]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - kernel/sched/core.c
sched: Add helper for task stack page overrun checking
[mirror_ubuntu-zesty-kernel.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
91d1aa43 75#include <linux/context_tracking.h>
52f5684c 76#include <linux/compiler.h>
1da177e4 77
96f951ed 78#include <asm/switch_to.h>
5517d86b 79#include <asm/tlb.h>
838225b4 80#include <asm/irq_regs.h>
db7e527d 81#include <asm/mutex.h>
e6e6685a
GC
82#ifdef CONFIG_PARAVIRT
83#include <asm/paravirt.h>
84#endif
1da177e4 85
029632fb 86#include "sched.h"
ea138446 87#include "../workqueue_internal.h"
29d5e047 88#include "../smpboot.h"
6e0534f2 89
a8d154b0 90#define CREATE_TRACE_POINTS
ad8d75ff 91#include <trace/events/sched.h>
a8d154b0 92
febdbfe8
PZ
93#ifdef smp_mb__before_atomic
94void __smp_mb__before_atomic(void)
95{
96 smp_mb__before_atomic();
97}
98EXPORT_SYMBOL(__smp_mb__before_atomic);
99#endif
100
101#ifdef smp_mb__after_atomic
102void __smp_mb__after_atomic(void)
103{
104 smp_mb__after_atomic();
105}
106EXPORT_SYMBOL(__smp_mb__after_atomic);
107#endif
108
029632fb 109void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 110{
58088ad0
PT
111 unsigned long delta;
112 ktime_t soft, hard, now;
d0b27fa7 113
58088ad0
PT
114 for (;;) {
115 if (hrtimer_active(period_timer))
116 break;
117
118 now = hrtimer_cb_get_time(period_timer);
119 hrtimer_forward(period_timer, now, period);
d0b27fa7 120
58088ad0
PT
121 soft = hrtimer_get_softexpires(period_timer);
122 hard = hrtimer_get_expires(period_timer);
123 delta = ktime_to_ns(ktime_sub(hard, soft));
124 __hrtimer_start_range_ns(period_timer, soft, delta,
125 HRTIMER_MODE_ABS_PINNED, 0);
126 }
127}
128
029632fb
PZ
129DEFINE_MUTEX(sched_domains_mutex);
130DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 131
fe44d621 132static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 133
029632fb 134void update_rq_clock(struct rq *rq)
3e51f33f 135{
fe44d621 136 s64 delta;
305e6835 137
61eadef6 138 if (rq->skip_clock_update > 0)
f26f9aff 139 return;
aa483808 140
fe44d621 141 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
4036ac15
MG
142 if (delta < 0)
143 return;
fe44d621
PZ
144 rq->clock += delta;
145 update_rq_clock_task(rq, delta);
3e51f33f
PZ
146}
147
bf5c91ba
IM
148/*
149 * Debugging: various feature bits
150 */
f00b45c1 151
f00b45c1
PZ
152#define SCHED_FEAT(name, enabled) \
153 (1UL << __SCHED_FEAT_##name) * enabled |
154
bf5c91ba 155const_debug unsigned int sysctl_sched_features =
391e43da 156#include "features.h"
f00b45c1
PZ
157 0;
158
159#undef SCHED_FEAT
160
161#ifdef CONFIG_SCHED_DEBUG
162#define SCHED_FEAT(name, enabled) \
163 #name ,
164
1292531f 165static const char * const sched_feat_names[] = {
391e43da 166#include "features.h"
f00b45c1
PZ
167};
168
169#undef SCHED_FEAT
170
34f3a814 171static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 172{
f00b45c1
PZ
173 int i;
174
f8b6d1cc 175 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
176 if (!(sysctl_sched_features & (1UL << i)))
177 seq_puts(m, "NO_");
178 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 179 }
34f3a814 180 seq_puts(m, "\n");
f00b45c1 181
34f3a814 182 return 0;
f00b45c1
PZ
183}
184
f8b6d1cc
PZ
185#ifdef HAVE_JUMP_LABEL
186
c5905afb
IM
187#define jump_label_key__true STATIC_KEY_INIT_TRUE
188#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
189
190#define SCHED_FEAT(name, enabled) \
191 jump_label_key__##enabled ,
192
c5905afb 193struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
194#include "features.h"
195};
196
197#undef SCHED_FEAT
198
199static void sched_feat_disable(int i)
200{
c5905afb
IM
201 if (static_key_enabled(&sched_feat_keys[i]))
202 static_key_slow_dec(&sched_feat_keys[i]);
f8b6d1cc
PZ
203}
204
205static void sched_feat_enable(int i)
206{
c5905afb
IM
207 if (!static_key_enabled(&sched_feat_keys[i]))
208 static_key_slow_inc(&sched_feat_keys[i]);
f8b6d1cc
PZ
209}
210#else
211static void sched_feat_disable(int i) { };
212static void sched_feat_enable(int i) { };
213#endif /* HAVE_JUMP_LABEL */
214
1a687c2e 215static int sched_feat_set(char *cmp)
f00b45c1 216{
f00b45c1 217 int i;
1a687c2e 218 int neg = 0;
f00b45c1 219
524429c3 220 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
221 neg = 1;
222 cmp += 3;
223 }
224
f8b6d1cc 225 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 226 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 227 if (neg) {
f00b45c1 228 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
229 sched_feat_disable(i);
230 } else {
f00b45c1 231 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
232 sched_feat_enable(i);
233 }
f00b45c1
PZ
234 break;
235 }
236 }
237
1a687c2e
MG
238 return i;
239}
240
241static ssize_t
242sched_feat_write(struct file *filp, const char __user *ubuf,
243 size_t cnt, loff_t *ppos)
244{
245 char buf[64];
246 char *cmp;
247 int i;
5cd08fbf 248 struct inode *inode;
1a687c2e
MG
249
250 if (cnt > 63)
251 cnt = 63;
252
253 if (copy_from_user(&buf, ubuf, cnt))
254 return -EFAULT;
255
256 buf[cnt] = 0;
257 cmp = strstrip(buf);
258
5cd08fbf
JB
259 /* Ensure the static_key remains in a consistent state */
260 inode = file_inode(filp);
261 mutex_lock(&inode->i_mutex);
1a687c2e 262 i = sched_feat_set(cmp);
5cd08fbf 263 mutex_unlock(&inode->i_mutex);
f8b6d1cc 264 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
265 return -EINVAL;
266
42994724 267 *ppos += cnt;
f00b45c1
PZ
268
269 return cnt;
270}
271
34f3a814
LZ
272static int sched_feat_open(struct inode *inode, struct file *filp)
273{
274 return single_open(filp, sched_feat_show, NULL);
275}
276
828c0950 277static const struct file_operations sched_feat_fops = {
34f3a814
LZ
278 .open = sched_feat_open,
279 .write = sched_feat_write,
280 .read = seq_read,
281 .llseek = seq_lseek,
282 .release = single_release,
f00b45c1
PZ
283};
284
285static __init int sched_init_debug(void)
286{
f00b45c1
PZ
287 debugfs_create_file("sched_features", 0644, NULL, NULL,
288 &sched_feat_fops);
289
290 return 0;
291}
292late_initcall(sched_init_debug);
f8b6d1cc 293#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 294
b82d9fdd
PZ
295/*
296 * Number of tasks to iterate in a single balance run.
297 * Limited because this is done with IRQs disabled.
298 */
299const_debug unsigned int sysctl_sched_nr_migrate = 32;
300
e9e9250b
PZ
301/*
302 * period over which we average the RT time consumption, measured
303 * in ms.
304 *
305 * default: 1s
306 */
307const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
308
fa85ae24 309/*
9f0c1e56 310 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
311 * default: 1s
312 */
9f0c1e56 313unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 314
029632fb 315__read_mostly int scheduler_running;
6892b75e 316
9f0c1e56
PZ
317/*
318 * part of the period that we allow rt tasks to run in us.
319 * default: 0.95s
320 */
321int sysctl_sched_rt_runtime = 950000;
fa85ae24 322
0970d299 323/*
0122ec5b 324 * __task_rq_lock - lock the rq @p resides on.
b29739f9 325 */
70b97a7f 326static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
327 __acquires(rq->lock)
328{
0970d299
PZ
329 struct rq *rq;
330
0122ec5b
PZ
331 lockdep_assert_held(&p->pi_lock);
332
3a5c359a 333 for (;;) {
0970d299 334 rq = task_rq(p);
05fa785c 335 raw_spin_lock(&rq->lock);
cca26e80 336 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
3a5c359a 337 return rq;
05fa785c 338 raw_spin_unlock(&rq->lock);
cca26e80
KT
339
340 while (unlikely(task_on_rq_migrating(p)))
341 cpu_relax();
b29739f9 342 }
b29739f9
IM
343}
344
1da177e4 345/*
0122ec5b 346 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 347 */
70b97a7f 348static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 349 __acquires(p->pi_lock)
1da177e4
LT
350 __acquires(rq->lock)
351{
70b97a7f 352 struct rq *rq;
1da177e4 353
3a5c359a 354 for (;;) {
0122ec5b 355 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 356 rq = task_rq(p);
05fa785c 357 raw_spin_lock(&rq->lock);
cca26e80 358 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
3a5c359a 359 return rq;
0122ec5b
PZ
360 raw_spin_unlock(&rq->lock);
361 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
cca26e80
KT
362
363 while (unlikely(task_on_rq_migrating(p)))
364 cpu_relax();
1da177e4 365 }
1da177e4
LT
366}
367
a9957449 368static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
369 __releases(rq->lock)
370{
05fa785c 371 raw_spin_unlock(&rq->lock);
b29739f9
IM
372}
373
0122ec5b
PZ
374static inline void
375task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 376 __releases(rq->lock)
0122ec5b 377 __releases(p->pi_lock)
1da177e4 378{
0122ec5b
PZ
379 raw_spin_unlock(&rq->lock);
380 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
381}
382
1da177e4 383/*
cc2a73b5 384 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 385 */
a9957449 386static struct rq *this_rq_lock(void)
1da177e4
LT
387 __acquires(rq->lock)
388{
70b97a7f 389 struct rq *rq;
1da177e4
LT
390
391 local_irq_disable();
392 rq = this_rq();
05fa785c 393 raw_spin_lock(&rq->lock);
1da177e4
LT
394
395 return rq;
396}
397
8f4d37ec
PZ
398#ifdef CONFIG_SCHED_HRTICK
399/*
400 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 401 */
8f4d37ec 402
8f4d37ec
PZ
403static void hrtick_clear(struct rq *rq)
404{
405 if (hrtimer_active(&rq->hrtick_timer))
406 hrtimer_cancel(&rq->hrtick_timer);
407}
408
8f4d37ec
PZ
409/*
410 * High-resolution timer tick.
411 * Runs from hardirq context with interrupts disabled.
412 */
413static enum hrtimer_restart hrtick(struct hrtimer *timer)
414{
415 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
416
417 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
418
05fa785c 419 raw_spin_lock(&rq->lock);
3e51f33f 420 update_rq_clock(rq);
8f4d37ec 421 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 422 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
423
424 return HRTIMER_NORESTART;
425}
426
95e904c7 427#ifdef CONFIG_SMP
971ee28c
PZ
428
429static int __hrtick_restart(struct rq *rq)
430{
431 struct hrtimer *timer = &rq->hrtick_timer;
432 ktime_t time = hrtimer_get_softexpires(timer);
433
434 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
435}
436
31656519
PZ
437/*
438 * called from hardirq (IPI) context
439 */
440static void __hrtick_start(void *arg)
b328ca18 441{
31656519 442 struct rq *rq = arg;
b328ca18 443
05fa785c 444 raw_spin_lock(&rq->lock);
971ee28c 445 __hrtick_restart(rq);
31656519 446 rq->hrtick_csd_pending = 0;
05fa785c 447 raw_spin_unlock(&rq->lock);
b328ca18
PZ
448}
449
31656519
PZ
450/*
451 * Called to set the hrtick timer state.
452 *
453 * called with rq->lock held and irqs disabled
454 */
029632fb 455void hrtick_start(struct rq *rq, u64 delay)
b328ca18 456{
31656519 457 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 458 ktime_t time;
459 s64 delta;
460
461 /*
462 * Don't schedule slices shorter than 10000ns, that just
463 * doesn't make sense and can cause timer DoS.
464 */
465 delta = max_t(s64, delay, 10000LL);
466 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 467
cc584b21 468 hrtimer_set_expires(timer, time);
31656519
PZ
469
470 if (rq == this_rq()) {
971ee28c 471 __hrtick_restart(rq);
31656519 472 } else if (!rq->hrtick_csd_pending) {
c46fff2a 473 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
474 rq->hrtick_csd_pending = 1;
475 }
b328ca18
PZ
476}
477
478static int
479hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
480{
481 int cpu = (int)(long)hcpu;
482
483 switch (action) {
484 case CPU_UP_CANCELED:
485 case CPU_UP_CANCELED_FROZEN:
486 case CPU_DOWN_PREPARE:
487 case CPU_DOWN_PREPARE_FROZEN:
488 case CPU_DEAD:
489 case CPU_DEAD_FROZEN:
31656519 490 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
491 return NOTIFY_OK;
492 }
493
494 return NOTIFY_DONE;
495}
496
fa748203 497static __init void init_hrtick(void)
b328ca18
PZ
498{
499 hotcpu_notifier(hotplug_hrtick, 0);
500}
31656519
PZ
501#else
502/*
503 * Called to set the hrtick timer state.
504 *
505 * called with rq->lock held and irqs disabled
506 */
029632fb 507void hrtick_start(struct rq *rq, u64 delay)
31656519 508{
7f1e2ca9 509 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 510 HRTIMER_MODE_REL_PINNED, 0);
31656519 511}
b328ca18 512
006c75f1 513static inline void init_hrtick(void)
8f4d37ec 514{
8f4d37ec 515}
31656519 516#endif /* CONFIG_SMP */
8f4d37ec 517
31656519 518static void init_rq_hrtick(struct rq *rq)
8f4d37ec 519{
31656519
PZ
520#ifdef CONFIG_SMP
521 rq->hrtick_csd_pending = 0;
8f4d37ec 522
31656519
PZ
523 rq->hrtick_csd.flags = 0;
524 rq->hrtick_csd.func = __hrtick_start;
525 rq->hrtick_csd.info = rq;
526#endif
8f4d37ec 527
31656519
PZ
528 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
529 rq->hrtick_timer.function = hrtick;
8f4d37ec 530}
006c75f1 531#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
532static inline void hrtick_clear(struct rq *rq)
533{
534}
535
8f4d37ec
PZ
536static inline void init_rq_hrtick(struct rq *rq)
537{
538}
539
b328ca18
PZ
540static inline void init_hrtick(void)
541{
542}
006c75f1 543#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 544
fd99f91a
PZ
545/*
546 * cmpxchg based fetch_or, macro so it works for different integer types
547 */
548#define fetch_or(ptr, val) \
549({ typeof(*(ptr)) __old, __val = *(ptr); \
550 for (;;) { \
551 __old = cmpxchg((ptr), __val, __val | (val)); \
552 if (__old == __val) \
553 break; \
554 __val = __old; \
555 } \
556 __old; \
557})
558
e3baac47 559#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
560/*
561 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
562 * this avoids any races wrt polling state changes and thereby avoids
563 * spurious IPIs.
564 */
565static bool set_nr_and_not_polling(struct task_struct *p)
566{
567 struct thread_info *ti = task_thread_info(p);
568 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
569}
e3baac47
PZ
570
571/*
572 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
573 *
574 * If this returns true, then the idle task promises to call
575 * sched_ttwu_pending() and reschedule soon.
576 */
577static bool set_nr_if_polling(struct task_struct *p)
578{
579 struct thread_info *ti = task_thread_info(p);
580 typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags);
581
582 for (;;) {
583 if (!(val & _TIF_POLLING_NRFLAG))
584 return false;
585 if (val & _TIF_NEED_RESCHED)
586 return true;
587 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
588 if (old == val)
589 break;
590 val = old;
591 }
592 return true;
593}
594
fd99f91a
PZ
595#else
596static bool set_nr_and_not_polling(struct task_struct *p)
597{
598 set_tsk_need_resched(p);
599 return true;
600}
e3baac47
PZ
601
602#ifdef CONFIG_SMP
603static bool set_nr_if_polling(struct task_struct *p)
604{
605 return false;
606}
607#endif
fd99f91a
PZ
608#endif
609
c24d20db 610/*
8875125e 611 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
612 *
613 * On UP this means the setting of the need_resched flag, on SMP it
614 * might also involve a cross-CPU call to trigger the scheduler on
615 * the target CPU.
616 */
8875125e 617void resched_curr(struct rq *rq)
c24d20db 618{
8875125e 619 struct task_struct *curr = rq->curr;
c24d20db
IM
620 int cpu;
621
8875125e 622 lockdep_assert_held(&rq->lock);
c24d20db 623
8875125e 624 if (test_tsk_need_resched(curr))
c24d20db
IM
625 return;
626
8875125e 627 cpu = cpu_of(rq);
fd99f91a 628
f27dde8d 629 if (cpu == smp_processor_id()) {
8875125e 630 set_tsk_need_resched(curr);
f27dde8d 631 set_preempt_need_resched();
c24d20db 632 return;
f27dde8d 633 }
c24d20db 634
8875125e 635 if (set_nr_and_not_polling(curr))
c24d20db 636 smp_send_reschedule(cpu);
dfc68f29
AL
637 else
638 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
639}
640
029632fb 641void resched_cpu(int cpu)
c24d20db
IM
642{
643 struct rq *rq = cpu_rq(cpu);
644 unsigned long flags;
645
05fa785c 646 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db 647 return;
8875125e 648 resched_curr(rq);
05fa785c 649 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 650}
06d8308c 651
b021fe3e 652#ifdef CONFIG_SMP
3451d024 653#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
654/*
655 * In the semi idle case, use the nearest busy cpu for migrating timers
656 * from an idle cpu. This is good for power-savings.
657 *
658 * We don't do similar optimization for completely idle system, as
659 * selecting an idle cpu will add more delays to the timers than intended
660 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
661 */
6201b4d6 662int get_nohz_timer_target(int pinned)
83cd4fe2
VP
663{
664 int cpu = smp_processor_id();
665 int i;
666 struct sched_domain *sd;
667
6201b4d6
VK
668 if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
669 return cpu;
670
057f3fad 671 rcu_read_lock();
83cd4fe2 672 for_each_domain(cpu, sd) {
057f3fad
PZ
673 for_each_cpu(i, sched_domain_span(sd)) {
674 if (!idle_cpu(i)) {
675 cpu = i;
676 goto unlock;
677 }
678 }
83cd4fe2 679 }
057f3fad
PZ
680unlock:
681 rcu_read_unlock();
83cd4fe2
VP
682 return cpu;
683}
06d8308c
TG
684/*
685 * When add_timer_on() enqueues a timer into the timer wheel of an
686 * idle CPU then this timer might expire before the next timer event
687 * which is scheduled to wake up that CPU. In case of a completely
688 * idle system the next event might even be infinite time into the
689 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
690 * leaves the inner idle loop so the newly added timer is taken into
691 * account when the CPU goes back to idle and evaluates the timer
692 * wheel for the next timer event.
693 */
1c20091e 694static void wake_up_idle_cpu(int cpu)
06d8308c
TG
695{
696 struct rq *rq = cpu_rq(cpu);
697
698 if (cpu == smp_processor_id())
699 return;
700
67b9ca70 701 if (set_nr_and_not_polling(rq->idle))
06d8308c 702 smp_send_reschedule(cpu);
dfc68f29
AL
703 else
704 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
705}
706
c5bfece2 707static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 708{
53c5fa16
FW
709 /*
710 * We just need the target to call irq_exit() and re-evaluate
711 * the next tick. The nohz full kick at least implies that.
712 * If needed we can still optimize that later with an
713 * empty IRQ.
714 */
c5bfece2 715 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
716 if (cpu != smp_processor_id() ||
717 tick_nohz_tick_stopped())
53c5fa16 718 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
719 return true;
720 }
721
722 return false;
723}
724
725void wake_up_nohz_cpu(int cpu)
726{
c5bfece2 727 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
728 wake_up_idle_cpu(cpu);
729}
730
ca38062e 731static inline bool got_nohz_idle_kick(void)
45bf76df 732{
1c792db7 733 int cpu = smp_processor_id();
873b4c65
VG
734
735 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
736 return false;
737
738 if (idle_cpu(cpu) && !need_resched())
739 return true;
740
741 /*
742 * We can't run Idle Load Balance on this CPU for this time so we
743 * cancel it and clear NOHZ_BALANCE_KICK
744 */
745 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
746 return false;
45bf76df
IM
747}
748
3451d024 749#else /* CONFIG_NO_HZ_COMMON */
45bf76df 750
ca38062e 751static inline bool got_nohz_idle_kick(void)
2069dd75 752{
ca38062e 753 return false;
2069dd75
PZ
754}
755
3451d024 756#endif /* CONFIG_NO_HZ_COMMON */
d842de87 757
ce831b38
FW
758#ifdef CONFIG_NO_HZ_FULL
759bool sched_can_stop_tick(void)
760{
3882ec64
FW
761 /*
762 * More than one running task need preemption.
763 * nr_running update is assumed to be visible
764 * after IPI is sent from wakers.
765 */
541b8264
VK
766 if (this_rq()->nr_running > 1)
767 return false;
ce831b38 768
541b8264 769 return true;
ce831b38
FW
770}
771#endif /* CONFIG_NO_HZ_FULL */
d842de87 772
029632fb 773void sched_avg_update(struct rq *rq)
18d95a28 774{
e9e9250b
PZ
775 s64 period = sched_avg_period();
776
78becc27 777 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
778 /*
779 * Inline assembly required to prevent the compiler
780 * optimising this loop into a divmod call.
781 * See __iter_div_u64_rem() for another example of this.
782 */
783 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
784 rq->age_stamp += period;
785 rq->rt_avg /= 2;
786 }
18d95a28
PZ
787}
788
6d6bc0ad 789#endif /* CONFIG_SMP */
18d95a28 790
a790de99
PT
791#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
792 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 793/*
8277434e
PT
794 * Iterate task_group tree rooted at *from, calling @down when first entering a
795 * node and @up when leaving it for the final time.
796 *
797 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 798 */
029632fb 799int walk_tg_tree_from(struct task_group *from,
8277434e 800 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
801{
802 struct task_group *parent, *child;
eb755805 803 int ret;
c09595f6 804
8277434e
PT
805 parent = from;
806
c09595f6 807down:
eb755805
PZ
808 ret = (*down)(parent, data);
809 if (ret)
8277434e 810 goto out;
c09595f6
PZ
811 list_for_each_entry_rcu(child, &parent->children, siblings) {
812 parent = child;
813 goto down;
814
815up:
816 continue;
817 }
eb755805 818 ret = (*up)(parent, data);
8277434e
PT
819 if (ret || parent == from)
820 goto out;
c09595f6
PZ
821
822 child = parent;
823 parent = parent->parent;
824 if (parent)
825 goto up;
8277434e 826out:
eb755805 827 return ret;
c09595f6
PZ
828}
829
029632fb 830int tg_nop(struct task_group *tg, void *data)
eb755805 831{
e2b245f8 832 return 0;
eb755805 833}
18d95a28
PZ
834#endif
835
45bf76df
IM
836static void set_load_weight(struct task_struct *p)
837{
f05998d4
NR
838 int prio = p->static_prio - MAX_RT_PRIO;
839 struct load_weight *load = &p->se.load;
840
dd41f596
IM
841 /*
842 * SCHED_IDLE tasks get minimal weight:
843 */
844 if (p->policy == SCHED_IDLE) {
c8b28116 845 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 846 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
847 return;
848 }
71f8bd46 849
c8b28116 850 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 851 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
852}
853
371fd7e7 854static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 855{
a64692a3 856 update_rq_clock(rq);
43148951 857 sched_info_queued(rq, p);
371fd7e7 858 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
859}
860
371fd7e7 861static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 862{
a64692a3 863 update_rq_clock(rq);
43148951 864 sched_info_dequeued(rq, p);
371fd7e7 865 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
866}
867
029632fb 868void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
869{
870 if (task_contributes_to_load(p))
871 rq->nr_uninterruptible--;
872
371fd7e7 873 enqueue_task(rq, p, flags);
1e3c88bd
PZ
874}
875
029632fb 876void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
877{
878 if (task_contributes_to_load(p))
879 rq->nr_uninterruptible++;
880
371fd7e7 881 dequeue_task(rq, p, flags);
1e3c88bd
PZ
882}
883
fe44d621 884static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 885{
095c0aa8
GC
886/*
887 * In theory, the compile should just see 0 here, and optimize out the call
888 * to sched_rt_avg_update. But I don't trust it...
889 */
890#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
891 s64 steal = 0, irq_delta = 0;
892#endif
893#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 894 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
895
896 /*
897 * Since irq_time is only updated on {soft,}irq_exit, we might run into
898 * this case when a previous update_rq_clock() happened inside a
899 * {soft,}irq region.
900 *
901 * When this happens, we stop ->clock_task and only update the
902 * prev_irq_time stamp to account for the part that fit, so that a next
903 * update will consume the rest. This ensures ->clock_task is
904 * monotonic.
905 *
906 * It does however cause some slight miss-attribution of {soft,}irq
907 * time, a more accurate solution would be to update the irq_time using
908 * the current rq->clock timestamp, except that would require using
909 * atomic ops.
910 */
911 if (irq_delta > delta)
912 irq_delta = delta;
913
914 rq->prev_irq_time += irq_delta;
915 delta -= irq_delta;
095c0aa8
GC
916#endif
917#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 918 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
919 steal = paravirt_steal_clock(cpu_of(rq));
920 steal -= rq->prev_steal_time_rq;
921
922 if (unlikely(steal > delta))
923 steal = delta;
924
095c0aa8 925 rq->prev_steal_time_rq += steal;
095c0aa8
GC
926 delta -= steal;
927 }
928#endif
929
fe44d621
PZ
930 rq->clock_task += delta;
931
095c0aa8 932#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
5d4dfddd 933 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
095c0aa8
GC
934 sched_rt_avg_update(rq, irq_delta + steal);
935#endif
aa483808
VP
936}
937
34f971f6
PZ
938void sched_set_stop_task(int cpu, struct task_struct *stop)
939{
940 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
941 struct task_struct *old_stop = cpu_rq(cpu)->stop;
942
943 if (stop) {
944 /*
945 * Make it appear like a SCHED_FIFO task, its something
946 * userspace knows about and won't get confused about.
947 *
948 * Also, it will make PI more or less work without too
949 * much confusion -- but then, stop work should not
950 * rely on PI working anyway.
951 */
952 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
953
954 stop->sched_class = &stop_sched_class;
955 }
956
957 cpu_rq(cpu)->stop = stop;
958
959 if (old_stop) {
960 /*
961 * Reset it back to a normal scheduling class so that
962 * it can die in pieces.
963 */
964 old_stop->sched_class = &rt_sched_class;
965 }
966}
967
14531189 968/*
dd41f596 969 * __normal_prio - return the priority that is based on the static prio
14531189 970 */
14531189
IM
971static inline int __normal_prio(struct task_struct *p)
972{
dd41f596 973 return p->static_prio;
14531189
IM
974}
975
b29739f9
IM
976/*
977 * Calculate the expected normal priority: i.e. priority
978 * without taking RT-inheritance into account. Might be
979 * boosted by interactivity modifiers. Changes upon fork,
980 * setprio syscalls, and whenever the interactivity
981 * estimator recalculates.
982 */
36c8b586 983static inline int normal_prio(struct task_struct *p)
b29739f9
IM
984{
985 int prio;
986
aab03e05
DF
987 if (task_has_dl_policy(p))
988 prio = MAX_DL_PRIO-1;
989 else if (task_has_rt_policy(p))
b29739f9
IM
990 prio = MAX_RT_PRIO-1 - p->rt_priority;
991 else
992 prio = __normal_prio(p);
993 return prio;
994}
995
996/*
997 * Calculate the current priority, i.e. the priority
998 * taken into account by the scheduler. This value might
999 * be boosted by RT tasks, or might be boosted by
1000 * interactivity modifiers. Will be RT if the task got
1001 * RT-boosted. If not then it returns p->normal_prio.
1002 */
36c8b586 1003static int effective_prio(struct task_struct *p)
b29739f9
IM
1004{
1005 p->normal_prio = normal_prio(p);
1006 /*
1007 * If we are RT tasks or we were boosted to RT priority,
1008 * keep the priority unchanged. Otherwise, update priority
1009 * to the normal priority:
1010 */
1011 if (!rt_prio(p->prio))
1012 return p->normal_prio;
1013 return p->prio;
1014}
1015
1da177e4
LT
1016/**
1017 * task_curr - is this task currently executing on a CPU?
1018 * @p: the task in question.
e69f6186
YB
1019 *
1020 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 1021 */
36c8b586 1022inline int task_curr(const struct task_struct *p)
1da177e4
LT
1023{
1024 return cpu_curr(task_cpu(p)) == p;
1025}
1026
cb469845
SR
1027static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1028 const struct sched_class *prev_class,
da7a735e 1029 int oldprio)
cb469845
SR
1030{
1031 if (prev_class != p->sched_class) {
1032 if (prev_class->switched_from)
da7a735e
PZ
1033 prev_class->switched_from(rq, p);
1034 p->sched_class->switched_to(rq, p);
2d3d891d 1035 } else if (oldprio != p->prio || dl_task(p))
da7a735e 1036 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
1037}
1038
029632fb 1039void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
1040{
1041 const struct sched_class *class;
1042
1043 if (p->sched_class == rq->curr->sched_class) {
1044 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1045 } else {
1046 for_each_class(class) {
1047 if (class == rq->curr->sched_class)
1048 break;
1049 if (class == p->sched_class) {
8875125e 1050 resched_curr(rq);
1e5a7405
PZ
1051 break;
1052 }
1053 }
1054 }
1055
1056 /*
1057 * A queue event has occurred, and we're going to schedule. In
1058 * this case, we can save a useless back to back clock update.
1059 */
da0c1e65 1060 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
1061 rq->skip_clock_update = 1;
1062}
1063
1da177e4 1064#ifdef CONFIG_SMP
dd41f596 1065void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1066{
e2912009
PZ
1067#ifdef CONFIG_SCHED_DEBUG
1068 /*
1069 * We should never call set_task_cpu() on a blocked task,
1070 * ttwu() will sort out the placement.
1071 */
077614ee 1072 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
01028747 1073 !(task_preempt_count(p) & PREEMPT_ACTIVE));
0122ec5b
PZ
1074
1075#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1076 /*
1077 * The caller should hold either p->pi_lock or rq->lock, when changing
1078 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1079 *
1080 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1081 * see task_group().
6c6c54e1
PZ
1082 *
1083 * Furthermore, all task_rq users should acquire both locks, see
1084 * task_rq_lock().
1085 */
0122ec5b
PZ
1086 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1087 lockdep_is_held(&task_rq(p)->lock)));
1088#endif
e2912009
PZ
1089#endif
1090
de1d7286 1091 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1092
0c69774e 1093 if (task_cpu(p) != new_cpu) {
0a74bef8
PT
1094 if (p->sched_class->migrate_task_rq)
1095 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 1096 p->se.nr_migrations++;
a8b0ca17 1097 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
0c69774e 1098 }
dd41f596
IM
1099
1100 __set_task_cpu(p, new_cpu);
c65cc870
IM
1101}
1102
ac66f547
PZ
1103static void __migrate_swap_task(struct task_struct *p, int cpu)
1104{
da0c1e65 1105 if (task_on_rq_queued(p)) {
ac66f547
PZ
1106 struct rq *src_rq, *dst_rq;
1107
1108 src_rq = task_rq(p);
1109 dst_rq = cpu_rq(cpu);
1110
1111 deactivate_task(src_rq, p, 0);
1112 set_task_cpu(p, cpu);
1113 activate_task(dst_rq, p, 0);
1114 check_preempt_curr(dst_rq, p, 0);
1115 } else {
1116 /*
1117 * Task isn't running anymore; make it appear like we migrated
1118 * it before it went to sleep. This means on wakeup we make the
1119 * previous cpu our targer instead of where it really is.
1120 */
1121 p->wake_cpu = cpu;
1122 }
1123}
1124
1125struct migration_swap_arg {
1126 struct task_struct *src_task, *dst_task;
1127 int src_cpu, dst_cpu;
1128};
1129
1130static int migrate_swap_stop(void *data)
1131{
1132 struct migration_swap_arg *arg = data;
1133 struct rq *src_rq, *dst_rq;
1134 int ret = -EAGAIN;
1135
1136 src_rq = cpu_rq(arg->src_cpu);
1137 dst_rq = cpu_rq(arg->dst_cpu);
1138
74602315
PZ
1139 double_raw_lock(&arg->src_task->pi_lock,
1140 &arg->dst_task->pi_lock);
ac66f547
PZ
1141 double_rq_lock(src_rq, dst_rq);
1142 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1143 goto unlock;
1144
1145 if (task_cpu(arg->src_task) != arg->src_cpu)
1146 goto unlock;
1147
1148 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1149 goto unlock;
1150
1151 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1152 goto unlock;
1153
1154 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1155 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1156
1157 ret = 0;
1158
1159unlock:
1160 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1161 raw_spin_unlock(&arg->dst_task->pi_lock);
1162 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1163
1164 return ret;
1165}
1166
1167/*
1168 * Cross migrate two tasks
1169 */
1170int migrate_swap(struct task_struct *cur, struct task_struct *p)
1171{
1172 struct migration_swap_arg arg;
1173 int ret = -EINVAL;
1174
ac66f547
PZ
1175 arg = (struct migration_swap_arg){
1176 .src_task = cur,
1177 .src_cpu = task_cpu(cur),
1178 .dst_task = p,
1179 .dst_cpu = task_cpu(p),
1180 };
1181
1182 if (arg.src_cpu == arg.dst_cpu)
1183 goto out;
1184
6acce3ef
PZ
1185 /*
1186 * These three tests are all lockless; this is OK since all of them
1187 * will be re-checked with proper locks held further down the line.
1188 */
ac66f547
PZ
1189 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1190 goto out;
1191
1192 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1193 goto out;
1194
1195 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1196 goto out;
1197
286549dc 1198 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1199 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1200
1201out:
ac66f547
PZ
1202 return ret;
1203}
1204
969c7921 1205struct migration_arg {
36c8b586 1206 struct task_struct *task;
1da177e4 1207 int dest_cpu;
70b97a7f 1208};
1da177e4 1209
969c7921
TH
1210static int migration_cpu_stop(void *data);
1211
1da177e4
LT
1212/*
1213 * wait_task_inactive - wait for a thread to unschedule.
1214 *
85ba2d86
RM
1215 * If @match_state is nonzero, it's the @p->state value just checked and
1216 * not expected to change. If it changes, i.e. @p might have woken up,
1217 * then return zero. When we succeed in waiting for @p to be off its CPU,
1218 * we return a positive number (its total switch count). If a second call
1219 * a short while later returns the same number, the caller can be sure that
1220 * @p has remained unscheduled the whole time.
1221 *
1da177e4
LT
1222 * The caller must ensure that the task *will* unschedule sometime soon,
1223 * else this function might spin for a *long* time. This function can't
1224 * be called with interrupts off, or it may introduce deadlock with
1225 * smp_call_function() if an IPI is sent by the same process we are
1226 * waiting to become inactive.
1227 */
85ba2d86 1228unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1229{
1230 unsigned long flags;
da0c1e65 1231 int running, queued;
85ba2d86 1232 unsigned long ncsw;
70b97a7f 1233 struct rq *rq;
1da177e4 1234
3a5c359a
AK
1235 for (;;) {
1236 /*
1237 * We do the initial early heuristics without holding
1238 * any task-queue locks at all. We'll only try to get
1239 * the runqueue lock when things look like they will
1240 * work out!
1241 */
1242 rq = task_rq(p);
fa490cfd 1243
3a5c359a
AK
1244 /*
1245 * If the task is actively running on another CPU
1246 * still, just relax and busy-wait without holding
1247 * any locks.
1248 *
1249 * NOTE! Since we don't hold any locks, it's not
1250 * even sure that "rq" stays as the right runqueue!
1251 * But we don't care, since "task_running()" will
1252 * return false if the runqueue has changed and p
1253 * is actually now running somewhere else!
1254 */
85ba2d86
RM
1255 while (task_running(rq, p)) {
1256 if (match_state && unlikely(p->state != match_state))
1257 return 0;
3a5c359a 1258 cpu_relax();
85ba2d86 1259 }
fa490cfd 1260
3a5c359a
AK
1261 /*
1262 * Ok, time to look more closely! We need the rq
1263 * lock now, to be *sure*. If we're wrong, we'll
1264 * just go back and repeat.
1265 */
1266 rq = task_rq_lock(p, &flags);
27a9da65 1267 trace_sched_wait_task(p);
3a5c359a 1268 running = task_running(rq, p);
da0c1e65 1269 queued = task_on_rq_queued(p);
85ba2d86 1270 ncsw = 0;
f31e11d8 1271 if (!match_state || p->state == match_state)
93dcf55f 1272 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1273 task_rq_unlock(rq, p, &flags);
fa490cfd 1274
85ba2d86
RM
1275 /*
1276 * If it changed from the expected state, bail out now.
1277 */
1278 if (unlikely(!ncsw))
1279 break;
1280
3a5c359a
AK
1281 /*
1282 * Was it really running after all now that we
1283 * checked with the proper locks actually held?
1284 *
1285 * Oops. Go back and try again..
1286 */
1287 if (unlikely(running)) {
1288 cpu_relax();
1289 continue;
1290 }
fa490cfd 1291
3a5c359a
AK
1292 /*
1293 * It's not enough that it's not actively running,
1294 * it must be off the runqueue _entirely_, and not
1295 * preempted!
1296 *
80dd99b3 1297 * So if it was still runnable (but just not actively
3a5c359a
AK
1298 * running right now), it's preempted, and we should
1299 * yield - it could be a while.
1300 */
da0c1e65 1301 if (unlikely(queued)) {
8eb90c30
TG
1302 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1303
1304 set_current_state(TASK_UNINTERRUPTIBLE);
1305 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1306 continue;
1307 }
fa490cfd 1308
3a5c359a
AK
1309 /*
1310 * Ahh, all good. It wasn't running, and it wasn't
1311 * runnable, which means that it will never become
1312 * running in the future either. We're all done!
1313 */
1314 break;
1315 }
85ba2d86
RM
1316
1317 return ncsw;
1da177e4
LT
1318}
1319
1320/***
1321 * kick_process - kick a running thread to enter/exit the kernel
1322 * @p: the to-be-kicked thread
1323 *
1324 * Cause a process which is running on another CPU to enter
1325 * kernel-mode, without any delay. (to get signals handled.)
1326 *
25985edc 1327 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1328 * because all it wants to ensure is that the remote task enters
1329 * the kernel. If the IPI races and the task has been migrated
1330 * to another CPU then no harm is done and the purpose has been
1331 * achieved as well.
1332 */
36c8b586 1333void kick_process(struct task_struct *p)
1da177e4
LT
1334{
1335 int cpu;
1336
1337 preempt_disable();
1338 cpu = task_cpu(p);
1339 if ((cpu != smp_processor_id()) && task_curr(p))
1340 smp_send_reschedule(cpu);
1341 preempt_enable();
1342}
b43e3521 1343EXPORT_SYMBOL_GPL(kick_process);
476d139c 1344#endif /* CONFIG_SMP */
1da177e4 1345
970b13ba 1346#ifdef CONFIG_SMP
30da688e 1347/*
013fdb80 1348 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1349 */
5da9a0fb
PZ
1350static int select_fallback_rq(int cpu, struct task_struct *p)
1351{
aa00d89c
TC
1352 int nid = cpu_to_node(cpu);
1353 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1354 enum { cpuset, possible, fail } state = cpuset;
1355 int dest_cpu;
5da9a0fb 1356
aa00d89c
TC
1357 /*
1358 * If the node that the cpu is on has been offlined, cpu_to_node()
1359 * will return -1. There is no cpu on the node, and we should
1360 * select the cpu on the other node.
1361 */
1362 if (nid != -1) {
1363 nodemask = cpumask_of_node(nid);
1364
1365 /* Look for allowed, online CPU in same node. */
1366 for_each_cpu(dest_cpu, nodemask) {
1367 if (!cpu_online(dest_cpu))
1368 continue;
1369 if (!cpu_active(dest_cpu))
1370 continue;
1371 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1372 return dest_cpu;
1373 }
2baab4e9 1374 }
5da9a0fb 1375
2baab4e9
PZ
1376 for (;;) {
1377 /* Any allowed, online CPU? */
e3831edd 1378 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1379 if (!cpu_online(dest_cpu))
1380 continue;
1381 if (!cpu_active(dest_cpu))
1382 continue;
1383 goto out;
1384 }
5da9a0fb 1385
2baab4e9
PZ
1386 switch (state) {
1387 case cpuset:
1388 /* No more Mr. Nice Guy. */
1389 cpuset_cpus_allowed_fallback(p);
1390 state = possible;
1391 break;
1392
1393 case possible:
1394 do_set_cpus_allowed(p, cpu_possible_mask);
1395 state = fail;
1396 break;
1397
1398 case fail:
1399 BUG();
1400 break;
1401 }
1402 }
1403
1404out:
1405 if (state != cpuset) {
1406 /*
1407 * Don't tell them about moving exiting tasks or
1408 * kernel threads (both mm NULL), since they never
1409 * leave kernel.
1410 */
1411 if (p->mm && printk_ratelimit()) {
aac74dc4 1412 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1413 task_pid_nr(p), p->comm, cpu);
1414 }
5da9a0fb
PZ
1415 }
1416
1417 return dest_cpu;
1418}
1419
e2912009 1420/*
013fdb80 1421 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1422 */
970b13ba 1423static inline
ac66f547 1424int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1425{
ac66f547 1426 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e2912009
PZ
1427
1428 /*
1429 * In order not to call set_task_cpu() on a blocking task we need
1430 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1431 * cpu.
1432 *
1433 * Since this is common to all placement strategies, this lives here.
1434 *
1435 * [ this allows ->select_task() to simply return task_cpu(p) and
1436 * not worry about this generic constraint ]
1437 */
fa17b507 1438 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1439 !cpu_online(cpu)))
5da9a0fb 1440 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1441
1442 return cpu;
970b13ba 1443}
09a40af5
MG
1444
1445static void update_avg(u64 *avg, u64 sample)
1446{
1447 s64 diff = sample - *avg;
1448 *avg += diff >> 3;
1449}
970b13ba
PZ
1450#endif
1451
d7c01d27 1452static void
b84cb5df 1453ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1454{
d7c01d27 1455#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1456 struct rq *rq = this_rq();
1457
d7c01d27
PZ
1458#ifdef CONFIG_SMP
1459 int this_cpu = smp_processor_id();
1460
1461 if (cpu == this_cpu) {
1462 schedstat_inc(rq, ttwu_local);
1463 schedstat_inc(p, se.statistics.nr_wakeups_local);
1464 } else {
1465 struct sched_domain *sd;
1466
1467 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1468 rcu_read_lock();
d7c01d27
PZ
1469 for_each_domain(this_cpu, sd) {
1470 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1471 schedstat_inc(sd, ttwu_wake_remote);
1472 break;
1473 }
1474 }
057f3fad 1475 rcu_read_unlock();
d7c01d27 1476 }
f339b9dc
PZ
1477
1478 if (wake_flags & WF_MIGRATED)
1479 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1480
d7c01d27
PZ
1481#endif /* CONFIG_SMP */
1482
1483 schedstat_inc(rq, ttwu_count);
9ed3811a 1484 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1485
1486 if (wake_flags & WF_SYNC)
9ed3811a 1487 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1488
d7c01d27
PZ
1489#endif /* CONFIG_SCHEDSTATS */
1490}
1491
1492static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1493{
9ed3811a 1494 activate_task(rq, p, en_flags);
da0c1e65 1495 p->on_rq = TASK_ON_RQ_QUEUED;
c2f7115e
PZ
1496
1497 /* if a worker is waking up, notify workqueue */
1498 if (p->flags & PF_WQ_WORKER)
1499 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1500}
1501
23f41eeb
PZ
1502/*
1503 * Mark the task runnable and perform wakeup-preemption.
1504 */
89363381 1505static void
23f41eeb 1506ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1507{
9ed3811a 1508 check_preempt_curr(rq, p, wake_flags);
a8d7ad52 1509 trace_sched_wakeup(p, true);
9ed3811a
TH
1510
1511 p->state = TASK_RUNNING;
1512#ifdef CONFIG_SMP
1513 if (p->sched_class->task_woken)
1514 p->sched_class->task_woken(rq, p);
1515
e69c6341 1516 if (rq->idle_stamp) {
78becc27 1517 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1518 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1519
abfafa54
JL
1520 update_avg(&rq->avg_idle, delta);
1521
1522 if (rq->avg_idle > max)
9ed3811a 1523 rq->avg_idle = max;
abfafa54 1524
9ed3811a
TH
1525 rq->idle_stamp = 0;
1526 }
1527#endif
1528}
1529
c05fbafb
PZ
1530static void
1531ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1532{
1533#ifdef CONFIG_SMP
1534 if (p->sched_contributes_to_load)
1535 rq->nr_uninterruptible--;
1536#endif
1537
1538 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1539 ttwu_do_wakeup(rq, p, wake_flags);
1540}
1541
1542/*
1543 * Called in case the task @p isn't fully descheduled from its runqueue,
1544 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1545 * since all we need to do is flip p->state to TASK_RUNNING, since
1546 * the task is still ->on_rq.
1547 */
1548static int ttwu_remote(struct task_struct *p, int wake_flags)
1549{
1550 struct rq *rq;
1551 int ret = 0;
1552
1553 rq = __task_rq_lock(p);
da0c1e65 1554 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
1555 /* check_preempt_curr() may use rq clock */
1556 update_rq_clock(rq);
c05fbafb
PZ
1557 ttwu_do_wakeup(rq, p, wake_flags);
1558 ret = 1;
1559 }
1560 __task_rq_unlock(rq);
1561
1562 return ret;
1563}
1564
317f3941 1565#ifdef CONFIG_SMP
e3baac47 1566void sched_ttwu_pending(void)
317f3941
PZ
1567{
1568 struct rq *rq = this_rq();
fa14ff4a
PZ
1569 struct llist_node *llist = llist_del_all(&rq->wake_list);
1570 struct task_struct *p;
e3baac47 1571 unsigned long flags;
317f3941 1572
e3baac47
PZ
1573 if (!llist)
1574 return;
1575
1576 raw_spin_lock_irqsave(&rq->lock, flags);
317f3941 1577
fa14ff4a
PZ
1578 while (llist) {
1579 p = llist_entry(llist, struct task_struct, wake_entry);
1580 llist = llist_next(llist);
317f3941
PZ
1581 ttwu_do_activate(rq, p, 0);
1582 }
1583
e3baac47 1584 raw_spin_unlock_irqrestore(&rq->lock, flags);
317f3941
PZ
1585}
1586
1587void scheduler_ipi(void)
1588{
f27dde8d
PZ
1589 /*
1590 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1591 * TIF_NEED_RESCHED remotely (for the first time) will also send
1592 * this IPI.
1593 */
8cb75e0c 1594 preempt_fold_need_resched();
f27dde8d 1595
fd2ac4f4 1596 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1597 return;
1598
1599 /*
1600 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1601 * traditionally all their work was done from the interrupt return
1602 * path. Now that we actually do some work, we need to make sure
1603 * we do call them.
1604 *
1605 * Some archs already do call them, luckily irq_enter/exit nest
1606 * properly.
1607 *
1608 * Arguably we should visit all archs and update all handlers,
1609 * however a fair share of IPIs are still resched only so this would
1610 * somewhat pessimize the simple resched case.
1611 */
1612 irq_enter();
fa14ff4a 1613 sched_ttwu_pending();
ca38062e
SS
1614
1615 /*
1616 * Check if someone kicked us for doing the nohz idle load balance.
1617 */
873b4c65 1618 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1619 this_rq()->idle_balance = 1;
ca38062e 1620 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1621 }
c5d753a5 1622 irq_exit();
317f3941
PZ
1623}
1624
1625static void ttwu_queue_remote(struct task_struct *p, int cpu)
1626{
e3baac47
PZ
1627 struct rq *rq = cpu_rq(cpu);
1628
1629 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1630 if (!set_nr_if_polling(rq->idle))
1631 smp_send_reschedule(cpu);
1632 else
1633 trace_sched_wake_idle_without_ipi(cpu);
1634 }
317f3941 1635}
d6aa8f85 1636
f6be8af1
CL
1637void wake_up_if_idle(int cpu)
1638{
1639 struct rq *rq = cpu_rq(cpu);
1640 unsigned long flags;
1641
1642 if (!is_idle_task(rq->curr))
1643 return;
1644
1645 if (set_nr_if_polling(rq->idle)) {
1646 trace_sched_wake_idle_without_ipi(cpu);
1647 } else {
1648 raw_spin_lock_irqsave(&rq->lock, flags);
1649 if (is_idle_task(rq->curr))
1650 smp_send_reschedule(cpu);
1651 /* Else cpu is not in idle, do nothing here */
1652 raw_spin_unlock_irqrestore(&rq->lock, flags);
1653 }
1654}
1655
39be3501 1656bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1657{
1658 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1659}
d6aa8f85 1660#endif /* CONFIG_SMP */
317f3941 1661
c05fbafb
PZ
1662static void ttwu_queue(struct task_struct *p, int cpu)
1663{
1664 struct rq *rq = cpu_rq(cpu);
1665
17d9f311 1666#if defined(CONFIG_SMP)
39be3501 1667 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1668 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1669 ttwu_queue_remote(p, cpu);
1670 return;
1671 }
1672#endif
1673
c05fbafb
PZ
1674 raw_spin_lock(&rq->lock);
1675 ttwu_do_activate(rq, p, 0);
1676 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1677}
1678
1679/**
1da177e4 1680 * try_to_wake_up - wake up a thread
9ed3811a 1681 * @p: the thread to be awakened
1da177e4 1682 * @state: the mask of task states that can be woken
9ed3811a 1683 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1684 *
1685 * Put it on the run-queue if it's not already there. The "current"
1686 * thread is always on the run-queue (except when the actual
1687 * re-schedule is in progress), and as such you're allowed to do
1688 * the simpler "current->state = TASK_RUNNING" to mark yourself
1689 * runnable without the overhead of this.
1690 *
e69f6186 1691 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1692 * or @state didn't match @p's state.
1da177e4 1693 */
e4a52bcb
PZ
1694static int
1695try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1696{
1da177e4 1697 unsigned long flags;
c05fbafb 1698 int cpu, success = 0;
2398f2c6 1699
e0acd0a6
ON
1700 /*
1701 * If we are going to wake up a thread waiting for CONDITION we
1702 * need to ensure that CONDITION=1 done by the caller can not be
1703 * reordered with p->state check below. This pairs with mb() in
1704 * set_current_state() the waiting thread does.
1705 */
1706 smp_mb__before_spinlock();
013fdb80 1707 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1708 if (!(p->state & state))
1da177e4
LT
1709 goto out;
1710
c05fbafb 1711 success = 1; /* we're going to change ->state */
1da177e4 1712 cpu = task_cpu(p);
1da177e4 1713
cca26e80 1714 if (p->on_rq && ttwu_remote(p, wake_flags))
c05fbafb 1715 goto stat;
1da177e4 1716
1da177e4 1717#ifdef CONFIG_SMP
e9c84311 1718 /*
c05fbafb
PZ
1719 * If the owning (remote) cpu is still in the middle of schedule() with
1720 * this task as prev, wait until its done referencing the task.
e9c84311 1721 */
f3e94786 1722 while (p->on_cpu)
e4a52bcb 1723 cpu_relax();
0970d299 1724 /*
e4a52bcb 1725 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1726 */
e4a52bcb 1727 smp_rmb();
1da177e4 1728
a8e4f2ea 1729 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1730 p->state = TASK_WAKING;
e7693a36 1731
e4a52bcb 1732 if (p->sched_class->task_waking)
74f8e4b2 1733 p->sched_class->task_waking(p);
efbbd05a 1734
ac66f547 1735 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1736 if (task_cpu(p) != cpu) {
1737 wake_flags |= WF_MIGRATED;
e4a52bcb 1738 set_task_cpu(p, cpu);
f339b9dc 1739 }
1da177e4 1740#endif /* CONFIG_SMP */
1da177e4 1741
c05fbafb
PZ
1742 ttwu_queue(p, cpu);
1743stat:
b84cb5df 1744 ttwu_stat(p, cpu, wake_flags);
1da177e4 1745out:
013fdb80 1746 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1747
1748 return success;
1749}
1750
21aa9af0
TH
1751/**
1752 * try_to_wake_up_local - try to wake up a local task with rq lock held
1753 * @p: the thread to be awakened
1754 *
2acca55e 1755 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1756 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1757 * the current task.
21aa9af0
TH
1758 */
1759static void try_to_wake_up_local(struct task_struct *p)
1760{
1761 struct rq *rq = task_rq(p);
21aa9af0 1762
383efcd0
TH
1763 if (WARN_ON_ONCE(rq != this_rq()) ||
1764 WARN_ON_ONCE(p == current))
1765 return;
1766
21aa9af0
TH
1767 lockdep_assert_held(&rq->lock);
1768
2acca55e
PZ
1769 if (!raw_spin_trylock(&p->pi_lock)) {
1770 raw_spin_unlock(&rq->lock);
1771 raw_spin_lock(&p->pi_lock);
1772 raw_spin_lock(&rq->lock);
1773 }
1774
21aa9af0 1775 if (!(p->state & TASK_NORMAL))
2acca55e 1776 goto out;
21aa9af0 1777
da0c1e65 1778 if (!task_on_rq_queued(p))
d7c01d27
PZ
1779 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1780
23f41eeb 1781 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1782 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1783out:
1784 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1785}
1786
50fa610a
DH
1787/**
1788 * wake_up_process - Wake up a specific process
1789 * @p: The process to be woken up.
1790 *
1791 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
1792 * processes.
1793 *
1794 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
1795 *
1796 * It may be assumed that this function implies a write memory barrier before
1797 * changing the task state if and only if any tasks are woken up.
1798 */
7ad5b3a5 1799int wake_up_process(struct task_struct *p)
1da177e4 1800{
9067ac85
ON
1801 WARN_ON(task_is_stopped_or_traced(p));
1802 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 1803}
1da177e4
LT
1804EXPORT_SYMBOL(wake_up_process);
1805
7ad5b3a5 1806int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1807{
1808 return try_to_wake_up(p, state, 0);
1809}
1810
1da177e4
LT
1811/*
1812 * Perform scheduler related setup for a newly forked process p.
1813 * p is forked by current.
dd41f596
IM
1814 *
1815 * __sched_fork() is basic setup used by init_idle() too:
1816 */
5e1576ed 1817static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1818{
fd2f4419
PZ
1819 p->on_rq = 0;
1820
1821 p->se.on_rq = 0;
dd41f596
IM
1822 p->se.exec_start = 0;
1823 p->se.sum_exec_runtime = 0;
f6cf891c 1824 p->se.prev_sum_exec_runtime = 0;
6c594c21 1825 p->se.nr_migrations = 0;
da7a735e 1826 p->se.vruntime = 0;
fd2f4419 1827 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
1828
1829#ifdef CONFIG_SCHEDSTATS
41acab88 1830 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 1831#endif
476d139c 1832
aab03e05
DF
1833 RB_CLEAR_NODE(&p->dl.rb_node);
1834 hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1835 p->dl.dl_runtime = p->dl.runtime = 0;
1836 p->dl.dl_deadline = p->dl.deadline = 0;
755378a4 1837 p->dl.dl_period = 0;
aab03e05
DF
1838 p->dl.flags = 0;
1839
fa717060 1840 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 1841
e107be36
AK
1842#ifdef CONFIG_PREEMPT_NOTIFIERS
1843 INIT_HLIST_HEAD(&p->preempt_notifiers);
1844#endif
cbee9f88
PZ
1845
1846#ifdef CONFIG_NUMA_BALANCING
1847 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 1848 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
1849 p->mm->numa_scan_seq = 0;
1850 }
1851
5e1576ed
RR
1852 if (clone_flags & CLONE_VM)
1853 p->numa_preferred_nid = current->numa_preferred_nid;
1854 else
1855 p->numa_preferred_nid = -1;
1856
cbee9f88
PZ
1857 p->node_stamp = 0ULL;
1858 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 1859 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 1860 p->numa_work.next = &p->numa_work;
ff1df896
RR
1861 p->numa_faults_memory = NULL;
1862 p->numa_faults_buffer_memory = NULL;
7e2703e6
RR
1863 p->last_task_numa_placement = 0;
1864 p->last_sum_exec_runtime = 0;
8c8a743c
PZ
1865
1866 INIT_LIST_HEAD(&p->numa_entry);
1867 p->numa_group = NULL;
cbee9f88 1868#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1869}
1870
1a687c2e 1871#ifdef CONFIG_NUMA_BALANCING
3105b86a 1872#ifdef CONFIG_SCHED_DEBUG
1a687c2e
MG
1873void set_numabalancing_state(bool enabled)
1874{
1875 if (enabled)
1876 sched_feat_set("NUMA");
1877 else
1878 sched_feat_set("NO_NUMA");
1879}
3105b86a
MG
1880#else
1881__read_mostly bool numabalancing_enabled;
1882
1883void set_numabalancing_state(bool enabled)
1884{
1885 numabalancing_enabled = enabled;
dd41f596 1886}
3105b86a 1887#endif /* CONFIG_SCHED_DEBUG */
54a43d54
AK
1888
1889#ifdef CONFIG_PROC_SYSCTL
1890int sysctl_numa_balancing(struct ctl_table *table, int write,
1891 void __user *buffer, size_t *lenp, loff_t *ppos)
1892{
1893 struct ctl_table t;
1894 int err;
1895 int state = numabalancing_enabled;
1896
1897 if (write && !capable(CAP_SYS_ADMIN))
1898 return -EPERM;
1899
1900 t = *table;
1901 t.data = &state;
1902 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1903 if (err < 0)
1904 return err;
1905 if (write)
1906 set_numabalancing_state(state);
1907 return err;
1908}
1909#endif
1910#endif
dd41f596
IM
1911
1912/*
1913 * fork()/clone()-time setup:
1914 */
aab03e05 1915int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1916{
0122ec5b 1917 unsigned long flags;
dd41f596
IM
1918 int cpu = get_cpu();
1919
5e1576ed 1920 __sched_fork(clone_flags, p);
06b83b5f 1921 /*
0017d735 1922 * We mark the process as running here. This guarantees that
06b83b5f
PZ
1923 * nobody will actually run it, and a signal or other external
1924 * event cannot wake it up and insert it on the runqueue either.
1925 */
0017d735 1926 p->state = TASK_RUNNING;
dd41f596 1927
c350a04e
MG
1928 /*
1929 * Make sure we do not leak PI boosting priority to the child.
1930 */
1931 p->prio = current->normal_prio;
1932
b9dc29e7
MG
1933 /*
1934 * Revert to default priority/policy on fork if requested.
1935 */
1936 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 1937 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 1938 p->policy = SCHED_NORMAL;
6c697bdf 1939 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
1940 p->rt_priority = 0;
1941 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1942 p->static_prio = NICE_TO_PRIO(0);
1943
1944 p->prio = p->normal_prio = __normal_prio(p);
1945 set_load_weight(p);
6c697bdf 1946
b9dc29e7
MG
1947 /*
1948 * We don't need the reset flag anymore after the fork. It has
1949 * fulfilled its duty:
1950 */
1951 p->sched_reset_on_fork = 0;
1952 }
ca94c442 1953
aab03e05
DF
1954 if (dl_prio(p->prio)) {
1955 put_cpu();
1956 return -EAGAIN;
1957 } else if (rt_prio(p->prio)) {
1958 p->sched_class = &rt_sched_class;
1959 } else {
2ddbf952 1960 p->sched_class = &fair_sched_class;
aab03e05 1961 }
b29739f9 1962
cd29fe6f
PZ
1963 if (p->sched_class->task_fork)
1964 p->sched_class->task_fork(p);
1965
86951599
PZ
1966 /*
1967 * The child is not yet in the pid-hash so no cgroup attach races,
1968 * and the cgroup is pinned to this child due to cgroup_fork()
1969 * is ran before sched_fork().
1970 *
1971 * Silence PROVE_RCU.
1972 */
0122ec5b 1973 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 1974 set_task_cpu(p, cpu);
0122ec5b 1975 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 1976
52f17b6c 1977#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1978 if (likely(sched_info_on()))
52f17b6c 1979 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1980#endif
3ca7a440
PZ
1981#if defined(CONFIG_SMP)
1982 p->on_cpu = 0;
4866cde0 1983#endif
01028747 1984 init_task_preempt_count(p);
806c09a7 1985#ifdef CONFIG_SMP
917b627d 1986 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 1987 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 1988#endif
917b627d 1989
476d139c 1990 put_cpu();
aab03e05 1991 return 0;
1da177e4
LT
1992}
1993
332ac17e
DF
1994unsigned long to_ratio(u64 period, u64 runtime)
1995{
1996 if (runtime == RUNTIME_INF)
1997 return 1ULL << 20;
1998
1999 /*
2000 * Doing this here saves a lot of checks in all
2001 * the calling paths, and returning zero seems
2002 * safe for them anyway.
2003 */
2004 if (period == 0)
2005 return 0;
2006
2007 return div64_u64(runtime << 20, period);
2008}
2009
2010#ifdef CONFIG_SMP
2011inline struct dl_bw *dl_bw_of(int i)
2012{
2013 return &cpu_rq(i)->rd->dl_bw;
2014}
2015
de212f18 2016static inline int dl_bw_cpus(int i)
332ac17e 2017{
de212f18
PZ
2018 struct root_domain *rd = cpu_rq(i)->rd;
2019 int cpus = 0;
2020
2021 for_each_cpu_and(i, rd->span, cpu_active_mask)
2022 cpus++;
2023
2024 return cpus;
332ac17e
DF
2025}
2026#else
2027inline struct dl_bw *dl_bw_of(int i)
2028{
2029 return &cpu_rq(i)->dl.dl_bw;
2030}
2031
de212f18 2032static inline int dl_bw_cpus(int i)
332ac17e
DF
2033{
2034 return 1;
2035}
2036#endif
2037
2038static inline
2039void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
2040{
2041 dl_b->total_bw -= tsk_bw;
2042}
2043
2044static inline
2045void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
2046{
2047 dl_b->total_bw += tsk_bw;
2048}
2049
2050static inline
2051bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
2052{
2053 return dl_b->bw != -1 &&
2054 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
2055}
2056
2057/*
2058 * We must be sure that accepting a new task (or allowing changing the
2059 * parameters of an existing one) is consistent with the bandwidth
2060 * constraints. If yes, this function also accordingly updates the currently
2061 * allocated bandwidth to reflect the new situation.
2062 *
2063 * This function is called while holding p's rq->lock.
2064 */
2065static int dl_overflow(struct task_struct *p, int policy,
2066 const struct sched_attr *attr)
2067{
2068
2069 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
4df1638c 2070 u64 period = attr->sched_period ?: attr->sched_deadline;
332ac17e
DF
2071 u64 runtime = attr->sched_runtime;
2072 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 2073 int cpus, err = -1;
332ac17e
DF
2074
2075 if (new_bw == p->dl.dl_bw)
2076 return 0;
2077
2078 /*
2079 * Either if a task, enters, leave, or stays -deadline but changes
2080 * its parameters, we may need to update accordingly the total
2081 * allocated bandwidth of the container.
2082 */
2083 raw_spin_lock(&dl_b->lock);
de212f18 2084 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
2085 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2086 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2087 __dl_add(dl_b, new_bw);
2088 err = 0;
2089 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2090 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2091 __dl_clear(dl_b, p->dl.dl_bw);
2092 __dl_add(dl_b, new_bw);
2093 err = 0;
2094 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2095 __dl_clear(dl_b, p->dl.dl_bw);
2096 err = 0;
2097 }
2098 raw_spin_unlock(&dl_b->lock);
2099
2100 return err;
2101}
2102
2103extern void init_dl_bw(struct dl_bw *dl_b);
2104
1da177e4
LT
2105/*
2106 * wake_up_new_task - wake up a newly created task for the first time.
2107 *
2108 * This function will do some initial scheduler statistics housekeeping
2109 * that must be done for every newly created context, then puts the task
2110 * on the runqueue and wakes it.
2111 */
3e51e3ed 2112void wake_up_new_task(struct task_struct *p)
1da177e4
LT
2113{
2114 unsigned long flags;
dd41f596 2115 struct rq *rq;
fabf318e 2116
ab2515c4 2117 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
2118#ifdef CONFIG_SMP
2119 /*
2120 * Fork balancing, do it here and not earlier because:
2121 * - cpus_allowed can change in the fork path
2122 * - any previously selected cpu might disappear through hotplug
fabf318e 2123 */
ac66f547 2124 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735
PZ
2125#endif
2126
a75cdaa9
AS
2127 /* Initialize new task's runnable average */
2128 init_task_runnable_average(p);
ab2515c4 2129 rq = __task_rq_lock(p);
cd29fe6f 2130 activate_task(rq, p, 0);
da0c1e65 2131 p->on_rq = TASK_ON_RQ_QUEUED;
89363381 2132 trace_sched_wakeup_new(p, true);
a7558e01 2133 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2134#ifdef CONFIG_SMP
efbbd05a
PZ
2135 if (p->sched_class->task_woken)
2136 p->sched_class->task_woken(rq, p);
9a897c5a 2137#endif
0122ec5b 2138 task_rq_unlock(rq, p, &flags);
1da177e4
LT
2139}
2140
e107be36
AK
2141#ifdef CONFIG_PREEMPT_NOTIFIERS
2142
2143/**
80dd99b3 2144 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2145 * @notifier: notifier struct to register
e107be36
AK
2146 */
2147void preempt_notifier_register(struct preempt_notifier *notifier)
2148{
2149 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2150}
2151EXPORT_SYMBOL_GPL(preempt_notifier_register);
2152
2153/**
2154 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2155 * @notifier: notifier struct to unregister
e107be36
AK
2156 *
2157 * This is safe to call from within a preemption notifier.
2158 */
2159void preempt_notifier_unregister(struct preempt_notifier *notifier)
2160{
2161 hlist_del(&notifier->link);
2162}
2163EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2164
2165static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2166{
2167 struct preempt_notifier *notifier;
e107be36 2168
b67bfe0d 2169 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2170 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2171}
2172
2173static void
2174fire_sched_out_preempt_notifiers(struct task_struct *curr,
2175 struct task_struct *next)
2176{
2177 struct preempt_notifier *notifier;
e107be36 2178
b67bfe0d 2179 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2180 notifier->ops->sched_out(notifier, next);
2181}
2182
6d6bc0ad 2183#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2184
2185static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2186{
2187}
2188
2189static void
2190fire_sched_out_preempt_notifiers(struct task_struct *curr,
2191 struct task_struct *next)
2192{
2193}
2194
6d6bc0ad 2195#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2196
4866cde0
NP
2197/**
2198 * prepare_task_switch - prepare to switch tasks
2199 * @rq: the runqueue preparing to switch
421cee29 2200 * @prev: the current task that is being switched out
4866cde0
NP
2201 * @next: the task we are going to switch to.
2202 *
2203 * This is called with the rq lock held and interrupts off. It must
2204 * be paired with a subsequent finish_task_switch after the context
2205 * switch.
2206 *
2207 * prepare_task_switch sets up locking and calls architecture specific
2208 * hooks.
2209 */
e107be36
AK
2210static inline void
2211prepare_task_switch(struct rq *rq, struct task_struct *prev,
2212 struct task_struct *next)
4866cde0 2213{
895dd92c 2214 trace_sched_switch(prev, next);
43148951 2215 sched_info_switch(rq, prev, next);
fe4b04fa 2216 perf_event_task_sched_out(prev, next);
e107be36 2217 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2218 prepare_lock_switch(rq, next);
2219 prepare_arch_switch(next);
2220}
2221
1da177e4
LT
2222/**
2223 * finish_task_switch - clean up after a task-switch
344babaa 2224 * @rq: runqueue associated with task-switch
1da177e4
LT
2225 * @prev: the thread we just switched away from.
2226 *
4866cde0
NP
2227 * finish_task_switch must be called after the context switch, paired
2228 * with a prepare_task_switch call before the context switch.
2229 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2230 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2231 *
2232 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2233 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2234 * with the lock held can cause deadlocks; see schedule() for
2235 * details.)
2236 */
a9957449 2237static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2238 __releases(rq->lock)
2239{
1da177e4 2240 struct mm_struct *mm = rq->prev_mm;
55a101f8 2241 long prev_state;
1da177e4
LT
2242
2243 rq->prev_mm = NULL;
2244
2245 /*
2246 * A task struct has one reference for the use as "current".
c394cc9f 2247 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2248 * schedule one last time. The schedule call will never return, and
2249 * the scheduled task must drop that reference.
c394cc9f 2250 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2251 * still held, otherwise prev could be scheduled on another cpu, die
2252 * there before we look at prev->state, and then the reference would
2253 * be dropped twice.
2254 * Manfred Spraul <manfred@colorfullife.com>
2255 */
55a101f8 2256 prev_state = prev->state;
bf9fae9f 2257 vtime_task_switch(prev);
4866cde0 2258 finish_arch_switch(prev);
a8d757ef 2259 perf_event_task_sched_in(prev, current);
4866cde0 2260 finish_lock_switch(rq, prev);
01f23e16 2261 finish_arch_post_lock_switch();
e8fa1362 2262
e107be36 2263 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2264 if (mm)
2265 mmdrop(mm);
c394cc9f 2266 if (unlikely(prev_state == TASK_DEAD)) {
e6c390f2
DF
2267 if (prev->sched_class->task_dead)
2268 prev->sched_class->task_dead(prev);
2269
c6fd91f0 2270 /*
2271 * Remove function-return probe instances associated with this
2272 * task and put them back on the free list.
9761eea8 2273 */
c6fd91f0 2274 kprobe_flush_task(prev);
1da177e4 2275 put_task_struct(prev);
c6fd91f0 2276 }
99e5ada9
FW
2277
2278 tick_nohz_task_switch(current);
1da177e4
LT
2279}
2280
3f029d3c
GH
2281#ifdef CONFIG_SMP
2282
3f029d3c
GH
2283/* rq->lock is NOT held, but preemption is disabled */
2284static inline void post_schedule(struct rq *rq)
2285{
2286 if (rq->post_schedule) {
2287 unsigned long flags;
2288
05fa785c 2289 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2290 if (rq->curr->sched_class->post_schedule)
2291 rq->curr->sched_class->post_schedule(rq);
05fa785c 2292 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2293
2294 rq->post_schedule = 0;
2295 }
2296}
2297
2298#else
da19ab51 2299
3f029d3c
GH
2300static inline void post_schedule(struct rq *rq)
2301{
1da177e4
LT
2302}
2303
3f029d3c
GH
2304#endif
2305
1da177e4
LT
2306/**
2307 * schedule_tail - first thing a freshly forked thread must call.
2308 * @prev: the thread we just switched away from.
2309 */
722a9f92 2310asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
2311 __releases(rq->lock)
2312{
70b97a7f
IM
2313 struct rq *rq = this_rq();
2314
4866cde0 2315 finish_task_switch(rq, prev);
da19ab51 2316
3f029d3c
GH
2317 /*
2318 * FIXME: do we need to worry about rq being invalidated by the
2319 * task_switch?
2320 */
2321 post_schedule(rq);
70b97a7f 2322
4866cde0
NP
2323#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2324 /* In this case, finish_task_switch does not reenable preemption */
2325 preempt_enable();
2326#endif
1da177e4 2327 if (current->set_child_tid)
b488893a 2328 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2329}
2330
2331/*
2332 * context_switch - switch to the new MM and the new
2333 * thread's register state.
2334 */
dd41f596 2335static inline void
70b97a7f 2336context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2337 struct task_struct *next)
1da177e4 2338{
dd41f596 2339 struct mm_struct *mm, *oldmm;
1da177e4 2340
e107be36 2341 prepare_task_switch(rq, prev, next);
fe4b04fa 2342
dd41f596
IM
2343 mm = next->mm;
2344 oldmm = prev->active_mm;
9226d125
ZA
2345 /*
2346 * For paravirt, this is coupled with an exit in switch_to to
2347 * combine the page table reload and the switch backend into
2348 * one hypercall.
2349 */
224101ed 2350 arch_start_context_switch(prev);
9226d125 2351
31915ab4 2352 if (!mm) {
1da177e4
LT
2353 next->active_mm = oldmm;
2354 atomic_inc(&oldmm->mm_count);
2355 enter_lazy_tlb(oldmm, next);
2356 } else
2357 switch_mm(oldmm, mm, next);
2358
31915ab4 2359 if (!prev->mm) {
1da177e4 2360 prev->active_mm = NULL;
1da177e4
LT
2361 rq->prev_mm = oldmm;
2362 }
3a5f5e48
IM
2363 /*
2364 * Since the runqueue lock will be released by the next
2365 * task (which is an invalid locking op but in the case
2366 * of the scheduler it's an obvious special-case), so we
2367 * do an early lockdep release here:
2368 */
2369#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2370 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2371#endif
1da177e4 2372
91d1aa43 2373 context_tracking_task_switch(prev, next);
1da177e4
LT
2374 /* Here we just switch the register state and the stack. */
2375 switch_to(prev, next, prev);
2376
dd41f596
IM
2377 barrier();
2378 /*
2379 * this_rq must be evaluated again because prev may have moved
2380 * CPUs since it called schedule(), thus the 'rq' on its stack
2381 * frame will be invalid.
2382 */
2383 finish_task_switch(this_rq(), prev);
1da177e4
LT
2384}
2385
2386/*
1c3e8264 2387 * nr_running and nr_context_switches:
1da177e4
LT
2388 *
2389 * externally visible scheduler statistics: current number of runnable
1c3e8264 2390 * threads, total number of context switches performed since bootup.
1da177e4
LT
2391 */
2392unsigned long nr_running(void)
2393{
2394 unsigned long i, sum = 0;
2395
2396 for_each_online_cpu(i)
2397 sum += cpu_rq(i)->nr_running;
2398
2399 return sum;
f711f609 2400}
1da177e4 2401
1da177e4 2402unsigned long long nr_context_switches(void)
46cb4b7c 2403{
cc94abfc
SR
2404 int i;
2405 unsigned long long sum = 0;
46cb4b7c 2406
0a945022 2407 for_each_possible_cpu(i)
1da177e4 2408 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2409
1da177e4
LT
2410 return sum;
2411}
483b4ee6 2412
1da177e4
LT
2413unsigned long nr_iowait(void)
2414{
2415 unsigned long i, sum = 0;
483b4ee6 2416
0a945022 2417 for_each_possible_cpu(i)
1da177e4 2418 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2419
1da177e4
LT
2420 return sum;
2421}
483b4ee6 2422
8c215bd3 2423unsigned long nr_iowait_cpu(int cpu)
69d25870 2424{
8c215bd3 2425 struct rq *this = cpu_rq(cpu);
69d25870
AV
2426 return atomic_read(&this->nr_iowait);
2427}
46cb4b7c 2428
372ba8cb
MG
2429void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2430{
2431 struct rq *this = this_rq();
2432 *nr_waiters = atomic_read(&this->nr_iowait);
2433 *load = this->cpu_load[0];
2434}
2435
dd41f596 2436#ifdef CONFIG_SMP
8a0be9ef 2437
46cb4b7c 2438/*
38022906
PZ
2439 * sched_exec - execve() is a valuable balancing opportunity, because at
2440 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2441 */
38022906 2442void sched_exec(void)
46cb4b7c 2443{
38022906 2444 struct task_struct *p = current;
1da177e4 2445 unsigned long flags;
0017d735 2446 int dest_cpu;
46cb4b7c 2447
8f42ced9 2448 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2449 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2450 if (dest_cpu == smp_processor_id())
2451 goto unlock;
38022906 2452
8f42ced9 2453 if (likely(cpu_active(dest_cpu))) {
969c7921 2454 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2455
8f42ced9
PZ
2456 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2457 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2458 return;
2459 }
0017d735 2460unlock:
8f42ced9 2461 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2462}
dd41f596 2463
1da177e4
LT
2464#endif
2465
1da177e4 2466DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2467DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2468
2469EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2470EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4
LT
2471
2472/*
c5f8d995 2473 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 2474 * @p in case that task is currently running.
c5f8d995
HS
2475 *
2476 * Called with task_rq_lock() held on @rq.
1da177e4 2477 */
c5f8d995
HS
2478static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2479{
2480 u64 ns = 0;
2481
4036ac15
MG
2482 /*
2483 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2484 * project cycles that may never be accounted to this
2485 * thread, breaking clock_gettime().
2486 */
da0c1e65 2487 if (task_current(rq, p) && task_on_rq_queued(p)) {
c5f8d995 2488 update_rq_clock(rq);
78becc27 2489 ns = rq_clock_task(rq) - p->se.exec_start;
c5f8d995
HS
2490 if ((s64)ns < 0)
2491 ns = 0;
2492 }
2493
2494 return ns;
2495}
2496
bb34d92f 2497unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 2498{
1da177e4 2499 unsigned long flags;
41b86e9c 2500 struct rq *rq;
bb34d92f 2501 u64 ns = 0;
48f24c4d 2502
41b86e9c 2503 rq = task_rq_lock(p, &flags);
c5f8d995 2504 ns = do_task_delta_exec(p, rq);
0122ec5b 2505 task_rq_unlock(rq, p, &flags);
1508487e 2506
c5f8d995
HS
2507 return ns;
2508}
f06febc9 2509
c5f8d995
HS
2510/*
2511 * Return accounted runtime for the task.
2512 * In case the task is currently running, return the runtime plus current's
2513 * pending runtime that have not been accounted yet.
2514 */
2515unsigned long long task_sched_runtime(struct task_struct *p)
2516{
2517 unsigned long flags;
2518 struct rq *rq;
2519 u64 ns = 0;
2520
911b2898
PZ
2521#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2522 /*
2523 * 64-bit doesn't need locks to atomically read a 64bit value.
2524 * So we have a optimization chance when the task's delta_exec is 0.
2525 * Reading ->on_cpu is racy, but this is ok.
2526 *
2527 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2528 * If we race with it entering cpu, unaccounted time is 0. This is
2529 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
2530 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2531 * been accounted, so we're correct here as well.
911b2898 2532 */
da0c1e65 2533 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
2534 return p->se.sum_exec_runtime;
2535#endif
2536
c5f8d995
HS
2537 rq = task_rq_lock(p, &flags);
2538 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 2539 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2540
2541 return ns;
2542}
48f24c4d 2543
7835b98b
CL
2544/*
2545 * This function gets called by the timer code, with HZ frequency.
2546 * We call it with interrupts disabled.
7835b98b
CL
2547 */
2548void scheduler_tick(void)
2549{
7835b98b
CL
2550 int cpu = smp_processor_id();
2551 struct rq *rq = cpu_rq(cpu);
dd41f596 2552 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2553
2554 sched_clock_tick();
dd41f596 2555
05fa785c 2556 raw_spin_lock(&rq->lock);
3e51f33f 2557 update_rq_clock(rq);
fa85ae24 2558 curr->sched_class->task_tick(rq, curr, 0);
83dfd523 2559 update_cpu_load_active(rq);
05fa785c 2560 raw_spin_unlock(&rq->lock);
7835b98b 2561
e9d2b064 2562 perf_event_task_tick();
e220d2dc 2563
e418e1c2 2564#ifdef CONFIG_SMP
6eb57e0d 2565 rq->idle_balance = idle_cpu(cpu);
7caff66f 2566 trigger_load_balance(rq);
e418e1c2 2567#endif
265f22a9 2568 rq_last_tick_reset(rq);
1da177e4
LT
2569}
2570
265f22a9
FW
2571#ifdef CONFIG_NO_HZ_FULL
2572/**
2573 * scheduler_tick_max_deferment
2574 *
2575 * Keep at least one tick per second when a single
2576 * active task is running because the scheduler doesn't
2577 * yet completely support full dynticks environment.
2578 *
2579 * This makes sure that uptime, CFS vruntime, load
2580 * balancing, etc... continue to move forward, even
2581 * with a very low granularity.
e69f6186
YB
2582 *
2583 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
2584 */
2585u64 scheduler_tick_max_deferment(void)
2586{
2587 struct rq *rq = this_rq();
2588 unsigned long next, now = ACCESS_ONCE(jiffies);
2589
2590 next = rq->last_sched_tick + HZ;
2591
2592 if (time_before_eq(next, now))
2593 return 0;
2594
8fe8ff09 2595 return jiffies_to_nsecs(next - now);
1da177e4 2596}
265f22a9 2597#endif
1da177e4 2598
132380a0 2599notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
2600{
2601 if (in_lock_functions(addr)) {
2602 addr = CALLER_ADDR2;
2603 if (in_lock_functions(addr))
2604 addr = CALLER_ADDR3;
2605 }
2606 return addr;
2607}
1da177e4 2608
7e49fcce
SR
2609#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2610 defined(CONFIG_PREEMPT_TRACER))
2611
edafe3a5 2612void preempt_count_add(int val)
1da177e4 2613{
6cd8a4bb 2614#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2615 /*
2616 * Underflow?
2617 */
9a11b49a
IM
2618 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2619 return;
6cd8a4bb 2620#endif
bdb43806 2621 __preempt_count_add(val);
6cd8a4bb 2622#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2623 /*
2624 * Spinlock count overflowing soon?
2625 */
33859f7f
MOS
2626 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2627 PREEMPT_MASK - 10);
6cd8a4bb 2628#endif
8f47b187
TG
2629 if (preempt_count() == val) {
2630 unsigned long ip = get_parent_ip(CALLER_ADDR1);
2631#ifdef CONFIG_DEBUG_PREEMPT
2632 current->preempt_disable_ip = ip;
2633#endif
2634 trace_preempt_off(CALLER_ADDR0, ip);
2635 }
1da177e4 2636}
bdb43806 2637EXPORT_SYMBOL(preempt_count_add);
edafe3a5 2638NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 2639
edafe3a5 2640void preempt_count_sub(int val)
1da177e4 2641{
6cd8a4bb 2642#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2643 /*
2644 * Underflow?
2645 */
01e3eb82 2646 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 2647 return;
1da177e4
LT
2648 /*
2649 * Is the spinlock portion underflowing?
2650 */
9a11b49a
IM
2651 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2652 !(preempt_count() & PREEMPT_MASK)))
2653 return;
6cd8a4bb 2654#endif
9a11b49a 2655
6cd8a4bb
SR
2656 if (preempt_count() == val)
2657 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
bdb43806 2658 __preempt_count_sub(val);
1da177e4 2659}
bdb43806 2660EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 2661NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4
LT
2662
2663#endif
2664
2665/*
dd41f596 2666 * Print scheduling while atomic bug:
1da177e4 2667 */
dd41f596 2668static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 2669{
664dfa65
DJ
2670 if (oops_in_progress)
2671 return;
2672
3df0fc5b
PZ
2673 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2674 prev->comm, prev->pid, preempt_count());
838225b4 2675
dd41f596 2676 debug_show_held_locks(prev);
e21f5b15 2677 print_modules();
dd41f596
IM
2678 if (irqs_disabled())
2679 print_irqtrace_events(prev);
8f47b187
TG
2680#ifdef CONFIG_DEBUG_PREEMPT
2681 if (in_atomic_preempt_off()) {
2682 pr_err("Preemption disabled at:");
2683 print_ip_sym(current->preempt_disable_ip);
2684 pr_cont("\n");
2685 }
2686#endif
6135fc1e 2687 dump_stack();
373d4d09 2688 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 2689}
1da177e4 2690
dd41f596
IM
2691/*
2692 * Various schedule()-time debugging checks and statistics:
2693 */
2694static inline void schedule_debug(struct task_struct *prev)
2695{
1da177e4 2696 /*
41a2d6cf 2697 * Test if we are atomic. Since do_exit() needs to call into
192301e7
ON
2698 * schedule() atomically, we ignore that path. Otherwise whine
2699 * if we are scheduling when we should not.
1da177e4 2700 */
192301e7 2701 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
dd41f596 2702 __schedule_bug(prev);
b3fbab05 2703 rcu_sleep_check();
dd41f596 2704
1da177e4
LT
2705 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2706
2d72376b 2707 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
2708}
2709
2710/*
2711 * Pick up the highest-prio task:
2712 */
2713static inline struct task_struct *
606dba2e 2714pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 2715{
37e117c0 2716 const struct sched_class *class = &fair_sched_class;
dd41f596 2717 struct task_struct *p;
1da177e4
LT
2718
2719 /*
dd41f596
IM
2720 * Optimization: we know that if all tasks are in
2721 * the fair class we can call that function directly:
1da177e4 2722 */
37e117c0 2723 if (likely(prev->sched_class == class &&
38033c37 2724 rq->nr_running == rq->cfs.h_nr_running)) {
606dba2e 2725 p = fair_sched_class.pick_next_task(rq, prev);
6ccdc84b
PZ
2726 if (unlikely(p == RETRY_TASK))
2727 goto again;
2728
2729 /* assumes fair_sched_class->next == idle_sched_class */
2730 if (unlikely(!p))
2731 p = idle_sched_class.pick_next_task(rq, prev);
2732
2733 return p;
1da177e4
LT
2734 }
2735
37e117c0 2736again:
34f971f6 2737 for_each_class(class) {
606dba2e 2738 p = class->pick_next_task(rq, prev);
37e117c0
PZ
2739 if (p) {
2740 if (unlikely(p == RETRY_TASK))
2741 goto again;
dd41f596 2742 return p;
37e117c0 2743 }
dd41f596 2744 }
34f971f6
PZ
2745
2746 BUG(); /* the idle class will always have a runnable task */
dd41f596 2747}
1da177e4 2748
dd41f596 2749/*
c259e01a 2750 * __schedule() is the main scheduler function.
edde96ea
PE
2751 *
2752 * The main means of driving the scheduler and thus entering this function are:
2753 *
2754 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2755 *
2756 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2757 * paths. For example, see arch/x86/entry_64.S.
2758 *
2759 * To drive preemption between tasks, the scheduler sets the flag in timer
2760 * interrupt handler scheduler_tick().
2761 *
2762 * 3. Wakeups don't really cause entry into schedule(). They add a
2763 * task to the run-queue and that's it.
2764 *
2765 * Now, if the new task added to the run-queue preempts the current
2766 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2767 * called on the nearest possible occasion:
2768 *
2769 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2770 *
2771 * - in syscall or exception context, at the next outmost
2772 * preempt_enable(). (this might be as soon as the wake_up()'s
2773 * spin_unlock()!)
2774 *
2775 * - in IRQ context, return from interrupt-handler to
2776 * preemptible context
2777 *
2778 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2779 * then at the next:
2780 *
2781 * - cond_resched() call
2782 * - explicit schedule() call
2783 * - return from syscall or exception to user-space
2784 * - return from interrupt-handler to user-space
dd41f596 2785 */
c259e01a 2786static void __sched __schedule(void)
dd41f596
IM
2787{
2788 struct task_struct *prev, *next;
67ca7bde 2789 unsigned long *switch_count;
dd41f596 2790 struct rq *rq;
31656519 2791 int cpu;
dd41f596 2792
ff743345
PZ
2793need_resched:
2794 preempt_disable();
dd41f596
IM
2795 cpu = smp_processor_id();
2796 rq = cpu_rq(cpu);
25502a6c 2797 rcu_note_context_switch(cpu);
dd41f596 2798 prev = rq->curr;
dd41f596 2799
dd41f596 2800 schedule_debug(prev);
1da177e4 2801
31656519 2802 if (sched_feat(HRTICK))
f333fdc9 2803 hrtick_clear(rq);
8f4d37ec 2804
e0acd0a6
ON
2805 /*
2806 * Make sure that signal_pending_state()->signal_pending() below
2807 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2808 * done by the caller to avoid the race with signal_wake_up().
2809 */
2810 smp_mb__before_spinlock();
05fa785c 2811 raw_spin_lock_irq(&rq->lock);
1da177e4 2812
246d86b5 2813 switch_count = &prev->nivcsw;
1da177e4 2814 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 2815 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 2816 prev->state = TASK_RUNNING;
21aa9af0 2817 } else {
2acca55e
PZ
2818 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2819 prev->on_rq = 0;
2820
21aa9af0 2821 /*
2acca55e
PZ
2822 * If a worker went to sleep, notify and ask workqueue
2823 * whether it wants to wake up a task to maintain
2824 * concurrency.
21aa9af0
TH
2825 */
2826 if (prev->flags & PF_WQ_WORKER) {
2827 struct task_struct *to_wakeup;
2828
2829 to_wakeup = wq_worker_sleeping(prev, cpu);
2830 if (to_wakeup)
2831 try_to_wake_up_local(to_wakeup);
2832 }
21aa9af0 2833 }
dd41f596 2834 switch_count = &prev->nvcsw;
1da177e4
LT
2835 }
2836
da0c1e65 2837 if (task_on_rq_queued(prev) || rq->skip_clock_update < 0)
606dba2e
PZ
2838 update_rq_clock(rq);
2839
2840 next = pick_next_task(rq, prev);
f26f9aff 2841 clear_tsk_need_resched(prev);
f27dde8d 2842 clear_preempt_need_resched();
f26f9aff 2843 rq->skip_clock_update = 0;
1da177e4 2844
1da177e4 2845 if (likely(prev != next)) {
1da177e4
LT
2846 rq->nr_switches++;
2847 rq->curr = next;
2848 ++*switch_count;
2849
dd41f596 2850 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 2851 /*
246d86b5
ON
2852 * The context switch have flipped the stack from under us
2853 * and restored the local variables which were saved when
2854 * this task called schedule() in the past. prev == current
2855 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
2856 */
2857 cpu = smp_processor_id();
2858 rq = cpu_rq(cpu);
1da177e4 2859 } else
05fa785c 2860 raw_spin_unlock_irq(&rq->lock);
1da177e4 2861
3f029d3c 2862 post_schedule(rq);
1da177e4 2863
ba74c144 2864 sched_preempt_enable_no_resched();
ff743345 2865 if (need_resched())
1da177e4
LT
2866 goto need_resched;
2867}
c259e01a 2868
9c40cef2
TG
2869static inline void sched_submit_work(struct task_struct *tsk)
2870{
3c7d5184 2871 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
2872 return;
2873 /*
2874 * If we are going to sleep and we have plugged IO queued,
2875 * make sure to submit it to avoid deadlocks.
2876 */
2877 if (blk_needs_flush_plug(tsk))
2878 blk_schedule_flush_plug(tsk);
2879}
2880
722a9f92 2881asmlinkage __visible void __sched schedule(void)
c259e01a 2882{
9c40cef2
TG
2883 struct task_struct *tsk = current;
2884
2885 sched_submit_work(tsk);
c259e01a
TG
2886 __schedule();
2887}
1da177e4
LT
2888EXPORT_SYMBOL(schedule);
2889
91d1aa43 2890#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 2891asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
2892{
2893 /*
2894 * If we come here after a random call to set_need_resched(),
2895 * or we have been woken up remotely but the IPI has not yet arrived,
2896 * we haven't yet exited the RCU idle mode. Do it here manually until
2897 * we find a better solution.
2898 */
91d1aa43 2899 user_exit();
20ab65e3 2900 schedule();
91d1aa43 2901 user_enter();
20ab65e3
FW
2902}
2903#endif
2904
c5491ea7
TG
2905/**
2906 * schedule_preempt_disabled - called with preemption disabled
2907 *
2908 * Returns with preemption disabled. Note: preempt_count must be 1
2909 */
2910void __sched schedule_preempt_disabled(void)
2911{
ba74c144 2912 sched_preempt_enable_no_resched();
c5491ea7
TG
2913 schedule();
2914 preempt_disable();
2915}
2916
1da177e4
LT
2917#ifdef CONFIG_PREEMPT
2918/*
2ed6e34f 2919 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 2920 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
2921 * occur there and call schedule directly.
2922 */
722a9f92 2923asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 2924{
1da177e4
LT
2925 /*
2926 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 2927 * we do not want to preempt the current task. Just return..
1da177e4 2928 */
fbb00b56 2929 if (likely(!preemptible()))
1da177e4
LT
2930 return;
2931
3a5c359a 2932 do {
bdb43806 2933 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 2934 __schedule();
bdb43806 2935 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2936
3a5c359a
AK
2937 /*
2938 * Check again in case we missed a preemption opportunity
2939 * between schedule and now.
2940 */
2941 barrier();
5ed0cec0 2942 } while (need_resched());
1da177e4 2943}
376e2424 2944NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 2945EXPORT_SYMBOL(preempt_schedule);
32e475d7 2946#endif /* CONFIG_PREEMPT */
1da177e4
LT
2947
2948/*
2ed6e34f 2949 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
2950 * off of irq context.
2951 * Note, that this is called and return with irqs disabled. This will
2952 * protect us against recursive calling from irq.
2953 */
722a9f92 2954asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 2955{
b22366cd 2956 enum ctx_state prev_state;
6478d880 2957
2ed6e34f 2958 /* Catch callers which need to be fixed */
f27dde8d 2959 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 2960
b22366cd
FW
2961 prev_state = exception_enter();
2962
3a5c359a 2963 do {
bdb43806 2964 __preempt_count_add(PREEMPT_ACTIVE);
3a5c359a 2965 local_irq_enable();
c259e01a 2966 __schedule();
3a5c359a 2967 local_irq_disable();
bdb43806 2968 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2969
3a5c359a
AK
2970 /*
2971 * Check again in case we missed a preemption opportunity
2972 * between schedule and now.
2973 */
2974 barrier();
5ed0cec0 2975 } while (need_resched());
b22366cd
FW
2976
2977 exception_exit(prev_state);
1da177e4
LT
2978}
2979
63859d4f 2980int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 2981 void *key)
1da177e4 2982{
63859d4f 2983 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 2984}
1da177e4
LT
2985EXPORT_SYMBOL(default_wake_function);
2986
b29739f9
IM
2987#ifdef CONFIG_RT_MUTEXES
2988
2989/*
2990 * rt_mutex_setprio - set the current priority of a task
2991 * @p: task
2992 * @prio: prio value (kernel-internal form)
2993 *
2994 * This function changes the 'effective' priority of a task. It does
2995 * not touch ->normal_prio like __setscheduler().
2996 *
c365c292
TG
2997 * Used by the rt_mutex code to implement priority inheritance
2998 * logic. Call site only calls if the priority of the task changed.
b29739f9 2999 */
36c8b586 3000void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3001{
da0c1e65 3002 int oldprio, queued, running, enqueue_flag = 0;
70b97a7f 3003 struct rq *rq;
83ab0aa0 3004 const struct sched_class *prev_class;
b29739f9 3005
aab03e05 3006 BUG_ON(prio > MAX_PRIO);
b29739f9 3007
0122ec5b 3008 rq = __task_rq_lock(p);
b29739f9 3009
1c4dd99b
TG
3010 /*
3011 * Idle task boosting is a nono in general. There is one
3012 * exception, when PREEMPT_RT and NOHZ is active:
3013 *
3014 * The idle task calls get_next_timer_interrupt() and holds
3015 * the timer wheel base->lock on the CPU and another CPU wants
3016 * to access the timer (probably to cancel it). We can safely
3017 * ignore the boosting request, as the idle CPU runs this code
3018 * with interrupts disabled and will complete the lock
3019 * protected section without being interrupted. So there is no
3020 * real need to boost.
3021 */
3022 if (unlikely(p == rq->idle)) {
3023 WARN_ON(p != rq->curr);
3024 WARN_ON(p->pi_blocked_on);
3025 goto out_unlock;
3026 }
3027
a8027073 3028 trace_sched_pi_setprio(p, prio);
d5f9f942 3029 oldprio = p->prio;
83ab0aa0 3030 prev_class = p->sched_class;
da0c1e65 3031 queued = task_on_rq_queued(p);
051a1d1a 3032 running = task_current(rq, p);
da0c1e65 3033 if (queued)
69be72c1 3034 dequeue_task(rq, p, 0);
0e1f3483 3035 if (running)
f3cd1c4e 3036 put_prev_task(rq, p);
dd41f596 3037
2d3d891d
DF
3038 /*
3039 * Boosting condition are:
3040 * 1. -rt task is running and holds mutex A
3041 * --> -dl task blocks on mutex A
3042 *
3043 * 2. -dl task is running and holds mutex A
3044 * --> -dl task blocks on mutex A and could preempt the
3045 * running task
3046 */
3047 if (dl_prio(prio)) {
466af29b
ON
3048 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3049 if (!dl_prio(p->normal_prio) ||
3050 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d
DF
3051 p->dl.dl_boosted = 1;
3052 p->dl.dl_throttled = 0;
3053 enqueue_flag = ENQUEUE_REPLENISH;
3054 } else
3055 p->dl.dl_boosted = 0;
aab03e05 3056 p->sched_class = &dl_sched_class;
2d3d891d
DF
3057 } else if (rt_prio(prio)) {
3058 if (dl_prio(oldprio))
3059 p->dl.dl_boosted = 0;
3060 if (oldprio < prio)
3061 enqueue_flag = ENQUEUE_HEAD;
dd41f596 3062 p->sched_class = &rt_sched_class;
2d3d891d
DF
3063 } else {
3064 if (dl_prio(oldprio))
3065 p->dl.dl_boosted = 0;
dd41f596 3066 p->sched_class = &fair_sched_class;
2d3d891d 3067 }
dd41f596 3068
b29739f9
IM
3069 p->prio = prio;
3070
0e1f3483
HS
3071 if (running)
3072 p->sched_class->set_curr_task(rq);
da0c1e65 3073 if (queued)
2d3d891d 3074 enqueue_task(rq, p, enqueue_flag);
cb469845 3075
da7a735e 3076 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3077out_unlock:
0122ec5b 3078 __task_rq_unlock(rq);
b29739f9 3079}
b29739f9 3080#endif
d50dde5a 3081
36c8b586 3082void set_user_nice(struct task_struct *p, long nice)
1da177e4 3083{
da0c1e65 3084 int old_prio, delta, queued;
1da177e4 3085 unsigned long flags;
70b97a7f 3086 struct rq *rq;
1da177e4 3087
75e45d51 3088 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
3089 return;
3090 /*
3091 * We have to be careful, if called from sys_setpriority(),
3092 * the task might be in the middle of scheduling on another CPU.
3093 */
3094 rq = task_rq_lock(p, &flags);
3095 /*
3096 * The RT priorities are set via sched_setscheduler(), but we still
3097 * allow the 'normal' nice value to be set - but as expected
3098 * it wont have any effect on scheduling until the task is
aab03e05 3099 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3100 */
aab03e05 3101 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3102 p->static_prio = NICE_TO_PRIO(nice);
3103 goto out_unlock;
3104 }
da0c1e65
KT
3105 queued = task_on_rq_queued(p);
3106 if (queued)
69be72c1 3107 dequeue_task(rq, p, 0);
1da177e4 3108
1da177e4 3109 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3110 set_load_weight(p);
b29739f9
IM
3111 old_prio = p->prio;
3112 p->prio = effective_prio(p);
3113 delta = p->prio - old_prio;
1da177e4 3114
da0c1e65 3115 if (queued) {
371fd7e7 3116 enqueue_task(rq, p, 0);
1da177e4 3117 /*
d5f9f942
AM
3118 * If the task increased its priority or is running and
3119 * lowered its priority, then reschedule its CPU:
1da177e4 3120 */
d5f9f942 3121 if (delta < 0 || (delta > 0 && task_running(rq, p)))
8875125e 3122 resched_curr(rq);
1da177e4
LT
3123 }
3124out_unlock:
0122ec5b 3125 task_rq_unlock(rq, p, &flags);
1da177e4 3126}
1da177e4
LT
3127EXPORT_SYMBOL(set_user_nice);
3128
e43379f1
MM
3129/*
3130 * can_nice - check if a task can reduce its nice value
3131 * @p: task
3132 * @nice: nice value
3133 */
36c8b586 3134int can_nice(const struct task_struct *p, const int nice)
e43379f1 3135{
024f4747 3136 /* convert nice value [19,-20] to rlimit style value [1,40] */
7aa2c016 3137 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 3138
78d7d407 3139 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3140 capable(CAP_SYS_NICE));
3141}
3142
1da177e4
LT
3143#ifdef __ARCH_WANT_SYS_NICE
3144
3145/*
3146 * sys_nice - change the priority of the current process.
3147 * @increment: priority increment
3148 *
3149 * sys_setpriority is a more generic, but much slower function that
3150 * does similar things.
3151 */
5add95d4 3152SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3153{
48f24c4d 3154 long nice, retval;
1da177e4
LT
3155
3156 /*
3157 * Setpriority might change our priority at the same moment.
3158 * We don't have to worry. Conceptually one call occurs first
3159 * and we have a single winner.
3160 */
a9467fa3 3161 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 3162 nice = task_nice(current) + increment;
1da177e4 3163
a9467fa3 3164 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
3165 if (increment < 0 && !can_nice(current, nice))
3166 return -EPERM;
3167
1da177e4
LT
3168 retval = security_task_setnice(current, nice);
3169 if (retval)
3170 return retval;
3171
3172 set_user_nice(current, nice);
3173 return 0;
3174}
3175
3176#endif
3177
3178/**
3179 * task_prio - return the priority value of a given task.
3180 * @p: the task in question.
3181 *
e69f6186 3182 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3183 * RT tasks are offset by -200. Normal tasks are centered
3184 * around 0, value goes from -16 to +15.
3185 */
36c8b586 3186int task_prio(const struct task_struct *p)
1da177e4
LT
3187{
3188 return p->prio - MAX_RT_PRIO;
3189}
3190
1da177e4
LT
3191/**
3192 * idle_cpu - is a given cpu idle currently?
3193 * @cpu: the processor in question.
e69f6186
YB
3194 *
3195 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3196 */
3197int idle_cpu(int cpu)
3198{
908a3283
TG
3199 struct rq *rq = cpu_rq(cpu);
3200
3201 if (rq->curr != rq->idle)
3202 return 0;
3203
3204 if (rq->nr_running)
3205 return 0;
3206
3207#ifdef CONFIG_SMP
3208 if (!llist_empty(&rq->wake_list))
3209 return 0;
3210#endif
3211
3212 return 1;
1da177e4
LT
3213}
3214
1da177e4
LT
3215/**
3216 * idle_task - return the idle task for a given cpu.
3217 * @cpu: the processor in question.
e69f6186
YB
3218 *
3219 * Return: The idle task for the cpu @cpu.
1da177e4 3220 */
36c8b586 3221struct task_struct *idle_task(int cpu)
1da177e4
LT
3222{
3223 return cpu_rq(cpu)->idle;
3224}
3225
3226/**
3227 * find_process_by_pid - find a process with a matching PID value.
3228 * @pid: the pid in question.
e69f6186
YB
3229 *
3230 * The task of @pid, if found. %NULL otherwise.
1da177e4 3231 */
a9957449 3232static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3233{
228ebcbe 3234 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3235}
3236
aab03e05
DF
3237/*
3238 * This function initializes the sched_dl_entity of a newly becoming
3239 * SCHED_DEADLINE task.
3240 *
3241 * Only the static values are considered here, the actual runtime and the
3242 * absolute deadline will be properly calculated when the task is enqueued
3243 * for the first time with its new policy.
3244 */
3245static void
3246__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3247{
3248 struct sched_dl_entity *dl_se = &p->dl;
3249
3250 init_dl_task_timer(dl_se);
3251 dl_se->dl_runtime = attr->sched_runtime;
3252 dl_se->dl_deadline = attr->sched_deadline;
755378a4 3253 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 3254 dl_se->flags = attr->sched_flags;
332ac17e 3255 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
aab03e05
DF
3256 dl_se->dl_throttled = 0;
3257 dl_se->dl_new = 1;
5bfd126e 3258 dl_se->dl_yielded = 0;
aab03e05
DF
3259}
3260
c13db6b1
SR
3261/*
3262 * sched_setparam() passes in -1 for its policy, to let the functions
3263 * it calls know not to change it.
3264 */
3265#define SETPARAM_POLICY -1
3266
c365c292
TG
3267static void __setscheduler_params(struct task_struct *p,
3268 const struct sched_attr *attr)
1da177e4 3269{
d50dde5a
DF
3270 int policy = attr->sched_policy;
3271
c13db6b1 3272 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
3273 policy = p->policy;
3274
1da177e4 3275 p->policy = policy;
d50dde5a 3276
aab03e05
DF
3277 if (dl_policy(policy))
3278 __setparam_dl(p, attr);
39fd8fd2 3279 else if (fair_policy(policy))
d50dde5a
DF
3280 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3281
39fd8fd2
PZ
3282 /*
3283 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3284 * !rt_policy. Always setting this ensures that things like
3285 * getparam()/getattr() don't report silly values for !rt tasks.
3286 */
3287 p->rt_priority = attr->sched_priority;
383afd09 3288 p->normal_prio = normal_prio(p);
c365c292
TG
3289 set_load_weight(p);
3290}
39fd8fd2 3291
c365c292
TG
3292/* Actually do priority change: must hold pi & rq lock. */
3293static void __setscheduler(struct rq *rq, struct task_struct *p,
3294 const struct sched_attr *attr)
3295{
3296 __setscheduler_params(p, attr);
d50dde5a 3297
383afd09
SR
3298 /*
3299 * If we get here, there was no pi waiters boosting the
3300 * task. It is safe to use the normal prio.
3301 */
3302 p->prio = normal_prio(p);
3303
aab03e05
DF
3304 if (dl_prio(p->prio))
3305 p->sched_class = &dl_sched_class;
3306 else if (rt_prio(p->prio))
ffd44db5
PZ
3307 p->sched_class = &rt_sched_class;
3308 else
3309 p->sched_class = &fair_sched_class;
1da177e4 3310}
aab03e05
DF
3311
3312static void
3313__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3314{
3315 struct sched_dl_entity *dl_se = &p->dl;
3316
3317 attr->sched_priority = p->rt_priority;
3318 attr->sched_runtime = dl_se->dl_runtime;
3319 attr->sched_deadline = dl_se->dl_deadline;
755378a4 3320 attr->sched_period = dl_se->dl_period;
aab03e05
DF
3321 attr->sched_flags = dl_se->flags;
3322}
3323
3324/*
3325 * This function validates the new parameters of a -deadline task.
3326 * We ask for the deadline not being zero, and greater or equal
755378a4 3327 * than the runtime, as well as the period of being zero or
332ac17e 3328 * greater than deadline. Furthermore, we have to be sure that
b0827819
JL
3329 * user parameters are above the internal resolution of 1us (we
3330 * check sched_runtime only since it is always the smaller one) and
3331 * below 2^63 ns (we have to check both sched_deadline and
3332 * sched_period, as the latter can be zero).
aab03e05
DF
3333 */
3334static bool
3335__checkparam_dl(const struct sched_attr *attr)
3336{
b0827819
JL
3337 /* deadline != 0 */
3338 if (attr->sched_deadline == 0)
3339 return false;
3340
3341 /*
3342 * Since we truncate DL_SCALE bits, make sure we're at least
3343 * that big.
3344 */
3345 if (attr->sched_runtime < (1ULL << DL_SCALE))
3346 return false;
3347
3348 /*
3349 * Since we use the MSB for wrap-around and sign issues, make
3350 * sure it's not set (mind that period can be equal to zero).
3351 */
3352 if (attr->sched_deadline & (1ULL << 63) ||
3353 attr->sched_period & (1ULL << 63))
3354 return false;
3355
3356 /* runtime <= deadline <= period (if period != 0) */
3357 if ((attr->sched_period != 0 &&
3358 attr->sched_period < attr->sched_deadline) ||
3359 attr->sched_deadline < attr->sched_runtime)
3360 return false;
3361
3362 return true;
aab03e05
DF
3363}
3364
c69e8d9c
DH
3365/*
3366 * check the target process has a UID that matches the current process's
3367 */
3368static bool check_same_owner(struct task_struct *p)
3369{
3370 const struct cred *cred = current_cred(), *pcred;
3371 bool match;
3372
3373 rcu_read_lock();
3374 pcred = __task_cred(p);
9c806aa0
EB
3375 match = (uid_eq(cred->euid, pcred->euid) ||
3376 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3377 rcu_read_unlock();
3378 return match;
3379}
3380
d50dde5a
DF
3381static int __sched_setscheduler(struct task_struct *p,
3382 const struct sched_attr *attr,
3383 bool user)
1da177e4 3384{
383afd09
SR
3385 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3386 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 3387 int retval, oldprio, oldpolicy = -1, queued, running;
d50dde5a 3388 int policy = attr->sched_policy;
1da177e4 3389 unsigned long flags;
83ab0aa0 3390 const struct sched_class *prev_class;
70b97a7f 3391 struct rq *rq;
ca94c442 3392 int reset_on_fork;
1da177e4 3393
66e5393a
SR
3394 /* may grab non-irq protected spin_locks */
3395 BUG_ON(in_interrupt());
1da177e4
LT
3396recheck:
3397 /* double check policy once rq lock held */
ca94c442
LP
3398 if (policy < 0) {
3399 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3400 policy = oldpolicy = p->policy;
ca94c442 3401 } else {
7479f3c9 3402 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 3403
aab03e05
DF
3404 if (policy != SCHED_DEADLINE &&
3405 policy != SCHED_FIFO && policy != SCHED_RR &&
ca94c442
LP
3406 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3407 policy != SCHED_IDLE)
3408 return -EINVAL;
3409 }
3410
7479f3c9
PZ
3411 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3412 return -EINVAL;
3413
1da177e4
LT
3414 /*
3415 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3416 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3417 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 3418 */
0bb040a4 3419 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 3420 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 3421 return -EINVAL;
aab03e05
DF
3422 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3423 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
3424 return -EINVAL;
3425
37e4ab3f
OC
3426 /*
3427 * Allow unprivileged RT tasks to decrease priority:
3428 */
961ccddd 3429 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 3430 if (fair_policy(policy)) {
d0ea0268 3431 if (attr->sched_nice < task_nice(p) &&
eaad4513 3432 !can_nice(p, attr->sched_nice))
d50dde5a
DF
3433 return -EPERM;
3434 }
3435
e05606d3 3436 if (rt_policy(policy)) {
a44702e8
ON
3437 unsigned long rlim_rtprio =
3438 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3439
3440 /* can't set/change the rt policy */
3441 if (policy != p->policy && !rlim_rtprio)
3442 return -EPERM;
3443
3444 /* can't increase priority */
d50dde5a
DF
3445 if (attr->sched_priority > p->rt_priority &&
3446 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
3447 return -EPERM;
3448 }
c02aa73b 3449
d44753b8
JL
3450 /*
3451 * Can't set/change SCHED_DEADLINE policy at all for now
3452 * (safest behavior); in the future we would like to allow
3453 * unprivileged DL tasks to increase their relative deadline
3454 * or reduce their runtime (both ways reducing utilization)
3455 */
3456 if (dl_policy(policy))
3457 return -EPERM;
3458
dd41f596 3459 /*
c02aa73b
DH
3460 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3461 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3462 */
c02aa73b 3463 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
d0ea0268 3464 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
3465 return -EPERM;
3466 }
5fe1d75f 3467
37e4ab3f 3468 /* can't change other user's priorities */
c69e8d9c 3469 if (!check_same_owner(p))
37e4ab3f 3470 return -EPERM;
ca94c442
LP
3471
3472 /* Normal users shall not reset the sched_reset_on_fork flag */
3473 if (p->sched_reset_on_fork && !reset_on_fork)
3474 return -EPERM;
37e4ab3f 3475 }
1da177e4 3476
725aad24 3477 if (user) {
b0ae1981 3478 retval = security_task_setscheduler(p);
725aad24
JF
3479 if (retval)
3480 return retval;
3481 }
3482
b29739f9
IM
3483 /*
3484 * make sure no PI-waiters arrive (or leave) while we are
3485 * changing the priority of the task:
0122ec5b 3486 *
25985edc 3487 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3488 * runqueue lock must be held.
3489 */
0122ec5b 3490 rq = task_rq_lock(p, &flags);
dc61b1d6 3491
34f971f6
PZ
3492 /*
3493 * Changing the policy of the stop threads its a very bad idea
3494 */
3495 if (p == rq->stop) {
0122ec5b 3496 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3497 return -EINVAL;
3498 }
3499
a51e9198 3500 /*
d6b1e911
TG
3501 * If not changing anything there's no need to proceed further,
3502 * but store a possible modification of reset_on_fork.
a51e9198 3503 */
d50dde5a 3504 if (unlikely(policy == p->policy)) {
d0ea0268 3505 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
3506 goto change;
3507 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3508 goto change;
aab03e05
DF
3509 if (dl_policy(policy))
3510 goto change;
d50dde5a 3511
d6b1e911 3512 p->sched_reset_on_fork = reset_on_fork;
45afb173 3513 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3514 return 0;
3515 }
d50dde5a 3516change:
a51e9198 3517
dc61b1d6 3518 if (user) {
332ac17e 3519#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
3520 /*
3521 * Do not allow realtime tasks into groups that have no runtime
3522 * assigned.
3523 */
3524 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3525 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3526 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3527 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3528 return -EPERM;
3529 }
dc61b1d6 3530#endif
332ac17e
DF
3531#ifdef CONFIG_SMP
3532 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3533 cpumask_t *span = rq->rd->span;
332ac17e
DF
3534
3535 /*
3536 * Don't allow tasks with an affinity mask smaller than
3537 * the entire root_domain to become SCHED_DEADLINE. We
3538 * will also fail if there's no bandwidth available.
3539 */
e4099a5e
PZ
3540 if (!cpumask_subset(span, &p->cpus_allowed) ||
3541 rq->rd->dl_bw.bw == 0) {
332ac17e
DF
3542 task_rq_unlock(rq, p, &flags);
3543 return -EPERM;
3544 }
3545 }
3546#endif
3547 }
dc61b1d6 3548
1da177e4
LT
3549 /* recheck policy now with rq lock held */
3550 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3551 policy = oldpolicy = -1;
0122ec5b 3552 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3553 goto recheck;
3554 }
332ac17e
DF
3555
3556 /*
3557 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3558 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3559 * is available.
3560 */
e4099a5e 3561 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
332ac17e
DF
3562 task_rq_unlock(rq, p, &flags);
3563 return -EBUSY;
3564 }
3565
c365c292
TG
3566 p->sched_reset_on_fork = reset_on_fork;
3567 oldprio = p->prio;
3568
3569 /*
3570 * Special case for priority boosted tasks.
3571 *
3572 * If the new priority is lower or equal (user space view)
3573 * than the current (boosted) priority, we just store the new
3574 * normal parameters and do not touch the scheduler class and
3575 * the runqueue. This will be done when the task deboost
3576 * itself.
3577 */
3578 if (rt_mutex_check_prio(p, newprio)) {
3579 __setscheduler_params(p, attr);
3580 task_rq_unlock(rq, p, &flags);
3581 return 0;
3582 }
3583
da0c1e65 3584 queued = task_on_rq_queued(p);
051a1d1a 3585 running = task_current(rq, p);
da0c1e65 3586 if (queued)
4ca9b72b 3587 dequeue_task(rq, p, 0);
0e1f3483 3588 if (running)
f3cd1c4e 3589 put_prev_task(rq, p);
f6b53205 3590
83ab0aa0 3591 prev_class = p->sched_class;
d50dde5a 3592 __setscheduler(rq, p, attr);
f6b53205 3593
0e1f3483
HS
3594 if (running)
3595 p->sched_class->set_curr_task(rq);
da0c1e65 3596 if (queued) {
81a44c54
TG
3597 /*
3598 * We enqueue to tail when the priority of a task is
3599 * increased (user space view).
3600 */
3601 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3602 }
cb469845 3603
da7a735e 3604 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 3605 task_rq_unlock(rq, p, &flags);
b29739f9 3606
95e02ca9
TG
3607 rt_mutex_adjust_pi(p);
3608
1da177e4
LT
3609 return 0;
3610}
961ccddd 3611
7479f3c9
PZ
3612static int _sched_setscheduler(struct task_struct *p, int policy,
3613 const struct sched_param *param, bool check)
3614{
3615 struct sched_attr attr = {
3616 .sched_policy = policy,
3617 .sched_priority = param->sched_priority,
3618 .sched_nice = PRIO_TO_NICE(p->static_prio),
3619 };
3620
c13db6b1
SR
3621 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
3622 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
3623 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3624 policy &= ~SCHED_RESET_ON_FORK;
3625 attr.sched_policy = policy;
3626 }
3627
3628 return __sched_setscheduler(p, &attr, check);
3629}
961ccddd
RR
3630/**
3631 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3632 * @p: the task in question.
3633 * @policy: new policy.
3634 * @param: structure containing the new RT priority.
3635 *
e69f6186
YB
3636 * Return: 0 on success. An error code otherwise.
3637 *
961ccddd
RR
3638 * NOTE that the task may be already dead.
3639 */
3640int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3641 const struct sched_param *param)
961ccddd 3642{
7479f3c9 3643 return _sched_setscheduler(p, policy, param, true);
961ccddd 3644}
1da177e4
LT
3645EXPORT_SYMBOL_GPL(sched_setscheduler);
3646
d50dde5a
DF
3647int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3648{
3649 return __sched_setscheduler(p, attr, true);
3650}
3651EXPORT_SYMBOL_GPL(sched_setattr);
3652
961ccddd
RR
3653/**
3654 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3655 * @p: the task in question.
3656 * @policy: new policy.
3657 * @param: structure containing the new RT priority.
3658 *
3659 * Just like sched_setscheduler, only don't bother checking if the
3660 * current context has permission. For example, this is needed in
3661 * stop_machine(): we create temporary high priority worker threads,
3662 * but our caller might not have that capability.
e69f6186
YB
3663 *
3664 * Return: 0 on success. An error code otherwise.
961ccddd
RR
3665 */
3666int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 3667 const struct sched_param *param)
961ccddd 3668{
7479f3c9 3669 return _sched_setscheduler(p, policy, param, false);
961ccddd
RR
3670}
3671
95cdf3b7
IM
3672static int
3673do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 3674{
1da177e4
LT
3675 struct sched_param lparam;
3676 struct task_struct *p;
36c8b586 3677 int retval;
1da177e4
LT
3678
3679 if (!param || pid < 0)
3680 return -EINVAL;
3681 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3682 return -EFAULT;
5fe1d75f
ON
3683
3684 rcu_read_lock();
3685 retval = -ESRCH;
1da177e4 3686 p = find_process_by_pid(pid);
5fe1d75f
ON
3687 if (p != NULL)
3688 retval = sched_setscheduler(p, policy, &lparam);
3689 rcu_read_unlock();
36c8b586 3690
1da177e4
LT
3691 return retval;
3692}
3693
d50dde5a
DF
3694/*
3695 * Mimics kernel/events/core.c perf_copy_attr().
3696 */
3697static int sched_copy_attr(struct sched_attr __user *uattr,
3698 struct sched_attr *attr)
3699{
3700 u32 size;
3701 int ret;
3702
3703 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3704 return -EFAULT;
3705
3706 /*
3707 * zero the full structure, so that a short copy will be nice.
3708 */
3709 memset(attr, 0, sizeof(*attr));
3710
3711 ret = get_user(size, &uattr->size);
3712 if (ret)
3713 return ret;
3714
3715 if (size > PAGE_SIZE) /* silly large */
3716 goto err_size;
3717
3718 if (!size) /* abi compat */
3719 size = SCHED_ATTR_SIZE_VER0;
3720
3721 if (size < SCHED_ATTR_SIZE_VER0)
3722 goto err_size;
3723
3724 /*
3725 * If we're handed a bigger struct than we know of,
3726 * ensure all the unknown bits are 0 - i.e. new
3727 * user-space does not rely on any kernel feature
3728 * extensions we dont know about yet.
3729 */
3730 if (size > sizeof(*attr)) {
3731 unsigned char __user *addr;
3732 unsigned char __user *end;
3733 unsigned char val;
3734
3735 addr = (void __user *)uattr + sizeof(*attr);
3736 end = (void __user *)uattr + size;
3737
3738 for (; addr < end; addr++) {
3739 ret = get_user(val, addr);
3740 if (ret)
3741 return ret;
3742 if (val)
3743 goto err_size;
3744 }
3745 size = sizeof(*attr);
3746 }
3747
3748 ret = copy_from_user(attr, uattr, size);
3749 if (ret)
3750 return -EFAULT;
3751
3752 /*
3753 * XXX: do we want to be lenient like existing syscalls; or do we want
3754 * to be strict and return an error on out-of-bounds values?
3755 */
75e45d51 3756 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 3757
e78c7bca 3758 return 0;
d50dde5a
DF
3759
3760err_size:
3761 put_user(sizeof(*attr), &uattr->size);
e78c7bca 3762 return -E2BIG;
d50dde5a
DF
3763}
3764
1da177e4
LT
3765/**
3766 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3767 * @pid: the pid in question.
3768 * @policy: new policy.
3769 * @param: structure containing the new RT priority.
e69f6186
YB
3770 *
3771 * Return: 0 on success. An error code otherwise.
1da177e4 3772 */
5add95d4
HC
3773SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3774 struct sched_param __user *, param)
1da177e4 3775{
c21761f1
JB
3776 /* negative values for policy are not valid */
3777 if (policy < 0)
3778 return -EINVAL;
3779
1da177e4
LT
3780 return do_sched_setscheduler(pid, policy, param);
3781}
3782
3783/**
3784 * sys_sched_setparam - set/change the RT priority of a thread
3785 * @pid: the pid in question.
3786 * @param: structure containing the new RT priority.
e69f6186
YB
3787 *
3788 * Return: 0 on success. An error code otherwise.
1da177e4 3789 */
5add95d4 3790SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 3791{
c13db6b1 3792 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
3793}
3794
d50dde5a
DF
3795/**
3796 * sys_sched_setattr - same as above, but with extended sched_attr
3797 * @pid: the pid in question.
5778fccf 3798 * @uattr: structure containing the extended parameters.
db66d756 3799 * @flags: for future extension.
d50dde5a 3800 */
6d35ab48
PZ
3801SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3802 unsigned int, flags)
d50dde5a
DF
3803{
3804 struct sched_attr attr;
3805 struct task_struct *p;
3806 int retval;
3807
6d35ab48 3808 if (!uattr || pid < 0 || flags)
d50dde5a
DF
3809 return -EINVAL;
3810
143cf23d
MK
3811 retval = sched_copy_attr(uattr, &attr);
3812 if (retval)
3813 return retval;
d50dde5a 3814
b14ed2c2 3815 if ((int)attr.sched_policy < 0)
dbdb2275 3816 return -EINVAL;
d50dde5a
DF
3817
3818 rcu_read_lock();
3819 retval = -ESRCH;
3820 p = find_process_by_pid(pid);
3821 if (p != NULL)
3822 retval = sched_setattr(p, &attr);
3823 rcu_read_unlock();
3824
3825 return retval;
3826}
3827
1da177e4
LT
3828/**
3829 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3830 * @pid: the pid in question.
e69f6186
YB
3831 *
3832 * Return: On success, the policy of the thread. Otherwise, a negative error
3833 * code.
1da177e4 3834 */
5add95d4 3835SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 3836{
36c8b586 3837 struct task_struct *p;
3a5c359a 3838 int retval;
1da177e4
LT
3839
3840 if (pid < 0)
3a5c359a 3841 return -EINVAL;
1da177e4
LT
3842
3843 retval = -ESRCH;
5fe85be0 3844 rcu_read_lock();
1da177e4
LT
3845 p = find_process_by_pid(pid);
3846 if (p) {
3847 retval = security_task_getscheduler(p);
3848 if (!retval)
ca94c442
LP
3849 retval = p->policy
3850 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 3851 }
5fe85be0 3852 rcu_read_unlock();
1da177e4
LT
3853 return retval;
3854}
3855
3856/**
ca94c442 3857 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
3858 * @pid: the pid in question.
3859 * @param: structure containing the RT priority.
e69f6186
YB
3860 *
3861 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3862 * code.
1da177e4 3863 */
5add95d4 3864SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 3865{
ce5f7f82 3866 struct sched_param lp = { .sched_priority = 0 };
36c8b586 3867 struct task_struct *p;
3a5c359a 3868 int retval;
1da177e4
LT
3869
3870 if (!param || pid < 0)
3a5c359a 3871 return -EINVAL;
1da177e4 3872
5fe85be0 3873 rcu_read_lock();
1da177e4
LT
3874 p = find_process_by_pid(pid);
3875 retval = -ESRCH;
3876 if (!p)
3877 goto out_unlock;
3878
3879 retval = security_task_getscheduler(p);
3880 if (retval)
3881 goto out_unlock;
3882
ce5f7f82
PZ
3883 if (task_has_rt_policy(p))
3884 lp.sched_priority = p->rt_priority;
5fe85be0 3885 rcu_read_unlock();
1da177e4
LT
3886
3887 /*
3888 * This one might sleep, we cannot do it with a spinlock held ...
3889 */
3890 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3891
1da177e4
LT
3892 return retval;
3893
3894out_unlock:
5fe85be0 3895 rcu_read_unlock();
1da177e4
LT
3896 return retval;
3897}
3898
d50dde5a
DF
3899static int sched_read_attr(struct sched_attr __user *uattr,
3900 struct sched_attr *attr,
3901 unsigned int usize)
3902{
3903 int ret;
3904
3905 if (!access_ok(VERIFY_WRITE, uattr, usize))
3906 return -EFAULT;
3907
3908 /*
3909 * If we're handed a smaller struct than we know of,
3910 * ensure all the unknown bits are 0 - i.e. old
3911 * user-space does not get uncomplete information.
3912 */
3913 if (usize < sizeof(*attr)) {
3914 unsigned char *addr;
3915 unsigned char *end;
3916
3917 addr = (void *)attr + usize;
3918 end = (void *)attr + sizeof(*attr);
3919
3920 for (; addr < end; addr++) {
3921 if (*addr)
22400674 3922 return -EFBIG;
d50dde5a
DF
3923 }
3924
3925 attr->size = usize;
3926 }
3927
4efbc454 3928 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
3929 if (ret)
3930 return -EFAULT;
3931
22400674 3932 return 0;
d50dde5a
DF
3933}
3934
3935/**
aab03e05 3936 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 3937 * @pid: the pid in question.
5778fccf 3938 * @uattr: structure containing the extended parameters.
d50dde5a 3939 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 3940 * @flags: for future extension.
d50dde5a 3941 */
6d35ab48
PZ
3942SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3943 unsigned int, size, unsigned int, flags)
d50dde5a
DF
3944{
3945 struct sched_attr attr = {
3946 .size = sizeof(struct sched_attr),
3947 };
3948 struct task_struct *p;
3949 int retval;
3950
3951 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 3952 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
3953 return -EINVAL;
3954
3955 rcu_read_lock();
3956 p = find_process_by_pid(pid);
3957 retval = -ESRCH;
3958 if (!p)
3959 goto out_unlock;
3960
3961 retval = security_task_getscheduler(p);
3962 if (retval)
3963 goto out_unlock;
3964
3965 attr.sched_policy = p->policy;
7479f3c9
PZ
3966 if (p->sched_reset_on_fork)
3967 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
3968 if (task_has_dl_policy(p))
3969 __getparam_dl(p, &attr);
3970 else if (task_has_rt_policy(p))
d50dde5a
DF
3971 attr.sched_priority = p->rt_priority;
3972 else
d0ea0268 3973 attr.sched_nice = task_nice(p);
d50dde5a
DF
3974
3975 rcu_read_unlock();
3976
3977 retval = sched_read_attr(uattr, &attr, size);
3978 return retval;
3979
3980out_unlock:
3981 rcu_read_unlock();
3982 return retval;
3983}
3984
96f874e2 3985long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 3986{
5a16f3d3 3987 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
3988 struct task_struct *p;
3989 int retval;
1da177e4 3990
23f5d142 3991 rcu_read_lock();
1da177e4
LT
3992
3993 p = find_process_by_pid(pid);
3994 if (!p) {
23f5d142 3995 rcu_read_unlock();
1da177e4
LT
3996 return -ESRCH;
3997 }
3998
23f5d142 3999 /* Prevent p going away */
1da177e4 4000 get_task_struct(p);
23f5d142 4001 rcu_read_unlock();
1da177e4 4002
14a40ffc
TH
4003 if (p->flags & PF_NO_SETAFFINITY) {
4004 retval = -EINVAL;
4005 goto out_put_task;
4006 }
5a16f3d3
RR
4007 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4008 retval = -ENOMEM;
4009 goto out_put_task;
4010 }
4011 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4012 retval = -ENOMEM;
4013 goto out_free_cpus_allowed;
4014 }
1da177e4 4015 retval = -EPERM;
4c44aaaf
EB
4016 if (!check_same_owner(p)) {
4017 rcu_read_lock();
4018 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4019 rcu_read_unlock();
4020 goto out_unlock;
4021 }
4022 rcu_read_unlock();
4023 }
1da177e4 4024
b0ae1981 4025 retval = security_task_setscheduler(p);
e7834f8f
DQ
4026 if (retval)
4027 goto out_unlock;
4028
e4099a5e
PZ
4029
4030 cpuset_cpus_allowed(p, cpus_allowed);
4031 cpumask_and(new_mask, in_mask, cpus_allowed);
4032
332ac17e
DF
4033 /*
4034 * Since bandwidth control happens on root_domain basis,
4035 * if admission test is enabled, we only admit -deadline
4036 * tasks allowed to run on all the CPUs in the task's
4037 * root_domain.
4038 */
4039#ifdef CONFIG_SMP
4040 if (task_has_dl_policy(p)) {
4041 const struct cpumask *span = task_rq(p)->rd->span;
4042
e4099a5e 4043 if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) {
332ac17e
DF
4044 retval = -EBUSY;
4045 goto out_unlock;
4046 }
4047 }
4048#endif
49246274 4049again:
5a16f3d3 4050 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 4051
8707d8b8 4052 if (!retval) {
5a16f3d3
RR
4053 cpuset_cpus_allowed(p, cpus_allowed);
4054 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4055 /*
4056 * We must have raced with a concurrent cpuset
4057 * update. Just reset the cpus_allowed to the
4058 * cpuset's cpus_allowed
4059 */
5a16f3d3 4060 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4061 goto again;
4062 }
4063 }
1da177e4 4064out_unlock:
5a16f3d3
RR
4065 free_cpumask_var(new_mask);
4066out_free_cpus_allowed:
4067 free_cpumask_var(cpus_allowed);
4068out_put_task:
1da177e4 4069 put_task_struct(p);
1da177e4
LT
4070 return retval;
4071}
4072
4073static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4074 struct cpumask *new_mask)
1da177e4 4075{
96f874e2
RR
4076 if (len < cpumask_size())
4077 cpumask_clear(new_mask);
4078 else if (len > cpumask_size())
4079 len = cpumask_size();
4080
1da177e4
LT
4081 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4082}
4083
4084/**
4085 * sys_sched_setaffinity - set the cpu affinity of a process
4086 * @pid: pid of the process
4087 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4088 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
4089 *
4090 * Return: 0 on success. An error code otherwise.
1da177e4 4091 */
5add95d4
HC
4092SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4093 unsigned long __user *, user_mask_ptr)
1da177e4 4094{
5a16f3d3 4095 cpumask_var_t new_mask;
1da177e4
LT
4096 int retval;
4097
5a16f3d3
RR
4098 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4099 return -ENOMEM;
1da177e4 4100
5a16f3d3
RR
4101 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4102 if (retval == 0)
4103 retval = sched_setaffinity(pid, new_mask);
4104 free_cpumask_var(new_mask);
4105 return retval;
1da177e4
LT
4106}
4107
96f874e2 4108long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4109{
36c8b586 4110 struct task_struct *p;
31605683 4111 unsigned long flags;
1da177e4 4112 int retval;
1da177e4 4113
23f5d142 4114 rcu_read_lock();
1da177e4
LT
4115
4116 retval = -ESRCH;
4117 p = find_process_by_pid(pid);
4118 if (!p)
4119 goto out_unlock;
4120
e7834f8f
DQ
4121 retval = security_task_getscheduler(p);
4122 if (retval)
4123 goto out_unlock;
4124
013fdb80 4125 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4126 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4127 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4128
4129out_unlock:
23f5d142 4130 rcu_read_unlock();
1da177e4 4131
9531b62f 4132 return retval;
1da177e4
LT
4133}
4134
4135/**
4136 * sys_sched_getaffinity - get the cpu affinity of a process
4137 * @pid: pid of the process
4138 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4139 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186
YB
4140 *
4141 * Return: 0 on success. An error code otherwise.
1da177e4 4142 */
5add95d4
HC
4143SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4144 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4145{
4146 int ret;
f17c8607 4147 cpumask_var_t mask;
1da177e4 4148
84fba5ec 4149 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4150 return -EINVAL;
4151 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4152 return -EINVAL;
4153
f17c8607
RR
4154 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4155 return -ENOMEM;
1da177e4 4156
f17c8607
RR
4157 ret = sched_getaffinity(pid, mask);
4158 if (ret == 0) {
8bc037fb 4159 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4160
4161 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4162 ret = -EFAULT;
4163 else
cd3d8031 4164 ret = retlen;
f17c8607
RR
4165 }
4166 free_cpumask_var(mask);
1da177e4 4167
f17c8607 4168 return ret;
1da177e4
LT
4169}
4170
4171/**
4172 * sys_sched_yield - yield the current processor to other threads.
4173 *
dd41f596
IM
4174 * This function yields the current CPU to other tasks. If there are no
4175 * other threads running on this CPU then this function will return.
e69f6186
YB
4176 *
4177 * Return: 0.
1da177e4 4178 */
5add95d4 4179SYSCALL_DEFINE0(sched_yield)
1da177e4 4180{
70b97a7f 4181 struct rq *rq = this_rq_lock();
1da177e4 4182
2d72376b 4183 schedstat_inc(rq, yld_count);
4530d7ab 4184 current->sched_class->yield_task(rq);
1da177e4
LT
4185
4186 /*
4187 * Since we are going to call schedule() anyway, there's
4188 * no need to preempt or enable interrupts:
4189 */
4190 __release(rq->lock);
8a25d5de 4191 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4192 do_raw_spin_unlock(&rq->lock);
ba74c144 4193 sched_preempt_enable_no_resched();
1da177e4
LT
4194
4195 schedule();
4196
4197 return 0;
4198}
4199
e7b38404 4200static void __cond_resched(void)
1da177e4 4201{
bdb43806 4202 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 4203 __schedule();
bdb43806 4204 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4
LT
4205}
4206
02b67cc3 4207int __sched _cond_resched(void)
1da177e4 4208{
d86ee480 4209 if (should_resched()) {
1da177e4
LT
4210 __cond_resched();
4211 return 1;
4212 }
4213 return 0;
4214}
02b67cc3 4215EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4216
4217/*
613afbf8 4218 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4219 * call schedule, and on return reacquire the lock.
4220 *
41a2d6cf 4221 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4222 * operations here to prevent schedule() from being called twice (once via
4223 * spin_unlock(), once by hand).
4224 */
613afbf8 4225int __cond_resched_lock(spinlock_t *lock)
1da177e4 4226{
d86ee480 4227 int resched = should_resched();
6df3cecb
JK
4228 int ret = 0;
4229
f607c668
PZ
4230 lockdep_assert_held(lock);
4231
4a81e832 4232 if (spin_needbreak(lock) || resched) {
1da177e4 4233 spin_unlock(lock);
d86ee480 4234 if (resched)
95c354fe
NP
4235 __cond_resched();
4236 else
4237 cpu_relax();
6df3cecb 4238 ret = 1;
1da177e4 4239 spin_lock(lock);
1da177e4 4240 }
6df3cecb 4241 return ret;
1da177e4 4242}
613afbf8 4243EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4244
613afbf8 4245int __sched __cond_resched_softirq(void)
1da177e4
LT
4246{
4247 BUG_ON(!in_softirq());
4248
d86ee480 4249 if (should_resched()) {
98d82567 4250 local_bh_enable();
1da177e4
LT
4251 __cond_resched();
4252 local_bh_disable();
4253 return 1;
4254 }
4255 return 0;
4256}
613afbf8 4257EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4258
1da177e4
LT
4259/**
4260 * yield - yield the current processor to other threads.
4261 *
8e3fabfd
PZ
4262 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4263 *
4264 * The scheduler is at all times free to pick the calling task as the most
4265 * eligible task to run, if removing the yield() call from your code breaks
4266 * it, its already broken.
4267 *
4268 * Typical broken usage is:
4269 *
4270 * while (!event)
4271 * yield();
4272 *
4273 * where one assumes that yield() will let 'the other' process run that will
4274 * make event true. If the current task is a SCHED_FIFO task that will never
4275 * happen. Never use yield() as a progress guarantee!!
4276 *
4277 * If you want to use yield() to wait for something, use wait_event().
4278 * If you want to use yield() to be 'nice' for others, use cond_resched().
4279 * If you still want to use yield(), do not!
1da177e4
LT
4280 */
4281void __sched yield(void)
4282{
4283 set_current_state(TASK_RUNNING);
4284 sys_sched_yield();
4285}
1da177e4
LT
4286EXPORT_SYMBOL(yield);
4287
d95f4122
MG
4288/**
4289 * yield_to - yield the current processor to another thread in
4290 * your thread group, or accelerate that thread toward the
4291 * processor it's on.
16addf95
RD
4292 * @p: target task
4293 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4294 *
4295 * It's the caller's job to ensure that the target task struct
4296 * can't go away on us before we can do any checks.
4297 *
e69f6186 4298 * Return:
7b270f60
PZ
4299 * true (>0) if we indeed boosted the target task.
4300 * false (0) if we failed to boost the target.
4301 * -ESRCH if there's no task to yield to.
d95f4122 4302 */
fa93384f 4303int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
4304{
4305 struct task_struct *curr = current;
4306 struct rq *rq, *p_rq;
4307 unsigned long flags;
c3c18640 4308 int yielded = 0;
d95f4122
MG
4309
4310 local_irq_save(flags);
4311 rq = this_rq();
4312
4313again:
4314 p_rq = task_rq(p);
7b270f60
PZ
4315 /*
4316 * If we're the only runnable task on the rq and target rq also
4317 * has only one task, there's absolutely no point in yielding.
4318 */
4319 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4320 yielded = -ESRCH;
4321 goto out_irq;
4322 }
4323
d95f4122 4324 double_rq_lock(rq, p_rq);
39e24d8f 4325 if (task_rq(p) != p_rq) {
d95f4122
MG
4326 double_rq_unlock(rq, p_rq);
4327 goto again;
4328 }
4329
4330 if (!curr->sched_class->yield_to_task)
7b270f60 4331 goto out_unlock;
d95f4122
MG
4332
4333 if (curr->sched_class != p->sched_class)
7b270f60 4334 goto out_unlock;
d95f4122
MG
4335
4336 if (task_running(p_rq, p) || p->state)
7b270f60 4337 goto out_unlock;
d95f4122
MG
4338
4339 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4340 if (yielded) {
d95f4122 4341 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4342 /*
4343 * Make p's CPU reschedule; pick_next_entity takes care of
4344 * fairness.
4345 */
4346 if (preempt && rq != p_rq)
8875125e 4347 resched_curr(p_rq);
6d1cafd8 4348 }
d95f4122 4349
7b270f60 4350out_unlock:
d95f4122 4351 double_rq_unlock(rq, p_rq);
7b270f60 4352out_irq:
d95f4122
MG
4353 local_irq_restore(flags);
4354
7b270f60 4355 if (yielded > 0)
d95f4122
MG
4356 schedule();
4357
4358 return yielded;
4359}
4360EXPORT_SYMBOL_GPL(yield_to);
4361
1da177e4 4362/*
41a2d6cf 4363 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4364 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
4365 */
4366void __sched io_schedule(void)
4367{
54d35f29 4368 struct rq *rq = raw_rq();
1da177e4 4369
0ff92245 4370 delayacct_blkio_start();
1da177e4 4371 atomic_inc(&rq->nr_iowait);
73c10101 4372 blk_flush_plug(current);
8f0dfc34 4373 current->in_iowait = 1;
1da177e4 4374 schedule();
8f0dfc34 4375 current->in_iowait = 0;
1da177e4 4376 atomic_dec(&rq->nr_iowait);
0ff92245 4377 delayacct_blkio_end();
1da177e4 4378}
1da177e4
LT
4379EXPORT_SYMBOL(io_schedule);
4380
4381long __sched io_schedule_timeout(long timeout)
4382{
54d35f29 4383 struct rq *rq = raw_rq();
1da177e4
LT
4384 long ret;
4385
0ff92245 4386 delayacct_blkio_start();
1da177e4 4387 atomic_inc(&rq->nr_iowait);
73c10101 4388 blk_flush_plug(current);
8f0dfc34 4389 current->in_iowait = 1;
1da177e4 4390 ret = schedule_timeout(timeout);
8f0dfc34 4391 current->in_iowait = 0;
1da177e4 4392 atomic_dec(&rq->nr_iowait);
0ff92245 4393 delayacct_blkio_end();
1da177e4
LT
4394 return ret;
4395}
4396
4397/**
4398 * sys_sched_get_priority_max - return maximum RT priority.
4399 * @policy: scheduling class.
4400 *
e69f6186
YB
4401 * Return: On success, this syscall returns the maximum
4402 * rt_priority that can be used by a given scheduling class.
4403 * On failure, a negative error code is returned.
1da177e4 4404 */
5add95d4 4405SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4406{
4407 int ret = -EINVAL;
4408
4409 switch (policy) {
4410 case SCHED_FIFO:
4411 case SCHED_RR:
4412 ret = MAX_USER_RT_PRIO-1;
4413 break;
aab03e05 4414 case SCHED_DEADLINE:
1da177e4 4415 case SCHED_NORMAL:
b0a9499c 4416 case SCHED_BATCH:
dd41f596 4417 case SCHED_IDLE:
1da177e4
LT
4418 ret = 0;
4419 break;
4420 }
4421 return ret;
4422}
4423
4424/**
4425 * sys_sched_get_priority_min - return minimum RT priority.
4426 * @policy: scheduling class.
4427 *
e69f6186
YB
4428 * Return: On success, this syscall returns the minimum
4429 * rt_priority that can be used by a given scheduling class.
4430 * On failure, a negative error code is returned.
1da177e4 4431 */
5add95d4 4432SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4433{
4434 int ret = -EINVAL;
4435
4436 switch (policy) {
4437 case SCHED_FIFO:
4438 case SCHED_RR:
4439 ret = 1;
4440 break;
aab03e05 4441 case SCHED_DEADLINE:
1da177e4 4442 case SCHED_NORMAL:
b0a9499c 4443 case SCHED_BATCH:
dd41f596 4444 case SCHED_IDLE:
1da177e4
LT
4445 ret = 0;
4446 }
4447 return ret;
4448}
4449
4450/**
4451 * sys_sched_rr_get_interval - return the default timeslice of a process.
4452 * @pid: pid of the process.
4453 * @interval: userspace pointer to the timeslice value.
4454 *
4455 * this syscall writes the default timeslice value of a given process
4456 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
4457 *
4458 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4459 * an error code.
1da177e4 4460 */
17da2bd9 4461SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4462 struct timespec __user *, interval)
1da177e4 4463{
36c8b586 4464 struct task_struct *p;
a4ec24b4 4465 unsigned int time_slice;
dba091b9
TG
4466 unsigned long flags;
4467 struct rq *rq;
3a5c359a 4468 int retval;
1da177e4 4469 struct timespec t;
1da177e4
LT
4470
4471 if (pid < 0)
3a5c359a 4472 return -EINVAL;
1da177e4
LT
4473
4474 retval = -ESRCH;
1a551ae7 4475 rcu_read_lock();
1da177e4
LT
4476 p = find_process_by_pid(pid);
4477 if (!p)
4478 goto out_unlock;
4479
4480 retval = security_task_getscheduler(p);
4481 if (retval)
4482 goto out_unlock;
4483
dba091b9 4484 rq = task_rq_lock(p, &flags);
a57beec5
PZ
4485 time_slice = 0;
4486 if (p->sched_class->get_rr_interval)
4487 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4488 task_rq_unlock(rq, p, &flags);
a4ec24b4 4489
1a551ae7 4490 rcu_read_unlock();
a4ec24b4 4491 jiffies_to_timespec(time_slice, &t);
1da177e4 4492 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4493 return retval;
3a5c359a 4494
1da177e4 4495out_unlock:
1a551ae7 4496 rcu_read_unlock();
1da177e4
LT
4497 return retval;
4498}
4499
7c731e0a 4500static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4501
82a1fcb9 4502void sched_show_task(struct task_struct *p)
1da177e4 4503{
1da177e4 4504 unsigned long free = 0;
4e79752c 4505 int ppid;
36c8b586 4506 unsigned state;
1da177e4 4507
1da177e4 4508 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 4509 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4510 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4511#if BITS_PER_LONG == 32
1da177e4 4512 if (state == TASK_RUNNING)
3df0fc5b 4513 printk(KERN_CONT " running ");
1da177e4 4514 else
3df0fc5b 4515 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4516#else
4517 if (state == TASK_RUNNING)
3df0fc5b 4518 printk(KERN_CONT " running task ");
1da177e4 4519 else
3df0fc5b 4520 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4521#endif
4522#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4523 free = stack_not_used(p);
1da177e4 4524#endif
4e79752c
PM
4525 rcu_read_lock();
4526 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4527 rcu_read_unlock();
3df0fc5b 4528 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 4529 task_pid_nr(p), ppid,
aa47b7e0 4530 (unsigned long)task_thread_info(p)->flags);
1da177e4 4531
3d1cb205 4532 print_worker_info(KERN_INFO, p);
5fb5e6de 4533 show_stack(p, NULL);
1da177e4
LT
4534}
4535
e59e2ae2 4536void show_state_filter(unsigned long state_filter)
1da177e4 4537{
36c8b586 4538 struct task_struct *g, *p;
1da177e4 4539
4bd77321 4540#if BITS_PER_LONG == 32
3df0fc5b
PZ
4541 printk(KERN_INFO
4542 " task PC stack pid father\n");
1da177e4 4543#else
3df0fc5b
PZ
4544 printk(KERN_INFO
4545 " task PC stack pid father\n");
1da177e4 4546#endif
510f5acc 4547 rcu_read_lock();
5d07f420 4548 for_each_process_thread(g, p) {
1da177e4
LT
4549 /*
4550 * reset the NMI-timeout, listing all files on a slow
25985edc 4551 * console might take a lot of time:
1da177e4
LT
4552 */
4553 touch_nmi_watchdog();
39bc89fd 4554 if (!state_filter || (p->state & state_filter))
82a1fcb9 4555 sched_show_task(p);
5d07f420 4556 }
1da177e4 4557
04c9167f
JF
4558 touch_all_softlockup_watchdogs();
4559
dd41f596
IM
4560#ifdef CONFIG_SCHED_DEBUG
4561 sysrq_sched_debug_show();
4562#endif
510f5acc 4563 rcu_read_unlock();
e59e2ae2
IM
4564 /*
4565 * Only show locks if all tasks are dumped:
4566 */
93335a21 4567 if (!state_filter)
e59e2ae2 4568 debug_show_all_locks();
1da177e4
LT
4569}
4570
0db0628d 4571void init_idle_bootup_task(struct task_struct *idle)
1df21055 4572{
dd41f596 4573 idle->sched_class = &idle_sched_class;
1df21055
IM
4574}
4575
f340c0d1
IM
4576/**
4577 * init_idle - set up an idle thread for a given CPU
4578 * @idle: task in question
4579 * @cpu: cpu the idle task belongs to
4580 *
4581 * NOTE: this function does not set the idle thread's NEED_RESCHED
4582 * flag, to make booting more robust.
4583 */
0db0628d 4584void init_idle(struct task_struct *idle, int cpu)
1da177e4 4585{
70b97a7f 4586 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4587 unsigned long flags;
4588
05fa785c 4589 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 4590
5e1576ed 4591 __sched_fork(0, idle);
06b83b5f 4592 idle->state = TASK_RUNNING;
dd41f596
IM
4593 idle->se.exec_start = sched_clock();
4594
1e1b6c51 4595 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4596 /*
4597 * We're having a chicken and egg problem, even though we are
4598 * holding rq->lock, the cpu isn't yet set to this cpu so the
4599 * lockdep check in task_group() will fail.
4600 *
4601 * Similar case to sched_fork(). / Alternatively we could
4602 * use task_rq_lock() here and obtain the other rq->lock.
4603 *
4604 * Silence PROVE_RCU
4605 */
4606 rcu_read_lock();
dd41f596 4607 __set_task_cpu(idle, cpu);
6506cf6c 4608 rcu_read_unlock();
1da177e4 4609
1da177e4 4610 rq->curr = rq->idle = idle;
da0c1e65 4611 idle->on_rq = TASK_ON_RQ_QUEUED;
3ca7a440
PZ
4612#if defined(CONFIG_SMP)
4613 idle->on_cpu = 1;
4866cde0 4614#endif
05fa785c 4615 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
4616
4617 /* Set the preempt count _outside_ the spinlocks! */
01028747 4618 init_idle_preempt_count(idle, cpu);
55cd5340 4619
dd41f596
IM
4620 /*
4621 * The idle tasks have their own, simple scheduling class:
4622 */
4623 idle->sched_class = &idle_sched_class;
868baf07 4624 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 4625 vtime_init_idle(idle, cpu);
f1c6f1a7
CE
4626#if defined(CONFIG_SMP)
4627 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4628#endif
19978ca6
IM
4629}
4630
1da177e4 4631#ifdef CONFIG_SMP
a15b12ac
KT
4632/*
4633 * move_queued_task - move a queued task to new rq.
4634 *
4635 * Returns (locked) new rq. Old rq's lock is released.
4636 */
4637static struct rq *move_queued_task(struct task_struct *p, int new_cpu)
4638{
4639 struct rq *rq = task_rq(p);
4640
4641 lockdep_assert_held(&rq->lock);
4642
4643 dequeue_task(rq, p, 0);
4644 p->on_rq = TASK_ON_RQ_MIGRATING;
4645 set_task_cpu(p, new_cpu);
4646 raw_spin_unlock(&rq->lock);
4647
4648 rq = cpu_rq(new_cpu);
4649
4650 raw_spin_lock(&rq->lock);
4651 BUG_ON(task_cpu(p) != new_cpu);
4652 p->on_rq = TASK_ON_RQ_QUEUED;
4653 enqueue_task(rq, p, 0);
4654 check_preempt_curr(rq, p, 0);
4655
4656 return rq;
4657}
4658
1e1b6c51
KM
4659void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4660{
4661 if (p->sched_class && p->sched_class->set_cpus_allowed)
4662 p->sched_class->set_cpus_allowed(p, new_mask);
4939602a
PZ
4663
4664 cpumask_copy(&p->cpus_allowed, new_mask);
29baa747 4665 p->nr_cpus_allowed = cpumask_weight(new_mask);
1e1b6c51
KM
4666}
4667
1da177e4
LT
4668/*
4669 * This is how migration works:
4670 *
969c7921
TH
4671 * 1) we invoke migration_cpu_stop() on the target CPU using
4672 * stop_one_cpu().
4673 * 2) stopper starts to run (implicitly forcing the migrated thread
4674 * off the CPU)
4675 * 3) it checks whether the migrated task is still in the wrong runqueue.
4676 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 4677 * it and puts it into the right queue.
969c7921
TH
4678 * 5) stopper completes and stop_one_cpu() returns and the migration
4679 * is done.
1da177e4
LT
4680 */
4681
4682/*
4683 * Change a given task's CPU affinity. Migrate the thread to a
4684 * proper CPU and schedule it away if the CPU it's executing on
4685 * is removed from the allowed bitmask.
4686 *
4687 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 4688 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
4689 * call is not atomic; no spinlocks may be held.
4690 */
96f874e2 4691int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
4692{
4693 unsigned long flags;
70b97a7f 4694 struct rq *rq;
969c7921 4695 unsigned int dest_cpu;
48f24c4d 4696 int ret = 0;
1da177e4
LT
4697
4698 rq = task_rq_lock(p, &flags);
e2912009 4699
db44fc01
YZ
4700 if (cpumask_equal(&p->cpus_allowed, new_mask))
4701 goto out;
4702
6ad4c188 4703 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
4704 ret = -EINVAL;
4705 goto out;
4706 }
4707
1e1b6c51 4708 do_set_cpus_allowed(p, new_mask);
73fe6aae 4709
1da177e4 4710 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 4711 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
4712 goto out;
4713
969c7921 4714 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
a15b12ac 4715 if (task_running(rq, p) || p->state == TASK_WAKING) {
969c7921 4716 struct migration_arg arg = { p, dest_cpu };
1da177e4 4717 /* Need help from migration thread: drop lock and wait. */
0122ec5b 4718 task_rq_unlock(rq, p, &flags);
969c7921 4719 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
4720 tlb_migrate_finish(p->mm);
4721 return 0;
a15b12ac
KT
4722 } else if (task_on_rq_queued(p))
4723 rq = move_queued_task(p, dest_cpu);
1da177e4 4724out:
0122ec5b 4725 task_rq_unlock(rq, p, &flags);
48f24c4d 4726
1da177e4
LT
4727 return ret;
4728}
cd8ba7cd 4729EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
4730
4731/*
41a2d6cf 4732 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
4733 * this because either it can't run here any more (set_cpus_allowed()
4734 * away from this CPU, or CPU going down), or because we're
4735 * attempting to rebalance this task on exec (sched_exec).
4736 *
4737 * So we race with normal scheduler movements, but that's OK, as long
4738 * as the task is no longer on this CPU.
efc30814
KK
4739 *
4740 * Returns non-zero if task was successfully migrated.
1da177e4 4741 */
efc30814 4742static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4743{
a1e01829 4744 struct rq *rq;
e2912009 4745 int ret = 0;
1da177e4 4746
e761b772 4747 if (unlikely(!cpu_active(dest_cpu)))
efc30814 4748 return ret;
1da177e4 4749
a1e01829 4750 rq = cpu_rq(src_cpu);
1da177e4 4751
0122ec5b 4752 raw_spin_lock(&p->pi_lock);
a1e01829 4753 raw_spin_lock(&rq->lock);
1da177e4
LT
4754 /* Already moved. */
4755 if (task_cpu(p) != src_cpu)
b1e38734 4756 goto done;
a1e01829 4757
1da177e4 4758 /* Affinity changed (again). */
fa17b507 4759 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
b1e38734 4760 goto fail;
1da177e4 4761
e2912009
PZ
4762 /*
4763 * If we're not on a rq, the next wake-up will ensure we're
4764 * placed properly.
4765 */
a15b12ac
KT
4766 if (task_on_rq_queued(p))
4767 rq = move_queued_task(p, dest_cpu);
b1e38734 4768done:
efc30814 4769 ret = 1;
b1e38734 4770fail:
a1e01829 4771 raw_spin_unlock(&rq->lock);
0122ec5b 4772 raw_spin_unlock(&p->pi_lock);
efc30814 4773 return ret;
1da177e4
LT
4774}
4775
e6628d5b
MG
4776#ifdef CONFIG_NUMA_BALANCING
4777/* Migrate current task p to target_cpu */
4778int migrate_task_to(struct task_struct *p, int target_cpu)
4779{
4780 struct migration_arg arg = { p, target_cpu };
4781 int curr_cpu = task_cpu(p);
4782
4783 if (curr_cpu == target_cpu)
4784 return 0;
4785
4786 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4787 return -EINVAL;
4788
4789 /* TODO: This is not properly updating schedstats */
4790
286549dc 4791 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
4792 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4793}
0ec8aa00
PZ
4794
4795/*
4796 * Requeue a task on a given node and accurately track the number of NUMA
4797 * tasks on the runqueues
4798 */
4799void sched_setnuma(struct task_struct *p, int nid)
4800{
4801 struct rq *rq;
4802 unsigned long flags;
da0c1e65 4803 bool queued, running;
0ec8aa00
PZ
4804
4805 rq = task_rq_lock(p, &flags);
da0c1e65 4806 queued = task_on_rq_queued(p);
0ec8aa00
PZ
4807 running = task_current(rq, p);
4808
da0c1e65 4809 if (queued)
0ec8aa00
PZ
4810 dequeue_task(rq, p, 0);
4811 if (running)
f3cd1c4e 4812 put_prev_task(rq, p);
0ec8aa00
PZ
4813
4814 p->numa_preferred_nid = nid;
0ec8aa00
PZ
4815
4816 if (running)
4817 p->sched_class->set_curr_task(rq);
da0c1e65 4818 if (queued)
0ec8aa00
PZ
4819 enqueue_task(rq, p, 0);
4820 task_rq_unlock(rq, p, &flags);
4821}
e6628d5b
MG
4822#endif
4823
1da177e4 4824/*
969c7921
TH
4825 * migration_cpu_stop - this will be executed by a highprio stopper thread
4826 * and performs thread migration by bumping thread off CPU then
4827 * 'pushing' onto another runqueue.
1da177e4 4828 */
969c7921 4829static int migration_cpu_stop(void *data)
1da177e4 4830{
969c7921 4831 struct migration_arg *arg = data;
f7b4cddc 4832
969c7921
TH
4833 /*
4834 * The original target cpu might have gone down and we might
4835 * be on another cpu but it doesn't matter.
4836 */
f7b4cddc 4837 local_irq_disable();
5cd038f5
LJ
4838 /*
4839 * We need to explicitly wake pending tasks before running
4840 * __migrate_task() such that we will not miss enforcing cpus_allowed
4841 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
4842 */
4843 sched_ttwu_pending();
969c7921 4844 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 4845 local_irq_enable();
1da177e4 4846 return 0;
f7b4cddc
ON
4847}
4848
1da177e4 4849#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 4850
054b9108 4851/*
48c5ccae
PZ
4852 * Ensures that the idle task is using init_mm right before its cpu goes
4853 * offline.
054b9108 4854 */
48c5ccae 4855void idle_task_exit(void)
1da177e4 4856{
48c5ccae 4857 struct mm_struct *mm = current->active_mm;
e76bd8d9 4858
48c5ccae 4859 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 4860
a53efe5f 4861 if (mm != &init_mm) {
48c5ccae 4862 switch_mm(mm, &init_mm, current);
a53efe5f
MS
4863 finish_arch_post_lock_switch();
4864 }
48c5ccae 4865 mmdrop(mm);
1da177e4
LT
4866}
4867
4868/*
5d180232
PZ
4869 * Since this CPU is going 'away' for a while, fold any nr_active delta
4870 * we might have. Assumes we're called after migrate_tasks() so that the
4871 * nr_active count is stable.
4872 *
4873 * Also see the comment "Global load-average calculations".
1da177e4 4874 */
5d180232 4875static void calc_load_migrate(struct rq *rq)
1da177e4 4876{
5d180232
PZ
4877 long delta = calc_load_fold_active(rq);
4878 if (delta)
4879 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
4880}
4881
3f1d2a31
PZ
4882static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4883{
4884}
4885
4886static const struct sched_class fake_sched_class = {
4887 .put_prev_task = put_prev_task_fake,
4888};
4889
4890static struct task_struct fake_task = {
4891 /*
4892 * Avoid pull_{rt,dl}_task()
4893 */
4894 .prio = MAX_PRIO + 1,
4895 .sched_class = &fake_sched_class,
4896};
4897
48f24c4d 4898/*
48c5ccae
PZ
4899 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4900 * try_to_wake_up()->select_task_rq().
4901 *
4902 * Called with rq->lock held even though we'er in stop_machine() and
4903 * there's no concurrency possible, we hold the required locks anyway
4904 * because of lock validation efforts.
1da177e4 4905 */
48c5ccae 4906static void migrate_tasks(unsigned int dead_cpu)
1da177e4 4907{
70b97a7f 4908 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
4909 struct task_struct *next, *stop = rq->stop;
4910 int dest_cpu;
1da177e4
LT
4911
4912 /*
48c5ccae
PZ
4913 * Fudge the rq selection such that the below task selection loop
4914 * doesn't get stuck on the currently eligible stop task.
4915 *
4916 * We're currently inside stop_machine() and the rq is either stuck
4917 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4918 * either way we should never end up calling schedule() until we're
4919 * done here.
1da177e4 4920 */
48c5ccae 4921 rq->stop = NULL;
48f24c4d 4922
77bd3970
FW
4923 /*
4924 * put_prev_task() and pick_next_task() sched
4925 * class method both need to have an up-to-date
4926 * value of rq->clock[_task]
4927 */
4928 update_rq_clock(rq);
4929
dd41f596 4930 for ( ; ; ) {
48c5ccae
PZ
4931 /*
4932 * There's this thread running, bail when that's the only
4933 * remaining thread.
4934 */
4935 if (rq->nr_running == 1)
dd41f596 4936 break;
48c5ccae 4937
3f1d2a31 4938 next = pick_next_task(rq, &fake_task);
48c5ccae 4939 BUG_ON(!next);
79c53799 4940 next->sched_class->put_prev_task(rq, next);
e692ab53 4941
48c5ccae
PZ
4942 /* Find suitable destination for @next, with force if needed. */
4943 dest_cpu = select_fallback_rq(dead_cpu, next);
4944 raw_spin_unlock(&rq->lock);
4945
4946 __migrate_task(next, dead_cpu, dest_cpu);
4947
4948 raw_spin_lock(&rq->lock);
1da177e4 4949 }
dce48a84 4950
48c5ccae 4951 rq->stop = stop;
dce48a84 4952}
48c5ccae 4953
1da177e4
LT
4954#endif /* CONFIG_HOTPLUG_CPU */
4955
e692ab53
NP
4956#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4957
4958static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
4959 {
4960 .procname = "sched_domain",
c57baf1e 4961 .mode = 0555,
e0361851 4962 },
56992309 4963 {}
e692ab53
NP
4964};
4965
4966static struct ctl_table sd_ctl_root[] = {
e0361851
AD
4967 {
4968 .procname = "kernel",
c57baf1e 4969 .mode = 0555,
e0361851
AD
4970 .child = sd_ctl_dir,
4971 },
56992309 4972 {}
e692ab53
NP
4973};
4974
4975static struct ctl_table *sd_alloc_ctl_entry(int n)
4976{
4977 struct ctl_table *entry =
5cf9f062 4978 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 4979
e692ab53
NP
4980 return entry;
4981}
4982
6382bc90
MM
4983static void sd_free_ctl_entry(struct ctl_table **tablep)
4984{
cd790076 4985 struct ctl_table *entry;
6382bc90 4986
cd790076
MM
4987 /*
4988 * In the intermediate directories, both the child directory and
4989 * procname are dynamically allocated and could fail but the mode
41a2d6cf 4990 * will always be set. In the lowest directory the names are
cd790076
MM
4991 * static strings and all have proc handlers.
4992 */
4993 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
4994 if (entry->child)
4995 sd_free_ctl_entry(&entry->child);
cd790076
MM
4996 if (entry->proc_handler == NULL)
4997 kfree(entry->procname);
4998 }
6382bc90
MM
4999
5000 kfree(*tablep);
5001 *tablep = NULL;
5002}
5003
201c373e 5004static int min_load_idx = 0;
fd9b86d3 5005static int max_load_idx = CPU_LOAD_IDX_MAX-1;
201c373e 5006
e692ab53 5007static void
e0361851 5008set_table_entry(struct ctl_table *entry,
e692ab53 5009 const char *procname, void *data, int maxlen,
201c373e
NK
5010 umode_t mode, proc_handler *proc_handler,
5011 bool load_idx)
e692ab53 5012{
e692ab53
NP
5013 entry->procname = procname;
5014 entry->data = data;
5015 entry->maxlen = maxlen;
5016 entry->mode = mode;
5017 entry->proc_handler = proc_handler;
201c373e
NK
5018
5019 if (load_idx) {
5020 entry->extra1 = &min_load_idx;
5021 entry->extra2 = &max_load_idx;
5022 }
e692ab53
NP
5023}
5024
5025static struct ctl_table *
5026sd_alloc_ctl_domain_table(struct sched_domain *sd)
5027{
37e6bae8 5028 struct ctl_table *table = sd_alloc_ctl_entry(14);
e692ab53 5029
ad1cdc1d
MM
5030 if (table == NULL)
5031 return NULL;
5032
e0361851 5033 set_table_entry(&table[0], "min_interval", &sd->min_interval,
201c373e 5034 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 5035 set_table_entry(&table[1], "max_interval", &sd->max_interval,
201c373e 5036 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 5037 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
201c373e 5038 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5039 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
201c373e 5040 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5041 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
201c373e 5042 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5043 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
201c373e 5044 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5045 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
201c373e 5046 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5047 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
201c373e 5048 sizeof(int), 0644, proc_dointvec_minmax, false);
e0361851 5049 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
201c373e 5050 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 5051 set_table_entry(&table[9], "cache_nice_tries",
e692ab53 5052 &sd->cache_nice_tries,
201c373e 5053 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 5054 set_table_entry(&table[10], "flags", &sd->flags,
201c373e 5055 sizeof(int), 0644, proc_dointvec_minmax, false);
37e6bae8
AS
5056 set_table_entry(&table[11], "max_newidle_lb_cost",
5057 &sd->max_newidle_lb_cost,
5058 sizeof(long), 0644, proc_doulongvec_minmax, false);
5059 set_table_entry(&table[12], "name", sd->name,
201c373e 5060 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
37e6bae8 5061 /* &table[13] is terminator */
e692ab53
NP
5062
5063 return table;
5064}
5065
be7002e6 5066static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5067{
5068 struct ctl_table *entry, *table;
5069 struct sched_domain *sd;
5070 int domain_num = 0, i;
5071 char buf[32];
5072
5073 for_each_domain(cpu, sd)
5074 domain_num++;
5075 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5076 if (table == NULL)
5077 return NULL;
e692ab53
NP
5078
5079 i = 0;
5080 for_each_domain(cpu, sd) {
5081 snprintf(buf, 32, "domain%d", i);
e692ab53 5082 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5083 entry->mode = 0555;
e692ab53
NP
5084 entry->child = sd_alloc_ctl_domain_table(sd);
5085 entry++;
5086 i++;
5087 }
5088 return table;
5089}
5090
5091static struct ctl_table_header *sd_sysctl_header;
6382bc90 5092static void register_sched_domain_sysctl(void)
e692ab53 5093{
6ad4c188 5094 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5095 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5096 char buf[32];
5097
7378547f
MM
5098 WARN_ON(sd_ctl_dir[0].child);
5099 sd_ctl_dir[0].child = entry;
5100
ad1cdc1d
MM
5101 if (entry == NULL)
5102 return;
5103
6ad4c188 5104 for_each_possible_cpu(i) {
e692ab53 5105 snprintf(buf, 32, "cpu%d", i);
e692ab53 5106 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5107 entry->mode = 0555;
e692ab53 5108 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5109 entry++;
e692ab53 5110 }
7378547f
MM
5111
5112 WARN_ON(sd_sysctl_header);
e692ab53
NP
5113 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5114}
6382bc90 5115
7378547f 5116/* may be called multiple times per register */
6382bc90
MM
5117static void unregister_sched_domain_sysctl(void)
5118{
7378547f
MM
5119 if (sd_sysctl_header)
5120 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5121 sd_sysctl_header = NULL;
7378547f
MM
5122 if (sd_ctl_dir[0].child)
5123 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5124}
e692ab53 5125#else
6382bc90
MM
5126static void register_sched_domain_sysctl(void)
5127{
5128}
5129static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5130{
5131}
5132#endif
5133
1f11eb6a
GH
5134static void set_rq_online(struct rq *rq)
5135{
5136 if (!rq->online) {
5137 const struct sched_class *class;
5138
c6c4927b 5139 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5140 rq->online = 1;
5141
5142 for_each_class(class) {
5143 if (class->rq_online)
5144 class->rq_online(rq);
5145 }
5146 }
5147}
5148
5149static void set_rq_offline(struct rq *rq)
5150{
5151 if (rq->online) {
5152 const struct sched_class *class;
5153
5154 for_each_class(class) {
5155 if (class->rq_offline)
5156 class->rq_offline(rq);
5157 }
5158
c6c4927b 5159 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5160 rq->online = 0;
5161 }
5162}
5163
1da177e4
LT
5164/*
5165 * migration_call - callback that gets triggered when a CPU is added.
5166 * Here we can start up the necessary migration thread for the new CPU.
5167 */
0db0628d 5168static int
48f24c4d 5169migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5170{
48f24c4d 5171 int cpu = (long)hcpu;
1da177e4 5172 unsigned long flags;
969c7921 5173 struct rq *rq = cpu_rq(cpu);
1da177e4 5174
48c5ccae 5175 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 5176
1da177e4 5177 case CPU_UP_PREPARE:
a468d389 5178 rq->calc_load_update = calc_load_update;
1da177e4 5179 break;
48f24c4d 5180
1da177e4 5181 case CPU_ONLINE:
1f94ef59 5182 /* Update our root-domain */
05fa785c 5183 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5184 if (rq->rd) {
c6c4927b 5185 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5186
5187 set_rq_online(rq);
1f94ef59 5188 }
05fa785c 5189 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5190 break;
48f24c4d 5191
1da177e4 5192#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5193 case CPU_DYING:
317f3941 5194 sched_ttwu_pending();
57d885fe 5195 /* Update our root-domain */
05fa785c 5196 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5197 if (rq->rd) {
c6c4927b 5198 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5199 set_rq_offline(rq);
57d885fe 5200 }
48c5ccae
PZ
5201 migrate_tasks(cpu);
5202 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5203 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 5204 break;
48c5ccae 5205
5d180232 5206 case CPU_DEAD:
f319da0c 5207 calc_load_migrate(rq);
57d885fe 5208 break;
1da177e4
LT
5209#endif
5210 }
49c022e6
PZ
5211
5212 update_max_interval();
5213
1da177e4
LT
5214 return NOTIFY_OK;
5215}
5216
f38b0820
PM
5217/*
5218 * Register at high priority so that task migration (migrate_all_tasks)
5219 * happens before everything else. This has to be lower priority than
cdd6c482 5220 * the notifier in the perf_event subsystem, though.
1da177e4 5221 */
0db0628d 5222static struct notifier_block migration_notifier = {
1da177e4 5223 .notifier_call = migration_call,
50a323b7 5224 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5225};
5226
a803f026
CM
5227static void __cpuinit set_cpu_rq_start_time(void)
5228{
5229 int cpu = smp_processor_id();
5230 struct rq *rq = cpu_rq(cpu);
5231 rq->age_stamp = sched_clock_cpu(cpu);
5232}
5233
0db0628d 5234static int sched_cpu_active(struct notifier_block *nfb,
3a101d05
TH
5235 unsigned long action, void *hcpu)
5236{
5237 switch (action & ~CPU_TASKS_FROZEN) {
a803f026
CM
5238 case CPU_STARTING:
5239 set_cpu_rq_start_time();
5240 return NOTIFY_OK;
3a101d05
TH
5241 case CPU_DOWN_FAILED:
5242 set_cpu_active((long)hcpu, true);
5243 return NOTIFY_OK;
5244 default:
5245 return NOTIFY_DONE;
5246 }
5247}
5248
0db0628d 5249static int sched_cpu_inactive(struct notifier_block *nfb,
3a101d05
TH
5250 unsigned long action, void *hcpu)
5251{
de212f18
PZ
5252 unsigned long flags;
5253 long cpu = (long)hcpu;
5254
3a101d05
TH
5255 switch (action & ~CPU_TASKS_FROZEN) {
5256 case CPU_DOWN_PREPARE:
de212f18
PZ
5257 set_cpu_active(cpu, false);
5258
5259 /* explicitly allow suspend */
5260 if (!(action & CPU_TASKS_FROZEN)) {
5261 struct dl_bw *dl_b = dl_bw_of(cpu);
5262 bool overflow;
5263 int cpus;
5264
5265 raw_spin_lock_irqsave(&dl_b->lock, flags);
5266 cpus = dl_bw_cpus(cpu);
5267 overflow = __dl_overflow(dl_b, cpus, 0, 0);
5268 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5269
5270 if (overflow)
5271 return notifier_from_errno(-EBUSY);
5272 }
3a101d05 5273 return NOTIFY_OK;
3a101d05 5274 }
de212f18
PZ
5275
5276 return NOTIFY_DONE;
3a101d05
TH
5277}
5278
7babe8db 5279static int __init migration_init(void)
1da177e4
LT
5280{
5281 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5282 int err;
48f24c4d 5283
3a101d05 5284 /* Initialize migration for the boot CPU */
07dccf33
AM
5285 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5286 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5287 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5288 register_cpu_notifier(&migration_notifier);
7babe8db 5289
3a101d05
TH
5290 /* Register cpu active notifiers */
5291 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5292 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5293
a004cd42 5294 return 0;
1da177e4 5295}
7babe8db 5296early_initcall(migration_init);
1da177e4
LT
5297#endif
5298
5299#ifdef CONFIG_SMP
476f3534 5300
4cb98839
PZ
5301static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5302
3e9830dc 5303#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5304
d039ac60 5305static __read_mostly int sched_debug_enabled;
f6630114 5306
d039ac60 5307static int __init sched_debug_setup(char *str)
f6630114 5308{
d039ac60 5309 sched_debug_enabled = 1;
f6630114
MT
5310
5311 return 0;
5312}
d039ac60
PZ
5313early_param("sched_debug", sched_debug_setup);
5314
5315static inline bool sched_debug(void)
5316{
5317 return sched_debug_enabled;
5318}
f6630114 5319
7c16ec58 5320static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5321 struct cpumask *groupmask)
1da177e4 5322{
4dcf6aff 5323 struct sched_group *group = sd->groups;
434d53b0 5324 char str[256];
1da177e4 5325
968ea6d8 5326 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 5327 cpumask_clear(groupmask);
4dcf6aff
IM
5328
5329 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5330
5331 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5332 printk("does not load-balance\n");
4dcf6aff 5333 if (sd->parent)
3df0fc5b
PZ
5334 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5335 " has parent");
4dcf6aff 5336 return -1;
41c7ce9a
NP
5337 }
5338
3df0fc5b 5339 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 5340
758b2cdc 5341 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5342 printk(KERN_ERR "ERROR: domain->span does not contain "
5343 "CPU%d\n", cpu);
4dcf6aff 5344 }
758b2cdc 5345 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5346 printk(KERN_ERR "ERROR: domain->groups does not contain"
5347 " CPU%d\n", cpu);
4dcf6aff 5348 }
1da177e4 5349
4dcf6aff 5350 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5351 do {
4dcf6aff 5352 if (!group) {
3df0fc5b
PZ
5353 printk("\n");
5354 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5355 break;
5356 }
5357
c3decf0d 5358 /*
63b2ca30
NP
5359 * Even though we initialize ->capacity to something semi-sane,
5360 * we leave capacity_orig unset. This allows us to detect if
c3decf0d
PZ
5361 * domain iteration is still funny without causing /0 traps.
5362 */
63b2ca30 5363 if (!group->sgc->capacity_orig) {
3df0fc5b 5364 printk(KERN_CONT "\n");
63b2ca30 5365 printk(KERN_ERR "ERROR: domain->cpu_capacity not set\n");
4dcf6aff
IM
5366 break;
5367 }
1da177e4 5368
758b2cdc 5369 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5370 printk(KERN_CONT "\n");
5371 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5372 break;
5373 }
1da177e4 5374
cb83b629
PZ
5375 if (!(sd->flags & SD_OVERLAP) &&
5376 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5377 printk(KERN_CONT "\n");
5378 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5379 break;
5380 }
1da177e4 5381
758b2cdc 5382 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5383
968ea6d8 5384 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 5385
3df0fc5b 5386 printk(KERN_CONT " %s", str);
ca8ce3d0 5387 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
63b2ca30
NP
5388 printk(KERN_CONT " (cpu_capacity = %d)",
5389 group->sgc->capacity);
381512cf 5390 }
1da177e4 5391
4dcf6aff
IM
5392 group = group->next;
5393 } while (group != sd->groups);
3df0fc5b 5394 printk(KERN_CONT "\n");
1da177e4 5395
758b2cdc 5396 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5397 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5398
758b2cdc
RR
5399 if (sd->parent &&
5400 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5401 printk(KERN_ERR "ERROR: parent span is not a superset "
5402 "of domain->span\n");
4dcf6aff
IM
5403 return 0;
5404}
1da177e4 5405
4dcf6aff
IM
5406static void sched_domain_debug(struct sched_domain *sd, int cpu)
5407{
5408 int level = 0;
1da177e4 5409
d039ac60 5410 if (!sched_debug_enabled)
f6630114
MT
5411 return;
5412
4dcf6aff
IM
5413 if (!sd) {
5414 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5415 return;
5416 }
1da177e4 5417
4dcf6aff
IM
5418 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5419
5420 for (;;) {
4cb98839 5421 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5422 break;
1da177e4
LT
5423 level++;
5424 sd = sd->parent;
33859f7f 5425 if (!sd)
4dcf6aff
IM
5426 break;
5427 }
1da177e4 5428}
6d6bc0ad 5429#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5430# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5431static inline bool sched_debug(void)
5432{
5433 return false;
5434}
6d6bc0ad 5435#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5436
1a20ff27 5437static int sd_degenerate(struct sched_domain *sd)
245af2c7 5438{
758b2cdc 5439 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5440 return 1;
5441
5442 /* Following flags need at least 2 groups */
5443 if (sd->flags & (SD_LOAD_BALANCE |
5444 SD_BALANCE_NEWIDLE |
5445 SD_BALANCE_FORK |
89c4710e 5446 SD_BALANCE_EXEC |
5d4dfddd 5447 SD_SHARE_CPUCAPACITY |
d77b3ed5
VG
5448 SD_SHARE_PKG_RESOURCES |
5449 SD_SHARE_POWERDOMAIN)) {
245af2c7
SS
5450 if (sd->groups != sd->groups->next)
5451 return 0;
5452 }
5453
5454 /* Following flags don't use groups */
c88d5910 5455 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5456 return 0;
5457
5458 return 1;
5459}
5460
48f24c4d
IM
5461static int
5462sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5463{
5464 unsigned long cflags = sd->flags, pflags = parent->flags;
5465
5466 if (sd_degenerate(parent))
5467 return 1;
5468
758b2cdc 5469 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5470 return 0;
5471
245af2c7
SS
5472 /* Flags needing groups don't count if only 1 group in parent */
5473 if (parent->groups == parent->groups->next) {
5474 pflags &= ~(SD_LOAD_BALANCE |
5475 SD_BALANCE_NEWIDLE |
5476 SD_BALANCE_FORK |
89c4710e 5477 SD_BALANCE_EXEC |
5d4dfddd 5478 SD_SHARE_CPUCAPACITY |
10866e62 5479 SD_SHARE_PKG_RESOURCES |
d77b3ed5
VG
5480 SD_PREFER_SIBLING |
5481 SD_SHARE_POWERDOMAIN);
5436499e
KC
5482 if (nr_node_ids == 1)
5483 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5484 }
5485 if (~cflags & pflags)
5486 return 0;
5487
5488 return 1;
5489}
5490
dce840a0 5491static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5492{
dce840a0 5493 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5494
68e74568 5495 cpupri_cleanup(&rd->cpupri);
6bfd6d72 5496 cpudl_cleanup(&rd->cpudl);
1baca4ce 5497 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5498 free_cpumask_var(rd->rto_mask);
5499 free_cpumask_var(rd->online);
5500 free_cpumask_var(rd->span);
5501 kfree(rd);
5502}
5503
57d885fe
GH
5504static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5505{
a0490fa3 5506 struct root_domain *old_rd = NULL;
57d885fe 5507 unsigned long flags;
57d885fe 5508
05fa785c 5509 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5510
5511 if (rq->rd) {
a0490fa3 5512 old_rd = rq->rd;
57d885fe 5513
c6c4927b 5514 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5515 set_rq_offline(rq);
57d885fe 5516
c6c4927b 5517 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5518
a0490fa3 5519 /*
0515973f 5520 * If we dont want to free the old_rd yet then
a0490fa3
IM
5521 * set old_rd to NULL to skip the freeing later
5522 * in this function:
5523 */
5524 if (!atomic_dec_and_test(&old_rd->refcount))
5525 old_rd = NULL;
57d885fe
GH
5526 }
5527
5528 atomic_inc(&rd->refcount);
5529 rq->rd = rd;
5530
c6c4927b 5531 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5532 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5533 set_rq_online(rq);
57d885fe 5534
05fa785c 5535 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5536
5537 if (old_rd)
dce840a0 5538 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5539}
5540
68c38fc3 5541static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5542{
5543 memset(rd, 0, sizeof(*rd));
5544
68c38fc3 5545 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5546 goto out;
68c38fc3 5547 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5548 goto free_span;
1baca4ce 5549 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
c6c4927b 5550 goto free_online;
1baca4ce
JL
5551 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5552 goto free_dlo_mask;
6e0534f2 5553
332ac17e 5554 init_dl_bw(&rd->dl_bw);
6bfd6d72
JL
5555 if (cpudl_init(&rd->cpudl) != 0)
5556 goto free_dlo_mask;
332ac17e 5557
68c38fc3 5558 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5559 goto free_rto_mask;
c6c4927b 5560 return 0;
6e0534f2 5561
68e74568
RR
5562free_rto_mask:
5563 free_cpumask_var(rd->rto_mask);
1baca4ce
JL
5564free_dlo_mask:
5565 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5566free_online:
5567 free_cpumask_var(rd->online);
5568free_span:
5569 free_cpumask_var(rd->span);
0c910d28 5570out:
c6c4927b 5571 return -ENOMEM;
57d885fe
GH
5572}
5573
029632fb
PZ
5574/*
5575 * By default the system creates a single root-domain with all cpus as
5576 * members (mimicking the global state we have today).
5577 */
5578struct root_domain def_root_domain;
5579
57d885fe
GH
5580static void init_defrootdomain(void)
5581{
68c38fc3 5582 init_rootdomain(&def_root_domain);
c6c4927b 5583
57d885fe
GH
5584 atomic_set(&def_root_domain.refcount, 1);
5585}
5586
dc938520 5587static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5588{
5589 struct root_domain *rd;
5590
5591 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5592 if (!rd)
5593 return NULL;
5594
68c38fc3 5595 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5596 kfree(rd);
5597 return NULL;
5598 }
57d885fe
GH
5599
5600 return rd;
5601}
5602
63b2ca30 5603static void free_sched_groups(struct sched_group *sg, int free_sgc)
e3589f6c
PZ
5604{
5605 struct sched_group *tmp, *first;
5606
5607 if (!sg)
5608 return;
5609
5610 first = sg;
5611 do {
5612 tmp = sg->next;
5613
63b2ca30
NP
5614 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5615 kfree(sg->sgc);
e3589f6c
PZ
5616
5617 kfree(sg);
5618 sg = tmp;
5619 } while (sg != first);
5620}
5621
dce840a0
PZ
5622static void free_sched_domain(struct rcu_head *rcu)
5623{
5624 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5625
5626 /*
5627 * If its an overlapping domain it has private groups, iterate and
5628 * nuke them all.
5629 */
5630 if (sd->flags & SD_OVERLAP) {
5631 free_sched_groups(sd->groups, 1);
5632 } else if (atomic_dec_and_test(&sd->groups->ref)) {
63b2ca30 5633 kfree(sd->groups->sgc);
dce840a0 5634 kfree(sd->groups);
9c3f75cb 5635 }
dce840a0
PZ
5636 kfree(sd);
5637}
5638
5639static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5640{
5641 call_rcu(&sd->rcu, free_sched_domain);
5642}
5643
5644static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5645{
5646 for (; sd; sd = sd->parent)
5647 destroy_sched_domain(sd, cpu);
5648}
5649
518cd623
PZ
5650/*
5651 * Keep a special pointer to the highest sched_domain that has
5652 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5653 * allows us to avoid some pointer chasing select_idle_sibling().
5654 *
5655 * Also keep a unique ID per domain (we use the first cpu number in
5656 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5657 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5658 */
5659DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5660DEFINE_PER_CPU(int, sd_llc_size);
518cd623 5661DEFINE_PER_CPU(int, sd_llc_id);
fb13c7ee 5662DEFINE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
5663DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5664DEFINE_PER_CPU(struct sched_domain *, sd_asym);
518cd623
PZ
5665
5666static void update_top_cache_domain(int cpu)
5667{
5668 struct sched_domain *sd;
5d4cf996 5669 struct sched_domain *busy_sd = NULL;
518cd623 5670 int id = cpu;
7d9ffa89 5671 int size = 1;
518cd623
PZ
5672
5673 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 5674 if (sd) {
518cd623 5675 id = cpumask_first(sched_domain_span(sd));
7d9ffa89 5676 size = cpumask_weight(sched_domain_span(sd));
5d4cf996 5677 busy_sd = sd->parent; /* sd_busy */
7d9ffa89 5678 }
5d4cf996 5679 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
518cd623
PZ
5680
5681 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 5682 per_cpu(sd_llc_size, cpu) = size;
518cd623 5683 per_cpu(sd_llc_id, cpu) = id;
fb13c7ee
MG
5684
5685 sd = lowest_flag_domain(cpu, SD_NUMA);
5686 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
37dc6b50
PM
5687
5688 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5689 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
518cd623
PZ
5690}
5691
1da177e4 5692/*
0eab9146 5693 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5694 * hold the hotplug lock.
5695 */
0eab9146
IM
5696static void
5697cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5698{
70b97a7f 5699 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5700 struct sched_domain *tmp;
5701
5702 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5703 for (tmp = sd; tmp; ) {
245af2c7
SS
5704 struct sched_domain *parent = tmp->parent;
5705 if (!parent)
5706 break;
f29c9b1c 5707
1a848870 5708 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5709 tmp->parent = parent->parent;
1a848870
SS
5710 if (parent->parent)
5711 parent->parent->child = tmp;
10866e62
PZ
5712 /*
5713 * Transfer SD_PREFER_SIBLING down in case of a
5714 * degenerate parent; the spans match for this
5715 * so the property transfers.
5716 */
5717 if (parent->flags & SD_PREFER_SIBLING)
5718 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 5719 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5720 } else
5721 tmp = tmp->parent;
245af2c7
SS
5722 }
5723
1a848870 5724 if (sd && sd_degenerate(sd)) {
dce840a0 5725 tmp = sd;
245af2c7 5726 sd = sd->parent;
dce840a0 5727 destroy_sched_domain(tmp, cpu);
1a848870
SS
5728 if (sd)
5729 sd->child = NULL;
5730 }
1da177e4 5731
4cb98839 5732 sched_domain_debug(sd, cpu);
1da177e4 5733
57d885fe 5734 rq_attach_root(rq, rd);
dce840a0 5735 tmp = rq->sd;
674311d5 5736 rcu_assign_pointer(rq->sd, sd);
dce840a0 5737 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5738
5739 update_top_cache_domain(cpu);
1da177e4
LT
5740}
5741
5742/* cpus with isolated domains */
dcc30a35 5743static cpumask_var_t cpu_isolated_map;
1da177e4
LT
5744
5745/* Setup the mask of cpus configured for isolated domains */
5746static int __init isolated_cpu_setup(char *str)
5747{
bdddd296 5748 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5749 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5750 return 1;
5751}
5752
8927f494 5753__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5754
49a02c51 5755struct s_data {
21d42ccf 5756 struct sched_domain ** __percpu sd;
49a02c51
AH
5757 struct root_domain *rd;
5758};
5759
2109b99e 5760enum s_alloc {
2109b99e 5761 sa_rootdomain,
21d42ccf 5762 sa_sd,
dce840a0 5763 sa_sd_storage,
2109b99e
AH
5764 sa_none,
5765};
5766
c1174876
PZ
5767/*
5768 * Build an iteration mask that can exclude certain CPUs from the upwards
5769 * domain traversal.
5770 *
5771 * Asymmetric node setups can result in situations where the domain tree is of
5772 * unequal depth, make sure to skip domains that already cover the entire
5773 * range.
5774 *
5775 * In that case build_sched_domains() will have terminated the iteration early
5776 * and our sibling sd spans will be empty. Domains should always include the
5777 * cpu they're built on, so check that.
5778 *
5779 */
5780static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5781{
5782 const struct cpumask *span = sched_domain_span(sd);
5783 struct sd_data *sdd = sd->private;
5784 struct sched_domain *sibling;
5785 int i;
5786
5787 for_each_cpu(i, span) {
5788 sibling = *per_cpu_ptr(sdd->sd, i);
5789 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5790 continue;
5791
5792 cpumask_set_cpu(i, sched_group_mask(sg));
5793 }
5794}
5795
5796/*
5797 * Return the canonical balance cpu for this group, this is the first cpu
5798 * of this group that's also in the iteration mask.
5799 */
5800int group_balance_cpu(struct sched_group *sg)
5801{
5802 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5803}
5804
e3589f6c
PZ
5805static int
5806build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5807{
5808 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5809 const struct cpumask *span = sched_domain_span(sd);
5810 struct cpumask *covered = sched_domains_tmpmask;
5811 struct sd_data *sdd = sd->private;
aaecac4a 5812 struct sched_domain *sibling;
e3589f6c
PZ
5813 int i;
5814
5815 cpumask_clear(covered);
5816
5817 for_each_cpu(i, span) {
5818 struct cpumask *sg_span;
5819
5820 if (cpumask_test_cpu(i, covered))
5821 continue;
5822
aaecac4a 5823 sibling = *per_cpu_ptr(sdd->sd, i);
c1174876
PZ
5824
5825 /* See the comment near build_group_mask(). */
aaecac4a 5826 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
c1174876
PZ
5827 continue;
5828
e3589f6c 5829 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 5830 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
5831
5832 if (!sg)
5833 goto fail;
5834
5835 sg_span = sched_group_cpus(sg);
aaecac4a
ZZ
5836 if (sibling->child)
5837 cpumask_copy(sg_span, sched_domain_span(sibling->child));
5838 else
e3589f6c
PZ
5839 cpumask_set_cpu(i, sg_span);
5840
5841 cpumask_or(covered, covered, sg_span);
5842
63b2ca30
NP
5843 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
5844 if (atomic_inc_return(&sg->sgc->ref) == 1)
c1174876
PZ
5845 build_group_mask(sd, sg);
5846
c3decf0d 5847 /*
63b2ca30 5848 * Initialize sgc->capacity such that even if we mess up the
c3decf0d
PZ
5849 * domains and no possible iteration will get us here, we won't
5850 * die on a /0 trap.
5851 */
ca8ce3d0 5852 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
63b2ca30 5853 sg->sgc->capacity_orig = sg->sgc->capacity;
e3589f6c 5854
c1174876
PZ
5855 /*
5856 * Make sure the first group of this domain contains the
5857 * canonical balance cpu. Otherwise the sched_domain iteration
5858 * breaks. See update_sg_lb_stats().
5859 */
74a5ce20 5860 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 5861 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
5862 groups = sg;
5863
5864 if (!first)
5865 first = sg;
5866 if (last)
5867 last->next = sg;
5868 last = sg;
5869 last->next = first;
5870 }
5871 sd->groups = groups;
5872
5873 return 0;
5874
5875fail:
5876 free_sched_groups(first, 0);
5877
5878 return -ENOMEM;
5879}
5880
dce840a0 5881static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 5882{
dce840a0
PZ
5883 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5884 struct sched_domain *child = sd->child;
1da177e4 5885
dce840a0
PZ
5886 if (child)
5887 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 5888
9c3f75cb 5889 if (sg) {
dce840a0 5890 *sg = *per_cpu_ptr(sdd->sg, cpu);
63b2ca30
NP
5891 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
5892 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
9c3f75cb 5893 }
dce840a0
PZ
5894
5895 return cpu;
1e9f28fa 5896}
1e9f28fa 5897
01a08546 5898/*
dce840a0
PZ
5899 * build_sched_groups will build a circular linked list of the groups
5900 * covered by the given span, and will set each group's ->cpumask correctly,
ced549fa 5901 * and ->cpu_capacity to 0.
e3589f6c
PZ
5902 *
5903 * Assumes the sched_domain tree is fully constructed
01a08546 5904 */
e3589f6c
PZ
5905static int
5906build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 5907{
dce840a0
PZ
5908 struct sched_group *first = NULL, *last = NULL;
5909 struct sd_data *sdd = sd->private;
5910 const struct cpumask *span = sched_domain_span(sd);
f96225fd 5911 struct cpumask *covered;
dce840a0 5912 int i;
9c1cfda2 5913
e3589f6c
PZ
5914 get_group(cpu, sdd, &sd->groups);
5915 atomic_inc(&sd->groups->ref);
5916
0936629f 5917 if (cpu != cpumask_first(span))
e3589f6c
PZ
5918 return 0;
5919
f96225fd
PZ
5920 lockdep_assert_held(&sched_domains_mutex);
5921 covered = sched_domains_tmpmask;
5922
dce840a0 5923 cpumask_clear(covered);
6711cab4 5924
dce840a0
PZ
5925 for_each_cpu(i, span) {
5926 struct sched_group *sg;
cd08e923 5927 int group, j;
6711cab4 5928
dce840a0
PZ
5929 if (cpumask_test_cpu(i, covered))
5930 continue;
6711cab4 5931
cd08e923 5932 group = get_group(i, sdd, &sg);
c1174876 5933 cpumask_setall(sched_group_mask(sg));
0601a88d 5934
dce840a0
PZ
5935 for_each_cpu(j, span) {
5936 if (get_group(j, sdd, NULL) != group)
5937 continue;
0601a88d 5938
dce840a0
PZ
5939 cpumask_set_cpu(j, covered);
5940 cpumask_set_cpu(j, sched_group_cpus(sg));
5941 }
0601a88d 5942
dce840a0
PZ
5943 if (!first)
5944 first = sg;
5945 if (last)
5946 last->next = sg;
5947 last = sg;
5948 }
5949 last->next = first;
e3589f6c
PZ
5950
5951 return 0;
0601a88d 5952}
51888ca2 5953
89c4710e 5954/*
63b2ca30 5955 * Initialize sched groups cpu_capacity.
89c4710e 5956 *
63b2ca30 5957 * cpu_capacity indicates the capacity of sched group, which is used while
89c4710e 5958 * distributing the load between different sched groups in a sched domain.
63b2ca30
NP
5959 * Typically cpu_capacity for all the groups in a sched domain will be same
5960 * unless there are asymmetries in the topology. If there are asymmetries,
5961 * group having more cpu_capacity will pickup more load compared to the
5962 * group having less cpu_capacity.
89c4710e 5963 */
63b2ca30 5964static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
89c4710e 5965{
e3589f6c 5966 struct sched_group *sg = sd->groups;
89c4710e 5967
94c95ba6 5968 WARN_ON(!sg);
e3589f6c
PZ
5969
5970 do {
5971 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5972 sg = sg->next;
5973 } while (sg != sd->groups);
89c4710e 5974
c1174876 5975 if (cpu != group_balance_cpu(sg))
e3589f6c 5976 return;
aae6d3dd 5977
63b2ca30
NP
5978 update_group_capacity(sd, cpu);
5979 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
89c4710e
SS
5980}
5981
7c16ec58
MT
5982/*
5983 * Initializers for schedule domains
5984 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5985 */
5986
1d3504fc 5987static int default_relax_domain_level = -1;
60495e77 5988int sched_domain_level_max;
1d3504fc
HS
5989
5990static int __init setup_relax_domain_level(char *str)
5991{
a841f8ce
DS
5992 if (kstrtoint(str, 0, &default_relax_domain_level))
5993 pr_warn("Unable to set relax_domain_level\n");
30e0e178 5994
1d3504fc
HS
5995 return 1;
5996}
5997__setup("relax_domain_level=", setup_relax_domain_level);
5998
5999static void set_domain_attribute(struct sched_domain *sd,
6000 struct sched_domain_attr *attr)
6001{
6002 int request;
6003
6004 if (!attr || attr->relax_domain_level < 0) {
6005 if (default_relax_domain_level < 0)
6006 return;
6007 else
6008 request = default_relax_domain_level;
6009 } else
6010 request = attr->relax_domain_level;
6011 if (request < sd->level) {
6012 /* turn off idle balance on this domain */
c88d5910 6013 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6014 } else {
6015 /* turn on idle balance on this domain */
c88d5910 6016 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6017 }
6018}
6019
54ab4ff4
PZ
6020static void __sdt_free(const struct cpumask *cpu_map);
6021static int __sdt_alloc(const struct cpumask *cpu_map);
6022
2109b99e
AH
6023static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6024 const struct cpumask *cpu_map)
6025{
6026 switch (what) {
2109b99e 6027 case sa_rootdomain:
822ff793
PZ
6028 if (!atomic_read(&d->rd->refcount))
6029 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
6030 case sa_sd:
6031 free_percpu(d->sd); /* fall through */
dce840a0 6032 case sa_sd_storage:
54ab4ff4 6033 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
6034 case sa_none:
6035 break;
6036 }
6037}
3404c8d9 6038
2109b99e
AH
6039static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6040 const struct cpumask *cpu_map)
6041{
dce840a0
PZ
6042 memset(d, 0, sizeof(*d));
6043
54ab4ff4
PZ
6044 if (__sdt_alloc(cpu_map))
6045 return sa_sd_storage;
dce840a0
PZ
6046 d->sd = alloc_percpu(struct sched_domain *);
6047 if (!d->sd)
6048 return sa_sd_storage;
2109b99e 6049 d->rd = alloc_rootdomain();
dce840a0 6050 if (!d->rd)
21d42ccf 6051 return sa_sd;
2109b99e
AH
6052 return sa_rootdomain;
6053}
57d885fe 6054
dce840a0
PZ
6055/*
6056 * NULL the sd_data elements we've used to build the sched_domain and
6057 * sched_group structure so that the subsequent __free_domain_allocs()
6058 * will not free the data we're using.
6059 */
6060static void claim_allocations(int cpu, struct sched_domain *sd)
6061{
6062 struct sd_data *sdd = sd->private;
dce840a0
PZ
6063
6064 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6065 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6066
e3589f6c 6067 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 6068 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c 6069
63b2ca30
NP
6070 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6071 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
dce840a0
PZ
6072}
6073
cb83b629 6074#ifdef CONFIG_NUMA
cb83b629 6075static int sched_domains_numa_levels;
cb83b629
PZ
6076static int *sched_domains_numa_distance;
6077static struct cpumask ***sched_domains_numa_masks;
6078static int sched_domains_curr_level;
143e1e28 6079#endif
cb83b629 6080
143e1e28
VG
6081/*
6082 * SD_flags allowed in topology descriptions.
6083 *
5d4dfddd 6084 * SD_SHARE_CPUCAPACITY - describes SMT topologies
143e1e28
VG
6085 * SD_SHARE_PKG_RESOURCES - describes shared caches
6086 * SD_NUMA - describes NUMA topologies
d77b3ed5 6087 * SD_SHARE_POWERDOMAIN - describes shared power domain
143e1e28
VG
6088 *
6089 * Odd one out:
6090 * SD_ASYM_PACKING - describes SMT quirks
6091 */
6092#define TOPOLOGY_SD_FLAGS \
5d4dfddd 6093 (SD_SHARE_CPUCAPACITY | \
143e1e28
VG
6094 SD_SHARE_PKG_RESOURCES | \
6095 SD_NUMA | \
d77b3ed5
VG
6096 SD_ASYM_PACKING | \
6097 SD_SHARE_POWERDOMAIN)
cb83b629
PZ
6098
6099static struct sched_domain *
143e1e28 6100sd_init(struct sched_domain_topology_level *tl, int cpu)
cb83b629
PZ
6101{
6102 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
143e1e28
VG
6103 int sd_weight, sd_flags = 0;
6104
6105#ifdef CONFIG_NUMA
6106 /*
6107 * Ugly hack to pass state to sd_numa_mask()...
6108 */
6109 sched_domains_curr_level = tl->numa_level;
6110#endif
6111
6112 sd_weight = cpumask_weight(tl->mask(cpu));
6113
6114 if (tl->sd_flags)
6115 sd_flags = (*tl->sd_flags)();
6116 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6117 "wrong sd_flags in topology description\n"))
6118 sd_flags &= ~TOPOLOGY_SD_FLAGS;
cb83b629
PZ
6119
6120 *sd = (struct sched_domain){
6121 .min_interval = sd_weight,
6122 .max_interval = 2*sd_weight,
6123 .busy_factor = 32,
870a0bb5 6124 .imbalance_pct = 125,
143e1e28
VG
6125
6126 .cache_nice_tries = 0,
6127 .busy_idx = 0,
6128 .idle_idx = 0,
cb83b629
PZ
6129 .newidle_idx = 0,
6130 .wake_idx = 0,
6131 .forkexec_idx = 0,
6132
6133 .flags = 1*SD_LOAD_BALANCE
6134 | 1*SD_BALANCE_NEWIDLE
143e1e28
VG
6135 | 1*SD_BALANCE_EXEC
6136 | 1*SD_BALANCE_FORK
cb83b629 6137 | 0*SD_BALANCE_WAKE
143e1e28 6138 | 1*SD_WAKE_AFFINE
5d4dfddd 6139 | 0*SD_SHARE_CPUCAPACITY
cb83b629 6140 | 0*SD_SHARE_PKG_RESOURCES
143e1e28 6141 | 0*SD_SERIALIZE
cb83b629 6142 | 0*SD_PREFER_SIBLING
143e1e28
VG
6143 | 0*SD_NUMA
6144 | sd_flags
cb83b629 6145 ,
143e1e28 6146
cb83b629
PZ
6147 .last_balance = jiffies,
6148 .balance_interval = sd_weight,
143e1e28 6149 .smt_gain = 0,
2b4cfe64
JL
6150 .max_newidle_lb_cost = 0,
6151 .next_decay_max_lb_cost = jiffies,
143e1e28
VG
6152#ifdef CONFIG_SCHED_DEBUG
6153 .name = tl->name,
6154#endif
cb83b629 6155 };
cb83b629
PZ
6156
6157 /*
143e1e28 6158 * Convert topological properties into behaviour.
cb83b629 6159 */
143e1e28 6160
5d4dfddd 6161 if (sd->flags & SD_SHARE_CPUCAPACITY) {
143e1e28
VG
6162 sd->imbalance_pct = 110;
6163 sd->smt_gain = 1178; /* ~15% */
143e1e28
VG
6164
6165 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6166 sd->imbalance_pct = 117;
6167 sd->cache_nice_tries = 1;
6168 sd->busy_idx = 2;
6169
6170#ifdef CONFIG_NUMA
6171 } else if (sd->flags & SD_NUMA) {
6172 sd->cache_nice_tries = 2;
6173 sd->busy_idx = 3;
6174 sd->idle_idx = 2;
6175
6176 sd->flags |= SD_SERIALIZE;
6177 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6178 sd->flags &= ~(SD_BALANCE_EXEC |
6179 SD_BALANCE_FORK |
6180 SD_WAKE_AFFINE);
6181 }
6182
6183#endif
6184 } else {
6185 sd->flags |= SD_PREFER_SIBLING;
6186 sd->cache_nice_tries = 1;
6187 sd->busy_idx = 2;
6188 sd->idle_idx = 1;
6189 }
6190
6191 sd->private = &tl->data;
cb83b629
PZ
6192
6193 return sd;
6194}
6195
143e1e28
VG
6196/*
6197 * Topology list, bottom-up.
6198 */
6199static struct sched_domain_topology_level default_topology[] = {
6200#ifdef CONFIG_SCHED_SMT
6201 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6202#endif
6203#ifdef CONFIG_SCHED_MC
6204 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
143e1e28
VG
6205#endif
6206 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6207 { NULL, },
6208};
6209
6210struct sched_domain_topology_level *sched_domain_topology = default_topology;
6211
6212#define for_each_sd_topology(tl) \
6213 for (tl = sched_domain_topology; tl->mask; tl++)
6214
6215void set_sched_topology(struct sched_domain_topology_level *tl)
6216{
6217 sched_domain_topology = tl;
6218}
6219
6220#ifdef CONFIG_NUMA
6221
cb83b629
PZ
6222static const struct cpumask *sd_numa_mask(int cpu)
6223{
6224 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6225}
6226
d039ac60
PZ
6227static void sched_numa_warn(const char *str)
6228{
6229 static int done = false;
6230 int i,j;
6231
6232 if (done)
6233 return;
6234
6235 done = true;
6236
6237 printk(KERN_WARNING "ERROR: %s\n\n", str);
6238
6239 for (i = 0; i < nr_node_ids; i++) {
6240 printk(KERN_WARNING " ");
6241 for (j = 0; j < nr_node_ids; j++)
6242 printk(KERN_CONT "%02d ", node_distance(i,j));
6243 printk(KERN_CONT "\n");
6244 }
6245 printk(KERN_WARNING "\n");
6246}
6247
6248static bool find_numa_distance(int distance)
6249{
6250 int i;
6251
6252 if (distance == node_distance(0, 0))
6253 return true;
6254
6255 for (i = 0; i < sched_domains_numa_levels; i++) {
6256 if (sched_domains_numa_distance[i] == distance)
6257 return true;
6258 }
6259
6260 return false;
6261}
6262
cb83b629
PZ
6263static void sched_init_numa(void)
6264{
6265 int next_distance, curr_distance = node_distance(0, 0);
6266 struct sched_domain_topology_level *tl;
6267 int level = 0;
6268 int i, j, k;
6269
cb83b629
PZ
6270 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6271 if (!sched_domains_numa_distance)
6272 return;
6273
6274 /*
6275 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6276 * unique distances in the node_distance() table.
6277 *
6278 * Assumes node_distance(0,j) includes all distances in
6279 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6280 */
6281 next_distance = curr_distance;
6282 for (i = 0; i < nr_node_ids; i++) {
6283 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6284 for (k = 0; k < nr_node_ids; k++) {
6285 int distance = node_distance(i, k);
6286
6287 if (distance > curr_distance &&
6288 (distance < next_distance ||
6289 next_distance == curr_distance))
6290 next_distance = distance;
6291
6292 /*
6293 * While not a strong assumption it would be nice to know
6294 * about cases where if node A is connected to B, B is not
6295 * equally connected to A.
6296 */
6297 if (sched_debug() && node_distance(k, i) != distance)
6298 sched_numa_warn("Node-distance not symmetric");
6299
6300 if (sched_debug() && i && !find_numa_distance(distance))
6301 sched_numa_warn("Node-0 not representative");
6302 }
6303 if (next_distance != curr_distance) {
6304 sched_domains_numa_distance[level++] = next_distance;
6305 sched_domains_numa_levels = level;
6306 curr_distance = next_distance;
6307 } else break;
cb83b629 6308 }
d039ac60
PZ
6309
6310 /*
6311 * In case of sched_debug() we verify the above assumption.
6312 */
6313 if (!sched_debug())
6314 break;
cb83b629
PZ
6315 }
6316 /*
6317 * 'level' contains the number of unique distances, excluding the
6318 * identity distance node_distance(i,i).
6319 *
28b4a521 6320 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
6321 * numbers.
6322 */
6323
5f7865f3
TC
6324 /*
6325 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6326 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6327 * the array will contain less then 'level' members. This could be
6328 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6329 * in other functions.
6330 *
6331 * We reset it to 'level' at the end of this function.
6332 */
6333 sched_domains_numa_levels = 0;
6334
cb83b629
PZ
6335 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6336 if (!sched_domains_numa_masks)
6337 return;
6338
6339 /*
6340 * Now for each level, construct a mask per node which contains all
6341 * cpus of nodes that are that many hops away from us.
6342 */
6343 for (i = 0; i < level; i++) {
6344 sched_domains_numa_masks[i] =
6345 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6346 if (!sched_domains_numa_masks[i])
6347 return;
6348
6349 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6350 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6351 if (!mask)
6352 return;
6353
6354 sched_domains_numa_masks[i][j] = mask;
6355
6356 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 6357 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6358 continue;
6359
6360 cpumask_or(mask, mask, cpumask_of_node(k));
6361 }
6362 }
6363 }
6364
143e1e28
VG
6365 /* Compute default topology size */
6366 for (i = 0; sched_domain_topology[i].mask; i++);
6367
c515db8c 6368 tl = kzalloc((i + level + 1) *
cb83b629
PZ
6369 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6370 if (!tl)
6371 return;
6372
6373 /*
6374 * Copy the default topology bits..
6375 */
143e1e28
VG
6376 for (i = 0; sched_domain_topology[i].mask; i++)
6377 tl[i] = sched_domain_topology[i];
cb83b629
PZ
6378
6379 /*
6380 * .. and append 'j' levels of NUMA goodness.
6381 */
6382 for (j = 0; j < level; i++, j++) {
6383 tl[i] = (struct sched_domain_topology_level){
cb83b629 6384 .mask = sd_numa_mask,
143e1e28 6385 .sd_flags = cpu_numa_flags,
cb83b629
PZ
6386 .flags = SDTL_OVERLAP,
6387 .numa_level = j,
143e1e28 6388 SD_INIT_NAME(NUMA)
cb83b629
PZ
6389 };
6390 }
6391
6392 sched_domain_topology = tl;
5f7865f3
TC
6393
6394 sched_domains_numa_levels = level;
cb83b629 6395}
301a5cba
TC
6396
6397static void sched_domains_numa_masks_set(int cpu)
6398{
6399 int i, j;
6400 int node = cpu_to_node(cpu);
6401
6402 for (i = 0; i < sched_domains_numa_levels; i++) {
6403 for (j = 0; j < nr_node_ids; j++) {
6404 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6405 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6406 }
6407 }
6408}
6409
6410static void sched_domains_numa_masks_clear(int cpu)
6411{
6412 int i, j;
6413 for (i = 0; i < sched_domains_numa_levels; i++) {
6414 for (j = 0; j < nr_node_ids; j++)
6415 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6416 }
6417}
6418
6419/*
6420 * Update sched_domains_numa_masks[level][node] array when new cpus
6421 * are onlined.
6422 */
6423static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6424 unsigned long action,
6425 void *hcpu)
6426{
6427 int cpu = (long)hcpu;
6428
6429 switch (action & ~CPU_TASKS_FROZEN) {
6430 case CPU_ONLINE:
6431 sched_domains_numa_masks_set(cpu);
6432 break;
6433
6434 case CPU_DEAD:
6435 sched_domains_numa_masks_clear(cpu);
6436 break;
6437
6438 default:
6439 return NOTIFY_DONE;
6440 }
6441
6442 return NOTIFY_OK;
cb83b629
PZ
6443}
6444#else
6445static inline void sched_init_numa(void)
6446{
6447}
301a5cba
TC
6448
6449static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6450 unsigned long action,
6451 void *hcpu)
6452{
6453 return 0;
6454}
cb83b629
PZ
6455#endif /* CONFIG_NUMA */
6456
54ab4ff4
PZ
6457static int __sdt_alloc(const struct cpumask *cpu_map)
6458{
6459 struct sched_domain_topology_level *tl;
6460 int j;
6461
27723a68 6462 for_each_sd_topology(tl) {
54ab4ff4
PZ
6463 struct sd_data *sdd = &tl->data;
6464
6465 sdd->sd = alloc_percpu(struct sched_domain *);
6466 if (!sdd->sd)
6467 return -ENOMEM;
6468
6469 sdd->sg = alloc_percpu(struct sched_group *);
6470 if (!sdd->sg)
6471 return -ENOMEM;
6472
63b2ca30
NP
6473 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6474 if (!sdd->sgc)
9c3f75cb
PZ
6475 return -ENOMEM;
6476
54ab4ff4
PZ
6477 for_each_cpu(j, cpu_map) {
6478 struct sched_domain *sd;
6479 struct sched_group *sg;
63b2ca30 6480 struct sched_group_capacity *sgc;
54ab4ff4
PZ
6481
6482 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6483 GFP_KERNEL, cpu_to_node(j));
6484 if (!sd)
6485 return -ENOMEM;
6486
6487 *per_cpu_ptr(sdd->sd, j) = sd;
6488
6489 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6490 GFP_KERNEL, cpu_to_node(j));
6491 if (!sg)
6492 return -ENOMEM;
6493
30b4e9eb
IM
6494 sg->next = sg;
6495
54ab4ff4 6496 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6497
63b2ca30 6498 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
9c3f75cb 6499 GFP_KERNEL, cpu_to_node(j));
63b2ca30 6500 if (!sgc)
9c3f75cb
PZ
6501 return -ENOMEM;
6502
63b2ca30 6503 *per_cpu_ptr(sdd->sgc, j) = sgc;
54ab4ff4
PZ
6504 }
6505 }
6506
6507 return 0;
6508}
6509
6510static void __sdt_free(const struct cpumask *cpu_map)
6511{
6512 struct sched_domain_topology_level *tl;
6513 int j;
6514
27723a68 6515 for_each_sd_topology(tl) {
54ab4ff4
PZ
6516 struct sd_data *sdd = &tl->data;
6517
6518 for_each_cpu(j, cpu_map) {
fb2cf2c6 6519 struct sched_domain *sd;
6520
6521 if (sdd->sd) {
6522 sd = *per_cpu_ptr(sdd->sd, j);
6523 if (sd && (sd->flags & SD_OVERLAP))
6524 free_sched_groups(sd->groups, 0);
6525 kfree(*per_cpu_ptr(sdd->sd, j));
6526 }
6527
6528 if (sdd->sg)
6529 kfree(*per_cpu_ptr(sdd->sg, j));
63b2ca30
NP
6530 if (sdd->sgc)
6531 kfree(*per_cpu_ptr(sdd->sgc, j));
54ab4ff4
PZ
6532 }
6533 free_percpu(sdd->sd);
fb2cf2c6 6534 sdd->sd = NULL;
54ab4ff4 6535 free_percpu(sdd->sg);
fb2cf2c6 6536 sdd->sg = NULL;
63b2ca30
NP
6537 free_percpu(sdd->sgc);
6538 sdd->sgc = NULL;
54ab4ff4
PZ
6539 }
6540}
6541
2c402dc3 6542struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
6543 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6544 struct sched_domain *child, int cpu)
2c402dc3 6545{
143e1e28 6546 struct sched_domain *sd = sd_init(tl, cpu);
2c402dc3 6547 if (!sd)
d069b916 6548 return child;
2c402dc3 6549
2c402dc3 6550 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6551 if (child) {
6552 sd->level = child->level + 1;
6553 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6554 child->parent = sd;
c75e0128 6555 sd->child = child;
6ae72dff
PZ
6556
6557 if (!cpumask_subset(sched_domain_span(child),
6558 sched_domain_span(sd))) {
6559 pr_err("BUG: arch topology borken\n");
6560#ifdef CONFIG_SCHED_DEBUG
6561 pr_err(" the %s domain not a subset of the %s domain\n",
6562 child->name, sd->name);
6563#endif
6564 /* Fixup, ensure @sd has at least @child cpus. */
6565 cpumask_or(sched_domain_span(sd),
6566 sched_domain_span(sd),
6567 sched_domain_span(child));
6568 }
6569
60495e77 6570 }
a841f8ce 6571 set_domain_attribute(sd, attr);
2c402dc3
PZ
6572
6573 return sd;
6574}
6575
2109b99e
AH
6576/*
6577 * Build sched domains for a given set of cpus and attach the sched domains
6578 * to the individual cpus
6579 */
dce840a0
PZ
6580static int build_sched_domains(const struct cpumask *cpu_map,
6581 struct sched_domain_attr *attr)
2109b99e 6582{
1c632169 6583 enum s_alloc alloc_state;
dce840a0 6584 struct sched_domain *sd;
2109b99e 6585 struct s_data d;
822ff793 6586 int i, ret = -ENOMEM;
9c1cfda2 6587
2109b99e
AH
6588 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6589 if (alloc_state != sa_rootdomain)
6590 goto error;
9c1cfda2 6591
dce840a0 6592 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6593 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6594 struct sched_domain_topology_level *tl;
6595
3bd65a80 6596 sd = NULL;
27723a68 6597 for_each_sd_topology(tl) {
4a850cbe 6598 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
6599 if (tl == sched_domain_topology)
6600 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
6601 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6602 sd->flags |= SD_OVERLAP;
d110235d
PZ
6603 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6604 break;
e3589f6c 6605 }
dce840a0
PZ
6606 }
6607
6608 /* Build the groups for the domains */
6609 for_each_cpu(i, cpu_map) {
6610 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6611 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6612 if (sd->flags & SD_OVERLAP) {
6613 if (build_overlap_sched_groups(sd, i))
6614 goto error;
6615 } else {
6616 if (build_sched_groups(sd, i))
6617 goto error;
6618 }
1cf51902 6619 }
a06dadbe 6620 }
9c1cfda2 6621
ced549fa 6622 /* Calculate CPU capacity for physical packages and nodes */
a9c9a9b6
PZ
6623 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6624 if (!cpumask_test_cpu(i, cpu_map))
6625 continue;
9c1cfda2 6626
dce840a0
PZ
6627 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6628 claim_allocations(i, sd);
63b2ca30 6629 init_sched_groups_capacity(i, sd);
dce840a0 6630 }
f712c0c7 6631 }
9c1cfda2 6632
1da177e4 6633 /* Attach the domains */
dce840a0 6634 rcu_read_lock();
abcd083a 6635 for_each_cpu(i, cpu_map) {
21d42ccf 6636 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6637 cpu_attach_domain(sd, d.rd, i);
1da177e4 6638 }
dce840a0 6639 rcu_read_unlock();
51888ca2 6640
822ff793 6641 ret = 0;
51888ca2 6642error:
2109b99e 6643 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6644 return ret;
1da177e4 6645}
029190c5 6646
acc3f5d7 6647static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6648static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6649static struct sched_domain_attr *dattr_cur;
6650 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6651
6652/*
6653 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6654 * cpumask) fails, then fallback to a single sched domain,
6655 * as determined by the single cpumask fallback_doms.
029190c5 6656 */
4212823f 6657static cpumask_var_t fallback_doms;
029190c5 6658
ee79d1bd
HC
6659/*
6660 * arch_update_cpu_topology lets virtualized architectures update the
6661 * cpu core maps. It is supposed to return 1 if the topology changed
6662 * or 0 if it stayed the same.
6663 */
52f5684c 6664int __weak arch_update_cpu_topology(void)
22e52b07 6665{
ee79d1bd 6666 return 0;
22e52b07
HC
6667}
6668
acc3f5d7
RR
6669cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6670{
6671 int i;
6672 cpumask_var_t *doms;
6673
6674 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6675 if (!doms)
6676 return NULL;
6677 for (i = 0; i < ndoms; i++) {
6678 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6679 free_sched_domains(doms, i);
6680 return NULL;
6681 }
6682 }
6683 return doms;
6684}
6685
6686void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6687{
6688 unsigned int i;
6689 for (i = 0; i < ndoms; i++)
6690 free_cpumask_var(doms[i]);
6691 kfree(doms);
6692}
6693
1a20ff27 6694/*
41a2d6cf 6695 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6696 * For now this just excludes isolated cpus, but could be used to
6697 * exclude other special cases in the future.
1a20ff27 6698 */
c4a8849a 6699static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6700{
7378547f
MM
6701 int err;
6702
22e52b07 6703 arch_update_cpu_topology();
029190c5 6704 ndoms_cur = 1;
acc3f5d7 6705 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6706 if (!doms_cur)
acc3f5d7
RR
6707 doms_cur = &fallback_doms;
6708 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 6709 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6710 register_sched_domain_sysctl();
7378547f
MM
6711
6712 return err;
1a20ff27
DG
6713}
6714
1a20ff27
DG
6715/*
6716 * Detach sched domains from a group of cpus specified in cpu_map
6717 * These cpus will now be attached to the NULL domain
6718 */
96f874e2 6719static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6720{
6721 int i;
6722
dce840a0 6723 rcu_read_lock();
abcd083a 6724 for_each_cpu(i, cpu_map)
57d885fe 6725 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6726 rcu_read_unlock();
1a20ff27
DG
6727}
6728
1d3504fc
HS
6729/* handle null as "default" */
6730static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6731 struct sched_domain_attr *new, int idx_new)
6732{
6733 struct sched_domain_attr tmp;
6734
6735 /* fast path */
6736 if (!new && !cur)
6737 return 1;
6738
6739 tmp = SD_ATTR_INIT;
6740 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6741 new ? (new + idx_new) : &tmp,
6742 sizeof(struct sched_domain_attr));
6743}
6744
029190c5
PJ
6745/*
6746 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6747 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6748 * doms_new[] to the current sched domain partitioning, doms_cur[].
6749 * It destroys each deleted domain and builds each new domain.
6750 *
acc3f5d7 6751 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
6752 * The masks don't intersect (don't overlap.) We should setup one
6753 * sched domain for each mask. CPUs not in any of the cpumasks will
6754 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6755 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6756 * it as it is.
6757 *
acc3f5d7
RR
6758 * The passed in 'doms_new' should be allocated using
6759 * alloc_sched_domains. This routine takes ownership of it and will
6760 * free_sched_domains it when done with it. If the caller failed the
6761 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6762 * and partition_sched_domains() will fallback to the single partition
6763 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 6764 *
96f874e2 6765 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
6766 * ndoms_new == 0 is a special case for destroying existing domains,
6767 * and it will not create the default domain.
dfb512ec 6768 *
029190c5
PJ
6769 * Call with hotplug lock held
6770 */
acc3f5d7 6771void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 6772 struct sched_domain_attr *dattr_new)
029190c5 6773{
dfb512ec 6774 int i, j, n;
d65bd5ec 6775 int new_topology;
029190c5 6776
712555ee 6777 mutex_lock(&sched_domains_mutex);
a1835615 6778
7378547f
MM
6779 /* always unregister in case we don't destroy any domains */
6780 unregister_sched_domain_sysctl();
6781
d65bd5ec
HC
6782 /* Let architecture update cpu core mappings. */
6783 new_topology = arch_update_cpu_topology();
6784
dfb512ec 6785 n = doms_new ? ndoms_new : 0;
029190c5
PJ
6786
6787 /* Destroy deleted domains */
6788 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 6789 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6790 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 6791 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
6792 goto match1;
6793 }
6794 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 6795 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
6796match1:
6797 ;
6798 }
6799
c8d2d47a 6800 n = ndoms_cur;
e761b772 6801 if (doms_new == NULL) {
c8d2d47a 6802 n = 0;
acc3f5d7 6803 doms_new = &fallback_doms;
6ad4c188 6804 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 6805 WARN_ON_ONCE(dattr_new);
e761b772
MK
6806 }
6807
029190c5
PJ
6808 /* Build new domains */
6809 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 6810 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6811 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 6812 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
6813 goto match2;
6814 }
6815 /* no match - add a new doms_new */
dce840a0 6816 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
6817match2:
6818 ;
6819 }
6820
6821 /* Remember the new sched domains */
acc3f5d7
RR
6822 if (doms_cur != &fallback_doms)
6823 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 6824 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 6825 doms_cur = doms_new;
1d3504fc 6826 dattr_cur = dattr_new;
029190c5 6827 ndoms_cur = ndoms_new;
7378547f
MM
6828
6829 register_sched_domain_sysctl();
a1835615 6830
712555ee 6831 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
6832}
6833
d35be8ba
SB
6834static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6835
1da177e4 6836/*
3a101d05
TH
6837 * Update cpusets according to cpu_active mask. If cpusets are
6838 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6839 * around partition_sched_domains().
d35be8ba
SB
6840 *
6841 * If we come here as part of a suspend/resume, don't touch cpusets because we
6842 * want to restore it back to its original state upon resume anyway.
1da177e4 6843 */
0b2e918a
TH
6844static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6845 void *hcpu)
e761b772 6846{
d35be8ba
SB
6847 switch (action) {
6848 case CPU_ONLINE_FROZEN:
6849 case CPU_DOWN_FAILED_FROZEN:
6850
6851 /*
6852 * num_cpus_frozen tracks how many CPUs are involved in suspend
6853 * resume sequence. As long as this is not the last online
6854 * operation in the resume sequence, just build a single sched
6855 * domain, ignoring cpusets.
6856 */
6857 num_cpus_frozen--;
6858 if (likely(num_cpus_frozen)) {
6859 partition_sched_domains(1, NULL, NULL);
6860 break;
6861 }
6862
6863 /*
6864 * This is the last CPU online operation. So fall through and
6865 * restore the original sched domains by considering the
6866 * cpuset configurations.
6867 */
6868
e761b772 6869 case CPU_ONLINE:
6ad4c188 6870 case CPU_DOWN_FAILED:
7ddf96b0 6871 cpuset_update_active_cpus(true);
d35be8ba 6872 break;
3a101d05
TH
6873 default:
6874 return NOTIFY_DONE;
6875 }
d35be8ba 6876 return NOTIFY_OK;
3a101d05 6877}
e761b772 6878
0b2e918a
TH
6879static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6880 void *hcpu)
3a101d05 6881{
d35be8ba 6882 switch (action) {
3a101d05 6883 case CPU_DOWN_PREPARE:
7ddf96b0 6884 cpuset_update_active_cpus(false);
d35be8ba
SB
6885 break;
6886 case CPU_DOWN_PREPARE_FROZEN:
6887 num_cpus_frozen++;
6888 partition_sched_domains(1, NULL, NULL);
6889 break;
e761b772
MK
6890 default:
6891 return NOTIFY_DONE;
6892 }
d35be8ba 6893 return NOTIFY_OK;
e761b772 6894}
e761b772 6895
1da177e4
LT
6896void __init sched_init_smp(void)
6897{
dcc30a35
RR
6898 cpumask_var_t non_isolated_cpus;
6899
6900 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 6901 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 6902
cb83b629
PZ
6903 sched_init_numa();
6904
6acce3ef
PZ
6905 /*
6906 * There's no userspace yet to cause hotplug operations; hence all the
6907 * cpu masks are stable and all blatant races in the below code cannot
6908 * happen.
6909 */
712555ee 6910 mutex_lock(&sched_domains_mutex);
c4a8849a 6911 init_sched_domains(cpu_active_mask);
dcc30a35
RR
6912 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6913 if (cpumask_empty(non_isolated_cpus))
6914 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 6915 mutex_unlock(&sched_domains_mutex);
e761b772 6916
301a5cba 6917 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
6918 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6919 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772 6920
b328ca18 6921 init_hrtick();
5c1e1767
NP
6922
6923 /* Move init over to a non-isolated CPU */
dcc30a35 6924 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 6925 BUG();
19978ca6 6926 sched_init_granularity();
dcc30a35 6927 free_cpumask_var(non_isolated_cpus);
4212823f 6928
0e3900e6 6929 init_sched_rt_class();
1baca4ce 6930 init_sched_dl_class();
1da177e4
LT
6931}
6932#else
6933void __init sched_init_smp(void)
6934{
19978ca6 6935 sched_init_granularity();
1da177e4
LT
6936}
6937#endif /* CONFIG_SMP */
6938
cd1bb94b
AB
6939const_debug unsigned int sysctl_timer_migration = 1;
6940
1da177e4
LT
6941int in_sched_functions(unsigned long addr)
6942{
1da177e4
LT
6943 return in_lock_functions(addr) ||
6944 (addr >= (unsigned long)__sched_text_start
6945 && addr < (unsigned long)__sched_text_end);
6946}
6947
029632fb 6948#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
6949/*
6950 * Default task group.
6951 * Every task in system belongs to this group at bootup.
6952 */
029632fb 6953struct task_group root_task_group;
35cf4e50 6954LIST_HEAD(task_groups);
052f1dc7 6955#endif
6f505b16 6956
e6252c3e 6957DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 6958
1da177e4
LT
6959void __init sched_init(void)
6960{
dd41f596 6961 int i, j;
434d53b0
MT
6962 unsigned long alloc_size = 0, ptr;
6963
6964#ifdef CONFIG_FAIR_GROUP_SCHED
6965 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6966#endif
6967#ifdef CONFIG_RT_GROUP_SCHED
6968 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 6969#endif
df7c8e84 6970#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 6971 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 6972#endif
434d53b0 6973 if (alloc_size) {
36b7b6d4 6974 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
6975
6976#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 6977 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
6978 ptr += nr_cpu_ids * sizeof(void **);
6979
07e06b01 6980 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 6981 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 6982
6d6bc0ad 6983#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 6984#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6985 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
6986 ptr += nr_cpu_ids * sizeof(void **);
6987
07e06b01 6988 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
6989 ptr += nr_cpu_ids * sizeof(void **);
6990
6d6bc0ad 6991#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
6992#ifdef CONFIG_CPUMASK_OFFSTACK
6993 for_each_possible_cpu(i) {
e6252c3e 6994 per_cpu(load_balance_mask, i) = (void *)ptr;
df7c8e84
RR
6995 ptr += cpumask_size();
6996 }
6997#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 6998 }
dd41f596 6999
332ac17e
DF
7000 init_rt_bandwidth(&def_rt_bandwidth,
7001 global_rt_period(), global_rt_runtime());
7002 init_dl_bandwidth(&def_dl_bandwidth,
1724813d 7003 global_rt_period(), global_rt_runtime());
332ac17e 7004
57d885fe
GH
7005#ifdef CONFIG_SMP
7006 init_defrootdomain();
7007#endif
7008
d0b27fa7 7009#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7010 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 7011 global_rt_period(), global_rt_runtime());
6d6bc0ad 7012#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7013
7c941438 7014#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
7015 list_add(&root_task_group.list, &task_groups);
7016 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 7017 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 7018 autogroup_init(&init_task);
54c707e9 7019
7c941438 7020#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7021
0a945022 7022 for_each_possible_cpu(i) {
70b97a7f 7023 struct rq *rq;
1da177e4
LT
7024
7025 rq = cpu_rq(i);
05fa785c 7026 raw_spin_lock_init(&rq->lock);
7897986b 7027 rq->nr_running = 0;
dce48a84
TG
7028 rq->calc_load_active = 0;
7029 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 7030 init_cfs_rq(&rq->cfs);
6f505b16 7031 init_rt_rq(&rq->rt, rq);
aab03e05 7032 init_dl_rq(&rq->dl, rq);
dd41f596 7033#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 7034 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 7035 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 7036 /*
07e06b01 7037 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
7038 *
7039 * In case of task-groups formed thr' the cgroup filesystem, it
7040 * gets 100% of the cpu resources in the system. This overall
7041 * system cpu resource is divided among the tasks of
07e06b01 7042 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
7043 * based on each entity's (task or task-group's) weight
7044 * (se->load.weight).
7045 *
07e06b01 7046 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
7047 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7048 * then A0's share of the cpu resource is:
7049 *
0d905bca 7050 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 7051 *
07e06b01
YZ
7052 * We achieve this by letting root_task_group's tasks sit
7053 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 7054 */
ab84d31e 7055 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 7056 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
7057#endif /* CONFIG_FAIR_GROUP_SCHED */
7058
7059 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7060#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7061 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 7062#endif
1da177e4 7063
dd41f596
IM
7064 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7065 rq->cpu_load[j] = 0;
fdf3e95d
VP
7066
7067 rq->last_load_update_tick = jiffies;
7068
1da177e4 7069#ifdef CONFIG_SMP
41c7ce9a 7070 rq->sd = NULL;
57d885fe 7071 rq->rd = NULL;
ca8ce3d0 7072 rq->cpu_capacity = SCHED_CAPACITY_SCALE;
3f029d3c 7073 rq->post_schedule = 0;
1da177e4 7074 rq->active_balance = 0;
dd41f596 7075 rq->next_balance = jiffies;
1da177e4 7076 rq->push_cpu = 0;
0a2966b4 7077 rq->cpu = i;
1f11eb6a 7078 rq->online = 0;
eae0c9df
MG
7079 rq->idle_stamp = 0;
7080 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 7081 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
7082
7083 INIT_LIST_HEAD(&rq->cfs_tasks);
7084
dc938520 7085 rq_attach_root(rq, &def_root_domain);
3451d024 7086#ifdef CONFIG_NO_HZ_COMMON
1c792db7 7087 rq->nohz_flags = 0;
83cd4fe2 7088#endif
265f22a9
FW
7089#ifdef CONFIG_NO_HZ_FULL
7090 rq->last_sched_tick = 0;
7091#endif
1da177e4 7092#endif
8f4d37ec 7093 init_rq_hrtick(rq);
1da177e4 7094 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7095 }
7096
2dd73a4f 7097 set_load_weight(&init_task);
b50f60ce 7098
e107be36
AK
7099#ifdef CONFIG_PREEMPT_NOTIFIERS
7100 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7101#endif
7102
1da177e4
LT
7103 /*
7104 * The boot idle thread does lazy MMU switching as well:
7105 */
7106 atomic_inc(&init_mm.mm_count);
7107 enter_lazy_tlb(&init_mm, current);
7108
7109 /*
7110 * Make us the idle thread. Technically, schedule() should not be
7111 * called from this thread, however somewhere below it might be,
7112 * but because we are the idle thread, we just pick up running again
7113 * when this runqueue becomes "idle".
7114 */
7115 init_idle(current, smp_processor_id());
dce48a84
TG
7116
7117 calc_load_update = jiffies + LOAD_FREQ;
7118
dd41f596
IM
7119 /*
7120 * During early bootup we pretend to be a normal task:
7121 */
7122 current->sched_class = &fair_sched_class;
6892b75e 7123
bf4d83f6 7124#ifdef CONFIG_SMP
4cb98839 7125 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
7126 /* May be allocated at isolcpus cmdline parse time */
7127 if (cpu_isolated_map == NULL)
7128 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 7129 idle_thread_set_boot_cpu();
a803f026 7130 set_cpu_rq_start_time();
029632fb
PZ
7131#endif
7132 init_sched_fair_class();
6a7b3dc3 7133
6892b75e 7134 scheduler_running = 1;
1da177e4
LT
7135}
7136
d902db1e 7137#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
7138static inline int preempt_count_equals(int preempt_offset)
7139{
234da7bc 7140 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 7141
4ba8216c 7142 return (nested == preempt_offset);
e4aafea2
FW
7143}
7144
d894837f 7145void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7146{
1da177e4
LT
7147 static unsigned long prev_jiffy; /* ratelimiting */
7148
b3fbab05 7149 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
db273be2
TG
7150 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7151 !is_idle_task(current)) ||
e4aafea2 7152 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7153 return;
7154 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7155 return;
7156 prev_jiffy = jiffies;
7157
3df0fc5b
PZ
7158 printk(KERN_ERR
7159 "BUG: sleeping function called from invalid context at %s:%d\n",
7160 file, line);
7161 printk(KERN_ERR
7162 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7163 in_atomic(), irqs_disabled(),
7164 current->pid, current->comm);
aef745fc
IM
7165
7166 debug_show_held_locks(current);
7167 if (irqs_disabled())
7168 print_irqtrace_events(current);
8f47b187
TG
7169#ifdef CONFIG_DEBUG_PREEMPT
7170 if (!preempt_count_equals(preempt_offset)) {
7171 pr_err("Preemption disabled at:");
7172 print_ip_sym(current->preempt_disable_ip);
7173 pr_cont("\n");
7174 }
7175#endif
aef745fc 7176 dump_stack();
1da177e4
LT
7177}
7178EXPORT_SYMBOL(__might_sleep);
7179#endif
7180
7181#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7182static void normalize_task(struct rq *rq, struct task_struct *p)
7183{
da7a735e 7184 const struct sched_class *prev_class = p->sched_class;
d50dde5a
DF
7185 struct sched_attr attr = {
7186 .sched_policy = SCHED_NORMAL,
7187 };
da7a735e 7188 int old_prio = p->prio;
da0c1e65 7189 int queued;
3e51f33f 7190
da0c1e65
KT
7191 queued = task_on_rq_queued(p);
7192 if (queued)
4ca9b72b 7193 dequeue_task(rq, p, 0);
d50dde5a 7194 __setscheduler(rq, p, &attr);
da0c1e65 7195 if (queued) {
4ca9b72b 7196 enqueue_task(rq, p, 0);
8875125e 7197 resched_curr(rq);
3a5e4dc1 7198 }
da7a735e
PZ
7199
7200 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
7201}
7202
1da177e4
LT
7203void normalize_rt_tasks(void)
7204{
a0f98a1c 7205 struct task_struct *g, *p;
1da177e4 7206 unsigned long flags;
70b97a7f 7207 struct rq *rq;
1da177e4 7208
4cf5d77a 7209 read_lock_irqsave(&tasklist_lock, flags);
5d07f420 7210 for_each_process_thread(g, p) {
178be793
IM
7211 /*
7212 * Only normalize user tasks:
7213 */
7214 if (!p->mm)
7215 continue;
7216
6cfb0d5d 7217 p->se.exec_start = 0;
6cfb0d5d 7218#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7219 p->se.statistics.wait_start = 0;
7220 p->se.statistics.sleep_start = 0;
7221 p->se.statistics.block_start = 0;
6cfb0d5d 7222#endif
dd41f596 7223
aab03e05 7224 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
7225 /*
7226 * Renice negative nice level userspace
7227 * tasks back to 0:
7228 */
d0ea0268 7229 if (task_nice(p) < 0 && p->mm)
dd41f596 7230 set_user_nice(p, 0);
1da177e4 7231 continue;
dd41f596 7232 }
1da177e4 7233
1d615482 7234 raw_spin_lock(&p->pi_lock);
b29739f9 7235 rq = __task_rq_lock(p);
1da177e4 7236
178be793 7237 normalize_task(rq, p);
3a5e4dc1 7238
b29739f9 7239 __task_rq_unlock(rq);
1d615482 7240 raw_spin_unlock(&p->pi_lock);
5d07f420 7241 }
4cf5d77a 7242 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
7243}
7244
7245#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7246
67fc4e0c 7247#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7248/*
67fc4e0c 7249 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7250 *
7251 * They can only be called when the whole system has been
7252 * stopped - every CPU needs to be quiescent, and no scheduling
7253 * activity can take place. Using them for anything else would
7254 * be a serious bug, and as a result, they aren't even visible
7255 * under any other configuration.
7256 */
7257
7258/**
7259 * curr_task - return the current task for a given cpu.
7260 * @cpu: the processor in question.
7261 *
7262 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
7263 *
7264 * Return: The current task for @cpu.
1df5c10a 7265 */
36c8b586 7266struct task_struct *curr_task(int cpu)
1df5c10a
LT
7267{
7268 return cpu_curr(cpu);
7269}
7270
67fc4e0c
JW
7271#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7272
7273#ifdef CONFIG_IA64
1df5c10a
LT
7274/**
7275 * set_curr_task - set the current task for a given cpu.
7276 * @cpu: the processor in question.
7277 * @p: the task pointer to set.
7278 *
7279 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7280 * are serviced on a separate stack. It allows the architecture to switch the
7281 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7282 * must be called with all CPU's synchronized, and interrupts disabled, the
7283 * and caller must save the original value of the current task (see
7284 * curr_task() above) and restore that value before reenabling interrupts and
7285 * re-starting the system.
7286 *
7287 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7288 */
36c8b586 7289void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7290{
7291 cpu_curr(cpu) = p;
7292}
7293
7294#endif
29f59db3 7295
7c941438 7296#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7297/* task_group_lock serializes the addition/removal of task groups */
7298static DEFINE_SPINLOCK(task_group_lock);
7299
bccbe08a
PZ
7300static void free_sched_group(struct task_group *tg)
7301{
7302 free_fair_sched_group(tg);
7303 free_rt_sched_group(tg);
e9aa1dd1 7304 autogroup_free(tg);
bccbe08a
PZ
7305 kfree(tg);
7306}
7307
7308/* allocate runqueue etc for a new task group */
ec7dc8ac 7309struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7310{
7311 struct task_group *tg;
bccbe08a
PZ
7312
7313 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7314 if (!tg)
7315 return ERR_PTR(-ENOMEM);
7316
ec7dc8ac 7317 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7318 goto err;
7319
ec7dc8ac 7320 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7321 goto err;
7322
ace783b9
LZ
7323 return tg;
7324
7325err:
7326 free_sched_group(tg);
7327 return ERR_PTR(-ENOMEM);
7328}
7329
7330void sched_online_group(struct task_group *tg, struct task_group *parent)
7331{
7332 unsigned long flags;
7333
8ed36996 7334 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7335 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7336
7337 WARN_ON(!parent); /* root should already exist */
7338
7339 tg->parent = parent;
f473aa5e 7340 INIT_LIST_HEAD(&tg->children);
09f2724a 7341 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7342 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7343}
7344
9b5b7751 7345/* rcu callback to free various structures associated with a task group */
6f505b16 7346static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7347{
29f59db3 7348 /* now it should be safe to free those cfs_rqs */
6f505b16 7349 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7350}
7351
9b5b7751 7352/* Destroy runqueue etc associated with a task group */
4cf86d77 7353void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
7354{
7355 /* wait for possible concurrent references to cfs_rqs complete */
7356 call_rcu(&tg->rcu, free_sched_group_rcu);
7357}
7358
7359void sched_offline_group(struct task_group *tg)
29f59db3 7360{
8ed36996 7361 unsigned long flags;
9b5b7751 7362 int i;
29f59db3 7363
3d4b47b4
PZ
7364 /* end participation in shares distribution */
7365 for_each_possible_cpu(i)
bccbe08a 7366 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
7367
7368 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7369 list_del_rcu(&tg->list);
f473aa5e 7370 list_del_rcu(&tg->siblings);
8ed36996 7371 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7372}
7373
9b5b7751 7374/* change task's runqueue when it moves between groups.
3a252015
IM
7375 * The caller of this function should have put the task in its new group
7376 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7377 * reflect its new group.
9b5b7751
SV
7378 */
7379void sched_move_task(struct task_struct *tsk)
29f59db3 7380{
8323f26c 7381 struct task_group *tg;
da0c1e65 7382 int queued, running;
29f59db3
SV
7383 unsigned long flags;
7384 struct rq *rq;
7385
7386 rq = task_rq_lock(tsk, &flags);
7387
051a1d1a 7388 running = task_current(rq, tsk);
da0c1e65 7389 queued = task_on_rq_queued(tsk);
29f59db3 7390
da0c1e65 7391 if (queued)
29f59db3 7392 dequeue_task(rq, tsk, 0);
0e1f3483 7393 if (unlikely(running))
f3cd1c4e 7394 put_prev_task(rq, tsk);
29f59db3 7395
073219e9 7396 tg = container_of(task_css_check(tsk, cpu_cgrp_id,
8323f26c
PZ
7397 lockdep_is_held(&tsk->sighand->siglock)),
7398 struct task_group, css);
7399 tg = autogroup_task_group(tsk, tg);
7400 tsk->sched_task_group = tg;
7401
810b3817 7402#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7403 if (tsk->sched_class->task_move_group)
da0c1e65 7404 tsk->sched_class->task_move_group(tsk, queued);
b2b5ce02 7405 else
810b3817 7406#endif
b2b5ce02 7407 set_task_rq(tsk, task_cpu(tsk));
810b3817 7408
0e1f3483
HS
7409 if (unlikely(running))
7410 tsk->sched_class->set_curr_task(rq);
da0c1e65 7411 if (queued)
371fd7e7 7412 enqueue_task(rq, tsk, 0);
29f59db3 7413
0122ec5b 7414 task_rq_unlock(rq, tsk, &flags);
29f59db3 7415}
7c941438 7416#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7417
a790de99
PT
7418#ifdef CONFIG_RT_GROUP_SCHED
7419/*
7420 * Ensure that the real time constraints are schedulable.
7421 */
7422static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7423
9a7e0b18
PZ
7424/* Must be called with tasklist_lock held */
7425static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7426{
9a7e0b18 7427 struct task_struct *g, *p;
b40b2e8e 7428
5d07f420 7429 for_each_process_thread(g, p) {
029632fb 7430 if (rt_task(p) && task_rq(p)->rt.tg == tg)
9a7e0b18 7431 return 1;
5d07f420 7432 }
b40b2e8e 7433
9a7e0b18
PZ
7434 return 0;
7435}
b40b2e8e 7436
9a7e0b18
PZ
7437struct rt_schedulable_data {
7438 struct task_group *tg;
7439 u64 rt_period;
7440 u64 rt_runtime;
7441};
b40b2e8e 7442
a790de99 7443static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7444{
7445 struct rt_schedulable_data *d = data;
7446 struct task_group *child;
7447 unsigned long total, sum = 0;
7448 u64 period, runtime;
b40b2e8e 7449
9a7e0b18
PZ
7450 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7451 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7452
9a7e0b18
PZ
7453 if (tg == d->tg) {
7454 period = d->rt_period;
7455 runtime = d->rt_runtime;
b40b2e8e 7456 }
b40b2e8e 7457
4653f803
PZ
7458 /*
7459 * Cannot have more runtime than the period.
7460 */
7461 if (runtime > period && runtime != RUNTIME_INF)
7462 return -EINVAL;
6f505b16 7463
4653f803
PZ
7464 /*
7465 * Ensure we don't starve existing RT tasks.
7466 */
9a7e0b18
PZ
7467 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7468 return -EBUSY;
6f505b16 7469
9a7e0b18 7470 total = to_ratio(period, runtime);
6f505b16 7471
4653f803
PZ
7472 /*
7473 * Nobody can have more than the global setting allows.
7474 */
7475 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7476 return -EINVAL;
6f505b16 7477
4653f803
PZ
7478 /*
7479 * The sum of our children's runtime should not exceed our own.
7480 */
9a7e0b18
PZ
7481 list_for_each_entry_rcu(child, &tg->children, siblings) {
7482 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7483 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7484
9a7e0b18
PZ
7485 if (child == d->tg) {
7486 period = d->rt_period;
7487 runtime = d->rt_runtime;
7488 }
6f505b16 7489
9a7e0b18 7490 sum += to_ratio(period, runtime);
9f0c1e56 7491 }
6f505b16 7492
9a7e0b18
PZ
7493 if (sum > total)
7494 return -EINVAL;
7495
7496 return 0;
6f505b16
PZ
7497}
7498
9a7e0b18 7499static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7500{
8277434e
PT
7501 int ret;
7502
9a7e0b18
PZ
7503 struct rt_schedulable_data data = {
7504 .tg = tg,
7505 .rt_period = period,
7506 .rt_runtime = runtime,
7507 };
7508
8277434e
PT
7509 rcu_read_lock();
7510 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7511 rcu_read_unlock();
7512
7513 return ret;
521f1a24
DG
7514}
7515
ab84d31e 7516static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7517 u64 rt_period, u64 rt_runtime)
6f505b16 7518{
ac086bc2 7519 int i, err = 0;
9f0c1e56 7520
9f0c1e56 7521 mutex_lock(&rt_constraints_mutex);
521f1a24 7522 read_lock(&tasklist_lock);
9a7e0b18
PZ
7523 err = __rt_schedulable(tg, rt_period, rt_runtime);
7524 if (err)
9f0c1e56 7525 goto unlock;
ac086bc2 7526
0986b11b 7527 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7528 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7529 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7530
7531 for_each_possible_cpu(i) {
7532 struct rt_rq *rt_rq = tg->rt_rq[i];
7533
0986b11b 7534 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7535 rt_rq->rt_runtime = rt_runtime;
0986b11b 7536 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7537 }
0986b11b 7538 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7539unlock:
521f1a24 7540 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7541 mutex_unlock(&rt_constraints_mutex);
7542
7543 return err;
6f505b16
PZ
7544}
7545
25cc7da7 7546static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
7547{
7548 u64 rt_runtime, rt_period;
7549
7550 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7551 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7552 if (rt_runtime_us < 0)
7553 rt_runtime = RUNTIME_INF;
7554
ab84d31e 7555 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7556}
7557
25cc7da7 7558static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
7559{
7560 u64 rt_runtime_us;
7561
d0b27fa7 7562 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7563 return -1;
7564
d0b27fa7 7565 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7566 do_div(rt_runtime_us, NSEC_PER_USEC);
7567 return rt_runtime_us;
7568}
d0b27fa7 7569
25cc7da7 7570static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
d0b27fa7
PZ
7571{
7572 u64 rt_runtime, rt_period;
7573
7574 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7575 rt_runtime = tg->rt_bandwidth.rt_runtime;
7576
619b0488
R
7577 if (rt_period == 0)
7578 return -EINVAL;
7579
ab84d31e 7580 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7581}
7582
25cc7da7 7583static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
7584{
7585 u64 rt_period_us;
7586
7587 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7588 do_div(rt_period_us, NSEC_PER_USEC);
7589 return rt_period_us;
7590}
332ac17e 7591#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7592
332ac17e 7593#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
7594static int sched_rt_global_constraints(void)
7595{
7596 int ret = 0;
7597
7598 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7599 read_lock(&tasklist_lock);
4653f803 7600 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7601 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7602 mutex_unlock(&rt_constraints_mutex);
7603
7604 return ret;
7605}
54e99124 7606
25cc7da7 7607static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
7608{
7609 /* Don't accept realtime tasks when there is no way for them to run */
7610 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7611 return 0;
7612
7613 return 1;
7614}
7615
6d6bc0ad 7616#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7617static int sched_rt_global_constraints(void)
7618{
ac086bc2 7619 unsigned long flags;
332ac17e 7620 int i, ret = 0;
ec5d4989 7621
0986b11b 7622 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7623 for_each_possible_cpu(i) {
7624 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7625
0986b11b 7626 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7627 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7628 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7629 }
0986b11b 7630 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7631
332ac17e 7632 return ret;
d0b27fa7 7633}
6d6bc0ad 7634#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7635
332ac17e
DF
7636static int sched_dl_global_constraints(void)
7637{
1724813d
PZ
7638 u64 runtime = global_rt_runtime();
7639 u64 period = global_rt_period();
332ac17e 7640 u64 new_bw = to_ratio(period, runtime);
1724813d 7641 int cpu, ret = 0;
49516342 7642 unsigned long flags;
332ac17e
DF
7643
7644 /*
7645 * Here we want to check the bandwidth not being set to some
7646 * value smaller than the currently allocated bandwidth in
7647 * any of the root_domains.
7648 *
7649 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7650 * cycling on root_domains... Discussion on different/better
7651 * solutions is welcome!
7652 */
1724813d
PZ
7653 for_each_possible_cpu(cpu) {
7654 struct dl_bw *dl_b = dl_bw_of(cpu);
332ac17e 7655
49516342 7656 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d
PZ
7657 if (new_bw < dl_b->total_bw)
7658 ret = -EBUSY;
49516342 7659 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
1724813d
PZ
7660
7661 if (ret)
7662 break;
332ac17e
DF
7663 }
7664
1724813d 7665 return ret;
332ac17e
DF
7666}
7667
1724813d 7668static void sched_dl_do_global(void)
ce0dbbbb 7669{
1724813d
PZ
7670 u64 new_bw = -1;
7671 int cpu;
49516342 7672 unsigned long flags;
ce0dbbbb 7673
1724813d
PZ
7674 def_dl_bandwidth.dl_period = global_rt_period();
7675 def_dl_bandwidth.dl_runtime = global_rt_runtime();
7676
7677 if (global_rt_runtime() != RUNTIME_INF)
7678 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7679
7680 /*
7681 * FIXME: As above...
7682 */
7683 for_each_possible_cpu(cpu) {
7684 struct dl_bw *dl_b = dl_bw_of(cpu);
7685
49516342 7686 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d 7687 dl_b->bw = new_bw;
49516342 7688 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
ce0dbbbb 7689 }
1724813d
PZ
7690}
7691
7692static int sched_rt_global_validate(void)
7693{
7694 if (sysctl_sched_rt_period <= 0)
7695 return -EINVAL;
7696
e9e7cb38
JL
7697 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7698 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
1724813d
PZ
7699 return -EINVAL;
7700
7701 return 0;
7702}
7703
7704static void sched_rt_do_global(void)
7705{
7706 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7707 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
7708}
7709
d0b27fa7 7710int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7711 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7712 loff_t *ppos)
7713{
d0b27fa7
PZ
7714 int old_period, old_runtime;
7715 static DEFINE_MUTEX(mutex);
1724813d 7716 int ret;
d0b27fa7
PZ
7717
7718 mutex_lock(&mutex);
7719 old_period = sysctl_sched_rt_period;
7720 old_runtime = sysctl_sched_rt_runtime;
7721
8d65af78 7722 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
7723
7724 if (!ret && write) {
1724813d
PZ
7725 ret = sched_rt_global_validate();
7726 if (ret)
7727 goto undo;
7728
d0b27fa7 7729 ret = sched_rt_global_constraints();
1724813d
PZ
7730 if (ret)
7731 goto undo;
7732
7733 ret = sched_dl_global_constraints();
7734 if (ret)
7735 goto undo;
7736
7737 sched_rt_do_global();
7738 sched_dl_do_global();
7739 }
7740 if (0) {
7741undo:
7742 sysctl_sched_rt_period = old_period;
7743 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
7744 }
7745 mutex_unlock(&mutex);
7746
7747 return ret;
7748}
68318b8e 7749
1724813d 7750int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
7751 void __user *buffer, size_t *lenp,
7752 loff_t *ppos)
7753{
7754 int ret;
332ac17e 7755 static DEFINE_MUTEX(mutex);
332ac17e
DF
7756
7757 mutex_lock(&mutex);
332ac17e 7758 ret = proc_dointvec(table, write, buffer, lenp, ppos);
1724813d
PZ
7759 /* make sure that internally we keep jiffies */
7760 /* also, writing zero resets timeslice to default */
332ac17e 7761 if (!ret && write) {
1724813d
PZ
7762 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7763 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
332ac17e
DF
7764 }
7765 mutex_unlock(&mutex);
332ac17e
DF
7766 return ret;
7767}
7768
052f1dc7 7769#ifdef CONFIG_CGROUP_SCHED
68318b8e 7770
a7c6d554 7771static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 7772{
a7c6d554 7773 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
7774}
7775
eb95419b
TH
7776static struct cgroup_subsys_state *
7777cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 7778{
eb95419b
TH
7779 struct task_group *parent = css_tg(parent_css);
7780 struct task_group *tg;
68318b8e 7781
eb95419b 7782 if (!parent) {
68318b8e 7783 /* This is early initialization for the top cgroup */
07e06b01 7784 return &root_task_group.css;
68318b8e
SV
7785 }
7786
ec7dc8ac 7787 tg = sched_create_group(parent);
68318b8e
SV
7788 if (IS_ERR(tg))
7789 return ERR_PTR(-ENOMEM);
7790
68318b8e
SV
7791 return &tg->css;
7792}
7793
eb95419b 7794static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
ace783b9 7795{
eb95419b 7796 struct task_group *tg = css_tg(css);
5c9d535b 7797 struct task_group *parent = css_tg(css->parent);
ace783b9 7798
63876986
TH
7799 if (parent)
7800 sched_online_group(tg, parent);
ace783b9
LZ
7801 return 0;
7802}
7803
eb95419b 7804static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 7805{
eb95419b 7806 struct task_group *tg = css_tg(css);
68318b8e
SV
7807
7808 sched_destroy_group(tg);
7809}
7810
eb95419b 7811static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
ace783b9 7812{
eb95419b 7813 struct task_group *tg = css_tg(css);
ace783b9
LZ
7814
7815 sched_offline_group(tg);
7816}
7817
eb95419b 7818static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
bb9d97b6 7819 struct cgroup_taskset *tset)
68318b8e 7820{
bb9d97b6
TH
7821 struct task_struct *task;
7822
924f0d9a 7823 cgroup_taskset_for_each(task, tset) {
b68aa230 7824#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 7825 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 7826 return -EINVAL;
b68aa230 7827#else
bb9d97b6
TH
7828 /* We don't support RT-tasks being in separate groups */
7829 if (task->sched_class != &fair_sched_class)
7830 return -EINVAL;
b68aa230 7831#endif
bb9d97b6 7832 }
be367d09
BB
7833 return 0;
7834}
68318b8e 7835
eb95419b 7836static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
bb9d97b6 7837 struct cgroup_taskset *tset)
68318b8e 7838{
bb9d97b6
TH
7839 struct task_struct *task;
7840
924f0d9a 7841 cgroup_taskset_for_each(task, tset)
bb9d97b6 7842 sched_move_task(task);
68318b8e
SV
7843}
7844
eb95419b
TH
7845static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7846 struct cgroup_subsys_state *old_css,
7847 struct task_struct *task)
068c5cc5
PZ
7848{
7849 /*
7850 * cgroup_exit() is called in the copy_process() failure path.
7851 * Ignore this case since the task hasn't ran yet, this avoids
7852 * trying to poke a half freed task state from generic code.
7853 */
7854 if (!(task->flags & PF_EXITING))
7855 return;
7856
7857 sched_move_task(task);
7858}
7859
052f1dc7 7860#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
7861static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7862 struct cftype *cftype, u64 shareval)
68318b8e 7863{
182446d0 7864 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
7865}
7866
182446d0
TH
7867static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7868 struct cftype *cft)
68318b8e 7869{
182446d0 7870 struct task_group *tg = css_tg(css);
68318b8e 7871
c8b28116 7872 return (u64) scale_load_down(tg->shares);
68318b8e 7873}
ab84d31e
PT
7874
7875#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
7876static DEFINE_MUTEX(cfs_constraints_mutex);
7877
ab84d31e
PT
7878const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7879const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7880
a790de99
PT
7881static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7882
ab84d31e
PT
7883static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7884{
56f570e5 7885 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 7886 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
7887
7888 if (tg == &root_task_group)
7889 return -EINVAL;
7890
7891 /*
7892 * Ensure we have at some amount of bandwidth every period. This is
7893 * to prevent reaching a state of large arrears when throttled via
7894 * entity_tick() resulting in prolonged exit starvation.
7895 */
7896 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7897 return -EINVAL;
7898
7899 /*
7900 * Likewise, bound things on the otherside by preventing insane quota
7901 * periods. This also allows us to normalize in computing quota
7902 * feasibility.
7903 */
7904 if (period > max_cfs_quota_period)
7905 return -EINVAL;
7906
0e59bdae
KT
7907 /*
7908 * Prevent race between setting of cfs_rq->runtime_enabled and
7909 * unthrottle_offline_cfs_rqs().
7910 */
7911 get_online_cpus();
a790de99
PT
7912 mutex_lock(&cfs_constraints_mutex);
7913 ret = __cfs_schedulable(tg, period, quota);
7914 if (ret)
7915 goto out_unlock;
7916
58088ad0 7917 runtime_enabled = quota != RUNTIME_INF;
56f570e5 7918 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
7919 /*
7920 * If we need to toggle cfs_bandwidth_used, off->on must occur
7921 * before making related changes, and on->off must occur afterwards
7922 */
7923 if (runtime_enabled && !runtime_was_enabled)
7924 cfs_bandwidth_usage_inc();
ab84d31e
PT
7925 raw_spin_lock_irq(&cfs_b->lock);
7926 cfs_b->period = ns_to_ktime(period);
7927 cfs_b->quota = quota;
58088ad0 7928
a9cf55b2 7929 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
7930 /* restart the period timer (if active) to handle new period expiry */
7931 if (runtime_enabled && cfs_b->timer_active) {
7932 /* force a reprogram */
09dc4ab0 7933 __start_cfs_bandwidth(cfs_b, true);
58088ad0 7934 }
ab84d31e
PT
7935 raw_spin_unlock_irq(&cfs_b->lock);
7936
0e59bdae 7937 for_each_online_cpu(i) {
ab84d31e 7938 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 7939 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
7940
7941 raw_spin_lock_irq(&rq->lock);
58088ad0 7942 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 7943 cfs_rq->runtime_remaining = 0;
671fd9da 7944
029632fb 7945 if (cfs_rq->throttled)
671fd9da 7946 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
7947 raw_spin_unlock_irq(&rq->lock);
7948 }
1ee14e6c
BS
7949 if (runtime_was_enabled && !runtime_enabled)
7950 cfs_bandwidth_usage_dec();
a790de99
PT
7951out_unlock:
7952 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 7953 put_online_cpus();
ab84d31e 7954
a790de99 7955 return ret;
ab84d31e
PT
7956}
7957
7958int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7959{
7960 u64 quota, period;
7961
029632fb 7962 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7963 if (cfs_quota_us < 0)
7964 quota = RUNTIME_INF;
7965 else
7966 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7967
7968 return tg_set_cfs_bandwidth(tg, period, quota);
7969}
7970
7971long tg_get_cfs_quota(struct task_group *tg)
7972{
7973 u64 quota_us;
7974
029632fb 7975 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
7976 return -1;
7977
029632fb 7978 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
7979 do_div(quota_us, NSEC_PER_USEC);
7980
7981 return quota_us;
7982}
7983
7984int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7985{
7986 u64 quota, period;
7987
7988 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 7989 quota = tg->cfs_bandwidth.quota;
ab84d31e 7990
ab84d31e
PT
7991 return tg_set_cfs_bandwidth(tg, period, quota);
7992}
7993
7994long tg_get_cfs_period(struct task_group *tg)
7995{
7996 u64 cfs_period_us;
7997
029632fb 7998 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7999 do_div(cfs_period_us, NSEC_PER_USEC);
8000
8001 return cfs_period_us;
8002}
8003
182446d0
TH
8004static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8005 struct cftype *cft)
ab84d31e 8006{
182446d0 8007 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
8008}
8009
182446d0
TH
8010static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8011 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 8012{
182446d0 8013 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
8014}
8015
182446d0
TH
8016static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8017 struct cftype *cft)
ab84d31e 8018{
182446d0 8019 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
8020}
8021
182446d0
TH
8022static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8023 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 8024{
182446d0 8025 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
8026}
8027
a790de99
PT
8028struct cfs_schedulable_data {
8029 struct task_group *tg;
8030 u64 period, quota;
8031};
8032
8033/*
8034 * normalize group quota/period to be quota/max_period
8035 * note: units are usecs
8036 */
8037static u64 normalize_cfs_quota(struct task_group *tg,
8038 struct cfs_schedulable_data *d)
8039{
8040 u64 quota, period;
8041
8042 if (tg == d->tg) {
8043 period = d->period;
8044 quota = d->quota;
8045 } else {
8046 period = tg_get_cfs_period(tg);
8047 quota = tg_get_cfs_quota(tg);
8048 }
8049
8050 /* note: these should typically be equivalent */
8051 if (quota == RUNTIME_INF || quota == -1)
8052 return RUNTIME_INF;
8053
8054 return to_ratio(period, quota);
8055}
8056
8057static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8058{
8059 struct cfs_schedulable_data *d = data;
029632fb 8060 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
8061 s64 quota = 0, parent_quota = -1;
8062
8063 if (!tg->parent) {
8064 quota = RUNTIME_INF;
8065 } else {
029632fb 8066 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
8067
8068 quota = normalize_cfs_quota(tg, d);
8069 parent_quota = parent_b->hierarchal_quota;
8070
8071 /*
8072 * ensure max(child_quota) <= parent_quota, inherit when no
8073 * limit is set
8074 */
8075 if (quota == RUNTIME_INF)
8076 quota = parent_quota;
8077 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8078 return -EINVAL;
8079 }
8080 cfs_b->hierarchal_quota = quota;
8081
8082 return 0;
8083}
8084
8085static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8086{
8277434e 8087 int ret;
a790de99
PT
8088 struct cfs_schedulable_data data = {
8089 .tg = tg,
8090 .period = period,
8091 .quota = quota,
8092 };
8093
8094 if (quota != RUNTIME_INF) {
8095 do_div(data.period, NSEC_PER_USEC);
8096 do_div(data.quota, NSEC_PER_USEC);
8097 }
8098
8277434e
PT
8099 rcu_read_lock();
8100 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8101 rcu_read_unlock();
8102
8103 return ret;
a790de99 8104}
e8da1b18 8105
2da8ca82 8106static int cpu_stats_show(struct seq_file *sf, void *v)
e8da1b18 8107{
2da8ca82 8108 struct task_group *tg = css_tg(seq_css(sf));
029632fb 8109 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 8110
44ffc75b
TH
8111 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8112 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8113 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
8114
8115 return 0;
8116}
ab84d31e 8117#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 8118#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8119
052f1dc7 8120#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
8121static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8122 struct cftype *cft, s64 val)
6f505b16 8123{
182446d0 8124 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
8125}
8126
182446d0
TH
8127static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8128 struct cftype *cft)
6f505b16 8129{
182446d0 8130 return sched_group_rt_runtime(css_tg(css));
6f505b16 8131}
d0b27fa7 8132
182446d0
TH
8133static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8134 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 8135{
182446d0 8136 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
8137}
8138
182446d0
TH
8139static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8140 struct cftype *cft)
d0b27fa7 8141{
182446d0 8142 return sched_group_rt_period(css_tg(css));
d0b27fa7 8143}
6d6bc0ad 8144#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8145
fe5c7cc2 8146static struct cftype cpu_files[] = {
052f1dc7 8147#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8148 {
8149 .name = "shares",
f4c753b7
PM
8150 .read_u64 = cpu_shares_read_u64,
8151 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8152 },
052f1dc7 8153#endif
ab84d31e
PT
8154#ifdef CONFIG_CFS_BANDWIDTH
8155 {
8156 .name = "cfs_quota_us",
8157 .read_s64 = cpu_cfs_quota_read_s64,
8158 .write_s64 = cpu_cfs_quota_write_s64,
8159 },
8160 {
8161 .name = "cfs_period_us",
8162 .read_u64 = cpu_cfs_period_read_u64,
8163 .write_u64 = cpu_cfs_period_write_u64,
8164 },
e8da1b18
NR
8165 {
8166 .name = "stat",
2da8ca82 8167 .seq_show = cpu_stats_show,
e8da1b18 8168 },
ab84d31e 8169#endif
052f1dc7 8170#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8171 {
9f0c1e56 8172 .name = "rt_runtime_us",
06ecb27c
PM
8173 .read_s64 = cpu_rt_runtime_read,
8174 .write_s64 = cpu_rt_runtime_write,
6f505b16 8175 },
d0b27fa7
PZ
8176 {
8177 .name = "rt_period_us",
f4c753b7
PM
8178 .read_u64 = cpu_rt_period_read_uint,
8179 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8180 },
052f1dc7 8181#endif
4baf6e33 8182 { } /* terminate */
68318b8e
SV
8183};
8184
073219e9 8185struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748
TH
8186 .css_alloc = cpu_cgroup_css_alloc,
8187 .css_free = cpu_cgroup_css_free,
ace783b9
LZ
8188 .css_online = cpu_cgroup_css_online,
8189 .css_offline = cpu_cgroup_css_offline,
bb9d97b6
TH
8190 .can_attach = cpu_cgroup_can_attach,
8191 .attach = cpu_cgroup_attach,
068c5cc5 8192 .exit = cpu_cgroup_exit,
5577964e 8193 .legacy_cftypes = cpu_files,
68318b8e
SV
8194 .early_init = 1,
8195};
8196
052f1dc7 8197#endif /* CONFIG_CGROUP_SCHED */
d842de87 8198
b637a328
PM
8199void dump_cpu_task(int cpu)
8200{
8201 pr_info("Task dump for CPU %d:\n", cpu);
8202 sched_show_task(cpu_curr(cpu));
8203}