497
9af6528e
PZ
3498 __schedule(false);
3499 BUG();
d1ccc66d
IM
3500
3501 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
9af6528e 3502 for (;;)
d1ccc66d 3503 cpu_relax();
9af6528e
PZ
3504}
3505
9c40cef2
TG
3506static inline void sched_submit_work(struct task_struct *tsk)
3507{
3c7d5184 3508 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
3509 return;
3510 /*
3511 * If we are going to sleep and we have plugged IO queued,
3512 * make sure to submit it to avoid deadlocks.
3513 */
3514 if (blk_needs_flush_plug(tsk))
3515 blk_schedule_flush_plug(tsk);
3516}
3517
722a9f92 3518asmlinkage __visible void __sched schedule(void)
c259e01a 3519{
9c40cef2
TG
3520 struct task_struct *tsk = current;
3521
3522 sched_submit_work(tsk);
bfd9b2b5 3523 do {
b30f0e3f 3524 preempt_disable();
fc13aeba 3525 __schedule(false);
b30f0e3f 3526 sched_preempt_enable_no_resched();
bfd9b2b5 3527 } while (need_resched());
c259e01a 3528}
1da177e4
LT
3529EXPORT_SYMBOL(schedule);
3530
8663effb
SRV
3531/*
3532 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
3533 * state (have scheduled out non-voluntarily) by making sure that all
3534 * tasks have either left the run queue or have gone into user space.
3535 * As idle tasks do not do either, they must not ever be preempted
3536 * (schedule out non-voluntarily).
3537 *
3538 * schedule_idle() is similar to schedule_preempt_disable() except that it
3539 * never enables preemption because it does not call sched_submit_work().
3540 */
3541void __sched schedule_idle(void)
3542{
3543 /*
3544 * As this skips calling sched_submit_work(), which the idle task does
3545 * regardless because that function is a nop when the task is in a
3546 * TASK_RUNNING state, make sure this isn't used someplace that the
3547 * current task can be in any other state. Note, idle is always in the
3548 * TASK_RUNNING state.
3549 */
3550 WARN_ON_ONCE(current->state);
3551 do {
3552 __schedule(false);
3553 } while (need_resched());
3554}
3555
91d1aa43 3556#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 3557asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
3558{
3559 /*
3560 * If we come here after a random call to set_need_resched(),
3561 * or we have been woken up remotely but the IPI has not yet arrived,
3562 * we haven't yet exited the RCU idle mode. Do it here manually until
3563 * we find a better solution.
7cc78f8f
AL
3564 *
3565 * NB: There are buggy callers of this function. Ideally we
c467ea76 3566 * should warn if prev_state != CONTEXT_USER, but that will trigger
7cc78f8f 3567 * too frequently to make sense yet.
20ab65e3 3568 */
7cc78f8f 3569 enum ctx_state prev_state = exception_enter();
20ab65e3 3570 schedule();
7cc78f8f 3571 exception_exit(prev_state);
20ab65e3
FW
3572}
3573#endif
3574
c5491ea7
TG
3575/**
3576 * schedule_preempt_disabled - called with preemption disabled
3577 *
3578 * Returns with preemption disabled. Note: preempt_count must be 1
3579 */
3580void __sched schedule_preempt_disabled(void)
3581{
ba74c144 3582 sched_preempt_enable_no_resched();
c5491ea7
TG
3583 schedule();
3584 preempt_disable();
3585}
3586
06b1f808 3587static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
3588{
3589 do {
47252cfb
SR
3590 /*
3591 * Because the function tracer can trace preempt_count_sub()
3592 * and it also uses preempt_enable/disable_notrace(), if
3593 * NEED_RESCHED is set, the preempt_enable_notrace() called
3594 * by the function tracer will call this function again and
3595 * cause infinite recursion.
3596 *
3597 * Preemption must be disabled here before the function
3598 * tracer can trace. Break up preempt_disable() into two
3599 * calls. One to disable preemption without fear of being
3600 * traced. The other to still record the preemption latency,
3601 * which can also be traced by the function tracer.
3602 */
499d7955 3603 preempt_disable_notrace();
47252cfb 3604 preempt_latency_start(1);
fc13aeba 3605 __schedule(true);
47252cfb 3606 preempt_latency_stop(1);
499d7955 3607 preempt_enable_no_resched_notrace();
a18b5d01
FW
3608
3609 /*
3610 * Check again in case we missed a preemption opportunity
3611 * between schedule and now.
3612 */
a18b5d01
FW
3613 } while (need_resched());
3614}
3615
1da177e4
LT
3616#ifdef CONFIG_PREEMPT
3617/*
2ed6e34f 3618 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3619 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3620 * occur there and call schedule directly.
3621 */
722a9f92 3622asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 3623{
1da177e4
LT
3624 /*
3625 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3626 * we do not want to preempt the current task. Just return..
1da177e4 3627 */
fbb00b56 3628 if (likely(!preemptible()))
1da177e4
LT
3629 return;
3630
a18b5d01 3631 preempt_schedule_common();
1da177e4 3632}
376e2424 3633NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 3634EXPORT_SYMBOL(preempt_schedule);
009f60e2 3635
009f60e2 3636/**
4eaca0a8 3637 * preempt_schedule_notrace - preempt_schedule called by tracing
009f60e2
ON
3638 *
3639 * The tracing infrastructure uses preempt_enable_notrace to prevent
3640 * recursion and tracing preempt enabling caused by the tracing
3641 * infrastructure itself. But as tracing can happen in areas coming
3642 * from userspace or just about to enter userspace, a preempt enable
3643 * can occur before user_exit() is called. This will cause the scheduler
3644 * to be called when the system is still in usermode.
3645 *
3646 * To prevent this, the preempt_enable_notrace will use this function
3647 * instead of preempt_schedule() to exit user context if needed before
3648 * calling the scheduler.
3649 */
4eaca0a8 3650asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
009f60e2
ON
3651{
3652 enum ctx_state prev_ctx;
3653
3654 if (likely(!preemptible()))
3655 return;
3656
3657 do {
47252cfb
SR
3658 /*
3659 * Because the function tracer can trace preempt_count_sub()
3660 * and it also uses preempt_enable/disable_notrace(), if
3661 * NEED_RESCHED is set, the preempt_enable_notrace() called
3662 * by the function tracer will call this function again and
3663 * cause infinite recursion.
3664 *
3665 * Preemption must be disabled here before the function
3666 * tracer can trace. Break up preempt_disable() into two
3667 * calls. One to disable preemption without fear of being
3668 * traced. The other to still record the preemption latency,
3669 * which can also be traced by the function tracer.
3670 */
3d8f74dd 3671 preempt_disable_notrace();
47252cfb 3672 preempt_latency_start(1);
009f60e2
ON
3673 /*
3674 * Needs preempt disabled in case user_exit() is traced
3675 * and the tracer calls preempt_enable_notrace() causing
3676 * an infinite recursion.
3677 */
3678 prev_ctx = exception_enter();
fc13aeba 3679 __schedule(true);
009f60e2
ON
3680 exception_exit(prev_ctx);
3681
47252cfb 3682 preempt_latency_stop(1);
3d8f74dd 3683 preempt_enable_no_resched_notrace();
009f60e2
ON
3684 } while (need_resched());
3685}
4eaca0a8 3686EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
009f60e2 3687
32e475d7 3688#endif /* CONFIG_PREEMPT */
1da177e4
LT
3689
3690/*
2ed6e34f 3691 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3692 * off of irq context.
3693 * Note, that this is called and return with irqs disabled. This will
3694 * protect us against recursive calling from irq.
3695 */
722a9f92 3696asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 3697{
b22366cd 3698 enum ctx_state prev_state;
6478d880 3699
2ed6e34f 3700 /* Catch callers which need to be fixed */
f27dde8d 3701 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 3702
b22366cd
FW
3703 prev_state = exception_enter();
3704
3a5c359a 3705 do {
3d8f74dd 3706 preempt_disable();
3a5c359a 3707 local_irq_enable();
fc13aeba 3708 __schedule(true);
3a5c359a 3709 local_irq_disable();
3d8f74dd 3710 sched_preempt_enable_no_resched();
5ed0cec0 3711 } while (need_resched());
b22366cd
FW
3712
3713 exception_exit(prev_state);
1da177e4
LT
3714}
3715
ac6424b9 3716int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3717 void *key)
1da177e4 3718{
63859d4f 3719 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3720}
1da177e4
LT
3721EXPORT_SYMBOL(default_wake_function);
3722
b29739f9
IM
3723#ifdef CONFIG_RT_MUTEXES
3724
acd58620
PZ
3725static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
3726{
3727 if (pi_task)
3728 prio = min(prio, pi_task->prio);
3729
3730 return prio;
3731}
3732
3733static inline int rt_effective_prio(struct task_struct *p, int prio)
3734{
3735 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3736
3737 return __rt_effective_prio(pi_task, prio);
3738}
3739
b29739f9
IM
3740/*
3741 * rt_mutex_setprio - set the current priority of a task
acd58620
PZ
3742 * @p: task to boost
3743 * @pi_task: donor task
b29739f9
IM
3744 *
3745 * This function changes the 'effective' priority of a task. It does
3746 * not touch ->normal_prio like __setscheduler().
3747 *
c365c292
TG
3748 * Used by the rt_mutex code to implement priority inheritance
3749 * logic. Call site only calls if the priority of the task changed.
b29739f9 3750 */
acd58620 3751void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
b29739f9 3752{
acd58620 3753 int prio, oldprio, queued, running, queue_flag =
7a57f32a 3754 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
83ab0aa0 3755 const struct sched_class *prev_class;
eb580751
PZ
3756 struct rq_flags rf;
3757 struct rq *rq;
b29739f9 3758
acd58620
PZ
3759 /* XXX used to be waiter->prio, not waiter->task->prio */
3760 prio = __rt_effective_prio(pi_task, p->normal_prio);
3761
3762 /*
3763 * If nothing changed; bail early.
3764 */
3765 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
3766 return;
b29739f9 3767
eb580751 3768 rq = __task_rq_lock(p, &rf);
80f5c1b8 3769 update_rq_clock(rq);
acd58620
PZ
3770 /*
3771 * Set under pi_lock && rq->lock, such that the value can be used under
3772 * either lock.
3773 *
3774 * Note that there is loads of tricky to make this pointer cache work
3775 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
3776 * ensure a task is de-boosted (pi_task is set to NULL) before the
3777 * task is allowed to run again (and can exit). This ensures the pointer
3778 * points to a blocked task -- which guaratees the task is present.
3779 */
3780 p->pi_top_task = pi_task;
3781
3782 /*
3783 * For FIFO/RR we only need to set prio, if that matches we're done.
3784 */
3785 if (prio == p->prio && !dl_prio(prio))
3786 goto out_unlock;
b29739f9 3787
1c4dd99b
TG
3788 /*
3789 * Idle task boosting is a nono in general. There is one
3790 * exception, when PREEMPT_RT and NOHZ is active:
3791 *
3792 * The idle task calls get_next_timer_interrupt() and holds
3793 * the timer wheel base->lock on the CPU and another CPU wants
3794 * to access the timer (probably to cancel it). We can safely
3795 * ignore the boosting request, as the idle CPU runs this code
3796 * with interrupts disabled and will complete the lock
3797 * protected section without being interrupted. So there is no
3798 * real need to boost.
3799 */
3800 if (unlikely(p == rq->idle)) {
3801 WARN_ON(p != rq->curr);
3802 WARN_ON(p->pi_blocked_on);
3803 goto out_unlock;
3804 }
3805
b91473ff 3806 trace_sched_pi_setprio(p, pi_task);
d5f9f942 3807 oldprio = p->prio;
ff77e468
PZ
3808
3809 if (oldprio == prio)
3810 queue_flag &= ~DEQUEUE_MOVE;
3811
83ab0aa0 3812 prev_class = p->sched_class;
da0c1e65 3813 queued = task_on_rq_queued(p);
051a1d1a 3814 running = task_current(rq, p);
da0c1e65 3815 if (queued)
ff77e468 3816 dequeue_task(rq, p, queue_flag);
0e1f3483 3817 if (running)
f3cd1c4e 3818 put_prev_task(rq, p);
dd41f596 3819
2d3d891d
DF
3820 /*
3821 * Boosting condition are:
3822 * 1. -rt task is running and holds mutex A
3823 * --> -dl task blocks on mutex A
3824 *
3825 * 2. -dl task is running and holds mutex A
3826 * --> -dl task blocks on mutex A and could preempt the
3827 * running task
3828 */
3829 if (dl_prio(prio)) {
466af29b
ON
3830 if (!dl_prio(p->normal_prio) ||
3831 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d 3832 p->dl.dl_boosted = 1;
ff77e468 3833 queue_flag |= ENQUEUE_REPLENISH;
2d3d891d
DF
3834 } else
3835 p->dl.dl_boosted = 0;
aab03e05 3836 p->sched_class = &dl_sched_class;
2d3d891d
DF
3837 } else if (rt_prio(prio)) {
3838 if (dl_prio(oldprio))
3839 p->dl.dl_boosted = 0;
3840 if (oldprio < prio)
ff77e468 3841 queue_flag |= ENQUEUE_HEAD;
dd41f596 3842 p->sched_class = &rt_sched_class;
2d3d891d
DF
3843 } else {
3844 if (dl_prio(oldprio))
3845 p->dl.dl_boosted = 0;
746db944
BS
3846 if (rt_prio(oldprio))
3847 p->rt.timeout = 0;
dd41f596 3848 p->sched_class = &fair_sched_class;
2d3d891d 3849 }
dd41f596 3850
b29739f9
IM
3851 p->prio = prio;
3852
da0c1e65 3853 if (queued)
ff77e468 3854 enqueue_task(rq, p, queue_flag);
a399d233 3855 if (running)
b2bf6c31 3856 set_curr_task(rq, p);
cb469845 3857
da7a735e 3858 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3859out_unlock:
d1ccc66d
IM
3860 /* Avoid rq from going away on us: */
3861 preempt_disable();
eb580751 3862 __task_rq_unlock(rq, &rf);
4c9a4bc8
PZ
3863
3864 balance_callback(rq);
3865 preempt_enable();
b29739f9 3866}
acd58620
PZ
3867#else
3868static inline int rt_effective_prio(struct task_struct *p, int prio)
3869{
3870 return prio;
3871}
b29739f9 3872#endif
d50dde5a 3873
36c8b586 3874void set_user_nice(struct task_struct *p, long nice)
1da177e4 3875{
49bd21ef
PZ
3876 bool queued, running;
3877 int old_prio, delta;
eb580751 3878 struct rq_flags rf;
70b97a7f 3879 struct rq *rq;
1da177e4 3880
75e45d51 3881 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
3882 return;
3883 /*
3884 * We have to be careful, if called from sys_setpriority(),
3885 * the task might be in the middle of scheduling on another CPU.
3886 */
eb580751 3887 rq = task_rq_lock(p, &rf);
2fb8d367
PZ
3888 update_rq_clock(rq);
3889
1da177e4
LT
3890 /*
3891 * The RT priorities are set via sched_setscheduler(), but we still
3892 * allow the 'normal' nice value to be set - but as expected
3893 * it wont have any effect on scheduling until the task is
aab03e05 3894 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3895 */
aab03e05 3896 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3897 p->static_prio = NICE_TO_PRIO(nice);
3898 goto out_unlock;
3899 }
da0c1e65 3900 queued = task_on_rq_queued(p);
49bd21ef 3901 running = task_current(rq, p);
da0c1e65 3902 if (queued)
7a57f32a 3903 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
49bd21ef
PZ
3904 if (running)
3905 put_prev_task(rq, p);
1da177e4 3906
1da177e4 3907 p->static_prio = NICE_TO_PRIO(nice);
9059393e 3908 set_load_weight(p, true);
b29739f9
IM
3909 old_prio = p->prio;
3910 p->prio = effective_prio(p);
3911 delta = p->prio - old_prio;
1da177e4 3912
da0c1e65 3913 if (queued) {
7134b3e9 3914 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1da177e4 3915 /*
d5f9f942
AM
3916 * If the task increased its priority or is running and
3917 * lowered its priority, then reschedule its CPU:
1da177e4 3918 */
d5f9f942 3919 if (delta < 0 || (delta > 0 && task_running(rq, p)))
8875125e 3920 resched_curr(rq);
1da177e4 3921 }
49bd21ef
PZ
3922 if (running)
3923 set_curr_task(rq, p);
1da177e4 3924out_unlock:
eb580751 3925 task_rq_unlock(rq, p, &rf);
1da177e4 3926}
1da177e4
LT
3927EXPORT_SYMBOL(set_user_nice);
3928
e43379f1
MM
3929/*
3930 * can_nice - check if a task can reduce its nice value
3931 * @p: task
3932 * @nice: nice value
3933 */
36c8b586 3934int can_nice(const struct task_struct *p, const int nice)
e43379f1 3935{
d1ccc66d 3936 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
7aa2c016 3937 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 3938
78d7d407 3939 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3940 capable(CAP_SYS_NICE));
3941}
3942
1da177e4
LT
3943#ifdef __ARCH_WANT_SYS_NICE
3944
3945/*
3946 * sys_nice - change the priority of the current process.
3947 * @increment: priority increment
3948 *
3949 * sys_setpriority is a more generic, but much slower function that
3950 * does similar things.
3951 */
5add95d4 3952SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3953{
48f24c4d 3954 long nice, retval;
1da177e4
LT
3955
3956 /*
3957 * Setpriority might change our priority at the same moment.
3958 * We don't have to worry. Conceptually one call occurs first
3959 * and we have a single winner.
3960 */
a9467fa3 3961 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 3962 nice = task_nice(current) + increment;
1da177e4 3963
a9467fa3 3964 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
3965 if (increment < 0 && !can_nice(current, nice))
3966 return -EPERM;
3967
1da177e4
LT
3968 retval = security_task_setnice(current, nice);
3969 if (retval)
3970 return retval;
3971
3972 set_user_nice(current, nice);
3973 return 0;
3974}
3975
3976#endif
3977
3978/**
3979 * task_prio - return the priority value of a given task.
3980 * @p: the task in question.
3981 *
e69f6186 3982 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3983 * RT tasks are offset by -200. Normal tasks are centered
3984 * around 0, value goes from -16 to +15.
3985 */
36c8b586 3986int task_prio(const struct task_struct *p)
1da177e4
LT
3987{
3988 return p->prio - MAX_RT_PRIO;
3989}
3990
1da177e4 3991/**
d1ccc66d 3992 * idle_cpu - is a given CPU idle currently?
1da177e4 3993 * @cpu: the processor in question.
e69f6186
YB
3994 *
3995 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3996 */
3997int idle_cpu(int cpu)
3998{
908a3283
TG
3999 struct rq *rq = cpu_rq(cpu);
4000
4001 if (rq->curr != rq->idle)
4002 return 0;
4003
4004 if (rq->nr_running)
4005 return 0;
4006
4007#ifdef CONFIG_SMP
4008 if (!llist_empty(&rq->wake_list))
4009 return 0;
4010#endif
4011
247f2f6f
RJ
4012 if (vcpu_is_preempted(cpu))
4013 return 0;
4014
908a3283 4015 return 1;
1da177e4
LT
4016}
4017
1da177e4 4018/**
d1ccc66d 4019 * idle_task - return the idle task for a given CPU.
1da177e4 4020 * @cpu: the processor in question.
e69f6186 4021 *
d1ccc66d 4022 * Return: The idle task for the CPU @cpu.
1da177e4 4023 */
36c8b586 4024struct task_struct *idle_task(int cpu)
1da177e4
LT
4025{
4026 return cpu_rq(cpu)->idle;
4027}
4028
4029/**
4030 * find_process_by_pid - find a process with a matching PID value.
4031 * @pid: the pid in question.
e69f6186
YB
4032 *
4033 * The task of @pid, if found. %NULL otherwise.
1da177e4 4034 */
a9957449 4035static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4036{
228ebcbe 4037 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4038}
4039
c13db6b1
SR
4040/*
4041 * sched_setparam() passes in -1 for its policy, to let the functions
4042 * it calls know not to change it.
4043 */
4044#define SETPARAM_POLICY -1
4045
c365c292
TG
4046static void __setscheduler_params(struct task_struct *p,
4047 const struct sched_attr *attr)
1da177e4 4048{
d50dde5a
DF
4049 int policy = attr->sched_policy;
4050
c13db6b1 4051 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
4052 policy = p->policy;
4053
1da177e4 4054 p->policy = policy;
d50dde5a 4055
aab03e05
DF
4056 if (dl_policy(policy))
4057 __setparam_dl(p, attr);
39fd8fd2 4058 else if (fair_policy(policy))
d50dde5a
DF
4059 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
4060
39fd8fd2
PZ
4061 /*
4062 * __sched_setscheduler() ensures attr->sched_priority == 0 when
4063 * !rt_policy. Always setting this ensures that things like
4064 * getparam()/getattr() don't report silly values for !rt tasks.
4065 */
4066 p->rt_priority = attr->sched_priority;
383afd09 4067 p->normal_prio = normal_prio(p);
9059393e 4068 set_load_weight(p, true);
c365c292 4069}
39fd8fd2 4070
c365c292
TG
4071/* Actually do priority change: must hold pi & rq lock. */
4072static void __setscheduler(struct rq *rq, struct task_struct *p,
0782e63b 4073 const struct sched_attr *attr, bool keep_boost)
c365c292
TG
4074{
4075 __setscheduler_params(p, attr);
d50dde5a 4076
383afd09 4077 /*
0782e63b
TG
4078 * Keep a potential priority boosting if called from
4079 * sched_setscheduler().
383afd09 4080 */
acd58620 4081 p->prio = normal_prio(p);
0782e63b 4082 if (keep_boost)
acd58620 4083 p->prio = rt_effective_prio(p, p->prio);
383afd09 4084
aab03e05
DF
4085 if (dl_prio(p->prio))
4086 p->sched_class = &dl_sched_class;
4087 else if (rt_prio(p->prio))
ffd44db5
PZ
4088 p->sched_class = &rt_sched_class;
4089 else
4090 p->sched_class = &fair_sched_class;
1da177e4 4091}
aab03e05 4092
c69e8d9c 4093/*
d1ccc66d 4094 * Check the target process has a UID that matches the current process's:
c69e8d9c
DH
4095 */
4096static bool check_same_owner(struct task_struct *p)
4097{
4098 const struct cred *cred = current_cred(), *pcred;
4099 bool match;
4100
4101 rcu_read_lock();
4102 pcred = __task_cred(p);
9c806aa0
EB
4103 match = (uid_eq(cred->euid, pcred->euid) ||
4104 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
4105 rcu_read_unlock();
4106 return match;
4107}
4108
d50dde5a
DF
4109static int __sched_setscheduler(struct task_struct *p,
4110 const struct sched_attr *attr,
dbc7f069 4111 bool user, bool pi)
1da177e4 4112{
383afd09
SR
4113 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4114 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 4115 int retval, oldprio, oldpolicy = -1, queued, running;
0782e63b 4116 int new_effective_prio, policy = attr->sched_policy;
83ab0aa0 4117 const struct sched_class *prev_class;
eb580751 4118 struct rq_flags rf;
ca94c442 4119 int reset_on_fork;
7a57f32a 4120 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
eb580751 4121 struct rq *rq;
1da177e4 4122
896bbb25
SRV
4123 /* The pi code expects interrupts enabled */
4124 BUG_ON(pi && in_interrupt());
1da177e4 4125recheck:
d1ccc66d 4126 /* Double check policy once rq lock held: */
ca94c442
LP
4127 if (policy < 0) {
4128 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4129 policy = oldpolicy = p->policy;
ca94c442 4130 } else {
7479f3c9 4131 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 4132
20f9cd2a 4133 if (!valid_policy(policy))
ca94c442
LP
4134 return -EINVAL;
4135 }
4136
794a56eb 4137 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
7479f3c9
PZ
4138 return -EINVAL;
4139
1da177e4
LT
4140 /*
4141 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4142 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4143 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 4144 */
0bb040a4 4145 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 4146 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 4147 return -EINVAL;
aab03e05
DF
4148 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4149 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
4150 return -EINVAL;
4151
37e4ab3f
OC
4152 /*
4153 * Allow unprivileged RT tasks to decrease priority:
4154 */
961ccddd 4155 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 4156 if (fair_policy(policy)) {
d0ea0268 4157 if (attr->sched_nice < task_nice(p) &&
eaad4513 4158 !can_nice(p, attr->sched_nice))
d50dde5a
DF
4159 return -EPERM;
4160 }
4161
e05606d3 4162 if (rt_policy(policy)) {
a44702e8
ON
4163 unsigned long rlim_rtprio =
4164 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909 4165
d1ccc66d 4166 /* Can't set/change the rt policy: */
8dc3e909
ON
4167 if (policy != p->policy && !rlim_rtprio)
4168 return -EPERM;
4169
d1ccc66d 4170 /* Can't increase priority: */
d50dde5a
DF
4171 if (attr->sched_priority > p->rt_priority &&
4172 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
4173 return -EPERM;
4174 }
c02aa73b 4175
d44753b8
JL
4176 /*
4177 * Can't set/change SCHED_DEADLINE policy at all for now
4178 * (safest behavior); in the future we would like to allow
4179 * unprivileged DL tasks to increase their relative deadline
4180 * or reduce their runtime (both ways reducing utilization)
4181 */
4182 if (dl_policy(policy))
4183 return -EPERM;
4184
dd41f596 4185 /*
c02aa73b
DH
4186 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4187 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 4188 */
20f9cd2a 4189 if (idle_policy(p->policy) && !idle_policy(policy)) {
d0ea0268 4190 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
4191 return -EPERM;
4192 }
5fe1d75f 4193
d1ccc66d 4194 /* Can't change other user's priorities: */
c69e8d9c 4195 if (!check_same_owner(p))
37e4ab3f 4196 return -EPERM;
ca94c442 4197
d1ccc66d 4198 /* Normal users shall not reset the sched_reset_on_fork flag: */
ca94c442
LP
4199 if (p->sched_reset_on_fork && !reset_on_fork)
4200 return -EPERM;
37e4ab3f 4201 }
1da177e4 4202
725aad24 4203 if (user) {
794a56eb
JL
4204 if (attr->sched_flags & SCHED_FLAG_SUGOV)
4205 return -EINVAL;
4206
b0ae1981 4207 retval = security_task_setscheduler(p);
725aad24
JF
4208 if (retval)
4209 return retval;
4210 }
4211
b29739f9 4212 /*
d1ccc66d 4213 * Make sure no PI-waiters arrive (or leave) while we are
b29739f9 4214 * changing the priority of the task:
0122ec5b 4215 *
25985edc 4216 * To be able to change p->policy safely, the appropriate
1da177e4
LT
4217 * runqueue lock must be held.
4218 */
eb580751 4219 rq = task_rq_lock(p, &rf);
80f5c1b8 4220 update_rq_clock(rq);
dc61b1d6 4221
34f971f6 4222 /*
d1ccc66d 4223 * Changing the policy of the stop threads its a very bad idea:
34f971f6
PZ
4224 */
4225 if (p == rq->stop) {
eb580751 4226 task_rq_unlock(rq, p, &rf);
34f971f6
PZ
4227 return -EINVAL;
4228 }
4229
a51e9198 4230 /*
d6b1e911
TG
4231 * If not changing anything there's no need to proceed further,
4232 * but store a possible modification of reset_on_fork.
a51e9198 4233 */
d50dde5a 4234 if (unlikely(policy == p->policy)) {
d0ea0268 4235 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
4236 goto change;
4237 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4238 goto change;
75381608 4239 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 4240 goto change;
d50dde5a 4241
d6b1e911 4242 p->sched_reset_on_fork = reset_on_fork;
eb580751 4243 task_rq_unlock(rq, p, &rf);
a51e9198
DF
4244 return 0;
4245 }
d50dde5a 4246change:
a51e9198 4247
dc61b1d6 4248 if (user) {
332ac17e 4249#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
4250 /*
4251 * Do not allow realtime tasks into groups that have no runtime
4252 * assigned.
4253 */
4254 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
4255 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4256 !task_group_is_autogroup(task_group(p))) {
eb580751 4257 task_rq_unlock(rq, p, &rf);
dc61b1d6
PZ
4258 return -EPERM;
4259 }
dc61b1d6 4260#endif
332ac17e 4261#ifdef CONFIG_SMP
794a56eb
JL
4262 if (dl_bandwidth_enabled() && dl_policy(policy) &&
4263 !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
332ac17e 4264 cpumask_t *span = rq->rd->span;
332ac17e
DF
4265
4266 /*
4267 * Don't allow tasks with an affinity mask smaller than
4268 * the entire root_domain to become SCHED_DEADLINE. We
4269 * will also fail if there's no bandwidth available.
4270 */
e4099a5e
PZ
4271 if (!cpumask_subset(span, &p->cpus_allowed) ||
4272 rq->rd->dl_bw.bw == 0) {
eb580751 4273 task_rq_unlock(rq, p, &rf);
332ac17e
DF
4274 return -EPERM;
4275 }
4276 }
4277#endif
4278 }
dc61b1d6 4279
d1ccc66d 4280 /* Re-check policy now with rq lock held: */
1da177e4
LT
4281 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4282 policy = oldpolicy = -1;
eb580751 4283 task_rq_unlock(rq, p, &rf);
1da177e4
LT
4284 goto recheck;
4285 }
332ac17e
DF
4286
4287 /*
4288 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4289 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4290 * is available.
4291 */
06a76fe0 4292 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
eb580751 4293 task_rq_unlock(rq, p, &rf);
332ac17e
DF
4294 return -EBUSY;
4295 }
4296
c365c292
TG
4297 p->sched_reset_on_fork = reset_on_fork;
4298 oldprio = p->prio;
4299
dbc7f069
PZ
4300 if (pi) {
4301 /*
4302 * Take priority boosted tasks into account. If the new
4303 * effective priority is unchanged, we just store the new
4304 * normal parameters and do not touch the scheduler class and
4305 * the runqueue. This will be done when the task deboost
4306 * itself.
4307 */
acd58620 4308 new_effective_prio = rt_effective_prio(p, newprio);
ff77e468
PZ
4309 if (new_effective_prio == oldprio)
4310 queue_flags &= ~DEQUEUE_MOVE;
c365c292
TG
4311 }
4312
da0c1e65 4313 queued = task_on_rq_queued(p);
051a1d1a 4314 running = task_current(rq, p);
da0c1e65 4315 if (queued)
ff77e468 4316 dequeue_task(rq, p, queue_flags);
0e1f3483 4317 if (running)
f3cd1c4e 4318 put_prev_task(rq, p);
f6b53205 4319
83ab0aa0 4320 prev_class = p->sched_class;
dbc7f069 4321 __setscheduler(rq, p, attr, pi);
f6b53205 4322
da0c1e65 4323 if (queued) {
81a44c54
TG
4324 /*
4325 * We enqueue to tail when the priority of a task is
4326 * increased (user space view).
4327 */
ff77e468
PZ
4328 if (oldprio < p->prio)
4329 queue_flags |= ENQUEUE_HEAD;
1de64443 4330
ff77e468 4331 enqueue_task(rq, p, queue_flags);
81a44c54 4332 }
a399d233 4333 if (running)
b2bf6c31 4334 set_curr_task(rq, p);
cb469845 4335
da7a735e 4336 check_class_changed(rq, p, prev_class, oldprio);
d1ccc66d
IM
4337
4338 /* Avoid rq from going away on us: */
4339 preempt_disable();
eb580751 4340 task_rq_unlock(rq, p, &rf);
b29739f9 4341
dbc7f069
PZ
4342 if (pi)
4343 rt_mutex_adjust_pi(p);
95e02ca9 4344
d1ccc66d 4345 /* Run balance callbacks after we've adjusted the PI chain: */
4c9a4bc8
PZ
4346 balance_callback(rq);
4347 preempt_enable();
95e02ca9 4348
1da177e4
LT
4349 return 0;
4350}
961ccddd 4351
7479f3c9
PZ
4352static int _sched_setscheduler(struct task_struct *p, int policy,
4353 const struct sched_param *param, bool check)
4354{
4355 struct sched_attr attr = {
4356 .sched_policy = policy,
4357 .sched_priority = param->sched_priority,
4358 .sched_nice = PRIO_TO_NICE(p->static_prio),
4359 };
4360
c13db6b1
SR
4361 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4362 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
4363 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4364 policy &= ~SCHED_RESET_ON_FORK;
4365 attr.sched_policy = policy;
4366 }
4367
dbc7f069 4368 return __sched_setscheduler(p, &attr, check, true);
7479f3c9 4369}
961ccddd
RR
4370/**
4371 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4372 * @p: the task in question.
4373 * @policy: new policy.
4374 * @param: structure containing the new RT priority.
4375 *
e69f6186
YB
4376 * Return: 0 on success. An error code otherwise.
4377 *
961ccddd
RR
4378 * NOTE that the task may be already dead.
4379 */
4380int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4381 const struct sched_param *param)
961ccddd 4382{
7479f3c9 4383 return _sched_setscheduler(p, policy, param, true);
961ccddd 4384}
1da177e4
LT
4385EXPORT_SYMBOL_GPL(sched_setscheduler);
4386
d50dde5a
DF
4387int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4388{
dbc7f069 4389 return __sched_setscheduler(p, attr, true, true);
d50dde5a
DF
4390}
4391EXPORT_SYMBOL_GPL(sched_setattr);
4392
794a56eb
JL
4393int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
4394{
4395 return __sched_setscheduler(p, attr, false, true);
4396}
4397
961ccddd
RR
4398/**
4399 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4400 * @p: the task in question.
4401 * @policy: new policy.
4402 * @param: structure containing the new RT priority.
4403 *
4404 * Just like sched_setscheduler, only don't bother checking if the
4405 * current context has permission. For example, this is needed in
4406 * stop_machine(): we create temporary high priority worker threads,
4407 * but our caller might not have that capability.
e69f6186
YB
4408 *
4409 * Return: 0 on success. An error code otherwise.
961ccddd
RR
4410 */
4411int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 4412 const struct sched_param *param)
961ccddd 4413{
7479f3c9 4414 return _sched_setscheduler(p, policy, param, false);
961ccddd 4415}
84778472 4416EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
961ccddd 4417
95cdf3b7
IM
4418static int
4419do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4420{
1da177e4
LT
4421 struct sched_param lparam;
4422 struct task_struct *p;
36c8b586 4423 int retval;
1da177e4
LT
4424
4425 if (!param || pid < 0)
4426 return -EINVAL;
4427 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4428 return -EFAULT;
5fe1d75f
ON
4429
4430 rcu_read_lock();
4431 retval = -ESRCH;
1da177e4 4432 p = find_process_by_pid(pid);
5fe1d75f
ON
4433 if (p != NULL)
4434 retval = sched_setscheduler(p, policy, &lparam);
4435 rcu_read_unlock();
36c8b586 4436
1da177e4
LT
4437 return retval;
4438}
4439
d50dde5a
DF
4440/*
4441 * Mimics kernel/events/core.c perf_copy_attr().
4442 */
d1ccc66d 4443static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
d50dde5a
DF
4444{
4445 u32 size;
4446 int ret;
4447
4448 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4449 return -EFAULT;
4450
d1ccc66d 4451 /* Zero the full structure, so that a short copy will be nice: */
d50dde5a
DF
4452 memset(attr, 0, sizeof(*attr));
4453
4454 ret = get_user(size, &uattr->size);
4455 if (ret)
4456 return ret;
4457
d1ccc66d
IM
4458 /* Bail out on silly large: */
4459 if (size > PAGE_SIZE)
d50dde5a
DF
4460 goto err_size;
4461
d1ccc66d
IM
4462 /* ABI compatibility quirk: */
4463 if (!size)
d50dde5a
DF
4464 size = SCHED_ATTR_SIZE_VER0;
4465
4466 if (size < SCHED_ATTR_SIZE_VER0)
4467 goto err_size;
4468
4469 /*
4470 * If we're handed a bigger struct than we know of,
4471 * ensure all the unknown bits are 0 - i.e. new
4472 * user-space does not rely on any kernel feature
4473 * extensions we dont know about yet.
4474 */
4475 if (size > sizeof(*attr)) {
4476 unsigned char __user *addr;
4477 unsigned char __user *end;
4478 unsigned char val;
4479
4480 addr = (void __user *)uattr + sizeof(*attr);
4481 end = (void __user *)uattr + size;
4482
4483 for (; addr < end; addr++) {
4484 ret = get_user(val, addr);
4485 if (ret)
4486 return ret;
4487 if (val)
4488 goto err_size;
4489 }
4490 size = sizeof(*attr);
4491 }
4492
4493 ret = copy_from_user(attr, uattr, size);
4494 if (ret)
4495 return -EFAULT;
4496
4497 /*
d1ccc66d 4498 * XXX: Do we want to be lenient like existing syscalls; or do we want
d50dde5a
DF
4499 * to be strict and return an error on out-of-bounds values?
4500 */
75e45d51 4501 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 4502
e78c7bca 4503 return 0;
d50dde5a
DF
4504
4505err_size:
4506 put_user(sizeof(*attr), &uattr->size);
e78c7bca 4507 return -E2BIG;
d50dde5a
DF
4508}
4509
1da177e4
LT
4510/**
4511 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4512 * @pid: the pid in question.
4513 * @policy: new policy.
4514 * @param: structure containing the new RT priority.
e69f6186
YB
4515 *
4516 * Return: 0 on success. An error code otherwise.
1da177e4 4517 */
d1ccc66d 4518SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
1da177e4 4519{
c21761f1
JB
4520 if (policy < 0)
4521 return -EINVAL;
4522
1da177e4
LT
4523 return do_sched_setscheduler(pid, policy, param);
4524}
4525
4526/**
4527 * sys_sched_setparam - set/change the RT priority of a thread
4528 * @pid: the pid in question.
4529 * @param: structure containing the new RT priority.
e69f6186
YB
4530 *
4531 * Return: 0 on success. An error code otherwise.
1da177e4 4532 */
5add95d4 4533SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4534{
c13db6b1 4535 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
4536}
4537
d50dde5a
DF
4538/**
4539 * sys_sched_setattr - same as above, but with extended sched_attr
4540 * @pid: the pid in question.
5778fccf 4541 * @uattr: structure containing the extended parameters.
db66d756 4542 * @flags: for future extension.
d50dde5a 4543 */
6d35ab48
PZ
4544SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4545 unsigned int, flags)
d50dde5a
DF
4546{
4547 struct sched_attr attr;
4548 struct task_struct *p;
4549 int retval;
4550
6d35ab48 4551 if (!uattr || pid < 0 || flags)
d50dde5a
DF
4552 return -EINVAL;
4553
143cf23d
MK
4554 retval = sched_copy_attr(uattr, &attr);
4555 if (retval)
4556 return retval;
d50dde5a 4557
b14ed2c2 4558 if ((int)attr.sched_policy < 0)
dbdb2275 4559 return -EINVAL;
d50dde5a
DF
4560
4561 rcu_read_lock();
4562 retval = -ESRCH;
4563 p = find_process_by_pid(pid);
4564 if (p != NULL)
4565 retval = sched_setattr(p, &attr);
4566 rcu_read_unlock();
4567
4568 return retval;
4569}
4570
1da177e4
LT
4571/**
4572 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4573 * @pid: the pid in question.
e69f6186
YB
4574 *
4575 * Return: On success, the policy of the thread. Otherwise, a negative error
4576 * code.
1da177e4 4577 */
5add95d4 4578SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4579{
36c8b586 4580 struct task_struct *p;
3a5c359a 4581 int retval;
1da177e4
LT
4582
4583 if (pid < 0)
3a5c359a 4584 return -EINVAL;
1da177e4
LT
4585
4586 retval = -ESRCH;
5fe85be0 4587 rcu_read_lock();
1da177e4
LT
4588 p = find_process_by_pid(pid);
4589 if (p) {
4590 retval = security_task_getscheduler(p);
4591 if (!retval)
ca94c442
LP
4592 retval = p->policy
4593 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4594 }
5fe85be0 4595 rcu_read_unlock();
1da177e4
LT
4596 return retval;
4597}
4598
4599/**
ca94c442 4600 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4601 * @pid: the pid in question.
4602 * @param: structure containing the RT priority.
e69f6186
YB
4603 *
4604 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4605 * code.
1da177e4 4606 */
5add95d4 4607SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4608{
ce5f7f82 4609 struct sched_param lp = { .sched_priority = 0 };
36c8b586 4610 struct task_struct *p;
3a5c359a 4611 int retval;
1da177e4
LT
4612
4613 if (!param || pid < 0)
3a5c359a 4614 return -EINVAL;
1da177e4 4615
5fe85be0 4616 rcu_read_lock();
1da177e4
LT
4617 p = find_process_by_pid(pid);
4618 retval = -ESRCH;
4619 if (!p)
4620 goto out_unlock;
4621
4622 retval = security_task_getscheduler(p);
4623 if (retval)
4624 goto out_unlock;
4625
ce5f7f82
PZ
4626 if (task_has_rt_policy(p))
4627 lp.sched_priority = p->rt_priority;
5fe85be0 4628 rcu_read_unlock();
1da177e4
LT
4629
4630 /*
4631 * This one might sleep, we cannot do it with a spinlock held ...
4632 */
4633 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4634
1da177e4
LT
4635 return retval;
4636
4637out_unlock:
5fe85be0 4638 rcu_read_unlock();
1da177e4
LT
4639 return retval;
4640}
4641
d50dde5a
DF
4642static int sched_read_attr(struct sched_attr __user *uattr,
4643 struct sched_attr *attr,
4644 unsigned int usize)
4645{
4646 int ret;
4647
4648 if (!access_ok(VERIFY_WRITE, uattr, usize))
4649 return -EFAULT;
4650
4651 /*
4652 * If we're handed a smaller struct than we know of,
4653 * ensure all the unknown bits are 0 - i.e. old
4654 * user-space does not get uncomplete information.
4655 */
4656 if (usize < sizeof(*attr)) {
4657 unsigned char *addr;
4658 unsigned char *end;
4659
4660 addr = (void *)attr + usize;
4661 end = (void *)attr + sizeof(*attr);
4662
4663 for (; addr < end; addr++) {
4664 if (*addr)
22400674 4665 return -EFBIG;
d50dde5a
DF
4666 }
4667
4668 attr->size = usize;
4669 }
4670
4efbc454 4671 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
4672 if (ret)
4673 return -EFAULT;
4674
22400674 4675 return 0;
d50dde5a
DF
4676}
4677
4678/**
aab03e05 4679 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 4680 * @pid: the pid in question.
5778fccf 4681 * @uattr: structure containing the extended parameters.
d50dde5a 4682 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 4683 * @flags: for future extension.
d50dde5a 4684 */
6d35ab48
PZ
4685SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4686 unsigned int, size, unsigned int, flags)
d50dde5a
DF
4687{
4688 struct sched_attr attr = {
4689 .size = sizeof(struct sched_attr),
4690 };
4691 struct task_struct *p;
4692 int retval;
4693
4694 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 4695 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
4696 return -EINVAL;
4697
4698 rcu_read_lock();
4699 p = find_process_by_pid(pid);
4700 retval = -ESRCH;
4701 if (!p)
4702 goto out_unlock;
4703
4704 retval = security_task_getscheduler(p);
4705 if (retval)
4706 goto out_unlock;
4707
4708 attr.sched_policy = p->policy;
7479f3c9
PZ
4709 if (p->sched_reset_on_fork)
4710 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
4711 if (task_has_dl_policy(p))
4712 __getparam_dl(p, &attr);
4713 else if (task_has_rt_policy(p))
d50dde5a
DF
4714 attr.sched_priority = p->rt_priority;
4715 else
d0ea0268 4716 attr.sched_nice = task_nice(p);
d50dde5a
DF
4717
4718 rcu_read_unlock();
4719
4720 retval = sched_read_attr(uattr, &attr, size);
4721 return retval;
4722
4723out_unlock:
4724 rcu_read_unlock();
4725 return retval;
4726}
4727
96f874e2 4728long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4729{
5a16f3d3 4730 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4731 struct task_struct *p;
4732 int retval;
1da177e4 4733
23f5d142 4734 rcu_read_lock();
1da177e4
LT
4735
4736 p = find_process_by_pid(pid);
4737 if (!p) {
23f5d142 4738 rcu_read_unlock();
1da177e4
LT
4739 return -ESRCH;
4740 }
4741
23f5d142 4742 /* Prevent p going away */
1da177e4 4743 get_task_struct(p);
23f5d142 4744 rcu_read_unlock();
1da177e4 4745
14a40ffc
TH
4746 if (p->flags & PF_NO_SETAFFINITY) {
4747 retval = -EINVAL;
4748 goto out_put_task;
4749 }
5a16f3d3
RR
4750 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4751 retval = -ENOMEM;
4752 goto out_put_task;
4753 }
4754 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4755 retval = -ENOMEM;
4756 goto out_free_cpus_allowed;
4757 }
1da177e4 4758 retval = -EPERM;
4c44aaaf
EB
4759 if (!check_same_owner(p)) {
4760 rcu_read_lock();
4761 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4762 rcu_read_unlock();
16303ab2 4763 goto out_free_new_mask;
4c44aaaf
EB
4764 }
4765 rcu_read_unlock();
4766 }
1da177e4 4767
b0ae1981 4768 retval = security_task_setscheduler(p);
e7834f8f 4769 if (retval)
16303ab2 4770 goto out_free_new_mask;
e7834f8f 4771
e4099a5e
PZ
4772
4773 cpuset_cpus_allowed(p, cpus_allowed);
4774 cpumask_and(new_mask, in_mask, cpus_allowed);
4775
332ac17e
DF
4776 /*
4777 * Since bandwidth control happens on root_domain basis,
4778 * if admission test is enabled, we only admit -deadline
4779 * tasks allowed to run on all the CPUs in the task's
4780 * root_domain.
4781 */
4782#ifdef CONFIG_SMP
f1e3a093
KT
4783 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4784 rcu_read_lock();
4785 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 4786 retval = -EBUSY;
f1e3a093 4787 rcu_read_unlock();
16303ab2 4788 goto out_free_new_mask;
332ac17e 4789 }
f1e3a093 4790 rcu_read_unlock();
332ac17e
DF
4791 }
4792#endif
49246274 4793again:
25834c73 4794 retval = __set_cpus_allowed_ptr(p, new_mask, true);
1da177e4 4795
8707d8b8 4796 if (!retval) {
5a16f3d3
RR
4797 cpuset_cpus_allowed(p, cpus_allowed);
4798 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4799 /*
4800 * We must have raced with a concurrent cpuset
4801 * update. Just reset the cpus_allowed to the
4802 * cpuset's cpus_allowed
4803 */
5a16f3d3 4804 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4805 goto again;
4806 }
4807 }
16303ab2 4808out_free_new_mask:
5a16f3d3
RR
4809 free_cpumask_var(new_mask);
4810out_free_cpus_allowed:
4811 free_cpumask_var(cpus_allowed);
4812out_put_task:
1da177e4 4813 put_task_struct(p);
1da177e4
LT
4814 return retval;
4815}
4816
4817static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4818 struct cpumask *new_mask)
1da177e4 4819{
96f874e2
RR
4820 if (len < cpumask_size())
4821 cpumask_clear(new_mask);
4822 else if (len > cpumask_size())
4823 len = cpumask_size();
4824
1da177e4
LT
4825 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4826}
4827
4828/**
d1ccc66d 4829 * sys_sched_setaffinity - set the CPU affinity of a process
1da177e4
LT
4830 * @pid: pid of the process
4831 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
d1ccc66d 4832 * @user_mask_ptr: user-space pointer to the new CPU mask
e69f6186
YB
4833 *
4834 * Return: 0 on success. An error code otherwise.
1da177e4 4835 */
5add95d4
HC
4836SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4837 unsigned long __user *, user_mask_ptr)
1da177e4 4838{
5a16f3d3 4839 cpumask_var_t new_mask;
1da177e4
LT
4840 int retval;
4841
5a16f3d3
RR
4842 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4843 return -ENOMEM;
1da177e4 4844
5a16f3d3
RR
4845 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4846 if (retval == 0)
4847 retval = sched_setaffinity(pid, new_mask);
4848 free_cpumask_var(new_mask);
4849 return retval;
1da177e4
LT
4850}
4851
96f874e2 4852long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4853{
36c8b586 4854 struct task_struct *p;
31605683 4855 unsigned long flags;
1da177e4 4856 int retval;
1da177e4 4857
23f5d142 4858 rcu_read_lock();
1da177e4
LT
4859
4860 retval = -ESRCH;
4861 p = find_process_by_pid(pid);
4862 if (!p)
4863 goto out_unlock;
4864
e7834f8f
DQ
4865 retval = security_task_getscheduler(p);
4866 if (retval)
4867 goto out_unlock;
4868
013fdb80 4869 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4870 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4871 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4872
4873out_unlock:
23f5d142 4874 rcu_read_unlock();
1da177e4 4875
9531b62f 4876 return retval;
1da177e4
LT
4877}
4878
4879/**
d1ccc66d 4880 * sys_sched_getaffinity - get the CPU affinity of a process
1da177e4
LT
4881 * @pid: pid of the process
4882 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
d1ccc66d 4883 * @user_mask_ptr: user-space pointer to hold the current CPU mask
e69f6186 4884 *
599b4840
ZW
4885 * Return: size of CPU mask copied to user_mask_ptr on success. An
4886 * error code otherwise.
1da177e4 4887 */
5add95d4
HC
4888SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4889 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4890{
4891 int ret;
f17c8607 4892 cpumask_var_t mask;
1da177e4 4893
84fba5ec 4894 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4895 return -EINVAL;
4896 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4897 return -EINVAL;
4898
f17c8607
RR
4899 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4900 return -ENOMEM;
1da177e4 4901
f17c8607
RR
4902 ret = sched_getaffinity(pid, mask);
4903 if (ret == 0) {
4de373a1 4904 unsigned int retlen = min(len, cpumask_size());
cd3d8031
KM
4905
4906 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4907 ret = -EFAULT;
4908 else
cd3d8031 4909 ret = retlen;
f17c8607
RR
4910 }
4911 free_cpumask_var(mask);
1da177e4 4912
f17c8607 4913 return ret;
1da177e4
LT
4914}
4915
4916/**
4917 * sys_sched_yield - yield the current processor to other threads.
4918 *
dd41f596
IM
4919 * This function yields the current CPU to other tasks. If there are no
4920 * other threads running on this CPU then this function will return.
e69f6186
YB
4921 *
4922 * Return: 0.
1da177e4 4923 */
7d4dd4f1 4924static void do_sched_yield(void)
1da177e4 4925{
8a8c69c3
PZ
4926 struct rq_flags rf;
4927 struct rq *rq;
4928
4929 local_irq_disable();
4930 rq = this_rq();
4931 rq_lock(rq, &rf);
1da177e4 4932
ae92882e 4933 schedstat_inc(rq->yld_count);
4530d7ab 4934 current->sched_class->yield_task(rq);
1da177e4
LT
4935
4936 /*
4937 * Since we are going to call schedule() anyway, there's
4938 * no need to preempt or enable interrupts:
4939 */
8a8c69c3
PZ
4940 preempt_disable();
4941 rq_unlock(rq, &rf);
ba74c144 4942 sched_preempt_enable_no_resched();
1da177e4
LT
4943
4944 schedule();
7d4dd4f1 4945}
1da177e4 4946
7d4dd4f1
DB
4947SYSCALL_DEFINE0(sched_yield)
4948{
4949 do_sched_yield();
1da177e4
LT
4950 return 0;
4951}
4952
35a773a0 4953#ifndef CONFIG_PREEMPT
02b67cc3 4954int __sched _cond_resched(void)
1da177e4 4955{
fe32d3cd 4956 if (should_resched(0)) {
a18b5d01 4957 preempt_schedule_common();
1da177e4
LT
4958 return 1;
4959 }
f79c3ad6 4960 rcu_all_qs();
1da177e4
LT
4961 return 0;
4962}
02b67cc3 4963EXPORT_SYMBOL(_cond_resched);
35a773a0 4964#endif
1da177e4
LT
4965
4966/*
613afbf8 4967 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4968 * call schedule, and on return reacquire the lock.
4969 *
41a2d6cf 4970 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4971 * operations here to prevent schedule() from being called twice (once via
4972 * spin_unlock(), once by hand).
4973 */
613afbf8 4974int __cond_resched_lock(spinlock_t *lock)
1da177e4 4975{
fe32d3cd 4976 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6df3cecb
JK
4977 int ret = 0;
4978
f607c668
PZ
4979 lockdep_assert_held(lock);
4980
4a81e832 4981 if (spin_needbreak(lock) || resched) {
1da177e4 4982 spin_unlock(lock);
d86ee480 4983 if (resched)
a18b5d01 4984 preempt_schedule_common();
95c354fe
NP
4985 else
4986 cpu_relax();
6df3cecb 4987 ret = 1;
1da177e4 4988 spin_lock(lock);
1da177e4 4989 }
6df3cecb 4990 return ret;
1da177e4 4991}
613afbf8 4992EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4993
613afbf8 4994int __sched __cond_resched_softirq(void)
1da177e4
LT
4995{
4996 BUG_ON(!in_softirq());
4997
fe32d3cd 4998 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
98d82567 4999 local_bh_enable();
a18b5d01 5000 preempt_schedule_common();
1da177e4
LT
5001 local_bh_disable();
5002 return 1;
5003 }
5004 return 0;
5005}
613afbf8 5006EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 5007
1da177e4
LT
5008/**
5009 * yield - yield the current processor to other threads.
5010 *
8e3fabfd
PZ
5011 * Do not ever use this function, there's a 99% chance you're doing it wrong.
5012 *
5013 * The scheduler is at all times free to pick the calling task as the most
5014 * eligible task to run, if removing the yield() call from your code breaks
5015 * it, its already broken.
5016 *
5017 * Typical broken usage is:
5018 *
5019 * while (!event)
d1ccc66d 5020 * yield();
8e3fabfd
PZ
5021 *
5022 * where one assumes that yield() will let 'the other' process run that will
5023 * make event true. If the current task is a SCHED_FIFO task that will never
5024 * happen. Never use yield() as a progress guarantee!!
5025 *
5026 * If you want to use yield() to wait for something, use wait_event().
5027 * If you want to use yield() to be 'nice' for others, use cond_resched().
5028 * If you still want to use yield(), do not!
1da177e4
LT
5029 */
5030void __sched yield(void)
5031{
5032 set_current_state(TASK_RUNNING);
7d4dd4f1 5033 do_sched_yield();
1da177e4 5034}
1da177e4
LT
5035EXPORT_SYMBOL(yield);
5036
d95f4122
MG
5037/**
5038 * yield_to - yield the current processor to another thread in
5039 * your thread group, or accelerate that thread toward the
5040 * processor it's on.
16addf95
RD
5041 * @p: target task
5042 * @preempt: whether task preemption is allowed or not
d95f4122
MG
5043 *
5044 * It's the caller's job to ensure that the target task struct
5045 * can't go away on us before we can do any checks.
5046 *
e69f6186 5047 * Return:
7b270f60
PZ
5048 * true (>0) if we indeed boosted the target task.
5049 * false (0) if we failed to boost the target.
5050 * -ESRCH if there's no task to yield to.
d95f4122 5051 */
fa93384f 5052int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
5053{
5054 struct task_struct *curr = current;
5055 struct rq *rq, *p_rq;
5056 unsigned long flags;
c3c18640 5057 int yielded = 0;
d95f4122
MG
5058
5059 local_irq_save(flags);
5060 rq = this_rq();
5061
5062again:
5063 p_rq = task_rq(p);
7b270f60
PZ
5064 /*
5065 * If we're the only runnable task on the rq and target rq also
5066 * has only one task, there's absolutely no point in yielding.
5067 */
5068 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5069 yielded = -ESRCH;
5070 goto out_irq;
5071 }
5072
d95f4122 5073 double_rq_lock(rq, p_rq);
39e24d8f 5074 if (task_rq(p) != p_rq) {
d95f4122
MG
5075 double_rq_unlock(rq, p_rq);
5076 goto again;
5077 }
5078
5079 if (!curr->sched_class->yield_to_task)
7b270f60 5080 goto out_unlock;
d95f4122
MG
5081
5082 if (curr->sched_class != p->sched_class)
7b270f60 5083 goto out_unlock;
d95f4122
MG
5084
5085 if (task_running(p_rq, p) || p->state)
7b270f60 5086 goto out_unlock;
d95f4122
MG
5087
5088 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 5089 if (yielded) {
ae92882e 5090 schedstat_inc(rq->yld_count);
6d1cafd8
VP
5091 /*
5092 * Make p's CPU reschedule; pick_next_entity takes care of
5093 * fairness.
5094 */
5095 if (preempt && rq != p_rq)
8875125e 5096 resched_curr(p_rq);
6d1cafd8 5097 }
d95f4122 5098
7b270f60 5099out_unlock:
d95f4122 5100 double_rq_unlock(rq, p_rq);
7b270f60 5101out_irq:
d95f4122
MG
5102 local_irq_restore(flags);
5103
7b270f60 5104 if (yielded > 0)
d95f4122
MG
5105 schedule();
5106
5107 return yielded;
5108}
5109EXPORT_SYMBOL_GPL(yield_to);
5110
10ab5643
TH
5111int io_schedule_prepare(void)
5112{
5113 int old_iowait = current->in_iowait;
5114
5115 current->in_iowait = 1;
5116 blk_schedule_flush_plug(current);
5117
5118 return old_iowait;
5119}
5120
5121void io_schedule_finish(int token)
5122{
5123 current->in_iowait = token;
5124}
5125
1da177e4 5126/*
41a2d6cf 5127 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5128 * that process accounting knows that this is a task in IO wait state.
1da177e4 5129 */
1da177e4
LT
5130long __sched io_schedule_timeout(long timeout)
5131{
10ab5643 5132 int token;
1da177e4
LT
5133 long ret;
5134
10ab5643 5135 token = io_schedule_prepare();
1da177e4 5136 ret = schedule_timeout(timeout);
10ab5643 5137 io_schedule_finish(token);
9cff8ade 5138
1da177e4
LT
5139 return ret;
5140}
9cff8ade 5141EXPORT_SYMBOL(io_schedule_timeout);
1da177e4 5142
10ab5643
TH
5143void io_schedule(void)
5144{
5145 int token;
5146
5147 token = io_schedule_prepare();
5148 schedule();
5149 io_schedule_finish(token);
5150}
5151EXPORT_SYMBOL(io_schedule);
5152
1da177e4
LT
5153/**
5154 * sys_sched_get_priority_max - return maximum RT priority.
5155 * @policy: scheduling class.
5156 *
e69f6186
YB
5157 * Return: On success, this syscall returns the maximum
5158 * rt_priority that can be used by a given scheduling class.
5159 * On failure, a negative error code is returned.
1da177e4 5160 */
5add95d4 5161SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5162{
5163 int ret = -EINVAL;
5164
5165 switch (policy) {
5166 case SCHED_FIFO:
5167 case SCHED_RR:
5168 ret = MAX_USER_RT_PRIO-1;
5169 break;
aab03e05 5170 case SCHED_DEADLINE:
1da177e4 5171 case SCHED_NORMAL:
b0a9499c 5172 case SCHED_BATCH:
dd41f596 5173 case SCHED_IDLE:
1da177e4
LT
5174 ret = 0;
5175 break;
5176 }
5177 return ret;
5178}
5179
5180/**
5181 * sys_sched_get_priority_min - return minimum RT priority.
5182 * @policy: scheduling class.
5183 *
e69f6186
YB
5184 * Return: On success, this syscall returns the minimum
5185 * rt_priority that can be used by a given scheduling class.
5186 * On failure, a negative error code is returned.
1da177e4 5187 */
5add95d4 5188SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5189{
5190 int ret = -EINVAL;
5191
5192 switch (policy) {
5193 case SCHED_FIFO:
5194 case SCHED_RR:
5195 ret = 1;
5196 break;
aab03e05 5197 case SCHED_DEADLINE:
1da177e4 5198 case SCHED_NORMAL:
b0a9499c 5199 case SCHED_BATCH:
dd41f596 5200 case SCHED_IDLE:
1da177e4
LT
5201 ret = 0;
5202 }
5203 return ret;
5204}
5205
abca5fc5 5206static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
1da177e4 5207{
36c8b586 5208 struct task_struct *p;
a4ec24b4 5209 unsigned int time_slice;
eb580751 5210 struct rq_flags rf;
dba091b9 5211 struct rq *rq;
3a5c359a 5212 int retval;
1da177e4
LT
5213
5214 if (pid < 0)
3a5c359a 5215 return -EINVAL;
1da177e4
LT
5216
5217 retval = -ESRCH;
1a551ae7 5218 rcu_read_lock();
1da177e4
LT
5219 p = find_process_by_pid(pid);
5220 if (!p)
5221 goto out_unlock;
5222
5223 retval = security_task_getscheduler(p);
5224 if (retval)
5225 goto out_unlock;
5226
eb580751 5227 rq = task_rq_lock(p, &rf);
a57beec5
PZ
5228 time_slice = 0;
5229 if (p->sched_class->get_rr_interval)
5230 time_slice = p->sched_class->get_rr_interval(rq, p);
eb580751 5231 task_rq_unlock(rq, p, &rf);
a4ec24b4 5232
1a551ae7 5233 rcu_read_unlock();
abca5fc5
AV
5234 jiffies_to_timespec64(time_slice, t);
5235 return 0;
3a5c359a 5236
1da177e4 5237out_unlock:
1a551ae7 5238 rcu_read_unlock();
1da177e4
LT
5239 return retval;
5240}
5241
2064a5ab
RD
5242/**
5243 * sys_sched_rr_get_interval - return the default timeslice of a process.
5244 * @pid: pid of the process.
5245 * @interval: userspace pointer to the timeslice value.
5246 *
5247 * this syscall writes the default timeslice value of a given process
5248 * into the user-space timespec buffer. A value of '0' means infinity.
5249 *
5250 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5251 * an error code.
5252 */
abca5fc5
AV
5253SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5254 struct timespec __user *, interval)
5255{
5256 struct timespec64 t;
5257 int retval = sched_rr_get_interval(pid, &t);
5258
5259 if (retval == 0)
5260 retval = put_timespec64(&t, interval);
5261
5262 return retval;
5263}
5264
5265#ifdef CONFIG_COMPAT
5266COMPAT_SYSCALL_DEFINE2(sched_rr_get_interval,
5267 compat_pid_t, pid,
5268 struct compat_timespec __user *, interval)
5269{
5270 struct timespec64 t;
5271 int retval = sched_rr_get_interval(pid, &t);
5272
5273 if (retval == 0)
5274 retval = compat_put_timespec64(&t, interval);
5275 return retval;
5276}
5277#endif
5278
82a1fcb9 5279void sched_show_task(struct task_struct *p)
1da177e4 5280{
1da177e4 5281 unsigned long free = 0;
4e79752c 5282 int ppid;
c930b2c0 5283
38200502
TH
5284 if (!try_get_task_stack(p))
5285 return;
20435d84
XX
5286
5287 printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));
5288
5289 if (p->state == TASK_RUNNING)
3df0fc5b 5290 printk(KERN_CONT " running task ");
1da177e4 5291#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5292 free = stack_not_used(p);
1da177e4 5293#endif
a90e984c 5294 ppid = 0;
4e79752c 5295 rcu_read_lock();
a90e984c
ON
5296 if (pid_alive(p))
5297 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 5298 rcu_read_unlock();
3df0fc5b 5299 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 5300 task_pid_nr(p), ppid,
aa47b7e0 5301 (unsigned long)task_thread_info(p)->flags);
1da177e4 5302
3d1cb205 5303 print_worker_info(KERN_INFO, p);
5fb5e6de 5304 show_stack(p, NULL);
38200502 5305 put_task_stack(p);
1da177e4 5306}
0032f4e8 5307EXPORT_SYMBOL_GPL(sched_show_task);
1da177e4 5308
5d68cc95
PZ
5309static inline bool
5310state_filter_match(unsigned long state_filter, struct task_struct *p)
5311{
5312 /* no filter, everything matches */
5313 if (!state_filter)
5314 return true;
5315
5316 /* filter, but doesn't match */
5317 if (!(p->state & state_filter))
5318 return false;
5319
5320 /*
5321 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
5322 * TASK_KILLABLE).
5323 */
5324 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
5325 return false;
5326
5327 return true;
5328}
5329
5330
e59e2ae2 5331void show_state_filter(unsigned long state_filter)
1da177e4 5332{
36c8b586 5333 struct task_struct *g, *p;
1da177e4 5334
4bd77321 5335#if BITS_PER_LONG == 32
3df0fc5b
PZ
5336 printk(KERN_INFO
5337 " task PC stack pid father\n");
1da177e4 5338#else
3df0fc5b
PZ
5339 printk(KERN_INFO
5340 " task PC stack pid father\n");
1da177e4 5341#endif
510f5acc 5342 rcu_read_lock();
5d07f420 5343 for_each_process_thread(g, p) {
1da177e4
LT
5344 /*
5345 * reset the NMI-timeout, listing all files on a slow
25985edc 5346 * console might take a lot of time:
57675cb9
AR
5347 * Also, reset softlockup watchdogs on all CPUs, because
5348 * another CPU might be blocked waiting for us to process
5349 * an IPI.
1da177e4
LT
5350 */
5351 touch_nmi_watchdog();
57675cb9 5352 touch_all_softlockup_watchdogs();
5d68cc95 5353 if (state_filter_match(state_filter, p))
82a1fcb9 5354 sched_show_task(p);
5d07f420 5355 }
1da177e4 5356
dd41f596 5357#ifdef CONFIG_SCHED_DEBUG
fb90a6e9
RV
5358 if (!state_filter)
5359 sysrq_sched_debug_show();
dd41f596 5360#endif
510f5acc 5361 rcu_read_unlock();
e59e2ae2
IM
5362 /*
5363 * Only show locks if all tasks are dumped:
5364 */
93335a21 5365 if (!state_filter)
e59e2ae2 5366 debug_show_all_locks();
1da177e4
LT
5367}
5368
f340c0d1
IM
5369/**
5370 * init_idle - set up an idle thread for a given CPU
5371 * @idle: task in question
d1ccc66d 5372 * @cpu: CPU the idle task belongs to
f340c0d1
IM
5373 *
5374 * NOTE: this function does not set the idle thread's NEED_RESCHED
5375 * flag, to make booting more robust.
5376 */
0db0628d 5377void init_idle(struct task_struct *idle, int cpu)
1da177e4 5378{
70b97a7f 5379 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5380 unsigned long flags;
5381
25834c73
PZ
5382 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5383 raw_spin_lock(&rq->lock);
5cbd54ef 5384
5e1576ed 5385 __sched_fork(0, idle);
06b83b5f 5386 idle->state = TASK_RUNNING;
dd41f596 5387 idle->se.exec_start = sched_clock();
c1de45ca 5388 idle->flags |= PF_IDLE;
dd41f596 5389
e1b77c92
MR
5390 kasan_unpoison_task_stack(idle);
5391
de9b8f5d
PZ
5392#ifdef CONFIG_SMP
5393 /*
5394 * Its possible that init_idle() gets called multiple times on a task,
5395 * in that case do_set_cpus_allowed() will not do the right thing.
5396 *
5397 * And since this is boot we can forgo the serialization.
5398 */
5399 set_cpus_allowed_common(idle, cpumask_of(cpu));
5400#endif
6506cf6c
PZ
5401 /*
5402 * We're having a chicken and egg problem, even though we are
d1ccc66d 5403 * holding rq->lock, the CPU isn't yet set to this CPU so the
6506cf6c
PZ
5404 * lockdep check in task_group() will fail.
5405 *
5406 * Similar case to sched_fork(). / Alternatively we could
5407 * use task_rq_lock() here and obtain the other rq->lock.
5408 *
5409 * Silence PROVE_RCU
5410 */
5411 rcu_read_lock();
dd41f596 5412 __set_task_cpu(idle, cpu);
6506cf6c 5413 rcu_read_unlock();
1da177e4 5414
1da177e4 5415 rq->curr = rq->idle = idle;
da0c1e65 5416 idle->on_rq = TASK_ON_RQ_QUEUED;
de9b8f5d 5417#ifdef CONFIG_SMP
3ca7a440 5418 idle->on_cpu = 1;
4866cde0 5419#endif
25834c73
PZ
5420 raw_spin_unlock(&rq->lock);
5421 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
1da177e4
LT
5422
5423 /* Set the preempt count _outside_ the spinlocks! */
01028747 5424 init_idle_preempt_count(idle, cpu);
55cd5340 5425
dd41f596
IM
5426 /*
5427 * The idle tasks have their own, simple scheduling class:
5428 */
5429 idle->sched_class = &idle_sched_class;
868baf07 5430 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 5431 vtime_init_idle(idle, cpu);
de9b8f5d 5432#ifdef CONFIG_SMP
f1c6f1a7
CE
5433 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5434#endif
19978ca6
IM
5435}
5436
e1d4eeec
NP
5437#ifdef CONFIG_SMP
5438
f82f8042
JL
5439int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5440 const struct cpumask *trial)
5441{
06a76fe0 5442 int ret = 1;
f82f8042 5443
bb2bc55a
MG
5444 if (!cpumask_weight(cur))
5445 return ret;
5446
06a76fe0 5447 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
f82f8042
JL
5448
5449 return ret;
5450}
5451
7f51412a
JL
5452int task_can_attach(struct task_struct *p,
5453 const struct cpumask *cs_cpus_allowed)
5454{
5455 int ret = 0;
5456
5457 /*
5458 * Kthreads which disallow setaffinity shouldn't be moved
d1ccc66d 5459 * to a new cpuset; we don't want to change their CPU
7f51412a
JL
5460 * affinity and isolating such threads by their set of
5461 * allowed nodes is unnecessary. Thus, cpusets are not
5462 * applicable for such threads. This prevents checking for
5463 * success of set_cpus_allowed_ptr() on all attached tasks
5464 * before cpus_allowed may be changed.
5465 */
5466 if (p->flags & PF_NO_SETAFFINITY) {
5467 ret = -EINVAL;
5468 goto out;
5469 }
5470
7f51412a 5471 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
06a76fe0
NP
5472 cs_cpus_allowed))
5473 ret = dl_task_can_attach(p, cs_cpus_allowed);
7f51412a 5474
7f51412a
JL
5475out:
5476 return ret;
5477}
5478
f2cb1360 5479bool sched_smp_initialized __read_mostly;
e26fbffd 5480
e6628d5b
MG
5481#ifdef CONFIG_NUMA_BALANCING
5482/* Migrate current task p to target_cpu */
5483int migrate_task_to(struct task_struct *p, int target_cpu)
5484{
5485 struct migration_arg arg = { p, target_cpu };
5486 int curr_cpu = task_cpu(p);
5487
5488 if (curr_cpu == target_cpu)
5489 return 0;
5490
0c98d344 5491 if (!cpumask_test_cpu(target_cpu, &p->cpus_allowed))
e6628d5b
MG
5492 return -EINVAL;
5493
5494 /* TODO: This is not properly updating schedstats */
5495
286549dc 5496 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
5497 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5498}
0ec8aa00
PZ
5499
5500/*
5501 * Requeue a task on a given node and accurately track the number of NUMA
5502 * tasks on the runqueues
5503 */
5504void sched_setnuma(struct task_struct *p, int nid)
5505{
da0c1e65 5506 bool queued, running;
eb580751
PZ
5507 struct rq_flags rf;
5508 struct rq *rq;
0ec8aa00 5509
eb580751 5510 rq = task_rq_lock(p, &rf);
da0c1e65 5511 queued = task_on_rq_queued(p);
0ec8aa00
PZ
5512 running = task_current(rq, p);
5513
da0c1e65 5514 if (queued)
1de64443 5515 dequeue_task(rq, p, DEQUEUE_SAVE);
0ec8aa00 5516 if (running)
f3cd1c4e 5517 put_prev_task(rq, p);
0ec8aa00
PZ
5518
5519 p->numa_preferred_nid = nid;
0ec8aa00 5520
da0c1e65 5521 if (queued)
7134b3e9 5522 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
a399d233 5523 if (running)
b2bf6c31 5524 set_curr_task(rq, p);
eb580751 5525 task_rq_unlock(rq, p, &rf);
0ec8aa00 5526}
5cc389bc 5527#endif /* CONFIG_NUMA_BALANCING */
f7b4cddc 5528
1da177e4 5529#ifdef CONFIG_HOTPLUG_CPU
054b9108 5530/*
d1ccc66d 5531 * Ensure that the idle task is using init_mm right before its CPU goes
48c5ccae 5532 * offline.
054b9108 5533 */
48c5ccae 5534void idle_task_exit(void)
1da177e4 5535{
48c5ccae 5536 struct mm_struct *mm = current->active_mm;
e76bd8d9 5537
48c5ccae 5538 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 5539
a53efe5f 5540 if (mm != &init_mm) {
252d2a41 5541 switch_mm(mm, &init_mm, current);
3eda69c9 5542 current->active_mm = &init_mm;
a53efe5f
MS
5543 finish_arch_post_lock_switch();
5544 }
48c5ccae 5545 mmdrop(mm);
1da177e4
LT
5546}
5547
5548/*
5d180232
PZ
5549 * Since this CPU is going 'away' for a while, fold any nr_active delta
5550 * we might have. Assumes we're called after migrate_tasks() so that the
d60585c5
TG
5551 * nr_active count is stable. We need to take the teardown thread which
5552 * is calling this into account, so we hand in adjust = 1 to the load
5553 * calculation.
5d180232
PZ
5554 *
5555 * Also see the comment "Global load-average calculations".
1da177e4 5556 */
5d180232 5557static void calc_load_migrate(struct rq *rq)
1da177e4 5558{
d60585c5 5559 long delta = calc_load_fold_active(rq, 1);
5d180232
PZ
5560 if (delta)
5561 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
5562}
5563
3f1d2a31
PZ
5564static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5565{
5566}
5567
5568static const struct sched_class fake_sched_class = {
5569 .put_prev_task = put_prev_task_fake,
5570};
5571
5572static struct task_struct fake_task = {
5573 /*
5574 * Avoid pull_{rt,dl}_task()
5575 */
5576 .prio = MAX_PRIO + 1,
5577 .sched_class = &fake_sched_class,
5578};
5579
48f24c4d 5580/*
48c5ccae
PZ
5581 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5582 * try_to_wake_up()->select_task_rq().
5583 *
5584 * Called with rq->lock held even though we'er in stop_machine() and
5585 * there's no concurrency possible, we hold the required locks anyway
5586 * because of lock validation efforts.
1da177e4 5587 */
8a8c69c3 5588static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
1da177e4 5589{
5e16bbc2 5590 struct rq *rq = dead_rq;
48c5ccae 5591 struct task_struct *next, *stop = rq->stop;
8a8c69c3 5592 struct rq_flags orf = *rf;
48c5ccae 5593 int dest_cpu;
1da177e4
LT
5594
5595 /*
48c5ccae
PZ
5596 * Fudge the rq selection such that the below task selection loop
5597 * doesn't get stuck on the currently eligible stop task.
5598 *
5599 * We're currently inside stop_machine() and the rq is either stuck
5600 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5601 * either way we should never end up calling schedule() until we're
5602 * done here.
1da177e4 5603 */
48c5ccae 5604 rq->stop = NULL;
48f24c4d 5605
77bd3970
FW
5606 /*
5607 * put_prev_task() and pick_next_task() sched
5608 * class method both need to have an up-to-date
5609 * value of rq->clock[_task]
5610 */
5611 update_rq_clock(rq);
5612
5e16bbc2 5613 for (;;) {
48c5ccae
PZ
5614 /*
5615 * There's this thread running, bail when that's the only
d1ccc66d 5616 * remaining thread:
48c5ccae
PZ
5617 */
5618 if (rq->nr_running == 1)
dd41f596 5619 break;
48c5ccae 5620
cbce1a68 5621 /*
d1ccc66d 5622 * pick_next_task() assumes pinned rq->lock:
cbce1a68 5623 */
8a8c69c3 5624 next = pick_next_task(rq, &fake_task, rf);
48c5ccae 5625 BUG_ON(!next);
5b713a3d 5626 put_prev_task(rq, next);
e692ab53 5627
5473e0cc
WL
5628 /*
5629 * Rules for changing task_struct::cpus_allowed are holding
5630 * both pi_lock and rq->lock, such that holding either
5631 * stabilizes the mask.
5632 *
5633 * Drop rq->lock is not quite as disastrous as it usually is
5634 * because !cpu_active at this point, which means load-balance
5635 * will not interfere. Also, stop-machine.
5636 */
8a8c69c3 5637 rq_unlock(rq, rf);
5473e0cc 5638 raw_spin_lock(&next->pi_lock);
8a8c69c3 5639 rq_relock(rq, rf);
5473e0cc
WL
5640
5641 /*
5642 * Since we're inside stop-machine, _nothing_ should have
5643 * changed the task, WARN if weird stuff happened, because in
5644 * that case the above rq->lock drop is a fail too.
5645 */
5646 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5647 raw_spin_unlock(&next->pi_lock);
5648 continue;
5649 }
5650
48c5ccae 5651 /* Find suitable destination for @next, with force if needed. */
5e16bbc2 5652 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
8a8c69c3 5653 rq = __migrate_task(rq, rf, next, dest_cpu);
5e16bbc2 5654 if (rq != dead_rq) {
8a8c69c3 5655 rq_unlock(rq, rf);
5e16bbc2 5656 rq = dead_rq;
8a8c69c3
PZ
5657 *rf = orf;
5658 rq_relock(rq, rf);
5e16bbc2 5659 }
5473e0cc 5660 raw_spin_unlock(&next->pi_lock);
1da177e4 5661 }
dce48a84 5662
48c5ccae 5663 rq->stop = stop;
dce48a84 5664}
1da177e4
LT
5665#endif /* CONFIG_HOTPLUG_CPU */
5666
f2cb1360 5667void set_rq_online(struct rq *rq)
1f11eb6a
GH
5668{
5669 if (!rq->online) {
5670 const struct sched_class *class;
5671
c6c4927b 5672 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5673 rq->online = 1;
5674
5675 for_each_class(class) {
5676 if (class->rq_online)
5677 class->rq_online(rq);
5678 }
5679 }
5680}
5681
f2cb1360 5682void set_rq_offline(struct rq *rq)
1f11eb6a
GH
5683{
5684 if (rq->online) {
5685 const struct sched_class *class;
5686
5687 for_each_class(class) {
5688 if (class->rq_offline)
5689 class->rq_offline(rq);
5690 }
5691
c6c4927b 5692 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5693 rq->online = 0;
5694 }
5695}
5696
9cf7243d 5697static void set_cpu_rq_start_time(unsigned int cpu)
1da177e4 5698{
969c7921 5699 struct rq *rq = cpu_rq(cpu);
1da177e4 5700
a803f026
CM
5701 rq->age_stamp = sched_clock_cpu(cpu);
5702}
5703
d1ccc66d
IM
5704/*
5705 * used to mark begin/end of suspend/resume:
5706 */
5707static int num_cpus_frozen;
d35be8ba 5708
1da177e4 5709/*
3a101d05
TH
5710 * Update cpusets according to cpu_active mask. If cpusets are
5711 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
5712 * around partition_sched_domains().
d35be8ba
SB
5713 *
5714 * If we come here as part of a suspend/resume, don't touch cpusets because we
5715 * want to restore it back to its original state upon resume anyway.
1da177e4 5716 */
40190a78 5717static void cpuset_cpu_active(void)
e761b772 5718{
40190a78 5719 if (cpuhp_tasks_frozen) {
d35be8ba
SB
5720 /*
5721 * num_cpus_frozen tracks how many CPUs are involved in suspend
5722 * resume sequence. As long as this is not the last online
5723 * operation in the resume sequence, just build a single sched
5724 * domain, ignoring cpusets.
5725 */
50e76632
PZ
5726 partition_sched_domains(1, NULL, NULL);
5727 if (--num_cpus_frozen)
135fb3e1 5728 return;
d35be8ba
SB
5729 /*
5730 * This is the last CPU online operation. So fall through and
5731 * restore the original sched domains by considering the
5732 * cpuset configurations.
5733 */
50e76632 5734 cpuset_force_rebuild();
3a101d05 5735 }
30e03acd 5736 cpuset_update_active_cpus();
3a101d05 5737}
e761b772 5738
40190a78 5739static int cpuset_cpu_inactive(unsigned int cpu)
3a101d05 5740{
40190a78 5741 if (!cpuhp_tasks_frozen) {
06a76fe0 5742 if (dl_cpu_busy(cpu))
135fb3e1 5743 return -EBUSY;
30e03acd 5744 cpuset_update_active_cpus();
135fb3e1 5745 } else {
d35be8ba
SB
5746 num_cpus_frozen++;
5747 partition_sched_domains(1, NULL, NULL);
e761b772 5748 }
135fb3e1 5749 return 0;
e761b772 5750}
e761b772 5751
40190a78 5752int sched_cpu_activate(unsigned int cpu)
135fb3e1 5753{
7d976699 5754 struct rq *rq = cpu_rq(cpu);
8a8c69c3 5755 struct rq_flags rf;
7d976699 5756
40190a78 5757 set_cpu_active(cpu, true);
135fb3e1 5758
40190a78 5759 if (sched_smp_initialized) {
135fb3e1 5760 sched_domains_numa_masks_set(cpu);
40190a78 5761 cpuset_cpu_active();
e761b772 5762 }
7d976699
TG
5763
5764 /*
5765 * Put the rq online, if not already. This happens:
5766 *
5767 * 1) In the early boot process, because we build the real domains
d1ccc66d 5768 * after all CPUs have been brought up.
7d976699
TG
5769 *
5770 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
5771 * domains.
5772 */
8a8c69c3 5773 rq_lock_irqsave(rq, &rf);
7d976699
TG
5774 if (rq->rd) {
5775 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5776 set_rq_online(rq);
5777 }
8a8c69c3 5778 rq_unlock_irqrestore(rq, &rf);
7d976699
TG
5779
5780 update_max_interval();
5781
40190a78 5782 return 0;
135fb3e1
TG
5783}
5784
40190a78 5785int sched_cpu_deactivate(unsigned int cpu)
135fb3e1 5786{
135fb3e1
TG
5787 int ret;
5788
40190a78 5789 set_cpu_active(cpu, false);
b2454caa
PZ
5790 /*
5791 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
5792 * users of this state to go away such that all new such users will
5793 * observe it.
5794 *
b2454caa
PZ
5795 * Do sync before park smpboot threads to take care the rcu boost case.
5796 */
d7d34d5e 5797 synchronize_rcu_mult(call_rcu, call_rcu_sched);
40190a78
TG
5798
5799 if (!sched_smp_initialized)
5800 return 0;
5801
5802 ret = cpuset_cpu_inactive(cpu);
5803 if (ret) {
5804 set_cpu_active(cpu, true);
5805 return ret;
135fb3e1 5806 }
40190a78
TG
5807 sched_domains_numa_masks_clear(cpu);
5808 return 0;
135fb3e1
TG
5809}
5810
94baf7a5
TG
5811static void sched_rq_cpu_starting(unsigned int cpu)
5812{
5813 struct rq *rq = cpu_rq(cpu);
5814
5815 rq->calc_load_update = calc_load_update;
94baf7a5
TG
5816 update_max_interval();
5817}
5818
135fb3e1
TG
5819int sched_cpu_starting(unsigned int cpu)
5820{
5821 set_cpu_rq_start_time(cpu);
94baf7a5 5822 sched_rq_cpu_starting(cpu);
d84b3131 5823 sched_tick_start(cpu);
135fb3e1 5824 return 0;
e761b772 5825}
e761b772 5826
f2785ddb
TG
5827#ifdef CONFIG_HOTPLUG_CPU
5828int sched_cpu_dying(unsigned int cpu)
5829{
5830 struct rq *rq = cpu_rq(cpu);
8a8c69c3 5831 struct rq_flags rf;
f2785ddb
TG
5832
5833 /* Handle pending wakeups and then migrate everything off */
5834 sched_ttwu_pending();
d84b3131 5835 sched_tick_stop(cpu);
8a8c69c3
PZ
5836
5837 rq_lock_irqsave(rq, &rf);
f2785ddb
TG
5838 if (rq->rd) {
5839 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5840 set_rq_offline(rq);
5841 }
8a8c69c3 5842 migrate_tasks(rq, &rf);
f2785ddb 5843 BUG_ON(rq->nr_running != 1);
8a8c69c3
PZ
5844 rq_unlock_irqrestore(rq, &rf);
5845
f2785ddb
TG
5846 calc_load_migrate(rq);
5847 update_max_interval();
00357f5e 5848 nohz_balance_exit_idle(rq);
e5ef27d0 5849 hrtick_clear(rq);
f2785ddb
TG
5850 return 0;
5851}
5852#endif
5853
1b568f0a
PZ
5854#ifdef CONFIG_SCHED_SMT
5855DEFINE_STATIC_KEY_FALSE(sched_smt_present);
5856
5857static void sched_init_smt(void)
5858{
5859 /*
5860 * We've enumerated all CPUs and will assume that if any CPU
5861 * has SMT siblings, CPU0 will too.
5862 */
5863 if (cpumask_weight(cpu_smt_mask(0)) > 1)
5864 static_branch_enable(&sched_smt_present);
5865}
5866#else
5867static inline void sched_init_smt(void) { }
5868#endif
5869
1da177e4
LT
5870void __init sched_init_smp(void)
5871{
cb83b629
PZ
5872 sched_init_numa();
5873
6acce3ef
PZ
5874 /*
5875 * There's no userspace yet to cause hotplug operations; hence all the
d1ccc66d 5876 * CPU masks are stable and all blatant races in the below code cannot
6acce3ef
PZ
5877 * happen.
5878 */
712555ee 5879 mutex_lock(&sched_domains_mutex);
8d5dc512 5880 sched_init_domains(cpu_active_mask);
712555ee 5881 mutex_unlock(&sched_domains_mutex);
e761b772 5882
5c1e1767 5883 /* Move init over to a non-isolated CPU */
edb93821 5884 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
5c1e1767 5885 BUG();
19978ca6 5886 sched_init_granularity();
4212823f 5887
0e3900e6 5888 init_sched_rt_class();
1baca4ce 5889 init_sched_dl_class();
1b568f0a
PZ
5890
5891 sched_init_smt();
5892
e26fbffd 5893 sched_smp_initialized = true;
1da177e4 5894}
e26fbffd
TG
5895
5896static int __init migration_init(void)
5897{
94baf7a5 5898 sched_rq_cpu_starting(smp_processor_id());
e26fbffd 5899 return 0;
1da177e4 5900}
e26fbffd
TG
5901early_initcall(migration_init);
5902
1da177e4
LT
5903#else
5904void __init sched_init_smp(void)
5905{
19978ca6 5906 sched_init_granularity();
1da177e4
LT
5907}
5908#endif /* CONFIG_SMP */
5909
5910int in_sched_functions(unsigned long addr)
5911{
1da177e4
LT
5912 return in_lock_functions(addr) ||
5913 (addr >= (unsigned long)__sched_text_start
5914 && addr < (unsigned long)__sched_text_end);
5915}
5916
029632fb 5917#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
5918/*
5919 * Default task group.
5920 * Every task in system belongs to this group at bootup.
5921 */
029632fb 5922struct task_group root_task_group;
35cf4e50 5923LIST_HEAD(task_groups);
b0367629
WL
5924
5925/* Cacheline aligned slab cache for task_group */
5926static struct kmem_cache *task_group_cache __read_mostly;
052f1dc7 5927#endif
6f505b16 5928
e6252c3e 5929DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
10e2f1ac 5930DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
6f505b16 5931
1da177e4
LT
5932void __init sched_init(void)
5933{
dd41f596 5934 int i, j;
434d53b0
MT
5935 unsigned long alloc_size = 0, ptr;
5936
9881b024 5937 sched_clock_init();
5822a454 5938 wait_bit_init();
9dcb8b68 5939
434d53b0
MT
5940#ifdef CONFIG_FAIR_GROUP_SCHED
5941 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5942#endif
5943#ifdef CONFIG_RT_GROUP_SCHED
5944 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5945#endif
434d53b0 5946 if (alloc_size) {
36b7b6d4 5947 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
5948
5949#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 5950 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
5951 ptr += nr_cpu_ids * sizeof(void **);
5952
07e06b01 5953 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 5954 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 5955
6d6bc0ad 5956#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 5957#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 5958 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
5959 ptr += nr_cpu_ids * sizeof(void **);
5960
07e06b01 5961 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
5962 ptr += nr_cpu_ids * sizeof(void **);
5963
6d6bc0ad 5964#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 5965 }
df7c8e84 5966#ifdef CONFIG_CPUMASK_OFFSTACK
b74e6278
AT
5967 for_each_possible_cpu(i) {
5968 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
5969 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
10e2f1ac
PZ
5970 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
5971 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
434d53b0 5972 }
b74e6278 5973#endif /* CONFIG_CPUMASK_OFFSTACK */
dd41f596 5974
d1ccc66d
IM
5975 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
5976 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
332ac17e 5977
57d885fe
GH
5978#ifdef CONFIG_SMP
5979 init_defrootdomain();
5980#endif
5981
d0b27fa7 5982#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 5983 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 5984 global_rt_period(), global_rt_runtime());
6d6bc0ad 5985#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 5986
7c941438 5987#ifdef CONFIG_CGROUP_SCHED
b0367629
WL
5988 task_group_cache = KMEM_CACHE(task_group, 0);
5989
07e06b01
YZ
5990 list_add(&root_task_group.list, &task_groups);
5991 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 5992 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 5993 autogroup_init(&init_task);
7c941438 5994#endif /* CONFIG_CGROUP_SCHED */
6f505b16 5995
0a945022 5996 for_each_possible_cpu(i) {
70b97a7f 5997 struct rq *rq;
1da177e4
LT
5998
5999 rq = cpu_rq(i);
05fa785c 6000 raw_spin_lock_init(&rq->lock);
7897986b 6001 rq->nr_running = 0;
dce48a84
TG
6002 rq->calc_load_active = 0;
6003 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 6004 init_cfs_rq(&rq->cfs);
07c54f7a
AV
6005 init_rt_rq(&rq->rt);
6006 init_dl_rq(&rq->dl);
dd41f596 6007#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 6008 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 6009 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9c2791f9 6010 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
354d60c2 6011 /*
d1ccc66d 6012 * How much CPU bandwidth does root_task_group get?
354d60c2
DG
6013 *
6014 * In case of task-groups formed thr' the cgroup filesystem, it
d1ccc66d
IM
6015 * gets 100% of the CPU resources in the system. This overall
6016 * system CPU resource is divided among the tasks of
07e06b01 6017 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
6018 * based on each entity's (task or task-group's) weight
6019 * (se->load.weight).
6020 *
07e06b01 6021 * In other words, if root_task_group has 10 tasks of weight
354d60c2 6022 * 1024) and two child groups A0 and A1 (of weight 1024 each),
d1ccc66d 6023 * then A0's share of the CPU resource is:
354d60c2 6024 *
0d905bca 6025 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 6026 *
07e06b01
YZ
6027 * We achieve this by letting root_task_group's tasks sit
6028 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 6029 */
ab84d31e 6030 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 6031 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
6032#endif /* CONFIG_FAIR_GROUP_SCHED */
6033
6034 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 6035#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6036 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 6037#endif
1da177e4 6038
dd41f596
IM
6039 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6040 rq->cpu_load[j] = 0;
fdf3e95d 6041
1da177e4 6042#ifdef CONFIG_SMP
41c7ce9a 6043 rq->sd = NULL;
57d885fe 6044 rq->rd = NULL;
ca6d75e6 6045 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
e3fca9e7 6046 rq->balance_callback = NULL;
1da177e4 6047 rq->active_balance = 0;
dd41f596 6048 rq->next_balance = jiffies;
1da177e4 6049 rq->push_cpu = 0;
0a2966b4 6050 rq->cpu = i;
1f11eb6a 6051 rq->online = 0;
eae0c9df
MG
6052 rq->idle_stamp = 0;
6053 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 6054 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
6055
6056 INIT_LIST_HEAD(&rq->cfs_tasks);
6057
dc938520 6058 rq_attach_root(rq, &def_root_domain);
3451d024 6059#ifdef CONFIG_NO_HZ_COMMON
9fd81dd5 6060 rq->last_load_update_tick = jiffies;
e022e0d3 6061 rq->last_blocked_load_update_tick = jiffies;
a22e47a4 6062 atomic_set(&rq->nohz_flags, 0);
83cd4fe2 6063#endif
9fd81dd5 6064#endif /* CONFIG_SMP */
77a021be 6065 hrtick_rq_init(rq);
1da177e4 6066 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
6067 }
6068
9059393e 6069 set_load_weight(&init_task, false);
b50f60ce 6070
1da177e4
LT
6071 /*
6072 * The boot idle thread does lazy MMU switching as well:
6073 */
f1f10076 6074 mmgrab(&init_mm);
1da177e4
LT
6075 enter_lazy_tlb(&init_mm, current);
6076
6077 /*
6078 * Make us the idle thread. Technically, schedule() should not be
6079 * called from this thread, however somewhere below it might be,
6080 * but because we are the idle thread, we just pick up running again
6081 * when this runqueue becomes "idle".
6082 */
6083 init_idle(current, smp_processor_id());
dce48a84
TG
6084
6085 calc_load_update = jiffies + LOAD_FREQ;
6086
bf4d83f6 6087#ifdef CONFIG_SMP
29d5e047 6088 idle_thread_set_boot_cpu();
9cf7243d 6089 set_cpu_rq_start_time(smp_processor_id());
029632fb
PZ
6090#endif
6091 init_sched_fair_class();
6a7b3dc3 6092
4698f88c
JP
6093 init_schedstats();
6094
6892b75e 6095 scheduler_running = 1;
1da177e4
LT
6096}
6097
d902db1e 6098#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
6099static inline int preempt_count_equals(int preempt_offset)
6100{
da7142e2 6101 int nested = preempt_count() + rcu_preempt_depth();
e4aafea2 6102
4ba8216c 6103 return (nested == preempt_offset);
e4aafea2
FW
6104}
6105
d894837f 6106void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6107{
8eb23b9f
PZ
6108 /*
6109 * Blocking primitives will set (and therefore destroy) current->state,
6110 * since we will exit with TASK_RUNNING make sure we enter with it,
6111 * otherwise we will destroy state.
6112 */
00845eb9 6113 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
8eb23b9f
PZ
6114 "do not call blocking ops when !TASK_RUNNING; "
6115 "state=%lx set at [<%p>] %pS\n",
6116 current->state,
6117 (void *)current->task_state_change,
00845eb9 6118 (void *)current->task_state_change);
8eb23b9f 6119
3427445a
PZ
6120 ___might_sleep(file, line, preempt_offset);
6121}
6122EXPORT_SYMBOL(__might_sleep);
6123
6124void ___might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6125{
d1ccc66d
IM
6126 /* Ratelimiting timestamp: */
6127 static unsigned long prev_jiffy;
6128
d1c6d149 6129 unsigned long preempt_disable_ip;
1da177e4 6130
d1ccc66d
IM
6131 /* WARN_ON_ONCE() by default, no rate limit required: */
6132 rcu_sleep_check();
6133
db273be2
TG
6134 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6135 !is_idle_task(current)) ||
1c3c5eab
TG
6136 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
6137 oops_in_progress)
aef745fc 6138 return;
1c3c5eab 6139
aef745fc
IM
6140 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6141 return;
6142 prev_jiffy = jiffies;
6143
d1ccc66d 6144 /* Save this before calling printk(), since that will clobber it: */
d1c6d149
VN
6145 preempt_disable_ip = get_preempt_disable_ip(current);
6146
3df0fc5b
PZ
6147 printk(KERN_ERR
6148 "BUG: sleeping function called from invalid context at %s:%d\n",
6149 file, line);
6150 printk(KERN_ERR
6151 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6152 in_atomic(), irqs_disabled(),
6153 current->pid, current->comm);
aef745fc 6154
a8b686b3
ES
6155 if (task_stack_end_corrupted(current))
6156 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6157
aef745fc
IM
6158 debug_show_held_locks(current);
6159 if (irqs_disabled())
6160 print_irqtrace_events(current);
d1c6d149
VN
6161 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6162 && !preempt_count_equals(preempt_offset)) {
8f47b187 6163 pr_err("Preemption disabled at:");
d1c6d149 6164 print_ip_sym(preempt_disable_ip);
8f47b187
TG
6165 pr_cont("\n");
6166 }
aef745fc 6167 dump_stack();
f0b22e39 6168 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
1da177e4 6169}
3427445a 6170EXPORT_SYMBOL(___might_sleep);
1da177e4
LT
6171#endif
6172
6173#ifdef CONFIG_MAGIC_SYSRQ
dbc7f069 6174void normalize_rt_tasks(void)
3a5e4dc1 6175{
dbc7f069 6176 struct task_struct *g, *p;
d50dde5a
DF
6177 struct sched_attr attr = {
6178 .sched_policy = SCHED_NORMAL,
6179 };
1da177e4 6180
3472eaa1 6181 read_lock(&tasklist_lock);
5d07f420 6182 for_each_process_thread(g, p) {
178be793
IM
6183 /*
6184 * Only normalize user tasks:
6185 */
3472eaa1 6186 if (p->flags & PF_KTHREAD)
178be793
IM
6187 continue;
6188
4fa8d299
JP
6189 p->se.exec_start = 0;
6190 schedstat_set(p->se.statistics.wait_start, 0);
6191 schedstat_set(p->se.statistics.sleep_start, 0);
6192 schedstat_set(p->se.statistics.block_start, 0);
dd41f596 6193
aab03e05 6194 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
6195 /*
6196 * Renice negative nice level userspace
6197 * tasks back to 0:
6198 */
3472eaa1 6199 if (task_nice(p) < 0)
dd41f596 6200 set_user_nice(p, 0);
1da177e4 6201 continue;
dd41f596 6202 }
1da177e4 6203
dbc7f069 6204 __sched_setscheduler(p, &attr, false, false);
5d07f420 6205 }
3472eaa1 6206 read_unlock(&tasklist_lock);
1da177e4
LT
6207}
6208
6209#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 6210
67fc4e0c 6211#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 6212/*
67fc4e0c 6213 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
6214 *
6215 * They can only be called when the whole system has been
6216 * stopped - every CPU needs to be quiescent, and no scheduling
6217 * activity can take place. Using them for anything else would
6218 * be a serious bug, and as a result, they aren't even visible
6219 * under any other configuration.
6220 */
6221
6222/**
d1ccc66d 6223 * curr_task - return the current task for a given CPU.
1df5c10a
LT
6224 * @cpu: the processor in question.
6225 *
6226 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
6227 *
6228 * Return: The current task for @cpu.
1df5c10a 6229 */
36c8b586 6230struct task_struct *curr_task(int cpu)
1df5c10a
LT
6231{
6232 return cpu_curr(cpu);
6233}
6234
67fc4e0c
JW
6235#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6236
6237#ifdef CONFIG_IA64
1df5c10a 6238/**
d1ccc66d 6239 * set_curr_task - set the current task for a given CPU.
1df5c10a
LT
6240 * @cpu: the processor in question.
6241 * @p: the task pointer to set.
6242 *
6243 * Description: This function must only be used when non-maskable interrupts
41a2d6cf 6244 * are serviced on a separate stack. It allows the architecture to switch the
d1ccc66d 6245 * notion of the current task on a CPU in a non-blocking manner. This function
1df5c10a
LT
6246 * must be called with all CPU's synchronized, and interrupts disabled, the
6247 * and caller must save the original value of the current task (see
6248 * curr_task() above) and restore that value before reenabling interrupts and
6249 * re-starting the system.
6250 *
6251 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6252 */
a458ae2e 6253void ia64_set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
6254{
6255 cpu_curr(cpu) = p;
6256}
6257
6258#endif
29f59db3 6259
7c941438 6260#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
6261/* task_group_lock serializes the addition/removal of task groups */
6262static DEFINE_SPINLOCK(task_group_lock);
6263
2f5177f0 6264static void sched_free_group(struct task_group *tg)
bccbe08a
PZ
6265{
6266 free_fair_sched_group(tg);
6267 free_rt_sched_group(tg);
e9aa1dd1 6268 autogroup_free(tg);
b0367629 6269 kmem_cache_free(task_group_cache, tg);
bccbe08a
PZ
6270}
6271
6272/* allocate runqueue etc for a new task group */
ec7dc8ac 6273struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
6274{
6275 struct task_group *tg;
bccbe08a 6276
b0367629 6277 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
bccbe08a
PZ
6278 if (!tg)
6279 return ERR_PTR(-ENOMEM);
6280
ec7dc8ac 6281 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
6282 goto err;
6283
ec7dc8ac 6284 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
6285 goto err;
6286
ace783b9
LZ
6287 return tg;
6288
6289err:
2f5177f0 6290 sched_free_group(tg);
ace783b9
LZ
6291 return ERR_PTR(-ENOMEM);
6292}
6293
6294void sched_online_group(struct task_group *tg, struct task_group *parent)
6295{
6296 unsigned long flags;
6297
8ed36996 6298 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 6299 list_add_rcu(&tg->list, &task_groups);
f473aa5e 6300
d1ccc66d
IM
6301 /* Root should already exist: */
6302 WARN_ON(!parent);
f473aa5e
PZ
6303
6304 tg->parent = parent;
f473aa5e 6305 INIT_LIST_HEAD(&tg->children);
09f2724a 6306 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 6307 spin_unlock_irqrestore(&task_group_lock, flags);
8663e24d
PZ
6308
6309 online_fair_sched_group(tg);
29f59db3
SV
6310}
6311
9b5b7751 6312/* rcu callback to free various structures associated with a task group */
2f5177f0 6313static void sched_free_group_rcu(struct rcu_head *rhp)
29f59db3 6314{
d1ccc66d 6315 /* Now it should be safe to free those cfs_rqs: */
2f5177f0 6316 sched_free_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
6317}
6318
4cf86d77 6319void sched_destroy_group(struct task_group *tg)
ace783b9 6320{
d1ccc66d 6321 /* Wait for possible concurrent references to cfs_rqs complete: */
2f5177f0 6322 call_rcu(&tg->rcu, sched_free_group_rcu);
ace783b9
LZ
6323}
6324
6325void sched_offline_group(struct task_group *tg)
29f59db3 6326{
8ed36996 6327 unsigned long flags;
29f59db3 6328
d1ccc66d 6329 /* End participation in shares distribution: */
6fe1f348 6330 unregister_fair_sched_group(tg);
3d4b47b4
PZ
6331
6332 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 6333 list_del_rcu(&tg->list);
f473aa5e 6334 list_del_rcu(&tg->siblings);
8ed36996 6335 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
6336}
6337
ea86cb4b 6338static void sched_change_group(struct task_struct *tsk, int type)
29f59db3 6339{
8323f26c 6340 struct task_group *tg;
29f59db3 6341
f7b8a47d
KT
6342 /*
6343 * All callers are synchronized by task_rq_lock(); we do not use RCU
6344 * which is pointless here. Thus, we pass "true" to task_css_check()
6345 * to prevent lockdep warnings.
6346 */
6347 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
6348 struct task_group, css);
6349 tg = autogroup_task_group(tsk, tg);
6350 tsk->sched_task_group = tg;
6351
810b3817 6352#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
6353 if (tsk->sched_class->task_change_group)
6354 tsk->sched_class->task_change_group(tsk, type);
b2b5ce02 6355 else
810b3817 6356#endif
b2b5ce02 6357 set_task_rq(tsk, task_cpu(tsk));
ea86cb4b
VG
6358}
6359
6360/*
6361 * Change task's runqueue when it moves between groups.
6362 *
6363 * The caller of this function should have put the task in its new group by
6364 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
6365 * its new group.
6366 */
6367void sched_move_task(struct task_struct *tsk)
6368{
7a57f32a
PZ
6369 int queued, running, queue_flags =
6370 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
ea86cb4b
VG
6371 struct rq_flags rf;
6372 struct rq *rq;
6373
6374 rq = task_rq_lock(tsk, &rf);
1b1d6225 6375 update_rq_clock(rq);
ea86cb4b
VG
6376
6377 running = task_current(rq, tsk);
6378 queued = task_on_rq_queued(tsk);
6379
6380 if (queued)
7a57f32a 6381 dequeue_task(rq, tsk, queue_flags);
bb3bac2c 6382 if (running)
ea86cb4b
VG
6383 put_prev_task(rq, tsk);
6384
6385 sched_change_group(tsk, TASK_MOVE_GROUP);
810b3817 6386
da0c1e65 6387 if (queued)
7a57f32a 6388 enqueue_task(rq, tsk, queue_flags);
bb3bac2c 6389 if (running)
b2bf6c31 6390 set_curr_task(rq, tsk);
29f59db3 6391
eb580751 6392 task_rq_unlock(rq, tsk, &rf);
29f59db3 6393}
68318b8e 6394
a7c6d554 6395static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 6396{
a7c6d554 6397 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
6398}
6399
eb95419b
TH
6400static struct cgroup_subsys_state *
6401cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 6402{
eb95419b
TH
6403 struct task_group *parent = css_tg(parent_css);
6404 struct task_group *tg;
68318b8e 6405
eb95419b 6406 if (!parent) {
68318b8e 6407 /* This is early initialization for the top cgroup */
07e06b01 6408 return &root_task_group.css;
68318b8e
SV
6409 }
6410
ec7dc8ac 6411 tg = sched_create_group(parent);
68318b8e
SV
6412 if (IS_ERR(tg))
6413 return ERR_PTR(-ENOMEM);
6414
68318b8e
SV
6415 return &tg->css;
6416}
6417
96b77745
KK
6418/* Expose task group only after completing cgroup initialization */
6419static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
6420{
6421 struct task_group *tg = css_tg(css);
6422 struct task_group *parent = css_tg(css->parent);
6423
6424 if (parent)
6425 sched_online_group(tg, parent);
6426 return 0;
6427}
6428
2f5177f0 6429static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
ace783b9 6430{
eb95419b 6431 struct task_group *tg = css_tg(css);
ace783b9 6432
2f5177f0 6433 sched_offline_group(tg);
ace783b9
LZ
6434}
6435
eb95419b 6436static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 6437{
eb95419b 6438 struct task_group *tg = css_tg(css);
68318b8e 6439
2f5177f0
PZ
6440 /*
6441 * Relies on the RCU grace period between css_released() and this.
6442 */
6443 sched_free_group(tg);
ace783b9
LZ
6444}
6445
ea86cb4b
VG
6446/*
6447 * This is called before wake_up_new_task(), therefore we really only
6448 * have to set its group bits, all the other stuff does not apply.
6449 */
b53202e6 6450static void cpu_cgroup_fork(struct task_struct *task)
eeb61e53 6451{
ea86cb4b
VG
6452 struct rq_flags rf;
6453 struct rq *rq;
6454
6455 rq = task_rq_lock(task, &rf);
6456
80f5c1b8 6457 update_rq_clock(rq);
ea86cb4b
VG
6458 sched_change_group(task, TASK_SET_GROUP);
6459
6460 task_rq_unlock(rq, task, &rf);
eeb61e53
KT
6461}
6462
1f7dd3e5 6463static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
68318b8e 6464{
bb9d97b6 6465 struct task_struct *task;
1f7dd3e5 6466 struct cgroup_subsys_state *css;
7dc603c9 6467 int ret = 0;
bb9d97b6 6468
1f7dd3e5 6469 cgroup_taskset_for_each(task, css, tset) {
b68aa230 6470#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 6471 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 6472 return -EINVAL;
b68aa230 6473#else
bb9d97b6
TH
6474 /* We don't support RT-tasks being in separate groups */
6475 if (task->sched_class != &fair_sched_class)
6476 return -EINVAL;
b68aa230 6477#endif
7dc603c9
PZ
6478 /*
6479 * Serialize against wake_up_new_task() such that if its
6480 * running, we're sure to observe its full state.
6481 */
6482 raw_spin_lock_irq(&task->pi_lock);
6483 /*
6484 * Avoid calling sched_move_task() before wake_up_new_task()
6485 * has happened. This would lead to problems with PELT, due to
6486 * move wanting to detach+attach while we're not attached yet.
6487 */
6488 if (task->state == TASK_NEW)
6489 ret = -EINVAL;
6490 raw_spin_unlock_irq(&task->pi_lock);
6491
6492 if (ret)
6493 break;
bb9d97b6 6494 }
7dc603c9 6495 return ret;
be367d09 6496}
68318b8e 6497
1f7dd3e5 6498static void cpu_cgroup_attach(struct cgroup_taskset *tset)
68318b8e 6499{
bb9d97b6 6500 struct task_struct *task;
1f7dd3e5 6501 struct cgroup_subsys_state *css;
bb9d97b6 6502
1f7dd3e5 6503 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 6504 sched_move_task(task);
68318b8e
SV
6505}
6506
052f1dc7 6507#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
6508static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
6509 struct cftype *cftype, u64 shareval)
68318b8e 6510{
182446d0 6511 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
6512}
6513
182446d0
TH
6514static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
6515 struct cftype *cft)
68318b8e 6516{
182446d0 6517 struct task_group *tg = css_tg(css);
68318b8e 6518
c8b28116 6519 return (u64) scale_load_down(tg->shares);
68318b8e 6520}
ab84d31e
PT
6521
6522#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
6523static DEFINE_MUTEX(cfs_constraints_mutex);
6524
ab84d31e
PT
6525const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
6526const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
6527
a790de99
PT
6528static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
6529
ab84d31e
PT
6530static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
6531{
56f570e5 6532 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 6533 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
6534
6535 if (tg == &root_task_group)
6536 return -EINVAL;
6537
6538 /*
6539 * Ensure we have at some amount of bandwidth every period. This is
6540 * to prevent reaching a state of large arrears when throttled via
6541 * entity_tick() resulting in prolonged exit starvation.
6542 */
6543 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
6544 return -EINVAL;
6545
6546 /*
6547 * Likewise, bound things on the otherside by preventing insane quota
6548 * periods. This also allows us to normalize in computing quota
6549 * feasibility.
6550 */
6551 if (period > max_cfs_quota_period)
6552 return -EINVAL;
6553
0e59bdae
KT
6554 /*
6555 * Prevent race between setting of cfs_rq->runtime_enabled and
6556 * unthrottle_offline_cfs_rqs().
6557 */
6558 get_online_cpus();
a790de99
PT
6559 mutex_lock(&cfs_constraints_mutex);
6560 ret = __cfs_schedulable(tg, period, quota);
6561 if (ret)
6562 goto out_unlock;
6563
58088ad0 6564 runtime_enabled = quota != RUNTIME_INF;
56f570e5 6565 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
6566 /*
6567 * If we need to toggle cfs_bandwidth_used, off->on must occur
6568 * before making related changes, and on->off must occur afterwards
6569 */
6570 if (runtime_enabled && !runtime_was_enabled)
6571 cfs_bandwidth_usage_inc();
ab84d31e
PT
6572 raw_spin_lock_irq(&cfs_b->lock);
6573 cfs_b->period = ns_to_ktime(period);
6574 cfs_b->quota = quota;
58088ad0 6575
a9cf55b2 6576 __refill_cfs_bandwidth_runtime(cfs_b);
d1ccc66d
IM
6577
6578 /* Restart the period timer (if active) to handle new period expiry: */
77a4d1a1
PZ
6579 if (runtime_enabled)
6580 start_cfs_bandwidth(cfs_b);
d1ccc66d 6581
ab84d31e
PT
6582 raw_spin_unlock_irq(&cfs_b->lock);
6583
0e59bdae 6584 for_each_online_cpu(i) {
ab84d31e 6585 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 6586 struct rq *rq = cfs_rq->rq;
8a8c69c3 6587 struct rq_flags rf;
ab84d31e 6588
8a8c69c3 6589 rq_lock_irq(rq, &rf);
58088ad0 6590 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 6591 cfs_rq->runtime_remaining = 0;
671fd9da 6592
029632fb 6593 if (cfs_rq->throttled)
671fd9da 6594 unthrottle_cfs_rq(cfs_rq);
8a8c69c3 6595 rq_unlock_irq(rq, &rf);
ab84d31e 6596 }
1ee14e6c
BS
6597 if (runtime_was_enabled && !runtime_enabled)
6598 cfs_bandwidth_usage_dec();
a790de99
PT
6599out_unlock:
6600 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 6601 put_online_cpus();
ab84d31e 6602
a790de99 6603 return ret;
ab84d31e
PT
6604}
6605
6606int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
6607{
6608 u64 quota, period;
6609
029632fb 6610 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
6611 if (cfs_quota_us < 0)
6612 quota = RUNTIME_INF;
6613 else
6614 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
6615
6616 return tg_set_cfs_bandwidth(tg, period, quota);
6617}
6618
6619long tg_get_cfs_quota(struct task_group *tg)
6620{
6621 u64 quota_us;
6622
029632fb 6623 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
6624 return -1;
6625
029632fb 6626 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
6627 do_div(quota_us, NSEC_PER_USEC);
6628
6629 return quota_us;
6630}
6631
6632int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
6633{
6634 u64 quota, period;
6635
6636 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 6637 quota = tg->cfs_bandwidth.quota;
ab84d31e 6638
ab84d31e
PT
6639 return tg_set_cfs_bandwidth(tg, period, quota);
6640}
6641
6642long tg_get_cfs_period(struct task_group *tg)
6643{
6644 u64 cfs_period_us;
6645
029632fb 6646 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
6647 do_div(cfs_period_us, NSEC_PER_USEC);
6648
6649 return cfs_period_us;
6650}
6651
182446d0
TH
6652static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
6653 struct cftype *cft)
ab84d31e 6654{
182446d0 6655 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
6656}
6657
182446d0
TH
6658static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
6659 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 6660{
182446d0 6661 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
6662}
6663
182446d0
TH
6664static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
6665 struct cftype *cft)
ab84d31e 6666{
182446d0 6667 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
6668}
6669
182446d0
TH
6670static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
6671 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 6672{
182446d0 6673 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
6674}
6675
a790de99
PT
6676struct cfs_schedulable_data {
6677 struct task_group *tg;
6678 u64 period, quota;
6679};
6680
6681/*
6682 * normalize group quota/period to be quota/max_period
6683 * note: units are usecs
6684 */
6685static u64 normalize_cfs_quota(struct task_group *tg,
6686 struct cfs_schedulable_data *d)
6687{
6688 u64 quota, period;
6689
6690 if (tg == d->tg) {
6691 period = d->period;
6692 quota = d->quota;
6693 } else {
6694 period = tg_get_cfs_period(tg);
6695 quota = tg_get_cfs_quota(tg);
6696 }
6697
6698 /* note: these should typically be equivalent */
6699 if (quota == RUNTIME_INF || quota == -1)
6700 return RUNTIME_INF;
6701
6702 return to_ratio(period, quota);
6703}
6704
6705static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
6706{
6707 struct cfs_schedulable_data *d = data;
029632fb 6708 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
6709 s64 quota = 0, parent_quota = -1;
6710
6711 if (!tg->parent) {
6712 quota = RUNTIME_INF;
6713 } else {
029632fb 6714 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
6715
6716 quota = normalize_cfs_quota(tg, d);
9c58c79a 6717 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
6718
6719 /*
c53593e5
TH
6720 * Ensure max(child_quota) <= parent_quota. On cgroup2,
6721 * always take the min. On cgroup1, only inherit when no
d1ccc66d 6722 * limit is set:
a790de99 6723 */
c53593e5
TH
6724 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
6725 quota = min(quota, parent_quota);
6726 } else {
6727 if (quota == RUNTIME_INF)
6728 quota = parent_quota;
6729 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
6730 return -EINVAL;
6731 }
a790de99 6732 }
9c58c79a 6733 cfs_b->hierarchical_quota = quota;
a790de99
PT
6734
6735 return 0;
6736}
6737
6738static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
6739{
8277434e 6740 int ret;
a790de99
PT
6741 struct cfs_schedulable_data data = {
6742 .tg = tg,
6743 .period = period,
6744 .quota = quota,
6745 };
6746
6747 if (quota != RUNTIME_INF) {
6748 do_div(data.period, NSEC_PER_USEC);
6749 do_div(data.quota, NSEC_PER_USEC);
6750 }
6751
8277434e
PT
6752 rcu_read_lock();
6753 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
6754 rcu_read_unlock();
6755
6756 return ret;
a790de99 6757}
e8da1b18 6758
a1f7164c 6759static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
e8da1b18 6760{
2da8ca82 6761 struct task_group *tg = css_tg(seq_css(sf));
029632fb 6762 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 6763
44ffc75b
TH
6764 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
6765 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
6766 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
6767
6768 return 0;
6769}
ab84d31e 6770#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 6771#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 6772
052f1dc7 6773#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
6774static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
6775 struct cftype *cft, s64 val)
6f505b16 6776{
182446d0 6777 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
6778}
6779
182446d0
TH
6780static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
6781 struct cftype *cft)
6f505b16 6782{
182446d0 6783 return sched_group_rt_runtime(css_tg(css));
6f505b16 6784}
d0b27fa7 6785
182446d0
TH
6786static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
6787 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 6788{
182446d0 6789 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
6790}
6791
182446d0
TH
6792static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
6793 struct cftype *cft)
d0b27fa7 6794{
182446d0 6795 return sched_group_rt_period(css_tg(css));
d0b27fa7 6796}
6d6bc0ad 6797#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 6798
a1f7164c 6799static struct cftype cpu_legacy_files[] = {
052f1dc7 6800#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
6801 {
6802 .name = "shares",
f4c753b7
PM
6803 .read_u64 = cpu_shares_read_u64,
6804 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 6805 },
052f1dc7 6806#endif
ab84d31e
PT
6807#ifdef CONFIG_CFS_BANDWIDTH
6808 {
6809 .name = "cfs_quota_us",
6810 .read_s64 = cpu_cfs_quota_read_s64,
6811 .write_s64 = cpu_cfs_quota_write_s64,
6812 },
6813 {
6814 .name = "cfs_period_us",
6815 .read_u64 = cpu_cfs_period_read_u64,
6816 .write_u64 = cpu_cfs_period_write_u64,
6817 },
e8da1b18
NR
6818 {
6819 .name = "stat",
a1f7164c 6820 .seq_show = cpu_cfs_stat_show,
e8da1b18 6821 },
ab84d31e 6822#endif
052f1dc7 6823#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 6824 {
9f0c1e56 6825 .name = "rt_runtime_us",
06ecb27c
PM
6826 .read_s64 = cpu_rt_runtime_read,
6827 .write_s64 = cpu_rt_runtime_write,
6f505b16 6828 },
d0b27fa7
PZ
6829 {
6830 .name = "rt_period_us",
f4c753b7
PM
6831 .read_u64 = cpu_rt_period_read_uint,
6832 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 6833 },
052f1dc7 6834#endif
d1ccc66d 6835 { } /* Terminate */
68318b8e
SV
6836};
6837
d41bf8c9
TH
6838static int cpu_extra_stat_show(struct seq_file *sf,
6839 struct cgroup_subsys_state *css)
0d593634 6840{
0d593634
TH
6841#ifdef CONFIG_CFS_BANDWIDTH
6842 {
d41bf8c9 6843 struct task_group *tg = css_tg(css);
0d593634
TH
6844 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6845 u64 throttled_usec;
6846
6847 throttled_usec = cfs_b->throttled_time;
6848 do_div(throttled_usec, NSEC_PER_USEC);
6849
6850 seq_printf(sf, "nr_periods %d\n"
6851 "nr_throttled %d\n"
6852 "throttled_usec %llu\n",
6853 cfs_b->nr_periods, cfs_b->nr_throttled,
6854 throttled_usec);
6855 }
6856#endif
6857 return 0;
6858}
6859
6860#ifdef CONFIG_FAIR_GROUP_SCHED
6861static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
6862 struct cftype *cft)
6863{
6864 struct task_group *tg = css_tg(css);
6865 u64 weight = scale_load_down(tg->shares);
6866
6867 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
6868}
6869
6870static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
6871 struct cftype *cft, u64 weight)
6872{
6873 /*
6874 * cgroup weight knobs should use the common MIN, DFL and MAX
6875 * values which are 1, 100 and 10000 respectively. While it loses
6876 * a bit of range on both ends, it maps pretty well onto the shares
6877 * value used by scheduler and the round-trip conversions preserve
6878 * the original value over the entire range.
6879 */
6880 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
6881 return -ERANGE;
6882
6883 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
6884
6885 return sched_group_set_shares(css_tg(css), scale_load(weight));
6886}
6887
6888static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
6889 struct cftype *cft)
6890{
6891 unsigned long weight = scale_load_down(css_tg(css)->shares);
6892 int last_delta = INT_MAX;
6893 int prio, delta;
6894
6895 /* find the closest nice value to the current weight */
6896 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
6897 delta = abs(sched_prio_to_weight[prio] - weight);
6898 if (delta >= last_delta)
6899 break;
6900 last_delta = delta;
6901 }
6902
6903 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
6904}
6905
6906static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
6907 struct cftype *cft, s64 nice)
6908{
6909 unsigned long weight;
7281c8de 6910 int idx;
0d593634
TH
6911
6912 if (nice < MIN_NICE || nice > MAX_NICE)
6913 return -ERANGE;
6914
7281c8de
PZ
6915 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
6916 idx = array_index_nospec(idx, 40);
6917 weight = sched_prio_to_weight[idx];
6918
0d593634
TH
6919 return sched_group_set_shares(css_tg(css), scale_load(weight));
6920}
6921#endif
6922
6923static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
6924 long period, long quota)
6925{
6926 if (quota < 0)
6927 seq_puts(sf, "max");
6928 else
6929 seq_printf(sf, "%ld", quota);
6930
6931 seq_printf(sf, " %ld\n", period);
6932}
6933
6934/* caller should put the current value in *@periodp before calling */
6935static int __maybe_unused cpu_period_quota_parse(char *buf,
6936 u64 *periodp, u64 *quotap)
6937{
6938 char tok[21]; /* U64_MAX */
6939
6940 if (!sscanf(buf, "%s %llu", tok, periodp))
6941 return -EINVAL;
6942
6943 *periodp *= NSEC_PER_USEC;
6944
6945 if (sscanf(tok, "%llu", quotap))
6946 *quotap *= NSEC_PER_USEC;
6947 else if (!strcmp(tok, "max"))
6948 *quotap = RUNTIME_INF;
6949 else
6950 return -EINVAL;
6951
6952 return 0;
6953}
6954
6955#ifdef CONFIG_CFS_BANDWIDTH
6956static int cpu_max_show(struct seq_file *sf, void *v)
6957{
6958 struct task_group *tg = css_tg(seq_css(sf));
6959
6960 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
6961 return 0;
6962}
6963
6964static ssize_t cpu_max_write(struct kernfs_open_file *of,
6965 char *buf, size_t nbytes, loff_t off)
6966{
6967 struct task_group *tg = css_tg(of_css(of));
6968 u64 period = tg_get_cfs_period(tg);
6969 u64 quota;
6970 int ret;
6971
6972 ret = cpu_period_quota_parse(buf, &period, &quota);
6973 if (!ret)
6974 ret = tg_set_cfs_bandwidth(tg, period, quota);
6975 return ret ?: nbytes;
6976}
6977#endif
6978
6979static struct cftype cpu_files[] = {
0d593634
TH
6980#ifdef CONFIG_FAIR_GROUP_SCHED
6981 {
6982 .name = "weight",
6983 .flags = CFTYPE_NOT_ON_ROOT,
6984 .read_u64 = cpu_weight_read_u64,
6985 .write_u64 = cpu_weight_write_u64,
6986 },
6987 {
6988 .name = "weight.nice",
6989 .flags = CFTYPE_NOT_ON_ROOT,
6990 .read_s64 = cpu_weight_nice_read_s64,
6991 .write_s64 = cpu_weight_nice_write_s64,
6992 },
6993#endif
6994#ifdef CONFIG_CFS_BANDWIDTH
6995 {
6996 .name = "max",
6997 .flags = CFTYPE_NOT_ON_ROOT,
6998 .seq_show = cpu_max_show,
6999 .write = cpu_max_write,
7000 },
7001#endif
7002 { } /* terminate */
7003};
7004
073219e9 7005struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748 7006 .css_alloc = cpu_cgroup_css_alloc,
96b77745 7007 .css_online = cpu_cgroup_css_online,
2f5177f0 7008 .css_released = cpu_cgroup_css_released,
92fb9748 7009 .css_free = cpu_cgroup_css_free,
d41bf8c9 7010 .css_extra_stat_show = cpu_extra_stat_show,
eeb61e53 7011 .fork = cpu_cgroup_fork,
bb9d97b6
TH
7012 .can_attach = cpu_cgroup_can_attach,
7013 .attach = cpu_cgroup_attach,
a1f7164c 7014 .legacy_cftypes = cpu_legacy_files,
0d593634 7015 .dfl_cftypes = cpu_files,
b38e42e9 7016 .early_init = true,
0d593634 7017 .threaded = true,
68318b8e
SV
7018};
7019
052f1dc7 7020#endif /* CONFIG_CGROUP_SCHED */
d842de87 7021
b637a328
PM
7022void dump_cpu_task(int cpu)
7023{
7024 pr_info("Task dump for CPU %d:\n", cpu);
7025 sched_show_task(cpu_curr(cpu));
7026}
ed82b8a1
AK
7027
7028/*
7029 * Nice levels are multiplicative, with a gentle 10% change for every
7030 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
7031 * nice 1, it will get ~10% less CPU time than another CPU-bound task
7032 * that remained on nice 0.
7033 *
7034 * The "10% effect" is relative and cumulative: from _any_ nice level,
7035 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
7036 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
7037 * If a task goes up by ~10% and another task goes down by ~10% then
7038 * the relative distance between them is ~25%.)
7039 */
7040const int sched_prio_to_weight[40] = {
7041 /* -20 */ 88761, 71755, 56483, 46273, 36291,
7042 /* -15 */ 29154, 23254, 18705, 14949, 11916,
7043 /* -10 */ 9548, 7620, 6100, 4904, 3906,
7044 /* -5 */ 3121, 2501, 1991, 1586, 1277,
7045 /* 0 */ 1024, 820, 655, 526, 423,
7046 /* 5 */ 335, 272, 215, 172, 137,
7047 /* 10 */ 110, 87, 70, 56, 45,
7048 /* 15 */ 36, 29, 23, 18, 15,
7049};
7050
7051/*
7052 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
7053 *
7054 * In cases where the weight does not change often, we can use the
7055 * precalculated inverse to speed up arithmetics by turning divisions
7056 * into multiplications:
7057 */
7058const u32 sched_prio_to_wmult[40] = {
7059 /* -20 */ 48388, 59856, 76040, 92818, 118348,
7060 /* -15 */ 147320, 184698, 229616, 287308, 360437,
7061 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
7062 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
7063 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
7064 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
7065 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
7066 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
7067};
14a7405b
IM
7068
7069#undef CREATE_TRACE_POINTS