]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/sched/core.c
sched,dl: Fix sched class hopping CBS hole
[mirror_ubuntu-artful-kernel.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
91d1aa43 75#include <linux/context_tracking.h>
52f5684c 76#include <linux/compiler.h>
1da177e4 77
96f951ed 78#include <asm/switch_to.h>
5517d86b 79#include <asm/tlb.h>
838225b4 80#include <asm/irq_regs.h>
db7e527d 81#include <asm/mutex.h>
e6e6685a
GC
82#ifdef CONFIG_PARAVIRT
83#include <asm/paravirt.h>
84#endif
1da177e4 85
029632fb 86#include "sched.h"
ea138446 87#include "../workqueue_internal.h"
29d5e047 88#include "../smpboot.h"
6e0534f2 89
a8d154b0 90#define CREATE_TRACE_POINTS
ad8d75ff 91#include <trace/events/sched.h>
a8d154b0 92
029632fb
PZ
93DEFINE_MUTEX(sched_domains_mutex);
94DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 95
fe44d621 96static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 97
029632fb 98void update_rq_clock(struct rq *rq)
3e51f33f 99{
fe44d621 100 s64 delta;
305e6835 101
9edfbfed
PZ
102 lockdep_assert_held(&rq->lock);
103
104 if (rq->clock_skip_update & RQCF_ACT_SKIP)
f26f9aff 105 return;
aa483808 106
fe44d621 107 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
4036ac15
MG
108 if (delta < 0)
109 return;
fe44d621
PZ
110 rq->clock += delta;
111 update_rq_clock_task(rq, delta);
3e51f33f
PZ
112}
113
bf5c91ba
IM
114/*
115 * Debugging: various feature bits
116 */
f00b45c1 117
f00b45c1
PZ
118#define SCHED_FEAT(name, enabled) \
119 (1UL << __SCHED_FEAT_##name) * enabled |
120
bf5c91ba 121const_debug unsigned int sysctl_sched_features =
391e43da 122#include "features.h"
f00b45c1
PZ
123 0;
124
125#undef SCHED_FEAT
126
127#ifdef CONFIG_SCHED_DEBUG
128#define SCHED_FEAT(name, enabled) \
129 #name ,
130
1292531f 131static const char * const sched_feat_names[] = {
391e43da 132#include "features.h"
f00b45c1
PZ
133};
134
135#undef SCHED_FEAT
136
34f3a814 137static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 138{
f00b45c1
PZ
139 int i;
140
f8b6d1cc 141 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
142 if (!(sysctl_sched_features & (1UL << i)))
143 seq_puts(m, "NO_");
144 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 145 }
34f3a814 146 seq_puts(m, "\n");
f00b45c1 147
34f3a814 148 return 0;
f00b45c1
PZ
149}
150
f8b6d1cc
PZ
151#ifdef HAVE_JUMP_LABEL
152
c5905afb
IM
153#define jump_label_key__true STATIC_KEY_INIT_TRUE
154#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
155
156#define SCHED_FEAT(name, enabled) \
157 jump_label_key__##enabled ,
158
c5905afb 159struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
160#include "features.h"
161};
162
163#undef SCHED_FEAT
164
165static void sched_feat_disable(int i)
166{
c5905afb
IM
167 if (static_key_enabled(&sched_feat_keys[i]))
168 static_key_slow_dec(&sched_feat_keys[i]);
f8b6d1cc
PZ
169}
170
171static void sched_feat_enable(int i)
172{
c5905afb
IM
173 if (!static_key_enabled(&sched_feat_keys[i]))
174 static_key_slow_inc(&sched_feat_keys[i]);
f8b6d1cc
PZ
175}
176#else
177static void sched_feat_disable(int i) { };
178static void sched_feat_enable(int i) { };
179#endif /* HAVE_JUMP_LABEL */
180
1a687c2e 181static int sched_feat_set(char *cmp)
f00b45c1 182{
f00b45c1 183 int i;
1a687c2e 184 int neg = 0;
f00b45c1 185
524429c3 186 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
187 neg = 1;
188 cmp += 3;
189 }
190
f8b6d1cc 191 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 192 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 193 if (neg) {
f00b45c1 194 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
195 sched_feat_disable(i);
196 } else {
f00b45c1 197 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
198 sched_feat_enable(i);
199 }
f00b45c1
PZ
200 break;
201 }
202 }
203
1a687c2e
MG
204 return i;
205}
206
207static ssize_t
208sched_feat_write(struct file *filp, const char __user *ubuf,
209 size_t cnt, loff_t *ppos)
210{
211 char buf[64];
212 char *cmp;
213 int i;
5cd08fbf 214 struct inode *inode;
1a687c2e
MG
215
216 if (cnt > 63)
217 cnt = 63;
218
219 if (copy_from_user(&buf, ubuf, cnt))
220 return -EFAULT;
221
222 buf[cnt] = 0;
223 cmp = strstrip(buf);
224
5cd08fbf
JB
225 /* Ensure the static_key remains in a consistent state */
226 inode = file_inode(filp);
227 mutex_lock(&inode->i_mutex);
1a687c2e 228 i = sched_feat_set(cmp);
5cd08fbf 229 mutex_unlock(&inode->i_mutex);
f8b6d1cc 230 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
231 return -EINVAL;
232
42994724 233 *ppos += cnt;
f00b45c1
PZ
234
235 return cnt;
236}
237
34f3a814
LZ
238static int sched_feat_open(struct inode *inode, struct file *filp)
239{
240 return single_open(filp, sched_feat_show, NULL);
241}
242
828c0950 243static const struct file_operations sched_feat_fops = {
34f3a814
LZ
244 .open = sched_feat_open,
245 .write = sched_feat_write,
246 .read = seq_read,
247 .llseek = seq_lseek,
248 .release = single_release,
f00b45c1
PZ
249};
250
251static __init int sched_init_debug(void)
252{
f00b45c1
PZ
253 debugfs_create_file("sched_features", 0644, NULL, NULL,
254 &sched_feat_fops);
255
256 return 0;
257}
258late_initcall(sched_init_debug);
f8b6d1cc 259#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 260
b82d9fdd
PZ
261/*
262 * Number of tasks to iterate in a single balance run.
263 * Limited because this is done with IRQs disabled.
264 */
265const_debug unsigned int sysctl_sched_nr_migrate = 32;
266
e9e9250b
PZ
267/*
268 * period over which we average the RT time consumption, measured
269 * in ms.
270 *
271 * default: 1s
272 */
273const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
274
fa85ae24 275/*
9f0c1e56 276 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
277 * default: 1s
278 */
9f0c1e56 279unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 280
029632fb 281__read_mostly int scheduler_running;
6892b75e 282
9f0c1e56
PZ
283/*
284 * part of the period that we allow rt tasks to run in us.
285 * default: 0.95s
286 */
287int sysctl_sched_rt_runtime = 950000;
fa85ae24 288
3fa0818b
RR
289/* cpus with isolated domains */
290cpumask_var_t cpu_isolated_map;
291
1da177e4 292/*
cc2a73b5 293 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 294 */
a9957449 295static struct rq *this_rq_lock(void)
1da177e4
LT
296 __acquires(rq->lock)
297{
70b97a7f 298 struct rq *rq;
1da177e4
LT
299
300 local_irq_disable();
301 rq = this_rq();
05fa785c 302 raw_spin_lock(&rq->lock);
1da177e4
LT
303
304 return rq;
305}
306
8f4d37ec
PZ
307#ifdef CONFIG_SCHED_HRTICK
308/*
309 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 310 */
8f4d37ec 311
8f4d37ec
PZ
312static void hrtick_clear(struct rq *rq)
313{
314 if (hrtimer_active(&rq->hrtick_timer))
315 hrtimer_cancel(&rq->hrtick_timer);
316}
317
8f4d37ec
PZ
318/*
319 * High-resolution timer tick.
320 * Runs from hardirq context with interrupts disabled.
321 */
322static enum hrtimer_restart hrtick(struct hrtimer *timer)
323{
324 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
325
326 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
327
05fa785c 328 raw_spin_lock(&rq->lock);
3e51f33f 329 update_rq_clock(rq);
8f4d37ec 330 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 331 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
332
333 return HRTIMER_NORESTART;
334}
335
95e904c7 336#ifdef CONFIG_SMP
971ee28c 337
4961b6e1 338static void __hrtick_restart(struct rq *rq)
971ee28c
PZ
339{
340 struct hrtimer *timer = &rq->hrtick_timer;
971ee28c 341
4961b6e1 342 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
971ee28c
PZ
343}
344
31656519
PZ
345/*
346 * called from hardirq (IPI) context
347 */
348static void __hrtick_start(void *arg)
b328ca18 349{
31656519 350 struct rq *rq = arg;
b328ca18 351
05fa785c 352 raw_spin_lock(&rq->lock);
971ee28c 353 __hrtick_restart(rq);
31656519 354 rq->hrtick_csd_pending = 0;
05fa785c 355 raw_spin_unlock(&rq->lock);
b328ca18
PZ
356}
357
31656519
PZ
358/*
359 * Called to set the hrtick timer state.
360 *
361 * called with rq->lock held and irqs disabled
362 */
029632fb 363void hrtick_start(struct rq *rq, u64 delay)
b328ca18 364{
31656519 365 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 366 ktime_t time;
367 s64 delta;
368
369 /*
370 * Don't schedule slices shorter than 10000ns, that just
371 * doesn't make sense and can cause timer DoS.
372 */
373 delta = max_t(s64, delay, 10000LL);
374 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 375
cc584b21 376 hrtimer_set_expires(timer, time);
31656519
PZ
377
378 if (rq == this_rq()) {
971ee28c 379 __hrtick_restart(rq);
31656519 380 } else if (!rq->hrtick_csd_pending) {
c46fff2a 381 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
382 rq->hrtick_csd_pending = 1;
383 }
b328ca18
PZ
384}
385
386static int
387hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
388{
389 int cpu = (int)(long)hcpu;
390
391 switch (action) {
392 case CPU_UP_CANCELED:
393 case CPU_UP_CANCELED_FROZEN:
394 case CPU_DOWN_PREPARE:
395 case CPU_DOWN_PREPARE_FROZEN:
396 case CPU_DEAD:
397 case CPU_DEAD_FROZEN:
31656519 398 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
399 return NOTIFY_OK;
400 }
401
402 return NOTIFY_DONE;
403}
404
fa748203 405static __init void init_hrtick(void)
b328ca18
PZ
406{
407 hotcpu_notifier(hotplug_hrtick, 0);
408}
31656519
PZ
409#else
410/*
411 * Called to set the hrtick timer state.
412 *
413 * called with rq->lock held and irqs disabled
414 */
029632fb 415void hrtick_start(struct rq *rq, u64 delay)
31656519 416{
86893335
WL
417 /*
418 * Don't schedule slices shorter than 10000ns, that just
419 * doesn't make sense. Rely on vruntime for fairness.
420 */
421 delay = max_t(u64, delay, 10000LL);
4961b6e1
TG
422 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
423 HRTIMER_MODE_REL_PINNED);
31656519 424}
b328ca18 425
006c75f1 426static inline void init_hrtick(void)
8f4d37ec 427{
8f4d37ec 428}
31656519 429#endif /* CONFIG_SMP */
8f4d37ec 430
31656519 431static void init_rq_hrtick(struct rq *rq)
8f4d37ec 432{
31656519
PZ
433#ifdef CONFIG_SMP
434 rq->hrtick_csd_pending = 0;
8f4d37ec 435
31656519
PZ
436 rq->hrtick_csd.flags = 0;
437 rq->hrtick_csd.func = __hrtick_start;
438 rq->hrtick_csd.info = rq;
439#endif
8f4d37ec 440
31656519
PZ
441 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
442 rq->hrtick_timer.function = hrtick;
8f4d37ec 443}
006c75f1 444#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
445static inline void hrtick_clear(struct rq *rq)
446{
447}
448
8f4d37ec
PZ
449static inline void init_rq_hrtick(struct rq *rq)
450{
451}
452
b328ca18
PZ
453static inline void init_hrtick(void)
454{
455}
006c75f1 456#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 457
fd99f91a
PZ
458/*
459 * cmpxchg based fetch_or, macro so it works for different integer types
460 */
461#define fetch_or(ptr, val) \
462({ typeof(*(ptr)) __old, __val = *(ptr); \
463 for (;;) { \
464 __old = cmpxchg((ptr), __val, __val | (val)); \
465 if (__old == __val) \
466 break; \
467 __val = __old; \
468 } \
469 __old; \
470})
471
e3baac47 472#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
473/*
474 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
475 * this avoids any races wrt polling state changes and thereby avoids
476 * spurious IPIs.
477 */
478static bool set_nr_and_not_polling(struct task_struct *p)
479{
480 struct thread_info *ti = task_thread_info(p);
481 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
482}
e3baac47
PZ
483
484/*
485 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
486 *
487 * If this returns true, then the idle task promises to call
488 * sched_ttwu_pending() and reschedule soon.
489 */
490static bool set_nr_if_polling(struct task_struct *p)
491{
492 struct thread_info *ti = task_thread_info(p);
316c1608 493 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
e3baac47
PZ
494
495 for (;;) {
496 if (!(val & _TIF_POLLING_NRFLAG))
497 return false;
498 if (val & _TIF_NEED_RESCHED)
499 return true;
500 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
501 if (old == val)
502 break;
503 val = old;
504 }
505 return true;
506}
507
fd99f91a
PZ
508#else
509static bool set_nr_and_not_polling(struct task_struct *p)
510{
511 set_tsk_need_resched(p);
512 return true;
513}
e3baac47
PZ
514
515#ifdef CONFIG_SMP
516static bool set_nr_if_polling(struct task_struct *p)
517{
518 return false;
519}
520#endif
fd99f91a
PZ
521#endif
522
76751049
PZ
523void wake_q_add(struct wake_q_head *head, struct task_struct *task)
524{
525 struct wake_q_node *node = &task->wake_q;
526
527 /*
528 * Atomically grab the task, if ->wake_q is !nil already it means
529 * its already queued (either by us or someone else) and will get the
530 * wakeup due to that.
531 *
532 * This cmpxchg() implies a full barrier, which pairs with the write
533 * barrier implied by the wakeup in wake_up_list().
534 */
535 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
536 return;
537
538 get_task_struct(task);
539
540 /*
541 * The head is context local, there can be no concurrency.
542 */
543 *head->lastp = node;
544 head->lastp = &node->next;
545}
546
547void wake_up_q(struct wake_q_head *head)
548{
549 struct wake_q_node *node = head->first;
550
551 while (node != WAKE_Q_TAIL) {
552 struct task_struct *task;
553
554 task = container_of(node, struct task_struct, wake_q);
555 BUG_ON(!task);
556 /* task can safely be re-inserted now */
557 node = node->next;
558 task->wake_q.next = NULL;
559
560 /*
561 * wake_up_process() implies a wmb() to pair with the queueing
562 * in wake_q_add() so as not to miss wakeups.
563 */
564 wake_up_process(task);
565 put_task_struct(task);
566 }
567}
568
c24d20db 569/*
8875125e 570 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
571 *
572 * On UP this means the setting of the need_resched flag, on SMP it
573 * might also involve a cross-CPU call to trigger the scheduler on
574 * the target CPU.
575 */
8875125e 576void resched_curr(struct rq *rq)
c24d20db 577{
8875125e 578 struct task_struct *curr = rq->curr;
c24d20db
IM
579 int cpu;
580
8875125e 581 lockdep_assert_held(&rq->lock);
c24d20db 582
8875125e 583 if (test_tsk_need_resched(curr))
c24d20db
IM
584 return;
585
8875125e 586 cpu = cpu_of(rq);
fd99f91a 587
f27dde8d 588 if (cpu == smp_processor_id()) {
8875125e 589 set_tsk_need_resched(curr);
f27dde8d 590 set_preempt_need_resched();
c24d20db 591 return;
f27dde8d 592 }
c24d20db 593
8875125e 594 if (set_nr_and_not_polling(curr))
c24d20db 595 smp_send_reschedule(cpu);
dfc68f29
AL
596 else
597 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
598}
599
029632fb 600void resched_cpu(int cpu)
c24d20db
IM
601{
602 struct rq *rq = cpu_rq(cpu);
603 unsigned long flags;
604
05fa785c 605 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db 606 return;
8875125e 607 resched_curr(rq);
05fa785c 608 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 609}
06d8308c 610
b021fe3e 611#ifdef CONFIG_SMP
3451d024 612#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
613/*
614 * In the semi idle case, use the nearest busy cpu for migrating timers
615 * from an idle cpu. This is good for power-savings.
616 *
617 * We don't do similar optimization for completely idle system, as
618 * selecting an idle cpu will add more delays to the timers than intended
619 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
620 */
6201b4d6 621int get_nohz_timer_target(int pinned)
83cd4fe2
VP
622{
623 int cpu = smp_processor_id();
624 int i;
625 struct sched_domain *sd;
626
6201b4d6
VK
627 if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
628 return cpu;
629
057f3fad 630 rcu_read_lock();
83cd4fe2 631 for_each_domain(cpu, sd) {
057f3fad
PZ
632 for_each_cpu(i, sched_domain_span(sd)) {
633 if (!idle_cpu(i)) {
634 cpu = i;
635 goto unlock;
636 }
637 }
83cd4fe2 638 }
057f3fad
PZ
639unlock:
640 rcu_read_unlock();
83cd4fe2
VP
641 return cpu;
642}
06d8308c
TG
643/*
644 * When add_timer_on() enqueues a timer into the timer wheel of an
645 * idle CPU then this timer might expire before the next timer event
646 * which is scheduled to wake up that CPU. In case of a completely
647 * idle system the next event might even be infinite time into the
648 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
649 * leaves the inner idle loop so the newly added timer is taken into
650 * account when the CPU goes back to idle and evaluates the timer
651 * wheel for the next timer event.
652 */
1c20091e 653static void wake_up_idle_cpu(int cpu)
06d8308c
TG
654{
655 struct rq *rq = cpu_rq(cpu);
656
657 if (cpu == smp_processor_id())
658 return;
659
67b9ca70 660 if (set_nr_and_not_polling(rq->idle))
06d8308c 661 smp_send_reschedule(cpu);
dfc68f29
AL
662 else
663 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
664}
665
c5bfece2 666static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 667{
53c5fa16
FW
668 /*
669 * We just need the target to call irq_exit() and re-evaluate
670 * the next tick. The nohz full kick at least implies that.
671 * If needed we can still optimize that later with an
672 * empty IRQ.
673 */
c5bfece2 674 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
675 if (cpu != smp_processor_id() ||
676 tick_nohz_tick_stopped())
53c5fa16 677 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
678 return true;
679 }
680
681 return false;
682}
683
684void wake_up_nohz_cpu(int cpu)
685{
c5bfece2 686 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
687 wake_up_idle_cpu(cpu);
688}
689
ca38062e 690static inline bool got_nohz_idle_kick(void)
45bf76df 691{
1c792db7 692 int cpu = smp_processor_id();
873b4c65
VG
693
694 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
695 return false;
696
697 if (idle_cpu(cpu) && !need_resched())
698 return true;
699
700 /*
701 * We can't run Idle Load Balance on this CPU for this time so we
702 * cancel it and clear NOHZ_BALANCE_KICK
703 */
704 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
705 return false;
45bf76df
IM
706}
707
3451d024 708#else /* CONFIG_NO_HZ_COMMON */
45bf76df 709
ca38062e 710static inline bool got_nohz_idle_kick(void)
2069dd75 711{
ca38062e 712 return false;
2069dd75
PZ
713}
714
3451d024 715#endif /* CONFIG_NO_HZ_COMMON */
d842de87 716
ce831b38
FW
717#ifdef CONFIG_NO_HZ_FULL
718bool sched_can_stop_tick(void)
719{
1e78cdbd
RR
720 /*
721 * FIFO realtime policy runs the highest priority task. Other runnable
722 * tasks are of a lower priority. The scheduler tick does nothing.
723 */
724 if (current->policy == SCHED_FIFO)
725 return true;
726
727 /*
728 * Round-robin realtime tasks time slice with other tasks at the same
729 * realtime priority. Is this task the only one at this priority?
730 */
731 if (current->policy == SCHED_RR) {
732 struct sched_rt_entity *rt_se = &current->rt;
733
734 return rt_se->run_list.prev == rt_se->run_list.next;
735 }
736
3882ec64
FW
737 /*
738 * More than one running task need preemption.
739 * nr_running update is assumed to be visible
740 * after IPI is sent from wakers.
741 */
541b8264
VK
742 if (this_rq()->nr_running > 1)
743 return false;
ce831b38 744
541b8264 745 return true;
ce831b38
FW
746}
747#endif /* CONFIG_NO_HZ_FULL */
d842de87 748
029632fb 749void sched_avg_update(struct rq *rq)
18d95a28 750{
e9e9250b
PZ
751 s64 period = sched_avg_period();
752
78becc27 753 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
754 /*
755 * Inline assembly required to prevent the compiler
756 * optimising this loop into a divmod call.
757 * See __iter_div_u64_rem() for another example of this.
758 */
759 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
760 rq->age_stamp += period;
761 rq->rt_avg /= 2;
762 }
18d95a28
PZ
763}
764
6d6bc0ad 765#endif /* CONFIG_SMP */
18d95a28 766
a790de99
PT
767#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
768 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 769/*
8277434e
PT
770 * Iterate task_group tree rooted at *from, calling @down when first entering a
771 * node and @up when leaving it for the final time.
772 *
773 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 774 */
029632fb 775int walk_tg_tree_from(struct task_group *from,
8277434e 776 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
777{
778 struct task_group *parent, *child;
eb755805 779 int ret;
c09595f6 780
8277434e
PT
781 parent = from;
782
c09595f6 783down:
eb755805
PZ
784 ret = (*down)(parent, data);
785 if (ret)
8277434e 786 goto out;
c09595f6
PZ
787 list_for_each_entry_rcu(child, &parent->children, siblings) {
788 parent = child;
789 goto down;
790
791up:
792 continue;
793 }
eb755805 794 ret = (*up)(parent, data);
8277434e
PT
795 if (ret || parent == from)
796 goto out;
c09595f6
PZ
797
798 child = parent;
799 parent = parent->parent;
800 if (parent)
801 goto up;
8277434e 802out:
eb755805 803 return ret;
c09595f6
PZ
804}
805
029632fb 806int tg_nop(struct task_group *tg, void *data)
eb755805 807{
e2b245f8 808 return 0;
eb755805 809}
18d95a28
PZ
810#endif
811
45bf76df
IM
812static void set_load_weight(struct task_struct *p)
813{
f05998d4
NR
814 int prio = p->static_prio - MAX_RT_PRIO;
815 struct load_weight *load = &p->se.load;
816
dd41f596
IM
817 /*
818 * SCHED_IDLE tasks get minimal weight:
819 */
820 if (p->policy == SCHED_IDLE) {
c8b28116 821 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 822 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
823 return;
824 }
71f8bd46 825
c8b28116 826 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 827 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
828}
829
371fd7e7 830static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 831{
a64692a3 832 update_rq_clock(rq);
43148951 833 sched_info_queued(rq, p);
371fd7e7 834 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
835}
836
371fd7e7 837static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 838{
a64692a3 839 update_rq_clock(rq);
43148951 840 sched_info_dequeued(rq, p);
371fd7e7 841 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
842}
843
029632fb 844void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
845{
846 if (task_contributes_to_load(p))
847 rq->nr_uninterruptible--;
848
371fd7e7 849 enqueue_task(rq, p, flags);
1e3c88bd
PZ
850}
851
029632fb 852void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
853{
854 if (task_contributes_to_load(p))
855 rq->nr_uninterruptible++;
856
371fd7e7 857 dequeue_task(rq, p, flags);
1e3c88bd
PZ
858}
859
fe44d621 860static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 861{
095c0aa8
GC
862/*
863 * In theory, the compile should just see 0 here, and optimize out the call
864 * to sched_rt_avg_update. But I don't trust it...
865 */
866#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
867 s64 steal = 0, irq_delta = 0;
868#endif
869#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 870 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
871
872 /*
873 * Since irq_time is only updated on {soft,}irq_exit, we might run into
874 * this case when a previous update_rq_clock() happened inside a
875 * {soft,}irq region.
876 *
877 * When this happens, we stop ->clock_task and only update the
878 * prev_irq_time stamp to account for the part that fit, so that a next
879 * update will consume the rest. This ensures ->clock_task is
880 * monotonic.
881 *
882 * It does however cause some slight miss-attribution of {soft,}irq
883 * time, a more accurate solution would be to update the irq_time using
884 * the current rq->clock timestamp, except that would require using
885 * atomic ops.
886 */
887 if (irq_delta > delta)
888 irq_delta = delta;
889
890 rq->prev_irq_time += irq_delta;
891 delta -= irq_delta;
095c0aa8
GC
892#endif
893#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 894 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
895 steal = paravirt_steal_clock(cpu_of(rq));
896 steal -= rq->prev_steal_time_rq;
897
898 if (unlikely(steal > delta))
899 steal = delta;
900
095c0aa8 901 rq->prev_steal_time_rq += steal;
095c0aa8
GC
902 delta -= steal;
903 }
904#endif
905
fe44d621
PZ
906 rq->clock_task += delta;
907
095c0aa8 908#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
5d4dfddd 909 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
095c0aa8
GC
910 sched_rt_avg_update(rq, irq_delta + steal);
911#endif
aa483808
VP
912}
913
34f971f6
PZ
914void sched_set_stop_task(int cpu, struct task_struct *stop)
915{
916 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
917 struct task_struct *old_stop = cpu_rq(cpu)->stop;
918
919 if (stop) {
920 /*
921 * Make it appear like a SCHED_FIFO task, its something
922 * userspace knows about and won't get confused about.
923 *
924 * Also, it will make PI more or less work without too
925 * much confusion -- but then, stop work should not
926 * rely on PI working anyway.
927 */
928 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
929
930 stop->sched_class = &stop_sched_class;
931 }
932
933 cpu_rq(cpu)->stop = stop;
934
935 if (old_stop) {
936 /*
937 * Reset it back to a normal scheduling class so that
938 * it can die in pieces.
939 */
940 old_stop->sched_class = &rt_sched_class;
941 }
942}
943
14531189 944/*
dd41f596 945 * __normal_prio - return the priority that is based on the static prio
14531189 946 */
14531189
IM
947static inline int __normal_prio(struct task_struct *p)
948{
dd41f596 949 return p->static_prio;
14531189
IM
950}
951
b29739f9
IM
952/*
953 * Calculate the expected normal priority: i.e. priority
954 * without taking RT-inheritance into account. Might be
955 * boosted by interactivity modifiers. Changes upon fork,
956 * setprio syscalls, and whenever the interactivity
957 * estimator recalculates.
958 */
36c8b586 959static inline int normal_prio(struct task_struct *p)
b29739f9
IM
960{
961 int prio;
962
aab03e05
DF
963 if (task_has_dl_policy(p))
964 prio = MAX_DL_PRIO-1;
965 else if (task_has_rt_policy(p))
b29739f9
IM
966 prio = MAX_RT_PRIO-1 - p->rt_priority;
967 else
968 prio = __normal_prio(p);
969 return prio;
970}
971
972/*
973 * Calculate the current priority, i.e. the priority
974 * taken into account by the scheduler. This value might
975 * be boosted by RT tasks, or might be boosted by
976 * interactivity modifiers. Will be RT if the task got
977 * RT-boosted. If not then it returns p->normal_prio.
978 */
36c8b586 979static int effective_prio(struct task_struct *p)
b29739f9
IM
980{
981 p->normal_prio = normal_prio(p);
982 /*
983 * If we are RT tasks or we were boosted to RT priority,
984 * keep the priority unchanged. Otherwise, update priority
985 * to the normal priority:
986 */
987 if (!rt_prio(p->prio))
988 return p->normal_prio;
989 return p->prio;
990}
991
1da177e4
LT
992/**
993 * task_curr - is this task currently executing on a CPU?
994 * @p: the task in question.
e69f6186
YB
995 *
996 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 997 */
36c8b586 998inline int task_curr(const struct task_struct *p)
1da177e4
LT
999{
1000 return cpu_curr(task_cpu(p)) == p;
1001}
1002
67dfa1b7 1003/*
4c9a4bc8
PZ
1004 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1005 * use the balance_callback list if you want balancing.
1006 *
1007 * this means any call to check_class_changed() must be followed by a call to
1008 * balance_callback().
67dfa1b7 1009 */
cb469845
SR
1010static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1011 const struct sched_class *prev_class,
da7a735e 1012 int oldprio)
cb469845
SR
1013{
1014 if (prev_class != p->sched_class) {
1015 if (prev_class->switched_from)
da7a735e 1016 prev_class->switched_from(rq, p);
4c9a4bc8 1017
da7a735e 1018 p->sched_class->switched_to(rq, p);
2d3d891d 1019 } else if (oldprio != p->prio || dl_task(p))
da7a735e 1020 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
1021}
1022
029632fb 1023void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
1024{
1025 const struct sched_class *class;
1026
1027 if (p->sched_class == rq->curr->sched_class) {
1028 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1029 } else {
1030 for_each_class(class) {
1031 if (class == rq->curr->sched_class)
1032 break;
1033 if (class == p->sched_class) {
8875125e 1034 resched_curr(rq);
1e5a7405
PZ
1035 break;
1036 }
1037 }
1038 }
1039
1040 /*
1041 * A queue event has occurred, and we're going to schedule. In
1042 * this case, we can save a useless back to back clock update.
1043 */
da0c1e65 1044 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
9edfbfed 1045 rq_clock_skip_update(rq, true);
1e5a7405
PZ
1046}
1047
1da177e4 1048#ifdef CONFIG_SMP
dd41f596 1049void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1050{
e2912009
PZ
1051#ifdef CONFIG_SCHED_DEBUG
1052 /*
1053 * We should never call set_task_cpu() on a blocked task,
1054 * ttwu() will sort out the placement.
1055 */
077614ee 1056 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
e2336f6e 1057 !p->on_rq);
0122ec5b
PZ
1058
1059#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1060 /*
1061 * The caller should hold either p->pi_lock or rq->lock, when changing
1062 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1063 *
1064 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1065 * see task_group().
6c6c54e1
PZ
1066 *
1067 * Furthermore, all task_rq users should acquire both locks, see
1068 * task_rq_lock().
1069 */
0122ec5b
PZ
1070 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1071 lockdep_is_held(&task_rq(p)->lock)));
1072#endif
e2912009
PZ
1073#endif
1074
de1d7286 1075 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1076
0c69774e 1077 if (task_cpu(p) != new_cpu) {
0a74bef8
PT
1078 if (p->sched_class->migrate_task_rq)
1079 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 1080 p->se.nr_migrations++;
86038c5e 1081 perf_sw_event_sched(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 0);
0c69774e 1082 }
dd41f596
IM
1083
1084 __set_task_cpu(p, new_cpu);
c65cc870
IM
1085}
1086
ac66f547
PZ
1087static void __migrate_swap_task(struct task_struct *p, int cpu)
1088{
da0c1e65 1089 if (task_on_rq_queued(p)) {
ac66f547
PZ
1090 struct rq *src_rq, *dst_rq;
1091
1092 src_rq = task_rq(p);
1093 dst_rq = cpu_rq(cpu);
1094
1095 deactivate_task(src_rq, p, 0);
1096 set_task_cpu(p, cpu);
1097 activate_task(dst_rq, p, 0);
1098 check_preempt_curr(dst_rq, p, 0);
1099 } else {
1100 /*
1101 * Task isn't running anymore; make it appear like we migrated
1102 * it before it went to sleep. This means on wakeup we make the
1103 * previous cpu our targer instead of where it really is.
1104 */
1105 p->wake_cpu = cpu;
1106 }
1107}
1108
1109struct migration_swap_arg {
1110 struct task_struct *src_task, *dst_task;
1111 int src_cpu, dst_cpu;
1112};
1113
1114static int migrate_swap_stop(void *data)
1115{
1116 struct migration_swap_arg *arg = data;
1117 struct rq *src_rq, *dst_rq;
1118 int ret = -EAGAIN;
1119
1120 src_rq = cpu_rq(arg->src_cpu);
1121 dst_rq = cpu_rq(arg->dst_cpu);
1122
74602315
PZ
1123 double_raw_lock(&arg->src_task->pi_lock,
1124 &arg->dst_task->pi_lock);
ac66f547
PZ
1125 double_rq_lock(src_rq, dst_rq);
1126 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1127 goto unlock;
1128
1129 if (task_cpu(arg->src_task) != arg->src_cpu)
1130 goto unlock;
1131
1132 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1133 goto unlock;
1134
1135 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1136 goto unlock;
1137
1138 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1139 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1140
1141 ret = 0;
1142
1143unlock:
1144 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1145 raw_spin_unlock(&arg->dst_task->pi_lock);
1146 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1147
1148 return ret;
1149}
1150
1151/*
1152 * Cross migrate two tasks
1153 */
1154int migrate_swap(struct task_struct *cur, struct task_struct *p)
1155{
1156 struct migration_swap_arg arg;
1157 int ret = -EINVAL;
1158
ac66f547
PZ
1159 arg = (struct migration_swap_arg){
1160 .src_task = cur,
1161 .src_cpu = task_cpu(cur),
1162 .dst_task = p,
1163 .dst_cpu = task_cpu(p),
1164 };
1165
1166 if (arg.src_cpu == arg.dst_cpu)
1167 goto out;
1168
6acce3ef
PZ
1169 /*
1170 * These three tests are all lockless; this is OK since all of them
1171 * will be re-checked with proper locks held further down the line.
1172 */
ac66f547
PZ
1173 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1174 goto out;
1175
1176 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1177 goto out;
1178
1179 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1180 goto out;
1181
286549dc 1182 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1183 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1184
1185out:
ac66f547
PZ
1186 return ret;
1187}
1188
969c7921 1189struct migration_arg {
36c8b586 1190 struct task_struct *task;
1da177e4 1191 int dest_cpu;
70b97a7f 1192};
1da177e4 1193
969c7921
TH
1194static int migration_cpu_stop(void *data);
1195
1da177e4
LT
1196/*
1197 * wait_task_inactive - wait for a thread to unschedule.
1198 *
85ba2d86
RM
1199 * If @match_state is nonzero, it's the @p->state value just checked and
1200 * not expected to change. If it changes, i.e. @p might have woken up,
1201 * then return zero. When we succeed in waiting for @p to be off its CPU,
1202 * we return a positive number (its total switch count). If a second call
1203 * a short while later returns the same number, the caller can be sure that
1204 * @p has remained unscheduled the whole time.
1205 *
1da177e4
LT
1206 * The caller must ensure that the task *will* unschedule sometime soon,
1207 * else this function might spin for a *long* time. This function can't
1208 * be called with interrupts off, or it may introduce deadlock with
1209 * smp_call_function() if an IPI is sent by the same process we are
1210 * waiting to become inactive.
1211 */
85ba2d86 1212unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1213{
1214 unsigned long flags;
da0c1e65 1215 int running, queued;
85ba2d86 1216 unsigned long ncsw;
70b97a7f 1217 struct rq *rq;
1da177e4 1218
3a5c359a
AK
1219 for (;;) {
1220 /*
1221 * We do the initial early heuristics without holding
1222 * any task-queue locks at all. We'll only try to get
1223 * the runqueue lock when things look like they will
1224 * work out!
1225 */
1226 rq = task_rq(p);
fa490cfd 1227
3a5c359a
AK
1228 /*
1229 * If the task is actively running on another CPU
1230 * still, just relax and busy-wait without holding
1231 * any locks.
1232 *
1233 * NOTE! Since we don't hold any locks, it's not
1234 * even sure that "rq" stays as the right runqueue!
1235 * But we don't care, since "task_running()" will
1236 * return false if the runqueue has changed and p
1237 * is actually now running somewhere else!
1238 */
85ba2d86
RM
1239 while (task_running(rq, p)) {
1240 if (match_state && unlikely(p->state != match_state))
1241 return 0;
3a5c359a 1242 cpu_relax();
85ba2d86 1243 }
fa490cfd 1244
3a5c359a
AK
1245 /*
1246 * Ok, time to look more closely! We need the rq
1247 * lock now, to be *sure*. If we're wrong, we'll
1248 * just go back and repeat.
1249 */
1250 rq = task_rq_lock(p, &flags);
27a9da65 1251 trace_sched_wait_task(p);
3a5c359a 1252 running = task_running(rq, p);
da0c1e65 1253 queued = task_on_rq_queued(p);
85ba2d86 1254 ncsw = 0;
f31e11d8 1255 if (!match_state || p->state == match_state)
93dcf55f 1256 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1257 task_rq_unlock(rq, p, &flags);
fa490cfd 1258
85ba2d86
RM
1259 /*
1260 * If it changed from the expected state, bail out now.
1261 */
1262 if (unlikely(!ncsw))
1263 break;
1264
3a5c359a
AK
1265 /*
1266 * Was it really running after all now that we
1267 * checked with the proper locks actually held?
1268 *
1269 * Oops. Go back and try again..
1270 */
1271 if (unlikely(running)) {
1272 cpu_relax();
1273 continue;
1274 }
fa490cfd 1275
3a5c359a
AK
1276 /*
1277 * It's not enough that it's not actively running,
1278 * it must be off the runqueue _entirely_, and not
1279 * preempted!
1280 *
80dd99b3 1281 * So if it was still runnable (but just not actively
3a5c359a
AK
1282 * running right now), it's preempted, and we should
1283 * yield - it could be a while.
1284 */
da0c1e65 1285 if (unlikely(queued)) {
8eb90c30
TG
1286 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1287
1288 set_current_state(TASK_UNINTERRUPTIBLE);
1289 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1290 continue;
1291 }
fa490cfd 1292
3a5c359a
AK
1293 /*
1294 * Ahh, all good. It wasn't running, and it wasn't
1295 * runnable, which means that it will never become
1296 * running in the future either. We're all done!
1297 */
1298 break;
1299 }
85ba2d86
RM
1300
1301 return ncsw;
1da177e4
LT
1302}
1303
1304/***
1305 * kick_process - kick a running thread to enter/exit the kernel
1306 * @p: the to-be-kicked thread
1307 *
1308 * Cause a process which is running on another CPU to enter
1309 * kernel-mode, without any delay. (to get signals handled.)
1310 *
25985edc 1311 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1312 * because all it wants to ensure is that the remote task enters
1313 * the kernel. If the IPI races and the task has been migrated
1314 * to another CPU then no harm is done and the purpose has been
1315 * achieved as well.
1316 */
36c8b586 1317void kick_process(struct task_struct *p)
1da177e4
LT
1318{
1319 int cpu;
1320
1321 preempt_disable();
1322 cpu = task_cpu(p);
1323 if ((cpu != smp_processor_id()) && task_curr(p))
1324 smp_send_reschedule(cpu);
1325 preempt_enable();
1326}
b43e3521 1327EXPORT_SYMBOL_GPL(kick_process);
476d139c 1328#endif /* CONFIG_SMP */
1da177e4 1329
970b13ba 1330#ifdef CONFIG_SMP
30da688e 1331/*
013fdb80 1332 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1333 */
5da9a0fb
PZ
1334static int select_fallback_rq(int cpu, struct task_struct *p)
1335{
aa00d89c
TC
1336 int nid = cpu_to_node(cpu);
1337 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1338 enum { cpuset, possible, fail } state = cpuset;
1339 int dest_cpu;
5da9a0fb 1340
aa00d89c
TC
1341 /*
1342 * If the node that the cpu is on has been offlined, cpu_to_node()
1343 * will return -1. There is no cpu on the node, and we should
1344 * select the cpu on the other node.
1345 */
1346 if (nid != -1) {
1347 nodemask = cpumask_of_node(nid);
1348
1349 /* Look for allowed, online CPU in same node. */
1350 for_each_cpu(dest_cpu, nodemask) {
1351 if (!cpu_online(dest_cpu))
1352 continue;
1353 if (!cpu_active(dest_cpu))
1354 continue;
1355 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1356 return dest_cpu;
1357 }
2baab4e9 1358 }
5da9a0fb 1359
2baab4e9
PZ
1360 for (;;) {
1361 /* Any allowed, online CPU? */
e3831edd 1362 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1363 if (!cpu_online(dest_cpu))
1364 continue;
1365 if (!cpu_active(dest_cpu))
1366 continue;
1367 goto out;
1368 }
5da9a0fb 1369
2baab4e9
PZ
1370 switch (state) {
1371 case cpuset:
1372 /* No more Mr. Nice Guy. */
1373 cpuset_cpus_allowed_fallback(p);
1374 state = possible;
1375 break;
1376
1377 case possible:
1378 do_set_cpus_allowed(p, cpu_possible_mask);
1379 state = fail;
1380 break;
1381
1382 case fail:
1383 BUG();
1384 break;
1385 }
1386 }
1387
1388out:
1389 if (state != cpuset) {
1390 /*
1391 * Don't tell them about moving exiting tasks or
1392 * kernel threads (both mm NULL), since they never
1393 * leave kernel.
1394 */
1395 if (p->mm && printk_ratelimit()) {
aac74dc4 1396 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1397 task_pid_nr(p), p->comm, cpu);
1398 }
5da9a0fb
PZ
1399 }
1400
1401 return dest_cpu;
1402}
1403
e2912009 1404/*
013fdb80 1405 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1406 */
970b13ba 1407static inline
ac66f547 1408int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1409{
6c1d9410
WL
1410 if (p->nr_cpus_allowed > 1)
1411 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e2912009
PZ
1412
1413 /*
1414 * In order not to call set_task_cpu() on a blocking task we need
1415 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1416 * cpu.
1417 *
1418 * Since this is common to all placement strategies, this lives here.
1419 *
1420 * [ this allows ->select_task() to simply return task_cpu(p) and
1421 * not worry about this generic constraint ]
1422 */
fa17b507 1423 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1424 !cpu_online(cpu)))
5da9a0fb 1425 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1426
1427 return cpu;
970b13ba 1428}
09a40af5
MG
1429
1430static void update_avg(u64 *avg, u64 sample)
1431{
1432 s64 diff = sample - *avg;
1433 *avg += diff >> 3;
1434}
970b13ba
PZ
1435#endif
1436
d7c01d27 1437static void
b84cb5df 1438ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1439{
d7c01d27 1440#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1441 struct rq *rq = this_rq();
1442
d7c01d27
PZ
1443#ifdef CONFIG_SMP
1444 int this_cpu = smp_processor_id();
1445
1446 if (cpu == this_cpu) {
1447 schedstat_inc(rq, ttwu_local);
1448 schedstat_inc(p, se.statistics.nr_wakeups_local);
1449 } else {
1450 struct sched_domain *sd;
1451
1452 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1453 rcu_read_lock();
d7c01d27
PZ
1454 for_each_domain(this_cpu, sd) {
1455 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1456 schedstat_inc(sd, ttwu_wake_remote);
1457 break;
1458 }
1459 }
057f3fad 1460 rcu_read_unlock();
d7c01d27 1461 }
f339b9dc
PZ
1462
1463 if (wake_flags & WF_MIGRATED)
1464 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1465
d7c01d27
PZ
1466#endif /* CONFIG_SMP */
1467
1468 schedstat_inc(rq, ttwu_count);
9ed3811a 1469 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1470
1471 if (wake_flags & WF_SYNC)
9ed3811a 1472 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1473
d7c01d27
PZ
1474#endif /* CONFIG_SCHEDSTATS */
1475}
1476
1477static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1478{
9ed3811a 1479 activate_task(rq, p, en_flags);
da0c1e65 1480 p->on_rq = TASK_ON_RQ_QUEUED;
c2f7115e
PZ
1481
1482 /* if a worker is waking up, notify workqueue */
1483 if (p->flags & PF_WQ_WORKER)
1484 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1485}
1486
23f41eeb
PZ
1487/*
1488 * Mark the task runnable and perform wakeup-preemption.
1489 */
89363381 1490static void
23f41eeb 1491ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1492{
9ed3811a 1493 check_preempt_curr(rq, p, wake_flags);
a8d7ad52 1494 trace_sched_wakeup(p, true);
9ed3811a
TH
1495
1496 p->state = TASK_RUNNING;
1497#ifdef CONFIG_SMP
4c9a4bc8
PZ
1498 if (p->sched_class->task_woken) {
1499 /*
1500 * XXX can drop rq->lock; most likely ok.
1501 */
9ed3811a 1502 p->sched_class->task_woken(rq, p);
4c9a4bc8 1503 }
9ed3811a 1504
e69c6341 1505 if (rq->idle_stamp) {
78becc27 1506 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1507 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1508
abfafa54
JL
1509 update_avg(&rq->avg_idle, delta);
1510
1511 if (rq->avg_idle > max)
9ed3811a 1512 rq->avg_idle = max;
abfafa54 1513
9ed3811a
TH
1514 rq->idle_stamp = 0;
1515 }
1516#endif
1517}
1518
c05fbafb
PZ
1519static void
1520ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1521{
1522#ifdef CONFIG_SMP
1523 if (p->sched_contributes_to_load)
1524 rq->nr_uninterruptible--;
1525#endif
1526
1527 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1528 ttwu_do_wakeup(rq, p, wake_flags);
1529}
1530
1531/*
1532 * Called in case the task @p isn't fully descheduled from its runqueue,
1533 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1534 * since all we need to do is flip p->state to TASK_RUNNING, since
1535 * the task is still ->on_rq.
1536 */
1537static int ttwu_remote(struct task_struct *p, int wake_flags)
1538{
1539 struct rq *rq;
1540 int ret = 0;
1541
1542 rq = __task_rq_lock(p);
da0c1e65 1543 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
1544 /* check_preempt_curr() may use rq clock */
1545 update_rq_clock(rq);
c05fbafb
PZ
1546 ttwu_do_wakeup(rq, p, wake_flags);
1547 ret = 1;
1548 }
1549 __task_rq_unlock(rq);
1550
1551 return ret;
1552}
1553
317f3941 1554#ifdef CONFIG_SMP
e3baac47 1555void sched_ttwu_pending(void)
317f3941
PZ
1556{
1557 struct rq *rq = this_rq();
fa14ff4a
PZ
1558 struct llist_node *llist = llist_del_all(&rq->wake_list);
1559 struct task_struct *p;
e3baac47 1560 unsigned long flags;
317f3941 1561
e3baac47
PZ
1562 if (!llist)
1563 return;
1564
1565 raw_spin_lock_irqsave(&rq->lock, flags);
317f3941 1566
fa14ff4a
PZ
1567 while (llist) {
1568 p = llist_entry(llist, struct task_struct, wake_entry);
1569 llist = llist_next(llist);
317f3941
PZ
1570 ttwu_do_activate(rq, p, 0);
1571 }
1572
e3baac47 1573 raw_spin_unlock_irqrestore(&rq->lock, flags);
317f3941
PZ
1574}
1575
1576void scheduler_ipi(void)
1577{
f27dde8d
PZ
1578 /*
1579 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1580 * TIF_NEED_RESCHED remotely (for the first time) will also send
1581 * this IPI.
1582 */
8cb75e0c 1583 preempt_fold_need_resched();
f27dde8d 1584
fd2ac4f4 1585 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1586 return;
1587
1588 /*
1589 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1590 * traditionally all their work was done from the interrupt return
1591 * path. Now that we actually do some work, we need to make sure
1592 * we do call them.
1593 *
1594 * Some archs already do call them, luckily irq_enter/exit nest
1595 * properly.
1596 *
1597 * Arguably we should visit all archs and update all handlers,
1598 * however a fair share of IPIs are still resched only so this would
1599 * somewhat pessimize the simple resched case.
1600 */
1601 irq_enter();
fa14ff4a 1602 sched_ttwu_pending();
ca38062e
SS
1603
1604 /*
1605 * Check if someone kicked us for doing the nohz idle load balance.
1606 */
873b4c65 1607 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1608 this_rq()->idle_balance = 1;
ca38062e 1609 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1610 }
c5d753a5 1611 irq_exit();
317f3941
PZ
1612}
1613
1614static void ttwu_queue_remote(struct task_struct *p, int cpu)
1615{
e3baac47
PZ
1616 struct rq *rq = cpu_rq(cpu);
1617
1618 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1619 if (!set_nr_if_polling(rq->idle))
1620 smp_send_reschedule(cpu);
1621 else
1622 trace_sched_wake_idle_without_ipi(cpu);
1623 }
317f3941 1624}
d6aa8f85 1625
f6be8af1
CL
1626void wake_up_if_idle(int cpu)
1627{
1628 struct rq *rq = cpu_rq(cpu);
1629 unsigned long flags;
1630
fd7de1e8
AL
1631 rcu_read_lock();
1632
1633 if (!is_idle_task(rcu_dereference(rq->curr)))
1634 goto out;
f6be8af1
CL
1635
1636 if (set_nr_if_polling(rq->idle)) {
1637 trace_sched_wake_idle_without_ipi(cpu);
1638 } else {
1639 raw_spin_lock_irqsave(&rq->lock, flags);
1640 if (is_idle_task(rq->curr))
1641 smp_send_reschedule(cpu);
1642 /* Else cpu is not in idle, do nothing here */
1643 raw_spin_unlock_irqrestore(&rq->lock, flags);
1644 }
fd7de1e8
AL
1645
1646out:
1647 rcu_read_unlock();
f6be8af1
CL
1648}
1649
39be3501 1650bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1651{
1652 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1653}
d6aa8f85 1654#endif /* CONFIG_SMP */
317f3941 1655
c05fbafb
PZ
1656static void ttwu_queue(struct task_struct *p, int cpu)
1657{
1658 struct rq *rq = cpu_rq(cpu);
1659
17d9f311 1660#if defined(CONFIG_SMP)
39be3501 1661 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1662 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1663 ttwu_queue_remote(p, cpu);
1664 return;
1665 }
1666#endif
1667
c05fbafb
PZ
1668 raw_spin_lock(&rq->lock);
1669 ttwu_do_activate(rq, p, 0);
1670 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1671}
1672
1673/**
1da177e4 1674 * try_to_wake_up - wake up a thread
9ed3811a 1675 * @p: the thread to be awakened
1da177e4 1676 * @state: the mask of task states that can be woken
9ed3811a 1677 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1678 *
1679 * Put it on the run-queue if it's not already there. The "current"
1680 * thread is always on the run-queue (except when the actual
1681 * re-schedule is in progress), and as such you're allowed to do
1682 * the simpler "current->state = TASK_RUNNING" to mark yourself
1683 * runnable without the overhead of this.
1684 *
e69f6186 1685 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1686 * or @state didn't match @p's state.
1da177e4 1687 */
e4a52bcb
PZ
1688static int
1689try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1690{
1da177e4 1691 unsigned long flags;
c05fbafb 1692 int cpu, success = 0;
2398f2c6 1693
e0acd0a6
ON
1694 /*
1695 * If we are going to wake up a thread waiting for CONDITION we
1696 * need to ensure that CONDITION=1 done by the caller can not be
1697 * reordered with p->state check below. This pairs with mb() in
1698 * set_current_state() the waiting thread does.
1699 */
1700 smp_mb__before_spinlock();
013fdb80 1701 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1702 if (!(p->state & state))
1da177e4
LT
1703 goto out;
1704
c05fbafb 1705 success = 1; /* we're going to change ->state */
1da177e4 1706 cpu = task_cpu(p);
1da177e4 1707
c05fbafb
PZ
1708 if (p->on_rq && ttwu_remote(p, wake_flags))
1709 goto stat;
1da177e4 1710
1da177e4 1711#ifdef CONFIG_SMP
e9c84311 1712 /*
c05fbafb
PZ
1713 * If the owning (remote) cpu is still in the middle of schedule() with
1714 * this task as prev, wait until its done referencing the task.
e9c84311 1715 */
f3e94786 1716 while (p->on_cpu)
e4a52bcb 1717 cpu_relax();
0970d299 1718 /*
e4a52bcb 1719 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1720 */
e4a52bcb 1721 smp_rmb();
1da177e4 1722
a8e4f2ea 1723 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1724 p->state = TASK_WAKING;
e7693a36 1725
e4a52bcb 1726 if (p->sched_class->task_waking)
74f8e4b2 1727 p->sched_class->task_waking(p);
efbbd05a 1728
ac66f547 1729 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1730 if (task_cpu(p) != cpu) {
1731 wake_flags |= WF_MIGRATED;
e4a52bcb 1732 set_task_cpu(p, cpu);
f339b9dc 1733 }
1da177e4 1734#endif /* CONFIG_SMP */
1da177e4 1735
c05fbafb
PZ
1736 ttwu_queue(p, cpu);
1737stat:
b84cb5df 1738 ttwu_stat(p, cpu, wake_flags);
1da177e4 1739out:
013fdb80 1740 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1741
1742 return success;
1743}
1744
21aa9af0
TH
1745/**
1746 * try_to_wake_up_local - try to wake up a local task with rq lock held
1747 * @p: the thread to be awakened
1748 *
2acca55e 1749 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1750 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1751 * the current task.
21aa9af0
TH
1752 */
1753static void try_to_wake_up_local(struct task_struct *p)
1754{
1755 struct rq *rq = task_rq(p);
21aa9af0 1756
383efcd0
TH
1757 if (WARN_ON_ONCE(rq != this_rq()) ||
1758 WARN_ON_ONCE(p == current))
1759 return;
1760
21aa9af0
TH
1761 lockdep_assert_held(&rq->lock);
1762
2acca55e
PZ
1763 if (!raw_spin_trylock(&p->pi_lock)) {
1764 raw_spin_unlock(&rq->lock);
1765 raw_spin_lock(&p->pi_lock);
1766 raw_spin_lock(&rq->lock);
1767 }
1768
21aa9af0 1769 if (!(p->state & TASK_NORMAL))
2acca55e 1770 goto out;
21aa9af0 1771
da0c1e65 1772 if (!task_on_rq_queued(p))
d7c01d27
PZ
1773 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1774
23f41eeb 1775 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1776 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1777out:
1778 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1779}
1780
50fa610a
DH
1781/**
1782 * wake_up_process - Wake up a specific process
1783 * @p: The process to be woken up.
1784 *
1785 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
1786 * processes.
1787 *
1788 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
1789 *
1790 * It may be assumed that this function implies a write memory barrier before
1791 * changing the task state if and only if any tasks are woken up.
1792 */
7ad5b3a5 1793int wake_up_process(struct task_struct *p)
1da177e4 1794{
9067ac85
ON
1795 WARN_ON(task_is_stopped_or_traced(p));
1796 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 1797}
1da177e4
LT
1798EXPORT_SYMBOL(wake_up_process);
1799
7ad5b3a5 1800int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1801{
1802 return try_to_wake_up(p, state, 0);
1803}
1804
a5e7be3b
JL
1805/*
1806 * This function clears the sched_dl_entity static params.
1807 */
1808void __dl_clear_params(struct task_struct *p)
1809{
1810 struct sched_dl_entity *dl_se = &p->dl;
1811
1812 dl_se->dl_runtime = 0;
1813 dl_se->dl_deadline = 0;
1814 dl_se->dl_period = 0;
1815 dl_se->flags = 0;
1816 dl_se->dl_bw = 0;
40767b0d
PZ
1817
1818 dl_se->dl_throttled = 0;
1819 dl_se->dl_new = 1;
1820 dl_se->dl_yielded = 0;
a5e7be3b
JL
1821}
1822
1da177e4
LT
1823/*
1824 * Perform scheduler related setup for a newly forked process p.
1825 * p is forked by current.
dd41f596
IM
1826 *
1827 * __sched_fork() is basic setup used by init_idle() too:
1828 */
5e1576ed 1829static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1830{
fd2f4419
PZ
1831 p->on_rq = 0;
1832
1833 p->se.on_rq = 0;
dd41f596
IM
1834 p->se.exec_start = 0;
1835 p->se.sum_exec_runtime = 0;
f6cf891c 1836 p->se.prev_sum_exec_runtime = 0;
6c594c21 1837 p->se.nr_migrations = 0;
da7a735e 1838 p->se.vruntime = 0;
bb04159d
KT
1839#ifdef CONFIG_SMP
1840 p->se.avg.decay_count = 0;
1841#endif
fd2f4419 1842 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
1843
1844#ifdef CONFIG_SCHEDSTATS
41acab88 1845 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 1846#endif
476d139c 1847
aab03e05 1848 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 1849 init_dl_task_timer(&p->dl);
a5e7be3b 1850 __dl_clear_params(p);
aab03e05 1851
fa717060 1852 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 1853
e107be36
AK
1854#ifdef CONFIG_PREEMPT_NOTIFIERS
1855 INIT_HLIST_HEAD(&p->preempt_notifiers);
1856#endif
cbee9f88
PZ
1857
1858#ifdef CONFIG_NUMA_BALANCING
1859 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 1860 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
1861 p->mm->numa_scan_seq = 0;
1862 }
1863
5e1576ed
RR
1864 if (clone_flags & CLONE_VM)
1865 p->numa_preferred_nid = current->numa_preferred_nid;
1866 else
1867 p->numa_preferred_nid = -1;
1868
cbee9f88
PZ
1869 p->node_stamp = 0ULL;
1870 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 1871 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 1872 p->numa_work.next = &p->numa_work;
44dba3d5 1873 p->numa_faults = NULL;
7e2703e6
RR
1874 p->last_task_numa_placement = 0;
1875 p->last_sum_exec_runtime = 0;
8c8a743c 1876
8c8a743c 1877 p->numa_group = NULL;
cbee9f88 1878#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1879}
1880
1a687c2e 1881#ifdef CONFIG_NUMA_BALANCING
3105b86a 1882#ifdef CONFIG_SCHED_DEBUG
1a687c2e
MG
1883void set_numabalancing_state(bool enabled)
1884{
1885 if (enabled)
1886 sched_feat_set("NUMA");
1887 else
1888 sched_feat_set("NO_NUMA");
1889}
3105b86a
MG
1890#else
1891__read_mostly bool numabalancing_enabled;
1892
1893void set_numabalancing_state(bool enabled)
1894{
1895 numabalancing_enabled = enabled;
dd41f596 1896}
3105b86a 1897#endif /* CONFIG_SCHED_DEBUG */
54a43d54
AK
1898
1899#ifdef CONFIG_PROC_SYSCTL
1900int sysctl_numa_balancing(struct ctl_table *table, int write,
1901 void __user *buffer, size_t *lenp, loff_t *ppos)
1902{
1903 struct ctl_table t;
1904 int err;
1905 int state = numabalancing_enabled;
1906
1907 if (write && !capable(CAP_SYS_ADMIN))
1908 return -EPERM;
1909
1910 t = *table;
1911 t.data = &state;
1912 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1913 if (err < 0)
1914 return err;
1915 if (write)
1916 set_numabalancing_state(state);
1917 return err;
1918}
1919#endif
1920#endif
dd41f596
IM
1921
1922/*
1923 * fork()/clone()-time setup:
1924 */
aab03e05 1925int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1926{
0122ec5b 1927 unsigned long flags;
dd41f596
IM
1928 int cpu = get_cpu();
1929
5e1576ed 1930 __sched_fork(clone_flags, p);
06b83b5f 1931 /*
0017d735 1932 * We mark the process as running here. This guarantees that
06b83b5f
PZ
1933 * nobody will actually run it, and a signal or other external
1934 * event cannot wake it up and insert it on the runqueue either.
1935 */
0017d735 1936 p->state = TASK_RUNNING;
dd41f596 1937
c350a04e
MG
1938 /*
1939 * Make sure we do not leak PI boosting priority to the child.
1940 */
1941 p->prio = current->normal_prio;
1942
b9dc29e7
MG
1943 /*
1944 * Revert to default priority/policy on fork if requested.
1945 */
1946 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 1947 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 1948 p->policy = SCHED_NORMAL;
6c697bdf 1949 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
1950 p->rt_priority = 0;
1951 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1952 p->static_prio = NICE_TO_PRIO(0);
1953
1954 p->prio = p->normal_prio = __normal_prio(p);
1955 set_load_weight(p);
6c697bdf 1956
b9dc29e7
MG
1957 /*
1958 * We don't need the reset flag anymore after the fork. It has
1959 * fulfilled its duty:
1960 */
1961 p->sched_reset_on_fork = 0;
1962 }
ca94c442 1963
aab03e05
DF
1964 if (dl_prio(p->prio)) {
1965 put_cpu();
1966 return -EAGAIN;
1967 } else if (rt_prio(p->prio)) {
1968 p->sched_class = &rt_sched_class;
1969 } else {
2ddbf952 1970 p->sched_class = &fair_sched_class;
aab03e05 1971 }
b29739f9 1972
cd29fe6f
PZ
1973 if (p->sched_class->task_fork)
1974 p->sched_class->task_fork(p);
1975
86951599
PZ
1976 /*
1977 * The child is not yet in the pid-hash so no cgroup attach races,
1978 * and the cgroup is pinned to this child due to cgroup_fork()
1979 * is ran before sched_fork().
1980 *
1981 * Silence PROVE_RCU.
1982 */
0122ec5b 1983 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 1984 set_task_cpu(p, cpu);
0122ec5b 1985 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 1986
52f17b6c 1987#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1988 if (likely(sched_info_on()))
52f17b6c 1989 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1990#endif
3ca7a440
PZ
1991#if defined(CONFIG_SMP)
1992 p->on_cpu = 0;
4866cde0 1993#endif
01028747 1994 init_task_preempt_count(p);
806c09a7 1995#ifdef CONFIG_SMP
917b627d 1996 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 1997 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 1998#endif
917b627d 1999
476d139c 2000 put_cpu();
aab03e05 2001 return 0;
1da177e4
LT
2002}
2003
332ac17e
DF
2004unsigned long to_ratio(u64 period, u64 runtime)
2005{
2006 if (runtime == RUNTIME_INF)
2007 return 1ULL << 20;
2008
2009 /*
2010 * Doing this here saves a lot of checks in all
2011 * the calling paths, and returning zero seems
2012 * safe for them anyway.
2013 */
2014 if (period == 0)
2015 return 0;
2016
2017 return div64_u64(runtime << 20, period);
2018}
2019
2020#ifdef CONFIG_SMP
2021inline struct dl_bw *dl_bw_of(int i)
2022{
66339c31
KT
2023 rcu_lockdep_assert(rcu_read_lock_sched_held(),
2024 "sched RCU must be held");
332ac17e
DF
2025 return &cpu_rq(i)->rd->dl_bw;
2026}
2027
de212f18 2028static inline int dl_bw_cpus(int i)
332ac17e 2029{
de212f18
PZ
2030 struct root_domain *rd = cpu_rq(i)->rd;
2031 int cpus = 0;
2032
66339c31
KT
2033 rcu_lockdep_assert(rcu_read_lock_sched_held(),
2034 "sched RCU must be held");
de212f18
PZ
2035 for_each_cpu_and(i, rd->span, cpu_active_mask)
2036 cpus++;
2037
2038 return cpus;
332ac17e
DF
2039}
2040#else
2041inline struct dl_bw *dl_bw_of(int i)
2042{
2043 return &cpu_rq(i)->dl.dl_bw;
2044}
2045
de212f18 2046static inline int dl_bw_cpus(int i)
332ac17e
DF
2047{
2048 return 1;
2049}
2050#endif
2051
332ac17e
DF
2052/*
2053 * We must be sure that accepting a new task (or allowing changing the
2054 * parameters of an existing one) is consistent with the bandwidth
2055 * constraints. If yes, this function also accordingly updates the currently
2056 * allocated bandwidth to reflect the new situation.
2057 *
2058 * This function is called while holding p's rq->lock.
40767b0d
PZ
2059 *
2060 * XXX we should delay bw change until the task's 0-lag point, see
2061 * __setparam_dl().
332ac17e
DF
2062 */
2063static int dl_overflow(struct task_struct *p, int policy,
2064 const struct sched_attr *attr)
2065{
2066
2067 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
4df1638c 2068 u64 period = attr->sched_period ?: attr->sched_deadline;
332ac17e
DF
2069 u64 runtime = attr->sched_runtime;
2070 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 2071 int cpus, err = -1;
332ac17e
DF
2072
2073 if (new_bw == p->dl.dl_bw)
2074 return 0;
2075
2076 /*
2077 * Either if a task, enters, leave, or stays -deadline but changes
2078 * its parameters, we may need to update accordingly the total
2079 * allocated bandwidth of the container.
2080 */
2081 raw_spin_lock(&dl_b->lock);
de212f18 2082 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
2083 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2084 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2085 __dl_add(dl_b, new_bw);
2086 err = 0;
2087 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2088 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2089 __dl_clear(dl_b, p->dl.dl_bw);
2090 __dl_add(dl_b, new_bw);
2091 err = 0;
2092 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2093 __dl_clear(dl_b, p->dl.dl_bw);
2094 err = 0;
2095 }
2096 raw_spin_unlock(&dl_b->lock);
2097
2098 return err;
2099}
2100
2101extern void init_dl_bw(struct dl_bw *dl_b);
2102
1da177e4
LT
2103/*
2104 * wake_up_new_task - wake up a newly created task for the first time.
2105 *
2106 * This function will do some initial scheduler statistics housekeeping
2107 * that must be done for every newly created context, then puts the task
2108 * on the runqueue and wakes it.
2109 */
3e51e3ed 2110void wake_up_new_task(struct task_struct *p)
1da177e4
LT
2111{
2112 unsigned long flags;
dd41f596 2113 struct rq *rq;
fabf318e 2114
ab2515c4 2115 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
2116#ifdef CONFIG_SMP
2117 /*
2118 * Fork balancing, do it here and not earlier because:
2119 * - cpus_allowed can change in the fork path
2120 * - any previously selected cpu might disappear through hotplug
fabf318e 2121 */
ac66f547 2122 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735
PZ
2123#endif
2124
a75cdaa9
AS
2125 /* Initialize new task's runnable average */
2126 init_task_runnable_average(p);
ab2515c4 2127 rq = __task_rq_lock(p);
cd29fe6f 2128 activate_task(rq, p, 0);
da0c1e65 2129 p->on_rq = TASK_ON_RQ_QUEUED;
89363381 2130 trace_sched_wakeup_new(p, true);
a7558e01 2131 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2132#ifdef CONFIG_SMP
efbbd05a
PZ
2133 if (p->sched_class->task_woken)
2134 p->sched_class->task_woken(rq, p);
9a897c5a 2135#endif
0122ec5b 2136 task_rq_unlock(rq, p, &flags);
1da177e4
LT
2137}
2138
e107be36
AK
2139#ifdef CONFIG_PREEMPT_NOTIFIERS
2140
2141/**
80dd99b3 2142 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2143 * @notifier: notifier struct to register
e107be36
AK
2144 */
2145void preempt_notifier_register(struct preempt_notifier *notifier)
2146{
2147 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2148}
2149EXPORT_SYMBOL_GPL(preempt_notifier_register);
2150
2151/**
2152 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2153 * @notifier: notifier struct to unregister
e107be36
AK
2154 *
2155 * This is safe to call from within a preemption notifier.
2156 */
2157void preempt_notifier_unregister(struct preempt_notifier *notifier)
2158{
2159 hlist_del(&notifier->link);
2160}
2161EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2162
2163static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2164{
2165 struct preempt_notifier *notifier;
e107be36 2166
b67bfe0d 2167 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2168 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2169}
2170
2171static void
2172fire_sched_out_preempt_notifiers(struct task_struct *curr,
2173 struct task_struct *next)
2174{
2175 struct preempt_notifier *notifier;
e107be36 2176
b67bfe0d 2177 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2178 notifier->ops->sched_out(notifier, next);
2179}
2180
6d6bc0ad 2181#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2182
2183static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2184{
2185}
2186
2187static void
2188fire_sched_out_preempt_notifiers(struct task_struct *curr,
2189 struct task_struct *next)
2190{
2191}
2192
6d6bc0ad 2193#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2194
4866cde0
NP
2195/**
2196 * prepare_task_switch - prepare to switch tasks
2197 * @rq: the runqueue preparing to switch
421cee29 2198 * @prev: the current task that is being switched out
4866cde0
NP
2199 * @next: the task we are going to switch to.
2200 *
2201 * This is called with the rq lock held and interrupts off. It must
2202 * be paired with a subsequent finish_task_switch after the context
2203 * switch.
2204 *
2205 * prepare_task_switch sets up locking and calls architecture specific
2206 * hooks.
2207 */
e107be36
AK
2208static inline void
2209prepare_task_switch(struct rq *rq, struct task_struct *prev,
2210 struct task_struct *next)
4866cde0 2211{
895dd92c 2212 trace_sched_switch(prev, next);
43148951 2213 sched_info_switch(rq, prev, next);
fe4b04fa 2214 perf_event_task_sched_out(prev, next);
e107be36 2215 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2216 prepare_lock_switch(rq, next);
2217 prepare_arch_switch(next);
2218}
2219
1da177e4
LT
2220/**
2221 * finish_task_switch - clean up after a task-switch
2222 * @prev: the thread we just switched away from.
2223 *
4866cde0
NP
2224 * finish_task_switch must be called after the context switch, paired
2225 * with a prepare_task_switch call before the context switch.
2226 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2227 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2228 *
2229 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2230 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2231 * with the lock held can cause deadlocks; see schedule() for
2232 * details.)
dfa50b60
ON
2233 *
2234 * The context switch have flipped the stack from under us and restored the
2235 * local variables which were saved when this task called schedule() in the
2236 * past. prev == current is still correct but we need to recalculate this_rq
2237 * because prev may have moved to another CPU.
1da177e4 2238 */
dfa50b60 2239static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
2240 __releases(rq->lock)
2241{
dfa50b60 2242 struct rq *rq = this_rq();
1da177e4 2243 struct mm_struct *mm = rq->prev_mm;
55a101f8 2244 long prev_state;
1da177e4
LT
2245
2246 rq->prev_mm = NULL;
2247
2248 /*
2249 * A task struct has one reference for the use as "current".
c394cc9f 2250 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2251 * schedule one last time. The schedule call will never return, and
2252 * the scheduled task must drop that reference.
c394cc9f 2253 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2254 * still held, otherwise prev could be scheduled on another cpu, die
2255 * there before we look at prev->state, and then the reference would
2256 * be dropped twice.
2257 * Manfred Spraul <manfred@colorfullife.com>
2258 */
55a101f8 2259 prev_state = prev->state;
bf9fae9f 2260 vtime_task_switch(prev);
4866cde0 2261 finish_arch_switch(prev);
a8d757ef 2262 perf_event_task_sched_in(prev, current);
4866cde0 2263 finish_lock_switch(rq, prev);
01f23e16 2264 finish_arch_post_lock_switch();
e8fa1362 2265
e107be36 2266 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2267 if (mm)
2268 mmdrop(mm);
c394cc9f 2269 if (unlikely(prev_state == TASK_DEAD)) {
e6c390f2
DF
2270 if (prev->sched_class->task_dead)
2271 prev->sched_class->task_dead(prev);
2272
c6fd91f0 2273 /*
2274 * Remove function-return probe instances associated with this
2275 * task and put them back on the free list.
9761eea8 2276 */
c6fd91f0 2277 kprobe_flush_task(prev);
1da177e4 2278 put_task_struct(prev);
c6fd91f0 2279 }
99e5ada9
FW
2280
2281 tick_nohz_task_switch(current);
dfa50b60 2282 return rq;
1da177e4
LT
2283}
2284
3f029d3c
GH
2285#ifdef CONFIG_SMP
2286
3f029d3c 2287/* rq->lock is NOT held, but preemption is disabled */
e3fca9e7 2288static void __balance_callback(struct rq *rq)
3f029d3c 2289{
e3fca9e7
PZ
2290 struct callback_head *head, *next;
2291 void (*func)(struct rq *rq);
2292 unsigned long flags;
3f029d3c 2293
e3fca9e7
PZ
2294 raw_spin_lock_irqsave(&rq->lock, flags);
2295 head = rq->balance_callback;
2296 rq->balance_callback = NULL;
2297 while (head) {
2298 func = (void (*)(struct rq *))head->func;
2299 next = head->next;
2300 head->next = NULL;
2301 head = next;
3f029d3c 2302
e3fca9e7 2303 func(rq);
3f029d3c 2304 }
e3fca9e7
PZ
2305 raw_spin_unlock_irqrestore(&rq->lock, flags);
2306}
2307
2308static inline void balance_callback(struct rq *rq)
2309{
2310 if (unlikely(rq->balance_callback))
2311 __balance_callback(rq);
3f029d3c
GH
2312}
2313
2314#else
da19ab51 2315
e3fca9e7 2316static inline void balance_callback(struct rq *rq)
3f029d3c 2317{
1da177e4
LT
2318}
2319
3f029d3c
GH
2320#endif
2321
1da177e4
LT
2322/**
2323 * schedule_tail - first thing a freshly forked thread must call.
2324 * @prev: the thread we just switched away from.
2325 */
722a9f92 2326asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
2327 __releases(rq->lock)
2328{
1a43a14a 2329 struct rq *rq;
da19ab51 2330
1a43a14a
ON
2331 /* finish_task_switch() drops rq->lock and enables preemtion */
2332 preempt_disable();
dfa50b60 2333 rq = finish_task_switch(prev);
e3fca9e7 2334 balance_callback(rq);
1a43a14a 2335 preempt_enable();
70b97a7f 2336
1da177e4 2337 if (current->set_child_tid)
b488893a 2338 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2339}
2340
2341/*
dfa50b60 2342 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 2343 */
dfa50b60 2344static inline struct rq *
70b97a7f 2345context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2346 struct task_struct *next)
1da177e4 2347{
dd41f596 2348 struct mm_struct *mm, *oldmm;
1da177e4 2349
e107be36 2350 prepare_task_switch(rq, prev, next);
fe4b04fa 2351
dd41f596
IM
2352 mm = next->mm;
2353 oldmm = prev->active_mm;
9226d125
ZA
2354 /*
2355 * For paravirt, this is coupled with an exit in switch_to to
2356 * combine the page table reload and the switch backend into
2357 * one hypercall.
2358 */
224101ed 2359 arch_start_context_switch(prev);
9226d125 2360
31915ab4 2361 if (!mm) {
1da177e4
LT
2362 next->active_mm = oldmm;
2363 atomic_inc(&oldmm->mm_count);
2364 enter_lazy_tlb(oldmm, next);
2365 } else
2366 switch_mm(oldmm, mm, next);
2367
31915ab4 2368 if (!prev->mm) {
1da177e4 2369 prev->active_mm = NULL;
1da177e4
LT
2370 rq->prev_mm = oldmm;
2371 }
3a5f5e48
IM
2372 /*
2373 * Since the runqueue lock will be released by the next
2374 * task (which is an invalid locking op but in the case
2375 * of the scheduler it's an obvious special-case), so we
2376 * do an early lockdep release here:
2377 */
8a25d5de 2378 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4 2379
91d1aa43 2380 context_tracking_task_switch(prev, next);
1da177e4
LT
2381 /* Here we just switch the register state and the stack. */
2382 switch_to(prev, next, prev);
dd41f596 2383 barrier();
dfa50b60
ON
2384
2385 return finish_task_switch(prev);
1da177e4
LT
2386}
2387
2388/*
1c3e8264 2389 * nr_running and nr_context_switches:
1da177e4
LT
2390 *
2391 * externally visible scheduler statistics: current number of runnable
1c3e8264 2392 * threads, total number of context switches performed since bootup.
1da177e4
LT
2393 */
2394unsigned long nr_running(void)
2395{
2396 unsigned long i, sum = 0;
2397
2398 for_each_online_cpu(i)
2399 sum += cpu_rq(i)->nr_running;
2400
2401 return sum;
f711f609 2402}
1da177e4 2403
2ee507c4
TC
2404/*
2405 * Check if only the current task is running on the cpu.
2406 */
2407bool single_task_running(void)
2408{
2409 if (cpu_rq(smp_processor_id())->nr_running == 1)
2410 return true;
2411 else
2412 return false;
2413}
2414EXPORT_SYMBOL(single_task_running);
2415
1da177e4 2416unsigned long long nr_context_switches(void)
46cb4b7c 2417{
cc94abfc
SR
2418 int i;
2419 unsigned long long sum = 0;
46cb4b7c 2420
0a945022 2421 for_each_possible_cpu(i)
1da177e4 2422 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2423
1da177e4
LT
2424 return sum;
2425}
483b4ee6 2426
1da177e4
LT
2427unsigned long nr_iowait(void)
2428{
2429 unsigned long i, sum = 0;
483b4ee6 2430
0a945022 2431 for_each_possible_cpu(i)
1da177e4 2432 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2433
1da177e4
LT
2434 return sum;
2435}
483b4ee6 2436
8c215bd3 2437unsigned long nr_iowait_cpu(int cpu)
69d25870 2438{
8c215bd3 2439 struct rq *this = cpu_rq(cpu);
69d25870
AV
2440 return atomic_read(&this->nr_iowait);
2441}
46cb4b7c 2442
372ba8cb
MG
2443void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2444{
3289bdb4
PZ
2445 struct rq *rq = this_rq();
2446 *nr_waiters = atomic_read(&rq->nr_iowait);
2447 *load = rq->load.weight;
372ba8cb
MG
2448}
2449
dd41f596 2450#ifdef CONFIG_SMP
8a0be9ef 2451
46cb4b7c 2452/*
38022906
PZ
2453 * sched_exec - execve() is a valuable balancing opportunity, because at
2454 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2455 */
38022906 2456void sched_exec(void)
46cb4b7c 2457{
38022906 2458 struct task_struct *p = current;
1da177e4 2459 unsigned long flags;
0017d735 2460 int dest_cpu;
46cb4b7c 2461
8f42ced9 2462 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2463 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2464 if (dest_cpu == smp_processor_id())
2465 goto unlock;
38022906 2466
8f42ced9 2467 if (likely(cpu_active(dest_cpu))) {
969c7921 2468 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2469
8f42ced9
PZ
2470 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2471 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2472 return;
2473 }
0017d735 2474unlock:
8f42ced9 2475 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2476}
dd41f596 2477
1da177e4
LT
2478#endif
2479
1da177e4 2480DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2481DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2482
2483EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2484EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 2485
c5f8d995
HS
2486/*
2487 * Return accounted runtime for the task.
2488 * In case the task is currently running, return the runtime plus current's
2489 * pending runtime that have not been accounted yet.
2490 */
2491unsigned long long task_sched_runtime(struct task_struct *p)
2492{
2493 unsigned long flags;
2494 struct rq *rq;
6e998916 2495 u64 ns;
c5f8d995 2496
911b2898
PZ
2497#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2498 /*
2499 * 64-bit doesn't need locks to atomically read a 64bit value.
2500 * So we have a optimization chance when the task's delta_exec is 0.
2501 * Reading ->on_cpu is racy, but this is ok.
2502 *
2503 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2504 * If we race with it entering cpu, unaccounted time is 0. This is
2505 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
2506 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2507 * been accounted, so we're correct here as well.
911b2898 2508 */
da0c1e65 2509 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
2510 return p->se.sum_exec_runtime;
2511#endif
2512
c5f8d995 2513 rq = task_rq_lock(p, &flags);
6e998916
SG
2514 /*
2515 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2516 * project cycles that may never be accounted to this
2517 * thread, breaking clock_gettime().
2518 */
2519 if (task_current(rq, p) && task_on_rq_queued(p)) {
2520 update_rq_clock(rq);
2521 p->sched_class->update_curr(rq);
2522 }
2523 ns = p->se.sum_exec_runtime;
0122ec5b 2524 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2525
2526 return ns;
2527}
48f24c4d 2528
7835b98b
CL
2529/*
2530 * This function gets called by the timer code, with HZ frequency.
2531 * We call it with interrupts disabled.
7835b98b
CL
2532 */
2533void scheduler_tick(void)
2534{
7835b98b
CL
2535 int cpu = smp_processor_id();
2536 struct rq *rq = cpu_rq(cpu);
dd41f596 2537 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2538
2539 sched_clock_tick();
dd41f596 2540
05fa785c 2541 raw_spin_lock(&rq->lock);
3e51f33f 2542 update_rq_clock(rq);
fa85ae24 2543 curr->sched_class->task_tick(rq, curr, 0);
83dfd523 2544 update_cpu_load_active(rq);
3289bdb4 2545 calc_global_load_tick(rq);
05fa785c 2546 raw_spin_unlock(&rq->lock);
7835b98b 2547
e9d2b064 2548 perf_event_task_tick();
e220d2dc 2549
e418e1c2 2550#ifdef CONFIG_SMP
6eb57e0d 2551 rq->idle_balance = idle_cpu(cpu);
7caff66f 2552 trigger_load_balance(rq);
e418e1c2 2553#endif
265f22a9 2554 rq_last_tick_reset(rq);
1da177e4
LT
2555}
2556
265f22a9
FW
2557#ifdef CONFIG_NO_HZ_FULL
2558/**
2559 * scheduler_tick_max_deferment
2560 *
2561 * Keep at least one tick per second when a single
2562 * active task is running because the scheduler doesn't
2563 * yet completely support full dynticks environment.
2564 *
2565 * This makes sure that uptime, CFS vruntime, load
2566 * balancing, etc... continue to move forward, even
2567 * with a very low granularity.
e69f6186
YB
2568 *
2569 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
2570 */
2571u64 scheduler_tick_max_deferment(void)
2572{
2573 struct rq *rq = this_rq();
316c1608 2574 unsigned long next, now = READ_ONCE(jiffies);
265f22a9
FW
2575
2576 next = rq->last_sched_tick + HZ;
2577
2578 if (time_before_eq(next, now))
2579 return 0;
2580
8fe8ff09 2581 return jiffies_to_nsecs(next - now);
1da177e4 2582}
265f22a9 2583#endif
1da177e4 2584
132380a0 2585notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
2586{
2587 if (in_lock_functions(addr)) {
2588 addr = CALLER_ADDR2;
2589 if (in_lock_functions(addr))
2590 addr = CALLER_ADDR3;
2591 }
2592 return addr;
2593}
1da177e4 2594
7e49fcce
SR
2595#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2596 defined(CONFIG_PREEMPT_TRACER))
2597
edafe3a5 2598void preempt_count_add(int val)
1da177e4 2599{
6cd8a4bb 2600#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2601 /*
2602 * Underflow?
2603 */
9a11b49a
IM
2604 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2605 return;
6cd8a4bb 2606#endif
bdb43806 2607 __preempt_count_add(val);
6cd8a4bb 2608#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2609 /*
2610 * Spinlock count overflowing soon?
2611 */
33859f7f
MOS
2612 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2613 PREEMPT_MASK - 10);
6cd8a4bb 2614#endif
8f47b187
TG
2615 if (preempt_count() == val) {
2616 unsigned long ip = get_parent_ip(CALLER_ADDR1);
2617#ifdef CONFIG_DEBUG_PREEMPT
2618 current->preempt_disable_ip = ip;
2619#endif
2620 trace_preempt_off(CALLER_ADDR0, ip);
2621 }
1da177e4 2622}
bdb43806 2623EXPORT_SYMBOL(preempt_count_add);
edafe3a5 2624NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 2625
edafe3a5 2626void preempt_count_sub(int val)
1da177e4 2627{
6cd8a4bb 2628#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2629 /*
2630 * Underflow?
2631 */
01e3eb82 2632 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 2633 return;
1da177e4
LT
2634 /*
2635 * Is the spinlock portion underflowing?
2636 */
9a11b49a
IM
2637 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2638 !(preempt_count() & PREEMPT_MASK)))
2639 return;
6cd8a4bb 2640#endif
9a11b49a 2641
6cd8a4bb
SR
2642 if (preempt_count() == val)
2643 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
bdb43806 2644 __preempt_count_sub(val);
1da177e4 2645}
bdb43806 2646EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 2647NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4
LT
2648
2649#endif
2650
2651/*
dd41f596 2652 * Print scheduling while atomic bug:
1da177e4 2653 */
dd41f596 2654static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 2655{
664dfa65
DJ
2656 if (oops_in_progress)
2657 return;
2658
3df0fc5b
PZ
2659 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2660 prev->comm, prev->pid, preempt_count());
838225b4 2661
dd41f596 2662 debug_show_held_locks(prev);
e21f5b15 2663 print_modules();
dd41f596
IM
2664 if (irqs_disabled())
2665 print_irqtrace_events(prev);
8f47b187
TG
2666#ifdef CONFIG_DEBUG_PREEMPT
2667 if (in_atomic_preempt_off()) {
2668 pr_err("Preemption disabled at:");
2669 print_ip_sym(current->preempt_disable_ip);
2670 pr_cont("\n");
2671 }
2672#endif
6135fc1e 2673 dump_stack();
373d4d09 2674 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 2675}
1da177e4 2676
dd41f596
IM
2677/*
2678 * Various schedule()-time debugging checks and statistics:
2679 */
2680static inline void schedule_debug(struct task_struct *prev)
2681{
0d9e2632
AT
2682#ifdef CONFIG_SCHED_STACK_END_CHECK
2683 BUG_ON(unlikely(task_stack_end_corrupted(prev)));
2684#endif
1da177e4 2685 /*
41a2d6cf 2686 * Test if we are atomic. Since do_exit() needs to call into
192301e7
ON
2687 * schedule() atomically, we ignore that path. Otherwise whine
2688 * if we are scheduling when we should not.
1da177e4 2689 */
192301e7 2690 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
dd41f596 2691 __schedule_bug(prev);
b3fbab05 2692 rcu_sleep_check();
dd41f596 2693
1da177e4
LT
2694 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2695
2d72376b 2696 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
2697}
2698
2699/*
2700 * Pick up the highest-prio task:
2701 */
2702static inline struct task_struct *
606dba2e 2703pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 2704{
37e117c0 2705 const struct sched_class *class = &fair_sched_class;
dd41f596 2706 struct task_struct *p;
1da177e4
LT
2707
2708 /*
dd41f596
IM
2709 * Optimization: we know that if all tasks are in
2710 * the fair class we can call that function directly:
1da177e4 2711 */
37e117c0 2712 if (likely(prev->sched_class == class &&
38033c37 2713 rq->nr_running == rq->cfs.h_nr_running)) {
606dba2e 2714 p = fair_sched_class.pick_next_task(rq, prev);
6ccdc84b
PZ
2715 if (unlikely(p == RETRY_TASK))
2716 goto again;
2717
2718 /* assumes fair_sched_class->next == idle_sched_class */
2719 if (unlikely(!p))
2720 p = idle_sched_class.pick_next_task(rq, prev);
2721
2722 return p;
1da177e4
LT
2723 }
2724
37e117c0 2725again:
34f971f6 2726 for_each_class(class) {
606dba2e 2727 p = class->pick_next_task(rq, prev);
37e117c0
PZ
2728 if (p) {
2729 if (unlikely(p == RETRY_TASK))
2730 goto again;
dd41f596 2731 return p;
37e117c0 2732 }
dd41f596 2733 }
34f971f6
PZ
2734
2735 BUG(); /* the idle class will always have a runnable task */
dd41f596 2736}
1da177e4 2737
dd41f596 2738/*
c259e01a 2739 * __schedule() is the main scheduler function.
edde96ea
PE
2740 *
2741 * The main means of driving the scheduler and thus entering this function are:
2742 *
2743 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2744 *
2745 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2746 * paths. For example, see arch/x86/entry_64.S.
2747 *
2748 * To drive preemption between tasks, the scheduler sets the flag in timer
2749 * interrupt handler scheduler_tick().
2750 *
2751 * 3. Wakeups don't really cause entry into schedule(). They add a
2752 * task to the run-queue and that's it.
2753 *
2754 * Now, if the new task added to the run-queue preempts the current
2755 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2756 * called on the nearest possible occasion:
2757 *
2758 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2759 *
2760 * - in syscall or exception context, at the next outmost
2761 * preempt_enable(). (this might be as soon as the wake_up()'s
2762 * spin_unlock()!)
2763 *
2764 * - in IRQ context, return from interrupt-handler to
2765 * preemptible context
2766 *
2767 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2768 * then at the next:
2769 *
2770 * - cond_resched() call
2771 * - explicit schedule() call
2772 * - return from syscall or exception to user-space
2773 * - return from interrupt-handler to user-space
bfd9b2b5 2774 *
b30f0e3f 2775 * WARNING: must be called with preemption disabled!
dd41f596 2776 */
c259e01a 2777static void __sched __schedule(void)
dd41f596
IM
2778{
2779 struct task_struct *prev, *next;
67ca7bde 2780 unsigned long *switch_count;
dd41f596 2781 struct rq *rq;
31656519 2782 int cpu;
dd41f596 2783
dd41f596
IM
2784 cpu = smp_processor_id();
2785 rq = cpu_rq(cpu);
38200cf2 2786 rcu_note_context_switch();
dd41f596 2787 prev = rq->curr;
dd41f596 2788
dd41f596 2789 schedule_debug(prev);
1da177e4 2790
31656519 2791 if (sched_feat(HRTICK))
f333fdc9 2792 hrtick_clear(rq);
8f4d37ec 2793
e0acd0a6
ON
2794 /*
2795 * Make sure that signal_pending_state()->signal_pending() below
2796 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2797 * done by the caller to avoid the race with signal_wake_up().
2798 */
2799 smp_mb__before_spinlock();
05fa785c 2800 raw_spin_lock_irq(&rq->lock);
1da177e4 2801
9edfbfed
PZ
2802 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
2803
246d86b5 2804 switch_count = &prev->nivcsw;
1da177e4 2805 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 2806 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 2807 prev->state = TASK_RUNNING;
21aa9af0 2808 } else {
2acca55e
PZ
2809 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2810 prev->on_rq = 0;
2811
21aa9af0 2812 /*
2acca55e
PZ
2813 * If a worker went to sleep, notify and ask workqueue
2814 * whether it wants to wake up a task to maintain
2815 * concurrency.
21aa9af0
TH
2816 */
2817 if (prev->flags & PF_WQ_WORKER) {
2818 struct task_struct *to_wakeup;
2819
2820 to_wakeup = wq_worker_sleeping(prev, cpu);
2821 if (to_wakeup)
2822 try_to_wake_up_local(to_wakeup);
2823 }
21aa9af0 2824 }
dd41f596 2825 switch_count = &prev->nvcsw;
1da177e4
LT
2826 }
2827
9edfbfed 2828 if (task_on_rq_queued(prev))
606dba2e
PZ
2829 update_rq_clock(rq);
2830
2831 next = pick_next_task(rq, prev);
f26f9aff 2832 clear_tsk_need_resched(prev);
f27dde8d 2833 clear_preempt_need_resched();
9edfbfed 2834 rq->clock_skip_update = 0;
1da177e4 2835
1da177e4 2836 if (likely(prev != next)) {
1da177e4
LT
2837 rq->nr_switches++;
2838 rq->curr = next;
2839 ++*switch_count;
2840
dfa50b60
ON
2841 rq = context_switch(rq, prev, next); /* unlocks the rq */
2842 cpu = cpu_of(rq);
1da177e4 2843 } else
05fa785c 2844 raw_spin_unlock_irq(&rq->lock);
1da177e4 2845
e3fca9e7 2846 balance_callback(rq);
1da177e4 2847}
c259e01a 2848
9c40cef2
TG
2849static inline void sched_submit_work(struct task_struct *tsk)
2850{
3c7d5184 2851 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
2852 return;
2853 /*
2854 * If we are going to sleep and we have plugged IO queued,
2855 * make sure to submit it to avoid deadlocks.
2856 */
2857 if (blk_needs_flush_plug(tsk))
2858 blk_schedule_flush_plug(tsk);
2859}
2860
722a9f92 2861asmlinkage __visible void __sched schedule(void)
c259e01a 2862{
9c40cef2
TG
2863 struct task_struct *tsk = current;
2864
2865 sched_submit_work(tsk);
bfd9b2b5 2866 do {
b30f0e3f 2867 preempt_disable();
bfd9b2b5 2868 __schedule();
b30f0e3f 2869 sched_preempt_enable_no_resched();
bfd9b2b5 2870 } while (need_resched());
c259e01a 2871}
1da177e4
LT
2872EXPORT_SYMBOL(schedule);
2873
91d1aa43 2874#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 2875asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
2876{
2877 /*
2878 * If we come here after a random call to set_need_resched(),
2879 * or we have been woken up remotely but the IPI has not yet arrived,
2880 * we haven't yet exited the RCU idle mode. Do it here manually until
2881 * we find a better solution.
7cc78f8f
AL
2882 *
2883 * NB: There are buggy callers of this function. Ideally we
c467ea76 2884 * should warn if prev_state != CONTEXT_USER, but that will trigger
7cc78f8f 2885 * too frequently to make sense yet.
20ab65e3 2886 */
7cc78f8f 2887 enum ctx_state prev_state = exception_enter();
20ab65e3 2888 schedule();
7cc78f8f 2889 exception_exit(prev_state);
20ab65e3
FW
2890}
2891#endif
2892
c5491ea7
TG
2893/**
2894 * schedule_preempt_disabled - called with preemption disabled
2895 *
2896 * Returns with preemption disabled. Note: preempt_count must be 1
2897 */
2898void __sched schedule_preempt_disabled(void)
2899{
ba74c144 2900 sched_preempt_enable_no_resched();
c5491ea7
TG
2901 schedule();
2902 preempt_disable();
2903}
2904
06b1f808 2905static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
2906{
2907 do {
b30f0e3f 2908 preempt_active_enter();
a18b5d01 2909 __schedule();
b30f0e3f 2910 preempt_active_exit();
a18b5d01
FW
2911
2912 /*
2913 * Check again in case we missed a preemption opportunity
2914 * between schedule and now.
2915 */
a18b5d01
FW
2916 } while (need_resched());
2917}
2918
1da177e4
LT
2919#ifdef CONFIG_PREEMPT
2920/*
2ed6e34f 2921 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 2922 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
2923 * occur there and call schedule directly.
2924 */
722a9f92 2925asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 2926{
1da177e4
LT
2927 /*
2928 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 2929 * we do not want to preempt the current task. Just return..
1da177e4 2930 */
fbb00b56 2931 if (likely(!preemptible()))
1da177e4
LT
2932 return;
2933
a18b5d01 2934 preempt_schedule_common();
1da177e4 2935}
376e2424 2936NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 2937EXPORT_SYMBOL(preempt_schedule);
009f60e2 2938
009f60e2 2939/**
4eaca0a8 2940 * preempt_schedule_notrace - preempt_schedule called by tracing
009f60e2
ON
2941 *
2942 * The tracing infrastructure uses preempt_enable_notrace to prevent
2943 * recursion and tracing preempt enabling caused by the tracing
2944 * infrastructure itself. But as tracing can happen in areas coming
2945 * from userspace or just about to enter userspace, a preempt enable
2946 * can occur before user_exit() is called. This will cause the scheduler
2947 * to be called when the system is still in usermode.
2948 *
2949 * To prevent this, the preempt_enable_notrace will use this function
2950 * instead of preempt_schedule() to exit user context if needed before
2951 * calling the scheduler.
2952 */
4eaca0a8 2953asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
009f60e2
ON
2954{
2955 enum ctx_state prev_ctx;
2956
2957 if (likely(!preemptible()))
2958 return;
2959
2960 do {
be690035
FW
2961 /*
2962 * Use raw __prempt_count() ops that don't call function.
2963 * We can't call functions before disabling preemption which
2964 * disarm preemption tracing recursions.
2965 */
2966 __preempt_count_add(PREEMPT_ACTIVE + PREEMPT_DISABLE_OFFSET);
2967 barrier();
009f60e2
ON
2968 /*
2969 * Needs preempt disabled in case user_exit() is traced
2970 * and the tracer calls preempt_enable_notrace() causing
2971 * an infinite recursion.
2972 */
2973 prev_ctx = exception_enter();
2974 __schedule();
2975 exception_exit(prev_ctx);
2976
be690035
FW
2977 barrier();
2978 __preempt_count_sub(PREEMPT_ACTIVE + PREEMPT_DISABLE_OFFSET);
009f60e2
ON
2979 } while (need_resched());
2980}
4eaca0a8 2981EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
009f60e2 2982
32e475d7 2983#endif /* CONFIG_PREEMPT */
1da177e4
LT
2984
2985/*
2ed6e34f 2986 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
2987 * off of irq context.
2988 * Note, that this is called and return with irqs disabled. This will
2989 * protect us against recursive calling from irq.
2990 */
722a9f92 2991asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 2992{
b22366cd 2993 enum ctx_state prev_state;
6478d880 2994
2ed6e34f 2995 /* Catch callers which need to be fixed */
f27dde8d 2996 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 2997
b22366cd
FW
2998 prev_state = exception_enter();
2999
3a5c359a 3000 do {
b30f0e3f 3001 preempt_active_enter();
3a5c359a 3002 local_irq_enable();
c259e01a 3003 __schedule();
3a5c359a 3004 local_irq_disable();
b30f0e3f 3005 preempt_active_exit();
5ed0cec0 3006 } while (need_resched());
b22366cd
FW
3007
3008 exception_exit(prev_state);
1da177e4
LT
3009}
3010
63859d4f 3011int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3012 void *key)
1da177e4 3013{
63859d4f 3014 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3015}
1da177e4
LT
3016EXPORT_SYMBOL(default_wake_function);
3017
b29739f9
IM
3018#ifdef CONFIG_RT_MUTEXES
3019
3020/*
3021 * rt_mutex_setprio - set the current priority of a task
3022 * @p: task
3023 * @prio: prio value (kernel-internal form)
3024 *
3025 * This function changes the 'effective' priority of a task. It does
3026 * not touch ->normal_prio like __setscheduler().
3027 *
c365c292
TG
3028 * Used by the rt_mutex code to implement priority inheritance
3029 * logic. Call site only calls if the priority of the task changed.
b29739f9 3030 */
36c8b586 3031void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3032{
da0c1e65 3033 int oldprio, queued, running, enqueue_flag = 0;
70b97a7f 3034 struct rq *rq;
83ab0aa0 3035 const struct sched_class *prev_class;
b29739f9 3036
aab03e05 3037 BUG_ON(prio > MAX_PRIO);
b29739f9 3038
0122ec5b 3039 rq = __task_rq_lock(p);
b29739f9 3040
1c4dd99b
TG
3041 /*
3042 * Idle task boosting is a nono in general. There is one
3043 * exception, when PREEMPT_RT and NOHZ is active:
3044 *
3045 * The idle task calls get_next_timer_interrupt() and holds
3046 * the timer wheel base->lock on the CPU and another CPU wants
3047 * to access the timer (probably to cancel it). We can safely
3048 * ignore the boosting request, as the idle CPU runs this code
3049 * with interrupts disabled and will complete the lock
3050 * protected section without being interrupted. So there is no
3051 * real need to boost.
3052 */
3053 if (unlikely(p == rq->idle)) {
3054 WARN_ON(p != rq->curr);
3055 WARN_ON(p->pi_blocked_on);
3056 goto out_unlock;
3057 }
3058
a8027073 3059 trace_sched_pi_setprio(p, prio);
d5f9f942 3060 oldprio = p->prio;
83ab0aa0 3061 prev_class = p->sched_class;
da0c1e65 3062 queued = task_on_rq_queued(p);
051a1d1a 3063 running = task_current(rq, p);
da0c1e65 3064 if (queued)
69be72c1 3065 dequeue_task(rq, p, 0);
0e1f3483 3066 if (running)
f3cd1c4e 3067 put_prev_task(rq, p);
dd41f596 3068
2d3d891d
DF
3069 /*
3070 * Boosting condition are:
3071 * 1. -rt task is running and holds mutex A
3072 * --> -dl task blocks on mutex A
3073 *
3074 * 2. -dl task is running and holds mutex A
3075 * --> -dl task blocks on mutex A and could preempt the
3076 * running task
3077 */
3078 if (dl_prio(prio)) {
466af29b
ON
3079 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3080 if (!dl_prio(p->normal_prio) ||
3081 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d
DF
3082 p->dl.dl_boosted = 1;
3083 p->dl.dl_throttled = 0;
3084 enqueue_flag = ENQUEUE_REPLENISH;
3085 } else
3086 p->dl.dl_boosted = 0;
aab03e05 3087 p->sched_class = &dl_sched_class;
2d3d891d
DF
3088 } else if (rt_prio(prio)) {
3089 if (dl_prio(oldprio))
3090 p->dl.dl_boosted = 0;
3091 if (oldprio < prio)
3092 enqueue_flag = ENQUEUE_HEAD;
dd41f596 3093 p->sched_class = &rt_sched_class;
2d3d891d
DF
3094 } else {
3095 if (dl_prio(oldprio))
3096 p->dl.dl_boosted = 0;
746db944
BS
3097 if (rt_prio(oldprio))
3098 p->rt.timeout = 0;
dd41f596 3099 p->sched_class = &fair_sched_class;
2d3d891d 3100 }
dd41f596 3101
b29739f9
IM
3102 p->prio = prio;
3103
0e1f3483
HS
3104 if (running)
3105 p->sched_class->set_curr_task(rq);
da0c1e65 3106 if (queued)
2d3d891d 3107 enqueue_task(rq, p, enqueue_flag);
cb469845 3108
da7a735e 3109 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3110out_unlock:
4c9a4bc8 3111 preempt_disable(); /* avoid rq from going away on us */
0122ec5b 3112 __task_rq_unlock(rq);
4c9a4bc8
PZ
3113
3114 balance_callback(rq);
3115 preempt_enable();
b29739f9 3116}
b29739f9 3117#endif
d50dde5a 3118
36c8b586 3119void set_user_nice(struct task_struct *p, long nice)
1da177e4 3120{
da0c1e65 3121 int old_prio, delta, queued;
1da177e4 3122 unsigned long flags;
70b97a7f 3123 struct rq *rq;
1da177e4 3124
75e45d51 3125 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
3126 return;
3127 /*
3128 * We have to be careful, if called from sys_setpriority(),
3129 * the task might be in the middle of scheduling on another CPU.
3130 */
3131 rq = task_rq_lock(p, &flags);
3132 /*
3133 * The RT priorities are set via sched_setscheduler(), but we still
3134 * allow the 'normal' nice value to be set - but as expected
3135 * it wont have any effect on scheduling until the task is
aab03e05 3136 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3137 */
aab03e05 3138 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3139 p->static_prio = NICE_TO_PRIO(nice);
3140 goto out_unlock;
3141 }
da0c1e65
KT
3142 queued = task_on_rq_queued(p);
3143 if (queued)
69be72c1 3144 dequeue_task(rq, p, 0);
1da177e4 3145
1da177e4 3146 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3147 set_load_weight(p);
b29739f9
IM
3148 old_prio = p->prio;
3149 p->prio = effective_prio(p);
3150 delta = p->prio - old_prio;
1da177e4 3151
da0c1e65 3152 if (queued) {
371fd7e7 3153 enqueue_task(rq, p, 0);
1da177e4 3154 /*
d5f9f942
AM
3155 * If the task increased its priority or is running and
3156 * lowered its priority, then reschedule its CPU:
1da177e4 3157 */
d5f9f942 3158 if (delta < 0 || (delta > 0 && task_running(rq, p)))
8875125e 3159 resched_curr(rq);
1da177e4
LT
3160 }
3161out_unlock:
0122ec5b 3162 task_rq_unlock(rq, p, &flags);
1da177e4 3163}
1da177e4
LT
3164EXPORT_SYMBOL(set_user_nice);
3165
e43379f1
MM
3166/*
3167 * can_nice - check if a task can reduce its nice value
3168 * @p: task
3169 * @nice: nice value
3170 */
36c8b586 3171int can_nice(const struct task_struct *p, const int nice)
e43379f1 3172{
024f4747 3173 /* convert nice value [19,-20] to rlimit style value [1,40] */
7aa2c016 3174 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 3175
78d7d407 3176 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3177 capable(CAP_SYS_NICE));
3178}
3179
1da177e4
LT
3180#ifdef __ARCH_WANT_SYS_NICE
3181
3182/*
3183 * sys_nice - change the priority of the current process.
3184 * @increment: priority increment
3185 *
3186 * sys_setpriority is a more generic, but much slower function that
3187 * does similar things.
3188 */
5add95d4 3189SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3190{
48f24c4d 3191 long nice, retval;
1da177e4
LT
3192
3193 /*
3194 * Setpriority might change our priority at the same moment.
3195 * We don't have to worry. Conceptually one call occurs first
3196 * and we have a single winner.
3197 */
a9467fa3 3198 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 3199 nice = task_nice(current) + increment;
1da177e4 3200
a9467fa3 3201 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
3202 if (increment < 0 && !can_nice(current, nice))
3203 return -EPERM;
3204
1da177e4
LT
3205 retval = security_task_setnice(current, nice);
3206 if (retval)
3207 return retval;
3208
3209 set_user_nice(current, nice);
3210 return 0;
3211}
3212
3213#endif
3214
3215/**
3216 * task_prio - return the priority value of a given task.
3217 * @p: the task in question.
3218 *
e69f6186 3219 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3220 * RT tasks are offset by -200. Normal tasks are centered
3221 * around 0, value goes from -16 to +15.
3222 */
36c8b586 3223int task_prio(const struct task_struct *p)
1da177e4
LT
3224{
3225 return p->prio - MAX_RT_PRIO;
3226}
3227
1da177e4
LT
3228/**
3229 * idle_cpu - is a given cpu idle currently?
3230 * @cpu: the processor in question.
e69f6186
YB
3231 *
3232 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3233 */
3234int idle_cpu(int cpu)
3235{
908a3283
TG
3236 struct rq *rq = cpu_rq(cpu);
3237
3238 if (rq->curr != rq->idle)
3239 return 0;
3240
3241 if (rq->nr_running)
3242 return 0;
3243
3244#ifdef CONFIG_SMP
3245 if (!llist_empty(&rq->wake_list))
3246 return 0;
3247#endif
3248
3249 return 1;
1da177e4
LT
3250}
3251
1da177e4
LT
3252/**
3253 * idle_task - return the idle task for a given cpu.
3254 * @cpu: the processor in question.
e69f6186
YB
3255 *
3256 * Return: The idle task for the cpu @cpu.
1da177e4 3257 */
36c8b586 3258struct task_struct *idle_task(int cpu)
1da177e4
LT
3259{
3260 return cpu_rq(cpu)->idle;
3261}
3262
3263/**
3264 * find_process_by_pid - find a process with a matching PID value.
3265 * @pid: the pid in question.
e69f6186
YB
3266 *
3267 * The task of @pid, if found. %NULL otherwise.
1da177e4 3268 */
a9957449 3269static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3270{
228ebcbe 3271 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3272}
3273
aab03e05
DF
3274/*
3275 * This function initializes the sched_dl_entity of a newly becoming
3276 * SCHED_DEADLINE task.
3277 *
3278 * Only the static values are considered here, the actual runtime and the
3279 * absolute deadline will be properly calculated when the task is enqueued
3280 * for the first time with its new policy.
3281 */
3282static void
3283__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3284{
3285 struct sched_dl_entity *dl_se = &p->dl;
3286
aab03e05
DF
3287 dl_se->dl_runtime = attr->sched_runtime;
3288 dl_se->dl_deadline = attr->sched_deadline;
755378a4 3289 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 3290 dl_se->flags = attr->sched_flags;
332ac17e 3291 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
40767b0d
PZ
3292
3293 /*
3294 * Changing the parameters of a task is 'tricky' and we're not doing
3295 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3296 *
3297 * What we SHOULD do is delay the bandwidth release until the 0-lag
3298 * point. This would include retaining the task_struct until that time
3299 * and change dl_overflow() to not immediately decrement the current
3300 * amount.
3301 *
3302 * Instead we retain the current runtime/deadline and let the new
3303 * parameters take effect after the current reservation period lapses.
3304 * This is safe (albeit pessimistic) because the 0-lag point is always
3305 * before the current scheduling deadline.
3306 *
3307 * We can still have temporary overloads because we do not delay the
3308 * change in bandwidth until that time; so admission control is
3309 * not on the safe side. It does however guarantee tasks will never
3310 * consume more than promised.
3311 */
aab03e05
DF
3312}
3313
c13db6b1
SR
3314/*
3315 * sched_setparam() passes in -1 for its policy, to let the functions
3316 * it calls know not to change it.
3317 */
3318#define SETPARAM_POLICY -1
3319
c365c292
TG
3320static void __setscheduler_params(struct task_struct *p,
3321 const struct sched_attr *attr)
1da177e4 3322{
d50dde5a
DF
3323 int policy = attr->sched_policy;
3324
c13db6b1 3325 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
3326 policy = p->policy;
3327
1da177e4 3328 p->policy = policy;
d50dde5a 3329
aab03e05
DF
3330 if (dl_policy(policy))
3331 __setparam_dl(p, attr);
39fd8fd2 3332 else if (fair_policy(policy))
d50dde5a
DF
3333 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3334
39fd8fd2
PZ
3335 /*
3336 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3337 * !rt_policy. Always setting this ensures that things like
3338 * getparam()/getattr() don't report silly values for !rt tasks.
3339 */
3340 p->rt_priority = attr->sched_priority;
383afd09 3341 p->normal_prio = normal_prio(p);
c365c292
TG
3342 set_load_weight(p);
3343}
39fd8fd2 3344
c365c292
TG
3345/* Actually do priority change: must hold pi & rq lock. */
3346static void __setscheduler(struct rq *rq, struct task_struct *p,
0782e63b 3347 const struct sched_attr *attr, bool keep_boost)
c365c292
TG
3348{
3349 __setscheduler_params(p, attr);
d50dde5a 3350
383afd09 3351 /*
0782e63b
TG
3352 * Keep a potential priority boosting if called from
3353 * sched_setscheduler().
383afd09 3354 */
0782e63b
TG
3355 if (keep_boost)
3356 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3357 else
3358 p->prio = normal_prio(p);
383afd09 3359
aab03e05
DF
3360 if (dl_prio(p->prio))
3361 p->sched_class = &dl_sched_class;
3362 else if (rt_prio(p->prio))
ffd44db5
PZ
3363 p->sched_class = &rt_sched_class;
3364 else
3365 p->sched_class = &fair_sched_class;
1da177e4 3366}
aab03e05
DF
3367
3368static void
3369__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3370{
3371 struct sched_dl_entity *dl_se = &p->dl;
3372
3373 attr->sched_priority = p->rt_priority;
3374 attr->sched_runtime = dl_se->dl_runtime;
3375 attr->sched_deadline = dl_se->dl_deadline;
755378a4 3376 attr->sched_period = dl_se->dl_period;
aab03e05
DF
3377 attr->sched_flags = dl_se->flags;
3378}
3379
3380/*
3381 * This function validates the new parameters of a -deadline task.
3382 * We ask for the deadline not being zero, and greater or equal
755378a4 3383 * than the runtime, as well as the period of being zero or
332ac17e 3384 * greater than deadline. Furthermore, we have to be sure that
b0827819
JL
3385 * user parameters are above the internal resolution of 1us (we
3386 * check sched_runtime only since it is always the smaller one) and
3387 * below 2^63 ns (we have to check both sched_deadline and
3388 * sched_period, as the latter can be zero).
aab03e05
DF
3389 */
3390static bool
3391__checkparam_dl(const struct sched_attr *attr)
3392{
b0827819
JL
3393 /* deadline != 0 */
3394 if (attr->sched_deadline == 0)
3395 return false;
3396
3397 /*
3398 * Since we truncate DL_SCALE bits, make sure we're at least
3399 * that big.
3400 */
3401 if (attr->sched_runtime < (1ULL << DL_SCALE))
3402 return false;
3403
3404 /*
3405 * Since we use the MSB for wrap-around and sign issues, make
3406 * sure it's not set (mind that period can be equal to zero).
3407 */
3408 if (attr->sched_deadline & (1ULL << 63) ||
3409 attr->sched_period & (1ULL << 63))
3410 return false;
3411
3412 /* runtime <= deadline <= period (if period != 0) */
3413 if ((attr->sched_period != 0 &&
3414 attr->sched_period < attr->sched_deadline) ||
3415 attr->sched_deadline < attr->sched_runtime)
3416 return false;
3417
3418 return true;
aab03e05
DF
3419}
3420
c69e8d9c
DH
3421/*
3422 * check the target process has a UID that matches the current process's
3423 */
3424static bool check_same_owner(struct task_struct *p)
3425{
3426 const struct cred *cred = current_cred(), *pcred;
3427 bool match;
3428
3429 rcu_read_lock();
3430 pcred = __task_cred(p);
9c806aa0
EB
3431 match = (uid_eq(cred->euid, pcred->euid) ||
3432 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3433 rcu_read_unlock();
3434 return match;
3435}
3436
75381608
WL
3437static bool dl_param_changed(struct task_struct *p,
3438 const struct sched_attr *attr)
3439{
3440 struct sched_dl_entity *dl_se = &p->dl;
3441
3442 if (dl_se->dl_runtime != attr->sched_runtime ||
3443 dl_se->dl_deadline != attr->sched_deadline ||
3444 dl_se->dl_period != attr->sched_period ||
3445 dl_se->flags != attr->sched_flags)
3446 return true;
3447
3448 return false;
3449}
3450
d50dde5a
DF
3451static int __sched_setscheduler(struct task_struct *p,
3452 const struct sched_attr *attr,
dbc7f069 3453 bool user, bool pi)
1da177e4 3454{
383afd09
SR
3455 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3456 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 3457 int retval, oldprio, oldpolicy = -1, queued, running;
0782e63b 3458 int new_effective_prio, policy = attr->sched_policy;
1da177e4 3459 unsigned long flags;
83ab0aa0 3460 const struct sched_class *prev_class;
70b97a7f 3461 struct rq *rq;
ca94c442 3462 int reset_on_fork;
1da177e4 3463
66e5393a
SR
3464 /* may grab non-irq protected spin_locks */
3465 BUG_ON(in_interrupt());
1da177e4
LT
3466recheck:
3467 /* double check policy once rq lock held */
ca94c442
LP
3468 if (policy < 0) {
3469 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3470 policy = oldpolicy = p->policy;
ca94c442 3471 } else {
7479f3c9 3472 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 3473
aab03e05
DF
3474 if (policy != SCHED_DEADLINE &&
3475 policy != SCHED_FIFO && policy != SCHED_RR &&
ca94c442
LP
3476 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3477 policy != SCHED_IDLE)
3478 return -EINVAL;
3479 }
3480
7479f3c9
PZ
3481 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3482 return -EINVAL;
3483
1da177e4
LT
3484 /*
3485 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3486 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3487 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 3488 */
0bb040a4 3489 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 3490 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 3491 return -EINVAL;
aab03e05
DF
3492 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3493 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
3494 return -EINVAL;
3495
37e4ab3f
OC
3496 /*
3497 * Allow unprivileged RT tasks to decrease priority:
3498 */
961ccddd 3499 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 3500 if (fair_policy(policy)) {
d0ea0268 3501 if (attr->sched_nice < task_nice(p) &&
eaad4513 3502 !can_nice(p, attr->sched_nice))
d50dde5a
DF
3503 return -EPERM;
3504 }
3505
e05606d3 3506 if (rt_policy(policy)) {
a44702e8
ON
3507 unsigned long rlim_rtprio =
3508 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3509
3510 /* can't set/change the rt policy */
3511 if (policy != p->policy && !rlim_rtprio)
3512 return -EPERM;
3513
3514 /* can't increase priority */
d50dde5a
DF
3515 if (attr->sched_priority > p->rt_priority &&
3516 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
3517 return -EPERM;
3518 }
c02aa73b 3519
d44753b8
JL
3520 /*
3521 * Can't set/change SCHED_DEADLINE policy at all for now
3522 * (safest behavior); in the future we would like to allow
3523 * unprivileged DL tasks to increase their relative deadline
3524 * or reduce their runtime (both ways reducing utilization)
3525 */
3526 if (dl_policy(policy))
3527 return -EPERM;
3528
dd41f596 3529 /*
c02aa73b
DH
3530 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3531 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3532 */
c02aa73b 3533 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
d0ea0268 3534 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
3535 return -EPERM;
3536 }
5fe1d75f 3537
37e4ab3f 3538 /* can't change other user's priorities */
c69e8d9c 3539 if (!check_same_owner(p))
37e4ab3f 3540 return -EPERM;
ca94c442
LP
3541
3542 /* Normal users shall not reset the sched_reset_on_fork flag */
3543 if (p->sched_reset_on_fork && !reset_on_fork)
3544 return -EPERM;
37e4ab3f 3545 }
1da177e4 3546
725aad24 3547 if (user) {
b0ae1981 3548 retval = security_task_setscheduler(p);
725aad24
JF
3549 if (retval)
3550 return retval;
3551 }
3552
b29739f9
IM
3553 /*
3554 * make sure no PI-waiters arrive (or leave) while we are
3555 * changing the priority of the task:
0122ec5b 3556 *
25985edc 3557 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3558 * runqueue lock must be held.
3559 */
0122ec5b 3560 rq = task_rq_lock(p, &flags);
dc61b1d6 3561
34f971f6
PZ
3562 /*
3563 * Changing the policy of the stop threads its a very bad idea
3564 */
3565 if (p == rq->stop) {
0122ec5b 3566 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3567 return -EINVAL;
3568 }
3569
a51e9198 3570 /*
d6b1e911
TG
3571 * If not changing anything there's no need to proceed further,
3572 * but store a possible modification of reset_on_fork.
a51e9198 3573 */
d50dde5a 3574 if (unlikely(policy == p->policy)) {
d0ea0268 3575 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
3576 goto change;
3577 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3578 goto change;
75381608 3579 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 3580 goto change;
d50dde5a 3581
d6b1e911 3582 p->sched_reset_on_fork = reset_on_fork;
45afb173 3583 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3584 return 0;
3585 }
d50dde5a 3586change:
a51e9198 3587
dc61b1d6 3588 if (user) {
332ac17e 3589#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
3590 /*
3591 * Do not allow realtime tasks into groups that have no runtime
3592 * assigned.
3593 */
3594 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3595 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3596 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3597 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3598 return -EPERM;
3599 }
dc61b1d6 3600#endif
332ac17e
DF
3601#ifdef CONFIG_SMP
3602 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3603 cpumask_t *span = rq->rd->span;
332ac17e
DF
3604
3605 /*
3606 * Don't allow tasks with an affinity mask smaller than
3607 * the entire root_domain to become SCHED_DEADLINE. We
3608 * will also fail if there's no bandwidth available.
3609 */
e4099a5e
PZ
3610 if (!cpumask_subset(span, &p->cpus_allowed) ||
3611 rq->rd->dl_bw.bw == 0) {
332ac17e
DF
3612 task_rq_unlock(rq, p, &flags);
3613 return -EPERM;
3614 }
3615 }
3616#endif
3617 }
dc61b1d6 3618
1da177e4
LT
3619 /* recheck policy now with rq lock held */
3620 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3621 policy = oldpolicy = -1;
0122ec5b 3622 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3623 goto recheck;
3624 }
332ac17e
DF
3625
3626 /*
3627 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3628 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3629 * is available.
3630 */
e4099a5e 3631 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
332ac17e
DF
3632 task_rq_unlock(rq, p, &flags);
3633 return -EBUSY;
3634 }
3635
c365c292
TG
3636 p->sched_reset_on_fork = reset_on_fork;
3637 oldprio = p->prio;
3638
dbc7f069
PZ
3639 if (pi) {
3640 /*
3641 * Take priority boosted tasks into account. If the new
3642 * effective priority is unchanged, we just store the new
3643 * normal parameters and do not touch the scheduler class and
3644 * the runqueue. This will be done when the task deboost
3645 * itself.
3646 */
3647 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
3648 if (new_effective_prio == oldprio) {
3649 __setscheduler_params(p, attr);
3650 task_rq_unlock(rq, p, &flags);
3651 return 0;
3652 }
c365c292
TG
3653 }
3654
da0c1e65 3655 queued = task_on_rq_queued(p);
051a1d1a 3656 running = task_current(rq, p);
da0c1e65 3657 if (queued)
4ca9b72b 3658 dequeue_task(rq, p, 0);
0e1f3483 3659 if (running)
f3cd1c4e 3660 put_prev_task(rq, p);
f6b53205 3661
83ab0aa0 3662 prev_class = p->sched_class;
dbc7f069 3663 __setscheduler(rq, p, attr, pi);
f6b53205 3664
0e1f3483
HS
3665 if (running)
3666 p->sched_class->set_curr_task(rq);
da0c1e65 3667 if (queued) {
81a44c54
TG
3668 /*
3669 * We enqueue to tail when the priority of a task is
3670 * increased (user space view).
3671 */
3672 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3673 }
cb469845 3674
da7a735e 3675 check_class_changed(rq, p, prev_class, oldprio);
4c9a4bc8 3676 preempt_disable(); /* avoid rq from going away on us */
0122ec5b 3677 task_rq_unlock(rq, p, &flags);
b29739f9 3678
dbc7f069
PZ
3679 if (pi)
3680 rt_mutex_adjust_pi(p);
95e02ca9 3681
4c9a4bc8
PZ
3682 /*
3683 * Run balance callbacks after we've adjusted the PI chain.
3684 */
3685 balance_callback(rq);
3686 preempt_enable();
3687
1da177e4
LT
3688 return 0;
3689}
961ccddd 3690
7479f3c9
PZ
3691static int _sched_setscheduler(struct task_struct *p, int policy,
3692 const struct sched_param *param, bool check)
3693{
3694 struct sched_attr attr = {
3695 .sched_policy = policy,
3696 .sched_priority = param->sched_priority,
3697 .sched_nice = PRIO_TO_NICE(p->static_prio),
3698 };
3699
c13db6b1
SR
3700 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
3701 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
3702 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3703 policy &= ~SCHED_RESET_ON_FORK;
3704 attr.sched_policy = policy;
3705 }
3706
dbc7f069 3707 return __sched_setscheduler(p, &attr, check, true);
7479f3c9 3708}
961ccddd
RR
3709/**
3710 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3711 * @p: the task in question.
3712 * @policy: new policy.
3713 * @param: structure containing the new RT priority.
3714 *
e69f6186
YB
3715 * Return: 0 on success. An error code otherwise.
3716 *
961ccddd
RR
3717 * NOTE that the task may be already dead.
3718 */
3719int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3720 const struct sched_param *param)
961ccddd 3721{
7479f3c9 3722 return _sched_setscheduler(p, policy, param, true);
961ccddd 3723}
1da177e4
LT
3724EXPORT_SYMBOL_GPL(sched_setscheduler);
3725
d50dde5a
DF
3726int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3727{
dbc7f069 3728 return __sched_setscheduler(p, attr, true, true);
d50dde5a
DF
3729}
3730EXPORT_SYMBOL_GPL(sched_setattr);
3731
961ccddd
RR
3732/**
3733 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3734 * @p: the task in question.
3735 * @policy: new policy.
3736 * @param: structure containing the new RT priority.
3737 *
3738 * Just like sched_setscheduler, only don't bother checking if the
3739 * current context has permission. For example, this is needed in
3740 * stop_machine(): we create temporary high priority worker threads,
3741 * but our caller might not have that capability.
e69f6186
YB
3742 *
3743 * Return: 0 on success. An error code otherwise.
961ccddd
RR
3744 */
3745int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 3746 const struct sched_param *param)
961ccddd 3747{
7479f3c9 3748 return _sched_setscheduler(p, policy, param, false);
961ccddd
RR
3749}
3750
95cdf3b7
IM
3751static int
3752do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 3753{
1da177e4
LT
3754 struct sched_param lparam;
3755 struct task_struct *p;
36c8b586 3756 int retval;
1da177e4
LT
3757
3758 if (!param || pid < 0)
3759 return -EINVAL;
3760 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3761 return -EFAULT;
5fe1d75f
ON
3762
3763 rcu_read_lock();
3764 retval = -ESRCH;
1da177e4 3765 p = find_process_by_pid(pid);
5fe1d75f
ON
3766 if (p != NULL)
3767 retval = sched_setscheduler(p, policy, &lparam);
3768 rcu_read_unlock();
36c8b586 3769
1da177e4
LT
3770 return retval;
3771}
3772
d50dde5a
DF
3773/*
3774 * Mimics kernel/events/core.c perf_copy_attr().
3775 */
3776static int sched_copy_attr(struct sched_attr __user *uattr,
3777 struct sched_attr *attr)
3778{
3779 u32 size;
3780 int ret;
3781
3782 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3783 return -EFAULT;
3784
3785 /*
3786 * zero the full structure, so that a short copy will be nice.
3787 */
3788 memset(attr, 0, sizeof(*attr));
3789
3790 ret = get_user(size, &uattr->size);
3791 if (ret)
3792 return ret;
3793
3794 if (size > PAGE_SIZE) /* silly large */
3795 goto err_size;
3796
3797 if (!size) /* abi compat */
3798 size = SCHED_ATTR_SIZE_VER0;
3799
3800 if (size < SCHED_ATTR_SIZE_VER0)
3801 goto err_size;
3802
3803 /*
3804 * If we're handed a bigger struct than we know of,
3805 * ensure all the unknown bits are 0 - i.e. new
3806 * user-space does not rely on any kernel feature
3807 * extensions we dont know about yet.
3808 */
3809 if (size > sizeof(*attr)) {
3810 unsigned char __user *addr;
3811 unsigned char __user *end;
3812 unsigned char val;
3813
3814 addr = (void __user *)uattr + sizeof(*attr);
3815 end = (void __user *)uattr + size;
3816
3817 for (; addr < end; addr++) {
3818 ret = get_user(val, addr);
3819 if (ret)
3820 return ret;
3821 if (val)
3822 goto err_size;
3823 }
3824 size = sizeof(*attr);
3825 }
3826
3827 ret = copy_from_user(attr, uattr, size);
3828 if (ret)
3829 return -EFAULT;
3830
3831 /*
3832 * XXX: do we want to be lenient like existing syscalls; or do we want
3833 * to be strict and return an error on out-of-bounds values?
3834 */
75e45d51 3835 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 3836
e78c7bca 3837 return 0;
d50dde5a
DF
3838
3839err_size:
3840 put_user(sizeof(*attr), &uattr->size);
e78c7bca 3841 return -E2BIG;
d50dde5a
DF
3842}
3843
1da177e4
LT
3844/**
3845 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3846 * @pid: the pid in question.
3847 * @policy: new policy.
3848 * @param: structure containing the new RT priority.
e69f6186
YB
3849 *
3850 * Return: 0 on success. An error code otherwise.
1da177e4 3851 */
5add95d4
HC
3852SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3853 struct sched_param __user *, param)
1da177e4 3854{
c21761f1
JB
3855 /* negative values for policy are not valid */
3856 if (policy < 0)
3857 return -EINVAL;
3858
1da177e4
LT
3859 return do_sched_setscheduler(pid, policy, param);
3860}
3861
3862/**
3863 * sys_sched_setparam - set/change the RT priority of a thread
3864 * @pid: the pid in question.
3865 * @param: structure containing the new RT priority.
e69f6186
YB
3866 *
3867 * Return: 0 on success. An error code otherwise.
1da177e4 3868 */
5add95d4 3869SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 3870{
c13db6b1 3871 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
3872}
3873
d50dde5a
DF
3874/**
3875 * sys_sched_setattr - same as above, but with extended sched_attr
3876 * @pid: the pid in question.
5778fccf 3877 * @uattr: structure containing the extended parameters.
db66d756 3878 * @flags: for future extension.
d50dde5a 3879 */
6d35ab48
PZ
3880SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3881 unsigned int, flags)
d50dde5a
DF
3882{
3883 struct sched_attr attr;
3884 struct task_struct *p;
3885 int retval;
3886
6d35ab48 3887 if (!uattr || pid < 0 || flags)
d50dde5a
DF
3888 return -EINVAL;
3889
143cf23d
MK
3890 retval = sched_copy_attr(uattr, &attr);
3891 if (retval)
3892 return retval;
d50dde5a 3893
b14ed2c2 3894 if ((int)attr.sched_policy < 0)
dbdb2275 3895 return -EINVAL;
d50dde5a
DF
3896
3897 rcu_read_lock();
3898 retval = -ESRCH;
3899 p = find_process_by_pid(pid);
3900 if (p != NULL)
3901 retval = sched_setattr(p, &attr);
3902 rcu_read_unlock();
3903
3904 return retval;
3905}
3906
1da177e4
LT
3907/**
3908 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3909 * @pid: the pid in question.
e69f6186
YB
3910 *
3911 * Return: On success, the policy of the thread. Otherwise, a negative error
3912 * code.
1da177e4 3913 */
5add95d4 3914SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 3915{
36c8b586 3916 struct task_struct *p;
3a5c359a 3917 int retval;
1da177e4
LT
3918
3919 if (pid < 0)
3a5c359a 3920 return -EINVAL;
1da177e4
LT
3921
3922 retval = -ESRCH;
5fe85be0 3923 rcu_read_lock();
1da177e4
LT
3924 p = find_process_by_pid(pid);
3925 if (p) {
3926 retval = security_task_getscheduler(p);
3927 if (!retval)
ca94c442
LP
3928 retval = p->policy
3929 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 3930 }
5fe85be0 3931 rcu_read_unlock();
1da177e4
LT
3932 return retval;
3933}
3934
3935/**
ca94c442 3936 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
3937 * @pid: the pid in question.
3938 * @param: structure containing the RT priority.
e69f6186
YB
3939 *
3940 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3941 * code.
1da177e4 3942 */
5add95d4 3943SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 3944{
ce5f7f82 3945 struct sched_param lp = { .sched_priority = 0 };
36c8b586 3946 struct task_struct *p;
3a5c359a 3947 int retval;
1da177e4
LT
3948
3949 if (!param || pid < 0)
3a5c359a 3950 return -EINVAL;
1da177e4 3951
5fe85be0 3952 rcu_read_lock();
1da177e4
LT
3953 p = find_process_by_pid(pid);
3954 retval = -ESRCH;
3955 if (!p)
3956 goto out_unlock;
3957
3958 retval = security_task_getscheduler(p);
3959 if (retval)
3960 goto out_unlock;
3961
ce5f7f82
PZ
3962 if (task_has_rt_policy(p))
3963 lp.sched_priority = p->rt_priority;
5fe85be0 3964 rcu_read_unlock();
1da177e4
LT
3965
3966 /*
3967 * This one might sleep, we cannot do it with a spinlock held ...
3968 */
3969 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3970
1da177e4
LT
3971 return retval;
3972
3973out_unlock:
5fe85be0 3974 rcu_read_unlock();
1da177e4
LT
3975 return retval;
3976}
3977
d50dde5a
DF
3978static int sched_read_attr(struct sched_attr __user *uattr,
3979 struct sched_attr *attr,
3980 unsigned int usize)
3981{
3982 int ret;
3983
3984 if (!access_ok(VERIFY_WRITE, uattr, usize))
3985 return -EFAULT;
3986
3987 /*
3988 * If we're handed a smaller struct than we know of,
3989 * ensure all the unknown bits are 0 - i.e. old
3990 * user-space does not get uncomplete information.
3991 */
3992 if (usize < sizeof(*attr)) {
3993 unsigned char *addr;
3994 unsigned char *end;
3995
3996 addr = (void *)attr + usize;
3997 end = (void *)attr + sizeof(*attr);
3998
3999 for (; addr < end; addr++) {
4000 if (*addr)
22400674 4001 return -EFBIG;
d50dde5a
DF
4002 }
4003
4004 attr->size = usize;
4005 }
4006
4efbc454 4007 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
4008 if (ret)
4009 return -EFAULT;
4010
22400674 4011 return 0;
d50dde5a
DF
4012}
4013
4014/**
aab03e05 4015 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 4016 * @pid: the pid in question.
5778fccf 4017 * @uattr: structure containing the extended parameters.
d50dde5a 4018 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 4019 * @flags: for future extension.
d50dde5a 4020 */
6d35ab48
PZ
4021SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4022 unsigned int, size, unsigned int, flags)
d50dde5a
DF
4023{
4024 struct sched_attr attr = {
4025 .size = sizeof(struct sched_attr),
4026 };
4027 struct task_struct *p;
4028 int retval;
4029
4030 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 4031 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
4032 return -EINVAL;
4033
4034 rcu_read_lock();
4035 p = find_process_by_pid(pid);
4036 retval = -ESRCH;
4037 if (!p)
4038 goto out_unlock;
4039
4040 retval = security_task_getscheduler(p);
4041 if (retval)
4042 goto out_unlock;
4043
4044 attr.sched_policy = p->policy;
7479f3c9
PZ
4045 if (p->sched_reset_on_fork)
4046 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
4047 if (task_has_dl_policy(p))
4048 __getparam_dl(p, &attr);
4049 else if (task_has_rt_policy(p))
d50dde5a
DF
4050 attr.sched_priority = p->rt_priority;
4051 else
d0ea0268 4052 attr.sched_nice = task_nice(p);
d50dde5a
DF
4053
4054 rcu_read_unlock();
4055
4056 retval = sched_read_attr(uattr, &attr, size);
4057 return retval;
4058
4059out_unlock:
4060 rcu_read_unlock();
4061 return retval;
4062}
4063
96f874e2 4064long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4065{
5a16f3d3 4066 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4067 struct task_struct *p;
4068 int retval;
1da177e4 4069
23f5d142 4070 rcu_read_lock();
1da177e4
LT
4071
4072 p = find_process_by_pid(pid);
4073 if (!p) {
23f5d142 4074 rcu_read_unlock();
1da177e4
LT
4075 return -ESRCH;
4076 }
4077
23f5d142 4078 /* Prevent p going away */
1da177e4 4079 get_task_struct(p);
23f5d142 4080 rcu_read_unlock();
1da177e4 4081
14a40ffc
TH
4082 if (p->flags & PF_NO_SETAFFINITY) {
4083 retval = -EINVAL;
4084 goto out_put_task;
4085 }
5a16f3d3
RR
4086 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4087 retval = -ENOMEM;
4088 goto out_put_task;
4089 }
4090 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4091 retval = -ENOMEM;
4092 goto out_free_cpus_allowed;
4093 }
1da177e4 4094 retval = -EPERM;
4c44aaaf
EB
4095 if (!check_same_owner(p)) {
4096 rcu_read_lock();
4097 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4098 rcu_read_unlock();
16303ab2 4099 goto out_free_new_mask;
4c44aaaf
EB
4100 }
4101 rcu_read_unlock();
4102 }
1da177e4 4103
b0ae1981 4104 retval = security_task_setscheduler(p);
e7834f8f 4105 if (retval)
16303ab2 4106 goto out_free_new_mask;
e7834f8f 4107
e4099a5e
PZ
4108
4109 cpuset_cpus_allowed(p, cpus_allowed);
4110 cpumask_and(new_mask, in_mask, cpus_allowed);
4111
332ac17e
DF
4112 /*
4113 * Since bandwidth control happens on root_domain basis,
4114 * if admission test is enabled, we only admit -deadline
4115 * tasks allowed to run on all the CPUs in the task's
4116 * root_domain.
4117 */
4118#ifdef CONFIG_SMP
f1e3a093
KT
4119 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4120 rcu_read_lock();
4121 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 4122 retval = -EBUSY;
f1e3a093 4123 rcu_read_unlock();
16303ab2 4124 goto out_free_new_mask;
332ac17e 4125 }
f1e3a093 4126 rcu_read_unlock();
332ac17e
DF
4127 }
4128#endif
49246274 4129again:
5a16f3d3 4130 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 4131
8707d8b8 4132 if (!retval) {
5a16f3d3
RR
4133 cpuset_cpus_allowed(p, cpus_allowed);
4134 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4135 /*
4136 * We must have raced with a concurrent cpuset
4137 * update. Just reset the cpus_allowed to the
4138 * cpuset's cpus_allowed
4139 */
5a16f3d3 4140 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4141 goto again;
4142 }
4143 }
16303ab2 4144out_free_new_mask:
5a16f3d3
RR
4145 free_cpumask_var(new_mask);
4146out_free_cpus_allowed:
4147 free_cpumask_var(cpus_allowed);
4148out_put_task:
1da177e4 4149 put_task_struct(p);
1da177e4
LT
4150 return retval;
4151}
4152
4153static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4154 struct cpumask *new_mask)
1da177e4 4155{
96f874e2
RR
4156 if (len < cpumask_size())
4157 cpumask_clear(new_mask);
4158 else if (len > cpumask_size())
4159 len = cpumask_size();
4160
1da177e4
LT
4161 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4162}
4163
4164/**
4165 * sys_sched_setaffinity - set the cpu affinity of a process
4166 * @pid: pid of the process
4167 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4168 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
4169 *
4170 * Return: 0 on success. An error code otherwise.
1da177e4 4171 */
5add95d4
HC
4172SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4173 unsigned long __user *, user_mask_ptr)
1da177e4 4174{
5a16f3d3 4175 cpumask_var_t new_mask;
1da177e4
LT
4176 int retval;
4177
5a16f3d3
RR
4178 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4179 return -ENOMEM;
1da177e4 4180
5a16f3d3
RR
4181 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4182 if (retval == 0)
4183 retval = sched_setaffinity(pid, new_mask);
4184 free_cpumask_var(new_mask);
4185 return retval;
1da177e4
LT
4186}
4187
96f874e2 4188long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4189{
36c8b586 4190 struct task_struct *p;
31605683 4191 unsigned long flags;
1da177e4 4192 int retval;
1da177e4 4193
23f5d142 4194 rcu_read_lock();
1da177e4
LT
4195
4196 retval = -ESRCH;
4197 p = find_process_by_pid(pid);
4198 if (!p)
4199 goto out_unlock;
4200
e7834f8f
DQ
4201 retval = security_task_getscheduler(p);
4202 if (retval)
4203 goto out_unlock;
4204
013fdb80 4205 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4206 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4207 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4208
4209out_unlock:
23f5d142 4210 rcu_read_unlock();
1da177e4 4211
9531b62f 4212 return retval;
1da177e4
LT
4213}
4214
4215/**
4216 * sys_sched_getaffinity - get the cpu affinity of a process
4217 * @pid: pid of the process
4218 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4219 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186
YB
4220 *
4221 * Return: 0 on success. An error code otherwise.
1da177e4 4222 */
5add95d4
HC
4223SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4224 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4225{
4226 int ret;
f17c8607 4227 cpumask_var_t mask;
1da177e4 4228
84fba5ec 4229 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4230 return -EINVAL;
4231 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4232 return -EINVAL;
4233
f17c8607
RR
4234 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4235 return -ENOMEM;
1da177e4 4236
f17c8607
RR
4237 ret = sched_getaffinity(pid, mask);
4238 if (ret == 0) {
8bc037fb 4239 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4240
4241 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4242 ret = -EFAULT;
4243 else
cd3d8031 4244 ret = retlen;
f17c8607
RR
4245 }
4246 free_cpumask_var(mask);
1da177e4 4247
f17c8607 4248 return ret;
1da177e4
LT
4249}
4250
4251/**
4252 * sys_sched_yield - yield the current processor to other threads.
4253 *
dd41f596
IM
4254 * This function yields the current CPU to other tasks. If there are no
4255 * other threads running on this CPU then this function will return.
e69f6186
YB
4256 *
4257 * Return: 0.
1da177e4 4258 */
5add95d4 4259SYSCALL_DEFINE0(sched_yield)
1da177e4 4260{
70b97a7f 4261 struct rq *rq = this_rq_lock();
1da177e4 4262
2d72376b 4263 schedstat_inc(rq, yld_count);
4530d7ab 4264 current->sched_class->yield_task(rq);
1da177e4
LT
4265
4266 /*
4267 * Since we are going to call schedule() anyway, there's
4268 * no need to preempt or enable interrupts:
4269 */
4270 __release(rq->lock);
8a25d5de 4271 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4272 do_raw_spin_unlock(&rq->lock);
ba74c144 4273 sched_preempt_enable_no_resched();
1da177e4
LT
4274
4275 schedule();
4276
4277 return 0;
4278}
4279
02b67cc3 4280int __sched _cond_resched(void)
1da177e4 4281{
d86ee480 4282 if (should_resched()) {
a18b5d01 4283 preempt_schedule_common();
1da177e4
LT
4284 return 1;
4285 }
4286 return 0;
4287}
02b67cc3 4288EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4289
4290/*
613afbf8 4291 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4292 * call schedule, and on return reacquire the lock.
4293 *
41a2d6cf 4294 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4295 * operations here to prevent schedule() from being called twice (once via
4296 * spin_unlock(), once by hand).
4297 */
613afbf8 4298int __cond_resched_lock(spinlock_t *lock)
1da177e4 4299{
d86ee480 4300 int resched = should_resched();
6df3cecb
JK
4301 int ret = 0;
4302
f607c668
PZ
4303 lockdep_assert_held(lock);
4304
4a81e832 4305 if (spin_needbreak(lock) || resched) {
1da177e4 4306 spin_unlock(lock);
d86ee480 4307 if (resched)
a18b5d01 4308 preempt_schedule_common();
95c354fe
NP
4309 else
4310 cpu_relax();
6df3cecb 4311 ret = 1;
1da177e4 4312 spin_lock(lock);
1da177e4 4313 }
6df3cecb 4314 return ret;
1da177e4 4315}
613afbf8 4316EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4317
613afbf8 4318int __sched __cond_resched_softirq(void)
1da177e4
LT
4319{
4320 BUG_ON(!in_softirq());
4321
d86ee480 4322 if (should_resched()) {
98d82567 4323 local_bh_enable();
a18b5d01 4324 preempt_schedule_common();
1da177e4
LT
4325 local_bh_disable();
4326 return 1;
4327 }
4328 return 0;
4329}
613afbf8 4330EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4331
1da177e4
LT
4332/**
4333 * yield - yield the current processor to other threads.
4334 *
8e3fabfd
PZ
4335 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4336 *
4337 * The scheduler is at all times free to pick the calling task as the most
4338 * eligible task to run, if removing the yield() call from your code breaks
4339 * it, its already broken.
4340 *
4341 * Typical broken usage is:
4342 *
4343 * while (!event)
4344 * yield();
4345 *
4346 * where one assumes that yield() will let 'the other' process run that will
4347 * make event true. If the current task is a SCHED_FIFO task that will never
4348 * happen. Never use yield() as a progress guarantee!!
4349 *
4350 * If you want to use yield() to wait for something, use wait_event().
4351 * If you want to use yield() to be 'nice' for others, use cond_resched().
4352 * If you still want to use yield(), do not!
1da177e4
LT
4353 */
4354void __sched yield(void)
4355{
4356 set_current_state(TASK_RUNNING);
4357 sys_sched_yield();
4358}
1da177e4
LT
4359EXPORT_SYMBOL(yield);
4360
d95f4122
MG
4361/**
4362 * yield_to - yield the current processor to another thread in
4363 * your thread group, or accelerate that thread toward the
4364 * processor it's on.
16addf95
RD
4365 * @p: target task
4366 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4367 *
4368 * It's the caller's job to ensure that the target task struct
4369 * can't go away on us before we can do any checks.
4370 *
e69f6186 4371 * Return:
7b270f60
PZ
4372 * true (>0) if we indeed boosted the target task.
4373 * false (0) if we failed to boost the target.
4374 * -ESRCH if there's no task to yield to.
d95f4122 4375 */
fa93384f 4376int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
4377{
4378 struct task_struct *curr = current;
4379 struct rq *rq, *p_rq;
4380 unsigned long flags;
c3c18640 4381 int yielded = 0;
d95f4122
MG
4382
4383 local_irq_save(flags);
4384 rq = this_rq();
4385
4386again:
4387 p_rq = task_rq(p);
7b270f60
PZ
4388 /*
4389 * If we're the only runnable task on the rq and target rq also
4390 * has only one task, there's absolutely no point in yielding.
4391 */
4392 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4393 yielded = -ESRCH;
4394 goto out_irq;
4395 }
4396
d95f4122 4397 double_rq_lock(rq, p_rq);
39e24d8f 4398 if (task_rq(p) != p_rq) {
d95f4122
MG
4399 double_rq_unlock(rq, p_rq);
4400 goto again;
4401 }
4402
4403 if (!curr->sched_class->yield_to_task)
7b270f60 4404 goto out_unlock;
d95f4122
MG
4405
4406 if (curr->sched_class != p->sched_class)
7b270f60 4407 goto out_unlock;
d95f4122
MG
4408
4409 if (task_running(p_rq, p) || p->state)
7b270f60 4410 goto out_unlock;
d95f4122
MG
4411
4412 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4413 if (yielded) {
d95f4122 4414 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4415 /*
4416 * Make p's CPU reschedule; pick_next_entity takes care of
4417 * fairness.
4418 */
4419 if (preempt && rq != p_rq)
8875125e 4420 resched_curr(p_rq);
6d1cafd8 4421 }
d95f4122 4422
7b270f60 4423out_unlock:
d95f4122 4424 double_rq_unlock(rq, p_rq);
7b270f60 4425out_irq:
d95f4122
MG
4426 local_irq_restore(flags);
4427
7b270f60 4428 if (yielded > 0)
d95f4122
MG
4429 schedule();
4430
4431 return yielded;
4432}
4433EXPORT_SYMBOL_GPL(yield_to);
4434
1da177e4 4435/*
41a2d6cf 4436 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4437 * that process accounting knows that this is a task in IO wait state.
1da177e4 4438 */
1da177e4
LT
4439long __sched io_schedule_timeout(long timeout)
4440{
9cff8ade
N
4441 int old_iowait = current->in_iowait;
4442 struct rq *rq;
1da177e4
LT
4443 long ret;
4444
9cff8ade 4445 current->in_iowait = 1;
10d784ea 4446 blk_schedule_flush_plug(current);
9cff8ade 4447
0ff92245 4448 delayacct_blkio_start();
9cff8ade 4449 rq = raw_rq();
1da177e4
LT
4450 atomic_inc(&rq->nr_iowait);
4451 ret = schedule_timeout(timeout);
9cff8ade 4452 current->in_iowait = old_iowait;
1da177e4 4453 atomic_dec(&rq->nr_iowait);
0ff92245 4454 delayacct_blkio_end();
9cff8ade 4455
1da177e4
LT
4456 return ret;
4457}
9cff8ade 4458EXPORT_SYMBOL(io_schedule_timeout);
1da177e4
LT
4459
4460/**
4461 * sys_sched_get_priority_max - return maximum RT priority.
4462 * @policy: scheduling class.
4463 *
e69f6186
YB
4464 * Return: On success, this syscall returns the maximum
4465 * rt_priority that can be used by a given scheduling class.
4466 * On failure, a negative error code is returned.
1da177e4 4467 */
5add95d4 4468SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4469{
4470 int ret = -EINVAL;
4471
4472 switch (policy) {
4473 case SCHED_FIFO:
4474 case SCHED_RR:
4475 ret = MAX_USER_RT_PRIO-1;
4476 break;
aab03e05 4477 case SCHED_DEADLINE:
1da177e4 4478 case SCHED_NORMAL:
b0a9499c 4479 case SCHED_BATCH:
dd41f596 4480 case SCHED_IDLE:
1da177e4
LT
4481 ret = 0;
4482 break;
4483 }
4484 return ret;
4485}
4486
4487/**
4488 * sys_sched_get_priority_min - return minimum RT priority.
4489 * @policy: scheduling class.
4490 *
e69f6186
YB
4491 * Return: On success, this syscall returns the minimum
4492 * rt_priority that can be used by a given scheduling class.
4493 * On failure, a negative error code is returned.
1da177e4 4494 */
5add95d4 4495SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4496{
4497 int ret = -EINVAL;
4498
4499 switch (policy) {
4500 case SCHED_FIFO:
4501 case SCHED_RR:
4502 ret = 1;
4503 break;
aab03e05 4504 case SCHED_DEADLINE:
1da177e4 4505 case SCHED_NORMAL:
b0a9499c 4506 case SCHED_BATCH:
dd41f596 4507 case SCHED_IDLE:
1da177e4
LT
4508 ret = 0;
4509 }
4510 return ret;
4511}
4512
4513/**
4514 * sys_sched_rr_get_interval - return the default timeslice of a process.
4515 * @pid: pid of the process.
4516 * @interval: userspace pointer to the timeslice value.
4517 *
4518 * this syscall writes the default timeslice value of a given process
4519 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
4520 *
4521 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4522 * an error code.
1da177e4 4523 */
17da2bd9 4524SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4525 struct timespec __user *, interval)
1da177e4 4526{
36c8b586 4527 struct task_struct *p;
a4ec24b4 4528 unsigned int time_slice;
dba091b9
TG
4529 unsigned long flags;
4530 struct rq *rq;
3a5c359a 4531 int retval;
1da177e4 4532 struct timespec t;
1da177e4
LT
4533
4534 if (pid < 0)
3a5c359a 4535 return -EINVAL;
1da177e4
LT
4536
4537 retval = -ESRCH;
1a551ae7 4538 rcu_read_lock();
1da177e4
LT
4539 p = find_process_by_pid(pid);
4540 if (!p)
4541 goto out_unlock;
4542
4543 retval = security_task_getscheduler(p);
4544 if (retval)
4545 goto out_unlock;
4546
dba091b9 4547 rq = task_rq_lock(p, &flags);
a57beec5
PZ
4548 time_slice = 0;
4549 if (p->sched_class->get_rr_interval)
4550 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4551 task_rq_unlock(rq, p, &flags);
a4ec24b4 4552
1a551ae7 4553 rcu_read_unlock();
a4ec24b4 4554 jiffies_to_timespec(time_slice, &t);
1da177e4 4555 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4556 return retval;
3a5c359a 4557
1da177e4 4558out_unlock:
1a551ae7 4559 rcu_read_unlock();
1da177e4
LT
4560 return retval;
4561}
4562
7c731e0a 4563static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4564
82a1fcb9 4565void sched_show_task(struct task_struct *p)
1da177e4 4566{
1da177e4 4567 unsigned long free = 0;
4e79752c 4568 int ppid;
1f8a7633 4569 unsigned long state = p->state;
1da177e4 4570
1f8a7633
TH
4571 if (state)
4572 state = __ffs(state) + 1;
28d0686c 4573 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4574 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4575#if BITS_PER_LONG == 32
1da177e4 4576 if (state == TASK_RUNNING)
3df0fc5b 4577 printk(KERN_CONT " running ");
1da177e4 4578 else
3df0fc5b 4579 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4580#else
4581 if (state == TASK_RUNNING)
3df0fc5b 4582 printk(KERN_CONT " running task ");
1da177e4 4583 else
3df0fc5b 4584 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4585#endif
4586#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4587 free = stack_not_used(p);
1da177e4 4588#endif
a90e984c 4589 ppid = 0;
4e79752c 4590 rcu_read_lock();
a90e984c
ON
4591 if (pid_alive(p))
4592 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 4593 rcu_read_unlock();
3df0fc5b 4594 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 4595 task_pid_nr(p), ppid,
aa47b7e0 4596 (unsigned long)task_thread_info(p)->flags);
1da177e4 4597
3d1cb205 4598 print_worker_info(KERN_INFO, p);
5fb5e6de 4599 show_stack(p, NULL);
1da177e4
LT
4600}
4601
e59e2ae2 4602void show_state_filter(unsigned long state_filter)
1da177e4 4603{
36c8b586 4604 struct task_struct *g, *p;
1da177e4 4605
4bd77321 4606#if BITS_PER_LONG == 32
3df0fc5b
PZ
4607 printk(KERN_INFO
4608 " task PC stack pid father\n");
1da177e4 4609#else
3df0fc5b
PZ
4610 printk(KERN_INFO
4611 " task PC stack pid father\n");
1da177e4 4612#endif
510f5acc 4613 rcu_read_lock();
5d07f420 4614 for_each_process_thread(g, p) {
1da177e4
LT
4615 /*
4616 * reset the NMI-timeout, listing all files on a slow
25985edc 4617 * console might take a lot of time:
1da177e4
LT
4618 */
4619 touch_nmi_watchdog();
39bc89fd 4620 if (!state_filter || (p->state & state_filter))
82a1fcb9 4621 sched_show_task(p);
5d07f420 4622 }
1da177e4 4623
04c9167f
JF
4624 touch_all_softlockup_watchdogs();
4625
dd41f596
IM
4626#ifdef CONFIG_SCHED_DEBUG
4627 sysrq_sched_debug_show();
4628#endif
510f5acc 4629 rcu_read_unlock();
e59e2ae2
IM
4630 /*
4631 * Only show locks if all tasks are dumped:
4632 */
93335a21 4633 if (!state_filter)
e59e2ae2 4634 debug_show_all_locks();
1da177e4
LT
4635}
4636
0db0628d 4637void init_idle_bootup_task(struct task_struct *idle)
1df21055 4638{
dd41f596 4639 idle->sched_class = &idle_sched_class;
1df21055
IM
4640}
4641
f340c0d1
IM
4642/**
4643 * init_idle - set up an idle thread for a given CPU
4644 * @idle: task in question
4645 * @cpu: cpu the idle task belongs to
4646 *
4647 * NOTE: this function does not set the idle thread's NEED_RESCHED
4648 * flag, to make booting more robust.
4649 */
0db0628d 4650void init_idle(struct task_struct *idle, int cpu)
1da177e4 4651{
70b97a7f 4652 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4653 unsigned long flags;
4654
05fa785c 4655 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 4656
5e1576ed 4657 __sched_fork(0, idle);
06b83b5f 4658 idle->state = TASK_RUNNING;
dd41f596
IM
4659 idle->se.exec_start = sched_clock();
4660
1e1b6c51 4661 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4662 /*
4663 * We're having a chicken and egg problem, even though we are
4664 * holding rq->lock, the cpu isn't yet set to this cpu so the
4665 * lockdep check in task_group() will fail.
4666 *
4667 * Similar case to sched_fork(). / Alternatively we could
4668 * use task_rq_lock() here and obtain the other rq->lock.
4669 *
4670 * Silence PROVE_RCU
4671 */
4672 rcu_read_lock();
dd41f596 4673 __set_task_cpu(idle, cpu);
6506cf6c 4674 rcu_read_unlock();
1da177e4 4675
1da177e4 4676 rq->curr = rq->idle = idle;
da0c1e65 4677 idle->on_rq = TASK_ON_RQ_QUEUED;
3ca7a440
PZ
4678#if defined(CONFIG_SMP)
4679 idle->on_cpu = 1;
4866cde0 4680#endif
05fa785c 4681 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
4682
4683 /* Set the preempt count _outside_ the spinlocks! */
01028747 4684 init_idle_preempt_count(idle, cpu);
55cd5340 4685
dd41f596
IM
4686 /*
4687 * The idle tasks have their own, simple scheduling class:
4688 */
4689 idle->sched_class = &idle_sched_class;
868baf07 4690 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 4691 vtime_init_idle(idle, cpu);
f1c6f1a7
CE
4692#if defined(CONFIG_SMP)
4693 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4694#endif
19978ca6
IM
4695}
4696
f82f8042
JL
4697int cpuset_cpumask_can_shrink(const struct cpumask *cur,
4698 const struct cpumask *trial)
4699{
4700 int ret = 1, trial_cpus;
4701 struct dl_bw *cur_dl_b;
4702 unsigned long flags;
4703
bb2bc55a
MG
4704 if (!cpumask_weight(cur))
4705 return ret;
4706
75e23e49 4707 rcu_read_lock_sched();
f82f8042
JL
4708 cur_dl_b = dl_bw_of(cpumask_any(cur));
4709 trial_cpus = cpumask_weight(trial);
4710
4711 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
4712 if (cur_dl_b->bw != -1 &&
4713 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
4714 ret = 0;
4715 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
75e23e49 4716 rcu_read_unlock_sched();
f82f8042
JL
4717
4718 return ret;
4719}
4720
7f51412a
JL
4721int task_can_attach(struct task_struct *p,
4722 const struct cpumask *cs_cpus_allowed)
4723{
4724 int ret = 0;
4725
4726 /*
4727 * Kthreads which disallow setaffinity shouldn't be moved
4728 * to a new cpuset; we don't want to change their cpu
4729 * affinity and isolating such threads by their set of
4730 * allowed nodes is unnecessary. Thus, cpusets are not
4731 * applicable for such threads. This prevents checking for
4732 * success of set_cpus_allowed_ptr() on all attached tasks
4733 * before cpus_allowed may be changed.
4734 */
4735 if (p->flags & PF_NO_SETAFFINITY) {
4736 ret = -EINVAL;
4737 goto out;
4738 }
4739
4740#ifdef CONFIG_SMP
4741 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
4742 cs_cpus_allowed)) {
4743 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
4744 cs_cpus_allowed);
75e23e49 4745 struct dl_bw *dl_b;
7f51412a
JL
4746 bool overflow;
4747 int cpus;
4748 unsigned long flags;
4749
75e23e49
JL
4750 rcu_read_lock_sched();
4751 dl_b = dl_bw_of(dest_cpu);
7f51412a
JL
4752 raw_spin_lock_irqsave(&dl_b->lock, flags);
4753 cpus = dl_bw_cpus(dest_cpu);
4754 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
4755 if (overflow)
4756 ret = -EBUSY;
4757 else {
4758 /*
4759 * We reserve space for this task in the destination
4760 * root_domain, as we can't fail after this point.
4761 * We will free resources in the source root_domain
4762 * later on (see set_cpus_allowed_dl()).
4763 */
4764 __dl_add(dl_b, p->dl.dl_bw);
4765 }
4766 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
75e23e49 4767 rcu_read_unlock_sched();
7f51412a
JL
4768
4769 }
4770#endif
4771out:
4772 return ret;
4773}
4774
1da177e4 4775#ifdef CONFIG_SMP
a15b12ac
KT
4776/*
4777 * move_queued_task - move a queued task to new rq.
4778 *
4779 * Returns (locked) new rq. Old rq's lock is released.
4780 */
4781static struct rq *move_queued_task(struct task_struct *p, int new_cpu)
4782{
4783 struct rq *rq = task_rq(p);
4784
4785 lockdep_assert_held(&rq->lock);
4786
4787 dequeue_task(rq, p, 0);
4788 p->on_rq = TASK_ON_RQ_MIGRATING;
4789 set_task_cpu(p, new_cpu);
4790 raw_spin_unlock(&rq->lock);
4791
4792 rq = cpu_rq(new_cpu);
4793
4794 raw_spin_lock(&rq->lock);
4795 BUG_ON(task_cpu(p) != new_cpu);
4796 p->on_rq = TASK_ON_RQ_QUEUED;
4797 enqueue_task(rq, p, 0);
4798 check_preempt_curr(rq, p, 0);
4799
4800 return rq;
4801}
4802
1e1b6c51
KM
4803void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4804{
1b537c7d 4805 if (p->sched_class->set_cpus_allowed)
1e1b6c51 4806 p->sched_class->set_cpus_allowed(p, new_mask);
4939602a
PZ
4807
4808 cpumask_copy(&p->cpus_allowed, new_mask);
29baa747 4809 p->nr_cpus_allowed = cpumask_weight(new_mask);
1e1b6c51
KM
4810}
4811
1da177e4
LT
4812/*
4813 * This is how migration works:
4814 *
969c7921
TH
4815 * 1) we invoke migration_cpu_stop() on the target CPU using
4816 * stop_one_cpu().
4817 * 2) stopper starts to run (implicitly forcing the migrated thread
4818 * off the CPU)
4819 * 3) it checks whether the migrated task is still in the wrong runqueue.
4820 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 4821 * it and puts it into the right queue.
969c7921
TH
4822 * 5) stopper completes and stop_one_cpu() returns and the migration
4823 * is done.
1da177e4
LT
4824 */
4825
4826/*
4827 * Change a given task's CPU affinity. Migrate the thread to a
4828 * proper CPU and schedule it away if the CPU it's executing on
4829 * is removed from the allowed bitmask.
4830 *
4831 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 4832 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
4833 * call is not atomic; no spinlocks may be held.
4834 */
96f874e2 4835int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
4836{
4837 unsigned long flags;
70b97a7f 4838 struct rq *rq;
969c7921 4839 unsigned int dest_cpu;
48f24c4d 4840 int ret = 0;
1da177e4
LT
4841
4842 rq = task_rq_lock(p, &flags);
e2912009 4843
db44fc01
YZ
4844 if (cpumask_equal(&p->cpus_allowed, new_mask))
4845 goto out;
4846
6ad4c188 4847 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
4848 ret = -EINVAL;
4849 goto out;
4850 }
4851
1e1b6c51 4852 do_set_cpus_allowed(p, new_mask);
73fe6aae 4853
1da177e4 4854 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 4855 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
4856 goto out;
4857
969c7921 4858 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
a15b12ac 4859 if (task_running(rq, p) || p->state == TASK_WAKING) {
969c7921 4860 struct migration_arg arg = { p, dest_cpu };
1da177e4 4861 /* Need help from migration thread: drop lock and wait. */
0122ec5b 4862 task_rq_unlock(rq, p, &flags);
969c7921 4863 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
4864 tlb_migrate_finish(p->mm);
4865 return 0;
a15b12ac
KT
4866 } else if (task_on_rq_queued(p))
4867 rq = move_queued_task(p, dest_cpu);
1da177e4 4868out:
0122ec5b 4869 task_rq_unlock(rq, p, &flags);
48f24c4d 4870
1da177e4
LT
4871 return ret;
4872}
cd8ba7cd 4873EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
4874
4875/*
41a2d6cf 4876 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
4877 * this because either it can't run here any more (set_cpus_allowed()
4878 * away from this CPU, or CPU going down), or because we're
4879 * attempting to rebalance this task on exec (sched_exec).
4880 *
4881 * So we race with normal scheduler movements, but that's OK, as long
4882 * as the task is no longer on this CPU.
efc30814
KK
4883 *
4884 * Returns non-zero if task was successfully migrated.
1da177e4 4885 */
efc30814 4886static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4887{
a1e01829 4888 struct rq *rq;
e2912009 4889 int ret = 0;
1da177e4 4890
e761b772 4891 if (unlikely(!cpu_active(dest_cpu)))
efc30814 4892 return ret;
1da177e4 4893
a1e01829 4894 rq = cpu_rq(src_cpu);
1da177e4 4895
0122ec5b 4896 raw_spin_lock(&p->pi_lock);
a1e01829 4897 raw_spin_lock(&rq->lock);
1da177e4
LT
4898 /* Already moved. */
4899 if (task_cpu(p) != src_cpu)
b1e38734 4900 goto done;
a1e01829 4901
1da177e4 4902 /* Affinity changed (again). */
fa17b507 4903 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
b1e38734 4904 goto fail;
1da177e4 4905
e2912009
PZ
4906 /*
4907 * If we're not on a rq, the next wake-up will ensure we're
4908 * placed properly.
4909 */
a15b12ac
KT
4910 if (task_on_rq_queued(p))
4911 rq = move_queued_task(p, dest_cpu);
b1e38734 4912done:
efc30814 4913 ret = 1;
b1e38734 4914fail:
a1e01829 4915 raw_spin_unlock(&rq->lock);
0122ec5b 4916 raw_spin_unlock(&p->pi_lock);
efc30814 4917 return ret;
1da177e4
LT
4918}
4919
e6628d5b
MG
4920#ifdef CONFIG_NUMA_BALANCING
4921/* Migrate current task p to target_cpu */
4922int migrate_task_to(struct task_struct *p, int target_cpu)
4923{
4924 struct migration_arg arg = { p, target_cpu };
4925 int curr_cpu = task_cpu(p);
4926
4927 if (curr_cpu == target_cpu)
4928 return 0;
4929
4930 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4931 return -EINVAL;
4932
4933 /* TODO: This is not properly updating schedstats */
4934
286549dc 4935 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
4936 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4937}
0ec8aa00
PZ
4938
4939/*
4940 * Requeue a task on a given node and accurately track the number of NUMA
4941 * tasks on the runqueues
4942 */
4943void sched_setnuma(struct task_struct *p, int nid)
4944{
4945 struct rq *rq;
4946 unsigned long flags;
da0c1e65 4947 bool queued, running;
0ec8aa00
PZ
4948
4949 rq = task_rq_lock(p, &flags);
da0c1e65 4950 queued = task_on_rq_queued(p);
0ec8aa00
PZ
4951 running = task_current(rq, p);
4952
da0c1e65 4953 if (queued)
0ec8aa00
PZ
4954 dequeue_task(rq, p, 0);
4955 if (running)
f3cd1c4e 4956 put_prev_task(rq, p);
0ec8aa00
PZ
4957
4958 p->numa_preferred_nid = nid;
0ec8aa00
PZ
4959
4960 if (running)
4961 p->sched_class->set_curr_task(rq);
da0c1e65 4962 if (queued)
0ec8aa00
PZ
4963 enqueue_task(rq, p, 0);
4964 task_rq_unlock(rq, p, &flags);
4965}
e6628d5b
MG
4966#endif
4967
1da177e4 4968/*
969c7921
TH
4969 * migration_cpu_stop - this will be executed by a highprio stopper thread
4970 * and performs thread migration by bumping thread off CPU then
4971 * 'pushing' onto another runqueue.
1da177e4 4972 */
969c7921 4973static int migration_cpu_stop(void *data)
1da177e4 4974{
969c7921 4975 struct migration_arg *arg = data;
f7b4cddc 4976
969c7921
TH
4977 /*
4978 * The original target cpu might have gone down and we might
4979 * be on another cpu but it doesn't matter.
4980 */
f7b4cddc 4981 local_irq_disable();
5cd038f5
LJ
4982 /*
4983 * We need to explicitly wake pending tasks before running
4984 * __migrate_task() such that we will not miss enforcing cpus_allowed
4985 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
4986 */
4987 sched_ttwu_pending();
969c7921 4988 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 4989 local_irq_enable();
1da177e4 4990 return 0;
f7b4cddc
ON
4991}
4992
1da177e4 4993#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 4994
054b9108 4995/*
48c5ccae
PZ
4996 * Ensures that the idle task is using init_mm right before its cpu goes
4997 * offline.
054b9108 4998 */
48c5ccae 4999void idle_task_exit(void)
1da177e4 5000{
48c5ccae 5001 struct mm_struct *mm = current->active_mm;
e76bd8d9 5002
48c5ccae 5003 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 5004
a53efe5f 5005 if (mm != &init_mm) {
48c5ccae 5006 switch_mm(mm, &init_mm, current);
a53efe5f
MS
5007 finish_arch_post_lock_switch();
5008 }
48c5ccae 5009 mmdrop(mm);
1da177e4
LT
5010}
5011
5012/*
5d180232
PZ
5013 * Since this CPU is going 'away' for a while, fold any nr_active delta
5014 * we might have. Assumes we're called after migrate_tasks() so that the
5015 * nr_active count is stable.
5016 *
5017 * Also see the comment "Global load-average calculations".
1da177e4 5018 */
5d180232 5019static void calc_load_migrate(struct rq *rq)
1da177e4 5020{
5d180232
PZ
5021 long delta = calc_load_fold_active(rq);
5022 if (delta)
5023 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
5024}
5025
3f1d2a31
PZ
5026static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5027{
5028}
5029
5030static const struct sched_class fake_sched_class = {
5031 .put_prev_task = put_prev_task_fake,
5032};
5033
5034static struct task_struct fake_task = {
5035 /*
5036 * Avoid pull_{rt,dl}_task()
5037 */
5038 .prio = MAX_PRIO + 1,
5039 .sched_class = &fake_sched_class,
5040};
5041
48f24c4d 5042/*
48c5ccae
PZ
5043 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5044 * try_to_wake_up()->select_task_rq().
5045 *
5046 * Called with rq->lock held even though we'er in stop_machine() and
5047 * there's no concurrency possible, we hold the required locks anyway
5048 * because of lock validation efforts.
1da177e4 5049 */
48c5ccae 5050static void migrate_tasks(unsigned int dead_cpu)
1da177e4 5051{
70b97a7f 5052 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
5053 struct task_struct *next, *stop = rq->stop;
5054 int dest_cpu;
1da177e4
LT
5055
5056 /*
48c5ccae
PZ
5057 * Fudge the rq selection such that the below task selection loop
5058 * doesn't get stuck on the currently eligible stop task.
5059 *
5060 * We're currently inside stop_machine() and the rq is either stuck
5061 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5062 * either way we should never end up calling schedule() until we're
5063 * done here.
1da177e4 5064 */
48c5ccae 5065 rq->stop = NULL;
48f24c4d 5066
77bd3970
FW
5067 /*
5068 * put_prev_task() and pick_next_task() sched
5069 * class method both need to have an up-to-date
5070 * value of rq->clock[_task]
5071 */
5072 update_rq_clock(rq);
5073
dd41f596 5074 for ( ; ; ) {
48c5ccae
PZ
5075 /*
5076 * There's this thread running, bail when that's the only
5077 * remaining thread.
5078 */
5079 if (rq->nr_running == 1)
dd41f596 5080 break;
48c5ccae 5081
3f1d2a31 5082 next = pick_next_task(rq, &fake_task);
48c5ccae 5083 BUG_ON(!next);
79c53799 5084 next->sched_class->put_prev_task(rq, next);
e692ab53 5085
48c5ccae
PZ
5086 /* Find suitable destination for @next, with force if needed. */
5087 dest_cpu = select_fallback_rq(dead_cpu, next);
5088 raw_spin_unlock(&rq->lock);
5089
5090 __migrate_task(next, dead_cpu, dest_cpu);
5091
5092 raw_spin_lock(&rq->lock);
1da177e4 5093 }
dce48a84 5094
48c5ccae 5095 rq->stop = stop;
dce48a84 5096}
48c5ccae 5097
1da177e4
LT
5098#endif /* CONFIG_HOTPLUG_CPU */
5099
e692ab53
NP
5100#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5101
5102static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5103 {
5104 .procname = "sched_domain",
c57baf1e 5105 .mode = 0555,
e0361851 5106 },
56992309 5107 {}
e692ab53
NP
5108};
5109
5110static struct ctl_table sd_ctl_root[] = {
e0361851
AD
5111 {
5112 .procname = "kernel",
c57baf1e 5113 .mode = 0555,
e0361851
AD
5114 .child = sd_ctl_dir,
5115 },
56992309 5116 {}
e692ab53
NP
5117};
5118
5119static struct ctl_table *sd_alloc_ctl_entry(int n)
5120{
5121 struct ctl_table *entry =
5cf9f062 5122 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5123
e692ab53
NP
5124 return entry;
5125}
5126
6382bc90
MM
5127static void sd_free_ctl_entry(struct ctl_table **tablep)
5128{
cd790076 5129 struct ctl_table *entry;
6382bc90 5130
cd790076
MM
5131 /*
5132 * In the intermediate directories, both the child directory and
5133 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5134 * will always be set. In the lowest directory the names are
cd790076
MM
5135 * static strings and all have proc handlers.
5136 */
5137 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5138 if (entry->child)
5139 sd_free_ctl_entry(&entry->child);
cd790076
MM
5140 if (entry->proc_handler == NULL)
5141 kfree(entry->procname);
5142 }
6382bc90
MM
5143
5144 kfree(*tablep);
5145 *tablep = NULL;
5146}
5147
201c373e 5148static int min_load_idx = 0;
fd9b86d3 5149static int max_load_idx = CPU_LOAD_IDX_MAX-1;
201c373e 5150
e692ab53 5151static void
e0361851 5152set_table_entry(struct ctl_table *entry,
e692ab53 5153 const char *procname, void *data, int maxlen,
201c373e
NK
5154 umode_t mode, proc_handler *proc_handler,
5155 bool load_idx)
e692ab53 5156{
e692ab53
NP
5157 entry->procname = procname;
5158 entry->data = data;
5159 entry->maxlen = maxlen;
5160 entry->mode = mode;
5161 entry->proc_handler = proc_handler;
201c373e
NK
5162
5163 if (load_idx) {
5164 entry->extra1 = &min_load_idx;
5165 entry->extra2 = &max_load_idx;
5166 }
e692ab53
NP
5167}
5168
5169static struct ctl_table *
5170sd_alloc_ctl_domain_table(struct sched_domain *sd)
5171{
37e6bae8 5172 struct ctl_table *table = sd_alloc_ctl_entry(14);
e692ab53 5173
ad1cdc1d
MM
5174 if (table == NULL)
5175 return NULL;
5176
e0361851 5177 set_table_entry(&table[0], "min_interval", &sd->min_interval,
201c373e 5178 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 5179 set_table_entry(&table[1], "max_interval", &sd->max_interval,
201c373e 5180 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 5181 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
201c373e 5182 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5183 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
201c373e 5184 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5185 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
201c373e 5186 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5187 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
201c373e 5188 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5189 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
201c373e 5190 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5191 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
201c373e 5192 sizeof(int), 0644, proc_dointvec_minmax, false);
e0361851 5193 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
201c373e 5194 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 5195 set_table_entry(&table[9], "cache_nice_tries",
e692ab53 5196 &sd->cache_nice_tries,
201c373e 5197 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 5198 set_table_entry(&table[10], "flags", &sd->flags,
201c373e 5199 sizeof(int), 0644, proc_dointvec_minmax, false);
37e6bae8
AS
5200 set_table_entry(&table[11], "max_newidle_lb_cost",
5201 &sd->max_newidle_lb_cost,
5202 sizeof(long), 0644, proc_doulongvec_minmax, false);
5203 set_table_entry(&table[12], "name", sd->name,
201c373e 5204 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
37e6bae8 5205 /* &table[13] is terminator */
e692ab53
NP
5206
5207 return table;
5208}
5209
be7002e6 5210static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5211{
5212 struct ctl_table *entry, *table;
5213 struct sched_domain *sd;
5214 int domain_num = 0, i;
5215 char buf[32];
5216
5217 for_each_domain(cpu, sd)
5218 domain_num++;
5219 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5220 if (table == NULL)
5221 return NULL;
e692ab53
NP
5222
5223 i = 0;
5224 for_each_domain(cpu, sd) {
5225 snprintf(buf, 32, "domain%d", i);
e692ab53 5226 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5227 entry->mode = 0555;
e692ab53
NP
5228 entry->child = sd_alloc_ctl_domain_table(sd);
5229 entry++;
5230 i++;
5231 }
5232 return table;
5233}
5234
5235static struct ctl_table_header *sd_sysctl_header;
6382bc90 5236static void register_sched_domain_sysctl(void)
e692ab53 5237{
6ad4c188 5238 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5239 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5240 char buf[32];
5241
7378547f
MM
5242 WARN_ON(sd_ctl_dir[0].child);
5243 sd_ctl_dir[0].child = entry;
5244
ad1cdc1d
MM
5245 if (entry == NULL)
5246 return;
5247
6ad4c188 5248 for_each_possible_cpu(i) {
e692ab53 5249 snprintf(buf, 32, "cpu%d", i);
e692ab53 5250 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5251 entry->mode = 0555;
e692ab53 5252 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5253 entry++;
e692ab53 5254 }
7378547f
MM
5255
5256 WARN_ON(sd_sysctl_header);
e692ab53
NP
5257 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5258}
6382bc90 5259
7378547f 5260/* may be called multiple times per register */
6382bc90
MM
5261static void unregister_sched_domain_sysctl(void)
5262{
7378547f
MM
5263 if (sd_sysctl_header)
5264 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5265 sd_sysctl_header = NULL;
7378547f
MM
5266 if (sd_ctl_dir[0].child)
5267 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5268}
e692ab53 5269#else
6382bc90
MM
5270static void register_sched_domain_sysctl(void)
5271{
5272}
5273static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5274{
5275}
5276#endif
5277
1f11eb6a
GH
5278static void set_rq_online(struct rq *rq)
5279{
5280 if (!rq->online) {
5281 const struct sched_class *class;
5282
c6c4927b 5283 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5284 rq->online = 1;
5285
5286 for_each_class(class) {
5287 if (class->rq_online)
5288 class->rq_online(rq);
5289 }
5290 }
5291}
5292
5293static void set_rq_offline(struct rq *rq)
5294{
5295 if (rq->online) {
5296 const struct sched_class *class;
5297
5298 for_each_class(class) {
5299 if (class->rq_offline)
5300 class->rq_offline(rq);
5301 }
5302
c6c4927b 5303 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5304 rq->online = 0;
5305 }
5306}
5307
1da177e4
LT
5308/*
5309 * migration_call - callback that gets triggered when a CPU is added.
5310 * Here we can start up the necessary migration thread for the new CPU.
5311 */
0db0628d 5312static int
48f24c4d 5313migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5314{
48f24c4d 5315 int cpu = (long)hcpu;
1da177e4 5316 unsigned long flags;
969c7921 5317 struct rq *rq = cpu_rq(cpu);
1da177e4 5318
48c5ccae 5319 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 5320
1da177e4 5321 case CPU_UP_PREPARE:
a468d389 5322 rq->calc_load_update = calc_load_update;
1da177e4 5323 break;
48f24c4d 5324
1da177e4 5325 case CPU_ONLINE:
1f94ef59 5326 /* Update our root-domain */
05fa785c 5327 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5328 if (rq->rd) {
c6c4927b 5329 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5330
5331 set_rq_online(rq);
1f94ef59 5332 }
05fa785c 5333 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5334 break;
48f24c4d 5335
1da177e4 5336#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5337 case CPU_DYING:
317f3941 5338 sched_ttwu_pending();
57d885fe 5339 /* Update our root-domain */
05fa785c 5340 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5341 if (rq->rd) {
c6c4927b 5342 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5343 set_rq_offline(rq);
57d885fe 5344 }
48c5ccae
PZ
5345 migrate_tasks(cpu);
5346 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5347 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 5348 break;
48c5ccae 5349
5d180232 5350 case CPU_DEAD:
f319da0c 5351 calc_load_migrate(rq);
57d885fe 5352 break;
1da177e4
LT
5353#endif
5354 }
49c022e6
PZ
5355
5356 update_max_interval();
5357
1da177e4
LT
5358 return NOTIFY_OK;
5359}
5360
f38b0820
PM
5361/*
5362 * Register at high priority so that task migration (migrate_all_tasks)
5363 * happens before everything else. This has to be lower priority than
cdd6c482 5364 * the notifier in the perf_event subsystem, though.
1da177e4 5365 */
0db0628d 5366static struct notifier_block migration_notifier = {
1da177e4 5367 .notifier_call = migration_call,
50a323b7 5368 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5369};
5370
6a82b60d 5371static void set_cpu_rq_start_time(void)
a803f026
CM
5372{
5373 int cpu = smp_processor_id();
5374 struct rq *rq = cpu_rq(cpu);
5375 rq->age_stamp = sched_clock_cpu(cpu);
5376}
5377
0db0628d 5378static int sched_cpu_active(struct notifier_block *nfb,
3a101d05
TH
5379 unsigned long action, void *hcpu)
5380{
5381 switch (action & ~CPU_TASKS_FROZEN) {
a803f026
CM
5382 case CPU_STARTING:
5383 set_cpu_rq_start_time();
5384 return NOTIFY_OK;
3a101d05
TH
5385 case CPU_DOWN_FAILED:
5386 set_cpu_active((long)hcpu, true);
5387 return NOTIFY_OK;
5388 default:
5389 return NOTIFY_DONE;
5390 }
5391}
5392
0db0628d 5393static int sched_cpu_inactive(struct notifier_block *nfb,
3a101d05
TH
5394 unsigned long action, void *hcpu)
5395{
5396 switch (action & ~CPU_TASKS_FROZEN) {
5397 case CPU_DOWN_PREPARE:
3c18d447 5398 set_cpu_active((long)hcpu, false);
3a101d05 5399 return NOTIFY_OK;
3c18d447
JL
5400 default:
5401 return NOTIFY_DONE;
3a101d05
TH
5402 }
5403}
5404
7babe8db 5405static int __init migration_init(void)
1da177e4
LT
5406{
5407 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5408 int err;
48f24c4d 5409
3a101d05 5410 /* Initialize migration for the boot CPU */
07dccf33
AM
5411 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5412 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5413 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5414 register_cpu_notifier(&migration_notifier);
7babe8db 5415
3a101d05
TH
5416 /* Register cpu active notifiers */
5417 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5418 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5419
a004cd42 5420 return 0;
1da177e4 5421}
7babe8db 5422early_initcall(migration_init);
1da177e4
LT
5423#endif
5424
5425#ifdef CONFIG_SMP
476f3534 5426
4cb98839
PZ
5427static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5428
3e9830dc 5429#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5430
d039ac60 5431static __read_mostly int sched_debug_enabled;
f6630114 5432
d039ac60 5433static int __init sched_debug_setup(char *str)
f6630114 5434{
d039ac60 5435 sched_debug_enabled = 1;
f6630114
MT
5436
5437 return 0;
5438}
d039ac60
PZ
5439early_param("sched_debug", sched_debug_setup);
5440
5441static inline bool sched_debug(void)
5442{
5443 return sched_debug_enabled;
5444}
f6630114 5445
7c16ec58 5446static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5447 struct cpumask *groupmask)
1da177e4 5448{
4dcf6aff 5449 struct sched_group *group = sd->groups;
1da177e4 5450
96f874e2 5451 cpumask_clear(groupmask);
4dcf6aff
IM
5452
5453 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5454
5455 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5456 printk("does not load-balance\n");
4dcf6aff 5457 if (sd->parent)
3df0fc5b
PZ
5458 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5459 " has parent");
4dcf6aff 5460 return -1;
41c7ce9a
NP
5461 }
5462
333470ee
TH
5463 printk(KERN_CONT "span %*pbl level %s\n",
5464 cpumask_pr_args(sched_domain_span(sd)), sd->name);
4dcf6aff 5465
758b2cdc 5466 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5467 printk(KERN_ERR "ERROR: domain->span does not contain "
5468 "CPU%d\n", cpu);
4dcf6aff 5469 }
758b2cdc 5470 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5471 printk(KERN_ERR "ERROR: domain->groups does not contain"
5472 " CPU%d\n", cpu);
4dcf6aff 5473 }
1da177e4 5474
4dcf6aff 5475 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5476 do {
4dcf6aff 5477 if (!group) {
3df0fc5b
PZ
5478 printk("\n");
5479 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5480 break;
5481 }
5482
758b2cdc 5483 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5484 printk(KERN_CONT "\n");
5485 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5486 break;
5487 }
1da177e4 5488
cb83b629
PZ
5489 if (!(sd->flags & SD_OVERLAP) &&
5490 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5491 printk(KERN_CONT "\n");
5492 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5493 break;
5494 }
1da177e4 5495
758b2cdc 5496 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5497
333470ee
TH
5498 printk(KERN_CONT " %*pbl",
5499 cpumask_pr_args(sched_group_cpus(group)));
ca8ce3d0 5500 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
63b2ca30
NP
5501 printk(KERN_CONT " (cpu_capacity = %d)",
5502 group->sgc->capacity);
381512cf 5503 }
1da177e4 5504
4dcf6aff
IM
5505 group = group->next;
5506 } while (group != sd->groups);
3df0fc5b 5507 printk(KERN_CONT "\n");
1da177e4 5508
758b2cdc 5509 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5510 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5511
758b2cdc
RR
5512 if (sd->parent &&
5513 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5514 printk(KERN_ERR "ERROR: parent span is not a superset "
5515 "of domain->span\n");
4dcf6aff
IM
5516 return 0;
5517}
1da177e4 5518
4dcf6aff
IM
5519static void sched_domain_debug(struct sched_domain *sd, int cpu)
5520{
5521 int level = 0;
1da177e4 5522
d039ac60 5523 if (!sched_debug_enabled)
f6630114
MT
5524 return;
5525
4dcf6aff
IM
5526 if (!sd) {
5527 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5528 return;
5529 }
1da177e4 5530
4dcf6aff
IM
5531 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5532
5533 for (;;) {
4cb98839 5534 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5535 break;
1da177e4
LT
5536 level++;
5537 sd = sd->parent;
33859f7f 5538 if (!sd)
4dcf6aff
IM
5539 break;
5540 }
1da177e4 5541}
6d6bc0ad 5542#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5543# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5544static inline bool sched_debug(void)
5545{
5546 return false;
5547}
6d6bc0ad 5548#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5549
1a20ff27 5550static int sd_degenerate(struct sched_domain *sd)
245af2c7 5551{
758b2cdc 5552 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5553 return 1;
5554
5555 /* Following flags need at least 2 groups */
5556 if (sd->flags & (SD_LOAD_BALANCE |
5557 SD_BALANCE_NEWIDLE |
5558 SD_BALANCE_FORK |
89c4710e 5559 SD_BALANCE_EXEC |
5d4dfddd 5560 SD_SHARE_CPUCAPACITY |
d77b3ed5
VG
5561 SD_SHARE_PKG_RESOURCES |
5562 SD_SHARE_POWERDOMAIN)) {
245af2c7
SS
5563 if (sd->groups != sd->groups->next)
5564 return 0;
5565 }
5566
5567 /* Following flags don't use groups */
c88d5910 5568 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5569 return 0;
5570
5571 return 1;
5572}
5573
48f24c4d
IM
5574static int
5575sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5576{
5577 unsigned long cflags = sd->flags, pflags = parent->flags;
5578
5579 if (sd_degenerate(parent))
5580 return 1;
5581
758b2cdc 5582 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5583 return 0;
5584
245af2c7
SS
5585 /* Flags needing groups don't count if only 1 group in parent */
5586 if (parent->groups == parent->groups->next) {
5587 pflags &= ~(SD_LOAD_BALANCE |
5588 SD_BALANCE_NEWIDLE |
5589 SD_BALANCE_FORK |
89c4710e 5590 SD_BALANCE_EXEC |
5d4dfddd 5591 SD_SHARE_CPUCAPACITY |
10866e62 5592 SD_SHARE_PKG_RESOURCES |
d77b3ed5
VG
5593 SD_PREFER_SIBLING |
5594 SD_SHARE_POWERDOMAIN);
5436499e
KC
5595 if (nr_node_ids == 1)
5596 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5597 }
5598 if (~cflags & pflags)
5599 return 0;
5600
5601 return 1;
5602}
5603
dce840a0 5604static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5605{
dce840a0 5606 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5607
68e74568 5608 cpupri_cleanup(&rd->cpupri);
6bfd6d72 5609 cpudl_cleanup(&rd->cpudl);
1baca4ce 5610 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5611 free_cpumask_var(rd->rto_mask);
5612 free_cpumask_var(rd->online);
5613 free_cpumask_var(rd->span);
5614 kfree(rd);
5615}
5616
57d885fe
GH
5617static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5618{
a0490fa3 5619 struct root_domain *old_rd = NULL;
57d885fe 5620 unsigned long flags;
57d885fe 5621
05fa785c 5622 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5623
5624 if (rq->rd) {
a0490fa3 5625 old_rd = rq->rd;
57d885fe 5626
c6c4927b 5627 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5628 set_rq_offline(rq);
57d885fe 5629
c6c4927b 5630 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5631
a0490fa3 5632 /*
0515973f 5633 * If we dont want to free the old_rd yet then
a0490fa3
IM
5634 * set old_rd to NULL to skip the freeing later
5635 * in this function:
5636 */
5637 if (!atomic_dec_and_test(&old_rd->refcount))
5638 old_rd = NULL;
57d885fe
GH
5639 }
5640
5641 atomic_inc(&rd->refcount);
5642 rq->rd = rd;
5643
c6c4927b 5644 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5645 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5646 set_rq_online(rq);
57d885fe 5647
05fa785c 5648 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5649
5650 if (old_rd)
dce840a0 5651 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5652}
5653
68c38fc3 5654static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5655{
5656 memset(rd, 0, sizeof(*rd));
5657
68c38fc3 5658 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5659 goto out;
68c38fc3 5660 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5661 goto free_span;
1baca4ce 5662 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
c6c4927b 5663 goto free_online;
1baca4ce
JL
5664 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5665 goto free_dlo_mask;
6e0534f2 5666
332ac17e 5667 init_dl_bw(&rd->dl_bw);
6bfd6d72
JL
5668 if (cpudl_init(&rd->cpudl) != 0)
5669 goto free_dlo_mask;
332ac17e 5670
68c38fc3 5671 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5672 goto free_rto_mask;
c6c4927b 5673 return 0;
6e0534f2 5674
68e74568
RR
5675free_rto_mask:
5676 free_cpumask_var(rd->rto_mask);
1baca4ce
JL
5677free_dlo_mask:
5678 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5679free_online:
5680 free_cpumask_var(rd->online);
5681free_span:
5682 free_cpumask_var(rd->span);
0c910d28 5683out:
c6c4927b 5684 return -ENOMEM;
57d885fe
GH
5685}
5686
029632fb
PZ
5687/*
5688 * By default the system creates a single root-domain with all cpus as
5689 * members (mimicking the global state we have today).
5690 */
5691struct root_domain def_root_domain;
5692
57d885fe
GH
5693static void init_defrootdomain(void)
5694{
68c38fc3 5695 init_rootdomain(&def_root_domain);
c6c4927b 5696
57d885fe
GH
5697 atomic_set(&def_root_domain.refcount, 1);
5698}
5699
dc938520 5700static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5701{
5702 struct root_domain *rd;
5703
5704 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5705 if (!rd)
5706 return NULL;
5707
68c38fc3 5708 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5709 kfree(rd);
5710 return NULL;
5711 }
57d885fe
GH
5712
5713 return rd;
5714}
5715
63b2ca30 5716static void free_sched_groups(struct sched_group *sg, int free_sgc)
e3589f6c
PZ
5717{
5718 struct sched_group *tmp, *first;
5719
5720 if (!sg)
5721 return;
5722
5723 first = sg;
5724 do {
5725 tmp = sg->next;
5726
63b2ca30
NP
5727 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5728 kfree(sg->sgc);
e3589f6c
PZ
5729
5730 kfree(sg);
5731 sg = tmp;
5732 } while (sg != first);
5733}
5734
dce840a0
PZ
5735static void free_sched_domain(struct rcu_head *rcu)
5736{
5737 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5738
5739 /*
5740 * If its an overlapping domain it has private groups, iterate and
5741 * nuke them all.
5742 */
5743 if (sd->flags & SD_OVERLAP) {
5744 free_sched_groups(sd->groups, 1);
5745 } else if (atomic_dec_and_test(&sd->groups->ref)) {
63b2ca30 5746 kfree(sd->groups->sgc);
dce840a0 5747 kfree(sd->groups);
9c3f75cb 5748 }
dce840a0
PZ
5749 kfree(sd);
5750}
5751
5752static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5753{
5754 call_rcu(&sd->rcu, free_sched_domain);
5755}
5756
5757static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5758{
5759 for (; sd; sd = sd->parent)
5760 destroy_sched_domain(sd, cpu);
5761}
5762
518cd623
PZ
5763/*
5764 * Keep a special pointer to the highest sched_domain that has
5765 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5766 * allows us to avoid some pointer chasing select_idle_sibling().
5767 *
5768 * Also keep a unique ID per domain (we use the first cpu number in
5769 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5770 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5771 */
5772DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5773DEFINE_PER_CPU(int, sd_llc_size);
518cd623 5774DEFINE_PER_CPU(int, sd_llc_id);
fb13c7ee 5775DEFINE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
5776DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5777DEFINE_PER_CPU(struct sched_domain *, sd_asym);
518cd623
PZ
5778
5779static void update_top_cache_domain(int cpu)
5780{
5781 struct sched_domain *sd;
5d4cf996 5782 struct sched_domain *busy_sd = NULL;
518cd623 5783 int id = cpu;
7d9ffa89 5784 int size = 1;
518cd623
PZ
5785
5786 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 5787 if (sd) {
518cd623 5788 id = cpumask_first(sched_domain_span(sd));
7d9ffa89 5789 size = cpumask_weight(sched_domain_span(sd));
5d4cf996 5790 busy_sd = sd->parent; /* sd_busy */
7d9ffa89 5791 }
5d4cf996 5792 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
518cd623
PZ
5793
5794 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 5795 per_cpu(sd_llc_size, cpu) = size;
518cd623 5796 per_cpu(sd_llc_id, cpu) = id;
fb13c7ee
MG
5797
5798 sd = lowest_flag_domain(cpu, SD_NUMA);
5799 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
37dc6b50
PM
5800
5801 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5802 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
518cd623
PZ
5803}
5804
1da177e4 5805/*
0eab9146 5806 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5807 * hold the hotplug lock.
5808 */
0eab9146
IM
5809static void
5810cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5811{
70b97a7f 5812 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5813 struct sched_domain *tmp;
5814
5815 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5816 for (tmp = sd; tmp; ) {
245af2c7
SS
5817 struct sched_domain *parent = tmp->parent;
5818 if (!parent)
5819 break;
f29c9b1c 5820
1a848870 5821 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5822 tmp->parent = parent->parent;
1a848870
SS
5823 if (parent->parent)
5824 parent->parent->child = tmp;
10866e62
PZ
5825 /*
5826 * Transfer SD_PREFER_SIBLING down in case of a
5827 * degenerate parent; the spans match for this
5828 * so the property transfers.
5829 */
5830 if (parent->flags & SD_PREFER_SIBLING)
5831 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 5832 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5833 } else
5834 tmp = tmp->parent;
245af2c7
SS
5835 }
5836
1a848870 5837 if (sd && sd_degenerate(sd)) {
dce840a0 5838 tmp = sd;
245af2c7 5839 sd = sd->parent;
dce840a0 5840 destroy_sched_domain(tmp, cpu);
1a848870
SS
5841 if (sd)
5842 sd->child = NULL;
5843 }
1da177e4 5844
4cb98839 5845 sched_domain_debug(sd, cpu);
1da177e4 5846
57d885fe 5847 rq_attach_root(rq, rd);
dce840a0 5848 tmp = rq->sd;
674311d5 5849 rcu_assign_pointer(rq->sd, sd);
dce840a0 5850 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5851
5852 update_top_cache_domain(cpu);
1da177e4
LT
5853}
5854
1da177e4
LT
5855/* Setup the mask of cpus configured for isolated domains */
5856static int __init isolated_cpu_setup(char *str)
5857{
bdddd296 5858 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5859 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5860 return 1;
5861}
5862
8927f494 5863__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5864
49a02c51 5865struct s_data {
21d42ccf 5866 struct sched_domain ** __percpu sd;
49a02c51
AH
5867 struct root_domain *rd;
5868};
5869
2109b99e 5870enum s_alloc {
2109b99e 5871 sa_rootdomain,
21d42ccf 5872 sa_sd,
dce840a0 5873 sa_sd_storage,
2109b99e
AH
5874 sa_none,
5875};
5876
c1174876
PZ
5877/*
5878 * Build an iteration mask that can exclude certain CPUs from the upwards
5879 * domain traversal.
5880 *
5881 * Asymmetric node setups can result in situations where the domain tree is of
5882 * unequal depth, make sure to skip domains that already cover the entire
5883 * range.
5884 *
5885 * In that case build_sched_domains() will have terminated the iteration early
5886 * and our sibling sd spans will be empty. Domains should always include the
5887 * cpu they're built on, so check that.
5888 *
5889 */
5890static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5891{
5892 const struct cpumask *span = sched_domain_span(sd);
5893 struct sd_data *sdd = sd->private;
5894 struct sched_domain *sibling;
5895 int i;
5896
5897 for_each_cpu(i, span) {
5898 sibling = *per_cpu_ptr(sdd->sd, i);
5899 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5900 continue;
5901
5902 cpumask_set_cpu(i, sched_group_mask(sg));
5903 }
5904}
5905
5906/*
5907 * Return the canonical balance cpu for this group, this is the first cpu
5908 * of this group that's also in the iteration mask.
5909 */
5910int group_balance_cpu(struct sched_group *sg)
5911{
5912 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5913}
5914
e3589f6c
PZ
5915static int
5916build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5917{
5918 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5919 const struct cpumask *span = sched_domain_span(sd);
5920 struct cpumask *covered = sched_domains_tmpmask;
5921 struct sd_data *sdd = sd->private;
aaecac4a 5922 struct sched_domain *sibling;
e3589f6c
PZ
5923 int i;
5924
5925 cpumask_clear(covered);
5926
5927 for_each_cpu(i, span) {
5928 struct cpumask *sg_span;
5929
5930 if (cpumask_test_cpu(i, covered))
5931 continue;
5932
aaecac4a 5933 sibling = *per_cpu_ptr(sdd->sd, i);
c1174876
PZ
5934
5935 /* See the comment near build_group_mask(). */
aaecac4a 5936 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
c1174876
PZ
5937 continue;
5938
e3589f6c 5939 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 5940 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
5941
5942 if (!sg)
5943 goto fail;
5944
5945 sg_span = sched_group_cpus(sg);
aaecac4a
ZZ
5946 if (sibling->child)
5947 cpumask_copy(sg_span, sched_domain_span(sibling->child));
5948 else
e3589f6c
PZ
5949 cpumask_set_cpu(i, sg_span);
5950
5951 cpumask_or(covered, covered, sg_span);
5952
63b2ca30
NP
5953 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
5954 if (atomic_inc_return(&sg->sgc->ref) == 1)
c1174876
PZ
5955 build_group_mask(sd, sg);
5956
c3decf0d 5957 /*
63b2ca30 5958 * Initialize sgc->capacity such that even if we mess up the
c3decf0d
PZ
5959 * domains and no possible iteration will get us here, we won't
5960 * die on a /0 trap.
5961 */
ca8ce3d0 5962 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
e3589f6c 5963
c1174876
PZ
5964 /*
5965 * Make sure the first group of this domain contains the
5966 * canonical balance cpu. Otherwise the sched_domain iteration
5967 * breaks. See update_sg_lb_stats().
5968 */
74a5ce20 5969 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 5970 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
5971 groups = sg;
5972
5973 if (!first)
5974 first = sg;
5975 if (last)
5976 last->next = sg;
5977 last = sg;
5978 last->next = first;
5979 }
5980 sd->groups = groups;
5981
5982 return 0;
5983
5984fail:
5985 free_sched_groups(first, 0);
5986
5987 return -ENOMEM;
5988}
5989
dce840a0 5990static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 5991{
dce840a0
PZ
5992 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5993 struct sched_domain *child = sd->child;
1da177e4 5994
dce840a0
PZ
5995 if (child)
5996 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 5997
9c3f75cb 5998 if (sg) {
dce840a0 5999 *sg = *per_cpu_ptr(sdd->sg, cpu);
63b2ca30
NP
6000 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6001 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
9c3f75cb 6002 }
dce840a0
PZ
6003
6004 return cpu;
1e9f28fa 6005}
1e9f28fa 6006
01a08546 6007/*
dce840a0
PZ
6008 * build_sched_groups will build a circular linked list of the groups
6009 * covered by the given span, and will set each group's ->cpumask correctly,
ced549fa 6010 * and ->cpu_capacity to 0.
e3589f6c
PZ
6011 *
6012 * Assumes the sched_domain tree is fully constructed
01a08546 6013 */
e3589f6c
PZ
6014static int
6015build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 6016{
dce840a0
PZ
6017 struct sched_group *first = NULL, *last = NULL;
6018 struct sd_data *sdd = sd->private;
6019 const struct cpumask *span = sched_domain_span(sd);
f96225fd 6020 struct cpumask *covered;
dce840a0 6021 int i;
9c1cfda2 6022
e3589f6c
PZ
6023 get_group(cpu, sdd, &sd->groups);
6024 atomic_inc(&sd->groups->ref);
6025
0936629f 6026 if (cpu != cpumask_first(span))
e3589f6c
PZ
6027 return 0;
6028
f96225fd
PZ
6029 lockdep_assert_held(&sched_domains_mutex);
6030 covered = sched_domains_tmpmask;
6031
dce840a0 6032 cpumask_clear(covered);
6711cab4 6033
dce840a0
PZ
6034 for_each_cpu(i, span) {
6035 struct sched_group *sg;
cd08e923 6036 int group, j;
6711cab4 6037
dce840a0
PZ
6038 if (cpumask_test_cpu(i, covered))
6039 continue;
6711cab4 6040
cd08e923 6041 group = get_group(i, sdd, &sg);
c1174876 6042 cpumask_setall(sched_group_mask(sg));
0601a88d 6043
dce840a0
PZ
6044 for_each_cpu(j, span) {
6045 if (get_group(j, sdd, NULL) != group)
6046 continue;
0601a88d 6047
dce840a0
PZ
6048 cpumask_set_cpu(j, covered);
6049 cpumask_set_cpu(j, sched_group_cpus(sg));
6050 }
0601a88d 6051
dce840a0
PZ
6052 if (!first)
6053 first = sg;
6054 if (last)
6055 last->next = sg;
6056 last = sg;
6057 }
6058 last->next = first;
e3589f6c
PZ
6059
6060 return 0;
0601a88d 6061}
51888ca2 6062
89c4710e 6063/*
63b2ca30 6064 * Initialize sched groups cpu_capacity.
89c4710e 6065 *
63b2ca30 6066 * cpu_capacity indicates the capacity of sched group, which is used while
89c4710e 6067 * distributing the load between different sched groups in a sched domain.
63b2ca30
NP
6068 * Typically cpu_capacity for all the groups in a sched domain will be same
6069 * unless there are asymmetries in the topology. If there are asymmetries,
6070 * group having more cpu_capacity will pickup more load compared to the
6071 * group having less cpu_capacity.
89c4710e 6072 */
63b2ca30 6073static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
89c4710e 6074{
e3589f6c 6075 struct sched_group *sg = sd->groups;
89c4710e 6076
94c95ba6 6077 WARN_ON(!sg);
e3589f6c
PZ
6078
6079 do {
6080 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6081 sg = sg->next;
6082 } while (sg != sd->groups);
89c4710e 6083
c1174876 6084 if (cpu != group_balance_cpu(sg))
e3589f6c 6085 return;
aae6d3dd 6086
63b2ca30
NP
6087 update_group_capacity(sd, cpu);
6088 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
89c4710e
SS
6089}
6090
7c16ec58
MT
6091/*
6092 * Initializers for schedule domains
6093 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6094 */
6095
1d3504fc 6096static int default_relax_domain_level = -1;
60495e77 6097int sched_domain_level_max;
1d3504fc
HS
6098
6099static int __init setup_relax_domain_level(char *str)
6100{
a841f8ce
DS
6101 if (kstrtoint(str, 0, &default_relax_domain_level))
6102 pr_warn("Unable to set relax_domain_level\n");
30e0e178 6103
1d3504fc
HS
6104 return 1;
6105}
6106__setup("relax_domain_level=", setup_relax_domain_level);
6107
6108static void set_domain_attribute(struct sched_domain *sd,
6109 struct sched_domain_attr *attr)
6110{
6111 int request;
6112
6113 if (!attr || attr->relax_domain_level < 0) {
6114 if (default_relax_domain_level < 0)
6115 return;
6116 else
6117 request = default_relax_domain_level;
6118 } else
6119 request = attr->relax_domain_level;
6120 if (request < sd->level) {
6121 /* turn off idle balance on this domain */
c88d5910 6122 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6123 } else {
6124 /* turn on idle balance on this domain */
c88d5910 6125 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6126 }
6127}
6128
54ab4ff4
PZ
6129static void __sdt_free(const struct cpumask *cpu_map);
6130static int __sdt_alloc(const struct cpumask *cpu_map);
6131
2109b99e
AH
6132static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6133 const struct cpumask *cpu_map)
6134{
6135 switch (what) {
2109b99e 6136 case sa_rootdomain:
822ff793
PZ
6137 if (!atomic_read(&d->rd->refcount))
6138 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
6139 case sa_sd:
6140 free_percpu(d->sd); /* fall through */
dce840a0 6141 case sa_sd_storage:
54ab4ff4 6142 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
6143 case sa_none:
6144 break;
6145 }
6146}
3404c8d9 6147
2109b99e
AH
6148static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6149 const struct cpumask *cpu_map)
6150{
dce840a0
PZ
6151 memset(d, 0, sizeof(*d));
6152
54ab4ff4
PZ
6153 if (__sdt_alloc(cpu_map))
6154 return sa_sd_storage;
dce840a0
PZ
6155 d->sd = alloc_percpu(struct sched_domain *);
6156 if (!d->sd)
6157 return sa_sd_storage;
2109b99e 6158 d->rd = alloc_rootdomain();
dce840a0 6159 if (!d->rd)
21d42ccf 6160 return sa_sd;
2109b99e
AH
6161 return sa_rootdomain;
6162}
57d885fe 6163
dce840a0
PZ
6164/*
6165 * NULL the sd_data elements we've used to build the sched_domain and
6166 * sched_group structure so that the subsequent __free_domain_allocs()
6167 * will not free the data we're using.
6168 */
6169static void claim_allocations(int cpu, struct sched_domain *sd)
6170{
6171 struct sd_data *sdd = sd->private;
dce840a0
PZ
6172
6173 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6174 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6175
e3589f6c 6176 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 6177 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c 6178
63b2ca30
NP
6179 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6180 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
dce840a0
PZ
6181}
6182
cb83b629 6183#ifdef CONFIG_NUMA
cb83b629 6184static int sched_domains_numa_levels;
e3fe70b1 6185enum numa_topology_type sched_numa_topology_type;
cb83b629 6186static int *sched_domains_numa_distance;
9942f79b 6187int sched_max_numa_distance;
cb83b629
PZ
6188static struct cpumask ***sched_domains_numa_masks;
6189static int sched_domains_curr_level;
143e1e28 6190#endif
cb83b629 6191
143e1e28
VG
6192/*
6193 * SD_flags allowed in topology descriptions.
6194 *
5d4dfddd 6195 * SD_SHARE_CPUCAPACITY - describes SMT topologies
143e1e28
VG
6196 * SD_SHARE_PKG_RESOURCES - describes shared caches
6197 * SD_NUMA - describes NUMA topologies
d77b3ed5 6198 * SD_SHARE_POWERDOMAIN - describes shared power domain
143e1e28
VG
6199 *
6200 * Odd one out:
6201 * SD_ASYM_PACKING - describes SMT quirks
6202 */
6203#define TOPOLOGY_SD_FLAGS \
5d4dfddd 6204 (SD_SHARE_CPUCAPACITY | \
143e1e28
VG
6205 SD_SHARE_PKG_RESOURCES | \
6206 SD_NUMA | \
d77b3ed5
VG
6207 SD_ASYM_PACKING | \
6208 SD_SHARE_POWERDOMAIN)
cb83b629
PZ
6209
6210static struct sched_domain *
143e1e28 6211sd_init(struct sched_domain_topology_level *tl, int cpu)
cb83b629
PZ
6212{
6213 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
143e1e28
VG
6214 int sd_weight, sd_flags = 0;
6215
6216#ifdef CONFIG_NUMA
6217 /*
6218 * Ugly hack to pass state to sd_numa_mask()...
6219 */
6220 sched_domains_curr_level = tl->numa_level;
6221#endif
6222
6223 sd_weight = cpumask_weight(tl->mask(cpu));
6224
6225 if (tl->sd_flags)
6226 sd_flags = (*tl->sd_flags)();
6227 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6228 "wrong sd_flags in topology description\n"))
6229 sd_flags &= ~TOPOLOGY_SD_FLAGS;
cb83b629
PZ
6230
6231 *sd = (struct sched_domain){
6232 .min_interval = sd_weight,
6233 .max_interval = 2*sd_weight,
6234 .busy_factor = 32,
870a0bb5 6235 .imbalance_pct = 125,
143e1e28
VG
6236
6237 .cache_nice_tries = 0,
6238 .busy_idx = 0,
6239 .idle_idx = 0,
cb83b629
PZ
6240 .newidle_idx = 0,
6241 .wake_idx = 0,
6242 .forkexec_idx = 0,
6243
6244 .flags = 1*SD_LOAD_BALANCE
6245 | 1*SD_BALANCE_NEWIDLE
143e1e28
VG
6246 | 1*SD_BALANCE_EXEC
6247 | 1*SD_BALANCE_FORK
cb83b629 6248 | 0*SD_BALANCE_WAKE
143e1e28 6249 | 1*SD_WAKE_AFFINE
5d4dfddd 6250 | 0*SD_SHARE_CPUCAPACITY
cb83b629 6251 | 0*SD_SHARE_PKG_RESOURCES
143e1e28 6252 | 0*SD_SERIALIZE
cb83b629 6253 | 0*SD_PREFER_SIBLING
143e1e28
VG
6254 | 0*SD_NUMA
6255 | sd_flags
cb83b629 6256 ,
143e1e28 6257
cb83b629
PZ
6258 .last_balance = jiffies,
6259 .balance_interval = sd_weight,
143e1e28 6260 .smt_gain = 0,
2b4cfe64
JL
6261 .max_newidle_lb_cost = 0,
6262 .next_decay_max_lb_cost = jiffies,
143e1e28
VG
6263#ifdef CONFIG_SCHED_DEBUG
6264 .name = tl->name,
6265#endif
cb83b629 6266 };
cb83b629
PZ
6267
6268 /*
143e1e28 6269 * Convert topological properties into behaviour.
cb83b629 6270 */
143e1e28 6271
5d4dfddd 6272 if (sd->flags & SD_SHARE_CPUCAPACITY) {
caff37ef 6273 sd->flags |= SD_PREFER_SIBLING;
143e1e28
VG
6274 sd->imbalance_pct = 110;
6275 sd->smt_gain = 1178; /* ~15% */
143e1e28
VG
6276
6277 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6278 sd->imbalance_pct = 117;
6279 sd->cache_nice_tries = 1;
6280 sd->busy_idx = 2;
6281
6282#ifdef CONFIG_NUMA
6283 } else if (sd->flags & SD_NUMA) {
6284 sd->cache_nice_tries = 2;
6285 sd->busy_idx = 3;
6286 sd->idle_idx = 2;
6287
6288 sd->flags |= SD_SERIALIZE;
6289 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6290 sd->flags &= ~(SD_BALANCE_EXEC |
6291 SD_BALANCE_FORK |
6292 SD_WAKE_AFFINE);
6293 }
6294
6295#endif
6296 } else {
6297 sd->flags |= SD_PREFER_SIBLING;
6298 sd->cache_nice_tries = 1;
6299 sd->busy_idx = 2;
6300 sd->idle_idx = 1;
6301 }
6302
6303 sd->private = &tl->data;
cb83b629
PZ
6304
6305 return sd;
6306}
6307
143e1e28
VG
6308/*
6309 * Topology list, bottom-up.
6310 */
6311static struct sched_domain_topology_level default_topology[] = {
6312#ifdef CONFIG_SCHED_SMT
6313 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6314#endif
6315#ifdef CONFIG_SCHED_MC
6316 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
143e1e28
VG
6317#endif
6318 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6319 { NULL, },
6320};
6321
6322struct sched_domain_topology_level *sched_domain_topology = default_topology;
6323
6324#define for_each_sd_topology(tl) \
6325 for (tl = sched_domain_topology; tl->mask; tl++)
6326
6327void set_sched_topology(struct sched_domain_topology_level *tl)
6328{
6329 sched_domain_topology = tl;
6330}
6331
6332#ifdef CONFIG_NUMA
6333
cb83b629
PZ
6334static const struct cpumask *sd_numa_mask(int cpu)
6335{
6336 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6337}
6338
d039ac60
PZ
6339static void sched_numa_warn(const char *str)
6340{
6341 static int done = false;
6342 int i,j;
6343
6344 if (done)
6345 return;
6346
6347 done = true;
6348
6349 printk(KERN_WARNING "ERROR: %s\n\n", str);
6350
6351 for (i = 0; i < nr_node_ids; i++) {
6352 printk(KERN_WARNING " ");
6353 for (j = 0; j < nr_node_ids; j++)
6354 printk(KERN_CONT "%02d ", node_distance(i,j));
6355 printk(KERN_CONT "\n");
6356 }
6357 printk(KERN_WARNING "\n");
6358}
6359
9942f79b 6360bool find_numa_distance(int distance)
d039ac60
PZ
6361{
6362 int i;
6363
6364 if (distance == node_distance(0, 0))
6365 return true;
6366
6367 for (i = 0; i < sched_domains_numa_levels; i++) {
6368 if (sched_domains_numa_distance[i] == distance)
6369 return true;
6370 }
6371
6372 return false;
6373}
6374
e3fe70b1
RR
6375/*
6376 * A system can have three types of NUMA topology:
6377 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6378 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6379 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6380 *
6381 * The difference between a glueless mesh topology and a backplane
6382 * topology lies in whether communication between not directly
6383 * connected nodes goes through intermediary nodes (where programs
6384 * could run), or through backplane controllers. This affects
6385 * placement of programs.
6386 *
6387 * The type of topology can be discerned with the following tests:
6388 * - If the maximum distance between any nodes is 1 hop, the system
6389 * is directly connected.
6390 * - If for two nodes A and B, located N > 1 hops away from each other,
6391 * there is an intermediary node C, which is < N hops away from both
6392 * nodes A and B, the system is a glueless mesh.
6393 */
6394static void init_numa_topology_type(void)
6395{
6396 int a, b, c, n;
6397
6398 n = sched_max_numa_distance;
6399
6400 if (n <= 1)
6401 sched_numa_topology_type = NUMA_DIRECT;
6402
6403 for_each_online_node(a) {
6404 for_each_online_node(b) {
6405 /* Find two nodes furthest removed from each other. */
6406 if (node_distance(a, b) < n)
6407 continue;
6408
6409 /* Is there an intermediary node between a and b? */
6410 for_each_online_node(c) {
6411 if (node_distance(a, c) < n &&
6412 node_distance(b, c) < n) {
6413 sched_numa_topology_type =
6414 NUMA_GLUELESS_MESH;
6415 return;
6416 }
6417 }
6418
6419 sched_numa_topology_type = NUMA_BACKPLANE;
6420 return;
6421 }
6422 }
6423}
6424
cb83b629
PZ
6425static void sched_init_numa(void)
6426{
6427 int next_distance, curr_distance = node_distance(0, 0);
6428 struct sched_domain_topology_level *tl;
6429 int level = 0;
6430 int i, j, k;
6431
cb83b629
PZ
6432 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6433 if (!sched_domains_numa_distance)
6434 return;
6435
6436 /*
6437 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6438 * unique distances in the node_distance() table.
6439 *
6440 * Assumes node_distance(0,j) includes all distances in
6441 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6442 */
6443 next_distance = curr_distance;
6444 for (i = 0; i < nr_node_ids; i++) {
6445 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6446 for (k = 0; k < nr_node_ids; k++) {
6447 int distance = node_distance(i, k);
6448
6449 if (distance > curr_distance &&
6450 (distance < next_distance ||
6451 next_distance == curr_distance))
6452 next_distance = distance;
6453
6454 /*
6455 * While not a strong assumption it would be nice to know
6456 * about cases where if node A is connected to B, B is not
6457 * equally connected to A.
6458 */
6459 if (sched_debug() && node_distance(k, i) != distance)
6460 sched_numa_warn("Node-distance not symmetric");
6461
6462 if (sched_debug() && i && !find_numa_distance(distance))
6463 sched_numa_warn("Node-0 not representative");
6464 }
6465 if (next_distance != curr_distance) {
6466 sched_domains_numa_distance[level++] = next_distance;
6467 sched_domains_numa_levels = level;
6468 curr_distance = next_distance;
6469 } else break;
cb83b629 6470 }
d039ac60
PZ
6471
6472 /*
6473 * In case of sched_debug() we verify the above assumption.
6474 */
6475 if (!sched_debug())
6476 break;
cb83b629 6477 }
c123588b
AR
6478
6479 if (!level)
6480 return;
6481
cb83b629
PZ
6482 /*
6483 * 'level' contains the number of unique distances, excluding the
6484 * identity distance node_distance(i,i).
6485 *
28b4a521 6486 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
6487 * numbers.
6488 */
6489
5f7865f3
TC
6490 /*
6491 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6492 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6493 * the array will contain less then 'level' members. This could be
6494 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6495 * in other functions.
6496 *
6497 * We reset it to 'level' at the end of this function.
6498 */
6499 sched_domains_numa_levels = 0;
6500
cb83b629
PZ
6501 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6502 if (!sched_domains_numa_masks)
6503 return;
6504
6505 /*
6506 * Now for each level, construct a mask per node which contains all
6507 * cpus of nodes that are that many hops away from us.
6508 */
6509 for (i = 0; i < level; i++) {
6510 sched_domains_numa_masks[i] =
6511 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6512 if (!sched_domains_numa_masks[i])
6513 return;
6514
6515 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6516 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6517 if (!mask)
6518 return;
6519
6520 sched_domains_numa_masks[i][j] = mask;
6521
6522 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 6523 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6524 continue;
6525
6526 cpumask_or(mask, mask, cpumask_of_node(k));
6527 }
6528 }
6529 }
6530
143e1e28
VG
6531 /* Compute default topology size */
6532 for (i = 0; sched_domain_topology[i].mask; i++);
6533
c515db8c 6534 tl = kzalloc((i + level + 1) *
cb83b629
PZ
6535 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6536 if (!tl)
6537 return;
6538
6539 /*
6540 * Copy the default topology bits..
6541 */
143e1e28
VG
6542 for (i = 0; sched_domain_topology[i].mask; i++)
6543 tl[i] = sched_domain_topology[i];
cb83b629
PZ
6544
6545 /*
6546 * .. and append 'j' levels of NUMA goodness.
6547 */
6548 for (j = 0; j < level; i++, j++) {
6549 tl[i] = (struct sched_domain_topology_level){
cb83b629 6550 .mask = sd_numa_mask,
143e1e28 6551 .sd_flags = cpu_numa_flags,
cb83b629
PZ
6552 .flags = SDTL_OVERLAP,
6553 .numa_level = j,
143e1e28 6554 SD_INIT_NAME(NUMA)
cb83b629
PZ
6555 };
6556 }
6557
6558 sched_domain_topology = tl;
5f7865f3
TC
6559
6560 sched_domains_numa_levels = level;
9942f79b 6561 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
e3fe70b1
RR
6562
6563 init_numa_topology_type();
cb83b629 6564}
301a5cba
TC
6565
6566static void sched_domains_numa_masks_set(int cpu)
6567{
6568 int i, j;
6569 int node = cpu_to_node(cpu);
6570
6571 for (i = 0; i < sched_domains_numa_levels; i++) {
6572 for (j = 0; j < nr_node_ids; j++) {
6573 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6574 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6575 }
6576 }
6577}
6578
6579static void sched_domains_numa_masks_clear(int cpu)
6580{
6581 int i, j;
6582 for (i = 0; i < sched_domains_numa_levels; i++) {
6583 for (j = 0; j < nr_node_ids; j++)
6584 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6585 }
6586}
6587
6588/*
6589 * Update sched_domains_numa_masks[level][node] array when new cpus
6590 * are onlined.
6591 */
6592static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6593 unsigned long action,
6594 void *hcpu)
6595{
6596 int cpu = (long)hcpu;
6597
6598 switch (action & ~CPU_TASKS_FROZEN) {
6599 case CPU_ONLINE:
6600 sched_domains_numa_masks_set(cpu);
6601 break;
6602
6603 case CPU_DEAD:
6604 sched_domains_numa_masks_clear(cpu);
6605 break;
6606
6607 default:
6608 return NOTIFY_DONE;
6609 }
6610
6611 return NOTIFY_OK;
cb83b629
PZ
6612}
6613#else
6614static inline void sched_init_numa(void)
6615{
6616}
301a5cba
TC
6617
6618static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6619 unsigned long action,
6620 void *hcpu)
6621{
6622 return 0;
6623}
cb83b629
PZ
6624#endif /* CONFIG_NUMA */
6625
54ab4ff4
PZ
6626static int __sdt_alloc(const struct cpumask *cpu_map)
6627{
6628 struct sched_domain_topology_level *tl;
6629 int j;
6630
27723a68 6631 for_each_sd_topology(tl) {
54ab4ff4
PZ
6632 struct sd_data *sdd = &tl->data;
6633
6634 sdd->sd = alloc_percpu(struct sched_domain *);
6635 if (!sdd->sd)
6636 return -ENOMEM;
6637
6638 sdd->sg = alloc_percpu(struct sched_group *);
6639 if (!sdd->sg)
6640 return -ENOMEM;
6641
63b2ca30
NP
6642 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6643 if (!sdd->sgc)
9c3f75cb
PZ
6644 return -ENOMEM;
6645
54ab4ff4
PZ
6646 for_each_cpu(j, cpu_map) {
6647 struct sched_domain *sd;
6648 struct sched_group *sg;
63b2ca30 6649 struct sched_group_capacity *sgc;
54ab4ff4
PZ
6650
6651 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6652 GFP_KERNEL, cpu_to_node(j));
6653 if (!sd)
6654 return -ENOMEM;
6655
6656 *per_cpu_ptr(sdd->sd, j) = sd;
6657
6658 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6659 GFP_KERNEL, cpu_to_node(j));
6660 if (!sg)
6661 return -ENOMEM;
6662
30b4e9eb
IM
6663 sg->next = sg;
6664
54ab4ff4 6665 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6666
63b2ca30 6667 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
9c3f75cb 6668 GFP_KERNEL, cpu_to_node(j));
63b2ca30 6669 if (!sgc)
9c3f75cb
PZ
6670 return -ENOMEM;
6671
63b2ca30 6672 *per_cpu_ptr(sdd->sgc, j) = sgc;
54ab4ff4
PZ
6673 }
6674 }
6675
6676 return 0;
6677}
6678
6679static void __sdt_free(const struct cpumask *cpu_map)
6680{
6681 struct sched_domain_topology_level *tl;
6682 int j;
6683
27723a68 6684 for_each_sd_topology(tl) {
54ab4ff4
PZ
6685 struct sd_data *sdd = &tl->data;
6686
6687 for_each_cpu(j, cpu_map) {
fb2cf2c6 6688 struct sched_domain *sd;
6689
6690 if (sdd->sd) {
6691 sd = *per_cpu_ptr(sdd->sd, j);
6692 if (sd && (sd->flags & SD_OVERLAP))
6693 free_sched_groups(sd->groups, 0);
6694 kfree(*per_cpu_ptr(sdd->sd, j));
6695 }
6696
6697 if (sdd->sg)
6698 kfree(*per_cpu_ptr(sdd->sg, j));
63b2ca30
NP
6699 if (sdd->sgc)
6700 kfree(*per_cpu_ptr(sdd->sgc, j));
54ab4ff4
PZ
6701 }
6702 free_percpu(sdd->sd);
fb2cf2c6 6703 sdd->sd = NULL;
54ab4ff4 6704 free_percpu(sdd->sg);
fb2cf2c6 6705 sdd->sg = NULL;
63b2ca30
NP
6706 free_percpu(sdd->sgc);
6707 sdd->sgc = NULL;
54ab4ff4
PZ
6708 }
6709}
6710
2c402dc3 6711struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
6712 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6713 struct sched_domain *child, int cpu)
2c402dc3 6714{
143e1e28 6715 struct sched_domain *sd = sd_init(tl, cpu);
2c402dc3 6716 if (!sd)
d069b916 6717 return child;
2c402dc3 6718
2c402dc3 6719 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6720 if (child) {
6721 sd->level = child->level + 1;
6722 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6723 child->parent = sd;
c75e0128 6724 sd->child = child;
6ae72dff
PZ
6725
6726 if (!cpumask_subset(sched_domain_span(child),
6727 sched_domain_span(sd))) {
6728 pr_err("BUG: arch topology borken\n");
6729#ifdef CONFIG_SCHED_DEBUG
6730 pr_err(" the %s domain not a subset of the %s domain\n",
6731 child->name, sd->name);
6732#endif
6733 /* Fixup, ensure @sd has at least @child cpus. */
6734 cpumask_or(sched_domain_span(sd),
6735 sched_domain_span(sd),
6736 sched_domain_span(child));
6737 }
6738
60495e77 6739 }
a841f8ce 6740 set_domain_attribute(sd, attr);
2c402dc3
PZ
6741
6742 return sd;
6743}
6744
2109b99e
AH
6745/*
6746 * Build sched domains for a given set of cpus and attach the sched domains
6747 * to the individual cpus
6748 */
dce840a0
PZ
6749static int build_sched_domains(const struct cpumask *cpu_map,
6750 struct sched_domain_attr *attr)
2109b99e 6751{
1c632169 6752 enum s_alloc alloc_state;
dce840a0 6753 struct sched_domain *sd;
2109b99e 6754 struct s_data d;
822ff793 6755 int i, ret = -ENOMEM;
9c1cfda2 6756
2109b99e
AH
6757 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6758 if (alloc_state != sa_rootdomain)
6759 goto error;
9c1cfda2 6760
dce840a0 6761 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6762 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6763 struct sched_domain_topology_level *tl;
6764
3bd65a80 6765 sd = NULL;
27723a68 6766 for_each_sd_topology(tl) {
4a850cbe 6767 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
6768 if (tl == sched_domain_topology)
6769 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
6770 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6771 sd->flags |= SD_OVERLAP;
d110235d
PZ
6772 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6773 break;
e3589f6c 6774 }
dce840a0
PZ
6775 }
6776
6777 /* Build the groups for the domains */
6778 for_each_cpu(i, cpu_map) {
6779 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6780 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6781 if (sd->flags & SD_OVERLAP) {
6782 if (build_overlap_sched_groups(sd, i))
6783 goto error;
6784 } else {
6785 if (build_sched_groups(sd, i))
6786 goto error;
6787 }
1cf51902 6788 }
a06dadbe 6789 }
9c1cfda2 6790
ced549fa 6791 /* Calculate CPU capacity for physical packages and nodes */
a9c9a9b6
PZ
6792 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6793 if (!cpumask_test_cpu(i, cpu_map))
6794 continue;
9c1cfda2 6795
dce840a0
PZ
6796 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6797 claim_allocations(i, sd);
63b2ca30 6798 init_sched_groups_capacity(i, sd);
dce840a0 6799 }
f712c0c7 6800 }
9c1cfda2 6801
1da177e4 6802 /* Attach the domains */
dce840a0 6803 rcu_read_lock();
abcd083a 6804 for_each_cpu(i, cpu_map) {
21d42ccf 6805 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6806 cpu_attach_domain(sd, d.rd, i);
1da177e4 6807 }
dce840a0 6808 rcu_read_unlock();
51888ca2 6809
822ff793 6810 ret = 0;
51888ca2 6811error:
2109b99e 6812 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6813 return ret;
1da177e4 6814}
029190c5 6815
acc3f5d7 6816static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6817static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6818static struct sched_domain_attr *dattr_cur;
6819 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6820
6821/*
6822 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6823 * cpumask) fails, then fallback to a single sched domain,
6824 * as determined by the single cpumask fallback_doms.
029190c5 6825 */
4212823f 6826static cpumask_var_t fallback_doms;
029190c5 6827
ee79d1bd
HC
6828/*
6829 * arch_update_cpu_topology lets virtualized architectures update the
6830 * cpu core maps. It is supposed to return 1 if the topology changed
6831 * or 0 if it stayed the same.
6832 */
52f5684c 6833int __weak arch_update_cpu_topology(void)
22e52b07 6834{
ee79d1bd 6835 return 0;
22e52b07
HC
6836}
6837
acc3f5d7
RR
6838cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6839{
6840 int i;
6841 cpumask_var_t *doms;
6842
6843 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6844 if (!doms)
6845 return NULL;
6846 for (i = 0; i < ndoms; i++) {
6847 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6848 free_sched_domains(doms, i);
6849 return NULL;
6850 }
6851 }
6852 return doms;
6853}
6854
6855void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6856{
6857 unsigned int i;
6858 for (i = 0; i < ndoms; i++)
6859 free_cpumask_var(doms[i]);
6860 kfree(doms);
6861}
6862
1a20ff27 6863/*
41a2d6cf 6864 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6865 * For now this just excludes isolated cpus, but could be used to
6866 * exclude other special cases in the future.
1a20ff27 6867 */
c4a8849a 6868static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6869{
7378547f
MM
6870 int err;
6871
22e52b07 6872 arch_update_cpu_topology();
029190c5 6873 ndoms_cur = 1;
acc3f5d7 6874 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6875 if (!doms_cur)
acc3f5d7
RR
6876 doms_cur = &fallback_doms;
6877 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 6878 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6879 register_sched_domain_sysctl();
7378547f
MM
6880
6881 return err;
1a20ff27
DG
6882}
6883
1a20ff27
DG
6884/*
6885 * Detach sched domains from a group of cpus specified in cpu_map
6886 * These cpus will now be attached to the NULL domain
6887 */
96f874e2 6888static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6889{
6890 int i;
6891
dce840a0 6892 rcu_read_lock();
abcd083a 6893 for_each_cpu(i, cpu_map)
57d885fe 6894 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6895 rcu_read_unlock();
1a20ff27
DG
6896}
6897
1d3504fc
HS
6898/* handle null as "default" */
6899static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6900 struct sched_domain_attr *new, int idx_new)
6901{
6902 struct sched_domain_attr tmp;
6903
6904 /* fast path */
6905 if (!new && !cur)
6906 return 1;
6907
6908 tmp = SD_ATTR_INIT;
6909 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6910 new ? (new + idx_new) : &tmp,
6911 sizeof(struct sched_domain_attr));
6912}
6913
029190c5
PJ
6914/*
6915 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6916 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6917 * doms_new[] to the current sched domain partitioning, doms_cur[].
6918 * It destroys each deleted domain and builds each new domain.
6919 *
acc3f5d7 6920 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
6921 * The masks don't intersect (don't overlap.) We should setup one
6922 * sched domain for each mask. CPUs not in any of the cpumasks will
6923 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6924 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6925 * it as it is.
6926 *
acc3f5d7
RR
6927 * The passed in 'doms_new' should be allocated using
6928 * alloc_sched_domains. This routine takes ownership of it and will
6929 * free_sched_domains it when done with it. If the caller failed the
6930 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6931 * and partition_sched_domains() will fallback to the single partition
6932 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 6933 *
96f874e2 6934 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
6935 * ndoms_new == 0 is a special case for destroying existing domains,
6936 * and it will not create the default domain.
dfb512ec 6937 *
029190c5
PJ
6938 * Call with hotplug lock held
6939 */
acc3f5d7 6940void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 6941 struct sched_domain_attr *dattr_new)
029190c5 6942{
dfb512ec 6943 int i, j, n;
d65bd5ec 6944 int new_topology;
029190c5 6945
712555ee 6946 mutex_lock(&sched_domains_mutex);
a1835615 6947
7378547f
MM
6948 /* always unregister in case we don't destroy any domains */
6949 unregister_sched_domain_sysctl();
6950
d65bd5ec
HC
6951 /* Let architecture update cpu core mappings. */
6952 new_topology = arch_update_cpu_topology();
6953
dfb512ec 6954 n = doms_new ? ndoms_new : 0;
029190c5
PJ
6955
6956 /* Destroy deleted domains */
6957 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 6958 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6959 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 6960 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
6961 goto match1;
6962 }
6963 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 6964 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
6965match1:
6966 ;
6967 }
6968
c8d2d47a 6969 n = ndoms_cur;
e761b772 6970 if (doms_new == NULL) {
c8d2d47a 6971 n = 0;
acc3f5d7 6972 doms_new = &fallback_doms;
6ad4c188 6973 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 6974 WARN_ON_ONCE(dattr_new);
e761b772
MK
6975 }
6976
029190c5
PJ
6977 /* Build new domains */
6978 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 6979 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6980 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 6981 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
6982 goto match2;
6983 }
6984 /* no match - add a new doms_new */
dce840a0 6985 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
6986match2:
6987 ;
6988 }
6989
6990 /* Remember the new sched domains */
acc3f5d7
RR
6991 if (doms_cur != &fallback_doms)
6992 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 6993 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 6994 doms_cur = doms_new;
1d3504fc 6995 dattr_cur = dattr_new;
029190c5 6996 ndoms_cur = ndoms_new;
7378547f
MM
6997
6998 register_sched_domain_sysctl();
a1835615 6999
712555ee 7000 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7001}
7002
d35be8ba
SB
7003static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
7004
1da177e4 7005/*
3a101d05
TH
7006 * Update cpusets according to cpu_active mask. If cpusets are
7007 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7008 * around partition_sched_domains().
d35be8ba
SB
7009 *
7010 * If we come here as part of a suspend/resume, don't touch cpusets because we
7011 * want to restore it back to its original state upon resume anyway.
1da177e4 7012 */
0b2e918a
TH
7013static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7014 void *hcpu)
e761b772 7015{
d35be8ba
SB
7016 switch (action) {
7017 case CPU_ONLINE_FROZEN:
7018 case CPU_DOWN_FAILED_FROZEN:
7019
7020 /*
7021 * num_cpus_frozen tracks how many CPUs are involved in suspend
7022 * resume sequence. As long as this is not the last online
7023 * operation in the resume sequence, just build a single sched
7024 * domain, ignoring cpusets.
7025 */
7026 num_cpus_frozen--;
7027 if (likely(num_cpus_frozen)) {
7028 partition_sched_domains(1, NULL, NULL);
7029 break;
7030 }
7031
7032 /*
7033 * This is the last CPU online operation. So fall through and
7034 * restore the original sched domains by considering the
7035 * cpuset configurations.
7036 */
7037
e761b772 7038 case CPU_ONLINE:
7ddf96b0 7039 cpuset_update_active_cpus(true);
d35be8ba 7040 break;
3a101d05
TH
7041 default:
7042 return NOTIFY_DONE;
7043 }
d35be8ba 7044 return NOTIFY_OK;
3a101d05 7045}
e761b772 7046
0b2e918a
TH
7047static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7048 void *hcpu)
3a101d05 7049{
3c18d447
JL
7050 unsigned long flags;
7051 long cpu = (long)hcpu;
7052 struct dl_bw *dl_b;
533445c6
OS
7053 bool overflow;
7054 int cpus;
3c18d447 7055
533445c6 7056 switch (action) {
3a101d05 7057 case CPU_DOWN_PREPARE:
533445c6
OS
7058 rcu_read_lock_sched();
7059 dl_b = dl_bw_of(cpu);
3c18d447 7060
533445c6
OS
7061 raw_spin_lock_irqsave(&dl_b->lock, flags);
7062 cpus = dl_bw_cpus(cpu);
7063 overflow = __dl_overflow(dl_b, cpus, 0, 0);
7064 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3c18d447 7065
533445c6 7066 rcu_read_unlock_sched();
3c18d447 7067
533445c6
OS
7068 if (overflow)
7069 return notifier_from_errno(-EBUSY);
7ddf96b0 7070 cpuset_update_active_cpus(false);
d35be8ba
SB
7071 break;
7072 case CPU_DOWN_PREPARE_FROZEN:
7073 num_cpus_frozen++;
7074 partition_sched_domains(1, NULL, NULL);
7075 break;
e761b772
MK
7076 default:
7077 return NOTIFY_DONE;
7078 }
d35be8ba 7079 return NOTIFY_OK;
e761b772 7080}
e761b772 7081
1da177e4
LT
7082void __init sched_init_smp(void)
7083{
dcc30a35
RR
7084 cpumask_var_t non_isolated_cpus;
7085
7086 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7087 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7088
cb83b629
PZ
7089 sched_init_numa();
7090
6acce3ef
PZ
7091 /*
7092 * There's no userspace yet to cause hotplug operations; hence all the
7093 * cpu masks are stable and all blatant races in the below code cannot
7094 * happen.
7095 */
712555ee 7096 mutex_lock(&sched_domains_mutex);
c4a8849a 7097 init_sched_domains(cpu_active_mask);
dcc30a35
RR
7098 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7099 if (cpumask_empty(non_isolated_cpus))
7100 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7101 mutex_unlock(&sched_domains_mutex);
e761b772 7102
301a5cba 7103 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
7104 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7105 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772 7106
b328ca18 7107 init_hrtick();
5c1e1767
NP
7108
7109 /* Move init over to a non-isolated CPU */
dcc30a35 7110 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7111 BUG();
19978ca6 7112 sched_init_granularity();
dcc30a35 7113 free_cpumask_var(non_isolated_cpus);
4212823f 7114
0e3900e6 7115 init_sched_rt_class();
1baca4ce 7116 init_sched_dl_class();
1da177e4
LT
7117}
7118#else
7119void __init sched_init_smp(void)
7120{
19978ca6 7121 sched_init_granularity();
1da177e4
LT
7122}
7123#endif /* CONFIG_SMP */
7124
cd1bb94b
AB
7125const_debug unsigned int sysctl_timer_migration = 1;
7126
1da177e4
LT
7127int in_sched_functions(unsigned long addr)
7128{
1da177e4
LT
7129 return in_lock_functions(addr) ||
7130 (addr >= (unsigned long)__sched_text_start
7131 && addr < (unsigned long)__sched_text_end);
7132}
7133
029632fb 7134#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
7135/*
7136 * Default task group.
7137 * Every task in system belongs to this group at bootup.
7138 */
029632fb 7139struct task_group root_task_group;
35cf4e50 7140LIST_HEAD(task_groups);
052f1dc7 7141#endif
6f505b16 7142
e6252c3e 7143DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 7144
1da177e4
LT
7145void __init sched_init(void)
7146{
dd41f596 7147 int i, j;
434d53b0
MT
7148 unsigned long alloc_size = 0, ptr;
7149
7150#ifdef CONFIG_FAIR_GROUP_SCHED
7151 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7152#endif
7153#ifdef CONFIG_RT_GROUP_SCHED
7154 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7155#endif
434d53b0 7156 if (alloc_size) {
36b7b6d4 7157 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7158
7159#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 7160 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
7161 ptr += nr_cpu_ids * sizeof(void **);
7162
07e06b01 7163 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 7164 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7165
6d6bc0ad 7166#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 7167#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7168 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
7169 ptr += nr_cpu_ids * sizeof(void **);
7170
07e06b01 7171 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7172 ptr += nr_cpu_ids * sizeof(void **);
7173
6d6bc0ad 7174#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 7175 }
df7c8e84 7176#ifdef CONFIG_CPUMASK_OFFSTACK
b74e6278
AT
7177 for_each_possible_cpu(i) {
7178 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7179 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
434d53b0 7180 }
b74e6278 7181#endif /* CONFIG_CPUMASK_OFFSTACK */
dd41f596 7182
332ac17e
DF
7183 init_rt_bandwidth(&def_rt_bandwidth,
7184 global_rt_period(), global_rt_runtime());
7185 init_dl_bandwidth(&def_dl_bandwidth,
1724813d 7186 global_rt_period(), global_rt_runtime());
332ac17e 7187
57d885fe
GH
7188#ifdef CONFIG_SMP
7189 init_defrootdomain();
7190#endif
7191
d0b27fa7 7192#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7193 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 7194 global_rt_period(), global_rt_runtime());
6d6bc0ad 7195#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7196
7c941438 7197#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
7198 list_add(&root_task_group.list, &task_groups);
7199 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 7200 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 7201 autogroup_init(&init_task);
54c707e9 7202
7c941438 7203#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7204
0a945022 7205 for_each_possible_cpu(i) {
70b97a7f 7206 struct rq *rq;
1da177e4
LT
7207
7208 rq = cpu_rq(i);
05fa785c 7209 raw_spin_lock_init(&rq->lock);
7897986b 7210 rq->nr_running = 0;
dce48a84
TG
7211 rq->calc_load_active = 0;
7212 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 7213 init_cfs_rq(&rq->cfs);
07c54f7a
AV
7214 init_rt_rq(&rq->rt);
7215 init_dl_rq(&rq->dl);
dd41f596 7216#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 7217 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 7218 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 7219 /*
07e06b01 7220 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
7221 *
7222 * In case of task-groups formed thr' the cgroup filesystem, it
7223 * gets 100% of the cpu resources in the system. This overall
7224 * system cpu resource is divided among the tasks of
07e06b01 7225 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
7226 * based on each entity's (task or task-group's) weight
7227 * (se->load.weight).
7228 *
07e06b01 7229 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
7230 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7231 * then A0's share of the cpu resource is:
7232 *
0d905bca 7233 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 7234 *
07e06b01
YZ
7235 * We achieve this by letting root_task_group's tasks sit
7236 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 7237 */
ab84d31e 7238 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 7239 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
7240#endif /* CONFIG_FAIR_GROUP_SCHED */
7241
7242 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7243#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7244 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 7245#endif
1da177e4 7246
dd41f596
IM
7247 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7248 rq->cpu_load[j] = 0;
fdf3e95d
VP
7249
7250 rq->last_load_update_tick = jiffies;
7251
1da177e4 7252#ifdef CONFIG_SMP
41c7ce9a 7253 rq->sd = NULL;
57d885fe 7254 rq->rd = NULL;
ca6d75e6 7255 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
e3fca9e7 7256 rq->balance_callback = NULL;
1da177e4 7257 rq->active_balance = 0;
dd41f596 7258 rq->next_balance = jiffies;
1da177e4 7259 rq->push_cpu = 0;
0a2966b4 7260 rq->cpu = i;
1f11eb6a 7261 rq->online = 0;
eae0c9df
MG
7262 rq->idle_stamp = 0;
7263 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 7264 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
7265
7266 INIT_LIST_HEAD(&rq->cfs_tasks);
7267
dc938520 7268 rq_attach_root(rq, &def_root_domain);
3451d024 7269#ifdef CONFIG_NO_HZ_COMMON
1c792db7 7270 rq->nohz_flags = 0;
83cd4fe2 7271#endif
265f22a9
FW
7272#ifdef CONFIG_NO_HZ_FULL
7273 rq->last_sched_tick = 0;
7274#endif
1da177e4 7275#endif
8f4d37ec 7276 init_rq_hrtick(rq);
1da177e4 7277 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7278 }
7279
2dd73a4f 7280 set_load_weight(&init_task);
b50f60ce 7281
e107be36
AK
7282#ifdef CONFIG_PREEMPT_NOTIFIERS
7283 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7284#endif
7285
1da177e4
LT
7286 /*
7287 * The boot idle thread does lazy MMU switching as well:
7288 */
7289 atomic_inc(&init_mm.mm_count);
7290 enter_lazy_tlb(&init_mm, current);
7291
1b537c7d
YD
7292 /*
7293 * During early bootup we pretend to be a normal task:
7294 */
7295 current->sched_class = &fair_sched_class;
7296
1da177e4
LT
7297 /*
7298 * Make us the idle thread. Technically, schedule() should not be
7299 * called from this thread, however somewhere below it might be,
7300 * but because we are the idle thread, we just pick up running again
7301 * when this runqueue becomes "idle".
7302 */
7303 init_idle(current, smp_processor_id());
dce48a84
TG
7304
7305 calc_load_update = jiffies + LOAD_FREQ;
7306
bf4d83f6 7307#ifdef CONFIG_SMP
4cb98839 7308 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
7309 /* May be allocated at isolcpus cmdline parse time */
7310 if (cpu_isolated_map == NULL)
7311 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 7312 idle_thread_set_boot_cpu();
a803f026 7313 set_cpu_rq_start_time();
029632fb
PZ
7314#endif
7315 init_sched_fair_class();
6a7b3dc3 7316
6892b75e 7317 scheduler_running = 1;
1da177e4
LT
7318}
7319
d902db1e 7320#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
7321static inline int preempt_count_equals(int preempt_offset)
7322{
234da7bc 7323 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 7324
4ba8216c 7325 return (nested == preempt_offset);
e4aafea2
FW
7326}
7327
d894837f 7328void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7329{
8eb23b9f
PZ
7330 /*
7331 * Blocking primitives will set (and therefore destroy) current->state,
7332 * since we will exit with TASK_RUNNING make sure we enter with it,
7333 * otherwise we will destroy state.
7334 */
00845eb9 7335 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
8eb23b9f
PZ
7336 "do not call blocking ops when !TASK_RUNNING; "
7337 "state=%lx set at [<%p>] %pS\n",
7338 current->state,
7339 (void *)current->task_state_change,
00845eb9 7340 (void *)current->task_state_change);
8eb23b9f 7341
3427445a
PZ
7342 ___might_sleep(file, line, preempt_offset);
7343}
7344EXPORT_SYMBOL(__might_sleep);
7345
7346void ___might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7347{
1da177e4
LT
7348 static unsigned long prev_jiffy; /* ratelimiting */
7349
b3fbab05 7350 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
db273be2
TG
7351 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7352 !is_idle_task(current)) ||
e4aafea2 7353 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7354 return;
7355 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7356 return;
7357 prev_jiffy = jiffies;
7358
3df0fc5b
PZ
7359 printk(KERN_ERR
7360 "BUG: sleeping function called from invalid context at %s:%d\n",
7361 file, line);
7362 printk(KERN_ERR
7363 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7364 in_atomic(), irqs_disabled(),
7365 current->pid, current->comm);
aef745fc 7366
a8b686b3
ES
7367 if (task_stack_end_corrupted(current))
7368 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7369
aef745fc
IM
7370 debug_show_held_locks(current);
7371 if (irqs_disabled())
7372 print_irqtrace_events(current);
8f47b187
TG
7373#ifdef CONFIG_DEBUG_PREEMPT
7374 if (!preempt_count_equals(preempt_offset)) {
7375 pr_err("Preemption disabled at:");
7376 print_ip_sym(current->preempt_disable_ip);
7377 pr_cont("\n");
7378 }
7379#endif
aef745fc 7380 dump_stack();
1da177e4 7381}
3427445a 7382EXPORT_SYMBOL(___might_sleep);
1da177e4
LT
7383#endif
7384
7385#ifdef CONFIG_MAGIC_SYSRQ
dbc7f069 7386void normalize_rt_tasks(void)
3a5e4dc1 7387{
dbc7f069 7388 struct task_struct *g, *p;
d50dde5a
DF
7389 struct sched_attr attr = {
7390 .sched_policy = SCHED_NORMAL,
7391 };
1da177e4 7392
3472eaa1 7393 read_lock(&tasklist_lock);
5d07f420 7394 for_each_process_thread(g, p) {
178be793
IM
7395 /*
7396 * Only normalize user tasks:
7397 */
3472eaa1 7398 if (p->flags & PF_KTHREAD)
178be793
IM
7399 continue;
7400
6cfb0d5d 7401 p->se.exec_start = 0;
6cfb0d5d 7402#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7403 p->se.statistics.wait_start = 0;
7404 p->se.statistics.sleep_start = 0;
7405 p->se.statistics.block_start = 0;
6cfb0d5d 7406#endif
dd41f596 7407
aab03e05 7408 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
7409 /*
7410 * Renice negative nice level userspace
7411 * tasks back to 0:
7412 */
3472eaa1 7413 if (task_nice(p) < 0)
dd41f596 7414 set_user_nice(p, 0);
1da177e4 7415 continue;
dd41f596 7416 }
1da177e4 7417
dbc7f069 7418 __sched_setscheduler(p, &attr, false, false);
5d07f420 7419 }
3472eaa1 7420 read_unlock(&tasklist_lock);
1da177e4
LT
7421}
7422
7423#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7424
67fc4e0c 7425#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7426/*
67fc4e0c 7427 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7428 *
7429 * They can only be called when the whole system has been
7430 * stopped - every CPU needs to be quiescent, and no scheduling
7431 * activity can take place. Using them for anything else would
7432 * be a serious bug, and as a result, they aren't even visible
7433 * under any other configuration.
7434 */
7435
7436/**
7437 * curr_task - return the current task for a given cpu.
7438 * @cpu: the processor in question.
7439 *
7440 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
7441 *
7442 * Return: The current task for @cpu.
1df5c10a 7443 */
36c8b586 7444struct task_struct *curr_task(int cpu)
1df5c10a
LT
7445{
7446 return cpu_curr(cpu);
7447}
7448
67fc4e0c
JW
7449#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7450
7451#ifdef CONFIG_IA64
1df5c10a
LT
7452/**
7453 * set_curr_task - set the current task for a given cpu.
7454 * @cpu: the processor in question.
7455 * @p: the task pointer to set.
7456 *
7457 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7458 * are serviced on a separate stack. It allows the architecture to switch the
7459 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7460 * must be called with all CPU's synchronized, and interrupts disabled, the
7461 * and caller must save the original value of the current task (see
7462 * curr_task() above) and restore that value before reenabling interrupts and
7463 * re-starting the system.
7464 *
7465 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7466 */
36c8b586 7467void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7468{
7469 cpu_curr(cpu) = p;
7470}
7471
7472#endif
29f59db3 7473
7c941438 7474#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7475/* task_group_lock serializes the addition/removal of task groups */
7476static DEFINE_SPINLOCK(task_group_lock);
7477
bccbe08a
PZ
7478static void free_sched_group(struct task_group *tg)
7479{
7480 free_fair_sched_group(tg);
7481 free_rt_sched_group(tg);
e9aa1dd1 7482 autogroup_free(tg);
bccbe08a
PZ
7483 kfree(tg);
7484}
7485
7486/* allocate runqueue etc for a new task group */
ec7dc8ac 7487struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7488{
7489 struct task_group *tg;
bccbe08a
PZ
7490
7491 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7492 if (!tg)
7493 return ERR_PTR(-ENOMEM);
7494
ec7dc8ac 7495 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7496 goto err;
7497
ec7dc8ac 7498 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7499 goto err;
7500
ace783b9
LZ
7501 return tg;
7502
7503err:
7504 free_sched_group(tg);
7505 return ERR_PTR(-ENOMEM);
7506}
7507
7508void sched_online_group(struct task_group *tg, struct task_group *parent)
7509{
7510 unsigned long flags;
7511
8ed36996 7512 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7513 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7514
7515 WARN_ON(!parent); /* root should already exist */
7516
7517 tg->parent = parent;
f473aa5e 7518 INIT_LIST_HEAD(&tg->children);
09f2724a 7519 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7520 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7521}
7522
9b5b7751 7523/* rcu callback to free various structures associated with a task group */
6f505b16 7524static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7525{
29f59db3 7526 /* now it should be safe to free those cfs_rqs */
6f505b16 7527 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7528}
7529
9b5b7751 7530/* Destroy runqueue etc associated with a task group */
4cf86d77 7531void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
7532{
7533 /* wait for possible concurrent references to cfs_rqs complete */
7534 call_rcu(&tg->rcu, free_sched_group_rcu);
7535}
7536
7537void sched_offline_group(struct task_group *tg)
29f59db3 7538{
8ed36996 7539 unsigned long flags;
9b5b7751 7540 int i;
29f59db3 7541
3d4b47b4
PZ
7542 /* end participation in shares distribution */
7543 for_each_possible_cpu(i)
bccbe08a 7544 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
7545
7546 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7547 list_del_rcu(&tg->list);
f473aa5e 7548 list_del_rcu(&tg->siblings);
8ed36996 7549 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7550}
7551
9b5b7751 7552/* change task's runqueue when it moves between groups.
3a252015
IM
7553 * The caller of this function should have put the task in its new group
7554 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7555 * reflect its new group.
9b5b7751
SV
7556 */
7557void sched_move_task(struct task_struct *tsk)
29f59db3 7558{
8323f26c 7559 struct task_group *tg;
da0c1e65 7560 int queued, running;
29f59db3
SV
7561 unsigned long flags;
7562 struct rq *rq;
7563
7564 rq = task_rq_lock(tsk, &flags);
7565
051a1d1a 7566 running = task_current(rq, tsk);
da0c1e65 7567 queued = task_on_rq_queued(tsk);
29f59db3 7568
da0c1e65 7569 if (queued)
29f59db3 7570 dequeue_task(rq, tsk, 0);
0e1f3483 7571 if (unlikely(running))
f3cd1c4e 7572 put_prev_task(rq, tsk);
29f59db3 7573
f7b8a47d
KT
7574 /*
7575 * All callers are synchronized by task_rq_lock(); we do not use RCU
7576 * which is pointless here. Thus, we pass "true" to task_css_check()
7577 * to prevent lockdep warnings.
7578 */
7579 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
7580 struct task_group, css);
7581 tg = autogroup_task_group(tsk, tg);
7582 tsk->sched_task_group = tg;
7583
810b3817 7584#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7585 if (tsk->sched_class->task_move_group)
da0c1e65 7586 tsk->sched_class->task_move_group(tsk, queued);
b2b5ce02 7587 else
810b3817 7588#endif
b2b5ce02 7589 set_task_rq(tsk, task_cpu(tsk));
810b3817 7590
0e1f3483
HS
7591 if (unlikely(running))
7592 tsk->sched_class->set_curr_task(rq);
da0c1e65 7593 if (queued)
371fd7e7 7594 enqueue_task(rq, tsk, 0);
29f59db3 7595
0122ec5b 7596 task_rq_unlock(rq, tsk, &flags);
29f59db3 7597}
7c941438 7598#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7599
a790de99
PT
7600#ifdef CONFIG_RT_GROUP_SCHED
7601/*
7602 * Ensure that the real time constraints are schedulable.
7603 */
7604static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7605
9a7e0b18
PZ
7606/* Must be called with tasklist_lock held */
7607static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7608{
9a7e0b18 7609 struct task_struct *g, *p;
b40b2e8e 7610
1fe89e1b
PZ
7611 /*
7612 * Autogroups do not have RT tasks; see autogroup_create().
7613 */
7614 if (task_group_is_autogroup(tg))
7615 return 0;
7616
5d07f420 7617 for_each_process_thread(g, p) {
8651c658 7618 if (rt_task(p) && task_group(p) == tg)
9a7e0b18 7619 return 1;
5d07f420 7620 }
b40b2e8e 7621
9a7e0b18
PZ
7622 return 0;
7623}
b40b2e8e 7624
9a7e0b18
PZ
7625struct rt_schedulable_data {
7626 struct task_group *tg;
7627 u64 rt_period;
7628 u64 rt_runtime;
7629};
b40b2e8e 7630
a790de99 7631static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7632{
7633 struct rt_schedulable_data *d = data;
7634 struct task_group *child;
7635 unsigned long total, sum = 0;
7636 u64 period, runtime;
b40b2e8e 7637
9a7e0b18
PZ
7638 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7639 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7640
9a7e0b18
PZ
7641 if (tg == d->tg) {
7642 period = d->rt_period;
7643 runtime = d->rt_runtime;
b40b2e8e 7644 }
b40b2e8e 7645
4653f803
PZ
7646 /*
7647 * Cannot have more runtime than the period.
7648 */
7649 if (runtime > period && runtime != RUNTIME_INF)
7650 return -EINVAL;
6f505b16 7651
4653f803
PZ
7652 /*
7653 * Ensure we don't starve existing RT tasks.
7654 */
9a7e0b18
PZ
7655 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7656 return -EBUSY;
6f505b16 7657
9a7e0b18 7658 total = to_ratio(period, runtime);
6f505b16 7659
4653f803
PZ
7660 /*
7661 * Nobody can have more than the global setting allows.
7662 */
7663 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7664 return -EINVAL;
6f505b16 7665
4653f803
PZ
7666 /*
7667 * The sum of our children's runtime should not exceed our own.
7668 */
9a7e0b18
PZ
7669 list_for_each_entry_rcu(child, &tg->children, siblings) {
7670 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7671 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7672
9a7e0b18
PZ
7673 if (child == d->tg) {
7674 period = d->rt_period;
7675 runtime = d->rt_runtime;
7676 }
6f505b16 7677
9a7e0b18 7678 sum += to_ratio(period, runtime);
9f0c1e56 7679 }
6f505b16 7680
9a7e0b18
PZ
7681 if (sum > total)
7682 return -EINVAL;
7683
7684 return 0;
6f505b16
PZ
7685}
7686
9a7e0b18 7687static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7688{
8277434e
PT
7689 int ret;
7690
9a7e0b18
PZ
7691 struct rt_schedulable_data data = {
7692 .tg = tg,
7693 .rt_period = period,
7694 .rt_runtime = runtime,
7695 };
7696
8277434e
PT
7697 rcu_read_lock();
7698 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7699 rcu_read_unlock();
7700
7701 return ret;
521f1a24
DG
7702}
7703
ab84d31e 7704static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7705 u64 rt_period, u64 rt_runtime)
6f505b16 7706{
ac086bc2 7707 int i, err = 0;
9f0c1e56 7708
2636ed5f
PZ
7709 /*
7710 * Disallowing the root group RT runtime is BAD, it would disallow the
7711 * kernel creating (and or operating) RT threads.
7712 */
7713 if (tg == &root_task_group && rt_runtime == 0)
7714 return -EINVAL;
7715
7716 /* No period doesn't make any sense. */
7717 if (rt_period == 0)
7718 return -EINVAL;
7719
9f0c1e56 7720 mutex_lock(&rt_constraints_mutex);
521f1a24 7721 read_lock(&tasklist_lock);
9a7e0b18
PZ
7722 err = __rt_schedulable(tg, rt_period, rt_runtime);
7723 if (err)
9f0c1e56 7724 goto unlock;
ac086bc2 7725
0986b11b 7726 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7727 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7728 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7729
7730 for_each_possible_cpu(i) {
7731 struct rt_rq *rt_rq = tg->rt_rq[i];
7732
0986b11b 7733 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7734 rt_rq->rt_runtime = rt_runtime;
0986b11b 7735 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7736 }
0986b11b 7737 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7738unlock:
521f1a24 7739 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7740 mutex_unlock(&rt_constraints_mutex);
7741
7742 return err;
6f505b16
PZ
7743}
7744
25cc7da7 7745static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
7746{
7747 u64 rt_runtime, rt_period;
7748
7749 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7750 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7751 if (rt_runtime_us < 0)
7752 rt_runtime = RUNTIME_INF;
7753
ab84d31e 7754 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7755}
7756
25cc7da7 7757static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
7758{
7759 u64 rt_runtime_us;
7760
d0b27fa7 7761 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7762 return -1;
7763
d0b27fa7 7764 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7765 do_div(rt_runtime_us, NSEC_PER_USEC);
7766 return rt_runtime_us;
7767}
d0b27fa7 7768
ce2f5fe4 7769static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
d0b27fa7
PZ
7770{
7771 u64 rt_runtime, rt_period;
7772
ce2f5fe4 7773 rt_period = rt_period_us * NSEC_PER_USEC;
d0b27fa7
PZ
7774 rt_runtime = tg->rt_bandwidth.rt_runtime;
7775
ab84d31e 7776 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7777}
7778
25cc7da7 7779static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
7780{
7781 u64 rt_period_us;
7782
7783 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7784 do_div(rt_period_us, NSEC_PER_USEC);
7785 return rt_period_us;
7786}
332ac17e 7787#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7788
332ac17e 7789#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
7790static int sched_rt_global_constraints(void)
7791{
7792 int ret = 0;
7793
7794 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7795 read_lock(&tasklist_lock);
4653f803 7796 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7797 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7798 mutex_unlock(&rt_constraints_mutex);
7799
7800 return ret;
7801}
54e99124 7802
25cc7da7 7803static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
7804{
7805 /* Don't accept realtime tasks when there is no way for them to run */
7806 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7807 return 0;
7808
7809 return 1;
7810}
7811
6d6bc0ad 7812#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7813static int sched_rt_global_constraints(void)
7814{
ac086bc2 7815 unsigned long flags;
332ac17e 7816 int i, ret = 0;
ec5d4989 7817
0986b11b 7818 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7819 for_each_possible_cpu(i) {
7820 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7821
0986b11b 7822 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7823 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7824 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7825 }
0986b11b 7826 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7827
332ac17e 7828 return ret;
d0b27fa7 7829}
6d6bc0ad 7830#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7831
a1963b81 7832static int sched_dl_global_validate(void)
332ac17e 7833{
1724813d
PZ
7834 u64 runtime = global_rt_runtime();
7835 u64 period = global_rt_period();
332ac17e 7836 u64 new_bw = to_ratio(period, runtime);
f10e00f4 7837 struct dl_bw *dl_b;
1724813d 7838 int cpu, ret = 0;
49516342 7839 unsigned long flags;
332ac17e
DF
7840
7841 /*
7842 * Here we want to check the bandwidth not being set to some
7843 * value smaller than the currently allocated bandwidth in
7844 * any of the root_domains.
7845 *
7846 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7847 * cycling on root_domains... Discussion on different/better
7848 * solutions is welcome!
7849 */
1724813d 7850 for_each_possible_cpu(cpu) {
f10e00f4
KT
7851 rcu_read_lock_sched();
7852 dl_b = dl_bw_of(cpu);
332ac17e 7853
49516342 7854 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d
PZ
7855 if (new_bw < dl_b->total_bw)
7856 ret = -EBUSY;
49516342 7857 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
1724813d 7858
f10e00f4
KT
7859 rcu_read_unlock_sched();
7860
1724813d
PZ
7861 if (ret)
7862 break;
332ac17e
DF
7863 }
7864
1724813d 7865 return ret;
332ac17e
DF
7866}
7867
1724813d 7868static void sched_dl_do_global(void)
ce0dbbbb 7869{
1724813d 7870 u64 new_bw = -1;
f10e00f4 7871 struct dl_bw *dl_b;
1724813d 7872 int cpu;
49516342 7873 unsigned long flags;
ce0dbbbb 7874
1724813d
PZ
7875 def_dl_bandwidth.dl_period = global_rt_period();
7876 def_dl_bandwidth.dl_runtime = global_rt_runtime();
7877
7878 if (global_rt_runtime() != RUNTIME_INF)
7879 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7880
7881 /*
7882 * FIXME: As above...
7883 */
7884 for_each_possible_cpu(cpu) {
f10e00f4
KT
7885 rcu_read_lock_sched();
7886 dl_b = dl_bw_of(cpu);
1724813d 7887
49516342 7888 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d 7889 dl_b->bw = new_bw;
49516342 7890 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
f10e00f4
KT
7891
7892 rcu_read_unlock_sched();
ce0dbbbb 7893 }
1724813d
PZ
7894}
7895
7896static int sched_rt_global_validate(void)
7897{
7898 if (sysctl_sched_rt_period <= 0)
7899 return -EINVAL;
7900
e9e7cb38
JL
7901 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7902 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
1724813d
PZ
7903 return -EINVAL;
7904
7905 return 0;
7906}
7907
7908static void sched_rt_do_global(void)
7909{
7910 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7911 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
7912}
7913
d0b27fa7 7914int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7915 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7916 loff_t *ppos)
7917{
d0b27fa7
PZ
7918 int old_period, old_runtime;
7919 static DEFINE_MUTEX(mutex);
1724813d 7920 int ret;
d0b27fa7
PZ
7921
7922 mutex_lock(&mutex);
7923 old_period = sysctl_sched_rt_period;
7924 old_runtime = sysctl_sched_rt_runtime;
7925
8d65af78 7926 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
7927
7928 if (!ret && write) {
1724813d
PZ
7929 ret = sched_rt_global_validate();
7930 if (ret)
7931 goto undo;
7932
a1963b81 7933 ret = sched_dl_global_validate();
1724813d
PZ
7934 if (ret)
7935 goto undo;
7936
a1963b81 7937 ret = sched_rt_global_constraints();
1724813d
PZ
7938 if (ret)
7939 goto undo;
7940
7941 sched_rt_do_global();
7942 sched_dl_do_global();
7943 }
7944 if (0) {
7945undo:
7946 sysctl_sched_rt_period = old_period;
7947 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
7948 }
7949 mutex_unlock(&mutex);
7950
7951 return ret;
7952}
68318b8e 7953
1724813d 7954int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
7955 void __user *buffer, size_t *lenp,
7956 loff_t *ppos)
7957{
7958 int ret;
332ac17e 7959 static DEFINE_MUTEX(mutex);
332ac17e
DF
7960
7961 mutex_lock(&mutex);
332ac17e 7962 ret = proc_dointvec(table, write, buffer, lenp, ppos);
1724813d
PZ
7963 /* make sure that internally we keep jiffies */
7964 /* also, writing zero resets timeslice to default */
332ac17e 7965 if (!ret && write) {
1724813d
PZ
7966 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7967 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
332ac17e
DF
7968 }
7969 mutex_unlock(&mutex);
332ac17e
DF
7970 return ret;
7971}
7972
052f1dc7 7973#ifdef CONFIG_CGROUP_SCHED
68318b8e 7974
a7c6d554 7975static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 7976{
a7c6d554 7977 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
7978}
7979
eb95419b
TH
7980static struct cgroup_subsys_state *
7981cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 7982{
eb95419b
TH
7983 struct task_group *parent = css_tg(parent_css);
7984 struct task_group *tg;
68318b8e 7985
eb95419b 7986 if (!parent) {
68318b8e 7987 /* This is early initialization for the top cgroup */
07e06b01 7988 return &root_task_group.css;
68318b8e
SV
7989 }
7990
ec7dc8ac 7991 tg = sched_create_group(parent);
68318b8e
SV
7992 if (IS_ERR(tg))
7993 return ERR_PTR(-ENOMEM);
7994
68318b8e
SV
7995 return &tg->css;
7996}
7997
eb95419b 7998static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
ace783b9 7999{
eb95419b 8000 struct task_group *tg = css_tg(css);
5c9d535b 8001 struct task_group *parent = css_tg(css->parent);
ace783b9 8002
63876986
TH
8003 if (parent)
8004 sched_online_group(tg, parent);
ace783b9
LZ
8005 return 0;
8006}
8007
eb95419b 8008static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 8009{
eb95419b 8010 struct task_group *tg = css_tg(css);
68318b8e
SV
8011
8012 sched_destroy_group(tg);
8013}
8014
eb95419b 8015static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
ace783b9 8016{
eb95419b 8017 struct task_group *tg = css_tg(css);
ace783b9
LZ
8018
8019 sched_offline_group(tg);
8020}
8021
eeb61e53
KT
8022static void cpu_cgroup_fork(struct task_struct *task)
8023{
8024 sched_move_task(task);
8025}
8026
eb95419b 8027static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
bb9d97b6 8028 struct cgroup_taskset *tset)
68318b8e 8029{
bb9d97b6
TH
8030 struct task_struct *task;
8031
924f0d9a 8032 cgroup_taskset_for_each(task, tset) {
b68aa230 8033#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 8034 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 8035 return -EINVAL;
b68aa230 8036#else
bb9d97b6
TH
8037 /* We don't support RT-tasks being in separate groups */
8038 if (task->sched_class != &fair_sched_class)
8039 return -EINVAL;
b68aa230 8040#endif
bb9d97b6 8041 }
be367d09
BB
8042 return 0;
8043}
68318b8e 8044
eb95419b 8045static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
bb9d97b6 8046 struct cgroup_taskset *tset)
68318b8e 8047{
bb9d97b6
TH
8048 struct task_struct *task;
8049
924f0d9a 8050 cgroup_taskset_for_each(task, tset)
bb9d97b6 8051 sched_move_task(task);
68318b8e
SV
8052}
8053
eb95419b
TH
8054static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
8055 struct cgroup_subsys_state *old_css,
8056 struct task_struct *task)
068c5cc5
PZ
8057{
8058 /*
8059 * cgroup_exit() is called in the copy_process() failure path.
8060 * Ignore this case since the task hasn't ran yet, this avoids
8061 * trying to poke a half freed task state from generic code.
8062 */
8063 if (!(task->flags & PF_EXITING))
8064 return;
8065
8066 sched_move_task(task);
8067}
8068
052f1dc7 8069#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
8070static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8071 struct cftype *cftype, u64 shareval)
68318b8e 8072{
182446d0 8073 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
8074}
8075
182446d0
TH
8076static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8077 struct cftype *cft)
68318b8e 8078{
182446d0 8079 struct task_group *tg = css_tg(css);
68318b8e 8080
c8b28116 8081 return (u64) scale_load_down(tg->shares);
68318b8e 8082}
ab84d31e
PT
8083
8084#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
8085static DEFINE_MUTEX(cfs_constraints_mutex);
8086
ab84d31e
PT
8087const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8088const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8089
a790de99
PT
8090static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8091
ab84d31e
PT
8092static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8093{
56f570e5 8094 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 8095 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
8096
8097 if (tg == &root_task_group)
8098 return -EINVAL;
8099
8100 /*
8101 * Ensure we have at some amount of bandwidth every period. This is
8102 * to prevent reaching a state of large arrears when throttled via
8103 * entity_tick() resulting in prolonged exit starvation.
8104 */
8105 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8106 return -EINVAL;
8107
8108 /*
8109 * Likewise, bound things on the otherside by preventing insane quota
8110 * periods. This also allows us to normalize in computing quota
8111 * feasibility.
8112 */
8113 if (period > max_cfs_quota_period)
8114 return -EINVAL;
8115
0e59bdae
KT
8116 /*
8117 * Prevent race between setting of cfs_rq->runtime_enabled and
8118 * unthrottle_offline_cfs_rqs().
8119 */
8120 get_online_cpus();
a790de99
PT
8121 mutex_lock(&cfs_constraints_mutex);
8122 ret = __cfs_schedulable(tg, period, quota);
8123 if (ret)
8124 goto out_unlock;
8125
58088ad0 8126 runtime_enabled = quota != RUNTIME_INF;
56f570e5 8127 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
8128 /*
8129 * If we need to toggle cfs_bandwidth_used, off->on must occur
8130 * before making related changes, and on->off must occur afterwards
8131 */
8132 if (runtime_enabled && !runtime_was_enabled)
8133 cfs_bandwidth_usage_inc();
ab84d31e
PT
8134 raw_spin_lock_irq(&cfs_b->lock);
8135 cfs_b->period = ns_to_ktime(period);
8136 cfs_b->quota = quota;
58088ad0 8137
a9cf55b2 8138 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 8139 /* restart the period timer (if active) to handle new period expiry */
77a4d1a1
PZ
8140 if (runtime_enabled)
8141 start_cfs_bandwidth(cfs_b);
ab84d31e
PT
8142 raw_spin_unlock_irq(&cfs_b->lock);
8143
0e59bdae 8144 for_each_online_cpu(i) {
ab84d31e 8145 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 8146 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
8147
8148 raw_spin_lock_irq(&rq->lock);
58088ad0 8149 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 8150 cfs_rq->runtime_remaining = 0;
671fd9da 8151
029632fb 8152 if (cfs_rq->throttled)
671fd9da 8153 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
8154 raw_spin_unlock_irq(&rq->lock);
8155 }
1ee14e6c
BS
8156 if (runtime_was_enabled && !runtime_enabled)
8157 cfs_bandwidth_usage_dec();
a790de99
PT
8158out_unlock:
8159 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 8160 put_online_cpus();
ab84d31e 8161
a790de99 8162 return ret;
ab84d31e
PT
8163}
8164
8165int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8166{
8167 u64 quota, period;
8168
029632fb 8169 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8170 if (cfs_quota_us < 0)
8171 quota = RUNTIME_INF;
8172 else
8173 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8174
8175 return tg_set_cfs_bandwidth(tg, period, quota);
8176}
8177
8178long tg_get_cfs_quota(struct task_group *tg)
8179{
8180 u64 quota_us;
8181
029632fb 8182 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
8183 return -1;
8184
029632fb 8185 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
8186 do_div(quota_us, NSEC_PER_USEC);
8187
8188 return quota_us;
8189}
8190
8191int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8192{
8193 u64 quota, period;
8194
8195 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 8196 quota = tg->cfs_bandwidth.quota;
ab84d31e 8197
ab84d31e
PT
8198 return tg_set_cfs_bandwidth(tg, period, quota);
8199}
8200
8201long tg_get_cfs_period(struct task_group *tg)
8202{
8203 u64 cfs_period_us;
8204
029632fb 8205 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8206 do_div(cfs_period_us, NSEC_PER_USEC);
8207
8208 return cfs_period_us;
8209}
8210
182446d0
TH
8211static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8212 struct cftype *cft)
ab84d31e 8213{
182446d0 8214 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
8215}
8216
182446d0
TH
8217static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8218 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 8219{
182446d0 8220 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
8221}
8222
182446d0
TH
8223static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8224 struct cftype *cft)
ab84d31e 8225{
182446d0 8226 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
8227}
8228
182446d0
TH
8229static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8230 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 8231{
182446d0 8232 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
8233}
8234
a790de99
PT
8235struct cfs_schedulable_data {
8236 struct task_group *tg;
8237 u64 period, quota;
8238};
8239
8240/*
8241 * normalize group quota/period to be quota/max_period
8242 * note: units are usecs
8243 */
8244static u64 normalize_cfs_quota(struct task_group *tg,
8245 struct cfs_schedulable_data *d)
8246{
8247 u64 quota, period;
8248
8249 if (tg == d->tg) {
8250 period = d->period;
8251 quota = d->quota;
8252 } else {
8253 period = tg_get_cfs_period(tg);
8254 quota = tg_get_cfs_quota(tg);
8255 }
8256
8257 /* note: these should typically be equivalent */
8258 if (quota == RUNTIME_INF || quota == -1)
8259 return RUNTIME_INF;
8260
8261 return to_ratio(period, quota);
8262}
8263
8264static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8265{
8266 struct cfs_schedulable_data *d = data;
029632fb 8267 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
8268 s64 quota = 0, parent_quota = -1;
8269
8270 if (!tg->parent) {
8271 quota = RUNTIME_INF;
8272 } else {
029632fb 8273 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
8274
8275 quota = normalize_cfs_quota(tg, d);
9c58c79a 8276 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
8277
8278 /*
8279 * ensure max(child_quota) <= parent_quota, inherit when no
8280 * limit is set
8281 */
8282 if (quota == RUNTIME_INF)
8283 quota = parent_quota;
8284 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8285 return -EINVAL;
8286 }
9c58c79a 8287 cfs_b->hierarchical_quota = quota;
a790de99
PT
8288
8289 return 0;
8290}
8291
8292static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8293{
8277434e 8294 int ret;
a790de99
PT
8295 struct cfs_schedulable_data data = {
8296 .tg = tg,
8297 .period = period,
8298 .quota = quota,
8299 };
8300
8301 if (quota != RUNTIME_INF) {
8302 do_div(data.period, NSEC_PER_USEC);
8303 do_div(data.quota, NSEC_PER_USEC);
8304 }
8305
8277434e
PT
8306 rcu_read_lock();
8307 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8308 rcu_read_unlock();
8309
8310 return ret;
a790de99 8311}
e8da1b18 8312
2da8ca82 8313static int cpu_stats_show(struct seq_file *sf, void *v)
e8da1b18 8314{
2da8ca82 8315 struct task_group *tg = css_tg(seq_css(sf));
029632fb 8316 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 8317
44ffc75b
TH
8318 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8319 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8320 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
8321
8322 return 0;
8323}
ab84d31e 8324#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 8325#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8326
052f1dc7 8327#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
8328static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8329 struct cftype *cft, s64 val)
6f505b16 8330{
182446d0 8331 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
8332}
8333
182446d0
TH
8334static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8335 struct cftype *cft)
6f505b16 8336{
182446d0 8337 return sched_group_rt_runtime(css_tg(css));
6f505b16 8338}
d0b27fa7 8339
182446d0
TH
8340static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8341 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 8342{
182446d0 8343 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
8344}
8345
182446d0
TH
8346static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8347 struct cftype *cft)
d0b27fa7 8348{
182446d0 8349 return sched_group_rt_period(css_tg(css));
d0b27fa7 8350}
6d6bc0ad 8351#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8352
fe5c7cc2 8353static struct cftype cpu_files[] = {
052f1dc7 8354#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8355 {
8356 .name = "shares",
f4c753b7
PM
8357 .read_u64 = cpu_shares_read_u64,
8358 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8359 },
052f1dc7 8360#endif
ab84d31e
PT
8361#ifdef CONFIG_CFS_BANDWIDTH
8362 {
8363 .name = "cfs_quota_us",
8364 .read_s64 = cpu_cfs_quota_read_s64,
8365 .write_s64 = cpu_cfs_quota_write_s64,
8366 },
8367 {
8368 .name = "cfs_period_us",
8369 .read_u64 = cpu_cfs_period_read_u64,
8370 .write_u64 = cpu_cfs_period_write_u64,
8371 },
e8da1b18
NR
8372 {
8373 .name = "stat",
2da8ca82 8374 .seq_show = cpu_stats_show,
e8da1b18 8375 },
ab84d31e 8376#endif
052f1dc7 8377#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8378 {
9f0c1e56 8379 .name = "rt_runtime_us",
06ecb27c
PM
8380 .read_s64 = cpu_rt_runtime_read,
8381 .write_s64 = cpu_rt_runtime_write,
6f505b16 8382 },
d0b27fa7
PZ
8383 {
8384 .name = "rt_period_us",
f4c753b7
PM
8385 .read_u64 = cpu_rt_period_read_uint,
8386 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8387 },
052f1dc7 8388#endif
4baf6e33 8389 { } /* terminate */
68318b8e
SV
8390};
8391
073219e9 8392struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748
TH
8393 .css_alloc = cpu_cgroup_css_alloc,
8394 .css_free = cpu_cgroup_css_free,
ace783b9
LZ
8395 .css_online = cpu_cgroup_css_online,
8396 .css_offline = cpu_cgroup_css_offline,
eeb61e53 8397 .fork = cpu_cgroup_fork,
bb9d97b6
TH
8398 .can_attach = cpu_cgroup_can_attach,
8399 .attach = cpu_cgroup_attach,
068c5cc5 8400 .exit = cpu_cgroup_exit,
5577964e 8401 .legacy_cftypes = cpu_files,
68318b8e
SV
8402 .early_init = 1,
8403};
8404
052f1dc7 8405#endif /* CONFIG_CGROUP_SCHED */
d842de87 8406
b637a328
PM
8407void dump_cpu_task(int cpu)
8408{
8409 pr_info("Task dump for CPU %d:\n", cpu);
8410 sched_show_task(cpu_curr(cpu));
8411}